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Abstract

Evolutionary theory has been the foundation of biological research for about a century
now, yet over the past few decades, new discoveries and theoretical advances have rapidly
transformed our understanding of the evolutionary process. Foremost among them are
evolutionary developmental biology, epigenetic inheritance, and various forms of evolu-
tionarily relevant phenotypic plasticity, as well as cultural evolution, which ultimately led
to the conceptualization of an extended evolutionary synthesis. Starting from abstract
principles rooted in complexity theory, this thesis aims to provide a unified conceptual
understanding of any kind of evolution, biological or otherwise. This is used in the second
part to develop Amee, an agent-based model that unifies development, niche construction,
and phenotypic plasticity with natural selection based on a simulated ecology. Amee
is implemented in Utopia, which allows performant, integrated implementation and
simulation of arbitrary agent-based models. A phenomenological overview over Amee’s
capabilities is provided, ranging from the evolution of ecospecies down to the evolution
of metabolic networks and up to beyond-species-level biological organization, all of
which emerges autonomously from the basic dynamics. The interaction of development,
plasticity, and niche construction has been investigated, and it has been shown that while
expected natural phenomena can, in principle, arise, the accessible simulation time and
system size are too small to produce natural evo-devo phenomena and –structures. Amee
has thus can be used to simulate the evolution of a wide variety of processes.

Zusammenfassung

Die Evolutionstheorie bildet seit etwa einem Jahrhundert die Grundlage der biologischen
Forschung, doch in den letzten Jahrzehnten haben neue Entdeckungen und theoretische
Fortschritte unser Verständnis des evolutionären Prozesses rasch verändert. Dazu
gehören vor allem die evolutionäre Entwicklungsbiologie, die epigenetische Vererbung
und verschiedene Formen von phänotypischer Plastizität, was zur Konzeption einer
erweiterten evolutionären Synthese geführt hat. Ausgehend von abstrakten Prinzipien,
beginnend mit Konzepten aus der Komplexitätstheorie, versucht diese Arbeit ein
einheitliches konzeptionelles Verständnis jeder Art von Evolution, ob biologisch oder
anderweitig zu erlangen. Dieses wird im zweiten Teil genutzt, um Amee zu entwickeln,
ein agentenbasiertes Modell, das entwicklungsbiologische Prinzipien, Nischenkonstruk-
tion und phänotypische Plastizität mit natürlicher Selektion auf der Grundlage einer
simulierten Ökologie vereint. Amee wurde dabei im Utopia framework implementiert, das
eine performante, integrierte Simulation beliebiger agentenbasierter Modelle ermöglicht.
Der hier präsentierte phänomenologische Überblick über die Fähigkeiten von Amee
reicht von der Evolution von Ökospezies über die Evolution von Stoffwechselnetzwerken
bis zu einer biologischen Organisation jenseits der Spezies-Ebene, wobei sich diese
Phänomene autonom aus der grundlegenden Dynamik entwickelen. Das Zusammenspiel
von Entwicklung, Plastizität und Nischenkonstruktion wurde untersucht, und es wurde
gezeigt, dass zwar die erwarteten natürlichen Phänomene prinzipiell auftreten können,
aber die zugängliche Simulationszeit und Systemgröße zu klein sind, um naturähnliche
Evo-Devo-Phänomene und -Strukturen zu erzeugen. Amee stellt damit ein umfassendes
Werkzeug zur Simulation von Evolutionsprozessen auf einer Vielzahl von Ebenen dar.
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1. Motivation

The concept of biological evolution, the autonomous change of organism traits over time,
has arguably been one of the most influential ideas in science [Mayr, 2000a], and it
has inspired scientific fields ranging from cosmology [Smolin, 1992] to economy [Dosi
and Nelson, 1994; Boulding, 1991; Ma and Nakamori, 2005]. Within biology, it has
attained a field-defining place - as Dobzhansky famously expressed “Nothing in Biology
makes sense except in the light of evolution” - and its progress has been remarkable:
Important milestones include the unification of Darwin’s theory of natural selection with
Mendel’s particular inheritance [Mendel, 1866] and statistical population genetics into
the “modern synthesis” [J. Huxley, 1942], the discovery of the DNA molecule [J. D.
Watson and F. H. C. Crick, 1953] and the discovery of the foundations of developmental
biology [Goodman and Coughlin, 2000; Raff, 2000]. Over the same time, humanity has
ushered in an unprecedented age of innovation and growth, such that we now live in
a world of technological possibilities that were utterly unthinkable to our ancestors in
Darwin’s time. With this came an unprecedented set of problems, largely arising from
an ever tighter interconnection between artificial and natural systems: Climate change,
biodiversity loss and ecosystem degradation are arguably consequences of the dynamics
of globalizing markets in a growing global society. Thus, the natural ecological and
evolutionary processes are increasingly exposed to anthropogenic forcing.

Recent studies show that human influence on natural processes often has reached the
same or greater magnitude as natural drivers. This has reached an extent that warrants the
definition of a new geological age, the Anthropocene [Steffen et al., 2007]. While the main
argument for such a definition is that human forcing has at least reached parity with many
natural subprocesses of system earth, the flip side is that we increasingly become an essen-
tial element of it, on which the rest of the natural world comes to depend. For viruses or any
other parasite that infests primates or ungulates, humans and their livestock are probably
the greatest natural resource the planet has to offer. Humans, therefore, have become a
keystone species [Paine, 1969] in the global ecology. In other words, we create an entangled
web of anthropic and natural processes in which interacting self-replicating entities of many
kinds, subject to evolution, play a crucial part. This is obvious when discussing ecosystem
degradation, invasive species or zoonoses like SARS‑CoV‑2 or Influenza, but it is also
apparent in the technosphere, where the generation of innovations can be regarded as
an evolutionary process [Ma and Nakamori, 2005]. Even the emergence of culture itself
has been interpreted as following evolutionary principles [Mesoudi, 2011; Mesoudi, 2015;
Whiten, 2017], unfolding in a continuous feedback loop with biological evolution. Thus, a
fundamental, and mechanistic, understanding of evolutionary processes and their interplay
with other parts of the earth system is of fundamental importance.

At the same time, evolutionary processes still present us with many challenges. On the
fundamental side, the question of the origin of life [Damer and Deamer, 2020; Frenkel-
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Pinter et al., 2020], the puzzle of the origin and maintenance of hierarchically integrated bi-
ological systems like multicellular organisms, eukaryotic cells or organism societies [Rainey,
2023; Rafiqi et al., 2020; Carmel, 2023; R. A. Watson, M. Levin, et al., 2022; Black et
al., 2020], or the principles behind ontogenesis and development [Sultan, 2021; Gilbert,
2019] are just a few of the plethora of active research areas in the field. Indeed, many
studies over the last decades call into question the classical “gene-eyed view” of evolution,
which focuses on genetic mechanisms and understands evolution as a collection of processes
that change gene frequencies in a population [K. Laland, Uller, et al., 2014], governed by
population genetics. Foremost among them are results from evolutionary developmental
biology [Müller, 2007] but other concepts like niche construction [Odlin-Smee et al., 2003]
also contributed to this emerging “extended evolutionary synthesis” [Pigliucci, 2009; K.
Laland, Matthews, et al., 2016; Müller, 2017a].

This extended synthesis represents not just an extension of the prevalent ideas in the
field with new findings but changes the way we interpret self-reproducing entities. The
two most important research directions are probably eco-evolutionary dynamics, or “eco-
evo”, which emphasizes the interplay between ecological and evolutionary processes on
the same spatiotemporal scale [Pelletier et al., 2009; Bailey et al., 2009; Schoener, 2011],
and evolutionary developmental biology, or “evo-devo”, which investigates how phenotypic
variation emerges from heritable information. This field has a strong connection to modern
genetic research and elucidates mechanistic underpinnings of phenotypic plasticity and
ontogenesis. In doing so, it has provided us with a novel understanding of the organization
of the genome, the nature of evolutionary change, and the interplay between environmental
signals and phenotypic variation. Therefore, it connects the ecological scale to the genetic
and cellular interaction networks that make up individual phenotypes.

Niche construction is a related concept that has significant overlap with both. It views
adaptive evolution as a two-way process in which organisms adapt to, but also change their
surrounding ecosystem, and thus the ecological niches they find themselves in. It thus
explicitly considers the interplay between ecological interactions and micro- and macro-
evolutionary processes that emerge from them. Niche construction theory stresses the
fact that these biogenic influences persist across generations such that genetic inheritance
is augmented by a general “ecological inheritance”, of which the cultural inheritance
mentioned before is a special case.

The idea of the extended evolutionary synthesis and Niche construction theory has
sparked much debate [Scott-Phillips et al., 2014; K. Laland, Uller, et al., 2014; Baedke,
2020], with critiques pointing out that proponents assume an outdated view of evolutionary
theory, or that the proposed extensions are overextending the concepts behind evolutionary
thought [Dawkins, 2004]. Regardless of this back and forth, it is clear that evolutionary
theory has entered a phase of reorganization, during which previously disparate fields
of study are integrated into a larger whole to create a better understanding of natural
evolutionary phenomena than ever before.

A very important tool in this regard is computer modeling, which allows the analysis
of large quantities of data and the detailed simulation of individual biological processes.
Today, it also allows for the large-scale simulation of integrated multiscale systems, starting
from fundamental building blocks like individuals and genes and their abstracted inter-
actions. Tools like individual-based modeling have seen strong development over the last
two decades or so, and by now allow the simulation of many natural processes from the
ground up. Since a concise analytical theory of evolution is out of reach, and probably
not practical, outside of special cases largely based on population genetics, this approach
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makes progress for highly complex situations possible where experiments are too hard or
not even feasible in principle.

Indeed, self-organization, emergence and the autonomous formation of structures that
adapt and react to their environment are some of the hallmarks of life, and these are
the classical properties that define complex (adaptive) systems. Complex systems are
normally thought of as being made up of many interacting elements which show emergent
behavior that cannot be predicted from the properties of their elements alone. Rather,
these properties arise as part of the patterns and nature of interactions in the system
–“More is different” [Anderson, 1972]. Complex adaptive systems comprise the subclass
of complex systems in which their self-organization reacts to external signals, usually by
adapting the interactions and properties of their constituents [Holland, 1992; S. A. Levin,
2002]. Complexity science has made vital contributions to the study of social [Eidelson,
1997], economic [Farmer et al., 2012; Anderson, 2018], and physical systems [Holovatch
et al., 2017], and since complexity, adaptiveness and self-organization pervade the domain
of life [Camazine et al., 2020; Isaeva, 2012], evolutionary theory can be thought of as
being firmly embedded within complexity science - the elements of biological evolving
systems are “just” endowed with a set of special properties that allow us to recognize
their evolutionary nature. Again, technological advances in computer modeling have
made remarkable progress possible. Much of this is owed to the recognition of complex
networks [Strogatz, 2001; Boccaletti et al., 2006] as the fundamental architectural principle
underpinning many complex phenomena: Most, if not all, complex adaptive systems can
be imagined as self-modifying networks of interacting entities [Holland, 1992; S. A. Levin,
2002].

Given this perspective and the prevalence of complex adaptive systems and evolutionary
systems in particular in the Anthropocene, the need for integrated modeling approaches
arises. Although steps in this direction have been taken, most studies include only one or
two of the many relevant processes on a single level of organization [Silver and Paolo, 2006;
Lehmann, 2008; Staps et al., 2019], and although theoretical contributions strive for such
an integrative approach [Laubichler and Renn, 2015; K. Laland, Matthews, et al., 2016;
Müller, 2017a; R. A. Watson and Szathmáry, 2016; R. A. Watson, M. Levin, et al., 2022]
an accompanying, similarly integrated modeling approach appears to be still missing. This
thesis tries to contribute to this issue. In the first part, a view of evolutionary theory is
presented that is embedded into the concepts of complexity science. In the second part,
this view is translated into a simplified individual-based model for biological evolution,
which is based on self-organizing and self-modifying networks. It integrates development,
plasticity and niche construction within a resource-consumer network, and provides many
possibilities for further extension. In this way, the present work strives to provide a starting
point for an integrated modeling approach for general evolutionary systems.





Part I

Concepts and theory
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2. From complexity to evolution

2.1 What is evolution?

2.1.1 Common definitions of evolution

The term “evolution”, in its general meaning, refers to “a process of change in a certain
direction” [Evolution, the Merriam-Webster dictionary 2023], “a gradual process of change
or development” [Meaning of evolution in English, Cambridge Dictionary 2023] or a similar
variation of “change over time”. Applied to biology, this can be understood as “changes
in the proportions of biological types in a population over time” [Millstein, 2022].

In biology, there are many different, more or less specific versions of the term, for
example, the prevalent and highly specific “any change in the frequency of alleles within
a population from one generation to the next” [Millstein, 2022] or Darwin’s “descent with
modification” [Darwin, 1859] and many versions thereof. Regardless of definition, in a
biological context, the term is intended to describe the process of how biological diversity
arises and is maintained, with the different definitions referring to different mechanisms
envisaged to be involved. Many definitions also explicitly refer to specific timescales. In a
well-known textbook on evolution, it is defined as “inherited change in the properties of
groups of organisms over the course of multiple generations.” (Futuyma and Kirkpatrick
[2007], p. 7), i.e., changes in the properties of groups of organisms that happen during
a single generation, e.g., via learning or horizontal gene transfer, are explicitly excluded.
Indeed, if we understand evolutionary biology as the science that tries to understand the
emergence of natural biological diversity, then “descent with modification” makes several
a priori assumptions about the process governing this emergence, namely that change
occurs gradually over (possibly many) parent-offspring links over timescales larger than
individual lifetimes.

2.1.2 A general definition of evolution

However, other processes which are not bound to the concept of “descent with modifi-
cation”, in its common meaning, arguably influence the dynamics of biological diversity
over time, like the aforementioned phenotypic plasticity, ontogenesis [Gilbert et al., 2015;
Pfennig, 2021], or social learning that influences behavior [Gariépy et al., 2014]. In that
sense, an insistence on “descent with modification” leads to an artificial distinction between
“evolutionary” and “non-evolutionary” modes of change in biology that are conceptually
separated but mechanistically tightly interlinked. Indeed, evolutionary ideas have become
prevalent in other fields as well, from economy [Witt, 2008; Hammerstein and E. Hagen,
2005] to cosmology [Smolin, 1992]. Therefore, in this chapter we employ a very general
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notion of biological evolution – “evolution is the change of physical or functional charac-
teristics or -organization or the distribution thereof in a population of entities over time”
– which is very close to the one given above from Millstein [2022]. Note that it does not
refer to biology explicitly, although this will naturally be our main focus, given that it
is the most well-studied such system. It covers the emergence of new kinds of entities
in the population, or the loss of old ones, as well as purely a change in the distribution
of their properties without changing anything else. Moreover, it does not only refer to
changes in observable characteristics of some organisms with a fixed identity but allows
also for the change of this identity, the emergence of new ones or loss thereof, i.e., a change
in the physical or functional organization of the entities in the population. Therefore, it
includes the “change in allele frequency” or “descent with modification” definitions but
goes beyond them into speciation, innovation and the emergence of altogether new kinds
of entities or conglomerates thereof.

Aside from its generality, another reason for adopting this definition is that it is purely
descriptive, and does not allude to processes that underly the observed change. Also,
taking such a more general approach allows us to place Darwinian evolution and other,
similar concepts that arose over time into a larger context, thereby creating a deeper
understanding of the requirements for and properties of biological evolution. The same
holds for non-biological systems which show similar phenomena to biological evolution,
but for which the entities in question are fundamentally different.

2.1.3 Characterization of biological evolution

Before going on, it makes sense to consider the phenomenology of biological evolution
in some more depth. This serves to better understand the character of the phenomena
it produces, before investigating in more depth. Three of its properties are especially
worth noting. First, empirically we find that biological evolution tends to continuously
create new adaptations which make organisms “better suited” to the ecosystem they find
themselves in, which appears to be the case even in constant environments [Wiser et al.,
2013; Lenski, Wiser, et al., 2015]. In contrast to physics, in which the concept of an
equilibrium state towards which the system develops is often central, biological evolution
behaves differently and it continues to generate new traits, lineages, species and functions –
a process that, we can conjecture, is limited only by the fundamental physical interactions
that the constituents of organisms are able to engage in.

The complex, ordered structures that evolve in this manner are not, however, indefinitely
stable in themselves. This is in contrast to natural pattern formation, e.g., in sand dunes
or -ripples, where the emerging patterns represent a natural attractor of the system that
remains stable unless disturbed. The second important property of biological evolution
is therefore that biological organisms are inherently open, non-equilibrium, dissipative
systems [Kondepudi et al., 2020] that take up energy and matter from the environment
and expel waste products into it. As a consequence, not only does the population of
evolving organisms change over time, but the wider environment it is embedded into
does as well. Biological evolution therefore invariably entails a “co-evolution” between
environment and population. More than that, some form of environment into which
an evolving population is embedded is always necessary - biological evolution without
interaction with some environment is unthinkable.

Thirdly, biological evolution tends to create highly complex, ordered, functionally spe-
cialized structures, which came about by iterative modification of simpler precursors, some
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of which are compounds of other such structures [Goldenfeld and C. Woese, 2011]. Eyes,
brains, livers, the wings of birds, bats or pterosaurs or termite mounts have no analogy in
the non-biological world and structures of equivalent complexity and functionality are not
formed by abiotic processes [Wolf et al., 2018]. Most importantly, employing the language
of dynamical systems, the ability to create such complex structures allows for biological
evolution to change the dimensionality and structure of the state space it unfolds in. This
is invariably connected to a change in the dynamical laws that govern the system as a
whole. For example, over the course of evolutionary history, the emergence of burrowing,
itself brought about by novelties in body plans, quite radically changed the structure and
function of the ecosystem [Bottjer, 2010]. Such changes are usually brought about by
feedback processes that are affected by novelties in the system.

With these three properties – open-ended adaptivity and production of novelty, co-
evolution between population and environment, iterative production of functionally com-
plex, specialized structures and the ability to change its own dynamics – we can see
biological evolution as a prototype for a class of systems that is phenomenologically distinct
from everything we normally encounter in physics, and which I aim to characterize further
throughout this chapter.

2.2 Elements of abstract evolutionary theory

2.2.1 About populations, individuals and traits

The entities making up the population we discuss here are most easily envisaged as
animals, bacteria, or other life forms, although a priori, this does not need to be the
case. For example, envisaging robots as individuals in the population would be consistent
with the definition of evolution given above as well, and indeed, the field of Evolutionary
Robotics employs such approaches [Alattas et al., 2018; Doncieux et al., 2015]. Elements
of biological organisms, like genes or cells, would do as just as well as cultural artifacts like
ideas or traditions, as would, taking the definition word by word, atoms or molecules. In
turn, individual entities in the population also need not be individuals in the physical sense
but could be aggregates of other entities, i.e., they could be populations themselves.

The collection of traits describing each individual can be of arbitrary composition in
principle. In the simplest case, it can just be a simple scalar like body weight, fur color,
number of flower petals, charge, or the concentration of metabolic enzymes in a cell, which
can be continuous or discrete. Often, evolutionary biology considers indeed such simple
cases. However, not all phenomena in such systems can be described by simple scalars.
Other types of entities might have more complex traits, for instance, behavioral patterns,
socially learned traditions, mate- or prey preference, and many other things.

We, therefore, describe an entity as a tuple of K elements gk, where each describes an
observable trait, i.e., an entity γ is described by γ = (gk) , k = 0 . . . K, without making
further assumptions about the character of the traits in question. These variables can
represent physiological characteristics, certain behavioral functions or other things, indeed,
their choice is a practical one: If we want to describe a natural population, we always use
a finite number of variables per entity based on the question we want to investigate. When
such entities interact with their environment, it is by virtue of these traits, i.e., their overall
state change over time will be a function of their traits and the traits of the environment
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they interact with. 1 The entire population Γ then is described as a set of such entities
Γ = {γ1, . . . , γN}.

2.2.2 General processes leading to changes in trait distribution

The Master Equation Asking how the distribution of properties in a population changes
over time is the classical problem for stochastic dynamics, and represents the most simple
class of changes inherent in the definition of evolution given above. Hence, we can ask
what is the probability pk to find the population in state Γi(t) = {γ0, γ1, . . . , γk, . . . γN} at
time t? Under the assumption that the system is governed by a Markov process and given
a discrete and finite set of states Γ of the population, this time development is described
by the Master equation [van Kampen, 2007]:

dpi

dt =
∑

l

Ajipj ⇔
dp

dt = Ap (2.2.1)

The matrix A thereby describes the transition rates of the system from one state to
another, and can in principle depend on the current state of the system i and time t. The
Markov property thereby assures that no dependency on earlier points in time before t
exists, which amounts to saying that all variables that influence pk are aggregated into the
state of the system Γi at the current time. The mechanics of the process is represented
by the functional form of the transition rates Aij . Trajectories of a system described by
Equation 2.2.1 can be simulated using the Gillespie-algorithm [Gillespie, 1976]. Often,
the mechanisms behind the transition rates in A are envisaged to be interactions between
particles – we might think about collisions or, more general, reactions between them,
mechanical, chemical, or otherwise.

Simple processes changing trait distributions Assuming the set of observable traits of
a single organism to be γ ⊂ R

n such that the population can be described as a set of points
in R

n, a simple evolutionary process could be a random walk in trait space, well studied in
physics, where each entity randomly changes its state by some amount l into an arbitrary
direction. For biological organisms, this would amount to spontaneous transmutation,
which, with a little imagination, we can envisage as arising by interaction with some
environment. Such a process results in diffusion in trait space [van Kampen, 2007]. This
process changes the distribution of traits in the system over time and thus constitutes
indeed an evolutionary process. In fact, diffusion-like processes play a role in evolutionary
theory in the form of neutral evolution (compare section 3.7). It’s worth noting that
this process allows for an, albeit slow, exploration of the trait space by the population,
i.e., it increases the variance of the distribution of traits over time (see Figure 2.1, line
A for a 1D example). Consequently, diffusion processes indeed can produce diversity
in the observable traits of entities in a population from non-diverse initial conditions.
More complex behavior like diffusion with drift or anisotropy in higher dimensions can be
included readily via biased transition probabilities in Equation 2.2.1, see Figure 2.1, A and
B. Other processes which we can think of include random or biased replacement or removal
of entities (shown in Figure 2.1, C in a simple variation), which are indeed discussed in
the literature [Godfrey-Smith, 2007; Papale, 2020]. In Figure 2.1, D, a blending of traits
between two randomly selected partners has been included, which leads over time to a loss
of diversity in the population. Random or biased addition or removal could, for instance,
1 We will discuss the concept of “environment” in more detail in subsection 2.2.3.
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Figure 2.1: Individual trajectories for some simple evolutionary processes, obtained by
simulating Equation 2.2.1 for a population of 1000 entities defined by a single scalar
trait a ∈ R, using the Gillespie-algorithm [Gillespie, 1976]. A: Standard diffusion with
equiprobable steps in either direction of length 0.25, leading to trait-space exploration
evident in the increasing variance over time. B: Same as A, but with biased step
probabilities p− = 0.3, p+ = 0.7, leading to biased trait space exploration towards larger
traits. C: Random removal of organisms starting from a uniform distribution of traits in
[2.5, 7.5]. In contrast to A or B, this will eventually lead to the system’s collapse. D:
A blending process, also starting from a uniformly distributed sample. Two entities are
chosen at random and the first one’s trait is replaced by a1 = 1/2 (a1 + a2). The process
results in a narrowing Gaussian trait distribution over time by virtue of the central limit
theorem. This process results in a loss of variation in the population.
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be understood as the migration of individuals to and from the system, or as differential
birth and death which are dependent on the traits of the entities. This latter combination
is, of course, the one that forms the basis of biological evolution, but we will postpone a
deeper discussion of this to later and keep the general, and abstract considerations for the
moment. We also notice that both of these are only one of many possible evolutionary
processes.
Interactions between environment and individuals Together with the earlier discussion
on diffusion, we consequently identify interactions, with some environment the population
is embedded in or between its individuals, as mechanisms that can bring about a change
in the observable traits, number or identity in the population, in accordance with the
definition of evolution given in section 2.1. These interactions are, for simplicity, often
imagined as pairwise interactions, but this does not need to be the case, and higher-order
interactions may also involve entities from the focal population and the environment. In
summary, the processes examined so far only serve as phenomenological descriptions of
how the distribution of existing traits in a population can change over time, with references
to explicit mechanisms only entering later. The most interesting questions evolutionary
theory sets out to answer have been left entirely untouched until now, however. Foremost
among them is the question of the apparent organism-environment fit we observe in
nature, i.e., how do apparent adaptations of organisms to their environment come about
in an ever-changing world, and how does it produce complex biological compounds, like
ourselves?

2.2.3 Dependency on external environment

In order to get closer to these questions, we focus on the transition rates between system
states given by A and introduce an explicit dependency on an external environment.
Environmental influences can include ambient temperature in chemistry or light and
nutrient availability for a population of growing plants. These apply generally to the
entire population and are often wrapped into boundary conditions of the system. Some
environmental influences can preclude a subset of transitions entirely, thus making parts
of the state space of the system inaccessible, or do the opposite and facilitate transitions
into unexplored areas of the state space. While often wrapped into boundary conditions
or system parameters for descriptional simplicity, such influences become explicit While
these influences leave a signature in the trajectory of the system, it is hard to imagine how
adaptations could arise from them alone. From the point of view of biology, this is more
akin to abiotic influences like ice-age- or supercontinent cycles, or local temperature or
precipitation. All these influences shape the trajectory of an evolving population but do
not yield adaptations or complex structures. Indeed, closer consideration reveals that for
such adaptations to be generated, which we readily understand are highly unlikely states
to arise at random, more complicated interactions are not enough – rather, a new kind of
process is needed.

2.2.4 Complexity – dependency on the population state

Self-organization in populations of interacting entities We now focus on individual
entities in the population and the variation of traits at time t and introduce a dependency
of the transition rates A on the state of the population at time t. As introduced above,
this state can be interpreted as the distribution pγ(t) of individual trait tuples γ over the
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population. With this modification, the state change of a single entity over time depends
on the state of other individuals in the population. This enables local feedback processes
between the states of interacting individuals. Importantly, this opens up the realm of
self-organization, pattern formation, and emergent properties in the population.

We can interpret such a system as a time-dependent interaction network, in which the
individual organisms, particles or other entities interact with a set of other entities and
in which interaction intensity and the set of interactors change over time. A reaction-
diffusion system giving rise to Turing patterns [Turing, 1952] or Belusov-Zhapodinski
patterns [Belousov, 1959], for example, can be seen as a time-dependent interaction
network between particles that interact by chemical reactions and momentum exchange.
Alternatively, and much easier to imagine, the interactions between the chemical species
involved can also be described as a network.

Self-organization and emergence can lead to remarkably complicated global system
states not reducible to the structure of individual entities in the population, i.e., these
properties emerge as a consequence of the topological structure of the interaction network
and the functional character of the interactions.

For natural examples outside of biology, we can think of the formation of sand-dunes
[Herrmann, 2006], self-organized criticality in granular matter [Bak et al., 1987], con-
vection patterns in fluids [Getling, 1998] or pattern forming, non-equilibrium chemical
reactions [Belousov, 1959]. Because of their complexity, such systems are often studied
algorithmically rather than analytically, with cellular automata [Wolfram, 2002] being a
widespread tool that is in principle representable via Equation 2.2.1, although while they
can be stochastic [Louis and Nardi, 2018], cellular automata where originally envisaged to
unfold deterministically. Such algorithmic approaches can rapidly attain a complexity that
is not tractable analytically and are therefore able to represent more realistic scenarios at
the price of a loss of generality.
Self-organization and emergence as a building block of adaptation The main insight
here is that interaction between individual entities in a population can yield complex, reg-
ular collective states that arise from unordered, individual interactions. Thus, it provides
a mechanism for the autonomous emergence of dynamic complexity and consequently a
principle, or at least starting point, for how the complex bodies of biological organisms
can be created from simple building blocks.

Moreover, of all fields of science, regular patterns are probably most apparent in biology,
so it’s not surprising that Turing’s seminal paper on pattern formation in reaction-diffusion
systems [Turing, 1952] was inspired by biological development. Therefore, the properties
of natural organisms can be seen as emergent phenomena that arise from the interactions
of their own respective building blocks. Consequently, natural complex self-organization
can only come about when the focal entities that make up the population referenced
in section 2.1 are collectives of interacting elements, like populations of plants, animals,
cells or molecules. Consequently, while we always talk of individuals when talking about
(biological) evolution, these cannot be “atoms” in the true sense of the word but are con-
glomerates of other interacting entities themselves. It must be noted that self-organization
and emergence always occur in systems that interact with their environment, i.e., they
cannot occur in isolation [Haken, 2008]. This requirement is naturally fulfilled in biological
populations, but also in many other systems in physics, chemistry or sociology, to name a
few [Haken, 2008]. Moreover, the formation of such global phenomena in a population of
interacting entities represents an attractor of the global dynamics, and thus the emerging
population-level states are often quite stable against variations in initial conditions, even if
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the exact trajectory leading to them is not [Strogatz, 2018]. Such phenomena also usually
appear on a certain spatiotemporal scale that is usually distinct from the scale on which
individual interactions happen. The dynamics of the emergent phenomenon, therefore,
can be typically described with fewer degrees of freedom than a full description of the
population it arises in. In other words, the properties of individual elements of the system
are no longer relevant to the behavior of the system as a whole. Conceptually, however,
there is no reference to any particular spatiotemporal scale. In the sense discussed here,
emergent phenomena can appear on any level of physical organization from the molecular
[Haken, 2008] to the planetary scale and beyond [Stumpo et al., 2021].

Primitive adaptation in populations of complex systems The central corollary of this
insight is that complex systems can be nested – complex systems can form other complex
systems, i.e., the individuals in a population can be complex themselves, and should be
expected to be so if they show adaptative state changes over time. Indeed, if we accept
biological cells to be complex systems in the sense that they exhibit emergent phenomena
and are made up of many interacting parts, we find that biological organization from
molecular dynamics over cells to multicellular organisms and whole ecosystems is “just” a
big collection of nested complex self-organizing systems.

Such systems can exhibit multiple different attractors which manifest as different emer-
gent phenomena depending on initial conditions, boundary conditions, external forcing and
system parameters [Strogatz, 2018]. Forcing from the outside on the state or parameters
can lead to changes in the number and character of the attractors via bifurcations or the
switch from one to another. In that sense, self-organizing many-particle, i.e., “complex”
systems, can be said to adapt to environmental conditions and support diversity, which
both are hallmarks of biological systems. In nested complex systems, this forcing can
be exerted by other complex systems in the hierarchy and their self-organization, leading
to feedback between layers of organization. Such reaction to external forcing can be
interpreted as a rudimentary form of adaptation, although this does not yet allow for the
kind of complex adaptation found in natural biological systems. It does, however, provide
a starting point for further investigation and rules out simple linear systems as underlying
evolving biological organisms. Rather, organisms undergoing complex adaptations will
invariably be made up of other interacting entities themselves.

2.3 Complex adaptive systems

2.3.1 The concept of Complex Adaptive Systems

Simple complex systems compared to Complex Adaptive Systems The systems de-
scribed above have a range of possibilities to adapt to environmental conditions in the
sense that they react to environmental input in a specific way and produce a, often quite
stunning, range of emergent organization: When environmental conditions change, they
reorganize accordingly and eventually reach a new attractive set of individual states on
which they remain until another change happens. The individual elements of the complex
systems we discussed so far often are exceedingly simple, in particular, they need not
show adaptation, but often follow simple behavioral rules or physical laws. This results
in the range of emergent properties these systems can exhibit being strictly limited –
determined by the properties of their constituents and the interactions they can engage
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in. In other words, while such “simple” complex systems can exhibit very complicated self-
organization over wide ranges of parameters and boundary conditions, their reactivity to
these conditions is generally limited to the, typically few, attractive sets within their state
space and reorganizations of these state space features by bifurcation or crisis [Strogatz,
2018] is only brought about by some outside forcing on system parameters. The novelty
so characteristic for biological evolution is thus not found in such systems.

A subclass of complex, self-organizing systems, however, shows a more adaptive behavior
which, at first glance, can give the appearance of goal-oriented action informed by incoming
signals – adaptation in the full sense of the word. Colloquially, this is much closer to what
we understand as “adaptation”. Societies, ecosystems, cells and other natural systems are
often grouped under this header [S. A. Levin, 2002]. Consequently, these systems are often
called “Complex Adaptive Systems” [S. A. Levin, 2002; Holland, 1992]. We again hold
on to the model of a dynamic interaction network to guide our imagination. We readily
find that ecosystems, social systems in humans and animals, (artificial) neural networks,
or economic systems also have network structures.

Properties of individual entities in Complex Adaptive Systems A distinguishing prop-
erty of Complex Adaptive Systems arguably is that their individual constituents can
adaptively react to conditions in their surroundings. Thus, they have at least a “simple
complex” structure. In particular, they actively influence the connections they have to
other entities and how they interact with them, while in simpler systems, this is typically
fixed and intrinsic to the individuals. In that sense, the individuals in a population that
forms a Complex Adaptive Systems exhibit some form of agency of their own – they
actively process signals from the outside and modify the sources of these signals, i.e., their
connections to the rest of the network. This in turn influences how their own state changes
over time. Therefore, they react to environmental input by altering their interaction
patterns, which can result in fundamental changes in the state space architecture and
the phenomenology that the population as a whole exhibits. When compared to simple
complex systems, we see that this changes the basis of how emergent properties come
about. Therefore, complex adaptive systems show a wider range of phenomena and
adaptations than simple complex systems. For example, learning processes in neural
networks are associated with the formation and reinforcement of links between individual
neurons and collections thereof [Tovar-Moll and Lent, 2016].

Individual adaptations in CAS as a two-fold process This change of interaction pattern
can be seen as a two-fold process: First, individual agents can change with which other
agents they interact based on their properties. Second, individual entities in the network
can change their dynamics as a reaction to outside influences. In such a setting, the
action of individual agents can often take the form of conditional activity – the agent does
something under condition x and something else under condition y [Holland, 2006]. The
action potential in excitable cells can serve as a simple example here, where ion channels
in the cell membrane open and close at a precisely defined threshold potential [Hodgkin
and A. F. Huxley, 1952]. Often the topology changes in the system are conditional too,
for example, links in social networks are often formed or cut when an evaluation of the
connected node by an agent yields a certain result, a behavior especially relevant in opinion
dynamics [Peralta et al. [2022] and references therein]. In this case, the individuals are
often described by a set of rules they use instead an integrated analytical representation
of their full dynamics, i.e., we can identify the set of rules with the set of traits γ.
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Figure 2.2: Left: A schematic representation of Complex Adaptive Systems. The
individual elements of a CAS2 are organized into an interaction network (A). Often,
the individuals are heterogeneous in their properties. Their interactions are nonlinear
and often conditional in nature. Additionally, there is a “background” environment E
with which the system is in exchange (F, lower). This exchange constitutes a feedback
loop in which entities change their local interaction environment and in turn, adapt to it.
Through this interaction, collective behavior can emerge that cannot be isolated or reduced
to individual elements (C), e.g., flocking or herding behavior in ecology, institutions in
human societies and many more. Often, this takes the form of a new kind of interaction
network (not shown). The emergent level of organization interacts with the environment as
well (F, upper), creating a second feedback loop. Finally, the emergent structures can feed
back to the individual behavior, yielding changes in behavior and possibly in the emergent
phenomenon (D). (modified from NikNaks [2014].) Right: Zoom into the lower half of the
left figure. As discussed in the text, CAS can usually be seen as nested complex networks
(a), in which adaptation comes about by changes to the network structure in reaction
to input from their local environment (c, light blue), which might be other nodes in the
network, elements of the background environment (F) or a feedback from the emerging
global pattern (D). New entities can emerge as network motifs and form connections with
others by connecting internal nodes with internal nodes of other entities(grey lines in “a”).
As a consequence of internal reorganization of individuals, these connections can change
(b, light blue) and result in changes to global system behavior and the arising emergent
phenomena.

Complex adaptive systems are, therefore, often nested complex systems, which we can
envisage as interaction networks of interaction networks. Indeed, Complex Adaptive
Systems can form Complex Adaptive Systems as part of their unfolding, a fact that
originally yielded some heterogeneity in how different authors used the term. Think for
example of a social system as an interaction network in which each node is made up of a
network of neurons, or an ecosystem in which each species is made up of an interaction
network of individuals which in turn are an interaction network of cells, chemical species
and so on. These properties lead to Complex Adaptive Systems usually being modeled
with agent-based computer simulations [Railsback and Grimm, 2019] instead of the more
familiar differential equations.
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2.3.2 Hierarchical architecture and environment

CAS have a hierarchical organizational structure The insight that Complex Adaptive
Systems are usually nested complex systems, and thus “interaction networks of interaction
networks”, introduces an organizational hierarchy into the concept. Indeed, many natural
and artificial complex systems have been shown to feature a hierarchical organization –
from neural networks over gene-regulatory networks and ecosystems to organizations and
societies or the internet [Mengistu et al. [2016] and references therein]. Adaptations of
the entire system arise as an emergent phenomenon from adaptations at the individual
scale, which in turn comes about by a reorganization of the elements these are made up
of and so on. Adaptation in the sense of a non-random, specific state change in reaction
to environmental conditions, which includes learning and, by extension, “intelligence”,
therefore is ultimately always a collective phenomenon.

CAS are self-organized on multiple levels of organization through feedbacks Because
of the nested-network architecture of CAS, we in general observe self-organization on at
least two, generally multiple levels (see Figure 2.2, right). The first level is naturally the
level of individual network nodes which adapt their dynamics and linkage to the inputs
they receive from other nodes or some environment process. This process entails self-
organization of their internal elements and their interactions. From this local adaptation
emerges self-organization and possibly adaptation on the higher network level. This, in
turn, feeds back to the individuals, manifesting itself in a change in their interaction
pattern. Such cross-level feedback is therefore identified as another hallmark of complex
systems and particularly complex adaptive systems and is a direct consequence of their
architecture (compare Figure 2.2, left). In CAS, these feedbacks are especially important
because they are made up of more complex agents than “simple complex systems” and
thus, their phenomenology is much richer. In particular, we can interpret this feedback
as a restriction of the dynamics of the lower-level agents by the emergent properties at
the higher organizational level, which, especially in biology, is important to stabilize
the system’s structure. For example, multicellular organisms are made up of, a priori,
independent entities (individual cells) which are cooperating to create the multicellular
body [Michod and Roze, 2001]. Individual cells are thereby restricted to specific functions
via the developmental process, itself a product of natural selection over long periods of time
[Niklas, 2013]. Failure of this restriction essentially leads to a loss of multicellularity [H.
Chen et al., 2015], i.e., cancer, and thus the destruction of the system as a whole.

CAS as embedded systems Additionally, the concept of an environment is always a part
of CAS by definition. This is, firstly, because they are defined by their ability to adapt to
changing conditions, i.e., the aforementioned background process is by definition assumed
to exist and be outside of the system, and second because each element of them is an
open system that exists in exchange with other such elements and their local background
environment. The environment of each node is, therefore, a combination of other nodes
it interacts with and the “global” environment the population is embedded in. This also
means that the environment of each node is not only subject to change over time but
subject to change effected by the individual entity itself, either by changing its connections
to other entities or environmental states or by changing the environment itself, e.g., when
organisms change their environments through their activities [K. Laland, Matthews, et al.,
2016]. Therefore, the concept of environment, or, embedding into some other system, is
inherent to the idea of Complex Adaptive Systems. Thus, CAS fulfills two properties of
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the three properties that characterize biological evolution - adaptation to environmental
conditions and elements that are open systems.

Because of their capability to change their dynamics as a reaction to environmental
conditions, which naturally encompasses biological adaptation, we can think of Complex
Adaptive Systems theory as a physical background theory for biological evolutionary
theory [Kauffman, 1992], because it provides the conceptual underpinning and a theoretical
framework with which we can interpret and interlink evolutionary phenomena with the
wider physical world.
A glimps into possible mechanistic underpinnings It has been shown that modularity
[Clune et al., 2013] and hierarchical organization [Mengistu et al., 2016] in interaction
networks can evolve when there is a performance penalty for network connectivity, based
on the empirical observation of such costs mostly in neuronal networks. Additionally, it
was shown that such an architecture increases the adaptability of the networks and that
the emerging sub-networks solve sub-problems of the tasks employed to gauge network
performance, although these tasks are known to have an a priori modular structure.
Following the discussion before, we can interpret these “sub-processors” as emergent
properties of the network and regard the network of these modules as a higher level of
organization.

Given that costs for connectivity is a plausible phenomenon in many CAS (e.g., energy
cost to maintain a complex metabolic network made up of many enzymatic reactions),
the suggested mechanisms may thus be seen as important catalysts for the unfolding of
CAS into “hierarchical layers” of emergent dynamics, each of which represents a complex
(adaptive) system in itself. However, in Mengistu et al. [2016], the authors note that there
are likely other, still unknown, mechanisms involved in the evolution of hierarchy in such
systems, with connection costs being just one.

2.4 Complex Constructive Systems – CAS with complex
adaptations

2.4.1 The concept of Complex Constructive Systems

CAS can only explain parts of biological phenomenology Complex adaptive systems
as discussed above can yield a correlation between the individual traits and behavior in
the population and their environment, and thus a form of adaptation. More than simple
complex systems, their elements can change their own pattern of interaction, i.e., how
they are connected to their environment and process external signals. This yields a more
adaptive phenomenology on the population level because the interactions that give rise to
emergent properties are subject to change themselves, i.e., adaptation on the system scale
arises as a consequence of adaptation at the individual scale.

This alone, however, does not explain how complex and highly specialized traits of
biological or cultural individuals arise, and why these often seem to be so uncannily well
“designed” to allow these entities to survive and thrive in their environment. Moreover,
it does not explain how continuous novelty can come about that allows them to exist in
the wide variety of conditions we find in nature, or expand into new ones. The question,
therefore, is how cumulative complexity and open-ended adaptation of individuals can
arise in Complex Adaptive Systems, and what an “algorithm” for the generation of such
complexity might look like.
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Description of an algorithm for constructive CAS Given the examples above, this
algorithm must be largely independent of the detailed structure of the entities, and
arguably can only rely on some broad properties they all share. The observation that, in
the examples described throughout this chapter, more complex functions and structures
come about from simple ones may serve as a useful guiding principle. Consequently, an
iterative approach appears to be a sensible generator for such structures. This could take
the following general form:

• Select an entity to modify based on some criteria.

• Modify the entity based on its current state or system memory.

• Return the modified entity to the population.

• Repeat iteratively.
This process does not require reproduction, death or any other biological process normally
associated with evolution. Indeed, the population in question can be a population of
biological entities, but it could also be a population of ideas in a human’s mind, a
population of cultural concepts or economic strategies, or similar things.

Two general processes must be fleshed out – the selection of entities to modify and the
modification process itself. Third, and perhaps most importantly, this algorithm can be
seen as operating on some form of “memory” or “trait reservoir”, i.e., a pool of existing
traits that it continuously modifies, expands, or contracts. In the simplest form, this
is the set of traits the organism has, giving rise to a population-level reservoir via set
union. However, individual entities can also have some form of memory, such that both
can interact in modification, e.g., when organisms reproduce sexually or when individual
humans or organizations modify their behavior based on observed behavior in others in
combination with their own assessment of a situation.

In summary, we identify this algorithm as one possibility through which changes in
interaction patterns associated with individuals in CAS can come about. The main new
element is the inclusion of some form of iteratively changed trait memory, which was
absent before. In biology, this memory is associated with the inheritance of, e.g., genetic
material, while in human culture, we identify it as the set of traditions or behavioral traits
that are transmitted from one individual to another, and in individual humans or AI, the
memory is built up from past experiences and modified according to comparison with the
behaviors of others or some preconceived expectation.
Complex Constructive Systems as a subclass of CAS We introduce the term “Complex
Constructive System” for the subclass of CAS that are capable of these iterative, memory-
based modifications of entities and the formation of cumulative complexity over time. This
highlights their inclusion into the concept of complexity. They form a subset of Complex
Adaptive Systems in that the above algorithm allows for adaptations of individuals to
external signals, thus fulfilling the basic requirement of CAS. Specifically, in the algorithm
above, the selection of an entity or modification of its traits can depend on external signals,
bringing about adaptive behavior.

For contrasting examples, we consider that, e.g., animals can exhibit culture, which
is arguably Complex Adaptive System, but their societies and technological artifacts
lack the cumulative nature and increasing complexity of human culture3 [Dean et al.,
3 This point is debated in the literature [Whiten, 2019]. However, cumulative culture in animals, where it

is present, does not reach the generality of human culture but remains confined to individual traditions,
e.g., bird songs [H. Williams and Lachlan, 2021].
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2013], which we can identify as belonging to the set of Complex Constructive Systems.
Similarly, traffic networks, power grids [Oughton et al., 2018] or ant colonies [Bonabeau
et al., 1998] can be considered complex adaptive systems, but they lack the memory-
based modification mechanism that learning systems or evolving systems exhibit. Indeed,
a main example of CCS4 is complex neuronal networks that can learn and adapt their
behavior in an open-ended fashion and keep track of the performance of previous behavior
and circumstances, in which, as a consequence, complex cognitive functions can emerge.
These can be biological in origin, but the modern deep-learning-based AI models would
arguably fall into this category, too. Therefore, we can see complex constructive systems
as a conceptual unification of learning systems and evolving systems [R. A. Watson and
Szathmáry, 2016].

Complex Constructive Systems can emerge in populations of simple complex systems,
like Complex Adaptive Systems can, or in populations of Complex Adaptive Systems,
thus creating nested CAS. Compare, e.g., prebiotic evolution on organic molecules with
the coupled biological-socio-technological evolution we see in human societies [Fitzhugh et
al., 2019]. This includes the possibility of nested CCS, i.e., multiple complex constructive
processes can be active at the same time in the same population, or one can emerge as part
of the dynamics of another. These additionally can be linked, e.g., by a shared process that
selects entities for modification. An example is arguably the case with human cumulative
culture, where the CCS of biological and cultural evolution unfold concurrently. While
the principle algorithm given above is also applicable to simple systems that do not show
self-organization or emergence, this will not yield open-ended adaptation or adaptive,
cumulative complexity, because their range of dynamics is too limited, i.e., the potential
extent of the associated trait memory is small. Rather, a change in the distribution of
properties over the population over time is all that can be expected, i.e., the situation
described in Figure 2.1.

2.4.2 Trait performance and trait discovery

Emergent performance evaluation and individual-based trait discovery Holland [2006]
discusses that to show adaptation, in the ways described above, two processes must exist in
a CAS – performance evaluation and rule (trait) discovery – and he assigns these properties
to the agents themselves which are interpreted as classifier systems 5 Furthermore, Holland
[2006] describes the trait discovery process as a recombination process of building blocks
of traits that have worked in past interactions. Ignoring this latter part for the moment,
the assumption that the entities themselves are the ones that implement rule discovery
and performance evaluation appears to not be a necessary one. While the trait discovery
process will necessarily be associated with individuals, performance evaluation can be an
emergent process in the population, brought about by, e.g., competition or exchange of
information. Finally, because of the open nature of CAS and consequently CCS, we have to
interpret such statements stochastically, e.g., performance-based selection does not yield a
deterministic selection process but rather can be imagined to bias the selection probability
for modification towards entities with higher performance.

Performance evaluation Focusing on the performance evaluation process, we can think
of it as some function that maps the current state of the entity to some orderable quantity
4 Complex Constructive System
5 Holland does not distinguish CAS from CCS, however.
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c, scalar in the simplest case: P (γ) = c. Consequently, it will induce some form of ordering
in the population. In the algorithm laid out in subsection 2.4.1, performance evaluation is
associated with the selection of agents to be modified. If associated with individual agents,
this process can take the form of some agent-internal model of the things they interact with
and the consequences of this interaction. This automatically places complexity constraints
on the agent - in particular, an individual capable of such information processing will be
a CAS itself. For example, individuals can use cues produced by the behavior of others to
assess the quality of different behavioral alternatives [E. Danchin, Giraldeau, et al., 2004].
A simpler example would be the conditional relocation of organisms, for example, seasonal
or generally resource-based migration of animals. In such cases, organisms will evaluate
their current state (spatial position) as disadvantageous and move to other places until
they found a more suitable habitat – again an individual-based evaluation process of the
current trait “location”.

On the other hand, performance evaluation can also be an emergent property of the
system. A simple example can be derived from Figure 2.1, C, where entities are randomly
removed from the population. We identified the random removal process as representing
some local environmental influence, and if this depends on the state of the organism
instead of being purely random, performance can be associated with, e.g., survival time.
This is just a restatement of the very natural observation of differential survival in natural
populations [Hall and Hallgrímsson, 2013; Ridley, 2004]. Another purely emergent example
is social norms, which determine what kinds of behavior, i.e., social traits, are acceptable
in a group of individuals and against which individuals evaluate their own actions and
those of others [Young, 2015]. Similarly, the number of sales or profit a product generates
in a free market can result in the product being modified or removed from production if
they are too low.

Such examples also reveal that, in fact, performance evaluation can happen for the
complete entity or for individual traits it possesses, i.e., P can be thought to act on
individual traits instead of on the entire entity at once in some cases: P (gk) = ck. The
exact form of this depends on the structure of the evaluation process and the individuals.
In particular, if interactions with the local environment are a consequence of a complex
nonlinear interaction of individual traits, performance will most likely pertain to the
individual as a whole, because the interaction function can, in such cases, not be inverted
to unravel which trait yields which impact on the outcome of interactions. Such is the
case in many biological settings.

On the other hand, if performance is strongly determined by one or only a small
number of traits, the system can be simple enough to reduce it to the evaluation of trait
performance. Arguably, such trait-based performance evaluation is most prevalent where
the function P is a property of the individuals themselves, e.g., in learning by trial and
error, and thus in cultural evolution.

As a corollary, we note, again, that the distinction between global and local perfor-
mance evaluation functions depends on the point of view. If we consider individuals as
being conglomerates of interacting elements themselves, an individual-based performance
evaluation can be considered global on the individual scale because the individual itself
would, in that case, be the complex (adaptive) system under consideration and the traits
would be the elements that are evaluated. Due to the generally nested nature of CAS,
what is considered an individual is often a pragmatic choice rather than a natural one. In
biology, this observation gave rise to the concept of multi-level selection [Okasha, 2006;
Lewontin, 1970].
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Figure 2.3: Schematic representation of Complex Constructive Systems in two different
modes. Left: In the first case, the performance evaluation is an emergent property
of the system at the population level and thus is part of the feedback of emergent
properties D onto individual entities. As examples, we could think of differential survival
or reproduction in ecology, or social norms in societies. Individuals (or their individual
traits, depending on system details) change then by an individual-based trait discovery
process R that makes use of the outcome of P , e.g., by genetic mutation or individual
behavioral innovation or recombination of existing traits (light blue arrows, and light blue
elements in the individual networks, compare Figure 2.2). Performance evaluation can
change over time with the evolution of the emergent properties from C to C∗. Right: The
same system, but with performance evaluation as part of individual dynamics that acts in
conjunction with the trait discovery process R, e.g., learning by trial-and-error.
Trait memory is a priori associated with the individuals but can be associated with
the population if exchange between individuals exists. Trait memory evolves with the
population in all cases, which yields iterative adaptation and the potential for complex
structures beyond what non-CCS-systems are capable of. The trait discovery process
can be random, i.e., independent of the effects of modification. More complex cases are
possible when individuals are complex enough to maintain some form of predictive model
based on experience, like in our species.

Trait discovery processes By necessity, trait discovery is associated with individuals,
as it represents the modification step in the algorithm laid out in subsection 2.4.1. In
general, we can understand it as a function that takes a set of traits (which can be the
complete individual) and maps them onto a new set of traits: R({gk}) = {g′

k}. Which
agent is selected for this procedure is thereby dependent on the performance evaluation
process, but not explicitly represented here.

In Holland [2006], a genetic algorithm is suggested to create new traits from old ones by
“effectively cross-breeding them”. This assumes that traits have a modular substructure
that can be recombined to produce new ones, thus introducing another layer of organi-
zation. Indeed, pairwise exchange of discrete traits or recombination from an individual-
based reservoir are examples of individual-based trait discovery processes, e.g., sexual
reproduction or horizontal gene transfer in biology. Social learning or learning by trial-
and-error with subsequent modification of behavior according to the outcome could be also
seen as a trait discovery process. Biology implements trait discovery in a multitude of ways,
from random mutations introduced during DNA copying and DNA recombination during
sexual reproduction over epigenetic inheritance to social- and individual learning. Lastly,



2.4 Complex Constructive Systems – CAS with complex adaptations 23

the background environment can influence trait discovery, too, e.g., ionizing radiation or
the presence of some chemical elements which introduce errors into the DNA of biological
organisms or modify their development. Therefore, the trait reservoir of each entity and
the population itself can be considered open, i.e., subject to in- and outflux of traits.

Another feature of the trait-discovery process is that the newly created traits can be
correlated with their expected performance, or not. Contrast, for example, random genetic
mutations with conscious learning processes in humans and other mammals in which
performance evaluation is not only applied to the trait or skill or behavioral rule that is
to be modified but also to the one that potentially replaces it. This requires some form of
prediction of the consequences of a trait change, and hence a high level of agent complexity.
While common in human behavior, empirically we know that no such pre-evaluation takes
place in DNA mutations (discussed more deeply in chapter 4), i.e., there is no correlation
between the effect a specific mutation has on the carrier and its occurrence [Stearns and
Hoekstra, 2005]. Complex Constructive Systems thus support a plethora of phenomena
that implement the algorithm presented in section 2.4.

2.4.3 Memory, trait reservoirs and inheritance

The role of memory in the trait discovery process All the processes for trait discovery
discussed so far make, in one form or another, use of a reservoir of traits from which
they draw to adjust the current state of the individuals. This reservoir can exist on
the individual or population level. Any individual-level trait reservoir can give rise to a
population-level trait reservoir by means of set union if the trait discovery process allows
for the exchange of traits between individuals. Otherwise, the trait reservoir will be bound
to lineages of consecutively modified individuals (compare section 3.2). Additionally,
the background environment can serve as a source of trait change, as mentioned before.
In nature, these processes are mixed, e.g., genetic recombination and random mutation
happen concurrently, and we can imagine similar processes to take place in human cultural
evolution via the recombination of ideas learned from different sources and their change
in the learner’s brain through interpretation.

Trait exchange must be particulate We note immediately that, if trait discovery has
a component based on exchange between individuals, a blending process of traits from
different individuals will in the long run result in a degeneration of the trait reservoir’s
diversity and therefore a loss of adaptability, as Figure 2.1, line C shows. While this can be
counteracted to some degree by an external influx of traits, an exchange or recombination
process that is discrete and particulate, such that the recombined elements themselves
remain intact, will maintain the variation in the trait reservoir and thus allow for higher
adaptability. This is the basis for sexual reproduction in eukaryotes [Stearns and Hoekstra,
2005], compare Figure 3.3.3.

CCS generalize descent with modification Irrespective of its implementation, however,
the trait discovery process as laid out above will make use of the current state of the
organism and modify it, which we understand as a form of “inheritance”. Consequently,
the process yields a generalized form of “descent with modification”, albeit one that does
not make explicit reference to reproduction or destruction and recreation. Thereby, the
concept of Complex Constructive Systems generalizes biological evolution. It does allow
for the continuous transfiguration of entities over time (compare the Lamarckian view of
evolution, see subsection 3.2.1 or cultural evolution, see subsection 4.3.2) as well as for
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imperfect reproduction in the biological sense. Other examples include the continuous
modification of products by designers in a free market economy, based on sales or profits
made.

This last example is of course an extension of cumulative culture, but does highlight
that the concept of CCS goes beyond biological evolution. Therefore, performance-based
death or reproduction, the classical account of evolution associated with Darwin’s concept
of “descent with modification”, is only one way of creating a Complex Constructive
System.

It is important to note that the trait memory changes over time in such an architecture,
which allows, on the one hand, for the continuous addition and improvement of existing
structures via iteration, but on the other hand also implies that parts of it will get lost over
time, i.e., those which get modified or replaced by the trait-discovery process. In nature,
this can manifest, for example, that the gene pool of a natural population changes over the
generations, that cultural traditions evolve with time, available products or technologies
in an economy get lost or are invented and so on. We note in passing that, because the
trait memory is part of the system’s state, its existence does not automatically invalidate
the Markov property of some stochastic model of it.
On the nature of the memory In considering the various examples introduced until
now – ecosystems or social networks and the individual entities they are made up of –
species, individuals, traditions or cultural content – we understand that the trait reservoir
can exist as the physical structure of the entities themselves, i.e., adaptation proceeds
using existing traits (or their building blocks) as templates which are then modified or
reproduced with modifications. Indeed, this is the general idea of everything described
above.

Alternatively, they could also be encoded in some special structure that is read, subse-
quently decoded and the respective traits reproduced [Rocha, 2001; von Neumann, 1966;
Barbieri, 2008]. Both possibilities exist in biology as well as cultural and technological
systems. For example, learning by imitation can be seen as template-based rule discovery,
while the genetic code or transmission of culture via human language represents code-
based rule discovery. We will discuss the differences between these two principles and their
consequences in more depth in subsection 4.1.7. Here, we simply note that template-based
rule discovery is far simpler than code-based rule discovery because the latter requires
specialized reading and decoding structures, and thus can be expected to be far more
prevalent.
On the nature of the building blocks for traits and individuals
On the character of the memory’s constituents Finally, we can give some rough charac-
terization of the nature of the memory’s elements, by considering the range of dynamical
possibilities individuals must be able to attain to create continuous adaptation and com-
plex functions. Because long-term conditions cannot be reliably predicted as a consequence
of nonlinear dynamics, the possible adaptations that can be created by the trait discovery
processes must be as broad as possible. A range that’s too narrow will probably lead to a
loss of performance across the population at some time, thus leading to a loss of further
adaptation. In nature, this results in the extinction of the population, the disappearance of
a product, product line or even entire branch in the economy or a decay or transformation
of a society.

When discussing the expressiveness of programming languages, we have the hard notion
of Turing completeness that tells us under what conditions a programming language or
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computational machine is capable of representing any algorithm [Rich, 2008]. In the
abstract situation we are discussing here, and given that we are discussing the dynamical
capabilities of physical entities, such a notion does not exist.

Indeed, there is no such condition for dynamical systems and in particular Complex
Adaptive Systems, like a developing body, the brain or a social network. More to the
point, there is no universal theory that could a priori predict what kind of structures
could emerge over time in a Complex Adaptive System. As in all nonlinear dynamical
systems, there exists a third realm that complements the known and the unknown – the
unknowable [S. A. Levin, 2002].

Considering individuals as sets of traits that together bring about the interactions
between individuals and the environment, we find that the possible set of traits from which
individual functions can be “built” should be such that the greatest possible bandwidth
of individual functions can be generated from them. This assures adaptability to the
widest range of conditions on the one hand, and, in turn, the emergence of systems with a
wide variety of emergent properties. In other words, simple systems incapable of forming
complex, self-organizing systems will not result in CCS.

Limitations and organizational ways around them Assuming system autonomy, we find
as a corollary that unless the individuals in question are Complex Adaptive Systems
themselves which are capable of internal model formation, there will be no entity that
could decide on what building blocks are suitable and which are not. Even if they are,
such decision-making is only possible for very limited timescales because of the generally
present nonlinearities. Rather, any CAS with complex adaptivity will “have to make do
with what it got”, and this may or may not allow continuous adaptation and complex
structure formation under given environmental conditions. These limits are generally
given by physical properties, e.g., stability of molecular bonds or structural stability under
a change of acidity.

In many cases, the combination of different elements yields progressively new functions,
however, such that a hierarchy of progressively combined building blocks, themselves
forming the building blocks for new levels of organization, can rapidly expand the spectrum
of possible interactions, and therefore the spectrum of adaptations to environmental
signals. In this nested system, lower-level laws, do still apply and restrict what can
emerge on higher levels, e.g., physical or chemical laws restrict possible biological emergent
structures.

Considering this more closely, we find that, first, such a process can rapidly, probably
after only a few levels, produce a system of building blocks that can produce more
individual configurations than ever can be realized, by virtue of combinatorics. This
assures adaptability in principle. Secondly, a trait discovery process on one level of the
organizational hierarchy gets all the capabilities of the level below it for free, i.e., it does
not have to find them itself but merely has to combine them into different forms to yield
different functionality. This can indeed yield leaps in properties, as the interactions that
create each level of organization are invariably nonlinear.

For example, individual amino acids can form protein chains which in turn can act as
structural elements in cell walls or provide functions like adhesion and reaction catalysis,
thereby far exceeding the physical capabilities of individual amino acids. Inspired by
this example, we identify self-organization and emergence in addition to combinatorics as
fundamental ingredients for the expanding functional capabilities in CCS. With this, the
existence of physical building blocks that allow for such a scheme to function becomes
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a lot less wonderous, because it is traced back to the nature of nonlinear interaction in
many-particle systems.

2.4.4 Principles of population dynamics in Complex Constructive Systems

Novel traits must yield higher performance or will vanish We will now consider the
trait discovery process and performance evaluation process together and explore how they
bring about complex functionality in a concrete population, as it is found in biology. We
start out by observing that in order to stay in the population, a new trait, e.g., a new
behavior must be evaluated to have high performance by the function P . This is because,
depending on the system details, if a new trait has low performance, it will more likely
continue to get modified or will be filtered out – in a biological population, for instance, its
carrier will more likely die than others, or a behavioral trait will be discarded or modified
by a learning individual in human society, while a product that doesn’t yield enough
profit will be phased out, often in favor of a modified successor. Traits that have high
performance will therefore have higher lifetime within the population because they will
stay unmodified for longer times. This, in turn, will lead to a growth of their frequency
in the population over time (see Figure 2.4).
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Figure 2.4: Illustration of a simple performance-evaluation-trait-discovery interaction in
a population of simplistic, non-interacting individuals consisting of a scalar trait γ = a.
Performance evaluation is given by P (γ) = 1/a. The probability to be subject to trait
discovery is proportional to P (a), such that smaller a are chosen less frequently. If chosen,
the trait a is replaced with a random number a′ drawn from a uniform distribution between
0 and 10. Lower values of a accumulate over time. Note that this system as such does not
constitute a CCS, because the underlying individuals are too simple.

Traits enabling emergent structures must yield higher performance Because inter-
actions between individuals or with the environment are mediated by the individual’s
traits, and these interactions are generally nonlinear and take place in a dynamic complex
network, changed traits can enable new kinds of interactions that give rise to new emergent
structures.

As mentioned before, this is the key process for the formation of complex structures
with specialized functions. From subsection 2.4.4 and our understanding that feedback
processes are common to self-organizing systems, it can be deduced that newly introduced
traits that result in new emergent structures or properties must be such that they confer
higher or equal performance to their carriers, i.e., the emergent structure must not be such
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that the performance of their constituents is harmed relative to the rest of the population
where this emergent structure does not exist. Otherwise, the respective trait will be subject
to trait discovery again, which likely will result in a loss of the emergent property, too. If
that is the case, this trait can spread in the population over time, thereby increasing the
prevalence of the new emergent structure. Elements of it will in turn come under trait
discovery again, possibly changing the emergent’s structures properties. The interaction
between these emergent structures, in turn, can, as mentioned before, yield a new system
that can be complex adaptive or -constructive in itself (compare Figure 2.5).
Iteration can yield complex functional specialization
Higher-level adaptation can emerge from lower-level CCS When a trait that enables
the emergence of a novel structure spreads through the population, the number of these
emergent structures will grow as well (compare the example in Mengistu et al. [2016] and
others discussed throughout this chapter). In turn, it is more likely that some individuals
that form these structures will become subject to the trait discovery process eventually,
thus generating variation in the emergent structures by changing their elements. This, in
turn, will result in changed feedback processes between the two organizational layers, which
can change the performance evaluation process acting on the individual level. Depending
on the effect this feedback has on the performance evaluation of constituents, some variant
individuals which form a variant emergent structure may have higher performance, which
results in a spread of the variant emergent phenomenon. These emergent phenomena do
not need to be CCS themselves.

For example, we can imagine herds or swarms emerging from behavioral changes in
individual animals that increase the tendency to associate with conspecifics. This results
in higher performance for the individual because it was better protected from predators
or could find sustenance more easily [Parrish and Edelstein-Keshet, 1999]. Further spe-
cialization of behavior, now within a new social environment, then led to differentiation
of social structure or division of labor and so on via the iterative performance-based trait
discovery introduced before. Similarly, the emergence of agriculture as a cultural trait in
humans led to the emergence of large societies and ultimately civilization [Childe, 1950],
which in turn allowed for a plethora of further cultural innovations.
The emergence of new CCS on existing ones While not all emergent structures in a CCS
have to form CCS themselves, the ones that do are arguably some of the most striking
phenomena in nature. Emergent CCS are, by definition, accompanied by new performance
evaluation and trait-discovery processes that emerge from individual interactions. In such
a system, internal specialization of elements is often the consequence. In nature, the higher
level of organization often entails a modification of the constructive processes on the lower
level that leads to further specialization and adaptation on the higher level. For example,
multicellular organisms derived from more or less loose associations of individual cells,
itself the consequence of new traits on the cellular level [Staps et al., 2019]. This, in turn,
lead to a changed environment for each cell, such that their performance was evaluated
differently from an independent cell. As a consequence, the trait discovery regime changed
as well, because new cellular traits also had to benefit the multicellular association, or they
would disappear again, resulting in the emergent multicellular structure being lost again
over time.

Ultimately, this led to division of labor and the emergence of specialized organs like
brains, eyes, hyphens or a digestive tract which each contribute to the performance of
the whole structure by solving some subproblem, e.g., providing information about the
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surrounding, processing this information or acquiring the necessary energy to run these
functions.

Sorting and constructiveness on different levels Consequently, if the dynamics of a CCS
gives rise to an emergent structure or function, it also induces a form of sorting on these
by virtue of the performance advantages or disadvantages it confers to its constituents
[Vrba and Eldredge, 1984]. Note that this does not require a process of performance
evaluation or trait discovery that operates explicitly on the higher organizational level. For
example, swarming behavior may spread through a population and consequently increase
the prevalence of swarms, but this is a consequence of the performance increase that traits
allowing for swarms to emerge confer to individuals, not because there is a performance
evaluation or trait discovery for swarms as a whole.

On the other hand, if this emergence gives rise to a new constructive process that has
its own performance evaluation and trait discovery, this can lead to entanglement between
the two levels and cooption of the lower-level constructive process by the higher-order
emergent process, as it happened a few times in biological organisms [Michod, 2003].
Figure 2.5 shows a schematic overview of early stages of both of these processes.

Finally, with the emergence of a higher-level CCS, by definition, some form of new
trait reservoir comes about, because the traits of higher-order entities are generally not
reducible to the ones of their constituents.

Concurrent CCS and emergent conflict Two interesting possibilities present themselves
when a new trait on the individual level emerges that increases individual performance
and, at the same time, influences the performance of the higher-level structure. Either,
it can increase the latter or be at least neutral, which may lead to the path of iterative
modification and specialization as discussed before, or it may decrease the performance of
the emergent structure, such that the individual’s performance can be said to increase at
the expense of the performance of the emergent structure. The classical examples for the
latter case are cancer in multicellular organisms or parasitism in ecology, but we can more
generally call individuals with such traits “selfish elements”.

We can identify this as a major bottleneck in the emergence of higher-level CCS, because
such selfish individuals may proliferate and thus increase in frequency in the population
faster than their non-selfish alternatives, thus precluding the proliferation of emergent
structures.

This problem can only be resolved if the performance evaluation processes on all levels
of organization are aligned with each other, which in biology is often achieved by canalizing
reproduction of the collective. In such a case, only the whole can reproduce, e.g., the entire
multicellular organism and not its individual cells [Howe et al., 2022]. Other possibilities
encountered in nature are policing, e.g., by the immune system or an institution in a
society, or the enforcement of social norms [Kandori, 1992]. The problem of the emergence
and stability of the individual-level cooperation that is required for the long-term stability
of selfish entities is mostly studied with game theory and its relevance, in particular for
biology, is discussed elsewhere in more depth [Bourke, 2011; Herdeanu, 2021].

2.4.5 Hierarchy revisited – A hypothesis on the unfolding of Complex
Constructive Systems

With this, we arrive at a basic hypothesis on the unfolding of a Complex Constructive
System endowed with building blocks as described in subsection 2.4.3 and a performance
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Figure 2.5: Schematic representation of innovation in CCS. A: Performance-based trait
discovery leads to a change in individual traits (red) and, consequently, behavior. The
new trait becomes an element in the trait reservoir of the system. B: If the performance
of the changed individual allows it, the trait can spread in the population and give rise
to new emergent structures and functions (light blue), which are formed by aggregates
of individuals. C: The feedback between the emergent structure and the individuals can
further enhance their performance, which can lead to a spread of the emergent structure
or function in the population. These emergent entities often form again an interaction
network on a higher organizational level. These interactions, however, are still mediated by
individuals, although the behavior they give rise to generally is not reducible to individual
properties. D: Further changes to individuals can give rise to changes in the emergent
structure which in turn may give variation in traits in their population. Feedback between
layers of organization changes the performance evaluation and trait discovery processes
individuals are subject to, which in turn can lead to internal differentiation of the higher
organizational structure if this leads to higher performance of the individuals.

evaluation process and trait discovery processes as described in subsection 2.4.2. This
hypothesis has been discussed in the research group for chaotic,complex and evolving
systems at the institute of environmental physics at the university of Heidelberg in the
context of biological evolution, for which it has been fleshed out further in another work
[Sevinchan, 2021], and variations can be found in the literature [Fields and M. Levin,
2020b].

The hypothesis has two parts. First, a system as described above has the capacity
for producing hierarchies of organization, which progressively expand the functionality
that the system as a whole can realize with each new layer. This appears as a natural
consequence of the properties of its fundamental building blocks, namely the capacity for
self-organization and emergence. This expansion of capability can, in conjunction with
the repeated action of some performance evaluation- and trait discovery process, lead to
the emergence of continuous adaptation to changing environments and the emergence of
complex, specialized structures. A key element in the process is that this process makes
use of some form of trait reservoir that is continuously modified over time, thus creating
cumulative changes. Some of the structures arising in this system may be complex- or



30 2 From complexity to evolution

Complex Adaptive Systems themselves, e.g., neuronal networks that arose in biological
evolution.

As a caveat, this process can stall at any point, for arbitrary times, and there is no
obvious, a priori sufficient condition that guarantees the emergence of a higher level of
organization within any given timeframe. Rather, we might, from a particular trajectory,
a posteriori identify the elements and phenomena which allowed for each generation of
hierarchy to emerge, given these signals are not erased by later dynamics or organizational
degeneracy. Thus, like in all nonlinear dynamical systems, our prediction capabilities are
fundamentally limited, and the intellectual spheres of the “known” and the “unknown”
are joined by a third, the “unknowable” [S. A. Levin, 2002].

Finally, this hierarchical structure allows for performance evaluation and trait discovery
processes to emerge as part of the unfolding of an existing constructive complex system
– much like cultural evolution by social learning and innovation emerged in biologically
evolving populations. Complex Constructive Systems, like any other CAS, can be nested.
In biology, this phenomenon has been recognized as “major evolutionary transitions”
[Szathmáry and Maynard Smith, 1995; Szathmáry, 2015].

