
Inaugural-Dissertation
zur

Erlangung der Doktorwürde

der

Gesamtfakultät für Mathematik, Ingenieur- und Naturwissenschaften

der

Ruprecht-Karls-Universität
Heidelberg

vorgelegt von

Sebastian Damrich, MASt, M.Sc.
aus Bad Soden am Taunus, Deutschland

Tag der mündlichen Prüfung:
20.10.2022

D I S C O V E R I N G S T R U C T U R E W I T H O U T L A B E L S

Advisors: Prof. Dr. Fred A. Hamprecht
Prof. Dr. Christoph Schnörr

A B S T R A C T

The scarcity of labels combined with an abundance of data makes unsupervised
learning more attractive than ever. Without annotations, inductive biases must guide
the identification of the most salient structure in the data. This thesis contributes to
two aspects of unsupervised learning: clustering and dimensionality reduction.

The thesis falls into two parts. In the first part, we introduce Mod Shift, a
clustering method for point data that uses a distance-based notion of attraction
and repulsion to determine the number of clusters and the assignment of points to
clusters. It iteratively moves points towards crisp clusters like Mean Shift but also
has close ties to the Multicut problem via its loss function. As a result, it connects
signed graph partitioning to clustering in Euclidean space.

The second part treats dimensionality reduction and, in particular, the prominent
neighbor embedding methods UMAP and t-SNE. We analyze the details of UMAP’s
implementation and find its actual loss function. It differs drastically from the one
usually stated. This discrepancy allows us to explain some typical artifacts in
UMAP plots, such as the dataset size-dependent tendency to produce overly crisp
substructures. Contrary to existing belief, we find that UMAP’s high-dimensional
similarities are not critical to its success.

Based on UMAP’s actual loss, we describe its precise connection to the other
state-of-the-art visualization method, t-SNE. The key insight is a new, exact relation
between the contrastive loss functions negative sampling, employed by UMAP,
and noise-contrastive estimation, which has been used to approximate t-SNE. As
a result, we explain that UMAP embeddings appear more compact than t-SNE
plots due to increased attraction between neighbors. Varying the attraction strength
further, we obtain a spectrum of neighbor embedding methods, encompassing both
UMAP- and t-SNE-like versions as special cases. Moving from more attraction to
more repulsion shifts the focus of the embedding from continuous, global to more
discrete and local structure of the data. Finally, we emphasize the link between
contrastive neighbor embeddings and self-supervised contrastive learning. We show
that different flavors of contrastive losses can work for both of them with few noise
samples.

v

Z U S A M M E N FA S S U N G

Die Menge an verfügbaren Daten steigt unaufhörlich, aber annotierte Daten bleiben
weiterhin selten. Das macht Methoden attraktiv, welche die Struktur von Daten
ohne Trainingsbeispiele lernen können. Diese Arbeit leistet Beiträge zu zwei solchen
Bereichen: Clusteranalyse und Dimensionsreduktion.

Die Arbeit besteht aus zwei Teilen. Im ersten Teil führen wir die Methode
Mod Shift ein. Sie gruppiert Punkte im euklidischen Raum basierend auf deren
Distanz. Nahe Punkte ziehen sich an und entfernte Punkte stoßen sich ab, bis sich
klare Gruppen bilden. Die Balance beider Kräfte bestimmt die Anzahl der gefunde-
nen Cluster. Wie Mean Shift bewegt auch Mod Shift die Punkte schrittweise hin zu
kompakten Gruppen. Seine Zielfunktion ist jedoch vom Multicut Problem inspiriert,
sodass wir eine Verbindung zwischen Graphpartitionierung und Punktgruppierung
herstellen.

Der zweite Teil behandelt Dimensionsreduktion mit den populären Nachbarein-
bettungsmethoden UMAP und t-SNE. Wir zeigen auf, dass sich die Zielfunktion, die
von UMAPs Implementierung tatsächlich optimiert wird, deutlich von der bisher
akzeptierten unterscheidet. Diese Diskrepanz erklärt einige Artefakte in UMAP-
Einbettungen, wie die Tendenz besonders für große Datensätze Einbettungen mit
linienartigen Bereichen zu produzieren. Im Gegesatz zum bisherigen Verständnis
von UMAP ist dessen Ähnlichkeitsmaß zwischen Punkten im hochdimensionalen
Raum nicht maßgebend für die Einbettungsqualität.

Basierend auf UMAPs tatsächlicher Zielfunktion beschreiben wir die genaue
Verbindung zur Visualisierungsmethode t-SNE. Der Kernpunkt ist unser neues
Verständnis wie sich die beiden kontrastiven Lernmethoden negative sampling, ver-
wendet von UMAP, und noise-contrastive estimation, mit der t-SNE approximiert
werden kann, zu einander verhalten. Auf Basis dieser Verbindung finden wir her-
aus, dass UMAP mehr Anziehung auf benachbarte Datenpunkte ausübt als t-SNE
und deswegen kompaktere Einbettungen produziert. Andere Attraktionsniveaus
sind ebenso möglich und führen zu einem Kontinuum von Nachbareinbettungsme-
thoden, das UMAP- und t-SNE-artige Verfahren als Spezialfälle umfasst. Höhere
Anziehung stellt die kontinuierlichen und globalen Aspekte eines Datensatzen bes-
ser heraus, während stärkere Repulsion die lokale Struktur von diskreten Clustern
genauer darstellt. Abschließend weisen wir auf die Verbindung von kontrastiven
Nachbareinbettungsmethoden und kontrastivem selbstüberwachtem Lernen hin
und zeigen, dass beide mit den selben Zielfunktionen und nur wenigen Kontrast-
beispielen optimiert werden können.

vii

A C K N O W L E D G M E N T S

This thesis would not have come about without a number of people. Major thanks
are due to my supervisor, Fred Hamprecht. He introduced me to the fascinating
realm of machine learning and created a productive and friendly work environment.
I appreciate his broad range of interests and expertise that allowed me to work on a
variety of projects and receive valuable feedback. Our discussions were always help-
ful and thought-provoking. I am grateful for his mentorship, much freedom in choos-
ing research topics, and the opportunity to collaborate with many other students.

Barbara Werner was a reliable counselor and proactive supporter in all bureau-
cratic matters. Without her smooth handling of administrative issues, I would have
had less time for research. Owen Vincent kept our IT running flawlessly, even
beyond his time in Heidelberg, and was a great lunch partner.

I am glad and grateful for having been a part of the Image Analysis and Learning
group over the past four years. We had countless stimulating discussions about
science and everything else, and lots of cake. In particular, I thank my office mate
Nasim Rahaman for guiding my plunge into machine learning, conversations about
its current trends, and coding advice. Similarly, while sharing an office with Kalyan
Ram Ayyalasomayajula, I received many valuable pointers on software development.
I much enjoyed the collaborations with Enrique Fita Sanmartín on graph algorithms
as well as the projects with Quentin Garrido, Florin Walter, Alexander Jäger, Daria
Damm, and Philipp Nazari. Alberto Bailoni, Roman Remme, and Lorenzo Cerrone
were always available for bouncing ideas back and forth, for coding support, a
relaxed chat, and much other help. Lorenzo deserves extra thanks for breaks with
delicious espresso and for proofreading parts of this thesis. I am grateful to Roman
for his help with the Mod Shift project. Furthermore, I thank Ocima Kamboj for
insightful discussions on single-cell topics, Manuel Haußmann for all-too-relatable
Ph.D. comics and for tirelessly explaining variational inference, and Peter Lippmann
for fun brain-storming sessions.

Philipp Berens, Dmitry Kobak, and Fred Hamprecht gave me the fantastic oppor-
tunity to spend a research stay in the Data Science for Vision Research group in
Tübingen. The collaboration with Dmitry and Jan-Niklas Böhm distinctly shaped
the fourth chapter of this thesis. Dmitry’s detailed feedback and Nik’s code bases
proved invaluable.

Many thanks go to Christoph Schnörr for enabling me to pursue an interdisci-
plinary Ph.D. in computer science and mathematics. The STRUCTURES cluster
hosted several fascinating events at the intersection of machine learning and mathe-
matics and fostered interaction with other groups at the university. I am thankful
for having profited from this stimulating environment.

ix

Special thanks go to my parents, Sabine and Bernhard Damrich. I am grateful for
their unconditional, continuous support during my Ph.D. and throughout my life.
They paved the way to where I am today and sustained me along it. I also thank
my sister, Christine Damrich, for always being there for me.

Finally, huge thanks go to Nadja-Mira Yolcu for her resourceful advice and careful
proofreading of parts of this thesis. But most of all for her love, and unwavering
belief in me; for keeping me afloat, and enriching my life so very much.

x

C O N T E N T S

1 introduction 1
1.1 Clustering 2
1.2 Dimensionality reduction 5
1.3 Force-directed layouts 8
1.4 Thesis overview 11

i clustering

2 mod shift 15
2.1 Introduction 15
2.2 Related work 16
2.3 Background 17
2.4 From Multicut to Mod Shift 18
2.5 Mod Shift’s feasible set and the Multicut polytope 24
2.6 Mean Shift and Mod Shift 29
2.7 Experiments 46
2.8 Conclusion 48

ii dimensionality reduction

3 on umap’s true loss function 51
3.1 Introduction 51
3.2 Related work 52
3.3 Background on UMAP 53
3.4 UMAP’s degree distribution 54
3.5 UMAP does not reproduce high-dimensional similarities 55
3.6 UMAP’s sampling and effective loss function 57
3.7 Parametric UMAP’s sampling and effective loss function 62
3.8 True target similarities 66
3.9 UMAP’s dependence on the dataset size 68
3.10 Negative sampling in LargeVis 76
3.11 Discussion 78
3.12 Conclusion 79

4 contrastive learning unifies t-sne and umap 81
4.1 Introduction 81
4.2 Related work 82
4.3 Background 84
4.4 From noise-contrastive estimation to negative sampling 93
4.5 Negative sampling spectrum 94
4.6 UMAP’s conceptual relation to t-SNE 95
4.7 Further optimization tricks in UMAP’s original implementation 97
4.8 Contrastive neighbor embeddings and self-supervised learning 100
4.9 Discussion and conclusion 104

xi

xii contents

5 conclusion 107

Appendix

a supplementary to the introduction 113

b mod shift 115
b.1 Choices of w and ρ 115
b.2 Implementation 116
b.3 Details on the toy experiment 117
b.4 Details on the pixel embedding experiments 118
b.5 Convergence of Mod Shift with Adam 124
b.6 Detailed results 126

c on umap’s true loss function 131
c.1 Implementation details 131
c.2 Quantitative metrics 132
c.3 Datasets 135
c.4 Additional figures 141

d contrastive learning unifies t-sne and umap 145
d.1 Datasets 145
d.2 Implementation 145
d.3 Additional figures 149

bibliography 157

1
I N T R O D U C T I O N

While data is becoming increasingly abundant, it rarely comes with labels, especially
not in the sciences. As a result, annotated data remains a scarce resource in many
domains. Unsupervised learning aims to find structure in data without annotations
or labels.

Annotating scientific data is, at best, a tedious, dull, and costly task, which often
can only be completed by a domain expert. At worst, it is infeasible by the very
nature of the addressed question: In an exploratory context, the researcher wants to
understand the new dataset for the first time and hence does not have any labels
yet. In these situations, unsupervised learning shines.

However, there is no free lunch, and in the absence of a clear learning signal
derived from annotated samples, some form of inductive bias or a weak form
of supervision is still required, e.g., the number of clusters or neighbors. Not all
assumptions built into an unsupervised method will align with the properties of all
datasets, and the right method needs to be employed for a specific dataset and task
of interest. We will discuss examples of this in Chapters 2 and 4.

Therefore, learning with little supervision is difficult. However, humans are an
excellent example for its feasibility. The understanding and mimicking of human
cognition inspired many advances in machine learning. The current working horse
of machine learning, the artificial neural network, was inspired by the natural neural
network in our brains [110, 136]. Several prominent variants build on more specific
aspects of human cognition. For example, the convolutional neural network imitates
parts of our visual apparatus [55], the transformer architecture [162] capitalizes
on the idea of attention [103] and recent efforts [13, 60] towards modeling higher-
level cognitive capabilities, such as reasoning, draw inspiration from Kahneman’s
notion of ‘system 1’ and ‘system 2’ [73]. In this spirit, it is remarkable that humans
learn to a large extent with very little supervision. While we are generally aware
of supervised learning, for instance, in school, much of our learning comes from
simply observing and interacting with our environment. The extent of unsupervised
learning is particularly evident in the development of infants. At six months, infants
already appear to have developed some object permanence, seem to be able to count
small sets, show signs of a first intuitive understanding of gravity, and behave as if
they can visually distinguish coarse object classes [128]. However, it is only at that
age that they show the first indication of language comprehension [17]. So, at least
much of our very early learning takes place with only little supervision, making
unsupervised learning a promising research direction [92].

Two common forms of unsupervised learning and exploratory data analysis are
clustering and dimensionality reduction. Both are instances of representation learn-
ing. A data point is either represented by its cluster or by a lower-dimensional point.
This work makes contributions to clustering in Chapter 2 and to dimensionality
reduction in Chapters 3 and 4.

It is often difficult to measure the quality of an unsupervised method’s output.
One option for vetting a method is applying it to data for which labels do exist but

1

2 introduction

(a) Random partition (b) Partition with spatially connected elements

Figure 1.1: Two partitions of the pixels in an image. The elements have the same size
distribution in both partitions. In 1.1a, the pixels are randomly assigned to
partition elements, while they form Voronoï cells in 1.1b, so that they are convex
and, in particular, spatially connected. Some degree of such a spatial prior is
usually desirable when looking for partitions, thus excluding a vast part of the
set of all possible partitions.

are not used in the unsupervised stage. For instance, we use available cluster infor-
mation to validate our clustering method Mod Shift in Sec. 2.7 and existing labels to
better understand our dimensionality reduction results in Chapters 3 and 4. There
are also more intrinsic measures for clustering, such as the silhouette score [138],
and for dimensionality reduction, e.g., kNN-recall [83, 94], but these typically only
assess a particular aspect of the learned representation. In an exploratory context,
the main aim is to understand the dataset better and develop research hypotheses.
Then, these need to be independently verified, e.g., with targeted experiments [83].
So the ultimate raison d’être for many unsupervised learning methods is their
ability to suggest structure relevant to the human investigators. Unfortunately, this
application-dependence is very hard to quantify. A chemist cares about clusters
of atoms; an astrophysicist might look out for clusters of galaxies. Biologists are
interested both in discrete cell types and how stem cells continuously differentiate
into them. In Chapter 4 we discuss a trade-off between visualizing continuous and
discrete structure.

1.1 clustering

Clustering is the task of finding meaningful groups in a dataset. It is one of the
oldest machine learning problems [104, 109], one of the central tools in exploratory
data analysis [106] and often part of more involved machine learning pipelines [22,
86, 129].

Coarsely summarizing a dataset by its salient grouping is such a straightforward
idea that one can easily overlook the hidden combinatorial complexity. The number
of possible partitions, or groupings or clusterings, of a dataset with n elements
equals the n-th Bell number B(n) [12], which grows exponentially B(2n) > nn, see
Proof of Prop. 10 in [142]. There are more ways of clustering a set with 50 elements
than there are atoms in the observable universe, as estimated by Eddington [168].
Hence, brute-force search for a clustering is not an option. Fortunately, many

1.1 clustering 3

(a) 3-means on three blobs (b) 2-means on three blobs (c) 2-means on non-convex data

(d) Mean Shift on non-convex data (e) DBSCAN on non-convex data

Figure 1.2: 1.2a–1.2c show that the assumptions of k-means clustering need to fit the dataset
to produce good results. The stars are the learned cluster centers. If clusters
are spherical, k-means can identify them correctly only if k is chosen prop-
erly (1.2a, b). Geared towards spherical clusters, it struggles on non-convex clus-
ters (1.2c). On such datasets, density-based methods such as Mean Shift (1.2d)
or DBSCAN (1.2e) can perform better for a suitable choice of hyperparameters.

partitions are undesirable. For example, one is usually interested in clusters that
are in some sense spatially connected and not fragmented, as in Fig. 1.1.

A good clustering algorithm builds on inductive biases and the dataset’s structure
to only search among a limited set of partitions or directly construct a single one,
which captures the most salient aspects of the dataset. The assumptions on the
dataset structure need to match up with the inductive biases of the objective function
and the optimization method. Consider for instance the classical k-means clustering,
in which a dataset x1, . . . , xn ∈ Rd of n different points shall be clustered into k
clusters by minimizing the sum of squared distances to the closest of a set of k
cluster centroids µ1, . . . , µk ∈ Rd

argmin
µ1,...,µk

n

∑
i=1
∥xi − µc(i)∥2, where c(i) = argmin

j=1,...,k
∥xi − µj∥. (1.1)

This intuitive objective function makes at least two assumptions. First and most
obviously, the method will find exactly k clusters no matter the data, as there
are only k centroids, and it is always beneficial to place at least one point into
each cluster. This can be seen as a strong inductive bias or even a weak form of
supervision. Second, since a point is always assigned to its nearest centroid, the
points forming a cluster must lie in their centroid’s Voronoï region. In particular,
they will be roughly spherically shaped. Non-convex clusters are thus impossible
for k-means clustering. These assumptions work well for certain datasets, but fail
for others Fig. 1.2a-c.

Another popular inductive bias is identifying clusters as high-density data regions.
This allows for non-convex clusters and can determine the number of clusters
internally so that it does not have to be specified by the user. There will be as many
clusters as there are high-density regions. Examples of density-based clustering

4 introduction

algorithms are (H)DBSCAN [50, 111] and Mean Shift [31, 34]. In (H)DBSCAN
points form a cluster if they lie in the same high-density region, where a point is a
high-density point if sufficiently many points lie nearby. Mean Shift constructs a
kernel density estimate (KDE) and moves points via gradient ascent to the modes of
this KDE. Both can handle non-convex clusters well, see Fig. 1.2d-e but still require
some weak supervision to determine their notion of high density. For Mean Shift,
this is the choice of kernel and bandwidth used to construct the kernel density
estimate of the data, and for HDBSCAN, it is the number of neighbors that need to
lie in close vicinity.

So far, we have discussed clustering point clouds where the similarity cues came
from the points’ spatial configuration. Graphs, however, directly encode relational
information in the edges. Vertices connected by an edge are often deemed similar,
and the lack of an edge connection signifies dissimilarity. Weighing the graph edges
gives a finer notion of similarity. Lacking a spatial notion of density, one might try
to cluster or partition the graph into densely connected node sets. This is the aim of
modularity clustering [119]. More precisely, modularity clustering identifies dense
regions as those more densely connected than they would be in a random graph
with the same node degrees. The loss function is

argmax
P a node partition

∑
i<j

(
wij −

didj

2wtot

)
· 1(i ∼P j), (1.2)

where wij are the node weights, di = ∑j wij is the node degree of i, wtot =
1
2 ∑i di

the total weight of the graph, P a node partition and 1(i ∼P j) is the indicator
function for whether nodes i and j are in the same partition element of P. While
not apparent from this density maximization formulation of the loss, Davis and
Sethuraman [43] recently showed that the comparison to the random graph model
induces a hidden inductive bias towards equisized clusters.

When the graph edges wij are allowed to be signed, that is, have an either positive
or negative sign, we are in an even more general setting for graph partitioning.
Positive edges still indicate similarity. However, dissimilarity is not just indirectly
represented as a missing edge but explicitly as an edge of negative weight. A very
natural strategy is to seek the partition that maximizes the sum of edge weights
within partition elements and to minimize the sum of edge weights between
different partition elements. Both aims are equivalent, and we obtain the Multicut
problem [32], here phrased in the intra-cluster formulation

argmax
P a node partition

∑
i<j

wij · 1(i ∼P j). (1.3)

Setting the Multicut weights to w̃ij := wij − didj
2wtot

shows that modularity clustering
is a special case of the Multicut problem.

Clustering is ubiquitous in science and engineering. For instance, k-means clus-
tering is employed for vector quantization to compress data [99]. In some cases,
both the point cloud and the graph-partitioning approaches are possible. Consider
a digital image of a crowd of people. Segmenting the different persons in the image
amounts to clustering the pixels belonging to one person in the same cluster. This
could be achieved as point clustering if we have feature vectors for each pixel, e.g.,
extracted by a learned pixel embedding network [86, 129]. Alternatively, we could

1.2 dimensionality reduction 5

(a) Digital image (b) Pixel features (c) Image graph with signed edges

Figure 1.3: Two ways of tackling the segmentation of a digital image (1.3a): By extracting
features for each pixel and clustering the resulting points in feature space (1.3b)
or by predicting similarity values between neighboring pixels and partitioning
the resulting grid graph (1.3c).

consider the image as a grid graph on the pixels and give positive edge weights
between pixels that are likely part of the same person and negative edge weights if
the edge crosses the contour of a person. Again, these weights could be predicted
by some learned boundary-detecting network such as in [169]. Now, we could treat
the segmentation problem as graph partitioning via Multicut. Both segmentation
strategies are illustrated in Fig. 1.3.

Chapter 2 considers clustering in more detail. We will introduce a new clustering
method, Mod Shift, which, like Mean Shift, iteratively shifts points towards more
concentrated clusters. It does not predominantly rely on the data density but allows
the user to inject prior knowledge on the range of attraction and repulsion. Moreover,
the point clustering method Mod Shift is intimately related to Multicut’s signed
graph partition objective. Mod Shift thus bridges the realms of point clustering and
graph partitioning.

1.2 dimensionality reduction

To capture as much information as possible, researchers often measure as many
features of their samples as possible, leading to high-dimensional datasets. Despite
the potentially richer structure of such datasets, high-dimension also has drawbacks.
Some of the dimensions might mostly contain noise that hinders downstream
analysis. Others might contain redundant information that could be compressed,
speeding-up subsequent steps without severe loss of structure. Moreover, humans
are visual beings [37] and are therefore very skilled at seeing patterns and structure.
However, we can see at most three dimensions. So to use our powerful built-in
pattern-recognition capacities, the data needs to be presented in at most three
dimensions.

As a result, reducing the dimensionality of a dataset while retaining its relevant
characteristics is an important task. The question is, of course, what is the salient
structure of a dataset and how to maintain it in lower dimension? What inductive
biases should guide the method?

Principal Component Analysis (PCA) [130] and Multidimensional Scaling
(MDS) [158], two classical methods for dimensionality reduction, follow intuitive
strategies. PCA simply tries to find a projection of the data to a linear subspace of

6 introduction

(a) MNIST data (b) PCA (c) MDS

(d) t-SNE (e) UMAP

Figure 1.4: Different visualizations of the MNIST dataset consisting of 70 000 images with
28× 28 pixels showing handwritten digits, which are treated as 786 dimensional
vectors. Classical methods such as PCA (1.4b) or MDS (1.4c) achieve poor class
separation, while t-SNE (1.4d) and UMAP (1.4e) isolate the classes near perfectly.
Labels are only used for plotting, not for computing the visualizations.

smaller dimension that retains the highest amount of variance. Constant features
are of little interest, so focusing on the largest variation seems plausible. Moreover,
if the interesting variation is on a larger scale than the noise, PCA can denoise and
also find correlated features. Its major limitation is that it only fits a linear subspace
to the data. In contrast, MDS can find non-linear structure in a dataset by aiming
for a low-dimensional layout that minimizes the squared deviation between all
corresponding high- and low-dimensional pairwise distances. PCA and MDS can
be considered “global” methods in that they focus on the global structure of the
dataset, that is, the relation of distant parts of the data. Distant parts in the dataset
likely align with the direction of largest variance, and large distances dominate
the quadratic MDS loss. However, large distances can be misleading. For example,
the intrinsic dimension of the dataset might be smaller than that of the ambient
high-dimensional feature space. In that case, the dataset could curve so that data
points, which are intrinsically far apart, might be fairly close in ambient space.

This leads to one of the currently best-accepted assumptions for dimensionality
reduction, the manifold hypothesis. The data is assumed to lie on or at least near a
manifold of lower dimension than feature space. The manifold hypothesis further
motivates the search for a lower-dimensional representation. We might simply try
to find the intrinsic manifold on which the data resides. A manifold looks only
locally like Euclidean space. Globally, it may curve or meet itself. Therefore, the
strategy for inferring the manifold is to focus on the local connections in the data
and build up the global shape of the manifold from them [11, 139, 156, 167].

1.2 dimensionality reduction 7

The local structure is often captured as a variant of the k-nearest neighbor graph
of the data [1, 4, 11, 66, 112, 139, 156, 160, 161, 167]. The family of neighbor
embeddings (NE) aims to find a low-dimensional layout that keeps neighbors
nearby while placing non-neighbors not too close to each other. The two most
prominent NE methods are t-SNE [160, 161] and UMAP [112]. Their two or three-
dimensional visualizations of many datasets show the relevant structure of the
dataset often so clearly that today they have become the de-facto standard for
non-linear dimensionality reduction, having been cited more than 2000 times each
in 2021 alone according to Google Scholar [58, 59]. For an example illustrating
the power of t-SNE and UMAP on MNIST compared to PCA and MDS, consider
Fig. 1.4.

Chapters 3 and 4 look under the hood of UMAP. We first derive its true loss
function, which enables us to explain UMAP’s tendency for overly crisp visualiza-
tions. Based on this correct understanding of UMAP, we derive its relation to t-SNE
in Chapter 4. Up to inconsequential design choices, UMAP is a sampling-based
approximation to t-SNE with higher attraction. Varying the amount of attraction
leads to a whole spectrum of embedding methods inter- and extrapolating t-SNE
and UMAP.

1.2.1 Limitations of dimensionality reduction

While it is often desirable and, to some extent, possible to reduce the dimensionality
of a dataset without losing its main features, there are limits to what can be
achieved. Many point configurations in high-dimensional Euclidean space cannot
be reproduced in lower dimension. Any Euclidean configuration of n points can be
realized in Rn−1, but not necessarily in Rd for d < n− 1 [145]. For instance, in less
than n− 1 dimensions, there is insufficient space to place n points equidistantly.

Lemma 1.1. It is possible to place n points equidistantly in Rd if and only if d ≥ n− 1.

Proof. This statement follows from Thm.1 in [145]. We give a more elementary proof
here for intuition.

For the “if” part, consider the standard basis vectors in Rn. They all have distance√
2 from each other and span an affine subspace of dimension n− 1.
For the “only if” part, we show by induction that an additional equidistant point

requires an additional affine dimension. The full proof is in Appendix A, here we
only sketch the argument and give the reason why there is not enough space for
another equidistant point p in the affine hull of n− 1 equidistant points x1, . . . , xn−1.
By symmetry arguments, p would have to be the midpoint 1

n−1 ∑n−1
k=1 xk, but then

it does not have the same distance to the xi’s that the xi’s have among each other.
Indeed, we have

∥p− x1∥ =
∥∥∥∥∥ 1

n− 1

n−1

∑
k=2

(xk − x1)

∥∥∥∥∥ ≤ 1
n− 1

n−1

∑
k=2
∥xk − x1∥ =

n− 2
n− 1

d < d,

where d is the distance between x1 and any of the x2, . . . , xn−1.

Exact reproduction of the pairwise distances is a strong requirement. Natural
relaxations allow for small distortion of the distances or focus only on preserv-
ing relations between subsets of points. For instance, the Johnston-Lindenstrauß

8 introduction

Lemma [71] implies that for n points in Euclidean space, there is a layout in di-
mension O(log(n)/ε2) that only distorts the Euclidean distances by a factor of at
most 1± ε for ε ∈ (0, 1). Unfortunately, this still does not permit relatively faithful
dimensionality reduction to two or three dimensions for large datasets. For instance,
for the MNIST dataset with n = 70 000, the sufficient dimension in [41] would be
267≫ 3, even for the highest ε. Conversely, Chari et al. [24] investigate how close a
layout in R2 can be to equidistance. They find that the ratio of maximal distance to
minimal distance grows with

√
n.

These limits should caution against over-interpreting very low-dimensional vi-
sualizations as produced by t-SNE and UMAP. We will discuss typical artifacts of
UMAP plots in Chapter 3 and describe a whole spectrum of neighbor embeddings
that highlight different aspects of a dataset in Chapter 4. However, this does not
render such visualizations useless. The manifold hypothesis implies that typical
data does not vary in all dimensions of the high-dimensional space, thus restricting
the possible distances. Moreover, t-SNE and UMAP have impressively demonstrated
that they do show structure whose existence can be corroborated by independent
validation experiments [9, 83, 90, 144]. Hence, their embeddings can serve at the
very least to generate hypotheses about the structure of the explored datasets.

1.2.2 Single-cell RNA sequencing

One type of dataset used in Chapters 3 and 4 are single-cell RNA sequencing
datasets, which we introduce briefly here. The cells of one organism carry the
same genes yet fulfill vastly different tasks. This is possible because only certain
genes are “active” or “expressed” in a given cell. The proteins encoded by these
expressed genes ultimately determine the behavior and thus the function of a cell.
In order to understand how an organism functions at the level of cells, it is therefore
instructive to analyze the genes expressed in the cells. Until recently, this was only
possible on a large scale with bulk sequencing, so the assignment of individual gene
expression profiles to individual genes was lost [98]. Single-cell RNA sequencing
(scRNA-seq) allows capturing the gene expression pattern of individual cells [143].
The resulting datasets often contain tens to hundreds of thousands of cells and,
for each of them, the measurement of thousands of genes [19, 126], making this
data modality very high-dimensional. After some initial preprocessing and a first
linear dimensionality reduction, a common step in analyzing scRNA-seq data is to
study t-SNE or UMAP plots [9, 83, 106]. Due to t-SNE’s and UMAP’s popularity in
this field of bioinformatics, we chose to illustrate many of our results in Chapters 3
and 4 on this data modality. Fig. 1.5 illustrates some steps in a typical scRNA-seq
pipeline.

1.3 force-directed layouts

Force-directed layouts [8, 49, 53, 69, 77, 122] are a popular approach for aesthetically
visualizing graphs in two or three dimensions. While not the focus of this work, they
are intimately connected to our work on clustering and dimensionality reduction.

Typically, edges in an (unsigned) graph indicate the similarity of the incident
nodes. Therefore, a graph layout aims at placing connected nodes nearby and non-

1.3 force-directed layouts 9

(a) Droplet-based scRNA-seq

(b) Count matrix (c) UMAP plot

Figure 1.5: A droplet-based scRNA-seq pipeline. 1.5a shows the preparation of droplets
for single-cell RNA sequencing. A barcoded bead (colored) and a cell are
encapsulated into a droplet. Inside, the barcode tags the expressed RNA of the
cell. This tagging allows RNA counts sequenced in bulk to be assigned back
to individual cells (1.5a). The resulting count matrix (1.5b) can contain tens of
thousands of cells and genes. After some preprocessing (not shown), t-SNE or
UMAP plots (1.5c) can reveal meaningful structure. The data in 1.5b, c is taken
from a developing human brain organoid [74]. Fig. 1.5a is adapted from [179]
which is licensed under CC BY 4.0.

connected nodes further apart. Force-directed layouts achieve this by an attractive
force between connected edges, which tries to pull their node embeddings together,
and a repulsive force between all pairs of points, which spreads out the embedding.
These forces move the node embeddings from an initial layout until attraction and
repulsion balance and the final layout is found.

For a visually pleasing layout, different nodes should not superpose, and the
entire layout should not diverge [122]. Therefore, on short ranges, the repulsive
force typically dominates, while on long ranges, the attractive force is stronger.
One way to implement these desiderata is as follows. The attractive force of node i
exerted on node j is

Fattr,ij = wij∥ei − ej∥a ei − ej

∥ei − ej∥
(1.4)

and the repulsive force is

Frep,ij = −didj∥ei − ej∥r ei − ej

∥ei − ej∥
, (1.5)

where wij is the weight of the edge ij (zero if the edge does not exist), di = ∑j wij
the degree of node i, and a > r two real numbers. The condition a > r leads to
long-range attraction and short range repulsion [122].

The inspiration for force-directed layouts comes from the physical “spring-electric”
analogy. Eades [49] envisaged the attractive forces akin to springs that connect pairs
of embeddings of nodes that are incident to the same edge. These springs pull

10 introduction

(a) Fruchterman-Reingold (2,−1) (b) ForceAtlas2 (1,−1) (c) LinLog (0,−1)

(d) Fruchterman-Reingold (2,−1) (e) ForceAtlas2 (1,−1) (f) LinLog (0,−1)

Figure 1.6: Force-directed layouts of Zachary’s karate club network [177] (top) and the kNN
graph of the MNIST dataset (bottom) for different combinations of attraction and
repulsion coefficients (a, r). Reducing the attractive force from the Fruchterman-
Reingold layout to that of ForceAtlas2 and finally to the LinLog model highlights
cluster structure more but also contracts clusters visually. The karate club
network is colored by its modularity clustering. As predicted by Noack [122],
the LinLog model aligns well with the modularity clustering. This figure is
created using the code of Böhm et al. [15]. More (a, r) combinations for the
MNIST dataset can be found in [14]. The MNIST dataset is colored by digit class,
and we omitted the kNN graph for visual clarity.

exactly the linked node pairs together. To avoid collapse, all points repel each other
similar to charges of the same sign.

By Hooke’s law [147, p. 369] the force of a spring is linear in its displacement, and
Coulomb’s law [147, p. 564] states that the force between charged particles decays
with their inverse squared distance. So in the strict sense of this physical analogy,
we would have a = 1 and r = −2. In practice, other choices for (a, r) became
popular. Fruchterman and Reingold [53] use (a, r) = (2,−1) in their popular graph
layout algorithm, ForceAtlas2 [69] utilizes (1,−1) and the LinLog method [122]
employs (0,−1), see Fig. 1.6.

In Secs. 2.4.1, 4.3 and 4.3.2 we will see that our clustering method Mod Shift as
well as the dimensionality reduction methods UMAP and t-SNE can be viewed
as force-directed algorithms. All three construct a graph from the point data.
UMAP and t-SNE both use a kNN graph but further depart from the “spring-
electric” analogy as their attractive and repulsive forces are not proportional to any
power of the distance in embedding space. For the clustering method Mod Shift,
superposition of points in the same cluster is actually desired. Therefore, in Mod
Shift, we have attraction for points that start out close and repulsion for points that

1.4 thesis overview 11

were initially already distant. In essence, the main algorithms treated in this work
have force-directed character.

Noack [122] observed a connection between the loss functions of modularity
clustering [119] and force-directed layouts, particularly for their LinLog setting
(a, r) = (0,−1), and illustrate how their LinLog layouts align with modularity
clusters of the same graph, compare Fig.1.6c, f. We find a similar connection
between a modified version of Parametric UMAP and modularity clustering in
Sec. 3.7.1. These conceptual links show that, despite their seemingly different nature
with discrete and continuous outputs, clustering and dimensionality reduction
often have close ties. Dmitry Kobak summarized this nicely during an ICLR 2022
workshop panel [82] as “clustering is embedding into dimension zero.”

1.4 thesis overview

This thesis contributes to two aspects of unsupervised learning: clustering and
dimensionality reduction. Correspondingly, the thesis falls into two parts: Chapter 2
deals with clustering and Chapters 3 and 4 treat dimensionality reduction.

In Chapter 2, we introduce Mod Shift, a new clustering method for point data that
uses a distance-based notion of attraction and repulsion to determine the number of
clusters and the assignment of points to clusters. It iteratively moves points towards
crisp clusters like Mean Shift but also has close ties to the Multicut problem via
its loss function. As a result, it connects signed graph partitioning to clustering in
Euclidean space. After exploring Mod Shift’s relation to the Multicut problem and
to Mean Shift theoretically, we exhibit its practical value for pixel embedding-based
instance segmentation. Chapter 2 is based on [40].

Chapter 3 establishes a new understanding of the prominent dimensionality
reduction and visualization method UMAP. We analyze the details of UMAP’s
implementation and find its actual loss function. It differs drastically from the
one usually stated and uses much less repulsion. This discrepancy allows us to
explain some typical artifacts in UMAP plots, such as the dataset size-dependent
tendency to produce overly crisp substructures. Contrary to existing belief, we
find that UMAP’s high-dimensional similarities are not critical to its success as
the diminished reduction effectively binarizes the high-dimensional similarities.
Chapter 3 is based on [39].

Equipped with this corrected view of UMAP, we describe its precise connection
to the other state-of-the-art visualization method, t-SNE, in Chapter 4. The key
insight is a new, exact relation between the contrastive loss functions negative
sampling, employed by UMAP, and noise-contrastive estimation, which has been
used to approximate t-SNE. As a result, we explain that UMAP embeddings appear
more compact than t-SNE plots due to increased attraction between neighbors.
Varying the attraction strength further, we obtain a spectrum of neighbor embedding
methods, encompassing both UMAP and t-SNE as special cases. Moving from more
attraction to more repulsion shifts the focus of the embedding from continuous,
global to more discrete and local structure of the data. Finally, we emphasize the
link between contrastive neighbor embeddings and self-supervised contrastive
learning. Chapter 4 is based on [38].

Finally, Chapter 5 concludes the thesis and gives an outlook on future work.

Part I

C L U S T E R I N G

2
M O D S H I F T : A P R I N C I P L E D A LT E R N AT I V E T O M E A N S H I F T
C L U S T E R I N G U S I N G L O N G - R A N G E R E P U L S I O N

Motivated by the idea of making the Multicut problem differentiable, we derive a
novel point clustering algorithm, Mod Shift, and relate it to Mean Shift, thus estab-
lishing a new connection between graph partitioning and clustering in Euclidean
space. Mod Shift sets itself apart from Mean Shift in that it uses both attractive
and repulsive forces to iteratively shift points in Euclidean space. The number of
clusters emerges as a result of the optimization process and does not have to be
specified by the user. Experiments show that Mod Shift performs comparably to
Mean Shift in a challenging neural segmentation task. This chapter is based on [40].

2.1 introduction

Proposal-free bottom-up approaches have recently become popular for the challeng-
ing task of instance segmentation [30, 44, 51, 86, 95, 107, 117, 118, 129]. These train
neural networks to predict a feature or associative embedding vector in Rk for each
pixel following the main idea of metric learning: that pixels belonging to the same
instance should have nearby embeddings, while pixels of different instances should
have embeddings that are far apart. However, limited by the network architecture
and training process, these embeddings are usually not crisp. Embeddings of pixels
that belong to the same instance are not identical but have some spread, and the
pixel embeddings associated with different instances sometimes overlap without
having a clear separating margin. Thus, a subsequent clustering step, which deter-
mines the number of clusters and their members, is necessary to produce an actual
instance segmentation of the pixels.

In this chapter, we introduce “Mod Shift”, a principled general purpose clustering
algorithm inspired by the concept of metric learning, that proximity in Euclidean
space relates to similarity of the data points while distance is associated with
dissimilarity. Indeed, for the clusters to become crisp and well-separated, Mod Shift
moves nearby points closer together while distant points get pushed further apart.
This is realized via a differentiable point shifting procedure, similar to Mean
Shift [31, 34, 54], or force-directed graph layouts [8, 77].

While Mod Shift is a clustering method for points in Euclidean space, its objective
function resembles a continuous formulation of the Multicut problem [32, 75]. Any
instance of Mod Shift translates to a Multicut problem by discarding all positional
information beyond computing the weights. The optimal solution of the Multicut
problem is also the best integral Mod Shift solution. In this way, Mod Shift has
close ties to graph partitioning despite operating entirely in Euclidean space. As for
Multicut, balancing attraction and repulsion between points during the optimization
process controls the number of clusters. Therefore, it does not need to be specified
in advance.

15

16 mod shift

Empirically, Mod Shift is on par with Mean Shift but additionally has a theoretical
relation to Multicut. If the number of clusters is known, energy statistics provides a
different connection between clustering points in Rk and graph partitioning [52].

In summary, our contributions are

1. proposing a principled differentiable clustering algorithm (Sec. 2.4.1),

2. relating it conceptually to two well-established clustering methods, Multicut
and Mean Shift, thus exploring a new bridge between graph-based and
Euclidean clustering (Sections 2.4, 2.5, 2.6),

3. an open-source implementation at https://github.com/ModShift/ModShift,

4. illustrating Mod Shift’s behavior on toy data and evaluating its performance
for clustering pixel embeddings on real datasets (Sec. 2.7).

2.2 related work

multicut : Inspired by the Multicut (correlation clustering) problem for graph
partitioning [32, 75], we derive a differentiable objective function for clustering
points in Euclidean space, see Sec. 2.4. The Multicut problem has been used for
graph-based computer vision in many ways, in particular for tracking [154], image
labeling [75, 88] and image partitioning both by semantics and by instances [2,
75, 76, 79, 81]. Most optimization strategies however are not differentiable but
based on ILPs [75], on dual approaches [176] or on move-making strategies [10].
An exception are Song et al. [151] who cast the Multicut problem as a conditional
random field over node labels. Instead, we achieve differentiability by encoding
the points’ partitioning by their spatial configuration in Euclidean space. Thus, in
contrast to [151], the cycle inequalities hold automatically for Mod Shift, but the
edge variables are not guaranteed to be integral, see Sec. 2.5.

pixel embeddings for instance segmentation : One of the first works
learning dense pixel embeddings with a neural network for subsequent vision
tasks was [118]. Since then, it has become popular to use pixel embeddings for
instance segmentation [30, 44, 51, 86, 95, 107, 117, 129]. The idea is always similar:
A neural network produces pixel embeddings that are subsequently clustered. The
network’s loss function penalizes embeddings of pixels in different instances that
are too close and embeddings of pixels belonging to the same instance that are
far apart. The embedded pixels must be clustered in a second step to obtain the
instances without knowing the number of clusters in advance. In most cases this
is done non-differentiably, e.g., with HDBSCAN [129], with k-nearest neighbors
classifiers using a few labeled pixels [30], or with a distance threshold around
(learned) seeds [44, 51, 117]. An exception are Kong and Fowlkes [86] who use the
differentiable Mean Shift clustering. Our approach offers a principled alternative to
Mean Shift in such a pipeline.

mean shift : The Mean Shift algorithm is one of the few clustering algorithms
for Euclidean data that does not need a prespecified number of clusters and is
differentiable as it shifts data points to a kernel-weighted mean of neighboring

https://github.com/ModShift/ModShift

2.3 background 17

points. It was introduced as a general purpose clustering approach in [31, 54]
but became most popular in the computer vision community for image filtering,
segmentation [34] and tracking [35]. While our Mod Shift is also designed as a point
shifting and hence differentiable clustering algorithm, it is primarily distance- and
not density-focused. Also, Mod Shift crucially uses both attraction and repulsion,
see Sec. 2.6.

force-directed layouts : Many methods for drawing graphs [8, 77] assume
a physical model in which the nodes of the graph exert attractive and repulsive
forces on each other. By balancing these forces, a layout is found. A short-range
repulsive force usually prevents identical node locations. Mod Shift can also be
viewed as a force-directed approach. The main difference is that we are interested in
crisp, well-separated clusters and not in a visually pleasing layout. Thus, Mod Shift
uses short-range attraction and long-range repulsion. Force-directed layouts are
also related to the combinatorial modularity clustering problem [120, 122].

deep clustering networks : Similar in spirit to our work but usually not
used for instance segmentation are deep clustering networks [70, 135, 173]. Here,
a self-supervised neural network clusters a dataset by learning from the most
pronounced similarity relations in the data. This is akin to our idea in that Mod Shift
pulls points closer together if they start close and pushes distant points even further
apart. What is different in our setting and crucial for instance segmentation is
that we do not need a prespecified number of clusters. Other than Kong and
Fowlkes [86], the only such deep clustering approach is [149], which uses the robust
continuous clustering loss of [148]. Since this has a (robust) quadratic attraction
term, clusters do not become crisp.

2.3 background

2.3.1 Notation

Let x = {x1, . . . , xn} be n points in Rk. When these are the initial points to be
clustered, e.g., the pixel embeddings that an embedding network produced, we write
them as x0 = {x0

1, . . . , x0
n}. During the clustering process, they are iteratively shifted

to positions xt = {xt
1, . . . , xt

n}, t ∈ N0 so that clusters become more pronounced.
Most quantities of interest will be defined in terms of the distances dt

ij := ∥xt
i − xt

j∥,
1 ≤ i < j ≤ n, where ∥ · ∥ is the Euclidean norm.

2.3.2 Summary Mean Shift

Mean Shift [31, 34, 54] refers to a group of clustering algorithms for points in
Euclidean space that do not need a prespecified number of clusters. Given a kernel
function K, often a flat kernel or an RBF kernel, points xt

i are shifted iteratively to a
kernel-weighted mean of their neighbors

xt+1
i =

∑n
j=1 K(∥xt

i − yj∥)yj

∑n
j=1 K(∥xt

i − yj∥)
, (2.1)

18 mod shift

where either yj = x0
j for all j (fixed version) or yj = xt

j for all j (adaptive version).
These correspond to gradient ascent with implicitly defined step size on a (changing)
kernel density estimate of the yj’s with a kernel related to K, see [31]. It can be
interpreted as minimizing Renyi’s (cross-) entropy [134].

2.3.3 Summary Multicut

The NP-hard Multicut (correlation clustering) problem [32] is the problem of finding
a node partition of an undirected graph with signed edge weights such that the
cumulative weight of the edges between different partition elements is minimal. On
a complete graph with nodes {1, . . . , n} and edge weights w̃ij the problem can be
formulated as

argmin
P a partition of {1,...,n}

∑
i<j

yij · w̃ij such that yij = 1− 1(∃p ∈ P : i, j ∈ p), (2.2)

where 1 is the indicator function. The binary edge indicator variables yij encode
whether two points, i and j, belong to the same (yij = 0) or to different clusters
(yij = 1), i.e., whether the edge ij is cut. The vector y is also called Multicut vector.
The optimization can be performed directly over the yij ∈ {0, 1} if one ensures that
these correspond to a valid partition. This is the case if the cycle inequalities hold,
see Lem. 2.2 in [32]. For a complete graph, they reduce to the triangle inequalities,
see Thm. 3.2 in [32], such that we can equivalently rewrite the problem (2.2) as:

argmin
yij∈{0,1}

∑
i<j

yij · w̃ij, such that ∀i, j, k : yik ≤ yij + yjk. (2.3)

2.4 from multicut to mod shift

2.4.1 Introducing Mod Shift

In this section, we introduce our point-clustering algorithm Mod Shift by making
the objective function of the graph-clustering problem Multicut differentiable. A
key difficulty of the combinatorial Multicut problem (2.3) stems from the integral-
ity constraints on yij, which make the problem non-differentiable and NP-hard.
In contrast, Mod Shift moves points in continuous Euclidean space to solve the
differentiable optimization problem

argmin
x=(x1,...,xn)⊤∈Rn×k

∑
i<j

ρ(∥xi − xj∥) · w(∥x0
i − x0

j ∥). (2.4)

While structurally parallel to problem (2.3), in Mod Shift’s objective function the
binary edge indicator variables yij are replaced by a differentiable separatedness
function ρ. Moreover, this separatedness ρ and the weights w, both defined below,
depend on point configurations x and x0 in Euclidean space. This allows Mod Shift
to optimize its objective (2.4), or energy

E(x, x0) := ∑
i<j

ρ(∥xi − xj∥) · w(∥x0
i − x0

j ∥) (2.5)

of the configuration x given initial positions x0, iteratively using gradient descent
starting at x = x0 and then shifting xt to xt+1 at step t, so that they form crisp

2.4 from multicut to mod shift 19

1

2
3

5

2

5
-0.5

-0.3

-0.6

-0.1

0.5

0.6

0.9

0.1

0.8

0.2

 β

t = 0 t = 1

40.9

0.5
0.60.1

0.8
0.2

-0.1

-0.1

-0.5

-0.3

-0.63

4

 β

1

Figure 2.1: Schematic illustration of the first Mod Shift iteration on five points. The edge
labels, colors, and widths show the weights between all pairs of points (green
attractive, red repulsive). For instance, all points within (outside) a radius of β
around point 1 are attracted to (repelled from) it. The black arrows indicate the
shift from step t = 0 to t = 1. The Mod Shift step makes clusters more apparent
by moving points 1 and 2 as well as 3, 4, and 5 closer together while separating
these two groups from each other. Point 3 is more attracted by points 4 and 5
than by 1 and 2 and consequently moves to the right. As the weights depend
only on the initial point positions, they do not change from t = 0 to t = 1.
Therefore, at t = 1 point 3 is still attracted to point 1, although their distance is
now greater than β.

and well-separated clusters. The gradient −∂E(xt, x0)/∂xt at time t can be viewed
as the forces according to which the points are shifted, exhibiting Mod Shift’s
force-directed character:

− ∂E(xt, x0)

∂xt
i

= ∑
j ̸=i

ρ′(dt
ij) · w(d0

ij) ·
xt

j − xt
i

∥xt
j − xt

i∥
. (2.6)

Point xt
i moves towards xt

j if the two points attract each other (w(∥x0
i − x0

j ∥) > 0)
and away from xt

j if they repel each other (w(∥x0
i − x0

j ∥) < 0) as illustrated in
Fig. 2.1. The Mod Shift algorithm is summarized in Alg. 1. There, the standard
gradient descent in line 7 could be replaced by a more powerful optimizer such as
Adam [80].

