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Abstract
In this thesis, a new production mechanism for sterile neutrino dark matter is proposed, which, in

contrast to previous research, relies neither on the oscillations between active and sterile neutrinos,
nor on the decay of heavier additional degrees of freedom, nor on new exotic neutrino interactions
beyond the Yukawa coupling to the Standard Model. Instead, we generate the abundance of sterile
neutrinos by decoupling from thermal equilibrium, as is typical for WIMPs. This type of production
mechanism is usually not viable for sterile neutrinos, because the longevity requirement mandates that
the neutrino Yukawa coupling be very tiny, which prevents the dark matter neutrinos from reaching
thermal equilibrium. We resolve this conflict by invoking varying Yukawa couplings, going from
sizeable values at early times, thus enabling the sterile neutrinos to thermalize, and then becoming
suppressed during a phase transition, thereby forcing the sterile neutrinos to decouple and stay quasi-
stable thereafter. We formulate an implementation of varying Yukawa couplings based on a Froggatt-
Nielsen model, where the vacuum expectation value of the flavon changes during a phase transition,
thereby dynamically driving the suppression of the Yukawa couplings and inducing the decoupling of
the sterile neutrinos. We show that our mechanism successfully generates 100% of the observed dark
matter in the form of sterile neutrinos with masses in the keV range. The necessary phase transition is
provided by the spontaneous breaking of the electroweak symmetry. Furthermore, the active neutrino
oscillation parameters are reproduced and simultaneously the flavour hierarchy in the lepton sector is
alleviated.

Zusammenfassung
In dieser Dissertation wird ein neuer Produktionsmechanismus für Dunkle Materie in Form von ster-
ilen Neutrinos vorgebracht. Im Gegensatz zu früheren Arbeiten, welche Oszillationen zwischen ak-
tiven und sterilen Neutrinos, Zerfälle schwererer zusätzlicher Teilchen oder neue exotischen Neutrino-
Wechselwirkungen jenseits des Standardmodells benötigen, erzeugen wir die Menge der Dunkle-Materie-
Neutrinos durch das Entkoppeln vom thermischen Gleichgewicht, wie es für WIMPs typisch ist. Dieser
Produktionsmechanismus ist normalerweise nicht möglich, da die Stabilität von Dunkler Materie auf
kosmologischen Zeitskalen eine sehr kleine Neutrino-Yukawa-Kopplung erfordert, welche wiederum
eine thermische Produktion durch das primordiale Plasma verhindert. Wir lösen diesen Konflikt,
indem variierende Yukawa-Kopplungen postuliert werden, welche im frühen Universum anfänglich
große Werte annehmen, durch einen auftretenden kosmologischen Phasenübergang im Folgenden je-
doch stark unterdrückt werden. Dies ermöglicht eine Thermalisierung steriler Neutrinos vor dem
Phasenübergang sowie eine Entkopplung vom thermischen Plasma bei gleichzeitiger Quasi-Stabilität
danach. Das vorliegende Mechanismus variierender Yukawa-Kopplungen basiert auf einem Froggatt-
Nielsen-Modells, in welchen die Veränderung des Flavon-Vakkumerwartungswertes die Unterdrückung
der Yukawa-Kopplungen dynamisch antreibt und die Entkopplung der sterilen Neutrinos induziert. Es
wird im Folgenden gezeigt, dass dieser Mechanismus eine vollständige Produktion der beobachteten
Menge an Dunkler Materie in Form von sterilen Neutrinos im keV-Massenbereich erlaubt, wenn der
notwendige Phasenübergang durch die spontane Brechung der Elektroschwachen Symmetrie induziert
wird. Gleichzeitig werden die beobachteten Parameter der aktiven Neutrino Oszillationen reproduziert
und die Flavour-Hierarchie im Leptonsektor abgemildert.
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Chapter 1

Introduction

“There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.”

- William Shakespeare in Hamlet

These lines, written by the great poet William Shakespeare around the year 1600,
could well be said today to describe the state of our understanding of nature and the
Universe. Since Galileo Galilei pointed his telescope to the night sky and became
the first person to discover some of the wonders of our solar system, we have made
astonishing progress in our scientific pursuit to understand the world around us.
Just in the recent decades, we have discovered that space itself is expanding, i.e. all
galaxies are receding away from each other; we came to understand how the light
chemical elements were formed in the early Universe, and how heavier metals are
produced by stars; we measured and analysed the cosmic microwave background
(CMB), which can rightly be called the afterglow of the big bang; and we have
detected gravitational wavesx (GW) and black holes (BHs). With the discovery
of the Higgs boson [1, 2] at CERN’s large hadron collider (LHC) in 2012, the last
missing piece of the Standar Model of particle physics (SM) was detected. It can
be argued that the SM is one of the most successful scientific theories that have
ever been formulated, as its predictions have been confirmed to impressive levels
of accuracy and it has withstood all tests with great precision.1 The extent to
which our knowledge and understanding about the Cosmos has grown is truly mind-
boggling. As Albert Einstein is credit with saying, “The most incomprehensible
thing about the universe is that it is comprehensible”. And yet, whats is even more
exciting, we know that our theories are still incomplete. Although some of the
remaining open questions can be said to be only of aesthetic nature, two particular

1Of course, there have been and still are some anomalies that need explaining, but as of the date
of writing of this thesis, none have been conclusively confirmed to disprove the SM or indeed
indicate new physics, see for example Ref. [3].
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1. Introduction

puzzles clearly indicate that we still have a lot to discover:

1. The Origin of the mass of neutrinos. For many years, physicists were
puzzled by the so called atmospheric- and solar neutrino problems. The puzzle
consisted in a mysterious discrepancy between the predicted and measured
(flavour specific) neutrino fluxes produced by cosmic rays interacting with
our atmosphere and by nuclear interactions in the sun [4]. It soon became
apparent that this puzzle could be resolved by the phenomenon of neutrino
oscillations, whereby neutrinos of one flavour transform back and forth into
a different neutrino flavour during propagation. This phenomenon is only
possible if the neutrinos are not massless.2 However, within the SM, neutrinos
were thought to be massless because the theory does not include right-handed
neutrinos, which would be necessary for the SM neutrinos to acquire mass
by the same means as the other fermions in the theory. And even if right-
handed (RH) neutrinos were added a posteriori by hand, the mass scale of
the neutrinos would be ∼ 6 orders of magnitude smaller that that of the
electron, the lightest fermion in the SM. When neutrino oscillations were
finally confirmed by the SNO and Super-Kamiokande experiments, for which
the 2015 Novel Prize in Physics was awarded [5], it became clear that the
SM would have to be amended or modified to accommodate a mechanism to
generate neutrino masses.

2. The nature of Dark Matter. Astronomical and astrophysical observations
strongly suggest the existence of a non-baryonic substance that permeates the
Universe and interacts gravitationally with common matter. This mysterious
substance was first postulated by the Swiss astronomer Fritz Zwicky, who
noted that the observable mass in the Coma Cluster was insufficient to keep
the galaxies bound in the cluster; for this invisible massive substance he
coined the term Dark Matter [6]. Later observations on other galaxy clus-
ters and also single galaxies confirmed the necessity for dark matter (DM)
to explain the dynamics of these systems. Initially, dark astrophysical ob-
jects were thought to be responsible for these puzzling observations, but the
failure to detect them even with modern sophisticated instruments, such as
the Hubble Space Telescope, ruled them out as a viable explanation (with
the exception of a quite narrow window for sub-planetary masses) [7]. Ad-
ditional cosmological evidence for DM was later obtained by observations
from gravitational lensing, the Large-Scale Structure (LSS) of the Universe
and the Cosmic Microwave Background. While there have been attempts to
explain these observations by modified theories of gravity, none have been
convincingly successful. Various current constrains also disfavour the idea
that Primordial Black Holes (PBHs) contribute significantly to the bulk of
the Dark Matter density. Thus, the dominating current consensus in the

2More precisely, it is the mass squared differences of the neutrino mass eigenstates that may not
vanish, i.e. ∆m2

ij = m2
i − m2

j ̸= 0, implying that the masses of the neutrinos must be finite
and non-degenerate.
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scientific community is that a new particle exists, the Dark Matter particle,
which is massive and, beyond gravitationally, only interacts very weakly (or
perhaps not at all) with the SM particles and is responsible for the aforemen-
tioned phenomena. However, very little is known about the properties of the
DM particle or how it came to be produced in the early Universe. Neverthe-
less, one thing seems certain: whatever the answer to these questions is, it
will most probably involve some form of new physics.

It is intriguing to think about the possibility, that the solutions to these problems
might actually be related to each other. Not only that, but they might also help to
answer other open questions in fundamental physics, such as origin of the matter-
antimatter asymmetry, the wide mass differences in the fermion sector and the
hierarchy problem.

Many particles have been proposed to serve as DM candidates and explain the ob-
servations mentioned above. Accordingly, a great deal of effort and resources have
gone into building experiments and detectors to search for these DM candidates.
Similarly, many models have been formulated to extend the SM and implement
some mechanism to generate masses for the neutrinos. Most of these models in-
troduce new beyond the Standard Model (BSM) particles, some of which could
be viable DM candidates. A prime example of this are RH Majorana neutrinos,
which are SM-singlets and can couple to the left-handed (LH) neutrinos of the
SM through the usual Yukawa terms in the Lagrangian. We often refer to these
RH neutrinos as sterile neutrinos. Their presence in the Lagrangian permits the
generation of Dirac masses for the neutrinos and, as we will see in section 3.3,
the Majorana properties of the sterile neutrinos neatly explain the tiny size of the
active neutrino masses.

Our main aim in this doctoral thesis will be to investigate a class of models
where sterile neutrinos simultaneously play the role of the DM particle. As will
be discussed later, one of the main challenges when proposing a viable DM candi-
date, is the fact that one must deliver a computable mechanism by which the DM
particles are produced in the early Universe, and the result of this computation
must agree with the observed Dark Matter density. This requirement constrains
the available parameter space of many, otherwise very appealing, DM models. And
this is precisely where the focus of this work will be: we will propose a new concept
by which sterile neutrinos are produced in the early Universe and after their pro-
duction “go on to live their lives” as DM particles. Furthermore, we will see that
particular realisations of this new concept can shed light on the so-called flavour
puzzle, i.e. the origin of the peculiar hierarchy in the fermion masses. Of course,
sterile neutrinos have been considered as Dark Matter candidates for a long time
already, but as we will later see in detail, constrains on their stability have ruled
out the most straightforward production mechanisms.

In a nutshell, the starting point for us in this work will be the extension of the
SM to include three RH neutrinos and the Type I Seesaw Mechanism. Adding RH
neutrinos to the SM makes it possible to write Yukawa terms for the neutrinos,
which after electroweak symmetry breaking (EWSB) generate a Dirac mass for the

3



1. Introduction

neutrinos. Also, because the sterile neutrinos are SM singlets, it is possible to write
a Majorana mass term for them. Then, through the well-known Seesaw Mechanism,
one ends up with three very light mass eigenstates, mostly aligned with the LH
neutrinos, and a certain number of very heavy mass eigenstates that are mostly
composed of the RH or sterile states. The main idea and scientific contribution of
this doctoral thesis can be summarised as follows: by promoting the Yukawa cou-
plings to dynamic variables which change in value during a brief period in the early
Universe, we will be able to simultaneously guarantee the cosmological longevity
of the sterile neutrinos while also successfully achieving the thermal production of
the right amount of sterile neutrinos so that the may account for the observed DM
density.

Before diving into the details and subtleties of this new production mechanism
for sterile neutrino Dark Matter, in what is left of this chapter, we give a very short
presentation of the relevant aspects of the SM, so as to introduce some of the neces-
sary vocabulary. The subject matter of this work touches on three important topics
of particle physics: the flavour puzzle, neutrinos and DM. Therefore, the flavour
puzzle will be introduced in the second chapter, along with a popular model to
address it. In the third chapter, we discuss the phenomenon of neutrino oscilla-
tions and the problem of neutrino masses. In chapter four we start by reviewing
the evidence for the existence of DM and present some of the most common DM
candidates before diving into the freeze-out mechanism and sterile neutrinos as DM
candidates. Chapter five is the heart of this thesis, where we introduce and study
the new production mechanism for sterile neutrino DM proposed here. For the
reader who is already familiar with the material presented in the previous chapters,
or who is simply in a hurry, we strongly recommend reading the introduction to
chapter five. Finally, we conclude with with a summary and some closing remarks
in chapter six.

1.1 The Standard Model in a Nutshell

To set the stage for the following chapters, we will here very briefly introduce the
portions of the SM that are most relevant for this thesis; and for more details on
the SM we refer to the standard book by Schwartz [8] or any other textbook or
review available in the literature. The SM is a gauge theory invariant under the
group SU(3)c × SU(2)L × U(1)Y , equipped with the associated gauge bosons Gaµ,
W a
µ and Bµ respectively, where a is the SU(2)L group-generator index and µ is a

Lorentz index. The theory further contains fermionic matter fields that are charged
under the SM-group according to table 1.1 and a complex scalar SU(2)L doublet
H, that contains the Higgs boson,

H =

(
H+

H0

)
. (1.1)

4



1.1 The Standard Model in a Nutshell

Table 1.1. Standard Model fermions in their SU(2)L representa-
tion and their charges under the SM group SU(3)c×SU(2)L×U(1)Y .
The α index stands for the fermion generations. All fermions have
spin 1/2, while all gauge bosons (which are not included in the
table) have spin 1 and exist in the adjoint representation of their
respective subgroups. The Higgs H is a complex scalar and its SM-
representation is (1,2, 1).

Field Charge under
SU(3)c × SU(2)L ×U(1)Y

Quark doublets Qα =

(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
(3,2, 1/3)

up quark singlets uα = (uR, cR, tR) (3,1, 4/3)

down quark singlets dα = (dR, sR, bR) (3,1,−2/3)

Lepton doublets Lα =

(
νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)
(1,2,−1)

Lepton singlets eα = (eR, µR, τR) (1,1,−2)

The Higgs potential, which is responsible for the spontaneous symmetry breaking
(SSB) of the electroweak symmetry, enters the Lagrangian as

LHiggs = µ2H†H − λ(H†H)2, (1.2)

with the mass parameter µ2 and the Higgs self-coupling λ. Provided that µ2 > 0,
the field configuration with |H| = µ/

√
λ minimizes the potential and is thus the

energetically preferred configuration; this defines the vacuum expectation value
(vev) of the Higgs v = µ/

√
λ.

The SU(2)L bosons W 1,2
µ build linear combinations to form the physical states

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
,

while the other gauge bosons W 3
µ and Bµ are rotated into the mass basis as(

Zµ
Aµ

)
=

(
cos(θW ) − sin(θW )
sin(θW ) cos(θW )

) (
W 3
µ

Bµ

)
,

where θW is the Weinberg angle. The interactions between the gauge bosons and
the fermions can be separated into so-called neutral- and charged currents (NC and
CC respectively). For the neutral- and electromagnetic currents the interaction
Lagrangian reads

L ⊃ gw Zµ J
µ
Z + eAµ J

µ
EM, (1.3)
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1. Introduction

with the weak coupling gw = e/ sin(θW ) and the respective currents defined as

JµZ =
∑
α

[
cos(θW )ψαL γ

µ T 3 ψαL − sin2(θW )

cos(θW )

(
Y L
α ψαL γ

µ ψαL + Y R
α ψαR γ

µ ψαR
)]
,

(1.4)

JµEM =
∑
α

Qα
[
ψαL γ

µ ψαL + ψαR γ
µ ψαR

]
, (1.5)

where ψ = Q, L, u, . . . stands for any specific type of fermion from table 1.1, T 3

is the third SU(2)L generator and Y L/R
α stands for the hypercharge of the fermion

ψαL/R. Furthermore, Qα is the electric charge of the fermion ψα, and is defined as
Qα = T 3

α+Yα/2. Notice that the neutral- and electromagnetic currents are flavour
diagonal, i.e. only involve fermions of the same type. For the charged currents we
have the interaction Lagrangian

L ⊃ gw√
2

(
W+
µ Jµ+ +W−

µ Jµ−
)
, (1.6)

where the charged currents for the leptons are given by

Jµ+ =
∑
α

[ναL γ
µ eαL + uαL γ

µ dαL] , Jµ− =
∑
α

[
eαL γ

µ ναL + dαL γ
µ uαL

]
, (1.7)

and analogously for quarks. It is important to emphasise that the charged current
interactions act only on LH fermions. However, in contrast to the neutral currents
eq. (1.3) which diagonally couple fermions of the same type, the charged currents
eq. (1.7) couple only the two different components of the SU(2)L doublets with
each other. At this point, these couplings are also diagonal, but as we will see
later, they turn non-diagonal when we rotate into the mass basis. The SM group
SU(3)c × SU(2)L × U(1)Y also allows for renormalizable terms involving one LH
fermion, one RH fermion, and the Higgs boson - these are the Yukawa couplings.
To write them down, we define the dual Higgs field H̃ which is given by

H̃ = iσ2H
⋆ =

(
H0

−H−

)
, (1.8)

which transforms as an SU(2)L doublet and carries a hypercharge of −1. The
Yukawa terms then read

LY = − ydαβ Q
α
LH dβR − yuαβ Q

α
L H̃ uβR − yeαβ L

α
LH eβR − h.c. (1.9)

where yψαβ stands for the components of the 3× 3 complex Yukawa matrix for the
fermions of type ψ. Notice that there is no Yukawa term for the neutrinos; the
reason for that is that there are only LH neutrinos in the SM, but no RH ones.
Due to the SSB of the SU(3)c × SU(2)L × U(1)Y group, and after choosing the
unitary gauge (see e.g. Ref. [8]), the masses of the fermions are generated after the

6



1.1 The Standard Model in a Nutshell

Higgs assumes its vacuum expectation value (vev),

⟨H⟩ = 1√
2

(
0
v

)
, ⟨H̃⟩ = 1√

2

(
v
0

)
, (1.10)

resulting in the fermion mass Lagrangian

−Lferm
mass =

ydαβ v√
2
d̄αL d

β
R +

yuαβ v√
2
ūαL u

β
R +

yeαβ v√
2
ēαL e

β
R + h.c. (1.11)

The mass matrix for the fermion ψ arises as

mψ
αβ =

yψαβ v√
2
. (1.12)

The mass basis is the one in which the mass matrices are diagonal, or in other words,
in which the Yukawa matrices are diagonal. The Yukawa matrices can always be
diagonalised by a biunitary transformation, e.g.

yu = Uu (y
u
D)W

†
u, yd = Ud (y

d
D)W

†
d , ye = Ue (y

e
D)W

†
e , (1.13)

with appropriate unitary matrices Uψ and Wψ and where yD is diagonal with real
entries. Now, by redefining the fermions as

uL → Uu uL, uR →Wu uR, (1.14)
dL → Ud dL, dR →Wd dR, (1.15)
eL → Ue eL, eR →We eR, (1.16)

we can rewrite the mass Lagrangian in the mass basis, which then reads

−Lferm
mass = md

α d̄
α
L d

α
R + mu

α ū
α
L u

α
R + me

α ē
α
L e

α
R + h.c. (1.17)

These are Dirac mass terms, which mix the LH and RH components of the fermions.
Again, notice that, due to the fact that RH neutrinos are not included in the SM,
there is no Dirac mass term for the neutrinos. The field transformations that take
us to the mass basis, i.e. eqs. (1.14) to (1.16), are also applied to other portions of
the Lagrangian where the fermions appear. It is easy to see that while the neutral-
and electromagnetic currents eq. (1.3) stays unchanged, the terms involving quarks
in the charged currents eq. (1.7) do get modified, the result being

Jµ+ =
∑
α

[
ναL γ

µ eαL + uαL γ
µ (VCKM)αβ dαL

]
, (1.18)

Jµ− =
∑
α

[
eαL γ

µ ναL + dαL γ
µ (V †

CKM)αβ uαL

]
, (1.19)

with VCKM = U †
u Ud as the famous Cabibbo-Kobayashi-Maskawa (CKM) Matrix [9,

7



1. Introduction

10], which is responsible for all flavour changing effects in the quark sector.
This finalises our extremely short summary of the SM, whereby we restricted

ourselves to the aspects of the SM that are most relevant for this thesis and left
out a lot of important bits and parts such as the gauge sector, the Higgs potential
and a more detailed discussion of EWSB. The reader is referred to [8] or any other
SM textbook for a thorough discussion discussion of these topics.
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Chapter 2

The Flavour Puzzle

As mentioned previously, the Higgs mechanism provides the mass terms for the
fermions from the Yukawa terms in the Lagrangian. After diagonalizing the Yukawa
matrices, the mass for the fermion ψ is given by

mψ =
yψ v√

2
. (2.1)

The gauge couplings and the Higgs self coupling in the SM have all been measured
to [8, 11]

gs ∼ 1, gw ∼ 0.6, gy ∼ 0.4, λ ∼ 0.1,

i.e. they all are of a comparable O(1) size. Thus, the first guess and naive expec-
tation would be that the values of the Yukawa couplings are also of a similar size.
Indeed, for the Yukawa coupling of the top quark, this is the case,

yt ∼ 1,

leading to a top quark mass of mt ≈ 174GeV. However, all other Yukawa cou-
plings turn out to have much different values - the smallest one being the Yukawa
coupling of the electron, ye ∼ 10−6. It turns out that the values of the Yukawa
couplings are spread out over six orders of magnitude in a hierarchical manner.
This hierarchy manifests itself in the fermions masses, as can be seen in fig. 2.1.
The hierarchy arises not only among the three fermion generations, but also within
each fermion generation (with the exception of the first quark generation, where
the down-quark is actually slightly heavier than the up-quark). Furthermore, if
one assumes neutrinos to be Dirac particles and their masses to be generated by
the SSB in the electroweak sector, then the hierarchy is even more severe - the
Yukawa couplings would expand a range of more than twelve orders of magnitude,
while leaving a huge mass gap of six orders of magnitude between the neutrinos and
the charged leptons. This can be seen as a hint for a different mechanism existing
behind the generation of neutrino masses.
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2. The Flavour Puzzle
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Figure 2.1. The masses of the three fermion generations, strangely
spanning 6 orders of magnitude. It almost looks like each generation
should form a cluster in this mass spectrum, although the masses
of the top and charm quarks lie a little distant to their generation
partners. In the figure, the ranges for the neutrino masses are shown
too. If neutrinos are Dirac particles and their masses are generated
by the SSB of the electroweak (EW) symmetry, like for all the other
fermions, then the tininess of their masses exacerbate the puzzle,
because it would mean that the values of the Yukawa couplings
expand over more than 12 orders of magnitude. Image adapted from
[12].

It is interesting to note that the SM possesses an enhanced accidental symmetry
if the Yukawa terms vanish: the different fermion generations become indistinguish-
able - a fact which manifest itself through the invariance under the global symmetry
[13]

Gglobal(yψ = 0) = SU(3)3q × SU(3)2l ×U(1)5, (2.2)

with

SU(3)3q = SU(3)Q × SU(3)u × SU(3)d (2.3)
SU(3)2l = SU(3)L × SU(3)e (2.4)
U(1)5 = U(1)B ×U(1)L ×U(1)Y ×U(1)PQ ×U(1)e, (2.5)

where the individual SU(3) symmetries transform the fermions from one generation
to another. The first four U(1) symmetries can be identified with Baryon number-,
Lepton number-, Hypercharge-, and Peccei-Quinn symmetries, and the last one,
namely U(1)e describes rotations of the charged singlet fields eR alone. It is the
presence of the non-vanishing Yukawa terms that break this large global symmetry
and leave as a remnant

Gglobal(yψ ̸= 0) = U(1)B ×U(1)e ×U(1)µ ×U(1)τ , (2.6)
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2.1 The Froggatt-Nielsen Mechanism

which is responsible for baryon number conservation and the generation-wise con-
servation of lepton number. The U(1)Y gauge symmetry remains unbroken too.

While it cannot be ruled out that the hierarchy pattern is just the result of chance
and there is no deeper meaning to it,1 it does beg the question: is there a cause or
mechanism behind this pattern? This question is intriguing for a number of reasons.
First of all, in the SM the principles of gauge invariance and renormalizability
deliver a fully computable description of the strong and weak interactions for all
fermions that relies on only three free parameters: the three gauge couplings gs, gw
and gy, which are all O(1). It is then plausible that in a more fundamental theory,
perhaps a grand unified theory (GUT), the fermion masses become computable
from first principles and that there are much fewer free parameters - indeed, many
proposed solutions go in this direction, e.g. Refs. [14–16]. Other proposals also
relate the flavour puzzle to other open problems such as the strong CP problem
[17] or the hierarchy problem for the Higgs mass (which is only an issue if the
SM is seen as an effective field theory (EFT) valid below a certain cut-off scale).
Prominent examples of the latter are the frameworks of Partial Compositeness
[18] and models with compactified extra dimensions [19]. A different approach to
resolving the flavour puzzle, is given by the Froggatt-Nielsen mechanism [20], which
we discuss in the following.

2.1 The Froggatt-Nielsen Mechanism

With the Froggatt-Nielsen (FN) mechanism [20], instead of postulating a fundamen-
tal theory in which the fermion masses can be computed from first principles with
a reduced number of free parameters, one follows a much more agnostic, bottom-up
approach. See also e.g. Refs. [21, 22]

The SM is taken as an EFT of a more fundamental theory which respects a global
flavour symmetry, usually U(1)FN, and includes a multitude of additional heavy
fermions, the so called Froggatt-Nielsen fermions or Froggatt-Nielsen messengers,
and a scalar field called the flavon Θ. The flavon is a SM singlet but is charged
under the U(1)FN symmetry, or in other words, it has a flavour charge fΘ, whereby
one usually sets fΘ = −1, as we will do here. Similarly, the heavy FN fermions
and the individual SU(2)L representations of the SM fermions, i.e. the doublets
and singlets, also carry a flavour charge, which we denominate as fψ. Some of
the heavy FN fermions couple to the SM fermions, and thus have the same SM
quantum numbers as the SM fermions that they couple to. One usually assumes
that the FN fermions have all a similar mass which defines a high energy scale
ΛFN, which we will denote as the flavour scale. Below the flavour scale ΛFN the
FN fermions can be integrated out, resulting in the SM EFT. While the gauge
interactions are left unchanged by the introduction of the U(1)FN symmetry, the

1It should be noted that, in the SM,1 the Yukawa couplings are technically natural, meaning that
their tiny size can be justified by the fact that setting them to zero increases the symmetry of
the theory. The corresponding fermions would then be kept exactly massless, as their vanishing
masses are protected by the additional symmetry
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2. The Flavour Puzzle

effective Yukawa terms have to be modified to be U(1)FN invariant:

ydαβ QαH dβ −→ ydαβ QαH dβ

(
Θ

ΛFN

)fQα+fdβ+fH
(2.7)

yuαβ Qα H̃ uβ −→ yuαβ Qα H̃ uβ

(
Θ

ΛFN

)fQα+fuβ+fH̃
(2.8)

yeαβ LαH eβ −→ yeαβ LαH eβ

(
Θ

ΛFN

)fLα+feβ+fH
(2.9)

and analogously for the hermitian conjugated terms, whereby in each case the sum
of the charges in the exponent is such that the powers of the flavon, with its flavour
charge fΘ = −1, compensate the flavour charges of the SM fields to ensure flavour
invariance. When the flavour charge of the Higgs is set to zero, fH = f

H̃
= 0 as is

usually done, the flavon exponents simplify to fψL + fψR , where ψL and ψR stand
for the SU(2)L doublets or singlets of the fermion ψ respectively.