In the network picture, this hierarchical integration of structures into building blocks
for new structures would manifest itself in modularity and the emergence of recurring
motifs in the network, as discussed before in subsection 2.3.2. At least when a complex
adaptive system emerged at some point, these motifs would be recognizable not only
by their repetition of functionality but also, and perhaps primarily, by the existence of
interfaces between their “inside” and “outside”, which is inherent in the idea that these
entities receive and process “signals” from their individual environment.

As a final remark, we note that the problem of the emergence of higher levels of
organization, is still an open problem, in particular in biology, where its relevance is
most apparent.

2.5 Summary

As our fundamental system of interest, we imagine a population of “agents”, each charac-
terized by a set, otherwise unspecified, observable traits γ = (gk) , k = 1, . . . , K. Further,
a network of interacting such agents provides a useful abstraction, because this concept is
arguably capable of representing all patterns of interactions that can arise in such systems,
including dynamic topology, multiple layers of organization and more, while remaining
accessible to computational methods and being supported by a substantial body of theory
[Boccaletti et al., 2006; Domenico et al., 2013]. While normally restricted to networks of
pairwise interactions for simplicity, the concept as such is not limited in that way, and
higher order interactions are an active area of research [Battiston et al., 2020].

Such networks are, in nature, always embedded into some “environment” which we,
mostly for reasons of simplicity, do not represent explicitly, but rather as some form of the
simplified background process, as boundary conditions or system parameters. We keep in
mind, however, that the environment itself is generally made up of other populations of
entities undergoing their own unfolding and evolution concurrently to the focal one, and
so the interaction network extends beyond the boundaries any model will invariably place
on it. We define the process of evolution in such a system as “the change of physical or
functional characteristics or -organization or the distribution thereof in a population of
entities over time” (see section 2.1).
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The simplest form of change in such a system is a change in the distribution of observable
characteristics. While such a system in principle can be represented by a Master equation
under broad conditions, often, computer simulations are more practical than analytical
solutions, at least when the systems are driven by more complex interactions or are high-
dimensional. Interaction of an individual with its neighborhood in the network results
in a state change and can therefore generally be seen as a function that depends on the
current state of the focal entity, the state of its neighbors in the population, and the state
of background environmental factors with which it interacts. As a simple example, we can
recall the way the states of cells in a cellular automaton are updated.

The following discussion is guided by the question of how complex adaptations in
natural biological populations came about. Additionally, we assumed that the complex,
highly ordered and specifically interacting states we observe in natural populations of
molecules, cells and individuals are the consequence of the autonomous unfolding of the
system.

Consequently, in subsection 2.2.4, we identified self-organization and emergence in
interaction networks as a keystone process that allows for complex, organized states on the
population level to arise from unordered, and unguided, interactions at the individual level
[Kauffman, 1992; Thurner et al., 2018]. Indeed, it seems natural to place such unguided
and unordered interactions at the basis of the unfolding of the system, well known as they
are from fundamental physics. Such systems are capable of a form of novelty, i.e., emergent
phenomena – the observed ordered states are not encoded in the elements, but in their
ordering and patterns of interactions. These emergent phenomena therefore are unique
to the population level of organization and do not correspond to lower-level processes or
quantities directly.

Furthermore, being nonlinear dynamical systems, complex systems generally feature
multiple attractors which correspond to different emergent phenomena, and initial condi-
tions or outside forcing can influence which self-organized state is reached as well as their
number and character [Strogatz, 2001]. In that sense, these systems are capable of a limited
form of adaptation to environmental conditions. Furthermore, they are characterized by
feedback across scales, in which emergent properties act on the individual entities and vice
versa. This, however, is limited by the form of interactions of which their constituents are
capable, and this nature is static and does not change over time. Thus self-organization
and emergence are fundamental building blocks for complex biological adaptations, but are
not sufficient to explain the diversity and complexity observed, and, most importantly, the
capacity of biological, social or cultural systems to continuously create new adaptations
hitherto unseen in the history of the system.

As a second keystone, we consequently identified dynamical changes in the interaction
patterns themselves – which on the one hand includes the network connections, but more
importantly, changes to the functions individual entities use to interact with each other
and the embedding environment. Owing to their greater capacity for adaptation and
emergence, such systems are called “Complex Adaptive Systems” or CAS for short, see
subsection 2.3.1. Complex adaptive systems are a subset of complex systems in that
self-organization and emergence are central phenomena for them as well. However, they
exceed the adaptive capabilities of “simple” complex systems, in that their constituents can
change how they interact with their environment, i.e., their dynamics includes changes to
the function through which they interact with their environment and active modification
of the set of entities with which they interact. Think, e.g., about a biological organism
learning to avoid certain plants or predators over the course of its lifetime, about humans
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(or other animals) forming or cutting ties with others in a social network or other such
phenomena. In order to allow for active modification of interaction patterns, Holland
[2006] postulates that there often is a conditional structure to it, i.e., the entities making
up a complex adaptive network react in one way under a certain set of conditions and in
another way under a different set of conditions and so on.

It must be noted that such behavior implies a more complex structure of the individual
entities in the population than we normally know from simple complex systems. In CAS,
we might suspect, these entities are often complex systems themselves, with their own
emergent properties. Indeed, bifurcations in nonlinear dynamical systems can happen
suddenly and in a “conditional” manner if the parameters of the underlying function
are changed, thus showing that these entities at the very least are nonlinear dynamical
systems. Thus, in subsection 2.3.2 we found that CASs can be conceived as nested complex
networks, with feedback between layers being an important functional element for the
ensuing adaptation. Which “layers” of this network are explicitly represented in a model
of CAS and which are not is thus a modeling choice in general. As a corollary, CASs are,
by definition, always embedded into some form of environment, which is distinct from the
focal population but with which its individuals interact, and which we generally understand
to be made up of networks of interacting entities itself, as mentioned before.

Finally, building on Holland’s concept, we introduced the concept of “Complex Con-
structive Systems” as a subset of CAS which are endowed with a process P that assesses
the “performance” of individuals or traits, i.e., maps them to some orderable quantity
– called performance evaluation – and a “trait discovery process” R which produces
new traits from existing ones. The latter part allows for the iterative modification of
functionality that ultimately can lead to the highly specialized adaptations we find in
nature and the emergence of the complex functional systems they are based on, e.g., the
different specialized organs of multicellular organisms.

The system is consequently envisaged to use the outcome of the performance evaluation
to, typically stochastically, determine which traits or entities are modified by the trait
discovery process. We found that these processes can emerge from the interactions within
a population (i.e., a Complex Constructive System emerges as a result of the unfolding
of a Complex (Adaptive) System) or they can be inherent to the entities’ dynamics (one
Complex Constructive System emerges on top of another one), although in general, they
always exist as part of and generate cross-layer feedbacks, as is natural for complex
systems.

The deciding factor is that such systems, via their trait discovery process, draw on a form
of “memory” of traits from which to build new ones, which, depending on the discovery
process’ details, can be the set of traits available in the entire population (e.g., when
discussing horizontal gene transfer or communication), but also some form of individualized
memory (e.g., in individual learning from experience or clonal reproduction).

Thus, we are faced with a generalized form of Darwin’s “descent with modification”
which, however, is not bound to self-reproduction. Accounts of biological evolution that
are similar to the Complex Constructive System concept have been put forward in the
literature – mainly with a focus on getting rid of the reproduction of organisms as a
necessary condition [Papale [2020] and references therein].

The iterative mechanism of performance-based trait discovery was also discussed in some
more detail in subsection 2.4.4, in which the process of how complex adaptation can come
about as the iterative specialization of emergent phenomena was fleshed out some more.
Noteworthily, nested CCSs are not trivially stable, because they can produce conflicting
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performance evaluation on different levels, which in biology is called “evolutionary conflict”
[Stearns and Hoekstra, 2005].

CAS

Complex System

Nonlinear Dynamics

CCS
Bio. Evo.
Cult. Evo.

Figure 2.6: Venn Diagram of how different
theoretical concepts used in this chapter are
related to each other. We recover Complex
Constructive Systems as being Complex
Adaptive Systems endowed with additional
processes, which in turn are a special case
of complex systems. This concept in turn is
based on the study of nonlinear dynamical
systems Phenomena like biological or cul-
tural evolution are recovered to be instances
of CCS.

Therefore, we end up not with a one-sentence definition of evolution, but with a
functional definition, which asserts that a system that allows for Complex (Adaptive)
Systems to emerge as a consequence of the interaction of its elements and in which some
iterative performance evaluation and rules discovery process are active, has principally the
same dynamic capabilities as biological evolution.

We shortly discussed the nature of the building blocks involved in such a system, thereby
arriving at the notion of a continuous scaffolding process in which one Complex (Adaptive)
System yields building blocks which in turn form a second Complex (Adaptive) System and
so on, limited by the physical conditions they are subject to, e.g., energetic demands for
certain chemical reactions or stability against temperature (subsection 2.4.3). Finally, in
building a general hypothesis on the unfolding of Complex Constructive Systems, we found
that while they can create progressively more complex layers of self-organized phenomena,
there is no obvious way to predict when and how fast one layer emerges from another one.
In keeping with their nonlinear nature, such systems thus are only predictable to a limited
degree, and investigating them always contains “unknowable” elements. Moreover, such
systems generally are a conglomerate of nested or interacting CAS, some of which can
have constructive qualities, while many will not.

Biological evolution, consequently, is identified as a special case of Complex Constructive
Systems which, as we shall see in the next few chapters, has created a plethora of nested
complex constructive- and Complex Adaptive Systems.





3. Natural selection, neutral evolution and biological
Complex Constructive Systems

We now move on from the abstract concepts of complex adaptive- and complex constructive
systems presented in chapter 2 and focus on biological evolution, which is arguably the
most well-studied and most complex CCS. The focus of this chapter is how performance-
evaluation and trait-discovery processes look like in biology and how these relate to older
concepts like Lamarckian and Darwinian evolution or neutral selection. The identification
of the performance evaluation and trait-discovery functions in different proposed evolu-
tionary processes will thereby highlight how specific evolutionary processes emerge from
ecology.

In subsection 2.4.2, we introduced performance-based trait-discovery as the fundamental
process underlying complex constructive systems and motivated in the following sections
how this allows for the emergence and continuous improvement of complex, specialized
functionality. The performance-evaluation process P and the associated trait-discovery
process R are kept very general in that definition, such that a variety of natural processes
can play these roles. Of special interest, more so than the individual processes that fulfill
these roles, is the interaction between them and the character of the trait reservoir they
build upon.

In discussing them, we restrict ourselves to a description of these effects and the
reasoning behind them. While much mathematical theory has been produced especially in
the field of population genetics, this is arguably more necessary for empirical application
than for the fundamental understanding of the architecture of natural CCSs.
Reproduction as the hallmark of biology A hallmark of biology in contrast to other
complex constructive systems like social or technological evolution or learning systems
is that biological individuals engage in physical reproduction, i.e., they produce copies
of themselves (asexual reproduction) or combine traits with other individuals to produce
offspring (sexual reproduction). Additionally, biological organisms are not permanent. We
are familiar with variable but finite lifespans in multicellular organisms like animals and
plants, but evidence shows that even bacteria, long thought to escape aging by dividing
into two identical daughter cells, are subject to senescence and a correspondingly increasing
mortality rate with age [Steiner, 2021]. Even if this was not the case, interactions with
the surrounding ecosystem bring about a certain probability of damage and death for all
organisms that’s inescapable, as does failure to acquire enough energy and sustenance
to maintain their own structure. With reproduction comes inheritance as a natural
consequence, such that trait memory is associated with individuals and lineages in the
asexual case, plus the local population in the sexual case.
Hierarchies and the complex constructive nature of biological evolution Additionally,
we understand that the biosphere creates and maintains diversity of function and form over
time and that biological populations tend to expand into unoccupied landscapes and find
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ways to use unexploited resources for growth and reproduction. The biosphere is thus ca-
pable of producing innovation, adaptation, and reorganization of existing elements.

This is most apparent in the fossil record. Fossil biological organisms, while at times
bewilderingly different from contemporary ones, nevertheless show features that identify
them as being related to modern animals [Stearns and Hoekstra, 2005; Ridley, 2004]. For
example, many theropod dinosaurs have a very similar skeletal structure to birds with a
great number being largely feathered as well [Unwin, 1998; Norell and Xu, 2005]. Similarly,
the ancestors of modern cetaceans can be found in a group of terrestrial mammals closely
related to even-toed ungulates [Shimamura et al., 1997; Chebii et al., 2021]. Over larger
timescales, it becomes apparent how different organs and body plans evolved from less
specialized forms. For example, while aforementioned theropod dinosaurs had recognizable
feathers, early versions of them lacked lift-generating adaptations that true flight feathers
have [Dimond et al., 2011; Sumida and Brochu, 2000], which only appeared when flying
or gliding behavior became a part of the organism’s behavioral spectrum and so lift-
generating properties of body parts came under selection.

Another reason why the unfolding of the biosphere can be seen as a complex constructive
system is that it generated, starting from organic chemistry [Luisi, 2019], a plethora of
complex adaptive and complex constructive systems which became hierarchically nested
into each other. For example, simple cells established the genetic coding system that
all organisms on the planet employ to this day, with some slight variations [Koonin
and Novozhilov, 2017]. Their evolution over time gave rise to eukaryotes, a new form
of Complex Adaptive System that came about via symbiosis of multiple prokaryotic
cells [López-García et al., 2017]. From these, multicellular organisms eventually evolved,
yet another form of Complex Adaptive System. And these, finally, evolved to become
internally heterogeneous with specialized organs with different functions. Some of these
structures, e.g., the immune system or neuronal networks, can be seen as complex adaptive
systems in their own right, with the latter eventually giving rise to culture. While
these “evolutionary transitions” [Szathmáry and Maynard Smith, 1995] arguably are of
paramount importance for the understanding of the biosphere but also CCS in general, in
this chapter we are concerned with the other end of the spectrum, namely how different
performance-based trait-discovery processes operate on individual entities.

In chapter 2, we discussed all these phenomena as defining features of complex construc-
tive systems, and so biological evolution and the unfolding of the biosphere can be seen
as the prototype for the concept of complex constructive systems, endowed with a special
form of performance-based trait-discovery that generally is based on reproduction.

3.1 Elements of ecology

As a basis for further discussion, we again envisage a population of individuals, each defined
by a collection of traits γ = {gk}, which interact with each other and with some elements
of a background environment e. This population is therefore embedded into some larger
system and is extended in space and time. Furthermore, because we discuss biological
entities, these individuals reproduce sexually or asexually. For the sake of simplicity, we
represent the emerging ecological network, again, as a network of pairwise interactions,
although we understand that, in general, a hypergraph (i.e., a graph that can have edges
containing many nodes [Battiston et al., 2020], thus formally allowing for interactions of
multiple entities at once), would be more appropriate [Majhi et al., 2022]. For example, a
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single organism could interact, over some time interval ∆t (e.g., the average lifetime of a
group of organisms), with various predators, prey, symbionts, or conspecifics on which it
feeds, with which it mates or whom it fights with, or many other things. On the abiotic
side, organisms contribute to a change in the chemical composition of soil, water, or the
atmosphere, they burrow or bulldoze or build complicated structures like coral or sponge
skeletons and more. Therefore, both biotic and abiotic elements of the ecosystem have to
be included in its dynamics.

Ecological niches of individuals and groups and ecological networks The links of a
node in the interaction network describe the pattern of interaction an organism engages
in with its environment. We call the set of links the ecological niche of the individual. The
literature knows of multiple concepts of ecological niches [Leibold, 1995; Pocheville, 2014].
The concept applied here is close to the one described by Elton [1927], which can loosely
be summarized as “the role an organism plays in its environment”.

Organism

Organism

Organism

Organism

Organism

Abiotic

Abiotic

Abiotic

Abiotic

Ecological
 Niche

Figure 3.1: Agents and abiotic entities can be seen as nodes in an interaction network,
for simplicity reduced to pairwise interactions here. A single agent engages in a multitude
of interactions with other agents and abiotic entities, which are influenced by its traits,
with differences in traits being indicated by color. The set of interactions of an agent
with its ecosystem (indicated by the grey shaded areas) we define as “ecological niche”.
Note that the network can change over time, and thus ecological niches are dynamic as
well. The individualistic concept of a niche can be extended to a definition of groups by
summarizing the links each individual in a group has by means of a set union, e.g., for all
the red organisms in the adjoining illustration. Note that this group definition does not
entail that each individual of a group engages in all interactions identified for the group -
there can be individual variations based on local conditions.

The niche concept is normally associated with groups We notice in passing that the
concept of an ecological niche is typically applied to a group of organisms instead of
individuals, normally species [Pocheville, 2014], where individuals are only considered
representatives of an equivalence group of organisms, normally a species. However, a
definition on individuals as given above is readily extended to a definition on groups by
a set union on the links of each individual in the group. Moreover, the niche concept
is not uniquely defined in the literature, and different concepts are applied depending
on the problem at hand. For example, the niche concept of Hutchinson [Hutchinson,
1957] focuses on the properties of the environment that allow for a species to survive and
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reproduce, while the Eltonian niche mentioned above emphasizes the role it plays in the
ecosystem.

It must be noted that an ecological network as presented here is always a temporal
aggregate of the myriad of interactions organisms engage in at every given moment.
Therefore, when extending the niche concept to groups, we extend it to groups that have
similar individual niches, i.e., have similar phenotypes. Individual variation in phenotypes
or environment will thus be integrated as noise.

The network picture above also reveals readily that the ecological niche depends on the
environment an organism exists in. Thus, in general, all the different biomes or ecosystems
a group of organisms occupies must be considered to get a picture of the true ecological
niche a species is capable of filling. Therefore, there is not one ecological niche, but in
fact, a realized ecological niche for each organism, given by its interactions in its current
environment, and a fundamental ecological niche which is comprised of the union of all
possible such realized niches, and which is generally unknowable, and can only be estimated
on the basis of currently realized ecosystems. The concept of realized- and fundamental
niche originated with Hutchinson’s niche concept [Hutchinson, 1965], but readily carries
over into the network-based concept.
Niches are dynamic entities In general, the niche as defined here is dependent on the time
interval ∆t over which the network has been aggregated. The niche may vary, for instance
with the seasons from one year to another, but may also change due to evolutionary
adaptation, plasticity, or changing ecosystem composition. A consistent definition of an
ecological niche, therefore, relies on a timescale separation between the ecological timescale
∆t and the timescale on which the niches change due to these factors. In biological
terms, this implies a separation between ecological and evolutionary timescales, which
more modern research has shown to not be guaranteed [Schoener, 2011]. Rather, these
timescales often overlap, such that evolutionary and ecological processes interact, i.e.,
evolutionary processes become ecological agents [Pelletier et al., 2009].
Environment and individuals as open systems Because reproduction is a fundamental
element of any biological system, biological individuals must be open systems. More
than that, they not only exchange material and energy with their environment but ac-
tively acquire resources for the purpose of reproduction. This, however, does change
the surrounding ecosystem by changing the availability of these resources in the future
for all other organisms that use them. At the same time, they excrete waste material,
spoil some resources or change their environment in other ways through their activity
[K. Laland, Matthews, et al., 2016]. As introduced in general in chapter 2, ecology and
evolution are therefore not conceptually separable from some environment into which they
are embedded. Rather, the exchange of material and energy and the change of their flow
through the ecosystem by virtue of organism action are central to our understanding of
such systems, as will be discussed in more detail below and in chapter 6.
A short note on the concept of species We mentioned species a few times along the
way, which warrants a closer look at the concept. It must be noted that, like with ecological
niches, there are quite a few species concepts that are applied in different situations
[Rosselló-Mora, 2001; Mayr, 1976; J. W. Taylor et al., 2000; Mayr, 2000b]. A species
can be considered a group of organisms that can be considered equivalent according to
some criterium, such that they can be grouped together. For example, the biological
species concept defines a species as a “group of interbreeding natural populations that are
reproductively isolated from other such groups” [Mayr, 2000b]. This, however, does not
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apply to any asexual organism, because these do not interbreed. Likewise, a physiological
species concept, by necessity used in paleontology, uses morphological differences to define
SpeciesNote, while the ecological species concept defines a species as a group of organisms
that are adapted to a set of environmental resources or conditions [Ridley, 2004]. Each
one of those, for the same group of organisms, may yield somewhat different groupings.
Many, are, however, connected to each other by the fact that they are all the product of
the evolutionary trajectory of a group of organisms.

For example, the morphology of an organism reflects its ecological niche, i.e., its activity
patterns and exploited resources. Likewise, a group of interbreeding individuals shares an
evolutionary history, thus showing similar morphology and so on. It must be noted,
however, that this similarity hinges on the process of inheritance, or, more generally,
how the trait-discovery process of the underlying CCS functions and interacts with the
memory of the system. For example, some behavioral aspects of organisms are determined
genetically, but others are cultural artifacts that must be learned, thus being disconnected
from the genetic pool of the lineage or population. A species defined purely via social
traits and interactions might consequently not reflect well, e.g., morphological differences.
Species are therefore always pragmatically introduced classifications, with any particular
species concept being more useful in some situations and less so in others. Because
CCSs are fundamentally based on individual changes, however, the concept will largely be
ignored in this chapter. Where it is used anyway, it simply designates a class of organisms
with similar properties.
Ecological interactions Organisms interact with their environment in qualitatively dif-
ferent ways. The most well-known kind of interaction is probably competition for re-
sources, which naturally arises from the fact that reproducing organisms have to acquire
the means for reproduction individually. Competition is also arguably the most well-
studied such interaction, with phrases like “struggle for survival” that are used to describe
evolution hinting at its importance. A well-established phenomenon in this context is
the “competitive exclusion principle”, i.e., the assertion that no two species can have the
exact same ecological niche, i.e., exploit the same resources at the same time at the same
place, or one will eventually disappear [Hardin, 1960]. In nature, this manifests in even
closely related species interacting with their environment in slightly different ways, i.e., in
niche differentiation [Begon et al., 2005]. It must be noted that in modern ecology, the
principles that underly the coexistence of species have been found to be more complex
than simple interspecific competition, leading to a more nuanced view of how different
types of organisms coexist in nature, with new research being done continuously [J. M.
Levine et al. [2017] and Gravel et al. [2011] and many more].

Aside from competition, there are other classes of ecological interaction, e.g., mutualism,
commensalism, Amenalsim, or Antagonism, representing different effects on the interaction
partners. These represent a classification scheme for pairwise interactions by whether the
reproduction rate and survival of one or both interaction partners increase, decrease, or
experience no effect on average.

Thus, the ecosystem network we built upon is generally composed of many different
classes of interactions between biotic elements, often mediated by an organism’s or species’
effect on abiotic elements or by other organisms, and each individual engages in many
different interactions concurrently. Because the environment for each organism invariably
contains many other organisms, natural biological evolution thus is almost always coevo-
lution between two or more groups of organisms, and not just adaptation to a resource-
carrying background environment.
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3.2 Lamarck and Darwin through the lens of complex
constructive systems

Different processes have been proposed that can constitute a biological CCS The
observation that populations of biological organisms change over time is quite old, and
precedes the work of Darwin, Wallace, or Lamarck, by generations [Allen, 2014].

Indeed, the empirical observation from fossils, but also in the wild, that organisms
continuously adapt to their environment precipitated the question about mechanisms for
such change. Historically, quite a few of these have been proposed that can result in
performance-based trait discovery. The scientific process has thereby not been linear, with
many such proposals having been favored within the scientific community, discarded and
then revived in another context1. Among the most well-known, aside from the Darwinian
concept of evolution by descent with modification, are Lamarck’s evolution by inheritance
of acquired characteristics [Lamarck, 1830], Baldwin’s evolution by learned behavior [Bald-
win, 1896] or Waddington’s genetic assimilation [Waddingtion, 1942]. Indeed, while all
of these processes have at various times been discarded in favor of others, all have been
revived in a modified form, thus warranting their inclusion. Moreover, they represent
different, but interacting, trait-discovery processes that can be active simultaneously in a
population and form their evolutionary trajectory, compare Figure 2.4.4. All explanations
presented here start out with some form of change in the environment of an organism. In
biological terms, this results in a change to the ecological niche the organism exists in,
which may result in it becoming less able to survive or reproduce. In the CCS language
introduced in subsection 2.4.1, this entails a change to the performance of the individual.
As a result, the organism may more likely become subject to the trait discovery process
and thus, evolution.

3.2.1 The Lamarckian concept of evolution

Use and disuse of organs and increase of complexity The Lamarckian explanation for
evolutionary change rests on the idea that a change in environmental conditions leads to
changes in the use and disuse of organs by an organism. This, in turn, leads to changes in
the form or function of this trait [Lamarck [1830] according to Handel and Ramagopalan
[2010]]. Textbook examples include the lengthening of a giraffe’s neck because it always
stretches it upwards in order to reach leaves on high trees, or a blacksmith acquiring
strong muscles through their work. On the other hand, the disuse of organs would lead to
degeneration and eventual loss. Therefore, according to Lamarck, traits of organisms
change via the preferred usage patterns, which arise from the exposure of organisms
to different environmental conditions. In the network picture shown in Figure 3.1, this
amounts to changes in the strength or assortment of interactions of organisms with their
surroundings over time. Variation in phenotypes, therefore, is created in response to usage
patterns, i.e., it can be said to be directed.

Secondly, and in modern times of lesser importance, Lamarck posited that organisms
become more complex over time by a “prime cause” [Handel and Ramagopalan, 2010],
which appears as a reflection of the contemporary thinking that evolution was directional
from “lower” to “higher” animals and finally to humans. While incorrect in this form, it
is mentioned here for completeness but is largely ignored otherwise.
1 See, e.g.,Gissis et al. [2015] for a discussion of different aspects of Lamarckism
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Inheritance of acquired characteristics The concept most closely associated with Lamarck
is the inheritance of acquired characteristics his view professes [Burkhardt, 2013; Handel
and Ramagopalan, 2010]. In Lamarck’s view of biological evolution, the characters formed
by the use and disuse of organs are inherited by offspring. Therefore, a blacksmith’s
children would inherit the strong muscles acquired through his work, and a giraffe that
acquired a long neck because it lived among tall trees would have offspring with naturally
longer necks. Consequently, there is no branching in a lineage of Lamarckian organisms
that would be associated with different characteristics. Rather, a single lineage would
change over time without a priori restrictions to what changes can happen and what
cannot. Therefore, Lamarckian inheritance would not give rise to a tree of life in the sense
we know it. The inheritance of acquired characteristics in the Lamarckian sense has been
called “soft inheritance” [Jablonka, 2017; Dickins and Rahman, 2012].

More deeply, behavior, learning, and their interplay with environmental conditions play
the primary causal role in the Lamarckian concept of evolution. An explanation for the
existence of morphological species would consequently rely on different usage patterns in
a given environment. Such a scheme in principle would allow for one species to change
into another over time, and for organisms actively shaping their evolution by changing
their behavior. Speciation and diversification of organisms, e.g., of Darwin finches on the
Galapagos islands, would therefore rely on environmental differences alone. Moreover,
diversity would be reversible if the environmental conditions would be homogenized.
Diversity in the Lamarckian view would be consequently very malleable.

Lamarck and contemporary discussions Lamarck’s ideas have been largely reduced to
the concept of inheritance of acquired characteristics although this close association is
mostly a fallacy [Burkhardt, 2013; Gould, 1992].

For a long time, Lamarck has been seen as conclusively refuted [Mayr, 1972]. The
argument thereby relies on the separation of germline and soma in multicellular organisms
and the experimentally verified (mostly) Mendelian character of inheritance in sexually
reproducing organisms and by the later discovery of the central dogma of molecular biology
[F. Crick, 1970]. In particular, it has long been thought that there is no connection between
an organism’s germline cells and its somatic cells that would allow for the inheritance of
acquired characteristics.

However, several discoveries in the field of epigenetics established that, to a limited
degree, inheritance of such characteristics is possible (see subsection 4.3.1) and can indeed
play a role in the inheritance of characters relevant for survival and reproduction [Lind and
Spagopoulou, 2018]. In prokaryotes, horizontal gene transfer is an important mechanism
that yields novelty in traits but relies on the uptake of DNA from the surrounding
environment, e.g., in the emergence of antibiotic resistance [Sun et al., 2019]. These
and other findings have been variously interpreted as constituting Lamarckian inheritance
[É. Danchin et al., 2011; Jablonka and Lamb, 2008].

Similarly, it has been discussed if cultural evolution proceeds via Lamarckian inheri-
tance, when we use social learning as its fundamental trait discovery process [Kronfeldner,
2006]. Therefore, the concept of soft inheritance has garnered new interest in modern
evolutionary thought (compare chapter 4), leading to a revival of Lamarckian ideas in a
modern context.
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3.2.2 Lamarck and CCS

Performance evaluation Performance evaluation as discussed in subsection 2.4.2 in the
Lamarckian view is therefore associated with individual traits and organs, and performance
is assigned based on a discrepancy between the way an organ is used and its current
structure, in other words, how this organ fulfills the requirements the organism’s actions
place upon it. When this performance is low, it will come under increased trait discovery
and will change over time. When there is no usage for an organ, we can assign a low
performance, too, but because there is no requirement associated with it, trait discovery
will just lead to its degeneration over time, culminating in its eventual loss. It must be
noted that this process is continuously active during the lifetime of the organism, and is
not “evaluated” at a specific stage of its lifecycle.
Trait discovery The trait discovery process, in turn, is envisaged to be based on use and
disuse, i.e., organs and structures which are used more because of a particular behavior
of the organism will develop over time to be better suited for this task, i.e., they will
become more specialized. New organs, therefore, arise from new requirements, which in
turn come about by environmental changes. It appears that new organs must be, in some
way, based on existing structures which by virtue of the above mechanism, are transmuted
into another form. Inherent to this view is the idea that evolutionary change is generally
positive for the organisms, because, through use and disuse, organs and traits will change
to serve their function better than before. Again, trait discovery is active continuously
during the lifetime of an organism and is not tied to specific life-history events. It shares
this property with learning systems and thus it appears indeed to be important for cultural
evolution.
Trait reservoir in Lamarckian evolution In Lamarck’s concept of inheritance of ac-
quired characteristics, the trait reservoir on which the trait-discovery process operates
is associated with individual organisms and is continuously modified according to the
needs of the organisms during their lifetime. This modification is therefore dependent on
the performance of an organism’s trait (compare Figure 2.4.2) and does not act blindly.
Lamarck did, however, not provide a mechanistic explanation of how inheritance worked,
given that experimental data was virtually absent during his time [Burkhardt, 2013].
In this regard, his theories were never fully fleshed out. A discussion of possible trait
memories associated with Lamarckian modes of evolution is consequently postponed until
we discuss inheritance in more detail in chapter 4.

All in all, it’s plausible that a Lamarckian system, if augmented with a trait memory
system will form a CCS, and given the importance of at least some aspects of Lamarck’s
reasoning, it remains an important body of theory with active research potential.

3.3 The Darwinian concept of evolution - Natural Selection

3.3.1 Principles of natural selection

Variation in traits leads to variation in interactions Starting from the network picture
shown in Figure 3.1, empirical investigation shows that organisms vary significantly in
their observable traits within a population [Stearns and Hoekstra [2005] and references
therein]. This manifests in a distribution of traits over the population, ranging from
body size, age, color, and many physical properties to behavioral traits like inherent
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curiosity or learned hunting behavior. This variation is larger in large populations than
in smaller ones, because unlikely trait and trait combinations are more probable to be
realized in the latter. Because these traits mediate the interaction with other entities in
the ecosystem network, biological and abiological, the interactions they engage in will vary
from individual to individual as well. This does pertain both to the intensity of interaction,
e.g., the proportion a single prey species makes up in the diet of a predatory individual,
and to the quality of interaction, i.e., with what an individual interacts at all and in what
way. For example, an ape could use a plant both as food and nesting material or only for
one of those.

Variation in reproduction and survival Natural organisms must acquire material and
energy from the outside world in order to survive and reproduce. How they do this
depends on their physiological and behavioral traits. For example, predatory individuals
with longer legs or a higher shin-to-thigh ratio are generally able to run faster than others
and thus could catch more or different prey. Similarly, a prey organism with some coat
color matching environmental patterns better could blend in more than others and avoid
predators better, and organisms with a more active immune system are more resilient
against parasites and pathogens and more likely to survive an injury. Therefore, variation
in traits of an organism leads to variation in interaction with its environment, i.e., other
elements of the ecosystem, which, in turn, leads to variation in the means it has available
to maintain itself, survive, and reproduce.

Note that this does not mean that every variation in interactions needs to result
in variation in reproduction - different types of the same interaction or even different
interactions with the environment may lead to very similar means for reproduction and
self-maintenance. Therefore, not all differences in interactions are relevant for evolution
[Stearns and Hoekstra, 2005]. In particular, interactions between the organism and
ecosystem are not fully determined by the organism’s traits but depend on a plethora
of influences that are not part of the individual. Because these influences cannot all be
modeled explicitly, ecosystem models always have a stochastic component, unless large,
well-mixed populations are assumed that allow for the application of differential equations
or the law of mass action. A classic example is provided by the Lotka-Volterra equations,
which describe a two-species predator-prey ecosystem [Lotka, 1920; Volterra, 1927].

Natural selection arises from the correlation between the distribution of traits and
the distribution of reproduction and survival in a population The logic of natural
selection now builds on a correlation between variation in traits and variation in survival
and reproductive success across generations. Given some variation in traits that leads to
variation in ecological interactions, some organisms will be more successful in acquiring
the means for reproduction and self-maintenance than others, i.e., they survive for longer
or reproduce more often. These traits can be inherited by their offspring. If a similar
pattern of ecological interaction holds for them, too, their survival and reproductive
success will be biased in the same way, such that over time, organisms with advantageous
traits will increase in number, while others will decrease and vanish. Thusly, iterative
modification of existing structures and ongoing adaptation to changing external conditions
is enabled.

Natural selection, therefore, relies on variation in organismal traits that mediate vari-
ation in ecological interaction. These manifest in variation in survival and reproductive
success such that the two distributions are correlated [Stearns and Hoekstra, 2005].
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Figure 3.2: Natural selection arises through correlation of variation in organismal traits
with variation in reproduction and survival (left). A lack of this correlation produces no
natural selection (right). This alone does not entail causality, such that pseudo-selection
can come about by spurious correlation, especially in small populations, due to stochastic
effects.

It must be noted, however, that this is purely a statistical principle that does naturally
not automatically imply a causal connection between variation in traits and variation
in reproductive success or survival. Rather, these causal connections must be inferred
separately, which can pose a significant challenge in natural populations, given that many
ecological interactions influence reproduction and survival simultaneously in addition to
environmental events.

3.3.2 Inheritance in the context natural selection

In nature, parents and offspring resemble each other, i.e., the traits of the offspring
organism are similar to those of the parent organism (or parent organisms in the case
of sexual reproduction). Remarkably, Darwin, as well as Lamarck, proposed their theories
of evolution before the mechanisms of inheritance were known. Darwin, in particular,
proposed the mechanism of pangenesis, in which heritable particles are produced from all
the cells of a body and the trait of the offspring is a blend between the trait of the parents.
Such a mechanism, however, leads to a loss of variation in traits over time (compare
Figure 2.1, D) when reproduction uses recombination, as it does for many organisms in
nature. Consequently, variation in interactions will be lost over time which also yields a
loss of variation in reproduction and survival. Therefore, such a mechanism will, over time,
preclude natural selection because variation in traits will be lost. Moreover, a rare, useful
trait will likely be lost or diluted in the next generation by blending with another, less
useful trait, which is especially problematic when the new trait is an innovation carried by
a single organism. An inheritance mechanism based on blending inheritance can therefore
not support natural selection.

In contrast, Mendel discovered that inheritance is particulate [Mendel, 1866], i.e., traits
are inherited by offspring in discrete units. It can be shown that such an inheritance
system can preserve variation if other influences are neglected [Hardy, 1908; Weinberg,
1908]. Individual units of inheritance (chromosomes, see chapter 4) that produce different
variants of traits can be assorted in variable combinations in different organisms, thus
producing new variations of phenotypes. In asexual populations that inherit their traits
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from only a single parent, the blending-recombination problem does not exist and thus
inheritance can be seen as a more flexible process in such populations.

Inheritance is, however, a vital part of evolution by natural selection because it generates
the trait memory required for its functioning as a CCS.

Inheritance is imperfect Inheritance is not perfect in natural populations. While
the fidelity of inheritance is often high [Ridley [2004] and Stearns and Hoekstra [2005]
and references therein], in a population of organisms subject to birth and death over
multiple generations, variations in traits will invariably appear through inaccuracies in
the inheritance of traits during reproduction. How variation is generated is discussed in
chapter 4. Here, it is important to note that inheritance in nature not only generates the
trait memory system but at the same time provides the core of the trait-discovery process,
i.e., it introduces new traits.

While for the logic of natural selection to hold, it suffices, in principle, that variation
exists, the constant generation of new variants enables it to go on without necessarily
reaching a homogeneous state, which otherwise would be inevitable because of the contin-
uous removal of variation. Therefore, evolution by Darwinian selection requires a source
of new variation in order to continuously produce adaptations to changing environments.
Inheritance and mutation are therefore fundamental ingredients to the Darwinian scheme
of evolution.

While the term “mutation” is mostly applied to genetic changes, here we use it in a
more general context that denotes all heritable changes in traits in an offspring organism
in which it differs from its parent. As will be discussed more deeply in chapter 4 and
chapter 5, the process that brings them about, however, can be far more complicated than
the “copying errors” that are often cited, and how variation in traits is generated is a topic
all of its own.

Inheritance and mutations belong together It must be noted that in the current
concept of evolution by natural selection, mutations are generally bound to reproduction.
In contrast to Lamarck, where variation is generated over the course of the lifetime of an
organism and is inherited by offspring, it has been verified that while there are mechanisms
for the inheritance of acquired characteristics, these are generally not stable over long
periods of time, but last O(10) generations (compare subsection 4.3.1) in animals, while
horizontal gene transfer in bacteria behaves differently and can create long-term stable
innovations because of the different nature of DNA (compare chapter 4). Mutations that
are heritable over longer times generally are located in the DNA of the organism, such
that their occurrence is bound to reproductive events.

Moreover, Lamarck posits a correlation between the behavior of an organism and the
traits that change, like in the famous giraffe example. Again, empirical investigations
show this to generally not be the case [Stearns and Hoekstra, 2005; Mayr, 1972]. Rather,
mutations are generally assumed to be independent of the effect they have on their carrier
[Stearns and Hoekstra, 2005; Ridley, 2004; Mayr, 1972].

However, while there is no known way in which organisms can bring about an exact
genetic mutation based on its effect on the phenotype, mutation rate as such is frequently
tuned through intergenerational selection or during the organism’s lifetimes, which results
in changed adaptability [Denamur and Matic, 2006]. This process, however, mostly occurs
in bacteria.

All in all, not only is the trait-discovery process associated with natural selection
(mostly) bound to reproduction events, but there is a trade-off between adaptability,
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i.e., the speed with which new traits can be discovered, and the maintenance of existing
traits, i.e., heritability.

3.3.3 Properties of natural selection

The strength of natural selection depends on available variation and correlation strength
Because of its stochastic nature, evolution by natural selection depends on the amount
of variation of traits present in a population. Starting with a homogeneous population
and assuming a constant probability of mutations of traits and constant probabilities
of death and reproduction per individual, a larger population will, after some time,
also exhibit a larger pool of variation. Moreover, rare mutations which might confer
uniquely advantageous ways of interacting with the environment and allow for more
effective acquisition of resources will be more likely to appear in a large population
within a given timeframe. A similar effect appears if, everything else being equal, one
population has a higher probability of reproduction and death than the other. Because
mutation is generally bound to reproduction events, a higher overturning rate in the
population also results in more mutation events and consequently will generate variants
more quickly. Therefore, if everything else is held equal, larger populations or those with
a shorter generation time will in general evolve more quickly [Stearns and Hoekstra, 2005]
(compare Figure 3.3, D) than those with long generation times, smaller populations, or
slower reproductive periods.

Secondly, a stronger correlation between the distribution of traits and the distribution of
reproductive success and deaths per time will yield faster adaptive evolution than a weaker
one, because the probability of an organism that carries deleterious traits being removed
from the population is higher, or the probability of having offspring is lower. Therefore,
the next generation will contain more offspring of organisms carrying advantageous traits
when compared to a population under weaker selection (compare Figure 3.3, A).

Stron selection events are often associated with a change in environmental conditions
and therefore a more or less sharp reduction of reproductive populationsize. This can
have adverse effects in that it quickly reduces the available variation in a population and
therefore reduce its future evolvability, i.e., create a bottleneck in the trait memory of the
system. Additionally, a smaller population is more vulnerable to stochastic effects (see
section 3.7), which additionally can reduce evolvability.

All in all, evolution by natural selection can be fast when there is a lot of variation
in traits in a population that correlates strongly with survival and reproductive success
[Stearns and Hoekstra, 2005]. It must be noted, however, that in nature, evolution is
generally a mixture of many effects, acting on multiple traits at the same time, and with
different strengths and interdependencies. Additionally, the way a phenotype is produced
from heritable information can skew and change the effect of natural selection (compare
chapter 4 and chapter 5).

Secondly, natural evolutionary processes are in many cases better modeled stochastically
than deterministically because of the plethora of interactions natural organisms engage in
with their surroundings and because mutations are singular events that occur in individual
organisms. Therefore, random events, like the occurrence of a specific mutation at a
specific time, can significantly influence individual realizations of any natural selection
process.
Natural selection removes trait variation from the population Biased survival and
reproduction that natural selection leads to a larger proportion of the next generation
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Figure 3.3: The effect of natural selection strength in an agent-based model of natural
selection. Each agent has two traits a ∈ [0, 10] ⊂ R and b ∈ [0, 10] ⊂ R. Per timestep,
five percent of the population randomly dies and gets replaced unless stated otherwise.
The probability of death and reproduction is proportional to the value of the function
f(a, b) = 5 + sin(a π 3) + cos(b π 3) at the point given by an organisms parameters.
The population is homogeneously initialized with (a, b) = (4.5, 4.5) for all individuals,
and populationsize is held constant at 1000 unless stated otherwise. The function f
is shown as a grey surface. An organism mutates by randomly adding a number n ∈
[0, 1] to either trait a or b, with the mutation rate being fixed at 0.05. Upper row:
Higher rate of overturning (pdeath = 0.15, orange) vs lower rate (pdeath = 0.05, blue).
This yields more reproduction events per timestep, consequently more mutations and
faster explorations of state space, which translates to faster evolution. Middle row:
Two populations of size 200 (blue) and 2000 (orange): A larger populationsize yields
more reproduction events per time, which leads to proportionally more mutations and
consequently faster evolution by natural selection. This effect is roughly equivalent to a
higher overturn in the population. Lower row: For the orange population, the values of
f are squared before death and reproduction, leading to a larger difference in probabilities
for being selected or removal and reproduction. Advantageous mutations consequently
spread faster through the population, leading to faster evolution.
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being made up of offspring of comparatively few individuals, as mentioned before. Because
of inheritance, this means that more individuals in the population will carry similar traits.
Natural selection, therefore, reduces variation in the population over time (compare Figure
3.3, A). Very strong selection consequently can leave the population with an impoverished
trait pool and thus potentially vulnerable to future changes in the ecosystem and to
stochastic effects. The main effect is that large portions of the system’s memory are
effectively erased. Note that, as a first approximation, because the process of natural
selection hinges on reproduction, only the organisms which reproduce are relevant, i.e., a
population of size N in which only n ≪ N organisms reproduce behaves effectively the
same as a population of size n in which every organism reproduces.

The interplay between selection and mutation gives rise to adaptation Natural selec-
tion and mutation can together create a ratchet effect in which advantageous mutations
spread through a population via biased survival and reproduction, before another, more
advantageous mutation appears which then spreads and supplants the first one, and so
on. This is contingent on heritability being high enough to allow for the preservation
of advantageous traits and on the mutation rate being so low that the majority of the
organisms in the population are replaced before the next advantageous mutation appears.
We can also imagine this scheme to hold in the presence of higher mutation rates, even
when advantageous mutations are rare. Because the trait will eventually be spread through
large parts of the population, it is unlikely to get lost again by chance. After a few rounds
of this ratchet effect, the population can be comprised of organisms with traits that would
be exceedingly unlikely to appear at random. This scheme is the base assumption of
adaptive dynamics, which is an important line of mathematical modeling in contemporary
evolutionary theory [Brännström et al., 2013].

Where this ratcheting process acts on complex (adaptive) individuals, it is easy to
imagine how it can result in the complex functions of natural biological organisms. At
the same time, the process also can act on much simpler systems, and is, in that sense,
general enough to apply to all imperfectly reproducing systems [Lewontin, 1970] (and
possibly beyond, see Papale [2020] and references therein).

Mutation-selection balance This tendency to remove variation from a population is
balanced by mutation, and the actual distribution of a trait in a population consequently
depends on the balance of these two processes. This leads to the idea of mutation-selection-
balance, which is especially important for asexual species because, without recombination,
mutation is the only process that introduces new variants into the population. The balance
between mutation and selection, therefore, limits adaptation in the system, because any
trait or combination thereof that yields advantageous mutations will, with a certain
probability, undergo mutation upon reproduction. Because there are typically many ways
in which a trait can mutate, there is a disequilibrium between mutations “towards” focal
trait and all the possibilities for the latter to mutate into some other trait. Consequently,
an advantageous trait, once lost, is highly unlikely to be regained through mutation in the
heritable information.

It must be noted that while this concept holds in general, developmental processes
(see chapter 5) will modify this phenomenon. This mutation-selection balancing process
also constitutes the basis for Muller’s ratchet [Muller, 1964], which states that asexual
populations cannot get rid of (slightly) deleterious mutations, and thus a population state
dominated by highly adapted individuals will always deteriorate to some degree until the
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mutation-selection balance is attained again. Thus, asexual populations will have a limit
on how well-adapted they can become.

While this, in general, does not pose a big problem in large, well-mixed populations,
for small populations, stochastic effects are more pronounced. This leads to the effect of
mutational meltdown [Gabriel et al., 1993], in which adaptations are consecutively lost
by mutation and not regained due to the stronger influence of stochasticity and weaker
selection (compare Figure 3.4, Figure 3.3 and section 3.7). In nature, this can result in
a further decline in populationsize, increasing the meltdown effect. This can, via positive
feedback, eventually lead to the extinction of the population.
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Figure 3.4: Simulation of mutation-selection balance with the computer model of natural
selection introduced in Figure 3.3, approaching the same peak. Mutation rates are 5×10−3

(left) and 5× 10−1 (right). Shown are the mean value of f (solid line) and the respective
standard deviation (shaded area). We find the lower mutation rate to evolve slower and
more in line with the assumptions of adaptive dynamics, while for the higher mutation
rate, advantageous mutations occur more or less concurrently. The lower mutation rate
produces a higher mean value for f with much lower variance than the higher mutation
rate, although both maintain the adaptive peak.

While well appreciated for asexual populations [Lynch, Bürger, et al., 1993], mutational
meltdown can play a role in small sexual populations as well under some conditions [Lynch,
Conery, et al., 1995], a fact that can play a role in conservation biology [Hedrick and
Kalinowski, 2000].

In general, the higher the mutation rate, the lower heritability and the more likely it is for
advantageous traits to get lost again over generations. Consequently, life has found ways
to control or reduce mutation rates, see chapter 4, or to buffer against variability.

Sexual reproduction can overcome mutation-selection balance Sexually reproducing
organisms, on the other hand, recombine their traits upon reproduction, such that, in-
dependently from the overall mutation rate, advantageous traits can combine within the
same organism without them having to arise sequentially within a lineage of asexual organ-
isms. Likewise, deleterious traits can be removed more efficiently. Because recombination
produces variation in the assortment of traits in the population and, in the absence of
other effects, can also maintain genetic variation in a population (this effect is called the
Hardy-Weinberg law, [Hardy, 1908; Weinberg, 1908]) this allows for the evolution and
maintenance of more adaptive states than could be maintained in an asexual population,
compare Figure 3.5.

The price is the fact that two individuals are necessary for reproduction, which might not
be available at all times. Moreover, sexual reproduction entails that only one sex is actually
producing offspring, and only half of its offspring will do so in turn. By comparison, any
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Figure 3.5: The model from Figure 3.3 and Figure 3.4, with a mutation rate of 0.3 and
a population of 1000 organisms. Blue: asexual population. Yellow: Sexually reproducing
population, where each parent contributes trait a or b with a fifty percent chance to the
offspring. Left: Mutation width per mutation event is n ∈ [0, 0.1], i.e., mutations have
small effects. Right: Mutation width per mutation event is n ∈ [0, 0.5], i.e., mutations
have larger effects and a single step away from a peak in f can produce significant loss of
survival and reproduction. We find that mutational meltdown affects asexual populations
more as their mean fitness (solid blue) decreases stronger the longer the simulation runs,
although both populations adapt quickly in the beginning. The effect is lessened when
mutations have stronger effects, as can be seen in the lower panel.

offspring of an asexual organism can reproduce again, such that, simply by numbers, an
asexual population should outcompete a sexual population, at least in the early stages
of their interaction. Because of the twofold cost of sex in natural evolution [Maynard
Smith, 1978; Gibson et al., 2017], the advantages recombination of traits brings in terms
of adaptiveness must outweigh its cost in order for it to be maintained, as explored a little
in Figure 3.5, and multiple models for its maintenance and origin have been put forward
and have been investigated empirically (e.g., Maraun et al. [2019]).
Inheritance records the history of past selection Because the continued existence of
a trait in the population is bound to inheritance, only those traits that at least do not
hamper reproductive success too much will be left in the population after some time. In
other words, only those traits will be left in the population which have been advantageous,
or at least not too deleterious, in the past. The distribution of traits in the population
is, therefore, the product of a (possibly) long history of selection over many generations
[Stearns and Hoekstra, 2005]. Consequently, organisms are a product of different past
selection regimes. This, in turn, applies to the trait memory of the evolving population,
too, in line with the concept of a CCS which requires continuous modification of elements
in some memory structure.

3.3.4 On the nature of evolution by natural selection

Evolutionary relativity It’s worth emphasizing that selection can only act on the vari-
ation that is present in the current population because organisms can only interact with
the ecosystem as it currently – or over the time interval of interest – exists. Therefore,
differential survival and reproduction will lead to an increase in some traits if they are
advantageous relative to the others it interacts with.

In other words, there is no absolute sense of optimality towards which a Darwinian
system develops. Rather, while it is capable of rapidly producing unlikely states, it
will only reach local optima, i.e., reach states in which the population is dominated by
a collection of traits for which any (or at least most) alternatives will be worse with
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respect to survival and reproduction. In the language of evolutionary game theory, such
a configuration is called an evolutionary stable strategy [Nowak, 2006]. It must be noted,
however, that the notion of an evolutionary stable strategy is mostly bound to a static
ecosystem with respect to which a population can evolve [Grunert et al., 2021]. Thus, as
a theoretical concept, it is mostly applicable to microevolution. In natural systems, the
fact that organisms and many abiotic systems are CAS and thus are open systems, as well
as possible evolutionary innovations that lead to a reorganization of local interactions,
can change the adaptive value of certain traits over time, such that what once was a
well-adapted set of traits can be maladaptive later.

Therefore, if we frame Darwinian evolution as the process of finding configurations of
traits that are effective at survival and reproduction for a given ecosystem, we find that
Darwinian evolution does not produce optimal solutions in an engineering sense. Rather, it
produces configurations over time that are more effective than what already exists within
the set of interacting entities relative to the system’s state at any given time. Therefore,
there is no natural sense of “progress” in the concept of natural selection as such.

3.3.5 Evolutionary continuity, exaptations and restrictions

Following the train of thought started in subsection 3.3.4 further, we find that not only
does Darwinian evolution produce only local adaptations, but the evolutionary trajectory
of a population can only pass through reproductively viable states. Thus, a Darwinian
evolution trajectory that links two trait configurations via a lineage, e.g., from aquatic
to terrestrial habitats or from terrestrial locomotion to flight, must occur by successive
changes to configurations that can effectively survive and reproduce. This process can
be likened to rebuilding a car into a submarine while the car is going at eighty miles per
hour. As one can imagine, the likely outcome of such an operation will be suboptimal
when compared to some from-the-ground-up engineering solution, involving structural or
functional compromises and generally higher complexity than would be deemed necessary,
or prudent, by a human designer. For example, birds evolved from small, bipedal, theropod
dinosaurs, which were dependent on their running and walking ability to survive and
successfully produce offspring. Consequently, their legs must have kept this function while
they were slowly adapting to gliders and eventually fliers. The consequence is that birds
use their legs essentially for providing a jump start when starting to fly, but otherwise
just carry them around, their use as grasping tools notwithstanding. Bats and pterosaurs,
starting from a quadrupedal initial condition, use all four limbs for starting, which allows
for more efficient morphology. A similar argument can be made for feathers, which are
rather heavy when compared to the flight membrane of bats or pterosaurs. All these
compromises result in an arguably somewhat awkward “design” of birds for flight when
compared to other animals or human systems.

Moreover, a number of structures will be identifiable as having originally arisen in some
function that they no longer fulfill, having been repurposed in another context. Some of
these traits may have not served a purpose at all in the past, but are now fulfilling vital
roles within the physiology of the organism. These repurposed properties of an organism
are called “exaptations” [Gould and Vrba, 1982]. Flight feathers are an example of this
phenomenon because their precursor structures probably arose as insulation but now play
a role in flight and mate finding.

Other traits may have been originally useful but have lost their function in a new
ecological context without acquiring a new one, and are just carried along in the population
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without doing any harm (or at least not much), acquiring mutations over time and losing
the structure that allowed them to function in the original capacity. Such traits are often
characterized by comparatively high variation within the population because no selection
acts on them that will remove some variants over time. Some traits may be vital for
reproduction and survival, and so any newly arising trait will evolve “around” them,
adding a new function or changing an existing one without changing such keystone traits.
The example of bird’s legs shows this phenomenon. This leads to the entrenchment of
features across evolutionary lineages, such as the general layout of the body plan (compare
chapter 5 for a more detailed discussion).

The continuity condition that arises as a corollary from the reproduction-inheritance-
based progression of natural selection, therefore, can lead to restrictions of what can
evolve at any given time, can force evolution into objectively suboptimal paths, and
create a higher complexity than would be strictly necessary as judged by an intelligent
engineer.

Natural organisms are therefore a mosaic of traits that have arisen in a given context but
that can have been repurposed towards a different function, can have continued in their
original function, or can have lost it over time. This paragraph, therefore, supplements the
idea of evolutionary relativity presented in subsection 3.3.4, because all the phenomena
discussed here would not be possible if there was some global optimization going on in
evolution.

3.3.6 The primacy of reproductive success over survival and the concept of
fitness

We mentioned that natural selection is based on a correlation between variation in traits in
a population and variation in survival and reproductive success. These latter two, however,
are not symmetric. A trait that confers better survival probability per time but does hinder
reproduction will rise slower in frequency in the population than another trait that does
reduce average survival time but confers a high degree of reproductive success within that
time frame. While reproductive success is both a necessary and sufficient condition for the
continued existence of a lineage of organisms that carry a specific trait, survival is just a
necessary one. Indeed, in nature, the life cycle of many organisms is such that it prioritizes
reproduction over individual survival, e.g., males of some species of spiders get often eaten
by their mate, salmon wander up a river to lay eggs only to die immediately after that and
many more organisms behave similarly [Stearns and Hoekstra, 2005]. We can therefore
conclude that the relevant variable for evolution by natural selection as presented herein
is lifetime reproductive success, not survival in itself.

Closely related to this discussion are the concepts of “fitness” and “survival of the
fittest”. Fitness is readily invoked in discussions of evolution, although it is surprisingly
difficult to come up with a consistent definition [Ariew and Lewontin, 2004; Doebeli et al.,
2017; Barker, 2009]. For now, we use the term merely to refer to lifetime reproductive
success, with more differentiated meanings being introduced as needed.

3.3.7 The evolutionary tree as a consequence of Darwinian evolution

Consider a population of imperfectly reproducing entities with a mutation rate that is low
enough to allow for adaptive dynamics. Furthermore, we consider asexually reproducing
populations for simplicity. Because mutation is tied to reproduction events, the offspring
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of a mutant individual M carrying a trait A′ will likely carry the mutated trait as
well. At the same time, any non-mutated siblings of M carrying trait A will also have
offspring that probably will lack the mutation. Therefore, the two lineages exist side by
side. We can see this as a branching event in the history of the population, where a
single lineage of A individuals branches into two lineages - one carrying A and the other
carrying A′. New branches may persist for long times, giving rise to their own daughter
branches, or disappear again such that only the original remains. Because the differential
survival and reproduction of such lineages depend on the ecosystem they interact with,
these branching events can be brought about by differences in ecology, e.g., by spatial
isolation. In sexually reproducing populations, reproductive isolation, i.e., the inability to
produce fertile offspring (or offspring at all) is a deciding factor for a lineage split usually
associated with the advent of a different species (see Figure 3.1, however). We note in
passing that reproductive isolation does not necessarily entail some kind of physiological
incompatibility, but can also just be caused by spatial isolation and other effects, as is the
case for polar bears [Kelly et al., 2010].

The branching effect of course is a consequence of the inheritance-based trait-discovery
process inherent to Darwinian evolution, and would not be present in a Lamarckian
framework. Over long timescales, this effect gives rise to the Tree of Life.

3.4 Natural selection in the context of CCS

3.4.1 Performance evaluation

Because evolution by natural selection is associated with survival and reproduction, per-
formance evaluation as defined in subsection 2.4.2 is straightforwardly identified as differ-
ential survival and reproduction. Importantly, because reproduction is associated with
individuals, and not with individual traits, this assigns a performance value (lifetime
reproductive success) to individuals and not, a priori, to individual traits. Therefore, the
individual’s performance is the result of the interplay of its traits over its lifetime. While
this can be dominated by single traits (e.g., some genetic defects that preclude survival
to reproductive age), this is not the general case. Rather, the survival and reproductive
success of an organism is generally the result of the interaction, and cooperation, of the
traits of an organism. Secondly, because lifetime reproductive success is the result of
the interactions an organism engages in over its lifetime, and these interactions involve
other organisms of the focal or other populations and dynamic abiotic factors, this form
of the performance evaluation process is strictly an emergent process in a population of
reproducing entities and has no analogon on the level of individual dynamics unless the
individual is a conglomerate of reproducing entities in itself.

3.4.2 Trait discovery and trait reservoir

Trait discovery Trait discovery can be identified with mutation and recombination. As
mentioned, the mutation part is understood to be independent of the traits or actions
of the individual, in contrast to Lamarckian evolution. Thus, mutation is normally
treated as a background process in which offspring randomly differ, with some probability,
from their parents. The situation is more complicated for sexual reproduction, however,
because a mate is required, which often involves active choice and assessment. This latter
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phenomenon gives rise to sexual selection [Futuyma and Kirkpatrick, 2007], which can
drive the morphological evolution of organisms to a significant degree. In all cases,
however, trait discovery is associated with reproduction events, again in contrast to
Lamarckian evolution, where trait discovery was spread out over the entire lifetime of
an organism. It must be noted that while mutation is strictly associated with individual
organisms, sexual recombination can only take place in a population, and so many natural
populations that undergo Darwinian natural selection rely on a mixture of trait discovery
processes that depend on different underlying mechanisms.
Trait reservoir Because the system relies on the imperfect reproduction of individuals
for trait discovery, individuals also act as the loci for the trait reservoir of the system.
The dynamics of this trait reservoir is largely determined by the presence or absence of
recombination, which can produce new combinations of traits more rapidly than asexual,
i.e., sequential within-lineage, evolution could do. Mutation selection-balance is another
determining process, which prevents a population from collapsing onto a single trait
configuration through natural selection. Recombination consequently explicitly relies on
the distributed nature of the trait reservoir and thus mixes traits across a population, while
mutation only is concerned with the traits of a single individual at the time of reproduction.
In both cases, however, evolution by natural selection is dependent on the existence of a
population because it is bound to reproduction, and inheritance of acquired characteristics
is largely excluded. Populations evolve, but individuals do not. Moreover, the size of the
population and the variation of traits across its individuals are important determining
factors of how active natural selection can be in a population. Therefore, natural selection
relies explicitly on the size of the trait reservoir. Finally, it’s worth reiterating that the
trait reservoir of a Darwinian population reflects the history of past selection because only
those traits that allow for reproduction can remain in the population over time.

3.5 Modeling evolutionary processes on a Darwinian basis
3.5.1 Birth-Death processes
We follow Doebeli et al. [2017] in proposing stochastic birth-death processes as a funda-
mental modeling tool for biological evolutionary processes because offspring creation and
death are the observable processes in nature that give rise to evolution. Thus, they are
the natural choice when attempting to model biological populations. This naturally ties
in with the discussion in subsection 2.2.2, where more general stochastic processes have
been discussed.

The system to be modeled can be imagined as an ecosystem as visualized in Figure 3.1
that changes its structure and composition over time. Thus, the evolution of the system
can be seen as a sequence of such networks made up of nodes that change their links and
states over time, die, and are born.
Mathematical representation of Birth-Death processes A birth-death process is a
Markov process that operates on a population of size N(t) in which each member of the
population is determined by some state ai at time t. The state ai is extremely general
and can denote and collection of traits of an agent, from complex properties with internal
dynamics like its genetic system, proteome or metabolic functions to some simple scalar,
like age or body size. This also means that in general, ai is time-dependent, ai(t). We
encountered this already in subsection 2.2.2 where the Master equation was introduced to
treat such systems.
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Rate equations For continuous time, we define functions b(a) and d(a) that determine
the birth rate and death rate of an individual given its state a, respectively. Additionally,
these depend, in general, on the state of the biotic and abiotic environment ebio(t), eabio(t)
the focal population is embedded into.

bi(t) = b(ai(t), ebio(t), eabio(t))

di(t) = d(ai(t), ebio(t), eabio(t))
(3.5.1)

Noteworthily the biotic environment ebio includes effects that stem from the current
population, but may also include influences from other populations which are not explicitly
modeled, or any other biotic influence that comes about through ecological interactions,
e.g., competition for resources, symbiosis or parasitism. The variableeabio models the
abiotic state of the environment, e.g., temperature or salinity, but can also include climate
or geology if the respective timescales are relevant for the question at hand. The functions
in Equation 3.5.1 consequently are a model for how lifetime reproductive success arises
from ecological interactions.

In contrast to Doebeli et al. [2017], we include an explicit time dependence in all
independent variables a, ebio, eabio, because the state of any given agent is in general subject
to phenotypic plasticity or development (compare chapter 5), while the environmental
variables have their own dynamics as well, e.g., seasonality. Moreover, ai incorporates the
heritable traits of the agent, and in this way the “memory” of the system. In this way, the
system only depends on the current state of the population and environment and therefore
constitutes a continuous-time Markov process. That being said, any representation of a
real system through Equation 3.5.1 would, of course, be exceedingly complex because it
contains all influences on birth- and death-rate of a type ai. Moreover, the lack of time ho-
mogeneity makes analytical treatments of such processes exceedingly complicated.

We note that Equation 3.5.1 only implements perfect reproduction, i.e., there is nothing
that can generate variation in states in the system beyond what was initially present. As
pointed out in Doebeli et al. [2017], this renders the model purely ecological. Such a
system can be useful under the assumption that ecological and evolutionary timescales
are decoupled, for instance when dealing with ecosystems on the species level. With
respect to Figure 3.1, this means that there is a fixed set of organism-, environment- and
interaction classes given by the ones currently represented in the system, and this does
not change over time.

To make Equation 3.5.1 into a proper evolution model, we need to add a representation
of imperfect inheritance, i.e., an equation for the rate of generation of new variants. In
Doebeli et al. [2017], this takes the form

ci(t) = c(ai, ebio(t), eabio(t)) (3.5.2)

If Equation 3.5.2 is zero always, we recover Equation 3.5.1 and thus a purely ecological
system. The function ci(t) represents the generators of variation in the system and there-
fore includes, e.g., mutation, but also ontogenesis, plasticity, mate choice, recombination,
and other effects, as discussed in subsection 3.3.2. Depending on the structure of the states
ai, it can make sense to conceptually separate the parts of ci that pertain to inheritance,
e.g., mutation or recombination and those that pertain to the physical realizations, like
ontogenesis. While both of these process classes can generate novel variants of ai, their
underlying concepts are radically different (see chapter 4 and chapter 5).
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For a system unfolding in a finite, countable state space with agent states ai = {a1, a2, . . . aM},
which each have a population Ni(τ), the state of the system at time τ can be described
as a vector

N(τ) = (N1(τ), N2(τ), . . . NM (τ)) (3.5.3)

and transitions can be described as

N(τ) = (N1, N2, . . . , Ni, . . . , Nj , . . . , NM )→ (3.5.4)

N(τ ′) =
(

N1, N2, . . . , Ñi 6= Ni, . . . , . . . , Ñi 6= Nj , NM

)

(3.5.5)

The time development of the probability Pik that the system transitions from state i
at time s to state j at time t can be described by the Master equation introduced in
Equation 2.2.1.

The elements of the transition-rate matrix from one population state to another, A,
therefore are a combination of the functions b, d, c, which together represent an ecological
system in which organisms produce offspring with modification (via mutation, recombina-
tion or ontogenetic influences), i.e., biological evolution in a general form.

It must be emphasized that the level of representation is a modeling choice: We
here ignored, e.g., spatial movement, and subsumed all environmental influences into the
arguments ebio, eabio.

Formulation of a generic evolutionary birth-death process Note that all natural popu-
lations are ultimately finite, though the carrying capacity, i.e., the system size, does not
need to be fixed or even be knowable a priori [Erwin, 2008]. Thus, while we can be certain
there is a finite maximum populationsize Ni,max in any given time interval, its exact value
is ultimately a modeling choice. Similarly, the finiteness of the state space |S| = M is a
modeling assumption. While we can find some representation of a population that accom-
modates this assumption by classifying the individuals according to appropriate criteria,
the nature of an evolutionary process does not allow us to predict which configurations
will arise over time, limiting the representation presented here to situations where such
innovation can be ignored. Also, all such classifications that discretize state spaces are
ultimately choices that need not be unique and influence the outcome of the analysis, e.g.,
species.

Finally, we introduce “forbidden” transitions whenever the population for state ai

reaches zero:

N(τ) = (N1, N2, . . . , Ni = 0, . . . , NM ) 6→ N(τ ′) = (N1, N2, . . . , Ni 6= 0, . . . , NM ) (3.5.6)

For the system described, excluding forbidden transitions, we find the infinitesimal
generator A to have the structure

nothing: Aii (τ) = 1− di (τ)− bi (τ)

death: Aij (τ) = di (τ)

faithful inheritance: Aij (τ) = bi (τ) [1− (ci)]

imperfect inheritance: Aij (τ) = bi (τ) (ci)

(3.5.7)
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where Aij is the local rate with which the process transitions from state i to state j and
the rate of faithful inheritance arises from the requirement of the sum of “faithful inher-
itance” and “imperfect inheritance” !

= bi (τ) because mutation is bound to reproduction.
For all states that have forbidden transitions, we also have

Aij =

{

1 if i = j

0 else
(3.5.8)

Note that all the complexity of the system is subsumed into the rate functions b, d, c.
Finally, we explicitly assumed that mutations do not depend on the state the system
transitions to, only the current one. This recovers the fundamental assumption that
evolution by natural selection is “blind”, i.e., it cannot predict the future, only “remember
the past” by virtue of heritable information. Modifications to this system would be
necessary in order to accommodate cultural evolution or any Lamarckian process.

3.6 A simplistic birth-death process

3.6.1 Description of a simple process dynamics

We use the formal model described above and simplify it down to an analytically tractable
system. In doing so, we follow Nowak [2006]. The process is described by a single state
variable i ∈ 0, .., N ⊂ N0 and unfolds in discrete generations, i.e., it is a discrete Markov
chain. Therefore, we have only one kind of individual in the system, we hence consider, in
ecological terms, a population of a single species. With this, Equation 2.2.1 becomes

Pi(t + 1) =
N

∑

j=0

AjiPj(t) (3.6.1)

In each step, the process goes from a state i to either i+1 with probability βi, which is the
birth probability or to a state i− 1 with probability δi representing the death probability.
It can also stay the same with probability 1 − βi − δi. We assume the states 0 and N to
be absorbing states, i.e., δ0 = β0 = δN = βN = 0. We assume asexual reproduction and
perfect inheritance, i.e., in the sense of subsection 3.5.1 we have a purely ecological model
that assumes that mutations are much rarer than reproduction events. This is sufficient
because, for this section, we are only interested in selection. This process can be described
by the generator

A0k = Ak0 =

{

1 if k = 0

0 otherwise

ANk = AkN =

{

1 if k = N

0 otherwise

Aij =



























βi if j = i + 1

δi if j = i− 1

1− βi − δi if i = j

0 otherwise

(3.6.2)
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where the first two equations describe the absorbing states and the last describes the
possible transitions in between. We are interested in the probability of reaching state N
when starting from state i, and call this probability pi. The goal is to derive a general
expression for this probability in terms of the birth and death probabilities βi, δi. Following
the derivation in Nowak [2006], we introduce γi = δi/βi, given that βi 6= 0 ∀ i, and
yi = pi − pi−1, i ∈ [1, N ] ⊂ N. Using that pi = δipi + (1− βi − δi) pi + βipi+1 from
Equation 3.6.2, and excluding i = 0, i = N because then p0 = 0, pN = 1, we find that
yi+1 = γiyi. This yields

yn =
n−1
∏

k=1

γkp1 (3.6.3)

if we exclude the absorbing states 0, N again. Using ∑i
k=1 yk =

∑i
k=1 (pk − pk−1) = pi

and consequently ∑N
k=1 yk = pN − p0 = 1 we find

i
∑

j=1

yj = pi =





i
∑

j=2

j−1
∏

k=1

γk + 1



 p1 (3.6.4)

and therefore

N
∑

j=1

yj =





N
∑

j=2

j−1
∏

k=1

γk + 1



 p1

⇔ p1 =
1

1 +
∑N

j=2

∏j−1

k=1
γk

(3.6.5)

Finally, we are able to express the probability to reach state N from state i as a function
of the birth and death probabilities only, given βi > 0 ∀ states i ∈ 1, . . . , N .

pi =
1 +

∑N
j=2

∏j−1

k=1
γk

1 +
∑N

j=2

∏j−1

k=1
γk

(3.6.6)

Note that we made only very general assumptions on the birth and death rates βi, δi,
so Equation 3.6.6 holds for any scenario of selection, including neutral drift [Nowak,
2006].

