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Abstract

This doctoral thesis addresses critical methodological aspects within machine learning
experimentation, focusing on enhancing the evaluation and analysis of algorithm perfor-
mance. The established "train-dev-test paradigm" commonly guides machine learning
practitioners, involving nested optimization processes to optimize model parameters and
meta-parameters and benchmarking against test data. However, this paradigm over-
looks crucial aspects, such as algorithm variability and the intricate relationship between
algorithm performance and meta-parameters. This work introduces a comprehensive
framework that employs statistical techniques to bridge these gaps, advancing the method-
ological standards in empirical machine learning research. The foundational premise of
this thesis lies in differentiating between algorithms and classifiers, recognizing that an
algorithm may yield multiple classifiers due to inherent stochasticity or design choices.
Consequently, algorithm performance becomes inherently probabilistic and cannot be
captured by a single metric. The contributions of this work are structured around three
core themes:

Algorithm Comparison: A fundamental aim of empirical machine learning research
is algorithm comparison. To this end, the thesis proposes utilizing Linear Mixed Effects
Models (LMEMs) for analyzing evaluation data. LMEMs offer distinct advantages by
accommodating complex data structures beyond the typical independent and identically
distributed (iid) assumption. Thus LMEMs enable a holistic analysis of algorithm in-
stances and facilitate the construction of nuanced conditional models of expected risk,
supporting algorithm comparisons based on diverse data properties.

Algorithm Performance Analysis: Contemporary evaluation practices often treat al-
gorithms and classifiers as black boxes, hindering insights into their performance and
parameter dependencies. Leveraging LMEMs, specifically implementing Variance Compo-
nent Analysis, the thesis introduces methods from psychometrics to quantify algorithm
performance homogeneity (reliability) and assess the influence of meta-parameters on



performance. The flexibility of LMEMs allows a granular analysis of this relationship
and extends these techniques to analyze data annotation processes linked to algorithm
performance.

Inferential Reproducibility: Building upon the preceding chapters, this section show-
cases a unified approach to analyze machine learning experiments comprehensively. By
leveraging the full range of generated model instances, the analysis provides a nuanced
understanding of competing algorithms. The outcomes offer implementation guidelines
for algorithmic modifications and consolidate incongruent findings across diverse datasets,
contributing to a coherent empirical perspective on algorithmic effects.

This work underscores the significance of addressing algorithmic variability, meta-
parameter impact, and the probabilistic nature of algorithm performance. This thesis
aims to enhance machine learning experiments’ transparency, reproducibility, and inter-
pretability by introducing robust statistical methodologies facilitating extensive empirical
analysis. It extends beyond conventional guidelines, offering a principled approach to
advance the understanding and evaluation of algorithms in the evolving landscape of
machine learning and data science.
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Chapter 1

Introduction

Machine learning is a research field that has been explored for several decades and has
recently started to affect many areas of modern life. Machine learning aims to construct
learning algorithms that, based on input-output examples or alternative feedback mech-
anisms, output a mathematical function (represented by a computer program). The
learning process of this algorithm is essentially an optimization problem aiming to mini-
mize a loss objective, and its solution relays on methods of mathematical optimization
[BCN18]. The loss objective is typically based on a sample of relevant input-output
examples (training data) and is called empirical risk objective. The minimization of this
empirical risk objective is only a means to an end, namely to construct an algorithm that
can create functions whose expected loss over the (input, output)-distribution is minimal.
The Machine learning practitioner has to resort to this indirect practice because the
expected risk is not accessible as it requires exact knowledge of the principally unknown
probability law of (input, output). The relation between empirical risk minimization and
expected risk is studied in statistical learning theory [BBL04; LS11; Vap98]. Statistical
learning theory thus provides the inductive principles sustaining the learning process.

The findings of statistical learning theory directly impact the workflow of machine
learning experiments in natural language processing (NLP) and data science. Empirical
research in these areas generally starts with a collection of exemplary input-output
pairs –partitioned into three disjoint subsets called training, development, and testing
data– assumed to represent independently drawn samples from the same data generating
probability space (so-called i.i.d. samples). This property is enforced and conserved by
techniques like random shuffling between splits [Arj+19] or experience replay [Sch19] and
is a condicio sine qua non for most consistency guarantees [Vap98; LS11]. The typical
workflow of a machine learning experiment motivated by statistical learning theory can
be phrased as a nested optimization process where the model parameters are optimized

1



Chapter 1 Introduction

on given training data, and the meta-parameters are tuned on development data. Finally,
the optimized model is applied to a benchmark test data set to obtain an unbiased
estimation of its expected risk. We will call this scheme the train-dev-test paradigm of
NLP and data science.1

The train-dev-test paradigm assigns the machine learning practitioner the task of
improving model performance, limited only by the computational resources at her hand to
(re-)train complex models under extensive exploration of meta-parameter configurations
and her experience in skillfully applying a range of technical stratagems. Thus she does
not need to concern herself with questions about the data compilation process, what
the machine learning model has learned, or how the learning process is systematically
influenced by diverse sources of variability attached to the implementation of model
training. These questions are not investigated by classical statistical learning theory and
must be addressed in the empirical analysis of machine learning experiments.

In this work, I advocate that the investigation of algorithm performance variation
should be an integral part of machine learning methodology and addressed by the analysis
of an experiment. The current discussion of methodological issues and standards in
empirical machine learning research is at the state of informal guidance by Dos and
Don’ts [BD21; Lon21] at best compiled into checklists. My principle goal is to address
methodological shortcomings of the train-dev-test paradigm2 by providing adequate
statistical methods allowing the machine learning practitioner to analyze them in her
work.

1.1 Research Question and Contribution

This thesis is a cumulative effort. Thus all parts of it have been previously published
in peer-reviewed publications, co-authored with my supervisor. The excurse on multiple
testing in chapter 2 has previously appeared in my master’s thesis [Hag16].

The fundamental notion sustaining all contributions of this thesis is the distinction
between algorithms and classifiers which are specific instances of an algorithm [Die98].
This distinction is often blurred in the machine learning literature by an ambiguous usage
of the term "model" or other synonyms that can mean both. This lack of conceptual

1Clearly, this paradigm is pervasive in machine learning and artificial intelligence in general, for example,
in the area of image processing that uses similar methods and exhibits similar problems as the area
of natural language processing.

2No matter if it is founded in classical statistical learning theory or more recent approaches [KKB20;
Arj+19; She+21].

2



1.1 Research Question and Contribution

clarity has led to an unclear situation regarding evaluating machine learning experiments.
Contemporary practice implies that comparing particular algorithm instances can be
a valid substitute for algorithm comparison. This identification is questionable as soon
as the involved algorithms outputted classifier is not unique for a given training data.
Unfortunately, this is the case for almost all contemporary algorithms, especially when
they employ a deep neural architecture. There are multiple reasons, e.g., a non-convex
optimization problem specified by the algorithm, resorting to stochastic optimization
methods, the deliberate usage of randomness to improve algorithm performance, or
unspecified parameters in the algorithm description. Hence, we need to think of an
algorithm as a collection of potential classifiers that can be outputted depending on the
exact choice of implementation details. Thus, by extension, algorithm performance can
not be characterized by a single number but must instead be captured by a distribution
over evaluation scores.

The contributions of this thesis can be grouped into three interrelated efforts aiming at
an improved evaluation of machine learning experiments that meet the standard of other
knowledge-oriented empirical sciences. It differs from current attempts to increase the
reproducibility of machine learning experiments by promoting analytical methods vs. re-
porting standards and advocates accepting the in-determinism inherent in contemporary
machine learning methods and not eliminating it. Nevertheless, the methods presented
in this thesis aim to avoid replacing these attempts but to amend them and add to the
discussion. To this end, I focus on the following topics.

Algorithm Comparison. Undoubtedly, comparing algorithms is the primary purpose of
most empirically oriented machine learning research. In this chapter, I propose the usage
of LMEM to analyze the evaluation data of a machine learning experiment. This approach
offers several advantages to previous related work. Most notably, the ability of LMEMs
to model complex data structures that deviate from the ubiquitous iid assumption
allows simultaneous analysis of all the instances of the algorithms under investigation.
Secondly, LMEMs allow building complex conditional models of the expected risk3 of
an algorithm, thus enabling a comparison of algorithms dependent on arbitrary data
properties. Parts of the work presented in this chapter were previously published in the
chapter "Significance" of [RH21]. I reused the following sections, which the author of
this work mainly contributed:

• Exposition to the principles of hypothesis testing.
3The expected value out-of-sample value of an evaluation metric.
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Chapter 1 Introduction

• Exposition of LMEM theory.

• Showcase analysis of Kreutzer et al. data set.

Algorithm Performance Analysis. One shortcoming of the contemporary state-of-
the-art evaluation of machine learning experiments is its tendency to treat and analyze
algorithms and classifiers in a black-box fashion. This attitude prohibits any empirically
grounded insights into the relationship between an algorithm’s performance concerning
a task and the choice of its meta-parameters. Based on an LMEM implementation of
Variance Component Analysis, I demonstrate how notions originated in psychometrics can
be adapted to quantify the performance homogeneity of an algorithm (called reliability)
and asses the influence of specific meta-parameters on algorithm performance. I will also
show how the flexibility of LMEMs to build models of the expected risk conditional on
arbitrary data properties allows a fine-grained analysis of this dependency. Another novel
aspect of this chapter is the argument that algorithm performance and data annotation
analysis can be investigated using the same analytical tools. This aspect is particularly
interesting when the algorithm depends on human feedback, e.g., [KBR20] so that the
mechanism to collect this feedback can be seen as a part of it.

Parts of the work presented in this chapter were previously published in the chapter
"Reliability" of [RH21]. I reused the following sections, which the author of this work
mainly contributed:

• Exposition of the current state-of-the-art.

• Exposition to the principles of G-Theory.

• Exposition to the principles of Variance Component Analysis.

• Showcase analysis of Kreutzer et al. data for Annotation and Algorithm Perfor-
mance Analysis.

Inferential Reproducibility. This chapter shows how the techniques and methods pre-
sented in the previous chapters can be combined to analyze a machine learning experiment.
This analysis uses every model instance generated during the experiment to gain a more
nuanced picture of the competing algorithms. The benefits of such an analysis are not
only implementation guidelines that stem from a detailed understanding of the conditions
when one algorithm is superior to the other or which meta-parameter is crucial but also
a more coherent picture that allows integrating incongruent findings about an algorithm

4



1.1 Research Question and Contribution

on different data sets into a cohesive picture throwing empirically grounded light on
the effects of the proposed algorithmic modification. The material of this chapter was
previously published as [HR21].

Furthermore, I provide R and Python code to replicate the demonstrated examples and
facilitate easily adapting the presented methods to the NLP and data science community.
Code and data are available at https://www.cl.uni-heidelberg.de/statnlpgroup/

empirical_methods/
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Chapter 2

Algorithm Comparison

Comparing learning algorithms is the central matter of most machine learning experi-
ments in academic machine learning research and is pivotal to demonstrating algorithmic
advancements. Given its importance in justifying progress in empirically orientated ma-
chine learning research, this topic has received moderate attention from the machine
learning community.

A first rudimentary taxonomy on the kind of comparisons that occur in machine learn-
ing experiments was proposed by [Die98]. This taxonomy was a first attempt to match
typical analytical questions of machine learning experiments to appropriate statistic
methods1 (if available at the time) for classification tasks. A still important criterion
of this taxonomy is the clear distinction between evaluating a classifier and a learning
algorithm. A classifier2 is a function that, given an input example, outputs (or predicts)
a class label for this input example. In contrast, a learning algorithm is a function that
constructs a classifier given a collection of training examples with known labels.

Unfortunately, this essential initial work has found no echo in contemporary benchmark
experiment analysis where systematic uncertainty estimation is a neglected problem
[FP19], and statistical inference procedures established in a broad spectrum of empirical
sciences, e.g., hypothesis tests, are often entirely ignored. Instead, machine learning
researchers waive proper methods in favor of rules of thumb for sufficiently large differences
between observed evaluation scores. Thresholds are usually provided by tradition in
respective application areas and are seldom justified by rigorous arguments. For example,
in the area of machine translation, result differences of at least 1 − 2 BLEU points
[Pap+02] seem to be publication-worthy and are often termed "significant" [MFR21]

1This term encompasses appropriate experimental designs along with formal techniques to analyze
them.

2Henceforth, I use this term in a broader meaning and use it as a synonym for a trained model, model
instance, etc.
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invoking associations with statistical hypothesis testing. A closer look at the current
standard of experiment evaluation reveals an even bleaker fact. Let us take the area
of machine translation, for example. The de facto standard experimental scenario can
be sketched as follows: First, obtain a collection of classifiers for each algorithm in the
comparison by re-executing each with different meta-parameter configurations on the
available training data and select exactly one representative classifier for each algorithm.
Typically this selection is made by picking the classifier that performs best on development
data for each learning algorithm. These representatives called the best models, are then
applied to the test set and compared descriptively in an above-described manner. Thus
the comparison of algorithms is implicitly and wrongly reduced to classifier comparison.

Indubitable academic research is interested in learning algorithms and not specific
classifiers. The abstract research question that motivates most academic machine learning
experiments is:

Given two learning algorithms A1 and A2, which algorithm will produce more
accurate classifiers3 for a given task and training data4 of size N?

The provision of a proper statistical method –an experimental design that specifies
which data needs to be collected and a suitable device for statistical inference– to answer
this question is not as straight as it seems prima facie. The critical issue that prevents the
direct and unconditional application of standard statistical comparisons techniques like
the t-test, analysis of variance (ANOVA), or their non-parametric or resampling-based
variants to analyze this question is the fact that the outcome of a machine learning experi-
ment is affected by a multitude of decisions needed to implement a learning algorithm in a
computer program. The most obvious are algorithm parameters inherent, like widths and
numbers of the hidden layers of a deep neural network (DNN), the penalization weight for
penalized learning objectives but also includes more implementation-related details like
choice of random seeds for stochastic optimization methods, the usage of generalization
enhancing stochastic methods like drop-out, library versions, etc. In the following, I will
summarize all these choices not explicitly addressed by an algorithm under the umbrella
term meta-parameter. Conceptually we can think of meta-parameters as random variables
to capture the uncertainty associated with their choice. Hence, the outputted classifier
of an algorithm and, thereby, the evaluation metric is a random variable even when

3Here the term classifier is to be understood in a very general meaning and is a synonym for a concrete
model instance or trained model.

4Typically data sets from different domains are used during an experiment.
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the training data is regarded as non-random5. Thus a statistical inference procedure
suitable to analyze the experimental data from machine learning experiments must be
able to incorporate randomness due to training data, meta-parameter, and test data6

Standard statistical comparison techniques usually deal only with the latter, namely the
uncertainty of the out-of-sample risk estimator due to test set sampling. Thus to apply
them, the machine learning researcher has to restrict her comparison to one classifier
per algorithm. This representative is usually found by executing an algorithm several
times with different meta-parameter values on the same training set and selecting7 the
classifier with the best out-of-sample risk estimator based on another set of input-output
examples called development set. This proceeding has severe implications for the analysis.
Firstly, it reduces the comparison of algorithms to the comparison of classifiers which is
a significant constraint to the above-stated research question. Secondly, such an analysis
treats the training data and the meta-parameters of the chosen model as given, thereby
ignoring any uncertainty associated with these entities. Thus the conclusion drawn from
such an analysis does not match the above question. The correct corresponding research
question can is:

Given two learning algorithms A1 and A2 with predefined meta-parameter
configurations and given training data, which algorithm will produce the best
classifier?

The subject of this question deviates severely from the original, and its scope is signif-
icantly limited compared to the original. Nevertheless, this research direction received
much attention when research tried to match standard statistical tests to popular NLP
evaluation metrics [Hot+05], [Dro+20]. To lift some of the shortcomings of this approach,
researchers suggested using multiple testing procedures and meta-analytical methods to
synthesize the hypothesis test statistics from several similar studies or data sets within
one study into a joint overall test [Dro+17]. But the fundamental problem that this kind
of algorithm comparison doesn’t provide an answer to the actual research question was
not and can not be solved.

Several authors try to capture meta-parameter uncertainty by applying the U-test
[RG18], the Kolmogorov–Smirnov test([RG17]), or hypothesis test inspired procedures

5Actually this assumption would contradict the research interest as formulated above and limit the
scope of the conclusions that can be drawn from the experiment.

6A set of input/output examples disjoint from the training which is used to estimate the out-of-sample
risk of a classifier.

7Most commonly machine learning researches neglect estimator uncertainty due to development set
sampling for this purpose.
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[DSR19] to so-called score distributions. A score distribution for a learning algorithm
is generated by executing it several times with different meta-parameter values on the
same (fixed) training data and estimating a summary evaluation metric for each resulting
classifier based on the (same fixed) test set. The collection of these (point) estimates is
called the score distribution of an algorithm. While such an approach accounts for meta-
parameter uncertainty, it completely neglects that each classifier’s estimated summary
evaluation metric is based on sampled test data and hence a random variable contribution
to overall uncertainty. Consequently, score distribution-based techniques underestimate
the variability of the evaluation scores and therefore have an elevated and non-controlled
type-I error probability. A second problem of this approach is that score distribution-
based tests don’t leverage the full potential of the experimental design. Namely, they
don’t take advantage of the fact that the algorithms are evaluated on the same test data
and thus constitute repeated measurements of the same object, a fact that, when taken
into account, usually dramatically increases the power of a hypothesis test. Besides this,
severe technical issues ignoring the test set and estimator variability limit the inference’s
scope and don’t allow conclusions beyond the given test sample. In summary, inference
based on this approach must be interpreted concerning the following research question:

Given two learning algorithms A1 and A2 as well as training data which
algorithm will produce better classifiers for a given test set?

Nevertheless, the merit of this branch of research is that it emphasizes the need to
take several instances (outputted classifiers) of an algorithm into account for a proper
algorithm (not classifier) comparison. Consequently, authors promoting it [Bou+21] stress
that as many sources of variation as possible should be randomized during an experiment
to gain a comprehensive comparison. In this spirit, relatively recent work [Bou+21] revived
ideas [Hot+05] developed for rather elementary machine learning models whose learning
process can be captured by a convex optimization problem without meta-parameters.
Back then, the main question was to capture the evaluation metric variation due to
data sampling when comparing algorithms. The most obvious idea is to randomly and
evenly break a sufficiently large data sample randomly and evenly into k distinct training
and test data pairs and train and evaluate an algorithm on each pair to collect the
evaluation data, which is then analyzed similarly to score distribution data. If splitting
the original sample is not feasible, several resampling schemes based on bootstrapping or
cross-validation to construct appropriate variance estimators have been investigated. A
technical intricacy of cross validation schemes is the fact that they produce overlapping
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(resampled) data sets. Consequently, this fact induces a complex correlation structure
among the resulting evaluation statistics (scores). [BG04] showed that there exists no
universal unbiased estimator of the variance for cross validation schemes and that the
naive variance estimator grossly underestimate the true variance, thus yielding a severely
inflated (larger than nominal) type-I error rate if one applies a t-test to this data. With
bootstrapping the situation is even more complicated. As a matter of fact the term
refers to a wide range of techniques whose common notion is to replace the true but
unknown data distribution FX by an empirical estimate F̂Xn based on a sample Xn and
then do probabilistic calculations based on (re-)drawing samples of the same size as Xn

from F̂Xn . Thus all inference is conditional on the original sample Xn. Depending on the
exact specifics of the score statistics8, its asymptotic (large sample) behavior and the
desired inference the bootstrap can work or not. Examples were the nearly ubiquitously
used non-parametric bootstrap, that is resampling the original sample with replacement,
fails nearly completely are discussed in [BF81; LH23; HHS93; Che11] and a technical
discussion of this topic can be found here [Hal13]. In summary, there exist no universal
theorem that guarantees the soundness of any bootstrap procedures under all possible
conditions.

Another exciting question not raised explicitly by academic research yet asks if an
observed performance gain of an algorithm or a classifier constructed by a newly developed
algorithm is homogeneous over its domain. Or, in other words, can one characterizes
inputs that benefit more than others from the newly developed algorithm? To this end,
one needs to build conditional models of the expected risk (performance), something
classical statistical hypothesis tests and construction principles are not designed for.

One of my research goals is to promote linear mixed effect model (LMEM) based
experiment analysis which circumvents the above sketch shortcomings of alternative
approaches. LMEMs represent one of the most flexible classes of regression models. In
its broadest abstraction, a regression function links a particular deterministic feature C
of a random variable Y to some determining factors X. Mathematically this is expressed
by

C (Y |X) = g(X).

Restricting the regression function g (X) to be a function η of a linear combination
of X, we arrive at the class of generalized linear regression models (GLM) with the
mathematical representation.

8It is especially dangerous to bootstrap when the asymptotic distribution of a score statistic is unknown.
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C (Y |X) = η (Xβ) ,

Where η is called the link function, examples for this class are the well-known linear
and logistic regression models. The former is commonly expressed as

E [Y |X] = Xβ

with the additional assumption that Y ∼ N (Xβ, σ2I). For the latter, let Y ∈ {0, 1} be
a Bernoulli distributed random variable with p := P (Y = 1|X) and η the logit function,
then we arrive at the familiar binary logistic regression model

E [Y |X] = P(Y = 1|X) = logit (Xβ) .

In the context of machine learning experiments, Y represents the evaluation metric
m(y, ŷ) used to quantify classifier performance, and X represents the model or algorithm
used to generate the predictions ŷ but can also incorporate computed or annotated input
characteristics. This brief and abstract discussion is sufficient to show that regression
models allow detailed and fine-grained comparisons of the expected risks based on the
evaluation data collected during a machine learning experiment. One key aspect differ-
entiating LMEMs from conventional generalized linear models is their ability to easily
model complex non-iid sampling data (more details in 2.2). This ability, along with a
highly elaborated estimation and hypothesis testing theory [PB00] based on the maxi-
mum likelihood principle and the generalized likelihood ratio test (GLRT), make LMEMs
the mean of choice to analyze the complex evaluation data obtained from machine learn-
ing experiments and redeem the machine learning researcher to resort to specialized
and flawed procedures matched to different evaluation metric classes to deal with multi-
ple predictions from different meta-parameter configurations and multiple datasets (see
[Dro+20], Chapters 4 and 5, respectively).

I begin my exposition by briefly discussing hypothesis testing principles and short-
comings. This discussion includes less obvious assumptions behind (re-)sampling-based
significance tests that can severely limit the scope of their applicability. Finally, I will
present the mechanics and mathematics of the GLRT and showcase its combined ap-
plication with LMEMs to reanalyze the evaluation data obtained during an interactive
machine translation experiment conducted by [KBR20].
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2.1 The Principles of Statistical Hypothesis Testing

2.1 The Principles of Statistical Hypothesis Testing

The fundamental goal of statistical hypothesis testing is to decide between two mutually
exclusive and exhaustive sets of hypotheses. One is called the null hypothesis H0, and
the other is called the alternative hypothesis H1, by evidence obtained from observed
random samples. Every statistical test, regardless if it is parametric, non-parametric, or
sampling-based, starts by assuming the correctness of the null hypothesis and, based
on this assumption, derives the distribution of a so-called test statistic9 which is used
to distinguish between H0 and H1. The crucial step is to derive the distribution of this
statistic under the null hypothesis. If the observed value of the test statistic is very
unlikely under H0 — lower or equal than a predefined significance level α ∈ (0, 1) — the
null hypothesis is rejected in favor of the alternative hypothesis.

For parametric tests, it is sometimes possible to derive this distribution analytically10

for finite sample sizes, based on the assumed data distribution and known parameters of
this distribution. However, in most cases, the distribution of the test statistic can only
be approximated via asymptotic (large sample) arguments.