Within the FN framework, the bare Yukawa couplings are all allowed to be
O(1), so that in the fundamental theory there is no inherent hierarchy, although
the different fermion representations are distinguishable by the different flavour
charges. Then, it is assumed a that some point in the early history of the Universe
the flavour symmetry gets spontaneously broken when the flavon acquires a vev.
The symmetry breaking parameter is

λ :=
⟨Θ⟩
ΛFN

, (2.10)

and is expected to have values λ < 1, thus implying that the breaking of the flavour
symmetry is the origin of the mass hierarchy in the fermions, because the Yukawa
couplings become effectively suppressed by powers of the symmetry breaking pa-
rameter according to the flavour charges of the fermions involved,

yψαβ −→ yψαβ λ
fψL

+fψR . (2.11)

Here we see how the FN framework does not make the SM Yukawa couplings
computable or predictable from more fundamental principles, nor does it really
reduce the number of free parameters in the theory - it simply maps the hierarchical
Yukawa couplings to a set of O(1) flavour charges and explains the drastic hierarchy
as a result of the exponentiation of those charges. Initially, it was thought that
the symmetry breaking parameter could be related to related to the Cabibbo angle
of the CKM matrix, i.e.λ ≈ 0.22, and many concrete models were proposed to
explain the hierarchy in the masses and mixing angles in the quark sector, e.g. [23].
Soon, models that aim to explain all of the flavour data, i.e. in the quark as well as
in the lepton sector were developed, e.g. [22, 24] and even attempts to formulate a
complete UV theory can be found, e.g. [25, 26].
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Chapter 3

Neutrinos oscillations and
masses

Neutrinos were first proposed by Wolfgang Pauli in his famous letter to the “ra-
dioactive Ladies and Gentlemen ...”1 participating in a conference in Tübingen in
1930 [27]. This was Pauli’s attempt to explain the continuous spectrum of β-decay
without giving up on the principle of the conservation of energy. The neutrino
hypothesis was confirmed in 1956 when Cowen and Reines experimentally detected
neutrinos for the first time [28]. They observed an inverse β-decay reaction in their
detector, wherein a proton p absorbs an electron-antineutrino ν̄e and turns into a
neutron n and a positron e+, i.e. ν̄e + p → n + e+. To achieve this, they used a
nuclear reactor in South Carolina as a ν̄e source, with a flux of ∼ 1013 cm−2 s−1.

Today we know that neutrinos are ubiquitous: they are copiously produced by
weak interactions in the sun (and all other stars), in the atmosphere by cosmic rays,
in the earths interior, in nuclear reactors and particle accelerators, in Supernova
explosions (where they carry an enormous amount of the energy of the explosion)
and in the Big Bang. With a number density of ∼ 336 cm−3, primordial relic neu-
trinos [29], i.e. those produced during the big bang, are the most abundant matter
particle in the Universe. And yet, their interaction strength with other particles
is so weak that their mean free path in lead is, dependent on their energy, of the
order of multiple light years [30]. Physicists are rightly fascinated by neutrinos not
only because they provide a unique probe of particle physics, nuclear physics, as-
trophysics and cosmology, but more importantly because the discovery of neutrino
oscillations [31, 32] counts as the first convincing piece of evidence for the existence
of BSM physics.

3.1 Neutrino Oscillations
The idea of neutrino oscillations was first imagined by Pontecorvo [33, 34] in 1957
as oscillations between neutrinos and antineutrinos. In 1962 Maki, Nakagawa and

1translated from the original German.
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3. Neutrinos oscillations and masses

Sakata introduced the idea of transitions between neutrino flavour and mass eigen-
states [35], which then prompted Pontecorvo to discuss neutrino flavour oscillations
[36].

A straightforward and simplified way to derive the master formula for neutrino
oscillation that requires only a few assumptions and is based on a quantum me-
chanic treatment goes as follows. As we will see, the phenomenon is only possible
if neutrinos are massive. In section 3.2 on we will elaborate on some of the most
popular mechanisms to generate neutrino masses in extensions of the SM. The neu-
trino states that couple to the weak interactions define the interaction basis and are
called flavour states. To sketch a quick and general overview of the phenomenon of
neutrino oscillations, we start by assuming the existence of n neutrino flavours να
with α = {a1, a2, . . . , an} (even though the SM only has three flavours να, with
α = {e, µ, τ}). We further assume that there are n neutrino mass eigenstates,
denominated as νi with i = {1, 2, . . . , n}. In general, this mass basis will not co-
incide with the interaction basis. Assuming that both sets of eigenstates |να⟩ and
|νi⟩ form a complete basis for the neutrino Hilbert space, we can transition from
one basis to the other by a unitary transformation,

|να⟩ = U∗
αi |νi⟩, |νi⟩ = Uαi |να⟩ (3.1)

with the unitary matrix Uαi, which is known as the PMNS matrix2 and is the
leptonic analog to the CKM matrix. As a unitary complex matrix, the PMNS
matrix has a priory n2 real independent parameters. However, just like in the
quark sector, some of these parameters can be eliminated by field redefinitions: in
the case of Dirac fields, one can eliminate (2n − 1) complex phases, while in the
case of Majorana fields n phases can be eliminated, leaving us with n(n − 1)/2
rotation angles and (n−1)(n−2)/2 complex phases in the Dirac case or n(n−1)/2
complex phases in the Majorana case respectively.

Although neutrinos are created as flavour eigenstates, their time evolution and
propagation in vacuum is determined by the action of the time evolution and prop-
agation operators. Thus, for a neutrino being produced at t = 0 and x = 0 we have
as a flavour eigenstate |να⟩, the propagated state will read

|ν(x, t)⟩ = exp [−i(H t− Px)]|να⟩, (3.2)

where H stands and the free Hamiltonian and P is the momentum operator. From
the relativistic energy-momentum relationship it is clear that the energy eigenvalues
will also be the mass eigenvalues; therefore, it is useful to change the basis to the
mass basis, where we then have

|ν(x, t)⟩ = U∗
αi exp [−i(Ei t− pix)]|νi⟩. (3.3)

2The matrix Uαi is equal to the PMNS matrix only in the basis in which the charged lepton mass
matrix is diagonal. More generally, the PMNS matrix is the product of the transformation
matrices between flavour and mass basis of both neutrinos and charged leptons.

14



3.1 Neutrino Oscillations

What we are mainly interested in are the transition probabilities for finding a
certain neutrino flavour at a detector located at (x, t) after |να⟩ was emitted, i.e.
we want to compute Pα→β = |⟨νβ |ν(x, t)⟩|2 for which we must re-express the mass
eigenstates in eq. (3.3) in therms of the flavour eigenstates to obtain

|ν(x, t)⟩ = U∗
αiUβi exp [−i(Ei t− pix)]|νβ⟩. (3.4)

At this point, the literature often suggests making the following simplifying assump-
tions (e.g. Ref. [37]): the produced neutrino state has a well defined momentum p
which does not change during propagation and the energy of the neutrinos, which
are ultra-relativistic due to their tiny masses, can be satisfactorily approximated by
Ei ≈ p+m2

i /2p. Also, one can simplify things further by introducing the baseline
L to replace t and x, i.e.L := t = x. Then, putting everything together and writing
the summations explicitly, we find

Pα→β = |⟨νβ |ν(x, t)⟩|2 =
∑
i,j

U∗
αiUβiU

∗
βjUαj exp [−i(∆m2

ijL/2E)]

=
∑
i

|U∗
αiUβi|2 + 2Re

∑
i<j

U∗
αiUβiU

∗
βjUαj exp [−i(∆m2

ijL/2E)]

 , (3.5)

whereby the first constant term stands for the time-averaged flavour conversion,
while the second term introduces the time- (or baseline) dependent oscillatory effect.
Although the result above works for any number of neutrino generations - they are
not restricted to three generations - the case of only two generations is particularly
instructive. For n = 2 the PMNS matrix has only one mixing angle θ and zero
Dirac phases. The oscillation probabilities then read

Pα→β = sin2(2θ) sin2(∆m2L/4E), Pα→α = 1− Pα→β , (3.6)

whereby ∆m2 is the difference of the squares of the two mass eigenstates, ∆m2 =
m2

2 − m2
1. The factor of sin2(2θ) is constant in time and reflects the amplitude

for the oscillations, which are driven by the factor sin2(∆m2L/4E). One can also
introduce the so-called oscillation length

losc = 2π

(
∆m2

2E

)−1

(3.7)

to rewrite eq. (3.6). Neutrino oscillations are only observable if the neutrino masses
are non-degenerate (which implies that at least some of them are non-vanishing)
and if the mixing angle is non-zero, i.e.U ̸= 1.

In the case of three neutrino generations, as we have in the SM, the PMNS
matrix has a total of four (six) independent parameters: three mixing angles θij
with ij = {12, 23, 13} and one complex phase δ for Dirac neutrinos (and two
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3. Neutrinos oscillations and masses

additional phases for Majorana neutrinos). A common parametrization is given by

U =

1 0 0
0 c23 s23
0 −s23 c23

 ·

 c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

 ·

 c12 s12 0
−s12 c12 0
0 0 1


=

 c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s13 s23 e
iδ c12 c23 − s12 s13 s23 e

iδ c13 s23
s12 s23 − c12 s13 c23 e

iδ −c12 s23 − s12 s13 c23 e
iδ c13 c23

 (3.8)

where we have defined sij = sin(θij), cij = cos(θij). The two additional Majorana
phases can be introduced by multiplying U from the right with diag

(
1, eiφ1/2, eiφ2/2

)
.

These neutrino parameters have been measured by a multitude of experiments us-
ing solar, atmospheric, reactor and accelerator neutrinos. Global fit analysis are
provided by the neutrino global fit group from Valencia [38] as well as from the νfit
group. Results from the latter performed on the latest available data (i.e. November
2022) [39]3 reveals the 1σ values

θ12 = 33.14◦+0.75
−0.72 θ23 = 49.1◦+1.0

−1.3 θ13 = 8.54◦+0.11
−0.12 δ = 197◦+42

−25

∆m2
21 = 7.41+0.21

−0.20 × 10−5eV2 ∆m2
31 = 5.514+0.028

−0.027 × 10−3eV2

for normal ordering (NO), i.e.m1 < m2 < m3, and

θ12 = 33.45◦+0.78
−0.75 θ23 = 49.3◦+1.0

−1.2 θ13 = 8.61◦+0.12
−0.12 δ = 286◦+27

−32

∆m2
21 = 7.41+0.21

−0.20 × 10−5eV2 ∆m2
32 = −2.497+0.028

−0.028 × 10−3eV2

for inverted ordering (IO), i.e.m3 < m1 < m2. Neutrino oscillation measurements
shed no light on the question of the absolute scale of the mass eigenvalues. To
that purpose other dedicated experiments have been built and are being operated,
most notably the Katrin experiment, which aims for precision measurements of
the high energy tail of the β-decay spectrum of tritium and currently delivers the
most stringent upper bound on the mass of the electron antineutrino at 0.8 eV at
90%CL [40].

At this point it should be mentioned that the plane wave approximation and the
assumptions made above in order to arrive at eq. (3.5), i.e. that the flavour states
have a well defined momentum which does not change during propagation, are too
simplistic but nevertheless lead to the correct solution. A more careful treatment
would involve considering quantum mechanical wave packets instead of plane waves,
and an even more rigorous approach would be to use quantum field theory (QFT),
which would take the emission, propagation and detection of neutrinos properly
into account, see e.g. [41–43].

Another very important and fascinating fact about neutrino oscillations, which
we will only briefly discuss here, is that the phenomenon occurs differently in vac-

3For the latest results from recent datasets one should rather consult www.nu-fit.org.
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uum and in matter. Wolfenstein first noticed that for neutrinos propagating in mat-
ter instead of in vacuum, the oscillation behaviour could be affected [44]. Shortly
afterwards, Mikheyev and Smirnov realised that in certain circumstances the neu-
trino flavour transition amplitude could be resonantly enhanced; this is the famous
MSW effect [45]. It occurs because neutrinos traveling through matter will interact
with other leptons in that medium through NC and CC interactions, and while the
NC processes treat all neutrino flavours equally, the CC processes do not. The
forward scattering CC process να l±α → να l

±
α , which occurs through the exchange

of a W± boson, is indeed the most relevant process for the MSW effect. Since elec-
trons are the only charged leptons that are usually available in ordinary matter,
this process will occur for electron neutrinos but not for the other neutrino flavours.
As a consequence the matter-Hamiltonian receives an additional contribution such
that its eigenstates are different from those of the free Hamiltonian. This is easiest
to see in the case of two neutrino generations, where the matter-Hamiltonian in
the flavour basis Ĥα

m reads

Ĥα
m =

(
−∆m2

4E cos(2θ) +
√
2GF Ne

∆m2

4E sin(2θ)
∆m2

4E sin(2θ) ∆m2

4E cos(2θ)

)
. (3.9)

Here, θ is the vacuum mixing angle, GF is the Fermi constant and Ne is the electron
number density. It turns out that in a medium of constant density, i.e.Ne = const,
the vacuum formula eq. (3.6) is still valid [46] if one replaces the oscillation length
by an effective oscillation length in matter

losc → lm =
2π√(

∆m2

2E cos 2θ −
√
2GF Ne

)2
+
(
∆m2

2E

)2
sin2 2θ

(3.10)

and the vacuum oscillation angle by an effective oscillation angle in matter, namely

sin2 2θm =

(
∆m2

2E

)2
sin2 2θ(

∆m2

2E cos 2θ −
√
2GF Ne

)2
+
(
∆m2

2E

)2
sin2 2θ

. (3.11)

Here we see that sin2 2θm is saturated if the electron density and neutrino energy
are such that

∆m2

2E
cos 2θ =

√
2GF Ne, (3.12)

which is known as the MSW resonance condition. When fulfilled, this leads to a
greatly enhanced flavour conversion probability, even if the vacuum mixing angle
was originally very small.

In more realistic scenarios, such as in the case of the sun, the electron density is
not constant but it varies throughout the medium. Consider the following scenario:
electron neutrinos are produced in a region of very high electron density, and that
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3. Neutrinos oscillations and masses

density adiabatically decreases along the path of trajectory of the neutrinos until
a very low density is reached, while on the way crossing through a region where
the MSW condition is satisfied. Remarkably, one finds that for some values of the
vacuum mixing angle, a nearly complete flavour conversion can occour after the
propagation through the medium of adiabatically decreasing density [46, 47].

With this we conclude our short discussion of neutrino oscillations by emphasis-
ing that this phenomena definitely indicates that neutrinos are not massless, and
that to explain the origin the of those masses we must look beyond the SM of
particle physics.

3.2 The Problem of Neutrino Masses

We have now established that neutrinos must have non-vanishing masses. It is
worthwhile to recapitulate the reasons why it is not possible to accommodate neu-
trino masses within the SM, whereby we closely follow the argumentation presented
by Akhmedov in Ref. [46].

A Dirac fermion ψ is a four-component spinor that can always be decomposed
into its right- and left-chirality components, ψ = ψL + ψR. Its mass term in the
Lagrangian is

−LDirac
mass = mψψ = mψL ψR +mψR ψL, (3.13)

where it becomes obvious that Dirac masses require both chiral components of a
fermion. Since the minimal SM does not contain RH neutrinos, no Dirac masses
for them can be included. But what about the case of Majorana neutrinos? Majo-
rana particles are those that are identical to their particle-antiparticle conjugates.
Particle-antiparticle conjugation works as follows:

ψ
c→ ψc = C ψT , with C = iγ2γ0 (3.14)

in the Dirac base, where γi stands for the gamma-matrices of the Clifford algebra. It
follows then than ψc = ψT C. Note also that for a chiral spinor, this transformation
flips its chirality. A Majorana particle is defined as one that satisfies the relation

ψc = η∗ ψ, (3.15)

i.e. the particle is, up to a phase factor η∗, identical to its antiparticle, which can
only ever occur with neutral particles. For a Majorana particle, its RH component
is simply the particle-antiparticle conjugate of its LH component, i.e.

ψR = (ψL)
c = (ψc)R. (3.16)

Therefore, for LH Majorana particles, one can write mass terms without needing
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independent RH partners, namely

−LMaj
mass =

1

2

[
ψcLM ψL + ψLM

† (ψL)
c
]
=

1

2

[
ψTL CM ψL + h.c.

]
. (3.17)

Crucially, we see that the Majorana mass term will violate any conservation laws
associated with a U(1) symmetry under which the Majorana field ψ is charged. As
the only neutral fermion in the SM, neutrinos are the only candidate in the theory
that could be a Majorana fermion. So, could we just assign them Majorana masses?
Not without violating gauge invariance, Lorentz invariance or renormalizability: A
bare Majorana mass term of the form

1

2
νcLmM νL (3.18)

is of dimension three and thus does not violate renormalizability, but it violates
SU(2)L × U(1)Y invariance and is therefore forbidden. However, the operator in
eq. (3.18) could be generated by the vev of the electrically neutral component of an
SU(2)L scalar triplet ∆ with a weak hypercharge of −2, whereby the gauge- and
Lorentz invariant operator would then read

(LT C iσ2σ L)∆ + h.c. (3.19)

but there is no such SU(2)L scalar triplet in the SM. One could extend the SM to
include the scalar triplet ∆, in which case the following comments are in place: if
one demands that eq. (3.19) conserves lepton number, then ∆ necessarily has to
carry the lepton number −2, and then the vev of ∆ would spontaneously break
lepton number, resulting in additional Goldstone bosons. Furthermore, the pres-
ence of ∆ would introduce new exotic lepton interactions and contribute to the
masses of the gauge bosons, which is constrained by the experimental value of the
ρ-parameter, defined as ρ = m2

W / cos
2(θW )m2

Z . This results in a bound imposed
on the vev of the scalar triplet at the O(1)GeV level [48, 49].

An interesting alternative is to construct the scalar triplet as a composite state
made of two SM Higgs instead of introducing it as a fundamental particle, namely

∆ → (HT iσ2σH), (3.20)

which has the correct quantum numbers. With this combination we can construct
the dimension 5 operator,

f

M
(LT C iσ2σ L)(H

T iσ2σH), (3.21)

with the couplings f and the high mass scale M . This operator is a realization of
the Weinberg operator [50], which is of the general form

O(5)
W ∼ f

M
LLHH. (3.22)
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It turns out that this 5-dimensional operator is the unique operator that generates
neutrino masses and consists only of SM fields. After SSB this operator generates
Majorana masses for the neutrinos,

mM ≈ f

M
v2. (3.23)

However, being of dimension 5, the Weinberg operator is not renormalizable and
therefore forbidden at the fundamental level. It also cannot arise at the loop
level within the SM because it not only violates lepton number, but it also violates
B−L, which in the SM is non-perturbatively conserved. Thus, we conclude that to
accommodate neutrino masses we must go beyond the Standard Model, i.e. expand
the particle content or the gauge group. Then, the Weinberg operator can arise
as an effective operator after integrating out heavier states of a more fundamental
theory. As discussed above, introducing SU(2)L scalar triplets is an interesting
option. An alternative is to introduce RH sterile neutrinos, which gives rise to the
type I seesaw mechanism, which we will now discuss in more detail.

3.3 The Seesaw Mechanism
One of the simplest and most appealing extensions we could implement in the SM
to generate neutrino masses is the addition of RH neutrinos, resulting in the well
known type I seesaw mechanism [51–54]. Being SM singlets, any number of RH
neutrinos can be added, i.e. the number of RH neutrinos does not necessarily have
to match the number of LH neutrinos.4 However, the most attractive extension
- and indeed the most common - is by three RH neutrinos, since this would re-
establish the symmetry between quarks and leptons, i.e. each LH lepton would have
a RH lepton partner, just as is the case among charged leptons and in the quark
sector. This is also a common feature of many GUTs and left-right-symmetric
models [46]. The addition of sterile neutrinos νR to the SM, and their assignment
of lepton number L = +1, immediately allows us to write neutrino Yukawa terms,
which then generate Dirac masses via the Higgs mechanism, i.e.

−yν L H̃ νR + h.c.
SSB−→ −yν νLmD νR + h.c. (3.24)

where the generation indices (α, β) have been suppressed for clarity, so L and νL/R
should be understood as representing all three generations and yν is a complex
3 × 3 matrix of neutrino Yukawa couplings. So, could this mD be the final origin
of neutrino masses? In principle, this is a possibility, but as mentioned previously,
in order for it to explain the oscillation data, the Yukawa couplings would have
to be extremely tiny, namely yν ∼ 10−12. One could argue that this should not
be a problem; after all, we readily accept that electrons have very small Yukawa
couplings too, ye ≈ 3 · 10−6 (although this can be seen as puzzling in itself, c.f.

4At least two RH neutrinos are necessary for the seesaw mechanism to generate the masses of
two active neutrinos, leaving one active neutrino massless.
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chapter 2). However, this is a rather unsatisfactory explanation, because it would
introduce a huge and unexplained hierarchy in the masses within each fermion
generation - disregarding neutrinos, all fermions within each generation, e.g. the
electron and the up- and down quarks, all have masses that are clustered within
one or two orders of magnitude of each other, see fig. 2.1. Without a plausible
mechanism that suppresses the masses of neutrinos, this pattern would be destroyed.
A solution is offered by the fact that, since sterile neutrinos are SM singlets, we
may add a Majorana mass term for them in the Lagrangian without violating gauge
invariance. The term is of the form

−1

2
νcRMR νR + h.c., (3.25)

and violates lepton number by two units, ∆L = 2. Previously, we established that
L is an accidental symmetry of the standard model, but it is only an accidental
and not an imposed symmetry of the model, so we willingly give up this acciden-
tal symmetry in exchange for the right to include Majorana masses for the RH
neutrinos.

Thus, following the treatment in Refs. [46, 55], we extend the SM Lagrangian by
the following terms

−Lν = iν̄R /∂ νR + yν L̄ H̃ νR +
1

2
νcRMR νR + h.c., (3.26)

where, by the Higgs mechanism, the Yukawa term generates the Dirac mass matrix
after SSB, mD = yν v/

√
2. The neutrino mass Lagrangian is then

−Lνmass = yν νLmD νR +
1

2
νcRMR νR + h.c. (3.27)

After some algebra, and assuming that neutrinos are indeed Majorana particles,
i.e. (νR)c = νcL, we can change into the six-dimensional basis defined by

νM = (νL, νR
c)T = (νL, ν

c
L)
T = (νL,e, νL,µ, νL,τ , νR,1

c, νR,2
c, νR,3

c)T , (3.28)

where the neutrino mass Lagrangian then reads

−Lνmass =
1

2
νcMMν νM + h.c. =

1

2
νcM

(
0 mD

mT
D MR

)
νM + h.c.. (3.29)

Here, Mν is the full 6 × 6 neutrino mass matrix, while mD is an arbitrary 3 × 3
matrix and MR is a symmetric 3×3 matrix. We aim to block-diagonalize Mν in the
expectation that we will decouple the light from the heavy mass eigenstates. This
is easy to do when mD ≪ MR, which is actually a very reasonable assumption,
because mD is generated by the Higgs mechanism at the EW scale, and is thus
not expected to be larger than the top mass. On the other hand, the scale of the
Majorana mass MR is a priori unrestricted - in principle, it could be as high as
the GUT or the Planck scale. Particularly, it is conceivable that MR is generated
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by some mechanism similar to the Higgs mechanism at some BSM scale, which
will necessarily be above the EW scale. Thus, in this context, the so-called seesaw
condition mD ≪MR is generically fulfilled and the block diagonalization of Mν is
realized by the unitary 6× 6 matrix

U =

(
1 θ

−θ† 1

)
, with θ = mDM

−1
R . (3.30)

The 3× 3 matrix θ = mDM
−1
R quantifies the mixing between the heavy and light

neutrino degrees of freedom. The seesaw condition ensures that θ ≪ 1 and thus θ
can be treated as a small perturbation. The result is the diagonalized 6×6 neutrino
mass matrix

M′
ν =

(
m′ 0
0 M ′

)
, with m′ ≈ mDM

−1
R mT

D, M ′ ≈MR. (3.31)

Here we can best appreciate the seesaw effect: thanks to the seesaw condition
mD ≪ MR, the neutrino mass Lagrangian contains three very heavy states with
masses in the matrix M ′ ≈ MR that are mostly composed of the sterile states,
and three very light neutrino states with masses in the light Majorana matrix
m′ ≈ mDM

−1
R mT

D, that are mostly composed of the LH active neutrinos. Clearly,
the reason for the smallness of m′ is the much larger size of MR - this is the seesaw.
After block-diagonalization, the neutrino mass Lagrangian can be rewritten as

−Lνmass =
1

2
νcMMν νM + h.c. =

1

2
(νLc, νR)

(
m′ 0
0 M ′

)(
νL
νR

c

)
+ h.c. (3.32)

=
1

2
νL

T Cm′ νL +
1

2
νR

T CM ′ νR + h.c. (3.33)

whereby we have neglected the mixing between LH and RH neutrinos, which is of
the order of θ ≪ 1. Now, both matrices m′ and M ′ can be further diagonalized by
the appropriate transformations, i.e.

m = V T
L m

′VL =

m1

m2

m3

 , M = V T
RM

′VR =

M1

M2

M3

 , (3.34)

and we will refer to the light mass eigenstates as ν = (ν1, ν2, ν3) and to the heavy
ones as N = (N1, N2, N3), or in other words

ν = (VL)
T νL, N = (VR)

T νR. (3.35)

Note that here, in principle, it is possible to start in a basis in which the Majorana
mass matrix MR is already diagonal, because that would simply amount to a field
redefinition of νR = (νR,1, νR,2, νR,3).

As discussed previously, there are also other ways to generate the Weinberg op-
erator, eq. (3.21), namely: at three level, besides introducing RH neutrinos, which

22



3.3 The Seesaw Mechanism

L

H

L

H

νR νR

(a)

L L

H H

∆

(b)

L

H

L

H

Σ Σ

(c)

Figure 3.1. Diagrams in minimal SM extensions that generate the
Weinberg operator at tree level. (a) Type-I seesaw extension - The
RH neutrinos νR, i.e. Majorana fermions that are SM singlets, form
the usual Yukawa vertices that we are familiar with from the SM. (b)
Type-II seesaw extension - A massive SU(2)L triplet scalar ∆ with
a hypercharge of -2 couples to LL and HH, and obtains a vev from
its coupling to the Higgs. (c) Type-III seesaw extension - Massive
SU(2)L triplet fermions Σ whose middle component mixes with the
left-handed neutrino and has no hypercharge couple to LH.

are SU(2)L singlets, one can introduce an SU(2)L scalar triplet ∆ (as discussed at
the end of section 3.2), which is then referred to as the type II seesaw mechanism
[56–58], or one can add a set of SU(2)L fermions triplets, an extension which is re-
ferred to as the type III seesaw mechanism [59, 60]. Diagramms for all three types
of seesaw variants are shown in fig. 3.1. A very different possibility is to generate
neutrino masses radiatively through loop processes, which would also explain their
suppressed values. Some of the most prominent examples of this approach are the
scotogenic model [61] and the Zee-Babu model [62–64]. Further, there are many
other models to choose from in the literature [65].
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Chapter 4

Dark Matter

Dark matter (DM) is one of the fundamental pillars of the standard model of
cosmology. In this chapter we start by presenting some of the most important
pieces of evidence in favour of the existence of DM, which, as we will see, are very
diverse and complementary. We then introduce some of the most popular DM
candidates, most of which are BSM particles, although we also mention some non-
particle candidates. The process of freeze-out to generate relic densities is discussed
in more detail, as it is the basis for the production mechanism for sterile neutrinos
that is the core of this thesis. For similar reasons we also spend some extra time
discussing sterile neutrinos as DM candidates at the end of this chapter.