3.6.2 Adaptive dynamics on a simple birth-death process

The question we try to answer here is, given the system presented above, under what
conditions a single mutant organism can give rise to a lineage that takes over the entire
population at the expense of the currently most common type, i.e., if it can “invade” the
population. Similar questions are posed in evolutionary game theory, often with respect to
the evolution of cooperation [Nowak, 2006]. Again following Nowak [2006] and starting out
from Equation 3.6.6 we consider a population of one individual of type A in a population
of N − 1 individuals of type B. The probability that A gives rise to a lineage that takes
over the population is called the fixation probability and is denoted by pA. The reverse
case, i.e., the probability that one B individual eventually takes over a population of N−1
A individuals, is denoted by pB. Therefore, with NA being taken as the state variable, we
find
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pA = p1 =
1

1 +
∑N

j=2

∏j−1

k=1
γk

pB = 1− pN−1 =

∏N−1
k=1

γk

1 +
∑N

j=2

∏j−1

k=1
γk

(3.6.7)

which gives us the ratio

pB

pA
=

N−1
∏

k=1

γk =
N−1
∏

k=1

δk

βk

(3.6.8)

Therefore, which variant will take over the population at some point depends on the
product of the ratios of the birth- and death rates in all non-absorbing states of the
process, i.e., on the selective regime for the possible states of the system. Referring back
to subsection 3.5.1, this may be a complicated function that depends on the current state
of the biotic and abiotic environment. Equation 3.6.8 therefore describes intraspecific
evolution.

3.7 Neutral evolution - Evolutionary change without selection

Neutral evolution can arise in multiple ways, e.g., variation in traits does not always lead to
variation in fitness, for instance, because the affected trait does not significantly influence
the interactions with the current environment. Furthermore, not all variation in traits
is equally heritable. In nature, phenotypic variation has a genetic component, which is
highly heritable, but also has other components (environmental, epigenetic, and others),
which are generally less heritable (see chapter 4). In Equation 3.5.2 this is subsumed
into the rates of mutation, although in reality, heritability of a trait is a complicated
process.
Evolution without selection The question, therefore, arises if non-heritable variation
does influence the evolutionary trajectory of a population. Neutral evolution requires
that there is variation in traits which does not affect fitness. Because interaction with
the environment determines variation in fitness, which phenotypic traits are neutral and
which are not is determined by the ecosystem an organism is a part of, and migration to
a different one or a change in ecosystem structure may change the selective regime a trait
is subject to. The proportion of the population of organisms that share a certain neutral
trait is subject to a random walk, influenced by the particularities of trait transmission. A
neutral trait that is shared by most of the population is said to be “fixed”. A simple model
to compute the probability of a trait becoming fixed in a population of finite size is the
Moran process [Moran, 1958], which is based on the description given in subsection 3.6.2.
In the discussion below we once more follow Nowak [2006]. We again consider two types of
organisms A and B with populations NA and NB with N = NA + NB = const as before,
with absorbing states NA = N, NB = N , i.e., mutation is once more excluded.

The significance of the fixation of a trait, i.e., reaching the absorbing states, is that
it “deletes evolutionary history”, i.e., any further evolution will invariably start from
organisms with trait A, or B respectively, and evolutionary history can only be traced
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back to the point where this fixation occurs, at least for the one trait under consideration
here.

The case where a new variant occurs in a homogeneous population, i.e., NA = 1, NB =
N − 1, is of special interest because mutations that introduce new variants are bound to
individuals, and thus start always with very low population.

Using Equation 3.6.7, Nowak [2006] goes on to show that if type A has fitness r and
type B has fitness 1 (i.e., we discuss relative fitness), the probability of a single mutant of
type A taking over a population of size N − 1 of type B is

pA =
1− 1/r

1− 1/rN
(3.7.1)

which under the assumption of N >> 1, r > 1 collapses to pA ≈ 1− 1/r.
We understand from this that even in very large populations, there is no guarantee

that an advantageous mutation takes over, a fact that arises from the stochasticity of the
system.

Finally, Nowak [2006] derives the rate of neutral overturn of the population, i.e., the
rate at which a population of N organisms transitions from homogeneously exhibiting
trait B to homogeneously exhibiting trait A by introducing a mutation rate µ, which gives
us the rate at which mutants of the respective other type are introduced. With pA = p,
this yields

R = Nµp | p = 1/N for neutral evolution (3.7.2)
⇒ R = µ (3.7.3)

Therefore, the rate at which neutral traits fixate in a population over time is only de-
pendent on the mutation rate, and independent of the populationsize. Important to note
is the assumption of perfect neutrality here, which for most natural cases is arguably an
idealization.

It’s noteworthy that the process of neutral evolution is, from an observational point of
view, not distinguishable from directional selection if only the trait distribution over the
population is considered. Only a consideration of the fitness distribution over the traits
present in the population can reveal if selection is active or not. Neutral evolution has been
proposed by Kimura [1968] and Kimura [1983] to be the dominant mode of evolutionary
change on a molecular level, i.e., when considering substitutions in amino acids in proteins
or base pairs in the DNA. Here, redundancy is relatively high (see section 4.2), and
therefore, the system exhibits much potential for neutral evolution. This, however, does
not mean that most evolution is neutral because morphological variation almost invariably
affects the ways in which organisms interact with their environment. It has, however,
been found that the rate at which amino-acids in proteins and base-pair pairs in DNA are
neutrally substituted is more or less constant in time, albeit specific for the individual
protein or genetic sequence [Stearns and Hoekstra, 2005]. This has led to the idea of
the molecular clock, which has been developed into a powerful tool for reconstructing
evolutionary history, augmenting and complementing traditional paleontology.
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3.8 The Neo-Darwinian Synthesis

The rediscovery of Mendel’s laws of inheritance around 1900 [Keynes and Cox, 2008],
closed an important gap in Darwin’s theory of natural selection, namely the problem of
the inheritance process. Darwin’s original hypothesis of pangenesis [Darwin, 1868] was
refuted experimentally [Galton, 1871] and subsequently abandoned2, which lead to “the
eclipse of Darwin” [Bowler, 1983], during which Darwin’s ideas were largely ignored and
Lamarck and other theories were favored. With the rediscovery of Mendelian inheritance
[Bateson, 2009], Darwin’s ideas slowly gained favor again. The statistical formulation of
evolutionary change via population genetics and the combination with Mendelian inher-
itance and the concept of natural selection [R. A. Fisher, 1930; Wright, 1931; Haldane,
1932] and the realization that these concepts could explain wider phenomena in biological
evolution [Dobzhansky, 1937; Mayr, 1999] eventually led to the “modern synthesis” or
“neo-darwinian synthesis” [J. Huxley, 1942], in which population-genetics, Mendelian
inheritance, and natural selection were combined into a single theory. This theory was later
augmented by the discovery of the DNA molecule [J. D. Watson and F. H. C. Crick, 1953]
and the introduction of the neutral theory of molecular evolution [Kimura, 1968]. Other
noteworthy developments after its inception include inclusive-fitness theory [Hamilton,
1964] which is relevant for the evolution of cooperation and which later influenced the
gene-eyed view of evolution [G. C. Williams and Dawkins, 2018; Dawkins, 1976], in which
organisms only play the role of vehicles by which genes propagate copies of themselves
into the next generation.

While subject to modification over time, its core tenets – that inheritance of acquired
characteristics is principally excluded, that the occurrence of mutations is random and
independent of their effects and that natural selection is the only process that can bring
about adaptations – still form the backbone of much of evolutionary theory and teaching
[Futuyma and Kirkpatrick, 2007].

In particular, its derived variant in the form of the gene-eyed view has received criticism
over the past few years, with calls being made for an updated, or extended, evolutionary
synthesis in the light of new findings [Pigliucci, 2009; Müller, 2007; K. N. Laland, Uller,
et al., 2015; Müller, 2017b]. This has sparked considerable debate over some of its core
elements [Scott-Phillips et al., 2014]. In particular, findings pertaining to the mechanics
of development (see chapter 5) and the realization that inheritance is neither limited to
genes nor fully excludes acquired characteristics (subsection 4.3.1) call into question the
view that evolution is, essentially, repeated rounds of population genetics.

3.9 Summary

This chapter introduced two prominent processes that allow a population of biological
organisms to constitute a Complex Constructive System, starting from the observation
that all biological populations are made up of reproducing organisms. While more have
been discussed in the literature [K. Laland, Matthews, et al., 2016], only Darwinian natural
selection and Lamarckian evolution have been contrasted here. These have been chosen be-
cause they are the most well-known, but also because Lamarck has been frequently invoked
over the last decade or so in the context of new discoveries in inheritance and in cultural
2 As is so often the case, modern experiments seem to show exceptions to this refutation [Liu and Q. Chen,

2018].
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evolution [Kronfeldner, 2006]. It has been discussed how both, Lamarckian and Darwinian
evolution can give rise to CCS, whereby the Lamarckian case requires significantly more
complex organisms than the Darwinian one. This is because performance evaluation and
trait discovery are both associated with individuals in the Lamarckian case, given that
performance evaluation depends on the usefulness of an organ for the organism’s behavior
in a given environment, while trait discovery depends on use and disuse. Performance
evaluation in Lamarck’s system is, moreover, associated with individual traits, not with
the organism as a whole. Lamarck’s theory leads to a continuous transformation of the
trait memory of the individual and consequently the population as a whole, and it is not
obvious how a usage-based trait discovery process as suggested by Lamarck would give
rise to different species.

Darwinian natural selection, on the other hand, strictly proceeds by variation in re-
production and survival which is correlated with variation in individual traits. This
correlation is mediated through ecological interactions, which allow some organisms to
acquire the means for reproduction and survival more effectively or more efficiently than
others. Inheritance thereby allows for the preferential retainment of those variants that
confer higher reproductive success or survival than others. It must be noted that such
a correlation, a priori, can be spurious, i.e., causal mechanisms in selection have to be
demonstrated separately.

We noted that reproduction is a necessary and sufficient condition for the traits of
an organism to stay in the population, while survival is only necessary but not suffi-
cient. Consequently, evolution by natural selection generally will increase the lifetime
reproductive success of organisms in a population over time, although this effect is, in
nature, often intertwined with many others, like migration, or neutral evolution. While
Darwin originally suggested a different inheritance model, we now understand that - first,
the appearance of a particular variant is independent of its effects and that inheritance
is particulate and does, again with some exceptions, exclude acquired characteristics.
Therefore, Darwinian natural selection as a theory rests on the three pillars of variation,
reproduction, and inheritance [Lewontin, 1970].

Performance evaluation, given by lifetime reproductive success, is, therefore, an emer-
gent property of the system and depends on the pattern of interactions individual organ-
isms are subject to. Consequently, Darwinian evolution is very general, and while it is
the sole process that is universally accepted as producing adaptations over time and thus
being able to give rise to CCS in biology, it can become active wherever there is variation
in reproductive success correlated with some variation in traits, whatever the source or
nature of the reproduction in question - chemical, technological, biological or social. This
performance evaluation is bound to an individual as a whole because only individuals
reproduce.

Trait discovery in Darwinian natural selection is generally driven by mutation and
recombination of heritable traits. The latter is, in sexually reproducing organisms, a
costly process that must be maintained by significant long-term advantages - the ability
to mitigate mutational meltdown and a generally faster concentration of advantageous
traits in single individuals probably among them [Stearns and Hoekstra, 2005]. Because
these processes are bound to reproduction events and generally exclude acquired traits, this
gives rise to discernible lineages with distinct properties over time, which is the ultimate
cause for the tree structure of relationships between all living things.

Another consequence is that the trait memory of the system can be associated with
individual organisms and lineages, but can also become communal through sexual re-
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production or horizontal gene transfer [C. R. Woese, 2002]. Independent of the exact
mechanism of inheritance, the traits in the population at any given time only represent
the traits that allowed for reproduction in the past, with any past non-reproductive traits,
even if they would be useful now, being excluded via reproduction-bound inheritance.
Moreover, this creates the restriction that any mutational change to a trait must still
allow for reproduction. Thus, natural selection produces structures that are characterized
by compromises and suboptimal (by human judgment) or overly complex elements that
an intelligent engineer would arguably not be inclined to accept.

Based on the system properties underlying natural selection, we proposed birth-death
processes as a fundamental modeling tool for evolving populations and used them to
discuss neutral evolution, i.e., the case where there is no correlation between traits and
reproductive success. Under simplifying assumptions in asexual populations, the proper-
ties of neutral evolution have been discussed along the lines presented in Nowak [2006].
An important result is that the rate at which neutral traits become fixed in a population
only depends on the mutation rate and is independent of the populationsize. Fixation of a
neutral trait does effectively erase the trait memory of the population for this trait, which
can be highly deleterious if this trait comes under selection through changed environmental
conditions. This also shows that evolutionary change in a population is possible without
natural selection.





4. Inheritance processes and the architecture of
evolving entities

4.1 An abstract concept of inheritance and self-reproduction

4.1.1 Inheritance as a dynamical system

In this chapter, we focus on the inheritance process that underlies evolution and first
present an abstract view of inheritance and self-reproduction that leads to a general
understanding of Self-reproduction entails inheritance by definition because it implies that
the produced entity resembles its parent. In general, inheritance is imperfect, although the
error rate may be very low. Therefore, any self-reproducing entity is faced with the problem
of how to transmit heritable traits to its offspring in a reliable enough manner, which can
be seen as a mapping of traits from parent to offspring plus some limited variation. We
thus interpret inheritance as a dynamical system I that operates on the set of possible
configurations of heritable traits H . We note that while such a system can in principle
be formulated, the natural inheritance processes are generally way too complex to be
analytically tractable, and so the formulation presented here is only used for illustration
purposes and to highlight the necessary properties of self-reproducing systems as they
emerge from the underlying assumptions of evolutionary theory.
Initial dynamical systems formualation of inheritance Upon reproduction, a config-
uration of heritable traits h ∈ H is transmitted to an offspring organism in a possibly
modified way to yield a new configuration h′ ∈H . This process, here called I must keep
the parent organism functional by assumption. Therefore, a copy must be created:

I = (DI , H ×H , T, )

DI : H ×H × T →H ×H × T : (h, 0, t) 7→
(

h, h′, t′) , t′ > t
(4.1.1)

where DI denotes the copying process of heritable information1 h onto another configu-
ration h′ and T ⊆ R denotes time. In the case of discrete generations, these can be used
to measure time, T ⊆ N. Here, we used 0 ∈H as a placeholder variable for the offspring
organism.

Because we did not specify the properties of h and DI any further, there are no a priori
restrictions on what causes transmission errors. Neither is there any restriction as to
what constitutes heritable information. Indeed, Darwin formulated his theory of natural
selection without knowledge of the material basis of, or the laws underlying inheritance.
Consequently, the logic of natural selection (and by extension neutral evolution) applies
irrespective of the nature of heritable information, as long as Lewontin’s three principles
1 For now, we use the term “information” in its colloquial meaning, but will later introduce it more

thoroughly.
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can be established for a given system (compare section 3.3). The standard assumption is
that transmission errors are causally independent of the structure and content of heritable
information that is transmitted as well as independent of the effects they have, i.e., they
are considered to occur “randomly”, and are therefore modeled by a stochastic process
[Ridley, 2004]. This makes Equation 4.1.1 a stochastic dynamical system, a notion not
further explored here.

We note that this implies some form of dynamical isolation of the copying process,
during which errors are introduced, from the rest of the system, a topic we will return
to later. While this assumption is motivated by observations in nature, it is not strictly
necessary for the logic of evolution to hold.

4.1.2 Self-replication as a dynamical system

We now try to embed the inheritance process into a dynamical system’s view of self-
replication, retaining the goal of illustrating causal structures in the system instead of
aiming for quantitative modeling. Self-reproduction cannot occur in isolation but requires
an organism to secure from its environment whatever is needed to make a physical copy
of itself, as mentioned in chapter 3. These interactions are largely defined by heritable
information2 Variation between organisms in these interactions leads to natural selection
by conferring variation in lifetime reproductive success and survival.

Consequently, there exists a process that uses heritable information and material ac-
quired from the environment to create a copy of a self-replicator. This can be understood as
an interpretation process of heritable information. As will be discussed later in more depth,
the term “information” does only make sense with respect to such an interpreter process.
This process relates the output of Equation 4.1.1 to a physical structure that is capable
of self-reproduction again, whereby the latter requirement is a necessary condition for
evolution to occur. We are, therefore, attempting to elicit the architectural requirements
of a self-reproducing system.

Phenotype as physical implementation of the self-reproducing process Note that at
this point, a distinction between the self-reproduction process itself P , and its physical
implementation p is made: The latter can change in composition, as long as P remains
functional. We call the physical system p that implements the process P the “pheno-
type” and denote the set of phenotypes that implement self-reproduction P ⊂ P̂. For
completeness, the set P̂ in turn denotes all possible phenotypes p̂ that can be built
by P , including dysfunctional ones that cannot self-reproduce. Thus, we include cases
in which transmission errors during inheritance have catastrophic effects that preclude
further self-reproduction, or the reproduction process itself is erroneous and results in
defective phenotypes.

Dynamical systems formulation of self-reproduction With the set of environmental
materials E ⊂ Ê from which a phenotype p can be produced (a subset of all locally
obtainable environmental material configurations Ê ) and the set of possible heritable
information H we describe the interpreter process as

2 But see chapter 5 for an extension and modification of this tenet.
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P =
(

DP , E ×P × P̂ ×H ×H , T
)

DP : E ×P × P̂ ×H ×H × T → Ê ×P × P̂ ×H ×H × T :

(e, p, 0, h, 0, t) 7→
(

e′, p, p′, h, h′, t′′′)

(4.1.2)

Note that in Equation 4.1.2, the heritable information h′ can be modified from h by virtue
of imperfect inheritance, and consequently the newly produced phenotype p′ will generally
differ from the parent phenotype.

The environmental configuration e ∈ E can get degraded through the process of self-
reproduction to a point where it is no longer viable. Then, e′ ∈ Ê E . For a natural example
of e, think of sustenance, time and space that some animal uses to reproduce, which are,
firstly, specific to given species and secondly contain many depletable elements. Food
items for instance can typically only be used once by a given organism at a given time,
and their supply successively depletes when the population of exploiters grows.

Self-reproduction as a combination of inheritance and interpretation processes Con-
ceptually, we can further decompose DP into the inheritance process Equation 4.1.1 and
the interpreter process D̃P that produces the phenotype from the inherited information
using environmental material. We first embed DI into a more general map that includes
the environment and the phenotype:

D̂I : (e, p, 0, h, 0, t) 7→
(

e, p, 0, h, h′, t
)

(4.1.3)

and extract the phenotype producing map from DP :

D̃P :
(

e, p, 0, h, h′, t′) 7→
(

e′, p, p′, h, h′, t′′) , t′ < t′′ (4.1.4)

such that the two can be composed to yield the self-reproduction process DP again:

DP = D̃P ◦ D̂I : (e, p, 0, h, 0, t) 7→
(

e, p, 0, h, h′, t′) 7→
(

e′, p, p′, h, h′, t′′)

e ∈ E , e′ ∈ Ê , p ∈P, p′ ∈ P̂, h, h′ ∈H , t, t′, t′′ ∈ T, t < t′ < t′′
(4.1.5)

In this way, we identify self-reproduction as a process composed of transmission of heritable
information and the “interpretation” of this information that uses and generally degrades
environmental resources. We simplified this process in that only one copy is produced,
while in nature, depending on the material supply and architecture of the organism, there
can be many offspring at once of course. The ordering t < t′ < t′′ shows the temporal
succession of the processes, which here is taken to be inheritance → interpretation. Note
that this is not a necessary condition but a modeling choice, reversing the process only
changes when mutations in h take effect: A new phenotype can alternatively be created
using the existing set of heritable information h, after which h is copied and possibly
mutated, and these mutations will take effect the next time reproduction happens. We also
find that Equation 4.1.2 shows the characteristics of autocatalysis, in chemistry represented
by A + B ⇋ A + A, although in our case we allow structural differences between educts
and products, but not functional ones with respect to self-reproduction. Indeed, chemical
autocatalysis is arguably the most basic self-reproduction process we find in nature and
it thus is at the origin of biology [Hordijk and Steel, 2018].
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4.1.3 Self-replication and ecological entanglement

As said before, not all environmental configurations e an organism can encounter or obtain
from the environment are amenable to self-reproduction. A self-replicator is therefore
faced with the problem to filter out viable environmental configurations e ∈ E from Ê

or transforming unviable configurations ê ∈ Ê \ E into viable ones. Examples include
the acquisition and processing of food items, but also nest building, migration, the search
for mates and many more. The evolutionary implications of this are further explored
in chapter 6. Aside from that, organisms generally have internal conditions that must
be fulfilled for reproduction to be possible, e.g., physiological states, nourishment, or
location. Therefore, natural organisms transition within their lifetime to phenotypic states
amenable to reproduction from states which are not, and, often, back again in a cyclic
manner. This transition can be seen as yet another dynamical system, which we can
envision as the life cycle from an initial state attained after the phenotype is produced
from heritable information to a state of the phenotype and environment that supports
reproduction. Consequently, this system models behavior and the ecological interactions
organisms engage in - predator, parasite, herbivore, their entire behavior - essentially
everything that the organism does. Consequently, the structure and function of this
process is the main element on which evolution acts, because variation in this process has
direct consequences on reproductive success. Consequently, most of the textbook examples
of adaptations can be located in this subsystem. The process DP therefore contains
another subprocess L which implements these environmental interactions and transforms
the environment and the phenotype into configurations that allow for reproduction. It
can be formulated as

L = (ê, p̂, 0, h, 0, t) 7→
(

e, p, 0, h, 0, t′) (4.1.6)

where we introduced p̂ 6= p ∈ P̂ to indicate that the phenotype p, in general not able
to reproduce yet, is changed by L into a configuration p̃ which allows for reproduction,
the same we already had included in Equation 4.1.5. The same is true for e, such that
L : Ê×P̂×P̂×H ×H ×T → E×P×P̂×H ×H ×T . It’s worth emphasizing again that
in this concept environmental states and physiological states are always modified together
into a state that allows for the reproduction of the phenotype, as a direct consequence
of the fact that self-reproduction can only occur in open systems. For example, feeding
reduces and transforms the number of specific resources available, burrowing changes soil
properties, and so on. Even more deeply, the production of the phenotype traps or alters
the availability of environmental materials, which can have effects over geological times
- e.g., in the carbon cycle of earth where long-term storages like limestone and mineral
oil have biological origins. Environmental dynamics is therefore an inherent part of any
evolutionary system. With Equation 4.1.6, we now modify Equation 4.1.5 to include
ecological interaction:

L = (ê, p̂, 0, h, 0, t) 7→
(

e, p, 0, h, 0, t′)

DP = D̃P ◦ D̂I ◦ L :

DP = (ê, p̂, 0, h, 0, t) 7→
(

e, p, 0, h, 0, t′) 7→
(

e, p, 0, h, h′, t′′) 7→
(

e′, p, p′, h, h′, t′′′)

ê,e′ ∈ Ê , e ∈ E , p ∈P, p̂, p′ ∈ P̂, h, h′ ∈H , t, t′, t′′, t′′′ ∈ T, t < t′ < t′′ < t′′′,

(4.1.7)
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4.1.4 Reproduction as guided self-organization on multiple scales

In Equation 4.1.7, we modeled the process of self-reproduction as a system that creates
new instances of itself by continually drawing on the environment it exists in for energy
and resources.

Self-reproduction is conceptually inseparable from environmental changes These en-
vironmental elements of course are not inert but have their own complicated physics, which
is often capable of forming complex– and complex adaptive systems by itself.

This, once more, constitutes a dynamical system DE : Ê × T → Ê × T . Note however
that the environment relevant here includes not only abiotic elements but also biotic ones,
as discussed in chapter 3. Given this view, we find that DP and DE are coupled systems
that influence each other instead of comprising one-way dynamics. This picks up the
assertion made in chapter 2 that complex adaptive– and complex constructive systems
are generally open systems and self-reproducers fall into these categories. This coupling is
generally very complex as it can be mediated by many biotic and abiotic factors.

Given that L and DE unfold over time, we find that organisms create forcing on the
environment via L, while DE in turn modifies e in the arguments of L. We recognize this
reciprocal forcing as one of the hallmarks of a self-organizing complex system, as we already
mentioned in chapter 2. Recalling Figure 3.1, we can now identify the links that connect an
agent node to the network as a representation of the elements transformed by the system L,
i.e., L defines the ecological niche of the organism in question. The coupled system DP , DE

therefore defines the self-organized unfolding of the ecosystem network. More concisely,
environment and biology, and hence, evolution, are not dynamically separable.

Self-reproduction can be seen as guided or manipulated self-organization Next we
focus on the subprocess D̃P . As we did with L, we skipped over the details of the unfolding
that leads from (e, p, 0, h, 0, t) to (e′, p, p′, h, h′, t′). This is another form of self-organization
of matter from environmental elements and a phenotype to a transformed phenotype and
a transformed environment and a possibly imperfect copy of p. If we employ the language
of chemistry for a moment, the phenotype of the reproducing agent p thereby functions
as a catalyst for the production of p′, using e, h as reaction educts. From above, we
understand that e has its own, generally complex, dynamics, capable of independent self-
organization. It is this self-organization that p generally leverages to create a copy of
itself. In other words, biology consists of systems that “guide” the pre-existing dynamics
of abiotic systems into reliably (re)creating self-reproducing entities. Again drawing on
chemistry, we can think of the folding of proteins, RNA3 or the tendency of some lipid
membranes to form spheres or droplets in water as self-organization that is used by self-
reproducing organisms to form phenotypes or has been used in the past. Similarly, the
population of different symbionts inherent to all multicellular life [Chiu and Gilbert, 2015]
has self-organizing features which are manipulated by the host’s immune system. Indeed,
populations of cells in multicellular bodies do self-organize into tissues and organs via
a dynamic interaction network (see subsection 4.2.5). The heritable information h sets
boundary- and initial conditions and establishes forcing at each stage of the self-organized
unfolding of the phenotype [Rocha, 2001]. In this way, it assures that the self-reproduction
process creates reproductively viable phenotypes in dynamic environments, i.e., it shapes
D̃P , L in such a way that a viable configuration of the phenotype-environment system
is reached effectively. We, therefore, understand self-reproduction as a complex form
3 Ribo-nucleic acid. Analogous to DNA but uses ribose as a sugar backbone and uracil instead of thymine.
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of guided self-organization of matter [Rocha, 2001], where heritable information can be
seen as encoding a scaffolding system that guides these processes. This “guidance” is
consequently what is shaped by natural selection.

In summary, guided self-replication on the level of individual organisms reorganizes the
local environment and forms an emergent complex system, the ecosystem, which feeds back
to the dynamics of individual organisms. It does so by structuring how each individual
can interact with the rest of the ecosystem, which creates variation in reproductive success
and survival, i.e., natural selection. The self-replication process DP decays formally into
three parts which are the inheritance process DI that creates a copy h′ of the heritable
information h which is provided to the offspring by the parent and serves as the primary
guide to the self-organized creation of the phenotype p via D̃P . The latter acts by drawing
on the content of h′ in order to reorganize environmental elements e into a new phenotype
p′.

In this process, we can think of p as acting as a catalyst for self-organization, while the
heritable information h′ can be seen as providing forcing and boundary conditions, such
that the whole dynamical system produces a new functional phenotype. To be able to
unfold anew via p̂, the environment and the phenotype must reach a viable state (e, p)
first, which is represented by the process L, i.e., both are generally actively manipulated
by organisms into such a state. This process constitutes all ecological activity an organism
engages in.

Figure 4.1: Self-reproduction as outlined
in Equation 4.1.7 can be logically ar-
ranged in two ways, which differ in the
point where variation acts. Upper: The
scheme as presented in Equation 4.1.7,
where development acts on the copied
and possibly modified heritable informa-
tion. Lower: A possible alternative
is that the development process acts
on the parent’s heritable information
directly, with heritable information be-
ing processed independently, such that
variation takes effect later.

4.1.5 Corollaries

Because self-reproduction can be seen as guided self-organization, the process is dependent
on initial conditions, i.e., on variations in environmental configuration e and in heritable
variation h. Such sensitivity becomes less and less desirable the more complex p becomes
because adaptations tend to be lost via the generation of variation. We can understand this
as a lack of control, or insufficient guidance, of the self-organization process. Consequently,
we expect natural selection to increase the control over the self-organization of e into p̂
via h, i.e., natural self-replicators should be dominated by the forcing effects of heritable
information to be able to maintain complex adaptations. Because the generator process
for p̂ generally has many degrees of freedom and is nonlinear, full control over the process
cannot be generally achieved via initial conditions, because such systems tend to exhibit
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sensitive dependence on the latter. Therefore, heritable information must produce forcing
of the system at many intermediate steps, i.e., the process must be broken down into many
subprocesses with lower internal dimensionality, which are then feeding into each other.
In this manner, the problem of development becomes a problem of control across multiple
levels of organization. Moreover, we can expect this process to be able to correct at least
some variations in this unfolding such that even if material or forcing is corrupted to some
degree, a viable phenotype can still be produced. This expectation is derived from the fact
that such robustness would allow for the maintenance of fitness even under suboptimal
conditions and the creation and maintenance of more complex phenotypic traits.

There are arguably many ways in which this can be achieved. We can imagine functional
redundancy to be one of them, i.e., of the myriad ways in which elements of the process
can interact, many are equivalent. Another would be specificness, i.e., an element evolves
structurally to only be able to interact in very limited ways with others. We can envisage
both being present for different functions - redundancy provides robustness, while speci-
ficity allows for optimized adaptation to complicated conditions or the precise formation
of complex structures. With this insight, we again arrive at the notion of biological
systems as nested conglomerates of CAS and CCS. Indeed, a learning system that is
able to recognize and reproduce certain patterns of forcing from incomplete or corrupted
heritable information [R. A. Watson, G. P. Wagner, et al., 2014] would arguably constitute
the upper end of the robustness spectrum.

Robustness via some form of buffering against harmful variation can happen in many
ways, however. Examples include changing the local environment actively (called “niche
construction” [Odlin-Smee et al., 2003] or “ecosystem engineering” [Jones et al., 1994],
compare also subsection 4.3.2 and chapter 6), internalizing physical conditions into p,
which arguably happened with endothermy or placental embryogenesis and which trans-
fers elements of the reproduction process that where originally part of the surrounding
ecosystem into elements of the phenotype which eventually become directly heritable
[Laubichler and Renn, 2015; E. Danchin, Pocheville, et al., 2018], or by adapting the
dynamics of L to changing environmental conditions during the existence of p - a process
called “phenotypic plasticity” [Pfennig, 2021; Sommer, 2020]. Phenotypic plasticity takes
on many forms, from the thicker pelt some animals get in winter to the formation of
defensive structures as a response to predators [Agrawal et al., 1999] to learning from
experience. It can affect both L (which is the part normally meant by “phenotypic
plasiticity”) and D̃P (which is normally separated into “developmental plasticity”, [Gilbert
et al., 2015], compare chapter 5).

As mentioned, variation in L between organisms can give rise to natural selection.
Because the functional structure of L is strongly influenced by how h impacts the gen-
eration process D̃P , natural selection will act to modify the distribution of heritable
information in the population in favor of those L which are more efficient and more
effective. Therefore, while the self-organization process that creates the phenotype will
evolve to be more tightly controlled by heritable information, we expect the efficiency
and effectiveness of L to increase by using more environmental cues to optimize its
functioning on the fly (plasticity), by controlling environmental factors directly through
modification (niche construction [Odlin-Smee et al., 2003; K. Laland, Matthews, et al.,
2016]) or by progressive internalization of variable but essential environmental elements
into the heritable information of the organism (Laubichler and Renn [2015] and E. Danchin,
Pocheville, et al. [2018] and references therein, also compare chapter 5).
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Adding evolutionary continuity, exaptations and cooption to these concepts, we can
expect the dynamical system DP to feature a nested, networked architecture that becomes
deeper throughout evolution with its core elements being essentially universal to all self-
replicating systems derived from a common ancestor, a concept that is explored more
deeply later in subsection 4.2.6 and chapter 5. Consequently, we expect at least the
basic system for constructing a phenotype to freeze out and evolve only extremely slowly,
with further evolution being largely confined to the higher levels of the organizational
hierarchy. Finally, where tighter control in order to limit harmful functional variation
cannot be achieved, we should expect the process to evolve towards buffering unavoidable
variation - e.g. through redundancy in heritable variation, or degenerate dynamics which
maps many variants of some heritable forcing to the same effect in the phenotype.

4.1.6 Heritable information

Definition of heritable information Before discussing natural incarnations of the scheme
presented in subsection 4.1.2 and subsection 4.1.4, we must clarify the nature of heritable
information. Until now, we only postulated that it depends on the presence of an inter-
preter process that reacts to it non-randomly, but otherwise used the term “information” in
its colloquial sense. There are at least two ways to approach this problem. The first is the
physical one, pioneered by Shannon [1948], from whom we have the expected information
content of a measurement of a random variable X

H = −
∑

i

pX(x) logb (pX(x)) (4.1.8)

with b being the logarithm base of choice, pX(x) being the probability that an event
x ∈ X occurs, and −logb (pX(x)) is the self-information of the event x. In that way, H
can be interpreted as the average information obtained from a message, i.e., the lower
the probability of a message to occur, the higher its self-information [Werner, 2008]. This
definition renders information as a physical quantity closely related to thermodynamical
entropy [Shannon, 1948]. As such, it does not include any notion of meaning or inter-
pretation. The concept of information we need here, however, is one that explicitly takes
into account its effect on a receiver, because we ultimately wish to arrive at a definition
of heritable information h which is central to the self-reproduction process. Therefore,
we understand information semantically - as some pattern that leads to a change in
other patterns [Casagrande, 1999]. We can interpret the changed pattern as a receiver
of information and the process that elicits this change as interpretation. Both patterns
in the above concept are ultimately physically encoded. However, there can be many
such encodings leading to the same changes in a receiver, and therefore it makes sense to
conceptually distinguish information from its encoding, although nature always operates
on the latter.

From this discussion, we can pick up on “biological information” as defined by Jablonka
[2002], p.582: “A source - an entity or a process - can be said to have information when
a receiver system reacts to this sources in a special way. The reaction of the receiver to
the source has to be such that the reaction can actually or potentially change the state
of the receiver in a (usually) functional manner. Moreover, there must be a consistent
relation between variations in the form of the source and the corresponding changes in the
receiver.” They go on to clarify “[...] form is the organization of the features and/or
the actions of the source, and specifically those aspects of organization with which the
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receiver interacts[...]” and “[...] the processes in the receiver that result in a regular and
functional response will be called ‘interpretation‘[...]”. This is largely congruential with
the definition of information used above, so in fact, although Jablonka [2002] only refers
to biological information, there is no apparent restriction that would limit this definition
to biology.

We specialize this definition to a semantic definition of heritable biological information
in the following way: Given a set of self-replicating entities, heritable information is all
(biological) information that can be transmitted from one generation to another and for
which variation in transmitted content can elicit systematic variation in the offspring’s
structure or function, which itself can further be inherited by future generations. In
other words, heritable information is biological information transmitted within a lineage
of reproductively connected organisms that can influence the structure or trajectory of
dynamical systems L and D̃P . Heritable information is thus a special case of biological
information associated with specific transmission and interpreter processes.
Corollaries The above definition does not include any notion of the origin of heritable
information, nor does it specify its physical encoding system. It merely states that there
is a process that transmits biological information sensu Jablonka during self-reproduction
which, in turn, influences the organization of the offspring organism. It follows that
heritable information is associated with specific lineages of organisms and is transmitted
vertically from parent to offspring. This mode of transmission of biological information
we call “Darwinian”, in accordance with the “Darwinian Transition” from horizontally
dominated to vertically dominated information exchange during the evolution of cells as
proposed by C. R. Woese [2002].

However, the definition also allows non-heritable biological information to be trans-
formed into heritable biological information. For example, horizontal gene transfer can
change the genome of a bacterium which then is copied and transmitted to its offspring
bacteria [Stearns and Hoekstra, 2005; Koonin, Makarova, et al., 2001], while at the same
time influencing the bacterium’s phenotype. Communication between adult organisms can
modify their behavior and in turn is picked up by their offspring, a phenomenon common
in social mammals. This transformation of non-heritable to heritable information can cross
the chasm between encoding systems, as the Baldwin effect exemplifies [Baldwin, 1896;
Badyaev, 2009]. Here, a behavioral trait that has originally been acquired by organisms
during their lifetime as a reaction to some environmental state change becomes eventually
genetically encoded and is subsequently inherited by future generations without the need
for the original environmental signal that elicited the original behavior.

Therefore, the system described by Equation 4.1.7 has to be modified to accommodate
the possibility of this assimilation of acquired information:

L =
(

ê, p̂, 0, ĥ, 0, t
)

7→
(

e, p, 0, h, 0, t′)

DP = D̃P ◦ D̂I ◦ L :

DP =
(

ê, p̂, 0, ĥ, 0, t
)

7→
(

e, p, 0, h, 0, t′) 7→
(

e, p, 0, h, h′, t′′) 7→
(

e′, p, p′, h, h′, t′′′)

ê,e′ ∈ Ê , e ∈ E , p ∈P, p̂, p′ ∈ P̂, h, h′ ∈H , t, t′, t′′, t′′′ ∈ T, t < t′ < t′′ < t′′′,

(4.1.9)

Because the above definition does not specify any single encoding system, in principle
it is possible to have multiple encoding systems for heritable information at the same
time, although we lumped them all together into a single variable in subsection 4.1.1 and
subsection 4.1.2 for simplicity. However, h can generally contain elements that are of
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vastly different physical nature but play a similar role in self-reproduction. The obvious
encoding system we always think about in evolutionary theory is of course the genetic one,
but cultural content learned from parents, peers or other members of a social group can
similarly influence an organism’s phenotypic development, as can environmental artifacts
and conditions chosen or altered by earlier generations. More generally, environmental
conditions can lead to developmental changes (recall the discussion of the dynamical
system L above), which can be transmitted to future generations or can become encoded in
the heritable information eventually. Heritable information consequently comes in different
“classes”, which, via their underlying physical structure, show varying degrees of stability
against transmission errors and over which an organism has variable degrees of control.
Along the same line, these classes can be monopolized by a single lineage to varying
degrees.

Recalling that heritable information by definition leads to structural or functional
changes in the receiver, and given that these effects can be adaptive and expensive to
express and maintain, the more important consequence of monopolization appears to be
the degree of control a lineage can exert over its heritable information. This can also be
taken to include the stability of the encoding system – the more stable the encoding, the
less uncontrollable transmission errors we can expect to happen. Consequently, heritable
information can be qualitatively classified according to the degree of controllability by
its carrier, split into the stability of the encoding structures first and the degree of
monopolization its carrier lineage has second.

Different encoding systems for heritable information that has different effects can also
lead to coevolution between them. Coevolution will arise whenever the presence of one
trait influences natural selection acting on another trait. Concerning different encoding
systems, gene-culture coevolution is perhaps the most striking example of such coevolution,
with human evolution towards higher lactose tolerance in reaction to the advent of dairy
farming being its most outstanding instance [K. N. Laland, J. Odling-Smee, and Myles,
2010]. Though most apparent in humans where culture is most developed, we find similar
instances in other organisms [Whitehead, 2017; Whitehead et al., 2019]. Generalizing this
idea, we would expect a network of coevolutionary interactions between traits governed
by different encoding systems. Finally, assuming an autonomous origin of self-replication
makes it probable that different inheritance systems arose at different times, and that,
consequently, the most ancient ones are universal across the tree of life. More generally, the
emergence, or disappearance, of different inheritance systems can, but is not required to,
be associated with branching events in evolutionary history. Again, cooption of structures
that may originally have had another function or no function altogether arguably played
a major role in the formation, maintenance and shaping of inheritance systems.

4.1.7 Self-reproducing architectures

The question of the fundamental architecture of self-reproducing entities has been long-
standing, tied as it is to questions about complexity and open-endedness in evolution. As
such, we ask how a biological CCS must be constructed in order to allow for the continuous
creation of new adaptations or the formation of novel complex structures. Throughout
this thesis, we assumed self-reproduction to emerge and be maintained autonomously, i.e.,
without any guidance or dynamical influence outside of what is represented by Equation
4.1.7. The arguably most important part of any CCS is the trait memory structure because
it is the fundamental element on which trait discovery and performance evaluation act. It
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must be noted that the inheritance process I was largely kept abstract in subsection 4.1.1.
We did not make any assumptions on how transmission happens, nor did we prescribe
any encoding system. On this abstract basis, the following section discusses possible
architectures that could implement the system in Equation 4.1.7.
Template-based reproduction Rocha [2001] discusses two possible architectural prin-
ciples, based on von Neumann [1966] and [Pattee, 2012b; Pattee, 2012a]. The first
is template-based reproduction, which we can understand as “reverse engineering” or
reproduction by self-inspection. The principle is that the produced structure, p in the
outline above, does function as an encoding system of heritable information and as an
interpreter process at the same time. In the scheme outlined above, there is no difference
between I and D̃P in such a case, rather, heritable information is encoded in the structure
of p directly. Therefore, h is not separate from p either. Natural examples include prions
[Prusiner, 1998], which refold healthy proteins into their own shape, but also ribozymes
[Scott, 2007], autocatalytic RNA molecules which play an important role in the RNA world
hypothesis for the origin of life. More generally, this mode of reproduction includes all
autocatalytic chemical reactions and thus constitutes the primordial mode of reproduction
before the emergence of translation. An influential theoretical example is the hypercycle
[Eigen and Schuster, 1977], which builds on the idea of stacked (auto-)catalysis as a
precursor to cellular life.

For a deeper consideration, we recall that self-inspection-based reproduction, like all
reproduction, must operate on some material substrate that is reorganized into the self-
reproducing configuration. Adding autonomous unfolding, this means that self-reproduction
is an emergent process, with the only currently known properties being that it allows for
“complex enough” interactions among its elements to allow for this emergence. When and
under what circumstances this is the case is by no means obvious, but this question goes
far beyond the scope of this thesis. We thus postulate the existence of such a material
substrate, picturing organic chemistry as its most natural example.

In this way, we understand self-reproducing systems as autocatalytic interaction net-
works. Consequently, self-reproduction is encoded in the structure of the system - the
particular arrangement of interactions that enable autocatalysis - just as much as in the
particular composition of elements it is made up of. Finally, this leads to the question of
how control over the self-organization of material into a copy of such a system is achieved,
and to what limits it is subject to. Rocha [2001], building on the idea of dynamical systems
describing self-organization, frames this as a problem of recovering the initial conditions
under which the autonomous self-organization process of material yields a copy of the
particular self-reproducing structure. Taking into account that these initial conditions
must be recovered from the fully articulated system, they then go on to posit that this
limits the complexity such structures can attain because the self-organization of complex
structures is generally not uniquely invertible (i.e., these systems are dissipative), such
that the heritable information needed is lost in a template based scheme.

Aside from this, the conflation of heritable information and functionality results in
conflicting selection, assuming that at some early stage in the evolution of these structures,
there is variation in both: Adaptations for a given environment should be preserved under
imperfect reproduction, so more stable, less dynamic configurations would be favored
(compare the above discussion of evolution towards robustness). Because structure and
encoding are identical in template-based reproduction, this would yield a self-organization
process with a strong attractor and a large basin of attraction. In turn, this limits
evolvability, such that adaptation to environmental changes is strongly restricted.
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Furthermore, while template-based reproduction might be possible for comparably sim-
ple molecular entities like proteins for RNA sequences, the complexity of even the simplest
cells we know of today would be impossible to evolve with such a system due to the
multitude of intertwined and co-dependent subsystems these have. This holds even when
we go beyond the notion of autocatalysis and envisage a system where some factory
system builds new instances of another entity via inspecting existing ones, i.e., reverse
engineering in the proper sense of the word. In such a system, the initial and boundary
conditions needed for the factory to produce an exact copy must be recoverable from a
fully articulated form, which is generally not possible for complex, dynamic arrangements
as mentioned above. Paralleling the above discussion, the system ought to either remain
simple enough for this to be possible or so general that essentially all possible trajectories
yield the same attractor, which severely limits evolvability. Note that in such a system,
complex structures still can form along the lines presented in subsection 2.3.2, but this
does not alleviate the restrictions on evolvability discussed before, it merely pushes them
further up the organizational ladder.
Code-based reproduction As an alternative to template-based reproduction Rocha
[2001] discuss how a self-reproducing system can be physically split into heritable informa-
tion encoded in some separate physical system(s) on the one hand and its interpretation
that is created from environmental material by a separate process. The latter uses
initial- and boundary conditions and forcing provided by heritable information. We can
identify the encoded heritable information in Equation 4.1.7 with h, the created material
interpretation with p and the self-organization process with D̃P . Following Rocha [2001]
further and restricting ourselves to the most simple cases, e.g., the ones probably prevalent
at the origin of life, we find that D̃P depends on the properties of the material e that
reorganizes into p: The structures p can attain depend on the dynamics of the elements
of e. Heritable information restricts, or controls, these processes such that they result
in a functional copy of the replicator, but only with respect to the physical dynamics of
these “building blocks”. Therefore, there is no analogon to Turing-completeness [Turing,
1952] in biology, i.e., there is no singular material system that can be used to create any
arbitrary phenotype. Rather, every material system on which guided self-organization
unfolds will be subject to intrinsical physical limitations. In molecular biology, we can
identify the building blocks with amino acids, and the self-organization process that yields
the phenotype consequently starts with the folding of amino acid chains into proteins,
which further organize into more complex structures within cells.

The fundamental difference that separates cellular self-reproduction systems from template-
based reproduction is the encoding of heritable information into a structure separate
from p. Employing the simple molecular case as a guideline, we find that h plays no
direct mechanical role in D̃P , but rather represents the elements that do, through the
codon-amino-acid correspondence. Consequently, we can think of DNA4 as a “symbolic”
representation of the initial conditions for protein folding, namely the amino-acid chain.
This representation follows certain rules, like the Adenine-Thymine and Cytocine-Guanin
correspondence for base pairs or that three base pairs make a codon representing an amino
acid. This, Rocha calls “syntactic”, as opposed to “semantics”, i.e., D̃P , implementing the
semantics, creates a physical system using this symbolic representation that itself only
follows syntactic rules.
4 Desoxyribo-nucleic acid. Macromolecule made up of a sugar-phosphate backbone with one of four bases

(adenine, thymine, cytosine, guanine) attached to it, used in long chains to store genetic information in
cells.
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Figure 4.2: A: Self-reproduction as conceptualized in Equation 4.1.9. The dynamical
systems L, D̃P , DI are all implemented by the phenotype p̂ in conjuction with the heritable
information h. The latter provides forcing and boundary conditions on these systems.
L thereby represents the interactions of the phenotype p̂ with its environment ê and
transforms both into a state e, p that is amenable to the reproduction of p. Heritable
information can have a restricting role in this process, but it can also be modified, ĥ →
h. Self-reproduction then proceeds via inheritance DI , which at least partly processes
symbolic representations, and construction of a new phenotype p′ from environmental
material, restricted and guided by inherited biological information. Inheritance is not
perfect, and transmission errors can lead to phenotypic differences, creating a variation on
which natural selection can act. Reproduction always influences the environment at least
via material usage. B: Without a syntactic-semantics split of at least parts of the heritable
information, D̃P and DI are conflated, which does entail reduced evolvability due to a
lack of universality and evolutionary conflict due to the aforementioned conflation of roles.
Changes to the phenotype due to environmental interaction are the sole source of variation
in this system and can be inherited by offspring. In nature, both extremes are generally
mixed, because heritable information is partly symbolically encoded (genetic, partially
cultural) and in other parts, it is conflated with functional structures (e.g., environmental
or heritable symbionts).
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Syntactics and semantics in code-based reproduction We recognize that DI is only
concerned with syntactics, not with semantics. More than that, given a certain encoding
scheme, e.g. the genetic encoding of amino acid sequence or the syntactic rules of our
languages, the complexity of the semantics is irrelevant for DI . It only needs to be capable
of processing symbols following the syntactic rules, e.g., the base pairs and codons, or the
syntax rules of a language. If this is achieved, any “message” can be processed, irrespective
of its content. This allows us to define a notion of universality for the syntactic system DI ,
i.e., it is universal with respect to some encoding system if it can process any arbitrary
message encoded in this scheme.

This restricts encoding schemes used for universal syntactic systems to those that have
many more or less equivalent stable states, i.e., a system that has a strong local attractor
would not be usable because encoded messages would eventually decay into this attractor,
thereby losing the message’s content.

Furthermore, natural syntactic systems do not make use of the full breadth of dynamics
of their respective encoding system but use only a subset of it. For instance, we can
produce a lot more sounds than are used in any of our languages. Especially with regard
to DNA, it has not been fully resolved if the particular code and its material substrate are
the product of natural selection or a frozen accident [Ridley, 2004; Vetsigian et al., 2006;
Koonin and Novozhilov, 2017].

Focusing on semantics again, we find a similar notion of universality. An interpreter
process is universal with respect to an encoding system if it can process any message
composed in this system, i.e., it translates arbitrary messages into forcing and boundary
conditions for phenotype creation. With an imperfect copying process in DI , such a
system can yield open-ended evolution within the confines of the physics underlying the
self-organization process D̃P and the symbolic system that makes up h. In this way,
a self-reproducing system that employs separate semantics and syntactics that attained
universality with respect to some encoding scheme of heritable information is far more
powerful than the template-based replicator discussed above, where semantics and syn-
tactics are implemented in one and the same physical system. We thus gained insight into
possible organizations of biological CCSs trait memory and their implications, showing
that these are subdivided into more and less powerful subclasses with weaker and stronger
evolvability.
The von Neumann universal constructor as a prototype for code-based self-replication
Such a system has been implemented in nature at the basis of the genetic system and
constitutes the basic function of a simple cell. Prior to the discovery of this system, it was
developed theoretically by von Neumann [1966], who discussed the idea of self-reproducing
automata. His concept splits the self-reproducing automaton into four parts, which we
can identify with the elements presented in Equation 4.1.7 and Figure 4.1.

The first element is a universal copier, which we can identify with the process DI ,
that is solely concerned with copying the heritable information h into the new replicator
without caring for its semantics in any way. Next is a universal constructor that is
capable of reading any instruction set and turning it into a copy of the entire automaton
by using available material. Third is some functionality within its environment that
allows for the acquisition of resources for reproduction. Lastly, an element is needed
that governs the order in which the individual subprocesses are executed, which is called
a developmental program in Figure 4.3 and Rocha [2001]. It must be noted that the von
Neumann automaton uses its heritable information as a blueprint for the constructor
to read and execute, which differs from the approach discussed above. Instead of a
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Figure 4.3: The axiomatic concept of a self-
replicator von Neumann envisaged consists
of four different parts, a universal construc-
tor able to decode any description Φ (B), a
universal copier able to copy any description
(A), a developmental program (D) that co-
ordinates the replication process and addi-
tional functionality (F), e.g. metabolism. If
augmented with an encoding for each of the
subprocesses Φ (A, B, D, F ), the system is
capable of evolving arbitrary complexity by
accumulating mutations, Φ→ Φ′. Shades of
red from bright to dark indicate a possible
temporal sequence in which the developmen-
tal program organizes reproduction.

blueprint, h is understood to provide dynamical restrictions to a self-organizing system
in the concept presented here. Hence, we identify the developmental program and the
universal constructor in von Neumann’s concept with the “interpreter” process D̃P . This
encompasses the construction/self-organization process and one part of the developmental
program, with the other being supplied by the restricting influence of h. This conflation is
necessary because within von Neumann’s concept, heritable information has no dynamic
role, it is only copied by the copier and read by the constructor. In contrast, the idea that
it provides forcing for the unfolding process of the D̃P in addition to boundary conditions
assigns it an active role in the dynamics of the process, i.e., the activation of specific parts
of h at given times activate specific elements of D̃P and vice versa. Finally, we readily
identify the functionality part F in Figure 4.3 with the process L in Equation 4.1.7. The
cell cycle of natural cells therefore can be identified with D̃P ◦ L.

It is remarkable how well this concept fits the basic architecture of living cells, which
have distinct mechanisms for transcription of DNA and translation into amino acid chains
which fold into proteins largely by self-organization, and which across all known in-
stances feature strong similarities in the genetic code. Moreover, the basic components of
transcription and translation processes are also extremely similar across the tree of life,
although there is astonishing diversity in the functional capabilities and ways organisms
interact with their environment.

From a computational point of view, von Neumann’s scheme can be interpreted as a
Turing machine, where the encoding system specifies the instruction set it operates on.
That being said, natural organisms are far more complex than von Neumann’s scheme,
and the fact that heritable information plays a more active role in reproduction than
that of a blueprint or instruction set places limits on this analogy. Heritable information,
as discussed in Equation 4.1.6, comes in many shapes and forms, some of which have a
symbolic encoding system in which semantics and syntactic are separated while they are
conflated in others.

Additionally, a semiotic split between syntactic and semantic processing brings also
control over the construction- and developmental process by allowing for the fine-grained
specification of timing and forcing. This is essentially impossible to achieve in a template-
based system because the exact trajectory that must be followed to arrive at a particular
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attractor is not accessible anymore from the fully developed structure. Therefore, when
trying to classify inheritance systems according to their controllability, the presence of this
semantic closure [Pattee, 2012b; Pattee, 2007] is a useful empirical criterium. All in all,
we conclude that the concept as presented in Equation 4.1.7 and Equation 4.1.9, which is
largely parallel to von Neumann’s system, is a useful and correct abstraction for discussing
biological evolution, which by extension makes cells its fundamental building blocks.
Of special importance is thereby the concept of evolution as guided self-organization
introduced by Rocha, which we will use as a guiding principle throughout the rest of
this thesis. This insight also allows us to fill in some gaps left in the concept of biological
CCS, in that we now understand how their trait memory must be organized in order to
allow for arbitrary adaptations and the emergence of complex structures from simpler
ones.

4.2 Genetic inheritance

Genetic inheritance has been found to underly the entire domain of life, with closely related
encodings, construction and copying processes having been found in every organism on
the planet. This not only provides evidence for a common ancestry of all living things
but also tells us that the biosemiotic separation between syntactics and semantics and
the associated symbolic encoding arose early in life’s history, and especially before the
emergence of LUCA5, although it might have been a lot more evolvable during these
early phases than it is today. Genetic inheritance is also the only inheritance for which
a fully formed, universal biosemiotic system exists - the mechanisms for transcription
and translation within cells are such that they can process any genetic sequence within
the boundaries of the underlying genetic code. It is beyond the scope of this thesis to
discuss the origin or biochemical details of the genetic machinery. Rather, this discussion
emphasizes the role the genetic system plays within the self-replicating system discussed
before.

4.2.1 Genetic encoding of heritable information

All cellular organisms, and consequently all multicellular organisms as well, use DNA
(Deoxyribonucleic acid) as the material basis for encoding heritable information.

Base-pairing as the lowest layer of semantics DNA is a macromolecule consisting of
two parallel strands, each of which is made up of a sequence of “nucleotides” [Ridley,
2004]. Each nucleotide contains two parts - a sugar-phosphate backbone and a base.
There are four bases in DNA - adenine (A), thymine(T), cytosine(C) and guanine(G).
The DNA double strand is formed by pairing nucleotides in a specific fashion - A is
paired to T and C is paired to G. Together, the two strands form a complementary
double-helix structure [J. D. Watson and F. H. C. Crick, 1953]. The two strands run
anti-parallel, which is important for DNA replication, see subsection 4.2.2. The direction
is counted using the numbering convention of the carbon atoms in the ribose ring, with
the phosphate group being attached to the 5′ end, while the 3′ still has its unmodified
OH-group. Heritable information is encoded in the sequence in which the nucleotides
occur in the DNA molecule. The complementary nature of base-pairing provides the first
5 Last Universal Common Ancestor, i.e., the youngest organism to which all living things today are related.
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layer of syntactics. It also means that the two strands of DNA are redundant – they
contain the same information. As Rocha [2001] mentions, the chemical structure of the
DNA with its repeating elements, bound together in the same way, makes sure that there
is no preferred sequence that the molecule will tend towards, allowing for the encoding of
arbitrary content6. Furthermore, the hydrogen bonds of the base pairs, while individually
comparatively weak, are cumulatively strong enough to hold the double helix together
while at the same time allowing for their frequent breaking and reforming via enzymatic
activity.

Codons as the fundamental element of genetic semantics Above the level of individual
nucleotides, the DNA molecule is divided into codons - triplets of bases which each
represent an amino-acid [Klug, 2012; Ridley, 2004]. This is the main syntactic level of
genetics and the one where symbolic representation is implemented. Because we can build
43 = 64 codons from the four nucleotides, but there are only 21 amino acids from which all
life builds proteins [Ridley, 2004], this code is degenerate, with multiple codons encoding
a single amino acid [Koonin and Novozhilov, 2017; Ridley, 2004]. Codons have some
internal substructure, with the first two nucleotides being more specific to the amino acid
it encodes, while the third generally is more variable. Moreover, substitution in the first
nucleotide generally leads to the substitution of a related amino acid, which typically still
leads to a functional protein [Ridley, 2004]. Secondly, not every amino acid is encoded by
the same number of codons; some are represented more often. This structure of the code
entails a great deal of redundancy and structural optimization. Indeed, it has been shown
that the code shows significant error-minimization properties that are interpreted as the
result of evolution [Koonin and Novozhilov, 2017]. While this seems to lend credence to an
evolution of the genetic code via natural selection [Vetsigian et al., 2006], the possibility
of it being “just” a frozen accident remains [Ridley, 2004], although these two alternative
hypotheses need not be mutually exclusive. As with many questions in evolutionary
biology, the answer might not be one or the other, with an initial codebase possibly
emerging from high levels of horizontal transfer of elements of the syntactic and semantic
machinery, which then are optimized once a code had been, at least locally, become fixed
[C. R. Woese, 2002; Goldenfeld and C. Woese, 2011].

Genes as the second fundamental syntax layer of the genome The next syntactic level
consists of genes, sequences of codons that represent a single sequence of amino acids that
folds into a specific protein, or parts of them [Ridley, 2004]. While codons are made up
of three base pairs that code for a single amino acid, a protein can be made up of several
hundred amino acids or more [Ridley, 2004]. Genes have no internal syntactic element that
separates one codon from another. Because the reading frame is only determined by the
codon length of three bases each, the system is particularly vulnerable to mutations that
delete or insert a nucleotide, since the entire reading frame from this point on is shifted
[Stearns and Hoekstra, 2005; Ridley, 2004]. The genes themselves are, however, separated
by stop codons. The amino acid sequences provide additional redundancy because not
every amino acid is equally important for the final shape and function of the protein they
are a part of. Consequently, some errors in codons that change an amino acid can be
tolerated without loss of function of the encoded protein. Genes therefore can come in
different variants which are located at the same point in the genome and encode proteins
with the same general function, but with more or less small variations. These variants
6 While this is true in general, C-G bonds are somewhat stronger than A-T bonds because they form three

hydrogen bridges instead of two and are consequently more stable.
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are called alleles. Often, population genetic models of evolution are concerned with the
evolution of the frequencies of different alleles.
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Figure 4.4: A: DNA is made up of a chain of sugar (Desoxyribose) -phosphate backbone to
which one of four bases - Adenine, Thymine, Cytosine, and Guanine is bound. Together
with their sugar-phosphate element, bases form nucleotides. In DNA, the bases form
hydrogen bonds with their respective complementary base, Thymine for Adenine and
Cytosine for Guanine. While Adenine and Thymine form two hydrogen bonds, cytosine,
and guanine form three, which yields more stable bonding. The two strands of the DNA
molecule are anti-parallel. B: While individually weak, the number of bonds formed bind
the DNA strands stably together into a double-stranded helix structure. Strands form long
macromolecules of often millions of base pairs. Within protein-coding regions, three bases
form a codon that codes for an amino acid. This forms the primary syntactic structure of
the genetic encoding system and implements the genetic code. C: Genes are subsequences
that code for proteins or RNA. In eukaryotes, the coding regions (Exons), are interspersed
with non-coding regions (Introns) which are cut out (spliced) during product synthesis.
Aside from Introns, there are other kinds of non-coding DNA, e.g., transposable elements
or dysfunctional virus genomes and more.

In prokaryotes, the genome is comparatively simply organized with genes being largely
self-contained, while in eukaryotes, genes are not closed sequences of nucleotides that code
for a gene in one unbroken chain but are divided into introns, elements that take part in
syntactic dynamics but not in semantics, and exons, subsequences which take part in
both the syntactic and semantic system [Klug, 2012]. This creates complications because
it subdivides a gene into many units that can be put together in different ways. This
“alternative splicing” occurs in eukaryotes [Klug, 2012] and endows the genetic system
with additional degrees of flexibility, because one gene can be employed to code for a
variety of related proteins, thus increasing the number of proteins that can be encoded for
a given genome size at the prize of regulatory complexity. Therefore, eukaryotes possess an
additional layer of syntax in their genomes that is absent in the genomes of prokaryotes,
and which increases their encoding capabilities. Not all genes code for proteins, some
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indeed code for RNA which is a central element in the transcription and translation process
[Ridley, 2004] (see below).
Non-coding DNA and chromosomal organization A large amount of the DNA of many
organisms does not consist of genes at all, i.e., does not encode amino acid sequences, but
can have different functions, not all of which are understood yet [Castillo-Davis, 2005]. For
instance, some non-coding DNA plays a role in gene regulation, but other non-coding DNA
contains ancient viral genomes or transposable elements which are either non-functional or
are mostly thought to be DNA parasites. Importantly, non-coding DNA can be a source
of novel phenotypic traits through exaptation [Fagundes et al., 2022]. In particular, it
has been proposed that transposable elements play an important role in the evolution
of gene regulatory networks [Feschotte, 2008]. In general, we consequently find that at
least for more complex cases, the syntactic dynamics of the genetic system, operating
on the molecular dynamics of DNA and RNA, implements a myriad of interactions that
in their richness can be likened to the ecosystems formed by cellular life [Venner et al.,
2009].

Finally, DNA is organized into multiple chromosomes in eukaryotes, while prokaryotes
only have one circular chromosome and possibly a number of plasmids which contain
smaller amounts of genetic material. Chromosomes are distinct large-scale DNA-protein
complexes located in the cell’s nucleus which contain the DNA of the cell in a folded-up
form. This level of organization is missing in prokaryotes, where DNA is located within the
cytoplasm and lacks the sophisticated folding and structuring that eukaryotes use.

While not strictly a syntactic element of the process, the chromosomal organization
is nevertheless an important part of the transfer of heritable information, ultimately
underlying Mendelian inheritance in diploid eukaryotes. Aside from the nucleic DNA
in eukaryotic nuclei, their organelles have their own DNA, e.g., mitochondria. The genetic
heritable information within a cell, therefore, is usually not fully concentrated within its
chromosomes. The entirety of the DNA within a cell7 is called its genome, while the set
of proteins the organism can produce is called its proteome.

4.2.2 Syntactics – Genome replication

The syntactic processing system of DNA includes much more than the reading and copying
of genetic information, e.g., proofreading or active error correction [Klug, 2012] which we
only mention in passing here. It must be noted that the origin of DNA as information
carrier and of its associated syntactic processes cannot be regarded separately. In a way,
the origin of the syntactic part is a greater puzzle than the origin of the construction
process, because it involves the emergence of DNA as information carrier, which, judging
by the ubiquity of RNA in transcription and translation, was probably not the primordial
state. Somewhere along the history of life, there must have been a switch from a likely
RNA-based encoding mechanism to one based on DNA, which includes the emergence of
the accompanying enzyme system that renders it functional. The situation is complicated
by evidence that parts of the DNA replication system have been invented independently
multiple times [Forterre et al., 2004]. We might place these origins deep in the pre-cellular
stages of evolution which were likely dominated by high degrees of horizontal transfer
[C. R. Woese, 2002]. It has also been theorized that the origin of the DNA-based encoding
machinery lies with viruses [Forterre, 2006].
7 Because all cells of multicellular organisms contain the same genetic information, this also applies to

multicellular organisms



84 4 Inheritance processes and the architecture of evolving entities

Furthermore, it must be noted that the process of DNA copying differs from the
syntactical DNA transcription process during protein synthesis, owing to the former’s
parallel origin to the usage of DNA as information carrier, while transcription probably
evolved in conjunction with translation (see subsection 4.2.3) which likely contains older,
pre-DNA elements that have been coopted. This shows us that while it makes logical sense
to distinguish between semantics and syntactics, their natural implementations within cells
are intertwined and likely coevolved with each other. We will consider DNA replication
here first because it is the natural analog to I in Equation 4.1.9 and implements inheritance
in all cellular life. The process differs significantly between eukaryotic and prokaryotic
cells, which reflects the more complex organization of heritable information in the former.
More precisely, the eukaryotic and archaean systems for all DNA processing are much more
closely related than each one is to the bacterial system. This, together with other differ-
ences in the semantic machinery hints at a minimum of two independent inceptions of the
cellular architecture, with bacteria and archae (and by extension eukaryotes) constituting
the two surviving lineages [de Farias et al., 2021].
A simplified overview of the prokaryotic DNA replication process For simplicity, we
focus on the prokaryotic replication process. The process consists of three stages [Klug,
2012]: First, an initiator protein binds to a special site on the DNA strand - the replication
origin. The enzyme “helicase” unwinds the DNA and breaks the hydrogen bonds between
base pairs to separate the two strands, such that two replication forks form. In the
next step, a second enzyme called primase attaches to each strand and assembles a short
stretch of nucleotides that provides a molecular anchor. In the third stage, a DNA-
Replicase enzyme attaches to this anchor and creates the new strand of DNA by attaching
complementary nucleotides to the strand, thereby elongating the primer strand assembled
by primase.

Because the two strands run anit-parallel and DNA replicase can only work in the 5′ to 3′

direction, only one strand, the so-called “leading strand”, can be copied continuously. The
other strand, the so-called “lagging strand”, is assembled in steps that produce so-called
“Okazaki fragments” [Klug, 2012] which later are joined together using different DNA
polymerase versions and other enzymes to form the full copy. Many other components are
involved in order to successfully replicate the DNA molecule. Binding proteins prevent the
double helix from reforming after being broken up, and yet others are involved in holding
the DNA polymerase in place during replication or in alleviating mechanical stresses that
result from the breaking up of the double strands. The anti-parallel structure of the DNA
molecule results in the assembly of the lagging strand being a lot more complex than
the leading strand because it must be assembled from the Okazaki fragments. In many
prokaryotes, there is just one DNA duplication origin and duplication proceeds along the
circular genome in both directions from this origin, while in eukaryotes there are many
origin sequences on each chromosome. Eukaryotes also make use of many more DNA
polymerase enzymes, up to 14 as opposed to three, [Klug, 2012]. Eukaryotic DNA is
additionally organized into linear sequences instead of circular molecules, which creates
an additional complication for the lagging strand during replication because the Primase
enzyme cannot attach an RNA primer to initiate replication toward the ending of the
strand. Thus, the lagging strand’s end remains unpaired. With repeated copying, the
sequences at the end of the strand will grow shorter and shorter over time. While there
are special repetitive noncoding sequences at the end of chromosomes, so-called telomeres,
to prevent the loss of coding information [Klug, 2012]. Each of the resulting double-
stranded copies contains an old strand and a new strand. DNA replication is, therefore,
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semiconservative [Klug, 2012], always retaining one template strand within the double-
stranded final molecule. For material supply, the replication system relies upon the pool
of free-floating base pairs and sugar-backbone molecules in the surrounding plasma.

RNA primer
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Figure 4.5: Schematic representation of prokaryote DNA replication. DNA replication
is initiated at an origin point, special sequences of DNA where protein complexes are
formed that can split the DNA strands into two replication forks. The responsible enzyme
is called helicase, and single-strand binding proteins bind the individual strands to keep
them from reforming the double helix. To initiate replication, a primase enzyme forms
an RNA primer (note the black base representing uracil) complex on the single strand,
to which DNA Polymerase III binds and synthesizes the complementary strand of DNA.
Because this enzyme can only function in the 5′ to 3′ direction, one strand is synthesized
continuously (lower, called “leading strand”) while the other (upper, “lagging strand”)
must be synthesized in stretches, called “Okazaki fragments” [Okazaki et al., 1968]. Each
stretch is newly initiated by a primer. After synthesis, DNA Polymerase I replaces the
primer RNA with DNA, and DNA Ligase joins the Okazaki fragments together. In
Eukaryotes, this process is much more complex with multiple origins of replication per
chromosome, more complicated initiation procedures and more DNA polymerases involved
[Snustad and Simmons, 2016]. After Ruiz [2022] with modifications.

DNA-Replicase has proofreading capabilities, i.e., it is able to detect errors in the
nucleotide pairing and corrects them, which increases heritability. Such error correction is
required in order to be able to encode the complex cellular machinery we observe today.
Error correction thus was an important step on the way to more complex life. However, the
required enzymes themselves must be genetically encoded which requires in itself thousands
of bases because of their inherent complexity, well beyond the primordial error threshold.
The resulting paradox is known as Eigen’s paradox [Eigen, 1971]. Different solutions have
been put forward to this problem, e.g., by Eigen and Schuster [1977]. However, evidence
has been obtained by studying real-world ribozymes, that mutation rates of RNA can be
a lot lower than originally thought, which allows even primordial molecules to be able to
grow to a length of several thousand base pairs, alleviating Eigen’s paradox [Kun et al.,
2005]. These authors also point out that in an early RNA world, neutral or compensatory
mutations can maintain a phenotype even when the exact sequence is not conserved,
therefore maintaining fitness. We found in subsection 4.2.1 that redundancy in encoding
can reduce the impact of mutations, an effect readily envisaged to play a role in primordial
RNA and the evolution of the genetic code.
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While error correction systems are highly efficient, they are not perfect, and different
types of mutations can occur during the copy process. These are generally classified
according to the level of organization they occur in. On the lowest level, point mutations
can lead to the substitution, deletion or insertion of a base into the sequence. While
substitution of a nucleotide is often of little consequence because of the redundant nature of
the genetic code and the properties of protein folding, deletions or insertions, if they occur
in a coding sequence, lead to a shift of the reading frame. Consequently, the entire amino
acid sequence downstream of this mutation is changed or is rendered entirely nonsensical.
Next are mutations that affect entire sequences. An example is slippage, where a random
disconnect and reattachment of DNA replicase during copying and subsequent repair can
result in the copied DNA missing a stretch of bases, or it being copied twice [Ridley, 2004].
We mention gene duplication as an especially interesting phenomenon, in which a complete
gene is erroneously duplicated. Transposable elements, mentioned before in subsection
4.2.1 can copy themselves into other parts of the genome, which sometimes “picks up”
neighboring stretches of DNA which then are duplicated too. Finally, in eukaryotes, many
more mutations on the chromosome level can occur, which result in the translocation or
duplication of genes or longer DNA stretches or their complete deletion, the inversion
of a sequence, or the fusion or copying of entire chromosomes, or even whole genome
duplications [Ridley, 2004]. Duplication events, or more generally all mutations that
increase the length of the genome are thought to be an important generator for novel
heritable information [Ohno, 2013; A. Wagner, 1994; Zhang, 2003] if they are such that
fitness is maintained.

4.2.3 Semantics – A simplified overview of translation and protein folding

The construction process discussed here is concerned with translating the genetic nu-
cleotide sequence into proteins. As mentioned, some DNA codes for RNA, which we will
ignore here, however. The process is usually divided into two parts, transcription, and
translation.

DNA-transcription as a purely syntactic process In the transcription process, the
content of the DNA is transcribed to Messenger-RNA via an RNA-replicase enzyme.
This is strictly a syntactic process, because the transcription system “knows nothing”
about the correspondence of codons to amino acids, but processes only the sequence of
bases. Transcription uses only one DNA strand and produces mRNA8 that matches the
unused DNA strand except for the thymine-uracil substitution. This transcription process
is subject to a certain error rate and is therefore able to introduce phenotypic variation.
However, this variation will generally not be heritable because it does not change the DNA
itself.

