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Abstract

Single-cell RNA-sequencing profiles the transcriptome of cells from diverse populations. A
popular intermediate data format is a large count matrix of genes × cells. This type of data brings
several analytical challenges. Here, I present three projects that I worked on during my PhD that
address particular aspects of working with such datasets:

1. The large number of cells in the count matrix is a challenge for fitting gamma-Poisson
generalized linear models with existing tools. I developed a new R package called
glmGamPoi to address this gap. I optimized the overdispersion estimation procedure
to be quick and robust for datasets with many cells and small counts. I compared the
performance against two popular tools (edgeR and DESeq2) and find that my inference
is 6× to 13× faster and achieves a higher likelihood for a majority of the genes in four
single-cell datasets.

2. The variance of single-cell RNA-seq counts depends on their mean but many existing
statistical tools have optimal performance when the variance is uniform. Accordingly,
variance-stabilizing transformations are applied to unlock the large number of methods
with such an requirement. I compared four approaches to variance-stabilize the data
based on the delta method, model residuals, inferred latent expression state or count factor
analysis. I describe the theoretical strength and weaknesses, and compare their empirical
performance in a benchmark on simulated and real single-cell data. I find that none of
the mathematically more sophisticated transformations consistently outperform the simple
log(𝑦/𝑠 + 1) transformation.

3. Multi-condition single-cell data offers the opportunity to find differentially expressed
genes for individual cell subpopulations. However, the prevalent approach to analyze such
data is to start by dividing the cells into discrete populations and then test for differential
expression within each group. The results are interpretable but may miss interesting cases
by (1) choosing the cluster size too small and lacking power to detect effects or (2) choosing
the cluster size too large and obscuring interesting effects apparent on a smaller scale. I
developed a new statistical framework for the analysis of multi-condition single-cell data
that avoids the premature discretization. The approach performs regression on the latent
subspaces occupied by the cells in each condition. The method is implemented as an R

package called lemur.
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Zusammenfassung

Einzelzell-RNA-Sequenzierung untersucht die Transkriptome von Zellen aus vielfältigen Pop-
ulationen. Eine gängiges Datenformat ist eine große Matrix mit nicht-negativen ganzzahligen
Einträgen (kurz Zählmatrix) und den Dimensionen Gene × Zellen. Diese Art von neuen Daten
bringt aber auch viele Herausforderungen für die Analyse mit sich. Ich werde drei Projekte
vorstellen, an denen ich während meiner Promotion gearbeitet habe, die einige der Aspekte mit
solchen Daten zu arbeiten, adressieren:

1. Die hohe Anzahl an Zellen stellt eine Herausforderung dar, wenn man gamma-Poisson
verallgemeinerte lineare Modelle mit existierenden Methoden fitten möchte. Ich habe
ein neues R-Paket namen s glmGamPoi entwickelt. Ich habe den Algorithmus um die
Überdispersion abzuschätzen optimiert, damit dieser schnell und robust auf Datensätzen
mit vielen Zellen und kleinen Zahlen funktioniert. Ich habe die Ergebnisse mit denen von
zwei gängigen Methoden (edgeR und DESeq2) verglichen und festgestellt, dass meine
Method 6× bis zu 13× schneller ist und für vier Einzelzell-Datensätzen eine höhere
Likelihoods für eine Mehrheit der Gene erzielt.

2. Die Varianz von Einzelzell-RNA-seq Zählwerten ist von ihrem Mittelwert abhängig,
aber viele existierende statistischen Methoden liefern die besten Ergebnisse, wenn die
Varianz gleichmäßig verteilt ist. Daher werden Varianz-stabilisierende Transformationen
auf die Zählmatrix angewendet, um die Performanz solcher generischen Methoden zu
verbessern. Ich habe vier verschiedene Ansätze für diese Art von Varianzstabilisierung
verglichen: Methoden auf Basis der Delta Methode, von Modell-Residuen, der geschätzten
unterliegenden Expressionsaktivität und von Zählmatrix-Faktor-Modellen. Ich beschreibe
die theoretischen Stärken und Schwächen der Ansätze und vergleiche die Ergebnisse in
einem Benchmark auf simulierten und echten Einzel-Zell-Datensätzen empirisch. Die
Ergebnisse zeigen, dass keine der mathematisch komplizierten Methoden konsistent besser
ist als die einfache log(𝑦/𝑠 + 1) Transformation.

3. Einzel-Zell Daten, die in mehreren experimentellen Bedingungen gemessen wurden,
ermöglichen es differentiell exprimierte Gene in einzelnen Zellsubpopulationen zu finden.
Jedoch ist der erste Schritt für existierende Methoden die Zellen in diskrete Gruppen zu
unterteilen und dann innerhalb jeder Gruppe nach differentieller Expression zu suchen. Die
Ergebnisse sind einfach zu interpretieren, aber dieser Ansatz hat das Risiko interessante
Muster zu übersehen, (1) da die Gruppengröße zu klein gewählt wird, wodurch nicht
genug Evidenz vorhanden ist, um die Muster zu erkennen, oder (2) die Gruppengröße
zu groß gewählt wird, wodurch Muster in kleineren Gruppen übersehen werden. Ich
habe ein neues statistisches Framework für die Analyse von Einzel-Zell Daten, die
in mehreren experimentellen Bedingungen gemessen wurden, entwickelt, dass diese
frühzeitige Diskretisierung vermeidet. Der Ansatz basiert auf einer Regression auf den
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unterliegenden Unterräumen in denen die Zellen jeder experimentellen Bedingung sich
befinden. Die Methode ist als R-Paket unter dem Namen lemur implementiert.
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1 Introduction

During my PhD, I have (1) developed a tool for fitting gamma-Poisson1 count models to single-cell
RNA-seq data, (2) compared various single-cell preprocessing methods, and (3) developed a new
statistical method to find groups of cells that show consistent differential expression without a
priori assigning the cells to discrete groups. I will explain each of these topics in an individual
chapter. Here, I want to give the appropriate context for this work and provide a historical
overview of where single-cell RNA-seq originated from and why it is an exciting technology. In
addition, I want to review the most important computational innovations that made it possible to
gain biological insights from high-throughput transcriptomic data.

1.1 A brief history of transcriptomics

The earliest research article I was able to find discussing the question of differential gene
expression is Wilt (1962). It considers the differential gene activity of hemoglobin during
embryogenesis of chickens. The term transcriptome was coined considerably later by Velculescu
et al. (1997) who defined it as the ”set of [expressed] genes”. This is the first paper that surveys all
transcripts in an organism (that is, yeast) and kicked off the era of high-throughput transcriptomic
characterization of many organisms and experimental conditions.

The word transcriptome is a portmanteau of transcription, the production of mRNA, and
genome, the set of all genes in an organism. Unlike the genome, the transcriptome is flexible and
responsive to external conditions and thus provides a link between the static genome and the
physical characteristics of a cell (Velculescu et al., 1997). Two important physical characteristics
of the cell are the proteome (the set of all proteins) and metabolome (the set of all metabolites),
so why focus on the intermediary instead of the products that actually do something? Lockhart
and Winzeler (2000) answered this question aptly, pointing out ”one reason is simply that
protein-based approaches are generally more difficult, less sensitive and have lower throughput
than RNA-based ones,” which is still valid 23 years later.

Some of the earliest techniques to study differential expression and the transcriptome were
gel based. To this day, Western blots are a quick target confirmation of protein presence; Liang
and Pardee (1992) and Welsh et al. (1992) combined Northern blots (detection of cDNA with
gels) with PCR amplification of arbitrary mRNAs to compare the set of expressed genes. The
method is called differential display and was popular throughout the 90s (Liang, 2002). Figure 1A
shows an example of a differential display Northern blot comparing the gene expression of heart
and kidney cells in mice. Besides reliance on broadly available equipment, one advantage of
differential display was that it was not limited to known genes. After the differential display,
excision from the gel could be used to sequence a gene. However, identifying differentially
expressed genes from differential display was still cumbersome because precise quantification

1This is just another name for the negative binomial distribution.
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1 Introduction

A) Di�erential display B) SAGE

C) Microarray D) RNA-seq

Figure 1 | Overview of popular techniques for studying differential expression in the 90s
and 2000s. (A) Northern blot with a differential display of mRNA from mouse kidney and heart.
The arrows indicate differentially expressed mRNAs. (B) Schematic of serial analysis of gene
expression (SAGE). (C) Image of a two-color microarray. mRNA from two conditions is labeled
with a red and green dye, respectively, and the competitive hybridization indicates if a gene is
overexpressed in either condition. (D) Schematic of the experimental procedure to conduct an
RNA-seq experiment.
The data for panel (A) was generated by Welsh et al. (1992) –reprinted with permission from
Nucleic Acid Research. The schematic in panel (B) was produced by Velculescu et al. (1997) and
is available as CC-BY-NC-ND. The data for panel (C) is courtesy of J. DeRisi and P. O. Brown,
as presented in Lockhart and Winzeler (2000) –reprinted with permission from Springer Nature.
The schematic in panel (D) was produced by Lister et al. (2008) –reprinted with permission from
Elsevier.

of the expression changes from the gels was difficult and the method relied on mRNA length
instead of nucleotide sequence to identify genes.

Two competing techniques developed in the mid-90s were SAGE (serial analysis of gene
expression) and microarrays. SAGE was developed by Velculescu et al. (1995) and used in

2



1.1 A brief history of transcriptomics

the landmark study of the yeast transcriptome (Velculescu et al., 1997). It used the growing
availability of high-throughput sequencers, creating random 9 or 10 base pair tags from all
expressed transcripts. These tags are often long enough to be aligned with known gene sequences,
and summing up the times a tag matched a gene allowed an absolute quantification of the gene
expression (Figure 1B). One limitation of the technique was its low dynamic range which made it
less well-suited for differential expression analysis than microarrays (Ding and Cantor, 2004; van
Ruissen et al., 2005).

Microarrays use DNA probes immobilized on a surface to measure the hybridization with
labeled mRNA. The origins of the technique trace back to the 1960s and 70s (Kafatos et al.,
1979; Gillespie and Spiegelman, 1965), when DNA was attached to nitrocellulose membranes
and the mRNA was labeled radioactively. However, the throughput of microarrays was limited
until glass substrates and fluorescently labeled probes were combined with new ways to deposit
the DNA (Figure 1C) (Schena et al., 1995, 1996). These new chips allowed the comparison
of ten-thousands of genes. One popular commercial platform for microarrays was Affymetrix
(Lockhart et al., 1996). Their chips were used in a landmark study by Golub et al. (1999), who
used gene expression signatures to distinguish AML and ALL patients. Microarrays were popular
because of their sensitivity, high throughput, and large dynamic range (Ding and Cantor, 2004).
However, they are fundamentally limited to a fixed set of DNA probes.

The invention of RNA-seq, developed in 2007 and 2008, overcame these problems (Emrich
et al., 2007; Lister et al., 2008). Figure 1D gives an overview of the experimental procedure.
It uses short-read sequencing technologies (commercialized, for example, by Illumina), which
replaced the less efficient Sanger sequencing used in SAGE. In addition, RNA-seq has made it
straightforward to quantify alternative splicing as it only requires counting of reads spanning
splice sides (Wang et al., 2009). An important difference compared to microarrays is that
RNA-seq does not need to handle background subtraction, which complicates the analysis of
microarray data, because the RNA-seq data are integer counts. Finally, the quantification of
gene expression levels with RNA-seq is more accurate (using qPCR as a reference) than with
microarrays (Nagalakshmi et al., 2008).

In the last 15 years, RNA-seq has become the dominant technology for transcriptomic analysis.
And almost since its inception, various extensions have been developed. In addition to the
short-read sequencing from Illumina, long-read sequencing approaches by Pacific Biosciences
and Oxford Nanopore are popular (Figure 2) (Eid et al., 2009; Garalde et al., 2018). They alleviate
the problem of mapping ambiguity and enable better resolution of isoforms. Yet, short-read
sequencing is still the most popular technology for transcriptomics because of its lower error rate,
higher throughput, and lower costs (Stark et al., 2019).

Only two years after RNA-seq was established, the first sequencing of a single cell was
reported (Tang et al., 2009). In the study five oocytes were separated into individual wells
and sequenced them using a modified RNA-seq protocol. Figure 3 gives an overview of the
different steps in a single-cell experiment and some of the popular technologies. Among these

3



1 Introduction

A B C

Figure 2 | Overview of RNA-sequencing technologies. (A) Schematic of Illumina short read
sequencing: sequencing proceeds base by base, and each newly incorporated nucleotide produces
a distinct fluorescent signal. (B) Schematic of Pacific Bioscience long read sequencing: at the
bottom of a nano-well, an immobilized polymerase extends fluorescently tagged nucleotides.
(C) Schematic of Oxford Nanopore long read sequencing: DNA strands are sucked through a
nanopore by a motor protein; the change in current across a membrane is used to detect the
nucleotide identity.
The schematic was produced by Stark et al. (2019) –reprinted with permission from Springer
Nature.

is the plate-based Smart-seq protocol that sequences full-length transcripts (Picelli et al., 2013,
2014). Besides limited throughput, the main disadvantage of the Smart-seq protocol was the
lack of unique molecular identifiers (UMIs) until the introduction of Smart-seq3 three years ago
(Hagemann-Jensen et al., 2020). UMIs have proven to be an indispensable tools for solving the
problem of inflated counts of some transcripts due to the PCR amplification step (Islam et al.,
2014; Stark et al., 2019).

The most popular single-cell sequencing technology is based on droplet-based microfluidics
(Macosko et al., 2015; Klein et al., 2015). This technology was commercialized by 10x Genomics,
who scaled the system up to tens of thousands of cells (Zheng et al., 2017). Since the initial
single-cell studies 14 years ago, the number of cells per study has continuously increased
(Figure 4). There exist multiple single-cell studies comprising millions of cells, and the largest
study to date profiled 12.4 million single nuclei (Qiu et al., 2023).

The single-cell field is maturing, but there are still several rapidly progressing subfields.
There is a lot of excitement around spatially resolved single-cell measurements. Two popular
approaches are recording the spatial information during library preparation (e.g., 10x Visium)
or using barcoded antibodies that are identified using repeated cycles of fluorescent staining

4



1.1 A brief history of transcriptomics

Figure 3 | Overview of single-cell technologies. Steps of a single-cell RNA-seq experiment
with an overview of the different single-cell capture approaches and common analytical outputs.
The schematic was produced by Stark et al. (2019) –reprinted with permission from Springer
Nature.

(CODEX) (Goltsev et al., 2018).

To date, single-cell studies have profiled many different tissues, and large consortia have
profiled ten human organs (Regev et al., 2017), the human brain (Siletti et al., 2022), and multiple
mouse organs (Schaum et al., 2018). In parallel, there is an increasing interest in comparative
single-cell analysis, where multiple conditions are profiled to investigate how an experimental
condition, such as drug treatment, changes gene expression across cell types.

Much of the progress in transcriptomic analysis is due to technological advances. In parallel,
the birth of high-throughput biological studies and the predominance of new data types (e.g.,
RNA-seq count data) have spurned many innovations in applied statistics and the development of
countless tools. In the next section, I want to give an overview of some of the milestones in the
analysis of transcriptomic data.

5



1 Introduction

10

1000

10,000

10 mio

2010 2015 2020

N
um

be
r 

of
 c

el
ls

Sequencing technology 10X Chromium Smart−seq Other

Data from the single cell studies database by Valentine Svennson et al. (2020)

Number of single cells per study over time

Figure 4 | Number of single cells per study over time. Each point is one study in the database,
and the blue line is a generalized additive model smoothing fit. The y-axis is log-transformed.
The data for this figure comes from a curated database (Svensson et al., 2020), and the plot was
generated by me.

1.2 A brief history of transcriptomics data analysis

On the 26th of November 2001, Robert Gentleman sent the inaugural email to the Bioconductor
mailing list2. Bioconductor’s stated aims were ”transparency, pursuit of reproducibility and
efficiency of development” (Gentleman et al., 2004). From the beginning, it was connected with
the analysis of microarray data which at the time was the method of choice for profiling the
transcriptome.

The paper by Gentleman et al. (2004) introduced the Bioconductor project to a wider audience.
It demonstrated Bioconductor’s capabilities using an Affymetrix microarray data analysis as an
example. It showed the affy package to load data, expressionSet to represent the data in memory,
and limma to perform inferential statistics. The affy package was built to give researchers a
more flexible way to work with microarray data than the manufacturer-provided software offered
(Gautier et al., 2004). The expressionSet was a predecessor to SummarizedExperiment and stored
a matrix together with additional row and column data (called featureData and phenoData)
(Falcon et al., 2006).

Limma is still one of the most important software packages for analyzing biological high-
throughput transcriptomic data. It was originally developed for normalizing and assessing

2Within 72 hours, Martin Maechler reminded him that user-contributed code is bundled as packages and not libraries,
which since then has become a recurring theme ( lapply (c(58, 104, 161), fortunes : : fortune ))
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1.2 A brief history of transcriptomics data analysis

differential expression in microarray data (Smyth and Speed, 2003; Smyth, 2004). It is best
known for implementing an efficient and statistically sound approach to shrink the variance
estimates and thus boosting power to detect differential expression compared with simple linear
models (Tusher et al., 2001; Lönnstedt and Speed, 2002; Smyth, 2004).

Originally, microarrays used a two-color system to directly compare the hybridization of two
experimental conditions (Schena et al., 1995, 1996). This provided a direct but noisy comparison
of their relative expression levels; soon, analysts realized that replicates were essential for
reliable differential expression analysis (Yang and Speed, 2002; Allison et al., 2006). This
also made single-channel approaches more attractive because the experimental designs for
two-color microarrays got increasingly complex (Lipshutz et al., 1999; Yang and Speed, 2002;
Kathleen Kerr, 2003).

The variance of a microarray spot intensity measurement depends on the intensity mean.
Originally, this was accounted for by using a log transformation (Lockhart et al., 1996). Chen et al.
(1997) derived the confidence intervals for the ratio of two microarray measurements for a constant
coefficient of variation. This derivation was complicated and not easily generalized to other
experimental designs. Thus, Huber et al. (2002) suggested a variance-stabilizing transformation
for microarray data based on the delta method, which allowed plugging the transformed values
into linear models and use tools such as limma.

The onset of high throughput biological testing also led to reexamination of how multiple
testing adjustment was done. Benjamini and Hochberg (1995) had developed the concept of the
false discovery rate (FDR). However, only the widespread use of microarrays and quantitative
trait loci made the FDR broadly accepted (Benjamini, 2010). In the following years, there were
many efforts to improve the multiple testing procedures specifically for microarrays, for example,
by working with positive or local false discovery rates (Efron and Tibshirani, 2002; Efron, 2005;
Storey, 2002, 2003) or weighting the hypotheses using independent covariates (Bourgon et al.,
2010; Ignatiadis et al., 2016).

In 2008, soon after the first RNA-seq studies, Marioni et al. (2008) compared the reproducibility
of RNA-seq counts, found that the counts mostly varied within the expected range of Poisson
noise, and concluded that replicates might be dispensable for differential expression analysis.
However, they only considered technical replicates, and in 2009 and 2010 two packages, edgeR
and DESeq, were released that modeled overdispersed counts to account for the additional
biological variation between biological replicates. edgeR (Robinson et al., 2009) and DESeq
(Anders and Huber, 2010) remain, to this day, the most popular tools for analyzing bulk RNA-seq
data. They were both built around generalized linear models with a gamma-Poisson (another name
for the negative binomial) distribution. Both tools are still actively developed and have gained
many improvements over the years: McCarthy et al. (2012) introduced the Cox-Reid correction
for the overdispersion estimation, Lund et al. (2012) used a quasi-likelihood formulation to
improve the estimation of the overdispersion shrinkage, Love et al. (2014) presented DESeq2
which modernized the programming interface, enabled shrinking of log fold change estimates,
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1 Introduction

Figure 5 | Overview of a potential computational analysis of a single-cell experiment The
schematic was produced by Kharchenko (2021) –reprinted with permission from Springer Nature.

and added independent hypothesis filtering.

The aim of many early single-cell studies was more exploratory than typical bulk RNA-seq
experiments. Accordingly, the focus of many newly developed tools for single-cell data was on
dimensionality reduction (e.g., with tSNE or UMAP (Van der Maaten and Hinton, 2008; Kobak
and Berens, 2019; McInnes et al., 2018; Becht et al., 2019)), data integration (e.g., mutual nearest
neighbor and Harmony (Haghverdi et al., 2018; Butler et al., 2018; Korsunsky et al., 2019)),
clustering (e.g., Louvain and Leiden (Blondel et al., 2008; Traag et al., 2019)), and computations
on neighborhood graphs (e.g., MELD and milo (Burkhardt et al., 2021; Dann et al., 2022)).
Figure 5 shows an example analysis workflow and mentions some popular tools.

Whereas many bulk RNA-seq analyses were conducted using R and Bioconductor, many
tools for single-cell analysis are now developed in Python. Popular examples are Scanpy (Wolf
et al., 2018), scVI (Lopez et al., 2018), and Squidpy (Palla et al., 2022).

