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Abstract

While many stable protein complexes are known, the dynamic interactome is still un-
derexplored. Experimental techniques such as single-tag affinity purification, aim to
close the gap and identify transient interactions, but need better filtering tools to dis-
criminate between true interactors and noise.

This thesis develops and contrasts two complementary approaches to the analysis of
protein-protein interaction (PPI) networks derived from noisy experiments. Themajority
of data used for the analysis come from in vitro experiments aggregated from known
databases (IntAct, BioGRID, BioPlex), but is also complemented by experiments done
by our collaborators from the Ueffing group in the Institute of Ophthalmic Research,
Tübingen University (Germany).

Chapter 3 presents the statistical approach to the data analysis. It focuses on the case
of a single dataset with target and control data in order to determine the significant inter-
actions for the target. The procedure follows an expected trajectory of preprocessing,
quality control, statistical testing, correction and discussion of results. The approach
is tailored to the specific dataset, experiment design and related assumptions. This is
specifically relevant for the missing value imputation where multiple approaches are
discussed and a new method, building upon a previous method, is proposed and vali-
dated.

Chapter 4 presents a different approach for the filtering of experimental results for PPIs.
It is a statistic, WeSA (weighted socio-affinity), which improves upon previous methods
of scoring PPIs from affinity proteomics data. It uses network analysis techniques to
analyse the full PPI network without the need for controls. WeSA is tested on protein-
protein networks of varying accuracy, including the curated IntAct dataset, the unfiltered
records in BioGRID, and the large BioPlex dataset. Themodel is also tested against the
previous same-goal method. While the function itself proves superior, another major
advantage is that it can efficiently combine and compare observations across studies
and can therefore be used to aggregate and clean results from incoming experiments
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in the context of all already available data.

In the final part, uses of WeSA beyond wild-type PPI networks are analysed. The
framework is proposed as a novel way to effectively compare mechanistic differences
between variants of the same protein (e.g. mutant vs wild type). I also explore the
use of WeSA to study other biological and non-biological networks such as genome-
wide association studies (GWAS) and gene-phenotype associations, with encouraging
results.

In conclusion, this work presents and compares a variety of mathematical, statistical
and computational approaches adapted, combined and/or developed specifically for
the task of obtaining a better overview of protein-protein interaction networks. The
novel methods performance is validated and, specifically, WeSA, is extensively tested
and analysed, including beyond the field of PPI networks.
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Zusammenfassung

Während viele stabile Proteinkomplexe bekannt sind, ist das dynamische Interaktom
nochwenig erforscht. Experimentelle Technikenwie die Single-Tag-Immunpräzipitation
und die Affinitätsreinigung zielen darauf ab, die Lücke zu schließen und flüchtigeWech-
selwirkungen zu identifizieren, benötigen aber bessere Filterwerkzeuge, um zwischen
echten Interaktoren und Rauschen zu unterscheiden.

In dieser Arbeit werden zwei komplementäre Ansätze zur Analyse von Protein-Protein-
Interaktionsnetzwerken (PPI) aus verrauschten Experimenten entwickelt und gegen-
übergestellt. Die meisten Daten, die für die Analyse verwendet werden, stammen
aus In-vitro-Experimenten, die aus bekannten Datenbanken (IntAct, BioGRID, BioPlex)
zusammengetragen wurden, werden aber auch durch Experimente unserer Mitarbei-
ter aus der Gruppe Ueffing am Institut für Augenheilkunde der Universität Tübingen
(Deutschland) ergänzt.

Kapitel 3 stellt den statistischen Ansatz für die Datenanalyse vor. Es konzentriert sich
auf den Fall eines einzelnen Datensatzes mit Ziel- und Kontrolldaten, um die signi-
fikanten Wechselwirkungen für das Ziel zu bestimmen. Das Verfahren folgt einem
erwarteten Ablauf von Vorverarbeitung, Qualitätskontrolle, statistischer Prüfung, Kor-
rektur und Diskussion der Ergebnisse. Der Ansatz ist auf den spezifischen Datensatz,
die Versuchsanordnung und die damit verbundenen Annahmen angepasst. Dies gilt
insbesondere für die Imputation fehlender Werte, wofür mehrere Ansätze diskutiert
werden und eine neue Methode, die auf einer früheren „Tail“-Imputationsmethode auf-
baut, vorgeschlagen und validiert wird.

Kapitel 4 stellt ein anderer Ansatz für die Filterung von Versuchsergebnissen für PPIs
vor. Es handelt sich um eine Statistik, WeSA (gewichtete Sozioaffinität), die die bishe-
rigen Methoden zur Bewertung von PPIs aus Affinitätsproteomikdaten verbessert. Sie
nutzt Techniken der Netzwerkanalyse, um das gesamte PPI-Netzwerk zu analysieren,
ohne Notwendigkeit für Kontrollgruppen. WeSA wurde an Protein-Protein-Netzwerken
mit unterschiedlicher Genauigkeit getestet, darunter der kuratierte IntAct-Datensatz,
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die ungefilterten Datensätze in BioGRID und der große BioPlex-Datensatz. Das Mo-
dell wird auch im Vergleich zur vorherigen Methode mit dem gleichen Ziel getestet.
Während sich die Funktion selbst als überlegen erweist, besteht ein weiterer großer
Vorteil darin, dass sie Beobachtungen über Studien hinweg effizient kombinieren und
vergleichen kann und daher verwendet werden kann, um die Ergebnisse neuer Expe-
rimente im Kontext aller bereits verfügbaren Daten zu aggregieren und zu bereinigen.

Im letzten Teil wird die Verwendung von WeSA außer Wildtyp-PPI-Netzwerke analy-
siert. Das Framework wird als neuartiger Weg zum effektiven Vergleich mechanisti-
scher Unterschiede zwischen Varianten desselben Proteins (z. B. Mutante vs. Wild-
typ) zu vergleichen. Ich erforsche auch den Einsatz von WeSA zur Untersuchung an-
derer biologischer und nicht-biologischer Netzwerke wie genomweite Assoziationsstu-
dien (GWAS) und Gen-Phänotyp-Assoziationen, mit vielversprechenden Ergebnissen.
Abschließend werden in dieser Arbeit verschiedene mathematische, statistische und
rechnerische Ansätze vorgestellt und miteinander verglichen, die speziell für die Auf-
gabe, einen besseren Überblick über Protein-Protein-Interaktionsnetze zu erhalten,
angepasst, kombiniert und/oder entwickelt wurden. Die Leistung der neuartigen Me-
thodenwird validiert und, insbesondereWeSA, wird ausführlich getestet und analysiert,
auch über den Bereich der PPI-Netzwerke hinaus.
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1 Introduction

“A mathematician is a device
for turning coffee into theorems.”

— Alfréd Rényi

Mathematics has found various applications to connect and extract information from
otherwise seemingly unrelated fields. It is widely used in biology supporting all direc-
tions of research in the area from public health and epidemiology to phylogeny and
genetics. Established mathematical models and computational methods have aided
the understanding of the increasing flood of biological data [14, 69, 22]. For instance,
Fisher tests, t-tests and p-values are an integral part of many biological research pa-
pers [5, 66]. Moreover, the advances in mathematical modelling and statistical analysis
have allowed research in biology to develop bolder protocols, which result in faster data
acquisition, bigger outputs and larger impact [FR12, FR13, FR19]. And the interchange
of information and techniques between biology and mathematics works in a bootstrap-
ping way where the progress of one field leads to subsequent progress in the other
[FR8].

It is a common occurrence for mathematics to expand in response to novelties in the
fields of application and the work laid out here is a part of this simultaneous comple-
mentary progress of the two fields of biology and mathematics. It is powered by recent
biological advances which require better mathematical approaches [10]. In particular,
we have collaborated with experimental researchers who develop new protocols for
investigating the human interactome, the network of protein-protein interactions, and
based on close communication, we have developedmultiple techniques to complement
and analyse their experiments.

The human interactome is a central area of research as the discovery of the network
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of protein-protein interactions (PPIs) can elucidate the mechanism of human diseases
and guide diagnostics and the development of treatments [48]. Alongside data from
other species and model organisms, experiments on human cell lines are also growing
in numbers. Many low-throughput studies as well as a few large-scale projects are
focused on the problem of finding the comprehensive and accurate human interactome
[37, 49], while resources are simultaneously directed at coordinating and systematically
unifying current knowledge [52, 53, 63]. These efforts are still ongoing and to our
knowledge there is no resource which maintains and analyses the current information
while also allowing for dynamic update and analysis of the PPI network.

The work presented here exploits statistical, mathematical and computational tech-
niques to gain insights into the interactome. It contrasts two main models: a statistical
approach and a mathematical model and evaluates their performance in deciphering
meaningful networks from noisy biological experiments.

The first approach implements a statistical workflow of hypothesis testing. Its per-
formance is investigated depending on the missing value imputation method where
we implement, improve and contrast the most popular approaches based on Singular
Value Decomposition, normal distribution imputation and distribution sampling.

The complementary secondmethod is a scoring function based on observed-to-expected
ratios. It uses combinatorics calculations and the theory of the configuration model to
compute edge weights. To test the method we formulate several biologically sensible
hypotheses and test them through a combination of ROC analysis, statistical testing
and Markov clustering.

As an expansion, the modelling approach is investigated further as it is a technique
which is not specific to only PPI networks but can be useful in other seemingly different
(biological) contexts. We test its usability in network analysis more generally through
investigation of other gene networks related to phenotypes and disease.

1.1 Introduction to the methods and overview of the
main results

The majority of the work focuses on the analysis of human protein interactions. The
initial experimental research is performed in laboratory grown cell lines. For any ex-
periment which aims to detect an interaction, normally at least the protein of interest

2



Chapter 1. Introduction

would be modified through a process of fusion. This genetically modified protein can
be introduced in cell lines through transfection, the addition of the synthetic nucleic
acid sequence. The so modified cell culture is later used for experiments such as
immunoprecipitation (IP) and the affinity purification (AP) experiments discussed in a
large portion of the thesis.

Affinity purification and similar methods jointly referred to as AP-like are experiments
aiming to determine at once the neighbourhood of a target protein called bait. Specif-
ically, these experiments immobilise the bait and pull the proteins from the cell which
somehow directly or indirectly stick to it (prey proteins).

Using a network representation, it is clear that even without additional problems like
contaminants, the method does not find only the immediate neighbours (direct inter-
actors) of the focus node (bait). Often the approach identifies entire assemblies or
complexes involving the bait-protein, including proteins that are not in direct physical
contact with the bait [4]. The work presented here describes two complementary meth-
ods to start from the raw experimental results which lead to a better understanding of
the underlying PPI network.

1.1.1 Statistical workflow

The most common approach in AP experiment analysis is to compare the target to a
control protein and use statistical testing.

During this doctoral work we collaborated within the European Training Network SCilS,
with 11 institutions in which several partners did experiments on PPIs. We were able
to test our statistical procedure on their data and add to the standard method by an
additional comparison study of missing value (MV) imputation methods.

The pre-processing includes an imputation step where we propose a modification of
normal tail imputation to complete a normal distribution. This sampling procedure em-
ploys rejection sampling in order to sample from a custom-designed distribution.

The results are inspected via Principal Component Analysis (PCA) against the per-
formance of the imputation method based on singular value decomposition (SVD).
The latter has been a popular choice in the context of AP-like experiment imputation
[65, 46, 22, 67]. The PCA shows better clustering of the customised method.

After the MV imputation, the analysis proceeds normally with hypothesis testing for a

3



Chapter 1. Introduction

difference between the distributions of the measurements of the target and control. A
main drawback of the statistical analysis is the need for a reliable and unbiased control.
For this reason, we propose a complementary or altogether alternative approach where
a model function is used to rank interactors.

1.1.2 Scoring function of network edge weights

In the second approach, we devise a scoring function that works on the corpus of
PPI data. Instead of requiring control experiments and going through the analysis
of experiments separately, we use the full existing data to draw inference from the
complete known network. This involves handling data obtained using heterogeneous
experimental methods on large protein networks with up to 8.2 million edges.

For each potentially interacting pair the scoring function determines a weight for their
connecting edge. To do so, it uses the particular nodes and the network degree dis-
tribution and compares their specificity to a random graph. A helpful strategy for con-
structing random graphs with a specified degree distribution, which is also exploited
here, is the configuration model [51]. This model allows us to apply probability and
combinatorics to study and compare the expected number of multiple edges (or edge
weights).

We test the model using a combination of techniques. We first use the popular receiver
operating characteristic (ROC) analysis to assess performance. We then validate the
scores using published results or formulate biologically sensible hypotheses which we
verify via statistical testing. The network is clustered using Markov clustering to obtain
groups which are observed to overlap with the known community structures of protein
complexes.

1.1.3 Extensions to the model

Several model modifications and adaptations are tested. The first one uses a modi-
fied network in which edge weights can be decimal. In the original formulation of our
score, interactions are binary (observed or not) and some are possibly observed mul-
tiple times resulting in multiple edges or, equivalently, integer-weighted edges. In the
first model modification further experimental evidence is incorporated in the form of
rational confidence weights. These are compared via ROC analysis to the original
model.
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Other adaptations involve applying the model to a bipartite graph. Two cases in which
bipartite networks are explored through the examples of gene-to-trait associations cap-
tured by Genome-wide association studies (GWAS) studies and gene-phenotype as-
sociations seen in mouse genetics data. GWAS studies are obtained by sequencing
a sample population, recording the traits and diseases those individuals report and
testing their significance. Individual studies are again subject to missing insight from
what is already known, while in addition there is a stacking bias towards (interesting)
discoveries.

The second bipartite network we explore is based on phenotyping research in mouse
(Mus musculus) recorded in the Mouse Genome Database (MGI, MGD) [25]. In such
studies, a mouse genome is modified to introduce an allele of interest and some or
all resulting phenotypes are recorded. While the mice are a main model organism in
the study of the human genome and understanding human phenotypes and disease,
heterogeneity of mouse research presents a challenge to the unbiased analysis from
multiple studies [13]. To our knowledge there is no study which analyses the compre-
hensive MGD resource as a whole.

Both bipartite networks provide essential insight into the functional role of genes and
the severity of effects of genetic variation. However, the two databases are formed
by individual studies and annotations which pose bias towards interesting research
and results and are an obstacle to systematic analysis. However, we propose that the
network structure lends itself to analysis using our scoring function and we propose
two model adaptations for the bipartite setting: one scores the original edges while the
second weights the one-mode projection graph through shared neighbours.

Several methods are employed to validate or disprove the models. Literature research
confirms some of our obtained results and gives us insight for expected hypotheses.
In addition, we use statistical analysis and testing and investigate correlations to un-
derstand the models and their relevance.

Our analysis shows that the modelling function can be applied successfully to distin-
guish likely connections from noise. It is especially useful when a node of interest has
many connections but the focus should be drawn to just the few essential ones. In the
context of the projection graph we also observe correlation with similarity scores from
another established database, STRING [63]. This confirms our suspicion and opens
up possibilities for further investigation.
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Chapter 1. Introduction

1.2 Outline

The thesis is structured in six chapters. After the introduction, Chapter 2 presents a
brief literature review outlining the main research laying the foundations for this work.
The following three chapters are devoted to the main methods and results of our work.

More specifically, Chapter 3 presents our statistical framework for analysis of PPI net-
works. It presents the specifics of the experiments analysed both in this and the next
section. Then it lays out the steps of the statistical analysis in order and discusses the
challenges encountered and improvements made during the process.

Chapter 4 contrasts a new aggregating model to the previously discussed case-by-
case approach of statistical analysis. In this chapter we present the scoring function
WeSA that we have developed to work with big network data. We discuss several
databases that we use for the analysis and testing in the chapter. The results of this
section are split into two subsections: performance in terms of metrics and biological
insight and results. The penultimate section is an extension to the method presented
in Chapter 4. It introduces two separate further applications of WeSA in the respective
sections 5.1 and 5.2. Both of them are structured in the same way: they present the
data on which the extension works, they present context-specific modifications to the
model function and then evaluate performance and relevance to biological research.

Chapter 6 summarises the key findings and discusses the possibilities for further re-
search.
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2 Determining biological networks

2.1 Recognising true edges in biological networks

What do we mean by biological networks? Most often we use the term to refer to physi-
cal connections between molecules. Usually these are protein-protein interactions, but
also there are protein-chemical [FR26], protein-nucleotide [FR57], etc. Beyond physi-
cal, there are other indirect relations often studied in networks, such as gene-regulatory
networks that (most often) relate transcription factors to the genes whose expression
they affect [FR61].

However, many things (beyondmolecules) can be put into networks for particular tasks.
For instance, drug-targets can be linked to disease indications or side-effects (e.g.
[FR6]). In the context of this thesis (Chapter 5) we wished, for example, to obtain a
network of genes associated to the phenotypes observed as a result of their genetic
perturbation (either in mouse experiments or genome-wide association studies).

Protein-protein interaction networks

PPI networks are based on results from experiments. The experimental protocols
which search for direct physical links between proteins could loosely be divided into
two categories which we refer to as pairwise experiments and AP-like experiments.

With the term pairwise study we refer to experiments between two specified proteins
of interest in a controlled environment. Such studies examine only the single inter-
action. Among the most popular pairwise methods are split protein methods such as
Yeast Two-Hybrid (Yeast Two-Hybrid) system [14] or Protein Complementation Assay
(Protein Complementation Assay) [FR11]. In those methods a split signalling protein
in yeast is attached to two proteins of interest which are tested for interaction. The
assumption is that a signal is transmitted only if the target proteins interact. These
cellular approaches experience a unique false positive driver which is the possibly fre-
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Chapter 2. Determining biological networks

quent reconstruction of the fragments [FR11]. Alternatively, because Y2H studies are
conducted in yeast, there is no way to control for interactions with other proteins. If the
two tested proteins have a shared interactor within yeast, they can bind to it which can
put them in sufficient proximity to output a positive (interaction) signal.

For many proteins the need to express them in a certain environment for a pairwise
study is problematic. For example, in Y2H the signal readout is based on an interac-
tion in the nucleus, but many investigated proteins are not native to the nucleus and,
specifically, membrane proteins are known to be difficult to examine accurately [14].
Beyond, cellular compartment localisation, expression in different host organisms can
change the behaviour and characteristics of proteins. Tyrosine signalling, for instance,
is ob- served to be a characteristic of eukaryotes and despite tyrosine kinase activity
being present in yeast, phosphorylation is low when compared to to human [FR9].

The issue of non-native environments extends beyond split-protein experiments to
other pairwise methods such as purified protein pull-downs. A major challenge in pull-
down experiments studies is optimising the experimental conditions in order to mimic
the proteins functional environment [55]. For instance, salt concentration in experi-
ment buffers should be determined carefully since a low salt concentration can disrupt
protein stability while high salt concentration is more likely to break bonds between
proteins [FR51]. All pairwise methods, however, have in common the inability to de-
tect proteins supporting indirect interactions and (competitor) proteins interfering and
preventing interactions.

Protein interactions in nature happen competitively, which makes AP methods better
suited for unbiased probing of the interactome. Here, a target protein is attached to a
special peptide (i.e. tag) which is known to bind to particular molecules called beads1.
Because of this known and controlled connection, one is able to retrieve all proteins
which interact with the target protein [14]. By using an AP method one can obtain a
list of proteins that are somehow physically connected to the target protein. However,
AP experiments typically contain significant noise (background). A major generator
of the noise is the unknown nature of the relationships (direct physical interactions or
interactions through linking proteins) which requires further verification, e.g. pairwise
validation [49]. Additionally, background accumulates through problems with experi-
mental components, e.g. through non-specific binding affinity of the beads [FR51].

The issues with noise are exacerbated as the once popular “tandem” affinity methods

1Beads are tag-specific.
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Chapter 2. Determining biological networks

are now being replaced by single-tag AP experiments. The former uses a two-part tag
that (after capture of the target with its interactors) is separated from the bait in two
distinct washing steps [FR43],[32]. As washing disrupts weak interactions, tandem-tag
AP is substituted with AP experiments using a single Strep or FLAG tag and, respec-
tively, a single washing step [10]. This allows for more of the connections formed in
the precipitate to be preserved, but also leaves many more contaminants.

Furthermore, it is clear that PPI studies, which rely on material from multiple cells,
suffer from inter-cellular, tissue or organism variability. Even cells grown as technical
replicates in the lab are never identical and, moreover, processes in the cell are not
always in sync. For example, transcription suffers from random transcription bursting,
i.e. interruptions of the steady Poisson-modelled process of mRNA transcription [24],
which leads to stochastic changes in the content of the cell. In addition, replication of
experimental conditions is arguably a bigger factor accounting for experimental vari-
ability. This is a multifaceted challenge encompassing details, which are overlooked
or impossible to define precisely, such as pressure, room temperature, temperature of
reagents, researchers’ accuracy, etc.

An emerging technique to counter inter-cell variability, is the development of single
cell analysis, which allows for the examination of a single cell and subsequent cell-cell
comparison [FR20]. Its potential drives discoveries and fast-paced progress in the field
[45], but it still has its challenges both due to the lack of standard protocols for different
tissues and types of experiment or due to limitations of resolution/detectability [FR58].

There are similarly technical issues related to detection limits, particularly in proteomics.
Specifically, the instruments that detect peptides during mass-spectrometry identifica-
tion depend on a certain abundance in order that biological signals can be distinguished
from background (this is elaborated on in section 3.3). In part, the process is stochas-
tic also due to the variable capacity of the machine to efficiently ionise the submitted
sample. In practise, this means that certain proteins are simply not seen, or not seen
consistently during replicates in these experiments.

Different interaction detection designs, equipment, conditions andmethods significantly
affect the results and have largely prevented previous research on the aggregate data.
Instead, studies work on their own target and control samples to produce new PPI in-
formation (e.g. [10]). Yet, PPI analysis has seen some range of aggregate studies and
those are presented in the next section on mathematical and computational methods.
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Chapter 2. Determining biological networks

Gene-phenotype networks

Study methods to characterise genome-to-phenome or genome-to-disease links rely
on collecting heterogeneous data from many individuals. The GWAS approach to find
significant associations between genes and phenotypes builds a network of genes and
traits by expanding from the trait nodes. GWAS studies collect data on all individuals
with a specific phenotype and examine the variants which are related [FR52]. Mice
studies can also focus on finding relationships but they start, conversely, from genes
and link them to phenotypes [FR18]. Data from GWAS and mouse phenotypic studies
create a network of all links between genes and phenotypes. However, cross-organism
heterogeneity in all such studies is not straightforward to control, particularly, there is
conflicting evidence whether laboratory inbred mice have lower variability than outbred
mice [66]. The study of Tuttle et al. combines literature, data on inbred mice and
data on mice from the diversity outbred population [FR28] to measure variability across
phenotypes. They model outbred mice variability as dependent on both genetics and
environment, whereas only the latter affects their inbred mice model. They find out
that the two sources of variance somewhat equate and confirm unpredictable diversity
despite attempts to control the population.

Some studies aiming to improve the irreproducibility problem introduced by organism
variability argue that overly controlled environments are part of the problem. Driven by
the idea of blending the microbiome in different samples of mice, research suggests
modifications such as changes in breeding environment, growing samples physically
together. A particularly notable idea is combining results from different laboratories. In
their research [FR54], Voelkl et al. simulate multiple treatment analysis scenarios and
propose that expanding a study to as few as 2-4 labs, as opposed to just a single one,
can increase effect capture.

Despite this finding that a mixture of laboratory environments can improve a study, to
our knowledge, efforts have not been focused on expanding beyond a single study. In
both gene- disease association studies and animal phenotyping studies, results from
publications have been considered mostly on their own. Research on the whole corpus
of data has been limited to overviews or clustering without attempts on filtering out noise
[FR16].

Finally, none of the network exploration studies are immune to technical noise [24]. In
gene-disease association studies, technical noise can occur from problems with se-
quencing, while in phenotyping studies, issues may be due to variation in phenotypical
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labelling or measurements, to name a few.

Despite the limitations discussed above, both in how interactions can be sufficiently de-
tected and how typical sources of variability and signal background can be addressed,
we have seen indications that the current range of network exploration methods can
be useful. We propose that the analysis of existing networks can lead to economical
changes in future study design.

2.2 The mathematics of working with networks and
filtering network noise in literature

Networks, which in this thesis are taken to mean the same as graphs, are graphical
representations of the relationships between constituents in a biological system. A
nodes-edges tuple summarises the information for the graph. In this thesis I develop
theory working with the network of PPIs, but in Chapter 5 we also see that the model
we develop can be applied beyond PPI networks. In the main case of Chapter 4, a
network is a tuple (V , E) where V is the set of genes and E is the edge list or list of
observed gene-gene pairs in interaction studies. Information from an edge list can
equivalently be presented in an adjacency matrix, but lists (also called adjacency lists)
are convenient when the graph (respectively, the matrix) is sparse.

In the following chapter expanding on applications we work with bipartite networks
G = (V1 ∪V2, E). The graphs in those cases are naturally split into two partitions: a set
of genes (V1) and a set of traits, diseases or phenotypes (V2). The two partitions are
disjoint, i.e. V1 ∩ V2 = ∅, but when discussing the bipartite graphs we also relate them
to their one-mode projections. The one-mode projection graphs over just one vertex
partition (in our case we looked at the projections onto V1) is the graph obtained by
connecting nodes from the partition if they share a neighbour and allowing for multiple
edges corresponding to multiple neighbours.

While summary statistics about the networks in the project may not be important, it is
useful to know that they are normally sparse. In addition, in the case of PPI networks,
we have observed scale-free characteristics of the degree distribution, meaning, exis-
tence of hub nodes or proteins with disproportionately many connections compared to
the average.

There are some already established approaches aiming to elucidate the specific com-
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munity structure of biological networks. Particularly, for PPI networks there are a grow-
ing number of studies and some important methods are presented below. Gene-trait
networks have also attracted some interest in analysis. For both cases the majority of
the approaches use some form of clustering.