As mentioned in subsection 4.2.1, in eukaryotic cells the transcription process involves
splicing, i.e., the removal of introns from the primary genetic sequence, which can have
multiple alternative outcomes. Additionally, other regulatory processes can intervene at
this point and modify the pre-mRNA to prevent translation altogether or edit the sequence
to create a different protein under some conditions. Syntactic preprocessing can therefore
be complex in eukaryotic cells, which allows for more specific expression and a higher
degree of differentiation without having to interfere with the base code in the DNA or
8 Messenger RNA, used in the transcription process from DNA that is the first phase of gene translation

to protein.
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encode all the different possible alternative genes that can be created via alternative
splicing into separate genes.

DNA-translation as the central semantic process The second stage of the construction
process after transcription into mRNA is its translation into an amino-acid chain. This
happens via specialized RNA-protein complexes called ribosomes, which catalyze the
reaction of amino acids to form a polymeric chain. Amino acids are supplied by tRNA9

molecules, which in turn are made up of two elements, one that is complementary to a
codon and another one that can bind to the corresponding amino acid. Each tRNA can
therefore only bind to a single amino acid. This stage is semantic, i.e., it is here where the
genetic code is translated into its corresponding structure of material building blocks, i.e.,
amino acids. Moreover, the set of tRNAs defines the genetic code in that it determines
which codons represent which amino acid.

In eukaryotes, the transcription process happens within the cell nucleus, while transla-
tion happens outside of the nucleus in the cell plasma. Prokaryotes of course do not have
this distinction. RNA is the main active component that catalyzes the amino-acid links,
and ribosomal RNA is highly conserved within archaea and bacteria, though has some
recognizable variation between them. This provides another hint that the evolutionary
transition to a cellular organization may have happened independently in both groups
based on related ancestors. The eukaryotic translation system is much more similar to
archaea than to bacteria, which hints at an ancestor of eukaryotes [Eme et al., 2017] in
the archaea kingdom, which through repeated rounds of endosymbiosis with bacteria has
given rise to eukaryotes [Zachar and Boza, 2020]. Indeed, tRNA is probably one of the
most ancient elements of the genetic machinery, because it provides the translation element
between genetic sequence and material implementation [F. H. Crick, 1958]. Thus, tRNA or
a closely related molecule must have been involved in primordial translation precursors. It
has been found that variants of tRNA can form replicator molecules that replicate binary
nucleotide sequences with a fidelity of 85 % to 90% [Kühnlein et al., 2021]. Together
with the older finding that RNA can act as a catalyst and not only as an encoding system
[Kruger et al., 1982], this lends credence to the hypothesis that self-replication originated in
some RNA-based system which subsequently must have diversified into a proto-biosphere
we call RNA-world [Neveu et al., 2013].

Protein folding as low-level guided self-organization The third stage in the construc-
tion process of proteins from DNA is the reconfiguration of the amino acid sequence into
a three-dimensional structure that is the functional protein. How a protein folds is to a
large extent determined by its amino-acid sequence and the polypeptide chain’s interaction
with the aqueous environment of the cell, and thus protein folding represents indeed a
process of self-organization. Rocha [2001] uses this as a guiding principle from which he
derives the idea of evolution as guided self-organization. The protein folding process is,
however, not always fully autonomous. Proteins can have many possible three-dimensional
configurations, and often the functional structure is not easily accessible from the unfolded
amino acid chain such that it either takes too long to fold into the desired structure or
intermediate states are so unstable that the outcome becomes not determinate enough
to yield reliable functionality. Cells employ special proteins called chaperones to stabilize
unstable intermediates in order to allow further folding along the correct path by restricting
the protein’s possibilities or speed up otherwise folding that would be otherwise too slow
9 transfer-RNA. Small RNA molecules that bind to an amino acid on one side and to a codon on the other.

Important during the translation phase of gene expression. Implement the genetic code.
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[Snustad and Simmons, 2016; Klug, 2012]. This provides evidence for the concept of
heritable information providing the forcing for phenotypic development and reproduction
on the lowest level of functional organization of gene products, and for the concept of
reproduction as guided self-organization at least on some levels of biology.
Corollaries We now try to connect the properties of the DNA-based replication system
with the theoretical insights discussed before. Any material substrate, like amino acids
or RNA, has invariably physical properties that define possible physical interactions. If a
self-replicating system uses this substrate in some way it gains access to this spectrum of
physical interactions “for free”, for example, the entire spectrum of chemical reactions
proteins are capable of catalyzing, but also the possibly adhesive properties of some
proteins, their ability to form large, stable structures and much more. The spectrum of
physical interaction for a given class of physical building blocks is typically so large that
it cannot be exhausted by a hypothetical biosphere within its possible lifetime, think for
instance of the number of possible proteins that could be encoded in all possible genomes
of size 5× 109.

This sharpens the emerging picture of “life as guided self-organization” in that it shows
how, from a basic self-replicating system that only uses a restricted subset of possible
interactions of its substrate, a layered, self-organizing system of far greater capability
can emerge by successively incorporating or coopting emergent structures or properties
and the possible interactions with the surrounding environment these give access to.
Within this system, not only does heritable information provide guidance and forcing
for the self-organization of basic building blocks, but this guidance or force is transmitted
indirectly from one layer of organization to the next by coopting independently existing
physical interactions that the elements on a given organizational layer have anyways. More
succinctly, an organism needs to encode in its heritable information structures that allow
physical access to a given family of possible interactions, after which these can be coopted
via natural selection for fitness-enhancing functions. The full specification of the entire
range of interactions is not necessary. All this comprises just a more detailed account of
the unfolding of complex constructive systems for the special case of a CCS based on self-
replicating entities, which fills in some of the gaps left in the more general discussion with
more mechanistic details. In that regard, it is worth mentioning that other self-replicating
entities are always part of the environment with which organisms interact and to which
evolutionary innovation provides access, which lends credence to the view that ecosystems,
societies or multicellular bodies are essentially incarnations of the same underlying class
of processes.

4.2.4 Limitations of information flow in the genetic system

The central dogma of molecular biology As described before, the DNA nucleotide
sequence is transcribed into a sequence of RNA nucleotide sequences, which then is
translated into an amino-acid chain that folds into a functional protein. Thus, biological
information can be said to flow from DNA to RNA to protein. This scheme is called
“the central dogma of molecular biology” [F. Crick, 1970]. Its main consequence is that
information does not flow “backward”, i.e., proteins do not, in turn, change the genetic
sequence. In other words, there is no reverse translation from protein sequence into RNA
sequence (or DNA sequence). This is one element in the genetic system that precludes the
inheritance of acquired characteristics at least on the level of genetic sequence. Acquired
characteristics like environmentally induced gene expression levels (see below), hinge on
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gene products, but while they do change the activity patterns of genes, they do not change
the genetic sequence themselves. It has been suggested that this informational asymmetry
hinges on the nature of protein folding as a self-organizing system that cannot be reliably
reversed [Koonin, 2015]. That being said, its status as a “law” (or dogma) is subject to
ongoing investigation [Koonin, 2012; Ille et al., 2022].

Weismann’s barrier in animals As mentioned before, Darwin’s concept of heredity
involved pangenesis, i.e., the entire body contributed heritable information to the next
generation [Holterhoff, 2014]. This theory was later refuted empirically [Ridley [2004]
and Bonduriansky and T. Day [2014] and references therein]. In particular, Weissman’s
concept of germline-soma separation [Weismann, 1892] in animals provided an explanation
for why inheritance of acquired characteristics (i.e., changes to the somatic body) are not
inherited by offspring in general, at least as far as could be known at the time. Rather,
only mutations in the germ cells (eggs or sperm cells) are able to be inherited by the
next generation genetically. It must be noted, however, that this does not apply to all
animals (sponges, in particular, do not have differentiated tissues and also no clear germline
[Fierro-Constaín et al., 2017].). Secondly, as described below, mechanisms have been found
that show how the Weismann barrier can be somewhat porous and allow for the transfer
of acquired characteristics from somatic to germ cells, in particular small RNA [Conine
and Rando, 2021].

4.2.5 Genetic expression

Gene regulation refers to the manipulation of how genetic information is translated into
phenotypic effects. This definition deliberately is so broad as to encompass all stages
between genotype and phenotype, because regulation of gene expression can happen in
most if not all of them [Klug, 2012], with many having been discovered only in the recent
decades with the advent of better technology. Gene regulation is largely implemented by
leveraging syntactic dynamics to control semantic outcomes, although there are mecha-
nisms for regulating gene expression that happen after the translation into final products
has occurred and hence can be regarded as strictly semantic [Klug, 2012; Sultan, 2015].
In discussing these mechanisms, we largely draw upon Klug [2012] and Sultan [2015] with
a focus on the syntax-semantics paradigm laid out previously. Gene regulation is an
important part of the implementation of the sub-processes L and D̃P of Equation 4.1.9,
realizing therein a mechanism with which to react to environmental signals by adjusting
the effect of one part of genetic information by leveraging other parts. In eukaryotes,
gene regulation also is a key element in the development and differentiation of tissues in
multicellular organisms [Gilbert et al., 2015], thus making it a key subject of evolutionary
developmental biology. Indeed, we can understand the regulation of multicellularity as a
highly evolved cooptation of environmental reactivity as it already is present in prokaryotic
cells.

It must be noted that while we focus on genetic processes here, we should keep in
mind that the genome functions in the context of a larger regulatory system that includes
heritable elements on many spatiotemporal scales and in many forms. As we will discuss
later in more depth, what is regarded as an environmental, and hence external, signal for
genetic regulation is often part of a larger, heritable signaling system that includes genetic
information, but also abiotic input from the environment, cultural content or input from
symbionts or other organisms, and the effects of gene regulation can act, in turn, on these
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things. Therefore, gene regulation is only one element of L and D̃P , albeit one that is
singled out by its complexity and its fundamental nature to all life.
Gene regulation in prokaryotes Prokaryotes, being the primordial form of cellular life,
are far simpler than their eukaryotic cousins, and so are discussed first. A variety of
principles can be identified in them which we expect to find in eukaryotes in a refined
form. First, we observe that cellular functions are rarely the product of a single protein or
RNA. Rather, a function is usually achieved by the interaction of multiple gene products
which create some structure or enable some functionality. A common example is the
usage of lactose as a carbon source in E. coli. Normally, these bacteria prefer glucose
whenever available. However, they can process other sugars to ultimately break them up
into glucose if it is not available in raw form, albeit at a higher energetic cost. For lactose,
this is mostly achieved by a combination of three proteins, which code for processing
enzymes for lactose processing and for facilitating its transport into the cell [Klug, 2012].
All of these must be expressed simultaneously to allow for lactose metabolization. This
functional interdependence makes common control possible, which in turn introduces a
new syntactic element in prokaryotic (and some eukaryotic) genomes – the operon. An
operon is a cluster of genes that together provide some function and are under common
regulatory control.

We can think of it as a simple module of genetic heritable information. Operons
generally consist of several functional genes preceded by an operator sequence which itself
is not coding for a gene product. Rather, it provides binding regions for transcription
factors. Transcription factors are proteins themselves [Klug, 2012] which can interact
with the DNA to activate, deactivate, enhance or, suppress the transcription of DNA into
mRNA. These transcription factors again are products of other genes and can interact
with other such proteins or environmental signals (e.g., allolactose in the above example
[Klug, 2012]). The regulatory region preceding the coding genes of the operon consists of a
promoter sequence that allows for the attachment of RNA polymerase, while another part
of it serves as an operator region that binds the actual transcription factors and allows or
inhibits the transcription into mRNA.

Genes in prokaryotes are therefore networked into modules that are functionally linked
to other genetic elements, thus generating a new level of syntactic structure within the
genome. This organization, and its generally high specificity, explains in part the highly
nonlinear effect of mutations. For example, mutations in the transcription factor gene
or the operator region of the operon will render control ineffective and disable an entire
functional module of the cell at once, or create binding sites for other transcription factors,
thus rewiring the network. This rewiring allows for new combinations of gene products to
be active within the cell, possibly facilitating new functionality without extensive rewriting
of individual coding genes.

These networks are not governed by simple on/off switches responding to single inputs
but can perform logical functions like AND or OR. For example, the lac operon of E.
coli mentioned before is repressed normally by a specific inhibitor gene product, which
undergoes a structural change that eliminates its functionality if it binds to lactose [Klug,
2012], and retains it if lactose is absent. However, if lactose AND glucose are available,
it is more energetically favorable to prefer glucose because it “costs less” to metabolize,
and so a logical switch between the two (or any number of available carbon sources) in
favor of the energetically least expensive one would be favorable evolutionarily. Thus,
the emergence of logical processing of environmental signals should be expected to be
present in gene regulatory networks and to be universal across the tree of life. Biological
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regulatory networks, therefore, constitute processing systems for biological information
sensu Jablonka (compare subsection 4.1.6).

Returning to the concurrent presence of lactose and glucose as food sources for E.
coli, we consequently expect there to be a logical function that would have the struc-
ture of glucose AND lactose rightarrow use glucose, which, means that the normally
activating effect lactose has on the lac operon must be secondarily suppressed if glucose
is present at the same time. This secondary repression is achieved by inhibiting the
action of catabolite-activating proteins (CAP). These normally raise the efficiency of RNA-
polymerase binding10. Their effect depends on a secondary molecule with which it forms a
complex binding to DNA whose production is inhibited by glucose presence. Thus, CAP
action is inhibited in the presence of glucose, and the production of lactose-metabolizing
enzymes is inhibited.

We note that the logic this system implements is not strict, but fuzzy when observed
over time: The eventual transcription efficiency of the lac operon during some time interval
is dependent on the concentration of lactose, glucose and other molecules, and the system
does not yield a forever-on or forever-off switch. In other words, gene regulation can be
both, analog or digital, with some regulatory systems reacting in one way and others in
another [Lorberbaum and Barolo, 2013]. Moreover, transcription factors generally act
combinatorially, such that the response of the regulation target is determined by the
“cooperative” action of transcription factors [Stearns and Hoekstra, 2005].

It is instructive to observe that most of these regulatory effects are caused by changing
the three-dimensional structure of DNA or signal molecules, which in turn facilitates
or inhibits chemical binding. The structural flexibility of many biological molecules is
also exploited in other ways to achieve gene regulation in prokaryotes. For instance,
the process of attenuation exploits the temporal overlap of transcription and translation
in prokaryotes to conditionally abort transcription based on translation. In E. coli,
this happens in the operon containing genes for tryptophan synthesis, an amino acid.
Here, several tryptophan codons are present in a separate DNA sequence preceding the
coding genes (the leader sequence). Transcription of this sequence results in an mRNA
with two mutually exclusive secondary structures. Which one is formed depends on the
presence of tryptophan in the cell (and consequently the presence of tRNA loaded with
tryptophan). If little tryptophan is present, the emerging secondary structure allows
translation of the full mRNA, yielding tryptophan synthesizing enzymes, while in the
presence of tryptophan, translation is stopped by the alternative mRNA structure, and no
proteins are synthesized. More generally, metabolite sensing elements in leader sequences
that change mRNA secondary structure are a common theme for gene regulation in
prokaryotic cells, called Riboswitches. Finally, direct changes to the chemical state of
the DNA are employed to regulate gene expression. The most widely discussed of these
is arguably DNA methylation, in which methyl groups are attached to C- or A-bases and
interfere with transcription [Seong et al., 2021]. Finally, the effect of gene products can be
regulated after translation, too. However, because these mechanisms are more important
for eukaryotes, we will postpone their discussion for now. This illustrates the complexity
of gene regulation even in simple unicellular systems and shows that different control
mechanisms can be implemented at different steps of the synthesis of DNA products, often
concurrently. In other words, combinatorial control is achieved by not only modifying gene

10 CAP plays a role in many other operons as well [Klug, 2012].
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expression at a single step using different signals, but also by signaling at different steps
of the translation process.
Gene regulation in eukaryotes In eukaryotes, the genetic organization is a lot more
complex than in prokaryotes, and so are its regulation processes, although the principles
stay largely the same, i.e., combinatorial control, (fuzzy) logic and temporally extended
regulation all carry over from prokaryotic gene regulation. That being said, because
of the symbiotic origin of eukaryotes, gene regulation must be one of the most evolved
elements in their cellular organization because it ultimately provides the tools to ensure
the cooperation (initially) and correct functioning (in more derived forms) of different
organelles.

Unlike prokaryotic genomes which are organized into a singular genome, eukaryotic
genomes are organized into multiple chromosomes which organize DNA into chromatin,
where DNA wraps around histone proteins to form compact structures called nucleosomes.
Therefore, there are more organizational levels of eukaryotic genetic information that can
be manipulated in order to achieve fine-grained control over genetic expression. On the
lowest level, DNA can be directly modified to change gene expression patterns.

It has been shown that gene methylation patterns are tissue-specific in multicellular
organisms and that large unexpressed regions in eukaryotic genomes are often heavily
methylated [Klug, 2012], although newer studies suggest that DNA methylation in eu-
karyotes may play a more complex and context-dependent role, being possibly important
in both enhancement and repression of genes (Zhu et al. [2016] and references therein).
DNA methylation can, for instance, facilitate the recruitment of chromatin remodeling
complexes, leading to gene repression [Klug, 2012]. For example, histones can be modified
to loosen their binding to DNA, making it more accessible to enzymes, transcription
factors etc. Other modifications involve the repositioning or removal of histones to expose
stretches of DNA.

On a lower level, gene expression is controlled by cis-regulatory elements which are
located on the same chromosome as the genes they regulate. Three important such
elements are promoters, which govern the initiation and base efficiency of transcription,
enhancers and silencers, which regulate the achieved level of transcription [Klug, 2012]. A
number of different, but specific, transcription factor proteins can bind to these sites and
affect transcription efficiency, which again yields combinatorial control. Different signals
that enhance or repress transcription act together to affect the final level of transcription
[Stearns and Hoekstra, 2005; Klug, 2012], and this combinatorial control can be based on
competition [Karreth et al., 2014].

Analogously to prokaryotes, transcription factors can be susceptible to additional intra-
or extracellular signals such that they only become active after they undergo a con-
formational change mediated by another “signal molecule” [Klug, 2012]. In this way,
transcription factor dynamics can implement time- and place-specific gene expression in
multicellular development, or allow for the reaction of unicellular organisms to environmen-
tal states. Activators and repressors act in complex ways to modify transcription activity,
for example by associating with general transcription factors necessary for transcription
initiation, making binding of RNA-polymerase more or less efficient, by recruiting chro-
matin remodeling complexes to modify accessibility or by influencing the geometric shape
of the DNA strand to manipulate binding efficiency [Klug, 2012]. Therefore, cis-regulatory
regions can be thought of as signal interfaces through which genes are integrated into a self-
regulatory network that reacts to external signals (see subsection 4.2.6). We understand
that because the advent of eukaryotes precedes the emergence of complex multicellularity,



4.2 Genetic inheritance 93

these signaling systems would probably have been well developed by the time the first
complex multicellular organisms arose, such that the cooption of these existing pathways
provides a likely origin of today’s developmental programs.

All of these regulatory actions depend on the DNA sequence to which transcription
factors can attach. Therefore, gene regulation is achieved by manipulating the syntac-
tic dynamics of the material encoding system that underlies genetics, as is the case in
prokaryotes. It has been shown that, for instance, enhancer sequences can be reversed or
moved to the vicinity of other genes, and they still retain their functions. Therefore, the
eukaryotic regulatory elements discussed so far, while having semantic effects in that they
determine what is translated when and where, are strictly syntactic in nature - their action
is based on DNA nucleotide sequences, not on their protein translation. This stands in
contrast to prokaryotes, where a temporal overlap between transcription and translation
allows for a mixing of syntactic and semantic dynamics, see subsection 4.2.5.

Aside from directly manipulating transcription, other elements of the genetic machinery
can be leveraged to implement gene regulation. For example, the average lifetime of
an mRNA molecule determines how long it is available as a translation template and
therefore can modulate the level of protein production. This half-life can be modulated
by specific nucleotide sequences that facilitate attachment of degrading enzymes, thereby
reducing the lifetime of the molecules [Klug, 2012]. Other elements of post-transcriptional
regulation include the regulation of protein stability after transcription as a reaction to
external signals, or RNA silencing. Indeed, RNA molecules have been shown to play an
important role in gene regulation by silencing mRNAs in the nucleus or the cell plasma, or
by directly inhibiting transcription via recruiting chromatin remodeling complexes after
binding to DNA [Klug, 2012]. Much of eukaryotic genomes appear to be transcribed into
small RNAs, such that the metaphor of “junk DNA” seems to be no longer accurate.
These microRNA elements have been shown to regulate gene batteries in a tissue-specific
manner [Klug, 2012]. Thus, much of DNA of eukaryotic organisms is devoted to regulatory
functions instead of directly coding for proteins. Again, all these regulatory functions are
purely based on the chemistry of DNA and RNA, and thus on the syntactic system of the
cell.

Another important element of eukaryotic transcription is alternative splicing, as men-
tioned before. Alternative splicing can increase the size of the proteome of an organism,
i.e., the set of proteins that can be built from the genome by an order of magnitude
[Klug, 2012] or more. The downside is that while in prokaryotes only the gene or operon
transcription itself has to be regulated, in eukaryotes, the ways in which proteins are
spliced together must be specified additionally. Much like the regulation of transcription,
splicing can be regulated by a variety of factors, from RNA secondary structure influenced
by nucleotide sequence over specific proteins binding to the pre-mRNA to the specific
composition of spliceosomes, RNA-protein complexes that catalyze the removal of introns.
Because splicing adds another layer of syntactic structure on top of DNA regulatory
networks that reacts in similar ways to external signals and is similarly structured, we can
think of it as a second layer of regulation that controls the ambiguity of the primary level
depending on incoming signals. In this way, the information encoded in the DNA does not
just encode the primary structure of proteins but contains many elements that only exist
to manipulate subsequent steps into a certain behavior, thus exerting indirect control over
the final product as conceptually discussed before. Finally, DNA can be modified directly
in some cells. For example, certain genes or DNA stretches can be duplicated to increase
transcription activity in somatic cells, which contributes to cell identity and functional
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diversity. For example, in immunoglobulin production in mammals, programmed DNA
recombination creates encodings for a variety of possible antibodies that by far exceed the
number of genes in the genome [Klug, 2012].

In summary, eukaryotic gene expression is a very complex dynamical process and a
highly active research field in which new phenomena are continuously being discovered. It
implements a multi-layered network of interacting elements which for the most part act to
regulate activity on the syntactic level of the genetic system through specialized semantic
structures. Therefore, eukaryotic genomes, even more so than prokaryotic ones, can be
seen as complex self-modifying systems in which multiple layers of organization interact
to achieve global regulation in response to environmental cues or intracellular signals.
Given that we identified prokaryotic gene regulation as a processing system for biological
information, we find that its eukaryotic counterpart is a more sophisticated version of this
system that integrates biological information on more levels of organization to achieve
more complex behavior.

4.2.6 Genetic architecture

We discussed in the last subsection how different elements of genomes influence each other
in order to create fine-tuned reactions of a cell’s or a multicellular organism’s phenotype to
environmental conditions. We found that gene regulation constitutes a form of processing
system for biological information that is based on sensing environmental conditions which
then systematically precipitates gene activation, repression or activity adjustment. Multi-
cellularity brings a new quality to these systems because regulation now must coordinate
the interaction of large numbers of individual self-replicating entities which provide input
signals to each other and form higher layers of organizational hierarchy, like tissues, organs
and ultimately new forms of self-reproducing organisms. Although the same is true for
eukaryotic cells with their organelles, the scale on which multicellular organisms achieve
this is quite different, given that not only the body’s own cells must be integrated, but
a variety of symbionts or commencialists, too (see section 5.2 or Gilbert et al. [2015] and
Chiu and Gilbert [2015] and references therein).

This subsection will concentrate on development in multicellular organisms with a
special focus on animals, understanding that similar principles are at work in plants and
fungi. The development at least of sexually reproducing multicellulars unfolds from an
unicellular initial state which means that all cells of the developing organism have the
same heritable information available to them 11.

Consequently, development into functioning phenotypes and intra-organismal cellular
diversity is a consequence of the regulatory interactions of genomes with their environment.
These regulatory mechanisms that have originated in unicellular life have been coopted
over a long time to create the complex differentiated phenotypes we observe today. In
subsection 4.2.5, we discussed low-level elements of gene regulation that integrate genes
and their associated regulatory non-coding regions into functional elements. The cis-
regulatory regions in these elements can be seen as a fundamental part of gene regulation
because they provide interfaces for external regulatory input. The input signals for these
regulatory elements are often other translation- or transcription products that act as
11 There is asexual reproduction by fission in some multicellular complex organisms, which however

normally recreates the body structure of the organisms irrespective of the place of fission. Therefore,
the necessary complete heritable information still must be present in the cells of the regrowing organism,
and regulation must be capable of recreating the complete phenotype from an incomplete starting point



4.2 Genetic inheritance 95

sensors for environmental or intra-cellular states. In that way, individual genes can be
thought of as being integrated into a genetic regulatory circuitry.

In many organisms, much of the genome has some regulatory function instead of coding
for proteins. As discussed in subsection 4.2.5 and subsection 4.2.5, the genetic circuits
underlying the regulation of gene expression perform logical operations conceptually not
unlike the logical elements of programming languages, which is consistent with the inter-
pretation of gene regulation as information processing. Research over the last two decades
uncovered that gene regulatory networks in animals have a variety of structures that
appear to be universal across kingdoms of life [Davidson, 2010; Erwin and Davidson, 2009;
Davidson and M. S. Levine, 2008]. On a high organizational level, gene regulatory networks
( GRNs) appear to be structured into structural motifs of differing stability. The most
stable elements, called “kernels” [Erwin and Davidson, 2009] are those which perform the
most fundamental function, like defining the basic structure of a body part, like its layout
and symmetry. These appear to be highly conserved across evolutionary time, which has
been hypothesized to be the reason for the stability of fundamental body plan organization
in animals since at least the early Cambrian [Erwin and Davidson, 2009]. Below these,
gene differentiation networks build upon the structures established by the kernels to further
refine organ or tissue specialization, for example. Finally, differentiation gene batteries
create the fine-grained differentiation of cells within tissues. The subnetworks responsible
for each of these steps are of different complexity and depth, with the ones establishing
the fundamental body structuring appearing to be deeper and more complicated than the
ones that create the final cell differentiation in tissues or those which regulate cell cycles
in response to metabolic needs or growth patterns [Davidson, 2010].

Individual network motifs can be connected by I/O-switches which control the activity
of an entire subcircuit through their output [Davidson and M. S. Levine, 2008; Erwin
and Davidson, 2009]. In this way, subnetworks can be redeployed in different contexts.
The key to the evolutionary dynamics of these systems is the evolution of cis-regulatory
modules [Peter and Davidson, 2017]. By changing DNA sequences within these modules,
new binding sites for transcription factors can be created or lost, or their translocation to
the vicinity of new genes, for instance via transposable elements, can change the wiring of
regulatory circuits by reconnecting them to new network nodes. Therefore, the evolution
of the linking of GRN elements can be identified as a major mode of evolution.

Similarly, mutations in the coding sequences of transcription factor genes can alter their
binding affinity to regulatory regions, altering existing regulatory pathways or creating
new ones. We observe that the redeployment of network modules in different contexts is
similar to abstraction in mathematics or programming, which allows for problem-solving
by recombination of elements that exist on a higher organizational level than the atomistic
elements that make up the underlying syntax system. Because gene regulation is universal
for all living beings, we find that an additional element has to be added to von Neumann’s
scheme if it is to be applied to biology, namely a syntactic processing system that reacts
to environmental signals, i.e., a processing system that integrates multiple sources of
biological information to determine and fine-tune the created phenotypic structures to the
encountered environment. In Equation 4.1.9, this system makes up D̃P on the one hand,
and on the other turns L into a feedback system between interactions with the environment
and phenotypic reactions which occur as a consequence, and which in turn can influence
future ecological interactions. These two parts are discussed as developmental– and
phenotypic plasticity in the literature and will be revisited later in some more depth.
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Returning to the notion of abstracted regulatory functions, their evolutionary advan-
tages become readily apparent when considering them through the lens of software design:
Abstraction allows for the redeployment of existing solutions to other data without having
to rewrite each time and therefore allows for modularity which can be developed much
faster and is more flexible than monolithic designs. During the evolution of animal
development, the same principles seem to have emerged. Indeed, a set of network motifs
has been uncovered which encode a function purely within their structure and not in the
individual genes from which they are assembled, and which constitute building blocks from
which known developmental GRNs are built up [Davidson, 2010]. For example, a common
motif is the double-negative-gate, in which a gene coding for a repressor transcription
factor is wired to a second repressor which in turn acts as a switch for some downstream
regulatory circuit [Davidson and M. S. Levine, 2008; Davidson, 2010]. This motif can be
used to activate the downstream circuit only when the input repressor is active, while under
all other circumstances, the second repressor will be active and deactivate the controlled
subnetwork. Others include positive feedback control or the implementation of logical
functions like AND, which we encountered in the lac-operon of E. coli in another form.
These elements appear to be wired together in an overlapping fashion [Davidson and M. S.
Levine, 2008; Davidson, 2010] to create the complex and diverse gene regulatory networks
we encounter in nature. More than this, it seems that each of these motifs is associated
with a given function, much like statements in programming languages like if-else or
do... while... are [Davidson, 2010]. Although the known set of these motifs cannot be
regarded as complete [Davidson, 2010] and thus the existence of such a universal set of
building blocks remains a hypothesis, the concept is intriguing. Assuming this hypothesis
to hold, development would consist of a finite set of functions that need to be executed at
different times and places in a developing body in order to create a functioning organism
and which integrate ecological signals. These functions are implemented in a corresponding
set of regulatory subcircuits which can be wired together to achieve a function. This
hypothesis gains additional gravitas by the discovery that while the network motifs are
found almost universally across the animal kingdom at least, they are often implemented
using different genes internally [Davidson and M. S. Levine, 2008]. Once again, biological
function is encoded in the arrangement of elements, not in the structure of the elements
themselves. More fundamentally, the recurrent usage of a finite set of network motifs,
implemented with different genes in different organisms, hints at the establishment of an
additional layer of syntax analogous to the genetic code. As discussed above, the role of
this layer of syntax is analogous to abstraction in human thinking or language. It allows
for elements (genes or gene clusters) which at some very early point in their evolution have
been either autonomous or served a specialized purpose, to be reorganized into larger-scale
processing systems for biological information. As such, gene regulatory networks represent
another instance of the emergence of a higher organizational level on top of another one
by leveraging the emergent properties of this lower level. In this case, we can interpret
the capability of cis-regulatory regions to manipulate gene expression dependent on input
signals as this emergent capability.

In this sense, the architecture of developmental GRNs elucidated here adds to the
mechanistic basis for an interpretation of the genome as a self-regulating system that
reacts to environmental signals. Indeed, implicit in discussions of GRNs is always that
they implement a dynamical system that can produce diverse outputs [DiFrisco and Jaeger,
2019] under different conditions without architectural change to the system itself, which
is quite similar in principle to learning systems [R. A. Watson, G. P. Wagner, et al., 2014].
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Through this insight, we recover information processing as an important factor in many
biological systems on a variety of organizational scales.

Returning to inheritance, we find that while individual genes can be seen as “atoms”
of inheritance at least for sexually reproducing organisms with their Mendelian dynamics
[Mendel, 1866], the existence of GRNs shows that, generally speaking, their individual
structure is only important insofar as they maintain their role in the regulation system
they are a part of. Indeed, the hierarchical and modular nature of GRNs provide additional
degrees of freedom for selection to act on, but at the same time, because they are built
from modules with different degrees of conservation [Erwin and Davidson, 2009], focus
variation into distinct elements of the genome. Others remain comparatively stable,
thus constraining the phenotypic variation that can be exposed to selection in a given
population. Knowledge about the architecture of genomes also helps us with interpreting
the fossil record and the history of life, because architecture or GRNs correlates with body
plan similarity [Erwin and Davidson, 2009]. Moreover, the organization of the genome
into GRNs explains the apparent nonlinearity of mutations in DNA, because their effect
depends on which part of a genetic element (cis-regulatory region, intron, exon etc) they
affect, and what role the affected gene product plays in the regulation of other elements
of the networks.
Gene regulatory networks beyond genomes and developmental symbiosis The im-
portance of the regulatory function played by symbionts of a multicellular organism has
come into focus in recent years [Gilbert et al., 2015]. In C. elegans the regulatory signal
precipitating the formation of the body axis does not originate from a symbiotic bacterium
Gilbert2015. In many organisms, symbionts provide vital phenotypic functions and are
thus central to their evolutionary fitness. This tight interconnection between organismal
functions and symbionts has prompted the interpretation of multicellular organisms as
“holobionts”, i.e., as organisms that are not genetical individuals, but whose genetic heri-
table information is made up of their own genome and the genomes of all their symbiotic
organisms [Chiu and Gilbert, 2015]. While many species found in the microbiome of
humans and many other organisms do not occur outside of their bodies, and thus can
be assumed to be vertically transmitted, which largely eliminates evolutionary conflict
[Stearns and Hoekstra, 2005], it has been argued that while some are indeed symbionts,
others are more likely commensialists or even slightly parasitic in nature [Douglas and
Werren, 2016]. Thus, immune systems may have evolved to a significant extent as control
mechanisms of these internal ecosystems. Irrespective of the ecological details, it is not
surprising the microbiome of multicellular organisms is tightly integrated into the genetic
regulatory system during development and beyond, while at the same time constituting a
form of non-molecular epigenetic inheritance because many are vertically transmitted from
parent to offspring. It appears likely that these symbiotic organisms have been free-living
commensialists or even parasites, which have been coopted into symbionts by vertical
inheritance and into regulatory nodes or phenotypic functions, coevolving with their hosts
over evolutionary time. Thus, this provides an example of the evolutionary integration of
ecological elements into self-replicators over time.

4.3 Heritable information beyond genes
As discussed before, the process of evolution does not refer to any particular material
system of inheritance. Rather, it only requires the process of inheritance of phenotypic
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functions with variation to exist – the encoding system and if there is one or many of
them is immaterial to its logic. Indeed, after the genome was the sole focus of heredity in
evolutionary biology for the past century or so [E. Danchin, Pocheville, et al., 2018; Sultan,
2015], evidence has accumulated on many fronts that genetic information is not the only
kind of heritable information [É. Danchin et al., 2011; Whiten, 2017; Gilbert et al., 2015].
Following the etymology of the word, we call all these inheritance systems epigenetic and
discuss them together under this heading, although often the term is applied more narrowly
to the inheritance of intracellular particles through the germline, e.g., microRNAs. The
goal is not to give an exhaustive review of the scientific state of the art, nor a complete list
of mechanisms over all kingdoms of life. Rather, this section is intended as an overview
that helps us broaden our understanding of the evolutionary process.

4.3.1 Molecular epigenetics

Molecular epigenetics refers to the inheritance of gene activation patterns without changes
to the DNA sequence. Because gene activation patterns are often the consequence of
environmental signals, this constitutes a form of “inheritance of acquired characteristics”.
This form of epigenetic inheritance involves the inheritance of molecular components
of the machinery described in subsection 4.2.5. Because gene regulation is a complex,
interconnected network of processes, molecular epigenetic inheritance is diverse, involving
a variety of molecular components for many of which the precise role and transmission
mode is still unclear [E. Danchin, Pocheville, et al., 2018; Sultan, 2015].

Molecular epigenetic inheritance has been found in many organisms to date. For
example, the nematode C. elegans shows epigenetic transmission of physiological traits
that persist for up to eighty generations, even when the originally inducing ecological
factors are no longer present [Wang et al., 2017; Minkina and C. P. Hunter, 2018]. The
flowering plant Linearia vulgaris shows two distinct flower phenotypes associated with
changes in methylation pattern in a single gene which can be transmitted over generations
[Klug [2012] and E. Danchin, Pocheville, et al. [2018] and references therein]. Indeed, in
many cases, the material basis of molecular epigenetic inheritance has been tracked to
small non-coding RNA, which’s role in gene regulation we discussed in subsection 4.2.5.
As explained there, these can bind to DNA and bring about the modification of histones,
chromatin remodeling or DNA methylation, which in turn silences stretches of DNA [E.
Danchin, Pocheville, et al. [2018], Wang et al. [2017], and Skinner and Nilsson [2021] and
references therein]. DNA regulation patterns, at least in animals, therefore are not directly
inherited but are recreated because their generating factors are inherited. Among others,
it has been shown that in some organisms, molecular epigenetic inheritance can breach
the Weissmann barrier [Nilsson et al., 2020], i.e., somatic changes in biological information
can enter the germline, which constitutes a mode of inheritance of acquired characteristics
[Skinner and Nilsson, 2021].

Of potentially great importance is the fact that chromatin structure and DNA methyla-
tion significantly influence mutation rates of the affected DNA stretches. 5-methylcytosin
can spontaneously decay into thymine which additionally is less likely to be repaired. In
total, this can increase the rate of point mutation by a factor of 104 [E. Danchin, Pocheville,
et al., 2018]. When patterns of methylation or chromatin modification are inherited
through RNA transmission, the affected DNA will mutate faster and consequently create
more phenotypic variation [E. Danchin, Pocheville, et al., 2018]. These authors generalize
this concept and derive the hypothesis that molecular epigenetic inheritance and correlated
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changes in mutation rate provide a mechanistic basis for genetic assimilation without
DNA sequence changes [E. Danchin, Pocheville, et al., 2018; Skinner and Nilsson, 2021].
Therefore, molecular epigenetic inheritance constitutes a mechanism for the inheritance
of phenotypic plasticity (see chapter 5), thereby being a potentially important generator
of phenotypic variation on which natural selection can act, and which either through
classical12 or epigenetically mediated genetic assimilation can ultimately drive genetic
evolution.

Additionally, the mutation rate of epigenetic heritable information is up roughly five
orders of magnitude higher than the genetic mutation rate [Skinner and Nilsson, 2021],
so adaptation to short-term environmental fluctuations can be greatly facilitated by epi-
genetically mediated phenotypic variation. This concept extends the modern synthesis
in that it acknowledges a directed influence of phenotypic expression on the evolvability
of specific traits. While not directly violating the tenet of the occurrence of mutations
being unrelated to their effect, it still extends the way in which phenotypic variation
is understood to be generated with a feedback loop between phenotypic structure and
genetic information. As Danchin2018 points out, more theoretical and empirical work
is required to elucidate its impact, however. Given the existing empirical evidence as
reviewed in E. Danchin, Pocheville, et al. [2018] and Skinner and Nilsson [2021] however,
it is safe to say that environmentally induced epigenetic inheritance is a significant element
in evolutionary dynamics and can act as a dynamical link between ecological–, cultural–
and genetic inheritance. Furthermore, it has the potential to link together ecological and
evolutionary timescales because the epigenome is a lot more prone to mutations than the
genome itself and thus provides a potential way in which ecological variation can lead
to phenotypic variation without changes to DNA sequence. Consequently, epigenetics
provides the natural motivation for the influence of L on h in Equation 4.1.9.

Continuing this line of thought, we can interpret molecular epigenetic inheritance as
an emergent, secondary coding system for heritable information that emerges as a con-
sequence of the organization of another level of heritable information, i.e., the primary
and secondary structure of the DNA. We can hypothesize that it came into existence
rather early in the history of life as a byproduct of the primordial evolution of gene
regulation. Elements of it will later have been coopted because it resulted in phenotypic
variation on which natural selection can act. The two encoding systems interact with
each other by virtue of modified mutation rates of DNA which is altered by methylation
or histone modification and via the influence of epigenetic traits on phenotypic traits,
in turn influencing the action of natural selection. Because both are inherited via the
germline and thus through the same transmission process, and because they influence
the same phenotype, we cannot call it a secondary inheritance system, however, but a
secondary encoding of heritable information that utilizes different degrees of freedom of the
syntactic part of the genetic inheritance system. As such, it represents another example
of organizational layers that emerge in the evolutionary process and are subsequently
integrated into it.

12 Classical genetic assimilation rests on the idea that phenotypic plasticity creates selection on cryptic
genetic variation which can lead to the genetic fixation of the otherwise environmentally induced
phenotype. Compare the so-called “Baldwin effect” for the related idea based on learning and behavior.
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4.3.2 Ecological and cultural inheritance

Ecological inheritance Ecological inheritance refers to the transmission of elements of
the ecosystem with which organisms interact to their offspring. Drawing on the picture
of an ecological niche presented in Figure 3.1, we understand it as the inheritance of
elements of the ecological niche. Its relevance, therefore, lies in the fact that natural
selection, because it emerges from ecological interactions, is dependent on the ecological
niches of organisms. Thus, ecological inheritance is the inheritance of patterns of ecological
interactions, and therefore of patterns of selection [K. Laland, Matthews, et al., 2016]. The
ecological niche of an organism does contain heritable information as defined in subsection
4.1.6 in various ways. As seen before, the environment is an important source of regulatory
signals for development. On the other hand, ecological states can be actively changed by
organisms to suit their needs, establishing a feedback loop that influences selection regimes
and makes them partially heritable (more on this in chapter 6).

Ecological states can be bequeathed to offspring in multiple ways. As said, many
organisms actively modify their environment in order to facilitate their survival and repro-
duction. Birds build nests, beavers create damns and ponds, a large variety of organisms
both marine and terrestrial create burrows and tunnels and thus modify sediment porosity
and ventilation, humidity and nutrient distribution and more. These actively constructed
artifacts often persist for long times, frequently longer than the lifetime of the originator.
In such cases, the changed environment is inherited by direct offspring or, more generally,
the next generation of the same species, but usually influences other organisms as well.
Indeed, for many costly environmental modifications, organisms try to monopolize their
benefits by defending them from rival users of either the same or different species. The
degree of monopolization has been theoretically shown to be crucial for the maintenance of
costly constructions [Krakauer et al., 2009]. From this, we see that out of all the inheritance
systems we encountered so far, ecological inheritance is probably the “softest”, i.e., it lacks
a dedicated encoding system analogous to genomes or language (see below), and it often
requires an additional behavioral change to monopolize its heritable biological information.
Indeed, the origin of such behavior lies in the effect of other heritable information, like
genetics [Dawkins, 2016]. Genetically heritable environmental modifications have been
recognized in the context of the gene-centered theory of evolution and have been called
the “extended phenotype” [Dawkins, 2016].

Because these organismal modifications influence development and natural selection, we
can see ecological inheritance as another example of the process where organismal traits,
themselves products of the guided self-organization machinery that makes up organismal
development, leads to the generation of new forms of heritable information by changing
the structure of ecological variables.

Because, in the present case, these variables are by default accessible to the entire
ecosystem, environmental modifications have typically effects on more than the originator
species. Indeed organismal influence often changes the environment in many ways at once,
in some cases so profoundly that the ecosystem functioning as a whole comes to rely on
the action of one or a few species, which appropriately are named “ecosystem-engineers”
[Jones et al., 1994]. Such species can be imagined as biotic hubs in the ecosystem network,
which makes them so-called “keystone species” [Paine, 1969; Cottee-Jones and Whittaker,
2012]. Arguably, our own species is the most impactful ecosystem engineer of all, given
the large and diverse transformations we exert on the entire system earth [Steffen et
al., 2007]. Indeed, “ecological spillover” [Erwin, 2008] does modify flows and storage
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of energy and matter in ecosystems which can persist over geological times and modify
the way organisms interact with their environment over timescales which are relevant for
macroevolution. Therefore, ecological inheritance, because it is not strictly bound to an
organismal inheritance system and therefore affects many organisms at once, operates most
impactfully on the level of communities of populations which exploit a set of overlapping
ecological niches, i.e., it transcends the limits of the lineage.

Not surprisingly, such ecological effects played an important role in the evolutionary
history of life [Erwin, 2008] by adding ecological interactions to the repertoire of the
biosphere. Turning this around and taking into account the network view of ecosystems,
we also understand how individual extinctions of species can have vastly varying effects on
the rest of the ecosystem, from hardly any to precipitating a wave of secondary extinctions,
which also shows how mass extinctions ultimately unfold. We note that all this applies not
only to active and adaptive ecological changes but also to the passive effects of organismal
action. Organisms process their nutrition into different forms, thereby transforming matter
and energy into often more accessible variants. It has been shown for instance that the
recent extinction of the Pleistocene megafauna had a substantial effect on the nutrient
transport in the global ecosystem [Doughty et al., 2015]. Similarly, water plants trap
sediments in rivers, thereby creating meandering riverbeds [Corenblit, Steiger, et al.,
2007] fixating sand dunes, such that organismal action can be said to form landscapes
on the largest scale. Other passive ecological modification effects include the very bodies
of organisms, e.g., treetrunks or –crowns with the myriad of arboreal species that are
dependent on them.

Finally, the transmission of ecological heritable information can happen, much like
molecular epigenetic information, either by biased recreation of an environmental state,
which relies on other kinds of heritable information to bring about the behavior that
leads to its construction, or by the sharing of modified environments between different
generations. Recreation of environmental states, if encoded genetically, is represented
by the aforementioned concept of the “extended phenotype” [Dawkins, 2016], but other
encoding systems or forms of inheritance, especially cultural (see below) are possible.
Sharing the same environmental state as the parent generation can come about by parental
imprinting, where organisms tend to share habitat preferences with their parents [É.
Danchin et al., 2011] at different points in their lifecycle. Another possibility is that
offspring stay in the environment they were brought up in or disperse to nearby habitats
not very different from the parental one, such that correlations between parental and
offspring habitats are strong. As mentioned, the interaction of heritable information
and development can have important consequences in that the inherited, and partly con-
structed, developmental environment provides signals that precipitate regulatory responses
in the developing organism and in this way shape phenotypic variation, which in turn
influences how ecological modification will proceed in the next round. This process is,
theoretically, capable of shaping phenotypic variation over generations without the action
of natural selection or genetic drift, indeed, without changes to genetic information at all,
thus providing an avenue for the creation of adaptations that is not dependent on genetic
changes.
Cultural inheritance Cultural inheritance is the final form of inheritance we shall dis-
cuss because it extends the farthest away from what is normally considered evolutionary
biology. Cultural inheritance relies on a distinct transmission system - social learning.
Social learning means that behavior is acquired from other organisms by observing their
actions and the ensuing consequences [Whiten, 2019]. Note that this definition of social
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learning does not require the involved organisms to be related or from the same species,
the learner must just be able to recognize the “other’s” behavior and its consequences. We
can therefore understand social learning as building on top of the capability of individual
learning. Individual learning can be thought of as a form of phenotypic plasticity (compare
chapter 5), which involves the modification of an internal model of aspects of the ecosystem
an organism lives in using its experiences. This allows predictions about the behavior of
these aspects in the future. We recognize that these capabilities are quite sophisticated
and highly complex, but emerge ultimately as part of a developmental process that is
based on environmentally informed genetic regulation. We consequently recognize the
ability to learn and the underlying existence of internal models for ecosystem elements as
a new organizational layer in phenotypes that processes biological information. However,
the physical basis of this processing system lies in the structure of the nervous system
instead of the genetic content. Indeed, learning systems constitute a CCS that emerges
within the evolutionary CCS normally recognized as biological.

When social learning occurs between generations, the traits transmitted in this way
can constitute traditions [Whiten, 2019], which in turn gives rise to cultural inheritance.
We follow the definition of culture given in Whiten [2019] and reference therein, where
“culture” is defined as “the totality of traditions characterizing a community”. This culture
can be cumulative via successive addition and refinement of traditions [Whiten, 2019].
Social learning as a transmission mode can be based on communication or observation,
both of which can be associated with “transmission errors” and hence yield imperfect
inheritance. It must be noted that while social learning through observation has been
demonstrated in a wide variety of animals ranging from cockroaches and other insects
over fish to ungulates, whales and primates [É. Danchin et al., 2011; Whiten, 2019],
communication-based learning appears to be rare, possibly even limited to Homo Sapiens
in its full form.

Indeed, while not as easily formalized, the question about cumulative culture leads to
a problem analogous to the “error threshold” in genetics. Cultural traits must be such
that they can be memorized and transmitted reliably via social learning. If they are
too complex to be either memorized or observed in sufficient detail (a problem parallel-
ing the template- versus code-based reproduction system discussed in Figure 4.1.7), the
trait will be lost eventually because it cannot be transmitted without errors that will
render the trait non-usable eventually. Drawing on our own experience in learning and
memorization, we might suggest that cultural traits that are used often are transmitted
with higher fidelity than those that are used rarely as a consequence of the nervous
system’s plasticity. Language appears to parallel the genetic code system to some extent
by providing the aforementioned syntax-semantics distinction that makes it possible to
communicate cultural traits in detail and repeatedly. This alleviates the problem of
observation-, i.e., template-based reconstruction of cultural traits via observational social
learning and consequently opens the door to a much richer and far more complex cultural
phenomenology which might well have been the central innovation of Homo Sapiens when
compared to other species of Homo or other animals in general. Therefore, the invention
of symbolic communication can be seen as a major evolutionary innovation that opened a
new domain of biological information for the partaking species and thus more opportunities
for adaptation. However, in contrast to the genetic system, our linguistic system has no
universal code, with languages differing substantially in their grammatical structure or the
number of employed sounds. However, while social learning (with transmission errors) in
whatever way is a necessary condition for cultural evolution, it is not sufficient [É. Danchin
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et al., 2011]. Rather, it must be demonstrated that variation in cultural traits leads to
variation in the reproductive success of their carriers and that these traits are transmitted
through social learning. While intra-generational social learning has been found in many
species there are comparatively few instances where this has been demonstrated. For
songbirds, it has been suggested, though not conclusively proven, with sexual selection
remaining a valid alternative [H. Williams, I. I. Levin, et al. [2013], according to Whiten
[2019]]. Finally, cultural traits can influence natural selection on traits encoded in other
systems of heritable information, mostly genetic. This gene-culture coevolution appears
highly plausible but has mostly been demonstrated only for cultural traits shaping genetic
selection, the classical example in humans being adult lactose tolerance [Ségurel and Bon,
2017]. It must be noted that other organisms from which can be learned are part of
the ecosystem of the focal organism, and thus social learning over multiple generations
can be seen as a form of ecological inheritance. However, it concurrently constitutes a
form of horizontal transfer of biological information, which can be seen as a source of
cultural innovation much in the same way as horizontal gene transfer is a source of genetic
innovation for bacteria. The transmission mode is the same in both cases, i.e., social
learning.

Cultural inheritance can form the basis for a new form of complex constructive system, in
which imperfect social learning or individual cognitive processes constitute a trait discovery
process, trial-and-error in a given ecosystem constitutes a performance evaluation process
and the collective memory of the population forms the trait-reservoir. Depending on how
well-developed the syntax-semantic-split is in such a system, how large the population is
and how complex the underlying learning systems of the organisms in question are, this
system will be more or less powerful, as discussed in the context of genetics before. This
system can be intertwined with natural selection and classic biological evolution by sharing
parts of the performance evaluation system for example, e.g., if an organism dies due to
cultural maladaptation, which will lead to the aforementioned coevolution.

4.4 Summary

We started with an abstract concept of self-reproduction as a network of dynamical systems
(Figure 4.2), modeled on observations in the natural world. Aimed to be general, it
separates the initial creation of a functional phenotype D̃P from its maturation into a
reproductively viable from, L. This is based on the observation that organisms must
establish the necessary preconditions for reproduction first, e.g., acquire material from the
environment, but often, physiological changes are part of this lifecycle, too. This leads to
the insight that this process always transforms the environment, i.e., the surrounding
ecosystem, as well. This process includes all organismal actions, not only foraging.
Therefore, the phenotype and the local environment undergo a transformation process
from a state that is not amenable to reproduction to one that is. We understood the
creation of phenotypes from some material as a form of self-organization of matter,
during which heritable information plays a central role in that it restricts and steers
the self-organizing processes into forms that implement specific self-reproduction again.
While we mostly envisaged this self-organization as operating on pre-existing material
building blocks, the same principle applies to elements that exist only as part of biological
processes.
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We defined heritable information as a special form of biological information, adopted
from Jablonka [2002], that is transmitted within lineages. Notably, this excludes horizontal
exchange by choice, although, in nature, there is significant overlap between horizontally
and vertically transmitted biological information, e.g., in horizontal gene transfer or cul-
tural evolution. This does not limit the usefulness of the concept, however, because these
processes just as well can act on heritable information. They just do not constitute
inheritance. In keeping with the structure of Darwin’s theory of natural selection, the
exact physical nature of this heritable information is immaterial.

Heavily building on concepts discussed by Rocha [2001], we extend these by assigning
heritable information an active role in the self-reproduction process, which includes the
exertion of dynamical forcing, but also the possibility of it being modified during lifetime.
Consequently, heritable information is not the central blueprint, but a system of, mostly
indirectly, guiding functions for the dynamics of other parts of the organismal unfolding.
Asking for possible implementations of this system, we discussed template-based and code-
based self-reproduction, following the concept of von Neumann [1966] as discussed in Rocha
[2001] and Pattee [2012b], and arriving at the insight that template-based reproduction
is limited to comparatively simple systems because it must provide encoding of heritable
information and physical function in the same structure, whereas the possibilities for a
code-based replicator are only limited by the physical interactions its material building
blocks are capable of.

This fills with life the assertion of heritable information as a guiding and regulatory in-
fluence on self-organizing matter because the autonomous self-organization of, say, amino-
acid chains into folded proteins can be said to be the first layer of the organizational
network of natural phenotypes. It follows that heritable information can be assessed
according to different properties - stability or heritability across generations and the
syntactic-semantics split, i.e., the existence of a symbolic encoding system and the ability
to monopolize its content by a lineage the most important ones. We then discussed
different forms of heritable information, starting with the genetic system for which the
syntax-semantics split is most well-developed and which generally is the most stable
form of heritable information. Its activity and dynamics are almost entirely controlled
on the syntactic level, except in some prokaryotic organisms in which transcription and
translation overlap in time. The complex chemical processes involved in the regulation
of gene activity first lead to molecular epigenetic inheritance, i.e., the inheritance of
gene-activity patterns over generations. This shows how a different inheritance system,
lacking independent symbolic encoding in this case, can emerge on top of the dynamics
of another one by employing degrees of freedom that arise from the syntactic dynamics of
its underlying system.

A similar pattern has been discussed with respect to the architecture of genomes into
gene-regulatory networks, where the hypothesis of Davidson [2010] has been discussed that
there is a limited number of abstract network motifs, implemented by different genes in
different lineages, which are used to build up complex, deep GRNs. This would create a
second system of syntactic dynamics on top of the genetic one, which has been likened to
abstractions employed in the design of programming languages. The central insight from
all this, backed up by the finding that in many organisms, regulatory elements numerically
far outweigh protein-coding genes, is that the genome cannot be regarded as a blueprint
containing independent instructions to build specific phenotypic properties. Rather, it is a
self-regulating system that evolved to dynamically react to environmental inputs in order
to enable the self-reproduction of complex structures.
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The last two forms of heritable information discussed here where cultural inheritance,
which while not a new concept, only relatively recently received significant attention
[Whiten, 2019; É. Danchin et al., 2011], and ecological inheritance, which has found
a central place in a contemporary debate about whether evolutionary theory needs a
fundamental revision [K. Laland, Matthews, et al., 2016; Müller, 2007; Scott-Phillips et
al., 2014]. Ecological inheritance refers to the concept that the structure of the ecosystem
in which an organism finds itself is a carrier of heritable information. This can happen
by direct construction of artifacts, e.g., nests, burrows, and dams, that exist longer than
the organisms that constructed them originally and thus can be seen as being bequeathed
to the next generation. Indeed, costly constructions like beaver damns are preferentially
re-used by direct offspring and are defended against conspecifics and other organisms.
This behavior can be linked to genetic heritable information, in which case we once more
find an emergent inheritance system that is based on the output of the underlying genetic
one, although local variation in ecological construction can also be based on cultural
traits (see below or subsection 4.3.2) or abiotic environmental conditions. Ecological
inheritance depends on limited or directed dispersal, i.e., offspring either stay in the habitat
of their birth or only disperse to similar neighboring habitats, such that they “inherit” the
ecological conditions their parent chose. In many cases, parental imprinting plays a role
[E. Danchin, Pocheville, et al., 2018; É. Danchin et al., 2011], such that offspring as adults
develop a preference for the habitat of their parents. Ecological heritable information is,
in general, difficult to monopolize for a single lineage. Indeed, the arising inter-lineage or
population-wide ecological spillover effects may be the more important influence it has on
the evolutionary process, because organisms, through their passive and active actions,
change diverse elements of their environment for themselves, but also all others that
interact with it, thereby creating ecological niches, changing matter and energy fluxes and
storage and influencing the long-term trajectory of system earth as a whole [Erwin, 2008].
Ecological inheritance, consequently, is of more general scope than the other inheritance
systems discussed here.

Cultural inheritance can be seen as a subprocess of ecological inheritance because the
ecosystem an organism is a part of contains others through which cultural interaction and
social learning can happen. The term “cultural evolution”, in its narrow sense, means that
variation in cultural traits leads to their differential transmission to other carriers which
results in the spread or reduction in the frequency of a cultural trait in a population.

Therefore, this theory of cultural evolution results from a direct application of Darwin’s
theory of natural selection to cultural content [Whiten [2017] and Whiten [2019] and ref-
erences therein]. The fundamental difference that distinguishes cultural inheritance from
virtually all other inheritance systems is that the transmission of cultural traits proceeds
via social learning and not by phenotypic reproduction as is the case with the genome
and epigenome. Therefore, cultural evolution in that sense can be seen as proceeding
largely independently from non-cultural evolution in that cultural traits. It can produce
an independent kind of CCS analogously to biological evolution, which nevertheless can
be intertwined closely with biological evolution. Along with epigenetic inheritance, it is
one of the ways in which the unfolding of L over time can influence heritable information
h, which allows for the inheritance of acquired characteristics on a cultural as well as
epigenetic level. Cultural inheritance stands out in that it represents an inheritance
system that emerges from another complex phenotypic trait, nervous systems, i.e., as an
emergent property of the regulatory unfolding of underlying genotypic information, which
at the same time creates its transmission- and encoding system. We can draw an analogy
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in social learning based on observation and copying to template-based reproduction as
discussed in Figure 4.3, while social learning based on communication can be likened
to the syntax-semantics split Rocha [2001] professes and which underlies von Neumann’s
universal constructor. Human language is arguably the most sophisticated example, giving
human cumulative culture a qualitatively different character from all other animals.



5. Evolutionary developmental biology

5.1 Basics of Development

Developmental processes evolve in multicellular organisms All multicellular organisms
that produce sexually, and some asexual ones, pass through a unicellular stage during
their lifecycles [Grosberg and Strathmann, 1998; Du et al., 2015]. A multicellular lifecycle
therefore rarely consists of a single, mature phase that can reproduce immediately. Rather,
organisms develop in a complex, temporally extended process from their single-celled form
into a reproductively viable state which, for some organisms, can make up the majority
of their lifetime. We call the process that generates an adult body from the unicellular
initial state “development”. Taking up the notation introduced in Equation 4.1.5, this
corresponds to the functions L and D̃P . We note that this divides development into two
phases, one that creates a functional multicellular body from heritable information and
environmental resources that is capable of interacting with its environment (corresponding
to D̃P ) and a second phase (corresponding to L) that transforms this structure into a
stage that is reproductively viable. This latter phase includes invariably influencing the
environment in which an organism exists.

While this clear distinction can be helpful as a theoretical guide, it must be noted that,
in nature, it is rarely as clear-cut as this model posits. Growth and differentiation can
continue long after an organism reaches a reproductively viable state, and in many complex
animals, the ability to interact with the environment is gradually attained over a prolonged
period of time. Thus, the process D̃P does not just create a physical structure, it creates a
system that is capable of implementing a specific L, i.e., a specific growth- and development
cycle. Heritable information thus must contain the necessary signal processing systems
to guide this temporally extended process. Development is consequently subject to evolu-
tion, and many different strategies for implementing L and D̃P have evolved in different
organismal lineages. While we immediately think about the quality of the phenotypic
traits, it must be emphasized that adaptation just as much refers to the timing of their
emergence and the order in which they do so in relation to environmental conditions or
internal states. Therefore, all evolutionary change in multicellulars involve development
in some form [Stearns and Hoekstra, 2005].

Development has ecological consequences Because organisms develop over time, their
interactions with their environment change over time, too, as part of the growth and
unfolding from zygote to juvenile to adult. This entails changes in the ecological niches
they occupy. As a consequence of different phenotypic traits, the environment organisms
seek out at different stages of their development can differ substantially from each other.
Thus, the function L does entail complex shifts and reorganization of organismal features
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for many multicellular organisms, with consequences for the selection pressures active at
any time.

In insects that undergo metamorphosis, this is probably the most apparent. Dragonflies
are aquatic predators as larvae, but aerial predators as adults. Similarly, the larvae of
most amphibians are fully aquatic, while the adults are largely or fully terrestrial. An
even more striking example comes from the fossil record of dinosaur ecosystems, which
often appear to be less species-rich than modern ecosystems, a fact attributed to them
growing through different ecological niches associated with different body sizes [Schroeder
et al., 2021] during development. This, in turn, is a consequence of size restrictions of size
at birth because eggs have an absolute size limit.

Such onthogenetic niche shifts are common in nature [Nakazawa, 2014] not only for
animals, but also for plants [Dayrell et al., 2018], and are doubtlessly a result of natural
selection acting to improve the survival chances of organisms during non-reproductive
stages leading up to the adult phase, or the general preconditions to become a successful
reproducer. As mentioned, natural selection acts on each stage of development in possibly
different ways, with the performance evaluation process associated with the combined
lifecycle being given by the attained lifetime reproductive success. Because of this coupling,
life-history trade-offs emerge, where the optimization for survival at one stage can impede
overall lifetime reproductive success by inhibiting the later development of another trait.
In turn, the developmental unfolding of organisms influences ecosystem assembly, and
therefore their stability against external shocks or invasive species, but also the coevolution
between different populations over time, because the timing and quality of interactions can
shift from one developmental phase to another. Moreover, such niche shifts at different
stages of the developmental process can serve to minimize competition between adults
and juveniles of the same species, or, more generally, between different stages of a givens
lifecycle.

Developmental processes are thus not just an organizational necessity in multicellular
organisms. Rather, they allow them to exploit different resources at different stages of their
lifecycle, thereby permitting the expansion into different habitats and ecological niches, or
evolve different ecological interactions at different times. Thus, developmental processes
can contribute to ecological complexity. Ecology consequently gains an additional dimen-
sion, in that a single biological (or morphological) species can represent a multitude of
ecological species over the course of the developmental unfolding of its individuals.

Development and “developmental selves” The developmental process does not only
create spatiotemporal and functional organization in a population of cells but also es-
tablishes a form of “self–non-self” recognition. Because this self–nonself- recognition is a
feature of all living things, including individual cells in a developing organism, this entails
the integration of originally independent “selves”, i.e., cells, into a larger whole. The cell
population as a whole is eventually able to distinguish cells and other particles that belong
to this unit from those that do not, and this new “self” does transcend the analogous
feature of individual cells. These are still able to make such distinctions concurrently,
albeit in a less complex and differentiated form [Burroughs and Aravind, 2020] and one
that, in the multicellular organism, is “subject” to the greater whole. The emergence of
this distinction is a hallmark of evolutionary transitions in individuality [Szathmáry and
Maynard Smith, 1995; West et al., 2015], although this concept is normally applied to the
emergence of self-reproduction of the whole and not to the emergence of developmental
selves.
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This intrinsic self–non-self distinction provides us with one way to distinguish environ-
ment and individual, which we can call a “developmental individual”, and which is defined
as the set of interacting entities for which a process emerges that accepts some of these
elements and rejects others. We note, however, that this “self” is an emergent entity,
or property, of the multicellular system. Individual cells can indeed lose this notion of
a larger “self” and become singular again, which is why cancer has been described as a
loss of multicellularity [Trigos et al., 2018]. In that way, evolution of cellular life shows
the emergence of higher-order elements in a population of complex adaptive systems as
described in chapter 2.

Development is paramount for evolutionary theory On the other hand, because de-
velopment creates all the structures by which a multicellular organism interacts with
its environment, development is of paramount importance for the evolutionary process,
because it creates the phenotypic variation upon which natural selection acts. More than
that, variation in the developmental process itself is subject to and consequence of natural
selection. Therefore, development is the central element that links evolutionary dynamics,
self-organization and complexity and genetic dynamics, as illustrated in Figure 4.2. This
gives a more nuanced meaning to the notion of “self-reference” in discussions of evolution:
Natural selection can shape the process that generates the variation upon which it, in
turn, acts. More than that, evolutionary developmental theory emphasizes the dynamic
nature of individuals, which must be regarded more as comprising a set of continuously
unfolding and interacting processes that reproduce themselves rather than as the more
or less static “interactors” or “vehicles” [Dawkins, 1976] they are often interpreted as. A
corollary is that “what evolves in evolution” are in fact different developmental processes,
or lifecycles, instead of only genes or organisms, although their evolution is a necessary
consequence.

Although development is concerned with multicellular organisms, the assertion that
lifecycles are the evolutionary foci goes beyond that, and so some attention must be
given to unicellular organisms in this regard. While they do not undergo development
in the same way as multicellular organisms do, they undergo repeating cell cycles that
differ in complexity and mechanics between prokaryotes and eukaryotes. These cell cycles
can be seen as a unicellular analogon to multicellular development because both follow
broadly the same principles. They constitute an ordered pattern of conception, growth and
resource acquisition, which leads to a reproductively viable state. Furthermore, unicellular
organisms establish a kind of “self-recognition” in much the same way as multicellular
organisms do, i.e., have their own immune systems [Westra et al., 2012]. Because cells are
the fundamental entities of biological evolution, unicellular cell cycles do not involve the
emergence of a higher-order, compound “self” that multicellular lifecycles entail, and are
correspondingly simpler. Nevertheless, we can see the emergence of developmental selves
as a manifestation of biological information processing, which consequently is present on
all scales of biological organization.

The principle that evolution refers to self-reproducing adaptive processes instead of
static vehicles can, therefore, be maintained for the entire domain of life1 In other words,
evolutionary change in multicellular organisms always involves development in some way
1 A particular challenge in that regard, however, is posed by viruses, which cannot be said to establish

some form of developmental self or undergo development in any appreciable form. However, because they
are comprised only of syntactic elements (DNA or RNA) and do not maintain the syntax-semantic split
inherent in cellular life, they cannot be said to be “alive” in the same way as cells can, and are thus
excluded from the discussion here.
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[Stearns and Hoekstra, 2005]. Consequently, developmental processes can be nested
and can coopt different stages within each other, i.e., the unfolding of developmental
processes on a lower level can provide capabilities that are employed in the higher-order
developmental process, while the higher-order process, in order to remain stable and
robust against selfish elements, must restrict these lower-level processes by setting their
boundary conditions or parameters, i.e., by providing forcing [Fields and M. Levin, 2020b].
This concept has been encountered multiple times already, in particular in chapter 2 and
chapter 4, and finds a natural implementation here.

5.2 Plasticity and developmental symbiosis

5.2.1 Development integrates environmental signals

Development does not just create a life cycle according to a plan, as complex as this might
be. Rather, developmental unfolding is able to integrate signals from the environment and
create an adaptive response in the phenotype of the organism [Gilbert et al. [2015], Sultan
[2015] and references therein]. Therefore, the environment a population is embedded
in not only plays a role in natural selection and (co-)evolution but is also a source of
developmental information. The phenotypic variation a population of organisms will show
is thus dependent on the environmental properties it finds itself in.

Integration of environmental signals gives rise to plasticity, i.e., multiple different pheno-
types can be generated without change in genetic sequence and in response to environmen-
tal changes. Consequently, we identify developing organisms as complex adaptive systems.
With that comes the whole spectrum of phenomena known from nonlinear dynamics, most
importantly well-defined attractors in the collective behavior of the cells of the developing
organism, with their accompanying basins of attraction. Thus, we can interpret the body
plans of organisms as attractors in a complex nonlinear system that attains different forms
depending on external input. This also connects back to the concept of genomes guiding
self-organization laid out in chapter 4.

Developmental variability of a phenotype is represented using norms of reaction, which
measure the change of a trait of some organisms over some environmental gradient,
assuming the genetic background to be fixed [Stearns and Hoekstra, 2005]. Often, these are
abiotic factors like temperature, but biotic factors often induce plastic reactions, too. True
to their nature as nonlinear dynamical systems, developing organisms do not just exhibit
a continuous reaction of their traits under changing environmental conditions. Rather,
akin to bifurcations in simple nonlinear systems, these changes are often qualitative and
can transform the developed phenotype substantially.

Indeed, many natural examples of developmental plasticity are characterized by qual-
itative and conditional changes. For example, the exposure of Daphnia water fleas to
predators can lead to the creation of protective structures [Agrawal et al., 1999]. Nema-
todes of the genus Pristionchus are able to switch from a bacterial diet to macropredation,
i.e., preying on other nematodes based on environmental conditions [Wilecki et al., 2015].
In general, plasticity is thought to be more relevant for sessile organisms which have to
cope with the conditions in their habitats as they are, while mobile organisms can move
to find more favorable conditions.

Developmental systems thus can be seen as an information processing system (compare
subsection 4.1.6) that incorporates environmental signals as well as internal heritable
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information into its dynamical unfolding to create a phenotype capable of successful
reproduction and survival.

5.2.2 Gene-regulation as mechanistic underpinning of environmental signal
integration

Genetic architecture implements development In chapter 4, we discussed gene reg-
ulation, gene-regulatory networks and epigenetic inheritance in the context of heritable
information, and explored various mechanisms for how this regulation is achieved. Most
noteworthily, cells continuously adapt to environmental conditions by adjusting the levels
of gene expression as a reaction to environmental signals, e.g., to the presence or absence of
lactose as has been discussed in subsection 4.2.5. Cells can consequently be seen as complex
adaptive systems as well, which makes multicellular organisms, but also eukaryotic cells,
nested CAS.

Because the development of multicellulars is a process in which a growing colony of
cells cooperates and diversifies, and gene regulation is the fundamental mechanism by
which cells adjust to their environment, gene regulation is the fundamental developmental
mechanism, in that it’s the differential expression and manipulation of heritable genetic
information by means of other heritable information and non-inherited environmental
signals and their temporal coordination that implement a developmental program.
Genetic organization confers and constrains evolvability and structures the evolutionary
process As mentioned in subsection 4.2.6, the genome is organized into coupled gene
regulatory networks which are sensitive to input signals and produce some outputs that
act on other GRNs again or have another function in the cell. In unicellular organisms,
these signaling systems create a temporal coordination of functions that results in the
cell cycle. In multicellular organisms, spatial organization attains a greater role, because
many mulitcellular organisms, in particular animals, are highly spatially heterogeneous and
segmented. As discussed in subsection 4.2.6, GRNs form circuits and motifs connected
together. Different GRNs and genes thus can be reused in different contexts whenever a
specific function is required, with the switches that link them being a deciding factors for
the spatiotemporal developmental process (compare subsection 4.2.6). The total network
of gene regulation thus implements the developmental process. As a consequence, some
of the regulatory network motifs are deeply conserved across the animal- or metazoan
kingdom, and are reused in different contexts. Once established, such deep motifs are
hard to change because of evolutionary continuity (see subsection 3.3.5). Therefore, the
discovery of the function of GRNs in development provides a mechanistic explanation of
why the differences in body plans are greater for different animal phyla than for individual
species or clades within them, and why all members of a given phylum, e.g., Arthropoda,
share a number of distinctive features (segmented extremities or compound eyes) that
other animals, e.g., tetrapods, lack. The same logic can be applied to higher or lower
levels of classification.