4.1 The evidence for the existence of Dark Matter

Since Zwicky first noticed the “missing mass” in the Coma cluster [6, 66], evidence
has been mounting from a multitude of different sources and scales that point in the
same direction: there exists a mysterious substance, i.e. non-ordinary matter, that
interacts gravitationally with ordinary matter but is not subject to the electromag-
netic interaction. Zwicky himself coined the term Dark Matter for this puzzling
substance. The extensive body of evidence that has been built by now is very com-
pelling; it is based on independent astrophysical and cosmological observations. On
the astrophysical side, the rotation curves of galaxies, the dynamics of galaxy clus-
ters, collisions of galaxy clusters and the effects of gravitational lensing all point
to the existence of Dark Matter. The cosmological evidence is just as strong; it
comes from the analysis of the CMB, the predicted and measured abundance of
light elements that were created right after the Big Bang, i.e. the so called big bang
nucleosynthesis (BBN), the observation of baryon acoustic oscillations (BAO), as
well as the process of large scale structure formation in the Universe. In this sec-
tion, we will briefly discuss the most important pieces of evidence for the existence
of DM.
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Virially bound Galaxy Clusters

For a self-gravitating system in a stable dynamical equilibrium, such as a galaxy
cluster, the Virial theorem relates the kinetic and potential energy of the system as
E = −U/2, where E stands for the former and U for the latter, respectively. While
observing the Coma Cluster and measuring the peculiar velocities of the galaxies
in the Cluster, Zwicky was able to estimate that the mass in the cluster should
be ∼ 160 times larger than one would expect by judging from the luminosity [6]
- the velocities of the galaxies were so large that, without DM, the cluster could
not be kept gravitationally bound, but would instead expand and eventually blow
apart. The initially estimated factor of ∼ 160 overestimated the amount of DM
because, at that time, X-ray emitting gas and infrared emitting dust could not be
accounted for. Nevertheless, modern observations of the Coma Cluster and other
galaxy clusters agree with the DM interpretation [67–70].

Galactic Rotation Curves

Figure 4.1. Rotation curves of several galaxies as observed by
Rubin, Ford, and Thonnard in 1978. The expected 1/

√
r decline is

not seen. Figure taken from [71].

Observations of the circular velocities of stars in galaxies, as first made by Rubin
and Ford in 1970 [72] on the Andromeda galaxy M31, delivered unexpected results.
The known relationship between circular velocity v, distance to the galactic axis r
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and mass responsible for the gravitational attraction felt by the star is

v =

√
GN M(r)

r
, (4.1)

with the gravitational constant GN and the mass contained within a sphere of
radius r around the galactic axis M(r). For the outmost stars, nearly all of the
visible mass in the galaxy will be contained within the sphere of radius r, so that
the circular velocity is expected to keep decreasing as

v ∼ 1√
r
. (4.2)

However, in the observations by Rubin and Ford v stayed constant even for the
largest values of r for which the rotation curve could be measured. This discrepancy
has been consistently verified in essentially all galaxies observed [73] since then. A
workable explanation was then proposed by Freeman in 1970 [74]: galaxies are
enclosed in a halo of invisible matter, which extends far beyond the visible matter
in the galaxy and has a mass density profile ρ(r) ∼ 1/r2 such that M(r) ∼ r
and therefore v ∼ const. Of course, at some distance the Halo density will start
decreasing more pronouncedly, but at that distance there are no observable stars
nor hydrogen to track the rotation curve. Some early rotation curves indicating
the existence of DM can be seen in fig. 4.1.

Gravitational Lensing

General relativity tells us that space-time itself is curved in the presence of a mass
distribution. We also know that light travels in geodesics, which in curved space
are themselves curved trajectories. It follows then that light will travel in curved
paths around a mass distribution, resulting in the well known gravitational lensing
effect. One distinguishes three different types of gravitational lensing:

Strong lensing: The light from a source passes and gets deflected by a dense mass
distribution, such as the center of a galaxy or cluster, and finally gets redi-
rected to the observer, resulting in one or multiple highly distorted images
of the source. The most remarkable manifestation of strong gravitational
lensing is the so called Einstein ring, whereby the source, lens and observer
are aligned in such a way that the image seen by the observer resembles a
ring surrounding the lens, as can be appreciated in fig. 4.2. Analysing strong
lensing images from the Sloan digital sky survey (SDSS), cosmological param-
eters could be constrained and it was found that ΩM = 0.26+0.07

−0.06, while the
baryon density of the Universe is known to be Ωb = 0.0493(6) [11]. One thus
concludes that the total mass density of the universe is ∼ 5 times larger than
the contribution from baryonic matter [75, 76].

Weak lensing: The conditions necessary for strong lensing, i.e. a very dense mass
distribution at the right distance along the line of sight between source and
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Figure 4.2. Strong lensing. Right: Einstein ring generated by
the red galaxy LRG 3-757 acting as lens for the image of a much
more distant blue galaxy. Left: In the center the galaxy cluster
CL0024+1654 acts as a gravitational lens, around which several blue
images of the same source galaxy can be seen. Images from: ESA/Hubble
& NASA, H. Lee & H. Ford (Johns Hopkins U.).

observer, are only rarely realized. Most frequently the mass distribution act-
ing as a lens is not very dense and the light from the source galaxy might
not pass directly through its center. Nevertheless, the light from background
galaxies will get slightly distorted, or in other words, lensed. The effect is
much more subtle than strong lensing - the images get compressed or elon-
gated when propagating through an over- or underdense region respectively.
Remarkably, four independent research groups in the year 2000 were suc-
cessful in probing the average distribution of DM by analysing weak lensing
images [77–80]. Further, in 2007 another group succeeded in constructing a
3D map of the DM distribution in a certain region of space [81].

Microlensing: For distant astronomical observations, this effect occurs due to the
relative motion between a source and lens confined to a relatively small vol-
ume of space. When such a small lens passes through the line of sight between
source and observer, the image of the source can be brightened for a period
of time in the order of days or weeks. Through this method it was possible
to rule out that the DM in our galaxy could be accounted for by Massive
Compact Halo Objects (MACHOs) [76].

As we have now seen, gravitational lensing observations offer a convincing and
direct probe for the existence of DM. One particularly fascinating case study indi-
cating DM, which employs weak lensing observations, is that of the Bullet Cluster,
which we will discuss next.

The Bullet Cluster

Colliding galaxy clusters offer a spectacular indication in favour of the DM hypothe-
sis and a rare probe into its properties. Perhaps the most famous example of this is
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Figure 4.3. Cluster 1E 0657-56, better known as the Bullet Clus-
ter, is the result of a collision between two galaxy clusters that oc-
curred around 150 million years ago. As a result of the merger,
the distribution of galaxies, intra-cluster gas and the bulk of the
mass of both clusters dissociated: the galaxies followed their bal-
listic trajectories largely unbothered by the collision, while the gas
was heated, shocked and decelerated by the violence of the collision
and now emits X-rays as a consequence, which are visualized in
this figure as red/magenta clouds; the shock front is easy to identify.
On the other hand, the bulk of the mass distribution, being com-
posed of collisionless DM, also survived the collision undisturbed,
and is also visualized in the figure by blue blobs. The mass distri-
bution was mapped by analysing the weak lensing images of back-
ground galaxies. The obvious separation of baryonic gas and the
bulk of the mass in the merged cluster is a direct indication of
the existence of non-baryonic massive matter in the system. Im-
age credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI;
Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Mag-
ellan/U.Arizona/D.Clowe et al.

the galaxy cluster 1E 0657-56, better known as the Bullet Cluster, which is actually
a merger of two clusters that collided some 150 million years ago [82–84]. What is
fascinating about this merger is the segregated distribution of galaxies, intra-cluster
gas, and mass [76]. Galaxies within the cluster are very widely spaced out and thus
will mostly follow ballistic trajectories during cluster mergers without colliding with
other galaxies. On the other hand, the intra-cluster gas uniformly spread in both
clusters will experience a lot of friction during the collision, be shocked and as a
consequence emit X-rays. The mass distribution is mapped by analysing the weak
lensing of background galaxies. The result shows that while the gas was decelerated
by the collision and the shock front is visible, the bulk of the mass of both clusters
ghostly passed through each other undisturbed. This allowed to set a stringent
upper limit on the DM self interaction cross section of σ/m < 1.25 cm2g−1 at 1σ
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confidence level [85]. The vast spacial separation between the center of mass of the
X-ray emitting baryonic matter and the center of mass of the collisionless mass
distribution, mapped by the weak lensing effect, has a statistical significance of
8σ, and serves as compelling direct evidence for the existence of DM [86]. It had
been objected, that the collision velocities of the two clusters appeared too large,
thereby making the collision highly improbable according to N -body simulations
[87], but newer findings have ruled out this possibility as a challenge to the DM
interpretation [88]. Cluster mergers like the Bullet Cluster are rare, and only a few
others have been observed, such as the Train Wreck cluster (Abell 520) [89] and the
so called Baby Bullet Cluster (MACSJ0025-12) [90], both of which also exhibit a
spacial separation between the distributions of the hot gas and the lensing matter.
Nevertheless, the Bullet Cluster remains the most spectacular example for a cluster
collisions.

The Cosmic Microwave Background

The cosmic microwave background (CMB) was first predicted by Gamow, Alpher
and Herman in 1948 [91, 92] as a result of the hot and dense beginnings of the
Universe, i.e. what we today might call the Big Bang theory. At early times in cos-
mological history, when the temperature was still higher than the ionization energy
of hydrogen, the Universe was composed of - besides neutrinos and presumably DM
particles - light nuclei (mainly hydrogen and helium nuclei), electrons and photons.
These were kept in thermal equilibrium by Thomson- and Compton scattering and
by the ionization and recombination of hydrogen. While these interactions are
in thermal equilibrium, the cosmic plasma is tightly coupled and photons cannot
propagate freely - the Universe is opaque. However, as the Universe expands and
cools, a temperature will be reached at which most photons do not have enough en-
ergy to ionize hydrogen atoms. This event is called recombination, and it occurred
at a temperature of ∼ 0.3 eV, which corresponds to a redshift of ∼ 1100. At the
moment of recombination, the mean free path of the photons increased abruptly to
above the size of the observable Universe [93]. These are the CMB photons which
we measure today. For the most part, they have been traveling to us undisturbed
since their emission from the so-called surface of last scattering at the moment of
recombination.

Since the accidental discovery of this radiation by Penzias and Wilson in 1965 [94,
95], many experiments have been built to measure it, most notably the satellites
COBE, WMAP and Planck. The spectrum is at first sight that of a perfect black
body radiator, homogeneous and isotropic with a temperature of TCMB = 2.726K
[96], but bellow the level of ∆T/T ∼ 10−4 one can appreciate an interesting pattern
of anisotropic temperature fluctuations; a full sky map as measured by the Planck
Satellite can be seen in fig. 4.4. The fluctuations are caused mainly by differences in
the local gravitational potential on the surface of last scattering: photons emitted
from regions where the gravitational potential is stronger get redshifted as they
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Figure 4.4. Full sky map at high resolution of the CMB indicating
the fluctuations from the mean temperature TCMB = 2.726K at a
level of ∆T/T ∼ 10−5, where blue stands for colder spots and red
for hotter. Image credit: ESA and the Planck Collaboration.

propagate away. This is the so-called Sachs-Wolfe effect.1 Another important
effect is that of acoustic oscillations [97]: density fluctuations in the radiation
fluid generate gravitational potential wells in which the baryonic matter tends to
fall in. Because of the strong coupling between the baryons and photons, the
latter accumulate in the potential wells too. Thus, there is a build-up of radiation
pressure in potential wells which pushes the fluid outwards and dilutes it. Then, the
baryonic matter starts to fall in again and the process begins a new cycle. These
are the baryon acoustic oscillations, and they occur on all density fluctuations
of sizes within the sound horizon. The dynamics of these oscillations are largely
determined by the geometry and content of the Universe: it matters how large
the sound horizon is, what is the density of baryons, what is the density ratio of
baryons to photons, and, if there is DM present, it will contribute to potential wells
but not to the oscillating mass [98].

The temperature anisotropy data is analysed by first expanding it into spherical
harmonics, i.e. T (θ, φ) =

∑
l,m alm Ylm(θ, φ), and then computing the two-point

correlation function to obtain the power spectrum,

Cl =
1

2l + 1

l∑
m=−l

a∗lm alm. (4.3)

1There is also the integrated Sachs-Wolfe effect, which acts on photons as they propagate through
over- or underdense regions of space whose gravitational potential is distorted due to the
expansion of the Universe during the passage of the photons.
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Figure 4.5. Power spectrum of the temperature fluctuations of the
CMB as measured by the Planck Collaboration. The global
fit delivers precise values for the parameters of the cosmological
model and indicates, among other things, that the baryonic matter
accounts for only a fraction of the total mass density in the Universe.
Image credit: ESA and the Planck Collaboration.

This power spectrum is presented in fig. 4.5. It exhibits a multitude of acoustic
oscillation peaks, whose amplitude and l-position are highly sensitive to the content
and geometry of the Universe, which are parameters of the underlying cosmological
model [97]. For instance, the amplitude of the first peak determines the baryon to
photon ratio, while the relative heights of the first and second peaks are sensitive to
the ratio of the baryon density Ωb to the DM density ΩDM [98]. Here, the density
parameter for baryons is defined as Ωb = ρb/ρc, with the critical density ρc as the
energy density necessary today to close the flat Universe; the density parameter
for DM or other components is defined analogously.

The global fit by the Planck Collaboration to the ΛCDM cosmological
model with the latest data (from the year 2018) [96] resulted in

Ωb = 0.0493(6), ΩDM = 0.265(7), (4.4)

The simple fact that the CMB delivers the result Ωb ̸= ΩDM tells us that there is a
large DM component to the Universe that is more abundant than baryonic matter.

Structure Formation and Large Scale Structures

The formation and development of structures, i.e. galaxies, clusters, filaments and
voids, relies heavily on DM. The proper description of structure formation is de-
livered by cosmological perturbation theory [101], which is quite extensive and well
beyond the scope of what we intend to discuss here. To motivate how structure for-
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mation supports, and in fact requires the DM hypothesis, the following comments
shall suffice. The seeds for structure formation are the primordial density fluctua-
tions, which provide the primitive gravitational potential wells which can then be
populated by matter. These primordial fluctuations can begin to grow due to the
clustering of DM from the epoch of matter-radiation equality onwards. Meanwhile,
the baryonic matter undergoes acoustic oscillations due to its coupling to photons
and can only begin to contribute to the growth of structure after recombination.
By that time, the primordial fluctuations have had plenty of time to accumulate
mass from the DM infall, which would not be the case in the absence of DM [29].
This illustrates the fact that structure formation proceeds in very different ways
in a Universe with versus without DM. Both cases can be studied in cosmological
perturbation theory and compared to measurements from galaxy surveys. From
this comparison, Dodelson showed in Ref. [100] that the DM hypothesis is the most
compelling explanation for structure formation as we observe it. His argument is
summarized in fig. 4.6. Simply stated, without DM the density fluctuations could
not have grown to produce structures with the density contrast that we see today.

Another way to study the processes of structure formation is through computer
simulations. Over the last decades, impressive improvements on computing power
and a better understanding of the most likely initial conditions for cosmic develop-

Figure 4.6. A portion of the matter power spectrum. In red we see
the data from the SDSS [99]; the solid black line traced the power
spectrum expected in the ΛCDM cosmological model with ΩCDM ∼
6Ωb; the dashed blue line stands for a model in which there is no
DM and all the matter density is provided by baryonic matter at
Ωb = 0.2. Finally, the solid blue line stands for the modified theory
of gravitation Tensor-Vector-Scalar (TeVeS), which obviates DM and
amplifies the baryonic perturbations. Clearly, neither the TeVeS
theory nor a standard cosmology without DM is able to explain the
data. Image from [100].
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ment - for example from the CMB - have allowed ever more complex and compre-
hensive computer simulations. Some have simulated very large volumes to probe
physics on large cosmological scales, while other simulations have studied much
smaller volumes to study the process of galaxy formation in detail. For instance,
the Millenium-XXL simulation used a cube with an edge length of more than 13
billion light years [103], while the Aquarius simulation used a cube with a side
length of 137Mpc to follow the evolution of a galactic halo for galaxies similar to
the Milky Way [104]. Another distinction is the implementation of only DM or DM
+ baryonic matter, which increases enormously the complexity of the simulation.

A cosmological simulation starts by specifying a cosmological framework, which
contains assumptions about: the underlying theory of gravity (i.e. Relativity or oth-
erwise), the DM properties (warm/cold, fermionic/bosonic, self-interacting, etc.),
the nature of Dark Energy (DE) (cosmological constant/inhomogeneous-/dynamic-
/coupled DE), and it ideally includes the most important astrophysical processes
governing the dynamics of baryonic matter, such as gas dynamics, star formation,

Figure 4.7. Galaxy distribution as measured by the galaxy surveys
2dF and SDSS in blue, and the distribution obtained from the Mil-
lennium simulation. The web-like structure, with voids, filaments
and walls is well reproduced. Image from [102].
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stellar feedback, magnetic fields, cosmic rays and black holes. The comparison of
the results of large volume simulations with the distribution of galaxies measured
by large galaxy surveys such as the SDSS has shown that the simulations with cold
DM correctly predict the large scale structures of the Universe [105], as can be
seen in fig. 4.7. On sub-galactic scales, there are some discrepancies between obser-
vations and simulations. These concern mainly the abundance of galaxy satellites
and the true shape of DM galactic halo density profiles, and could be relieved if
the DM was warm instead of cold. However, it is likely that these problems arise
as a result of baryonic physics effects and baryonic-DM interactions that have not
been accounted for in the simulations [105].

Baryon Acoustic Oscillations

Figure 4.8. Space correlation function for a large sample of lu-
minous red galaxies. The green, red and blue lines describe BAO
models with different amounts of total matter, namely ΩM h2 =
0.12, 0.13, 0.14 respectively. The magenta line stands for a CDM
model without BAO. The easily visible bump at ∼ 100h−1 Mpc is
precisely the expected result of BAO. Image from [106].
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The BAOs mentioned above in our discussion about the CMB leave an important
signature not only in the temperature fluctuations of the CMB but also on the
matter power spectrum and therefore on the distribution of galaxies as observed
today. As we saw, the CMB fluctuations reveal a snapshot of the cosmic plasma at
the moment of recombination. Some of the acoustic modes were precisely in their
phase of maximal compression or rarefaction at the moment of recombination. The
BAO modes that were at maximal rarefaction form shells of baryon overdensity with
a radius equal to the sound horizon at the moment of recombination. Then, these
shells of baryon overdensity begin to gravitationally pull material towards them
and thus act as late seeds for the formation of galaxies. These feature appears as
a small bump in the spacial correlation function of the distribution of galaxies, as
can be seen in fig. 4.8.

From the analysis of the impact of BAOs on the matter power spectrum, some
parameters of the cosmological model can be extracted, such as the Hubble param-
eter and the matter density parameter. Indeed, assuming the ΛCDM model, the
final data from the SDSS-III Baryon Oscillation Spectroscopic Survey
found for the density fraction of matter (dark and baryonic) [107]

ΩM = 0.310(6), (4.5)

which is in good agreement with other probes and is consistently larger than the
baryonic density fraction Ωb.

4.2 Dark Matter Candidates

The evidence in favour of the existence of DM is extensive and compelling. But
what physical entity is hiding behind what we call Dark Matter? Initially, it was
thought that MACHOs, such as inert or otherwise very faint stars could account for
the missing mass, but this hypothesis has since been ruled out, with the exception
of a small window for non-baryonic objects of asteroid masses [108]. In the recent
years, primordial black holes (PBH) have been claiming a lot of attention as a
potential explanation [109], particularly since the detenction of GW [110], but
these too have become strongly disfavoured by stringent constraints [111]. An
alternative explanation could come in the form of a modified theory of gravity, such
as the Modified Newtonian Dynamics (MOND) theory by Milgrom [112]. Although
this type of theories have made a lot of progress in the recent decades, they still
face major challenges in explaining cosmological observations [100, 113], which are
more easily understood in the particle DM scenario. The point of view most widely
accepted today is that there exists a massive BSM particle that is responsible for all
the astrophysical and cosmological observations attributed to the “missing mass”.

The possible DM candidates span a mass range of more than 80 orders of magni-
tude, from ultralight bosons with masses as tiny as ∼ 10−22 eV that create macro-
scopic condensates of galactic size, or heavy BSM particles with masses at the EW
scale and above, to PBHs of masses up to many times that of the sun [114]. The
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fact that the mass range for candidates is so huge can be seen as a manifestation
of our ignorance about the nature of DM. Nevertheless, impressive experimental ef-
forts have gone into searching for DM candidates throughout this wide mass range,
resulting in the constraining of the parameter spaces of individual candidates.

In this section we briefly introduce some of the proposed DM candidates, in-
evitably leaving many out - we do not intend to make a complete list here.

Fuzzy Dark Matter

A scalar field and the associated particles can play the role of the DM in the
Universe if the assigned mass is extremely small. This type of DM, where the
DM particles are bosons with masses ∼ 10−22 eV, is often called ultra light dark
matter (ULDM) or also fuzzy dark matter. At such low mass scales, one finds that
Bose-Einstein condensates of astronomical sizes can form, in which case the DM is
in a coherent field state and can be described as a classical field [115].

The de-Broglie wavelength associated with the condensate can be related to the
Jeans length, which is the length scale at which a cloud of massive particles finds
itself in equilibrium between gravitational attraction and internal pressure (in this
case, it is the quantum pressure related to the uncertainty principle that counteracts
the gravitational pull) [115]. With masses in the region of ∼ 10−22 eV one obtains
wavelengths on kpc scales, i.e. galactic sizes. Thus, the Jeans condition ensures
that fuzzy DM clouds form stable galaxy halos, and that the growth of structures
on scales below the Jeans length is suppressed, which implies that the formation of
halo-cusps and galactic satellites is inhibited, offering a solution to the small scale
problems of the cold DM scenario [116]. Furthermore, the equations of motion of
fuzzy DM show that at scales above the Jeans length the energy density of fuzzy
DM and the power spectrum produced by it behave just like cold DM, so that the
advantages of cold DM on large scales are retained in the fuzzy DM picture [117].

The production of fuzzy DM must occur non-thermally, since the DM would
otherwise be highly relativistic, which is ruled out by structure formation. Viable
non-thermal production mechanisms include out-of-equilibrium decays of parent
particles, the decay of topological defects, and the misalignment mechanism [118],
which can also be responsible for the production of axions, which we will mention
next.

Axions and Axion-like Particles

Axions arise as a solution to the strong CP problem: the QCD Lagrangian can
include a term of the form

LQCD ⊃ θ
g2s

32π2
Gaµν G̃

aµν , (4.6)

where Gaµν stands for the gluon field strength and θ is a parameter that gets two in-
dependent contributions, one related to the phase of the QCD vacuum and another
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one related to the quark mass matrix. Crucially, both contributions come from
seemingly unrelated sectors of the theory, i.e. the QCD vacuum on the one side
and the Yukawa sector on the other. As it turns out, the term in eq. (4.6) violates
CP invariance [119] and would induce a sizeable electric dipole moment for the
neutron, which however has been experimentally constrained to ≲ 10−26 e cm [120],
implying that θ must be itself rather tiny, namely θ ≲ 10−10. To explain the van-
ishing value of θ, Peccei and Quinn proposed to introduce a new global symmetry
U(1)PQ and showed that when the symmetry is spontaneously broken, it dynami-
cally drives the θ parameter towards zero [121, 122]. The Nambu-Goldstone boson
associated with the spontaneous symmetry breaking of the U(1)PQ symmetry is the
axion a. However, the U(1)PQ is a chiral symmetry and is also explicitly broken by
the term in eq. (4.6), so that the axion becomes a pseudo-Nambu-Goldstone boson
and acquires a small mass ma ∼ ΛQCD/fa, where ΛQCD is the QCD scale and fa
stands for the energy scale at which the U(1)PQ is spontaneously broken and is
also referred to as the axion decay constant [119, 123].

The axion is not inert - it couples feebly to SM particles, notably to the photon, a
coupling which is exploited in experimental searches. Current bounds constrain the
axion mass well into the sub eV range, where it could potentially be long-lived on
cosmological time scales, such that it becomes an interesting DM candidate, if it can
be produced to the correct amount in the early Universe [7]. The production has
to occur non-thermally, for example through the misalignment mechanism [124].

Recently, particles with properties similar to those of the axion, arising as the
pseudo-Nambu-Goldstone boson of a global U(1) symmetry and with very tiny
masses but unrelated to the strong CP problem of QCD, have been found to be
common features of many SM extensions. These so called Axion-like particles
appear in many BSM models and could potentially play the role of the DM of the
Universe, in which case they belong to the class of ultra light DM [117], and in
some cases they may even play the role of the Dark Energy of the Universe [125].

Neutrinos

In the 1970s, physicists started investigating the role that neutrinos might play in
cosmology [7]. Arguing that the energy density of neutrinos should not overclose
the Universe, nor should it affect its expansion history too drastically, Gershtein
and Zeldovich [126] and Cowsik and McClelland [127] were able to place bounds
on the mass of SM neutrinos. At the time, the masses of the SM neutrinos were
rather poorly constrained, and the question of whether there could be additional
generations of more massive neutrinos was still open [7]. The idea that massive
SM neutrinos could also account for the DM of the Universe was not contemplated
until a couple of years later: Szalay and Marx estimated that if neutrinos had
masses ≲ 13.5 eV, then there should exist a neutrino relic abundance left over from
the Big Bang that could explain the observations attributed to DM [128]. Shortly
afterwards, Lee and Weinberg showed that if a much heavier neutrino existed, it
could provide the missing energy density necessary to close the universe as long as
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its mass was ≳ 1− 15GeV [129]. Hereby, Lee and Weinberg showed that a heavy
neutral lepton with mass in the GeV scale and weak interactions would decouple
from equilibrium and its comoving density would freeze-out with a non-relativistic
energy distribution. This represents an early version of what later came to be
known as the WIMP miracle, which we will discuss in section 4.3. From then on,
neutrinos were seriously considered as dark matter candidates, until by the mid
1980s the first computer simulations of the cosmological evolution of DM showed
that a relativistic relic density of neutrinos (or in other words, a hot relic, as
would be the case for eV neutrinos) could not match the observed structures of the
Universe [7, 130]. The fourth, heavier neutrino imagined by Lee and Weinberg was
also ruled out when it became definitively clear that there are only 3 LH neutrinos
lighter than half of the mass of the Z boson in the standard model [131].

However, as we discussed in section 3.3, sterile neutrinos can be added to the
theory to generate the tiny masses of LH neutrinos, and they could potentially
be an excellent DM candidate. For that, the sterile neutrinos should have masses
above the keV scale, be stable on cosmological time scales and be produced to the
right amount in the early Universe by a plausible mechanism. Many attempts have
indeed been made to realise these conditions, and we will discuss some of them at
more length in section 4.4.