When single-cell data was new, there was momentum around developing new tools for
differential expression analysis, motivated by the assumption that single-cell counts follow
a zero-inflated negative binomial distribution (Kharchenko et al., 2014; Finak et al., 2015).
However, Svensson (2020) showed that single-cell data with UMIs are not zero-inflated. Crowell
et al. (2020) benchmarked the differential expression performance of these new tools (MAST,
scDD, mixed models with lme4) for differential expression analysis and found that they did not
outperform using edgeR with pseudo-bulks.
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2 glmGamPoi

In this chapter, I will describe how I developed a method to efficiently fit gamma-Poisson
generalized linear models on single-cell count data. I published this project with Wolfgang
Huber as an application note in Oxford Bioinformatics under the title “glmGamPoi: fitting
Gamma-Poisson generalized linear models on single-cell count data” (Ahlmann-Eltze and Huber,
2020) and as an R package on Bioconductor. The name of the package is pronounced dZi 9l 9m

gam "pwA.

2.1 Generalized linear models

2.1.1 Theory of generalized linear models

Generalized linear models extend the framework of linear models to other data distributions.
A key assumption of linear models is the constant variance of the residuals; generalized linear
models relax that assumption to any mean-variance relationship described by an exponential
dispersion model (EDM) (Dunn and Smyth, 2018). They achieve this by introducing a link
function 𝑔 that connects the linear predictor with the observed values

[ = 𝑋𝛽

𝑌 ∼ EDM(` = 𝑔−1([), 𝜙).
(1)

Here, 𝑋 is a design matrix of size 𝑁 × 𝐾, where 𝑁 is the number of observations and 𝐾 is
the number of covariates. 𝛽 are the coefficients found by the generalized linear model fit. [ is
the linear predictor. 𝑌 are the observations, and the domain of 𝑌 depends on the exponential
dispersion model 𝐷 (e.g., binary for logistic regression, non-negative counts for Poisson or
gamma-Poisson, positive for gamma regression). 𝜙 is the dispersion parameter, and we assume
that it is known.

The density function of the exponential dispersion models is defined as

PEDM(𝑦; \, 𝜙) = 𝑎(𝑦, 𝜙) exp
(
𝑦\ − ^(\)

𝜙

)
. (2)

\ is the canonical parameter, ^(\) is called the cumulant function and known, and 𝑎(𝑦, 𝜙) is the
normalizing function that ensures that the eq. (2) has an area of 1. See Table 5.1 of Dunn and
Smyth (2018) for a table defining \, ^ and 𝜙 for the most common types of exponential dispersion
models.

For illustration, I will go through two relevant examples: the Poisson and gamma-Poisson
distributions. The probability density function of the Poisson distribution is

PPoisson(𝑦; `) = `𝑦 exp(−`)
𝑦!

. (3)
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To emphasize the relation of eq. (3) and eq. (2), I rewrite eq. (3) as

PPoisson(𝑦; `) = 1
𝑦!

exp (𝑦 log(`) − `) . (4)

This demonstrates that \ = log ` is the canonical parameter, the cumulant function is ^(\) = `,
the normalization function is 𝑎(𝑦, 𝜙) = 1/𝑦!, and the dispersion is 𝜙 = 1. This proves that the
Poisson distribution is an exponential distribution model.

The probability density function of the gamma-Poisson distribution is (Ahlmann-Eltze, 2021)

Pgamma-Poisson(𝑦; `, 𝛼) = Γ (𝑦 + 1/𝛼)
Γ (1/𝛼) Γ (𝑦 + 1)

(
`𝛼

1 + `𝛼

) 𝑦 (
1

1 + `𝛼

)1/𝛼
, (5)

which I will again rewrite to emphasize the relation to eq. (2)

PGP(𝑦; `, 𝛼) = 𝑎(𝑦, 𝛼) exp
(
𝑦 log

(
`𝛼

1 + `𝛼

)
− 1
𝛼

log (1 + `𝛼)
)
, (6)

where the canonical parameter is \ = log
(
`𝛼

1+`𝛼

)
, the cumulant function is3 ^(\) = 1

𝛼
log (1 + `𝛼)

and the normalizing function is 𝑎(𝑦, 𝛼) = Γ(𝑦+1/𝛼)
Γ(1/𝛼)Γ(𝑦+1) . Importantly, eq. (6) shows that 𝜙 = 1. A

common source of confusion is that 𝛼 is sometimes referred to as dispersion which suggests
a relation with the dispersion of the exponential dispersion models, even though 𝛼 and 𝜙 play
distinct roles. For this reason, I will refer to 𝛼 as the overdispersion.

An important property of exponential dispersion models is their mean-variance relationship. A
specific choice for the mean-variance relationship uniquely determines the exponential dispersion
model class. For example, the mean-variance relationship of

• a Normal distribution is 𝑉 (`) = 1,

• a Poisson distribution is 𝑉 (`) = `,

• and a gamma-Poisson distribution is 𝑉 (`) = ` + 𝛼`2.

This property also holds in reverse, that is, the Poisson distribution is the only exponential
dispersion model which has a mean-variance relation of 𝑉 (`) = `.

A powerful generalization using the framework of exponential dispersion models is the
introduction of quasi-Poisson and quasi-gamma-Poisson distributions (Lund et al., 2012). They
extend the familiar mean-variance relationship by introducing a 𝜙 ≠ 1. For example, the
mean-variance relationship of the quasi-Poisson model is𝑉 (`) = 𝜙`. No closed-form probability
density function exists for this mean-variance relationship, but the generic estimators of the
coefficients and corresponding standard errors still apply. The concept of quasi-likelihoods is
important for the introduction of variance shrinkage estimators.

3This definition differs from the result given in Table 5.1 in Dunn and Smyth (2018), who define ^(\) =

− log(1 − exp(\)), by a factor of 1/𝛼.
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2.1 Generalized linear models

2.1.2 Inference of the coefficients in generalized linear models

The success of generalized linear models is because a single algorithm for the inference of the
coefficients 𝛽 can be applied to all instances of the exponential dispersion models. The algorithm
is based on the theory of maximum likelihood and works by iteratively calculating the coefficients’
first and expected second derivatives.

I optimize the coefficients 𝛽 with respect to the log-likelihood of the distribution

ℓ(β;y) =
𝑁∑︁
𝑖

logP(𝑦𝑖; ` = 𝑔−1(𝑋𝑖:β)). (7)

I use the notation 𝑋𝑖: to indicate that I extract the 𝑖-th row vector from the design matrix 𝑋 with
𝑁 rows (i.e. observations) and 𝐾 columns (i.e.,, the number of covariates).

The vector with the partial derivatives of eq. (20) is called the score vector

𝑈 (β) = 𝜕ℓ(β;y)
𝜕β

. (8)

The derivative depends on the log-likelihood of the distribution and the link function (eq. (1)).
Specifically, for one coefficient 𝛽𝑘

𝑈 (𝛽𝑘 ) =
𝜕ℓ(β;y)
𝜕𝛽𝑘

=
𝜕ℓ(β;y)
𝜕`

`

𝜕𝛽𝑘

=

𝑁∑︁
𝑖

𝑤𝑖
d[𝑖
d`𝑖
(𝑦𝑖 − `𝑖)𝑥𝑘𝑖 .

(9)

In the last step, we use the definition of the cumulant-generating function

d^(\)
d\

= `

d2^(\)
d\2 = 𝑉 (`).

(10)

and store the working weights as

𝑤𝑖 =
1

𝑉 (`𝑖) (d[𝑖/d`𝑖)2
. (11)

The matrix of second derivatives is called the observed information matrix

J𝑘𝑘 ′ (β) = −
𝜕2ℓ(β;y)
𝜕𝛽𝑘𝜕𝛽𝑘 ′

. (12)

It turns out that for generalized linear models, it is more convenient to work with the expected
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2 glmGamPoi

information matrix, which is called the Fisher information matrix

I(β) = −𝔼
[
𝜕2ℓ(β;y)
𝜕𝛽𝑘𝜕𝛽𝑘 ′

]
= 𝔼[J (β)] . (13)

The Fisher information is a property of the model and independent of the observed values. It
is calculated as

I =
1
𝜙
𝑋𝑇 diag(w)𝑋. (14)

To find the optimal β̂, we set the score function equal to zero 𝑈 (β) = 0. The multivariate
generalization of the Newton method to find the root of a function (𝑥 (𝑡+1) = 𝑥 (𝑡)− 𝑓 (𝑥 (𝑡))/ 𝑓 ′(𝑥 (𝑡)))
is called the Newton-Raphson algorithm

β(𝑡+1) = β(𝑡) + J (β(𝑡))−1𝑈 (β(𝑡)). (15)

As we use the Fisher information matrix I instead of the observed information J , the procedure
is called Fisher scoring and update the parameters by calculating

β(𝑡+1) = β(𝑡) + I(β(𝑡))−1𝑈 (β(𝑡)). (16)

2.1.3 Inference of the coefficients in glmGamPoi

In glmGamPoi, I implemented the Fisher scoring algorithm for gamma-Poisson distributed values
with the canonical link function (i.e., 𝑔−1([) = exp [). Accordingly, the working weights are

𝑤𝑖 =
`𝑖

1 + `𝑖𝛼
. (17)

The derivative of the link function is

d[𝑖
d`𝑖

= 1/`𝑖 . (18)

When I plug these definitions into eq. (9) and rewrite the expression using matrix notations, I
find that

𝑈 (β) = diag(w)y − µ̂
µ

. (19)

To find the inverse of the Fisher information matrix I(β(𝑡))−1 in eq. (16) efficiently and reliably,
I use a QR decomposition-based linear regression solver. This algorithm is the same that is used
by other popular implementations of gamma-Poisson generalized linear models such as DESeq2
and edgeR (Love et al., 2014; Robinson et al., 2009).

In practice, the Fisher scoring algorithm can diverge. I avoid this problem by checking after
each step if the proposed step decreases the deviance. If the deviance is not decreased, I assume
that the step size is too large and keep halving it until the deviance increases or a maximum
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2.1 Generalized linear models

number of iterations is reached.
Unlike edgeR and DESeq2, glmGamPoi supports arbitrary ridge penalties on the coefficients.

This is helpful because they can help avoid overfitting, allow us to fit models with design matrices
containing colinear columns, and can be used to fit generative additive models (GAMs) for
smoothing (an idea by Koen van den Berge). The ridge penalty is provided as a matrix Λ of size
𝐾 × 𝐾 and changes the optimization function eq. (20)

arg min
β
−ℓ(β;y) + β𝑇Λβ (20)

Hoerl and Kennard (1970) shows that we can account for the modified optimization function by
adding Λ to the Fisher information matrix in eq. (16)

β(𝑡+1) = β(𝑡) +
(
I(β(𝑡)) + Λ

)−1
𝑈 (β(𝑡)). (21)

2.1.4 Inference of the overdispersion in generalized linear models

The theory of gamma-Poisson generalized linear models assumes that the overdispersion 𝛼 is
known. In reality, we usually do not know 𝛼 and need to estimate in parallel to the coefficients.
Following the example of DESeq2, I first approximate the overdispersions, fit the coefficients β,
and then use those coefficients to generate the final overdispersion estimates:

1. Approximate the overdispersion based on the mean-variance relationship.

2. Approximate the coefficients for each gene fitting a linear model on the log-normalized
counts.

3. Fit the coefficients using the approximated overdispersions by optimizing eq. (20).

4. Fit the overdispersion values using the coefficient estimates. Optionally, shrink the
overdispersion values.

5. Fit the coefficients again using the (shrunken) overdispersion estimates by optimizing
eq. (20).

In step 1, I approximate the overdispersion values by inverting the mean-variance relation of
the gamma-Poisson distribution

𝑉 (`) = ` + 𝛼`2. (22)

I calculate the empirical mean and variance of each gene and approximate the overdispersion as

𝛼𝑔 =
var(𝑌𝑔:) −mean(𝑌𝑔:)

mean(𝑌𝑔:)2
. (23)
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2 glmGamPoi

In most circumstances, this approach will overestimate the overdispersion because it does not
account for the variability explained by the model matrix.

In step 3, I fit the overdispersion by maximizing the log-likelihood of the Gamma-Poisson
GLM with respect to the overdispersion

arg max
𝛼

ℓ(𝛼;y,µ) =
𝐶∑︁
𝑐

log

(
Γ (𝑦𝑐 + 1/𝛼)

Γ (1/𝛼) Γ (𝑦𝑐 + 1)

(
`𝑐𝛼

1 + `𝑐𝛼

) 𝑦𝑐 (
1

1 + `𝑐𝛼

)1/𝛼
)

∝ −𝐶 log(1/𝛼) − 𝐶 log(𝛼)
𝛼
+

∑︁
𝑐

log Γ(𝑦𝑐 + 1/𝛼)+∑︁
𝑐

(−𝑦𝑐 − 1/𝛼) log(`𝑐 + 1/𝛼).

(24)

I use the nlminb function to optimize eq. (24) to which I provide the first and second derivatives.

A computational bottleneck in the optimization is the repeated calculation of the log-gamma
function (and its derivatives, the digamma and trigamma functions). I speed up the process by
using the fact that most counts in single-cell data are small integers. I tabulate the counts for
each gene and evaluate the log-gamma function only once for each unique integer.

2.1.5 Overdispersion shrinkage

Empirical Bayesian shrinkage increases the power to detect differential expression by sharing
information about the overdispersion across genes. The method was pioneered by limma for
testing differences in microarray data (Smyth, 2004). Lund et al. (2012) extended the idea to
count data using a quasi-gamma-Poisson model with a mean-variance relationship of

𝑉 (`) = 𝜙(` + 𝛼`2). (25)

I fit a local median regression of the overdispersion estimates per gene depending on the mean
gene expression. The fitted values for each gene are called 𝛼trend.

I convert the maximum likelihood overdispersion estimates to quasi-likelihood dispersions by
positing that the variance is constant

𝜙 =
1 + `𝛼ML
1 + `𝛼trend

. (26)

I infer the parameters of the dispersion prior using maximum likelihood and, lastly, shrink
the quasi-likelihood overdispersion estimates by calculating the mean between trended prior and
quasi-likelihood overdispersion estimates.
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2.1.6 Differential expression testing

I find differentially expressed genes using a quasi-likelihood ratio test following the work of
Lund et al. (2012). The motivation for this statistical test comes from the fact that under the
null hypothesis for two nested models, the logarithm of a likelihood ratio (or equivalently, the
difference of the log-likelihood) of the full and reduced model with a known dispersion 𝜙 follows
a 𝜒2-distribution

𝐿 = 2(ℓfull − ℓred) ∼ 𝜒2(𝐾full − 𝐾red). (27)

This test corresponds to a z-test for continuously distributed data. The equivalent of a t-test, i.e.,
where we account for the fact that 𝜙 was estimated from the data, is the F-test

𝐿𝜙QL

𝐾full − 𝐾red
∼ 𝐹 (𝐾full − 𝐾red, 𝑁 − 𝐾full). (28)

I use this relation to calculate the p-value for the comparison of the full and reduced model for
each gene.

2.2 Implementation

After presenting the theory behind the gamma-Poisson generalized linear models, I will turn to
the specific implementation decisions that I made. I designed glmGamPoi with three goals:

1. Higher speed compared with existing implementations.

2. Reliable overdispersion estimates on datasets with many small counts.

3. Handling arbitrarily large datasets.

I achieved the first priority by grouping the evaluation of the log-gamma function by distinct
integers. For the second priority, I included lower and upper bounds based on the Taylor series of
the first and second derivatives to avoid divergent steps. glmGamPoi supports arbitrarily large
single-cell datasets by abstracting the internal memory representation of the count, mean and
offset matrices. I used the DelayedArray and beachmat packages (Pages et al., 2022; Lun et al.,
2018).

In Figure 6, I show the most important external and internal functions of glmGamPoi and the
order in which they are called. The functions with a blue background were implemented in C++
for efficiency.

2.2.1 Integration with the single-cell ecosystem

Besides its use as a standalone package, glmGamPoi has been integrated with two popular
packages for the analysis of single-cell transcriptomic data: DESeq2 (Love et al., 2014) and
sctransform (Hafemeister and Satija, 2019).
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glm_gp_impl

glm_gp handle_design_parameter

estimate_dispersions_roughly estimate_dispersions_by_moment

estimate_betas_roughly_group_wise

estimate_betas_fisher_scoring

estimate_betas_group_wise fitBeta_one_group_internal

fitBeta_fisher_scoring_impl

fisher_scoring_qr_ridge_step
decrease_deviance_plus_ridge

calculate_mu

overdispersion_mle

overdispersion_shrinkage

estimate_betas_fisher_scoring

estimate_betas_group_wise

variance_prior

test_de parse_contrast

handle_design_parameter

glm_gp

fit_alt$deviances - fit$deviances

Figure 6 | Overview of the functions in the glmGamPoi package. Call diagram of the
most important functions in glmGamPoi. The exported functions are highlighted with a grey
background. The functions with the light blue background are implemented in C++ for efficiency.

In DESeq2, glmGamPoi can be used as an alternative inference engine by setting fitType

= "glmGamPoi" when calling DESeq. The second version of sctransform automatically uses
glmGamPoi to infer the overdispersion and model coefficients.

2.2.2 Contrasts

Contrasts are vectors multiplied with the coefficients 𝛽 to produce a single log-fold change estimate
between two conditions. To combine differential testing with contrasts with the underlying
likelihood ratio tests comparing a full and a reduced model, I need to convert the contrast into a
reduced model. I achieved this by projecting the full model matrix onto the null space of the
contrast vector. This idea was adapted from the implementation of edgeR’s glmLRT function.

In version 1.11 (released in April 2023), I added a new way to specify contrasts to glmGamPoi.
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Although the theoretical interpretation of the contrast vector is straightforward, in practice, it can
be challenging to specify the correct contrast vector because it depends on the ordering of the
variables in the original design formula and whether an intercept was included. With my new
syntax, the user directly specifies the levels of the condition that they want to compare, and I
internally find the corresponding contrast vector. The following is a simple example using the
new syntax

f i t <− glm gp ( sce , d e s i g n = ∼ c e l l ∗ s t i m )
# t e s t c o n t r a s t v e c t o r c ( 0 , 0 , 0 , 1 , 1 , 0 )
t e s t d e ( f i t , c o n t r a s t = cond ( c e l l = ” T c e l l s ” , s t i m = ” c t r l ” ) −

cond ( c e l l = ” T c e l l s ” , s t i m = ” s t i m ” ) )

The cond function only works within the contrast argument and expands to a vector as
if I had called model.matrix(∼ cell * stim, data.frame(cell = "Tcells", stim =

"ctrl")) and model.matrix knew which other levels cell and stim could be.

I achieved this by storing the stats::.getXlevels from the model.frame output as an
attribute of the design formula. I then restore the factor levels to each cond argument before
calling model.matrix.

2.3 Comparisons with edgeR and DESeq2

2.3.1 Speed

I benchmarked the performance of glmGamPoi against edgeR and DESeq2 on four datasets with
4 000-68 000 cells. glmGamPoi was between 6× to 13× faster than edgeR and DESeq2 if the
data was stored in memory (Figure 7). If the data was stored on disk, the runtime of glmGamPoi
roughly doubled. If I skipped the overdispersion estimation, the runtime was roughly halved.

In Figure 8A,B, I benchmarked the scaling of glmGamPoi, DESeq2, and edgeR depending on
the number of cells and genes. The relative runtime scaled linearly for all three methods with the
number of genes. Although the theoretical inference in generalized linear models scales linearly
with the number of cells, Figure 8B shows that glmGamPoi scales sub-linearly with the number
of cells due to the count tabulation. This explains the good overall performance that I observed
in Figure 7.

In Figure 8C, I analyzed the dependence of the overall computation time on the number of
covariates. Theoretically, the inference scales cubically with the number of columns in the design
matrix because of the matrix inverse in eq. (16). However, in the PBMC4k dataset, I found that
the scaling is approximately linear for up to 20 covariates. I did not calculate the dependence of
edgeR and DESeq2 on the number of covariates because the overdispersion inference dominated
their runtime.
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Figure 7 | Calculation comparison of glmGamPoi with edgeR and DESeq2. Barcharts
comparing the computation times of glmGamPoi using data stored in memory or on disk against
DESeq2 and edgeR. The timings were repeated five times without parallelization. The bottom
x-axis scale is relative to the results of glmGamPoi in-memory.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2020).

2.3.2 Parameter estimates

glmGamPoi’s overdispersion estimates have a higher likelihood than the one calculated by edgeR
and DESEq2. In Figure 9, I compared the maximum likelihood overdispersion estimates of
glmGamPoi against the maximum likelihood estimates of DESeq2 and edgeR on the PBMC4k
dataset. All three methods optimized the same Cox-Reid adjusted Gamma-Poisson profile
likelihood; thus, their results are directly comparable. For 14 675 and 1 958 genes glmGamPoi’s
estimates had a higher likelihood than DESeq2 and edgeR, respectively (purple points). Only for
400 and 430 genes DESeq2’s and edgeR’s overdispersion estimates were higher (orange points).