In the following subsections, we show how Mod Shift capitalizes on the corre-
spondence of proximity in Rk to similarity and distance to dissimilarity in two
ways: through the weights w between points, which drive the clustering process by
modulating attraction and repulsion between all pairs of points; and through the
cluster affiliation 1− ρ, which indicates to what extent two points cluster together.

We dub our method “Mod Shift” due to its point-shifting nature and the modu-
lation of attraction and repulsion.

2.4.2 Choice of the weights w

In contrast to Multicut, where the weights are given as input, in Mod Shift we
infer them from the initial point configuration in the metric space Rk. This has a
useful regularizing effect [107]. If the data points are, for instance, pixel embeddings
produced by a neural network, we trust the network to place them at positions so
that their distances meaningfully indicate which pixels should belong to the same
and which to different instances. Thus, if two points are initially close together
(i.e., two pixels are embedded nearby), we assume they should belong to the
same cluster, which we model with a positive (attractive) weight between them.

20 mod shift

Algorithm 1: Mod Shift

input : points x0
1, . . . , x0

n,
number of shifts m,
learning rate α,
weight function w,
derivative of separatedness ρ′

output : shifted points xshifted
1 , . . . , xshifted

n
1 for t = 0 to m− 1 do
2 for i = 1 to n do
3 gradi ← 0
4 for j = 1, . . . , i− 1, i + 1, . . . , n do

5 gradij ← ρ′(||xt
i − xt

j ||) · w(||x0
i − x0

j ||) ·
xt

i−xt
j

∥xt
i−xt

j∥
6 gradi ← gradi + gradij

7 xt+1
i = xt

i − α · gi

8 return xm
1 , . . . , xm

n

Conversely, points that start far apart should likely be separated, modeled by a
negative weight (repulsion) between them. So, in our model, the initial distances
suggest which points should (not) be clustered together. A non-increasing weight
function w(d0

ij) ∈ R determines these weights as a function of the initial distances
d0

ij. It should be positive at 0 and negative for large distances. Its zero-crossing
β := w−1(0) defines the scale of the clustering: Pairs of points that start out
closer than β attract each other, while points with an initial distance larger than
β repel each other. This scale parameter, which is always present in clustering
methods for Euclidean points, e.g., in the form of a bandwidth or the number of
nearest neighbors, can be chosen based on prior domain knowledge. In particular,
if an embedding network was trained with a contrastive loss [44], one could
choose β based on the margin below which the loss penalizes pixel embeddings of
different instances. Note that such a repulsion, which complements local attraction,
is not modeled by density-based clustering approaches such as Mean Shift [31] or
HDBSCAN [111]. A simple choice is w(d) = max(1− d

β ,−1). It linearly decreases
the weight from 1 to −1 over the interval [0, 2β] and saturates beyond 2β. This
function and other choices for w are depicted in Fig. 2.2a.

2.4.3 Choice of the cluster affiliation 1− ρ

While we use the initial point positions to derive weights encoding which points
should (not) be clustered together, inferring a hard clustering is non-trivial. There-
fore, Mod Shift moves the points in Rk according to their weights towards a crisp,
well-separated configuration so that cluster affiliation becomes clear.

In order to capture the situation prior to such an obvious clustering differentiably,
we define a differentiable cluster affiliation for all pairs of points based on their
distance. Two points belong more strongly to the same cluster if they are closer
and are more clearly in different clusters if they are further apart. We formalize
this with a non-decreasing, differentiable “separatedness” function ρ(dt

ij) ∈ [0, 1]

2.4 from multicut to mod shift 21

β ||x0
i − x0

j||

−1

0

1

w

linear

cosine

logistic

(a) Weight functions w

2β
||xti − xtj||

0

1

ρ Potts

linear

square root

Schoenberg

(b) Separatedness functions ρ

Figure 2.2: 2.2a: Choices for Mod Shift’s weight function w. Note that the weight only
depends on the initial distance between points and is never updated in fixed
Mod Shift. 2.2b: Choices for Mod Shift’s separatedness function ρ of the dis-
tance of two points xt

i and xt
j after t iterations: the Potts function and concave

approximations given by a rectified linear, rectified square root and Schoenberg
transformation [146]. Formulae are given in Appendix B.1.

with ρ(0) = 0 and [0, 1) ⊂ im(ρ). The cluster affiliation is given by 1 − ρ. In
words, ρ(dt

ij) = 0 means that i and j belong to the same cluster while ρ(dt
ij) = 1

represents their association with different clusters. Intermediate values interpolate
these clear cluster affiliations. The separatedness function ρ transforms a spatial
point configuration into a soft partition. In the following, we discuss sensible choices
for ρ.

Remarkably, the well-known Lem. 2.1 (see Lem. 9.0.2 in [45] or Prop. 2.3 [36])
shows that the triangle inequalities are always satisfied in Mod Shift if we choose a
concave function ρ. We prove it for the convenience of the reader.

Lemma 2.1. Let (X, d) be a pseudo-metric space, that is a metric space in which different
elements may have zero distance, and f : R≥0 → R≥0 a non-decreasing function with
f (0) = 0, which is subadditive or concave. Then (X, f ◦ d) also is a pseudo-metric space.

Proof. Symmetry of f ◦ d is clear as well as f (d(x, x)) = 0 for all x ∈ X. We check
the triangle inequality for subadditive f first. Let x, y, z ∈ X. Then

d(x, z) ≤ d(x, y) + d(y, z) (2.7)

and the facts that f does not decrease and is subadditive imply

f (d(x, z)) ≤ f (d(x, y) + d(y, z)) (2.8)

≤ f (d(x, y)) + f (d(y, z)),

which is the triangle inequality for (X, f ◦ d). It remains to show that when f (0) = 0,
concavity implies subadditivity. In this setting we have for any c ∈ R≥0 and
t ∈ [0, 1]:

f (tc) = f (tc + (1− t) · 0) ≥ t f (c) + (1− t) · f (0) = t f (c). (2.9)

Let a, b ∈ R≥0 not both be 0 and t = a
a+b . Then we get

f (a) = f
(
t · (a + b)

)
≥ t f (a + b) (2.10)

f (b) = f
(
(1− t) · (a + b)

)
≥ (1− t) f (a + b), (2.11)

whose sum is just subadditivity.

22 mod shift

In Prop. 2.3 we show how to encode partitions in Euclidean space with a concave
separatedness function ρ. But first, we need a technical lemma. Here and in the
rest of this section, we always write maximum and minimum even if ρ reaches the
extreme value only asymptotically.

Lemma 2.2. Let ρ : R≥0 → [0, 1] be a concave and non-decreasing function with ρ(0) = 0,
at which point it is continuous. Then ρ is continuous on R≥0 and strictly increasing up to
some argument µ (potentially µ = ∞) at which it reaches its maximum value.

Proof. The continuity on R>0 is a typical analysis textbook result, see, for instance,
Thm. 1.3.3. in [121]. If ρ(x) = ρ(x′) for x′ > x, then for all x′ > y > x we have

ρ(y) ≥ λρ(x′) + (1− λ)ρ(x) = ρ(x) (2.12)

for λ = y−x
x′−x . But at the same time ρ(y) ≤ ρ(x′) = ρ(x) as ρ is non-decreasing.

Similarly, writing x′ as the mixture of x and any y > x′ yields that ρ(y) = ρ(x) for
every y > x′. Thus, from x onwards, ρ is constant.

In the following Prop. 2.3, we prove that a concave separatedness function
ρ provides a criterion for unambiguously inferring a clustering from a spatial
configuration.

Proposition 2.3. Let ρ : R≥0 → [0, 1] be a continuous, non-decreasing and concave
function with ρ(0) = 0 and [0, 1) ⊂ im(ρ). Let further x1, . . . , xn be in Rk. Suppose there
is some 0 ≤ ε < 1

4 such that for all i, j the separatedness ρij := ρ(∥xi − xj∥) is either not
above ε or not below 1− ε. Then there is a partition of {1, . . . , n} so that whenever i, j are in
the same partition element we have ρij ≤ ε and ρij ≥ 1− ε if they are in different partition
elements. The thresholds ε and 1− ε translate to thresholds on the Euclidean distances
∥xi − xj∥.

Proof. Consider the sets Si := {j|ρij ≤ ε}. We show that they are pairwise identical
or disjoint. By Lem. 2.1, ρ preserves the triangle inequality. Let there be some
k ∈ Si ∩ Sj. Then, ρij ≤ ρik + ρkj ≤ 2ε. Thus, for l ∈ Si,

ρjl ≤ ρji + ρil ≤ 3ε < 1− ε. (2.13)

By assumption this means ρjl ≤ ε and hence l ∈ Sj. So Si ⊂ Sj and equality holds
by symmetry. Clearly, the Si’s cover {1, . . . , n} and hence form a partition with the
desired properties by construction.

By Lem. 2.2 ρ is strictly increasing on some [0, µ) ⊂ [0, ∞) on which ρ ranges over
[0, 1). Choose the unique preimages of ε and 1− ε in (0, µ) as distance thresholds
d1 and d2 if ε > 0. For ε = 0, choose the thresholds 0 and min(x|ρ(x) = 1). Then
all pairs of points have a distance either below d1 or above d2. In the former case,
they belong to the same partition element, and in the latter, they belong to different
partition elements.

In other words, if the separatedness values ρij are sufficiently close to 0 and 1,
there are no “bridges” between clusters. Trivial clustering algorithms such as
thresholded Single Linkage clustering or even just thresholding around arbitrary
points can safely obtain a crisp clustering.

We have established that a metric representation of points is suitable for en-
coding partitions. In particular, when ρ(∥xt

i − xt
j∥) converges to 0 or 1 for each

2.4 from multicut to mod shift 23

pair i, j as t → ∞, the vector
(

ρ(∥xt
i − xt

j∥)
)

i,j
is close to a binary Multicut vector

and encodes a valid partition of the data. Defining the feasible set of Mod Shift
Fρ := {ρ(∥xi − xj∥)|x1, . . . , xn ∈ Rk}, we conclude that its integral points are pre-
cisely the Multicut vectors.

Corollary 2.4. Let ρ : R≥0 → [0, 1] be a surjective, continuous, non-decreasing and
concave function with ρ(0) = 0. Then the integral points of Mod Shift’s feasible set Fρ are
exactly the Multicut vectors. Hence, the optimal Multicut solution to the signed graph
partitioning problem with Mod Shift’s weights w(d0

ij) as edge weights is the same as the
optimal integral solution of Mod Shift.

Proof. The integral points of Fρ are such that for every pair of points xi and xj we
have ρij := ρ(∥xi − xj∥) = 0 or ρij = 1. Applying Prop. 2.3 with ε = 0 to such an
integral point yields the partition of data points whose Multicut vector is (ρij)ij.
Conversely, a Multicut vector encodes a partition. Place the points x1, . . . , xn in Rk

such that points in the same partition element have the same position and place
points of different partition elements at any distance greater than the smallest value
at which ρ equals 1. This is possible even for k = 1. Then ρij is either zero or one,
hence integral, and equals the Multicut vector.

The statement on optimal solutions follows directly from the above and the
similarity of the objective functions of Mod Shift and Multicut.

As the points xt
i lie in Euclidean space, a metric space, their distances always

respect the triangle inequality. By choosing ρ to be concave, the triangle inequalities
also hold for the separatedness ρ(dt

ij). In the Multicut formulation (2.3) the triangle
inequalities over edge indicators need to be enforced independently. By modeling
the separatedness based on point configurations in a metric space, they are automat-
ically satisfied in Mod Shift, and we do not have to impose them explicitly. In other
words, our separatedness based on points in a metric space is a relaxation of the
binary Multicut vector that is by design regularized towards encoding a partition.
Since we use Euclidean space as metric space, we restrict even more than just by
the triangle inequalities, which we discuss in the following Sec. 2.5.

Prop. 2.3 leaves some freedom for choosing ρ. As points in Euclidean space
are identical if and only if they have zero distance, one might be inclined to
choose ρ(d) = 1(d = 0), the Potts function. However, the Potts function violates
the continuity assumption and does not provide useful gradients, making gradient
descent impossible. Therefore, we approximate the Potts function with a function ρ

with non-zero gradients.
Often, the clustering objective for nearby points in Euclidean space is essentially

quadratic [26, 68, 148]. While this yields numeric stability for pairs of points whose
distance approaches zero, it also means that small non-zero distances have little
incentive to become crisp and the clusters remain spread out. But to make the
extraction of a hard clustering trivial, we want cluster members to collapse to a
single point. Therefore, we choose a ρ with a strictly positive derivative at zero so
that zero distance is strongly preferred over a small non-zero distance. In fact, the
concavity requirement of Lem. 2.1 and Prop. 2.3 makes a strictly positive derivative
of ρ at 0 a necessity. The resulting numerics at distance zero, where Mod Shift’s
objective function (2.33) lacks a derivative, are not a problem for powerful gradient
descent optimizers such as Adam or suitable learning rate decays. We discuss

24 mod shift

convergence guarantees for Adam in more detail in Appendix B.5. One realization
of our specifications is ρ(d) = min(d

2β , 1), depicted together with others in Fig. 2.2b.

2.5 mod shift’s feasible set and the multicut polytope

So far, we only used the fact that the space Rk in which the points xi lie is a
metric space. However, distances in Euclidean space are restricted by more than the
triangle inequality. This section explores how Mod Shift’s feasible set Fρ relates to
(relaxations of) the convex hull of all Multicut vectors, the Multicut polytope MC.

The following lemma analyzes spaces as depicted in Fig. 2.3 and will be handy
later.

Lemma 2.5. The set of four points ∆ = {0, 1, 2, 3} with symmetric map d : ∆2 → R≥0

given by d(i, i) = 0, d(j, j′) = 1 and d(0, j) = α for i ∈ ∆ and j, j′ ∈ ∆\{0} is a metric
space if and only if α ≥ 0.5 and can be realized as a point configuration in Euclidean space
if and only if α ≥ 1√

3
.

Proof. Symmetry holds by construction, and for α > 0, we also have definiteness.
To show that (∆, d) is a metric space, all that remains is the triangle inequality. The
only triangle inequalities that could be violated are of the form

1 = d(1, 2) ≤ d(1, 0) + d(0, 2) = 2α. (2.14)

Hence, all triangle inequalities hold precisely for α ≥ 0.5.
Suppose the three points 1, 2, 3 form an equilateral triangle in Euclidean space.

As they all have the same distance α from 0, the only possible positions for 0 are on
a line through the center of the triangle given by 1, 2, 3 and perpendicular to the
plane it spans. Hence, the metric space (∆, d) can be realized in Euclidean space
exactly if α is at least 1√

3
, which is the distance from 0 to the other points if it lies at

the center of the triangle given by 1, 2, 3.

2.5.1 Mod Shift and Multicut relaxation by triangle inequalities

Here, we relate Mod Shift’s feasible set Fρ with the known Multicut polytope
relaxation C given as the feasible set of the following relaxed Multicut problem
(2.3), see [175]:

argmin
yij∈[0,1]

∑
i<j

yij · w̃ij, such that ∀i, j, k : yik ≤ yij + yjk. (2.15)

In other words, C is the intersection of the unit hypercube in R(n
2) with the set of

distances that respect the triangle inequalities (the metric cone [45]). By Lem. 2.1,
Mod Shift respects the triangle inequalities for concave ρ, so that Fρ is contained
in C. The next proposition shows that this inclusion is strict for suitable ρ.

Proposition 2.6. Let ρ : R≥0 → [0, 1] be surjective, non-decreasing, concave with
ρ(0) = 0 and continuous at this point. If n ≥ 4 there exist vertices y of C ⊂ R(n

2) which
are not in Fρ.

2.5 mod shift’s feasible set and the multicut polytope 25

1 2

3

0

1

11

α
α

α

Figure 2.3: Example of the regularization of point distances in a metric space of four
elements. The outer distances are 1, and the ones to node 0 are α. The triangle
inequality implies that if two points in a metric space have a distance d, then
a third point must have a distance of at least d

2 to at least one of them. This
way, chaining effects are somewhat limited in metric spaces. So, if the points
of the figure are in a metric space, α must be at least 0.5. If these points live
in Euclidean space, the regularization is even stronger. In fact, α = 0.5 is not
possible in this case as point 0 would have to lie on the midpoints of the lines 12,
23 and 31 simultaneously. The smallest possible value of α in a Euclidean space
is 1√

3
, in which case the figure is an equilateral triangle with 0 at its midpoint,

see Lem. 2.5.

Proof. We start with the case n = 4. It suffices to show that the distances y in the
configuration in Fig. 2.3 with α = 0.5 constitute a vertex of C that is not in Fρ.
Clearly, y lies in C as all triangle inequalities are satisfied, and its values are in [0, 1].
Since y lies in R(4

2) = R6, we need to find 6 linearly independent constraints valid
for C that are active at y, to show that y is a vertex of C. It is easy to check that
the three triangle inequalities induced by the central vertex and two outer vertices
together with the three outer edges of maximal value 1 form such a set. Thus, y is a
vertex of C.

Next, we show that it cannot lie in Fρ. By Lems. 2.1 and 2.2, we know that ρ

continuously and strictly increases from 0 to 1 and remains constant from there
on. Suppose, for a contradiction, that there were four points x1, . . . , x4 ∈ Rk with
ρij := ρ(∥xi − xj∥) = yij for all 1 ≤ i < j ≤ 4. Denote the distance between points
xi and xj by dij. Since we assume ρij = yij, we get ρ12 = ρ14 + ρ24. Without loss
of generality, we can assume d14 ≤ d24. By concavity and monotonicity of ρ and
because of ρ(0) = 0, we get the first three of the inequalities in

ρ14

d14
≥ ρ24

d24
≥ ρ12

d12
≥ ρ12 − ρ24

d12 − d24
≥ ρ14

d14
. (2.16)

The last inequality stems from our previous computation and the triangle inequality
d12 ≤ d14 + d24. But this induces

ρ14

d14
=

ρ24

d24
=

ρ12

d12
(2.17)

which implies, together with the concavity and monotonicity of ρ, that ρ is lin-
ear between 0 and d12. But at d12 we know that ρ reaches its maximal value
ρ(d12) = y12 = 1. Thus, ρ(x) = min(x

d12
, 1). Now, by symmetry and easy compu-

tation, we get that dij = yij · d12 for all 1 ≤ i < j ≤ 4. So the point configuration
x1, . . . , x4 is just a scaled version of Fig. 2.3 with α = 0.5. By Lem. 2.5 such a

26 mod shift

point configuration cannot be realized in Euclidean space so that we arrive at a
contradiction. Thus, y does not lie in Fρ.

Finally, we describe how to construct such vertices y of C not in Fρ for n > 4. The
key is to observe that if y is mapped to the above configuration on four points by a
projection R(n

2) → R6 induced by a map {1, . . . , n} → {1, 2, 3, 4}, then y cannot lie
in Fρ by the arguments for n = 4 above. A simple way to construct such a y is by
setting yij as above for 1 ≤ i < j ≤ 4 and yij = 1 for j ≥ 5 and all i. This y clearly
lies in C and projects as desired. It is a vertex of C because we add sufficiently many
variables at their maximal value: For m ≥ 4 the equations y1m = 1, . . . , ym−1,m = 1
add m− 1 active constraints to the set of active linearly independent constraints. So
we have

6 +
n

∑
m=5

(m− 1) =
(

n
2

)
(2.18)

linearly independent active constraints.

To summarize, we have Fρ ⊊ C.

2.5.2 Odd-Wheel Inequalities

After the triangle inequalities, the odd-wheel inequalities are the next important set
of inequalities valid for Multicut vectors. Here, show how Mod Shift’s separatedness
variables ρij fail to respect them and how this can lead to unwanted minima of
Mod Shift in Prop. 2.7.

Given an even number of nodes v0, . . . , vm in a positively edge-weighted graph
G = (V, E, ρ) in which all edges mentioned below exist, the odd-wheel inequali-
ties [46] are inequalities of the form

m

∑
i=1

ρi,i+1 −
m

∑
j=1

ρ0,j ≤
m− 1

2
, (2.19)

where the m-th summand of the first sum is ρ1,m. Intuitively, this means that the
weight of the wheel’s circumference v1, . . . , vm with center v0 must be sufficiently
larger than the sum of the spokes’ weights ρ0,j. These inequalities must hold for
any ρij that are to encode a partition of the nodes (where ρij = 0 (1) stands for
i and j in the same (different) element(s) of the partition). In the presence of the
triangle inequalities, the critical case for weights in {0, 1} is when all ρi,i+1 are
1. Then the odd-wheel inequalities ensure that the center node is, on average,
sufficiently separated from consecutively different partition elements. However,
they do not hold for all distances between Euclidean points, and thus Mod Shift’s
approximation to the Multicut problem does not guarantee them:

Proposition 2.7. Mod Shift with ρ(d) = min(d
2β , 1) and w(d) = max(1− d

β ,−1) has
an equilateral triangle of side length 2β with fourth point at its center, see Fig. 2.3, as a local
minimum and convergences to this minimum for certain start configurations. It becomes a
global minimum for suitably chosen weights. However, the resulting ρ-values violate an
odd-wheel inequality and do not encode a crisp, well-separated clustering.

Proof. Let the points of the equilateral triangle be denoted x1, x2, x3 and its center x0.
We call this configuration C∗. We first show how it violates an odd-wheel inequality.

2.5 mod shift’s feasible set and the multicut polytope 27

Applying ρ to the point configuration, we get a metric space consisting of three
points with mutual distance 1 and a fourth point that has distance 1√

3
to each of

them. We compute that this configuration violates the odd-wheel inequality for
the wheel consisting of the former three points with the fourth point as the wheel
center:

3− 3√
3
= (3−

√
3) ≰ 1 =

3− 1
2

. (2.20)

We now argue that C∗ is a global solution for Mod Shift with ρ as in the setting of
the proposition and for weights wij = M≪ 0 for i, j ̸= 0 and w0j = 1 for j = 1, 2, 3.
For small enough M, any solution of Mod Shift’s objective (2.4) has ρij = 1 for
i, j ̸= 0, as the derivative of Mod Shift’s objective by ρij is at most M + 3≪ 0 and
it is clearly feasible to have all ρij = 1 for i, j ̸= 0 at the same time. Hence, in an
optimal configuration, we have dij ≥ 2β for i, j ̸= 0.

If x1, x2, x3 are colinear, then an optimal position for x0 would be on top of any
of the other xj, yielding an objective value of 3M + 2. We obtain the same value
if x1, x2, x3 form a proper triangle and x4 coincides with one of its corners. But
configuration C∗ yields objective value 3M +

√
3, which is smaller. Hence, in the

optimal configuration x1, x2, x3 form a proper triangle ∆ and the optimal position
of x4 is at the geometric median of ∆, which is in the interior of ∆, see [166]. Since
ρ is non-decreasing, scaling the whole configuration down such that ∆’s shortest
side length is 2β does not worsen the objective function and strictly improves it
if some d0j is less than 2β. Otherwise d0j ≥ 2β for j = 1, 2, 3 and the objective
value is 3M + 3 and hence superoptimal. Therefore, we know that in any optimal
configuration one side of ∆ has length 2β. If two sides have larger lengths, one can
move the node incident to both directly towards x0, keeping all side lengths of ∆ at
least 2β but decreasing the objective as soon as the distance of the moving point to
x0 gets smaller than 2β. Assume only one side length is larger than 2β, say the one
incident to x2 and x3. Moving x2 slightly along the circle of radius 2β around x1

towards x3 keeps d12 and d01 fixed but decreases d02 (which must be less than 2β in
this situation) and hence lowers the objective value.

Thus, any locally but not globally optimal configuration has an objective value
larger than C∗. We are done if C∗ is locally optimal. Clearly, x0’s position as the
geometric median is optimal given ∆. Any nonzero subgradient of (2.4) at xj, j ≥ 1
points in a direction that increases some side of ∆ incident to xj. Changing C∗

according to any such subgradient yields a configuration deemed worse by the
above arguments as it would increase at least one side of ∆ above 2β. So C∗ is the
only global minimum of Mod Shift for weights as defined above.

It remains to show that C∗ is the convergence point for some initial point con-
figurations with weights given by the weight function w from the setting of the
proposition. Suppose the initial configuration of four points is a scaled-down ver-
sion of C∗ by a factor α ∈ (3+

√
3

8 ,
√

3
2). Then one can choose some ε > 0 such

that

α > max

(√
3

2
(1− ε),

1
2

(
1 +

ε√
3

))
(2.21)

28 mod shift

which implies

w := w(∥x0
i − x0

j ∥) < −
ε√
3

(2.22)

0 < w0 := w(∥x0
0 − x0

i ∥) < ε. (2.23)

As all point distances are below 2β, (2.4) is differentiable. By symmetry, we have
∂E(x,x0)

∂x0
= 0 and x0 is at its optimal position given x1, x2, x3 as w0 > 0. For the points

xj with j > 0, we have

∂E(x, x0)

∂xj
=

√
3w + w0

2β

xj − x0

∥xj − x0∥
. (2.24)

The first fraction is negative by the estimates on w and w0. Hence, gradient descent
moves xj directly away from x0. If the step size of the gradient descent is small
enough, each update will slightly scale up the point configuration keeping x0 in its
place. Once the side lengths of the triangle get to 2β, a local optimum is reached.

Since we know that the odd-wheels inequalities are valid for the Multicut vectors
and thus for the Multicut polytope, but not necessarily for Mod Shift’s feasible set
Fρ := {ρ(∥xi− xj∥)|x1, . . . , xn ∈ Rk}, we deduce Fρ ̸⊂ MC. However, the 0/1-valued
points in both MC and Fρ are exactly the Multicut vectors if ρ is as in Cor. 2.4.

2.5.3 Mod Shift’s feasible set Fρ is not convex

We finish this section by showing that the ρ’s concavity and the non-convexity of
the cone of Euclidean distances, see Section 6.3 in [42], make Fρ non-convex such
that it is also not an outer relaxation of MC.

Proposition 2.8. If n ≥ 4 and ρ is as in Prop. 2.3 and surjective, then Fρ is not convex.
Furthermore, it does not contain MC.

Proof. It suffices to prove the claim for n = 4. For a higher number of points,
consider 4 points as described below and add arbitrary other points. We will show
that a certain convex combination of Multicut vectors on four points lies outside
of Fρ. Since the Multicut vectors all lie in Fρ this shows non-convexity. As MC is
convex and contains the Multicut vectors, it also contains any convex combination
of them, showing that Fρ does not contain MC. Consider four points 0, 1, 2, 3 and
the three cuts induced by separating 1, 2 or 3 from the other three points. Let y be
their mean. Then we have y12 = y13 = y23 = 2

3 and y01 = y02 = y03 = 1
3 . Suppose

for a contradiction that there were four points x0, . . . , x3 in Euclidean space, such
that ρ(∥xi − xj∥) = yij for all 0 ≤ i < j ≤ 3. As ρ strictly increases from 0 to 1
(Lem. 2.2) there are unique preimages d and d′ of 1

3 and 2
3 under ρ. Thus, x1, x2, x3

form an equilateral triangle of side length d′ and x4 is of distance d to each of them.
By monotonicity and concavity of ρ as well as ρ(0) = 0, we know that

1
3
= ρ(d) ≥ ρ(d′)

d′
· d =

2d
3d′

, (2.25)

or equivalently that d′ ≥ 2d. But by the triangle inequality, we also have d′ ≤ 2d.
Hence, d′ = 2d and the points would form a scaled version of the configuration

2.6 mean shift and mod shift 29

depicted in Fig. 2.3 with α = 0.5. By Lem. 2.5 this is not realizable in Euclidean
space. Thus, we arrive at a contradiction and conclude that y does not belong
to Fρ.

2.5.4 Discussion of modeling cluster affiliations with ρ

We summarize our insights on the advantages and disadvantages of modeling
cluster affiliations with a separatedness function ρ and points in Euclidean space.
While using ρ instead of Multicut’s binary edge indicator variables yij makes
Mod Shift’s objective differentiable and dispenses with the need for the triangle
inequalities (Lem. 2.1, Prop. 2.3), there is no guarantee that ρ(dt

ij) converges to 0 or
1. In fact, the second most prominent class of inequalities valid for Multicut vectors,
the odd-wheel inequalities [46], are not automatically satisfied in the Mod Shift
setting (Prop. 2.7). This can lead to minima of the Mod Shift objective at which
ρ(dt

ij) is not integral and hence does not correspond to a clustering. Moreover, the
set of feasible ρ-values Fρ, which contains all Multicut vectors (2.4), is in general
non-convex due to the non-convexity of ρ and of the space of Euclidean distances,
see (Prop. 2.8 and Sec. 6.3 in [42]) and does not contain the convex hull of all
Multicut vectors.

The non-convexity of Fρ might challenge finding a global minimum via gradi-
ent descent. Despite these theoretical issues, we empirically find in Sec. 2.7 that
Mod Shift does produce well-pronounced clusters and observe in Appendix B.4.10
that Mod Shift approximates the Multicut energy well.

2.6 mean shift and mod shift

Mean Shift is the best-known point-shifting clustering algorithm, particularly popu-
lar in image processing. In this section, we compare it to Mod Shift and see how
Mod Shift avoids some problems of Mean Shift. For instance, Mod Shift can con-
verge to multiple clusters even if the data density has a single mode, see Prop. 2.15,
while Mean Shift necessarily yields a single cluster and hence may merge data
points that are arbitrarily far apart.

2.6.1 Update rule

Mean Shift and Mod Shift are most similar in the fixed setting. Since the sum of
all weights is constant in Mod Shift, we can replace ρ with 1− ρ and minimization
with maximization in problem (2.4). Thus, Mod Shift can be seen as gradient ascent
on a weighted sum of kernels 1− ρ(∥ · − · ∥). However, very different from Mean
Shift, some weights can be negative. This makes the update rule of Mean Shift
given by a fix-point iteration for the equation ∂KDE(xt,x0)

∂xt
i

= 0, where KDE is the
kernel density estimate of the data, unsuitable for Mod Shift. Such an update rule
for Mod Shift would result in

xt+1
i :=

∑j ̸=i
ρ′(dt

ij)

dt
ij
· wij · xt

j

∑j ̸=i
ρ′(dt

ij)

dt
ij
· wij

. (2.26)

30 mod shift

As the weights wij are allowed to be negative in Mod Shift, the denominator can
be (close to) zero for points on which both attraction and repulsion act while the
numerator is not. This yields arbitrarily large update steps. Therefore, we did not
explore this optimization strategy further but relied on modern gradient descent
optimizers for Mod Shift

2.6.2 Adaptive Mod Shift

Adaptive Mean Shift sends points to kernel-weighted means of the neighboring
points of the current time step instead of to kernel-weighted means of nearby
initial point locations as in fixed Mean Shift. It is possible to define corresponding
versions of Mod Shift, too. The version of Sec. 2.4.1 can be viewed as “fixed” since
it derives the weights from the initial point positions and thus keeps them constant
during optimization. Due to its relation to the Multicut problem and because of the
importance it gives to the process that generated the initial point positions (e.g.,
a neural network), we prefer the fixed version and refer to it when speaking of
Mod Shift unless specified otherwise.

In the adaptive version of Mod Shift, the weights depend on the current point
positions instead of the initial point positions as in fixed Mod Shift. However,
naively doing so, i.e., considering the problem

argmin
x∈Rn×k

∑
i<j

ρ(∥xi − xj∥) · w(∥xi − xj∥) (2.27)

is not ideal. Firstly, the distance threshold below which two points attract and above
which they repel each other does not correspond directly to w’s zero-crossing β

anymore, making it harder to interpret.

Lemma 2.9. Let ρ : [0, ∞) → [0, 1] be increasing and both differentiable and strictly
increasing on [0, 2β] for some β > 0 and let w : [0, ∞)→ [−1, 1] be positive below β and
negative above β as well as strictly decreasing and differentiable on [0, 2β] with negative
derivative at β. Then the naive adaptive Mod Shift version (2.27) repels points with distance
in [γ, 2β] for some γ < β. If ρ and w are additionally concave below β, then we can choose
γ such that the naive adaptive Mod Shift version also attracts points with distance below γ.

Proof. We compute the derivative of the objective function in Eq. (2.27) with respect
to the distance d := ∥xi − xj∥ of some pair of points xi and xj

(ρ · w)′(d) = ρ′(d)w(d) + ρ(d)w′(d). (2.28)

The first summand is positive below β and negative in (β, 2β]. The second summand
is non-positive everywhere and strictly negative at β. Thus, their sum is negative on
[γ, 2β] for some γ < β. Points with a distance between γ and 2β repel each other.

For the second part, we observe that by ρ’s concavity the term ρ′(d)w(d) is
strictly decreasing on [0, β] and by the concavity of w the negative term ρ(d)w′(d)
is decreasing on [0, β]. Hence, (ρ · w)′ is strictly decreasing on [0, β] and thus has at
most one root. Choosing γ to be this root or, if none exists, to be 0 makes (ρ · w)′

positive on [0, γ), so that points with distance below γ attract each other.

In addition to a less interpretable β parameter, the naive adaptive Mod Shift
version has an undesirable unique global minimum.

2.6 mean shift and mod shift 31

Lemma 2.10. Let ρ : [0, ∞)→ [0, 1] be increasing and w : [0, ∞)→ [1,−1] be decreasing
with negative infimum. Then the unique global minimum (or infimum) value of the naive
adaptive Mod Shift objective function in Eq. (2.27) is attained when all points are far apart
from each other.

Proof. We write the proof as if neither ρ nor w change beyond some value 2β, but if
either of them does not become constant, the same proof applies with “minimum”
replaced by “infimum” or “maximum” by “supremum”. The term ρ(d) · w(d) is
lower bounded by maxρ ·minw, where maxρ is the maximum of ρ and minw is w’s
minimum, which is negative. Hence, the objective function in Eq. (2.27) becomes
globally minimal when for all pairs of points ρ is maximal and w minimal. That is,
if all pairs of points are far apart from each other according to the monotonicity of
ρ and w.

Note that the conditions in Lem. 2.9 and 2.10 are met for all functions ρ and w in
Fig. 2.2.

Like naive adaptive Mod Shift, both fixed and adaptive Mean Shift’s objectives
also have single global optima. But here, all points are collapsed to a single cluster.
However, fixed Mean Shift’s update rule does not necessarily converge to this trivial
solution. We will see below that a better version of adaptive Mod Shift will have
meaningful global optima.

The naive Mod Shift version is clearly not a good choice. The problem is that
it only considers the interaction between clusters, which always benefits from
decreasing the weight function. A better notion of “adaptive” Mod Shift avoids this
focus on repulsion and corresponds to a different but equivalent formulation of the
fixed version. We put ρ̃ := 2ρ− 1 and consider the problem

argmin
x∈Rn×k

∑
i<j

ρ̃(∥xi − xj∥) · w(∥x0
i − x0

j ∥). (2.29)

Intuitively speaking, we do not only try to minimize attraction and maximize
repulsion between clusters, as in (2.4), but also to maximize attraction and minimize
repulsion within a cluster. If the weights depend on the initial distances, this is
equivalent to our fixed version of Mod Shift.

Lemma 2.11. The optimization problem (2.29) is equivalent to fixed Mod Shift (2.4).

Proof. We have

∑
i<j

ρ̃(∥xi− xj∥) ·w(∥x0
i − x0

j ∥) = 2 ∑
i<j

ρ(∥xi− xj∥) ·w(∥x0
i − x0

j ∥)−∑
i<j

w(∥x0
i − x0

j ∥).

(2.30)
The last term is a constant, only depending on the initial point positions. The
first term on the right-hand side is just twice the objective function of fixed
Mod Shift (2.4)

In the Multicut literature, this more symmetric viewpoint and its equivalence to
only considering intra- or only inter-cluster interaction are well-known. Motivated
by the equivalent form of fixed Mod Shift in Eq. (2.29), we define the following
optimization problem for “adaptive” Mod Shift

argmin
x∈Rn×k

∑
i<j

ρ̃(∥xi − xj∥) · w(∥xi − xj∥). (2.31)

32 mod shift

β 2β
dw

β

2β

d
ρ

(a) fixed, at time t:
dρ = ∥xt

i − xt
j∥,

dw = ∥x0
i − x0

j ∥

β 2β
dw

β

2β

d
ρ

(b) naive-adaptive,
at time t:

dρ = ∥xt
i − xt

j∥ = dw

β 2β
dw

β

2β

d
ρ

−1

0

1

(c) adaptive,
at time t:

dρ = ∥xt
i − xt

j∥ = dw

Figure 2.4: Contour plots of Mod Shift’s objective function for a single pair of points. ρ and
w are the simple rectified linear functions from 2.4.2 and 2.4.3. The distances
dw and dρ on which the weight w and the separatedness ρ depend are coupled
differently for fixed, naive-adaptive, and adaptive Mod Shift. To illustrate these
differences, we plot them on different axis and describe how they can change
as the different Mod Shift versions update. Initially, at t = 0, the distance of
the pair of points lies on the diagonal as current and initial point positions
coincide. Two initial situations with update directions are depicted as green
dots with arrows in each subfigure. In fixed Mod Shift only the distance for
the separatedness ρ gets updated as only the separatedness depends on the
current point positions. Hence, updates move along vertical lines in the left
plot. In adaptive Mod Shift the distance for both ρ and w changes jointly as they
both depend on the current point positions. Therefore, the updates follow the
diagonal. The two points attract each other in any situation to the left of the
black dot. In situations to the right of the black dot, the points repel each other.
Note that in (b) this threshold differs from dw = β. Figure best viewed in color.

This version of adaptive Mod Shift does not suffer from the issues in Lems. 2.9
and 2.10.

Lemma 2.12. Let ρ : [0, ∞)→ [0, 1] differentiable with positive derivative on [0, 2β) for
some β > 0 at which ρ(β) = 0.5 and let w : [0, ∞) → [−1, 1] be positive below β and
negative above β as well as differentiable on [0, 2β) with negative derivative. Then points
with a distance below β attract each other and points with a distance in (β, 2β) repel each
other under adaptive Mod Shift (2.31).

Proof. As in the proof of Lem. 2.9, we analyze the derivative of the term ρ̃ · w by
the distance d of some pair of points

(ρ̃ · w)′(d) = 2ρ′(d)w(d) + (2ρ(d)− 1)w′(d). (2.32)

By the assumptions, both summands are positive on [0, β) and negative on (β, 2β).

So with the additional rescaling of ρ, such that it equals 0.5 at β, adaptive
Mod Shift 2.31 retains the interpretability of the parameter β: Points closer than β

attract, while points further apart than β repel each other.
We depict the regimes of attraction and repulsion of fixed, naive adaptive and

adaptive Mod Shift in Fig. 2.4.

2.6 mean shift and mod shift 33

Having defined the proper notion of adaptive Mod Shift, we move on to its
analysis. The adaptive version of Mean Shift will eventually collapse all points
when using a kernel with infinite support, such as the RBF kernel, see Thm. 3
of [31]. This is clearly undesirable, and one advantage of Mod Shift, both fixed and
adaptive, is that it can produce stable multi-cluster solutions by balancing attractive
and repulsive interaction. We have discussed the minima of fixed Mod Shift in
Sections 2.4 and 2.5. Now, we focus on the minima of adaptive Mod Shift.

We show in Lem. 2.13 that the partitions of the dataset are in one-to-one corre-
spondence with the global minima of adaptive Mod Shift. Whenever we speak of
minima, we also include infima in the case that ρ reaches 1 only asymptotically.

Lemma 2.13. Let ρ : [0, ∞) → [0, 1] be an increasing function with [0, 1) ⊂ im(ρ)

and let w : [0, ∞) → [−1, 1] be decreasing and surjective with w−1(0) = 0 and
w−1(−1) = [2β, ∞) for some β > 0. Then the global minima of adaptive Mod Shift
(2.31) correspond to the partitions of data points and vice versa.

Proof. We have im(ρ̃) = [−1, 1] and im(w) = [−1, 1]. Therefore, the term ρ̃t
ijw

t
ij

gets minimal for ρ̃t
ij = 1 and wt

ij = −1 or for ρ̃t
ij = −1 and wt

ij = 1. The first
case corresponds to a distance between xt

i and xt
j of at least 2β; the second case

corresponds to xt
i = xt

j . Hence, global minima of adaptive Mod Shift correspond to
separatedness values ρ(dt

ij) ∈ {0, 1}, i.e., to a valid partition, see Prop. 2.3.
Conversely, realizing a partition of the data points by separating different clusters

sufficiently far and placing points of the same cluster on the same location induces
ρ(dt

ij) ∈ {0, 1} and thus a global minimum of adaptive Mod Shift.

We have exhibited that partitions correspond to global minima of adaptive
Mod Shift, but there might be additional local minima that do not translate to
pronounced clusters.

2.6.3 Mean Shift suffers more from long-range merges than Mod Shift

Mean Shift’s focus on the data density makes identifying multiple clusters difficult
if the density does not indicate them. In particular, points can move arbitrarily far
towards a region of high density, see Lems. 2.14 and 2.16. In contrast, Mod Shift’s
long-range repulsion provides a bias against such distant merges, see Props. 2.15
and 2.17.

We know that both fixed Mean Shift and Mod Shift separate all data points from
each other for sufficiently small scale parameters. However, to illustrate that Mean
Shift suffers more from arbitrarily far movement of points than Mod Shift, we thus
consider a dataset given as a density function f rather than discretely. This way,
choosing a scale parameter smaller than the smallest distance between data points
becomes impossible. Moreover, this limit case permits an analytical treatment.

We appreciate that both Mod Shift and Mean Shift are designed for finite datasets,
which might be sampled from a continuous density. Nevertheless, we will treat the
data as (and not sampled from) a continuous density in the following. This can
be interpreted as an infinite sample and can provide us with some intuition on
the different behavior of Mean Shift and Mod Shift on large finite datasets. We
confirm that the intuition gained from the infinite limit case does carry over to

34 mod shift

the finite regime by empirically validating the formal results in this section. For
instance, this continuous setting has been used in Section 2 of [23] for the conver-
gence speed analysis of Mean Shift. Furthermore, clustering continuous densities
is a well-established research field in physics, for instance, for modeling phase
separation, see for instance [56] and references therein.

We now describe what we mean by Mod Shift if the data is a continuous density
function f . Given continuous ρ and w as before, the objective of Mod Shift becomes
finding a measurable map ϑ : supp(f)→ Rk that minimizes the energy

E(ϑ, f) =
∫

x

∫
y

ρ(∥ϑ(x)− ϑ(y)∥) · w(∥x− y∥) · f (x) f (y)dxdy. (2.33)

The interpretation is that data density starting out at x moves to ϑ(x). We typi-
cally consider functions ϑ with finite image, i.e., finite partitions of the dataset.
Mod Shift’s optimization strategy still is gradient-descent: It defines a sequence
of maps ϑt : supp(f)→ Rk mapping the density f (x) to its location xt := ϑt(x) at
time t. Given the configuration at time t− 1, the next map will be given by

ϑt(x) = xt−1 − learning rate · ∂E(ϑt−1, f)
∂xt−1 , (2.34)

where ϑ0 is the identity map. In such an update step, we say that the data density
f (x) is shifted from ϑt−1(x) to ϑt(x). We only consider fixed Mod Shift in Sec 2.6.3.

In the following, we will illustrate cases in which fixed and adaptive Mean Shift
both merge arbitrarily far points, but Mod Shift does not. The critical property of
Mod Shift that prevents very long merges is its distance-based repulsion. Distant
points repel each other in Mod Shift avoiding merges between such points. In
contrast, there is no repulsion in Mean Shift. Thus, a sufficiently high data density
can attract points arbitrarily far away.

Single Mode Datasets

Let the dataset be given by a differentiable probability density function f : R→ R≥0

with a unique extremum, which is an isolated maximum.

Lemma 2.14. Fixed and adaptive Mean Shift with an RBF kernel have a single optimum
for f for any bandwidth. This optimum corresponds to a single cluster.

Proof. Thm. 3 of [31] shows the statement for the adaptive version. The fixed Mean
Shift version performs gradient ascent with implicitly defined step-size on the
density h = f ∗ g given as the convolution of f with an RBF kernel g. By scale-space
theory, e.g., Thm. 5 in [100], h has a single extremum, an isolated maximum, like f .
Hence, the entire dataset converges to the single mode.

In particular, data density can merge with arbitrarily distant parts of data density
in Mean Shift, limited only by the support of f . Note that this is independent of
the bandwidth of the RBF kernel g. The argument even holds for zero bandwidth,
where h = f .

2.6 mean shift and mod shift 35

In contrast, it is not optimal for Mod Shift to collapse the entire dataset.

Proposition 2.15.

1. Let w be a weight function with a scale parameter β such that w(d) = ϕ(d/β) for a
continuous, decreasing function ϕ independent of β, which is zero at β and negative
above β. Then for sufficiently small β collapsing the entire density to a single point is
suboptimal for Mod Shift.

2. Let w and ρ be continuous and point-symmetric on [0, 2β] around (β, 0) and (β, 0.5),
respectively. As usual, assume that ρ is increasing and ρ(0) = 0 and that w decreases.
For small enough β, the initial update of Mod Shift moves data density away from
the mode.

Proof. 1. Consider some x0 ∈ R such that neither F(x0) nor 1− F(x0) is 0, where F is
the cumulative probability density function of f . First, we show that for sufficiently
small β splitting the dataset at x0 yields a negative and thus better objective value
for Mod Shift than converging it to a single point, which would result in an objective
value of 0. Suppose

ϑ(x) =

a, if x ≤ x0

b, if x > x0

(2.35)

for some a < b and suppose further that ρ(b− a) = 1. We omit the potential limit
ρ→ 1 for simplicity of exposition. Now, we show that for sufficiently small β, this
ϑ, which splits the dataset into two sets at x0, yields a lower objective value than
collapsing the entire dataset into a single point. We prove this by observing that
as we decrease β, the attraction between points below and above x0 tends to zero,
while the repulsion between these sets is positive, see Fig. 2.5 for an illustration. Let
1 > ε > 0 be small enough that we can choose δ > 1 such that ϕ(δ) < −ε. Then for
any β we have w(d) < −ε for d > βδ. For x and x′ on the same side of x0, we have

ρ(∥ϑ(x)− ϑ(x′)∥) = ρ(0) = 0, (2.36)

while for x and x′ on different sides of x0, we have

ρ(∥ϑ(x)− ϑ(x′)∥) = ρ(b− a) = 1. (2.37)

36 mod shift

a bx0

2βδ

Figure 2.5: Illustration of why for sufficiently small β it is suboptimal for Mod Shift to
collapse even a density with a single mode. Indeed, it is better in terms of
Mod Shift’s objective to split at an arbitrary point x0. We consider the situation
in which the blue (red) shaded area has converged to point a (b) such that a and
b are sufficiently far away that ρ(b− a) ≈ 1. The density in the lightly shaded
areas has a distance of at least βδ to the area of the other color. The number δ
is chosen such that this induces some small repulsion ε > 0 independent of β.
Attraction can only exist between the darker shaded parts. But for β→ 0, this
area vanishes so that eventually repulsion dominates and the split at x0 becomes
favorable to collapsing the entire density. For more details confer Prop. 2.15.

