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Abstract

Statistical methods play a crucial role in modern astronomical research. The development and
understanding of these methods will be of fundamental importance to future work on large
astronomical surveys. In this thesis I showcase three different statistical approaches to sur-
vey data. I first apply a semi-supervised dimensionality reduction technique to cluster similar
high resolution spectra from the GALAH survey to identify 54 candidate extremely metal-poor
stars. The approach shows promising potential for implementation in future large-scale stellar
spectroscopic surveys. Next, I employ a method to classify sources in the Gaia survey as stars,
galaxies or quasars, making use of additional infrared photometry from CatWISE2020 and
discussing the importance of applying adjusted priors to probabilistic classification. Lastly,
I utilise a method to estimate the rotational parameters of star clusters in Gaia, with an
application to open clusters. This is done by considering the rotation of a cluster as a 3D
solid body, and finding the best fitting parameters by sampling constructed likelihood func-
tions. The methods developed in this thesis underscore the significant contributions statistical
methodologies make to astronomy, and illustrate how the development and application of sta-
tistical methods will be essential for extracting meaningful insights from future large scale
astronomical surveys.

ix



x Abstract



Zusammenfassung

Statistische Methoden spielen in der modernen astronomischen Forschung eine entscheidende
Rolle. Die Entwicklung und das Verständnis dieser Methoden sind von grundlegender Bedeu-
tung für die zukünftige Arbeit an großen astronomischen Durchmusterungen. In dieser Arbeit
stelle ich drei verschiedene statistische Ansätze für Durchmusterungsdaten vor. Zunächst
wende ich ein halbüberwachtes Verfahren zur Dimensionalitätsreduktion an, um ähnliche
hochauflösende Spektren aus der GALAH-Durchmusterung zu bündeln und 54 Kandidaten
für extrem metallarme Sterne zu identifizieren. Der Ansatz zeigt ein vielversprechendes
Potenzial für den Einsatz in zukünftigen groß angelegten stellaren spektroskopischen Durch-
musterungen. Als Nächstes wende ich eine Methode zur Klassifizierung von Quellen in der
Gaia-Durchmusterung zu Sternen, Galaxien oder Quasare an, wobei ich zusätzliche Infrarot-
Photometrie von CatWISE2020 verwende und die Bedeutung der Anwendung angepasster Pri-
oritäten für die probabilistische Klassifizierung erörtere. Schließlich verwende ich eine Meth-
ode zur Schätzung der Rotationsparameter von Sternhaufen in Gaia, mit einer Anwendung
auf offene Sternhaufen. Dabei wird die Rotation eines Sternhaufens als 3D-Volumenkörper
betrachtet, und die am besten passenden Parameter werden mit Hilfe von Stichproben kon-
struierter Likelihood-Funktionen ermittelt. Die in dieser Arbeit entwickelten Methoden un-
terstreichen den bedeutenden Beitrag, den statistische Methoden für die Astronomie leisten,
und verdeutlichen, wie wichtig die Entwicklung und Anwendung statistischer Methoden für
die Gewinnung aussagekräftiger Erkenntnisse aus künftigen groß angelegten astronomischen
Durchmusterungen sein wird.
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1
Prolegomenon

1.1 Outline
The thesis explores promising areas in astrostatistics for more efficient extraction of astro-
nomical results from, and applications in, future astronomical surveys.

Chapter 2 begins with an overview of the history and future prospects of astrostatistics
and large astronomical surveys. It also delves into the different surveys and the astronomical
objects that are under consideration.

In Chapter 3, a semi-supervised approach is presented for identifying various stellar types
in large spectroscopic surveys, particularly when only a limited number of stellar types are
known. The method utilises t-stochastic neighbor embedding (t-SNE), a dimensionality re-
duction technique that facilitates visualising object similarity in a 2D space. By overlaying
unknown objects near known objects, the method improves the identification process, with
close proximity suggesting (in this case) spectral similarity. This technique is applied to
the Galactic Archaeology with HERMES (GALAH) spectroscopic survey to identify rare,
extremely metal-poor stars.

Shifting the focus from spectra, Chapter 4 introduces a statistical method to classify
extragalactic sources into three classes – stars, galaxies, and quasars – based on their positions
and photometry in the Gaia survey. This method builds upon the Gaussian Mixture and Gaia-
only model discussed in Bailer-Jones et al. (2019), by incorporating two gradient boosted
models, and infrared photometry from the CatWISE 2020 survey. Additionally a latitude and
magnitude-dependent prior is applied to enhance the representativeness of the results.

Chapter 5 investigates the evidence of solid-body rotation in star clusters using Gaia data.
A method inspired by the work of Sollima et al. (2019) is employed to identify and quantify
rotation focusing on open clusters. The validity of the method is tested using simulated
clusters and known globular clusters, before being applied to open clusters.

The final chapter concludes the thesis, providing a brief discussion on future prospects
and an outlook in the field of astrostatisics and large surveys.
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2
Background

2.1 Astronomy and Statistics

2.1.1 Brief history

Astronomy and statistics have an interwoven history. The astronomer is restricted to observ-
ing external characteristics of objects populating the universe, and inferring from these data
their properties and underlying physics (Feigelson, 2009). Even in ancient times, civilisations
conducted significant quantitative measurements of celestial phenomena. One of the earliest
statistical methods, developed by the Greek astronomer Hipparchus, involved the calculation
of a form of arithmetic mean and variance. By observing the duration of the day and the
interval between solstices, Hipparchus estimated the day’s variability by employing half the
range of his measurements (Plackett, 1958).

The challenges encountered in astronomy prompted early researchers to devise new sta-
tistical methodologies. Initially, statistics in the 18th century focused on data collection and
compilation but gradually evolved to concentrate on the development of mathematical tech-
niques for data analysis and interpretation. The late 18th and 19th centuries witnessed the
ascendance of statistical methods in astronomy, thanks to mathematical visionaries like Jo-
hann Carl Friedrich Gauss and Pierre-Simon Laplace. Both Gauss and Laplace developed the
method of least squares within a probabilistic framework, demonstrating its superiority in de-
termining orbital parameters from astronomical observations (Feigelson, 2009). Consequently,
the method of least squares swiftly emerged as the principal tool connecting astronomical ob-
servations with celestial mechanics. Gauss also pioneered methods for handling observational
measurement errors and introduced his renowned Gaussian, or “Normal”, distribution, which
was commonly known as the “astronomical error function” throughout much of the 19th cen-
tury (Gauss and Stewart, 1995).

For early 20th century observational astronomers, the method of least squares remained
the primary statistical tool. One notable example of a linear relationship derived from observa-
tions was Hubble’s Law, which describes the expansion of the universe by establishing a linear
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equation between the recessional velocity of external galaxies and their proper distance (Hub-
ble, 1929). Despite this, two significant statistical advancements, namely Bayes’ Theorem
by Thomas Bayes (Bayes and Price, 1763) and Maximum Likelihood Estimation by Ronald
Fisher (Fisher, 1922), were sporadically applied in astronomy throughout the early 20th cen-
tury. By the 1980s and 1990’s however, Maximum Likelihood Estimation, in particular, had
already left a profound impact on a variety of fields, including image restoration (Lucy, 1974)
and the calculation of the galaxy luminosity function in extragalactic astronomy (Efstathiou
et al., 1988).

Early in the 21st century, however, astronomy found itself experiencing an unprecedented
flood of data (Ball and Brunner, 2010). Due to the rapid advancement of astronomical in-
struments, particularly the CCD, and significant progress in computer technology, the field of
astronomy witnessed remarkable developments in the quantity of available data, and in greatly
enhanced data processing and storage capabilities. Data-driven disciplines are increasingly
faced with the problem of how to store, organise, use, and interpret the enormous amounts of
data being generated by new research infrastructure (Szalay and Gray, 2001). This push into
“big data” has seen astrostatistical methodology grow rapidly and emerge as an active area of
research.

2.1.2 Astrostatistics
Astrostatistics, an interdisciplinary field that merges statistical techniques and data science
with the realm of astronomy, holds immense significance in the extraction of meaningful infor-
mation from vast datasets gathered through large-scale astronomical surveys. Its objectives
encompass identifying data patterns, discerning trends, and characterising novel astronomical
objects. Moreover, astrostatistics serves as a vital component in the planning and design
of astronomical surveys, aiding in optimising observations and data collection for maximal
scientific returns.

One of the foremost challenges encountered in astrostatistics involves grappling with sub-
stantial levels of noise and uncertainty within the data. This encompasses addressing sources
of error like measurement noise, as well as managing missing or incomplete data. To over-
come these hurdles and extract reliable information from the data, we can employ a variety
of techniques, including Bayesian inference and machine learning.

Astrostatististics is applicable to a wide array of astronomical problems and will play a
pivotal role in forthcoming large-scale astronomy surveys such as the imminent Legacy Survey
of Space and Time (Ivezic et al., 2019) and ESA’s Euclid mission (Euclid Collaboration et al.,
2022). These surveys will amass enormous amounts of data, necessitating the implementation
of astrostatistical methods for data analysis and comprehension. In addition to traditional
astronomical surveys, astrostatistics also assumes a vital role in time-domain astronomy, that
is, the collection of data over temporal intervals. This field encompasses the study of variable
stars, supernovae, and other transient phenomena. Astrostatistical techniques are employed
to model the light curves of these objects, facilitating their classification into distinct types
(e.g., Richards et al., 2011; Sanders et al., 2015; Lochner et al., 2016).

Cosmology is another realm where astrostatistics finds extensive application. Within the
study of the universe’s large-scale structure and evolution, astrostatistics enables the analysis
of vast-scale galaxy surveys and the exploration of matter distribution throughout the cosmos.
This includes investigations into the cosmic microwave background radiation, the distribution
of galaxy clusters and quasars. By scrutinising such observed and simulated data, we can
glean insights into the properties of dark matter and dark energy, while also deepening our
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Figure 2.1: Highest redshift quasar found by Bañados et al. (2018), at z „ 7.5.
Image credit: Bañados et al. (2018)

understanding of the universe’s origin and evolution (e.g., Brehmer et al., 2019; Ntampaka
et al., 2020; Villaescusa-Navarro et al., 2021). Techniques for data mining large surveys
for quasars, including AllWISE, DECALS, and the Sloan Digital Sky Survey (SDSS) have
led to significant progress in the hunt for high-redshift quasars. Focusing on this search,
several groups have used artificial neural networks (Claeskens et al., 2006; Carballo et al.,
2008), SVM and learning vector quantisation (Zhang and Zhao, 2003), and kernel density
estimation (Richards et al., 2009b). Many of these works combine multiwavelength data,
particularly X-ray, optical and radio. An example of a high-redshift quasar found through
these methods can be seen in Fig.2.1, taken from the work of Bañados et al. (2018).

Astrostatistics also proves invaluable in the realm of exoplanetary studies, focusing on
planets orbiting stars beyond our solar system. Typically, data from exoplanet surveys are
sparse and tainted by noise; see Fig. 2.2 for an example of a lightcurve from a seminal paper
by Southworth (2011). Astrostatistical methods prove invaluable in modelling and analysing
this type of data to identify exoplanets. These methods involve the application of algorithms,
which can effectively classify exoplanets based on their specific properties by extracting infor-
mation, potentially not seen with traditional methods from large-scale surveys (e.g., Márquez-
Neila et al., 2018; Shallue and Vanderburg, 2018; Kunimoto and Matthews, 2020; Giacalone
et al., 2021).

Astrostatistics stands as a rapidly expanding field critical to the exploration of astronomy
and cosmology. By uniting statistical techniques, data science, and astronomical studies,
astrostatistics empowers us to extract valuable insights from extensive datasets and unlock
novel discoveries about the universe. As astronomical surveys advance, accumulating ever-
increasing volumes of data, the role of astrostatistics will continue to grow in importance.
There are five key reasons for our interest in this work: accurate inference, characterising
uncertainty, dealing with complex data, dealing with incomplete and/or biased data and,
lastly, the most fruitful use of the methodology, data driven discoveries:
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Figure 2.2: An example of a transiting exoplanet. Image credit: Southworth (2011)

• Accurate inference: Astronomy is an observational science and our understanding of
the universe relies heavily on interpreting data collected from telescopes and other in-
struments. The astrostatistical method allows us to make robust inferences and draw
meaningful conclusions from these observations. By ensuring the accuracy and relia-
bility of our statistical analyses, we can confidently interpret the data and make sound
scientific claims about the nature of celestial objects and phenomena.

• Characterising uncertainty: Uncertainty is an inherent aspect of any scientific measure-
ment or observation. Astrostatistical methodology provides us with tools to quantify
and characterise this uncertainty in a rigorous manner. By understanding the uncer-
tainties associated with our measurements, we can establish the confidence levels of our
results and avoid drawing overly confident or misleading conclusions. This is particu-
larly crucial when making predictions or making claims about rare or extreme objects
or events.

• Dealing with complex data: Astronomical datasets are often complex, featuring various
sources of noise, systematic effects, and correlations. Astrostatistical techniques help
us model and account for these complexities, allowing us to separate genuine astrophys-
ical signals from the noise and other confounding factors. This enables us to extract
valuable information from the data and uncover subtle patterns fundamental to our
understanding of the universe.

• Handling incomplete and biased data: We frequently encounter incomplete and bi-
ased data due to various observational limitations and selection effects. Astrostatis-
tical methods provide us with powerful tools to handle such data and mitigate the
impact of these limitations. By carefully accounting for selection biases and develop-
ing appropriate statistical corrections, we can obtain more accurate and representative
measurements of astronomical properties.

• Data driven discovery: With the advent of large-scale astronomical surveys and projects,
we are witnessing an unprecedented growth in the volume and complexity of data.
Astrostatistical techniques play a crucial role in analysing and extracting meaningful
information from these massive datasets. By developing and applying sophisticated
statistical methods, we can identify subtle trends, patterns, and correlations that might
have otherwise gone unnoticed.
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Astrostatistics will remain indispensable for data analysis, survey design, and optimisa-
tion, fueling continued progress in the field, and this thesis aims to showcase its application
to these areas.

2.1.3 Statistical approaches

Having outlined some of the diverse application of statistics within astronomy, we turn our
attention to the framework of astrostatistics and expand upon concepts described in Sec-
tion 2.1.2. Two key components in astronomy are inference and prediction. Inference creates
a mathematical model of the data generation process to formalise understand or test a hy-
pothesis about how the system behaves. Prediction aims at forecasting unobserved outcomes
or future movements, such as orbital dynamics, or the redshift of an object.

In statistics and machine learning (ML), there exists a distinction between the goals of
prediction and inference. While both approaches can be employed for prediction and inference,
statistical methods have traditionally focused on inference by constructing and fitting project-
specific probability models. These models enable the computation of a quantitative measure
of confidence in the presence of a discovered relationship, indicating that it represents a
genuine effect rather than mere noise. Moreover, with sufficient data, assumptions such as
equal variance can be explicitly verified, and the model can be refined if necessary.

On the other hand, ML primarily emphasises prediction by utilising versatile learning
algorithms to identify patterns within complex and extensive datasets. ML methods prove
particularly valuable when dealing with “wide data”, where the number of input variables
exceeds the number of subjects, as opposed to “long data”, where the number of subjects
surpasses the input variables. ML techniques require minimal assumptions about the data-
generating system, allowing them to be effective even in the absence of a carefully controlled
experimental design and in the presence of intricate nonlinear interactions. However, de-
spite delivering compelling prediction outcomes, the lack of an explicit model can make it
challenging to directly connect ML solutions with existing astronomical knowledge.

As the number of input variables and potential associations among them increases, the
complexity of the model needed to capture these relationships also grows. This presents
a challenge for statistical inference, as the precision of inferences tends to diminish. In this
context, the boundary between statistical approaches and ML approaches becomes less distinct
and more ambiguous. The intricate interplay between variables and the intricate nature of
the relationships make it harder to rely solely on traditional statistical methods, prompting
the need for ML techniques that can effectively handle such complexity.

I will briefly define two fundamental approaches in ML: supervised and unsupervised
learning. Figure 2.3, from scikit-learn, elegantly illustrates the methods one can consider
given the data at hand. I will focus mainly on classification, a core aspect of this thesis.

Supervised learning involves training a model using a labelled dataset, where each data
point is associated with a known target variable or class label. The objective is to establish a
mapping between the input variables and the desired output variable, enabling the model to
make predictions on new, unseen data. In the context of astrostatistical classification tasks,
supervised learning algorithms can be employed to assign objects into predefined classes or
categories based on their input features. For instance, in the identification of various stellar
types, a supervised learning algorithm can be trained on labelled spectroscopic data, with
each spectrum annotated with a specific stellar type. Subsequently, the trained model can be
utilised to classify new spectra into the appropriate stellar type based on their features.
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Figure 2.3: The statistical approach flow chart. Image credit: The team at Scikit-
learn (Pedregosa et al., 2011).

Classification, an integral task in machine learning, holds significant importance in as-
trostatistics. It involves assigning data points or objects to predefined categories or classes
based on their features. Classification algorithms learn patterns and relationships from la-
belled training data, enabling them to make predictions on unseen instances. Classification
techniques prove valuable in identifying different types of astronomical objects, including
stars, galaxies, or quasars, based on their observed properties. By training a classification
model on labelled data, it becomes possible to classify new observations into the appropriate
astronomical class, thereby facilitating automated object identification and categorisation.

On the other hand, unsupervised learning deals with datasets that lack explicit labels or
target variables. The main objective is to uncover inherent patterns, structures, or relation-
ships within the data without any predefined categories or classes. Unsupervised learning
algorithms strive to identify natural clusters or groups within the data, discover underly-
ing dimensions, or detect anomalies. In the realm of astrostatistics, unsupervised learning
techniques find application in various tasks, such as clustering similar objects based on their
properties or detecting rare astronomical phenomena. For example, unsupervised learning al-
gorithms can be applied to categorise galaxies into distinct groups based on their observational
characteristics, without prior knowledge of their classes or types.
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2.2 Large astronomical surveys
Astronomical surveys are systematic observations of the night sky on a large scale, aiming
to discover and map the positions and properties of the objects detected. These surveys
have evolved significantly since the early 20th century, when photographic plates and more
advanced telescopes were introduced to capture detailed sky images.

One of the most notable surveys in the history of astronomy is the Harvard Photometry,
also known as the Harvard College Observatory Photographic Plate Collection. Initiated in
the late 19th century, this survey utilised photographic plates to record images of the night
sky. These images were then used to measure the brightness and positions of stars and other
celestial objects, resulting in the creation of the first comprehensive star catalogue (Turner,
2003).

The advent of digital imaging technology in the late 20th century revolutionised the field
of astronomy, enabling more precise and efficient surveys. Among these advancements, the
Sloan Digital Sky Survey (SDSS) (York et al., 2000) stands out as a significant milestone. The
SDSS, which began in 1998 and has continued with evolving instrumentation and objectives
to the present day, was initially a large-scale astronomical survey conducted using a dedicated
telescope at the Apache Point Observatory in New Mexico, USA. Equipped with a state-of-the-
art camera, the telescope captured detailed images of the night sky. The primary objective
of the SDSS was to map the three-dimensional structure of the universe by observing and
measuring the properties of galaxies, quasars, and stars such as the redshifts for extragalactic
objects (Abazajian et al., 2003) . Covering about one-quarter of the entire sky, the survey
produced a massive dataset containing over 930,000 galaxies, 120,000 quasars, and more
than a billion stars. The SDSS also made significant contributions to our understanding of
dark matter, unveiling its distribution in the universe by studying the motion and spatial
arrangement of galaxies.

The success of the SDSS inspired the initiation of other large-scale astronomical surveys.
Two notable ongoing surveys are the Gaia mission and the GALAH survey. Large astro-
nomical surveys such as GALAH and Gaia (described in more detail below) offer several
advantages over smaller, targeted surveys. Their wide sky coverage increases the likelihood
of discovering rare or unique objects. The larger sample size facilitates statistical analysis
and the identification of patterns and trends in the data. Moreover, these surveys allow for
the observation and study of a diverse range of objects and phenomena, leading to a more
comprehensive understanding of the universe. In the future, large astronomical surveys will
continue to play a crucial role in advancing our understanding of the universe. Surveys like
Euclid will collect even more extensive data, enabling new discoveries and providing deeper
insights into the properties and evolution of the universe.

2.2.1 Galactic Archaeology with HERMES (GALAH) Survey
GALAH – the GALactic Archaeology with HERMES (High Efficiency and Resolution Multi-
Element Spectrograph) survey – is a large-scale astronomical survey aimed at studying the
structure, evolution, and history of the Milky Way galaxy. Launched in 2013, the GALAH
Survey is a collaboration between institutions in Australia, Europe, and Asia, and involves
the use of the aforementioned HERMES instrument, which is mounted on the 3.9-meter
Anglo-Australian Telescope (AAT) in New South Wales, Australia. HERMES is a high-
resolution spectrograph capable of measuring the spectra of up to 400 stars simultaneously,
providing detailed information about the chemical composition, age, and kinematics of these
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stars (Simpson et al., 2016). The primary objective of GALAH is to obtain a comprehensive
understanding of the Milky Way’s formation and evolution (De Silva et al., 2015). To achieve
this, GALAH aims to collect approximately 1,000,000 high-resolution stellar spectra (with a
resolution of approximately 28,000) for elemental abundance analysis. GALAH strives for a
precision of 0.05 dex in elemental abundance, necessitating a signal-to-noise ratio of „ 100.
Consequently, the observed magnitude range is limited to 12 < V < 14 towards the Galactic
plane. Based on these constraints, it is anticipated that the final GALAH survey sample
will consist of roughly 77% thin disk stars, 22% thick disk stars, 0.8% bulge stars, and 0.2%
halo stars (Martell et al., 2017). The chemical compositions of these stars will yield insights
into the formation and evolution of the Milky Way, including the roles played by mergers,
accretion, and star formation in shaping the Galaxy’s structure and chemical makeup.

This thesis uses detailed high resolution GALAH spectra to identify extremely metal-poor
stars within the survey, which is discussed in Chapter 3.

2.2.2 Gaia Survey
The Gaia survey is an astrometry mission of the European Space Agency (ESA) that was
launched in 2013. The primary goal of the mission is to create a precise three-dimensional
map of the Milky Way, by measuring the position, distance, and motion of over a billion stars
in our Galaxy (Gaia Collaboration et al., 2016). One of the most significant achievements of
the Gaia survey is the creation of the largest and most precise 3D map of the Milky Wayto
date. This map shows the position and motion of stars in our galaxy in unprecedented detail,
allowing study of the structure, dynamics, and evolution of the Galaxy. Gaia’s measurements
have enabled the study of the properties and behavior of stars in our galaxy, including their
formation, evolution, and interactions. Gaia has also been used to study the distribution and
composition of dark matter in the Milky Way and to search for exoplanets (i.e., planets outside
our solar system) by detecting their gravitational influence on nearby stars. In addition, Gaia
has enabled incredibly accurate 3D mapping of dust within our Galaxy. Overall, the Gaia
survey is a groundbreaking mission that has revolutionised our understanding of the Milky
Way and the universe.

This thesis uses astrometry and broad band photometry in the G, GBP, and GRP bands for
about 1.8 billion sources in Gaia Early Data Release 3 (eDR3) (Riello et al., 2021) to classify
sources into stars, galaxies and quasars discussed in Chapter 4. Chapter 5 uses the precise
positions, distances, and proper motions in Gaia Data Release 3 (DR3) (Gaia Collaboration
et al., 2022), to estimate the internal rotational properties of clusters, particularly focusing
on open clusters.

2.2.3 CatWISE2020
In 2013, NASA’s Wide-field Infrared Survey Explorer mission (WISE) was repurposed as NE-
OWISE, with a primary focus on searching for near-Earth objects. The mission’s AllWISE
catalog, released in the same year, was the outcome of combining multiple exposures from the
first year of WISE surveying. Since then, NEOWISE has been releasing individual exposures
annually. Meisner et al. (2019) utilised the unWISE processing to create an image atlas by
combining the data from the 2010 and 2011 exposures used in AllWISE with the 2013-2016
NEOWISE data. This was further utilised by Schlafly et al. (2019) to generate an unWISE
catalog, which identifies the sources found in these combined exposures using a point-source
photometry code called “crowdsource”, specifically designed for crowded fields. CatWISE is a
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program that aims to catalogue sources by combining data from the WISE and NEOWISE
all-sky surveys at wavelengths of 3.4 and 4.6µm (W1 and W2). The CatWISE Preliminary
Catalogue comprises 900,849,014 sources, measured using data collected from 2010 to 2016.
This dataset represents a significant increase in both the number of exposures (four times as
many) and the time baseline (over ten times as long) compared to the AllWISE Catalogue.
CatWISE employs the software from AllWISE to measure sources in coadded images created
from six-month subsets of this data, with each subset covering the entire sky during a partic-
ular epoch. The CatWISE2020 Catalogue (Marocco et al., 2021), however, extends the time
baseline by two years compared to the CatWISE Preliminary Catalogue. It also utilises the
“Crowdsource” code as the detection software. These two enhancements result in approxi-
mately twice as many sources being included in the CatWISE 2020 Catalogue compared to
the CatWISE Preliminary Catalogue, with a total of 1,890,715,640 sources spanning the entire
sky. The photometry in the W1 and W2 bands is used in addition to the Gaia photometry in
Chapter 4, as the combined use of infrared data with optical photometry should, in principle,
enhance the performance of an extragalactic classifier.

2.3 Astronomical objects
A primary focus of this thesis is on classification and the various methods we may be able to
use to identify different astronomical objects. The following section gives a description of the
types of objects considered: metal-poor stars, extragalactic objects and star clusters.

2.3.1 Metal-poor stars
The metallicity of a star is typically expressed as its [Fe/H] ratio, which logarithmically
compares the amount of iron in the star (relative to hydrogen) to the ratio of those elements
found in the Sun; a star with [Fe/H] = 0 would have the same ratio of iron to hydrogen as the
Sun, while a star with [Fe/H ] “ ´1 would have 10% of the Sun’s iron abundance. Stars with
[Fe/H] ă ´3 – that is, stars with less than 0.1% of the Sun’s iron abundance – are classified
as extremely metal-poor (EMP) stars.

EMP stars are of particular interest as they are among the oldest and most chemically
primitive objects in the universe. These stars formed during the early universe when there were
very few heavy elements, and the universe was primarily composed of hydrogen and helium
(e.g., Beers and Christlieb, 2005). Metal-poor stars provide information about the process
of stellar nucleosynthesis, which is the process by which elements heavier than hydrogen and
helium are formed in stars. Metal-poor stars have a low metallicity because the gas out of
which they formed had not yet been significantly enriched by the nucleosynthetic products
of previous generations of stars, which disperse heavy elements into the interstellar medium
through stages of stellar evolution and supernovae. As such, EMP stars offer valuable insights
into the conditions that existed during the universe’s infancy, as well as the processes that
led to the formation of the first stars (Frebel and Norris, 2015).

One of the most significant challenges in studying EMP stars is their rarity. Since these
stars are chemically primitive and formed early in the universe’s history, they tend to only
be found in the oldest parts of the Galaxy. The majority of EMP stars are located in the
halo of the Milky Way (Tumlinson, 2010), a region surrounding the Galaxy’s central bulge
that contains some of the Galaxy’s oldest stars. Finding and studying these stars requires
specialised techniques and instruments, which limits our ability to study them in detail.
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Despite these challenges, significant strides have been made in understanding EMP stars.
One notable discovery in this field was the identification of HE 0107-5240, an EMP star with
[Fe/H] ă ´5 [dex]. This star was discovered in 2001 by Christlieb et al. (2002) using the
Hamburg/ESO survey, a large-scale survey of the southern sky that aimed to identify metal-
poor stars. The discovery of HE 0107-5240 was significant as it was the first star found with
[Fe/H] ă ´5, indicating its extremely low metal abundance. Subsequently more metal-poor
stars have been found over the years, and the lowest [Fe/H] star to date is SMSS J031300.36-
670839.3, which Keller et al. (2014) estimated to have a metallicity of [Fe/H] ă ´7 [dex],
later revised to be [Fe/H] ă ´6.53 by Nordlander et al. (2019).

As noted above, metal-poor stars are typically found in the halo of the Milky Way (e.g.,
Cordoni et al., 2021; Sestito et al., 2019; An et al., 2013). The halo is the roughly spherical
region that surrounds the disk of the galaxy and contains the oldest stars. Metal-poor stars in
the halo are thought to have formed early in the history of the Milky Way, when the Galaxy
was still forming and there were smaller amounts of heavy elements available. These stars are
also found in globular clusters, which are tightly packed groups of stars that orbit around the
galaxy. Globular clusters are some of the oldest structures in the Milky Way, and hence the
metal-poor stars in these clusters can provide important information about the early universe.
Studies of metal-poor stars have led to important discoveries in astrophysics. For example,
the metal-poor star HD 140283, also known as the Methuselah star, has been found to be one
of the oldest stars in the Milky Way. Its age was at one point estimated to be around 14.5
billion years (Bond et al., 2013), which is greater than the consensus age of the universe itself;
but whatever its true age, the star still has significant amounts of heavy elements, indicating
that there must have been at least one (and likely more) preceding generation of stars. This
discovery strongly suggests that there are even older stars that have not yet been found.

In addition to being important for understanding the early universe, metal-poor stars are
also useful for studying the properties of stars themselves. Metal-poor stars have a simpler
chemical composition than stars with a higher metallicity, which can make them easier to
model and understand, which in turn can help us to better understand the processes that
govern the evolution of stars (e.g., Placco et al., 2019; Sakari et al., 2018; Spite et al., 2018;
Lee et al., 2013).

Metal-poor stars are typically identified through spectroscopic analysis, utilising methods
like equivalent width measurements to compare absorption lines of elements such as calcium
(Ca) and iron (Fe) with metal-poor spectral templates. This allows for the derivation of stellar
parameters including effective temperature, surface gravity, and overall metallicity. However,
despite EMP stars showing few spectroscopic absorption features from metals, trying to iden-
tify a relatively line-free spectrum in real spectra that contain noise can in practice be prob-
lematic. Photometric surveys, such as the SkyMapper survey (Da Costa et al., 2019) in the
southern hemisphere, have also proven effective in finding metal-poor stars by examining color
indices like B-V or U-B, as metal-poor stars tend to have bluer colors compared to their metal-
rich counterparts. Subsequently, these candidates undergo spectroscopic follow-up. Given the
rarity of metal-poor stars and the high number of large spectroscopic and photometric surveys,
advancements in computing power and the development of efficient statistical techniques have
facilitated more effective methods for exploring these surveys. Chapter 3 describes a potential
statistical methodology that could be employed for this purpose, as well as for identifying any
other stellar type of interest.
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2.3.2 Extragalactic objects
Extragalactic objects are celestial bodies that are located beyond the boundaries of our Milky
Way. These objects offer unique opportunities to explore the Universe on a larger scale, and
to test our understanding of astrophysical processes under extreme conditions. Among the
various broad categories of extragalactic objects, quasars and galaxies are perhaps the most
intriguing and scientifically well-studied.

