
 
 

 
 

 

 
 
 
 

Dissertation 
  

  

submitted to the 

Combined Faculty of Natural Sciences and Mathematics 

of the Ruperto Carola University Heidelberg, Germany 

for the degree of 

Doctor of Natural Sciences 
  

  

  

  

Presented by 

M.Sc. Yasmin Demerdash 

Born in Cairo, Egypt 

Oral examination on 22.06.2023 

  

  

  

  

  

  

 



 
 

 
 

 

 

 

 

 

 

 



 
 

 
 

 

 
 
 
 
 
 
 
 
 
 

The Transcriptional Landscape of 
Hematopoietic Stem and Progenitor Cells 

during Acute Inflammatory Stress 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Referees: 

Prof. Dr. Nina Papavasiliou 
Dr. Michael Milsom 

 
 
 
 
 
 



 
 

 
 

 

 



 
 

 
 

 

 
 
 
 
 
 
 

 
“I dedicate this thesis to my beloved father, Essam Demerdash, and my beloved mother, Abeer 

Azouz whose unwavering love for me knows no bounds. This thesis stands as a testament to 

your faith in me and the countless sacrifices you have made to provide me with the 

opportunities and resources needed to succeed. You have instilled in me the values of 

resilience, perseverance, and determination, inspiring me to never give up and always strive 

for my best. Your unconditional love and belief in my abilities have been the cornerstone of 

my achievements, and I am forever grateful for your presence in my life.  

I owe my success to you… 

 I love you!” 

 

 

 

 

 

 

 

I also want to dedicate this work to my brother Ahmed Essam as a testament to the idea that 

where there is determination, there is always a path forward. 

 
 
 
 
 



 
 

 
 

 

 
 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
  
  
 
  
  

 
 
 
 
 
 
 
 
 



 
 

 
 

 

 
 
 
 



Abstract  

i 
 

Abstract  
 
Hematopoietic stem cells (HSCs) are critical components of the hematopoietic system 

and are responsible for renewing all blood cell lineages throughout life. These cells are 

quiescent and reside in niches in the bone marrow (BM). Over the past decade, our 

group and others have discovered that inflammatory stress impacts quiescent HSCs 

in vivo, leading to their activation. However, the dynamics, heterogeneity, and 

mechanisms underlying stress-induced activation of HSCs remain unclear. 

 

In this thesis, I unraveled the mechanisms regulating HSCs proliferation and recovery 

in response to acute treatment with the proinflammatory cytokine interferon alpha 

(IFNα) by initially determining three-time points representing the sensing, proliferation, 

and recovery phases of HSCs' proliferative response to acute IFNα treatment. Using 

time series bulk RNA sequencing (RNAseq), I identified distinct molecular patterns and 

changes in the activation and repression of various biological categories in HSCs. 

Surprisingly, even after returning to a quiescent state 72 hours (h) post-treatment, 

HSCs remained metabolically active and underwent a significant metabolic shift 

towards oxidative phosphorylation (OXPHOS). In addition, the tricarboxylic acid cycle 

(TCA), pentose phosphate pathway (PPP), fatty acid, and purine metabolism were 

reduced, and HSCs showed decreased myeloid priming and bias.  

 

Thus far, little is known about the dynamics and heterogeneity of these stress 

responses in the whole hematopoietic stem and progenitor (HSPC) cells. 

Inflammation-induced marker changes in the HSPCs compartment make it challenging 

to investigate the heterogeneity in the inflammatory response in HSPCs. Thus, I 

employed a single-cell (Sc) time series RNAseq experiment to study the 

heterogeneous and dynamic impacts of IFNα on HSPCs. The results showed 

heterogeneity in the response of HSPCs to IFNα, with HSCs being the strongest 

responders based on their gene expression changes. In collaboration with Brigitte 

Bouman and Dr. Laleh Haghverdi at the MDC in Berlin, we developed and used a 

response-pseudotime inference approach to analyze the scRNAseq data and 

identified global and cell type-specific inflammation signatures, revealing unique 

molecular patterns of gene expression and biological processes in response to IFNα. 
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Interestingly, we were able to associate reduced myeloid differentiation programs in 

HSPCs with a reduced abundance of myeloid progenitors and differentiated cells 

following IFNα treatment. Taken together, the single-cell time series analyses have 

allowed us to unbiasedly study the heterogeneous and dynamic impact of IFNα on the 

HSPCs.  

 

In addition to investigating the dynamics and heterogeneity of the response of HSCs 

to IFNα, I compared the immediate transcriptional response of HSCs to various other 

proinflammatory cytokines. This analysis showed that IFNs, TNFα, ILs, and mimetics 

of viral and bacterial infections induced unique gene alterations in HSCs, underscoring 

the diversity of cytokine responses in these cells.  

 

Finally, I investigated how the baseline levels of these proinflammatory cytokines 

regulate hematopoiesis. Analysis of the hematopoietic system in Ifnar-/-Ifngr-/- (2KO) 

and Ifnar-/-Ifngr-/-Tnfrsf1dKOIl1r-/- (5KO) mice under homeostatic conditions revealed a 

decrease in HSCs and LSKs compared with wild-type (WT) mice. Furthermore, HSCs 

from these cytokine receptors knockout (KO) mice showed impaired colony-forming 

capacity and early competitive advantage. Interestingly, 5KO mice also showed a 

delayed recovery of HSCs cycling following 5-FU treatment. In addition, bulk RNA 

sequencing of 5KO HSCs revealed altered cell cycle pathways. Overall, these results 

underscore the essential role of proinflammatory cytokines in regulating HSC function 

during homeostasis.  

 

In conclusion, this thesis comprehensively explains the transcriptional changes within 

the HSPCs population in response to proinflammatory cytokines, focusing on IFNα
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Zusammenfassung 
 
Hämatopoetische Stammzellen (HSC) sind entscheidende Komponenten des 

blutbildenden Systems und für die lebenslange Erneuerung aller Blutzelllinien 

verantwortlich. Diese Zellen sind inaktiv und besiedeln die Nischen im Knochenmark 

(BM). In den letzten zehn Jahren haben unsere Gruppe und andere Forscher entdeckt, 

dass Entzündungsstress die inaktiven HSZ in vivo beeinflusst und zu ihrer Aktivierung 

führt. Die Dynamik, Heterogenität und die Mechanismen, die der stressinduzierten 

Aktivierung von HSZ zugrunde liegen, sind jedoch nach wie vor unklar. 

 

In dieser Arbeit habe ich die Mechanismen entschlüsselt, die die Proliferation und 

Regenerierung von HSZs als Reaktion auf eine akute Behandlung mit dem 

proinflammatorischen Zytokin Interferon alpha (IFNα) regulieren, indem ich zunächst 

drei Zeitpunkte ermittelt habe, die die Wahrnehmungs-, Proliferations- und 

Erholungsphasen der proliferativen Reaktion von HSCs auf eine akute IFNα-

Behandlung darstellen. Mithilfe von Zeitreihen-RNA-Sequenzierung (RNAseq) 

identifizierte ich unterschiedliche molekulare Muster und Veränderungen bei der 

Aktivierung und Unterdrückung verschiedener biologischer Kategorien der HSZ. 

Überraschenderweise blieben die HSZ auch nach der Rückkehr in einen Ruhezustand 

72 Stunden (h) nach der Behandlung metabolisch aktiv und unterzogen sich einer 

signifikanten metabolischen Verschiebung in Richtung oxidativer Phosphorylierung 

(OXPHOS). Darüber hinaus waren der Tricarbonsäurezyklus (TCA), der 

Pentosephosphatweg (PPP), der Fettsäure- und der Purinstoffwechsel reduziert, und 

die HSZ zeigten eine verringerte myeloisches Muster und Ausrichtung. 

 

Bislang ist wenig über die Dynamik und Heterogenität dieser Stressreaktionen in den 

gesamten hämatopoetischen Stamm- und Vorläuferzellen (HSPZ) bekannt. 

Entzündungsbedingte Markerveränderungen in den HSPZ machen es schwierig, die 

Heterogenität der Entzündungsreaktion in HSPZs zu untersuchen. Daher habe ich ein 

Einzelzell-(Sc)-Zeitreihen-RNAseq-Experiment durchgeführt, um die heterogenen und 

dynamischen Auswirkungen von IFNα auf HSPZs zu untersuchen. Die Ergebnisse 

zeigten eine Heterogenität in der Reaktion der HSPZs auf IFNα, wobei die HSZs am 
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stärksten auf die Veränderungen in ihrer Genexpression reagierten. In  

Zusammenarbeit mit Brigitte Bouman und Laleh Haghverdi am MDC in Berlin haben 

wir einen Response-Pseudotime-Inference-Ansatz entwickelt und verwendet, um die 

scRNAseq-Daten zu analysieren und globale und zelltypspezifische 

Entzündungssignaturen zu identifizieren, die einzigartige molekulare Muster der 

Genexpression und biologische Prozesse als Reaktion auf IFNα aufzeigen. 

Interessanterweise konnten wir reduzierte myeloische Differenzierungsprogramme in 

HSPZs mit reduzierten myeloischen Progenitoren und differenzierten Zellen nach 

IFNα-Behandlung in Verbindung bringen. Insgesamt haben uns die Einzelzell-

Zeitreihenanalysen ermöglicht, die heterogenen und dynamischen Auswirkungen von 

IFNα auf die HSPZs unvoreingenommen zu untersuchen. 

 

Neben der Untersuchung der Dynamik und Heterogenität der Reaktion von HSZ auf 

IFNα habe ich die unmittelbare transkriptionelle Reaktion von HSZ auf verschiedene 

andere proinflammatorische Zytokine verglichen. Diese Analyse zeigte, dass IFNs, 

TNFα, ILs und Mimetika viraler und bakterieller Infektionen einzigartige 

Genveränderungen in HSCs induzieren, was die Vielfalt der Zytokinreaktionen in 

diesen Zellen unterstreicht. 

 

Schließlich habe ich untersucht, wie die Ausgangswerte dieser proinflammatorischen 

Zytokine die Hämatopoese regulieren. Die Analyse des hämatopoetischen Systems 

von Ifnar-/-Ifngr-/- (2KO) und Ifnar-/-Ifngr-/-Tnfrsf1dKOIl1r-/- (5KO) Mäusen unter 

homöostatischen Bedingungen ergab eine Abnahme der HSZ und LSKs im Vergleich 

zu Wildtyp (WT)-Mäusen. Darüber hinaus zeigten die HSZ dieser Mäuse mit 

Zytokinrezeptor-Knockout (KO) eine verminderte Fähigkeit zur Koloniebildung und 

einen frühen Wettbewerbsvorteil. Interessanterweise zeigte sich bei 5KO-Mäusen 

auch eine verzögerte Erholung der HSZ- Zyklen nach einer 5-FU-Behandlung. Die 

Sequenzierung der gesamten RNA von 5KO-HSZ zeigte veränderte Zellzykluswege. 

Insgesamt unterstreichen diese Ergebnisse die wesentliche Rolle der 

proinflammatorischen Zytokine bei der Regulierung der HSZ-Funktion während der 

Homöostase. 
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Zusammenfassend erklärt diese Arbeit umfassend die transkriptionellen 

Veränderungen innerhalb der Population der hämatopoetischen Stamm- und 

Vorläuferzellen (HSPCs) als Reaktion auf proinflammatorische Zytokine, wobei der 

Schwerpunkt auf IFNα liegt. 
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1 Introduction  
 
1.1 Hematopoietic Stem Cells: The Foundation of Blood 
 
1.1.1 Stem Cells concepts 

In adulthood, the continuous generation of new cells is essential for tissue 

maintenance and regeneration, especially in cases where many terminally 

differentiated cells, such as those of the gastrointestinal tract, skin, and blood, have a 

limited lifespan. Stem cells play a critical role in this process, as they can differentiate 

into various mature cell types (Zakrzewski et al. 2019). They are known not only for 

their ability to produce a variety of mature cells but also for their ability to self-renew. 

Self-renewal refers to the formation of daughter cells that are phenotypically identical 

to the parent cell and allow the production of stem cells with the same potential to 

generate cellular components. Stem cells contribute to the construction of organs and 

the maintenance of healthy tissues in adults through their unique properties (Clevers 

et al. 2015). During development, a single stem cell has the potential to give rise to an 

entire organism (Murry and Keller et al. 2008). Even in adulthood, stem cells play a 

critical role in maintaining tissue homeostasis by generating functional mature cells, 

including those involved in the regular renewal of the intestinal epithelium. In addition, 

they aid in tissue repair after damage, such as scar formation in the skin, and respond 

to noxious stimuli by producing immune cells to fight infection (Clevers et al. 2015; Post 

and Clevers et al. 2019). As a result, stem cell research has become an increasingly 

important field in medicine with potential implications for understanding diseases, 

developing treatments, and regenerative therapies.  

1.1.2 The discovery and significance of HSCs 

Hematopoietic stem cells (HSCs), one of the best-studied somatic stem cells, form the 

basis of the hematopoietic system and are among the most well-characterized tissues 

of the human body (Ng and Alexander et al. 2017). The hematopoietic system is 

composed of various types of blood cells that are crucial for the maintenance and 

immune protection of the body. The blood is an exceptionally regenerative tissue due 

to the relatively short lifespan of its effector cells. For example, fully developed red 

blood cells only last about 120 days (Shemin and Rittenberg et al. 1946). To sustain 

the blood system, self-renewing HSCs play a vital role. These cells possess the unique
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ability to provide lifelong repopulation of all blood cell lineages.  

The discovery of HSCs was pioneered after the bombings of Hiroshima and Nagasaki 

in 1945 (Douple et al. 2011). Physicians observed that those who died from lower 

doses of radiation over a long period of time had an impaired hematopoietic system. 

Several years later, it was discovered that when mice were exposed to total body 

irradiation, they died for the same reason. However, they could be saved by receiving 

bone marrow (BM) transplants from mice that hadn't been exposed to radiation. This 

was possible because the transplanted cells repopulated the recipient's body 

(Jacobson et al. 1951). The first experimental evidence for HSCs was provided when 

it was shown that a single BM cell could regenerate all myeloid and lymphoid blood 

cell types (Abramson, Miller, and Phillips et al. 1977). To date, transplantation of BM 

cells or HSCs is the most common curative treatment for hematopoietic failure and 

many patients with hematologic malignancies (Czechowicz and Weissman et al. 2011). 

1.1.3 Hematopoesis  

The ontogeny of the hematopoietic system is characterized by a transient wave of 

hematopoiesis that starts early during embryonic development. This wave initiates 

blood circulation before HSCs develop by generating transitory hematopoietic cell 

populations (Palis and Yoder et al. 2001). This is followed by HSCs emergence at 

around embryonic day 10.5 (E10.5) in the Aorta-Gonad-Mesonephros (AGM) region, 

umbilical and vitalline arteries (de Bruijn et al. 2000; Taoudi et al. 2008). The HSCs 

then spread through the circulation and undergo a transient developmental phase in 

the fetal liver. Around the time of birth, they migrate to the BM, where they reside, and 

start permanent definitive hematopoiesis (Ciriza et al. 2013). HSCs then generate 

progenitor cells that differentiate into specialized cell types with distinct functions. 

These include myeloid cells such as monocytes and macrophages, lymphoid cells like 

B and T cells, and erythrocytes (red blood cells) and platelets (Seita and Weissman et 

al. 2010). Each type of blood cell serves a specific purpose in maintaining body 

physiology or protecting the body from harmful agents. For instance, red blood cells 

transport oxygen throughout the body and play a role in regulating the pH of bodily 

fluids. White blood cells act as a first line of defense by trapping and destroying foreign 

invaders such as bacteria, while platelets are responsible for clotting to stop bleeding 

after an injury or surgery (Nicholson et al. 2016). Together, these diverse cell types 

work cooperatively to keep the body healthy.  
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This introduction is primarily centered on murine hematopoiesis unless stated 

otherwise. 

1.1.4 Hematopoietic hierarchy  
 
Functional assays and the discovery of surface markers have contributed to 

developing hierarchical models for hematopoiesis (Woolthuis and Park et al. 2016). 

This hierarchy is characterized by stepwise differentiation (Figure 1.1A), with HSCs 

residing at the apex. HSCs exhibit the highest self-renewal and multipotency and are 

predominantly in a quiescent state under homeostasis, with approximately 70-80% of 

cells in the G0 cell cycle phase. They can be further classified based on their cell cycle 

activity into active (aHSC) and dormant (dHSC) subpopulations. dHSCs are in a deeply 

quiescent state and have greater long-term self-renewal capacity than aHSCs (van der 

Wath et al. 2009; Wilson et al. 2008). They are only activated under stress or injury 

conditions (Wilson et al. 2008). Mathematical modeling showed that dHSCs divide 

much less frequently than aHSCs, dHSCs have a slower division rate of around 150 

days (van der Wath et al. 2009; Wilson et al. 2008). It is proposed that dHSCs function 

as a backup population protected from exhaustion and mutations. Transcriptional 

analysis shows that dHSCs are in a state of biosynthetic shutdown and have lower 

metabolic activity than aHSCs, and express GPRC5C as a surface marker (Cabezas-

Wallscheid et al. 2017).  

HSCs then differentiate into multipotent progenitors (MPPs) that retain full lineage 

potential but have limited self-renewal capacity. MPPs then give rise to oligopotent 

progenitors, common myeloid progenitors (CMP), or common lymphoid progenitors 

(CLP), with CMPs producing myeloid cells such as granulocytes, erythrocytes, 

platelets, and monocytes, and CLPs producing lymphoid cells such as NK cells, B- and 

T-cells (Woolthuis and Park et al. 2016; Bryder, Rossi, and Weissman et al. 2006) 

(Figure 1.1A). This classical tree-like model of hematopoiesis, which posits distinct 

stable populations of progenitors with varying potencies, was deciphered from 

experiments on bulk samples that mask heterogeneity between individual cells. 

Limiting-dilution and single-cell transplantation assays have revealed inherent lineage 

biases among murine and human HSCs, with only a small subset of HSCs exhibiting 

unbiased multilineage engraftment upon transplantation (Dykstra et al. 2007; Morita, 

Ema, and Nakauchi et al. 2010). 
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Figure 1.1 Hematopoietic differentiation hierarchy  

(A) The conventional classical model of hematopoiesis suggests that HSCs go through a stepwise 

progression of discrete intermediate progenitor stages to undergo lineage commitment. This model is 

characterized by a tree-like structure where lineage decisions are made at binary branching points. The 
first decision point results in a separation between common myeloid and lymphoid progenitors. 

Additionally, there is a proposed shortcut to the megakaryocytic lineage, represented by curved dashed 

lines. Redrawn and modified based on (Bryder et al., 2006) (B) In a Continuous Waddington model, 

HSCs do not transition through discrete intermediate states but instead undergo a gradual acquisition 

of lineage-committed transcriptomic states. According to this model, cell types downstream of HSCs, 

including MPPs and CMPs, should not be viewed as distinct entities, but rather as transient states within 

the continuum of HSPCs. Redrawn and modified based on (Haas et al., 2018) LSK, Lin-, Sca1+, ckit+; 
HSC, hematopoietic stem cell; MPP, multipotent progenitor; CLP, common lymphoid progenitor; CMP, 

common myeloid progenitor; GMP, granulocyte–macrophage progenitor; MEP, megakaryocyte–

erythrocyte progenitor; LMPP, lymphoid primed multipotent progenitors; MkP, megakaryocytic 

progenitor; Mgk,Megakaryocyte. Created with BioRender.com.       

The majority of HSCs displayed lineage-biased engraftment, which was characterized 

by differences in reconstitution kinetics and lineage contribution. Recent advances in 

single-cell technologies have revealed heterogeneity among individual cells, 

challenging this classical model (Haas, Trumpp, and Milsom et al. 2018) (Figure 1.1B). 

The discovery of lymphoid-primed multipotent progenitors (LMPPs), a progenitor 

population with lymphoid and granulocytic-monocytic (GM) potential but lacking 

significant megakaryocytic-erythroid (MegE) potential, suggests an early step of 

lineage commitment before the CMP-CLP bifurcation (Adolfsson et al. 2005). Single-

cell transcriptional profiling has revealed transcriptional lineage priming, further 

A B 
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supporting the presence of a highly heterogeneous HSCs and progenitor compartment 

in humans and mice (Velten et al. 2017; Moignard et al. 2013; Grover et al. 2016). 

Moreover, in-depth analysis of oligopotent progenitor populations, such as CMPs, has 

shown that these populations are heterogeneous and appear to consist of multiple 

lineage-committed progenitor populations (Paul et al. 2016). Lineage-committed HSCs 

have also been identified, with megakaryocytic (Mk) restricted cells exhibiting high self-

renewal capacity (Haas et al. 2015; Yamamoto et al. 2013). These recent experimental 

findings have led to a change in our understanding of the hematopoietic hierarchy, with 

lineage commitment occurring continuously rather than in a stepwise binary fashion 

(Figure 1.1B). Although phenotypically identified HSCs and progenitor populations can 

still be used as a model for functional and transcriptional analysis, the intrinsic 

heterogeneity within these defined populations must always be considered when 

interpreting results (Haas, Trumpp, and Milsom et al. 2018). 

1.1.5 Characterization of HSCs by surface marker expression patterns 
 
With advancements in flow cytometry technology and the availability of monoclonal 

antibodies, we have been able to study HSCs biology by utilizing fluorophore-coupled 

antibodies targeted toward cell-specific surface markers (Hulett et al. 1969). Each 

stage of HSCs differentiation is identified, isolated, and characterized using distinctive 

cell surface markers. HSCs are typically found within a cell population that lacks 

lineage (Lin) markers of mature hematopoietic cells, such as B220, CD4, CD8, CD11b, 

Gr1, and Ter119, but are positive for stem cell antigen-1 (Sca-1) and stem cell factor 

receptor (cKit). This marker combination, known as LSK (Lin-  Sca1+ c-Kit+), enriches 

for HSCs and various types of progenitor cells (Challen et al. 2009). However, only 

10% of this LSK compartment represents HSCs (Challen et al. 2009), so additional 

markers like CD34 and CD135 (Flt-3) are used to purify stem cells further. CD34 helps 

distinguish between cells with long-term (CD34-) and short-term (CD34+) repopulation 

capacity within the LSK population (Matsuoka et al. 2001). Moreover, combining this 

marker set with the signaling lymphocyte activation molecule (SLAM) (Kiel et al. 2005) 

protein family, such as CD150 and CD48, facilitates the identification of hematopoietic  

stem and progenitor cells and correlates progenitor primitiveness. The LSK CD34- 

CD150+ CD48- population phenotype includes HSCs and is the most widely used 

gating scheme (Kiel et al. 2005; Oguro, Ding, and Morrison 2013).  
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Despite the great effort to enrich for HSCs, the continual reporting of new markers for 

HSCs purification makes it challenging to know which purification strategies yield the 

highest proportion of long-term multi-lineage HSCs. Moreover, many of these markers 

differ between mice and humans, and their expression changes dramatically during 

ontogeny and inflammation. This highlights the countless challenges scientists face 

when working on the hematopoietic system (Challen et al. 2009). 

 

1.1.6 Functional analysis for stem cells and progenitors  

The inability to maintain and expand HSCs in vitro is a major challenge in HSCs 

research (Clark, Jamieson, and Keating 1997). To address this issue and assess 

HSCs self-renewal, potency, and function, various in vitro and in vivo methods have 

been developed, as flow cytometry analysis of hematopoietic stem and progenitors 

(HSPCs) alone is not enough to evaluate HSCs capacity. The most widely used in vitro 

technique today is the colony-forming unit (CFU) assay (Purton and Scadden et al. 

2007). This assay involves culturing total BM cells or sorted BM subsets in a semi-solid 

methyl-cellulose culture medium containing appropriate cytokines. Single cells are 

dispersed in the medium, and colonies grow over a period of 7 to 14 days based on 

the initial potency of the given cell. The progenitor cells proliferate and differentiate, 

forming colonies restricted to the myeloid lineage. Lymphoid potential cannot be 

assessed because additional extrinsic factors required for lymphoid development are 

not present in this culture condition (Purton and Scadden et al. 2007). The colonies 

can be characterized and quantified by their unique morphology, with different lineages 

being generated depending on the cell type. Mixed colonies (CFU-GEMM) are formed 

by immature stem and progenitor cells, while restricted cell subsets produce myeloid 

(CFU-G/M/GM) or erythroid (CFU-E, BFU-E) colonies. Primary platings of total BM 

cells mainly assess the capacity of lineage-restricted progenitor cells. To evaluate HSC 

capacity, serial CFU assays are necessary as HSCs primarily form colonies in the 

second and third rounds of the CFU assay (Purton and Scadden et al. 2007). This 

assay has become the benchmark in vitro functional assay to determine progenitor’s 

potential and short-term stem cell potential.  

In vivo long-term repopulation assays, such as limiting dilution assays, competitive 

assays, and serial transplantation assays, have emerged as the gold standard for 

functional analysis of HSCs (Purton and Scadden et al. 2007). To successfully carry 
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out transplantation approaches, it is necessary to deplete recipient HSCs in the BM via 

irradiation or high-dose cytotoxic drug treatment, creating vacant HSCs niches that can 

be occupied by the transplanted HSCs (Weissman and Shizuru et al. 2008). As only 

HSCs are capable of indefinitely restoring the entire hematopoietic system of irradiated 

recipient mice, this assay provides a reliable test of HSCs reconstitution capacity. To 

measure the donor transplant performance over a period of several months, 

transplantation assays typically require the identification of transplanted cells and their 

progeny in the recipients, which can be achieved using congenic mice that express 

different allelic variants of the Ly5 antigen (CD45). CD45.1, CD45.2, and CD45.1/.2 

mice are commonly used for this purpose, as they enable the identification of HSCs, 

progenitors, and mature cells in both the BM and peripheral blood (PB) based on 

surface antigen expression (Purton and Scadden et al. 2007). In serial transplantation 

assays, cells are serially transplanted into secondary and tertiary recipients to assess 

the long-term repopulation capacity of a given HSC pool (Ramkumar, Gerstein, and 

Zhang et al. 2013). Competitive transplantation assays compare the HSCs potential of 

two different populations after an equal number of cells are transplanted into a common 

recipient (Harrison et al. 1980; Kwarteng and Heinonen et al. 2016). In limiting dilution 

assays, serially diluted HSCs are transplanted with a fixed number of supporting cells 

to measure HSCs frequency (Taswell et al. 1981; Sieburg, Cho, and Müller-Sieburg et 

al. 2002). This is the standard method for assessing functional HSCs content.  

Recently, single-cell transplantation assays have become more popular for studying 

HSCs potency, lineage-skewing, and priming, thereby revealing clonal heterogeneity 

at the stem cell level (Dykstra et al. 2007; Yamamoto et al. 2013). In this approach, 

single HSCs are isolated and transplanted into recipient mice that have been lethally 

irradiated. However, co-transplantation of supportive BM cells is necessary to ensure 

the survival of the recipient mice. By analyzing the efficiency of engraftment and the 

lineage output of a clonal hematopoietic system in the recipients over time, the 

transplanted HSCs can be retrospectively characterized. 

1.2 Response of Hematopoietic Stem Cells to Inflammatory stress  
 
Infections pose a significant threat to the hematopoietic system throughout our lives, 

as our bodies are constantly exposed to microbial threats. In addition, factors such as 

severe blood loss or chemotherapy can result in a considerable loss of hematopoietic 

cells, which requires an increased demand for hematopoiesis (Trumpp, Essers, and 
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Wilson et al. 2010; Baldridge, King, and Goodell et al. 2011; Takizawa, Boettcher, and 

Manz et al. 2012). Despite being quiescent during homeostasis, HSCs rapidly activate 

in response to stress conditions to replenish the cellular progeny lost due to cell death. 

Although the exact mechanism by which quiescent HSCs are induced to exit G0 phase 

in the face of proliferative stress is not fully understood, HSCs return to a quiescent 

state after homeostasis is restored, as this is critical for maintaining genome stability, 

reducing the risk of leukemia, and protecting HSCs from exhaustion (Wilson et al. 

2008).  

Inflammatory stresses often result in significant alterations in HSPCs function and 

output. Initially, it was believed that HSCs were incapable of detecting and responding 

directly to inflammatory signals (King and Goodell et al. 2011). Consequently, the 

changes in the function and distribution of the HSPCs population after infections have 

been interpreted as a response to replenish apoptotic cells rather than a direct 

response to the infection itself. Recent research has shown that HSCs can respond to 

bacterial and viral components via toll-like receptors (TLRs) and cytokine receptors 

(Baldridge, King, and Goodell et al. 2011; King and Goodell et al. 2011). Moreover, 

subsequent studies have confirmed that HSCs respond directly to the proinflammatory 

cytokines released under stress conditions rather than sensing a loss of progeny cells. 

In this regard, King and Goodell et al. (King and Goodell et al. 2011) classified four 

mechanisms by which infections can affect HSCs biology, the first two having direct 

effects on HSCs (direct infection or direct pathogen recognition) and the other two 

having indirect effects via proinflammatory cytokines or changes in the bone marrow 

microenvironment. (King and Goodell et al. 2011). 

Inflammatory signals that arise in response to severe systemic infection or injury 

activate HSCs, initiating "emergency myelopoiesis." (Manz and Boettcher 2014) It is 

important to note that myeloid cells, such as macrophages and neutrophils, have a low 

proliferative capacity and must be replenished from HSPCs in the BM, unlike adaptive 

immune cells, such as T and B cells. Recent research has highlighted the critical role 

of proinflammatory cytokines in this complex and finely-tuned process of regulating 

myelopoiesis in the BM (Chiba et al. 2018). These cytokines elicit inflammatory signals  

that lead to the differentiation of HSPCs and the initiation of signal transduction 

pathways. This ultimately results in various transcription factors that drive the 
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production of myeloid lineage-restricted hematopoietic progenitors, which replenish 

mature myeloid blood cells (Chiba et al. 2018). Although the effects of various 

proinflammatory cytokines on HSCs can vary significantly, there are still some 

conserved features (Caiado, Pietras, and Manz et al. 2021). Inflammation triggered by 

an infection often leads to a loss of function of the HSCs, resulting in decreased 

repopulation capacity and increased proliferation associated with myeloid lineage bias. 

This decline in function is often associated with chronic infection, suggesting that 

prolonged inflammation and demand may have cumulative effects on HSCs function 

(Caiado, Pietras, and Manz et al. 2021). 

Proinflammatory cytokines can act directly on HSCs and indirectly by triggering 

secondary inflammatory signal production by BM niche cells such as mesenchymal 

stromal cells (MSCs), endothelial cells, and mature cells (Hurwitz, Jung, and Kurre et 

al. 2020). However, the mechanism by which HSCs sense proinflammatory cytokines 

is still under investigation. Proinflammatory cytokines such as Interferons (IFNs), 

Interleukin 1 (IL1), Tumor necrosis factor (TNF), and Interleukin 6 (IL6)  play a role in 

regulating HSCs function (Pietras et al. 2017; Caiado, Pietras, and Manz et al. 2021). 

The question of how these proinflammatory signals affect HSCs biology under stress 

and homeostasis is a subject of an ongoing scientific investigation (Clapes, 

Lefkopoulos, and Trompouki et al. 2016; Caiado, Pietras, and Manz et al. 2021; 

Collins, Mitchell, and Passegué et al. 2021). The following sections will focus primarily 

on interferon alpha (IFNα) and its role in regulating HSCs activity and hematopoiesis. 

In a later section, I will also discuss the role of other cytokines, such as Interferon 

gamma (IFNγ), IL1, TNF, and IL6, in regulating HSCs activity and hematopoiesis. 

1.2.1 Interferon-alpha mediated regulation of HSCs 
 
1.2.1.1 Interferon Signaling 
 
A decade ago, our group discovered that IFNs play an important role in the biology of 

HSCs (Essers et al. 2009) . IFNs, discovered in 1957, are a group of signaling proteins 

produced and released primarily by immune cells and other cell types after interaction 

with pathogens or cancer cells. They were originally named for their ability to "disrupt" 

viral infection of cells. They act as the first line of defense against viral infections and 

are an important component of innate immunity (Borden et al. 2007; Lee and Ashkar 

et al. 2018; Taylor et al. 2014) . In response to viral infection, infected cells produce 
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IFNs, which induce an antiviral state in infected and uninfected cells that blocks viral 

replication and the spread of infection. In addition to their role as antiviral cytokines, 

they also play a role in bacterial infections and in immune surveillance of malignant 

cells. It is now known that IFNs influence various cellular processes (Borden et al. 

2007; Lee and Ashkar et al. 2018; Taylor et al. 2014) Endogenous IFNs production 

can also be triggered by sensing self-ligands (such as dsDNA and dsRNA) or TLR 

agonists. The cGAS/ STING (DNA) or RIG-I and MDA5 (RNA) pathways are 

intrinsically stimulated by these stimuli, leading to steady-state IFNs production during 

homeostasis (Liu, Sarhan, and Poltorak 2018). Although IFNs are expressed at low 

levels in the body under normal circumstances, their role in the immune response is 

dynamic and pathogen-specific, with members of the IFNs family induced to varying 

degrees depending on the stimulus. Following production and secretion by immune 

cells, IFNs modulate immune system activity by inducing the transcription of interferon 

signaling genes (ISGs) (Lee and Ashkar et al. 2018). 

The three main types of IFNs are type I IFNs (IFNα and IFNβ), type II IFNs (IFNγ), and 

type III IFNs (IFN-like cytokines and IFNλ). Several criteria, including sequence 

identity, genetic loci, cell of origin, receptor distribution, and downstream responses, 

classify the IFN types (Borden et al. 2007; Lee and Ashkar et al. 2018; Taylor et al. 

