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Notation

Here is a summary of the notation used in this thesis.

Abbrevations
FDA Food and Drug Administration
MLE Maximum Likelihood estimator
pCR pathological complete response
RSES responder stratified exponential survival
TOE Type I error
Pow power
+resp response benefit
+surv survival benefit
+resp +surv response benefit and survival benefit
L treatment with Lapatinib
T treatment with Trastuzumab
L+T treatment with Lapatinib and Trastuzumab

General math
∀ for all
∃ exists
arctanh inverse hyperbolic tangent
tanh hyperbolic tangent
ψ Digamma function
ψ(1) Polygamma function of order 1
Γ Gamma function
B Beta function
zγ γ-quantile of standard normal distribution
P(A) probability of some event A
E[W ] expected value of some random variable W
Var(W ) variance of some random variable W
Cov(W1,W2) covariance of W1 and W2
Cor(W2,W2) Pearson correlation coefficient of X and Y
W |A random variable W conditional on event A
P(A1 | A2) probability of event A1 conditional on event

A2
E[W | A] conditional expectation of random variable W

on event A
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E[W1 | W2] conditional expectation of random variable W1
on random variable W2

Var(W | A) conditional variance of random variable W on
event A

Var(W1 | W2) conditional variance of random variable W1 on
random variable W2

Cov(W1,W2 | A) conditional covariance of random variables W1
and W2 on event A

Cov(W1,W2 | W3) conditional covariance of random variables W1
and W2 on random variable W3

Cor(W1,W2 | A) conditional correlation coefficient of random
variables W1 and W2 on event A

Cor(W1,W2 | W3) conditional correlation coefficient of random
variables W1 and W2 on random variable W3

W ∼ D The random variable W is distributed with
distribution D.

W
appr∼ D The random variable W is approximately dis-

tributed with distribution D.
N(µ, σ2) normal distribution with expectation µ and

variance σ2

Exp(λ) exponential distribution with rate/hazard λ
Γ(α, β) Gamma distribution with shape α and rate β
Weibull(b, s) Weibull distribution with scale parameter b

and shape parameter s
β′(α, β, q) Beta prime distribution with shape parameters

α, β and scale factor q
I(ϑ) Fisher information matrix of multi-dimensional

parameter ϑ
D→ convergence in distribution
P→ convergenve in probability

Symbols and letters
f density of a probability distribution
F distribution function of a probability distribu-

tion
S survival function of a survival distribution
X binary response random variable
p response probability
TS survival time random variable
U censoring time random variable
D binary event indicator random variable
L likelihood
n sample size in one-group model
k number of responders in one-group model
j response stratum index j = 0, 1
lj number of uncensored observations in response

stratum j in one-group model
λj hazard of response stratum j in one-group

model
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θj logarithmic hazard log(λj) of response stratum
j in one-group model

ηj inverse hazard 1/λj of response stratum j in
one-group model

ϑ three-dimensional parameter (p, λ1, λ0) or
(p, θ1, θ0)

λ̂j MLE for λj in one-group model
θ̂j MLE for θj in one-group model
η̂j MLE for ηj in one-group model
u placeholder for one of the parameters λj , θj , ηj

û estimator for u
σ̂û estimator of standard deviation of û
CIu confidence interval for parameter u
E denotes experimental group
C denotes control group
i group index i = E,C
Si survival function of group i
pi response probability in group i
λj,i hazard in response stratum j in group i
θj,i logarithm of λj,i

H0 global null hypothesis that RSES model para-
meters are equal in experimental and control
group

Hp,0 local null hypothesis that response probabil-
ities are equal in experimental and control
group

Hθj ,0 local null hypothesis that survival in response
stratum j is equal in experimental and control
group

Tp test statistic for testing Hp,0
Tθj

test statistic for testing Hθj ,0
α significance level
α̃ local level for testing the local null hypotheses
ni sample size in group i
ki number of responders in group i
lj,i number of uncensored observations in response

stratum j in treatment group i
qj,i probability of observing an event for one spe-

cific patient in response stratum j and treat-
ment group i

Ip random variable of accepting Hp,0
∆p difference between response rates: pE − pC

∆θj
logarithmic hazard ratio of groups in stratum
j: θj,E − θj,C

∆̂u estimator of ∆u

T̃θj
transformation of test statistic Tθj

pu p-value of local test of Hu,0
Ru random variable of the rejection of Hu,0
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ω true coverage probability or true rejection prob-
ability

nsim number of simulations
p′

i, θ
′
j,i specified parameter values under the assumed

alternative hypothesis for treatment group i
and response stratum j

σ′
u

2 variance of parameter difference uE −uC under
specified alternative hypothesis

βu acceptance probability of Hu,0 under specified
alternative hypothesis

r sample size ratio nE/nC

TLR test statistic of logrank test
TsLR test statistic of stratified logrank test



Chapter 1

Introduction

Endpoints of clinical trials should be appropriate for answering the research
question, objectively measurable, and relevant for patients. Thus, for proving
efficacy of a new oncological therapy, the primary endpoint is usually overall
survival. The new therapy is compared to the present gold standard. However, as
therapies get better and diagnoses are made in earlier stages, differences between
therapies may only be observable after many years. This may considerably delay
approval of new treatments and their application in practice.

To avoid withholding of a promising therapy, the Food and Drug Administration
(FDA) provides four different programs for expedited development of new thera-
pies (Wallach et al. 2018). One of them is the Accelerated Approval pathway,
where the approval is based on a surrogate endpoint. The approval is preliminary
and has to be confirmed later when the main endpoint can be assessed. Between
1992 and 2021, 278 preliminary accelerated approvals were granted by the FDA
after a median processing time of 6 months (Food and Drug Administration
2022). Of these, 50% were confirmed later, 10% were withdrawn, and 40% are
still ongoing.

In 2014, the FDA published a more detailed guidance (which was updated in 2020)
regarding the use of pathological complete response (pCR) as a surrogate endpoint
when approving a novel neoadjuvant treatment of high-risk early-stage breast
cancer (Food and Drug Administration 2020). Although the appropriateness
of pCR as surrogate endpoint is disputed (Conforti et al. 2021), the guidance
illustrates the use of a binary surrogate endpoint for survival. When planning
and analysing trials in this context, the correlation between surrogate endpoint
and survival has to be taken into account. The relationship between surrogate
endpoint and survival can be modeled by means of a conditional survival model
proposed by Xia et al. (2014). They investigated the correlation coefficient
between the surrogate endpoint and the survival endpoint. Furthermore, they
assessed the power of the logrank test and stratified logrank test in various
scenarios of the conditional survival model. However, they did not present
methods for parameter estimation, statistical testing, and sample size calculation
within the conditional survival model. This gap constitutes a major hurdle for
the application of this approach.
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The aim of this thesis is to investigate the conditional survival model of Xia et al.
(2014) and to develop and evaluate methods for parameter estimation, hypothesis
testing, and sample size calculation within the model. For parameter estimation,
point estimators are derived and their distribution is assessed. Furthermore,
confidence intervals for the parameters are derived and evaluated. For hypothesis
testing, this thesis focusses on the survival endpoint and does not aim to develop
a complete analysis strategy for studies where an interim decision is made
after assessing the surrogate endpoint. However, future research may use the
findings of this thesis for the development of such methods. A hypothesis test of
the difference between two treatment groups regarding the parameters of the
conditional survival model is developed. Furthermore, confidence intervals for
parameter differences are derived. One consequence of the conditional survival
model is that the hazards of the treatment groups are non-proportional. Thus,
standard methods like the logrank test may not be the most powerful (Dormuth
et al. 2022). Hence, when assessing the characteristics of the developed test, they
are compared to the logrank test and the stratified logrank test. Furthermore,
an approximate and exact sample size calculation method for the developed
test are derived and evaluated. The presented methods are applied to a clinical
example (Huober et al. 2019).

This thesis is structured as follows. In Chapter 2, the methods used for obtaining
the results of this research are described. This comprises the description of the
conditional survival model (Section 2.1) as well as the general description of how
formulas, estimators, hypothesis tests, and sample size calculation methods are
derived and evaluated (Sections 2.2, 2.3, 2.4, 2.5, and 2.6). Furthermore, four
simulation studies used for evaluating the methods are described.

The corresponding results, i.e. the specific derivation of formulas, estimators,
hypothesis tests, and sample size calculation methods, as well as the results of
their evaluation are given in Chapter 3. Most subsections in Chapter 2 corre-
spond to a subsection in Chapter 3. In Section 3.1, possible relations between
the survival distributions of two treatment groups within the conditional survival
model are derived. Estimators for the model parameters are derived and inves-
tigated in Section 3.2. The subsections of Section 3.2 comprise the assessment
of the asymptotic distribution of the estimators, alternative parameterizations
of model parameters, approximate normality of the estimators for different pa-
rameterizations, correlation of the estimators, approximate confidence intervals
for the model parameters, and the exact distribution of the estimators. In
Section 3.3, testing the difference between two treatment groups is investigated.
The subsections of Section 3.3 comprise the development of an approximate and
an exact test for the difference between model parameters, the derivation of
formulas for the exact calculation of rejection probabilities of these tests, and
the construction of approximate confidence intervals for the differences of model
parameters. In Section 3.4, the derived approximate test is investigated. The
subsections of Section 3.4 comprise the assessment and comparison to the logrank
test and the stratified logrank test regarding Type I error rate and power, and
the evaluation of coverage probabilities of the derived confidence intervals for
parameter differences. Additionally, since the approximate testing procedure
consists in simultaneously testing three local hypotheses, the correlation of the
local test decisions is evaluated. In Section 3.5, an approximate and an exact
sample size calculation method are derived for the derived approximate test. In
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Section 3.6, the derived approximate sample size calculation method and the
derived approximate test are applied to a clinical example. Section 4 discusses
the presented research and Section 5 contains a summary of this thesis in German
and English. Appendix A presents technical details and further results that are
not shown in the main part due to lower importance. Appendix B contains the
R code of all functions used for the calculations in this thesis.
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Chapter 2

Methods

In this chapter, the conditional survival model is described and notation is
introduced. Furthermore, the methods deriving estimators and assessing their
distribution are presented. Then, the development of an approximate and an
exact hypothesis testing procedure as well as the assessment of test character-
istics is described. Additionally, the methods for deriving an approximate and
exact sample size calculation procedure and for assessing performance of these
procedures are presented. Lastly, the application of these methods to a clinical
example is described.

All calculations and simulations are done in R, version 4.2.0 (R Core Team 2022).
The used R-functions are given in Appendix B.

2.1 Statistical model
The conditional survival model was proposed by Xia et al. (2014). They did not
specifically name their model back then, in this thesis, however, it is denoted as
the responder stratified exponential survival (RSES) model. Its application is
motivated in modelling the survival of patients that received a cancer therapy.
The therapy may have an effect on an early detectable binary surrogate endpoint
like tumor response. Then, the response status may affect the survival of patients.
The RSES model describes the survival time of a patient as an exponentially
distributed random variable with the parameter depending on the response status
of the patient. Formally, the random variable X distinguishes the responders
(X = 1) from the non-responders (X = 0) and is Bernoulli distributed with
probability p. The survival time TS |X = 1 of a responder follows a Exp(λ1)-
distribution and the survival time TS |X = 0 of a non-responder follows a
Exp(λ0)-distribution. The common density function is dependent on the three
parameters p, λ1, λ0 and is given by

fp,λ1,λ0(x, t) = x · p · λ1 · exp(−λ1t) + (1 − x) · (1 − p) · λ0 exp(−λ0t).

By summing over x, the marginalized distribution function of the survival time

13
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is obtained:

F̃p,λ1,λ0(t) = p · (1 − exp(−λ1t)) + (1 − p) · (1 − exp(−λ0t))

Thus, the survival function is

Sp,λ1,λ0(t) = 1 − F̃p,λ1,λ0(t)
= p · exp(−λ1t) + (1 − p) · exp(−λ0t).

(2.1)

In a clinical trial, two cancer therapies may be compared regarding their survival
and RSES model parameters. Figure 1 visualizes the model in two treatment
groups, an experimental group E and a control group C. Differences within the
three-parameter model may not be easily interpretable. Specifically, a difference
in parameter sets does not imply a global survival benefit of one group neither
does it imply a survival difference between groups. In Section 3.1, possible
relations between the survival distributions as a function of the RSES model
parameters are derived by comparing the derivatives and the asymptotic behavior
of the survival functions.

Figure 1: Two-group RSES model. Experimental (E) and control (C) group
are each defined by a set of three parameters. X denotes the response status
and TS the survival time.

2.2 Estimation of model parameters
Estimators for the model parameters p, λ1, λ0 are derived in Section 3.2 by the
Maximum Likelihood method. The maximum of the likelihood is found by
finding the root of the derivative of the logarithmic likelihood. The derived
estimators are investigated in the subsections of Section 3.2.



Estimation of model parameters 15

2.2.1 Asymptotic distribution of MLEs
In Section 3.2.1, a convergence theorem from the literature is applied to derive
the asymptotic joint distribution of the Maximum Likelihood estimators (MLEs).
The asymptotic variance and covariance structure of the MLEs is derived by
calculating the inverse of the Fisher information matrix. Estimators of the
variance of the MLEs are constructed by plugging the MLEs into the derived
variance formulas.

2.2.2 Alternative parameterization of survival parameters
In Section 3.2.2, the same procedure as described in Section 2.2.1 is repeated for
two further parameterizations of the exponential survival within the response
strata j = 0, 1: using θj := log(λj) or ηj := 1/λj . This is done to choose the
parameterization with the best normal approximation for the construction of
approximate confidence intervals, hypothesis tests, and power formulas.

2.2.3 First simulation study
A simulation study is used to investigate the approximate normality of the
standardized MLEs, the correlation of the MLEs, and the coverage proba-
bility of approximate confidence intervals for the model parameters. It is
called first simulation study throughout this thesis to differentiate it from
further simulation studies. For the first simulation study, seven sample sizes
(n = 50, 70, 100, 200, 300, 400, 500) and two different response probabilities
(p = 0.2, 0.5) are considered. λ0 is set to 0.037 and two different values of
λ1 (0.037, 0.02) are considered. The choice of these values is based on the ex-
ample in Section 3.6. There, the RSES model parameters are extracted from a
clinical study (Huober et al. 2019). In each of the resulting 28 scenarios, 105

studies are simulated. In each study, four different censoring distributions are
considered: no censoring, Weibull(1/0.018, 2), Exp(0.02), Exp(0.04), in descend-
ing order of extent of censoring. These censoring distributions are chosen to
cover different extents and types of censoring. Table 1 shows the probability to
observe an event for one specific patient for these censoring distributions and
values of λ.

The binary response variable X is generated by the function rbinom() of the R
package stats with the sample size and response probability specified in the
scenario. The event times TS within the response strata are generated by the
function rexp() of the R package stats with the hazard rates specified in the

Table 1: Probability of observing an event for different censoring distributions
and Exp(λ)-distributed survival time.

Censoring distribution λ = 0.037 λ = 0.02
no cens. 1.00 1.00
Exp(0.04) 0.77 0.58
Weibull(1/0.018, 2) 0.65 0.50
Exp(0.02) 0.48 0.33
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scenario. The exponential censoring times U are also generated by the function
rexp(). The Weibull censoring times are generated by the function rweibull()
of the R package stats. All random variables are generated with a seed to
assure reproducibility.

2.2.4 Approximate normality of MLEs
In Section 3.2.3, the approximate normality of the standardized MLEs for λj , θj

and ηj is investigated by the first simulation study. For investigating approximate
normality, the MLEs are standardized with the Wald-method (Lehmann and
Romano 2010, p. 508) by (û − u)/σ̂û with u denoting the parameter λ1, η1,
or θ1, û being the MLE of u and σ̂û being the square root of the variance
estimators derived in Sections 3.2.1 and 3.2.2. This standardization is chosen as
it is also used for constructing approximate confidence intervals, hypothesis tests
of parameter difference, and power formulas. In every trial of the first simulation
study, the MLEs λ̂j , θ̂j and η̂j and their standardized versions are calculated.
The distribution of the standardized MLEs is visualized by quantile-quantile
plots, using the standard normal distribution as reference distribution. For
the following calculations and considerations, the parameterization (p, θ1, θ0)
of the RSES model is used as the distribution of θ̂j shows the best normal
approximation. Using the results of the first simulation study, the estimated
bias and root mean squared error (RMSE) of θ̂j is calculated and visualized with
respect to sample size by line plots.

2.2.5 Correlation of MLEs
In Section 3.2.4, the pairwise Pearson correlation coefficients of p̂, θ̂1 and θ̂0 are
estimated by the sample correlation coefficients within the first simulation study.
For this, the R function cor() of the R package stats is used. Furthermore,
confidence intervals for the sample correlation coefficient are estimated by the
R function cor.test() of the R package stats. In this function, the sample
correlation coefficient Ĉor is transformed by the Fisher transformation with the
inverse hyperbolic tangent arctanh. The transformed value is approximately
normally distributed with standard error

√
n− 3, where n is the sample size.

Thus, the approximate 95% confidence interval on the transformed scale is given
by arctanh(Ĉor) ± z0.975 ·

√
n− 3, where Ĉor is the sample correlation coefficient.

This interval is back-transformed by tanh to obtain a confidence interval for the
true correlation coefficient. Estimated correlation coefficients and confidence
intervals with respect to sample size are shown with line plots for each of the
three pairwise comparisons of p̂, θ̂1 and θ̂0.

2.2.6 Approximate confidence intervals for model para-
meters

In Section 3.2.5, approximate two-sided 1 − α confidence intervals for the para-
meters p, θ1, and θ0 are derived by using the approximate normality of the
standardized MLEs (û − u)/σ̂û. For the confidence interval for p, a formula
for the exact coverage probability is given and the exact coverage probability
is visualized with respect to sample size for α = 0.05, p = 0.1, 0.2, 0.3, 0.4, 0.5
and n = 50, 70, 100, 200, 300, 400, 500 by line plots. For θ1 and θ0, the coverage
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probability of the derived approximate 95% confidence intervals is estimated
by the first simulation study described in Section 2.2.3. Here, the coverage
probability conditional on the existence of θ̂j is estimated. This probability can
be interpreted in the following way: Under the condition that θ̂j exists, how
likely will the confidence interval of θj cover the true value? If ω is the true
coverage probability, the estimated coverage probability has a standard error of√
ω(1 − ω)/nsim, where nsim = 105 is the number of simulations per scenario.

This results in a maximal standard error of 0.0016 for ω = 0.5. Assuming a true
coverage probability of ω ≈ 0.95 yields a standard error of 0.0007.

2.2.7 Exact distribution of MLEs
In Section 3.2.6, the exact distribution of θ1 and θ0 in the case of no censoring or
exponential censoring distribution is derived by using known distributions of the
transformation and combination of exponentially distributed random variables.
The asymptotic behavior of the expected value and variance is derived by using
theorems from the literature like the Continuous Mapping Theorem, Hoeffding’s
inequality, or the laws of total expectation, variance, and covariance. In the
same way, the asymptotic behavior of the pairwise covariance and correlation
coefficient of p̂, θ̂1 and θ̂0 is derived. These findings are used to derive formulas
for calculating the exact coverage probability of the approximate confidence
intervals for θ̂1 and θ̂0 in the case of no censoring or exponential censoring. These
formulas are validated by the following procedure: In each scenario, the exact
coverage probability ω is calculated with the derived formula. With the large
number of simulations nsim = 105, the estimated coverage probability is almost
exactly normally distributed with mean ω and standard error

√
ω(1 − ω)/nsim.

Note that the calculation of coverage probability is conditional on the existence
of θ̂j and thus the number of effective simulations is smaller than nsim. Hence,
when investigating the deviation of estimated coverage probabilities from exactly
calculated coverage probabilities, the use of the larger value nsim constitutes a
conservative approach. However, the cases where θ̂j doesn’t exist are very rare.
Based on the normal distribution, 2.5% and 97.5% quantiles of the distribution
of the estimated coverage probability are calculated. These quantiles and the
exact coverage probability are visualized together with the estimated coverage
probabilities. If the calculations are correct, the estimated coverage probabilities
should lie between the two quantiles in most cases.

2.3 Hypothesis testing
In Section 3.3, an approximate test for the difference between two treatment
groups within the RSES model is developed. Furthermore, formulas for the exact
calculation of rejection probabilities in the case of no censoring or exponential
censoring are derived. Additionally, approximate confidence intervals for the dif-
ferences of model parameters are constructed. Lastly, an exact testing procedure
is derived.

There are different ways to formulate a null hypothesis regarding the RSES
model. Xia et al. (2014) used the logrank test and stratified logrank test to
assess differences between survival distributions. In this thesis, the difference
of parameter sets is tested. Consider the comparison of an experimental group
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E and a control group C with respective parameter triples (pE , θ1,E , θ0,E) and
(pC , θ1,C , θ0,C). In Section 3.3, a test is constructed for the null hypothesis

H0 : pC = pE , θ1,C = θ1,E and θ0,C = θ0,E .

Note that this is not a necessary condition for equality of the marginal survival
distributions as is shown in Section 3.1. This procedure aims at detecting any
group difference within the parametric model. In particular, it is not meant to
make inference about differences of single parameters because they can only be
interpreted and translated to survival difference when considered as a triple.

The global null hypothesis H0 is an intersection of three local null hypotheses:

Hp,0: pC = pE

Hθ1,0: θ1,C = θ1,E

Hθ0,0: θ0,C = θ0,E

2.3.1 Approximate RSES test
In Section 3.3.1, for the local hypotheses Hp,0, Hθ1,0, Hθ0,0, test statistics
Tp, Tθ1 , Tθ0 similar to Wald test statistics (Lehmann and Romano 2010, p. 508)
are constructed by standardizing the difference between the MLEs of both
groups. The difference is divided by an estimator of the standard deviation of
the difference. Here, the asymptotic variance formulas derived in Section 3.2
are used. For variance estimation, estimates of the true parameters have to be
plugged into the formulas. For this, the true parameters are estimated under
the local null hypothesis, i.e. under equality of the respective parameter in both
treatment groups. This is done to provide more accurate variance estimation
under the local null hypothesis so that the distribution of the test statistics is
closer to the standard normal distribution under the local null hypothesis. This
approximate normality is then used to derive the tests of the local hypotheses.
Then, a testing strategy is derived to test the global null hypothesis. This
testing procedure is called approximate RSES test.

2.3.2 Exact calculation of rejection probability
In Section 3.3.2, formulas for the calculation of exact rejection probabilities
of the approximate RSES test for the cases of no censoring and exponential
censoring are derived. This is done by using the exact distributions of the MLEs
derived in Section 3.2.6, and applying some analytical calculations. The derived
formulas are validated by the results of the second simulation study described
in Section 2.4. The validation of the formulas is done similar to the approach
described in Section 2.2 for validating the formulas for the exact coverage
probability of approximate confidence intervals. This means that in different
scenarios, exact rejection probabilities are calculated to derive the distribution of
the estimated rejection probabilities. Then, the estimated rejection probabilities
are compared visually to the exactly calculated rejection probabilities.
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2.3.3 Approximate confidence intervals for parameter dif-
ferences

The canonical effect measures for the local tests of Hp,0, Hθ1,0, Hθ0,0 are the
parameter differences corresponding to the numerators of the test statistics. For
Hp,0, this is the response rate difference

∆p = pE − pC .