Network approaches for protein complex prediction can be grouped in two main cate-
gories: purely computational and biological-information enriched [74]. The former are
based solely on the raw experimental network data, while the latter also incorporate
further biological knowledge.

Studies that go beyond network information include in their predictions, for instance, in-
formation on expression data, under the assumption that proteins which are expressed
(i.e. active) simultaneously are more likely to interact [FR62]. As another example, Yu
et al. [FR60] developed a regression model using the network information as well as
weights of node similarity based on annotations of proteins biological and molecular
function or cellular localisation. The marginal improvements and performance which
still allows for much improvement2 which result from such models, however, point to
possible problems. We specifically want to underscore that protein information is het-
erogeneous and very incomplete, so relying on further annotations could introduce bias
towards more researched proteins and their associated parts of the network.

On the other side of the spectrum are placed all clustering approaches that do not
take into account any information beyond the network. The most popular of those is
probably the Markov Clustering (MCL) approach [69]. It is a divisive approach start-
ing from the whole network and dividing it into clusters by exploiting the concept of
flow through a network which is taught in courses on Interacting Particle Systems. In
particular, Van Dongen introduces the concepts of expansion (squaring) and contrac-
tion (column-wise re-scaling of the powers) of a flow matrix and argues that the two
operations iteratively enhance the difference between within-cluster and inter-cluster
edge weights. The process converges for adjacency matrices with sparse bounds and
results in an idempotent matrix (i.e. matrix which is invariant to squaring). In the ob-
tained matrix representation, clusters are built around ‘attractor’ nodes. Attractors are
all nodes which, according to the output matrix, have positive flow to themselves, while
nodes which lead to attractors are ‘attracted’. Attractors may also be attracted to other
attractors in which case they co-exist in a cluster.

The algorithm has been benchmarked in the context of protein complex discovery in

2F-measure scores improve in the 0.5-0.6 range in [FR60] and up to 0.6 in [FR62].
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comparison to other algorithms. Its performance can be slightly inferior to information-
enriched methods [FR60, FR62]. However, it is comparable or better to other purely
computational approaches such as the greedy algorithm, PC2P, [FR35] and the ag-
glomerative Core&Peel method [FR38]. It is an important note here that the models
are largely similar and presenting one or another as superior is dependant on the mea-
sure chosen for testing. For instance, MCL is superior to Core&Peel when modularity
is computed, but lags behind in F-measure. Yet, all network clustering approaches
tested by [FR35] are observed to have recall below 0.72 which is attributed to sparse
complexes. While the studies are clustering the yeast interactome, this can still present
an interesting comparison to the performance of our own method in Chapter 4.

There has also been some clustering analysis performed on gene-trait association net-
works fromGWAS. These are focused on only few traits at a time as opposed to looking
at the whole network. For instance, research on sex hormones SHBG and testosterone
has developed individual linear mixed models for the prediction of important genetic
drivers for the respective hormone levels [FR47]. As an additional perspective in case
of overlapping features, they have used normalised association numbers to produce
hierarchical clustering and identify the genetic variants contributing to effects on sex
hormones. In a different study focused on obesity, Grant et al. [FR16] aim to identify
differences in mechanism on a more-detailed level. It is another representative of the
approach to GWAS studies, namely, focusing on a trait of interest and tailoring the
analysis according to it. Here, the focus is on body-mass index (BMI) and only nine
additional traits picked for their proven association to BMI were selected to use in fur-
ther classification and clustering. In general, GWAS analysis has seen some clustering
approaches and modelling applied to gain insights, but that has been supplemented
by manual curation of the input and has been limited to looking at few traits at a time.

So far the methods presented have been at two opposite ends: either strictly focused
on the clustering algorithm from a computational perspective or heavily supplemented
by biological information. The approach we present below does not incorporate any
supplementary biological information, which makes it general. However, it differs from
purely algorithmic clustering approaches as it uses more of the information hidden in
the network. This approach has been proposed first by Gavin et al. [30].

Instead of working with an unweighted network of binary observations, the study of
Gavin et al. on the yeast interactome proposes the socio-affinity (SA) weight, a score
weighting observations based on a comparison to their expectation. The weighted
graph is then clustered using three different methods: single linkage, complete linkage
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and unweighted pair group method with arithmetic mean. The paper introduces two
interesting ideas incorporated in the weight of each edge. The first one is to use the
observed-to-expected ratio which scales each interaction relative to the observations
of the proteins in the pair. That can down-weight links of abundant proteins and high-
light those that are rare but specific. The second important point introduced by the SA
score is that it is calculated symmetrically for both proteins and includes a third com-
ponent for any matrix information. With the term matrix (information) we refer to every
observation which is not direct; in a networks setting, that translates to pairs which
share a neighbour. With these two points made, the SA formula is:

SA(i, j) = Si,j + Sj,i +Mi,j

where the two symmetric terms Si,j denote the log-ratio of observed-to-expected edges
between i and j and Mi,j is the log-ratio for indirect matrix terms. The score clearly
uses no additional information apart from the network structure, but is able to effectively
scale the importance of each observation. The method has not been tested tested
against representative reference sets, but was observed to retrieve accurate biological
structures.

The SA method has two close adaptations published by Collins et al. [20] and Schel-
horn et al. [60] again for the Saccharomyces cerevisiae interactome. The former inte-
grates Bayesian setup (testing) within the SA framework to incorporate also negative
interactions. Negatives should always be treated with caution given that some ex-
periments may be inaccurate in detecting interactions. The authors propose a similar
three-term structure of the score, but instead of working with observed-to-expected
ratio, they look at probability ratios of the form:

P(ij is observed|ij is true)
P(ij is observed|ij is false)

In their method Collins et al. propose that the probability of a true association to be pre-
served and detected, is estimated individually for each input dataset. Specifically, their
paper integrates three studies and calculates this probability through the observed fre-
quency of successful purification over a very high confidence set of interactions3. The
second main modification is the use of probability of negatives, the probability that a
given bait-prey pair would be observed for nonspecific reasons. It is calculated using

3For Krogan et al. [45], Gavin et al. [30], and Ho et al. [FR21] data, this gave values of 0.51, 0.62,
and 0.265, respectively.
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a Poisson process (i.e. exponential distribution). The main advantage of the method
is that it manages to down-weight negatives. Despite the other study-specific tailor-
ing, their results have varying accuracy across datasets and their attempt to combine
datasets leads to approximately 50% coverage of the gold-standard reference set.

The second adaptation of the score, named ISA and developed by Schelhorn et al.
[60], retracts the matrix term as allegedly obscuring true physical interactions4. We
argue, later, that matrix term does improve predictions. ISA also modifies the two re-
maining terms to use a probability instead of the observed-to-expected ratio. That is,
each term is a logarithm of an expression of the form P(Sij ≥ sij)

−1, where S and s

denote the random variable and its sample (observed) value, respectively; the vari-
able represents the count of evidence for interaction between a pair of proteins. This
probability modification is done in order to reduce the ‘diminishing returns’ behaviour
of SA as evidence accumulates5. In our model, presented in section 4, similar effect
is achieved instead by the term weights. Testing is performed comparing ISA scores
to several other methods including the aforementioned SA and PE scores, while refer-
ence sets include pairwise interactions and confirmed 3D structures. ISA and SA are
observed to outperform the other methods in those tests, but the authors do not find
any notable superiority in performance of ISA compared to SA.

Finally, the advancement in technology and availability of resources brings us closer to
the possibility of building an accurate interactome by probing every interaction. While
still far from the goal, two notable studies presenting a snapshot of the current progress
are presented below. The first direction represented by the papers of Rolland et al. [58]
and Luck et al. [49] is experimental. As a recent alternative, Evans et al. [26] and Burke
et al. [FR5] set the foundations for computational probing of the PPI network.

The experimental papers [58, 49] provide an updated map of the human interactome
as part of The Human Reference Protein Interactome Mapping Project6 (HuRI). They
analyse and test their pairwise-experimentally validated interaction set extensively and
further provide correlations to GO terms7 and diseases, among others. An attempt is
made to probe pairs uniformly and decrease popularity or other biases, via analysing
also the number of publications attached to the proteins. Interestingly, Rolland et al.

4Not to be confused with appearance in the same complex which may be re-framed as indirect
interactions.

5In other words, as more evidence is added, the rate of increase is SA score slows down.
6Description of the general project: http://www.interactome-atlas.org/about/
7GO terms are annotations of proteins in the Gene Ontology (GO) database in three categories:

molecular function, biological process and cellular component.
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compare the recovery rates of pairs detected in one pairwise study only to a random
control and to those observed in at least two studies. They detect only a slight differ-
ence in recovery to random controls and a huge drop compared to rates of pairs with
multiple supporting evidence. While the conclusion is drawn from evidence including
at least one pairwise experiment for each pair, this result is important as we think about
the reliability of AP-like experiments as well. Ahead for the HuRI project, there is still
a lot of ground to be covered if the full human interactome is to be covered; efforts
are ongoing and as of 5th May 2023 they have found 64,006 interactions among 9,094
proteins.

All of the above experimental and computational approaches are aimed at revealing
whether particular biological entities interact or are in amore indirect relationship. How-
ever, they do not, normally, reveal any molecular details about how the interactions
occur. Certain key developments in the last few years, which built on many decades
of structural biology, provide the means to identify or predict such molecular details.

In particular, there are now extremely accurate computational approaches to predict
protein structures. For instance, AlphaFold2 (AF) [FR23] is a protein structure pre-
diction model developed by DeepMind, which disrupted the structural research land-
scape. It participated in the 2021 edition of the biennial challenge on protein structure
prediction CASP14 in which teams of modellers compete to make the most accurate
predictions of yet-unpublished protein structures.

AF uses neural networks but is able to communicate between two otherwise separate
information sources in the form of matrices: sequence alignments and positional in-
formation. The transmitted updates are used to further modify the two matrices. Via
transformers which refocus attention on important rows of those matrices fine-tuning
is improved. Ultimately, this has led to their model having 0.96 Å root-mean-square
deviation at 95% residue coverage (r.m.s.d.95) of the backbone. In comparison, the
second best performer had an average backbone prediction accuracy of two carbon
atoms or 2.8 Å.

The AFmethod spread quickly and currently UniProt displays within its pages AF struc-
ture predictions for all human proteins. The algorithm was also extended to be able to
predict not only single structures but complexes [26]. This already gave rise to faster
interaction determination (presented in Chapter 4) and large-scale efforts to probe the
interactome [FR5].
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3 Statistical workflow

Proteomics methods aim to identify weaker connections between proteins. Some ex-
perimental approaches mentioned in the previous chapter are just a few of many ex-
amples [FR46, FR3, FR1, FR2, FR14, FR22] which showcase changes in modern pro-
tocols to accommodate for the search of weak connections. There is thus a growing
challenge to try and distinguish true interactions from noise when signals are particu-
larly weak. In this chapter, are discussed the challenges in the follow-up analysis of
the single-tag AP experiments which were mentioned. As an example to supplement
the theoretical procedure, we use an AP experiment in which the single tag attached
to the bait is Strep (Strep-AP).

3.1 Data

3.1.1 Sketch Protocol: Affinity purification coupled with
Mass-Spectrometry (AP-MS)

Most data which we have applied the method from this chapter on is yet unpublished
Strep-AP-MS data from our collaborators in Tübingen. The focus in this chapter is
on the general principles we have observed when working with this type of data and
alongside those, to illustrate the procedure we present the details of one example. This
example is an experiment I have conducted with help from Shibu Antony in the Ueffing
Group during my visit in the Institute for Ophthalmic Research, Tübingen. Specifically,
we have followed the protocol below to produce Strep-AP samples for RAB7 wild type
and RAF1 at two time points aiming to investigate themechanistic change driving cilium
disassembly.

Running such an experiment requires standard buffers, beads functionalised to bind the
tag and cell lysate from HEK293T cells modified to express the target protein together
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Figure 3.1: Steps of affinity purification experiment after having the input components:
cell lysate (including tagged protein) and binding beads. The schema shows the de-
tailed process up to the submission for mass-spectrometry.

with the Strep tag1. Then the process goes through 5 main steps before the result is
obtained (figure 3.1).

To get cell lysate, pre-grown cells (14 cm dishes) were scraped in the presence of 1

1I used pre-prepared cells by Shibu Antony, who didmodifications to the cells (transfection) by adding
a PEI-DNA mixture to the medium of the cells and, then, allowing cells to grow for at least 48 hours.
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ml LB (Merck; 492016-500ML), incubated (40 minutes, 4◦C, 35rpm), centrifuged (10
minutes, 4◦C, 10000 g) and supernatant was collected. Beads (Serva, 37283.01) were
washed with TBS (45 ml Millipore and 5 ml 10x TBS AppliChem, A1086,1000), LB and
twice with WB (Merck, 492016-500ML). Beads concentration in the resulting solution
was measured by a Bradford sample.

In the first step, beads and lysate are mixed together and incubated for sufficient time at
proper temperature (here, 4◦C for up to 2 hours on a 35rpm shaker). This step makes
sure that the target protein binds well to its interactors and its tag sticks to the beads.

The sample is thenwashed three times. Thewashing procedure comprises a centrifuge-
discard supernatant loop as after centrifugation the beads, with the proteins bound to
them, precipitate to the bottom of the test tube. All remaining supernatant is unbound
protein which ought to be discarded, although contaminants can remain.

During the elution step which follows the beads are separated from the tag and removed
from the samples using a Strep-tag elution buffer (IBA, 2-1000-025; concentration:
1:10). The only remaining components in the sample after this step are the proteins
we are interested in: the protein network in which the target protein is involved.

In the protein reduction and alkylation and trypsin-incubation steps the proteins are
separated and denatured. This is done, by adding a mix of ABC(30 µl,50 mM; Sigma,
A6141-25G)/RapiGest(4 µl; Waters, 186001861)/DTT(1 µl; Merck, 1.11474.0025) (fi-
nal DTT concentration: 2.7 mM) and incubating (10 min., 60 °C, 500 rpm, Thermoblock
Thermo-Shaker IncubatorMT-100manufactured byUniversal Labortechnik GmbH KO.KG)
and then, by adding the proteinase trypsin (Serva, 37283.01) in a concentration up to
4.7% and leaving for 2 hours at 37◦C. As an end result, the proteins are broken down
to short peptides which the machine can detect.

The sample was then submitted for label-free mass-spectrometry quantification which
was performed as in [34]. The preparation, mass spectrometry and computational re-
construction2, which is involved, goes through the steps of separation of peptides by
liquid chromatography, ionisation, measurement of mass-to-charge ratios of the ions
(MS13), fragmentation of ions and detection of fragments (MS2), identification of pep-
tides based on MS2 by comparison to theoretical spectra, mapping of these peptides

2Computational mapping to a reference proteome database based on number of peptides and pro-
tein coverage to distinguish the proteins in the analysed sample is done using MaxQuant software
[FR10].

3MS1 and MS2 are the specific mass-spectrometer spectra characterisation steps which are then
used to computationally identify the proteins.
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to proteins and thereby identifying and quantifying them [1].

TheMS analysis is reliant on the success of each of those steps: the peptide separation
and ionisation, the sensitivity of MS1 and MS2, the completeness and specificity of the
comparison database. Stochastic errors on every step accumulate and can produce
some errors or omissions which will be discussed in the next sections.

The output of the MS analysis is a table with individual label-free quantification readings
(LFQ values) of all proteins detected in the samples. Usually, the LFQ values are log-
transformed in order to achieve normality of the overall log-LFQ distribution. Then the
samples are ready for further (statistical) analysis.

In the rest of this work, when I refer to Affinity Purification, I refer to this specific proce-
dure.

3.1.2 Description of the data

There can be thousands of proteins identified in an AP experiment with the average
number from the 21 experiments we have analysed being 3,644. In contrast, our es-
timate based on the large CORUM dataset, which contains a curated set of protein
complexes [31], is that a protein can directly or indirectly (as part of a complex) be in-
volved in 21 interactions on average4. This estimation is based on the network created
from the data on human proteins on CORUM by connecting proteins recorded to be in
the same complex. The degree distribution for all 4,427 proteins is presented in figure
3.2a. Past literature combining databases seems to validate this number somewhat.
One study aggregating validated interactions estimate 32 interactions on average [2],
while an older one extends the experimental knowledge for PPIs by inference and still
describes 38 neighbours per protein on average [72].

Furthermore, research so far has agreed on protein complexes comprising from 2 to
over a hundred proteins. The two largest recorded human complexes on CORUM, the
Spliceosome, E and A complexes, respectively contain 129 and 113 protein subunits.
However, the complex size distribution is heavily skewed with median and mean 3 and
4.13 (figure 3.2b).

It is possible that a protein participates in multiple complexes which are captured all
at once. However, we hope that at the precise time point of experiment the target

4Median: 6, 75% quantile: 16, max: 346
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(a) Degree distribution density for the
protein-protein ‘interaction‘ network as
built from CORUM records on com-
plexes. The network of interactions, di-
rect or indirect within complexes, involve
4,427 human proteins in total.

(b) Density histogram of individual com-
plex sizes for all complexes comprising
human proteins. In total, 3,538 com-
plexes were identified for the distribu-
tion.

Figure 3.2

protein is only (or at least mostly) involved in a predetermined process. Thus, we hope
spontaneous binding in other conformations is reduced or almost eliminated.

In our RAB7 sample there were 985 separate entries (proteins) identified. Of those,
13% (or 130) could not be identified uniquely, but were matched to 2 or more polypep-
tides. This still leaves us with 855 distinct proteins, which is drastically higher than the
average protein complex size.

It is clear that the method captures more than a single protein complex. It is possible
that the protein in focus participates in multiple complexes and that some are simulta-
neously occurring. Moreover, in the cell, some complexes are situationally impossible
to occur (e.g. a ciliary and a nucleus protein interacting), whereas in in vitro experi-
ments such as these ones unfeasible connections are just as easy to form as all others
as long as the proteins are a match in more basic factors such as shape and compo-
sition. A third possibility is that the true aim of the experiment is achieved successfully
and weak connections between protein complexes hold the big structures together and
allow them to co-purify. Thus, the nodes (proteins) in the connected components are
observed more thoroughly, but the edges are unclear. Finally, due to fewer cleaning
steps, there are possibly more contaminants still included as well as proteins which
bind non-specifically. Indeed, the last is very likely given that a stated goal of modi-
fications to affinity proteomics over the last decade has been simply to provide more
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proteins simply by removing one of the washing steps during purification.

Due to these issues and the desire to present a clean network of the proteome, it is
clear that rigorous analysis is needed.

3.2 Experiment goal, assumption and controls

RAB7 is described as a GTPase regulating endosomal trafficking and has been found
in several organelle membranes. Its best researched location is the late endosome
membrane which is notably found in microtubule sorting centres.

In this experiment, RAB7 is investigated specifically because of its recently discovered
role in cilia disassembly. Wang et al. describe that knockdown of the protein has
been observed to lead to cilia elongation which is rescued by re-supplying the cell with
RAB7 [70]. Furthermore, in the RAB7-knockdown cells, cilia disassembly is blocked
in the presence of disassembly-inducing serum which is confirmed to be reversible
through supplementation of active RAB7 Q67L mutant. No other previous research
has positioned RAB7 within the cilium or having any ciliary involvement.

This RAB7 AP experiment thus aims to find the interactions which RAB7 forms in the
cilium throughout the cilia disassembly phase. APs were conducted in two time points:
normal conditions (labelled “0 hours”) and serum induced disassembly (“2 hours”).

In order to do statistical analysis, further experiments with a specifically chosen control
are done. The control is chosen in such a way, so that background noise is similar, but
specific interactions do not overlap. The statistical analysis then assumes that the two
sets of proteins – the set of proteins in the network surrounding the target protein and
that for the control protein – have an intersection which is an empty set.

The control is unique to the bait and aim of the experiment. For instance, experiments
which aim to identify interactions in the cilium would normally use as control a protein
with no ciliary function. Some experiments use as control an empty tag, which would
identify the non-specific binding of the tag and beads.

In this case, since we would like to identify the role of RAB7 in cilia upon disassembly
serum supplementation, the control protein should not be involved in any ciliary inter-
actions. It needs, however, to be present in all other regions where the background
noise of the experiment may come from.
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RAF1 has been used in many ciliary studies as control. On the one hand, it is present in
most of the cell; according to UniProt, it localises to the cytosol, nucleus, cell membrane
and mitochondria. On the other hand, it had been claimed that the protein is well-
researched and no ciliary function had been foundmaking the prospect of the existence
of such function unlikely. These reasons made it a standard control in cilia studies
[27, 34, 10].

3.3 Statistics: Data preprocessing

Normally, experiments are done in triplicates and some may even do more than three
replicates. Our RAB7 and RAF1 proteins data has 6 replicates for each protein and
each time point, 3 done by me and 3 done by Shibu Antony. We have used two time
points: 0 hours and 2 hours, as explained in section 3.2.

For each time point and sample (columns in table representation) and proposed pro-
tein interactor (rows), the results from the complete procedure described in 3.1.1 is a
specific LFQ value reflecting the intensity of detection of that proposed protein inter-
actor. If a protein is not found in a replicate, a missing value is inserted5. We use this
table of LFQ values in the statistical analysis presented here to reduce background.
As mentioned previously, those values are log-transformed.

First, we checked if the variability accumulated from the experimental procedure be-
tween samples was not preventing cumulative analysis to be performed on the grouped
samples. As a quality control to establish that the data are correct, we verified the
groups through principal component analysis of the complete observations. If the data
are acceptable, the 4 different conditions (two time points 0 and 2 hours for two proteins
RAB7 and RAF1) should satisfy two things:

• the 2 conditions performed with RAB7 should separate from each other and from
the control, RAF1, in the PCA plot;

• the samples within a condition should cluster together.

Due to a great number of missing values it is impossible to make a PCA plot of the
complete observations from the raw data (only 5 rows are complete across samples),

5Therefore, the final table includes a separate row for every protein which is found in any of the
replicates and n (respectively, 3 for RAB7 and Strep-binding beads) columns in which the LFQ values
corresponding to the n replicates are recorded.
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(a) PCA with the 370 complete observations (excluding sample 4) coloured by condition.

(b) PCA with the 435 complete observations for samples 1, 2 and 3 only, coloured by
condition.

Figure 3.3

so we investigate the data further in order to find a way to increase the input data for
PCA. For this dataset, we observed a sharp contrast between replicates 1-3 and 4-6.
The first three are much more complete. In particular, ignoring samples 4-6 results
in 435 complete observations across conditions which can be used for PCA. Under
even closer investigation, the culprit seems to be sample 4, which compared to the
rest, contains too many MVs. Excluding that single sample results in 370 complete
observations with which we performed the initial PCA with results shown in figure 3.3a.
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While much of the variance is still unexplained, the lack of clear clustering of the condi-
tions suggests an inherent problem with the data. In fact, PC1 differentiates between
samples 1-3 and samples 5-6.

This aligns with the experimental design in which I have performed the first 3 replicates
with beads binding to Strep tag, while my colleague Shibu Antony performed the ex-
periments in samples 4-6 with beads binding to FLAG tag. Thus, I iterated the quality
control step, but this time only on samples 1-3. This time the conditions are somewhat
separate (figure 3.3b), so only the first three samples are used to demonstrate the pro-
cedure for analysis further. This new dataset (with only samples 1-3 per condition) will
be referred to as RAB7-Strep or just RAB7.

Characterisation of missing values

There is no information on the exact quantity of missing values in AP-MS proteomics,
but they are a well-recognised challenge due to their high frequency of occurrence in
any dataset. Literature works on other proteomics datasets give us some guidance on
the fractions of observations resulting in missing values. An overview of microarray
experiments has found that missing values can reach 10% and additionally, studies
with several experimental conditions can have omissions in almost all genes with MV
for genes reaching close to 95% for the 122 conditions in Tibshirani et al. [64]. While
microarray data can serve as a lower bound it is believed that the AP-MS experiments
have many more missing values. Another review by Albrecht et al. on gel proteomics
[3], suggest electrophoresis and staining methods can have up to 50% missing values,
while, similar to the case with microarray experiments, up to 90% of the represented
genes can have at least one missing observation.

In the raw datasets we have worked with throughout my PhD studies, the work of
scientists in the Ueffing lab in Tübingen, the mean percentage of missing values in
baseline wild-type (WT) experiments is 35%. They have produced 21 datasets using
16 distinct bait proteins and an AP protocol. Every experiment has between 3 and
6 technical replicates and up to 29 conditions. Perhaps due to the high number of
conditions in some datasets there are also an average of 48% of prey proteins which
are missing at least one LFQ value (range 31-75%).

The RAB7 dataset is cleaner in comparison and it contains fewer missing values than
others. Out of the 855 prey-proteins, 567 have complete observation numbers at the 0
time point, the others have at least one missing value. The total proportion of missing

25



Chapter 3. Statistical workflow

values is almost 21% for the same time point and 175 proteins (20%) have missing
values for at least 2 out of the 3 replicates.

It has so far become clear, that missing values across replicates are a main problem
for analysis. Moreover, they can be so many that the simple procedure of dropping
observations with missing information is not appropriate. The solutions would be to
either understand the experiments better and decrease the proportion of missing values
or use an appropriate way to impute the missing values. First, I discuss the former by
presenting the multitude of reasons creating missing values which are also impossible
to avoid in the MS-related steps.

Missing values can be due to various causes which previous studies separate into two
main classes: missing completely at random (MCAR) or missing not at random (MNAR)
([46, 42]).

MCAR values arise from random variability and errors throughout the whole process.
For instance, insufficient fragmentation of the protein peptides or an error reading a
peptide would lead to an error in quantification and subsequent detection. These errors
are stochastic and universal to any kind of data, meaning, the methods developed to
deal with them normally apply regardless of the specifics of the data.