Quasars, short for "quasi-stellar objects," are located at cosmological distances and pow-
ered by matter accretion onto supermassive black holes. They serve as probes for black hole
physics and the early Universe (e.g, Croom et al., 2009). Quasar spectra reveal broad emission
lines, indicating gas motion and providing information about the gas distribution. Studying
quasars has revealed important properties and constraints on the growth of supermassive
black holes and host galaxies. Absorption lines in quasar spectra, generally due to foreground
material, shed light on the intergalactic medium and early galaxy formation.

Galaxies, on the other hand, are vast collections of stars, gas, dust, and dark matter
that trace the Universe’s structure and evolution, dark matter and dark energy, and star and
planet formation. The two categories of objects are not completely independent; quasars’ high
luminosity, resulting from accretion onto their black holes, generates strong radiation pressure
and outflows that impact surrounding gas and stars, potentially influencing star formation
and galaxy evolution.

As quasars emit across the entire electromagnetic spectrum they can be identified in
optical surveys such as the SDSS by searching for point sources with unusual colors or strong
emission lines, in X-rays surveys using telescopes like Chandra due to high energy emissions
from jets and accretion disks, in radio wavelengths using instruments such as the Australia
Telescope Compact Array, and in infrared surveys such as the Wide-field Infrared Survey
Explorer (WISE). This results in many different approaches for finding quasars, the most
straightforward being simple colour selection (Schneider et al., 2007), ranging to Bayesian
probabilistic methods (e.g., Bailer-Jones et al., 2019; Richards et al., 2009a) and then machine
learning methods using artificial neural networks (Yèche et al., 2010).

Galaxies exhibit a diverse range of spectral features that provide crucial information about
their physical properties and evolution. By analysing galaxy spectra, we can uncover details
about star formation, the presence of young or old stars, gas and dust distribution, interstellar
medium composition, and the occurrence of active galactic nuclei and other exotic phenom-
ena. These spectra offer insights into the star formation history, chemical enrichment, and
dynamical evolution of galaxies. Moreover, galaxies serve as valuable probes for studying
dark matter, which constitutes a significant portion of the Universe’s matter. By observing
the motions of stars and gas within galaxies, we can infer the distribution and quantity of
dark matter, leading to the discovery of dark matter halos that extend beyond the visible
components and shape the large-scale structure of the Universe.

Morphology, or shape, is another crucial aspect of galaxies. They are broadly classified
into three main types: elliptical, spiral, and irregular. Elliptical galaxies possess a round or
oval shape and consist predominantly of old stars. Spiral galaxies, on the other hand, exhibit
a flattened disk-like structure with spiral arms containing young stars and gas. Irregular
galaxies lack a well-defined structure and do not fall within the standard classes defined in
the Hubble sequence, but typically show signs of star formation.

The properties of galaxies can be strongly influenced by their environment, with factors
like size, morphology, and star formation rate varying based on the density of surrounding
gas and other galaxies. The study of galaxy distribution and clustering has yielded valuable
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information about the large-scale structure of the Universe and the characteristics of dark
matter.

Technological advancements and improved observational techniques have revolutionised
the study of extragalactic objects, with observatories spanning the electromagnetic spectrum,
from radio waves to gamma rays, driving the exploration of the universe beyond the Milky
Way. Large-scale surveys like the SDSS and the Dark Energy Survey (Abbott et al., 2018)
have facilitated the study of galaxy and quasar distribution and clustering on unprecedented
scales, providing critical insights into the universe’s large-scale structure and its evolution
since the Big Bang.

Future studies of extragalactic objects will continue to push the boundaries of our un-
derstanding of the universe. Advances in technology, coupled with new facilities like the
James Webb Space Telescope and the Square Kilometer Array, will enable even more detailed
and sensitive observations. These developments will undoubtedly yield new insights into the
structure and evolution of the cosmos.

In Chapter 4, I present a statistical methodology for identifying quasars and galaxies using
astrometry and photometry within the Gaia survey.

2.3.3 Star clusters
Star clusters – associations of stars that formed together – are celestial objects that offer
crucial insights into the processes driving the formation and evolution of the stars of which
they are composed. Star clusters are generally classified as one of two types: open clusters
and globular clusters.

Open clusters are relatively small groups of up to a few thousand stars held together
by gravitational attraction. They are typically found in the disk of the Milky Way and are
characterised by their relative youth, with ages ranging from a few million to a few billion
years. Open clusters are key probes of the structure and history of the Galactic disk (Cantat-
Gaudin et al., 2019). They serve as excellent laboratories for studying stellar evolution, and
are excellent tracers used to follow the stellar metallicity gradient of the Milky Way (Yong
et al., 2005). Of particular relevance to this thesis, the study of the kinematics of OCs and
reconstructions of their individual orbits (Cantat-Gaudin et al., 2016) help us understand
radial migration (Anders et al., 2017) and the internal processes of dynamical heating (Quillen
et al., 2018).

Globular clusters, in contrast, are much larger and more tightly bound. They consist of
hundreds of thousands to millions of stars, forming roughly spherical collections with diameters
ranging from 10 to 200 light-years. Globular clusters are primarily situated in the halo of
the Milky Way, far from regions of active star formation (Gratton et al., 2012). They are
significantly older, with ages spanning 10 to 13 billion years. These clusters provide insights
into the structure and evolution of the Milky Way and offer glimpses into the early universe.
Their properties, such as ages, chemical compositions, and kinematics, help us understand
galactic formation processes.

The formation and evolution of open and globular clusters differ due to their distinct
characteristics. Open clusters are believed to form from the collapse of giant molecular clouds,
triggering the formation of multiple stars. Over time, tidal forces from the galaxy cause these
clusters to disperse. Globular clusters, on the other hand, have older stars and are more
densely packed, and their formation scenarios are less well understood. Their gravitational
interactions can lead to ejections and stellar collisions, the latter giving rise to peculiar objects
like blue stragglers.
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In addition to their individual significance, star clusters offer valuable information about
the formation and evolution of galaxies. The synchronised formation of stars within a cluster
allows us to study the interstellar medium and gain insights into chemical enrichment histories
and star formation mechanisms. Furthermore, the distribution of different types of clusters
within galaxies can help investigate different Galactic components, such as the halo and the
disk.

The parameterisation of clusters is an ongoing field of research, from studies of globular
clusters looking at their chemical compositions (e.g., Smith et al., 2000) to an overall census of
open clusters that can be found in Gaia (Cantat-Gaudin et al., 2019). However, the internal
rotation properties, especially for open clusters, are not well understood.

The identification of internal rotation within a cluster, whether it be a globular or open
cluster can be done in a few ways :

• Proper Motion and Radial Velocity measurements: By measuring the proper motions of
stars in a cluster, we can derive their tangential velocities. This information, combined
with the radial velocities, can provide a complete three-dimensional picture of stellar
motion (e.g., van Leeuwen et al., 2000; Vasiliev, 2019).

• Spatial Distribution Analysis: The spatial distribution of stars within a cluster can
provide insights into its rotation. Analysing the positions of stars relative to the cluster
center can reveal any systematic patterns or asymmetries that may indicate rotation.
Methods such as the center-of-mass techniques are often employed to estimate the
cluster center and assess its rotation (Lützgendorf et al., 2012).

• Modelling and Simulations: Complex dynamical models and simulations can be em-
ployed to study the internal rotation of star clusters. These models consider the gravi-
tational interactions between stars, including the effects of rotation and other relevant
factors. (e.g., Bekki, 2010; Combes et al., 1999) By comparing simulated models with
observational data, we can infer the rotation properties of star clusters.

In Chapter 5, I use the Gaia proper motions, radial velocities and, tests on simulated data
to estimate the rotational parameters of star clusters by considering each cluster as a 3D solid
body. I then apply the method to a list of open clusters with unknown rotational parameters.
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The GALAH Survey: A New Sample of

Extremely Metal-Poor Stars Using A
Machine Learning Classification Algorithm

This Chapter is based upon work done in Hughes et al. (2022b), and is the first insight into
applying a particular statistical technique on a large stellar spectroscopic survey to extract
interesting science in an efficient way. The focus on this work was classification methods,
and the ability to identify the proverbial “needle in a haystack”. I was the lead author and
responsible for redoing the GALAH data reduction of the spectra, and the subsequent analysis.
The co-authors (L. R. Spitler, D. B. Zucker, T. Nordlander, J. Simpson, G. S. Da Costa, YS.
Ting, C. Li) provided either helpful feedback on the data modelling and manuscript structure
or additional data to make this analysis rigorous. The remaining authors are the GALAH
builders, without whom this work would not have been possible. Follow-up work on the
identified candidates was done in Da Costa et al. (2023), but that work is not discussed in
this Chapter as I only provided the candidates.

Brief Summary

Extremely Metal-Poor (EMP) stars provide a valuable probe of early chemical enrichment
in the Milky Way. Here we leverage a large sample of „ 600, 000 high-resolution stellar
spectra from the GALAH survey plus a machine learning algorithm to find 54 candidates
with estimated [Fe/H] ď -3.0, 6 of which have [Fe/H] ď -3.5. Our sample includes „ 20%
main sequence EMP candidates, unusually high for EMP star surveys. We find the magnitude-
limited metallicity distribution function of our sample is consistent with previous work that
used more complex selection criteria. The method we present has significant potential for
application to the next generation of massive stellar spectroscopic surveys, which will expand
the available spectroscopic data well into the millions of stars.

17



18
The GALAH Survey: A New Sample of Extremely Metal-Poor Stars

Using A Machine Learning Classification Algorithm

3.1 Introduction
Extremely metal-poor stars (EMP, [Fe/H] ď –3.0) are interesting stellar objects, as they
provide a window into the history of the early Universe. The EMP stars that exist today
formed in environments with much less chemical enrichment than is typically found in the
interstellar medium today. As a result, they record the chemical yields produced by the first
generations of stars after the Big Bang, and thereby provide crucial clues to the properties of
early supernovae and their progenitors. Hence EMP stars are essentially a log of some of the
earliest events in the Galaxy’s chemical evolution.

The significance of metal-poor stars has been be reviewed extensively (e.g., Beers and
Christlieb, 2005; Frebel and Norris, 2015). However, to date very few EMP stars have been
discovered, especially considering the fact that entire observational surveys have been dedi-
cated to that aim. Querying the high-resolution SAGA database (Suda et al., 2008) we see
only „ 1000 stars with rFe{Hs ă ´3, „ 200 with rFe{Hs ă ´3.5 and „ 50 with rFe{Hs ă ´4
have been found. As noted above, EMP stars offer a unique window into the chemical en-
richment of the Milky Way as it was forming, yet their relative rarity constrains our ability
to probe those early times. Hence expanding the known sample is of critical importance for
creating a comprehensive picture of the processes dominating the life cycle of stars and the
interstellar medium in the early Universe.

With the development of highly multiplexed astronomical spectrographs, many current
stellar surveys are producing spectroscopic datasets that are too large for traditional analysis
(e.g., RAVE Steinmetz et al. 2020; APOGEE Ahumada et al. 2020; GALAH Buder et al.
2020). The next generation of surveys – including WEAVE (Dalton et al., 2014), 4MOST (de
Jong et al., 2019) and SDSS V’s MWM (Kollmeier et al., 2017) – will expand the available
spectroscopic data well into the millions of stars. Thanks to recent improvements in com-
puting and statistical methods however, we are now able to develop more refined tools and
processes to sift through these huge datasets in order to reliably identify rare and interesting
science targets, such as EMP stars. This paper seeks to identify EMP stars in the GALAH
spectroscopic survey, and develops a novel machine-learning approach that could be used to
identify other scarce objects in large astronomical datasets.

The machine learning method adopted in this paper is t-SNE (Maaten and Hinton, 2008),
a dimensionality reduction technique. This method has been successfully applied to astro-
nomical data for identification of sub-structure within a parameter space and the classification
of stellar objects; in particular, t-SNE has been applied in the stellar and chemical abundance
space, to identify membership in stellar-clusters and streams (e.g., Anders et al., 2018; Kos
et al., 2018). Matijevič et al. (2017) and Jofré et al. (2017) applied t-SNE to RAVE survey
spectra to identify very metal-poor stars and stellar twins, respectively, and Traven et al.
(2020) used t-SNE on GALAH spectra to find FGK-type binary stars. The application of
t-SNE in these cases followed a top-down approach, i.e., running t-SNE on the dataset in
question and then exploring the resulting space, which can be inefficient in identifying objects
of particular interest. In this paper however, we show an alternative approach, following the
process described in Hughes (2017) and similar to Hawkins et al. (2021), in which we flag
objects we are interested in prior to running t-SNE, and then see where they appear on the
projected t-SNE space. This works because any unclassified star falling near the flagged stars
can be considered a potential candidate because it will have similar spectral features.

In this paper, data from the GALactic Archaeology with HERMES spectroscopic survey
(GALAH) are analysed to show how machine learning methods, applied to spectra, can be
used to identify extremely metal-poor stars. The paper is organised as follows: the GALAH
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s_object_ID Object Name TL
eff log gL rFe{HsL TEst

eff log gEst rFe{HsEst TDR3
eff log gDR3 rFe{HsDR3

140209005201151* HD 122563 Kirby et al. (2010) 4367 0.60 -3.15 5000 0.50 -2.80 4616 1.46 -2.51
140307003101095 2MASS J13274506-4732201 Simpson et al. (2012) 4661 1.50 -2.70 5000 0.50 -2.10 4616 1.36 -1.87
140412001201388 HE 1207-3108 Yong et al. (2012) 5294 2.85 -2.70 5300 0.50 -3.10 5404 2.97 -2.56
140810004701232 UCAC4 157-208544 Placco et al. (2019) 4651 1.24 -2.52 5000 0.50 -2.10 4539 1.46 -1.87
150409002601337 TYC 4934-700-1 Sakari et al. (2018) 4614 1.03 -2.52 5100 0.50 -2.60 4687 1.45 -2.25
150718004401358* BPS CS 22892-0052 McWilliam et al. (1995) 4760 1.30 -3.10 5200 3.75 -3.50 5657 2.33 -2.19
151008003501121* HE 0124-0119 Li et al. (2015) 4330 0.10 -3.57 4000 5.00 -4.25 4367 1.63 -3.38
160401003901201 DENIS J133748.8-082617 Sakari et al. (2018) 4265 0.25 -2.62 4800 0.50 -2.40 4289 0.73 -2.44
160403004201044 2MASS J13273676-1710384 Placco et al. (2019) 5223 1.67 -2.55 5200 0.75 -2.60 5127 2.12 -2.17
160424004701042 UCAC4 053-017641 Placco et al. (2019) 4832 1.61 -3.41 5000 0.50 -2.90 4795 2.05 -2.51
160519002601142 UCAC4 226-057537 Placco et al. (2019) 4619 1.07 -2.54 4900 0.50 -2.30 4526 1.40 -2.05
160813003601164* 2MASS J21260896-0316587 Hollek et al. (2011) 4725 1.15 -3.22 5100 0.50 -3.10 5056 2.15 -2.71
161009003801062 UCAC4 464-129364 Mardini et al. (2019) 4945 1.53 -2.52 5000 0.50 -2.70 4743 2.10 -2.36
161104002301201 2MASS J22045836+0401321 Spite et al. (2018) 4700 1.20 -2.90 5000 0.50 -2.80 4632 1.82 -2.57
161118004701028 SMSS J051008.62-372019.8 Jacobson et al. (2015) 5170 2.40 -3.20 5300 0.50 -3.20 5342 3.31 -2.68
170601003101219 2MASS J14175995-2415463 Schlaufman and Casey (2014) 4914 1.45 -2.40 5000 0.50 -2.60 4724 1.47 -2.21
170615004401258* 2MASS J18082002-5104378 Meléndez, Jorge et al. (2016) 5440 3.00 -4.07 5500 0.50 -4.25 5741 3.48 ¨ ¨ ¨

170805005101110 HE 0048-6408 Placco et al. (2014a) 4378 0.15 -3.75 4800 0.50 -3.80 4221 1.18 -3.83
170904000601186 2MASS J21303218-4616247 Masseron et al. (2010) 4100 -0.30 -3.39 5000 0.50 -3.10 3987 0.89 -3.76
170906004601038 HE 0105-6141 Barklem et al. (2005) 5218 2.83 -2.55 5300 0.75 -2.60 5190 2.87 -2.36
170906004601108 BPS CS 22953-0003 Spite et al. (2018) 5100 2.30 -2.80 5100 0.50 -3.10 5044 2.36 -2.73
171001003401116 HE 0433-1008 Beers et al. (2017) 4708 1.31 -2.62 4900 0.50 -2.70 4423 1.54 -2.77
171205002101255* SMSS J031300.36-670839.3 [Keller]Nordlander et al. (2017b) 5150 2.20 ă ´6.53 5000 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

Table 3.1: Extremely metal-poor stars from the literature found in GALAH DR3,
designated with the GALAH identifier s_object_ID. The different superscripts in the
stellar parameters reflect the source of the parameters: L indicates values from the
literature, Est shows the results of our parameter estimation method and DR3 repre-
sents the output of the GALAH DR3 pipeline. The stars marked with an asterisk are
the “known" EMP stars used in the application of the methodology outlined in this
paper; the remainder were subsequently identified as a verification of the method.

survey and the data are described in Section 3.2, Section 3.3 outlines the methodology used
to find EMP stars, the results and candidates from applying the methodology to the data are
shown in Section 3.4, in Section 3.5 we discuss those results and we summarise our conclusions
in Section 3.6.

3.2 Data
The following section outlines the datasets used in this paper. Section 3.2.1 and Section 3.2.2
briefly introduces the GALAH Survey and discusses how the stars used in this analysis were
selected. Section 3.2.3 describes how we label known EMP stars and other classified stars
within GALAH. Lastly, Section 3.2.4 details how the synthetic templates that will be used in
deriving stellar parameters are constructed.

3.2.1 GALAH
The Galactic Archaeology with HERMES (GALAH) survey is a high resolution spectroscopic
survey of the Milky Way which uses the High Efficiency and Resolution Multi-Element Spec-
trograph (HERMES) on the 3.9m Anglo-Australian Telescope. By its finish GALAH will
obtain „ 1, 000, 000 high resolution spectra (R „ 28, 000) of stars at Galactic latitudes of
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|b| ą 100 and declinations ´800 ă Dec ă `100, across the four discrete spectral arms of
HERMES: 4713-4903Å (blue channel), 5648-5873Å (green channel), 6478-6737Å (red chan-
nel), and 7585-7887Å (IR channel). The spectrograph can typically achieve a signal to noise
ratio (SNR) of „ 100 per resolution element at magnitude V „ 14 in the red arm during a
1-hour exposure (De Silva et al., 2015). By measuring radial velocities, stellar parameters
and abundances for as many as 30 elements, the goal of the GALAH survey is to produce a
comprehensive view of the formation and chemodynamical evolution of the Milky Way.

This paper uses GALAH data release 3 (DR3; Buder et al., 2021), in which all observed
stellar spectra were extracted as one dimensional spectra, continuum normalised and radial
velocity-corrected to the barycentric reference frame. This data release includes spectra of
„ 600, 000 unique stars. The GALAH data reduction pipeline is described in Kos et al.
(2017); for the data analysis pipeline, DR3 stellar parameters and abundances were estimated
via the spectrum synthesis code Spectroscopy Made Easy (SME; Valenti and Piskunov, 1996;
Piskunov and Valenti, 2017) using theoretical 1D hydrostatic models taken from the Marcs
grid and 1D non-LTE grids as described in Amarsi et al. (2020) for 11 elements (Li, C, O,
Na, Mg, Al, Si, K, Ca, Mn, Fe and Ba).

3.2.2 Sample Selection
We selected a subset of the „ 600, 000 DR3 stellar spectra tailored to the needs of our analysis.
We considered spectra taken between November 2013 and February 2018 and limited ourselves
to one spectrum per star, thus avoiding problems encountered with stacked spectra in DR3
(Sec 6.2 in Buder et al., 2021); in addition, we only used spectra that passed the reduction
pipeline quality control (i.e., red_flag==0). We did not include poor-quality spectra with low
signal-to-noise in the green channel (S{N ă 35 per resolution element) and stars with GAIA
GBP ´GRPă 0.6 (Gaia Collaboration et al., 2018), as these typically represent hot stars that
may appear extremely metal-poor but are not.

3.2.3 Literature stellar labels
To be able to classify stellar spectra using semi-supervised machine learning, which is the
combination of labelled and unlabelled data, we first have to assign a label to a proportion of
the spectra. In our case the label is the stellar classification of the spectra.

The sample of stars with a known stellar classification was compiled by cross matching the
stellar classification labels defined by Traven et al. (2017) to the GALAH survey data using
s_object_ID, a unique star identifier in DR3. The 5 stellar classes chosen based on SIMBAD
are:

1. Binary stars

2. Cool metal-poor giants

3. Hα/Hβ emission

4. Hot stars

5. Stars with molecular absorption bands

These stellar classifications were determined manually by Traven et al. (2017) after having
run t-SNE in combination with Density-Based Spatial Clustering of Applications with Noise
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(SCAN or DBSCAN) (Ester et al., 1996) on GALAH DR1 (Martell et al., 2017). We therefore
do not treat these labels as definite, as they only represent potential identifications. In
addition, we defined two other categories of labelled objects: Extremely Metal-Poor stars
(ExtMetalPoor), and one specific EMP star, the Keller star (Keller), which are described
immediately below.

A sample of 8 EMP stars was manually identified by cross-matching stars observed in
GALAH with stars in SIMBAD determined to have [Fe/H] À ´3; this latter sample yielded a
table with 538 unique entries. A 10 arcsecond positional cross-match of this table against the
GALAH data resulted in a list of 7 possible EMP stars based upon literature measurements
compiled by SIMBAD. However, two of the stars failed to pass the GALAH quality checks
because of poor spectrum normalisation, and an additional star did not satisfy the metallicity
requirement of [Fe/H] „ ´3 as a detailed examination of literature measurements showed
that it most likely has [Fe/H] « ´2. These spectra are given the label ExtMetalPoor.

The star SMSS J031300.36-670839.3 (Keller et al., 2014) was not a GALAH target, but
was observed with HERMES on 5 December 2017 and then processed by the GALAH pipeline.
The spectrum is almost featureless aside from hydrogen absorption, which is not surprising
given its initial upper limit estimate of [Fe/H] « ´7.1 (Keller et al., 2014), subsequently
updated to [Fe/H] ă ´6.53 by Nordlander et al. (2017a). This star is given the classification
of Keller.

The sample of known EMP stars described above – the five ExtMetalPoor stars, and the
Keller star – are presented in Table 3.1, in which they are highlighted by a *.

The stars that do not have a stellar classification label after cross-matching by s_object_ID
are given the classification unlabelled. These observations are combined with the labelled
dataset to define our full GALAH dataset.

To summarise the GALAH dataset used in this paper, after applying our sample selection
criteria for signal-to-noise and GBP ´ GRP colour, we have a dataset with 9058 labelled and
590514 unlabelled stars. Thus the total number of stars analysed in this work is 599855.

3.2.4 Synthetic Templates
To determine the stellar parameters (see Section 3.3.2) of any potential EMP candidate we
fit the observed spectra with synthetic spectral templates with known stellar parameters.
Following Nordlander et al. (2019), the 6045 synthetic spectra templates were produced with
Plez (2012) in 1D LTE using standard MARCS model atmospheres (Gustafsson et al., 2008).
We used vmic “ 1 km s´1 and plane-parallel model atmospheres for models with log g ą

3.5, and vmic “ 2 km s´1 and spherical geometry for models with log g ă“ 3.5. We fixed
[α/H]“ 0.4 and initially considered Teff “ 4000K´8000K in steps of 500K, log g “ 0.0 ´ 5.0
in steps of 0.5 and [Fe/H] “ ´7.0 ´ 0.0 in steps of 0.5 dex, and a limited range of carbon
enhancements, [C/H]“ 0.0, 0.5, 1.0. All synthetic spectra were broadened by vbroaden “ 10
km s´1 to represent the instrumental resolution, from an initial resolution of 1 km s´1.

A finer grid was subsequently generated with Teff “ 4000K´7500K in steps of 100K, log g
“ 0.0 ´ 5.0 in steps of 0.25 dex, and varying step sizes in metallicity for different ranges of
[Fe/H]:
´7.00 to ´5.50 in steps of 0.5 dex,
´5.00 to ´4.25 in steps of 0.25 dex,
´4.00 to ´2.10 in steps of 0.1 dex, and
´2.00 to ´1.00 in steps of 0.25 dex,
to give further detail on the range of [Fe/H] values that we can estimate. When applying the
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finer grid we set the carbon abundance [C/Fe] = 0, as informed by our simulation analysis
in Appendix A.1, and also because the wavelength ranges in GALAH cannot be used to
meaningfully constrain the carbon abundance in EMP stars.

3.3 Method
Here we discuss a methodology that can be used to identify EMP stars within GALAH data,
but also potentially adapted to find any stellar type within a given spectroscopic dataset. The
methodology is a hybrid of machine learning and a more traditional model-fitting approach.
Section 3.3.1 outlines how to identify similar stars using a branch of machine learning known
as dimensionality reduction, with a focus on targeting EMP stars. Once candidate EMP stars
have been found, Section 3.3.2 describes the estimation of their stellar parameters.

3.3.1 Identifying Similar Stars
Identification of EMP stars in spectroscopic surveys typically involves the fitting of select
regions of an observed spectrum with a synthetic spectrum, employing a metric to define
their similarity (usually χ2)

EMP stars have, however, a relatively featureless spectrum, where distinguishing the
difference between a real spectral feature and the inherent noise is challenging. Similarly, the
synthetic spectrum of a metal-poor star is close to featureless, but lacks the noise that is present
in an observed spectrum. Hence when applying a χ2-fitting method which entails comparing
an observed spectrum with a synthetic spectrum, we expect stars that aren’t extremely metal-
poor to be identified as such (and vice-versa) due to model systematics. Ideally we would
like a method that can 1) be independent of synthetic templates, 2) self-identify important
features of a spectrum and 3) categorise similar spectra.

To be able to create a method as described above is challenging for metal-poor stars.
If, however, we could visualise the similarity of objects within a dataset, and group them
visually, then we could reduce the search space for finding objects of interest, prior to running
a χ2-fitting method. Furthermore, if we had a sample of the objects we were trying to identify,
we could flag these before running a visualisation technique and see which groups they are
clustered in, and hypothesise that the surrounding group must contain similar observations.
By approaching finding similar objects this way, we remove the necessity for synthetic template
comparison at the identification phase of the process, resulting in a purer candidate sample.

Dimensionality reduction techniques, a branch of machine learning, are a standard way
of extracting important features from large datasets. Dimensionality reduction is the process
of representing a high-dimensional data set X “ x1, x2, . . . , xN , by a set Y of vectors yi in
two or three dimensions, and then placing similar observations in close proximity in the new
parameter space, yi, while keeping dissimilar observations at larger distances. The resulting
reduced parameter space, Y , may then be visualised to determine similar and dissimilar input
data. The most common dimensionality reduction techniques used in astronomy are principal
component analysis (PCA) and multidimensional scaling (MDS). Principal component analy-
sis has been used by Yip et al. (2004) to classify quasars using SDSS spectral data; Connolly
and Szalay (1999) demonstrated that PCA can be used to build galaxy SED’s from data
that may be noisy or incomplete; and Re Fiorentin et al. (2007) showed that PCA can be
used to estimate stellar atmospheric parameters with SDSS/SEGUE spectra and Ting et al.
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Figure 3.1: Illustrative t-SNE maps constructed only using the labelled portion our
dataset. Top panel is coloured by effective temperature from GALAH DR3. Bottom
panel the t-SNE map is coloured by stellar classification labels. Each point represents
a star which has had its spectral information collapsed into two points in a 2-dimension
parameter space produced by t-SNE; the axes are in arbitrary units reflecting only the
dynamic range of the data in this space. Comparing the two panels shows that t-SNE
is sensitive to effective temperature and the stellar classification. Note that neither
spectroscopic temperature or classifications were included in the input to t-SNE.
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(2012) used PCA to explore the stellar chemical abundance space. The frequent use of PCA
underscores the importance of dimensionality reduction in the area of classification.

A significant weakness in PCA, however, is that it is intrinsically linear. PCA does
not consider the structure of the manifold; there may be data points that form a nonlinear
manifold, which PCA will not be able to deconstruct. In addition, while dimensionality
reduction techniques have been used in astronomy before, they generally were applied to
smaller datasets. The effective parameter space for the GALAH data is 4 channels ˆ 4096
pixels ˆ 65,536 flux levels ˆ 600,000 stars » 6ˆ1014 values; with a dataset of this magnitude,
traditional techniques face a computational challenge.

t-SNE

Like other dimensionality-reduction techniques, t-SNE (Maaten and Hinton, 2008) can be used
to visualise how similar points are within a dataset. t-SNE assesses the similarity of features in
the higher-dimensional space by using the Euclidean distance metric (alternative metrics may
be applied). A similarity matrix of probabilities, representing the higher-dimensional space,
is calculated by converting these Euclidean distances using a standard Normal distribution.
The feature space is then reduced to 2 or 3 dimensions, and the process above is repeated for
this lower dimensional space; however, the t-distribution is used instead of a standard Normal
distribution to construct the similarity matrix. To finally determine the lower dimensional
representation of distances within our dataset, the Kulback-Leibler (KL) divergence between
the two joint probability distributions is minimised using gradient descent. We chose the
Barnes-Hut gradient descent version of t-SNE, implemented in the R package Rtsne1 by
Krijthe (2015), as it substantially speeds up t-SNE and allows t-SNE to be applied to much
larger datasets that would be computationally intractable with the original t-SNE algorithm.
t-SNE unlike techniques such as PCA, is able to produce more visually compelling clusters
because t-SNE ’s non-linearity enables it to maintain the trade-off between local and global
similarities between points. This makes t-SNE well suited to the purpose of finding and
visualising the distribution of similar spectra in a large dataset. Refer to Traven et al. (2017)
for a more detailed description of the t-SNE algorithm.