2014). Type I IFNs are the largest and best-characterized group, with IFNα and IFNβ 

being the best-defined. IFNα is predominantly produced by plasmacytoid dendritic cells 

(DCs), whereas most hematopoietic cell types produce IFNβ. Type I IFNs are produced 

during viral infection in response to pattern recognition receptor (PRR) stimulation and 

are important regulators of innate immunity. They restrict viral replication in infected 

cells and promote an antiviral state in bystander cells. In addition, type I IFNs promotes 

antigen presentation, natural killer (NK) cell function, and adaptive immune cell 

activation. Both IFNα and IFNβ bind to the IFNα receptor (IFNAR) which is associated 

with Janus-activated kinases (JAKs). Upon receptor activation, the JAKs are activated, 

leading to subsequent tyrosine phosphorylation and activation of signal transducer and 

activator transcription (STAT) proteins. The STATs then translocate to the nucleus and 

can dimerize with IFN-regulatory factor 9 (IRF9). The complex binds to IFN-stimulated  
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Figure 1.2 Overview of cytokine signaling pathways. 

(A) When IFNα/β and IFNγ bind to their respective receptors, they activate separate intracellular 

signaling pathways, resulting in the transcription of interferon response genes (ISGs). The signal is 

transmitted through the phosphorylation of Signal Transducer and Activator of Transcription (STAT) 

proteins, which then move to the nucleus and bind to the transcription regulatory elements, namely IFN-

stimulated response element (ISRE) and Gamma Interferon activation site (GAS). (B) TNFα signaling 
is mediated through TNFR1 and TNFR2 which activate two separate intracellular signaling pathways. 

Signaling by TNFR1 leads to activation of TNFR-associated death domain DD (TRADD) protein which 

then lead to activation of downstream kinases and eventually NF-κB activation which then mediate 

apoptotic activities. TNFR2 lacks an intracellular death domain   and its engagement with TNF-α leads 

to MAPK and NF-κB activation to mediate angiogenic and proliferative effects. (C) The binding of IL1 to 

the IL1 receptor 1 (IL1R1) causes the binding of the IL1 receptor 1 accessory protein (IL-1RAcP) and 

the myeloid differentiation primary response 88 (MYD88) protein that activate intracellular pathways. 

When IL1 binds to the IL1 receptor 2 (IL1R2), the IL1 response is inhibited. Upon the binding of IL6 to 
the IL6 receptor (IL6R), the signal-transduction β-receptor subunit GP130 associates and transduces 

the signal into the cell. Created based on (Platanias 2005, Moelants, Mortier et al. 2013, Turner, Nedjai 

et al. 2014).Created with BioRender.com 

 

response elements (ISREs) in DNA to initiate gene transcription of IFN-stimulated 

genes (ISGs), which then mediate the various biological responses of IFNs (Figure 

1.2A) (Ivashkiv and Donlin et al. 2014; Platanias et al. 2005). 
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1.2.1.2 IFNα as therapeutics  
 
IFNα was the first cytokine produced by the pharmaceutical industry and has been 

used to treat chronic myeloid leukemia, melanoma, and chronic Hepatitis B and C 

infections (Yang et al. 2012; Huang, Chintalacharuvu, and Morrison 2007); (Borden et 

al. 2007) In a therapeutic context, IFNα can promote cancer cell differentiation, inhibit 

proliferation and cell cycle progression, and induce apoptosis by activating IFNAR 

signaling (Figure 1.4) (Borden et al. 2007; Lee and Ashkar 2018; Taylor 2014). 

However, IFNα therapy is limited by its short half-life in the bloodstream, high 

myelotoxicity, and paradoxical immunosuppressive effects (Borden et al. 2007; Lee 

and Ashkar 2018; Taylor 2014). Despite these challenges, clinical trials using IFNα to 

treat viral and hematological disorders, such as HIV, thrombocytopenia, AML, and 

CML, are ongoing (www.clinicaltrials.gov). By repurposing these older therapeutic 

approaches, new methods for treating infections and malignancies can be developed 

without the need for novel drugs or in combination with newly invented 

immunotherapies. A thorough understanding of the impact of IFNs on the immune 

system and hematopoiesis could reveal significant opportunities for their use in 

immunology and oncology. 

 

1.2.1.3 Role of IFNα on adult HSCs biology  
 
Several recent studies have demonstrated the regulatory effect of IFNs on HSCs 

activity. Initially, it was observed that IFNs have anti-proliferative properties on 

hematopoietic progenitors in tissue culture systems, consistent with their role as 

antiviral agents (Paucker, Cantell, and Henle et al. 1962). These suppressive effects 

were mediated by the activation of protein kinase Cn (PKCn) and p38 mitogen-

activated protein kinase (Verma et al. 2002; Redig et al. 2009). However, it was later 

discovered that treatment of mice with IFNα induces the proliferation of dormant HSCs 

(Essers et al. 2009). Furthermore, injecting mice with the immune-stimulant 

polyinosinic:polycytidylic acid (pIC), a synthetic double-stranded RNA that mimics viral 

infections, stimulated HSCs to exit G0 and enter the cell cycle in an IFNAR-dependent 

manner. The HSCs' response to IFNα was mediated by increased STAT1 and PKB/Akt 

phosphorylation and increased expression of Sca-1. In addition to stabilizing Myc, 

IFNα treatment has been associated with decreased expression of cyclin-dependent  
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kinase inhibitors and transcriptional programs that enforce quiescence, including 

FoxO3a, Notch, and TGFβ (Essers et al. 2009; Pietras et al. 2014). Intriguingly, HSCs 

that lacked IFN-α/β receptor, STAT1, or Sca-1 were rescued from IFNα treatment, 

suggesting that IFNAR, STAT1, and Sca-1 mediate the IFNα-induced proliferation of 

HSCs. While this data suggests a direct effect of IFNα on HSCs (Figure 1.3), an indirect  

effect has been proposed as HSCs lacking the IFN-α/β receptor still respond to IFNα 

treatment when present with wildtype (WT) HSCs during BM transplantation (Essers 

et al. 2009).  

 

Since the effects of IFNα on HSCs in vivo are in contrast to the in vitro situation 

(Mirantes, Passegué, and Pietras et al. 2014; Pietras et al. 2014), this suggests a role 

for the BM niche environment in mediating the IFNα effect on HSCs in vivo. It is known 

that the cellular composition of the niche, which includes but is not limited to 

osteoblasts, endothelial cells, mesenchymal stromal cells (MSCs), and hematopoietic 

cells such as megakaryocytes and monocytes, play an important role in HSC 

maintenance and homeostasis (Ehninger and Trumpp 2011; Morrison and Spradling 

2008). Our group has shown that BM endothelial cells are activated in response to 

acute IFNα exposure in vivo, which increases vascularity and vessel permeability 

(Prendergast et al. 2017; Negrotto et al. 2011). Interestingly, we were able to show 

that part of this activation is indirectly mediated via signaling from IFNα stimulated 

HSCs in the BM (Prendergast et al. 2017; Negrotto et al. 2011). Other studies have 

shown that IFNα plays a role in megakaryocyte distribution in the BM niches 

(Prendergast et al. 2017; Negrotto et al. 2011). This data provides evidence for 

crosstalk between HSCs and the BM niche cells under inflammatory stress conditions. 

The effects of IFNα signaling on HSCs responses can vary depending on the context 

and duration of exposure (Figure 1.3 & 1.4). While it can induce HSCs division in 

response to an infection or other assaults, prolonged exposure can result in HSCs 

exhaustion and loss of the stem cell pool. It has been shown that in contrast to acute 

IFNα stimulation, chronic IFNα treatment compromised HSCs repopulation capacity 

and led them back to quiescence, protecting them from IFNα induced apoptosis (Figure 

1.3) (Pietras et al. 2014). The effects of short-term and long-term IFNα in various 

disease contexts differ significantly. During an acute viral infection, IFNα, along with 

TNFα and lymphotoxin (LT), can have a transient effect on hematopoiesis. 
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Figure 1.3 The multifaceted impact of IFNs on HSCs. 

During homeostasis, basal IFNs signaling plays a role in regulating HSCs emergence during early 

development. In response to acute IFNs exposure, HSCs exit their quiescent state, start cycling and its 
differentiation is impacted. Chronic exposure to IFNs can lead to increased DNA damage, activation of 

apoptotic pathways. And compromised self-renewal and repopulation capacity. Thus, the role of IFNs 

on HSCs biology is complex and highly dependent on the stimulation conditions. Adapted from 

(Demerdash et al.  2021)  

 

Nevertheless, acute viral infections also impair the reconstitution potential of HSCs 

even after the resolution of the infection, indicating the existence of lasting 

reprogramming effects following pathogen clearance (Hirche et al. 2017). Persistent 

IFNα signaling induced by non-acute murine cytomegalovirus (MCMV) infection leads 

to a prolonged inflammatory state in the BM, resulting in long-lasting impairment of 

HSC function (Figure 1.4). Moreover, studies have shown that IFNα-dependent BM 

aplasia occurs after LCMV infection (Binder et al. 1997).  In support of these findings, 

studies by Michael Milsom's group have demonstrated that extensive treatment with 

IFNα can cause high levels of DNA damage in HSCs due to the increased proliferation 

of these typically quiescent cells (Binder et al. 1997; Walter et al. 2015). In a mouse 

model of Fanconi anemia, it was shown that prolonged exposure to IFNα led to severe 

aplastic anemia (SAA) by depleting the HSCs pool (Kaschutnig et al. 2015). More 

recently, a study by the same group observed a permanent reduction in functional 

HSCs, which did not recover even after one year following pIC treatment (Bogeska et 

al. 2022). HSCs from challenged mice displayed various characteristics of advanced  



Introduction 
 

21 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 : The balance of IFNs signaling during homeostasis and disease.   

HSCs are typically in a state of equilibrium, with self-renewal and differentiation into mature blood cells 

in balance. However, various internal and external stressors such as infection, aging, and autoimmunity 

can disrupt this homeostasis by increasing IFNα or IFNγ signaling. In the presence of excessive IFNs 
signaling, HSCs lose their ability to self-renew and instead differentiate. Treating patients with 

recombinant IFNs or inhibiting IFNs signaling pathways has been shown to be a successful approach 

to modulating IFNs signaling and managing these conditions. Adapted from (Demerdash et al. 2021) 

aging at the cellular and molecular levels. Throughout the challenge and recovery 

periods, there was a lack of in vivo HSCs self-renewal divisions. The inhibition of HSCs 

by temporally distinct inflammatory events was cumulative and progressive (Bogeska 

et al. 2022). The differences in HSCs response to IFNα between sterile stimulus 

models that induce proliferation and viral infection models that lead to stem cell 

exhaustion suggest that the duration and source of IFNα may impact the balance of 

HSC self-renewal and homeostasis. In addition to their effects on HSCs cycling, IFNs 

have distinct effects on HSCs differentiation (Figure 1.3). Haas et al. have shown that 

IFNα rapidly activates a posttranscriptional megakaryopoiesis program in stem-like 

megakaryocyte-committed progenitor, which later leads to the efficient replenishment 

of platelets that are lost during inflammatory insults (Haas et al. 2015). Thus far, there 
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is no clear evidence that IFNα promotes HSCs myeloid differentiation. However, a 

recent study by Khan et al. investigated whether the virulent Mycobacterium 

tuberculosis (M.tb) strain, H37Rv, induces trained immunity and found results that 

diverged significantly from those observed with Bacille Calmette-Guérin (BCG) and 

M.tb infection (Khan et al. 2020; Cirovic et al. 2020). They found weakened host 

resistance against subsequent M.tb infections that lasted for at least a year (Khan et 

al. 2020). The weakened resistance was linked to Type I IFN signaling. While both 

M.tb and BCG expanded HSCs and MPPs, M.tb uniquely suppressed myelopoiesis, 

which caused a significant reduction in peripheral neutrophils and Ly6Chi monocytes. 

Neutrophil deficiency was attributed to RIPK1-dependent necroptosis. Additionally, 

BM-derived macrophages from naïve mice administered HSCs from M.tb infected mice 

displayed reduced cell yield and were deficient in clearing M.tb in vitro. The critical role 

of type I IFN signaling was observed in Ifnar1-/- mice as it displayed better survival after 

M.tb infection than WT mice (Khan et al. 2020). These findings show that M.tb trains 

HSCs paradoxically to reduce the host's innate resistance (Khan et al. 2020). 

1.2.1.4 Marker changes and implications for function under inflammatory 
stress 

 
The responses of hematopoietic cells to IFNs may vary due to differences in the types 

of cells being studied. Phenotypic shifts have been one of the hallmarks following 

inflammatory stress, which complicates the molecular and functional identification of 

HSCs under non-homeostatic conditions (Demerdash et al. 2021; Ali and Park 2020). 

This is because Sca-1, a critical marker for identifying HSCs during steady-state  

hematopoiesis, is induced in response to inflammatory stimuli. IFN-induced signaling 

causes the stem cell marker Sca-1 to be highly upregulated on HSCs, as well as on 

CMPs and GMPs, which do not typically express Sca-1, leading to the shift of these 

cells into the LSK gate as demonstrated by in vitro clonogenic and differentiation 

assays (Kanayama et al. 2020). In addition, IFN treatment can also cause slight 

alterations in the expression of other stem cell markers, such as CD48 and CD150 

(Demerdash et al. 2021). To improve the interpretation of results related to HSCs 

function, particularly when HSCs are exposed to inflammatory stressors, it is crucial to 

use stringent markers to exclude other cell types. However, one must be cautious in 

interpreting the data, and phenotypic studies should be complemented by functional 
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studies. Further research is needed to understand the complex relationship between 

inflammation and the adaptations in the HSPCs compartment. 

 

1.2.2 The effects of proinflammatory cytokines on HSCs 
 
1.2.2.1 Interferon gamma 
 
IFNγ is the only member of the IFN type II family and mediates the host immune system 

and anti-tumor responses. IFNγ is secreted primarily by T cells and NK cells in 

response to Th1-inducing pathogens but can also be secreted by professional antigen-

presenting cells (APCs), B cells, and NKT cells (Ivashkiv and Donlin et al. 2014; 

Platanias et al. 2005). The cellular source of IFNγ secretion corresponds with unique 

functions in response to pathogens. IFNγ can be stimulated by cytokines produced by 

APCs (e.g., IL12, IL15, and IL18), type I IFNs, and pathogen-associated molecular 

patterns (PAMPs). Negative regulators of IFNγ production include IL4, IL10, TNFα, 

and glucocorticoids. IFNγ binds to its receptor (IFNGR), which consists of both an 

alpha (IFNGR1) and beta (IFNGR2) chain. IFNGR1 can mediate biological responses 

to IFNγ alone, independent of the presence of IFNGR2. Intracellular signaling through 

IFNGR is mediated via STAT1 homodimers (Figure 1.2A). The signaling pathways 

used by IFNα and IFNγ overlap and act synergistically because IFNγ signaling can 

induce IFNα production (Ivashkiv and Donlin 2014; Platanias 2005). 

Besides IFNα, IFNγ can directly enhance the proliferation of HSCs (Figure 1.3). This 

effect was demonstrated following infection of mice with the M.avium bacterium 

(Baldridge et al. 2010). It was shown that IFNγ is strongly upregulated during M.avium 

infection and that it is IFNγ but not IFNα that plays an essential role in the proliferative 

activation of HSCs in response to infection by M.avium (Baldridge et al. 2010), 

Confirming these findings, ablation of the p47 GTPase Irgm1 which is a negative 

regulator of IFNγ responses lead to hyper-proliferation and depletion of the stem cell 

compartment as indicated by the decrease in the HSC number in mice lacking Irgm1 

(King et al. 2011). In the context of infection-related emergency myelopoiesis, IFNγ 

was identified as a potential mediator of stress-induced myeloid specification. 

Specifically, IFNγ can activate the transcription factors BATF2 and C/EBPb, inducing 

myeloid differentiation in myeloid-biased HSCs (Figure 1.3) (Matatall et al. 2014, 

2016). Treatment with IFNγ also upregulates the monocyte promoting transcription 
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factor PU.1 while inhibiting STAT3 activation induced by the granulocyte colony-

stimulating factor (G-CSF), which is necessary for emergency granulopoiesis (Matatall 

et al. 2014, 2016). In support of this, IFNγ-deficient mice infected with viruses that 

typically induce monopoiesis in WT mice displayed extreme granulocytosis and a 

strong increase in neutrophil development (de Bruin et al. 2012; H. Zhang et al. 2010). 

In contrast, there is no clear evidence that IFNα promotes HSC myeloid differentiation, 

and no parallel analysis was performed. 

1.2.2.2 Tumor necrosis factor alpha  
 
Tumor necrosis factor alpha (TNFα) is a proinflammatory cytokine implicated in a 

diverse range of inflammatory, infectious, and malignant conditions. It is produced by 

various cell types, with activated macrophages and T-lymphocytes being the most 

predominant (Bradley et al. 2008). TNFα signals through two specific cell surface 

receptors,  tumor necrosis factor receptor 1 (TNFR1) and tumor necrosis factor 

receptor 2 (TNFR2), with TNFR1 being ubiquitously expressed and mainly implicated 

in pro-inflammatory and apoptotic pathways, while TNFR2 expression is restricted to 

hematopoietic and endothelial cells, and is involved in tissue repair, cellular 

proliferation, and angiogenesis (Bradley et al. 2008). Downstream signaling pathways 

following the activation of both TNFR1 and TNFR2 are summarized in Figure 1.2B.  

The effect of TNFα on HSCs is a much-debated topic. TNFα has been extensively 

studied, but its effect on HSCs remains controversial. Early studies provided conflicting 

results. Some showed inhibition of HSC proliferation after TNFα stimulation 

(Broxmeyer et al. 1986), whereas others showed stimulation (Caux et al. 1990). 

Therefore, it is clear that the concentration and context in which TNFα is present may 

have a significant impact on HSCs. In vitro studies have shown that TNFα treatment 

inhibits the proliferation of mouse hematopoietic progenitor cells and their potential to 

form colonies (Bradley 2008; Y. Zhang et al. 1995). Similarly, treatment of human 

CD34+CD38- cells with TNFα suppresses the ability of these cells to maintain 

multilineage hematopoiesis after transplantation (Dybedal et al. 2001). In vivo 

transplantation studies have shown that HSCs from TNF receptor knockout (KO) mice 

enhance long-term repopulating capability (Pronk et al. 2011). Conversely, when 

studies were conducted using older mice (>6 months), HSCs from TNF receptor KO 

mice had reduced repopulation activity compared to age-matched WT mice (Rebel et 
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al. 1999). Moreover, TNFα production by CD8+ cells has been shown to enhance the 

function of HSCs in vitro. Those cells demonstrated better engraftment upon 

transplantation (Rezzoug et al. 2008), while in vivo administration of TNFα resulted in 

suppression of cycling HSCs and decreased HSCs long-term repopulating capacity 

(Pronk et al. 2011). Exposure to lipopolysaccharide (LPS) induces the expression of 

TNFα, IL6, and the chemokine CCL2, which stimulates the proliferation and 

differentiation of HSCs (Chen et al. 2010). However, inhibition of these three 

proinflammatory cytokines induced by LPS exposure can rescue the functional effects 

of LPS on HSCs, suggesting that TNFα is a crucial mediator of LPS-induced activation 

of HSCs (Chen et al. 2010). These findings were further supported by a recent study 

by our group, which demonstrated that activation of HSCs in response to LPS in vivo 

requires the collective action of several cytokines, including IFNα, IFNγ, TNFα, IL1α, 

and IL1β (Demel et al. 2022).  

Recent studies have shown that TNFα plays a role in emergency hematopoiesis and 

can instruct HSCs to adopt lineage-specific gene programs, suggesting that its effects 

on HSCs are complex (Bowers et al. 2018; Haas et al. 2015). Yamashita et al. highlight 

that TNFα has differential effects on HSCs and progenitor cells (Yamashita and 

Passegué et al. 2019). They found that TNFα promotes necroptotic cell death in 

myeloid progenitor cells while supporting HSCs survival and myeloid cell differentiation 

through activation of the NF-kB pathway. Activation of the NF-kB pathway also inhibits 

necroptosis, supports immunomodulatory functions, and promotes differentiation of 

myeloid cell differentiation in HSCs. Therefore, the cellular survival mechanisms 

stimulated by TNFα were thought to be unique to HSCs, suggesting that TNFα is a 

critical mediator of HSC regeneration and survival (Yamashita and Passegué et al. 

2019).  

1.2.2.3 Interleukin 1 

The interleukin 1 family of cytokines plays a significant role in innate immune 
responses and inflammation, acting as critical signals to activate host defense and 

repair during infections. The family comprises 11 members, with IL1β and IL1α being 

the most well-known. Although they share only 24% of their amino acid sequence, IL1β 

and IL1α have largely identical biological functions (Dunn et al. 2001). However, they 

differ in several ways. IL1α is primarily membrane-bound, while IL1β is secreted and 
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circulates systemically. IL1β is produced by hematopoietic cells, whereas IL1α 

expression is more widespread, constitutively present in epithelial layers of the 

gastrointestinal tract, lung, liver, endothelial cells, and astrocytes (Garlanda, Dinarello, 

and Mantovani 2013). Both interleukins can signal independently through the same 

receptor complex, consisting of two types of receptors. Type I IL1 receptor (IL1R1) is 

ubiquitously expressed and requires the co-receptor IL1R Accessory Protein 

(IL1RAcP) for activation by IL1 family members. Type II IL1 receptor (IL1R2) lacks a 

signaling-competent cytosolic part and thus acts as a negative regulator of IL1 

signaling (Figure 1.2C) (Weber, Wasiliew, and Kracht et al. 2010).  

IL1 has been shown to regulate BM HSPCs as these cells express the cytokine and 

its receptor (IL1R1). One study demonstrated that HSCS and progenitors’ proliferative 

responses were suppressed in IL1RI KO mice and that IL1 directly drives increased 

HSCS proliferation in vitro (Weber, Wasiliew, and Kracht et al. 2010; Ueda et al. et al. 

2009). In vitro studies have revealed that IL1 can extend the survival of CFU-GM and 

BFU-E (Hangoc et al. 1989). This finding is further supported by in vivo experiments 

where the administration of an IL1 receptor antagonist resulted in a significant 

decrease in the number of femoral CFU-GM and BFU-E (Jovcic et al. 1996). These 

results suggest that the basal tone of IL1 signaling plays an essential role in constitutive 

hematopoiesis. A recent study showed that chronic exposure of HSCs to IL1 resulted 

in increased cycling and massive differentiation towards myeloid cells, driven through 

activation of a PU.1-dependent myeloid gene program. The effects of IL1 depend on 

the presence of the IL1 receptor, as IL1β fails to accelerate myeloid differentiation in 

Il1r-/- HSCs (Pietras et al. 2016). 

1.2.2.4 Interleukin 6 
 
Another interleukin that plays a role in hematopoiesis is interleukin 6 (IL6). The 

receptor for IL6 comprises the ligand-binding IL6-receptor α chain (IL6Rα) and the 

signal-transducing subunit β-receptor glycoprotein 130 (gp130), which are associated 

with Janus kinase (JAK) 1/2, tyrosine kinase 2, and STAT3. Unlike other cytokines, IL6 

has the unique ability to signal not only through membrane-bound IL6Rα but also 

through sIL6Rα together with ubiquitously expressed gp130 (Figure 1.2C) (Scheller et 

al. 2011). The lack of the GP130 signal transducer was shown to cause fewer numbers 

of HSPCs and T cells (Yoshida et al. 1996).  
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IL6 is produced by T cells and macrophages in response to infection, trauma, burns, 

and other forms of tissue damage, which cause inflammation. As a result of its 

production, IL6 is responsible for inducing the synthesis of acute-phase proteins and 

promoting the production of neutrophils in the BM (Scheller et al. 2011; Schaper and 

Rose-John 2015). Interestingly, HSPCs produce more IL6 than conventional immune 

cells. They respond directly to bacterial components via the TLR/nuclear factor κB 

pathway and produce multiple cytokines, with IL6 being secreted the strongest (Zhao 

et al. 2014). The expression of IL6 by HSPCs has been shown to play a crucial role in 

the paracrine mediation of stress-induced myelopoiesis and HSPC proliferation. When 

IL6 was neutralized, the differentiation of LSK cells into myeloid lineages was 

significantly reduced, and the number of LSK cells was reduced as well, indicating that 

the cytokines secreted by LSK cells cause positive feedback to their proliferation and 

survival (Zhao et al. 2014). Furthermore, it was found that IFNγ-mediated myelopoiesis 

in HSPCs occurs indirectly through IL6 secreted by mesenchymal stromal cells 

(MSCs). The production of IL6 by BM MSCs leads to an increase in the number of 

early MPPs and committed myeloid precursors in the BM, facilitating the accumulation 

of myeloid cells in the periphery, resulting in the elimination of the infection  (Schürch, 

Riether, and Ochsenbein et al. 2014). Additionally, recent studies have discovered that 

IL6 plays a crucial role in hematopoietic regeneration. One study showed that stress-

induced IL6 drives lymphatic vessel expansion and bone lymphangiogenesis (Biswas 

et al. 2023).  

1.3 The role of baseline proinflammatory signaling in HSC biology 
 
Recent research has revealed that the proinflammatory cytokines regulating HSC 

stress responses also regulate the emergence of definitive HSCs during embryonic 

development (Espin-Palazon et al. 2018). They play a significant role in shaping the 

adult hematopoietic compartment not only during periods of pathogenic insults but also 

through tonic inflammatory signals originating from commensal microbiota (Collins, 

Mitchell, and Passegué et al. 2021). Recent discoveries have revealed the crucial role 

played by proinflammatory cytokines such as TNFα, IFNγ, and IL1β, as well as TLR4 

signaling, in the fate determination of HSCs derived from the hemogenic endothelium 

(HE) (Espin-Palazon et al. 2018; Mancini, Bonnet, and Arrieta et al. 2022). The first 

evidence for the involvement of inflammatory signals in HSPCs specification came 

from discovering that TNFα signaling is necessary for endothelial cell development. It 
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was shown that activation of TNFR2 is required for the expression of jag1a, a Notch 

ligand essential for HSC specification, and that the resulting signaling to the Notch1a 

receptor on the adjacent HE helps to determine the fate of HSCs (Espín-Palazón et al. 

2014). The study revealed that the proinflammatory transcription factor NF-kB is also 

active in nascent HSCs and essential for their specification. These results were 

consistent across zebrafish and mouse embryos. Inflammatory signaling pathways 

play a role in relaying the Notch-to-Runx1 signal, which is essential for specifying 

definitive HSPCs (Hadland et al. 2004; Bigas and Espinosa et al. 2012). Notch 

signaling results in Il6r up-regulation in zebrafish, rendering endothelial cells receptive  

to IL6 secreted by primitive neutrophils. IFN signaling has also been described to be 

involved in HSC emergence in mice (Sawamiphak, Kontarakis, and Stainier et al. 2014; 

Kim et al. 2016). Moreover, IL1β, together with the proinflammatory cytokines TNFα 

and IFNγ, have been identified as key determinants of HSC specification during 

embryonic development (Y. Li et al. 2014). It has been shown that at around E11, 

murine IL1 is highly expressed by HSCs and enhances HSC expansion (Orelio et al. 

2008).  

 

This discovery raises many questions in the field. One of the most important questions 

is whether basal activation of proinflammatory cytokine signaling is important for 

steady-state adult hematopoiesis. Although the role of IFNs in hematopoietic 

homeostasis has not been studied in detail, previous results show that HSCs from mice 

lacking IFNγ signaling have a lower proliferation rate and a better reconstitution 

capacity at steady state (Baldridge et al. 2010). Another study showed that mice 

lacking interferon regulatory factor 2 (Irf2) a negative regulator of Type I IFN signaling, 

had high numbers of proliferating HSCs (Sato et al. 2009). These findings implicate 

IFNs as regulators of HSCs under conditions of infectious stress and during 

homeostasis.  

 

The understanding that proinflammatory signals play a crucial role in shaping the 

hematopoietic system has been slow to develop, likely because many adult KO mice 

lacking proinflammatory signals do not exhibit obvious hematological defects. This 

could be due to genetic compensation or redundancy between proinflammatory 

pathways. Supporting the idea of redundancy, simultaneous knockdown of both TNFα 

and IFNγ has led to a significant decrease in HSC numbers compared to single 



Introduction 
 

29 
 

knockdown (Y. Li et al. 2014). Previous studies by our group have shed light on existing 

crosstalk between the different proinflammatory cytokines. We have shown that the 

LPS-induced activation of HSCs is indirectly mediated through the production of 

proinflammatory cytokines by myeloid cells. These cytokines include IFNα, IFNγ, TNFα  

and IL1β. It was also shown that these cytokines lead to direct and indirect activation 

of HSCs (Demel et al. 2022) Moreover, we found that IL1β is highly induced upon 

TNFα treatment suggesting that IL1β is one of the factors leading to TNFα induced 

activation of HSCs (Unpublished data).  

 

Treatment of any of these cytokines can likely activate HSCs indirectly by altering the 

niche environment, promoting the release of more proinflammatory cytokines, which 

then lead to the subsequent activation of HSCs (Zhao et al. 2014; Goedhart et al. 

2018). The fact that a massive amount of cytokines are produced during an 

inflammatory reaction excludes the dependency of HSCs activation on only one 

proinflammatory cytokine. This data supports the hypothesis of the presence of 

crosstalk of proinflammatory cytokines on HSCs quiescence. Furthermore, since most 

of the proinflammatory cytokines are present in small concentrations under 

homeostatic conditions, we hypothesize that the combined proinflammatory cytokine 

signaling plays a role in regulating HSC biology at a steady state. A better 

understanding of the overlapping and unique features of the proinflammatory signaling  

mechanisms that regulate the functions of hematopoietic stem and progenitor cells 

throughout an individual's lifespan and state of health could lead to improved 

diagnostic and therapeutic strategies for hematopoietic disorders and malignancies. 
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2 Aims of the thesis 
 

Our group has shown that treating mice with IFNα induces cell cycle entry of quiescent 

HSCs. However, the detailed mechanism of IFNα induced activation of HSCs remains 

unknown, and studies investigating the mechanisms controlling reversible cycle entry 

of quiescent HSCs are lacking. In addition, the heterogeneity of response between 

HSCs and downstream progenitors in the context of IFNα has not been investigated 

before. 

 

Furthermore, induction of HSC’s proliferation is a common response observed with 

many proinflammatory cytokines, which raises the question of whether there is a 

common stress mechanism activated in response to these different proinflammatory 

stimuli. Another interesting question is whether the same proinflammatory cytokines 

that activate HSCs in response to stress also play a role in regulating HSCs quiescence 

and activation under homeostasis.  

 

This work aims to answer these open questions as follows: 

 

2.1 Aim 1: Uncover the mechanisms and dynamics of the stress response of 
HSCs to IFNα 

To understand the dynamics of the acute response of HSCs to IFNα treatment, I aimed 

to analyze the changes in gene expression in HSCs over time by performing bulk RNA 

sequencing at time points representing the three phases of HSCs response to acute 

IFNα treatment (sensing (3h), proliferation (24h), and recovery (72h)). 

2.2 Aim 2: Understanding the heterogeneity of HSPCs response to IFNα 
 

To investigate the kinetics of activation of the whole stem and progenitor cell 

compartment, I performed a single-cell RNA sequencing experiment under the same 

treatment conditions as the bulk sequencing of HSCs in aim1. With this experiment, I 

aimed to determine which cell populations respond and which do not and to define the 

major regulatory changes in the differentiation trajectory upon stress. 
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2.3 Aim 3: Dissect the interplay of proinflammatory cytokines in the acute 
response of HSCs to stress 

 

To find out if there is a common mechanism that regulates the increase in HSCs 

proliferation after stress conditions. I performed a microarray on HSCs 3h after treating 

mice with various recombinant proinflammatory cytokines (IFNα, IFNγ, TNFα, IL1α, 

IL1β, IL6, LPS, and pIC). Using this approach, I aimed to determine whether 

converging gene expression programs are elicited and which key proinflammatory 

cytokines mediate HSCs activation. 

2.4 Aim 4: Investigating the net impact of proinflammatory cytokine receptor 
signaling in hematopoiesis under homeostasis 

 

Many single knockout (KO) mice in which a proinflammatory pathway is knocked out 

show little effect on basic blood homeostasis. Therefore, I hypothesized that because 

of the convergence of their intracellular signaling pathways, they have overlapping and 

redundant effects and therefore, most likely compensate for each other. Thus, I 

characterized the hematopoietic system in KO mice in which all five major 

proinflammatory cytokine receptors which are known to impact HSCs function under 

stress (Ifnar-/- ,Ifngr-/- ,Tnfrsf1a-/-, Tnfrsf1b-/-, and Il1r-/-) were removed (5KO). Other 

precursor KO mouse lines were used as controls in our experiments.   
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3 Results  
 
3.1 Uncover the mechanisms and dynamics of the stress response of HSCs 

to IFNα 
 
3.1.1 Dynamic analysis of HSCs response to acute IFNα treatment 
 
Our group has shown that treating mice with acute IFNα induces transient proliferation 

of HSCs (Essers et al. 2009). The response of quiescent HSCs to IFNα involves 

increased STAT1, PKB/Akt phosphorylation, and increased expression of Sca-1 

(Pietras et al. 2014; Essers et al. 2009). Nevertheless, the detailed mechanisms 

involved in stress-induced HSCs activation and the dynamics regulating the response 

and recovery of HSCs to acute IFNα remain poorly understood. To gain insights into 

the different phases of this stress response, I performed a dynamics analysis of the 

response of HSCs to acute IFNα treatment, which showed that the mRNA levels of 

interferon-stimulated genes (ISG) in HSCs (Lin- Sca-1+ cKit+ CD150+ CD48- CD34-) 

were upregulated as early as 3 hours (3h) and returned to basal expression levels at 

72 hours (72h) after IFNα treatment (Figure 3.1A), suggesting that HSCs shows first 

signs of sensing IFNα at 3h by increasing expression of ISGs. Moreover, the data 

confirmed that HSCs reached the maximal increase in proliferation at 24 hours (24h) 

and returned to quiescence at 72h, as measured by BrdU proliferation assay (Figure 

3.1B). In addition, the mean cell number of HSCs calculated based on their abundance 

in the BM and the actual BM cellularity did not change significantly (Figure 3.1C). Using 

these analyses, I found that the three-time points (3h, 24h, and 72h) effectively 

elucidated the dynamics of the HSCs response to acute IFNα treatment: sensing (3h), 

proliferation response (24h), and recovery back to quiescence (72h).  