On the other hand, MNAR values depend on the experimental design. Their imputation
will affect differently the results depending on the imputation method chosen. Specifi-
cally, when choosing imputation method which is tailored to MNAR values, one should
consider the particular reasons for their occurrence.

Not random causes for missing values are usually related to protein abundances. Every
MS machine has a threshold limiting its ability to detect rare peptides and so peptides
and, by extension, the proteins containing them, which have low counts close to or
below that threshold will inevitably contain missing values. It is important to note that
this detection limit is fuzzy as per the definition of Burgin of fuzzy limits [16]. In the
context of the MS experiments this means:

Constraint 1: For any mass-spectrometer, there exists a detection limit L which is a
fuzzy limit.

This means that every experiment has its own detection limit an and for the sequence
{an}∞n=1 it is true that it fuzzy converges to the detection limit L. In more detail, for any
candidate limit a, we can define its upper defect as δ(a) = inf{r : ∃N > 0, s.t.|a− an| ≤
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r + ϵ, ∀n ≥ N, ∀ϵ ∈ R+}. With this definition, a is a fuzzy limit when its upper defect is
bounded, i.e. δ(a) < ∞.

It is clear that fuzzy limits are not always unique, but rather usually comprise a set. For
a MS there is a lower bound which can theoretically be obtained as the minimum num-
ber of ions which can be detected and measured properly (by design of the machine)
[FR34]. However, not all peptides are properly ionised and, in addition, there is also
plenty of noise to obscure the weak signals. Due to these reasons, we do not know
the exact machine limitation, but even if we did, there is no certainty that abundance
slightly above the threshold will be detected.

While peptide abundance is the major cause to which MNAR values are attributed, it
is worth mentioning that undetected proteins may also be due to peptides not identi-
fying proteins uniquely. Moreover, a third cause for decreased recognition rate is the
incompleteness of the database against which proteins are searched. Every lab can
choose what reference database to search proteins against, but even after efforts to
achieve the best possible coverage, there is no way to identify a protein uniquely if it
is not known.

Having presented the types of missing values, it is clear that they cannot significantly be
reduced by means of improving the conduct of the experiment. Therefore, one needs
to apply some statistical means in order to handle missing values in the raw data.

Handling missing values

Normally, the preprocessing steps related to missing values that we do are two: re-
moving the outliers (bad observations) and then imputation. By the former, we mean
that results which are confirmed in less than half of the replicates are normally deemed
invalid. Specifically, in the case of proteomics, proteins which are captured in less than
half of the samples are not considered “observed” in later steps of the analysis.

Then follows the imputation step for which we have the aforementioned constraints.
There are methods targeting effective imputation when MNAR values are present, or
general techniques aimed at MCAR values. There are a range of studies comparing the
performance of differently tailored approaches [46, 71, 41] and the researchers agree
that, depending on the specific situation and, especially, the distribution of missing
values across the two main categories, there is no single method which outperforms
the other ones.
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Next, I present two foundational methods for missing value imputation based on the
two types of missing values we choose to target (MCAR or MNAR). The strategy for
picking one direction or the other should be built after considering what we expect the
missing values to be.

MNAR-tailored missing value imputation methods assume thatmissing valuesmainly
arise from the inherent left-truncation (or relative sparsity) of the data because of the
machine limitation. Thus, simple methods would assign to the missing values 0 or an-
other constant corresponding to the suggested detection limit, e.g. the minimum of the
detected frequencies. This idea can be built-upon further by substituting on a case-
by-case basis by taking into account also the gene-specific minimum [19]. Another
approach is to define a normal distribution on the left tail of the distribution and pick
from it [36].

Two of the best received imputation methods among the MNAR ones, in our experi-
ence, are the zero imputation and the normal imputation, so we elaborate on how they
work before testing them on the data.

The zero imputation is, as mentioned above, not more than replacing all MVs by zero.
This creates an artificial mode at 0 and a ‘cliff‘ between the minimal observed and
the imputed values. This design can be very unrealistic, while, in addition, it is also
problematic for the testing afterwards if testing takes into account the mean.

The normal imputation chooses a normal distribution corresponding to low-LFQ values
to impute from. That is, a normal distribution for sampling is defined by choosing a
mean some distance to the left of the original mean and an appropriate variance. For
example, in their Perseus software, Tyanova et al. [67] suggest default parameters
µ1, σ1 to be defined as mu1 = µ − 1.8σ and σ1 = 0.3σ where µ and σ are the mean
and standard deviation of the original distribution. A main weakness of this parameter
estimation is the fact that the sample mean would normally be shifted to the right. That
is, if we assume that the MVs are missing from the left tail, not having them will shift the
weight towards the values present (i.e. higher). Another discussion point if whether
it is reasonable to assume that the values are normally distributed in the so-defined
region on the lower tail.

Below, the RAB7 dataset is used to implement a MV imputation method for MNAR
values. The method is based on the same assumption as the normal imputation. That
is, the method assumes that the missing values occur for low intensities. However, we
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have addressed the issues mentioned about the normal distribution by defining a data-
customised density and taking into account the mean bias. The general assumption
for the method we develop and describe below is that there are no missing values from
the upper half of the distribution.

The procedure is outlined next and is supplemented by figure 3.4 which implements it
on the RAB7 data.

1. From the data: determine the median, µ (including the MVs set below the mini-
mum value). This is the dashed blue line in the figure.
Here, it is important to note that the missing values need to be less than half of
the data. The condition is always satisfied if we have removed observations with
at least 50% MVs in the replicates before starting the imputation.

2. Reflect the upper 50% of data through the median and determine the standard
deviation, σ, of the new dataset.

3. Create the fitted normal distribution with mean µ and variance σ2 (green line in
figure 3.4)

4. Define the difference as:

δ(x) =


(
fN(x)− f(x)

)
1x<µ when f(x) < fN(x)

0 otherwise

where f(x) is the density of the data (excluding missing values) as shown in by
the red line in figure 3.4 and fN(x) is the density of a normal distributionN (µ, σ2).
The dotted line represents δ(x).

5. Define, Ω, the domain of f(x) as the region between inf{f(x) > 0} and µ. Find
the area under the curve

a =

∫
x∈Ω

δ(x) dx

.

6. Construct a probability density function (pdf), p(x), by rescaling δ(x) to satisfy the
pdf property that

∫
x∈Ω p(x) dx = 1. That is, define

p(x) =
δ(x)

a

In the figure, p(x) is shown as a thick black dashed line.
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7. Sample the MVs from the distribution with pdf p(x). Since the distribution is not
defined by any parameters it is not possible to sample directly from it. Instead,
we have used rejection sampling the details of which are also given below.

Figure 3.4: Histogram of the log-LFQ intensity values. On top of it is overlaid the density
of the data shown (red line). The median of this data is presented as a blue dashed
line. The green line depicts a density of a normal distribution with mean which is the
same as the median of the red distribution; its standard deviation is estimated from the
upper 50% of the data. The dotted line presents the absolute difference between the
two densities when the normal distribution density is larger than the density of the data;
this is only on the right side of the data median and is going to be used for sampling the
missing values. This difference curve is converted into a probability density function
(for sampling MVs from) through division by the area under the curve.

Rejection sampling It can simulate a random variableX with a given probability den-
sity function p(x) over its support Ω. If ∃M ∈ R and a p.d.f. q(x) defined on Ω such that
M ≥ p(x)

q(x)
, ∀x ∈ Ω, then the rejection sampling algorithm returns a sample x ∼ p(x).

The algorithm itself goes through two steps:
Step 1. Sample y ∼ q(x) and u ∼ U [0, 1]

Step 2. If u ≤ p(x)
Mq(x)

, return x = y. Else, repeat from step 1.

The full procedure can be found in the pseudocode for algorithm 5 in the appendix and
the resulting log-LFQ distribution is shown in comparison to the original in figure 3.5.

As described and seen in the plots above, the couple of approaches focusing on MNAR
MVs imputation will substitute all missing values with something towards the low side
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Figure 3.5: Distribution of the original log-LFQ values in the data (red line and red-
histogram bars) and distribution of the log-LFQ values after the imputation (yellow).
The median of the original distribution and the mean of the complete distribution after
the imputation are presented with vertical dashed lines (they almost overlap).
Note, MVs are counted towards the size of the first distribution so the area of the shown
red density is not equal to one.

of the spectrum and may not be suitable if the data is expected to be mostly missing at
random, so next we discuss procedures which are better suited for randomly missing
data.

MCAR-tailored missing value imputation methods are instead suggested to bemore
effective in such cases whenmost values are missing at random. They are non-specific
to the context in which the data is gathered, thus, there are many statistical develop-
ments which apply here. Standard imputation studied in statistics is mean imputation;
that is, if data is continuous, any missing value is substituted with the mean of the sam-
ple, whereas for categorical data, substitution is with the mode. This basic technique
assumes, among others, normality and homogeneity of the data. In proteomics and
results from LFQ classification data is not coming from one general distribution, but
rather, every protein has its own profile according to the target. Therefore, this and
similar methods based on estimating a universal distribution to impute from would not
apply in this case.

There are other techniques, many of which based on some machine learning (ML),
which have a somewhat individual prediction for every missing value. Perhaps the
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earliest such method is the linear regression estimation by Buck [15]. This method
relies on enough completely filled out entries on which to calculate the regression co-
efficients for models to estimate the missing values. The method clearly implies a
consistent pattern across columns and is, thus, unsuitable for data on replicates.

Nevertheless, there are some general imputation methods for MCAR values which can
work well for the protein data. For the purpose of brevity, we elaborate on two such
techniques, the ML method of k-Nearest Neighbours (kNN) [21, 7] and the statistical
approach of SVDimpute [65] based on the singular value decomposition (SVD). These
are relevant in recent research on the topic [22, 38, 46, 71] and have been implemented
in popular analysis software [67].

The kNN method, as the name suggests, involves finding the complete observations
which have the closest characteristic to the point of interest. The algorithm needs only
two decisions: the distance measure and the value of k. For continuous variables such
as the LFQ values an appropriate measure is the standard Euclidean distance. The
choice of k is more complicated as it should balance between bias and variance of the
predictions (imputations). On the one hand, Cover and Hart [21] prove that k = 1 is
admissible and the lower k is, the lower the bias. However, variance for low values of k
is large and decreases as k increases. After deciding on the algorithm procedure, the
imputation is done for each missing value separately, thus, using a lot of computational
resource and scaling poorly, which is the main drawback of the method.

The SVDimpute method uses SVD to consecutively decompose the initial matrix of
LFQ records and, then, predict an approximation based on either the top or top k sin-
gular values and their corresponding singular vectors. This requires a complete initial
matrix which is initialised by substituting MVs with their respective row averages. The
algorithm relies on the fact that the biggest singular values account for most of the
variability. Therefore, predictions which are made can predict as much variance as
possible without overfitting. As is the case with the kNN algorithm, here again there
is a danger of not predicting enough variance if k is low and so, a balance should be
found. Results from [65] et al. from trying different thresholds and datasets suggest
that best results are achieved when approximately 20% of the singular values are cho-
sen for predictions.

The kNN and SVDimpute methods are suggested to work similarly well and being able
to handle up to 20% missing values without a significant drop in quality. SVDimpute
displays slight superiority above kNN when data has some structure to it (e.g. time-
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Figure 3.6: Distribution of the original log-LFQ values in the data (red line) and distribu-
tion of the log-LFQ values after the SVD-based imputation (orange line and histogram
bars).
Note, MVs are counted towards the size of the distribution but are missing in the plot,
so the areas under the density curves shown are not equal to one.

series or multiple conditions) while kNN is slightly better when no such patterns exist
[65, 75, 29]. Pseudocode for both the kNN and SVDimpute algorithms presenting some
more detail for the steps involved is presented in the appendix.

In the case of the RAB7 data, we have already seen that the sample of LFQ values has
a right-skewed distribution (figure 3.4). The general assumption is that log-LFQ inten-
sity values would have a normal distribution. This is depicted by the normal distribution
in the figure (green line).

The fact that the original distribution is right-skewed may indicate that observations
from the lower tail are missing, thus, pointing to the values being MNAR. However, a
taller-than-expected peak suggests random reading errors are possible. Thus, we have
decided to implement both an MNAR and an MCAR method and visually assess and
compare those to determine the method which is best for the specific circumstance.

From the presented MCAR methods, the SVD-based imputation is well-suited to this
particular dataset. The RAB7 data has some structure due to the two proteins and
time points and the method can take advantage of that. Since the log-transformation
reduces variance and does not preserve the exact distances, we do the imputation
before transforming the data.
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The results are shown in figure 3.6 which presents the original distribution alongside the
log-LFQ values after the imputation. The distribution of the imputed values is included
as well (as a blue dashed line). From the latter it is clear that, opposite to the MNAR
method, in this case the imputed values are mostly not in the lower-ranges and even
show a strongly left-skewed density. Overall, this pushes the new log-LFQ density to
look similar to a normal distribution, but the density is ‘filled in‘ on the top side rather
than the bottom.

Comparison and inspection of results Visual inspection of the distributions can help
to ascertain that the missing values are imputed in sensible ranges when we know
what those are. However, it is a good additional step to also run principal component
analysis to determine if the replicate and condition structure is preserved. It is worth
noting that this step can serve as a way to compare the imputation methods. Yet, even
if the imputation method is chosen, it can still serve as a quality check. If the PCA
does not show any abnormalities, we proceed with analysis. If not, measures should
be taken to ensure quality is good and, for instance, if there is a problematic replicate,
it might be discarded.

The PCA plots for RAB7 with the two imputation methods are presented side-by-side
in figure 3.7. They indicate some separation of the conditions and time points which
is especially true for the lower tail imputation method (left subplot) and the RAB7 time
points6. Therefore, in this case there is no need for further investigation and the lower-
tail imputation method is preferred over the SVD-based one. The data obtained after
this imputation is taken for further analysis.

6It is worth pointing out that any separation between the two RAF1 conditions suggests some dis-
tinctive activity related to the choice of time points and respectively, cilia disassembly. As discussed
previously, RAF1 is normally assumed to not have any ciliary role, so no wide separation between the
two time points is expected but can be viewed as a line of further study (beyond the scope of this thesis).
This does not seem to be the case (the samples are mixed), but it is difficult to assess whether there is
a difference due to the low total explained variance by PC1 and PC2 and small number of replicates.
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(a) PCA plot for the data after imputation with the lower-tail imputation
method. The y-axis is inverted for easier visual comparison with (b).

(b) PCA plots for the final after imputation with the SVD-based method.
Figure 3.7: PCA plots of the data after imputation.
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3.4 Statistics: Analysis and results

As a first analysis step, the data is compared to a control to understand the significance
of the results. The control is chosen as mentioned previously. For any specific prey
from the dataset, higher LFQ intensities in the replicates of the target protein compared
to those for the control, would mean enrichment of that prey in binding with the target
and would be labelled as specific binding. To make this comparison robust, we do
statistical testing to understand significance.

While we do not know the distribution of the LFQ intensities, we assumed normality of
the log-LFQ values and imputedmissing values under this assumption. Hence, working
with log-LFQ values from now on, we can assume their distribution to be normal.

With this assumption, it is possible to apply the Student t-test to compare target and
control. In particular, we use the one-sided t-test with the following null and alternative
hypotheses:

H0: The mean log-LFQ of the target is no larger than the mean log-LFQ of the
control.

H1: The mean log-LFQ of the target is greater than the mean log-LFQ of the control.

This t-test is conducted for every gene in the sample separately. The goal is to discover
proteins which are over-represented among the preys of the target compared to the
control which would mean they are specific interactors for the gene tested.

The RAB7 dataset we use to demonstrate the procedure has two time points and we
apply the same testing separately for each one. On its own, each comparison shows
which genes are significantly enriched at the specific time point. The results are pre-
sented in figure 3.8.

A useful quality check at this stage is to look for RAB7. It should, if the experiments
were conducted properly, be enriched in its respective samples and imputed for the
rest. Optimally, RAB7 should only be among the results from the RAB7 pull-down,
meaning, its log-LFQ values for the bait RAF1 should be imputed and so, in the lower
range of the distribution. It may happen that RAF1 captures RAB7, but in this case, still
the log-LFQ intensity should be much lower than in the RAB7-baited experiments. That
is, in terms of the log-ratio between the intensities in the RAB7 pull-down vs the RAF1
one, it should have a high positive ratio. If that is not the case, it means that there may
be a strong connection between the two proteins which makes RAF1 inappropriate
general control. Notably, RAB7 has the highest log-ratio which provides confidence in
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the experimental design and results.

(a) Plot when the baits are RAB7 and RAF1 and the time point is 0 hours.

(b) Plot when the baits are RAB7 and RAF1 and the time point is 2 hours.
Figure 3.8: Plot of p-values log-ratio (base 2) of RAB7-to-RAF1 LFQ intensities
against the negative logarithm of the p-values resulting from t-test comparison as
described in section 3.4. Specifically, log-LFQ intensities from one bait are com-
pared to the other.

It is wrong, however, to leave the testing at the stage of raw p-values from the t-tests.
As the testing is done separately on many genes, a finalising step is to apply a multiple
testing correction. We have normally applied the Benjamini-Hochberg correction [8]
which keeps the false discovery rate (FDR) low. It admits some false positives, but is
more powerful than other methods. Given that the current aim in the affinity proteomics
experiments which we analyse is to capture as many significant observations as pos-
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sible, rather than finding only few very certain interactors, with this correction we am
sacrificing precision slightly in order to achieve much better recall.

However, in the case of the 3-replicate RAB7 experiment and 680 total tests for each
tested pair, the power of most individual tests is too small. The median power falls
below 20%. Summary representation of the power densities is shown in figure 3.9.

This is reflected in the p-values which are relatively high. Moreover, readjusting them
with a multiple-testing correction leaves only two significant observations in the RAF1
comparison at time point 0 (RAB7 and CLCN3). While this may not be an issue, we
designed the experiment to find a difference at the second time point, cilia disassembly.
We expect to have differences at that point between RAB7 and RAF1, but the only
significant distinctions are in the LFQ values of four proteins: RAB7, CLCN3, DNAJC13
and PSMA4 (p-values: 0.006, 0.036, 0.036, 0.097). All other proteins do not have so
large a difference in their log-LFQ values to overcome the power problem. Moreover,
none of these four candidates is significantly different in its concentrations between the
time points in the RAB7 experiments.

Figure 3.9: Densities for the power of the t-tests for the three different comparisons.
Dashed lines represent the medians.

Some researchers rely on additional data to help with cleaning the results before start-
ing any statistical analysis. Perhaps the most prominent such dataset is the CRAPome
[50]. It consists of proteins which are common contaminants and unspecific binders.
Excluding them in advance can reduce the number of tests performed and, thus, in-
crease the number of significant results based on the adjusted p-value. The approach
is controversial as, by constantly filtering them out, we will never find the CRAPome
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proteins even if they are true interactors sometimes. Another approach is increasing
the number of replicates performed but this can raise costs and may not be as sustain-
able on a large scale.

Finally, in other analyses, where there are significantly enriched proteins precipitating
with the target, but not the control, there can be an additional step comparing conditions
of the target. For example, there can be another time point or another experiment with
a mutated target protein. In those cases, the goal is to determine whether the mutation,
or new condition, brings about a significant change. For this purpose, we conduct a
second student t-test to compare the WT protein results to the mutated protein results.
It depends on the goal of the experiment, but normally the test we do is 2-sided in
this case, as we are interested in both proteins which stop being active and those who
appear in the complex from one condition to the next. The results from the tests should
again be corrected for multiple testing.

In the case with the RAB7 experiments, there are results at time point 0 hours and 2
hours and the ultimate goal of the experiment would be to find out which genes change
in their binding between the time points serving as mechanistic insight into the process
of ciliogenesis.

This last step can only be completed once we have done the comparisons with the
control as it is important to overlay the significant genes from both analyses. The
reason is, that only changes in genes which were significantly hypothesised to interact
with the target, i.e. significantly enriched in comparison to the control experiment, are
important. If we do not have initial or subsequent (at 2 hours) information on difference
with the control, any difference between the time points is irrelevant.

3.5 Limitations and discussion

As we have just seen, the power of the test is a major limitation to the usefulness of
the end results. This is affected by the decisions in all previous steps, starting from
the experimental design and accuracy. If the experiment is replicated more times, the
random fluctuations of the log-LFQ distribution of each individual prey and condition will
decrease. More accurate machine and better breaking down and ionisation of proteins
can also improve downstream analysis. The benefits are even two-fold: improved
accuracy of already detected quantities and reduction in the number of missing values.
Missing values are a great part of this chapter since the way to handle them influences
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the results significantly. Yet, it is clear that diminishing their numbers would be followed
by increased accuracy.

The way to handle missing values is still unclear. While we have observed more re-
alistic results using a left-tail imputation method, this is not suitable every time. Fur-
thermore, ‘realistic‘ is dependent on assumption we make about the overall distribution
of the log-LFQ intensities and the hypothesised reasons for their occurrence. In the
analysis we rely on the two assumptions that:

• all log-LFQ intensity values are normally distributed in aggregate;

• MVs occur for non-random (abundance) reasons and their true measurements
are concentrated along the lower-end of the distribution.

With regard to the specific testing, there is also the consideration that all imputed val-
ues will influence the means tested by the Student t-test. If imputed values are close
to the rest of the samples, this may obscure the mean difference in comparisons. An-
other approach is to assumemissing values to be completely unobserved observations
(substituting with zeros for the log-LFQ values). This can cause the difference between
the means to be more pronounced but it suffers from, for instance, the bias of skewing
observations and breaking the normality assumption for the t-test.

Other tests can be applied to compare the conditions. It is thought that the data is
normal, so t-test is more powerful than Wilcoxon test. However, if imputations lead
to non-normal distribution, the latter test can be more appropriate. Another idea is
to consider the mass-spectrometer in a similar way as a Geiger counter, detecting
particles or not with some probability. Then the LFQ values will represent a discrete
distribution and may be treated with a χ2-statistic. Perhaps other models based on
counting can be developed.

However, with most imputation methods the LFQ values do not form normal samples
and, thus, cannot be treated with that statistic since it assumes normal distribution of
each observation (row). The question of whether the lower-tail imputation that we pre-
sented in this chapter can complement a χ2 analysis in a non-biased way, and whether
using the statistic can be taken advantage of can be a point for further testing.

Finally, as we are doing the comparison statistics here, regardless of the specific test
used, a major problem with the technique is that there is no perfectly annotated protein.
Controls are chosen so that they do not have a known overlap with the function of the
target protein, which involves tremendous effort searching, but even if a control is not
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known to have anything in common with the target protein, more complicating functions
may be uncovered in the future.

For instance, RAF1 is often used as non-ciliary control [27, 34, 10], but recent research
speculates that it may have some ciliary involvement specifically for the process of
cilia disassembly. In particular, a study by Dong et al. published after our experiments
were conducted, reveal that the drug dabrafenib inhibits cilia disassembly. That drug
is specific inhibitor to BRAF, but has also been observed to work together with RAF1
in some settings7 [44]. This study creates some doubt around the assumption that
RAF1 is not related to the ciliary landscape and, in turn, poses the question whether
the control is appropriate or it would have obscured some true interactions.

In general, the method of target-to-control comparison relies on the highly limiting as-
sumption that the direct and indirect binding of the control is non-specific to the aims of
the experiment and to remove proteins with similar discovery levels in target and control
means removing background noise. In this way, any overlaps, even when they have
genuine relevance to the target, will not be detected as true and significant possible
interactors to the bait protein.

In the following chapter we discuss a different method which we designed in order to
avoid the need for controls, thus, reducing the problems and assumptions surrounding
that and analysing the data in a less biased way.

7Specifically, it was observed that for the activation of the MAPK pathway in regular RAF cell lines,
dabrafenib requires RAF1. This was observed to not be the case with mutated BRAF.
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4 WeSA

A main goal of my doctoral project has been to design, refine and test a statistic for
interrogating protein-protein interaction networks. Presenting the main theory and re-
sults addressing this goal is the focus of the current chapter.

The statistic we present and call WeSA is designed to not only respond to the challenge
that handling large datasets is, but also leverage the growing amount of information. In
attempts to uncover the complex relationships in the human interactome, researchers
develop experimental protocols which output huge datasets needing analysis. Instead
of requiring more resource expenditure to ensure control data, we design WeSA - a
score analysing the new data, based on all previously available information from other
studies.

In addition to being highly efficient, the score provides a less biased alternative to the
regular case-control experiments as discussed in the previous chapter (e.g. [10]). This
is due to the fact that the concept of a control experiment is substituted by large data
from a variety of proteins, thus, eliminating the bias of choice and significantly reducing
the bias of incomplete knowledge.

As we present the model function and testing, we will also elaborate on its advan-
tage over other scoring functions. In contrast to static databases like STRING [63],
WeSA allows for dynamic updating of information. Furthermore, heterogeneity be-
tween datasets and methods usually requires individual adaptations based on the
method, e.g. fitting of parameters or incorporating a measure of estimated accuracy
for each individual study [20]. In contrast, WeSA performs well in combining datasets
even without the presence of additional information about each dataset. With WeSA
one can add to the data which is already there and analyse their own interactions in
this context. In section 4.2.4, we discuss in detail the implementation of the WeSA
computation algorithm and an associated web tool.

In the results section of the chapter, we test the performance of WeSA against several
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hypotheses using multiple testing methods, datasets and mathematical models.

Figure 4.1: (a) An example arrangement of proteins which are captured by AP. Some
of them may exist in nature as a complex, others (prey E) are contaminants. The two
models (spoke and matrix) of recording results from AP experiments are shown in the
top and right panels. (b) Illustration of the steps for calculating WeSA scores. Proteins
are shown as nodes of a network and connections between them are drawn as edges.
The result of 8 imagined AP experiments are shown; the bright orange proteins are
the baits and their preys are connected only to the baits (spoke model). The bottom
panel shows the O:E terms with the observations from step 1, which are relevant for
calculating each one.