The coefficients inferred by glmGamPoi, DESeq2, and edgeR were broadly similar (Figure 10A
compares the values of the MouseA coefficient in the Brain20k dataset). In particular, when
using DESeq2 with the glmGamPoi inference engine, I get almost exactly the same coefficients
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The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2020).
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Figure 9 | Comparison of the overdispersion maximum likelihood estimates of glmGamPoi
against DESeq2’s and edgeR’s. Scatter plot of the overdispersion estimates by glmGamPoi
against DESeq2 and edgeR. Each point represents one gene, and the color indicates which method
achieved the higher likelihood. For grey points, the likelihood was within a range of ±0.001.
The dashed diagonal indicates the position if the two methods calculate the same overdispersion
value.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2020).

as when I ran glmGamPoi as a standalone package. In Figure 10B, I compared the p-values on
a log-log plot. The p-values inferred by edgeR and glmGamPoi were very similar across the
whole range. In contrast, the DESeq2 infered smaller p-values for several genes. In Figure 11, I
show the expression patterns of three genes for which glmGamPoi and DESeq2 inferred similar
p-values and three genes for which the p-values diverged. The higher similarity of the results of
edgeR and glmGamPoi is because they share the same quasi-likelihood ratio test framework.
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The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2020).
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2.4 Discussion

2.4 Discussion

In this chapter, I presented my work on developing a new R package for fitting gamma-Poisson
generalized linear models. My package glmGamPoi is faster than the two most popular alternatives
DESeq2 and edgeR, which were developed for bulk RNA-sequencing data.

The main innovation of glmGamPoi is the tabulation based-optimization of the overdispersion
estimation. Furthermore, glmGamPoi reliably infers the overdispersion estimates on single-cell
data with many small counts. In all other aspects, it builds on the successful examples of edgeR
and DESeq2. The differential testing framework reimplemented the quasi-likelihood framework
by Lund et al. (2012) and pioneered by edgeR. The public functions and arguments of glmGamPoi
are inspired by DESeq2, and I recently added some syntactic sugar to simplify the creation of
pseudobulk samples and description of contrasts.

The package was well received by the single-cell community and has been integrated into
sctransform, which is developed under the Seurat umbrella, one of the most successful
computational single-cell projects to date. The package is downloaded between 2 000-3 000× per
month, and the original publication (Ahlmann-Eltze and Huber, 2020) has been cited between 32
times according to Web of Science and 80 times according to Google Scholar.

The motivation to start this project at the beginning of my PhD was the expectation that
count-based models with an accurate likelihood model could improve the inference across many
tasks in single-cell analysis. For differential testing in bulk RNA-seq, count-based testing has
been hugely successful (as demonstrated by the popularity of DESeq2 and edgeR); for single-cell
data, count-based differential expression testing is popular; however, it can only be recommended
in combination with pseudobulking (Crowell et al., 2020). I recently added a function to simplify
the creation of pseudobulks from SingleCellExperiment objects; however, for differential
expression testing on pseudobulks, the improved speed of glmGamPoi is of secondary importance.
The familiarity of established differential expression testing pipelines using DESeq2 and edgeR
makes them appealing alternatives.

Another application of glmGamPoi could be as a building block for an improved dimensionality
reduction method similar to GLM-PCAby Townes (2019); Townes et al. (2019). In the next
chapter, I will describe my comparison of different preprocessing and variance stabilization
methods for single-cell data and show that they outperform count-based methods.

21





3 transformGamPoi

In this chapter, I will present the second project of my PhD: comparing a variety of preprocessing
and transformation methods for single-cell data. I analyzed the conceptual properties of four
transformation approaches and then measured their respective performance for 23 concrete
implementations. In this chapter, I will begin by giving a backaground on the properties of
single-cell RNA-seq counts and detail different approaches for variance stabilization (with an
emphasis on the delta method). Then I will compare three conceptual differences and, lastly,
describe the results of a large scale benchmarking effort to measure the empirical performance
of the methods. I, together with Wolfgang Huber, published this project in Nature Methods
as an Analysis paper called ”Comparison of transformations for single-cell RNA-seq data”
(Ahlmann-Eltze and Huber, 2023b).

3.1 Single-cell RNA-seq data properties

The primary output of a single-cell RNA-sequencing experiment is a table of genes× cells where
each entry is a non-negative count of how often the mRNA of a gene was detected in a cell. The
RNA-sequencing counts are heteroskedastic, which means that the counts vary more for highly
expressed genes than for lowly expressed genes.

3.1.1 Why are counts heteroskedastic?

The dependence of the variance on the mean is typical for count data. It occurs whenever the
counts are generated as a sum of a series of more or less independent Bernoulli events (whuber,
2014). If a count 𝑌 is the sum of the outcome of 𝑁 independent Bernoulli trials with probability
𝑃𝑖 where 𝑖 is the index variable for the 𝑖-th trial, the expected value for 𝑌 is the sum

𝔼 [𝑌 ] =
𝑁∑︁
𝑖

𝑃𝑖 . (29)

Assuming that the Bernoulli variables 𝑃𝑖 are independent means that the variance of 𝑌 is the sum
of the individual variances (𝕍 [𝑃𝑖] = 𝑃𝑖 (1 − 𝑃𝑖))

𝕍 [𝑌 ] = 𝕍

[
𝑁∑︁
𝑖

𝑃𝑖

]
=

𝑁∑︁
𝑖

𝑃𝑖 (1 − 𝑃𝑖). (30)

In binomial sampling, we assume that all probabilities are equal; accordingly, 𝔼 [𝑌 ] = 𝑁𝑃
and 𝕍 [𝑌 ] = 𝑁𝑃(1 − 𝑃) which highlights that the mean and variance are directly proportional.
The Poisson distribution can be understood as a limit of the binomial sampling when 𝑃 is small
and 𝑁 is large. In that case, 1 − 𝑃 becomes negligible and the variance is equal to the mean
(𝕍 [𝑌 ] ≈ 𝑁𝑃 = 𝔼 [𝑌 ]).
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Figure 12 | Schematic of heteroskedastic data. (A) Probability mass function of three Poisson
random variables with increasing mean and variance. (B) The log-fold changes between the red
and the green compared to the log-fold changes between the green and the blue are the same, but
the variance of the green-vs-blue case is smaller. The shaded area shows the range between the
5% and 95% quantile.
The data for this figure was generated by me and adapted from the first version of Ahlmann-Eltze
and Huber (2022).

Figure 12A shows an example of three Poisson random variables with increasing mean.
As predicted by theory, the spread of the distributions increases with the mean. However, it
is important to remember that a higher average expression is beneficial for precise parameter
estimates. Figure 12B shows the estimated log-fold change between the red and green compared
to the estimated log-fold change between the green and blue distribution. Even though the
individual variance is larger for the green and blue distributions, their observed log-fold change
is less variable.

This apparently paradoxical effect can be explained by considering the coefficient of variation,
that is, the standard deviation divided by the mean, of a Poisson random variable 𝑌 ∼ Poisson(`)

𝑐𝑣 =

√︁
𝕍ar[𝑌 ]
𝔼[𝑌 ] =

√
`

`
=

1
√
`
. (31)

The coefficient of variation of a Poisson random variable decreases with increasing mean.

If we now consider the variance of a log fold change (as in Figure 12B), we find

𝕍ar
[
log

𝑌1
𝑌2

]
= 𝕍ar[log𝑌1] + 𝕍ar[log𝑌2] . (32)

We use the delta method (which we will explain in detail in section 3.2.2) to approximate the
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3.2 Variance-stabilizing transformations

variance of the log of a Poisson random variable

𝕍ar[𝑔(𝑌 )] ≈ (𝑔′(𝔼[𝑌 ]))2𝕍ar[𝑌 ]

𝕍ar[log(𝑌 )] ≈ 1
𝔼[𝑌 ]2

𝕍ar[𝑌 ]
(33)

If we now plug equation (33) into equation (32), we find that

𝕍ar
[
log

𝑌1
𝑌2

]
≈ 𝕍ar[𝑌1]

𝔼[𝑌1]2
+ 𝕍ar[𝑌2]

𝔼[𝑌2]2

= 𝑐2
𝑣1 + 𝑐

2
𝑣2,

(34)

which demonstrates that the log fold change decreases with increasing means of two Poisson
random variables.

3.1.2 Examples of single-cell data heteroskedasticity

Figure 13 shows a subset of the count table for the PBMC4k dataset generated using 10x
single-cell technology. I represent the counts using a matrix 𝑌 ∈ ℤ𝐺×𝐶≥0 , where 𝐺 is the number
of genes and 𝐶 is the number of cells. Figure 13A and C demonstrate that the counts for most
genes are very small (i.e., mostly zeros). Figure 14 shows the mean-variance relationship of 15
single-cell datasets on a log-log scale. Comparing the empirical distributions of the variance
per gene with that expected for the Poisson (purple) and gamma-Poisson distribution (yellow)
revealed that highly expressed genes have more variation than expected due to the Poisson
distribution. For lowly expressed genes, the simple Poisson model relating mean and variance
explains the observed pattern well.

3.2 Variance-stabilizing transformations

In Chapter 2, I presented generalized linear models as a method to analyze data with a non-
constant mean-variance relationship. An alternative approach is to transform the values so that
the mean-variance relationship is approximately constant. This is called variance stabilization,
and the transformations to achieve approximately constant variance are called variance-stabilizing
transformations.

3.2.1 Comparison of variance-stabilizing transformations and generalized linear models

Historically, variance-stabilizing transformations have been around since the pioneering work of
Maurice Stevenson Bartlett (Bartlett, 1947, 1936), roughly 35 years longer than the concept of
generalized linear models (Nelder and Wedderburn, 1972). The appeal of variance-stabilizing
transformations comes from their simplicity: after applying a function to the data, one can use any
method that assumes constant variance for optimal performance. In fact, fitting linear regression
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(A) Heatmap of a single−cell RNA−seq count table
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Figure 13 | Structure of a single-cell RNA-sequencing count table. (A) Heatmap of the counts
from 1 000 cells and 500 genes of a PBMC dataset. The color scale is logarithmic. (B) Histogram
of the total counts per cell for the full PBMC dataset. (C) Histogram of the average counts per
gene for the full PBMC dataset.
The data for this figure was generated by me.
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Figure 14 | Plot of the mean-variance relationship for 15 single-cell datasets Scatter plots
of the empirical mean-variance relationship per gene for 15 single-cell datasets on a log-log
scale. The purple diagonal shows the expected mean-variance relationship for a Poisson random
variable. The yellow lines show the mean-variance relationships for gamma-Poisson random
variables with different overdispersion values. We limited the cells to those that were within 50%
quantile of total counts per cell to avoid heterogeneity due to the sequencing depth.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).

to data that was variance stabilized with 𝑔, approximates fitting a generalized linear model with
variance function 𝑉 (`) = 1

𝑔′ (`)2 and link function 𝑔(`) (Dunn and Smyth, 2018, sec. 5.8).
If the variance-stabilizing transformation is 𝑔(𝑥) =

√
𝑥, the variance function is

𝑉 (`) = 1
𝑔′(`)2

=
1

(1/√`)2

= `.

(35)

We recognize this as the mean-variance relationship of a Poisson random variable; however,
the canonical link function4 of a Poisson generalized linear model is 𝑔(𝑥) = log(𝑥) and not
𝑔(𝑥) =

√
𝑥 as implied by the variance-stabilizing transformation.

Generalized linear models have two advantages: First, they decouple the choice of mean-

4A link function is considered canonical if [ ≡ \
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variance relationship (corresponding to a specific choice of exponential dispersion model) and
link function (Dunn and Smyth, 2018). Second, generalized linear models allow the direct
interpretation of the coefficients (Dunn and Smyth, 2018). For a log-link function

log ` = [ = 𝛽0 + 𝛽1𝑥

3.2.2` = exp [ = exp(𝛽0) exp(𝛽1)𝑥 .
(36)

However, a linear model
𝔼[log 𝑦] = 𝛽0 + 𝛽1𝑥 (37)

only approximately models this relationship because

𝔼[log 𝑦] ≈ log𝔼[𝑦] = log `. (38)

For the analysis of RNA-sequencing data, both generalized linear models and fitting linear
models after variance-stabilizing transformation are popular. The former is represented by
DESeq2 and edgeR (Love et al., 2014; Robinson et al., 2009). The latter approach is implemented
by limma and limma-voom (Smyth, 2004; Law et al., 2014).

3.2.2 Construction of variance-stabilizing transformations with the Delta method

s y

acosh(2 α y + 1)

log(y + 1 (4α)) + a
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Figure 15 | Graph of three variance-stabilizing transformations The data for this figure was
generated by me and adapted from the first version of Ahlmann-Eltze and Huber (2022).

For an observed mean-variance relationship, we can construct a variance-stabilizing transfor-
mation using the methods described in Bartlett (1947). Figure 15 shows three variance-stabilizing
transformations.

The construction uses a trick called the delta method (Dorfman, 1938). The delta method is a
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3.2 Variance-stabilizing transformations

Figure 16 | Illustration of the delta method. The data for this figure was generated by me and
adapted from Ahlmann-Eltze and Huber (2022).

way to find the standard deviation of a random variable after applying a transformation.

The standard deviation of a transformed random variable can be approximated by multiplying
the original standard deviation by the derivative of the transformation at the mean

𝕊d[𝑔(𝑌 )] = |𝑔′(`) |𝕊d[𝑌 ] . (39)

The derivative at the mean 𝑔′(`) is a linear approximation of the original transformation 𝑔
(Fig. 16). And transforming a random variable with a linear function scales the standard deviation
linearly.

If we have many random variables 𝑌1, 𝑌2, . . . with a known mean-variance relationship 𝑣(`),
we can derive a variance-stabilizing transformation. We posit that

𝕍ar[𝑔(𝑌 )] = const.

𝕊d[𝑔(𝑌 )] = const..
(40)

Now, when we plug eq. (40) into eq. (39)

const. = |𝑔′(`) |𝕊d[𝑌 ]
= |𝑔′(`) |

√︁
𝑣(`).

(41)

Without loss of generality, we will use a constant value of 1 and rewrite the equation as a function
of 𝑔′

𝑔′(`) = 1√︁
𝑣(`)

. (42)

If we assume a particular mean-variance relationship, we can solve eq. (42) using integration.
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For example, for the mean-variance relationship of a Poisson random variable 𝑣(`) = `, we find

𝑔(`) =
∫

1√︁
𝑣(`)

=

∫
1
√
`

= 2
√
`.

(43)

For the mean-variance relationship of a gamma-Poisson random variable 𝑣(`) = ` + 𝛼`2, we
find

𝑔(`) =
∫

1√︁
𝑣(`)

=

∫
1√︁

` + 𝛼`2

=
2
√
𝛼

asinh(√𝛼`)

=
1
√
𝛼

acosh(2𝛼` + 1).

(44)

The last two expressions are identical. Bartlett (1947) used the name asinh transformation, but I
will call it the acosh transformation because the expression seems slightly simpler.

Another popular transformation for count data is the shifted logarithm

log(𝑥 + 𝑐) (45)

where 𝑐 is called a pseudo-count. This transformation is usually not motivated by the delta
method, but it is a variance-stabilizing transformation for the mean-variance relation

𝑣(`) = `2. (46)

This is not quite the mean variance relation of a gamma-Poisson random variable (𝑣(`) = `+𝛼`2),
but eq. (45) can be used as an approximation for that relation. The inverse hyperbolic cosine
(acosh) transformation (eq. (44)) can be rewritten in terms of a logarithm

𝑔(𝑥) = 1
√
𝛼

acosh(2𝛼` + 1)

=
1
√
𝛼

log
(
2𝛼𝑥 +

√︁
(2𝛼𝑥 + 1)2 − 1 + 1

)
.

(47)

I will find the parameters 𝑎, 𝑏, and 𝑐 in

ℎ(𝑥) = 𝑎 + 𝑏 log(𝑥 + 𝑐) (48)

such that ℎ(𝑥) ≈ 𝑔(𝑥). The middle summand in eq. (47) quickly converges to 2𝛼𝑥 for large 𝑥
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because of the squaring

lim
𝑥→∞

√︁
(2𝛼𝑥 + 1)2 − 1

2𝛼𝑥
= 1. (49)

Accordingly, I can rewrite

𝑔(𝑥) ≈ 1
√
𝛼

log (4𝛼𝑥 + 1)

=
1
√
𝛼

log
(
𝑥 + 1

4𝛼

)
+ log(4𝛼)
√
𝛼

(50)

and find 𝑎 =
log(4𝛼)√

𝛼
, 𝑏 = 1√

𝛼
, and 𝑐 = 1

4𝛼 . For the variance-stabilizing properties of eq. (45) the
offset 𝑎 and the scaling with 𝑏 do not matter. Importantly, the relation 𝑐 = 1

4𝛼 provides guidance
for choosing the pseudo-count that best approximates the variance-stabilizing transformation we
derived using the delta method in eq. (44).

3.3 Accounting for varying sequencing depth

In Figure 13B, I gave an example of the varying number of counts per cell in single-cell data.
These can have different explanations: some variation is due to stochasticity, but it can also
represent biological signal. For example, few observed mRNAs per cell can indicate a dying cell
or an empty droplet where only ambient RNA is detected. A large number of UMIs per cell can
occur if more than one cell is captured in a droplet (called doublets or multiplets). In addition,
transcriptionally active cells contain more mRNA as do in general larger cells.

These variations are often considered nuisance variables and accounted for before fitting the
model. One common way to account for the variation in the sequencing depth is to divide the
counts by a size factor to bring all to a common scale. The size factor is a scalar that is larger for
cells with more UMIs and smaller for cells with fewer UMIs. In addition, it is typically centered
around 1 so that dividing the counts by the size factor does not change the scale of the values.

The simplest way to calculate the size factor is to calculate the total counts per cell and rescale
them so that they have a mean of 1

𝑠𝑐 =
∑︁
𝑔

𝑌𝑔𝑐/
(

1
𝐶

∑︁
𝑔𝑐′
𝑌𝑔𝑐′

)
. (51)

In bulk-RNA sequencing, a more sophisticated method developed by Anders and Huber (2010)
was popularized by DESeq

𝑠𝑐 = median𝑔
𝑌𝑔𝑐

exp
(

1
𝐶

∑
𝑐′ log𝑌𝑔𝑐′

) . (52)

It is more robust against outliers, but it, unfortunately, does not work well for single-cell data
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because of the prevalence of zeros which pose a problem for the denominator, which calculates
the mean of the log counts.

3.3.1 Scaling counts by a size factor introduces problems for variance-stabilizing transfor-
mation based on the delta method

The content of this section arose from discussions with Simon Anders and was published in the
supplementary material of Ahlmann-Eltze and Huber (2023b).

The counts 𝑌 are adjusted for varying sequencing depths by dividing them by the size factor
before applying a variance-stabilizing transformation 𝑔(𝑌/𝑠). The procedure is straightforward
but impacts downstream analysis. Intuitively, the problem is that a count 𝑦1 from a cell with a
larger size factor and a count 𝑦2 from a cell with a smaller size factor (𝑦1 > 𝑦2) will be scaled
to the same size. A single variance-stabilizing transformation cannot correct for the additional
variation in 𝑦1 compared with 𝑦2.

For a more technical analysis of the problem, I will first explain the variance decomposition of
a gamma-Poisson random variable 𝑌 . We assume, given the true mean 𝑄, that 𝑌 is conditionally
Poisson distributed

𝑌 |𝑄 ∼ Poisson(𝑄). (53)

If we assume that 𝑄 is a gamma distributed random variable around mean `, we find that 𝑌 is
marginally gamma-Poisson distributed

𝑄 ∼ gamma(`, 𝛼)
𝑌 ∼ gamma-Poisson(`, 𝛼).

(54)

Here, the Poisson variation represents technical noise inherent in the sampling procedure (see
Section 3.1.1). The gamma-distributed 𝑄 captures additional noise. Using the law of total
variation, we can re-derive the mean-variance relationship of a gamma-Poisson random variable

𝕍ar[𝑌 ] = 𝔼[𝕍ar[𝑌 |𝑄]] + 𝕍ar[𝔼[𝑌 |𝑄]]
= ` + 𝛼`2,

(55)

where the variance of the conditional Poisson random variable (𝑌 |𝑄) is ` and the variance of 𝑄
is 𝛼`2.

I will use this framework to study the effect of rescaling the counts with a size factor 𝑠. First,
I will assume that 𝑠 is known and include it in the definition of the Poisson noise

𝑌 |𝑄, 𝑠 ∼ Poisson(𝑠𝑄). (56)
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3.3 Accounting for varying sequencing depth

Accordingly, the variance of 𝑌 is now

𝕍ar[𝑌 ] = 𝔼[𝕍ar[𝑌 |𝑄, 𝑠]] + 𝕍ar[𝔼[𝑌 |𝑄, 𝑠]]
= 𝑠` + 𝛼𝑠2`2

= `′ + 𝛼`′2,

(57)

where `′ = 𝑠`.
Now, if I divide the count 𝑌 by 𝑠

𝑍 = 𝑌/𝑠 (58)

the variance of 𝑍 is
𝕍ar[𝑍] = 1

𝑠2𝕍ar[𝑌 ]

=
1
𝑠2

(
𝑠` + 𝛼𝑠2`2

)
=

1
𝑠
` + 𝛼`2.

(59)

The dependence of the eq. (59) on 𝑠 and the difference to eq. (57) causes problems, as I will show
in Section 3.5.1.

3.3.2 Other scaling factors

In the previous section, I introduced scaling the counts by dividing them by size factors which
are normalized around 1 so that the scale of the counts is unchanged (eq. (51)). Sometimes the
denominator 𝐿 = 1

𝐶

∑
𝑔𝑐 𝑦𝑔𝑐 is changed to a fixed value such as 𝐿 = 10 000 (in Seurat). Others

have even suggested to use 𝐿 = 106 calling the results counts per million (CPM)(Luecken and
Theis, 2019). Counts per ten-thousand or counts per million are used in combination with the
simple log(𝑦/𝐿 +1) transformation. Even though the choice of 𝐿 may appear arbitrary, it impacts
the variance-stabilizing quality of the transformation. Changing the scaling factor 𝐿 is equivalent
to changing the pseudo-count. If we assume a 1

𝐶

∑
𝑔𝑐 𝑦𝑔𝑐 ≈ 5000 for a typical droplet-based

single-cell dataset, we find

log
(

𝑦

(∑𝑐 𝑦:𝑐)/106 + 1
)
= log

(
200

(
𝑦

(∑𝑐 𝑦:𝑐)/5000
+ 1

200

))
= log

(
𝑦

(∑𝑐 𝑦:𝑐)/5000
+ 0.005

)
+ log(200)

∝ log (𝑦/𝑠𝑐 + 0.005) .