For Hθ1,0, this is the logarithmic responder hazard ratio

∆θ1 = θ1,E − θ1,C .

For Hθ0,0, this is the logarithmic non-responder hazard ratio

∆θ0 = θ0,E − θ0,C .

In Section 3.3.3, approximate two-sided 1 − α confidence intervals for the para-
meter differences are derived by using the approximate normality of the MLEs
and the asymptotic variance formulas derived in Section 3.2. For variance estima-
tion, estimates of the true parameters have to be plugged into the formulas. Here,
in contrast to the approach used for the local test statistics, the true parameters
are not estimated under the assumption of equality of the parameters. Instead,
the true parameters are estimated separately in both groups. This is done to
provide good coverage probability of the confidence intervals over the whole
range of parameter constellations. However, this means that the confidence
intervals are only approximately equivalent to the test decisions.

2.3.4 Exact RSES test
In Section 3.3.4, an exact test of the global null hypothesis H0 in the case
of no censoring is constructed. Since the case of no censoring is very rare in
practice, this test won’t be useful for application but is given in this thesis for
completeness. The exact distribution of monotone transformations of the test
statistics Tθ1 and Tθ0 conditional on the numbers of responders kE and kC in
each treatment group is derived. On this basis, an exact testing strategy based
on exact p-values is derived. Furthermore, the exactness of the derived test is
proven. A formula to calculate the exact rejection probability of the exact RSES
test is derived. With this formula, Type I error rate and power is calculated in
the scenarios of the second simulation study described in Section 2.4. However,
due to the computationally extensiveness of the calculations, only smaller sample
sizes of nE = nC = 50, 60, 70, 80, 90, 100 are considered.

2.4 Assessment of test characteristics
In Section 3.4, Type I error rate and power of the approximate test are analysed
and compared to the logrank test and the stratified logrank test. See Appendix
A.2 for details of the used logrank test statistics. Note that stratifying the
logrank test for response status deliberately ignores a survival benefit originating
from a response benefit. Thus, the stratified logrank test is not appropriate
in this setting. However, it is included for comparison purposes because Xia
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et al. (2014) considered it as well. Furthermore, coverage probabilities of the
approximate confidence intervals for parameter differences are evaluated. Lastly,
the correlation of the local test decisions is evaluated.

2.4.1 Second simulation study
Type I error rate, power, coverage probabilities, and the correlation of the
local RSES tests are estimated by a simulation study which is called second
simulation study throughout this thesis. Seven sample sizes (nE = nC =
50, 70, 100, 200, 300, 400, 500), six Type I error scenarios TOE1.1, . . . , TOE2.3,
and five power scenarios Pow1.1, . . . , Pow3 are considered. The Type I error
scenarios and power scenarios are described in more detail in Sections 2.4.2
and 2.4.3. Like in the first simulation study described in Section 2.2.3, four
different censoring distributions are considered: no censoring, Weibull(1/0.018, 2),
Exp(0.02), Exp(0.04), in descending order of extent of censoring.

The data generation in the second simulation study is similar to the first sim-
ulation study. In each of the 11 scenarios, 105 studies are simulated. In each
study, the binary response variable is generated in both treatment groups. Then,
the event times within the treatment groups and response strata are generated.
For each of the four censoring distributions, censoring times are generated. All
random variables are generated with a seed to assure reproducibility. For each
study and censoring distribution, the approximate RSES test, logrank test, and
stratified logrank test are applied at a significance level of α = 0.05. For the
application of the approximate RSES test, the local tests of the local hypotheses
Hp,0, Hθ1,0, Hθ0,0 are applied at a local level α̃ as described in more detail in
Section 3.3.1. The rejections of these local tests at level α̃ are assessed to
investigate the independence of the local tests, as described in Section 2.4.5. Fur-
thermore, the approximate confidence intervals for parameter difference derived
in Section 3.3.3 are calculated. As described in Section 2.2, the standard error
of the estimated probabilities can be calculated by

√
ω(1 − ω)/nsim, where ω

is the true probability and nsim = 105 the number of simulations per scenario.
This results in a maximal standard error of 0.0016 if ω = 0.5. For Type I error
rate and confidence interval coverage probability, a true probability of ω ≈ 0.05
or ω ≈ 0.95 can be assumed. This yields a standard error of 0.0007.

2.4.2 Assessment of Type I error rate
Type I error rate is investigated in Section 3.4.1. In all six Type I error scenarios,
parameters in experimental and control group are equal. In the first three
scenarios, denoted by TOE1.1, TOE1.2, and TOE1.3, the survival of responders
and non-responders is equal with λ1 = λ0 = 0.071. The response probability
varies over the three values p = 0.13, 0.26, 0.52. In the last three scenarios,
denoted by TOE2.1, TOE2.2, and TOE2.3, the responder survival is given by
λ1 = 0.0284 and the non-responder survival by λ0 = 0.071. This corresponds
to a hazard ratio of 0.4 between responders and non-responders. Again, the
response probability varies over the three values p = 0.13, 0.26, 0.52. These
assumptions for p, λ1, λ0 were chosen for comparability because Xia et al. (2014)
used these values for their simulation study. They based these choices on the
findings of a clinical trial that investigated the effect of different combinations of
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chemotherapy, followed by surgical tumor removal, on breast cancer response
rates, disease-free survival, and overall survival (Bear et al. 2006). Figure 2
shows the marginal survival distributions in both scenarios. Scenarios TOE1.1,
TOE1.2, and TOE1.3 have equal marginal survival distributions since responders
and non-responders have equal survival.

TOE1.1 − TOE1.3 TOE2.1 − TOE2.3
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Figure 2: Marginal survival distribution of six scenarios for assessing Type I
error rate. Survival in scenarios TOE1.1 - TOE1.3 is equal. Survival in scenarios
TOE2.1 - TOE2.3 is better for higher response rates.

In Section 3.4.1, the estimated Type I error rates for the six Type I error
scenarios are visualized with respect to sample size and censoring distribution,
and compared between the tests for each scenario.

2.4.3 Assessment of Power
Power is assessed in Section 3.4.2. In all five power scenarios, responder survival is
better than non-responder survival with a hazard ratio of λ1,i/λ0,i = 0.4, i = E,C.
In the first two scenarios (+resp, Pow1.1: pE = 0.26, Pow1.2: pE = 0.52),
survival benefit of the experimental group is solely due to a higher response
probability (pE = 0.26, 0.52 vs. pC = 0.13). In scenarios 3 and 4 (+resp +surv,
Pow2.1: pE = 0.26, Pow2.2: pE = 0.52), there is additionally a survival benefit
of the experimental group within the strata. That means that responders in
the experimental group have a better survival than responders in the control
group and non-responders in the experimental group have a better survival than
non-responders in the control group. The hazard ratio between the treatment
groups within the response strata was chosen to be λj,E/λj,C = 0.8, j = 0, 1, as
this value was also used in the simulation study of Xia et al. (2014). In Scenario
5 (+surv, Pow3: pE = 0.13), the response probabilities are equal in both groups.
The survival benefit of the experimental group is solely due to a better survival
of both responders and non-responders. The hazard ratio was again chosen to
be λj,E/λj,C = 0.8, j = 0, 1. Figure 3 shows the marginal survival distributions
in experimental and control group in all five scenarios.

In Section 3.4.2, the estimated power values for the five power scenarios are
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Figure 3: Marginal survival distributions of experimental and control group in
five scenarios for assessing power.

visualized with respect to sample size and censoring distribution, and compared
between the tests for each scenario.

2.4.4 Assessment of coverage probability of approximate
confidence intervals for parameter difference

In Section 3.4.3, coverage probabilities of the 95% confidence intervals for the
parameter differences derived in Section 3.3.3 are calculated and visualized in
all scenarios of the second simulation study.

2.4.5 Assessment of independence of local test decisions
The derivation of the approximate RSES testing procedure is based on the
approximate independence of the three local test statistics. In Section 3.4.4, the
results of the second simulation study are used to investigate this assumption.
Let Rp, Rθ1 and Rθ0 be the binary random variables indicating the rejection
of the respective local test. For example, Rp = 1|Tp|>z1−α/2 , with Tp being the
test statistic for the local hypothesis Hp,0. The pair of rejections Rp and Rθ1 is
independent if and only if

P(Rp = 1 and Rθ1 = 1) = P(Rp = 1) · P(Rθ1 = 1).

This is equivalent to Cor(Rp, Rθ1) = 0 since

Cov(Rp, Rθ1) = E[Rp ·Rθ1 ] − E[Rp] · E[Rθ1 ]
= P(Rp = 1 and Rθ1 = 1) − P(Rp = 1) · P(Rθ1 = 1).

(2.2)

Analogous formulas apply to the pairs (p, θ0) and (θ1, θ0). Thus, for investigating
the pairwise independence of the local test decisions, the pairwise correlation
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coefficients of the rejection random variables are analysed. Within the second
simulation study, rejection rates p̂Rp

, p̂Rθ1
and p̂Rθ0

are calculated to estimate
the probability of Rp = 1, Rθ1 = 1 and Rθ0 = 1. Furthermore, the pairwise
common rejection rates are calculated to estimate the probability of the pairwise
intersections of these events. The pairwise covariances are estimated by plugging
these estimates into equation (2.2). The variances of p̂Rp

, p̂Rθ1
and p̂Rθ0

are
estimated by the variance formula for Bernoulli variables (e.g. p̂Rp

· (1 − p̂Rp
)).

Then, correlation coefficients are estimated by Cor(A,B) = Cov(A,B)√
Var(A)·Var(B)

.
Note that this approach is equivalent to calculating the mean square contingency
(Cramér 1974, p. 282), also known as phi coefficient. The standard error of the
correlation estimation is estimated by bootstrap resampling with nBT = 105

draws. This is explained exemplarily for the correlation of Rp and Rθ1 : Based on
the observed number of events of {Rp = 1}, {Rθ1 = 1} and {Rp = 1 and Rθ1 =
1}, new numbers of these events are generated by a multinomial distribution
using the R function rmultinom() of the R package stats with the number of
trials for one draw being nsim. From these event numbers, the sample correlation
coefficient is calculated. This is repeated nBT times. The sample standard
deviation of the resulting nBT sample correlation coefficients is used as estimate
for the standard error of the correlation estimation. Estimated correlation
coefficients and standard errors are visualized with respect to sample size for
different scenarios and censoring distributions.

2.5 Sample size calculation

2.5.1 Derivation and assessment of sample size calculation
methods

In Section 3.5, an approximate and an exact sample size calculation method
are derived for the approximate RSES test. The approximate method is based
on the approximate normality of the test statistics of the three local tests. For
the three local tests, approximate formulas for the probability to accept the
respective null hypothesis are derived. Here, an assumption of the censoring
probabilities in the treatment groups and response strata has to be made to
take censoring into account. Due to the approximate independence of the local
tests, the acceptance probability of the approximate RSES test can then be
calculated as the product of the acceptance probabilities of the local tests. After
specifying significance level, power, sample size ratio, model parameters, and
censoring probabilities, the power formula can be solved numerically for the
required sample size. This approach also leaves the possibility of splitting Type I
error rate or power differently to weight certain hypotheses. The calculation
method can easily be adapted to such changes.

The approximate sample size calculation method is evaluated within a simulation
study that is called third simulation study throughout this thesis. The third
simulation study comprises 29 scenarios and is described in Section 2.5.2.

The exact sample size calculation method is only applicable in the case of no
censoring or exponential censoring. It is an iterative procedure where the power
is calculated exactly by the formulas derived in Section 3.3.2.
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In all scenarios where the approximate sample size calculation method gives
sample sizes nE , nC < 100, the exact sample size is calculated by the exact
sample size calculation method. Then, approximate and exact sample sizes are
compared visually. Since the iterative exact method is computationally extensive
for large sample sizes, exact sample sizes are not calculated in the other scenarios.

2.5.2 Third simulation study
The third simulation study comprises 29 different scenarios with four censoring
distributions. In all scenarios, the non-responder hazard in the control group
is set to λ0,C = γ := 0.142. The variable γ is used for better readibility of the
description of the scenarios. The sample size ratio is set to r := nE/nC = 1.
The same censoring distributions as in the first and second simulation study are
considered: no censoring, Weibull(1/0.018, 2), Exp(0.02), and Exp(0.04). The
following six constellations of survival in treatment groups and response strata
are considered:

• Constellation 1: Equal survival in all strata: λ0,E = λ0,C = λ1,E = λ1,C =
γ

• Constellation 2: Better survival of responders in experimental group (1):
λ0,C = λ0,E = λ1,C = γ and λ1,E = γ/2

• Constellation 3: Better survival of responders in experimental group (2):
λ0,C = λ0,E = λ1,C = γ and λ1,E = γ/3

• Constellation 4: Better survival of responders and non-responders in
experimental group: λ0,C = λ1,C = γ and λ0,E = λ1,E = γ/2

• Constellation 5: Better survival of non-responders in experimental group,
even better survival of responders in experimental group: λ0,C = λ1,C =
γ, λ0,E = γ/2 and λ1,E = γ/3

• Constellation 6: Better survival of responders in control group, better
survival of non-responders in experimental group, even better survival of
responders in experimental group: λ0,C = γ, λ1,C = γ/2, λ0,E = γ/2 and
λ1,E = γ/3

In each of these constellations, response probability in the control group is
pC = 0.13. Five different response probabilities in the experimental group are
considered: pE = 0.13, 0.26, 0.39, 0.52, 0.8. The one scenario with equal survival
in all strata (Constellation 1) and equal response probabilities pE = pC = 0.13 is
not suitable for sample size calculation since the distribution in both groups is
equal. This leaves 29 scenarios in total. In each scenario and for each censoring
distribution, censoring probabilities in the treatment groups and response strata
are calculated. Based on this and the other scenario parameters, approximate
sample sizes are calculated by the derived method to obtain a power of 0.8 at a
significance level of 0.05.

Data generation is similar to the second simulation study. In each scenario,
nsim = 105 studies are simulated using the calculated sample sizes and distri-
bution parameters. The approximate RSES test is applied to each study and
the actual power is estimated for each scenario and censoring distribution. As
described before, the standard error of the power estimate can be calculated
by
√
ω(1 − ω)/nsim, where ω is the true power. This results in a maximum

standard error of 0.0016. If the true power is ω ≈ 0.8, the standard error is
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approximately 0.0025. The calculated sample sizes are shown and the estimated
power is visually compared with the desired value of 0.8 for each scenario and
censoring distribution.

2.6 Example
In Section 3.6, the derived methods are applied to a clinical example. Huober
et al. (2019) investigated the effect of three treatments on pathological complete
response and survival in patients with HER2-positive early breast cancer. They
investigated differences in event-free survival and overall survival between the
groups by Cox regression. In Section 3.6, the RSES model parameters for the
three groups are calculated from the reported results in Huober et al. (2019) by
solving the equations for the survival function. The resulting RSES model distri-
butions in the three treatment groups are visually described. Furthermore, the
censoring distribution in the trial is derived under the assumption of exponential
censoring by analytical calculations. For the following considerations, each of
the three pairwise comparisons of the three treatment groups is investigated
separately. For every pairwise comparison, the distribution assumptions are used
to calculate approximate sample sizes of the approximate RSES test to obtain a
power of 0.8 at a significance level of 0.05. For these sample sizes and distribution
parameters, power of the approximate RSES test, logrank test, and stratified
logrank test is estimated by a simulation study that is called fourth simulation
study in this thesis. The data generation and power estimation is similar to
the third simulation study described in Section 2.5.2. The estimated power
is described and compared between the three tests. The approximate RSES
test rejects the global null hypothesis H0 if one of the three local hypotheses
Hp,0, Hθ1,0, Hθ0,0 is rejected. To describe the influence of the corresponding local
tests on the rejection of the global null hypothesis, the rejection rates of the
local hypotheses within the simulation study are described.
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Chapter 3

Results

In this chapter, possible relations between survival functions of two treatment
groups within the RSES model are investigated. Furthermore, estimators for
model parameters are derived and their distribution is assessed. Then, an
approximate and an exact hypothesis testing procedure are developed and the
test characteristics are assessed. Additionally, an approximate and an exact
sample size calculation procedure are developed and the performance of these
procedures is assessed. Lastly, some of these methods are applied to a clinical
example.

3.1 Survival differences between two treatment
groups

When two therapies are compared regarding their survival and RSES model
parameters, different kinds of relations can occur. These relations are investigated
in this section. Again, E denotes the experimental group, C the control group,
and i = E,C the group indicator. Let pi, λ1,i, λ0,i be the respective parameter
sets of the groups as described in Section 2.1 and shown in Figure 1. For better
readability, the survival functions Spi,λ1,i,λ0,i are abbreviated as Si. Three cases
of the relation of SE and SC can be differentiated:

I. Completely equal: SE(t) = SC(t) ∀t ≥ 0
II. Uniformly different: SE(t) ̸= SC(t) ∀t > 0

III. Crossing: not completely equal but ∃t > 0 such that SE(t) = SC(t)

It is easily seen from formula (2.1) that SE and SC are completely equal if and
only if one of the following conditions hold:

1. pE = pC , λ1,E = λ1,C and λ0,E = λ0,C

2. pE = pC = 0 and λ0,E = λ0,C

3. pE = pC = 1 and λ1,E = λ1,C

4. λ1,E = λ1,C = λ0,E = λ0,C

This can be reformulated as:

1. The parameter sets in both groups are equal.

27



28 CHAPTER 3. RESULTS

2. There are no responders in both groups and the non-responder parameters
are equal in both groups.

3. There are no non-responders in both groups and the responder parameters
are equal in both groups.

4. Survival is equal for responders and non-responders and in both groups.

To investigate whether two survival curves cross for some t > 0, the relation at
t = 0 has to be compared with the relation at t → ∞. If the distributions are
not completely equal, the relation at t = 0 is determined by the derivations at
t = 0:

S′
i(0) = −λ1,ipi − λ0,i(1 − pi) (3.1)

This term can be interpreted as a weighted common hazard of responders and
non-responders. If S′

E(0) < S′
C(0), it is SE(t) < SC(t) for small t > 0 (and vice

versa). If S′
E(0) = S′

C(0), the first non-equal pair of the higher derivatives is
decisive, e.g. S′′

i .

The survival functions Si are decreasing and convex. So SE and SC can only
cross two times. One time is at t = 0. The other time occurs for t > 0 if and
only if SE(t) < SC(t) for small t > 0 and SE(t) > SC(t) for sufficiently large
t (or vice versa). The first condition can be determined by the derivations at
t = 0. The second condition can be determined by analysing the asymptotic
behavior for t → ∞. Suppose a function

g(t) = a exp(−ct) + b exp(−dt)

with a, b, c, d > 0 and d > c. In the RSES model, c and d correspond to the
parameters λ1 and λ0, with c being the smaller of both parameters. It is

g(t) = a exp(−ct) + b exp(−ct)d/c.

Due to d/c > 1 and exp(−ct) t→∞−−−→ 0, the asymptotic behavior of g is determined
by the first term. For t ≫ 0 it is

g(t) ≤ M exp(−ct)

for some constant M . Also,

g(t) ≥ a exp(−ct).

Hence, the asymptotic relation between two survival curves SE and SC is
determined by a exp(−ct), i.e. the hazard and proportion of the fitter stratum.
Let λmin,i be the hazard of the fitter stratum in group i, i.e.

λmin,i := min(λ1,i, λ0,i).

In most practical cases, this will be the responder stratum. In the special case
pi = 0, set λmin,i := λ0,i. Analogously, if pi = 1, set λmin,i := λ1,i. Define
λmax,i analogously. Let pi,λmin = pi if λmin,i = λ1,i and pi,λmin = 1 − pi if
λmin,i = λ0,i be the proportion of the fitter stratum. If λmin,E > λmin,C , then
SE(t) < SC(t) for t ≫ 0 (and vice versa). If λmin,E = λmin,C , the proportion
of the fitter stratum is decisive: If pE,λmin > pC,λmin , then SE(t) > SC(t) for
t ≫ 0. If the proportions of the fitter stratum are also equal, the maximum
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hazards are decisive for the asymptotic behavior for t → ∞. In this case, due
to λmin,E = λmin,C , pE,λmin = pC,λmin and formula (3.1), the derivations of the
survival distributions at t = 0 are

S′
E(0) = −λmax,E · (1 − pE,λmin) − λmin,E · pE,λmin

and
S′

C(0) = −λmax,C · (1 − pE,λmin) − λmin,E · pE,λmin .

Thus, S′
E(0) < S′

C(0) if and only if λmax,E > λmax,C . Since that means SE(t) <
SC(t) for t ≫ 0, the curves cannot cross in this case and are uniformly different.
If the maximum hazards are also equal, i.e. λmax,E = λmax,C , the two curves are
completely equal.

To summarise, the curves don’t cross if and only if one of the following conditions
is true (assuming the curves are not completely equal):

1. The first non-equal derivatives at t = 0 fulfill S(m)
E (0) > S

(m)
C (0) and one

of the following statements is true:
• λmin,E < λmin,C

• λmin,E = λmin,C and pE,λmin > pC,λmin

2. The previous condition with E and C exchanged.

This can be reformulated as:

1. Event rate at the beginning is higher in group E and:
• The fitter stratum in group E has better survival than the fitter

stratum in group C or
• the fitter strata in both groups have equal survival but the fitter

stratum in group E is larger than in group C.
2. The previous condition with E and C exchanged.

Two curves cross if and only if they are not completely equal and not uniformly
different.

Figure 4 shows two examples. In the first, the experimental group has a higher
response probability and better survival of each responders and non-responders.
Thus, survival in the experimental group is uniformly better. In the second
example, responder survival is better in the control group. This advantage comes
into effect after a certain time which leads to crossing survival curves.
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Figure 4: Survival functions of two different two-group models. The corre-
sponding model parameters p, λ1, λ0 are given next to the curves.