4.1 Datasets

Intact

We retrieved IntAct data on 22 April 2021. It contains 1,156,386 records of protein-
protein interactions about half of which are human. From human interactions, we also
make an effort to exclude direct pairwise studies of interactions such as yeast two-
hybrid and protein complementation assays. This is done, because there are many
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interactions which, while existing, are random (non-specific) with respect to function
[14] and they do not carry information for protein complexes as a whole. Since the
idea of the WeSA score described below is to separate interactions by their specificity,
random pairwise testing is not of much use.

The filtered IntAct data contains 291.6 thousand pairs of human protein-protein inter-
actions from affinity-purification-like experiments [52]. Since IntAct records are done
using a spoke model (figure 4.1a, centre), a matrix expansion (as in figure 4.1a, right)
resulted in more than 14 million pairs whose marginal data provided more context for
the SA score. We left splicing unchanged in this context but different splicing forms
can be considered as equivalent if needed.

We tested the scores against the complexes contained in CORUM. The proteins for
more than 96% of the CORUM complexes listed there were also covered in IntAct and,
therefore, included in the evaluation.

BioPlex

A critique of interactions recorded in IntAct is their bias towards overly stable or high-
affinity interactions [4]. AP methods used until recently, and which predominate in
IntAct, aimed to wash away artefacts and had a tendency to remove weaker interaction
partners. As mentioned in Chapter 3 proteins tend to have between 2 and not more
than 100 partners. This is indeed the case in Intact: there are 13 records of interactions
pulling down more than 500 proteins and only 5 with more than 1000 proteins in the
final precipitate.

Despite these few outliers, generally, the captured preys are fewer in number and stably
attached to the baits. That is why to understand transient relations, experiments are
changing towards less washing and larger prey spectra.

To our knowledge, the BioPlex Interactome [37] is the largest study on the human
interactome in which only a single tag (and thus a single washing stage) is used and
so, filtering is significantly reduced to allow the observation of weaker interactions. In
total BioPlex comprises 15,650 experiments and has identified 7,766,619 unique bait-
prey pairs. The average number of preys per experiment in BioPlex surpasses 620,
which is incomparable to the previously discussed IntAct data. These experiments can
lead to new insight into protein-protein networks, but require tools to filter the noise out.
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BioGRID

The third database we use throughout this section to load experimental interaction
data is the Biological General Repository for Interaction Datasets (BioGRID) [53]. We
retrieved the entire database on 13.12.2022.

Compared to the above databases, BioGRID is less filtered and consists of more data
than IntAct. There is no complete curation for the HomoSapiens data, so the landscape
still contains a lot of noise. On the other hand, BioGRID contains fewer interactions per
experiment than BioPlex; the interactions reported in BioGRID have been pre-filtered.

The full database records information across species and experiment types, but we
have filtered for relevance. As with previous experiments, we only focused on human
proteins. For the calculations of WeSA scores described in the section, we also filtered
out any targeted experiments so the data we take into account comes from some type
of bait-prey experiments.

BioGRID contains 667,413 relevant protein pairs 520,101 of which - unique. They
come from 30,200 separate publications, corresponding to an average of around 22
pairs per publication.

CORUM

We compared results from the analysis of the three databases to the data on complexes
recorded in the Comprehensive Resource of Mammalian Protein Complexes (CORUM)
database (retrieved: 28.09.2022) [59].

There are 3,538 human complexes in CORUM. Their sizes range from 2 to 129 (see
table 6.1 in the Appendix). The largest of those relate to the spliceosome and ribosome.
Specifically, 4 of the biggest 10 are complexes E, A, C and the smaller B complex which
are all part of the splicing cycle. Equally many among the top 10 are the records from
the ribosome including the ribosome complex alongside its 55S, 39S and 60S ribosome
subunits. The smallest complexes are simply pairs of interacting proteins annotated to
function together in a stable complex.

We considered only human proteins. Proteins from other organisms were also ex-
cluded even if they have a human ortholog. For example, the IFT-B complex is recorded
to contain the mouse gene Cluap1. In the particular instance, Cluap1 is dropped from
the complex, because our analysis focuses solely on human genes.
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CORUM is updated regularly and archive files such as our first retrieval in 2020 [31]
show that the database has increased significantly. From 2,171 in 2020, the number
of recorded complexes has increased by more than 60% while also big units such as
the spliceosome are broken down into smaller and more specific components. This
enrichment of information is expected to continue in the future giving us an even better
benchmark and protein complexes landscape.

These datasets are not entirely independent. In particular, data from BioGRID and
IntAct contributes (obviously) to how human complexes are determined and annotated
inside of CORUM. We did not attempt to correct for this, but it is important to bear
in mind when observing the performance of (in particular) BioGRID and IntAct in the
Results section below.

4.2 Methods

4.2.1 WeSA score

Inspired by the likelihood ratio statistic, we use a similar approach to modify the socio-
affinity metric [30], which will be referred to as weighted socio-affinity (WeSA,Wij) and
expressed as:

Wij = nij × Sij + nji × Sji + nM
ij ×Mij (4.1)

where nij is the observed number of retrievals of j, when i is the experiment bait, and
nM
ij is the scaled observed number of joint retrievals of i and j when both are captured

in the matrix of another bait.

The higher the WeSA score, the better is the likelihood that the interaction is real as
it is observed more times than expected. Conversely, low scores mean fewer than
expected occurrences and a possible lack of specificity.

The main terms Sij,Sji,Mij are the components of the SA score based on the observed-
to-expected ratio of interactions between protein pairs. They are shown in figure 4.1b.

Let Xij is the random variable modelling the number of times a protein i is bait and
a protein j is prey in the same experiment and let Xji model the analogous situation
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when the roles of i and j are reversed.1 The observed values for Xij and Xji from the
sample (the collected data of experiments) are known and we denote them by Oij and
Oji. Let Eij = E[Xij] and Eji = E[Xji]. With this notation, we define the first two terms
of equation 4.1, also labelled ‘spoke’ terms, as:

Sij = log Oij

Eij

Sji = log Oji

Eji

(4.2)

Let Yij model the number of times a protein i and a protein j were prey proteins in the
precipitate of the same bait. Thematrix termMij is calculated as the ratioMij = log OM

ij

EM
ij
,

where OM
ij is the observed value of Yij from the sample data and EM

ij = E[Yij].

The expectation in all three cases is calculated as would be expected from a directed
configuration model, where we fix the degrees of bait nodes to the average number of
preys they ‘caught’ across experiments in the sample data.

The configuration model is explained in more detail in the Appendix, but the idea is
sketched briefly here.

The configuration model is a common model for simulating random networks with a
specified degree distribution. The end result is an arbitrarily big collection of different
random networks with the same degree distribution as a specified input. This allows us
to approximate expectation (and other useful parameters if needed) using the sample
mean of the collection of configuration networks.

We use the sample network, to infer the degree distribution for the nodes with two
modifications. We keep each experiment (and each bait, respectively) as a separate
node and we distinguish between two categories, baits and preys, in order to keep
track of the terms of WeSA. Also, we simplify the model by standardising the degree of
baits which are the same. Instead of having the degree of each bait exactly the same
as in experiments, all baits which are the same protein have the same degree that is
equal to the average degree of the protein when it was bait.

Expected number and mathematical estimation of parameters In general, the ex-
pectation can be calculated based on the configuration graph. This is the only option

1In all modelling, the proteins i and j may have multiple copies and be observed together in various
different combinations.
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when multiple conditions restrict the model beyond its degree distribution. However,
this method is time-consuming and, in many cases, relies on excessive computational
power. In the case of protein-protein interaction networks, the randomisations can be
avoided by computing the closed-form of the expectation presented below.

For brevity, we present the case forXij, but all spoke terms are calculated analogously.
Let us define Z1, . . . , Znbait

to be the independent identically distributed (i.i.d.) random
variables (r.v.) modelling the number of times we see the bait i and the prey j together
in one experiment. Then,

Xij =

nbait∑
t=1

Zt

Let K be the discrete r.v. of choosing one bait from the sample space of all baits, Ω,
and let J be the r.v. modelling the number of times that j is prey in a randomly chosen
experiment. With this notation:

E[Zt] = E[J | K = i]P(K = i)

We can estimate P(K = i) using the frequency of i as bait in the sample data, f bait
i . The

probability of choosing a prey which is j can also be approximated from the sample as
the frequency of j among the preys in the sample, f prey

j . J depends on K for the total
number of connections it can form. If nprey

i is the average number of preys captured by
the bait i, then J | K = i ∼ Binomial(nprey

i , f prey
j ). Therefore, the closed form of the

expectation is:

Eij = E[
nbait∑
t=1

Zt] =

nbait∑
t=1

E[Zt] =

nbait∑
t=1

E[J | K = i]P(K = i)

=

nbait∑
t=1

(nprey
i f prey

j )f bait
i = nbaitn

prey
i f prey

j f bait
i (4.3)

This derivation does not exclude the possibility of capturing the same prey multiple
times in the same experiment. This is done to keep the total sum of all spoke expecta-
tions constant. Moreover, databases of experimental results do not normally report the
quantities of individual preys in an experiment and instead we only know if the prey is
present or not. This is likely to have an effect on the estimation of the average number
of preys per bait (i.e. the estimate nprey

i in our model may be lower than what it could
be if abundances from each experiment are used). In human PPI networks, all human
proteins can be preys, so the frequency f prey

j is normally very small compared to nprey
i ,
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which makes the occurrence of multiple links between i and j in the same experiment
unlikely. However, if there was a more precise database from which to infer our esti-
mates or the probabilities were bigger, instead of Eij defined above, we could use the
expected number of experiments in which i is seen as bait and j is seen as prey at
least once. This expectation has the form:

nbaitf
bait
i

(
1− (1− f prey

j )n
prey
i
)
= nbaitf

bait
i

(
f prey
j nprey

i −O
(
(f prey

j nprey
i )2

))
(4.4)

The use of the binomial expansion shows the condition for f prey
j nprey

i which decreases
the possibility of multiple edges forming between prey j and the bait i in a single experi-
ment. When f prey

j nprey
i is sufficiently small, the equations 4.4 and 4.3 are approximately

equal.

We define I (similarly to J) to be the r.v. for the number of times i is observed as prey
in a randomly chosen experiment. The number of edges between i and j in the matrix
for a single experiment in which there are I preys i and J preys j, is equal to IJ

2
. Let

k1, . . . , knbait
be the nbait baits in the sample experiment data, then:

EM
ij = E

[k=knbait∑
k=k1

(
IJ

2
| K = k

)]
=

1

2

k=knbait∑
k=k1

E[IJ | K = k] (4.5)

Conditional on K = k, we can model the distribution of the preys in an experiment as
Multinomial(nprey

k , p), where p is the vector of probabilities for the occurrence of each
prey protein. The expectation and covariance from the multinomial distribution are:

E[I | K = k] = nprey
k f prey

i

E[J | K = k] = nprey
k f prey

j

cov(I, J | K = k) = −nprey
k f prey

i f prey
j

By definition,

cov(I, J) = E[IJ ]− E[I]E[J ]

⇒ E[IJ | K = k] = cov(I, J | K = k) + E[I | K = k]E[J | K = k]

= −nprey
k f prey

i f prey
j + (nprey

k f prey
i )(nprey

k f prey
j )

= nprey
k (nprey

k − 1)f prey
i f prey

j
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Finally, equation 4.5 becomes:

EM
ij = f prey

i f prey
j

k=knbait∑
k=k1

(
nprey
k

2

)
(4.6)

Weights in the WeSA formula based on the observed counts in the data make the
final WeSA sum less prone to errors with the increase of observation numbers. That
is expected since the number of times a co-occurrence is seen relates to higher confi-
dence in the results being true.

Special attention here needs to be paid to the experiment precipitate containing too
many proteins which can cause thematrix term to overshadow spoke terms contribution
to WeSA. To counteract this effect scaling is done on the matrix term to bring it to the
scale of the distribution of nij. If the matrix term is denoted as nM

ij , nM
ij is obtained

from the raw matrix count, OM
ij , of co-occurrences of the ij-pair, by scaling using the

estimator, µ(nij), of the mean number of observations in the spoke terms and µ(OM
ij ),

the mean number of observations in the matrix:

nM
ij = OM

ij × µ(nij)

µ(OM
ij )

The estimators for those averages are obtained from the sample means.

Experimental confidence extension. The score allows for the incorporation of addi-
tional information about the confidence in each experimental result. What is meant
here is to use the knowledge of each researcher performing the experiments to assign
a probability to the outcome of each experiment being indeed true and then use that
probability instead of the binary classification of pairs as observed or not observed.

IntAct has records of these probabilities labelled ‘experimental confidence’ and they
can be retrieved together with the data. They are not given for all experiments and
the distribution is left-truncated around 0.3 while also not exhibiting normality around
the truncation limit. This makes the records unfavourable to work with and we will only
briefly touch on the possibility of using experimental confidence.

It is important to note that the derivation of WeSA terms remains similar even when
using the experimental confidence. The only change is in the probability P(jp | ib),
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which, considering the confidence weights (c), becomes:

P(jp | ib) =
∑

cj=prey∑
c

This same note applies to the calculation of the matrix term in 4.6, where both f prey
i

and f prey
j change.

4.2.2 ROC analysis

After the calculation of WeSA scores, we can compare them to CORUM complexes.
This is done using receiver operating characteristic (ROC) analysis. The main tool in
this analysis used below is the ROC curve which plots the true positive rate (TPR)
against the false positive rate (FPR).

Its characteristic area under the curve (AUC) is the standard measure of the quality of
the model. A ROC curve above the diagonal (1,1) vector corresponds to a better-than-
random model performance. Respectively, AUC ≥ 0.5 is associated with predictions
(or a model) better than random.

The ROC curve is a suitable testing metric and can be applied beyond this chapter of
the thesis.

Threshold defined from ROC analysis. On several occasions in this work, after plot-
ting the ROC curves, we also look at the optimal threshold. This is defined as the cutoff
of the ‘best balance’ between TPR and FPR.

There are multiple popular ways to calculate this threshold [68]. We have imple-
mented three of the most popular ones, namely, the Youden index [73], the concor-
dance method [47] and the closest-to-(0,1) method [54]. In our implementations they
are all close to overlapping with each other, so for simplicity in this written work we
have only presented the closest-to-(0,1)-defined threshold.

This threshold is defined from the point on the ROC curve which is closest to the top
left edge of the graph, i.e. the point with coordinates (0,1). That is, the threshold is
defined as the value minimising the distance:√

(1− TPR)2 + FPR2
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Precision-Recall curve. The Precision-Recall (PR) curve plots precision against the
recall. In the analysis of protein-protein interactions, there is no good benchmark, es-
pecially for negatives. As our test set of positives is based on CORUM complexes, we
assume as negatives all other interactions. This is imprecise and probably a lot of the
‘negatives’ are real interactions which have not been discovered or are not part of a
complex. For this reason, the PR curve would present a much lower estimate of the
precision curve and is not regarded as highly informative.

4.2.3 Statistical testing: Mann-Whitney U test

In further analysis, data is grouped according to various criteria. In this chapter, there
are multiple instances of testing across categories, but such testing is also required in
subsequent chapters. As an example, in figure 4.10 of the chapter, WeSA scores for
interactions confirmed in pairwise experiments (category 1) are compared to overall
scores (category 2). To compare the continuous distributions in these two categories,
we used Mann-Whitney U (MWU) test, also called the Wilcoxon rank-sum test.

This test is used to compare whether two distributions differ significantly by comparing
their means. In the example mentioned above, it is applied to binned-distributions
of the pairwise-confirmed set of interactions and the full set as the two distributions.
An important characteristic is that the power of the test decreases with decreasing
the sample size. For samples with fewer than 8 elements, it is impossible to achieve
p < 0.052.

In comparison to other possible statistical tests for the purpose, below we briefly men-
tion the t-test, chi-squared test, Binomial test and Fisher exact test. While every context
is unique, we have found that in this MWU is applicable to the situations in this chapter.

• t-test: MWU is superior to t-test when the distribution is not normal. This is ex-
pected to be the case for most groups, as they can rely on thresholds and trun-
cation. For instance, confirmed interactions are supposed to have WeSA scores
from the higher end of the WeSA distribution (not normal).

• χ2, Binomial and Fisher exact tests: These tests are applied to discrete variables
and their counts across categories (in contrast to tests on continuous random
variables). They test independence of categories.

2https://www.graphpad.com/guides/prism/latest/statistics/how_the_mann-whitney_test_works.
htm
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4.2.4 Technical methods

Everything in this chapter is built in Python 3.8 (Jupyter Notebook). A full list of used
libraries for the calculation of WeSA scores is given in the Appendix.

The main WeSA calculation algorithm: running time, complexity, data types and
storage

Due to its centrality to this thesis, I explain here the main algorithm used to calculate
WeSA scores.

The full pseudocode of the simplest version of the algorithm is presented with all de-
pendent functions in Algorithm 1 below. The three functions on which the algorithm
depends are presented immediately after the main function in algorithms 2, 3, 4.

Algorithm 1: Calculating WeSA scores

Data: data
/* data has at least columns [bait, prey, identifier] */
Result: A dataframe A containing SA and WeSA scores

1 Begin
/* Computing spoke terms in dataframe s: */

2 s, result = compute_spoke(data)
3 Remove rows from s where bait is the same as prey

/* Calculating n_prey = number of preys observed with a particular bait (excluding
itself): */

4 n_id_prey = DataFrame with columns [bait, prey, n_id_prey] where n_id_prey
equals the sum of n_i_prey grouped by [bait, identifier] from result

5 n_prey = DataFrame with columns [bait, term0] from n_id_prey, where term0 =
preys * (preys-1)/2

6 n_prey = DataFrame with columns [bait, term] from n_prey, where term is sum of
term0 grouped by bait

7 total_sum = sum of term column from n_prey
8 total_purifications = number of all unique [bait, identifier] pairs extracted from data

After calculating the dataframe with the spoke information, the algorithm goes through
preparation for calculating matrix components for the same protein pairs as in s.

Thenwe calculated consecutively the observedmatrix numbers O_matrix (rows 13-14),
f_j_prey (line 15) and intermittent combination of matrix terms (lines 16-19) to enable
calculations of more terms contributing to the matrix (lines 20-23) before ultimately
concluding with the computation of the full matrix terms contributing to SA (line 24) and
WeSA (line 25).
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/* Initialising prerequisites to combine all matrix terms: */
9 m = from s keep columns [bait, prey] but rename as [prey_x, prey_y]
10 data1 = dataframe of all unique [prey, identifier] pairs from data
11 dict_prey_ids = create_dict_prey_ids(data1)
12 matrix_counts = create_matr_list(s, dict_prey_ids)

/* O_matrix = number of times that i and j are seen together in matrix: */
13 m[interactors] = join rowwise [prey_x, prey_y] from m
14 m[O_matrix] = Map interactors from m to counts from matrix_counts
15 f_j_prey = DataFrame with columns [prey, f_j_prey] from s (with a unique prey per

row)

/* Combining matrix data: */
16 m = Merge(m, f_j_prey) on prey_x based on existence in m
17 m = Merge(m, f_j_prey) on prey_y based on existence in m
18 m =Merge(m, n_prey) on prey_x based on existence in m AND rename the column

term as term_x
19 m =Merge(m, n_prey) on prey_y based on existence in m AND rename the column

term as term_y

/* Computing binomial term in the expectation expression: */
20 m[binomial] = total_sum - (term_x + term_y) rowwise from m

/* Compute matrix expectation: */
21 E_matrix = Multiply(f_x_prey, f_y_prey, binomial) rowwise from m

/* Compute matrix scaling weight: */
22 E_Om = average of the counts in matrix_list
23 E_Os = average of O_spoke from s
24 m_weight = E_Os/E_Om

/* Compute SA and WeSA terms for the matrix: */
24 m_ij = log(O_matrix/E_matrix) rowwise from m AND Replace NAs with 0
25 m[Lambda_m] = m_weight * m[O_matrix] * m[m_ij]

At line 25 both spoke and matrix terms have been individually combined. Therefore,
the last few lines merge everything to output the final SA and WeSA scores for each
protein pair.
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/* Combine all terms (spoke and matrix): */
26 s[interactors] = join rowwise [bait, prey] from s
27 A = Merge(s, s) based on shared interactors in forward and reversed order
28 A = Merge(A, m) on interactors AND drop rows with duplicated interactors
29 A[SA] = s_ij + s_ji + m_ij rowwise from A
30 A[WeSA] = Lambda_ij + Lambda_ji + Lambda_m rowwise from A
31 return A

The algorithm consists of two main parts:

1. calculating the components of the spoke term given as:

S(ij) = Ospoke log
Ospoke

Espoke

where
Espoke = f bait

i nbaitf
prey
j nprey

i

This is done through the supplementary function compute_spoke.

2. calculating the matrix term contributors. The matrix term is given by the formula:

M(ij) = wmatrixOmatrix log
Omatrix

Ematrix

wherewmatrix is the scaling weight,Omatrix is the observed co-occurrence number
and Ematrix is given by the formula:

Ematrix = f prey
i f prey

j

∑
k ̸=i,j

(
nprey
k

2

)

The names of variables in the scripts shown are kept as close to the notation in these
equations as possible.

Algorithm complexity The average complexity of the full function isO(n2), where n is
the number of protein pairs in the input data. This is due to the two supplementary func-
tions, algorithms 3- 4, for creating the dictionaries used to compute the matrix terms.
Working with Python dictionaries is preferred to the initial dataframe implementation,
since retrieval from a dictionary is constant, while querying a dataframe normally has
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Algorithm 2: Function compute_spoke

Data: data
Result: Two dataframes with results of spoke term calculations.

1 Begin
/* f_i_bait = fraction of purifications where protein i was bait and n_bait = total

purifications */
2 bait_identifier = DataFrame with all unique [identifier, bait] pairs extracted from data
3 total_purifications = number of rows of bait_identifier
4 n_i_bait = DataFrame with columns [bait, count (of the bait)] extracted from

bait_identifier
5 f_i_bait = DataFrame with columns [bait, f_i_bait (frequency of the bait)] extracted

from n_i_bait

/* Compute n_i_prey = number of preys retrieved for each particular bait i */
6 purified_preys = DataFrame with columns [bait, identifier, n_i_prey (corresponding

number of preys)] extracted from data
7 result = Merge (bait_identifier, purified_preys) on columns [identifier, bait]
8 n_i_prey = from result sum n_i_prey grouped by bait to DataFrame with columns

[bait, n_i_prey]
9 n_i_prey = Merge (n_i_prey, n_i_bait) on column bait
10 n_i_prey[n_i_prey] = n_i_prey/count

/* Compute f_j_prey = fraction of all retrieved preys that were protein j */
11 f_j_prey = DataFrame with columns [prey, count (of the prey)] extracted from data
12 f_j_prey[f_j_prey] = frequency from f_j_prey (calculated count/sum(counts))

/* Compute ni,j = number of times that i retrieves j when i is tagged */
13 sa = DataFrame with columns [bait, prey, O_spoke (observed number of the pair)]

extracted from data grouped by [bait, prey]

linear complexity.

The quadratic complexity is reduced further after the first computation by the separation
of the culprit algorithms 3- 4 and storing their results on the non-volatile memory. This
is added to algorithm 1 as a simple if statement encompassing lines 11-12 and running
them only if the respective dictionaries have not been calculated yet. Instead, if they
have been saved already, they are simply loaded back. This detail can be found in the
unmodified Python script for the function in the Appendix.
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/* Summary: putting it all together for the spoke terms. */
14 s = Merge(sa, f_j_prey) on prey, how = left
15 s = Merge(s, n_i_prey) on bait, how = left
16 s = Merge(s, f_i_bait) on bait, how = left
17 s[E_spoke] = Multiply rowwise [f_i_bait, f_j_prey, n_i_prey, total_purifications]
18 s[s_ij] = log(O_spoke/E_spoke) rowwise from s
19 s[Lambda_ij] = O_spoke * s_ij rowwise from s
20 return s, result

Algorithm 3: Function create_dict_prey_ids

Data: data
/* data has at least columns [bait, prey] to get the matrix terms from */
Result: A dictionary dict_prey_ids to keep the preys (keys) and their identifiers (values

as lists).
1 Begin

/* A function which creates a dictionary of prey proteins ad their identifiers. */
2 INITIALISE dict_prey_ids

for prey in the unique preys do
3 dict_prey_ids[prey] = [list of all identifiers for that prey]
4 end
5 return dict_prey_ids /* The number of keys in the dictionary is equal to the number

of unique preys (i.e. at most equal to data size) */

Algorithm 4: Function create_matr_list

Data: data; dict_prey_ids
Result: A dictionary matrix_list to keep the pairs of proteins (keys) and their co-

occurrence counts in the matrix (values).
1 Begin

/* A function which creates a dictionary of prey proteins and their identifiers. */
2 INITIALISE matrix_list

for i going over the indices of data do
3 if bait[i] from data is in dict_prey_ids then
4 matr_list[ ‘bait[i] ; prey[i]’ ] = LENGTH of overlap between identifiers from

dict_prey_ids corresponding to bait[i] and prey[i] from data
5 end
6 end
7 returnmatr_list /* For pairs with spoke term (not only matrix), size of this dictionary

is at most equal to the size of data. */

With the saving of the two matrix dictionaries, the complexity reduces to the complexity
of the next bottlenecks, which are the merging operations on dataframes. There are
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several of those both in the calculation of spoke (alg. 2) and matrix components (alg.
1, lines 16-19 and 27-28). They all have average run time as O(n logn). However, it
should be noted that to achieve this for the matrix term calculations, we have restricted
them to only pairs for which at least one protein was tested as a bait, too.