3.1.2 Time-series global transcriptional profiling of HSCs response to IFNα 
treatment 

 
To decipher the mechanisms regulating sensing, response, and recovery of HSCs to 

acute IFNα treatment, time-series bulk RNA sequencing was performed to identify the 

major changes in gene expression at each of the three-time points identified in section 

3.1.1. Mice were treated with IFNα, and BM was isolated after 3h, 24h, and 72h. Three 

to four biological replicates were used per treatment time point, and I sorted between 
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Figure 3.1: Dynamics analysis of HSCs response to acute IFNα treatment reveals distinct phases. 
Wild type (WT) mice were treated subcutaneous (s.c.) with either 100 μl PBS control or IFNα (50.000 

international units (IU) per 20g mouse) and sacrificed after 3h, 6h, and 72h (for panel A) or after 3h, 

24h, and 72h (for panels B and C). (A) Interferon response genes (ISGs) transcriptional levels were 

quantified using qPCR in HSCs (Lin- Sca-1+ cKit+ CD150+ CD48- CD34-). 3 biological replicates were 

used in the analysis. (B) Cell proliferation in HSCs (Lin- Sca-1+ cKit+ CD150+ CD48- CD34-) was 
measured using 14h BrdU (18 mg/kg) uptake. 3 biological replicates were used in the analysis. (C) The 

absolute numbers of indicated bone marrow (BM) HSCs were counted, with 8 biological replicates per 

group from two independent experiments. Statistical significance was evaluated using an ordinary one-

way ANOVA with Holm-Šídák's multiple comparisons test. The data represent mean ± standard error of 

the mean (SEM) from at least two independent experiments. The significance level was set at ns; non-

significant, **P≤ 0.01, ***P≤ 0.001. 

3000-5000 HSCs (Lin- ckit+ CD150+ CD48- CD34-) from each biological replicate. I 

excluded Sca-1 from the gating strategy because it has been reported to be abnormally 

expressed in most HSPCs following inflammation, posing a major challenge in 

identifying HSCs under inflammatory conditions (Kanayama et al. 2020; Pietras et al. 

2014). Total RNA was isolated, and samples were measured by the Genomics and 

Proteomics Core Facility of the German Cancer Research Center (DKFZ) in 

Heidelberg (Figure 3.2A). The facility prepared sequencing libraries and performed 

quality control and sequencing. Raw sequencing data in FASTQ format were aligned 

and quantified by the Omics IT and Data Management (ODCF) Core Facility. 

Subsequently, I performed the downstream analysis. I first wanted to generate a global 

overview of the gene expression time-course data and determine intra- and inter-group 

variability. Hierarchical clustering confirmed that all the samples at a given time point 

clustered together and were separated from each other (Figure 3.2B). 
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Figure 3.2: Time-series bulk RNA sequencing of HSCs following IFNα treatment.  
(A) Scheme for Bulk RNA sequencing experimental procedure. Mice were treated with IFNα and 

sacrificed after 3h ,24h and 72h. 3-4 biological replicates were used per condition. Bones (tibia, femur 

and hips) were isolated, cleaned and then flushed. Cells were then stained with markers for HSCs (Lin- 

cKit+ CD150+ CD48- CD34-) then sorted. RNA was isolated from sorted cells; libraries were then 
prepared and sequenced. (B) Hierarchical clustering based on Euclidian distance was performed with 

the hclust function implemented in R. (C) Principal component analysis (PCA).  

 

Moreover, principal component analysis (PCA) demonstrated robust grouping among 

biological replicates within each time point, and the sample groups spread among 

principal component (PC) 1, which accounted for 21.40% of the variance, and PC 2 

which accounted for an additional 11.48% (Figure 3.2C). 3h separated on PC2, 24h 

separated based on a combination of PC2 and PC1 whereas 72h separated on PC1 

(Figure 3.2C). The top 50 variable genes in the dataset were found to be ISGs and 

were highly increased in expression at the 3h time point, decreased again at 24h, and 

returned to baseline at 72h (Figure 3.3A). This suggests that the immediate response 

to IFNα occurs at an early stage and is driven mainly by ISGs. Next, I performed 

differential gene expression analysis. Because our dataset consisted of three 

treatment timepoints, I used the negative binomial distribution in DESeq2 (Love et al. 

2014) and performed three pairwise comparisons with the PBS control samples. 
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Figure 3.3: Time-dependent molecular signatures in HSCs following IFNα treatment.  

(A) Heatmap showing the top 50 variable genes. Analysis was applied to read counts that were 

normalized with the variance stabilizing transformation (VST) implemented in the R package Deseq2. 

(B-C) Venn diagram illustrating the number of unique and shared differentially expressed genes (DEGs) 

for each comparison. Venn diagram showing the DEGs of upregulated (B) and downregulated genes 

(C) in HSCs at all three time points in comparison to the PBS control. Differential gene expression 

analysis was performed using DEseq2 package. (D) heatmap showing the common signature of 

upregulated and downregulated genes in HSCs at all time points. 
 

I obtained 759, 1660, and 450 differentially expressed genes (padj ≤ 0.05, logFC ≥ 1, 

≤-1) for the 3h, 24h, and 72h time points, respectively, compared to the PBS control 

samples (Figure 3.3B,C). I have noted a strong overlap in the global expression and 

the differentially expressed genes (DEGs) between the 24h and 72h timepoints 

compared to the 3h timepoint (Figure 3.3B,C). 
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Figure 3.4: Differential gene expression analysis reveals unique molecular signatures in HSCs 
following IFNα treatment at various time points.  
(A-C) Volcano plots showing differentially expressed genes (DEGs) in HSCs at 3h (A), 24h (B), 72h (C) 
compared to the PBS control samples. 

Indeed, out of 274 upregulated and 159 downregulated DEGs at the 72h timepoint, 

176 (64%) and 70 (44%) DEGs were also found to be significantly increased or 

decreased, respectively at the 24h timepoint (Figure 3.3B,C). Next, I looked for DEGs 

that were concurrently downregulated or upregulated at all three time points. Strikingly, 

I found a common signature of 33 upregulated and 6 downregulated genes (padj ≤ 

0.05, logFC ≥ 1, ≤-1) (Figure 3.3D). The upregulated signature included genes reported 

to play a role in apoptosis (Fos), DNA repair (Spire2), self-renewal, lineage 

differentiation (Klf4), and extracellular matrix remodeling (Mmp27). The downregulated 

signature included genes involved in fatty acid metabolism (Slc27a6), cell adhesion 

(Epcam), and actin cytoskeleton organization (Arhgef17) (Figure 3.3D). Thus, the 

results of differential gene expression analysis showed a common signature of up and 

downregulated genes across all three treatment time points, indicating potential key 

IFNα factors. The top DEGs at the different time points are presented in the volcano 

plots (Figure 3.4A-C). This highlighted a large group of ISGs (Usp18, Stat2, Ifit1, and 

Ifit3) being expressed at 3h compared to the rest of the time points (Figure 3.4A). 
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Interestingly, I noted a marked reduction in the expression of genes that play a role in 

the early transcriptional priming of the myeloid lineage (Hdc) in the 24h dataset (Figure 

3.4B). Remarkably, among the top-ranked downregulated genes in the 24h, I found 

Serpine2, which has been reported to play a role in protecting against death during 

stress, suggesting a mechanistic link for how IFNα can prime HSCs for apoptosis 

(Pietras et al. 2014) (Figure 3.4B). Genes known to regulate HSCs quiescence, such 

as Egr1, Zfp36, and Fos, were upregulated at 72h (Figure 3.4C), suggesting a genetic 

program to revert to quiescence at the acute-activation stage. In conclusion, differential 

expression analysis revealed unique molecular signatures for HSCs following IFNα 

treatment at various time points. 

 

3.1.3 Transcriptional signatures of HSCs at different phases of acute response 
to IFNα treatment 

 
To gain insights into the biological processes differentially represented at each time 

point, I performed gene set enrichment analysis (GSEA) on the entire set of significant 

DEGs (padj ≤ 0.05) from each of the three comparisons using the MsigDB database 

(Subramanian et al. 2005; Liberzon et al. 2011). This analysis identified 173, 254, and 

104 positively enriched gene sets (false discovery rate [FDR]<0.05) for the 3h, 24h, 

and 72h time points, respectively, compared to the PBS control samples (Figure 3.5A). 

Moreover, I found 510 and 209 negatively enriched gene sets (FDR <0.05) at the 24h 

and 72h time points, respectively (Figure 3.5B). There were no pathways negatively 

enriched for the 3h dataset at FDR <0.05. The Venn diagram shows that more than 

50% of the gene sets enriched in the 72h were also enriched in the 24h dataset (Figure 

3.5A,B). The top gene sets enriched in the 3h analysis included the categories 

“Interferon alpha response” (NES= 2.84), “Response to virus” (NES= 2.84), “Lipid 

Oxidation'' (NES= -1.81), and “Bile acid metabolic processes” (NES= -2.0) (Figure 

3.5C). While, the top gene sets for the 24h analysis were including “Ribosome” (NES= 

2.99), “Mitochondrial respiratory chain complex” (NES= 2.85), “Myeloid “Leukocyte 

mediated immunity” (NES= -2.11), and “phagocytosis” (NES= -2.18) (Figure 3.5D).  
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Figure 3.5: GSEA reveals time-dependent regulation of biological processes in HSCs after IFNα 
treatment. 

(A-B) Venn diagram illustrating the number of unique and shared up (A) and downregulated (B) GO 

terms for each comparison (3h vs control, 24h vs control, and 72h vs control). (C-E) Enrichment plots 

for top four data sets enriched in GSEA 3h vs control analysis (C), 24h vs control analysis (D) and in 

72h vs control analysis (E). NES, normalized enrichment score. (F-H) Enrichment maps created and 
modified by cytoscape showing gene sets with FDR<=0.01 for 3h vs control analysis (F), 24h vs control 

analysis (G) and in 72h vs control analysis (H). Red and blue circles represent distinct pathways that 

are positively or negatively enriched respectively, in the treatment timepoint vs the control. 
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For the 72h analysis, the most enriched gene sets included “Mitochondrial Respiratory 

chain complex assembly” (NES= 2.67), “Ribosome” (NES= 2.40), “Secretory Granule 

membrane” (NES= -2.10), “Platelet Activation” (NES= -2.29) (Figure 3.5E). To obtain 

a better overview of all biological processes suggested to be differentially regulated at  

each time point, enrichment maps were created to organize the large number of gene 

sets obtained in a network. The enrichment maps showed the most significantly 

enriched gene ontology (GO) categories (FDR ≤ 0.01). This analysis revealed that 

processes associated with DNA metabolic processes, replication, and nuclear division, 

in addition to cell cycle and chromatin remodeling processes, were positively enriched  

at all three-time points (Figure 3.5F-H). Furthermore, the enrichment map showed that 

the 3h time point was further enriched in gene categories related to immune processes, 

such as defense response to viruses, regulation of innate immune responses, antigen 

presentation, processing, and interferon response processes (Figure 3.5F). Most of 

the processes enriched in the 24h and 72h datasets were related to energy 

metabolism, as I found an overrepresentation of processes related to the respiratory 

chain complex, including increased mitochondrial activity, oxidative phosphorylation, 

ATP metabolic processes, oxidoreductase activity, and ribosomal activity (Figure 

3.5G,H), which is consistent with the aerobic metabolic program employed by cycling 

HSCs (Suda, Takubo, and Semenza 2011). It is interesting to note that HSCs remain 

metabolically active at 72h (Figure 3.5H), despite phenotypically returning to 

quiescence. 

 

The categories negatively enriched in the 24h and 72h datasets related to the 

regulation of cytoskeleton organization, including actin filament assembly, exocytic 

processes, and Golgi-associated vesicles, specifically COPII-coated vesicle 

membranes, in addition to platelet aggregation processes (Figure 3.5G,H). The 24h 

dataset further included other metabolic categories that were negatively enriched, 

including glycoprotein metabolic, carbohydrate biosynthetic, and lipid metabolic 

processes. Interestingly, the 24h negatively enriched categories also included terms 

involving the categories of “Neutrophil Degranulation” (Figure 3.5G). Through this 

analysis, I identified the dynamics of biological categories activated and suppressed in 

HSCs after IFNα treatment. This may contribute to our understanding of the 

mechanisms underlying HSCs quiescence and activation. 
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Figure 3.6: KEGG pathway GSEA analysis reveals changes in core metabolism in HSCs following 
IFNα treatment. 

(A) The top enriched KEGG metabolic pathways. (B-C) GSEA plot and heatmap of genes enriched in 

KEGG Glyolysis_Gluconeogenesis (B) and in KEGG Oxidative Phosphoylation pathways (C). NES, 

normalized enrichment score. 

 

3.1.4 Transcriptomic profiling of HSCs metabolism during the acute phases of 
IFNα treatment 

 
The data shows that the exposure of HSCs to IFNα treatment predominantly activates 

the expression of genes related to metabolism (Figure 3.5G,H). Currently, the 

mechanisms by which HSCs metabolism is regulated in response to inflammatory 

challenges are not fully understood. Here, I used the transcriptomic data to interrogate 

the global metabolic changes in HSCs following IFNα treatment. By performing GSEA  
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using the Kyoto Encyclopedia of Genes and Genomes (KEGG) (M. Kanehisa and Goto 

2000; Minoru Kanehisa et al. 2023) definition of metabolic pathways, I observed that 

the transition from quiescence to activation following IFNα treatment is accompanied 

by significant metabolic changes (Figure 3.6A). In line with the literature, the energy 

metabolism in HSCs is reprogrammed from anaerobic glycolysis to oxidative 

respiration (Suda, Takubo, and Semenza 2011). Within a 3h time frame, IFNα already  

induced metabolic changes, which facilitated a rapid shift within HSCs from glycolytic 

to OXPHOS, and this effect is sustained even at 72h post-injection when HSCs return 

to quiescence as indicated by a decrease in glycolytic genes including Pdk2, Pkm and 

Ldha (Figure 3.6B) and the concurrent upregulation of OXPHOS genes including 

Atp5e, Cox5a, and Ndufa10 (Figure 3.6C). These results show that the transition from 

inactive to active HSPCs starts with an initial upregulation of glycolytic and a sustained 

upregulation of OXPHOS genes rather than a binary switch on/off pattern. In line with  

previous findings, retinoic acid metabolism is downregulated following IFNα (Cabezas-

Wallscheid et al. 2017); however, here I show that this effect is still present even at 

72h when the cells phenotypically are back to their quiescent state (Figure 3.6A). Both 

pyruvate and inositol phosphate carbohydrate metabolism pathways were upregulated 

shortly at 3h, and this effect was reversed at 24h (Figure 3.6A).  

 

Notably, other carbohydrate metabolic pathways, including the pentose phosphate 

pathway (PPP) and citrate (TCA) cycle, were negatively enriched at 3h and stayed 

downregulated until 72h in comparison to PBS control samples (Figure 3.7A,B 

respectively). This contrasts with previous findings that have reported an increase in 

TCA and PPP in HSCs following inflammatory stress. While previous studies reported 

increased HSC purine metabolism in response to stress (Karigane et al. 2016), I found 

a sustained downregulation at all time points after IFNα treatment (Figure 

3.7C).  According to recent research by Mistry et al., the metabolism of HSCs shifts to 

fatty acid metabolism during lipopolysaccharide (LPS) triggered inflammation (Mistry 

et al. 2021). In contrast to this study, I found persistent downregulation of fatty acid 

metabolism throughout the treatment period (Figure 3.7D). In summary, HSCs showed 

a significant metabolic shift to OXPHOS that lasted up to 72h. In addition, HSCs 

showed an unprecedented decrease in TCA, PPP, fatty acid, and purine metabolism 

after IFNα treatment. 
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Figure 3.7: KEGG pathway reveals changes in core metabolism in HSCs following IFNα 
treatment. 

(A-D) GSEA plot and heatmap of genes enriched in KEGG pentose phosphate pathway (A), KEGG 

citrate cycle TCA cycle (B), KEGG purine metabolism (C), and KEGG fatty acid metabolism (D). NES, 

normalized enrichment score. 
 

3.1.5 HSCs are less myeloid primed following IFNα treatment 
 
Metabolic cues play an important role in deciding the fate of HSCs (Morganti, Cabezas-

Wallscheid, and Ito et al. 2022). Increased cellular metabolism during stress produces 

important metabolites used by HSCs as an energy source to promote differentiation 
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Figure 3.8: Impaired myeloid priming in HSCs following IFNα treatment.  

(A-B) Bar plots showing DESeq2 normalized gene expression values for genes associated with lipid 

metabolism Sptlc1 and Sptssa (A) and for the master myeloid transcription factor Spi1 (B). 3-4 biological 

replicates were used in the analysis. Statistical significance was determined by an ordinary one-way 

ANOVA using Holm-Šídák's multiple comparisons test. ns; non-significant, *P≤0.05, **P≤ 0.01, 

***P≤ 0.001.  Data represent mean ± standard error of the mean (SEM). (C) GSEA plots of Myeloid LT-
HSC molecular signatures from Mann et al., significantly enriched (pvalue <=1) over the 24h vs control 

(left) and 72h vs control (right). NES, normalized enrichment score.  

 

and thus drive emergency hematopoiesis (Maryanovich and Ito et al. 2022). Therefore, 

the observed downregulation of TCA, PPP, fatty acid, and purine metabolism suggests 

that HSCs have a reduced differentiation capability following IFNα treatment. 

Accordingly, I found Sptlc1 and Sptssa (Figure 3.8A,B) among the genes associated 

with deregulated fatty acid metabolism. Previous studies have shown that they play a 

central role in myelopoiesis (Parthibane et al. 2019). Interestingly, I found that the 

master regulator of myeloid differentiation Spi1 was downregulated after 3h and was 

sustained up to 72h (Figure 3.8B). Next, I investigated whether myeloid priming was 

impaired in HSCs. The 24h gene expression signature showed significant 

downregulation of the previously reported myeloid-biased LT-HSC signature (Mann et 

al. 2018), and this effect persisted up to 72h (Figure 3.8C).  
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Taken together, the downregulation of myeloid priming of HSCs, along with the 

significant downregulation of leukocyte activation, phagocytosis, and neutrophil 

degranulation processes observed at 24h (Figure 3.5G), suggests that HSCs become 

less myeloid-biased following IFNα treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 
 

45 
 

3.2 Understanding the heterogeneity of hematopoietic stem and progenitor 
cells (HSPCs) response to IFNα 

In the first part of my thesis, I focused on identifying the transcriptional changes of bulk 

HSCs after IFNα treatment. Building on these findings, the second part of my thesis 

aims to examine the heterogeneity of the response of HSCs and progenitor (HSPCs) 

cells to IFNα treatment, with the goal of gaining a more comprehensive understanding 

of the adaptations that occur throughout the compartment. 

The results presented in this thesis section 3.2 are part of a manuscript currently under 

review for publication and is available online as a preprint at BioRxiv (Bouman, 

Demerdash et al. 2023) and some portions of the text, figures, and legends have been 

adapted from this co-authored manuscript. (see author contributions section 7 for more 

details) 

3.2.1 Differential IFNα induced phenotypic alterations on the primitive LSKs and 
more committed LS-Ks 

 
The molecular and cellular dynamics of HSPCs during inflammation remain poorly 

understood. To fill this gap and better understand the effects of IFNα-induced transient 

HSCs proliferation and correlate this effect with the response of downstream progenitor 

cells, I decided to examine the HSPCs dynamics in response to IFNα treatment, 

following the same time points I used to examine the response of bulk HSCs in the 

previous results section 3.1.2. I indeed observe that IFNα triggers a BM remodeling of 

HSPCs, as the FACs analysis data show potential alterations in population structure 

within the HSPCs (Figure 3.9A). However, one of the major limitations in studying the 

response of HSPCs to inflammatory stress is that the surface markers normally used 

to isolate these cells undergo massive changes upon inflammation. In accordance with 

previous results, I found similar dynamics in the expression of stem cell markers at the 

protein level as with the proliferation of HSCs (Figure 3.1B). This was most pronounced 

for Sca-1, which showed the greatest change at 24h (Figure 3.9B). The 3h time point 

showed no remarkable changes for the Sca-1 marker (Figure 3.9B), as reported by 

flow cytometry. Other stem cell markers such as cKit, CD150, and CD48 are not altered 

by the treatment (Figure 3.9C-E). Next, I analyzed changes in HSPCs abundance over 

time using common surface marker combinations (Table 7). 
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Figure 3.9: The primitive LSKs and more committed LS-Ks display differential phenotypic 
alterations upon IFNα treatment. 

(A) Example of FACS plots of Lin- cKit+ population of BM cells treated with PBS control or 3h, 24h and 

72h with IFNα (B-E) Quantification of Sca-1 (B), cKit (C), CD150 (D), CD48 (E) expression (calculated 
based on median fluorescence intensity) of HSCs (Lin- Sca-1+ cKit+ CD150+ CD48- CD34-). treated with 

control or 3h, 24h or 72h with IFNα. (F-K) Absolute numbers of the indicated BM populations. BM was 

isolated from tibia, femur and hips of the mice. Shown are LSK (Lin- Sca-1+ cKit+) (F), LSKSLAM (Lin- 

Sca-1+ cKit+ CD150+ CD48-) (G), LS-K (Lin- Sca-1- cKit+) (H), CMP (Common Myeloid progenitors) (I), 
GMP (granulocytic monocytic progenitors) (J), MEP (Megakaryocytic erythroid progenitors) (K). 8 

biological replicates per group from two independent experiments were used. Statistical significance in 

was determined by an ordinary one-way ANOVA using Holm-Šídák's multiple comparisons test. At least 
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2 independent experiments were performed; ns; non-significant, *P≤0.05, **P≤ 0.01, ***P≤ 0.001, 

****P<0.0001. Data represent mean ± standard error of the mean (SEM). 

 

The mean cell count for each of these populations was calculated based on their 

frequency in BM and the actual BM cell count at each time point. The results varied 

depending on the degree of stemness. In particular, the primitive cell populations, i.e., 

LSK (Lin- Sca-1+ cKit+) and LSK SLAM (Lin- Sca-1+ cKit+ CD150+ CD48-), increase 

significantly after 24h and return to homeostatic levels after 72h (Figure 3.9F,G). The 

opposite is true for the more committed LS-K (Lin-  Sca-1- cKit+) progenitor cells and 

their associated subpopulations (CMP, GMP, and MEP). They show the greatest 

decrease in cell frequency after 24h (Figure 3.9H-K). Interestingly, the decrease was 

significant in the LS-K compartment much earlier than in the primitive cell populations 

starting at 3h (Figure 3.9H). At 72h, CMPs and GMPs still show a significant decrease 

compared to the PBS control level but a trend toward recovery (Figure 3.9I-J), whereas 

MEP numbers had already recovered at 72h (Figure 3.9K). Overall, our phenotypic 

analysis of HSPCs over time shows that IFNα-induced changes in Sca-1 marker 

expression follow similar dynamics to changes in the frequency of LSKs and 

proliferation of HSCs. It also shows that the effects of IFNα treatment on cell numbers 

are inversely correlated between LSKs and LS-Ks. 

 

3.2.2 A longitudinal HSPCs single-cell dataset capturing inflammation 
dynamics 

 
As a result of the massive changes in Sca-1 marker due to IFNα treatment, the 

molecular and functional analysis of HSCs and progenitors under stress is complicated 

(Ali and Park et al. 2020). Therefore, the effects observed in FACs-based analysis 

could be due to either actual changes in protein expression of cell markers in a given 

population or an actual increase or decrease in cell frequency, or even both. To 

circumvent this issue and study the inflammatory stress response cascade of the BM 

HSPCs populations in an unbiased manner, I performed a time course single-cell RNA 

sequencing experiment which is specifically designed to be unbiased and to overcome 

the limitations associated with conventional marker-based FACS. Accordingly, BM 

cells were collected from four different mice for each IFNα treatment timepoint (in 

addition to four control mice injected with PBS control). Using oligo-tagged antibodies,  
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Figure 3.10: A single-cell time series RNAseq dataset to characterize the response of HSPCs to 
IFNα treatment.  

(A) Scheme illustrating the experimental steps to acquire the single-cell time series RNA sequencing 

dataset. (B-C) UMAP plots of the 4 subsets before (B) and after integration (C) colored by subset. (D) 
Two-dimensional UMAP embedding of cells from all time points, colored for the different identified 

clusters as indicated in the legend. (E) Expression of marker genes in the different clusters in the control 
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dataset. Hematopoetic stem cells (HSCs); Erythroid (Ery.); LMPP (lymphoid primed multipotent 

progenitors); Myeloid (Mye.); Megakaryotic (MK.); Eosinophils (Eos.). 

 

and so-called hashtags, I labeled the cells from each biological replicate and timepoint 

to address inter-animal heterogeneity of the inflammatory stress response. Following 

cell hashing, BM cells from mice of the same treatment were pooled together. BM cells 

were then sorted by using the broad lineage negative (Lin-) and c-kit positive (cKit+) 

(LK) gating strategy to capture a wide spectrum of the HSPCs transcriptional 

landscape independent of presumed changes in marker expression or cell frequencies. 

To guarantee sufficient numbers of HSCs for analysis, I additionally enriched the 

sorted populations with LKSLAMCD34- HSCs, since they are much less frequent than 

the other populations in the LK gate. The cells from all four experimental time points 

(control, 3h, 24h, and 72h) were sequenced simultaneously using the 10x Genomics 

platform (Figure 3.10A). For the data analysis, I collaborated with Brigitte Bouman from 

the division of computational methodologies and omic analytics in the Max-Delbrück-

Centrum für Molekulare Medizin (MDC), Berlin. After filtering the datasets as described 

in the methods, the control, 3h, 24h, and 72h subsets contained 2472, 1661, 3462, 

and 2449 cells, respectively. Since we have single records with multiple conditions, we 

first executed each condition separately. By looking at the datasets before integration, 

we observe shifts in the perturbed system, with the 3h subset looking the most different 

(Figure 3.10B). In contrast, the 24h and 72h subsets look similar to each other (Figure 

3.10B) in line with the bulk RNAseq analysis in results section 3.1.2 Next, we 

performed data integration to help us ensure that the same cell types cluster together 

and to identify if we have condition-specific clusters. The results show that no new cell 

states arise upon IFNα treatment as all cells of one subset align with the same cells of 

the other subsets (Figure 3.10C). Next, to determine the cell types present, we 

performed clustering analysis initially on the control subset, where we distinguished 14 

clusters of cells. To get a more fine-grained understanding of the IFNα response, some 

cell types are subdivided into multiple clusters (e.g. HSCs #1 and #2) (Figure 3.10D). 

Cell clusters were annotated using known marker genes and by comparing our dataset 

to a previously published dataset (Nestorowa, Hamey, Sala, et al. 2016). HSCs are 

represented by genes such as Procr (Epcr), Ly6a (Sca1), and kit (Figure 3.10E). 

LMPPs share expression of Procr (Epcr) and Ly6a (Sca1) with HSCs but with lower  
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Figure 3.11: IFNα treatment induces heterogeneous ISG response in HSPCs.  

(A-B) UMAP embedding (A), and violin plot (B) of Ifnar expression in the four subsets (control, 3h, 24h, 

and 72h) (C-D) UMAP projection (C), and violin plot (D) of the ISG score in the different cell clusters in 

the four different time points. Figure is adapted from (Bouman, Demerdash et al. 2023).  
 

expression and are differentiated by higher expression of Cd34, Dntt, and Satb1. 

Myeloid progenitors are characterized by the expression of genes such as Mpo and 

Calr, whereas erythroid progenitors were characterized by Klf1 and Car1 expression. 

Megakaryocytic progenitors were identified by having the highest expression of Pf4 

and Sdpr. Finally, Eosinophil progenitors were identified by the expression of Cd63 

and Cpa3 (Figure 3.10E). The cell type labels in the control subset were transferred to 

the other three treatment time point subsets and marker gene expression confirmed 

the cell type labels in the response time points. The advantage of this approach is that 

it ensures that we can study the same cell type over time, as we avoid relabeling of the 

cells undergoing inflammation as separate populations. Hence, cell type identity is 

reliably retrieved, even though the conventional marker genes might be subject to 

changes, as is the case during inflammation.  

Analysis of the hashtags confirms that the biological replicates in each timepoint had 

comparable abundances of each cell type label. To explore the effect of the IFNα 

treatment on a global scale, we checked the expression of the interferon α/β receptor 

(Figure 3.11A) to potentially highlight responsive single cell clusters. This result shows 

that all clusters express the receptor almost to the same extent and thus are able to 

directly respond to IFNα (Figure 3.11A,B). Next, we scored each cell for the expression 

of ISGs (Figure 3.11C). Similar to the bulk RNAseq analysis in results section 3.1.2 the 
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largest change in ISGs expression is seen in the 3h time point (Figure 3.11D). After 

72h, the ISGs expression returned to the homeostatic state (Figure 3.11D). 

Interestingly, all clusters showed a change in ISGs expression at 3h, indicating that the 

whole HSPC compartment sensed an increase in IFNα. Despite this, the data indicate 

considerable heterogeneity in the ISGs response between the cell clusters, with HSCs 

showing the biggest change and more downstream progenitors displaying less change 

(Figure 3.11D).  
 
3.2.3 Global and cell type-specific changes in gene expression define 

inflammation response 
 
Next, we performed differential gene expression analysis to understand all genes that 

characterize the IFNα response comprehensively. DEGs were selected between the 

control subset and every treatment time point individually to get a set of response 

genes from any stage of the response. The sets of DEGs were independently found 

for each cell cluster in our dataset. The analysis identified a total of 2501 significant 

response genes. To investigate in which cluster(s) genes are changing the most, we 

scored the top 500 most significant response genes for the total expression change in 

each cluster. After calculating the total change for each cluster, the response genes 

were categorized into 14 different groups, using hierarchical clustering (Figure 3.12A). 

The different groups represent a wide variety of global (groups 1-5), and cluster-

specific (groups 6-14) responding genes (Figure 3.12A). Response genes in groups 1-

5 were universally altered, albeit not to the same extent, in all cell clusters. For 

example, response genes clustering in group 2 showed a global response, as the 

change score varied substantially upon IFNα treatment in all cell clusters (Figure 

3.12A). Pathway enrichment analysis of the global inflammation signature from group 

2 revealed an over-representation of terms associated with translation and ribosomal 

biogenesis (Figure 3.12B). The response genes in groups 1,3, and 4 also showed a 

global response response, but in that case was more specific to the progenitors as the 

stem cells were scored less for response genes in those groups (Figure 3.12A). 

Response genes from those groups were associated with metabolic processes 

involving oxidative phosphorylation, monosaccharide metabolic processes, and purine 

nucleoside biosynthetic processes (Figure 3.12C-E), consistent with the literature that 

HSPCs undergo massive changes in metabolism upon inflammatory stress (Karigane 

and Takubo et al. 2017). 
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Figure 3.12 : Inter-cluster analysis of response genes shows both global and cluster-specific 
responding genes.  

(A) Change score (see Methods) in each cluster for the top 500 response genes, grouped using 

hierarchical clustering. UMAPs on the right show the expression change for each cell cluster averaged 

over all response genes in the corresponding group. On the left are terms summarizing the functional  
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annotation of the response genes associated with the groups. (B-L) GO terms associated with group 2 

(B), 1(C), 3(D),4(E), 5(F), 14(G), 12(H),8(I),10(J),9(K),11(L). The length of each bar represents the 

statistical significance of each term. Figure is adapted from (Bouman, Demerdash et al. 2023). 

 

DEGs belonging to group 5 showed a global response, but myeloid progenitors scored 

lower than the other progenitors in this group and HSCs scored highest (Figure 3.12A). 

Biological processes associated with immune response and response to type-I 

interferon were enriched in this group further supporting the ISGs expression data 

(Figure 3.12F), indicating that all cells sense the changes in IFNα levels. Interestingly, 

the expression changes in groups 12 and 14, which are enriched with HSCs, were also 

associated with immune response and response to type-I interferon (Figure 3.12G,H). 

However, these changes were distinct from those of the response genes in group 5. 

This indicates an HSC-specific immune response that differs from downstream 

progenitors. In addition, groups 12 and 14 included GO terms such as regulation of T 

cell activation and antigen processing and presentation (Figure 3.12G,H). These 

correspond to the recently identified role of HSCs as immunomodulators (Hernández-

Malmierca et al. 2022), which further indicates that this response is specific to HSCs 

and not to progenitors. Therefore, our observations from the bulk HSCs data 

specifically in relation to antigen presentation and immune responses (Figure 3.5F) are 

HSC-specific and do not apply to progenitors.  

Besides global and HSC-specific response genes related to immune response, change 

score analysis also identified groups of response genes enriched in committed 

progenitors and connected to progenitor-specific processes. For example, Change 

scores in groups 8 and 10 were largest for myeloid progenitors and connected with 

biological processes such as phagocytosis, myeloid leukocyte-mediated immunity, as 

well as stem cell differentiation, which are characteristic functions of this cell type 

(Figure 3.12I,J). Groups 9 and 11 showed erythroid and eosinophil progenitor-specific 

expression changes with an overrepresentation of processes related to erythrocyte 

differentiation terms and myeloid development (Figure 3.12K,L). Interestingly, HSCs 

had the highest score for the majority of the groups (Figure 3.12A) and showed a big 

change in the majority of response genes, confirming that HSCs are among the major 

responders in the HSPCs compartment. In summary, our analysis revealed both global 

and cell type-specific inflammatory signatures. We can conclude that although the 
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entire system responds to treatment, the identity of the response varies between cell 

groups, with HSCs exhibiting the greatest transcriptional changes. 