Let us consider the hypothesis testing problem about the expected value of a distribu-
tion F with finite expectation and non-zero variance. The critical theorem that facilitates
arriving at a useful distribution for a test about the mean is the Central Limit Theorem.
The classical form can be stated in the following way11:

Theorem 2.1 (Classical Central Limit Theorem).
Let X̄N be the arithmetic mean of the first N of a sequence of independent and identically
distributed scalar random variables X1, X2, . . .. Let us further assume that E [Y 2

i ] <∞
(meaning that the data are drawn from a distribution with finite expectation µ and
variance σ2), and let FN denote the cumulative distribution function (CDF) of

√
N X̄N−µ

σ
,

then

FN(x)
N→∞−−−→ Φ(x), ∀x ∈ R,

where Φ(x) denotes the cdf of a standard Gaussian random variable. Note that the result
also holds when σ is unknown but can be replaced by a consistent estimator.

9Following [LM12], we define as test statistic any function of the observed data whose numerical value
dictates whether H0 is accepted or rejected.

10If this is possible, the corresponding test is usually called exact.
11Formal derivations and proofs for several variants of the asymptotic argument can be found in [Vaa98],

Chapter 2.
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To conduct a hypothesis test about the test statistic of the mean, we use Theorem
2.1 to approximate the distribution of X̄N by a Gaussian distribution. The correctness
of this approximation increases as N increases. This statement about the approximate
distribution of the mean of samples of size N can be given as follows:

X̄N
app∼ N (µ,

σ2

N
). (2.1)

It is important to stress that the approximate normal distribution of the mean X̄N as
stated in (2.1) follows from Theorem 2.1, irrespective of the shape of the distribution
from which the samples X1, X2, . . . are drawn.

Let us assume that we know that our data were drawn from a distribution with
standard deviation σ and that we want to test if the mean µ of this distribution equals
µ0 or not. Then, the null hypothesis reads.

H0 : µ− µ0 = 0,

and the alternative hypothesis is

H1 : µ− µ0 ̸= 0.

For concreteness, let us use an example from [Coh95] where we know σ = 50, and we
want to test if the expected value of the data generating distribution is µ0 = 25. To test
this hypothesis, we sample 100 observations from which we estimate a mean x̄12 of 15,
yielding a Z-score13 of

Z =
√
N
x̄− µ0

σ
=

√
100

15− 25

50
= −2.

Let us further assume that we want to control the Type I error14 at α = .0515. Figure 2.1

12In this case, x̄ serves as an estimator for µ. The law of large numbers justifies this usage. Some authors
use the symbol µ̂N instead of x̄N to stress this point.

13According to our definition of test statistic, following [LM12], both x̄ and Z qualify as test statistics.
14Type I error means that we decide to reject the null hypothesis based on our test, but the null

hypothesis is the correct model.
15This means that given the null hypothesis is correct, we want to set the probability that our test

makes a Type I error at 5%. If the null hypothesis contains more than one alternative, then α bounds
the supremum of the probability that our test makes a Type I error of more than 5%. The ability
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Figure 2.1: Critical region of two-tailed Z-test.

shows the shape of a standard normal distribution, which is the approximate distribution
of our test static under the null hypothesis. Based on the nature of our hypothesis pair
and our choice of α, we can partition the range of our test statistic into two regions. One is
called the acceptance region, which comprises all observable test statistic values deemed
compatible with the null hypothesis. The second region is called the rejection region. This
region is the set of all the test statistic’s observable values deemed incompatible with
the null hypothesis. When we observe a value in this set, we reject the null hypothesis
in favor of the alternative. The rejection region is constituted by the distribution’s tails,
which for our test is (−∞,−1.96] ∪ [1.96,∞). In our case, the observed value Z = −2 is
in the rejection region, so we know that obtaining this result by chance under H0 is less
than 5%. Thus, we reject H0 at an α = 0.05 level and call the difference between x̄ and
µ0 statistically significant.

A hypothesis test like the previous is called a two-sided test because the alternative
hypothesis encompasses both possibilities µ < µ0 and µ > µ0. If it only contains one
of these, the corresponding test is one-sided. Let us stay in the setting of the previous
example, but now we are interested in testing whether µ is less than µ0. The corresponding
hypotheses pair reads:

to control the Type I error probability at a nominal rate is one of the most essential properties of a
statistical significance test.
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Figure 2.2: Critical region of left-tailed Z-test.

H0: µ ≥ µ0

H1: µ < µ0

The test statistic is identical to the two-sided test, but the rejection region differs. As
shown in Figure 2.2, we can put the total mass of α in the left tail instead of splitting it
for a two-sided test. Thus our rejection region now is (−∞,−1.64]. Again, the observed
value Z = −2 is in the rejection region, and we, therefore, decide to reject the null
hypothesis and assume the alternative to be correct.

Discussion. The reasoning behind the z-test is similar to any parametric significance
test. The pivotal problem is to derive the sampling distribution for the given test statistic.
In the case of sum-based test statistics and large enough sample sizes, the Central
Limit Theorem can be applied to approximate the sampling distribution by a normal
distribution. Thus, for NLP and data science applications where the standard evaluation
metric is based on a mean of sample evaluations, the family of approximate z-tests allows
us to test the statistical significance of result differences between performance evaluation
of machine learning models.

One problem of applying the classical Central Limit Theorem to NLP applications is

16
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the assumption of independence of the samples for which the test statistic is calculated.
This assumption is often violated in NLP if test sets consist of sentences of the same
document.16

Another problem is the precise understanding of the phrase "mean of samples" that
defines the test statistic in the Central Limit Theorem. This term applies to test statistics
in NLP and data science that are calculated as means of evaluation scores that have been
computed separately for each sentence in a test set. Examples are accuracy scores or the
TER score [Sno+06] that we used to evaluate machine translation systems in Chapter 3.
Generally, any evaluation score computed as an average over sentence-level evaluation
scores qualifies as a "mean" test statistic to which the Central Limit Theorem applies.
Thus, no matter the distribution of the sentence-wise evaluation score, a significance test
like the z-test will be applicable to the test statistic of the mean of sentence-wise scores
over the test set.

The story is different for corpus-wise evaluation measures such as BLEU [Pap+02] that
are computed on a corpus level, i.e., by accumulating all statistics for n-gram precision
and brevity penalty over the whole test set and then combining these statistics in a
nonlinear way. Similarly, corpus-level versions of precision, recall, or F1-score, where
statistics on true positives, false positives, and false negatives are accumulated over the
test items and then pro-rated, are nonlinear combinations of test statistics. Thus, even if
the elementary statistics of n-gram counts, true positives, or false positives are normally
distributed because they are sums over test set items, their non-mean-like aggregation at
the corpus level does not follow a normal distribution in general and has to be established
for the specifc case.

To summarize, since many standard performance evaluation measures in NLP and
data science do not qualify as "mean of samples," techniques for statistical significance
testing will be needed that can establish sampling distributions for test statistics without
explicit reference to the Central Limit Theorem.17 We will describe two such hypothesis
tests in the next section.

16The problem of clustered test samples is to be distinguished for another type of independence violation
discussed in [Yeh00]. These concern positive correlations between pairs of systems, e.g., a baseline
and a refined system, for which the significance of result differences is to be assessed. [Yeh00] suggests
tests for matched pairs as a remedy. The model-based significance test discussed in the following can
be seen as an instance of a matched-pair test.

17The problem of corpus-level measures versus sentence-level measures often leads to confusion in
attempts to match evaluation metrics to significance tests. For example, in the matching table of
Chapter 3 of [Dro+20], only sentence-level test statistics can be matched to parametric tests like the
t-test. However, this assumption is not made explicit.
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2.1.1 (Re-)Sampling-Based Significance Tests I: Bootstrapping

Bootstrap resampling has become a prevalent technique for statistical significance testing
in NLP and data science due to its ability to construct sampling distributions for virtually
any test statistic, without knowing its actual sampling distribution and without making
assumptions about the parametric distribution of the population. It has been developed
in biostatistics [ET93] and has quickly been adopted in the machine learning community
[HTF08]. In the following, we will restrict our attention to nonparametric bootstrap
resampling and refer to this technique with the shorthand "the bootstrap".

The principle of the nonparametric bootstrap is to replace the unknown CDF of the
data-generating process with an empirical estimator based on the sample. And then,
use this estimator to draw bootstrap samples to generate a sampling distribution of
the test statistic. Repeated sampling (with replacement) from the sample itself is a
computationally efficient implementation of this idea. In the following, we will consider
bootstrap methods for the test statistic of the difference in corpus-level performance
evaluation scores SA − SB on a test set for machine learning models A and B. The
null hypothesis is that the scores of systems A and B are random samples from the
same distribution. First, the actual test statistic is computed on the test data. Next, the
sample mean of the test statistic is calculated on the bootstrapped data, i.e., the test
statistic is computed on bootstrap samples of equal size to the test set and averaged over
bootstrap samples. To compute the sampling distribution of the test statistic under the
null hypothesis, we employ the “shift” method described in [Nor89]. Here it is assumed that
the sampling distribution of the null hypothesis and the bootstrap sampling distribution
have the same shape but a different location. The location of the bootstrap sampling
distribution is shifted so that it is centered according to the null hypothesis. This is
achieved by subtracting the expected value of the score difference, estimated by the
sample mean of the test statistic on the bootstrap samples, from each value. Then,
a p-value is computed directly from the percentage of trials where the (shifted) test
statistic is greater than or equal to the actual statistic. Thus we directly calculate the
probability of obtaining a sample result under the null hypothesis as extreme or more
extreme than the score difference observed on the original test set. Following standard
practice in statistical significance testing, assessing statistical significance at a given α

level is common if the p-value is less than or equal to α. However, it is considered good
practice to report p-values directly and treat them as the smallest α at which statistical
significance can be assessed [McS+19].

Pseudocode sketching of a two-sided bootstrap significance test for evaluation score
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differences is given below:

Algorithm 2.1 (Bootstrap Test)

Given test set outputs (A0, B0) = (ai, bi)
N
i=1, where ai is the output

of system A, and bi is the output of system B, on test instance i.

Compute score difference ∆S0 = S(A0)− S(B0) on test data.

For k = 1, . . . , K:
Generate bootstrap dataset Sk = (Ak, Bk) by sampling N examples
from (ai, bi)

N
i=1 with replacement.

Compute score difference ∆Sk = S(Ak)− S(Bk) on bootstrap data.
Compute ∆Sk =

1
K

∑K
k=1∆Sk.

Set c = 0.
For k = 1, . . . , K:

If |∆Sk −∆Sk| ≥ |∆S0|
c++

p = c/K.

Reject null hypothesis if p is less than or equal to specified rejection level α.

Discussion. The key assumption of the bootstrap can be described formally with
[Can+06] as the bootstrap substitution principle. This principle states that an approxi-
mation of a probability distribution of the quantity u(Y, F ), where Y = (Y1, Y2, . . . , YN)

is randomly sampled from F , can be constructed by replacing F by a resampling model
F̂ from which samples Y ∗ are drawn such that.

P{u(Y, F ) ≤ u|F} ≈ P{u(Y ∗, F̂ ) ≤ u|F̂}. (2.2)

A standard nonparametric resampling model is the empirical distribution function F̃ ,
which estimates the distribution F by assigning probability 1/N to each sample Yi, i =
1, . . . , N . The sample’s representativeness fundamental to the bootstrap is measured by
the size of the approximation error in the bootstrap substitution principle as the sample
size N goes to infinity called bootstrap consistency in [Can+06]. Bootstrap methods can
be inconsistent if the left-hand side and the right-hand side of the bootstrap substitution
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equation (2.2) do not converge to the same value, no matter how large the sample size is.
[BBK12] have shown that p-values computed on bootstrap samples from one test set may
not indicate actual result differences on another test set if there is a significant domain
shift between both test sets. This extreme inconsistency is a problem for any inference
procedure. However, bootstrap inconsistency can result from complex interactions of
resampling schemes, test statistics, and data distributions. [Can+06] describes diagnostics
for various bootstrap inconsistencies usually ignored in NLP and data science applications.

In contrast to our goal of incorporating randomness due to meta-parameters or test
data into significance testing, bootstrap tests are usually applied to a single test set on
which a pair of selected systems is to be compared. [Sel+21] presented a so-called "multi-
bootstrap" technique that resamples both from random seeds and test set instances
to estimate the significance of the result difference between the average performance
evaluation scores of two systems. In this setup, the more powerful and, thus, the preferred
paired design is only possible if random seeds are identical for compared systems, e.g.,
in fine-tuning setups. The unpaired design is more flexible. However, it suffers the usual
loss in power since it has to assume zero covariance between the performance evaluation
scores of the compared systems.18

2.1.2 (Re-)Sampling-Based Significance Tests II: Permutation

The permutation test, known as the (approximate) randomization test, dates back to
[Fis35]. Similar to the bootstrap test, it is based on random sampling. However, it does
not assume the representativeness of the test sample, which can be problematic in NLP
data. Instead, it directly tests the weak assumption that two machine learning systems
are related without, in fact, assuming the population distribution of the evaluation scores
either.

The null hypothesis of the permutation test is that systems A and B are identical.
Thus, under the null hypothesis, outputs for the same input are exchangeable, i.e., any
output produced by one of the systems on a test sentence could have been created just
as likely by the other system. So shuffling the sentence-wise outputs between the two
systems with equal probability, and recomputing the test statistic, allows approximating
a p-value by computing the percentage of trials where the test statistic computed on the
shuffled data is greater than or equal to the test statistic calculated on the test data.

For a test set of N sentences, there are 2N different ways to shuffle the sentence-wise

18See, for example, the discussion of the two-sample t-test versus the paired sample t-test in [Coh95].
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outputs between the two systems. If all permutations are considered, the randomization
test is exact. Approximate randomization produces a subset of all possible shuffles;
however, the more shuffles are evaluated, the better the approximation of the p-value.
Again, it is considered good practice to report p-values directly instead of just assessing
statistical significance at a given α-level [McS+19].

A sketch of an algorithm for a two-sided approximate randomization test for the
significance of performance score differences is given below:

Algorithm 2.2 (Permutation Test)

Given test set outputs (A0, B0) = (ai, bi)
N
i=1, where the first element

in the ordered pair (ai, bi) is the output of system A, and the second
element is the output of system B, on test instance i.

Compute score difference ∆S0 = S(A0)− S(B0) on test data.

Set c = 0.

For r = 1, . . . , R:
Compute shuffled outputs (Ar, Br) where for each i = 1, . . . , N :

swap(ai, bi) =

{
(ai, bi) with probability 0.5,

(bi, ai) with probability 0.5.

Compute score difference ∆Sr = S(Ar)− S(Br) on shuffled data.
If |∆Sr| ≥ |∆S0|
c++

p = c/R.

Reject null hypothesis if p is less than or equal to specified rejection level α.

Discussion. The permutation test rests on the simple and powerful principle of stratified
shuffling19 [Nor89], which allows generating the sampling distribution by shuffling outputs
between the two systems within blocking strata 20. Based on this principle, the inventors

19The crucial assumption behind any permutation test is that the observations are exchangeable under
the null hypothesis.

20Along randomization and replication, blocking is on of the most elementary principles of experimental
design [Mon17]. It encompasses all design techniques aiming to improve the precision of fixed
effects comparisons by eliminating the variability transmitted form nuisance factors; that is factors
that influence the experimental response but in which the experimenter is not directly interested.
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of the bootstrap rate the permutation test as follows:

When there is something to permute, [...] it is a good idea to do so, even if
other methods like the bootstrap are also brought to bear. [ET93]

This statement showcases both the advantages and disadvantages of the permutation test.
Strata for shuffling outputs between the two systems must be identified to generate null-
hypothesis conditions. Strata are given naturally in NLP test sets where each sentence
corresponds to a stratum. Outputs can be sentence-wise evaluation scores or count
statistics that are accumulated over the whole test corpus, for example, sentence-level
TER [Sno+06] or sentence-level n-gram counts in BLEU [Pap+02], respectively. Suppose
the goal is to compare two machine learning systems on the same sentences of a test set.
In that case, a permutation test is easily implemented, allowing a powerful (i.e., high
probability of rejecting H0 when it is false) assessment of statistical significance. The
latter has been shown formally by comparing permutation and parametric tests for large
samples [Hoe52].

To sum up, the permutation test is the method of choice if the only goal is to assess
the statistical significance of a difference in evaluation scores between two instances
on the same test set. However, to apply a permutation test described above, a meta-
parameter configuration for each algorithm and a test set must be fixed. An extension
of the permutation principle to a k-sample test that incorporates blocking –and thus
facilitating the simultaneous analysis of several algorithm instances– can be constructed
based on the theory presented by [SW99], which is implemented in [Hot+08]. Independent
of this work [Cla+11] suggested an ad-hoc procedure that permutes within a block without
any theoretical justification. These methods are appropriate for an overall comparison
but cannot facilitate a fine-grained analysis considering data properties.

A more flexible framework for statistical significance testing that allows multiple com-
parisons without increased Type I error, and enables elegant incorporation of variability
due to optimization and test data, is the model-based approach to significance testing.
We will describe this technique in section (2.2).

Typical comparison techniques based on blocking are the paired t-test [Mon17] or the approximate
randomization test [RM05].
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2.1.3 Excursion: Multiple Comparisons and Elementary Post-hoc

Procedures

The theory of multiple testing, or multiple comparisons as it is sometimes called, is
concerned with the problem of testing m > 1 hypotheses in a sample simultaneously.
To formalize the problem let us consider the situation where m tests are performed
for a given sample X with corresponding pairs of null hypothesis H(j)

0 and alternative
hypothesis H(j)

A for j = 1, . . . ,m. Let m0 ≤ m denote the number of tests for which the
null hypothesis is correct. Further, let the test decisions for each of the m tests be based on
the corresponding test statistic T1 (X) , T2 (X) , . . . , Tj (X) , . . . , Tm (X) . Statistical tests
are constructed so that the null and the alternative hypothesis are mutually exclusive.
Consequently, a statistical test can yield one of the following four possible results:

1. H0 is true and the test accepts H0.

2. H0 is true but the test rejects H0 (this is called a Type I error).

3. HA is true but the test accepts H0 (this is called a Type II error).

4. HA is true and the test rejects H0.

Table 2.1 provides the standard notation to summarize the outcome of m test results.
In this table, V denotes the number of Type I errors that have happened, and T is
the number of Type II errors. Naturally, we would like both numbers to be as small as
possible. Still, unfortunately, this optimal situation is not achievable with a finite sample
size because the probability of a Type I error and the probability of a Type II error are
antagonistically related for a statistical test. In concreto, a low Type I error probability
necessarily leads to an increased Type II error probability and vice versa. Usually, the
Type I error probability is fixed at a certain level α ∈ (0, 1) (named the α-level of the
test), and one chooses or constructs a test for a specific situation such that the Type
II error probability is as small as possible, or equivalently that the power of the test
– defined as the probability to reject the null hypothesis when the alternative is true
– is maximized. The essential property of a statistical test is its ability to control the
Type I error probability at α, which means that P (reject H0) ≤ α where P denotes the
probability measure under H0. An important question is how to generalize this property,
the ability to control the probability of a certain misjudgment, to the multiple testing
situation.
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H0 accepted H0 rejected Total

H0 is true U V m0

HA is true T S m−m0

Total m−R R m

Table 2.1: Notation for multiple testing

Many measures have been suggested for this purpose [HT09]. Common generalizations
are the per-family error rate PFER := E [V ], the per-comparison error rate PCER :=
E[V ]
m

and most important the family wise error rate FWER := P (V > 0) which is the
probability to make at least one Type I error within the family of m tests. Unfortunately,
for very large m, controlling the FWER at an acceptable level leads to procedures with
deficient power to detect actual signals in the data, implying that such a procedure will
miss a lot of true signals and therefore have a high probability of generating Type II
errors.

There exists a wide variety of procedures that guarantee control of FWER in different
multiple testing situations. I limit my exposition to the most popular method, namely
the Bonferroni correction [Bon35] and one of its variants, the Bonferroni-Holm step-up
procedure [Hol79].

Let us first define the event Bj :=
{

H(j)
0 rejected

}
. For the corresponding test statis-

tic Tj and an associated critical value Tcrit,αj
an equivalent characterization is Bj ={

Tj ≥ Tcrit,αj

}
. By definition, the critical value for a test statistic is chosen such that

P (Bj) = αj where αj is the α-level of the jth-test. Without loss of generality, we as-
sume that the hypotheses are ordered so that the null hypothesis is true for the first m0

hypotheses. Thus, we can write.

FWER = P (V > 0) = P

(
m0⋃
j=1

Bj

)
.

It follows from the sub-additivity of the probability measure that.

FWER ≤
m0∑
j=1

P (Bj) =

m0∑
j=1

αj ≤
m∑
j=1

αj.

Therefore, whenever
∑m

j=1 αj is bounded by some α ∈ (0, 1) then the FWER for the m
simultaneous tests is also bounded by α. The Bonferroni procedure exploits this fact. The
Bonferroni correction suggests to choose the individual αj ∈ (0, 1) such that

∑m
j=1 αj = α

24



2.2 Model-Based Algorithm Comparison: Toolbox

for some predefined α ∈ (0, 1) and reject H(j)
0 whenever pj := P (Tj ≥ tj,obs) ≤ αj where

tj,obs is the observed test statistic for test j. The standard choice is αj =
α
m

.
We have seen that the argument behind the Bonferroni correction makes no use of

the actual distribution of (T1, T2, . . . , Tm). Therefore this procedure has the favorable
property that guarantees FWER control for all possible joint distributions of the test
statistics. Still, on the other hand, the actual FWER may be much smaller than the
nominal α. For instance, when m0 ≪ m or the test statistics are positively correlated.
A multiple testing procedure with this property is called conservative. This property is
typically associated with reduced power to detect valid signals in the data.

An improvement (in terms of a power gain) of the Bonferroni correction is the
Bonferroni-Holm procedure, which results from applying the closed testing principle
[MEG76]. Let p[1] ≤ p[2] ≤ · · · ≤ p[j] ≤ · · · ≤ p[m] be the ordered sequence of p-values
obtained by the m individual tests and H[j]

0 the corresponding sequence of null hypotheses.
Let k be the smallest index j such that p > α

m+1−j
. Then the Bonferroni-Holm procedure

rejects all m hypotheses if no such k exists and rejects all H[j]
0 with j < k otherwise.

In contrast to the Bonferroni adjustment, the acceptance or rejection of a particular
hypothesis H(j)

0 depends on the value of all other test statistics Ti for i ≠ j. The benefit
of this is an enlarged rejection region and, thus, an increased power compared to the
Bonferroni adjustment.

The Bonferroni-Holm procedure is an example of a so-called step-down procedure. Step-
wise procedures are characterized by making test decisions based on an ordered sequence
of p-values. Step-down procedures start from the smallest one, each time checking if a
condition is satisfied and stopping the first time this condition is met. Then all null
hypotheses with a smaller index than the stopping index are rejected.

2.2 Model-Based Algorithm Comparison: Toolbox

The central concept of model-based significance testing is to express the hypotheses under
investigation by the parameters of the evaluation data probability distribution. We will
use LMEMs to describe this distribution and the test-data-based parameter estimates
to conduct inference. The test of choice in this paradigm is the generalized likelihood
ratio test dating back to principles formulated by [NP33]. We will follow the exposition
in [Vaa98].
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Linear Mixed Effects Models: General Form of Model

A linear mixed effects model (LMEM) is an extension of a standard linear model that
allows a rich linear structure in the random component of the model, where effects other
than those that can be observed exhaustively (so-called fixed effects) are treated as
a random sample from a larger population of normally distributed random variables
(so-called random effects).