Updating the data. New information (experiments) can be added to the data easily
without re-calculating the matrix dictionaries for the full data. Instead, the dictionaries
from algorithms 3, 4 are created only for the new data and then summed by key with
the ones for the old data. This would not increase the O(n logn) complexity if the size
of the newly added data is smaller than

√
n logn.

The opportunity to update the matrix dictionaries in two steps by creating a new smaller
dictionary and combining it with the old records is foundational for the build-up of the
webtool presented next.

Webtool – tools for building options and interface

The webtool3 was built with the Python flask package, which integrates back-end op-
erations in Python with front-end interface creation with CSS and HTML.

The webtool gives the opportunity to experimental researchers to combine their data
with the results reported in popular databases. It has two functionalities:

• users can submit own results. The tool will take in the new experimental results,
add them to existing data in a selected interaction database and calculate the
WeSA scores based on the joint data;

• users can query the existing database by submitting a protein or a list of a few
proteins and the tool will return a WeSA-ranked list of their previously identified
interactions.

Submission and options Figure 4.3 presents the portion of the homepage related to
making queries. When submitting their query, users can paste their data in a submis-
sion box (fig. 4.3, option 1) or present a file (option 2). The input should be space-
separated. Depending on whether there are 1, 2 or 3 columns in the submission, the

3wesa.russelllab.org
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Figure 4.2: Homepage of WeSA webtool.

program continues by calculating the WeSA scores for the new submissions or by re-
turning pre-calculated records.

With the submission, users can choose which repository to use for calculations or
querying (option 3). For calculations of updated scores based on user-submitted re-
sults, the data from the database they choose will be used as background to enrich
the submission and calculate scores based on the combined information. For query-
ing already discovered protein interactions, the results will be displayed only from the
dataset chosen. The options are all used databases in our analysis (IntAct, BioGRID,
BioPlex) and their various combinations.
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Finally, there is an option for users to see different examples (option 4) instead of sub-
mitting their query (options 1,2). This can help them understand the submission format
through examples as well as to form some expectations about the results.

Figure 4.3: Submission interface and options. Options and buttons which are men-
tioned in the text are numbered.

When users are ready, they can submit their query and they will be redirected to the
output page, where their results are displayed in the form of a table (figure 4.4). The
output presents the pairs of proteins together with their calculatedWeSA and SA scores
and the raw observation numbers from thewhole data, separately for each spokemodel
and the matrix.

The table can be sorted by any chosen column, so users can focus on the top of the
list, proteins with the highest scores. Results are also searchable by writing a (partial)
string in the search box. Finally, the results can be printed or exported in a couple
of different formats including saved as .csv, .pdf or Excel files, or directly copied and
pasted in another file.

Query type 1: Submission of new data for scoring. Submissions of this type have
two or three space-separated columns of the form:

bait prey experiment-identifier

The experiment identifier is optional in the case when the results from a single experi-
ment are submitted.

As explained previously, the algorithm then computes some matrix information for this
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Figure 4.4: Results page of the webtool.

data before merging it with the chosen background database and completing theWeSA
calculations. The returned output contains scores based on the selected dataset up-
dated with the new information. It is helpful to re-rank results from big and noisy ex-
periments and focus on validating the most likely interacting pairs.

Query type 2: Retrieving all known information about a protein or a protein list.
This type of submissions has only one column listing all proteins for which information
is desired. The algorithm then searches through the selected pre-recorded dataset
which was selected and outputs only pairs in which the queried proteins are present.
This is useful if a researcher wants to obtain an unbiased overview of the data which
is already published with scores helping them to rank the most likely interactors and
focus on them.

4.3 Results

4.3.1 Performance (algorithmic advance), comparisons and
predictions

WeSA retrieves many known complexes

As no best way for assessing performance is known, we looked at our results from
multiple perspectives. First, since one of the main contributions of WeSA should be its
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Figure 4.5: (a) ROC curves for WeSA with CORUM control on all datasets – BioGRID,
Intact, BioPlex, all combined. Only protein pairs observed at least three times are pre-
sented. (b) Table and bar chart showing the exact number of observed protein pairs
across datasets. (c) ROC curves comparing full IntAct data with the single largest
study recorded in IntAct (PMID:28514442). (d) Diagrams showing protein coverage of
CORUM and complex coverage overlap between complexes from CORUM and those
established using WeSA (as percentages). Complexes are counted as partially cov-
ered if at least 50% of the components were identified together.
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Figure 4.6: Examples of complexes which are retrieved after thresholding the IntAct-
scored network.

ability to find complexes, we performed ROC analysis to assess how well it captures
complex pairs (figure 4.5a). For the scoring we considered only protein pairs which
were observed at least three times (figure 4.5b). We used the CORUM database and
expanded complexes as complete graphs. Interactions between pairs of proteins within
the same complex are considered true, while the rest are considered false. Since the
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current CORUM release contains 1,578 complexes and ignores inter-complex links
and spontaneous interactions, this control set will miss many possibly true interactions.
Thus, it cannot be used as a benchmark for accuracy, but can still be useful, especially
in quantifying TPR.

It is expected that CORUM-complex retrieval is best with homogeneous data, such as
the BioPlex database. However, we did not have enough data to assess this since in
BioPlex baits are not often repeated and we ignore scores of pairs which were only
observed once or twice. BioGRID and IntAct, however, show similarly good results
while also containing more ‘eligible’ pairs (seen at least 3 times).

Interestingly, the ROC curve for WeSA scores of the combined IntAct and BioGRID
data has higher AUC than the individual components, which suggests that the method
works despite noise coming from experiment variability. Another confirmation of that
claim is the presented figure 4.5c, which contrasts the results from a single study to the
results from all data in IntAct. While the difference is small, the ROC analysis again
favours the non-homogeneous but richer dataset.

These results are also associated with a high CORUM protein coverage (figure 4.5d).
The proteins from each dataset which are also recorded in some complex on CORUM
are normally more than two thirds, except for IntAct, which has 57% coverage.

This high coverage 4.5d justifies and reinforces the results given by the ROC curves
(figure 4.5a). The former shows that most complex overlaps are at least partially cov-
ered. Specifically, the combined data from all three datasets have just above 90%
overlap with CORUM proteins and in addition, out of the 1,222 WeSA defined com-
plexes, more than 90% overlap with already confirmed CORUM data at least partially;
more than half of those are retrieved in full. There are some complexes which are
unexpected and rarely (just 7 cases) have both proteins unidentified in any complex.

Some examples of complexes defined by WeSA scoring, clustering and thresholding
are presented in figure 4.6. The examples focus on ciliary proteins and the components
they participate in. Nodes coloured in orange show a complex confirmed in CORUM,
while grey nodes are not yet identified in any CORUM complex. This presents an
opportunity for speculation and prediction which will be explored later.

65



Chapter 4. WeSA

A single experiment can be scored resulting in a ranked list of potential
interactions

For inherently noisy experiments such as frameworks similar to the BioPlex study [37]
or single-wash method like FLAG-tag affinity purification [10], a control is normally used
to clean contaminants and unspecific binding. However, in addition to doubling the
work, a good control protein can be hard to identify, especially given our incomplete
knowledge of protein function.

Given the finding from the previous section, that combining different experiments to-
gether improves scores, then WeSA can provide an efficient alternative to the afore-
mentioned control-reliant method. The benefits are two-fold. First, if a researcher does
multiple replicate experiments with the same bait, they already have a lot of evidence
which should add to what is already there and, in some novel cases, should be properly
handled in an unbiased way. The second advantage is provided by the fact that if one
experiment contains a lot of noise due to its design and aims, there is no good way
to filter that noise out with a single control, but that noise may be neutralised from the
joint information of all previous data.

Since it does not rely on any additional experiments, provided there exists a large
enough and suitable dataset to combine with, a single experiment can be scored based
solely on the raw experimental data that is already out there. To provide further evi-
dence to this statement, we test the performance of WeSA on the full dataset and com-
pare that to the single largest study recorded in IntAct (figure 4.5c). While one might
expect that scores from the latter are better, given the homogeneity of the method for it,
they are very similar to the full dataset even outperforming the single study. Thus, the
ROC curves suggest that the availability of data, rather than its homogeneity improve
predictions more. The WeSA score seems to improve robustness, so data from mul-
tiple studies can be combined effectively. This result opens up the possibility to add
a single experiment to the already existing data and scoring it in this context, which
should give experimental researchers a better tool to filter out noise from their obser-
vations.

WeSA retrieves more within-complex interactions than previous socio-affinity-like
methods or experimental methods alone

We start by comparing our results to current experimental confidence metrics to show
that WeSAmanages to re-arrange the list of interactions and enrich the top (highWeSA
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scores) in true positives better. For this comparison we used confidence scores as
recorded in IntAct (figure 4.7 and 4.8, top left panels).

We also confirm previous hypothesis [30, 12, 45] that integrating spoke and matrix
information improves filtering predictions. The results can be found in the appendix, in
figure 6.1. Despite this conclusion and while establishing that data on co-occurrence
in the matrix is beneficial, even without that scores can be calculated.

One of the aims of WeSA is to provide a fast way to analyse data from one or more
experiments based on all other data which is available. By using this information, fur-
ther analysis can be focused to a narrower list of top-scoring protein pairs. The ratio
observed-to-expected applied to recent and past evidence, can reduce the need for
controls or replicates, but data on replicates can be utilised well as every observation
adds further evidence to make WeSA scores more accurate.

This goal sets apart the method from other statistical techniques which are performed
on a single dataset (e.g. [22, 17]). Moreover, the idea of only using information from
the experimental precipitate avoids further biases arising from exponentially scaling
inaccuracy with the addition of further complexity (e.g. [18]). These methods which
rely on well curated details, can form a part of further analysis, while WeSA can save
time by shortening the list of potential interactions and overcoming biases such as
dependencies between the target and control or between the target and the CRAPome
[50].

≥ 3 observations
WeSA SA

Dataset AUC TPR FPR AUC TPR FPR
IntAct 0.842 0.762 0.226 0.825 0.777 0.231

BioGRID 0.87 0.826 0.195 0.812 0.764 0.269
BioPlex 0.89 0.782 0.11 0.834 0.735 0.235

IntAct + BioGRID 0.883 0.808 0.153 0.837 0.758 0.222
IntAct + BioPlex 0.762 0.74 0.347 0.793 0.717 0.285

BioGRID + BioPlex 0.81 0.725 0.246 0.729 0.614 0.296
All 0.8 0.716 0.25 0.729 0.622 0.301

Table 4.1: Statistics from the ROC analysis displayed in figure 4.7. For each dataset
the AUC is presented for analysis based on WeSA and SA scores. Alongside that are
displayed the TP and FP rates with the best threshold at each case.

For these reasons, in figure 4.7 and its adjacent table 4.1, as well as in figure 4.8, we
compare the performance of WeSA against the same-purpose method of socio-affinity
[30]. In 5 out of 7 cases, WeSA performed better than SA; in two cases, their perfor-

67



Chapter 4. WeSA

Figure 4.7: ROC curves of WeSA vs experimental confidence (top left); rest: WeSA vs
SA for different datasets. Minimum number of baited observations is set to 3.
Full statistics about the ROC parameters in this figure are presented in table 4.1.

mance is comparable. If we do not impose the at-least-3-observations rule, optimal
TPR and FPR for WeSA are much better in all cases (figure 4.8). However, accuracy
in those cases is very poor.

Validation from pairwise experiments

As we have discussed earlier, there is no single benchmark for prediction performance,
so in the following sections, we verify WeSA scores by comparing them to other metrics
which can be expected to be related. As a start, in this part we look at validation from
pairwise studies. We show two perspectives: one for positives and one for hypothe-
sised negatives.

As a benchmark, we used the interactions discovered through pairwise experiments
deposited in IntAct. The total number of pairs in this set is 47,846.

For each dataset we consider two groups. In group one (blue in figure 4.9) are the
pairs of proteins which overlap with the benchmark set. In the second group (orange
in the figure) are all pairs. The distribution of WeSA scores in the two groups across
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Figure 4.8: ROC curves of WeSA vs experimental confidence (top left); rest: WeSA vs
SA for different datasets. Minimum number of baited is set to 1.

datasets is presented in the boxplots in figure 4.9. The mean unfiltered WeSA scores
are significantly higher for group one than for the total distribution averages. This is
quantified and confirmed by a MWU with results shown in the figure.

If we apply the best threshold to the WeSA scored pairs, we find just under 70% cov-
erage of the interactions confidently (experimental confidence > 0.8) observed in pair-
wise studies. We do not expect a complete match since pairwise studies sometimes
test unnaturally occurring protein connections, “losers” in competition for binding or
connections separated from the real world in some other way. However, there is still
positive verification of some links from pairwise studies. That can be a reason to be-
lieve that those pairs of proteins for which WeSA scores are high, but do not fall in a
CORUM complex can be the bridges between complexes.

3D structures

Another way to look at validation is by comparing prediction WeSA scores to actual
3-dimensional protein interaction structures. There are two ways to do this which are
discussed here: validation using data from the Protein Data Bank (PDB) [9] and pre-
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Figure 4.9: Scores from pairwise experiments vs total WeSA score distributions by sub-
set. Comparison by MWU test where **** denote very high significance (p ≤ 0.0001).

dicted interactions with AF-Multimer (AF-M) [26].

Structures of interacting proteins deposited in the Protein Data Bank (PDB) [9] provide
observation of the mechanism of interaction in great detail. Their precision allows for
validation for the WeSA filtering method. Examining the structures from the most re-
cent PDB update (retrieved: 24.10.2022) we have obtained the size of the interacting
surface (in number of residues) for 21,497 protein pairs. In addition, we have used the
full Negatome dataset [11] containing 6,532 protein pairs which are suggested not to
interact. We then compared coverage and looked at the WeSA scores for those pairs.

We define four groups of interactions based on the size of the interaction interface:
small, containing links between proteins with interface of 1 or 2 amino-acids; medium
of size between 3 and 20 residues and big (larger than 20 residues). In addition to
those, we defined a fourth category ‘none’ for proteins from the Negatome which do
not have an interacting interface.

The distribution of scores in these 4 groups and the comparison with overall scores is
presented in figure 4.10. It is clear, that the complexes are enriched in high scoring
pairs. Furthermore, testing the score distributions within the groups (with MWU test)
highlights the consistently higher WeSA scores across datasets for interactions with
larger interfaces. Specifically, in every dataset, groups of pairs with big interfaces have
very significantly higher scores compared to groups of pairs from the Negatome which
do not interact directly.
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Figure 4.10: Boxplots of WeSA scores in the four interface size categories (big > 20
interacting residues; 20 ≥ medium ≥ 3; small < 3; none = 0 residues). Plots are pre-
sented and tested separately for each dataset. Significance annotations based on
Mann-Whitney test. p-value annotation legend: ns: p > 0.05; *: 0.05 > p ≥ 0.01; **:
0.01 > p ≥ 0.001; ***: 0.001 > p ≥ 0.0001; ****: 0.0001 > p

In addition, the advance in predictive complexmodels brought the creation of AF [FR23]
followed by the AF-Mmodification [26]. On the basis of iterations over interacting neural
networks, these models predict the structure of individual proteins or their interactions,
respectively.

A case study of 3D structures involving ciliary proteins

Since AF-M is a prediction algorithm, it still requires experimental validation to verify
interactions. However, the high performance of the AF algorithm, as mentioned in
section 2, lends credibility to the method and can be used as another verification.

Here, we present a case study based on our collaboration with the Lorentzen lab
(Aarhus University) on the structural model of the IFT-B complex [55]. The paper vali-
dates the position of 15 proteins and their interactions within the IFT-B complex: IFT81,
IFT74, IFT46, IFT52, IFT88, TTC30A, IFT20, TRAF3IP1, CLUAP1, IFT80, IFT172,
IFT57, IFT22, HSPB1, IFT27. This complex also largely overlaps with our findings
from scoring and clustering in figure 4.6.

In more detail, first, let us look at the scores of the IFT-B proteins. A query in the
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webtool to retrieve all WeSA scored interactions from IntAct for the key interactors4

retrieves 281 pairs of proteins. This includes all observations including those with low
scores. The top 85 scoring pairs, however, all include proteins only from the IFT-B
complex. Moreover, out of the 34 direct interactions, 30 pairs are within those top-
scoring. Missing are only the direct interactions between CLUAP1 and IFT52, IFT20
and TRAF3IP1 as well as the pair IFT20-TRAF3IP1. To investigate what causes the
omissions, we look at the raw counts. After investigating those more closely, it looks as
if CLUAP1 has not been used very often as a bait (only 9 times in BioGRID) and is acting
unexpectedly as such (capturing seemingly random proteins). This may be expected
given its long α-helical structure which possibly creates problems for its independent
purification and stabilisation.

Apart from validating the scores of the full IFT-B complex, this work also highlighted the
predictive power of WeSA. While at the beginning of the collaboration, the structural
biologists in Aarhus were unaware of the direct interaction between IFT80 and IFT172,
the two proteins had the highest WeSA score among their respective interactors. This
was largely due to results from affinity purification experiments including observations
in the matrix which were not validated or completely lost in the format of the record-
ing databases. However, the high score is what prompted us to design a validating
experiment.

The workflow we followed, which can be applied in general for validation is: applying
AF as the first validation step and then validating experimentally. For the former, we ran
5 AF models out of which all confirmed a large interaction interface between the two
proteins. In the biochemical validation step, I worked together with Nevin Zacharia from
the Lorentzen group to perform a pull-down experiment of the two purified proteins. The
full details of the experiment are detailed in the reference paper.

As outlined here, the validation procedure using AF cannot be used on its own but
has to be combined with experimental validation. However, it is mentioned here as
a possibility given the high accuracy of AF and the otherwise low availability of real
experimental structural information.

4The query is for: IFT81, IFT74, IFT52, IFT88, TTC30A, IFT20, TRAF3IP1, CLUAP1, IFT172
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4.3.2 Biological relevance – network and examples

For illustration, we generated a network of WeSA results. The network resulting from
the combination of BioGRID and IntAct records is produced and edge weights corre-
sponding to the computed WeSA scores are assigned. An optimal threshold is applied
to clean low-scoring edges.

The network is clustered using MCL, which groups nodes according to their connec-
tions and WeSA scores. We analysed the combined IntAct and BioGRID data and for
it, the threshold corresponding to the ROC optimisation revealed 1,187 clusters, cov-
ering 76.3% of the proteins on CORUM. Some of the resulting clusters are presented
in figures 4.11-4.13.

It is worth mentioning that clustering allows us to group proteins which are more tightly
linked together even if they have high-scoring interactors outside the cluster. For ex-
ample, a chaperonin complex has a specific role in the folding of a few specific proteins.
This can be a cause for strongly scoring interactions with those few proteins. However,
the links within the complex are much stronger. Thus, the clustering algorithm would
likely be able to separate the chaperonin complex from the proteins it is helping despite
their possible high individual connections.

Above the optimal threshold, we see clear separation of some already known individual
complexes such as IFT-B, IFTA-TULP3, BBSome (with additional BBS10 and LZTFL1),
Multisynthetase complex (figure 4.11a-4.11d). As is the case with the BBSome com-
plex (figure 4.11c), there are some complexes which cluster with protein attachments
or other complexes. However, even if complexes have overlaps, they can still be jointly
identified and cleaned from additional contaminants or non-specific interactions. For
instance, after thresholding and clustering, the RNA polymerase II and III complexes
are separated from the other proteins which overcrowd the interaction network such
as UXT, ATF4 or the MED complex (figure 4.11e). All 15 Polymerase III and 12 Poly-
merase II (Pol II) proteins are retrieved (components identified by Ramsay et al. [57]
and Kershnar et al. [43]), even though they share 3 proteins. Moreover, both com-
plexes contain strong links to the shared POLR2H, POLR2L and POLR2K.

In addition, the network is cleaner: the number of edges between Pol II/III and other
proteins is halved (from 229 to 115) and the number of immediate neighbour nodes is
reduced from 52 to 17. Yet, the resulting network contains unannotated links, which
comprises a possibility for predictions. For instance, the Polymerase cluster includes
some proteins which are not recorded as parts of the complex in CORUM. Further

73



Chapter 4. WeSA

Figure 4.11: Network clusters after computing WeSA scores for the combined IntAct-
BioGRID data, filtering out low-scoring interactions and clustering. a. Cluster including
the IFTB complex. It does not contain any additional components. b. Cluster including
the IFTA complex. TULP3 is also present. c. Cluster including the BBSome complex.
There are the two additional proteins BBS10 and LZTFL1. d. Cluster including the
Multisynthetase complex. e. RNA polymerase II core complex (yellow) and RNA poly-
merase III complex (green). Shared proteins are coloured lime-green.
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Figure 4.12: f. Anaphase promoting complex (APC/C) complex (yellow); APC/C-
ANAPC16 complex; CDC20-MAD2 complex; Mitotic checkpoint complex; BUB1-BUB3
complex; MAD1L1-MAD2L1; CENPE, SGO2, MAD2L1BP, ZNF207. g. HEXIM1,
AFF4, DOT1L. h. Gamma-tubulin complex (brown) weakly connected through MARK4
to part of the Kinase maturation complex (orange).
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Figure 4.13: i. A 61-protein cluster containing CAPZalpha/beta (light purple), partial
WASH complex (purple), SPTAN1-SPTBN1 heterodimer (blue), the full Arp 2/3 com-
plex (green), mechanisms for ciliogenesis (yellow-orange) and its negative regulation
(red-orange). Thin red edges correspond to WeSA scores <41; dashed red lines in-
dicate scores between 41 and 49. Gray nodes correspond to nodes for which there
is no complex information. j-l. Components which are not annotated in CORUM but
can be potentially real, especially given the participating genes have been previously
annotated as ciliary [12]; only TSC2 and the blue nodes are not known ciliary genes,
but maybe they have a ciliary connection.

investigation into those proteins, however, provides evidence in support of the addi-
tional interactions: isoform 1 of POLR2M (also known as Gdown1) is recognised as
a Pol II protein enhancing Mediator regulation [35], while a tandem affinity purification
study confirms RPAP1 attachment to the complex [39], a protein which recruits RPAP2
[FR29].

Among the attachments to Pol III we observe also RRN3 and POLR1F, components of
the Polymerase I complex. Search for the other Pol I proteins in the network reveals
high WeSA scores within the complexes SL1/TIF-IB and eIF-3 and missing links to
the other subunits. Thus, WeSA manages to put the proteins in their respective 3
complexes.

While the optimal threshold gives a good indication of the protein complexes, varying
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this threshold can illuminate other details. Reducing it can show more transient in-
teractions, whereas increasing it will leave even more likely complexes. Figure 4.13i
shows how increasing the threshold can separate a big component into smaller pieces
and further remove possible contaminants. WeSA scores agree with the observation
that a weak WASH-CAPZalpha/beta complex [40] can form between the two smaller
complexes, but those subunits are separated if we look at WeSA scores bigger than
49.

There are still many unknown complexes and proteins whose role is unknown. We can
try to understand some of them through this clustered network. Figures 4.13j-l show a
few components which may form complexes. This is supported by the fact that most
proteins within the complexes were previously recorded as either ciliary gold-standard
or likely candidates [12].

4.4 Discussion

As observed in this section, socio-affinity methods are efficient as they take advantage
of all previously known information. Compared to the statistical method presented in
the previous chapter, this approach does not need controls which reduces significantly
the resources required. Compared to other metrics for protein-protein interaction iden-
tification, it is unbiased and does not require any further information about the interac-
tions, the study’s accuracy or its positioning relative to other studies.

Our tests show good performance in capturing true positives and pronounced differ-
ence between scores of unconfirmed and confirmed interactions through other meth-
ods such as pairwise experiments and observed interaction structures.

By adding the weights, WeSA improves greatly on SA. This is the case, especially
for observations of low-counts, which until now were only intuitively perceived as less
confident.

The method is still limited in accuracy and especially the small counts naturally con-
tribute to bigger variation. However, doing WeSA analysis as a first filtering step can
narrow down the space which needs to be explored and confirmed with bigger certainty.

We have also found that the metric is robust in adding more observations even if they
do not come from the same experimental techniques. This fact allows us to combine
datasets or update them with new data. The significance of it is for the work of re-
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searchers who can now make use of previous knowledge and analyse the results of
their experiments in the context of past experiments. The scoring is now accessible to
everyone to make use of in their analysis through our web tool.

The weights in the WeSA terms have been chosen as the raw counts. Due to that,
WeSA can be confused with the Pearson’s chi-squared statistic which would have a χ2

distribution and indeed, its robust form was used for inspiration of the method. Specifi-
cally, for a sample space Ω with events i, such that ∪i∈Ωi = Ω and i∩ j = ∅ for i, j ∈ Ω,
the Pearson statistic is given as:

P =
∑
i∈Ω

(Oi − Ei)
2

Ei

≈ 2
∑
i∈Ω

Oi log
Oi

Ei

The last approximation comes from the Taylor expansion of the log terms on the right
hand side together with the fact that

∑
i∈Ω

Oi =
∑
i∈Ω

Ei.

The difference between this statistic and WeSA is the matrix term, which does not
complete the sample space together with the spoke terms. Since WeSA terms do not
span a sample space, the equality

∑
i∈Ω

Oi =
∑
i∈Ω

Ei does not hold and the approximation

to a sum of squared normal variables is not possible. Yet, we have found that this
form is useful to work with our biological data showing superior performance to other
tested weights, precisely, comparisons to no-weight, logged-weight and square-rooted
weight.

Further directions We have previously explored how experimental confidence scores
perform against WeSA scores. These are only given in IntAct, but we can attempt
to create equivalent measures from other databases and experiments. For exam-
ple, mass spectrometry results may include intensities or LFQ values, quantifying the
amount of protein captured. They might provide some insight on frequency of inter-
actions. However, one should be mindful of the input as, for example, cell lysate has
widely different protein concentrations and it is expected that the results will accord-
ingly have different abundances. While seemingly impossible to put in an idealised
mathematical model, if initial concentrations are normalised, this can give rise to some
further exploration.