WIMPs

In cosmology, the concept of a bath of particles in thermal equilibrium as the state
of the Universe in early times was well understood and exploited to compute and
predict the CMB, the cosmic neutrino background (CνB) and the process of BBN.
These relic densities are produced by the interplay between the interaction rate of
the particles in the thermal bath and the expansion of the Universe itself, which
dilutes the particle densities and cools the Universe [29]: in short, a particle species
will stay in thermal (chemical) equilibrium as long as the rate of number-changing
interactions Γ is larger than the expansion rate of the Universe H, each of which
evolve differently as function of temperature. As the Universe expands and cools,
a temperature is reached which violates the equilibrium condition, i.e. Γ < H. At
that moment, the comoving number density of the particle species in question gets
frozen-out of thermal equilibrium und stays nearly constant ever after (assuming
that the particle species is stable) - this process is often referred to as freeze-out,
and we will discuss it in more detail later in section 4.3.

One distinguishes between a cold relic density and a hot relic density: the word
“cold” here refers to the momentum distribution that the relic particle had at the
moment of freeze-out: if the particle was non-relativistic at freeze-out, then it is
said to have a cold momentum distribution, whereas it is called “hot” if it was
relativistic at freeze-out, and a “warm” momentum distribution is somewhere in
between. As mentioned previously, large scale computer simulations rule out hot
DM and favour cold DM.

So by the 1990s, when the consensus was reached that the bulk of the mass of the
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Universe was contributed by a cold non-baryonic component, a natural assumption
was that the relic density of the DM was also thermally produced, just like the other
known relics [7]. It was soon realised that for the relic to be cold, the DM particle
mass could not be too small, but it should lie in the MeV range and above, and fur-
thermore, its self-annihilation cross section should be of a similar size to that of the
SM weak interactions2 [7]. These realisations were very encouraging, partly because
there were many theoretical reasons besides DM to expect new physics to appear
at the weak scale. Thus, particle DM candidates with masses in the MeV - TeV
range and produced by thermal freeze-out through interactions of strength similar
to the weak interactions became known as Weakly Interacting Massive Particles, or
WIMPs, for short, and have become one of the most studied and searched for DM
candidates [7]. The term “WIMP” should now be understood as a rather diverse
class of BSM particles produced by thermal freeze-out: WIMP candidates can be
found in supersymmetry (SUSY) theories, GUTs and many other models; they can
be scalars, fermions, or vector particles and can couple to the SM either directly
or through mediators or portal particles that can be themselves very diverse too
[132]. Great efforts are invested into looking for such WIMPs, in direct detection
experiments, collider searches and indirect astrophysical observations [132]. And
although these searches have not yet found any DM WIMPs but placed strong con-
straints on them, they remain a very appealing class of DM candidates. Currently,
the latest most stringent constraints from WIMP searches are those from the LZ
experiment [133, 134], while the most competitive limits from a blind analysis are
provided by the XENONnT experiment [135, 136].

WIMPZILLAS

WIMPZILLAS are a class of ultra heavy particles proposed as a DM candidate
to offer an alternative to the WIMP paradigm [137]. WIMPZILLAS have masses
around ∼ 1013GeV and must therefore be produced non-thermally to avoid the
unitarity bound [138]. They are assumed to be either exactly stable or very long-
lived, with lifetimes comparable to the age of the Universe. In the latter case, they
could be a source of ultra high energy cosmic rays (UHECR), even beyond the
Greisen-Zatzepin-Kuzmin cut-off [139], but their existence and production does
not necessarily rely on any couplings to the SM; WIMPZILLAS may have only
gravitational interactions. A handful of possible production mechanism for such
ultra heavy DM particles have been proposed, e.g. directly through the decays
of the inflaton field in inflation scenarios that include a preheating period [140,
141] or at the end of inflation by gravitational effects acting on the vacuum, in a
process similar to that which produces the primordial gravitational perturbations
[137, 142].

2One of the earliest examples for such a particle as a DM candidate was the GeV neutrino by
Lee and Weinberg [129]
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Primordial Black Holes

Primordial Black Holes (PBHs) are BHs that formed in the early Universe as op-
posed to astrophysical black holes, which are the result of the gravitational collapse
of very massive dying stars. If they exist, PBHs could provide a contribution to
the DM density of the Universe, as Chapline pointed out already in 1975 [143].
Recently, this hypothesis has reclaimed a lot of interest since the first detection of
gravitational waves from a BH binary merger in 2015 [110]. PBHs could have been
produced in the early Universe by the gravitational collapse of primordial density
perturbations after inflation [111], in which case a rough estimate of the mass M
of the PBHs formed at a time t can be given by [111]

M ∼ t

G
∼ 1015

(
t

10−23s

)
g,

which shows that from the Planck time tpl = 10−43 s until t = 1 s the possible mass
range for PBHs extends from 10−5 g to 1038 g ≈ 105M⊙. While PBHs lighter than
1015 g would have evaporated by now through the emission of Hawking radiation,
heavier ones would still exist today, and would behave like cold DM with respect
to structure formation [111]. However, many observations have placed stringent
constraints on the masses of PBHs that could have formed in the early Universe
and contribute meaningfully to the DM density. These constraints come from
gravitational lensing observations, gravitational waves, evaporation times, effects
on the CMB from the radiation emitted by the PBHs due to the accretion of gas,
dynamical arguments related to the stability of dwarf galaxies and wide binary
star systems, among others. These constraints currently only leave a small window
of 1017 g − 1022 g where PBHs could be a significant fraction of DM. However, all
constraints should be taken with a grain of salt, as they all involve important
assumptions about the properties of BHs and astrophysical uncertainties [111].

An interesting question is: how could one distinguish astrophysical and primor-
dial BHs? The Chandrasekhar mass MCh ≈ 1.4M⊙ is the maximal mass that a
white dwarf star can have before the degeneracy pressure in the star ceases to be
enough to resist the gravitational pull and the star implodes, resulting in a neu-
tron star or a BH. Detecting BHs with masses below the Chandrasekhar limit MCh

would be solid evidence for the existence of PBHs, because BHs from star collapse
should always be heavier than MCh. For BHs with masses above MCh, it has been
argued that the distinction could be made by analysing the redshift of the merger
rate from the GW background: astrophysical BHs would start to merge at a red-
shift corresponding to an epoch after star formation, while PBHs would start to
merge long before the first stars were ever born [144].

4.3 WIMP production: Thermal Freeze-out
The SM plasma that populated the early Universe was in a hot and dense state
of thermal equilibrium. As the Universe expands, its temperature decreases. The

41



4. Dark Matter

process of decoupling from this cosmic thermal equilibrium, also called freeze-out,
has been very successful at predicting the relic abundances of photons, i.e. the
CMB, and of the light chemical elements. Other relics have also been predicted,
such as the cosmic neutrino background (CνB), which has not yet been detected
but whose existence is uncontroversial [29]. Thus, it appears very plausible that the
DM relic abundance was also produced by this mechanism, which we now review.
We start our discussion by first presenting an approximative approach to freeze-
out, which gives us a chance to introduce some frequently encountered quantities
in cosmological thermodynamics. We then continue to explore the more detailed
treatment of freeze-out, which is based on the Boltzmann-equation.

The expansion rate of the Universe is described by the Hubble parameter H,
which is governed by the Friedmann equation,(

ȧ

a

)2

≡ H2 =
1

3M2
Pl

ρ. (4.7)

Here, we have assumed a flat Universe, MPl ≃ 2.4 × 1018GeV is the reduced
Plank mass and ρ stands for the energy density of the Universe, which receives
contributions from radiation, matter (dark and baryonic) and dark energy. At early
times ρ was dominated by the radiation component, so that we may substitute

ρ→ ρr =
π2

30
gρ T

4, (4.8)

where gρ stands for the number of degrees relativistic of freedom contributing to
the energy density and is given by

gρ(T ) =
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑
i=fermions

gi

(
Ti
T

)4

. (4.9)

During the radiation dominated era of the early Universe, particles were kept in
thermal equilibrium by the frequent interactions occurring between the particles.
For a specific particle species, say χ, we denote its rate of interactions with the
plasma by Γ. Thermal equilibrium is maintained as long as the rate of interactions
is larger than the rate of expansion of the Universe. This equilibrium condition
can loosely be written as

Γ > H. (4.10)

For thermal decoupling, the relevant interactions are usually the number changing
interactions, e.g. annihilations, for which the rate is given by

Γ = ⟨σv⟩nχ, (4.11)

where ⟨σv⟩ stands for the thermally averaged cross section of the interactions being
considered [145] and nχ is simply the number density of the χ particles. The expan-
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sion of the universe dilutes the number densities of all species, thereby diminishing
the interaction rate Γ.3 As the universe expands and cools, a temperature will be
reached at which the interaction rate can no longer keep up with the expansion
rate - in other other words, the equilibrium condition will eventually be violated.
Thus, the temperature at which Γ ≈ H occurs, gives us an approximation of the
decoupling temperature Tfo. Until freeze-out, the number density of χ is given by
its equilibrium distribution, which for a non-relativistic species is

neqχ (T ) = gχ

(
mχT

2π

)3/2

e−mχ/T , (4.12)

with the internal number of degrees of freedom gχ, which for a Majorana fermion
is equal to 2. At freeze-out, one could simplistically say that nχ decouples from
the thermal bath and is no longer modified by number changing interactions - its
evolution is determined only by the dilution due to the cosmic expansion. Therefore,
it is convenient to define the relic density

yχ =
nχ
s
, (4.13)

with the entropy density s. The relic density yχ is just a proxy for the comoving
number density, because the effect of dividing by the entropy density is to factor
out the dilution of nχ due to the expansion by using the fact that the total entropy
is conserved, i.e. S = s a3 = const. With this, we can already estimate the relic
abundance of our WIMP, the particle species χ. For that, we first estimate the relic
density at freeze-out by inserting eq. (4.11) into eq. (4.13) and using the freeze-out
condition Γ ≈ H to eliminate Γ. We then obtain

yfoχ ≈
π
√
gρ T

2
fo√

90 ⟨σv⟩MPl s(Tfo)
(4.14)

Next, we insert the entropy density

s =
2π2

45
gs T

3. (4.15)

which contains the number relativistic of degrees of freedom that contribute to
entropy,

gs(T ) =
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑
i=fermions

gi

(
Ti
T

)3

. (4.16)

We also introduce the dimensionless variable z = M/T , which is a proxy for time

3The thermally averaged cross section ⟨σv⟩ might itself be temperature dependent too.
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Figure 4.9. The number of degrees of freedom gρ and gs con-
tributing to the energy density and entropy density respectively as
functions of temperature. They are equal down to temperatures of
about ∼ 200 keV. Image adapted from [146].

t ∼ 1/T , and use it to replace T . Then, the relic density is estimated as

yfoχ ≈
√

45

8π2

(√
gρ(Tfo)

gs(Tfo)

)
zfo

⟨σv⟩MPlmχ
. (4.17)

Looking at the definitions of gρ and gs, eqs. (4.9) and (4.16), we realize that they
only differ from each other when there are degrees of freedom that contribute to ρ
or s while having a different temperature than the photons, which is only the case
after the e+ e− annihilation that reheats the photons but not the neutrinos, i.e. at
T < 100 keV, as can be seen in fig. 4.9. Also, prior to the QCD phase transition and
particularly above the EW scale T ≳ 100GeV we may approximate gρ = gs ≈ 100
(the actual SM value is gρ(T > mt) = 106.75). With that, we arrive at the estimate

yfoχ ≈ 0.075
zfo

⟨σv⟩MPlmχ
. (4.18)

For the freeze-out temperature, which goes into zfo, we can find an estimate from
the decoupling condition Γ ≈ H|T=Tfo for a given combination of (⟨σv⟩ ·mχ) (the
approximation depends only logarithmically on (⟨σv⟩ · mχ), see [147]). Typical
values lie in the range zfo = 15 − 35. The relic abundance for a non-relativistic
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species χ today is defined as

ΩDM =
ρDM

ρc
=
nχ,0mχ

ρc
=
yfoχ s0mχ

ρc
, (4.19)

where ρc is the critical density and the 0 index stands for values taken today. What
is actually inferred from the CMB is the product ΩDM h2, where h stands for the
value of the Hubble constant today in units of 100 km s−1Mpc−1. Thus, inserting
the values ρc = 1.05× 10−5 h2GeV cm−3, s0 = 2891.2 cm−3, MPl = 2.4× 1018GeV
from [96] and yfoχ from eq. (4.18) we finally obtain the result

ΩDM h2 ≈ 0.007 zfo

(
10−9GeV−2

⟨σv⟩

)
, (4.20)

which carries no explicit dependence on the DM mass and takes the correct value
of ΩDM h2 = 0.12 for zfo = 17.

This approximation serves well to illustrate what is commonly known as the
WIMP miracle, which originally made EW scale DM so appealing: if the interaction
strength driving the annihilation of DM particles is of a similar size to the SM weak
interaction, then the freeze-out mechanism, which is responsible for other known
relic abundances, naturally produces the correct amount of DM.

This heuristic approach is very useful to get a quick estimate of the relic abun-
dance, and particularly the relation ΩDM ∼ ⟨σv⟩−1, but it is just that: a very
rough approximation. It leaves out some important details and it makes some ef-
fects and dependencies intransparent. The proper treatment involves solving the
full Boltzmann equation, which is an integro-differential equation for the momen-
tum distribution function of the particle in question, fχ(p, t), namely

L[fχ] = C[fχ], (4.21)

where L is the Liouville operator that describes the time evolution of fχ taking
the expansion of the background into account, and C is the collision operator that
describes all the particle interactions involved in the evolution of fχ. In the left
hand side L[fχ] contains input from general relativity and cosmology related to
the expansion of the Universe, while the right hand side C[fχ] contains all of the
particle physics input. The solution to the equation is the momentum distribution
fχ, which allows us to perform statistical physics calculations and compute the
number density of χ. The complete formulation of the Boltzmann equation for
a DM WIMP can be found chapter B. After some manipulations and simplifying
assumptions, one arrives at

dnχ
dt

+ 3Hnχ = −⟨σv⟩(n2χ − n2χ,eq), (4.22)

which after some more manipulations and introducing the relic density yχ and the
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variable z = m/T can be rewritten as

dyχ
dz

= −s ⟨σv⟩
z H

(
y2χ − y2χ,eq

)
(4.23)

dyχ
dz

= −
√

8π2

45

MPlmχ g
1/2
∗

z2
⟨σv⟩

(
y2χ − y2χ,eq

)
, (4.24)

where we have defined

g
1/2
∗ :=

gs(T )√
gρ(T )

·
(
1

3

d ln gs(T )

d lnT
+ 1

)
. (4.25)

Notice again that for T > 100 keV we can set gs = gρ and in some temperature
intervals they are approximately constant, so that the temperature derivative can
be neglected. Concretely, we can safely set g1/2∗ ≈ 10.3 for T > 1GeV. Equa-
tion (4.23) can now be solved either numerically or through analytical approxi-
mations [29, 145, 147]. For the analytical approximations, one first considers the
late-time/low-temperature regime, where yχ,eq can be neglected and eq. (4.23) be-
comes a homogeneous differential equation, which can then be integrated from zfo
to z = ∞ today, delivering the result

yχ,0 = 0.75
zfo

MPlmχ g
1/2
∗ ⟨σv⟩

, (4.26)

which is almost identical to eq. (4.18) except for the presence of g1/2∗ . Then, to
determine zfo, one examines the early-time/high-temperature regime of eq. (4.23),
where the comoving density closely traces its equilibrium version. One then consid-
ers the departure of yχ from yχ,eq, quantified by ∆ = (yχ−yχ,eq)/yχ,eq and specifies
zfo as the temperature for which ∆(zfo) = (

√
5−11)/2 ≈ 0.62, which appears rather

arbitrary, but agrees well with the numerical solution [147]. This results in

zfo + ln(zfo − 1.5)− 0.5 ln(zfo) = 20.5 + ln

(
⟨σv⟩

10−26 cm3s−1

)
+ ln

( mχ

GeV

)
− ln

(
g
1/2
∗

)
,

which can be solved iteratively and shows that the value of zfo depends only log-
arithmically on ⟨σv⟩ and mχ. Scanning over mχ ∈ [10−1..104] GeV and inserting
the necessary ⟨σv⟩ for the observed DM relic abundance to be reached, zfo takes
values in the interval [17..27] 4.

The final result for the relic abundance in this analytical approximation to the

4Steigman, Dasgupta, and Beacom emphazise in [147] that zfo as computed here does not actually
stand for the temperature of freeze-out, but actually for the temperature at which Yχ starts
departing from Yχ,eq; they therefore write z∗ instead of zfo and show that at z = z∗ decoupling
has not yet completely occurred because Γ/H|z=z∗ > 1 and annihilations still occur, depleting
Yχ until it reaches its asymptotical value of Yχ,0 = Yχ,eq when Γ/H|z=z∗ < 1.
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Figure 4.10. WIMP relic densities for different values of mχ and
⟨σv⟩. The curves are normalized by the value of yχ,eq(T = mχ) and
are multiplied by mχ, just as they appear in formula for the relic
abundance, i.e.ΩDM ∝ yχ,0mχ, where mχ cancels out and results in
the non-dependence of ΩDM on the WIMP mass mχ, which we can
see here clearly from the upper three curves.

solution of the Boltzmann equation is

ΩDM h2 ≈ 0.084

(
zfo

g
1/2
∗

)(
10−9GeV−2

⟨σv⟩

)
. (4.27)

The numerical solution is shown in fig. 4.10. It must be pointed out, that the
Boltzmann equation derived for χ describes only the simplest WIMP scenario in a
standard cosmology. The simplifying assumptions include: the WIMP χ annihilates
through 2 to 2 processes χχ ↔ f̄f into SM particles, the s-wave is the most
important contribution to ⟨σv⟩ and the cross section has no thresholds or resonances
in the relevant energy range. Departures from these assumptions would necessitate
a dedicated treatment, as has been studied in ref. [148].
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4.4 Sterile Neutrinos as Dark Matter
Adding three RH neutrinos to the SM is a minimal and very attractive extension to
the theory. Although the number of additional RH neutrinos is not strictly limited
to three - one could in principle add any number of sterile neutrinos - the choice of
three is natural in the sense that it reestablishes the symmetry between the lepton
and quark sector, so that every LH particle has a RH partner. Since the sterile
neutrinos are SM singlets, they can be endowed with a Majorana mass term and
naturally generate the tiny masses of the SM neutrinos by means of the seesaw
mechanism. If the lightest sterile neutrino is long lived up to cosmological time
scales, it could potentially be an excellent DM candidate. This minimal extension
is realized in the so called νMSM [149], where baryogenesis through leptogenesis
can also be implemented, provided that the masses of the heavy sterile neutrinos
are arranged in a specific pattern [150].

Here we are mostly interested in the lightest sterile neutrino as a DM candidate,
which we will refer to as N1. What requirements does N1 have to fulfil in order to
actually be a viable DM candidate? First, as mentioned above, it should be long
lived; through their Yukawa coupling, sterile neutrinos can mix with active neutri-
nos and decay. What decay channels are open depends on the sterile neutrino mass.
Since DM matter should be produced in the early Universe and continue to exist
today, the lifetime of N1 should be at least comparable to the age of the Universe
in order for N1 to be able to play the part. This will require the Yukawa coupling,
or equivalently the active-sterile neutrino mixing angle, to be very small, which will
place strong bounds on the parameter space of sterile neutrinos. Second, the relic
abundance of N1 must match the observations. The most precise measurement
available today for the DM abundance is analysis of the CMB anisotropies by the
PLANCK collaboration, ΩDM h2 = 0.1200(12) [96]. For N1 to make up 100% of
the DM, this value must be saturated by an appropriate production mechanism at
work in the early Universe. It is possible that the DM density is actually made up
of multiple components and N1 only provides a fraction of the full abundance, in
which case we would find ΩN1 < ΩDM, but in any case the N1 abundance must not
exceed the PLANCK measurement - in such cases we would rule out the production
mechanism by overproduction.

In the following, we will briefly discuss the most common production mechanisms
and discuss how they are constrained by astrophysical observations. We will not go
into too much depth regarding the already known production mechanism, as they
are not relevant to the proposition and scientific contribution of this thesis, which
is a whole new and unrelated production mechanism.

4.4.1 Standard Production Mechanisms

Production by non-resonant oscillations

As we discussed in section 3.3, if sterile neutrinos are present and take part in
the type I seesaw mechanism, then there is a small admixture between active
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and sterile neutrinos, which leads to the production mechanism by active-sterile
neutrino oscillations, first proposed by Dodelson and Widrow in 1994 [151]. In the
case of three sterile states, as we are considering here, the mixing angle between
νLα and νRi is

θαi = (mD)αj (M
−1
R )ji, (4.28)

and since θαi ≪ 1 the heavy neutrinos mass eigenstates are almost totally aligned
with the right handed Majorana states, i.e. νRi ≈ Ni. For simplicity, in this section
we will consider only one sterile neutrino N1 with mass M1, and ignore the other
two. The sterile neutrino N1 is here the DM candidate. Accordingly, we here
denote the mixing angle between N1 and the active neutrinos simply as θ. Because
the sterile neutrinos only communicate with the SM through θ ≪ 1, N1 never
reaches thermal equilibrium. However, even with a vanishing initial population of
sterile neutrinos, they can nevertheless be produced in the early Universe through
decoherent neutrino scattering: essentially (in the quantum mechanical picture),
after an active neutrino has been produced in a flavour eigenstate and begins to
propagate, its mass eigenstate components evolve with their quantum mechanical
phases, just like with usual neutrino oscillation, except that there is also a sterile
neutrino component. By the time it is about to undergo its next scattering, its
wave function is forced to collapse onto one active flavour state, or (crucially) a
sterile state that evades the scattering event and begins a new propagation process.
Since all of this occurs not in vacuum, but in the hot and dense plasma of the early
Universe, matter and temperature effects must be taken into account, which is
done by replacing the vacuum mixing angle θ by the temperature dependent mixing
angle in matter θm(T ). The rate with which sterile neutrinos can be produced by
decoherent scatterings is

ΓN ∼ Γν θ
2
m(T ), (4.29)

where the scattering rate of active neutrinos Γν depends on the temperature; if
decays and inverse decays involving the Higgs boson are kinematically allowed,
they will dominate, whereas below the EW temperature the gauge interactions of
the light neutrinos determine the rate [116], thus

Γν ∼

{
M2

1T/v
2, for T > TEW ,

G2
F T

2 · nν(T ) ∼ G2
F T

2 · T 3, for T < TEW .
(4.30)

The finite temperature potential induced by the neutrino interaction in the plasma
leads to the following mixing angle in matter [152]:

sin2(2θm) =
(∆m2/2p)2 sin2(2θ)

(∆m2/2p)2 sin2(2θ) + [(∆m2/2p) cos(2θ)− VT ]2
, (4.31)
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where the mass squared difference between the active and the sterile state is ∆m2

and p stands for the momentum. Furthermore, VT stands for the finite temperature
potential, which is always negative and, at the relevant temperature range, goes as
VT = −Geff p T

4, where Geff is of the order of the Fermi constant and represents
the global coupling of the neutrinos to the plasma [73]. Then, the matter mixing
angle can be approximated as [116]

θm ≃ θ

1 + 2.4
(

T
200MeV

)6 (1 keV
M1

)2 , (4.32)

where we easily recognise that the matter-mixing angle, and thus the sterile neu-
trino production, is highly suppressed at T > 100MeV; indeed, inserting eq. (4.32)
into eq. (4.29) and maximizing with respect to temperature, we find that peak
production is achieved at

T peak
prod ≈ 150

( m

1 keV

)1/3
MeV (4.33)

This temperature is in the region of the QCD phase transition, which makes the
full, precise computations a lot more complex. The sterile neutrino abundance
is obtained by integrating ΓN over temperature throughout the evolution of the
Universe. An analytical approximation for the resulting abundance is given by [73]

ΩN1 ∼ 0.2

(
sin2 θ

3 · 10−9

)(
M1

3 keV

)1.8

. (4.34)

Full computations can be found in the literature, e.g. [153]. This production mecha-
nism, referred to as the Dodelson-Widrow (DW) mechanism, or also as “production
by non-resonant oscillations”, is straightforward and requires nothing more than
the non-vanishing admixture between active and sterile neutrinos from the Yukawa
term. If the Yukawa term is there, production via the DW mechanism is inevitable.
Equating eq. (4.34) with the observed DM abundance, we would obtain a curve in
the (M1, sin

2 θ) space along which DW produced sterile neutrinos account for 100%
of the DM of the Universe. However, as we will explain in the next section, X-ray
(non-)observations have already ruled out this mechanism as the one responsible
for producing 100% of the DM in the form of sterile neutrinos.

Production by resonant oscillations

There is an important modification that can be done to the DW mechanism. If a
significant lepton asymmetry is present at the time of N1 production, then addi-
tional matter effects must be taken into account. In short, this is done by including
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Figure 4.11. The effective in-medium neutrino mass as a function
of temperature and for different values of the scaled momentum
x = p/T for two different values of the electron lepton number,
assuming that the active-sterile transition occurs only involving the
electron neutrino, namely Le = 7× 10−4, 3× 10−4. The mass of the
DM neutrino is taken to be 7.1 kev, represented by the horizontal red
dashed line; when it crosses the curve Meff the resonance condition
is fulfilled and thus the DM production is enhanced. Plot from [152].

the finite density potential VD in the matter-mixing angle, which then reads [152]

sin2(2θm) =
(∆m2/2p)2 sin2(2θ)

(∆m2/2p)2 sin2(2θ) + [(∆m2/2p) cos(2θ)− VT − VD]2
. (4.35)

This now opens the possibility that the second term in the denominator vanishes,
i.e.

0
!
=

∆m2

2p
cos(2θ)− VT − VD, (4.36)

in which case the amplitude for the active-sterile oscillations becomes maximal.
This is the Shi-Fuller mechanism [154], which makes it possible to successfully
produce sterile neutrino DM even with a much smaller vacuum mixing angle. Note
that this was not possible without VD because the finite temperature potential is
always negative, VT < 0. Since θ ≪ 1 and the mass of the sterile neutrino is much
larger than the mass eigenstates mostly aligned with the active neutrinos, we can

51



4. Dark Matter

safely approximate ∆m2 cos(2θ) ≈ M2
1 and thus rewrite the resonance condition

as

M2
1 ≃ 2p VD + 2p VT . (4.37)

The density potential can be written as [152]

VD =
2
√
2ζ(3)

π2
GF Lα T 3, (4.38)

where Lα is a measure of the lepton number asymmetry in the flavour α. Inserting
again VT = −Geff p T

4 we obtain the resonance condition as

M2
eff(T ) :=

4
√
2 ζ(3)

π2
GF Lα p T 3 − 2Geff p

2 T 4 !≃M2
1 , (4.39)

whereby in the literature one often finds that the momentum p is replaced by the
temperature-scaled momentum x = p/T . Thus, the effective-mass is a function
of T and p (or equivalently x) and encapsulates the finite temperature and lepton
asymmetry effects. When Meff and M1 cross, the resonance condition is fulfilled
and the sterile neutrino production is enhanced, as can be seen in fig. 4.11. The
DM neutrinos produced in this way can have a non-thermal spectrum with the
bulk of the distribution shifted to lower energies, so that in this sense, the DM is
colder [152].