Given a dataset of N input-output pairs {(xn, yn)}Nn=1, the general form of an LMEM
is

Y = Xβ + Zb+ ϵ,

Where X is an (N × k)-matrix and Z is an (N ×m)-matrix, called model- or design-
matrices (both are known), which relate the unobserved vectors β and b to Y. β is a
k-vector of fixed effects and b is an m-dimensional random vector called the random
effects vector. ϵ is an N -dimensional vector called the error component. The random
vectors are assumed to have the following distributions:

b ∼ N (0, ψθ),

ϵ ∼ N (0,Λθ),

where ψθ and Λθ are covariance matrices parameterized by the vector θ.
The definition of an LMEM implies a definition of the distribution of the data vector

Y. In the context of the LMEM theory, we consider three important distributions, the
first of which is the distribution of Y|b. When we fix b, the only random component left
is ϵ. Thus the conditional distribution of Y given b is

Y|b ∼ N (Xβ + Zb,Λθ).

This distribution is the basis for deriving the so-called mixed model equations or
Henderson equations which provide estimators for the unknown quantities β and b.

The second distribution of importance is the unconditional distribution of Y. We
defined Y as a linear mapping of the independent zero-mean Gaussian variables b and ϵ.
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Thus Y is also a Gaussian with expected value Xβ. Since the variance 21 can be written
as V(Zb) = ZψθZ

⊤, we get

Y ∼ N (Xβ,ZψθZ
⊤ +Λθ).

Note that b doesn’t occur in this distribution. Instead, random effects enter the distri-
bution only via the covariance matrix ZψθZ

⊤. This fact reveals one of the main usages
of mixed models: the convenient modeling of complex covariance structures when the
data were not generated in the usual i.i.d. sampling fashion.

We derive the joint distribution of b and Y to complete our enumeration of important
distributions. For this purpose, we stack b and Y together in a vector. Because both
variables are multivariate Gaussians, the resulting vector is also a multivariate Gaussian,
where the expected values and the block diagonal parts of the covariance matrix are
inherited from b and Y. Note that the covariance 22 of b and Y is Cov(b,Y) = ψθZ

⊤

and let V = ZψθZ
⊤ +Λθ, then

[
b

Y

]
∼ N (

[
0

Xβ

]
,

[
ψθ ψθZ

⊤

Zψθ V

]
).

Finally, let us say some words on the usage of LMEMs. As mentioned, the most common
application of LMEMs is to model complex covariance structures in the data when the
usual i.i.d. assumptions fail to apply. Typical use cases are repeated or grouped, and
thus non-independent, measurements. In this case, LMEMs provide a neat means to
provide correct statistical inference about fixed effects (usually of primary interest to the
analyst). Like other linear models, they can also predict outcomes when the covariates
are known. This prediction can be based on the unconditional distribution of Y or,
when random effects are known, on the conditional distribution Y|b. Predictions based
on the latter are usually associated with a smaller prediction uncertainty (via different
covariance matrices). Furthermore, like Bayesian or other generative models, LMEMs can
generate synthetic data. A special case of LMEMs are models where X = 0 and which

21V(Y) = E((Y − E(Y))(Y − E(Y))⊤) = E((Xβ + Zb+ ϵ −Xβ)(Xβ + Zb+ ϵ −Xβ)⊤)= E((Zb+
ϵ)(b⊤Z⊤ + ϵ⊤)) = E(Zbb⊤Z⊤ + ϵb⊤Z⊤ + ϵϵT +Zbϵ⊤)= ZE(bb⊤)Z⊤ + E(ϵ)E(b⊤)Z⊤ + E(ϵϵT ) +
ZE(b)E(ϵ⊤) = Z V(b)Z⊤ + V(ϵ) = ZψθZ

⊤ +Λθ.
22Cov(b,Y) = E((b− E(b))(Y − E(Y))⊤) = E(b(Zb+ ϵ)⊤) = E(b(b⊤Z⊤ + ϵ⊤))

= E(bb⊤Z⊤ + bϵ⊤) = E(bb⊤)Z⊤ + E(b)E(ϵ⊤) = V(b)Z⊤ = ψθZ
⊤.
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therefore do not contain fixed effects. These models are called random effect models or
variance component models. Their purpose is to partition the total observed variance of
the outcome according to different sources. One application of these models is reliability
studies.

2.2.1 Linear Mixed Effects Models: Specification Example

Let us illustrate an actual LMEM specification for analyzing the data in the hypothetical
"lexical decision" experiment of [Bar+13]. The resulting model is far more complex than
the models needed for algorithm comparison. Nevertheless, this example is illustrative
and will show the inclined reader how to specify complex LMEMs in detail. In this
experiment, four strings of characters were presented to four human subjects who had
to decide whether or not the string formed an English word. The time from stimulus
presentation to subject response (henceforth response time) was measured. The strings
belong to two categories which are assumed to impact the response time. For simplicity,
we assume that strings 1 and 2 belong to Category A and 3 and 4 to Category B. The
experiment was carried out to test this assumption.

To analyze these data, one has to build a statistical model incorporating the variables
of interest. The most basic model we could start with is

ysi = β0 + β1xi + ϵsi,

where ysi denotes the response time of subject s for character string i, xi encodes the
category of character string i (where 0 represents category A and 1 category B), and
ϵsi

iid∼ N (0, σ2
error) is a random error component. The parameter β0 is called the intercept.

A simple calculation shows that β0 = E[Y |xi = 0] is the expected response time for items
of category A. The parameter β1 is called slope, and again a similar calculation shows
that β1 = E[Y |xi = 1] − E[Y |xi = 0]. It represents a measure of the difference of the
expected response time for strings of category B versus strings of category A and thus is
the main quantity of interest for the analysis of this experiment.

As Barr points out, this model can not be a correct representation of the data-generating
mechanism of our experiment. A careful reading of the model definition reveals that we
have assumed an error component independent of the measurements, implying that the
observations yi are independent. The experimental setup violates this implication because
we take repeated measures from subjects and strings. Furthermore, the actual subjects
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and strings used in our experiment are just samples from larger populations, and we are
not interested in obtaining a fixed effect-like estimate for the expected response time of
subject s or item i (nor is it possible to do so with the data collected in this experiment).
But we can account for the repeated measurements by incorporating appropriate random
effects to model the covariance between measures. To specify the structure of the random
effects, Barr argues that it is reasonable to assume individual differences exist between
subjects when processing strings from categories A and B and that these differences can
be different for both categories. He also argues that some strings can be processed faster
than others. Therefore, he proposes the following model.

ysi = β0 + bsubjects + bitemi + (β1 + bslopes )xi + ϵsi,

Where the symbols used in the simpler model retain their meaning, and bsubjects is
a random variable that represents the distinctive deviation of subject s from β0 (the
overall expected response time for strings of category B), and bitemi represent item specific
deviations from this expectation. Therefore, these two random variables modify the
model’s intercept and are called random intercepts in the mixed models literature. The
random variable bslopes is the subject-specific deviation from the global slope β1 and is
called a random slope. All the b are random variables, so we must specify a distribution.
Let bsi := (bsubjects , bslopes , bitemi )⊤, then following Barr, we define

bsi
iid∼ N (0,

 σ2
subject σsubject, slope 0

σsubject, slope σ2
slope 0

0 0 σ2
item

),
Where σ2

subject, σ2
slope, and σ2

item are the respective variances of the random variables,
and σsubject, slope denotes the covariance of the two random effects for each subject.

Let us proceed to write the complete model for the experimental data so that we can
see how X, Z, Λθ, ψθ and θ look like. Let us start by stacking the four model equations
for a subject s together.
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ys1

ys2

ys3

ys4


︸ ︷︷ ︸

ys

=


1 0

1 0

1 1

1 1


︸ ︷︷ ︸

F

[
β0

β1

]
+


1 0 1 0 0 0

1 0 0 1 0 0

1 1 0 0 1 0

︸︷︷︸
S

1 1 ︸ ︷︷ ︸
I

0 0 0 1





bsubjects

bslopes

bitem1

bitem2

bitem3

bitem4


+


ϵs1

ϵs2

ϵs3

ϵs4


︸ ︷︷ ︸

ϵs

.

The matrix F encodes the presence or absence of the fixed effects β0 and β1 in the
equations. Its first column corresponds to the intercept, which is present in all four
equations, and thus it contains only 1s. The second column is associated with the slope,
which is only present when the items belong to category B. The second term on the
right-hand side represents the random effects. The first two random effects bsubjects and
bslopes are subject-specific, and their presence in the model equations is given by S. Recall
that bsubjects is a random intercept and bslopes a random slope, specific for subject s. The
second block of random effects concerns the items. Each equation belongs to one item.
Thus each has a unique item-specific random intercept which is ensured by the diagonal
matrix I.

We have to put the four blocks for each subject together for the final model.


y1

y2

y3

y4


︸ ︷︷ ︸

Y

=


F

F

F

F


︸︷︷︸

X

[
β0

β1

]
︸ ︷︷ ︸

β

+


S 0 0 0 I

0 S 0 0 I

0 0 S 0 I

0 0 0 S I


︸ ︷︷ ︸

Z



bsubject1

bslope1

bsubject2

bslope2

bsubject3

bslope3

bsubject4

bslope4

bitem1

bitem2

bitem3

bitem4


︸ ︷︷ ︸

b

+


ϵ1

ϵ2

ϵ3

ϵ4


︸ ︷︷ ︸

ϵ

.

Because every subject has to respond to every item, the final fixed effect design matrix
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X is simply a stack of four F matrices. For the random effects, we have to ensure that
each subject receives its intercept and slope parameter. Therefore, we have to extend
the vector b and impose a block diagonal structure for the subject-dependent random
effects in the random effects design matrix. To finalize the design matrix for the random
effects Z, we must extend each block row with a diagonal matrix I.

We must specify the covariance matrix for the random effects ψθ and the error compo-
nent Λθ to complete the model. When we look at b, we see that it is composed of four
subject-specific blocks, each with a covariance matrix

Σθ
subject :=

[
σ2
subject σsubject, slope

σsubject, slope σ2
slope

]
),

And one block for the items. By design of the experiment, the items are generated (or
drawn in probabilistic parlance) independently. For the multivariate normal distribution,
the independence of components is equivalent to zero covariance between the components.
Thus the covariance matrix for the item block of b looks like

Σθ
item :=


σ2
item 0 0 0

0 σ2
item 0 0

0 0 σ2
item 0

0 0 0 σ2
item

 .

By design of the experiment, the subjects are also independent of each other. Thus,
we can stack the individual covariance matrices together in a block diagonal fashion.

ψθ =


Σθ

subject 0 0 0 0

0 Σθ
subject 0 0 0

0 0 Σθ
subject 0 0

0 0 0 Σθ
subject 0

0 0 0 0 Σθ
item


as the covariance matrix for b. The last model component we must specify is the

covariance matrix for ϵ. Recall that we had to introduce random effects in the model to
ensure independence between observations so that we can now make an i.i.d. assumption
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for ϵsi. Consequently, the covariance matrix for the error component is

Λθ = σ2
error


1 0 . . . 0

0 1 . . . 0
...

... . . . ...
0 0 . . . 1

 .

A final look at all the covariance matrices shows us that they are determined by the
four terms σ2

error, σ2
subject, σ2

slope, σ2
item and σsubject, slope. Putting them together in a single

parameter vector θ = (σ2
error, σ

2
subject, σ

2
slope, σ

2
item, σsubject, slope)

⊤ finalizes our description.

2.2.2 Linear Mixed Effects Models: Fitting a Model to Data

(Parameter Optimization)

In principle, there are two ways to calculate maximum likelihood estimators for an LMEM.
First, we present a conceptually simple approach based on the distribution p(Y|β, θ).
Let us assume that θ is known, so that V = ZψθZ

⊤ +Λθ is known, then

p(Y|β, θ) = 1√
|V|(2π)N

exp(−1

2
(Y −Xβ)⊤V−1(Y −Xβ)).

The maximum likelihood estimator is found by optimizing the log-likelihood objective
(terms and factors not involving β are dropped)

ℓ(β) = −1

2
(Y −Xβ)⊤V−1(Y −Xβ).

This is a simple convex optimization problem with the solution.

β̂ = (X⊤V−1X)−1X⊤V−1Y.

If we want to obtain estimates (also called predictions) for the random effects, we
estimate Eb|Y=y[b]. Recall that the joint distribution of b and Y is
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[
b

Y

]
∼ N (

[
0

Xβ

]
,

[
ψθ ψθZ

⊤

Zψθ V

]
),

Which yields for the conditional expectation of b given Y = y, by definition of the
conditional expectation of multivariate Gaussians, the following expression:

Eb|Y=y[b] = (ψθZ
⊤V−1)(Y −Xβ).

Substituting β̂ for β we obtain the following estimator for b:

b̂ = (ψθZ
⊤V−1)(Y −Xβ̂).

The estimated values obtained via the approach above are identical to the estimates
of a more complex estimator called the Henderson equations (or mixed model equations,
see [Hen+59]). They are based on the distribution p(Y|b,β, θ) and allow estimating
β and b simultaneously, and assume in general that θ is unknown. The advantage of
the Henderson equations is that they allow a computationally more efficient estimation
since only the inversion of matrices of much smaller dimensions than V is required. In
general, when θ is unknown, it needs to be replaced by an estimator. There are a variety
of different techniques to do so, and the inclined reader is referred to [PB00; MS01;
WWG07; Dem13; Woo17] for an extensive elaboration of these.

2.2.3 Linear Mixed Effects Models: Statistical Inference

(Likelihood Ratio Statistic)

Score Function and Fisher Information

A key concept for likelihood-based statistics is the score function. Let Y be a random
variable distributed according to pθ(y), and let ℓ(θ) := log pθ(y). Then the score function
is defined as

S(θ) :=
∂

∂θ
ℓ(θ).
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The maximum likelihood estimator θ̂ is thus the solution to the score equation which
is defined as

S(θ = θ̂) = 0. (2.3)

The Fisher information I(θ) of Y is defined as

I(θ) := Eθ[S(θ)
2] =

∫
S(θ)2pθ(y)dy. (2.4)

Under the mild assumption that the order of integration and differentiation can be
exchanged, I(θ) can be written as the variance of the score function:

I(θ) := Vθ[S(θ)]. (2.5)

The derivation is given by the following calculations:

Eθ [S(θ)] = E
[
∂

∂θ
ℓ(θ)

]
=

∫ [
∂

∂θ
ℓ(θ)

]
pθ(y)dy

=

∫ [
∂

∂θ
log pθ(y)

]
pθ(y)dy

=

∫ [ ∂
∂θ
pθ(y)

pθ(y)

]
pθ(y)dy

=
∂

∂θ

∫
pθ(y)dy

=
∂

∂θ
1 = 0.

The equivalence of equations (2.5) and (2.4) follows since
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Vθ[S(θ)] = Eθ[S(θ)
2]− Eθ[S(θ)]

2

= Eθ[S(θ)
2]− 0.

Given that ℓ(θ) := log pθ(y) is twice differentiable in θ, another useful equivalence of
I(θ) can be shown:

I(θ) = −Eθ[
∂2

∂θ2
ℓ(θ)]. (2.6)

The second derivative of ℓ(θ) is

∂2

∂θ2
ℓ(θ) =

∂2

∂θ2
log pθ(y)

=
pθ(y)

∂2

∂θ2
pθ(y)−

[
∂
∂θ
pθ(y)

]2
[pθ(y)]

2

=
∂2

∂θ2
pθ(y)

pθ(y)
−
[
∂

∂θ
ℓ(θ)

]2
=

∂2

∂θ2
pθ(y)

pθ(y)
− [S(θ)]2 .

Taking expectations and assuming that the order of integration and differentiation can
be exchanged, we see that the first term cancels, and we end up with an equivalence of
equations (2.6) and (2.4):

Eθ

[
∂2

∂θ2
ℓ(θ)

]
=

∫ [
∂2

∂θ2
pθ(y)

]
dy − I(θ)

= 0− I(θ).

Taylor Expansion and Asymptotic Distribution

Assume θ0, θ̂ ∈ R to be scalars indicating our null and alternative hypotheses, respectively.
Furthermore, assume a random variable Y with distribution pθ(y). The likelihood ratio
statistic can then be written as follows:
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W = −2 log Λ = −2 log
pθ0(y)

pθ̂(y)
= 2

(
ℓ(θ̂)− ℓ(θ0)

)
.

The central argument employed in [Wil38] is to replace ℓ(θ0) by its quadratic Taylor
expansion around the maximum likelihood estimator θ̂. Let us first consider the case of
a single observed sample point:

W = 2
(
ℓ(θ̂)− ℓ(θ0)

)
≈ 2

(
ℓ(θ̂)− ℓ(θ̂)− (θ0 − θ̂)

∂

∂θ
ℓ(θ̂)− 1

2
(θ0 − θ̂)2

∂2

∂θ2
ℓ(θ̂)

)
= (θ̂ − θ0)

2 ∂
2

∂θ2
ℓ(θ̂).

The result follows the score equation (2.3). ForN i.i.d observations, ℓ(θ̂N) =
∑N

n=1 ℓyi(θ̂N) :=∑N
n=1 log pθ̂N (yi). Hence, we get the following approximation:

W ≈ (θ̂N − θ0)
2

N∑
n=1

∂2

∂θ2
ℓyi(θ̂N)

=
(√

N(θ̂N − θ0)
)2( 1

N

N∑
n=1

∂2

∂θ2
ℓyi(θ̂N)

)
p−−−→

n→∞

(√
N(θ̂N − θ0)

)2
I(θ0).

The result follows since the empirical Fisher information converges in probability to
the Fisher Information Matrix I(θ0). An application of Theorem 2.2 then lets us state
the asymptotic distribution of the likelihood ratio statistic as follows:

W
app∼ χ2

df=1.

For more information on likelihood-based statistical methods and related asymptotic
results, the reader is referred to [Paw01; Vaa98; Dav03].

36



2.2 Model-Based Algorithm Comparison: Toolbox

The Generalized Likelihood Ratio Test

The hypotheses to be tested in a likelihood ratio test are hypotheses about the parameters
of probability distributions. Suppose we observe a sample Y = (Y1, Y2, . . . , YN) from a
probability distribution pθ, and we wish to test the null hypothesis

H0 : θ ∈ Θ0,

against the alternative hypothesis

H1 : θ ∈ Θ1.

If both hypotheses consist of single points θ0 and θ1, then a most powerful test can be
based on the test statistic of the likelihood ratio.

∏N
i=1 pθ0(Yi)∏N
i=1 pθ1(Yi)

,

by the Neyman-Pearson lemma [NP33].
An extension of the Neyman-Pearson theory replaces single points by the supremum

over a restricted parameter space Θ0 for the null hypothesis and by the supremum over
the whole parameter space Θ = Θ0 ∪ Θ1 for the alternative hypothesis, leading to the
generalized likelihood ratio statistic.

supθ∈Θ0

∏N
i=1 pθ(Yi)

supθ∈Θ
∏N

i=1 pθ(Yi)
=
l0
l1
,

That builds the basis of the generalized likelihood ratio test. [LM12] describe the test
in the following brief form:

Definition 2.1 (Generalized Likelihood Ratio Test (GLRT)).
Reject H0 if the generalized likelihood ratio statistic

λ =
l0
l1
,
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Figure 2.3: p-value based on χ2 distribution.

has a value

0 < λ ≤ λ∗

where λ∗ is chosen such that P (0 < λ ≤ λ∗|H0 is true ) = α for a significance level α.

The null hypothesis of the GLRT is the assumption that the restricted model l0 explains
the data adequately. Since 0 < λ ≤ 1, the intuition behind the test is that values of
λ close to 1 suggest that the restricted model assumed under H0 explains the data as
well as a more complex model assumed under H1. Thus H0 should be accepted for such
values of λ. Conversely, values of λ close to 0 suggest that the data are incompatible
with the parameter values in the restricted model. Thus H0 should be rejected in favor
of H1, which more adequately explains the data.

To determine the critical value λ∗ for a given significance level α, we need to know the
distribution of the test statistic λ. Fortunately, our test statistic is based on maximum
likelihood estimates of parameters of a probability distribution — in our case, we will
employ the parametric family of LMEMs that we already used for reliability assessment
in Chapter 3 — and we can fall back on an asymptotic result similar to the Central Limit
Theorem, this time a theorem showing the asymptotic normality of maximum likelihood
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estimates.23

Theorem 2.2 (Asymptotic Distribution of Maximum Likelihood Estimators).
Let Y = (Y1, Y2, . . . , YN) be sample from a probability distribution pθ, and define the log-
likelihood of the sample as ℓN(θ) = log

∏N
i=1 pθ(Yi). If the maximum likelihood estimator

θ̂ exists as the solution to the equation ∂
∂θ
ℓN(θ) = 0, in addition to second and third

derivatives of ℓN(θ), then the asymptotic distribution of [N · IN(θ)]1/2(θ̂ − θ) is the
standard normal distribution, where IN(θ) = Epθ [(

∂
∂θ
lN(θ))

2] is the Fisher information of
the sample Y about θ.

Similar to the Central Limit Theorem 2.1, we consequently get a statement on the
approximate distribution of θ̂ being the multivariate normal distribution with mean θ

and variance [N · IN(θ)]−1:

θ̂
app∼ N (θ, [N · IN(θ)]−1). (2.7)

Using Theorem 2.2, it can be shown that under the null hypothesis, −2 log λ follows a
χ2 distribution. This result is due to [Wil38]. We present a derivation of the asymptotic
distribution of the likelihood ratio statistic for the simple case of a single random variable
Y and a scalar-valued parameter θ in Appendix 2.2.3.24 In short, the result states that
the random variable W , defined as

W = −2 log Λ = 2 log
l1(Y1, . . . , YN)

l0(Y1, . . . , YN)

app∼ χ2
df=k1−k0

, (2.8)

follows a χ2 distribution with k1 − k0 degrees of freedom if the general model yielding
l1 has k1 parameters and the restricted model yielding l0 has k0 parameters. This allows
us to reject H0 if the observed value w of W is greater than the (1− α)-quantile of the
aforementioned distribution, that is if the p-value

p := PH0(W > w) (2.9)

23Derivations and proofs for variants of the asymptotic argument can be found in [Vaa98], Chapter 7.
24A detailed proof is given in [Vaa98], Chapter 16.
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It is smaller than the rejection level α. The critical region of the χ2 distribution is
illustrated in Figure 2.3. Again, since the p-values can be calculated directly, it is good
practice to report the p-value instead of assessing the statistical significance at a given
α-level [McS+19].

2.3 Model Based Algorithm Comparison: Analyzing

an Example

In this section, I will demonstrate and explain LMEM-based algorithm comparison by
reanalyzing an experiment on interactive machine translation conducted by [KBR20].
This section aims to show how the above-discussed tools and theorems can be combined
to create a powerful (in the statistical sense) method to analyze the complex evaluation
data generated during a machine learning experiment.

In the study above, the researchers wanted to improve the performance of a pre-trained
machine translation system by incorporating human feedback in a reinforcement learn-
ing mechanism. They investigated two modes of correction. The first mode is called
"Marking". In this mode, the annotators mark the wrong words. The feedback is incor-
porated into the objective function to maximize the objective when the probability of
the translated sequence’s correct (non-marked) tokens is increased and decreased for the
incorrect (marked) tokens. The second mode is called "Post Edit". In this mode, the
annotators corrected the translations. The updated translation is then used as a new
gold standard translation, and the system is trained using these new gold standards. The
quality of machine-translated sentences was obtained by calculating TER, BLEU, and
METEOR scores relative to the original gold standard translation. To avoid redundancy,
we limit our showcase to TER evaluation. The fine-tuning process was replicated using
three different initial random seeds –but keeping all other meta-parameters equal as it
is standard for fine-tuning– for Marking and PostEdit feedback signals.