In other words, genetic architecture can restrict evolutionary change because low-level,
highly conserved genetic motifs are so important for the functioning of the lifecycle that any
mutation to them would disrupt it and reduce fitness to the point where they will quickly
be lost [Erwin and Davidson, 2009]. As a consequence, evolutionary changes are biased
towards downstream elements of the organism’s GRNs, where changes are less disruptive
to the overall functioning of the organism. This architecture thus provides a mechanistic
example for when and how evolutionary continuity (subsection 3.3.5) creates trade-offs
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and higher-than-expected complexity, and it can leave a signature in the evolutionary
trajectory of a lineage [Brakefield, 2006].

On the other hand, this hierarchical organization allows for evolution to proceed in a
far more flexible manner than would be possible in hierarchy-less genotype-phenotype-
map, because mutations in genetic switches can relink or disable entire network motifs
(see subsection 4.2.6) that confer novel functions at different times or places or under
different ecological conditions. For example, over the course of animal evolution, the HOX-
gene cluster has been duplicated multiple times, with different versions having different
functions in animal development [Stearns and Hoekstra, 2005]. This gives exaptations,
i.e., the reuse of functions in a different context [Gould and Vrba, 1982], a greater role in
evolution and, at the same time, provides a mechanistic explanation for it. Concurrently,
their ability to integrate environmental signals allows for developmental plasticity by con-
ditionally enabling or disabling or up– or downregulating genetic subcircuits or individual
genes.

Because of evolutionary continuity, the evolution of the GRN-based developmental
process must have involved a cooption of the existing gene regulatory signaling pathways in
eukaryotes when multicellulars evolved from unicellular groups. This came about because
variation in gene regulation in cells of some primordial multicellular conglomerate that
affected the reproductive success of the group (and thus of the individual cells) came under
a changed natural selection regime compared to a unicellular state, leading to evolution-
ary divergence. Thus, multicellular organisms retained the reactivity to environmental
conditions during development by coopting this reactivity from their constituents. In this
way, they inherited also the CAS property from their unicellular ancestors.

5.2.3 Development and ecology revisited - developmental symbiosis

Until now, we conceptualized organisms as a collection of interacting processes that form
a “developmental self” and share a set of heritable information and which all acted on
a collection of cells that arises from a single-celled starting point. However, empirical
analysis shows that multicellulars are settled by a multitude of other unicellular organisms
[Gilbert et al., 2015]. These symbionts often provide important functions to their hosts.
For example, the gut of termites is settled with a set of unicellular organisms that allow
them to digest cellulose and which produce methane as a waste product [Breznak, 1982].
A similar dependency can be found in ungulates, and, in fact, the large majority of animals
in one way or another. This symbiosis extends also to other tissues, e.g., skin [Ross et al.,
2019].

More than just useful helpers, it turns out that these unicellular symbionts are, in
fact, important sources of developmental signals which are often crucial for the successful
unfolding of ontogenesis of organisms [Gilbert et al., 2015; Carrier and Bosch, 2022]. In
particular, the gut of sterile mouse embryos fails to develop correctly, but can later be
induced to do so by reintroduction of the normally present symbiotic bacteria. Similarly,
in the nematode Brugia malayi, the body axis fails to develop correctly in the absence of
Wolbachia bacteria [Landmann et al., 2014], and the light organs of some bobtail squid
species depend on Vibrio bacteria living in seawater in a similar way [McFall-Ngai and
Ruby, 1991]. These examples are specific in that the developmental function depends
explicitly on the bacterium species involved, i.e., the association must have come about
by coevolution.
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Symbiotic organisms, therefore, are a widespread and vital part of multicellular de-
velopmental processes, and the structure of this “internal ecosystem” has a significant
influence on their reproductive success. For the symbionts, this dependency is often equally
deep, with many symbiotic microbes being exclusive to certain phylogenetic groups. This
association often mirrors their evolutionary history of divergence [R. M. Fisher et al.,
2017]. Indeed, changes in organismal microbiomes have been implicated to play a role in
species divergence [Gilbert et al. [2015] and references therein].

It must be noted, however, that not all organisms that settle a multicellular body and
are part of its internal biome are necessarily beneficial symbionts. Many can be more or
less neutral additions that neither significantly harm nor benefit their host, while others
can indeed be harmful and must be suppressed by the immune system, and yet others are
fully beneficial [Douglas and Werren, 2016]. Moreover, if an organism is one or the other
can significantly depend on the location it settles in the developing body. Thus, rather
than thinking of natural organisms and their microbiome as mutually beneficial integrated
wholes, it is arguably more accurate to see them as a kind of self-managing community,
part of which undergoes a collective replication process, while other parts are assembled
from its environment over time [Douglas and Werren, 2016].

Nevertheless, because of their frequent importance for the timing and quality of de-
velopmental steps, the symbiotic ecosystem of organisms can be seen as part of the
developmental signaling network, and its formation over time as being part of the develop-
mental process. Indeed, the evolution of the forcing the multicellular whole exerts onto its
microbiome can be seen as a central theme in the evolution of multicellular development,
in much the same way as the forcing via heritable information on protein self-organization
and cellular assembly. The self-nonself-recognition introduced above must include the
management of this internal ecosystem, i.e., a plausible argument can be made that
immune systems of multicellulars have been formed at least in part by the requirement of
maintaining this vital element of developmental signaling [Gerardo et al., 2020].

5.2.4 Plasticity and evolution

Plasticity, as mentioned, can affect the phenotypic variation exposed to selection, thereby
influencing ecological interactions. As a consequence, this can change the evolutionary
trajectory of populations.
Cryptic genetic variation Cryptic genetic variation is genetic variation that normally
is not exposed to natural selection, i.e., is neutral but can have fitness effects when envi-
ronmental conditions change [Gilbert et al., 2015; Paaby and Rockman, 2014]. Elements
of a gene regulatory network that are disabled or suppressed under normal conditions
can accumulate variation over time, which then can become exposed to selection once
an outside influence disables or reduces this suppression [Ng and Kinjo, 2022]. Thus,
organisms harbor, generally, much more genetic variation than is exposed to selection
at any given time [Paaby and Rockman, 2014; Gilbert et al., 2015], allowing for greater
evolvability under varying environmental conditions and for accelerated evolution [Zheng
et al., 2019]. This is of particular importance in the case of rapid changes to a given envi-
ronment, where cryptic genetic variation can provide phenotypic variation as a response
to environmental change, thus allowing for greater evolvability “right when it is needed”.
Cryptic genetic variation thus contributes to solving the problem of gradualism for large
environmental change, because genetic variation that contains potentially adaptive traits
under the new conditions does not need to be first evolved via small steps while the
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environment already has moved away from the configuration the population is adapted
to. Rather, populations harbor a large pool of genetic (-regulatory) variation that is not
expressed under established conditions but can be expressed when these change. In other
words, the trait memory of the population contains many neutral or unused elements.
It’s no large jump to connect this to learning systems, which can memorize past events
and reproduce them upon encountering similar conditions again. In particular, models
for gene-regulatory networks have been shown to be equivalent to RNN2s (R. A. Watson,
G. P. Wagner, et al. [2014] and references therein), and developmental systems have been
discussed as learning systems by these authors.

Genetic accommodation Plasticity can lead to organisms expressing new traits under
changed environmental conditions. If these traits are adaptive, and there is variation
in their expression between individuals, natural selection should favor the variants that
express the plastic trait most reliably and advantageously [Ng and Kinjo [2022], Gilbert
et al. [2015] and references therein]. This results in an originally plastic trait becoming
assimilated into the heritable information of the organism such that it is expressed inde-
pendently from the original environmental signal. Genetic accommodation thus provides
a mechanism in which plasticity can be the first step of evolutionary change, with genetic
variation reacting to it via natural selection, in contrast to the classical notion of genetic
mutation being the first step towards novelty. Indeed, genetic mutation is not required
to initiate the process at all, although it does require some preexisting genetic variation.
The key to this mechanism is gene regulation, which is envisaged to change under new
environmental conditions because different environmental signals lead to cryptic variation
in regulation being activated. These regulatory pathways can then evolve to become less
and less dependent on the environmental signal in order to be expressed if their product
is adaptive, and thus variation in them is selected against. This concept of plasticity-led
evolution also includes the notion of plasticity being universal to developmental systems
[Ng and Kinjo, 2022], and the assumption that it generally is able to produce adaptive
phenotypic variation.

Plasticity-led evolution Plasticity-led evolution can be seen as a generalization of the
Baldwin-effect [Baldwin, 1896], bringing together the above concepts of cryptic genetic
variation, genetic accommodation and phenotypic plasticity. In the Baldwin-effect or-
ganisms change their interactions with their environment through learning, which then
is assimilated into the genome via genetic accommodation. The generalization thereby
happens in the source of the original change, from learning of new behavior to any form
of adaptive phenotypic plasticity. While cryptic genetic variation allows for populations
to persist under environmental change due to larger adaptability, plasticity allows for the
rapid formation of new traits through which organisms can survive and thrive initially. The
changed ecological interactions will uncover cryptic genetic variation, which will produce
wider phenotypic variability and thus modify natural selection on these newly expressed
traits. Genetic accommodation then can happen when the originally plastic trait is also, at
least partially, expressed through uncovered cryptic pathways, such that genetic variation
in the reliability and quality of the adaptive plastic trait exists on which natural selection
can act. It must be noted again, as Ng and Kinjo [2022] point out, that for this to be
a general process in evolution, adaptive plastic responses need to be a general feature

2 Recurrent neural network, a kind of artificial neural network that allows connections between nodes to
form cycles.
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of natural genetic regulatory systems, which is an as of yet not sufficiently validated
assumption.
Epigenetic inheritance as a mechanism for the inheritance of plastic responses An in-
termediate step in the genetic accommodation process is sometimes provided by epigenetic
inheritance of regulatory signals like microRNA (compare subsection 4.3.1), which allow
for regulatory effects originally brought about by environmental change to persist even
after the environmental signal no longer exists, thereby exposing the plastic phenotype
to selection for longer times. Epigenetic inheritance therefore can, in principle, bridge
the gap between the timescales of environmental signal persistence and natural selection
taking effect, and thus facilitates genetic accomodation.
Genomes as dynamic instruction sets instead of blueprints Classical evolutionary
theory interpreted phenotypic variation as a consequence of genetic variation, modulated
by non-evolutionary processes like learned behavior. The phenotype was thus regarded
as a consequence of the genotype, which gave rise to the idea of the genotype-phenotype
map. That being said, it was long since known that organisms show variation in their
phenotype under different environmental conditions (Stearns and Hoekstra [2005] and
references therein), but this data either failed to be integrated into larger evolutionary
theory or was interpreted as arising as a consequence of genetic variation alone.

Modern research into developmental processes suggests that a more integrative approach
must be taken, and genomes should be regarded more as “repertoir of environmentally
contingent possibilities rather than a single determined outcome” [Sultan [2015], p. 20], as
discussed multiple times in this thesis. With development being identified as a complex
adaptive system, and understanding that organisms achieved von Neumann’s syntax-
semantics-split, we can go one step further and interpret genomes as self-modifying instruc-
tion sets that react to environmental signals. Indeed, Fields and M. Levin [2020a] went as
far as suggesting a symmetry between evolution and development, based on the idea that
all life on earth can be seen as a succession of cell divisions. It must be noted that such a
view would have to be reconciled with the aforementioned emergence of “developmental
selves” during the unfolding of a lifecycle – a task beyond the scope of this thesis.
Organisms as evolving holobionts Often, symbionts are acquired through environmen-
tal interaction, such that the environment becomes a source of phenotypic variation
in yet another way. Secondly, this environmental acquirement may be an additional
source of phenotypic plasticity, when variation in the acquired community exists and
is environmentally dependent. On the other hand, many of the most vital symbiotic
organisms are in fact transmitted vertically from parent to offspring [R. M. Fisher et al.,
2017], although, in principle, these two modes of transmission need not be as clearly
separated as they may appear. For example, parent organisms may construct or seek out
specific environments to rear their young, and this may entail shaping them to allow the
infection of offspring with symbiont organisms.

If symbiotic organisms are transmitted from parent to offspring, this aligns their fitness
interests, i.e., their reproductive success is interdependent and too selfish symbionts will
likely die out by harming their host. In such a case, variation in the symbiont composition
of an organism will translate into phenotypic variation upon which natural selection can
act. Therefore, the evolving developmental process is a conglomerate of entangled develop-
mental unfoldings of the multicellular organism and its symbionts. These processes form a
network that coevolves, thus extending the classical notion of what a developmental or evo-
lutionary individual is. Indeed, it has been shown that in some organisms the microbiome



116 5 Evolutionary developmental biology

is responsible for creating reproductive isolation, thus having a macroevolutionary impact
[Brucker and Bordenstein, 2013]. On the other hand, the concept of the holobiont has also
been criticized for placing too much emphasis on symbiotic interactions and ignoring the
variation in degrees of mutualism involved in natural symbiotic relationships.

5.3 Summary

Development is the process that generates the reproductively viable multicellular body
from a unicellular initial state in most animals, plants and fungi. This process thus creates
the phenotypic variation in a population upon which natural selection acts and is thus
relevant for evolution. Indeed, all evolutionary change in these organisms can ultimately
be seen as change in development. More than that, the developmental processes active in
organisms can have significant consequences for the assembly and dynamics of ecosystems,
and thus for ecology.

Developmental unfolding is heritable, and thus development and lifecycles are subject to
natural selection, leading to life-history evolution and the emergence of different strategies
for growth and reproduction. More than that, the developmental process does produce a
“developmental self” which is able to distinguish elements of itself from other elements in
the environment. This developmental self is an emergent property based on the interaction
of other “selves”, namely individual cells.

Development does, however, not just create an interaction platform that reproduces
in the end. Rather, it integrates environmental information and is able to adapt the
developmental trajectory itself as well as the character of individual traits to these signals.
Therefore, it forms a complex adaptive system. Because all stages of the process are
relevant for the eventual lifetime reproductive success of an organism, we can see the
evolution of organisms as the evolution of dynamic adaptive processes – lifecycles –
instead of only the evolution of genetic sequences or more or less static organisms [Smith,
2023]. Consequently, because of all these far-reaching properties of development, organisms
can be seen as self-reproducing processing systems for biological information and the
developmental systems can thus be seen as the focus of evolution. This even extends
to unicellular organisms, which, while lacking true development, still operate in a cyclic
manner similar to the one outlined in Equation 4.1.9, which also constitutes a process
which dynamically incorporates external signals.

With this, environmental signals become important agents of the evolutionary process,
thus elevating the environment from a background filter to an active element in the evolu-
tion of the biosphere. Mechanistically, this is accomplished by the effect of environmental
signals on gene regulation. The hierarchical, modular nature of GRNs, where elements are
up- or down-regulated or enabled or disabled in reaction to external signals, thereby not
only allows for the information processing that underlies phenotypic– and developmental
plasticity but also leaves a pattern in the evolutionary history of multicellular life through
the frequent cooption and repurposing of existing GRN circuits in different contexts. Thus,
the evolution of developmental processes can help explain patterns of variation we see in
the biosphere and the fossil record.

Plasticity can shield genetic variation from selection and allow organisms to persist in
otherwise unfavorable environments. The evolutionary implications are multiple, from
allowing for increased colonization of new habitats to increased adaptability, but also
to potential maladaptation [Langerhans and DeWitt, 2002]. Plasticity-led evolution is



5.3 Summary 117

an interesting hypothesis in this regard, which allows for a population to overcome the
problem of gradual change to genetic heritable information by externalizing evolvability
into their plastic developmental systems. In particular, epigenetic inheritance and genetic
accommodation are mechanisms by which plasticity can facilitate evolutionary innovation
without relying on an initial change in genetic sequence.

Finally, the developmental unfolding of organisms is not only dependent on external
environmental signals and genetic makeup. but crucially on the presence of symbiotic
unicellular organisms that interface with signaling pathways to influence the timing and
expression of developmental steps. Without them, the developmental process cannot
function correctly, i.e., it will produce defective individuals with reduced fitness. Often,
symbionts are vertically transmitted and thus heritable, leading to direct coevolution
between the organism and its symbionts, although acquisition from the environment is
also frequent. Thus, they constitute not only a source of heritable variation that natural
selection can act upon or act as the source of plasticity but form a crucial element of
the developmental process that regulates other steps in the process but is also regulated
in return. Finally, there have been documented instances of reproductive isolation and
thus speciation being dependent on symbiont composition. All this led to the notion of
organisms as a collection of cells plus their symbionts, or “holobionts” [Chiu and Gilbert,
2015].





6. Niche construction

6.1 Ecosystems and niche spaces are biotically constructed
6.1.1 Niche change and the role of organisms in constructing ecological
niches

Organisms modify their habitat as consequence of their metabolism The lifetime
reproductive success of organisms depends on their interactions with their local envi-
ronment throughout their lifecycle. Thus, active manipulation of their environment at
specific stages of their developmental unfolding appears to be a natural strategy that we
should find in nature. Indeed, because organisms must be open systems connected to their
environment via matter and energy flows, it is unavoidable that their actions will modify
the environment around them, at least by means of resource acquisition or –spoiling and
waste excretion.

Grazing animals foster the growth of certain plant species through their dung and
trampling or provide nourishment for coprophages. The most potent such effect was
probably the oxygenation of the Earth’s surface by photosynthesizing organisms. Indeed,
through their metabolism, biological organisms process matter into different forms often
not produced abiotically, thereby contributing to the dimensionality of the niche space in
a habitat. The most consequential such metabolic influence was arguably the oxygenation
of Earth’s surface, which fundamentally formed the history of life.

Physiological structures contribute to niche space dimensionality This contribution
or organismal activity goes beyond their metabolism, however. Many organisms form body
structures that serve others as a habitat. In the tropics, many animals live entirely arboreal
[Kays and Allison, 2001], i.e., their habitat exists solely as the consequence of an individual
tree’s lifecycle. The mere existence of these plants, therefore, creates a whole subspace
of the local niche space that is absent wherever no trees exist. Similarly, our skin is the
home of a plethora of organisms ranging from mites to bacteria, as is our gut, mouth, or
mucous membranes. We discussed already that this is more than just ecological association
because symbiotic organisms are an important source of developmental signals.

Coral reefs are another striking example, where populations of individual corals change
shallow marine habitats into very diverse habitats [Plaisance et al., 2011]. Physical
structures of organisms can also have strong influences on the emergence of landforms
like dunes or meandering riverbeds, whose dynamics is often determined by the trapping
of sediment by plants [Corenblit, Steiger, et al., 2007; Corenblit, Baas, et al., 2011].

Habitat changes through behavior Beyond contributing to a habitat’s niche space
by metabolism or body structure, many organisms actively modify their habitat over
the course of their lives through their behavior. For example, earthworms change the
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soil through their burrowing and other modifications in order to facilitate water intake,
turning it into an environment in which they can live despite their originally aquatic
physiology [Turner, 2002]. Beavers, among the most prevalent examples, create ponds
and transform terrestrial habitats into swampy or aquatic ones, changing the structure of
the local niche space dramatically in the process [Pelletier et al., 2009]. Other organisms
build nests or burrows that outlast their physical bodies and which, therefore, change the
local environment. The cultural evolution of Homo Sapiens is a particular case in this
regard, where collectively learned behavior, e.g., the construction of cities and the use of
agriculture, has planetary-scale influences on ecosystem structure. It is important to note
that behavioral changes to a habitat are usually adaptive, i.e., they have been shaped by
natural selection to be a part of an organism’s lifecycle, such that removing them will
negatively impact its fitness.
Ecosystem engineers Some organisms, including beavers, humans, corals, or earth-
worms, exert, through physiology, behavior, or metabolism, a fundamental influence on
the structure of the niche space within their habitat, such that their presence or absence
precludes or facilitates the persistence of many other species and forms the ecological
network they are a part of. Such organisms are called “ecosystem engineers” [Jones
et al., 1994; Jones et al., 1997]. Their importance shows that ecological interactions
go beyond resource consumption or trophic interactions and can entail the fundamental
transformation of local habitats within one or a few lifetimes of the acting organisms.
Therefore, ecosystem structure can usually be seen as biotically facilitated as much as
adapted to abiotic conditions, and so the ecological niches organisms occupy during their
lifecycle are largely the result of biotic influences. Because ecosystems are interaction
networks, coevolution is the norm rather than the exception.

6.2 Niche construction in evolution and development
6.2.1 Consequences of organismal change for the actors and the wider
ecosystem

Consequences of environtmenal influences for the focal organism As a consequence of
natural selection, the environment-changing traits of organisms can be thought of as part
of the phenotype of an organism. Thus, the phenotype of an organism does not end at the
physical limits of its physical body, which we normally think of as constructed through
the developmental process. This boundary is somewhat arbitrary, as, e.g., behavior is
doubtlessly influenced by genetic makeup. Within the framework of the gene-centered
view of evolution, this leads to the concept of the “extended phenotype” [Dawkins, 2016],
which develops the argument that the effect of a gene, i.e., a phenotypic trait, is not
bound to the physical body of its carrier, but can manifest itself in changes to other envi-
ronmental properties, e.g., physical artifacts or manipulation of the fitness, i.e., ecological
interactions, of other organisms.

Extended phenotypes are common, and given that genes are the most stable form of
heritable information, we can expect environmental modifications brought about by organ-
isms to have a genetic component, influences from other sources of heritable information
notwithstanding. This is especially important where culture is not a major component
of an organism’s developmental trajectory and where modification behavior is complex
and costly, such that variation in it will likely reduce fitness. Given the discussion in
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chapter 4 and chapter 5, it is easy to extend the concept of the extended phenotype to
accommodate all effects organisms have on their environment, no matter their underlying
heritable information.

An organism-centric view has been developed within the framework of niche-construction
theory [K. Laland, Matthews, et al., 2016; F. J. Odling-Smee et al., 2003], which is often
contrasted with the gene-centric theory of the extended phenotype. Niche construction is
defined as the change of the evolutionary niche of a population by their own or others’
actions [K. Laland, Matthews, et al., 2016]. The evolutionary niche is thereby defined as
the sum of all selection pressures [K. Laland, Matthews, et al., 2016; F. J. Odling-Smee
et al., 2003], which does not in all cases coincide with the ecological niche [Trappes, 2021].
Indeed, not all possible ecological interactions of an organism may be under selection at
the same time or to the same degree. Therefore, niche construction theory explicitly
emphasizes that organisms are at least partially the architects of their own selective
environment, such that natural selection is not an effect of a static environment but the
product of a feedback process between a population and the rest of the ecosystem. Among
other things, it has been shown in computational models that niche construction can lead
to evolutionary inertia, where a trait is shielded from selection through the construction of
an environment that buffers selection pressures on it [K. Laland, Matthews, et al., 2016],
which is consistent with the earthworm example given before.

Niche construction theory is more inclusive than the concept of the extended phenotype
in that it does not build on a preconceived concept of inheritance. Consequently, cultural
niche construction has become a field of interest [K. N. Laland and O’Brien, 2011].

Moreover, niche construction theory explicitly includes ecological inheritance (see sub-
section 4.3.2) and thus emphasizes the connections and feedback processes between envi-
ronment and evolution. At the same time, it encompasses the concept of the extended
phenotype as a special case that is bound to direct genetic effects. It must be noted that,
in general, behavior and its environmental effects are integrated into the lifecycle of an
organism and, therefore, must be regarded as the result of the developmental system of
the organisms in question of which individual genes are a part. It’s argued here, therefore,
that the gene-centric view of evolution is only part of the picture, as has been discussed
in chapter 4 and chapter 5. Niche construction not only encompasses physical changes
but also the movement to other habitats with different properties when this is based
on an evolved “choice”, called “relocatory niche construction” [R. L. Day et al., 2003]
to distinguish it from niche construction brought about by active modification, called
“perturbatory niche construction”.

Niche construction theory as a scientific framework posits that niche construction must
be seen as an evolutionary process in its own right, on par with natural selection [K. Laland,
Matthews, et al., 2016], a position that has elicited significant debate [Scott-Phillips et
al., 2014]. Because niche construction alters the selective regime of an organism at a
specific stage of its lifecycle, we can expect variation in active niche construction to yield
variation in natural selection, such that niche construction traits become subject to natural
selection. This is trivially fulfilled for extended phenotypes, which are based on genetic
heritable variation, but it is much harder to prove for epigenetic causes, in particular for
the effect of variation in ecological inheritance. This has led Dawkins [2004] to argue that
niche construction proper, where this correlation is observed, is fully explained by the
extended phenotype, while other examples, especially the ones that occur as side effects
of metabolism or body structure, he labeled “niche change”. Similarly, the explanatory
power and conceptual consistency of niche construction theory have been called into
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question [Scott-Phillips et al., 2014]. This, however, does not diminish the validity of
the phenomenon as such, which doubtlessly has important consequences for biological
evolution, be they mediated by genetic or epigenetic inheritance.

Consequences of niche construction for the embedding ecosystem Niche construction
not only affects the natural selection regime that the actors are exposed to. Rather, it
also has an effect on the natural selection regime of other organisms that interact with the
modified properties of the ecosystem, e.g., bacteria or insects that live in animal burrows
or ponds created by beavers. Therefore, in much the same way as physical structures of
an organism’s phenotype or metabolic effects influence niche space, active construction
can lead to coevolution between organisms and thus can be seen as a structuring force in
an ecosystem that is not limited to the cases where the actor species is a full ecosystem
engineer. Indeed, we can deduce from this discussion that the relative importance of
constructive activities for ecosystem structure is not a fixed scale, such that organisms
that act as ecosystem engineers in one habitat may be less important in another. Niche
construction thus enables environment-mediated coevolutionary feedback between organ-
isms that can be indirect and does not rely on direct physical interaction. This process can
span timescales larger than the lifetime of the organisms in question, such that ecological
interactions can be mediated across large timescales.

On the macroscale, niche construction can have important effects on niche space com-
plexity that, in turn, facilitate speciation and evolutionary innovation and are thought to
be an important modifier for the carrying capacity of an ecosystem [Erwin, 2008]. One
example is the Cambrian substrate revolution [Bottjer, 2010], which made the sediment at
the ocean floor, previously a more or less two-dimensional habitat dominated by bacterial
mats and probably early animal grazers, into a three-dimensional, oxygenated, complex
sub-ecosystem which increased the available ecological niches and thus allowed for many
species to evolve new adaptations, creating a more diverse ecosystem in the process. Thus,
the emergence of novel niche construction adaptations can lead to major evolutionary shifts
that can persist for long times. Possibly, some of these behaviors lead to coevolution
between the actor and other organisms, leading to fixation of particular forms of niche
construction in the biosphere, such that some ecosystem elements become fixated in a
superficially similar fashion to network motifs in GRN1s.

6.2.2 Niche construction, development and plasticity

Bringing development and niche construction together yields a more complete picture of
how niche construction influences individuals. Indeed, niche construction complements
plasticity in that it shows how organisms are able to manipulate an important source of
regulatory signals for themselves and others.

Consequently, adaptive niche construction is sometimes considered separate from devel-
opmental niche construction [Stotz, 2017], with the latter describing niche construction
to facilitate stages in the developmental process of an organism or its offspring. Indeed,
providing an environment that is conducive to the developmental process of offspring
is an important part of the lifecycle of many organisms. This shows how variation in
niche construction can yield variation in plastic responses, thus facilitating plasticity-led
evolution (compare subsection 5.2.4). Recalling the view of the genome as a processing
system for biological information and the developmental process as the subject of evolution,
1 Gene regulatory network
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this makes clear that these systems do not just integrate environmental signals that
are independent of them but evolved active structures to produce and control these
environmental signal sources. Therefore, the evolution of developmental programs can
be seen as the evolution of the processing and manipulation of biological information.
Therefore, niche-constructing behavior in itself can, like every other organismal activity,
be seen as part of the developmental process of an organism [K. N. Laland, J. Odling-Smee,
and Gilbert, 2008]. It can have similar effects to phenotypic plasticity, e.g., promote
persistence in unfavorable environments and facilitate colonization of new habitats or
shield genetic variation from selection.

In fact, niche construction and plasticity combined open a path to phenotypic evolution
without genetic change, in that a change in niche construction can bring about the
environmental change mentioned in subsection 5.2.4 that elicits a modified plastic response
and thus a change in ecological interactions, i.e., phenotypic variation in a population.
Genetic evolution then can follow as a consequence of the changed selection regime.
In such a way, niche construction and plasticity may have significant consequences for
evolutionary trajectories. This is especially relevant for learning, which is an important
and powerful plasticity generator. Thus, we can see culture as a collectively learned niche
construction.

With regard to developmental symbiosis, niche construction by the host on the ecolog-
ical niche of the symbionts can be seen as a mechanism that can cement the symbiotic
relationship and ensure specificity in the symbiont’s signaling behavior, its location and
timing [Gilbert et al. [2015] and references therein]. Niche construction, therefore, may also
play a role in evolutionary transitions in individuality [Torday, 2016]. Niche construction
on this level, thus, is no different, conceptually, from niche construction on the ecological
level.

6.3 Summary

Natural organisms not only adapt to an existing ecosystem and receive developmental
signals from it, but they also actively and passively change it. These changes can come
about as part of their metabolism or physiology but also as actively enacted modifications
of environmental structures or other organisms, i.e., through organismal behavior. These
influences modify how organisms interact with biotic and abiotic entities in their local
ecosystem, such that organismal modification can structure ecosystem networks. More-
over, some species change the character of a habitat so fundamentally that they can be seen
as ecosystem engineers, i.e., they create conditions that drive the local ecosystem into a
fundamentally different state from the one it had if this species was absent. Consequently,
organismal activity changes the selective regime of natural populations.

More generally, organismal activity changes the flow of matter and energy and their
availability within an ecosystem, thus creating opportunities for adaptation and contribut-
ing to the local biodiversity. Besides, through physical changes like structure formation,
burrowing, or bulldozing, they change the local complexity of the niche space, thus
contributing fundamentally to the evolutionary trajectories of different populations in the
ecosystem. On the macroscale, construction effects can thus lead to speciation and pre-
cipitate adaptive radiations, such that biological diversity over geological timescales is, to
a large part, a consequence of evolutionary innovations in ecosystem modification.
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Because niche construction behaviors are not bound to the physical boundaries of the
acting organism, the concept of the “extended phenotype” has been invented, in which the
ecosystem-altering effects of organisms are interpreted as the result of genetic expression.
In contrast, the concept of “niche construction” does not reference any source of heritable
information explicitly and describes organismic activities as a modification of the sum of
selection pressures (the evolutionary niche) to which local populations are subject. Thus,
it explicitly includes epigenetic inheritance and professes an organism–centered instead
of gene–centered view of evolution. The theory that has been built around this term
emphasizes ecological inheritance as a mediator for changed selective regimes and as a
driver of biological evolution.

Merging these concepts with development allows for a reconciliation of the concepts of
extended phenotypes and niche construction in that extended phenotypes or any niche-
constructing activity can be seen as part of the unfolding of a developmental process,
which we previously identified as the focus of evolution. Plasticity can be brought about
by niche construction through the modification of environmental signal sources, which thus
implies that organisms are able to modify their own developmental signal environment,
but it also can be present in niche construction traits themselves. Therefore, a feedback
loop is identified that allows for phenotypic evolution without genetic change by successive
changes of niche constructing behavior, which leads to changed plastic responses, which can
lead to changed niche construction, and so on. This can facilitate plasticity-led evolution
but also the production of phenotypic variation without genetic change. Moreover, if the
environmental modifications that bring about a specific phenotype are heritable by future
generations, a non-genetic mode of evolution has been established, which can be seen as
part of epigenetic inheritance.

Indeed, developmental niche construction as a behavior that facilitates some develop-
mental steps of the actor or its offspring is often separated from adaptive niche con-
struction, as discussed above. Indeed, niche construction appears to play a particularly
important role in developmental symbiosis, where host organisms engineer the environment
of their symbionts in order to create specificity in signal location, timing, and quality. More
generally, merging development and niche construction shows that developmental systems,
interpreted as processors for biological information, not only rely on pre-existing biological
signals that are then integrated but that evolved elements in this system specifically
modify or create environmental signals that can be relevant for developmental unfolding
and reproductive success. These concepts can be extended to evolutionary transitions
in individuality, i.e., the formation of a new evolutionary–, and thus developmental–, self
from a group of initially individual ones. However, this has been treated in-depth elsewhere
[Sevinchan, 2021].

In summary, like evolutionary developmental biology acknowledges the nature of or-
ganisms as continuously unfolding, reproducing complex adaptive systems, so does the
concept of niche construction acknowledge the nature of the environment, or the local
ecosystem, as an active player in the evolutionary process instead of a passive filter for
phenotypic variation. Similarly, merging development with niche construction shows how
developmental processes are not just passive processors but active creators of biological
information.
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7. The Utopia project

7.1 Motivation and Design

With in-silico experiments and large-scale computer-based data processing being on the
rise for decades, software development has turned into an important skill for most natural
scientists. By now, this goes well beyond the craftsmanship of programming. The term
“in-silico experiment” in itself entails that we expect such software to allow us to make
inferences, or at least informed conjectures, about natural processes. As such, they
must be held to the same standards of reproducibility and documentation as traditional
experiments. With this, testing and quality control have attained a central role in scientific
software development. At the same time, the increase in computing power available has
enabled us to tackle more complicated problems, especially in complexity science and
biology. Consequently, the software to describe these problems has become larger and
more complex, often no longer being created and maintained by a single developer but
by groups of contributors distributed all across the globe. With this increased complexity
comes the need for more sophisticated software engineering techniques that enable the
effective maintenance of such complicated software packages. At the same time, software
engineering and computer science are not the primary focus for most natural scientists,
and so many software packages have arisen that enable users to address complex research
questions without an avid knowledge of software development and design [Wilensky, 1999;
Datseris et al., 2022; Kazil et al., 2020].

More recently, these packages have come to harness the power of collaborative, open-
source development, which directly brings together developers and user feedback and thus
can result in agile adaption of the software to new demands and effective bug fixing.
Furthermore, usage of an existing software platform alleviates us from “reinventing the
wheel” each time and allows the user to progress much more quickly from development to
analysis, which, after all, is the step they normally are interested in, significantly boosting
research productivity.

All that being said, many packages available are built upon a specific toolset, which has
little overlap with the adopted, usually deeply entrenched tools and workflows of a group of
users. For the research group in which this thesis has been carried out, this was reinforced
by a very broad range of interests, reaching from geomorphology over the evolution of
cooperation to opinion formation in human societies. With this plethora of research topics
comes a corresponding range of modeling techniques, from ordinary differential equations
over cellular automata to agent-based models with elements organized in various kinds
of networks, with the latter three having taken precedence over the first due to their
comparative ease of formulation, all of which would have to be accommodated by an
existing modeling framework. Thus, no such system was adopted initially. The need for
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a unifying software framework became more pressing, however, when the majority of the
group began working on methodically related modeling projects. Each member devoted
a considerable percentage of their limited project time to developing infrastructure code,
which resulted in code of widely varying quality and reusability and created unnecessary
redundancies. Thus, the Utopia Project [Riedel et al., 2020; Sevinchan, Herdeanu, Mack,
et al., 2020] was born to [Gaskin, 2021]:

• Create a versatile and expandable framework for simulating coupled complex systems
that range from geomorphology to evolving populations of diverse entities.

• Build a set of computationally efficient, reusable algorithm building blocks from
which to assemble models easily

• Make complex modeling and model coupling accessible to non-experts, thus boosting
scientific productivity

Additionally, we wanted to achieve a tight integration of data generation and -analysis
and a high degree of automation for repetitive workflows. This led to the integration and
continued development of the Dantro framework [Sevinchan, Herdeanu, and Traub, 2020],
which is used in Utopia for automating data analysis and visualization. Furthermore, we
wished to leverage our existing expertise in modern C++1 and Python3. The project
has chiefly been developed, designed, and maintained by four Ph.D. students (Benjamin
Herdeanu, Lukas Riedel, Yunus Sevinchan, and this thesis’ author), for all of whom it
was a major part of their work. The maintainer team has since been reinforced by Julian
Weninger and Thomas Gaskin, who came in touch with Utopia as Master’s students and
have continued to use it since as part of their respective Ph.D. thesis outside of Heidelberg
University.

At the time of this writing, the project is actively developed via GitLab and has its
own web presence [Gaskin, 2021]. All in all, over twenty people provided contributions
to the framework, most of them master’s students in the group, all of whom successfully
used Utopia to carry out their respective thesis. Moreover, Utopia has successfully been
used by students as their primary simulation tool in the “Chaotic, complex and evolving
environmental systems” lecture and the “Modeling and Simulating Interacting Complex
and Evolving Systems” master’s seminar given at Heidelberg University between 2018 and
2021 by Prof. Roth.

Taking up ideas from Helbing [2012], we envisage modeling a complex system to be a
multi-stage process.

• Conceptualization: Analysis of the phenomenon to be modeled, extracting the core
dynamics as far as possible, and choosing how to turn this into a computer model.

• Implementation: Production of computer code according to the produced concept.
Frequently, oversights in the design become clear only once implementation has
started, so this is tightly intertwined with the conceptualization phase.

• Plausibility testing: It is not clear why a complex computer program intended to
simulate a (much more) complex system should produce reliable results when these
depend on differences in single characters in the code, rounding errors due to limited
accuracy, and so on. Therefore, code testing (unit tests, functional tests, integration
tests, etc.) takes a central place in the developing cycle.

1 Modern C++ is usually taken to mean C++11 (released 2011) and later.
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• Model validation: While the code per se might be correct, the mechanics envisioned
during conceptualization might lack some crucial element or might have some other
fundamental flaw. In order to discover this, the model output should be compared
to well-known observations from nature. Note that this is not always possible to its
fullest extent, as some systems (many evolutionary systems among them) are hard
to observe in detail.

• Sensitivity analysis: Every model is complemented by a set of parameters that
determine the interactions between elements and set their relative timescales. In
analogy to bifurcation diagrams, scanning the parameter space of a model yields
important insights into its character and limitations. Sensitivity analysis in itself
can yield important results because the comparison between the state space of the
model and the real-world system often allows conclusions about the latter or yields
clues on how to improve the former.

• Production: Here, the research question of choice is addressed. This might change
comparatively frequently, so a jump between the production–, conceptualization,
and testing phases is a common mode of operation when working with computer
models.

Of course, these phases are not usually separated as clearly as outlined above and are,
in reality, much more intertwined, as results from sensitivity analysis frequently elicit a
change in conceptualization. Also, data analysis takes up significant amounts of computing
power and working time for the latter half of the cycle. In order to meet the goals outlined
in section 7.1 and best support the development cycle, Utopia features a modular design
that allows the user much freedom in choosing predefined algorithms or employing their
own implementations. In particular, the model presented in chapter 8 does make use of
only a minimum of Utopia’s facilities, using custom-built solutions for the most part. The
Utopia framework can be dissected into four modules (see Figure 7.1), which can coarsely
be divided into data generation and data analysis. Beyond this modular code design,
quality control had a high priority in our group, and we employ automated testing to
monitor code quality continually. Additionally, we adopted a policy by which code could
only be merged into the main framework when accompanied by appropriate tests and after
it had been reviewed by at least one maintainer.

7.2 The Core module

The foundation of the framework is formed by the “core” module. This module provides
predefined templates for a user to build their own models on. Its design revolves around
the basic idea of a complex system, i.e., a system made up of many components that
change their internal states over time through local interactions with other components.
In most cases, an interaction is thought of as belonging to one of only a few different
types, and when talking about their software implementation, these classes are usually
called rules. This structure might remind the reader of cellular automata, and in fact,
it is this direct similarity between the structure and cellular automata that makes the
latter so formidable a tool in modeling many complex systems. The concept employed by
Utopia, however, goes beyond the classical cellular automata in that it leaves open the
meaning of state, locality (i.e., space), and the nature of the rules, therefore providing a
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Figure 7.1: The Utopia framework is composed of four modules, which, in conjunction,
provide a fully automated data-generation analysis cycle. The “setup/control” module
is responsible for processing configuration files defining the simulation and analysis to
be made. It then sets up the simulation, parallelizes runs for different parameters (if
so specified), and sets up the analysis to be executed afterward automatically. The
“Core” module comprises a library of modern C++ software modules that allow easy and
performant definition of models. The “Data I/O” module is built on top of the C-based
HDF5 library and provides largely automated interfaces to the C++ standard library, such
that the peculiarities of HDF5, are abstracted away as far as possible. Where data is stored
is largely specified in the configuration file controlling the simulation and can further be
automated by employing a provided manager class. The “Analysis” module finally uses
the produced data and supplied configuration files to execute predefined data-analysis
and visualization procedures, completing the cycle. The Analysis and Setup modules are
written in Python because of the latter’s flexibility and feature richness, whereas the Data
I/O and Core modules are written in modern C++, which provides fine-grained control
and performance.

much more flexible concept. It inherits from cellular automata its fundamentally discrete
nature, however, especially with respect to time, which is assumed to proceed as an iterated
sequence of rule applications. Moreover, complex systems are by their nature organized
into multiple levels of organization because, by definition, they are made up of many
interacting entities (the first level of organization) that organize autonomously into a
coherent whole (resulting in emergent properties of the complete system, the second level of
organization). Modular architecture is frequently exploited in software engineering to make
systems more flexible, reusable, and easier to design, maintain, and optimize. Therefore, a
comprehensive modeling framework for complex systems should allow for the exploitation
of such properties. The Utopia core module implements these basic ideas in the form of a
base class (just called “model”) that provides customizable time-discretization, monitoring,
and I/O capabilities.

The user, therefore, needs to focus on three things: The definition of the entities making
up the system, for instance, what variables can be used to describe a fish in a swarm
(e.g., X position, V speed, [N ] its nearest neighbors), the rules by which these variables
change, possibly depending on other entities (in case of a swarm of fish, these might be
“go into the average direction of your N nearest neighbors”) and the combination of the
rules into a step which can be iterated to create the model trajectory (“for each fish:
measure the direction of N nearest neighbors, compute their mean direction, move with
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speed V into that direction”). For all the infrastructure code like data output, model
configuration, or progress monitoring, the user only needs to fill the parts that explicitly
pertain to their model, for instance, what variable to write to file for each entity. Beyond
this very basic and abstract concept, helper classes are provided that cover the most
common incarnations of complex systems models: Cellular automata (Euclidean grids of
immobile cells carrying a dynamic state in fixed local neighborhoods) and agent-based
models (free entities that can appear and vanish and which dynamically form interacting
neighborhoods). While both paradigms are of the same expressive power, each is more
easily applied to some problems than to others. For instance, a CA formulation seems
natural for a simulation of geomorphology like an eroding river valley, a sand dune,
or the formation of mountain ranges, owing to their naturally prescribed, fixed spacial
structure. Agent-based models, on the other hand, are usually employed to simulate
pedestrian flows through cities, opinion formation in complexly networked social systems
or ecosystems made up of multiple species with complicated behavior. In short, agent-
based models often appear more suited to problems where the individual behavior of
entities becomes more complex and interdependent, and their interaction partners are
not fixed but depend on their inner state. It’s important to note that most of the
aforementioned example systems often have some form of ODE representation as well, for
instance, the Lotka-Volterra equations for predator-prey systems [Volterra, 1927; Lotka,
1910] or the SIR-model for disease propagation [Kermack et al., 1927]. Utopia does,
however, not provide facilities of its own to solve ODEs because there is no shortage
of high-quality ODE software in virtually any programming language used in science or
engineering. Instead, the user has to rely on external tools to provide this functionality if
so desired. Given programming language compatibility, however, Utopia does not hinder
such integration. The aforementioned helper classes for cellular automata and agent-based
models, respectively, are called Cell- and AgentManager. These manager classes are fed
with a collection of entities and provide facilities to produce and remove them or apply rule
functions defined in the model class to them. Their interface is designed with usability and
simplicity in mind, placing the focus again on the design of the model itself and away from
implementation details. To leverage the parallel processing performance of modern CPUs,
the rule application can be optionally parallelized. Beyond that, an implementation for
continuous Euclidean spaces has been provided, onto which different types of discretization
can be layered (hexagonal or rectangular at the moment) with support for von Neumann-
or Moore neighborhoods. Moving around agents on such grids is also automated via
the manager class. As mentioned, many complex systems’ fundamental feature is their
networked architecture, and so special attention has been given to supporting complex
networks in agent-based models via the Boost::Graph [Siek et al., 2002], by making the
manager classes and output facilities as far as possible agnostic to the data structure in
which the system components are stored. Utopia thus supports grid-based, grid-less, and
networked systems within one set of algorithms.

Returning to the modular architecture of complex systems mentioned above, it is
worthwhile to take a look at how algorithmic model building proceeds. Here, this is
thought of as proceeding through three steps, which are iterated to result in the final
model; see also Figure 7.2. The focus, of course, is on complex systems. Naturally,
a degree of knowledge has to be gained first to form hypotheses about the structure
and dynamics of the system at hand, which results in a mental model that involves
a separation of the natural phenomenon into different parts and subprocesses. Such a
dissection enables us to identify entities and processes that are (thought to be) of relevance
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for the phenomenon to be modeled, discarding the rest (usually only to re-add them later
once a deeper understanding has been gained). A priori, two roads open in front of us at
this point. One is to build a monolithic model system that includes all the processes and
entities into a single step of abstraction, a road often taken for relatively simple models
and one that quickly closes when modeling complexity. The second way is not to aim
at the big abstraction leap called for above but rather model the different subprocesses
independently at first, coupling them together in a second step. While this quickly results
in more complex models and more development work, it is arguably more powerful for cases
where an abstract, full-scale representation is not attainable or which strongly depends
on the details of their elements, as is the case for evolution, for instance. Utopia supports

Figure 7.2: Left: We envisage modeling a complex system as a three-stage process. A: A
real-world system is generally a continuum of processes linking entities on multiple scales.
Studying these natural systems allows us to build mental models, or intuition, which
allows the identification of entities and processes relevant to the phenomenon at hand.
B: This can lead to a “monolithic” model in which processes and entities are directly
linked into one dynamical system. While often desirable, this approach normally calls for
a single large step of abstraction, which is not always possible. The alternative would
be a modular approach that models individual components independently, linking them
together by introducing explicit couplings in a second stage. While usually leading to
more complex models, it often allows progress where a monolithic approach would not. C:
The Utopia framework allows both approaches to be followed by allowing model instances
to contain other model instances that are linked via the rules of the super-model. Right:
A user-defined model is pre-structured via a “model” base class, which provides a variety
of infrastructure code (solid blue), which partly has to be completed by the user to make
it usable (gradient from red to blue), e.g., the manager classes for cells or agents need
to be told how and when to construct and destruct entities in which configuration or the
data-output code needs to be told what to write out. Blue arrows indicate the flow of data
from the Setup module, which preprocesses configuration files, to the model class, which
hands the generated data to the Data I/O module to write out. Both are operated from
the model class via simple, predefined interfaces. The user’s focus can thus stay with the
definition of the rules for the system’s dynamics (solid red), which must be bound into a
time-stepping function that can be iterated to produce a trajectory.

both approaches by allowing for models to be nested into each other, transforming them
into “sub-” and “super-models”, respectively. This results in each submodel, as well as the
super-model, having their individual time-stepping algorithms, which need to be coupled
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in some way. How this nested dynamics proceeds is under full user control. In the
same way as the user defines for a single model how rule application proceeds within
a single time step, in a super-model, they define when and how the rule application of
each submodel proceeds and how and when these interface with each other to produce the
coupled dynamics. Additionally, new submodel instances can be dynamically generated
during runtime within a super-model.

7.3 The Setup/Control and Analysis modules

7.3.1 Setup and simulation control

Utopia provides sophisticated simulation control functionality. While the template library
provided by the core module is very helpful in making model development more efficient,
keeping track of all the parameters in the code and initiating every run by hand can still
be tedious. The Setup/Control module of Utopia aims at overcoming these complications,
making usage of computer models easier. The design goal is to allow users access to the
power of sophisticated computer models even without any coding ability. The two main
ingredients are a configuration system based on the YAML language and the provision of
an easy-to-use command-line interface for running and managing simulations. Central to
the module is the concept of a “universe”, i.e., a model instance (analogous to a set of
natural laws acting on a collection of matter or energy in time and space) together with
a specific set of parameters (fundamental constants) that determine the algorithmic rules
a simulation follows. A collection of such universes is consequently called a “multiverse”.
Multiverses arise when a model is run with multiple sets of different parameters. The
model itself, however, cannot change within a multiverse. With sensitivity analysis being
a major part of model development, multiverses arise routinely.

In Utopia, each model must have its configuration file written in YAML, which defines
the model’s parameters together with their default values. Such parameters might, for
instance, include the default grid size, energy influx per timestep, number of species, or
random death rate of individuals. A universe is defined by writing a new YAML file that
contains a subset of the model parameters in question. This file is then added as an
argument when calling Utopia in the command-line interface. The Utopia Setup/Control
module will then take the supplied configuration file, check it against the default model
configuration, and replace all default parameters found in the supplied file with their
respective values while keeping the rest. A level above the model configuration sits
the default configuration of the entire Utopia framework, to which the same process
is applied. This “framework configuration” supplies things like the number of parallel
workers employed, the path to Utopia’s output directory, how often the simulation reports
its progress and many more. All of these parameters can be overridden by the “universe
file” supplied. This hierarchical structure reduces the amount of parameterization the
user has to deal with, as things not pertaining to the model are kept out of sight until
explicitly called for. A “universe” becomes a “multiverse” if the “sweep” tag is specified
in the configuration. This tag is attached to a single parameter and tells Utopia to create
a simulation, i.e., a “universe”, for each value of the parameter that follows. Multiverse
runs are parallelized by default to make use of modern multi-core CPUs. This feature
makes conducting sensitivity analysis of newly built models significantly easier. Finally,
the Utopia command-line interface not only initiates model runs but also facilitates the
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creation of new models (by creating an appropriate folder structure and all necessary files),
allows for quick overrides of parameters to help with debugging or model drafting, and
automates the application of analysis routines to existing or newly created data. Therefore,
it is arguably the biggest contributor to usability in Utopia.

7.3.2 Automated Analysis

The Analysis module arose out of observed commonalities in the data produced by models
for complex systems. Most of the time, data produced by the models we employ are of a
high-dimensional, complicated, interdependent structure. Analyzing such data, of course,
has become a mainstay of modern data analysis software, so it does not present an obstacle
in general. However, becoming proficient in any given analysis tool to the desired degree
is no small investment in time and effort. The Analysis module aims at simplifying both
analysis and visualization by taking over many of the repetitive tasks inherent to working
with simulations. This includes the automatic loading of the universe- and multiverse
data into appropriate data structures and the provision of default plotting functions for
many common visualization tasks. High-quality visualization has been a priority during
development. While appearing as a rather mundane task, it is also notorious for requiring
a lot of time and for being hard to generalize. Luckily, when simulating complex systems,
visualization tasks are more limited, mostly requiring facet grids or layering for visualizing
parameter effects, grid- or graph plots for visualizing structures, or time-series plots.
Utopia provides ready-made abstractions for these, which can be customized with little to
no coding. When this does not suffice, custom plotting functions can be integrated into the
module as well. Data visualization can be configured via the same YAML-based system
that is also used to specify model parameters (see subsection 7.3.1), such that in many
cases, little to no actual Python code needs to be written. On the analysis side, data
processing is handled by forming a directed, acyclic graph of processing functions that
are specified in a user-supplied configuration file. This combines with the visualization
logic to form a system in which a complete data analysis and visualization pipeline can
be specified within YAML configuration files. In this way, no code needs to be modified
when the pipeline changes. The entire system is based on Python’s xArray [Hoyer and
Hamman, 2017], Dask [Rocklin, 2015], and Matplotlib [J. D. Hunter, 2007] packages, which
are widely adopted in the community. All that being said, the usage of the data-analysis
module is not forced upon the user, and individual solutions can easily be applied as well.
This has been done in this thesis, for which the Julia language has been employed instead
of Python to analyze and visualize simulation data.

7.4 The Data I/O module

Data handling is a mundane task compared to the creative challenge posed by model
development. However, as with many mundane tasks, failures or inefficiencies makes
themselves felt quickly and keenly, and so it deserves its place in this exposition. As
mentioned before, simulations have now attained a status where they routinely complement
and, at times, replace physical experiments. It is thus not surprising that the data they
produce is of a similarly complicated nature. It is desirable to be able to group the actual
simulation data together with relevant metadata (date, time, experimental parameters)
such that different experiments can easily be identified and reproduced. Moreover, large
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amounts of data are routinely produced by modern simulation codes and need to be
efficiently accessible to analysis tools while at the same time allowing for space-efficient
storage and archiving. Furthermore, as analysis tools have radiated greatly over the
last twenty years or so, a high degree of acceptance of the file format chosen and the
reliability thereof is important. While the classical CSV files have the advantage of
being human-readable and support for them is nearly universal, they lack the efficiency
of access bundling of meta-data and need more disk space when compared to binary
formats. Similar objections might be raised when considering XML, YAML, or JSON
formats. Custom binary formats are a possible alternative for simple data but are difficult
to efficiently implement and maintain when data becomes more complex and interrelated.
We, therefore, chose the widespread HDF5 file format [Koranne, 2011], which is a well-
established binary data format that allows for the bundling of simulation- and metadata,
efficient access, and full user control. Furthermore, its structural similarity to a UNIX
filesystem (see Figure 7.3) makes its usage intuitive, and its widespread use across the
natural sciences has led to the ubiquitous availability of HDF5-packages in nearly every
programming language in use in science. Finally, HDF5 natively supports parallelization.

Figure 7.3: A HDF5 file works
essentially like a UNIX filesystem,
which contains multiple folders (named
groups in HDF5) accessible through a
path in a tree-like structure. These
groups can be arbitrarily nested and
contain an arbitrary number of files
that hold the actual data (hdf5
datasets). Each group and each
dataset can have metadata attached to
them, which, for instance, give details
about the experiment that produced
the data. Datasets a priori can hold
arbitrarily structured data and also
can be compressed.

Utopia’s Data I/O module consists of two parts: a low-level wrapper of the HDF5
library into modern C++, standard library compatible structures, and a high-level man-
ager class that is designed to concisely execute complex data writing tasks. The design
and implementation of this module have been my primary contributions to the Utopia
framework and represent a large part of the work carried out over the course of this thesis.
Other contributions have been made to the core module but to a lesser extent. Auxilliary
functionality has also been contributed by Yunus Sevinchan [Sevinchan, 2018], who worked
on automating parameter detection for efficient data output and provided helpful critique
[Sevinchan, 2019].

7.4.1 Low-Level: A C++-HDF5 Wrapper library

The foundation of Utopia’s data-I/O capabilities is formed by a set of custom C++
wrappers around a subset of the HDF5 C-library. While HDF5 is a very powerful library,
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Listing 1 Example of using the plain HDF5-C-library to write an array to file.
1 #include <hdf5.h>
2 #include <vector>
3
4 int main() {
5
6 // −−−−−−−−−−−−−−−−−−−−− Preparation −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 //data to write to dataset . Pretend this to come from somewhere else .
8 std : : vector<int> v{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
9

10 //data to write to attribute
11 std : : vector<int> a{12};
12
13 // Actual size of the dataset to be allocated immediatelly
14 std : : vector<hsize_t> dims{10};
15
16 // Attribute dimensions .
17 std : : vector<hsize_t> attrdims{1};
18
19 // Maximum size of the dataset . Unlimited in this case .
20 std : : vector<hsize_t> maxdims{H5S_UNLIMITED};
21
22 //chunksize for the data to be chopped up into .
23 std : : vector<hsize_t> chunks{4};
24
25 // −−−−−−−−−−−−−−−−−−−−−−−−− Actual writing −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 //Create a new, empty HDF5 f i l e with default properties .
27 hid_t f i l e = H5Fcreate(”outfile .h5” , H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
28
29 // Create a default group to put the dataset into
30 hid_t group = H5Gcreate( f i le , ”/G1” , H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
31
32 // Create dataspace . We need only one because the data looks the same in f i l e
33 // and in memory
34 hid_t space = H5Screate_simple(dims. size () , dims.data() , NULL);
35
36 // Create the dataset named ”data” in group ”/G1”.
37 hid_t dset = H5Dcreate(group, ”data” , H5T_NATIVE_INT, space , H5P_DEFAULT,
38 H5P_DEFAULT, H5P_DEFAULT);
39
40 // Write the data to the dataset . Pretend this to have to be preprocessed
41 // without changing the original .
42 std : : vector<int> v2;
43 for (auto &&i : v) {
44 v2.push_back( i ∗ 2);
45 }
46 herr_t status =
47 H5Dwrite(dset , H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, v2.data());
48
49 // Create an attribute to write a single integer into .
50 hid_t attrspace = H5Screate_simple(1 , attrdims .data() , NULL);
51
52 hid_t attr = H5Acreate(group, ”attribute” , H5T_NATIVE_INT, attrspace ,
53 H5P_DEFAULT, H5P_DEFAULT);
54
55 status = H5Awrite(attr , H5T_NATIVE_INT, a.data());
56
57 // close everything
58 H5Dclose(dset );
59 H5Gclose(group);
60 H5Sclose(space );
61 H5Sclose(attrspace );
62 H5Aclose(attr );
63 H5Fclose( f i l e );
64
65 return 0;
66 }
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it is arguably not the most user-friendly, and using HDF5 directly from C is notoriously
verbose and unidiomatic in C++. Writing out a simple array of numbers to HDF5
involves setting up not only the datafile (which naturally must always be done) but also
the employed datatypes on disk and in memory, specifying the shape and topology of
the array in memory and on disk and, possibly, the chunk size into which the data is
chopped up when writing and possibly the compression rate, among other things. It was
thus imperative for us to simplify and automate this process as far as possible. Before
diving deeper, however, it must be noted that the Utopia Data-I/O library is by far
not the only C++ wrapper around HDF5. Among others, there is a C++-03 version
by the HDF-Group [The HDF Group, 1997-2022], H5CPP [Wintersberger et al., 2019]
and HighFive [Devresse, 2016]. All of these, however, focus on comprehensive support of
HDF5’s features and thus provide a very general interface which, while being easier than
the C-interface, nevertheless demands all the manual steps the latter does. For Utopia,
with its focus on modeling complex systems, we went another way and focused on ease of
use of a subset of HDF5 instead of full library support. This subset includes the output
of arbitrary but fundamental datatypes (i.e., no structs) in one- and two-dimensional
configurations, including data compression, attribute storing, and other standard HDF5
procedures possible on datasets. The dimensionality limit arises from the desired support
for nested C++ containers, which, when nested deeper than two, limit the degree of
possible automation we can attain. Therefore, the library provides an interface to the

Figure 7.4: Simplified class diagram of Utopia’s HDF5 library. Blue boxes are backend
classes that the user needs not touch, while gradients from red to blue indicate that the
class contains part of the user interface to the library. Identifier and Object handle
resource acquisition from the underlying HDF5 C-library, while Dataspace provides the
extent and topology of the data to be written, in memory as well as on disk. Type
takes the data to be written and identifies a suitable HDF5 datatype to be used, while
Bufferfactory does turn the user data (which might be nested and non-contiguous) into
a contiguous representation that HDF5 can deal with. Finally, the user interface consists
of a File class that provides the structure into which data is to be stored, the Group, which
is analogous to a folder in a UNIX filesystem, and the Dataset, which handles the actual
output/input operation. Finally, the Attribute provides access to the HDF5 Attribute
concept, which allows the attachment of small but arbitrary data to Datasets and Groups.
The connections follow UML convention: Filled diamond represents composition, empty
triangle represents inheritance, and dashed arrow represents dependency.
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C-implementation of the HDF5 file, group, dataset, and attribute structures, plus classes
for handling resource acquisition, which in the C-interface of HDF5 naturally has to be
done by hand (see Figure 7.4). Additionally, an algorithm to automatically determine the
size of chunks of data into which the dataset should be split when using compression or
when the final data size is initially unknown has been provided (contributed by Sevinchan
[2018]), templated on an analogous implementation available for the Python HDF5 package
[The HDF Group, 1997-2022]. This is especially important because the chunk size is
one of the key factors determining the performance of input and output operations with
HDF5.

Beyond that, the library design is guided by the character of complex systems modeling.
Complex systems, in general, cannot be represented conveniently by simple arrays of
numbers (simpler cellular automata notwithstanding), but their elements are modeled in
terms of many kinds of data of different types and structure. It is rarely desirable to save
the entire data structure representing an element. We would like to be able to run over
the entities, extract arbitrary elements from each one, and possibly transform these in
some way before finally writing to disk. Moreover, usage of the module should be similar
to using the well-known standard library algorithms, which usually accept a begin and
end-point into some range that contains data, along with a callback function determining
what to do with that data along the way.

The design does significantly simplify usage of HDF5 but, at the same time, does not
preclude expert users from implementing their custom solutions. See Listing 1 and Listing
2 for a comparison of plain C-HDF5 versus Utopia.

Listing 2 The same example as Listing 1, but with the HDF5 wrappers employed by
Utopia.

1 #include <vector>
2
3 #include ”/path/to/Utopia/utopia/include/utopia/data_io/hdfattribute .hh”
4 #include ”/path/to/Utopia/utopia/include/utopia/data_io/hdfdataset .hh”
5 #include ”/path/to/Utopia/utopia/include/utopia/data_io/hdffile .hh”
6 #include ”/path/to/Utopia/utopia/include/utopia/data_io/hdfgroup.hh”
7
8 using namespace Utopia : :DataIO;
9

10 int main() {
11
12 // −−−−−−−−−−−−−−−−−−−−− Preparation −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 // data to write to dataset
14 std : : vector<int> v{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
15
16 // data to write to attribute
17 std : : vector<int> a{12};
18
19 //−−−−−−−−−−−−−−−−−−−−−−−−− Actual writing −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 // Create empty datafile ’ outfile .h5’
21 HDFFile f i l e (”outfile .h5” , ”w”);
22
23 /∗
24 ∗ Create group ’/G1’ in the f i le , open a dataset ’dset ’ with unlimited
25 ∗ capacity inside it and write the data ’v ’ to it , preprocessing
26 ∗ along the way via callback . Chunksize determined automatically
27 ∗/
28 auto group = f i l e .open_group(”/G1”);
29 group−>open_dataset(”dset” , {H5S_UNLIMITED})
30 −>write(v. begin() , v.end() , [ ] ( auto &&i ) { return i ∗ 2; });
31
32 // Create attribute to ’group ’ which contains the ’a ’ vector .
33 auto attr = group−>add_attribute(”attribute” , a);
34
35 return 0;
36 }
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7.4.2 High-Level: The Data Manager

Even with a relatively simple interface to the HDF5 library, data handling remains a
complex task. Modern computer models of complex systems easily produce more data
than is practical to handle on disk if the entire model is stored every time. Rather,
typically, we would like to store different data with different resolutions, depending on
their characteristic timescale of interest, especially if some kind of preprocessing, like
filtering, is done within the simulation itself. Handling this in Utopia’s model class,
however, is cumbersome and laborious to maintain and adjust to different situations.
For instance, some models implemented in Utopia produce data with more than twenty
different variables, all written out at different intervals or under different conditions to
different paths in the model’s HDF5 file. It would, therefore, be much better to store all

Figure 7.5: Simplified class diagram of the
data manager module, following UML con-
ventions. Blue indicates C++ code; red
indicates YAML code preprocessed by the
Python setup module of Utopia. Each
model can have a DataManager instance,
which contains lists of WriteTask, Decider,
and Trigger objects. The WriteTask class
contains all the facilities to write data to
file, while the Decider and Trigger classes
must at least be able to check the condition
for data output (former) dataset creation
(latter). Tasks and decider- and trigger
objects are associated via the configuration
file upon construction of the data manager.

the necessary information (intervals to write at, data to write out) in a configuration file,
provide the code for how to extract desired data from the system, and then let an internal
class handle everything else. Not only does this prevent the user from writing all the code
themselves, repeating errors in the process, but it also allows them to describe and handle
very complex data-output tasks concisely and efficiently. In Utopia, the DataManager-class
fulfills this role. The system is designed around the idea that all the users should need to
specify when to write what to which place. This is conceptualized as a WriteTask, i.e., a
structure that associates a data source with a data sink augmented with information on
when to move data between them. In HDF5 terms, this means that five separate tasks
have to be specified:

• In what HDF5-group to store the dataset to be created

• In what dataset to store the data and whether it should be compressed or not

• How to move data from their source to the sink, i.e., the dataset. This can include
preprocessing

• What attributes should the group should have, e.g., some string specifying what
data is stored in there and from which model it comes
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• What attributes the dataset should have, e.g., to what timestep it belongs

These five elements are grouped together in a structure and are represented by callback
functions. The user needs to give a list of these structures to their model upon construction.
What remains to be added is the information on when to execute them, i.e., when to
build a new dataset or group and when to write data. For this, functions need to be
implemented that return true whenever a given condition is met, e.g., an interval between
timesteps has passed. Utopia provides a range of predefined functions, and the user can
add more if desired. In principle, there can be arbitrarily many such functions checking
arbitrary conditions on the model the data manager works on. In practice, however, the
predefined functions all pertain to the timestep of the model in question because this is
by far the most frequent variable conditioning data output. These functions come in two
flavors, “triggers”, which trigger dataset construction, and “deciders”, which decide when
to write out data, i.e., when to call functions two and three, respectively, in the list above.
Secondly, these functions need to be parameterized (for example, a general interval decider
function is provided by Utopia, but it has to be given when to start and stop working and
in what intervals to return true) and associated with a WriteTask. Parameterization and
association are done in the configuration file that defines a Utopia-Universe/Multiverse.
The DataManager class is fully customizable and can, in principle, be used with other
libraries as well, i.e., not just HDF5. With all the facilities in place, however, this need
never has arisen in our experience. For an overview of how DataManager, Model, and
configuration work together, see Figure 7.5. In keeping with the Utopia philosophy of not
restricting the user in their creativity, usage of the data manager is optional.



8. Amee: A model for eco-evo-devo

In this chapter, the computer model, called Amee1 developed as part of this thesis will be
discussed. The model represents, to the best of my knowledge, the first agent-based model
that unifies developmental plasticity, phenotypic plasticity, and niche construction together
with an independent building block system based on Net-Rewriting-Systems [Llorens,
Oliver, et al., 2004; Llorens and Oliver, 2004] and Petri-Nets [Petri, 1962] in a spatial
setting. Each building block and several individual combinations up to and including
a combination of plasticity, niche construction, and evolution do exist in the literature,
however, a comprehensive system on the scale of Amee has not yet been developed. We
proceed by first giving a short overview of the literature on modeling these processes,
before presenting the conceptual architecture of the model. Finally, we dive into the
implementation of this architecture with Net Rewriting Systems.

8.1 Background and previous results

The following attempts to list some of the work that has been done in modeling plasticity,
eco-evolutionary dynamics, and development as well as their interaction amongst each
other and with other effects, mainly genetic adaptation. Given the size of the field,
this list is naturally incomplete, so its goal is more to show the broad lines that have
been considered than detailed results. Computer models of evolutionary systems have
become increasingly common over the past decades, paralleling the growing prevalence of
computing technologies in other parts of society at large.

Many of these models are based on ordinary differential equations. K. N. Laland,
F. J. Odling-Smee, et al. [1996] present a system based on two-locus theory in which the
fitness consequences of niche construction were investigated. By using two-locus theory
without niche construction as the baseline for comparison, they found a variety of ways in
which niche construction influences overall fitness outcomes. These include evolutionary
inertia, i.e., a tendency to keep evolving towards a phenotype although independent
environmental selection would favor a different one, over unexpected presence or absence
of polymorphism, to the fixation of deleterious alleles.

In a follow-up article [K. N. Laland, F. J. Odling-Smee, et al., 1999], they investigate the
influence of independent renewal and depletion of the constructed resource and find that
these independent resource dynamics influence the occurrence of polymorphism compared
to K. N. Laland, F. J. Odling-Smee, et al. [1996], as well as the fixation probability
for normally deleterious alleles. Extending this line of work, Silver and Paolo [2006]
add spatiality in two dimensions. Their findings include a significant increase in the
1 A model for eco-evo-devo. Name for the agent-based computer model presented in this thesis.
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frequency of niche construction through spatial effects and an increase in the range of
initial conditions for which niche construction alleles become fixed compared to the non-
spatial model. Moreover, in a situation where two species engage in opposing niche
construction on the same resource, the chance for stable polymorphism is increased by
clustering effects. In concordance with K. N. Laland, F. J. Odling-Smee, et al. [1996],
they find that niche construction can lead to the fixation of otherwise deleterious traits
via genetic linkage disequilibrium. This suggests that niche construction may be able
to increase the genetic variation in a population and with it its ability to respond to
changing conditions. Finally, the presence of niche construction dampens the effects of
external perturbations, an effect they call “environmental homeostasis”. They suggest
several further research directions, among them the extension to a multi-species model,
different implementations of spatiality, and an analysis of the sensitivity of their results to
the strength of the association between genetic and ecological inheritance. Silver and Paolo
[2006] is of particular interest because of its emphasis on the potentially stabilizing effects
of niche construction on ecosystem structure in a spatial system. Another important
contribution has been made by Krakauer et al. [2009]. The authors investigate the
tradeoff between investment in fitness-enhancing niche construction versus investment in
reproduction. From this situation, the “tragedy of the commons” ensues for a costly
constructed niche that can only incompletely be monopolized. The authors emphasize
that their model does not rely on frequency-dependent effects like the one employed by
K. N. Laland, F. J. Odling-Smee, et al. [1996]. Rather, it treats the niche affected by the
organisms as a dynamical system in its own right instead of subsuming it into a variable
in the equations governing population density. They furthermore forego the modeling of
genetic details present in the preceding work, and focus on the ecosystem-level effects,
with genetics and inheritance mechanisms being abstracted away. Therefore, Krakauer
et al. [2009] comprises almost a complementary approach to the line opened by K. N.
Laland, F. J. Odling-Smee, et al. [1996]. Their model consists of an ODE system that
describes the rate of change for the density of two populations exploiting a single niche
that changes through construction and niche decay, i.e., the loss of construction effects
over time. They introduce three different effects of niche construction: construction
that increases carrying capacity, construction that increases fecundity, and construction
decreasing mortality. They find that, in general, niche construction is only viable if the
constructed niche can be at least partially monopolized by the constructing organisms.
If so, intermediate levels of niche construction dependent on life history and competitive
regimes evolve, although the investment into niche construction increases with increased
monopolization. Especially the dependency on life history is of interest here, because
in nature, niche construction, or ecosystem engineering, is often dependent on a specific
phase in the lifecycle of organisms. They note that their general assumption of a trade-off
between investment into reproduction and investment into niche construction might be
violated in reality, and construction may increase the available resources for reproduction
in many species.