To illustrate the effectiveness of t-SNE at classifying stars using only their spectra, we
consider our defined labelled dataset of 9058 classified stars. For this application, only the
spectral data for the labelled stars was passed in to t-SNE. The labels and additional stellar
parameter information were not used. t-SNE ’s input is a set of 9058 high-dimensional objects
xi....xN , where each object is described by 12288 wavelength values (for this analysis we ignore
the infrared channel), representing a single star. Top panel of Figure 3.1 shows the t-SNE
map coloured by effective temperature ([Teff ]). Bottom panel of Figure 3.1 is the same map
coloured by the classification labels in Traven et al. (2017). In both panels, the cluster of hot
stars is clearly distinguishable by both temperature and label, highlighting that by applying
t-SNE to only spectra, we can visualise sensitivity in both the stellar parameter and stellar
classification space.

Determining which Wavelength Regions to Fit

In searching for EMP stars it is important to understand the significant spectral features
that are key indicators of extremely low metallicity. When dealing with low and medium-
resolution spectra, traditionally the infrared calcium triplet or ultraviolet calcium H and K

1https://github.com/jkrijthe/Rtsne

https://github.com/jkrijthe/Rtsne
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lines have been used as standard indicators of low metallicity. These lines are, however,
outside of the GALAH wavelength range. Therefore the first step in applying our method to
the entire GALAH dataset is to determine which metal lines within the GALAH wavelength
range would be most useful for identifying EMP stars.

The optimal wavelength ranges were selected by determining the lower limit for [Fe/H]
using the spectral templates. This was achieved by running a series of χ2 fitting simulations
using different elemental line combinations. The simulation which resulted in the highest level
of certainty for the lowest [Fe/H] was selected. The optimal restricted wavelength ranges used
are the regions around Hα, Hβ, 4867-4872Å and 4887-4892Å ; the latter two ranges contain the
strongest Fe I lines in the blue channel (4875.88Å, 4890.76Å and 4891.49Å). Additionally we
found that the OI triplet (7771.94Å- 7775.39Å) in the IR channel was a useful discriminant
for removing hot stars that were contaminating the sample, and thus this range was also
included. In Figure 3.2 we show that, using spectra in the GALAH wavelength range, we
can say with reasonable confidence that a star has a metallicity as low as [Fe/H] „ ´3.5 (or
potentially below that value); see Appendix A.1 for further details.

By applying a method like t-SNE the idea is to reduce any bias that may arise in choosing
which wavelength ranges to consider, as the technique may be able to better identify signif-
icant wavelength ranges not considered. To use the entire wavelength range, however, is a)
computationally unfeasible and b) given the relatively featureless nature of EMP star spectra,
can introduce noise that may skew the final results. We were thus unable to avoid having to
select which wavelength ranges to input into t-SNE.

3.3.2 Estimating Stellar Parameters for EMP stars

To confirm the identification of any EMP candidate found using the t-SNE methodology
outlined in Section 3.3.1, we require an estimation of their basic stellar parameters, Teff , log g
and [Fe/H]. The GALAH DR3 pipeline provides measurements of these stellar parameters for
many of our candidates; however the DR3 pipeline is not tailored towards metal-poor stars
with weak metal-lines. We developed a simple iterative procedure to estimate each stellar
parameter for a candidate EMP star, which is described below (see Section 3.4.2 for the
application).

Effective Temperature, Surface Gravity and Metallicity

To estimate Teff , log g and [Fe/H], we apply a χ2-minimisation routine between the observed
spectra and the synthetic templates defined in Section 3.2.4 using only the Hα and Hβ regions
and a select few metallicity lines around 4870Å and 4890Å. We fit the lines simultaneously to
account for the degeneracies that arise between the stellar parameters, and select the template
corresponding to the minimum χ2.

The upper half of Figure 3.3 shows the fitting of the Hβ region to 3 synthetic templates
for a given star, with the optimal fit of Teff equal to 5250, shown in red, and the best fit of
log g as 2.5. The bottom panels of Figure 3.3 show the two line regions considered in the
fitting of metallicity, which suggest this observed star may have a metallicity in the range
´3.5 ă [Fe/H] ă ´3.0.
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Figure 3.2: The output of a simulation fitting synthetic spectra with templates,
showing that, given these stellar and observational parameters (log g = 2, Teff = 5000K,
S/N = 35) we can reliably estimate metallicities down to [Fe/H] À ´3.5 with GALAH
data. Percentages indicate fractional uncertainty from scatter in the recovered metal-
licities rounded to the nearest percentage. Due to the relative insensitivity to carbon
in the GALAH wavelength ranges, the blue and orange points are masked by the green
points. See Appendix A.1 for further details.

3.4 Results

The following section describes the results of applying the outlined methodology to the full
GALAH dataset inclusive of unclassified stars, as defined in Section 3.2.2. Section 3.4.1
applies our hybrid t-SNE methodology, Section 3.4.2 and Section 3.4.3 estimates the stellar
parameters and applies some further analysis on the candidate sample.

3.4.1 Applying the t-SNE methodology

Applying the methodology to find EMP stars described in Section 3.3.1, we consider the entire
GALAH sample, subsetted by the optimal wavelength regions as determined in 3.3.1 and with
the EMP stars and the Keller star flagged. We will use the additional classification labels
defined in Section 3.2.3, to flag other structures in the t-SNE plane.

The t-SNE method was calculated with the perplexity set to 40, the number of iterations
set to 2000 and the other hyperparameters (see Wattenberg et al. (2016)) left to their default
values. The processing was run on an Ubuntu server, with 344GB of RAM and an Intel Xeon
CPU E5-2695 v3 @ 2.30 GHZ with 30 threads.

The resulting map is shown in Figure 3.4. A separate “island” containing all 5 known EMP
stars and the Keller star is located in the top left of the map. We infer that the unlabelled
stars surrounding the known Keller and EMP stars form a potential metal-poor cluster on
the map. This cluster is then extracted and passed into our stellar parameter fitting routine
described in Section 3.3.2, reducing the search space to fit stellar parameters of potential
EMP stars from 600,000 to approximately 2500. A zoomed in image of this cluster is shown
in Figure 3.5.
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Figure 3.3: Fitting the observed Hβ region for a given star with the wider synthetic
template grid as a test of the fitting of the stellar parameters, Teff , log g and [Fe/H]. It
is clear from the upper panels that this star is best fit by a Teff of 5250 and a log g of
2.5. The bottom panels represent the line regions considered in fitting [Fe/H], and show
that this star likely has a metallicity [Fe/H] between -3.0 and -3.5. The parameters of
the synthetic templates as given in the panels are Teff , log g, [Fe/H] and [C/Fe] (the
assumed [C/Fe] may be ignored for these fits).

3.4.2 Stellar Parameter Estimation for the EMP stars Cluster
Taking the hypothesised metal-poor only island, we estimate the stellar parameters for each
star in the island using our simple stellar parameter fitting routine described in Section 3.3.2.

The estimated Teff and log g values for our metal-poor island are shown in the upper two
panels of Figure 3.6. Here we see a similar distribution of Teff and log g, with cooler giant-type
stars on the left, going to hotter, higher log g stars to the right of the island. [Fe/H] is shown
in the bottom panel of Figure 3.6 and displays a gradient of metallicity, higher to lower, from
the bottom to the top edge of the island. The previously defined extremely metal-poor coast
(as seen in Figure 3.5) is evident.

Before identifying and analysing EMP candidates in our cluster, we note that our stellar
parameter fitting routine is relatively simple and is only used as a guide. The method was
necessary, as we see a significant scatter with respect to DR3 pipeline-derived metallicities,
as well as a systematic tendency toward higher measured metallicities in DR3. This may be
attributed to the GALAH analysis pipeline being optimised for thin and thick disk stars, with
typical metallicities [Fe/H] ě ´2. Moreover, a comparison of our metallicity estimates for
the stars with both the (admittedly heterogeneous) literature metallicities and GALAH DR3
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Figure 3.4: t-SNE map with the unknown (unlabelled) stars plotted in grey and
the known extremely metal-poor stars – corresponding to the stars shown in Table 3.1
– overlaid in black, brown and orange. A region containing all 5 (*) stars and the
additional known metal-poor stars is located to the top left of the map. The dashed
box represents the “island" selected for further analysis, with the extremely metal-poor
stars focused on the upper ‘coast’ of the island.

metallicities, shown in Figure 3.7, suggests that our method is yielding reasonable estimates
for [Fe/H]. Similar comparisons for our estimates of Teff and log g (Figures 3.8 and 3.9, re-
spectively) also show acceptable agreement with values from both the literature and GALAH
DR3.
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Figure 3.5: A zoomed in view of the island highlighted by the red-dashed box in
Figure 3.4 with 2487 potential metal-poor stars. The known EMP stars lie on the
upper extremely metal-poor “coast" of the island.

3.4.3 Candidates

Having used the template fitting process described in Section 3.3.2 to estimate the stellar
parameters of our cluster in Section 3.4.2, we find 380 stars that have [Fe/H] ď ´2.5 and
135 stars with [Fe/H] ď ´2.7. For the rest of the discussion, however, we only consider
stars that have [Fe/H] ď ´3, to satisfy the “extremely" metal-poor star designation. This
results in 54 EMP candidates, 6 of which have an estimated [Fe/H] ď ´3.5. We note that 9
SIMBAD-sourced EMP stars from the literature in Table 3.1 are all contained in this t-SNE
sample, and 7 (2 of which overlap with the literature) were identified as potential EMP stars
by the GALAH DR3 pipeline, resulting in a net total of 40 potentially previously unidentified
candidate EMP stars.

The spectra of the 54 candidate EMP stars are relatively featureless (with the exception of
Hα and Hβ) across the HERMES wavelength ranges; Table 3.2 shows the derived parameters
for a few of our candidates. The spectrum of a representative EMP candidate from our
selection is shown in Figure 10. This star has an [Fe/H] ă ´4.5, as determined by our stellar
parameter routine.
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Figure 3.6: Three panels showing the selected island coloured by each stellar param-
eter. The top-left panel shows our estimated Teff , having a distribution of temperature
from cold to hot going left to right. Similarly the top-right panel shows estimated log g
having a similar left to right distribution. The lower panel shows estimated [Fe/H]
having a gradient of high to low metallicity from bottom to the top, with the top edge
in agreement with the previously seen “extremely metal-poor coast".

As a first attempt for confirmation that the candidates are likely EMP stars, we display
their photometric properties in a parameter space that has successfully been used to select
EMP stars. Figure 3.11 shows our sample cross-referenced with the SkyMapper photometric
catalogue (Onken et al., 2019). Here mi represents a metallicity index, defined as pv ´ gq0 ´

1.5pg´iq0, and pg´iq0, as a proxy for Teff . We show the EMP selection region in the figure from
Da Costa et al. (2019), and find that most of our candidates are red giants and our sample fits
within this region. This suggests, at least in terms of the broad metallicity-sensitive features
targeted by the SkyMapper photometry, that our sample contain bona fide EMP stars. We
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Figure 3.7: Two plots comparing our estimated [Fe/H] (left) and GALAH DR3
[Fe/H] (right) values with the literature. The top panels show the respective val-
ues while the bottom panels represent the difference between the method/s and the
literature. The red line shows a linear best-fit to the data, with the prediction and
confidence intervals as indicated by the shaded regions. Overall both methods have a
95% confidence band of approximately ˘0.5 but the GALAH DR3 measured [Fe/H]
values are higher on average than literature metallicities in this low-metallicity range.

note that Da Costa et al. (2019) find that 7% of the stars within the SkyMapper selection
region ultimately prove to be EMP stars based on follow-up spectroscopy.

What about the candidates that fall outside of that selection box? We plot our candidates
and the known literature stars on a color-magnitude diagram, using pho_g_mean_mag and the
color GBP ´GRP from GAIA DR2 (Gaia Collaboration et al., 2018), and distances from GAIA
(Bailer-Jones et al., 2018) in Figure 3.12. The majority of our candidates fall on the red giant
branch along with some literature EMP stars, suggesting they are mostly red giants. Some of
our candidates, however, are located near the main sequence turn-off. A significant portion of
our EMP candidates indeed show higher surface gravities, suggesting they are actually main
sequence turn off stars.

3.5 Discussion

At a high-level, given that we already had a large sample of high resolution spectra our
candidate selection was relatively straightforward compared to previous EMP work: we have
a magnitude-limited sample of stars and simply identified the population using iron and
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Figure 3.8: Two plots comparing our estimated Teff (left) and GALAH DR3 Teff

(right) with the literature. The top panels show the respective values while the bottom
panels represent the difference between the method/s and the literature. The red
line shows a linear best-fit to the data, with the prediction and confidence intervals
as indicated by the shaded regions. There is a trend in the errors of our estimation
method, in that we have higher Teff at the lower end but overall have a similar error
band to that of GALAH DR3.

hydrogen absorption lines2. We note this is only possible because, even with the relatively
limited wavelength coverage of GALAH spectra, that there is still sufficient sensitivity to
spectral features indicative of EMP-like metallicities (see Appendix A.1).

One question which arises is how our sample compares to previous work on the metallicity
distribution function (MDF) for EMP stars. The topic has been explored in a number of
recent studies (e.g., Da Costa et al., 2019; Youakim et al., 2020; Yong et al., 2021), with
Yong et al. (2021) finding a slope for the MDF of ∆plog Nq{∆rFe{Hs “ 1.51 dex per dex
for ´4.0 ă [Fe/H] ă ´3.0, with an apparent steep drop-off below -4.0 (below -4.0 it would
appear virtually all stars are C-enhanced, with the [Fe/H] values likely varying stochastically
depending on Population III supernova yields).The left panel of Figure 3.13 shows the MDF
for our candidate sample and the right panel shows a log-scaled histogram with the gradient of
1.51 from Yong et al. (2021) overlaid (red-dashed line). Here we can see that the “unbiased”
nature of the current sample, which provides another way of investigating the form of the
MDF, yields reasonably consistent results. However, given the MDF presented in Yong et al.
(2021) and the current sample size ( 50 stars with [Fe/H] ă ´3.0), the probability of any of
the current EMP candidates having [Fe/H] ă ´4.0 is not very high, as most will be closer to
-3.0. Hence a significantly larger EMP sample is required for probing the low-metallicity end
of the stellar MDF; in this paper we have demonstrated that applying our approach to larger

2As noted previously, we also used an oxygen feature, but only as a discriminant to remove hot
stars that were contaminating the sample.
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Figure 3.9: Two plots comparing our estimated log g (left) and GALAH DR3 log g
(right) values with the literature. The top panels show the respective values while the
bottom panels represent the difference between the method/s and the literature. The
red line shows a linear best-fit to the data, with the prediction and confidence intervals
as indicated by the shaded regions. Here you can clearly see that the GALAH DR3
estimates of log g are a much better match, which is to be expected, given the relative
simplicity of our method.

samples reaching fainter magnitudes is a key way to generate such an EMP sample.
Although the sample requires further spectroscopic observations to confirm our stellar

parameter estimates, its relatively unbiased nature means there are a number of promising
properties of the sample that suggest the method developed here has some advantages over
other techniques for finding and understanding the EMP population.

Firstly, as shown in Figure 3.11 and Figure 3.12, we appear to have identified some main-
sequence or main-sequence turnoff candidates. This is interesting because the sample of EMP
stars from the literature observed serendipitously by GALAH (see e.g.Table 3.1) consists of
essentially all giant stars, reflecting the fact that previous work (e.g., Starkenburg et al.,
2017) prioritised probing larger volumes in order to obtain large samples of relatively rare
EMP stars. For this reason most surveys specifically targeted stars with giant-like properties,
whose high luminosities allow them to be studied at greater distances.

If even one of our main sequence EMP candidates turns out to be a bona fide main sequence
or main sequence turn-off EMP star, this is an exciting opportunity to explore a less-studied
population of EMP stars. The abundance patterns of main sequence stars are comparatively
easy to understand because they have not yet been affected by evolution in the post main
sequence phase. The ages of these stars are also more accessible through comparison to
isochrones, which is important for placing these EMP stars into the context of the formation
and assembly of the Milky Way.

Another advantage of our method, which differs from other EMP selection methods – e.g.,
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s_object_ID RA DEC TEst
eff log gEst rFe{HsEst

131123002501215 63.5677656 -60.151311 5000 0.50 -3.00
131217002301168 64.8334861 -58.678350 5200 0.50 -3.10
140312003501132 203.154833 -38.009181 4900 0.50 -3.30
140711001301222 242.630802 -25.337563 5000 0.50 -3.20
140808004701080 28.0619680 -72.320519 5600 0.75 -3.40
140809004901060 40.9968414 -70.248597 4000 5.00 -3.00
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

Table 3.2: A subset of EMP candidates, with the full candidate list available elec-
tronically.
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Figure 3.11: A Skymapper metallicity-sensitive diagram, showing most of our can-
didates are likely red giants falling within the SkyMapper selection window (dashed
magenta lines, from Da Costa et al., 2019). The compact grouping to the left represents
candidate EMP main sequence turn-off stars.



36
The GALAH Survey: A New Sample of Extremely Metal-Poor Stars

Using A Machine Learning Classification Algorithm

0 1 2 3 4

GBP¡ GRP[mag]

¡5

0

5

10

G
¡

(5
lo

g(
d
)
¡

5)
[m

ag
]

AllGALAH
CandidateStars
LiteratureStars

Figure 3.12: The color-magnitude diagram using magnitudes and distances from
GAIA DR2 for the candidate EMP stars (yellow circles).The majority of the EMP
candidates are red-giants, while 20% appear to be consistent with main-sequence turn
off stars. Green circles are known EMP stars as defined in Table 3.1, including the
most iron-poor star known, SMSS J031300.36–670839.3 (Keller et al., 2014).

some combinations of photometric filters (Da Costa et al., 2019) – is that carbon features did
not affect our candidate selection. This means we have a relatively unbiased sample with
respect to carbon abundance. Carbon-enhanced metal-poor stars (which have [C/Fe] > 0.7),
become increasingly more frequent as [Fe/H] decreases (e.g., Placco et al. 2014b), and for
[Fe/H]ď –4.0, carbon-enhanced metal-poor stars dominate the known sample. Hence this
candidate sample presents an opportunity to explore the relative fraction of carbon-enhanced
metal-poor stars as a function of [Fe/H] free of carbon-influenced selection bias. In fact,
GALAH does not cover the wavelength ranges required to estimate carbon at extremely
low metallicities, making follow-up observations of this magnitude limited candidate sample
essential for studying its carbon abundances.

The orbital information for our EMP candidates is captured in the vertical action and
azimuthal action plot shown in Figure 3.14, similar to Figure 1 of Sestito et al. (2020) and
Figure 5 of Cordoni et al. (2021). While our admittedly smaller set of candidates does not
extend as high in vertical action as the Sestito et al. (2020) sample, we do see a significant
near-“planar” component, biased toward prograde motion, in agreement with the results of
both those authors and the Skymapper-based study of Cordoni et al. (2021). Hence, while
these kinematic data are not proof of the EMP nature of our candidates, they are consistent
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Figure 3.13: Metallicity distribution function for our candidate sample (left) and
the log-scaled distribution function with the slope of 1.51 as determined in Yong et al.
(2021) overlaid (red-dashed line). For this histogram we only show candidates from the
main GALAH survey, which is a magnitude-limited sample. We specifically exclude
stars in GALAH DR3 targeted by other surveys (K2-HERMES Wittenmyer et al.
(2018), TESS-HERMES Sharma et al. (2018) and GALAH-faint) because they incor-
porated fainter stars. The MDF follows a similar trend to that as seen in Yong et al.
(2021), except for steeper fall-off at [Fe/H] ă ´3.3.

with the observed properties of confirmed EMP stars.
Finally, we note that the method presented here evolved from Hughes (2017), which

employed t-SNE on GALAH spectra to classify them and identify several interesting classes
of objects, including metal-poor stars. In that work the fit used a relatively simple set of
absorption features in the spectra. In the present work, we found a significant improvement
in the quality of the candidates by assessing different line combinations in order to improve
our metallicity sensitivity (see Appendix A.1). We furthermore included the GALAH infrared
fourth channel because it contains an oxygen feature – not previously considered – which
served as a discriminant to reject spurious hot stars.

3.5.1 Advantages of a machine learning-based approach over
more traditional χ2 fitting methods

As shown in Figure 3.5, our method uses t-SNE to isolate candidate EMP stars in a region
with spectra similar to known EMP stars from the literature. By fitting synthetic spectra to
the candidate EMP stars, we refine the selection of EMP candidates in the t-SNE space of
EMP candidates to the top portion of the data shown in Figure 3.6. The clustering of known
and candidate EMP stars in essentially a localised region in the entire t-SNE parameter space
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Method EMP stars (%) Extraneous sources (%) Total EMP Candidates
χ2 only 19 81 126
t-SNE and χ2 90 10 60

Table 3.3: Accuracy percentages between our method (i.e. t-SNE classification,
then a χ2 fit to models) and a traditional χ2-fitting technique for finding EMP stars.
Percentage of EMP stars is the fraction of the total count that passed a visual inspec-
tion. Extraneous sources included both candidates with bad fits and those with strong
absorption features, indicating that they are not likely to be EMP stars. The accuracy
percentage of candidates that were found to be good EMP stellar candidates is higher
using our method.

illustrates the potential power of our method. Nevertheless, a valid question is whether there
are any improvements on our machine learning-based method in terms of finding EMP stars
over a simple χ2 fit to a wide range of synthetic spectral templates.

We tested the χ2 stellar parameter routine on the full GALAH dataset, to potentially
identify EMP stars that did not fall within the t-SNE EMP island identified in Figure 3.5.
The results of this run are compared to the t-SNE run in Table 3.3. The purely χ2 method
returned more potential candidates, but upon visual inspection, 81% of those candidates were
poorly fit, and some had strong absorption features, indicating that they are not good EMP
candidates. The increased fraction of bad fits is likely because of model systematics – the
minimum χ2 might not be representative of actual EMPs. Applying t-SNE before running a
χ2 fitting routine minimises this effect.

Moreover, we found that the χ2 method does not contain all the t-SNE EMP candidate
sample: only 10 of our total sample of 60 (54 candidates and 6 spurious stars) are found.
Finally we also note that not all of the literature stars from Table 3.1 were recovered in the
χ2 sample: only 3 of 23 are found.

3.6 Conclusions
We have demonstrated a methodology for finding EMP stars within a spectroscopic dataset –
in this case spectra of „ 600, 000 stars from the GALAH high-resolution survey – that is both
computationally efficient and accurate, and may potentially be adapted to find other specific
types of stars. Furthermore we have shown that, using the GALAH wavelength ranges, we
can derive metallicities down to [Fe/H] „ ´3.5.

The candidate list we have identified is distinct from the results of many past surveys
targeted specifically at EMP stars (e.g., Da Costa et al., 2019; Starkenburg et al., 2017).
Given the nature of the GALAH dataset – essentially a magnitude-limited sample of stellar
spectra – our candidate list does not preferentially select giant stars (although, given their
greater luminosity, giant stars probe a larger volume). This means we are sensitive to main-
sequence and main-sequence turnoff stars, which are an interesting EMP population because,
not having undergone dredge-ups, they are more likely to retain their original abundance
patterns, and in the case of main-sequence turnoff stars, they can potentially yield useful
stellar ages. Moreover the lack of strong carbon features in the GALAH wavelength windows
means we are not biased against carbon-enhanced metal-poor stars – a significant fraction of
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EMP stars (Yong et al., 2013; Lee et al., 2013) – unlike some photometric-based EMP star
surveys (cf. Da Costa et al., 2019).

With regard to our methodology, we found hybrid approach, i.e., pre-selection using t-SNE
focused on specific wavelength regions, followed by parameter estimation via χ2-fitting, to be
the most efficient way to identify candidate EMP stars. Simpler “brute-force” methods, for
example applying t-SNE to the entire spectral range, or skipping machine-learning-based pre-
selection and going straight to χ2-fitting to template spectra, proved to be both much more
computationally intensive and much more likely to include extraneous spectra in their output.
Although our method was tailored to GALAH spectra, we expect that similar techniques
should be applicable to datasets from other ongoing and future large spectroscopic surveys,
including WEAVE (Dalton et al., 2014) and 4MOST (de Jong et al., 2019).

While we have demonstrated that our metallicity estimates – along with those from the
GALAH DR3 pipeline – are fairly reliable with regard to identifying EMP star candidates,
follow-up observations, ideally covering additional regions of the optical spectrum more sen-
sitive to low-metallicity measurements, are required to confirm these estimates, as well as to
determine the abundances of carbon and other specific elements of interest (see, e.g., Beers
and Christlieb, 2005; Frebel and Norris, 2015). To this end we are engaged in a program of
follow-up spectroscopy, with results seen in the work of Da Costa et al. (2023).
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Figure 3.14: Vertical versus azimuthal action components color-coded by eccentric-
ity for our EMP candidates with metallicities [Fe/H] ă ´3 (star symbol), as well as
literature values from Cordoni et al. (2021, triangle symbol). The action quantities are
scaled by the solar values (i.e., Lzd “ 2009.92 km s´1 kpc, Jzd “ 0.35 km s´1 kpc). In
this parameter space, we adopt the same horizontal dashed line at Jz{Jzd “ 1.25 ˆ 103

as in Cordoni et al. (2021) to distinguish between planar and non-planar orbits. The
distribution of our candidates appears to be consistent with the observed orbital prop-
erties of confirmed EMP stars shown in Figure 1 of Sestito et al. (2020) and Figure 5
of Cordoni et al. (2021).
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Quasar and galaxy classification using Gaia

EDR3 and CatWise2020

Having discussed the application of a clustering method to spectra, we now turn our atten-
tion to the classification of extragalactic sources using astrometry and photometry. The base
dataset for this is the Gaia survey with additional photometry in the infrared region from
CatWISE2020. The statistical approach here is an assessment of different tree based algo-
rithms in comparison to Gaussian Mixture models and a discussion about the use of priors.
This chapter is based upon work done in Hughes et al. (2022a) which builds upon the work
previously done by (Bailer-Jones et al., 2019). Both co-authors (C. Bailer-Jones and S. Jamal)
contributed to the development of the methods, the analysis and interpretation.

Brief Summary
We assess the combined use of Gaia photometry and astrometry with infrared data from
CatWISE2020 in improving the identification of extragalactic sources compared to the classi-
fication obtained using Gaia data. Here we perform a comprehensive study in which we assess
different input feature configurations and prior functions to identify extragalactic sources in
Gaia, with the aim of presenting a classification methodology that integrates prior knowledge
stemming from realistic class distributions in the Universe. In this work, we compare dif-
ferent classifiers, namely Gaussian mixture models (GMMs) and the boosted decision trees,
XGBoost and CatBoost, in a supervised approach, and classify sources into three classes,
namely star, quasar, and galaxy, with the target quasar and galaxy class labels obtained from
the Sloan Digital Sky Survey Data release 16 (SDSS16) and the star label from Gaia EDR3.
In our approach, we adjust the posterior probabilities to reflect the intrinsic distribution of
extragalactic sources in the Universe via a prior function. In particular, we introduce two pri-
ors, a global prior reflecting the overall rarity of quasars and galaxies, and a mixed prior that
incorporates in addition the distribution of the extragalactic sources as a function of Galactic
latitude and magnitude. The best classification performances, in terms of completeness and
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purity of the extragalactic classes, namely the galaxy and quasar classes, are achieved using
the mixed prior for sources at high latitudes and in the magnitude range G = 18.5 to 19.5. We
apply the identified best-performing classifier to three application datasets from Gaia Data
Release 3 (GDR3), and find that the global prior is more conservative in what it considers
to be a quasar or a galaxy compared to the mixed prior. In particular, when applied to the
quasar and galaxy candidate tables from GDR3, the classifier using a global prior achieves
purities of 55% for quasars and 93% for galaxies, and purities of 59% and 91%, respectively,
using the mixed prior. When compared to the performances obtained on the GDR3 pure
quasar and galaxy candidate samples, we reach a higher level of purity, 97% for quasars and
99.9% for galaxies using the global prior, and purities of 96% and 99%, respectively, using the
mixed prior. When refining the GDR3 candidate tables via a cross-match with SDSS DR16
confirmed quasars and galaxies, the classifier reaches purities of 99.8% for quasars and 99.9%
for galaxies using a global prior, and 99.9% and 99.9% using the mixed prior. We conclude
this work by discussing the importance of applying adjusted priors that portray realistic class
distributions in the Universe and the effect of introduction infrared data as ancillary inputs
in the identification of extragalactic sources.

4.1 Introduction
Classification of galactic and extragalactic sources is fundamental for statistical analyses of
large populations, as well as for probing the properties of individual objects. For instance,
quasars (quasi-stellar objects) refer to highly luminous active galactic nuclei (AGNs), which
are used as probes to investigate fundamental questions in Cosmology such as galaxy evolution
(e.g., Harrison et al., 2018), the composition of the interstellar medium (e.g., Li et al., 2022),
and supermassive black-hole formation and evolution (e.g., Croom et al., 2009).

All-sky surveys, such as the Sloan-Digital Sky Survey (SDSS) (York et al., 2000) and
the Wide-field Infrared Survey Explorer (WISE) (Wright et al., 2010), have created detailed
maps of the Universe at optical and infrared wavelengths. Infrared data is highly informa-
tive for the classification of stars, quasars, and galaxies. As demonstrated in the work by
Kurcz et al. (2016), the authors exploited the infrared colours from WISE and reported a
90%–95% classification accuracy across all object types despite the limitations observed for
galaxy sources with a high dust component. The combined use of infrared data with optical
photometry should, in principle, enhance the classification accuracy and reduce the number
of false positives across all object types.

However, a large fraction of work on classification fails to consider the intrinsic distribution
of sources of different classes, and only reports results —in particular the accuracy (i.e.,
the fraction of correct predictions per target class)— using a test set that is typically not
representative of the observable Universe. Moreover, such test sets often under-represent the
stellar contaminants that would, in practice, lower the purity of extragalactic classification.
To account for the actual distribution, we introduce a prior (discussed in detail in Sect. 4.3.3)
which, in a Bayesian framework, is used to adjust the estimated model posterior probabilities
in order to reflect the class distribution of sources we would expect to exist. Furthermore,
after a model has been applied, we apply an adjustment factor to the distribution of sources,
such that the performance metrics are computed as if the model had been applied to the
dataset with a realistic expected distribution. Applying both the prior and the adjustment
factor result in classification performances that are more representative of what we can achieve
—although inevitably lower— than the performances obtained when the prior and adjustment
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factor are not applied. Despite the lower results of some models, applying the prior correction
is a necessary step because it will reveal the real classification performances, especially for
large-scale surveys for which the observed sources are unknown.

The Gaia mission is an optical mapping survey designed to focus on stars in our Galaxy
(Gaia Collaboration et al., 2016). During Gaia’s scan of the entire sky, the satellite observes all
point-source-like objects down to a magnitude limit of G » 21, including extragalactic objects
(Gaia Collaboration et al., 2022). A reliable methodology to identify extragalactic sources
would benefit the construction of comprehensive catalogues useful for addressing fundamental
questions in astronomy.