The apparent research question is, "Which feedback method improves over the baseline?
If so, which shows the largest gain?". To answer these questions, Kreutzer et al. collected
evaluation data by applying the baseline and the models fine-tuned25 on marking and
post-edit feedback on 1,041 test sentences.26.
25In their original paper, Kreuter et al. considered only the best models based on a descriptive ranking

based on the development set estimates of the out-of-sample risk for each fine-tuning method for
evaluation. But for the analysis presented in this section, we consider the evaluation data for all
seven models.

26Note that two of the 1,043 test sentences reported in [KBR20] were duplicates that we removed in
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Figure 2.4: Median TER scores for baseline and machine translation systems fine-tuned
on markings or post-edits.

Let us first look at the TER evaluation score in a boxplot shown in Figure 2.4.
The horizontal line in the middle of the box marks the median value of the data

points in the specific group. The box indicates the range where the middle 50% of the
data points are located. The vertical lines are called whiskers and identify observations
with unusually large or small values in the data set (so-called outliers), represented by
point-like symbols below or above the whisker. Figure 2.4 shows that the shape of the
box plot is somewhat similar for all three systems, with the boxplots for "Marking" and
"PostEdit" being located slightly below the "Baseline" boxplot, meaning that by central
tendency, both feedback methods yield slightly improved translation quality.

Let us first analyze the statistical significance of the observed evaluation results. Since
each of the fine-tuning models was trained three times with different random seeds, in a
first approach following [Hot+05], we average the TER scores for the models trained on
human annotations and assess the statistical significance of the average result differences
to the baseline results. The averaged data then can be modeled by an LMEM that equals

our LMEM experiments.
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a standard linear model as in (2.10) fitted to the sentence-wise averaged27 evaluation
data. I will use this discussion to illustrate the following aspects of model-based analysis:

• Explain the fixed effect structure and show how the categorical variable algorithm
is encoded in the analysis model.

• Show the mathematical meaning and the interpretation of the model parameters
associated with the fixed effects.

• Illustrate the nested models setup and the application of GLRT for an omnibus
algorithm comparison.

Before we specify the model that allows us to analyze the evaluation data, let us first
fix some basic ideas about it. Firstly, we assume that the valuation data is a sample
obtained by querying an abstract probabilistic process. This process is a mixture of
three potentially different TER score distributions, one for each algorithm. The following
model expresses this simple idea:

TER = β0 + βmarking · I{marking} (System) + βpostEdit · I{postEdit} (System)︸ ︷︷ ︸
fixed effects

+ ϵ︸︷︷︸
error

(2.10)

where ϵ ∼ N (0, σ2) and I{condition} (variable) is an indicator function that returns one
if variable meets the condition and zero else. For a better understanding and a proper
interpretation of the model and its parameters, let us consider the expected value of TER
based on this model:

E [TER|Algorithm] = β0 + βmarking · I{marking} (System) + βpostEdit · I{postEdit} (System)

We see that the expected value of TER is equivalent to the fixed effect part of the
model, which is a function depending on the value of Algorithm and the weights β0,
βmarking and βpostEdit. Thus conditional on the value of Algorithm, the model returns
different values for the expected value of TER. Let E [TER|Algorithm = a] denotes the
expected value of TER for algorithm a. Let Algorithm = baseline than

E [TER|baseline] = β0.

27The average is calculated for each sentence within each system.

42



2.3 Model Based Algorithm Comparison: Analyzing an Example

Thus β0 (the model intercept) represents the baseline algorithm’s expected TER score.
Hence the estimator β̂0 is an estimator of the expected out-of-sample TER score of the
baseline algorithm. Now that we know how to interpret the intercept, let us move forward
and consider the case Algorithm = Marking. The expected TER value for marking is:

E [TER|marking] = β0 + βmarking.

Rearranging this equality and using the previous result for β0, we get:

βmarking = E [TER|marking]− β0 = E [TER|marking]− E [TER|baseline] .

Hence βmarking represents the difference between the expected values of the marking
and the baseline algorithm. By extension, the estimator β̂markinge is an estimator for
the differences between the expected out-of-sample risks of both systems. An analogous
result for βpostEdit can be obtained. In summary, we have seen that the fixed effect
coefficients of this particular linear mixed effects model can be interpreted as either
expected risks or differences of expected risks. Thus the maximum likelihood estimators
of this model’s parameters provide consistent and asymptotic efficient estimators of
the expected risk of an algorithm (or classifier). Further, maximum likelihood theory
also provides asymptotic distributional results facilitating statistical inference for these
estimators. The first hypothesis pair we want to test is

H0: E [TER|baseline] = E [TER|marking] = E [TER|postEdit]

H1: E [TER|baseline] ̸= E [TER|marking]

∨ E [TER|baseline] ̸= E [TER|postEdit]

∨ E [TER|marking] ̸= E [TER|postEdit]

This test is called an omnibus test. It tests the null hypothesis H0 of equal expected
risks for all algorithms against the alternative hypothesis H1 that at least one pair of
algorithms has unequal expected risks. The corresponding hypothesis pair, expressed in
terms of fixed effect parameters, is:
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H0: βmarking = βpostEdit = 0

H1: βmarking ̸= 0

∨ βpostEdit ̸= 0

∨ βmarking ̸= βpostEdit

The model specified by (2.10) corresponds to hypothesis H0, because it imposes no
restriction on the value of β0, βmarking or βpostEdit. To apply the GLRT to decide whether
we should accept H0 or H1, we need a model that corresponds to H0. We have seen, that
the null hypothesis states that βmarking = 0 and βpostEdit = 0, thus the corresponding
model is

TER = β0︸︷︷︸
fixed effects

+ ϵ︸︷︷︸
error

. (2.11)

Under this model, the expected value of TER for all systems is

E [TER] = β0.

The model (2.11) is a particular case of the model (2.10) because we arrived at it by
restricting the values of βmarking and βpostEdit to 0. Such a relation between two models
is called nested, and one says that model (2.11) is nested in the model (2.10). This
setup of nested models [PB00] allows us to conduct a GLRT with the restricted model
(2.11) representing the null hypothesis, the more general model (2.10) representing the
alternative hypothesis.

Applying this technique to the data from [KBR20], a GLRT which compares model
(2.13) against the restricted model (2.11) yields a p-value of 0.517. According to a standard
significance level of 0.05, this result is too high to reject the null hypothesis that the
three algorithms have equal performance. Do we have to conclude that the difference in
performance evaluations between the three algorithms is not statistically significant? Or
was this simple and often recommended strategy to average over algorithm instances not
powerful (in the statistical sense) enough?

Instead of trimming the data to fit a standard method, let us adapt the method
to the data. The major obstacle to keeping all observations for each algorithm in the
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evaluation data is introduced by the reasonable assumption that if the expected risk of
the algorithms involved in the experiment is different, then the evaluation scores of a
particular test sentence obtained by the instances of one algorithm will be more similar
than evaluation scores obtained by instances of different algorithms. Hence, the data
could not be considered to be iid distributed. We can adapt model (2.10) to this clustered
data structure by realizing that if we expand the model so that it conditions not only
on the algorithm but also on the input sentence, then errors would be independent and
identically distributed again if we assume that the meta-parameter configurations are
determined before the experiment28. Of course, such a model would be very parameter
intensive and, more importantly, model a quantity the experimenter is not interested in.
LMEMs can circumvent this problem by using random intercepts. Random intercepts
are a form of random effect allowing the modeler to "condition" the distribution on the
input sentence in a way that doesn’t affect the fixed effect structure of the model. The
LMEM corresponding to this adaption of model (2.10) is:

TER = β0 + βmarking · I{marking} (System) + βpostEdit · I{postEdit} (System)︸ ︷︷ ︸
fixed effects

(2.12)

+ binput_id︸ ︷︷ ︸
random intercept

+ ϵ︸︷︷︸
error

where binputid ∼ N (0, σ2
input_id). Because we haven’t changed the fixed effect structure,

this models expectation is still:

E [TER|Algorithm] = β0 + βmarking · I{marking} (System) + βpostEdit · I{postEdit} (System) .

But in contrast to model (2.10) where V [TER] = σ2 the variance of TER is now
decomposed into

V [TER] = σ2
inputid

+ σ2.

Based on this equation, we can draw the following conclusions:

• If the clustering within the evaluation scores is negligible (thus σ2
inputid

≈ 0, the
specification of (2.10) is essentially the same as (2.12) but the latter consumes one

28This assumption is equivalent to assuming that the meta-parameter configurations are drawn inde-
pendently from the meta-parameter space.
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Table 2.2: Effect of evaluation strategy on estimated error variance and significance.

Strategy H1 model H0 model σ̂2 p-value

average replications Eq. (2.10) Eq. (2.11) 0.2576 0.517per random seed
group replications Eq. (2.12) Eq. (2.13) 0.0591 < 0.0001at sentence level

more parameter.

• The more pronounced the clustering of the evaluation scores are, the larger σ2
inputid

will be compared to σ2, and consequently, the more powerful a GLRT based on
this model will be.

If the model’s parameters (2.12) are estimated via the maximum likelihood principle,
one can use a GLRT to test the hypothesis about the fixed effect parameters. The proper
nested model for an omnibus test of (2.12) is

TER = β0︸︷︷︸
fixed effects

+binput_id + ϵ︸︷︷︸
error

. (2.13)

Changing the model so that it fits the structure of the evaluation data by adding the
random effect νs reduces the estimated residual error σ2 from 0.2576 to 0.0591 indicating
a high clustering in the data, resulting in a p-value of < 0.0001 for a comparison of
models (2.12) to (2.13). Thus we can reject the null hypothesis and assume that at least
two algorithms have different expected risks.

The results of this section are summarized in 2.2. The overall comparison would be
finished now if the experiment had only involved two competing algorithms. Because the
disjunctive formula of the alternative hypothesis would be reduced to an atomic formula
about the inequality of two expected risks and therefore it will be clear which pair of
algorithms have none-equal expected risks. But once the experiment comprises more
than two competitors, like in the current example, a significant omnibus test must be
followed by a so-called posthoc analysis to arrive at a more detailed statement about the
relations of the algorithm’s expected risks.
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Posthoc Analysis for Kreutzer et al.

Several ways exist to conduct a post hoc analysis of the parameters of an LMEM. I
will present an approach that conducts all pairwise comparisons utilizing GLRTs to test
appropriate sub-hypothesis. The first sub-hypothesis pair that we want to test is:

H0: E [TER|baseline] = E [TER|marking]

H1: E [TER|baseline] ̸= E [TER|marking]

This pair corresponds to a direct comparison of the baseline and the marking-enhanced
algorithm. As previously discussed, we need an appropriate data model corresponding to
the null hypothesis and one connected to the alternative hypothesis. In complete analogy
to the models involved for the omnibus test, the alternative hypothesis model is

TER = β0 + βmarking · I{marking} (System)︸ ︷︷ ︸
fixed effects

+ binput_id︸ ︷︷ ︸
random intercept

+ ϵ︸︷︷︸
error

(2.14)

and for the null hypothesis

TER = β0︸︷︷︸
fixed effects

+ binput_id︸ ︷︷ ︸
random intercept

+ ϵ︸︷︷︸
error

(2.15)

Both models are fitted to a subset of the evaluation data, where the observations
from the algorithms not included in the current comparison are removed, and a GLRT
is conducted on the obtained likelihoods. This procedure is iterated analogously for all
pairwise comparisons. The Bonferoni-Holm procedure is applied to adjust the resulting
p-values for multiplicity. The result is summarized in Table 2.3. This posthoc analysis
yields significant differences between baseline and fine-tuning on markings (p < 0.0001),
between baseline and fine-tuning on post-edits (p < 0.0001), but no significant difference
between fine-tuning on markings and fine-tuning on post-edits (p = 0.0685). Thus we
conclude that both feedback methods improve the baseline model, but neither is better.
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Table 2.3: p-values for pairwise TER differences between systems on the test set.

p-value

baseline - marking < 0.0001
baseline - post-edit < 0.0001
marking - post-edit 0.0685

Algorithm Comparsion conditional on Data Properties

In a further step, we will investigate if the result of the previous section is homogeneous
for all inputs. In machine translation, it is often the case that models work better for short
inputs than for longer ones. Thus, it would be interesting to investigate if the involved
algorithms in this experiment perform homo- or heterogeneously concerning this input
property. To get a first impression, we create a scatter plot with source sentence length on
the abscissa and TER of the translation on the ordinate for all systems shown in Figure
2.5. These plots indicate that the contour lines of the point cloud are similar for all three
algorithms, and the relation between TER and source sentence length is non-linear but
monotonically increasing. We see an increase in TER for short sentences (< 15 words),
followed by a rather flat section for sentences of length 15−55 words, and a steep increase
for very long sentences (> 55 words). To emphasize this point, we classify the sentence
length into three categories "short" (< 15), "typical" (15− 55), and "very long" (> 55),
and create boxplots of the data presented in Figure 2.6. This visual comparison highlights
that while the three systems behave nearly identically for typical sentences, they show
noticeable differences for short and very long sentences. Furthermore, it suggests that
most of the improvement gained from human feedback happens for very long sentences,
and to a lesser degree, for short ones.

To test this hypothesis, we extend the model (2.12) by including a fixed effect for
sentence length and a fixed effect to analyze interactions between algorithm and sentence
lengths, yielding the following model:

TER = β0 + Algorithm + SentenceLength + Algorithm x SentenceLength︸ ︷︷ ︸
fixed effects

(2.16)

+ binput_id︸ ︷︷ ︸
random intercept

+ ϵ︸︷︷︸
error
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Figure 2.5: TER scores for baseline and machine translation systems fine-tuned on mark-
ings or post-edits, plotted against source sentence length.
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Figure 2.6: TER scores for baseline and machine translation systems fine-tuned on mark-
ings or post-edits, plotted against three bins of source sentence length.

where

Algorithm := βmarking · I{marking} (Algorithm)

+ βpostEdit · I{postEdit} (Algorithm)

SentenceLength := βtypical · I{typical} (SentenceLength)

+ βlong · I{long} (SentenceLength)
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are called main effects of algorithm or sentence length and

Algorithm x SentenceLength :=

βtypical,marking · I{typical} (SentenceLength) · I{marking} (Algorithm)+

βlong,marking · I{long} (SentenceLength) · I{marking} (Algorithm)+

βtypical,postEdit · I{typical} (SentenceLength) · I{postEdit} (Algorithm)+

βlong,postEdit · I{long} (SentenceLength) · I{postEdit} (Algorithm)

is called the interaction effect algorithm and sentence length and is used to capture
non-additive relationships between the regressors and the response variable. To illustrate
the modeling effect of interaction terms, let us consider the expected TER score for the
marking algorithm on typical long sentences:

E [TER|Algorithm = marking, SentenceLength = typical] =

β0 + βmarking + βtypical︸ ︷︷ ︸
main effects

+ βtypical,marking︸ ︷︷ ︸
interaction

.

This equation shows that the interaction can modify the purely additive composition
of the main effects. We are interested in this modification because it allows us to analyze
if the algorithms in the experiment compare differently across different input lengths.
We start this assessment by testing the hypothesis pair:

H0: βtypical,marking = 0

∧ βtypical,postEdit = 0

∧ βlong,marking = 0

∧ βlong,postEdit = 0

H1: βtypical,marking ̸= 0

∨ βtypical,postEdit ̸= 0

∨ βlong,marking ̸= 0

∨ βlong,postEdit ̸= 0

Which is an omnibus test of whether or not the data supports the presence of an
interaction. Again we can use an GLRT were (2.16) corresponds to the alternative
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Figure 2.7: Interaction plot of estimated TER scores for baseline and machine translation
systems fine-tuned on markings or post-edits and bins of source sentence
length.

Table 2.4: p-values for pairwise differences between systems on source sentences of differ-
ent lengths.

short typical very long

baseline - marking < 0.0001 0.0191 < 0.0001
baseline - post-edit < 0.0001 0.1830 < 0.0001
marking - post-edit 0.1220 0.1830 0.0093

hypothesis and

TER = β0 + Algorithm + SentenceLength︸ ︷︷ ︸
fixed effects

+ binput_id︸ ︷︷ ︸
random intercept

+ ϵ︸︷︷︸
error

(2.17)

To the null hypothesis. The GLRT conducted with both models shows a statistically
significant p-value (p < 0.0001). Thus we reject the null hypothesis and investigate the
interaction further. To this end, we visualize the estimated risks for each sub-group in a
so-called interaction plot given in Figure 2.7 and perform pairwise comparisons similar
to the posthoc analysis of the previous section between systems nested within source
sentence length levels. The results of these comparisons are presented in Table 2.4.

51



Chapter 2 Algorithm Comparison

In comparison to the result in Table 2.3 that we obtained without grouping sentences
into length bins, Table 2.4 shows statistically significant differences between the estimated
expected TER scores of marking and post-edit fine-tuning on long sentences. Furthermore,
both systems significantly improve over the baseline model for short sentences. Still, for
typical sentences, only the improvement of the marking system over the baseline is
statistically significant. These results suggest that there is no uniform superiority of one
feedback mode over the other and that an investigation into the interaction of feedback
modes with data properties reveals essential patterns.

Discussion. The key practical feature of the proposed model-based approach is that it
unifies special-purpose significance tests for particular evaluation metrics, meta-parameter
variations, and multiple test data as proposed by [DSR19] or [Dro+17] into a single
framework for hypothesis testing. In the presented example, we have demonstrated how
LMEMs can simultaneously analyze all instances of algorithms obtained by a meta-
parameter variation to compare algorithms and not specific algorithm instances. Because
LMEMs are generalized linear models with the additional capacity of random effects,
they can be used to analyze all response variables whose distribution is a member of the
exponential family. This family includes many of the most common distributions, e.g.,
Gaussian, Bernoulli, categorical, exponential, gamma, Poisson, beta, etc. The evaluation
scores of multiple test data sets can be concatenated, but one needs to make sure that
the input identifiers are properly adjusted.

The idea of treating test data as random effects and thus increasing the power of
statistical significance testing has already been proposed by [RK12] for information
retrieval. However, the general applicability of LMEMs and GLRTs for significance testing
under variations of meta-parameters and data properties has yet to be fully recognized
in the wider NLP and data science research community.

A unique theoretical feature of the proposed model-based approach to significance
testing is that it mutes the old question of which significance test is appropriate for
which evaluation measure. In a model-based paradigm, one can handle the distributional
properties of complex evaluation measures since they are not treated directly as test
statistics of a significance test. Independent of the evaluation measure used, the test
statistic of the GLRT is based on the parameter estimates of the LMEM trained on the
evaluation data. It is a well-established theoretical result that the maximum likelihood
parameter estimator asymptotically follows a normal distribution. Based on this fact, it
can be shown that the generalized likelihood ratio test statistic asymptotically follows a
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χ2 distribution, which in turn allows to compute p-values for a wide range of hypotheses,
including the typical A-B testing hypotheses pair. It should be mentioned that, while
my presentation emphasized the GLRTs, other test statistics exist for hypothesis testing
about the effect parameters of an LMEM, e.g., F -tests or wald -tests [PB00]. Especially
the F -test is often the default implementation in most software packages because of its
technical and computational convenience. But it must be mentioned that for analyzing
experimental data from balanced designs (like the typical machine learning experiment),
the GLRT and F -test (as well as the Wald-test) behave nearly identically.
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Algorithm Performance Analysis

One shortcoming of the contemporary state-of-the-art evaluation of machine learning
experiments is its tendency to treat and analyze algorithms and classifiers in a black-box
fashion. This attitude prohibits any empirically grounded insights into the relationship be-
tween an algorithm’s performance concerning a task and the choice of its meta-parameters.
This knowledge (especially when accumulated over several experiments) is of efficient
value because it reduces the effort of the meta-parameter search a machine learning
practitioner has to conduct to find a good classifier for her use case. Instead of running
an extensive search over as large as possible space of meta-parameter combinations,
she can focus her search on a smaller subset of the most promising meta-parameter
variations. Thereby reducing the computational burden and, thus, the financial and eco-
logical costs of implementation. Theoretically, such an evaluation can shed light on which
meta-parameters are significant concerning an algorithm’s performance and which are
negligible and can be fixed.

An NLP subfield that has investigated a related question is information retrieval (IR),
where systems are often compositions of several specific components. In this context,
the question is determining how much each component contributes to the overall system
performance and how the components interact. To this end, the performance of the IR
system is approximately decomposed [Fer+15; Jay+15; RK12; TB95] as following:

performance ≈ topic effect︸ ︷︷ ︸
≡data effect

+ system effect︸ ︷︷ ︸
≡meta-parameter effect

+ topic × system-interaction︸ ︷︷ ︸
≡data×meta-parameter interaction

Based on this principle idea [FS16] suggested a full factorial experimental design (along
with a GLMM to analyze the resulting evaluation data) to investigate the system effect.
The idea of decomposing the variation of an observed value to quantify and study the
contribution of potentially influential sources, being novel in the assessment of IR systems,
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is familiar. It was introduced by Fisher [Fis19] in the context of statistical genetics and
further developed in the context of psychometrics [Bre01] to study the reliability of
psychological and educational measurement instruments.

In this chapter, I want to investigate how techniques and concepts from these fields can
be transferred and modified for more detailed algorithm analysis. To this end, I will treat
machine learning models similar to human annotation or any other scientific instrument
that assigns a measurement value to an object. In the case of machine learning, these
measurements are either the outputs (predictions) of a classifier if its domain is numeric
or an evaluation metric that measure the concordance of an output to a reference if
the domain of the classifier is non-numeric like in chapter 2, my goal is to leverage
the information already created during a machine learning experiment and not impose
additional demands on the researcher. Nevertheless, it has to be mentioned that especially
full-crossed factorial designs offer some technical benefits. In summary, in this chapter, I
will

• Propose a novel approach to quantify the reliability of machine learning algorithms
and data annotations.

• Show how LMEMs can be used to analyze the variance contribution of meta-
parameters (and their interaction) for a wide range of rather arbitrary experimental
designs.

• Show how LMEMs can be used to study meta-parameter/data property interac-
tions.

But before I start my exposition, I want to discuss some of the terminology related
to these topics. Then I will argue that algorithm performance and data annotation re-
liability are essentially the same concepts, and the same analytical tools can be used
to investigate both. After this argument, I will wrap up the state-of-the-art methods,
introduce the fundamental principle of variance decomposition, show how to estimate
components using LMEMs, and define a meaningful reliability measure for data anno-
tation and algorithm performance based on this decomposition. Finally, I will illustrate
these techniques through an example analysis.
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3.1 Untangling Terminology: Reliability, Agreement

etc.

[Kri04] states the measurement theortical conception of reliability as follows:

A research procedure is reliable when it responds to the same phenomena
in the same way regardless of the circumstances of its implementation.

The terminological confusion starts when the terms "research procedure" and "circum-
stances of its implementation" are concretely interpreted. Krippendorff’s main concern
was to quantify the reliability of data annotations for a fixed sample of data points by
a fixed selection of human coders — the "research procedure" — given their different
response styles or exposition environments — the "circumstances of their implementa-
tion". Another interpretation that will be of interest in this chapter is to replace the
"research procedure" with a machine learning model and the "circumstances of the im-
plementation" as variability due to meta-parameter choices that are not specified by the
algorithm but need to be made to train an algorithm on a data sample.

Reliability of measurements of nominal outcomes is frequently called agreement [Sho11;
Hal12], and it is often reserved for the case of human raters representing the research
procedure whose reliability is in question. However, in light of the above definition, the
concept of intra-rater agreement (the consistency of annotation results of a human rater
on repeated trials on same data) is essentially the same as test-retest reliability (the
correlation between results of the same test on two occasions under otherwise identical
circumstances and the concept of inter-rater agreement (the consistency of annotation
results of two or more human raters on the same data) is the same as test-test reliability
in measurement theory (the correlation between results of equivalent forms of tests
performed under otherwise identical circumstances).