Putting ψ(x, x′) := w(∥x− x′∥) f (x′) f (x)dx′dx the objective value of this configu-
ration is hence

x0∫
−∞

∞∫
x0

ψ(x, x′) (2.38)

=

(x0−βδ)∫
−∞

∞∫
x0

ψ(x, x′) +
x0∫

(x0−βδ)

∞∫
(x0+βδ)

ψ(x, x′) +
x0∫

(x0−βδ)

(x0+βδ)∫
x0

ψ(x, x′)

(i)
<− ε

(
F(x0 − βδ)(1− F(x0)) + (F(x0)− F(x0 − βδ))(1− F(x0 + βδ))

)
+

x0∫
(x0−βδ)

(x0+βδ)∫
x0

ψ(x, x′)

(ii)
< − ε

(
F(x0 − βδ)(1− F(x0)) + (F(x0)− F(x0 − βδ))(1− F(x0 + βδ))

)
+ w(0)(F(x0)− F(x0 − βδ)) · (F(x0 + βδ)− F(x0))

(iii)−−→
β→0

−εF(x0)(1− F(x0)) < 0.

At (i) we used the fact that w(d) < −ε for d > βδ. At (ii) we used that w is non-
increasing. The limit process in (iii) follows from the fact that F is continuous. The
calculation shows that whenever we split the data at some point x0 in the interior
of the support of f and choose the scale parameter sufficiently small, this yields a
better objective value for Mod Shift than collapsing everything to a single cluster.

2. Consider some point x0 of positive density but with negative derivative, which
is at least 2β to the right of the mode. Such a point exists for sufficiently small β.
We show that the density at x0 gets moved towards an area of lower density in the
initial Mod Shift step. Here, we assume that w and ρ are point-symmetric about

2.6 mean shift and mod shift 37

x0x0 − 2β
x0 − β x0 + β

x0 + 2β

Figure 2.6: Illustration for why a point over whose 2β-ball the data density is monotonous
initially gets shifted down the density by Mod Shift for point-symmetric ρ and
w, both clipped at 2β. The color encodes the signed magnitude of the force
exerted on x0 by the other points. As ρ is clipped at 2β, only density within
a ball of radius 2β sends a gradient to x0. The density between x0 − 2β and
x0 − β exerts repulsion on x0. Due to the downward slope of the density, this
outweighs the attraction of the density between x0 − β and x0. As a result, the
net force from density on the left of x0 points to the right. Similarly, attraction
outweighs repulsion for density on the right, and the resulting force on x0 also
points towards the right. In total, the initial update will move x0 towards a
region of lower density. For more detail confer Prop. 2.15.

their values at β on [0, 2β]. As ρ maps to [0, 1], this implies that ρ is constant at
value 1 beyond 2β. The gradient of E(ϑ0, f) at x0

0 is

∂E(ϑ0, f)
∂x0

0
=
∫

x<x0

ρ′(∥x− x0∥)w(∥x− x0∥) f (x) f (x0)
x0 − x
∥x0 − x∥dx

+
∫

x>x0

ρ′(∥x− x0∥)w(∥x− x0∥) f (x) f (x0)
x0 − x
∥x0 − x∥dx

(a)
= f (x0)

β∫
0

ρ′(β− t)w(β− t) ·
(

f (x0 − β + t)− f (x0 − β− t)
)
dt

− f (x0)

β∫
0

ρ′(β− t)w(β− t) ·
(

f (x0 + β− t)− f (x0 + β + t)
)
dt

(b)
< 0.

In (a), we reparametrized the integral by separately ranging over attractive and
repulsive forces of the same magnitude above and below x0. Note that we used the
point symmetry of ρ′w and that ρ′(∥x− x0∥) = 0 for points further apart from x0

than 2β. We used that f is decreasing on [x0 − 2β, x0 + 2β] in b). So there is more
density below x0 that repels it with a certain magnitude than density that attracts
it with the same magnitude and vice versa for points above x0. See Fig. 2.6 for
an illustration. Mod Shift updates each point by gradient descent on E(ϑ0, f) and
hence increases x0 in the first step. So it moves x0 away from the mode and down
the slope of f . By symmetry, a point at which f increases gets shifted to the left.

Note that the point symmetry assumption of Prop. 2.15 2. together with the
concavity that we often assume for ρ implies that ρ is the rectified linear function
ρ(d) = min(d/β, 1).

38 mod shift

101 103

iteration

−4

−2

0

2

4

lo
ca

ti
on

(a) β = 2

101 103

iteration

−4

−2

0

2

4

lo
ca

ti
on

(b) β = 1

101 103

iteration

−4

−2

0

2

4

lo
ca

ti
on

(c) β = 1
2

Figure 2.7: Mod Shift on 2048 samples of a standard normal distribution with rectified
linear ρ and w. The trajectories of 100 subsampled points are depicted over 50000
iterations. The points and their trajectories are colored according to the clustering.
Although the data distribution has a single mode, Mod Shift produces clusters
mainly dependent on the distance between data points. Similar to Prop. 2.15
2., points that start out at least 2β away from the mode at location 0 are moved
away from the mode in the first iterations.

Fig. 2.7 backs the above Prop. 2.15 empirically for the rectified linear versions
of ρ and w. Let us summarize its takeaways. The main convergence points are
separated by 2β, as for larger distance ρ sends no gradient. A very low learning rate
is chosen to illustrate Mod Shift’s behavior in detail, which is why some points on
borders of clusters did not converge yet. As Prop. 2.15 predicts, points x for which
[x− 2β, x + 2β] does not contain the mode at 0, initially move away from the mode
and usually end up in different clusters than the mode. In 2.7a and 2.7b, there is
a cluster centred at the mode, while in 2.7c the distribution seems to be split at
the mode. This shows that distance has a stronger influence on the clustering than
point density.

Uniform Data

Similar to the case of a dataset with a single, isolated mode above, we now compare
Mean Shift’s and Mod Shift’s behavior on a uniform density dataset.

Again, both fixed and adaptive Gaussian Mean Shift collapse the whole dataset
irrespective of the selected bandwidth and thus can lead to arbitrarily far merges.

Lemma 2.16. For the dataset [0, 1] with uniform density both fixed and adaptive Mean
Shift with an RBF kernel of any bandwidth σ > 0 have a single minimum, in which case
the entire dataset is contracted.

Proof. Since the RBF kernel has infinite support, the result for adaptive Mean Shift
is just a continuous version of Thm. 3 of [31]. For fixed Mean Shift, which performs
gradient ascent on the “shadow” kernel density estimate, it suffices to show that
this kernel density estimate has a single critical point, which is a maximum. The
kernel density estimate is

KDE(x) =
1∫

0

H(∥x− y∥)dy. (2.39)

2.6 mean shift and mod shift 39

By Thm. 2 of [31] we know that H = 1
π
√

2σ
exp(− z2

2σ2) is a Gaussian as well. Thus,
we have

KDE(x) =
1∫

0

1
π
√

2σ
exp

(
− (x− y)2

2σ2

)
dy (2.40)

=
1

π
√

2σ
·
(x∫
−∞

exp
(
− z2

2σ2

)
dz−

x∫
−∞

exp
(
− (z− 1)2

2σ2

)
dz

)
.

Taking derivatives, we obtain

KDE′(x) =
1

π
√

2σ
·
(

exp
(
− x2

2σ2

)
− exp

(
− x2

2σ2

)
exp

(
− x

σ2

)
exp

(
1

2σ2

))

= − 1
π
√

2σ
exp

(
− x2

2σ2

)
·
(

1− exp
(
− x

σ2

)
exp

(
1

2σ2

))
,

which is only zero for x = 0.5. This only critical point is a maximum as KDE(x)
integrates to one and hence must decay to zero for large |x|.

The following proposition strengthens the claim that Mod Shift tends to separate
points according to their distance by showing that the optimal partition of a uniform
line is to break it up into equisized intervals.

Proposition 2.17. Consider the dataset [0, 1] with uniform density. Let w be point sym-
metric about (β, 0) on [0, 2β], strictly decreasing on this interval, everywhere pointwise
non-decreasing in β and constant on [2β, ∞). Consider the measurable maps ϑ : [0, 1]→ R

with countable image consisting of isolated points at least d apart, where ρ(d) = 11. More-
over, assume that the preimage of ϑ induces a partition P of [0, 1] consisting of Lebesgue
measurable sets with a boundary of zero measure.2 For such a ϑ Mod Shift’s energy at ϑ is

E(P) := E(ϑ, u) =
∫

0≤x<y≤1

ρP(x, y)w(∥x− y∥)d(x, y), (2.41)

with ρP(x, y) = 1(∄p ∈ P : x, y ∈ p).

1. For all β ̸= 0.5, there is an up to null sets unique optimal partition among the
considered partitions. It is a finite equidistant subdivision of [0, 1] into intervals.

2. For each optimal partition P in 1., its number of intervals |P| satisfies 1
2|P| ≤ β ≤ 1

|P|
for any β ̸= 0.5.

Proof. We recall that for fixed β, the sum of all weights is constant, see Sec. 2.6.2.
Hence, we can and will freely switch between minimizing inter-partition-element
interaction as in (2.41) and maximizing intra-partition-element interaction. More-
over, only non-null sets contribute to the objective, so without loss of generality,
we only consider partitions all but one of whose elements have strictly positive
measure and do not contain isolated points. Note that we can assume the optimal
partition to contain elements of positive measure as we assume it to be countable.

1 We omit the potential limit ρ→ 1 for ease of exposition
2 This is a real restriction as the “fat” Cantor set is a closed Lebesgue measurable set with empty

interior; hence it is its own boundary. Nevertheless, it has positive measure.

40 mod shift

Figure 2.8: Schematic illustration of the map ψp in the proof of Prop. 2.17 for p being the
blue partition element. Assuming the blue blocks are open, wherever two blue
lines meet, ψp misses a point, and wherever a red and a yellow line meet on the
lower line, ψp maps two points to the same image. The distance between several
elements of p has decreased, and the distances between members of the other
partition elements have not increased. Hence, the energy of the upper partition
is higher than that of the lower partition. Consequently, an optimal partition
consists of connected intervals.

1. Let λ be the Lebesgue measure. Suppose we have a partition element p ∈ P
that is separated by some non-null set, i.e., there is a set S with λ(S) > 0 and
λ(S ∩ p) = 0 such that λ([0, inf S] ∩ p) > 0 and λ([sup S, 1] ∩ p) > 0. We show
that we can replace P by a partition P̄ of smaller objective value by “contracting”
p, as depicted in Fig. 2.8. In order to do so, we have to exclude some measure-
theoretic pitfalls. Namely, we assume that λ(∂p) = 0. Then we know that the
interior of p differs from p only by a null set, and we can assume p to be open
without loss of generality. It is thus a countable union of disjoint open intervals
p = ⊔i∈N(ki, li), ki < li for all i (possibly intersected with [0, 1]).

Consider the function

ψp : [0, 1]→ [0, 1], (2.42)

x 7→

ψp,1(x) := λ([0, x) ∩ p), if x ∈ p

ψp,2(x) := x + λ((x, 1] ∩ p), if x /∈ p,

which we will use to contract p. We show that this function is almost everywhere
bijective in the sense that ∪{ψ−1

p (x)|x ∈ [0, 1], |ψ−1
p (x)| > 1} and [0, 1]\ im(ψp) are

both null sets. In fact, we will see that injectivity can only fail on the boundary of p,
and we can only miss a countable and thus null set, which again corresponds to
(parts) of the boundary of p, see Fig. 2.8.

We start with the almost injectivity. Clearly, ψp maps elements of p below or
equal to λ(p) and elements of its complement pc above or equal to λ(p). Let x ≤ y
be both in p with ψp(x) = ψp(y), i.e., λ((x, y) ∩ p) = 0. But p is open and contains
x and y, so x = y. Only a single point of p, namely 1 if it is contained in p, could be
mapped to λ(p). So the only non-injectivity we have to consider comes from

x + λ((x, 1] ∩ p) = y + λ((y, 1] ∩ p) (2.43)

for some x ≤ y in pc. But this means that

y− x = λ((x, y) ∩ p). (2.44)

Hence, x must be a closure point of the ki’s and y a closure point of the li’s. So,
both x, y are in the boundary of p, which was assumed to be of measure zero.

2.6 mean shift and mod shift 41

Before we turn to the almost surjectivity, we remark that the function

ψp,1 : [0, 1]→ [0, λ(p)], x 7→ λ([0, x) ∩ p) (2.45)

is a continuous, non-decreasing function which takes the values λ([0, ki)∩ p), i ∈N

on pc. Continuity is clear since changing some value x by at most ε can change the
value of ψp,1(x) by at most ε. Similarly,

ψp,2 : [0, 1]→ [λ(p), 1], x 7→ x + λ((x, 1] ∩ p) (2.46)

is also continuous, non-decreasing and takes the values λ(p) + λ([0, ki)∩ pc), i ∈N

on p.

For almost surjectivity, this implies that

[0, λ(p))\ im(ψp) = {λ([0, ki) ∩ p)|i ∈N}, (2.47)

which is of measure zero. The closed set pc contains its infimum and supremum.
So,

ψp(min pc) = ψp,2(min pc) = λ(p) and (2.48)

ψp(max pc) = ψp,2(max pc) = 1. (2.49)

By the continuity of ψp,2 and the intermediate value theorem, the whole interval
[λ(p), 1] clearly is in the range of ψp,2. Finally, note that if ψp,2 takes some value y
at x ∈ (ki, li) ⊂ p, then we also have

ψp(ki) = ψp,2(ki) = y, (2.50)

which shows that [λ(p), 1] ⊂ im(ψp).

We show that ψp is measurable as a function from the Lebesque space [0, 1] to
itself and preserves the measure. First, we show measurability. We can write

ψp = ψp,1 · 1p + ψp,2 · 1pc . (2.51)

The functions ψp,1 and ψp,2 are continuous and thus measurable. Since p is mea-
surable, so is pc and thus are their indicator functions 1p and 1pc . Hence, ψp is
measurable as the sum of products of measurable functions.

Next, we show that ψp is measure-preserving. For (a, b) ⊂ [0, 1] we have

λ(ψp(a, b)) = λ(ψp((a, b) ∩ p)) + λ(ψp((a, b) ∩ pc)), (2.52)

which we can separately compute as follows

λ(ψp((a, b) ∩ p)) = ∑
i

λ
(
ψp,1((a, b) ∩ (ki, li))

)
= ∑

i
λ
(
ψp,1((max(a, ki), min(b, li)))

)
= ∑

i
λ
((

λ([0, max(a, ki)) ∩ p),

λ([0, max(a, ki)) ∩ p) + min(b, li)−max(a, ki)
)))

= ∑
i

λ
(
(a, b) ∩ (ki, li)

)
= λ((a, b) ∩ p). (2.53)

42 mod shift

Since ψp,2 maps [0, 1] continuously and non-decreasingly onto [λ(p), 1], i.e., by the
discussion before Eq. (2.50), we have that

λ(ψp((a, b) ∩ pc)) =λ
(
ψp,2((a, b))

)
=λ
(
(ψp,2(a), ψp,2(b))

)
=λ
(
(a + λ((a, 1] ∩ p), b + λ((b, 1] ∩ p))

)
=λ((a, b))− λ((a, b) ∩ p). (2.54)

Combining Eqs. (2.53) and (2.54), we get that ψp preserves the measure of sets.

By the almost bijectivity of ψp, the set

P̄ = {ψp(p′)|p′ ∈ P} (2.55)

is a partition of [0, 1] (up to null sets) with

ρP(ψ
−1
p (x), ψ−1

p (y)) = ρP̄(x, y) (2.56)

for almost all x, y. We write ψ−1
p in abuse of notation, as ψp is not actually invertible.

Since it is almost invertible, this only creates problems on null sets, which we can
ignore. We will show that the objective value of Mod Shift on P̄ is strictly lower
than that of P. By the construction of ψp, the distance of any two points x < y in
the same partition element of P does not increase by applying ψp. Indeed,

y− x = ψp(y)− ψp(x) + λ((x, y) ∩ pc)

≥ ψp(y)− ψp(x) if x, y ∈ p and (2.57)

y− x = ψp(y)− ψp(x) + λ((x, y) ∩ p)

≥ ψp(y)− ψp(x) if x, y ∈ pc. (2.58)

This implies that for almost all x, y from the same partition element in P̄ that

w(∥x− y∥) ≥ w(∥ψ−1
p (x)− ψ−1

p (y)∥). (2.59)

We obtain for the intra-partition-element interaction∫
(1− ρP̄(x, y))w(∥x− y∥)dλ(x, y)

(⋆)
>
∫
(1− ρP(ψ

−1
p (x), ψ−1

p (y)))

· w(∥ψ−1
p (x)− ψ−1

p (y)∥)dλ(x, y)

=
∫
(1− ρP(x, y))w(∥x− y∥)d(λ ◦ ψ−1

p)(x, y). (2.60)

The inequality in (⋆) stems from the fact that for some non-zero measure set of
pairs (x, y) the inequality (2.57) and thus (2.59) is strict by existence of the set S,
which separates two positive measure parts of p. More explicitly, we will show that
removing the separating set S moves some non-null subsets of p closer together so
that the resulting distance is less than 2β. Then we know that the weight function
has decreased on this subset as it strictly decreases below 2β. More technically, we

2.6 mean shift and mod shift 43

can choose inf S ≤ x < y ≤ sup S in [0, 1] such that y− x < 2β and λ(S∩ [x, y]) > 0.
Let ε := 2β−y+x

2 . Since there is some measure of p on both sides of S, we have

x0 := inf{x′ ≤ x|λ((x′, x) ∩ p) = 0} > 0 (2.61)

y0 := sup{y′ ≥ y|λ((y, y′) ∩ p) = 0} < 1.

Then λ((x0 − ε, x0) ∩ p) > 0 and λ((y0, y0 + ε) ∩ p) > 0 as well as

λ((x0, y0) ∩ p) = λ((x, y) ∩ p) < 2β. (2.62)

Now, for all x′ ∈ (x0 − ε, x0) and y′ ∈ (y0, y0 + ε) we have

∥x′ − y′∥ = ∥ψp(x′)− ψp(y′)∥+ λ((x′, y′) ∩ pc)

≥ ∥ψp(x′)− ψp(y′)∥+ λ((x0, y0) ∩ pc)

> ∥ψp(x′)− ψp(y′)∥ (2.63)

and

∥ψp(x′)− ψp(y′)∥ = ∥x′ − y′∥ − λ((x′, y′) ∩ pc)

≤ ∥x′ − y′∥ − λ((x0, y0) ∩ pc)

< 2ε + y0 − x0 − λ((x0, y0) ∩ pc)

= 2ε + λ((x0, y0) ∩ p)

= 2ε + λ((x, y) ∩ p)

< 2ε + y− x < 2β, (2.64)

so that we obtain for all these x′ and y′ that

w(∥x′ − y′∥) < w(∥ψp(x′)− ψp(y′)∥) (2.65)

by the monotonicity assumption on w. Since ψp is almost a bijection and measure-
preserving, we can take preimages under ψp in (2.65) and get (⋆). As mentioned
above, inequality (2.60) translates into a lower Mod Shift energy for P̄ than for P.

So in an optimal partition, no partition element can be disconnected by any set
of positive measure that leaves some positive measure on either side. For open
partition elements, this is the same as saying that any set of positive measure
cannot disconnect it. Hence without loss of generality, we can assume that in an
optimal partition, all partition elements are connected, i.e., intervals. Thus, we can
identify an optimal partition with its set of cuts, the points at which two different
partition elements meet and 0 and 1, up to null sets. From now on, we will omit the
non-uniqueness of an optimal partition up to null sets.

Next, we show that an optimal partition must be finite. If not, the cuts have a limit
point in [0, 1]. In particular, there are two cuts c1, c3 of distance below β between
which there is another cut c2. However, all the points between c1 and c3 attract each
other and are separated from all other points. Hence, removing c2 connects points
that attract each other, contradicting the optimality of the partition.

If β = 0.5, we have by w’s symmetry that any bipartition yields inter-partition
energy 0. In fact, for a cut at c the energy is given by

c∫
0

1∫
c

w(y− x)dydx =

c
2∫

0

1∫
c

w(y + z− c) + w(y− z)dydz. (2.66)

44 mod shift

101 103

iteration

0.00

0.25

0.50

0.75

1.00

lo
ca

ti
on

(a) β = 1
4

101 103

iteration

0.00

0.25

0.50

0.75

1.00

lo
ca

ti
on

(b) β = 1
6

101 103

iteration

0.00

0.25

0.50

0.75

1.00

lo
ca

ti
on

(c) β = 1
8

101 103

iteration

0.00

0.25

0.50

0.75

1.00

lo
ca

ti
on

(d) β = 1
10

Figure 2.9: Mod Shift on 2048 samples of a uniform distribution with rectified linear ρ and w.
Trajectories of 100 subsampled points are depicted with a logarithmic time scale.
The points and trajectories are colored according to the clustering. As predicted
in Prop. 2.17, Mod Shift divides the uniform line into equisized intervals and
with decreasing β the number of clusters increases. Note that Mod Shift is not
a hierarchical clustering algorithm in β: Borders between different clusters at
some level of β do not persist for all lower values of β.

the point symmetry reads w(y) = −w(−y + 1) for β = 0.5, so that the terms in the
inner integral cancel out

1∫
c

w(y + z− c)dy =

1+z−c∫
z

w(y)dy =

1+z−c∫
z

−w(−y + 1)dy = −
1−z∫

c−z

w(y)dy

= −
1∫

c

w(y− z)dy. (2.67)

Since w (strictly) increases pointwise with β (for distances less than 2β), we have
that E(P) increases strictly with β. Hence, for β < 0.5, any bipartition is strictly
better than the trivial one-element partition of objective value 0. Moreover, if a
bipartition is optimal, then the cut must lie at [2β, 1− 2β] ∪ {0.5}, as otherwise,
density next to the cut in the larger segment has net attraction to the smaller
segment but no attraction to its own segment, so increasing the smaller segment is
advantageous.

Suppose the interval [2β, 1− 2β] contains points other than 0.5. Then β < 0.25.
Suppose there is a cut at some c ∈ [2β, 0.5). Then the segment [c, 1] is longer than
2β, and by the same argument as above, we find that an additional cut in [c, 1]
yields a better objective value than just cutting at c. Hence, if a single cut is optimal
and β ̸= 0.5, then it bisects the interval in the middle.

Now, suppose we have an optimal partition with k elements. Fixing three consec-
utive cuts c1, c2, c3, we know that the cut c2 optimally bipartitions [c1, c3]. Again, this
is just a down-scaled version of the original problem. The position of c2 is optimal
given c1 and c3 since all interaction across c1 and c3 is fixed so that we have an opti-
mal subproblem property. As a result, we can deduce that either c3 − c2 = c2 − c1,
i.e., c2 is directly in the middle of c1 and c3, or 2β = c3 − c1. Iterating this argument
for all consecutive triples of cuts, we get that consecutive cuts have the same dis-
tance, or the distance of a cut to the one after the next is 2β. Therefore, an optimal
partition can only consist of intervals of at most two different sizes, and if there are
two differently sized intervals, their lengths add up to 2β.

2.6 mean shift and mod shift 45

Figure 2.10: Mod Shift is more stable than Mean Shift with respect to small changes in
the density. Frequencies of the number of clusters obtained by Mod Shift and
Mean Shift from 5000 samples of 100 points from a uniform distribution.

Now consider some partition consisting of at least three intervals whose intervals
have two different lengths, which add up to 2β. There must be three consecutive
cuts c1, c2, c3 such that c3 − c1 = 2β and c3 − c2 ̸= c2 − c1. As any single cut is
equally good for β = 0.5, we can deduce for the down-scaled situation [c1, c3]

that we can move c2 without changing the energy of the partition. In particular,
without changing the energy, we can get to a partition with intervals of more than
two distinct lengths. However, such a partition cannot be optimal. Consequently,
the only optimal partition with at least three elements must consist of equisized
intervals. Only for β = 0.5 any bipartition can be optimal.

2. For any β ̸= 0.5, an optimal partition is of the form in 1. Hence, it is optimal to
subdivide an interval of length 2/|P| but not one of length 1/|P|. Therefore, we get
β ≤ 0.5 · 2/|P| and β ≥ 0.5 · 1/|P| by the arguments in the first part of the proof.

We ran Mod Shift on a toy dataset consisting of points drawn from a uniform
distribution, see Fig. 2.9. This experiment confirms Prop. 2.17’s predictions that
the uniform distribution is torn up into equisized intervals of sizes between β

and 2β. We strongly believe that the optimal number of subdivisions in Prop. 2.17
monotonically decreases with β, but were unable to prove this theoretically. The
experiments in Fig. 2.9 support this hypothesis. Fig. 2.9 reassures us that the
convergence points of most points are either identical or separated by 2β as we
would expect since ρ has zero gradient for distances above 2β but positive gradient
for distances below 2β. The learning rate was chosen deliberately small to visualize
the exact behavior of Mod Shift, which is why some points on borders of clusters
did not converge yet. Typically, points of distance β to an end of the line have the
largest initial shift. This is because they experience roughly zero net force towards
the center of the line but attraction towards the points at the very ends of the line.
Once they have moved away from the line’s center, points closer to the center have
less negative than positive interaction with points at the end of the line and hence
start moving towards the end.

2.6.4 Mod Shift and Mean Shift on noisy uniform data

Mod Shift’s focus on distances makes it more robust to fluctuations of the data
distribution than the density-based Mean Shift. Such fluctuations might result

46 mod shift

in spurious modes of a KDE, which can change fixed Mean Shift’s result. We
found that the number of clusters that Mod Shift produces on data sampled from
a uniform distribution varies less than that produced by Mean Shift on the same
data, see Fig. 2.10.

We sampled 100 points from a uniform distribution over [0, 1] and ran Mod Shift
with β = 0.2 as well as Mean Shift with a flat kernel of bandwidth 0.2 and counted
how many clusters were found. This experiment was repeated 5000 times and the
frequencies for the number of clusters are depicted in Fig. 2.10. We clearly see
that Mod Shift is more stable with respect to the noisy samples and predicts 3.95
clusters on average with a variance of 0.98. While Mean Shift predicts about the
same number of clusters on average (4.03), it does so with a 50% higher variance
of 1.47. The variations of the sample density cause more variable results for Mean
Shift than for Mod Shift.

Additionally, we observe that Mod Shift mostly finds 3 or 4 clusters. This is in
accordance with Prop. 2.17, which would predict a number of clusters between
1

2β = 2.5 and 1
β = 5 if the data was truly uniform and not a finite sample.

In these experiments, we used the Adam optimizer for Mod Shift with a learning
rate of 0.005 and learning rate decay by 0.1 after 4250 iterations. The hard clustering
was obtained by Single Linkage at a threshold of 0.05.

2.6.5 Mod Shift versus Mean Shift

In this section, we contrasted the properties of Mean Shift and Mod Shift. The
most relevant difference is Mod Shift’s usage of both attraction and repulsion
above and below its scale parameter β. This makes β highly interpretable and
allows Mod Shift to find multiple clusters in situations where Mean Shift cannot.
While fixed Mean Shift can produce multiple stable clusters determined by the
number of modes of the KDE, these are a joint consequence of Mean Shift’s scale
parameter and the data density. Therefore, Mean Shift is more density-driven, while
Mod Shift is more directly distance-driven. Both inductive biases have advantages
and disadvantages. While density is a very plausible cue for clusters, Mean Shift
allows points to move arbitrarily far towards a region of higher density. If prior
knowledge on the spatial cluster size or the range of attraction and repulsion is
available, e.g., if the dataset was generated via metric learning, Mod Shift’s strong
distance-prior is more appropriate.

2.7 experiments

2.7.1 Toy dataset

We start by exploring Mod Shift’s behavior on a simple toy dataset sampled from
three normal distributions, see Fig. 2.11. The point shifting nature of Mod Shift
can be seen in Figs. 2.11a–c for different values of β yielding different numbers
of clusters. Note how the convergence points are always separated by at least 2β,
beyond which ρ becomes constant. Fig. 2.11d summarizes how the number of
resulting clusters changes with β. As β increases, more distant points cease to repel
and start to attract each other. We see that if β is above the mean distance between

2.7 experiments 47

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0
convergence points

data points

100 101

iterations

(a) β = 0.7

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0
convergence points

data points

100 101

iterations

(b) β = 1.3

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0
convergence points

data points

100 101

iterations

(c) β = 2.5 (d) Number of clusters
by β

Figure 2.11: Mod Shift on a toy dataset illustrating the effect of β. 2.11a–c show the trajec-
tories of the points to three (two, one) cluster(s) under Mod Shift for β = 0.7
(1.3, 2.5). 2.11d: Number of clusters for β ∈ [0.23, 2.0]. As β increases, points
that are further apart start to attract each other so that the number of conver-
gence points and thus clusters decreases. For sufficiently small β (not depicted),
all 30 points form their own cluster. Figure best viewed in color.

two point clouds (≈ 1 for the two left point clouds, ≈ 1.5 for any of them to the
right one), they get merged, as the total interaction between them is attractive. For
smaller β, the total interaction between the point clouds becomes repulsive, and the
point clouds get separated. Confer also Appendix B.3.

2.7.2 Mod Shift on pixel embeddings

In this section we demonstrate that Mod Shift is competitive with Mean Shift [86]
and HDBSCAN [129] in clustering pixel embeddings for instance segmentation. We
use pixel embeddings generated by embedding networks from subvolumes of the
CREMI A, B, and C datasets [18] as well as from the ISBI 2012 challenge dataset [3].
We let Mod Shift and Mean Shift run for 50 iterations and then obtain the hard
cluster assignment by thresholded Single Linkage clustering, i.e., we transitively
merge pairs of points whose distance is below some threshold. We perform a grid
search to find the parameters for each clustering method that minimize the CREMI
score [18] on each dataset. Further details and additional results can be found in
Appendix B.4. Mod Shift achieves similar scores as Mean Shift on these datasets.
HDBSCAN performs better than both on the subvolumes of CREMI B and C but is
non-differentiable and has less intuitive hyperparameters. Results for HDBSCAN,
fixed Mod Shift and Mean Shift with a flat kernel and with a threshold equal to
the scale parameter on the data from CREMI A can be found in Tab. 2.1, which
shows Mod Shift’s effectiveness on real-world data. The best performing parameter
setting of Mod Shift and Mean Shift yield comparable results on all four datasets,
see Tabs. B.5–B.8 in the Appendix.

In Fig. 2.12, we show the respective segmentations for Mod Shift and Mean
Shift for a slice of the CREMI A subvolume. In contrast to Mean Shift, Mod Shift
manages to identify more of the tiny ground truth segments, which we attribute to
Mod Shift’s use of repulsion and an ensuing reduction in false merges compared to
Mean Shift, see Lem. 2.14 and Prop. 2.15. Nevertheless, the elongated cells (violet
and green in the upper part of Fig. 2.12b) are correctly identified as single segments
by Mod Shift.

48 mod shift

(a) Raw data (b) Ground truth (c) Mod Shift
segmentation

(d) Mean Shift
segmentation

Figure 2.12: Comparison of Mod Shift and Mean Shift for instance segmentation in a crop
of the CREMI A dataset [18]. Left to right: Raw data, ground truth, Mod Shift’s,
and Mean Shift’s segmentations. Black lines in 2.12b indicate segment bound-
aries. Yellow (green) arrows in 2.12c and 2.12d highlight false merges (splits).
In contrast to Mean Shift, Mod Shift manages to separate more of the small
cells and does not split up the elongated cells. Figure best viewed in color.

Table 2.1: Results on data from CREMI A by metrics of [18], lower is better. Mod Shift is on
par with Mean Shift. The non-differentiable HDBSCAN tends to perform better
on data from subsets B and C of CREMI.

Method CREMI score ARAND VOI split VOI merge

HDBSCAN 0.0703 0.0231 0.1687 0.0459

Mean Shift 0.0629 0.0215 0.1408 0.0428

Mod Shift 0.0628 0.0217 0.1446 0.0367

We also compared Mod Shift to Mutex Watershed [169, 170] and Multicut on a
downsampled version of the data. Here, Mod Shift yields better CREMI scores than
both and is much faster, see Appendix B.4.10 for more details.

2.8 conclusion

We have introduced a new algorithm to cluster points in Euclidean space. It has
close ties to the graph-based Multicut problem. Based on a scale parameter β, it
internally determines the number of clusters by using both attraction and repulsion.
It shifts points during the clustering process similar to Mean Shift and is fully
differentiable. We have analyzed the algorithm thoroughly and related it to existing
clustering approaches, thereby exhibiting new exciting connections between graph-
based and Euclidean clustering. Finally, we have illustrated Mod Shift’s practical
potential on toy and real datasets.

In future work, we plan to use Mod Shift with signed weights that are not inferred
from the point positions but, e.g., obtained as the output of a neural network such
as in [169]. In this way, Mod Shift would allow the practitioner to combine feature
and relational information from different sources.

Part II

D I M E N S I O N A L I T Y R E D U C T I O N

3
O N U M A P ’ S T R U E L O S S F U N C T I O N

UMAP has supplanted t-SNE as state-of-the-art for visualizing high-dimensional
datasets in many disciplines, but the reason for its success is not well understood.
In this work, we investigate UMAP’s sampling-based optimization scheme in detail.
We derive UMAP’s true loss function in closed form and find that it differs from
the published one in a dataset size-dependent way. Consequently, we show that
UMAP does not aim to reproduce its theoretically motivated high-dimensional
UMAP similarities. Instead, it tries to reproduce similarities that only encode the k
nearest neighbor graph, thereby challenging the previous understanding of UMAP’s
effectiveness. Alternatively, we consider the implicit balancing of attraction and
repulsion due to the negative sampling to be key to UMAP’s success. We corroborate
our theoretical findings on toy and single-cell RNA sequencing data. This chapter
is based on [39].

3.1 introduction

Today’s most prominent methods for non-parametric, non-linear dimension reduc-
tion are t-Distributed Stochastic Neighbor Embedding (t-SNE) [160, 161] and Uni-
form Manifold Approximation and Projection for Dimension Reduction (UMAP) [112].
The heart of UMAP is claimed to be its sophisticated method for extracting high-
dimensional similarities. However, the reason for UMAP’s excellent visualizations
is not immediately obvious from this approach. In particular, UMAP’s eponymous
uniformity assumption, see Section 3.3, is arguably difficult to defend for the
wide range of datasets on which UMAP performs well. Therefore, it is not well
understood what aspect of UMAP is responsible for its great visualizations.

Both t-SNE and UMAP have to overcome the computational obstacle of consid-
ering the quadratic number of interactions between all pairs of points. The break-
through for t-SNE came with a Barnes-Hut approximation [160]. Instead, UMAP
employs a sampling-based approach to avoid a quadratic number of repulsive
interactions. Other than [15] little attention has been paid to this sampling-based
optimization scheme. In this work, we fill this gap and analyze UMAP’s opti-
mization method in detail. In particular, we derive the effective, closed form loss
function, which UMAP’s optimization scheme actually minimizes. While UMAP’s
use of negative sampling was intended to avoid quadratic complexity, we find,
surprisingly, that the resulting effective loss function differs significantly from
UMAP’s purported loss function. The weight of the loss function’s repulsive term
is drastically reduced.

As a consequence, UMAP is not actually geared towards reproducing the clever
high-dimensional similarities. In fact, we show that most information beyond the
symmetric kNN graph connectivity is essentially ignored as UMAP approximates a
binarized version of the high-dimensional similarities. These theoretical findings
underpin some empirical observations in [15] and demonstrate that the gist of

51

52 on umap’s true loss function

UMAP is not its high-dimensional similarities. This resolves the disconnect between
UMAP’s uniformity assumption and its success on datasets of varying density.

From a user’s perspective, it is essential to gain an intuition for deciding which
visualization features can be attributed to the data and which ones are more likely
artifacts of the visualization method. With our analysis, we can explain UMAP’s
tendency to produce crisp, over-contracted substructures, which increases with the
dataset size, as a side effect of its optimization.

Without the motivation of reproducing sophisticated high-dimensional similari-
ties in embedding space, it seems unclear why UMAP performs well. We propose
an alternative explanation for UMAP’s success: The sampling-based optimiza-
tion scheme balances the attractive and repulsive loss terms despite the sparse
high-dimensional attraction. Consequently, UMAP can effectively leverage the
connectivity information of the symmetric kNN graph via gradient descent.

3.2 related work

For most of the past decade t-SNE [160, 161] was considered state-of-the-art for non-
linear dimension reduction. In the last years, UMAP [112] at least ties with t-SNE.
In both methods, points are embedded to reproduce high-dimensional similarities.
Unlike the original t-SNE, the high-dimensional similarities are sparse for UMAP
and do not need to be normalized over the entire dataset. Additionally, t-SNE
adapts the local scale of high-dimensional similarities by achieving a predefined
perplexity, while UMAP uses its uniformity assumption. The low-dimensional
similarity functions also differ. Recently, Böhm et al. [15] placed both UMAP and
t-SNE on a spectrum of dimension reduction methods that mainly differ in the
amount of repulsion employed. They argue that UMAP uses less repulsion than
t-SNE. A parametric version of UMAP was proposed in [141].

UMAP’s success, particularly in the biological community [9, 126], sparked in-
terest in understanding UMAP more deeply. The original paper [112] motivates
the choice of the high-dimensional similarities using concepts from algebraic topol-
ogy and thus justifies UMAP’s transition from local similarities µi→j to global
similarities µij. The authors find that while the algorithm focuses on reproducing
the local similarity pattern similar to t-SNE, it achieves better global results. In
contrast, Kobak and Linderman [84] attribute the better global properties of UMAP
visualizations to the more informative initialization and show that t-SNE manages
to capture more global structure if initialized similarly. Wang et al. [165] also analyze
the local and global properties of t-SNE, UMAP, and TriMAP [1].

Narayan et al. [116] observe that UMAP’s uniformity assumption leads to visu-
alizations in which denser regions are more spread out while sparser regions get
overly contracted. They propose an additional loss term that aims to reproduce the
local density around each point and thus spreads out sparser regions. We provide
an additional explanation for overly contracted visualizations: UMAP does not
reproduce the high-dimensional similarities but exaggerates the attractive forces
over the repulsive ones, which can result in overly crisp visualizations, see Figs. 3.2b,
3.2c and 3.3a.

Our work aligns with Böhm et al. [15]. The authors conjecture that the sampling-
based optimization procedure of UMAP prevents the minimization of the supposed

3.3 background on umap 53

loss function, thus not reproducing the high-dimensional similarities in embedding
space. They substantiate this hypothesis by qualitatively estimating the relative
size of attractive and repulsive forces. In addition, they implement a Barnes-Hut
approximation to the loss function (3.6) and find that it yields a diverged embedding.
We analyze UMAP’s sampling procedure in depth, compute UMAP’s true loss
function in closed form and contrast it against the supposed loss in Sec. 3.6. Based
on this analytic effective loss function, we can further explain Böhm et al. [15]’s
empirical finding that the specific high-dimensional similarities provide little gain
over the binary weights of a symmetric kNN (skNN) graph,1 see Sec. 3.8. Finally,
our theoretical framework leads us to a new tentative explanation for UMAP’s
success in Sec. 3.11.

3.3 background on umap

UMAP assumes that the data lies on a low-dimensional Riemannian manifold
(R, g) in ambient high-dimensional space. Moreover, the data is assumed to be
uniformly distributed with respect to the metric tensor g, or put simply, with respect
to the distance along the manifold. In turn, the metric tensor g is assumed to be
locally constant. The key idea of UMAP [112] is to compute pairwise similarities
in high-dimensional space, which inform the optimization of the low-dimensional
embedding. Let x1, ..., xn ∈ RD be high-dimensional, mutually distinct data points
for which low-dimensional embeddings e1, ..., en ∈ Rd shall be found, where d≪ D,
often d = 2 or 3.

First, UMAP extracts high-dimensional similarities between the data points. For
this, it computes the k nearest neighbor graph. Let i1, ..., ik denote the indices of xi’s
k nearest neighbors in increasing order of distance to xi. Then, using its uniformity
assumption, UMAP fits a local notion of similarity for each data point i by selecting
a scale σi such that the total similarity of each point to its k nearest neighbors is
normalized, i.e., find σi such that

k

∑
κ=1

exp
(
−
(
d(xi, xiκ)− d(xi, xi1)

)
/σi

)
= log2(k). (3.1)

This defines the directed high-dimensional similarities

µi→j =

exp
(
−
(
d(xi, xj)− d(xi, xi1)

)
/σi

)
for j ∈ {i1, . . . , ik}

0 else.
(3.2)

Finally, these are symmetrized to obtain undirected high-dimensional similarities
or input similarities between items i and j

µij = µi→j + µj→i − µi→jµj→i ∈ [0, 1]. (3.3)

While each node has exactly k non-zero directed similarities µi→j to other nodes,
which sum to log2(k), this does not hold exactly after symmetrization. Nevertheless,
typically the µij are highly sparse, each node has positive similarity to about k

1 The symmetric k nearest neighbor graph contains an edge ij if i is among j’s k nearest neighbors or
vice versa.

54 on umap’s true loss function

other nodes and the degree of each node di = ∑n
j=1 µij is approximately constant

and close to log2(k), see Fig. 3.1a and 3.1b in the next Sec. 3.4. For convenience of
notation, we set µii = 0 and define the total similarity as µtot =

1
2 ∑n

i=1 di.
Distance in embedding space is transformed to low-dimensional similarity

by a smooth approximation to the high-dimensional similarity function,
ϕ(d; a, b) = (1 + ad2b)−1, for all pairs of points. The shape parameters a, b are es-
sentially hyperparameters of UMAP. We will overload notation and write

νij = ϕ(||ei − ej||) = ϕ(ei, ej) (3.4)

for the low-dimensional or embedding similarities and usually suppress their
dependence on a and b.

Supposedly, UMAP approximately optimizes the following objective function
with respect to the embeddings e1, . . . , en:

L({ei}|{µij}) = −2 ∑
1≤i<j≤n

(
µij log(νij) +(1− µij) log(1− νij)

)
(3.5)

= −2 ∑
1≤i<j≤n

(
µij log(ϕ(ei, ej))︸ ︷︷ ︸

−La
ij

+(1− µij) log(1− ϕ(ei, ej))︸ ︷︷ ︸
−Lr

ij

)
. (3.6)

While the high-dimensional similarities µij are symmetric, UMAP’s implementation
does consider their direction during optimization. For this reason, our losses in
equations (3.5) and (3.6) differ by a factor of 2 from the one given in [112]. Viewed
through the lens of a force-directed model, the derivative of the first term in
each summand of the loss function, −∂La

ij/∂ei, captures the attraction of ei to ej
due to the high-dimensional similarity µij and the derivative of the second term,
−∂Lr

ij/∂ei, represents the repulsion that ej exerts on ei due to a lack of similarity
in high dimension, 1− µij. Alternatively, the loss can be seen as the sum of binary
cross entropy losses for each pairwise similarity. Thus, it is minimal if the low-
dimensional similarities νij exactly match their high-dimensional counterparts µij,
i.e., if UMAP manages to reproduce the input similarities in embedding space.

UMAP uses a sampling-based stochastic gradient descent to optimize the low-
dimensional embedding, typically starting from a Laplacian Eigenmap layout [11,
84]. Our main contribution is to show that the sampling-based optimization leads
to a different objective function so that UMAP does not reproduce the high-
dimensional similarities in low-dimensional space, see Secs. 3.5 to 3.8.

3.4 umap’s degree distribution

Before diving deeper into the analysis of UMAP, we gain some insights into the
statistics of UMAP’s weighted skNN graph, both theoretically and empirically. In
this chapter, we will mainly use two datasets: a toy dataset consisting of 1000
points sampled uniformly from a ring and a biological dataset2 which contains
gene expression data of 86 024 cells of C. elegans [116, 126]. For the C. elegans
dataset, we start with a 100 dimensional PCA of the data, use the cosine metric in
high-dimensional space and consider k = 30 neighbors. For more details confer
Appendices C.3.1 and C.3.2.

2 obtained from http://cb.csail.mit.edu/cb/densvis/datasets/. We informed the authors of our
use of the dataset, which they license under CC BY-NC 2.0.

http://cb.csail.mit.edu/cb/densvis/datasets/

3.5 umap does not reproduce high-dimensional similarities 55

(a) UMAP degrees (b) skNN degrees

Figure 3.1: 3.1a: Histogram over the UMAP degree distributions for the toy ring and the
C. elegans datasets. Both distributions are fairly peaked close to their lower
bounds log2(k), highlighted as dashed lines. 3.1b: Histogram over the degree
distribution in the skNN graph for the toy ring and the C. elegans datasets. Both
distributions are fairly peaked close to their lower bounds k− 1, highlighted as
dashed lines. Since UMAP’s implementation considers a point its first nearest
neighbor, but the µii are set to zero, the degree is one lower than the intended
number of nearest neighbors k.

Prior to symmetrization, the degree of each node d⃗i = ∑n
j=1 µi→j equals log2(k)

due to UMAP’s uniformity assumption. For UMAP’s default value of k = 15 this
is ≈ 3.9. For the C. elegans dataset we used k = 30 in which case log2(30) ≈ 4.9.
Symmetrizing changes the degree in a dataset-dependent way. For a, b ∈ [0, 1],
we have max(a, b) ≤ a + b− ab. So, the symmetric degrees di = ∑n

j=1 µij are lower
bounded by log2(k). Empirically, we find that the degree distribution is fairly
peaked close to this lower bound, see Fig. 3.1a. In the skNN graph, each node has
a degree of at least k. Empirically, the degree distribution is fairly peaked at this
lower bound, see Fig. 3.1b.

3.5 umap does not reproduce high-dimensional similarities

UMAP produces scientifically useful visualizations in many domains and is fairly ro-
bust to its hyperparameters. Since any visualization of intrinsically high-dimensional
data must be somehow unfaithful, it is not straightforward to check the visual-
ization quality other than by its downstream use. Some quantitative metrics such
as the correlation between high- and low-dimensional distances [9, 84] exist. We
follow a different route to show some unexpected properties of UMAP. Consider
the toy example of applying UMAP to data that is already low-dimensional so
that no reduction in dimension is required: D = d = 2. Ideally, the data would be
preserved in this situation. One might also expect that UMAP achieves its aim of
reproducing the input similarities perfectly. Surprisingly, UMAP meets neither of
these expectations. In Fig. 3.2, we depict 2D UMAP visualizations of a 2D uniform
ring dataset. To ease UMAP’s task, we initialized the embedding with the original
data, hoping that UMAP’s optimization would just deem this layout to be optimal.
We also used a longer run time to ensure convergence of UMAP’s optimization pro-
cedure. Otherwise, we used the default hyperparameters. The results with default
initialization and run-time are qualitatively similar and shown in Fig. C.7. UMAP

56 on umap’s true loss function

(a) Original data (b) UMAP (c) UMAP on
larger dataset

(d) UMAP from
dense similarities

Figure 3.2: UMAP does not preserve the data even when no dimension reduction is required.
3.2a: Original data consisting of 1000 points sampled uniformly from a ring in
2D. All optimizations ran for 10000 epochs and were initialized at the input
data. 3.2b: Result of UMAP. The circular shape is visible, but the ring width
is nearly completely contracted. 3.2c: Result of UMAP on a dataset consisting
of twenty rings as in 3.2a spaced so they do not interact in the input similarity
computation. Only the embedding of one ring is shown. There should not be
a significant difference from Fig. 3.2b. However, the ring width is completely
contracted. 3.2d: Result of UMAP for dense input similarities computed from
the original data in Fig. 3.2a with the similarity function ϕ from Sec. 3.3. No
change from the initialization would be optimal in this setting. Instead, the
output has spurious curves and larger width. More figures with the default
number of epochs and initialization are depicted in Fig. C.7.

manages to capture the ring shape of the data but changes its appearance signifi-
cantly. It contracts the width of the ring nearly to a line, see Fig. 3.2b, a phenomenon
also observed on real-world datasets, see Fig. 3.3a. Whether this exaggeration of the
ring shape is beneficial depends on the use case. This finding goes beyond Narayan
et al. [116]’s observation that over-contraction happens in regions of low density
since our toy dataset is sampled uniformly from a circular ring.