Indeed, niche construction and the problem of cooperation seem intuitively related,
given that niche construction is a costly process the results of which are often accessible
to other organisms, thus leading to a public goods problem. Based on previous work that
showed how cooperation could arise by genetic hitchhiking on advantageous mutations
(“Hankshaw effect”) [Hammarlund et al., 2016] in an agent-based model based on a meta-
population structure, Connelly et al. [2015] explored how negative niche construction can
lead to persistence and even invasion of cooperative alleles by continuously providing
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adaptive opportunities that keep a cycle of adaptive hitchhiking going. Interestingly,
this discusses negative niche construction, i.e., a kind of change to the environment that
reduces the fitness of the constructing population. Indeed, the invasion of cooperators,
even when cooperation yielded high adaptive benefits, hinged on the continuous change
of the environment through niche construction and thus on organisms being adaptively
limited.

Taking an ecological point of view, Gilad et al. [2004] investigate another ODE model
of two ecosystem engineers in drylands (plants and crust forming cyanobacteria) with a
focus on habitat creation performed by these engineer species. They find that species
richness depends a lot on the patterns formed by the engineer species, i.e., the plants.
They propose a mechanism for species loss based on a change in formed patterns as a
response to an environmental change.

T. Taylor [2004] build upon a system presented in Rocha [2001] to construct an agent-
based model for niche construction in evolving populations, with a focus on the evo-
lution of complexity. The environment is represented as an explicit dynamical part of
the system. Phenotypes of organisms and environmental properties are implemented in
analogous ways. The central finding of their analysis is that assuming the organism found
a way to circumvent the error-threshold [Eigen and Schuster, 1977], niche construction
is sufficient to introduce an autonomous increase in complexity over time. It must be
noted here that “complexity” was interpreted as genome length, thus ignoring much
of the conceptual complexity inherent in the term. Additionally, because the model
features explicit implementations of environment and phenotypes and thus makes more
assumptions about their structure than we encountered in the ODE-based systems before,
these results must be interpreted within the confines of these assumptions. While we are
dealing with algorithmic modeling in this thesis, a number of inspiring analytical results
must be mentioned. Lehmann [2008] has contributed an analytical approach in which
they analyze the selection of niche construction in populations with different mobility and
spatial segregation. They introduce the concept of a “posthumous extended phenotype”,
i.e., a trait expressed beyond the lifetime of the organism carrying the effecting allele,
and assume spatiotemporal homogeneity and weak selection. They find that selection
on costly niche construction traits can feed back to the evolution of these traits through
indirect inclusive fitness effects that extend over generations. Because they base their
model on inclusive fitness theory [Hamilton, 1964], population relatedness is an important
factor. Too high mobility in space does reduce selection for niche construction because it
reduces relatedness in local populations. Among other topics, they suggest that ecological
inheritance may be an important driver for altruistic niche construction, e.g., in social
insects. Furthermore, they investigated the evolution of resource utilization restraint by
introducing a resource utilization rate as a new trait of organisms, and interpret this as a
niche construction trait. The authors found that restraint in current resource utilization
can evolve if this results in higher availability of the resource in the future, given that the
available amount of the resource does not only depend on the current state of the system
but includes also past states, i.e., that ecological inheritance exists. Because resource-
consumer systems are the basis of ecology, this is a fundamental finding that places
the focus away from direct intra-generational interactions and highlights the temporally
extended nature of evolving systems brought about by inheritance. This started an ongoing
line of work that mainly investigates eco-evolutionary dynamics [Mullon and Lehmann,
2018].
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Staps et al. [2019] modeled the emergence of multicellularity, including a representation
of gene-regulatory networks. The emergence of multicellularity is of special importance
because it is arguably the point at which development, as we understand it today, emerged.
A key element is that multicellularity requires spatiotemporal organization of cell differ-
entiation, and it is thus relevant for the origin of development. They find that diverse
lifecycles emerge depending on ecological conditions and ancestral constraints.

In another line of work, Scheiner [2014] started by investigating how developmental
instability evolves as a form of bet-hedging in a spatial system, where it was found that de-
velopmental instability evolves as a reaction to spatiotemporal heterogeneity. Later, they
investigated the role of habitat choice and heterogeneity on the evolution of phenotypic
plasticity as an alternative to genetic differentiation and jack-of-all-trades strategies. A
similar investigation was made with respect to niche construction [Scheiner, Barfield, et al.,
2021a], where it was found that niche construction was often favored over habitat choice,
but that in more detail, the eventual outcome depended a lot on life-history details and
ecology. Later, they added plasticity as an alternative to niche construction for coping with
environmental spatiotemporal heterogeneities [Scheiner, Barfield, et al., 2021b], and found
similarly that life-history effects had a great influence on whether plasticity or construction
traded-off against each other or which one was favored, but also that construction was
favored when direct offspring benefited from it, in agreement with what Krakauer et
al. [2009] found before. Finally, in [Scheiner, Barfield, et al., 2022] they investigated
how adaptive niche construction evolves in comparison to non-adaptive niche change,
and show again that construction evolves the most when it is monopolized by a lineage,
while at the same time, it is hampered when movement pattern and environmental spatial
heterogeneity are mismatched.

Ng and Kinjo [2022] reviewed past modeling efforts for plasticity-led evolution, mostly
based on the model for genetic regulation introduced in A. Wagner [1996]. They review
several works that extended this model and suggested a number of improvements and
future research directions, among them the effects of hierarchical network structures in
GRNs on plasticity, or the breakdown of robustness in relation to environmental cues.
Crucially, the concept of plasticity-led evolution relies on the assumption that plastic
responses are a universal feature of developmental processes, which, while plausible, has
not been empirically demonstrated sufficiently.

In light of subsection 2.4.1, we focus on evolution and learning for a moment, and start
with R. A. Watson, G. P. Wagner, et al. [2014]. In their work, they build on the Wagner
model to show how such systems can learn to express multiple different phenotypes even
when presented with incomplete or erroneous genetic information, analogously to Hebbian
learning and demonstrated some generalization capabilities of these systems. Indeed, they
point out that models for GRNs as used in the literature are mathematically equivalent to
recurrent artificial neural networks. Their results emphasize the analog between Hebbian
learning in neuronal systems (“fired together, wired together”) with directional selection
on a system of reciprocally influencing gene expression. Ng and Kinjo [2022] discusses
further research in these directions.
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8.2 On modeling evolution and other complex adaptive systems
8.2.1 Required elements for comprehensive modeling of open-ended
evolution

When trying to model evolving organisms capable of open-ended evolution, we need to
surmount four challenges:

• Find a substrate able to generate complex enough structures to allow for open-ended
adaptability to diverse conditions. This is primarily concerned with the rules to
which elements of this substrate, e.g., organic molecules, must adhere to when they
interact. In other words, we need to find a substrate capable of forming complex
adaptive systems.

• Find a way to create the three parts required by a cellular system (copier, construc-
tor, genotype) from the substrate. This part can have many levels of abstraction,
ranging from representations of the self-organization from which these processes
emerge to a designed organismal structure that assumes them to be present in some
predetermined way.

• Find some encoding system for the structure of organisms.

• Find representations for the interactions of organisms with their environment and
each other from which natural selection can emerge.

Agent-based models are a natural way to model biological evolution, given that they
intrinsically are able to represent finite populations of entities acting in arbitrary ways.
It is important to distinguish approaches that allow natural selection to emerge on the
basis of artificial ecological interactions from those that assume natural selection to act
in a certain way, i.e., for which some notion of fitness is an intrinsic modeling property.
While the latter approach makes a system easier to analyze the former allows for a better
understanding of mechanisms that underly natural selection, even if they arise in a very
simple system compared to nature.

John von Neumann succeeded in creating an artificial abstract representation of natural
organisms using cellular automata [von Neumann, 1966], which however is very complex
and computationally demanding. Thus, even a functional representation of the basic
requirements for open-ended evolution is no guarantee that the system will show a range
of phenomena comparable to natural systems. We will take this point up again below in
subsection 8.2.2 and subsection 8.2.3.

An interesting variation is represented by artificial life simulations in which a domes-
ticated form of computer-virus-like entities has been employed, e.g., the platforms Tierra
[Cisternino, 2021] and Avida [Adami et al., 1994; Lenski, Ofria, et al., 2003], each of
which shows a wide array of phenomena also found in natural populations, in particular
parasitism and the evolution of complex structures.

8.2.2 Difficulty of analytical modeling

Model building is usually thought to pursue the goal of prediction, i.e., a model can be
parameterized according to natural observation and for the corresponding initial condition
will produce a trajectory consistent with its natural counterpart. Such modeling is usually
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associated with analytical approaches. This power and generality however can only be
achieved for comparatively simple systems where there are few agents or simple interac-
tions. Indeed, there is little hope for an analytical “theory of everything” in complexity
or biological evolution that could be formulated as a set of equations, as we know it from
physics, owing to their nature: Their networked, dynamic, and self-modifying dynamics
largely preclude fundamental, predictive analytical theories, and successful modeling of
subprocesses like adaptive dynamics or population genetics notwithstanding. As the last
few chapters have attempted to show, there is also considerable uncertainty about the phe-
nomenological breadth and causal relationships of processes in biology, with observations
being difficult and time-intensive, and experiments in the lab often altering the system
into unnatural states [Sultan, 2015].

Indeed, what sets biological evolution and complex adaptive systems apart from physical
systems is that they are not dominated by the natural laws that underly their building
blocks (as is the case with systems that are studied in, e.g., statistical physics). Rather,
they unfold in the typically large space of self-organized, emergent structures and processes
they are capable to unfold into on the basis of these laws. Thus, a classical reductionist
approach that tries to reduce their phenomenology onto a set of single behavioral laws
their elements must adhere to will not tell us much about the unfolding of the system.
Combined with their nonlinearity [S. A. Levin, 2002] and the fact that for biological
evolution, we only have incomplete records of a single trajectory, this pretty much limits
analytical modeling to cases where the dynamics is strongly reducible.

8.2.3 A switch to an engineering approach in complex systems research

As an alternative to classical modeling, an “engineering approach” can be used to help gain
an understanding of the nature of such systems. This approach consists of the creation of
artificial representations of natural systems that do not emulate them in every detail, but
aim to follow a selected subset of their observed dynamical rules in an abstract setting.
From the unfolding of these systems, we then can learn how certain processes are able to
interact under given conditions. Comparison with natural observations or other artificial
systems will then allow to discard or retain candidates for natural process assortments.
Computer simulations and agent-based models are uniquely suited for these tasks because
we have complete control over them and they are comparatively easy to manufacture,
change and explore. In other words, this approach engages in a simplified form of reverse
engineering. Other than computer models, increasingly “artificial life” is used to study
biological processes [Ebrahimkhani and M. Levin, 2021].

While similar to classical empirical research, it must be noted that this approach does
not directly “question nature”. Rather, by implementing the principles of the system
as we understand them, we can test our theories and identify gaps in our knowledge
in the absence of having a full instance of the system to experiment on. This modeling
approach is labeled as “engineering” because of its pragmatical nature – processes or causal
structures that are producing plausible or observationally confirmed results are retained
and others discarded, but without a fundamental reductionist theory that guides these
decisions.

Ideally, such models allow us to learn something about the structure of an evolutionary
process as an abstract system, thus identifying phenomena to investigate empirically and
exploring processes that may have taken place in the past but are not represented in today’s
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biosphere or take place over too long times, e.g., the origin of life, adaptive radiations or
major evolutionary transitions in individuality.

In some more detail, we must keep in mind that when building such models, we do not
only design a model for the process itself, but unavoidably also the background in which
it is embedded - we must make choices on the presence and nature of energy, conservation
laws, and generally the interpretation of all dynamical entities and processes in the system.
In a manner of speaking, we design its “laws of nature”. Therefore, the results will be
influenced by these choices, and cannot be expected a priori to follow naturally observed
trajectories where the underlying natural laws and capabilities for self-organization and
emergence significantly differ from the natural one. Amee falls into this class of models,
and thus has more of an explorative and descriptive than predictive character.

8.3 Petri-nets and Net rewriting systems as tools for modeling
evolution and ecology
8.3.1 What is a Petri-net?

The Petri-net formalism forms the basis of Amee and thus will be introduced first. A Petri-
net [Petri, 1962], also called place-transition-net, is a type of discrete model for distributed,
concurrent systems. It takes the form of a weighted, bipartite, directed graph, in which
there are two kinds of nodes:

• “Places” represent “passive” elements of the system that exhibit a state. The set of
states on each place in the network gives the system state.

• “Transitions” represent “active” elements of the system. They transform the state
of the places they are linked to.

Petri-nets can be used as a model of computation [Petri, 1962; Zaitsev, 2012]. In this
thesis, however, Petri-nets are used as the underlying formalism of a model of developing,
evolving self-replicators that have the capacity to influence their environment.

Following Reisig [2013], for discrete state variables, the state of a place can mathemat-
ically be modeled by a multiset over some basic set of entities, which are called “tokens”,
which are drawn from a set that is initially chosen for the Petri-Net in question. Places and
transitions are linked via arcs, which carry weights. These weights in turn are represented
by multisets over the same basic set of tokens as the place states. Henceforth, the state
of a place, i.e., its token content, shall be called “marking”.

More formally, a Petri net is specified as follows: Be U a set, with the set of multisets
over U called M. A Petri Net (“PN”) is a tuple ((P, T, F, M, W ) , M0). The tuple
(P, T, F, M, W ) has the following properties:

• P a finite, countable set of places.

• T a finite, countable set of transitions.

• Because Petri nets are bipartite, it holds that P ∩ T = ∅.

• F ⊆ (P × T ) ∪ (T × P ) a relation that describes the set of arcs, each of which links
either a place to a transition or a transition to a place, but never a place to a place
or a transition to a transition.
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• M : P →M : p ∈ P :7→M(p) ∈M, a function that assigns a marking to a place.

• W : F →M : f ∈ F :7→W (p, t) ∈M, a function that assigns a weight to an arc.

M0 ⊂ M (P ) is called the “initial marking” of the Petri net. The subtuple (P, T, F ) is
called the “net structure” of the PN2, with F being called the “flow relation”.

8.3.2 Mathematical formulation of Petri Nets

In the following, some specialized terminology is needed, which shall quickly be introduced
here. For this chapter, we assume the markings and weights employed to be real numbers,
but the system can readily be extended to any kind of multi-set marking [Reisig, 2013].
Be ((P, T, F, M, W ) , M0) a Petri net and x ∈ T ∪ P :

• The set •x = {y ∈ T ∪ P : (y, x) ∈ F} is called the “pre-set” of x.

• The set x• = {y ∈ T ∪ P : (x, y) ∈ F} is called the “post-set” of x.

• A transition t is “enabled” if and only if ∀p ∈ •t : M(p) ≥ W (p, t). This condition
will become important later in the formulation of Amee.

• Given index sets I, J that index P , T respectively, the marking of the net can be
represented by a vector (m)i = M(pi)∀pi ∈ P .

• Given such indexing, the flow relation can be represented by a matrix (the “adjacency
matrix”) of the system, which has |P | rows and |T | columns and the elements of which
are the sum of the weights of arcs that connect place pi and transition tj :

(Ai,j) =
∑

W (pi, tj) (8.3.1)

It is convenient to decompose A into two matrices, the input matrix I and the output
matrix O of the system:

(I)ij =

{

W (pi, tj) iff pi ∈ •tj

0 otherwise
(8.3.2)

(O)ij =

{

W (pi, tj) iffpi ∈ tj•

0 otherwise
(8.3.3)

• A transition tj is enabled if and only if the marking of all places pk in its pre-set •tj

are greater or equal to the weights of the arcs that link pk to t. The status of the
|T | transitions in the net can also be represented by a vector e:

•

(e)j =

{

1 iff ∀p ∈ •tj : M(p) ≥W (p, tj)

0 otherwise
(8.3.4)

• A transition tj that is enabled can “fire”. When a transition fires, it reduces the
marking of all places in its pre-set by the weights of the respective adjacent arcs and
correspondingly increases the marking of all places in its post-set.

2 Petri-net.
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• The firing of at least one transition comprises a “step” of the PN and transforms the
marking of the net mt into another marking mt+1. This comprises the dynamics of
the PN and can be formulated as:

mt+1 = (O− I) et + mt (8.3.5)

with matrix-vector arithmetic being defined as usual.

• Usually, the index τ corresponds to time and the net dynamics represent the system’s
temporal evolution. Note that multiple transitions can fire at once, in keeping with
the intention of modeling distributed, concurrent systems. As the net progresses
through different steps, different transitions become enabled, so e changes with time.

• We define the input interface (output interface) of a Petri net as the set of places
that have no incoming (outgoing) transitions. They can be represented by boolean
vectors in, out, computed as

(in)i = {i ∈ P |Oij = 0 ∀ j} (8.3.6)
(out)i = {i ∈ P |Iij = 0 ∀ j} (8.3.7)

(8.3.8)

A PN for which at least one of these sets is non-empty we call “half-open” when
both are non-empty we call it “open”.

A final marking is a marking for which no further transitions are enabled. Finally,
Petri-nets are concurrent, therefore multiple transitions can be enabled at the same time
(see Equation 8.3.5).

8.3.3 Petri-Nets with inhibitor arcs

There are various extensions of the basic Petri-net formalism, of which only one shall be
discussed here. This extension adds a second kind of arc to the net that can connect only
places to transitions, not vice versa, and which acts as a logical negative: Only when the
attached place has a marking of zero will the adjacent transition be enabled, irrespective
of any other conditions active on it. Such arcs are called “inhibitor arcs”, and endow
Petri-Nets with additional functionality. Petri-Nets with inhibitor arcs can be shown to
be equivalent to Turing machines [Zaitsev and Li, 2018]. We formally indicate an inhibitor
arc by a weight of −1 (or an equivalently unique symbol for weights not represented as real
numbers) in the input matrix. For simplicity of notation, we assume real-valued markings
and weights here, understanding that the formalism is readily extended to multisets. The
vector e for IPN3 therefore changes to:

(e)j =

{

1 iff ∀p ∈ •tj : M(p) ≥W (p, tj) ∧W (p, tj) 6= −1

0 otherwise
(8.3.9)

3 Petri-net with inhibitor arcs.
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Accordingly, we need to modify Equation 8.3.5 in order to make sure that the system
will correctly ignore the inhibitor arcs when computing the change in marking. To this
end, we introduce the matrix N as

(N)ij =

{

1 iff (I) (i, j) 6= −1

0 otherwise
(8.3.10)

Because inhibitor arcs only ever lead from a place to a transition, we only need to be
concerned with the input matrix I. The matrix N tells us if a particular input arc is
an inhibitor arc or not. With this, the update equation for the marking of the network
becomes:

mt+1 = (O− I⊙ N) et + mt (8.3.11)
with A⊙B denoting the elementwise product of the two matrices A and B. In this way,

the −1 entries in the input matrix I are eliminated from the computation, while the effect
of the inhibitor arcs is built into the vector e.

8.3.4 What is a Net rewriting system?

Net rewriting systems form the highest layer of dynamics in Amee, while PNs form the
middle layer.

Net rewriting systems are a combination of the concepts of Petri-nets and graph rewrit-
ing systems, as presented by Llorens, Oliver, et al. [2004]. The presentation below is a
somewhat shorter version of theirs but follows it closely otherwise. The idea is that a Petri-
net is transformed into another Petri-net by the successive application of transformation
rules. These map a subset of elements of the original net to a set of new elements which
together with the unchanged elements of the original form a new Petri-net.

Mathematically, a net rewriting systemN is a pair (R, (Γ0, M0)), withR = {r1, r2, . . . rm}
a finite set of rewriting rules and (Γ0, M0) a marked Petri-net as defined in subsection 8.3.1.
A rewriting rule r is a pair (L, R, τ, •τ, τ•) with the following properties:

• L = (PL, TL, FL) , R = (PR, TR, FR) are Petri-nets, being called the left-hand side
and right-hand side of r.

• τ ⊆ (PL × TL) ∪ (PR × TR) is a binary relation that relates places in L to places in
R and transitions in L to transitions in R. τ is called the transfer relation of r.

• The subrelations •τ ⊆ τ, τ• ⊆ τ are called the input interface transfer relation and
output interface transfer relation, respectively. These are used to fix the connections
between the old part of the net and the replaced part.

The configuration of an NRS4 is a Petri-net Γ = (P, T, F ), and a state is a marked
Petri-net (Γ, M), with the state (Γ0, M0) representing the initial state. We call an event
either the firing of a transition t ∈ T or a rewriting rule r ∈ R.

In order to proceed, we need one more definition: Be Γ = (P, T, F ) , Γ′ = (P ′, T ′, F ′)
two Petri-nets. We call Γ′ a full embedding of Γ if and only if there exists an injective
map f : P ∪T → P ′∪T ′ with f(P ) ⊆ P ′, f(T ) ⊆ T ′ such that for x, y ∈ P ∪T : F (x, y) =
F ′ (f(x), f(y)). The image of f is called a full subnet of Γ.

With this, we can define a step of a Net rewriting system as
4 Net-rewriting system
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• The firing of a transition in the state (Γ, M) as presented in subsection 8.3.1.

• The replacement of the subnet L with the subnet R.

The latter part proceeds as follows. Be (Γ, M) a state of the NRS N = (R, (Γ, M)) as
described above, and r ∈ R = (L, R, τ, •τ, τ•) a rewriting rule.

• Find a full embedding Γ′ of L in Γ with f : L → Γ as defined above, such that
∀x /∈ L, y ∈ L: x ∈ •f(y) : (x, y) ∈ •τ and x ∈ f(y)• : (y, x) ∈ τ•.

• Replace the subnet L with R such that the net Γ is turned into the net Γ+, with
x, y ∈ P ∪ T . We write x ∈ R as shorthand for x ∈ PR ∪ TR.

P+ = (P \ PL) ∪ PR (8.3.12)
T+ = (T \ TL) ∪ TR (8.3.13)

F+(x, y) =



























F (x, y) if x, y /∈ R

FR(x, y) if x, y ∈ R
∑

z∈•τy F (x, f(z)) if x /∈ R ∧ y ∈ R
∑

z∈τ•x F (f(z), y) if x ∈ R ∧ y /∈ R

(8.3.14)

where the latter two cases describe the connection between replaced elements and
the rest of the net.

We used the following notation for relations τ•, •τ :

• τ • x = {y ∈ R|(x, y) ∈ •τ}

• x • τ = {y ∈ R|(y, x) ∈ •τ}

Finally, the marking of the new places is given by the markings of the old places:

M+(p) =

{

M(p) if p /∈ R
∑

q∈τp M(f(q)) if p ∈ R
(8.3.15)

They further expand this system [Llorens and Oliver, 2004] by augmenting the rewriting
rule r with a set of control places C ⊆ PL and a control marking M : p ∈ C 7→ M(p):
r = (L, R, τ, •τ, τ•, C,M). The control marking gives the minimum marking for places in
C such that the rule is enabled. So the conditions for a rewriting rule to be enabled (first
bullet point above) are expanded with the additional condition that ∀p ∈ C : M(f(p)) ≥
M(p), i.e., for all places in the control set the current marking must be greater or equal
to the control marking. Control markings are useful for modeling industrial processes for
example, but are otherwise ignored here.

8.3.5 Basic building blocks and NRS setup in Amee

Organisms and the environment are modeled as (half-) open IPNs that process matter
and energy, with the former being interpreted as the metabolism network and the latter
as part of a resource-consumer network with abiotic elements, as they occur in nature.
Organisms form a “focal population” which forms a node in this network by virtue of their
members consuming and excreting resources. Organisms additionally are endowed with
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rewriting rules, that allow for dynamic changes to their habitat’s IPN, but also to their
own metabolism IPN. Therefore, building blocks must be found that can represent NRS
and IPN. Because of the conceptual symmetry of organisms and environment as (half-)
open IPNs for matter and energy, we can base both on the same fundamental building
blocks, which are shown in Figure 8.1. These building blocks form thus the lowest level of
organization that comprises Amee.
Fundamental building blocks Building blocks are minimal elements from which Petri-
nets can be created by successively attaching them to each other, see Figure 8.2. We follow
the scheme outlined in Chunikhin [2019] in the choice of these building blocks. We observe
from Equation 8.3.11, that every entry in the input matrix I describes either an arc that
goes from a place to a transition (symbolized as©→ �, with© representing a place and
a � representing a transition), or an inhibitor arc, symbolized as ©⊸ �. Analogously,
every entry in the output matrix O represents an arc that goes from a transition to a place
(represented by � → ©). Generalizing this, each entry in I or O can be a sum of such
elements, except for inhibitor arcs, which always keep their value irrespective of added or
subtracted elements (similar to multiplying by zero). We call these elements, © → �,
�→©, and ©⊸ � “elementary symbols”.

t

p

w

TP

t

p

w

t

p

I 

Figure 8.1: Fundamental building blocks
(“elementary symbols”) for an IPN are de-
fined by the places p and transitions t an arc
with weight w connects. These can be place-
transition (left, P), transition-place (middle,
T), or place-inhibitor-transition (right, I,
note the circle and missing weight w to in-
dicate the inhibitor property). From these,
all possible IPNs for a given set of places
and transitions and a given range of weights
and markings can be constructed. These
building blocks can be augmented with a
marking m that is assigned to each place.

Therefore, for an alphabet of place labels P = {1, 2, ....NP } and transition labels T =
{1, 2, 3, ...NT } the matrices I, O are in the vector space of matrices MatNP ×NT

(W ) with
W being the set from which the weights are drawn. While W is in general a multiset,
we still limit ourselves to real-valued weights for simplicity without loss of generality.
We introduce symbols for each of the elementary symbols in order to formally represent
them:

• ©→ �: P t
p(w), p ∈ P, t ∈ T representing the place and transitions (i.e., the matrix

coordinates) and w the weight (i.e., the matrix entry).

• © ⊸ �: It
p with the weight always being −1 or another flag that indicates an

inhibitor arc.

• �→©: T t
p(w).

For a set of such symbols, we represent each element in the corresponding matrices I, O

as
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(I)pt =

{

∑

k P t
p(w)k if no I symbol involved

−1 otherwise

(O)pt =
∑

k

T t
p(w)k (8.3.16)

where the sum is meant to sum up the weights wk of each symbol with place label p
and transition label t.

Similarly, we can add the initial marking M0 to the symbols: P t
p(w, m), T t

p(w, m), It
p(m),

such that the initial marking for each place can be constructed as

M0(p) =
∑

k

P ti
p (wi, mk) + T

tj
p (wj , mk) + Itl

p (mk) (8.3.17)

where the sum this time is meant to add up the markings mk of each symbol in the
same way it has been done for weights above.
Construction of IPNs from elementary symbols Therefore, an arbitrary IPN over node
labels P ×T with weights in W can be represented as a string of elementary symbols GP,T ,
and the matrices can be constructed according to Equation 8.3.16 and the initial marking
according to Equation 8.3.17.

In order to simplify notation, we can put the “kind” of the symbol, K ∈ {P, T, I} into
the symbols themselves and only use the parentheses notation for everything, and use S
as shorthand for all symbols, such that they are represented uniformly as S(K, p, t, w, m).
This allows us to formulate an algorithm to create the net (Γ, m0) from GP,T , described
below in Algorithm 1. The process is shown in Figure 8.2 schematically.

A B

Figure 8.2: A: Individual building blocks of IPNs, with their place- and transition-labels
color-coded, and weights suppressed for clarity. B: The net assembling from the building
blocks by matching place and transition labels. Blue and grey places form the input
interface, and orange place forms the output interface of the net.

Construction of NRSs from elementary symbols Finally, we need to add encodings
for the rewriting rules in order to arrive at an encoding of an NRS and not just of an
IPN. Each rule is labeled by a rule label r ∈ X ⊂ N. As discussed above, a rewriting rule
consists of two subnets L and R and a relation τ that encodes the replacement of L with
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Algorithm 1 Creation of an IPN from an encoding string
1: I, N, O← 0 ∈ Mat|P |×|T | (W ) ⊲ Allocate variables for Equation 8.3.11.
2: m← 0 ∈ Mat|P |×1

3: e← 0 ∈ Mat|T |×1

⊲ Loop over encoding, use Equation 8.3.16 and Equation 8.3.17
4: for s in G do
5: if s.k = P then ⊲ Input matrix, normal symbol
6: (I)s.p,s.t ← (I)s.p,s.t + s.w
7: else
8: if s.k = T then ⊲ Output matrix, normal symbol
9: (O)s.p,s.t ← (O)s.p,s.t + s.w

10: else ⊲ Input matrix, inhibitor symbol
11: (I)s.p,s.t ← −1
12: end if
13: end if
14: ms.p ← ms.p + s.m ⊲ initial marking vector
15: end for

⊲ Compute the indicator matrix for inhibitor arcs
16: for p ∈ P do
17: for t ∈ T do
18: if Ip,t = −1 then
19: Np,t = 0
20: else
21: Np,t = 1
22: end if
23: end for
24: end for

R. Finally, there can be control places C and control markings M. In order to encode
rewriting rules into the encoding string of the IPN, we add the following elements to the
symbols P, T, I discussed above:

• A rewriting rule label r.

• A string ρ of encoding symbols as introduced above that represent the symbols with
which to replace the element they belong to.

• A control marking mc which represents a part of the marking the encoded place
needs to exhibit for the rule r to be enabled. This is added for completeness, only,
though we will not make use of it in any simulations.

Therefore, we end up with symbols:

• P t
p(w, m, r, ρ, mc)

• It
p(m, r, ρ, mc)

• T t
p(w, m, r, ρ, mc)

From a string G made up of symbols S(p, t, w, m, r, ρ, mc), we can construct the rewriting
rule r by the following schema presented in Algorithm 2.
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Algorithm 2 Creation of a NRS from an encoding string

• Find all symbols in the string G that contain the label r as a rewriting rule label.
These constitute the string Gr.

• Loop over Gr. Build the net L from the symbols s ∈ Gr as described in the algorithm
above.

• Build the net R by concatenating all strings ρs into a string ̺, and then apply
aforementioned algorithm on string ̺.

• Build the relation τ by associating each place s.p encountered in Gr with the places
contained in the symbols making up s.ρ, and the same with the transitions. In that
way, we end up with τ = {(s.p1, {sρ.pi...}) , ...} and likewise for the transitions.

• The interface relations are determined analogously by checking which places and
transitions in the original net (Γ, m0 are connecting to places and transitions in the
net R.

• The set of control places C is given by C = {s.p|s.mc 6= 0}

• The control marking for each c ∈ C is given by summing up the contributions of the
individual symbols: mc =

∑

{s | s.p=c} s.mc.

This system, while complex, comprises the foundation of the model. It allows on the one
hand to encode an NRS into a string-like system that can serve as the genome of a virtual
organism, and on the other to use it for encoding NRS or IPN as initial conditions for the
environment for instance, or for encoding resources that are processes by the metabolism
of the organisms or the habitat network.

Secondly, the algorithm described above gives an automatic, universal construction
system that can turn any encoding into a corresponding NRS or IPN. In this way, if we
interpret the individual symbols indicated by P, T, I as molecules, we obtain a form of
artificial chemistry if we apply it to an arbitrary collection of these elements that follows
its own rules that are independent of the evolutionary dynamics that unfolds on organisms,
but which influence them. The complexity of the resulting IPNs or NRSs depends on the
size of the node label set, i.e., on |P |, |T |, and the number of symbols in the encoding string.
Too high densities of inhibitor symbols will create non-runnable nets, however.

8.4 Principles and architecture of Amee

The model presented here has three levels of representation that correspond to three
organizational layers of natural biological systems. Two of these are built on the formalism
of Petri-nets and net rewriting systems, while the third one is a heuristic representation
of individual actions in an ecosystem. As a guiding principle, we try to build a system
that addresses the four challenges laid out above in subsection 8.2.1. This leads to the
following basic concepts.
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8.4.1 The lower layer – concepts underlying resource processing and
reproduction

Given that organisms are built on top of Petri-nets with rewriting rules a natural way
of reproduction is the rebuilding of the metabolism NRS from net symbols shown in
Figure 8.1. Therefore, the process of ontogenesis is in its fundamental form given by the
NRS assembly process, much like the process of protein synthesis is given by the tRNA-
amnio-acid correspondence and the self-organization inherent to protein folding. The
necessary elementary symbols to do that must be acquired from the environment. Thus,
resource processing in metabolism and environment is implemented as the processing, via
IPNs, of sets of elementary symbols wk = {K1, K2, . . . KR}, which we can think of as
defining an IPN each. A multiset of such elementary symbol sets constitutes the marking
of both the environment- and the metabolism network, W = (wk).

This elementary symbol dynamics comprise the first and lowest organizational layer of
Amee. Where the organism-environment layer comprises ecology, we can think of this
layer as a very simplistic form of artificial chemistry. It is important to note that no new
resources can be produced, they can only be transformed into each other by steps of an
organism- or environment IPN.

8.4.2 The middle layer – Organismal and environmental architecture

Organisms are determined by their metabolism and resource acquisition properties
First, we identify metabolism and resource acquisition as the most important property of
natural organisms besides their ability to self-reproduce. As a consequence, any other phe-
notypic traits primarily act to support resource acquisition through ecological interaction.
Reproduction, while the defining property of biological systems, is generally deeply nested
in an organism’s makeup and thus, on a mechanistic level, is not subject to evolution
anymore [Rocha, 2001]. Evolution is consequently assumed to act on resource acquisition
and survival and not on the fundamental makeup of organisms. This allows us to hardcode
their architecture, i.e., the number and kinds of ecological interactions, while keeping their
parameters evolvable.

Organisms as complex adaptive processing systems for resources that support self-
reproduction Organisms in nature are complex adaptive systems, as the previous chap-
ters strove to show. While there is no hope of reproducing their complexity and adaptivity
in silico, their nature as CAS has implications for evolution that arguably should not be
ignored, and hence, we should strive for a system that shows such properties in principle.
In order to do their complex adaptive nature justice, but keeping to the reduction of
organisms to self-reproducing resource processors, we envisage them as resource processing
networks that can change their own structure over the course of their life. This, in turn,
we interpret as development and phenotypic plasticity.

An NRS is thus a natural choice of structure for modeling organisms because they
fulfill these requirements naturally through their rewriting rules. The underlying IPN
employs multi-sets of resources (yet to be defined) as marking and allows for resources to
be modified during metabolism, such that organisms do not need to extract the resources
that they need directly from the environment, but can transform what they acquire into
a form that is more useful for reproduction. We note that this principle is not limited
to resource processing, but can be applied to the processing of environmental signals too,
should such a process be desired. Thus, the jump to learning systems is in principle
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possible in the model without too large architectural changes, although the mathematical
system presented in subsection 8.3.1 would have to be changed accordingly.

Organisms not only can change their structure through rewriting in response to their
own states, but also in response to environmental signals. This can modify the organism’s
resource processing, and thus plasticity and development can come under selection and de-
pend on dynamically arising environmental states. The same is true for niche construction,
i.e., rewriting of the habitat network, which can depend on environmental- but also on
organismal states. Thus, Scheiner, Barfield, et al.’s symmetry between plasticity and niche
construction is established on a mechanistic level. Moreover, this IPN-based processing
system does naturally allow for waste excretion and thus for the formation of ecological
resource-consumer networks. Natural selection arises when these organisms compete for
finite resources, modified by rewriting or environmental heterogeneity, or other influences
which are represented in the literature by separate models.

Organism’s genomes are encoded using elementary symbols Because the phenotype
of an organism is comprised of an NRS, it is natural to use the encoding of this NRS in
a set of elementary symbols as the genome of the organism. Each symbol therein plays
the role of a larger unit of genetic information that can have an independent effect on the
phenotype when it changes and is thus not the analogon of a base or codon, but rather
of a whole gene or GRN motif that interacts in a given way with other such symbols to
produce the phenotype.

Environment as a dynamic material processing system Much like organisms, ecosys-
tems can be seen as networks of nodes that transform material from one configuration into
another and links that represent flows of matter and energy between these nodes. Nodes
in this network can be biotic and abiotic, as previously mentioned. In nature, the primary
energy source for the vast majority of ecosystems is solar radiation, which is made available
by photosynthesizers in the form of organic chemical structures to secondary consumers,
and which in turn form a trophic web that transports matter and energy through different
organisms until part of it is transformed by detritivores into organic compounds that again
benefit the photosynthesizers or sustain other ecosystem subnets. Abiological reaction
systems exist in parallel and in interaction with them, exemplified by weathering or the
transport of sediments in rivers and by wind, or many abiotic chemical processes. This
establishes a conceptual symmetry between environment and organisms in that both can
be simplified into resource processing networks. Organisms, or populations, are embedded
in this network as dynamic elements, not only as passive objects that are “run” through
an equally passive environmental filter.

Two simplifications are made, however: First, the self-adaptivity of the embedding
ecosystem is ignored, i.e., it is a pure IPN, not an NRS, and does not “rewrite itself”.
We thereby assume that the evolution of any non-focal populations in the ecosystem has
no fundamental effect on the focal population’s interactions with it, or that the focal
population encompasses all organisms in the ecosystem we investigate. More to the point,
we focus on the evolution of the single focal population, ignoring environmental reactivity
or coevolution with other populations.

Second, we ignore the first layer of resource processing, i.e., primary producers, and
assume that the environment IPN we focus on starts with a fixed, but possibly initially
not fully utilized, finite set of resources that it processes. The nodes of the environmental
IPN thus represent different elements in the ecosystem in which resources accumulate,
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e.g., morphological- or ecospecies, but also inorganic things like mineral deposits, water
supply, and many more.

Organisms in this system acquire resources by connecting to nodes of the environ-
ment network, extracting some resources from them, and processing them through their
metabolism network, as mentioned before.
Organisms-environment interactions are not unidirectional Finally, the environment
is not static but can be influenced by organismal action, i.e., not only can the resource
availability change over time through consumption and waste excretion, but the network
structure and size can change over time through organismal action. This is implemented
by allowing net rewriting rules of organisms to apply to the environmental networks. This
is a departure from the mathematical formulation presented in subsection 8.3.4, in that
the network Γ0 is exchanged, depending on the context, to either the organism metabolism
IPN or the environmental resource IPN.

Thus, organisms can modify not only the local frequencies of resources, but also the
processing system itself, and thus the nature of their local environment. This modification
can be envisaged as, e.g., the burrowing and bulldozing of animals in sediment, the trans-
formation of atmospheric composition or ecosystem character through photosynthesis or
beaver dam buildings, and other examples of organismal modification. Consequently, the
changes in the environment by organismal rewriting are experienced by other organisms,
too, including the offspring of the original actor. Therefore, this environmental rewriting
constitutes ecological inheritance. It must be noted that these effects do not need to be
adaptive for the organism in question. Rather, they can have any conceivable effect on
the ability of organisms to obtain resources and reproduce, and the emergence of any
advantages is subject to evolution. This organisms-as-NRS-environment-as-IPN system
forms the middle of the three conceptual layers that comprise Amee.

8.4.3 The upper layer – evolution from ecologial interaction

Overview of model properties Amee is a spatial, agent-based model. Space is repre-
sented as a collection of point-like cells connected to form a two-dimensional, rectangular
grid. Each cell is connected to neighbors via the Moore-neighborhood (8-neighborhood)
or the von-Neumann-neighborhood (4-neighborhood). Cells are envisaged as representing
extended habitats, not individual spatial points, the dynamics of which is represented by
half-open IPNs that transform matter (and energy), i.e., resources, between different con-
figurations according to Equation 8.3.11. Individual cells get resources from the outside,
i.e., from a part of the resource processing system that is not modeled explicitly. Their
resource networks do not have connections amongst each other, however.

Organisms are, as mentioned, envisaged as being comprised of an NRS which contains
rewriting rules for changing habitat IPNs and their own metabolism IPN. Aside from
this, organisms have a number of fixed processes in which they can interact with the
rest of the ecosystem. These interactions exclusively involve the environment and one
focal organism, such that any interactions between organisms are mediated by their
environmental impacts. Classical trophic interactions like predator-prey or parasite-host
are thus not included in the current implementation. The currently implemented processes
are resource acquisition and metabolization, asexual reproduction and modification of
themselves and their environment during their lifetime via rewriting. Organisms can die
at random or through starvation. Each organism exists on a single cell at a time, but
multiple organisms can coexist on the same cell. While the number of habitat cells is fixed
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P4 P5

P1 P2 P3

T1

Figure 8.3: Basic resource processing across
a transition in an IPN. Each resource is
a set of basic building blocks, which we
can think of as a net fragment, represented
as a multi-set, the multiplicity of which
are shown as black bars. A transition T1
with pre-set {P1, P2, P3} is enabled if each
place in the pre-set has at least as much
marking (not shown) as the weight to the
transition indicates. The transition then
changes the marking on the places in its
post-set {P4, P5} by adding the weights on
the respective arcs to their marking. This
process can change the proportions of the
multiplicities.

for the simulation duration, the number of organisms that live on each cell and in the entire
system is not. Therefore, the populationsize of the system and its distribution among the
habitat cells can develop freely and is affected by the evolutionary trajectory.

Energy and resource processing in a habitat As said, each cell on the grid is made up
of a half-open IPN. The marking of this IPN is made up of a multi-set of sets of elementary
symbols, each of which we call a “resource”, as are the weights of its arcs. We can think
of each resource as an IPN fragment by virtue of the assembly process in Figure 8.2, i.e.,
as an IPN without any further properties that would guarantee that it actually could be
run.

Each habitat-IPN receives a fixed number of these resources per timestep on its input
interface, and this number can be fixed for all possible resources or vary between them.
However, no new resource networks beyond the initial set can be produced. Rather, their
proportions can be changed (see Figure 8.3), i.e., the multiplicities of the multi-sets can
change across transitions. This change in proportions also can mean that resources get
produced in the post-set of a transition that have a marking of zero in the pre-set places,
such that, while no completely new resources can be produced, not all have to be active
on each place at the same time.

Because there are multiple resources in general, we can think of the net as consisting of
multiple layers, each for one resource, which are coupled by virtue of Equation 8.3.9, i.e.,
either all layers run or all none do.

Energy conservation Each basic symbol shown in Figure 8.1 carries a certain amount
of energy e, which can depend on the kind of symbol, such that each net fragment
carries

E(F ) =
∑

FP

eP +
∑

FT

eT +
∑

FI

eI (8.4.1)

where FX is the set of P, T or I symbols in the resource respectively. Energy conservation
is assured by taking into account the corresponding columns Oi,t and Ii,t and demanding
that

∑

i

E(Oi,t) ≤
∑

i

E(Ii,t) (8.4.2)
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for each transition T . In words, the sum of energy in the input weights of a transition
must be greater or equal to the sum of the energy in the output weights of this transition.
Because rewriting can change the networks, this is assured in two ways: First, any rewriting
change that violates energy conservation is rejected, thus assuring that only consistent
rewriting can take effect. Secondly, upon reproduction or initialization, the networks are
checked for energy-conservation violation, and if one is found, the output Oi,t is successively
reduced until energy conservation is assured.

This procedure allows in principle for genomes that produce nets that violate energy
conservation to stay in the population, thus creating genetic variation that would be
physically forbidden in nature. However, because energy conservation is not built into the
network assembly algorithm, such a post-processing approach must be taken in order to
maintain conservation laws. This is a compromise with respect to computational efficiency,
given that energy conservation is a difficult condition to impose in the algorithm that
generates initial conditions.

Secondly, it must be noted that while energy conservation is observed, material con-
servation is not, again a compromise taken for simplicity. While Equation 8.4.2 could
be easily extended to maintain conservation of the number of P, T and I symbols or any
combination of symbol properties, the maintenance would greatly complicate the initial
condition creation and its checking would be computationally expensive, and thus has been
ignored here. Therefore, the number of symbols representing specific nodes or building
block kinds can change arbitrarily across transitions. That being said, because symbols
have been interpreted as whole genes in the genome discussion before and not as codons
or bases, we can take a similar interpretation here and interpret individual symbols in
the resources as molecules or larger physical entities that react with each other across
transitions to produce a small, finite set of larger conglomerates.

Cell dynamics Cell dynamics is simple and consists of the influx of resources onto
the input interface of each cell’s IPN, followed by the running of the net according to
Equation 8.3.11. The environment net thereby runs until a maximum number of iterations
is reached or the net marking does not change anymore. The maximum number of runs
is necessary because there is no criterium in the algorithm that generates cell initial
conditions (see subsection 8.5.1) that would result in an architecture that converges each
time to a final marking. This is another compromise taken for simplicity, at the price of
an additional model parameter. Without it, the cell network could either run forever or
for a prohibitively long time.

After the net has run, resources will be distributed in different configurations on different
places on the net (see Figure 8.4), which yields environmental heterogeneity within a
habitat, i.e., it allows, in principle, for different organisms to adapt to extract resources
from different places and process them according to their availability. When some resources
are not extracted by organisms, they will further be processed upon the next run of the
cell network, which can yield temporal heterogeneity in resource availability.

Organism metabolism The first, and most important, process for organisms is resource
acquisition and metabolism. This consists of four steps.

First, the labels of the places in the input interface of the metabolism net of the focal
organism are considered, and the corresponding labels in the cell network are identified.
Then, following the same concept as in the algorithm for building networks from building
blocks, the organism metabolism net is connected to the cell’s network by identifying the
matching places in the input interface of the organism and in the cell network. Note that
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Figure 8.4: Visualization of the dynamics of the cell resource network over time. Cell
input interface in light blue, labeled 1,2,3, unmarked places in grey, marked places in
black. Three different resources colored red, yellow and purple are processed. The
diagram at the top of each panel shows the marking of the net for each resource for
different timesteps. Weights have been suppressed for clarity. A: Initially, the cell’s IPN
is unmarked. An external resource influx, here homogeneous across all resources, is applied
each timestep. B: After the net runs, more places are marked. Some markings may stay
on the input interface places because outgoing transitions become disabled at some point.
Other transitions might have higher thresholds (e.g., those that lead into places 5, 6) and
might not have been enabled yet C: Eventually, resources accumulate enough to enable
some or all transitions, while others may get disabled again. The available resources on the
net are thus heterogeneous across places and resources, providing a structured, dynamic
niche space to which organisms can adapt.

not all of the input interface places have to be connected, any non-empty subset suffices.
Failure to connect, however, will result in failure to acquire resources, precluding resource
acquisition. Likewise, if organisms do not have input and output interface, this step will
fail and the metabolism function will stop without resource uptake for the organism. This
is because the output interface of the metabolism net provides the places from which
resources are taken into the organism’s reservoir in the end, such that their absence does
preclude resource acquisition, too.

After connecting the metabolism network to the cell network, the second step consists
of considering the weights that connect the input interface places of the organism to the
rest of its metabolism net, i.e., the sum of the entries of the input matrix ∑

j Ip,j for
p ∈ in. These are compared with the marking mp of the corresponding cell places, and the
marking of the organism’s input interface places Mp is changed as follows:

Mp =

{

Mp +
∑

j Ip,j if mp >=
∑

j Ip,j

Mp + mp else
(8.4.3)
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mp =

{

mp −
∑

j Ip,j if mp >=
∑

j Ip,j

0 else
(8.4.4)

Third, the organism’s metabolism IPN is run. This happens in much the same way as
for the cell’s resource IPN, but in contrast to cells, organisms that run their metabolism
are guaranteed to have an output interface, i.e., places where no further processing takes
place and resources accumulate. Like the cell network, this runs until the marking of the
net does not change anymore or an upper limit of steps is hit.
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Figure 8.5: Schematic representation of the metabolism of an organism. Markings on
places are shown in greyscale (cell) and blues (organism) with increasing markings from
light to dark. A: An organism (lower) connects to the cell network (upper) via its
interface places. Their place labels indicate which places connect to which. B: Marking
is transferred onto the interface places of the organism from the cell (note the lighter
coloring of the cell’s places). Its output place (7) is not marked at this stage. C: Organsim’s
resource reservoir is given as grey boxes. The organism’s metabolism processes the marking
on the input interface until the net reached a final marking or a given upper limit of steps
is reached. D: The marking on the output place (7) is dissolved into building blocks and
stored in the organism’s resource reservoir, increasing the supply available for reproduction
or rewriting.

Finally, the marking of the output places of the metabolism net is considered. Each
resource is considered separately and is broken down into individual building blocks which
are then stored in the organism according to a predefined scheme. For example, we can
set the system up to require organisms to only provide building blocks with matching
place labels in the right numbers to reproduce instead of the full set of properties of the
symbols (compare Figure 8.4.3 for details). For each building block gained, the organism
also gains energy but also has to pay an energy cost for the acquisition, i.e., digestion, of
this symbol. In this way, organisms gather material that they can use to reproduce their
phenotype.

The output interface of the organism not only is the endpoint of metabolism but is also
connected to the cell network through the same mechanism as the input interface. The set
of connected output places forms the waste_places of the organisms. Finally, whatever
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Figure 8.6: A: Analogously to the input interface (places 1, and 4), the output interface
(place 7) of an organism (lower network) is also connected to the cell network (compare
Figure 8.5). B: If after the run of the organism’s metabolism places of its IPN still
contain resources, these are uniformly distributed onto the cell’s places that correspond to
the organism’s output places, such that their resource content increases (lighter to darker
shades of grey.).

marking is left on the metabolism net is excreted uniformly onto the waste_places, such
that unused resources are returned to the environment again, but in a possibly degraded,
or at least transformed form. Therefore, organisms do not just consume resources from the
environment but also change their availability through transformation and waste excretion,
which may elicit adaptation in other populations.

Organisms “pay” upkeep for their own structure in the form of energy per timestep,
which is subtracted at this stage, too.

Rewriting of networks The phenotype’s main component is a net rewriting system. The
principle of rewriting, i.e., motif replacement, has been explained in section 8.3. However,
the system employed by organisms differs from this scheme in two ways. First, instead of
simple replacement of motifs, it uses addition and subtraction of arc weights in addition
to their creation (when they have not been present before) or removal (when one has
a weight of zero), which allows for frequency-dependent rewriting effects: The effects of
rewriting rules of multiple organisms can add up and create a larger effect over time if
the rewriting rule leaves its target motif intact. In nature, many effects organisms have
on their environment are frequency dependent, e.g., waste excretion and resource usage,
but in particular also burrowing or building of structure, which can, if done by a larger
population, transform an ecosystem to significant degrees.

The second difference is that the presence of the network motif to be rewritten is checked
elementwise, and the organism’s and the environment’s IPNs taken into account when
checking if a rewriting rule is enabled or not. Thus, the network motif that serves as the
target for rewriting can be spread out over the environment as well as the organism instead
of being tied only to one. In this way, the rewriting system, on which development, niche
construction and plasticity are based, incorporates environmental states.
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Organisms can have multiple rewriting rules, which are labeled with numbers r ∈ N.
The number of possible rules is a user-defined parameter R. Rules can differ from each
other in size and composition, i.e., in the size of their left- and right-hand sides.

Each rule belongs to one of three possible rewriting types: “Plasticity”, “Niche con-
struction” and “Development”. These are assigned intervals RX , X ∈ { Plasticity,
Niche construction, Development } such that R = RPlasticity ∪ RNiche construction ∪
RDevelopment = [1, R] ⊂ N. These intervals need not be fully filled from the beginning, but
the user can decide how many rules in each interval there should be for the initial organism,
and the rest then can evolve later. Again, to make this a user-defined parameter is a choice,
and the number of rewriting rules could be derived from some organism structure if desired.
The ordering of the labels r in each interval RX also gives the order in which rules are
activated and checked if they can be applied.

Finally, the right-hand side of rule r can contain all or a part of the elements in the
left-hand side of another rule r′. Alternatively, two rewriting rules can have the same
elements in their left-hand side such that they rewrite the same subnet. In this way,
rewriting rules can depend on each other, such that the application of one rewriting rule
can enable or preclude the application of another one.

Additionally, a maximum number of symbols each element ρ of a genome symbol can
encode is given as a user-defined parameter, too. This length of each ρ elemnet in a gene
can evolve freely later and is only given for the initial condition. Therefore, the amount of
genetic information in the rewriting systems is subject to evolution. With the number of
allowed rewriting symbols per genome symbol and the limit on the number of rules, the
initial complexity of the rewriting rules can be determined. Allowing many different rules
with few allowed rewriting symbols yields simple rules that replace, e.g., one or two network
elements with a handful of new ones. In contrast, allowing relatively few rules but with
a large number of rewriting symbols in each gene can produce very complicated rewriting
rules and a system in which the genetic information in the rewriting rules exceeds the
genetic information used to build the metabolism network substantially. However, while
the former case has correspondingly easy conditions to enable rewriting, the latter’s are
much more complex and thus harder to fulfill.

If a cell-IPN is rewritten, this comprises a way for organisms to interact, because the
rewriting by one type of organism can, in principle, enable or preclude rewriting rules of
other organisms. Theoretically, this can lead to a rich phenomenology in which organisms
facilitate or compete for rewriting opportunities in their environment, or, in other words,
engage in antagonistic activity.

Each rewriting rule that is applied incurs costs in the form of energy required per
replaced symbol and in the form of elementary symbols that are needed to effect the
structural change in the target network. Rewriting is thus a costly investment which,
however, can have evolutionary advantages by modifying resource– and energy flows in the
environment or within the organism’s metabolism. When it applies to the environmental
net, antagonistic, cooperative or neutral ecological interactions are possible, too. Rewriting
can also have different effects on different timescales or habitats, e.g., with phenotypic plas-
ticity being helpful on one cell but being harmful on another, or environmental rewriting
helping in the short term by making more resources available, but being harmful in the
long run by degrading the ecosystem’s ability to process matter and energy.

It must be noted that rewriting in our model is irreversible unless a rule exists that
specifically reverts the effect of another one. While this can evolve in principle, it appears
exceedingly unlikely. Thus, phenotypic plasticity in this model is more akin to developmen-
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Figure 8.7: Illustration of rewriting of an organism’s metabolism network. Places are
shown as circles, and transitions are shown as squares. Organisms have nodes labeled
blue or green, while cell nodes are shown orange, grey to brown. Here, we focus on the
rewriting of an organism. Cell rewriting functioning analogously. The current IPNs or cells
and organisms are bounded by solid lines, rewriting rules by dashed ones. A: Organism
rewriting rules, like the one shown here, can mix node labels of organisms and cells. The
arrow links the target network and the effect network of rewriting. B: Whether a network
can be rewritten is determined by checking if the nodes in the target network are found in
the cell- or organism IPN (shaded areas in blue and orange). Both are relevant at the same
time for this search, such that environmental and organismal structures provide signals
that initiate rewriting. A rewriting rule can become active if all nodes of the target net
are found in either the organism network, the cell network, or both. C: Rewriting then
replaces or adds the part of the target net that pertains to, in this case, the organism
(blue area in the middle panel), with the complete effect network. For organisms, this
changes their metabolism, for cells, this changes the resource processing. New elements
are included, elements that are not in the effect network are removed, and those that
exist in target and effect are added up together. Rewriting can fracture the original net
(different grey areas), reconnect its elements, change weights, or change the interfaces,
depending on the topology. How large the rewriting targets and effects can be depends on
system parameters.

tal plasticity, in that it changes the developmental trajectory of the organism, instead of
making minor changes that appear and disappear depending on environmental conditions.
That being said, the successive application of different rewriting rules to the metabolism
network can produce changes over time that resemble natural phenotypic plasticity given
that there is no limit to their architecture and complexity.

Organism reproduction When an organism has enough resources to construct its own
IPN and for the application of its developmental rewriting rules, and it has enough energy,
it can reproduce. Organisms only produce one offspring at a time. This is a modeling
choice made to bring reproduction in accordance with natural asexual reproduction like cell
division or budding. Different criteria can be applied to measure what “enough resources”
means, which yields different model complexities. The simplest version is to count only how
many symbols of each type P, T, I are needed to reproduce the metabolism IPN, such that
only three reservoirs for building blocks need to be maintained. The next more complex
possibility is to count the needed place labels p, for which as many reservoirs as there are
different places in the network and its development rules are needed Third, the full topology
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i.e., the k, p, t combinations can be used, which can easily O(100) variables that must be
filled in order to reproduce, depending on the system parameters and genome length.
Throughout this work, we use the place-label-based version. Reproduction happens in
three basic steps:

Genome copying First, the genome of the parent is copied. There are five different
mutation types that can happen, associated with three probabilities per gene. The new
genome is built by walking over each symbol in the old genome, going one by one through
all mutation types, drawing a random number p ∈ [0, 1] and executing the mutation on
the symbol if p ≤ px, and finally putting the new symbol into the new genome. The five
mutation kinds that can happen are:

• Substitution mutation: With probability psub a symbol is chosen for substitution.
A single element in the symbol (e.g. place- or transition label, weight, or rewriting
rule label) is chosen at random and modified, with everything else staying the same.
In case the weight w or rewriting content ρ is hit, a single element is modified in
the former case, while in the latter, the substitution function is applied to a random
symbol in the ρ. This particular choice was deemed appropriate, given that each
elementary symbol in the genome can roughly be related to a gene in a natural
genome, for which base substitutions can also affect different parts with different
effects.

• Duplication mutation: With probability pdup, a symbol is inserted twice into the
new genome. This effectively doubles the arc weight it corresponds to, such that
duplication is a way to strengthen a path through a network. However, this can
also have the opposite effect, e.g., because the pre-set of an affected transition must
provide enough resources to run this strengthened arc.

• Deletion mutation: With probability pdup a symbol is skipped and therefore deleted
from the new genome. This can delete or weaken an arc.

• Crossover to a rewriting rule: A gene can cross over from the genome into a random
rewriting rule with probability pcross by being not copied into the new genome, but
into the rewriting specification ρ of an existing gene.

• Crossover from a rewriting rule into the genome with probability pcross, erasing a
part of the rewriting rule in the process but adding a new gene to the metabolism
IPN. This generates an entry in the genome with no rewriting because symbols
within the rewriting specification ρ of a symbol have none of their own. However,
later crossover mutations can change this again.

Because the mutations are applied per gene, a single gene symbol can change through
multiple kinds of mutations at once. Mutations are, however, independent of each other,
such that it is comparatively unlikely that more than one mutation happens to any one
symbol that is copied.

Organism construction Organisms are constructed from their genome as discussed in
subsection 8.3.5.

As a first step in this process, the genome is split into two sub-genomes at a user-
prescribed length lm, such that two symbol sets emerge. The first is used to build the
movement propensity (see Figure 8.4.3), and the second is used to build the metabolism
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and the rewriting system of the organism. The same principle can be applied to build all
other parameters of an organism that currently have to be defined by the user, should this
be desired.

The node-label set used for the construction of the organisms and the habitat can
be different, i.e., while they must overlap due to the way the metabolism function is
implemented, they need not be equal. The exact sets used are model parameters and are
determined by the user. The genome consequently can contain symbols that pertain purely
to the environment, i.e., create environmental rewriting rules, but have no impact on the
metabolism IPN of the organism. This is achieved through the introduction of overlapping,
but not identical sets of node labels for the environment and organism networks. For
example, a symbol (P, px, ty, w, r, ρ, mc) with x, y not part of the set of node labels that
refers to organisms will, if it is part of the organism’s genome, only create or contribute
to a rewriting rule r that pertains to the habitat’s resource network but will not affect the
organisms’ metabolism in any way.

In that way, organisms can rewrite networks that have a differing structure than their
own metabolism IPNs, because symbols that represent nodes outside of the organismal
node label range take part in the building of rewriting rules but not in the creation of the
metabolism IPN. As a consequence, when the metabolism of organisms is created, the
genome must be filtered such that only those genes take part that have node labels in the
organismal node label set. The filtering of the genome according to the prescribed node
label range is called “splicing” here and is the first step of organism creation.

Next, the metabolism IPN is built from the spliced genome, while the rewriting rules
are created from the complete genome. Then, auxiliary parameters like initial energy and
recording variables for age and number of offspring are initialized.

Finally, the developmental rewriting rules are applied (see Figure 8.4.3). As their
application can depend on the presence or absence of environmental structures, the final
phenotype of an organism is, in general, dependent on the environment.

Phenotypic variation The creation of a new organism from a mutated genome can yield
a number of phenotypic differences. First, the metabolism’s input interface places can
change, thus making the organism derive resources from other environmental elements.
This also includes the possibility of tweaking which resources are drawn from the environ-
ment in what quantities by mutating the weights that connect the input interface to the
rest of the metabolism net. Additionally, the structure of the metabolism network may
change in total over time to produce the specific resources organisms need to reproduce
more quickly, with fewer input resources or from different ones. This evolution is of
particular interest if the node-label set used in the simulation is complex and there are
many resources of which each would be insufficient for successful reproduction.

Another kind of phenotypic variation is the evolution of rewriting rules, which can
impact vital metabolic or environmental restructuring. In particular, the evolution of new
rewriting rules or the change of existing ones can change the efficiency of the metabolism
network or its input or output interfaces, thus allowing for niche shifts based on develop-
mental and phenotypic plasticity. Evolution of rewriting, because it uses the same kind of
resources as reproduction, can represent a tradeoff against lifetime reproductive success,
such that we expect different strategies to evolve over time.

Finally, movement propensity can change, too, via mutations of the symbols in the
genome interval that’s used to build it. Therefore, different kinds of organisms can pursue
different strategies of mobility between habitats.
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Developmental rewriting The last step in phenotype creation is the application of the
developmental rewriting rules. In contrast to the rules associated with plasticity and
niche construction, the material cost for the developmental rules is supplied by the parent
organism. Developmental rewriting is thus “free” for the offspring, but costly for the
parent. Development, as with all rewriting, does integrate environmental elements into
the process of checking rule applicability. In this way, development includes environmental
signals such that environmentally conditioned developmental plasticity can come about.
This rewriting can be vital for the functioning of the offspring because it can transform
an otherwise non-functional metabolism net into one that is functional by relinking parts
of the net that allow for it to run, or by providing the necessary interfaces. Therefore,
harmful genetic variation in the metabolism architecture part of a genome can be offset
by genetic variation in rewriting.

It must be noted that developmental rewriting is distinguished from other rewriting
rule applications just by its timing during organism creation, not by its impact, which is
normally used to distinguish phenotypic from developmental plasticity.
Cost subtraction Finally, after the newborn organism is created, the material costs are
subtracted from the parent’s material pool, as is the energy cost. The latter is divided
into two parts, first a plain energy cost for reproduction, and second, a batch of energy
that is imparted to the offspring to serve as its “starting” package. Both values are system
parameters.
Movement Movement is probabilistic, with the movement probability for an organism
being given by

pmove = exp

[

−µ
e

mmove

]

(8.4.5)

where mmove is an evolvable quantity that is given by the sum over the first n place labels
in the genome of the organism according to

mmove =
n

∑

i=1

pi

max(p)
(8.4.6)

where max(p) is the maximum possible placelabel. The n symbols this is derived from
are the part that is split from the metabolism genome as explained in Figure 8.4.3. The
parameter µ, in Equation 8.4.5 is a user-defined system parameter that sets a baseline
mobility, and e is the organism’s energy storage. Organisms with high energy, and thus
a good nutritional status, are less likely to move away from their current habitat, but a
high movement propensity mmove can offset this effect.

This ad hoc formula allows for a population to evolve mobility over time. After pmove

is computed, a random number between 0 and 1 is chosen, and if it’s smaller than pmove,
the organism chooses a random cell in the Moore-neighborhood of its current cell and
relocates there. Thus, spatial location, but also mobility, become dimensions of the niche
space of the system.

Movement incurs an energy cost em for the organism, which is a system parameter
chosen by the user.
Phenotypic plasticity Although the term “phenotypic plasticity” is often loosely used
to include developmental plasticity, here, it only refers to changes during lifetime and
only to those that occur after the construction process of the focal organism has been
completed. Phenotypic plasticity rules are applied in much the same way as development,
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Figure 8.8: Movement probabil-
ities according to Equation 8.4.5
for different organism movement
propensities mmove and energies e
and different paramters µ.

i.e., the system looks for the target element’s presence in the environment- or metabolism
IPN, but only the metabolism IPN is affected by the rewriting. Phenotypic plasticity can
happen at different points during the lifetime of the organism, and consequently affect
its further ecological behavior. Plasticity rewriting can only occur if the organism has
enough energy and material building blocks to execute at least one of its plasticity rules.
As mentioned, the distinction between phenotypic- and developmental plasticity in Amee
is artificial in the sense that they are only distinguished by their timing, and not by their
effect.
Niche construction and decay Niche construction functions in the same way as plastic-
ity, but the environmental IPN is affected instead of the metabolism net of the organism.
In contrast to plasticity and development, these changes potentially affect all organisms
in the population and can be frequency dependent, i.e., the more organisms modify the
same environmental motif, the stronger the effect can become, because rewriting can be
additive instead of purely replacement based, as mentioned before. Niche construction
rewriting can only occur if the organism has enough energy and material building blocks
to execute at least one of its niche construction rules.

Repeated rewriting can be precluded or enabled by the rewriting activity of other organ-
isms, such that this implementation of niche construction allows for reciprocal scaffolding
of the environmental effects of different rewriting rules carried by different organisms.
Thus, the niche construction of one organism can benefit or harm other organisms. This
effect also extends into plasticity and development, because a rewritten motif can provide
environmental signals that allow for previously disabled development- or plasticity rules
to become enabled. Therefore, not only does it enable a form of environmental interaction
beyond competition for resources (see Krakauer et al. [2009] or Chisholm et al. [2018] for
an extensive discussion of such effects), it also includes the possibility of the long-term
biogenic transformation of a habitat.

In passing, we note that, in nature, organismal effects typically decay over time, even
though this may take much longer than the effector’s lifetime. In the model presented
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here, this effect has been ignored for simplicity, in the same way as phenotypic plasticity
is irreversible, too. It is thus assumed that whatever structural influence organisms exert
on their environment has a lifetime that is longer than the simulation time. In nature, such
an assumption may correspond to coral reefs, the creation of forest clearings, or similar
long-term effects, but the creation of burrows or beaver dams may be a less suitable
example, as they typically become non-functional after one or a few generations of not
being maintained. While the long-term maintenance of modifications in Amee provides
perfect ecological inheritance over arbitrary times in principle, it must be noted that
network motifs, after being rewritten, can be modified again, because the rewriting of
one organism can enable rewriting by others or elicit evolutionary responses in other’s
environmental rewriting rules. Thus, while no effect decays again if it is left alone, neither
do they need to stay the same over time. With this effect, ecological inheritance becomes
imperfect again. A decay algorithm for environmental influences can be implemented to
relax this assumption, but its presentation and investigation have been forgone here to
reduce complexity.

Death Organisms die probabilistically, dependent on their energy supply:

pdeath =

{

min (exp [−d (e/l)] + d0, 1.0) if e > l

1 else
(8.4.7)

where d represents a scaling parameter that is fixed for the simulation, e is the organism’s
energy, l is the living-cost parameter (the upkeep mentioned in Figure 8.4.3) each organism
has to pay each timestep, and d0 is another user-defined parameter that makes sure
organisms retain a finite death probability per timestep. Each timestep when an organism
is updated, Equation 8.4.7 is evaluated for its current energy supply, and a random
number in r ∈ [0, 1] is chosen. if r < pdeath, then the organism will be removed from
the population.
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Figure 8.9: Death probability ac-
cording to Equation 8.4.7 for dif-
ferent scaling parameters d with a
fixed offset d0 = 0.05. With rising
living costs and a lower energy
supply, the death probability for an
organism rises, emulating starva-
tion or the effects of malnutrition.
The intensity of this effect can be
modulated by the scaling factor d,
which is a model parameter. If
energy e of an organism is less than
the living cost, it dies always, which
creates the area with pdeath = 1.
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8.5 Simulation setup and algorithm
8.5.1 Initial conditions

Initial conditions are found by a genetic algorightm The initial IPNs or NRSs for
cells and agents, as well as the resources, are created using a genetic algorithm [Mitchell,
1998], that optimizes an initial population of randomly generated NRS or IPN encodings
(genomes) to fulfill a number of conditions that are geared towards allowing initial organ-
isms to survive and thrive under given simulation parameters. This relies on the concepts
presented in subsection 8.3.5 and the idea that in the same way that organisms can be
constructed from their genomes, the IPN of the habitat can, too. The degree to which
the respective entities fulfill the required conditions is measured by a hand-crafted fitness
function for each type of entity, i.e., habitat and organism, which maps the performance of
an entity with respect to these conditions onto a scalar f which is called “fitness”.

For each entity, organism and habitat, the algorithm employs n populations with N net
encodings each, which are subject to random exchange between populations and selection
on survival based on the fitness function chosen for each case. N thereby is constant and
in each step, a fraction of the total population is stochastically removed proportional to
their fitness f . Organisms reproduce sexually and are selected for reproduction with a
probability that is proportional to f . During reproduction, a new encoding is created by
recombining the two parent encodings symmetrically, i.e., the probability for a symbol at
place i of the new encoding to originate from one or the other parent is 0.5 each.

Exchange between populations is implemented by randomly exchanging p percent of
two randomly chosen populations at each step. Through manipulation of this parameter,
the algorithm can be made to evolve multiple more or less isolated lineages with different
gene pools and possibly different parts of the solution.

Additionally, mutations can happen by inserting a new, randomly created symbol,
deleting a random symbol, or replacing a random symbol, each with probability m. The
number of organisms removed per step, s, can also be varied to allow for, e.g., faster
but less explorative optimization. In essence, this parameter governs the strength of the
selection the populations are subject to. The system runs until it has found a viable
solution according to the given criteria or until it hits a maximum runtime, in which case
the simulations break off without running further because no viable initial condition could
be found.

The fitness f is a scalar that is computed by a weighted sum of measures for how well
an entity fulfills a set of requirements. These depend on whether an initial condition shall
be found for a cell, an organism or a resource. In general, f is given by

f =
(

∑

wi ∗ φi

)1.5
(8.5.1)

where wi is the weight assigned to a measure φi. Taking the sum to the power of
1.5 allows for a greater range of fitness values which in turn allows for more fine-grained
optimization by more rapidly filtering out low-fitness organisms without having to rely
on a large s that in one step would greatly reduce genetic diversity. Furthermore, in
combination with wi it allows for encodings that fulfill multiple different requirements,
but not all of them, to survive and thrive in the population, thereby allowing them to
recombine into a full solution.

In the case of the agent, this fitness function is a combination of the measures for up
to nine conditions that must be fulfilled to be a viable solution, and which are weighted
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individually. These conditions include the existence of input- and output interfaces, a
net increase in reproductively useful symbols over k metabolism runs with k being an
algorithm parameter, and successful development, plasticity and niche construction if
these are activated in the simulation. Furthermore, a minimum number of steps of the
metabolism network is required until it converges, to preclude the system from producing
always the most simple initial condition.

For cell networks, the conditions include the existence of input interfaces and the re-
quirement that when the net runs, a fraction np of its places are left with some marking on
them, to provide a sufficiently diverse background ecosystem to which the focal population
can adapt. In total, a candidate cell IPN must fulfill three different conditions.

For resources, the sole condition is that the set of resources that is fed into each cell via
the resource influx is such that it provides all potentially needed resources overall, i.e., all
place labels are present in the processed multi-sets.

The parameters governing the genetic algorithm are listed in Table 8.1.

Parameter Meaning
exchange_proportion Percentage of exchanged elements
m Mutation rate
m_without_selection Mutation rate when selection is off
n Number of populations
optimization_rounds Maximum runtime of the algorithm
N populationsize
s Percentage of elements removed each round
rng_seed Initial seed for the random number generator
stop_selection_every Number of steps for which selection

runs until it is interrupted to
allow the population to
generate genetic variation again.

stop_selection_for Interval for which selection is interrupted.
length_altering_mutations Whether insertion and

deletion mutations are enabled

Table 8.1: Parameters for specifying the genetic algorithm run.