To add to the confusion, [Kri04] uses the term stability to denote intra-rater agreement
and calls inter-rater agreement reproducibility. Further, the term replicability is intro-
duced by [Dro+17] to denote consistency over different datasets from different domains or
languages. [Ple18] lists different interpretations of the terms replicability and reproducibil-
ity and adds the term repeatability, which emphasizes the variable that different teams
of researchers may add. Finally, [GFI16] clarify things a bit by stressing certain aspects
within reproducibility by distinguishing methods reproducibility, results reproducibility,
and inferential reproducibility.
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In the following, I will stick to the term reliability and provide an operational definition
that applies to data annotation and algorithm performance in NLP and data science
alike, which is routed in a psychometric understanding of measurement.

3.2 A Unifying View on Algorithm Performance and

Annotation

In this section, I want to establish this chapter’s conceptual foundations. The reference
points of these reflections will be the interrelated concepts of measurement, score, and
reliability as established in psychometrics by [Bre01]:

Definition 3.1 (Measurement).
A measurement is a non-random operation that assigns a numerical value to an object
to acquire information about specific attributes or characteristics of that object.

Definition 3.2 (Score).
The numerical value assigned to an object via a measurement is called the score of the
object.

Ideally, the score is solely determined by the empirical property of the object, and
other peculiarities of the measurement are of no significance. Hence, repeated measures of
the same object would yield identical scores under all possible conditions. Unfortunately,
this is rarely, if ever, the case. The extent to which replicated measurements produce
similar scores is called reliability.

Definition 3.3 (Reliability).
Reliability measures the degree of consistency in scores over replications of a measurement
procedure (scoring procedure).

This definition implies several subtleties. Firstly, reliability is not a direct property
of a measurement instrument but of scores obtained by this instrument under various
conditions. Secondly, this definition makes no strict assertion about what constitutes a
replication. This term is left open for the researcher to be defined 1.

In the case of data annotation, when human annotators annotate sentences, it is
1This doesn’t mean that this choice is wholly arbitrary or that one can determine replications so that

reliability is maximized.
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somewhat likely that annotators yield non-equal annotations for a sentence. Thus it is
necessary to investigate the reliability of the scores obtained for sentence scores replicated
under varying human annotators or repeated annotations by the same annotator.

In the case of learning algorithm performance, one can think of a classifier obtained
by the algorithm as a measurement. The meta-parameters of the algorithm, which need
to be set to get a classifier, constitute a replication because varying them will yield
potentially different classifiers2.

Regardless of considering data annotation or learning algorithm performance, we have
to distinguish between two cases:

• The output of the annotation or the classifier is immediately numeric or categorical,
e.g., a sentiment annotation or a regression model.

• The output is not of this quality, e.g., a translation or a summary.

In the latter case, one can proceed as in the first case, when the output is mapped into
a performance score via an evaluation metric. Regarding data annotation in interactive
machine translation, possible performance evaluation metrics are post-editing time or
human translation edit rate [Sno+06]. For machine learning predictions, for example,
possible performance evaluation metrics in machine translation are BLEU [Pap+02] or
TER [Sno+06]. Different cases of evaluation scores in the experimental examples are
discussed below.

Before continuing my exposition, I want to discuss commonly used (descriptive) statis-
tics proposed as reliability metrics.

3.3 State of the Art Methods for Annotation and

Algorithm Performance Analysis

The most popular of such statistics are agreement coefficients such as Scott’s π [Sco55],
Cohen’s κ [Coh60], or Krippendorff’s α [Kri04] that are commonly used to measure
reliability in data annotation processes in NLP and data science. I will present a principle
discussion of these statistics, emphasizing some oddities and shortcomings that, while
discussed in the literature [ZLD13], are not widely known in NLP and data science
communities. Furthermore, I will discuss recently suggested bootstrap [ET93] inspired
approaches to estimate the reliability of algorithm performance.

2This means output mappings of the classifiers are not identical for all inputs.
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3.3.1 Agreement Coefficients for Data Annotation

Krippendorff’s α coefficient is a widely used agreement measure in NLP, at least since
the survey paper of [AP08]. Its attractiveness is founded in its conceptual simplicity
–basically, the observed agreement is reduced by chance agreement, similar to Scott’s π
[Sco55] or Cohen’s κ [Coh60]– and its applicability to multiple raters and all standard
scales of measurements (nominal, ordinal, interval, and ratio variables). It can also be
easily computed from experimental data by collecting relative count statistics instead of
optimizing a machine learning model. This computational convenience results from the
simple probability model used to calculate chance agreement. This model is an urn model
where all observed ratings give the type and frequency of the balls, and the probabilities
for observing a pair (or tuple) of observations are combinatorial.

As we will see, this model

• has the tendency to yield rather high values for chance agreement, and thus a low
agreement when intuitively the opposite is the case.

• is susceptible to the actual observed values because minor variations in the observed
ratings can result in dramatic differences between the corresponding α coefficient.

• results in an undefined agreement coefficient if no variation in the observed ratings
exists.

I will illustrate these shortcomings by presenting exemplary computations of α for
two raters and nominal ratings, using an example from [Kri04] for binary ratings of two
raters A and B on 10 items:

1 2 3 4 5 6 7 8 9 10

A 1 1 0 0 0 0 0 0 0 0

B 0 1 1 0 0 1 0 1 0 0

To compute the α coefficient, we first need to sum up the number of observed rating
values in a matrix of two raters while omitting references to the individual raters. The
entries of this matrix are called observed coincidences ock:
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0 1

0 o00 o01 n0

1 o10 o11 n1

n0 n1 n

0 1

0 10 4 14

1 4 2 6

14 6 20

Second, we need to calculate expected coincidences eck to represent what could happen
by chance. The following simple urn model can illustrate this random sampling process.
Assume we write each rating of the two raters on a ball and put it in an urn. Then we
draw two balls from the urn without replacing the first one. For our example, expected
coincidences are computed as follows:

0 1

0 e00 e01 n0

1 e10 e11 n1

n0 n1 n

0 1

0 9.6 4.4 14

1 4.4 1.6 6

14 6 20

The expected coincidence e00 of chance agreement between raters A and B on two
0s is calculated by letting the first rater draw a 0 in 14 out of 20 cases and letting the
second rater draw a 0 in 14−1 out of 20−1 cases. By multiplying these two probabilities
by the total number of 20, we get the expected frequency of 9.6 pairs of two 0s. The
remaining expected coincidences are computed accordingly, as shown below:

e00 =
n0

n
· n0 − 1

n− 1
· n =

14

20
· 13
19

· 20 = 9.6

e11 =
n1

n
· n1 − 1

n− 1
· n =

6

20
· 5

19
· 20 = 1.6

e01 =
n0

n
· n1

n− 1
· n =

14

20
· 6

19
· 20 = 4.4

e10 =
n1

n
· n0

n− 1
· n = e01

From these coincidence tables, the α coefficient is computed as follows:
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α =
observed agreement - chance agreement

n− chance agreement

= 1− observed disagreement
expected disagreement

= 1− o01 + o10
e01 + e10

= 1− o01
e01

.

For the example above, this yields α = 1− 4
4.421

= 0.095. The idea of α as a measure of
chance-corrected agreement is motivated by the values at the end of the range. An α value
of 0, indicating the absence of reliability, is obtained when the observed disagreement is
entirely due to chance and thus equal to the expected disagreement. An α value of 1,
indicating perfect reliability, is obtained when there is no observed disagreement. In our
example, α is relatively low at barely 10%, while the uncorrected observed agreement —
the percent of cases of agreement out of all analyzed cases — is at 60%. The explanation
for this discrepancy is that the assumed model of chance agreement attributes 56% of
chance agreement, as can be seen by calculating (9.6/20) + (1.6/20) = 56%.

Note that the definition of α above does not guarantee α ∈ [0, 1]. For example, α will
be negative for the following table of ratings:

1 2 3 4 5 6 7 8

A 0 0 0 0 0 0 1 0

B 0 0 0 0 0 0 0 1

First, the uncorrected percent agreement is at 6/8 = 75%. The matrices of observed
and expected coincidences are as follows:

0 1

0 12 2 14

1 2 0 2

14 2 16

0 1

0 12.13 1.87 14

1 1.87 0.13 2

14 2 16
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The calculation of expected disagreement is again based on the value e01 = e10:

e00 = (14/16)((14− 1)/(16− 1))16 = 12.13

e11 = (2/16)((2− 1)/(16− 1))16 = 0.13

e01 = (14/16)(2/(16− 1))16 = 1.87

We note that the α value is negative since α = 1− 2
1.87

= −0.07. The explanation lies
again in the computation of chance agreement which amounts to (12.13/16)+(0.13/16) =

76.6%. This means that the observed agreement (75%) is poorer than chance.
Unfortunately, even if one agrees with the principle of maximum randomness, the

stipulation of the chance agreement by a random sampling model has further ramifications.
While values of α at the ends of the range were supposed to motivate the measure, extreme
values can also be obtained by nonsensical abnormalities, defeating a clear interpretation
of the measure. Consider the following table of binary ratings of two raters A and B on
our 10 items:

1 2 3 4 5 6 7 8

A 0 0 0 0 0 0 0 1

B 0 0 0 0 0 0 0 1

The uncorrected percent agreement amounts to 100%, and α reaches a maximum due
to no observed disagreement: α = 1 − 0

e01
= 1. If this result is desired, consider a tiny

change in the table that throws a wrench in the works:

1 2 3 4 5 6 7 8

A 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 1

A change of one rating by one rater renders observed and expected coincidences equal:

63



Chapter 3 Algorithm Performance Analysis

0 1

0 14 1 15

1 1 0 1

15 1 16

e00 = (15/16)((15− 1)/(16− 1))16 = 14

e11 = (1/16)((1− 1)/(16− 1))16 = 0

e01 = (15/16)(1/(16− 1))16 = 1

This yields α = 1 − 1
1
= 0, although the uncorrected percent agreement is still at

7/8 = 88%. Consider another tiny change in the table, yielding zero variation:

1 2 3 4 5 6 7 8

A 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0

Now α = 1− 0
0

is technically undefined. Nevertheless, [Kri04] arbitrarily defines it to
be 0 in this case, while the uncorrected percent agreement is 100%.

Discussion. To summarize, chance-corrected agreement measures like Scott’s π, Cohen’s
κ, or Krippendorff’s α can be written in the following form:

observed agreement - chance agreement
n− chance agreement

.

All measures stipulate a hypothetical model for chance agreement, where the central
differences lie in choices such as sampling with replacement (Scott’s π and Cohen’s κ) or
without replacement (Krippendorff’s α) from distributions for individual raters (Cohen’s
κ) or for the observed ratings averaged over raters (Scott’s π and Krippendorff’s α).

A crucial similarity between the measures is the fact that the above-described counter-
intuitive principle of maximum randomness, and the resulting abnormalities, apply to all
chance-corrected agreement metrics in a similar way.3 Furthermore, all listed shortcomings
apply to all scales.

Arguably, the main shortcoming common to π, κ, and α is that these measures are
descriptive statistics that do not permit concluding concrete raters and objects examined

3See [ZLD13] for an exhaustive list of paradoxes and abnormalities of chance-corrected agreement
measures like π, κ, and α.
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during an experiment. Further, agreement measures do not allow detailed analysis of the
reason for high or low agreement by general properties of raters or meta-parameters for
algorithms. However, a helpful measure should provide these possibilities.

3.3.2 Bootstrap Confidence Intervals for Model Evaluation

Inference beyond the observed samples of an experiment is indispensable for assessing
the potential usefulness of an algorithm. In contrast to data annotation, where the focus
is often reduced to particular human annotations used to generate a fixed and static
dataset, algorithms should be used in a wide range of application contexts, not just for the
specific experiment at hand. Thus, even if the interval scaled variant of Krippendorff’s α
would, in principle, be applicable to measure the reliability of model prediction processes,
it does not make sense to estimate a single number indicating the reliability of a machine
learning prediction for a given set of tested meta-parameters, without generalizing across
the concrete meta-parameter settings and data that were used in a particular experiment.

It has been suggested in the machine learning community to address the problem of
reliability of algorithm performance by computing confidence intervals for evaluation
metrics computed on test data. In the following, I will look at the approaches of [Hen+18;
Luc+18], who propose bootstrap-inspired resampling procedures to compute an interval
estimator for evaluation scores on test data. The approach advocated in [Luc+18] aims
to capture the variability of an evaluation metric introduced by a random search over
meta-parameters during training and express it as an interval estimator for the expected
maximum performance under a computational budget. [Hen+18] use bootstrap confi-
dence intervals to compare the performance differences due to different meta-parameter
choices in a reinforcement learning setting. The details of the implemented algorithms to
construct bootstrap confidence sets vary from study to study. To keep the focus and stay
aware of more information, I will briefly summarize the central concepts of confidence
intervals and bootstrap techniques for their construction and sketch an algorithm to
apply these ideas to construct confidence intervals for evaluation metrics with budget
constraints.

Following [Sha03], confidence intervals are defined as:

Definition 3.4 (Confidence Interval).
Let P denote a family of distributions and θ ∈ R be an unknown parameter of P ∈ P.
Further, let α ∈ (0, 1) and Y = (Y1, Y2, Y3, ..., Yn) be a random sample generated from
the random process described by P . Then the estimated interval [θ̂l(Y ), θ̂u(Y )] is called
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a confidence interval for θ at confidence level 1− α if ∀P ∈ P holds

P (θ̂l(Y ) ≤ θ ≤ θ̂u(Y )) ≥ 1− α. (3.1)

Formally, a confidence interval is a function of the randomly sampled data Y from
which estimators of the lower bound θ̂l(Y ) and the upper bound θ̂u(Y ) need to be
constructed. This construction must be done so that the actual parameter θ is covered by
the interval by a fraction of at least (1− α) of all possible samples. The most prominent
example of a confidence interval is the case of independent and identically distributed
Gaussian data with an unknown mean. For this case, the bound estimators can be
constructed analytically, yielding the well-known formula for a 95% confidence interval of
the population mean µ, where x̄ is the sample mean and σx̄ denotes the standard error:

x̄− 1.96σx̄ ≤ µ ≤ x̄+ 1.96σx̄. (3.2)

Thus 95% of intervals constructed in this way on numerous samples of the same size will
cover the population mean µ.4

In the case that the family P can not be specified for an application, confidence inter-
vals can be constructed via nonparametric5 bootstrap sampling distributions. A simple
approach is the so-called standard method, which constructs bootstrapped confidence
intervals by plugging bootstrap estimates of σx̄ into Equation (3.2).6

A use case of particular interest to the machine learning community is the calculation
of confidence intervals for the maximum out-of-sample performance of an evaluation
metric under a given computational budget7. The variation to be quantified in these

4A realized confidence interval must not be interpreted in a probabilistic fashion: Once a sample is
drawn and the confidence bounds are determined, the resulting interval either includes θ or not, but all
involved quantities are non-random: θ̂l(Y ) and θ̂u(Y ) have been observed, and θ is an unknown, but
non-random quantity. The (1− α) probability relates to the confidence of the estimation procedure,
not to a specific calculated interval.

5The main principle of the nonparametric bootstrap is the substitution of the unknown data distribu-
tion by the empirical distribution obtained from the i.i.d data sample. Generating data from this
distribution is equivalent to drawing with replacement from the original sample. This method is
especially effective for large sample sizes.

6A method to construct a bootstrap confidence interval with better coverage of the true parameter is
the so-called percentile method [ET93; Coh95]. In general, the construction of bootstrap confidence
intervals is a somewhat delicate problem for which no general conclusive method has been found yet.
Improved methods and an illustrative discussion of this topic are presented in [EH16].

7Corresponding to the general practice of choosing the best model out of all models obtained in a
meta-parameter search
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applications is due to potentially different choices of meta-parameter configurations that
are visited during the search in model training. Let pm denote a model trained under
a meta-parameter configuration m, where M is the size of the set of all potential meta-
parameter configurations, and B ≤ M is the computational budget that restricts the
number of meta-parameter search trials. Following the key ideas presented in [Hen+18;
Luc+18; Dod+19; Tan+20], a somewhat unconventional bootstrap-like procedure can
be defined by resampling performance evaluation scores to compute a confidence interval
for an evaluation metric under a computational budget:8

Algorithm 3.1 (Confidence Interval for Evaluation Metric under Computational Budget)
1. Generate M meta-parameter configurations for considered model class.

2. For each m = 1, . . . ,M : Train model pm and calculate the performance evaluation
score um = u(pm).

3. For each B ≤M : Construct a bootstrap distribution byK times drawing B random
samples with replacement from {um : m = 1, . . . ,M}. For each sample, select the
maximum performance score.

4. Calculate the mean and the standard deviation of this distribution. To construct
a confidence interval plug both estimates into Equation (3.2).

The use of confidence interval for measuring the reliability of model prediction perfor-
mance is two-fold: First, the confidence interval can be used to directly signify error bars
that visualize the confidence bounds on the mean value in a plot. For example, Figure
3.1 shows the mean values as dots and 95% confidence intervals as vertical bars for the
means of the evaluation metrics F1-score, precision, and recall for computational budgets
(number of visited meta-parameter configurations) to train meta-parameter variants of
Generative Adversarial Networks (GANs) [Luc+18]. Confidence bounds can then be used
to assess the reliability of an evaluation under different meta-parameter settings. The
rationale is that at the same level of confidence, smaller confidence bounds indicate less
variability among the scores. Thus the maximum performance score obtained by the
meta-parameter search is more likely to be repeatable.

Second, a bootstrap confidence interval can be used to perform a conservative signifi-
cance test9 by comparing confidence intervals. Given two mean evaluation scores of two

8Obviously, in this setup the probability to include the best performance metric u∗m = maxm=1,...,M um
in the bootstrap sample is non-decreasing with B, this fact will result in smaller confidence intervals
for larger B. Furthermore, note that this algorithm might give a somewhat misleading impression if
the meta-parameter space of the algorithm is much larger than M .

9Conservative significance tests are characterized by the probability of incorrectly rejecting the null
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Figure 3.1: Mean and 95% confidence intervals for F1-score, precision, recall of GANs
for different computational budgets. Graphics from [Luc+18].

competing systems and the confidence intervals about these means, one can prove that
if the confidence intervals do not overlap — the upper bound of one is below the lower
bound of the other — then the means will be significantly different [DS12].

Discussion. Bootstrap techniques are popular in NLP and data science since they can
be applied to compute confidence intervals for complicated nonlinear evaluation metrics
such as F1-score [MRS08], BLEU [Pap+02], or ROUGE [LH03], used for classification,
machine translation, or summarization, respectively. The cited reason for the bootstrap’s
flexibility is that it does not make any assumptions about the underlying population
distribution except that the original sample is representative of the population [Coh95].
However, to guarantee the correctness of a bootstrap confidence interval, a normality
assumption on the sampling distribution of the evaluation metric has to be made, or else
the evaluation metric u has to satisfy the condition of the existence of a monotone trans-
formation ϕ̂ = g(u) such that the sampling distribution of ϕ̂ is normal. [ET93] list a few
normalizing transformations whose existence guarantee the correctness of the bootstrap
confidence interval, in the sense that the confidence bounds are the same when applying
the bootstrap technique to the test statistic before and after transformation. Such cor-
recting transformations are usually not considered when using bootstrap techniques for
complex test statistics.

Another potential problem of bootstrap techniques is the failure of bootstrap con-
sistency [Can+06]. Bootstrap inconsistency happens when the bootstrap distribution
of a statistic doesn’t converge to its actual distribution as the sample grows, leading

hypothesis being less than the nominal significance level. This tighter (but unknown) Type 1 error
control results in a lower power compared to tests that operate at precisely the nominal level. More
information on statistical significance testing is found in Chapter 2.
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to a wrong approximation and false conclusion. Bootstrap inconsistency happens when
the bootstrap data set is not representative. For 3.1, this can be the case when the M
bootstrap configurations forming its data basis don’t provide an accurate image of the
actual meta-parameter space of the algorithm. Bootstrap inconsistency also occurs when
the parameter to be estimated is on the boundary of the parameter space [And00; BF81],
which is the case for bootstrap-inspired procedures aiming to provide inference for the
maximum of the expected performance under a given budget [Dod+19; Luc+18].

An alternative to bootstrap methods is cross-validation techniques to compute con-
fidence intervals for the expected performance scores. For example, [Die98] proposes 5

iterations of 2-fold cross-validation. In contrast, [NB99] propose cross-validation runs on
several half-splits of the data separately to obtain conservative estimates of the standard
error to construct standard confidence bounds. These methods can become quite com-
putationally intensive since they involve several runs of training and evaluation on the
obtained data splits and are thus often not feasible. Furthermore, as shown by [BG04],
no unbiased estimator exists for cross-validation variance due to correlations among the
evaluation scores (due to overlapping training sets) for each data split. Consequently,
inference based on this estimator suffers from underestimating variance, leading to nar-
row standard confidence intervals with coverage below the nominal level. Only recently,
[BHT23] introduced a nested cross-validation scheme to estimate standard errors more
accurately, leading to confidence intervals with approximately correct coverage.

Lastly, and most importantly, neither expected maximum evaluation scores nor error
bars based on confidence intervals allow us to assess the variation of algorithm perfor-
mance in detail. A mean to this end is model-based approaches to reliability, as described
in the next section.

3.4 Bridging the Gap: Model-based Reliability

Analysis

In classical psychological measurement theory [LN68], an undifferentiated measurement
error accompanies every experimental measurement. More recent work in psychometrics
further investigates this error by employing variance component analysis to untangle
multiple sources of variation that contribute to the variability in measurement [Bre01].
For data annotation, variance decomposition means decomposing the total variance into
factors corresponding to measurement conditions such as raters, sentences, or interactions
between raters and sentences. This idea can seamlessly be transferred to algorithm
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performance analysis, where the experimenter wants to investigate the influence of meta-
parameters and input properties or interactions between these factors on algorithm
performance variation.

In the subsequent section, I will introduce the central concepts of variance component
analysis [SCM92], adapt these ideas to the fields of NLP and data science, and show
how to utilize LMEMs [MS01] to estimate the variance components. Following this
exposition, I will use variance components to define a reliability coefficient that quantifies
the reliability of data annotation and model performance as the share of total variance
attributable to differences between the measurement objects. Further, I will show the
variance components can immediately be used to assess the contribution of individual
meta-parameters to algorithm performance variation.

3.4.1 The Basic Principles of Variance Component Analysis

(VCA)

Let us introduce the basic principles by considering a fictive example from interactive
machine translation [Gre+14; Ben+16; SKR16; KSR18; KBR20]. This experiment’s
response y = ysr is an evaluation score measuring human annotation effort, e.g., human
Translation Edit Rate [Sno+06], obtained for sentence s and rater r. The response can
be rewritten by the following tautological decomposition as a sum of four components:

ysr = µ+ (µs − µ) + (µr − µ) + (ysr − µs − µr + µ). (3.3)

The components are

• the grand mean µ of the observed evaluation score across all potential raters r and
all potential sentences s;

• the deviation (µr − µ) of the mean score µr := ES [YSR|R = r] assigned by rater r
from the grand mean µ;

• the deviation (µs − µ) of the mean score µs := ER [YSR|S = s] assigned to sentence
s from the grand mean µ;

• and the residuum, reflecting the deviation of the observed score ysr from the sum
of the first three.