Moreover, we embedded the same ring with UMAP as part of a larger dataset
of twenty such rings, spaced so that the other rings do not influence the input
similarities for each ring. According to Section 3.3, we expect an embedding qual-
itatively similar to that of the individual ring. However, we see in Fig. 3.2c that
UMAP produces an even crisper embedding. In another experiment, we varied the
number of samples from a single ring and observed again that the tendency for
over-contraction increases with the dataset size. For more information on UMAP’s
dependence on the dataset size, confer Sec. 3.9. The dataset size dependence is
particularly noteworthy, as computing UMAP embeddings of subsets or subsamples
of a dataset is common practice.

As described in Sec. 3.3, UMAP employs different methods in input and embed-
ding space to transform distances into similarities. In particular, in input space,
similarities are zero for all but the closest neighbors, while in embedding space,
they are computed with the heavy-tailed function ϕ. To test whether this prevents
the reproduction of the input data, we also computed the dense similarities on
the original data with ϕ. We used these as input similarities for the embedding in
Fig. 3.2d. Since we also initialize with the original dataset, a global optimum of
the objective function (3.6) for this choice of input similarity, one would expect no
change by UMAP’s optimization scheme. However, in this setting, UMAP produces
spurious curves and increases the width of the ring.

3.6 umap’s sampling and effective loss function 57

Table 3.1: UMAP loss value for various combinations of input and embedding similarities,
µij, νij, of the toy example in Fig. 3.2. The loss for the UMAP embedding in
Fig. 3.2b (middle column) is always higher than for another two-dimensional
layout (bold). Hence, UMAP does not minimize its purported loss. Results
are averaged over seven runs, and one standard deviation is given, see also
Appendix C.1.1.

Embedding similarities νij

1(i == j) ϕ({e1, . . . , en}) ϕ({x1, . . . , xn})
Input similarities µij (diverged layout) (UMAP result) (input layout)

µ({x1, . . . , xn}) 62959± 82 70235± 1301 136329± 721

ϕ({x1, . . . , xn}) 902757± 2788 331666± 1308 224584± 8104

Böhm et al. [15] implemented a Barnes-Hut approximation of UMAP’s objective
function (3.6), which produced a diverged embedding. Inspired by this finding,
we compute the loss values according to equation (3.5) for various input and
embedding similarities µij and νij in our toy example, see Tab. 3.1.

Consider the row with the usual input similarities (µij = µ({x1, . . . , xn})). In a
completely diverged embedding, all self similarities are one and all others zero
(νij = 1(i == j)). We find that the loss for such an embedding is lower than for
the optimized UMAP embedding. This aligns with Böhm et al. [15]’s Barnes-Hut
experiment and shows that UMAP does not optimize its supposed objective func-
tion (3.6) as a diverged embedding is approximately feasible in two dimensions.
This discrepancy is not just due to input and embedding similarities being com-
puted differently: The second row of Tab. 3.1 contains loss values for the setting
in which we use the dense similarities as input similarities as in Fig. 3.2d. We
initialize the embedding at the optimal loss value (νij = ϕ({x1, . . . , xn}) = µij), but
UMAP’s optimization moves away from this layout and towards an embedding
with higher loss (νij = ϕ({e1, . . . , en})) although we always compute similarity in
the same manner. Clearly, UMAP’s optimization yields unexpected results.

3.6 umap’s sampling and effective loss function

UMAP uses a sampling-based approach to optimize its loss function, to reduce
complexity. A simplified version of the sampling procedure can be found in Alg. 2.
The main contribution of this chapter is the derivation of the loss function that
UMAP’s implementation actually optimizes.

Proposition 3.1. UMAP’s implemented optimization procedure updates an embedding ei
in expectation by

2
n

∑
j=1

(
µij ·

∂La
ij

∂ei
+

dim
2n
·

∂Lr
ij

∂ei

)
. (3.7)

Proof. We start by collecting all updates that Alg. 2 executes. An edge ij is sampled
according to its high-dimensional similarity, and the embeddings ei and ej of the
incident nodes are pulled towards each other. For each such sampled edge ij,
the algorithm next samples m negative samples s uniformly from all nodes, and

58 on umap’s true loss function

Algorithm 2: UMAP’s optimization
input : input similarities µij,

initial embeddings e1, . . . , en,
number of epochs T,
learning rate α,
number of negative samples m

output : final embeddings e1, . . . , en

1 for t = 0 to T do
2 for ij ∈ {1, . . . , n}2 do
3 r ∼ Uniform(0, 1)
4 if r < µij then

5 ei = ei − α · ∂La
ij

∂ei

6 ej = ej − α · ∂La
ij

∂ej

7 for l = 1 to m do
8 s ∼ Uniform({1, . . . , n})
9 ei = ei − α · ∂Lr

is
∂ei

// Next line is omitted in UMAP’s implementation, but

included for our analysis

10 /* es = es − α · ∂Lr
is

∂es
*/

the embedding of i is repelled from that of each negative sample. Note that the
embedding of i does not repel those of the negative samples, see Alg. 2 line 10. So
there are three types of gradient applied to an embedding ei during an epoch:
1. ei is pulled towards ej when edge ij is sampled (Alg.2 line 5)
2. ei is pulled towards ej when edge ji is sampled (Alg.2 line 6)
3. ei is pushed away from negative sample embeddings when some edge ij is
sampled (Alg.2 line 9).

The full update of embedding ei during epoch t is, according to UMAP’s imple-
mentation, given by

gt
i =

n

∑
j=1

(
Xt

ij ·
∂La

ij

∂ei
+ Xt

ji ·
∂La

ji

∂ei
+ Xt

ij ·
n

∑
s=1

Yt
ij,s ·

∂Lr
is

∂ei

)
, (3.8)

where Xt
ab is the binary random variable indicating whether edge ab was sampled

in epoch t and Yt
ab,s is the random variable for the number of times s was sampled

as a negative sample for edge ab in epoch t if ab was sampled in epoch t and zero
otherwise. By construction, E(Xt

ab) = µab and E(Yt
ab,s|Xt

ab = 1) = m/n. Taking the
expectation over the random events in an epoch, we obtain the expected update of
UMAP’s optimization procedure

3.6 umap’s sampling and effective loss function 59

E
(

gt
i
)
= E

(
n

∑
j=1

(
Xt

ij ·
∂La

ij

∂ei
+ Xt

ji ·
∂La

ji

∂ei
+ Xt

ij ·
n

∑
s=1

Yt
ij,s ·

∂Lr
is

∂ei

))

=
n

∑
j=1

(
E(Xt

ij) ·
∂La

ij

∂ei
+ E(Xt

ji) ·
∂La

ji

∂ei
+

n

∑
s=1

E(Xt
ijY

t
ij,s) ·

∂Lr
is

∂ei

)

=
n

∑
j=1

(
µij ·

∂La
ij

∂ei
+ µji ·

∂La
ji

∂ei

)
+

n

∑
s=1

n

∑
j=1

µijm
n
· ∂Lr

is
∂ei

= 2
n

∑
j=1

(
µij ·

∂La
ij

∂ei
+

dim
2n
·

∂Lr
ij

∂ei

)
. (3.9)

From line 2 to 3, we computed E(Xt
ijY

t
ij,s) = EXt

ij

(
Xt

ij · E(Yt
ij,s|Xt

ij)
)
=

µijm
n and

from line 3 to 4 we used the symmetry of µij and La
ij and collected the high-

dimensional similarities ∑j µij into the degree di.

Comparing the above closed formula for the expectation of the UMAP updates
of the low-dimensional embeddings to the gradient of UMAP’s loss function (3.6)

∂L
∂ei

= 2
n

∑
j=1

(
µij ·

∂La
ij

∂ei
+ (1− µij) ·

∂Lr
ij

∂ei

)
, (3.10)

we find that the sampling procedure yields the correct weight for the attractive term
in expectation, as designed. But, as noticed by Böhm et al. [15], the negative sampling
changes the weight for the repulsive term significantly. Our closed formula helps
to make their qualitative arguments precise: Instead of 1− µij, we have a term dim

2n ,
which depends on the number of negative samples m per sampled edge. Contrary
to the intention of McInnes et al. [112], the repulsive weights are not uniform but
vary with the degree of each point di, which, however, is typically close to log2(k),
see Sec. 3.4.

More practically, since the non-zero high-dimensional similarities are sparse,
1− µij is equal to 1 for most ij. In contrast, the expected repulsive weight is small
for large datasets as the numerator dim is of the order of log2(k)m independent of
the dataset size n but the denominator scales with n.

Another effect of the negative sampling is that, in general, the expected up-
date (3.9) does not correspond to any loss function.

Lemma 3.2. If the degrees di of UMAP’s similarity graph are non-constant, there is no
loss function whose gradients equal the update steps of UMAP in Prop. 3.1.

Proof. The update in Eq. (3.9) is continuously differentiable unless two embedding
points coincide. Therefore, if it had an antiderivative, that would be twice continu-
ously differentiable at configurations where all embeddings are pairwise distinct
and thus needs to have a symmetric Hessian at these points. However, we have

∂E
(

gt
i
)

∂ej
= 2µij ·

∂2La
ij

∂ej∂ei
+

dim
2n
·

∂Lr
ij

∂ej∂ei

∂E
(

gt
j

)
∂ei

= 2µij ·
∂2La

ij

∂ei∂ej
+

djm
2n
·

∂Lr
ij

∂ei∂ej
. (3.11)

60 on umap’s true loss function

(a) UMAP (b) Inverted weights UMAP (c) PCA

Figure 3.3: UMAP on C. elegans data from [116, 126]. 3.3a: UMAP visualization. Several
parts of the embedding appear locally one-dimensional, for instance, the seam
cells.33.3b: Same as 3.3a but with inverted positive high-dimensional similarities.
The result is qualitatively similar, if not better. 3.3c: Two dimensional PCA of
the dataset. Highlighted seam cells clearly have two-dimensional variance in
the PCA plot but are overly contracted to nearly a line in the UMAP plots 3.3a
and 3.3b. The full legend with all cell types and further information can be
found in Fig. C.10. We report quantitative metrics in Appendix C.2. Figure best
viewed in color.

Since La
ij and Lr

ij are themselves twice continuously differentiable, their second-
order partial derivatives are symmetric. But this makes the two expressions in
equation (3.11) unequal unless di equals dj as neither La

ij nor Lr
ij have vanishing

second order partial derivatives anywhere.

The problem is that the negative samples are not updated themselves, see com-
mented line 10 of Alg. 2. We remedy this by additionally pushing the embedding
of a negative sample i away from the embedding node ej, whenever i was sampled
as a negative sample to some edge jk, see Alg.2 line 10, and obtain a closed form
loss function for UMAP’s implementation.

Theorem 3.3. If negative samples are pushed away from positive samples, as in Alg. 2,
line 10, UMAP’s optimization procedure optimizes the expected loss function

L̃ = E(L̃t) = 2 ∑
1≤i<j≤n

(
µij · La

ij +
(di + dj)m

2n
· Lr

ij

)
. (3.12)

Proof. Together with Alg. 2, line 10 the update of embedding ei in epoch t becomes

g̃t
i =

n

∑
j=1

(
Xt

ij ·
∂La

ij

∂ei
+ Xt

ji ·
∂La

ji

∂ei
+ Xt

ij ·
n

∑
s=1

Yt
ij,s ·

∂Lr
is

∂ei
+

n

∑
k=1

Xt
jkYt

jk,i ·
∂Lr

ji

∂ei

)
, (3.13)

corresponding to a loss in epoch t of

L̃t = ∑
1≤i,j≤n

(
Xt

ij · La
ij +

n

∑
s=1

Xt
ijY

t
ij,s · Lr

is

)
. (3.14)

3 Near the tip of the seam cells, the points seem to lie on a one-dimensional manifold. Closer to the
middle of the seam cells, the spread appears wider. However, there are actually two dense lines of
points.

3.6 umap’s sampling and effective loss function 61

Figure 3.4: Loss curves for the optimization leading to Fig. 3.3a. Our effective loss (3.12)
closely matches the actual loss (3.14), while the purported UMAP loss (3.6) is
two orders of magnitude higher. The total overlays the repulsive purported
loss. An average over seven runs is plotted with shaded areas of one standard
deviation, see also Appendix C.1.1. Figure best viewed in color.

Similar to the proof of Prop. 3.1, we use the symmetry of µij, La
ij and Lr

ij in i and j
to compute the effective loss

L̃ = E(L̃t) = 2 ∑
1≤i<j≤n

(
µij · La

ij +
(di + dj)m

2n
· Lr

ij

)
. (3.15)

In fact, the above remedy of also pushing the negative samples does not affect
the behavior of UMAP qualitatively, see for instance Figs. C.8 and C.11.4 In this
light, we can treat L̃ as the effective objective function that is optimized via SGD
by UMAP’s optimization procedure. It differs from UMAP’s loss function (3.6) by

having a drastically reduced repulsive weight of (di+dj)m
2n instead of 1− µij.

We illustrate our analysis on gene expression measurements of 86 024 cells of
C. elegans [116, 126]. We start out with a 100 dimensional PCA of the data and
use the cosine metric in high-dimensional space, consider k = 30 neighbors and
optimize for 750 epochs, similar to [116]. The resulting visualization is depicted
in Fig. 3.3a. On this dataset the average value of 1− µij is 0.9999 but the maximal

effective repulsive weight maxij
(di+dj)m

2n is 0.0043, showing the dramatic reduction
of repulsion due to negative sampling. After each optimization epoch, we log
our effective loss L̃ (3.12), the actual loss L̃t (3.14) of each epoch computed based
on the sampled (negative) pairs as well the purported UMAP loss L (3.6).5 We
always consider the embeddings at the end of each epoch. Note that UMAP’s
implementation updates each embedding ei not just once at the end of the epoch
but as soon as i is incident to a sampled edge or sampled as a negative sample.
This difference does not change the actual loss much, see Appendix C.1. The loss

4 In fact, the parametric version of UMAP [141] does include the update of negative samples.
5 Our code is publicly available at https://github.com/hci-unihd/UMAPs-true-loss.

https://github.com/hci-unihd/UMAPs-true-loss

62 on umap’s true loss function

curves are plotted in Fig. 3.4. We can see that our predicted loss matches its actual
counterpart nearly perfectly. While both, L̃ and L̃t, agree with the attractive part of
the supposed UMAP loss, its repulsive part and thus the total loss are two orders
of magnitude larger. Furthermore, driven by the repulsive part, the total intended
UMAP loss increases during much of the optimization process, while the actual and
effective losses decrease, exemplifying that UMAP really optimizes our effective
loss L̃ (3.12) instead of its purported loss L (3.6). Additional loss curves for UMAP
on other scRNA-seq datasets and CIFAR-10 [87] can be found in Appendix C.3.

3.7 parametric umap’s sampling and effective loss function

Recently, a parametric version of UMAP was proposed [141]. Instead of directly
optimizing the embeddings, a parametric function, a neural network, is trained
to map the input points to the embedding space. As usual, a mini-batch of data
points is fed through the neural network at each training iteration. The loss is
computed for this mini-batch, and then the neural network parameters are updated
via stochastic gradient descent. To avoid the quadratic complexity of the repulsive
term, a sampling strategy is employed, sketched in Alg. 3. There are three differ-
ences to the optimization scheme of Non-Parametric UMAP: First, since automatic
differentiation is used, not only the head of a negative sample edge is repelled
from the tail, but both repel each other. Second, the same number of edges are
sampled in each epoch. Third, since only the embeddings of the current mini-batch
are available, negative samples are produced not from the full dataset but only
from within the non-uniformly assembled batch. This leads to a different repulsive
weight for Parametric UMAP as described in

Theorem 3.4. The effective loss function of Parametric UMAP with neural network fθ ,
batch size b, and total similarity µtot =

1
2 ∑n

i=1 di is

− 1
2(m + 1)µtot

n

∑
i,j=1

[
µij · log

(
ϕ
(

fθ(xi), fθ(xj)
))

+ m
(
(b− 1)

b
didj

2µtot
+

µij

b

)
· log

(
1− ϕ

(
fθ(xi), fθ(xj)

))]
.

Proof. Let Pij be the random variable for the number of times that edge ij is sampled
into the batch B of some iteration t. Let further Nij be the random variable holding
the number of negative sample pairs ij in that iteration. Then the loss at iteration t
is given by

Lt = − 1
(m + 1)b

n

∑
i,j=1

[
Pij · log

(
ϕ
(

fθ(xi), fθ(xj)
))

(3.16)

+Nij · log
(

1− ϕ
(

fθ(xi), fθ(xj)
))]

(3.17)

To compute the expectation of this loss, we need to find the expectations of the
Pij’s and Nij’s. The edges in batch B are sampled independently with replacement
from the categorical distribution over all pairs rs with probability proportional to

3.7 parametric umap’s sampling and effective loss function 63

Algorithm 3: Parametric UMAP’s sampling-based optimization
input : high-dimensional similarities µij,

negative sample rate m,
number of epochs T,
learning rate α,
embedding network fθ ,
batch size b

output : final embeddings ei
1 for τ = 0 to T do
2 Assemble batch
3 Bh, Bt = [], [] // Initialize mini-batches for heads and tails

4 for β = 1 to b do // Sample edge by input similarity into batch

5 ij ∼ Categorical({1, . . . , n}2, { µrs
2µtot
}r,s=1,...,n})

6 Bh.append(fθ(xi))

7 Bt.append(fθ(xj))

8 Compute loss
9 l = 0
10 for β = 1 to b do // Add attractive loss for sampled edges

11 l = l + La(Bh[β], Bt[β])

12 π ∼ Uniform(permutations of {1, . . . , m · b})
13 for β = 1 to mb do // Add repulsive loss for negative samples

14 l = l + Lr(mBh[β], mBt[π(β)]) // mB repeats B m times

15 l = l
(m+1)b

16 Update parameters
17 θ = θ − α · ∇θ l
18 return fθ(x1), . . . , fθ(xn)

the high-dimensional similarities. Thus, Pij follows the multinomial distribution

Mult(b, { µrs
2µtot
}r,s=1,...,n}) and E(Pij) =

bµij
2µtot

.
Each entry of the heads Bh and tails Bt in B is repeated m times to get the

negative sample pairs. We introduce the random variables Hr and Tr for r = 1, . . . , n,
representing the number of occurrences of node r among the repeated heads and
tails. Nij counts how often the sampled permutation, π, of the repeated tails assigns
a tail j to a head i. This can be viewed as selecting a tail from mBt (tails repeated
m times) for each of the Hi heads i without replacement. There are Tj tails that
could lead to a negative sample pair ij. Therefore, Nij follows a hypergeometric

distribution Hyp(mb, Hi, Tj). So, Eπ(Nij) =
HiTj
mb . We have

Hi = m ·
n

∑
s=1

Pis and Tj = m ·
n

∑
r=1

Prj. (3.18)

64 on umap’s true loss function

Since the multinomially distributed Prs’s have covariance Cov(Prs, Pr′,s′) = −b µrsµr′s′
4µ2

tot

for (r, s) ̸= (r′, s′) and variance Var(Prs) = b µrs
2µtot

(
1− µrs

2µtot

)
, we get

EB(PrsPr′s′) = Cov(Prs, Pr′s′) + EB(Prs)EB(Pr′s′) = b(b− 1)
µrsµr′s′

4µ2
tot

(3.19)

EB(P2
rs) = Var(Prs) + EB(Prs)

2 = b(b− 1)
µ2

rs

4µ2
tot

+ b
µrs

2µtot
. (3.20)

Thus, we compute the expectation of Eπ(Nij) with respect to the batch assembly as

EB(Eπ(Nij)) =
1

mb
EB(HiTj)

=
1

mb
EB

(
m

n

∑
s=1

Pis ·m
n

∑
r=1

Prj

)

=
m
b

n

∑
r,s=1

EB(PisPrj)

=
m
b

[
n

∑
r ̸=i or s ̸=j

EB(PisPrj) + EB(P2
ij)

]

=
m
b

[
n

∑
r,s=1

b(b− 1)
µisµrj

4µ2
tot

+ b
µij

2µtot

]

= m
(
(b− 1)

didj

4µ2
tot

+
µij

2µtot

)
. (3.21)

Finally, as the random process of the batch assembly is independent of the choice
of the permutation, we can split the total expectation up and get the expected loss

E(B,π)(Lt)

= EBEπ

(
− 1

(m + 1)b

n

∑
i,j=1

(
Pij · log

(
ϕ
(

fθ(xi), fθ(xj)
))

+ Nij · log
(

1− ϕ
(

fθ(xi), fθ(xj)
))))

= − 1
(m + 1)b

n

∑
i,j=1

(
EBEπ(Pij) · log

(
ϕ
(

fθ(xi), fθ(xj)
))

+ EBEπ(Nij) · log
(

1− ϕ
(

fθ(xi), fθ(xj)
)))

(3.22)

= − 1
(m + 1)b

n

∑
i,j=1

(
bµij

2µtot
· log

(
ϕ
(

fθ(xi), fθ(xj)
))

+ m
(
(b− 1)

didj

4µ2
tot

+
µij

2µtot

)
· log

(
1− ϕ

(
fθ(xi), fθ(xj)

)))
= − 1

2(m + 1)µtot

n

∑
i,j=1

(
µij · log

(
ϕ
(

fθ(xi), fθ(xj)
))

+ m
(
(b− 1)

b
didj

2µtot
+

µij

b

)
· log

(
1− ϕ

(
fθ(xi), fθ(xj)

)))
.

3.7 parametric umap’s sampling and effective loss function 65

While the exact loss function for Parametric UMAP differs slightly from that of
Non-Parametric UMAP in the precise value of the repulsive weight, our qualitative
analysis still applies to the parametric case. We argued above that Non-Parametric

UMAP’s repulsive weight is (di+dj)m
2n ≈ log2(k)m

n , which is very small since n≫ m, k.
The repulsive weight for Parametric UMAP is similarly small since, for large b, we
have

m
(
(b− 1)

b
didj

2µtot
+

µij

b

)
≈ m

didj

2µtot
(3.23)

= m
didj

∑n
l=1 dl

(3.24)

≈ m
log2(k)

2

n log2(k)
(3.25)

=
log2(k)m

n
. (3.26)

3.7.1 Relation of Parametric UMAP to modularity clustering

The objective function of Parametric UMAP is loosely related to modularity cluster-
ing [43, 119]. The modularity of a clustering of a weighted graph is given by

Q =
1

2µ̃tot

n

∑
i,j=1

(
w̃ij −

d̃id̃j

2µ̃tot

)
· δ(ci, cj), (3.27)

where in accordance to our notation w̃ij is the weight of edge ij, d̃i = ∑n
j=1 w̃ij is

the degree of node i, µ̃tot =
1
2 ∑n

i,j=1 w̃ij is the total weight of the graph, ci is the
cluster of node i, and finally δ is the Kronecker delta function. Modularity measures
how much larger the edge weight within the clusters, ∑n

i,j=1 w̃ij · δ(ci, cj), is than the
amount expected under the configuration model, ∑n

i,j=1 d̃id̃j/(2µ̃tot) · δ(ci, cj). The
NP-hard objective of modularity clustering is to find a clustering with maximal
modularity.
Parametric UMAP’s negative sampling is uniform from a batch that is itself sampled
according to µij. Thm. 3.4 shows that this yields a weighing of attractive and
repulsive terms akin to modularity clustering. To relate modularity clustering
further to the objective of Parametric UMAP, we observe that while δ(ci, cj) measures
whether nodes i and j are in the same cluster, log(νij) is maximal if the similarity
of ei and ej in embedding space is high. Thus, both quantities encode whether in
the output (a clustering or an embedding) i and j are deemed similar. In neighbor
embeddings [66], it is typically deemed particularly bad to embed neighboring
points very far apart and to embed non-neighboring points very close by. The
divergence of log(νij) and log(1− νij) at νij = 0 and νij = 1, respectively, captures
this intuition. However, to relate Parametric UMAP to modularity clustering, we
need a single (soft) measure of affiliation to the same cluster. Also, in modularity
clustering, one might place two graph nodes into the same cluster, even if they are
not directly connected, but only indirectly via a chain of neighboring nodes. So,
for clustering, the divergence behavior of log(1− νij) is not desired. Therefore, we
replace Parametric UMAP’s log(1− νij) by − log(νij) yielding the objective function

66 on umap’s true loss function

1
2(m + 1)µtot

n

∑
i,j=1

(
µij · log(νij) + m

(
(b− 1)

b
didj

2µtot
+

µij

b

)
· (− log(νij))

)
(3.28)

=
1

2(m + 1)µtot

n

∑
i,j=1

((
µij −m

(
(b− 1)

b
didj

2µtot
+

µij

b

))
· log(νij)

)
(3.29)

≈ 1
2(m + 1)µtot

n

∑
i,j=1

((
µij −m

didj

2µtot

)
· log(νij)

)
, (3.30)

where the approximation holds for large b. We see that minimizing it loosely
corresponds to maximizing a quantity similar to modularity, especially for m = 1.
We leave a more in-depth exploration of this connection for future work.

3.8 true target similarities

Since the effective objective function L̃ (3.12) that UMAP optimizes is different from
L (3.6), we cannot hope that UMAP truly tries to find a low-dimensional embedding
whose similarities reproduce the high-dimensional similarities. Nevertheless, using
the effective loss L̃, we can compute the true target similarities ν∗ij, which UMAP
tries to achieve in embedding space.

Proposition 3.5. UMAP’s effective loss L̃ (3.12) becomes minimal for ν∗ij =
µij

µij+
(di+dj)m

2n

.

Proof. The effective loss L̃ is a sum of non-normalized binary cross-entropy loss
functions

−
(

µij · log(νij) +
(di + dj)m

2n
· log(1− νij)

)
, (3.31)

which are individually minimal for

ν∗ij =
µij

µij +
(di+dj)m

2n

. (3.32)

When all its summands are individually minimized, the total loss L̃ is also minimal.

The target similarities ν∗ij are not realizable as νij = ϕ(∥ei − ej∥) for any point
configuration e1, . . . , en in Rd, simply because the Cauchy kernel is strictly positive.
Nevertheless, they show the true aim of UMAP’s optimization strategy. In the

typical case in which (di+dj)m
2n ≈ 0 the target similarities can be approximated as

ν∗ij =
µij

µij +
(di+dj)m

2n

= 0 if µij = 0

≈ 1 if µij > 0.
(3.33)

In other words, even the smallest high-dimensional similarity appears maximal
compared to the massively reduced repulsion weight. Thus, the negative sampling
essentially binarizes the input similarities. UMAP’s high-dimensional similarities
are non-zero exactly on the skNN graph edges of the high-dimensional data. There-
fore, the binarization explains why Böhm et al. [15] find that using the binary

3.8 true target similarities 67

(a) Similarities for µij > 0 (b) Original and inverted similarities for µij > 0

Figure 3.5: Histograms of high-dimensional (µij), target (ν∗ij) and low-dimensional (νij)
similarities on the C. elegans dataset [116, 126] for pairs with positive high-
dimensional similarity. 3.5a: The similarities of UMAP’s low-dimensional em-
bedding reproduce the target similarities instead of the high-dimensional ones.
The target similarities are heavily skewed towards one. 3.5b: Comparison of
positive input and target similarities for the original and inverted input similari-
ties. While the histograms of the input similarities differ noticeably, their target
similarities do not, and neither do the embedding similarities (not shown). The
binarization essentially ignores all information beyond the skNN graph.

weights of the skNN graph does not deteriorate UMAP’s performance much.6 The
binarization even helps UMAP to overcome disrupted high-dimensional similarities,
as long as only the edges of the skNN graph have non-zero weight. In Fig. 3.3b,
we invert the original positive high-dimensional weights on the C. elegans dataset.
That means that the k-th nearest neighbor will have a higher weight than the nearest
neighbor. The resulting visualization even improves on the original by keeping the
layout more compact. This underpins Böhm et al. [15]’s claim that the elaborate
theory used to compute the high-dimensional similarities is not the reason for
UMAP’s practical success. In fact, we show that UMAP’s optimization scheme even
actively ignores most information beyond the skNN graph. In Fig. 3.5, we show
histograms of the various notions of similarity for the C. elegans dataset. We see
in Fig. 3.5b how the binarization equalizes the positive target similarities for the
original and the inverted high-dimensional similarities.

UMAP’s tendency for over-contraction is already strong for small datasets. Con-
sider UMAP’s default setting of k = 15 and m = 5. Then for datasets with n = 500
points each input similarity µij > 0.2 is mapped to a target similarity ν∗ij > 0.83, see
Sec. 3.9.4.

The binary cross entropy terms in the effective loss L̃ (3.12) are not normalized.
This leads to a different weighing of the binary cross-entropy terms for each pair ij

L̃ = 2 ∑
1≤i<j≤n

(
µij · La

ij +
(di + dj)m

2n
· Lr

ij

)
(3.34)

= −2 ∑
1≤i<j≤n

[(
µij +

(di + dj)m
2n

)
·
(

ν∗ij log(νij) + (1− ν∗ij) log(1− νij)
)]

.

(3.35)

6 Böhm et al. [15] used a scaled version of the skNN graph, but the scaling factor cancels for the target
weights.

68 on umap’s true loss function

As (di+dj)m
2n is very small for large datasets, the term µij +

(di+dj)m
2n is dominated by

µij. Hence, the reduced repulsion not only binarizes the high-dimensional similar-
ities but also puts higher weight on the positive than the zero target similarities.
Therefore, we can expect that the positive target similarities are better approximated
by the embedding similarities than the zero ones. Indeed, Fig. 3.5a shows that
the low-dimensional similarities match the positive target similarities very well, as
expected from the weighted BCE reading of the effective loss function (3.35).

3.8.1 Explaining artifacts in UMAP visualizations

We conclude this section by explaining the observed artifacts of UMAP’s visual-
ization in Figs. 3.2 and 3.3 in the light of the above analysis. The regular UMAP
optimization contracts the ring in Fig. 3.2b even when initialized at the original
layout because the reduced repulsion yields nearly binary target similarities. All
pairs that are part of the skNN graph not only want to be sufficiently close that their
high-dimensional similarity is reproduced but so close that their similarity is nearly
one. The fact that the effective loss weighs the terms with target similarity near one
much more than those with target similarity near zero reinforces this trend. As a
result, the ring gets contracted. The same argument applies to the over-contracted
parts of the UMAP visualization of the C. elegans dataset in Fig. 3.3.

When we increase the dataset size by adding more rings, as in Fig. 3.2c, negative
sample pairs can come from different rings, reducing the frequency that a pair of
points from the same ring is sampled. This reduces the repulsion further. Thus,
there is stronger binarization, and the embedding looks crisper. If we sample a
single ring more densely, over-contraction is also increased. However, the visual
appearance is more nuanced as over-contraction can appear in the form of densely
clustered and line-like substructures within the ring width, see Sec. 3.9.3.

Our framework can also explain the opposite behavior of UMAP when the dense
similarities are used as input similarities in Fig. 3.2d. In this setting, the average
degree of a node is about 100. With a negative sample rate m = 5 and a dataset

size n = 1000 this yields repulsive weights (di+dj)m
2n ≈ 0.5. Thus, we increase the

repulsion on pairs with high input similarity but decrease it on pairs with low input
similarity. Now, the target similarities are not a binarization of the input similarities
but instead skewed towards 0.5. Hence, we can expect embedding points to increase
their distance to nearest neighbors but distant points to move closer towards each
other. This is what we observe in Fig. 3.2d, where the width of the ring has increased
and the ring curves to bring distant points closer together.

3.9 umap’s dependence on the dataset size

UMAP’s true loss function (3.12) depends on the dataset, in particular on its size
n. As discussed in Sec. 3.8, the reduction of repulsion, the binarization, and the
over-contraction will all be stronger for larger datasets. This section discusses this
observation in more detail and explores the effect empirically.

3.9 umap’s dependence on the dataset size 69

(a) Input similarities µij (b) Target similarities ν∗ij (c) Embedding similarities νij

Figure 3.6: Distributions of input (µij), target (ν∗ij), and embedding similarities (νij) for pairs
with positive input similarity from datasets with a varying number of rings. All
distributions are normalized to one. The legends indicate the number of rings in
the dataset. 3.6a: The high-dimensional similarities do not change qualitatively
between the datasets. Their distribution only gets smoother as the dataset gets
larger. 3.6b: The larger the dataset, the stronger the binarization, and thus
the more the distributions of target similarities are skewed to one. 3.6c: The
larger the dataset, the stronger the over-contraction, and thus the more the
distributions of embedding similarities are skewed to one.

3.9.1 Multiple rings experiments

We applied UMAP to datasets containing multiple 2D rings of 1000 points each. The
rings were spaced so that no point in one ring had any of its k nearest neighbors
in another ring. As the input similarities µij only depend on the distances to the k
nearest neighbors, this ensures that the input similarities for points from one ring
are the same as if the dataset consisted only of that ring. The input similarities
between points in different rings are all zero.

We varied the number of rings from 1 to 20. We formed the datasets by iteratively
adding rings, so the datasets with fewer rings are subsets of those with more rings.
To ensure convergence, we ran the UMAP optimization for 10000 epochs as for the
single ring experiments in Fig. 3.2. Moreover, we initialized the optimization at
the original layout. Other hyperparameters were kept at their default values. The
results can be found in Fig. 3.8.

With this setup, one might expect that the embedding of the first ring would look
similar for all datasets. However, we observe that the embedding of the rings gets
crisper the more rings the dataset contains. The repulsion weight in our effective
loss function (3.12) depends on the degrees of the points, the negative sample rate,
and the dataset size n. Since the input similarities are the same as in individual
rings by construction, the degree of each point is independent of the presence of
other rings. However, the dataset size, of course, increases with the number of rings
so that the repulsion gets smaller for the larger datasets. Viewed from the point of
the target similarities (3.32), the binarization gets stronger. This explains why we
see more over-contraction. In Fig. 3.6, we show histograms for input, target, and
embedding similarities (as graphs for visual clarity), which confirm that the input
similarities do not change fundamentally, but the target and thus the embedding
similarities get more skewed towards one as the number of rings increases.

We can also give a more concrete explanation for the reduced repulsion. The
edges for attraction are sampled equally frequently, independent of the number of
rings. For each such sampled attractive edge, m negative samples are generated.
However, these may come from any of the rings in the dataset. So if there are

70 on umap’s true loss function

(a) Input similarities µij (b) Target similarities ν∗ij (c) Embedding similarities νij

Figure 3.7: Distributions of input (µij), target (ν∗ij), and embedding similarities (νij) for pairs
of points with positive input similarity from single ring datasets with a varying
number of points. All distributions are normalized to one. The legends indicate
the number of sample points of the ring. 3.6a: The high-dimensional similarities
do not change qualitatively between the datasets. Their distribution only gets
smoother as the dataset gets larger. 3.6b: The larger the dataset, the stronger the
binarization, and thus the more the distributions of target similarities are skewed
to one. In particular, for smaller datasets, the target similarities are bound away
from one by equation (3.32). 3.6c: The larger the dataset, the stronger the over-
contraction, and thus the more the distributions of embedding similarities are
skewed to one.

more rings, it is more likely that a negative sample will come from a different ring.
Consequently, it gets less likely that it comes from the same ring. So repulsion
within the ring is decreased while the attraction within the ring remains the same,
explaining the more contracted embeddings.

3.9.2 Varying the sample size of a single ring

In this set of experiments, we computed UMAP embeddings of datasets consisting
of a varying number of points sampled from a 2D ring. We sampled between 100
and 10000 points. Like for multiple rings above, our analysis predicts that the
larger the dataset, the stronger the reduction in repulsion, the binarization, and
the over-contraction. Indeed, this is what we see in Fig. 3.7, where we show the
distributions of input, target, and embedding similarities for pairs of points with
positive input similarity.

Because of UMAP’s uniformity assumption, the size of the input similarities
depends on the relative distances of a point to its k nearest neighbors. Since
the points are always sampled uniformly from the ring, we can expect that the
distribution of input similarities does not change qualitatively as we increase the
sample size, confirmed in Fig. 3.7a. For the target similarities, a larger number of
points implies that they should be more skewed towards one, as shown in Fig. 3.7b.
Note that for the smallest datasets, speaking of binarization is not quite justified.

E.g., the dataset with 100 points has a typical repulsion strength of (di+dj)m
2n ≈ 0.2,

so that the largest possible target similarity is 1/1.2 ≈ 0.83. Finally, the embedding
similarities also get skewed more towards one as the dataset gets larger, indicating
increasing over-contraction.

As usual, we optimized the UMAP embeddings for 10000 epochs, initialized
at the original positions, and kept all other hyperparameters at their defaults.
The resulting embeddings can be found in Fig. 3.10. While our theory predicts
increasing over-contraction as the dataset gets larger, corroborated by the similarity

3.9 umap’s dependence on the dataset size 71

(a) Dataset with 1 ring (b) UMAP embedding

(c) Dataset with 2 rings (d) UMAP embedding (e) Embedding of blue ring
in 3.8d

(f) Dataset with 5 rings (g) UMAP embedding (h) Embedding of blue ring
in 3.8g

(i) Dataset with 10 rings (j) UMAP embedding (k) Embedding of blue ring
in 3.8j

(l) Dataset with 20 rings (m) UMAP embedding (n) Embedding of blue ring
in 3.8m

Figure 3.8: UMAP’s embedding of datasets with multiple rings. Left column: Datasets
of multiple 2D rings à 1000 points per ring. Datasets with fewer points are
subsets of those with more points. The blue ring is the same in all datasets. The
larger datasets are plotted smaller for shortage of space. Middle column: UMAP
embedding of the dataset on the left. The larger the dataset, the more contracted
the ring width. Embeddings of larger datasets are plotted smaller for shortage
of space. Right column: Embedding of the blue ring at the same size. The larger
the dataset, the crisper the embedding becomes, although the blue ring is the
same in all datasets. Figure best viewed digitally.

72 on umap’s true loss function

Figure 3.9: Average distance to the k-th nearest neighbor in ring datasets with varying
density. The average is over all points in each dataset. One standard deviation
is given. The larger the number of samples, the smaller the distance to the k-th
nearest neighbor.

distributions in Fig. 3.7, the embedding of the dataset with 500 points appears to
have the smallest ring width, while the embeddings of the dataset with 100 or of
those with more than 500 points seem to have larger ring widths. In particular, for
the dataset of 10000 points, the apparent ring width is nearly as large as in the input
data. Nevertheless, this is not at odds with our predictions: An over-contracted ring
width is only one way over-contraction can manifest. In the zoomed-in segments
of the ring embeddings in Fig. 3.10, we see that the structure of points within
the embedding is far from uniform: Points cluster or form lines, much like in
Fig. C.9, where we apply UMAP to uniform data. The predicted and measured
over-contraction is present but on a smaller scale than the ring width, so it is
not immediately visible from the global embedding. Note that these are spurious
artifacts of UMAP’s optimization procedure as the original data is uniform.

We conjecture that the reason for whether one observes over-contraction on a
global scale has to do with the relative size of the local neighborhoods and the
width of the ring. If the local neighborhood is large relative to the width of the
ring, it is more likely to be contracted to a line. If it is small, the over-contraction
happens within the width of the ring.

Another way of looking at this phenomenon is that for fixed k but increasing
sample size of the toy ring, the distance to the k-th nearest neighbor and thus the
radius of the local neighborhood decrease relative to the fixed width of the whole
ring. We computed the mean distance to the k-th nearest neighbor over all data
points and plotted the results in Fig. 3.9. At 500 data points, when the width of
the embedding has nearly reached 0, the mean k-th nearest neighbor radius is
about 0.54. Hence, some points’ local neighborhoods span the ring’s width. At 1000
points, when the embedding ring width increases again, the average k-th nearest
neighbor radius is only 0.35, smaller than the original ring width of 1. We note for
completeness that for some toy rings with few points, the ring structure was torn up
to a line or even a set of clusters (not shown). For the dataset with only 100 points,
the mean distance to the k-th nearest neighbor is about 2, but the small number
of data points reduces the repulsion strength not enough for the embedding to
become visibly over-contracted.

3.9 umap’s dependence on the dataset size 73

(a) Ring with 100 points (b) UMAP embedding (c) Zoom on data (d) Zoom on
embedding

(e) Ring with 500 points (f) UMAP embedding (g) Zoom on data (h) Zoom on
embedding

(i) Ring with 1000
points

(j) UMAP embedding (k) Zoom on data (l) Zoom on embedding

(m) Ring with 5000
points

(n) UMAP embedding (o) Zoom on data (p) Zoom on
embedding

(q) Ring with 10000
points

(r) UMAP embedding (s) Zoom on data (t) Zoom on embedding

Figure 3.10: UMAP embedding of rings with a varying number of points. First col-
umn: Datasets of rings in 2D. Second column: UMAP embedding of the
dataset on the left. The embedding of the dataset with 500 points, 3.10f, seems
most crisp, although it is not the largest dataset. Third column: Zoom of the
original data within the angular segment [0, π/8]. Fourth column: Zoom on
the embedding of the points that are in the third column. We see that for the
larger datasets, there is over-contraction within the width of the ring in the
form of clustered and line-like substructures. Figure best viewed digitally.

74 on umap’s true loss function

Figure 3.11: Average degree of a point in the 2D ring datasets of varying size of Fig. 3.12.
The average is over all points in the dataset, and the error bar is one standard
deviation. We used the dense input similarities. The dotted line is the best
linear fit, which perfectly explains the data.

Since applying UMAP on an independent subset or a down- or up-sampled
version of a dataset are both standard practices, we expect the resulting artifacts to
appear often in practice.

3.9.3 Varying the sample size for dense input similarities

We also computed UMAP embeddings based on the dense input similarities
µij = ϕ(||xi − xj||) for rings with varying number of samples. Here, the analy-
sis differs from the typical, skNN-based input similarities. As the dataset size
increases, each point is similar to more points. Therefore, the degree di for a point i
scales with the dataset size, and the effective repulsive pre-factor (di+dj)m

2n does not
decrease with the dataset size but remains approximately constant. We show the
linear scaling of the average degree with the dataset size in Fig. 3.11. Hence, we do
not expect any qualitative difference in this setting as we vary the number of points
in the ring. Indeed, experiments in which we changed the number of points of the
ring from 100 to 5000 confirm this prediction, see Fig. 3.12.

3.9.4 Discussion of the influence of m, k and n

The effective repulsion weight (di+dj)m
2n and thus the transformation from input to

target similarities depends on the degrees of nodes i and j, the negative sample
rate m and the dataset size n. As discussed in Sec. 3.4, the degree di = ∑n

j=1 µij is
typically close to log2(k). Plugging this into equation (3.32) shows that the target
similarities of UMAP’s implementation are roughly

ν∗ij ≈
µij

µij + log2(k)m/n
. (3.36)

This shows how the relation between target and high-dimensional similarities
depends on k, m, and n. Note that there are no parameter settings for m and k that

3.9 umap’s dependence on the dataset size 75

(a) Ring with 100 points (b) UMAP plot of a from
dense similarities

(c) Ring with 200 points (d) UMAP plot of c from
dense similarities

(e) Ring with 500 points (f) UMAP plot of e from
dense similarities

(g) Ring with 1000
points

(h) UMAP plot of g from
dense similarities

(i) Ring with 2000
points

(j) UMAP plot of i from
dense similarities

(k) Ring with 5000
points

(l) UMAP plot of k from
dense similarities

Figure 3.12: Datasets of 2D rings with a varying number of points and their UMAP’s
embeddings from dense input similarities. Qualitatively the UMAP embedding
does not change with the size of the dataset.

allow the (near) exact reconstruction of the whole value range of input similarities
µij’s for a fixed n as this would require

log2(k)m/n = 1− µij∀i, j. (3.37)

For instance, we can see in Fig. 3.5 that most non-zero high-dimensional similarities
are either 1 or close to 0.05 for the C. elegans dataset with k = 30 and n = 86024.
To preserve the µij’s that equal 1, we would need

m = (1− 1) · 86024/ log2(30) = 0, (3.38)

while to preserve the µij’s near 0.05, we would need

m = (1− 0.05) · 86024/ log2(30) ≈ 16500 (3.39)

negative samples, which would be prohibitively slow computationally. Changing k
would additionally change the algorithm’s notion of locality, which has implications
on both speed and appearance.

76 on umap’s true loss function

As another example, consider UMAP’s default setting of k = 15 and m = 5. Then
already for n = 500 each input similarity µij > 0.2 would be mapped to a target
similarity

ν∗ij ⪆
0.2

0.2 + 5 log2(15)
500

≈ 0.83. (3.40)

So even for relatively small datasets, the over-contraction can be strong, even if the
target similarities are not necessarily binary.

It is tempting to adapt m and k to the dataset size so that log2(k)m/n remains
constant, and thus UMAP becomes less dependent on the dataset size. However,
as mentioned above, increasing m with n makes UMAP’s run time quadratic in
n, and increasing log2(k) with n makes UMAP’s scale exponentially with n and
would also change the notion of locality. The most severe problem that we see with

keeping the repulsion pre-factor (di+dj)m
2n constant is that this means that the total

amount of repulsion acting on a single embedding point scales with the dataset size
while the total amount of attraction remains constant. This way, we risk arriving at
diverged embeddings for sufficiently large datasets, as observed by Böhm et al. [15]
and discussed in Section 3.11.1. While the inverse relation of the repulsion pre-factor
with the dataset size can lead to over-contraction on the skNN graph edges, it also
counteracts the quadratic number of non-skNN graph edges.

3.10 negative sampling in largevis

Our analysis also applies to the visualization method LargeVis [153], which uses a
very similar optimization scheme to UMAP, but with a slightly different negative
sampling distribution. Its intended loss function is given in [153] as

− ∑
ij∈skNN graph

µij log(νij)− ∑
ij/∈skNN graph

γ log(1− νij), (3.41)

with a constant γ, set to 7 per default in [153]. Different from UMAP, µij and νij
are the high- and low-dimensional similarities from t-SNE [160]; in particular the
µij are only non-zero on the edges of the skNN graph. For optimization, Tang et
al. [153] employ negative sampling and arrive at the following, different objective
function

LLargeVis = − ∑
ij∈skNN graph

µij

(
log(νij) +

m

∑
s=1

Ejs∼P(a)
(
γ log(1− νijs)

))
, (3.42)

with negative sample distribution P(a) ∝ d0.75
a . As for UMAP, we can compute a

closed form loss function:

Theorem 3.6. The loss function of LargeVis [153] is

LLargeVis = − ∑
1≤i<j≤n

(
µij log(νij) +

mγ(didj)
0.75(d0.25

i + d0.25
j)

2 ∑n
l=1 d0.75

l
log(1− νij)

)
.

(3.43)

3.10 negative sampling in largevis 77

Proof. We can compute the expectation and rearrange, similar to UMAP’s loss.