To design this method, we followed a similar approach to that of Bailer-Jones et al.
(2019), who obtained a classification of extragalactic sources using Gaussian mixture models
(GMMs; Fraley and Raftery (2002)) applied to Gaia Data Release 2 (DR2) photometry and
astrometry. In this study, we consider photometry and astrometry from Gaia Early Data
Release 3 (GeDR3) and the addition of infrared photometry from CatWISE2020 (Marocco
et al., 2021), as well as the application of gradient-boosting decision trees, namely XGBoost
(Chen and Guestrin, 2016) and CatBoost (Dorogush et al., 2017) to construct a three-class
classifier (quasar, galaxy, star). The objective of our work is to assess the effects of additional
information from infrared photometry and the omission of parallax and proper motions on
the classification of extragalactic sources. We also aim to evaluate different classification
algorithms and the appropriate use of different priors to ensure that the reported performance
results are reflective of reality.

4.2 Data

Our input data comprise astrometry and photometry from the GeDR3 catalogue and infrared
photometry from the CatWISE2020 catalogue. The training and test datasets for the quasars
and galaxies are based on the sixteenth data release of SDSS (SDSS-DR16, Ahumada 2020)
while the star sample is built from the Gaia GeDR3 catalogue. We are aware that SDSS
is not complete and does not cover the same magnitudes as Gaia; however, we accept these
limitations when building our class samples.

The Gaia GeDR3 catalogue (Gaia Collaboration et al., 2021) was published on 3 December
2020 for observations acquired between 25 July 2014 and 28 May 2017, spanning a period of
34 months. GeDR3 consists of astrometry, and broad band photometry in the G, GBP, and
GRP bands for about 1.8 billion sources. In this work, we set a limit in magnitude up to
G ą 14.5mag. This work commenced prior to Gaia Data Release 3 (GDR3) and therefore
made use of the public data in GeDR3. However, as the photometry and astrometry remain
unchanged between GeDR3 and GDR3, our findings are applicable to DR3.

The CatWISE2020 catalogue consists of about 1.8 billion sources observed across the
entire sky selected from the WISE and NEOWISE survey data in the W1 and W2 (3.4 µm
and 4.6 µm) bands (Marocco et al., 2021). In our study, we chose CatWISE2020 instead
of All/unWISE as the CatWISE2020 catalogue extends to fainter magnitudes and the as-
sociated data processing pipeline uses the full-depth unWISE co-addition of AllWISE and
NEOWISE 2019 Data Release for aperture photometry (Marocco et al., 2021), which results
in a significant improvement over the AllWISE data. A five-arcsecond positional cross-match
of CatWISE2020 with GeDR3 identifies about 1.5 billion sources.
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4.2.1 Classes
The goal of our classification is to identify objects in the target star, quasar, and galaxy
classes. The definitions of the target classes are similar to those used by Bailer-Jones et al.
(2019), but are augmented with the aforementioned CatWISE2020 cross-match. However, in
our application we do not use —and therefore do not require the availability of— parallax
and proper motions. This approach results in a much larger set of galaxies, because most
galaxies observed by Gaia lack published parallax and proper motions due to a poor fit of
the astrometric model on account of their physical extent. As these may indicate a different
type of galaxy, this effectively changes our class definition. We ensure there are no common
sources between the three class datasets.

Quasars

The SDSS-DR16 quasar catalogue (Lyke et al., 2020) contains 750 414 quasars confirmed by
optical spectroscopy. Its authors estimate the contamination to be around 0.5%. We select
objects with a zWarning flag equal to zero, indicating a higher reliability in the classification
or the redshift estimation. We cross-match the selected sample to GeDR3 by sky position
with a one-arcsecond search radius using the CDS X-match tool, finding 489 581 matches
in total. This constructed sample is then compared with the cross-matched sample from
GeDR3 and the CatWISE2020 catalogue, resulting in 484 749 objects with GeDR3 features
and CatWISE2020 magnitude measurements in the W1 and W2 bands.

Galaxies

The sample of galaxies in our train and test datasets is constructed from SDSS-DR16 Ahumada
(2020); Blanton (2017). We select 777 409 objects from the SDSS SpecObjAll table on the
SDSS Skyserver identified as GALAXY with zWarning equal to zero, and are identified as neither
AGN nor AGN BROADLINE in the subclass field. The selected sample is similarly cross-matched
with GeDR3, finding all objects. In our selection, we relax the requirement of the parallax
and proper motions, as such information may be unavailable for several sources in Gaia,
particularly amongst galaxy sources. Applying the defined criterion, we retain about 90% of
the galaxy sources. Furthermore, supplementing the CatWISE2020 colours to our constructed
sample results in a total of 766 310 objects. Following the work by Bailer-Jones et al. (2019),
we apply a colour cut to the galaxy sources using the same colour-edge locus as shown in
Fig. 4.1. Objects below this locus represent stellar contaminants within the galaxy sample.
Potential sources of contamination include errors in the SDSS classification or the Gaia BP/RP
spectra affected by blends of nearby objects (De Angeli et al., 2022). The colour cut removes
1061 contaminants from our galaxy sample.

Stars

The spectroscopic selection for stars from SDSS data is complex, ill-defined, and likely affected
by a biased distribution of stellar types. We therefore do not use SDSS to define the star class.
We exploit the fact that the majority of observed sources in Gaia are expected to be stars.
We therefore construct our star sample via a random subset of 3 million sources from the
Gaia catalogue in which known galaxies and quasars are filtered out. We augment the sample
with the CatWISE2020 cross-match, resulting in 1.8 million sources identified as stars. In
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Figure 4.1: Colour–colour diagram of the galaxy class. Sources below the dashed
line are contaminants that are removed from the galaxy sample.

our constructed star sample, we could expect a non-zero level of contamination from non-
stellar sources. This contamination level is unknown, but our prior defined in Sect. 4.3.3
is our expectation. Ideally, our classifier trained on the cleaned sample would be robust to
contamination.

4.2.2 Training, validation, and test sets

The full dataset is the combination of the quasar, galaxy, and star samples. The data are
split into two equal parts at random. The first part is then split again into ten equal parts,
with nine being used for training, and one part for validation, to monitor the performance
during the training. For brevity, we often refer to these two together as the ‘training data’.
The second part is the test set which is kept back to assess the fixed models.

During the training phase, the training dataset is used to train the statistical model while
the validation set is used to assess the performance of the trained model. After convergence,
the trained model is stored and the test set, that is, a subset of the data unseen during
training, is used to evaluate the performances of the classifier.

For the classifier trained on the balanced dataset, we select a random subset of 200 000
sources of each class for the training (90 000 for training and 10 000 for validation) and test
datasets. By constructing a balanced classifier, we are able to directly compare the intrin-
sic performance of the models trained on different feature configurations and classification
methods and identify the best performing method. The class imbalance is addressed in the
discussion of the priors in Sect. 4.3.3.

Having selected the best-performing model using the balanced training and test dataset
discussed in Sect. 4.4.1, we re-define our training and test datasets to use as many of the
available sources in the quasar and galaxy class as possible by sampling a random subset
of 900 000 stars, 200 000 quasars, and 370 000 galaxies from the full dataset. We train the
feature configuration and classification method identified using the balanced dataset on this
imbalanced training and test set in Sect. 4.4.2. This resulting classifier is applied to the
application sets in Sect. 4.5.
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4.2.3 Application sets
We use three datasets derived from GDR3 (Vallenari et al., 2022) to demonstrate the appli-
cation of our best-performing classifier.

• A subset of 50 million randomly selected GDR3 sources that have CatWISE2020 pho-
tometry.

• Quasar candidate table from GDR3: The quasar tables described in Gaia Collaboration
et al. (2022) represent datasets where there is an estimation of the number of quasars
within GDR3. The quasar candidate table contains 6 649 162 sources with a purity of
0.52, and is refined further in the pure subsample (1 942 825 sources) with a purity of
0.96.

• Galaxy candidate table from GDR3: Similarly defined in Gaia Collaboration et al.
(2022), the full table reports 4 842 342 candidates with a purity of 0.69, and the pure
sample (2 891 132 sources) reaches a purity of 0.94.

There are 144 109 sources in common between the quasar and galaxy candidates (Gaia
Collaboration et al., 2022). For ease of interpretation of our results on these tables, we
therefore choose to remove these sources from the subsequent analysis.

4.2.4 Feature selection
In feature selection, an important condition is the completeness of each feature, as missing
data often cause many statistical methods to fail. As noted in section 4.2.1, a large fraction
of galaxies do not have published parallaxes and proper motions in GeDR3. We therefore
disregard both as input features in order to retain as many sources as possible. As inputs
to the classifier, we test various combinations of eight features: six of the eight features
are defined in Bailer-Jones et al. (2019), which we refer to as ‘Gaia_f’, and the other two
features are W1-W2 and the G-W1 colour constructed from the CatWISE2020 catalogue. The
six features from Gaia_f are apparent magnitude (G), sine of the Galactic latitude (sinb),
g-rp (G-RP), bp-g (G-RP), relative variability in the G band (relvarg), and the astrometric
unit weight error (UWE). We report the distribution of each feature in Fig. 4.2 and their
descriptions below:

- Figure 4.2 shows the distribution of the broadband G magnitude in Gaia and the colours
BP-G, G-RP, W1-W2, and G-W1. Quasars have characteristic optical-infrared colours.
In the colour–colour and colour–magnitude space, quasars can be discerned from other
stellar objects as well as from galaxies; see Fig. 4.3. Additionally in Fig. 4.3, we can
see the clear distinction from the galaxy class. Due to the clear separation between the
distinct classes seen in Figs. 4.2 and 4.3, we consider the colour information as one of
the main discriminating features of the target classes.

- Galactic longitude and latitude pl, bq can also be useful discriminants. Compared to
stars, for which the distribution is concentrated towards the Galactic disk and the
bulge, extragalactic objects are expected to be uniformly distributed across the entire
sky (Copernican principle). However, such distribution is not observed due to the strong
interstellar extinction in the disk of the Galaxy concealing extragalactic sources at low
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Figure 4.2: Distribution of the features from the training dataset, coloured according
to their true classes. Black: stars. Blue: quasars. Orange: galaxies. Each distribution
is separately normalised and the sinb has been randomised for quasars and galaxies
(constant probability per unit sky area).

latitudes. Due to the SDSS sky coverage, the extragalactic objects in our training and
test datasets follow a non-uniform distribution. We corrected our sample from this
selection effect by randomising the latitude of these objects in our training and test
datasets with values drawn from a uniform distribution in sinb. This approach may
not be a perfect solution because, as mentioned, we do not expect to see a large fraction
of extragalactic objects at low latitudes. While this may help us find otherwise-difficult-
to-detect extragalactic objects at low latitudes, it may also lead to a higher number of
false positives. We accept this limitation. Galactic longitude is a problematic parameter
because it wraps at l “ 00 “ 3600 and is not used as a model feature. However, we do
use l when computing our priors to account for the footprint of SDSS in comparison
with Gaia (see Sect. 4.3.3).

- The relative variability in the G-band, which we call ‘relvarg’ following the work by
Bailer-Jones et al. (2019), is defined as the ratio of the standard deviation of the
epoch photometry to its mean. Relvarg can be computed from the fields in GeDR3
as phot_g_n_obs/phot_g_mean_flux_over_error. Figure 4.2 shows a higher vari-
ability in quasars compared to stars. Galaxies also show large levels of variability,
although in Gaia this effect is a spurious artefact due to galaxies being extended in
their surface-brightness profile. At each epoch scan, Gaia will determine a slightly dif-
ferent photocentre possibly related to a different photometry. However, we can exploit
this behaviour to help distinguish galaxies.

- The astrometric unit weight error, UWE, is defined as the square root of the χ2 multi-
plied by the number of degrees of freedom of the astrometric solution. A larger UWE
value correlates to a weak fit to the astrometric solution and generally an enhanced
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value for some galaxies. We do not use the re-normalised UWE (RUWE), which also
removes dependencies on colour and magnitude, because RUWE is not defined when
the parallax and proper motions are missing.

4.3 Classification
In our work, the goal of the classification task is to find an optimal mapping between a class
label (i.e. star, quasar, or galaxy) and a set of features characteristic of a given object. Several
methods proposed in the literature have exploited supervised classification to determine the
best mapping between input features and discrete classes. In our work, we seek a probabilistic
classification, whereby a trained classifier generates a probability that an object belongs to
a class, offering more flexibility in the determination of the final class prediction. Moreover,
exploiting a Bayesian framework allows, on one hand, to define the posterior probability for
an object to belong to a specific class, and on the other hand to incorporate the use of a
highly informative prior function on the target classes, such as the expected distribution of
objects across the Universe.

The following section introduces the terminology and the classification metrics used in
our evaluation, the probabilistic models used to identify extragalactic sources, and the prior
functions we exploit to address the issue of class imbalance.

4.3.1 Terminology and metrics
In this section, we define key terms and the metrics used to assess a classifier performance.
Classes may be defined as true and predicted. The true class refers to what has been defined in
the training and testing datasets as the object’s assumed class as defined by SDSS (for galaxies
and quasars) or Gaia (for stars), and is therefore bound to have some inherent misclassification
errors which will add noise to our classifier. The predicted class refers to the class that has
been assigned using the probabilities outputted from our estimated classifier, which may be
taking the maximum posterior probability or by considering a probability threshold. We
define our predicted class as being the maximum posterior probability for a given source. To
compare the predicted and true classes, we construct a confusion matrix, where entry row
i and column j of the matrix refer to the number of objects with the true class i classified
into predicted class j. The confusion matrix is of dimension K ˆ K, with K2 numbers when
classified using the maximum posterior probability.

During training, we seek to minimise a loss function and monitor the performances of
the model across all iterations using an evaluation metric. In multiclass classification, the
standard loss function is the cross-entropy, defined in Eq. 4.1, for which an ideal model would
be able to correctly predict all objects (i.e. a cross entropy loss value equal to 0), in contrast
with the opposite case of a larger value when the predictions diverge from the true class:

Cross entropy loss “
´1

N

N
ÿ

n“1

K
ÿ

j“1

ynj logppnjq, (4.1)

where N refers to the sample size, K the number of classes, ynj the outcome equal to 1 for
the true class and 0 otherwise, and pnj the probability that object n belongs to class j.
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Figure 4.3: Colour–magnitude diagram (top) and two colour–colour (middle and
bottom) diagrams highlighting the distribution of each class, with contours designating
the density on a linear-scale for a random sample of 10 000 observations. The colour
black corresponds to stars, blue to quasars, and gold to galaxies. Distinct aggregates
can be identified for each class, although a significant interclass overlap still occurs.
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Classification performances are evaluated on a dataset unseen during the training phase,
that is, the test dataset. Performances are evaluated through metrics such as purity, com-
pleteness, and the F1-score. The purity, also known as precision (cf. Eq. 4.2), refers to the
number of true positives (TPs) over the full count of objects in the target class. Purity can
also be considered as a measure of contamination (1 - purity), representing the false positive
(FP) rate. The higher the purity, the lower the contamination.

Purity “
TP

TP ` FP
. (4.2)

The completeness, also known as the recall or sensitivity (cf. Eq. 4.3), refers to the number of
TPs over the number of objects in the target class, that is, the total sum of correct predictions
and true non-detections (false negatives (FNs)). A perfect model has purity and completeness
both equal to 1.

Completeness “
TP

TP ` FN
. (4.3)

The F1-score is computed as the harmonic mean of a model’s completeness and purity:

F1 “ 2 ˆ
Purity ˆ Completeness

Purity ` Completeness
. (4.4)

We define the objective function during training as the cross-entropy (Eq. 4.1), but we use the
F1-score as the evaluation metric applied to the validation dataset for the statistical methods
described in Sect. 4.3.2. A perfect model has an F1-score of 1.

We report the completeness and purities in the discussion of each of our classifiers, as these
metrics are of the greatest interest when considering the rare classes, quasars and galaxies,
and because these objects are harder to classify in comparison to the large number of stars
observed in Gaia.

4.3.2 Statistical methods
Gaussian mixture models and gradient-boosting methods have been shown to be effective in
numerous classification tasks, such as the works by Lee et al. (2012); de Souza et al. (2017)
and Möller et al. (2016); Chao et al. (2019); Golob et al. (2021), respectively. In the current
section, we describe both methods as well as their known limitations when applied to our
classification problem.

Gaussian mixture models

GMMs (Fraley and Raftery, 2002), as used in the work by Bailer-Jones et al. (2019) for
the supervised classification of extragalactic sources in Gaia, are defined in this work as our
baseline classifier. In the training phase, for each class of the training set, the GMMs fit
the distribution of the data as a sum of M Gaussians defined in a multi-dimensional feature
space by maximum likelihood. In the prediction phase, for an unclassified object, the trained
classifier computes a probability density function normalised for each class to provide posterior
class probabilities, which nominally is equivalent to adopting an equal class prior. The final
class prediction is obtained from the highest posterior probability across all classes.

GMMs are known to reach their limitations when dealing with overlapping classes and
sparse data. To prevent such limitations, we introduced an adjustment to the likelihood
by setting a fraction n of the lowest values to zero, which sets the final densities computed
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by the GMMs to zero. By forcing the Gaussian distributions to truncate to zero, sources
at the boundaries of a class distribution (the potential overlap between classes) should be
directly assigned to the most prevalent class (for our purposes, the star class), resulting in
an increase in the purity and completeness of the rarer classes. We considered four different
values for the threshold value n of {1,5,20,50} applied to all models trained on the different
input configurations (i.e. with and without infrared features). We found that the purity in
the quasar and galaxy classes marginally improves (an increase of 0.02) when using n “ 50 for
the model trained without the infrared features compared to a standard GMM. However, this
correction does not induce any improvement for the models trained on the dataset including
infrared features. Furthermore, we find that the GMMs subject to the likelihood trimming
method perform better than the standard GMM classifier, but attain lower performances
compared to the boosted decision tree methods. We therefore do not consider the correction
via likelihood trimming any further.

Gradient boosting methods

Gradient boosting is a popular and powerful ensemble technique within supervised machine
learning, where the ensemble technique refers to building a model from a collection of weaker
learners. There are additional ensemble methods such as bagging, which splits the dataset into
N subsets with replacement, builds a model on each subset in parallel, and finally combines
their individual predictions to compute the final class. Bagging is the basis of the random
forest method (Breiman, 2001). By contrast, gradient boosting builds a model by sequentially
fitting the weak learners in order to correct the residual errors at each iteration. The algorithm
re-weights the data towards the most difficult cases at each training step, such that subsequent
learners prioritise solving them. Typically, the learners used in gradient-boosting methods are
decision trees, and the method is known as gradient-boosting decision trees (GBDT;Friedman
(2001)).

The extreme gradient-boosting (XGBoost) method is a boosting algorithm presented by
Chen and Guestrin (2016) that refers to one of the fastest implementations of GBDT. In
particular, XGBoost improves upon GBDT in that it includes the second derivative of the loss
function, which provides complementary information on the direction of gradients essential
to solving the optimisation problem. Furthermore, the XGBoost method includes L1 and L2
regularisation used to prevent the model from overfitting.

A second gradient-boosting method, used in our work, is categorical boosting (Cat-
Boost;Dorogush et al. (2017)). The key properties of CatBoost (which are lacking in XG-
Boost) are balanced (symmetric) trees and ordered boosting. Balanced trees, by definition,
are built such that, at every step, the trees are split using the same feature criterion. By
using a balanced tree architecture, CatBoost runs more efficiently and controls for overfitting
as the balanced tree serves as regularisation. In general, classic boosting methods are prone
to overfitting and CatBoost circumvents this limitation via ordered boosting, which refers to
the process of training a model on a subset of the data and computing the residuals on a
different subset.

In the following, we train two classifiers, using XGBoost and CatBoost, with the same set
of input features used to train the GMM in order to assess the classification performances of all
classifiers. We select the optimal hyperparameters by performing a five-fold grid search cross-
validation that minimises the cross entropy loss function for finding the best hyperparameters.
We then maximise the evaluation metric, the F1 score, when fitting the model with the
best hyperparameters on the validation set. The hyperparameters we choose to optimise are
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max_depth or depth (in the case of CatBoost), learning_rate, and n_estimators, with the
remaining set at their default values. Here, max_depth represents the maximum number of
nodes allowed on a tree and is used to control for over-fitting, as a higher depth will make
the model more complex and representative of the training dataset and thus more likely to
be overfitted. The max_depth parameter ranges from zero to infinity and we consider the
values of 3, 6, 8, and 10. The learning_rate is the step size taken by the model at each
iteration to reach the minimum of the loss function; it takes a value of between 0 and 1, and
is used to control for overfitting by modifying the weights of new trees added to the model.
We consider the values 0.01, 0.03, 0.05, and 0.1. The last hyperparameter we consider tuning
is the number of trees, specified by n_estimators. There is often a point of diminishing
returns once there is a large number of trees, and each subsequent tree barely reduces the loss
function. We considered the values of 100, 500, and 1000 for the n_estimators in our testing.
The optimal values for the hyperparameters obtained from our grid search are a max_depth
of 8, a learning_rate of 0.1, and a total number of trees n_estimators of 100 for XGBoost,
and a depth of 6, a learning_rate of 0.03, and a total number of trees n_estimators of 1000
for CatBoost.

4.3.3 Prior
The class imbalance problem, that is, when the class distributions are highly skewed and we
are interested in the least frequent class, is not unique to classification within astronomy.
The problem is often encountered in various areas such as credit fraud detection where fraud
is considerably less frequent than regular transactions. Multiple classification algorithms in
this context attain low predictive accuracy for the rare class. Several data augmentation
methods have been developed to address the imbalance problem from oversampling the rare
classes, undersampling the most prevalent class, and generating synthetic observations using
techniques such as SMOTE (Chawla et al., 2002). In this work, we attempt to correct for
the class imbalance by applying a model correction exploiting prior knowledge that can be
physically attributed, as introduced in Bailer-Jones et al. (2019). Lake and Tsai (2022) offer a
similar approach which likewise proposes replacing the implicit prior of the classifier with one
representative of the target population. The model correction is applied in two phases of the
modelling process. First by adjusting the posterior probabilities by the class prior, as described
in Eq. 4.5, and second via the modification of the confusion matrix by an adjustment factor,
λk, shown in Eq. 4.6. The approach is thoroughly explained in section 3.4 of Bailer-Jones
et al. (2019), but we summarise the key points in the following section for convenience.

First, the prior adjustment is done by re-weighting the posterior probabilities using a prior
distribution to reflect the expected real class distribution:

P pCk|x,Θq “
1

Z
πkP px, |Ckq, (4.5)

whereΘ refers to any prior information, Z “
ř

k πkP px, |Ckq, and πk is the class prior for
class k.

Second, when applying the model to a test dataset, the confusion matrix is modified
using the adjustment factor in Eq. 4.6. This approach ensures that the results reflect the
expected (prior) distribution of all classes, in particular the larger number of potential star
contaminants to the quasar and galaxy classes. This step is necessary because the actual test
dataset generally does not portray the class distribution expected in reality; in particular, it
will tend to have too few stellar contaminants. The factor λk scales the actual number of
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objects in each row to the number of objects expected within a dataset. Given the definition
of the adjustment factor, the correction only affects the purity and not the completeness
estimated from the confusion matrix.

λk “
πk
αk

˜

ÿ

k‘

p
πk‘
αk‘

q

¸´1

, (4.6)

where αk is the class fraction within a dataset.

In this work, we describe three different priors and apply two of them: first the global
prior reflecting a general class distribution, then a joint prior dependent upon latitude and
magnitude, and lastly a mixed prior that combines the two aforementioned priors.

The global prior

The global prior of tπGP
star, π

GP
quasar, π

GP
galaxyu, which was introduced in the work by Bailer-Jones

et al. (2019), outlines the scarcity of quasar and galaxy objects compared to stars across
the sky. The prior sets the probabilities of observing a quasar or a galaxy to 1/1000 and
1/5000, respectively, from a sample of extragalactic sources with parallaxes and proper motion
measurements. However, as discussed in Sect. 4.2.1, the majority of the galaxies observed in
Gaia lack reported parallaxes and proper motions. To define our global prior, we count the
number of sources across each class in the Stripe82 region from SDSS DR16, and extrapolate
the distribution across the entire sky. The SDSS region Stripe 82 was chosen given the large
sample of spectroscopic observations available for the majority of sources, thus providing a
more complete count of identified targets. We find twice the number of galaxies compared to
quasars and based on this we define our global prior as 1/1000 for quasars and re-adjusted to
1/500 for galaxies.

The joint latitude and magnitude prior

Extragalactic sources are expected to have an intrinsic uniform distribution across the sky,
but will not be observed due to dust extinction in the disk. At low latitudes closer to the
Galactic plane, we would expect a higher number density of stars in comparison to galaxies
and quasars. As the (absolute) latitude increases, the number density of galaxies and quasars
with respect to stars increases. This information can be used to generate a latitude-based
prior derived from densities at different latitudes.

We can also construct a prior based on apparent magnitude as we would expect the
number of quasars and galaxies to increase towards the fainter brightness end. The G-band
magnitude distribution in Fig. 4.2 supports this expectation. Exploiting such characteristics
in the latitude and the G magnitude distributions, we have the functionality to represent
what we consider to be true variations in latitude and magnitude as a prior to improve the
performance of our classifier over a two-dimensional (2D) latitude and magnitude space.

To construct the joint class prior, we chose the overlapped region 50˝ ă“ l ă“ 200˝ in
Gaia and SDSS DR16 in order to ensure that we are counting sources over the same area
of the sky. We assume that SDSS DR16 includes all galaxies and quasars in this region,
and that Gaia includes all stars within. Here the denomination ‘all’ refers to a randomly
generated application data set (i.e. our randomly selected 50 million GDR3 sources). Using
the compiled list of sources, we now further define bins in both sinb and G ´ mag, count the
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number of stars, quasars, and galaxies and finally normalise in order to compute frequencies.
The distributions for the different class priors can be seen in Fig. A.7. The top panel shows
a large number of stars within the plane and a lower density of stars at higher latitudes
and towards lower magnitudes. The middle panel reports the distribution observed for the
quasars, for which the lowest density is identified within the lowest latitude bin, and a majority
of quasar sources at G “ 18mag and higher latitudes. For galaxy sources, the bottom panel
reports the majority of sources at the highest magnitudes and those uniformly distributed
across latitudes excluding the lowest latitude regions.

The mixed prior

The mixed prior refers to the latitude- and magnitude-dependent prior that accounts for the
overall sky distribution of classes represented by the global prior. We define the mixed prior
as follows.

1. gS , gQ, gG » p1, 1
1000 ,

1
500q, the (un-normalised) target global prior.

2. FS , FQ, FG are the measured fractions of sources by star, quasar, and galaxy class in
the overlap of SDSS and Gaia over the region 50˝ ă“ l ă“ 200˝, over all latitudes and
magnitudes.

3. In a specific latitude and magnitude bin, the number of sources from each class is
counted to be nS , nQ, nG.

4. The number of sources we should have in each latitude and magnitude bin according
to our target prior are therefore
n

1

S “ nS
gS
FS

n
1

Q “ nQ
gQ
FQ

n
1

G “ nG
gG
FG

.

5. Normalising these across the classes gives the target prior for each latitude and magni-
tude bin:
n

2

S “
n

1

S

n
1

S`n
1
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1

G

n
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n

1
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1
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1
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1
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.

The distribution of this prior across latitude and magnitude is shown in Fig. 4.4. We see the
dominance of stars in the lower latitudes and a gradual increase in the prevalence of quasars
and galaxies at higher latitudes and fainter magnitudes. As the prior is discontinuous in
magnitudes G and latitudes b, we expect discontinuities in the classification probabilities and
counts.
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Figure 4.4: Heat map of the mixed prior distribution. In this representation, the
number of stars at lower latitudes exceeds the number of observed quasars and galax-
ies. Whereas, at higher latitudes and fainter magnitudes, the number of quasars and
galaxies surpasses the number of stars. Values of ‘0.0000’ are not necessarily exactly
zero, but could be below the numerical precision shown.

4.4 Results of different models and feature combina-
tions on the test set

Section 4.4.1 presents the results of classification obtained with four different feature combina-
tions using the GMM, XGBoost, and CatBoost methods applied to the balanced data set (for
training and testing). We identify the best feature combination and method for the classifica-
tion of extragalactic sources. Section 4.4.2 shows the results of the chosen model and feature
combination fitted and assessed on the larger imbalanced training and test datasets, respec-
tively. The effect of applying the priors to the model probabilities is discussed in Sect. 4.4.3.
The selected classifier is applied to our application datasets in Sect. 4.5. Our tests were run
on an Ubuntu server, with 344GB of RAM and an Intel Xeon CPU E5-2695 v3 at 2.30 GHZ
with 30 threads.



56 Quasar and galaxy classification using Gaia EDR3 and CatWise2020

Table 4.1: Classification performances obtained for different balanced classifiers
using different algorithms and input features. Completeness and purity are shown
for each class. From our tests, the best performing model is the XGBoost algorithm
trained on the Gaia_f features supplemented with the infrared CatWise2020 colours
(Feature Set 4 )

Completeness Purity
Features Star Quasar Galaxy Star Quasar Galaxy

G
M

M

Gaia_f 0.9330 0.9580 0.9886 0.9532 0.9405 0.9860
Gaia_f + W1-W2 0.9714 0.9850 0.9906 0.9810 0.9784 0.9875
Gaia_f + W2 + G-W1 0.9766 0.9871 0.9919 0.9853 0.9837 0.9866
Gaia_f + W1-W2 + G-W1 0.9778 0.9859 0.9919 0.9840 0.9846 0.9869

X
G

B
oo

st Gaia_f 0.9418 0.9623 0.9922 0.9603 0.9489 0.9871
Gaia_f + W1-W2 0.9728 0.9878 0.9933 0.9857 0.9798 0.9885
Gaia_f + W2 + G-W1 0.9793 0.9896 0.9932 0.9878 0.9859 0.9884
Gaia_f + W1-W2 + G-W1 0.9793 0.9908 0.9936 0.9891 0.9857 0.9889

C
at

B
oo

st Gaia_f 0.9411 0.9619 0.9919 0.9593 0.9484 0.9872
Gaia_f + W1-W2 0.9720 0.9876 0.9930 0.9854 0.9787 0.9885
Gaia_f + W2 + G-W1 0.9785 0.9883 0.9927 0.9862 0.9847 0.9886
Gaia_f + W1-W2 + G-W1 0.9786 0.9905 0.9934 0.9886 0.9850 0.9888

Table 4.2: Classification performances adjusted by the global prior and adjustment
factor for different balanced classifier models using the XGBoost algorithm and different
input features.