It must be noted that for the organism, which is a far more difficult optimization problem
to solve, the mentioned nine conditions are partially redundant: For example, the presence
of input- and output-interface of the metabolism network are a prerequisite for a successful
metabolism run, but both, successful metabolism run and interface presence, are included
as relevant quantities into the fitness function Equation 8.5.1. Including such redundancies
creates a more fine-grained fitness landscape in which the organism encoding can evolve,
which allows for the successive generation of traits that can recombine to form a solution,
instead of requiring a solution to evolve in a few big steps.

It must be noted that it is not guaranteed that the algorithm finds a solution for any
combination of parameters, and finding a good compromise of efficiency and effectiveness
can require tests by trial and error. In order to avoid premature degeneration of the
population, selection can be disabled after a user-defined number of steps to allow for an
increase of variation after it has been reduced by a period of natural selection.
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Setup of resources and net building blocks The parameters that define resources are
given in Table 8.2. Each symbol in a resource, IPN or NRS-encoding is initially generated
randomly, i.e., an element of the encoding of a net building block is drawn at random
from a uniform distribution, except for the symbol kind, where each kind has its own
probability in order to ensure that nets build from a pool of symbols are not, e.g., filled
with inhibitor arcs that would preclude them from running.

Each symbol type has an associated energy value. Resources can have numbers of
symbols in [Slower, Supper], such that resources can be heterogeneous in composition and
length. However, the homogeneous_resources parameter can make them all equal in
length and composition, in which case a random length in [Slower, Supper] is chosen, a
single resource is generated and all resources are filled with this sequence. The node
labels for the places and transitions of each symbol are drawn from the union of the labels
given for cells and agents, respectively, such that all possible compositions of networks
and rewriting rules can be created.

Parameter Meaning
EP Energy of a P symbol
ET Energy of a T symbol
EI Energy of a I symbol
homogeneous_resources Whether all resources should be the same or not
Slower Min. length of resource sequence
Supper Max. length of resource sequence
pP probability to draw a P symbol

when creating a symbol sequence
pT probability to draw a T symbol

when creating a symbol sequence
pI probability to draw a I symbol

when creating a symbol sequence

Table 8.2: Parameters for specifying the resources and building blocks for the NRSs and
IPNs in the simulation.

Setup of cells and organisms The parameters used for organism and cell creation are
listed in Table 8.3 and Table 8.4.

After the genetic algorithm produces a net encoding for a cell that fulfills the given
requirements, each cell of the grid is initialized with this encoding, such that the grid is
homogeneous. This applies also to resource influx and resource capacity, and all other cell
parameters. Environmental heterogeneity can be implemented if desired.

Then, the genetic algorithm is employed to find a single organism genome that fulfills
the requirements for organisms, from which a single organism is created that is put onto a
random cell in the grid. The simulation is therefore set up to include an initial colonization
phase.

8.5.2 Simulation algorithm

On the choice of update algorithms in models of complexity and evolution The issues
arising from the choice of time discretization schemes in numerical ODE solvers are well
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Parameter Meaning
Mmax Maximum marking that can be put

onto input-interface places
encoding_size Initial number of elements for the linear representation of the resource network.
γM Number of resource instances put

onto the input interface places
per resource and timestep

fill_start index of the first resource to be utilized.
fill_end index of the last resource to be utilized.
IN Node label interval for cell IPN
IW Allowed weight interval per symbol
imax Max. number of steps

for a single IPN run
seed Random number seed for initial genetic algorithm
neighborhood Cell neighborhood. “Moore” or “vonNeumann”.
extent Grid size in x- and y- direction
periodic Whether the grid is periodic or not

Table 8.3: Parameters for specifying the initial habitat.

known. In computer models of complex and complex adaptive systems, the focus is not
on accuracy, because no known, analytical function is discretized.

Rather, the question arises whether the particular algorithmic choices made during
implementation will systematically influence the results. For cellular automata, syn-
chronous and asynchronous update schemes have been introduced, which differ in the
way in which the state of the automaton’s cells are updated: In a synchronous update
scheme, the new state of all cells is calculated first and then the states of all cells are
updated simultaneously, such that no interaction between an updated state on cell A and
an old state on cell B can occur, while in an asynchronous scheme, each cell is updated
immediately and such interactions can potentially occur. In general, the choice of an
update method determines how information on the state of a particular element of the
simulation propagates through the system. Complex adaptive systems, and evolutionary
systems in particular, are generally sensitive to details of this flow, as are all nonlinear
systems. In addition to this intrinsic sensitivity, evolutionary systems are by nature
stochastic. Because of the independence of mutation from their effect, they have to
be modeled by some stochastic process, with the mutation rates involved being model
parameters. Therefore, it seems unavoidable that a quantitative dependency on the choice
of update scheme, and implementation details in general, will be present in a model for
an evolutionary system.

In nature, all the different functions that are executed in evolving systems, while often
ordered into some cyclic process, are carried out by all members of the population in
parallel, with synchronization between them often being a major evolutionary outcome,
e.g., mating or migration. In computational terms, this constitutes a form of massively
parallel processing without synchronization. Indeed, the ensuing conflicts for resource
access that occur in such a system are a main source of natural selection. Aside from this,
these functions are typically bound to conditions, e.g., reproduction is only attempted
when enough resources are available or the general conditions are favorable, and a habitat
is only left if it is depleted or otherwise shifts into an unfavorable state.
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Parameter Meaning
G Number of basic symbols in the initial genome
imax Maximum number of steps

the metabolism can run before aborting
µ movement scaling parameter
l living cost
nG percentage of the genome used to build mmove

d death probability scaling
d0 death probability offset
fill_start index of the first resource to be utilized.
fill_end index of the last resource to be utilized.
edigest digestion cost per acquired symbol
em movement cost
eoffspring energy imparted to offspring
er energy cost for reproduction
psub Substitution mutation probability
pdup Duplication mutation probability
pcross Crossover mutation probability
IW Weight intervals for symbols for metabolism IPN
IN node label interval for places and transitions
Idev Interval for developmental rules
N0,dev Initial number of developmental rules
edev Energy costs per symbol for development
Iconstr Interval for nicht construction rules
N0,constr Initial number of nicht construction rules
econstr Energy costs per symbol for nicht construction
Iplast Interval for phenot. plasticity rules
N0,plast Initial number of phenot. plasticity rules
eplast Energy costs per symbol for phenot. plasticity
R Range of possible rule labels
LR Size range for rewriting interval each symbol can have
r Interval of resources that can initially be used.

May not encompass all possible resources.
rng_seed Seed used for drawing random numbers in the init. genetic algorithm.

Table 8.4: Parameters for specifying organisms.



176 8 Amee: A model for eco-evo-devo

Therefore, all functions an organism can carry out are split into a “condition” that must
be fulfilled for the function to become active and a “propagator” that changes the state
of the organism. For example, the movement condition computes the probability pmove

according to Equation 8.4.5 and checks if the movement should happen or not, and if it
does, the movement propagator will then put the organism onto a random neighboring
cell. All the possible functions are organized into pairs of a propagator together with its
corresponding condition, which results in the following list of pairs:

• 1: Movement

• 2: Plasticity rewriting

• 3: Niche construction

• 4: Metabolism

• 5: Reproduction

• 6: Death

For a computer model like the one discussed here, the unsynchronized parallelism of
nature is difficult to implement directly. Therefore, three different versions of the ordering
of organism functions have been implemented, which can be chosen by the user.

• Fully synchronized: Each organism executes the same function at the same time,
e.g., the entire population executes movement, then metabolism, and so on. The
execution order is given by the list of condition-propagator pairs listed above.

• Fully randomized: Each organism draws a random number in [1, 6] each timestep
and executes the respective function from the list above.

• Evolvable: Each organism carries an evolvable list of integers that corresponds to
an index in the list of propagators above. Death is excluded and is checked in each
step to avoid a situation where organisms get rid of the death function by evolution,
thus becoming immortal. This lifecycle is an independent part of the phenotype
and is not derived from the genome. Rather, it is initialized to the list given above
and may evolve via substitution of indices, but not by deletion or duplication. This
choice has been made to avoid a situation where organisms would evolve ever more
reproduction elements in their lifecycle without having to give up any other function
for it. It is, however, easy to relax and constitutes a possible future research direction.
Additionally, the lifecycle could, in principle, be derived from the genome in the
same way the movement parameter mmove is, which, however, is a minor correction.
Organisms cyclically go through their lifecycle vector and execute one function each
time they are chosen to update.

For cells, the situation is much simpler because they only have a single propagator (resource
influx and processing), such that the aforementioned possibilities of ordering the update
functions all reduce to a single one.
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Time-stepping algorithm of the model To arrive at a functional system, the method
of choosing an organism or cell for updating must be explained. In cellular automata, the
entire population of cells is traversed in each timestep, in deterministic automata even in
the same order. Here, we follow a different approach, with two goals. First, we again wish
to avoid systematic influences on the created trajectories by avoiding hardcoded orderings
wherever possible. For instance, traversing a population of organisms on a given cell
always in the same order would result in the first organism accessing always a full resource
reservoir, while the last one will always encounter a depleted one, given it accesses the
same resources as the others. Therefore, the order in which organisms are updated must
be randomized.

Second, we wish for timesteps to have a unique, definite meaning that only depends on
system parameters, but not on dynamic system variables, like populationsize.

If we randomly choose a single organism to be updated each iteration of the model with
probability 1/N with N being the populationsize, then the frequency of being updated
for any single organism would be stretched for large populations and compressed for small
ones, which essentially means that the system’s effective timestep, defined for instance as
the average time until every organism has activated all its possible actions at least once,
would depend on the populationsize N .

In order to avoid that, we follow Schönfisch and Roos [1999] in decoupling the flow
of time from system variables and binding it to a parameter τO. The same holds for
environmental cells with a parameter τE . Each of these two variables defines an exponential
distribution

pi(x) =
1

τi
exp

(

x

τi

)

(8.5.2)

which is employed to stochastically generate a timestep at which each organism and each
cell, respectively, is scheduled to be updated next. Once this timestep has been reached
and the organism or cell has been updated, a new number is drawn via Equation 8.5.2,
and is added to the current timestep, which gives the next timestep the focal entity is
scheduled to be updated.

Given a uniform random choice of activity each time an organism is updated in that
way, and a fixed number of activities nO, the average time until an organism has executed
all its activities is given by nOτO, and respectively for the environment cells. Here, the
environment cells have only one activity which is their resource processing, so their average
full update time is trivially given by τE .
Implementation The model is implemented in C++ using the Utopia framework (see
chapter 7), which provides all the necessary tools for running agent-based models. For data
analysis and visualization, the Julia programming language has been employed [Bezanson
et al., 2017].



Parameter Meaning
seed The random number generator’s initial seed
num_steps Number of steps the simulation runs for
stepper Whether the lifecycle of organisms is fixed,

evolvable or randomized.
additive_rewriting Whether rewriting is additive

or replacement based only.
agent_timescale Characteristic timescale of organism update
cell_timescale Characteristic timescale of cell update
weight_comparison Wether weights are included when

rewriting rules are checked for applicability
resource_number Number of possible resources
with_construct Whether niche construction is enabled
with_development Whether development is enabled
with_plasticity Whether plasticity is enabled

Table 8.5: Parameters for specifying the simulation dynamics.



9. Results I: Evolution without rewriting

Because Amee is a complex model with a plethora of possible phenomena, a comprehensive
overview of all possible parameter combinations and scenarios would go beyond what is
possible to present in one work. Rather, we focus on a number of basic scenarios in order
to showcase the model’s capabilities and highlight specific directions for future research.
The approach is thereby more explorative and descriptive, giving an overview of Amee’s
possible phenomenology, rather than diving deep into individual analysis.

9.1 Baseline 1 – Single-resource single-cell systems without
rewriting
Basic setup As a baseline, we choose the most simple configuration of the system,
i.e., a non-spatial simulation with a single resource and no rewriting, e.g., phenotypic
adaptation is only possible via genetic change. Habitat and organism metabolism can
have more than one node, however. The niche space is thus restricted, and the population
is forced into competition for resources. The only significant niche space dimension is thus
the different places of the environmental net that organisms can access, such that evolution
can be expected to be focused on the metabolism network and its input interface. The
resource restriction will later be lifted, and multiple resources will be introduced. The
basic parameters for the creation of the resource composition, the habitat, the simulation
algorithm, and the organisms are given in Table 9.1 and Table 9.2, respectively. Parameters
shown in chapter 8 but not given here are varied over different scenarios and given as
described, or are of no consequence for the current scenario (e.g., neighborhood for a grid
with a single cell). The parameters have been chosen to produce a simple scenario in order
to allow for tractability of results.
On the role of rewriting rules when rewriting is off Rewriting rules are encoded in
symbol sequences that each genome symbol can carry (see subsection 8.3.5). Because the
crossover mutation mechanism exists, the genetic information that normally constitutes
rewriting rules still plays a role even when no rewriting is allowed, because it provides
a form of genetic variation that can become active via crossover mutations. Therefore,
each organism carries an active and inactive gene pool, with the latter playing a larger
role in higher crossover mutation rates. Indeed, if the rule size parameter LR is larger
than one, this inactive gene pool can become substantially bigger than the active one,
potentially contributing significantly to the adaptability of the population. We can liken
this to “cryptic” genetic variation that has been discussed in chapter 5, although there,
cryptic genetic variation represents genetic variants that are normally neutral but can
come under selection via plasticity or changed environmental conditions, whereas, here,
the genetic information in the rewriting rules can become active via mutations.
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Parameter Value
EI 0.02

EP 0.02

ET 0.02

pI 0.05

pP 0.475

pT 0.475

Slower 70

Supper 71

hS true

Parameter Value
Mmax 25600
γM 5120
IN,Habitat [0, 10]

IW,Habitat [0, 256]

imax 25
extent [1, 1]

periodic false

Table 9.1: Left: Resource parameters for the baseline simulation. Right: Habitat
parameters for the baseline simulation.

9.1.1 Initial conditions and the influence of randomness

Basic expectations and hypotheses Because evolution, or complex constructive systems
in general, are nonlinear, their trajectories exhibit sensitive dependency on initial condi-
tions and small disturbances. Given the conditional character of the state propagation
functions in Amee and the underlying complexity of the IPN/NRS systems, we can expect
this to be the case here, too.

Moreover, evolution is uniquely sensitive to singular events through its dependency on
mutations that appear in a single organism. The carriers of these, by chance and through
selection, can rise in frequency to make up a significant part of the population and therefore
change the trajectory of the entire system (compare chapter 3).

The initial organism with which a simulation is started is also not unique for a given
set of parameters but is dependent on the trajectory of the genetic algorithm employed to
generate it. In other words, the optimization problem that is posed to the genetic algorithm
has no unique solution. Therefore, we expect that the trajectory of any given simulation
will crucially depend on the initial condition with which it is started, and therefore, on
the random number sequence that the simulation is generated with. Consequently, an
ensemble of simulations is necessary in general. Comparing this with nature, we have
to take into account, especially with regard to extinctions, that all the natural species,
colonization of new habitats and generally evolutionary systems we find are just those that
survived until observation. Others might have existed at some point, but are invisible to
us. Evolution thus is susceptible to founder effects, e.g., in a colonization event, the traits
or genetic variants which the original colonizers carry. Thus, we expect this behavior from
Amee, too.

Moreover, organisms are evaluated by the initial genetic algorithm in isolation, while
the actual simulation produces a population of interacting agents. Consequently, the
successful creation of an initial condition does not guarantee that a population derived
from this organism will survive in the long term. Indeed, a population could deplete a
local resource to a degree that precludes a successful run of metabolism networks at some
point, thus increasing mortality among a nascent population, possibly to the point of
extinction. Finally, simple random death may, in early stages where populationsizes are
small, also produce extinction or preclude the fixation of advantageous mutations because
of the offset in d0 in Equation 8.4.7.
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Parameter Value
imax 20

l 1.0

d 0.2

d0 0.05

edigest 0.002

eoffspring 5.0

er 1.0

IW,organism [0, 10]

IN,organism [0, 10]

R [0, 30]

Idev [0, 10]

N0,dev 5
Iconstr [10, 20]

N0,constr 5
Iplast [20, 30]

N0,plast 5
R [0, 30]

LR [0, 3]

r [0, 1]

psub 10−4

pdup 10−4

pcross 10−4

Parameter Value
num_steps 25000
stepper randomized
agent_timescale 1
cell_timescale 1
resource_number 1
with_construct false
with_development false
with_plasticity false

Table 9.2: Left: Organism parameters for the baseline simulation. Right: Simulation
parameters for the baseline simulation.

In order to get an overview of the potential impact of variability in the random number
sequence specifically, we investigate two scenarios, one where the random seed1 of the
simulation is fixed for all simulation runs while a different random seed is used each time
for the generation of the initial condition (scenario B), and the opposite layout where
the RNG seed for the generation of the initial conditions is fixed, but the seed for the
simulation is variable (scenario A). The set of parameters to build the initial organism are
shown in Table 9.4.

Scenario A We start out with Scenario A, where the same initial condition is used for
all simulations, i.e., the same parameters and random number seed value are used in the
genetic algorithm that generates resources, cells, and the initial organism. The simulation
itself, however, uses a random number generator with different seeds. Each simulation was
run for 1000 timesteps in order to focus on the expected initial divergence of the individual
trajectories.

In Figure 9.1 we find that different random number sequences for the simulation make for
a gradual, but rapid, divergence of the different simulations, even though initial conditions
are the same. This is because different random numbers bring about changes in the
sequence of mutations that arise in the system, and likewise in the death function, such
that the pool of genetic variation is subject to RNG-dependent variation, which in turn
influences the further trajectory of the system. The disturbances such random events
1 The initial value for a random number generator algorithm.
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Parameter Value
encoding_size 150
exchange_proportion 0.05
fill_end 1
fill_start 0
min_iterations 2
m 0.3
m_without_select. 0.5
num_population 10
optimization_rounds 600
place_coverage 0.8
N 300
s 0.4
rng_seed varying
stop_selection_every 50
stop_selection_for 5
length_altering_mut. true
asexual_intervals [[0, 3],]

Parameter Value
exchange_prop. 0.1
m 0.01
m_without_select. 0.5
num_population 2
optim. rounds 200
N 1000
s 0.1
rng_seed varying
homog._res. true

Table 9.3: Left: Parameters for the initial genetic algorithm (GA) that generates the cell
network for the baseline simulation. Right: Parameters for the initial GA that generates
resources for the baseline simulation.

bring about need not be minor, especially not for low population numbers. Rather, the
emergence of a single mutant can give rise to a lineage that increases the populationsize
of the system significantly, as seen by the upper curves in Figure 9.1.

Moreover, the exponential rise in populationsize observed in some of them, including
the overshoots and subsequent breakdown to a lower population is consistent with mutant
organisms being able to exploit other places in the habitat network that have previously
accumulated resources, which are then consumed until the influx of resources onto these
places can no longer sustain the consumer population.

This, then, leads to a breakdown of the population and a possibly oscillatory behavior,
which, however, can be modified by the flow behavior of the habitat’s resource network,
compare Equation 3.5.5. We will discuss this effect below in more detail.

Finally, simulations seem to group somewhat around a populationsize of ≈ 50, from
which some rise to higher rates as seen before. While not confirmed in this section this
behavior is consistent with a population in which no interface-changing mutations occur,
such that the low-level grouping represents the equilibrium population for the initial input-
interface.

Extinction, when it occurs, does happen quickly and does not occur, for the admittedly
small number of timesteps, once a population has established itself. Possible reasons have
been mentioned above, and are not further discussed here. It must be noted, however,
that extinctions, which are “by chance” in this scenario, are not rare (five out of twenty
for the sample used here). This could possibly be remedied by improving the genetic
algorithm that generates the initial conditions further where the cause is a failure of the
organism-habitat pair to function for a population, or by choosing a different initialization
scheme where a population is present from the beginning, thus making random extinction
for very low population numbers in early phases unlikely. Indeed, in Figure 9.2, we find
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Parameter Scenario A Scenario B
asexual_intervals none none
energy 50.0 50.0
exchange_proportion 0.05 0.05
fill_end 1 1
fill_start 0 0
G 100 100
imax 2 2
mutation_rate 0.1 0.1
mutation_rate_no_selection 0.3 0.3
num_population 15 15
number_of_runs 5 5
optimization_rounds 500 500
N 750 750
s_asexual 0.75 0.75
s 0.15 0.15
stop_selection_every 200 200
stop_selection_for 10 10
with_length_altering_mut. true true
initial_num_agents 1 1
seed 7244785, 58803214, 4863152

23881181, 62223675,
85200019, 93735805,
63221134, 31791985,
61638410, 24898659,
1444181, 8540650,
23615654, 49594325,
84361426, 37588962,
4050723, 89848885,
38816287, 87921488

init_seed 4863152 7244785, 58803214,
23881181, 62223675,
85200019, 93735805,
63221134, 31791985,
61638410, 24898659,
1444181, 8540650,
23615654, 49594325,
84361426, 37588962,
4050723, 89848885,
38816287, 87921488

Table 9.4: Parameters for the initial condition production for organisms in the baseline
simulation. The middle column represents a simulation where only the time development
has different RNG seeds but initial conditions are always equal, and the right column
represents a run where the time development has a fixed RNG seed but the initial
conditions vary, with all other parameters being the same.
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Figure 9.1: Populationsize over time for different RNG seeds for the simulation for
scenario B, run for 1000 timesteps. The RNG seeds for the GA that generates the
initial organism, cell, and resources are the same for all simulations, such that they all
start with the same initial condition. Colors represent different RNG seed values. The
different trajectories diverge quickly, although an initial phase with mostly very similar
behavior exists. Exponential increases in populationsize with overshoots, well known
from population dynamics, are consistent with the occurrence of mutations that allow
access to different mesh places, the resource reservoir of which is then depleted until a
dynamic equilibrium between resource influx and consumption is reached. Qualitative
differences are observed, in that some populations go extinct, while others reach very
high populationsizes compared to others. There appears to be a grouping of simulations
around a populationsize of 50, which appears to be the equilibrium populationsize for the
initial niche, while another grouping appears at roughly 300 which, however, is reached at
different points.

that the populations that do go extinct are those that fail to reproduce reliably and that
they die out somewhere between 15 and 70 timesteps, which is roughly consistent with a
baseline death rate of 0.05 as used in the present simulations.

Scenario B For the second scenario, where the initial condition is changed by changing
the random sequence with which the underlying genetic algorithm finds a cell- and organ-
ism structure that is deemed functional to start the simulation, we expect the following:
While the random number sequence of the population itself will be fixed, the structure of
the organisms and habitats may vary significantly. Consequently, initial organisms may
take up resources differently because of different metabolism structures, and while all the
random numbers that factor into probabilistic decisions like mutation and death are the
same for all simulations, the individual properties that can provide respective conditions,
e.g., the organism’s energy- or material reservoir, are not. Therefore, the behavior of the
simulations for low population numbers should be effectively determined by the initial
condition, such that we should see significant differences in the population’s behavior
between different initial conditions even there.
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Figure 9.2: Same as in Figure 9.1, but zoomed in to the first 75 timesteps. Different RNG
seeds, i.e., different sequences of random numbers, lead to a gradual divergence of the
trajectories, as is expected from a nonlinear system into which disturbances are introduced.
It must be noted, however, that disturbances for such low population numbers need not
be minor in the sense the term is usually used in nonlinear dynamics, but, because of
the conditional nature of many organismal state propagators (mutation, reproduction,
death), these disturbances can significantly alter the population state, which is consistent
with the nature of evolution. Consequently, the divergence between different trajectories
occurs quickly. Not all extinctions are visible due to the curves overlaying each other at
zero.

Similar considerations apply to the cell’s resource network, which is also created without
considering a population that feeds on the resources it processes. Therefore, continuous
depletion of the resources in some of its places by a population of consumer organisms can
hinder future runs of the cell’s resource processing network, thereby hindering resource
uptake from other places, which is ultimately harmful to the population. Likewise,
individual places can gain resources via waste excretion by organisms, which in turn
may disable crucial transitions in the cell’s resource network if they are connected by
an inhibitor arc. Therefore, the different structures that different RNG seeds can bring
about in the initial condition can yield qualitative differences in the behavior.

In Figure 9.5, we find that while the phenomenology is generally similar to Scenario
A, the behavior is far more variable. Such differences can be explained by differences in
structure between cell- and organism-IPNs for different GA seeds. More deeply, this is
because evolution is based on imperfect inheritance and is highly path-dependent within
lineages. For example, a mutation that in one genome would not cause any substantial
difference may, in another one, produces significant behavioral changes. Therefore, a fixed
sequence of mutations that occurs sequentially in consecutive offspring may have very
different effects depending on the structure of the mutated genomes.

More importantly, different initial conditions generally produce different input interfaces
for the organisms and different flow patterns through the habitat network. This influences
the resource uptake such that initial organisms which take up and digest resources more
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Figure 9.3: Barplot showing for which seeds
the population went extinct, using the same
color coding as in Figure 9.1. Extinctions do
occur rather frequently (five out of twenty).

quickly than others will generally give rise to more quickly growing populations than
others, although both are capable of survival and reproduction. Even without further
mutation of the interfaces, these differences explain different equilibrium populationsizes
of the system by virtue of the finite available material and the mentioned differences in
usage patterns. Indeed, Figure 9.8 shows that the input interfaces are rather different
between initial metabolism IPNs, although some overlap between individual pairs exists.
Because the initial conditions are different, we find a faster divergence of the population
curves for different seeds in Figure 9.5, with a closer look revealing some early extinctions,
too.

Thus, when the system is initialized with only one individual that can give rise to a
colonizing population, the initial condition is of paramount importance for the system’s
behavior, such that especially early extinctions are associated with different initial configu-
rations and a lot less with disturbances brought about by different outcomes of probabilistic
events during the early steps of the population. That being said, the sample shown here
is rather limited, and a larger set of seeds should be expected to show chance extinctions
in scenario A or a surviving population for some of the extinction cases discovered in
Figure 9.5.

The system, all in all, shows the behavior we expect from natural colonizing populations,
namely founder effects, a high influence of stochasticity on the early unfolding of the
system with a sensitivity to initial conditions and minor disturbances that is the hallmark
of nonlinear dynamical systems. While consistent with nature, this property makes it
difficult to operate as a scientific experiment and forces us into considering ensembles of
trajectories. We cannot know a-priori how well these ensembles represent the phenomeno-
logical scope of the system, because there is no closed, analytical expression that gives us
information about attractors or bifurcations, and the creation of a bifurcation diagram
for all parameters of the system is computationally prohibitively expensive and would
additionally intractable due to its high dimensionality.

With regard to the results presented in this subsection, we are additionally forced to
choose between a constant initial condition for possible parameter sweeps or constant
simulation RNGs, or none of it. Given that extinctions as a consequence of a maladapted
initial condition are rather uninteresting, we opt for the first approach in the following
sections, corresponding to scenario A.

9.1.2 Ecological niches and ecological species for the baseline case

Ecological niches and ecological species in Amee
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Figure 9.4: Representation of the initial IPNs of organisms and cells. IPN places are blue,
transitions are organge, and edge weights are represented by linewidth, with the actual
weights being suppressed for clarity. Inhibitor arcs are highlighted in red. Because all
parameters for the initial condition algorithm, including the RNG seed, are the same,
the initial conditions for all simulations are equal. Left: Metabolism IPN of the initial
organism of each simulation. The input interface is given by places [0, 2, 4, 8, 9], colored
red, the single output interface place 6 is colored green. All other places are intermediate.
No inhibitor arcs are present, indicating that they are eliminated by the genetic algorithm.
Right: Resource processing IPN of the cell. Without rewriting, this is constant for all
times and is also constant for all simulations for the same reason the metabolism network is.
The habitat’s IPN has more possible node labels than the organism initially ([0, 15] instead
of [0, 10]), and is thus considerably more complex. Organisms can, over generations, adapt
to the additional cell places.

Ecological niches have been discussed in section 3.1. In Amee, an ecological niche
can be defined by the way an organism consumes resources, i.e., by the input interface
of its metabolism network and the weights that connect the input places to the rest of
the metabolism IPN. This represents the maximum consumption per timestep of each
resource on each connected place. When rewriting is disabled, resource consumption is
the only kind of interaction an organism has with its environment.

Because the markings and weights of the network are a multiset of resources, we can
add an additional index r for each resource, such that the input-matrix I and the output
matrix O become 3-Tensors Iptr, Optr with p, t indicating place and transition, respectively.
Using the IPN-formulation in subsection 8.3.3, the niche is then given by

Nfund
pr =

∑

t∈p•

Iptr, p ∈ i (9.1.1)

where i represents the input interface of an organism’s metabolism network, and p•
represents the post-set of the place p, i.e., all the transitions t that receive resources
via arcs (p, t) from the place p.

The ecological species concept defines a species as a group of organisms that exploit
the same ecological niche, i.e., interact with the same set of ecosystem elements to ensure
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Figure 9.5: populationsize over time for different RNG seeds for the initial genetic
algorithm, run for 1000 timesteps. This produces different initial conditions for the
simulations, which are then run through the same simulation with the same time
development RNG seed value. We find substantial differences in populationsize over
time which, while generally similar to Figure 9.1, are significantly more variable, with
the grouping at a populationsize of ≈ 50 being missing, and the populations are more
evenly distributed across different populationsizes, which is consistent with different initial
interfaces.

survival and reproduction. These groups, the concept posits, come about because niche
differentiation in an ecosystem drives natural selection in such a way that the pheno-
typic groupings we call species are produced [Ridley, 2004] and are correlated with their
ecological niche.

Realized– and fundamental ecological niches It must be noted that Amee naturally
produces a distinction between a “realized niche” and a “fundamental niche” in analogy to
Hutchinson’s niche concept (compare section 3.1): Organisms’ metabolism networks have
each a number of input places which are defined by the metabolism IPN alone. These
connect to a set of places in the habitat networks which have the same labels, but not all
input places must connect. Rather, it is sufficient if some do. The connected places con
are therefore a subset of in and the realized niche is given by Equation 9.1.2:

N rel
pr =

∑

t∈p•

Iptr, p ∈ con (9.1.2)

Because con ⊆ in, multiple realized niches can exist for a single fundamental niche. We can
interpret this as a form of plasticity, in analogy to how natural species exploit different
resources depending on availability and other factors. It must be noted that without
variation in the encountered habitat networks, however, there is exactly one realized
niche for any given fundamental niche because always the same habitat places will be
encountered. Therefore, we can ignore the distinction between realized and fundamental
niche here because we have only a single cell and no niche construction.
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Figure 9.6: Same as in Figure 9.5, but zoomed in to the first 100 timesteps. Like in
Scenario A above, divergences are quick, but individual curves diverge more strongly for
early phases. This is consistent with the individual simulations having different input
interfaces and thus resource usage patterns. Groupings of multiple curves appear to be
largely gone.
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Figure 9.7: Barplot showing for which seeds
the population went extinct, using the same
color coding as in Figure 9.5. Extinctions do
occur rather frequently (six out of twenty).

This changes in a spatially extended system with multiple heterogeneous habitats, or
when niche construction is active. The latter can bring about spatiotemporal heterogeneity
and thus can result in variation in the realized niche over an organism’s lifetime. While
this can have substantial evolutionary consequences, their deeper discussion is postponed
until chapter 10.

Niche adaptation Consequently, we should expect the niches defined in Equation 9.1.1
to either diversify when the habitat is complex enough or to be dominated by a single
ecological species when the niche space is restricted. Secondly, we would expect ecological
niches to adapt to the resource availabilities on the places they access, i.e., if the habitat
IPN has multiple resources with different abundances on different places, organisms should
over time evolve to exploit this abundance pattern for their particular interface more
effectively.
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Figure 9.8: Initial metabolism networks created for different RNG seeds in the initial
genetic algorithm. As can be seen, the input interface and linkage structure are quite
different between all found solutions, which appears to be the cause for the greater
variability in the behavior of the different simulations. Inhibitor arcs (in red) are absent,
indicating that the genetic algorithm eliminates them.

This can have multiple facets: First, the pattern of exploitation itself can change, i.e.,
the niche Npr can evolve to include interface places where resources are more abundant.
Secondly, the weights, i.e., Iptr can change to accommodate the resource abundance better
on each connected place. Third, the metabolism network behind the input interface can
evolve to produce the needed resources more effectively. Typically, we will observe all
three of these concurrently, with the exact expression and relative importance of each
effect being shaped by system details, i.e., the particular history of the system.

Nevertheless, given that a mutation in an interface place is potentially more disruptive
than a mutation in a single weight of an arc, we can establish a hierarchy of which
evolutionary changes we expect to be more prevalent than others. In particular, the
evolution of the underlying metabolism without changes to the niche itself should be the
most prevalent because of probability: Assuming that there are fewer places in the input
interface (and outgoing arcs from them) than in the rest of the metabolism IPN, a mutation
is more likely to affect a place or arc within the network than at its periphery. Variation
in the metabolism’s architecture on which natural selection can act is thus greater, and
evolution should be faster. This includes naturally the arcs that leave input interface places
towards the first transitions, such that the adaptation of the niche without changes in the
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Figure 9.9: Initial habitat resource networks created with different RNG seeds in the
initial genetic algorithm. As can be seen, the input interface and linkage structure are
quite different between all found solutions, which appears to be the cause for the greater
variability in the behavior of the different simulations.

interface, i.e., niche partitioning without changes in the ecological interactions themselves,
should be prevalent, too, but, by virtue of the same argument as above, less than metabolic
evolution. Finally, changes in the interface, i.e., a diversification of ecological interactions
themselves, should be more difficult, because a change in input interface can be disruptive
to the metabolism. Thus, variation of an established niche is more often maladaptive and
more limited by virtue of probability.

For now, we limit ourselves to the baseline case without niche construction, plasticity,
or development, which will modify the niche concept and the above discussion signifi-
cantly.

Niche diversity for the baseline case Due to computational limitations, just three
intervals for each simulation are investigated. For a runtime of 25000 timesteps, these
are [0, 50000], [10000, 15000], [20000, 25000]. The simulation is carried out for five different
RNG seeds for the time stepping scheme and is started always with the same initial
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condition. Other parameters are listed in Table 9.5. In order to reduce noise, ecospecies
that contain fewer than 50 individuals are ignored in the analysis.

Parameter Value
seed 975392623, 108320434, 59616444, 98555521, 798797005
init_seed 4863152
Mmax 32000
γM 6400
IW,Habitat [0, 1280]

imax 20

Table 9.5: Parameters for single-resource simulation for investigating niche evolution. All
parameters that are not listed explicitly here are the same as in Table 9.1 Table 9.2 and
Table 9.3.

Focusing on the number of niches N over time first in Figure 9.10 together with
Figure 9.11, we find that the number of niches generally increases in the first interval
as the population grows. This is a consequence of a more far-reaching process: The many
reproduction events during this initial colonization phase, where the population grows
quickly (compare Figure 9.11), give rise to many possibilities for mutations and thus to an
initial diversification. This process does not only produce diversification in the niches but,
by construction, also in the metabolism of the organisms. Therefore, this diversification
process does determine the populationsize attained by providing variation in niche N and
variation in metabolic efficiency: Niches determine how much resources can be taken up,
but the metabolism IPNs determine how this resource uptake translates into reproduction,
and selection can act on both.

We can see this process in some more detail in Figure 9.11, left column, which shows
how the initial rise in total population (grey curve) is dominated by a single niche which
gives rise to the majority of the population, diversifying in the process and giving rise to
many new niches, which visually correlates well with the corresponding curves in Figure
9.10. However, it is apparent how some simulations produce only small populations in
comparison to others, at least for the initial interval, which corresponds to low niche
diversity. This behavior is consistent with the population missing key innovations that
occur only later. Indeed, we find that for the last investigated interval ∆t = [20000, 25000]
timesteps, the populationsizes are all significantly higher than in the first 100 timesteps
or so (as found before) with the last line of Figure 9.11 showing a late occurrence of a key
innovation, while for the seed 798797005, the respective key innovation must have occurred
somewhere between the first and second recorded interval. Indeed, from the behavior seen
until now, these innovations must be such that they allow the population to access another
adaptive local maximum space that produces larger populations. This is consistent with
the natural evolution of the biosphere, where, arguably on all scales of biological evolution,
innovations occurred that allowed for the exploitation of new or different resources and a
subsequent increase in complexity and carrying capacity of the entire system, or for more
efficient use of resources, with often similar effects. Often, such adaptations are associated
with accessing new portions of the niche space. On the largest scale, photosynthesis,
adaptation to life on land, as free swimming organisms in the water or burrowing can be
named, while on more familiar scales mutations that allow bacteria to exploit new kinds
of nutrient molecules in their environment (compare chapter 4) follow a similar principle.
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Figure 9.10: Number of different ecospecies over time for the three intervals investigated:
left: timestep 0 to timestep 5000, middle: timestep 10000 to 15000, rigth: timestep
20000 to 25000. The number of niches increases initially due to a growing, diversifying
population, and then attains a steady state with significant variation in both directions.
While the initial increase can be attributed to diversification of niches with the growing
population and consequently a growing competition for resources, the subsequent behavior
is more consistent with a population whose diversity is limited by the niche space
dimensionality and which undergoes ecological overturning through time, i.e., niches arise,
rise in frequency in the population, give rise to new niches and eventually get replaced.

The eventual discovery of such more adaptive sections of the niche space is not guaranteed
in evolving systems (unless infinite, well-mixed populations evolving for infinite times are
assumed) because of evolutionary continuity, compare subsection 3.3.5.

We find also in Figure 9.11 that the originally dominant niche gives not only rise to
other niches but in particular, is often more or less quickly replaced by one other niche,
the populationsize of which is strongly anti-correlated with the original one, such that it
is safe to assume a competitive interaction. This process is mainly seen during the first
investigated interval ∆t = [0, 5000], where the niche space available to the population is
not yet fully colonized and adaptation can be expected to be low, although given that in
the simulation shown in the last row of Figure 9.11 some key innovation occurs late, this
phenomenon can in principle occur whenever a new innovation occurs that subsequently
differentiates and comes under selection. This phenomenon furthermore appears to be
consistent with the assumptions of adaptive dynamics, where, a single mutation appears
in a homogeneous population. This, however, is not always the case, as can be seen in the
second line of Figure 9.11 where successive niche replacements overlap at roughly timestep
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3000. This shows that for the true adaptive dynamics regime, the mutation rates should
be further reduced.
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Figure 9.11: populationsize over time analogous to Figure 9.10. The total population
(grey line) decays into individual populations associated with a specific niche in the
sense of Equation 9.1.1. Often, a single niche (i.e., ecospecies) becomes fixed in the
population, i.e., it comprises the vast majority of the population. Over time, these wild-
type niche populations produce variants again, such that the population diversifies again.
Adaptive-dynamics-like behavior is observed for some cases, where a dominant niche is
replaced by a new dominant one (e.g., interval 20000 to 25000, seed=98555521), while
at other times, the dominant niche diversifies out into multiple variants that coexist
for O(1000) timesteps. The adaptive-dynamics-like behavior is more frequent for the
initial interval, consistent with the expectation that the initial phase of the simulation
is dominated by (comparatively) rapid adaptation. Comparison with Figure 9.10 shows
that if lower populationsize is attained initially, diversity is lower, too, again consistent
with expectations. Colors only distinguish niches. Many ecospecies only attain low
populationsizes.

The assumption that this phenomenon is competitive in nature makes sense firstly
because of the observed anticorrelations between the populationsizes of the niches involved.
Secondly, if it was due to neutral fixation we would expect no change in its frequency over
time by virtue of Equation 3.7.3, but would assume a constant rate of replacement on
average. Thirdly, for the cases where key innovations occur quickly, we find that this
“adaptive radiation” gives way to a regime in which successive niches replace one another
more slowly or not at all anymore until the system consists no longer of a single dominant
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“wild-type” ecospecies but of a collection of, for the time interval considered, mostly
coexisting set of niches which comprise the total population. This process is, however,
dependent on the history of the system, and is more pronounced in some simulations
than in others, consistent with the discussion in subsection 9.1.1. On the other hand,
some ecospecies successions occur slowly and show no exponential initial growth, which
would be consistent with neutral replacement, especially where there are long times of
coexistence between the involved niches. However, in a noisy system, neutrality and
adaptive replacement are always mixed. While any quickly occurring species replacement
certainly has a strong adaptive component, Amee produces always a mixture of neutrality
and selection.

For the limited niche space considered here, which consists of a set of fifteen IPN places
on the habitat and a single resource, this phenomenology is likely driven by an asymptotic
exhaustion of resources by high-impact adaptations, such that the population centers
itself within a region of the available space of adaptations, which then transitions into
niche differentiation such that coexistence becomes possible, with further successions being
mostly driven by neutral evolution. We consequently expect that if the simulation was run
several times longer, we would continue to see this asymptotic regime change from a highly
competitive initial phase into a less competitive coexistence phase. This regime change is
most apparent in the attainment of a more or less steady state in Figure 9.10.

Finally, because new niches come about by mutations carried by single organisms, many
more ecospecies are created than have an appreciable impact on the simulation. This can
be gleaned from Figure 9.11, where we see how most curves concentrate towards the
bottom of the respective graph even when they exist for significant times. Indeed, due to
the nature of mutations, we expect most of these to be minor variations of the dominant
niches, which are continuously created and go extinct again. Due to lower populationsize,
the dynamics of these is more likely to be governed by a neutral process, which should yield
a more or less constant overturning of ecospecies at low population numbers, modulated
by higher rates of species generation whenever an adaptive radiation occurs, due to the
accompanying rise in reproduction events.

In Figure 9.12, we find indeed that the vast majority of ecospecies produce only very
few individuals, with only very few attaining high total populations. This is consistent
with what we see in Figure 9.11. For most of these low-population ecospecies, their
fate will be likely governed more by neutral evolution than by natural selection due to
low populationsizes, unless a strong negative mutation precludes metabolic activity and
dooms the individual to extinction once its initial energy reservoir runs out.

Therefore, we expect a more or less constant rate of ecospecies overturn due to random
mutations and random deaths, with an accumulation of ecospecies in the lifetime his-
togram for very low but non-zero lifetimes due to destructive mutations, which is visually
consistent with the close-to-steady behavior of the number of ecospecies in Figure 9.10 for
the latest investigated interval where the niche-differentiation regime has been attained.

Moreover, the scenario of a neutrally governed overall overturning rate modulated by
occasional adaptive radiation events fits the lifetime histograms for ecospecies in Figure
9.13. In Figure 9.12, we find, however, that some ecospecies exist for substantially longer
than the investigated interval lengths, such that we can expect all lifetimes to be present in
the simulation. It has been long assumed that extinction risk is independent of species age
in nature [van Valen, 1973], while data from the fossil record has shown evidence for age
dependency at least for some groups [Doran et al., 2006; O. Hagen et al., 2017].
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Figure 9.12: Upper: Histogram of the number of organisms in ecospecies over the entire
course of its existence. The vast majority has low populationsize, with only a few ecospecies
attaining very high numbers of individuals over the course of their existence. Lower: Same
as above, but limited to populations between zero and 1000 organisms. The majority of
the ecospecies only attain populationsizes in the double digits.

In Figure 9.14, lower row, we find that ecospecies that survive for a long time can have
a high population, but many also produce overall populations of O(100) or up to 1000.
Ecospecies with high numbers but relatively low lifetime are often associated with the first
interval of investigation and thus with the initial adaptive diversification process, where
a newly discovered niche often rises to dominance quickly, thus producing large overall
populations before being replaced again.
Niche evolution for the baseline case
Evolution of resource utilization In light of the findings above, we next focus on the
evolution of the niches themselves with respect to the hypotheses on its evolution discussed
above in Equation 9.1.2. We find in Figure 9.15 that most simulations do not create
diversity in the habitat places they connect to, with the possible exception of the lowermost
panel in Figure 9.15, which shows the emergence of the utilization of place 9. Moreover,
while the second and third panels from above (seeds 59616444 and 798797005) show an
increase in the prevalence of the utilization of place 4, this variant exists in the population
from the beginning, whereas the first and fourth panel (seed 108320434 and 97539262 )
lack this variant and never evolve it. The last simulation has a niche that utilizes places 3
and 9 in the earliest investigated interval but loses them again. The loss of place three is
interesting because it represents the input interface of the cell’s resource IPN. Accessing
this place is not only potentially advantageous because resources could accumulate there
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Figure 9.13: Histogram over the lifetime of ecospecies. Due to the interval-based analysis,
the measured lifetime has an upper limit at 5000 timesteps. Ecospecies that attain this
lifetime must be interpreted as existing for at least that long. Likewise, for higher intervals,
older niches that originated before the measured interval are included. Accumulation
points of lifetimes in this histogram correlate with adaptive radiation events in Figure 9.11,
e.g., in the panel (59616444, [0, 4995]), where most ecospecies are only generated after
the population breakthrough at timestep 2000 such that lifetimes are almost completely
limited to 3000 timesteps at the most. Also, ecospecies’ lifetimes tend to accumulate at
very high and very low values at least when the differentiation regime has been reached,
indicating that many ecospecies die very quickly due to low population, with most having
essentially constant extinction rate, while some, most probably the ones dominating
the population, attain very long lifetimes due to being well adapted and having high
population.

due to the influx being relatively high, but it also deprives the downstream places of
further resources, and consequently could potentially starve other organisms. Utilization
of this place also must evolve within the niche, because due to the above reason its usage
is forbidden artificially in the initial condition. Assuming the loss of niches that utilize
this place is due to selection, we can only assume that the resource network is such that
binding to other IPN places in the system is more advantageous, although it stays in
the final configuration for two of the five simulations. Furthermore, we find that the
adaptation that most likely brings about adaptive radiations and the observed increase
in populationsize is the utilization of place 9, which increases in utilization over time and
the emergence of which does correlates generally with the quick increase in populationsize
that is accompanied by the adaptive radiation phase.

Additionally, in the last investigated interval, we find that the oldest ecospecies are
generally those which have the lowest utilization of place 10, and it appears that some
lose the utilization of place 5 in favor of place 9. Comparing all five simulations, we
find that those which produce a quick initial increase in population and diversification
all have comparatively high and more frequent utilization of this particular place when
compared to, in particular, the lowermost simulation in Figure 9.15, which, likely due
to a long time of evolutionary static, also features a higher diversity in place utilization.
This simulation is also the only one in which place utilization disappears (first and second
intervals) and later reappears (second and third panels). Given that observations in the
other simulations indicate that the particular adaptation that has given rise to the greater
populationsize is associated with the quantitative utilization of place 10, it is likely that the
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Figure 9.14: Upper: The data of Figure 9.13 accumulated over all intervals. While the
majority of the data is limited to the length of the investigated intervals of 5000 timesteps,
some ecospecies exist for long enough to transcend this interval length, with individual
ecospecies existing for the entire duration of the simulation for the leftmost simulation.
Hence, we can expect all possible lifetimes to be present in the simulation. Lower: Total
population over lifetime. While the data is incomplete due to the interval-based analysis,
the system shows that even ecospecies with very low total numbers can survive for a long
time, although relatively rarely. Some populations with low lifetimes but high population
are probably associated with initial competitive diversification where niches rise to high
frequency and get replaced quickly. The sharp edge at a lifetime of 5000 is due to the
length of the interval length for which data was taken.

low utilization of the place in the beginning failed to produce a sufficient fitness advantage
to prevent extinction. Finally, because the habitat’s resource IPN is the same in all cases,
all systems converge to similar place utilizations which is determined by the topology of
the former.

In summary, we find that evolution in place utilization is indeed slow or absent for
the systems discussed here, as expected. Rather, the different ecospecies differentiate in
the way they use the resources on the places that their ancestors utilized, often back
to the very beginning of the simulation (compare the initial conditions in Figure 9.16).
Therefore, the coexistence pattern we found earlier must be due to a differentiation in the
pattern of access to the different places, such that, e.g., one ecospecies uses place X a bit
more than place Y, while another does the reverse. This pattern is consistent with the
expected niche differentiation which has, e.g., been shown to be present in many systems,
one of them being experimental plant communities [Zuppinger-Dingley et al., 2014], in bat
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Figure 9.15: Ecospecies evolution over time. For each simulation (distinguished by random
seeds), the time evolution of the different niches in each interval is plotted (top panel),
and below each, the niche of each ecospecies is shown accordingly. Both are colored by
time of first occurrence. As we can see, there is little overlap between the communities
in each interval, and all systems tend to converge to a similar general form of ecological
niche determined by the habitat IPN structure. Niche differentiation appears to happen
primarily on the utilization pattern of ancestral places instead of in the utilized places
themselves.
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Figure 9.16: Initial conditions for all simulations presented in Equation 9.1.2, input
interface colored in red, output in green. Left: Initial agent’s metabolism IPN. Right:
Initial resource IPN of the Habitat.

communities [Siemers and Schnitzler, 2004] or in primates [J. R. MacKinnon and K. S.
MacKinnon, 1980]. Indeed, the dense distribution of the niche graphs in Figure 9.15 show
seems to support this argument, further strengthened by the observation that these densely
populated bands appear to be the broader the less diverse the habitat-place utilization is
in the population.

Evolution of the metabolism While the resource utilization patterns appear to be in
good agreement with our expectations so far, the evolution of the metabolism networks is
yet an open topic. Given their networked nature, there is a plethora of possible analyses
that can be applied, with research in the structure, topology and functional organization
of biological metabolic networks being a large and active research topic. Indeed, tools
and concepts from this field could be transferred to this model in order to further test
its phenomenology, or tailor it towards simulating the evolution of such networks in a
more detailed way. That being said, the field is quite highly specialized, and analysis of
the metabolic networks in Amee is beyond the scope of this thesis. Therefore, we limit
ourselves to a cursory glance, deriving conclusions from the visible network structure in a
small sample of individuals.

In Figure 9.17, the metabolism of randomly chosen individuals from the largest ecospecies
at timesteps 2500, 12500, and 22500 is shown, assuming that advantageous metabolic
pathways should be preserved across different ecospecies over time, as indicated in Fig-
ure 9.15. Given that the connection to place 9 was of particular interest before, we focus
on it first. A natural expectation would be that the connection along certain paths that
efficiently link input and output would increase in weight, such that the organism can
metabolize more resources in a shorter time. Indeed, this is the case in Figure 9.17 for
seed 975392623, where the connection P9 7→ T6 7→ P3 forms an isolated cluster that
rapidly produces resources on the output place. The connection from T6 to the output,
however, is missing in other individuals (see seed 59616444 on the right, for example),
where T6 has no outgoing connections at all. A closer examination shows that such cases
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Figure 9.17: Sample networks for the ecospecies with the largest populationsize at times
2500, 12500, 22500 (from left to right). Same color conventions as in Figure 9.16. Focusing
on the connections of place 9 and comparing them with Figure 9.15, we find that the
connections increase over time in strength where the place is accessed. This can happen
because a single-transition connection to an output place arises (e.g., for seed 975392623,
right), but also in order to block “parasitic transition” (e.g., seed 798797005, see text),
which would destroy resources. In such cases, the place connection can even vanish from
the niche.
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are relatively common. A transition that has no outgoing connection can still fire, but
because all outgoing connections are effectively zero, the material that is transferred from
its pre-places is lost, as is its energy2. We call these structures “parasitic transitions”,
because they often, in particular when they have input interface places in their pre-set,
harm the metabolic efficiency of the organism and thus its reproductive success. Thus,
it is evolutionarily advantageous to shut off these transitions or relink them into a useful
pathway. While the latter possibility has been discussed before, the former can be achieved
in much the same way: A transition t can only fire when m(p) ≥ w(p, t)∀p ∈ •t in the
Petri-Net formulation used here, such that a higher weight w(p, t) can effectively preclude
a parasitic transition from becoming enabled, thus precluding loss of material and allowing
for metabolic efficiency. Of course, a loss of the corresponding interface place is also an
alternative, which can be observed for seed 59616444 in the right panel in Figure 9.17.
However, in the case of the strong parasitic transition in Figure 9.17, right panel for seed
7989797005, place P9 does not appear to be part of any important path, although the
similarly connected place P7 is. Therefore, the strong connection P9 7→ T6 appears to be,
in this case, a secondary switch that aids the pathway P8 7→ T8 7→ P7 7→ T5 7→ P4, and
any other pathway P7 is involved in because it precludes the parasitic transition T6 from
subtracting resources from it. It must be noted, however, that we only have a handful of
individuals here from a population of several thousand, therefore, these explanations just
give a coarse insight into the range of phenomena possible, and a more thorough study of
the system would be needed for a comprehensive overview.

Alternatives to this secondary switch mechanism would include inhibitor arcs, which
would disable transition T6 as long as any one of the places in its pre-set contains resources,
the loss of the connection P7 7→ T6, possible rerouting via other links or the emergence of
an outgoing link from T6 to some other place, as is the case in other simulations. When
discussing the “why” of such alternatives, however, it must be noted that evolution acts on
variation that exists in a population, and given the architecture of the metabolism IPNs,
one plausible explanation for the emergence of the switch mechanism is that this particular
ecospecies’ population contained variation in the P9 7→ T6 link that lead to variation in
reproductive success on which evolution could act, but lacked significant variation in the
possible alternatives. Arguably, the usage of an inhibitor arc would be more efficient
and probably preferable to a human engineer, yet such a particular mutation is rather
unlikely and thus variation would be small or absent. Variation in edge weights can, in
particular, be brought about by gene duplication, which immediately doubles a particular
weight, and produce a potentially impactful variation. At the same time, because the
metabolic network is complicated, we would expect that established pathways, even if
suboptimal by a human designer’s standards, will be preserved over time and strengthened
or modified, while potentially advantageous innovations are hard to evolve in a way that
benefits fitness. Thus, Amee represents well evolutionary continuity, the relative nature of
natural selection. Its complexity aids in this because it allows for some of the, at times,
confusing and counterintuitive compromises, path dependencies and limitations of natural
evolution to autonomously evolve and be studied.

More generally, it stands to reason that for the case presented here, i.e., with homoge-
neous resources, or at least large resources with limited variability, the metabolism will
evolve towards fewer steps between input and output, because reduced complexity provides
for a more reliable resource supply for reproduction. Figure 9.17 provide hints towards this
2 Note that this is not a violation of energy conservation as imposed here, because the system is allowed

to be arbitrarily dissipative, and material conservation is not imposed in the resource networks.
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because we see in the fourth panel from above (seed 975392623) how the path P9 7→ T6
7→ P3 is successively strengthened over time, which represents the shortest possible path
between input and output interface. Consequently, we would expect the system to evolve
towards such a “survival of the flattest” regime 3 The alternative, i.e., many, complex,
highly inhomogeneous and small resources in a system with many possible nodes should
produce more complex metabolism networks which would arguably be the more interesting
case for a study of metabolism network topology.

We consider the shortest path between the input– and output interface of the metabolism
networks. For a set of nodes V = {vi, i = 1, . . . , N} that makes up a graph g and a
weight function f : V → R, the shortest path between nodes v0 and vn is the tuple
(v0, v1), ..., (vn−1, vn) for which w =

∑

i f(vi, vi+1) is minimal. Because we are interested
in the paths for which resource transport is maximal, however, we use a modified weight
function fI : v 7→ 1/f(v). This reasoning is grounded in the expectation that the
paths between interfaces where resource transport is maximal are the evolutionarily most
relevant ones because they tend to dominate the resource flow through the network.

The result for the three intervals data has been recorded for can be seen in Figure 9.18 for
different ecospecies, where each dot represents the mean shortest paths between interface
places for an individual (the mean of all shortest paths that connect an input place to an
output place), and the white dots show the mean of the population for a given ecospecies.
We find that from the beginning, the mean shortest path lengths for individuals vary
between two and four with a population mean (white dots in Figure 9.18) between two
and three predominantly at the lower end. Non-existent paths have been excluded, such
that a shortest path length of two is the minimum possible length. This shows how the
most relevant paths between the input– and output interface are often short, and while
there are longer dominant paths (e.g. in the middle interval, t ∈ [10000, 15000] for seed
59616444), these ten to decrease over time again or at least show no tendency to increase
the metabolic complexity.

Lifetime reproductive success and metabolic evolution In order to investigate niche differ-
entiation further, we consider the lifetime reproductive success of the individuals belonging
to individual ecospecies in Figure 9.19, Figure 9.20 and Figure 9.21.

In these figures, only ecospecies whose maximum population over all timesteps they
exist for exceeds fifty individuals are shown. Additionally, all organisms which don’t
reproduce during their lifetime or only exist for a single step have been filtered out to
make the evolutionarily relevant part of the lifetime reproductive success distribution
more apparent. Previously, we identified adaptive and neutral successions of ecospecies,
with the former being mainly associated with the first interval for which data have been
recorded.

Indeed, we find in Figure 9.19 that the mean lifetime reproductive success for successful
ecospecies which replace others is generally higher than it is for the ecospecies they replace
and that the mean lifetime reproductive success tends to increase with time, i.e., ecospecies
that occur later have generally higher lifetime reproductive success than earlier ones.
Moreover, we find that the increase in the mean lifetime reproductive success over time
generally flattens off after a series of adaptive successions, transitioning into a plateau
with fluctuations (compare Figure 9.20 and Figure 9.21). This strengthens the argument
above that the slowly progressing successions in later intervals are driven mostly by neutral
3 “Survival of the flattest” has originally been used to describe another evolutionary phenomenon [Sardanyés

et al., 2008], but given that the IPNs discussed here proceed in a step-wise manner, it seems appropriate.
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Figure 9.18: Ecospecies populations for time intervals
[0, 5000], [10000, 15000], [20000, 25000], with ecospecies with a peak population of
less than 50 organisms filtered out for clarity. Distributions of the mean shortest
path lengths per individual for each respective interval are shown to the right, with
the population means shown as white circles. Colors identify ecospecies. We find no
long-term trend to increase the shortest path between interfaces, i.e., no tendency to
produce more complex metabolisms than are present in the beginning. An increase is
evident for seed 98555521 in the final interval (rightmost panel) for the extremes of the
distribution, similar to seed. This fits well with the “survival of flattest” hypothesis
discussed above, although we cannot deduce from this that the shortest possible path will
always become dominant eventually.
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Figure 9.19: Lifetime reproductive success of ecospecies for interval [0, 5000]. Colors
distinguish ecospecies. Ecospecies with less than a maximum population of 50 have been
filtered out. Left: Population of each ecospecies over time. Grey line shows the total
populationsize. Right: Violin plot of lifetime reproductive success for each ecospecies,
with the mean shown as white dot and quartile distance as black bars. Violinplots extend
from five to ninety-five percent quantile. We generally find an initial increase of mean
lifetime reproductive success over time, which is correlated with the adaptive succession
discussed before, leveling off once an adaptive phase transitions into a neutral turnover
phase.

succession, while the exponential growths of some ecospecies that are mostly apparent in
the first interval are driven by adaptations that confer direct fitness advantages, i.e., these
successions are competitive. Moreover, because lifetime reproductive success does not
decrease over time for the neutral succession phase, we can conclude that the populations
are not affected by mutational meltdown, which likely will only play a role for much larger
simulation times (compare Figure 3.5) for the given mutation rates.

A strange case presents itself in the lowest panel of Figure 9.21 (seed 98555521), where
the newly emerging ecospecies with a much higher population start an adaptive succession
phase which contains ecospecies with much lower lifetime reproductive success than the
ones they replace. As mentioned before, this simulation gets “stuck” in the initially
occupied subset of the nichespace, and only evolves innovations that make another part
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Figure 9.20: Lifetime reproductive success of ecospecies for interval [10000, 15000] as in
Figure 9.19. Mean lifetime reproductive success is roughly equal for all ecospecies, as
is the quartile range, supporting the case for neutrally dominated ecospecies successions
after the initial adaptation phase is over.

with a higher carrying capacity available later. Consistent with this, there are fewer
ecospecies in this population in the first interval (Figure 9.19), and it remains in a neutral
phase for most of the simulation time until t ≈ 20500.

This behavior appears to contradict the mechanics outlined above but also shows that
the evolutionary innovation that leads to the higher-population state represents a funda-
mental transition in ecological function, at least for a time.

A possible way for such a state to manifest is that the individual lifetime reproductive
success of organisms is reduced (which in this model means that they die younger because
only one offspring can be born each timestep), but more organisms reproduce in the
ecospecies’ population, i.e., the effective populationsize of the ecospecies is increased. This
will primarily be accomplished through metabolic innovation, either directly in the niche
composition of the innovating ecospecies or in the network structure of the metabolism.

In Figure 9.22, we see indeed (lowest panel, seed 98555521), that the fraction of repro-
ductively active organisms goes up significantly once the higher carrying capacity state
is reached, as can be seen from the correspondence of the colors which mark different
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Figure 9.21: Lifetime reproductive success of ecospecies for interval [20000, 25000] as in
Figure 9.20 and Figure 9.19. For seed 98555521 (lowest panel), an adaptation phase is
observed, characterized by the exponential population increase of the light blue ecospecies
around timestep 20500. This leads to a transition to much lower reproductive success for
the subsequently emerging niches.

ecospecies in Figure 9.22 and Figure 9.21, and attains values which in other simulations
are only attained during the initial phase of the simulation, compare Figure 9.23. In these,
as well as for the seed = 98555521 case, we find that these high effective populationsizes
are not retained, but slowly converge to values between 0.15 and 0.2 with the levels of
fluctuation being dependent on the simulation, but being generally small.

Furthermore, all simulations and all ecospecies, during evolutionarily neutral phases,
converge to a near-universal fraction of reproducing organisms which depends on the
simulation but always lies between 0.15 and 0.2. This convergence is attained as a
simulation settles into a local fitness equilibrium, i.e., transitions into an ecological state
dominated by neutral successions, and is only broken through evolutionary innovations
that happen during the first phase of the simulation (see Figure 9.23) or when an evolu-
tionary innovation happens later like for seed 98555521 (and probably for seed 798791005,
where it is not in the recorded interval, however). This convergence mirrors the static
observed for lifetime reproductive success in Figure 9.19, 9.20 and 9.21. While the
convergence towards a universal fraction of reproducing organisms again shows that the
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Figure 9.22: Left: populationsizes of each ecospecies over time for comparison like in
Figure 9.19. Colors distinguish ecospecies. Right: Associated fraction reproductive
individuals in the population of each ecospecies. This fraction goes up significantly for
seed 98555521, sinking again afterward towards the level other simulations attain. The
equilibrium level for the reproducing population fraction is around 0.15 to 0.2 with very
limited fluctuation between species.

simulations tend towards evolutionary static, why it attains this exact value has not been
investigated further here.

Given that it is similar, but not equal in all simulations makes an artifact of the simu-
lation algorithm unlikely, and the behavior observed does not hint at further convergence
of the simulations towards some truly universal value that would only be attained for
longer runtimes or so. Rather, the effective populationsize seems to be a function of the
competitiveness of the system, which we would expect to slightly differ between individ-
ual simulations even when they develop similar innovations and attain similar carrying
capacities and niche states. A higher mutation rate should negatively influence this value
because it will invariably produce more defective mutants which cannot reproduce, with
the adverse being true for the baseline death rate d0.

Summary of metabolism evolution for the baseline case We thus find that metabolic
evolution is complex and intertwined with the evolution of resource utilization, with
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Figure 9.23: Same as Figure 9.22, but for timesteps [0, 5000]. We find the same
phenomenon encountered for seed 98555521 in Figure 9.22 in general, which shows that
the increased effective populationsize is indicative of adaptive ecospecies successions.

relinking of metabolic pathways having potentially large influences. This is somewhat
similar to the behavior expected from gene regulatory networks under mutation, which
are ultimately underlying metabolic networks. Figure 9.17 also allows the supposition
that the evolution of habitat-place-utilization is, in fact, more prevalent than is ap-
parent from Figure 9.15, although this has not been investigated further. The above
discussion shows, moreover, that even if mutations in habitat utilization would be more
common, the metabolic network that processes these resources must react evolutionarily
to these new resources, which can be a complex and difficult process that therefore
is slow. Simulations with larger runtimes and higher mutation rates should provide
more insight here. Investigation of the lifetime reproductive success of the organisms
in individual ecospecies uncovered a pronounced equilibrium behavior, with a slightly
simulation-dependent fraction of reproducing individuals. Mean lifetime reproductive
success and the reproductive fraction per ecospecies were mostly constant within a neutral
ecological system. Interestingly, while mean lifetime reproductive success during early
times shows slight increases over time, in later adaptive phases the opposite is the case,
associated with a sharp increase in the reproductive fraction of each ecospecies. This
hints at a transition of the system into a more competitive regime with higher population
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Figure 9.24: Same as Figure 9.22, but for timesteps [10000, 15000]. We find all simulations
in an ecological equilibrium state dominated by neutral successions, with low fluctuations
of the reproducing population fractions between ecospecies.

density. After the system passes again into the neutral succession mode, the reproductive
fraction again starts to converge toward the universal value. The origin of this value
has not been investigated further, although we can expect it to be tied to parameters
influencing adaptiveness, like mutation– and death rates.

Finally, because organisms distribute undigested resources again onto the habitat places
that correspond to their output interface, they may increase the availability of resources
in these places and thus produce adaptive opportunities for other ecospecies. Much
like measuring niche overlap between ecospecies can give rise to a dynamic network of
competition, the overlap between input and output can give rise to a network of facilitation,
which may have significant overlap with the former, but which may also benefit largely
unrelated ecospecies or generally give rise to radiations that are dependent on a “keystone
species” providing resources on specific habitat elements. While principally within reach,
this has not been investigated further, but is held to be a promising research direction and
one that holds opportunities for further development of the model.

Higher-order species groupings As can be seen from Figure 9.15, most ecospecies are
highly similar, and differentiate within a certain resource utilization pattern. Therefore,
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the question arises whether a higher-order structure can be found that collects very similar
niches into a group like it is done in phylogeny. To this end, The DBSCAN clustering
algorithm [Ester et al., 1996] has been applied, using pairwise distances given by Equation
9.1.3.

d(i, j) = 1− τ(Ni, Nj) (9.1.3)

with τ begin the Kendall-τ correlation measure. The choice to use Kendall-τ instead
of another correlation measure like Spearman’s or Pearson’s, or a Euclidean distance,
is that we are interested in a measure for the form of resources utilization, i.e., how
similar the form of the niche-curves in Figure 9.15 is. Kendall-tau considers the number of
concordant and discordant pairs of values in the niches considered, thus naturally placing
the emphasis on the form of the curves, which makes it a natural choice. While other
correlation measures could supposedly be used as distance measures for the DBSCAN
algorithm, a Euclidean distance has no obvious meaning as a distance measure for niches
because it ignores the utilization patterns over network places.

The DBSCAN algorithm interprets the provided matrix as an adjacency matrix of a
graph, then uses a supplied radius for establishing a neighborhood to be considered for
each point, and finally produces clusters by essentially executing a flood-fill algorithm on
the graph such established. The measure given in Equation 9.1.3 is such that distances are
larger for smaller Kendall-τ . Three different radii have been tried out (i.e., three different
sizes of neighborhoods), and the silhouette measure s [Rousseeuw, 1987] has been used to
estimate the quality of the clustering. s ≤ 1 and a mean s for a cluster that is close to
one tells that the data points in the cluster lie well within it on average, i.e., the cluster
is well defined. The silhouette measure for th ith datapoint in a cluster c with datapoints
c1, . . . , ci, . . . , cj , . . . is given by

si =
bi − ai

max(ai, bi)
(9.1.4)

ai = 〈d(i, cj 6=i)〉 (9.1.5)
bi = mink 6=ci

bik (9.1.6)
(9.1.7)

with 〈•〉 being the arithmetic mean, ai therefore being the mean value over the distances
to other points in the same cluster, and bik being the average distance from the i-th point
to the k-th cluster, such that finally s ∈ [0, 1].

While DBSCAN is a pioneer algorithm in the field that has since been developed further,
it is still viable when the data structure is known well enough to choose the required
parameters, and is one of the algorithms in the used software package4 that does not
make assumptions about the distance matrix.

Comparing Figure 9.25, Figure 9.26 and Figure 9.27, we find that for a large radius
parameter for the DBSCAN algorithm, the algorithm substantially underfits which is
corroborated by low silhouette values in Figure 9.28. Indeed, a radius of ǫ = 0.05 appears
to offer the best compromise of the values tested here, although more research would be
needed to fine-tune the clustering. Indeed, for some simulation intervals, the silhouette
values indicate that even for this value the clustering is suboptimal, which correlates with
4 Clustering.jl of the Julia programming language.
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Figure 9.25: Niche clustering for a radius parameter of ǫ = 0.005. The radius appears to
be too small and thus the clustering overfits significantly, producing a number of clusters
that is comparable to the number of ecospecies, i.e., datapoints (compare Figure 9.10).

the number of habitat utilization variants. Another possibility would be to use a different
distance measure, which more accurately captures the different forms of habitat utilization
that do exist. Additionally, other algorithms might be more suitable for such problems,
although fine-tuning this analysis goes beyond the scope of this thesis. Even with these
shortcomings, however, the results presented here appear to be promising, in that the
system does produce some form of higher-order grouping of ecospecies similar to genera
in biology.

Like in nature, this separation is at least somewhat dependent on the way we mea-
sure the similarity between different ecospecies, with the Kendall-τ based function being
one possibility among possibly many. This harkens back to the discussion on species
Figure 3.1, where the pragmatic nature of these classifications was introduced. Indeed,
clustering on the basis of ecological niches observed would, in nature, probably also produce
something that is correlated with physiological species, but would not map perfectly onto
them.

In Figure 9.29, we find that the found ecosystem clusters live, naturally, a lot longer than
individual ecospecies, as is the case in nature with genera and families when compared to
species. Secondly, the adaptive radiations found in Figure 9.15 now mostly collapse into
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Figure 9.26: Niche clustering for a radius parameter of ǫ = 0.05. Visually, the separation
into different clusters according to resource utilization pattern is successful. However,
Figure 9.28 reveals that the clustering is not optimal in some cases, which we identify here
as those with significant variation between ecospecies, like the lower right panel for seed
98555521.

single clusters, which occasionally give rise to new higher-order ecospecies conglomerates.
In more detail, it appears that the clusters that emerge early and become dominant within
the first interval generally survive until the end of the simulation, with the coexistence
of more than one of these clusters being reduced to one case (seed 798797005). This
behavior would, in principle, allow us to build a phylogeny of the ecospecies and eco-
genera in the system, and, although the methodology is far from perfect, shows that
Amee produces such clusters naturally as a consequence of natural selection. This opens
the door to the investigation of macroevolution and questions like species selection or
long-term diversification. However, in order to investigate the succession of eco-genera,
much longer runtimes of the simulations would be needed.

For the lowest panel in Figure 9.29, we also find that survival of low-population eco-
genera into late simulation stages can still result in the production of daughter genera
that then adaptively radiate, which shows that the possibility for adaptive radiation is not
bound to the age of the genus that radiates. We can find similar phenomena in nature,



214 9 Results I: Evolution without rewriting

0

25

50

75
seed=108320434

n
ic

h
e 

id

0

1

2

3

4

0

25

50

75
seed=59616444

n
ic

h
e 

id

0

1

2

3

4

0

25

50

75
seed=798797005

n
ic

h
e 

id

0

1

2

3

0

25

50

75
seed=975392623

n
ic

h
e 

id

0

1

2

3

0 5 10
0

25

50

75

0 5 10

seed=98555521

0 5 10

n
ic

h
e 

id

0
1
2
3
4
5
6

N
[−]

Places [-]

Figure 9.27: Ecospecies clustering for ǫ = 0.1. The algorithm underfits for this parameter,
with different habitat utilization patterns being mapped to the same cluster.

a prominent one being the rise of mammals after the K-T extinction event, although in
physiological terms.