Experimental confidence scores for protein pairs can further be integrated into WeSA
by substituting binary experimental results with probabilities as mentioned in the meth-
ods in section 4.2.1. We briefly explore this here by making confidence-adjustments
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using the IntAct dataset and discuss ways of expansion to sets such as BioPlex where
confidence is not directly recorded. The procedure uses the input of the experimental
confidence to weigh protein pairs before inputting them in the WeSA computation. The
results are presented in figure 4.14.

Figure 4.14: In this figure ‘weighting’ refers to weighting the observation counts by the
experimental confidence. The panels present ROCs (left) and Precision-Recall curves
(right) resulting from scoring the IntAct data in three ways: 1) ordinary way as pre-
sented by equations 4.1 and 4.2 (without weighting based on experimental confidence
or pseudocounts as from equation 4.7); 2) WeSA scores incorporating experimental
confidence but no pseudocounts; 3) WeSA scores incorporating both experimental
confidence and pseudocounts c = 1.

In IntAct experimental confidence is part of the records, but its calculation depends on
the individual approaches. It may be that this heterogeneity of IntAct confidence data
caused confidence-weighted scores to perform worse than binary records in terms of
predicting CORUM complexes. Below, an improvement due to pseudocounts will be
discussed.

As a further extension, for datasets such as BioPlex, where experimental confidence
may be related to observation quantities, we may want to use that information. In Bio-
Plex raw data on peptide spectral measurements (PSMs) is reported and one may
attempt to approximate confidence by inferring probabilities from the PSMs. Specifi-
cally, this can be achieved by PSM normalisation followed by finding the corresponding
cumulative distribution.

While it looks like raw data with no confidence assignment is more successful in inte-
grating different data, there may be situations where such additional weighting can be
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useful, even if, for example, only to focus attention on same-method or same-tissue
experiments. Moreover, the PR curve with integrated experimental confidence infor-
mation shows better performance despite the worse ROC curve. If there is a reason to
believe that confidence scores should be taken into account, it is suggested to incor-
porate also pseudocounts (c) [23].

As observed in figure 4.14, a standard addition of pseudocounts of 1, improve the
experimental-confidence-weighted WeSA performance. The pseudocounts are inte-
grated in the WeSA formula via the modification:

Wij = nij × log Oij + c

Eij + c
+ nji × log Oji + c

Eji + c
+ nM

ij × log
OM

ij + c

EM
ij + c

(4.7)

Figure 4.15: Results
from ROC analysis
of WeSA with varying
pseudocounts c ∈ {0,
0.1, 0.2, 0.3, 0.4, 0.5,
1, 1.5, 2, 2.5}. WeSA
scores are weighted
by the experimental
confidence. Data are
taken from IntAct.

Pseudocounts reduce the effects of random noise and data
variation, so they have a positive effect in the integration of the
heterogeneous information, particularly when it is further en-
riched with different confidence measures. The pseudocounts
are particularly effective to decrease scores for rare observa-
tions of abundant proteins. We have tested several possible
pseudocount values close to the medians of the observed and
expected numbers (results are presented in figure 4.15 and in
the appendix figure 6.2). Note that c = 0 is equivalent to the or-
dinary WeSA formula without modifications. Both the Laplace’s
rule of c = 1 and the addition of c = 0.5 [FR32] fall within the
tested range and are observed to improve scores. With the
ROC analysis, there seems to only be negligible benefit to us-
ing a specific c, but this can be explored further.

The numbers in the input are not unbiased; specifically, In-
tAct confidence scores are, as mentioned previously, truncated
around 0.3 and, moreover, exhibit some bias around 0.4. This can be one reason for
a poorer performance of the weighting. It can also point to intrinsic incompatibility of
experiments with vastly different mean prey numbers and the fact that they should
not be over-analysed together. Instead, the simplest form of WeSA may be better at
managing and overcoming biases which arise with complexity.

Further, we propose using WeSA to identify changes in the interactome resulting from
mutations whenever such experiments are performed. Decreases in WeSA scores,
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especially below an optimal threshold, would point to a probable decrease in interaction
affinity or complete disruption. On the contrary, pairs whose score increases to surpass
the WeSA threshold, probably appear due to the mutation.

In figure 4.16 we present this idea through an example implemented on experimental
data on IFT140. The data is obtained from AP experiments conducted using the pro-
tocol in figure 3.1 in the Institute for Ophthalmic research, Tübingen University. As bait
were used both IFT140 WT and the variant T484M. Calculating the WeSA scores for
both WT and mutant resulted in either a complete disappearance or a sharp plunge
of the WeSA scores of several possibly interacting pairs. Intentionally the results are
presented in full before clustering, in order to highlight the contrast between identified
complex components and the rest of the network. WeSA scores for the rest of the
network remain relatively similar while the focus of change is within the identified IFT
complex lending credibility to this result and the potential of the method.

A challenge for such use is limited data related to interactions with mutated proteins.
Moreover, such information is collected in cells which normally are unchanged except
for the bait which is modified. That means that scores for an interaction containing a
variant would be calculated based on only the single spoke term and thus, could be
much less reliable than other better-informed scores containing also information from
the reversed spoke model and the matrix.

The similarity to two other known measures, risk ratio and odds ratio, makes it a pos-
sible future direction to explore such substitution of the log-term. The benefit of odds
ratios (OR) can be in deriving confidence intervals (CI) around the scores. While we

Figure 4.16: Network representing the compar-
ison between IFT140 WT and IFT140 T484M
variant. The edges are the links to the 30 top
WeSA-scoring interactors of IFT140 WT. No
clustering is applied. Red edges are completely
lost in the mutant and the yellow edges have
significantly decreased in their WeSA score for
the variant (and are unlikely to be present).
Nodes in olive-green are the core IFT-A com-
plex components and in light grey are the
three peripheral proteins in the same complex.
TTC26 is a component of the connected IFT-B
complex.
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have implemented CI calculation for WeSA based on an estimation of a confidence
interval for the expectation, the ones for the OR are based on an established mathe-
matical formulation and, thus, can be more informative.

Alternatively, the risk ratio (RR), also called relative risk, is already widely used in the
clinical settings for measuring disease risk. In that setting, it is found to be more ac-
curate than the OR when diseases are not rare [FR17]. In PPI networks, some links
are rare, but in other contexts where the numbers are higher, it can be a statistic worth
exploring.

Both the aforementioned measures are critiqued for losing information on baseline
risk5, which can be re-framed as the link to the original numbers. For example, RR,
which is a ratio of probabilities can increase by 300% but if the underlying baseline
probability is 0.001, the increase to 0.003 may not be very important. While in WeSA
the formula involves observation numbers and rare proteins are of no less importance
than the more abundant proteins, we still make sure to report the raw observation
numbers in each term category (the two spoke and the matrix term) separately.

With the recent breakthrough in protein interaction prediction and the development of
AF-M, there is a possibility of accelerating the characterisation of the full interactome.
While the application of AF on the full PPI landscape requires immense resource and,
though attempted [FR5], should still be guided by already known information on the
PPIs. We propose that, as seen in the section on 3D structures (within section 4.3.1),
WeSA can be applied as a first-level filter for noisy datasets and experiments. This can
reduce the needed resource by narrowing down the space for a second-level verifica-
tion by AF-M. Only after these two need a complex or interaction be tested in the lab
to ascertain it and add to a corpus of gold-standard interaction data.

Finally, WeSA can be appliedmore generally to probe other biological and non-biological
networks in which a lot of noisy data is present and in need of cleaning. In the next
chapter, we present some such applications.

5baseline risk - in a context of getting a disease, this is the risk in the unexposed (control) group; in
a proteomics context, this would be the probability of the target prey to interact with proteins other than
the target conditional on the total number of links of those alternative baits.
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5.1 Genome-wide association studies

With the advancement in technology and specifically, exome and genome sequencing,
researchers have been able to study the genetic code of individuals and attempt to link
it to personal features and diseases. The first such studies, the genome-wide scans
using positional cloning [56] assumed that every disease is connected to unique regions
in the DNA and aimed at finding them through sequencing of patients and their families.
The method worked for diseases such as cystic fibrosis which are characterised by
well-knownMendelian inheritance [76, 5], but the unique-loci assumption was disputed.
In particular, a meta-study by Altmüller et al. [5] on 101 scans for 31 complex diseases
such as Alzheimer’s disease and asthma is one of the first analyses of the accuracy and
universality of the method. It suggested that studies are combined to achieve better
coverage of the gene-disease associations.

Indeed, the field of gene-disease links discovery has grown to be able to accommodate
for more flexibility, including the discovery of variants of only moderate impact or multi-
ple combinations of variants which lead to similar and/or simultaneous effects. This is
what Genome-wide Association Studies (GWAS) do. Early studies started by looking
at a specific disease and making comparisons to a control group to identify single-
nucleotide polymorphisms (SNPs) associated with the specific disease [33]. With im-
proved resource availability, however, large projects which have the means to inves-
tigate thousands of exomes with a mix of traits have appeared (e.g. the UK Biobank
[6]).

5.1.1 Data

All GWAS results are recorded in the unifying database of the GWAS Catalog [62]
and are updated continuously. We retrieved the full data for this thesis on 27.01.2023.
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These consist of around 470 thousand associations between a trait and positions on
the genome out of which 264,088 are within regions linked to a gene. Only these
observations are considered further; the other approximately one third of the data which
is in intergenic regions is filtered out.

The data covers 17,661 unique traits ranging from diseases such as breast cancer
and inguinal hernia to features like BMI and height. In total, those link to 11,012 unique
human genes. Yet, the variants are many more, the unique variants are almost 140
thousand out of which over 15 thousand are observed at least 3 times and 54 variants
are repeatedly observed at least 100 times.

In terms of studies, at the moment of retrieval, there were 5,018 papers contributing
information on gene-trait associations from GWAS. The majority reported on a single
disease or trait and only about 6% observed links to more than 5 traits.

5.1.2 How to apply WeSA to GWAS

Gene-wide association studies are an example of networks with two types of nodes.
One type of nodes comprises human features and diseases which we will refer to,
jointly and for short, as traits. The other type of nodes consists of genes or variants
linked to those traits. The traits in these studies are usually the equivalent of baits in
proteomics, whereas variants (or genes) can be thought of as preys.

The obvious difference is that this graph is bipartite, since no variants relate directly to
each other as is also the case for traits. This eliminates one of the spoke terms in the
WeSA equation. There are also no matrix terms which can be calculated for variant-
disease associations. Thus, a score for the association between a trait T and a variant
V can be calculated as:

WeSA(T ↔ V ) = OT←V × log OT←V

ET←V

(5.1)

The expectation is computed mathematically as in Chapter 4.

There is a second perspective on this dataset which can score the indirect association
between nodes of the same type. This can be done through the matrix term both for
gene-gene association based on their shared traits and for trait-trait associations based
on shared genes. In this case a score between two traits T1 and T2 (analogously for
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gene-gene or variant-variant associations), is calculated as:

WeSA(T1 ↔ T2) =
OT1−T2∑

X,Y :traits

OX−Y
× log OT1−T2

ET1−T2

(5.2)

The dash [−] signifies, as before, an indirect contact, i.e. a shared neighbour. In this
application, scaling of the weight is not necessary as the score only consists of this
single term.

5.1.3 Results

There is no dataset which can give precise information of the true positives, but we can
test it by validating hypotheses, comparing the results to other research and looking at
case studies.

Media bias is down-scored

Figure 5.1: Histogram of the computed
WeSA scores.

One of the aims of WeSA is to reduce
non-specificity. In the case of GWAS, this
includes links between trending traits and
genes. Specifically, the top 5 traits with
the most GWAS links are: height, edu-
cational attainment, BMI, smoking initiation
and white blood cell count (full details in ta-
ble 6.3 in the Appendix).

After scoring the connections in the database, these popular traits are confirmed to
score lowest (figure 5.1). BMI is observed 152 times among the bottom 1,000 scores.
Notably, only BMI for infants had higher scores (linking to variant rs2767486 in the locus
of the leptin receptor gene LEPR), whereas no variant scores high for BMI in later years.
The other most common traits at the bottom of the scores table are ‘Total cholesterol
levels’ (106 occurrences), ‘Height’ (87), ‘Type 2 diabetes’ (83) and ‘Triglyceride levels’
(68).

At the other end, with the highest scores are normally diseases. Among the top 1,000
traits the most common words include ‘disease’, ‘syndrome’, ‘cancer’ and ‘tumor’ (fig-
ure 5.2a). Notably, those are not observed among the words from low-ranked traits
(figure 5.2b).
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(a) 20 most common words
among the traits involved in the
top scoring 1,000 trait-variant
links.

(b) 20 most common words
among the traits involved in the
bottom scoring 1,000 trait-variant
links.

(c) 15 most common words among all traits in
the GWAS database (with repetition for different
variants and studies they link to).

Figure 5.2: Most common words among traits in different categories of GWAS data.
Generated using: https://www.jasondavies.com/wordcloud/

Trait Gene Observed number WeSA score
Colorectal cancer SMAD7 23 22.55
Breast cancer FGFR2 21 17.59
Type 2 diabetes CDKAL1 36 -44.46
Type 2 diabetes FTO 22 -56.56
Type 2 diabetes TCF7L2 44 -57.87
Body mass index FTO 38 -83.1

Table 5.1: Scores of trait-gene links with more than 20 observations for the specific
pairing.

It is also confirmed that the most popular traits are commonly scoring low (figures 5.2b
and 5.2c). This is expected since popular traits such as body mass index (after in-
fancy), while much researched, may not have clear genetic origins. It is worth noting
that there is also more variety among the traits with highest scores. This serves as
another confirmation of the specificity of the genes linked to those traits. Finally, high
observation numbers are not correlated with the WeSA scores. Particularly, there are 6
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trait-gene links with more than 20 observations as shown in table 5.1. Out of those, four
score very negatively and two score positively, suggesting that absolute observation
count is not always indicative of significance.

There are confirmed variant-disease links among the top WeSA scorers

Figure 5.3: Boxplot showing the com-
puted WeSA scores of trait-gene rela-
tionships. The groups are separated
based on whether the trait-gene rela-
tionship has any overlap with UniProt
records.

In this section we briefly explore two direc-
tions for validation: summary statistics for
the whole ranked dataset and specific case
studies.

We calculated gene-trait scores based on
GWAS pairs and compared their pattern to
UniProt records of diseases. UniProt pro-
vides manually curated annotations about
genes’ involvement in disease. We used
data retrieved on 28.02.2023 where we
found 30.9% of the genes on GWAS have
annotations on UniProt (13,157 genes).
UniProt is continuously expanded, so the
coverage and amount of annotations per
gene may increase. Notably, however, we
compared gene-traits that are supported by
UniProt and those that are not and discov-
ered significantly higher WeSA scores among the former (MWU test, p < 10−25, figure
5.3). Since UniProt rarely contains non-disease trait information, and otherwise is often
focused on very widely studied diseases (cancer), there is an inherent bias in its infor-
mation which makes these results inconclusive, but encouraging enough to warrant
further investigation.

It is beyond the scope of this thesis to do a detailed investigation of all trait-variant links.
Moreover, for a completely non-biased analysis, more complicated procedures should
account for linkage disequilibrium1 relating SNPs. Therefore, the following is only the
start of such study to indicate the promise of the method.

In this second validation attempt, we look at additional evidence to confirm some of the

1Linkage disequilibrium (LD) refers to the non-random simultaneous variation in two alleles. A high
LD means correlation between them.
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top-scoring disease-variant links. We go over four case studies below. Full results for
those are listed in the Appendix,in tables 6.2-6.8.

The top ranked trait-variant association has supporting evidence from human and
mice studies. The connection between variant rs738409 and non-alcoholic fatty liver
disease has the highest WeSA score (Appendix, tables 6.4, 6.5). As a reminder, this
is calculated based on GWAS records, specifically, observation counts and computed
expectation numbers.

The specific rs738409 variant is mapped to an isoleucine to methionine change at po-
sition 148 of the gene PNPLA3 (PNPLA3/I148M). PNPLA3 is a catalyst for the process
of synthesising phosphatidic acid.

This top scorer is a well-studied variant outside GWAS studies. In human studies tar-
geting adults [FR53] and adolescents [FR44], patients with liver problems and, par-
ticularly non-alcoholic fatty liver disease, PNPLA3/I148M was studied. Both studies
find the I148M variant is significantly more common in target populations compared to
control groups.

Although GWAS records only human studies, the isoleucine at this protein position is
conserved in many other species (figure 5.4). Particularly, the correspondingMusmus-
culus protein is slightly shorter, but has 84% coverage and 67.65% sequence identity.

Figure 5.4: Results from multiple sequence alignment of the closest corresponding
genes of 17 species between positions 136 and 152 of the human PNPLA3 protein.
I148 is highlighted.

The mouse gene is interesting because of a study on mice confirming the association
of the PNPLA3 gene to non-alcoholic fatty liver disease and outlining the mechanism of
action [FR27]. In particular, Kumari et al. observe that murine with the I148M mutation
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experience phosphatidic acid synthesis from lysophosphatidic acid (LPA) at twice the
rate of the wild-type mice. This leads to lipid accumulation which is speculated to be
the cause of non-alcoholic fatty liver disease.

There is related evidence for variant rs1047891 to affect homoarginine levels. In
GWAS, variant rs1047891 which is positioned within the gene CPS1 (T1406N) has
been observed with 28 distinct traits. However, after applyingWeSA, the variant scores
high only in links with glycine-related levels and homoarginine levels (Appendix, table
6.6). Interestingly, an independent study on infants has previously confirmed correla-
tion of the variant with arginine levels [FR37]. In particular, homozygosity for the variant
in the studied population was observed to correlate with higher arginine concentrations,
which is linked to susceptibility to neonatal pulmonary hypertension. Since homoargi-
nine is the homolog of arginine, this observation can be interpreted as a confirmation
of the WeSA score.

The top scores for variant rs603424 are related in a study on swine. This variant is
a common (minor allele frequency = 0.37) guanine to adenine substitution in an intron
region mapped to the PKD2L1 gene. According to GWAS, it has associations to 16
different traits, but the top are levels of different fatty acids: myristoleate, palmitoleate,
5-dodecenoate and 1-palmitoleoyl-GPC (Appendix, table 6.7). In particular, the acids
corresponding to the former two bases have been observed to act together in a swine
study [FR48]. In this independent study, it was observed that the specific combination
of both myristoleic and palmitoleic acid could raise low-density lipoprotein levels in
growing swine.

The top 1% of all WeSA scores identify other confirmed relationships. In par-
ticular, looking at the links of colorectal cancer, four variants get scored in the top
1% (Appendix, tables 6.2, 6.8). These are rs6983267 (intergenic related to CASC8,
CCAT2), rs3802842 (intergenic between COLCA1 and COLCA2), rs4939827 (SMAD7)
and rs704017 (ZMIZ1-AS1 intron), all identified in multiple genome-wide association
studies. Three of the four are also confirmed by other case-control statistical analy-
ses to be significantly associated with colorectal cancer or tumours [FR42, FR7, FR41,
FR49, FR45]. Specifically, the top-scoring variant is associated with gene CCAT2,
which apart from human studies, has been researched by Chen et al. [FR7] in mouse
organoids and confirmed to promote carcinogenesis when overexpressed.
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One-mode projection network of the matrix term

Interesting in this case of the bipartite GWAS network becomes also the matrix term. It
is a measure for the indirect association between genes as detected via their common
neighbours. Specifically, we think that the higher a term is, the more often the two
genes co-occur in traits and thus there may be a link between them. On the other
hand, low matrix scores are probably enriched in proteins which do not link to each
other.

If we define genes which are linked to many of the same diseases as similar, we can
propose that diseases which are unique to each of two similar genes can potentially
be yet undiscovered but shared diseases, too. On the other hand, if there are some
diseases which are not shared for two extremely similar genes, it can be an interesting
case exploring what is the cause of distinction.

This is an adaptation of the ‘guilt by association’ idea where we assume that if items
are similar, they link to overlapping sets of features. The approach has already been
observed to work in a study about inflammatory bowel diseases (IBD) from Franke et al.
[28], which illuminates new loci associated to Crohn’s disease. The main idea is that
IBD consists of sub-phenotypes, particularly, ulcerative colitis and Crohn’s disease,
and they found new genes that were previously only associated with ulcerative colitis
but turn out to be Crohn’s disease genes as well.

If we assume that the matrix term of WeSA can provide a measure of similarity between
genes or variants (higher scores link to more of the same traits), then we can cluster
the projection network and try to suggest novel effects of those genes. In figure 5.5
and in the rest of this chapter, we present a few examples to illustrate the idea.

To get the gene-gene network, we calculated the matrix terms of the WeSA scores
as presented previously. Thus, scores of connections are based on shared diseases.
Clustering is then performed using MCL clustering on the weighted network.

We observe 459 clusters in total with sizes up to 695 genes, excluding the giant com-
ponent. However, the median cluster size is 3 and only 11 of the clusters are medium-
sized, meaning, they contain between 25 and 60 elements. We pick those sizes to look
for meaningful enrichment of GO terms and pathways through GetGo [12].

All 6 of the clusters shown in figure 5.5 are enriched in genes from specific biological
processes. 10 out of the 29 genes in figure 5.5a are found significantly in neuronal
components: postsynaptic density, dendritic spine, glutamatergic synapse, axon and
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(a) Synapses, CNS enrichment. Light or-
ange: calcium binding. 29 elements.

(b) Neuronal and cellular junction enrichment.
34 elements.

(c) Nitric oxide, vascular disorders enrich-
ment. 42 elements.

(d) Cell division and cell migration enrich-
ment. 35 elements.

(e) Cardiovascular enrichment from biological
processes in the gene ontology. 40 elements.
Light orange nodes are showing cardiovascu-
lar disease enrichment.

(f) Enrichment in membrane proteins (light
peach), L-alpha-amino acid transmembrane
transport (orange). The group is specifically
enriched in kidney proteins. 54 elements.

Figure 5.5: Six of the medium-sized clusters resulting from clustering the weighted
gene-gene network based on WeSA matrix scores calculated from GWAS. The genes
in orange contribute to the specified enrichment.
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growth cone. Some of them are also found to be leading to enrichment for genes reg-
ulating synaptic plasticity. According to GWAS data, those genes are overwhelmingly
related to schizophrenia but had been also linked to 377 other traits including anorexia,
bipolar disorder, smoking initiation and educational attainment. It could be speculated
that diseases which are common for the cluster are actually more widespread. Specif-
ically, given schizophrenia is so common among these genes, could those not found
through GWAS also be associated to the disease? Out of the highlighted “neuronal”
genes, all but two are associated to Schizophrenia in GWAS. It is then our hypothesis
that the other two, CACNA1C and GRM3, are also schizophrenia associated genes.

In the cluster in figure 5.5c, there is enrichment in regulation-related genes, specifically
nitric oxide mediated signal transduction, regulation of blood pressure and peptidyl-
tyrosine phosphorylation. There are also enriched signalling pathways, such as MAPK
and RAS signalling and signalling by SCF-KIT and NGF. In the raw GWAS data, the
genes from this group are associated mostly to vascular traits with the top 3 being
systolic and diastolic blood pressure and coronary artery disease. Out of the 9 genes
highlighted for their regulatory function, 8 are already associated with coronary artery
disease in GWAS. Drawing on the guilt by association hypothesis again, we can spec-
ulate that at least the ninth one, ADRB1, is also associated to the disease. This gene
codes for the beta-1 adrenergic receptor, the target for drugs mediating many heart
problems.

Similar cases can be made for the other clusters. Cluster 5.5b is enriched in many
neuronal and cellular junction terms, while in GWAS it is associated to traits of the eye:
refractive error, myopia, spherical equivalent. The two together suggest a mechanism
of disease and can again give rise to gene-trait association predictions. The clusters
in 5.5d and 5.5f are less specific but we still observe enrichment. The cluster in 5.5d
is enriched in cell division and migration-annotated genes, which can be connected to
the top GWAS traits for the group: heel bone density and height. The last plot, 5.5f, is
enriched in membrane proteins. 11 of the proteins2 are found in kidney tissue which
also makes this enriched. The latter is in agreement with GWAS, in which the top
associations of genes within this group are with glomerular filtration rate and creatinine
levels.

Finally, the case of the cluster in 5.5e can be interesting for their association to cardio-
vascular diseases which have not (yet) been annotated to cardiovascular processes.

2Specifically: KLHDC7A, LRP2, PDE7A, PIP5K1B, SLC22A2, SLC34A1, SLC7A9, SVIL, TFDP2,
UMOD, WDR72
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The genes in the cluster show some association to vascular traits (pulse and blood
pressure). The GetGo gene-function enrichment tool shows enrichment in two biolog-
ical processes: cardiac transduction (proteins: ABCC9, MEF2A, SPTBN4) and SMAD
protein phosphorylation and binding (proteins: GDF7, TGFBR3, USP15, MEF2A). The
two perspectives (processes and diseases) can be linked and wemay be able to predict
processes from diseases and vice versa.

5.1.4 Discussion

We have ranked the gene-trait and SNP-trait associations using the spoke term of the
WeSA score. In section 5.1.3 we give examples of some validated case studies. We
discuss the circumstances and expectations from GWAS studies and the inherent me-
dia bias which creates ‘hubs’ of genes associated to diseases that have been studied
more extensively than others. For instance, in absolute numbers, more genes are dis-
covered in connection to ‘popular’ traits. This, however, seems to be counteracted
by the WeSA ratio which compares observation to expectation numbers. Therefore
we expect that “hot” traits will be among those with many connections but low WeSA
numbers.