3.2 Estimation of model parameters

In this section, estimators of the model parameters are derived by the Maximum
Likelihood method. The subsections comprise the assessment of the asymptotic
distribution of the MLEs, alternative parameterizations of model parameters,
approximate normality of the MLEs for different parameterizations, correlation
of the MLEs, approximate confidence intervals for the model parameters, and the
exact distribution of the MLEs. Let X be the response status, TS the survival
time, U the censoring time, D = 1TS≤U the event indicator, and T = min(TS , U)
the observed event-free time. Assume identical censoring over responders and
non-responders and independence of U and TS . The common density of (X,T,D)
is

f(X,T,D)(x, t, d) =


p · fTS |X=1(t) · (1 − FU (t)) x = 1, d = 1,
p · (1 − FTS |X=1(t)) · fU (t) x = 1, d = 0,
(1 − p) · fTS |X=0(t) · (1 − FU (t)) x = 0, d = 1,
(1 − p) · (1 − FTS |X=0(t)) · fU (t) x = 0, d = 0,

where f and F are the density and distribution functions of TS or U . The
common density can be written in closed form as

f(X,T,D)(x, t, d) = px(1 − p)1−x · fTS |X=1(t)xd · (1 − FTS |X=1(t))x(1−d)

· fTS |X=0(t)(1−x)d · (1 − FTS |X=0(t))(1−x)(1−d)

· fU (t)1−d · (1 − FU (t))d.
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Since 1 − FTS
(t) = exp(−λt) for an Exp(λ)-distributed variable TS , the log

likelihood of one realization (x, t, d) is

log
(
L(x,t,d)(p, λ1, λ0)

)
= x log(p) + (1 − x) log(1 − p)

+ xd log(λ1) − xλ1t

+ (1 − x)d log(λ0) − (1 − x)λ0t

+ (1 − d) log(fU (t)) + d log(1 − FU (t)).

(3.2)

The parameter-independent part (1−d) log(fU (t))+d log(1−FU (t)) is irrelevant
for estimation. For the sake of readability, it will be omitted in the following
likelihoods. Suppose n realisations (xm, tm, dm),m = 1, . . . , n of (X,T,D). Let
k =

∑n
m=1 xm be the number of responders, l1 =

∑n
m=1 xm · dm the number of

uncensored responder survival times and l0 =
∑n

m=1(1 − xm) · dm the number
of uncensored non-responder survival times. The observations are arranged such
that x1 = · · · = xk = 1 and t1, . . . , tl1 are the uncensored responder survival
times. Analogously, xk+1 = · · · = xn = 0 and tk+1, . . . , tk+l0 are the uncensored
non-responder survival times. The likelihood of the n realisations then is

n∏
m=1

L(xm,tm,dm)(p, λ1, λ0) = pk ·
l1∏

m=1
λ1 exp(−λ1tm) ·

k∏
m=l1+1

exp(−λ1tm)

·
k+l0∏

m=k+1
λ0 exp(−λ0tm) ·

n∏
m=k+l0+1

exp(−λ0tm).

Hence, the log likelihood of the three-dimensional parameter (p, λ1, λ0) is:

log
(

n∏
m=1

L(xm,tm,dm)(p, λ1, λ0)
)

= k · log(p) + (n− k) · log(1 − p)

+ l1 log(λ1) − λ1 ·
k∑

m=1
tm

+ l0 log(λ0) − λ0 ·
n∑

m=k+1
tm

Therefore, the argument of the maximum can be found within the three separate
summands. Finding the roots of the derivatives of the summands yields the
following Maximum Likelihood estimators (MLEs):

p̂ = k

n
,

λ̂1 = 1
1
l1

k∑
m=1

tm

,

λ̂0 = 1
1
l0

n∑
m=k+1

tm

.
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Note that the estimation of λ̂1 is only well-defined if l1 ̸= 0. In the case l1 = 0
there is no unique MLE for λ1. The same is true for λ̂0 if l0 = 0. Thus,
technically, the MLE of the three-dimensional parameter (p, λ1, λ0) only exists
if 0 < k < n. This won’t matter in practice since studies will be designed such
that the cases “all responders” or “no responders” have low probability.

3.2.1 Asymptotic distribution of MLEs
In this section, the asymptotic distribution of the MLEs is derived. Let ϑ :=
(p, λ1, λ0) be the three-dimensional model parameter. It is known that the
asymptotic distribution of a multi-parameter MLE is multivariate normal (L
1983, p. 429-430):

√
n(ϑ̂− ϑ) D→ N(0, I(ϑ)−1)

I(ϑ) is the Fisher information matrix and is obtained by taking the negative
expectation of the second derivation of the log likelihood:

I(ϑ)i,j = −E
[

d2

dϑidϑj
logL(X,T,D)(ϑ)

]
The log likelihood was derived in equation (3.2). The derivations are

d2

dp2 logL(X,T,D)(ϑ) = −X

p2 + 1 −X

(1 − p)2

d2

dλ2
1

logL(X,T,D)(ϑ) = −XD

λ2
1

d2

dλ2
0

logL(X,T,D)(ϑ) = − (1 −X)D
λ2

0
.

All “mixed” derivations d2

dϑidϑj
logL(X,T,D)(ϑ) with i ≠ j are zero. It is E[X] = p

and thus the Fisher information matrix is:

I(ϑ) =

− 1
p(1−p) 0 0

0 − E[XD]
λ2

1
0

0 0 − E[(1−X)D]
λ2

0


This yields

Var(p̂) ≈ p · (1 − p)
n

,

Var(λ̂1) ≈ λ2
1

n · E[XD] ,

Var(λ̂0) ≈ λ2
0

n · E[(1 −X)D] ,

Cov(p̂, λ̂1) ≈ 0,
Cov(p̂, λ̂0) ≈ 0,

and Cov(λ̂1, λ̂0) ≈ 0.

(3.3)
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In particular, the MLEs of the different parameters are asymptotically uncor-
related. Note that E[XD] = p · P(TS |X=1 ≤ U) and E[(1 −X)D] = (1 − p) ·
P(TS |X=0 ≤ U). When estimating the variance, the MLEs for the true parameter
are inserted and E[XD] is estimated by the mean 1

n

∑n
m=1 xmdm = l1/n. Anal-

ogously, E[(1 −X)D] is estimated by l0/n. This yields the variance estimators

σ̂2
p̂ := p̂ · (1 − p̂)

n
,

σ̂2
λ̂1

:= λ̂2
1
l1
,

and σ̂2
λ̂0

:= λ̂2
0
l0
.

(3.4)

3.2.2 Alternative parameterization of survival parameters
In this section, the MLEs and their asymptotic distribution of transformed model
parameters is given. Two further parameterizations of the survival parameters
are reasonable: Using θj := log(λj) or ηj := 1/λj . The respective MLEs are
equivalent, meaning θ̂j = log(λ̂j) and η̂j = 1/λ̂j . However, the distribution of
the MLEs differ. For the construction of approximate confidence intervals or
hypothesis tests based on approximate normality, the choice of parameterization
might affect the goodness of normal approximation. For that reason, the asymp-
totic distribution of θ̂j and η̂j is also derived and compared to λ̂j . Proceeding
as in Section 3.2.1, the asymptotic variances of the alternative MLEs are:

Var(θ̂1) ≈ 1
n exp(θ1) · E[XT ] ,

Var(θ̂0) ≈ 1
n exp(θ0) · E[(1 −X)T ] ,

Var(η̂1) ≈ η3
1

n · (2 · E[XT ] − η1 · E[XD])

Var(η̂0) ≈ η3
0

n · (2 · E[(1 −X)T ] − η1 · E[(1 −X)D])

(3.5)

When estimating the variance, the MLEs for the true parameters are inserted,
E[XT ] is estimated by the mean 1

n

∑k
m=1 tm = l1/n · η̂1, and E[(1 −X)T ] is

estimated by the mean l0/n · η̂0. This yields

σ̂2
θ̂1

:= 1
l1
,

σ̂2
θ̂0

:= 1
l0
,

σ̂2
η̂1

:= η̂2
1
l1
,

and σ̂2
η̂0

:= η̂2
0
l0
.

(3.6)
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3.2.3 Approximate normality of MLEs
In this section, the empirical distribution of the MLEs of the survival parameters
is assessed and compared. The distribution of p̂ is well known. It is an approxi-
mately normally distributed and unbiased estimator of p. Furthermore, it has
a root mean squared error (RMSE) of

√
p(1 − p)/n. This section focusses on

the MLEs of the survival parameters λ̂1, λ̂0, θ̂1, θ̂0, η̂1, and η̂0. The empirical
distribution of the MLEs is investigated by the first simulation study with 28
scenarios and four different censoring distributions described in Section 2.2.3.

Figure 5 shows quantile-quantile plots of standardized MLEs. The Wald-type
standardization is calculated by (û− u)/σ̂û, with parameter u = λ1, η1, θ1 and
σ̂û being the square root of the variance estimator derived in sections 3.2.1
and 3.2.2. Results are similar in all scenarios. For clarity, only the scenarios with
λ1 = λ0 = 0.037, p = 0.5, n = 50, 70, 100, and all four censoring distributions
are shown. Further scenarios are shown in Appendix A.3 in Figure 20. It can
be seen that the line for θ1 is closest to standard normal, meaning that the
normal approximation of θ̂1 is the best. Hence, the construction of approximate
confidence intervals and approximate tests will be based on the approximate
normality of θ̂1. For most of the following considerations, the parameterization
(p, θ1, θ0) of the RSES model will be used.

Figure 6 shows bias and RMSE of θ̂1 for p = 0.5, θ1 = log(0.037) ≈ −3.3 and
n = 50, . . . , 500. Interestingly, the bias is the greatest in the absence of censoring.
However, the bias is generally low. For comparison, a bias of 0.02 in the
estimation of the true value θ1 = −3.3 corresponds to a bias of approximately 2%
of the median survival. The RMSE is greater for greater censoring probabilities.
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Figure 5: Quantile-quantile plots of standardized MLEs for λ1 = 0.037, p =
0.5, n = 50, 70, 100, and four censoring distributions. Dotted black line indicates
perfect agreement of empirical quantiles with standard normal distribution.
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Figure 6: Bias and RMSE of θ̂1 for different sample sizes and censoring
distributions.

3.2.4 Correlation of MLEs
In this section, the pairwise correlation between the MLEs is investigated. Fig-
ure 7 shows estimated pairwise correlation coefficients with confidence intervals
of p̂, θ̂1 and θ̂0 for p = 0.2 and λ1 = λ0 = 0.037. Consistent with the findings
in Section 3.2.1 regarding the asymptotic joint distribution of the MLEs, all
estimators are approximately uncorrelated, especially for large sample sizes.
Only the correlation of p̂ and θ̂1 is noticeable for small sample sizes.
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Figure 7: Estimated pairwise correlations (solid lines) and 95% confidence
intervals (dotted lines) of p̂, θ̂1 and θ̂0 for p = 0.2, λ1 = λ0 = 0.037 and four
censoring distributions.
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3.2.5 Approximate confidence intervals for model para-
meters

In this section, approximate confidence intervals for the model parameters are
constructed by using the asymptotic normality of the MLEs. If û is an estimator
for u and σ̂2

û an estimator for Var(û) such that (û − u)/σ̂û is approximately
normally distributed, an approximate 1 − α confidence interval is given by
û± z1−α/2 · σ̂û. For p̂, this results in the well-known confidence interval for a
binomial probability:

CIp(p̂) = p̂± z1−α/2 ·
√
p̂ · (1 − p̂)

n

The coverage probability of CIp is dependent on the true response probability
p0 and can be calculated exactly by

Pp0(CIp(p̂) ∋ p0) =
∑

k∈{0,...,n}

1{|p0−k/n|≤z1−α/2·
√

k/n·(1−k/n)/n
} · fn,p0(k),

where fn,p0 is the binomial density. Figure 8 shows the exact coverage probabili-
ties for p = 0.1, 0.2, 0.3, 0.4, 0.5 and n = 50, 70, 100, 200, 300, 400, 500 and reveals
the well-known weakness of the normal approximation for extreme values of p0.
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Figure 8: Exact coverage probability of approximate confidence intervals for
the response probability p for different values of the true response probability p0.

It was seen in Section 3.2.3 that (θ̂j − θj)/σ̂θ̂j
with σ̂2

θ̂j
= 1/lj is approximately

normal. Thus, an approximate 1 − α confidence interval for θj is given by

CIθj (θ̂j , lj) = θ̂j ± z1−α/2 ·
√

1/lj .
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Figure 9 shows estimated coverage probabilities of CIθ1 for all scenarios and
censoring distributions of the first simulation study. The coverage probability
is calculated conditional on the existence of θ̂1, i.e. conditional on l1 > 0. All
coverage probabilities are satisfying and coverage increases for greater censor-
ing. The results for the coverage probability of CIθ0 are similar and shown in
Appendix A.3 in Figure 21.
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Figure 9: Estimated coverage probability of approximate confidence intervals
for θ1 with respect to sample size n, response probability p and true responder
survival parameter θ1. The true value of the non-responder survival parameter
is θ0 ≈ −3.3. The desired confidence level 0.95 is indicated by the dotted black
line.

3.2.6 Exact distribution of MLEs
In this section, the exact distribution of the MLEs p̂, θ̂1 and θ̂0 is investigated.
The exact distribution is used to derive exact formulas for the expected value and
variance of the MLEs. Furthermore, exact formulas for the pairwise covariances
and correlation coefficients are derived. Additionally, the asymptotic behavior of
the derived terms is investigated. Lastly, exact formulas for the approximate
confidence intervals given in Section 3.2.5 are derived. For the survival parameters
θ̂1 and θ̂0, only the cases of no censoring or exponential censoring are considered.
For all calculations, assume 0 < p < 1. The exact distribution of p̂ is well known.
n · p̂ = k follows a binomial distribution with parameters n and p. This section
focusses on θ̂1 and θ̂0.

Firstly, the case of no censoring is considered. Conditional on k > 0,
k∑

m=1
tm is

the sum of k independent exponentially distributed random variables and thus
follows a Γ(k, λ1)-distribution (with shape/rate parameterization). After scaling
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with factor 1/k,

exp(−θ̂1) = 1
k

·
k∑

m=1
tm ∼ Γ(k, kλ1).

Analogously,
exp(−θ̂0) ∼ Γ(n− k, (n− k)λ0).

Now, the exact expectation, variance and covariance and their asymptotic
behavior is derived without using MLE properties. As −θ̂1 is the logarithm of a
Γ-distributed random variable, the expectation of θ̂1 conditional on k with k > 0
is known to be

E
[
θ̂1

∣∣∣ k] = θ1 + log(k) − ψ(k), (3.7)

where ψ is the digamma function (Abramowitz et al. 1972, p. 258). The digamma
function is defined as the derivative of the logarithm of the gamma function:

ψ(x) = d
dx log(Γ(x))

Since θ̂1 does not exist for k = 0, interest lies in the expectation of θ̂1 conditional
on the existence of θ̂1, i.e. conditional on k > 0. The random variable k|k>0 has
the distribution function

Fk|k>0(z) = fn,p(z) − fn,p(0)
1 − fn,p(0) , (3.8)

where fn,p is the binomial distribution function. By the law of total expectation
(Ross 2010, p. 333),

E
[
θ̂1

∣∣∣ k > 0
]

= E
[
E[θ̂1 | k]

∣∣∣ k > 0
]

= θ1 + E[log(k) − ψ(k) | k > 0].
(3.9)

Analogously,

E
[
θ̂0

∣∣∣ k < n
]

= θ0 + E[log(n− k) − ψ(n− k) | k < n].

The digamma function has the known property
1

2k ≤ log(k) − ψ(k) ≤ 1
k for k > 0. (3.10)

The random variable k converges in probability to infinity for n → ∞, meaning
P(k > M) n→∞→ 1 for arbitrarily large M . Thus, by the continuous mapping
theorem (CMT, Mann and Wald (1943)),

log(k) − ψ(k) P, n→∞→ 0.

By the Portmanteau theorem (Klenke 2014, p. 254),

E[log(k) − ψ(k)] n→∞→ 0,

since log(k) − ψ(k) is bounded. Hence,

E
[
θ̂1

∣∣∣ k > 0
]

n→∞→ θ1.
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Analogously, E
[
θ̂0

∣∣∣ k < n
]

n→∞→ θ0. Note, however, that θ̂1 and θ̂0 are positively
biased due to inequality (3.10). A bias-corrected version of the MLE could
be obtained by θ̂1 − log(k) + ψ(k) and is unbiased in the absence of censoring.
However, in the presence of censoring, the correction turned out to be too large
and produced worse estimates than the MLE. Thus, it is not further evaluated.

Now, Var
(
θ̂1

∣∣∣ k > 0
)

is assessed. For k > 0 and since −θ̂1 is the logarithm of a
Γ-distributed random variable, it is

Var
(
θ̂1

∣∣∣ k) = ψ(1)(k),

where ψ(1) is the polygamma function of order 1 (Abramowitz et al. 1972, p. 260).
For k > 0, it has the property

1
2k2 ≤ ψ(1)(k) − 1

k
≤ 1
k2 . (3.11)

By the law of total variance (Ross 2010, p. 348) and using equation (3.7),

Var
(
θ̂1

∣∣∣ k > 0
)

= E
[
Var
(
θ̂1

∣∣∣ k) ∣∣∣ k > 0
]

+ Var
(

E
[
θ̂1

∣∣∣ k] ∣∣∣ k > 0
)

= E
[
ψ(1)(k)

∣∣∣ k > 0
]

+ Var(θ1 + log(k) − ψ(k) | k > 0)

= E
[
ψ(1)(k)

∣∣∣ k > 0
]

+ Var(log(k) − ψ(k) | k > 0).

It is clear that Var
(
θ̂1

∣∣∣ k > 0
)

n→∞→ 0. The asymptotic variance of θ̂1 is derived
in formula (3.5) as

1
n exp(θ1) · E[XT ] .

In the case of no censoring, T |X=1 ∼ Exp(λ1) and thus

E[XT ] = E[E[XT | X]]
= E[X/λ1]
= p/λ1

= p/ exp(θ1).

Hence, the asymptotic variance formula simplifies to 1
np . To prove the asymptotic

correctness of this formula, it has to be shown that

Var
(
θ̂1

∣∣∣ k > 0
)
/(1/(np)) n→∞→ 1.

It is known that k/n D→ p and fn,p(0) n→∞→ 0. Thus, due to equation (3.8),
k|k>0/n

D→ p. Since p is a constant, this implies k|k>0/n
P→ p. By CMT, it

follows n/k|k>0
P→ 1/p and np/k2|k>0 = n2/k2|k>0 · p/n P→ 0. It cannot be

concluded E[|p · n/k|k>0 − 1|] n→∞→ 0 directly since p · n/k − 1 is not bounded.
However, if δ with 0 < δ < p is chosen, it can be written

n/k|k>0 = n/k|k>0 · 1k/n≥δ + n/k|k>0 · 1k/n<δ. (3.12)
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The first term is bounded above by 1/δ. Due to 1k/n≥δ
P→ 1 and the Portmanteau

theorem,
E
[
n/k|k>0 · 1k/n≥δ

] n→∞→ 1/p.

For the second term it is

E
[
n/k|k>0 · 1k/n<δ

]
≤ n · P(k/n < δ).

By Hoeffding’s inequality (Hoeffding 1994),

P(k/n < δ) ≤ exp(−2n(p− δ)2).

Hence,
E
[
n/k|k>0 · 1k/n<δ

] n→∞→ 0.

It follows E[n/k|k>0] n→∞→ 1/p and

E[1 − p · n/k | k > 0] n→∞→ 0.

Analogously, E
[
np/k2

∣∣ k > 0
] n→∞→ 0. Using this and inequalities (3.11)

and (3.10) leads to:∣∣∣∣∣∣
Var
(
θ̂1

∣∣∣ k > 0
)

1/(np) − 1

∣∣∣∣∣∣
=
∣∣∣np · E

[
ψ(1)(k) − 1/(np)

∣∣∣ k > 0
]

+ np · Var(log(k) − ψ(k) | k > 0)
∣∣∣

≤ E
[
np ·

∣∣∣ψ(1)(k) − 1/k
∣∣∣+ |p · n/k − 1|

∣∣∣ k > 0
]

+ np · E
[
(log(k) − ψ(k))2 ∣∣ k > 0

]
≤ E

[
np/k2 ∣∣ k > 0

]
+ E[1 − p · n/k | k > 0] + E

[
np/k2 ∣∣ k > 0

]
n→∞→ 0

Hence,
Var
(
θ̂1

∣∣∣ k > 0
)
/(1/(np)) n→∞→ 1. (3.13)

Analogously, Var
(
θ̂0

∣∣∣ k < n
)
/(1/(n(1 − p))) n→∞→ 1. Note that the above

calculations hold also true if it is conditioned on 0 < k < n, thus

Var
(
θ̂1

∣∣∣ 0 < k < n
)
/(1/(np)) n→∞→ 1

and
Var
(
θ̂0

∣∣∣ 0 < k < n
)
/(1/(n(1 − p))) n→∞→ 1.

This will be used in the following.

Now the correlation of θ̂1 and θ̂0 is considered. Conditional on k, θ̂1 and θ̂0 are
independent as functions of distinct independent random variables. Thus, by
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the law of total covariance (Ross 2010, p. 381) and using equation (3.7),

Cov
(
θ̂1, θ̂0

∣∣∣ 0 < k < n
)

= E
[
Cov

(
θ̂1, θ̂0

∣∣∣ k) ∣∣∣ 0 < k < n)
]

+ Cov
(

E
[
θ̂1

∣∣∣ k],E[θ̂0

∣∣∣ k] ∣∣∣ 0 < k < n
)

= Cov(θ1 + log(k) − ψ(k), θ0 + log(n− k) − ψ(n− k) | 0 < k < n)
= Cov(log(k) − ψ(k), log(n− k) − ψ(n− k) | 0 < k < n).

Using inequality (3.10), it is∣∣∣Cov
(
θ̂1, θ̂0

∣∣∣ 0 < k < n
)∣∣∣ ≤ E[1/k · 1/(n− k) | 0 < k < n]

+ E[1/k | 0 < k < n] · E[1/(n− k) | 0 < k < n]

and

n ·
∣∣∣Cov

(
θ̂1, θ̂0

∣∣∣ 0 < k < n
)∣∣∣ ≤ E[n/k · 1/(n− k) | 0 < k < n]+

E[n/k | 0 < k < n] · E[1/(n− k) | 0 < k < n].

As previous, n/k|0<k<n
P→ 1/p and 1/(n− k|0<k<n) P→ 0. Using the same trick

as in (3.12), it is

E[n/k · 1/(n− k) | 0 < k < n] n→∞→ 0,

E[n/k | 0 < k < n] n→∞→ 1/p,

and
E[1/(n− k) | 0 < k < n] n→∞→ 0.