(60)

Accordingly, using the relation established in eq. (50), using 𝐿 = 106 is the same as using a
pseudo-count of 𝑦0 = 0.005 or positing an overdispersion of 𝛼 = 1

4𝑦0
= 50 which is roughly 100×

larger than empirically observed values. Seurat’s normalization factor of 𝐿 = 10 000 is the same
as an overdispersion of 𝛼 = 0.5.
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3.4 Other approaches for transforming single-cell counts

Besides the delta method based-variance-stabilizing transformations that I introduced in Sec-
tion 3.2, there are two other approaches to handle the heteroskedastic counts in single-cell
RNA-seq data: model residuals and inferred latent expression activity values. Lastly, another
approach is to skip the normalization altogether and apply statistical models that account for the
data idiosyncrasies.

3.4.1 Model residuals

In Section 3.2.1, I discussed the relationship between generalized linear models and variance-
stabilizing transformations based on the delta method. Instead of identifying the function that
produces approximately variance stabilized values, Hafemeister and Satija (2019) suggested using
Pearson residuals from a gamma-Poisson generalized linear model fit per gene as transformed
values.

Pearson residuals of a gamma-Poisson are defined as

𝑟𝑔𝑐 =
𝑦𝑔𝑐 − ˆ̀𝑔𝑐√︁
�̂�( ˆ̀𝑔𝑐)

=
𝑦𝑔𝑐 − ˆ̀𝑔𝑐√︃
ˆ̀𝑔𝑐 + �̂�𝑔 ˆ̀2

𝑔𝑐

.
(61)

The idea is to take the count, center it, and equalize the variance by dividing it by the expected
standard deviation for the inferred mean.

The mean and overdispersion for each gene is estimated using

𝑌𝑔𝑐 ∼ gamma-Poisson(`𝑔𝑐, 𝛼𝑔)
log(`𝑔𝑐) = 𝛽𝑔,intercept + 𝛽𝑔,slope log(𝑠𝑐).

(62)

The size factor 𝑠𝑐 is inferred for each cell, and the intercept 𝛽𝑔,intercept and the slope 𝛽𝑔,slope are
fitted for each gene 𝑔. Hafemeister and Satija (2019) implemented their model in an R package
called sctransform. In version 2 of the model, the package uses glmGamPoi to fit the model.

One challenge for the Pearson residuals (eq. (61)) is that the denominator can become very
small for genes that are zero in most cells. Hafemeister and Satija (2019) suggested to clip the
range of 𝑟 to

[
−
√
𝐶, +
√
𝐶

]
.

Lause et al. (2021) argued that the model (62) is too flexible and suggested fixing 𝛽𝑔,slope = 1.
In response to the criticism, in version 2 of sctransform fixing 𝛽𝑔,slope = 1 has become the default
(Choudhary and Satija, 2022).

Furthermore, Lause et al. (2021) suggested not to estimate the overdispersion per gene, but to
use a fixed value such as 𝛼 = 0.01. The question of how to choose the overdispersion comes
down to the level of variation the analyst considers uninteresting.
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Figure 17 | Demonstration that Pearson residuals are a linear transformation. The data 𝑦
are generated using R’s rpois function.
The data for this figure was generated by me and adapted from the peer review discussion of
Ahlmann-Eltze and Huber (2023b).

If the analyst considers all variation larger than the noise due to the sampling process from
the Poisson distribution interesting, setting 𝛼 = 0 or 𝛼 = 0.01 as suggested by Lause et al. (2021)
is the way to go. Alternatively, if the focus is supposed to be on genes that show more variation
than most other genes one can use a robust estimation procedure such as the one implemented in
sctransform. Lastly, suppose the analyst wants to minimize the influence of individual genes
and focus on patterns that are consistent across genes. In that case, they should use each gene’s
maximum likelihood overdispersion estimate.

Lause et al. (2021) combined the insight that they can fix 𝛽𝑔,slope = 1 and 𝛼 = 0.01 while
retaining most of the model’s expressivity, to construct a fast way to approximate the Pearson
residuals, which they call analytic Pearson residuals. They estimate `𝑔𝑐 as

ˆ̀𝑔𝑐 =
(∑𝑔′ 𝑦𝑔′𝑐)

(∑
𝑐′ 𝑦𝑔𝑐′

)∑
𝑔′𝑐′ 𝑦𝑔′𝑐′

. (63)

The formula is derived from the logarithm of the probability density function of a Poisson random
variable with size factors. They then go on and use ˆ̀𝑔𝑐 from eq. (63) to normalize the counts
with eq. (61).

One limitation of eq. (61) is that it is a linear transformation of the counts (Figure 17). I
developed a non-linear residual-based transformation adapting an idea by Dunn and Smyth (1996)
called randomized quantile residuals. Figure 18 shows schematically for one hypothetical gene
how randomized quantile residuals are constructed. In the first step, I fit a gamma-Poisson model
to the counts of that gene. Then, I match the quantiles of the cumulative distribution function
(CDF) against the CDF of a standard normal distribution. The mapping is not unique because the
CDF of a gamma-Poisson model is discrete. The idea of randomized quantile residuals to resolve
this is by randomly drawing a value from the matching standard normal CDF before mapping
back to the original scale. The two colored bars demonstrate this mapping for counts 𝑦 = 2 and
𝑦 = 21.
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Figure 18 | Schematic representation of how randomized quantile residuals are constructed.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).
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Figure 19 | Schematic representation of how size factors influence the precision of the
inferred values. The figure shows histograms for random variables from 𝑌 ∼ Poisson(`𝑠) for
five mean values and two size factors. The values are plotted on a square-root transformed scale
for better visualization.

The last panel of Figure 18 shows how the non-linear nature of the randomized quantile
residuals equalizes the width of the two peaks.
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3.4.2 Latent expression value estimation

A fundamental assumption for the analysis of single-cell count data is that they provide a
noise-corrupted image of the true biological processes that are happening in each cell (Figure 19).
For example, in generalized linear models, we infer the means of each value conditional on the
observed covariates. The idea that we can infer the latent state has been extended from tools like
DESeq2 and edgeR to single-cell data transformations.

One prominent example is called Sanity which was developed by Breda et al. (2021). Sanity
takes as input a matrix of counts and infers a posterior distribution of the latent expression
activities which they represent using a matrix of means and standard deviations. The model is
fully Bayesian and fits a model that is similar to a variational mean-field approximation for a
log-normal Poisson mixture model.

I will call the full model Sanity Distance because Breda et al. (2021) provide an additional
tool to calculate the cell-by-cell distance matrix from the mean and standard deviation matrices.
I also consider ignoring the inferred uncertainty and calling the corresponding procedure Sanity
MAP (short for maximum a posteriori). In their analysis, Breda et al. (2021) find that accounting
for the uncertainty improves distance inference. The advantage of Sanity MAP is, though, that it
is directly compatible with any existing algorithm that assumes a single matrix of values (for
example, approximative 𝑘-nearest neighbor inference).

We consider two more latent expression-based transformations: Dino and Normalisr. Dino
fits mixtures of gamma-Poisson mixtures to the data and returns random samples from the
posterior (Brown et al., 2021). Normalisr uses a binomial model and returns the minimum
squared estimate for each count (Wang, 2021). It was not originally designed as a preprocessing
method, but I decided to test it for this purpose as it infers logarithmic latent gene expression
values.

3.4.3 Post-transformation processing

Some analysts apply additional modifications after applying a delta method or residual-based
transformation. Here, I will consider the z transformation, highly variable gene selection, and
their concatenation.

The motivation for z transforming the variance stabilized counts

z-trans(𝑔(𝑦𝑔𝑐/𝑠)) =
𝑔(𝑦𝑔𝑐/𝑠)√︁

variance(𝑔(𝑦𝑔:/𝑠))
(64)

is that the z transformation equalizes the variance for each gene. This means that each gene will
contribute the same amount to distance calculation.

Highly variable gene (HVG) selection has the opposite motivation. To avoid corrupting the
signal by including genes for which the counts are all almost zero and thus have little variance,
genes with small variation are excluded from the analysis. In addition, highly variable gene
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selection can significantly speed up the processing because it can reduce the size of the data from
ten thousands of genes to a few hundred while retaining most of the variation.

Sometimes the data is first subset to the highly variable genes and subsequently transformed
with a z transformation.

3.4.4 No-transformation analysis of single-cell data

I have presented three approaches that take the count matrix and transform it. The transformed
values are not a goal in and of themselves but are an intermediate step for further downstream
analysis. There are many possible downstream applications, but I will focus in this comparison
on finding the local and global structure of the data. The preferred approach is to reduce the
dimensionality of the data using principal component analysis (PCA) and find the 𝑘-nearest
neighbors (𝑘-NN) of each cell.

The idea of PCA is to take the matrix of transformed values 𝑔(𝑌 ) and approximate it using a
lower-dimensional embedding

arg min
𝑅,𝑍,𝛽

| |𝑔(𝑌 ) − (𝑅𝑍 + 𝛾offset) | |22 (65)

where 𝑅 is an orthonormal matrix of size 𝐺 × 𝑃 and 𝑍 is a low-dimensional embedding matrix
of size 𝑃 × 𝐶. Here, 𝑃 is the dimension that is used for the PCA, and 𝛾offset is a vector of length
𝐺 centering the values for each gene.

Townes (2019) suggested to use the ideas of generalized linear models instead of optimizing
eq. (65), minimize the deviance of a Poisson (or gamma-Poisson) model

𝑌𝑔𝑐 ∼ Poisson(exp(𝑀𝑔𝑐)𝑠𝑐)
𝑀 = 𝑅 𝑍 + 𝛾offset

(66)

where 𝑀 is an intermediate matrix of size 𝐺 × 𝐶 and 𝑠𝑐 is the size factors for each cell.

Townes (2019) and Townes et al. (2019) developed an inference algorithm for the parameters
of model (66) and implemented it as an R package called glmPCA. Recently, Agostinis et al.
(2022) proposed an alternative inference algorithm for model (66) which they optimized for fast
parallel processing called NewWave.

Both methods produce a low-dimensional embedding matrix 𝑍 directly compatible with
2D visualization tools like UMAP and 𝑘 nearest neighbor graph inference approaches. Thus,
I decided to include both methods in my comparison even though they are not technically
transformations. I use the umbrella term count models for them because they work directly on
the counts.

38



3.5 Conceptual comparison of the transformation approaches

3.4.5 Negative controls

Applying a transformation is not technically necessary. Instead of running, for example, PCA on
the transformed counts, one can also run PCA on the raw counts. According to statistical theory,
the least squares optimization on heteroskedastic data is unbiased, yet less precise (Wooldridge,
2015).

To demonstrate that the transformations are improving our ability to analyze single-cell
RNA-seq data, I included two negative controls. First, I conducted all analyses on the raw counts
and second on the raw counts divided by the size factors.

3.5 Conceptual comparison of the transformation approaches

I have introduced four approaches to preprocess and transform single-cell counts: delta method-
based variance-stabilizing transformation, generalized linear model residual-derived transforma-
tions, latent expression activity inference approaches, and the count models which produce a
lower dimensional space without transforming. In this section, I will compare the conceptual
difference between the approaches.

3.5.1 Confounding effect of size factors on PCA

The sequencing depth per cell varies and we typically want to adjust for this effect, i.e., reduce
its impact on downstream analyses. As mentioned in the previous sections, applying variance-
stabilizing transformations based on the delta method on counts divided by size factors causes
problems (section 3.3.1).

To demonstrate the differences varying size factors have across transformations, I took a single-
cell dataset of an ostensibly homogeneous cell line population (Svensson et al., 2017), applied
each transformation outlined in the introduction and plotted the location of each cell according
to the first two principal components (Figure 20). Coloring the cells by size factor revealed
a gradient along the first principal component for the delta method-based variance-stabilizing
transformations.

I quantified this effect pattern by calculating the canonical correlation coefficient between
the size factors and the first ten principal components (Hotelling, 1936). In Figure 21, I show
the correlation coefficient for each method, confirming the pattern I saw in the PCA scatter plot
(Figure 20).

As expected, the negative control where I calculated the PCA directly on the raw counts
performed worsts; it had an almost perfect correlation between the size factor and principal
component one. Interestingly, the second negative control, where I divided the raw counts by
the size factors, performed well (𝜌 = 0.3). This demonstrates how heteroskedasticity does not
necessarily bias the results of PCA.
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Figure 20 | Scatter plot of the first two principal components after transforming the counts
of an ostensibly homogeneous cell line population. Each point is a cell colored by its size factor,
which is on a logarithmic scale. The number at the bottom of the plot is the canonical correlation
coefficient 𝜌 (Hotelling, 1936) of the size factor and the first ten principal components.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).
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Figure 21 | Bar chart of the canonical correlation coefficient between size factor and principal
components. The data for this figure was generated by me and adapted from Ahlmann-Eltze and
Huber (2022).

3.5.2 Empirical mean-variance relationship after transformation

One criticism by Hafemeister and Satija (2019) of delta method-based variance-stabilizing
transformations is that they fail to stabilize the variance of genes with a small mean. In fact,
Warton (2018) showed that it is mathematically impossible for a transformation to stabilize the
counts of genes which are mostly zero.

To assess the empirical mean-variance relation after applying each transformation, I applied
each transformation to 5 000 genes of a human hematopoietic development dataset (Bulaeva
et al., 2020) (Figure 22). As expected, the negative controls showed a very strong dependency of
the variance on the mean (Figure 22 bottom row). The delta method-based variance-stabilizing
transformations, as predicted by Warton (2018) and observed by Hafemeister and Satija (2019),
showed a dependency of the variance on the mean: for genes with a mean of less than roughly
0.1 the variance is close to zero. The pattern for the latent expression-based transformations
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Figure 22 | Scatter plot of empirical mean-variance relationship for 5 000 genes after
applying the transformations. Each point is a gene, and the x-axis is log-scaled. Note that the
y-axis differs for the raw counts, log(𝐶𝑃𝑀 + 1), log(𝑦/𝑠 + 1)/𝑢, Pearson (no clip), Sanity MAP,
DINO, and Normalisr for aesthetic purposes.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).

depended on the specific implementation: for Dino, the pattern resembled the delta method-based
variance-stabilizing transformations; for Normalisr, it was the opposite, i.e., lowly expressed
genes had more variance than highly expressed genes.

The clipping helped to suppress very high variances for lowly expressed genes for the Pearson
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residuals. The highly variable gene selection produced the same pattern as the transformation
without highly variable gene selection, except that the bottom 4, 000 genes were removed. The z
transformation equalized the variance of all genes and thus the results look like a horizontal line
in the scatter plot.

The count models glmPCA and NewWave do not produce transformed data for which I could
have calculated the mean and variance, so they are absent from Figure 22.

3.5.3 Stabilization of a gene with a bimodal expression pattern

In Section 3.4.1, I explained that Pearson residuals are linear transformations of the data and thus
struggle to adjust the heteroskedasticity within a gene. In Figure 23 shows the histograms of a
marker gene of type II pneumocytes which has a bimodal gene expression pattern in the mouse
lung epithelium dataset from Angelidis et al. (2019).

As expected, the histogram of the Pearson residuals was a linearly scaled version of the
negative control of the counts divided by the size factors. In contrast, my proposed randomized
quantile residuals looked more similar to the delta method-based variance stabilized values.
The problem of not stabilizing the variance of the larger peak is that this obscures the actual
information of the larger counts relative to each other because random variation within the
high-expression groups dominates.

Figure 23 also shows that choosing count per million in the logarithm creates a large gap
between the zeros and the rest of the Other cells population, whereas for log(𝑦/𝑠 + 1) the gap is
much smaller.

Figure 24 summarizes the results of Figure 20-23

3.6 Empirical comparison of the transformation approaches

Understanding the conceptual differences between the transformation approaches is most salient
when developing new methods or applying them to novel data types. However, for most analysts
of existing single-cell data, empirical performance will be the primary interest. The performance
of a preprocessing method cannot be judged just by itself because the preprocessing exists to
facilitate downstream analyses. Here, I will judge the performance on their ability to recover or
uncover the latent local structure of the data manifested in the 𝑘 nearest neighbor graph.

A major challenge for any benchmark is what to use as the ground truth, i.e., how can I
decide that one method performed better than another? I used three separate benchmarks to get
a comprehensive picture of the performance, where I traded off the realism of the data against
certainty about the ground truth.
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Figure 23 | Histogram of the transformed expression values for Sftpc, a single gene with a
bimodal expression pattern, colored by cell-type For visualization purposes, I subsampled the
number of cells of the Other cells to match the size of the Type II pneumocyte cell population.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).
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Figure 24 | Overview of the conceptual differences between the transformation approaches.
The figure summarizes the most important results of (A) Figure 20, (B) Figure 22, and (C)
Figure 23.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).

45



3 transformGamPoi

tSNE tSNE tSNE tSNE tSNE

tSNE tSNE tSNE tSNE tSNE

Bovine IVDs (10X) Hemato. Cells (10X) Lung Epithelium (10X) Mouse Aorta (10X) Mouse Mammary (10X)

Neural Progen. (10X) Pharyn. Mesoderm (10X) SUM149PT Cells (10X) T Cells (10X) T Helper Cells (10X)

Consistency

tSNE tSNE tSNE tSNE tSNE

Dyngen Linear Walk muscat Random Walk scDesign2

Simulation

tSNE tSNE tSNE tSNE tSNE

Fibroblasts (ss3) Fibroblasts 2 (ss3) HEK (ss3) mcSCRB siRNA KD (ss3)

Downsampling (original)

tSNE tSNE tSNE tSNE tSNE

Fibroblasts (ss3) Fibroblasts 2 (ss3) HEK (ss3) mcSCRB siRNA KD (ss3)

Downsampling (reduced)

Figure 25 | Scatter plot of the t-stochastic neighborhood embeddings of each benchmark
dataset Each point is a cell colored by unsupervised clustering in the PCA space with the
walktrap algorithm.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).

3.6.1 Dataset overview
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3.6 Empirical comparison of the transformation approaches

Table 1 | Overview of the datasets used for the benchmark. This table is adapted from
Ahlmann-Eltze and Huber (2022)

#Cells #Genes Perc. Zeros 99% Quant UMI/cell Overdisp.

Consistency

Hematopoietic Cells 2,838 21,398 87% 12 5,020 0.33

SUM149PT Cells 1,196 25,231 74% 35 54,900 0.14

Lung Epithelium 11,407 20,728 90% 5 7,730 0.17

Pharyngeal Mesoderm 7,581 19,939 79% 19 21,700 0.12

Neural Progenitors 13,572 25,711 87% 7 11,500 0.31

Mouse Mammary 6,969 19,757 89% 6 6,970 0.24

Mouse Aorta 10,477 20,020 86% 8 9,420 0.89

Bovine IVDs 8,231 17,464 90% 6 3,940 1.20

T Helper Cells 10,064 21,153 83% 15 19,300 0.33

T Cells 43,283 23,978 92% 4 5,360 0.53

Simulation

Dyngen 5,000 995 75% 3 291 0.20

Linear Walk 8,569 17,130 90% 5 4,340 2.20

muscat 5,000 999 63% 22 1,830 0.98

Random Walk 8,569 17,192 90% 5 4,820 2.60

scDesign2 2,838 16,199 82% 15 5,170 0.35

Downsampling (original)

mcSCRB 249 16,864 57% 48 59,000 0.47

Fibroblasts 369 16,535 45% 224 199,000 0.82

Fibroblasts 2 737 18,682 48% 181 197,000 0.33

HEK 339 18,746 63% 38 56,100 0.15
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siRNA KD 4,298 18,956 56% 106 122,000 0.36

Downsampling (reduced)

mcSCRB 249 16,864 87% 5 5,020 0.32

Fibroblasts 369 16,535 85% 6 5,020 0.19

Fibroblasts 2 737 18,682 88% 5 5,020 0.13

HEK 339 18,746 89% 4 5,140 0.11

siRNA KD 4,298 18,956 88% 5 4,990 0.23

First, I used ten existing single-cell datasets and measured the overlap of the 𝑘 nearest
neighbors for each cell after splitting the genes into disjoint halves. This benchmark measured
the consistency of the data. The data is as realistic as possible but producing consistent results is
not sufficient (nonetheless desirable) for a good preprocessing method.

Second, I used five simulation frameworks to generate data where I knew the ground truth
precisely for each cell.

Third, I took five published datasets with an exceptionally high sequencing depth. For each
cell, I determined reliable nearest neighbors by considering the intersection of the 𝑘 nearest
neighbors across all transformations on the deeply sequenced data. Then, I compared these
reliable nearest neighbors against the 𝑘 nearest neighbors after downsampling the counts to levels
typical for droplet-based experiments. The reliable nearest neighbors served as a proxy for the
ground truth and this benchmark thus balances a realistic structure of the data with an informative
ground truth. Our preprint (Ahlmann-Eltze and Huber, 2022) was, to our knowledge, the first to
use such an approach.