Except for µ, each component varies between raters or sentences. Now, let us consider
a probabilistic version of this tautology. Let YSR be a random variable obtained by
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independently sampling rater and sentence; thusMR := ES [YSR|R] andMS := ES [YSR|S]
are also random10. Then ES,R [YSR] = ES [MS] = ER [MR] = µ and thus the expected
value11 of all deviations on the right-hand-side of (3.3) are 0. But more interesting than the
first are the second moments of these terms. Obviously the covariance between (MR −µ)

and (MS −µ) is 0 because rater and sentences are sampled independently. (MR−µ) and
(MS − µ) are also uncorrelated with the residuum, as shown by the following calculation:

ES,R

[
(YSR −MS −MR + µ)(MS − µ)

]
=

ES

[
ER [(YSR −MS −MR + µ)(MS − µ)|S]

]
=

ES

[
ER [YSR|S]︸ ︷︷ ︸

=MS

MS −M2
S − ER [MR|S]︸ ︷︷ ︸

=µ

MS +MSµ

−ER [YSR|S]︸ ︷︷ ︸
=MS

µ+MSµ+ ER [MR|S]︸ ︷︷ ︸
=µ

µ− µ2
]
= 0

The first equality follows from the law of total expectation12, and the second equality
exploits the fact that raters and sentences are sampled independently. Since we have
shown that all components are pairwise uncorrelated with each other, the total variance
σ2(Y ) can be decomposed into:

σ2(Y ) = σ2
S + σ2

R + σ2
residual, (3.4)

where σ2
S and σ2

R denote the variance due to sentences and raters, and σ2
residual denotes

the residual variance component, including the variance due to the interaction of S and
R.

In the psychometric approach to reliability of [Bre01], the conditions of measurement
that contribute to variance in the measurement besides the objects of interest are called
facets of measurement. In the example above, the objects of interest in our measurement
are the sentences. They are the essential object to be measured. The only facet of
measurement in this example is raters. An experiment based on this so-called one-facet
fully crossed design would randomly select a finite subset of sentences and raters and
observe the scores for all possible combinations. Adding additional facets, one would
arrive at a so-called multi-facet design, which enables the explicit analysis of interaction

10Here I follow the convention to denote random variables with capital letters and their realization with
small letters.

11All expectations are defined over both sentences and raters.
12E
[
X
]
= E

[
E [X|Y ]

]
for a formal proof see [WHH05]
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effects. For example, adding a facet, for instance, i of replicated annotation by the same
rater on the same sentences would lead to the following two-facet fully crossed design:

ysri = µ+ (µs − µ) + (µr − µ) + (µi − µ) (3.5)

+ (µsr − µs − µr + µ)

+ (µsi − µs − µi + µ)

+ (µri − µr − µi + µ)

+ (Ysri − µsr − µsi − µri + µr + µs + µi − µ).

Using the same techniques and arguments as above, one could establish the pairwise
uncorrelatedness of these terms when sentences, raters, and instances are sampled inde-
pendently. Consequently the total variance σ2(Y ) can be decomposed into:

σ2(Y ) = σ2
S + σ2

R + σ2
I + σ2

SR + σ2
SI + σ2

RI + σ2
residual. (3.6)

The facets of measurement in this design include raters R, instance I, and facets for
interactions SR, SI, and RI, with objects of measurement being sentences S.

Estimating the variance components has traditionally been done by ANOVA estimators
based on expected mean square equations. These date back to [Fis25] and are discussed
extensively in [Bre01]. A more flexible alternative is to model variance components as
random effects in LMEMs (2.2 for more details). One can immediately see that the
probabilistic version of (3.3) is an LMEM just by applying familiar notation to it:

YSR = µ︸︷︷︸
=:β0

+(MS − µ)︸ ︷︷ ︸
=:bS

+(MR − µ)︸ ︷︷ ︸
=:bR

+(YSR − µS − µR + µ)︸ ︷︷ ︸
=:ϵ

. (3.7)

where

b =

[
bR

bS

]
∼ N (

[
0

0

]
,

[
σ2
R 0

0 σ2
S

]
),

ϵ ∼ N (0, σ2
residual).

β0 denotes the intercept and is the only fixed effect of the model. bS and bR are random
effects corresponding to sentences and raters. Such a model is called a random effects only
model in the LMEM literature. Nevertheless, we can use the same estimation techniques
to get estimates of σ2

R, σ2
S, and σ2

residual.
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3.4.2 VCA based Reliability Coefficients

The final step to a model-based approach to reliability is the definition of a coefficient that
puts the important variance component in relation instead of inspecting it in isolation.
The key concept is the intra-class correlation coefficient (ICC), dating back to [Fis25].
A fundamental interpretation of the ICC is as a measure of the proportion of variance
attributable to the objects of measurement. The name of the coefficient is derived from
the goal of measuring how strongly objects in the same class are related. The coefficient is
computed as the variance ratio between objects of interest σ2

B to the total variance σ2
total.

The latter includes variance within objects of interest σ2
W , or simply undifferentiated

residual variance σ2
ϵ :

ICC =
σ2
B

σ2
total

=
σ2
B

σ2
B + σ2

W

=
σ2
B

σ2
B + σ2

ϵ

. (3.8)

For instance, assume that the measurement objects are machine-translated sentences
in machine translation human-based quality judgments. An annotation is considered
reliable if most of the variance observed among annotations is explained by variance
between sentences and not by variance between raters (within sentences), caused by
inconsistencies of human annotators, or by residual variance due to unaccounted facets
of the measurement procedure. Hence, variance attributable to the measurement objects,
here sentences, should dominate the decomposition.

To quantify the components σ2
B and σ2

W = σ2
ϵ from the obtained experimental data,

we fit an appropriate version of an LMEM to estimate the variance due to the objects of
interest and optionally for various facets. In the context of data annotation, Brennan’s
[Bre01] approach is first to estimate variance components from initial experimental
observations and then to use these estimates to optimize the design of the measurement
procedure further for final use.13 The primary optimization technique is to "average over
facets", e.g., instead of assigning the quality rating of a single annotator to a machine-
translated scenting, one assigns the average rating of nr raters as the quality score. The
second step of Brennan’s workflow is primarily interesting for data annotation and only
of minor importance to our more critical use-case of algorithm performance analysis.
Nevertheless, when we adapt Brennan’s ideas to algorithm performance analysis, we will

13[Bre01] calls the first a generalization study (or G-study) associated with a universe of admissible
observations, and the second a decision study (or D-study) associated with a universe of generalization.
We will not use this terminology to avoid confusion with the terms "generalization" and "decision"
in machine learning.
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remember that nX = 1 for all X in every presented formula.
Let us consider the two-facet fully crossed design with the objects of interest being

sentences s and measurement facets for rater r and instance i. Furthermore, let nr denote
the number of raters and ni the number of instances. [Bre01] interprets total variance
as the variance between objects of interest, here σ2

s , plus the absolute error variance σ2
∆

that includes variance components for all facets and interactions, except σ2
s :

σ2
∆ =

σ2
r

nr

+
σ2
i

ni

+
σ2
sr

nr

+
σ2
si

ni

+
σ2
ri

nrni

+
σ2
residual

nrni

. (3.9)

[Bre01] then defines an absolute reliability coefficient Φ14 that relates the variance
between objects of interest σ2

s to the total variance:

Φ =
σ2
s

σ2
s + σ2

∆

. (3.10)

In the algorithm performance analysis where nX = 1 for all X, the denominator of
(3.10) equals the total variance of the performance metric. Thus now we can define the
following reliability coefficient for algorithm performance:

Definition 3.5 (Algorithm Performance Reliability Coefficient).
Assume meta-parameters h1, h2, . . . , hH and selected interactions between meta-parameters
hihj. Then we call φ, computed by the ratio of substantial variance attributable to inputs
σ2
s to the total variance of evaluation metric σ2(Y ), the performance reliability of an

algorithm.

φ :=
σ2
s

σ2(Y )
=

σ2
s

σ2
s + σ2

∆

where σ2
∆ =

∑
σ2
fi
+
∑

σ2
hihj

+ σ2
residual.

A desired property of φ is its invariance versus the LMEM used to estimate σ2
S from

the evaluation data collected during a machine learning experiment. I will show that this
14[Bre01] calls this coefficient the "index of dependability". We will not use this naming in the following.

He also introduces a relative reliability coefficient that is based on a relative error variance σ2
δ =

σ2
sr

nr
+

σ2
si

ni
+

σ2
residual

nrni
that only sums up variance components interacting with the items of interest.

[Bre01] denotes this coefficient by Eρ2 and calls it "generalizability coefficient". The relative reliability
coefficient focuses on the stability of the relative ordering of objects of interest. In contrast, the
absolute reliability coefficient focuses on the homogeneity of absolute performance scores for objects
of interest across measurement instances. In the experiments presented in this chapter, we will focus
on the absolute reliability coefficient.
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is always the case because the evaluation data is an instance of a partially crossed exper-
imental design, which is sufficient to guarantee that σ2

s can be estimated independently
of all other meta-parameter variance components. Thus it doesn’t matter how detailed
the variance of an experiment is decomposed, the estimated number for σ2

S and thus φ
will be the same.

I will formalize the argument following the notation and parlance of [SCM92]. In this
framework, variables that we called facets so far are termed factors, and their manifes-
tations are called levels. Typically factors are used to specify a systematic structure in
the data. The extent to which different levels of a factor affect the dependent variable
is called the effect of a level of a factor on the response. Effect estimators are often
obtained via the maximum likelihood principle. Let us focus on the effect estimator σ2

S.
To describe the structure of the data obtained by an experiment, we define the following
terms:

Definition 3.6 (Crossed and Balanced Design).
A factor is called crossed if all its levels are observed with all combinations of factor levels
of the other factors realized in the experiment An experimental design is called partially
crossed if at least one factor is crossed and fully crossed if all factors are crossed. An
experimental design is balanced if the number of observations is the same for all factor
combinations realized in an experiment.

Now, let us take a step back and looking how the evaluation data is generated. The
experimenter obtains a collection of models by retraining an algorithm following his
meta-parameter grid; then, he evaluates all the models on the test set. Thus each test
set input is evaluated by all models and hence by all meta-parameter level combinations.
Therefore, the factor test set input S is crossed. The design is balanced because every
model (equivalent to meta-parameter configuration) is applied to all test set inputs.

The following proposition establishes the desired property.

Proposition 3.1 (Invariance of φ.).
The variance component of the factor test set input σ2

S can be estimated irrespectively of
all other meta-parameter variance components used to analyze the observed evaluation
data variance obtained of an machine learning experiment.

Proof. In order to proof this assertion, we will derive the sum-of-squares based variance
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component estimators for the special case of a two factor fully crossed balanced design15.
In contrast to the maximum likelihood estimator introduced in 2.2 this estimator has an
analytic solution allowing us to immediately verify our claim. Because both estimators are
consistent16 under the discussed model, the result also holds asymptotically for maximum
likelihood estimator.

We start our argument by restating the discussed model using the parlance introduced
in this section:

YSH = β0 + bS + bH + ϵSR (3.11)

where

b =

bRbS
ϵ

 ∼ N (

00
0

 ,
σ

2
S 0 0

0 σ2
H 0

0 0 σ2
residual

)
and ysh denotes the observed evaluation metric for the test sentence s = 1, . . . , n and
the model trained with hyper-parameter value h = 1, . . . ,m. We further assume that the
n sentences and m hyper-parameter values are independent samples from all possible
appropriate test sentences and hyper-parameter values. Because we evaluate every test
sentence for every model we realize a two factor fully crossed balanced design, allowing us
to decompose the total sum-of-squares (SST ) into the three components SSS (depends
only on s), SSH (depends only on h) and the residual sum-of-squares (SSR):

n∑
s=1

m∑
h=1

(ysh − ȳ..)
2

︸ ︷︷ ︸
=:SST

= m
n∑

s=1

(ȳs. − ȳ..)
2

︸ ︷︷ ︸
=:SSS

+n
m∑

h=1

(ȳ.h − ȳ..)
2

︸ ︷︷ ︸
=:SSH

+
n∑

s=1

m∑
h=1

(ysh − ȳs. − ȳ.h + ȳ..)
2

︸ ︷︷ ︸
=:SSR

15This limitation is only for convenience and doesn’t narrow the substance of the proof. An extension
of the presented argument to larger designs can be found in [SCM92].

16Consistency is a general property of maximum likelihood estimators (see for instance [Vaa98]). Sum-
of-Squares are essentially second moments of random variables. Under mild technical restrictions
satisfied by the discussed model the Law of large numbers applies to them.
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where

ȳ.. :=
1

nm

n∑
s=1

h∑
h=1

ysh
3.11
= β0 +

1

n

n∑
s=1

bs︸ ︷︷ ︸
=:S̄

+
1

m

m∑
h=1

bh︸ ︷︷ ︸
=:H̄

+
1

nm

n∑
s=1

m∑
h=1

ϵsh︸ ︷︷ ︸
=:ϵ̄..

ȳs. :=
1

m

m∑
h=1

ysh
3.11
= β0 + bs + H̄ +

1

m

m∑
h=1

ϵsh︸ ︷︷ ︸
=:ϵ̄s.

ȳ.h :=
1

n

n∑
s=1

ysh
3.11
= β0 + S̄ + bh +

1

n

n∑
s=1

ϵsh︸ ︷︷ ︸
=:ϵ̄.h

Using this equalities SSS, SSH and SSR can be expressed as:

SSS = m
n∑

s=1

[
(bs − S̄) + (ϵ̄s. − ϵ̄..)

]2
SSH = n

m∑
h=1

[
(bh − H̄) + (ϵ̄.h − ϵ̄..)

]2
SSR =

n∑
s=1

m∑
h=1

(ysh − ȳs. − ȳ.h + ȳ..)
2

Let us now focus on SSS and calculate its expectation:

E [SSS] = m
n∑

s=1

E

[(bs − S̄)︸ ︷︷ ︸
=:bcs

+(ϵ̄s. − ϵ̄..)︸ ︷︷ ︸
=:ϵ̄cs.

]2


By assumption E[bcs] = 0, E[ϵ̄cs.] = 0 and bcs and ϵ̄cs. are stochastically independent,
therefore:

E [SSS] = m

n∑
s=1

V [bcs + ϵ̄cs.] = m

n∑
s=1

V [bcs] + V [ϵ̄cs.]

By assumption bs and ϵsh are both sampled iid, hence:

V [bcs] = V [bs] + V
[
S̄
]
− 2C

[
bs, S̄

]
=
n− 1

n
σ2
S

V [ϵ̄cs.] = V [ϵ̄s.] + V [ϵ̄..]− 2C [ϵ̄s., ϵ̄..] =
n− 1

nm
σ2
residual
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So that, we can finally see that

E [SSS] = (n− 1)(mσ2
S + σ2

residual).

Similar calculations for the expectations of SSH and SSR yield the following results:

E [SSH] = (m− 1)(nσ2
H + σ2

residual)

E [SSR] = (m− 1)(n− 1)σ2
residual

Replacing the expectation with the observed sum-of-squares yields the sum-of-squares
estimators for the variance components σ2

S, σ
2
H and σ2

residual. Obviously, the right hand
side of

σ̂2
S =

1

m

(
SSS

n− 1
− SSR

(m− 1)(n− 1)

)
contains no reference of σ̂2

H .□

In the following, I will illustrate applying the suggested techniques for data annotation
and algorithm performance. In the former case, I will analyze the reliability of machine
translation quality judgments obtained from human annotators. Facets of measurement
are human raters and repeated score instances of the same sentence and annotator.

In the second case, objects of measurement are test sentences to be translated by
an algorithmically generated machine translation system. The score is an automatic
evaluation metric (TER) comparing model outputs against gold standard references.
Facets of measurement are meta-parameters of the algorithm used to generate the machine
translation systems, properties of test sentences, and interactions between these factors.

The data for both examples were generated during a study conducted by [KBR20].
This study aimed to improve the performance of a pre-trained neural machine translation
system by using human translation quality judgments as supervision signals in fine-tuning.
They investigated two modes of human feedback. In the first mode, "Marking", human
raters mark erroneous words in the machine translation output (hypothesis) using an
annotation interface to highlight them. In the second mode, called "Post Edit", human
raters correct hypothesis by deleting, inserting, and replacing words or parts of words.
Nevertheless, the fraction of changed tokens of a hypothesis was calculated, and this
correction rate was used to quantify the translation quality. Thus a lower score reflects
a better translation. Each of the ten human raters annotated a subset of five example

78



3.4 Bridging the Gap: Model-based Reliability Analysis

sentences three times to assess the reliability of data annotation. We will study the
reliability of user feedback on these data. For reasons of efficiency and cost, the data
annotation for the subsequent fine-tuning process –repeated several times with different
meta-parameter configurations– was designed so that every hypothesis was annotated
by another user, and no user saw the same hypothesis twice.

3.4.3 Data Annotation Analysis

A first impression of the reliability of the annotation procedure used by [KBR20] is
given by Figure 3.2. We see that the same hypothesis tendentially receives a greater
quality score for "Post Edit" annotations than for "Marking" annotations from the same
rater and that the ratings are very homogeneous for most raters and hypotheses. It is
worth noting that the spread of quality scores assigned to the sentences is much larger
for "Post Edit" than for "Marking" based judgments. Let us now conduct a model-
based reliability study for these data. The experiment design is a two-facet fully crossed
design with a variance component for sentences s (hypothesis), raters r, instantiations i,
and interactions sr, si, and ri. To analyze the obtained data from this experiment, we
decompose the variance of the quality judgments Y according to the following model:

Y = β0 + bs + br + bi + bsr + bsi + bri + ϵ, (3.12)

Where µ = β0 is the intercept (grand mean) and



bs

br

bi

bsr

bsi

bri


∼ N (



0

0

0

0

0

0


,



σ2
s 0 0 0 0 0

0 σ2
r 0 0 0 0

0 0 σ2
i 0 0 0

0 0 0 σ2
sr 0 0

0 0 0 0 σ2
si 0

0 0 0 0 0 σ2
ri


),

ϵ ∼ N (0, σ2
residual).

The estimated variance components for "Marking" based quality scores are presented
in Table 3.1. The reliability score ϕ = 12% (shown in the first line percent column) and
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Figure 3.2: Sentence-wise quality judgment score computed as the ratio of marked or
edited words per sentence, for 3 rating instantiations of 5 sentences by each
of 10 raters.

pictures that only 12% of the variance can be attributed to variations between sentences
(objects of measurement) and an overwhelming 88% must be attributed to nuisance
factors of the procedure. The decomposition shows that a large fraction σ2

r = 14.2% of
measurement variation can be attributed to different marking styles of raters, and style
differences are not uniform across sentences, as seen by σ2

rs = 16.1%. The contribution
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Table 3.1: Variance components in translation marking experiment.

Component Variance Percent

sentence s 0.0030 12.0
rater r 0.0036 14.2
instantiation i 0.0000 0.0
interaction sr 0.0041 16.1
interaction si 0.0000 0.0
interaction ri 0.0000 0.0
residual 0.0145 57.6

Table 3.2: Variance components in translation post-editing experiment.

Component Variance Percent

sentence s 0.0479 60.4
rater r 0.0014 1.7
instantiation i 0.0000 0.0
interaction sr 0.0187 23.7
interaction si 0.0000 0.0
interaction ri 0.0006 0.8
residual 0.0106 13.4

of all other components is negligible. Thus a large amount of variance σ2
residual = 57.6%

can not be explained.
The variance component analysis for the "Post Edit" based quality judgments shown

in Table 3.2 yields an entirely different picture. The reliability is approximately five
times larger ϕ = 60.4% than for "Marking", and σ2

s is more significant than any other
component. We also see that the non-substantial fraction of variance mostly comprises
two components, namely σ2

sr = 23.7% and σ2
residual = 13.4%.

Based on the experimental findings, post-edit quality judgments are more reliable than
marking-based ones. But, according to the guidelines of [KL16], both procedures fail to
yield φ values between 75% and 90%, which qualifies as good reliability.

Besides just providing insights into the peculiarities of particular facets of measurement,
the above decomposition can also serve as a basis for designing an improved but still
implementable procedure. In concreto, we can reduce the variation attributable to a facet
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Figure 3.3: Reliability coefficient φ for data annotation performance in "Marking" or
"Post Edit" mode, generalized to 5 rating instantiations and 12 raters.

f by averaging over nf repeated measurements of the same object for different instances
of the facet. This fact is expressed in (3.9).

To find the best trade-off between implementation cost and reliability, we compute
the reliability coefficients for a grid of feasible implementations. Figure 3.3 shows the
reliability coefficients for quality judgments obtained when averaged over combinations
of ni = 1, .., 5 instantiations and nr = 1, .., 12 raters.

This study shows that the reliability of post-edit-based quality judgments can easily
be pushed to a satisfying level when we average quality judgments over 2 to 3 raters to
obtain the final score for a sentence and that it would require a tremendous and nearly
impracticable effort to do so for marking based quality ratings.

3.4.4 Algorithm Performance Analysis

Typical machine learning experiment evaluation reports state nothing more than a single
value of a metric for an algorithm. This score is usually found by selecting the best algo-
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Table 3.3: Meta-parameters values used in the basic fine-tuning experiment of neural ma-
chine translation model on human marking data in [KBR20]. For an extended
grid search, values in bold face are added.

Meta-parameter Grid values

learning_rate 0.0001 0.0003 0.0005 0.001
random_seed 42 43 44
encoder_dropout 0 0.2 0.4 0.6
decoder_dropout 0 0.2 0.4 0.6
decoder_dropout_hidden 0 0.2 0.4 0.6
delta_scheme (-0.5:0.5) (0:1)

rithm instance obtained by an extensive meta-parameter search (see [SGM19; Dod+19;
Tan+20; Hen+18; Luc+18] for a discussion). Such a practice confuses the concept of
an algorithm with an algorithm instance and discards a lot of information about an
algorithm created during the experiment. It is also insufficient for judging the perfor-
mance of an algorithm since it provides no insights about the performance homogeneity
under differing meta-parameter settings. In this section, I will show how the techniques
introduced in (2.2) can be used to:

• Quantify the performance homogeneity of an algorithm using the concept of relia-
bility.

• Assess the influence of meta-parameters on the performance homogeneity of an
algorithm.

I will also discuss how the results of these assessments change depending on the meta-
parameter grid guiding the meta-parameter search. Further, I will show how LMEMs can
incorporate data characteristics into this analysis. Such information is handy for machine
learning practitioners who can use it to reduce the size and time spent on meta-parameter
searches based on the characteristic of their data at hand.

As mentioned before, I will use the experiments on interactive machine translation by
[KBR20] to illustrate an algorithm performance analysis. For recapitulation, this study
aimed to use human markings and post-edits to improve a neural machine translation
system. To this end [KBR20] fine-tuned a baseline system17 based on this feedback.
17This system used is a encoder-decoder recurrent neural networks (RNNs) with attention [LPM15;

BCB15], 4 bi-directional encoder and 4 decoder layers with 1,024 units each, and embedding layers of
size 512 pre-trained on over 6 million parallel sentences, and fine-tuned on another 1,042 sentences.
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The following presentation will be limited to marking-based annotations. This algorithm
includes the following meta-parameters: Values of initial learning rate (learning_rate),
seed of random number generator (random_seed), probability of zeroing out hidden
connections during training of encoder (encoder_dropout), decoder (decoder_dropout),
and hidden layers of the decoder (decoder_dropout_hidden) and the scheme to weight
positive and negative markings in the training objective (delta_scheme). Ranges of
meta-parameter values are shown in Table 3.3. In their original study, Kreutzer et al.
considered only a subset of 27 of all possible combinations. I then trained the models
for the missing meta-parameter combinations to show how analysis results would differ
between a partial and a fully crossed design. I extended the grid to show the effect of
incorporating extremer meta-parameter values. I call these three meta-parameter grids:

• partial grid consisting of the original 27 instances trained by Kreutzer et al.

• full grid consisting of 324 instances for a fully crossed original grid

• extended grid consisting of 1536 instances for a fully crossed extended meta-parameter
grid

The evaluation set consists of 1,041 test sentences18(the objects of interest). The
evaluation data was generated by generating translations for this sentence using all
models and calculating the TER evaluation score [Sno+06] against references for each
translation.