In total, it is

Cor(θ̂1, θ̂0|0 < k < n)

=
Cov

(
θ̂1, θ̂0

∣∣∣ 0 < k < n
)

√
Var
(
θ̂1

∣∣∣ 0 < k < n
)

· Var
(
θ̂0

∣∣∣ 0 < k < n
)

=
n · Cov

(
θ̂1, θ̂0

∣∣∣ 0 < k < n
)

√
Var
(
θ̂1

∣∣∣ 0 < k < n
)

· np · Var
(
θ̂0

∣∣∣ 0 < k < n
)

· n(1 − p)
·
√
p(1 − p)

n→∞→ 0,

since the numerator converges to 0 and the denominator was shown in (3.13) to
converge to 1.
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Finally, the correlation of p̂ and θ̂1 is considered. By the law of total covariance
and since p̂ is constant for fixed k,

Cov
(
p̂, θ̂1

∣∣∣ k > 0
)

= E
[
Cov

(
p̂, θ̂1

∣∣∣ k) ∣∣∣ k > 0
]

+ Cov
(

E[p̂ | k],E
[
θ̂1

∣∣∣ k] ∣∣∣ k > 0
)

= Cov(p̂, θ1 + log(k) − ψ(k) | k > 0)
= Cov(p̂, log(k) − ψ(k) | k > 0)
= E[p̂ · (log(k) − ψ(k)) | k > 0]

− E[p̂ | k > 0] · E[log(k) − ψ(k) | k > 0]
= E[(p̂− E[p̂ | k > 0]) · (log(k) − ψ(k)) | k > 0]

Thus, ∣∣∣n · Cov
(
p̂, θ̂1

∣∣∣ k > 0
)∣∣∣ ≤ E[|p̂− E[p̂ | k > 0]| · n/k | k > 0]

n→∞→ 0,

since p̂|k>0 − E[p̂ | k > 0] p→ 0, n/k|k>0
p→ 1/p, and by using the trick in (3.12).

Hence, as before,

Cor
(
p̂, θ̂1

∣∣∣ k > 0
)

=
Cov

(
p̂, θ̂1

∣∣∣ k > 0
)

√
Var(p̂ | k > 0) · Var

(
θ̂1

∣∣∣ k > 0
)

=
n · Cov

(
p̂, θ̂0

∣∣∣ k > 0
)

√
p(1 − p) · Var(θ̂1) · np

· √
p

n→∞→ 0.

Analogously, Cor
(
p̂, θ̂0

∣∣∣ k < n
)

n→∞→ 0.

Now consider the case of exponential censoring. Let U ∼ Exp(λU ). Then, the
responder survival times t1, . . . , tk are realisations of T ∼ Exp(λ1 +λU ). As seen
above, conditional on k and l1 with l1 > 0 (note that l1 > 0 implies k > 0), it is

1
l1

·
k∑

m=1
tm ∼ Γ(k, l1 · (λ1 + λU )).

Thus,
E
[
θ̂1

∣∣∣ k, l1] = log(λ1 + λU ) + log(l1) − ψ(k). (3.14)

This yields

E
[
θ̂1

∣∣∣ l1 > 0
]

= log(λ1 + λU ) + E[log(l1) − ψ(k) | l1 > 0]. (3.15)
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Note that l1 is the number of uncensored responder survival times. Hence, l1
is binomially distributed with size n and probability P(X = 1 and TS < U) =
p · λ1/(λU + λ1). Thus,

l1/n
P→ p · λ1/(λU + λ1)

and therefore
l1/k = l1/k · n/k P→ λ1/(λU + λ1).

So asymptotically, it is non-surprisingly seen that

E
[
θ̂1

∣∣∣ l1 > 0
]

= log(λ1 + λU ) + E[log(l1) − ψ(k) | l1 > 0]

= log(λ1 + λU ) + E[log(l1/k) | l1 > 0] + E[log(k) − ψ(k) | l1 > 0]
n→∞→ log(λ1 + λU ) + log(λ1/(λU + λ1)) + 0
= θ1.

Analogously, E
[
θ̂0

∣∣∣ l0 > 0
]

= log(λ0 + λU ) + E[log(l0) − ψ(n− k) | l0 > 0].

For the variance, it can be proceeded analogously to the case without censoring
and thus

Var
(
θ̂1

∣∣∣ l1 > 0
)

= E
[
ψ(1)(k)

∣∣∣ l1 > 0
]

+ Var(log(l1) − ψ(k) | l1 > 0)

and

Var
(
θ̂0

∣∣∣ l0 > 0
)

= E
[
ψ(1)(n− k)

∣∣∣ l0 > 0
]

+ Var(log(l0) − ψ(n− k) | l0 > 0).

For the covariance of θ̂1 and θ̂0, it is

Cov
(
θ̂1, θ̂0

∣∣∣ l1 > 0, l0 > 0
)

= Cov(log(l1) − ψ(k), log(l0) − ψ(n− k) | l1 > 0, l0 > 0).

For the covariance of p̂ and θ̂1, it is

Cov
(
p̂, θ̂1

∣∣∣ l1 > 0
)

= E[(p̂− E[p̂ | l1 > 0]) · (log(l1) − ψ(k)) | l1 > 0].

For the covariance of p̂ and θ̂0, it is

Cov
(
p̂, θ̂0

∣∣∣ l0 > 0
)

= E[(p̂− E[p̂ | l0 > 0]) · (log(l0) − ψ(n− k)) | l0 > 0].

The asymptotic behavior of these terms can be investigated analogously to
the case of no censoring and confirms the asymptotic distribution derived in
Section 3.2.1.

Knowing the exact distribution of θ̂j in the case of no censoring or exponential
censoring allows the exact calculation of coverage probabilities of the asymptotic
confidence intervals. The coverage probability depends on the true response
probability p0. The upper limit of CIθ1(θ̂1, l1) lies above the true value θ1 if

θ1 ≤ θ̂1 +
√

1/l1.
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This is equivalent to
λ1 exp(−θ̂1) ≤ exp

(√
1/l1

)
. (3.16)

The analogous statement is true for the lower limit. In the case of no censoring,
the distribution of λ1 exp(−θ̂1) conditional on l1 = k was shown to be Γ(k, k).
Thus, the coverage probability of CIθ1 conditional on k is independent of θ1 and
is given by

P
(

CIθ1(θ̂1, k) ∋ θ1

∣∣∣ k = k
)

= FΓ(k,k)

(
exp

(
z1−α/2

√
1/k
))

− FΓ(k,k)

(
exp

(
−z1−α/2

√
1/k
))

,

where FΓ(k,k) is the distribution function of the Γ(k, k)-distribution. The uncon-
ditional coverage probability with true response probability p0 then is

Pp0(CIθ1(θ̂1, k) ∋ θ1|k > 0) =

∑
k∈{1,...,n}

fn,p0(k) · P
(

CIθ1(θ̂1, k) ∋ θ1

∣∣∣ k = k
)

1 − fn,p0(0) .

(3.17)
Analogously, the coverage probability of CIθ0 is

Pp0(CIθ0(θ̂0, n− k) ∋ θ0|k < n)

=

∑
k∈{0,...,n−1}

fn,p0(k) · P
(

CIθ0(θ̂0, n− k) ∋ θ0

∣∣∣ k = k
)

1 − fn,p0(n)

(3.18)

with

P
(

CIθ0(θ̂0, n− k) ∋ θ0

∣∣∣ k = k
)

= FΓ(n−k,n−k)

(
exp

(
z1−α/2

√
1/(n− k)

))
− FΓ(n−k,n−k)

(
exp

(
−z1−α/2

√
1/(n− k)

))
.

In the case of an exponential censoring distribution U ∼ Exp(λU ), the distribu-
tion of (λ1 + λU ) · exp(−θ̂1) conditional on k and l1 was shown to be Γ(k, l1).
Since equation (3.16) is equivalent to

(λ1 + λU ) · exp(−θ̂1) ≤ exp
(√

1/l1
)
/q1

with q1 := λ1/(λU + λ1), the coverage probability of CIθ1 conditional on k and
l1 is given by

P
(

CIθ1(θ̂1, k) ∋ θ1

∣∣∣ k = k, l1 = l1

)
= FΓ(k,l1)

(
exp

(
z1−α/2

√
1/l1/q1

))
− FΓ(k,l1)

(
exp

(
−z1−α/2

√
1/l1/q1

))
.

Conditional on k, l1 is binomially distributed with size k and probability q1. The
unconditional distribution of l1 is binomial with size n and probability p0 · q1.
Thus, the common density of (k, l1) conditional on l1 > 0 is

f |l1>0(k, l1) = fn,p(k) · fk,q1(l1)
1 − fn,p0·q1(0) .
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The unconditional coverage probability with true response probability p0 then is

Pp0(CIθ1(θ̂1, l1) ∋ θ1|l1 > 0)

=

n∑
k=1

k∑
l1=1

fn,p(k) · fk,q1(l1) · P
(

CIθ1(θ̂1, k) ∋ θ1

∣∣∣ k = k, l1 = l1

)
1 − fn,p0·q1(0) .

(3.19)

Analogous formulas apply to the coverage probability of CIθ0 . The derived
formulas (3.17), (3.18), (3.19) for the exact coverage probability are validated
by the first simulation study. See Figure 23 in Appendix A.4 for a comparison
of exactly calculated and estimated coverage probabilities.

3.3 Hypothesis testing
In this section, tests for the comparison of an experimental group E and a control
group C with respective parameter triples (pE , θ1,E , θ0,E) and (pC , θ1,C , θ0,C)
are derived. The subsections comprise the development of an approximate and
an exact test, the derivation of formulas for the exact calculation of rejection
probabilities of these tests, and the construction of approximate confidence
intervals for the differences of model parameters. The global null hypothesis H0
is an intersection of three local null hypotheses, as described in Section 2.3:

Hp,0: pC = pE

Hθ1,0: θ1,C = θ1,E

Hθ0,0: θ0,C = θ0,E

3.3.1 Approximate RSES test
In this section, an approximate test of H0 is derived. Let Xi be the response
status, TS,i the survival time, Ui the censoring time, Ti = min(TS,i, Ui) the
observed event-free time, and Di = 1TS,i≤Ui

the event indicator in each of the
two groups i = E,C. In group i, ni realisations (xi,m, ti,m, di,m) of (Xi, Ti, Di)
with i = E,C and m = 1, . . . , ni are observed. Let ki =

∑ni

m=1 xi,m be the
number of responders, l1,i =

∑ni

m=1 xi,m·di,m the number of uncensored responder
survival times and l0,i =

∑ni

m=1(1 − xi,m) · di,m the number of uncensored non-
responder survival times in group i. The observations are arranged such that
xi,1 = · · · = xi,ki

= 1 and ti,1, . . . , tl1,i
are the uncensored responder survival

times in group i. Analogously, xi,ki+1 = · · · = xni = 0 and ti,ki+1, . . . , tki+l0,i

are the uncensored non-responder survival times in group i.

For the local hypotheses Hp,0, Hθ1,0, Hθ0,0, test statistics similar to Wald test
statistics (Lehmann and Romano 2010, p. 508) are constructed by standardizing
the difference between the MLEs of both groups. The difference is divided by
an estimator of the standard deviation of the difference. Here, the formulas
for the asymptotic variance in (3.3) and (3.5) are used and the unknown true
parameters are replaced by their MLEs under the local null hypothesis.

The MLE of the response probability pE = pC under Hp,0 is p̃ = nE p̂E+nC p̂C

nE+nC
.

For the test of Hp,0, this yields the well-known two proportion z-test with test
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statistic
Tp = p̂E − p̂C√

p̃(1 − p̃)( 1
nE

+ 1
nC

)
.

If p̃ ∈ {0, 1} (which means that everyone or no one is a responder), Tp is set to
zero because Hp,0 should not be rejected in this case.

For the variance estimation of θ̂1,E and θ̂1,C , θ1 and E[XT ] have to be estimated
under Hθ1,0. The MLE of θ1 under Hθ1,0 is

− log
(

1
l1,E + l1,C

(
kE∑
i=1

tE,i +
kC∑
i=1

tC,i

))
.

E[XT ] is estimated by the mean 1/(nE + nC) ·
(

kE∑
m=1

tE,m +
kC∑

m=1
tC,m

)
. Hence,

Var(θ̂1,E) is estimated by 1
nE

· nE+nC

l1,E+l1,C
and Var(θ̂1,C) by 1

nC
· nE+nC

l1,E+l1,C
. The test

statistic for the local test of Hθ1,0 then is

Tθ1 = θ̂1,E − θ̂1,C√
nE+nC

l1,E+l1,C

(
1

nE
+ 1

nC

) .
Tθ1 cannot be calculated if l1,E = 0 or l1,C = 0. In this case, Tθ1 is set to zero
to accept the null hypothesis due to insufficient information. However, this case
should be rare in practice.

Analogously, the test statistic for the local test of Hθ0,0 is

Tθ0 = θ̂0,E − θ̂0,C√
nE+nC

l0,E+l0,C

(
1

nE
+ 1

nC

) .
Again, if l0,E = 0 or l0,C = 0, Tθ0 is set to zero.

The three test statistics are asymptotically standard normally distributed under
their respective null hypothesis. Since the MLEs are asymptotically uncorre-
lated, the three test statistics are also asymptotically uncorrelated. Thus, the
intersection of the three local hypotheses is tested by assuming independence of
the test statistics and testing every hypothesis at the local level α̃ = 1 − 3

√
1 − α.

The local level is chosen such that (1 − α̃)3 = 1 − α. The local test procedure
consists in calculating the test statistic and comparing its absolute value to the
respective quantile z1−α̃/2 of the normal distribution. The global hypothesis H0
can be rejected if at least one of the local hypotheses can be rejected. This will
asymptotically control the Type I error rate at the level α. This test procedure
is called approximate RSES test throughout this dissertation. The level α̃ is
based on an equal split of α. However, the procedure can easily be adapted to
other allocation methods.

3.3.2 Exact calculation of rejection probability
In this section, exact formulas for the rejection probability of the approximate
test are derived for the case of no censoring or exponential censoring. Let U ∼
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Exp(λU ) be the censoring time and pE , λ1,E , λ0,E , pC , λ1,C , λ0,C the distribution
parameters in experimental and control group. For the case of no censoring,
plug λU = 0 into the following calculations. It is seen in Section 3.2.6 that
conditional on the number of responders kE and the number of uncensored
responder survival times l1,E ,

1
l1,E

·
kE∑

m=1
tE,m ∼ Γ(kE , l1,E · (λ1,E + λU )).

Analogously, conditional on kC and l1,C ,

1
l1,C

·
kC∑

m=1
tC,m ∼ Γ(kC , l1,C · (λ1,C + λU )).

Thus, conditional on kE , kC , l1,E and l1,C ,

exp
(
Tθ1 ·

√
nE + nC

l1,E + l1,C

(
1
nE

+ 1
nC

))
=

1
l1,E

·
kE∑

m=1
tE,m

1
l1,C

·
kC∑

m=1
tC,m

∼ β′
(
kC , kE ,

l1,E · (λ1,E + λU )
l1,C · (λ1,C + λU )

)
,

(3.20)
where β′(α, β, q) is the beta prime distribution, also known as beta distribution
of the second kind (Johnson et al. 1995, p. 51-52), scaled with factor q. It can
be defined by its density

fβ′(α,β,q)(x) =

(
x
q

)α−1 (
1 +

(
x
q

))−α−β

q ·B(α, β) for x > 0,

where B is the Beta function. Conditional on kE , kC , l1,E and l1,C with
l1,E , l1,C > 0, the probability to accept Hθ1,0 can be calculated by

P(accept Hθ1,0 | kE , kC , l1,E , l1,C) = P
(
Tθ1 ≤ z1−α̃/2

∣∣ kE , kC , l1,E , l1,C

)
− P

(
Tθ1 ≤ −z1−α̃/2

∣∣ kE , kC , l1,E , l1,C

)
= F

β′
(

kC ,kE ,
l1,E ·(λ1,E +λU )
l1,C ·(λ1,C +λU )

) (u(l1,E , l1,C))

− F
β′
(

kC ,kE ,
l1,E ·(λ1,E +λU )
l1,C ·(λ1,C +λU )

) (1/u(l1,E , l1,C)) ,

with local level α̃ and

u(l1,E , l1,C) = exp
(
z1−α̃/2 ·

√
nE + nC

l1,E + l1,C
·
(

1
nE

+ 1
nC

))
.

For l1,E = 0 or l1,C = 0, the MLE doesn’t exist and thus we have to accept
Hθ1,0: P(accept Hθ1,0 | kE , kC , l1,E , l1,C) = 1. Let qj,i = λj,i/(λj,i + λU ) be the
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probability of observing an event for one specific patient in response stratum
j and group i. The probability to accept Hθ1,0 conditional only on kE and kC

then is

P(accept Hθ1,0 | kE , kC)

=
kE∑

l1,E=0

kC∑
l1,C =0

fkE ,q1,E
(l1,E) · fkC ,q1,C

(l1,C) · P(accept Hθ1,0 | kE , kC , l1,E , l1,C).

Analogously, conditional on kE , kC , l0,E and l0,C with l0,E , l0,C > 0, the proba-
bility to accept Hθ0,0 can be calculated by

P(accept Hθ0,0 | kE , kC , l0,E , l0,C)
= P

(
Tθ0 ≤ z1−α̃/2

∣∣ kE , kC , l0,E , l0,C

)
−

P
(
Tθ0 ≤ −z1−α̃/2

∣∣ kE , kC , l0,E , l0,C

)
= F

β′
(

nC−kC ,nE−kE ,
l0,E ·(λ0,E +λU )
l0,C ·(λ0,C +λU )

) (u(l0,E , l0,C)) −

F
β′
(

nC −kC ,nE−kE ,
l0,E ·(λ0,E +λU )
l0,C ·(λ0,C +λU )

) (1/u(l0,E , l0,C)) .

For l0,E = 0 or l0,C = 0, P(accept Hθ0,0 | kE , kC , l0,E , l0,C) = 1. The probability
to accept Hθ0,0 conditional only on kE and kC is

P(accept Hθ0,0 | kE , kC)

=
nE−kE∑
l0,E=0

nC−kC∑
l0,C =0

fnE−kE ,q0,E
(l0,E) · fnC−kC ,q0,C

(l0,C)·

P(accept Hθ0,0 | kE , kC , l0,E , l0,C).

Let Ip(kE , kC) be the indicator of accepting Hp,0. Ip(kE , kC) = 1 if and only if
|Tp(kE , kC)| ≤ z1−α̃/2. The unconditional probability to accept the global null
hypothesis H0 then is

P(Accept H0)

=
∑

kE ,kC

fnE ,pE
(kE) · fnC ,pC

(kC) · Ip(kE , kC)

· P(Accept Hθ1,0 | kE , kC) · P(Accept Hθ0,0 | kE , kC).

(3.21)

The formulas for the exact calculation of rejection probabilities are validated by
the second simulation study to assess test characteristics described in Section 2.3.
See Figure 24 in Appendix A.4 for a comparison of estimated and exactly
calculated rejection probabilities.



Hypothesis testing 51

3.3.3 Approximate confidence intervals for parameter dif-
ferences

In this section, approximate confidence intervals for the parameter differences are
derived. The canonical effect measures for the local tests of Hp,0, Hθ1,0, Hθ0,0 are
the parameter differences corresponding to the numerators of the test statistics,
as described in Section 2.3.3. Let ∆̂p = p̂E − p̂C , ∆̂θ1 = θ̂1,E − θ̂1,C and
∆̂θ0 = θ̂0,E−θ̂0,C be the estimators of these effect measures. Using the asymptotic
variances derived in (3.4) and (3.6) and the independence of the estimators, the
variances of the effect estimators can be estimated by

σ̂2
∆̂p

:= p̂E · (1 − p̂E)
nE

+ p̂C · (1 − p̂C)
nC

,

σ̂2
∆̂θ1

:= 1
l1,E

+ 1
l1,C

,

and σ̂2
∆̂θ0

:= 1
l0,E

+ 1
l0,C

.

(3.22)

Then, two-sided 1 − α confidence intervals for the effect measures are given by
∆̂u ± z1−α/2 · σ̂∆̂u

, where u is one of the parameters p, θ1 or θ0. Note that these
confidence intervals are only asymptotically equivalent to the test decisions of
the local tests. The reason for this is that for the local tests, the variance of the
parameter differences is estimated under the local null hypothesis, providing a
more accurate variance estimation under the local null hypothesis.

3.3.4 Exact RSES test
In this section, an exact test of H0 is developed in the case of no censoring.
Furthermore, an exact formula for calculating the rejection probability of the
exact test is derived. To construct an exact test, Hθ1,0 and Hθ0,0 are tested
conditionally on kE and kC . By doing so, the test statistic Tθ1 becomes a
monotone transformation of the simplified test statistic

T̃θ1 := θ̂1,E − θ̂1,C .

It is
exp(T̃θ1) = exp(−θ̂1,C)

exp(−θ̂1,E)

and in Section 3.2.6 it was shown exp(−θ̂1,E) ∼ Γ(kE , kEλ1,E) and exp(−θ̂1,C) ∼
Γ(kC , kCλ1,C). Thus, as described in Section 3.3.2,

exp(T̃θ1) ∼ β′
(
kC , kE ,

kEλ1,E

kCλ1,C

)
.

The beta prime distribution is also described in Section 3.3.2. Under the null
hypothesis λ1,E = λ1,C , the exact distribution of T̃θ1 is independent of λ1,E and
λ1,C . Conditional on kE , kC , the exact p-value of the test of Hθ1,0 can then be
calculated by

pθ1

(
T̃θ1

∣∣ kE , kC

)
= 1 − F

β′
(

kC ,kE ,
kE
kC

) (exp(T̃θ1)
)

+ F
β′
(

kC ,kE ,
kE
kC

) (exp(−T̃θ1)
)
.
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T̃θ0 and pθ0

(
T̃θ0

∣∣ kE , kC

)
are defined analogously.

Hp,0 can be tested exactly by using any exact test for the comparison of two
binomial proportions, e.g. Boschloo’s test (Boschloo 1970). For consistency, an
exact test based on the test statistic Tp is used in this thesis. This test was
investigated and named Z-Pooled Exact Unconditional Test in an article about
exact tests for the difference of two binomial proportions (Mehrotra et al. 2003).
Let kE and kC be the observed number of responders in the treatment groups.
The exact two-sided p-value depends on the true response probability p0 under
H0 and can be calculated by

pp,p0(Tp(kE , kC)) =
nE∑

mE=0

nC∑
mC =0

fnE ,p0(mE)fnC ,p0(mC)·1|Tp(mE ,mC)|≥|Tp(kE ,kC )|.

(3.23)
Since the true response probability p0 under H0 is not known, the test decision
of the exact test of Hp,0 is made with the maximum p-value

pp(Tp) = max
p0∈[0,1]

pp,p0(Tp).

Hence, the exact test procedure consists in computing the exact local p-value
pp for the test of Hp,0 and the exact local p-values pθ1 and pθ0 conditionally on
kE and kC . If one of the p-values is smaller than the local level α̃, the global
hypothesis H0 is rejected. Let Ap be the rejection region of the exact test of
Hp,0. Then the Type I error rate is:

P(Reject H0)
= P(Reject Hp,0) + P (Accept Hp and (Reject Hθ1,0 or Reject Hθ0,0))
= P(Reject Hp,0)

+
∑

(kE ,kC)/∈Ap

f(kE , kC) · P(Reject Hθ1,0 or Reject Hθ0,0 | kE , kC)

= P(Reject Hp,0)

+
∑

(kE ,kC )/∈Ap

f(kE , kC) · (1 − P(Accept Hθ1,0 and Accept Hθ0,0 | kE , kC))

= P(Reject Hp,0)

+
∑

(kE ,kC )/∈Ap

f(kE , kC)

· (1 − P(Accept Hθ1,0 | kE , kC) · P(Accept Hθ0,0 | kE , kC))

≤ P(Reject Hp,0) +
∑

(kE ,kC )/∈Ap

f(kE , kC) · (1 − (1 − α̃) · (1 − α̃))

= P(Reject Hp,0) + (1 − P(Reject Hp,0)) · (1 − (1 − α̃)2)
= 1 − (1 − P(Reject Hp,0)) · (1 − α̃)2

≤ 1 − (1 − α̃)3

= α
(3.24)

The fourth equality holds because conditional on kE and kC , Tθ1 and Tθ0 are
independent. The inequality after that is actually an equality because Tθ1 and
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Tθ0 have a continuous distribution and hence their exact tests exploit the local
level. Thus, the procedure yields an exact test for H0 controlling the Type I
error rate at the level α.