We have also discussed the projection graph idea, which consists in ranking the simi-
larity of genes (or traits) based on the matrix term in the WeSA score. This can be used
to predict gene-disease links, or other gene-gene links, as for example pathways. The
idea is that we can use the high similarity of genes (high WeSA matrix terms) to predict
similarity in functions, interaction, folding, or even disease mechanism.

As an expansion, another interesting trajectory to explore is a strength of connection
based not only on WeSA scores, but on disease similarity as well. That is, if we can
define a hypergraph, in which every hypernode is a cluster of traits, then we can classify
a strength of relation based on the weight of the hyperedge between the gene and the
hypernode. This can be explored by naïve counting or it can again be put into the
WeSA observed-to-expected framework.

Limiting to this analysis is the higher complexity and impossibility to standardise all
information. It should be noted that mutations are often tissue-specific, outside coding
regions of the genome, they can be (trans-) mutations which can act very far from the
gene relevant to the phenotype or be in regions of linkage disequilibrium. To clarify
the third point, regulatory trans- mutations are defined as those acting on a gene more
than 5 Mb away (incl. on another chromosome). There are many SNPs outside a
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gene-encoding region and it is not always known what the effect of such mutations
is, if any. Lastly, attempts to annotate linkage disequilibrium (LD) have been made
[FR15], but the standardisation of resulting records is still slow [FR50, FR36]. In view
of this, further efforts can lead to incorporation of the LD knowledge and subsequent
refinement of the WeSA scores.

GWAS trait handling is also still underdeveloped. While for diseases there is hierarchy,
for traits there is none34. A researcher who wants to group traits or focus on high-level
traits would only need to build their own ontology based on the data.

5.2 Mouse Genome Informatics (MGI)

The continuous development of new technologies andmethods in genetic research and
related biology fields have been foundational for the understanding of the genome.
While the human genome was only sequenced last year [FR33], deciphering of the
mouse genome is possible since 2002 [FR56]. As an essential model organism mice
have been of particular scientific interest and the research community has been accu-
mulating mice genetic data at a rapid pace making use also of newer high-throughput
experimental methods. Collected experimental information about the laboratory mouse
(Mus musculus), including a database of mouse genes, genomic sequences, and phe-
notypic information is recorded by Mouse Genome Informatics (MGI).

In this section, we discuss the use of WeSA to analyse MGI records from genomic stud-
ies investigating phenotypes. In particular, phenotypic studies in mice consist of gen-
erating genetically modified mice using methods such as CRISPR/Cas9 [FR59, FR55]
followed by analysis of the mice for phenotypic changes. Phenotypic changes include
differences in their behaviour, morphology and physiological functions, and are vali-
dated to confirm that the observed phenotypes are directly related to the targeted gene
(as opposed to being due to off-target effects or other confounding factors) [FR18].
However, there still remains bias towards ubiquitous and/ or non-specific phenotypes
which, we argue, can be decreased by the application of WeSA.

3https :// biobank.ctsu.ox.ac.uk/ crystal /
4https :// biobank.ctsu.ox.ac.uk/ crystal /browse.cgi?id=−2&cd=field_list
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5.2.1 Data

For this study we have used theMGI dataset as retrieved and pre-processed by Benedetta
Leoni, a fellow in the EU SCilS consortium. The final data which are presented here
were retrieved on 08.03.2023 and cleaned to leave only four columns:

• allele which was tested;

• phenotype which was observed for the instance;

• reference publication (as a PubMed ID);

• system in which the phenotypemanifests as classified in MGI. This encompasses
29 general categories which act as parents to the annotated phenotypes, e.g.
immune system, adipose tissue, skeleton, embryo.

The data consist of around 468.5 thousand association triplets of a mouse gene, linked
phenotype and study. It covers more than 10 thousand unique phenotypes5. In total,
those come from almost 35 thousand studies and link to 15,845 unique mouse genes.
The phenotypes are categorised into 29 general systems, which are of significantly
unequal sizes (table 5.2). For example, the olfactory and taste functions and their
corresponding phenotypes have not been reported at the same order of magnitude
as the most common systems in the database: immune, hematopoietic and nervous
systems.

5.2.2 How to apply WeSA to MGI

MGI is another example of a bipartite network, as it contains two groups or types of
nodes: phenotypes or systems and genes. The genes in these studies are usually the
equivalent of baits in proteomics, since the analysis starts by mutating a chosen gene.
Then, the resulting effect on the phenotype is observed, which can be thought of as
preys. Phenotypes are, however, very specific and 30% of them have been observed
at most 5 times, making repetition of gene-phenotype pair unlikely and any analysis
quite noisy. In response, instead of using phenotypes, we have used the more general
categories of ‘systems’ as preys (table 5.2) on which to apply WeSA.

Same as when applied to GWAS, WeSA can be calculated separately for two different
purposes. In the first approach, a score is calculated for the association between every

5Notably, only phenotypes are recorded. There is no disease information.
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System No. of links
Immune system 55,014
Hematopoietic system 47,533
Nervous system 43,444
Homeostasis/metabolism 39,159
Growth/size/body 32,178
Cardiovascular system 30,611
Skeleton 29,380
Behaviour/neurological 27,515
Mortality/ageing 27,475
Reproductive system 26,061
Cellular 23,705
Endocrine/exocrine/glands 18,747
Embryo 17,595
Vision/eye 17,375
Integument 16,437

System No. of links
Craniofacial 14,578
Renal/urinary system 12,306
Neoplasm 10,598
Muscle 9,874
Digestive/alimentary
system

9,826

Limbs/digits/tail 8,577
Hearing/vestibular/ear 8,143
Respiratory system 8,119
Liver/biliary system 6,770
Pigmentation 5,076
Adipose/tissue 4,096
Normal/phenotype 3,991
Not analyzed 2,095
Taste/olfaction 494

Table 5.2: List of systems and the number of times a phenotype within that system has
been observed to link to an allele as recorded in MGI.

system and gene. This is computed exactly in the same way as in equation 5.1, but
substituting a trait (T) for a gene and a variant (V) for a system to obtain gene-system
scores.

The second approach would be, analogously to equation 5.2 from section 5.1, to score
the indirect association between nodes of the same type. Of particular interest can be
the matrix term score for gene-gene association based on shared classification. In this
case a score between two genes, G1 and G2, is calculated as:

WeSA(G1 ↔ G2) =
OG1−G2∑

X,Y :genes

OX−Y
× log OG1−G2

EG1−G2

The dash [−] signifies, as before, an indirect contact, i.e. a shared neighbour. We
hypothesise that this score is related to a similarity score of genes, which will be inves-
tigated in the next section.

5.2.3 Results

In the case of the mouse genome to phenotype relationships, there is no possibility to
obtain accurate and certain information on gold standard links. Instead of a strict com-
parison and a benchmark, we discuss our expectations and compare the top scores
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to diseases or the STRING similarity score. In the main part of this section, we look at
validation strategies for the bipartite model. In the discussion, we expand on the topic
by considering the one-mode projection network with some possible validations.

Throughout this chapter, we normally use the second level of the MGI phenotype ontol-
ogy (consisting of 29 classification terms) and the phenotypes at that level are referred
to as “system (MGI)s”. All levels are reported starting from level 1, which comprises
“mammalian phenotype” only (the most general level).

Validating gene-system scores based on annotated diseases

After obtaining the standard WeSA gene-system scores, we can compare them to dis-
ease annotations for human proteins reported by UniProt. UniProt links a gene to a
disease if either variants in that specific gene are found to cause the disease or the
gene is confirmed as essential in the steps leading to the disease. These annotations
are not provided for mouse genes, but we can infer them from their human counter-
parts. The workflow for this approach is the following:

1. calculate all WeSA scores for gene-system pairs;

2. go through genes of interest in two steps:

i. observe the scores of a gene X (of interest) and find out if it scores high in
association with any systems (WeSA scores). Note that some genes may
have more systems which associate strongly with them, while others may
have only one or even none;

ii. obtain the human ortholog (i.e. evolutionary equivalent), Xh of gene X;

iii. extract the diseases linked to gene Xh from UniProt;

iv. validate if the disease corresponds to the systems which were observed to
score high in i.

This validation is clearly based on manual validation. However, there is a possibility
for automation. The missing link preventing us from devising a computational testing
pipeline is the lack of means to compare diseases and systems automatically. That
is, if there is a map annotating diseases to the main systems they affect, the accuracy
of the scores could be measured by a categorical test, e.g. how many times there is
an overlap between the disease systems and the top 3 highest WeSA scoring scoring
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systems.

WeSA works well in narrowing down the list of candidate-systems which are affected
by a gene. Many genes in MGI are annotated with many different phenotypes to the
point that sometimes these correspond to most of the systems at the same time, thus
reducing their significance. Here, we applied WeSA to significantly reduce the list of
systems associated to each gene to output more relevant associations. We started with
a subset of genes that according to MGI are linked to at least 70% of the phenotype
systems present (i.e. at least 21 of the 29 systems). There are 457 such genes and,
unsurprisingly, many of them do not exhibit high WeSA scores. Only 91 have a link to
at least one system (WeSA-)scoring above the mean.

If we look more closely into those 91 genes, we can see that despite their many an-
notations, WeSA reorders the strength of their effect to different systems quite well. In
figure 5.6 we highlight some case studies. For example, the genes Apc, Braf, Kras,
Nf1, Rb1 and Tpr53 are scoring highest for ‘neoplasm’ and indeed their human equiv-
alent genes are all well-established cancer genes. Moreover, genes such as Apc,
Nf1 and Rb1 have also secondary effects which has been correctly captured by their
second-highest WeSA scores.

Among the selected 91 proteins, there are also two gene pairs (Kit and Kitl, Lep and
Lepr) which interact to form a functional ligand-receptor unit. Their WeSA scores show
overlap in the highest scoring systems for the two proteins in each of these pairs.
Lep and Lepr score high in Homeostasis and metabolism, and Adipose tissue; Kit and
Kitl both score highly for Pigmentation and Integument, terms that refer to biological
process and organ that are affected by the diseases (fig. 5.6). These results are
in agreement with the diseases annotated to their human equivalent genes, e.g. for
Kit/Kitl: mastocytosis, Waardenburg syndrome, hyperpigmentation.

The other ligand-receptor pair we observe is Lep and Lepr which WeSA scores cat-
egorise as related to homeostasis/ metabolism and adipose tissue. Notably, these
proteins have more than 20 system annotations, but WeSA is able to distinguish the
top ones.

WeSA is able to downweight the systems which are unspecific. Since, every mouse
experiment is resource-expensive, not detecting an obvious resulting phenotype might
encourage the performance of additional less important or conclusive experiments until
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Figure 5.6: Heatmap of WeSA scores of genes discussed in the text. Scores in darker
shades of green are considered to indicate strong associations according to WeSA
analysis.

finally detecting one. As a result, there is a bias, corroborated by the fact that ‘normal’
and ‘unobserved’ phenotype terms are among the least frequent annotations (bottom
in Table 5.6)

We expect that some cellular phenotypes are often unspecific as consequence of rare
and forced conditions, e.g. difference in cellular expression or abnormal mortality due
to intentional aneurysm rupture. The ‘mortality/ ageing’ system has a whole category
of induced mortality through different means such as ‘abnormal susceptibility to throm-
bosis induced morbidity/mortality’ or ‘abnormal susceptibility to colitis induced morbid-
ity/mortality’. Additionally, cellular phenotypes represent changes at the cellular level
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that often may not translate into macroscopic phenotypes such as significant changes
in tissue or organ morphology or physiology. Such phenotypes, we expect, would nor-
mally be annotated in mice which fare well beforehand and, thus, are under an abstract
modification of the survivorship bias.

Our results presented in figure 5.7 confirm this suggestion. The two aforementioned

Figure 5.7: Boxplots (excluding outliers) of the distribution of WeSA scores within sys-
tems ordered by their 75% quartile. The dashed line illustrates WeSA = 0. Next to
each system in brackets is given the number of times a phenotype of that system has
been recorded.

100



Chapter 5. Applications of WeSA

systems have median WeSA scores comparable to random, while simultaneously hav-
ing relatively low variance around the median showing that WeSA rarely detects these
systems as specific to a gene.

On the contrary, the systems with highest Q3 (75% quartile) are normally very clear
to detect. The most intuitive example is pigmentation which, when present is clearly
visible and there is no specificity which makes the category artificially inflated.

Reproductive system case study: WeSA scores correlate with human diseases.
As mentioned previously, there is no clear mapping of human diseases to systems.
This is an obstacle before the creation of a full testing pipeline from the perspective
of disease-system-phenotype match. Here we present a rough attempt to create such
mapping from the disease ontology for the reproductive system and test our WeSA
scores against it.

The Disease Ontology (DO) [61] has been developed with the aim to be useful in map-
ping model systems to human diseases. It contains a hierarchy of diseases and their
terminology annotations. We used OMIM6 codes to map the diseases from the disease
ontology onto the diseases reported by UniProt. OMIM terms are simply standard ter-
minology (codes) for human diseases.

If we go back to the pipeline introduced at the start of the results section, we see that
it is designed to check our results element-wise, but we can modify 2. as follows:

i. convert all mouse genes to their human orthologs;

ii. extract the diseases associated to the human genes from UniProt; these are given
alongside their respective OMIM terms;

iii. map UniProt diseases to DO through their OMIM terms;

iv. map disease ontology terms to systems;

v. test how WeSA scores behave within systems; are they better for some systems
than for others?

While points i-iii. above are clear, the mapping between DO and systems is not yet
available. Some DO terms seem to correspond to the systems in MGI but there are

6Online Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine,
Johns Hopkins University (Baltimore, MD). World Wide Web URL: https://omim.org/.
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discrepancies. The latter is an obstacle to the production of full mapping, but we be-
lieve that the link between MGI ‘Reproductive system’ and DO ‘Disease of anatomical
entity-Reproductive system disease’ is unambiguous and we mapped them to each
other. In total, DO contains 91 distinct diseases with OMIM annotations which fall
within the reproductive system diseases. We use this mapping as a benchmark for the
investigation in this section.

Notation [reproductive system annotations]: First, WeSA scores for gene-
system (incl. Reproductive system) links are calculated fromMGI and the MGI
phenotypes. In contrast, the disease-mapped ‘reproductive system’ category
(RSD) contains genes (without any scores) which are mapped to the reproduc-
tive system through the human diseases they are linked to.

We mapped 3,628 of our scored genes to the DO through steps i-iii. The rest either
did not have a human gene equivalent, did not correspond to any observed disease or
the disease did not have any OMIM annotation. Out of the total, we mapped 84 genes
to the reproductive system through steps i.-iv.

We used chi-squared test with the 2×2 contingency table 5.3 and confirmed that the ‘re-
productive system’ annotations from MGI are more inside RSD than they are in general
(Chi squared statistic = 61.154 and p-value < .0001).

Reproductive system Overall
Number of genes 84 3,628

Number of MGI annotations
in Reproductive system 76 985

Table 5.3: Statistics of the Reproductive system group.

Using the set of ‘positives’ established from the diseases of the reproductive system
and setting as negatives everything outside of that set, we compare the distributions
of the WeSA scores of gene associations to the reproductive system. In figure 5.8 we
display the distribution boxplots and the computed ROC curve.

We compared the two shown distributions using a MWU test and found a highly sig-
nificant difference (p < 10−16) for a one sided hypothesis. In particular, this confirms
the hypothesis that the distribution of WeSA scores for genes in the RSD category is
greater than the distribution of WeSA scores outside that category.

The second panel of figure 5.8 shows the ROCanalysis and the optimal threshold which
achieves near-perfect balance between TPR and FPR. Currently only 0.06%of the non-
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Figure 5.8: Left panel: Boxplots of the distributions of WeSA scores for links in MGI to
the Reproductive system. On the x-axis the two groups of genes separated by their
disease association (x-axis): either to diseases of the reproductive system (RSD) or
beyond (non-RSD). Right panel: ROC curve based on the WeSA scores for MGI-RS
associations. The benchmark are the genes which are in the RSD category due to the
diseases their human orthologs are lined to. The optimal threshold is marked as a point
on the ROC curve and corresponds to TPR = 0.89 and FPR = 0.06.

RSD category falls above the threshold (i.e. is FP), which corresponds to 59 genes due
to the high numbers in the non-RSD category. Hence, while the results comprise an
encouraging pilot study, further testing is needed when more data becomes available.

As an extension, due to the low ratio of members in the benchmark group, compared
to the total, the precision is still low (0.25). As we have discussed also in Chapter
4, what is currently labelled as false positives can still be related to the category of
interest. Undiscovered gene-disease links also remain uncounted, in this case, weaker
evidence from genes which are not solely or directly responsible for a disease in the
RSD can obscure the statistics. This is why precision in all cases is hard or impossible
to measure and is likely an extremely conservative lower bound rather than an accurate
estimate.

Gene-gene scores seem to correlate with similarity information from STRING

A natural extension to the bipartite scoring is to score the projected graph in which gene
nodes are connected by weighted edges based on the shared system connections they
have. Here we used the same method to calculate scores as presented in section 5.1
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and 5.2.2.

In this final analysis, we investigate whether the gene-gene WeSA score is related to
the similarity of genes. To test this hypothesis, we first calculated the gene-geneWeSA
scores solely on the basis of shared phenotypes from MGI. Excluding those gene pairs
that were linked only by a single shared phenotype (the large majority), we obtained a
the scores for a total of 18,945 unique gene pairs and we compared those scores to the
association scores from the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) [63].

The STRING database is, to our knowledge, the most comprehensive database ag-
gregating information about the association between proteins from multiple sources.
There are seven sources of information which are referred to as channels (listed in
table 5.4). One of the STRING features is the association score, which is a combi-
nation of the seven individual scores given for each channel. These scores measure
the strength of evidence linking a protein pair: the higher the score, the stronger the
evidence in support of an association.

The majority of evidence comes from physical interactions (i.e. experimental channel),
which is not what we expect gene-gene scores to correlate the most with; the fact that
they are responsible for phenotypes from the same system does not imply direct physi-
cal interaction. STRING also incorporates channels which may be closer correlating to
the obtained WeSA scores. Specifically, out of the seven components contributing to
the total association score7 we believe the scores may correlate to pathways. That is
why we look for strongest correlation with database scores which summarise curated
evidence from pathway databases.

Given the still insufficient evidence and variability across sources, we should note that
not all information channels are populated equally and indeed, fusion, co-occurrence
and neighbourhood, which rely on orthologs and evolutionary data have scarce evi-
dence. Overall, only 37% of the WeSA-scored gene pairs are found on STRING with
the percentage sinking much lower for the evidence in some channels.

To measure correlation, we calculate the Pearson’s correlation coefficient (Pearson’s

7The seven channels are: 1) Neighbourhood, i.e. how frequently the proteins are located in the same
vicinity on the genome; this is mainly useful for species with smaller genomes and less redundancy than
Mus musculus and Homo sapiens; 2) Fusion score - estimated from the amount of fusion events, i.e.
how often the proteins combined to form a single new protein; 3) co-occurrence - marks the tendency
of orthologs to occur under similar conditions and distributions; 4) coexpression scores - obtained from
microarray and RNAseq experiments and correspond to the correlation in expression of a pair of proteins
across experiments; 5) literature mining; 6) experimental; 7) databases.

104



Chapter 5. Applications of WeSA

r). It is specifically a measure of strength of the association of the data to the line of best
fit derived from the linear model. High absolute values of the Pearson’s r correspond
to strong correlation. The statistics are given in table 5.4.

Channel Number of records Pearson’s r
neighbourhood 184 -0.137

fusion 12 -0.602
cooccurence 180 -0.149
coexpression 4372 0.09
experimental 3466 0.344
database 2356 0.351
textmining 6504 0.16

combined score 7006 0.454

Table 5.4: Statistics for the correlation of each STRING score with theWeSA score. The
number of pairs which have both scores (WeSA and the respective STRING score) is
given in the second column.

With the exception of the three channels neighbourhood, fusion and cooccurence, for
which information is so limited that the STRING data is provided for less than 1% of data
points, all other records show positive correlation between STRING scores and WeSA
scores. Based on the Pearson’s r, the combined score has a medium strong linear
correlation to WeSA. The database scores are the most strongly correlated individual
channel, but both the experimental channel and the database channel have medium
correlation with theWeSA scores. Evidence from textmining which is recorded for more
than a third of the gene pairs is also showing some weak positive correlation with the
WeSA scores.

An argument can be made that, from a physical perspective, WeSA scores do not
linearly correlate with the strength of association between gene pairs. Rather, there
may be diminishing returns or a logarithmic slowing down of the growth of connec-
tion strength relative to the number of observed connections. Due to that argument,
we also checked the difference between WeSA scores for pairs which score low or
high on STRING. For all three channels and for the combined score for which positive
correlation was found previously, there is also a good separation between the two cat-
egories. This is established using a MWU test and is illustrated through the boxplots
in figure 5.9.

It is worth noting that STRING scores also have some predictive nature and information
for them is incomplete. With expansion of research we may get more evidence in
support of the WeSA score.
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Figure 5.9: Boxplot of STRING scores for the two categories: high-scoring STRING
gene-gene links (score more than 500 out of 1000) and low-scoring (score less than
500). Categories for the STRING score are on the x-axis. Comparisons are done using
a MWU test and ’****’ corresponds to very significance p < 0.0001.

5.2.4 Discussion

In this section, we looked at mouse models which are crucial for understanding human
systems and disease. As a simpler mammalian system, they are a main model organ-
ism [FR40]. Their relevance makes the analysis of MGI data valuable and here we
present how WeSA can be useful to enrich the toolkit for MGI analysis.

What is still missing in most biological research, but also, particularly in mice studies
is standardisation. Brown et al. [13] reviewed the progress made by the International
Mouse Phenotyping Consortium (IMPC) towards the goal of generating a comprehen-
sive resource for modified mice phenotype data. They underscore the impact which
such database can have. However, the paper also highlights the importance of stan-
dardising the experimental protocols and phenotype inspection. In order for data to be
analysable in aggregate and get the most precise results, there is a need for uniformity
in procedures everywhere. However, we have seen here that WeSA can somewhat
circumvent this obstacle.

WeSA scores weighting the relationship between genes and systems on MGI seem
to correlate well to human diseases. We have seen that WeSA can usually focus the
researcher’s attention to the most important systems for the gene based on the known
information. In cases where a gene is annotated to relate to many of the systems, such
knowledge can navigate future research effectively.

Another implication of studies like Brown’s [FR24, FR39, FR31, FR30, 13] is that phe-
notyping may be biased in various ways in different research. Despite all efforts, there
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are still many irreproducible results demanding more scrutiny of published discoveries.
Our own hypothesis, which we also based on the observed numbers (fig. 5.7) is that ge-
netic modifications are rarely annotated as neutral or having no effect. This are likely
explained by inconsistent recording or overtesting. The former is meant to highlight
that lack of effect is, in many cases, not recorded at all, so there are disproportionately
more records on observed phenotypic changes. On the other hand, there is a possibil-
ity of overtesting, which is the search among all phenotypes, however insignificant, and
probably finding something by random chance or because of the accumulated error of
the multiple scenarios.

As mentioned, in the Reproductive system case study section, it is not surprising that
most of those highly annotated genes have low WeSA scores; we expect that due
to the bias from overtesting. We have seen, for example, that mortality phenotypes
are common among the low-scorers. Some of those phenotypes are very likely to
force death and could have very low baseline risk (or low survival) which means that
the real-world importance of changes may be less important, while the errors due to
the low numbers can be more frequent. This is among our results which confirm the
overtesting bias and illustrate the power of WeSA in overcoming that bias.

Finally, we explored a possible connection between genes based on the number of
shared systems they attach to via their annotated phenotypes. While we did find some
positive correlation of those WeSA scores to the STRING similarity scores, there is
room for improvement. Some further refinements may explore connecting the genes
not based on shared systems, but based on a less general level of the MGI hierarchy.
Depending on the goal, other test comparisons can also be chosen, while the STRING
based ones can improve with the availability of more data. It still remains to be discov-
ered if factors with very little information at present such as gene fusion are related to
the WeSA scores we have presented here.

MGI studies allow us to gain insight into the function of genes and the phenotypical
effects they have on mice, which can further aid understanding of human systems and
human disease mechanisms. Thus, making sense of the information which is already
available is important and WeSA provides us with an additional tool to do so.
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6 Discussion and conclusion

This work has focused on analysis of biological networks with a particular focus on the
human PPI network. A lot of effort is devoted to experiments which can speed-up the
process of interaction discovery, but the use and analysis of their data is still suboptimal.
Our goal has been to develop approaches to optimise both the study design and data
collection step as well as the analysis itself.

In our first project we focused on improving the statistical pipeline when experiments
are compared to a control. This analysis is essential as experiments can be conducted
in a range of specifically designed conditions; they can examine PPIs in different cell
types or different stages of the cell cycle, to name a few. Statistical comparison of target
replicates to a carefully chosen, appropriate control can be very accurate in filtering out
noise and detecting only the set of specific interactions.

The main challenge in such analysis after the obtaining of raw results is the presence
of missing values. They often appear stochastically for both technical and biological
reasons. We have adapted the major MV imputation method for MNAR missing values
to sample the MVs from a custom distribution. The method alongside the full subse-
quent analysis and comparison is resented. In our affinity purification study of RAB7
our newer imputation method has performed better than the top MCAR comparison
method SVDimpute both qualitatively and quantitatively in the PCA.

Case-control studies are not without difficulties in their design. There are two main
difficulties which we highlight, namely, the problem with control choice and resources.
In order for statistical analysis to be useful, the control for comparisons needs to be able
to capture the same noise as the target, but without overlapping in any of the functional
links. Moreover, the constant effort to both search for such controls and perform the
control experiments is resource-intense and provides justification to any development
which can reduce those costs.