3.2.4 Pseudotime analysis reveals a landscape of gene dynamics in HSPCs 
following IFNɑ treatment 

In order to characterize the dynamics of gene expression during the IFNɑ response we 

wished to infer the trajectory of the response. However, current trajectory inference 

methods won't work because in our longitudinal dataset, both the response and 

recovery after a stimulus are covered. To perform such analysis our collaborators 

introduced a proximity-independent method to recover pseudotime. This novel 

approach transforms the discrete experimental time points into a continuous response 

pseudotime, which is optimally correlated with the actual time labels of the 

measurements. We then used this new response pseudotime approach to identify 

various temporal gene dynamics that follow IFNɑ treatment. Accordingly, we 

categorized the top 500 response genes into 16 patterns based on their expression 

dynamics in pseudotime, using hierarchical clustering (Figure 3.13A). Each pattern 

represents a group of genes with similar expression dynamics following IFNɑ injection. 

The patterns can be subdivided in upregulation (patterns 1-9 and 16) and 

downregulation (patterns 10-15). However, the patterns in both categories show a 

broad diversity in speed of response and recovery. The response genes in pattern 6 

and 7 show a quick response and recovery, where the gene expression initially 

increases, but fully recovers to base-level expression within the response pseudotime 

margins (Figure 3.13A). These patterns represent a conventional response to IFNɑ, as 

can be seen by the number of ISGs that are assigned to this pattern (Figure 3.13B) 

and the GO analysis is enriched with processes related to response to virus, immune 

stimulus and regulation of type I interferon production (Figure 3.13B). Patterns 3 and 

9 resemble patterns 6 and 7, however, the recovery to baseline is slower (Figure 

3.13A). Cox17, Pgk1, Ndufa1, and sec61g are examples of genes in pattern 3 and GO 

analysis shows that this pattern is associated with metabolic processes, mainly 

carbohydrate biosynthetic processes (Figure 3.13C). Pattern 9 is enriched in genes 

such as H2-T23, Gadd45g, Il18 and Tap1 and the GO analysis shows enrichment of 

immune related processes such as T-cell differentiation involved in immune response 

(Figure 3.13D). 
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Figure 3.13: Response pseudotime reveals a landscape of gene dynamics in HSPCs following 
IFNɑ treatment.  

(A) (smoothed) Expression of the top 500 response genes, with cells ordered by pseudotime and genes 

grouped by pattern using hierarchical clustering. A graphical representation of the mean pattern in each 

pattern group is shown on the right. (B-G) GO terms and example of gene expression in pseudotime 

associated with the indicated gene patterns 6(B), 3(C), 9(D), 1(E), 13(F), 10(G). The length of each bar 

represents the statistical significance of each term. Figure is adapted from (Bouman, Demerdash et al. 

2023). 
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For other patterns such as pattern 16 their phase of upregulation takes longer (Figure 

3.13A). Additionally, the heatmap showcases a variety of gene profiles with a sustained 

upregulation (pattern 1&2), which are associated with translation and other 

biosynthetic processes (Figure 3.13E). On the contrary we also identify genes that fail 

to recover to initial expression levels after downregulation (patterns 10-14). These 

patterns included genes linked to cell cycle such as Ccne2, Cdc20, and Cdk1, and 

other genes related to apoptosis such as Birc5 (Figure 3.13F). Interestingly, the 

majority of these downregulated patterns included genes that were linked to myeloid 

cell activity such as S100a8, S100a9, Rgcc and Elane (Figure 3.13G). This would 

suggest that myeloid cell biology is impaired upon the IFNɑ treatment, an observation 

described for many other proinflammatory cytokines (Matatall et al. 2014; Pietras et al. 

2016; Yamashita and Passegué 2019) but IFNɑ. Taken together, the IFNɑ responding 

genes show a variety of expression patterns, with different biological functions. Among 

the upregulated patterns are mainly those related to metabolic, translational, immune, 

and interferon processes. Conversely, downregulated patterns are related to myeloid 

function, cell cycle, and other processes that inhibit apoptosis. 

3.2.5 Cluster-specific dynamics of response genes  
 
Next, we wanted to understand the dynamic changes of the global and cluster-specific 

inflammation signature. Therefore, we combined the results on how response genes 

changed their expression (Figure 3.13A), whether these changes were global or 

cluster-specific (Figure 3.12A), as well as the biological functions these genes were 

linked to. Figure 3.14A shows response genes from the cell type specificity groups 

assigned to their pattern. Patterns 2 and 9, showing a fast increase combined with a 

slower (pattern 2) or fast (pattern 9) recovery, were the two most commonly found 

patterns among the groups, as 12 of the 14 groups had response genes associated 

with these patterns (Figure 3.14A). Genes from these patterns were mainly related to 

immune responses (Figure 3.13D), highlighting that the sensing and response to IFNɑ 

is fast and present in all groups and clusters. The majority of the global response genes 

from groups 1-4 are assigned to pattern 1, showing that the identified global 

biosynthetic activity (Figure 3.12B) enriched in ribosomal genes (e.g Rpl35, Rps27) is 

increased in HSPCs early in the treatment and remained active even in the recovering 

phase (Figure 3.14B). 
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Figure 3.14: Dynamic Changes in Global and Cluster-Specific Inflammation Signatures in HSPCs 
Compartment.  

(A) A breakdown of the response gene patterns in each change score group. Each bar represents the 

total amount of response genes within that pattern in the group and how abundant each pattern is within  

the total. (B-F) Examples of gene expression in pseudotime for translation (Rpl35, Rps27) (B), 

metabolism (Atp5e, Cox7c, Hk2, Pgk1, Nme2, Pnp) (C-E), and immune response (Irf7, Irf9) (F) specific 

genes (G-I) Pseudotemporal expression of HSC-specific genes (Ifit2, Sca-1) (G) and myeloid-specific 

genes (Csf1r, Irf8) (H) and erythroid specific genes (Mki67, Car1, Casp6, Jun) (I). Figure is adapted 

from (Bouman, Demerdash et al. 2023). 
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Moreover, the metabolic signature observed for groups 1, 3, and 4 (Figure 3.12 C-E) 

is dynamically regulated. An increase in oxidative phosphorylation (OXPHOS) genes 

in HSPCs has been reported in inflammation (Suda, Takubo, and Semenza et al. 

2011), which is also observed here, with a rapid (3h) and sustained increase in Atp5e 

and Cox7c, for example (Figure 3.14C). On the other hand, there is also a rapid 

response and recovery in glycolytic genes Hk2 and Pgk1 (Figure 3.14D). Overall, these 

data suggest that the transition from inactive to active HSPCs starts with an initial 

upregulation of glycolytic and a sustained upregulation of OXPHOS genes rather than 

a binary (on/off) switch between glycolysis and OXPHOS. Moreover, among the 

globally changing metabolic genes, we observe genes involved in nucleotide 

biosynthesis, e.g., Pnp and Nme2, following an initial upregulation followed by a 

sustained downregulation (Figure 3.14E). 

In addition to the diversity of dynamics observed globally, there were also gene 

patterns enriched in specific clusters.  For example, group 5 (global with the highest 

changes in HSCs) is mainly enriched with gene patterns that increase very early after 

treatment and also quickly return to homeostatic levels (such as Irf7 and Irf9) (Figure 

3.14F). Similar patterns are also found in HSC-specific groups 12 and 14 (for example 

Ifit2, Sca-1, Il18, Gadd45g, Figure 3.14G), showing that the HSC-specific response 

genes follow rapid interferon and immune response dynamics (patterns 6, 7, 9). 

Interestingly, the downregulated patterns [10-15] are mostly enriched with response 

genes from the myeloid (groups 8 and 10) and erythroid (groups 6 and 9) specific 

groups. Notably, myeloid-specific groups exhibited sustained downregulation (patterns 

10,11,12 and 14) of response genes including Slpi, Irf8, Ctsh, and Rgcc, all associated 

with myeloid cell differentiation and functional programs (Figure 3.14H). Whereas, 

response genes associated with the erythroid progenitors have faster dynamics and 

recovery following pattern 15 and these include genes such as Mki67, Casp6, Jun, and 

Car1 (Figure 3.14I). In conclusion, the behavior of cluster-specific signatures varies 

greatly. HSCs exhibit predominantly rapid upregulation dynamics, whereas 

downstream progenitors, especially those in the myeloid and erythroid lineages, mostly 

display downregulation of their response genes. The global signature, on the other 

hand, demonstrates sustained upregulation of biosynthetic activity and dynamic 

metabolic changes. These findings not only provide insight into gene dynamics during 
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inflammation induction in the HSPC compartment but also imply reduced myeloid 

differentiation in myeloid progenitor clusters. 

3.2.6 Abundance analysis shows myeloid depletion and HSCs enrichment 
following IFNɑ treatment 

Having understood the molecular properties of HSPC clusters after IFNɑ treatment, 

we next performed differential abundance analysis to investigate the possible effects 

of reduced transcriptional programs for myeloid differentiation and function on the size 

of the progenitor compartment. Thus far, it is not clear whether acute IFNɑ exposure 

affects the number/ abundance of HSPCs in the BM. In order to check this we used 

Milo package (Dann et al. 2022) which models cellular states as overlapping 

neighborhoods on a KNN graph rather than relying on clustering cells into discrete 

groups and thereby increasing the power and resolution of the differential abundance 

testing in a continuum system such as the hematopoietic system. At FDR 10%, we can 

observe multiple neighborhoods that are differentially abundant (Figure 3.15A). Each 

neighborhood was assigned to the cell type most commonly found within the 

neighborhood. The abundance of HSCs only slightly increased in HSCs #2 at 3h, but 

was back to normal at 72h (Figure 3.15B,C). Even though most progenitor-enriched 

clusters showed a reduction at 3h, the majority returned to normal by 24h or 72h 

(Figure 3.15B). Surprisingly, IFNɑ causes a strong reduction of the myeloid progenitors 

(Myel. prog. #3), which was not restored within 72h post-treatment (Figure 3.15 

B,C). Thus, this unbiased (i.e., abundance analysis of cell types based on the 

expression of several genes rather than specific markers) single-cell investigation of 

the cell type frequency in the HSPC compartment showed that acute IFNɑ treatment 

resulted in a slight enrichment of HSCs at the early time point, but a sustained 

reduction in the most committed myeloid progenitors over the whole time course of the 

response (Figure 3.15B,C). This is consistent with our phenotypic analysis in section 

3.2.1. However, this is in contrast to the widely held view that the decreased frequency 

of LS-K (consisting of myeloid, erythroid, and megakaryocytic progenitor cells) and the 

concomitant increase in LSKs (consisting of HSCs and LMPPs) after IFNα stimulation 

is mainly due to contaminated myeloid progenitor cells that have reacquired Sca-1 

expression (and would fall into the LSK gate) upon inflammation (Pietras et al. 2014; 

Kanayama et al. 2020).  
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Figure 3.15: Abundance analysis reveals a sustained reduction in myeloid progenitors following 
IFNɑ treatment.  

(A) Neighborhood graphs with the results from Milo differential abundance testing between the control 

dataset and post IFNα treatment subsets (3h, 24h, 72h). Nodes represent neighborhoods, coloured by 

their log fold change (red: more abundant, blue: less abundant, white: non-differentially abundant.) 

Graph edges represent the number of cells shared between two neighborhoods. (B) Beeswarm plot of 

the distribution of log fold changes in each cluster. Neighborhoods are assigned to clusters based on 

the most commonly found cluster label in the neighborhood. (C), Relative abundance of clusters in each 

time point. (D-E) UMAP embeddings (D) and violin plot (E) of Sca-1 expression in the control, 3h, 24h, 

and 72h timepoints. Figure is adapted from (Bouman, Demerdash et al. 2023). 

However, when analyzing Sca-1 gene expression in our dataset, no change in Sca-1 

mRNA transcripts could be observed in myeloid progenitors (Figure 3.15D,E). In 

contrast, IFNα induced upregulation of Sca-1 was solely observed in HSC and LMPP 

clusters, with the strongest increase in the HSCs (Figure 3.15D,E). Hence, this 
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unbiased investigation of the different clusters based solely on their gene expression 

identifies a true change in myeloid population size and not a shift in populations due to 

marker change.  

3.2.7 Suppression of emergency myelopoiesis by IFNα treatment 
Proinflammatory cytokine-triggered inflammatory signals tightly regulate myelopoiesis 

in the BM, but there is currently no clear evidence of IFNα’s contribution to emergency 

myelopoiesis. As defined by Manz et al.,(Manz and Boettcher 2014) emergency 

myelopoiesis is a term that describes the activation of hematopoietic progenitors in the 

BM, resulting in their enhanced proliferation and differentiation and, thereby the 

increased de novo production of neutrophils in response to stress. Our findings reveal 

a decrease in myeloid progenitor abundance (Figure 3.15B,C) and a decrease in 

myeloid differentiation genes (Figure 3.14H) in these progenitors. To explore this 

further, I examined the expression patterns of Cebpb, Spi1, and Stat3, which are 

known to regulate emergency myelopoiesis. I identified Cebpb as one of the 

differentially expressed genes associated with pattern 8, showing an initial up-

regulation followed by a sustained downregulation (Figure 3.16A). Notably, HSC, 

LMPPs, and Myeloid progenitors 1&2 showed an initial increase in Cebpb followed by 

downregulation (Figure 3.16E,F,H,I) whereas Myeloid progenitors 3 showed sustained 

downregulation (Figure 3.16G). Stat3, shows an initial decrease in expression that 

normalizes back to normal (Figure 3.16B), whereas, Spi1 which is the main myeloid 

transcription factor, shows a sustained decrease in expression (Figure 3.16C). To test 

whether other members of the CCAAT-enhancer–binding protein (C/EBP) play a role 

in the IFNα response, I checked the expression of Cebpa and Cebpe which shows a 

sustained downregulation (Figure 3.16D). To assess the impact of these transcriptional 

changes on the mature myeloid compartment, I analyzed mature myeloid cells in the 

blood. The results indicate a continuous decrease in neutrophils over time (Figure 

3.16J), in contrast to monocytes, whose numbers initially decreased and then 

normalized (Figure 3.16K). In conclusion, our findings suggest that IFNα treatment can 

suppress emergency myelopoiesis by downregulating critical transcription factors and 

myeloid differentiation genes, resulting in decreased myeloid progenitor abundance 

and impaired de novo production of neutrophils. 
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Figure 3.16: IFNα treatment suppresses emergency myelopoiesis. 

(A-D) Gene expression in pseudotime for important players in emegancy myelopoesis, Cebpb (A), Stat3 

(B), Spi1 (C), Cebpe, and Cebpa (D). (E-I) Heatmap showing the expression of the same genes in 

myeloid progenitor #1 (E), myeloid progenitor #2 (F), myeloid progenitor #3 (G), HSCs (H), LMPPs (I) 

in the four experimental subsets. (J-K) Flow cytometric analysis of blood neutrophils (B220- CD4- CD8- 

Ly6G+ CD11b+) (J) and monocytes (B220- CD4- CD8- Ly6G- CD11b+ CD11c- F4/80-) (K) normalized to 

the whole blood leukocyte count as measured by hemavet at 3h, 24h, and 72h injection of IFNα or 

control (PBS) treatment in WT mice. n= 8 biological replicates. Statistical significance in J,K was 
determined by an ordinary one-way ANOVA using Holm-Šídák's multiple comparisons test and at least 

2 independent experiments were performed; ns; non significant, *P≤0.05, **P≤ 0.01, ***P≤ 0.001,. Data 

represent mean ± standard error of the mean (SEM). 
 

3.2.8 Mechanisms underlying the sustained depletion of myeloid progenitors 
following IFNα treatment 

 
The reduction in the abundance of myeloid progenitor cells could be explained by 

reduced differentiation towards myeloid progenitor cells, loss of these cells by cell 
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death, or increased egress of these cells from the BM. However, myeloid progenitors 

were not observed in the blood following IFNα treatment (data not shown). Moreover, 

the number of myeloid progenitors in the spleen decreases at 24h, in line with the 

reduction in the BM (Figure 3.17A). This suggests that the reduced abundance of the 

myeloid progenitors in the BM is not due to increased egress into the blood or spleen 

but rather there is a total reduction of myeloid progenitors both in the BM and the 

periphery.  

To investigate whether reduced levels of myeloid progenitors were the result of 

increased cell death we analyzed gene patterns of pro-survival genes (Bcl2, Birc2, and 

Birc5) and found an initial decrease in expression following IFNα treatment (Figure 

3.17B).  However, in Bax-/-Bak-/- double-knockout mice, in which cells are unable to 

undergo apoptosis, a similar reduction of myeloid progenitors was observed as in WT 

mice (Figure 3.17C), indicating that apoptosis was not the reason for the reduction in 

myeloid progenitors. This experiment does not exclude the involvement of other forms 

of cell death, like necroptosis and pyroptosis. Although we do not see an increase in 

necroptosis genes in the myeloid progenitors (Figure 3.17D), the pyroptosis signature 

suggests an early increase of pyroptosis in response to the treatment (Figure 3.17D,E). 

To investigate whether insufficient production of new cells could explain the sustained 

depletion of myeloid progenitors we focused on genes involved in myeloid lineage 

priming. By calculating a gene score for known myeloid transcription factors that have 

been reported to impact both stem and progenitor cells. This analysis has revealed 

that myeloid priming is downregulated along the stem cell differentiation axis in HSCs 

(Figure 3.17F). Moreover, it was observed that the more differentiated LMPPs also 

exhibited downregulation of myeloid priming (Figure 3.17G). In addition, a reduction in 

cell cycle and purine nucleotide synthesis genes was observed in the myeloid 

progenitors (Figure 3.17H,I), suggesting that both myeloid differentiation in the HSCs 

and LMPPs and cell production in the myeloid progenitors are affected. Furthermore, 

the transcriptional signatures of neutrophils and monocytes were found to be 

downregulated in myeloid progenitors over the pseudotime axis (neutrophil: myel. 

prog. #1; monocyte: myel. prog. #3) (Figure 3.17J,K), suggesting reduced 

differentiation of myeloid progenitors into mature myeloid cells. 
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Figure 3.17: Reduced myeloid differentiation bias and increased cell death signature partially 
explain myeloid population's reduction upon IFNɑ treatment.  

(A)  Flow cytometric analysis of frequency of myeloid progenitors (Lin- Sca-1- cKit+ CD34+ CD16/32+) in 

WT mice at 3h, 24h and 72h following IFNɑ or control (PBS) treatment in spleen. n= 8 biological 

replicates. (B) Pseudotemporal expression of pro-survival genes (Bcl2, Birc2, Birc5). (C) Flow 

cytometric analysis of BM frequency of myeloid progenitors (Lin- Sca-1- cKit+ CD34+ CD16/32+) following 

IFNɑ treatment in WT and Bax-/-Bak-/- double knockout mice at 3h, 24h, and 72h following IFNɑ or control 
(PBS) treatment. n= 3 biological replicates. (D) Score of necroptosis gene signature and pyroptosis 

gene signature in all myeloid progenitors plotted in pseudotime. (E) Pseudotemporal expression of two 

pyroptosis genes (Casp1, Casp4) in all myeloid progenitors (F-G) Score of (murine) myeloid 

transcription factors in HSCs (F), and LMPPs (G) plotted in pseudotime. (H-I) Score of cell cycle (H) and 

purine nucleotide synthesis (I) genes in all three myeloid progenitor clusters plotted in pseudotime. (J-
K) Score of monocyte (J) and neutrophil (K) differentiation genes in all three myeloid progenitor clusters 

plotted in pseudotime. Statistical significance for A and C was determined by an ordinary one-way 
ANOVA using Holm-Šídák's multiple comparisons test. At least 2 independent experiments were 

performed; ns; non significant  *P≤0.05,. Data represent mean ± standard error of the mean (SEM). 

Figure is adapted from (Bouman, Demerdash et al. 2023). 
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This is consistent with the observed decrease in neutrophils in the blood (Figure 3.16J). 

Taken together, these in vivo cell analyses and gene expression data indicate reduced 

myeloid differentiation both at the stem cell level as well as in committed progenitors, 

combined with an increase in pyroptosis signature and a reduction in the cell 

production machinery. As a result, there are fewer myeloid progenitors in the BM and 

a lower level of mature myeloid cells in the blood. 
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3.3 Dissect the interplay of proinflammatory cytokines in the acute response 
of HSCs to stress  

Type I interferons are not the only proinflammatory cytokines involved in the 

proliferative response of HSCs to inflammatory stress. HSCs have been shown to 

respond to bacterial and viral components via toll-like receptors (TLRs) and cytokine 

receptors (King and Goodell et al. 2011). In addition, studies show that HSCs are 

activated by other proinflammatory cytokines such as interleukin 6 (IL6) and tumor 

necrosis factor alpha (TNFα) and interleukin 1 (IL1) (Caiado, Pietras, and Manz et al. 

2021). Thus, it appears that multiple pathways play an important role in activating 

HSCs triggered by inflammatory stress. Both direct and indirect mechanisms of HSCs 

activation have been proposed. Still, it remains unclear to what extent the various 

proinflammatory cytokines interact and overlap in their effects on HSCs quiescence. 

3.3.1 Investigating the dynamics of HSCs responses to proinflammatory 
cytokines 

 
Infections and general inflammatory settings produce not only one proinflammatory 

cytokine but rather a cascade of proinflammatory cytokines. The exit from the G0 

phase and initiation of HSCs proliferation are common effects of different 

proinflammatory cytokines (Caiado, Pietras, and Manz et al. 2021). However, it is 

unknown whether these different agonists are equivalent in their mechanism of HSCs 

activation or in the response they provoke. Among the most commonly studied are 

IFNα, IFNγ, TNFα, and IL1β. In the previous section, I thoroughly investigated the 

molecular changes after IFNα treatment. In this section, I created comparative 

datasets to compare gene expression in HSCs treated with different proinflammatory 

cytokines. First, I analyzed the dynamics of HSCs responses to acute treatment with 

different proinflammatory cytokines to determine the timing of the initial signs of 

response in HSCs. To this end, I performed an acute time-course experiment to track 

phenotypic and cell cycle changes in HSCs after treatment with IFNγ, IL1α, IL1β, IL6, 

TNFα, LPS, and pIC at 3, 9, and 12h, which I compared to previously performed 

experiments of the HSCs response upon treatment with IFNα and pIC. The treatment 

of HSCs with pIC and LPS, which mimic viral and bacterial infection, was shown to 

cause the upregulation of the expression of different proinflammatory cytokines and 

was therefore, included in these experiments. 
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Figure 3.18: Response of HSCs to time course treatments with different proinflammatory 
cytokines.  

(A-F) Cell cycle analysis of using Ki67 and Hoechst 33342 to detect HSCs (Lin-  Sca1+ cKit+ CD150+ 

CD48- CD34-) in G0 (Ki67negHoechstlow), G1 (Ki67HighHoechstlow) and SG2M (Ki67High Hoechsthigh) and 

quantification of cell cycle distribution and Sca-1 expression (calculated based on median fluorescence 

intensity) of HSCs treated with PBS control or 3h, 9h or 12h with IFNγ (A), TNFα (B), IL1β (C), IL1α (D), 

IL6 (E), LPS (F). Error bars indicate the standard error of the mean of HSCs in the G0 phase and 

expressing Sca-1 when compared to PBS controls. Statistical significance was determined by an 

ordinary one-way ANOVA using Holm-Šídák's multiple comparisons test. At least 2 independent 

experiments were performed; ns; non-significant, *P≤0.05, **p<0.01 ***P≤ 0.001, ****P<0.0001, Data 
represent mean ± standard error of the mean (SEM). 
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Mice were sacrificed at these time points, and the BM was isolated. The increases in 

Sca-1 expression and the distribution of HSCs in the different cell cycle stages by flow 

cytometry were analyzed to quantify HSCs response following proinflammatory 

cytokine treatment. For IFNγ treatment, the cells in the G0 phase decreased gradually 

with increasing treatment duration, although only significant at 9h of treatment. The 

Sca-1 upregulation showed a similar trend of increase (Figure 3.18A).  In samples 

treated with TNFα (Figure 3.18B), the decrease in cells in the G0 phase was significant 

at all measured time points; However, Sca-1 expression was significantly upregulated 

only after 9h and 12h of treatment (Figure 3.18B). For IL1β treatment, the cells in the 

G0 phase decreased gradually with increasing treatment duration, although only 

significant at 12h of treatment (Figure 3.18C). In contrast, the constant upregulation of 

Sca-1 expression was already significant at 3h of treatment (Figure 3.18C). IL1α and 

LPS treatments showed a comparable decrease in cells in the G0 phase and an 

increase in Sca-1 expression following treatment with TNFα (Figure 3.18D,F 

respectively). 

 

In contrast to the other samples, cells treated with IL6 did not exhibit the same pattern 

of cell cycle distribution and Sca-1 expression (Figure 3.18E). Compared with the PBS 

control sample, there was no significant difference in the number of cells in the G0 

phase or Sca-1 expression at any of the tested treatment durations (Figure 3.18E). 

Despite being initially described as an IFN-stimulated gene, I was able to demonstrate 

that Sca-1 expression also increased when exposed to other cytokines, confirming 

previous work from our group (Demel et al. 2022). In summary, the results confirmed 

the inflammatory response of HSCs to various inflammatory cytokines, except for IL6, 

and that HSCs responded to cytokine treatments immediately after 3h; however, the 

responses were not significant for all cytokine treatments. These results fit to the 

observations I made in previous experiments with the treatment of HSCs for 3h with 

IFNα and pIC.  

 

To analyze the HSCs response to proinflammatory cytokines using microarray analysis 

in the next section, I aimed to capture the time point when the inflammatory response 

first induces HSC proliferation, minimizing indirect effects. As multiple cells in the BM 

may respond to these cytokines, later time points could reflect a combination of direct 
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HSCs response and indirect signaling from other BM cells. Therefore, I chose to 

conduct the microarray analysis after a 3h treatment. 

 

3.3.2 Investigating proinflammatory cytokines' early effects on HSC gene 
expression using microarray 

 
To gain a deeper understanding of the molecular mechanisms underlying the 

phenotypic changes I observed in HSCs after acute treatment with proinflammatory 

cytokines, I treated WT mice with the various proinflammatory cytokines for 3h and 

collected RNA from HSCs (Lin- ckit+ CD150+ CD48 -CD34-) for microarray analysis 

(Figure 3.19A). RNA samples were submitted to the genomics and proteomics core 

facility at the DKFZ, and global gene expression was measured using Affy Clariom S 

mouse chip. Differential gene expression of each treatment compared to the PBS 

controls was performed. To explain the relationships between the gene sets, an upset 

plot visualizing the number and overlap of DEGs (p <0.05 and log FC <0.5, <-0.5) was 

created (Figure 3.19B-E). Among the gene sets, IL1β and IFNα showed the highest 

responses with 779 and 772 DEGs (Figure 3.19B), respectively. Similar numbers of 

DEGs were observed for the other treatments (288-211 DEGs), whereas IL6 exhibited 

the weakest response with 92 DEGs (Figure 3.19B). Together with the FACS analysis, 

these data indicated no strong response of the HSCs to the treatment with IL6. The 

numbers of unique genes identified for IL1β, IFNα, LPS, TNFα, IL1α, pIC, IFNγ, and 

IL6, were 477, 424, 97, 72, 64, 111, 82, and 53, respectively (Figure 3.19B). This 

shows that IFNα has the highest number of unique DEGs (62%) and IL1α has the 

lowest number of unique DEGs (28%); most of the DEGs for IL1α overlapped with 

other DEG responses, particularly IL1β (Figure 3.19B). By analyzing the set 

interactions, I found that with 66 genes (43 upregulated and 24 downregulated DEGs), 

the intersection between TNFα and IL1β cytokines had the largest overlap, followed 

by that between IFNα and IFNγ with 43 genes (39 upregulated and 6 downregulated 

DEGs) (Figure 3.19C,D, respectively). Some DEGs were unique to LPS (33%) and pIC 

(50%); however, many were shared with other cytokines (Figue 3.19B). In line with our 

recent study, I found a strong overlap in transcriptional responses between LPS and 

IFNα (Demel et al. 2022). In addition, I demonstrate that LPS shares transcriptional 

similarities with IL1α, IL1β, and TNFα (Figure 3.19B). Although pIC and IFNα 

treatments are often used redundantly in hematopoietic research (Essers et al. 2009) 
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Figure 3.19: Microarray comparative analysis of HSC‘s response to various proinflammatory 
cytokines.  

(A) Scheme for microarray experimental procedure. Mice were treated with the indicated 

proinflammatory cytokine and sacrificed after 3h. 3-4 biological replicates were used per condition. 

Bones (tibia, femur and hips) were isolated, cleaned and then crushed. Cells were then stained with 

markers for HSCs (Lin- cKit+ CD150+ CD48- CD34-) and sorted. RNA was isolated from sorted cells and 

libraries were prepared for microarray analysis. (B-D) UpSet plot showing relationships of all 

differentially expressed genes (DEGs) (B), upregulated DEGs (C), and downregulated DEGs (D) of the  

different proinflammatory cytokines datasets. (E) UpSet plot showing the intersection between at least 

seven of the datasets. Bars colored in black, red and blue show all, upregulated and downregulated 
DEGs respectively. The horizontal bars represent the datasets. The vertical bars represent the 

intersection of datasets. The length of the vertical bar indicates the number of items shared by the 
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datasets. The numbers above the vertical bars represent the size of the intersection. Dark circles in the 

matrix indicate sets that are part of the intersection. 

 

only 10% (21 genes) of pIC DEGs were upregulated following IFNα treatment (Figure 

3.19B), implying that HSCs respond differently to these treatments at the 

transcriptional level.  Because many gene sets had an intersection of one gene, it was 

impossible to view all of them in a single plot. A plot showing the intersection between 

at least 7 datasets is presented in Figure 3.19E. I did not identify a common set among 

the 8 different cytokines. However, one gene (serpina3g) was upregulated, and one 

gene (Tmem121) was downregulated for seven different treatments (Figure 3.19E). 

Serpina3g was common between IL1β, IFNα, LPS, TNFα, IL1α, pIC, and IFNγ, and 

this gene plays a very important role in the T-Cell immunity (Ashton-Rickardt et al. 

2012), going in line with the immunomodulatory function of HSCs. Whereas Tmem121 

gene had no role reported in hematopoesis. In summary the results showed unique 

and overlapping gene expression patterns among the different cytokines. 

 

3.3.3 Analysis of gene ontology categories in proinflammatory cytokine 
treatments 

 
Next, I investigated whether I could identify common processes after treatment with 

the different proinflammatory cytokines. Enriched gene ontology categories were 

analyzed separately for upregulated and downregulated genes (Figure 3.20). The top 

biological pathways for each cytokine are based on the significance of the enrichment 

pvalueCutoff = 0.5. Pathways pertaining to T-cell immune responses were significantly 

upregulated in all proinflammatory cytokine treatments (Figure 3.20A-G). In contrast, 

myeloid differentiation signaling pathways were significantly overrepresented only 

following TNFα, IL1β, IL1α, and IL6 treatments (Figure 3.20B-E, respectively). IFN 

signaling pathways were among the top biological processes for both LPS and pIC 

(Figure 3.20F,G, respectively). There was also a significant underrepresentation of 

metabolic processes. Similar to IFNα, lipid metabolic pathways were downregulated 

for TNFα, IL6, and pIC (Figure 3.20I,L,N, respectively). For both IL1β and LPS, the 

most significantly downregulated categories were those related to iron ion, sulfate, and 

glutathione metabolic processes (Figure 3.20J,M, respectively). Processes related to 

cell cycle and DNA replication were downregulated after treatment with IL1α and IL6 

(Figure 3.20K,L, respectively).   
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Figure 3.20: Enriched gene ontology (GO) categories following treatment with proinflammatory 
cytokines.  
(A-G) Bar plots showing enriched GO terms of upregulated genes following treatment with IFNγ (A), 
TNFα (B), IL1β (C), IL1α (D), IL6 (E), LPS (F), pIC (G). (H-N) Bar plots showing enriched GO terms of 

downregulated genes following treatment with IFNγ (H), TNFα (I), IL1β (J), IL1α (K), IL6 (L), LPS (M), 
pIC (N). Number of genes is represented on the x-axis with adjusted significance (P < 0.5) indicated by 
order and colour trend.  
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Our results revealed significant alterations in multiple pathways associated with 

inflammation and cell cycle regulation. Despite similarities in the processes, it is 

noteworthy that distinct genes were up or downregulated for each cytokine, which is 

linked to the same biological processes, suggesting differences in the mechanism 

leading to the same biological outcome. These findings provide insight into the 

molecular mechanisms underlying the response of HSCs to proinflammatory 

cytokines. 
 
3.3.4 Examination of the myeloid priming in HSCs following treatment with the 

different proinflammatory cytokines 
 
Inflammatory signals triggered by proinflammatory cytokines during emergency 

myelopoiesis have been shown to tightly regulate myeloid cell production in the BM 

(Chiba et al. 2018). Thus, I investigated whether myeloid priming is affected in HSCs. 

Positive enrichment of HSCs with myeloid signature was observed following all 

proinflammatory cytokine treatments (Figure 3.21A-G). However, IFNγ and LPS had 

lower NES values than the other treatments (Figure 3.21A,F, respectively). IFNα, on 

the other hand, had the lowest NES value (Figure 3.21H). Compared with the bulk 

RNA sequencing data in section 3.1.5 which showed that HSCs, 24h after IFNα 

treatment exhibited a significant downregulation of myeloid gene expression signature, 

and this effect persisted up to 72h, suggesting that HSCs are less targeted to myeloid 

cells by IFNα treatment. Interestingly, the positive enrichment of the myeloid signature 

of HSCs was accompanied by downregulation of the lymphoid signature for all cytokine 

treatments except IFNγ, pIC, and IL6 (Figure 3.21I). In summary, these results provide 

new insights into the impact of proinflammatory cytokines on myelopoiesis in HSCs 

and highlight the complex regulation of this process. 
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Figure 3.21: Proinflammatory cytokines regulate myeloid priming and lymphoid signatures in 
HSCs.  

(A-G) GSEA plots of Myeloid LT-HSC molecular signatures from Mann et al., significantly enriched 
(pvalue <=0.05) of HSCs following treatment with IFNγ, (A), TNFα, (B), IL1β, (C), IL1α (D), IL6, (E), LPS 

(F), pIC (G) vs PBS control treatment. Gene list ordered by log2 fold change. NES, normalized 

enrichment score. ES, Enrichment score. (H-I) GSEA of Myeloid molecular signatures from Mann et al. 