Algorithm Performance Reliability and Meta-Parameter Importance

To obtain a variance decomposition that allows us to calculate φ and to assess the
importance of a meta-parameter, we have to specify a random-effects-only LMEM of the
following form:

18Note that two of the 1,043 test sentences reported in [KBR20] were duplicates that we removed in
our LMEM experiments.
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TER = β0 (3.13)

+ bs

+ blearning_rate

+ brandom_seed

+ bencoder_dropout

+ bdecoder_dropout

+ bdecoder_dropout_hidden

+ bdelta_scheme

+ ϵ

where

bs

blearning_rate

brandom_seed

bencoder_dropout

bdecoder_dropout

bdecoder_dropout_hidden

bdelta_scheme


∼ N (



0

0

0

0

0

0

0


,



σ2
s 0 0 0 0 0 0

0 σ2
l_r 0 0 0 0 0

0 0 σ2
r_s 0 0 0 0

0 0 0 σ2
e_d 0 0 0

0 0 0 0 σ2
d_d 0 0

0 0 0 0 0 σ2
d_d_h 0

0 0 0 0 0 0 σ2
d_s


),

ϵ ∼ N (0, σ2
residual).

Applying this model to the evaluation data for the partial grid yields results presented
in Table 3.4, the full grid yields results shown in Table 3.5, and the extended grid yields
results displayed in Table 3.6.

Comparing the partial and full grid results, we see that the estimated variance compo-
nents for sentences are numerically nearly identical in both cases φ > .9, indicating a very
homogeneous algorithm performance. A detailed look at the other variance components
shows that no individual meta-parameter dramatically influences the performance in
both cases. This finding suggests that Kreutzer et al. were able to use their accumulated
knowledge about the model architecture to steer the search towards instances with high
variation because all the additional samples of the full grid show similar performance to
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Table 3.4: Variance components in partial meta-parameter grid search for the basic fine-
tuning experiment of neural machine translation model on human marking
data in [KBR20].

Component Variance Percent

sentence s 0.0580 91.6
residual 0.0053 8.4
learning_rate 0.0008 0.0
decoder_dropout_hidden 0.0000 0.0
encoder_dropout 0.0000 0.0
random_seed 0.0000 0.0
decoder_dropout 0.0000 0.0
delta_scheme 0.0000 0.0

Table 3.5: Variance components in full meta-parameter grid search for the basic fine-
tuning experiment of neural machine translation model on human marking
data in [KBR20].

Component Variance Percent

sentence s 0.0584 91.7
residual 0.0053 8.3
learning_rate 0.0000 0.0
encoder_dropout 0.0000 0.0
decoder_dropout 0.0000 0.0
decoder_dropout_hidden 0.0000 0.0
random_seed 0.0000 0.0
delta_scheme 0.0000 0.0

instances already in the partial grid.
For the extended grid, we stretched the dropout values to 0, effectively turning off

the regularization effect of dropout and adding a rather large learning rate, possibly
introducing instability in training. Thus we expect a variance component analysis on
this extended grid to result in a lower reliability coefficient due to more heterogeneous
model performance, which should increase the fraction of non-sentence-related variance.
Indeed as shown in Table 3.6, we see that the variance corresponding to learning rate
and residual variance increase, while substantial variance slightly decreases, resulting in
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Table 3.6: Variance components in extended meta-parameter grid search for the basic
fine-tuning experiment of neural machine translation model on human marking
data in [KBR20].

Component Variance Percent

sentence s 0.0575 88.4
residual 0.0074 11.3
learning_rate 0.0001 0.2
decoder_dropout 0.0000 0.0
encoder_dropout 0.0000 0.0
decoder_dropout_hidden 0.0000 0.0
random_seed 0.0000 0.0
delta_scheme 0.0000 0.0

a lower but still good reliability of φ of 88.4%.
This example taught us that an experience-informed search over a partial meta-

parameter grid could yield a reasonably accurate picture of an algorithm’s performance
reliability. Nevertheless, omitting extreme meta-parameter values can cause a positively
biased estimate. Therefore I recommend that either the experimenter (often identical to
the algorithm creator) explicitly rule out these values in the definition of the algorithm
or include them in his (partial) grid.

If one is only interested in the determination of φ, an analysis based on the simpler
model:

TER = β0 + bs + ϵ (3.14)

where

bs ∼ N (0, σ2
s) and ϵ ∼ N (0, σ2

residual)

will yield identical estimates of φ due to Proposition 3.1 (see Table 3.7) for empirical
confirmation). The technical benefits of using this model are faster convergence and
increased numerical stability.

The quantification of meta-parameter importance by ANOVA-type techniques was
previously suggested by [HHL14; ZLH20]. I show how variance component analysis based
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Table 3.7: Variance components estimated using the minimal LMEM (3.14).

Grid Component Variance Percent

partial sentence s 0.0580 91.6
residual 0.0054 8.4

full sentence s 0.0584 91.7
residual 0.0053 8.3

extended sentence s 0.0575 88.4
residual 0.0075 11.6

on the random effects of an LMEM can be used for this purpose. This technique applies
to the data obtained for a wide range of meta-parameter search heuristics, e.g., the
standard practice of a meta-parameter search over an incomplete configuration space,
either guided by the experience of the modeler (see, for example, [Jia+19]), or by random
search over the configuration space (as suggested by [BB12]). In the next section, I will
demonstrate how this technique can be extended to incorporate a data x meta-parameter
interaction, which has yet to be proposed in the literature before.

Interactions between Meta-Parameters and Data Properties

The variance decomposition of the extended grid (presented in Table 3.6) indicates that
the meta-parameter learning rate has a minor but noticeable impact on the performance
of the classifier obtained from the algorithm. Thus a practitioner implementing this algo-
rithm should invest his search budget in algorithm runs that vary along this parameter.
The techniques presented in the following paragraphs can help improve the above guid-
ance by specifying promising meta-parameter value ranges given some algorithmically
determinable description or characterization of the data at hand.

I will exemplify this technique by augmenting the extended grid analysis of the pre-
vious section with an investigation that should answer whether source sentence length
moderates the observed effect of the meta-parameter learning rate. To this end, source
sentence length is divided into three bins of 1− 14, 15− 55, and > 55 words (see section
2.3 for details). In the first step, we modify the LMEM used so far to decompose the
variance of a metric by introducing nested random effects :
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Table 3.8: Variance components with nested random effect in extended meta-parameter
grid search for neural machine translation model fine-tuned on human marking
data [KBR20].

Component Variance Percent

sentence s 0.0562 86.7
residual 0.0074 11.3
learning_rate/sentence_length 0.0012 1.9

TER = β0 + bs + blearning_rate + blearning_rate,sentence_length︸ ︷︷ ︸
nested random effect: learning_rate/sentence_length

+ϵ (3.15)

where bsblearning_rate

blearning_rate,sentence_length

 ∼ N (

00
0

 ,
σ

2
s 0 0

0 σ2
lr

0

0 0 σ2
l_r,s_l

),

ϵ ∼ N (0, σ2
residual).

And let σ2
learning_rate/sentence_length := σ2

lr
+ σ2

l_r,s_l define the variance of the nested
random effect.

Let us take a moment reflecting the model. The only component we haven’t encountered
so far is blearning_rate,sentence_length, which denotes a random intercept for every possible
combination of learning rate and sentences. Thus the model augments the previous model
with a specific learning rate effect for every source sentence length, similar to interactions
of fixed effects. The variance decomposition results based on this model are displayed in
Table 3.8.

We see that the variance component for learning_rate/sentence_length accounts for
1.9% of the total variance, which is approximately ten times the proportion accounted to
learning_rate alone (see Table 3.6). 19 This surge signals a strong interaction between

19A careful comparison of both tables shows that the sentence variance sources the additional variance
of the nested component caused by sentence length, which introduces a grouping structure among
sentences. Hence we start to decompose this component. Nevertheless, this variance transfer only
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this meta-parameter and the data property input length.
The former analysis step has given us a macroscopic clue that the length of the input

sentences somehow moderates the effect of the learning rate on the algorithm performance.
To reveal the microscopic structure of this interaction, we need to rewrite some random
effects into fixed effects according to the following model20 where L is the value set of
learning rates used during grid search and S denotes the set of the three length classes:

TER =Learning_Rate + Sentence_Length +

interaction term︷ ︸︸ ︷
Learning_Rate x Sentence_Length︸ ︷︷ ︸

fixed effects

(3.16)

+ bs︸︷︷︸
random intercept

+ ϵ︸︷︷︸
error

where

Learning_Rate :=
∑
l∈L

βl · I{l} (learning_rate) ,

Sentence_Length :=
∑
s∈S

βs · I{s} (sentence_length) ,

Learning_Rate x Sentence_Length :=
∑
l∈L

∑
s∈S

βl,s · I{s} (sentence_length)

· I{l} (learning_rate)

bs ∼ N (0, σ2
s) and ϵ ∼ N (0, σ2

residual).

This model is structurally similar to model ((2.16) in section 2.3); therefore, we can
apply the same statistical inference techniques as described in section (2.2). Given our
interest in studying the microscopic structure of the interaction between learning rate

happens if substantial interaction with the meta-parameter exists. Further, it is also worthwhile to
realize that we have left the modeling paradigm given by the initial tautological decomposition (3.3).
Consequently, the component associated with sentences should not be interpreted as a reliability
coefficient.

20Note that this model doesn’t contain an intercept. In general, fitting a regression model without an
intercept is not advisable. But in the case of this model, which is only based on categorical regressors,
it is feasible to fit without an intercept. It is also possible to rewrite it into a form with an intercept.
But the notation of this form is more cumbersome. Moreover, inference based on these models yields
identical results. Thus I can present the model in this more convenient form.

90



3.4 Bridging the Gap: Model-based Reliability Analysis

Figure 3.4: Estimated expected translation edit rate (TER) for neural machine trans-
lation models trained for different learning rates and input sentence length
categories.

and sentence length, we must focus on statistical inference for the model’s Learning_Rate
x Sentence_Length interaction term. At first, we have to conduct an omnibus test for
Learning_Rate x Sentence_Length to test, which yielded a p-value of less than 0.0001.
Thus the observed empirical signal is strong enough to justify a present interaction as
displayed by the interaction plot in Figure (3.4). A Bonferroni-Holm corrected posthoc
test comparing all pairs of learning rates within a length class yields p-values less than
0.0001 for all of them. In general, smaller learning rates show better results than larger
ones for all possible inputs, and this gain increases with source sentence length. Thus
a machine learning practitioner applying Kreutzer et al. marking method to boost her
translation systems performance should spend his search budget on small learning rates,
especially when her use case involves longer sentences.

Discussion. The basic components of model-based algorithm performance analysis, in-
cluding reliability and meta-parameter influence quantification discussed in this chapter,
date back to Fisher’s [Fis25] statistical techniques for variance component analysis and
intra-class correlation coefficients. I replace ANOVA methods with modern LMEMs for
modeling and estimation [Woo17] and use refined analytic techniques from psychometrics
[Bre01] to show how annotation procedures can be optimized concerning reliability and
implementation cost. The psychometric literature includes further reliability measures,
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which are too plentiful to be covered here. Standard correlation-based reliability coeffi-
cients like split-half reliability or the Spearman-Brown formula (see [LN68]) or Cronbach’s
coefficient alpha [Cro51] can be reformulated as versions of ICCs (see [WSH06]), albeit
under variance-restricting conditions that do not seem applicable to either annotators or
algorithms. Widely known notions such as inter- or intra-rater reliability can be easily
expressed in an ICC-like form (see [Bre01]). For example, in fully crossed designs includ-
ing facets for raters r, instantiations i, and for interactions sr, si, and ri, with objects
of measurement being sentences s, intra-rater reliability is calculated by fixing the rater
facet to one rater and generalizing over instantiations, without averaging:

φintra−rater =
σ2
s + σ2

sr

σ2
s + σ2

sr + σ2
ri + σ2

residual

. (3.17)

Similar inter-rater reliability is obtained by fixing the instantiations to one and general-
izing over raters without averaging:

φinter−rater =
σ2
s + σ2

si

σ2
s + σ2

si + σ2
sr + σ2

residual

. (3.18)

However, these measures are formulated in terms of a relative reliability coefficient
which is informative when the measurement is used to rank subjects. In contrast, the
absolute reliability coefficients are informative when a measurement’s value is essential.
Thus I have based the definition of φ on this concept.

I have to admit that for the use-case of data annotation, there exists work based on
Bayesian data modeling [Pau+18; PC14] that allows a far more elaborated analysis of
factors like rater accuracy and behavior or sentence difficulty affecting the annotation
process.

Also, variance analytic techniques, often in an ANOVA-like form, have been applied
to information retrieval models [FS16; RK12; VSS17] and machine learning models in
general [HHL14; ZLH20; BB12]21. The former approaches focus on interactions between
search queries modeled as random effects and retrieval system components modeled
as fixed effects. The latter approaches focus on meta-parameter importance without
considering interactions between meta-parameter settings and test data properties. But
none of the mentioned approaches take advantage of the flexibility of LMEMs to model
meta-parameter variance by random effects.

21The only exception is [BB12] who apply Gaussian process regression.
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A distinctive feature of the proposed approach is the ICC-based idea of quantifying
reliability by the proportion of variance attributable to the objects of interest. This simple
reliability concept widely applies to algorithm performance analysis. It only requires that
the evaluation metric be computed per object (input) and that the test data exhibit
sufficient heterogeneity.

In NLP, sentence-level evaluation metrics are often preferred for the interpretability and
the ability to calculate sentence-level correlations with human judgments (see [Zha+20;
Rei+20] for recent examples). Well, the second condition is nearly always met in all
applications. For example, in NLP, high performance on heterogeneous test data is a
common requirement to assess the generalization ability of machine learning models in
machine translation [Bar+20].
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Chapter 4

Inferential Reproducibility

A typical research project in machine learning starts with optimizing a model on given
training data, tuning meta-parameters on development data, and ends with evaluating
the model using a standard automatic evaluation metric on benchmark test data. For
example, a neural machine translation project could use the train-dev-test split of a
benchmark parallel dataset provided at paperswithcode.com and claim a new SOTA
result if a performance difference in BLEU score of a commonly accepted magnitude
is achieved over the previous best score published on the leaderboard. By adding the
program code (and, if necessary, new data) and publicly sharing meta-parameter settings
(following reproducibility checklists1), the game can be re-opened to new competitors.
This train-dev-test paradigm has greatly fostered research progress in many areas, and
allows the researcher to happily focus on improving model performance.

Unfortunately, the party is spoiled by the inherent non-determinism of deep learning
that lurks behind randomness in weight initialization, dropout, data shuffling and batching
in non-convex optimization [Dau+14; DAm+20], non-determinism due to variations in
model architecture and meta-parameter settings [Luc+18; Hen+18], non-determinism
due to pre-processing variants and data splits [GB19; Søg+21], and non-determinism
due to differences in available computational budget [SGM19; Dod+19]. The problem
caused by non-determinism is that slight changes in training settings can reverse relations
between baseline and SOTA [RG17; MDB18].

A large body of work identifying similar problems of reproducibility in various machine
learning areas has led to claims of a "reproducibility crisis" in AI [Hut18], reverbating a
similar crisis in medical sciences [Ioa05]. On the one hand, this has led to considerable
efforts to foster reproducibility of SOTA benchmark results in various areas of machine

1See, for example, the checklists used at recent issues of NeurIPS (https://neurips.cc/public/
guides/PaperChecklist) or ACL (https://aclrollingreview.org/responsibleNLPresearch/).
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Chapter 4 Inferential Reproducibility

learning by raised standards of sharing data, code, and meta-parameter settings [Hei+21;
Pin+21; Luc+22]. On the other hand, [Dru09] very early posed the question whether
training reproducibility2— the duplication of a SOTA training result without any changes
— is actually interesting and worth having.

In this paper, we propose to embrace the inherent variability of deep learning, and
analyze what kind of inferences can be drawn about the strengths and weaknesses of a
SOTA model on data with varying characteristics, from models trained under different
meta-parameter settings, with the ultimate goal of an application of that model to new
data. Such a study falls under the umbrella of inferential reproducibility.3 [GFI16] define
it to refer to the drawing of qualitatively similar conclusions from either an independent
replication of a study or a reanalysis of the original study. For the case of machine learning,
this corresponds to a comparative evaluation of machine learning algorithms themselves,
by asking whether a SOTA model yields improvements over a baseline across different
settings of meta-parameters and across different characteristics of input data. Further-
more, we want to draw inferences about the sources of variation in model performance,
and about their interaction with data characteristics.

The main contribution of our paper is to show how to apply well-known statistical
methods to analyze inferential reproducibility. These methods are based on linear mixed
effects models (LMEMs) fitted to performance evaluation scores of machine learning algo-
rithms. First, we conduct a generalized likelihood ratio test (GLRT) to assess statistical
significance of performance differences between algorithms, while simultaneously acknowl-
edging for randomness in meta-parameters and data. A key feature is the possibility to
assess performance differences conditional on data properties. Second, we show how to
use variance component analysis (VCA) to facilitate a nuanced quantitative assessment
of the sources of variation in performance estimates. Lastly, we compute reliability coef-
ficient to assess the general robustness of the model by the ratio of substantial variance
out of total variance.

2The term was coined by [LÖ22] and corresponds to [Dru09]’s replicability.
3This term corresponds to [Dru09]’s reproducibility and was coined by [GFI16]. In order to avoid to

contribute further to the terminological confusion in this area (see [Ple18]), we stick to the terms
training reproducibility and inferential reproducibility in the following.
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4.1 A Scheme for Analyzing Inferential Reproducibility

Figure 4.1: Performance comparison between baseline (blue curve) and SOTA (red curve)
with respect to training reproducibility (best baseline versus best SOTA
result) and inferential reproducibility (comparison of estimated expected
performance under meta-parameter variation). Here relations are reversed if
meta-parameter variation is taken into account, requiring a closed look with
the magnifying glass of a reliability analysis.

4.1 A Scheme for Analyzing Inferential

Reproducibility

Figure 4.1 shows the distributions of performance evaluation scores of a baseline system
(blue curve) and a SOTA system (red curve). The depicted scenario is one where the best
evaluation result for the SOTA model is located in the long tail of the score distribution
and thus only found by extensive meta-parameter search. We define the assessment of
statistical significance of the difference of the best SOTA results against that of the best
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score of the baseline system as the task of training reproducibility. However, such a
test fails to assess the systematic aspect of comparing the machine learning algorithms
themselves. We define this to be the task of inferential reproducibility. This can be
achieved by a significance test on the system effect parameter of an LMEM that estimates
the means of the distributions of performance scores obtained under meta-parameter
variation of SOTA and baseline model, and can be conditioned on data properties. In
the depicted scenario, the relations between SOTA and baseline are reversed if meta-
parameter variation is taken into account. LMEMs allow us to conduct a deeper analysis
to quantify the sources of randomness and variability in performance evaluation. This is
done by a reliability analysis (shown by the magnifying glass) that analyzes the variance
contributed by meta-parameters and their interaction with data properties.

4.2 Linear Mixed Effects Models

A linear mixed effects model (LMEM) is an extension of a standard linear model that
allows a rich linear structure in the random component of the model, where effects other
than those that can be observed exhaustively (so-called fixed effects) are treated as
a random samples from a larger population of normally distributed random variables
(so-called random effects).

Given a dataset of N input-output pairs {(xn, yn)}Nn=1, the general form of an LMEM
is

Y = Xβ + Zb+ ϵ, (4.1)

where X is an (N × k)-matrix and Z is an (N × m)-matrix, called model- or design-
matrices (both are known), which relate the unobserved vectors β and b to Y. β is a
k-vector of fixed effects and b is an m-dimensional random vector called the random
effects vector. ϵ is an N -dimensional vector called the error component. The random
vectors are assumed to have the following distributions:

b ∼ N (0, ψθ), ϵ ∼ N (0,Λθ), (4.2)

where ψθ and Λθ are covariance matrices parameterized by the vector θ.
The most common application of LMEMs is to model complex covariance structures

in the data when the usual i.i.d. assumptions fail to be applicable. This is the case for
repeated or grouped, and thus non-independent, measurements such as multiple ratings
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of same items and same subjects in psycho-linguistic experiments. LMEMs have become
popular in this area due to their flexibility [BDB08; Bat+15], and have even been credited
as candidates to replace ANOVA [Bar+13]. The price for this flexibility is an elaborate
estimation methodology for which we refer the reader to further literature [PB00; MS01;
WWG07; Dem13; Woo17].

4.3 Generalized Likelihood Ratio Tests w/ and w/o

Measurement Variation

Let us assume our goal is to test the statistical significance of an observed performance
difference between a baseline and a SOTA system. For the sake of concreteness, let us
assume we are comparing Natural Language Processing (NLP) models on a benchmark
test set of gold standard sentences. In order to conduct a generalized likelihood ratio
test (GLRT) for this purpose, we need to fit two LMEMs on the performance evaluation
data of baseline and SOTA system which analyze the data differently, and compare their
likelihood ratio. Let us further assume an experimental design where variants of the
baseline and SOTA models, corresponding to different meta-parameter configurations
during training, are evaluated on the benchmark data. Simple linear models are a subop-
timal choice to analyze this experiment since they are based on the assumption that each
system was evaluated once on a disjoint set of sentences. This would force us to average
over variants, thereby losing useful information contained in the clusters of repeated
measurements of the same test input.

LMEMs allow us to better reflect this design and to leverage its statistical benefits
by adding a random effect bs for each sentence in our evaluation model. Such a model
decomposes the total variance of the evaluation score into three blocks: systematic
variance due to the fixed effects of the model, variance due to sentence heterogeneity,
and unexplained residual variance. This allows us to reduce the as of yet unaccounted
residual variance by attributing a variance component σ2

s to variance between sentences.
If we think of the residual error as noise that masks the signal of measured performance
scores, we can effectively perform a noise reduction that increases the power of our tests
to detect significant differences.

A straightforward technique to implement statistical significance tests using LMEMs
is the so-called nested models setup [PB00]. First we train an LMEM that doesn’t
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distinguish between systems. This restricted model

m0 : Y = β + bs + ϵres (4.3)

specifies a common mean β for both systems as fixed effect, and a sentence-specific
deviation bs as random effect with variance σ2

s , and a residual error ϵres with variance
σ2
res for the performance scores Y . It represents the null hypothesis that there is no

difference between systems. This model is compared to a more general model that allows
different means for baseline and SOTA scores:

m1 : Y = β + βc · Ic + bs + ϵres (4.4)

This model includes an indicator function Ic to activate a fixed effect βc that represents
the deviation of the competing SOTA model from the baseline mean β when the data
point was obtained by a SOTA evaluation. The restricted model is a special case of this
model (thus "nested" within the more general model) since it can be obtained by setting
βc to zero. Let ℓ0 be the likelihood of the restricted model, and ℓ1 be the likelihood of
the more general model, the intuition of the likelihood ratio test is to reject the null
hypothesis of no difference between systems if the statistic

λ =
ℓo
ℓ1

(4.5)

yields values close to zero.
The incorporation of a random sentence effect bs introduces a pairing of systems on

the sentence level that corresponds to standard pairwise significance tests. However,
clustering at the sentence level allows accounting for arbitrary kinds of uncertainty
introduced by the random nature of the training process. This setup is thus not only
suitable for pairwise comparisons of best baseline and best SOTA model in order to test
training reproducibility, but it also allows incorporating broader variations induced by
meta-parameter settings of baseline and SOTA systems, thus making it suitable to test
inferential reproducibility.