The rejection probability of this exact testing procedure can be calculated
exactly. Conditional on kE , kC , the local tests of Hθj ,0 reject the null hypothesis
if pθj

(T̃θj
) ≤ α̃. Let cθj

(kE , kC , α̃) > 0 be the critical value defined by the
equation

pθj

(
cθj

(kE , kC , α̃)
)

= α̃.

cθj
can be calculated numerically by solving the equation. Then, the acceptance

probability of Hθ1,0 conditional on kE , kC can be calculated by

P(Accept Hθ1,0 | kE , kC) = F
β′
(

kC ,kE ,
kE λ1,E
kC λ1,C

) (exp(cθ1(kE , kC , α̃)))

− F
β′
(

kC ,kE ,
kE λ1,E
kC λ1,C

) (exp(−cθ1(kE , kC , α̃))) .

Note that if kE = 0 or kC = 0, Hθ1,0 cannot be rejected. So in this case it
is P(Accept Hθ1,0 | kE , kC) = 1. The acceptance probability of Hθ0,0 can be
calculated analogously.

The critical value of the exact test of Hp,0 is the largest value cp(α̃) such that

pp

(
cp(α̃)

)
≤ α̃. (3.25)

Note that the function pp is not continuous since it includes the function pp,p0

defined in equation (3.23) which is the sum of indicator functions. Hence, the
solution of equation (3.25) cannot be found by standard numerical methods. How-
ever, Tp(kE , kC) can only take a finite number of values, since ki ∈ {0, . . . , ni}.
Thus, Tp can be calculated for every pair of (kE , kC). Then, the exact p-value
pp can be calculated for every possible value of Tp. For this, the maximum of
pp,p0 as defined in equation (3.23) can be found by performing a grid search over
the interval [0, 1]. The critical value is then the largest of the exact p-values
fulfilling equation (3.25).

With these considerations, the exact acceptance probability of the exact RSES
test can be calculated by

P(Accept H0) =
∑

kE ,kC

Tp(kE ,kC )≤cp(α̃)

fnE ,pE
(kE) · fnC ,pC

(kC)

· P(Accept Hθ1,0 | kE , kC)
· P(Accept Hθ0,0 | kE , kC).

(3.26)

Formula (3.26) is used to calculate Type I error rate and power of the exact test
in the scenarios of the second simulation study described in Section 2.4. The
results of these calculations are shown in Appendix A.1.

3.4 Assessment of test characteristics
In this section, Type I error rate and power of the approximate test are analysed
and compared to the logrank test and the stratified logrank test. Furthermore,
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coverage probability of the approximate confidence intervals for parameter
difference and correlation of the local test decisions is assessed. Probabilities and
correlation coefficients are estimated by the second simulation study described
in Section 2.4.1.

3.4.1 Assessment of Type I error rate
In this section, Type I error rates are evaluated in six scenarios with four different
censoring distributions. In scenarios TOE1.1, TOE1.2, and TOE1.3, the survival
of responders and non-responders is equal. In scenarios TOE2.1, TOE2.2, and
TOE2.3, a hazard ratio of 0.4 between responders and non-responders is assumed.
The response probability varies over the three values p = 0.13, 0.26, 0.52. See
Section 2.4 for a detailed description of the scenarios.

Figure 10 shows Type I error rate of the approximate RSES test, the logrank test,
and the stratified logrank test in all scenarios. The two logrank tests adhere to
the nominal level pretty well. The approximate RSES test exceeds the nominal
level for small sample sizes but performs similar to the logrank tests for larger
sample sizes.

To further investigate the Type I error rate of the approximate RSES test,
Figure 11 shows the estimated rejection probabilities of the local tests compared
to the local level α̃ = 1 − 3

√
1 − α. The rejection probabilities of the local tests

are not denoted Type I rate to prevent confusion with the Type I error rates of
the tests of survival difference. Three things are noticeable:

1. It is seen that for small response probabilities (scenarios TOE1.1 and
TOE2.1), the rejection probability of Hθ1,0 considerably exceeds α̃. This
is due to the poor normal approximation of the small responder stratum.
For a sample size of 50 per group and a response probability of 0.13, the
expected number of responders is only 6.5 per group.

2. In the left bottom panel (scenario TOE2.1), it is seen that rejection
probability of Hθ1,0 for the strongest censoring distribution Exp(0.04) is
not monotonous decreasing with sample size. In this scenario, the survival
of responders in the control group is Exp(0.0284). This means that only
42% of responders are expected to have an event. Hence, with a group
sample size of 50 and a response probability of 0.13, the case of no events
in the responder stratum in the control group occurs relatively often with
a probability of 6 %. Then, the MLE θ̂1,C doesn’t exist and Hθ1,0 cannot
be rejected.

3. The downward spikes in the rejection probability of Hp,0 in the right panels
(scenarios TOE1.3 and TOE2.3) are due to the discreteness of the number
of responders.
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Figure 10: Estimated Type I error rate for three tests, four censoring distribu-
tions and sample sizes 50, . . . , 500 in six scenarios TOE1.1, . . . , TOE2.3. For
better visibility, only two censoring distributions per panel are shown, resulting
in 12 panels.
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Figure 11: Estimated rejection probabilities of local tests for various censoring
distributions and sample sizes 50, . . . , 500 in six scenarios TOE1.1, . . . , TOE2.3.
For better visibility, only two censoring distributions per panel are shown,
resulting in 12 panels.
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3.4.2 Assessment of Power
In this section, power is evaluated in five scenarios. In all scenarios, responder
survival is better than non-responder survival. In the first two scenarios (+resp),
survival benefit of the experimental group is solely due to a higher response
probability. In scenarios 3 and 4 (+resp +surv), there is additionally a survival
benefit of the experimental group within the strata. In Scenario 5 (+surv), the
response probabilities are equal in both groups. The survival benefit of the
experimental group is solely due to a better survival of both responders and
non-responders. See Section 2.4 for a detailed description of the scenarios.

Figure 12 shows power for sample sizes per group from 50 to 500. When survival
benefit is solely due to response benefit (+resp), the approximate RSES test is
much more powerful than the logrank test. Since the stratified logrank test only
considers survival differences within the response strata, its power equals the
significance level. The higher the survival benefit within the strata compared
to the response benefit, the better perform the logrank tests compared to the
approximate RSES test. This is because they don’t spend significance level to
test response difference. When there is no response difference at all (+surv), the
logrank tests are more powerful.
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Figure 12: Estimated power for sample sizes 50, . . . , 500, three tests, four
censoring distributions, and different treatment effect scenarios Pow1.1, . . . ,
Pow3. pE denotes the response probability in the experimental group. +resp
means that the experimental group has a response benefit. +surv means that
both response strata in the experimental group have better survival than in the
control group. +resp +surv means that both effects are present.
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3.4.3 Assessment of coverage probability of approximate
confidence intervals for parameter difference

In this section, the coverage probability of the approximate confidence intervals
derived in Section 3.3.3 is investigated. Figure 13 shows estimated coverage
probabilities. In most cases, the coverage probability is very close to the desired
value of 95%. In all cases, the coverage probability is within 95% ± 2%. It is
noticeable that for small response probabilities and small sample sizes (scenarios
TOE1.1, TOE2.1, Pow1.1, Pow2.1, Pow3), the coverage probability for the
parameter difference regarding θ1 deviates from 95%. Interestingly, the size and
direction of this deviation depends on the censoring distribution. While coverage
probabilities are too small in the case of no censoring, they are too large in the
case of the strongest censoring.
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Figure 13: Estimated coverage probability of approximate confidence intervals
for parameter differences between treatment groups. Estimated coverage proba-
bilities are shown for various sample sizes, the three model parameters p, θ1, θ2,
different scenarios TOE1.1, . . . , Pow3, and censoring disributions.
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3.4.4 Assessment of independence of local test decisions
In Section 3.3.1, it is argued that the three local test statistics are asymptotically
independent. Based on that, the significance level α is split multiplicatively
into the local levels α̃ = 1 − 3

√
1 − α such that (1 − α̃)3 = 1 − α. In this

section, the pairwise independence of the rejections of the local test statistics is
investigated as described in Section 2.4.5. Let Rp, Rθ1 , and Rθ0 be the binary
random variables indicating the rejection of the respective local test. Figure 14
shows estimated pairwise Pearson correlation coefficients between Rp, Rθ1 , and
Rθ0 for some scenarios of the second simulation study. Further scenarios are
shown in Figure 22 in Appendix A.3, but results are similar. It is seen that
correlation is generally small and approaches zero for larger sample sizes. Only
in scenarios with small response probabilities and sample sizes, there is a small
positive correlation of Rp and Rθ1 with estimated correlation coefficients between
0.03 and 0.1. This is consistent with the correlation of p̂ and θ̂1 that is seen in
Section 3.2.4 for these scenarios.
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Figure 14: Estimated correlation coefficients of pairs of local test rejections
Rp, Rθ1 , Rθ0 in four scenarios TOE2.1, TOE2.3, Pow2.1, and Pow3 for different
censoring distributions. Error bars indicate ± standard error.
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3.5 Sample size calculation
In this section, an approximate and an exact sample size calculation method
are derived for the approximate RSES test. Firstly, approximate formulas for
the probabilities to falsely accept the local null hypotheses Hp,0, Hθ1,0, Hθ0,0 are
derived. This is done using the approximate normality of the test statistics. Let
nE , nC be the sample sizes and p′

i, θ
′
j,i the specified parameter values under the

assumed alternative hypothesis for group i = E,C and response stratum j = 0, 1.
The test statistic for testing Hp,0 is

Tp = p̂E − p̂C√
p̃(1 − p̃)( 1

nE
+ 1

nC
)

with p̃ = nE p̂E+nC p̂C

nE+nC
. To estimate the expectation of Tp under the alternative

hypothesis, the expectation of the MLEs of the response probabilities E[p̂i] = p′
i

are plugged in. Let p′ = nEp′
E+nC p′

C

nE+nC
be the expectation of p̃. Then,

E[Tp] ≈ p′
E − p′

C√
p′(1 − p′)( 1

nE
+ 1

nC
)
.

The variance of p̂E − p̂C is given by

σ′
p

2 := p′
E(1 − p′

E)
nE

+ p′
C(1 − p′

C)
nC

.

Thus, the variance of Tp is approximately

Var(Tp) ≈
σ′

p
2

p′(1 − p′)( 1
nE

+ 1
nC

)

Hence, under the alternative it is

Tp
appr∼ N

 p′
E − p′

C√
p′(1 − p′)( 1

nE
+ 1

nC
)
,

σ′
p

2

p′(1 − p′)( 1
nE

+ 1
nC

)

 .

The two-sided local test of Hp,0 rejects the null hypothesis at level α̃ if Tp >
z1−α̃/2 or Tp < −z1−α̃/2. Thus, the rejection probability of Hp,0 under the
specified alternative is approximately

1 − βp = 1 − Φ

z1− α̃
2

·
√
p′(1 − p′)( 1

nE
+ 1

nC
) − |p′

E − p′
C |

σ′
p


+ Φ

−z1− α̃
2

·
√
p′(1 − p′)( 1

nE
+ 1

nC
) − |p′

E − p′
C |

σ′
p

 .

The test statistic for testing Hθ1,0 is

Tθ1 = θ̂1,E − θ̂1,C√
nE+nC

l1,E+l1,C

(
1

nE
+ 1

nC

) .
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To take censoring into account, an assumption of the probability that a patient
is not censored has to be made for each group and response stratum. Let qj,i be
the probability that a patient in group i and response stratum j is not censored.
If the censoring distribution is exponential with parameter λU , the probability
qj,i can be calculated by λ′

j,i/(λ′
j,i + λU ), where λ′

j,i = exp(θ′
j,i). The expected

number of events in each group and stratum then is E[lj,i] = ni ·p′
i ·qj,i. Plugging

in these estimates yields

E[Tθ1 ] ≈
θ′

1,E − θ′
1,C√

nE+nC

nE ·p′
E

·q1,E+nC ·p′
C

·q1,C

(
1

nE
+ 1

nC

)
The asymptotic variance of θ̂1,i is given in equation (3.5):

Var(θ̂1,i) ≈ 1
ni exp(θ1,i) · E[XiTi]

Xi is the response indicator and Ti the observed event-free time of a patient
in group i. It is E[XiTi] = E[Ti | Xi = 1] · P(Xi = 1). Conditional on Xi = 1,
Ti is the minimum of the responder survival time in group i and the censoring
time. Hence, as shown in appendix A.5, E[Ti | Xi = 1] = 1

λj,i
· q1,i. Since

P(Xi = 1) = p′
i and exp(θ1,i) = λ1,i, it follows

Var(θ̂1,i) ≈ 1
nip′

iq1,i
.

Therefore, the variance of θ̂1,E − θ̂1,C is approximately

σ′
θ1

2 := 1
nEp′

Eq1,E
+ 1
nCp′

Cq1,C
.

Hence, under the alternative,

Tθ1

appr∼ N

 θ′
1,E − θ′

1,C√
nE+nC

nE ·p′
E

·q1,E+nC ·p′
C

·q1,C

(
1

nE
+ 1

nC

) , σθ1
′

nE+nC

nE ·p′
E

·q1,E+nC ·p′
C

·q1,C

(
1

nE
+ 1

nC

)
 .

Thus, the rejection probability of Hθ1,0 at level α̃ under the specified alternative
is approximately

1 − βθ1 =1 − Φ

z1− α̃
2

·
√

nE+nC

nE ·p′
E

·q1,E+nC ·p′
C

·q1,C

(
1

nE
+ 1

nC

)
− |θ′

1,C − θ′
1,E |

σθ1
′



+ Φ

−
z

1− α̃
2

·
√

nE+nC

nE ·p′
E

·q1,E+nC ·p′
C

·q1,C

(
1

nE
+ 1

nC

)
− |θ′

1,C − θ′
1,E |

σθ1
′

 .
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Analogously, the rejection probability of Hθ0,0 at level α̃ under the specified
alternative is approximately

1 − βθ0 = 1 − Φ

z1− α̃
2

·
√

nE+nC

nE ·(1−p′
E

)·q0,E+nC ·(1−p′
C

)·q0,C

(
1

nE
+ 1

nC

)
− |θ′

0,C − θ′
0,E |

σθ0
′



+ Φ

−
z

1− α̃
2

·
√

nE+nC

nE ·(1−p′
E

)·q0,E+nC ·(1−p′
C

)·q0,C

(
1

nE
+ 1

nC

)
− |θ′

0,C − θ′
0,E |

σθ0
′

 .

with
σ′

θ0

2 := 1
nE(1 − p′

E)q0,E
+ 1
nC(1 − p′

C)q0,C
.

Due to the asymptotic independence of the three test statistics, the probability
to not reject H0, i.e. to accept all three local null hypotheses simultaneously, is
approximately equal to the product of the acceptance probabilities of the three
local null hypotheses.

Let r = nE/nC be the desired sample size ratio. Specify power 1−β, significance
level α, and all distribution parameters, and set the local level to α̃ = 1− 3

√
1 − α.

Then, due to nE = r · nC , the acceptance probabilities of the three local tests
can be viewed as functions of nC . Thus, the required control group sample size
nC is the solution of the equation

βp(nC) · βθ1(nC) · βθ0(nC) = β,

which can be determined numerically. If it is desired to split Type I error rate
or power differently to weight certain hypotheses, the calculation method can
easily be adapted to such changes.

In the case of no censoring or exponential censoring, power can be calculated
exactly as shown in Section 3.3.2. In this case, the required sample size can be
calculated exactly by an iterative method:

1. Start with the approximate sample size.
2. Calculate exact power 1 − P(Accept H0) with formula (3.21).
3. Increase sample size if power is too low, decrease sample size if power is

too high.
4. Iterate steps 2 and 3.

The approximate sample sizes are calculated for 29 scenarios and 4 censoring
distributions to obtain a power of 0.8 at a significance level of 0.05. The 29
scenarios can be divided into six constellations that represent different combina-
tions of survival parameters in treatment groups and response strata. In each
constellation, 5 different response probabilities pE in the experimental group are
considered. The constellations are:

• Constellation 1: Equal survival in all strata
• Constellation 2: Better survival of responders in experimental group (1)
• Constellation 3: Better survival of responders in experimental group (2)
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• Constellation 4: Better survival of responders and non-responders in
experimental group

• Constellation 5: Better survival of non-responders in experimental group,
even better survival of responders in experimental group

• Constellation 6: Better survival of responders in control group, better
survival of non-responders in experimental group, even better survival of
responders in experimental group

The constellations are described in more detail in Section 2.5. Power with the
calculated sample sizes is estimated in the third simulation study described in
Section 2.5.2. Figure 15 shows the estimated power in the 29 scenarios and 4
censoring distributions.

It is seen that the approximate sample size calculation method works pretty well
for all scenarios and censoring distributions, with power values almost always
between 80% and 85%. Power tends to be higher than the desired value of 80%
for small sample sizes. Exact sample size calculation for the scenarios with small
sample sizes (nE , nC < 100) shows that approximate sample sizes are never too
small and exceed exact sample sizes by a maximum of 2 and mostly by only 0 or
1 (Figure 16).

Exact power calculation is numerically extensive for large sample sizes. Thus,
exact sample size calculation is best applied to finetuning small approximate
sample sizes, since the approximation works very well for large approximate
sample sizes.
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Figure 15: Estimated power for calculated sample sizes in various scenarios. The
x axis contains different values of the response probability in the experimental
group pE . Response probability in the control group is set to pC = 0.13 in
every scenario. Calculated sample sizes per group are shown in the top row.
Constellations 1, . . . , 6 comprise different constellations of the survival parameters
λj,i in stratum j and treatment group i.
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Figure 16: Approximate versus exact sample size for all scenarios where the
approximate sample size is smaller than 100. Dotted line indicates equality of
approximate and exact sample size.

3.6 Example
Huober et al. (2019) investigated the effect of Lapatinib (L), Trastuzumab (T),
and a combination of both (L+T) on pathological complete response (pCR) and
survival in patients with HER2-positive early breast cancer. They investigated
differences in event-free survival and overall survival between the groups by Cox
regression. The sample size calculation was based on the primary endpoint pCR
and is described in Baselga et al. (2012). They reported group-wise response
rates pL = 0.22, pT = 0.28, pL+T = 0.48, and overall survival rates at 6 years
SL(6) = 0.82, ST (6) = 0.79, and SL+T (6) = 0.85. Furthermore, they estimated
hazard ratios between responders and non-responders within the treatment
groups: λ1,L/λ0,L = 0.54, λ1,T /λ0,T = 0.45, and λ1,L+T /λ0,L+T = 0.28. Under
the assumption of exponentially distributed survival within the response strata,
the RSES distribution parameters can be derived by formula (2.1):

Si(t) = pi exp(λ1,it) + (1 − pi) exp(λ0,it)

Plugging in the values for t = 6 and solving for λ1,i and λ0,i yields the distribution
parameters given in Figure 17 together with the survival functions. Under these
assumptions, survival of responders is considerably better in all groups. Due
to the highest response probability and the best survival for responders, the
combination L+T has the best overall survival. Even though a treatment with T
leads to a higher response probability compared to L, the non-responder survival
in T is worse and the responder survival is almost equal. This results in a better
survival of L compared to T. However, survival differences are small between all
groups, with survival probabilities at 7 years after randomisation ranging from
0.76 to 0.83. Huober et al. (2019) did not report estimated survival curves within
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one stratum within one treatment group which is necessary for a detailed check of
the distribution assumption of exponential survival within strata. However, they
reported survival functions within treatment groups. The curves indicate that
the hazard in the first two years after randomisation is considerably lower than
for later times. This indicates that the RSES model distribution assumptions
are not satisfied. Thus, the RSES model should not be applied here. However,
it will be applied in the following for illustrative purposes.

The example trial seemed to have administrative censoring at around 7 years
after randomisation. The censoring distribution before that can be derived under
the assumption of exponential censoring and independence of censoring and
survival. Let U ∼ Exp(λU ) be the censoring distribution. Then, the proportion
still at risk at time t in group i is given by Si(t) · exp(−λU t). Plugging in
the reported proportions at risk at 6 years of 0.48, 0.52, and 0.57 in L, T, and
L+T, respectively, yields the estimates of 0.09, 0.07, and 0.07 for λU . For the
following calculations and simulations, the mean λU = 0.075 of these estimates is
taken. The probability to observe an event for a patient in group i and stratum
j, assuming administrative censoring at 7 years after randomisation, can be
calculated by

qj,i =
7∫

0

λj,i exp(−λj,it) exp(−λut))dt

= λj,i

λj,i + λU

(
1 − exp

(
− (λj,i + λU ) · 7

))
.

These assumptions and the method in Section 3.5 are used to calculate the
approximate sample sizes for each of the three pairwise comparisons L vs. T,
L vs. L+T, and T vs. L+T to obtain a power of 0.8 at a significance level of
0.05 and a randomisation ratio of r = 1. The global null hypothesis for one
comparison, e.g. for L vs. T, is:

H0 : pL = pT and θ1,L = θ1,T and θ0,L = θ0,T

Table 2 shows the calculated sample sizes for the approximate RSES test for each
pairwise comparison. Furthermore, it shows corresponding rejection probabilities
of the approximate RSES test, the logrank test, the stratified logrank test, and
the three tests of the local hypotheses of the approximate RSES test. Rejection
probabilities are estimated by the fourth simulation study described in Section 2.6.
Power of the approximate RSES test is very close to the desired value in all
scenarios. The required sample size is smallest for the comparison of L+T and L,
since these groups differ substantially in response probability, responder survival,
as well as non-responder survival. Both the logrank test and stratified logrank
test have low power for all comparisons since the differences of marginal survival
distributions are small. When comparing T and L+T, the considerable response
rate advantage of L+T is the main effect of a better survival in L+T. Since the
stratified logrank test deliberately ignores any survival benefit arising from a
response benefit, it has considerably lower power than the logrank test for this
comparison. When comparing L and T, T has a better response rate which
has an positive effect on survival. However, non-responders in group T have
worse survival than in group L. These effects partly compensate each other when
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compared by the logrank test. Thus, the logrank test has lower power than the
stratified logrank test, since the stratified logrank test ignores the survival benefit
arising from the response benefit. A closer look at the rejection probabilities of
the local RSES tests reveals the reason for the striking power difference between
approximate RSES test and the logrank tests: the rejection of Hp,0 is mainly
responsible for the rejection of the global null hypothesis H0.