The lepton asymmetry necessary for the resonance to successfully produce sterile
neutrino DM with keV masses must be much larger than the known baryon asym-
metry, namely ηL ∼ 10−6 > ηB ∼ 10−10 [116]. Within the νMSM, it is possible to
implement successful baryogenesis through leptogenesis and also generate the neces-
sary lepton number asymmetry for the resonant production of keV sterile neutrino
DM, provided that the two heavier sterile neutrinos have quasi-degenerate masses
in the GeV range [155]: above the EW scale, the two heavier sterile neutrinos N2

and N3 generate a net lepton number through active-sterile oscillations, which is
then transferred to the baryon sector by the sphalerons [156]. Below EW scale,
when the sphalerons are no longer in equilibrium, N2 and N3 decay and thereby
rebuild the lepton number asymmetry necessary for the resonant production of N1.
While this scenario seems convenient, the price to pay is the peculiar hierarchy in
the Majorana mass matrix. Furthermore, X-ray constraints have also closed large
regions of the parameter space where this model would work so elegantly.

Production through decays of other particles

A very different alternative is that the DM sterile neutrinos are not produced by
any kind of oscillations, but are the product of the decay of some additional parent
particle, for example a SM singlet scalar S. A representative realization of this
scenario is discussed e.g. in Ref. [157]. The inclusion of S would allow for the
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presence of a Yukawa type term between S and N1,

f

2
N1

cN1 S + h.c., (4.40)

with the coupling constant f , which opens the way for the decay S → N1
cN1.

There are many possible variations of this mechanism [152]: the parent particle
can be in equilibrium or not at the era of N1 production, there may or may not
be other decay channels for S, and the parent particle S could be a vector or a
fermion instead of a scalar. While many of this scenarios may be well motivated
and interesting in their own right, they all go beyond the minimality of the νMSM,
where the SM is extended only by three RH neutrinos.

4.4.2 Observational constraints on neutrino Dark Matter

In the following we will discuss some of the astrophysical observations that constrain
the parameter space of sterile neutrino DM. Particularly for keV neutrino DM, these
bounds are complementary and thus restrict the parameter space from different
directions, closing in on a window of parameter space where the νMSM might
survive.

The Tremaine-Gunn bound

The Tremaine-Gunn bound [158] is model independent and applies not only to
sterile neutrinos but actually to any fermionic DM candidate. In short, the argu-
ment is that for fermionic DM particles with masses below a certain bound, the
phase-space distribution of the DM in a galactic halo would have to violate the
Pauli exclusion principle in order to explain the amount of DM observed in said
galactic halo. Therefore, DM masses below said bound are forbidden.

The densest phase-space configuration in a DM halo would be realized by a self
gravitating Fermi gas. Consider a spherically symmetric halo of total mass M and
radius R. The maximal Fermi velocity in such a cloud is given by [159]

vFermi
max = ℏ

(
9πM

2 gχm4
χR

3

)1/3

, (4.41)

with mχ as the mass of a generic fermionic DM particle - in our case of sterile
neutrinos, we could replace mχ with M1 - and gχ stands for the number internal
degrees of freedom of χ. In order for the halo not to disintegrate, vFermi

max must
be smaller than the escape velocity of the halo vesc =

√
2GN M/R. From this

condition, after solving for mχ, we obtain the bound

mχ ≥

 9πℏ3

4gχ

√
2M R3G3

N

1/4

. (4.42)
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Dwarf spheroidal galaxies (dSph) are expected to have very compact and ho-
mogeneous DM halos and therefore represent excellent environments to apply this
bound, which has been done, e.g. in Ref. [159], who reported

mχ ≥ 0.4 keV. (4.43)

This formulation of the Tremaine-Gunn bound is powerful because it is almost
universal: the only assumption made was that the DM halo is spherical. Beyond
that, the only uncertainties come from accurately characterizing the halo with
appropriate parameters M and R.

However, the bound can be strengthened by adopting additional assumptions:
if we assume a particular primordial momentum distribution - in the case of ther-
mal production, a Fermi-Dirac or a Maxwell-Boltzmann distribution depending on
whether the DM was relativistic or not - then we may use Liouville’s theorem, from
which it follows that the maximum of the distribution remains unchanged through-
out its evolution. Liouville’s theorem applies for collisionless and dissipationless
dynamics, but these are assumed to be general properties of DM, except perhaps
in the case of self-interacting DM. This approach applied to sterile neutrino DM
produced by the Dodelson-Widrow mechanism results in the bound [159]

M1 ≥ 2.79 keV . (4.44)

Bounds from the Lyman-α forest

Sterile neutrinos with masses in the keV range playing the role of the DM of the Uni-
verse are usually relativistic at the time of production and become non-relativistic
later in cosmological history - therefore they are often referred to as warm DM,
as opposed to cold DM, which is non-relativistic already at production. Cold and
warm DM impact structure formation differently: due to its relativistic velocity,
warm DM has a free streaming length λFS below which it tends to impede the
growth of structures. This length scale for sterile neutrinos is [116]

λFS ∼ 1Mpc

(
1 kev

M1

)(
⟨p/T ⟩
3.15

)
, (4.45)

where ⟨p⟩ is the averaged momentum of the sterile neutrinos. Thus, due to free
streaming, we do not expect structures with length scales smaller than λFS to have
formed if warm sterile neutrinos are the DM. The mass that would have otherwise
gravitationally collapsed at those scales is

MFS ∼ 3× 1010M⊙

(
1 kev

M1

)3(⟨p/T ⟩
3.15

)3

, (4.46)

thus we also do not expect to find cosmological structures with masses below MFS.
Quantitatively, warm DM suppresses the power above a certain momentum scale
kFS ∼ λ−1

FS with respect to the power spectrum of cold DM, whereby the sup-

54



4.4 Sterile Neutrinos as Dark Matter
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Figure 4.12. Sterile neutrino decay at three level.

pression scale kFS depends on the primordial momentum distribution and the DM
mass [116]. To measure the power spectrum at this small scales one measures the
Lyman-α absorption line of neutral hydrogen in the intergalactic medium (IGM).
While the IGM is gravitationally dominated by DM, it also contains a lot of neutral
hydrogen of primordial origin. The radiation for the absorption line is provided by
background quasi-stelar objects (QSO), also known as quasars. Since the Lyman-
α line is very precisely known, spectrographic observations of the IGM allow the
determination of the redshift and density of the absorbing material, from which
one can then infer the power spectrum [152]. At this point it is worth empha-
sizing that this method constraints the free streaming length of DM, which can
be translated to a constrain on the DM mass only under additional assumptions
regarding the primordial DM spectrum, which is determined by the DM produc-
tion mechanism. Thus, in contrast to the Tremaine-Gunn bound, this method is
highly model-dependent. Depending on the assumed production mechanism and
primordial spectrum, a lower bound on the mass of warm DM on the range between
10−20 keV has been computed [160, 161]. However, it must be said that Lyman-α
analyses are highly sensitive to the temperature and thermal history of the IGM,
which is largely unknown but can have an important effect on the results [162]. Due
to this and other systematic uncertainties, Lyman-α bounds remain controversial
and are therefore often not quoted in the sterile neutrino DM literature.

Constraints from X-ray searches

Sterile neutrinos as in the νMSM, with a Yukawa coupling to the SM Higgs and
active neutrinos, are unavoidably unstable (unless one goes beyond the minimal
extension and imposes an additional protecting symmetry). The allowed decay
channels depend on the sterile neutrino mass: for masses above the EW scale, the
dominant decays at three level are to the Higgs boson and a neutrino, but in this
case, very different bounds apply [152]. For M1 < 2me, where me is the electron
mass, the three level channel occurs to three neutrinos, as depicted in fig. 4.12. The
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decay rate for this process was calculated as [163]

ΓN1→3ν =
G2
F m

5
R

96π3
sin2(θ) = 6.9× 10−20

(
M1

keV

)5

sin2(θ) s−1. (4.47)

If the sterile neutrino is to be a viable DM candidate, then its lifetime has to be at
least as large as the age of the Universe, τN1 = Γ−1

N1→3ν ≥ tU ≃ 4× 1017 s, resulting
in the following bound for the mixing angle

θ2 ≤ 3.6× 10−4

(
10 keV

M1

)5

, (4.48)

which is actually a rather modest bound, although it gets much stronger quickly
with increasing mass. However, there is a one-loop decay channel which allows us
to place a much stronger bound on θ: with charged leptons and a W boson in the
loop, N1 can decay as N1 → να γ, as depicted in fig. 4.13. Since the propagators
will be proportional to the inverse masses of the charged leptons in the loop, the
dominant contribution is provided by electrons. The decay width for this processes
has been computed to [152, 164]

ΓN1→γν = 5.5× 10−22 sin2(2θ)

(
M1

1 keV

)5

s−1. (4.49)

Comparing eq. (4.48) with eq. (4.49), we immediately see that the three level decay
is ∼ 100 times more frequent than the radiative decay from fig. 4.13. The reason
why the radiative decay nevertheless leads to more stringent constraints is that
is it is much easier to search for the photons emitted by the loop decay, than
for the neutrinos produced by the three level decay. Since the active neutrino
is practically massless compared to the sterile neutrino, the energy of the decay
gets evenly distributed among both final particles, να and γ, assuming that the
decay occurs approximately at rest. For this reason this process is often referred
to as a “smoking gun” for sterile neutrino DM: if we consistently detect these
monochromatic photons with energy Eγ from the regions in space where we expect
DM decays to occur, then that would be compelling evidence for sterile neutrino
DM with M1 ≃ 2Eγ .

In the last decade, many experiments have searched for this signal, which for

γ
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νi W∓

l±α

να

γ
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Figure 4.13. Radiative sterile neutrino decay at one loop level.
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sterile neutrino masses in the keV range falls in the X-ray portion of the electro-
magnetic spectrum. There is a number of different types of sources from which
one would expect to observe this X-ray line assuming the sterile neutrino DM hy-
pothesis: the line should contribute to the diffuse X-ray background, since DM
particles should have been decaying in small numbers everywhere in the Universe
since very early times, and the line should be broad and have a continuous tail due
to the redshift effect throughout the history of the Universe. However, it could be
challenging to discriminate the DM contribution to the diffuse X-ray background
from all other contributing sources. Instead of searching for the smeared signal in
the diffuse background, one could look for it in regions of space where we expect a
large overdensity in the DM distribution, such as galaxy clusters. Individual clus-
ters would emit the same sharp line at their respective redshifts. In this case, the
expected flux would be comparable to that from the X-ray background. Locally, we
should also expect a measurable flux here in our own galaxy, particularly from the
galactic center, where the DM density is the highest. Unfortunately, the galactic
core is also the noisiest part of the galaxy, contaminating the search for the signal
and making its identification more difficult. Perhaps the most promising objects to
search for a signal are dwarf spheroidal galaxies (dSphs), which are low-luminosity
galaxies with little amounts of gas, a very compact mass distribution dominated by
DM and an almost spherical shape. A couple of dozens of dSphs around the Milky
Way are known, and although dSphs are much less massive than elliptical or spiral
galaxies, their proximity to us and their large signal-to-noice ratio (due to their
low luminosity and comparatively less active cores) make them excellent sources
to search for the DM decay line. Such X-ray searches have been performed by
a multitude of telescopes, such as Suzaku, INTEGRAL, Chandra, XMM-Newton
and Fermi/GBM, among others. For the most part, the null-results from these ob-
servations have lead to the constraining of the (θ2, M1) parameter space of sterile
neutrino DM in the keV - MeV mass range, with one notable exception: a rather
suspicious excess at Eγ = 3.55 keV has been consistently observed from multiple
sources and by independent teams. The possible signal was seen in the stacked
X-ray spectrum of galaxy clusters [167], in the spectrum of the Andromeda galaxy
and the Perseus Cluster [168] and from the Milky Ways galactic center [169]. Inter-
preting this excess as a DM signal is tempting, but the data is inconclusive. The
observations of the local galactic group reported in Ref. [170] could not confirm
the signal. Particularly, the line has not been observed from dSphs [171], which
would have been a clear indication in favour of the DM interpretation. There are
also alternative explanations for the excess, e.g. the potasssium line K XVIII at
3.51 keV, but this hypothesis is inconclusive too. The true identity of the 3.55 keV
line remains unclear and additional data is required to settle the matter. In Fig-
ure 4.14 we see current X-ray constraints on the sterile neutrino parameter space
- the bound from Milky Way satellite counts and the BBN limit [172] apply only
to sterile neutrinos produced by the Shi-Fuller [154] mechanism, as in the νMSM.
Clearly, the viability of these production mechanism is under stress.
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Figure 4.14. Constraints on the sterile neutrino DM parameter
space presented by Ng et al. in 2019 [165]. The previous X-ray con-
straints includes null-observations from the Bullet Cluster and other
galaxy clusters, multiple Milky Way measurements, dSphs, the dif-
fuse X-ray background. The solid blue line traces the strongest
bounds for M1 > 10 keV from stacked observations of the An-
dromeda M31 galaxy. The Milky Way satellite bound applies to
resonantly produced sterile neutrinos and is related to the power-
suppressing effect of warm dark matter at small scales. Below the
BBN bound, the amount of lepton asymmetry necessary for success-
ful DM production by resonant oscillations would be in conflict with
BBN. The observed line at Eγ = 3.55 keV, suspicious of originating
through the decay of a M1 = 7.1 keV sterile neutrino, is also shown
in red, but it is currently excluded for non-resonant or resonant pro-
duction by the Chandra observatory with data from the Milky Ways
galactic center [166]. Plot from [165].
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Chapter 5

A new production mechanism
for sterile neutrino Dark Matter

By now we have established that sterile neutrinos are a powerful addition to the
SM. They not only provide explanations to the unanswered puzzles in the neutrino
sector, i.e. mass generation and oscillations. Furthermore, they restore the lepton-
quark symmetry, by which every LH particle in the SM has a RH partner, and,
most importantly for us, they offer an appealing DM candidate. Moreover, as in
the νMSM, they could also explain the origin of the matter-antimatter asymmetry
of the Universe by leptogenesis [149, 150]. Clearly, sterile neutrinos are an economic,
minimal and well motivated extension of the SM, simultaneously offering elegant
solutions to some of the most pressing problems of fundamental physics.

However, as discussed in section 4.4, indirect DM searches are making it ever
more difficult to reconcile the two basic requirements for a DM candidate: a viable
production mechanism to reproduce the observed relic abundance and an appropri-
ately long lifetime. The most minimal and straightforward production mechanisms,
namely through non-resonant [151] or resonant [154] oscillations in the early Uni-
verse are either completely ruled out or under a lot of stress fromX-ray observations
- see fig. 4.14. The Dodelson-Widrow mechanism requires a sizeable active-sterile
mixing angle, which in turn implies a larger decay rate. The one-loop radiative de-
cay N1 → να γ, depicted in fig. 4.13, emits monochromatic photons at Eγ =M1/2
which can be searched for with X-ray telescopes. The results from these searches
have ruled out the Dodelson-Widrow mechanism as capable of producing 100% of
the DM density in the form of sterile neutrinos. This constraints can be somewhat
alleviated by the Shi-Fuller mechanism, where the oscillations that produce the
sterile neutrinos occur resonantly. The resonance condition requires a large lepton
asymmetry (at the level of ∆L > 10−6) to be present at the time of production,
i.e. well below the EW temperature. With an increasing lepton number asym-
metry, the production of sterile neutrinos can be successful with an ever smaller
active-sterile mixing angle. However, there is a limit to this effect: first, there
is a maximum amount of lepton number asymmetry that can be achieved within
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the νMSM [172], and secondly, above a certain threshold, regardless of where it
came from (be it the νMSM or else), the lepton asymmetry itself would have an
unacceptable impact on BBN [173]. As can be seen in fig. 4.14, there remains
only a small window of parameter space open, where the Shi-Fuller mechanism can
successfully deliver sterile neutrino DM. Thus, alternative production mechanisms
that are better compatible with the current observational constraints are highly
desirable.

In section 4.3 we saw that freeze-out, i.e. the decoupling from thermal equilibrium
of the cosmic plasma, is a reliable and natural process by which relic abundances
from the early Universe can be generated, such as the CMB or the densities of the
primordial chemical elements. For freeze-out to occur, the particle species in ques-
tion, let’s call it χ, has to be in thermal equilibrium with the cosmic plasma, which
is ensured by a large enough interaction rate. More concretely, the equilibrium
condition, which is that the interaction rate must be larger then the expansion rate
of the Universe Γχ > H, must be fulfilled. Then, as the Universe expands and
cools, a temperature will be reached at which the equilibrium condition is violated,
i.e. the interactions involving χ occur at a smaller rate than the expansion rate of
the Universe. At that moment, the particle species χ practically stops interact-
ing and its comoving density becomes constant thereafter - it freezes-out. Weakly
interacting massive particles (WIMPs) are produced in a very natural manner by
this mechanism. The fact that this mechanism is a natural feature of the thermo-
dynamics of the early Universe and the coincidence known as the WIMP miracle,1
are the reasons why WIMPs have been such a popular DM candidate.

Until recently, thermal freeze-out as the production mechanism for sterile neu-
trino DM in the minimal extension of the SM had not been considered. Addressing
this issue is the main scientific contribution by the author of this thesis. The rea-
son why this scenario had so far not been considered is that sterile neutrinos in the
minimal extension of the SM could never reach thermal equilibrium in the early
Universe if they are to play the part of the DM. This is because thermal equilibrium
would require a sizeable neutrino Yukawa coupling, implying a large mixing angle,
which would make the sterile neutrinos unstable and unacceptably short lived for
a proper DM candidate.

Here, we dare to ask the question: how can we reconcile sterile neutrinos in
thermal equilibrium in the early Universe with a small enough mixing angle to
ensure their longevity and survival into the mature Universe. Our key realization is
that, if the Yukawa coupling was actually a dynamical quantity, both requirements
could be brought to peace with each other. What we need is a mechanism by which
the Yukawa couplings take large values during the early stages of the Universe and
then somehow become strongly suppressed at later times. Ideally, the Yukawa
couplings start out in the early Universe being large enough to ensure thermal
equilibrium and then, still in the radiation dominated era, suffer a drastic change
and become strongly suppressed, so that the rate of the interactions due to the
Yukawa couplings drops below the expansion rate of the Universe, thereby violating

1See section 4.3.
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the equilibrium condition and effectively forcing the sterile neutrinos to freeze-out.
The change in the values of the Yukawa coupling may happen abruptly or gradually,
as long as the induced freeze-out generates the correct relic density. The suppression
of the Yukawa couplings should be such that not only freeze-out is induced, but the
mixing angle becomes small enough to comply with the longevity condition and, in
the case of keV sterile neutrinos, the X-ray bounds. In principle, any mechanism
which leads to the described behaviour for the Yukawa couplings could do the job.

Remarkably, this type of behaviour in the Yukawa couplings could also hold the
key to solving the flavour puzzle, which we discussed in chapter 2. In many frame-
works that address the flavour puzzle [13, 22], the Yukawa terms are not really
fundamental but arise as part of an EFT and are therefore suppressed according
to a certain pattern that is dictated by some higher symmetry or mechanism, re-
sulting in the curious hierarchy we see in the fermion masses. What we specifically
are looking for is slightly different: we want the Yukawa couplings to be present
and unsuppressed with values ∼ O(1) in the very early Universe, and only later
become suppressed. Varying Yukawa couplings in this fashion have been consid-
ered before, e.g. by Servant and her colleagues in the context of EW baryogenesis
[174–176]. While there might be many possible ways to implement such vary-
ing Yukawa couplings, for concreteness we will here build an implementation via
the Froggatt-Nielsen (FN) mechanism (the FN mechanism was introduced in sec-
tion 2.1), inspired by the work of Baldes, Konstandin, and Servant in Ref. [176].
The key idea is simple: we consider the SM extended by three sterile neutrinos
and embedded in a FN model. Then, the bare Yukawa couplings are O(1) and the
effective Yukawa couplings are multiplied by powers of the FN suppression factor
λ = ⟨Θ⟩/ΛFN, which is the ratio of the flavon vev to the flavour scale. In con-
trast to what is usually done, we will assume that the vev of the flavon is initially
⟨Θ⟩ ≈ ΛFN, implying that the FN suppression factor is initially O(1), i.e. the effec-
tive Yukawa couplings are unsuppressed. Particularly, the sterile neutrinos would
then have couplings as strong as the top quark and thus be in thermal equilibrium.
We then need the assistance of an additional scalar field coupled to the flavon (it
could be the SM Higgs or some other new scalar) which also acquires a vev by
spontaneous symmetry breaking (SSB). This is the crucial part: as the additional
scalar field relaxes to its true minimum in field space, it drags the vev of the flavon
along with it until they both reach the their coordinates for the true minimum in
the full scalar-field space. At the end of this phase transition (PT) the vev of the
flavon has a value ⟨Θ⟩ = ϵΛFN with ϵ < 1. Thus, it is this additional PT that
enforces the FN suppression. We will show that, depending on the FN charges, the
suppression could be drastic enough to induce the freeze-out of the sterile neutrinos
and ensure their stability on cosmological time scales.

In this Chapter we will introduce the mechanism sketched above and perform a
proof-of-principle calculation on a toy model for sterile neutrino dark matter, show-
ing that the mechanism can successfully generate the observed DM relic abundance
by the induced freeze-out and achieve the long-time stability of the sterile neutrinos.
We then formulate a complete FN model for the lepton sector, where the neutrino

61



5. A new production mechanism for sterile neutrino Dark Matter

masses and oscillations are brought about by the type-I seesaw mechanism, DM is
produced by the PT-induced freeze-out and the mass hierarchy in the lepton sector
is explained by the FN mechanism.

This chapter is based on Refs. [55, 177] and closely follows the material presented
therein. The author of this thesis is also the main author of Ref. [55] and the single
author of Ref. [177].

5.1 Proof of Principle on a simplified toy model

Here we first attempt to use a very simple toy model to investigate the main fea-
tures of the framework we are proposing. Thereby we closely follow Ref. [55] by the
author of this thesis. The goal is to show that sterile neutrinos with a Yukawa cou-
pling to the SM can be produced through freeze-out, i.e. decoupling from thermal
equilibrium in the early Universe, and at the same time be stable in cosmological
time scales so that they may play the role of the DM of the Universe. To achieve
this goal we seek to promote the neutrino Yukawa coupling to a dynamical quan-
tity that has different values before and after a particular phase transition. At this
stage we focus only on the feasibility of DM production and stability, and do not
concern ourselves with the generation of light neutrino masses - we leave that for
the next section. The toy model we use consists of the SM extended by:

1. one RH Majorana neutrino N that couples through a Yukawa term only to
the first generation lepton doublet,

2. the FN flavon Θ and the U(1)FN flavour symmetry which is broken by the
vev of the flavon, and

3. and additional SM singlet scalar field, Σ, equipped with an additional global
symmetry GΣ, which undergoes SSB and is responsible for the PT that drives
the change in the Yukawa coupling.

The Flavon, the sterile neutrino and the SM fermions are all charged under the
U(1)FN flavour symmetry with charges as given in table 5.1, while the additional
scalar field Σ is the only field charged under the global GΣ symmetry. At this
point, we do not need to further specify GΣ - it could, for example, be a U(1)
or a Z2 symmetry. Also, within this toy model we will restrict ourselves to the
case of very heavy sterile neutrinos, well above the EW scale. This restriction is
arbitrary and serves only for concreteness and simplicity. In the next section we
consider the interesting case of keV sterile neutrinos. Prior to the breaking of the
flavour symmetry, the Lagrangian is U(1)FN invariant, and since the flavon has a
flavour charge qΘ = −1, the Yukawa and Majorana terms have to be multiplied by
powers of the flavon according to the flavour charges of the fermions. Aside from
the kinetic terms and the scalar potential (which we will discuss in a moment), the
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5.1 Proof of Principle on a simplified toy model

Table 5.1. FN charges in our simplified model.

Field L̄ eR N Θ

U(1)FN Charge qL qR qN −1

new terms in the Lagrangian are

Ye

(
Θ

ΛFN

)qL+qR
L̄H eR + Yν

(
Θ

ΛFN

)qL+qN
L̄ H̃ N +

1

2
MR

(
Θ

ΛFN

)2qN

N cN,

(5.1)

with L as the lepton doublet of the first generation and eR as the RH electron.
Again, in this toy model we are only considering a single-generation set up, and
thus the Yukawa couplings and the Majorana mass are scalars here.

When the flavon acquires a vev, thereby spontaneously breaking the U(1)FN
symmetry, the Yukawa couplings and the Majorana mass get scaled by powers of
the FN factor λ = ⟨Θ⟩/ΛFN, which is usually λ < 1. However, in contrast to this,
we now demand that at temperatures below the flavour scale and above the Σ-PT,
the flavon vev takes the value ⟨Θ⟩ = ΛFN, such that λ = 1 and consequently the
Yukawa couplings and the Majorana mass are unsuppressed at this energy scale.
Then, as the Universe keeps cooling and reaches the critical temperature Tc ∼ ΛΣ

at which the Σ-PT takes place, the Σ field acquires a vev. Here, we demand that
as the vev of Σ transitions from zero to its finite value, it drags the flavon vev with
it, as shown in fig. 5.1. This situation, where the vev of the flavon changes from
∼ O(1) to a much smaller value due to a PT, has been described previously by
Baldes, Konstandin, and Servant [176]. Other authors have considered the impact
of phase transitions on the production of sterile neutrinos, see e.g. Refs. [178–183],
but our of PT-induced freeze-out, is different to those previous works.

Figure 5.1. Coordinates of the minimum of the scalar potential
in field space. When the vev of the Σ field makes the transition
⟨Σ⟩ : 0 → vσ, it drags the flavon with it.
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1/TΛEWΛΣΛFN

fully invariant L
⟨Θ⟩ = 0
⟨Σ⟩ = 0

⟨H⟩ = (0, 0)T

⟨Θ⟩ = ΛFN

⟨Σ⟩ = 0
⟨H⟩ = (0, 0)T

⟨Θ⟩ = ϵΛFN

⟨Σ⟩ = vσ
⟨H⟩ = (0, 0)T

⟨Θ⟩ = ϵΛFN

⟨Σ⟩ = vσ
⟨H⟩ = 1√

2
(0, v)T

Figure 5.2. Energy scales in the toy model, with the scalar vevs
in the corresponding energy ranges. The vevs are the coordinates in
the full scalar field-space where the potential finds its minimum.

Figure 5.2 shows the energy scales and the values that the scalar vevs take in
the different phases. Assuming that the Σ-PT occurs in the way described above,
we can reinterpret the FN factor λ as a function of the vev of Σ, i.e.

λ(⟨Σ⟩) =

{
1, for ⟨Σ⟩ = 0

ϵ, for ⟨Σ⟩ = vσ.
(5.2)

The specific trajectory in field space taken by Σ during the PT does not concern
us. What matters to us is only the fact that λ takes different values before and
after the PT.