A further distinctive advantage of GLRTs based on LMEMs is that this framework
allows analyzing significance of system differences conditional on data properties. For
example, we could extend models m0 and m1 by a fixed effect βd modeling a test data
property d like readability of an NLP input sequence, or rarity of the words in an
input sequence, and by an interaction effect βcd allowing to assess the expected system
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performance for different levels of d. The enhanced model

m′
1 : Y = β + βd · d+ (βc + βcd · d) · Ic + bs + ϵres (4.6)

would then be compared to a null hypothesis model of the form

m′
0 : Y = β + βd · d+ bs + ϵres. (4.7)

GLRTs belong to the oldest techniques in statistics, dating back to [NP33; Wil38].
For more information on extensions of GLRTs for multiple comparisons and on their
asymptotic statistics we refer the reader to further literature [Vaa98; PB00; Paw01;
Dav03; LM12].

4.4 Variance Component Analysis and Reliability

Coefficients

The main goal of a reliability analysis in the context of a reproducibility study is to
quantify and analyze the sources of randomness and variability in performance evaluation,
and to quantify the robustness of a model in a way that allows to draw conclusions
beyond the concrete experiment. The first goal can be achieved by performing a variance
component analysis (VCA). For example, let us assume we want to specify a model for
performance evaluation scores that besides a global mean µ specifies random effects to
account for variations in the outcome Y specific to different sentences s and specific
to different settings of a regularization parameter r. A tautological decomposition of
the response variable into the following four components can be motivated by classical
ANOVA theory [SCM92; Bre01]:

Y = µ+ (µs − µ) + (µr − µ) + (Y − µs − µr + µ). (4.8)

The components of the observed score Y for a particular regularization setting r on a
single sentence s are the grand mean µ of the observed evaluation score across all levels
of regularization and sentences; the deviation νs = (µs − µ) of the mean score µs for a
sentence s from the grand mean µ; the deviation νr = (µr − µ) of the mean score µr for
a regularization setting r from the grand mean µ; and the residual error, reflecting the
deviation of the observed score Y from what would be expected given the first three terms.
Except for µ, each of the components of the observed score varies from one sentence to
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another, from one regularization setting to another, and from one regularization-sentence
combination to another. Since these components are uncorrelated with each other, the
total variance σ2(Y − µ) can be decomposed into the following variance components :

σ2(Y − µ) = σ2
s + σ2

r + σ2
res, (4.9)

where σ2
s and σ2

r denote the variance due to sentences and regularization settings, and
σ2
res denotes the residual variance component including the variance due to interaction

of s and r.
Let νf = µf − µ denote a deviation from the mean for a facet4 f whose contribution

to variance we are interested in. Instead of estimating the corresponding variance compo-
nents σf by ANOVA expected mean square equations, we use LMEMs to model each νf
as a component of the random effects vector b in (4.2), and model each corresponding
variance component σ2

f as an entry of the diagonal variance-covariance matrix ψθ in (4.2).
Besides greater flexibility in estimation5, LMEMs also allow analyzing the interaction of
meta-parameters and data properties. This can be achieved, for example, by changing
the random effect br to a fixed effect βr, and by adding a fixed effect βd modeling test
data characteristics, and an interaction effect βrd modeling the interaction between data
property d and choice of meta-parameter r.

The final ingredient of a reliability analysis is the definition of a coefficient that relates
variance components to each other, instead of inspecting them in isolation. The key
concept is the so-called intra-class correlation coefficient (ICC), dating back to [Fis25]. A
fundamental interpretation of the ICC is as a measure of the proportion of variance that is
attributable to substantial variance, i.e., to variance between the objects of measurement.
The name of the coefficient is derived from the goal of measuring how strongly objects in
the same class are grouped together in a measurement. Following [Bre01], we can define
a concrete reliability coefficient, denoted by φ, for our application scenario. In our case,
objects of interest are test sentences s, and substantial variance is variance σ2

s between
sentences. Assume facets f1, f2, . . . and selected interactions sf1, sf2, f1f2, . . . . Then the

4In the psychometric approach to reliability of [Bre01], the conditions of measurement that contribute
to variance in the measurement besides the objects of interest are called facets of measurement. In
our running NLP example, the objects of interest in our measurement procedure are the sentences.
They are the essential conditions of measurement. The only facet of measurement in this example
are the regularization settings, while the objects of interest are not usually called a facet.

5Among the many advantages of using LMEMs to estimate variance components is that the same
model structure can be used for designs that are special cases of the fully crossed design, and the
elegant handling of missing data situations. See [BDB08; Bar+13; Bat+15] for further discussions
on the advantages of LMEMs over mixed-model ANOVA estimators.
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reliability coefficient φ is computed by the ratio of substantial variance σ2
s to the total

variance, i.e., to itself and the error variance σ2
∆ that includes variance components for

all random effects and selected interactions of random effects:

φ =
σ2
s

σ2
s + σ2

∆

, where σ2
∆ = σ2

f1
+ σ2

f2
+ . . .+ σ2

sf1
+ σ2

sf2
+ . . .+ σ2

f1f2
+ · · ·+ σ2

res.

(4.10)

Based on this definition, reliability of a performance evaluation across replicated mea-
surements is assessed as the ratio by which the amount of substantial variance outweighs
the total error variance. That is, a performance evaluation is deemed reliable if most
of the variance is explained by variance between sentences and not by variance within
a sentence, such as variance caused by random regularization settings or by residual
variance due to unspecified facets of the measurement procedure. Naturally, different
assumptions on thresholds on this ratio will lead to different assessments of reliability.
A threshold of 80% is used, for example, by [Jia18]. Values less than 50%, between 50%

and 75%, between 75% and 90%, and above 90%, are indicative of poor, moderate, good,
and excellent reliability, respectively, according to [KL16].

VCA and ICCs date back to the works of [Fis25]. More information can be found in
[SF79; SCM92; MW96; Bre01; WSH06].

4.5 A Worked-Through Example

We exemplify the introduced methodes by an NLP example6, namely BART+R3F fine-
tuning algorithm presented by [Agh+21] for the task of text summarization, evaluated
on the CNN/DailyMail [Her+15] and RedditTIFU [Kim+19] datasets.

BART+R3F was listed as SOTA on these datasets at the time of writing. It uses an
approximate trust region method to constrain updates on embeddings f and classifier
g during fine-tuning in order not to forget the original pre-trained representations. This
is done by minimizing a task loss L(θ) regularized by the Kullback-Leibler distance on
normally or uniformly distributed parameters:

L(θ) + λKLsym(g · f(x)||g · f(x+ z)) s.t. z ∼ N (0, σ2I) or z ∼ U(−σ, σ). (4.11)

The first question we want to answer is that of training reproducibility – is the result

6This example can be found on paperswithcode.com open resource.
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Table 4.1: Text summarization results (Rouge-1/2/L) for baseline (BART) and SOTA
(BART+R3F) reported in [Agh+21].

CNN/DailyMail RedditTIFU

baseline 44.16/21.28/40.90 24.19/8.12/21.31
SOTA 44.38/21.53/41.17 30.31/10.98/24.74

Table 4.2: Significance of result difference baseline-SOTA on CNN/DailyNews.

baseline SOTA p-value effect size

Rouge-1 44.09 44.41 < 0.0001 −0.101
Rouge-2 21.13 21.44 < 0.0001 −0.080
Rouge-L 40.81 41.16 < 0.0001 −0.105

difference between baseline and new SOTA reproducible on the data7 and the code8 linked
on the repository, and under the meta-parameter and preprocessing setup reported in
the paper. As baseline we take a pre-trained BART-large9 model [Lew+20]. The Rouge-
1/2/L10 [LH03] results for the text summarization task reported in [Agh+21] are shown
in Table 4.1.

Let us first look at the results on the CNN/DailyMail dataset. The paper gives detailed
meta-parameter settings for the text summarization experiments, but reports final results
as maxima over training runs started from 10 unknown random seeds. Furthermore, the
regularization parameter is specified as a choice of λ ∈ [0.001, 0.01, 0.1], and the noise
type as a choice from [U ,N ]. Using the given settings, we started the BART+R3F code
from 5 new random seeds and the BART-large baseline from 18 random seeds on 4 Nvidia
Tesla V100 GPUs each with 32 GB RAM and a update frequency of 8. All models were
trained for 20-30 epochs using a loss-based stopping criterion. Searching over the given
meta-parameter choices, we obtained a training reproducibility result given in Table 4.2:
We find significant improvements of the best SOTA model over the best baseline with
respect to all Rouge-X metrics (the difference baseline - SOTA is negative). However,
the effect sizes (standardized mean difference between evaluation scores) are small.

Let us next inspect significance conditional on data properties. We quantify properties

7https://github.com/abisee/cnn-dailymail, https://github.com/ctr4si/MMN
8https://github.com/facebookresearch/fairseq/tree/main/examples/rxf
9https://github.com/facebookresearch/fairseq/tree/main/examples/bart

10We used the module files2rouge (v2.1.0 downloaded April 2022) with default parameters to calculate
Rouge-1/2/L scores. This module provides a wrapper function for the ROUGE-1.5.5 perl script
released by [LH03].
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Figure 4.2: Interaction of Rouge-2 of baseline (solid) and SOTA (dashed) with readability
(left) and word rarity (right).

of summarization inputs by word rarity [Pla+19], i.e., the negative logarithm of the
empirical probabilities of words in summary inputs, where higher values mean higher
rarity. Furthermore, we calculate readability [Kin+75] of summary inputs by calculating
the ratio of words/sentences and syllables/word. Readability scores are in principle
unbounded, however, an interpretion scheme exists for the range from 0 (difficult) to 100

(easy). An analysis of significance conditional on data properties can be seen as first step
of inferential reproducibility. The interaction plots given in Figure 4.2 show a significant
difference in performance slope for Rouge-2 with respect to ease of readability, where the
performance of the best SOTA system increases faster than that of the best baseline for
easier inputs (left plot). Also, a significant difference in Rouge-2 with respect to word
rarity is seen where the best SOTA model is better than the best baseline for inputs
with lower word rarity (right plot).

The next question of inferential reproducibility is whether the results given above
are robust against meta-parameter variations, and which meta-parameters are most
important in order to achieve the best result. We inspect the original grid of meta-
parameter configurations of the SOTA model, given by crossing the given choices of
meta-parameters with each other, yielding 3 λ × 2 noise distributions × 5 random seeds
= 30 configurations. As shown in Table 4.3, the relations between SOTA and baseline
are turned around (the difference baseline - SOTA is positive) showing significant wins
of baseline over SOTA at medium effect size.

Since the performance variation of the baseline model over 18 random seeds was
negligible (standard deviations < 0.2% for Rouge-X scores), we conduct a reliability
analysis of the SOTA model in order to reveal the culprit for this performance loss. The
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Table 4.3: Significance of baseline-SOTA on CNN/DailyNews under meta-parameter vari-
ation.

baseline SOTA p-value effect size

Rouge-1 44.15 42.21 < 0.0001 0.390
Rouge-2 21.26 19.64 < 0.0001 0.301
Rouge-L 40.84 38.53 < 0.0001 0.531

Table 4.4: Variance component analysis for Rouge-1 (top), Rouge-2 (middle), and Rouge-
L (bottom) estimates.

Variance component v Variance σ2
v Percent

summary_id 0.00923 55.8
lambda 0.00254 15.0
random_seed 0.00012 0.7
noise_distribution 0.00005 0.3
residual 0.00464 27.1

summary_id 0.00992 62.7
lambda 0.00131 8.3
random_seed 0.00008 0.5
noise_distribution 0.00003 0.2
residual 0.00449 28.3

summary_id 0.00875 47.9
lambda 0.00519 28.4
random_seed 0.00004 0.2
noise_distribution 0.00001 0.1
residual 0.00428 23.4

variance component analysis in Table 4.4 shows that the variance contributions due to
variation in random seeds or choice of noise distribution are negligible. However, in all
three cases the largest contribution to variance is due to the regularization parameter
λ. The percentage of variance due to objects of interest, here summaries, can readily
be interpreted as reliability coefficient φ, yielding moderate reliability for performance
evaluation under Rouge-1 and Rouge-2 (φ between 50% and 75%) and poor reliability
for evaluation under Rouge-L (φ below 50%).

An inspection of the interaction of data properties with the regularization parameter is
given in Figure 4.3. The interaction plots show a significant drop in Rouge-2 performance
of the SOTA model for the regularization parameter λ = 0.1 across all levels of reading
ease (top plot) and for rare words (bottom plot).
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Figure 4.3: Interaction of Rouge-2 of SOTA for different values of regularization param-
eter λ with readability (left) and word rarity (right).

Let us inspect the results on the RedditTIFU dataset next. These data are inter-
esting since they are much harder to read (mean readability score of −348.9), how-
ever, a reproducibility analysis on the RedditTIFU dataset was hampered by the fact
that the train/dev/test split for RedditTIFU data (long version) was not given on
paperswithcode.com nor reported in the paper or the code. We used the split11 provided
by [Zho+20] instead. Under this data split, we found a significant improvement of the
best SOTA over the best baseline at a small effect size (−0.155) only for Rouge-2. If meta-
parameter variation was taken into account, the effect size was even smaller (−0.0617).
There were no significant interaction effects and neglible variance contributions from
meta-parameters.

In sum, this small study allows a nuanced assessment of the strengths and weaknesses of
the BART+R3F model: Losing or winning a new SOTA score strongly depends on finding
the sweet spot of one meta-parameter (here: λ), while the paper’s goal was explicitly to
reduce instability across meta-parameter settings. Performance improvements by fine-
tuning are achieved mostly on easy-to-read and frequent-word inputs – these comprise
less than one quarter of the CNN/Dailynews data. Lastly, the model does not seem to be
robust against variations in data – under a new random split on RedditTIFU the large
gains reported for the split used in the paper can no longer be achieved.

11https://paperswithcode.com/sota/text-summarization-on-reddit-tifu
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4.6 Related Work

Discussions of reproducibility problems in research date back at least to [Ioa05], and for
the area of machine learning at least to [Han06]. Since then, a multitude of papers has
been published on new aspects of the problem and new exemplifications, however, much
less work has been invested in concrete techniques to solve the problem.

For example, special-purpose significance tests have been proposed for particular eval-
uation metrics ([Dro+20], Chapter 3), for meta-parameter variations [DSR19], and for
multiple test data [Dro+17]. One advantage of the proposed LMEM-based approach is
that it unifies these special-purpose techniques into a single framework for hypothesis
testing. Furthermore, extensions of bootstrap [Sel+21; Bou+21] or permutation [Cla+11]
tests have been proposed to incorporate meta-parameter variation. The distinctive ad-
vantage of our approach is that it enables analyzing significance of result differences
conditional on data properties. These can be generic data properties like readability as
above, or properties of combined datasets obtained from different sources like data splits,
bootstrapped data, or different-domain data sets.

Variance component analysis based on ANOVA techniques has been applied to infor-
mation retrieval models [FS16; VSS17] and machine learning models in general [HHL14;
ZLH20]. These approaches focus on meta-parameter importance and ignore an incorpo-
ration of data variability into their analysis. We replace ANOVA methods by LMEMs
for modeling and estimation [Woo17] and promote the ICC-based idea of quantifying
reliability by the proportion of variance attributable to the objects of interest, which to
our knowledge has not been applied to machine learning before.

From a broader perspective, our work can be seen as a contribution to trustworthi-
ness [Hua+20] and interpretability [Zha+21] of deep neural networks, with a focus on
understanding variability in the performance of a neural network depending on data
characteristics, meta-parameter settings, and their interactions.

4.7 Discussion

Widely recognized work by statisticians has proposed to abandon statistical significance
testing, at least its role in screening of thresholds and as guarantor of reproducibility,
but instead to report continuous p-values, along with other factors such as prior evidence
[GL14; Col17; McS+19]. Our proposed use of GLRTs, VCA and ICCs aligns with these
recommendations. Our focus is to use them as analysis tools of model performance under
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different meta-parameter settings, dependent on characteristics of data, and to detect the
sources of variance and their interactions with data properties. This allows us to address
questions of genuine interest to researchers and users like "Will the SOTA algorithm’s
stellar performance on the benchmark testdata lead to top performance the kinds of
datasets that my customers will bring?", or more specifically "How will individual test
example characteristics or particular meta-parameter settings, and their interaction with
data properties, affect performance?" Our methods are readily applicable to performance
evaluation data already obtained during meta-parameter optimization. They allow us
to transform this usually unused data into new findings about algorithm behavior. We
believe that they will be especially useful for large-scale experiments where a manual
inspection of variance due to interactions of large numbers of meta-parameters and data
properties is prohibitive.
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Concluding Remarks

The statistical methods presented in this work greatly enhance the scope of conclusions
drawn from a machine learning experiment. Instead of discarding most of the information
created during an investigation for the evaluation, as done for most research following the
current de facto standard, the proposed techniques can leverage all the data produced
for a more elaborated and empirically grounded algorithm analysis.

The basic approach to use established statistical methods successfully applied in a
wide range of empirical sciences and adapt them to facilitate a more principled analysis
of machine learning experiments is not new [Die98; Hot+05; Dro+17; DSR19; Dro+20;
Bou+21]. A common thread of all these attempts is the adaptation of particular signifi-
cance tests for group comparisons. A principle limitation of this approach is that these
tests can only incorporate one source of randomness (typically) due to data sampling.
Applied to contemporary deep learning experiments where the analyst is confronted
with several sources of randomness, e.g., sampled training, development and test data,
meta-parameters sampled from the meta-parameter space of the algorithm, the deliber-
ate introduction of randomness in the learning (optimization) process to facilitate and
improve it, these tests are bound to capture only one aspect of the actual variability.
Thus they allow only the analysis of very constrained experiments, thereby implicitly
limiting the scope of conclusion that can be drawn. A fact that is often ignored and never
made explicit.

Some authors [Bou+21] seem to be aware that limited experimental designs1 allow only
limited conclusions and advocates rightly that it is necessary to vary and include as many
aspects as possible in the analysis to get a comprehensive picture of an algorithm’s per-
formance. However, they failed to recognize that such a comprehensive design introduces

1To avoid confusion here, one should be aware that this term does not indicate the experimenter’s
actions. It characterizes only the principle structure of the data that enters the analysis.
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a non-negligible none-iid stochastic structure in the evaluation data. The iid violation is
a consequential problem because nearly all classical test construction principles, whether
parametric, non-parametric, or sampling-based, and all theoretical guarantees assume it.

From a technical point of view, the methods suggested in this work allow the construc-
tion of analytical instruments for non-iid sample structures, thus expanding previous
research. The primary technological devices for experimental analysis presented in this
work are Linear Mixed Effects models (LMEM) [Woo17] and the Generalized Likelihood
Ratio Test (GLRT) [NP33; Wil38]. LMEMs are one of the most flexible classes of re-
gression models. Like Generalized Linear Models [MN89], they allow to build models for
random variables of the exponential family, but due to their ability to include random
effects also provide a flexible interface to model complex non-iid data structures. The
estimation and inference theory for LMEM is [PB00; Woo03; Woo17; GO20] is well
developed and implemented in popular programming languages [BMB12; Bat+15]. To-
gether LMEMs and the GLRT provide a unified framework for algorithm analysis and
comparison, which I call model-based analysis.

Before discussing this approach’s merits further, I want to clarify the function that
models perform in machine learning and statistics. In machine learning, the role of a
model is to provide accurate outputs for previously unseen input instances, whereas, in
statistics, models are used to study the relation between variables. For the evaluation of
machine learning experiments, models are used in the "statistical" way to learn the con-
nection between the variables "Performance" and "Algorithms" (in the case of algorithm
comparison) or "Meta-parameter(s)" (in the case of algorithm performance analysis).

The mechanics of a model-based algorithm comparison is using LMEMs to build
hypotheses-specific data models, trained on test data evaluation scores of machine learning
systems, and the GLRT for statistical inference. This setup allows the incorporation of
variability into significance testing by blocking repeated measurements obtained from
different meta-parameter configurations on the input unit level (e.g., source sentences).
Thus, it allows accounting for uncertainty introduced by the random nature of the training
process. The clustering of repeated measurements on the input unit level is universally
applicable. The instances don’t need to share the same meta-parameter configuration
or space. This principle is applicable even when the number of replications is entirely
different for each algorithm. The clustering of repeated measurements on the sentence
level is a default option that can be extended if systems share other facets of variation,
for example, if they are minor variations of each other and share different meta-parameter
facets. Furthermore, similar to analyzing the dependency on test sentence properties,
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indicators for subsets can be used to analyze the dependence on domains or topics.
The central analytical instrument of a model-based algorithm performance analysis

is an LMEM implementation of a variance decomposition of the evaluation data of an
algorithm. Adapting concepts well established in psychometrics for decades, I defined
the coefficient φ as a measure of algorithm performance reliability. Reporting φ comple-
mentary to the best-achieved performance of a machine learning algorithm on a test set
gives an impression about the necessary computational budget needed to be invested in
the meta-parameter search to obtain it. A low value of φ reveals large computational
requirements to find the best-performing instance settings. In contrast, large values of φ
indicate an insensitivity of the algorithm concerning meta-parameter choices.

Further, variance component analysis of algorithm performance allows us to assess the
importance of meta-parameters and the interaction of meta-parameters and data. For the
latter study, one can turn the hyper-parameter/data-property interactions of interactions
into fixed effects for a detailed analysis. The benefits of this analysis are the possibility
of freezing meta-parameters with a negligible contribution to the total variance, which
will aid more efficient meta-parameter optimization that makes the best use of a given
computational budget and knowing which hyper-parameters indeed cause substantial
performance changes could also shed light on the actual workings of an algorithm.

The chapter on inferential reproducibility combines algorithm performance analysis
and comparison in a showcase re-analysis of an experiment conducted by Aghajanyan
et al. [Agh+21] to demonstrate the benefits of model-based algorithm analysis. In this
experiment, the authors suggested an improved fine-tuning method (termed BART-R3F)
that introduces a penalty term in the objective function so that large deviations from the
initial model in the weight space received are penalized. The author claims that while this
method prevents catastrophic forgetting [Fre99] also benefits performance. Replicating
the experiment according to the study protocol and reanalyzing it yields a mixed picture.
In summary, we were able to replicate the numbers reported by Aghajanyan et al. for
the CNN/Dailynews data set but not for RedditTIFU, where we had to resort to the
official RedditTIFU data split because the authors did not publish information about
the split they have used. We confirmed that the best models are slightly but practically
negligible better for one data. Further analysis revealed that BART-R3F requires an
extensive and costly meta-parameter search to show these marginal gains and that these
improvements were only noticeable for the subset of easy examples. The latter observa-
tion also explains why BART-R3F cannot show progress on the RedditTIFU data set,
composed chiefly of difficult examples. Several findings confirmed BART-R3F’s sensitivity
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concerning meta-parameter choice. Firstly, on an algorithmic level, BART-R3F fails to
show improvements and, indeed, performs worse than the baseline on average. Secondly,
BART-R3F has low values of φ for all evaluation metrics. A detailed analysis of the
essential hyper-parameter λ revealed that the performance of BART-R3F is better the
smaller λ is, effectively limiting the impact of the penalty term in the objective. This
analysis exemplifies how incomplete and misleading a status-quo descriptive best vs. best
comparison is. Without much efford, a model-based evaluation can give a richer, more
detailed, empirically grounded, and easily communicable summary of an experiment.

An advantage of the presented model-based techniques is that they apply to arbitrary
models and tasks2. The last remark concerns the principle structure of the evaluation
metrics with the presented methods. We must distinguish between metrics expressed as
an expectation (or mean) of a loss-like function, e.g., expected TER score, and metrics
aggregated in a different we, e.g., corpus BLEU. Generally, the presented methods can
be applied to the former rather than the latter.

2For tasks with non-numeric outputs, a numeric evaluation metric (e.g., edit distance in our machine
translation examples) that scores the accuracy of the predicted output can produce the desired
numeric information.
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