Figure 25 shows scatter plots of the t-stochastic neighborhood embedding (tSNE) (Van der
Maaten and Hinton, 2008) and Table 1 lists some properties of all 20 datasets used in the
benchmarks. The datasets used in the downsampling benchmark (except for the siRNA knockdown
(KD) data) had fewer cells and were less complex than the data for the consistency benchmark.
This is because the deeply sequenced data came from Smart-seq3 (Hagemann-Jensen et al.,
2020) and mcSCRB datasets (Bagnoli et al., 2018) which are, unlike 10x datasets, plate and not
droplet-based. The data generated by the simulation frameworks has similar properties as the
10x datasets, except for the cell type complexity. The latent structure of the dyngen and muscat
data was simpler than the 10x datasets, whereas the linear and random walk datasets are more
complex. In particular, the data lacked the multi-level structure apparent in the 10x data.
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Figure 26 | Benchmark result summary. (A-C) Aggregated results for the consistency,
simulation, and downsampling benchmark. The grey points show the average overlap of the
𝑘-nearest neighbor graphs between the ground truth and the transformed data. To make the
results comparable across underlying data, the performance is plotted relative to the average
performance per transformation. (D) Line plots that show the dependence of the 𝑘-nearest
neighbor overlap on the number of dimensions used for the principal component analysis (PCA).
The lines are colored using the same color scheme as in panel A-C. The performance of Sanity
Distance is plotted as a dashed line because it does not depend on the number of PCA dimensions,
as it calculates the cell-by-cell distance matrix without an intermediate dimension reduction step.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).

3.6.2 Benchmark results

I ran 22 transformations across all 20 datasets and Figure 26A-C shows the aggregated results for
the three benchmark types. The pictogram on top gives a stylized overview how the benchmark
was conducted. Each benchmark was repeated five times and the large colored dot summarizes
the results across five to ten datasets. Figure 27 shows the underlying data from each dataset. To
make the values comparable across datasets, I assessed the fold change compared with the mean
across all transformations (dashed line in Figure 27).

In Figure 26 and 27, I show the results for 𝑘 = 50 nearest neighbors. To exclude the possibility
that the results are an artifact of the 𝑘 , I repeated the calculation for 𝑘 = 10 and 𝑘 = 100 in
Figure 28. The results confirmed the patterns that I found in Figure 26.

Dimension reduction of the transformed values before searching for the 𝑘 nearest neighbors is
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(B) Simulation: Ground truth vs. simulated counts
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Figure 27 | Benchmark result for each dataset.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).
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(B) Consistency: k = 100
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(C) Simulation: k = 10
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(D) Simulation: k = 100
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(E) Downsampling: k = 10
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(F) Downsampling: k = 100

Figure 28 | Benchmark result for other 𝑘 .
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).

an important step to get good performance (Figure 26D). I ran the consistency and downsampling
benchmarks with 5, 10, 50, and 100 dimensions and the simulations additionally with 200, 1 000,
and without PCA. The optimal number of principal component dimensions was dataset dependent,
but both too small and too large number of dimensions were detrimental to performance. At
first, it might seem surprising that increasing the number of PCA dimensions decreased the
performance because PCA is a lossy compression. However, the lossy nature of PCA was
beneficial because it smoothed away some of the uncorrelated Poisson noise in the data, which
otherwise negatively affects the 𝑘 nearest neighbor inference.

The explanatory power of the downsampling benchmark depended on the accuracy of the
reliable nearest neighbors. In Figure 29, I show the pairwise overlap of the 𝑘 nearest neighbors
for all transformations inferred on the deeply sequenced data. The heatmaps mostly clustered
along the approaches (e.g., two delta method-based variance-stabilizing transformations produced

51



3 transformGamPoi

log(y/s+ 1)
log(y/s+ 1)→HVG
log(y/s+ 1)→Z
log(y/s+ 1)→HVG→Z
log(CPM+ 1)
log(y/s+ 1)/u
acosh(2αy/s+ 1)
log(y/s+ 1/(4α))
Pearson (no clip)
Pearson
Pearson→HVG
Pearson→Z
Pearson→HVG→Z
Analytic Pearson
sctransform
Random Quantile
Dino
Normalisr
Sanity MAP
Sanity Distance
GLM PCA
NewWave
y
y/s

(A) Pairwise k-NN overlap for mcSCRB (B) Histogram of reliable-NN for mcSCRB

0

5

10

15

0 10 20 30 40
Reliable neighbors per cell

n

log(y/s+ 1)
log(y/s+ 1)→HVG
log(y/s+ 1)→Z
log(y/s+ 1)→HVG→Z
log(CPM+ 1)
log(y/s+ 1)/u
acosh(2αy/s+ 1)
log(y/s+ 1/(4α))
Pearson (no clip)
Pearson
Pearson→HVG
Pearson→Z
Pearson→HVG→Z
Analytic Pearson
sctransform
Random Quantile
Dino
Normalisr
Sanity MAP
Sanity Distance
GLM PCA
NewWave
y
y/s

(C) Pairwise k-NN overlap for Fibroblasts (ss3) (D) Histogram of reliable-NN for Fibroblasts (ss3)

0

10

20

30

40

0 5 10 15 20
Reliable neighbors per cell

n

log(y/s+ 1)
log(y/s+ 1)→HVG
log(y/s+ 1)→Z
log(y/s+ 1)→HVG→Z
log(CPM+ 1)
log(y/s+ 1)/u
acosh(2αy/s+ 1)
log(y/s+ 1/(4α))
Pearson (no clip)
Pearson
Pearson→HVG
Pearson→Z
Pearson→HVG→Z
Analytic Pearson
sctransform
Random Quantile
Dino
Normalisr
Sanity MAP
Sanity Distance
GLM PCA
NewWave
y
y/s

(E) Pairwise k-NN overlap for Fibroblasts 2 (ss3) (F) Histogram of reliable-NN for Fibroblasts 2 (ss3)
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(G) Pairwise k-NN overlap for HEK (ss3) (H) Histogram of reliable-NN for HEK (ss3)
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(I) Pairwise k-NN overlap for siRNA KD (ss3) (J) Histogram of reliable-NN for siRNA KD (ss3)
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Figure 29 | Overview of reliable neighbor inference. The left column shows heatmaps of
the overlap between pairs of transformations. The right column shows the number of reliable
nearest neighbors for all cells across datasets. The black bars come from the cells that are used to
calculate the performance in Figure 27.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).
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Figure 30 | Results for the downsampling benchmark considering a reduced set of transfor-
mations. (A) Performance overview for the best two transformations per approach across the five
deeply sequenced datasets. (B) Histogram of the reliable nearest neighbors per cell considering
the restricted set of transformations (analogous to Figure 29).
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).

results that were more similar than the log transformation and the Pearson residuals). The two
negative controls (not considered for the reliable nearest neighbors) were outliers, dissimilar to
all other transformations. For the Fibroblasts 2 dataset, the log(𝑦/𝑠 + 1)/𝑢 method was an outlier
sharing almost no neighbor with the other methods. Similarly, the Normalisr method was an
outlier in the mcSCRB and the HEK datasets.

To confirm that the outlier transformations did not negatively impact the accuracy of the
downsampling, I repeated the benchmark with a different set of reliable nearest neighbors based
on the top two transformations per approach (Figure 30A). The benchmark confirmed the patterns
that I observed originally. Figure 30B shows that the average number of reliable nearest neighbors
is larger with the reduced set of transformations than with all transformations (Figure 29 right
column).

So far, I have focused my analysis exclusively on the 𝑘 nearest neighbor overlap. In
Figure 31A,B, I show the adjusted rand index and adjusted mutual information of the ground truth
clustering with the clustering after transformation on the simulation datasets. The results were
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(C) Adjusted Rand index vs. Mean overlap per dataset
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(D) Adjusted Mutual Information vs. Mean overlap per dataset

Figure 31 | Simulation benchmark results using cluster consistency metrics (A,B) Benchmark
results for the simulation frameworks quantified by comparing (A) the adjusted rand index and
(B) the adjusted mutual information of the ground truth clusters with the walktrap clustering
results on the transformed data. (C,D) Scatter plot of the 𝑘 nearest neighbor overlap against (C)
the adjusted rand index and (D) the adjusted mutual information. The number 𝜌 at the bottom is
the correlation coefficient.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).
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(B) k-NN overlap stratified by cluster size for scDesign2
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(C) k-NN overlap stratified by cluster size for siRNA KD (ss3)

Figure 32 | 𝑘 nearest neighbor overlap dependence on cluster size.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).

consistent with my earlier analysis based on the 𝑘 nearest neighbor overlap, which is expected
because the different metrics are highly correlated (Figure 31C,D). For the linear walk simulation,
the 𝑘 nearest neighbor overlap metric had a larger dynamical range than the adjusted rand index
and the adjusted mutual information, demonstrating its advantage on data with mainly continuous
gradients (instead of discrete clusters).

I further explored if the ability of transformations to uncover the local structure of the data
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(C) Non-zero overdispersion improves results for delta method
and Pearson transformation
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Figure 33 | Direct comparison of some selected transformation approaches (A-C) The
bars show the 95% confidence intervals calculated using the five replicates across the five/ten
datasets. The arrows are colored by the transformation approach. (A) Comparison of the shifted
logarithm and Pearson residuals against the best transformation from the other approaches. (B)
Comparison of post-processing steps such as highly variable gene selection or z transformation.
(C) Comparison of the overdispersion settings across approaches. (D) Line plot of the 𝑘 nearest
neighbor overlap dependence on the sequencing depth per cell.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).

depended on how dense a particular area of the latent space was. As a proxy of the density, I
used the size of the cluster, but no clear trend was apparent (Figure 32).

3.6.3 Direct comparison

In Figure 33A, I directly compared the results of the shifted logarithm and the Pearson residuals
against the respective best-performing approaches for the other transformation approaches. The
shifted logarithm produced more consistent results than other transformation approaches and
outperformed the Sanity MAP and GLM PCA in the downsampling benchmark. The randomized
quantile transformation that I developed to address some of the problems with the Pearson
residuals, performed worse in the simulation and downsampling benchmark than the Pearson
residuals.
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(A) Computational expense for transform and k-NN calculation
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Figure 34 | Comparison of the runtime on the 10x human T-helper cell dataset. (A) Runtime
plotted on a log scale, the secondary axis shows the relative duration compared with the shifted
logarithm. (B) Scaling of the methods with the number of cells. A double-logarithmic plot of the
runtime dependence on the number of cells. Most transformations scale with a slope of 1 (i.e.,
linearly) except for Sanity Distance and GLM PCA which have a slope > 1.5 (this suggests a
quadratic dependence of the runtime on the number of cells).
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2022).

Post-processing the results using sphereing, highly variable gene selection and z transformation
degrades the performance of the shifted logarithm. The results were similar for the Pearson
residuals except that the z transformation improved the consistency of the results (Figure 33B).

Including a non-zero overdispersion improved the performance for the acosh transformation
and the Pearson residuals in the consistency and simulation benchmark (Figure 33C). (I did
not compare the effect in the downsampling benchmark to keep the number of transformations
contributing to the reliable nearest neighbors in check.) I did not find a difference between
estimating the overdispersion from the data and fixing it to a small non-zero value (i.e., 𝛼 = 0.05).
GLM PCA performed worse for a non-zero overdispersion which might be due to the additional
complication inferring the parameters of the gamma-Poisson model.

Figure 33D shows that the methods performed better with increased sequencing depth per
cell. This makes sense because the increased number of counts allows a more precise inference
of the latent state of the cell (see section 3.1.1).

In Figure 34A, I compared the runtime of all transformations on the 10x human T-helper cell
dataset. The plot shows the large difference between the fastest methods (shifted logarithm with a
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fixed overdispersion and the analytical approximation of the Pearson residuals) which took a few
seconds and Sanity Distance which needed multiple days of CPU time for the same dataset. I also
compared the runtime across datasets as a function of the number of cells (Figure 34B). Most
transformations scaled linearly with the number of cells, except for Sanity Distance and GLM
PCA which appear to scale quadratically (i.e., their slope is > 1.5 in the double logarithmic plot).

3.6.4 Methods

This section is a copy of the methods section from Ahlmann-Eltze and Huber (2023b), which I
wrote originally. The only edits are formatting and figure references.

We compared 22 transformations that can be grouped into four approaches.
The delta method-based transformations were: the shifted logarithm (log(𝑦/𝑠 + 1)), the acosh

transformation (acosh(2𝛼𝑦/𝑠 + 1)), the shifted logarithm with pseudo-count dependent on the
overdispersion (log(𝑦/𝑠+1/(4𝛼))), the shifted logarithm with counts-per-million (log(CPM+1)),
the shifted logarithm with subsequent size normalization as suggested by Booeshaghi et al. (2022)
(𝑥𝑔𝑐/𝑢𝑐, where 𝑥𝑔𝑐 = log(𝑦𝑔𝑐/𝑠𝑐 + 1) and 𝑢𝑐 =

∑
𝑔 𝑥𝑔𝑐), the shifted logarithm with subsequent

highly variable gene selection (log(𝑦/𝑠 + 1) → HVG), the shifted logarithm with subsequent
z-scoring per gene (log(𝑦/𝑠+1) → Z), the shifted logarithm with subsequent highly variable gene
selection and z-scoring per gene (log(𝑦/𝑠 +1) → HVG→ Z). For all composite transformations,
we first calculated the variance-stabilizing transformation, then chose the highly variable genes
and used the results without recalculating the variance-stabilizing transformation.

To retain the sparsity of the output also if the pseudo-count 𝑦0 ≠ 1, transformGamPoi uses
the relation

log( 𝑦
𝑠
+ 𝑦0) = log

(
𝑦

𝑦0 𝑠
+ 1

)
+ log 𝑦0. (67)

Subtracting the constant log 𝑦0 from this expression does not affect its variance-stabilizing
properties, but has the desirable effect that data points with 𝑦 = 0 are mapped to 0.

The residuals-based transformations were: Pearson residuals implemented with the trans-
formGamPoi package where each residual is clipped to be within ±

√
#Cells, as suggested by

Hafemeister and Satija (2019) (Pearson), Pearson residuals with clipping and additional heuristics
implemented by sctransform Version 2 (sctransform), an analytic approximation to the Pearson
residuals with clipping suggested by Lause et al. (2021) (Analytic Pearson), randomized quantile
residuals implemented by transformGamPoi (Random. Quantile), Pearson residuals without
clipping implemented by transformGamPoi (Pearson (no clip)), Pearson residuals with clipping
and subsequent highly variable gene selection (Pearson→ HVG), Pearson residuals with clip-
ping and subsequent z-scoring per gene (Pearson→ Z), Pearson residuals with clipping and
subsequent highly variable gene selection and z-scoring per gene (Pearson→ HVG→ Z). For
each composite Pearson residual transformation (i.e., with HVG. and / or z-scoring), we used the
transformGamPoi implementation.

The latent expression-based transformations were: Sanity with point estimates for the latent
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3.6 Empirical comparison of the transformation approaches

expression (Sanity MAP) and with calculation of all cell-by-cell distances taking into account
uncertainty provided by the posteriors (Sanity Distance), Dino as provided in the corresponding
R package, and Normalisr with variance normalization, implemented in Python, which we called
from R using the reticulate package.

The count-based factor analysis models were: GLM PCA using the Poisson model and the
Gamma-Poisson model with 𝛼 = 0.05. In the figures, we show the results for the Poisson model
unless otherwise indicated. We used the avagrad optimizer. We ran NewWave with 100 genes
for the mini-batch overdispersion estimation.

For the delta method-based transformations and the residuals-based transformations calculated
with the transformGamPoi package, we calculated the size factor 𝑠 using Eq. (51).

We defined highly variable genes (HVG) as the 1 000 most variable genes based on the
variance of the transformed data.

For z-scoring, we took the transformed values 𝑥𝑔𝑐 = 𝑔(𝑦𝑔𝑐) and computed 𝑧𝑔𝑐 =
𝑥𝑔𝑐−mean(x𝑔)√

var(x𝑔)
,

where mean and variance are the empirical mean and variance taken across cells.
In the overview figures (Fig. 24, 26, and 33), we use a gene-specific overdispersion estimate

for all residuals-based transformations and for the delta method-based transformations which can
handle a custom overdispersion; for GLM PCA, we use 𝛼 = 0, because these settings worked best
for the respective transformations. The latent expression-based transformations and NewWave
do not support custom overdispersion settings.

Conceptual differences For the visualization of the residual structure after adjusting for the
varying size factors, we chose a control dataset of a homogeneous RNA solution encapsulated in
droplets (Svensson et al., 2017). We filtered out RNAs that were all zero and plotted the first two
principal components. Where applicable, we used the gene-specific overdispersion estimates. For
visualizing the results of Sanity Distance, instead of the PCA, we used multi-dimensional scaling
of the cell-by-cell distance matrix using R’s cmdscale function. We calculated the canonical
correlation using R’s cancor function on the size factors and the first 10 dimensions from PCA
and multi-dimensional scaling.

The plots of the mean-variance relation are based on the 10x human hematopoietic cell dataset
(Bulaeva et al., 2020). Where applicable, we used the gene specific overdispersion estimates.
The panel of Sanity Distance shows the variance of samples drawn from a normal distribution
using the inferred mean and standard deviation.

For the mouse lung dataset (Angelidis et al., 2019), we filtered out cells with extreme size
factors (0.1𝑠median < 𝑠𝑐 < 10𝑠median, where 𝑠median is the median size factor). We also removed
cells that did not pass the scran quality control criterion regarding the fraction of reads assigned
to mitochondrial genes. To account for the fact that some transformations share information
across genes, we applied all transformations to the 100 most highly expressed genes and three
genes (Sftpc, Scgb1a1, Ear2) known to be differentially expressed in some cell types according
to the assignment from the original publication.
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Benchmark The benchmarks were executed using a custom work scheduler for slurm written
in R on CentOS7 and R 4.1.2 with Bioconductor version 3.14. The set of R packages used in the
benchmark with exact version information was stored using the renv package and is available
from the GitHub repository.

𝑘-NN identification and dimensionality reduction To calculate the PCA, we used the
irlba package. To infer the 𝑘 nearest neighbors, we used annoy, which implements an approximate
nearest neighbor search algorithm. To calculate the t-SNEs, which we only used for visualization,
we used the Rtsne package on data normalized with the shifted logarithm with a pseudo-count of
1.

Consistency Benchmark We downloaded ten single-cell datasets listed in the gene
expression omnibus database (GEO) browser after searching for the term mtx on 2021-10-14.
All datasets are listed in the Data Availability section. To measure the consistency of the
transformations, we randomly assigned each gene to one of two groups and processed the two
resulting data subsets separately. We calculated the consistency as the mean overlap of the 𝑘
nearest neighbors for all cells.

Simulation Benchmark We used five frameworks to simulate single-cell counts in R:
we ran dyngen (Cannoodt et al., 2021) using a consecutive bifurcating mode and the default
parameters otherwise. We ran muscat (Crowell et al., 2020) with 4 clusters, a default of 30%
differentially expressed genes with an average log-fold change of 2, and a decreasing relative
fraction of log-fold changes per cluster. We ran scDesign2 (Sun et al., 2021) with the 10x human
hematopoietic cell dataset as the reference input with a copula model and a Gamma-Poisson
marginal distribution. We simulated the Random Walk by translating the Matlab code of Breda
et al. (2021) to R and using the data by Baron et al. (2016) as a reference. For the Linear Walk, we
adapted the Random Walk simulation and, instead of following a random walk for each branch,
we interpolated the cells linearly between a random start and end point. For both benchmarks,
we used a small non-zero overdispersion of 𝛼 = 0.01 to mimic real data.

With each simulation framework, we knew which cells were, in fact, the 𝑘 nearest neighbors
to each other. We calculated the overlap as the mean overlap of this ground truth with the inferred
nearest neighbors on the simulated counts for all cells. Furthermore, we calculated the adjusted
Rand index (ARI) and adjusted mutual information (AMI) by clustering the ground truth and the
transformed values with the graph-based walktrap clustering algorithm from the igraph package.

Downsampling Benchmark We searched the literature for single-cell datasets with high
sequencing depth and found five (one from mcSCRB, four from Smart-seq3) that had a sequencing
depth of more than 50 000 UMIs per cell on average. We defined reliable nearest neighbors as the
set of 𝑘 nearest neighbors of a cell that were identified with all 22 transformations on the deeply
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sequenced data (excluding the two negative controls). We used the downsampleMatrix function
from the scuttle package to reduce the number of counts per cell to approximately 5 000, a typical
value for 10x data. We considered only one setting for the overdispersion per transformation
(instead of allowing multiple overdispersion settings for some transformations as in the other
benchmarks). We ran all transformations, which supported the setting, with a gene-specific
overdispersion estimate (except GLM PCA which performed better with an overdispersion fixed
to 0). Finally, we computed the mean overlap between the 𝑘 nearest neighbors identified on the
downsampled data with the set of reliable nearest neighbors for all cells with more than one
reliable nearest neighbor.

𝑘-NN Overlap For all three benchmarks, we calculated overlaps between pairs of 𝑘 nearest
neighbor graphs. Denoting their #cell × #cell adjacency matrices (i.e., a matrix of zeros and
ones, where an entry is is one if a cell 𝑑 is among the 𝑘 nearest neighbors of cell 𝑐) by 𝑁1 and
𝑁2, we defined their overlap as

1
#cells

#cells∑︁
𝑐,𝑑=1

𝑁1
𝑐𝑑𝑁

2
𝑐𝑑 . (68)

Data availability All datasets used for this study are freely available. Table 2 and 3 list the
details where to access the datasets.