2018 (H) and Lymphoid signatures from Izzo et al., 2020 (I) significantly enriched (pvalue <=0.05) 
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3.4 Investigating the net impact of proinflammatory cytokine receptor 
signaling in hematopoiesis under homeostasis 

The role of proinflammatory cytokines in mediating hematopoiesis and HSCs 

quiescence under homeostatic conditions has yet to be fully elucidated. To better 

understand the function of these proinflammatory cytokines, in this section, I have 

investigated the effect of basal activation of proinflammatory cytokine signaling on 

steady-state adult hematopoiesis and HSCs quiescence.  

3.4.1 Loss of Interferon receptor expression leads to reduced frequency of 
HSCs and LSKs 

 
The role of basal IFNs in shaping the hematopoietic system develops relatively slowly, 

as individual knockout mice (KO) for the interferon-alpha receptor (Ifnar-/-) or the 

interferon-gamma receptor (Ifngr-/-) have no obvious hematologic defects (Essers et 

al. 2009; Matatall et al. 2014). I hypothesize here that because of the convergence of 

their intracellular signaling pathways, there is overlap and redundancy between their 

effects, and therefore, they most likely compensate for each other. Hence, I analyzed 

the hematopoietic system of mice lacking both Ifnar and Ifngr, hereafter referred to as 

Ifnar-/-Ifngr-/- double KO (2KO). Similar to the single KO mice, there were no differences 

in the total number of BM cells in the 2KO mice compared with the WT mice (Figure 

3.22A). Flow cytometric analysis of the mature lineage composition show that 2KO 

mice have mostly normal frequencies of differentiated cells with only slight increase in 

Gr1+CD11b+ myeloid cells in the BM (Figure 3.22B). I did not detect any changes in 

the composition of the differentiated cells in the blood and spleen (data not shown). 

Moreover, frequencies of LS-Ks progenitors (Figure 3.22C) and its associated 

subpopulations (CMP, GMP, and MEP) (Figure 3.22D) did not change in the 2KO mice 

compared to WT controls. On the contrary, 2KO shows a profound decrease in the 

frequency of BM LSKs (Figure 3.22E). Subsequently, I analyzed the effect of IFNs 

signaling deletion on the multipotent progenitor (MPP) compartment. I observed a 

decrease in the frequency of MPP3 and MPP4, whereas MPP1 and MPP2 were not 

affected (Figure 3.22F). Interestingly, 2KO mice showed decreased HSCs frequency 

in the BM (Figure 3.22G). Although IFNs are strong inducers of HSCs cycling under 

stress conditions (Essers et al. 2009; Baldridge et al. 2010), steady-state cell cycle  
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Figure 3.22: Ifnar-/-Ifngr-/- (2KO) mice have decreased LSK and HSC numbers yet no change in 
cell cycle behavior and on differentiated cells.  

(A) BM cellularity determined by Vi-CELL counter. (B-G) Percentage (%) frequency of total BM of 

differentiated mature cells: B-cells (B220+), T-cells (CD4+ and CD8+), granulocytes (B220- CD3- 

CD11b+Gr1+) (B), LS-K (Lin- Sca1- cKit+) (C), committed progenitor: CMP (Lin- Sca1- cKit+ CD16/CD32-

CD34+); GMP (Lin- Sca1- cKit+ CD16/CD32+ CD34+); MEP (Lin- Sca1- cKit+ CD16/CD32- CD34-), CLP 

(LinLow cKitlow CD127+ CD125+) (D), LSK (Lin- Sca1+ cKit+) (E), multipotent progenitors (MPPs): MPP1 

(Lin- Sca1+ cKit+ CD135- CD34- CD150+ CD48-); MPP2 (Lin- Sca1+ cKit+ CD135- CD34+ CD150+ CD48+); 
MPP3 (Lin- Sca1+ cKit+ CD135- CD34+ CD150- CD48+)(F), HSCs (Lin- Sca1+ cKit+ CD150+ CD48- CD34-) 

(G). (H) Cell cycle analysis using Ki67 and Hoechst 33342 to detect HSCs in G0 (Ki67negHoechstlow), G1 

(Ki67HighHoechstlow) and SG2M (Ki67High Hoechsthigh). 3-6 biological replicates per group from two 

independent experiments. Statistical significance for B, D, F and H was determined by an ordinary one-

way ANOVA using Holm-Šídák's multiple comparisons test. Statistical significance for A, C, E, and G 

was determined by unpaired t-test analysis. At least 2 independent experiments were performed; 

Ifnar
-/-

Ifngr
-/- 

2KO 

WT 2KO 

WT 



Results 
 

77 
 

*P≤0.05, ***P≤ 0.001, ****P<0.0001, ns; non-significant. Data represent mean ± standard error of the 

mean (SEM). 
 

analysis of 2KO HSCs revealed no changes in the percentage of quiescent cells 

compared to WT HSCs (Figure 3.22H). This data suggests that maintaining 

differentiated cells in the BM, blood, and spleen is dispensable of interferon signaling. 

Whereas the significant decrease in HSCs and LSKs frequencies in 2KO mice suggest 

a role for interferon signaling in the maintenance of HSCs and early progenitors. 

3.4.2 IFNs deficient progenitors show decreased colony formation in secondary 
CFU and early competitive advantage than WT cells in vivo  

 
To functionally assess the effects of reduced frequencies of HSCs and LSKs, I 

performed an in vitro colony formation assay to determine whether the expansion and 

progenitor differentiation abilities of BM cells are impaired in the absence of interferon 

signaling. For this assay, I isolated BM cells from 2KO and WT mice and cultured them 

in a methylcellulose-based medium (Figure 3.23A). During primary colony formation, I 

did not detect changes in the colony forming unit (CFU) (Figure 3.23B). However, after 

the secondary plating of the primary colonies, the total number of colonies was reduced 

in the 2KO cells compared to the WT cells (Figure 3.23B). To further investigate the 

self-renewal potential and lineage contribution of 2KO stem cells in vivo, I performed 

a competitive transplantation assay. I isolated BM cells from 2KO and WT mice and 

then sorted for LSKs from each strain. Next, I mixed LSKs from CD45.2 mice of the 

KO strain or control WT mice with CD45.1/2 LSKs of WT strain in a 1:1 ratio. This 

mixture was transplanted intravenously into lethally irradiated CD45.1 WT recipient 

mice, along with cKit-depleted WT cells as supportive BM. Chimerism of KO and WT 

in the blood of recipients was determined every 4 weeks for a period of 18 weeks 

(Figure 3.23C). At 18 weeks after transplantation, BM cells from primary graft recipient 

mice were transplanted into lethally irradiated recipients to assess long-term 

engraftment (Figure 3.23C). In this competitive setting, hematopoietic reconstitution 

from 2KO donor LSK cells showed a competitive advantage in the primary transplants 

up to 16 weeks (Figure 3.23D).  

 

 

 



Results 
 

78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.23: 2KO LSKs have early competitive repopulation advantage over WT LSKs.  

(A) Schematic overview of colony forming unit (CFU) assay: WT and 2KO mice were sacrificed, BM was 

isolated and 20,000 cells from each genotype were cultured in methylcellulose medium for 7 days. 

Colonies were then counted. (B) Number of colonies from serial CFU assay. 4 biological replicates from 
two independent experiments were performed. (C) Schematic overview of competitive transplantation 

assay. LSKs from 2KO and WT mice (CD45.2) were sorted and mixed with LSKs from CD45.1/2 WT 

mice (1:1 ratio). This mixture was transplanted into lethally irradiated CD45.1 WT recipient mice. 

Peripheral blood chimerism was analyzed every 4 weeks up to 18 weeks. BM cells from primary 

recipients were transplanted into secondary recipients and peripheral blood chimerism was analyzed 

over time. (D-F) Flow cytometry-based analysis of serial competitive transplantation experiments. 

CD45.2% outcome is shown for peripheral blood chimerism (D), myeloid cells (E), and B cells (F). (G) 
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Flow cytometry-based analysis of endpoint of competitive transplantation experiment. CD45.2% 

outcome is shown for BM HSCs and LSK. 4-6 biological replicates were used. Statistical significance 

for (B) and (G) was determined by two-way ANOVA using Holm-Šídák's multiple comparisons test. 

Statistical significance for (D-F) was by unpaired t-test. One independant experiment was perfomed. 

*P≤0.05, **p<0.01 ns; non-significant. Data represent mean ± standard error of the mean (SEM).  

 

Although engraftment of Gr1+CD11b+ was not significant (Figure 3.23E), the proportion 

of B220+ chimerism from 2KO donor was substantial up to 16 weeks (Figure 3.23F). 

Moreover, the BM donor-derived chimerism and frequency of LSKs, HSCs, and mature 

cells were similar for 2KO and controls at the 18 weeks endpoint analysis (Figure 

3.23G). I did not observe any change in peripheral blood contribution over time in the 

secondary transplants between the KO and WT (Figure 3.23D). In addition, no 

differences in BM contribution and generation of differentiated cells as well as for HSCs 

and LSKs were detected between KO and WT in the secondary recipients (Figure 

3.23G). Overall, these results suggest that the absence of interferon signaling does 

not significantly impair the expansion or differentiation capabilities of progenitors. 

However, the reduced frequency of stem and progenitor cells in 2KO mice does lead 

to a temporary competitive advantage for 2KO LSKs in the early stages of 

hematopoietic reconstitution in a competitive transplantation assay. 

 

3.4.3 5KO mice have decreased LSKs and HSCs numbers and increased 
myeloid committed progenitors 

 
As the numbers of LSKs and HSCs were reduced in 2KO mice (Figure 3.22E,G), I 

wanted to determine whether additional proinflammatory cytokines contribute in 

combination with IFNs to the maintenance of the stem cell compartment under 

homeostasis. Since little research has been done on the simultaneous switching off of 

receptors of several proinflammatory cytokines, we generated homozygous KO mice 

that lack both receptors for TNFα and receptors for both IFNα and IFNγ, in addition to 

IL1 receptors. These ‘genotype’ mice are hereby called 5KO. These mice had a shorter 

lifespan compared to normal WT mice. They die at a younger age of approximately 50 

weeks without signs (Figure 3.24A), unlike WT mice which can survive up to 150 weeks 

(Flurkey, Mcurrer, and Harrison et al. 2007). In addition, the breeding performance of  
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Figure 3.24: Ifnar-/-Ifngr-/-Tnfrsf1a-/-Tnfrsf1b-/-Il1r-/- (5KO) mice have decreased LSKs and HSCs 
numbers and increased myeloid committed progenitors.  

(A) Kaplan-Meier survival curve of 5KO mice. (B) BM cellularity determined by Vi-CELL counter. (C-G) 
Percentage (%) frequency of total BM of differentiated mature cells: B-cells (B220+), T-cells (CD4+ and 

CD8+), granulocytes (B220- CD3- CD11b+ Gr1+) (C), HSCs (Lin- Sca1+ Ckit+ CD150+ CD48- CD34-) (D), 
Lin- Sca1+ cKit+ (LSK) (E), multipotent progenitors (MPPs): MPP1 (Lin- Sca1+ cKit+ CD135-CD34+ CD150+ 

CD48-); MPP2 (Lin- Sca1+ cKit+ CD135- CD34+ CD150+ CD48+); MPP3 (Lin- Sca1+ cKit+ CD135-CD34+ 

CD150- CD48+) (F) Lin- Sca1- cKit+ (LS-K) (G), committed progenitor: CMP (Lin- Sca1- cKit+ CD16/CD32- 

CD34+); GMP (Lin- Sca1- cKit+ CD16/CD32+ CD34+); MEP (Lin- Sca1- cKit+ CD16/CD32- CD34-); CLP 

(LinLow cKitlow CD127+ CD125+) (H). (I-K) Cell cycle analysis using Ki67 and Hoechst 33342 to detect 

HSCs (I), LSKs (J), LS-K (K) in G0 (Ki67negHoechstlow), G1 (Ki67HighHoechstlow) and SG2M (Ki67High 

Hoechsthigh) (I). 3-6 biological replicates per group from two independent experiments. Statistical 

significance for C, F, H, I, J, and K was determined by an ordinary one-way ANOVA using Holm-Šídák's  
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multiple comparisons test. Statistical significance for B, D, E, and G was determined by unpaired t-test 

analysis. At least 2 independent experiments were performed; *P≤0.05, ***P≤ 0.001, ****P<0.0001, ns; 

non-significant. Data represent mean ± standard error of the mean (SEM). 

those mice is limited. This phenotype was not present in mice only lacking one or up 

to 4 cytokine receptors (Data not shown). Analyzing the BM composition of 5KO mice 

revealed an increase in total BM cells (Figure 3.24B), a decrease in B220+ frequencies, 

and an increase in Gr1+CD11b+ myeloid cells (Figure 3.24C). I found no changes in 

the composition of mature cells in the peripheral blood and spleen of the 5KO mice 

compared with the WT mice (data not shown). Interestingly, there was a decrease in 

the number of LSKs and HSCs (Figure 3.24D,E), similar to the 2KO mice, and a 

decrease in the frequency of MPP4 (Figure 3.24F). However, there was an increase in 

LS-K frequency (Figure 3.24G) associated with a significant increase in CMPs and a 

significant decrease in CLP frequency (Figure 3.24H). Cell cycle analysis using 

Ki67/Hoechst 33342 staining shows that the receptor signaling did not affect the 

cycling of HSCs, LSKs, and LS-Ks under homeostasis (Figure 3.24 I-K, respectively). 

These results suggest that IFNs and other proinflammatory cytokines play a role in 

regulating stem cell numbers but not their cycling under homeostasis. 

3.4.4 5KO deficient progenitors show increased colony formation in secondary 
CFUs  

 
To assess the function of the altered stem and progenitor cell composition in the BM 

of 5KO mice, I performed an in vitro colony formation assay by culturing total BM cells 

in a 1:1 ratio of WT and 5KO in methylcellulose-based medium (Figure 3.25A). The 

results showed that 5KO exhibited an increase in CFU only when serially plated out 

into a secondary CFU (Figure 3.25B). Additionally, an increase in LS-Ks and myeloid 

progenitor cells in 5KO compared to WT was observed as early as 7 days after primary 

CFU culture (Figure 3.25C). To exclude the possibility that the results of BM CFU were 

affected by the reduction of LSKs or the propagation of LS-Ks in the 5KO mice and to 

confirm these results, the assay was repeated by sorting an equal number of LSKs 

from each genotype. The increase in colony-forming potential in the secondary CFUs 

of the 5KO mice compared to the WT controls was confirmed (Figure 3.25D). 

Furthermore, a competitive re-population transplantation assay was performed to 

determine whether the self-renewal potential and lineage contribution of the 5KO stem 
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Figure 3.25: 5KO progenitors exhibit an increase in colony formation in secondary colony-
forming units (CFUs).  

(A) Schematic overview of colony forming unit (CFU) assay: WT and 5KO mice were sacrificed, BM was 

isolated and 20,000 cells from each genotype or sorted for LSKs and were cultured in methylcellulose 

medium for 7 days. Colonies were then counted. (B) Number of colonies from serial CFU assay of 

cultured BM cells. (C) Percentage (%) frequency of progenitors after 7 days in culture as quantified by 

FACs analysis. (D) Number of colonies from serial CFU assay of cultured LSKs cells. 4 biological 

replicates from two independent experiments were performed. (E) Schematic overview of competitive 

transplantation assay. BM cells from 5KO and WT mice (CD45.2) were mixed with BM from CD45.1/2 

WT mice (1:1 ratio). This mixture was transplanted into lethally irradiated CD45.1 WT recipient mice. 
Peripheral blood chimerism was analyzed every 4 weeks up to 12 weeks. (F) Flow cytometry-based 

analysis of serial competitive transplantation experiments. CD45.2% outcome is shown for peripheral 

blood chimerism. 6 biological replicates were used. Statistical significance for (B-D) was determined by 

two-way ANOVA using Holm-Šídák's multiple comparisons test. Statistical significance for (F) was by 

unpaired t-test. One independant experiment was perfomed. *P≤0.05, **p<0.01 ns; non-significant. Data 

represent mean ± standard error of the mean (SEM).  
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cells were impaired. Accordingly, BM cells were isolated from CD45.2 mice of the 5KO 

strain or from control mice WT and mixed with BM from CD45.1/2 WT strain in a 1:1 

ratio. This mixture was transplanted intravenously into lethally irradiated CD45.1 WT 

recipient mice, along with cKit-depleted WT cells as supporting BM cells (Figure 

3.25E). The results showed no functional defect, as chimerism in blood remained at 

∼50% up to 12 weeks after transplantation (Figure 3.25F). These experiments are 

currently ongoing, and the endpoint will be in April 2023. In summary, these 

experiments suggest that the altered stem and progenitor cell composition in the BM 

of 5KO mice may play a significant role in the observed increase in secondary CFU. 

 

3.4.5 5KO mice show delayed recovery following chemotherapeutic 5-FU 
treatment  

 
As IFNs, TNF, and IL1 are known to play a role in cell cycle control under stress 

conditions, I investigated whether deleting the cytokine receptors could affect HSC 

activation or their return to quiescence in response to treatment with 5-fluorouracil (5-

FU). 5-FU is a cytotoxic drug that decimates the differentiated blood cells and activates 

dormant HSCs to divide (Randall and Weissman et al. 1997). Following 5-FU 

treatment, I monitored the rate at which HSCs could renew the blood cell pool and 

whether this rate differed between 5KO and WT mice due to the lack of cytokine 

signaling pathways. Although there was no difference in the survival of WT and 5KO 

mice 10 days after a single 5-FU treatment, a greater percentage decrease of 22.6% 

in BM cellularity was observed in the 5KO mice compared to the WT mice (Figure 

3.26A). The treatment increased the LSKs counts in the BM. Even though the 5KO 

had a 2-fold decrease in their LSKs counts compared to WT at homeostasis (Figure 

3.24E), I observe a 16.8-fold increase in the LSKs frequency of the 5KO compared 

with only a 6.8-fold increase in WT LSKs frequency following 5-FU treatment relative 

to PBS controls (Figure 3.26B). Likewise, 5KO HSCs had an 18.4-fold increase in 

frequency compared to 14.7 fold increase in the WT HSCs following the treatment 

(Figure 3.26C). Interestingly, I observed significant differences in the HSCs and LSKs’ 

return to a quiescent state between the 5KO and WT mice. WT HSCs returned to 

quiescence 10 days following treatment, whereas the 5KO HSCs and LSKs were still 

cycling (Figure 3.26D,E). This is consistent with the increased sensitivity of 5KO stem 

cells to 5-FU.  
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Figure 3.26: 5KO stem and progenitor cells have delayed recovery after 5-FU treatment.  

(A) BM cellularity determined by Vi-CELL counter in WT and 5KO mice after 10 days of in vivo PBS or 

5-FU (150 mg/kg) treatment. (B-C) Flow cytometric analysis of BM LSK (Lin- Sca1+ cKit+) (B) and HSCs 
(Lin- Sca1+ cKit+ CD150+ CD48- CD34-) (C) in WT and 5KO mice after 10 days of in vivo PBS or 5-FU 

treatment. (D-E) Cell cycle analysis using Ki67 and Hoechst 33342 to detect LSKs (D) and HSCs (E) in 

G0 (Ki67negHoechstlow), G1 (Ki67HighHoechstlow) and SG2M (Ki67High Hoechsthigh). 2-3 biological replicates 

were used. One experiment was performed. Statistical significance for (A-D) was determined by two-

way ANOVA using Holm-Šídák's multiple comparisons test. Statistical significance for (D-E) was by 

unpaired t-test. *P≤0.05, **p<0.01, ****P<0.0001, ns; non-significant. Data represent mean ± standard 

error of the mean (SEM).  

 

These results suggest that the absence of proinflammatory cytokine receptors in 5KO 

mice affects HSC activation and response to stress, making them more sensitive to 

the effects of 5 FU. 
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3.4.6 Bulk transcriptional profiling reveals altered metabolic and cell cycle 
pathways in HSCs of 5KO mice 

 
To characterize the transcriptional profile of HSCs in the 5KO mice, I performed bulk 

RNA sequencing. I sorted HSCs from 5KO and WT mice into lysis buffer to isolate 

RNA, which was then submitted to the Genomics and Proteomics Core Facility at the  

DKFZ, Heidelberg. The Facility prepared the sequencing libraries and performed the 

quality control and sequencing. The raw sequence data in FASTQ format was aligned 

and quantified by the Omics IT and Data Management Core Facility. Afterward, I 

performed the downstream analysis. Hierarchical clustering confirmed that all samples 

of a given genotype cluster together and separate (Figure 3.27A). Moreover, PCA 

shows robust segregation of 5KO HSCs from WT control HSCs (Figure 3.27B). I next 

performed differential gene expression analysis using DESeq2 and identified 1139 

DEGs (padj <=0.05) with 561 genes being upregulated and 578 genes being 

downregulated between the 5KO and WT HSCs. I then performed GSEA, using the 

Molecular Signatures Database (MSigDB) Hallmark gene set, which showed that 

genes upregulated in the 5KO HSCs were significantly enriched in pathways related 

to the glycolysis metabolic processes (Figure 3.27C). In contrast, the downregulated 

genes were enriched in processes related to the inflammation system (Figure 3.27D) 

and cell cycle (Figure 3.27E). Furthermore, analysis using the REACTOME database 

shows that the down-regulation of cell cycle processes dominates the variability 

between the 5KO and WT HSCs (Figure 3.27F). Of note, processes related to 

extracellular matrix organization were upregulated in the 5KO HSCs (Figure 3.27F). 

Thus transcriptional profiling showed that 5KO HSCs have a distinct transcriptional 

profile characterized by upregulation of metabolic and signaling pathways and 

downregulation of cell cycle and inflammatory processes. 
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Figure 3.27: Bulk transcriptional profiling of HSCs from 5KO mice indicates changes in metabolic 
and cell cycle pathways.  

(A) Hierarchical clustering based on Euclidian distance was performed with the hclust function 

implemented in R. (B) Principal component analysis (PCA). (C-E) GSEA plots of 5KO vs. WT HSCs 
(Lin- Sca1+ cKit+ CD150+ CD48- CD34-) analysis. (F) Dot plots showing activated and suppressed GO 

terms in 5KO vs. WT HSCs using REACTOME database.  
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4 Discussion 
 

4.1 Longitudinal analysis of hematopoietic stem and progenitor cell 
responses to IFNα treatment 

 
Biological responses, such as acute inflammation, are dynamic processes in which 

cells, tissues, and organisms undergo different phases of sensing differences, 

responding to changes, and recovering after a successful response. To understand 

biological systems, it is critical to recognize their dynamic nature (Bar-Joseph, Gitter, 

and Simon et al. 2012). In the context of hematopoiesis, the role of inflammation in 

HSCs function has been widely studied (Caiado, Pietras, and Manz et al. 2021). 

However, most studies have concentrated on single time points, and there is limited 

knowledge of the molecular alterations that occur across the HSPCs compartment over 

time. While bulk and single-cell RNAseq can provide static snapshots of cellular state 

at the time of measurement, longitudinal data can offer valuable insights into how 

biological systems transform over time (Saelens et al. 2019; Treutlein et al. 2016; 

Petropoulos et al. 2016). Despite the challenges that come with analyzing longitudinal 

data sets (Saelens et al. 2019), this is a critical area of research because of the 

potential for gaining a deeper understanding of the dynamics of biological systems. 

Currently, few computational methods exist to infer time series specific changes in the 

transcriptome (Shao et al. 2021; Tran and Bader et al. 2020). Unsupervised 

pseudotime methods are often used, but they are not suitable for identifying genes that 

exhibit coherent variation across time series. Moreover, the orders these methods 

estimate may not correspond to the processes associated with the real-time. In this 

work, I used comprehensive bioinformatics analysis to identify qualitative changes in 

cellular abundance and the specific molecular changes likely responsible for these 

changes. I presented a longitudinal analysis of transcriptional changes of bulk HSCs 

and the whole HSPCs on the single cell level across the three phases (sensing, 

response, and recovery) of the acute inflammatory response to IFNα treatment. The 

datasets generated are a powerful resource for studying the heterogeneity and 

dynamics of the inflammatory response of HSPCs. The results show diversity in the 

response of HSPCs to IFNα; I highlighted different expression patterns that define early 

and late transcriptional responses, as well as global and cell type-specific signatures. 
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The study also revealed that HSPCs respond differently to treatment and exhibit 

different biological responses depending on the cell type.  

 

4.1.1 IFNα-Induced Inflammation Primes Hematopoietic Stem Cells for Ongoing 
Molecular Changes 

 
The discovery that IFNα affects HSCs function has opened an area of research that 

has produced conflicting data on HSCs development and maintenance (Demerdash et 

al. 2021). Short-term exposure to IFNα has been found to stimulate HSCs proliferation, 

while long-term exposure has been associated with stem cell depletion and exhaustion 

(Essers et al. 2009; Pietras et al. 2014). Chronic and acute viral infections have also 

been linked to HSCs impairment through continuous IFNα signaling (Hirche et al. 2017; 

Binder et al. 1997). However, thus far, it is unclear whether IFNα preprograms the 

transcriptional machinery in HSCs for functional impairment. Previous work suggests 

that the regenerative capacity of HSCs decreases with each cell division (Qiu et al. 

2014), raising intriguing questions about the potential existence of cellular memory of 

division and the responsible factors for this memory. To gain insight into this process, 

RNA sequencing was performed on HSC populations at different stages, including 3h, 

24h, and 72h. My results challenge conventional wisdom by showing that 

transcriptional activity in HSCs persists until 72h, in contrast to phenotypic FACs 

analysis. My data indicates that certain genes in HSCs are still undergoing changes at 

this time point, suggesting an ongoing cascade of molecular changes or even 

irreversible changes that have a lasting impact on activated cells. These results 

support the theory that deterioration of HSCs function begins immediately after initial 

cell division and worsens over time. This is consistent with recent work showing that 

discrete inflammatory events can irreversibly attenuate HSC function, underscoring the 

cumulative inhibitory effect of such events (Bogeska et al. 2022). However, the precise 

molecular mechanisms underlying this loss of function were previously unknown. My 

study suggests that a single dose of IFNα may prime HSCs for irreversible loss of 

function. This hypothesis is supported by the concept of cellular memory (Saeed et al. 

2014; Netea et al. 2016); Bernitz et al. 2016), which allows cells to alter their response 

to secondary stimuli. The ability of HSCs to modulate their response may be 

compromised after exposure to IFNα, potentially leading to a functional decline from 

which they cannot recover. 
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4.1.2 Metabolic Insights from transcriptomics into HSC proliferation and 
activation under IFNα-Induced Stress 

 
My findings revealed that during HSCs proliferation, there are significant 

transcriptional, mitochondrial, and metabolic changes that last up to 72h. These 

findings have implications for understanding the underlying mechanisms behind HSCs 

attrition and the loss of regenerative potential that occurs when dysfunctional 

mitochondria accumulate after cell division (Chan et al. 2012). My work also sheds 

light on the concept of HSCs divisional memory, which is thought to be driven by long-

lasting epigenetic modifications that enable rapid re-expression of genes upon 

secondary challenge (Saeed et al. 2014; de Laval et al. 2020). Interestingly, the data 

suggest that abnormal mitochondria acquired during initial division may play a role in 

holding this memory, including in cases of IFNα-induced activation (Filippi et al. 2021). 

While the concept of HSCs divisional memory is still being investigated, these findings 

have the potential to open up new avenues for research on the fundamental 

mechanisms governing HSCs function and their responses to external stressors. 

 

My investigation into the activation of HSCs has revealed a temporal relationship 

between mitochondrial activation and the initiation of the cell cycle. Furthermore, I 

observed sustained mitochondrial activity even after HSCs returned to a quiescent 

state, suggesting a crucial role for these organelles in HSCs regulation. This coincides 

with increased chromatin remodeling processes, potentially enabling HSCs to retain a 

memory of previous cell division and programming for extinction. Recent work has 

emphasized the interplay between mitochondrial function, metabolism, and epigenetic 

changes in HSCs, highlighting the need for a deeper understanding of these factors in 

HSC biology (Filippi et al. 2021; Morganti, Cabezas-Wallscheid, and Ito et al. 2022).  

Mitochondria plays a pivotal role in regulating HSCs function by facilitating energy 

production, fatty acid metabolism, nucleotide synthesis, and amino acid production 

(Papa, Djedaini, and Hoffman et al. 2019). The exact mechanisms by which 

mitochondria regulate HSCs activity are not yet clear, but their crucial role in 

maintaining cellular homeostasis underscores their importance (Chan et al. 2012). 

Further exploration of HSCs metabolic plasticity in various states, including during 

activation and under regenerative stress, is essential to uncovering the intricate 

relationships between mitochondrial function and HSCs regulation. 
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Stress-induced increases in cellular metabolism produce important metabolites that 

HSCs use as an energy source to promote differentiation and drive emergency 

hematopoiesis under stress conditions, as shown by previous studies (Maryanovich 

and Ito et al. 2022; Mistry et al. 2020). The field of HSCs biology is interested in 

understanding how HSCs metabolic activities are fueled during specific conditions that 

require HSCs activation. Initial analyses of our HSC bulk RNAseq dataset have shown 

that metabolic pathways are enriched at different stages of the response. It is 

noteworthy that instead of the classic metabolic features typically associated with the 

activation of HSCs (Morganti, Cabezas-Wallscheid, and Ito et al. 2022), I observed the 

exact opposite. Analysis of metabolic properties at the transcriptional level revealed 

sustained downregulation in anabolic processes after IFNα treatment, suggesting that 

the functional and differentiation capacities of HSCs were diminished. These results 

suggest a unique IFNα response to cellular activation of HSCs compared with other 

inflammatory stimuli. While bulk sequencing of HSCs has provided a great tool to 

understand better the molecular basis of IFNα-induced proliferation with considerable 

depth. To comprehensively investigate the metabolic landscape of HSCs under IFΝα-

induced stress and to better understand the functional consequences of changes in 

these metabolic states. It would be necessary to integrate our transcriptomics data with 

proteomics and metabolomics data to correlate the mRNA and protein levels. This will 

allow us to perform a more comprehensive analysis of the metabolic profile in HSCs 

under IFNα-induced stress. It is tempting to postulate if the downregulation of fatty acid 

oxidation is associated with the absence of the regular emergency myelopoiesis 

phenotype upon IFNα treatment. 

 

Despite significant progress in recent years, our understanding of the metabolic 

requirements of HSCs is limited because it is difficult to profile the metabolism of these 

rare cells using conventional mass spectrometry techniques. New techniques in 

metabolomics will improve our understanding of metabolic changes in HSCs. We can 

now get metabolic information from 10,000 cells (DeVilbiss et al. 2021), but more 

detailed analysis is needed to determine how metabolites are used and their role in 

epigenetic modifications. Much is still to be discovered about how HSCs metabolism 

is driven and the specificity of metabolite utilization in different contexts. Such 

knowledge could provide valuable insights into not only the stress response upon viral  
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infections but also the consequences of IFNα administration in treating hematological 

malignancies, such as myeloproliferative neoplasms (MPNs).  

 

4.1.3 Differential IFNα induced stress responses in hematopoietic stem and 
progenitor cells 

 
Although many studies have investigated the role of inflammation on HSCs function, 

changes in marker expression on these cells have made it challenging to examine the 

impact of inflammation on the heterogeneity and molecular changes over time in the 

HSPC compartment (Ali and Park et al. 2020). Single-cell profiling has improved our 

understanding of HSPCs heterogeneity, allowing for marker-independent analysis of 

their response to inflammation (Watcham, Kucinski, and Gottgens et al. 2019). 

Previous studies only captured a snapshot (Giladi et al. 2018), but our study 

investigates the progression of IFNα-induced processes over time, providing insight 

into the dynamics of the HSPCs response.  

 

Analysis of single-cell RNA-seq time series is nontrivial because of its high complexity, 

regarding the inclusion of multiple cell types, the high number of genes, and the extra 

dimension of time. To overcome the challenges of analyzing such longitudinal 

datasets, together with our collaborators, we designed a computational pipeline for 

processing and analyzing single-cell RNA-seq time series, in which clusters were 

labeled based on the expression of multiple genes after correcting for treatment 

effects, thus avoiding relabeling of the cells undergoing inflammation as separate 

populations. This will ensure the study of the same cell type over time. Hence, cell type 

identity is reliably retrieved, even though the conventional marker genes might be 

subject to changes, as is the case during inflammation. Furthermore, we designed 

measures that make the temporal dynamics more comprehensible and provide a 

(visual) entry point into all the information in the data. Unsupervised methods based 

on cell-to-cell proximities cannot capture the pseudotemporal order of the cells in our 

data, where the cell states after relaxation become more similar to those before 

treatment. Therefore, our collaborators implemented a semi-supervised, i.e., using the 

experimental time labels information, method for inference of response pseudotime. 

Using a minimal linear regression model, our response pseudotime reconstruction 

enabled capturing the fine-grained expression changes and dynamical patterns 
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beyond the four discrete experimental time points. Recently, alternative semi-

supervised methods such as psupertime (Macnair, Gupta, and Claassen 2022), or 

methods suitable for other temporal patterns (e.g., periodic dynamics) that linear matrix 

transformations may not capture are also being investigated. By utilizing our approach, 

we showed that the HSPCs response to IFNα has distinct molecular patterns of gene 

expression and biological processes depending on the cell type, highlighting the 

dynamic nature of HSPC’s response to IFNα. Our single-cell data demonstrate while 

the whole stem and progenitor compartment do sense the treatment, there is 

a heterogeneous response of HSPCs to IFNα, with HSCs displaying the greatest 

response compared to other progenitors. Strengthening the idea that HSCs are a key 

determinant of the host response and a major player in inflammation (Pietras et al. 

2017). For the first time, our data enabled a direct, systematic comparison of IFNα 

response among different HSPCs at the molecular level. Notably, the global HSPCs 

response shows a sustained increase in gene expression of metabolic and 

translational genes. In contrast, HSC-specific gene groups and patterns followed a 

rapid response and recovery. They were enriched in various inflammation-related 

genes, suggesting marked differences in how related cell types respond to the same 

inflammatory stimulus.  