Mammals are members of the group of synapsids and thus belong to a lineage that
dominated terrestrial ecosystems in the Permian age, lost most of their lineages during the
end-Permian extinction event, had subsequently been largely marginalized for around 150
million years while archosaurs (in particular dinosaurs and pterosaurs) rose to dominance
and, after the latter’s extinction, radiated again.

All in all, while the results provide evidence that Amee behaves along the lines expected
from natural evolution, the methodology in this chapter can be substantially improved
using other methods which, ideally, do not rely on user-supplied parameters that influence
the clustering. Performance improvements are also required because the current algorithm
uses O(n2) memory and runtime, n being the number of ecospecies. Such scaling is not
sustainable when longer runtimes and larger systems are to be investigated, which are
needed to investigate macroevolution or generally the long-term ecological behavior of the
system.
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Figure 9.28: Mean and extent (errorbars) of the silhouette measure S for different
simulations (columns), intervals (rows), and radii ǫ used in the DBSCAN clustering
algorithms. Where no errorbars are visible, the extend is smaller than the marks. The
lowest radius appears to overfit, while the largest seems to underfit substantially. ǫ = 0.05
appears to offer the best compromise, although depending on the system, there are
exceptions, especially for the first interval.

9.2 Baseline 2 – Multi-resource, single-cell systems without
rewriting

9.2.1 Ecological niches and ecological species for the multiple resources

Ecospecies for multiple resources An easy way to increase the complexity of the niche
space is to allow for multiple resources. Thus, N in Equation 9.1.1 becomes a matrix
instead of a vector, allowing for a second dimension for niche differentiation. Consequently,
the production of innovations can be investigated in another way, e.g., when initially
organisms do not make use of all available resources such that innovations can occur that
tab into a potentially large resource pool not previously accessed.

Multiple resources complicate the metabolism significantly because the firing condition
of a transition must be fulfilled for all resources simultaneously. Consequently, where
in the single-resource case evolutionary innovations were more or less readily attainable,
we expect more complicated evolutionary trajectories in the multi-resource case, which
are expected to take much longer runtimes of the simulation than can be managed on
available hardware to produce the high-impact innovations found in subsection 9.1.2. The
parameters for the simulations discussed in this section are given in Table 9.6, with all
others being the same as before.

We indeed find substantially lower numbers of niches in Figure 9.30 than in Figure
9.10 for a single resource, and diversity stays lower for the duration of the simulation.
Otherwise, the phenomenology is similar to the one discussed for the single resource case.
The occurrence of an ecospecies which becomes dominant, e.g., the blue curve for seed
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Figure 9.29: Evolution of eco-genera created by applying the DBSCAN clustering
algorithm with ǫ = 0.05. We find that most adaptive radiations reduce to intra-genera
radiations (as is the case in nature) and that late surviving genera still can give rise to
adaptive radiations in daughter genera (lower right.). Coexistence of multiple eco-genera
is still frequent, but it is almost always asymmetric with one being dominant and the other
suppressed. The dominant genera arise always quickly and stay for the duration of the
simulation, indicating that evolution of habitat utilization evolves more slowly than can
be represented with current runtimes, in agreement with earlier results.
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Slower 45

Supper 95

rcell [0, 5]

rorganism [1, 4]

γM 6400
Mmax 32000

Table 9.6: Parameters for the multi-resource simulation presented here. rX represents
how many resources are initially utilized by organisms or filled by the habitat’s resource
influx.

798797005 in Figure 9.31 for t ∈ [20000, 25000], precipitates a corresponding increase
in the production of ecospecies. Generally, the system shows a punctuated equilibrium
in which a more or less neutral succession of ecospecies is interrupted by rare adaptive
innovations which then lead to differentiation of this ecospecies, i.e., there is a background
species overturn that is mostly driven by neutral evolution, which every now and then
is punctuated by an advantageous mutation which can disrupt the system, lead to the
extinction of older populations and give rise to a new phase of ecospecies production (e.g.,
the rightmost panel for seed 798797005.). This succession process will likely always have
random and adaptive components, with the relative proportion of both depending on the
populationsize of the niches involved and the relative differences in reproductive efficiency
of the corresponding ecospecies. This is corroborated in Figure 9.31, where we find an
initial increase in population being followed by a differentiation phase. However, neither
does the populationsize reach the same level as it does for Figure 9.15 in the first interval,
nor does it produce an adaptive succession for all the simulations. Indeed, for the interval
t ∈ [0, 5000], this only happens for the seeds 98555521 and 59616444, with 975392623
exhibiting a single unambiguous adaptive niche replacement only for t ∈ [20000, 25000].
This corresponds to a situation in which the population adapts to the initially occupied
part of the niche space without creating innovations that make other parts accessible.
Therefore, the situation for the multi-resources case presented here is similar to seed
98555521 in the single-resources case where the system “got stuck” in much the same way
and produced innovations that increase the carrying capacity only much later.

From the analysis presented for the single resource case, it can be derived that the slower
evolution observed for multiple resources, despite the higher material and energy supply
in the system, is caused by a less evolvable metabolism, as conjectured at the beginning
of this section, which is the next focus for analysis.
Niche evolution for multiple resources Comparing Figure 9.33 and Figure 9.34 with
Figure 9.15,

In Figure 9.33 and Figure 9.34, we find indeed that the system does not produce
significant innovations in resource- or habitat-utilization. While for seeds 59616444 and
798797005 there are small usages of resource r = 0 and r = 5 in the middle panel (timesteps
10000 to 15000), these do not persist over longer times and we find that niche differentiation
for a more or less frozen habitat usage pattern (i.e., usage pattern of places) appears to be
overall similar for many resources when compared to a single resource, with the variation
across resources being broadly similar, too. This is attributed to the fact that the size of the
resources that are available in the system is large, such that, once a workable metabolism
is established, the individual resources behave more or less similarly. A scenario with many
more resources which each are much smaller than the current ones would shed more light
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Figure 9.30: Number of different ecospecies over time for a simulation with five different
resources. We find significantly lower numbers of different niches than before, and the
initial increase in niche number observed in Figure 9.10 levels off earlier. This is consistent
with a failure to produce innovations that yield higher metabolic efficiency, such that the
simulation almost immediately reaches the differentiation regime.

on this part of the system’s phenomenology, because it would produce a stronger fitness
impact of the form of the niche. Finally, we find more strongly developed bifurcations in the
usage of certain places, mostly place 3 for simulations with seeds 98555521 and 59616444,
which in that sharpness was absent from earlier simulations and can be explained by a
stronger differentiation of the fewer existing ecospecies.

Aside from a random extinction of the respective ecospecies, there are other reasons
that could preclude ecological innovations. As seen before in Figure 9.1.2, metabolic
evolution is complex and the simple addition of a new resource input without proper
integration into the metabolic processing does not automatically translate into adaptive
advantages. In more detail, the usage of new resources must not only include the addition
of the resource in the input weight but also in all other weights on a metabolic path
from the input to the output interface. Because these cannot occur all at once, and the
sequence of mutations that establishes such links is very unlikely when compared with the
random death of the individual that carries the initial additional resource mutation, the
loss of such a mutation is much more likely than the further addition of a constructive
mutation that would add to such a system. Consequently, resource innovation is very
unlikely and probably needs much larger populationsizes and longer runtimes. Higher
mutationrates would help with generating the necessary variation, but always also produce
more deleterious mutations.
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Figure 9.31: Ecospecies populations over time for the three different intervals investigated.
Total population in grey, populations of individual niches in colors. Colors only separate
species visually and are reset for every interval. We find largely the same phenomenology as
in Figure 9.11, although the rapid attainment of high populationsizes and its subsequent
stasis indicates that for the multi-resource simulations shown here, the system remains
within the initial subspace of fitness and habitat-/resource utilization and does not
produce carrying-capacity modifying innovations as for the single-resource case, reaching
the differentiation phase rather quickly.

The main problem for the IPN-based system in the simulations presented here is that
the usage of a previously unused resource must emerge de novo completely. This is in
contrast to many natural innovations in resource usage which relink existing metabolic
or developmental pathways or coopt other existing features, e.g., via gene duplication
or non-coding sequences. This would correspond to a situation in which parts of the
metabolism layer for resources 0 and 5 would exist, or parts from other layers could act
on them, while only the access to these resources does not exist. In the simulations
presented here, however, neither does the former exist nor the latter. Therefore, enough
variation on these layers must accumulate in the population for evolution to act upon,
and this will most likely happen neutrally at first because a mutation that immediately
produces a metabolic benefit for a never-before encountered resource while not disrupting
existing pathways is highly unlikely, in nature as in Amee. In other words, the creation of
completely new (heritable) information is a very hard problem, arguably in all complex
constructive systems, i.e., in learning systems and in biology. Amee thus opens a new path
to the investigation of how novel functions and major evolutionary innovations are created
in biology.
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Figure 9.32: Number of symbols in each
resource for all simulations presented in this
section. Resource sizes are chosen at random
at the start of the simulation, and can vary
here in [Slower, Supper] = [45, 95]. Here, we
find that the initially utilized resources (2,
3, 4) are coincidentally the shortest ones.

Evolution of the metabolism networks for multiple resources Given the networked
nature of organisms’ metabolism, there is a plethora of possible analysis that can be
applied, with research in the structure, topology and functional organization of biological
metabolic networks being a large and active research topic. Indeed, tools and concepts
from this field could be transferred to this model in order to further test its phenomenology,
or tailor it towards simulating the evolution of such networks in a more detailed way. That
being said, network analysis is a highly specialized field that would go well beyond the
scope of this thesis, and is thus forgone here. Rather, we limit ourselves to a cursory
glance, deriving conclusions from the visible network structure in a small sample of
individuals.

We only consider the two most interesting RNG5 seeds here, with the others being
shown in section 12.1. In Figure 9.36, 9.37, we find a generally similar phenomenology to
the single resource case, where we discovered the “survival of the flattest” mechanism, i.e.,
a general tendency to increase short metabolic paths between input and output interfaces
where these arise, or at least maintain them. However, it seems that while the “flat”
metabolism does arise multiple times, e.g., via the P3 7→ T0 7→ P6/P0 pathway, other
pathways often play a larger role or are at least as important. The simulations for seeds
59616444, 98555521 and 975392623 behave similarly to Figure 9.36 and can be found in
section 12.1.

Investigating the shortest pathlengths analogously to Figure 9.18 reveals that in fact,
more complex paths are found mostly for the third resource, while for the second and
fourth, only seed 798797005 produces ecospecies that have a higher mean shortest path-
length when compared to the single resource case. For other simulations, there is either
a trend towards shorter paths over time and thus “survival of the flattest” (primarily for
the second resource), while for the fourth resource, the original level which has mostly
short paths to begin with, is largely maintained or is fluctuating more strongly due to
a smaller number of ecospecies. We also find that the third resource, for which the
mean weighted shortest paths are the longest, is the resource with the smallest number of
provided building blocks (see Figure 9.32), lending support to the case made above that
more complex metabolisms should develop for smaller resources, i.e., the more complex
the underlying resource system, the more complex metabolisms should evolve.

Returning to topology, a differentiation of the individual layers is apparent, where
effective metabolic pathways for individual resources are optimized over time (top to
bottom in the aforementioned figures). Considering the resources together, we would
expect that evolution optimizes the metabolic networks in such a way that the most
5 Random-Number-Generator
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Figure 9.33: Ecospecies evolution for simulation with five different resources, shown from
top to bottom in the lower panel analogous to Figure 9.15. Total populations not shown
for clarity. We find a lack of innovation in resource utilization and generally limited
innovation, consistent with the more intricate multi-resource system metabolism that poses
more requirements for variations to not be deleterious. The two missing simulations are
shown in Figure 9.34
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Figure 9.34: Second part of Figure 9.34. We find strong niche differentiation, and evolution
of habitat utilization that is otherwise consistent with the findings for a single resource.
What is lacking here, most likely due to the constraints a multi-resource metabolism
system poses, is innovation in habitat- and resource utilization that gives rise to new
bouts of adaptive radiation.

“useful” resources are produced on the output interface (green in Figure 9.37), i.e., the
input resource configuration should be transformed in such a way that the configuration
that appears on the output interface at the end yields building blocks (here, place labels)
in numbers that allow for ever more efficient reproduction. Moreover, Figure 9.37 shows
that innovation in the niche alone, i.e., the usage of resource 1 for t=12500, is not enough,
because the connection P3 7→ T1 is not integrated into the rest of the network at this layer
and is therefore just a neutral element that, evolutionarily, hitchhikes along on adaptive
elements and is lost eventually. This phenomenon has been discussed before and is merely
illustrated further here.

Taken together, we find that the introduction of multiple resources results in additional
complications for evolution that make it much harder for the population to evolve towards
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Figure 9.35: Initial metabolism network for organisms (lower row) and habitat resource
networks (upper row) for all five resources ri. We find some variation in weights, although
the topology of the networks is similar for different resources. Habitat networks show some
inhibitor arcs (red), which have been eliminated by the GA creating the initial conditions.

different regions of the niche space, which was observed before for a single resource.
However, evolution of the metabolism networks themselves, independent of the niches,
is much richer and provides a lot of opportunities for further research. A caveat in this
regard is the implementation of the function that computes if a transition is enabled or
not, which currently evaluates on a per-resource basis, thus forcing metabolic evolution to
proceed similarly across all layers. Changing this to a condition that refers to the set of
involved building blocks would allow for easier resource transformation across transitions
and consequently for a more active metabolic evolution because of an increased evolvability
of the metabolism networks.

In section 12.2 in the appendix, an example of the simulations shown here but with
increased mutationrates is added. It is found there that an increase in mutationrates indeed
can precipitate evolutionary innovations that lead to higher system carrying capacity and
the invasion of other regions in the niche space of the system even for the multiple-resources
case. This, however, has only been observed for a single simulation.
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Figure 9.36: Metabolism networks for the simulation with seed 108320434 for randomly
chosen individuals of the largest niche in timesteps (from top to bottom) 1250, 12500,
22500, and for resources 2, 3, 4 (from left to right) with 1,5 being all zero. Input
interfaces are colored red, output interfaces green, as before. We find, analogous to the
initial condition, that topological differences are minor between resources, while weight
differences are significant. Their evolution is largely consistent with the findings for a
single resource.
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Figure 9.37: Metabolism networks for seed 798797005 for randomly chosen individuals of
the largest niche in timesteps (from top to bottom) 1250, 12500, 22500. Input interfaces
are colored red, output interfaces green, as before. For the middle row, we see that the
niche innovation discussed before does lack connection to the rest of the network and thus
is just a neutral element.
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Figure 9.38: Ecospecies populations for time intervals
[0, 5000], [10000, 15000], [20000, 25000], for the second resource, analogously to Figure 9.18.
We find that for this resource, the situation is similar to the single resource case, although
for some simulations we find a downward trend in the mean shortest paths over time,
consistent with “survival of the flattest”. For seed 798797005, the shortest paths stay
comparatively long for longer times but show an eventual downward trend.
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Figure 9.39: Ecospecies populations for time intervals
[0, 5000], [10000, 15000], [20000, 25000], for the third resource, analogously to Figure 9.38.
Resource 3 is the shortest, and the mean shortest paths are the longest for all simulations
when compared to Figure 9.38 and 9.40, consistent with the expectation that the more
complex the underlying resource system, the more complex metabolisms should evolve.
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Figure 9.40: Ecospecies populations for time intervals
[0, 5000], [10000, 15000], [20000, 25000], for the fourth resource, analogously to Figure 9.38.
The same phenomena as in Figure 9.38 and Figure 9.18 are observed.



10. Phenomenology II: Development, plasticity and
niche construction

We consider rewriting processes in the single-resource case presented in section 9.1. Again,
this aims at an illustration of the phenomenological breadth the model can produce instead
of focusing on individual scenarios in full detail.

10.1 Single-resource, single-cell system with rewriting

We extend the single-resource system with all possible combinations of development,
plasticity, and niche construction. This includes the simulations presented in section 9.1,
i.e., where all these processes are off, for comparison. We compute five simulations for each
combination of rewriting processes, initialized with the same RNG-seeds as before. Two
different cases are presented, one with a given set of parameters for the rewriting processes,
i.e., development, plasticity and niche construction, and one where the size and number
of the available rewriting rules have been reduced to investigate the influence of rewriting
intensity. The initial condition of each simulation contains at least one active rewriting
rule for each process, such that any loss of a rewriting process during the simulation is
secondary.

variable basic reduced
R [0, 30] [0, 15]

LR [0, 3] [0, 2]

Iconstr [10, 20] [5, 10]

Iplast [20, 30] [0, 5]

Idev [0, 10] [10, 15]

N0,constr,dev,plast 3 1
econstr,dev,plast 0.001 0.001

Table 10.1: Rewriting related parameters for the basic scenarios presented in section 10.1.
All other parameters are the same as for section 9.1. We investigate one case (“basic”)
with a given set of rewriting parameters, and a second case (“reduced”) where the number
and size of rewriting rules have been reduced.

Because the number of simulations in this chapter is much greater due to the investigated
parameter combinations (forty instead of five) we focus on the time-development of the
statistics of relevant quantities instead of high-resolution data in specific intervals. The
observed phenomena are presented and possible explanations are discussed. The time-
development of populationsizes for each combination of rewriting parameters are shown in
Figure 10.1 and 10.2. Therein, the panels for [c = false, (d = false, p = false)] (upper
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230 10 Phenomenology II: Development, plasticity and niche construction

left) represent the baseline case presented in section 9.1, i.e., where all rewriting processes
are off.

10.1.1 Niche construction

Niche construction consists of rewriting the habitat’s resource network by organisms.
Across all cases investigated here, we find niche construction to be mostly deleterious
to the survival or growth of the population. In Figure 10.1, niche construction leads to
the extinction (or to the shrinking of the population to only a few individuals) of every
simulated population irrespective of other influences, although the absence of plasticity
seems to allow for longer survival for some cases. For Figure 10.2, where the possible
rewriting rules are reduced in number and size, we find cases where the opposite is true,
however. For seed 798797005 and 97592623 and niche construction only (lower left panel
in Figure 10.2), niche construction allows populationsizes to be attained which are more
than twice the size of the populationsizes attained when all rewriting is off (upper left
in the aforementioned figure), at least temporarily. A similar phenomenon can be found
when niche construction is combined with development and plasticity for seed 59616444,
which however eventually dies off. These population increases are fast and thus can be
assumed to be caused by some adaptive effect, either an adaptation in the metabolism
occurring via natural selection that reacts to a changed habitat resource network, an
adaptive niche constructive change to the latter or a combination of both. This can
be likened to an evolutionary innovation, although one that can be enabled by an active
change to the habitat and not via evolution by natural selection. The rerouting of resources
or introduction of new possibilities for exploitation, i.e., new places in the habitat that
organisms can connect to could have a similar effect. Note that if this modifies the input
interface sizes of the habitat network, these newly introduced places will be the target of the
resource influx and thus will be attractive targets to adapt to. We therefore conclude that
niche construction (or –change), as implemented here indeed modifies the evolutionary
niches of populations as was discussed in chapter 6 and by K. Laland, Matthews, et
al. [2016], although the exact mechanism has not been determined. Moreover, while it
apparently can be adaptive in itself or facilitate adaptive change, this effect is rare, and
overall, strong changes to the habitat networks seem to be mostly deleterious.

Moreover, extinctions happen rapidly, which can be explained by the conditional nature
of Equation 8.3.9 in conjunction with additive rewriting, i.e., a single rewriting in the
habitat resource network can result in the firing condition of an important transition
becoming disabled, which precludes resource flow to its post-set places. When the affected
downstream places are part of an ecological niche of an ecospecies it will lose part of its
sustenance, and the population will rapidly starve to death when the resource supply on
the respective places is exhausted. If that is the case, however, it implies that diversity is
low and the system is dominated by one or a small number of closely related ecospecies,
which is consistent with early stages of evolution as seen in chapter 9.

The fact that the high populationsizes for rewriting are only attained when rewriting
rules are small hints at an insufficient evolutionary history of the system, i.e., ecological
modifications are not integrated into the ontogeny of the organisms adaptively, and this can
only be accomplished during the simulation when their impact is individually small.

Considering the impact of rewriting on the habitat network further, we find in Fig-
ure 10.3, 10.4, 10.5, 10.6 that, where the number of non-zero connections in the input–
and output matrices of the single habitat network in the system is shown, that niche
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Figure 10.1: Populationsize over time for the basic rewriting parameters given in Table
10.1. c, d, p indicate whether niche construction, development and plasticity are on or off,
i.e., the top left panel corresponds to the baseline case presented in section 9.1. Niche
construction always leads to extinction, whereas plasticity and development only allow for
populations reaching the same densities as for the non-rewriting case when they are active
concurrently, and reduce populationsize otherwise or delay the growth of the population.
Moreover, no case for which rewriting is active is free of extinctions or at least very low
populationsizes.

construction leads to an increase in connection density in the habitat’s resource network,
which cannot be reduced again autonomously because modifications do not decay by
themselves. This yields a mechanistic hypothesis for the cause of extinctions: The lack of
evolutionary integration of the niche construction rules likely disables too many transitions
in the baseline case, such that the habitat network becomes effectively inactive. In the
case of reduced rewriting rules, their impact is lessened, transitions are not affected as
much and organisms either adapt via rewriting or via metabolic innovation. We find in
Figure 10.5 and 10.6 for the construction-only case and seed 97539263 that while the
input density reaches a constant value around which it fluctuates, the output density is
still increasing when the simulation ends. The significance of this finding is unclear at this
stage, however.

On the other hand, it would also be possible for the system to survive if organisms would
exploit the habitat’s input places where the external resource influx is placed on. However,
as seen in chapter 9, the evolution of new place utilization patterns by organisms is difficult
and rare, i.e., metabolic evolution is unlikely to keep up with comparatively rapid changes
to the habitat network. If this effect plays a role in the high-populationsize simulations
for the reduced-rewriting case, which in principle could still be possible due to the path
dependency of evolution, has not been investigated, though it seems unlikely.

Plasticity and development in principle could increase the evolvability of the metabolisms,
though this requires, again, the evolutionary integration of the different processes. There-
fore, ontogenetic integration of different rewriting processes becomes a question of timescale
synchronization between effects on the habitat network and the evolvability of the metabolism
networks.
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Figure 10.2: Overview of populationsizes over time analogously to Figure 10.1 but with
reduced number and size of rewriting rules as described in Table 10.1. In contrast to
Figure 10.1, populations survive under niche construction for longer, but only rarely
for the entirety of a simulation. Niche construction alone allows for some simulations
to reach populationsizes over twice the size of the baseline case (compare upper left
with lower left panel). For seed 798797005 this is present only temporarily, whereas
seed 975392623 exhibits a large stable population for the duration of the simulation. A
comparable phenomenon can be seen for seed 59616444 in conjunction with plasticity and
development (lower right), which leads to extinction eventually. Survival rates without
niche construction appear to be higher than for the baseline scenario, especially for
the plasticity-only case. This hints at rewriting allowing for potentially advantageous
modifications which however appear to be difficult to attain and maintain. Given that
niche constructions do not decay, the question remains whether construction is maintained
afterward or if it dies out eventually.
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Figure 10.3: Number of nonzero elements in the input matrix of the sole habitat resource
network for the basic simulations with rewriting over time. Niche construction leads to a
quick increase in nonzero elements, which likely affects the net’s ability to process resources
and thus inhibits resource acquisition. Flat lines correspond to extinction.
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Figure 10.4: Number of nonzero elements in the output matrix of the sole habitat
resource network for the basic simulations with over time rewriting. We find the same
phenomenology as in Figure 10.3. Flat lines correspond to extinction.
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Figure 10.5: Number of nonzero elements in the input matrix of the sole habitat resource
network with reduced rewriting rules over time. Connection density increases in the
beginning before reaching a constant value, with flat lines indicating that no construction
happens due to extinction or inactivity.
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Figure 10.6: Number of nonzero elements in the output matrix of the sole habitat resource
network with reduced rewriting rules over time. For seed 975392623, lower left, we find
a continuing increase in connection density over time, in contrast to the input density in
Figure 10.5. The significance of this finding has not been investigated further, however.

10.1.2 Development and plasticity

We now focus no the cases without niche construction, i.e., on the upper row in Fig-
ure 10.1 and Figure 10.2. Development and plasticity are qualitatively different from
niche construction because they act upon individuals, i.e., their effect is fully monopolized
by organisms. Consequently, we can attribute the evolutionary maintenance or extinction
of these two processes directly to natural selection on individual populations in which
they are expressed. Overall, we find that development and plasticity also lead to frequent
extinctions or at least greatly reduced populationsize, with only some simulations being
able to reach populationsizes comparable to the baseline case or exceed them. The
largest populationsizes are thereby attained when development and plasticity are active
concurrently, with populationsize breakthroughs, previously associated with evolutionary
innovation, being delayed for many simulations in the development-only case when com-
pared to the cases without rewriting.

Rewriting is always costly. Aside from the hypothesis that plasticity– and developmental
rewriting rules interact beneficially, there is also the possibility that because of the additive
cost of both, selection against rewriting occurs more strongly for the surviving populations.
Consequently, rewriting will be lost more quickly, which results eventually in a scenario
corresponding to the baseline case where all rewriting is off, but with altered initial
conditions. The quick increase in populationsize for seed 798797005 in Figure 10.2,
upper right can be likened to an evolutionary innovation as seen in chapter 9, but the
question remains whether this comes about through metabolic adaptation or plasticity or
development. A loss of rewriting would be more likely for the reduced-rewriting scenario
in Figure 10.2 because the initial organism only has one functioning initial rule per active
rewriting process which consequently can be lost more easily than the three required rules
in Figure 10.1.

Development and plasticity can also be maladaptive because the initial algorithm does
not force the rules to be advantageous. A maladaptive rewriting rule applied to the
metabolism network incurs a twofold cost because it costs material to apply and damages
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the metabolism such that resource acquisition becomes less efficient or effective. Con-
sequently, maladaptive rewriting plays a similar role to the accumulation of deleterious
mutations in the mutational meltdown process, which can lead to extinction as well.
Indeed, where there is variation in rewriting, we would assume that maladaptive rewriting
will be lost quickly. While maladaptive plasticity does occur in nature, for the simulations
presented here we attribute its existence more to the lacking integration of the rewriting
into the lifecycle of the organisms, i.e., natural selection had not enough time to shape
them into integrated, adaptive forms.

All these phenomena possibly can occur in the simulation results presented here, span-
ning a wide range of natural phenomena and allowing for deeper investigations in the
future. When interpreting these results, however, it must be noted that the modifications
made to the habitat network do not decay over time, which would normally be the case in
nature, at least on a long enough timescale, and that the system is not spatial, which can
arguably alleviate extinctions. The investigation of these effects is left for future work,
however.

10.1.3 The evolution and maintenance of rewriting processes

In order to investigate how rewriting rules evolve, we focus on how much energy organisms
invest into rewriting. As shown in Table 10.1, rewriting a single symbol in any rewriting
rule costs 0.2 energy units, such that the statistics over the energy investment into rewriting
rules over time tells us something about how rewriting processes are influenced by natural
selection and how they, in turn, influence it. Moreover, trends in the overall number
of rewriting rules can hint at the adaptiveness of rewriting or its neutrality, and at the
interaction between different rewriting processes.
Plasticity and development for the baseline case We first focus on the baseline case
(compare Table 10.1) and on the evolution of the mean overall number of rewriting rules
in Figure 10.7. We do not consider the evolution of niche construction for this scenario,
because the case with reduced rewriting rules shows the same phenomena, but additionally
includes surviving and thriving populations for pure niche construction, such that an
analysis of the reduced scenario is deemed sufficient.

For the baseline scenario, all simulations start out with nine initial rewriting rules. For
the case where all rewriting processes are off, the rules still exist, i.e., the evolution of their
number is neutral with respect to the effect of rewriting on the evolutionary trajectories.
When development and plasticity are active concurrently, the number of rules increases
in a stepwise fashion without much of a reverse trend being apparent. Since this stepwise
increase is absent in the baseline case without rewriting, we interpret this as evidence that
development and plasticity in conjunction are adaptive, such that metabolic rewriting
becomes an important part of the system’s evolutionary trajectory. This is less clear for
the development-only case, where simulations 798797005 and 108320434 show somewhat
contradictory behavior, indicating distinct evolutionary trajectories.

For deeper insight, we turn to the energy investment of organisms into each type of
rewriting process, which illustrates how individual rewriting processes evolve and trade off
against each other. In Figure 10.8 and Figure 10.9, a complex interplay between plasticity
and development is apparent: When both are active at the same time, the simulation with
seed 795797005 shows intricate behavior where plasticity– and developmental investment
increase together around timestep 12000 after the latter was predominantly lost, only
for development to become reduced again. While there appears to be a downward trend
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Figure 10.7: Statistics of the number of rewriting rules (accumulated over all rewriting
processes). Mean as solid lines and (min, max) range as shaded area. For the top left
panel, there is no rewriting but the rules are still part of the genome, i.e., this case can
serve as a baseline for comparison. For d = true, p = true, c = false, we find a stepwise
increase in the number of rules with very little variation and without subsequent loss of
rules, which hints at evolutionary advantages being conferred by an increased number in
rewriting rules. This trend does not persist for all other process combinations, which hints
at evolutionary relevance of active development and plasticity. When niche construction
is active, upward trends are apparent for most surviving populations, which raises the
question if there is selection for compensatory rewriting either in the habitat IPN or the
metabolism.

in the last 5000 timesteps for developmental investment in Figure 10.8, this seems to
be weak and longer simulations would be needed to determine the further evolution of
mean developmental investment more clearly. Seed 975392623 appears to tend towards
losing its rewriting system completely over time, although temporarily a similar behavior
to seed 798797005 can be gleamed at t = 20000. Mean plasticity investment, however,
becomes quickly very low and appears to be mostly lost by timestep 10000. Finally,
seed 108320434 shows purely development, with no plasticity investment. Moreover, it
appears to tend towards an increase in developmental investment over time. We note the
asymmetry between developmental and plastic rewriting rules: The former are only applied
once when the organism is first created, while the latter can be applied repeatedly over
the lifetime of the organism and incur material– and energy costs each time. Moreover,
development is neutral with respect to the material cost, because developmental rules are
always considered part of an organism’s genome, irrespective of whether development is
active or not. Consequently, development does not incur further material costs while
plasticity (and niche construction) do. Therefore, if costs are a relevant factor that
precipitates selection against rewriting, we would expect this to be more relevant for
plasticity. However, no clear pattern emerges for the sample sizes shown here that would
allow us to strengthen the case for selection against plasticity.

Plasticity is mostly lost where it is the sole rewriting process available. Development, on
the other hand, is often retained by a fraction of the population, hinting at developmental
rewriting becoming integrated into the lifecycle of organisms, with possibly multiple dif-
ferent strategies being involved. However, although development does not incur additional
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material costs when it is active, it is not maintained by the majority of the population,
indicated by the mean development investment being close to zero where it alone is active
in Figure 10.8.

Loss of plasticity where it alone is active in Figure 10.9 coincides with a strong increase
in populationsize for seed 798797005, although for seed 108320434 loss of plasticity appears
to be delayed compared to population increase. Such a phenomenon has previously been
identified as an evolutionary innovation that allows access to different, and more produc-
tive, parts of the niche space, but the differing temporal correlation between population
increase and loss of plasticity makes it unlikely that the same mechanism causes both
events. A multitude of possible explanations present themselves at this point. Genetic
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Figure 10.8: Energy investment statistics into development over time for the baseline
rewriting scenario. Mean shown as a solid line, with minimum–maximum range shown
as shaded areas. Where absent, minimum and maximum coincide. Where d = false,
development doesn’t occur and investment is consequently zero. We find no obvious
correlation between rewriting investment and populationsize, although fluctuations in
the mean investment hint at internal evolution. There is no clear trend for or against
development, with both increases and decreases in developmental investment being
present.

assimilation of adaptive rewriting effects is possible via the crossover mutation. Of primary
interest, of course, is the possibility of plasticity-led evolution. For seed 108320434 and for
seed 798797005, when only plasticity is active in Figure 10.7, we find a dip in rewriting rule
size coinciding with an increase in populationsize, followed or paralleled, respectively, by
a loss of rewriting. A plausible mechanism here is a crossover mutation which assimilated
a rewriting rule into the genome. In fact, a closer look at the time evolution of seed
108320434 reveals that the increase in populationsize coincides with an initial increase
in plasticity investment when plasticity is the only active rewriting process, and only
after that is plasticity eventually lost. This is consistent with a scenario in which a
more plasticity-reliant variant increases in frequency in the population and gives rise to a
daughter variant that either has assimilated a plastic effect or developed other adaptive
mutations that enabled it to eventually replace the plastic variant. Further research
is required to establish the exact mechanism, however, the possibility of plasticity-led
evolution is intriguing.
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Figure 10.9: Energy investment into plasticity for basic simulations with rewriting. When
plasticity alone is active, plastic behavior is predominantly lost, whereas when it occurs
together with development, it is kept for seed 798797005 but lost for the others. Therefore,
adaptive interactions between the metabolic rewriting systems appear possible, but are
comparatively difficult to achieve.

For the seed 798797005, where the clear delay is absent, the evolutionary innovation
responsible for the population increase could, however, also be a simple adaptive replace-
ment of an existing lineage with a new one that has lost rewriting. Given the quick drop
in plasticity investment, this appears to be the more plausible alternative. This illustrates
that Amee shows interactions between evolutionary processes as we would expect from a
comprehensive model of evolutionary dynamics, and confirms its applicability to modern
research questions. The large variability between individual simulations however would
require larger sample sizes for deeper investigations.

Because we have no dynamic environmental structure and no spatiality in the baseline
scenario, no other strategies like bet-hedging or habitat choice can evolve. Longer simula-
tions could reveal if rewriting strategies can reemerge at a later time after they have been
lost, given that the number of rewriting rules shows no general downward trend even when
they are mostly inactive. Finally, developmental rewriting appears to prolong survival
when niche construction is active and mean developmental investment is comparatively
high for this case, again confirming interaction between rewriting processes. Indeed,
niche construction can enable or disable metabolic rewriting rules which are dependent
on habitat structures to become active. Consequently, the interaction network among
rewriting rules would be an interesting future line of investigation.

However, in contrast to natural systems, the processing systems for biological informa-
tion that allows natural phenotypes to successfully construct the succession of complex
phenotypes that makes up the developmental dynamics is, as far as can be seen from
the results so far, not well integrated because the simulated evolutionary history is not
long enough for it to develop. Indeed, an important future research direction would
be to investigate under what conditions evolving rewriting systems as shown here can
produce systems we could interpret as effective, fitness-enhancing biological information
processors. While mechanistically there is no apparent reason why they should be funda-
mentally unable to do so, given that a nonlinear input-reaction-output system is in place,
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evolutionary trajectories producing them are likely far longer with larger populations than
can be realized at the moment.

Reflections on the ecospecies concept, realized– and fundamental niches with rewriting
Development only occurs once when the organism is born, and therefore it does not
dynamically influence the ecological niche of an organism during its lifetime. Development
rules can, however, be vital for the successful creation of a suitable ecological niche and thus
can contribute to the organism-environment fit characteristic of natural evolution.

The same is true for plasticity in principle, but because plasticity-rewriting can be
applied in each timestep, it can change the ecological niche over an organism’s lifetime,
such that a single organism belongs to multiple ecospecies. This is not unlike the examples
for ontogenetic niche shift discussed in chapter 5. Similarly, niche construction by the same
or other organisms can produce temporal variation in the habitat IPN, which in turn can
change the realized niche of an organism. Indeed, these shifts are at the core of niche
construction’s effect on natural selection pressures.

For Amee, this means that any organism can have multiple niches, both fundamental
and realized, during its lifetime when niche construction and plasticity are active, while
niche construction alone can only lead to shifts in the realized niches because it does
not affect metabolism networks. Indeed, plasticity-rewriting, together with the inclusion
of environmental signals into its conditions, captures the principles of environmentally-
dependent ontogenesis.

That being said, with regard to the ecospecies concept we employed in chapter 9, we
find that given the intra-lifetime variability in ecological niches that is introduced through
plasticity and niche construction, the ecospecies concept is insufficient to describe the
system’s dynamics. As such, they are not investigated in this chapter. Instead of relying
on ecospecies alone, we would need a more encompassing concept. This could be based on
the genome and the rewriting rules it defines, i.e., be roughly equivalent to a genetic species
in nature. This would allow us to investigate the evolution of ontogenesis in conjunction
with ecological effects, such that the modification of natural selection on genetic species
can be understood as a function of the developmental effect on ecological interactions.
While possible in principle, more conceptual work is necessary to map a suitable species
concept to Amee.

Evolution of development and plasticity for reduced rewriting rules Finally, we inves-
tigate the evolution of rewriting investment when rewriting is reduced in impact. We find
in Figure 10.10 that the increase in the number of rewriting rules over time relative to the
initial number is stronger for the reduced-rewriting case when compared to the baseline
case discussed previously, reaching similar levels for some simulations (e.g., seed 798797005
for the plasticity-only case) despite starting with three rules (one per process) instead of
nine (three per process). An increase is also present when rewriting is off completely,
leveling off within the first third of the simulation time. While the number of attained
rewriting rules is mostly within the variability shown by the neutral case, we find the
behavior of the mean number of rewriting rules to be qualitatively different, with stepwise
increases and often reduced range of variation being apparent, which hints at selection
being active, i.e., that the existing rules play a role in the fitness of the organisms. Without
niche construction, the individual simulations in each panel also appear to qualitatively
differ in their time evolution in Figure 10.10, while the neutral case naturally shows strong
overlap. Rewriting consequently alters the system’s evolutionary trajectory, as seen before
for the baseline case.
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Figure 10.10: Evolution of the mean rewriting rule number (solid line) and the (min,
max)-area (shaded) over the population over time for the reduced rewriting case (compare
Table 10.1). While mostly within the range of values the neutral case (all rewriting
processes off, upper left panel) shows, the behavior is qualitatively different when the
rewriting of any kind is on, indicating that at least some rewriting rules are influenced by
natural selection.

Developmental rewriting once more appears to be preferred over plastic rewriting when
both are active in Figure 10.11, although no clear trend across simulations is apparent.
This shows that many different alternative strategies are possible with respect to devel-
opment, plasticity and genetic evolution. When the mean investment into a rewriting
process falls below 0.001 energy units (the minimum rewriting cost corresponding to a
single rewritten symbol), this indicates that many organisms in the population don’t
invest in the respective rewriting process, while a minority still does. Where this is
maintained over longer times, this hints at the coexistence of different strategies. Their
emergence, evolution and maintenance is an interesting topic because rewriting is costly
and thus involves a trade-off against investment into reproduction, but this is left for
future research.

Furthermore, we find in Figure 10.12 that plasticity is maintained to a higher degree than
before and for longer times, at least by some organisms, although the mean values come
very close to zero for seeds 798797005, 975392623 and 98555521. Therefore, the reduced
impact of shorter rewriting rules appears to lead to less detrimental effects when compared
to the more impactful rules used before. We furthermore find that the temporary increase
in populationsize for the case where all three rewriting processes are active in Figure 10.2
for seed 59616444 is connected to a weak increase in developmental energy investment.
This is consistent with a scenario in which the innovation that allows for the more
effective resource exploitation which must underly this increase arises as a developmental
modification. Interestingly, this follows the near complete loss of development after
it was maintained for roughly 5000 timesteps, and the increase in mean development
investment precedes the increase in population. Moreover, the subsequent extinction
is associated with a similar effect, although the exact underlying mechanism remains
unclear at this point. Given that the population size reduces quickly, statistical artifacts
cannot be ruled out. Similar phenomena occur for seed 798797005 in the leftmost panel
of Figure 10.2, lower row. These do not lead to extinction and do not rely on plasticity or
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Figure 10.11: Mean investment into development (solid lines) and extend of variation
((min, max), shaded areas) with reduced rewriting rules. We find that development is
maintained for longer and to a larger extent relative to the starting point than for the
baseline case. When development and plasticity are active concurrently, development is
always maintained, although trends in the mean investment into developmental rules are
not uniform, indicating that which strategy comes to be prevalent in a system depends on
its history and details. The population dies out for development + niche construction, in
contrast to the baseline case.

development because they are inactive. Therefore, other effects than metabolic rewriting
are more likely to result in these temporary increases, as previously discussed. Moreover, in
contrast to the baseline case where development was maintained in conjunction with niche
construction, for the reduced case considered now, plasticity is maintained. Therefore,
smaller rewriting rules appear to favor plasticity overall, likely because they reduce the
cost impact. This show that plasticity and development, acting on the same network,
can act in somewhat interchangeable ways for small rules which reflects their symmetric
implementation. Irrespective of the parameters, however, we find from the presented
results that ontogeny in Amee must consequently be seen as a combination of both, plus
the initial creation of the metabolism network from the genome. This is in agreement with
natural systems as discussed in chapter 5.

In chapter 13, statistics over time are shown of how often organisms have applied a given
rewriting process. We find that most organisms apply a rewriting rule only once at most,
with many not using them at all, especially for plasticity. Therefore, where rewriting allows
for the survival of the population, it seems to rely on its lessened impact, highlighting again
the lack of integration of the rewriting system into the evolving population’s developmental
system.
Evolution of niche construction for reduced rewriting In contrast to rewriting of the
metabolic networks, niche construction is frequency dependent because all organisms can
rewrite sequentially the same habitat motif. This is a consequence of making rewriting
additive which is a modeling choice. Therefore, a plausible hypothesis for why niche
construction leads to extinction is that too many organisms with the same rewriting rules
affect the same pathway in the habitat network, thereby disrupting it and degrading the
environment. We would expect evolution to react to such disruption if the timescales of
evolution and niche construction are similar enough, i.e., if the effects of niche construction
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Figure 10.12: Mean investment into plasticity (solid lines) and extend of variation ((min,
max), shaded areas) with reduced rewriting rules. We find plasticity to be maintained to
a higher degree than before, although this often hinges on comparatively few individuals
(mean close to zero, maximum greater zero). For the plasticity-only case, higher rates of
plasticity investment are maintained, though mostly without significant trends. We find
that plasticity is maintained under niche construction until extinction, in contrast to the
baseline case.

on the environment are such that genetic change or plasticity can follow, and conclude
further that for the current parameters and the current implementation, this timescale
problem is not addressed.

We focus on the case where the number of rewriting rules is reduced because this
scenario shows populationsizes for pure niche construction, which is absent for the baseline
case.

In Figure 10.13, a comparison with Figure 10.2 shows that niche construction investment
is maintained on a very low level for seed 975392623 when it is the sole rewriting process.
This is also the only system where a high population size larger than 5000 organisms is
maintained continuously. Seed 798797055 shows some niche construction activity that is
temporally correlated with the increase in population around timestep 2000 in the lower
left panel of Figure 10.2. A continuously maintained niche construction maximum greater
than zero means that in every timestep there is at least one organism that engaged in niche
construction. Moreover, the amount of maximum energy investment shown corresponds
mostly to the application of a rewriting rule that is comprised of a single symbol that
is rewritten once, with values above that being found only temporarily. Note again that
rewritten structures in the habitat do not decay and that rewriting is additive. Rewriting
the same symbol continuously would therefore correspond to an increase in its weight. If
this affects an input symbol from a place to a transition, this eventually will reduce the
firing frequency of the transition or disable it completely. A single rewrite operation,
however, still can have large effects if it changes the structure of the network in an
important pathway, or just crosses the threshold that deactivates a transition. That being
said, in conjunction with Figure 10.5 and 10.6, niche construction on the low level found
here appears to be not harmful. A behavior as found for seed 975392623 in Figure 10.13
when niche construction is the sole active rewriting process consequently allows for the
existence of variation in rewriting rule activity and for the integration into the ontogenetic
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process of organisms. Furthermore, we conclude that intermediate or low levels of active
niche construction should be the norm in Amee. Indeed, the relatively intensive rewriting
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Figure 10.13: Energy investment statistics into niche construction for reduced rewriting
rules. Mean being shown as solid lines, (min, max)-extend as shaded areas. Niche
construction is never maintained by the majority of the population, and a continuous
nonzero maximum is only found for seed 975392623 when niche construction is the sole
active rewriting process. Where it is combined with development and plasticity is off, we
find relatively intensive rewriting in the beginning which leads to immediate extinction,
whereas niche construction is only sporadically active for the rest of the population.

at the beginning of the (d=true, p=false,c=true)-simulation in Figure 10.13 shows a
potential case where it had strongly deleterious effects. The spike in investment, produced
by the first or the first few individuals, corresponds to three symbols being rewritten,
and comparison with Figure 10.14 shows that this is indeed a single rule with three or
so different symbols that are affected by it. All in all, it appears that niche construction
mostly produces some kind of deleterious influence that cannot be compensated for in the
long run. Given that most organisms do not engage in niche construction, this is likely an
effect of its nonlinearity, exacerbated by the conditional activity of IPN transitions which
is quite easily disrupted.

Given that niche construction influences the environmental structure and that devel-
opmental and plastic rewriting rules can conditionally depend on the presence of such
structures, and given that they in principle can be important for the formation of an
effective metabolism, niche construction also could disrupt these signaling pathways and
therefore, especially at the start of a simulation where the population is low and homoge-
neous, disrupt the necessary developmental or plastic rules where metabolic rewriting is
active. Indeed, rewriting rules can be quite specific, especially for small rules, such that
any change to the few target nodes such rules have can disrupt them completely. This
again hints at a lack of integration of rewriting into a functioning developmental system
for the current simulations. All that being said, the system shows a plethora of promising
phenomena for future research, but especially for the effect of niche construction, no clear
explanations have been derived for its observed behavior in isolation or in combination
with other rewriting processes.
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Figure 10.14: Statistics over how often organisms in the population have engaged in niche
construction over time, mean as solid lines, (min, max)-range as shaded areas. We find that
organisms don’t rewrite the habitat more than once and that niche construction remains
sporadic for the vast majority of simulations, reflecting niche construction’s permanence
and the conditional nature of the rewriting rules.

Discussion We forego further analysis and description at this point, because the core
effects leading to the observed behavior, even if the details vary, appear to have become
clear. Invoking the view of natural organisms as dynamic processing systems for biological
information (see subsection 4.1.6), the lack of evolutionary history in the system appears
to be the main cause of deleterious effects of rewriting, i.e., the rewriting processes are only
required to be active as part of the creation of the initial condition but their adaptive effect
over the organism’s lifetime is not considered initially, and only unfolds once the simulation
is started. Therefore, their interaction is essentially random, and given their complexity
it is hardly surprising that rewriting processes generally are not interacting in a way that
enhances the fitness of organisms or reflects natural systems more closely which again
results in the expectation that larger, longer running systems should eventually evolve
more integrated systems. Another way to alleviate this issue lies with the initial genetic
algorithm, which currently takes the first solution (for given conditions) that it finds
and stops immediately. Instead, it could be kept running after this point with a different
fitness function geared towards rewriting integration, such that the “missing” evolutionary
history of the system could be included to some degree. Another line of investigation
would be larger IPN networks with more places, but without increasing the rewriting
rules concurrently. In this way, their effect selective effect could be more limited and the
increased possible variation would allow for natural selection to form their interaction over
time. That being said, even for the cases presented here, we found possible plasticity-led
evolution and advantageous niche construction effects, which allows the expectation that
more substantial results are not far off from the current implementation. The interaction
network of rewriting rules would be a prime target for future research because it reveals
the structure of the developmental system of an organism and could produce insights into
the assembly and evolution of such systems. Multiple resources have also been left out of
consideration, and given the complexity of the single-resource scenario shown, the impact
of multiple resources is difficult to judge. It must be said, however, that the breadth of
phenomena Amee shows with regard to plasticity, development and niche construction is
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arguably too large to present in one work, and so the insight gained at this point remains
limited.

10.2 Outlook: Spatiality

The results presented here are limited to a single habitat, but all natural systems are
spatial in some way. Indeed, spatiality plays a vital role in speciation, ecology, and the
differential survival of different lifecycle strategies and is thus essential for the origin
and maintenance of biological diversity. Amee can represent spatial systems as a two-
dimensional, rectangular grid of habitats, each with its own resource-processing IPN,
connected by the 8- or 4-neighborhood. Each habitat can be settled by an arbitrary
number of organisms, i.e., Amee simulates extended habitats as single grid cells inhabited
by many organisms.

While not explicitly shown here, in a spatial system, we expect extinctions to be reduced
because organisms can move to other habitats if the current one is no longer suitable. Niche
construction, assuming it to be integrated into the ontogeny of the individuals in a way
that is at least not harmful, can structure the grid and introduce spatial heterogeneity,
which in turn increases the niche space size. We, therefore, expect more ecospecies to
exist in a spatially heterogeneous system. Moreover, niche construction could enable the
emergence of distinct biomes by facilitating the existence of a set of “species” in one
part of the grid while excluding others, with niche-constructing organisms playing the
role of ecosystem engineers. The disruption of environmentally enabled developmental–
or plasticity-pathways provides a powerful mechanism for such exclusions. Additional
variability in the population brought about by spatiality could also play a role in the
faster evolution of the rewriting systems, thus possibly allowing for the evolution of
better integrated ontogenetic systems even without modifying the creation of the initial
conditions.

This opens a multitude of future research pathways. For example, possible trade-offs be-
tween relocatory– and perturbatory niche construction could be investigated more deeply,
thus continuing work by Scheiner, Barfield, et al. [2021a]. The evolution of developmental
systems can be studied in a more realistic setting than presented herein, shedding light
on the occurrence of plasticity-led evolution. Different regions of a network contain
different habitat networks, producing different environmental signals for development,
which would allow for polyphenism in a way not possible for non-spatial simulations.
The evolution of organism mobility, either in a purely ecological setting or together with
different combinations of rewriting processes, is also of interest because it provides a niche
space dimension that can be exploited to facilitate coexistence. Finally, the structuring of
an initially homogeneous habitat by niche-constructing species and the emerging spatial
patterns could be investigated in a system that allows for the easy addition or removal of
ontogenetic and ecological processes.
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11.1 Summary

This thesis is divided into two major parts. In the first part, modern evolutionary theory
was reviewed with a focus on self-organization, inheritance, and development, which
resulted in viewing evolving entities as processing systems for biological information that
unfold via guided self-organization. Development has thereby been identified as a central
element and as the focus of evolution.

This view is grounded on the concept of complex constructive systems derived from
complex adaptive systems to describe complex adaptive systems that produce, over time,
complex and cumulative adaptations to external conditions and de-novo innovations in an
open-ended fashion. This includes especially the autonomous emergence of higher-level
structures, which come about as motifs in lower-level interaction networks.

The idea of CCS rests on the concept of complex adaptive systems, interpreted as
networks of interacting agents which themselves are complex and interact nonlinearly. We
postulate that a subclass of these systems has a process that evaluates the performance of
traits of a CAS or of its elements and a second process that produces new traits on the basis
of this performance. As a corollary, these systems produce a reservoir of traits, accessed
and modified by the trait discovery process, which we know as memory in the context of
learning systems or as the gene- (or, more general, trait-) pool of evolving systems. Indeed,
through these three properties, complex constructive systems conceptually unify learning-
and evolving systems. “Evolving” does not just refer to evolution by natural selection in
a population of biological organisms but includes all possible systems in which Lewontin’s
three principles – variation, reproduction, and inheritance – are active. This includes
culture, which combines learning and evolutionary processes but on a more Lamarckian
basis. Lamarckian and Darwinian evolution have been examined in chapter 3 in terms
of complex constructive systems, and their respective differences have been established
concerning trait discovery, performance evaluation, and trait memory, which was also used
to establish some basic properties of Darwinian natural selection and biological evolution
in general, like evolutionary relativity and continuity, advantages of sexual selection and
the role of neutral evolution.

A large section of this work has been devoted to inheritance processes (chapter 4)
and the way they operate in nature, given their central role in the process of Darwinian
evolution and the formation of biological CCSs. A dynamical systems interpretation
showed how the inheritance process decays into different elements based on the concept
of a von Neumann universal constructor, which is made up of an encoding function for
heritable information, a decoder system (syntax), and a translator system (semantics).
This syntax-semantics split has been identified as a central element and a watershed that
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divides heritable information systems into those with unlimited encoding capability, which
enables the construction of arbitrary phenotypes, and those that lack this split and rely
on template-based reproduction, thus being limited by the properties of the system to be
reproduced. This property, consequently, introduces a two-level separation in the concept
of complex constructive systems, which divides them into an essentially unlimited class
(those with syntax-semantics split) and a limited class (those that lack this). Chapter
4 introduced the concept of biological and, building on that, heritable information and
showed that the process of copying heritable information from one individual to the next
is only one step of the reproduction process, with the translation of this information into a
system that can interact with its environment on the one hand, and growth of the produced
phenotype into a reproductively viable state on the other being necessary complements
to it that are a direct consequence of the assumed nature of biological organisms as
CAS. The presentation then proceeded through a zoo of facts from the genetic encoding
mechanism over translation and transcription mechanisms to gene-regulatory networks
and genetic expression. This introduced the notion of genomes as processing systems for
biological information, with gene-regulatory networks implementing the processing logic.
The same discussion was then extended to other inheritance forms- epigenetic, ecological,
and cultural inheritance. For all of these, it was found that a symbol system in analogy
to genetics is largely lacking or at least not fully developed, with cultural inheritance in
humans being arguably the most developed. This walk through the garden of inheritance
also served to show how one inheritance scheme can create a scaffold for the emergence
of another by coopting some of its structural elements, a concept introduced before in the
context of Darwinian evolution.

The depth of discussion in this chapter allowed for a more shallow treatment of de-
velopment and plasticity in chapter 5, which focuses on the processes of ontogenesis and
growth and their evolutionary significance, in itself a direct corollary of the dynamical
system’s view of inheritance. Building on chapter 4, it was examined how these processes
create and modify phenotypic variation on which natural selection can act and that, as
a consequence, an evolving population of organisms must be regarded as an evolving
population of lifecycles, i.e., organisms are not just static vehicles for genes or interactors
with constant structures, but are dynamic entities that inherit, grow and reproduce in
response to environmental conditions and thereby form the substrate on which natural
selection ultimately acts. While development is strictly only a property of multicellular
organisms, the fact that unicellular organisms develop in organized cycles allows us to see
lifecycles, i.e., developmental processes, as the fundamental element on which evolution
acts.

This idea was then illuminated from an environmental point of view in chapter 6,
where it was shown how the concept of organisms as dynamic processes extends into their
environment through their actions and the artifacts they produce. These change how they
themselves, but also many others, interact with their environment and thus modify the
selection regime they are subject to. Thus, natural organisms shape their own evolution in
two ways - through developmental and phenotypic plasticity on the one hand and through
niche construction and extended phenotypes on the other. In other words, developmental
processes are not passive consumers of biological information but have evolved elements
that actively modify and create the signals they use to unfold. Moreover, environmental
modifications can produce spillover effects that change the dimensionality of the niche
space and the system’s carrying capacity both in terms of pure populationsizes but also
in terms of niche- and species diversity.
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Moving over to the second part of the thesis, the utopia project has been presented in
chapter 7, which is a software framework for the modeling of complex adaptive systems
using C++ and Python, the data-management part of which has been developed as a
part of the present work. The basis of this module is formed by the HDF5 package, with
a modern wrapper library and management system for the scheduling and execution of
complex data extraction tasks.

The Utopia package was then used to implement a model for biological CCS (Amee)
(presented in chapter 8), which is based on the process-modeling language of Petri-Nets
and represents the first attempt at employing such an architecture to model evolution.
The guiding principles have thereby been derived from the theory part, which results in a
comprehensive model that includes genetic evolution, plasticity, development, and niche
construction in addition to a basic resource-consumer ecology.

The IPN-language provides us with a set of basic building blocks that can be seen as self-
organizing, i.e., building blocks form Petri-nets by virtue of their own underlying dynamics.
This highly simplistic “artificial chemistry” forms the lowest level of organization and
allows for the creation of complex, adaptive systems through the combination of its
elements based on simple rules.

Evolution then acts on the second layer of organization in the model: Organisms are
conceived as being comprised of a self-reproducing, growing metabolism, which in turn is
modeled with an open IPNs. The habitat these organisms live in is imagined as an IPN as
well, which represents a section of a natural ecosystem that we see as a resource-consumer
network. The organisms can attach to the nodes of this network, extract resources from
them, process them through their metabolism, and use them to reproduce their own
structure, which is encoded in a linear genome that encodes their metabolism IPN. Thus,
we assume a syntactic-semantic split to be present and do not examine its evolution.
The highest layer of the system is comprised of net rewriting systems, i.e., a set of rules
attached to each organism that defines how a given motif in the network can be replaced
with another IPN. While based on NRSs, this system has been modified significantly to
include environmental and organismal signals into whether a rewriting rule can be applied.
This scheme implements development, phenotypic plasticity, and niche construction with
a single algorithm. In total, Amee was aimed at implementing the principle structure of
biological CCSs in a simplified manner, which is still complex enough to create a wide
variety of natural phenomena.

Finally, experiments have been performed for the non-rewriting part of the system with
single and multiple resources in a non-spatial setting that elucidated the emerging ecology
of the system. It has been shown that the system unfolds via two processes: Adaptive
radiation of an ecospecies into a group of successively dominant but related ecospecies that
leads to the exploration of a subset of the available niche space and the eventual attainment
of a local fitness maximum. Thereafter, the system can stay confined to this subspace for
long times, with further ecological turnover most likely being driven by neutral processes
or, at most, by weak selection. This regime leads to a differentiation of ecospecies such
that a group of coexisting but related ecospecies evolves. While most are very shortlived
because each new ecospecies starts out with a single organism, the evolution of the system
nevertheless contains remarkably long-lived ecospecies. For a single resource, this process
gives rise to evolutionary innovation that makes it possible to leave the local niche space
volume and go on to produce adaptations that allow for higher carrying capacity and
more efficient usage of the available resources. These innovations could happen at any
time in the simulation and give rise to a new bout of adaptive radiation that eventually
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leads to the attainment of a new local fitness maximum and the re-establishment of the
niche-differentiation regime. All these findings are largely consistent with expectations
based on observation. Thus, Amee produces a form punctuated ecological equilibrium,
i.e., ecological dynamics with a neutrally dominated species overturning rate, interrupted
by evolutionary innovations that can lead to strong regime shifts. The influence of
the network structure of the habitat as a structuring pattern for the evolution of the
population has been left for future work. However, it can be expected to be very significant
for the adaptation options of the population and, thus, for the observed evolutionary
dynamics.

For multiple resources, it has been found that, due to the more complex metabolism,
evolution is more restricted and consequently much slower, with almost no substantial evo-
lutionary innovations being observed that would yield a change in the carrying capacity of
the system on the level of those seen for a single resource. Rather, the system transitioned
quickly into the punctuated equilibrium regime, largely restricted to the initially occupied
niche space volume. In all cases, it was revealed that the system mostly stays confined
to the initial habitat utilization pattern, hinting at the difficulty of fundamental niche
change, which would likely require much larger or longer simulations.

A closer investigation of the evolution of the metabolism revealed a highly complex
phenomenology that ranges from a “survival of the flattest” effect in which organisms
evolve short, high-efficiency metabolic pathways to metabolic switches in which “parasitic
transitions” that have no post-set are turned off by increasing their input weights to the
point where they are no longer enabled at the same time as important metabolic pathways
that otherwise would be harmed by their presence.

On the other hand, it has been shown that the metabolism is evolutionarily “brittle”,
i.e., its evolvability is restricted, most likely due to the way the firing condition for
transitions is implemented and because the network architecture is, due to the complicated
interdependencies of its pathways, challenging to change. The former issue can be changed
relatively simply while the latter, however, is intrinsic to such an architecture, which begs
the question of how the biosphere solved this problem. The most likely explanation is
time and sample size, but also probably modularity (compare chapter 4).

Finally, it has been shown that the system produces higher-order groupings of ecospecies,
which should be expected given previous results and the nature of evolutionary change.
While the methodology has potential for improvement, the current version was sufficient
to qualitatively show how the individual ecospecies evolution discussed above merges, for
higher-order clusters (“eco-genera”), into a longer-term punctuated equilibrium with far
lower overturning rates, i.e., much increased lifetimes of eco-genera when compared to
ecospecies, which represents a natural outcome for such systems. Therefore, we can see
the radiation of an initial niche as an adaptive radiation of a single genus. Whether this
resulted in the coexistence of multiple such eco-genera on a similar population level largely
depended on system details, but as a rule of thumb, a single one was dominant while others
existed on low levels. However, it has been shown that long-existing eco-genera that always
had low populations can still give rise to ecological innovations that change the carrying
capacity of the system, an observation consistent with the evolutionary behavior of many
natural families of animals.

Overall, the analysis was somewhat hampered by computational limitations, which
made the restriction to intervals of 5000 timesteps necessary. Increasing these to the full
simulation length would produce deeper insight into the various evolutionary phenomena,
as would longer simulation runs with larger sizes.
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Finally, it has been shown how sensitive the system reacts to variation in the initial
condition and small changes in the sequence of random events in a simulation, which is
consistent with the behavior of natural evolving and generally nonlinear systems. This
behavior is primarily owed to the complexity of the organism structure and must be
considered when planning experiments with the model.

Rewriting has only been investigated superficially because this work aims to showcase
the potential Amee has for future research instead of presenting individual case studies
in depth. Evolving interactions have been found between development and plasticity.
We found hints at plasticity-led evolution, which provides a promising route for further
investigation. Given that both of these processes have been implemented in the same way
and are irreversible, they both contribute to ontogeny and thus, these interactions are
not surprising. How and if this interaction plays out, however, depends on the system
details and the evolutionary history of the population in question. Indeed, extinctions
are frequent as soon as rewriting processes are included, especially for niche construction.
Surprisingly, while all niche constructing populations die out for the baseline rewriting
case, niche construction allows for very high populationsizes when the size and number of
rewriting rules are reduced, indicating that it can have facilitating effects, too. However,
the details of the underlying mechanisms have not been elucidated more deeply and remain
largely open for further investigation.

Given that facilitating effects of rewriting, no matter the exact process, are compara-
tively rare, we concluded that the rewriting rules are not sufficiently integrated into the
unfolding of the organisms, i.e., the evolutionary history of the system is too short for
them to form a processing system for biological information that would stably contribute
to individual fitness in the way it happens in natural organisms. A few possibilities to
alleviate this have been discussed, with the most promising variant probably being a
run-up phase attached to the genetic algorithm that produces the initial condition such
that a longer evolutionary history before the actual data-producing simulation can be
emulated. Mechanistic issues have been investigated, too, with transitions either being
fully enabled or not at all being a primary candidate for reducing evolvability. While
various alternatives do exist (continuous Petri-nets, [Alla and David, 1998]), none have
been considered in depth within Amee in the present work. Spatiality has only been
theoretically discussed. However, this aspect has received much attention in the literature
in a much deeper way than can be accomplished within the confines of this work.

11.2 Outlook

Naturally, a model as complex as Amee cannot be comprehensively presented in one thesis,
and so, only the surface has been scratched here, the aim being a proof of concept in
conjunction with the underlying conceptual theory. This provides many opportunities for
future research, mostly with respect to the effect of rewriting rules.

The rewriting processes represent an aspect of the theory of evolution that is contro-
versial (plasticity-led evolution, niche construction theory, and the extended evolutionary
theory), hard to investigate in nature, and has received much theoretical attention over the
last few years and even decades. Therefore, their further exploration should probably be
the primary route for further exploration. In particular, Amee allows for the investigation
of the interactions of plasticity, development, and niche construction on the basis of
complex, self-organizing individuals where organism fitness is an emergent quantity and
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not an ad-hoc parameter that is baked into the model structure. Therefore, we can expect
any result to be more fundamental, although also more dependent on the implementation
details. In particular, the interaction network between rewriting rules which belong
to different rewriting processes could be investigated, which could open the door to
comparisons with the architecture of natural regulatory systems.

This aspect can be combined with the analysis of evolving resource-consumer networks,
a property of Amee that has received little attention in the present work. With this, Amee
can be developed further into an individual-based ecological model that arguably includes
all fundamental evolutionary processes. The rewriting mechanism and the mechanism of
open Petri-Nets furthermore allow for the implementation of other ecological interactions
than resource competition and constructive facilitation or harming, e.g., parasitism or
predation via attaching organisms not to the habitat but to other organisms, which opens
the door for deeper ecological considerations.

On the more technical side, longer runtimes with larger populations should reveal more
of the evolutionary phenomenology of the systems, which, however, is always the case for
sufficiently complex evolutionary systems. Nevertheless, because it has been found that
rewriting systems needs to be integrated better via natural selection, this is a promising
avenue. Finally, other parameter combinations for the number of resources, habitat-
and organism node sets should be investigated, for it is likely that the system behaves
differently for a large number of small, variable resources and many metabolism nodes
than for the large, relatively homogeneous resources and low node numbers that where
used here. This could yield more complex resource– and metabolism systems, which
should result in more interesting and complex metabolic evolution. Spatiality is also an
unexplored avenue that, as Scheiner, Barfield, et al. has shown, can interact with niche
construction or plasticity in complicated and interesting ways. Finally, the implementation
of the IPNs can be changed, in particular with respect to the firing condition for the
transitions. If this was made to allow for more flexible resource conversion, we could expect
evolution for multiple resources to be more variable, i.e., for evolvability to increase.

The concepts represented here can be extended further to allow for information pro-
cessing instead of, or in conjunction with, resource processing. Indeed, there is no reason
why the Petri-Net formalism shown herein, which is a Turing-complete modeling language,
should not be able to represent learning systems, at least in a very simplistic case. While
this would arguably require deeper additions to the mechanics of the system, such changes
are rather easily made, opening the model towards studying complex evolving systems
with social learning or towards investigations of sociological systems.
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12. Appendix 1: Additional Material about
single-habitat simulations without rewriting

12.1 Additional visualizations for “Baseline 2 – Multi-resource,
single-cell systems without rewriting”

Shown here are additional visualizations for the simulations in Figure 9.2.1.
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Figure 12.1: Metabolism networks for the simulation with seed 59616444 for randomly
chosen individuals of the largest niche in timesteps (from top to bottom) 1250, 12500,
22500, and for resources 2, 3, 4 (from left to right) with 1,5 being all zero. Input interfaces
are colored red, output interfaces green, as before.
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Figure 12.2: Metabolism networks for the simulation with seed 98555521 for randomly
chosen individuals of the largest niche in timesteps (from top to bottom) 2500, 12500,
22500, and for resources 2, 3, 4 (from left to right) with 1,5 being all zero. Input interfaces
are colored red, output interfaces green, as before.
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Figure 12.3: Metabolism networks for the simulation with seed 975392623 for randomly
chosen individuals of the largest niche in timesteps (from top to bottom) 2500, 12500,
22500, and for resources 2, 3, 4 (from left to right) with 1,5 being all zero. Input interfaces
are colored red, output interfaces green, as before.
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12.2 Ecological niches and ecological species for multiple
resources with higher mutation rate
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Figure 12.4: Evolution of the number of ecospecies for higher mutationrates. A generally
increasing trend can be seen for the first two intervals, with the simulation with seed
975392623 being of particular interest because it produces more than double the diversity
of the next highest for the latest interval.
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Figure 12.5: Evolution of the population of ecospecies over time, analogous to Figure 9.11
and Figure 9.31. We find that while the populationsize is mostly comparable to the
simulations for lower mutationrate and to the single resource case, seed 975392623 produces
a roughly five times higher population than the next higher, with dominant ecospecies
succeeding each other. Note that given the higher mutation rates, the background diversity
is much higher, too (compare Figure 12.4). While the exact transition from the low to the
high population state has not been recorded, we identify this simulation as an instance
where the higher mutationrate allowed for an evolutionary innovation that allow the system
to access a different part of the niche space where higher population densities are possible.
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Figure 13.1: Statistics of development counter over time for simulations for the baseline
rewriting case. Development is only active once at most, such that only one rule is active.

0.0

0.5

1.0

1.5

2.0

0

1.0
×1

0⁴
2.0

×1
0⁴

0.0

0.5

1.0

1.5

2.0

0

1.0
×1

0⁴
2.0

×1
0⁴ 0

1.0
×1

0⁴
2.0

×1
0⁴ 0

1.0
×1

0⁴
2.0

×1
0⁴

c=
fa

lse
c=

tru
e

time

d=false, p=false d=false, p=true d=true, p=false d=true, p=true

p
la

st
ic

it
y
_

co
u
n
te

r

seed

108320434

59616444

798797005

975392623

98555521

Figure 13.2: Statistics of plasticity counter over time for simulations for the baseline
rewriting case. Plasticity only happens once at most for most timesteps, with higher
numbers of active rewriting rules being infrequent and not sustained over long times.
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Figure 13.3: Statistics of niche construction counter over time for simulations for the
baseline rewriting case. Niche construction leads to extinction for the baseline case, but
where it occurs in the beginning, it only occurs once.
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Figure 13.4: Statistics of development counter over time for simulations for the reduced
rewriting case. We find a largely analogous behavior to Figure 13.1, but with more active
populations and long-term survival even when all rewriting processes are active.
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Figure 13.5: Statistics of plasticity counter over time for simulations for the reduced
rewriting case. We find a largely analogous behavior to Figure 13.2, but with more active
populations and long-term survival even when all rewriting processes are active.
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Figure 13.6: Statistics of niche construction counter over time for simulations for the
reduced rewriting case. Niche construction is only sustained for seed 975392623 and only in
a very small number of organisms. Additionally, no trends are visible, probably indicating
selective neutrality at this stage.
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Acronyms

IPN Petri-net with inhibitor arcs.

PN Petri-net.

GA Genetic algorithm

NRS Net-rewriting system

RNG Random-Number-Generator

Amee A model for eco-evo-devo. Name for the agent-based computer model
presented in this thesis.

CAS Complex Adaptive System

CCS Complex Constructive System

seed The initial value for a random number generator algorithm.

RNN Recurrent neural network, a kind of artificial neural network that allows
connections between nodes to form cycles.

ANN Artificial neural network.

LUCA Last Universal Common Ancestor, i.e., the youngest organism to which all
living things today are related.

GRN Gene regulatory network

RNA Ribo-nucleic acid. Analogous to DNA but uses ribose as a sugar backbone
and uracil instead of thymine.

mRNA Messenger RNA, used in the transcription process from DNA that is the
first phase of gene translation to protein.
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tRNA transfer-RNA. Small RNA molecules that bind to an amino acid on one side
and to a codon on the other. Important during the translation phase of gene
expression. Implement the genetic code.

DNA Desoxyribo-nucleic acid. Macromolecule made up of a sugar-phosphate
backbone with one of four bases (adenine, thymine, cytosine, guanine)
attached to it, used in long chains to store genetic information in cells.
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• L. Riedel et al. [2020]. “Utopia: A Comprehensive and Collaborative Modeling
Framework for Complex and Evolving Systems.” In: Journal of Open Source Soft-
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