Table 2 | Datasets used to illustrate the conceptual differences between transformations.
This table is adapted from Ahlmann-Eltze and Huber (2022)

Confounding effect of vary-
ing sequencing depth on di-
mensionality reduction

Droplet encapsu-
lated RNA

Chromium v1 Svensson et al. (2017),
CalTech Data Repo entry 1264

Mean-variance relation Human
hematopoi-
etic cells

Chromium v3 Bulaeva et al. (2020)
GEO GSE130931

Effect of transformation on
marker genes

Mouse lung DropSeq Angelidis et al. (2019),
GEO GSE124872

Table 3 | Datasets used to benchmark the performance differences between transformations.
This table is adapted from Ahlmann-Eltze and Huber (2022)
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3 transformGamPoi

Consistency Human hematopoi-
etic cells

Chromium v3 Bulaeva et al. (2020)
GEO GSE130931

SUM149PT cell line 10x Genomics No corresponding publication
GEO GSE142647

Human lung epithe-
lium

Chromium v3 Kathiriya et al. (2022)
GEO GSE150068

Mouse pharyngeal
mesoderm

Chromium v2 Nomaru et al. (2021)
GEO GSE158941

Human neural progen-
itor cells

Chromium v3 De Santis et al. (2021)
GEO GSE163505

Mouse mammary Chromium v2 Pal et al. (2021)
GEO GSE164017

Mouse aorta Chromium v3 Porritt et al. (2021)
GEO GSE178765

Bovine intervertebral
discs (IVDs)

Chromium v3 Panebianco et al. (2021)
GEO GSE179714

Human T helper cells Chromium 5’ v1 Qian et al. (2021)
GEO GSE179831

Human T cells Chromium 5’ v1.1 Lu et al. (2021)
GEO GSE184806

Simulation Human pancreas InDrops Baron et al. (2016),
scRNAseq BioC package

Downsampling JM8 cells mcSCRB-seq Bagnoli et al. (2018),
GEO GSE103568

HEK cells Smart-seq3 Hagemann-Jensen et al. (2020),
ArrayExpress E-MTAB-8735

Fibroblasts (1) Smart-seq3 Hagemann-Jensen et al. (2020),
ArrayExpress E-MTAB-8735

Fibroblasts (2) Smart-seq3 Larsson et al. (2021),
ArrayExpress E-MTAB-10148
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3.7 Discussion

siRNA Knockdown
(KD)

Smart-seq3 Johnsson et al. (2022),
Github Sandberg-lab

Code availability and reproducibility I developed an R package called transformGamPoi
which implements the delta method-based variance-stabilizing transformations and simple
implementation of the Pearson residuals. The package is hosted on Bioconductor at bioconduc-
tor.org/packages/transformGamPoi/.

The benchmarks were implemented using a custom-made workflow manager build around
the SLURM high-performance computing system. All scripts to reproduce the benchmarks, their
analysis and the corresponding figures are stored on github.com/const-ae/transformGamPoi-Paper
and Zenodo.

Because the benchmark produced more results than I could visualize, I created a shiny
app to let anyone explore the results interactively. The shiny app is hosted by EMBL at
shiny-portal.embl.de/shinyapps/app/08 single-cell transformation benchmark.

3.7 Discussion

In this chapter, I presented my comparison of transformations for single-cell RNA-seq data. I
explained how variance-stabilizing transformations are derived using the delta method. I then
showed which properties of the transformed values differed between the approaches: for example,
the log-transformed values had a higher correlation with the size factors than the Pearson residuals.
On the flip side, I showed that the Pearson residuals could not stabilize the heteroskedasticity of a
gene with a bimodal gene expression pattern.

The main part of the chapter focused on the comparison of the empirical performance of the
transformation. I chose to measure the performance of the transformations with regard to their
ability to uncover the local latent structure of the data as measured by the overlap of the 𝑘 nearest
neighbors of each cell with some (proxy for the) ground truth. Surprisingly, the simple shifted
log transformation performed among the best and none of the mathematically more sophisticated
(and computationally more demanding) transformations consistently outperformed it.

I used five different simulation frameworks to avoid dependence of the results on a particular
simulation approach. However, two simulation frameworks produced data with a simplistic
latent structure, whereas two others produced data with a more complex latent structure than
real data. Only one approach (scDesign2) produced data that seemed realistic when plotting
the cells structure with two-dimensional tSNE. I averaged the benchmark values across all five
simulations; however, the results did not separate the transformations. This suggests that using
more sophisticated simulation frameworks could help to assess the performance difference more
accurately.
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3 transformGamPoi

I used the deeply sequenced data from Smart-seq 3 experiments, to create a new type of
benchmark that compares the structure inferred on the deeply sequenced data against the structure
identified on downsampled data. The advantage of this approach is that it provides a realistic
latent structure, unlike the simulation frameworks which sometimes only superficially resemble
real single-cell data. A challenge of this approach is that only a few such datasets are publicly
available, which meant that I had to revert to the datasets (except one) which analyzed fairly
homogeneous systems like cell lines.

In summary, my comparison can help practitioners to choose an appropriate transformation
for their single-cell data and can guide the development of novel transformations for single-cell
RNA-seq counts or other data modalities.
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In this chapter, I will present the third project of my PhD where I developed a new tool for the
analysis of multi-condition single-cell data. I will begin by explaining the conceptual innovation
of my model, before demonstrating its utility on a glioblastoma dataset. I, together with Wolfgang
Huber, published this project as a preprint called “Analysis of multi-condition single-cell data
with latent embedding multivariate regression” (Ahlmann-Eltze and Huber, 2023a). Note that
this chapter describes version 0.0.19 of our R package lemur.

4.1 Multi-condition single-cell data

To establish the effect of an intervention or experimental condition on a complex tissue, we
can use single-cell profiling of multiple samples. There are several experimental methods to
generate such datasets which minimize the batch effects between samples, for example, through
multiplexing. The analysis of such datasets is complicated by the fact that these datasets contain
several sources of variation:

1. effect of the experimental condition,

2. sample-specific batch effects,

3. cell type heterogeneity,

4. plus interactions between all three sources of variation.

Computational method development for multi-condition single-cell data initially focused
on addressing the sample-specific batch effects. Prominent tools for this task are mutual
nearest neighbor integration (MNN) (Haghverdi et al., 2018), Harmony (Korsunsky et al., 2019),
integration with Seurat (Butler et al., 2018), and scVI (Lopez et al., 2018). These tools try to find
corresponding cell populations across samples and an integrated latent space where they locate
close to each other. Luecken et al. (2022) compared their ability to integrate separate datasets of
the same tissue.

After integration, the cell type heterogeneity is divided into discrete groups (using clustering
and / or manual annotation) and the effect of the experimental condition is studied per group
using differential expression analysis. Crowell et al. (2020) showed that summing the counts
per group and condition is surprisingly effective for inferring reliable treatment effects. The
resulting values are called pseudobulks because they are equivalent to sorting the data using flow
cytometry and performing regular bulk RNA sequencing. More complex mixed-effects models
require considerably more computational resources for little or no gain in performance.
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4.1.1 Methods for multi-condition single-cell experiments

There are several experimental methods to tag the origin of a cell before mixing the cells and
proceeding with the multiplexed sample preparation. There are two methods that are based on
antibodies:

• Cell Hashing uses oligonucleotide-tagged antibodies against common surface proteins
(Stoeckius et al., 2018).

• Gaublomme et al. (2019) used oligonucleotide-tagged antibodies against the nuclear pore
complex to demultiplex nuclei.

A popular alternative is based on lipid or cholesterol-based anchors with an oligonucleotide label:

• MULTI-seq uses oligonucleotide-labeled lipid anchors that integrate into the cell or nuclear
membrane (McGinnis et al., 2019).

• 10x Genomics 3’ CellPlex uses similar oligonucleotide-labeled lipid anchors.

Besides these, there are additional demultiplexing approaches designed for specific circumstances:

• demuxlet is a computational tool using SNPs for deconvolution (Kang et al., 2018).

• MIX-seq uses SNP-based deconvolution (McFarland et al., 2020).

• ClickTag multiplexing attaches oligonucleotides to cellular proteins of fixed cells (Gehring
et al., 2020).

• CellTag Indexing uses a lentiviral barcode delivery system (Guo et al., 2019)

4.2 Latent embedding multivariate regression

Here, I will describe our new method for the analysis of multi-condition single-cell data. I call
this method latent embedding multivariate regression (LEMUR) because its innovation is that it
performs regression on latent spaces. Unlike the existing analysis workflow which discretizes the
latent space after integration into clusters, LEMUR operates on a continuous latent space.

The advantage of avoiding premature clustering is that choosing the optimal clustering
parameters is an impossible task. For some genes, the clusters will be too large obscuring
interesting variation. At the same time, the clusters will be too small for other genes, resulting in
a loss of power to detect the interesting variation. Furthermore, many biological effects vary in
gradual patterns, which is difficult to capture using clusters.

LEMUR performs regression on the latent subspaces that best interpolate the observations of
each condition. Here, a condition is the unique combination of all experimental covariates. To
make this concept more rigorous, I will now give a brief overview of differential geometry and
geodesic regression.
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Linear Regression Geodesic Regression

Figure 35 | Illustration of linear regression and geodesic regression. Regression finds a
straight line (blue) on the surface of a smooth manifold (grey) that interpolates the observations
(purple). In geodesic regression the manifold can have non-zero curvature, which makes any line
look bent in the embedding space.

4.2.1 Geodesic regression

Geodesic regression generalizes the concept of linear regression to arbitrary manifolds (Fletcher,
2011). In linear regression, we find the coefficients 𝐵 that connect the observations 𝑌 and the
covariates 𝑋

𝑌 = 𝐵𝑋𝑇 + 𝜖 (69)

where the columns of 𝑌 are the observations and the rows are the features. If we have only a
single covariate, we can rewrite eq. (69) as

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖 (70)

where 𝑖 indexes the observations and 𝛽0 is the intercept and 𝛽1 is the slope.
If 𝑦𝑖 is a scalar, it is often plotted against the covariate 𝑥𝑖 and 𝛽0 and 𝛽1 define the intercept and

slope of a line. If 𝑦𝑖 is two-dimensional and 𝑥𝑖 is still a scalar, the regression line is parameterized
by 𝛽1. The line can be understood as an object traveling with constant speed in direction 𝛽1 and
𝛽0 is the location at which the object is at time 𝑥 = 0.

Generalizing the idea of an object moving with constant velocity on non-Euclidean surfaces
leads to geodesic regression (Fig. 35). Here, the 𝑦𝑖 are points on a Riemannian manifoldM. The
intercept 𝛽0 is called the base point and 𝛽1 is a tangent vector at the base point. The geodesic
equivalent of eq. (70) is

�̂�𝑖 = Exp𝛽0
(𝑥𝑖𝛽1)

𝑦𝑖 = Exp�̂�𝑖 (𝜖𝑖).
(71)

Here, Exp is the exponential map that takes a base point 𝑝 ∈ M and a tangent vector 𝑣 ∈ T𝑝M
and returns a new point on the manifold 𝑝′ ∈ M. For Euclidean space, the exponential map is
just addition, i.e., Exp𝑝 (𝑣) = 𝑝 + 𝑣 recovering the simple linear regression from eq. (70).
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The name exponential map comes from the fact that for some manifolds (i.e., Lie groups) the
exponential map coincides with the matrix exponential

exp(𝑋) = 𝐼 + 𝑋 + 1
2
𝑋2 + 1

6
𝑋3 + · · · , (72)

which has the name because this is the same Taylor series as the familiar exponential function on
scalars

exp(𝑥) = 1 + 𝑥 + 1
2
𝑥2 + 1

6
𝑥3 + · · · . (73)

In linear regression, we optimize 𝛽0 and 𝛽1 by minimizing the squared residuals 𝜖2. In
geodesic regression, we proceed similarly and minimize

arg min
𝛽0,𝛽1

𝑁∑︁
𝑖

𝜖2
𝑖 =

𝑁∑︁
𝑖

Log(𝑦𝑖, �̂�𝑖)2, (74)

where Log is the logarithmic map and is defined as the inverse of the exponential map. It takes
two points 𝑝, 𝑝′ ∈ 𝑀 and returns a vector from the tangent space 𝑣 ∈ T𝑝M.

Solving eq. (74) is not straightforward. Fletcher (2011) and Rentmeesters (2011) have
proposed algorithms for optimizing 𝛽0 and 𝛽1 using a gradient descent approach. Fletcher (2011)
explained that calculating the gradient requires computing the derivative of the distance function
(i.e., the squared logarithmic map) and the exponential map. The derivative of the exponential
map with respect to a single tangent vector is the Jacobi field along the geodesic. Rentmeesters
(2011) showed that the Jacobi fields can be calculated efficiently for symmetric Riemannian
manifolds (e.g., spheres, symmetric positive definite matrices, special orthogonal matrices, and
Grassmann manifolds).

The biggest limitation of Jacobi field-based optimization strategies as proposed by Fletcher
(2011) and Rentmeesters (2011) is their restriction to univariable regression problems. For
linear regression (model (70)) it is natural to include multiple covariates (called multivariable
regression). Multivariable geodesic regression extends model (71) by summing over multiple
tangent vectors

�̂�𝑖 = Exp𝑜

(
𝐾∑︁
𝑘

𝑋𝑖𝑘𝑣𝑘

)
(75)

where 𝑜 ∈ M is the base point, there are 𝐾 covariates, and all coefficients are tangent vectors
𝑣𝑘 ∈ T𝑜M. The sum of two tangent vectors is again a tangent vector because the tangent vectors
are a vector space.

Kim et al. (2014) use a trick to find the tangent vectors that approximate the solution of
eq. (75). For a fixed basis point 𝑜, they project all 𝑦𝑖 into the log space of 𝑜

�̃�𝑖 = Log(𝑜, 𝑦𝑖) (76)
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Manifold
Tangent Space

Projected point

Fit in the tangent space

Basis point

Point on manifold

Figure 36 | Schematic of the log-space approximation. Points on the manifold (yellow) are
projected into the tangent space of a base point (blue, translucent). Fitting a regression in the
tangent space using the projected points approximates fitting a regression on the manifold with
the original points.

and then solve the regression problem on �̃�𝑖

arg min
𝑣𝑘

𝑁∑︁
𝑖

| | �̃�𝑖 −
∑︁
𝑘

𝑋𝑖𝑘𝑣𝑘 | |2. (77)

Eq. (77) is a linear regression problem I solve using R’s built-in functions.
Figure 36 illustrates the principle for a 2D-sphere. The accuracy of the approximation

depends on the base point. It needs to be at the center of the observations and the spread of the
points should be small to minimize distortions of the projection of the curved manifold onto the
non-curved tangent space.

The concept of projecting manifold-valued data into the tangent space and solving the
optimization problem there generalizes to arbitrary machine learning methods. Despite obtaining
only approximate solutions, this approach is appealing because one can reuse existing machine
learning algorithms for any manifold for which we have an implementation of the exponential
map and exponential logarithm.

4.2.2 Matrix decompositions

Principal component analysis (PCA) is a matrix decomposition of a matrix 𝑌 into two matrices

𝑌 = 𝑅𝑍 + 𝛾. (78)
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𝑌 is a rectangular matrix with 𝑛 rows and 𝑚 columns, 𝑅 is an orthonormal matrix with min(𝑛, 𝑚)
columns and 𝑛 rows. 𝛾 is a vector and centers the rows. I overload the + operator for matrix-vector
summation and implicitly assume that 𝛾 is repeated 𝑚 times to match the dimensions of 𝑌 .

PCA is closely related to two other matrix decompositions: singular value decomposition and
eigenvalue decomposition. The singular value decomposition (SVD) decomposes a rectangular
matrix 𝑌 into three components

𝑌 = 𝑈 diag(σ)𝑉𝑇 . (79)

The vector σ contains the singular values and𝑈 and𝑉 are called the left and right singular values
of 𝑌 , respectively.

The eigendecomposition takes a square matrix 𝐴 and forms

𝐴 = 𝑄 diag(λ)𝑄−1. (80)

The vector λ contains the eigenvalues of 𝐴 and 𝑄 is a square matrix with the eigenvectors in the
columns. The fundamental property of eigenvalue and eigenvectors pairs is that they satisfy

𝐴𝑄:𝑖 = _𝑖𝑄:𝑖 (81)

where 𝑄:𝑖 is one of the eigenvectors.
If 𝐴 = 𝑌𝑌𝑇 is the covariance matrix of 𝑌 , then the eigendecomposition and the singular value

decomposition are related through σ2 = λ. The PCA decomposition is a slightly simplified
version of the singular value decomposition where 𝑍 = σ𝑉𝑇 and where the 𝛾 parameter
explicitly acknowledges that the interpretability of the decompositions benefits from centering
the observations.

A popular application for PCA is as a dimension reduction method (Figure 37A). The
idea is to sort the rows of 𝑍 by variance and only consider the 𝑝 most variable rows: i.e.,
𝑅 ∈ {ℝ𝑛×𝑝 : 𝑅𝑇𝑅 = 𝐼} and 𝑍 ∈ ℝ𝑝×𝑚. Consequently, eq. (78) is no longer an exact equality, but
the decomposition becomes an approximation

𝑌 ≈ 𝑅𝑍 + 𝛾 (82)

which is optimal with respect to the least squares error.
The main statistical innovation of the LEMUR model is that I combine the ideas of PCA with

regression to allow PCA to adjust for known covariates.

4.2.3 Multi-condition PCA

I call the new statistical decomposition that I have developed multi-condition PCA. It extends
the regular PCA by accounting for known experimental covariates (Figure 37). In the simplest
case, these could be a treated and a control condition and multi-condition PCA is equivalent to
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Figure 37 | PCA and multi-condition PCA. (A) Dimensionality reduction with principal
component analysis of a matrix 𝑌 into an orthonormal matrix 𝑅 and the embedding 𝑍 . The rank
of the decomposition is smaller than the rank of𝑌 which makes the decomposition approximative.
(B) Multi-condition PCA extends PCA by treating 𝑅 as a function of known covariates that
returns orthonormal matrices.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2023b).

performing regular PCA on each condition separately. However, for more complex experimental
designs, such as treatment gradients or incomplete nesting of the experimental conditions,
multi-condition PCA provides a powerful new framework for disentangling the effects of the
treatment and the latent variation.

The multi-condition PCA decomposition is

𝑌:𝑐 ≈ 𝑅(𝑋𝑐:)𝑍:𝑐 + 𝛾(𝑋𝑐:) (83)

where 𝑐 indexes the cells and 𝑅 is a function of the rows of the design matrix 𝑋 that returns an
orthonormal matrix: i.e., 𝑅 : ℝ𝐾 → {𝐴 ∈ ℝ𝐺×𝑃 : 𝐴𝑇 𝐴 = 𝐼}. In the simplest case 𝑅(𝑥) = 𝐴 in
which case eq. (83) reduces to regular PCA (eq. (82)).

To account for the known covariates, I parameterize the 𝑅 using the exponential map on the
Grassmann manifold

𝑅(𝑥) = Exp𝑜

(
𝐾∑︁
𝑘=1

𝑥𝑘𝑉𝑘

)
. (84)

The basis point 𝑜 is the reduced space for PCA on all data. {𝑉1, · · · , 𝑉𝐾} are elements of the
tangent space of a Grassmann manifold and the coefficients which are optimized for during the
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multi-condition PCA fit.
A Grassmann manifold is the set of all 𝐺 × 𝑃-dimensional subspaces. I parameterize

the elements of a 𝐺 × 𝑃 Grassmann manifold using orthonormal matrices {span(𝐴) : 𝐴 ∈
ℝ𝐺×𝑃, 𝐴𝑇 𝐴 = 𝐼}. Multiple orthonormal matrices that span the same spaces are thus considered
identical because they represent the same element of the Grassmann manifold. The advantage of
the orthonormal matrix representation is that it saves memory and is directly amenable to other
linear algebra operations.

The exponential map of the Grassmann manifold is

Exp𝑝 (𝑥) = 𝑝𝑉 diag(cos(𝜎))𝑉𝑇 +𝑈 diag(sin(𝜎))𝑉𝑇 , (85)

where 𝑝 is the base point and 𝑥 = 𝑈 diag(𝜎)𝑉𝑇 is a singular value decomposition of the tangent
vector 𝑥 (Bendokat et al., 2020).

I find the coefficients {𝑉1, · · · , 𝑉𝐾} using the log-space trick by Kim et al. (2014). However, to
apply equation (77), I need to first find the points on the Grassmann manifold. For each condition
(i.e., the set of identical rows of the design matrix), I collect the corresponding observations and
perform regular reduced-rank principal component analysis. With the respective orthonormal
matrices spanning the latent space that best approximates the observations in each condition,
I project them into the log space of a base point and run classical linear regression to find the
coefficients 𝑉𝑘 .

In addition to the parameters of the Grassmann-exponential map, I also need to find the
parameters of the offset function 𝛾. In my current implementation, I support two settings.

1. 𝛾(𝑥) = 0, in which case I do not attempt to center the data, which leads to a large first
component of 𝑍 .

2. 𝛾(𝑥) =
∑
𝑘 𝑥𝑘Γ𝑘 , i.e., regular linear regression which I solve independently of the

optimization of the Grasmann-exponential map coefficients.