But what conditions have to be met in order for the PT to occur in this manner?
Here we assume that the scales are hierarchical as ΛFN > ΛΣ ≫ ΛEW and the
couplings between the Higgs and the other two scalars are tiny, such that their
dynamics can be considered decoupled. Then we can write the scalar potential for
Θ and Σ and disregard the Higgs,

V (Θ, Σ) = µ2θ Θ
†Θ+ λθ (Θ

†Θ)2 + µ2σ Σ
†Σ+ λσ (Σ

†Σ)2 + λθσ (Θ
†Θ)(Σ†Σ). (5.3)

As was shown by the author of this thesis in [55] and is reviewed in section A.2,
the conditions that the parameters of this potential have to fulfill in order for the
PT to occur are

λθσ < 2λσ

(
vσ
ΛFN

)2

, (5.4)

λθ < λσ

(
vσ
ΛFN

)4

, (5.5)

which imply that the mixing between Θ and Σ is small, and

m2
Θ < 2λσ v

2
σ ϵ

2

(
vσ
ΛFN

)2

. (5.6)

Thus, if eqs. (5.4) to (5.6) hold, then the Σ-PT does indeed cause the shift in the
flavon vev as sketched in fig. 5.1. Since we can roughly approximate vσ ∼ ΛΣ, and
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5.1 Proof of Principle on a simplified toy model

ΛΣ < ΛFN, we can set

δ :=

(
vσ
ΛFN

)
∼
(

ΛΣ

ΛFN

)
< 1, (5.7)

and together with eq. (5.6) we can place an approximate lower bound for the
temperature of the Σ-PT that depends on the flavon mass,

mθ ϵ
−1 δ−1 < ΛΣ ∼ Tc. (5.8)

Now that we know that, under the conditions stated above, the flavon vev shifts
as ⟨Θ⟩ : ΛFN → ϵΛFN we consider the Yukawa coupling and the Majorana mass as
effectively varying quantities during the PT. We can thus now write

Yeff = Yν [λ(⟨Σ⟩)]qL+qN =

{
Yν , for T > Tc

Yν ϵ
qL+qN , for T < Tc

, (5.9)

Meff =MR [λ(⟨Σ⟩)]2qN =

{
M̃ :=MR, for T > Tc

M :=MR ϵ
2qN , for T < Tc

. (5.10)

Here we define M̃ as the early, unsuppressed value of the Majorana mass, i.e. before
the Σ-PT shifts the vev of the flavon; we could also refer to them as the initial
values, while without the tilde, M stands for the suppressed value, taken after the
Σ-PT, which could also be referred to as its late or final value.

The next step is to select FN charges for our toy model. To find suitable choices
we consider the desired effect on the electron mass, the neutrino Yukawa coupling
and the Majorana mass.

The electron mass: since within the FN framework the bare electron Yukawa cou-
pling will be O(1), the value of the electron mass requires that

me = Ye
v√
2
ϵqL+qR ≈ 5× 10−4GeV ⇒ qL + qR ≈ −5

log10(ϵ)
. (5.11)

The Majorana mass: since we are considering DM neutrinos heavier than the
Higgs, the sterile neutrino mass after the PT, i.e. the suppressed mass, should
satisfy

ϵ 2qN MR ≳ 2 · 102GeV (5.12)

⇒ qN ≲
log10(2 · 102)− log10

(
MR
GeV

)
2 log10(ϵ)

. (5.13)

The longevity of Dark Matter: we demand that our sterile neutrinos be stable on
cosmological time scales. Because we are considering sterile neutrinos heavier
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than the Higgs, they will decay primarily as N → h νL. Thus, the inverse
rate of this decay must be larger than the age of the universe, i.e.

Γ−1
N→hν > t0 ≈ 7 · 1041GeV−1. (5.14)

Inserting eq. (5.9) we get the condition

(Yν ϵ
qL+qN )2MR ϵ

2qN

16π
<

1

7
· 10−41GeV (5.15)

⇒ qL + 2qN >
log10

(
16π
7 × 10−41(Yν)

−2(MR/GeV)−1
)

2 log10(ϵ)
. (5.16)

These conditions eqs. (5.11), (5.13) and (5.16) depend on the parameters ϵ, Yν
and MR. In the spirit of the FN framework, the bare neutrino Yukawa coupling
should be Yν ∼ O(1), and the FN suppression factor should be ϵ < 1; for concrete-
ness, we set them to

Yν = 0.1 , ϵ = 0.01 , (5.17)

and for the bare Majorana mass we consider 104GeV ≤MR ≤ 1016GeV, since the
Majorana scale could be as high as the GUT scale [46]. Although this is a rather
arbitrary choice, it serves the simplicity we are seeking with this toy model, and
again, we are only seeking a proof of principle at this point. In the next section
we will duly consider the keV mass range. For a plausible FN model we prefer
that the flavour charges take possibly small integer values. Therefore, we search
for appealing choices for the flavour charges by solving the problem

minimize
qL,qR,qN ∈Z

(|qL|+ |qR|+ |qN |) (5.18)

under the conditions defined by eqs. (5.11), (5.13) and (5.16) and with the param-
eters from eq. (5.17). We find that the flavour charges comply with the simpler
relations

qL + qR = 2 , qL + qN = 11 , qN =


0, MR ∈

[
104, 108

)
GeV

1, MR ∈
[
108, 1012

)
GeV

2, MR ∈
[
1012, 1016

)
GeV

. (5.19)

Thus, we see that depending on the mass range in which MR lies, we can have
three different sets of flavour charges. In the following, we will discuss the case for
MR ∈

[
104, 108

)
GeV; the case where MR lies in any of the other two intervals was

discussed by the author of this thesis in Ref. [55] and is qualitatively very similar
to the scenario presented here.

With the flavour charges chosen above the cosmological stability of the ster-
ile neutrino DM is ensured thanks to the dynamical suppression of the neutrino
Yukawa coupling implemented in our framework. We now proceed to compute the
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5.1 Proof of Principle on a simplified toy model

relic abundance produced by the induced freeze-out of the sterile neutrinos. To
summarize, the model parameters we are working with are

ϵ = 0.01 , Yν = 0.1 , MR ∈
[
104, 108

]
GeV , (5.20)

qN = 0 , qL = 11 , qR = −9 . (5.21)

To obtain the sterile neutrino relic abundance we will solve the Boltzmann equation,
which we encountered already in section 4.3. In the standard WIMP scenario, DM
annihilations are the main processes driving freeze-out. In contrast to that, for
sterile neutrinos with a bare Yukawa coupling Yν ∼ O(1) to the SM, the interactions
responsible for maintaining (chemical-) thermal equilibrium are decays, inverse
decays

N ⇌ H L (5.22)

and Higgs- or lepton-mediated scatterings involving quarks and gauge bosons A,
such as

N L⇌ QL qR , N L⇌ H A , N H ⇌ LA, (5.23)

all of which change the number of sterile neutrinos by one, i.e. ∆N = 1. These pro-
cesses have been throughly studied in the context of leptogenesis [184–186]. When
we discussed the Boltzmann equation for WIMPs in section 4.3, we introduced the
thermalized cross section for WIMP annihilations ⟨σv⟩, and, as is customary in the
WIMP DM literature, we expressed the Boltzmann equation using this quantity.
For the processes in eqs. (5.22) and (5.23), with which we are concerned here, the
Boltzmann equation is usually written slightly differently, using the thermal inter-
action rate γeq instead of ⟨σv⟩ (see chapter B). The Boltzmann equation then reads
[186]

z H
dyN
dz

=

(
γeqD + γeqS

neqN

) (
yeqN − yN

)
, (5.24)

where γeqD,S stands for the rate of decays or scatterings respectively,2 and we have
disregarded the derivative of the number of entropic degrees of freedom in the
plasma with respect to temperature, i.e. d ln gs(T )/d lnT = 0. Recall the definition
of z, namely z =M/T . While scatterings with the sterile neutrinos as the mediator
are very important for leptogenesis [184], they are irrelevant for us because they
do not change the number of sterile neutrinos.

Since the computation we are attempting takes place in the very early Universe,
at energies above ΛEW, particles have thermal masses but no physical masses. Thus,
for the rates γeqD and γeqS we use the expressions derived in Ref. [186], which include
the thermal corrections and the running of couplings. Both rates, unaffected by the

2The relation between the scattering rate and the thermalized cross section is γeq
xy→ab =

⟨σv⟩xy→ab · neq
x neq

y .
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5. A new production mechanism for sterile neutrino Dark Matter

Figure 5.3. The decay and scattering rate of sterile neutrinos,
normalized by the equilibrium density and Hubble parameter, for
an early mass at the upper end of the range in consideration,
MR = 108 GeV, and without the effect of the suppression of the
Yukawa couplings or the Majorana mass. For other values of MR

the curves would look qualitatively the same but would be verti-
cally shifted. Clearly, for z = 1 the decay rate dominated over
the scattering by ∼ 2 orders of magnitude - in the non-relativistic
regime. For z < 1, i.e. when the sterile neutrinos are relativis-
tic, the scatterings actually overcome the decays. The gap in the
decay rate around 10−1 < z < 100 is due to the fact that in
that temperature interval the thermal masses of the Higgs, lep-
tons and sterile neutrinos kinematically forbid all two-body decays,
i.e. mH(T )−mL(T ) < MR < mH(T ) +mL(T ).

dynamical FN suppression and normalized by H neqN are shown in fig. 5.3, where
one can clearly see that the decays and inverse decays dominate the dynamics of
the sterile neutrinos for z > 1, i.e. when they are non-relativistic, while the 2 ⇋ 2
scatterings take precedence in the relativistic regime. The curious gap in the decay
rate occurs because at those temperatures the thermal masses of the participating
particles kinematically forbid all two-body decays. Note that γeq/H actually grows
as the temperature decreases, which means that instead of evolving towards freeze-
out, the unaided sterile neutrinos with O(1) bare Yukawa couplings tend to interact
ever more strongly with the thermal bath. This make the necessity of the drastic
suppression of the Yukawa coupling clear, which, as we will shortly see, can be
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neq(      )

y
N
eq

y
DM

y
N

Figure 5.4. The solution to the Boltzmann equation yDM(z) with
the varying Yukawa coupling implemented for MR = 107 GeV is
plotted as the blue dashed line. The temperature of the Σ-PT was
chosen such that the full DM relic abundance is reproduced. The
decay and scattering rates (normalized by H neq

N ) are plotted of the
right axis and show the dramatic effect of the sudden suppression of
the Yukawa coupling.

achieved by the mechanism proposed in this work.
Now we implement the change in the effective neutrino Yukawa coupling. The

effect is caused by the shift in the flavon vev, which occurs due to the Σ field
dragging the flavon along as it transitions to its vev. Since we are not interested in
the particular dynamics of the PT itself, but simply on the different values taken
by the Yukawa coupling before and after the PT, we choose to parameterize it as

Yeff(z) =
1

2

[
(Yν − Y s

ν ) tanh

((
1− z

zc

)
1

τ

)
+ Yν + Y s

ν

]
, (5.25)

which is in fact a smoothed step function going from Yν for z < zc to Y s
ν for zc < z.

Thus, zc is a proxy for the temperature Tc of the Σ-PT and τ is a parameter that
measures its duration. The superscript s in Y s

ν stands for suppressed and it is given
by Y s

ν = ϵqL+qNYν . For our computations, we set τ = 0.001, Yν and Y s
ν are fixed

by eqs. (5.9) and (5.20), and finally, zc is taken as a free parameter. Since we chose
to assign zero flavour charge to the sterile neutrinos qN = 0, the Majorana mass
suffers no suppression. Had we decided otherwise, we would need to parameterize
the effective Majorana mass too.
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Figure 5.5. Within the colored stripe, the framework proposed in
this thesis successfully up to 100% of the DM of the Universe through
the induced freeze-out of the sterile neutrinos in our toy model. The
effectively varying Yukawa coupling gets strongly suppressed during
a PT and forced the sterile neutrinos to decouple.

The result of the Boltzmann equation for our toy model with a DM neutrino mass
of MR = 107GeV is shown in fig. 5.4 as the blue dashed line. The relic density yN
starts out tracing its equilibrium value yeqN , represented here by the thick red line,
until the PT occurs. The temperature of the Σ-PT is chosen so that the sterile
neutrino relic abundance matches the observed DM abundance. In this example,
the value is zc = 37.45, implying Tc = 2.67× 105GeV. The Σ-PT instantaneously
decouples yN from yeqN . The dashed-dotted and dotted lines show the decay- and
scattering rates (normalized by (H neq)) on the right axis; they display the drastic
suppression effect through the effective Yukawa coupling, which enters the rates
with the second power, due to the change in the flavon vev. After the induced
freeze-out, the rates are so small that the DM neutrinos are completely decoupled
from the rest of the bath and their relic density stays constant.

Next we solve the Boltzmann equation and compute the sterile neutrino relic
abundance for the complete mass range under consideration, i.e. MR ∈ [104, 108] GeV.
The relic abundance is given by

ΩN h
2 =

s0MR y
fo
N (zc)

ρc
h2, (5.26)
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5.1 Proof of Principle on a simplified toy model

with the entropy density today s0 = 2891.2 cm−3 and the critical density ρc =
1.05× 10−5 h2GeV cm−3. As discussed above, the sterile neutrino relic density yfoN
is fixed by the Σ-PT and thus depends mainly on Tc or equivalently zc. Thus,
the parameters over which we perform the scan are MR and zc. The result of the
scan is shown in fig. 5.5, where we see that throughout the whole mass range it
is always possible to generate a contribution of up to 100% to the DM abundance
of the Universe from sterile neutrinos produced by the mechanism presented here.
Even though the considered mass range spans 4 orders of magnitude, the critical
temperature for the Σ-PT is always a fraction of the DM mass, between Tc ≈
MR/40 and MR/30 - the relic abundance depends only logarithmically on zc. As
the author of this thesis showed in [55], the situation is very similar to the case
where one chooses a non-zero flavour charge for the sterile neutrinos qN ̸= 0, and
a larger initial Majorana mass, as suggested in eq. (5.19). In those scenarios, the
parameter scan looks qualitatively the same with the exception that the mass of the
sterile neutrinos also become suppressed by the changing vev of the flavon during
the Σ-PT. For example, with MR = 1010GeV and qN = 1, the mass of the DM
neutrinos after the PT would be M s

R = 106GeV.
This finalizes our discussion of this toy model. We have shown that, in principle,

it is possible for sterile neutrinos to be strongly coupled to the SM thermal bath
in the early Universe by O(1) Yukawa couplings, and if these Yukawa couplings
become strongly suppressed at some point in time, the sterile neutrinos can be
forced to drop out of thermal equilibrium and have their comoving density fixed
at its last equilibrium value. The key conceptual element is the varying Yukawa
coupling, which we implemented by embedding our toy model in a FN framework,
in which the Yukawa terms arise as effective Operators that contain powers of the
flavon vev. The actual change in the Yukawa couplings is then induced by an
additional PT which alters the vev of the flavon.

We emphasise that the concept proposed here is more general than the concrete
realization that was investigated in this section: there might be many other possible
ways to implement varying Yukawa couplings, and any of them can in principle
induce the freeze-out of an initially thermalized species.
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5. A new production mechanism for sterile neutrino Dark Matter

5.2 keV Sterile Neutrino Dark Matter
by thermal freeze-out

In the previous section, we showed that the concept of varying effective Yukawa
couplings in the early Universe is indeed capable of providing a mechanism for
sterile neutrino DM genesis from thermal freeze-out. This mechanism does not
rely on the (resonant or otherwise) oscillations between active and sterile neutrino
states, nor does it involve the decays from heavier parent particles. The notion of
varying Yukawa couplings is reminiscent of a possible solution to the flavour puzzle,
discussed in chapter 2. Indeed, the FN mechanism [20], which we have adapted to
implement the Varying Yukawa couplings, is a popular way to address the flavour
puzzle. In this section, we attempt to construct a more realistic model, including
all three lepton generations, and aim to achieve the following goals:

1. successful production of keV sterile neutrino DM through the induced freeze-
out from the varying Yukawa couplings,

2. while simultaneously generating the masses of the active neutrinos by the
type-I seesaw mechanism and recovering the PMNS mixing matrix,

3. and also generating the mass hierarchy in the lepton sector by the means of
the FN framework.

The set-up that we use for this implementation starts with the SM extension by
three RH neutrinos Ni, which we then embed in a FN model by adding the flavon Θ
and assigning flavour charges to the flavon and all fermions. While in the previous
section we introduced an additional BSM scalar whose PT was responsible for
driving the shift in the flavon vev, we now let the SM Higgs take up this role.
Thus, before the electroweak phase transition (EWPT), we will set the flavon vev
equal to the flavour scale ⟨Θ⟩ = ΛFN, such that the effective Yukawa couplings are
unsuppressed. Then, during the EWPT when the scalar potential relaxes to its
true minimum and the Higgs assumes its non-zero vev, the flavon vev gets dragged
along and ends up with a slightly smaller value than before, ⟨Θ⟩ = ϵΛFN. Since the
effective Yukawa couplings are essentially O(1) coefficients multiplied by powers of
the flavon vev, they can become exponentially suppressed, even if the change in
the flavon vev was moderate. Although the sterile neutrinos were initially tightly
coupled to the thermal plasma by their O(1) Yukawa couplings, the new value of the
Yukawa couplings after the EWPT might be suppressed strongly enough to drive
the rate of their interactions below the expansion rate of the Universe, thereby
inducing the freeze-out of the comoving neutrino density and creating a sterile
neutrino relic abundance. Consequently, it is the EWPT that induces the sterile
neutrino DM freeze-out and fixes its relic abundance. Furthermore, the sterile
neutrinos might even become stable on cosmological time scales provided that the
suppression is drastic enough, and thus avoid the constraints from indirect DM
searches.
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This section is based on and closely follows Ref. [177], of which the author of
this thesis is the single author. Here we first address the issue of DM genesis and
investigate the parameters necessary to generate a 100% contribution from keV
sterile neutrinos to ΩDM by the mechanism proposed here, i.e. induced freeze-out
during the EWPT. Secondly, we investigate what FN parameters and coefficients
are needed to correctly generate the lepton flavour hierarchy, the light neutrino
masses and the PMNS matrix starting from a specific Majorana mass matrix as a
benchmark point. And finally, we variate the Majorana mass matrix to scan the
sterile neutrino parameter space where our model successfully accomplices all set
goals.

5.2.1 Dark Matter genesis from varying Yukawa couplings

In the previous section 5.1 we showed that change in the Yukawa coupling driven
by the shift in the flavon vev will force initially thermalized sterile neutrinos to
freeze-out provided the suppression of the Yukawa coupling is drastic enough. We
extend the SM by three RH neutrinos Ni = (N1, N2, N3) and the flavon sector,
assigning flavour charges to the flavon and all fermions as given in table 5.2.

The relevant part of the Lagrangian is

−Leff ⊃ L̄i Y
E
ij H ERj

(
⟨Θ⟩
ΛFN

)qL̄i+qRj
+ L̄i Y

ν
ij H̃ Nj

(
⟨Θ⟩
ΛFN

)qL̄i+qNj
(5.27)

+
1

2
N c
i (MN )ij Nj

(
⟨Θ⟩
ΛFN

)qNi+qNj
+ h.c.

With the FN factor λ = ⟨Θ⟩/ΛFN we can define the effective Yukawa and Majorana
mass matrices,

(Y ν
eff)ij = (Y ν)ij [λ]

qL̄i
+ qNj , (Meff)jk = (MN )jk [λ]

qNj + qNk . (5.28)

The key idea in our framework is that, initially, the vev of the flavon is ⟨Θ⟩ = ΛFN

such that the FN factor is λ = 1 and thus both the Yukawa and Majorana mass
matrices are equal to the bare matrices Y E , Y ν and MN in eq. (5.27). Particularly,
since the entries in the bare Yukawa matrices are all O(1), so too would the effective
Yukawa matrices be. Crucially, this allows the sterile neutrinos be strongly coupled
to the thermal bath and therefore in equilibrium, because their Yukawa interactions

Table 5.2. FN charges for the lepton doublets Li, charged singlets
ERj

, sterile neutrinos Nk, the flavon Θ and the Higgs H, respec-
tively.

Field Li ERj Nk Θ H

U(1)FN Charge qLi qRj qNk −1 0
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Figure 5.6. Position of the minimum of the scalar potential in field
space. During the EWPT the Higgs transitions to the true vacuum
and the flavon gets dragged along. Although the Higgs is a doublet
and only its neutral component takes a non-zero vev, here and in
eq. (5.29) it is depicted in one dimension for simplicity.

would be as strong as those of the top-quark in the SM. Similarly, assuming that
the entries in the bare Majorana mass matrix MN do not display any type of
special structure (hierarchy, anarchy, etc.), all entries are characterized by the
Majorana scale ΛM (which is UV-unconstrained), and so we can write MN ∼ ΛM .
However, as the Universe expands and cools, at some point the EWPT kicks in and
the Higgs field acquires its non-vanishing vev. Since the potential contains both
scalars, V = V (H, Θ), it is reasonable to expect that the new minimum will be
found at a completely new point in field space, i.e. the coordinates of the vacuum
in field space shift during the EWPT as

(⟨H⟩, ⟨Θ⟩) = (0, ΛFN) → (v, ϵΛFN), (5.29)

with ϵ < 1, as depicted in fig. 5.6.
The three-level scalar potential for this scenario is

V (H, Θ) = µ2H H
†H + λH (H†H)2 + µ2ΘΘ†Θ+ λΘ (Θ†Θ)2 + λH Θ(Θ

†Θ)(H†H),

and is equivalent to the potential from eq. (5.3) discussed in the previous section.
As mentioned around eq. (5.3), and discussed in Refs. [55, 176], it is possible for
this potential to behave in the manner described in fig. 5.6, i.e. the simultaneous
shift in the vevs of both scalars, given the equivalents of eqs. (5.4) and (5.5). The
finite temperature and quantum corrections to this potential, with the dynamics
here required, were discussed by Baldes, Konstandin, and Servant in Ref. [187] in
the context of varying Yukawa couplings to achieve EW Baryogenesis.

From now on, we take the shift in the flavon vev as defined in eq. (5.29) and
depicted in fig. 5.6 for granted. As a consequence of the shift in the flavon vev, the
FN factor λ is a function of ⟨Θ⟩. The precise trajectory in field space along which
the flavon transitions from ΛFN to ϵΛFN is not important to us; what matters
is only that it has different values before and after the EWPT, which occurs at
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T = Tc = TEW,

λ(⟨Θ⟩) =

{
1, for T > TEW

ϵ, for T < TEW.
(5.30)

With this we can now rewrite the effective Yukawa and Majorana mass matrix,

(Y ν
eff)ij = (Y ν)ij [λ]

qL̄i
+ qNj

=

{
(Y ν)ij , for T > TEW

(Y ν)ij ϵ
qL̄i

+ qNj , for T < TEW
, (5.31)

(Meff)jk = (MN )jk [λ]
qNj + qNk

=

{
(M̃)jk = (MN )jk, for T > TEW

(M)jk = (MN )jk ϵ
qNj + qNk , for T < TEW

, (5.32)

and equivalently for Y E
eff . In the case of the Majorana mass matrix, we introduce

additional notation in eq. (5.32), which will be useful shortly: the matrix (M̃)jk
stands for the unsuppressed Majorana mass matrix, to which we may also refer to
as the early Majorana mass matrix, because it is valid at times earlier than the
EWPT (note that early Majorana mass matrix M̃ and the bare Majorana mass
matrix MN are identical due to the fact that λ = 1 at early times). Similarly, the
matrix (M)jk stands for the suppressed Majorana mass matrix, to which we may
also refer to as the late Majorana mass matrix, because it holds for times later
than the EWPT, when the suppression by the late flavon vev is imposed. Thus,
here we use the words early and late to reference the epochs before and after the
EWPT respectively.

As discussed in section 3.3, within the seesaw approximation the eigenvalues of
the Majorana mass matrix are the masses of the heavy neutrino states, which are
mostly composed of the RH neutrinos. In our scenario however, the masses of the
sterile neutrinos are different before and after the EWPT due to the FN suppression
by the change in the flavon vev, which is induced during the EWPT itself. Thus,
we distinguish between the early and late Majorana mass eigenvalues:

EV
[
M̃
]
=
(
M̃1, M̃2, M̃3

)
, EV [M ] = (M1, M2, M3) . (5.33)

We set the lightest sterile neutrino N1 to play the role of the DM particle; its
mass prior to the EWPT is M̃1. After the EWPT the individual entries in the
Yukawa matrix and in the Majorana mass matrix are rescaled by powers of the
FN factor λ, and consequently the eigenvalues of the matrices are redefined. The
new mass eigenvalue corresponding to the DM neutrino is M1, which we could also
call the DM mass. This distinction between the early and late masses of the DM
neutrino N1 is important because both enter the relic abundance equation, as we
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now discuss. Provided that the flavour charges of the lepton doublets and sterile
neutrinos are chosen appropriately, this mechanism forces the DM sterile neutrinos
to freeze-out. In the next section we will make sure that the flavour charges are
indeed appropriately chosen. For now, assuming that the Yukawa suppression is
drastic enough to keep the DM neutrinos stable on cosmological time scales, we
can readily compute the relic abundance of the DM neutrinos,

ΩDM h2 =
s0 yfoM1

ρc/h2
, (5.34)

with the entropy density today s0, the critical density ρc and yfo as the frozen-out
relic density of N1. Note that N1 was certainly non-relativistic before freeze-out,
i.e. before the EWPT, because its mass M̃1 is determined by Majorana scale ΛM
which is certainly above ΛEW ∼ TEW. Thus, for a non-relativistic DM neutrino
initially in thermal equilibrium, we can write

yfo = yeqN1
(TEW, M̃1) =

45

(2π5)3/2gs

(
M̃1

TEW

)3/2

e−M̃1/TEW , (5.35)

with the entropic number of degrees of freedom gs as defined in eq. (4.16). Al-
though in eq. (5.34) the DM mass M1 appears explicitly, the early mass M̃1 enters
the equation through yfo. Therefore, the DM relic abundance produced through
our mechanism depends on the three variables M̃1, M1 and TEW. Inserting the val-
ues from Ref. [11] for ΩDM h2, s0 and ρc, we plot the relic abundance eq. (5.34) as a
function of these three parameters in fig. 5.7. On the left panel of fig. 5.7 each line
stands for a different value of TEW, which is the temperature at which the freeze-out
of the DM sterile neutrinos is induced. Each point along a line stands for a com-
bination of early and late DM masses which, at the given freeze-out temperature,
generates the full DM abundance as observed by Planck [96]. For example, with
a DM mass of M1 = 7.1 keV, as suggested by some of the observations discussed
in section 4.4.2, and a critical temperature for the EWPT of TEW = 150GeV, the
early unsuppressed mass should be M̃1 ≈ 1TeV in order for N1 to make up 100%
of the DM of the Universe. On the right panel of fig. 5.7, each line shows the relic
abundance produced at a freeze-out temperature of TEW = 150GeV. For early
and late mass combinations along the upper line, for example, a contribution of
only 1% to the DM abundance is produced. Until now we have ignored the two
heavier sterile neutrinos N2 and N3, which we now briefly consider. If their late
masses also lie in the keV range, i.e. M2,3 ≳ M1 but their early masses lie above
3TeV and TEW = 150GeV, then their contribution to ΩDMh

2 will be negligible,
while N1 with M1 = 7.1 keV and M̃1 ≈ 1TeV would make up all of the DM. It is
easy to see why the contribution from the two heavier neutrinos is negligible in this
case: when N1 freezes-out at TEW = 150GeV with the correct comoving density
yN1 , the densities of N2,3 are Boltzmann suppressed as exp (−M̃2,3/TEW) by their
larger masses.

Thus, we conclude from this discussion that, for reasonable temperatures of
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Figure 5.7. Left panel: lines of full DM abundance for multiple
freeze-out temperatures. Points along a line identify pairs of early
and late mass (M̃, M) for which a sterile neutrino decoupling at
the given temperature of that line has a relic abundance compatible
with 100% of the observed DM abundance. Right panel: For a freeze-
out temperature of TEW = 150GeV, the lines trace combinations of
(M̃, M) whose relic density contribute 100%, 10% and 1% to the
observed DM abundance. The contribution to ΩDMh

2 from sterile
neutrinos with late masses in the range displayed and early masses
above 3 TeV is negligible.

the EWPT, we can correctly produce sterile neutrino DM with keV masses if the
unsuppressed mass lies in the TeV range, and the unsuppressed masses of the
heavier sterile neutrinos lie at least slightly above.