 

4.1.4 Emergent effects of IFNα treatment on myelopoiesis: An unanticipated 
role for IFNα on myeloid progenitor development 

 
Our analyses not only provide insights into the dynamics of genes in the HSPCs 

compartment but also reveal previously unknown information about the effects of IFNα 

on myeloid progenitor cells, which has been controversial. Unexpectedly, I observed a 

persistent attenuation of myeloid differentiation genes in myeloid progenitor cells. 

Interestingly, I found that the persistent downregulation of myeloid differentiation genes 

was synchronized with the depletion of those cells from the BM. Several myeloid genes 

that did not reach convergence of their induced decreased expression along the 

response pseudotime of 72h post-treatment support a division memory of HSCs after 

IFNα treatment. Cellular memory is a process that allows cells to alter their response 

to secondary stimuli by enhancing or suppressing subsequent responses, depending  

on the type of stimulus received (Netea et al. 2016); (Saeed et al. 2014; Netea et al. 

2016). In innate immune cells, this can lead to an intensified inflammatory response to 
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secondary pathogen infections, known as trained immunity. Conversely, cellular 

memory can also result in dampening subsequent responses, which is called immune 

tolerance (Burrill and Silver 2010; Bernitz et al. 2016; Netea et al. 2016). For example, 

b-Glucan, Bacille Calmette-Guerin (BCG), and Candida albicans induce trained 

immunity via a type II interferon (Kaufmann et al. 2018) and IL1 (Moorlag et al. 2020) 

response, while recently it was shown that Mycobacterium tuberculosis (Mtb) 

reprograms HSCs and limits myelopoiesis via a type I IFN/iron signaling axis, impairing 

trained immunity responses (Khan et al. 2020). Trained immunity is a non-specific 

response of the innate immune system that functions independently of the 

acquired/adaptive immune system and provides an enhanced immune response upon 

reinfection with invading agents (Moorlag et al. 2020; Netea et al. 2020). It was shown 

that BCG and Mtb uniquely reprogram HSCs for at least 1 year. It is yet to be 

established whether a single administration of IFNα is adequate to induce the myeloid 

signature I observed. Additional research is necessary to comprehend the duration 

and specificity of the cellular memory response elicited by IFNα treatment. 

 

Emergency myelopoiesis, i.e., increased production of myeloid cells, has been 

described in response to many pro-inflammatory cytokines and infections (Manz and 

Boettcher et al. 2014). However, thus far, we have not identified any impact on myeloid 

production or differentiation upon IFNα treatment, due to extensive changes in stem 

cell-specific marker expression upon inflammation (Demerdash et al. 2021). Others 

claimed that decreased frequency of myeloid progenitors and the simultaneous 

increase in LSKs upon in vitro treatment of HSPCs with IFNα was mainly the result of 

myeloid progenitors reacquiring Sca-1 expression (Pietras et al. 2014; Kanayama et 

al. 2020). This conclusion was made based on in vitro studies, which show that myeloid 

progenitors re-acquire Sca-1 following IFNα treatment. However, the results of in vitro 

studies can be highly misleading, as when cells are removed from their niche, they are 

stressed and respond differently to the treatment. With our unbiased investigation of 

the different clusters, defined solely by their gene expression, I could now show that 

IFNα induced Sca-1 gene expression only occurred in immature HSCs and LMPPs. 

Even though CITEseq analysis of HSPCs should be performed to confirm these results  

at the Sca-1 protein level, our data indicate that the LSK expansion observed in flow 

cytometry is mainly due to the enrichment of the HSCs and multipotent progenitors 

and not myeloid progenitor populations shifting into the LSK gate.  
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Unlike other proinflammatory cytokines such as TNFα (Yamashita and Passegué 

2019) and IL1β (Pietras et al. 2016), I did not find characteristics typical of emergency 

myelopoiesis. Instead, abundance analysis showed a decrease in myeloid progenitor 

numbers; gene expression related to myeloid priming was downregulated in all cell 

clusters from immature HSCs to committed myeloid progenitors; and myeloid-derived 

mature neutrophils were continuously reduced in the blood. In addition, response 

pseudotime analysis revealed changes in expression of genes related to pyroptosis, 

suggesting that reduced levels of myeloid progenitors might result from a combination 

of impaired myeloid differentiation with increased cell death via pyroptosis. 

Interestingly, upon infection with Mtb, HSCs are reprogrammed to limit their 

commitment towards myelopoiesis via a type I IFN signaling axis (Khan et al. 2020). 

In this same study, they showed that IFNα induces RIPK3-mediated necroptosis in 

myeloid progenitors. However, RIPK3 is a component of both pyroptosis and 

necroptosis depending on other proteins participating in these pathways (Shlomovitz, 

Zargrian, and Gerlic et al. 2017). Differentiation and cell death pathways are not only 

regulated at the transcriptional level. Thus post-translational analysis and additional 

functional approaches need to be performed to unravel further the programs controlling 

the IFNα-induced reduction in the myeloid progenitors in the BM. 

 

Thus, our time course data suggest an unanticipated impact of IFNα on the 

differentiation and production of myeloid cells, possibly indicating that while it was 

previously believed that the proliferative response of HSCs protects the system, IFNα 

appears to have a harmful effect on more downstream progenitors, highlighting the 

diverse impact of the same proinflammatory agonist on related but distinct cell types 

at different timepoints in the response. This link between IFNα and reduced production 

and levels of myeloid cells such as neutrophils not only helps us to understand better 

the impact of inflammation on the whole hematopoietic compartment. It will also help 

to understand better the role of IFNα in disease settings such as the autoimmune 

disease systemic lupus erythematosus (SLE) in which neutrophil dysfunction plays an 

integral role in disease pathogenesis (Kaplan et al. 2011), and IFNα is associated with 

adverse outcomes (Rönnblom and Leonard et al. 2019). Although our study provides 

intriguing observations regarding myeloid cell development, I didn't capture lymphoid 

progenitors with our single-cell experiment. Therefore, the impact of IFNα on 
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lymphopoiesis remains unknown, and experiments investigating this are required to 

address this important question.  

 

While scRNA-Seq provides greater resolution than immunophenotyping, it does not 

fully capture the state of cells. A number of additional factors affect cell behavior, such 

as protein levels and chromatin state, which may manifest as unappreciated 

heterogeneity and dynamic properties. Nevertheless, the dataset that I provide is a 

very powerful resource that can be utilized to identify new FACs markers that remain 

unchanged with the treatment. This is because the dataset covers the full phase of 

acute inflammation, which provides almost a complete picture of the changes occurring 

in the cells during this period. By finding markers not affected by the treatment, we can 

have a better gating strategy for HSPCs, which will help us better study processes that 

occur during inflammation. 
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4.2 Early transcriptional responses of HSCs to multiple proinflammatory 
cytokines  

 
The activation of HSCs triggered by inflammatory stress is not limited to IFNα as it is 

a general response of HSCs to a broad spectrum of proinflammatory agonists. During 

infections or general inflammation, a whole storm of cytokines is produced, including 

other proinflammatory cytokines such as IFNγ, TNFα, IL1, and IL6, which are also 

capable of inducing HSCs proliferation in vivo (Caiado, Pietras, and Manz et al. 2021). 

Whether there is crosstalk between the different proinflammatory cytokines on their 

effect on HSCs quiescence remains unclear. In this part of my thesis, I aimed to 

uncover the early transcriptional responses of HSCs to various proinflammatory 

cytokines. To increase the likelihood of studying the direct downstream effects of 

stimulants on HSCs, I selected a short treatment window of 3h. The analysis involved 

examining the transcriptional responses of HSCs to six different proinflammatory 

cytokines: IFNα, IFNγ, TNFα, IL1β, IL1α, and IL6, along with LPS and pIC. Through 

this analysis, I found that nearly all proinflammatory cytokines tested initially elicited a 

response at the 3h timepoint. I demonstrated that the eight distinct proinflammatory 

cytokines elicited unique gene alterations in HSCs, indicating a diverse range of 

proinflammatory cytokine responses in the HSCs. Consistent with our recent work 

showing that a complex network of proinflammatory cytokines mediates the 

proliferative response of HSC to LPS (Demel et al. 2022), I uncover here the strong 

overlap of the transcriptional responses of LPS with IL1β, IFNα, IL1α, and TNFα. 

Exploring the interplay and interdependence of proinflammatory cytokines is an 

interesting approach. To explore this further, we need to use different mouse models 

that lack specific cytokine receptors. This will allow us to analyze whether the response 

to cytokines is different in KO mice compared to WT mice. 

 

Because many proinflammatory cytokines can induce the production of each other 

further experiments are needed. For this purpose, a cytokine array could be performed 

after a single proinflammatory cytokine treatment. Thus, we can investigate which 

proinflammatory cytokines are induced by the different treatments. In addition, mixed 

BM chimeras that include BM from WT and different receptor KO mice may be useful 

to reveal the interactions between the different proinflammatory cytokines. This may 

help to understand their effects on HSCs quiescence and the role that BM niche cells 
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play in mediating the indirect effects. Understanding the interactions between 

proinflammatory cytokines and their effects on HSCs behavior is critical to gain further 

insight into HSCs function and maintaining a functional hematopoietic system upon 

inflammation.  

 

The findings demonstrate that proinflammatory cytokines can induce distinctive 

alterations in the genes of HSCs. Nevertheless, I also discovered that some of these 

proinflammatory cytokines activate similar processes in the HSCs, highlighting the 

intricacy of proinflammatory cytokine signaling in regulating both the function and fate 

of HSCs. Interestingly, one common characteristic of all the treatments was the 

upregulation of adaptive immune responses. This finding suggests that 

immunomodulatory processes are initiated soon after exposure to the stressors, with 

a mere 3h interval between stimulus and response. Furthermore, all treatments except 

IFNα and pIC enhanced myeloid priming in HSCs, consistent with prior research. 

Further studies are needed to gain a deeper understanding of how proinflammatory 

cytokines regulate myeloid priming in HSCs. Furthermore, to fully elucidate the 

common and unique responses to the treatments, it is necessary to analyze and 

identify specific signaling pathways or processes later in the response. To complement 

this, we need to understand further if all the HSCs pool responds to inflammation or 

there is only a specific subset that responds.  And is there a common stress 

mechanism activated by those cytokines to mediate their effect on HSCs? Recent 

unpublished data by our group have shown that HSCs display increased IFN-

stimulated gene (ISG) expression under homeostasis. Would this interferon priming 

within the HSCs pool poise the cells to respond differently to cytokine treatment? Gene 

expression profiling on the single cell level through RNA-sequencing analysis could 

help answer this question. With such experiments, we can identify the molecular 

determinants of proinflammatory cytokine responsiveness within the HSCs 

compartment and thereby have complete understanding of the effects induced by the 

single treatments. Through comparison of single cell RNA sequencing of the single 

proinflammatory cytokine treatments we could potentially identify a common 

mechanism that is regulating the increase in HSCs proliferation after the different 

proinflammatory cytokine treatments. In the future, this could be further expanded, and 

investigation of the effect of those proinflammatory cytokines on the different lineage-

biased HSCs subtypes would be intriguing. 
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Although these proinflammatory cytokines use different genes to regulate similar 

processes, they share some commonly regulated genes. Interestingly, the Serpina3g 

gene has been found to be upregulated in response to all treatments except IL6. This 

gene is known to be involved in response to bacteria, cytokines, and adaptive immune 

responses. In addition, Serpina3g has been shown to act as a cytoprotectant against 

oxidative stress, protecting HSCs during inflammatory events and thereby possibly 

preventing cell death (L. Li et al. 2014). Moreover, this gene has been shown to play a 

role in regulating BM  microenvironment and affecting the migratory behavior of HSCs. 

It was shown to be downregulated in mobilized progenitor cells (Winkler et al. 2005). 

Therefore, it might be interesting to compare its expression in mobilized progenitor 

cells and HSCs. The upregulation in HSCs might indicate a mechanism that prevents 

the mobilization of HSCs during the acute stress response. To better understand the 

mechanistic relationship between the activation of HSCs and different stimuli, future 

experiments should be conducted. Specifically, it is necessary to analyze whether 

Serpina3g activation within HSCs is essential for their activation by different stimuli. To 

answer this question, using different mouse models and KO of Serpina3g in vivo may 

prove helpful.  

4.2.1 Cautionary remarks on the redundant use of pIC and IFNα treatments on 
HSCs 

 
In hematopoietic research, the use of pIC and IFNα treatments are widespread; 

however, my findings suggest that these treatments may not be as redundant as 

previously believed. Specifically, I demonstrate that only a fraction of pIC DEGs are 

upregulated following IFNα treatment, indicating possible differences in the underlying 

molecular mechanisms and pathways involved. These results shed new light on the 

intricate interplay between these treatments and their impact on hematopoietic 

processes. Therefore, it is important to consider the differential effects of these 

treatments when designing hematopoiesis studies. For example, if investigating early 

responses to IFNα, caution should be taken when using pIC to infer transcriptional 

responses at the 3h timepoint, as our analysis revealed significant dissimilarities 

between these two treatments. This novel insight may lead to a more sophisticated 

approach to the use of these treatments in hematopoietic research, with the potential 

to develop more targeted and effective therapeutic interventions. However, despite this 

disparity, the processes mediated by the DEGs for both treatments appear to be 
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functionally related, with some ISGs being induced. As an interferon inducer, pIC has 

been demonstrated to increase IFNα protein levels in the serum as early as 2h post in 

vivo injection (Linehan et al. 2018). Additionally, studies in KO mice suggest that pIC-

induced proliferation of HSCs relies on IFNα receptor signaling, warranting further 

exploration. For instance, the knockdown of cell cycle-related genes upregulated after 

IFNα treatment could determine whether the response of HSCs to inflammatory signals 

is modulated by the cell cycle. Alternatively, measuring the response of HSCs to pIC 

treatment after the KO of IFNα-specific genes (and vice versa) could determine 

whether these genes are specific to the treatment that upregulated them. Subsequent 

experiments should also validate the expression of differentially upregulated and 

downregulated genes after pIC and IFNα treatment by qPCR and determine their 

essential role in eliciting responses. These insights offer exciting avenues for future 

research in unraveling the complex mechanisms underlying the interplay between 

these treatments and their impact on hematopoietic processes. 

4.2.2 The Impact of IL6 on Gene Expression and Hematopoiesis 
 
In the context of hematopoesis, IL6 has been extensively studied due to its crucial role 

in the development of hematopoietic lineages in response to inflammatory stimuli. 

However, compared to other proinflammatory cytokines, my analysis revealed a 

weaker magnitude of gene expression changes induced by IL6 treatment. The 

production of IL6 is usually triggered by infection or the injection of other cytokines, 

resulting in massive IL6 production (Zhao and Baltimore 2015). The weak response of 

differentially expressed genes after IL6 treatment may be attributed to the low dose of 

injected IL6, which was lower than what animals typically encounter during actual injury 

or infection. Alternatively, IL6 may exert effects that have not been investigated, such 

as promoting lymphoangiogenesis in bone lymphatic vessels, as demonstrated in a 

recent study (Biswas et al. 2023). Although our findings do not rule out the possibility 

of IL6 playing a role in the activation of HSCs, administering a higher dose of IL6 may 

lead to a more pronounced activation of HSCs. Further experiments are required to 

investigate whether the dose or duration of IL6 treatment was incorrectly chosen or if 

IL6 does not promote HSCs proliferation. The microarray data, in conjunction with 

FACS analysis, suggest that IL6 treatment did not strongly activate HSCs, indicating a 

need for additional investigations into the role of IL6 in hematopoiesis. 
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4.3 The Complex Interplay of Proinflammatory Cytokines and Hematopoietic 
Stem cells under homeostasis  

 
Extensive work has been conducted on the role of proinflammatory cytokines in 

regulating HSCs and hematopoiesis under stress conditions. However, their role in 

regulating HSC development during embryogenesis, even without infection, has 

recently been investigated, revealing the importance of tonic inflammatory signals in 

maintaining HSC pool homeostasis (Collins, Mitchell, and Passegué et al. 2021). 

Despite this, the basal activation of proinflammatory cytokines in homeostasis has 

been less studied. 

 

Single-gene KO studies often face a challenge called genetic compensation or 

transcriptional adaptation. This occurs when the loss of one gene is compensated for 

by another gene with similar functions and expression patterns. Such compensation 

has been observed in multiple mutants of various model organisms (El-Brolosy and 

Stainier 2017). For instance, KO mice in which specific proinflammatory cytokine 

signals are turned off, like Tnfrsf1dko, Il1r1-/-, Ifngr-/-, and Ifnar-/- KO mice, show no 

significant hematologic defects (Pronk et al. 2011; Pietras et al. 2016; Matatall et al. 

2014; Essers et al. 2009). Although they show minor changes in HSC pool size or 

lineage priming, their viability is unaffected. Conversely, animals lacking NF-kB 

subunits, a common downstream target of inflammatory cytokine signaling, display 

substantial impairments in hematopoiesis (Espín-Palazón and Traver et al. 2016). This 

suggests that individual cytokines, rather than inflammatory signals, are dispensable 

for hematopoietic development. In this work, investigating the hematopoietic system of 

Ifnar-/-Ifngr-/- KO adult mice revealed a phenotypic change in the stem cell compartment 

as elucidated by a significant decrease in HSCs and LSKs. This is in contrast to 

previous results showing that single Ifnar-/- KO and Ifngr-/- KO adult mice have normal 

HSCs numbers (Matatall et al. 2014; Essers et al. 2009); this is likely due to 

redundancy in and cooperativity between both classes of IFNs (Platanias et al. 2005), 

which may explain why the removal of only one signaling pathway did not affect the 

stem cell number in adult mice.  
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IFN signaling has been shown to regulate embryonic HSC production; the authors 

showed that Ifngr-/- embryos exhibit a four-fold decrease in HSC numbers (Y. Li et al. 

2014). Therefore, my results lead to the important hypothesis that the decrease in 

HSCs numbers in Ifnar-/-Ifngr-/- KO adult mice may have originated during embryonic 

development and is not compensated by other proinflammatory cytokines in adulthood. 

It would be important to examine the number of HSCs in the double and single IFNs 

KO embryos in mating experiments to determine whether this decrease in the stem 

cell compartment arose during embryonic development or adulthood. The reduction in 

the number of HSCs in Ifnar-/-Ifngr-/- KO adult mice was further highlighted by the 

reduction in differentiation potential observed in in vitro colony formation assays 

compared with WT mice. These findings are consistent with a study showing a similar 

phenotype in JAK1 KO mice, which have defects in type 1 and type 2 IFN signaling 

pathways, among others. In addition, JAK1-deleted stem cells exhibited 

downregulation of several members of the interferon-regulating transcription factor 

family (Kleppe et al. 2018). These findings underscore the critical role of IFN signaling 

in maintaining the HSCs compartment. 

 

Although the deficiency in CFU differentiation may be attributed to a decline in 

proliferative capacity, I did not detect any alteration in the cycling pattern of the Ifnar-/-

Ifngr-/- HSCs. Alternatively, it could be due to the limited number of functional HSCs in 

the 2KO mice. Despite this, the competitive repopulation assay indicated that 2KO 

LSKs had a transient competitive advantage in the early stages of hematopoietic 

regeneration, which emphasizes the crucial role of the BM microenvironment in stress-

induced activation of HSCs. Notably, altered homing of LSK as a consequence of IFN 

receptor deficiency could likely explain the competitive advantage of the 2KO cells in 

the primary transplants, as only short-term reconstitution levels were affected. 

Therefore, it is imperative to generate reverse chimeras within a 2KO stromal 

microenvironment to determine whether the observed defect in the 2KO mice is due to 

the microenvironment or an inherent attribute of the 2KO cells. In addition, to 

distinguish between genes and functions that are important for all cells and those with 

specific functions for HSCs, it is important to perform studies with HSC-specific Cre 

recombinase (HSC-SCL-Cre-ERT transgenic mice) (Göthert et al. 2005) in 

combination with floxed IFN signaling genes. This allows direct investigation of the 
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effects of IFN in adult hematopoiesis, excluding potential developmental and 

microenvironmental impairments that may ultimately affect HSCs. 

 

4.3.1 Insights from knockout mouse models and implications for 
understanding HSCs function in physiological environments  

 
Lacking one or two proinflammatory cytokine receptors doesn't fully explain the 

complex interactions between HSCs and their microenvironment. Because many 

factors are involved in cytokine receptor signaling, compensatory mechanisms can 

occur when a single component is absent  (El-Brolosy and Stainier et al. 2017). 

Therefore, it's crucial to understand the combined role of proinflammatory cytokines in 

a dynamic physiological environment rather than analyzing each proinflammatory 

cytokine separately. Our findings that 2KO mice had reduced function and number of 

HSCs prompted us to investigate whether the loss of other proinflammatory signaling 

pathways (TNFα and IL1) combined with IFNs could lead to more severe defects in 

the HSCs compartment. Remarkably, these mice exhibited a reduced lifespan of 

approximately 50 weeks, a phenotype absent in the precursor mice. However, it is 

currently unclear whether the cause of mortality originates during fetal development or 

manifests as an adult phenotype. To resolve this, conducting timed mating 

experiments is crucial to determine whether mortality occurs during embryonic 

development or adulthood.  

 

The complex influence of proinflammatory cytokines on HSC function is highlighted by 

the finding that 5KO mice have an increased colony forming capacity which is in 

contrast to the results obtained with 2KO. Although I found no differences in 

competitive transplantation between 5KO mice, I used whole BM and did not perform 

HSCs equivalence. The results show that the transplanted cells were still evenly 

distributed, indicating an efficient repopulation. To gain a more comprehensive 

understanding of the functional differences in HSCs numbers among the 5KO mice 

and compare them to WT mice, future experiments should employ single-cell 

transplantation assays and limiting dilution assays.  
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Upon further analysis of mice post-chemotherapy, it was observed that stem and 

progenitor cells of 5KO mice exhibit increased proliferation and expansion in response 

to stress, leading to delayed recovery of their cell cycle. Even though no differences in  

cell cycle behavior were observed between wild-type and 5KO mice at baseline, given 

that proinflammatory cytokines can induce HSC activation and cycling following stress 

stimuli, I expected that baseline signaling of these cytokines would contribute to the 

homeostatic activation of HSCs. However, using Ki67/Hoechst staining to examine the 

cell cycle status of these 5KO mice did not reveal a role for proinflammatory cytokines 

in maintaining HSC quiescence under homeostasis. Nonetheless, I cannot exclude the 

possibility that proinflammatory cytokines play a role in regulating HSCs quiescence 

under homeostatic conditions. This is because using Ki-67/Hoechst 33342 staining 

provides only a snapshot of the cell cycle at a one-time point, and 70-80% of HSCs 

are already at G0. This method is not sensitive enough to detect small numbers of 

actively cycling cells. Therefore, label-retaining assays and methods that measure 

division kinetics in vivo (van der Wath et al. 2009) could help address this question. 

The gene expression data reinforces that proinflammatory cytokine receptor loss leads 

to changes in the cell cycle. Further studies are needed to functionally dissect the 

downstream targets of the proinflammatory cytokine receptors that confer the 

enhanced proliferation ability for stem/progenitor cells upon stress.  

 

In aging, myelopoiesis becomes dominant over lymphopoiesis, and it is suggested that 

increased basal levels of proinflammatory cytokines observed during aging might be 

responsible for this effect (Geiger, de Haan, and Florian et al. 2013) Further 

experiments are required to determine how the different cell fates of HSCs are 

regulated by proinflammatory cytokines to help gain insights into the molecular 

mechanisms by which extrinsic factors control the fates of HSCs. Moreover, post-

transcriptional regulatory mechanisms specific to HSCs, such as microRNA regulation, 

protein modifications, or substrate availability, may exist but are not readily obvious.  

 

Currently, there is no literature showing the effect of multiple receptor KO on 

hematopoiesis. In summary, using our novel multiple receptor knockout mice, I reveal 

the complexity of proinflammatory cytokines in regulating the quiescence and 

differentiation of HSCs. These findings are critical to advance our knowledge of the 

relationship between inflammation and hematopoiesis. By exploring how inflammatory 
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signaling regulates hematopoiesis function and shapes the blood system, we can gain 

valuable insights into the changes that occur during aging and the development of 

various hematologic malignancies. Ultimately, these insights could lead to new 

therapies that target inflammatory pathways to improve outcomes in patients with 

hematologic diseases. 
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4.4 Concluding remarks and future perspective 
 
The current state of research in stress hematopoiesis fails to recognize the significance 

of studying the temporal dynamics of these biological processes. Since all biological 

phenomena inherently involve changes over time, incorporating the temporal aspect 

into investigations is crucial to gain a comprehensive understanding of the underlying 

mechanisms. This study presents a novel approach to analyzing the molecular 

response of bulk HSCs to IFNα treatment throughout the three phases of acute 

inflammation: sensing, response, and recovery. The longitudinal transcriptional 

analysis of HSCs is the first of its kind and provides insights into the sequence of 

biological events that occur in HSCs during IFNα treatment. These findings were 

previously underrepresented in single end-point analyses. An exciting prospect for this 

study is the further investigation of the analysis at later time points. Understanding 

whether the system recovers and whether cellular memory has developed as a result 

of treatment. By focusing on the temporal dynamics of biological processes, this 

research can provide a more comprehensive understanding of stress hematopoiesis. 

In addition to the longitudinal transcriptional analysis of HSCs during IFNα treatment, 

I have compiled a comprehensive resource of transcriptional features specific to HSCs 

and progenitor cells at the single-cell level. These features are crucial for responding 

to IFNα treatment during different stages of acute inflammation in stress 

hematopoiesis. By creating this resource, I have established a foundation for exploring 

the functional properties of the molecular signatures of HSPCs under inflammatory 

stress. Manipulating hematopoiesis requires an understanding of the underlying 

molecular mechanisms. While correlations inferred from expression data offer 

hypotheses for regulatory mechanisms, experimental testing is crucial for confirming 

these hypotheses. Furthermore, to comprehensively model regulatory and signaling 

networks that lead to changes in gene expression, we must integrate different types of 

biological data. Combining our time-series data with protein levels and chromatin 

features is essential for this comprehensive modeling. Techniques, such as CITE-Seq 

(Stoeckius et al. 2017) or REAP-Seq (Peterson et al. 2017), will enable the 

simultaneous detection of proteins or chromatin status. Additionally, imaging-based 

transcriptomics (Petukhov et al. 2022); (Haase et al. 2022) is being developed to 

provide spatial information that complements the data. Collectively, these 

advancements will provide near-complete information, including precise cell locations  
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in a multidimensional feature space, tying together information at molecular, cellular, 

and tissue levels. These efforts can uncover new insights into the complex regulatory 

networks that govern stress hematopoiesis and have significant implications for the 

development of novel therapeutic interventions. 

 

My work delves into the previously unexplored area of how IFNα contributes to 

emergency myelopoiesis. The findings have revealed novel insights into the 

mechanisms governing this critical biological process and suggest that IFNα treatment 

may hold clinical promise for addressing diseases associated with emergency 

myelopoiesis. Looking ahead, I plan to investigate the mechanisms underlying the loss 

of myeloid progenitor cells, which I have observed to have strong death-signaling 

properties. Notably, the findings indicate an increased score for the pyroptosis gene 

signature, which highlights the significance of this pathway in regulating myelopoiesis. 

Newly developed single-cell lineage tracing strategies (Rodriguez-Fraticelli et al. 2020) 

will facilitate the assessment of treatment-induced transcriptional changes and the 

functional capacity of individual cells in a single experiment. By targeting multiple 

genes and observing the effects globally, we can understand how RNA, proteins, 

epigenetics, and extrinsic signals shape the differentiation landscape and drive cellular 

fluxes. For finer time scales and insight into cell cycle–related effects, pulse-chase 

experiments may become important. By elucidating the molecular mechanisms driving 

these processes, we can gain a more comprehensive understanding of the complex 

regulatory networks involved in myelopoiesis and potentially uncover new therapeutic 

targets for these debilitating diseases. The IFNα's impact on the myeloid differentiation 

pathway raises intriguing questions about its effects on other cellular differentiation 

lineages, especially the lymphoid arm. No conclusive evidence has been found to 

suggest an increase in lymphoid priming. However, the upregulation of GO terms 

related to antigen presentation and T-cell differentiation in HSCs suggests a potential 

impact on lymphoid differentiation. Further investigation is needed to determine 

whether this effect leads to increased lymphoid priming in HSCs. In addition, 

leveraging this dataset to identify markers that remain consistent throughout treatment 

for each cluster can aid in devising a more effective gating strategy for progenitors.  

 

The current state of research in this field lacks the ability to compare proinflammatory 

cytokine responses due to the usage of varied techniques and gating strategies. To 
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address this issue, I started to perform a systematic analysis that will enable us to 

compare proinflammatory cytokine responses, determine the level of overlap and 

crosstalk, and facilitate our understanding of disease models. The transcriptional 

changes observed suggest both common and specific responses to various 

proinflammatory cytokines, warranting further validation. Numerous studies have 

linked inherited and acquired BM failure syndromes to increased inflammation during 

chronic infection, with inflammation increasing the risk of developing hematologic 

malignancies. By targeting specific cytokines, patients may receive more effective 

treatment. Our findings could enhance our comprehension of the hematopoietic 

system during inflammatory responses and its involvement in severe hematological 

disorders that demonstrate impaired HSCs function, such as leukemia and BM failure. 

Future work using genetic models is needed to dissect further indirect vs. direct effects 

of external stimulants on HSCs.  

 

The present investigation of hematopoiesis and proinflammatory cytokines fails to 

account for the interconnections and overlaps among these cytokines and often 

studies them in isolation. However, in the actual setting of infection, it is rare for a single 

cytokine to function in isolation. Consequently, concluding the existing literature is 

difficult since different techniques are used, and it does not accurately reflect the actual 

situation. Thus, we aimed to address this issue by developing a mouse model with 

multiple proinflammatory cytokine signaling Knockedout to investigate their overall 

impact. However, further analysis and comparison with all progenitor knockouts are 

needed to gain a more comprehensive understanding of the signaling pathways 

involved in proinflammatory cytokines and their regulation of hematopoiesis. This 

research may also shed light on how human HSCs behave since humans are 

constantly exposed to various pathogens, unlike mice, which are maintained in a 

pathogen-free environment. This constant exposure to pathogens may contribute to 

the HSC defects that occur with aging. Blocking cytokines that trigger HSCs activation 

may be a potential treatment option for patients with immune deficiencies or age-

related BM failure. Understanding the effects of individual proinflammatory cytokines 

and combinations of them may improve the treatment of patients suffering from BM 

failure due to chronic infections or defective DNA repair mechanisms.  
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5 Materials and Methods 
 
5.1 Materials  
 
Materials not listed in the 'Materials' section will be mentioned in the 'Methods' sections. 
 