Lastly, I rotate the embedding so that the first row of the embedding explains the maximum
amount of variation, the second row explains the second most variation and so on. This process
mirrors the resolution of the rotational degeneracy in PCA. I set

𝑍′ = 𝑉𝑇 diag(𝜎)
𝑜′ = 𝑜𝑈

𝑉 ′𝑘 = 𝑉𝑘𝑈

(86)

where 𝑍 = 𝑈 diag(𝜎)𝑉𝑇 is the singular value decomposition of the unsorted embedding matrix.
In algorithm 1, I provide the pseudo-code for the multi-condition PCA algorithm. In listing 1,

I have implemented the pseudo-code in R to provide a functional code example.
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Algorithm 1 Multi-condition PCA algorithm
Require: 𝑌 ∈ ℝ𝐺×𝐶 ⊲ The input data
Require: 𝑋 ∈ ℝ𝐶×𝐾 ⊲ The design matrix
Require: 𝑛 ∈ 0 < ℤ+ ≤ min(𝐺,𝐶) ⊲ The latent space dimension

function multiconditionPCA(𝑌 , 𝑋 , 𝑛)
Γ← 𝑌𝑋 (𝑋𝑇𝑋)−1

𝑌 ← 𝑌 − Γ𝑋𝑇
𝑜 ← GetSubspace(PCA(𝑌 , 𝑛))
for all e ∈ {{i|𝑋𝑖1: = 𝑋𝑖2: = · · · }} do

𝐴𝑒 ← Log(𝑜, GetSubspace(PCA(𝑌:e, 𝑛)))
end for
𝑉 ←WeightedLinearRegression({𝐴𝑒}, 𝑋e, {#e})
𝑉 ← Reshape(V, {G,n,K})
for all e ∈ {{i|𝑋𝑖1: = 𝑋𝑖2: = · · · }} do

𝑍:e ← Exp𝑜
(∑𝐾

𝑘 𝑋𝑒𝑘𝑉::𝑘

)𝑇
𝑌:e

end for
𝑈, diag(𝜎), 𝑉𝑇 ← SVD(𝑍)
𝑜 ← 𝑜𝑈

for 𝑘 = 1, . . . , 𝐾 do
𝑉𝑘 ← 𝑉𝑘𝑈

end for
𝑍 ← 𝑉𝑇 diag(𝜎)
return 𝑍 , 𝑜, {𝑉𝑘 }, Γ

end function

Listing 1 | Simplified multi-condition PCA implementation in R.
g r a s s m a n n l o g <− f u n c t i o n ( p , q ){

n <− nrow ( p )
k <− n c o l ( p )
z <− t ( q ) %∗% p
At <− t ( q ) − z %∗% t ( p )
Bt <− lm . f i t ( z , At ) $ c o e f f i c i e n t s
svd <− svd ( t ( Bt ) , k , k )
svd $u %∗% d i a g ( a t a n ( svd $d ) , nrow = k ) %∗% t ( svd $v )

}

grassmann map <− f u n c t i o n ( x , b a s e p o i n t ){
svd <− svd ( x )
b a s e p o i n t %∗% svd $v %∗% d i a g ( cos ( svd $d ) , nrow = l e n g t h ( svd $d ) ) %∗% t ( svd $v ) +

svd $u %∗% d i a g ( s i n ( svd $d ) , nrow = l e n g t h ( svd $d ) ) %∗% t ( svd $v )
}

# ’ @param Y i s a m a t r i x wi th f e a t u r e s i n t h e rows and o b s e r v a t i o n s i n t h e columns
# ’ @param d e s i g n m a t r i x a m a t r i x wi th one row p e r o b s e r v a t i o n c od ing t h e c o v a r i a t e s
# ’
# ’ @return a l i s t w i th t h e embedding , t h e b a s e p o i n t , t h e c o e f f i c i e n t s f o r t h e
# ’ Grassmann e x p o n e n t i a l map , and t h e c o e f f i c i e n t s f o r t h e l i n e a r r e g r e s s i o n .
m u l t i c o n d i t i o n p c a <− f u n c t i o n (Y, d e s i g n m a t r i x , n embedding = 15){

# C e n t e r o b s e r v a t i o n s wi th l i n e a r r e g r e s s i o n g
f i t <− lm . f i t ( d e s i g n m a t r i x , t ( a s . m a t r i x (Y ) ) )

Y <− t ( r e s i d u a l s ( f i t ) )
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# Find base p o i n t w i th PCA ove r a l l d a t a p o i n t s
b a s e p o i n t <− i r l b a : : p r c o m p i r l b a ( t (Y) , n = n embedding , c e n t e r = FALSE) $ r o t a t i o n

# Find t h e s u b s p a c e o f each c o n d i t i o n
r e d d e s i g n <− un iq ue ( d e s i g n m a t r i x )
c o n d i d s <− v c t r s : : v e c g r o u p i d ( d e s i g n m a t r i x )
c o n d w e i g h t s <− c ( t a b l e ( c o n d i d s ) )
c o n d s u b s p a c e s <− l a p p l y ( s e q l e n ( nrow ( r e d d e s i g n ) ) , \ ( cond ){

i r l b a : : p r c o m p i r l b a ( t (Y[ , c o n d i d s == cond , drop =FALSE ] ) ,
n = n embedding , c e n t e r = FALSE) $ r o t a t i o n

} )

# Find c o e f f i c i e n t s o f Grassmann e x p o n e n t i a l map
l o g p o i n t s <− do . c a l l ( cb ind , l a p p l y ( c o n d s u b s p a c e s , \ ( s u b s p a c e ){

as . v e c t o r ( g r a s s m a n n l o g ( b a s e p o i n t , s u b s p a c e ) )
} ) )
c o e f f i c i e n t s <− t ( lm . w f i t ( r e d d e s i g n , t ( l o g p o i n t s ) , w = c o n d w e i g h t s ) $ c o e f f i c i e n t s )
c o e f f i c i e n t s <− a r r a y ( c o e f f i c i e n t s , dim = c ( nrow (Y) , n embedding , n c o l ( d e s i g n m a t r i x ) ) )

# P r o j e c t t h e p o i n t s on t h e embedding
embedding <− m a t r i x (NA, nrow = n embedding , n c o l = n c o l (Y) )
f o r ( cond i n s e q l e n ( nrow ( r e d d e s i g n ) ) ) {

t a n g v e c <− m a t r i x ( 0 , nrow = nrow (Y) , n c o l = n embedding )
f o r ( k i n s e q l e n ( n c o l ( r e d d e s i g n ) ) ) {

t a n g v e c <− t a n g v e c + r e d d e s i g n [ cond , k ] ∗ c o e f f i c i e n t s [ , , k ]
}
embedding [ , c o n d i d s == cond ] <− t ( grassmann map ( t a n g v e c , b a s e p o i n t ) ) %∗%

Y[ , c o n d i d s == cond ]
}

# Order axes by v a r i a n c e
svd emb <− svd ( embedding )
b a s e p o i n t <− b a s e p o i n t %∗% svd emb $u
f o r ( k i n s e q l e n ( n c o l ( d e s i g n m a t r i x ) ) ) {

c o e f f i c i e n t s [ , , k ] <− c o e f f i c i e n t s [ , , k ] %∗% svd emb $u
}
embedding <− t ( svd emb $v ) ∗ svd emb $d

# R e t u r n v a l u e s
l i s t ( embedding = embedding , b a s e p o i n t = b a s e p o i n t ,

c o e f f i c i e n t s = c o e f f i c i e n t s , l i n e a r c o e f f i c i e n t s = t ( f i t $ c o e f f i c i e n t s ) )
}

4.2.4 Alignment

Multi-condition PCA (model (83)) removes condition differences that are captured by the latent
space they occupy. However, multi-condition PCA cannot account for changes in the relative
position of the cell populations. I will thus add an additional function to account for those changes

𝑌:𝑐 ≈ 𝑅(𝑋𝑐:)𝑆(𝑋𝑐:)𝑍′:𝑐 (87)

where 𝑆 is a function that takes a row from the design matrix as input and returns a square matrix
(𝑆 : ℝ𝐾 → ℝ𝑃×𝑃). To ensure that the alignment term 𝑆 does not affect the overall approximation,
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Figure 38 | Extension of the multi-condition PCA model with an additional alignment term.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2023b).

I define
𝑅(𝑋𝑐:)𝑍 = 𝑅(𝑋𝑐:)𝑆(𝑋𝑐:) 𝑆(𝑋𝑐:)−1𝑍:𝑐︸        ︷︷        ︸

=𝑍 ′:𝑐

. (88)

I refer to this model as latent embedding multivariate regression (LEMUR).
There are several choices for parameterizing 𝑆. Below I list five options in order of increasing

flexibility:

1. 𝑆(𝑥) = 𝐼: No alignment is performed and the LEMUR model reverts to the multi-condition
PCA model described in eq. (83).

2. 𝑆(𝑥) = diag (∑𝑘 𝑥𝑘v𝑘 ): This enables the model to shrink each dimension independently.

3. 𝑆(𝑥) = Exp(Rot) (∑𝑘 𝑥𝑘𝑉𝑘 ): Using the exponential map of the rotation manifold (also
known as special orthogonal group (𝑆𝑂 (𝑛))) keeps the transformation rigid, but allows
more precise alignment of matching cell populations.

4. 𝑆(𝑥) = Exp(SPD) (∑𝑘 𝑥𝑘𝑉𝑘 ): Using the exponential map of the symmetric positive definite
manifold (SPD) allows the transformation to shrink and extend the data along an orthogonal
coordinate system (which, unlike option (2), does not have to be axis parallel).

5. 𝑆(𝑥) = Exp(Rot)
(∑

𝑘 𝑥𝑘𝑉
(1)
𝑘

)
Exp(SPD)

(∑
𝑘 𝑥𝑘𝑉

(2)
𝑘

)
: Allowing both rotations and symmet-

ric positive definite transformations enables all affine transformations except for reflections.
This parametrization is inspired by the polar decomposition that converts any square matrix
into a special orthogonal (with determinant ±1) and a symmetric positive semi-definite
matrix.

6. 𝑆(𝑥) = ∑
𝑘 𝑥𝑘𝑉

(1)
𝑘

allows for any affine transformation and is thus the most generic linear
transformation.

As I define 𝑆(𝑥) and 𝑍′ such that the overall approximation of the observations does not
change, optimizing the parameters 𝑅 and 𝑆 is separable. After optimizing the parameters of 𝑅 by
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matching the latent spaces of the conditions, I optimize the parameters of 𝑆 so that corresponding
cell populations across conditions have similar values 𝑍′.

I assume the user defines which cell populations correspond or uses an automated method
to identify corresponding populations (for example, mutual nearest neighbors or harmony’s
maximum diversity clustering (Korsunsky et al., 2019; Haghverdi et al., 2018)). I expect that this
preference is encoded in a list of sets, each containing the indices of cells that are considered
similar. I denote the 𝑒-th set (𝑒 = 1, . . . , 𝐸) as 𝔼𝑒. If the user specifies one or more sets of
matching cells, 𝑆 is obtained as the solution to

arg min
𝑆∈S(𝑥)

𝐸∑︁
𝑒=1

∑︁
𝑐1,𝑐2∈𝔼𝑒

(𝑆(𝑋𝑐1:)−1𝑍:𝑐1 − 𝑆(𝑋𝑐2:)−1𝑍:𝑐2)2, (89)

to minimize the pairwise distances between the cells of each similarity set. I can simplify the
expression and, instead of optimizing all pairwise distances, minimize the distance to the center
of each similarity set

arg min
𝑆∈S(𝑥)

𝐸∑︁
𝑒=1

∑︁
𝑐∈𝔼𝑒

(𝑀𝑒 − 𝑆(𝑋𝑐:)−1𝑍:𝑐)2, (90)

and
𝑀𝑒 =

1
#𝔼𝑒

∑︁
𝑐∈𝔼𝑒

𝑆(𝑋𝑐:)𝑍:𝑐 (91)

is the mean of the cells in that similarity set. The structure of eq. (90) is amenable to an iterative
solution where I optimize 𝑀𝑒 and the parameters of 𝑆 in turns. I start with

𝑀𝑒 =
1

#𝔼𝑒

∑︁
𝑐∈𝔼𝑒

𝑍:𝑐 (92)

because I can calculate it directly.

4.2.5 Procrustes Problems

Problem (90) is a further generalization of the (generalized) Procrustes problem (Gower, 1975).
Procrustes problem tries to find the solution to

arg min
𝑆

∑︁
(𝑌 − 𝑆𝑍)2 (93)

and depending on the domain of 𝑆 the problem is called orthogonal, semi-definite, or affine
Procrustes problem (Schönemann, 1966; Gillis and Sharma, 2018).
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Algorithm 2 Simon Segert’s algorithm to find the minimal rotation for a rank-deficient orthogonal
Procrustes problem with some modifications by me.
Require: 𝑌 ∈ ℝ𝑃×𝐶 ⊲ The fixed point cloud
Require: 𝑍 ∈ ℝ𝑃×𝐶 ⊲ The transformed point cloud

function orthogonal Procrustes(𝑌 , 𝑍)
if P = 1 then

return 1
else if P = 2 then

𝑎 ← ∑
𝑍 ⊙ 𝑌

𝑏 ← ∑(𝑌1: ⊙ 𝑍2: − 𝑌2: ⊙ 𝑍1:)
\ ← tan−1(𝑎, 𝑏) − 𝜋/2

return ©«
cos(\) − sin(\)

sin(\) cos(\)
ª®¬

else
𝑄 ← 𝑍𝑌𝑇

𝑈,𝜎,𝑉 ← SVD(Q)
if rank(𝑄) < 𝑃 then[

𝑉 (1) 𝑉 (2)
]
←

[
𝑉:,𝜎>𝜖 𝑉:,𝜎≤𝜖

][
𝑈 (1) 𝑈 (2)

]
←

[
𝑈:,𝜎>𝜖 𝑈:,𝜎≤𝜖

]
𝑆(sub) ← orthogonal Procrustes(𝑉 (2) ,𝑈 (2))
return 𝑉

[
𝑈 (1) 𝑆(sub)𝑈 (2)

]𝑇
else

return 𝑉𝑈𝑇
end if

end if
end function

Orthogonal Procrustes problem The solution to the orthogonal Procrustes problem (eq. (93)
with 𝑆 ∈ 𝑆𝑂 (𝑛)) can be solved using a singular value decomposition of 𝑍𝑌𝑇 = 𝑈 diag(𝜎)𝑉𝑇

arg min
𝑆∈𝑂 (𝑛)

∑︁
(𝑌 − 𝑆𝑍)2 = 𝑉𝑈𝑇 . (94)

To ensure that 𝑆 is a rotation (𝑆 ∈ 𝑆𝑂 (𝑛)), I need to check if det(𝑉𝑈𝑇 ) equals 1 or −1. Thus, I
calculate 𝑆 as

arg min
𝑆∈𝑆𝑂 (𝑛)

∑︁
(𝑌 − 𝑆𝑍)2 = 𝑉 diag( [1, . . . , 1, det(𝑉𝑈𝑇 )])𝑈𝑇 . (95)

One challenge with the orthogonal optimization occurs if 𝑍𝑌𝑇 is not full rank which means
that the output of eq. (95) is not unique. The problem is that 𝑆 might contain additional rotation.
Because I was stuck with this problem, I posted the problem on the Cross Validated forum and
Segert (2022) suggested a solution using a recursive algorithm (see algorithm 2).
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Semi-definite Procrustes problem A solution to the symmetric positive semi-definite Pro-
crustes problem (eq. (93) with 𝑆 ∈ SPD(𝑛), i.e., {𝑆 ∈ ℝ𝑛×𝑛 : 𝑆𝑇 = 𝑆 ∧ 𝑣𝑆𝑣𝑇 ≤ 0 for all 𝑝 ∈
ℝ𝑛\{0}}) was developed by (Gillis and Sharma, 2018). For initialization, I use the analytical
method from Jingjing et al. (2019) or the initializations suggested by Gillis and Sharma (2018).

Affine Procrustes problem The solution of the affine Procruste problem (eq. (93) with
𝑆 ∈ ℝ𝑃×𝑃) is the well-known least squares solution

arg min
𝑆∈ℝ𝑃×𝑃

∑︁
(𝑌 − 𝑆𝑍)2 = 𝑌𝑍†, (96)

where 𝑍† is the Moore-Penrose generalized inverse.

Generalized Procrustes analysis Generalized Procrustes analysis is concerned with matching
𝑁 > 2 point clouds (Gower, 1975, 2010)

arg min
{𝑆𝑖}

𝑁∑︁
𝑖

𝑁∑︁
𝑗

(𝑆𝑖𝑍𝑖 − 𝑆 𝑗𝑍 𝑗 )2. (97)

This problem becomes substantially simpler, if we define a group average

𝑀 =
1
𝑁

𝑁∑︁
𝑖=1
(𝑆𝑖𝑍𝑖) (98)

because plugging 𝑀 into eq. (97) becomes

arg min
{𝑆𝑖}

𝑁∑︁
𝑖

(𝑀 − 𝑆 𝑗𝑍 𝑗 )2. (99)

which can be solved for each 𝑆𝑖 using the solution to the pair-wise Procrustes problem discussed
above. Instead of an iterative algorithm, Bai and Bartoli (2022) suggested a closed-form solution
based on the analysis of the eigenvalues of each 𝑍𝑖.

4.2.6 Procrustes regression

Equation (89) is a generalization of the generalized Procrustes analysis, where instead of
optimizing the elements of a manifold directly, I optimize the coefficients which come from a
tangent space of some manifold

arg min
𝑆∈S(𝑥)

𝑁∑︁
𝑖

𝑁∑︁
𝑗

(𝑆𝑖 (𝑋𝑖:)𝑍𝑖 − 𝑆𝑖 (𝑋 𝑗 :)𝑍 𝑗 )2 (100)
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where 𝑋 ∈ ℝ𝑁×𝐾 is a design matrix and the function 𝑆 is

𝑆(𝑥) = Exp𝑜

(
𝐾∑︁
𝑘=1

𝑥𝑘𝑉𝑘

)
(101)

and 𝑜 ∈ M is the base point and the coefficients are from the tangent space of some manifold
(𝑉𝑘 ∈ T𝑜M).

For a fixed mean 𝑀

arg min
𝑆∈S(𝑥)

𝑁∑︁
𝑖

(𝑀 − 𝑆𝑖 (𝑋 𝑗 :)𝑍 𝑗 )2 (102)

we can use the log-space trick by Kim et al. (2014) (eq. (77)) to solve eq. (102) approximatly.

Procrustes regression for affine transformations If 𝑆(𝑥) = ∑
𝑘 𝑥𝑘𝑉𝑘 for 𝑉𝑘 ∈ ℝ𝑃×𝑃, the

Procrustes regression can be solved analytically. The trick is to rewrite the matrix product of
summed coefficients with 𝑍 as a Hadamard (in-place) product


(∑𝑘 𝑋1𝑘𝑉𝑘 ) 𝑍:1 · · · (

∑
𝑘 𝑋𝐶𝑘𝑉𝑘 ) 𝑍:𝐶


=

[
𝑉::1 · · · 𝑉::𝐾

]
((𝑋 ⊗ 1𝐺)𝑇 ⊙ (1𝐾 ⊗ 𝑍)), (103)

Where ⊗ is the Kronecker product, ⊙ is the Hadamard product and 1𝐺 is a vector of ones with
length 𝐺. Accordingly, eq. (90) with 𝑆−1(𝑥) = ∑𝐾

𝑘=1 𝑥𝑘𝑉::𝑘 simplifies to

arg min
{𝑉𝑘}

𝐸∑︁
𝑒=1

∑︁
𝑐∈𝔼𝑒

(𝑀𝑒 − 𝑆(𝑋𝑐:)−1𝑍:𝑐)2

⇔ arg min
{𝑉𝑘}

©«
[
𝑀1 · · · 𝑀𝐸

]
︸              ︷︷              ︸

=𝑀 ′

−
[
𝑉::1 · · · 𝑉::𝐾

]
((𝑋𝔼: ⊗ 1𝐺)𝑇 ⊙ (1𝐾 ⊗ 𝑍:𝔼))︸                               ︷︷                               ︸

=𝑋 ′

ª®®®®®¬

2
(104)

and thus
[
𝑉::1 · · · 𝑉::𝐾

]
= 𝑀′𝑋′†.

Procrustes regression for rotation and stretchings Solving eq. (90) with 𝑆(𝑥) = Exp(M) (∑𝑘 𝑥𝑘𝑉𝑘 )
forM = SO(𝑛) orM = SPD(𝑛) follows the same principles as solving the Grassmann manifold
regression problem (eq. (83)). For each condition, I solve the orthogonal or semi-definite
Procrustes problem. Then, I project the resulting points from the manifold into the log space of a
base point and find the regression coefficients using weighted linear regression in the tangent
space.
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I set the base point to the identity matrix 𝐼, because then taking the inverse corresponds to
flipping the sign of the coefficients

Exp(SO(𝑛))
𝐼

(𝑉)−1 = Exp(SO(𝑛))
𝐼

(−𝑉)
Exp(SPD(𝑛))

𝐼
(𝑉)−1 = Exp(SPD(𝑛))

𝐼
(−𝑉).