LLargeVis = − ∑
ij∈skNN graph

µij

(
log(νij) +

m

∑
s=1

Ejs∼P(a)
(
γ log(1− νijs)

))

=− 1
2 ∑

1≤i,j≤n
µij

(
log(νij) +

m

∑
s=1

Ejs∼P(a)
(
γ log(1− νijs)

))

=− 1
2 ∑

1≤i,j≤n
µij

(
log(νij) + mγ

n

∑
α=1

(
d0.75

α

∑n
l=1 d0.75

l
log(1− νiα)

))

=− 1
2 ∑

1≤i,j≤n
µij log(νij)−

mγ

2 ∑
1≤i,j≤n

(
µij

n

∑
α=1

(
d0.75

α

∑n
l=1 d0.75

l
log(1− νiα)

))

=− 1
2 ∑

1≤i,j≤n
µij log(νij)−

mγ

2

n

∑
1≤i,α≤n

(
d0.75

α

∑n
l=1 d0.75

l
log(1− νiα)

n

∑
j=1

µij

)

=− 1
2 ∑

1≤i,j≤n
µij log(νij)−

mγ

2

n

∑
1≤i,α≤n

(
did0.75

α

∑n
l=1 d0.75

l
log(1− νiα)

)

=− 1
2 ∑

1≤i,j≤n
µij log(νij)−

1
2

n

∑
1≤i,α≤n

(
mγ(didα)0.75(d0.25

i + d0.25
α)

2 ∑n
l=1 d0.75

l
log(1− νiα)

)

=− 1
2 ∑

1≤i,j≤n
µij log(νij)−

1
2

n

∑
1≤i,j≤n

(
mγ(didj)

0.75(d0.25
i + d0.25

j)

2 ∑n
l=1 d0.75

l
log(1− νij)

)

=− ∑
1≤i<j≤n

(
µij log(νij) +

mγ(didj)
0.75(d0.25

i + d0.25
j)

2 ∑n
l=1 d0.75

l
log(1− νij)

)
. (3.44)

First, we used the fact that µij is zero outside of the skNN graph, in particular that
µii = 0. Second, we computed the expectation

Ejs∼P(a)
(

log(1− νijs)
)
=

n

∑
α=1

(
d0.75

α

∑n
l=1 d0.75

l
log(1− νiα)

)
. (3.45)

Here, we use the convention for the undefined term log(1− νii) = log(0) described
in the beginning of Appendix C.1. Third and fourth, we rearranged the summations.
Fifth, we computed the degree di, and sixth, we used the symmetry νiα = ναi.
Seventh, we relabelled α to j, and finally, we rearranged the summation one last
time using both µii = 0 and the convention for log(0).

LargeVis does not motivate its loss function as a sum of binary cross-entropy
losses for each edge but instead as attraction on edges of the skNN graph plus
constant repulsion on all non-skNN edges. Nevertheless, the negative sampling-
based optimization turns this into a sum of non-normalized binary cross-entropy
losses as for UMAP. While we have not empirically computed values of the repulsion
pre-factor, we firmly believe that it is tiny since the denominator contains a sum
over the entire dataset. In this case, what we called “target similarities” would look
binary for LargeVis, too. This puts LargeVis in even closer proximity to UMAP as
the different choice of input similarity µij or negative sampling distribution in both
methods matters little and helps to explain why LargeVis and UMAP embeddings
often look very similar.

78 on umap’s true loss function

3.11 discussion

3.11.1 Balancing attraction and repulsion

By deriving UMAP’s proper loss function and target similarities, we are able
to explain several peculiar properties of UMAP visualizations. According to our
analysis, UMAP does not aim to reproduce the high-dimensional UMAP similarities
in low dimension but rather the binary weights of the skNN graph of the input
data. This raises the question of just what part of UMAP’s optimization leads to
its excellent visualization results. Apparently, the exact formula for the repulsive
weights is not crucial as it differs for Non-Parametric UMAP and Parametric UMAP,
while both produce similarly high-quality embeddings. A first tentative step toward
an explanation might be the different weighing of the BCE terms in the effective
loss function (3.35). Focusing more on the similar rather than the dissimilar pairs
might help to overcome the imbalance between an essentially linear number of
attractive and a quadratic number of repulsive pairs. Inflated attraction was also
found beneficial for t-SNE, in the form of early exaggeration [102].

Put another way, the decreased repulsive weights result in comparable total
attractive and repulsive weights, which might facilitate the SGD-based optimiza-
tion. Indeed, the total attractive weight in UMAP’s effective loss function is

2µtot = ∑n
i,j=1 µij and the total repulsive weight amounts to 2mµtot = ∑n

i,j=1
(di+dj)m

2n
for Non-Parametric UMAP. For Parametric UMAP the total attractive and repulsive
weights are 1/(m + 1) and m/(m + 1), respectively. For the default value of m = 5,
the total attractive and repulsive weights are roughly of the same order of magni-
tude. Moreover, we observe in Fig. 3.4 that the resulting attractive and repulsive
losses are also of comparable size. Using UMAP’s purported loss function, however,
would yield dominating repulsion.

3.11.2 Improved UMAP

The reason for the binarization of the input similarities is the reduced repulsion
on the pairs of points that are linked in the skNN graph. As discussed above, it
might not be desirable to increase the repulsion on all pairs of points to 1− µij.
However, it might be useful to change the optimization procedure of UMAP to
decrease the repulsion per edge only on the non-skNN graph edges and not on the
skNN graph edges. In addition to the positive and negative sampling of UMAP, we
suggest to explicitly sample the skNN graph edges for repulsion with probability
1− µij − (di + dj)m/(2n). This would correct the repulsion weight for edges in the
skNN graph. The loss function would read

−2

[
∑

ij∈kNN graph

(
µij log(νij) + (1− µij) log(1− νij)

)
(3.46)

+ ∑
ij/∈kNN graph

(
(di + dj)m

2n
log(1− νij)

)]
. (3.47)

Now, the target similarities are precisely the high-dimensional similarities µij for
all pairs i, j. Hence, in an optimal embedding, all µij’s are exactly reproduced and

3.12 conclusion 79

not just a binary version. We hope this will improve the embedding quality and
decrease over-contraction. Crucially, the amount of repulsion per data point is kept
constant and is not increasing with n. For the quadratic number of non-skNN graph
edges, the individual repulsion pre-factors still decrease with 1/n. The total loss
function is a sum of normalized cross-entropy terms for the edges in the skNN
graph and of non-normalized and drastically down-weighted cross-entropy terms
for the edges not in the skNN graph. Since not all O(n2) negative pairs are consid-
ered explicitly and the additional sampling of the skNN graph edges for repulsion
only scales with O(n), the complexity of computing the embedding would still
scale linearly as O(kmn · numepochs) and not quadratically in n.

A more in-depth investigation of why precisely balanced attraction and repulsion
is beneficial for a useful embedding and implementation of the improved sampling
scheme are left for future work.

3.12 conclusion

In this work, we investigated UMAP’s optimization procedure in depth. In partic-
ular, we computed UMAP’s effective loss function analytically and found that it
differs slightly between the non-parametric and parametric versions of UMAP and
significantly from UMAP’s alleged loss function. The optimal solution of the effec-
tive loss function is typically a binarized version of the high-dimensional similarities.
This shows why the sophisticated form of the high-dimensional UMAP similarities
does not add much benefit over the skNN graph. Instead, we conjecture that the
resulting balance between attraction and repulsion is the main reason for UMAP’s
excellent visualization capability. Our analysis can explain some artifacts of UMAP
visualizations, particularly its tendency to produce over-contracted embeddings,
which gets stronger for larger datasets.

4
C O N T R A S T I V E L E A R N I N G U N I F I E S t - S N E A N D U M A P

Neighbor embedding methods t-SNE and UMAP are the de facto standard for visu-
alizing high-dimensional datasets. They appear to use very different loss functions
with different motivations, and their exact relationship used to be unclear. Here, we
clarify the relationship between t-SNE and UMAP: We show that UMAP effectively
applies negative sampling to the t-SNE loss function. We explain the difference
between negative sampling and noise-contrastive estimation (NCE), which has been
used to optimize t-SNE and is called “NCVis” in this setting. We prove that, unlike
NCE, negative sampling learns a scaled data distribution. When applied in the
neighbor embedding setting, it yields more compact embeddings with increased
attraction, explaining differences in appearance between UMAP and t-SNE. Further,
we generalize the notion of negative sampling and obtain a spectrum of embed-
dings, encompassing visualizations similar to t-SNE, NCVis, and UMAP. Finally, we
explore the connection between representation learning in the SimCLR setting and
neighbor embeddings, and show that (i) t-SNE can be optimized with the InfoNCE
loss and it also works in a parametric setting; (ii) various contrastive losses with
only a few noise samples can yield competitive performance in the SimCLR setup.
This chapter is based on [38].

4.1 introduction

Low-dimensional visualization of high-dimensional data is a ubiquitous step in
exploratory data analysis, and the toolbox of visualization methods has been rapidly
growing in the last years [1, 112, 116, 152, 153, 165]. Since all of these methods
necessarily distort the true data layout [24, 71], it is beneficial to have different
tools at one’s disposal. However, only with a theoretical understanding of the aims
of and relationships between different methods, practitioners can make informed
decisions about which visualization to use for which purpose and how to interpret
the results.

The state-of-the-art for non-parametric, non-linear dimensionality reduction em-
ploys the neighbor embedding framework [66]. The two most popular examples
of neighbor embedding methods are t-SNE [160, 161] and UMAP [112]. Prior
work [15, 39, 84] has peeled away layers of complexity of t-SNE and UMAP to
separate key ingredients from less essential design choices. The main conceptual
difference between t-SNE and UMAP lies in their loss functions, which are mo-
tivated very differently. Recent work [15, 39] found that UMAP’s application of
negative sampling [113], avoiding the quadratic number of repulsive interactions
between embedding points, drastically alters its loss function and decreases the
repulsion compared to t-SNE. Nevertheless, a conceptual connection between their
loss functions is still missing.

Our work fills this gap. We describe a new, precise connection between negative
sampling and noise-contrastive estimation [61, 62], which has recently been applied

81

82 contrastive learning unifies t-sne and umap

(a) Z̄ < Zt-SNE (b) Z̄ = Zt-SNE (c) Z̄ = ZNCVis (d) Z̄ = |X|/m (e) Z̄ > |X|/m

(f) t-SNE (g) NCVis (h) UMAP
(i) Partition

function

Figure 4.1: (a – e) Neg-t-SNE embeddings of the MNIST dataset for various values of the
fixed normalization constant Z̄. As Z̄ increases, the scale of the embedding
decreases, and clusters become more compact and separated before eventu-
ally starting to merge. The Neg-t-SNE spectrum produces embeddings very
similar to those of (f) t-SNE, (g) NCVis, and (h) UMAP, when Z̄ equals the
partition function of t-SNE, the learned normalization parameter Z of NCVis,
or |X|/m = (n

2)/m used by UMAP, as predicted in Sec. 4.4–4.6. (i) The partition
function ∑ij(1 + d2

ij)
−1 tries to match Z̄ and grows with it. Here, we initialize all

Neg-t-SNE runs using Z̄ = |X|/m; without this ‘early exaggeration’, low values
of Z̄ yield fragmented clusters (Fig. 4.2).

to t-SNE and was dubbed “NCVis” in this setting [4] (Sec. 4.4), resulting in a
very efficient implementation. Our analysis gives rise to a spectrum of ‘contrastive’
neighbor embedding methods (Fig. 4.1) akin to that in [15], interpolating between
UMAP and NCVis/t-SNE (Sec. 4.5). We demonstrate that UMAP can be seen
as negative sampling applied to the t-SNE problem (Sec. 4.6) and explain why
UMAP embeddings differ from t-SNE ones. Finally, we develop a unified PyTorch
framework for contrastive parametric and non-parametric neighbor embedding
methods,1 including a new method based on the InfoNCE loss [124], popular in
self-supervised learning [7, 22, 27, 64, 91, 124, 133, 157, 172], and show the relevance
of all these losses in the ‘contrastive learning’ [63] setting of SimCLR [27] (Sec. 4.8).

4.2 related work

One of the most popular methods for data visualization is t-SNE [101, 160, 161].
Recently developed NCVis [4] employs noise-contrastive estimation [61, 62] to ap-
proximate t-SNE in a sampling-based way. UMAP [112], motivated by sophisticated
mathematical theory, has matched t-SNE’s popularity at least in computational
biology [9], and also uses a sampling-based optimization, namely negative sam-
pling [113]. UMAP sparked the development of related methods, e.g., TriMAP [1]
optimizes its embedding by sampling triplets, while PacMAP [165] recommends
using mid-range pairs of points.

1 Our code is available at https://github.com/hci-unihd/cl-tsne-umap.

https://github.com/hci-unihd/cl-tsne-umap

4.2 related work 83

(a) Z̄ < Zt-SNE (b) Z̄ = Zt-SNE (c) Z̄ = ZNCVis (d) Z̄ = |X|/m (e) Z̄ > |X|/m

(f) t-SNE (g) NCVis (h) UMAP (i) Partition
function

Figure 4.2: (a – e) Neg-t-SNE embeddings of the MNIST dataset for various values of the
fixed normalization constant Z̄. As Z̄ increases, the scale of the embedding
decreases, and clusters become more compact and separated before eventu-
ally starting to merge. The Neg-t-SNE spectrum produces embeddings very
similar to those of (f) t-SNE, (g) NCVis, and (h) UMAP, when Z̄ equals the
partition function of t-SNE, the learned normalization parameter Z of NCVis,
or |X|/m = (n

2)/m used by UMAP, as predicted in Sec. 4.4–4.6. (i) The parti-
tion function ∑ij(1 + d2

ij)
−1 tries to match Z̄ and grows with it. In contrast to

Fig. 4.1, we do not use early exaggeration here, but initialize the Neg-t-SNE and
t-SNE with PCA rescaled so that the first dimension has standard deviation
1 and 0.0001, respectively. This makes the embeddings with small Z̄ values
show cluster fragmentation, similar to the t-SNE embedding in (f) without early
exaggeration. For very low Z̄, the Neg-t-SNE embedding in (a) shows very little
structure.

Given their success, t-SNE and UMAP have been scrutinized to identify which
aspects are essential to their performance. On the one hand, prior work [84, 102]
found initialization to be important for both methods and strongly influencing
the resulting global structure. On the other hand, the exact choice of the low-
dimensional similarity kernel [15] or weights of the k-nearest-neighbor graph [39]
are largely inconsequential. Both algorithms have similar relevant hyper-parameters,
e.g., the heavy-tailedness of the similarity kernel [85, 174].

The main difference between t-SNE and UMAP is in their loss functions, which
have been studied in [15, 39, 165], but never conceptually connected. We achieve
this by deepening the link between negative sampling (NEG) and noise-contrastive
estimation (NCE).

NEG was introduced as an ad hoc replacement for NCE in the context of learning
word embeddings [113]. The relationship between NEG and NCE has been dis-
cussed before [48, 91, 97, 108, 140], but here we go further and provide the precise
meaning of NEG: We show that, unlike NCE, NEG learns a model proportional
but not equal to the actual data distribution. This allows us to explain the quali-
tative difference between NEG and NCE, which we demonstrate using neighbor
embeddings.

84 contrastive learning unifies t-sne and umap

Both t-SNE and UMAP have parametric versions [141, 159] with very different
implementations. Here, we present a unified PyTorch framework for non-parametric
and parametric contrastive neighbor embedding approaches. It encompasses UMAP,
NEG, as well as t-SNE approximations both with NCE (like NCVis) and the InfoNCE
loss [72, 124, 150], which has not been applied to neighbor embeddings. Moreover,
we show that all of the mentioned loss functions (NCE/InfoNCE/NEG) can work
similarly well in the SimCLR setting [27].

4.3 background

4.3.1 Noise-contrastive estimation (NCE)

The goal of parametric density estimation is to fit a parametric model qθ to iid
samples s1, . . . , sN from an unknown data distribution p over a space X. For maxi-
mum likelihood estimation (MLE), the parameters θ are chosen to maximize the
log-likelihood of the observed samples

θ∗ = argmax
θ

∑N
i=1 log

(
qθ(si)

)
. (4.1)

This approach crucially requires qθ to be a normalized model. It is otherwise trivial
to increase the likelihood arbitrarily by scaling qθ .

Gutmann and Hyvärinen [61, 62] introduced NCE to circumvent the expensive
computation of the partition function Z(θ) = ∑x∈X qθ(x). NCE turns the unsu-
pervised problem of parametric density estimation into a supervised problem in
which the data samples need to be identified in a set S containing N data samples
s1, . . . , sN and m times as many noise samples t1, . . . , tmN . The noise samples are
drawn from a noise distribution ξ, which can be (but does not have to be) the
uniform distribution. In other words, we are interested in the posterior probability
P(y|x) of element x ∈ S coming from the data (y = data) rather than from the noise
distribution (y = noise).

The probability of sampling x from noise, P(x|noise), is just the noise distribu-
tion ξ, and similarly P(x|data) is the data distribution p. As the latter is unknown,
it is replaced by the model qθ . Since S contains m times as many noise sam-
ples as data samples, the prior class probabilities are P(data) = 1/(m + 1) and
P(noise) = m/(m + 1). Thus, the unconditional probability of an element of S
is P(x) = (qθ(x) + mξ(x))/(m + 1). The posterior probability for classifying some
given element x of S as data rather than noise is thus

P(data|x) = P(x|data)P(data)
P(x)

=
qθ(x)

qθ(x) + mξ(x)
. (4.2)

NCE optimizes the parameters θ by maximizing the log-likelihood of the posterior
class distributions or, equivalently, by minimizing the negative log-likelihoods. This
is the same as a sum over binary cross-entropy losses:

θ∗ = argmin
θ

[
−

N

∑
i=1

log
(

qθ(si)

qθ(si) + mξ(si)

)
−

mN

∑
i=1

log
(

1− qθ(ti)

qθ(ti) + mξ(ti)

)]
. (4.3)

In expectation, we have the loss function

LNCE(θ) = −Es∼p log
(

qθ(s)
qθ(s) + mξ(s)

)
−mEt∼ξ log

(
1− qθ(t)

qθ(t) + mξ(t)

)
. (4.4)

4.3 background 85

Since
qθ(x)

qθ(x) + mξ(x)
=

1

1 +
(

qθ(x)
mξ(x)

)−1 , (4.5)

NCE’s loss function can also be seen as binary logistic regression loss function with
log
(

qθ(x)
mξ(x)

)
as the input to the logistic function:

LNCE(θ) = −Es∼p log
(

σ

(
log
(

qθ(s)
mξ(s)

)))
−mEt∼ξ log

(
1− σ

(
log
(

qθ(t)
mξ(t)

)))
,

(4.6)
where σ(x) = 1/

(
1 + exp(−x)

)
is the logistic function.

The key advantage of NCE is that the model does not need to be explicitly
normalized by the partition function but nevertheless learns to equal the data
distribution p and hence be normalized:

Theorem 4.1 ([61, 62]). Suppose there exists some θ∗ such that qθ∗ = p. Then θ∗ is a
minimum of NCE’s expected loss function LNCE(θ) (4.4) and any other minimum θ̃ also
satisfies qθ̃ = p. In addition, if ξ(x) is non-zero wherever p(x) is non-zero, then these are
the only extrema of LNCE(θ).

In NCE, the model typically includes an optimizable normalization parameter
Z which we emphasize by writing qθ,Z = qθ/Z. But importantly, Thm. 4.1 applies
to any model qθ that is able to match the data distribution p, even if it does not
contain a learnable normalization parameter.

In the setting of learning language models, Jozefowicz et al. [72] proposed a
different version of NCE, called InfoNCE. Instead of classifying each sample inde-
pendently as noise or data as above, the aim here is to predict the position of a data
sample in an (m + 1)-tuple T = (x0, . . . , xm) containing m noise samples and one
data sample. In other words, InfoNCE replaces the binary classification of NCE
with an (m + 1)-class classification.

Let Y be the random variable that holds the index of the data sample. A priori, we
have P(Y = k) = 1/(m + 1) for all k = 0, . . . , m. Moreover, conditioned on sample
k coming from the data distribution, all other samples must come from the noise
distribution, i.e., we have P(xi|Y = k) = ξ(xi) for i ̸= k. As the data distribution
is unknown, we model it with P(xk|Y = k) = qθ(xk) as above. This yields the
likelihood of tuple T given the data index Y = k

P(T|Y = k) = qθ(xk)∏
i ̸=k

ξ(xi) =
qθ(xk)

ξ(xk)

m

∏
i=0

ξ(xi). (4.7)

Marginalizing over Y, we obtain

P(T) =
1

m + 1

m

∏
i=0

ξ(xi)
m

∑
k=0

qθ(xk)

ξ(xk)
. (4.8)

Finally, we can compute the posterior via Bayes’ rule as

P(Y = k|T) = P(T|Y = k)P(Y = k)
P(T)

=

qθ(xk)
ξ(xk)

∑m
i=0

qθ(xi)
ξ(xi)

=
qθ(xk)

∑m
i=0 qθ(xi)

, (4.9)

86 contrastive learning unifies t-sne and umap

where the last equality holds for the uniform noise distribution. The InfoNCE loss
is the cross-entropy loss with respect to the true position of the data sample, i.e., in
expectation and for uniform ξ, it reads:

LInfoNCE(θ) = − E
x∼p

x1,...,xm∼ξ

log
(

qθ(x)
qθ(x) + ∑m

i=1 qθ(xi)

)
. (4.10)

Similar to how the NCE loss can be seen as the binary logistic regression loss
function, the InfoNCE loss can be viewed as the multinomial logistic regression
loss function with the terms log

(
qθ(xi)
ξ(xi)

)
entering the softmax function.

Ma and Collins [108] showed that an analogue of Thm. 4.1 applies to InfoNCE.

4.3.2 Neighbor embeddings

Neighbor embeddings (NE) [66] are a group of dimensionality reduction meth-
ods, including UMAP [112], NCVis [4], and t-SNE [161], that aim to find a low-
dimensional embedding e1, . . . , en ∈ Rd of high-dimensional input points
x1, . . . , xn ∈ RD, with D ≫ d and usually d = 2 for the purpose of visualiza-
tion. NE methods define a notion of similarity over pairs of input data points which
encodes the neighborhood structure and informs the low-dimensional embedding.

The exact high-dimensional similarity distribution differs between the NE algo-
rithms, but recent work found empirically [15] and theoretically [39] that t-SNE
and UMAP results stay practically the same when using the binary symmetric
k-nearest-neighbor graph (skNN) instead of t-SNE’s Gaussian or UMAP’s Lapla-
cian similarities. An edge ij is in skNN if xi is among the k nearest neighbors
of xj or vice versa. The high-dimensional similarity function is then given by
p(ij) = 1(ij ∈ skNN)/|skNN|, where |skNN| denotes the number of edges in the
skNN graph and 1 is the indicator function. NCVis uses the same similarities.

There are other differences in the choice of low-dimensional similarity between
t-SNE and UMAP, but [15] shows that they are negligible. Therefore, here we use
the Cauchy kernel ϕ(dij) = 1/(d2

ij + 1) for all NE methods to transform distances
dij = ∥ei − ej∥ in the embedding space into low-dimensional similarities. We abuse
the notation slightly by also writing ϕ(ij) = ϕ(dij).

All NE methods discussed in this work can be cast in the framework of parametric
density estimation. Here, p is the data distribution to be approximated with a model
qθ , meaning that the space X on which both p and qθ live is the set of all pairs
ij with 1 ≤ i < j ≤ n. The embedding positions e1, . . . , en become the learnable
parameters θ of the model qθ . For t-SNE, NCVis, and UMAP, qθ is proportional to
ϕ(∥ei − ej∥), but the proportionality and the loss functions are different.

t-SNE uses MLE and therefore requires a normalized model qθ(ij) = ϕ(ij)/Z(θ),
where Z(θ) = ∑k ̸=l ϕ(kl) is the partition function. The loss function

Lt-SNE(θ) = −Eij∼p log
(
qθ(ij)

)
= −∑

i ̸=j

(
p(ij) log

(
ϕ(ij)

))
+ log

(
∑
k ̸=l

ϕ(kl)
)
(4.11)

is the expected negative log-likelihood of the embedding positions θ, making t-SNE
an instance of MLE. Usually, t-SNE’s loss function is introduced as the Kullback-

4.3 background 87

(a) (b)

Figure 4.3: NCVis learns to have the same partition function (PF) as t-SNE on the MNIST
dataset. The higher the number m of noise samples or the longer the optimiza-
tion, the better the match. Both methods use early exaggeration, which for NCVis
means to start with m = 5 noise samples for the first 250 epochs. The learned
normalization parameter Z converges to but does not precisely equal NCVis’
partition function ∑ij qθ(ij). Nevertheless, it is of the same order of magnitude.
Again, the match is better for more noise samples. Since we reinitialize the
learnable Z for NCVis after the early exaggeration phase, there are short jumps
in the partition function and Z at the beginning of the non-exaggerated phase.

Leibler divergence between p and qθ , which is equivalent as the entropy of p does
not depend on θ.

NCVis uses NCE and optimizes the expected loss function

LNCVis(θ, Z) = −Eij∼p log
(

qθ,Z(ij)
qθ,Z(ij) + mξ(ij)

)
−mEij∼ξ log

(
1− qθ,Z(ij)

qθ,Z(ij) + mξ(ij)

)
,

(4.12)
where qθ,Z(ij) = ϕ(ij)/Z with learnable Z and ξ is approximately uniform, see
Sec. 3.4.

According to Thm. 4.1, NCVis has the same optimum as t-SNE and can hence be
seen as a sampling-based approximation of t-SNE. Indeed, we find that Z in NCVis
and the partition function Z(θ) in t-SNE converge approximately to the same value,
see Fig. 4.3.

UMAP’s expected loss function is derived in Chapter 3. For better comparison
with t-SNE and NCVis, we cast it in a slightly different form here, see Sec. 4.3.3:

LUMAP(θ) = −Eij∼p log
(
qθ(ij)

)
−mEij∼ξ log

(
1− qθ(ij)

)
, (4.13)

with qθ(ij) = ϕ(ij) and ξ is approximately uniform, see Sec. 3.4. This is the effective
loss function actually implemented in the UMAP algorithm, but note that it has
only about m/n of the repulsion compared to the loss stated in the original UMAP
paper [112], as shown in Chapter 3.

In practice, the expectations in UMAP’s and NCVis’ loss functions are evaluated
via sampling, like in Eq. (4.3). This leads to a fast, O(n), stochastic gradient descent
optimization scheme. Both loss functions are composed of an attractive term pulling
similar data points (edges of the skNN graph) closer together and a repulsive
term pushing random pairs of points further apart. Similarly, t-SNE’s loss yields

88 contrastive learning unifies t-sne and umap

attraction along the graph edges while repulsion arises through the normalization
term.

4.3.3 UMAP’s loss function

In the original UMAP paper, McInnes et al. [112] define weights µ(ij) ∈ [0, 1] on
the skNN graph and state that these shall be reproduced by the low-dimensional
similarities ϕ(ij) using a sum of binary cross-entropy loss functions, one for each
edge ij

−∑
ij

[
µ(ij) log

(
ϕ(ij)

)
+
(
1− µ(ij)

)
log
(
1− ϕ(ij)

)]
. (4.14)

Indeed, this loss has its minimum at µ(ij) = ϕ(ij) for all ij. However, it is, of course,
impossible to achieve zero loss for any real-world data using the Cauchy kernel
in two dimensions. Experiments show that this loss function in practice leads to
excess repulsion and consequently to very poor embeddings [15]. The actual UMAP
implementation has much less repulsion due to the sampling of repulsive edges,
see below.

As the weights µ(ij) are only supported on the sparse skNN graph, most of the
1− µ(ij) terms are equal to one. To simplify the loss function, the UMAP paper
replaces all 1− µ(ij) terms by 1, leading to the loss function

−∑
ij

[
µ(ij) log

(
ϕ(ij)

)
+ log

(
1− ϕ(ij)

)]
. (4.15)

In the implementation, UMAP samples the repulsive edges, which drastically
changes the loss [15] to the effective loss derived in Chapter 3

−∑
ij

[
µ(ij) log

(
ϕ(ij)

)
+

m(di + dj)

2n
log
(
1− ϕ(ij)

)]
, (4.16)

where di = ∑j µ(ij) denotes the degree of node i and the number of negative
samples m is a hyperparameter. By default, m = 5. Since di ≈ log(k), the effective
loss only has about m log(k)/n of the repulsion in the originally stated loss function.
As a result, this loss function does not reproduce the µ(ij) in the embedding space.

We rewrite this effective loss function further to fit into the framework of this
chapter. The attractive prefactors µ(ij) sum to ∑ij µ(ij), while the repulsive prefac-
tors add up to m times this factor. Dividing the entire loss function by this term
does not change its properties. But then, we can write the prefactors as proba-
bility distributions p(ij) = µ(ij)/ ∑ij µ(ij) and ξ(ij) =

(
p(i) + p(j)

)
/(2n) using

p(i) = ∑j p(ij). With this, we can write the effective loss function as

−∑
ij

p(ij) log
(
ϕ(ij)

)
−m ∑

ij
ξ(ij) log

(
1− ϕ(ij)

)
, (4.17)

or in the expectation form as

−Eij∼p log
(
ϕ(ij)

)
−mEij∼ξ log

(
1− ϕ(ij)

)
, (4.18)

like we do in Eq. (4.13).

4.3 background 89

4.3.4 Noise distributions

Here, we discuss the various noise distributions used by UMAP, NCVis, and our
framework. The central claim is that all these noise distributions are sufficiently
close to uniform, even though their exact shape depends on the implementation
details.

Since our actual implementation and the reference implementations of UMAP
and NCVis consider edges ij and ji separately, we will do so from now on. Hence,
there is now a total of E := 2|skNN| edges. We always assume that p(ij) = p(ji)
and adding up the probabilities for both directions yields one: ∑n

i,j=1 p(ij) = 1. For
a given data distribution over pairs of points ij, we define p(i) = ∑n

j=1 p(ij) so that
∑i p(i) = 1. As discussed in Sec. 3.4, the p(i) values are approximately constant
when p(ij) is uniform on the skNN graph or proportional to the UMAP similarities.

UMAP’s noise distribution is derived in Sec. 3.6 and reads in the notation of this
chapter

ξ(ij) =
p(i) + p(j)

2n
. (4.19)

Note that UMAP uses a weighted version of the skNN graph. Still, ξ is close to
uniform, see Sec. 3.4.

The noise distribution of NCVis is also close to being uniform and equals [4]

ξ(ij) =
p(i)

n
. (4.20)

This is a slightly different noise distribution than in UMAP, and in particular, it
is asymmetric. However, we argue that in practice, it is equivalent UMAP’s noise
distribution. The noise distribution is used in two ways in NCVis: for sampling
noise samples and in the posterior class probabilities

P(data|ij) = qθ,Z(ij)
qθ,Z(ij) + mξ(ij)

. (4.21)

Both in the reference NCVis implementation and ours, for the second role, the noise
distribution is explicitly approximated by the uniform one, and we use the posterior
probabilities

P(data|ij) = qθ,Z(ij)
qθ,Z(ij) + m 1

2|skNN|
. (4.22)

Together with the symmetry of Euclidean distance, this implies that the repulsion
on the embedding vectors ei and ej from noise samples ij and ji is the same. As a
result, the expectation

Eij∼ξ log

(
1− qθ,Z(ij)

qθ,Z(ij) + m m
2|skNN|

)
(4.23)

is the same for ξ(ij) = p(i)/n and for UMAP’s noise distribution

ξ(ij) =
p(i) + p(j)

2n
. (4.24)

90 contrastive learning unifies t-sne and umap

Algorithm 4: Batched contrastive neighbor embedding algorithm
input : list of directed skNN graph edges E = [i1 j1, . . . , i|E| j|E|]

parameters θ

// θ = embeddings (non-param.)/ network weights (param.)

number of epochs T
learning rate η

number of noise samples m
Cauchy kernel q
// q acts on embeddings (non-param.)/ network output (param.)

batch size b
loss mode mode
normalization constant Z̄
// default Z̄ = |E|/m, required only for mode = Neg-t-SNE

output : final embeddings e1, . . . , en

1 if mode = NCVis then
2 Z = 1
3 for t = 0 to T do

// Learning rate annealing

4 ηt = η · (1− t
T)

5 α = 0
6 while α < |E| do
7 L = 0
8 for β = 1, . . . , b do

// Sample noise edge tails but omit head of considered edge

9 j−1 , . . . , j−m ∼ Uniform({iα+1, jα+1, . . . , îα+β, . . . , jα+b)

// Aggregate loss based on mode

10 if mode = Neg-t-SNE then

11 L = L− log
(

qθ(iα+β jα+β)

qθ(iα+β jα+β)+Z̄m/|E|

)
−∑m

µ=1 log
(

qθ(iα+β j−µ)

qθ(iα+β j−µ)+Z̄m/|E|

)
12 else if mode = NCVis then

13 L = L− log
(

qθ(iα+β jα+β)/Z
qθ(iα+β jα+β)/Z+m

)
−∑m

µ=1 log
(

qθ(iα+β j−µ)/Z
qθ(iα+β j−µ)/Z+m

)
14 else if mode = InfoNC-t-SNE then

15 L = L− log
(

qθ(iα+β jα+β)

qθ(iα+β jα+β)+∑m
µ=1 qθ(iα+β j−µ)

)
16 else if mode = UMAP then

17 L = L− log
(

qθ(iα+β jα+β)
)
−∑m

µ=1 log
(

qθ(iα+β j−µ)
)

// Update parameters with SGD (non-param.) or Adam (param.)

18 θ = θ − ηt · ∇θL
19 if mode = NCVis then
20 Z = Z− ηt∇ZL
21 α = α + b
22 Shuffle E
23 return θ

4.3 background 91

Batched Neighbor Embeddings

In our framework, the noise distribution is influenced by the batched training
procedure (Alg. 4) because the negative samples can come only from the current
training batch.

Lemma 4.2. The noise distribution induced by the batched neighbor embedding framework
in Alg. 4 is given by

ξ(ij) =

1

2b−1

(
E−b
E−1 p(ij) + 2

(
b− E−b

E−1

)
p(i)p(j)

)
if i ̸= j

1
2b−1

(
− b−1

E−1 p(i) + 2
(

b− E−b
E−1

)
p(i)2

)
if i = j,

(4.25)

where E is twice the number of edge in the skNN graph and b is the batch size

Proof. In every epoch, we first shuffle the set of directed edges of the skNN graph
and then chunk it into batches. To emphasize, the batches consist of directed edges
and not of the original data points. For each edge in a batch, we take its head and
sample m indices from the heads and tails of all edges in the batch (excluding the
already selected head) and use them as tails to form negative sample pairs.

To obtain a negative sample pair ij, the batch must contain some directed edge ik,
providing the head of the negative sample, and some pair l j or jl, providing the tail.
We want to derive the expected number of times a directed edge ij is considered
as a negative sample in a batch. For simplicity, let us assume that the number
of batches divides the number of directed edges E. As the set of skNN edges is
shuffled every epoch, the expected number of pairs ij as negative samples is the
same for all batches.

Let us consider a batch B of size b. We denote by Yrs the random variable that
holds the number of times edge rs appears in B. We also introduce random variables
Y¬rs = ∑t ̸=r Yts and Yr¬s = ∑t ̸=s Yrt. Let p(r¬s) = p(¬sr) := p(r)− p(rs). For each
occurrence of an i as the head of an edge in B, we sample m tails to create negative
samples uniformly from all heads and tails in B with replacement, but we prevent
sampling the identical head i as negative sample tail. If, however, the same node i
is part of the other edges in the batch, then it may be sampled and would create a
futile negative sample ii. There are m chances for creating a negative sample edge
ij for every head i and any occurrence of j in the batch. The number of heads i in
the batch is Yij + Yi¬j and the number of occurrences of j is Yij + Yji + Y¬ij + Yj¬i.
Since we sample the tail of a negative sample pair uniformly with replacement, any
occurrence of j has a probability of 1/(2b− 1) to be selected. Hence, the expected
number Nij of times that the ordered pair ij with i ̸= j is considered as a negative
sample in batch B is

Nij = m(Yij + Yi¬j)
Yij + Yji + Y¬ij + Yj¬i

2b− 1
. (4.26)

Since a head i may not choose itself to form a negative sample, the expected number
of times that ii appears as a negative sample in the batch is

Nii = m ∑
j

Yij
Yij − 1 + Yi¬j + Yji + Y¬ji

2b− 1
. (4.27)

92 contrastive learning unifies t-sne and umap

Since the batches are sampled without replacement, the random variables Yrs are
distributed according to a multivariate hypergeometric distribution, meaning that

E(Yrs) = bp(rs) (4.28)

E(Y¬rs) = bp(¬rs) (4.29)

Var(Yrs) = b
E− b
E− 1

p(rs)
(
1− p(rs)

)
(4.30)

Cov(Yrs, Y¬uv) = −b
E− b
E− 1

p(rs)p(¬uv). (4.31)

We use these expressions and analogous ones together with the symmetries
p(rs) = p(sr) to compute (leaving out intermediate algebra steps) the expecta-
tion of Nij over the shuffles:

E(Nij) =
mb

2b− 1

(
E− b
E− 1

p(ij) + 2
(

b− E− b
E− 1

)
p(i)p(j)

)
. (4.32)

Since we sample m negative samples for each positive sample and since each
batch contains b positive samples, we need to divide E(Nij) by mb to obtain ξ(ij):

ξ(ij) =
1

2b− 1

(
E− b
E− 1

p(ij) + 2
(

b− E− b
E− 1

)
p(i)p(j)

)
. (4.33)

Similarly,

E(Nii) =
mb

2b− 1

(
− b− 1

E− 1
p(i) + 2

(
b− E− b

E− 1

)
p(i)2

)
(4.34)

and hence the noise distribution value for the pair ii is

ξ(ii) =
1

2b− 1

(
− b− 1

E− 1
p(i) + 2

(
b− E− b

E− 1

)
p(i)2

)
. (4.35)

We see that the noise distribution depends on the batch size b. This is not
surprising: For example, if the batch size is equal to one, the ordered pair ij can
only be sampled as a negative sample in the single batch that consists of that pair.
Indeed, for b = 1, our formula yields

ξ(ij) = p(ij), (4.36)

meaning that the data and the noise distributions coincide. Conversely, if b = E
and there is only one batch, we obtain

ξ(ij) =
2E

2E− 1
p(i)p(j). (4.37)

Hence, the noise distribution is close to uniform. The noise distribution is between
these two extremes for batch sizes between 1 and E. For MNIST, E ≈ 1.5 · 106, and
in our experiments we use b = 1024. This means that the prefactor of the share of
the data distribution is about 0.0005 while that of the near-uniform distribution
p(i)p(j) is about 0.9995, so the resulting noise distribution is close to uniform. Note
that Thm. 4.1 and Cor. 4.3 only require the noise distribution to be nonzero where
the data distribution is nonzero, which is the case for any batch size.

4.4 from noise-contrastive estimation to negative sampling 93

4.4 from noise-contrastive estimation to negative sampling

In this section, we work out the precise relationship between NCE and NEG, going
beyond prior work [48, 57, 97, 140]. NEG differs from NCE by its loss function and
by the lack of the learnable normalization parameter Z. In our setting, NEG’s loss
function amounts to2

LNEG(θ) = −Ex∼p log
(

qθ(x)
qθ(x) + 1

)
−mEx∼ξ log

(
1− qθ(x)

qθ(x) + 1

)
. (4.38)

In order to relate it to NCE’s loss function, we first generalize the latter in a way
allowing it to learn a model that is not equal but proportional to the true data
distribution.

Corollary 4.3. Let Z̄, m ∈ R+. Assume that ξ(x) is non-zero wherever p(x) is non-zero
and that there exist θ∗ such that qθ∗ = Z̄p. Then the generalized NCE loss function

LNCE
Z̄ (θ) = −Ex∼p log

(
qθ(x)

qθ(x) + Z̄mξ(x)

)
−mEx∼ξ log

(
1− qθ(x)

qθ(x) + Z̄mξ(x)

)
(4.39)

has its only extrema where qθ = Z̄p.

Proof. The result follows from Thm. 4.1 applied to the model distribution q̃θ := qθ/Z̄.

It has been pointed out before [48, 140] that for a uniform noise distribution
ξ(x) = 1/|X| and as many noise samples as the size of X (m = |X|), the loss
functions of NCE and NEG coincide, since mξ(x) = 1. However, the main point of
NCE and NEG is to use far fewer noise samples to attain a speed-up over MLE.
Our Cor. 4.3 for the first time explains NEG’s behavior in this more realistic setting
(m≪ |X|). If the noise distribution is uniform, the generalized NCE loss function
with Z̄ = |X|/m equals the NEG loss function since (|X|/m)mξ(x) = 1. By Cor. 4.3,
any minimum θ∗ of the NEG loss function yields qθ∗ = (|X|/m)p, assuming that
there are parameters that make this equation hold. In other words, NEG aims to
find a model qθ that is proportional to the data distribution with the proportionality
factor |X|/m, which is typically huge. This is different from NCE, which aims to
learn a model equal to the data distribution. Therefore, the optimal parameters for
NEG and NCE are typically different.

Choosing m ≪ |X| not only offers a computational speed-up but is necessary
when optimizing NEG for a neural network with SGD, as we do in Sec. 4.8. Only
one single mini-batch is passed through the neural network during each iteration
and is thus available for computing the loss. Hence, all noise samples must come
from the current mini-batch, and their number m is upper-bounded by the mini-
batch size b. Mini-batches are typically much smaller than n and, hence, |X|. Thus,
this standard training procedure requires m ≪ |X| highlighting the relevance of
Cor. 4.3.

While NCE uses a model qθ/Z with learnable Z, we can interpret NEG as using
a model qθ/Z̄ with fixed and very large normalization constant Z̄ = |X|/m. As a

2 We focus on the loss function, ignoring design choices of [113] specific for learning word embeddings.

94 contrastive learning unifies t-sne and umap

result, qθ in NEG needs to attain much larger values to match the large Z̄. This can
be illustrated in the setting of neighbor embeddings. Applying NEG to the neighbor
embedding framework yields an algorithm that we call “Neg-t-SNE”. Recall that
in this setting, the parameters θ = {e1, . . . en} are the embedding positions and
|X| = (n

2) is the number of pairs of points. Böhm et al. [15] found empirically
that t-SNE’s partition function Z(θ) is typically between 50n and 100n, while in
Neg-t-SNE, Z̄ = O(n2) is much larger for modern big datasets. To attain the larger
values of ϕ(ij) required by NEG, points that are connected in the skNN graph
have to move much closer together in the embedding than in t-SNE. Indeed, using
our PyTorch implementation of Neg-t-SNE on the MNIST dataset, we confirm that
Neg-t-SNE (Fig. 4.1d) produces more compact clusters than t-SNE (Fig. 4.1f). See
Appendix D.2 and Alg. 4 for implementation details.

We emphasize that the conclusions of this section only hold because NEG does
not contain a learnable normalization parameter Z. If it did, then such a learnable Z
would be able to absorb the term Z̄ in loss functions (4.38) and (4.39) while leaving
the parameters θ unchanged.

4.5 negative sampling spectrum

Varying the fixed normalization constant Z̄ in Eq. (4.39) has important practical
effects that lead to a whole spectrum of embeddings in the NE setting. The original
NEG loss function (4.38) corresponds to Eq. (4.39) with Z̄ = |X|/m. We still refer to
the more general case of using an arbitrary Z̄ in Eq. (4.39) as “negative sampling”,
and “Neg-t-SNE” in the context of neighbor embeddings.

Figs. 4.1a–e show a spectrum of Neg-t-SNE visualizations of the MNIST dataset
for varying Z̄. Per Cor. 4.3, higher values of Z̄ induce higher values for qθ , meaning
that points move closer together. Indeed, the embedding scale decreases for higher
Z̄. Moreover, clusters become increasingly compact and then even start to merge.
For lower values of Z̄, the embedding scale is larger, clusters are more spread out,
eventually losing almost any separation and starting to overlap for very small Z̄.

Cor. 4.3 implies that the partition function ∑x qθ(x) should grow with Z̄, and
indeed this is what we observe (Fig. 4.1i). The match between the sum of Cauchy
kernels ∑ij ϕ(ij) and Z̄ is not perfect, but that is expected. Indeed, the Cauchy
kernel is bounded by 1 from above, so values Z̄ > (n

2) are not matchable. Similarly,
very small values of Z̄ are difficult to match because of the heavy tail of the Cauchy
kernel.

By adjusting the Z̄ value, one can obtain Neg-t-SNE embeddings very similar to
NCVis and t-SNE. If the NCVis loss function (4.12) has its minimum at some θ∗

and ZNCVis, then the Neg-t-SNE loss function (4.39) with Z̄ = ZNCVis is minimal
at the same θ∗. We confirm this experimentally: Setting Z̄ = ZNCVis (for MNIST,
ZNCVis = 3.4 · 107, Fig. 4.3), yields a Neg-t-SNE embedding (Fig. 4.1c) closely
resembling the NCVis embedding (Fig. 4.1g). Similarly, setting Z̄ to the partition
function Z(θt-SNE), obtained by running t-SNE (for MNIST, Z(θt-SNE) = 8.1 · 106,
Fig. 4.3), yields a Neg-t-SNE embedding closely resembling the t-SNE embedding
(compare Figs. 4.1b and 4.1f).

The Neg-t-SNE spectrum is strongly related to the attraction-repulsion spectrum
from Böhm et al. [15]. They introduced a prefactor (“exaggeration”) to the repulsive

4.6 umap’s conceptual relation to t-sne 95

(a) m = 5 (b) m = 50 (c) m = 500 (d) m = 2b− 2 = 2046

Figure 4.4: Neg-t-SNE embeddings of the MNIST dataset for varying number of noise
samples m and using batch size b = 1024. While for NCVis and InfoNC-t-SNE
more noise samples improve the approximation to t-SNE, see Figs. 4.9 and
4.10, changing m in Neg-t-SNE moves the result along the attraction-repulsion
spectrum (Fig. 4.1) with more repulsion for larger m. However, the computational
complexity of Neg-t-SNE scales with m, so moving along the spectrum via
changing Z̄ is much more efficient. For the first 250 epochs, m is set to 5, to
achieve an effect similar to early exaggeration (Appendix D.2).

term in the t-SNE’s loss, which exaggerates the attraction over the repulsion, and
obtained embeddings similar to our spectrum when varying this parameter. We
can explain this as follows. The repulsive term in the NCE loss (4.4) has a prefactor
m and our spectrum arises from the loss (4.39) by varying Z̄ in the term Z̄m.
Equivalently, our spectrum can be obtained by varying the m value (number of
noise samples per one skNN edge) while holding Z̄ fixed (Fig. 4.4). In other words,
our spectrum arises from varying the repulsion strength in the contrastive loss
setting, while Böhm et al. [15] obtained the analogous spectrum by varying the
repulsion strength in the t-SNE setting.

4.6 umap’s conceptual relation to t-sne

Our comparison of NEG and NCE in Sec. 4.4 allows us for the first time to con-
ceptually relate UMAP and t-SNE. The UMAP algorithm was introduced in [112]
by elaborate theory that motivated a specific choice of weights on the skNN graph
and the binary cross-entropy loss. Following LargeVis [153], McInnes et al. [112]
implemented a sampling-based scheme to overcome the quadratic complexity of all
repulsive forces in the purported binary cross-entropy loss.

Chapter 3 and [15] pointed to the drastic effect of this optimization scheme and
argued that it alters the effective loss. The UMAP paper [112] referred to their
optimization as ‘negative sampling’, however UMAP’s loss function (4.13) does not
look like the NEG loss (4.38), and hence it has been unclear if UMAP actually uses
NEG in the sense of [113].

Where NEG’s loss function (4.38) has fractions qθ(ij)/(qθ(ij) + 1), UMAP’s
loss (4.13) only has qθ(ij). Nevertheless, we can rearrange the terms to make UMAP
appear as a proper instance of NEG:

Lemma 4.4. UMAP’s loss function (4.13) is NEG (4.38) with the parametric model
q̃θ(ij) = 1/d2

ij.

96 contrastive learning unifies t-sne and umap

Figure 4.5: Attractive and repulsive loss terms of UMAP and Neg-t-SNE. The main differ-
ence is that UMAP’s repulsive loss diverges at zero challenging its numerical
optimization. The attractive terms are log(1 + d2

ij) and log(2 + d2
ij) for UMAP

and Neg-t-SNE, respectively, and the repulsive ones are log
(
(1 + d2

ij)/d2
ij
)

and

log
(
(2 + d2

ij)/(1 + d2
ij)
)
, respectively.

Proof. The statement follows from the simple computation

qθ(ij) = ϕ(ij) =
1

1 + d2
ij
=

1/d2
ij

1/d2
ij + 1

=
q̃θ(ij)

q̃θ(ij) + 1
. (4.40)

Lem. 4.4 tells us that UMAP uses NEG but not with a parametric model given by
the Cauchy kernel. Instead it uses a parametric model q̃θ , which equals the squared
inverse distance between embedding points.