We point out that, although we are assuming that the vev of the flavon gets
dragged along by the vev of the Higgs during the EWPT, or in other words, the
vevs of both scalars change their values simultaneously, this is actually not strictly
mandatory for the viability of the DM production mechanism proposed in this
thesis. The vev of the flavon could make the transition ⟨Θ⟩ : ΛFN → ϵΛFN before or
after the EWPT; what is crucial is only that the shift occurs. And the temperature
at which said shift occurs, whatever it may be, is the freeze-out temperature. Such
two-stepped PT, in which two scalars evolve their vevs sequentially as opposed to
simultaneously, have been discussed e.g. in Ref. [188]. The assumption that the shift
in the flavon vev occurs with the EWPT simply fixes the freeze-out temperature
to the temperature of the EWPT itself, i.e. Tfo = TEW.

5.2.2 Choosing appropriate Froggatt-Nielsen Charges

This section closely resembles section 4 of Ref. [177] by the author of this thesis. We
attempt to formulate a specific FN effective model which simultaneously addresses
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the following issues:

(i) Generate the light neutrino masses and explain the oscillation phenomena by
the type-I seesaw mechanism with three RH neutrinos,

(ii) Offer an explanation to the flavour puzzle by generating the mass hierarchy
in the lepton sector through the FN mechanism.

(iii) provide a viable DM candidate, the lightest sterile neutrino N1, which is kept
safely stable on cosmological time scales by the dynamic suppression of the
neutrino Yukawa coupling. The correct N1 relic abundance is generated by
the dynamic suppression of the Yukawa coupling, which, as discussed in the
previous section, induces the decoupling of N1 from the thermal bath during
the EWPT.

To clearly demonstrate that such models exist, we set out to specify the FN
charges and O(1) coefficients that satisfy the requirements stated above. For
the first requirement our model should reproduce the neutrino data, i.e. the mass
squared differences ∆m2

sol and ∆m2
atm as well as the PMNS matrix. Similarly, for

the second requirement we need to reproduce the masses of the charged leptons.
And finally, for the long-time longevity of the DM sterile neutrino, we must make
sure that the FN suppressed Yukawa coupling translates into an active-sterile mix-
ing angle that is small enough to be compatible with the results from the X-ray
searches.

For the FN factor we define

ϵ = 0.1 , and thus λ =
⟨Θ⟩
ΛFN

=

{
1 : before EWPT
ϵ = 0.1 : after EWPT

. (5.36)

After the EWPT, the relevant part of the Lagrangian contains the mass terms for
the fermions and reads

−Lm = ELα (mE)αβ ERβ + νLα (mD)αi νRi +
1

2
N c
i (M)ij Nj , (5.37)

with the entries of the mass matrices scaled by the FN factor as

(mE)αβ = v ϵqL̄α Y E
αβ ϵ

qRβ ,

(mD)αi = v ϵqL̄α Y ν
αi ϵ

qNi , (5.38)
(M)ij = ϵqNi (MN )ij ϵ

qNi ,

where the exponent qf stands for the FN charge of the fermion f as named in
table 5.2. It is convenient to define diagonal matrices whose elements are the FN
suppression factors of the lepton families, i.e.

QL̄ = diag(ϵqL̄e , ϵ
qL̄µ , ϵqL̄τ ), QN = diag(ϵqN1 , ϵqN2 , ϵqN3 ), (5.39)
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and the matrix for the flavour charges of the charged lepton singlets QE defined
analogously. Also, assuming that the bare Majorana mass matrix has no special
hierarchy (which is the spirit of the FN mechanism), we can extract the Majorana
scale ΛM from MN and write MN = ΛM Y N , where Y N is a symmetric coefficient
matrix with O(1) entries. Then, the mass matrices can be written in the matrix
notation

mE = v QL̄ Y
E QE , mD = v QL̄ Y

ν QN , M = ΛM QN Y
N QN . (5.40)

In contrast to the situation in the νMSM [149, 150] and elsewhere, we here cannot
start in a basis in which mE and M are already diagonal, because each entry
in these matrices gets its own individual FN suppression factor, and only after
rescaling each entry we may diagonalize the matrices. This fact is important for
the following computations.

To find appropriate values for the flavour charges we start with the matrices from
eq. (5.40) under the assumption that Y N , Y ν , Y E ∼ O(1) and place conditions
on the eigenvalues: for the eigenvalues of the mass matrix of the charged leptons
mE , the eigenvalues are known and thus the condition is to recover them. For the
Majorana mass matrix M , we use the results from fig. 5.7 to set the scale of the
eigenvalues before and after the FN suppression. And for the neutrino Dirac mass
matrix mD, we use the constraints on the mixing angle from the X-ray searches to
reverse-engineer a condition on the entries of mD.

The Majorana mass matrix

To estimate the Majorana scale and the necessary flavour charges of the sterile
neutrinos qNi we recall the results from the previous section presented in fig. 5.7,
where we saw that for DM neutrinos with keV masses, the unsuppressed Majorana
matrix should be ∼ 103GeV. First, it is worth noting that the masses associated
with the sterile neutrinos are the eigenvalues of the Majorana mass matrix, which
is not a priori diagonal within the FN framework. The early mass eigenvalues sit
on the diagonalized version of M̃ , and the latter is identical to the bare Majorana
mass matrix MN = Y N ΛM . The diagonalization is performed by an orthogonal
matrix Ũ such that

M̃d = ŨT MN Ũ = ŨT ΛM Y N Ũ . (5.41)

Thus, demanding that M̃d ∼ 103GeV and with Ũ ∼ O(0.1) and Y N ∼ O(1), we
arrive at the Majorana scale

ΛM = 104GeV. (5.42)
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Similarly, the late mass eigenvalues for the sterile neutrinos after the EWPT are
obtained with the orthogonal matrix U ,

Md = UT QN (ΛM Y N )QN U, (5.43)

from which the requirement that the eigenvalues lie in the keV region, Md ∼ O(keV)
implies that ϵqNi+qNj ∼ 10−9. Resulting from this estimation, two options for the
flavour charges of the sterile neutrinos stand out, namely

QN =

ϵ4 ϵ4

ϵ4

 as option A, and QN =

ϵ5 ϵ4

ϵ4

 as option B.

(5.44)

Option A is special, because it implies that all three sterile neutrinos have the
same flavour charge, qNi = 4 for i = 1, 2, 3, and QN is proportional to the identity
matrix 1, so we can write QN = ϵ41. As a result, the early- and late Majorana
mass matrices are also proportional to each other, M = ϵ8 M̃ = ϵ8ΛM Y N , and
thus both matrices are diagonalized by the same orthogonal matrix, Ũ = U . This
is not the case for option B.

The partial result from these considerations is that we have fixed the value of
the Majorana scale ΛM = 104GeV, and the flavour charges for the sterile neutrinos
as in eq. (5.44) such that the DM production can be successful as described in the
previous section section 5.2.1.

The neutrino Dirac mass matrix

Our next task is to identify suitable choices for the flavour charges of the lepton
doublets, which enter the neutrino Dirac mass matrix mD as defined in eq. (5.40).
The conditions we have on mD are that the neutrino mass squared differences
and the PMNS matrix are correctly recovered. Furthermore, mD also enters the
active-sterile mixing angle which is constrained by the X-ray searches discussed in
section 4.4.2.

Of course, there are many possible choices for the lepton doublet flavour charges,
and we could spend quite some time investigating some of them via trial-and-error.
Luckily, the so-called Casas-Ibarra-parameterization [189] offers a more systematic
approach. In short, it gives us a parameterization of mD in terms of the mass
eigenvalues of the light and heavy neutrinos, the PMNS matrix, and one arbitrary
orthogonal matrix carrying free parameters. By construction, the neutrino Dirac
mass matrix mD built by this parameterization automatically delivers the mass
eigenvalues and the PMNS matrix fed into it as input. Evidently, this promises
to be very useful for our purposes. However, the Casas-Ibarra-parameterization,
as it was originally derived and is usually presented, assumes that the Majorana
mass matrix and the charged lepton mass matrix can be represented in a basis in
which they are both diagonal. But, since we are building a FN model, we may
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not make this assumption and must instead rederive the parameterization for the
more general case of non-diagonal MN and mE . The derivation is presented in
section A.1. The result is

mD = i V ⋆
√
md
ν R Ũ

√
M̃d ŨT QN , (5.45)

where md
ν is the diagonal matrix carrying the mass eigenvalues of the light neutrinos,

M̃d and Ũ are defined in eq. (5.41), QN can be chosen as one of the two matrices
in eq. (5.44) and R is the arbitrary orthogonal matrix carrying the free parameters.
The freedom in the free parameters within R reflects that fact that there exist many
possible choices for the entries of the bare neutrino Yukawa matrix Y ν leading to
the same eigenvalues in md

ν . Furthermore, V is the matrix that diagonalizes the
light neutrino Majorana mass matrix, i.e. md

ν = V †mνV as defined in eq. (3.34).
In the SM, because one can take the charged lepton mass matrix to be diagonal,
V is actually just the PMNS matrix. For us, however, because we are building a
FN model, mE has to be diagonalized by a biunitary transformation, i.e. md

E =

W †
LmEWR, where WL and WR are unitary matrices. The PMNS matrix is then

given by VPMNS =W †
L V .

Recall from eq. (5.40) that mD = v QL̄ Y
ν QN , which we can insert in eq. (5.45)

to eliminate QN , so that the flavour charges of the lepton doublets are the only
ones left in the equation,

QL̄ Y
ν =

i

v
V ⋆
√
md
ν R Ũ

√
M̃d ŨT . (5.46)

The precise scale of the light neutrino masses is, as of today, still unknown; although
the Katrin experiment has placed an upper bound of mν < 0.8 eV3 at 90% C.L.
[190]. Thus, a conservative estimate for the size of the entries in the diagonalized
light neutrino mass matrix is md

ν ∼ O(0.1 eV) ≃ O(10−10GeV), and for the early
masses of the sterile neutrinos we may estimate Ũ

√
M̃d ŨT ∼ (O(104GeV))1/2.

This, together with Y ν ∼ O(1), and R, V,∼ O(0.1), gives us an estimate of the scale
of the necessary FN suppression, resulting in the following possible (not unique)
choice for the flavour charges of the lepton doublets,

QL̄ =

ϵ7 ϵ7

ϵ7

 , (5.47)

i.e. the flavour charges of the lepton doublets can be chosen as

qL̄ = {qL̄e , qL̄µ , qL̄τ } = {7, 7, 7}. (5.48)

Consequently, the mass hierarchy in the lepton sector must be generated by different

3The bound is placed on the observable defined in [190] as m2
ν =

∑
i |(VPMNS)ei|2m2

i , which in
the literature is often denoted as m2

β .
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flavour charges for the charged lepton singlets. Empirically, we find that a good
choice which is able to correctly reproduce the charged lepton mass eigenvalues
with Y E ∼ O(1) is given by

qR = {qRe , qRµ , qRτ } = {−3, −4, −4}. (5.49)

To summarize, we have fixed the Majorana scale and all the flavour charges
by demanding that the mass eigenvalues are correctly generated from O(1) bare
Yukawa couplings and coefficients: the known masses of the charged leptons, the
light neutrino mass scale, and the early and late masses of the sterile neutrinos lie in
the right ranges such that the DM production via the varying effective Yukawa cou-
pling during the EWPT can successfully occur, as shown in fig. 5.7. The obtained
results can be summarized as

ΛM = 104GeV , qN =

{
{4, 4, 4} : option A
{5, 4, 4} : option B

, (5.50)

qL̄ = {7, 7, 7} , qR = {−3, −4, −4} .

The longevity of the Dark Matter sterile neutrino

Now, although the mass scales of the sterile neutrinos before and after the EWPT
have been implemented correctly for DM genesis by the parameters in eq. (5.50),
we still have to investigate their compatibility with the constraints from indirect
DM searches. The X-ray searches described in section 4.4.2 have placed an upper
bound on the mixing angle of the lightest sterile neutrino with the active neutrino
sector, which is approximately [152]

sin2(2θ1) ≈ 2 (θ1)
2 ≲ 2× 10−5

(
keV

M1

)5

, (5.51)

where the mixing angle is question is defined as

(θ1)
2 =

∑
α=e,µ,τ

θ2α,1 =
∑

α=e,µ,τ

|(mD)α1|2

(M1)2
. (5.52)

Notice that the sum can be written as an element of a matrix, namely∑
α

|(mD)α1|2 =
∑
α

(mD)
∗
α1(mD)α1 =

∑
α

(m†
D)1α (mD)α1 =

(
m†
DmD

)
11
. (5.53)
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Thus, inserting our Casas-Ibarra parameterization, eq. (5.45), we arrive at

(θ1)
2 =

(
m†
DmD

)
11

(M1)2

=
1

(M1)2

(
QN Ũ

√
M̃d ŨT R†md

ν R Ũ
√
M̃d ŨT QN

)
11
, (5.54)

where the matrix V has conveniently cancelled out.
To investigate whether our model is capable of producing a lightest sterile neu-

trino compatible with eq. (5.51), we must get more concrete and specify the input
that enters eq. (5.54) and compute (θ1)

2. For clarity, we discuss each ingredient of
eq. (5.54) separately in the following:

• The matrix md
ν contains the mass eigenvalues of the light neutrinos. As stated

above, the absolute scale of the neutrino masses is still unknown - only an
upper bound from the Katrin experiment, namely < 0.8 eV at 90% C.L.
[190], can be given. However, we know from oscillation data that [191]

∆m2
21 = m2

2 −m2
1 = 7.5× 10−5 eV2,

|∆m2
31| = |m2

3 −m2
1| = 2.5× 10−3 eV2. (5.55)

In accordance with this, for a specific benchmark point, we now set

m1 = 0 eV, m2 = 8.7× 10−3 eV, m3 = 5× 10−2 eV, (5.56)

so that md
ν = diag(m1, m2, m3) is considered fixed and can be inserted into

eq. (5.54).

• For the matrices M̃ and Ũ , it turns out to be very convenient to choose
the FN charges from Option A in eq. (5.50). This is because, as mentioned
around eq. (5.44), in Option A all sterile neutrinos have the same flavour
charge, so that the respective FN suppression matrix is proportional to the
unit matrix, QN = ϵ4 1. As a consequence, the early and late Majorana
mass matrices are also proportional to each other, M = ϵ8 M̃ , and both
matrices are diagonalized by the same basis transformation, i.e. U = Ũ . This
means that the diagonalized matrices will also be related to each other as
Md = ϵ8 M̃d. Therefore, by choosing the late mass eigenvalues M1, M2, M3,
the early, i.e. unsuppressed mass eigenvalues are automatically fixed too. A
natural choice for a benchmark point is to set the DM mass to match the
suspicious X-ray line mentioned in section 4.4.2 at Eγ = 3.55 keV, i.e. M1 =
7.1 keV and make the other two sterile neutrinos slightly heavier, e.g. M2 =
20 keV and M3 = 30 keV - this is an arbitrary but plausible choice. Thus the
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diagonalized Majorana mass matrices would be

Md = diag(7.1, 20, 30) keV (5.57)

M̃d = diag(0.71, 2, 3)TeV. (5.58)

Looking at the left panel of fig. 5.7 we recognize that a sterile neutrino with
early mass M̃1 = 710GeV and M1 = 7.1 keV will be produced with the
correct relic abundance to account for 100% of the DM of the Universe if
it freezes-out at a temperature of TEW ≈ 100GeV. Similarly, the masses of
the two heavier neutrinos imply that their densities were already be vastly
depleted at the moment of freeze-out due to the Boltzmann suppression of
their higher masses, so that they do not add to the DM density.

Next, we must specify a matrix Ũ , whose defining property is that it diago-
nalizes M̃ , i.e.

M̃d = ŨT M̃ Ũ . (5.59)

Recall that the early Majorana mass matrix is identical to the bare Majorana
mass matrix, thus M̃ = ΛM Y N . In principle, there exist infinitely many ma-
trices M̃ with the eigenvalues as chosen in eq. (5.58). We can pick a specific
one by generating a random orthogonal matrix Ũ such that the diagonaliza-
tion delivers the right eigenvalues and the coefficient matrix is close to order
unity, i.e. Y N ∼ O(1).

With this, the matrices M̃ and Ũ as well as M1 are fixed and can be inserted
into eq. (5.54).

• The last ingredient of eq. (5.54) is the orthogonal matrix R, which is arbitrary
and encodes the freedom to choose the O(1) individual entries of the bare
Yukawa coupling matrix Y ν . One straightforward choice for R would be the
unit matrix, R = 1; however, inserting this, along with the other results for
the benchmark point described above, lead to (θ1)

2 ∼ 10−6, which violates
the X-ray bound eq. (5.51). Thus, we must search for specific choices of R
which minimize (θ1)

2 and check if they are compatible with the X-ray bound.
This is the next step in our discussion.

The orthogonal matrix R of free parameters

Being a 3×3 orthogonal matrix, R has 3 free parameters and can straightforwardly
be parameterized as three consecutive rotations about three perpendicular axes.
For example, for the three orthogonal directions defined by the standard basis in
3D space, and with the three rotation angles α, β, γ, we may write R as

R := R(α, β, γ) = R3(γ)R2(β)R1(α). (5.60)
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Figure 5.8. The mixing angle squared between the lightest sterile
neutrinoN1 with all active neutrinos, (θ1)2, defined in eq. (5.54) with
input from eqs. (5.56) to (5.58) and the arbitrary orthogonal matrix
R. Here, (θ1)2 is sampled as a function of the three angles (α, β, γ)
that parameterize R as three consecutive orthogonal rotations, as
defined in eq. (5.60). The smallest values for the mixing angle (θ1)

2

can be expected in the dark blue regions of the (α, β, γ)-cube. These
regions seem to form three bands around α = −π, 0, π and β =
−π, 0, π.

In principle, we could simply insert this parameterization of R into eq. (5.54), to-
gether with the other ingredients specified above, and minimize (θ1)

2 with respect
to the three free parameters (α, β, γ) to see if the global minimum satisfies the X-
ray bound eq. (5.51). Unfortunately, given the simple parameterization eq. (5.60),
the optimization problem is a complex system of highly non-linear equations, which
makes the computation difficult and inefficient. A more practical approach is to
numerically search for local minima. However, that requires us to define a region in
the (α, β, γ)-space, in the vicinity of which the local minimum might be searched
for. To identify such regions, we sample values of (θ1)2 in the (α, β, γ)-space, which
is cube with an edge length equal to 2π. The result of the sampling is displayed in
fig. 5.8 and shows the regions of the (α, β, γ)-cube where (θ1)2 becomes interestingly
small in dark blue color. These regions of interest, where (θ1)

2 might be compati-
ble with the X-ray bound, appear to form continuous bands in the (α, β, γ)-cube
around α = −π, 0, π and β = −π, 0, π, and seem to be fairly independent of γ.

For a closer examination, we consider the plane γ = 0 and treat it as a represen-
tative sub-space of the (α, β, γ)-cube. The resulting plot, shown in the left panel of
fig. 5.9, shows (θ1)2 as a scalar function in the (α, β) plane. As expected, we identify
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Figure 5.9. Left panel: contour lines for the mixing angle of the
lightest sterile neutrino N1 with all active neutrinos, i.e. (θ1)2 as
defined in eq. (5.54). Using the Casas-Ibarra parameterization for
the Dirac mass matrix, (θ1)

2 can be given as a function of an ar-
bitrary orthogonal matrix R, which is parametrised by a general
rotation in three dimensions, as shown in fig. 5.8. In order for our
DM sterile neutrino N1 to be compatible with the X-Ray bounds
from eq. (5.51), we are searching for the matrices R for which (θ1)

2

is the smallest. This plot shows the cut of the cube in fig. 5.8 at
γ = 0. We find four regions of interest in the (α, β) plane where
(θ1)

2 becomes interestingly small and potentially compatible with
the X-ray constarins.
Right panel: Zoom into the local minimum near (α, β) = (π, π) and
confirm that (θ1)2 does indeed become small enough for the DM ster-
ile neutrinos to be safe from the X-Ray bound given by eq. (5.51),
which, for M1 = 7.1 keV demands that θ21 ≲ 4.2× 10−10.

four4 regions of interest where the value of (θ1)2 becomes very small, indeed beyond
the scope of the color bar, which is why the regions appear white. On the left panel
of fig. 5.9 we zoom into the region of interest near (α, β) = (π, π) and confirm that
(θ1)

2 does indeed turn much smaller. Inserting the mass of our DM sterile neutrino
M1 = 7.1 keV into eq. (5.51), the find that, for this mass, we X-ray bound demands
that (θ1)

2 ≲ 4.2× 10−10, which is indeed fulfilled for every point in the right panel
of fig. 5.9. In fact, The minimum of (θ1)2 in the vicinity of (α, β, γ) = (π, π, 0) is
numerically determined to be located at (α, β, γ) = (3.26997, 3.18663, 0) and takes
the value (θ1)

2
min = 1.59× 10−20, which is well safe from the X-ray constraints.

It is worth emphasizing that this specific region in the (α, β, γ)-space of R ma-
trices is not unique. Similar minima can be found in the vicinity of (α, β) =
(0, π) , (π, 0) and (0, 0), with any value of γ, and in each case reaching the same
order of magnitude (θ1)

2
min ∼ 10−21. This demonstrates that there are infinitely

many possible choices for R, or equivalently for the entries in the bare Yukawa
matrix Y ν , for which the lightest sterile neutrino N1 has such a small mixing angle

4there are four, not nine regions of interest, since the regions on the edges should not be counted
twice because of the periodicity of the (α, β, γ)-space.
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with the active neutrinos that it evades the current X-ray constraints. We also
point out that, although we used a randomly generated orthogonal matrix for Ũ
(as explained below eq. (5.59)) to compute fig. 5.8, we checked that the results dis-
cussed here are qualitatively unaltered by using other randomly generated matrices
Ũ . In other words, using different Ũ might lead to fig. 5.8 looking slightly different.
However, that is irrelevant; what matters is only whether or not matrices R exist,
such that the X-Ray bound is respected, and we confirmed that the answer yes in
all cases.

The case of unequal flavour charges for the sterile neutrinos

Now we turn to briefly discuss Option B in eq. (5.50), where the flavour charges
for the sterile neutrinos are

qN = {5, 4, 4} , and thus QN = diag
(
ϵ5, ϵ4, ϵ4

)
. (5.61)

For convenience, we here restate the definition of the early (M̃) and late (M)
Majorana mass matrices,

M̃ = ΛM Y N , M = QN ΛM Y N QN = QN M̃ QN . (5.62)

In contrast to the situation with Option A, here QN is not proportional to the
identity matrix, which means that the early and late Majorana mass matrices are
also not proportional to each other. Therefore, their eigenbasis is not the same,
meaning that they are diagonalized by different orthogonal transformation matrices
Ũ ̸= U .

When using Option A from eq. (5.50), we were able to choose the late Majorana
mass eigenvalues and, because of the direct proportionality between them, the early
Majorana mass eigenvalues were then also automatically fixed. This differs from the
situation we have now with Option B; choosing one set of eigenvalues allows us no
statement on the other, because early and late mass eigenvalues belong to matrices
with different eigenbasis. Still, in order to compute (θ1)

2 from eq. (5.54) we need to
input the eigenvalues of the two matrices, which are not proportional to each other
but still related by eq. (5.62). We proceed in the following manner. We choose to
keep the same late mass eigenvalues as previously, i.e. Md = diag(7.1, 20, 30) keV.
There exist infinitely many non-diagonal matrices with the elements in Md as its
eigenvalues. We find one specific such matrix M by using a randomly generated
orthogonal transformation matrix U to rotate Md away from the representation in
its eigensysten,

M = U Md UT . (5.63)

Once we have a specific M , we can easily compute M̃ by

M̃ = Q−1
N M Q−1

N , (5.64)
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and can then also compute its eigenvalues, which are the elements sitting in M̃d,
and its normalized eigenvectors, which make up the columns of Ũ . Thus, similarly
to what we did previously with Option A, we have fixed all ingredients of eq. (5.54)
by generating only one random orthogonal matrix, namely U .

However, there is still one issue to consider: as discussed in section 5.2.1 and
particularly in fig. 5.7, the successful production of keV DM in our model requires
that the early Majorana mass eigenvalues lie within a certain range in the low TeV
scale. Specifically, for a DM mass of M1 = 7.1 keV, and an EWPT-induced freeze-
out at a reasonable temperature, say TEW ∈ [100, 300]GeV, we must demand
that M̃1 ∈ [700, 2000]GeV and M2,3 ≳ 3000GeV. Whether or not this is realized
depends on the randomly generated orthogonal transformation matrix U . Thus, we
computed the eigenvalues of M̃ for 100 000 different randomly generated orthogonal
matrices U and confirmed that, in ∼ 70% of the instances, the resulting eigenvalues
did lie in the desired region, thereby demonstrating that the production of keV DM
sterile neutrinos is feasible, which was our goal. Note that these considerations were
not necessary in the case of using Option A for the flavour charges of the sterile
neutrinos, because in that case we could fix the early mass eigenvalues M̃d by our
choice of late mass eigenvalues Md.

As a concrete and representative example, consider a realization where, after
choosing Md = diag(7.1, 20, 30) keV, the randomly generated matrix U leads to
the following early Majorana mass eigenvalues

M̃d = diag(1.19, 2.86, 124.94) TeV. (5.65)

Thus, the lightest sterile neutrino initially has a mass of M̃1 = 1.19TeV, and,
after the EWPT occurs causing the dynamic suppression of the Yukawa cou-
plings and Majorana masses, the lightest sterile neutrino ends up with a mass
M1 = 7.1 keV. If the EWPT occurs at TEW ≈ 165GeV, then the lightest ster-
ile neutrino is forced to decouple from the thermal bath due to the sudden and
drastic suppression of the Yukawa coupling, and its relic density freezes-out match-
ing the observed DM abundance, as is shown in fig. 5.10. Having confirmed that
successful DM production is still feasible even after choosing the flavour charges
of the sterile neutrinos as in Option B of eq. (5.50), we can again redo the com-
putation for (θ1)

2 by inserting all ingredients into eq. (5.54) to check that the
sterile neutrinos are still compatible with the X-ray bounds. The result of this
repeated analysis is qualitatively very similar to figs. 5.8 and 5.9, displaying four
bands of local minima in the (α, β, γ)-space of the matrix R, namely in the vicin-
ity of (α, β, γ) = {(0, 0, γ), (0, π, γ), (π, 0, γ), (π, π, γ)} for γ ∈ [−π, π]. Also,
the value of the numerically determined minimum in these regions of interest is
again (θ1)

2
min ∼ 10−21, thus making the lightest sterile neutrinos compatible with

the current X-ray constraints and safely long lived to play the role of DM of the
Universe.