5.1.1 Antibodies  
 
Table 1: List of antibodies for flow cytometry 

Antigen Label Clone Company 

B220 PE-CY7 RA3-6B2 eBiosciences 

B220 APC-Cy7 RA3-6B2 eBiosciences 

B220 AF700 RA3-6B2 eBiosciences 

B220 BUV661 RA3-6B2 BD Biosciences 

BrdU APC RB6-8C5 eBiosciences 

CD45.2 104 Pacific Blue BioLegend 

CD45.1 A20.1 FITC eBioscience 

CD105 Pacific Blue MU7/18 eBiosciences 

CD117 APC-Cy7 2B8 eBiosciences 

CD117 PE 2B8 eBiosciences 

CD117 BV711 2BB Biolegend 

CD117 APC 2B8 eBiosciences 

CD11b PE-CY7 M1170 eBiosciences 

CD11b AF700 M1/70 eBiosciences 

CD11b PE-CY5 M1/70 eBiosciences 

CD11b BUV805 M1/70 BD Biosciences 
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CD11c PE-cy7 HL3 
BD 

Pharmingen™ 

CD135 PE A2F10 eBiosciences 

CD150 PE-CY5 TC15-12F12.2 Biolegend 

CD16/CD32 APC 93 eBiosciences 

CD34 AF700 RAM34 eBiosciences 

CD34 FITC RAM34 eBiosciences 

CD4 PE-CY7 GK1.5 eBiosciences 

CD4 FITC GK1.5 eBiosciences 

CD41 FITC eBioMWReg30 eBiosciences 

CD41 PE eBioMWReg30 eBiosciences 

CD45.1 PE-CY5 A20 eBiosciences 

CD45.2 PE-CY7 104 Biolegend 

CD48 PE HM48-1 eBiosciences 

CD48 Pacific Blue HM48-1 Biolegend 

CD8a PE-CY7 53-6.7 eBiosciences 

CD8a AF700 53-6.7 eBiosciences 

F4/80 Pacific Blue - Bio-Rad 

Gr.1 AF700 RB6-8C5 eBiosciences 

Gr1 PE-CY7 RB6-8C5 eBiosciences 

Gr1 APC RB6-8C5 eBiosciences 
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Ki67 FITC 51-36524X 
BD 

Pharmingen™ 
 

Ly6G BUV395 1A8 BD Biosciences 

Sca-1 APC D7 eBiosciences 

Sca-1 APC-Cy7 D7 
BD 

Pharmingen™ 

Ter119 AF700 - Biolegend 

Ter119 PE-CY7 TER-119 eBiosciences 

TotalSeq™ anti-

mouse Antibody 
A0301 Hashtag BioLegend 

TotalSeq™ anti-

mouse Antibody 
A0302 Hashtag BioLegend 

TotalSeq™ anti-

mouse Antibody 
A0303 Hashtag BioLegend 

TotalSeq™ anti-

mouse Antibody 
A0304 Hashtag BioLegend 

 
5.1.2 qRT-PCR primers 
 
Table 2: List of qRT-PCR pimers and sequences 

Gene Primer Sequence 

Zbp1 fwd CAGGAAGGCCAAGACATAGC 

Zbp1 rev GACAAATAATCGCAGGGGACT 

Irf7 fwd CTTCAGCACTTTCTTCCGAGA 

Irf7 rev TGTAGTGTGGTGACCCTTGC 

Rsad2 fwd GTGGACGAAGACATGAATGAAC 
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Rsad2 rev TCAATTAGGAGGCACTGGAAA 

Ifi44 fwd CTGATTACAAAAGAAGACATGACAGAC 

Ifi44 rev AGGCAAAACCAAAGACTCCA 

Plac8 fwd CAGACCAGCCTGTGTGATTG 

Plac8 rev TCCAAGACAAGTGAAACAAAAGG 

Bst2 fwd GAAGTCACGAAGCTGAACCA 

Bst2 rev CCTGCACTGTGCTAGAAGTCTC 

Ligp2 fwd GCCTGGATTGCAGTTTTGTAA 

Ligp2 rev TCAAATTCTTTAACCTCAGGTGACT 

Oasl2 fwd AGGTGGCTGCAGAAGCTG 

Oasl2 rev TGTTTCACTCTCACCTGAACATC 

Oas2 fwd TAGACCAGGCCGTGGATG 

Oas2 rev GTTTCCCGGCCATAGGAG 
 
 
5.1.3 Kits 
 
Table 3: List of used kits 

Kit Source Identifier 

APC BrdU Flow Kit BD Pharmigen 552598 

Arcturus® PicoPure® RNA Isolation Kit Life Technologies KIT0204 
 

Agilent RNA 6000 Pico Kit 
Agilent RNA 6000 

Pico Kit 

5067-

1513 

Chromium Next GEM Single Cell 3' GEM, 

Library & Gel Bead Kit v3. 
10x Genomics 1000121 
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Chromium Next GEM Chip G Single Cell 

Kit 

10x Genomics 1000120 
 

Dynabeads® Untouched™ Mouse Kit 
ThermoFischer 

Scientific 
11415D 

 

SuperScript® VILOTM cDNA Synthesis Kit Life Technologies 11754250 

 
5.1.4 Reagents and cell culture medium  
 
Table 4: Reagents and cell culture medium 

Reagent Source Identifier 

MethoCultTM GF M3434 
StemCellTM 

Technologies 
03434 

 

RPMI-1640 Medium Sigma-Aldrich R8758 

UltraPureTM Distilled Water 

DNase/RNase Free 

ThermoFisher 

Scientific 
10977-035 

 
5.1.5 Equipment  
 
Table 5: List of equipment 

Instrument/Material Source Identifier 

10X Chromium Controller 10x Genomics 1000202 

BD LSRFortessa™ Flow 

Cytometer 
BD BD Fortessa 

BD™ LSR II BD BD LSR 
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FACSAria™ Fusion Cell Sorter BD BD FACSAria 

FACSAria™ I Cell Sorter BD BD FACSAria 

FACSAria™ II Cell Sorter BD BD FACSAria 

NovaSeq Sequencing System Illumina NovaSeq 

Hiseq sequening system Illumina  

 
5.1.6 Programs and software 
 
Table 6: List of programs and softwares 

Tool From 

FACSDIVA v8.0 BD Biosciences 

Flowjo v10 TreeStar 

DESeq2 Love, Huber and Anders, 2014 

ClusterProfiler Yu et al., 2012 

Pheatmap v1.9.12 N/A 

GraphPad Prism v8 GraphPad Software 

Adobe illustrator CS6 Adobe systems 

Rstudio RStudio, Inc. 
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5.2 Methods  
 
5.2.1 Animals  
 
All animal experiments were approved by the local Animal Care and Use Committees 

of the German Regierungspräsidium Karlsruhe für Tierschutz und 

Arzneimittelüberwachung (Karlsruhe, Germany). Mice were kept under specific 

pathogen-free conditions (SPF) in ventilated cages (ICV) in the animal facility of the 

German Cancer Research Center (DKFZ). Mice used for experiments were 10-20 

weeks old at the beginning of the respective experiments. All mice were on a C57BI/6 

background. Wild-type (WT) mice were bred at the DKFZ animal facility under 

pathogen-free conditions and in line with all standards of animal care or bought from 

the JANIVER lab. Ifnar-/-Ifngr-/- knockout (KO) mice lack the receptors for both IFNα 

and IFNγ, leading to a defect in response to these cytokines. Ifnar-/-Ifngr-/-Ilr-/-

Tnfrsf1dKO mice lack receptors for TNFα, IL1, IFNγ, and IFNα. Multiple receptor KO 

mice were generated at the DKFZ animal facility by mating single KO mice to produce 

homozygous multiple knockout mice finally. SclCreERT baxfl-/fl-bak-/- mice were on a 

C57BI/6 background (Takeuchi et al. 2005), and treated for 5 days with 2mg/day 

tamoxifen to delete bax. To determine the genotype of mice, DNA was extracted from 

tail biopsies, and genotyping PCR was performed. Mice were sacrificed by cervical 

dislocation according to German guidelines.  

5.2.2 In vivo treatments 
 
To treat the mice with the different pro-inflammatory cytokines and other reagents, the 

mice were weighed and injected with 200 μl 0,5 mg/kg IFNγ (eBiosciences), 0,25 

mg/kg IL1α (Peprotech), 0,25 mg/kg IL1β (Peprotech), 0,05 mg/kg IL6 (R&D Systems), 

0,25 mg/kg LPS (Sigma Aldrich), 5 mg/kg pIC (InvivoGen) and 0,75 mg/kg TNFα 

(Peprotech) intraperitoneally (i.p.), with 100 μl of 50.000 international units (IU) per 20g 

mouse IFNα (Miltenyi Biotec) subcutaneous (s.c.), and 150 mg/kg 5-FU (InvivoGen).  

The reagents were diluted in phosphate-buffered saline (PBS), control mice were 

injected with 200 μl of PBS i.p., and IFNα control mice were injected with 100 µl PBS 

s.c. For the bax-/-bak-/- mice, IFNα treatment was started 4 weeks post tamoxifen 

treatment.  For the BrdU incorporation assay, BrdU (18mg/kg, Sigma-Aldrich) was 

administered i.p. for 14 hours prior to sacrifice.   
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5.2.3 Organ dissection and preparation of cell suspensions  
 
5.2.3.1 Blood  
 
Blood was collected from the vena facialis by sub-mandibular bleeding into EDTA-

coated collection tubes. Blood was analyzed automatically with a Hemavet cell counter 

(Drew Scientific) or stained for flow cytometry after initial RBC lysis by incubation with 

ACK lysis buffer (LONZA) for 20 mins.  

5.2.3.2 Spleen 
 
The spleen is excised and kept in an RPMI medium. Splenocytes single cell 

suspension was then obtained by mashing the spleen through 40 μm EASYstrainerTM 

(Greiner bio-one) and washing with RPMI-1640 medium (Sigma-Aldrich) 

supplemented with 2% fetal bovine serum (FBS) for 5 min at 1600 rpm, 4°C. RBC lysis 

was performed by incubation with ACK lysis buffer (LONZA) for 5 mins at room 

temperature. The lysis reaction was stopped by adding PBS, and cells were washed 

as before. Cells were then stained for flow cytometry.  

 

5.2.3.3 Bone Marrow 
 
For flow cytometry analysis, BM was isolated from the tibia, femur, hips, and (if 

required) spine by crushing using mortar and pestle in 2x 5 ml cold RPMI-1640 medium 

(Sigma-Aldrich) supplemented with 2% fetal bovine serum (FBS). Cell suspensions 

were filtered through a 40 μm EASYstrainerTM (Greiner bio-one), then counted, and the 

appropriate cell number was transferred, washed for 5 min at 1600 rpm, 4°C, and used 

for FACS staining. For cell sorting, an extra step of lineage depletion was performed. 

This was done by incubating the BM cells with a lineage antibody cocktail against CD4, 

CD8, CD11b, B220, Gr-1, and Ter119 in RMPI+2%FCS for 45 mins on ice. Afterward, 

cells were washed for 5 min at 1600 rpm, 4°C, and incubated with Dynabeads® 

Magnetic Beads (1 per mouse) (Invitrogen) on a wheel for 30 mins at 4°C. Cells were 

then exposed to a magnet to remove lineage marker-expressing cells. Cells were 

washed for 5 min at 1600 rpm, 4°C, and suspended in FACS staining buffer. 
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5.2.4 Cell counting  
 
Cells were diluted with phosphate-buffered saline (PBS) in a ratio of 1:50 to a final 

volume of 600 μl, and cell numbers were then determined with a Vi-cell automated cell 

counter (Beckman Coulter). 

 

5.2.5 Flow cytometry and cell sorting 
 
Flow cytometric analyses were performed using fluorochrome-labeled monoclonal 

antibodies listed in table 1 Antibodies were titrated with the whole BM prior to use and 

used in concentration according to this titration. All cell suspensions were filtered 

through a nylon mesh filter (70 μm) prior to FACS analysis, and data were then 

acquired on the BD LSR Fortessa or LSRII (BD Biosciences). Cell suspension staining 

was performed in RPMI medium supplemented with 2% FCS. To achieve this, cells 

were incubated with specific antibodies for 30-60 minutes on ice in the dark. 

Subsequently, the cells were washed with PBS+2% FBS for 5 mins at 4°C. To identify 

HSC and progenitor subsets, the cell suspensions were stained with a combination of 

antibodies, including CD117, Sca-1, CD150, CD48, CD34, CD105, CD16/32, CD135, 

and lineage antibodies (CD4, CD8, CD11b, Gr-1, B220, and Ter119). In addition, we 

stained for differentiated cells using B220, CD4, CD8, Ter119, Ly6G, CD11b, CD11c, 

and F4/80 antibodies. Table 7 displays the surface marker combinations for the cell 

types investigated in this thesis. For cell sorting, lineage depletion was performed after 

BM was isolated. Cells were then stained, as mentioned above. Cell sorting was 

performed on a FACS-sorting Aria I/II or Fusion flow cytometers (BD Bioscience) at 

the DKFZ flow cytometry service unit.  

 

Table 7: Combination of surface markers for cells studied in this thesis 

Cell population Surface markers 

HSCs Lin-Sca1+cKit+CD150+CD48-CD34- 

LSK Lin-Sca1+cKit+ 

MPP1 Lin-Sca1+cKit+CD34+CD135-CD150+CD48- 

MPP2 Lin-Sca1+cKit+CD34+CD135-CD150+CD48+ 

MPP3 Lin-Sca1+cKit+CD34+CD135-CD150-CD48+ 
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MPP4 Lin-Sca1+cKit+CD34+CD135+CD150-CD48+ 

LS-K Lin-Sca1-cKit+ 

CMP Lin-Sca1-cKit+CD34+CD16/32- 

GMP Lin-Sca1-cKit+CD34+CD16/32+ 

MEP Lin-Sca1-cKit+CD34-CD16/32- 

CLP LinLowcKitlow CD127+CD125+ 

Monocytes B220- CD4- CD8- Ly6G- CD11b+ CD11c- F4/80- 

Neutrophils B220- CD4- CD8- Ly6G+ CD11b+ 

 

5.2.6 Ki67 cell cycle analysis 
 
For cell cycle analysis, Ki67-Hoechst staining is used. First surface stained BM cells 

were fixed with BDCytofix/Cytoperm™ Buffer for 15 mins at 4°C. Cells were then 

washed with 1x permeabilization buffer and stained with anti-Ki67 antibody overnight 

at 4°C. Cells were then co-stained with Hoechst 33342 (Molecular Probes) at a dilution 

of 1:400 for the final 10 min. Cells were washed and resuspended in 1x 

permeabilization buffer until the acquisition was made. 

 

5.2.7 BrdU proliferation assay  
 
For the BrdU incorporation assay, mice were injected i.p with 200 μL BrdU (18mg/kg, 

Sigma-Aldrich) for 14 hours prior to sacrifice. BM was isolated as described and 

stained for surface markers. Subsequently, cells were fixed, and BrdU staining was 

performed according to the instructions of the BrdU Flow Kit protocol (BD 

PharmingenTM). 

 
5.2.8 RNA isolation, reverse transcription & quantitative real-time PCR 
 
For all samples for qRT-PCR analysis, cells were sorted directly into 50 μl extraction 

buffer (Arcturus PicoPure Kit), then spun and frozen. RNA isolation was performed 

using the PicoPure RNA isolation kit (Arcturus Therapeutics) according to the 

manufacturer's instructions. Briefly, the isolated RNA samples were treated with 5 μl  
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DNase and 35 μl RDD buffer per sample with DNase and then incubated for 15 minutes 

at room temperature. Then, 40 μl wash buffer 1 was added and the samples were 

centrifuged at 8000 g for 1 minute. The elution step was performed with 16 μl H2O, 

and the resulting samples were stored at -80°C or used immediately for downstream 

experiments. To determine the quality and concentration of the isolated RNA, an RNA 

Pico Chip (Agilent Technologies) was used in the Agilent 2100 Bioanalyzer System 

(Agilent Technologies), following the instructions in the Agilent RNA 6000 Pico Kit 

manual (Agilent Technologies). Isolated RNA was reverse transcribed into cDNA using 

the SuperScript VILO cDNA Synthesis Kit (Invitrogen, ref. 11754-250) according to the 

manufacturer's protocol. The cDNA was diluted with H2O to the minimum required 

volume, and 6 μl of the cDNA samples were pipetted into a well of the 384-well plate. 

Technical triplicates were prepared for each sample. The primer mix contained 0.1 μl 

forward primer, 0.1 μl reverse primer, 0.8 μl RNase-free water, and 7 μl Power SYBR 

Green PCR Master Mix (Thermo Fisher Scientific) per sample. 8 μl of the primer mix 

was added to the cDNA in the 384-well plate, which was then sealed and centrifuged 

at 1200 rpm for several seconds. The Viia 7 Real-Time PCR System (Thermo Fisher 

Scientific) was set up according to the recommendations in the Power SYBR Green 

PCR Master Mix manual. The results were exported, and the fold change of each gene 

was calculated by normalizing to the housekeeper genes (GAPDH and β-actin) and 

the PBS control samples and using the ΔΔCT values and analyzed using GraphPad 

Prism analysis software (GraphPad Software). 

 

5.2.9 Colony-forming assay 

BM cells were prepared and stained as described above. 500 primary sorted LSK cells 

or 20,000 BM cells were plated in 1 ml Methocult 3434® (Stem Cell Technologies). 

Samples were plated in duplicates in 35 mm2 tissue culture dishes and incubated in a 

humidified atmosphere at 37°C and 5% CO2. Colonies were counted after 7 days using 

an inverted microscope. The total number of cells per well was also recorded using the 

Vi-cell automated cell counter to determine the number of cells/colony. For replating, 

cells were harvested by washing the culture plates with PBS. Cells were counted using 

a hemocytometer, and 20,000 cells of each technical replicate were mixed with 1 ml of 

MethoCult M3434 semisolid medium and applied to a 35-mm culture plate (1 

ml/replicate). Colony counts were determined after 5-7 days. 
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5.2.10 Competitive transplantation assay 

For 2KO competitive transplants, 1000 LSKs of CD45.2 experimental mice were mixed 

with equal numbers of CD45.1.2 WT competitor cells and 100,000 c-kit depleted bone 

marrow cells. This cell mixture was transplanted via tail vein injection into lethally 

irradiated (2x5 Rad) CD45.1 congenic WT recipients within 24h after irradiation. All 

mice were kept on an antibiotic (Cotrim) containing water for 3 weeks post-

transplantation. Chimerism and lineage composition was measured by FACS in 

peripheral blood (PB) at weeks 4, 8, 12, 16, and 18 weeks after transplant. Total PB 

and chimerisms in the stem/progenitor compartment in BM were evaluated at 18 weeks 

via animal sacrifice and FACS analysis. At the 18 weeks endpoint, BM was isolated 

from the primary recipients, and 3x106 cells were diluted in 200 μl PBS and i.v injected 

into lethally irradiated secondary recipients. The blood chimerism was again measured 

by FACS in peripheral blood (PB) at weeks 6, 9, and 15 weeks after the 

transplantation.  

For the 5KO competitive transplants, 1.5x106 BM cells of CD45.2 experimental mice 

were mixed with equal numbers of CD45.1.2 WT competitor cells. This cell mixture 

was transplanted via tail vein injection into lethally irradiated (2x5 Rad) CD45.1 

congenic WT recipients within 24h after irradiation. All mice were kept on an antibiotic 

(Cotrim) containing water for 3 weeks post-transplantation. Chimerism and lineage 

composition was measured by FACS in peripheral blood (PB) at weeks 4, 8, and 12 

weeks after transplant. This experiment is still ongoing.  

5.2.11 Statistical analysis 

Flow cytometry data were analyzed using FlowJo software. All graphs and statistical 

analyses were performed using GraphPad Prism. An unpaired T-test or two- or one-

way ANOVA was used to analyze the differences between groups. Statistical 

significance is indicated by *P ≤ 0.05, ** P ≤ 0.01, ***P ≤ 0.001, **** P ≤ 0.000 

Experiments were conducted with three- nine mice per condition, and the results were 

expressed as mean ± standard error of the mean (SEM). Error bars indicate SEM. For 

detailed information, please check the figure legends.  
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5.2.12 Microarray  
 
5.2.12.1 Sample preparation 

  
Total RNA isolation was performed using the PicoPure RNA isolation kit (Arcturus 

Therapeutics) according to the manufacturer’s instructions. To determine the quality 

and concentration of the isolated RNA, an RNA Pico Chip (Agilent Technologies) was 

used in the Agilent 2100 Bioanalyzer System (Agilent Technologies), following the 

instructions of the Agilent RNA 6000 Pico Kit (Agilent Technologies) manual. RNA 

samples with an RNA integrity (RIN) higher than 7 were submitted to the genomics 

and proteomics core facility at the DKFZ. Global gene expression was measured using 

an Affy Clariom S mouse chip. An initial analysis of the results was performed by the 

core facility.  

5.2.12.2 Scanning and preprocessing 
 
The following steps were performed by the microarray unit of the genomics and 

proteomics core facility at the DKFZ.  

Microarray scanning was done using an iScan array scanner. Data extraction was 

done for all beads individually, and outliers were removed when the absolute difference 

to the median was greater than 2.5 times MAD (2.5 Hampelís method). All remaining 

bead-level data points were then quantile normalized.  As a test for significance, the 

studentís t-test was used on the bead expression values of the two groups of interest. 

In the case of  the significance of expression against the background, we tested for 

greater than all negative beads for this sample. In the case of comparing separate 

groups, we tested for inequality of the means of the groups. In both cases, Benjamini-

Hochberg correction was applied to the complete set of p-values of all ProbeIDs on the 

chip. The average expression value was calculated as the mean of the measured 

expressions of beads together with the standard deviation of the beads. The analysis 

was done with R on the bead-level data, which you can find in the raw data produced 

by the scanner (e.g. in 5282035051.7z the file 5282035051_A.txt, which holds bead-

level data for all probeIDs of sample A). All analyses were done using the following 

mechanisms: outlier removal, average values over beads are means (not median), and 

statistical tests are t-tests over all beads (e.g for one probeID over all beads of all 

samples of a group) in original scale (not log2 scale). Benjamini-Hochberg correction 

was applied over all p-values of the differential expression analysis. Outliers were 
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removed by taking only beads with an expression value > 20 before using the 2.5 

MADs rule. The ProbeIDs expression value was the mean of the remaining beads. The 

remaining bead level lists of different lengths for each sample were randomly filled with 

NAs (NA=not available) and built the bead level matrix on which quantile normalization 

was performed. Used R and Bioconductor packages: multicore, preprocessCore, affy, 

oligo, pd.hugene.2.0.st, pd.ragene.2.0.st, pd.mogene.1.0.st.v1   

5.2.12.3 Downstream analysis  
 
The provided data from the core facility was analyzed using BioVenn(Hulsen, de Vlieg, 

and Alkema 2008) web tool (https://www.biovenn.nl/) and R programming language, 

where the Clusterprofiler package(Yu et al. 2012) was used for Gene ontology analysis 

and UpSetR(Conway, Lex, and Gehlenborg 2017) was used for intersection analysis 

between the datasets.  

5.2.13 Bulk RNA sequencing  
 
5.2.13.1 Sample preparation and library generation  
 
BM was isolated from 4 WT mice and surface stained as described above but with an 

additional step in which a live/dead marker was added. Cells were incubated for 15 

minutes at room temperature with Zombie Yellow (BioLegend) (as described in the 

manufacturer's protocol), followed by 30 minutes at 4°C with the appropriate 

preconjugated surface antibodies (as described above). Cells were then washed twice 

in PBS. HSC populations from the 4 independent biological replicates were then sorted 

by FACS directly into RNase-free microfuge tubes (ThermoFisher) containing RNA 

extraction buffer (Arcturus Therapeutics) until 3000-5000 cells were collected. RNA 

isolation was performed using the PicoPure RNA isolation kit (Arcturus Therapeutics) 

according to the manufacturer's protocol (as described above). The quality of the 

isolated RNA was measured using a Bioanalyzer 2100 (Agilent, Waldbronn, 

Germany).  

Library preparation and sequencing were performed at the Genomics and Proteomics 

Core Facility at DKFZ. Libraries were prepared using SmarTer Ultra Low Input RNA v4  

and NEBNext ChIP-Seq (Takara Bio, USA) according to the manufacturer's 

instructions. For bulk RNA sequencing in the results section 3.1.2, sequencing was 

performed with Illumina HiSeq 2000 V4, paired-end 125bp, using the HiSeq Flow Cell 

v4 sequencing kit. For bulk RNA sequencing in the results section 3.4.6, sequencing 
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was performed with the Illumina HiSeq 4000, paired-end 100bp, using the HiSeq 

3000/4000 sequencing kit PE. 

5.2.13.2 Preprocessing and downstream analysis  
 
Paired-end libraries were mapped against the mm10 reference genome with the STAR 

package version 2.5.3.a to generate the BAM files. Reads were annotated and counted 

against the GRCm38mm10_PhiX reference genome (Ensembl) using the htseq-count 

package.Downstream analysis was performed using R (v 4.1. 0). Differentially 

expressed genes were identified with the DESeq2 package(Love, Huber, and Anders 

2014). Gene set enrichment analyses (GSEA) were performed and visualized using 

broad GSEA software. To visualize and summarize GO terms, enrichment 

maps(Merico et al. 2010) were made using the enrichment map Cytoscape plugin from 

the Cytoscape network visualization and analysis software(Cline et al. 2007). KEGG 

pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database (http://www.genome.jp/kegg) and GO analysis were performed 

using the Clusterprofiler R package(Yu et al. 2012). Hierarchical Clustering was 

created using hclust function in R. Heatmaps were created using the pheatmap R 

package (https://CRAN.R-project.org/package=pheatmap). Volcano and PCA plots 

were created using the EnhancedVolcano, and FactoMineR(Lê, Josse, and Husson 

2008) R packages, respectively.  

5.2.14 Single-cell RNA sequencing  
 
The content presented in this section on methods is sourced from my co-author 

manuscript which is currently under review for publication and, It is accessible online 

as a preprint (Bouman*, Demerdash* et al. 2023).  

5.2.14.1 FACS sorting 
 
For FACS sorting of single cells, BM cells were isolated, and RBC lysed as described 

above. This was followed by lineage depletion using a lineage antibody cocktail against 

CD4, CD8, CD11b, B220, Gr-1, and Ter119 and incubation with Dynabeads® Magnetic 

Beads (Invitrogen). Lineage-depleted BM cells were stained with Zombie Yellow 

viability dye (BioLegend) followed by incubation with the following antibodies: CD117, 

Sca1, CD150, CD48, CD34, and lineage antibodies (B220, CD4, CD8, Ter119, Ly6G, 

CD11b, CD11c, and F4/80) together with one of the hash antibodies (TotalSeq™-

A0301 anti-mouse Hashtag 1 Antibody, TotalSeq™-A0302 anti-mouse Hashtag 2 
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Antibody, TotalSeq™-A0303 anti-mouse Hashtag 3 Antibody, TotalSeq™-A0304 anti-

mouse Hashtag 4 Antibody) (BioLegend, TotalseqA antibodies). The 4 biological 

replicates of each time point were stained with one of the 4 unique hash antibodies. 

Cells were sorted using a FACSAria Fusion or FACSAria II equipped with a 100 μm 

nozzle (BD Biosciences). 

5.2.14.2 Single-cell RNA library preparation and Sequencing 
 
HSPC single-cell RNA-seq was performed using the 10X Genomics platform. The 

Chromium Next GEM single cell 3‘ reagent kits v3.1 were implemented to prepare the 

libraries, following the official instruction manual 

(https://www.10xgenomics.com/support/single-cell-gene 

expression/documentation/steps/library-prep/chromium-single-cell-3-reagent-kits-

user-guide-v-3-1-chemistry). Briefly, 10,000 Lin- cKit+ cells were sorted and enriched 

for HSCs by sorting additional 3000-4000 Lin- cKit+ CD150+ CD48- CD34- cells. Cells 

were super-loaded according to the manufacturer’s instructions until the cDNA 

amplification step. 1 ul/sample of HTO primers was spiked into the cDNA amplification 

PCR, and cDNA was amplified according to the 10x Single Cell 3′ v3.1 protocol aiming 

for a targeted cell recovery of 500-6000 cells. Following PCR, cDNA cleanup was 

performed using SPRI to separate the HTO-derived cDNAs (in the supernatant) from 

the mRNA-derived cDNAs (retained on beads). The cDNA fraction was processed 

according to the manufacturer's protocol to generate the transcriptome library. The 

quality of the obtained cDNA library upon adapter ligation and sample index PCR  was 

assessed on an Agilent Bioanalyzer High sensitivity chip. Library sequencing was 

performed on the Novaseq 6000 Illumina sequencing platform.  

5.2.14.3 Filtering longitudinal single-cell RNAseq dataset 
 
All reads were aligned to the mm10 genome and the coverage of each gene in each 

cell was counted using version 3.1.0 of the cellranger pipeline. Cells were assigned to 

their corresponding time point (control, 3h, 24h, or 72h) and batch (four batches per 

time point) based on hashtag barcodes. Cells with multiple barcodes (multiplets) or 

missing barcodes (negatives) were excluded from the dataset. The resulting count 

matrix (cells x genes) had cells with a high percentage of mitochondrial genes (>5%) 

or a low number of unique genes (<700) removed. Following the filtering steps, the 
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respective number of cells present in each time point was as follows: control - 2474, 

3h - 1661, 24h - 3462, and 72h - 2449 

 
5.2.14.4 Clustering and cell type annotation 
 
The 500 most highly variable genes (HVGs) were identified in the control subset using 

analytic Pearson residuals (Lause, Berens, and Kobak 2021). The control subset was 

subsetted for the 500 HVGs, and the counts were L2 normalized. Next, a neighborhood 

graph was computed using 10 out of 50 principal components and the 15 nearest 

neighbors. The Leiden algorithm (resolution = 0.8) identified 14 distinct clusters in the 

control subset (Traag, Waltman, and van Eck 2019). Each cluster was appointed to a 

cell type based on 1) differentially expressed genes (DEGs) between the cluster of 

interest and all other clusters, 2) the expression profiles of the HVGs, 3) known marker 

genes and 4) correlation with cell types in a previously published dataset of the HSPCs 

(Nestorowa, Hamey, Pijuan Sala, et al. 2016). 
 
5.2.14.5 Label transfer and UMAP representation 
 
In each subset, we identified the top 2000 highly variable genes (HVGs) and used the 

combined list to subset the complete dataset. The dataset was then L2 normalized, 

and the different subsets were integrated using Scanorama (Hie, Bryson, and Berger 

et al. 2019). We used all 100 Scanorama-reduced dimensions to calculate a 

neighborhood graph with nearest neighbors set to 15, and a two-dimensional UMAP 

representation was computed using the neighborhood graph. To transfer cell type 

labels from the control subset to the response subsets (3h, 24h, and 72h), cells in the  

response subsets were assigned the cell type label that was most common among 

their 15 nearest neighbors (Euclidean distance) in the control subset. The integrated 

data was only used for label transfer and visualization purposes. For other downstream 

analyses, we used the filtered-only dataset and removed eosinophils and monocytes 

due to the small number of cells assigned to those cell types (10 and 52, respectively) 

 
5.2.14.6 Calculating gene set scores 
 
The filtered dataset was L2 normalized and scaled to unit variance, and zero mean. 

The ISG score was calculated by subtracting the average expression of a random set 

of reference genes from the average expression of about 400 known ISGs (Scanpy 
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function score_genes). Similarly, the stemness (Giladi et al. 2018), necroptosis 

(GO:0070266), pyroptosis (GO:0070269), myeloid TF (Kwok et al. 2020), monocyte  

and neutrophil differentiation, cell cycle (Giladi et al. 2018) and purine nucleotide 

synthesis (Vogel et al. 2019) score were calculated. Genes for each signature are 

shown in Supplementary table 1. Necroptosis and pyroptosis gene sets were retrieved 

from the Mouse Genome Database (MGD), Mouse Genome Informatics, The Jackson 

Laboratory, Bar Harbor, Maine. World Wide Web (URL: 

http://www.informatics.jax.org). (The data was retrieved in the year 2022) 

 

5.2.14.7 Differential abundance analysis 
 
We used the R package Milo to perform an abundance analysis on the L2 normalized, 

filtered dataset (Dann et al. 2022b). A neighborhood graph was built using 30 out of 

100 of the Scanorama-reduced dimensions (see Label transfer and UMAP 

representation) and 30 nearest neighbors. Afterward, we followed the steps described 

in the accompanying tutorial (Milo example on mouse gastrulation dataset) for each 

response subset (3h, 24h, and 72h). In each analysis, the control subset served as the 

reference, to which the response subset would be compared.   

 

5.2.14.8 Identifying response genes 
 

We used the edgeR-LRT method in the Libra R package to find the differentially 

expressed genes (DEGs) between the control and any of the response subsets, in 

each cluster (Robinson et al., 2010; Squair et al., 2021). We considered only DEGs 

with an adjusted p-value higher than 0.05 and a log-fold change higher than 1 in at 

least one cluster. For the downstream analyses of the response genes, we consider 

only the 500 DEGs with the highest p-values. In case a DEG is found in more than one 

cluster and/or time point, we take only the highest p-value into consideration. 

 

5.2.14.9 Change score 
 
We L2 normalized the filtered dataset per cell. For each response gene we took the 

mean expression in each cluster per time point. The expression change was calculated 

as the absolutes sum of the derivative of the mean expression across all time points. 

The result is a matrix with change scores per cluster for each of the response genes. 
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We applied hierarchical clustering and grouped the response genes into 14 groups by 

setting a threshold at the cophenetic distance of 3 (Scipy function 

cluster.hierarchy.linkage and cluster.hierarchy.fcluster). 

 

5.2.14.10 Pseudotemporal ordering of cells during response 
 
We opt to find a pseudotime axis that correlates with the actual arrow of time. Thus, 

we look for a transformation (W of size G,1) of the expression data from all time points 

that reconstructs the experimental time point of each cell with minimal error (ε): 

X*W = T + ε 
 

Here, X (of size N,G) is the filtered count matrix after L2 normalization, scaling and 

subsetting for all response genes. T is a vector (of size [G,1]) with an (experimental) 

time assignment for each cell, created by taking the experimental time points (control, 

3h, 24h, and 72h) and converting those to 0, 1, 2, and 3 respectively (alternatively one 

could consider using the actual time values on a log-scale).  The least squares solution 

for W (which minimizes εT * ε) is given by: 

W =(XTX)-1*XT*T 
 

We used the expression matrix X with the size of 9983 cells and 2501 genes and the 

cells’ corresponding time labels to solve the above linear regression problem. We note 

that in order to avoid over-parametrization and to ensure the identifiability of the 

solution, the number of cells has to be larger than the number of genes. After W has 

been retrieved, a pseudotime coordinate can be calculated for each cell by: 

PT = X * W 
 

5.2.14.11 Gene expression in pseudotime 
Expression profiles of individual genes in response pseudotime were derived using a 

combination of bin smoothing and bootstrapping. To find the expression profile in the 

complete dataset, bin smoothing with a 600-cell window size was performed on a 

sample of 50% of the cells in the dataset. This was repeated 20 times to find the mean 

expression, which defines the expression profile. The 95% confidence intervals were 

calculated by multiplying the standard error with 1.96 and subtracting or adding to the 

mean. For the cluster-specific expression profiles of individual genes a 50-cell window 

size was chosen instead, because of the smaller number of cells in each cluster.  
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5.2.14.12 Gene score in pseudotime 
The gene set score profile in response pseudotime was calculated using a combination 

of locally weighted least squares regression (LOESS) smoothing and bootstrapping. 

For each cluster LOESS smoothing with a first order regression model was applied to 

50% of the cells. This was repeated 30 times. The score profile was derived by taking 

the mean and 1.96 times the standard error for the 95% confidence intervals.   

 

5.2.14.13 Code availability 
All scripts used in this study are available on Github: 

https://github.com/bjbouman/prj_HSPC.  