(105)

Summary Figure 39 summarizes the functionality of LEMUR: it is a matrix decomposition
algorithm that considers known covariates (Fig. 39A). The data are approximated by a latent
space for each condition (Fig. 39B) which are connected through some parametric rotation of a
base space (Fig. 39C). To ensure that corresponding cell populations appear at the same position
in the latent embedding, the matrix 𝑆 aligns their position (Fig. 39D).

4.3 Cluster-free differential expression

LEMUR infers a parametric model of multi-condition single-cell data. I use this model to
predict the expression of unobserved cell states and calculate the expected change between two
conditions to learn which cells and genes show differential expression. The function to predict
the expression of a cell at position 𝑧 and with the covariates 𝑥 is

𝑓 (𝑥, 𝑧) = 𝑅(𝑥)𝑆(𝑥)𝑧 + 𝛾(𝑥) (106)

where 𝑅 and 𝑆 use the coefficients inferred in the previous steps.
The differential expression for a cell at position 𝑍𝑐: between condition 𝑥 (𝐴) and condition

𝑥 (𝐵) is
Δ:𝑐 = 𝑓 (𝑥 (𝐴) , 𝑍𝑐:) − 𝑓 (𝑥 (𝐴) , 𝑍𝑐:). (107)

4.3.1 Differential expression neighborhoods

I calculate the differential expression for all cells and genes Δ ∈ ℝ𝐺×𝐶 . For some genes, all cells
will have a large Δ𝑔, whereas for others, none of the cells will have a large Δ𝑔. These cases are
not of primary interest because they can also be found with bulk RNA-seq. The promise of
single-cell is the ability to find changes restricted to a subpopulation of cells. The challenge is to
find the optimal resolution to find the cell neighborhoods with a distinct differential expression
pattern.

I use the matrix of expected differential expression values Δ to guide the inference of
differential expression neighborhoods. I identify a direction in the low-dimensional embedding
space that best captures the trend along which the differential expression values Δ𝑔 vary. I
currently support three approaches for choosing the direction per gene:

1. I generate a set of random directions in the embedding space by sampling pairs of cells
and calculating the difference: 𝑣 = 𝑍:2 − 𝑍:1. Then, for each gene, I choose the vector with
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Figure 39 | Overview of the LEMUR method. (A) Schematic of the matrix decomposition.
(B) Schematic of LEMUR’s data approximation. Data points from two conditions (green and
purple) are approximated by a condition-specific latent space (black). The points are projected
onto the respective latent space. (C) The latent spaces are produced by the function 𝑅(𝑥). The
coefficients of the function (here called 𝛽) determine the location of the latent space relative to
the base point 𝑜. (D) The function 𝑆 aligns corresponding cell populations. (E) The LEMUR
model can make counterfactual predictions for the gene expression of a cell if had been in one or
another condition. The difference is the differential expression value. I provide a method to find
neighborhoods in the latent space with consistent differential expression.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2023b).

the highest correlation of 𝑍 projected on 𝑣 with the differential expression values Δ𝑔.

2. A slightly simpler approach is to use axis parallel vectors 𝑣 = 𝑒𝑝 and then choose the axis
with the highest correlation.

3. Alternatively, the difference between the subspaces for the respective conditions 𝑣 =
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(𝑅(𝑥 (𝐴)) − 𝑅(𝑥 (𝐵)))𝑔 points for each gene in the direction along which the differential
expression changes most.

I define the differential expression neighborhood as the set of cells on one side of a cut-off
point 𝑝 along the respective vector 𝑣 for a gene. I have implemented two methods to find the
cut-off point 𝑝.

The first option is to sort the cells by their position along the vector 𝑣. I start with the cell at
one end of the projection, calculate the z-score, then go to the next cell and calculate the z-score
for both cells, and so on until I reach the cell at the other end of the projection. Ultimately, I
have two vectors with z-scores for each cell because I calculate the running z-score from both
extremes. The cut-off point 𝑝 is the cell in combination with the preceding cells had the largest
absolute z-score. This approach is illustrated in Figure 39E.

The advantage of the z-score approach is that it is fast to calculate because the z-score can be
calculated with an online algorithm. The z-score is the mean divided by the standard deviation.
The online algorithm for the mean is called cumulative average. Let `(𝑡) be the mean of the first 𝑡
cells and 𝑦 (𝑡+1) the next value to add. Then, the next mean is

`(𝑡+1) = `(𝑡) + 𝑦
(𝑡+1) − `(𝑡)
𝑡 + 1

. (108)

Similarly, the next standard deviation 𝜎 (𝑡+1) can be calculated using a variation of Welford’s
algorithm (Welford, 1962) and is

𝜎 (𝑡+1) =

√︄
(𝜎 (𝑡))2𝑡2 + (𝑦 (𝑡+1) − `(𝑡)) (𝑦 (𝑡+1) − `(𝑡+1))

𝑡 (𝑡 + 1) . (109)

The disadvantage of the z-score-based cut-off point selection is that it ignores the pseudo-
replication structure of the data by treating each cell as an independent replicate. Accordingly,
the z-score does not reflect the uncertainty accurately.

To get an accurate reflection of the uncertainty, I implemented an online algorithm for
penalized linear regression with pseudo-bulking. The algorithm takes as input a vector of
observations 𝑦, the design matrix 𝑋 , a contrast vector 𝑣, and an indicator vector 𝑏 that assigns
each observation to a pseudo-bulk (details in Algorithm 3). The algorithm keeps a running
mean for each pseudobulk group and calculates the updates of regression coefficients using the
Woodbury matrix identity with the recursive least square algorithm (Woodbury, 1950). I could
not find an online algorithm for calculating the squared sum of the residuals and, thus, recalculate
this value after each update of 𝛽.
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Algorithm 3 Online algorithm for linear regression with pseudo-bulking
Require: 𝑦 ∈ ℝ𝐶 ⊲ The observations
Require: 𝑋 ∈ ℝ𝐶×𝐾 ⊲ The design matrix
Require: 𝑣 ∈ ℝ𝐾 ⊲ The contrast vector
Require: 𝑏 ∈ {1, 2, . . . , 𝐵}𝐶 ⊲ The pseudo-bulk indicators
Require: _ ∈ ℝ+𝐾 ⊲ The ridge penalty vector

function online pseudo-bulk linear regression(𝑦, 𝑋 , 𝑣, 𝑏, _)
𝑚 ← 0𝐵 ⊲ the pseudo-bulk means
𝑛← 0𝐵 ⊲ the number of observations per pseudo-bulk
𝑋 (act) = 0𝐵×𝐾 ⊲ The design matrix with the active rows
𝑛(obs) ← 0 ⊲ The number of pseudo-bulk observations
Γ← diag(1/_) ⊲ The inverse of the covariance matrix
𝛽← 0𝐾 ⊲ The coefficients of the linear regression
𝑡 ← 0𝐶 ⊲ The vector with the t-statistic calculated online
for 𝑐 ∈ 1, . . . , 𝐶 do

𝛿← 𝑦𝑏𝑐
𝑛𝑏𝑐+1

− (1−𝑣𝑏𝑐 )𝑚𝑏𝑐

𝑛𝑏𝑐+1
𝑚𝑏𝑐 ← 𝑚𝑏𝑐 + 𝛿
𝑛𝑏𝑐 ← 𝑛𝑏𝑐 + 1
if 𝑛𝑏𝑐 = 1 then

𝑋
(act)
𝑏𝑐: ← 𝑋𝑐:

𝑛(obs) ← 𝑛(obs) + 1
Γ← Γ − Γ𝑋

(act)
𝑏𝑐 : (𝑋

(act)
𝑏𝑐 : )

𝑇Γ

1+𝑋 (act)
𝑏𝑐 : Γ(𝑋

(act)
𝑏𝑐 : )𝑇

𝛽← 𝛽 + Γ𝑋 (act)
𝑏𝑐: (𝑚𝑏𝑐 − (𝑋

(act)
𝑏𝑐: )

𝑇 𝛽)
else

𝛽← 𝛽 + Γ(𝛿𝑋 (act)
𝑏𝑐: )

end if
RSS← ||𝑚 − 𝑋 (act)𝛽 | |22 ⊲ After each update of 𝛽, I need to recalculate the

residuals for each pseudo-bulk group
𝜎2 ← 𝑣

(
RSS

𝑛(obs)−𝐾Γ
)
𝑣𝑇

𝑡𝑐 ← 𝑣𝑇 𝛽

𝜎

end for
return 𝑡

end function
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4.4 Analysis of ten glioblastoma samples

I will illustrate the functionality of LEMUR using a dataset by Zhao et al. (2021). They measured
the gene expression of 2892 to 21 596 single cells for five deceased glioblastoma patients. They
extracted tissue slices and for each patient measured gene expression in two conditions: with
a panobinostat, a non-selective histone deacetylase (HDAC) inhibitor, and with DMSO, as a
control condition (Fig. 40A and Table 4). I call each treatment and patient combination a separate
sample; accordingly, the dataset consists of ten samples.

Table 4 | Overview of the glioblastoma dataset and the samples. This table is adapted from
Ahlmann-Eltze and Huber (2023b)

Patient ID Conditon Age Gender Tumor location # Cells

PW030 0.2 uM panobinostat 65 M right parietal 7118

PW030 vehicle (DMSO) 65 M right parietal 14478

PW032 0.2 uM panobinostat 61 M left frontal 1401

PW032 vehicle (DMSO) 61 M left frontal 1491

PW034 0.2 uM panobinostat 68 F left parieto-occipital 2679

PW034 vehicle (DMSO) 68 F left parieto-occipital 7782

PW036 0.2 uM panobinostat 56 M right temporal 3096

PW036 vehicle (DMSO) 56 M right temporal 6749

PW040 0.2 uM panobinostat 69 M right temporal 1987

PW040 vehicle (DMSO) 69 M right temporal 1119

Plotting all cells using a two-dimensional uniform manifold approximation and projection
(UMAP) embedding on the log-transformed and size factor adjusted data shows that the cells
separate mostly by treatment condition and patient (Fig. 40B). There is additional variation due
to cell type heterogeneity, but it is obscured by the variation caused by the known covariates.

With LEMUR, I can absorb the variation from the known covariates. LEMUR models the
known covariates with 𝑅 and 𝑆; the remaining variation is the cell type heterogeneity modeled
with 𝑍 . Figure 40B shows a UMAP of the cell embedding 𝑍 after fitting LEMUR adjusting
for patient and treatment with a 𝑃 = 15-dimensional latent space. As expected, the cell type
heterogeneity shared across patients becomes clearer (Fig. 40C). The picture becomes even
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Figure 40 | Analysis of ten glioblastoma samples with LEMUR. (A) Schematic of the
experimental design. (B-D) UMAP plots colored by sample (patient and condition) as shown
in (A). Panel (B) shows a UMAP of 𝑌 , (C) 𝑍 with 𝑆(𝑥) = 𝐼, and (D) 𝑍′ after adjusting the
position with Harmony’s maximum diversity clustering algorithm. (E) Volcano plot of the
significance and log-fold change for each differential expression neighborhood with six selected
genes highlighted in red. (F) Scatter plot of the number of cells for the same set of neighborhoods.
(H) Differential expression pattern for the six selected genes plotted on the 2D UMAP embedding.
The black boundary surrounds 90% of the cells in the differential expression neighborhood. (I)
Volcano plot for the pseudo-bulked comparison of the differential expression neighborhoods of
ARPC1B and HIST3H2A. The genes above the horizontal line have an FDR of less than 10%. (J)
Same as (I), but for TCEAL2 and TRIM47. The brain ion is by https://smart.servier.com,
licensed under CC-BY 3.0 Unported, and was adapted by me for this figure.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2023b).
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clearer after aligning with 𝑆 corresponding cell populations identified through the maximum
diversity clustering of Harmony (Fig. 40D). Here, two non-tumor subpopulations and a large
tumor subpopulation were visible (Fig. 40G). The classification was based on Zhao et al. (2021),
who used a chromosome 7 amplification and chromosome 10 deletion.

I predicted the expression changes between the treated and control condition for each gene
and cell. Furthermore, I identified the neighborhood that showed the most differential expression
for each gene. In Figure 40E, I plotted the significance of the change for that neighborhood as
a volcano plot and, in Figure 40F, the size of the neighborhood. It is known that panobinostat
causes broad transcriptional changes (Atadja, 2009) and accordingly, I found that more than 20%
of the gene-neighborhood pairs showed differential expression.

For each gene, I predicted the gene expression change for each cell. Figure 40H shows the
predicted differences for six selected genes on the 2D UMAP. For example, the upregulation of
NXF1 in the panobinostat treatment appears to be limited to one cluster of microenvironment
cells that expressed oligodendrocyte marker genes (Fig. 41). Figure 42 confirms that the inferred
differences are reasonable based on the raw expression values per condition.

HIST3H2A and ARPC1B show the most differential expression in the non-tumor population
expressing macrophage markers. In Figure 40I, I compared within the control condition if the
cells that are in both differential neighborhoods express different genes than the cells that are
exclusively in HIST3H2A’s differential expression neighborhood. MT3 is more expressed in
the cells exclusively in the HIST3H2A differential expression neighborhood. The cells in the
HIST3H2A differential expression neighborhood expressed genes linked to tumor-associated
macrophages (CTSB, CTSD, CTLS) at lower levels than the shared neighborhood. The cells in
the HIST3H2A differential expression neighborhood showed higher expression of MT3, which
has been associated with brain tissue macrophages (Yoshiyama et al., 1998), and BNIP3L, which
is related to apoptosis (Imazu et al., 1999).

The differential expression neighborhoods of TCEAL and TRIM47 were limited to the tumor
cells and the TCEAL2 neighborhood was largely a subset of the TRIM47 neighborhood. Again,
comparing the genes that are typical for the cells shared between TCEAL2 and TRIM47 with
the genes up-regulated for cells exclusively in the TRIM47 differential expression neighborhood
showed a clear pattern: cells exclusively in the TRIM47 differential expression neighborhood
showed increased expression of heat shock proteins which suggests cellular stress (Benjamin and
McMillan, 1998). In contrast, the cells in both neighborhoods show increased expression of many
ribosomal genes, suggesting transcriptional activity, and chemokines linked to immunosuppressive
microenvironments (Wang et al., 2021). It is important to note that even though the individual
genes were not significant individually (based on a FDR < 10%), a gene set enrichment analysis
found up-regulation of translation and down-regulation of response to unfolded proteins as
significant.
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Figure 41 | Oligodendrocyte and macrophage marker expression of the glioblastoma
cell populations. Normalized marker gene expression plotted on the UMAP of 𝑍′ for (A)
oligodendrocyte markers and (B) for macrophages. The selected genes were manually curated
based on the CZ CELLxGENE cell type annotation (Chan-Zuckerberg Initiative, 2023).
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2023b).

4.5 Discussion

In this chapter, I introduced my new model for analyzing multi-condition single-cell data called
latent embedding multivariate regression, short LEMUR. The core innovation of LEMUR is
the regression on the subspaces to relate the experimental conditions with a parametric model.
Furthermore, I showed that it is possible to fine-tune the position of corresponding cell populations
in the latent space with a global linear transformation. I demonstrated LEMUR’s utility on a
glioblastoma dataset that compared the expression of samples treated with panobinostat with
control samples. LEMUR’s alignment can adjust for the known treatment and patient covariates
and expose the latent cell type heterogeneity.

The motivation for LEMUR is to provide a flexible tool for analyzing differential expression
in multi-condition single-cell data. I demonstrated that LEMUR can infer differential expression
for each gene and cell and aggregate the information to find differential expression neighborhoods
of cells that show consistent differential expression. I showed that the differences between the
differential expression neighborhoods are biologically meaningful and can help to characterize
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Figure 42 | Expression values for six selected genes for which Figure 40H shows the predicted
differential expression values.
The data for this figure was generated by me and adapted from Ahlmann-Eltze and Huber (2023b).

the response pattern to the experimental treatment in depth.

Some aspects of the LEMUR implementation can still be improved in future versions: (1) the
inference of the multi-condition PCA coefficients is only approximative. It is possible to refine
the initial fit using gradient descent. However, this requires computing the gradient through
the Grassmann manifold exponential map which is not straightforward. (2) The alignment step
currently calculates the mean of the landmarks. This can lead to pathological alignment results
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if taking the mean drastically changes the volume of the space spanned by the landmarks. Bai
and Bartoli (2022) suggested an alternative perspective based on calculating the eigenvalues and
vectors for each landmark set which can be solved in closed form for the generalized Procrustes
problem. However, it is not immediately obvious how to generalize this approach to the Procrustes
regression framework. (3) There is currently no empirical guidance on how to best infer the
differential expression neighborhoods. The results can be sensitive to small changes in the
number of latent dimensions. Here, more work is needed to systematically compare the different
options and develop heuristics under which circumstances each approach performs best.

Overall, I believe that LEMUR is already a valuable tool for the analysis of multi-condition
single-cell data. It delays the need to cluster the cells and thus avoids problems like choosing
the optimal clustering resolution. And despite the challenging task of optimizing a regression
on a manifold, my implementation is very efficient, in particular, compared with deep learning
methods. The simplicity of my model and its parametric nature make it easy to inspect and
enable follow-up on discoveries.
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In this thesis, I presented my contributions to the field of statistical method development in
single-cell transcriptomics. In my first project, I developed a tool to fit gamma-Poisson generalized
linear models on raw counts of single-cell datasets. In my second project, I compared different
approaches to transform single-cell count data to stabilize the variance. In my third project, I
developed a new statistical approach for the analysis of multi-condition single-cell data, which
combines ideas from matrix factorization and regression.

The first project was motivated by the great success of count-based analysis tools for analyzing
bulk RNA-seq data. The hope was that a more accurate noise model of single-cell data would
improve the performance of many single-cell analysis tasks, such as dimensionality reduction
and 𝑘 nearest neighbor inference.

The main innovation implemented in glmGamPoi was the optimized overdispersion estimation
procedure that made it more robust and faster than the algorithms in DESeq2 and edgeR. This
feature was one of the reasons that sctransform adopted glmGamPoi as their inference engine in
the second version.

Beyond that, the impact of glmGamPoi was limited. Count-based statistical models have been
most successful in bulk-RNA-seq for differential expression analysis. glmGamPoi can conduct
differential expression analysis on large single-cell datasets faster than edgeR and DESeq2, but
this use-case is explicitly discouraged. Treating each cell as an independent replicate violates
the indepence assumption of generalized linear models and leads to unrealistically small errors.
Instead, it is encouraged to form pseudobulks per sample, and glmGamPoi provides functions
and syntactic sugar to do so. However, after pseudobulking, glmGamPoi offers few additional
benefits for differential expression analysis over DESeq2 and edgeR.

Count-based dimensionality reduction was a third field, where I hoped that glmGamPoi or a
derived implementation could improve the state-of-the-art inference. I began my PhD soon after
the publication of GLM PCA, and it seemed an appealing statistical framework for dimensionality
reduction of count data (Townes, 2019). Yet, after experimenting with GLM PCA and my
implementation of the model, I found that the inference was unreliable as steps diverged or got
stuck in local minima. In contrast, the inference algorithms for regular PCA benefit from the
connection with the eigenvalue problem and can directly find the global optimum.

These observations and the debate between Hafemeister and Satija (2019) and Lause et al.
(2021) motivated me to look more deeply into the best way to preprocess single-cell data. Initially,
I wrote, together with Wolfgang Huber, an explainer article that gave an overview of the three
approaches for transforming and variance-stabilizing single-cell count data (Ahlmann-Eltze and
Huber, 2022, version 1). In subsequent revisions, we included additional benchmarks to give an
empirical comparison of the performance of preprocessing methods (version 2-4 of the preprint
(Ahlmann-Eltze and Huber, 2022) and the published manuscript (Ahlmann-Eltze and Huber,
2023b)). The benchmark demonstrated that the count-based models GLM PCA and NewWave
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performed worse than a log transformation for dimensionality reduction.
The most surprising outcome of the benchmark was that none of the computationally more

sophisticated transformations consistently outperformed the simple logarithm transformation.
This result is important because, for most single-cell analyses, the question to log transform or
to use an alternative transformation stands at the very beginning. My work provides empirical
guidance in this question and hopefully spurns research into better approaches to preprocess
single-cell RNA-seq counts.

The third project developing a new statistical framework for the analysis of multi-condition
single-cell data, has run in parallel to the two other projects. It began in 2020 when Wolfgang
Huber asked me to help write a grant on the analysis of such data. Since then, the project has
gone through many iterations, but now we are at a point where we feel confident about the model
and have shifted our focus to gathering user feedback demonstrating its capabilities.

I originally proposed a tensor factorization framework that modeled the hierarchical structure
with a three-dimensional tensor. In later iterations, the model was refined and I implemented
it as an interaction model between the known covariates and the latent factors. This problem
was tractable, and I could find the parameters using an iterative inference scheme. However, the
parameters were difficult to interpret because the coefficients for the interaction between known
covariates and latent factors were correlated with the eigenvectors. The attempt to resolve the
issue by introducing an orthogonality constraint led me to dive into differential geometry, Stiefel
and Grassmann manifolds, and geodesic regression.

My current model, which frames the problem as regression on latent subspaces, is attractive
because it neatly generalizes and combines regular PCA and regression and avoids the fiddly
inference of latent interaction coefficients. I hope my tool will be useful as a generic first-line
analysis tool for differential expression analysis of multi-condition single-cell data.
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Luecken, M. D., Büttner, M., Chaichoompu, K., Danese, A., Interlandi, M., Müller, M. F., Strobl,
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