This shows that, for the benchmark point discussed here, which is defined by the
model parameters in eq. (5.50) and late mass eigenvaluesMd = diag(7.1, 20, 30) keV,
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Figure 5.10. The color scale shows the contribution to the DM
abundance from sterile neutrinos early masses M̃ in the O(1)TeV
range and late masses M in the keV range. The change from early to
late masses is driven by the dynamical suppression of the effective
Majorana mass matrix caused by a shift in the flavon vev during
the EWPT, which also drives a dramatic suppression of the effec-
tive Yukawa couplings. Here, the EWPT is assumed to occur at
TEW = 165GeV. The flavour charges of the sterile neutrinos are
chosen as qN = {5, 4, 4}. The dashed vertical line shows the posi-
tion of our DM neutrino with a mass M1 = 7.1 keV. With an early
mass eigenvalue of M̃1 ≈ 1.2TeV the lightest sterile neutrino N1

accounts for 100% of the DM relic abundance. The other two ster-
ile neutrinos with late masses M2 = 20 keV and M3 = 30 keV and
early masses M̃2,3 ≳ 2.5TeV contribute practically nothing to the
DM abundance, because their equilibrium density has already been
completely depleted by their Boltzmann suppression at the moment
of the EWPT.

the DM production mechanism proposed in this thesis and first published in Refs.
[55, 177], is able to correctly generate the observed DM abundance and reproduce
the known light neutrino parameters while also alleviating the flavour puzzle in
the lepton sector. For a concrete example showing the entries in the Yukawa and
Majorana matrices, see section A.3.

Beyond the 7.1 keV mass benchmark point

Up until this point we have studied a scenario where the sterile neutrino DM has
a very specific mass, namely M1 = 7.1 keV. As mentioned in section 4.4.2, this
specific mass is well motivated because a curious X-ray signal has been observed
[152], which can be interpreted as a hint for a decaying sterile neutrino DM with
precisely this mass. However, that interpretation is still controversial and contested
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5. A new production mechanism for sterile neutrino Dark Matter

(see the end of section 4.4.2).

Thus, we now address the possibility of DM sterile neutrinos with masses M1 ̸=
7.1 keV within the framework presented in this chapter. For convenience, we
again choose Option A for the flavour charges of the sterile neutrinos, i.e. qN =
{4, 4, 4}, so that the diagonalized late and early Majorana mass matrices are
proportional to each other and related as Md = ϵ8 M̃d. We start by consid-
ering again the same late mass eigenvalues that we have been studying so far,
namely Md = diag(7.1, 20, 30) keV with the corresponding late mass eigenvalues
M̃d = diag(0.71, 2, 3) TeV. Our strategy is to sweep through the M1 mass axis,
for which we introduce a dimensionless parameter s and use it to define the mass
matrix Md(s) as

Md(s) = s ·Md = s ·

7.1
20

30

 keV, with s ∈ R. (5.66)

Thus, the dimensionless parameter s linearly rescales the late sterile neutrino mass
eigenvalues. Consequently, the early mass eigenvalues in M̃d get rescaled accord-
ingly, M̃d(s) = s · M̃d. Thus, by varying the dimensionless parameter s we can
homogeneously rescale both M̃d and Md and sweep through the mass axis. The
eigenbasis matrices U = Ũ are left unaltered by this rescaling. The question left
to answer is: how does (θ1)

2 behave with this rescaling? Since (θ1)
2, as defined in

eq. (5.54), is proportional to two powers of
√
M̃d while being inversely proportional

to (M1)
2, we conclude that the mixing angle scales as

(θ1)
2 ∝ s−1. (5.67)

Thus, in the
(
M1, (θ1)

2
)

parameter space, we may start of from the point previously
calculated as

(
M1 = 7.1 keV, (θ1)

2 ≈ 10−21
)

and extrapolate using the scaling with
the parameter s. The result of this exercise is shown in fig. 5.11. We checked that
the results of the extrapolation shown in fig. 5.11 are indeed correct by explicitly
computing (θ1)

2 for multiple mass eigenvalues along the extrapolation lines.

Remember that when building our FN model, we assumed that the lightest active
neutrino is massless, see eq. (5.56). Now, we drop this assumption and recompute
the mixing angle between N1 and the active neutrino states (θ1)

2 for tiny yet non-
vanishing masses for the lightest active neutrino state, i.e.m1 ̸= 0. We find that
finite values of m1 have an important impact on (θ1)

2; indeed the capability of the
lightest sterile neutrino to have tiny enough mixing angle θ1 as to evade the current
X-ray constraints is dependent on the mass of the lightest active neutrino being
itself as tiny as possible. This is depicted in fig. 5.11 by the black lines, where each
line is marked by the value of m1 to which it corresponds. The area above each
line is the region in parameter space where the mechanism proposed here provides
a viable DM candidate, which is stable on cosmological time scales and evades the
X-Ray constraints, while also reproducing the PMNS parameters and the known
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Figure 5.11. The red shaded area in the the plot is excluded by
the X-Ray NuSTAR GC survey [192]. We empirically find that
the minimal mixing angle which can be reached within our model
depends on the mass of the lightest active neutrino m1. Thus, each
line stands for m1 as marked over it. The parameter space above
each line is the region where the mechanism proposed here is able to
produce sterile neutrino DM while recovering the PMNS parameters
and the known mass squared differences of the active neutrinos.

mass squared differences of the active neutrinos. Furthermore, for a late DM mass
M1 = 50 keV, the corresponding early mass is approximately M̃1 = 5TeV. For
this combination of masses, successful DM production according to eq. (5.34) is
achieved at a freeze-out temperature TEW ≈ 550GeV, which is not unreasonable.

This finalizes our discussion of the mechanism proposed in this thesis. In the next
chapter, we summarize the present discussion, and offer some concluding remarks
and state possible directions for further research.
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Chapter 6

Summary and Conclusions

In this thesis the author proposes a new production mechanism for sterile neutrino
dark matter in the early Universe. In contrast to the common approaches found in
the literature, the presented mechanism relies neither on the oscillations between
active and sterile neutrinos, nor on the decay of heavier parent particles to produce
the sterile neutrinos. Instead, the mechanism is inspired by the so-called freeze-out
mechanism, typical for WIMP dark matter. Freeze-out is a very natural process to
generate relic abundances and follows immediately from the thermodynamics of an
expanding Universe. In essence, the high temperature of the early Universe allows
for frequent interactions among the particles present, which thereby form a kind of
cosmic fluid in thermal equilibrium. As the Universe expands and cools, the rates
with which some of these interactions occur might fall below the expansion rate
of the Universe, causing the particle species which communicated with the rest of
the plasma only through said interactions to decouple from thermal equilibrium.
For minimally coupled right handed Majorana neutrinos as dark matter candidates,
i.e. those that couple to the SM only through the Yukawa term in the Lagrangian
and have no further interactions with the SM, production by freeze-out has not been
considered before. The reason for this is that such right handed neutrinos, cannot
reach thermal equilibrium in the early Universe (which is a basic requirement for
freeze-out) and simultaneously be stable on cosmological time scales. This conflict
arises because the neutrino Yukawa coupling would need to be rather sizeable
for the sterile neutrinos to thermalize, but is also required to be very small in
order to prevent the sterile neutrinos from decaying too quickly, leaving us with
no dark matter. The production mechanism proposed in this thesis attempts to
tackle this conflict. The core idea behind our mechanism is simple and can be
distilled as follows: If the neutrino Yukawa coupling is allowed to vary during some
period in the early cosmological history, going from large values at early times to
much smaller values at later times, then the sterile neutrinos could reach thermal
equilibrium during the early stage, and then be forced to freeze-out and stay quasi-
stable due to the change in their Yukawa couplings.

A production mechanism for sterile neutrino dark matter is desirable for the
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following reasons. Adding three right handed Majorana neutrinos to the SM is
an elegant and minimal yet very powerful extension to the theory, often referred
to as νMSM [149, 150, 153]. Within the νMSM, the relic abundance of the ster-
ile neutrino dark matter is produced by the Dodelson-Widrow- or the Shi-Fuller
mechanisms [151, 154]. However, these are already either ruled-out or under a lot
of pressure from the indirect dark matter searches, as discussed in section 4.4.2.
Therefore, a new production mechanism for sterile neutrino dark matter, that still
adheres to the minimality of the νMSM, i.e. does not introduce new exotic neutrino
interactions, is in demand. Furthermore, the notion of varying Yukawa couplings,
which is the basis for the mechanism we propose, is reminiscent of a possible so-
lution to the flavour puzzle, which could add to the appeal of the νMSM and our
mechanism.

Although there might exist many possible ways to implement varying Yukawa
couplings, we here have chosen to do so by embedding the νMSM in a Froggatt-
Nielsen model (introduced in section 2.1). The sterile neutrinos still only couple
through their Yukawa coupling and have no additional interactions beyond the
νMSM. The key feature of the Froggatt-Nielsen mechanism, is that the flavon and
all fermions are charged under a global symmetry U(1)FN. Therefore, the Yukawa
and Majorana terms are modified to include powers of the flavon according to the
charges of the fermions, so that the Yukawa terms are U(1)FN invariant. The
effect is basically the rescaling of the Yukawa couplings and Majorana masses by
the Froggatt-Nielsen factor λ, which is the ratio of the flavon vev to the flavour
scale ΛFN. Our mechanism assumes that the Froggatt-Nielsen factor is initially
λ = 1, meaning that initially all effective Yukawa couplings are still unsuppressed
and ∼ O(1), thus allowing the sterile neutrinos to thermalize. Now comes the key
point: during a phase transition, e.g. the electroweak phase transition, the scalar
potential of the theory relaxes into a new true vacuum, whose coordinates in field
space are different to those of the false vacuum also in the flavon dimension. In
other words, the flavon vev changes during the phase transition, so that so that
afterwards the Froggatt-Nielsen factor becomes λ < 1, thus effectively enforcing
the suppression of the Yukawa couplings and Majorana masses. In this sense, it is
the phase transition that induces the variation of the Yukawa couplings.

In this thesis, we have discussed the feasibility of a change in the flavon vev
during a phase transition, which as also been discussed e.g. in Refs. [176, 187,
193]. Then, taking the electroweak phase transition as the one responsible for the
desired change in the flavon vev, we have shown that it is possible to formulate
Froggatt-Nielsen models with the following features:

1. Prior to the electroweak phase transition, the lightest sterile neutrino is in
thermal equilibrium. As soon as the phase transition occurs, the effective
Yukawa couplings become strongly suppressed by the change in the flavon
vev. Consequently, the lightest sterile neutrino is forced to freeze-out. For
reasonable temperatures of the electroweak phase transition, the frozen-out
relic density of the lightest sterile neutrino can match the observed dark
matter abundance. Thus, successful dark matter genesis is achieved.
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2. By the synergy of the seesaw and Froggatt-Nielsen mechanisms, the SM light
neutrino masses (or more precisely, the mass squared differences) and the
parameters of the PMNS matrix are recovered.

3. The bare Yukawa couplings of the lepton sector are all close to O(1) and the
observed hierarchy is generated by the Froggatt-Nielsen mechanism. Thus,
the flavour puzzle in the lepton sector is alleviated.

As discussed in section 5.2, the successful production of keV dark matter sterile
neutrinos relies on the masses of the sterile neutrinos before the electroweak phase
transition to be O(1−5TeV), and the necessary longevity of the dark matter sterile
neutrinos to evade the X-ray constrains can be realized if lightest active neutrino
mass eigenstate is massless or at least lighter than ∼ 10−8 eV.

In sum, the mechanism proposed in this thesis represents a simple and appeal-
ing way to generate sterile neutrino DM and active neutrino masses, while also
addressing the flavour puzzle. Our mechanism can be seen as complementary to
the νMSM, as it reopens regions of the parameters space that are already ruled
out for the standard production mechanisms.

While these results are interesting and encouraging in their own right, there
are still many aspects of the mechanism proposed here that require further re-
search. First of all, the Froggatt-Nielsen embedding studied here is certainly not
the only possible way to implement varying Yukawa couplings. Other realizations,
e.g. within 5-dimensional Randall-Sundrum models [193, 194] or involving the con-
cept of partial compositeness [175], might also be possible and could perhaps display
interesting phenomenological features. Secondly, since in our framework the Ma-
jorana masses are also affected by the change in the vev of the flavon, dedicated
research into the impact of this issue on the momentum distribution of the sterile
neutrino dark matter is important and necessary to uncover possible issues regard-
ing structure formation. Also, while in the νMSM the matter-antimatter asymme-
try of the Universe is addressed by leptogenesis, other studies have suggested that
Yukawa couplings varying during the electroweak phase transition could enable
electroweak baryogenesis, e.g. [174]. Therefore, the issue of the matter-antimatter
asymmetry within the framework proposed here should also be further investigated.
And finally, of course, a UV-complete theory that displays the Yukawa behaviour
here described would indeed be very welcomed.

We conclude these overenthusiastic final remarks with a sobering statement: al-
though it is fascinating to imagine a Swiss knife type of solution to the problems
in fundamental physics - one that addresses multiple of the open questions at once
- we must perhaps brace ourselves for the possibility that such a theory lies beyond
our imagination.

To close the loop, remember Hamlet: "... there are more things in heaven and
earth, [...] than are dreamt of in your philosophy..."
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Appendix A

Additional Material

A.1 Deriving the Casas-Ibarra parameterization for Froggatt-
Nielsen models

Within a FN mechanism, the effective Dirac and Majorana mass matrices are given
by (see eq. (5.40)

mD = v QL̄ Y
ν QN , M = QN ΛM Y N QN . (A.1)

The Q matrices carrying the FN suppression factors are diagonal. The seesaw
mechanism gives us the Majorana mass matrix for the light neutrinos mν as

mν =−mDM
−1mT

D

=− v QL̄ Y
ν QN QN

−1
(
ΛM Y N

)−1
QN

−1QNY
T
ν QL̄ v

=− v QL̄ Y
ν
(
ΛM Y N

)−1
Y T
ν QL̄ v

=− m̃D M̃
−1 m̃T

D, (A.2)

where we have conveniently defined

m̃D = v QL̄ Y
ν , M̃ = ΛM Y N . (A.3)

With an orthogonal matrix Ũ , M̃ is diagonalized by M̃ = Ũ M̃d ŨT and M̃d is
diagonal, then we may write

M̃−1 = Ũ
√
M̃d

−1√
M̃d

−1
ŨT . (A.4)

Similarly, mν is diagonalized as md
ν = V T mν V , with an orthogonal matrix V .

Then, we have

md
ν = i2 V T m̃D Ũ

√
M̃d

−1√
M̃d

−1
ŨT m̃T

D V. (A.5)
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Multiplying this equation from the left and from the right with
√
md
ν

−1 we obtain

1 = i
√
md
ν

−1

V T m̃D Ũ
√
M̃d

−1√
M̃d

−1
ŨT m̃T

D V
√
md
ν

−1

i

=

(
−i
√
md
ν

−1

V T m̃D Ũ
√
M̃d

−1
)(

−i
√
md
ν

−1

V T m̃D Ũ
√
M̃d

−1
)T

, (A.6)

Thus, we conclude that the expression in the parenthesis must be an orthogonal
matrix, which we name R. Isolating m̃D from R, we are left with

m̃D = i V ⋆
√
md
ν R
√
M̃d ŨT , (A.7)

and finally, recalling the definition of m̃D, we multiply from the right with QN to
obtain

mD = i V ⋆
√
md
ν R
√
M̃d ŨT , QN . (A.8)

A.2 The scalar potential
The conditions under which the vev of a scalar field Θ can be modified during
a phase transition are examined. The computations are taken identically from
Ref. [55] by the author of this thesis.

Consider the potential of two scalar fields, Θ and Σ, along with the energy scales
ΛFN and ΛΣ at which the scalar fields assume their respective vevs. The potential
can be written as

V (Θ, Σ) = µ2θ Θ
†Θ+ λθ (Θ

†Θ)2 + µ2σ Σ
†Σ+ λσ (Σ

†Σ)2 + λθσ (Θ
†Θ)(Σ†Σ). (A.9)

Without loss of generality, we assume that both fields acquire their vev’s only along
their real components and substitute

Θ −→ 1√
2
θ, Σ −→ 1√

2
σ, (A.10)

leading to

V (θ, σ) =
µ2θ
2
θ2 +

λθ
4
θ4 +

µ2σ
2
σ2 +

λσ
4
σ4 +

λθσ
4
θ2σ2. (A.11)

The minimum of the potential is given by the zeros of the field space gradient:

∇θ,σV =

(
θ (µ2θ + λθ θ

2 + λθσ
2 σ2)

σ (µ2σ + λσ σ
2 + λθσ

2 θ2)

) ∣∣∣∣∣
(vθ,vσ)

!
=

(
0
0

)
. (A.12)

We recognise the following cases:

(i) Before the U(1)Σ phase transition: At temperatures ΛΣ < T < ΛFN we
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demand

vθ = ΛFN, and vσ = 0. (A.13)

Thus, the first component of ∇θ,σV = 0 implies

µ2θ = −λθ Λ2
FN. (A.14)

(ii) After U(1)Σ symmetry breaking:
At temperatures T < ΛΣ we demand

vθ = ϵΛFN, and vσ ̸= 0, (A.15)

with 0 < ϵ < 1. Thus, the first component of ∇θ,σV = 0 implies

µ2θ + λθ ϵ
2 Λ2

FN +
λθσ
2
v2σ = 0. (A.16)

With Eq. (A.14) this is equivalent to

(
1− ϵ2

)︸ ︷︷ ︸
∼1

(
ΛFN

vσ

)2

=
λθσ
2λθ

⇒
(
ΛFN

vσ

)2

≈ λθσ
2λθ

. (A.17)

Next we compute the mass parameters:

m2
θθ = ∂2θV = µ2θ + 3λθv

2
θ +

1

2
λθσv

2
σ, (A.18)

m2
σσ = ∂2σV = µ2σ + 3λσv

2
σ +

1

2
λθσv

2
θ , (A.19)

m2
θσ = ∂θ∂σV = λθσvσvθ. (A.20)

The mass matrix is

M =

(
m2
θθ m2

θσ

m2
θσ m2

σσ

)
(A.21)

and its corresponding mass eigenvalues are

m2
σ = λσv

2
σ + λθv

2
θ +

√
(λσv2σ − λθv

2
θ)

2 + (λθσvθvσ)2, (A.22)

m2
θ = λσv

2
σ + λθv

2
θ −

√
(λσv2σ − λθv

2
θ)

2 + (λθσvθvσ)2. (A.23)

The mixing angle between θ and σ is given by

tan(2α) =
λθσvθvσ

λσv2σ − λθv
2
θ

=
λθσvσ ϵΛFN

λσv2σ − λθ ϵ2 Λ
2
FN

. (A.24)
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As we will see in a moment, in our scenario, the mixing angle is automatically very
small, implying

λθσvθvσ ≪ |λσv2σ − λθv
2
θ |, (A.25)

which means that the mass eigenvalues can be approximated by

m2
σ = 2λσv

2
σ, (A.26)

m2
θ = 2λθv

2
θ . (A.27)

Now, for the stationary point (θ, σ) = (vθ, vσ) = (ϵΛFN, vσ) to be indeed a mini-
mum of the potential, the determinant of the mass matrix must be positive definite:

det(M) = det

(
∂2θV ∂σ∂θV
∂σ∂θV ∂2σV

) ∣∣∣∣∣
(vθ,vσ)

> 0, (A.28)

which results in

4λσλθ > λ2θσ. (A.29)

From this relation and with Eq. (A.17), we derive constraints on the coupling
constants

λθσ < 2λσ

(
vσ
ΛFN

)2

, (A.30)

λθ < λσ

(
vσ
ΛFN

)4

. (A.31)

These constraints consistently imply the smallness of the mixing angle. Finally, we
obtain a bound on the mass of the flavon by combining Eqs. (A.27) and (A.31),

m2
θ < 2λσ v

2
σ ϵ

2

(
vσ
ΛFN

)2

. (A.32)

From this analysis we have learned that, if eqs. (A.30) to (A.32) hold, then the
U(1)Σ phase transition can cause a shift in the value of the flavon vev.

A.3 A benchmark point for keV dark matter, neutrino
masses and lepton flavour

A specific benchmark point for a Froggatt-Nielsen model as discussed in chapter 5
is presented. This appendix is taken identically from Ref. [177] by the author of
this thesis.
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A.3 A benchmark point for keV dark matter, neutrino masses and lepton flavour

We start with the following mass eigenvalues for the SM leptons:

md
E = diag(0.511× 10−3, 0.105, 1.776)GeV, (A.33)

md
ν = diag(0, 8.7× 10−3, 5× 10−2) eV, (A.34)

and for the mass of the sterile neutrinos before the EWPT we choose

M̃d = diag(710, 2000, 3000)GeV. (A.35)

The FN charges for the charged singlets, the doublets, and the sterile neutrinos are
taken to be

qE = {−3, −4, −4}, qL = {7, 7, 7}, qN = {4, 4, 4}. (A.36)

respectively. The bare Majorana mass matrix is given by M̃ = ΛM Y N , where we
set ΛM = 104 GeV, and is related to its diagonal version by the orthogonal matrix
Ũ , which we set to

Ũ =

−0.200 −0.696 −0.690
0.868 0.209 −0.460
−0.465 0.687 −0.559

 , leading to Y N =

0.242 0.054 0.027
0.054 0.125 0.077
0.027 0.077 0.203


(A.37)

After the EWPT, the suppressed mass eigenvalues of the sterile neutrinos are

Md = diag(7.1, 20, 30) keV. (A.38)

Since in this case all sterile neutrinos have the same FN charge, the eigenbasis of
the matrices M̃ and M are the same. The randomly generated unitary matrix
WL, used to diagonalize the charged lepton mass matrix by md

E =W †
LmEWR and

compute the matrix V =WL VPMNS used in eq. (5.45) is given by

WL =

−0.598 + i 0.289 −0.508− i 0.023 −0.548 + i 0.009
−0.377 + i 0.531 0.558 + i 0.123 0.161− i 0.474
−0.364− i 0.057 0.485− i 0.424 −0.054 + i 0.668

 . (A.39)

Finally, the Yukawa matrices for the neutrinos and charged singlets are

|Y ν | =

0.030 7.381 1.031
0.029 4.681 4.068
0.025 3.308 4.142

 , |Y E | =

3.14 2.59 2.98
1.89 2.21 2.86
5.57 3.28 3.53

 . (A.40)

Although there still is some hierarchy in the columns of Y ν , it is remarkably less
severe. The mixing angle for the DM neutrino with all active neutrinos is θ21 =
2.86 × 10−10 which is below the bound of θ21 bound = 4.16 × 10−10 at a DM mass
M1 = 7.1 keV.
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Appendix B

The Boltzmann equation

The integrated form of the Boltzmann equation for cold relics is derived. The
treatment here presented follows that by Kolb and Turner [29] and Gondolo and
Gelmini [145]. Our aim here is not to derive a very general expression, but to make
the relevant assumptions and simplifications more transparent.

Let the particle momentum distribution of a particle species χ be denoted by
fχ(t, p). Then, the Boltzmann equation is

L[fχ] = C[fχ], (B.1)

where L is the Liouville operator which describes the change in time of fχ and C
is the collision operator. On the cosmological background, the left hand side of
eq. (B.1) is given by

L[fχ] = E
∂fχ
∂t

− ȧ

a
|p|2 ∂fχ

∂E
. (B.2)

Integrating over pχ

∂

∂t

∫
d3pχgχ
(2π)3

fχ −H

∫
d3pχgχ
(2π)3

|p|2

E

∂fχ
∂E

=

∫
d3pχgχ
(2π)3

C[fχ]

E
(B.3)

ṅχ + 3Hnχ =

∫
d3pχgχ
(2π)3

C[fχ]

E
, (B.4)

having used partial integration. In general, for processes χ+a+b+ · · · ⇋ i+j+ . . . ,

105



B. The Boltzmann equation

and with fi for the momentum distribution of the species i, we have

ṅχ + 3Hnχ =

∫
d3pχgχ
(2π)3

C[fχ]

E

= −
∫
dπχdπadπb . . . dπidπj . . .

(2π)4δ(4)(pχ + pa + pb + · · · − pi − pj − . . . )

×
∑
spins

[
|M|2χ+a+b+···→i+j+...fχ fa fb . . . (1± fi)(1± fj) . . .

− |M|2i+j+···→χ+a+b+...fi fj . . . (1± fχ)(1± fa) . . .
]
, (B.5)

with dπi := gid
3pi/[(2π)

32Ei] and M for the matrix elements of the relevant process.
Also, the signs ± apply accordingly for bosons or fermions. Next, one assumes that
all species except χ are kept in equilibrium. For concreteness, consider processes
of the form χ+ ψ ⇋ a+ b. Then, one may write∫

d3pχgχ
(2π)3

C[fχ]

E
= −

∫
dπχdπψdπadπb(2π)

4δ(4)(pχ + pψ − pa − pb)

×
∑
spins

[
|M|2χ+ψ→a+b fχ fψ(1± fa)(1± fb)

−|M|2a+b→χ+ψ fa fb(1± fχ)(1± fψ)
]
. (B.6)

The following simplifying assumptions can then be made:

• χ is non-relativistic and the distribution functions of other species are small,
i.e. (1± fi) ≈ 1.

• CP or T invariance holds, such that

|M|2 := |M|2χ+ψ→a+b = |M|2a+b→χ+ψ. (B.7)

• Since all species other than χ and ψ stay in equilibrium and the δ-function
enforces energy conservation, one may substitute

fafb = f eqa f
eq
b = e−(E1+E2)/T = e−(Eχ+Eψ)/T = f eqχ f

eq
ψ . (B.8)

• χ maintains kinetic equilibrium. Therefore,

fχfψ
nχnψ

=
f eqχ f

eq
ψ

neqχ n
eq
ψ

. (B.9)
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With these assumptions, the Boltzmann equation may be rewritten as

ṅχ + 3Hnχ =

∫
d3pχgχ
(2π)3

C[fχ]

E

= −
∫
dπχdπψdπadπb(2π)

4δ(4)(pχ + pψ − p1 − p2)
∑
spins

|M|2
[
fχ fψ − fa fb

]

= −
∫
dπχdπψdπadπb(2π)

4δ(4)(. . . )
∑
spins

|M|2f eqχ f eqψ

(
nχ nψ
neqχ neqψ

− 1

)

= −
∫
dπχdπψdπadπb(2π)

4δ(4)(. . . )
∑
spins

|M|2
f eqχ f

eq
ψ

neqχ neqψ

(
nχ nψ − neqχ neqψ

)

= −


∫
dπχdπψ

∫ dπadπb(2π)
4δ(4)(. . . )

∑
spins

|M|2
 f eqχ f

eq
ψ

neqχ neqψ

(nχ nψ − neqχ neqψ

)

= −

{∫
dπχdπψ [4F σ]

f eqχ f
eq
ψ

neqχ neqψ

}(
nχ nψ − neqχ neqψ

)
, (B.10)

where we have defined F = [(pχ · pψ)2 − m2
χm

2
ψ]

1/2. The expression in the curly
braces in the last line is the thermal cross section ⟨σv⟩. Thus, one finally arrives
at the familiar expression

ṅχ + 3Hnχ = −⟨σvmol⟩
(
nχ nψ − neqχ neqψ

)
. (B.11)

For the case where self-annihilations are the driving interactions, simply set ψ = χ̄.
Alternatively, one can use the thermal rate γeq instead of the thermal cross

section. The former is defined as

γeqχ+ψ⇋a+b =

∫
dπχdπψ

∫ dπadπb(2π)
4δ(4)(. . . )

∑
spins

|M|2
 f eqχ f eqψ , (B.12)

where the matrix elements M are meant as those for the process under consider-
ation, i.e. χ + ψ ⇋ a + b. In this case, the Boltzmann equation in its final form
is

ṅχ + 3Hnχ = −γeqχ+ψ⇋a+b

(
nχ nψ
neqχ neqψ

− 1

)
. (B.13)

We notice that if ψ also stays in thermal equilibrium, then nψ can be cancelled.
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BSM beyond the Standard Model
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DOF degree of freedom
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EWSB electroweak symmetry breaking
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EWPT electroweak phase transition
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