Completeness Purity
Features Star Quasar Galaxy Star Quasar Galaxy

X
G

B
oo

st 1: Gaia_f 0.9992 0.0844 0.3625 0.9978 0.5295 0.4915
2: Gaia_f + W1-W2 0.9987 0.2653 0.4261 0.9981 0.4209 0.4768
3: Gaia_f + W2 + G-W1 0.9986 0.3402 0.4464 0.9982 0.4197 0.4924
4: Gaia_f + W1-W2 + G-W1 0.9986 0.3289 0.4650 0.9983 0.3944 0.5054

4.4.1 Classifier trained on a balanced set
By considering a balanced class distribution across the training and test datasets with 200 000
sources in each class, as defined in Sect. 4.2.2, the intrinsic performances of each method
applied to different input feature combinations are higher compared to those obtained when
we subsequently apply the appropriate prior and allow for a higher level of contamination
from stellar objects.

Table 4.1 reports the different methods GMM, XGBoost, and CatBoost, where each model
is tested using four combinations of input features: Feature Set 1 : Gaia_f, Feature Set 2 :
Gaia_f + W1-W2, Feature Set 3 : Gaia_f + W2 + G-W1, and Feature Set 4 : Gaia_f +
W1-W2 + G-W1.

When performing model fitting, we search for the best input configuration with the highest
purity and completeness in the quasar and galaxy classes. We add the colour difference of
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Table 4.3: Classifier using XGBoost with two feature set configurations as applied
to the imbalanced test dataset. Classification performances of the model trained on
an imbalanced dataset show lower completeness but higher purity compared to the
balanced classifier. Classification performances increase when the infrared data are
incorporated as input features.

Completeness Purity
Features Star Quasar Galaxy Star Quasar Galaxy
Gaia_f 0.9714 0.9040 0.9914 0.9766 0.9091 0.9759
Gaia_f + W1-W2 + G-W1 0.9858 0.9799 0.9922 0.9937 0.9705 0.9784

Table 4.4: Confusion matrix on the test set predictions using an XGBoost classifier
trained on Feature Set 4. The right half of the table has been modified by the adjust-
ment factor.

Predicted

Star Quasar Galaxy Star Quasar Galaxy

A
ct

ua
l Star 887262 5127 7611 199119.6 100.6979 181.4556

Quasar 3529 195980 491 133.8076 65.5892 0.0050
Galaxy 2076 820 367104 213.3360 0.0260 185.4417

W1-W2 and G-W1 for long colour wavelength span to the original Gaia features. We do
not consider colours such as BP-W2, as W2 is less sensitive than W1 and G has a higher
signal-noise ratio than BP. From Table 4.1, we can see that across all feature combinations,
the GMM has a lower classification performance for the two extragalactic classes compared to
the gradient boosted methods. Moreover, the addition of infrared-derived features increases
the purity and completeness for the quasar and galaxy classes. In Table 4.2, we apply a global
prior and the adjustment factor, and report the purity and completeness for each class. We
find that Feature sets 3 and 4 give comparable performances, and are better than sets 1 and
2. Given Table 4.1 and Table 4.2 we choose an XGBoost model with Gaia features and the
W1-W2 and G-W1 infrared colours (Feature Set 4 ).

4.4.2 Classifier trained on an imbalanced set

Using the statistical model and features identified in Sect. 4.4.1, we now train a classifier
using all available sources. This enables the design of a classifier that is more representative
of the true class distribution, as discussed in Sect. 4.2.2. As introduced in Sect. 4.3.3, the
global prior is set to 1, 1/1000, or 1/500, for star, quasar, and galaxy targets, respectively,
which differs from the class fractions in the training and test sets. Given the available data,
it would be infeasible to use this prior and have a representative number of objects in the
extragalactic classes. Furthermore, the intrinsic prior of a model is not necessarily equal to
the class fractions in the data initially used for training. Application of the adjustment to the
posterior probabilities is discussed in Sect. 4.4.3.

The results of our classifier trained using Feature Set 4 are reported in Table 4.3. We
compare the final model with an XGBoost model trained exclusively on Feature Set 1 and
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find a significant improvement in the completeness and purity for the quasar class, from
0.9040 to 0.9799 in the completeness, and from 0.9091 to 0.9705 in the purity. However, for
the galaxy class, only an insignificant improvement is seen in the classification metrics, from
0.9914 to 0.9922 in the completeness and from 0.9759 to 0.9784 in the purity. Compared
to the balanced classifier in Sect. 4.4.1, the current classifier exploits a larger dataset, and
therefore the decrease in the classification performances is to be expected, particularly in
terms of purity, which is due to the fact that the larger dataset likely has more contaminants.
For the remainder of this work, we retain the classifier trained on the imbalanced dataset
using Feature Set 4 to assess the use of different priors applied to the models and apply the
classifier to the application sets in Sect. 4.5.

4.4.3 Classifier adjusted using the priors

We now consider the effect of applying different prior probability distributions to the posterior
probabilities estimated by the classifier in Sect. 4.4.2. In the figures discussed in this section,
the left panels represent results obtained for the Feature Set 1 model, whereas the right-panels
report the results associated to the Feature Set 4, both with XGBoost.

The results using the global prior are reported in Table 4.5. The top half of the table
(‘Adj’) shows results for a realistic level of stellar contamination by using the adjustment factor
λk in Eq 4.6; the bottom half shows raw unadjusted results, that is, with the lower level of
contamination seen in the test set (‘Unadj’). Using the global prior gives a lower completeness
overall in comparison to the results obtained before applying the prior in Table. 4.3. On
average, similar results are observed in the purity for the unadjusted case. Applying the
adjustment factor results in lower purities across both the quasar and galaxy classes; however,
the addition of infrared colour information clearly results in a better classifier in terms of
performance.

Having assessed the impact of the global prior on the final classification. We now consider
a more highly tuned prior, namely the ‘mixed’ prior introduced in Sect. 4.3.3, and assess the
performance as a function of latitude and magnitude, while also applying the adjustment of
the confusion matrix in order to incorporate the expected class fractions at each latitude and
magnitude into the performance metrics. In Fig. 4.5, the completeness for the quasar class
improves with higher latitudes and most significantly when we add infrared colour information
as an input feature. However adding infrared data and moving to higher latitudes marginally
improves the completeness in the galaxy class. As an illustration, there is an 18% increase in
completeness for very faint quasars at high latitudes (top-right bin) and only a 0.7% increase
in completeness for galaxies in the equivalent bin when adding infrared data. The purities for
the quasar and galaxy classes are shown in Figs. 4.6 and 4.7, respectively. We would like to
point out that the exact values of 1 and 0 are due to a rounding precision. The effect of the
adjustment factor is reported in the top panels. For the quasar class, we observe a significant
improvement in purity when adding the infrared colours, and as a function of latitude. For
the galaxy class, the addition of infrared colours has only a marginal improvement on the
purities as a function of latitude and magnitude. The application of the adjustment factor
induces an expected decrease in purity for both the quasar and galaxy target classes.
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Figure 4.5: Imbalanced Classifier Mixed Prior: Completeness evaluated for the three
target classes in the test set from predictions obtained by the best-performing models,
i.e. XGBoost trained on Feature Set 1 (left panel) and Feature Set 4 (right panel).

Figure 4.6: Imbalanced Classifier Mixed Prior: Purity evaluated for the quasar class
in the test set from predictions obtained by the best-performing models, i.e. XGBoost
trained on Feature Set 1 (left panel) and Feature Set 4 (right panel). Top panels show
the classification performances modified by the adjustment factor. The near unit purity
at low latitudes in the right panels is not meaningful as there are very few objects, as
shown in Fig. 4.4
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Table 4.5: Imbalanced Classifier Global Prior: Completeness and purity using the
global prior as applied to the test dataset using the imbalanced classifier. ‘Adj’ is
defined as adjusted using the adjustment factor, λk, in Eq. 4.6 and ‘Unadj’ is without
such an adjustment.

Completeness Purity
Features Star Quasar Galaxy Star Quasar Galaxy

A
dj Gaia_f 0.9995 0.0897 0.3054 0.9977 0.4621 0.5958

Gaia_f + W1-W2 + G-W1 0.9993 0.2131 0.3790 0.9980 0.5694 0.6036

U
na

dj Gaia_f 0.9995 0.0897 0.3054 0.6721 0.9946 0.9967
Gaia_f + W1-W2 + G-W1 0.9993 0.2131 0.3790 0.6991 0.9962 0.9968

Figure 4.7: Similar to Fig. 4.6 for the galaxy target class in the test set.

4.5 Results of the best-performing model and feature
combination on the application sets

To evaluate how our selected classifier performs and what distribution of the predicted classes
is obtained on datasets with representative distributions, we apply the classifier to three
datasets selected from the 1.8 billion sources observed in Gaia at the intersection between
GDR3 and the CatWISE2020 catalogue. With our first application, we aim to predict the
classes for a randomly selected subset of 50 million sources, without prior information on the
target classes or their distribution. However, this application set has the distribution that
our global and mixed priors are designed for. The second dataset is constructed from the
GDR3 quasar and galaxy candidate tables defined in Gaia Collaboration et al. (2022), which
are quoted as having purities of 0.52 and 0.69, respectively. The third data set is the purer
subsample of the GDR3 quasar and galaxy candidate tables defined in Gaia Collaboration
et al. (2022), which are quoted as having purities of 0.95 for the quasar class and 0.94 for the
galaxy class. In addition to assessing the accuracy of our classifier, we wish to identify whether
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Figure 4.8: Heat map of the mixed prior distribution for the GDR3 Quasar Candi-
date Table. In this representation, the number of stars at the lowest latitude exceeds
the number of observed quasars and galaxies.

adding infrared colours to Gaia data improves the reliability of these candidate tables, despite
having removed parallax and proper motion as features.

Our priors, both global and mixed, are designed for a sample of sources drawn at random
from the Gaia/CatWISE2020 all-sky sample. These priors are not appropriate for the classi-
fication of the GDR3 extragalactic tables in Sects. 4.5.2 and 4.5.3, where we have 50%–95%
extragalactic objects, rather than 0.1%–0.2% as expected by the prior. For application to
these, we redefine our global priors by taking the purity of each GDR3 extragalactic table as
defined in (Gaia Collaboration et al., 2022), which we denote p. Considering the case of the
quasar table, the normalised global prior becomes p1 ´ p ´ e, p, eq, where e is an estimation
of the contamination from the galaxy class. The prior would be defined as p1 ´ p ´ e, e, pq

in the case of the galaxy class. The normalised global priors are p0.454, 0.520, 0.026q and
p0.274, 0.036, 0.690q, with the re-adjusted mixed priors shown in Figs. 4.8 and 4.9 for the
GDR3 quasar and galaxy candidate tables, respectively.
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Figure 4.9: Heat map of the mixed prior distribution for the GDR3 Galaxy Candi-
date Table. In this representation, the number of stars at the lowest latitude exceeds
the number of observed quasars and galaxies.

4.5.1 Application on a random subset of the overlap of GDR3
and CatWISE2020

For the 50 million sources at the intersection of GDR3 and CatWISE2020, the true class of the
source is unknown and therefore reliable performance metrics cannot be computed. However,
we can compare the number of sources classified with the different priors, and compare the
counts to expectations. We find 12607 quasars and 41153 galaxies, or 1/4000 and 1/1200,
using the global prior. When compared to the global prior values of 1/1000 for quasars and
1/500 for galaxies, we find that our results give a factor of 4 fewer quasars and a factor of 2
fewer galaxies. Using the mixed prior, we find 97294 quasars and 192231 galaxies, or 1/500
and 1/300. The mixed prior finds nearly eight times as many quasars (97294{12607 “ 7.7)
and roughly five times more galaxies (192231{41153 “ 4.7) than the global prior. This may
be attributed to the mixed prior being very non-uniform in magnitude and latitude, similar
to the true distribution. Furthermore, by construction the mixed prior is better matched to
the data.

In Fig. 4.10, we show the sky distributions of the sources by assigned class. For both
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priors, in a random sample of 50 million sources observed by Gaia, we classify less than 1%
of the sample as either a galaxy or a quasar, highlighting the scarcity of the extragalactic
sources.

It is interesting to compare our results with those used from the DSC-Combmod classifier,
which was used to identify many quasars and galaxies published in the GDR3 extragalactic
candidate tables (Gaia Collaboration et al., 2022). Combmod is the combination of the class
posterior probabilities from two classifiers, DSC-Specmod and DSC-Allosmod Delchambre
et al. (2022). Specmod classifies objects using BP/RP spectra, whereas Allosmod uses a GMM
to classify objects using several astrometric and photometric features (the features being our
Gaia_f set plus parallax and proper motion; see also Bailer-Jones et al. 2019). We use the
quasar and galaxy class probabilities from Combmod, but take the star class probabilities
to be one minus the sum of the quasar and galaxy probabilities (because Combmod reports
more than three classes), and assign the class label to the class with the largest probability.
When applying the global prior, we identify 7% of the Combmod quasars as quasars with the
remaining 92.9% identified as stars and 0.1% as galaxies. We identify 21% of the Combmod
galaxies as galaxies, with the remaining 78.9% identified as stars and 0.1% as galaxies. Using
the mixed prior, we classify 40% of the Combmod quasars as quasars with the remaining
59.8% identified as stars and 0.2% as galaxies. For the Combmod galaxies using the mixed
prior, we find 56% to be galaxies with the remaining fraction being 43.6% stars and 0.4%
quasars.

We now refine the 50 million sources by considering those that are classified as a quasar
or a galaxy in the pure samples defined in the GDR3 quasar and galaxy candidate tables,
respectively. We aim to see whether the proportion of identified quasars and galaxies increases
when the sample is refined. We find that our classifier identifies 12% of the quasars in
the pure quasar candidate table using the global prior, an improvement of 5% compared to
quasars classified in Combmod. Using the mixed prior, we identify 69% of the quasars in the
pure quasar candidate table, which is over 25% better than the Combmod quasars. When
considering the pure galaxy candidate table, we identify 18% as galaxies using the global prior
which is a reduction of 3% when compared to the Combmod galaxies. A 2% reduction is seen
when applying the mixed prior, where we identify 54% of galaxies in the pure galaxy candidate
table. Using the three different classifications —DSC-Combmod, the pure subsample from the
GDR3 candidate table, and our classifier— we illustrate the density of the predicted sources in
colour–colour diagrams and a colour-magnitude diagram, with the contours representing the
classifications from DSC-Combmod and the purer subsamples. Figure 4.11 shows the sources
classified as quasars using the global prior in our classifier. We see that considerably fewer
sources are classified as extragalactic when using the global prior compared to the mixed prior
in Fig. 4.12, but are focused towards the redder magnitude. In contrast to the global prior, the
mixed prior allows for more freedom in the identification of sources that are quasars, closely
resembling the contours of the pure sample. Figures 4.13 and 4.14 represent the density of
the galaxy class with the global prior and mixed prior adjustment, respectively. The global
prior results are a subset of the mixed prior, with the mixed prior extending to bluer G-RP
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Figure 4.10: Log10 of counts for sources classified on the random Gaia DR3 sample
on a healpix at level 6 (HPX6). As described in Sect. 4.3.3, the mixed prior is discretised
by latitude and magnitude, this giving rise to the banded structure in the right panels.
The white colour indicates a source density below the scale and anything above the
scale is yellow.
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Figure 4.11: Results of the classifier when applied to the randomly selected set of 50
million Gaia DR3 and catWISE2020 sources using the global prior: Colour–magnitude
and colour–colour diagrams for the quasars. Sources from the classifier adjusted by
the global prior are given by the density scale where black is zero density and yellow
is high density. DSC-Combmod sources are identified by the cyan contours and the
GDR3-defined pure quasar sample by the white contours. This colour code is used for
all subsequent colour–magnitude and colour–colour diagrams.

but the global prior not extending redder.

4.5.2 Application to quasar candidates from GDR3
The GDR3 quasar candidate table defined in Gaia Collaboration et al. (2022) contains 6.6
million potential quasars with a purity of 52%, and is further refined into a pure subsample
containing 1.9 million quasars with a purity of 95%. The overlap with CatWISE2020 results
in 4 048 626 GDR3 quasars and 1 822 922 pure subsample quasars.

We applied our trained classifier from Sect. 4.4.2 to the GDR3 quasar candidates that
overlap with CatWISE2020 and estimated the probabilities of the three classes. We assess
the classification performance of our model by considering the proportion of quasars identified
by our classifier using the global prior and the mixed prior redefined for this application dataset
(as explained at the beginning of this section), on the assumption that the quasar candidate
overlap is entirely quasars.

The results are shown in Table. 4.6, where in the global prior case we identify 55% of
quasars in the GDR3 candidate table. If we further constrain the sample by considering the
pure subsample only, or the pure subsample and the SDSS16 quasar table together, we see
the proportion of quasars identified by our classifier is considerably higher than the GDR3
candidate sample, reaching 99.8%. A similar trend is reported in the mixed prior case, this
time identifying 58% of quasars in the GDR3 candidate table and 99.9% when restricting the
sample to the pure subsample or the pure subsample plus the SDSS16 quasar table. Given
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Figure 4.12: Results of the classifier when applied to the randomly selected set of
50 million Gaia DR3 and catWISE2020: As in Fig. 4.11, but using the mixed prior in
our classifier.

Figure 4.13: Results of the classifier when applied to the randomly-selected set of 50
million Gaia DR3 and catWISE2020: Colour–magnitude and colour–colour diagrams
for the galaxies derived from DSC-Combmod, the GDR3-defined pure galaxy sample,
and from the classifier adjusted by the global prior.

that both global prior and mixed prior have the same global prior behind them, adding the
highly non-uniform distribution of the latitude and G dependencies to the prior makes it
slightly more suited to finding quasars and galaxies where we expect to find them. We can
deconstruct this results table further by considering the entire GDR3 quasar candidate sample
in Fig. 4.15 for the global prior and Fig. 4.16 for the mixed prior. Comparing the two priors,
we see a higher proportion of quasars identified in the fainter and higher magnitude end in
the mixed prior case than the global prior, but the distribution on average is quite similar.

We visualise the application of the mixed prior to the quasar candidate table in Fig. 4.17,
and the considerable overlap between the pure sample contours in the most dense region of
the mixed prior classifier is evident. The same distribution can be seen in the case of the
global prior.

By splitting the sample into two subsets based on the availability of parallax or proper
motions in Fig. 4.18, we observe a higher density distribution for sources with parallaxes com-
pared to the sources without parallax measurements. Furthermore, for the sources classified



4.5 Results of the best-performing model and feature combination on
the application sets 67

Figure 4.14: Results of the classifier when applied to the randomly-selected set of
50 million Gaia DR3 and catWISE2020: Colour-magnitude & Colour-colour diagrams
for the galaxies using DSC-Combmod, the GDR3 defined pure galaxy sample and the
classifier adjusted by the mixed prior.

Figure 4.15: Heat map of the distribution for quasars identified using the global
prior for the GDR3 Quasar Candidates as function of magnitude and latitude. Each
mag/lat cell is normalised across the three classes.
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Figure 4.16: Heat map of the distribution for quasars as in Fig. 4.15 but using the
mixed prior in our classifier.

Figure 4.17: GDR3 Quasar Candidate Table Mixed Prior: Colour-magnitude &
Colour-colour diagrams for the quasars using the mixed prior. The sources identified
by the classifier are represented by the density scale, where black is zero density and
yellow is high density. GDR3 quasar sources are identified by the cyan contours and
the GDR3 pure quasar sample by the white contours.
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Figure 4.18: GDR3 Quasar Candidate Table Mixed Prior: Probability and density
distributions for sources classified as a quasar. The left hand side panels correspond
to sources with parallax while the right hand side panels represent the distribution for
sources without parallax.

Table 4.6: Quasar candidates: Counts of objects in the predicted classes and the
proportion identified as quasars using the extragalactic-table-tuned prior defined in
Sect. 4.5. GP and MP refer to the global prior and mixed prior, respectively.

Predicted

Star Quasar Galaxy Quasar proportion

G
P

GDR3 Quasar 1826019 2211696 10911 0.5463
Pure GDR3 Quasar 54006 1768694 222 0.9703
SDSS16 Quasar + GDR3 753 401104 5 0.9981
SDSS16 Quasar + Pure GDR3 725 394418 5 0.9982

M
P

GDR3 Quasar 1656379 2372430 19817 0.5860
Pure GDR3 Quasar 68680 1753917 325 0.9621
SDSS16 Quasar + GDR3 491 401369 2 0.9988
SDSS16 Quasar + Pure GDR3 466 394680 2 0.9988
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Figure 4.19: Heat map of the distribution for galaxies identified using the global
prior for the GDR3 Galaxy Candidates by magnitude and latitude.

with parallax we see a shift in the density of the colour distribution, with more sources ex-
tending to BP ´G “ 1, whereas the sources without parallax and proper motions are centred
around BP ´ G “ 0 with a few outliers when G ´ RP ą 2 for sources without parallax or
proper motions in the case of the global prior. For the mixed prior, the distribution in colour
space is similar; however, in the top-left panel for sources with G ´ RP ą 2 the probabilities
are lower than in the case of the global prior. Overall, the application of our classifier to the
quasar candidates from GDR3 identifies 96%–97% of the pure quasar subsample as quasars.
Moreover, when requiring the source to have a SDSS16 quasar classification, we identify 99.9%
of them as quasars, irrespective of whether the source was in the GDR3 pure subsample or
not.

4.5.3 Application to galaxy candidates from GDR3

In analogy to Sect. 4.5.2, here we apply our classifier to the galaxy candidate table in GDR3,
which comprises 4.8 million candidates with a purity of 69%, and includes a purer subsample
of 2.8 million candidates with a purity of 94%. The overlap with CatWISE2020 reduces the
counts to 4 194 100 and 2 824 570, respectively.
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Figure 4.20: Heat map of the distribution for galaxies as in Fig. 4.19 but using the
mixed prior in our classifier.

Figure 4.21: GDR3 Galaxy Candidate Table Mixed Prior: Colour-magnitude &
Colour-colour diagrams for the galaxies using the mixed prior. The sources identified
by the classifier are represented by the density scale, where black is zero density and
yellow is high density. GDR3 galaxy sources are identified by the cyan contours and
the GDR3 pure galaxy sample by the white contours.
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Table 4.7: Galaxy candidates: Counts by predicted class and proportion identified
as galaxies using the extragalactic-table-tuned prior defined in Sect. 4.5. GP and MP
refer to the global prior and mixed prior respectively.

Predicted

Star Quasar Galaxy Galaxy proportion

G
P

GDR3 Galaxy 306073 913 3887114 0.9268
GDR3 Pure Galaxy 1834 20 2822716 0.9993
SDSS16 Galaxy + GDR3 27 3 514735 0.9999
SDSS16 Galaxy + Pure GDR3 1 0 393043 1.0000

M
P

GDR3 Galaxy 128638 264534 3800928 0.9062
GDR3 Pure Galaxy 710 41149 2782711 0.9852
SDSS16 Galaxy + GDR3 3 323 514439 0.9994
SDSS16 Galaxy + Pure GDR3 0 151 392893 0.9996

From Table 4.7, we find the proportion of galaxies identified by our classifier in the full
galaxy candidate table to be 93% when using the global prior and if we apply the mixed
prior to this table we find 91%. If we further constrain the sample by considering the pure
subsample or the pure subsample plus the SDSS16 galaxy table, we see the proportion of
galaxies identified by our classifier is higher, at 99% for both priors. Exploring the entire
GDR3 galaxy candidate sample further in Fig. 4.19 for the global prior and Fig. 4.20 for the
mixed prior. Comparing the two priors, we see a higher proportion of galaxies identified in the
fainter and higher magnitude end in the global prior case than with the mixed prior, but the
distribution on average is quite similar. Furthermore the mixed prior considers more galaxy
sources to be quasars, particularly at the bright end and at higher latitudes, whereas the
global prior considers more galaxy sources to be stars at the bright end but at lower latitudes.

We can see this distribution for the mixed prior results in Table 4.7 and in Fig. 4.21.
We see closer contours for the GDR3 pure sample centred around the highest density region
when using the mixed prior classifier and wider contours for the GDR3 sample as expected.
A similar result is seen when applying the global prior. In contrast to the work by Bailer-
Jones et al. (2019), our classifier was fit without using parallax or proper motions in order
to retain as many galaxy sources as possible. We assess in Fig. 4.22 whether our classifier
has a different distribution in either the count or probability spaces for sources with parallax
and proper motions and for those that do not. We see a tendency towards redder magnitudes
for the sources classified using the mixed prior without parallax and proper motions. The
probability distributions are unperturbed and follow a similar trend with higher probabilities
towards the lower magnitudes.

4.6 Conclusions
Building large catalogues of well-classified extragalactic sources is useful for large-scale statis-
tical analyses in astronomy. In this paper, we look at how adding infrared colour information
improves the classification of extragalactic sources compared to simply using Gaia. Our results
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Figure 4.22: GDR3 Galaxy Candidate Table Mixed Prior: Probability and density
distributions for sources classified as a galaxy The right hand side panels correspond
to sources with parallax while the left hand side panels represent the distribution for
sources without parallax.We find in the bottom-right panel a similar colour excess
factor locus at BP-G =-0.5 and G-RP=2, as in figure 3 of Bailer-Jones et al. (2019)
and figure 31 of Gaia Collaboration et al. (2022). This locus is however not evident in
the case which has parallax and proper motions.

Table 4.8: Quasar candidates: A subset of the table of mixed prior probabilities as
calculated on the quasar candidate table from GDR3. The full tables of probabilities
as calculated on the quasar candidate table from GDR3 and on the galaxy candidate
table from GDR3 are available upon request.

source_id isQSO_pure isQSO_SDSS pStar pQSO pGAL

3470333738112 1 1 0.0001936 0.9998064 0.0000000
5944234902272 1 1 0.0001846 0.9998154 0.0000000
6459630980096 1 0 0.0009402 0.9969757 0.0020841
9517648372480 1 0 0.0001880 0.9998120 0.0000000
10655814178816 1 0 0.0001485 0.9998457 0.0000058
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
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indicate an improved classification performance when adding the infrared colour information
from CatWISE2020. The purities of the quasar and galaxy class improve from 0.9091 and
0.9759 to 0.9705 and 0.9784, respectively. We discuss how using a prior and adjusting the
confusion matrix to reflect the expected (high) level of stellar contamination in a real ap-
plication are necessary steps in ensuring that the reported results are representative of the
performance of the classifier when test or application datasets do not reflect the true class
distribution. Significantly, we find that using a prior that varies with latitude and magnitude
gives higher purity and completeness for extragalactic objects: Looking at Fig. 4.6 in the
adjusted case, and taking the bin where sinb = p0.6, 0.8s and G = p18.5, 19.5s, we observe an
improvement in the purity of the quasar class from 0.51 to 0.58. This result is coupled with
a higher completeness seen in Fig. 4.5, from 0.84 to 0.97 in this bin. The published proba-
bilities for the mixed prior classifier applied to the quasar and galaxy extragalactic candidate
tables are available upon request. Table 4.8 illustrates the format of the tables. Exploiting
the results of our classifications would be useful to scientific studies focusing on extragalactic
sources as well as investigating stellar populations in the Milky Way as observed by Gaia and
CatWise2020. Finally, when testing different statistical models, we find that decision-tree-
based methods, in particular XGBoost, are more effective than Gaussian mixture models for
this type of classification task.



5
3-Dimensional Solid Body Rotation of

Clusters in Gaia DR3: An Application to
Open Clusters

Still utilising Gaia, but specifically Gaia DR3, which provided a treasure trove of refinements
and additional data products for the astronomical community, we turn our attention away
from the machine learning approaches applied in Chapter 3 and 4 to focus on a more traditional
statistical methodology of maximum likelihood estimation. In this Chapter we look at open
clusters (OCs), whose 3D kinematics on a large scale would not have been accessible before the
advent of Gaia. We estimate their internal rotational parameters, which we consider to be the
angular velocity of the rotation axis, the inclination of the rotation axis relative to the line of
sight, and the position angle of the rotation axis, using a list of probable members of numerous
OCs compiled by Cantat-Gaudin (priv communication 2022). The goal would be to publish a
list of rotational parameters for these OCs, and assess whether their rotational properties are
linked with inherent characteristics of the Galaxy, from position to age distribution. However
as discussed in this chapter, additional data are required to achieve this objective.

5.1 Introduction
Star formation occurs within hierarchically structured giant molecular clouds (e.g., Lada and
Lada, 2003), with dense regions known as "clumps" being the birthplaces of star clusters (e.g.,
Shu et al., 1987). However, despite being gravitationally bound, only a small proportion of
initial stellar groups observed in young stellar object distributions remain bound star clusters
after gas dispersal. The process by which these surviving groups transform into bound clusters
remains poorly understood, despite efforts to model it through direct N-body simulations (e.g.,
Kroupa et al., 2001). Once formed, bound star clusters are influenced by both internal and
external factors, including stellar and binary evolution, mass segregation, two-body relaxation,
Galactic tides, and gravitational interactions with passing molecular clouds (Brinkmann et al.,
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2017). The complex interplay of these factors can lead to the eventual dissolution of many
star clusters.