For large embedding distances, dij both models behave similarly, but for nearby
points, they strongly differ: The inverse-square kernel 1/d2

ij diverges when dij → 0,
whereas the Cauchy kernel 1/(1 + d2

ij) does not. Despite this qualitative differ-
ence, we find empirically that UMAP embeddings look very similar to Neg-t-SNE
embeddings at Z̄ = |X|/m, see Figs. 4.1d and 4.1h for the MNIST example.

To explain this observation, it is instructive to compare the loss terms of Neg-t-SNE
and UMAP: The attractive term amounts to − log(1/(d2

ij + 1)) = log(1 + d2
ij) for

UMAP and− log[1/(d2
ij + 1)/(1/(d2

ij + 1) + 1)] = log(2 + d2
ij) for Neg-t-SNE, while

the repulsive term equals log((1+ d2
ij)/d2

ij) and log((2+ d2
ij)/(1+ d2

ij)), respectively.
While the attractive terms are very similar, the repulsive term for UMAP diverges at
zero but that of Neg-t-SNE does not (Fig. 4.5). This divergence introduces numerical
instability into the optimization process of UMAP. In fact, UMAP employs several
optimization tricks in order to overcome these instabilities. One of the tricks is
annealing the learning rate down to zero so that the learning rate becomes very
small in the last optimization epochs.

We find that UMAP strongly depends on this annealing (Figs. 4.6a, b). Without
it, clusters appear fuzzy as noise pairs can experience powerful repulsion and get
catapulted out of their cluster (Fig. 4.6a). While Neg-t-SNE also benefits from the
annealing scheme (Fig. 4.6d), it produces a very similar embedding even without
any annealing (Fig. 4.6c). Thus, UMAP’s effective choice of the 1/d2

ij kernel makes
it less numerically stable and more dependent on learning rate annealing than

4.7 further optimization tricks in umap’s original implementation 97

(a) UMAP
no annealing

(b) UMAP
with annealing

(c) Neg-t-SNE
no annealing

(d) Neg-t-SNE
with annealing

Figure 4.6: Embeddings of the MNIST dataset with UMAP and Neg-t-SNE with and with-
out learning rate annealing. UMAP does not work well without annealing
because it implicitly uses the diverging 1/d2

ij kernel in NEG, while Neg-t-SNE
uses the more numerically stable Cauchy kernel.

Neg-t-SNE.3 The following Sec. 4.7 shows that UMAP’s other optimization tricks
have little effect.

We conclude that at its heart, UMAP is NEG applied to the t-SNE framework.
UMAP’s sampling-based optimization is much more than a mere optimization trick;
it enables us to connect it theoretically to t-SNE. When UMAP’s loss function is
seen as an instance of NEG, UMAP does not use the Cauchy kernel but rather the
inverse-square kernel. However, this does not make a big difference due to the
learning rate decay. As discussed in Sec. 4.4, the fixed normalization constant Z̄
in Neg-t-SNE/UMAP is much larger than the learnt Z in NCVis or the partition
function in t-SNE. This explains why UMAP pulls embedding points closer together
than both NCVis and t-SNE and is the reason for the typically more compact clusters
in UMAP embeddings [15].

4.7 further optimization tricks in umap’s original implementation

UMAP’s repulsive term

− log(1− ϕ(ij)) = log

(
1 + d2

ij

d2
ij

)
(4.41)

can lead to numerical problems if the two points of the negative sample pair are
very close. In addition to the learning rate decay, discussed in Sec. 4.6, UMAP’s
implementation uses additional tricks to prevent unstable or even crashing training.

In non-parametric UMAP’s reference implementation, the gradient on embedding
position ei exerted by a single sampled repulsive pair ij is actually

2
1

d2
ij + ζ

1
1 + d2

ij
(ej − ei) (4.42)

with ζ = 0.001 instead of ζ = 0. This corresponds to the full loss function

−Eij∼p log(ϕ(ij))−m
(

1 +
ζ

1− ζ

)
Eij∼ξ log

(
1 +

ζ

1− ζ
− ϕ(ij)

)
. (4.43)

3 Recently, a pull request to UMAP’s GitHub repository changed the effective kernel of parametric
UMAP to the Cauchy kernel, in order to overcome numerical instabilities via an ad hoc fix, see
Sec. 4.7.

98 contrastive learning unifies t-sne and umap

(a) ζ = 10−3, no annealing (b) ζ = 10−10, no annealing (c) ζ = 0, no annealing

(d) ζ = 10−3, with annealing (e) ζ = 10−10, with annealing (f) ζ = 0, with annealing

Figure 4.7: UMAP embeddings of the MNIST dataset, ablating numerical optimization
tricks of UMAP’s reference implementation. The learning rate annealing is
crucial (bottom row) but safeguarding against divisions by zero in UMAP’s
repulsive term (4.42) by adding ζ to the denominator has little effect. These
experiments are run using the reference implementation, modified to change
the ζ value and/or to switch off the learning rate annealing.

However, we find that ζ does not influence the appearance of a UMAP embedding
much. Fig. 4.7 shows MNIST embeddings obtained using the original UMAP im-
plementation modified to use different values of ζ. Neither a much smaller positive
value such as ζ = 10−10 nor setting ζ = 0 substantially change the embedding (even
though some runs with ζ = 0 do crash). The learning rate annealing plays a much
bigger role in how the embedding looks (Fig. 4.7, bottom row).

The reference implementation of parametric UMAP uses automatic differentiation
instead of implementing the gradients manually. To avoid terms such as log(0) in
the repulsive loss, it clips the argument of the logarithm from below at the value
ε = 10−4, effectively using the loss function

−Eij∼p log

(
max

{
ε,

1
1 + d2

ij

})
−mEij∼ξ log

(
max

{
ε, 1− 1

1 + d2
ij

})
. (4.44)

We employ a similar clipping in our code whenever we apply the logarithm function.
Again, we find that the exact value of ε is not essential for our UMAP reimple-
mentation, while using the learning rate annealing is (Fig. 4.8, top two rows). In
the extreme case of setting ε = 0, our UMAP runs crashed. We believe that the
reason is that we allow negative sample pairs to be of the form ii, which do not
send any gradient but lead to a zero argument to the logarithm. The reference
implementation of UMAP excludes such negative sample pairs ii.

Our Neg-t-SNE approach does not have any of these problems, as the repulsive
term is

− log

1−
1

1+d2
ij

1
1+d2

ij
+ 1

 = log

(
2 + d2

ij

1 + d2
ij

)
≤ log(2) (4.45)

4.7 further optimization tricks in umap’s original implementation 99

(a) UMAP, ε = 10−4, no ann. (b) UMAP, ε = 10−10, no ann.

(c) UMAP, ε = 10−4, with ann. (d) UMAP, ε = 10−10, with ann.

(e) Neg-t-SNE, ε = 10−4, no ann.(f) Neg-t-SNE, ε = 10−10, no ann. (g) Neg-t-SNE, ε = 0, no ann.

(h) Neg-t-SNE, ε = 10−4, with
ann.

(i) Neg-t-SNE, ε = 10−10, with
ann.

(j) Neg-t-SNE, ε = 0, with ann.

Figure 4.8: UMAP and Neg-t-SNE embeddings of the MNIST dataset using different values
ε at which we clip arguments to logarithm functions. These experiments are
performed using our implementation. Varying ε does not strongly influence the
appearance of the embedding. But setting ε = 0 leads to crashing UMAP runs.
Annealing the learning rate is important for UMAP, yet not for Neg-t-SNE.

100 contrastive learning unifies t-sne and umap

and does not diverge for dij → 0. For this reason, Neg-t-SNE is not very sensitive to
the value at which we clip arguments to the logarithm and works even with ε = 0,
both with and without learning rate annealing (Fig. 4.8, bottom two rows).

The attractive terms in the loss functions do not pose numerical problems in
practice due to the heavy tail of the Cauchy kernel. To keep different experiments
and losses comparable, we use clipping in both the attractive and the repulsive
loss terms with ε = 10−10 for all neighbor embedding plots computed with our
framework unless otherwise stated.

A recent pull request4 to the parametric part of UMAP’s reference implementation
proposed another way to ameliorate the numerical instabilities. The clipping of the
logarithm’s arguments was replaced with a sigmoid of the logarithm of the Cauchy
kernel so that the attractive and repulsive terms become

− log
(

max
(
ε, ϕ(ij)

))
→ − log

(
σ
(

log
(
ϕ(ij)

)))
(4.46)

− log
(

max
(
ε, 1− ϕ(ij)

))
→ − log

(
1− σ

(
log
(
ϕ(ij)

)))
, (4.47)

where σ(x) = 1/
(
1 + exp(−x)

)
is the sigmoid function. This change can seem

drastic as, e.g., for ϕ(ij) = 1 we have max
{

ε, ϕ(ij)
}
= 1, but σ

(
log
(
ϕ(ij)

))
= 1/2.

But unraveling the definitions shows that this turns the loss function precisely into
our Neg-t-SNE loss function since

σ
(

log
(
ϕ(ij)

))
=

1

1 + exp
(
− log

(
ϕ(ij)

)) =
1

1 + ϕ(ij)−1 =
ϕ(ij)

ϕ(ij) + 1
. (4.48)

So, to overcome the numerical problems incurred by UMAP’s implicit choice of 1/d2
ij

as similarity kernel, the pull request suggested a fix that turns out to be equivalent
to negative sampling using the Cauchy kernel. We encourage this change to UMAP
as it makes its loss function equivalent to our Neg-t-SNE and thus also conceptually
more related to t-SNE. We also suggest implementing it in the non-parametric case.

4.8 contrastive neighbor embeddings and self-supervised learning

Contrastive self-supervised representation learning [7, 22, 27, 64, 91, 124, 133,
157, 172] and ‘contrastive neighbor embeddings’ (a term we suggest for NCVis,
Neg-t-SNE, UMAP, etc.) are conceptually very similar. The key difference is that the
latter use a fixed kNN graph to find similar objects, while the former relies on data
transformations or data origin to generate pairs of similar objects on the fly. Other
differences include the representation dimension (∼ 128 vs. 2), the use of a neural
network for parametric mapping, or the flavor of contrastive loss (InfoNCE [27, 124]
vs. NCE / NEG). However, these other differences are not crucial, as demonstrated
in this section using our unified PyTorch framework 4.

As an example, we demonstrate that t-SNE can also be optimized using the
InfoNCE loss, resulting in InfoNC-t-SNE (Appendix D.2 and Alg. 4). The result of
InfoNC-t-SNE on MNIST (Fig. 4.11c) is similar to the result of NCVis (Fig. 4.11b). For

4 https://github.com/lmcinnes/umap/pull/856

https://github.com/lmcinnes/umap/pull/856

4.8 contrastive neighbor embeddings and self-supervised learning 101

(a) m = 5
random init

(b) m = 50
random init

(c) m = 500
random init

(d) t-SNE
random init

(e) m = 5
PCA init

(f) m = 50
PCA init

(g) m = 500
PCA init

(h) t-SNE
PCA init

(i) m = 5
EE

(j) m = 50
EE

(k) m = 500
EE

(l) t-SNE
EE

Figure 4.9: NCVis (our implementation) on the MNIST dataset for varying number of noise
samples m and different starting conditions. A higher number of noise samples
m improves the approximation quality to t-SNE (last column). The first row
is initialized with isotropic Gaussian noise and the second and the third rows
with PCA (both normalized to have a standard deviation of one or 0.0001 in
the first dimension for NCVis or t-SNE, respectively). In the third row, the first
250 epochs use m = 5, and the latter use the given m value for NCVis. This is
similar to t-SNE’s early exaggeration that we use in panel l. NCVis seems less
dependent on early exaggeration than t-SNE, especially for low m values.

the default number of noise samples, m = 5, both algorithms produce embeddings
that are visibly different from t-SNE proper (Fig. 4.1f). Recent work employing
the InfoNCE loss for self-supervised learning [27] generally reports improved
performance for more noise samples, in agreement with the theoretical results [61,
62, 108]. We observe that both NCVis and InfoNC-t-SNE visualizations using
m = 500 approximate t-SNE much better (Figs. 4.9k and 4.10k). Like t-SNE, but
unlike the m = 5 setting, m = 500 required early exaggeration to prevent cluster
fragmentation, see Figs. 4.9 and 4.10.

Next, we use our PyTorch framework to obtain parametric versions of all con-
trastive NE algorithms discussed here (NCVis, InfoNC-t-SNE, Neg-t-SNE, UMAP).
We use a fully connected neural network with four linear layers and ReLU acti-
vations as a parametric RD → Rd mapping and optimize its parameters using

102 contrastive learning unifies t-sne and umap

(a) m = 5
random init

(b) m = 50
random init

(c) m = 500
random init

(d) t-SNE
random init

(e) m = 5
PCA init

(f) m = 50
PCA init

(g) m = 500
PCA init

(h) t-SNE
PCA init

(i) m = 5
EE

(j) m = 50
EE

(k) m = 500
EE

(l) t-SNE
EE

Figure 4.10: InfoNC-t-SNE on the MNIST dataset for varying number of noise samples
m and different starting conditions. A higher number of noise samples m
improves the approximation quality to t-SNE (last column). The first row is
initialized with isotropic Gaussian noise and the second and the third rows
with PCA (both normalized to have a standard deviation of one or 0.0001
in the first dimension for InfoNC-t-SNE or t-SNE, respectively). In the third
row, the first 250 epochs use m = 5, and the latter use the given m value for
InfoNC-t-SNE. This is similar to t-SNE’s early exaggeration that we use in
panel l. InfoNC-t-SNE seems to be less dependent on early exaggeration than
t-SNE, especially for low m values.

Adam [80] (Appendix D.2). We use batch size b = 1024 and sample all m negative
samples from within the batch; the data set is shuffled each epoch before batch-
ing. Using all four loss functions, we are able to get parametric embeddings of
MNIST that are qualitatively similar to their non-parametric versions (Fig. 4.11). The
parametric versions of NCE and InfoNCE produce much larger embeddings than
their non-parametric counterparts, however the final loss values are very similar
(Figs. 4.12a, b). For NCE, the larger scale of the parametric embedding is compen-
sated by a smaller learned normalization parameter Z, so that both parametric and
non-parametric versions are approximately normalized (Fig. 4.12c). Our parametric
UMAP implementation is very similar to the implementation of Sainburg et al. [141].
But our parametric, approximate t-SNE implementations are very different from
the parametric t-SNE of van der Maaten [159], which constructed separate kNN

4.8 contrastive neighbor embeddings and self-supervised learning 103

(a) Neg-t-SNE (b) NCVis (c) InfoNC-t-SNE

(d) Parametric
Neg-t-SNE

(e) Parametric
NCVis

(f) Parametric
InfoNC-t-SNE

Figure 4.11: NE plots of the MNIST dataset are qualitatively similar in the non-parametric
(top row) and parametric (bottom row) settings. All panels use our PyTorch
framework with m = 5 and batch size b = 1024.

(a) InfoNC-t-SNE loss (b) NCVis loss (c) NCVis normalization

Figure 4.12: (a, b) Loss curves for the parametric and non-parametric InfoNC-t-SNE and
NCVis optimizations leading to Figs. 4.11b, c, e, and f. While the embedding
scale differs drastically between the non-parametric and the parametric run,
the loss values are close. (c) Normalization of the model ∑ij ϕ(ij)/Z for the
parametric and non-parametric NCVis optimizations. The difference in the
embedding scale is compensated by three orders of magnitude higher Z so
that both versions learn approximately normalized models. These experiments
use our NCVis reimplementation.

104 contrastive learning unifies t-sne and umap

Table 4.1: Top-1 accuracies on CIFAR-10 representations learned with various contrastive
learning losses for different number of noise samples m (in parentheses) and
with batch size b = 1024. Classification accuracy is computed on a test set, using
the ResNet18 output H ∈ R512. We report the mean and the standard deviation
across three random seeds. In the first row, the classifier is trained using data
augmentations [27].

InfoNCE InfoNCE NCE NEG

(2b− 2) (16) (16) (16)

Linear classifier (augm.) 88.7± 0.6% 91.1± 0.4% 89.3± 0.1% 90.4± 0.6%

Linear classifier 88.7± 0.6% 89.9± 0.7% 86.3± 0.5% 87.9± 0.8%

kNN classifier 89.0± 0.5% 89.4± 0.6% 85.1± 0.3% 86.1± 1.1%

graphs within each batch and optimized the vanilla t-SNE loss function, whereas
we use the full kNN graph and rely on NCE/InfoNCE losses.

Finally, as a proof-of-concept, we demonstrate that the different contrastive loss
functions can all work for image-based self-supervised learning, and specifically,
NCE and NEG can work similarly well to InfoNCE in SimCLR [27], using only
m = 16 noise samples. We use a SimCLR setup to train representations of the
CIFAR-10 dataset [87] using a ResNet18 [65] backbone and a fully-connected pro-
jector head to 128 embedding dimensions. We use the same data augmentations to
create pairs of similar images as in [27], also constrained the output to the sphere
S128, and use the exponential of the cosine similarity (Appendix D.2). NCE and
NEG produce embeddings of similar quality as InfoNCE, measured by the classi-
fication accuracy on the ResNet output (Tab. 4.1). In contrast to existent common
practice in the literature [6, 27, 64], we achieve competitive results with only a
few, non-curated [137, 171] noise samples. Recent work found conflicting evidence
when varying m for a fixed batch size [5, 115, 123]. Future research is needed to
perform more systematic benchmarks and to study the effects of the contrastive
loss function on the SimCLR performance. Here, we present these results only as a
proof-of-principle.

4.9 discussion and conclusion

In this work, we studied the relationship between two popular unsupervised
learning methods, noise-contrastive estimation (NCE) and negative sampling (NEG).
We focused on their application to neighbor embeddings (NE) because this is
an active and vital application area, but also because NEs allow visualizing the
NCE/NEG outcome directly, forming an intuitive understanding of how different
algorithm choices affect the result. Our study makes three conceptual advances.

First, we showed that NEG replaces NCE’s learnable normalization parameter Z
by a large constant Z̄, forcing NEG to learn a scaled data distribution. In the NE
setting, this leads to the method Neg-t-SNE, which differs from NCVis [4] (which
could be nicknamed “NC-t-SNE”) by a simple switch from the learnable to a fixed
normalization constant. We argued that this can be a useful hyperparameter to
adjust because it moves the embedding along the attraction-repulsion spectrum

4.9 discussion and conclusion 105

(a) Z̄ < Zt-SNE (b) Z̄ = Zt-SNE (c) Z̄ = ZNCVis (d) Z̄ = |X|/m (e) Z̄ > |X|/m

(f) t-SNE (g) NCVis (h) UMAP (i) Partition
function

Figure 4.13: (a – e) Neg-t-SNE spectrum on the developmental single-cell RNA sequencing
dataset from [74] for various parameters Z̄. As Z̄ increases, the scale of the
embedding decreases, and the continuous structure (corresponding to the
developmental stage) becomes more apparent, making higher Z̄ more suitable
for visualizing continuous datasets [15]. The spectrum produces embeddings
very similar to those of (f) t-SNE and (g) NCVis when Z̄ equals the partition
function of t-SNE or the learned normalization parameter of NCVis. The
UMAP embedding in (h) closely resembles the Neg-t-SNE embedding at
Z̄ = |X|/m = (n

2)/m. (i) The partition function ∑ij(1+ d2
ij)
−1 of the Neg-t-SNE

embeddings increases with Z̄. Similar to early exaggeration in t-SNE we start
all Neg-t-SNE runs using Z̄ = |X|/m and only switch to the desired Z̄ for the
last two thirds of the optimization.

similar to [15], and hence can either emphasize more discrete or more continuous
data patterns (see Fig. 4.13, D.2 and D.3 for examples using single-cell transcriptomic
datasets). In addition, when Z̄ equals the partition function of a t-SNE embedding,
the resulting Neg-t-SNE embedding resembles that of t-SNE. Exploration of the
spectrum does not require specialized knowledge. For UMAP Z̄UMAP = (n

2)/m
and Böhm et al. [15] find that t-SNE’s partition function Zt-SNE typically lies in
[50n, 100n]. Both quantities only depend on the dataset size and the number of
noise samples. We envisage an API that allows the user to move along the spectrum
with a slider parameter s such that s = 0, 1 corresponds to Z̄ = Zt-SNE, Z̄UMAP,
respectively, without any need for specifying Z̄ directly.

An advantage of our Neg-t-SNE spectrum is the linear time complexity O(nmdk)
of the embedding optimization (m, d, and k are usually small constants), while for
t-SNE elaborate approximation schemes are necessary to achieve O(nk2d) complex-
ity. These are only implemented for d = 2 [101] and would scale exponentially with
d. That said, we do not optimize our code for speed, see Appendix D.2, and opt
for a simple PyTorch framework that can be easily inspected and adapted by the
machine learning community.

An important caveat is that Thm. 4.1 and Cor. 4.3 both assume that the model is
rich enough to fit the data distribution perfectly. This is a very strong and unrealistic
assumption. In the context of NEs, the data distribution is zero for most pairs of

106 contrastive learning unifies t-sne and umap

points, which is impossible to match using the Cauchy kernel. Nevertheless, our
theoretical analysis is confirmed experimentally: For higher Z̄ the embedding de-
creases in scale and exhibits more attraction, moving along the attraction-repulsion
spectrum, and we find t-SNE-like embeddings at the Z̄ value that is expected
according to our theory.

Second, we demonstrated that UMAP, which uses NEG, is essentially Neg-t-SNE
and differs from it only in UMAP’s implicit use of a less numerically stable similarity
function. This isolates the key aspect of UMAP’s success: Instead of UMAP’s
appraised [33, 125] high-dimensional similarities, the refined Cauchy kernel, or
its stated cross-entropy loss function, it is the application of NEG that lets UMAP
perform well and makes clusters in UMAP plots more compact and connections
between them more continuous than in t-SNE, in agreement with [15]. To the best of
our knowledge, this is the first time UMAP’s and t-SNE’s loss functions, motivated
very differently, have been conceptually connected. Note that here we refer to
UMAP’s effective loss function, which has ∼n/m less repulsion than the one stated
in the original paper [39]. Since NCVis’ and UMAP’s refined Cauchy kernel and
the specific high-dimensional similarities of UMAP and t-SNE do not influence the
embedding significantly [15, 39], our use of the standard Cauchy kernel and the
binary skNN graph throughout the chapter is only a mild limitation.

Third, we argued that contrastive NEs are closely related to the contrastive
self-supervised learning methods such as SimCLR [27] which can be seen as para-
metric InfoNC-t-SNE for learning representations in S128 based on the unobservable
similarity graph implicitly constructed via data augmentations. We feel that this con-
nection has been underappreciated, with the literature on NEs and self-supervised
contrastive learning mostly staying disconnected. To bridge the gap between these
two worlds, we presented InfoNC-t-SNE, as well as parametric versions of all
considered NE methods, useful for adding out-of-sample data to an existing visual-
ization. Moreover, we demonstrated the feasibility of NCE, InfoNCE, and NEG with
few noise samples in the SimCLR setup. Finally, we developed a concise PyTorch
framework optimizing all of the above, which we hope will facilitate future dialogue
between the two research communities.

Overall, our insights into NEs should enable practitioners to explore their datasets
more reliably. UMAP and t-SNE plots often help to generate hypotheses in the early
stages of a research project. Our conceptual relation between UMAP and t-SNE
is therefore of practical impact – as is the fact that both are just instances on a
spectrum of embeddings highlighting more continuous or more discrete structures.
We also believe that connections between existing approaches and fields are crucial
for guiding future research into representation learning, dimensionality reduction,
and visualization.

5
C O N C L U S I O N

Most scientific data is collected without labels. For instance, scRNA-seq datasets,
which capture the gene expressions of cell populations, reach up to a million data
points, each with tens of thousands of measured features. Equipping each data
point by hand with a meaningful biological label, such as the cell types, is very
expensive if at all possible. Therefore, unsupervised learning techniques are needed
to investigate such unlabeled datasets. Many learn a more concise representation of
the data, for instance, representing data points by clusters or lower-dimensional
vectors. In exploratory data analysis, where labels are unavailable by definition,
clustering and dimensionality reduction to two dimensions allow practitioners
literally to take a first look at their data. In this thesis, we made contributions both
to clustering and dimensionality reduction.

In the first part of the thesis, we focused on clustering. Chapter 2 introduced a new
point clustering method, Mod Shift, which uses a threshold on the initial distances
to determine which pairs of points attract and, crucially, which repel each other.
This interpretable hyperparameter ultimately determines the number of clusters.
Mod Shift’s inductive bias on distance rather than density sets it apart from estab-
lished point clustering methods such as Mean Shift [31, 34] and (H)DBSCAN [50,
111]. Through its loss function, Mod Shift resembles a differential version of the
signed graph-partitioning problem Multicut. We theoretically explored the resulting
approximation of the Multicut polytope via point configurations in Euclidean space
and contrasted Mod Shift’s and Mean Shift’s behavior. On the practical side, we
showed Mod Shift’s usefulness on toy data and pixel embedding data for a difficult
neural segmentation task.

An interesting path for future work is to further flesh out the exciting link
between point clustering and graph-partitioning. Our idea is to keep the tie to
Multicut by modeling separatedness based on a point configuration in Euclidean
space. However, we envisage that a practitioner could inject relational information,
e.g., obtained from a boundary predicting neural network, as in [169, 170], as
interaction weights instead of inferring them from the initial point configuration.
On the practical side, it would be interesting to speed up Mod Shift on image data
by limiting the complete interaction between pixels to an (augmented) image grid,
as in [169, 170].

In the second part of the thesis, we looked under the hood of the current state-
of-the-art for non-linear dimension reduction t-SNE and, in particular, UMAP. The
implementation of UMAP does not optimize its alleged loss function. In Chapter 3
we identified this problem and derived UMAP’s true loss function. As the true loss
function effectively binarizes the similarities that UMAP extracts in high dimension,
we showed that, while much acclaimed [33, 125], these are not the key aspects of
UMAP. Moreover, this binarization explains a common artifact in UMAP plots,
overly-crisp substructures, and their prevalence in large datasets. Given UMAP’s

107

108 conclusion

popularity, particularly in bioinformatics [9], our insights into its workings are
highly relevant.

In the last years, practitioners struggled to choose between UMAP and its pre-
decessor t-SNE for non-linear visualization of their datasets. Many arguments in
favor of one method or the other were ultimately obsolete, such as the exact weight
of similarities in high-dimensional space [15, 39] or easily compensable, like the
initialization [84]. Miscrediting UMAP’s success to its sophisticated mathematical
underpinning [33, 125] obscured the remaining difference.

Based on UMAP’s true loss, however, we resolved this controversy and unified
the two state-of-the-art visualization methods t-SNE and UMAP in Chapter 4.
UMAP relates to t-SNE via the method NCVis, which approximates t-SNE with
noise-contrastive estimation. UMAP relies on another contrastive method, negative
sampling. We worked out the precise relation between noise-contrastive estima-
tion and negative sampling and thus connected UMAP via NCVis to t-SNE. This
connection between contrastive losses might be of independent interest, e.g., for
the NLP community when learning word embeddings or language models. Our
analysis also showed that UMAP uses a numerically unstable similarity kernel in
low dimension and requires aggressive learning rate annealing to arrive at a crisp
layout. Our principled approach suggested the remedy, too, which would make
UMAP equivalent to the method we called “Neg-t-SNE”.

We found that negative sampling learns a scaled version of the data distribution
and thus employs more attraction than t-SNE explaining UMAP’s more compact
embeddings. Other ratios of attraction to repulsion are also possible and give rise
to a spectrum of neighbor embedding methods, encompassing approaches similar
to UMAP and t-SNE as special cases.

Embeddings along the spectrum focus on different aspects of the data. High
attraction embeddings better exhibit continuous structures, e.g., in developmental
scRNA-seq datasets. But this comes at the expense of local resolution. When the
substructure of the clusters in a dataset is of interest, more repulsion can help.
Every visualization necessarily distorts the data [24, 42, 71]. Therefore, we suggested
inspecting various points along the attraction-repulsion spectrum to understand a
new dataset more accurately.

Finally, we emphasized the ties between contrastive neighbor embeddings and
contrastive self-supervised learning in the SimCLR [27] setting and show that both
can enrich each other.

We see three lines of future work on dimensionality reduction. First, new metrics
that align better with the vague goal of “generating useful research hypotheses” are
needed. Chari et al. [24] criticize UMAP and t-SNE embeddings for not optimizing
existing metrics while the merit of their embeddings is undoubtedly immense yet
hard to quantify. Such metrics might help to explain the success of t-SNE and
UMAP as well as guide the development of new visualization methods.

Second, since both methods ultimately rely on neighborhood relations, they
have trouble capturing the global aspects of a dataset. More attraction or larger
neighborhoods help but do not address the fundamental problem. A fruitful strategy
might be combining neighbor embedding methods with classical, global methods
such as MDS, as recently done in [89].

Third, the quality of a neighbor embedding hinges on the notion of similarity
extracted from the high-dimensional dataset. It is impressive and, so far, not entirely

conclusion 109

(a) PCA (b) UMAP

Figure 5.1: UMAP needs meaningful similarities for an insightful embedding. The UMAP
plot (5.1b) of the CIFAR-10 dataset [87] shows nearly as little cluster separation
as the PCA (5.1a). The kNN graph for UMAP was computed on a 50-dimensional
PCA of the raw pixel values. The UMAP embedding does show some interesting
structures, such as the separate cluster of automobiles on the right, which
consists mostly of near-duplicate images of the same car. When using features
from a pre-trained ResNet, similarities become more meaninful and UMAP can
achieve descent class separation, see Fig. C.6.

clear why the kNN graph of the raw data goes such a long way. Nevertheless,
it is insufficient for a meaningful neighbor embedding of CIFAR-10, see Fig. 5.1.
Self-supervised learning employs data augmentations as the source of similarity.
Incorporating existing data-agnostic [163, 178] or new data-specific augmentations
might extend the practicality of neighbor embedding methods.

In this thesis, we have made contributions chiefly by conceptually relating dif-
ferent aspects of clustering (Chapter 2) and by understanding (Chapter 3) as well
as unifying (Chapter 4) popular dimensionality reduction methods. We believe
that such theoretical groundwork is crucial for the development of unsupervised
learning and hope that it sparks interesting new ideas for discovering structure
with little supervision.

A P P E N D I X

111

A
S U P P L E M E N TA RY T O T H E I N T R O D U C T I O N

We provide the full proof of Lem 1.1 here.

Lemma A.1. It is possible to place n points equidistantly in Rd if and only if d ≥ n− 1.

Proof. This statement follows from Thm.1 in [145], but for intuition, we give a more
elementary proof here.

For the “if” part, consider the standard basis vectors in Rn. They all have distance√
2 from each other but span an affine subspace of dimension n− 1.
For the “only if” part, we show by induction that n equidistant points in Euclidean

space span an affine subspace of dimension n− 1. This is clear for n = 2. Let n > 2
and x1, . . . , xn equidistant points in some Rd. The equidistance from xn to any pair
xi, xj can be expressed as xn lying on the hyperplane Hij that orthogonally bisects
the line from xi to xj. That is,

⟨xi − xj, xn − pij⟩ = 0 (A.1)

for any pij ∈ Hij. By assumption, xk ∈ Hij for all k ̸= i, j. Since we also have
xi+xj

2 ∈ Hij and Hij is convex, we can choose p = pij =
1

n−1 ∑n−1
k=1 xk independent of

i and j. In other words, the vector xn − p is orthogonal to all xi − xj for i, j < n or
zero. We consider xn ̸= p first. By assumption, the equidistant set {x1, . . . , xn−1}
spans an affine subspace of dimension n− 2. So x2 − x1, . . . xn−1 − x1 are linearly
independent. As xn − p is orthogonal to all these vectors, adding it retains linear
independence. The difference

(xn − p)− (xn − x1) =
1

n− 1

n−1

∑
k=2

(xk − x1) (A.2)

is in the span of x2 − x1, . . . xn−1 − x1, so that x2 − x1, . . . xn − x1 are also linearly
independent. We conclude that the affine dimension of the span of x1, . . . , xn is
n− 1 unless xn = p. But the latter case violates equidistance as the midpoint p is
not sufficiently far away

∥p− x1∥ =
∥∥∥∥∥ 1

n− 1

n−1

∑
k=2

(xk − x1)

∥∥∥∥∥ ≤ 1
n− 1

n−1

∑
k=2
∥xk − x1∥ =

n− 2
n− 1

d < d,

where d is the distance x1 has to all other points.

113

B
M O D S H I F T

b.1 choices of w and ρ

Guided by Sec. 2.4.2 and the proofs of Lem. 2.13 and Props. 2.15 and 2.17, we
only consider choices of w that are point symmetric about (β, 0), range from
−1 to 1, are constant beyond 2β and can be written as w(d) = ϕ(d

β) for some
continuous, decreasing function ϕ independent of β, thus illustrating β’s role as a
scale parameter. Some possibilities are depicted in Fig. 2.2a, which we repeat for
the reader’s convenience here as Fig. B.1. Their formulae are:

wlin(d) = max
(

1− d
β

,−1
)

, (B.1)

wcos(d) =

cos(dπ
2β), for d/β ∈ [0, 2]

−1, else,
(B.2)

wlog(d) = max

(1
1+exp(λ(d/β−1)) − 0.5

c
,−1

)
, (B.3)

c =
1

1 + exp(−λ)
− 0.5, λ > 0. (B.4)

β ||x0
i − x0

j||

−1

0

1

w

linear

cosine

logistic

Figure B.1: Different choices of the weight function w given as a rectified linear, cosine,
and logistic function. The weight only depends on the initial distance between
points and is never updated.

115

116 mod shift

2β
||xti − xtj||

0

1

ρ Potts

linear

square root

Schoenberg

Figure B.2: Separatedness of two points xt
i and xt

j after t iterations based on their distance
∥xt

i − xt
j∥ for different choices of ρ: Potts function and concave approximations

given by a rectified linear, rectified square root and Schoenberg transforma-
tion [146].

Similarly, we gave some examples for possible choices of ρ respecting the consid-
erations in Sec. 2.4.3 in Fig. 2.2b, which we also repeat as Fig. B.2. Their formulae
are

ρPotts(d) = 1(d = 0), (B.5)

ρlin(d) = min
(

d
2β

, 1
)

, (B.6)

ρsqrt(d) = min

(√
d

2β
, 1

)
, (B.7)

ρSchoenberg(d) =

√
1− exp

(
− d2

β2

)
. (B.8)

b.2 implementation

For an exact execution of a single Mod Shift update, all distances ∥xt
i − xt

j∥ have to
be computed, resulting in a quadratic time complexity per iteration as for Mean
Shift. Due to the small required number of iterations this results in a complex-
ity of O(n2), which is tractable with today’s GPUs. We use the Python package
PyKeOps [25] to avoid a quadratic memory-footprint, while retaining access to
PyTorch’s [127] GPU-based (stochastic) gradient descent framework with powerful
optimizers such as Adam [80] to solve Mod Shift’s optimization problem. Our code
alongside reproducibility instructions and datasets is publicly available.1 We ran
our experiments on a server with a “Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHz”
CPU with 56 kernels and a “Nvidia GeForce GTX 1080 Ti” and used the rectified

1 https://github.com/ModShift/ModShift

B.3 details on the toy experiment 117

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0
convergence points

data points

100 101

iterations

(a) Trajectories for
β = 0.7

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0
convergence points

data points

100 101

iterations

(b) Trajectories for
β = 1.3

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0
convergence points

data points

100 101 102

iterations

(c) Trajectories for
β = 2.5

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0
convergence points

data points

100 101 102 103

iterations

(d) Trajectories for
β = 0.15 with SGD

0 1 2
−0.5

0.0

0.5

1.0

1.5
conv. points

data points

0.50

0.75

1.00

1.25

1.50

β

(e) Convergence points for different values
of β.

0 1 2
−0.5

0.0

0.5

1.0

1.5
data points

conv. points β = 1.5

conv. points β = 1.6

trajectories β = 1.5

trajectories β = 1.6

trajectories β = 1.5

trajectories β = 1.6

(f) Trajectories for β just before and after two
clusters merge.

Figure B.3: Mod Shift on a toy dataset illustrating the effect of β. B.3a–c show the points’
trajectories under Mod Shift for β = 0.7, 1.3 and 2.5. with the Adam optimizer.
B.3d shows the points’ trajectories for Mod Shift with SGD and a small enough
β that the point clouds are split up. B.3e shows the convergence points for
several values of β with SGD optimizer. As β increases, further points attract
each other so that the number of convergence points decreases from 3 to 2 at
about β = 1 and from 2 to 1 for β at about 1.6. These values correspond to the
mean distances between the point clouds. B.3f shows the trajectories under SGD
optimization for β-values close to the jump at about 1.6.

linear functions from Sec. 2.4 for ρ and w. Further hyperparameters are discussed
in Appendices B.3 and B.4.

b.3 details on the toy experiment

The toy dataset consists of three sets of 10 points sampled from two-dimensional
normal distributions with diagonal covariance of value 0.01 and means (0, 0), (0, 1)
and (1.5, 0.5), respectively. In order to get an exact analysis of Mod Shift’s behavior
on this toy dataset, we used deliberately low learning rates and vanilla gradient
descent. With higher learning rates, Mod Shift converges much faster, but we would
get coarser trajectories. Since we want to obtain crisp clusters, we used a learning
rate decay towards the end of the optimization (by a factor of 10 in the last 15%
of iterations) to deal with the positive gradient of ρ at zero. For the results in
Figs. 2.11a–c, we used a learning rate of 0.01 and ran Mod Shift for 30/90/90
iterations, respectively. In order to obtain the number of clusters and convergence
points in Figs. 2.11d and B.3e, we used a learning rate of 0.01 and ran Mod Shift
for 5000 iterations. To plot the exact trajectories of the β values near cluster merges
in Fig. B.3f, we decreased the learning rate to 0.001 and ran for 20000 iterations. We
also show trajectories for this dataset with the Adam optimizer using a learning
rate of 0.02 without decay and 70/80/100 iterations in Figs. B.3a–c.

118 mod shift

In Fig. B.3e, the convergence points move further apart as β increases, before they
collapse. This is due to the fact that the function ρ becomes constant at 2β. So while
the attraction increases as β increases, the margin by which different clusters should
be separated also increases. Once β is large enough that two point clouds have net
attraction, they converge to a single cluster, i.e., their convergence points collapse.
Such discontinuous behavior cannot be mitigated when one wants to cluster points
with a continuously varying scale parameter into well-separated crisp clusters.

We plot the trajectories for two β values slightly above and below such a cluster
collapse in Fig. B.3f. The points’ trajectories start out similarly before they either
diverge from or converge to those of other point clouds. This is because the inter-
action between points of the same cloud is similar for similar values of β, but the
total interaction between different clouds changes sign.

b.4 details on the pixel embedding experiments

b.4.1 CREMI data

The data consists of 16-dimensional pixel/voxel embeddings for a 384× 384× 16
voxel subvolume of the CREMI A, B, and C datasets [18]2 all predicted by a
variant of a 3D U-Net. The network is based on [96] with (28, 36, 48, 64, 80, 120, 180)
channels at each resolution before a final convolutional layer reduces the channels
to 16. ELU activation functions are used for all but this final convolution. For the
loss, offsets are randomly generated, and a logistic similarity is computed from the
embedding distances of the thus linked voxel pairs. This similarity is compared to
the ground truth similarity using a Dice-loss which compares the separated pairs.
While there is thus not a built-in margin by which embeddings of different instances
should be separated, we observe that similar scale parameters work best across
algorithms and subvolumes. To ease the reproduction of our clustering experiments,
we provide the embeddings online. The network was trained jointly on subvolumes
of the same size from CREMI A, B, and C. The subvolume we use in our clustering
experiments was not used for training the network but was part of the validation
set.

b.4.2 ISBI data

As in the CREMI experiment, the data consists of 64-dimensional pixel/voxel em-
beddings of a 512× 512× 5 voxel subvolume of the ISBI 2012 Neuro-Segmentation
Challenge [3, 20, 21] training dataset.3 Here, a variant of a PoseNet [29], i.e., two
stacked U-Nets with summation instead of concatenation, was used. The network
was trained on 2D slices. The data we used here was part of the validation set. The

2 The CREMI dataset uses the CC-BY license. We informed Jan Funke about our use of the dataset.
3 We informed the organizers of the ISBI challenge [3] of our use of the dataset. Its license reads

“You are free to use this data set for the purpose of generating or testing non-commercial image
segmentation software. If any scientific publications derive from the usage of this data set, you must
cite TrakEM2 and the following publication:
Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, Tomancak P, Hartenstein V. 2010.
An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted
Serial Section Electron Microscopy. PLoS Biol 8(10): e1000502. doi:10.1371/journal.pbio.1000502.”

https://github.com/ModShift/ModShift

B.4 details on the pixel embedding experiments 119

loss was the segmentwise contrastive loss [44] with a pull margin of 0 and a push
margin of 1 and L1 loss. In order to speed up the clustering process, we reduced
the dimensionality of the embeddings from 64 to 8 with PCA applied to each slice
individually. This retains most information as the first 8 principal components
explain more than 99.8% of the variance in each slice.

b.4.3 Metrics

In our experiments, we considered each of the 16 slices of size 384× 384 (5 slices
of size 512× 512) separately, and we used the metrics from [18]. So each method
clusters the points of these slices independently, and we compare the results per
slice to the ground truth. To aggregate over slices, we take the arithmetic mean
of the Variation of Information and Adapted RAND scores of individual slices.
The CREMI score is the geometric mean between the averages of the Variation of
Information and Adapted RAND scores per slice. We call pixels that neighbor a
pixel of a different label in the 4-connected pixel grid boundary pixels. As in [18], the
boundary pixels of the ground truth segmentation are excluded when computing
the metrics.

b.4.4 Clustering algorithms

We compared fixed and adaptive Mod Shift to the two main seed-less clustering
methods used for pixel-based instance segmentation: Mean Shift [86] and HDB-
SCAN [129]. Of these two, only Mean Shift is differentiable and thus directly
comparable to Mod Shift. We considered fixed and adaptive Mean Shift with flat
and RBF kernels. Single Linkage clustering is used to obtain a hard clustering after
the shifting process. A restriction of thresholded Single Linkage to spatial neighbors
was used in [107] for pixel-based instance segmentation.

b.4.5 Implementations

We used the Single Linkage implementation of [111] for both HDBSCAN and Single
Linkage clustering. We implemented Mean Shift and Mod Shift in PyTorch [127]
optionally using PyKeOps [25] and we provide these implementations in our
GitHub repository.

b.4.6 Hyperparameters

We ran both Mean Shift and Mod Shift for 50 iterations. For Mod Shift we used the
Adam optimizer [80] with a learning rate of 0.001 without any learning rate decay
and the rectified linear functions for ρ and w described in the main text.

b.4.7 Parameter fine-tuning

For Mean Shift and Mod Shift we performed a grid search for the respective
scale parameters (bandwidth, β) over [0.01, 0.3] in steps of 0.01 for CREMI and

https://github.com/ModShift/ModShift

120 mod shift

Figure B.4: Segmentations of slices 0, 4, 8 and 12 of the crop of CREMI A. First row: Ground
truth segmentation with boundary pixel in black. Rows 2–4: Segmentations of
Mod Shift, Mean Shift and HDBSCAN corresponding to the parameters in lines
3, 7 and 9 of Tab. B.5. Black (green, red) boundaries are correct (false negative,
false positive) with respect to the ground truth. A segmentation boundary
pixel is considered correct if it is at most one pixel away from a ground truth
boundary pixel. Otherwise, it is a false positive. If there is no segmentation
boundary pixel at most one pixel away from a ground truth boundary pixel, it
is considered a missed boundary. Mod Shift does best on the long elongated
segments in the upper left and right corners. Both Mean Shift and HDBSCAN
falsely split these up. Mean Shift fails to separate more of the small segments,
an indication of Mean Shift’s tendency to produce merge errors, see Sec. 2.6.3.
HDBSCAN and Mod Shift, with its explicit repulsive forces, do better on these
small segments.

B.4 details on the pixel embedding experiments 121

over [0.1, 2.0] in steps of 0.1 for ISBI. We varied the threshold for the Single
Linkage step that produced the hard clusters for Mean Shift and Mod Shift over
{0.2, 0.1, 0.04, 0.02, 0.01, 0.001} (for ISBI additionally {2., 1, 0.5}) and also report the
setting where the threshold equals the respective scale parameter. For HDBSCAN
we performed a grid search over the two main parameters min_cluster_size in
{2, 5, 10, 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600} and min_samples

in {1, 2, 5, 10, 20, 50, 100} as well as equal to the parameter min_cluster_size.
We tried substantially lower values for min_samples than the default value of
min_samples=min_cluster_size in order to reduce the number of pixels that are
classified as “noise”. After HDBSCAN, the noise points were assigned the label of
their closest non-noise neighbor in embedding space. We used the exact minimum
spanning tree computation of HDBSCAN. Thus all of our methods are exact. The
resulting scores for the optimal parameters in terms of CREMI score can be found in
Tabs. B.5–B.8. We always reported the best score of each Mean Shift and Mod Shift
clustering method for scale parameter = threshold and an additional setting if
varying the threshold improves the result.

b.4.8 Figures

Fig. 2.12 shows the results of slice 0 of the crop of CREMI A for Mod Shift and
Mean Shift with parameters as in lines 7 and 9 of Tab. B.5. Fig. B.4 adds slices 4, 8
and 12 and HDBSCAN with parameters as in line 3 of Tab. B.5.

b.4.9 Discussion of results

The main takeaway message from our experiments is that the best performing
Mod Shift setting is competitive with the best performing Mean Shift setting for
pixel embedding-based instance segmentation and that both of them tend to be
outperformed by non-differentiable HDBSCAN. In most cases, the fixed versions of
Mod Shift and Mean Shift yield better results than the respective adaptive versions.
In half of the cases, the RBF kernel is better, and in half of the cases worse than
the flat kernel for Mean Shift. Moreover, we found that the best performing fixed
versions of Mean Shift using a flat kernel and Mod Shift used similar values for
their scale parameters, indicating an ideal “range of attraction”. As the RBF kernel
has infinite support, it is plausible that its best bandwidths were usually lower than
for Mean Shift with a flat kernel or Mod Shift. Decreasing the threshold below β

often improves the scores of Mod Shift significantly and is crucial for making it
competitive, while for Mean Shift, increasing the threshold above the bandwidth is
better on the CREMI data and significantly better on the ISBI data. On the majority
of experiments decreasing min_sample_size below min_cluster_size yields the
best results, as expected.

Moreover, we found that for all Mod Shift parameter settings described in
Tabs. B.5–B.8 98% of all pairs of Mod Shifted points meet the condition of Prop. 2.3
at ε = 0.25.

122 mod shift

Table B.1: Comparison of multicut energies [103] on downsampled subvolumes of CREMI
A–C and of ISBI. Lower is better. Deviation to the lowest energy for each dataset
is given in brackets.

CREMI A CREMI B CREMI C ISBI

GT −40611 −36950 −38025 −128501

(127) (1466) (537) (550)

Initial points −40609 −38158 −38252 −128800

(129) (258) (310) (251)

Shifted points −40735 −38403 −38553 −128912

(3) (13) (9) (139)

Mod Shift −40737 −37901 −38513 −128913

(1) (515) (49) (138)

Mutex WS −40737± 0 −38331± 9 −38550± 1 −129034± 0

(1) (85) (12) (17)

Multicut (KL) −40738± 0 −38416± 0 −38562± 0 −129051± 0

(0) (0) (0) (0)

b.4.10 Mod Shift as a Multicut surrogate

In this section, we empirically demonstrate that Mod Shift is a good Multicut
surrogate on the CREMI and ISBI data. Usually, instance segmentation with Multicut
assumes an image grid graph, possibly augmented with additional long-range
edges [67]. However, the Multicut energy on this sparse graph is not comparable to
Mod Shift’s energy on the complete pixel graph. To properly compare the quality
of Mod Shift as a Multicut surrogate, we computed the Multicut segmentation on
the complete pixel graph as well. In this setting exact Multicut solvers are infeasible,
and we opted for a GAEC [78] warm-started approximate Kernighan-Lin solver
(KL) as in [169]. Even with this approximate solver, we had to subsample the images
by a factor of 4 to achieve acceptable runtimes for the approximate Multicut solver.
Wolf et al. [169, 170] proposed the Mutex Watershed (Mutex WS) algorithm as a fast
alternative to Multicut for signed graph partitioning. We also compare Mod Shift
to the Mutex WS algorithm in the above setting.