L 0.22 0.02 0.037

L + T 0.48 0.012 0.043

T 0.28 0.021 0.047
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Figure 17: Estimated distribution parameters (response probability p, responder
hazard λ1, non-responder hazard λ0) and survival functions of the three treatment
groups L, T, and L+T in the example study.
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Table 2: Estimated rejection probabilities for each of the three pairwise com-
parisons between the treatment groups L, T, and L+T of the example study.
Probabilities are shown for the approximate RSES test, logrank test, stratified
logrank test, and the three test of the local hypotheses of the approximate RSES
test. Total sample sizes n are calculated by the derived approximate method.

Test L vs. T
n = 1504

L vs. L+T
n = 128

T vs. L+T
n = 236

Logrank 0.29 0.07 0.21
Strat. Logrank 0.42 0.06 0.09
Appr. RSES 0.80 0.80 0.81
Local test of Hp,0 0.72 0.79 0.79
Local test of Hθ1,0 0.03 0.01 0.06
Local test of Hθ0,0 0.28 0.03 0.03
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Chapter 4

Discussion

Comparing treatments regarding their effect on response rates and survival is a
common objective in oncological research (Huober et al. 2019; Bear et al. 2006).
Furthermore, promising therapies can acquire preliminary approval based on
response benefit which greatly accelerates the availability of new therapies for
patients (Food and Drug Administration 2020; Food and Drug Administration
2022). When planning and analysing studies in this context, the correlation
between the endpoints response and survival has to be considered. This can be
done by the RSES model proposed by Xia et al. (2014).

This dissertation comprises the derivation of basic properties of the RSES model,
the construction of estimators and hypothesis tests, and the development of
sample size calculation methods. Furthermore, these methods are evaluated
within simulation studies and applied to a clinical example. Additionally, the
developed approximate RSES test is compared with the logrank test and the
stratified logrank test, since both methods are widely used in the described
context (Huober et al. 2019; Bear et al. 2006). It is found that when the RSES
model distribution of two treatment groups is compared, parameter differences
can translate to survival differences in three ways: equal survival, uniformly
better survival in one of the groups, or crossing survival curves. Furthermore,
estimating the survival parameters within the response strata parameterized
as θj = log(λj) yields the best approximate normal distribution, as compared
to using λj or ηj = 1/λj . The resulting estimators θ̂j have low bias and low
root mean squared error. The coverage probability of approximate confidence
intervals for the model parameters is very close to the desired confidence level.
The pairwise correlation of the estimators is very low and can be neglected
for calculations. The developed approximate RSES test adheres well to the
significance level. Exceedance of the significance level is only notable for extreme
cases where there is a very small expected number of patients in one response
stratum of one treatment group. Regarding power, the performance of the
approximate RSES test compared to the logrank test and stratified logrank test
depends on the constellation of model parameters. When survival benefit in the
experimental group is mainly due to more responders, the approximate RSES test
is considerably more powerful than the logrank tests. This advantage decreases
and can be reversed if survival benefit in the experimental group is mainly due to
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better survival within the response strata. Applying the approximate RSES test
to a clinical example also shows that it is considerably more powerful to detect
survival differences mainly originating from a difference in response probabilities.
Coverage probability of the derived approximate confidence intervals for model
parameter differences is very close to the desired confidence level. The derived
approximate sample size calculation method works very well. Approximate
sample sizes deviate only very little from exact sample sizes, even for small
sample sizes.

It should be mentioned that the assumptions of the RSES model are relatively
strict as the survival distribution within response strata is assumed to be expo-
nential (Xia et al. 2014). Thus, before applying the derived estimators or tests
to real data, the actual distribution of survival in the response strata has to be
evaluated. However, if the distribution assumptions are fulfilled, the derived
estimators and confidence intervals perform very well. The results of the derived
approximate RSES test have to be interpreted carefully, since the rejection of
the null hypothesis H0 indicates a difference between treatment groups only
regarding the RSES model parameters. Although differences between model
parameters almost always indicate a difference of survival distributions, as is
seen in Section 3.1, such a survival difference does not necessarily indicate a
uniform survival benefit. However, the same is true for the logrank test (Mantel
1966) which tests the null hypothesis that survival distributions are equal in
both treatment groups. If the logrank test rejects the null hypothesis, it cannot
be concluded that survival in one group is uniformly better than in the other
group. Instead, the assessment of survival benefit is usually done by comparison
of the survival distributions estimated by the Kaplan-Meier method (Kaplan and
Meier 1958). Analogous to this approach, the result of the approximate RSES
test has to be interpreted under consideration of the estimated parameters and
the resulting survival distributions.

In practice, more flexible methods may be desired for estimating and testing
survival distributions conditional on a binary response variable. For example,
a completely non-parametric estimation approach could consist of estimating
survival distributions within response strata by Kaplan-Meier estimators. These
could be combined with the estimated response probabilities to estimate the
survival distribution of all patients. Testing, on the other hand, could be based
on an effect measure that indicates survival benefit. This has the advantage of
objectively quantifying survival benefit in a way that is consistent with hypothesis
testing. Also, the specification of a summary measure is required within the
more and more commonly used Estimands framework (Pohl et al. 2021). Possible
choices for such a summary measure are the average hazard ratio (Rauch et al.
2018; Brückner and Brannath 2017) or the difference in Restricted Mean Survival
Times (RMST) between the groups (Royston and Parmar 2013). Combining a
non-parametric survival estimation method that considers the response status
with a meaningful effect measure like RMST could be a flexible way to analyse
studies in the described context (Food and Drug Administration 2020). Brückner,
Burger, et al. (2018) constructed weighted Kaplan-Meier estimators that consider
response status. Furthermore, they give approximate tests for testing the RMST
difference and the average hazard ratio. When planning such a study, more
concrete assumptions have to be made. For this, the RSES model might be
well suited. If, for example, the RMST shall be compared between two cancer
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therapies that are known to affect both response probability and survival, the
effect of these therapies can be modeled by the RSES model for calculating the
required sample size. The estimators derived in this dissertation can be used to
estimate the model parameters from previous studies. This approach is similar
to the Schoenfeld formula that is commonly used for sample size calculation for
the logrank test (Schoenfeld 1983). For this formula, the hazard ratio between
the treatment groups is assumed to be constant. Just like the RSES model, this
assumption is convenient for sample size calculation but might be too restrictive
for analysis. If it is desired to test the survival difference between two treatments
by the logrank test in the setting of the RSES model, calculating the required
sample size with the Schoenfeld formula is not possible due to the violation of
the proportional hazards assumption. In this case, a flexible method proposed
by Lakatos (1988) can be used for sample size calculation.

The developed exact RSES test might be less interesting for application in
practice due to the requirement of no censoring. However, the approach to
calculating exact p-values and critical values, and to use this for the development
of an exact test, can be applied to other situations and other models.

The main limitation of the results in this dissertation is that the derived methods
rely on the relative strict assumptions of the RSES model. No assessment
of the robustness of these methods against model misspecification was done.
Thus, the approximate RSES test has to be applied carefully in practice. The
same is true for the sample size calculation methods as they are tailored to the
approximate RSES test. However, the derived methods for point estimation and
confidence interval estimation of parameters and parameter differences are useful
to develop further methods and to derive assumptions for study planning, as
described before. In addition, the findings about the approximate independence
of parameter estimators and local tests might be helpful for developing new
testing strategies and sample size calculation methods. Another limitation is that
this thesis does not develop a method for planning and analysing a study where
an early interim decision based on response rates is made, as described in the
guideline of the Food and Drug Administration (2020). The derived approximate
RSES test assesses parameter differences which, under the assumptions of the
RSES model, translate to survival difference. Although a test of the difference
between response rates is built into the approximate RSES test as it is one of the
three local hypotheses, it is not really suitable for a combination of an interim
decision regarding response and a final decision regarding survival. One reason
for this is that a positive interim decision, i.e. a rejection of Hp,0, would already
mean that the approximate RSES test rejects the null hypothesis regarding the
final endpoint. If, as described before, the test for survival difference is based on
an effect measure like RMST, the correlation between an interim decision based
on response rates and the final assessment regarding RMST can be modeled
by the RSES model. For this, the findings of this dissertation regarding the
RSES model, parameter estimation, and correlation between parameters are
an important foundation. Brückner, Burger, et al. (2018) proposed a testing
strategy with an interim decision that controls the Type I error rate by using a
combination test. Although they consider the response status for estimating the
treatment effect and calculating the test statistic, the described interim decision
is based on survival differences and not on differences in response rates. However,
the testing strategy by Brückner, Burger, et al. (2018) may be adaptable to the
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situation where an interim decision is made based on response rates. Liu and
Hu (2016) derived and compared different strategies to control the Type I error
rate in the setting of an interim decision based on response rates.

A strength of this dissertation is its comprehensiveness. Every aspect of the
RSES model is investigated in detail. For example, the translation of parameter
differences to differences of survival distributions is described in Section 3.1
for all possible constellations. With regard to estimation, estimators for all
eligible parameterizations of the RSES model are derived and their approximate
normality is assessed in Section 3.2. Also, the exact distribution of the derived
estimators is investigated in detail. Exact formulas are given for the calculation
of coverage probabilities of approximate confidence intervals and of rejection
probabilities of the tests. These formulas are validated by simulation studies.
Furthermore, the complete R code for applying the derived methods in practice
is given. Another strength of this thesis is the generalizability of the presented
approach. The performed derivation of point estimators and confidence intervals
can easily be applied to other parametric survival models. The same is true for
the derived testing procedure and sample size calculation methods.

Further research is needed to develop distribution estimators and a test of survival
difference with more flexible distribution assumptions. Then, the RSES model
assumptions can be used to derive a sample size calculation method. Another
aspect of further research is the planning of studies that combine preliminary and
final approval, as described in the guideline of the Food and Drug Administration
(2020). For considering the correlation of surrogate endpoint and survival in
such a testing strategy, the RSES model and the derived methods in this thesis
can be used.

To conclude, this thesis contains a comprehensive investigation of the RSES
model. It provides point estimators and confidence interval estimators for the
RSES model which are necessary for applying the RSES model in practice. The
detailed description of the distribution of these estimators is a useful basis for
developing further methods within the RSES model. The derived approximate
RSES test and exact RSES test might not always be applicable in practice.
However, they can be used for comparison with newly developed testing methods.
Furthermore, the general approaches used in this dissertation regarding the
derivation of estimators, confidence intervals, hypothesis tests, sample size
calculation, and exact calculations can be applied to further models describing
the relationship between a surrogate endpoint and a survival endpoint.



Chapter 5

Summary

5.1 English
The primary endpoint in oncology is usually overall survival, where differences
between therapies may only be observable after many years. To avoid withholding
of a promising therapy, preliminary approval based on a surrogate endpoint
is possible. The approval can be confirmed later by assessing overall survival.
When planning and analysing trials in this context, the correlation between
surrogate endpoint and overall survival has to be taken into account. For the
binary surrogate endpoint response, this relation can be modeled by means of
the responder stratified exponential survival (RSES) model that was proposed
elsewhere. The RSES model has three parameters: response probability p,
the logarithmic hazard of responders θ1, and the logarithmic hazard of non-
responders θ0. The aim of this dissertation is to investigate the RSES model and
to develop and evaluate methods for parameter estimation, hypothesis testing,
and sample size calculation within the RSES model.

Estimators for the parameters p, θ1, θ0 are derived by the Maximum Likelihood
method. Approximate confidence intervals for the model parameters are con-
structed and are found to have very satisfying coverage probability. A hypothesis
test for the difference of model parameters between two treatment groups, called
approximate RSES test, is constructed. When it is compared with the logrank
test and the stratified logrank test regarding power, results vary based on the
scenario. When survival benefit in one group is mainly due to response benefit,
the approximate RSES test is considerably more powerful than the other tests.
Approximate confidence intervals for the parameter differences are derived and
show very satisfying coverage probability. Where possible, exact formulas for
the calculation of coverage probabilities and rejection probabilities are given. An
approximate and an exact sample size calculation method for the approximate
RSES test are developed. The sample size calculation method is applied to a
clinical example and the power of the approximate RSES test, the logrank test,
and the stratified logrank test is compared within this example. The approximate
RSES test turns out to be considerably more powerful.

It is discussed that the assumptions of the RSES model are relatively strict. Also,
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the results of the approximate RSES test have to be interpreted carefully, since
a rejection of the null hypothesis does not necessarily translate to a uniform
survival benefit. In practice, more flexible methods may be desired for estimating
and testing survival distributions conditional on a binary response variable.
Testing could be based on an effect measure that indicates survival benefit,
like the Restricted Mean Survival Time (RMST). Combining a non-parametric
survival estimation method that considers the response status with a meaningful
effect measure like RMST could be a flexible way to analyse studies in the
described context. When planning such a study with concrete assumptions, the
RSES model can be applied. Also, it is pointed out that the approach presented
in this thesis is applicable to other parametric survival models. Further research
is needed to develop distribution estimators and a test of survival difference with
more flexible distribution assumptions, as well as extending the methods to the
situation of an early interim decision based on response rates.

It is concluded that this thesis contains a comprehensive investigation of the
RSES model. It provides point estimators and confidence interval estimators
for the RSES model which are necessary for applying the RSES model in
practice. Furthermore, the general approaches used in this dissertation regarding
the derivation of estimators, confidence intervals, hypothesis tests, sample size
calculation, and exact calculations can be applied to further models describing
the relationship between a surrogate endpoint and a survival endpoint.

5.2 Deutsch
Der primäre Endpunkt in der Onkologie ist in der Regel das Überleben, wobei
Unterschiede zwischen den Therapien möglicherweise erst nach vielen Jahren
erkennbar sind. Um eine vielversprechende Therapie nicht vorzuenthalten,
ist eine vorläufige Zulassung aufgrund eines Surrogatendpunkts möglich. Die
Zulassung kann später durch die Untersuchung des Überlebens bestätigt werden.
Bei der Planung und Analyse von Studien in diesem Zusammenhang muss die
Korrelation zwischen Surrogatendpunkt und Überleben berücksichtigt werden.
Für den binären Surrogatendpunkt Response lässt sich diese Korrelation mit
Hilfe des in der Literatur vorgeschlagenen Responder Stratified Exponential
Survival (RSES) Modells beschreiben. Das RSES-Modell hat drei Parameter:
die Response-Wahrscheinlichkeit p, das logarithmische Hazard der Responder θ1
und das logarithmische Hazard der Non-Responder θ0. Ziel dieser Dissertation
ist es, das RSES-Modell zu untersuchen und Methoden zur Parameterschätzung,
zum Hypothesentest und zur Berechnung der Fallzahl im Rahmen des RSES-
Modells zu entwickeln und zu untersuchen.

Es werden Schätzer für die Parameter p, θ1, θ0 mit der Maximum-Likelihood-
Methode abgeleitet. Approximative Konfidenzintervalle für die Modellparameter
werden konstruiert und zeigen eine sehr zufriedenstellende Überdeck-
ungswahrscheinlichkeit. Es wird ein Hypothesentest für die Differenz der
Modellparameter zwischen zwei Behandlungsgruppen, der so genannte approxi-
mative RSES-Test, konstruiert. Beim Vergleich mit dem Logrank-Test und dem
stratifizierten Logrank-Test hinsichtlich der Power variieren die Ergebnisse je
nach Szenario. Wenn der Überlebensvorteil in einer Gruppe hauptsächlich auf
einen Response-Vorteil zurückzuführen ist, hat der approximative RSES-Test
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deutlich höhere Power als die anderen beiden Tests. Approximative Konfidenzin-
tervalle für die Parameterdifferenzen werden konstruiert und zeigen eine sehr
zufriedenstellende Überdeckungswahrscheinlichkeit. Soweit möglich, werden
exakte Formeln für die Berechnung der Überdeckungswahrscheinlichkeiten und
der Ablehnungswahrscheinlichkeiten angegeben. Eine approximative und eine
exakte Fallzahlberechnungsmethode für den approximativen RSES-Test werden
entwickelt. Die Methode wird auf ein klinisches Beispiel angewandt, und die
Power des approximativen RSES-Tests, des Logrank-Tests und des stratifizierten
Logrank-Tests wird innerhalb dieses Beispiels verglichen. Der approximative
RSES-Test zeigt wesentlich höhere Power.

Es wird diskutiert, dass die Annahmen des RSES-Modells relativ streng sind.
Außerdem müssen die Ergebnisse des approximativen RSES-Tests mit Vorsicht
interpretiert werden, da eine Ablehnung der Nullhypothese nicht unbedingt
einen gleichmäßigen Überlebensvorteil anzeigt. In der Praxis werden möglicher-
weise flexiblere Methoden zur Schätzung und zum Vergleich von Überleben
unter Berücksichtigung der Response gewünscht. Ein Gruppenvergleich könnte
auf einem Effektmaß basieren, das einen Überlebensvorteil anzeigt, wie z.~B.
die Restricted Mean Survival Time (RMST). Die Kombination einer nicht-
parametrischen Schätzmethode, die die Response berücksichtigt, mit einem
aussagekräftigen Effektmaß wie der RMST könnte eine flexible Methode zur
Analyse von Studien im beschriebenen Kontext darstellen. Wenn eine solche
Studie mit konkreten Annahmen geplant wird, kann das RSES-Modell angewen-
det werden. Es wird weiterhin diskutiert, dass der in dieser Arbeit vorgestellte
Ansatz auf andere parametrische Überlebensmodelle anwendbar ist. Weitere
Forschung ist erforderlich, um Schätzer und Tests mit flexibleren Verteilungsan-
nahmen zu entwickeln sowie um die Methoden auf die Situation einer frühen
Zwischenauswertung auf Basis der Response auszuweiten.

Abschließend wird festgestellt, dass diese Dissertation eine umfassende Unter-
suchung des RSES-Modells enthält. Sie liefert Punktschätzer und Konfidenzin-
tervalle für das RSES-Modell, die für die Anwendung des RSES-Modells in der
Praxis notwendig sind. Darüber hinaus können die in dieser Dissertation verwen-
deten allgemeinen Ansätze zur Herleitung von Schätzern, Konfidenzintervallen,
Hypothesentests, Fallzahlberechnungsmethoden und exakten Berechnungen auf
weitere Modelle angewendet werden, die die Beziehung zwischen einem Surroga-
tendpunkt und einem Überlebensendpunkt beschreiben.
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Appendix A

Technical details and
additional results

A.1 Test characteristics of exact test
Figure 18 shows exactly calculated Type I error rate of the exact RSES test in
the case of no censoring for the Type I error scenarios of the second simulation
study, but only for sample sizes nE = nc = 50, 60, 70, 80, 90, 100. The local
exact tests of Hθj ,0 completely exploit the local level α̃. However, due to the
discreteness of kE , kC , the local exact test of Hp,0 is not able to do that. As a
result, Type I error rate of the exact RSES test does not equal the significance
level of α = 0.05 but is slightly smaller. A further consequence is that the Type I
error rate for scenarios TOE1.1, TOE1.2, and TOE1.3 is exactly the same as for
scenarios TOE2.1, TOE2.2, and TOE2.3. Thus, only the latter three scenarios
are shown.

Figure 19 shows exactly calculated power of the exact RSES test in the case
of no censoring for the power scenarios of the second simulation study, and for
sample sizes nE = nc = 50, 60, 70, 80, 90, 100. In scenarios Pow1.2 and Pow 2.2,
power is almost equal and very large. This is due to the large response difference
between treatment groups in these scenarios.
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Figure 18: Exact Type I error rate of the exact RSES test for various sample
sizes in three scenarios TOE2.1, TOE2.2, TOE2.3. Type I error rate in scenarios
TOE1.1, TOE1.2, TOE1.3 is equal to the shown scenarios.
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Figure 19: Exact power of the exact RSES test for various sample sizes in
different treatment effect scenarios. In scenarios Pow1.2 and Pow 2.2, power is
almost equal.
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A.2 Logrank test statistics
The logrank test statistic introduced by Mantel (1966) with hypergeometric vari-
ance estimation is used in this dissertation. Let t(i) denote the event times. Let
Y (i) be the total number at risk and Y (i)

E the number at risk in the experimental
group immediately before t(i). Let d(i) be the total number of events and d

(i)
E

the number of events in the experimental group at t(i). Then

E(i) = d ·
Y

(i)
E

Y (i)

is the expected number of events in the experimental group at t(i). The condi-
tional variance of d(i)

E is derived from the hypergeometric distribution as

V (i) = (Y (i) − Y
(i)

E ) · Y (i)
E · (Y (i) − d(i)) · d(i)

Y (i)2 · (Y (i) − 1)
.

The total number of observed and expected events are

O =
∑

i

d
(i)
E

and
E =

∑
i

E(i).

The approximate variance of O − E is

V =
∑

i

V (i).

The logrank test statistic then is

TLR = O − E√
V

.

For the stratified logrank test, the quantities Oj , Ej and Vj are calculated within
each stratum j. The test statistic then is

TsLR =
∑

j(Oj − Ej)√∑
j Vj

.

A.3 Additional simulation results
Figure 20 shows additional results of the first simulation study described in
Section 2.2.4 for assessing the approximate normality of λ̂j , θ̂j and η̂j .

Figure 21 shows additional results of the assessment of coverage probability of
approximate confidence intervals for θj , as described in Section 2.2.6.

Figure 22 shows additional results for the assessment of the pairwise correlation
between the local test decisions, as described in Section 2.4.5.
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Figure 20: Quantile-quantile plots of standardized MLEs for p = 0.2, λ1 =
0.037, λ0 = 0.02, n = 50, 70, 100, and four censoring distributions. Dotted black
line indicates perfect agreement of empirical quantiles with standard normal
distribution.
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Figure 21: Estimated coverage probability of approximate confidence intervals
for θ0 with respect to sample size n, response probability p and responder
survival parameter θ1. The true value of the non-responder survival parameter
is θ0 ≈ −3.3.
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A.4 Validation of exact calculations
Figure 23 shows a comparison of exactly calculated and estimated coverage prob-
abilities of approximate confidence intervals for θ1, as described in Section 2.2.7.
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Figure 23: Coverage probability of approximate confidence intervals for θ1
with respect to sample size n, response probability p, true responder survival
parameter θ1, and three censoring distributions. The true value of the non-
responder survival parameter is θ0 ≈ −3.3. The orange lines show estimated
coverage probabilities. The solid black lines show exactly calculated coverage
probabilities. The dotted black lines show 2.5% and 97.5% quantiles of the
distribution of the estimated coverage probability. The estimated coverage
probability is mostly within the quantiles which validates the exact calculation.