The second part of the project, thus, disrupts the current experimental setup and de-
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velops a model function, WeSA, which weights the evidence for every PPI relative to
past research instead of a specific control. We do not complicate data collection or
reduce the reach of the analysis by incorporating any additional information. Rather,
our model scales the raw number of multiple edges observed in databases according
to their expectation. The framework can be incorporated as a preparation step before
established clustering procedures such as MCL to convert the unweighted graph to a
weighted one and improve the input of the clustering.

We find that the WeSA scoring procedure identifies protein complexes well. It performs
better than the original SAmethod. WithWeSAwe can score whole datasets and reach
TPR above 80% while keeping the FPR below 20% and obtaining precision better than
50% despite the lack of a well-defined negatives set. The good coverage of already
existing sets is encouraging and bodes well for future applications of the framework
more generally to future experiments (whether high-throughput or small-scale).

The score has been observed to possess additional benefits and to correlate with other
reference sets. We have used it in predictions and suggest further predictions which
could be made. Notably, however, we have found out that information can be added to
already existing data and WeSA scores can be effectively updated allowing for instant
feedback to researchers as well.

As WeSA is not specific to the context of PPI networks or even to biology, we have
applied it to two other networks to test its universality. The two types of data we use
are gene-trait associations fromGWAS and gene-phenotype relationships fromMGI. In
both cases the relevant networks are bipartite and we propose additional modifications
to the WeSA score reflecting the opportunities provided by bipartite networks. Specif-
ically, we apply the score to weight a one-mode projection of the bipartite graph, thus
deriving weighted gene-gene networks which can be clustered to uncover pathways or
gene similarities.

In addition, the simple application of WeSA to the bipartite networks is also observed to
work through different empirical comparisons. We have observed correlation to curated
disease knowledge from literature and databases, including to human orthologs for the
mouse data in MGI. We also confirmed some biologically sensible hypotheses, but
many others can be formed in future work.

Science progresses quickly towards newer ways of data collection in all fields andmuch
of that data comes in the form of intractable networks. We envision more applications
of WeSA in the context of other big networks in biology and beyond. For instance,
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it can be applied to ChIP-Seq data to identify essential binding sites or as a filter to
annotations in Gene Ontology.

A main challenge with such network filtering studies is the identification of a test set. As
with our analysis on MGI, the design of tests requires the integration of external knowl-
edge and sources, and our future efforts will also be directed towards the definition
of a complete reference dataset of disease-system annotations. As genetic disease
models, including mice models, attract research attention currently and effort is put to-
wards the understanding of the causal genome-phenome relationships, gold-standard
sets of disease relationships are crucial. A dataset of disease-system annotations, as
mentioned previously, would allow immediate and unbiased performance evaluation
beyond our MGI study and can be relevant to all methods working on the genome-
phenome causality problem.

Finally, there are still various biases in all of the genetic experiments. In PPI discovery,
these are introduced due to proteins being difficult to work with, impossible to detect
or for any other reason overly popular or seldom studied. While newer research and
high-throughput projects aim at universal coverage, it is not clear what the conditions
of those are. In the case of proteins, are new proteins getting identified with the latest
methods and at what rates is the coverage expansion happening? There are also open
questions around the sufficiency of evidence: when will we know enough and how
much is enough? Providing the answers to these fundamental theoretical questions
can guide the efficient distribution of resources. Moreover, knowing what is necessary
and sufficient for WeSA to have a beneficial impact on analysis can help expand the
directions of data collection.

As we have proposed, it is possible to use the WeSA scores to make comparisons
between networks observed under different conditions, such as networks varying over
time or changing in response to variation. As long as there is sufficient input informa-
tion to go into the model, such comparisons open up possibilities to understand the
mechanisms of genetic disease, protection and beyond.
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CORUM
Table 6.1: Biggest and smallest human complexes from CORUM [59] alongside their
respective sizes. The full data contains 3,538 different complexes.

Complex Name Size
Spliceosome, E complex 129
Spliceosome, A complex 113

Nop56p-associated pre-rRNA complex 104
C complex spliceosome 80

55S ribosome, mitochondrial 78
39S ribosomal subunit, mitochondrial 48
60S ribosomal subunit, cytoplasmic 47

Respiratory chain complex I (holoenzyme), mitochondrial 44
Spliceosome, B complex 43

...
REEP1-ZFYVE27 complex 2
DZIP1-IFT88 complex 2
TSC2-HERC1 complex 2
CEP164-DZIP1 complex 2
BCLAF1-TET2 complex 2

Python libraries used in WeSA script Main libraries:

• pandas

• numpy

• re

• scipy.stats

113



Appendix

• collections

• itertools

• sklearn

For plotting:

• matplotlib

• seaborn

• mpl_toolkits

• statannot

• adjustText

Other libraries:

• pickle - for storage of dictionaries;

• timeit - for timing parts of the algorithm during testing

• networkx - for visualising graphs and/ or doing network analysis also beyond the
section of protein-protein interaction analysis

I have additionally created a library of functions of my own which are useful on their
own in different parts of the analysis, but some combine in the calculation of WeSA.

The matrix information benefits the WeSA score. Specifically, it improves the AUC
by 17% (up from 0.72). Detailed statistics for the optimal threshold also show increase
in TPR (up by 0.1 to 0.76) and decrease of FPR (from 0.34 to 0.23). Even the PR
curve improves with precision at the threshold increasing by 42% of its level without
the matrix term.
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Figure 6.1: ROC (left) and PR curves (right) for the data in IntAct scored in two ways:
1) according to the WeSA score in equation 4.1; 2) based on only the spoke models,
i.e. excluding the matrix term. The data in IntAct as cleaned in all other analysis is
used to produce the plots.

Pseudocounts ROC analysis

Figure 6.2: Results from ROC analysis of WeSA with varying pseudocounts c ∈
{0,0.1,0.2,0.3,0.4,0.5,1,1.5,2,2.5}. ROC curves (left) and Precision-Recall curves
(right) for the various values of the parameter c. The scores are weighted by experi-
mental confidence and the data is taken from IntAct.
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GWAS results
Table 6.2: Summary statistics of GWAS scores of links between traits and SNPs

SA WeSA
count 14,535 14,535
mean 2.1 4.65
std 2.17 5.12
min -5.066 -38.76
25% 0.52 1.25
50% 1.86 4.29
75% 3.15 7.42
95% 6.22 13.47
99% 8.61 19.19
99.9% 10.29 28.06
max 10.69 34.1

Table 6.3: Top 20 traits with the most links in GWAS

Trait Gene
Height 2225

Educational attainment 1956
Body mass index 1365
Smoking initiation 1170

White blood cell count 1020
Systolic blood pressure 1013

Heel bone mineral density 1003
Red blood cell count 969

Protein quantitative trait loci (liver) 947
Schizophrenia 942

Waist circumference adjusted for body mass index 942
Platelet count 926

Mean corpuscular hemoglobin 902
Type 2 diabetes 896

Waist-to-hip ratio adjusted for BMI 895
Metabolite levels 885

Hip circumference adjusted for BMI 875
Mean corpuscular volume 840
Total cholesterol levels 833
Blood protein levels 810
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Table 6.4: Scores for all edges of variant rs738409

index trait variant WeSA SA No. records
0 Nonalcoholic fatty liver disease rs738409 34.1 3.79 9

1576 Percent liver fat rs738409 10.74 5.37 2
5440 Liver enzyme levels (alanine transaminase) rs738409 5.64 2.82 2
8288 Alanine aminotransferase levels rs738409 3.53 0.71 5
8327 Total testosterone levels rs738409 3.5 1.75 2
9294 Gout rs738409 2.71 1.36 2
9513 Aspartate aminotransferase levels rs738409 2.58 0.52 5
12557 Hemoglobin rs738409 -0.09 -0.04 2
13353 Sex hormone-binding globulin levels rs738409 -1.28 -0.64 2
13642 Hematocrit rs738409 -1.88 -0.63 3
14218 Mean corpuscular hemoglobin rs738409 -4.66 -1.55 3
14229 Triglyceride levels rs738409 -4.77 -2.38 2
14342 Total cholesterol levels rs738409 -6.18 -2.06 3
14370 Platelet count rs738409 -6.52 -1.63 4

Table 6.5: Scores for all edges connecting to the trait Nonalcoholic fatty
liver disease.

index trait variant WeSA SA No. records
0 Nonalcoholic fatty liver disease rs738409 34.1 3.79 9

1552 Nonalcoholic fatty liver disease rs2143571 10.75 5.38 2
2697 Nonalcoholic fatty liver disease rs73001065 8.73 4.36 2
5368 Nonalcoholic fatty liver disease rs58542926 5.7 1.9 3
7461 Nonalcoholic fatty liver disease rs1260326 4.17 1.04 4
8440 Nonalcoholic fatty liver disease rs429358 3.41 1.14 3
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Table 6.6: Scores for all edges of variant rs1047891

index trait variant WeSA SA No. records
137 Glycine levels rs1047891 19.23 2.14 9
383 Homoarginine levels rs1047891 15.86 5.29 3
1416 Gamma-glutamylglycine levels rs1047891 11.15 5.57 2
1417 N-palmitoylglycine levels rs1047891 11.15 5.57 2
1586 N-acetylglycine levels rs1047891 10.7 5.35 2
4639 Serine levels rs1047891 6.24 3.12 2
9066 Urinary albumin-to-creatinine ratio rs1047891 2.89 1.45 2
9276 Blood urea nitrogen levels rs1047891 2.74 0.91 3
10839 Serum 25-Hydroxyvitamin D levels rs1047891 1.31 0.65 2
11269 Estimated glomerular filtration rate (creatinine) rs1047891 0.85 0.43 2
12334 Appendicular lean mass rs1047891 0.11 0.06 2
12696 Apolipoprotein A1 levels rs1047891 -0.28 -0.14 2
13012 Alanine aminotransferase levels rs1047891 -0.64 -0.16 4
13311 Creatinine levels rs1047891 -1.14 -0.38 3
13313 Estimated glomerular filtration rate rs1047891 -1.15 -0.23 5
13868 Sex hormone-binding globulin levels rs1047891 -2.62 -0.87 3
13955 HDL cholesterol rs1047891 -2.97 -1.48 2
13993 Lymphocyte count rs1047891 -3.12 -1.56 2
14009 Neutrophil count rs1047891 -3.22 -1.61 2
14021 HDL cholesterol levels rs1047891 -3.3 -0.83 4
14055 Red cell distribution width rs1047891 -3.53 -1.76 2
14169 Mean platelet volume rs1047891 -4.28 -1.43 3
14244 Red blood cell count rs1047891 -4.91 -2.45 2
14428 White blood cell count rs1047891 -8.26 -2.06 4
14432 Mean corpuscular hemoglobin rs1047891 -8.42 -1.68 5
14439 Mean corpuscular volume rs1047891 -8.88 -1.48 6
14475 Systolic blood pressure rs1047891 -10.48 -2.62 4
14491 Platelet count rs1047891 -11.98 -1.71 7

Table 6.7: Scores for all edges of variant rs603424

index trait variant WeSA SA No. records
561 Myristoleate (14:1n5) levels rs603424 14.39 7.2 2
562 Palmitoleate (16:1n7) levels rs603424 14.39 7.2 2
563 5-dodecenoate (12:1n7) levels rs603424 14.39 7.2 2
564 1-palmitoleoyl-GPC (16:1) levels rs603424 14.39 7.2 2
1059 lysoPhosphatidylcholine acyl C16:1 levels rs603424 12.19 6.1 2
1060 1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1) levels rs603424 12.19 6.1 2
1735 Palmitoleic acid (16:1n-7) levels rs603424 10.36 5.18 2
10515 Serum metabolite levels rs603424 1.64 0.82 2
13065 Heel bone mineral density rs603424 -0.78 -0.19 4
13446 Serum alkaline phosphatase levels rs603424 -1.43 -0.72 2
13645 Lymphocyte count rs603424 -1.89 -0.63 3
13839 Red cell distribution width rs603424 -2.5 -0.83 3
13891 Mean platelet volume rs603424 -2.71 -0.9 3
13978 Coronary artery disease rs603424 -3.04 -1.01 3
14210 Diastolic blood pressure rs603424 -4.63 -2.32 2
14250 Low density lipoprotein cholesterol levels rs603424 -4.98 -1.66 3
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Table 6.8: Scores for all edges linking to Colorectal cancer

index trait variant WeSA SA No. records
2 Colorectal cancer rs6983267 31.32 1.84 17
23 Colorectal cancer rs3802842 25.36 2.54 10
47 Colorectal cancer rs4939827 21.88 1.99 11
84 Colorectal cancer rs704017 20.66 2.07 10
448 Colorectal cancer rs12241008 15.21 2.54 6
449 Colorectal cancer rs11196172 15.21 2.54 6
450 Colorectal cancer rs3824999 15.21 2.54 6
451 Colorectal cancer rs10411210 15.21 2.54 6
529 Colorectal cancer rs6066825 14.59 2.08 7
943 Colorectal cancer rs10774214 12.68 2.54 5
944 Colorectal cancer rs7229639 12.68 2.54 5
945 Colorectal cancer rs647161 12.68 2.54 5
1208 Colorectal cancer rs1078643 11.77 2.35 5
1825 Colorectal cancer rs2427308 10.14 2.54 4
2284 Colorectal cancer rs3217810 9.25 2.31 4
2691 Colorectal cancer rs10505477 8.74 1.75 5
2837 Colorectal cancer rs11874392 8.52 2.13 4
2838 Colorectal cancer rs1800469 8.52 2.13 4
3465 Colorectal cancer rs113569514 7.61 2.54 3
3466 Colorectal cancer rs73376930 7.61 2.54 3
3467 Colorectal cancer rs7398375 7.61 2.54 3
3468 Colorectal cancer rs12603526 7.61 2.54 3
3469 Colorectal cancer rs2732875 7.61 2.54 3
4182 Colorectal cancer rs17094983 6.74 2.25 3
5598 Colorectal cancer rs10811654 5.53 1.84 3
5763 Colorectal cancer rs10936599 5.43 1.36 4
6286 Colorectal cancer rs11108175 5.07 2.54 2
6287 Colorectal cancer rs10911251 5.07 2.54 2
6288 Colorectal cancer rs61510274 5.07 2.54 2
6289 Colorectal cancer rs4546885 5.07 2.54 2
6290 Colorectal cancer rs12022676 5.07 2.54 2
6291 Colorectal cancer rs812481 5.07 2.54 2
6292 Colorectal cancer rs826732 5.07 2.54 2
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6293 Colorectal cancer rs4711689 5.07 2.54 2
6294 Colorectal cancer rs73208120 5.07 2.54 2
6295 Colorectal cancer rs77969132 5.07 2.54 2
6296 Colorectal cancer rs77776598 5.07 2.54 2
6297 Colorectal cancer rs4948317 5.07 2.54 2
6298 Colorectal cancer rs201395236 5.07 2.54 2
6299 Colorectal cancer rs12143541 5.07 2.54 2
6300 Colorectal cancer rs9929218 5.07 2.54 2
6301 Colorectal cancer rs992157 5.07 2.54 2
6302 Colorectal cancer rs2070699 5.07 2.54 2
6303 Colorectal cancer rs12412391 5.07 2.54 2
6304 Colorectal cancer rs3217901 5.07 2.54 2
6305 Colorectal cancer rs12818766 5.07 2.54 2
6799 Colorectal cancer rs6584283 4.66 1.55 3
6800 Colorectal cancer rs7014346 4.66 1.55 3
7336 Colorectal cancer rs12979278 4.26 2.13 2
7338 Colorectal cancer rs3217874 4.26 2.13 2
7339 Colorectal cancer rs16878812 4.26 2.13 2
7340 Colorectal cancer rs1741640 4.26 2.13 2
7342 Colorectal cancer rs7226855 4.26 2.13 2
7344 Colorectal cancer rs62404966 4.26 2.13 2
7609 Colorectal cancer rs35107139 4.0 1.33 3
8024 Colorectal cancer rs17816465 3.69 1.84 2
8025 Colorectal cancer rs3830041 3.69 1.84 2
8026 Colorectal cancer rs45597035 3.69 1.84 2
8027 Colorectal cancer rs3087967 3.69 1.84 2
10962 Colorectal cancer rs11692435 1.18 0.59 2
13945 Colorectal cancer rs174537 -2.91 -0.58 5
14103 Colorectal cancer rs3184504 -3.84 -1.92 2

Configuration model for the directed bait-prey network In the general case of a
configuration model, it preserves a set degree distribution. To do so, graphically we
can imagine that every node has “stubs” attached to it corresponding to the number of
edges the node initially has. Those stubs are then connected in pairs to make edges.
This does not exclude the possibility of self-loops and multiple edges, but it only pre-
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serves the degree distribution.

In the case of a directed graph as is this one, the “stubs” have to be adapted to corre-
spond to incoming and outgoing edges. Then those should be connected to make a
proper directed edge. That is, care should be taken to avoid connecting two outgoing
halves or two incoming ones; two stubs can be connected only if one is outgoing and
the other one is incoming.

Algorithms

Algorithm 5: Rejection sampling from p(x)

Data: ω, p(ω)
/* ω is a discrete subset of Ω (uniformly sampled) */
Result: A sample with density p(x)
begin

/* Initialisation: */
interval = | ω |
up_limit = max(p(ω)) /* I’ll draw samples from discrete uniform with size interval,

so q(y) = 1/interval. */
/* M ≥ p/q ⇔ M ≥ up_limit × interval */
M = interval × up_limit
good_sample = FALSE /* Iterations (count = number of MVs): */
while good_sample == False do

y = sample Uniformly(ω)
u = sample U(0,1)
accept_prob = p(y)/up_limit
good_sample = (u < accept_prob)

Return: y
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Algorithm 6: kNN algorithm - pseudocode

Data: n×m table with LFQ values, n = number of preys; m = number of replicates
Result: A value is assigned to all MV-observations using kNN
begin

/* Initialisation: */
Load data choose k /* k can be chosen by optimising the accuracy of predictions if

we have (or define) a test set */
/* Iterations (count = number of MVs): */
for point in MVs do

i. compute the Euclidean distance to all complete observations
ii. record in a list and sort in ascending order
iii. pick the k NN (observations with the smallest k distances)
iv. substitute the MV using mean substitution

Return completed table

Algorithm 7: SVDimpute algorithm - pseudocode

Data: n×mmatrix (A) with LFQ values, n = number of preys;m = number of replicates
or conditions

Result: A value is assigned to all MV-observations using SVDimpute
begin

/* Initialisation: */
Load data in matrix A
Record all MV indices in a list of tuples L

/* Preprocessing */
for point (i, j) in L do

Substitute A(i, j) = mean(row i from A)

/* Iterations: initialise a change variable and do iterations until they result in a
change > 0.01 (or other threshold) */

while change > 0.01 do
i. compute the SVD for A = UΣV T

ii. find largest singular value, σ, and singular vectors, u and v, corresponding
to it
/* The algorithm can also use the top k singular values and corresponding
vectors, then u and v are matrices of dimensions n×k and k×m, respectively,
and σ is a diagonal k × k matrix. */

iii. predict A as Ã = u× σ × v
iv. update A by substituting in positions L the entries from Ã
v. calculate change due to substitution

Return completed table
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List of Acronyms

AF AlphaFold. 16

AF-M AlphaFold-Multimer. 70

AP Affinity Purification. 3

AUC Area Under the Curve. 52

BioGRID Biological General Repository for Interaction Datasets. 46

BMI Body-mass Index. 13

CI Confidence Interval. 81

CORUM Comprehensive Resource of Mammalian Protein Complexes. 46

DO Disease Ontology. 101

FDR False Discovery Rate. 37

FP False Positives. 67

FPR false positive rate. 52

GO Gene Ontology. 15

GWAS Genome-wide association studies. vi, 5

HuRI The Human Reference Protein Interactome Mapping Project. 15

i.i.d. independent identically distributed. 49

IBD Inflammatory Bowel Disease. 90
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List of Acronyms

IFT Intraflagellar Transport. 46

IP Immunoprecipitation. 3

kNN k-Nearest Neighbours. 32

LD Linkage Disequilibrium. 94

LFQ Label-free Quantification. 20

MCAR Missing Completely at Random. 26

MCL Markov Clustering. 12

MGD Mouse Genome Database. 5

MGI Mouse Genome Informatics. x, 94

ML Machine Learning. 31

MNAR Missing not at Random. 26

MS Mass-spectrometry. 17

MV Missing Values. 3

MWU Mann-Whitney U test. 53

OMIM Online Mendelian Inheritance in Man. 101

OR Odds Ratio. 81

PCA Protein Complementation Assay. 7

PCA Principal Component Analysis. 3

PDB Protein Data Bank. 69

PPI Protein-Protein Interaction. 2

PR Precision-Recall. 53

PSM Peptide Spectral Measurements. 79
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List of Acronyms

r.v. random variable. 49

RR Risk Ratio. 82

RSD Reproductive System (disease-mapped). 102, 103

SA Socio-affinity. 13

SCilS European Training Network SCilS. 3

SNP Single-Nucleotide Polymorphism. 83

STRING Search Tool for the Retrieval of Interacting Genes/Proteins. 104

SVD Singular Value Decomposition. 3

TP True Positives. 67

TPR true positive rate. 52

WeSA Weighted Socio-affinity. 47

WT Wild-Type. 25

Y2H Yeast Two-Hybrid. 7
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Glossary of Terms

adjacency matrix a matrix representation of a network. 11

Affinity Purification experimental protocol to identify all proteins sticking to a target;
here, often also Strep-AP. 20

AP-like experiments aiming to determine at once the neighbourhood of a target bait
protein; they use immobilised bait and from a supplemented lysate pull down the
proteins which somehow directly or indirectly stick to the bait. 3

bait In affinity proteomics, normally, the protein to which a tag is attached (can also
be “empty”). In other methods without a tag, a bait is the protein starting the
experiment; for instance, in a BioID experiment that is the protein fused with the
biotin ligase which can biotinylate the proteins which come in close proximity. 3

beads molecules which bind to a specific tag. 8

BioGRID a database recording experimental interaction data. 46

BioPlex a study of the human interactome using a single-tag protocol; release v.3.0
identifies more than 15 thousand proteins. 45

bipartite network graphs whose nodes are split into two disjoin partitions with no inner
edges. 11

cell culture laboratory methods to grow cells. 3

cell line standard laboratory grown cells. 2

configuration model a model for constructing random graphs with a specified degree
distribution. 4

CRAPome Published dataset of contaminants in proteomics experiments. 38
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expression data information on proteins which are expressed (active) at the tested
timepoint. 12

FPR proportion of negatives which were falsely classified as positives, FP/(FP+TN).
52

fusion protein modification, fusing peptides together. 3

Gene Ontology a database with annotations of proteins in three categories: molecular
function, biological process and cellular component. 15

GWAS here, normally, a database containing variant-disease records from genome-
wide association studies. 5

hub node network node with a lot of connections. 11

idempotent matrix matrix which is invariant to squaring. 12

IntAct a database recording experimental interaction data. 44

interactome the network of protein-protein interactions. 1

mass-spectrometry A method for protein/ peptide identification. 19

matrix indirect connections between pairs of prey proteins from the same AP experi-
ment; modelled as a complete graph. 14, 44, 45

MGI, MGD a database containing mouse experimental records; specifically of inter-
est are genotype-phenotype records. 5

one-mode projection graph the graph obtained by connecting nodes from just one
partition of a bipartite graph if they share a neighbour. 11

optimal threshold threshold achieving best balance between TPR and FPR, here us-
ing the closest-to-(0,1) method. 52

pairwise study an experiment which is designed to test a specific single pair of proteins
for direct interaction. 7

PDB a database of protein and protein-interaction structures derived from experi-
ments. 69
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Pearson’s correlation coefficient (Pearson’s r) a measure of strength of the associa-
tion of the data to the line of best fit derived from the linear model. 104

precision true positives as a fraction of all predicted positives, TP/(TP+FP). 38

Precision-Recall curve a plot of recall (x-axis) and precision (y-axis) as the threshold
varies. 53

prey In affinity proteomics, normally, the proteins which stick to the bait after the wash-
ing steps. In other methods relying on a protein change rather than proteins
sticking together, such as biotinylation in BioID experiments, all changed (in the
example, biotinylated) proteins are referred to as preys. 3

Principal Component Analysis Principal Component Analysis captures the directions
(principal components) which capture the most of the variance of the data. 3

Protein Complementation Assay Experimental methods for testing a pairwise inter-
action using split signal proteins. 7

pseudocounts additional artificial counts. 80

pull-down a pairwise experiment working with purified protein. 8

recall equal to TPR, TP/(TP+FN). 38

ROC curve A plot of TPR versus FPR under a varying threshold. 52

scale-free the property of a graph degree distribution to follow a power-law. 11

single cell analysis allows for the examination of a single cell and subsequent cell-cell
comparison. 9

spoke connections between prey proteins and the bait in AP experiments; modelled
as a star graph. 44, 45

Strep-AP Affinity purification with a single Strep tag. 17

STRING A database of protein connections derived from 7 different channels: exper-
imental, databases, neighbourhood, fusion, co-occurrence, coexpression, litera-
ture mining.. 104

supernatant unbound protein obtained from a washing step in IP experiment. 19
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Glossary of Terms

SVDimpute amethod for MV imputation which uses SVD to consecutively decompose
the initial matrix and, then, predict an approximation based on a certain amount
of the top singular values and their corresponding singular vectors. 32

system (MGI) phenotypic classifications from the MGI ontology of phenotypes; it is
the first level of diversification in the ontology. 97

tag special peptide known to bind to particular molecules called beads. 8, 9

TPR see recall. 52

trait here, disease or feature annotations from GWAS. 84

transcription bursting interruptions of the steady Poisson-modelled process of mRNA
transcription. 9

transfection lab. introduction of protein in the cell. 3

Yeast Two-Hybrid Experimental system for testing pairwise interactions in yeast. 7
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