For each of the best Mod Shift parameter settings in Tabs. B.5–B.8, we computed
the graph weights according to Mod Shift’s weight function. Given these weights,
we computed the approximately optimal Multicut via KL, the optimal Mutex
Watershed, and the Mod Shift segmentation. Note that we added Gaussian noise of
variance 0.01 on the weights before computing the Multicut or the Mutex Watershed
to break ties among the numerous weights that equal −1. Since Mod Shift can shift
pixels in different images in parallel in a GPU by treating each image as a batch
element, we also computed Mutex WS and KL in parallel over the images of each
subvolume.

Tab. B.1 shows the Multicut energies for various methods. In addition to the
Multicut energies of the KL, Mutex WS, and Mod Shift segmentations, we report the
Mutlicut energy of the ground truth segmentation and the Mod Shift energy (2.5) for
the initial point configuration and that of the point configuration after Mod Shift’s

B.4 details on the pixel embedding experiments 123

Table B.2: Run time [s] comparison Mod Shift, Mutex WS and Multicut on downsampled
subvolumes of CREMI A–C and of ISBI. Lower is better.

CREMI A CREMI B CREMI C ISBI

Multicut (KL) 951± 57 1180± 55 856± 31 4773± 304

Mutex WS 611± 43 833± 23 796± 28 1190± 66

Mod Shift 6.9± 0.1 7.5± 0.1 8.1± 0.0 3.9± 0.1

Table B.3: CREMI score comparison Mod Shift, Mutex WS and Multicut on downsampled
subvolumes of CREMI A–C and of ISBI. Lower is better.

CREMI A CREMI B CREMI C ISBI

Multicut (KL) 0.0454± 0.000 0.6399± 0.002 0.1985± 0.000 0.1366± 0.000

Mutex WS 0.0453± 0.000 0.5592± 0.005 0.1783± 0.003 0.1250± 0.003

Mod Shift 0.0440 0.4177 0.1702 0.0775

point shifting procedure. We see that the KL segmentation always has the lowest
energy. It is the only one that directly optimizes the Multicut energy. The energy
after the shifting of Mod Shift is always close to the optimal Multicut energy. This
shows that Mod Shift’s point shifting procedure approximates the Multicut objective
well. The energy of the Mutex WS segmentation is typically similar to that of the
points after Mod Shift. Both are much lower than the energies of the input point
configuration or the ground truth segmentation. In particular, we see that the point
shifting of Mod Shift indeed reduced the energy drastically. On half of the datasets,
the energy of Mod Shift’s segmentation, i.e., after the point shifting and the single
linkage clustering, is similar to that of the point configuration after shifting. On the
other subvolumes, it is much higher. Note that the single linkage threshold was
chosen to optimize the CREMI score, not the Multicut energy. The ground truth
segmentation always has high Multicut energy, which shows that both objectives
are not perfectly aligned for this task. For KL and Mutex WS, we give averages
over five runs with one standard deviation. The other energies do not depend on
randomness. Note that in the complete pixel graph, most pairs of pixels repel each
other and have a weight of −1, resulting in very negative energies.

We show the run times of KL, Mutex WS, and Mod Shift in Tab. B.2 averaged
over five runs and with an uncertainty of one standard deviation. Mod Shift is
much faster than both the KL-based Multicut or Mutex WS on these complete pixel
graphs.

At the same time, Tab. B.3 shows that Mod Shift yields competitive CREMI scores
in this setting. Note that these scores are on the downsampled images and thus
differ from the ones reported in Tabs. B.5–B.8.

b.4.11 Stability and run times

The implementations we use for Mod Shift, Mean Shift, and HDBSCAN do not
depend on any random seeds. Hence, results across different runs do not vary.

124 mod shift

Table B.4: Run times [s] of representative experiments averaged over 5 runs and with one
standard deviation. We always used the best setting for flat, non-adaptive Mean
Shift, non-adaptive Mod Shift and HDBSCAN in Tabs. B.5–B.8.

CREMI A CREMI B CREMI C ISBI

HDBSCAN 102± 1 96± 1 99± 1 92± 58

Mean Shift 392± 4 480± 62 454± 1 224± 1

Mod Shift 631± 33 609± 2 726± 1 310± 1

Therefore, we have omitted giving error bars for the outcomes of these results. As
discussed in Sec. B.4.10, the Multicut and Mutex Watershed implementations do
depend on random seeds, and we give means over five runs and uncertainties of
one standard deviation in Tab. B.3 for these methods.

We have measured the run times of representative experiments. We always ran
five times and reported the mean run time and one standard deviation. The results
on the downsampled images are given in Tab. B.2. The results on the original data
are in Tab. B.4. Note that we always excluded the one-time cost of computing
the PyKeOps kernels for Mod Shift and Mean Shift. Moreover, we computed the
hard cluster assignment and HDBSCAN sequentially over the different images of a
subvolume. This could be parallelized.

Let us estimate the total run time of reproducing all experiments in this chap-
ter. We run Mutex Watershed and Kernighan-Lin five times for each of the four
downsampled subvolumes. The Mod Shift times are negligible here. On each of the
full-size CREMI subvolumes, we compute Mean Shift and Mod Shift for 30 scale
parameters. The time for computing the results of the seven thresholds does not
matter significantly, so we omit this factor. On the ISBI subvolume, we run Mean
Shift and Mod Shift for 20 scale parameters each. Moreover, we compute Mean Shift
with a flat and a Gaussian kernel and both Mean and Mod Shift in the adaptive and
fixed versions. For HDBSCAN, we search over eight choices of min_sample_size.
The search over min_cluster_size does not matter much. Using the run times in
Tab. B.2 and the representative run times in Tab. B.4 we thus compute a total run
time of 106 hours if all instance segmentation experiments were to be run one after
the other. The experiments on the toy data were very fast, so we do not include
them in this estimate.

b.5 convergence of mod shift with adam

We propose to optimize Mod Shift’s non-convex objective function with modern
deep learning optimizers, such as Adam [80], motivated by their outstanding
success at optimizing the highly non-convex objective functions of deep neural
networks [16]. For classical clustering methods, proofs of convergence are essential.
Gradient descent, however, is not necessarily guaranteed to converge, especially
without appropriate step-size annealing, see, for instance, the Perceptron Cycling
Theorem [114]. Nevertheless, we did not experience convergence issues when
optimizing Mod Shift’s objective function using Adam, even with a fixed step size.
In the following, we describe tweaks of the Mod Shift setup in which sufficient

B.5 convergence of mod shift with adam 125

conditions for convergence are known. As our experiments did not make them
necessary, we have not pursued them experimentally.

While the general convergence of Adam-type optimizers in non-convex settings
is an open problem, [28] provides assumptions and a sufficient condition for
convergence to a stationary point of the objective function. The assumptions require
the objective function to be differentiable with Lipschitz gradient, lower bounded,
and to have bounded true and noisy gradients. In addition, the noisy gradients
need to be unbiased and of independent noise.

For Mod Shift, the assumption on the noisy gradient is satisfied as we usually
perform full-batch gradient updates and thus only work with the proper gradients.
Mod Shift’s objective function E in (2.4) satisfies the remaining assumptions for
certain choices of ρ. Differentiability at generic point configurations, boundedness,
and Lipschitz-continuity of the gradient can be easily achieved by choosing a ρ

with these properties, as evident from the formula for Mod Shift’s gradient in (2.6).
Kinks such as in the rectified linear ρ that we used in our experiments could
be removed by approximation with a smooth function. All that is missing is the
differentiability of E at point configurations in which points coincide. This can
be pragmatically achieved with a ρ of vanishing gradient at zero. However, as a
consequence, ρ would not fulfill the theoretical desiderata discussed in Sec. 2.4.3
as it would neither be concave nor of positive slope at zero. Nevertheless, in this
case, Thm. 3.1 in [28] provides a sufficient condition for the convergence of Adam-
type optimizers, and Sec. 3.3 in [28] describes annealing learning-rate schemes
that guarantee convergence of such a tweaked Mod Shift using certain variants of
Adam.

126 mod shift

b.6 detailed results

Table B.5: Results on crop of CREMI A by metrics of [18], lower is better. Mod Shift outper-
forms Mean Shift, HDBSCAN is worse than both.

Method parameters CREMI ARAND VOI VOI

score split merge

HDBSCAN min_samples = 50, 0.0704 0.0231 0.1688 0.0459

min_cluster_size = 50

Gaussian bandwidth = 0.03, 0.0657 0.0219 0.1625 0.0344

Mean Shift threshold = 0.03

Gaussian adaptive bandwidth = 0.03, 0.0668 0.0226 0.1630 0.0343

Mean Shift threshold = 0.03

Gaussian adaptive bandwidth = 0.03, 0.0666 0.0225 0.1622 0.0344

Mean Shift threshold = 0.1

flat Mean Shift bandwidth = 0.11, 0.0629 0.0215 0.1408 0.0428

threshold = 0.11

flat adaptive bandwidth = 0.12, 0.0610 0.0212 0.1295 0.0462

Mean Shift threshold = 0.12

Mod Shift β = 0.09 = threshold 0.0628 0.0217 0.1446 0.0367

Mod Shift β = 0.11, threshold = 0.1 0.0601 0.0211 0.1280 0.0430

adaptive Mod Shift β = 0.12 = threshold 0.0648 0.0222 0.1465 0.0426

B.6 detailed results 127

Table B.6: Results on crop of CREMI B by metrics of [18], lower is better. Varying the
threshold is crucial to obtain descent Mod Shift results. Here, HDBSCAN beats
both Mean Shift and Mod Shift.

Method parameters CREMI ARAND VOI VOI

score split merge

HDBSCAN min_samples = 10, 0.2930 0.1189 0.4371 0.2852

min_cluster_size = 300

Gaussian bandwidth = 0.05, 0.3401 0.1445 0.4362 0.3643

Mean Shift threshold = 0.05

Gaussian bandwidth = 0.04, 0.3190 0.1354 0.4511 0.3006

Mean Shift threshold = 0.1

Gaussian adaptive bandwidth = 0.04, 0.3523 0.1532 0.5248 0.2850

Mean Shift threshold = 0.04

Gaussian adaptive bandwidth = 0.04, 0.3522 0.1532 0.5237 0.2857

Mean Shift threshold = 0.1

flat Mean Shift bandwidth = 0.09, 0.3380 0.1458 0.4954 0.2883

threshold = 0.09

flat Mean Shift bandwidth = 0.09, 0.3378 0.1457 0.4923 0.2908

threshold = 0.1

flat adaptive bandwidth = 0.09, 0.3523 0.1516 0.5665 0.2524

Mean Shift threshold = 0.09

flat adaptive bandwidth = 0.1, 0.3509 0.1518 0.5370 0.2740

Mean Shift threshold ≤ 0.02

Mod Shift β = 0.02 = threshold 0.4097 0.1600 0.6885 0.3604

Mod Shift β = 0.1, threshold = 0.02 0.3564 0.1443 0.5293 0.3511

adaptive Mod Shift β = 0.09 = threshold 0.6858 0.3339 0.9880 0.4205

adaptive Mod Shift β = 0.17, threshold = 0.04 0.3572 0.1371 0.5910 0.3398

128 mod shift

Table B.7: Results on crop of CREMI C by metrics of [18], lower is better. Mod Shift out-
performs Mean Shift if the threshold is decreased. HDBSCAN is better than
both.

Method parameters CREMI ARAND VOI VOI

score split merge

HDBSCAN min_samples = 20, 0.1472 0.0459 0.3551 0.1169

min_cluster_size = 150

Gaussian bandwidth = 0.04, 0.1742 0.0569 0.4154 0.1177

Mean Shift threshold = 0.04

Gaussian bandwidth = 0.03, 0.1628 0.0530 0.4005 0.0990

Mean Shift threshold = 0.1

Gaussian adaptive bandwidth = 0.03, 0.1959 0.0638 0.5048 0.0968

Mean Shift threshold = 0.03

flat Mean Shift bandwidth = 0.08, 0.1800 0.0586 0.4425 0.1100

threshold = 0.08

flat Mean Shift bandwidth = 0.06, 0.1764 0.0580 0.4383 0.0986

threshold = 0.1

flat adaptive bandwidth = 0.09, 0.1932 0.0632 0.4619 0.1288

Mean Shift threshold = 0.09

flat adaptive bandwidth = 0.09, 0.1923 0.0629 0.4587 0.1288

Mean Shift threshold = 0.1

Mod Shift β = 0.03 = threshold 0.1969 0.0616 0.5078 0.1217

Mod Shift β = 0.1, threshold = 0.04 0.1599 0.0497 0.3823 0.1317

adaptive Mod Shift β = 0.11 = threshold 0.2432 0.0820 0.5146 0.2068

adaptive Mod Shift β = 0.25, threshold = 0.01 0.2058 0.0559 0.6371 0.1208

B.6 detailed results 129

Table B.8: Results on crop of ISBI by metrics of [18], lower is better. Reducing the threshold
for Mod Shift is is crucial to make it competitive.

Method parameters CREMI ARAND VOI VOI

score split merge

HDBSCAN min_samples = 20, 0.0762 0.0260 0.1097 0.1130

min_cluster_size = 350

Gaussian bandwidth = 0.7, 0.0848 0.0376 0.1173 0.0739

Mean Shift threshold = 0.7

Gaussian bandwidth = 0.6, 0.0815 0.0356 0.1149 0.0717

Mean Shift threshold = 2

Gaussian adaptive bandwidth = 0.6, 0.0870 0.0382 0.1267 0.0714

Mean Shift threshold = 0.6

Gaussian adaptive bandwidth = 0.6, 0.0868 0.0382 0.1260 0.0714

Mean Shift threshold = 2

flat Mean Shift bandwidth = 1.5, 0.0852 0.0378 0.1214 0.0708

threshold = 1.5

flat Mean Shift bandwidth = 0.5, 0.0759 0.0279 0.1645 0.0422

threshold = 1.0

flat adaptive bandwidth = 1.5, 0.0897 0.0390 0.1380 0.0682

Mean Shift threshold = 1.5

flat adaptive bandwidth = 0.2, 0.0789 0.0285 0.1631 0.0549

Mean Shift threshold = 0.5

Mod Shift β = 0.5 = threshold 0.0952 0.0444 0.0936 0.1102

Mod Shift β = 0.7, threshold = 0.2 0.0877 0.0316 0.1828 0.0609

adaptive Mod Shift β = 0.4 = threshold 0.0781 0.0318 0.1078 0.0841

C
O N U M A P ’ S T R U E L O S S F U N C T I O N

c.1 implementation details

To deal with the quadratic complexity when computing the dense low-dimensional
similarities νij, we used the Python package PyKeOps [25] that parallelizes the
computations on the GPU.

The repulsive loss Lr
ij is undefined for i = j. However, the implemented gradient

update treats ∂Lr
ii

∂ei
as zero. As µii = 0, we can thus safely replace 2 ∑n

j=1 by 2 ∑n
j=1,i ̸=j

in formulae for expected updates. Moreover, we may treat Lr
ii as a constant so that

its inclusion in the loss does not matter for the optimization. Together with the
symmetry of µij, La

ij and Lr
ij, we can thus also replace ∑n

i,j=1 with 2 ∑1≤i<j≤n in
formulae for loss functions. When logging losses, we include the Lr

ii terms.
To guard us against numerical instabilities from log(x) for x close to zero, we
always use log(min(x + 0.0001, 1)).

When computing the various loss terms for UMAP, we use the embeddings after
each full epoch. The embeddings in UMAP are updated as soon as an incident edge
is sampled. Thus, an embedding might be updated several times during an epoch,
and gradient computations always use the current embedding, which might differ
slightly from the embedding after the whole epoch. Logging the loss given the
embeddings at the time of each individual update yields a slightly lower attractive
loss term, see Fig. C.1.

Our description of UMAP’s implementation is based on the original paper [112]
and version 0.5.0 of the umap-learn package.1

Our code is available at https://github.com/hci-unihd/UMAPs-true-loss.

c.1.1 Stability

Whenever we report loss values, we compute the average over seven runs and
give an uncertainty of one standard deviation. Sources of randomness are in the
approximate kNN computation via nearest neighbor descent [47], the Gaussian
noise added to the Laplacian Eigenmap initialization, the negative sampling, and the
sampling of the toy data. Note that the sampling of attractive pairs is implemented
deterministically and includes an edge ij every maxab µab/µij-th epoch. We find that
the deviation in the loss values is very small across different runs. In fact, as the
standard deviation is barely visible in Fig. 3.4, we include the same figure but with
shaded areas corresponding to ten standard deviations in Fig. C.2. Nevertheless,
the visual effect of different random seeds can be noticeable, as depicted in Fig. C.3.

1 https://github.com/lmcinnes/umap

131

https://github.com/hci-unihd/UMAPs-true-loss

132 on umap’s true loss function

Figure C.1: Same as Fig. 3.4, but actual losses are computed with the embeddings at the
time of update, not with the embeddings after the full epoch as all other losses.

c.1.2 Compute

We ran all our experiments on a machine with 20 “Intel(R) Xeon(R) Silver 4114
CPU @ 2.20GHz” CPUs and six “Nvidia GeForce GTX 1080 Ti” GPUs. We only ever
used a single GPU and solely for computing the effective and purported losses L̃
(eq. (3.12)) and L (eq. (3.6)). Tab. C.1 shows the run times for the main experiments
averaged over seven runs. Uncertainties indicate one standard deviation. Logging
the losses during optimization quintuples UMAP’s run time on the C. elegans
dataset. This is due to the quadratic complexity of evaluating the effective and
purported loss functions. Nevertheless, with our GPU implementation, this longer
run time is still easily manageable for the reasonably large real-world C. elegans
dataset. The toy ring experiments with a dense and thus much larger input graph
take about 25 times longer than with the standard, sparse input similarities.

We estimate the total compute by adding the run times of this chapter’s experi-
ments. The number of comparable experiments needed to reproduce the chapter is
given in Tab. C.1. The total run time amounts to about 63 hours.

c.2 quantitative metrics

While it is natural to wonder about metrics that quantify how accurate and thus
“good” a low-dimensional visualization is, there is no consensus as to which metrics
align best with the subjective, human impression of a “descent” visualization. Becht
et al. [9] employ the Pearson correlation between all pairwise distances in high- and
low-dimensional space for a subsample of the dataset (for efficiency). Kobak and
Berens [83] use the Spearman correlation instead and consider it a “global” measure
for the faithfulness of the embedding. As “local” measure Kobak and Berens [83]
compute the average share of k nearest neighbors of a point in high dimension
that are also k nearest neighbors in the low-dimensional embedding. They use

2 Only two runs were measured due to the long run time.

C.2 quantitative metrics 133

Table C.1: Run times of key experiments averaged over seven runs with one standard
deviation and number of runs of similar experiments needed to reproduce the
chapter

Experiment Run rime [s] Runs

C. elegans without loss logging (Fig. C.10) 520± 14 15

C. elegans with loss logging (Fig. 3.3) 2427± 7 21

PBMC (Fig. C.4) 2087± 7 7

Lung Cancer (Fig. C.5) 1491± 4 7

CIFAR-10 (Fig. C.6) 302± 0.3 7

Toy ring (Fig. 3.2b) 48± 0.01 12

Multiple rings (Fig. 3.8) 1726± 17 7

Toy ring of variable size (Fig. 3.10) 1647± 13 7

Toy ring with dense µij’s (Fig. 3.2d) 1040± 2 10

Toy ring with dense µij’s and variable size (Fig. 3.12)2 52349± 224 2

Figure C.2: Same as Fig. 3.4 but here the shaded region corresponds to ten standard
deviations.

134 on umap’s true loss function

(a) Seed 0 (b) Seed 1 (c) Seed 2 (d) Seed 3

(e) Seed 4 (f) Seed 5 (g) Seed 6

Figure C.3: Visualizations of the C. elegans dataset with UMAP for seven different random
seeds. While the losses vary very little, see Figs. 3.4 and C.2, the visualizations
show significant differences, such as closed versus open loops and placement
of subgroups. All plots were subjectively flipped and rotated by multiples of
π/2 to ease a visual comparison.

k = 10. We have computed these measures for the two-dimensional visualizations
of the C.elegans dataset with PCA, UMAP, and the UMAP version with inverted
weights, see Fig. 3.3. We used subsamples of size 10000 from the 86024 cells in the
C. elegans dataset for the correlation measures. For the kNN accuracy we used
k = 10 as in [83] as well as k = 30, because on the C. elegans dataset we used 30
neighbors in UMAP’s approximate kNN graph computation. In addition, we report
Kullback-Leibler divergences between the input and embedding similarities as this
is the objective function in t-SNE [160, 161]. Unlike in t-SNE, in UMAP, neither
the input nor the embedding similarities are normalized over all pairs of points.
We report two versions of the KL divergence. In both, we normalize the input
similarities. In the first, we normalize the embedding similarities only with respect
to the pairs of points with positive input similarity. In the second, we normalize
with respect to all pairs of points. Finally, we compute the loss values of UMAP’s
purported and true loss function. Both in the KL divergences and the two losses,
we take the original UMAP input similarities as reference. We report the mean and
standard deviation over seven runs in Tab. C.2.

As previously observed by Kobak and Berens [83], PCA is good at preserving the
global structure, as indicated by the high correlation coefficients. However, we also
see a very high Pearson correlation for the inverted UMAP setting. Conversely, PCA
is much worse than both UMAP methods at preserving the local neighborhood
structure. This is unsurprising as UMAP tries to reproduce local similarities in
low-dimensional space, which are positive only on the kNN edges. Our binarization
analysis shows that UMAP essentially just uses the binary high-dimensional kNN
structure to guide its low-dimensional embedding. The inverted UMAP setting still
does much better than PCA on the kNN accuracies, but not quite as well as the
original UMAP, presumably, because the binarization does not entirely efface the
effect of inverting the positive input similarities.

C.3 datasets 135

Table C.2: Quantitative measures for visualizations of the C.elegans dataset with PCA,
UMAP with inverted positive input weights, and original UMAP. Arrows indicate
whether higher or lower is better. Best method in bold.

Metric PCA UMAP inv UMAP

Pearson’s r ↑ 0.577± 0.003 0.628 ± 0.005 0.562± 0.008

Spearman’s r ↑ 0.611 ± 0.003 0.607± 0.006 0.551± 0.011

kNN accuracy (k = 10) ↑ 0.006± 0.000 0.079± 0.001 0.156 ± 0.001

kNN accuracy (k = 30) ↑ 0.013± 0.000 0.185± 0.001 0.256 ± 0.001

KL divergence pos ↓ 0.693± 0.000 0.577± 0.002 0.549 ± 0.002

KL divergence ↓ 6.46± 0.00 5.13± 0.01 4.92 ± 0.00

purported UMAP loss [108] ↓ 5.37± 0.00 4.32± 0.03 3.64 ± 0.02

true UMAP loss [105] ↓ 12.4± 0.00 3.85± 0.02 3.21 ± 0.02

The two KL divergences and the actual UMAP loss paint a similar picture. The
inverted UMAP version is nearly as good as the original, while PCA is much worse.
The ranking of the purported UMAP loss is the same, but the difference between
PCA and the two UMAP versions is less extreme.

The results of the kNN accuracies, the KL divergences, and the true UMAP loss
are in accordance with the visual quality of the embeddings and might suggest that
our effective UMAP loss aligns well with what one might call a “good” embedding.

c.3 datasets

c.3.1 Toy datasets

The support for the uniform distribution of the toy rings has a width of one and a
radius (measured to the middle of the ring’s width) of four. When placing multiple
rings in a row, we spaced them so that neighboring rings have a distance of 12
between their centers. The uniform dataset is sampled uniformly from a unit square.

Unless otherwise stated, we kept all UMAP hyperparameters at their defaults,
but optimized for 10 000 epochs to ensure convergence. We also initialized the
optimization of the embeddings with the 2D datasets themselves.

c.3.2 C. elegans dataset

The C. elegans dataset contains gene expression data of 86 024 cells of the flatworm
C. elegans [116, 126].3

We start with a 100 dimensional PCA of the data, use the cosine metric in high-
dimensional space and consider k = 30 neighbors. We optimize the embedding for
750 epochs. We perturb the input similarities in Figs. 3.3b, C.10, and C.11 as follows:
In the permuted case, we permute the weights of the skNN graph edges. This way

3 obtained from http://cb.csail.mit.edu/cb/densvis/datasets/. We informed the authors of our
use of the dataset, which they license under CC BY-NC 2.0.

http://cb.csail.mit.edu/cb/densvis/datasets/

136 on umap’s true loss function

the statistics of the input similarities are preserved. All zero weights remain zero.
In the uniformly random case, we sample new weights for the skNN graph edges
uniformly between zero and one, but keep the weights for all edges not in the skNN
graph at zero. Before optimization, UMAP filters its graph by setting all weights
below maxij(µij)/n_epochs to zero. In the inverted setting, we filter the original
UMAP graph in this way manually. Then, we select the smallest positive edge
weight µmin of this manually filtered graph. Finally, we invert the positive weights
of the filtered graph to µmin/µij. The resulting weighted graph is then passed to
UMAP, which filters it again internally.

c.3.3 PBMC dataset

In this section, we analyze the UMAP embedding of the scRNA-seq PMBC dataset
of [179]. The dataset consists of gene expression measurements for 68 551 peripheral
blood mononuclear cells. We used the 50-dimensional pre-processed version of
the dataset from [116].4 We used the same hyperparameters as for the C. elegans
dataset. In other words, we used the cosine distance in input space, worked with
k = 30 nearest neighbors, and optimized for 750 epochs. The results can be found
in Fig. C.4. We see over-contraction in the embedding, that only our effective loss
matches the measured sampling-based loss and that the embedding similarities
approximate the nearly binary target similarities.

c.3.4 Lung cancer dataset

In this section, we analyze the UMAP embedding of the scRNA-seq dataset of [180]
containing gene expression measurements for 48 969 lung cancer and immune cells.
We used the 306-dimensional pre-processed version of the dataset from [116].5 We
used the same hyperparameters as for the C. elegans dataset. In other words, we
used the cosine distance in input space, worked with k = 30 nearest neighbors,
and optimized for 750 epochs. The results can be found in Fig. C.5. We see over-
contraction in the embedding, that only our effective loss matches the measured
sampling-based one and that the embedding similarities approximate the nearly
binary target similarities.

c.3.5 Resnet50 features of CIFAR-10

In this section, we corroborate our results on image data. More precisely, we use the
CNN backbone of a Resnet50 [65] pre-trained on ImageNet as a feature extractor.
With it we obtain 2048-dimensional image features for the CIFAR-10 dataset [87].
These high-dimensional features are then embedded to two dimensions via UMAP
with default hyperparameters. The resulting embedding and the loss curves are
depicted in Fig. C.6, which supports our theoretical predictions.
We used the pre-trained Resnet50 from torchvision 0.8.2 and transformed the

4 obtained from http://cb.csail.mit.edu/cb/densvis/datasets/. We informed the authors of our
use of the dataset, which they license under CC BY-NC 2.0.

5 obtained from http://cb.csail.mit.edu/cb/densvis/datasets/. We informed the authors of our
use of the dataset, which they license under CC BY-NC 2.0.

http://cb.csail.mit.edu/cb/densvis/datasets/
http://cb.csail.mit.edu/cb/densvis/datasets/

C.3 datasets 137

CIFAR-10 images as expected by the network. While ImageNet labels were used for
pretraining the Resnet50, no CIFAR-10 labels were used for the feature extraction
or the UMAP dimension reduction. For this reason, we used the training and test
set of CIFAR-10 jointly.

138 on umap’s true loss function

(a) 2D UMAP embedding

(b) loss curves (c) Similarities for µij > 0

Figure C.4: UMAP on the PBMC dataset [179]. C.4a: The 2D UMAP embedding exhibits
over-contraction for instance in the Dendritic and the B cells. C.4b: Loss curves
for the optimization leading to Fig. C.4a. Similar to Fig. 3.4 our effective
loss (3.12) closely matches the actual loss (3.14), while the purported UMAP
loss (3.6) is two orders of magnitude higher. The total overlays the repulsive
purported loss. An average over seven runs is plotted with shaded areas of one
standard deviation. C.4c: Histogram of high-dimensional (µij), target (ν∗ij) and
low-dimensional (νij) similarities of the PBMC dataset for pairs with positive
high-dimensional similarity. The similarities of UMAP’s low-dimensional em-
bedding reproduce the target similarities instead of the high-dimensional ones.
The target similarities are heavily skewed towards one. Figure best viewed in
color.

C.3 datasets 139

(a) 2D UMAP embedding

(b) loss curves (c) Similarities for µij > 0

Figure C.5: UMAP on the lung cancer dataset [180]. C.5a: The 2D UMAP embedding
exhibits over-contraction, for instance, in the plasma cells and the neutrophil
cells near the MoMacDC cells. C.5b: Loss curves for the optimization leading to
Fig. C.5a. Similar to Fig. 3.4 our effective loss (3.12) closely matches the actual
loss (3.14), while the purported UMAP loss (3.6) is two orders of magnitude
higher. The total overlays the repulsive purported loss. An average over seven
runs is plotted with shaded areas of one standard deviation. C.5c: Histogram
of high-dimensional (µij), target (ν∗ij) and low-dimensional (νij) similarities of
the lung cancer dataset for pairs with positive high-dimensional similarity.
The similarities of UMAP’s low-dimensional embedding reproduce the target
similarities instead of the high-dimensional ones. The target similarities are
heavily skewed towards one. Figure best viewed in color.

140 on umap’s true loss function

(a) 2D UMAP embedding

(b) loss curves (c) Similarities for µij > 0

Figure C.6: UMAP on Resnet50 features of CIFAR-10. C.6a: The 2D UMAP embedding
exhibits decent class separation, although the labels were only used to color the
2D plot. The pre-trained Resnet50 extracted semantically meaningful features
that UMAP was able to embed well. We see a clear separation between the
vehicle and animal classes, bordered by the bird and airplane classes. C.6b: Loss
curves for the optimization leading to Fig. C.6a. Similar to Fig. 3.4 our effective
loss (3.12) closely matches the actual loss (3.14), while the purported UMAP
loss (3.6) is two orders of magnitude higher. The total overlays the repulsive
purported loss. An average over seven runs is plotted with shaded areas of one
standard deviation. C.6c: Histogram of high-dimensional (µij), target (ν∗ij) and
low-dimensional (νij) similarities of the CIFAR-10 dataset for pairs with positive
high-dimensional similarity. The similarities of UMAP’s low-dimensional em-
bedding reproduce the target similarities instead of the high-dimensional ones.
The target similarities are heavily skewed towards one. Figure best viewed in
color.

C.4 additional figures 141

c.4 additional figures

(a) Original data (b) Initialize with
input data,

dense similarities

(c) Initialize with
input data,

dense similarities,
10000 epochs

(d) Default UMAP (e) 10000 epochs (f) Initialize with
input data

(g) Initialize with
input data,

10000 epochs

Figure C.7: UMAP does not preserve the data even when embedding to the input dimension.
Extension of Fig. 3.2. C.7a: Original data: 1000 uniform samples from a ring
in 2D. C.7b: Result of UMAP when initialized with the original data and
using dense input space similarities computed from the original data with ϕ.
C.7c: Same as C.7b but optimized for 10000 epochs. C.7d: UMAP visualization
with default hyperparameters. C.7e: Same as C.7d but optimized for 10000
epochs. C.7f: UMAP visualization initialized with the original data. C.7g: Same
as C.7f but optimized for 10000 epochs.

142 on umap’s true loss function

(a) Original data (b) UMAP (c) UMAP from dense similarities

Figure C.8: Similar to Fig. 3.2 but here, the tail of a negative sample is repelled from its head.
C.8a: Original data. C.8b: The UMAP result looks similarly over-contracted
but slightly rounder than 3.2b. C.8c: When initialized with the dense input
similarities, the UMAP embedding has a wider than expected ring width similar
to 3.2d but without the spurious curves. Instead, the radius of the ring is smaller
than in the original. Both the larger ring width and the smaller radius match
the analysis in Section 3.8.1.

(a) Original data (b) UMAP (c) UMAP from dense similarities

Figure C.9: UMAP does not preserve the data even when no dimension reduction is re-
quired. C.9a: Original data consisting of 1000 uniform samples from a unit
square in 2D. C.9b: Result of UMAP after 10000 epochs, initialized with the
original data. The embedding is much more clustered than the original data
and, in many locations, nearly one-dimensional. C.9c: Result of UMAP after
10000 epochs for dense input space similarities computed from the original data
with ϕ, initialized with the original embedding. Reproducing the input would
be optimal for the purported UMAP loss in this setting. Instead, the output
is circular with a slightly higher density in the middle. It appears even more
regular than the original data.

C.4 additional figures 143

(a) UMAP (b) skNN

(c) Permuted (d) Uniformly random (e) Inverted

Figure C.10: The precise value of the positive µij’s matters little: UMAP produces qual-
itatively similar results even for severely perturbed µij. The panels depict
UMAP visualizations of the C.elegans dataset but with disturbed positive
high-dimensional similarities. C.10a: Usual UMAP µij’s. C.10b: Positive µij
all set to one, so that the weights encode the skNN graph as done in [15].
C.10c: Positive µij randomly permuted. C.10d: Positive µij overwritten by uni-
form random samples from [0, 1]. C.10e: Positive µij filtered as in UMAP’s
optimization procedure (set all weights to zero below max µij/n_epochs) and
inverted at the minimal positive value µij = minab µab/µij. Amazingly, the
visualizations still show the main structures identified by the unimpaired
UMAP. While C.10c tears up the seam cells, C.10e even places the outliers
conveniently compactly around the main structure. The level of visual simi-
larity for different perturbations seems particularly high when compared to
Fig. C.3 which shows the global placement of subgroups and whether loops
are open or closed (e.g., seam cells and hypodermis cells) depend even on the
random seed. We used random seed 0 in this figure. All C. elegans UMAP
embeddings were subjectively flipped and rotated by multiples of π/2 to ease
a visual comparison.

144 on umap’s true loss function

(a) UMAP (b) skNN

(c) Permuted (d) Uniformly random (e) Inverted

Figure C.11: Same as Fig. C.10 but here, the tail of a negative sample is repelled from its
head. There is little qualitative difference between Fig. C.10 and this figure
overall.

D
C O N T R A S T I V E L E A R N I N G U N I F I E S t - S N E A N D U M A P

d.1 datasets

We use the well-known MNIST [93] dataset for most of our experiments. We down-
loaded it via the torchvision API from http://yann.lecun.com/exdb/mnist/. Un-
fortunately, this website does not give a license. However, https://keras.io/api/
datasets/mnist/ and http://www.pymvpa.org/datadb/mnist.html name Yann Le-
Cun and Corinna Cortes as copyright holders and claim MNIST to be licensed under
CC BY-SA 3.0, which permits use and adaptation. The MNIST dataset consists of
70 000 grayscale images, 28× 28 pixels each, that show handwritten digits.

The Kuzushiji-49 dataset [155] was downloaded from https://github.com/

rois-codh/kmnist where it is licensed under CC-BY-4.0. It contains 270 912 grayscale
images, 28× 28 pixels each, that show 49 different cursive Japanese characters.

The SimCLR experiments are performed on the CIFAR-10 [87] dataset, another
standard machine learning resource. We downloaded it via scikit-learn [131]’s
sklearn.datasets.fetch_openml API from https://www.openml.org/search?type=

data&sort=runs&id=40927&status=active. Unfortunately, we were not able to find
a license for this dataset. CIFAR-10 consists of 60 000 images, 32× 32 RGB pixels
each, depicting objects from five animal and five vehicle classes.

The transcriptomic dataset of Kanton et al. [74] was downloaded from https:

//www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7552/, which permits free
use. We only use the 20 272 cells in the human brain organoid cell line ‘409b2’. The
transcriptomic dataset [164] was downloaded in its scanpy version from https://

kleintools.hms.harvard.edu/paper_websites/wagner_zebrafish_timecourse2018/

mainpage.html. The full dataset at https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE112294 is free to download and reproduce. The dataset contains
gene expressions for 63 530 cells from a developing zebrafish embryo. The down-
loaded UMIs of both datasets are preprocessed as in [15, 83]. After selecting the
1000 most variable genes, we normalize the library sizes to the median library size
in the dataset, log-transform the normalized values with log2(x + 1), and finally
reduce the dimensionality to 50 via PCA.

The transcriptomic dataset of the C. elegans flatworm [116, 126] was obtained
from http://cb.csail.mit.edu/cb/densvis/datasets/ with the consent of the
authors who license it under CC BY-NC 2.0. It is already preprocessed to 100
principal components.

d.2 implementation

All contrastive embeddings are computed with our PyTorch [127] implementation of
Neg-t-SNE, NCVis, UMAP, and InfoNC-t-SNE. Exceptions are Fig. 4.1, 4.2, and 4.13
as well as the analogous Figs. D.1 – D.4. There for panel h we use the reference
implementation of NCVis [4] (with a fixed number of noise samples m, and not the

145

http://yann.lecun.com/exdb/mnist/
https://keras.io/api/datasets/mnist/
https://keras.io/api/datasets/mnist/
http://www.pymvpa.org/datadb/mnist.html
https://github.com/rois-codh/kmnist
https://github.com/rois-codh/kmnist
https://www.openml.org/search?type=data&sort=runs&id=40927&status=active
https://www.openml.org/search?type=data&sort=runs&id=40927&status=active
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7552/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7552/
https://kleintools.hms.harvard.edu/paper_websites/wagner_zebrafish_timecourse2018/mainpage.html
https://kleintools.hms.harvard.edu/paper_websites/wagner_zebrafish_timecourse2018/mainpage.html
https://kleintools.hms.harvard.edu/paper_websites/wagner_zebrafish_timecourse2018/mainpage.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112294
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112294
http://cb.csail.mit.edu/cb/densvis/datasets/

146 contrastive learning unifies t-sne and umap

default schedule), and for panel g we use UMAP 0.5. The t-SNE plots are created
with the openTSNE [132] (version 0.6.1) package. Similarly, we use the reference
UMAP implementation in Fig. 4.7 and openTSNE in Figs. 4.9 and 4.10.

We extended these implementations of NCVis, UMAP, and t-SNE to make them
accept custom embedding initializations and unweighted skNN graphs and to log
various quantities of interest. We always use the standard Cauchy kernel for better
comparability.

All PCAs are computed with sklearn [131]. We use PyKeOps [25] to compute
the exact skNN graph and to handle the quadratic complexity of computing the
partition functions on a GPU. The same PCA initialization and skNN graph with
k = 15 are used for all embeddings. The skNN graph for MNIST is computed on a
50-dimensional PCA of the dataset.

When computing logarithms during the optimization of neighbor embeddings,
we clip the arguments to the range [10−10, 1], save for Fig. 4.8, where we ablate this
lower bound. The lower bound is smaller than in the reference implementation of
parametric UMAP, where it is set to 10−4.

Our defaults are a batch size of 1024, linear learning rate annealing from 1
(non-parametric) or 0.001 (parametric) to 0 (save for Figs. 4.6 – 4.8), 750 epochs
(save for Figs. 4.3 and D.5 as well as Tab. D.3) and m = 5 noise samples (save for
Figs. 4.3, 4.4, 4.9, 4.10, and D.6).

We initialize all embeddings with a scaled version of PCA (save for in Figs. 4.9,
and 4.10). For t-SNE embeddings, we rescale the initialization so that the first
dimension has a standard deviation of 0.0001 (as is the default in openTSNE), for
all other embeddings to a standard deviation of 1.

We employ some version of ‘early exaggeration’ [161] for the first 250 epochs
in most non-parametric plots. For t-SNE it is the default early exaggeration of
openTSNE. When varying Z̄ in non-parametric Neg-t-SNE, early exaggeration
means using Z̄ = |X|/m for the first 250 epochs (save for Fig. 4.2). When varying
the number of noise samples in Figs. 4.4, 4.9 and 4.10, we still use m = 5 for the
first 250 epochs. In Figs. 4.6, 4.7, 4.8, and 4.11 as well as in all reference NCVis
or UMAP plots, we did not use early exaggeration as neither small Z̄ nor high m
made it necessary. When we use some form of early exaggeration and learning rate
annealing, the annealing to zero takes place over the first 250 epochs, is then reset,
and annealed again to zero for the remaining, typically 500, epochs.

Non-parametric runs are optimized with SGD without momentum, and paramet-
ric runs with the Adam optimizer [80]. Parametric runs use the same feed-forward
neural net architecture as the reference parametric UMAP implementation. That
is, four layers with dimensions input dimension− 100− 100− 100− 2 with ReLU
activations in all but the last one. We use the vectorized, 786-dimensional ver-
sion of MNIST as input to the parametric neighbor embedding methods (and not
the 50-dimensional PCA; but the skNN graph is computed in the PCA space for
consistency with non-parametric embeddings).

Like the original NCVis implementation, we use the fractions qθ,Z(x)/(qθ,Z(x) + m)

instead of qθ,Z(x)/
(
qθ,Z(x) + mξ(x)

)
. This is a mild approximation as the noise

distribution is close to uniform. But it means that the model learns a scaled data
distribution (cf. Cor. 4.3), so we need to multiply the learned normalization pa-
rameter Z by n(n − 1) when comparing to t-SNE or checking normalization of
the NCVis model. Similarly, we also approximate the true noise distribution by

D.2 implementation 147

the uniform distribution for the fractions qθ(x)/(qθ(x) + Z̄m/|X|) – instead of
qθ(x)/

(
qθ(x) + Z̄mξ(x)

)
– in our Neg-t-SNE implementation.

We mentioned in Sec. 4.5 and show in Fig. 4.4 that one can move along the
attraction-repulsion spectrum also by changing the number of noise samples m,
instead of the fixed normalization constant Z̄. UMAP’s reference implementation
has a scalar prefactor γ for the repulsive forces. Theoretically, adjusting γ should
also move along the attraction-repulsion spectrum, but setting it higher than 1 led
to convergence problems in [15], Fig. A11. We do not have such issues when varying
our Z̄.

For panels i in Figs. 4.1, 4.2, 4.13, and D.1 – D.4 the Neg-t-SNE spectra are
computed for Z̄ equal to Z(θt-SNE), ZNCVis, and n(n−1)

m · x, where x ∈ {5 · 10−5, 1 ·
10−4, 2 · 10−4, 5 · 10−4, . . . , 1 · 102, 2 · 102, 5 · 102}.

For the SimCLR experiments, we train the model for 1000 epochs, of which we use
10 epochs for warmup. The learning rate during warmup is linearly interpolated
from 0 to the initial learning rate. After the warmup epochs, we anneal the learning
rate with a cosine schedule (without restarts) to 0 [105]. We optimize the model
parameters with SGD and momentum 0.9. We use the same data augmentations as
in [27]. In addition, we use a ResNet18 [65] as the backbone and a projection head
consisting of two linear layers (512− 1024− 128) with a ReLU activation in-between.
The loss is applied to the L2-normalized output of the projection head, but like Chen
et al. [27] we use the ResNet output as the representation for the linear evaluation.
As the similarity function, we use the exponential of the normalized scalar product
(cosine similarity) and always keep the temperature at 0.5, as suggested in Chen et
al. [27]. When considering the entire batch as negative samples, we omit both the
head and tail of the considered positive sample, while we only omit the head when
sampling a smaller number of negative samples.

The ResNet is trained on the combined CIFAR-10 train and test sets. When
training the classifier, we freeze the ResNet and only use the train set. The reported
metrics are computed on the test set. We chose sklearn’s KNearestNeighbors
classifier with cosine metric and k = 15 neighbors and sklearn’s SGDClassifier. For
the linear classifier with augmentations, we follow Chen et al. [27] and randomly flip
the images as well as randomly resize the images. The linear classifier is a simple
linear layer that maps from 512 to the 10 classes and is trained via a cross-entropy
loss. The classifier is trained for 100 epochs and an initial learning rate of 30 that is
annealed with a cosine schedule to 0.

Our code is publicly available at https://github.com/hci-unihd/cl-tsne-umap.

d.2.1 Stability

Whenever we report a metric or show a graph, we ran the experiments for three
different random seeds and report the mean ± the standard deviation. When the
standard deviation is very small, we omit it from the main text and report it here.
t-SNE does not depend on a random seed save for the usually approximate skNN
graph computation. As we compute the skNN exactly with PyKeOps [25], t-SNE is
deterministic in our framework. The normalization parameter ZNCVis learned by
NCVis and the values of the partition function for t-SNE can be found in Tab. D.1.

https://github.com/hci-unihd/cl-tsne-umap

148 contrastive learning unifies t-sne and umap

Table D.1: Learned normalization parameter for NCVis and partition function of t-SNE in
our experiments. Mean and standard deviation is computed over three random
seeds. In our setup, t-SNE is deterministic.

ZNCVis [106] Z(θt-SNE) [106]

MNIST Fig. 4.1 34.3± 0.1 8.13

MNIST without EE Fig. 4.2 34.3± 0.1 6.25

Human brain organoid Fig. 4.13 3.57± 0.03 1.30

MNIST imbalanced Fig. D.1 6.15± 0.06 3.12

Zebrafish Fig. D.2 30.8± 0.1 7.98

C. elegans Fig. D.3 36.9± 0.7 11.7

Kuzushiji-49 Fig. D.4 395± 3 89.6

Table D.2: Run time overview for the most compute-heavy experiments

Runs Time per run [min]

(mean±std. dev.)

Neg-t-SNE for Figs. 4.1, 4.2, 4.13, D.2, D.3 360 39± 4

NCVis (our implementation) for Fig. 4.3b 3 786± 2

Neg-t-SNE for Fig. D.4 24 121± 44

Neg-t-SNE for Fig. D.5 3 3592± 44

SimCLR runs for Fig. D.6 and Tab. 4.1 21 694± 28

Panels i in Figs. 4.1, 4.2, 4.13, and D.1 – D.4 show the standard deviation as shaded
area. Again, the standard deviations are very small and barely visible. The ratio of
standard deviation to mean is never larger than 0.006 in these panels. Similarly, the
standard deviation in Figs. 4.3 and 4.12, shown as shaded area, is mostly smaller
than the line width.

d.2.2 Compute

We ran our neighbor embedding experiments on a machine with 56 Intel(R) Xeon(R)
Gold 6132 CPU @ 2.60GHz, 502 GB RAM and 10 NVIDIA TITAN Xp GPUs. The
SimCLR experiments were conducted on a Slurm cluster node with 8 cores of an
Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz and an Nvidia V100 GPU with a RAM
limit of 54.3 GB. Each experiment uses one GPU at most.

Our total compute is dominated by the neighbor embedding runs for Figs. 4.1,
4.2, 4.13, D.2 – D.5, and 4.3b and by the SimCLR experiments. Tab. D.2 lists the
number of runs and the average run time. We thus estimate the total compute time
to be about 750 hours. Our implementation uses pure PyTorch and relies on GPUs.
However, for the non-parametric experiments, much of the computation consists of
sampling negative neighbors and computationally light updates to the embedding
positions. Therefore, the CPU-based numba or C++ reference implementations of

D.3 additional figures 149

UMAP and NCVis are much faster. However, our implementation is arguably easier
to inspect and adapt by the machine learning community and seamlessly integrates
non-parametric and parametric settings as well as all four contrastive loss functions.
Thus, it is more suited as a research tool than for a large throughput application.