Star clusters can be broadly categorised into two types: globular and open clusters. Glob-
ular clusters (GCs) are relatively stable and densely packed groups of stars, comprising tens
of thousands to millions of stellar objects. They differ from open clusters (OCs) in their larger
size and greater gravitational compactness. The strong gravitational attraction between the
closely packed stars gives GCs their characteristic spherical shape. They predominantly con-
sist of older and redder stars compared to OCs, which typically disperse before their stars
reach old age. Due to their significant gravitational binding, GCs exhibit remarkable stabil-
ity and can persist for billions of years. They are found in various types of environments,
including the halo and bulge of our Milky Way. Studying GCs provides valuable insights into
stellar processes, as their constituent stars form and evolve together. Significant work on the
properties of GCs has been conducted by Baumgardt and Hilker (2018), among others. GCs
have long been considered to be spherical, non-rotating stellar systems (Bianchini et al., 2013)
given that internal relaxation processes would naturally dissipate, but in recent years several
studies have shown evidence for significant internal rotation in many Milky Way GCs (Koch
et al., 2018; Bianchini et al., 2018; Kacharov et al., 2014; Sollima et al., 2019; van Leeuwen
et al., 2000). These studies used a variety of methods from in the plane of the sky rotation
to an analysis of their stars’ proper motions. Furthermore, signatures of rotation have also
been found for young massive clusters and nuclear star clusters, indicating rotation is a com-
mon property across different compact stellar systems. Theoretically, the presence of internal
rotation in GCs raises interesting questions regarding their formation and evolution. Firstly,
rotation is known to influence the long-term dynamical evolution of GCs, with various studies
suggesting that rotation would accelerate this process (Hong et al., 2013) and shape their
current morphology (van den Bergh, 2008; Bianchini et al., 2013). Even a relatively small
amount of angular momentum observed in modern GCs may reflect the remnants of strong
primordial rotation in proto-GCs (Tiongco et al., 2018). Lastly, the formation mechanism of
multiple stellar populations in GCs is still an unsolved puzzle, one that could potentially be
solved by understanding the rotational properties of GCs (Mastrobuono-Battisti and Perets,
2013; Cordero et al., 2017)

On the other hand, OCs are loosely bound systems, typically composed of tens to a
few hundred stars. In contrast to GCs, OCs are smaller and less densely populated. They
exhibit a range of ages, from a few million to several billion years, although few OCs are
known at the older end of that range; due to their open and dispersed structure, OCs lack
significant stability, typically allowing their constituent stars to disperse over millions of years.
Consequently, OCs are primarily located within galaxies undergoing active star formation,
such as spiral and irregular galaxies. In contrast, elliptical galaxies, which lack significant star
formation activity, no longer host OCs, as they likely dissipated long ago. Within our Milky
Way galaxy, OCs are distributed throughout the spiral arms and inter-arm regions, providing
valuable insights into the structure and evolution of our Galaxy. Despite the identification
of numerous OCs in the Milky Way (e.g. Cantat-Gaudin et al., 2019; Cantat-Gaudin and
Anders, 2020), their internal kinematics, particularly rotation, which is closely tied to their
formation and evolution, remain poorly documented.

A few studies have focused on specific open clusters. Hao et al. (2022) and Healy et al.
(2021) studied Praesepe, where they found the rotation value to be 0.2 ˘ 0.05 km s´1and
0.132˘0.027 km s´1, respectively. Kamann et al. (2019) looked at NGC 6791, and NGC 6819
with the values for rotation being 0.40 ˘ 0.18 km s´1and 0.05 ˘ 0.05 km s´1by considering
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rotation in the plane of the sky, rather than considering the cluster to be a solid body. This
work aims to address this significant knowledge gap by estimating the rotational parameters,
including theta, inclination, and rotational velocity, for a selection of open clusters identified
in Gaia DR3 by Cantat-Gaudin (priv. communication, 2022).

5.2 Methodology
The following section outlines the methodology employed to identify evidence of rotation
within a star cluster. This technique draws upon the approach presented by Sollima et al.
(2019), in which the cluster is treated as a three-dimensional solid body.

When a cluster undergoes rotation, the average velocities of its stars exhibit variations
based on their respective position angles. The position angle refers to the angular position of
a star within the cluster, typically measured relative to a reference point or direction. As the
cluster rotates, stars located at different position angles exhibit distinct average velocities.
This is attributed to the gravitational interactions among the stars within the cluster; the
gravitational forces exerted by neighbouring stars vary as a function of position, leading to
differences in the stars’ motion and hence in their average velocities.

To determine the mean velocity of the cluster, this method considers three velocity com-
ponents, namely vZ , v} and vK. vZ represents radial velocity, and v}, vK are the velocity
components in the directions parallel and perpendicular to the rotation axis, respectively.
These velocity components are influenced by a number of parameters, including the angular
velocity of the rotation axis, the inclination of the rotation axis relative to the line of sight,
and the position angle of the rotation axis.

In the following section, we derive the equations that describe a cluster exhibiting solid-
body rotation, drawing inspiration from the work of Sollima et al. (2019).

5.2.1 3-Dimensional Solid Body Rotation
Consider a reference frame defined such that a cluster rotates clockwise in the x ´ y plane,
with the z-axis directed inward in the direction of the angular momentum. The systemic
velocities along the three components can be written as

vx “ ωy

vy “ ´ωx

vz “ 0

(5.1)

where ω ” ωpx, y, zq is the angular velocity, which is constant in the case of solid body
rotation.

Now consider an observer in the frame defined by pX,Y, Zq. The velocity components
measured by this observer looking at the cluster from an inclined perspective pvX , vY , vZq can
be obtained by sequentially applying two rotations along the x - and z-axes by angles i and
θ0, respectively:

»

–

vX
vY
vZ

fi

fl “

»

–

cos θ0 ´ sin θ0 cos i sin θ0 sin i
sin θ0 cos θ0 cos i ´ cos θ0 sin i
0 sin i cos i

fi

fl

»

–

vx
vy
vz

fi

fl “

»

–

ωpx sin θ0 cos i ` y cos θ0q

´ωpx cos θ0 cos i ´ y sin θ0q

´ωx sin i

fi

fl

(5.2)
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Figure 5.1: Diagram illustrating the coordinate frames and angles. Here the axes
defined in red represent the frame of the cluster, and those in black the perspective of
the observer. θ0 is defined anti-clockwise and inclination from line of sight, ω defines
the rotational velocity around the dashed line representing the axis of rotation.

Defining the position angle θ anticlockwise from the Y -axis we have

X “ ´R sin θ Y “ R cos θ

where R “
?
X2 ` Y 2 is the projected distance from the cluster centre. The coordinate

transformations between the two reference systems are
»

–

X
Y
Z

fi

fl “

»

–

cos θ0 ´ sin θ0 cos i sin θ0 sin i
sin θ0 cos θ0 cos i ´ cos θ0 sin i
0 sin i cos i

fi

fl

»

–

x
y
z

fi

fl (5.3)

or

»

–

x
y
z

fi

fl “

»

–

cos θ0 sin θ0 0
´ sin θ0 cos i cos θ0 cos i sin i
sin θ0 sin i ´ cos θ0 sin i cos i

fi

fl

»

–

X
Y
Z

fi

fl “

»

–

´R sinpθ ´ θ0q

R cospθ ´ θ0q cos i ` Z sin i
´R cospθ ´ θ0q sin i ` Z cos i

fi

fl (5.4)

Consider the projections of the velocity vector in the plane of the sky in the directions
parallel and perpendicular to the rotation axis:

„

v}

vK

ȷ

“

„

´ sin θ0 cos θ0
cos θ0 sin θ0

ȷ „

vX
vY

ȷ

(5.5)

Combining 5.2, 5.4 and 5.5 we finally find
»

–

vZ
v}

vK

fi

fl “

»

–

ωR sinpθ ´ θ0q sin i
ωR sinpθ ´ θ0q cos i

ωrR cospθ ´ θ0q cos i ` Z sin is

fi

fl (5.6)

5.2.2 Systemic cluster velocities
To estimate the rotation of a cluster, we first need an estimate of the systemic motion of
the cluster. We initially convert the celestial coordinates (RA,Dec) into projected distances
from the cluster centre (X,Y), using equation 1 of van de Ven et al. (2006), and adopting the
centres of each cluster from either Sollima et al. (2019) for GCs or Cantat-Gaudin and Anders
(2020) for OCs.
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We then maximise the likelihood function

lnL “ ´
1

2

ÿ

i

«

pvZ,i ´ xvZyq
2

s2Z,i
` ln

`

s2Z,i
`

1 ´ ρ̃2i
˘˘

`
ÿ

j“RA, Dec.

˜

pvj,i ´ xvjyq
2

`

1 ´ ρ̃2i
˘

s2j,i
` ln

`

s2j,i
˘

¸

´
2ρ̃i pvRA,i ´ xvRAyq pvDec. ,i ´ xvDec. yq

`

1 ´ ρ̃2i
˘

sRA,isDlc,i

ff

,

(5.7)

where

s2j,i “ σ2
j,i ` ϵ2j,i j “ Z,RA,Dec

ρ̃i “ ρi
ϵRAϵDec

sRAsDec

as defined in Sollima et al. (2019), and subtract this systemic motion from each star in the
cluster. In the above, σj,i and ϵj,i are the velocity dispersion and error. The velocity dispersion
is defined to be intrinsic to the cluster, and is assumed to be the same in all components of
Z, RA and Dec.

5.2.3 Rotational parameters

In observed clusters, the angular velocity is a function of the distance from the rotation axis.
This means that a rigorous model needs to be fitted to the data, but doing so can introduce a
dependence on the assumptions of the model. To avoid this, an average projected velocity ωR,
defined as A, is used, which is assumed to be independent of distance. This approximation
does not introduce any bias in the estimate of the position angle and inclination of the rotation
axis.

For each cluster of our sample we searched for the values of θ,i, and A which maximised
the following likelihood

lnL “ ´
1

2

ÿ

i

«

pvZ,i ´ v̄Z,iq
2

s2Z,i
` ln

`

s2Z,i
`

1 ´ ρ̄2i
˘˘

`
ÿ

j“},K

˜

pvj,i ´ vjq
2

`

1 ´ ρ̄2i
˘

s2j,i
` ln

`

s2j,i
˘

¸

´
2̄ii

`

v},i ´ v},i

˘

pvK,i ´ vK,iq
`

1 ´ ρ̄2i
˘

s},isK,i

ff

(5.8)
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where
s2j,i “ σ2

j,i ` ϵ2j,i j “ LOS, },K

ϵ2},i “ ϵ2RA,i sin
2 θ0 ` ϵ2Dec,i cos

2 θ0 ´ 2ρiϵRA,iϵDec,i sin θ0 cos θ0

ϵ2K,i “ ϵ2RA,i cos
2 θ0 ` ϵ2Dec,i sin

2 θ0 ` 2ρiϵRA,iϵDec,i sin θ0 cos θ0

ρ̄i “
1

s},isK,i

»

–

´

ϵ2Dec,i ´ ϵ2RA,i

2
sin 2θ0 ` ρiϵRA,iϵDec,i cos 2θ0

fi

fl

vZ,i “ A sin pθi ´ θ0q sin i

v},i “ A sin pθi ´ θ0q cos i

vK,i “ A cos pθi ´ θ0q cos i

In the given notation, A is unbounded and a positive value signifies clockwise rotation.
Inclination is defined in the range of 00 ă i ă 900 and represents the angle with respect to
the line of sight; for example, i “ 900 is in the plane of the sky. θ0 is increases anti-clockwise
from North (00) and is defined in the range of 00 ă θ0 ă 3600.

5.2.4 Maximum Likelihood Estimation
Maximum Likelihood Estimation (MLE) is a statistical method used to estimate the param-
eters of a probability distribution that best fit a given set of observed data, by finding the
parameter values that maximise the likelihood of observing the data under the assumed model.

Markov chain Monte Carlo (MCMC) is a tool that leverages the power of Markov chains to
generate samples from complex probability distributions, and is a general tool for the simula-
tion of stochastic processes. It however may be applied to the area of likelihood inference, and
is particularly useful when the likelihood function is intractable or when an exact calculation
of the maximum likelihood estimate is not possible (Geyer, 1991).

MCMC algorithms, such as the Metropolis-Hastings algorithm and the Gibbs sampler,
iteratively generate a sequence of samples that asymptotically converge to the target distri-
bution (Chib and Greenberg, 1995). The key idea is to construct a Markov chain with a
stationary distribution equal to the desired target distribution. By running the chain for a
sufficient number of iterations, the generated samples provide an approximation of the under-
lying distribution.

The MCMC algorithm starts with an initial set of parameter values and iteratively pro-
poses new parameter values based on a proposal distribution. The acceptance or rejection of
these proposals depends on the likelihood function and a Metropolis-Hastings acceptance ra-
tio. One advantage of MCMC methods is their ability to handle complex and high-dimensional
parameter spaces. They can efficiently explore the parameter space, allowing for robust es-
timation even when dealing with models with numerous parameters. Additionally, MCMC
methods provide estimates of the uncertainty associated with the parameter estimates through
the analysis of the sampled posterior distributions.

Differential evolution is another optimisation technique that can be combined with MCMC
(DE) to enhance parameter estimation (Braak, 2006). DE is a population-based stochastic
optimisation algorithm that mimics the process of natural selection. It operates by maintain-
ing a population of candidate solutions and iteratively evolving the population by applying
mutation, crossover, and selection operations. In the context of MLE, differential evolution
with MCMC combines the global search capabilities of DE with the local exploration capabil-
ities of MCMC. DE helps in efficiently exploring the parameter space by maintaining multiple
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candidate solutions, while MCMC refines the estimates by focusing on local regions of the
parameter space. This hybrid approach can improve the convergence rate and robustness of
the estimation process. The integration of DE with MCMC involves using DE to generate
initial parameter values or to propose new parameter values during the MCMC iterations.
The advantages of utilising DE over conventional MCMC are simplicity, speed of calcula-
tion and convergence, even for nearly collinear parameters and multimodal densities (Braak,
2006). The performance of DE combined with MCMC, which we will refer to as DE for the
remainder of this work, depends on the appropriate choice of mutation strategies, crossover
operators, and population sizes.

The likelihood function for MLE is typically defined as the product of the probability den-
sity function (PDF) evaluated at each data point. In the case of independent and identically
distributed (i.i.d.) data, the likelihood function can be expressed as:

Lpθq “

n
ź

i“1

fpxi|θq (5.9)

where θ 1represents the vector of parameters to be estimated, n is the number of data
points, and fpxi|θq is the PDF of the distribution.

In MCMC, the Metropolis-Hastings acceptance ratio is given by:

α “ min

ˆ

1,
fpθ1qqpθ|θ1q

fpθqqpθ1|θq

˙

(5.10)

where qpθ1|θq is the proposal distribution that generates a new parameter value θ1, given
the current parameter value θ, and fpθq and fpθ1q represent the likelihood function evaluated
at θ and θ1, respectively.

DE operates by iteratively updating the candidate solutions in the population. The mu-
tation operation generates new candidate solutions by combining multiple existing solutions,
and the crossover operation combines the mutated solutions with the original solutions to
create offspring. The selection operation determines which candidate solutions survive to the
next generation based on their fitness.

The mutation operation in differential evolution can be expressed as:

θmut “ θa ` F ¨ pθb ´ θcq (5.11)

where θa, θb, and θc are randomly selected solutions from the population, and F is the
scaling factor that controls the amplification of the difference between θb and θc.

The crossover operation combines the mutated solution θmut with the original solution θ
to generate offspring:

θoffpiq “

#

θmutpiq if randp0, 1q ď CR or i “ randp1, Dq

θpiq otherwise
(5.12)

where θoffpiq represents the i-th component of the offspring solution, D is the dimension-
ality of the parameter space, and randpa, bq generates a random number between a and b. CR
is the crossover rate that determines the probability of each component being replaced by the
corresponding component of the mutated solution.

1Please note this θ is not the same as the θ0 defining the axis of rotation.
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The MCMC implementation that we use is the Emcee Python package (Foreman-Mackey
et al., 2013), which provides an efficient and robust method for MCMC sampling. Emcee, or
"the MCMC Hammer," offers a user-friendly interface and efficient algorithms, and has a few
key components that distinguish it from other implementations. Emcee is an affine-invariant
ensemble sampler, which is a variant of the MCMC method introduced by Goodman and
Weare (2010); unlike the simple MCMC approach, which struggles with slow convergence in
highly correlated parameter spaces, the ensemble sampler implemented in Emcee efficiently
explores the parameter space. Emcee employs an ensemble of "walkers," where each walker
represents a different point in the parameter space. The walkers evolve simultaneously, per-
forming a random walk. At each step, the proposal is generated based on the positions of all
the walkers, enabling better exploration of the parameter space and faster convergence. One
of the significant advantages of Emcee is its ability to use parallelisation, by distributing the
walkers across multiple cores or machines, thereby accelerating the sampling process. This
feature is particularly useful when dealing with models that possess large parameter spaces
or computationally intensive likelihood functions.

5.3 Data

Investigating the internal kinematics of stellar clusters and associations provides valuable
insights into their formation and evolution. However, accurate astrometric measurements,
including positions, velocities, and membership determinations, are essential for such studies.
In 2022, the European Space Agency’s Gaia mission released Gaia DR3 (Gaia Collaboration
et al., 2022), the third data release from the project, which provides highly precise positions,
distances, and proper motions for more than 1.8 billion stars. It is important to note that,
prior to Gaia, this work on the parameters of OCs would not have been feasible.

To evaluate our methodology’s performance under a variety of cluster parameterisations,
we conduct tests on simulated clusters, as will be described in Section 5.4.1. In creating
a simulated cluster of stars, we randomly sample two angles and a radius, all taken to be
uniformly distributed: one angle between 0 ´ 2π, the other between 0 ´ π and the radius
between 0 ´ 5 pc, and convert to Cartesian x, y, and z coordinates within a sphere, centred
at [0, 0, 0]. These coordinates define the cluster’s frame, and velocities (vx, vy, vz in km s´1)
are generated using Eqn. 5.1, with a specified angular velocity (omega). Eqn. 5.3 is then
used to transform x, y, z (arcmin) into X, Y , Z (arcmin), considering inclination i (degrees)
and θ (degrees), along with subsequent velocities (vX , vY , vZ in km s´1) using Eqn. 5.2 .
Since our focus lies solely on the velocities within this X, Y , Z frame, we do not extend
the transformation into RA, Dec space, as the conversion between RA, Dec, and Cartesian
coordinates by van de Ven et al. (2006) is well-established. We simulate different combinations
of θ0, i, and ω to investigate and define our simulated dataset.

Regarding our dataset of GCs, we obtain their centres in RA and Dec from a comprehen-
sive compiled database of GCs by Baumgardt and Hilker (2018). By querying the Gaia DR3
catalogue within a radius of 3 arcminutes and applying specific filtering criteria, we selected
our cluster members. Notably, our cluster member selection may not be the same as that of
Sollima et al. (2019), potentially yielding different results.

Finally, we applied our methodology to the list of clusters compiled by Cantat-Gaudin.
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5.4 Results
The results section of this study presents findings related to the rotation of star clusters,
encompassing three distinct aspects: rotation in simulated clusters, rotation in GCs, and
rotation in OCs. These investigations shed light on the rotational dynamics and behaviours
exhibited by different types of stellar groupings, which, as noted above, can provide valuable
insights into their formation and evolution. To explore the phenomenon of rotation in star
clusters, we initiated our analysis with simulated clusters in Section 5.4.1. By constructing
simulated clusters using random generation of coordinates within a defined sphere, we were
able to investigate the impact of various parameters on the rotational properties. These
simulations served as a crucial foundation for understanding the underlying mechanisms and
constraints governing rotational dynamics in real-world star clusters. In Section 5.4.2, our
investigation delved into the realm of GCs. These tightly bound and gravitationally compact
clusters are characterised by their spherical shape. By studying well-known GCs, we aimed
to estimate the rotational parameters specific to these clusters. Utilising Gaia data and
then supplementary radial velocity information from the catalogue of Baumgardt and Hilker
(2018), we analysed the rotational signatures and compared our results with previous findings,
acknowledging the potential influence of cluster membership selection on derived parameters.
By applying our method to simulated and known GCs we were able to assess the validity of
our method and whether having more radial velocities improve the accuracy. Unlike their
GC counterparts, OCs are loosely bound systems consisting of a smaller number of stars.
In Section 5.4.3, we estimated the rotational parameters for selected OCs, with the aim of
contributing to a broader understanding of their formation and dynamical evolution.

5.4.1 Test on simulated clusters
The performance of the methodology described in Chapter 5.2 is evaluated by conducting anal-
yses on simulated clusters with diverse sets of parameter values. By employing our method-
ology on simulated clusters, we can acquire insights into the performance of the technique
under various specifications of cluster rotational parameters. This allows us to identify cases
where the method excels and where it encounters limitations or challenges, thus revealing
patterns and commonalities. Furthermore, we aim to demonstrate the performance trend
from noiseless simulations to simulations that incorporate noise derived from expected data
uncertainties. To accomplish these analyses, we consider the following simulations:

• Simulation 1 We utilise noise-free simulated data with fixed standard deviations in
the likelihoods corresponding to the expected error in the transverse velocity measure-
ments in Gaia, estimated to be rvXes, rvY es “ 0.05 km s´1, and rvZes “ 2 km s´1. The
transverse velocity errors are taken to be 0, as are the ρi (correlation between the proper
motions) and σ2

j,i (dispersion) terms.

• Simulation 2 We simulate a spherical open cluster by using expected properties of an
open cluster, such as the number of stars representative of a median open cluster, and
the transverse velocity errors, correlation between the proper motions from real Gaia
data, and with the σ2

j,i dispersion set to 1 km s´1. No noise is added to the transverse
velocities.
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Figure 5.2: Velocity in the X coordinate for a simulated cluster with θ “ 1810,
i “ 49.00, and A “ ´0.6 km s´1. For an interactive view of each velocity component
please click the following link: interactive plots

Figure 5.3: Velocity in the Y coordi-
nate for the same simulated cluster.

Figure 5.4: Velocity in the Z coordi-
nate for the same simulated cluster.

https://arvhug.github.io/Simulated-clusters.html
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Figure 5.5: Simulation 1: Comparing the MCMC method’s estimation of cluster
parameters with their actual (input) values. The results show that the MCMC method
performs well for parameter θ, closely aligning with the identity line and exhibiting
minimal errors. However, the parameter for inclination consistently displays an offset of
approximately 10, indicating that the chains have not deviated significantly from their
initial values. As for parameter A, the majority of estimates exhibit a well-distributed
pattern, although larger errors are observed for values further from 0. Notably, there
are significant outliers at a constant value of 10, similar to the inclination parameter,
suggesting limited exploration of the parameter space by the chains.

• Simulation 3 We consider the exact parameterisation as in Simulation 2, however this
time we add some noise to the velocities sampled from a normal distribution with µ “ 0
and σ “ 0.05 km s´1for vX and vY , and σ “ 2 km s´1for vZ .

In each of the simulations, we generate 100 spherical clusters, where the number of stars
in Simulation 1 is 500 per cluster and in Simulations 2 and 3 is set to be 267 (described further
below), each with radial velocity measurements, and the rotational parameters between the
ranges of 0 ď θ ď 360, 0 ď inclination ď 90 and ´5 ď A ď 5. Through these simulations,
we aim to evaluate the performance of our methodology across varying rotational parame-
ters and noise levels, contributing to a deeper understanding of its efficacy in analysing and
characterising clusters with a range of properties.

Simulation 1

In Simulation 1, our main objective is to evaluate the methodology’s performance under ideal
conditions without any noise, error or dispersion. We specifically focus on addressing the
potential degeneracy between the parameters θ and i, as well as comparing the results obtained
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Figure 5.6: Simulation 1: Upon closer examination of the outliers in parameter
A, it becomes evident that both inclination and A consistently exhibit an offset of
10. However, for these simulations, the estimation of parameter θ shows excellent
agreement.

using two different sampling methods: MCMC and differential evolution with MCMC (DE).
For the MCMC analysis, we initialise the parameters as follows: θ “ θ̄ ` ϵ, i “ i ` 10 ` ϵ,

and A “ A` 10` ϵ, where ϵ represents small Gaussian noise. Adding 10 to ϵ exaggerates the
difference between the starting point and the true value, allowing for thorough exploration of
the parameter space by the MCMC algorithm. For this simulation we use 100 walkers, with
the numbers of steps set to 1000 with a 500 burn-in for both the MCMC and DE methods.

Table 5.1 summarises the considered parameter combinations and their corresponding
estimated values from the analysis. Figure 5.5 illustrates the discrepancies between the es-
timated values and the true cluster parameters. The MCMC method performs well for the
parameter θ, closely following the identity line with minimal errors. However, the inclination
parameter consistently exhibits an offset of approximately 10, suggesting limited exploration
of the parameter space by the chains. Similarly, the parameter A shows significant outliers at
a constant value of 10, indicating deviations from the true value. On average, the differences
between the estimated and true cluster parameters using MCMC are ´0.480 for θ, 10.250 for
inclination, and 0.88 km s´1for A.

To further investigate the issue of significant outliers, we examine Fig. 5.6, which reveals
that while the estimate for θ aligns well, the offsets for both inclination and A remain constant
at 10 (degrees and km s´1, respectively). This suggests that the MCMC chains exhibit flat
behaviour for these specific tests and fail to deviate from the initial values, as evident in
Fig. A.8.

Table 5.1: This table presents a subset of the various combinations considered and
the corresponding estimated values of the cluster parameters for 100 simulated clusters.
For the full table see Table A.2 in the Appendix

θC iC AC θM θeM iM ieM AM AeM θD θeD iD ieD AD AeD AsnrM AsnrD

0.66 3.31 -0.04 35.95 44.14 72.92 38.44 -0.12 0.20 170.18 261.85 54.95 57.14 -0.07 0.14 1.21 1.00
6.23 49.44 4.30 15.72 14.05 65.28 21.43 4.60 4.13 11.09 14.80 58.49 21.01 3.67 1.78 2.23 4.13
6.54 38.73 -4.00 15.91 9.36 41.39 16.08 -3.47 0.87 13.30 37.84 43.56 23.45 -3.58 1.46 7.95 4.92
7.49 46.31 4.84 13.23 10.40 65.27 4.60 5.97 1.06 18.50 346.04 50.03 38.40 3.90 3.31 11.25 2.36

Continued on next page
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Table 5.1 – continued from previous page
θC iC AC θM θeM iM ieM AM AeM θD θeD iD ieD AD AeD AsnrM AsnrD
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For the DE approach, the average differences between the estimated and true cluster
parameters are 2.080 for θ0, 4.960 for inclination, and 0.02 km s´1for A. Figure 5.5 and 5.7
illustrate the disparities between the estimated values obtained using both MLE methods and
the true cluster parameters. Comparing the estimated and actual cluster parameters using
the MCMC methodand the DE method, we observe that the DE method follows the expected
cluster trend. However, it consistently overestimates inclination across the entire range. In
terms of the parameter A, the DE method overestimates when A ă 0 and underestimates
when A ą 0. Similar to the MCMC method, the errors for parameter A are smaller when the
values are closer to 0.

We further compare the two methods by considering the signal-to-noise ratio, estimate
over error, in Fig. 5.8. Both methods exhibit an upward linear-like trend in parameter θ,
indicating that errors grow proportionally with increasing θ values. Inclination demonstrates
an exponential trend, with the MCMC method showing more pronounced errors for lower
inclination values. Parameter A exhibits a quadratic shape, indicating a similar trend to that
of θ due to the possibility of negative values.

Despite slight discrepancies (particularly the significant outlier for θ observed in the dif-
ferential evolution case), we select the differential evolution with MCMC method (DE) as the
preferred approach due to its effectiveness in exploring the parameter space, especially when
the initial conditions significantly deviate from the true parameter value. We will still consider
both sampling methods in Simulation 2 and Simulation 3, to further test this conclusion.

We present the example of a specific cluster with θ “ 1810, i “ 49.00, and A “ ´0.6
km s´1, using both MCMC and DE in Fig. 5.10 and Fig. 5.11, respectively. The errors
obtained using DE are considerably lower for this simulated cluster compared to those using
MCMC alone.

Simulation 2

To further prepare for the application of our method on open clusters (OCs), we utilise
parameters from known OCs in Gaia to generate a simulated cluster similar to an OC. Our
selection process involves choosing a cluster representative of the median cluster type in
Cantat-Gaudin, which then defines the number of stars and the velocity errors. For this
purpose, we consider the OC Alessi 24, which has a median number of stars (267) and a radial
velocity error of 4.61 km s´1, based on the available 94 stars with radial velocity measurements.

To simulate the cluster, we randomly sample from each transverse velocity component
and use the observed Gaia errors for Alessi 24 as our simulated cluster errors, as well as the
correlation between the proper motions (ρi). The dispersion term (σ2

j,i) is set to 1 km s´1and
there is no measurement noise added to the velocities. This allows us to assess the performance
of the MCMC and DE sampling methods under more realistic conditions.
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Figure 5.7: Simulation 1: Comparing the estimated and actual cluster parameters
using the DE method. The results demonstrate that the DE method aligns with the
expected cluster trend. However, it consistently overestimates the inclination across the
entire range. In terms of parameter A, the DE method overestimates when A ă 0 and
underestimates when A ą 0. Similar to the MCMC method, the errors for parameter
A are smaller when the values are closer to 0.

In Fig. 5.12, we compare the estimated and actual cluster parameters using the MCMC
method. When incorporating real errors, we find that the MCMC method performs accurately
for the parameter θ, with minimal dispersion in errors for most points. However, a few points
show significantly larger errors. The inclination parameter is consistently overestimated, in-
dicating a potential issue with the initialisation process as the difference tends to be around
10. The inclination difference panel follows a similar pattern to Fig. 5.5. Parameter A clearly
shows the points that fail initialisation, as they all have a value of 10, which is the constant
added to the initialisation value.

Next, we consider the DE method, shown in Fig. 5.13. We observe significantly larger
errors for more points in the parameter θ compared to the MCMC method. The DE method
consistently overestimates inclination across the entire range. Similar to the noise-free sce-
nario, parameter A is underestimated when A ă 0 and overestimated when A ą 0, with
smaller errors observed when the values are closer to 0.

We analyse the distribution of errors and the trend in SNR in Fig. 5.14 and 5.15, respec-
tively. The errors for θ in both methods do not exhibit any obvious trend but show a large
spread relative to the range of θ. Inclination shows a slightly negative linear trend, with the
methods favouring an inclination closer to 90˝. Parameter A is randomly distributed with a
low range, indicating that the methods might be accurately estimating errors. When looking
at SNR, we would expect the angular parameters to follow a linear trend and A to exhibit
a positive definite parabolic shape. Both methods show the same expected trend across all
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Figure 5.8: Simulation 1: The signal-to-noise ratio is examined for each parameter
using two different sampling methods. Both methods display an upward linear-like
trend in the parameter θ, indicating that errors grow proportionally with increasing θ
values. Inclination demonstrates an exponential trend, more pronounced in the MCMC
method, suggesting higher errors for lower inclination values and lower errors for higher
values. As the parameter A can be negative, a quadratic shape is observed, indicating
a similar trend to that of θ.

parameters and highlight the preference for an inclination close to 90˝.
Comparing with Simulation 1, it is interesting to note that the estimated errors are much

smaller when errors and dispersion are added. This could be due to the likelihood model
expecting errors outside the fixed values given in Simulation 1, preventing exploration of the
entire likelihood.

To illustrate the performance of the methods, we focus on one specific simulated cluster
with parameter values θ “ 31.00, i “ 63.50, and A “ ´2.3 km s´1. This example provides
a visual representation of how the estimated parameters compare to the true values and
highlights the differences between the MCMC and DE methods. The corner plots for this
example cluster, simulated with real errors using both MCMC and differential evolution with
MCMC (DE), are shown in the Appendix in Figures A.9 and A.10 respectively.