Figure 24 shows a comparison of exactly calculated and estimated rejection
probabilities of the approximate RSES test, as described in Section 2.3.2.
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Figure 24: Rejection probability of the approximate RSES test for different
scenarios Pow1.1, Pow2.1, Pow3 and three censoring distributions. Orange stars
show estimated rejection probabilities by simulation. Black points show exactly
calculated rejection probabilities. Black error bars span 2.5% and 97.5% quantiles
of the distribution of the estimated rejection probability. The estimated coverage
probability is always within the quantiles which validates the exact calculation.
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A.5 Expectation of the observed event-free time
Let TS ∼ Exp(λ) be an exponentially distributed survival time and U an
arbitrarily distributed censoring time. Let TS and U be independent. The
event-free time T = min(TS , U) is observed. It will be shown that

E[T ] = E[TS ] · P(TS < U).

By the law of total expectation,

E[T ] = E[E[T | U ]]
= E[E[TS · 1TS<U + U · 1TS≥U | U ]].

Since 1TS<U = 1 − 1TS≥U , it is TS · 1TS<U = TS − TS · 1TS≥U . Since TS and U
are independent, the distribution of TS conditional on U is still Exp(λ). Thus,
E[TS | U ] = E[TS ] and E[TS · 1TS≥U | U ] can be calculated by

∞∫
U

t · λ exp(−λt)dt

=
∞∫

0

(t′ + U) · λ exp(−λ(t′ + U))dt′

= exp(−λU) ·

 ∞∫
0

t′ · λ exp(−λt′)dt′ +
∞∫

0

U · λ exp(−λt′)dt′


= exp(−λU) · (E[TS ] + U) .

Note that exp(−λU) = 1 − FTS
(U) = E[1TS≥U | U ]. Thus, E[U · 1TS≥U | U ] =

U · (1 − FTS
(U)). Hence, it is

E[T ] = E[E[T | U ]]
= E[E[TS · 1TS<U + U · 1TS≥U | U ]]
= E[E[TS ] − (1 − FTS

(U)) · (E[TS ] + U) + U · (1 − FTS
(U))]

= E[TS ] · E[(FTS
(U))]

= E[TS ] · P(TS < U).
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Appendix B

R code

## Required Packages

require(tidyverse)
library(rootSolve)
library(extraDistr)

## Functions ####
## > RSES model ####

# Calculate survival function
Compute.Surr.Surv <- function(

t,
p,
lambda.1,
lambda.0
){

# Input:
# t: time
# p: response probability
# lambda.1: hazard of responders
# lambda.1: hazard of non-responders
# Output:
# value of survival function

if (
!all(

c(
length(t),
length(p),
length(lambda.0),
length(lambda.1)

) == rep(length(t), 4)
)

99
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) {
stop("All input vectors have to be the same length!")

}

return(
sapply(

1:length(t),
function(i){

(1-pi[i])*exp(-lambda.0[i]*t[i]) + pi[i]*exp(-lambda.1[i]*t[i])
}

)
)

}

## > Confidence intervals for parameters ###########

# Calculates two-sided confidence interval for response probability
Calculate.approximate.CI.p <- function(

p.hat,
n,
alpha
){

# Input:
# p.hat: MLE for p
# n: sample size
# alpha: specifies confidence level 1 - alpha
# Output:
# CI.ll: lower limit of confidence interval
# CI.ul: upper limit of confidence interval

sd <- sqrt((p.hat*(1-p.hat))/n)
CI.ll <- p.hat - qnorm(1-alpha/2)*sd
CI.ul <- p.hat + qnorm(1-alpha/2)*sd
return(

list(
CI.ll = CI.ll,
CI.ul = CI.ul

)
)

}

# Calculates exact coverage probability of confidence interval for
# response probability
Calculate.cov.prob.CI.p <- function(

p,
n,
alpha
){

# Input:
# p: true response probability
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# n: sample size
# alpha: specifies confidence level 1 - alpha
# Output:
# exact coverage probability

cov.prob <- sapply(
1:length(p),
function(i){

k.vec <- 0:n[i]
k <- k.vec[

abs(p[i]-k.vec/n[i]) <=
(qnorm(1-alpha/2) * sqrt(k.vec/n[i]*(1-k.vec/n[i])/n[i]))

]
sum(dbinom(k, size = n[i], prob = p[i]))

}
)

return(cov.prob)
}

# Calculates two-sided confidence interval for \theta_j
Calculate.approximate.CI.theta <- function(

theta.hat,
l,
alpha
){

# Input:
# theta.hat: MLE for \theta_j
# l: number of uncensored observations in stratum j
# alpha: specifies confidence level 1 - alpha
# Output:
# CI.ll: lower limit of confidence interval
# CI.ul: upper limit of confidence interval

sd <- sqrt(1/l)
CI.ll <- theta.hat - qnorm(1-alpha/2)*sd
CI.ul <- theta.hat + qnorm(1-alpha/2)*sd

return(
list(

CI.ll = CI.ll,
CI.ul = CI.ul

)
)

}

# Calculates exact coverage probability of confidence interval for
# \theta_j in the case of no censoring
Calculate.cov.prob.CI.theta.no.cens <- function(

p,
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n,
alpha

){
# Input:
# p: true response probability
# n: sample size
# alpha: specifies confidence level 1 - alpha
# Output:
# exact coverage probability

cov.prob <- sapply(
1:length(p),
function(i){

k <- 1:n[i]
cp.cond.k <- pgamma(

q = exp(qnorm(1-alpha/2)*sqrt(1/k)),
shape = k,
rate = k

) -
pgamma(

q = exp(-qnorm(1-alpha/2)*sqrt(1/k)),
shape = k,
rate = k

)
sum(

dbinom(k, size = n[i], prob = p[i])*cp.cond.k)/
(1-dbinom(0, size = n[i], prob = p[i]))

}
)

return(cov.prob)
}

# Calculates exact coverage probability of confidence interval for
# \theta_j in the case of exponential censoring
Calculate.cov.prob.CI.theta.exp.cens <- function(

p,
n,
alpha,
lambda,
lambda.cens

){
# Input:
# p: true response probability
# n: sample size
# alpha: specifies confidence level 1 - alpha
# lambda: true value of \exp(\theta_j)
# lambda.cens: parameter of exponential censoring distribution
# Output:
# exact coverage probability
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cov.prob <- sapply(
1:length(p),
function(i){

# probability of not being censored
p.C <- lambda[i]/(lambda[i]+lambda.cens[i])

# possible combinations of k and l
df.kl <- expand.grid(

k = 1:n[i],
l = 1:n[i]

)
df.kl <- df.kl[df.kl$l <= df.kl$k,]

# coverage probability conditional on k and l
cp.cond.kl <- pgamma(

q = exp(qnorm(1-alpha/2)*sqrt(1/df.kl$l))/p.C,
shape = df.kl$k,
rate = df.kl$l

) -
pgamma(

q = exp(-qnorm(1-alpha/2)*sqrt(1/df.kl$l))/p.C,
shape = df.kl$k,
rate = df.kl$l

)

# expectation over conditional coverage probabilities
sum(

dbinom(df.kl$k, size = n[i], prob = p[i])*
dbinom(df.kl$l, size = df.kl$k, prob = p.C)*cp.cond.kl

)/
(1-dbinom(0, size = n[i], prob = p[i]*p.C))

}
)

return(cov.prob)
}

## > Approximate local test of H_{p, 0} ####

# Calculate approximate test of H_{p, 0}
Calculate.asymptotic.binomial.test <- function(

k.E,
k.C,
n.E,
n.C

){
# Input:
# k.E: number of responders in experimental group
# k.C: number of responders in control group
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# n.E: number of observations in experimental group
# n.C: number of observations in control group
# Output:
# T.stat: test statistic
# p.value: p-value

# Compute proportions and test statistic
p.E <- k.E/n.E
p.C <- k.C/n.C
p <- (n.E*p.E + n.C*p.C)/(n.E + n.C)
T.p <- ifelse(

p %in% c(0,1),
0,
abs(p.E - p.C) / sqrt(p*(1-p)*(1/n.E + 1/n.C))

)

return(
list(

T.stat = T.p,
p.value = 2*(1-pnorm(abs(T.p)))

)
)

}

# Calculate confidence interval of p_E - p_C
Calculate.asymptotic.binomial.CI <- function(

k.E,
k.C,
n.E,
n.C,
alpha
){

# Input:
# k.E: number of responders in experimental group
# k.C: number of responders in control group
# n.E: number of observations in experimental group
# n.C: number of observations in control group
# alpha: specifies confidence level 1 - alpha
# Output:
# CI.ll: lower limit of confidence interval
# CI.ul: upper limit of confidence interval

# Compute proportions and standard deviation
p.E <- k.E/n.E
p.C <- k.C/n.C
diff <- p.E - p.C
sd <- sqrt(p.E*(1-p.E)/n.E + p.C*(1-p.C)/n.C)

return(
list(
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CI.ll = diff-qnorm(1-alpha/2)*sd,
CI.ul = diff+qnorm(1-alpha/2)*sd

)
)

}

# Calculate approximate sample size for test of H_{p, 0}
Calculate.asymptotic.binomial.sample.size <- function(

p.E,
p.C,
r,
alpha,
power
){

# Input:
# p.E: assumed response rate in experimental group
# p.C: assumed response rate in control group
# r: ratio of sample sizes n.E/n.C
# alpha: level two-sided test
# power: desired power
# Output:
# n.C: required sample size in control group
# n.E: required sample size in experimental group

n.C.ex <- (
(

qnorm(1-power)*
sqrt(1/r*p.E*(1-p.E) + p.C*(1-p.C))

- qnorm(1-alpha/2)*
sqrt((r*p.E+p.C)/r*(1-(r*p.E+p.C)/(r+1)))

)/
(p.E-p.C))ˆ2

n.C <- ceiling(n.C.ex)
n.E <- ceiling(r*n.C)

list(
n.C = n.C,
n.E = n.E

)
}

# Calculate approximate power for test of H_{p, 0}
Calculate.asymptotic.binomial.power <- function(

n.E,
n.C,
p.E,
p.C,
alpha
){
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# Input:
# n.E: sample size in experimental group
# n.C: sample size in control group
# p.E: response rate in experimental group
# p.C: response rate in control group
# alpha: significance level
# Output:
# approximate power

# Total response rate
p <- (n.E*p.E + n.C*p.C)/(n.E+n.C)
# Joint standard deviation
sigma.p <- sqrt(p.E*(1-p.E)/n.E + p.C*(1-p.C)/n.C)
# Power
power <- 1 - pnorm(

(qnorm(1-alpha/2) * sqrt(
p*(1-p)*(1/n.E + 1/n.C)

) -
abs(p.E - p.C)) /
sigma.p

) +
pnorm(

(-qnorm(1-alpha/2) * sqrt(
p*(1-p)*(1/n.E + 1/n.C)

) -
abs(p.E - p.C)) /
sigma.p

)
return(power)

}

## > Approximate local test of H_{\theta_j, 0} ####

# Calculate approximate test of H_{\theta_j, 0}
Calculate.asymptotic.RSES.theta.test <- function(

theta.E,
theta.C,
l.E,
l.C,
n.E,
n.C
){

# Input:
# theta.E: MLE of \theta_{j, E}
# theta.C: MLE of \theta_{j, C}
# l.E: number of uncensored observations in stratum j in experimental group
# l.C: number of uncensored observations in stratum j in control group
# n.E: number of observations in experimental group
# n.C: number of observations in control group
# Output:
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# T.stat: test statistic
# p.value: p-value

T.theta <- ifelse(
l.E == 0 | l.C == 0,
0,
abs(theta.E - theta.C)/sqrt((n.E+n.C)/(l.E+l.C)*(1/n.E + 1/n.C))

)

list(
T.stat = T.theta,
p.value = 2*(1-pnorm(T.theta))

)
}

# Calculate approximate confidence interval for \theta_{j, E} - \theta_{j, C}
Calculate.asymptotic.RSES.theta.CI <- function(

theta.E,
theta.C,
l.E,
l.C,
alpha
){

# Input:
# theta.E: MLE of \theta_{j, E}
# theta.C: MLE of \theta_{j, C}
# l.E: number of uncensored observations in stratum j in experimental group
# l.C: number of uncensored observations in stratum j in control group
# n.E: number of observations in experimental group
# n.C: number of observations in control group
# alpha: specifies confidence level 1 - alpha
# Output:
# CI.ll: lower limit of confidence interval
# CI.ul: upper limit of confidence interval

diff <- theta.E - theta.C
sd <- ifelse(

l.E == 0 | l.C == 0,
Inf,
sqrt(1/l.E+1/l.C)

)

list(
CI.ll = diff-qnorm(1-alpha/2)*sd,
CI.ul = diff+qnorm(1-alpha/2)*sd

)
}

# Calculate approximate sample size for test of H_{\theta_j, 0}
Calculate.asymptotic.RSES.theta.sample.size <- function(
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theta.E,
theta.C,
p.E,
p.C,
q.E,
q.C,
r,
alpha,
power
){

# Input:
# theta.E: Assumed value for \theta_{j, E}
# theta.C: Assumed value for \theta_{j, C}
# p.E: assumed response rate in experimental group
# p.C: assumed response rate in control group
# q.E: assumed prop. of uncensored observations in stratum j in exp. group
# q.C: assumed prop. of uncensored observations in stratum j in contr. group
# r: sample size ratio
# alpha: significance level
# power: desired power
# Output:
# n.E: required sample size in experimental group
# n.C: required sample size in control group

n.C.ex <- (
(

qnorm(1-power)*sqrt(
1/(r*p.E*q.E) + 1/(p.C*q.C)

) -
qnorm(1-alpha/2)*
sqrt(

(1+r)ˆ2/r /(r*p.E*q.E + p.C*q.C)
)

) /
(theta.E-theta.C)

)ˆ2
n.C <- ceiling(n.C.ex)
n.E <- ceiling(n.C*r)

list(
n.C = n.C,
n.E = n.E

)
}

# Calculate approximate power for test of H_{\theta_j, 0}
Calculate.asymptotic.RSES.theta.power <- function(

n.E,
n.C,
theta.E,
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theta.C,
p.E,
p.C,
q.E,
q.C,
alpha

){
# Input:
# n.E: sample size in experimental group
# n.C: sample size in control group
# theta.E: Assumed value for \theta_{j, E}
# theta.C: Assumed value for \theta_{j, C}
# p.E: assumed response rate in experimental group
# p.C: assumed response rate in control group
# q.E: assumed prop. of uncensored observations in stratum j in exp. group
# q.C: assumed prop. of uncensored observations in stratum j in contr. group
# alpha: significance level
# Output:
# approximate power

power <- 1 - pnorm(
(

qnorm(1-alpha/2)*
sqrt((n.E+n.C)/(n.E*p.E*q.E+n.C*p.C*q.C)*(1/n.E + 1/n.C))

- abs(theta.C-theta.E)
)/

sqrt(1/(n.E*p.E*q.E)+1/(n.C*p.C*q.C))
) +

pnorm(
(

-qnorm(1-alpha/2)*
sqrt((n.E+n.C)/(n.E*p.E*q.E+n.C*p.C*q.C)*(1/n.E + 1/n.C))

- abs(theta.C-theta.E)
)/

sqrt(1/(n.E*p.E*q.E)+1/(n.C*p.C*q.C))
)

return(power)
}

## > Approximate RSES test ####

# Calculate p-values of local tests
# The decision of the approximate RSES test is then made by
# comparing the minimum of the local p-values to the significance level
Calculate.all.local.p.values <- function(

k.E,
k.C,
n.E,
n.C,
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l.1E,
l.1C,
l.0E,
l.0C,
theta.1.diff,
theta.0.diff
){

# Input:
# k.E: number of responders in experimental group
# k.C: number of responders in control group
# n.E: number of observations in experimental group
# n.C: number of observations in control group
# l.1E: number of uncensored responders in experimental group
# l.1C: number of uncensored responders in control group
# l.0E: number of uncensored non-responders in experimental group
# l.0C: number of uncensored non-responders in control group
# theta.1.diff: difference of responder MLEs
# theta.0.diff: difference of non-responder MLEs
# Output:
# p.p: p-value of local test of H_{p, 0}
# p.theta.1: p-value of local test of H_{\theta_1, 0}
# p.theta.0: p-value of local test of H_{\theta_0, 0}

# Compute p-values
p.p <- Calculate.asymptotic.binomial.test(

k.E = k.E,
k.C = k.C,
n.E = n.E,
n.C = n.C

)$p.value

p.t1 <- Calculate.asymptotic.RSES.theta.test(
theta.E = theta.1.diff,
theta.C = 0,
l.E = l.1E,
l.C = l.1C,
n.E = n.E,
n.C = n.C

)$p.value

p.t0 <- Calculate.asymptotic.RSES.theta.test(
theta.E = theta.0.diff,
theta.C = 0,
l.E = l.0E,
l.C = l.0C,
n.E = n.E,
n.C = n.C

)$p.value

return(
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list(
p.p = p.p,
p.theta.1 = p.t1,
p.theta.0 = p.t0

)
)

}

# Calculate approximate sample size for approximate RSES test
Calculate.asymptotic.RSES.sample.size <- function(

theta.1.E,
theta.1.C,
theta.0.E,
theta.0.C,
p.E,
p.C,
q.1.E,
q.1.C,
q.0.E,
q.0.C,
r,
alpha,
power
){

# Input:
# theta.1.E: Assumed value for \theta_{1, E}
# theta.1.C: Assumed value for \theta_{1, C}
# theta.0.E: Assumed value for \theta_{0, E}
# theta.0.C: Assumed value for \theta_{0, C}
# p.E: assumed response rate in experimental group
# p.C: assumed response rate in control group
# q.1.E: assumed proportion of uncensored responders in exp. group
# q.1.C: assumed proportion of uncensored responders in contr. group
# q.0.E: assumed proportion of uncensored non-responders in exp. group
# q.0.C: assumed proportion of uncensored non-responders in contr. group
# r: sample size ratio
# alpha: significance level
# power: desired power
# Output:
# n.E: required sample size in experimental group
# n.C: required sample size in control group

# logical vector to describe where are differences between parameters
diff.vec <- c(

p = p.E == p.C,
theta.1 = theta.1.E == theta.1.C,
theta.0 = theta.0.E == theta.0.C

)
if (all(diff.vec)) {

stop("Not all pairs of parameters (E, C) can be equal.")
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}

# local level
alpha.loc <- 1-(1-alpha)ˆ(1/3)

# Find limits for sample size
beta.t <- ((1-power)/(1-alpha.loc)ˆsum(diff.vec))ˆ(1/sum(!diff.vec))

n.p.t <- Calculate.asymptotic.binomial.sample.size(
p.E = p.E,
p.C = p.C,
r = r,
power = 1-beta.t,
alpha = alpha.loc

)$n.C

n.theta.1.t <- Calculate.asymptotic.RSES.theta.sample.size(
theta.E = theta.1.E,
theta.C = theta.1.C,
p.E = p.E,
p.C = p.C,
q.E = q.1.E,
q.C = q.1.C,
r = r,
alpha = alpha.loc,
power = 1-beta.t

)$n.C

n.theta.0.t <- Calculate.asymptotic.RSES.theta.sample.size(
theta.E = theta.0.E,
theta.C = theta.0.C,
p.E = 1-p.E,
p.C = 1-p.C,
q.E = q.0.E,
q.C = q.0.C,
r = r,
alpha = alpha.loc,
power = 1-beta.t

)$n.C

# Define acceptance probability equation to solve
equation <- function(n.C){

(1 - Calculate.asymptotic.binomial.power(
n.E = r*n.C,
n.C = n.C,
p.E = p.E,
p.C = p.C,
alpha = alpha.loc

)) *
(1 - Calculate.asymptotic.RSES.theta.power(
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n.E = r*n.C,
n.C = n.C,
theta.E = theta.1.E,
theta.C = theta.1.C,
p.E = p.E,
p.C = p.C,
q.E = q.1.E,
q.C = q.1.C,
alpha = alpha.loc

)) *
(1- Calculate.asymptotic.RSES.theta.power(

n.E = r*n.C,
n.C = n.C,
theta.E = theta.0.E,
theta.C = theta.0.C,
p.E = 1-p.E,
p.C = 1-p.C,
q.E = q.0.E,
q.C = q.0.C,
alpha = alpha.loc

)) -
(1 - power)

}

# Solve equation for n.C
uniroot(

f = equation,
interval = c(

min(c(n.p.t, n.theta.1.t, n.theta.0.t)[!diff.vec])-5,
max(c(n.p.t, n.theta.1.t, n.theta.0.t)[!diff.vec])+5

)
)$root ->

n.C.ex

return(
list(

n.C = ceiling(n.C.ex),
n.E = ceiling(r*n.C.ex)

)
)

}

# Calculate exact rejection probability of approximate RSES test
# in the case of no censoring
Calculate.exact.RSES.reject.prob.no.cens <- function(

n.E,
n.C,
theta.1.E,
theta.1.C,
theta.0.E,
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theta.0.C,
p.E,
p.C,
alpha
){

# Input:
# n.E: sample size in experimental group
# n.C: sample size in control group
# theta.1.E: Assumed value for \theta_{1, E}
# theta.1.C: Assumed value for \theta_{1, C}
# theta.0.E: Assumed value for \theta_{0, E}
# theta.0.C: Assumed value for \theta_{0, C}
# p.E: assumed response rate in experimental group
# p.C: assumed response rate in control group
# alpha: significance level
# Output:
# exact rejection probability

# local level
alpha.loc <- 1-(1-alpha)ˆ(1/3)

# hazards in treatment groups and response strata
lam.E.1 <- exp(theta.1.E)
lam.C.1 <- exp(theta.1.C)
lam.E.0 <- exp(theta.0.E)
lam.C.0 <- exp(theta.0.C)

result <- 0

for (k.E in 0:n.E) {
for (k.C in 0:n.C) {

if (
abs(

Calculate.asymptotic.binomial.test(k.E, k.C, n.E, n.C)$T.stat
) > qnorm(1-alpha.loc/2)

) {
add <- 0

} else {
# estimated rates
p.E.e <- k.E/n.E
p.C.e <- k.C/n.C

# pooled rate
p.e <- (n.E*p.E.e + n.C*p.C.e)/(n.E + n.C)

if (k.E == 0 | k.C == 0) {
u.1 <- 1

} else {
c.1 <- exp(qnorm(1-alpha.loc/2) * sqrt(1/p.e*(1/n.E + 1/n.C)))
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u.1 <- pbetapr(k.C*lam.C.1/(k.E*lam.E.1)*c.1, k.C, k.E) -
pbetapr(k.C*lam.C.1/(k.E*lam.E.1) * 1/c.1, k.C, k.E)

}

if (k.E == n.E | k.C == n.C) {
u.0 <- 1

} else {
c.0 <- exp(qnorm(1-alpha.loc/2) * sqrt(1/(1-p.e)*(1/n.E + 1/n.C)))
u.0 <- pbetapr(

(n.C-k.C)*lam.C.0/((n.E-k.E)*lam.E.0)*c.0,
n.C-k.C,
n.E-k.E

) - pbetapr(
(n.C-k.C)*lam.C.0/((n.E-k.E)*lam.E.0) * 1/c.0,
n.C-k.C,
n.E-k.E

)
}

add <- dbinom(k.E, n.E, p.E)*dbinom(k.C, n.C, p.C)*u.1*u.0
}
result <- result + add