As the change from NCVis to Neg-t-SNE is as simple as fixing the learnable
normalization parameter to a constant, we have also adapted the original NCVis
code to compute Neg-t-SNE. We have not used this for any of the experiments in
the chapter.

d.3 additional figures

(a) Z̄ < Zt-SNE (b) Z̄ = Zt-SNE (c) Z̄ = ZNCVis (d) Z̄ = |X|/m (e) Z̄ > |X|/m

(f) t-SNE (g) NCVis (h) UMAP (i) Partition
function

Figure D.1: (a – e) Neg-t-SNE embeddings of an imbalanced version of the MNIST dataset
for various values of the fixed normalization constant Z̄. As Z̄ increases, the
scale of the embedding decreases, and clusters become more compact and sepa-
rated before eventually starting to merge. The Neg-t-SNE spectrum produces
embeddings very similar to those of (f) t-SNE, (g) NCVis, and (h) UMAP, when
Z̄ equals the partition function of t-SNE, the learned normalization parameter Z
of NCVis, or |X|/m = (n

2)/m used by UMAP, as predicted in Sec. 4.4–4.6. (i) The
partition function ∑ij(1 + d2

ij)
−1 tries to match Z̄ and grows with it. Similar to

early exaggeration in t-SNE we start all Neg-t-SNE runs using Z̄ = |X|/m and
only switch to the desired Z̄ for the last two thirds of the optimization. The
dataset is created by randomly removing 10 · c% of the class of digit c so that
the class sizes linearly decrease from digit 0 to digit 9.

150 contrastive learning unifies t-sne and umap

(a) Z̄ < Zt-SNE (b) Z̄ = Zt-SNE (c) Z̄ = ZNCVis (d) Z̄ = |X|/m (e) Z̄ > |X|/m

(f) t-SNE (g) NCVis (h) UMAP (i) Partition
function

Figure D.2: (a – e) Neg-t-SNE spectrum on the single-cell RNA sequencing dataset of a
developing zebrafish embryo [164] for various parameters Z̄. As Z̄ increases, the
scale of the embedding decreases, and the continuous structure (corresponding
to the developmental stage) becomes more apparent, making higher Z̄ more
suitable for visualizing continuous datasets [15]. The spectrum produces em-
beddings very similar to those of (f) t-SNE and (g) NCVis when Z̄ equals the
partition function of t-SNE or the learned normalization parameter of NCVis.
The UMAP embedding in (h) closely resembles the Neg-t-SNE embedding at
Z̄ = |X|/m = (n

2)/m. (i) The partition function ∑ij(1 + d2
ij)
−1 of the Neg-t-SNE

embeddings increases with Z̄. Similar to early exaggeration in t-SNE we start
all Neg-t-SNE runs using Z̄ = |X|/m and only switch to the desired Z̄ for
the last two thirds of the optimization. The dataset contains 63 530 cells and
is colored by the hours post fertilization (hpf). There are ten times fewer cells
collected after 8 hours than after 24.

D.3 additional figures 151

(a) Z̄ < Zt-SNE (b) Z̄ = Zt-SNE (c) Z̄ = ZNCVis (d) Z̄ = |X|/m (e) Z̄ > |X|/m

(f) t-SNE (g) NCVis (h) UMAP (i) Partition
function

Figure D.3: (a – e) Neg-t-SNE spectrum of the single-cell RNA sequencing dataset of the
C. elegans flatworm [116, 126] for various values of the fixed normalization
constant Z̄. As Z̄ increases, the scale of the embedding decreases, and more
continuous structure becomes apparent. The Neg-t-SNE spectrum produces
embeddings very similar to those of (f) t-SNE, (g) NCVis, and (h) UMAP, when
Z̄ equals the partition function of t-SNE, the learned normalization parameter Z
of NCVis, or |X|/m = (n

2)/m used by UMAP, as predicted in Sec. 4.4–4.6. (i) The
partition function ∑ij(1 + d2

ij)
−1 tries to match Z̄ and grows with it. Similar to

early exaggeration in t-SNE we start all Neg-t-SNE runs using Z̄ = |X|/m and
only switch to the desired Z̄ for the last two thirds of the optimization. The
dataset contains information on 86 024 cells of 37 types indicated by the colors.
It is imbalanced with only 25 cells of the least abundant type but 31 375 cells of
unknown type (grey).

152 contrastive learning unifies t-sne and umap

(a) Z̄ < Zt-SNE (b) Z̄ = Zt-SNE (c) Z̄ = ZNCVis (d) Z̄ = |X|/m (e) Z̄ > |X|/m

(f) t-SNE (g) NCVis (h) UMAP (i) Partition
function

Figure D.4: (a – e) Neg-t-SNE embeddings of the Kuzushiji-49 dataset [155] for various
values of the fixed normalization constant Z̄. As Z̄ increases, the scale of the
embedding decreases, and clusters become more compact and separated before
eventually starting to merge. The Neg-t-SNE spectrum produces embeddings
similar to those of (f) t-SNE, (g) NCVis, and (h) UMAP, when Z̄ equals the
partition function of t-SNE, the learned normalization parameter Z of NCVis,
or |X|/m = (n

2)/m used by UMAP, as predicted in Sec. 4.4–4.6. (i) The partition
function ∑ij(1 + d2

ij)
−1 tries to match Z̄ and grows with it. Similar to early

exaggeration in t-SNE we start all Neg-t-SNE runs using Z̄ = |X|/m and
only switch to the desired Z̄ for the last two thirds of the optimization. The
dataset contains 270 912 images of 49 different Japanese characters. The classes
are imbalanced with 456 to 7 000 samples per class. We see that a higher
level of repulsion than UMAP’s Z̄ = |X|/m helps to visualize the dataset’s
discrete structure. The sampling-based Neg-t-SNE embedding at Z̄ = Zt-SNE

has less structure than the t-SNE embedding. Fig.D.5 and Tab. D.3 show that
the Neg-t-SNE result improves for longer optimization.

(a) 500 epochs (b) 1000 epochs (c) 5000 epochs (d) 10000 epochs

Figure D.5: Neg-t-SNE embeddings of the Kuzushiji-49 dataset [155] for Z̄ = Zt-SNE show
more structure when optimized longer. Similar to early exaggeration in t-SNE
we start all Neg-t-SNE runs using Z̄ = |X|/m for 250 epochs and only switch to
the desired Z̄ for the remaining number of epochs indicated in the subcaptions.

D.3 additional figures 153

Table D.3: Longer run times improve the Neg-t-SNE optimization on the Kuzushiji-49
dataset [155] for Z̄ = Zt-SNE. The KL divergence is computed with respect to the
normalized model qθ/(∑ij qθ(ij)).

Epochs 500 1000 5000 10000

Partition function [106] 18.96± 0.02 13.27± 0.01 6.93± 0.01 5.75± 0.01

Neg-t-SNE loss 1021± 2 832± 2 630± 1 599± 1

KL divergence 5.52± 0.01 5.18± 0.01 4.76± 0.01 4.65± 0.00

2 16 128 512 2048
negative samples (m)

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

linear (augm.)
linear
kNN

Figure D.6: SimCLR results on the CIFAR-10 dataset with InfoNCE loss and a varying
number of negative samples m, extending the results of Tab. 4.1. The solid line
and shaded area indicate the mean and standard deviation over three random
seeds, respectively. For very few negative samples, the accuracies deteriorate.
The linear classifier and the kNN classifier plateau for m ≥ 16, while for the
linear classifier trained with data augmentations, the peak performance is at
m = 16.

P U B L I C AT I O N S

This thesis is based on the following three publications/preprints:

[Chapter 2] Damrich, S., Remme, R., and Hamprecht, F. A., “Mod Shift: A Princi-
pled Alternative to Mean Shift Clustering Using Long-Range Repul-
sion,” Preprint.

[Chapter 3] Damrich, S. and Hamprecht, F. A., “On UMAP's True Loss Function,”
in Advances in Neural Information Processing Systems, vol. 34, 2021,
pp. 5798–5809.

[Chapter 4] Damrich, S., Böhm, J. N., Hamprecht, F. A., and Kobak, D., “Con-
trastive learning unifies t-SNE and UMAP,” arXiv preprint arXiv:
2206.01816, 2022.

The author further contributed to the following publications:

[a] Fita Sanmartín, E., Damrich, S., and Hamprecht, F. A., “Probabilistic
Watershed: Sampling all spanning forests for seeded segmentation
and semi-supervised learning,” in Advances in Neural Information Pro-
cessing Systems, vol. 32, 2019, pp. 2780–2791.

[b] ——, “Directed Probabilistic Watershed,” in Advances in Neural Infor-
mation Processing Systems, vol. 34, 2021, pp. 20 076–20 088.

[c] ——, “The Algebraic Path Problem for Graph Metrics,” in Proceed-
ings of the International Conference on Machine Learning, PMLR, 2022,
pp. 19 178–19 204.

[d] Garrido, Q., Damrich, S., Jäger, A., Cerletti, D., Claassen, M., Najman,
L., and Hamprecht, F. A., “Visualizing hierarchies in scRNA-seq
data using a density tree-biased autoencoder,” Bioinformatics, vol. 38,
no. Supplement 1, pp. i316–i324, 2022.

[e] Walter, F. C., Damrich, S., and Hamprecht, F. A., “Multistar: Instance
Segmentation of Overlapping Objects with Star-Convex Polygons,” in
IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021,
pp. 295–298.

155

B I B L I O G R A P H Y

[1] Amid, E. and Warmuth, M. K., “TriMap: Large-scale Dimensionality
Reduction Using Triplets,” arXiv preprint arxiv: 1910.00204, 2019.

[2] Andres, B., Kroeger, T., Briggman, K. L., Denk, W., Korogod, N., Knott,
G., Koethe, U., and Hamprecht, F. A., “Globally Optimal Closed-
surface Segmentation for Connectomics,” in Proceedings of the European
Conference on Computer Vision, Springer, 2012, pp. 778–791.

[3] Arganda-Carreras, I., Turaga, S. C., Berger, D. R., Cireşan, D., Giusti,
A., Gambardella, L. M., Schmidhuber, J., Laptev, D., Dwivedi, S., Buh-
mann, J. M., et al., “Crowdsourcing the creation of image segmentation
algorithms for connectomics,” Frontiers in Neuroanatomy, vol. 9, pp. 1–
13, 2015, 142.

[4] Artemenkov, A. and Panov, M., “NCVis: Noise Contrastive Approach
for Scalable Visualization,” in Proceedings of The Web Conference 2020,
2020, pp. 2941–2947.

[5] Ash, J., Goel, S., Krishnamurthy, A., and Misra, D., “Investigating
the Role of Negatives in Contrastive Representation Learning,” in
Proceedings of The 25th International Conference on Artificial Intelligence
and Statistics, ser. Proceedings of Machine Learning Research, 2022,
pp. 7187–7209.

[6] Bachman, P., Hjelm, R. D., and Buchwalter, W., “Learning Representa-
tions by Maximizing Mutual Information across Views,” in Advances in
Neural Information Processing Systems, vol. 32, 2019, pp. 15 535–15 545.

[7] Baevski, A., Zhou, Y., Mohamed, A., and Auli, M., “Wav2vec 2.0: A
Framework for Self-Supervised Learning of Speech Representations,”
in Advances in Neural Information Processing Systems, vol. 33, 2020,
pp. 12 449–12 460.

[8] Battista, G. D., Eades, P., Tamassia, R., and Tollis, I. G., Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall PTR, 1998.

[9] Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I. W., Ng,
L. G., Ginhoux, F., and Newell, E. W., “Dimensionality reduction for
visualizing single-cell data using UMAP,” Nature Biotechnology, vol. 37,
no. 1, pp. 38–44, 2019.

[10] Beier, T., Andres, B., Köthe, U., and Hamprecht, F. A., “An Efficient
Fusion Move Algorithm for the Minimum Cost Lifted Multicut Prob-
lem,” in Proceedings of the European Conference on Computer Vision,
Springer, 2016, pp. 715–730.

[11] Belkin, M. and Niyogi, P., “Laplacian Eigenmaps and Spectral Tech-
niques for Embedding and Clustering,” in Advances in Neural Informa-
tion Processing Systems, vol. 14, 2002, pp. 585–591.

157

158 bibliography

[12] Bell, E. T., “Exponential Numbers,” The American Mathematical Monthly,
vol. 41, no. 7, pp. 411–419, 1934.

[13] Bengio, Y., “From system 1 deep learning to system 2 deep learning,”
in Advances in Neural Information Processing Systems, Posner Lecture,
2019.

[14] Böhm, J. N., “Dimensionality reduction with neighborhood embed-
dings,” M.S. thesis, University of Tübingen, 2020.

[15] Böhm, J. N., Berens, P., and Kobak, D., “Attraction-Repulsion Spec-
trum in Neighbor Embeddings,” Journal of Machine Learning Research,
vol. 23, no. 95, pp. 1–32, 2022.

[16] Bottou, L., Curtis, F. E., and Nocedal, J., “Optimization Methods for
Large-Scale Machine Learning,” Siam Review, vol. 60, no. 2, pp. 223–
311, 2018.

[17] Bremner, J. G. and Wachs, T. D., The Wiley-Blackwell Handbook of Infant
Development, Volume 1: Basic Research. John Wiley & Sons, 2011, vol. 1.

[18] CREMI, Miccai challenge on circuit reconstruction from electron microscopy
images. https://cremi.org, 2016.

[19] Cao, J. et al., “The single-cell transcriptional landscape of mammalian
organogenesis,” Nature, vol. 566, no. 7745, pp. 496–502, 2019.

[20] Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pu-
lokas, J., Tomancak, P., and Hartenstein, V., “An Integrated Micro-and
Macroarchitectural Analysis of the Drosophila Brain by Computer-
Assisted Serial Section Electron Microscopy,” PLOS Biology, vol. 8,
no. 10, pp. 1–17, 2010.

[21] Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch,
S., Longair, M., Tomancak, P., Hartenstein, V., and Douglas, R. J.,
“TrakEM2 Software for Neural Circuit Reconstruction,” PLOS ONE,
vol. 7, no. 6, pp. 1–8, 2012.

[22] Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., and Joulin, A.,
“Unsupervised Learning of Visual Features by Contrasting Cluster
Assignments,” in Advances in Neural Information Processing Systems,
vol. 33, 2020, pp. 9912–9924.

[23] Carreira-Perpiñán, M. Á., “Fast Nonparametric Clustering with Gaus-
sian Blurring Mean-Shift,” in Proceedings of the International Conference
on Machine Learning, 2006, pp. 153–160.

[24] Chari, T., Banerjee, J., and Pachter, L., “The Specious Art of Single-Cell
Genomics,” bioRxiv, 2021.

[25] Charlier, B., Feydy, J., Glaunès, J. A., Collin, F.-D., and Durif, G.,
“Kernel Operations on the GPU, with Autodiff, without Memory
Overflows,” Journal of Machine Learning Research, vol. 22, no. 74, pp. 1–
6, 2021.

[26] Chen, D., Lv, J., and Zhang, Y., “Unsupervised Multi-Manifold Cluster-
ing by Learning Deep Representation,” in Workshops at The Thirty-first
AAAI Conference on Artificial Intelligence, 2017, pp. 385–391.

https://cremi.org

bibliography 159

[27] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G., “A Simple Frame-
work for Contrastive Learning of Visual Representations,” in Proceed-
ings of the International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, 2020, pp. 1597–1607.

[28] Chen, X., Liu, S., Sun, R., and Hong, M., “On the Convergence of a
Class of Adam-Type Algorithms for Non-Convex Optimization,” in
Proceedings of the International Conference on Learning Representations,
2019, pp. 1–30.

[29] Chen, Y., Shen, C., Wei, X.-S., Liu, L., and Yang, J., “Adversarial
PoseNet: A Structure-Aware Convolutional Network for Human Pose
Estimation,” in Proceedings of the IEEE International Conference on Com-
puter Vision, 2017, pp. 1221–1230.

[30] Chen, Y., Pont-Tuset, J., Montes, A., and Van Gool, L., “Blazingly
Fast Video Object Segmentation with Pixel-Wise Metric Learning,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018, pp. 1189–1198.

[31] Cheng, Y., “Mean Shift, mode seeking, and clustering,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790–
799, 1995.

[32] Chopra, S. and Rao, M. R., “The partition problem,” Mathematical
Programming, vol. 59, no. 1-3, pp. 87–115, 1993.

[33] Coenen, A. and Pearce, A., A deeper dive into UMAP theory, https:
//pair-code.github.io/understanding-umap/supplement.html,
Accessed: 2022-05-11, 2022.

[34] Comaniciu, D. and Meer, P., “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603–619, 2002.

[35] Comaniciu, D., Ramesh, V., and Meer, P., “Real-Time Tracking of Non-
Rigid Objects using Mean Shift,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, IEEE, vol. 2, 2000, pp. 142–
149.

[36] Corazza, P., “Introduction to Metric-Preserving Functions,” The Amer-
ican Mathematical Monthly, vol. 106, no. 4, pp. 309–323, 1999.

[37] Cronin, T. W., Johnsen, S., Marshall, N. J., and Warrant, E. J., Visual
Ecology. Princeton University Press, 2014.

[38] Damrich, S., Böhm, J. N., Hamprecht, F. A., and Kobak, D., “Con-
trastive learning unifies t-sne and umap,” arXiv preprint arxiv: 2206.01816,
2022.

[39] Damrich, S. and Hamprecht, F. A., “On UMAP’s True Loss Function,”
vol. 34, 2021, pp. 5798–5809.

[40] Damrich, S., Remme, R., and Hamprecht, F. A., “Mod shift: A princi-
pled alternative to mean shift clustering using long range repulsion,”
Preprint.

https://pair-code.github.io/understanding-umap/supplement.html
https://pair-code.github.io/understanding-umap/supplement.html

160 bibliography

[41] Dasgupta, S. and Gupta, A., “An elementary proof of a theorem of
johnson and lindenstrauss,” Random Structures & Algorithms, vol. 22,
no. 1, pp. 60–65, 2003.

[42] Dattorro, J., Convex optimization & Euclidean distance geometry. Lulu.
com, 2010.

[43] Davis, E. and Sethuraman, S., “Consistency of modularity clustering
on random geometric graphs,” Annals of Applied Probability, vol. 28,
no. 4, pp. 2003–2062, 2018.

[44] De Brabandere, B., Neven, D., and Van Gool, L., “Semantic Instance
Segmentation with a Discriminative Loss Function,” arXiv preprint
arxiv: 1708.02551, 2017.

[45] Deza, M. M. and Laurent, M., Geometry of Cuts and Metrics, ser. Algo-
rithms and Combinatorics. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1997, vol. 15.

[46] Deza, M., Grötschel, M., and Laurent, M., “Clique-Web Facets for
Multicut Polytopes,” Mathematics of Operations Research, vol. 17, no. 4,
pp. 981–1000, 1992.

[47] Dong, W., Moses, C., and Li, K., “Efficient K-Nearest Neighbor Graph
Construction for Generic Similarity Measures,” in Proceedings of the
20th International Conference on World Wide Web, 2011, pp. 577–586.

[48] Dyer, C., “Notes on Noise Contrastive Estimation and Negative Sam-
pling,” arXiv preprint arxiv: 1410.8251, 2014.

[49] Eades, P., “A heuristic for graph drawing,” Congressus numerantium,
vol. 42, pp. 149–160, 1984.

[50] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.,” in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, vol. 96, 1996, pp. 226–231.

[51] Fathi, A., Wojna, Z., Rathod, V., Wang, P., Song, H. O., Guadarrama, S.,
and Murphy, K. P., “Semantic Instance Segmentation via Deep Metric
Learning,” arxiv: 1703.10277 [cs], 2017, arxiv: 1703.10277.

[52] França, G., Rizzo, M., and Vogelstein, J. T., “Kernel k-Groups via
Hartigan’s Method,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2020.

[53] Fruchterman, T. M. and Reingold, E. M., “Graph Drawing by Force-
directed Placement,” Software: Practice and experience, vol. 21, no. 11,
pp. 1129–1164, 1991.

[54] Fukunaga, K. and Hostetler, L., “The estimation of the gradient of
a density function, with applications in pattern recognition,” IEEE
Transactions on Information Theory, vol. 21, no. 1, pp. 32–40, 1975.

[55] Fukushima, K. and Miyake, S., “Neocognitron: A Self-Organizing
Neural Network Model for a Mechanism of Visual Pattern Recogni-
tion,” in Competition and Cooperation in Neural Nets, Springer, 1982,
pp. 267–285.

bibliography 161

[56] Garcke, H., Preusser, T., Rumpf, M., Telea, A. C., Weikard, U., and Van
Wijk, J. J., “A Phase Field Model for Continuous Clustering on Vector
Fields,” IEEE Transactions on Visualization and Computer Graphics, vol. 7,
no. 3, pp. 230–241, 2001.

[57] Goldberg, Y. and Levy, O., “Word2vec Explained: Deriving Mikolov
et al.’s Negative-Sampling Word-Embedding Method,” arXiv preprint
arxiv: 1402.3722, 2014.

[58] Google Scholar, Number of citations of “UMAP: Uniform Manifold Ap-
proximation and Projection for Dimension Reduction”, https://scholar.
google.com/scholar?hl=de&as_sdt=2005&sciodt=0%2C5&cites=

13168625861022180360&scipsc=&as_ylo=2021&as_yhi=2021, Ac-
cessed: 2022-08-17.

[59] ——, Number of citations of “visualizing data using t-SNE.” https://

scholar.google.com/scholar?hl=de&as_sdt=2005&sciodt=0%2C5&

cites=487516874590466294&scipsc=&as_ylo=2021&as_yhi=2021,
Accessed: 2022-08-17.

[60] Goyal, A. and Bengio, Y., “Inductive Biases for Deep Learning of
Higher-Level Cognition,” arXiv preprint arxiv: 2011.15091, 2020.

[61] Gutmann, M. U. and Hyvärinen, A., “Noise-contrastive estimation: A
new estimation principle for unnormalized statistical models,” in Pro-
ceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, 2010, pp. 297–304.

[62] ——, “Noise-Contrastive Estimation of Unnormalized Statistical Mod-
els, with Applications to Natural Image Statistics.,” Journal of Machine
Learning Research, vol. 13, no. 2, 2012.

[63] Hadsell, R., Chopra, S., and LeCun, Y., “Dimensionality Reduction by
Learning an Invariant Mapping,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, vol. 2, pp. 1735–1742, 2006.

[64] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R., “Momentum Contrast
for Unsupervised Visual Representation Learning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9729–9738.

[65] He, K., Zhang, X., Ren, S., and Sun, J., “Deep Residual Learning for
Image Recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[66] Hinton, G. E. and Roweis, S., “Stochastic Neighbor Embedding,” in
Advances in Neural Information Processing Systems, vol. 15, 2002, pp. 857–
864.

[67] Horňáková, A., Lange, J.-H., and Andres, B., “Analysis and Optimiza-
tion of Graph Decompositions by Lifted Multicuts,” in Proceedings
of the International Conference on Machine Learning, JMLR. org, vol. 70,
2017, pp. 1539–1548.

[68] Huang, P., Huang, Y., Wang, W., and Wang, L., “Deep Embedding
Network for Clustering,” in 2014 22nd International Conference on
Pattern Recognition, IEEE, 2014, pp. 1532–1537.

https://scholar.google.com/scholar?hl=de&as_sdt=2005&sciodt=0%2C5&cites=13168625861022180360&scipsc=&as_ylo=2021&as_yhi=2021
https://scholar.google.com/scholar?hl=de&as_sdt=2005&sciodt=0%2C5&cites=13168625861022180360&scipsc=&as_ylo=2021&as_yhi=2021
https://scholar.google.com/scholar?hl=de&as_sdt=2005&sciodt=0%2C5&cites=13168625861022180360&scipsc=&as_ylo=2021&as_yhi=2021
https://scholar.google.com/scholar?hl=de&as_sdt=2005&sciodt=0%2C5&cites=487516874590466294&scipsc=&as_ylo=2021&as_yhi=2021
https://scholar.google.com/scholar?hl=de&as_sdt=2005&sciodt=0%2C5&cites=487516874590466294&scipsc=&as_ylo=2021&as_yhi=2021
https://scholar.google.com/scholar?hl=de&as_sdt=2005&sciodt=0%2C5&cites=487516874590466294&scipsc=&as_ylo=2021&as_yhi=2021

162 bibliography

[69] Jacomy, M., Venturini, T., Heymann, S., and Bastian, M., “ForceAtlas2,
a Continuous Graph Layout Algorithm for Handy Network Visual-
ization Designed for the Gephi Software,” PLOS ONE, vol. 9, no. 6,
pp. 1–12, 2014.

[70] Ji, X., Henriques, J. F., and Vedaldi, A., “Invariant Information Clus-
tering for Unsupervised Image Classification and Segmentation,” in
Proceedings of the IEEE International Conference on Computer Vision, 2019,
pp. 9865–9874.

[71] Johnson, W. B. and Lindenstrauss, J., “Extensions of Lipschitz map-
pings into a Hilbert space,” Contemporary Mathematics, vol. 26, pp. 189–
206, 1984.

[72] Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y.,
“Exploring the Limits of Language Modeling,” arXiv preprint arxiv:
1602.02410, 2016.

[73] Kahneman, D., Thinking, fast and slow. Macmillan, 2011.

[74] Kanton, S., Boyle, M. J., He, Z., Santel, M., Weigert, A., Sanchís-
Calleja, F., Guijarro, P., Sidow, L., Fleck, J. S., Han, D., et al., “Organoid
single-cell genomic atlas uncovers human-specific features of brain
development,” Nature, vol. 574, no. 7778, pp. 418–422, 2019.

[75] Kappes, J. H., Speth, M., Andres, B., Reinelt, G., and Schnörr, C.,
“Globally Optimal Image Partitioning by Multicuts,” in International
Workshop on Energy Minimization Methods in Computer Vision and Pattern
Recognition, Springer, 2011, pp. 31–44.

[76] Kappes, J. H., Speth, M., Reinelt, G., and Schnörr, C., “Higher-order
segmentation via multicuts,” Computer Vision and Image Understanding,
vol. 143, pp. 104–119, 2016.

[77] Kaufmann, M. and Wagner, D., Drawing Graphs: Methods and Models,
ser. Lecture Notes in Computer Science. Springer, 2003, vol. 2025.

[78] Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox, T., and An-
dres, B., “Efficient Decomposition of Image and Mesh Graphs by
Lifted Multicuts,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 1751–1759.

[79] Kim, S., Yoo, C. D., Nowozin, S., and Kohli, P., “Image Segmentation
Using Higher-Order Correlation Clustering,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 36, no. 9, pp. 1761–1774,
2014.

[80] Kingma, D. P. and Ba, J., “Adam: A Method for Stochastic Opti-
mization,” in Proceedings of the International Conference on Learning
Representations, 2015, pp. 1–15.

[81] Kirillov, A., Levinkov, E., Andres, B., Savchynskyy, B., and Rother, C.,
“InstanceCut: From Edges to Instances with MultiCut,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5008–5017.

bibliography 163

[82] Kobak, D, What are 2D neighbour embeddings of scRNA-seq data actually
useful for? Panel Discussion A: Data-Driven Manifold Learning at
the ICLR Workshop on Geometrical and Topological Representation
Learning, Apr. 2022.

[83] Kobak, D. and Berens, P., “The art of using t-SNE for single-cell
transcriptomics,” Nature Communications, vol. 10, no. 1, pp. 1–14, 2019.

[84] Kobak, D. and Linderman, G. C., “Initialization is critical for pre-
serving global data structure in both t-SNE and UMAP,” Nature
Biotechnology, pp. 1–2, 2021.

[85] Kobak, D., Linderman, G., Steinerberger, S., Kluger, Y., and Berens,
P., “Heavy-Tailed Kernels Reveal a Finer Cluster Structure in t-SNE
Visualisations,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, Springer, 2019, pp. 124–139.

[86] Kong, S. and Fowlkes, C., “Recurrent Pixel Embedding for Instance
Grouping,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 9018–9028.

[87] Krizhevsky, A., “Learning multiple layers of features from tiny im-
ages,” M.S. thesis, University of Toronto, 2009.

[88] Kroeger, T., Kappes, J. H., Beier, T., Koethe, U., and Hamprecht, F. A.,
“Asymmetric Cuts: Joint Image Labeling and Partitioning,” in German
Conference on Pattern Recognition, Springer, 2014, pp. 199–211.

[89] Lambert, P., Verleysen, M., and Lee, J. A., “SQuadMDS: A lean Stochas-
tic Quartet MDS improving global structure preservation in neighbor
embedding like t-SNE and UMAP,” Neurocomputing, pp. 17–27, 2022.

[90] Lause, J., Berens, P., and Kobak, D., “Analytic Pearson residuals for
normalization of single-cell RNA-seq UMI data,” Genome Biology,
vol. 22, no. 1, pp. 1–20, 2021.

[91] Le-Khac, P. H., Healy, G., and Smeaton, A. F., “Contrastive Repre-
sentation Learning: A Framework and Review,” IEEE Access, vol. 8,
pp. 193 907–193 934, 2020.

[92] LeCun, Y, The future is self-supervised, https://iclr.cc/virtual_
2020/speaker_7.html, Reflections from the Turing Award Winners at
ICLR 2020, talk, Apr. 2020.

[93] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[94] Lee, J. A. and Verleysen, M., “Quality assessment of dimensional-
ity reduction: Rank-based criteria,” Neurocomputing, vol. 72, no. 7-9,
pp. 1431–1443, 2009.

[95] Lee, K., Lu, R., Luther, K., and Seung, H. S., “Learning Dense Voxel
Embeddings for 3D Neuron Reconstruction,” arXiv preprint arxiv:
1909.09872, 2019.

https://iclr.cc/virtual_2020/speaker_7.html
https://iclr.cc/virtual_2020/speaker_7.html

164 bibliography

[96] Lee, K., Zung, J., Li, P., Jain, V., and Seung, H. S., “Superhuman
Accuracy on the SNEMI3D Connectomics Challenge,” arXiv preprint
arxiv: 1706.00120, 2017.

[97] Levy, O. and Goldberg, Y., “Neural Word Embedding as Implicit
Matrix Factorization,” in Advances in Neural Information Processing
Systems, vol. 27, 2014, pp. 2177–2185.

[98] Li, X. and Wang, C.-Y., “From bulk, single-cell to spatial RNA se-
quencing,” International Journal of Oral Science, vol. 13, no. 1, pp. 1–6,
2021.

[99] Linde, Y., Buzo, A., and Gray, R., “An Algorithm for Vector Quantizer
Design,” IEEE Transactions on Communications, vol. 28, no. 1, pp. 84–95,
1980.

[100] Lindeberg, T., “Scale-Space for Discrete Signals,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 12, no. 3, pp. 234–254,
1990.

[101] Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S., and
Kluger, Y., “Fast interpolation-based t-SNE for improved visualization
of single-cell RNA-seq data,” Nature Methods, vol. 16, no. 3, pp. 243–
245, 2019.

[102] Linderman, G. C. and Steinerberger, S., “Clustering with t-SNE, Prov-
ably,” SIAM Journal on Mathematics of Data Science, vol. 1, no. 2, pp. 313–
332, 2019.

[103] Lindsay, G. W., “Attention in Psychology, Neuroscience, and Machine
Learning,” Frontiers in Computational Neuroscience, vol. 14, pp. 1–21,
2020.

[104] Lloyd, S., “Least squares quantization in PCM,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[105] Loshchilov, I. and Hutter, F., “SGDR: Stochastic Gradient Descent with
Warm Restarts,” Proceedings of the International Conference on Learning
Representations, pp. 1–16, 2017.

[106] Luecken, M. D. and Theis, F. J., “Current best practices in single-cell
RNA-seq analysis: A tutorial,” Molecular Systems Biology, vol. 15, no. 6,
pp. 1–23, 2019.

[107] Luther, K. and Seung, H. S., “Learning Metric Graphs for Neuron
Segmentation in Electron Microscopy Images,” arXiv preprint arxiv:
1902.00100, 2019.

[108] Ma, Z. and Collins, M., “Noise Contrastive Estimation and Negative
Sampling for Conditional Models: Consistency and Statistical Effi-
ciency,” in Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, 2018, pp. 3698–3707.

[109] Max, J., “Quantizing for Minimum Distortion,” IRE Transactions on
Information Theory, vol. 6, no. 1, pp. 7–12, 1960.

bibliography 165

[110] McCulloch, W. S. and Pitts, W., “A Logical Calculus of the Ideas
Immanent in Nervous Activity,” The Bulletin of Mathematical Biophysics,
vol. 5, no. 4, pp. 115–133, 1943.

[111] McInnes, L., Healy, J., and Astels, S., “Hdbscan: Hierarchical density
based clustering.,” The Journal of Open Source Software, vol. 2, no. 11,
pp. 1–2, 2017.

[112] McInnes, L., Healy, J., and Melville, J., “UMAP: Uniform Manifold Ap-
proximation and Projection for Dimension Reduction,” arXiv preprint
arxiv: 1802.03426, 2018.

[113] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J.,
“Distributed Representations of Words and Phrases and their Com-
positionality,” in Advances in Neural Information Processing Systems,
vol. 26, 2013, pp. 3111–3119.

[114] Minsky, M. and Papert, S. A., Perceptrons: An introduction to computa-
tional geometry. MIT press, 2017.

[115] Mitrovic, J., McWilliams, B., and Rey, M., “Less can be more in con-
trastive learning,” in Proceedings on "I Can’t Believe It’s Not Better!" at
NeurIPS Workshops, 2020, pp. 70–75.

[116] Narayan, A., Berger, B., and Cho, H., “Assessing single-cell tran-
scriptomic variability through density-preserving data visualization,”
Nature Biotechnology, pp. 1–10, 2021.

[117] Neven, D., Brabandere, B. D., Proesmans, M., and Gool, L. V., “In-
stance Segmentation by Jointly Optimizing Spatial Embeddings and
Clustering Bandwidth,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 8837–8845.

[118] Newell, A., Huang, Z., and Deng, J., “Associative Embedding: End-
to-End Learning for Joint Detection and Grouping,” in Advances in
Neural Information Processing Systems, 2017, pp. 2277–2287.

[119] Newman, M. E., “Analysis of weighted networks,” Physical Review E,
vol. 70, no. 5, p. 056 131, 2004.

[120] Newman, M. E. and Girvan, M., “Finding and evaluating community
structure in networks,” Physical review E, vol. 69, no. 2, pp. 1–15, 2004.

[121] Niculescu, C. and Persson, L.-E., Convex Functions and their Applications.
Springer, 2006.

[122] Noack, A., “Modularity clustering is force-directed layout,” Physical
Review E, vol. 79, no. 2, pp. 1–9, 2009.

[123] Nozawa, K. and Sato, I., “Understanding Negative Samples in Instance
Discriminative Self-supervised Representation Learning,” in Advances
in Neural Information Processing Systems, vol. 34, 2021, pp. 5784–5797.

[124] Oord, A. Van den, Li, Y., and Vinyals, O., “Representation Learning
with Contrastive Predictive Coding,” arXiv e-prints, arXiv–1807, 2018.

[125] Oskolkov, N., How Exactly UMAP Works, https://towardsdatascience.
com/how-exactly-umap-works-13e3040e1668, Accessed: 2022-05-11,
2022.

https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668

166 bibliography

[126] Packer, J. S. et al., “A lineage-resolved molecular atlas of C. elegans
embryogenesis at single-cell resolution,” Science, vol. 365, no. 6459,
pp. 1265–1274, 2019.

[127] Paszke, A. et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in Advances in Neural Information Processing
Systems 32, 2019, pp. 8024–8035.

[128] Pauen, S. and Rauh, H., “Frühe Kindheit,” Enzyklopädie der Psychologie,
pp. 67–126, 2008.

[129] Payer, C., Štern, D., Neff, T., Bischof, H., and Urschler, M., “Instance
segmentation and tracking with cosine embeddings and recurrent
hourglass networks,” in International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, Springer, 2018, pp. 3–11.

[130] Pearson, K., “On Lines and Planes of Closest Fit to Systems of Points
in Space,” The London, Edinburgh, and Dublin philosophical magazine and
journal of science, vol. 2, no. 11, pp. 559–572, 1901.

[131] Pedregosa, F. et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[132] Poličar, P. G., Stražar, M., and Zupan, B., “OpenTSNE: A modular
Python library for t-SNE dimensionality reduction and embedding,”
bioRxiv, 2019.

[133] Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M., Wang, K., and
Tang, J., “GCC: Graph Contrastive Coding for Graph Neural Network
Pre-Training,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 1150–1160.

[134] Rao, S., Medeiros Martins, A. de, and Príncipe, J. C., “Mean shift: An
information theoretic perspective,” Pattern Recognition Letters, vol. 30,
pp. 222–230, 2009.

[135] Rebuffi, S.-A., Ehrhardt, S., Han, K., Vedaldi, A., and Zisserman,
A., “LSD-C: Linearly Separable Deep Clusters,” arXiv preprint arxiv:
2006.10039, 2020.

[136] Rosenblatt, F., “The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain,” Psychological Review, vol. 65,
no. 6, pp. 386–408, 1958.

[137] Roth, K., Milbich, T., and Ommer, B., “PADS: Policy-Adapted Sam-
pling for Visual Similarity Learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 6568–
6577.

[138] Rousseeuw, P. J., “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” Journal of Computational and Applied
Msathematics, vol. 20, pp. 53–65, 1987.

[139] Roweis, S. T. and Saul, L. K., “Nonlinear Dimensionality Reduction by
Locally Linear Embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
2000.

bibliography 167

[140] Ruder, S., On word embeddings - Part 2: Approximating the Softmax,
http://ruder.io/word-embeddings-softmax, Accessed: 2022-05-17,
2016.

[141] Sainburg, T., McInnes, L., and Gentner, T. Q., “Parametric UMAP Em-
beddings for Representation and Semisupervised Learning,” Neural
Computation, vol. 33, no. 11, pp. 2881–2907, 2021.

[142] Salamon, A. Z., “Streaming bounds from difference ramification.,” in
Electronic Colloquium on Computational Complexity, vol. 19, 2012, pp. 1–
14.

[143] Sandberg, R., “Entering the era of single-cell transcriptomics in biol-
ogy and medicine,” Nature methods, vol. 11, no. 1, pp. 22–24, 2014.

[144] Scala, F., Kobak, D., Bernabucci, M., Bernaerts, Y., Cadwell, C. R.,
Castro, J. R., Hartmanis, L., Jiang, X., Laturnus, S., Miranda, E., et al.,
“Phenotypic variation of transcriptomic cell types in mouse motor
cortex,” Nature, vol. 598, no. 7879, pp. 144–150, 2021.

[145] Schoenberg, I. J., “Remarks to Maurice Frechet’s Article “Sur La Defi-
nition Axiomatique D’Une Classe D’Espace Distances Vectoriellement
Applicable Sur L’Espace De Hilbert”,” Annals of Mathematics, pp. 724–
732, 1935.

[146] ——, “Metric spaces and completely monotone functions,” Annals of
Mathematics, pp. 811–841, 1938.

[147] Serway, R. A. and Faughn, J. S., Holt Physics. Austin, TX: Holt, Rinehart,
and Winston, 2006.

[148] Shah, S. A. and Koltun, V., “Robust continuous clustering,” Proceedings
of the National Academy of Sciences, vol. 114, no. 37, pp. 9814–9819, 2017.

[149] ——, “Deep Continuous Clustering,” arXiv preprint arxiv: 1803.01449,
2018.

[150] Sohn, K., “Improved Deep Metric Learning with Multi-class N-pair
Loss Objective,” in Advances in Neural Information Processing Systems,
vol. 29, 2016, pp. 1857–1865.

[151] Song, J., Andres, B., Black, M., Hilliges, O., and Tang, S., “End-to-end
Learning for Graph Decomposition,” arXiv preprint arxiv: 1812.09737,
2018.

[152] Szubert, B., Cole, J. E., Monaco, C., and Drozdov, I., “Structure-
preserving visualisation of high dimensional single-cell datasets,”
Scientific reports, vol. 9, no. 1, pp. 1–10, 2019.

[153] Tang, J., Liu, J., Zhang, M., and Mei, Q., “Visualizing large-scale
and high-dimensional data,” in Proceedings of the 25th International
Conference on World Wide Web, 2016, pp. 287–297.

[154] Tang, S., Andriluka, M., Andres, B., and Schiele, B., “Multiple People
Tracking by Lifted Multicut and Person Re-Identification,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 3539–3548.

http://ruder.io/word-embeddings-softmax

168 bibliography

[155] Tarin, C., Mikel, B, Asanobu, K, Alex, L, Kazuaki, Y, and David, H,
“Deep Learning for Classical Japanese Literature,” in Proceedings of
2018 Workshop on Machine Learning for Creativity and Design (Thirty-
second Conference on Neural Information Processing Systems), vol. 3, 2018,
pp. 1–8.

[156] Tenenbaum, J. B., De Silva, V., and Langford, J. C., “A Global Geo-
metric Framework for Nonlinear Dimensionality Reduction,” Science,
vol. 290, no. 5500, pp. 2319–2323, 2000.

[157] Tian, Y., Krishnan, D., and Isola, P., “Contrastive Multiview Coding,”
in Proceedings of the European Conference on Computer Vision, Springer,
2020, pp. 776–794.

[158] Torgerson, W. S., “Multidimensional scaling: I. theory and method,”
Psychometrika, vol. 17, no. 4, pp. 401–419, 1952.

[159] van der Maaten, L., “Learning a Parametric Embedding by Preserving
Local Structure,” in Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, 2009, pp. 384–391.

[160] ——, “Accelerating t-SNE using Tree-Based Algorithms,” Journal of
Machine Learning Research, vol. 15, no. 1, pp. 3221–3245, 2014.

[161] van der Maaten, L. and Hinton, G., “Visualizing data using t-SNE.,”
Journal of Machine Learning Research, vol. 9, no. 11, pp. 2579–2605, 2008.

[162] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, Ł., and Polosukhin, I., “Attention is All you Need,”
in Advances in Neural Information Processing Systems, vol. 30, 2017,
pp. 6000–6010.

[163] Verma, V., Luong, T., Kawaguchi, K., Pham, H., and Le, Q., “Towards
Domain-Agnostic Contrastive Learning,” in Proceedings of the Inter-
national Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, 2021, pp. 10 530–10 541.

[164] Wagner, D. E., Weinreb, C., Collins, Z. M., Briggs, J. A., Megason,
S. G., and Klein, A. M., “Single-cell mapping of gene expression
landscapes and lineage in the zebrafish embryo,” Science, vol. 360,
no. 6392, pp. 981–987, 2018.

[165] Wang, Y., Huang, H., Rudin, C., and Shaposhnik, Y., “Understand-
ing How Dimension Reduction Tools Work: An Empirical Approach
to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Vi-
sualization,” Journal of Machine Learning Research, vol. 22, pp. 1–73,
2021.

[166] Weber, A., “Über den Standort der Industrien, Teil I: Reine Theorie
des Standorts,” JCB Mohr, Tübingen,(English ed. by CJ Friedrichs, Univ.
Chicago Press, 1929), 1909.

[167] Weinberger, K. and Saul, L., “Unsupervised Learning of Image Mani-
folds by Semidefinite Programming,” in Proceedings of the International
Journal of Computer Vision, vol. 70, 2006, pp. 77–90.

bibliography 169

[168] Whittaker, E., “Eddington’s Theory of the Constants of Nature,” The
Mathematical Gazette, vol. 29, no. 286, pp. 137–144, 1945.

[169] Wolf, S., Bailoni, A., Pape, C., Rahaman, N., Kreshuk, A., Köthe,
U., and Hamprecht, F. A., “The Mutex Watershed and its Objective:
Efficient, Parameter-Free Graph Partitioning,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 43, no. 10, pp. 3724–3738,
2021.

[170] Wolf, S., Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Kothe, U.,
and Hamprecht, F. A., “The Mutex Watershed: Efficient, Parameter-
Free Image Partitioning,” in Proceedings of the European Conference on
Computer Vision, 2018, pp. 546–562.

[171] Wu, C.-Y., Manmatha, R, Smola, A. J., and Krahenbuhl, P., “Sampling
Matters in Deep Embedding Learning,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 2840–2848.

[172] Wu, Z., Xiong, Y., Yu, S. X., and Lin, D., “Unsupervised Feature
Learning via Non-Parametric Instance Discrimination,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 3733–3742.

[173] Xie, J., Girshick, R., and Farhadi, A., “Unsupervised Deep Embedding
for Clustering Analysis,” in Proceedings of the International Conference
on Machine Learning, 2016, pp. 478–487.

[174] Yang, Z., King, I., Xu, Z., and Oja, E., “Heavy-Tailed Symmetric
Stochastic Neighbor Embedding,” in Advances in Neural Information
Processing Systems, 2009, pp. 2169–2177.

[175] Yarkony, J., “Analyzing PlanarCC: Demonstrating the Equivalence
of PlanarCC and the Multi-Cut LP Relaxation,” in NIPS Workshop on
Discrete Optimization, vol. 4, 2014, pp. 1–6.

[176] Yarkony, J., Ihler, A., and Fowlkes, C. C., “Fast Planar Correlation
Clustering for Image Segmentation,” in Proceedings of the European
Conference on Computer Vision, Springer, 2012, pp. 568–581.

[177] Zachary, W. W., “An Information Flow Model for Conflict and Fission
in Small Groups,” Journal of Anthropological Research, vol. 33, no. 4,
pp. 452–473, 1977.

[178] Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D., “Mixup: Be-
yond Empirical Risk Minimization,” in Proceedings of the International
Conference on Learning Representations, 2018, pp. 1–13.

[179] Zheng, G. X., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson,
R., Ziraldo, S. B., Wheeler, T. D., McDermott, G. P., Zhu, J., et al.,
“Massively parallel digital transcriptional profiling of single cells,”
Nature Communications, vol. 8, no. 1, pp. 1–12, 2017.

[180] Zilionis, R., Engblom, C., Pfirschke, C., Savova, V., Zemmour, D.,
Saatcioglu, H. D., Krishnan, I., Maroni, G., Meyerovitz, C. V., Kerwin,
C. M., et al., “Single-cell transcriptomics of human and mouse lung
cancers reveals conserved myeloid populations across individuals and
species,” Immunity, vol. 50, no. 5, pp. 1317–1334, 2019.

colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede and Ivo Pletikosić. The style was inspired by Robert
Bringhurst’s seminal book on typography “The Elements of Typographic Style”.
classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Final Version as of August 21, 2022 (classicthesis v4.6).

https://bitbucket.org/amiede/classicthesis/

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Clustering
	1.2 Dimensionality reduction
	1.3 Force-directed layouts
	1.4 Thesis overview

	 Clustering
	2 Mod Shift
	2.1 Introduction
	2.2 Related work
	2.3 Background
	2.4 From Multicut to Mod Shift
	2.5 Mod Shift's feasible set and the Multicut polytope
	2.6 Mean Shift and Mod Shift
	2.7 Experiments
	2.8 Conclusion

	 Dimensionality Reduction
	3 On UMAP's True Loss Function
	3.1 Introduction
	3.2 Related work
	3.3 Background on UMAP
	3.4 UMAP's degree distribution
	3.5 UMAP does not reproduce high-dimensional similarities
	3.6 UMAP's sampling and effective loss function
	3.7 Parametric UMAP's sampling and effective loss function
	3.8 True target similarities
	3.9 UMAP's dependence on the dataset size
	3.10 Negative sampling in LargeVis
	3.11 Discussion
	3.12 Conclusion

	4 Contrastive learning unifies t-SNE and UMAP
	4.1 Introduction
	4.2 Related work
	4.3 Background
	4.4 From noise-contrastive estimation to negative sampling
	4.5 Negative sampling spectrum
	4.6 UMAP's conceptual relation to t-SNE
	4.7 Further optimization tricks in UMAP's original implementation
	4.8 Contrastive neighbor embeddings and self-supervised learning
	4.9 Discussion and conclusion

	5 Conclusion
	Appendix
	A Supplementary to the Introduction
	B Mod Shift
	B.1 Choices of w and rho
	B.2 Implementation
	B.3 Details on the toy experiment
	B.4 Details on the pixel embedding experiments
	B.5 Convergence of Mod Shift with Adam
	B.6 Detailed results

	C On UMAP's true loss function
	C.1 Implementation details
	C.2 Quantitative metrics
	C.3 Datasets
	C.4 Additional figures

	D Contrastive learning unifies t-SNE and UMAP
	D.1 Datasets
	D.2 Implementation
	D.3 Additional figures
	Publications

	 Bibliography
	Colophon