 

5.2.14.14 Data availability 
The single-cell RNA-seq data were deposited in the Gene Expression Omnibus (GEO) 

under accession code GSE226824.   
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6 Appendix  
 
Supplementary table 1 
 

Gene  Description  
Abca9 Interferon stimulated gene (ISG) 
Abce1 Interferon stimulated gene (ISG) 
Ablim3 Interferon stimulated gene (ISG) 
Abtb2 Interferon stimulated gene (ISG) 
Acsl1 Interferon stimulated gene (ISG) 
Adamdec1 Interferon stimulated gene (ISG) 
Adar Interferon stimulated gene (ISG) 
Adm Interferon stimulated gene (ISG) 
Agpat9 Interferon stimulated gene (ISG) 
Aim2 Interferon stimulated gene (ISG) 
Akt3 Interferon stimulated gene (ISG) 
Aldh1a1 Interferon stimulated gene (ISG) 
Alyref Interferon stimulated gene (ISG) 
Amph Interferon stimulated gene (ISG) 
Angptl1 Interferon stimulated gene (ISG) 
Ankrd22 Interferon stimulated gene (ISG) 
Apol2 Interferon stimulated gene (ISG) 
Apol6 Interferon stimulated gene (ISG) 
Aqp9 Interferon stimulated gene (ISG) 
Arg2 Interferon stimulated gene (ISG) 
Arhgef3 Interferon stimulated gene (ISG) 
Arntl Interferon stimulated gene (ISG) 
Atf2 Interferon stimulated gene (ISG) 
Atf3 Interferon stimulated gene (ISG) 
B2m Interferon stimulated gene (ISG) 
Bag1 Interferon stimulated gene (ISG) 
Bak1 Interferon stimulated gene (ISG) 
Banf1 Interferon stimulated gene (ISG) 
Batf2 Interferon stimulated gene (ISG) 
Bax Interferon stimulated gene (ISG) 
Bcl2 Interferon stimulated gene (ISG) 
Bcl2l1 Interferon stimulated gene (ISG) 
Bcl3 Interferon stimulated gene (ISG) 
Birc2 Interferon stimulated gene (ISG) 
Birc3 Interferon stimulated gene (ISG) 
Blvra Interferon stimulated gene (ISG) 
Blzf1 Interferon stimulated gene (ISG) 
Bst2 Interferon stimulated gene (ISG) 
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Bub1 Interferon stimulated gene (ISG) 
C10orf10 Interferon stimulated gene (ISG) 
C15orf48 Interferon stimulated gene (ISG) 
C1S Interferon stimulated gene (ISG) 
C22orf28 Interferon stimulated gene (ISG) 
C4orf32 Interferon stimulated gene (ISG) 
C4orf33 Interferon stimulated gene (ISG) 
C9orf91 Interferon stimulated gene (ISG) 
Calr Interferon stimulated gene (ISG) 
Canx Interferon stimulated gene (ISG) 
Casp1 Interferon stimulated gene (ISG) 
Casp7 Interferon stimulated gene (ISG) 
Ccdc75 Interferon stimulated gene (ISG) 
Ccl11 Interferon stimulated gene (ISG) 
Ccl2 Interferon stimulated gene (ISG) 
Ccl22 Interferon stimulated gene (ISG) 
Ccl4 Interferon stimulated gene (ISG) 
Ccl5 Interferon stimulated gene (ISG) 
Ccna1 Interferon stimulated gene (ISG) 
Ccr1 Interferon stimulated gene (ISG) 
Ccr7 Interferon stimulated gene (ISG) 
Cd163 Interferon stimulated gene (ISG) 
Cd274 Interferon stimulated gene (ISG) 
Cd38 Interferon stimulated gene (ISG) 
Cd40 Interferon stimulated gene (ISG) 
Cd69 Interferon stimulated gene (ISG) 
Cd74 Interferon stimulated gene (ISG) 
Cd9 Interferon stimulated gene (ISG) 
Cdk17 Interferon stimulated gene (ISG) 
Cdk18 Interferon stimulated gene (ISG) 
Cdkn1a Interferon stimulated gene (ISG) 
Ces1 Interferon stimulated gene (ISG) 
Cfb Interferon stimulated gene (ISG) 
Chmp5 Interferon stimulated gene (ISG) 
Chuk Interferon stimulated gene (ISG) 
Ciita Interferon stimulated gene (ISG) 
Clec4d Interferon stimulated gene (ISG) 
Clec4e Interferon stimulated gene (ISG) 
Clec5a Interferon stimulated gene (ISG) 
Cnp Interferon stimulated gene (ISG) 
Commd3 Interferon stimulated gene (ISG) 
Cpt1a Interferon stimulated gene (ISG) 
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Creb3l3 Interferon stimulated gene (ISG) 
Crebbp Interferon stimulated gene (ISG) 
Crebzf Interferon stimulated gene (ISG) 
Crp Interferon stimulated gene (ISG) 
Cry1 Interferon stimulated gene (ISG) 
Csrnp1 Interferon stimulated gene (ISG) 
Cx3cl1 Interferon stimulated gene (ISG) 
Cxcl10 Interferon stimulated gene (ISG) 
Cxcl9 Interferon stimulated gene (ISG) 
Cxcr4 Interferon stimulated gene (ISG) 
Cyp1b1 Interferon stimulated gene (ISG) 
Cyth1 Interferon stimulated gene (ISG) 
Dcp1a Interferon stimulated gene (ISG) 
Ddit4 Interferon stimulated gene (ISG) 
Ddx58 Interferon stimulated gene (ISG) 
Ddx60 Interferon stimulated gene (ISG) 
Dhx58 Interferon stimulated gene (ISG) 
Dtx3l Interferon stimulated gene (ISG) 
Duox2 Interferon stimulated gene (ISG) 
Dusp5 Interferon stimulated gene (ISG) 
Dynlt1 Interferon stimulated gene (ISG) 
Ehd4 Interferon stimulated gene (ISG) 
Eif2ak2 Interferon stimulated gene (ISG) 
Eif3l Interferon stimulated gene (ISG) 
Elf1 Interferon stimulated gene (ISG) 
Enpp1 Interferon stimulated gene (ISG) 
Epas1 Interferon stimulated gene (ISG) 
Erlin1 Interferon stimulated gene (ISG) 
Etv6 Interferon stimulated gene (ISG) 
Ext1 Interferon stimulated gene (ISG) 
Fadd Interferon stimulated gene (ISG) 
Fam125b Interferon stimulated gene (ISG) 
Fam134b Interferon stimulated gene (ISG) 
Fam46a Interferon stimulated gene (ISG) 
Fam46c Interferon stimulated gene (ISG) 
Fam70a Interferon stimulated gene (ISG) 
Fbxo6 Interferon stimulated gene (ISG) 
Fcgr1a Interferon stimulated gene (ISG) 
Ffar2 Interferon stimulated gene (ISG) 
Fgr Interferon stimulated gene (ISG) 
Fkbp5 Interferon stimulated gene (ISG) 
Flt1 Interferon stimulated gene (ISG) 



Appendix 
 

131 
 

Fndc3b Interferon stimulated gene (ISG) 
Fndc4 Interferon stimulated gene (ISG) 
Fosl1 Interferon stimulated gene (ISG) 
Fut4 Interferon stimulated gene (ISG) 
Fv1 Interferon stimulated gene (ISG) 
Fzd5 Interferon stimulated gene (ISG) 
G6Pc Interferon stimulated gene (ISG) 
Gak Interferon stimulated gene (ISG) 
Galnt2 Interferon stimulated gene (ISG) 
Gbp2 Interferon stimulated gene (ISG) 
Gbp4 Interferon stimulated gene (ISG) 
Gbp5 Interferon stimulated gene (ISG) 
Gca Interferon stimulated gene (ISG) 
Gch1 Interferon stimulated gene (ISG) 
Gem Interferon stimulated gene (ISG) 
Gja4 Interferon stimulated gene (ISG) 
Gk Interferon stimulated gene (ISG) 
Glipr2 Interferon stimulated gene (ISG) 
Glrx Interferon stimulated gene (ISG) 
Gmpr Interferon stimulated gene (ISG) 
Gpx2 Interferon stimulated gene (ISG) 
Gtpbp2 Interferon stimulated gene (ISG) 
Gzmb Interferon stimulated gene (ISG) 
Hbxip Interferon stimulated gene (ISG) 
Heg1 Interferon stimulated gene (ISG) 
Herc6 Interferon stimulated gene (ISG) 
Hesx1 Interferon stimulated gene (ISG) 
Hk2 Interferon stimulated gene (ISG) 
Hla-f Interferon stimulated gene (ISG) 
Hla-g Interferon stimulated gene (ISG) 
Hnrnpul1 Interferon stimulated gene (ISG) 
Hpse Interferon stimulated gene (ISG) 
Hsh2d Interferon stimulated gene (ISG) 
Hyal1 Interferon stimulated gene (ISG) 
Hyal2 Interferon stimulated gene (ISG) 
Hyal3 Interferon stimulated gene (ISG) 
Ido1 Interferon stimulated gene (ISG) 
Ifi27l2 Interferon stimulated gene (ISG) 
Ifi30 Interferon stimulated gene (ISG) 
Ifi35 Interferon stimulated gene (ISG) 
Ifi44 Interferon stimulated gene (ISG) 
Ifi44l Interferon stimulated gene (ISG) 
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Ifih1 Interferon stimulated gene (ISG) 
Ifit1 Interferon stimulated gene (ISG) 
Ifit2 Interferon stimulated gene (ISG) 
Ifit3 Interferon stimulated gene (ISG) 
Ifitm1 Interferon stimulated gene (ISG) 
Ifitm2 Interferon stimulated gene (ISG) 
Ifitm3 Interferon stimulated gene (ISG) 
Ifne Interferon stimulated gene (ISG) 
Igfbp2 Interferon stimulated gene (ISG) 
Ikbkb Interferon stimulated gene (ISG) 
Ikbke Interferon stimulated gene (ISG) 
Ikbkg Interferon stimulated gene (ISG) 
Il10 Interferon stimulated gene (ISG) 
Il12B Interferon stimulated gene (ISG) 
Il12rb1 Interferon stimulated gene (ISG) 
Il15 Interferon stimulated gene (ISG) 
Il15ra Interferon stimulated gene (ISG) 
Il17rb Interferon stimulated gene (ISG) 
Il1r1 Interferon stimulated gene (ISG) 
Il1rn Interferon stimulated gene (ISG) 
Il23a Interferon stimulated gene (ISG) 
Il23r Interferon stimulated gene (ISG) 
Il28ra Interferon stimulated gene (ISG) 
Il6 Interferon stimulated gene (ISG) 
Il6st Interferon stimulated gene (ISG) 
Impa2 Interferon stimulated gene (ISG) 
Irf1 Interferon stimulated gene (ISG) 
Irf2 Interferon stimulated gene (ISG) 
Irf3 Interferon stimulated gene (ISG) 
Irf7 Interferon stimulated gene (ISG) 
Irf9 Interferon stimulated gene (ISG) 
Isg15 Interferon stimulated gene (ISG) 
Isg20 Interferon stimulated gene (ISG) 
Itch Interferon stimulated gene (ISG) 
Ivns1abp Interferon stimulated gene (ISG) 
Jak2 Interferon stimulated gene (ISG) 
Jun Interferon stimulated gene (ISG) 
Junb Interferon stimulated gene (ISG) 
Lamp3 Interferon stimulated gene (ISG) 
Lap3 Interferon stimulated gene (ISG) 
Lcn2 Interferon stimulated gene (ISG) 
Lepr Interferon stimulated gene (ISG) 
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Lgals3 Interferon stimulated gene (ISG) 
Lgals9 Interferon stimulated gene (ISG) 
Lgmn Interferon stimulated gene (ISG) 
Lipa Interferon stimulated gene (ISG) 
Lmo2 Interferon stimulated gene (ISG) 
Lta Interferon stimulated gene (ISG) 
Ly6e Interferon stimulated gene (ISG) 
Mab21l2 Interferon stimulated gene (ISG) 
Mafb Interferon stimulated gene (ISG) 
Maff Interferon stimulated gene (ISG) 
Map3k14 Interferon stimulated gene (ISG) 
Map3k5 Interferon stimulated gene (ISG) 
Mapkapk2 Interferon stimulated gene (ISG) 
Mastl Interferon stimulated gene (ISG) 
Mavs Interferon stimulated gene (ISG) 
Max Interferon stimulated gene (ISG) 
Mb21d1 Interferon stimulated gene (ISG) 
Mcl1 Interferon stimulated gene (ISG) 
Med14 Interferon stimulated gene (ISG) 
Mfn1 Interferon stimulated gene (ISG) 
Micb Interferon stimulated gene (ISG) 
Mkx Interferon stimulated gene (ISG) 
Mov10 Interferon stimulated gene (ISG) 
Ms4a4a Interferon stimulated gene (ISG) 
Mst1r Interferon stimulated gene (ISG) 
Mt1h Interferon stimulated gene (ISG) 
Mthfd2l Interferon stimulated gene (ISG) 
Myd88 Interferon stimulated gene (ISG) 
Myof Interferon stimulated gene (ISG) 
N4bp1 Interferon stimulated gene (ISG) 
Nampt Interferon stimulated gene (ISG) 
Napa Interferon stimulated gene (ISG) 
Ncf1 Interferon stimulated gene (ISG) 
Ncoa3 Interferon stimulated gene (ISG) 
Ndc80 Interferon stimulated gene (ISG) 
Nfil3 Interferon stimulated gene (ISG) 
Nlrx1 Interferon stimulated gene (ISG) 
Nmi Interferon stimulated gene (ISG) 
Nod2 Interferon stimulated gene (ISG) 
Nos2 Interferon stimulated gene (ISG) 
Npas2 Interferon stimulated gene (ISG) 
Nt5c3 Interferon stimulated gene (ISG) 



Appendix 
 

134 
 

Nup50 Interferon stimulated gene (ISG) 
Oas1 Interferon stimulated gene (ISG) 
Oas1b Interferon stimulated gene (ISG) 
Oas2 Interferon stimulated gene (ISG) 
Oas3 Interferon stimulated gene (ISG) 
Oasl Interferon stimulated gene (ISG) 
Odc1 Interferon stimulated gene (ISG) 
Ogfr Interferon stimulated gene (ISG) 
Optn Interferon stimulated gene (ISG) 
Otub1 Interferon stimulated gene (ISG) 
Otub2 Interferon stimulated gene (ISG) 
P2ry6 Interferon stimulated gene (ISG) 
Pabpc4 Interferon stimulated gene (ISG) 
Padi2 Interferon stimulated gene (ISG) 
Pdgfrl Interferon stimulated gene (ISG) 
Pdia3 Interferon stimulated gene (ISG) 
Pdk1 Interferon stimulated gene (ISG) 
Pfdn6 Interferon stimulated gene (ISG) 
Pfkfb3 Interferon stimulated gene (ISG) 
Phf15 Interferon stimulated gene (ISG) 
Pi4k2b Interferon stimulated gene (ISG) 
Pias1 Interferon stimulated gene (ISG) 
Pim3 Interferon stimulated gene (ISG) 
Pin1 Interferon stimulated gene (ISG) 
Plekha4 Interferon stimulated gene (ISG) 
Plin2 Interferon stimulated gene (ISG) 
Plp1 Interferon stimulated gene (ISG) 
Plscr1 Interferon stimulated gene (ISG) 
Pml Interferon stimulated gene (ISG) 
Pmm2 Interferon stimulated gene (ISG) 
Pnpt1 Interferon stimulated gene (ISG) 
Pnrc1 Interferon stimulated gene (ISG) 
Ppm1k Interferon stimulated gene (ISG) 
Prkd2 Interferon stimulated gene (ISG) 
Prkra Interferon stimulated gene (ISG) 
Psmb5 Interferon stimulated gene (ISG) 
Psmb6 Interferon stimulated gene (ISG) 
Psmb8 Interferon stimulated gene (ISG) 
Psmb9 Interferon stimulated gene (ISG) 
Ptpn2 Interferon stimulated gene (ISG) 
Ptpn6 Interferon stimulated gene (ISG) 
Pus1 Interferon stimulated gene (ISG) 
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Pxk Interferon stimulated gene (ISG) 
Rab27a Interferon stimulated gene (ISG) 
Raf1 Interferon stimulated gene (ISG) 
Rasgef1b Interferon stimulated gene (ISG) 
Rassf4 Interferon stimulated gene (ISG) 
Rbck1 Interferon stimulated gene (ISG) 
Rbm25 Interferon stimulated gene (ISG) 
Rela Interferon stimulated gene (ISG) 
Rgs1 Interferon stimulated gene (ISG) 
Ripk1 Interferon stimulated gene (ISG) 
Rnase4 Interferon stimulated gene (ISG) 
Rnasel Interferon stimulated gene (ISG) 
Rnf114 Interferon stimulated gene (ISG) 
Rnf216 Interferon stimulated gene (ISG) 
Rpl22 Interferon stimulated gene (ISG) 
Rps15a Interferon stimulated gene (ISG) 
Rsad2 Interferon stimulated gene (ISG) 
Rtp4 Interferon stimulated gene (ISG) 
S100a8 Interferon stimulated gene (ISG) 
Saa1 Interferon stimulated gene (ISG) 
Samd4a Interferon stimulated gene (ISG) 
Samhd1 Interferon stimulated gene (ISG) 
Sat1 Interferon stimulated gene (ISG) 
Scarb2 Interferon stimulated gene (ISG) 
Sco2 Interferon stimulated gene (ISG) 
Sectm1 Interferon stimulated gene (ISG) 
Serpinb9 Interferon stimulated gene (ISG) 
Serpine1 Interferon stimulated gene (ISG) 
Serping1 Interferon stimulated gene (ISG) 
Sike1 Interferon stimulated gene (ISG) 
Sirpa Interferon stimulated gene (ISG) 
Slc15a3 Interferon stimulated gene (ISG) 
Slc16a1 Interferon stimulated gene (ISG) 
Slc1a1 Interferon stimulated gene (ISG) 
Slc25a28 Interferon stimulated gene (ISG) 
Slc25a30 Interferon stimulated gene (ISG) 
Slfn5 Interferon stimulated gene (ISG) 
Smad3 Interferon stimulated gene (ISG) 
Snn Interferon stimulated gene (ISG) 
Socs1 Interferon stimulated gene (ISG) 
Socs2 Interferon stimulated gene (ISG) 
Socs3 Interferon stimulated gene (ISG) 
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Sp110 Interferon stimulated gene (ISG) 
Spaca3 Interferon stimulated gene (ISG) 
Spn Interferon stimulated gene (ISG) 
Spsb1 Interferon stimulated gene (ISG) 
Sptlc2 Interferon stimulated gene (ISG) 
Ssbp3 Interferon stimulated gene (ISG) 
Stap1 Interferon stimulated gene (ISG) 
Stard5 Interferon stimulated gene (ISG) 
Stat1 Interferon stimulated gene (ISG) 
Stat2 Interferon stimulated gene (ISG) 
Stat3 Interferon stimulated gene (ISG) 
Steap4 Interferon stimulated gene (ISG) 
Sun2 Interferon stimulated gene (ISG) 
Tagap Interferon stimulated gene (ISG) 
Tank Interferon stimulated gene (ISG) 
Tap1 Interferon stimulated gene (ISG) 
Tap2 Interferon stimulated gene (ISG) 
Tapbp Interferon stimulated gene (ISG) 
Tbk1 Interferon stimulated gene (ISG) 
Tbx3 Interferon stimulated gene (ISG) 
Tcf7l2 Interferon stimulated gene (ISG) 
Tdrd7 Interferon stimulated gene (ISG) 
Tfec Interferon stimulated gene (ISG) 
Thbd Interferon stimulated gene (ISG) 
Ticam1 Interferon stimulated gene (ISG) 
Timp1 Interferon stimulated gene (ISG) 
Tlk2 Interferon stimulated gene (ISG) 
Tlr3 Interferon stimulated gene (ISG) 
Tlr7 Interferon stimulated gene (ISG) 
Tlr8 Interferon stimulated gene (ISG) 
Tmem140 Interferon stimulated gene (ISG) 
Tmem173 Interferon stimulated gene (ISG) 
Tmem51 Interferon stimulated gene (ISG) 
Tnf Interferon stimulated gene (ISG) 
Tnfaip3 Interferon stimulated gene (ISG) 
Tnfrsf10a Interferon stimulated gene (ISG) 
Tnfrsf9 Interferon stimulated gene (ISG) 
Tnfsf10 Interferon stimulated gene (ISG) 
Traf2 Interferon stimulated gene (ISG) 
Traf3 Interferon stimulated gene (ISG) 
Traf6 Interferon stimulated gene (ISG) 
Trafd1 Interferon stimulated gene (ISG) 
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Trex1 Interferon stimulated gene (ISG) 
Trim14 Interferon stimulated gene (ISG) 
Trim21 Interferon stimulated gene (ISG) 
Trim25 Interferon stimulated gene (ISG) 
Trim38 Interferon stimulated gene (ISG) 
Trim5 Interferon stimulated gene (ISG) 
Trim56 Interferon stimulated gene (ISG) 
Txnip Interferon stimulated gene (ISG) 
Tyk2 Interferon stimulated gene (ISG) 
Tymp Interferon stimulated gene (ISG) 
Uba7 Interferon stimulated gene (ISG) 
Ube2l6 Interferon stimulated gene (ISG) 
Ulk4 Interferon stimulated gene (ISG) 
Unc93b1 Interferon stimulated gene (ISG) 
Upp2 Interferon stimulated gene (ISG) 
Uri1 Interferon stimulated gene (ISG) 
Usp18 Interferon stimulated gene (ISG) 
Vamp5 Interferon stimulated gene (ISG) 
Vav1 Interferon stimulated gene (ISG) 
Vegfc Interferon stimulated gene (ISG) 
Vmp1 Interferon stimulated gene (ISG) 
Wars Interferon stimulated gene (ISG) 
Whamm Interferon stimulated gene (ISG) 
Xaf1 Interferon stimulated gene (ISG) 
Xcl1 Interferon stimulated gene (ISG) 
Xpr1 Interferon stimulated gene (ISG) 
Zbp1 Interferon stimulated gene (ISG) 
Zc3hav1 Interferon stimulated gene (ISG) 
Znf295 Interferon stimulated gene (ISG) 
Znf385b Interferon stimulated gene (ISG) 
1110017F19Rik Stemness gene 
4931406C07Rik Stemness gene 
AK046388 Stemness gene 
AK079675 Stemness gene 
Acot1 Stemness gene 
Aldoc Stemness gene 
B144;Lst1 Stemness gene 
Basp1 Stemness gene 
Bgn Stemness gene 
Car2 Stemness gene 
Cd27 Stemness gene 
Cd274 Stemness gene 
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Cd74 Stemness gene 
Cd81 Stemness gene 
Cish Stemness gene 
Clip3 Stemness gene 
Dapp1 Stemness gene 
Dkkl1 Stemness gene 
Eltd1 Stemness gene 
Gabarapl1 Stemness gene 
Gcnt2 Stemness gene 
Gimap1 Stemness gene 
Gimap6 Stemness gene 
Gm6251 Stemness gene 
Gpr56 Stemness gene 
H2-K1 Stemness gene 
Hlf Stemness gene 
Hoxb2 Stemness gene 
Ifitm1 Stemness gene 
Ifitm2 Stemness gene 
Ifitm3 Stemness gene 
Krt18 Stemness gene 
Ldhb Stemness gene 
Leprel2 Stemness gene 
Lhcgr Stemness gene 
Lmo2 Stemness gene 
Ly6a Stemness gene 
Malat1 Stemness gene 
Mecom Stemness gene 
Mllt3 Stemness gene 
Mpl Stemness gene 
Mycn Stemness gene 
Myct1 Stemness gene 
Myl10 Stemness gene 
Nfe2 Stemness gene 
Oasl2 Stemness gene 
Osbpl1a Stemness gene 
Pcp4l1 Stemness gene 
Pde4b Stemness gene 
Pdzk1ip1 Stemness gene 
Pglyrp2;tagL Stemness gene 
Pla2g16 Stemness gene 
Pnrc1 Stemness gene 
Procr Stemness gene 
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Ptplad2 Stemness gene 
Ptpn18 Stemness gene 
Ptprcap Stemness gene 
Rbp1 Stemness gene 
Rbpms;Rbpms2 Stemness gene 
Rgs1 Stemness gene 
Rtp4 Stemness gene 
Shisa5 Stemness gene 
Srgn Stemness gene 
Stxbp4 Stemness gene 
Tbxas1 Stemness gene 
Tmem176a Stemness gene 
Tmem176b Stemness gene 
Tnip3 Stemness gene 
Txnip Stemness gene 
Ube2l6 Stemness gene 
Wfdc2 Stemness gene 
Zfand5 Stemness gene 
Zfp831 Stemness gene 
Aifm1 Necroptosis  
Birc2 Necroptosis  
Birc3 Necroptosis  
Bok Necroptosis  
Casp2 Necroptosis  
Casp6 Necroptosis  
 Casp8 Necroptosis  
Cav1 Necroptosis  
 Cflar Necroptosis  
 Cyld Necroptosis  
Dnm1l Necroptosis  
 Fadd Necroptosis  
 Fas Necroptosis  
Fasl Necroptosis  
Ipmk Necroptosis  
Itpk1 Necroptosis  
 Map3k7 Necroptosis  
Mlkl Necroptosis  
Mutyh Necroptosis  
Nlrp6 Necroptosis  
Parp1 Necroptosis  
 Peli1 Necroptosis  
Pgam5 Necroptosis  



Appendix 
 

140 
 

Ppif Necroptosis  
Pygl Necroptosis  
Rbck1 Necroptosis  
 Ripk1 Necroptosis  
Ripk3 Necroptosis  
Rnf31 Necroptosis  
Slc25a4 Necroptosis  
 Spata2 Necroptosis  
 Tlr3 Necroptosis  
Tnf Necroptosis  
Tnfrsf23 Necroptosis  
Trp53 Necroptosis  
Trpm7 Necroptosis  
Ybx3 Necroptosis  
 Zbp1 Necroptosis  
Aim2 Pyroptosis  
Casp1 Pyroptosis  
Casp4 Pyroptosis  
Casp6 Pyroptosis  
 Dhx9 Pyroptosis  
Nlrc4 Pyroptosis  
Naip2 Pyroptosis  
Papss2 Monoccyte differenttiation  
Ass1 Monoccyte differenttiation  
Tcfec Monoccyte differenttiation  
Trem2 Monoccyte differenttiation  
Rassf4 Monoccyte differenttiation  
Ly6c2 Monoccyte differenttiation  
Ms4a6c Monoccyte differenttiation  
F13a1 Monoccyte differenttiation  
Ctss Monoccyte differenttiation  
Klf4 Monoccyte differenttiation  
S100a4 Monoccyte differenttiation  
Slpi Monoccyte differenttiation  
Prdx4 Monoccyte differenttiation  
Hpse Monoccyte differenttiation  
Tifab Monoccyte differenttiation  
Csf1r Monoccyte differenttiation  
Ly86 Monoccyte differenttiation  
Emb Monoccyte differenttiation  
Glipr1 Monoccyte differenttiation  
Irf8 Monoccyte differenttiation  
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Elane Monoccyte differenttiation  
Ifitm1 Monoccyte differenttiation  
Gpr56 Monoccyte differenttiation  
Cd34 Monoccyte differenttiation  
Eltd1 Monoccyte differenttiation  
Serpina3f Monoccyte differenttiation  
Ifitm6 Neutrophil differentiation 
Chi3l3 Neutrophil differentiation 
S100a9 Neutrophil differentiation 
Ngp Neutrophil differentiation 
Syne1 Neutrophil differentiation 
S100a8 Neutrophil differentiation 
Orm1 Neutrophil differentiation 
Chi3l1 Neutrophil differentiation 
Ltf Neutrophil differentiation 
Lrg1 Neutrophil differentiation 
Pglyrp1 Neutrophil differentiation 
Itgb2l Neutrophil differentiation 
Camp Neutrophil differentiation 
Cd177 Neutrophil differentiation 
Lcn2 Neutrophil differentiation 
Fcnb Neutrophil differentiation 
Mpo Neutrophil differentiation 
Elane Neutrophil differentiation 
Gstm1 Neutrophil differentiation 
Ifitm1 Neutrophil differentiation 
Gpr56 Neutrophil differentiation 
Cd34 Neutrophil differentiation 
Eltd1 Neutrophil differentiation 
Serpina3f Neutrophil differentiation 
Prc1 cellcycle 
Pcna cellcycle 
Nucks1 cellcycle 
Nde1 cellcycle 
Mki67 cellcycle 
Mcm6 cellcycle 
Mcm5 cellcycle 
Lig1 cellcycle 
Lbr cellcycle 
Kif22 cellcycle 
Kif11 cellcycle 
Incenp cellcycle 
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Hn1 cellcycle 
H3f3a cellcycle 
H2afx cellcycle 
Ezh2 cellcycle 
Ect2 cellcycle 
Dyrk1a cellcycle 
Dnajc9 cellcycle 
Ctcf cellcycle 
Clspn cellcycle 
Ckap2l cellcycle 
Cit cellcycle 
Cenpm cellcycle 
Cenpf cellcycle 
Cenpe cellcycle 
Cenpa cellcycle 
Cdk1 cellcycle 
Cdca8 cellcycle 
Cdca3 cellcycle 
Ccnb2 cellcycle 
Ccnd2 cellcycle 
Ccne1 cellcycle 
Ccne2 cellcycle 
Cdkn1b cellcycle 
Ccnb1 cellcycle 
Ccna2 cellcycle 
Ccnf cellcycle 
Ccnb2 cellcycle 
Ccng1 cellcycle 
Cdk4 cellcycle 
Cdk6' cellcycle 
Nme2 Purine nuceleotide synthesis  
Pnp Purine nuceleotide synthesis  
Impdh2 Purine nuceleotide synthesis  
Ppat Purine nuceleotide synthesis  
Hprt Purine nuceleotide synthesis  
Aprt Purine nuceleotide synthesis  
Gda Purine nuceleotide synthesis  
Ampd2 Purine nuceleotide synthesis  
Cebpe Myeloid transcription factor  
Calr Myeloid transcription factor  
Arid3a Myeloid transcription factor  
Gfi1 Myeloid transcription factor  
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Lmo4 Myeloid transcription factor  
Cebpa Myeloid transcription factor  
Spi1 Myeloid transcription factor  
Cux1 Myeloid transcription factor  
Scand1 Myeloid transcription factor  
Nfkbia Myeloid transcription factor  
Irf8 Myeloid transcription factor  
Id2 Myeloid transcription factor  
Chd3 Myeloid transcription factor  
Cbfa2t3 Myeloid transcription factor  
Etv6 Myeloid transcription factor  
Stat3 Myeloid transcription factor  
Pnrc1 Myeloid transcription factor  
Pbx1 Myeloid transcription factor  
Mef2c Myeloid transcription factor  
Fli1 Myeloid transcription factor  
Elf1 Myeloid transcription factor  
Lmo2 Myeloid transcription factor  
Cited2 Myeloid transcription factor  
Sox4 Myeloid transcription factor  
Runx1 Myeloid transcription factor  
Gata2 Myeloid transcription factor  
Nfe2 Myeloid transcription factor  
Myb Myeloid transcription factor  
Foxp1 Myeloid transcription factor  
Zfpm1 Myeloid transcription factor  
Hmgb3 Myeloid transcription factor  
Klf1 Myeloid transcription factor  
Gfi1b Myeloid transcription factor  
Tcf3 Myeloid transcription factor  
Pa2g4 Myeloid transcription factor  
Mbd2 Myeloid transcription factor  
Gata1 Myeloid transcription factor  
Phf10 Myeloid transcription factor  
Phb2 Myeloid transcription factor  
Gtf2f1 Myeloid transcription factor  
Csda Myeloid transcription factor  
E2f4 Myeloid transcription factor  
Cited4 Myeloid transcription factor  
Ccne1 Myeloid transcription factor  
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6.1 List of abbreviations  

Abbreviation  

 

Definition  

α Alpha  

β Beta  

γ gamma 

2KO Ifnar-/-Ifngr-/-  

5-FU 5-Fluorouracil 

5KO Ifnar-/-Ifngr-/-Tnfrsf1a-/-Tnfrsf1b-/-Il1r-/- 

AGM Aorta-Gonad-Mesonephros 

aHSC Active hematopoetic stem cells  

APCs antigen-presenting cells 

BCG Bacille Calmette-Guérin 

BM bone marrow 

BrdU 5-Bromo-3’-deoxyuridine 

CFU colony-forming unit 

CLP Common Lymphoid Precursor 

CMP common myeloid progenitors 

DEGs Differentially expressed genes 

dHSCs Dormant hematopoetic stem cells  

FACs Fluorescence-activated cell sorting 

FC foldchange  

GM Granulocytic monocytic  

GMP granulocyte-monocyte progenitors 

GO Gene Ontology 

GSEA Gene Set Enrichment Analysis 

h hours  

HE hemogenic endothelium 

HSCs Hematopoietic Stem Cells 

HSPCs Hematopoietic Stem and Progenitor Cell 

i.v. intravenous injection 
 

Ifnar interferon alpha receptor 

Ifngr interferon gamma receptor  

IFNs Interferons  
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IFNα Interferon alpha 

IFNγ Interferon-gamma 

IL Interleukin 

IL-6R Interleukin 6 Receptor 

IL1R Interleukin 1 Receptor 

IRF9 IFN-regulatory factor 9 

ISG Interferon-Stimulated Genes 

ISREs IFN-stimulated response elements  

JAKS Janus-activated kinases  

KEGG Kyoto Encyclopedia of Genes and Genomes 

KO knockout  

Lin  Lineage  

LK Lineage-cKit+ 

LMPP lymphoid-primed multipotent progenitors 

LPS Lipopolysaccharide 

LS-K Lin+ Sca-1- c-Kit+ cells 

LSKs Lin- c-Kit+ Sca-1+ cells 

LSK SLAM LSK CD150+ CD48-  

LT Long-term  

M.tb Mycobacterium tuberculosis 

MEP Megakaryocytic-erythroid progenitors  

MSCs Mesenchymal stromal cells  

MFI Median Fluorescence Intensity 

Mk Megakaryocytic  

MPPs Multipotent Progenitor 

MSigDB Molecular Signatures Database 

Myel. Prog. myeloid progenitor  

NES Normalized expresion score  

NK Natural Killer  

OXPHOS oxidative phosphorylation 
 

PBS Phosphate Buffered Saline 

PB Peripheral blood  

PCA Principal Component Analysis 

PAMPs pathogen-associated molecular patterns 
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pIC Polyinosinic:polycytidylic acid 

PPP Pentose phosphate pathway  

qPCR quantitative real-time PCR 

RIPK1  Receptor-Interacting Serine-Threonine Protein Kinase 1  

PRR Pattern recognition receptor 

RNA ribonucleic acid 

RNA-seq RNA sequencing 

Sc Single cell 

Sca-1 stem cell antigen 1 

SEM Standard Error of Mean 

SLAM signaling lymphocyte activation molecule 

s.c. subcutaneous 

STAT signal transducer and activator transcription 

TCA tricarboxylic acid 

TLR Toll-Like Receptor 

TLRs toll-like receptors  

TNFR TNFα Receptor 

TNFα  Tumor Necrosis Factor α 

WT wildtype 
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