The simulations with real errors emphasise the challenges encountered when estimating
rotational parameters using a solid body rotational model. It highlights the importance of
carefully considering the initialisation process, error and dispersion terms, and understanding
the impact of different methods on parameter estimation.

Simulation 3

Our final simulation is an attempt to be a true representation of an observed cluster, pa-
rameterised in exactly the same configuration as Simulation 2, but with an added noise term
to the transverse velocity components sampled from a normal distribution with µ “ 0 and



90 3D solid body rotation of clusters in Gaia DR3

Figure 5.9: Simulation 1: The error distribution is examined for each parameter
using two different sampling methods. θ has a random error distribution in both
methods, and the errors on A get larger as the magnitude of A increases. For inclination
however there is a clear negative linear-like trend illustrating that a cluster which is
inclined closer to 90 has a lower error estimate than face on.

σ “ 0.05 km s´1for vX and vY , and σ “ 2 km s´1for vZ . These sigma values are the same as
in Simulation 1, and are representative of Gaia measurement errors.

Following the same structure of analysis as described in Simulation 2, the noticeable
difference in Fig. 5.16, 5.17, 5.18 and 5.19 in comparison with the corresponding figures for
Simulation 2 is that the errors are marginally larger, but the rotational parameters still follow
the same expected trends. This suggests that applying the methodology to real data, which
has inherent measurement errors, intrinsic dispersion and noise, may yield sensible parameter
and error estimates.
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Figure 5.10: Corner plot for the simulated cluster with θ “ 1810, i “ 49.00, and
A “ ´0.6 km s´1, estimated using MCMC.

Figure 5.11: Corner plot for the simulated cluster with θ “ 1810, i “ 49.00, and
A “ ´0.6 km s´1, estimated using differential evolution and MCMC.
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Figure 5.12: Simulation 2: We compare the estimated and actual cluster parameters
using the MCMC method. Upon incorporating real errors, the MCMC method demon-
strates accurate performance for the parameter θ with minimal error and dispersion for
a majority of points. However, inclination is consistently overestimated, implying an
issue with the initialisation, and exhibit substantial errors. The inclination difference
panel follows a pattern akin to Fig. 5.5. Notably, the parameter A reveals the points
that have an issue with initialisation, while most points align well with the true cluster
value.
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Figure 5.13: Simulation 2: The comparison between estimated and actual cluster
parameters using the DE method. θ has as similar distribution of errors to the MCMC
method. DE consistently overestimates inclination across the majority of the range.
Similar to the noise-free scenario, parameter A is underestimated when A ă 0 and
overestimated when A ą 0, and exhibits lower errors across the range.
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Figure 5.14: Simulation 2: The errors as a function of parameter for the MCMC
and DE methods. The angular parameters show a few points with large errors with no
trend seen in θ but a slight negative linear trend in inclination is noticeable, indicating
that the method favours an axis of rotation close to 900. A has a random distribution
of errors in both methods, which are relatively small in comparison to the expected
range of A.

Figure 5.15: Simulation 2: The signal-to-noise ratio as a function of each parameter.
As expected we see θ follows a roughly linear trend, inclination is favoured for higher
values, and A follows a positive parabolic distribution.
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Figure 5.16: Simulation 3: The results for the MCMC method are similar to those
of Fig. 5.12 in Simulation 2, with slightly larger errors for a few more points, but
generally following the same trends.

Figure 5.17: Simulation 3: The comparison between estimated and actual cluster
parameters using the DE method is similar to that of Fig. 5.13, except for the outlier
at an inclination of 10, with a large spread in errors.
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Figure 5.18: Simulation 3: Similar to Fig. 5.14, the errors are distributed as ex-
pected.

Figure 5.19: Simulation 3: As expected we see θ follow a slightly linear trend,
inclination is favoured for higher values, and A follows a positive parabolic distribution
like that of Fig. 5.15.
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Table 5.2: Table of known GCs with rotation, as measured by Sollima et al. (2019).

ClusterName θS θeS iS ieS AS AeS

NGC104 224.30 4.60 33.60 1.80 -5.00 0.32
NGC2808 36.10 8.40 88.50 10.30 -2.25 0.56
NGC5139 170.20 7.60 39.20 4.40 4.27 0.52
NGC5904 221.60 6.00 42.60 3.20 4.11 0.42
NGC6205 165.50 14.20 85.90 11.60 -1.53 0.61
NGC6266 104.20 46.10 15.00 12.80 6.22 1.53
NGC6273 56.90 13.20 41.90 7.10 4.19 1.12
NGC6397 8.60 15.60 72.80 11.90 -0.48 0.17
NGC6541 83.20 18.30 65.40 13.90 -3.73 1.15
NGC6553 237.70 38.40 75.60 29.50 2.33 0.82
NGC6626 28.60 17.70 83.50 13.30 -2.42 1.08
NGC6656 252.80 9.20 62.10 6.30 3.38 0.71
NGC7078 52.60 28.80 15.40 5.40 3.29 0.51
NGC7089 346.60 12.10 52.90 11.20 -3.01 0.70
Ter5 260.40 48.50 26.90 34.60 7.97 2.38

5.4.2 Test on Known Globular Clusters
This section examines the application of the method to globular clusters, for which parameters
were previously estimated by Sollima et al. (2019), and assesses whether the addition of
more or alternative sources of radial velocities other than Gaia improves the estimates of the
rotational parameters. Table 5.2 shows the GCs considered and their respective rotational
parameters as determined in Sollima et al. (2019). Similar to Sollima et al. (2019), we identify
the cluster members from Gaia DR3 by selecting a radius of 3 arcminutes around the center of
each cluster. The cluster centers are determined based on the Baumgardt and Hilker (2018)
catalogue.

In the case of Gaia, it is worth noting that crowding in the central regions of globular
clusters can affect the acquisition of radial velocity values. To mitigate this, we test supple-
menting the radial velocities obtained from Gaia with those from the Baumgardt and Hilker
(2018) catalogue (henceforward referred to as the BH catalogue). It is important to acknowl-
edge that the derived values may not match exactly with those of Sollima et al. (2019) due to
differences in the membership list;it is to be expected that the various parameters calculated
for clusters are sensitive to the selection of cluster members considered.

The section is organised as follows: we first analyse the clusters with known rotations from
Sollima et al. (2019) using Gaia-only radial velocities, then we repeat the analysis using radial
velocities from Gaia supplemented by the BH catalogue (Baumgardt and Hilker, 2018). After
having done the general assessment we consider a more in-depth exploration of two clusters,
NGC104 and NGC5139.

The simulations in Section 5.4.1 did not require the calculation of a systemic velocity, as
we took the centre of the cluster to be at p0, 0, 0q. Hence in the following sections, which use
real clusters, a calculation of the systemic velocities using the likelihood function in Eqn. 5.7
is required. We will discuss this process when we consider the two clusters NGC104 and
NGC5139.
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Gaia-only Radial Velocities

Figure 5.20: Globular clusters - Gaia only: Panels are denoted a-i going from top-
left to bottom-right. Panel a) The estimate of θMCMC is more spread than for θDE

with many more points being linearly aligned in the latter. The variation between the
methods in panels b) and c) is minimal, however looking at the difference panels for
inclination the spread is much less for the DE method.

To evaluate the effectiveness of applying a 3D solid body rotation model for determining
rotational parameters of clusters, we first investigate whether using radial velocities from Gaia
alone is sufficient, by comparing the results with known cluster properties. In this analysis,
we employ the MCMC and DE sampling methods, initialising the parameters as θ0 “ θ̄ ` ϵ,
i “ iS ` 10 ` ϵ, and A “ AS ` 10 ` ϵ, where ϵ represents a small amount of Gaussian noise.
The values of iS and AS are from Sollima et al. (2019) and are listed in Table 5.2.

Figure 5.20 presents a comparison of the estimates obtained using MCMC and DE methods
with the known parameters. We observe that the estimate of θ in the MCMC method exhibits
a wider spread compared to the DE method, which demonstrates a more linear alignment
of points. The variation between the methods in the inclination and A panels is minimal.
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Figure 5.21: Globular clusters - Gaia only: The spread between the MCMC and
DE methods. There are no noticeable trends in θ, but with regards to inclination the
DE method tends to have higher estimates, and DE tends to overestimate A.

However, upon examining the difference panels for inclination, we find that the spread is
significantly narrower for the DE method. Both θ and A exhibit similar spreads across both
methods, but the DE method yields lower error estimates.

Further analysis of the differences between the MCMC and DE methods is presented
in Fig. 5.21. We observe no noticeable trends in θ, while for inclination, the DE method
tends to produce higher estimates compared to MCMC. In terms of the parameter A, the DE
method generally overestimates its value. These findings align with our expectations based
on the signal-to-noise ratio plots observed in our simulations. Specifically, we anticipate a
linear distribution for θ and inclination, and a quadratic shape for A. Figure 5.22 confirms
these expectations, with the MCMC method exhibiting a randomly spread distribution for
θ, and the DE method being influenced by smaller errors. Inclination shows a similar but
non-linear distribution in both methods, with the DE method demonstrating a higher signal-
to-noise ratio. As for parameter A, the DE method follows the anticipated shape, exhibiting
an overall higher signal-to-noise ratio.

Finally, we evaluate the accuracy of our estimates in relation to the number of radial
velocities utilised for estimating the rotational parameters, as depicted in Fig. 5.23. It is
evident that the estimates obtained using a higher number of radial velocities are more closely
aligned with the known values documented in the literature. This observation highlights the
importance of having a larger number of radial velocities, as it leads to improved estimation
accuracy.

Gaia and BH Catalogue Radial Velocities

After successfully demonstrating the feasibility of obtaining reasonable estimates for the ro-
tational parameters through the utilisation of Gaia radial velocities, and establishing a clear
correlation between the number of radial velocities and the accuracy of the estimates, our
current focus shifts towards testing this idea, by supplementing the Gaia radial velocities
with those obtained from the BH catalogue. This augmentation aims to explore the potential
improvement in the estimation process. To evaluate the efficacy of this approach, we conduct
a diagnostic analysis, similar to the one described in Section 5.4.2.
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Figure 5.22: Globular clusters - Gaia only: The MCMC method displays a scattered
distribution for θ, while the DE method is affected by smaller errors, resulting in a more
concentrated distribution. Inclination also exhibits a similar but non-linear distribution
in both methods, with the DE method showing a higher signal-to-noise ratio. The
parameter A follows the expected pattern in the DE method, with a generally higher
signal-to-noise ratio compared to the MCMC method.

Figure 5.24 reveals a substantially more prominent alignment with the identity line when
compared to the results obtained solely based on Gaia radial velocities. This enhanced align-
ment is reflected in the difference panels, which exhibit a more concentrated distribution
around the zero difference line. Notably, the addition of more radial velocities contributes to
minimising the discrepancies between the estimates obtained through the MCMC and the DE
methods, as depicted in Fig. 5.25.

Furthermore, Fig. 5.26 serves to reinforce the notion that a greater number of radial
velocities leads to more accurate estimates. The plot clearly illustrates the correlation between
the number of radial velocities utilised and the improved alignment of the estimates with the
known values. This finding highlights the significance of having a dataset with as many radial
velocities as possible when estimating rotational parameters. The combination of Gaia radial
velocities and supplementary data from the BH catalogue demonstrates considerable potential
for improving the accuracy of calculated rotational parameters.
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Figure 5.23: Globular clusters - Gaia only: The following plots show estimates
compared with literature values, but coloured by the number of radial velocity values.
On average, the more accurate estimates of the rotational parameters (i.e., those in
closest agreement with the literature) have a higher number of radial velocities.



102 3D solid body rotation of clusters in Gaia DR3

Figure 5.24: Globular clusters - Gaia and BH Catalogue: In line with the arrange-
ment depicted in Fig. 5.20, we observe a distinct linear alignment of the estimates for
panels a-c, which is even more pronounced than in the Gaia-only scenario. This align-
ment is further reflected in the subsequent difference panels, as they exhibit a tighter
distribution centered around the zero-difference line.
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Figure 5.25: Globular clusters - Gaia and BH Catalogue: The addition of more
radial velocities yields a minimal difference between the estimates from MCMC and
DE methods.

Figure 5.26: Globular clusters - Gaia and BH catalogue: Here we see a tighter
distribution in the estimates of the rotational parameters to Fig 5.23 , and similarly
the more radial velocities when estimating rotational parameters the better.
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NGC104

—————————————————

Figure 5.27: Globular clusters: Properties of the parameters for the member stars
(grey) of NGC104, as well as those for the members with radial velocity measurements
(red) in Gaia. Panel (1): distribution on the sky. Panels (2) and (3): diagrams of
parallax vs. proper motions. Panel (4): color magnitude diagram. Panels (5), (6),
(7), (8) and (9): histograms of the parallaxes, proper motions, radial velocity in Gaia,
radial velocity in Gaia and the supplementary BH catalogue, respectively.

NGC 104, also known as 47 Tucanae or simply 47 Tuc, is a prominent GC located in
the constellation Tucana in the southern hemisphere. It is at a distance of 4.45 ± 0.01 kpc,
with an RA of 305.895333 and a Dec of -44.889114, has an estimated age of 13 Gyr and is
the second brightest GC after Omega Centauri. The rotational parameters of NGC 104 as
calculated in Sollima et al. (2019) are A “ ´5.00 ˘ 0.32, θ “ 224.3 ˘ 4.6 and i “ 33.6 ˘ 1.8.
We highlight this cluster because of its low estimated errors relative to other clusters, and the
prior work that has been done to understand its rotation (Sollima et al., 2019; Anderson and
King, 2003).

Figure 5.27 provides an overview of the properties of NGC 104 observed in Gaia, with
the radial velocities shown in red on the colour-magnitude diagram. It is evident that Gaia
lacks reliable radial velocity estimates for many cluster members. Given that radial velocity
plays a crucial role in calculating rotational parameters, identifying clusters with an adequate
number of radial velocities becomes pivotal. This is particularly relevant for OCs, as they
generally have fewer members and a lower density of stars compared to GCs.
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Figure 5.28: Globular clusters: The corner plot for the estimates of the systemic
(central) velocities for NGC104.

Figure 5.29: Globular clusters: The corner plot for the estimates of the rotational
parameters for NGC104 using MCMC.
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Figure 5.30: Globular clusters: The corner plot for the estimates of the rotational
parameters for NGC104 using DE.

Unlike the case with simulated clusters, we need to estimate the systemic velocities of the
cluster by maximising the likelihood of equation 5.7. The systemic velocity values obtained
are ă vX ą“ 112.84 ˘ 0.03 km s´1, ă vY ą“ ´55.83 ˘ 0.03 km s´1, and ă vZ ą“ ´17.12 ˘

0.01 km s´1, as illustrated in Fig. 5.28. These values are then subtracted to obtain vX , vY ,
and vZ , respectively.

Next, the rotational parameters are estimated using the likelihood equation 5.8, employing
both MCMC and DE methods, as shown in Figs. 5.29 and 5.30. Both methods yield consistent
results for the rotational velocity A of ´3.58 and the inclination of 40.32, although the value
of θ is less accurate at 246.04. Notably, a comparison with the values reported in Sollima
et al. (2019), A “ ´5.00 ˘ 0.32, θ “ 224.3 ˘ 4.6, and i “ 33.6 ˘ 1.8, reveals a difference
with our estimate for θ and rotational velocity within the error bounds. This is expected, as
previously mentioned, due to differences in our selection of cluster members. Nevertheless, it
is evident that the methodology performs adequately and provides valuable insights into the
rotational parameters of NGC 104.

NGC5139

—————————————————
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Figure 5.31: Globular clusters: Properties of the parameters for the member stars
(grey) of NGC5139, as well as those for the members with radial velocity measurements
(red) in Gaia. Panel (1): distribution on the sky. Panels (2) and (3): diagrams of
parallax vs. proper motions. Panel (4): color magnitude diagram. Panels (5), (6),
(7), (8) and (9): histograms of the parallaxes, proper motions, radial velocity in Gaia,
radial velocity in Gaia and the supplementary BH catalogue, respectively.

NGC 5139, also known as Omega Centauri, is a GC situated in the constellation Centau-
rus. It is one of the Milky Way’s most massive and luminous GCs. Positioned at a distance
of approximately 5,240 parsecs from Earth at an RA of 309.10202 and Dec of 14.96833, NGC
5139 harbours an extraordinary population of around 10 million ancient stars. The cluster
exhibits a distinct and intricate stellar distribution, indicating the presence of diverse stellar
populations. Multiple generations of stars have been observed, suggesting a complex history
of star formation. Notably, the cluster displays a prominent blue horizontal branch, indica-
tive of a substantial number of evolved stars. These distinctive characteristics render Omega
Centauri a vital target for investigating the formation, evolution, and dynamics of GCs and
dense stellar systems in the Milky Way. For the purposes of this study, it has been chosen
as a verification cluster alongside NGC 104 on account of its low error estimates and positive
rotational velocity value, and because it is such a prominent and well-studied globular cluster
(van Leeuwen et al., 2000). The analysis presented in Fig. 5.31 illustrates the limited number
of radial velocities available from Gaia (269), especially in comparison to the BH catalogue
(1660).
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Figure 5.32: Globular clusters: Corner plot for the estimation of the systemic ve-
locities for NGC5139.

Figure 5.33: Globular clusters: The corner plot for the estimates of the rotational
parameters for NGC5139 using MCMC.
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Figure 5.34: Globular clusters: The corner plot for the estimates of the rotational
parameters for NGC5139 using DE.

Applying the same methodology outlined in Section 5.4.2, the systemic velocities for
Omega Centauri, as illustrated in Fig. 5.32, are determined to be ă vX ą“ ´82.94 ˘ 0.03,
ă vY ą“ ´171.92 ˘ 0.04, and ă vZ ą“ 230 ˘ 0.01. Comparing the rotational parameter
values shown in Fig. 5.33 and 5.34 (A of 2.76, the inclination at 45.73 and θ at 192.59)
with the values reported in (Sollima et al., 2019) (A “ 4.27 ˘ 0.52, θ “ 170.20 ˘ 7.6, and
i “ 39.20 ˘ 4.4), we find our error estimates to be considerably smaller than estimated in
(Sollima et al., 2019), and our parameter estimates close but not exact matches. A larger dis-
crepancy is observed compared to NGC 104, however it is worth noting that this discrepancy
could be at least partially due to differences in sample size.

5.4.3 Application to Open Clusters

OCs represent a major focus of astronomical research, facilitated by the advent of Gaia,
which enables comprehensive exploration and characterisation of these clusters. After first
employing simulated data and then comparing the efficacy of different methods in determining
the rotational parameters of real GCs, we can now extend our analysis to OCs.

Cantat-Gaudin (priv. communication) offers a comprehensive compilation of 2000+ known
OCs in Gaia DR3, including fundamental parameters such as Cartesian coordinates, and age
estimates, alongside a potential member list. To refine our analysis, we consider only those
clusters with more than 100 stars possessing radial velocities in Gaia, resulting in a reduced
list of 131 clusters. Subsequently, we query the Gaia archive utilising the Gaia IDs obtained
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Figure 5.35: Open clusters: Parameters coloured by the error estimate for rotation.
The relationship between the error estimate against age, distance to the Galactic centre
and in the X-Y plane appears to be random; this may be a function of selection bias.

from Cantat-Gaudin’s member list to obtain the necessary proper motion, error, photometric,
and parallax data essential for calculating the rotational parameters.

To setup the analysis, we consider the initialisation of each parameter to be as follows: θ
is set to its mean, inclination is set to 10 and rotation set to 5, with some small epsilon added.
For the DE sampler, we consider 1000 steps with a burn-in of 500, and use 100 walkers. Our
intrinsic cluster dispersion term is set to 1 km s´1, as in our simulations. This term is a
potential source of error that may need to be tuned for each cluster individually – given OCs
can have quite distinct morphologies in comparison to GCs – rather than being assumed to
be the same for all clusters.

The results of the analysis are presented in Table 5.3, where the table is ordered based
on candidates with the highest absolute rotational velocity. The rotational velocities for
these top 5 clusters are ą 0.2 km s´1, with low errors. We present a brief analysis of the
rotational parameters, looking at diagnostics and potential science cases, with the general
cluster parameters taken from Cantat-Gaudin.

We evaluate the estimated rotational parameters for the open clusters, by distinguishing
those estimates which have larger errors from the rest to see if there are any characteristics
that drive the difference. We may expect clusters located on the periphery of the X-Y plane
to have lower error estimates and more radial velocities measured, due to not being affected
by the issue of crowding and its impact on radial velocity estimates in Gaia.

In Fig. 5.35, we plot rotation as a function of age of the cluster, distance to the Galactic
centre and on the X- Y plane, coloured by the error estimate of A, which we label panels a),
b) and c) respectively. In panel a) there is a slight tendency towards older clusters having
higher rotational errors than the rest, in panel b) there is no discernible trend and similarly
in panel c) there is no easily identifiable relationship. This analysis may be dominated by
exceedingly small errors (< 0.01) not revealing the expected error structure in the X-Y plane.
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Figure 5.36: Open clusters: The spatial distribution of our open clusters, with colour
representing the number of radial velocities used in the estimation. Our hypothesis that
clusters with a higher number of known radial velocities in Gaia being on the edges
of the X-Y plane is proven incorrect, but the accuracy of the radial velocities may be
higher than in the central region.

In Fig. 5.36 we consider the spatial distribution of the OCs coloured by the number of
radial velocities for each cluster. Unfortunately, the hypothesis of clusters located on the
periphery of the X-Y plane having lower error estimates and more radial velocities is shown
to be incorrect as clusters on the outer edges have a lower number of radial velocities than
those more centrally located. However there is still some indication that the accuracy of the
radial velocities is better on the extremities as can be seen in Fig. 5.37. There are still many
alternative reasons other than crowding to explain the observed distributions, such as Gaia
being poor at calculating radial velocities for young hot stars, but the following figures show
that more accurate radial velocities are required to better constrain the rotational parameters.

We now turn our attention to the uncertainties estimated from the method shown in
Fig 5.38 and consider each parameter’s error against parameter value, but coloured by the
rotational error in Fig. 5.39. The errors are quite discretised, and θ and inclination overall
have large errors, which as shown in the tests in Section 5.4.1 makes sense due to their
degeneracy. Relative to their actual parameters, Fig. 5.39 sees quite a random spread in the
errors for θ and rotation even when compared with rotation error, but interestingly errors for
inclination seem to asymptotically decrease when approaching 900; at an inclination of 900,
the dominating motion would be radial velocity.

OCs serve as valuable tracers of the spatial structure of the young stellar population in
the Galactic disk; they offer insights into reconstructing spiral arms and determining spiral
pattern speeds (Castro-Ginard et al., 2021). However, the age-distribution analysis of OCs by
Castro-Ginard et al. (2021) suggests a flocculent Milky Way with transient spiral arms, rather
than the predicted age gradient of density wave or bar-driven spiral arms (Quillen, 2002). In
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Figure 5.37: Open clusters: Similar to Fig. 5.36 but this time colour represents
the uncertainty of the radial velocity. Noticeably the accuracy of the radial velocities
decrease closer to the plane of the Galaxy as can be seen in the first panel, and towards
the central region in the X-Y plot. This suggests that perhaps more accurate radial
velocity measurements will be the driver of better rotational parameter estimates.

fact, Quillen (2002) identified multiple spiral features, each with a distinct pattern speed
that decreases with Galactocentric radius. To gain a better understanding of the underlying
processes driving these relationships, it becomes crucial to consider the internal rotation of
OCs; and, as shown in Fig 5.40 and 5.41, a more extensive and accurate calculation of the
rotational properties is necessary to identify any verifiable trends in age and position.

As an example, the Praesepe cluster is an intermediate-age open cluster (Gossage et al.,
2018) located in the constellation Cancer at a distance of 1.7-1.9 kpc. Praesepe stands out
due to its large proper motions (Kraus and Hillenbrand, 2007). Previous studies by Hao
et al. (2022) and Healy et al. (2021) investigated Praesepe and reported rotation values of
0.2 ˘ 0.05 km s´1 within its tidal radius and 0.132 ˘ 0.027 km s´1, respectively. Our findings
yield rotation parameters of A “ 0.023 ˘ 0.0018, with θ “ 9.27 ˘ 3.75 and inclination “

87.286 ˘ 1.636.
Another notable OC is NGC 6819, which has an age of 2.4 Gyr and is located at a distance

of 2.4 kpc. Kamann et al. (2019) calculated its rotational velocity to be 0.05 ˘ 0.05 km s´1.
In our analysis, we determine its rotational properties to be ´0.18 ˘ 0.49. The literature
values for both of these clusters are markedly different to what we obtained, but this may
be attributed to the different rotation models considered, as here we consider 3D solid body
and in the previous studies the model considered is plane of sky rotation. Additionally, as
a quick test we changed our input velocity dispersion value to 2 km s´1 from 1 km s´1, to
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Figure 5.38: Open clusters: The density distribution of the estimated uncertainties
for each rotational parameter. The range for the axis orientation parameters are both
large relative to the expected range of the parameters, with θ ranging from 0-160 and
inclination from 0-30. Interestingly the error for θ is double peaked at 0 and 90; this 90
degree offset is to be expected. The error on A is peaked at 0, which is to be expected
given the low number of open clusters exhibiting rotation.

see if our results would get any closer to the literature values for these two clusters, but we
found no significant improvement: for Praesepe we obtained 0.023277˘ 0.002786 km s´1, and
´0.31726 ˘ 0.809717 km s´1 for NGC6819.

To further investigate the general parameters of OCs and identify trends within the Galaxy
based on their internal rotational velocities, additional research is required. This planned
follow-up work involves constructing dispersion profiles and searching for and acquiring addi-
tional radial velocity information from past or ongoing ground-based surveys such as RAVE
or GALAH, as well as future surveys like 4MOST and WEAVE. These efforts will enable us
to refine our estimates of rotational velocities and deepen our understanding of the dynamics
of OCs within the Galaxy.

Table 5.3: Estimated rotational parameters of open clusters

Cluster npre npost θ θe i ie A Ae θDE θeDE iDE ieDE ADE AeDE AsnrMC AsnrDE

NGC2158 113 113 146.06 21.47 85.39 25.99 1.21 0.92 145.36 5.49 85.84 2.39 1.23 0.17 2.63 14.17
LP145 115 115 123.62 73.77 88.90 27.51 -0.52 1.22 295.28 183.57 89.23 1.45 0.50 1.16 0.85 0.86
NGC6416 111 111 190.95 9.50 89.02 23.59 0.42 1.00 190.97 2.88 89.13 0.94 0.42 0.04 0.83 22.20
NGC1342 174 174 211.35 21.06 89.68 25.15 -0.28 1.15 210.95 180.85 89.75 0.51 -0.28 0.58 0.50 0.97
NGC2506 101 101 135.90 60.83 88.25 34.05 0.22 1.04 315.25 3.56 82.48 6.30 -0.24 0.06 0.42 8.64
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

5.5 Conclusions
This Chapter has demonstrated the usefulness of applying a solid body rotation model to
open clusters in order to gain insights into their rotational behavior. However, it is crucial
to acknowledge the limitations of this approach, primarily arising from data constraints,
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Figure 5.39: Open clusters: Patterns observed in the errors associated with θ and
rotation. While both parameters exhibit a seemingly random spread of errors, it is
worth noting that the errors for inclination display a distinctive trend. As the inclina-
tion approaches 900, the errors asymptotically decrease.

particularly the lack of radial velocity measurements for many cluster members in the Gaia
dataset. This limitation can be effectively addressed through the use of supplementary ground-
based spectroscopy, which allows for the collection of additional radial velocity data, especially
for clusters where rotation is inferred solely based on Gaia radial velocities. In additional an
analysis of velocity dispersions may yield a more accurate picture of a cluster’s profile than just
considering a fixed value for each cluster, leading to more representative rotation parameter
values.

Furthermore, it is recommended to explore alternative rotational models that may better
capture the complexities of cluster rotation. By considering different models, we can gain
a more comprehensive understanding of the rotational dynamics within OCs. Additionally,
employing a variety of statistical estimation techniques can help improve the accuracy and
reliability of the results obtained from the solid body rotation model.

By addressing these limitations and exploring alternative approaches, future work can
refine and enhance our understanding of rotation in OCs. This will contribute to a more
thorough comprehension of the formation and evolution processes of these stellar systems.
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Figure 5.40: Open clusters: Looking at the spatial distribution of our OCs, there is
no dominant trend with regard to the magnitude of rotational velocity and a cluster’s
position.

Figure 5.41: Open clusters: Considering the age of a cluster, the distance away from
the GC and distribution in X-Y there is no clear relationship between these parameters
and the magnitude of the rotational velocity.
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6
Conclusion and Outlook

6.1 Conclusion

As the preceding work demonstrates, the development of astrostatistical methodology is of
great importance to the advancement of future astronomy. By advancing and refining statis-
tical techniques specific to astronomy, we greatly enhance our ability to extract meaningful
insights from the vast amount of astronomical data at both our current and future disposal.
Through leveraging advanced statistical techniques, we can analyse data for the presence of
rare objects, accurately classify distinct astronomical sources, and effectively model complex
astrophysical phenomena. Astrostatistical methods moreover enable the identification and
quantification of uncertainties associated with various measurements, facilitating robust and
reliable scientific conclusions.

This thesis has explored promising areas in astrostatistics to achieve more efficient ex-
traction of astronomical results and their applications to future astronomical surveys. The
overview provided in Chapter 2 delved into the history and future prospects of astrostatis-
tics, as well as the significance of large astronomical surveys. A variety of surveys and the
astronomical objects considered in this thesis were described.

In Chapter 3, a novel semi-supervised approach was presented for identifying different
stellar types in large spectroscopic surveys, specifically when only a limited number of stel-
lar types are known. This approach leveraged t-SNE, a dimensionality reduction technique
that enables visualising object similarity in a 2D space. By overlaying unknown objects near
known objects, the identification process is significantly improved, with close proximity in-
dicating similarity. The application of this technique to over 600,000 high-resolution stellar
spectra obtained from the GALAH survey successfully identified 54 potential rare EMP star
candidates. EMP stars offer a valuable opportunity to investigate the early stages of chemical
enrichment in the Milky Way galaxy. Among the 54 stars with estimated [Fe/H] below -3.0,
there are 6 candidates with [Fe/H] below -3.5. Notably, our sample exhibits a higher propor-
tion (approximately 20%) of main sequence EMP candidates compared to previous surveys
targeting EMP stars. This Chapter highlighted the effectiveness of the statistical technique
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of clustering to identify rare objects with large spectroscopic datasets.