}
}

return(1-result)
}

# Calculate exact rejection probability of approximate RSES test
# in the case of exponential censoring
Calculate.exact.RSES.reject.prob.exp.cens <- function(

n.E, n.C,
theta.1.E,
theta.1.C,
theta.0.E,
theta.0.C,
lambda.cens,
p.E,
p.C,
alpha
){

# Input:
# n.E: sample size in experimental group
# n.C: sample size in control group
# theta.1.E: Assumed value for \theta_{1, E}
# theta.1.C: Assumed value for \theta_{1, C}
# theta.0.E: Assumed value for \theta_{0, E}
# theta.0.C: Assumed value for \theta_{0, C}
# p.E: assumed response rate in experimental group
# p.C: assumed response rate in control group
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# lambda.cens: parameter of exponential censoring distribution
# r: sample size ratio
# alpha: significance level
# Output:
# exact rejection probability

# local level
alpha.loc <- 1-(1-alpha)ˆ(1/3)

# hazards in treatment groups and response strata
lam.E.1 <- exp(theta.1.E)
lam.C.1 <- exp(theta.1.C)
lam.E.0 <- exp(theta.0.E)
lam.C.0 <- exp(theta.0.C)

# All combinations of l.i and k.i
df.l <- expand.grid(

l.C = 1:n.C,
l.E = 1:n.E,
k.C = 1:n.C,
k.E = 1:n.E

)

# All combinations of k.E, k.C, l.E, l.C where something has to be
# computed (0 < l.i < k.i)
ind <- df.l$l.E <= df.l$k.E & df.l$l.C <= df.l$k.C & df.l$l.E*df.l$l.C > 0

# Vector of values of k.i and l.i
k.E <- df.l$k.E[ind]
l.E <- df.l$l.E[ind]
k.C <- df.l$k.C[ind]
l.C <- df.l$l.C[ind]

# compute quantile for beta prime distribution function for every combination
c.1 <- exp(qnorm(1-alpha.loc/2) * sqrt((n.E+n.C)/(l.E+l.C)*(1/n.E + 1/n.C)))

# compute conditional acceptance probability of H_theta.1 and H_theta.0
# by beta prime distribution function for c.1 and 1/c.1 with true parameters
u.1 <- pbetapr(

q = c.1,
shape1 = k.C,
shape2 = k.E,
scale = l.E*(lam.E.1+lambda.cens)/l.C/(lam.C.1+lambda.cens)

) -
pbetapr(

q = 1/c.1,
shape1 = k.C,
shape2 = k.E,
scale = l.E*(lam.E.1+lambda.cens)/l.C/(lam.C.1+lambda.cens)

)
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# u.0 is actually computed for wrong parameters (should be n.E-k.E and so on).
# Will be matched correctly later.
u.0 <- pbetapr(

q = c.1,
shape1 = k.C,
shape2 = k.E,
scale = l.E*(lam.E.0+lambda.cens)/l.C/(lam.C.0+lambda.cens)

) -
pbetapr(

q = 1/c.1,
shape1 = k.C,
shape2 = k.E,
scale = l.E*(lam.E.0+lambda.cens)/l.C/(lam.C.0+lambda.cens)

)

# all combinations of response combinations
k.comb <- expand.grid(

k.C = 0:n.C,
k.E = 0:n.E

)

# number of combinations of l.E and l.C for
# respective combination of k.E and k.C
n.l.comb <- k.comb$k.E*k.comb$k.C

# cumulative sum of these numbers for indexing the vectors correctly
n.l.comb.cum <- cumsum(c(0, n.l.comb))

# initiate acceptance probability vector by 0
accept.theta.1 <- rep(0, nrow(k.comb))

# update acceptance probability vector where there is a positive number
# of combinations of l.E and l.C
sapply(

(1:nrow(k.comb))[n.l.comb > 0],
function(i){

# determine index range of combinations l.E and l.C belonging
# to the specific combination k.E, k.C
ind <- (n.l.comb.cum[i]+1):(n.l.comb.cum[i+1])

# calculate sum of acceptance probabilities over this index range
sum(

u.1[ind]*
dbinom(

x = l.E[ind],
size = k.comb$k.E[i],
prob = lam.E.1/(lam.E.1+lambda.cens)

)*
dbinom(



118 APPENDIX B. R CODE

x = l.C[ind],
size = k.comb$k.C[i],
prob = lam.C.1/(lam.C.1+lambda.cens)

)
)

}
) ->

accept.theta.1[n.l.comb > 0]

# calculate probability of no events in one of the groups
# for every combination
theta.1.no.events <- dbinom(

x = 0,
size = k.comb$k.E,
prob = lam.E.1/(lam.E.1+lambda.cens)

) +
dbinom(

x = 0,
size = k.comb$k.C,
prob = lam.C.1/(lam.C.1+lambda.cens)

) -
dbinom(

x = 0,
size = k.comb$k.E,
prob = lam.E.1/(lam.E.1+lambda.cens)

) *
dbinom(

x = 0,
size = k.comb$k.C,
prob = lam.C.1/(lam.C.1+lambda.cens)

)

# repeat procedure for theta.0
accept.theta.0 <- rep(0, nrow(k.comb))
ind.n.l.comb.gr.0 <- (1:nrow(k.comb))[n.l.comb > 0]
sapply(

ind.n.l.comb.gr.0,
function(i){

ind <- (n.l.comb.cum[i]+1):(n.l.comb.cum[i+1])
sum(

u.0[ind]*
dbinom(

x = l.E[ind],
size = k.comb$k.E[i],
prob = lam.E.0/(lam.E.0+lambda.cens)

)*
dbinom(

x = l.C[ind],
size = k.comb$k.C[i],
prob = lam.C.0/(lam.C.0+lambda.cens)
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)
)

}
) ->

accept.theta.0[nrow(k.comb)+1-ind.n.l.comb.gr.0]

theta.0.no.events <- dbinom(
x = 0,
size = n.E-k.comb$k.E,
prob = lam.E.0/(lam.E.0+lambda.cens)

) +
dbinom(

x = 0,
size = n.C-k.comb$k.C,
prob = lam.C.0/(lam.C.0+lambda.cens)

) -
dbinom(

x = 0,
size = n.E-k.comb$k.E,
prob = lam.E.0/(lam.E.0+lambda.cens)

) *
dbinom(

x = 0,
size = n.C-k.comb$k.C,
prob = lam.C.0/(lam.C.0+lambda.cens)

)

# Calculate sum over all combinations of k.E and k.C with respective
# binomial probabilities
sum(

dbinom(k.comb$k.E, n.E, p.E)*dbinom(k.comb$k.C, n.C, p.C)*
(Calculate.asymptotic.binomial.test(

k.E = k.comb$k.E,
k.C = k.comb$k.C,
n.E = n.E,
n.C = n.C

)$p.value >= alpha.loc) *
(accept.theta.1+theta.1.no.events)*
(accept.theta.0+theta.0.no.events)

) ->
result

return(1-result)
}

Calculate.exact.RSES.sample.size <- function(
theta.1.E,
theta.1.C,
theta.0.E,
theta.0.C,
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p.E,
p.C,
lambda.cens,
r,
alpha,
power
){

# Input:
# theta.1.E: Assumed value for \theta_{1, E}
# theta.1.C: Assumed value for \theta_{1, C}
# theta.0.E: Assumed value for \theta_{0, E}
# theta.0.C: Assumed value for \theta_{0, C}
# p.E: assumed response rate in experimental group
# p.C: assumed response rate in control group
# lambda.cens: parameter of exponential censoring distribution
# r: sample size ratio
# alpha: significance level
# power: desired power
# Output:
# n.E: sample size in experimental group
# n.C: sample size in control group
# exact.power: exact power

# Probabilities of not being censored in treatment groups and
# response strata
q.1.E <- exp(theta.1.E)/(exp(theta.1.E)+lambda.cens)
q.1.C <- exp(theta.1.C)/(exp(theta.1.C)+lambda.cens)
q.0.E <- exp(theta.0.E)/(exp(theta.0.E)+lambda.cens)
q.0.C <- exp(theta.0.C)/(exp(theta.0.C)+lambda.cens)

# Starting value for iterative procedure
n.C <- Calculate.asymptotic.RSES.sample.size(

theta.1.E = theta.1.E,
theta.1.C = theta.1.C,
theta.0.E = theta.0.E,
theta.0.C = theta.0.C,
p.E = p.E,
p.C = p.C,
q.1.E = q.1.E,
q.1.C = q.1.C,
q.0.E = q.0.E,
q.0.C = q.0.C,
r = r,
alpha = alpha,
power = power

)$n.C

# Exact power with starting value
power.ex <- Calculate.exact.RSES.reject.prob.exp.cens(

theta.1.E = theta.1.E,
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theta.1.C = theta.1.C,
theta.0.E = theta.0.E,
theta.0.C = theta.0.C,
lambda.cens = lambda.cens,
p.E = p.E,
p.C = p.C,
alpha = alpha,
n.C = n.C,
n.E = ceiling(r*n.C)

)

# Increase sample size if exact power is lower than desired
if(power.ex < power){

while(power.ex < power){
n.C <- n.C+1

power.ex <- Calculate.exact.RSES.reject.prob.exp.cens(
theta.1.E = theta.1.E,
theta.1.C = theta.1.C,
theta.0.E = theta.0.E,
theta.0.C = theta.0.C,
lambda.cens = lambda.cens,
p.E = p.E,
p.C = p.C,
alpha = alpha,
n.C = n.C,
n.E = ceiling(r*n.C)

)
}

} else {
while(power.ex >= power){

n.C <- n.C-1
power.stored <- power.ex
power.ex <- Calculate.exact.RSES.reject.prob.exp.cens(

theta.1.E = theta.1.E,
theta.1.C = theta.1.C,
theta.0.E = theta.0.E,
theta.0.C = theta.0.C,
lambda.cens = lambda.cens,
p.E = p.E,
p.C = p.C,
alpha = alpha,
n.C = n.C,
n.E = ceiling(r*n.C)

)
}
n.C <- n.C+1
power.ex <- power.stored

}
return(
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list(
n.C = n.C,
n.E = ceiling(r*n.C),
exact.power = power.ex

)
)

}

# test function Calculate.exact.RSES.sample.size
if(F){

Calculate.exact.RSES.sample.size (
theta.1.E = -3.05,
theta.1.C = -1.95,
theta.0.E = -2.65,
theta.0.C = -1.95,
p.E = 0.8,
p.C = 0.13,
lambda.cens = 0.04,
r = 1,
alpha = 0.05,
power = 0.8

)
}

## > Logrank test and stratified logrank test ####

# Calculate logrank test
Calculate.logrank.test <- function(

df
){

# Input:
# df: a data frame with variables t (time), event (event indicator) and
# group ("E" or "C")
# Output:
# O: number of observed events in E
# E: number of expected events in E
# V: approximate variance
# T.stat: test statistic

# ordered vector of event times
tau <- sort(unique(df$t[df$event]))

if(length(tau) == 0){
O <- NA
E <- NA
V <- NA
T.LR <- NA

} else {
# number of events in E at each event time
d1 <- sapply(
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tau,
function(t) sum(df$group == "E" & df$t == t & df$event)

)

# number of total events at each event time
d <- sapply(

tau,
function(t) sum(df$t == t & df$event)

)

# number at risk in E at each event time
Y1 <- sapply(

tau,
function(t) sum(df$t >= t & df$group == "E")

)

# number at risk at each event time
Y <- sapply(

tau,
function(t) sum(df$t >= t)

)

O <- d1
E <- d * Y1/Y
V <- ifelse(

Yˆ2 * (Y - 1) == 0,
0,
((Y - Y1) * Y1 * (Y - d)*d)/

(Yˆ2 * (Y - 1))
)
if(sum(V) == 0) T.LR <- NA else T.LR <- sum(O - E)/sqrt(sum(V))

}

return(
list(

O = sum(O),
E = sum(E),
V = sum(V),
T.stat = T.LR

)
)

}

# Calculate stratified logrank test
Calculate.strat.logrank.test <- function(

df
){

# Input:
# df: a data frame with variables t (time), event (event indicator),
# group ("E" or "C"), and resp (response status 0/1)
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# Output:
# T.stat: test statistic

O.vec <- c()
E.vec <- c()
V.vec <- c()
# Calculate number of observed and expected events and approximate variances
# in each stratum
for (stratum. in c(0, 1)) {

Calculate.logrank.test(df[df$resp == stratum., ]) ->
logrank.h

if(is.na(logrank.h$T.LR)) next else {
O.vec <- c(O.vec, logrank.h$O)
E.vec <- c(E.vec, logrank.h$E)
V.vec <- c(V.vec, logrank.h$V)

}
}

Num <- sum(O.vec - E.vec)
Denom <- sqrt(sum(V.vec))
T.stat <- Num/Denom
if(is.nan(T.stat)) T.stat <- NA

return(
list(

T.stat = T.stat
)

)
}

## > Exact RSES test ####

# Calculate exact p-value for the exact test of H_{p, 0}
Exact.p.p <- function(

k.E,
k.C,
n.E,
n.C,
p.vec
){

# Input:
# k.E: number of responders in experimental group
# k.C: number of responders in control group
# n.E: sample size in experimental group
# n.C: sample size in control group
# p.vec: vector of values of true response probability
# Output:
# vector of p-values corresponding to p.vec
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# Create data frame of all combinations (x.E, x.C) that are as or more extreme
# than the observed combination
expand.grid(

x.E = 0:n.E,
x.C = 0:n.C

) %>%
mutate(

T.p = Calculate.asymptotic.binomial.test(x.E, x.C, n.E, n.C)$T.stat
) %>%
filter(

T.p >= Calculate.asymptotic.binomial.test(k.E, k.C, n.E, n.C)$T.stat
) ->
df.rej

# For every true response probability in p.vec, calculate probability
# of the data frame
prob.vec <- NULL
for (p in p.vec) {

prob <- sum(dbinom(df.rej$x.E, n.E, p)*dbinom(df.rej$x.C, n.C, p))
prob.vec <- c(prob.vec, prob)

}

return(prob.vec)
}

# Calculate critical value of test of H_{p, 0}
Exact.p.crit <- function(

alpha.loc,
n.E,
n.C,
size.acc = 3
){

# Input:
# alpha.loc: local level
# n.E: sample size in experimental group
# n.C: sample size in control group
# size.acc: 10ˆ(-size.acc) is the coarseness of the grid used to obtain
# the maximum p-value
# Output:
# crit.val.lb: lower bound of critical value
# crit.val.mid: can be used as critical value
# crit.val.ub: upper bound of critical value
# max.size: maximum Type I error rate
# sizes: vector of Type I error rates dependent on true response probability

# Create data frame of all test statistics ordered by test statistic
expand.grid(

x.E = 0:n.E,
x.C = 0:n.C

) %>%
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mutate(
stat = Calculate.asymptotic.binomial.test(x.E, x.C, n.E, n.C)$T.stat

) %>%
arrange(desc(stat)) ->
df.stat

# Extract stat, x.C and x.E as vector
stat <- df.stat$stat
x.C <- df.stat$x.C
x.E <- df.stat$x.E

# Find starting value for the search of critical value by taking the
# quantile of the normal distribution
start_value <- qnorm(1-alpha.loc/2)

# Find row number of df.stat corresponding to starting value
# <- row of df.stat where stat is maximal with stat <= start_value
# Special case with very small sample sizes can lead to stat > start_value
# for all rows. Then set i <- 1
i <- sum(stat>start_value)

# Define rough grid for p.C and p.E
acc <- 1
p.C <- seq(10ˆ-acc, 1-10ˆ-acc, by = 10ˆ-acc)
p.E <- p.C

# Calculate exact Type I error rate for every pair (p.C, p.E)
sapply(

1:length(p.C),
function(j) dbinom(x.C[1:i], n.C, p.C[j])*dbinom(x.E[1:i], n.E, p.E[j])

) ->
size.vec

# Increase index if maximal Type I error rate is too low
while (max(apply(size.vec, 2, sum)) <= alpha.loc) {

i <- i+1

# Compute new Type I error rates
size.vec <- rbind(

size.vec,
dbinom(x.C[i], n.C, p.C)*dbinom(x.E[i], n.E, p.E)

)
}

# Decrease index if maximal Type I error rate is too high and increase
# grid accuracy
for (acc in 1:size.acc) {

# Define grid for p.C and p.E
p.C <- seq(10ˆ-acc, 1-10ˆ-acc, by = 10ˆ-acc)
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p.E <- p.C

sapply(
1:length(p.C),
function(j) dbinom(x.C[1:i], n.C, p.C[j])*dbinom(x.E[1:i], n.E, p.E[j])

) ->
size.vec

# Decrease index if maximal Type I error rate is too high
while (max(apply(size.vec, 2, sum)) > alpha.loc & i >= 1) {

# Compute new Type I error rates
size.vec <- size.vec[-i,]
i <- i-1

}
}

# Decrease index further as long as rows have the same test statistic value
while (stat[i+1] == stat[i] & i >= 1) {

size.vec <- size.vec[-i,]
i <- i-1

}

# Critical value can now be chosen between stat[i+1] and stat[i]
crit.val.mid <- (stat[i+1] + stat[i])/2

# Return range of critical values and maximal Type I error rate
return(

list(
crit.val.lb = stat[i],
crit.val.mid = crit.val.mid,
crit.val.ub = stat[i+1],
max.size = max(apply(size.vec, 2, sum)),
sizes = apply(size.vec, 2, sum)

)
)

}

# Calculate exact p-value for the exact test of H_{\theta_1, 0} conditional
# on k_E, k_C. For \theta_0, insert corresponding values of non-responders.
Cond.theta.p <- function(

t.E = NULL,
t.C = NULL,
T.stat = NULL,
k.E = NULL,
k.C = NULL
){

# Input:
# t.E: vector of responder survival times in experimental group
# t.E: vector of responder survival times in control group
# T.stat: monotone transformation of test statistic
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# k.E: number of responders in experimental group
# k.C: number of responders in control group
# Output:
# p-value

# If vectors of survival times are given, calculate monotone transformation
# of test statistic from these vectors
if (!is.null(t.E) & !is.null(t.C)) {

if (any(c(t.E, t.C) <= 0)) {
stop("Non-positive survival times are not possible.")

}
k.E <- length(t.E)
k.C <- length(t.C)
T.stat <- log(1/k.C*sum(t.C)) - log(1/k.E*sum(t.E))

}

# Calculate exact p-value by bea prime distribution
p.value <- ifelse(

k.E*k.C == 0,
1,
1 - pbetapr(k.C/k.E*exp(abs(T.stat)), k.C, k.E) +

pbetapr(k.C/k.E*exp(-abs(T.stat)), k.C, k.E)
)

return(p.value)
}

# Calculate critical value for the test of H_{\theta_1, 0} conditional on
# k_E, k_C. For \theta_0, insert corresponding values of non-responders.
Cond.theta.crit <- function(

k.E,
k.C,
alpha.loc,
upper = 100
){

# Input:
# alpha.loc: local level
# k.E: number of responders in experimental group
# k.C: number of responders in control group
# upper: upper limit for the critical value needed for uniroot.all()
# Output:
# critical value

if (k.E*k.C <= 0) {
stop("k.E and k.C must be greater 0.")

}

# Define equation for finding the root
help.fun <- function(crit){

1 - pbetapr(k.C/k.E*exp(crit), k.C, k.E) +
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pbetapr(k.C/k.E*exp(-crit), k.C, k.E) -
alpha.loc

}

# Find the root
rootSolve::uniroot.all(

f = help.fun,
interval = c(0, upper)

) ->
crit.val

return(crit.val)
}

# Calculate exact rejection probability of exact RSES test
Exact.rej.prob <- function(

n.E,
n.C,
p.E,
p.C,
lambda.1.E,
lambda.1.C,
lambda.0.E,
lambda.0.C,
alpha.loc,
crit.val
){

# Input:
# n.E: sample size in experimental group
# n.C: sample size in control group
# p.E: vector of assumed response rates in experimental group
# p.C: vector of assumed response rates in control group
# lambda.1.E: Assumed value for \lambda_{1, E}
# lambda.1.C: Assumed value for \lambda_{1, C}
# lambda.0.E: Assumed value for \lambda_{0, E}
# lambda.0.C: Assumed value for \lambda_{0, C}
# alpha.loc: local significance level
# crit.val: critical value for test of H_{p, 0}
# Output:
# vector of exact rejection probabilities corresponding to p.E and p.C

prob.vec <- NULL

for (i in 1:length(p.E)) {
# Calculate test statistic of test of H_{p, 0}
expand.grid(

x.E = 0:n.E,
x.C = 0:n.C

) %>%
mutate(
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stat = Calculate.asymptotic.binomial.test(x.E, x.C, n.E, n.C)$T.stat,
dens = dbinom(x.E, n.E, p.E[i])*dbinom(x.C, n.C, p.C[i]),
prob = NA

) ->
df

prob <- 0
for (j in 1:nrow(df)) {

# If H_{p, 0} is already rejected, add probability of this response
# outcome and go to next response outcome
if(df$stat[j] >= crit.val){

prob <- prob + 1*df$dens[j]
df$prob[j] <- 1
next()

}

# If H_{p, 0} is not rejected, calculate probability of rejection of the
# other two local tests
k.E <- df$x.E[j]
k.C <- df$x.C[j]
# If there is no responder and no non-responder comparison possible, skip
if((k.E == 0 & k.C == n.C) | (k.E == n.E & k.C == 0)){

df$prob[j] <- 0
next()

}

# If non-responder comparison is possible, compute acceptance
# probability of theta.0 test
if((k.E != n.E & k.C != n.C)){

crit.0 <- Cond.theta.crit(n.E-k.E, n.C-k.C, alpha.loc)[1]
factor.0 <- (n.C-k.C)*lambda.0.C/((n.E-k.E)*lambda.0.E)
ap.0 <- pbetapr(factor.0*exp(crit.0), n.C-k.C, n.E-k.E) -

pbetapr(factor.0*exp(-crit.0), n.C-k.C, n.E-k.E)
} else {

ap.0 <- 1
}

# If responder comparison is possible, compute acceptance
# probability of theta.1 test
if((k.E != 0 & k.C != 0)){

crit.1 <- Cond.theta.crit(k.E, k.C, alpha.loc)[1]
factor.1 <- k.C*lambda.1.C/(k.E*lambda.1.E)
ap.1 <- pbetapr(factor.1*exp(crit.1), k.C, k.E) -

pbetapr(factor.1*exp(-crit.1), k.C, k.E)
} else {

ap.1 <- 1
}

# Add probability of response outcome multiplied with probability of
# rejecting at least one test of H_{\theta_j, 0}
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df$prob[j] <- (1 - ap.0*ap.1)
prob <- prob + df$dens[j] * (1 - ap.0*ap.1)

}
prob.vec <- c(prob.vec, prob)

}

return(prob.vec)
}
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