Shifting the focus to the Gaia survey, Chapter 4 introduced a statistical method for classi-
fying extragalactic sources, including stars, galaxies, and quasars, based on their positions and
photometry. We investigated the potential improvement in identifying extragalactic sources
by combining Gaia photometry and astrometry with infrared data from CatWISE2020, com-
pared to using Gaia data alone. The study involved a comprehensive analysis of different
configurations of input features and prior functions, with the aim of developing a classifica-
tion methodology that incorporated prior knowledge based on realistic class distributions in
the Universe. To achieve this, we compared various classifiers, including Gaussian mixture
models (GMMs), XGBoost, and CatBoost, in a supervised approach. The classification task
involved categorising sources into three classes: stars, quasars, and galaxies. The labels for
the quasar and galaxy classes are obtained from the Sloan Digital Sky Survey Data Release
16 (SDSS16), while the star labels come from Gaia EDR3. In our approach, we adjusted the
posterior probabilities to account for the intrinsic distribution of extragalactic sources in the
Universe using a prior function. We introduced two priors: a global prior that reflects the
overall rarity of quasars and galaxies, and a mixed prior that incorporates the distribution of
extragalactic sources based on Galactic latitude and magnitude. The best classification perfor-
mance, in terms of completeness and purity of the extragalactic classes (galaxy and quasar), is
achieved using the mixed prior for sources at high latitudes and within the magnitude range
G = 18.5 to 19.5. We applied the identified best-performing classifier to three application
datasets from GDR3 and observe that the global prior is more conservative in classifying
sources as quasars or galaxies compared to the mixed prior. Specifically, when applied to the
quasar and galaxy candidate tables from GDR3, the classifier using the global prior achieves
purities of 55% for quasars and 93% for galaxies. The mixed prior yields purities of 59% for
quasars and 91% for galaxies. When comparing these results to the performance on the GDR3
pure quasar and galaxy candidate samples, we achieve higher purities of 97% for quasars and
99.9% for galaxies using the global prior, and purities of 96% and 99%, respectively, using the
mixed prior. By refining the GDR3 candidate tables through a cross-match with SDSS DR16
confirmed quasars and galaxies, the classifier attains purities of 99.8% for quasars and 99.9%
for galaxies using the global prior, and 99.9% for both quasars and galaxies using the mixed
prior. This Chapter highlighted the effectiveness of using tree-based statistical models instead
of mixture models, the significance of applying adjusted priors to represent the realistic class
distributions in the Universe and the incorporation of infrared data as ancillary inputs in the
identification of extragalactic sources.

Finally, Chapter 5 investigated a model of 3D solid-body rotation within star clusters
using Gaia data. Drawing inspiration from the work of Sollima et al. (2019), a method was
implemented to identify and quantify three rotational parameters: the angular velocity of the
rotation axis (A), the inclination of the rotation axis relative to the line of sight, and the
position angle of the rotation axis (θ). In this Chapter, simulations were conducted to assess
the efficacy of two distinct sampling methods, namely MCMC and DE, for estimating the pa-
rameters from a likelihood function. Additionally, the simulations aimed to uncover potential
degeneracies among the rotational parameters. Following the evaluation of the method on
simulated data, its validity was tested on real data from extensively studied globular clusters
(GCs), with our estimates compared against those of Sollima et al. (2019). Notably, despite
differences in cluster membership, the results demonstrated the possibility of achieving simi-
lar outcomes. Finally, the methodology was applied to a compilation of open clusters (OCs)
by Cantat-Gaudin, revealing modest indications of rotation in a few clusters, most notably
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NGC2158. However, this list would greatly benefit from further ground-based spectroscopy to
obtain additional radial velocities, thereby enhancing the precision of the obtained estimates.

6.2 Outlook
By exploring these areas of research, this thesis has demonstrated the potential for more
efficient exploitation – that is, the extraction of scientific results – from large astronomical
datasets. The methodologies and techniques presented here help lay the foundation for future
studies and applications in the field of astrostatistics, paving the way for further discoveries
and insights in astronomy.

There will be many forthcoming large surveys, such as the Euclid mission, that will greatly
benefit from the development of new astrostatistics methodologies. The Euclid survey has
the primary goal of investigating the nature of dark energy and dark matter by mapping
the large-scale structure of the universe and studying the evolution of cosmic structures over
time. Euclid will carry out a comprehensive survey of galaxies and clusters of galaxies using
a combination of imaging and spectroscopic observations. It will cover a large area of the sky
and observe billions of galaxies, providing precise measurements of their positions, shapes,
and redshifts. With Euclid’s high-quality data, astrostatistics can be used to understand the
intricate relationships between different astrophysical parameters and to infer cosmological
parameters with improved accuracy, and the development of robust statistical techniques will
ensure the accurate and efficient extraction of science results. Moreover, astrostatistics will
contribute to addressing challenges related to data processing, image analysis, and catalogue
extraction in the Euclid survey, for example in the search of high-z quasars.

I am eagerly looking forward to actively contributing to the future of the astrostatistical
methodology, specifically in developing and applying innovative methods that allow us to
extract scientific insights from the forthcoming era of large-scale astronomical surveys.
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Appendix

A.1 Deriving metallicities for metal-poor candidates
with GALAH spectra

This Section describes a set of simulation outputs that illustrate (1) the sensitivity of using
only GALAH spectra to estimate metallicity at low metallicities ([Fe/H] „ ´4.5 is possible
for cool giants) and (2) refine the line list we use for the low metallicity fits (the three bluer
channels are preferred slightly over a few strong Fe lines).

The simulations work by adding realistic noise to synthetic stellar templates with known
parameters, and attempting to recover [Fe/H] using the same templates. We fix [α/H]“ 0.4
and consider a limited range of Carbon enhancements ([C/H]“ 0.0, 0.5, 1.0).

It is important to note that the following simulation results are only for fitting [Fe/H].
We assume that log g and Teff are already well-constrained (see Section 3.2.1 for how we
do this with GALAH spectra) so we can limit the number of templates we fit to. The
simulation results below did consider different carbon enhancements, in the sense that we
explored whether carbon enhancement impacts the metallicity sensitivities. This means the
current simulations were not meant to test our ability to constrain Carbon abundance in an
individual spectrum.

As shown in Section 3.4, the current sample of candidate EMP stars have a median S/N of
35 and two rough sub-populations: cool giants (Teff “ 5000, log g „ 2) and hot main sequence
stars (Teff “ 6000, log g „ 4).

To find the best regions of the GALAH spectra to fit for metallicity, we considered two
different line lists as well as fitting to entire HERMES spectral channels. The first line list is
from T. Nordlander and is highlighted shown in Figure A.1. The second is a list of 57 metal-
sensitive (mostly iron) lines compiled from features found in synthetic spectra and observed
stars around [Fe/H] „ ´3 from K. Venn (priv. comm.).

Figure A.2 shows the output from one run of the simulation on the strongest features.
Parameters for the input spectra are given in the title and the number of simulated stars
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Figure A.1: A plot of synthetic spectra of a hot main sequence star for a range of
metallicities. The blue shaded areas are the wavelength regions with metal-sensitive
absorption features.

for each input [Fe/H] was set to Nsims “ 10000. The results show that for this spectral line
that metallicity is well-constrained until [Fe/H] „ ´4.5. For lower metallicities the simulation
indicates S/N=35 spectral data over this line cannot distinguish between [Fe/H] „ ´5 to ´7
values.

Figure A.3 shows simulation runs where multiple spectral lines were simultaneously fit
to illustrate improvement in metallicity constraints. While the second strongest set of lines
improves the fitting to lower metallicities, the third set of lines does not influence the measured
metallicity significantly for S/N=35 spectra.

Figure A.4 shows metallicity sensitivity simulations for an additional line lists (K. Venn,
priv. comm.) with 57 features as well as full fits to the spectra over the 3 HERMES channels.
These are compared to the best combination of 2 lines from Figure A.3. Increased wavelength
coverage appears to yield better metallicity constraints in the simulations, but only marginally
so.

We show simulation results for hot main sequence stars in Figure A.5. At these temper-
atures, the metallicity sensitivity decreases, so that only metallicities of [Fe/H] „ ´3.5 or
higher are measurable with S/N=35 GALAH spectra.

Finally, we show in Figure A.6 how the metallicity sensitivity is expected to improve for
higher S/N (S/N „ 150) data: [Fe/H] „ ´5.0 and „ ´4 are expected for cool giants and hot
main sequence stars, respectively.

To conclude, we find:

• Synthetic cool giant spectra with typical GALAH S/N“ 35 over the GALAH spectral
range are good („ 9%) at recovering metallicities as low as [Fe/H] „ ´5.5.
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Figure A.2: Simulation results for recovering input metallicities of synthetic cool
giant stellar spectra, with noise typical of the current sample. The points represent the
recovered mean [Fe/H] with error bars reflecting the standard deviation in individual
recovered [Fe/H] values. Percentages are the fractional uncertainty on the recovered
metallicity. The data suggest we can constrain metallicity to within „ 8% down to
[Fe/H] „ ´4.5 for cool giants and data with S/N“ 35. For lower input metallicities, the
simulation results indicate the spectra have essentially no constraint on metallicities
[Fe/H] ă ´4.5 at S/N“ 35. The carbon abundances of the input spectra do not
appear to impact the metallicity sensitivity as can be seen by the carbon abundance
of 1 (green) overlaying both the carbon abundance of 0 and 0.5 ( blue and orange
respectively).

• At a certain metallicity the GALAH spectra are no longer sensitive to lower metallicities
for S/N=35 spectra.

• With better S/N(„ 100, or even „ 150), metallicities as low as [Fe/H] „ ´4.5 can be
recovered to „ 9%.

• The metallicity sensitivity and fitting does not appear to be impacted by the level of
carbon enhancement of the star within the wavelength coverage of the GALAH spectral
channels.
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(a)

(b)

Figure A.3: Same format as Figure A.2, now with panels showing two different
combinations of spectral lines shown in Figure A.1, as indicated in the panel’s subtitle.
While the joint constraint of the spectral regions with the strongest features yields a
better [Fe/H] constraint compared to a single line (cf. Figure A.2), the third spectral
region does not improve the fits for this stellar type and assumed S/N, likely because
its features are weaker.
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(a)

(b)

(c)

Figure A.4: Same format as Figure A.2, now with panels showing three different
combinations of spectral lines: top is the Nordlander best features (Figure A.3), middle
is fit to 57 metal-sensitive features (K. Venn, priv. comm) and the bottom plot shows
fitting results to the first 3 HERMES Channels. The fit to 3 spectral channels yields
a marginally better constraint at [Fe/H] „ ´4.5 for cool giants with S/N=35 than fits
for [Fe/H] to the other spectra regions.



126 Appendix

(a)

(b)

(c)

Figure A.5: Same as Figure A.4 now for hot (Teff “ 6000) main sequence (log g “ 4)
stellar templates. Overall the metallicity sensitivity decreases such that we may only
expect to make measurements to [Fe/H] „ ´3.5.
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(a)

(b)

Figure A.6: A few spectra in the GALAH sample reach S/N=150. These simulations
show how much better the low metallicity constraints can be with higher S/N data and
fits over the entire first 3 GALAH Channels.
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A.2 Prior counts, and Galactic latitude and magni-
tude priors

The following section shows the counts of sources in SDSS DR16 as a function of Galactic
latitude and magnitude as well as the distribution of the prior.

cutSinb cutgMag starN qsoN galN
(0,0.4] (17.5,18.5] 67338 184 81
(0,0.4] (18.5,19.5] 107892 1112 277
(0,0.4] (19.5,20.5] 159394 3274 1320
(0,0.4] (20.5, Inf] 130105 2526 3839
(0,0.4] (-Inf,17.5] 81827 22 250
(0.4,0.6] (17.5,18.5] 5644 2196 133
(0.4,0.6] (18.5,19.5] 8077 11332 2060
(0.4,0.6] (19.5,20.5] 11479 31767 17322
(0.4,0.6] (20.5, Inf] 10052 27529 53069
(0.4,0.6] (-Inf,17.5] 9921 272 21
(0.6,0.8] (17.5,18.5] 2910 4328 390
(0.6,0.8] (18.5,19.5] 4147 21412 5063
(0.6,0.8] (19.5,20.5] 6037 56641 35817
(0.6,0.8] (20.5, Inf] 5946 49410 113906
(0.6,0.8] (-Inf,17.5] 5508 631 40
(0.8,1] (17.5,18.5] 1928 6022 571
(0.8,1] (18.5,19.5] 2625 26410 7771
(0.8,1] (19.5,20.5] 4227 69930 52335
(0.8,1] (20.5, Inf] 5214 65828 145758
(0.8,1] (-Inf,17.5] 3542 812 39

Table A.1: Prior Table Counts
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Figure A.7: Heat map of the joint latitude and magnitude prior for each class. The
top panel refers to the star class, middle panel to the quasar class, and the lower panel
to the galaxy class. A higher density of stars is noticeable at lower latitudes, while
more quasars and galaxies clusters are seen at higher magnitudes.
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A.3 Simulated clusters

Table A.2: This table presents the various combinations considered and the corre-
sponding estimated values of the cluster parameters.

θC iC AC θM θeM iM ieM AM AeM θD θeD iD ieD AD AeD AsnrM AsnrD

0.66 3.31 -0.04 35.95 44.14 72.92 38.44 -0.12 0.20 170.18 261.85 54.95 57.14 -0.07 0.14 1.21 1.00
6.23 49.44 4.30 15.72 14.05 65.28 21.43 4.60 4.13 11.09 14.80 58.49 21.01 3.67 1.78 2.23 4.13
6.54 38.73 -4.00 15.91 9.36 41.39 16.08 -3.47 0.87 13.30 37.84 43.56 23.45 -3.58 1.46 7.95 4.92
7.49 46.31 4.84 13.23 10.40 65.27 4.60 5.97 1.06 18.50 346.04 50.03 38.40 3.90 3.31 11.25 2.36
8.99 37.62 3.96 14.72 13.63 56.54 41.45 4.54 3.67 17.87 46.78 44.36 29.02 3.50 1.74 2.47 4.03

16.80 7.64 1.12 17.35 11.21 19.02 19.31 1.15 0.15 65.20 322.11 11.44 53.36 1.11 0.86 15.34 2.57
18.14 15.87 1.53 19.62 17.32 24.77 29.01 1.52 0.56 30.63 67.18 18.80 47.00 1.46 1.11 5.39 2.61
24.72 87.78 -4.86 24.72 0.00 97.78 0.00 5.14 0.00 24.91 8.53 86.30 0.74 -4.77 0.99 * 9.60
28.40 40.22 2.95 45.46 14.78 34.66 50.28 2.08 4.51 32.53 33.11 46.97 34.58 2.51 2.27 0.92 2.21
34.30 64.72 -2.38 32.00 2.37 71.24 10.17 -2.09 1.35 36.37 18.01 71.20 22.63 -2.13 1.58 3.11 2.71
36.55 22.63 2.13 39.71 17.14 52.12 45.81 2.83 2.51 40.76 31.53 26.41 46.24 1.94 1.80 2.26 2.16
41.76 63.61 -3.13 46.87 12.54 67.77 4.49 -2.41 0.46 42.91 18.12 69.27 26.68 -2.54 1.72 10.37 2.95
50.31 49.29 1.22 50.01 10.34 70.89 4.87 1.71 0.44 53.17 33.44 56.12 43.46 1.01 1.68 7.71 1.20
52.61 85.62 0.85 52.61 0.00 95.62 0.00 10.85 0.00 51.57 9.56 88.65 0.40 0.81 0.19 * 8.59
53.03 41.23 -3.29 48.11 8.91 43.41 23.77 -2.55 1.06 53.79 18.33 46.43 22.62 -2.72 1.04 4.81 5.23
53.47 22.88 -4.28 66.66 19.08 33.92 26.31 -4.21 1.37 52.95 31.45 24.83 19.35 -3.90 0.68 6.14 11.52
58.54 6.23 -4.19 33.62 19.10 15.34 16.52 -4.22 0.32 73.61 132.90 7.46 16.79 -4.13 0.26 26.55 31.49
59.98 30.70 3.65 58.02 18.69 51.42 34.22 4.15 2.91 61.01 24.25 36.24 33.87 3.20 1.78 2.85 3.59
65.06 0.82 1.05 37.87 38.38 16.30 40.81 1.09 0.59 169.49 236.07 5.22 31.58 1.05 0.20 3.70 10.54
71.63 61.53 1.58 73.55 13.89 73.74 19.73 1.85 1.42 71.70 13.58 69.02 13.90 1.45 0.76 2.60 3.82
75.60 70.77 1.85 70.14 4.16 77.99 5.91 2.04 0.88 75.37 14.23 75.64 19.64 1.72 1.29 4.64 2.67
77.02 39.42 -1.46 72.69 14.31 43.71 20.41 -1.30 0.39 77.32 22.93 42.63 25.08 -1.27 0.52 6.69 4.89
83.89 8.16 -2.04 74.76 22.47 18.99 20.01 -2.08 0.31 88.26 104.89 10.25 28.49 -1.99 0.25 13.38 16.08
86.68 42.11 3.63 88.24 12.25 45.19 43.61 3.16 4.52 89.26 23.48 48.12 31.95 3.34 2.54 1.40 2.63
87.65 12.10 -3.30 100.11 16.13 31.87 8.40 -3.62 0.32 88.68 54.99 13.73 21.59 -3.16 0.40 22.90 15.68
90.05 3.67 3.19 105.82 53.82 7.87 39.47 3.19 1.21 119.28 213.91 4.55 20.84 3.17 0.25 5.27 25.40
90.53 51.18 -3.01 95.93 6.11 67.26 4.16 -3.79 0.65 92.25 19.39 56.72 32.95 -2.67 1.62 11.71 3.28

109.23 77.41 -4.32 110.19 2.96 82.71 1.49 -4.63 0.90 109.27 10.43 81.64 3.84 -4.08 1.90 10.31 4.30
110.57 62.67 -0.58 103.10 16.35 72.87 16.91 -0.51 0.51 109.51 27.24 70.72 29.63 -0.49 0.44 2.01 2.22
115.41 60.56 -1.57 105.54 13.24 65.17 19.27 -1.31 1.09 115.71 17.90 65.54 21.25 -1.34 0.78 2.39 3.43
115.73 37.50 -4.78 105.44 9.33 48.06 22.61 -4.26 1.59 117.19 19.38 42.74 19.93 -3.95 1.13 5.35 6.98
116.08 33.03 -1.86 97.32 35.99 24.90 22.26 -1.42 0.28 117.79 26.65 36.41 27.86 -1.60 0.48 10.13 6.67
122.02 38.72 -3.91 122.11 17.37 40.05 14.04 -3.12 0.65 122.84 19.86 44.54 23.67 -3.35 1.17 9.57 5.75
124.28 16.70 1.61 125.41 30.14 21.49 20.13 1.54 0.26 126.01 40.64 18.73 42.07 1.51 0.87 11.95 3.47
131.80 50.26 2.79 117.37 14.40 45.79 32.31 1.87 3.18 132.97 15.62 57.76 24.85 2.45 1.52 1.18 3.23
135.28 72.83 -4.27 131.56 9.70 79.78 2.57 -4.64 1.26 134.09 11.11 78.09 9.41 -4.00 2.52 7.37 3.17
135.73 41.46 -3.35 141.54 13.91 51.80 26.47 -3.19 1.71 136.12 23.87 46.91 29.39 -2.96 2.07 3.74 2.87
137.76 72.40 4.06 135.09 2.48 78.85 3.65 4.30 1.50 136.23 12.70 77.14 5.38 3.76 1.41 5.72 5.35
137.93 87.80 -0.60 137.93 0.00 97.80 0.00 9.40 0.00 136.42 8.75 89.04 0.30 -0.60 0.13 * 9.12
143.56 69.68 -2.88 146.39 6.84 77.03 3.47 -3.38 0.86 143.38 15.90 73.93 11.87 -2.74 1.70 7.84 3.23

Continued on next page
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Table A.2 – continued from previous page
θC iC AC θM θeM iM ieM AM AeM θD θeD iD ieD AD AeD AsnrM AsnrD

146.00 32.94 3.95 146.32 10.25 58.82 39.50 5.27 3.01 144.53 22.49 39.16 28.85 3.52 1.97 3.50 3.57
148.04 77.21 1.09 145.18 7.76 82.29 1.25 1.41 0.23 146.95 11.82 79.60 9.00 1.06 0.61 12.23 3.46
152.79 25.80 -0.26 153.66 39.14 42.09 42.40 -0.26 0.24 156.10 72.05 30.90 62.76 -0.23 0.47 2.12 0.99
161.50 28.17 2.74 161.17 18.16 53.80 52.76 3.42 3.43 159.41 28.68 33.48 29.87 2.42 1.17 1.99 4.13
162.14 68.35 3.67 163.14 5.43 77.69 1.80 4.77 0.70 162.46 11.23 72.93 6.23 3.48 1.16 13.71 6.01
162.30 39.86 -3.75 160.25 1.64 49.12 11.04 -3.60 0.87 161.76 19.37 45.30 14.68 -3.33 0.94 8.24 7.08
166.25 47.31 4.17 169.06 18.14 62.71 31.00 4.63 3.94 167.57 16.67 54.90 21.15 3.70 1.73 2.35 4.29
166.91 69.26 -0.87 171.36 9.37 75.31 6.23 -0.85 0.31 168.32 15.68 74.54 15.71 -0.80 0.55 5.39 2.92
170.58 54.26 -1.53 169.83 8.90 66.47 37.73 -1.44 1.46 170.06 21.56 60.82 27.95 -1.27 0.79 1.97 3.20
171.73 39.45 -4.20 180.92 14.65 35.21 27.60 -3.08 1.00 174.11 17.76 43.32 12.32 -3.62 0.63 6.18 11.45
172.15 19.65 2.33 167.88 27.16 44.31 49.65 2.78 1.99 171.96 36.54 22.48 40.29 2.15 1.18 2.79 3.64
173.73 6.78 2.18 165.04 36.68 11.81 17.58 2.17 0.18 177.05 87.33 8.39 39.72 2.15 0.77 24.16 5.57
174.92 70.09 -0.30 170.70 21.94 75.16 10.61 -0.27 0.18 175.42 23.62 73.56 16.76 -0.26 0.20 3.08 2.53
177.40 24.92 -1.48 168.52 17.82 49.82 42.00 -1.55 1.48 177.27 32.59 29.09 38.25 -1.33 0.79 2.09 3.35
180.95 48.97 -0.60 192.00 21.98 47.46 40.48 -0.41 0.71 181.82 24.49 56.01 33.81 -0.50 0.36 1.15 2.78
189.87 12.46 -3.20 174.40 33.82 27.11 19.59 -3.32 0.79 185.42 49.63 11.75 17.21 -3.02 0.26 8.39 23.12
191.95 60.03 0.36 192.13 15.72 72.67 21.80 0.41 0.41 191.23 25.18 64.74 28.54 0.28 0.29 2.00 1.97
192.09 73.06 1.44 189.75 10.49 79.95 1.77 1.83 0.33 192.38 12.25 75.86 9.29 1.31 0.69 11.05 3.79
195.55 64.48 4.64 209.46 15.43 73.96 11.55 5.15 2.55 194.60 15.20 70.30 16.64 4.19 2.63 4.04 3.19
199.28 1.10 -0.62 196.13 110.32 13.22 22.46 -0.63 0.08 186.55 213.97 7.15 60.09 -0.62 0.47 16.04 2.62
209.63 22.29 0.58 209.47 31.55 32.67 48.43 0.55 0.80 211.38 42.28 26.76 47.37 0.52 0.46 1.39 2.27
213.68 72.06 1.36 210.63 7.81 80.42 4.07 1.55 0.62 213.43 12.82 78.24 15.00 1.25 0.90 5.01 2.78
217.23 82.52 -2.57 217.23 0.00 92.52 0.00 7.43 0.00 215.61 10.59 85.51 1.14 -2.45 0.60 * 8.18
221.85 0.10 3.62 219.17 12.21 5.87 10.19 3.64 0.08 184.00 193.66 4.23 9.69 3.63 0.06 90.26 117.17
224.83 21.39 -4.85 215.06 19.96 32.75 19.69 -4.75 1.09 224.83 30.40 25.16 21.16 -4.40 0.89 8.68 9.92
225.31 47.24 0.67 221.67 15.56 60.89 20.47 0.68 0.70 224.08 27.47 53.74 36.72 0.55 0.70 1.94 1.58
231.06 72.95 2.38 226.46 7.12 80.63 2.64 2.76 0.77 231.13 13.19 78.60 14.07 2.23 1.66 7.22 2.68
231.77 33.47 3.02 222.95 18.32 43.09 28.02 2.80 1.67 228.66 26.38 40.14 39.53 2.68 2.68 3.36 2.00
232.95 20.12 -1.85 227.01 13.28 36.24 25.99 -1.92 0.62 230.71 28.45 21.85 19.92 -1.67 0.28 6.24 12.02
236.33 25.67 -0.88 232.50 11.61 29.70 4.55 -0.80 0.04 233.20 37.75 28.67 33.69 -0.79 0.29 39.17 5.51
237.15 46.56 -3.05 238.19 13.20 42.56 31.88 -2.13 1.48 237.79 17.52 53.73 19.46 -2.67 1.14 2.87 4.70
242.74 58.99 1.26 241.41 18.38 73.17 20.10 1.52 0.94 242.49 19.87 67.06 32.08 1.13 1.20 3.23 1.89
247.32 74.89 1.11 252.86 10.55 79.66 2.94 1.18 0.39 247.45 13.68 77.94 9.74 1.01 0.66 6.07 3.07
252.90 13.17 3.45 239.64 12.78 40.42 34.44 4.23 2.88 251.89 47.60 14.68 39.69 3.33 1.44 2.94 4.63
254.68 86.76 -3.03 254.68 0.00 96.76 0.00 6.97 0.00 253.48 9.39 88.21 0.26 -2.98 0.45 * 13.19
257.91 33.78 0.78 275.31 34.40 29.48 53.85 0.64 1.09 255.24 39.43 38.57 53.46 0.71 1.25 1.17 1.13
266.38 52.91 -4.16 275.56 27.34 48.30 20.98 -2.50 0.87 266.29 14.86 62.04 17.03 -3.62 1.73 5.76 4.18
270.63 47.31 2.93 271.87 19.58 65.18 27.35 3.92 2.75 270.42 18.73 52.04 17.04 2.67 1.04 2.85 5.16
272.66 31.69 1.32 273.90 9.76 53.18 41.93 1.56 1.59 271.66 29.32 36.57 40.37 1.15 1.00 1.97 2.30
280.26 26.51 4.80 277.34 29.78 50.18 47.20 5.73 4.54 280.85 25.49 31.60 33.06 4.33 2.06 2.53 4.19
284.48 84.40 2.59 284.48 0.00 94.40 0.00 12.59 0.00 284.60 10.46 85.68 0.94 2.54 0.55 * 9.29
296.28 17.47 -2.18 287.70 24.65 24.27 13.26 -2.09 0.22 297.87 36.69 19.30 20.06 -2.03 0.31 19.38 13.06
299.24 54.75 -3.55 299.36 5.90 61.28 2.89 -3.14 0.29 297.70 21.70 60.25 26.77 -3.02 1.87 21.34 3.22
300.65 17.77 -2.36 315.51 7.78 35.53 7.35 -2.52 0.25 299.62 31.43 19.17 24.19 -2.16 0.44 20.49 9.83
303.37 71.01 4.84 307.93 9.08 77.16 4.63 5.15 1.93 301.60 11.33 75.40 8.28 4.52 2.04 5.35 4.43

Continued on next page
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Table A.2 – continued from previous page
θC iC AC θM θeM iM ieM AM AeM θD θeD iD ieD AD AeD AsnrM AsnrD

306.12 88.57 -1.31 306.12 0.00 98.57 0.00 8.69 0.00 304.35 8.89 87.57 0.52 -1.32 0.24 * 11.19
308.23 75.16 -3.27 303.08 8.80 81.27 1.82 -3.23 0.67 306.93 15.46 80.19 22.30 -2.86 2.58 9.59 2.22
310.49 52.94 -2.45 303.23 15.68 51.33 15.63 -1.67 0.59 310.86 17.81 60.03 26.46 -2.13 1.30 5.64 3.26
310.77 25.38 2.91 307.93 6.42 35.86 27.20 2.83 1.40 309.82 33.45 30.60 36.24 2.66 1.76 4.04 3.02
322.84 38.51 -3.56 332.23 11.54 45.72 4.05 -3.14 0.24 321.91 22.16 43.97 19.32 -3.04 0.84 26.66 7.23
331.42 46.57 2.60 330.61 15.03 54.08 43.05 2.30 3.53 331.75 22.54 53.09 29.66 2.19 1.78 1.30 2.46
335.49 3.10 1.63 332.21 18.83 11.93 29.80 1.66 0.33 270.65 238.41 5.48 47.24 1.63 0.88 10.12 3.71
335.65 10.40 -3.45 315.97 26.80 22.66 7.92 -3.55 0.21 317.12 196.93 11.21 32.21 -3.34 0.63 34.28 10.58
336.93 32.22 -1.72 343.25 10.54 40.90 13.38 -1.59 0.33 333.24 29.79 36.45 33.16 -1.49 0.61 9.73 4.86
337.22 4.79 3.45 334.44 25.36 14.28 16.31 3.51 0.30 282.13 282.57 5.51 32.69 3.41 0.74 23.13 9.18
341.60 70.62 2.34 347.17 9.77 76.33 5.09 2.32 1.11 341.87 11.60 75.55 12.48 2.17 1.30 4.20 3.34
347.43 55.38 2.82 352.81 8.27 64.31 4.30 2.58 0.39 344.83 15.17 63.40 15.10 2.48 1.12 13.04 4.45
356.22 79.78 -4.63 350.58 8.33 86.63 0.58 -5.31 1.05 354.69 6.71 85.84 1.44 -4.32 1.41 10.07 6.13
356.87 41.04 -1.74 348.75 5.06 57.26 10.38 -1.81 0.52 349.49 334.64 48.33 35.94 -1.44 1.02 6.98 2.81
357.06 43.08 1.15 354.23 10.58 42.39 50.70 0.89 2.04 351.39 16.52 50.39 24.71 1.02 0.55 0.87 3.71

A.3.1 Simulation 1

Figure A.8: Simulation 1: An example of a failed run with flat chains.
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A.3.2 Simulation 2

Figure A.9: Simulation 2: Corner plot for the simulated cluster with θ “ 310,
i “ 63.50, and A “ ´2.3 km s´1 estimated using MCMC.
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Figure A.10: Simulation 2: Corner plot for the simulated cluster with θ “ 31.00,
i “ 640, and A “ ´2.3 km s´1 estimated using differential evolution and MCMC.
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