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Abstract
An influential conjecture by Witten states that there is a Floer theory based on Haydys-Witten
instantons that provides a gauge theoretic approach to Khovanov homology. This thesis ex-
plores a novel approach towards a potential proof of this claim. One of the key insights is the
existence of a Hermitian Yang-Mills structure for a ‘decoupled’ version of the Haydys-Witten
and Kapustin-Witten equations. It is shown that, in favourable circumstances, any Haydys-
Witten solution is already a solution of the decoupled equations. This utilizes a dichotomy that
is proved to be satisfied by 𝜃-Kapustin-Witten solutions on any ALE or ALF space, generalizing
a corresponding result on ℝ4. The Hermitian Yang-Mills structure gives rise to a Kobayashi-
Hitchin-like correspondence. It is proposed that solutions are classified by intersections of
Lagrangian submanifolds in the moduli space of solutions of the extended Bogomolny equa-
tions. In that interpretation, Haydys-Witten instantons are in correspondence with pseudo-
holomorphic discs, leading to a conjectural equivalence with a Lagrangian intersection Floer
homology. A physically motivated argument suggests that the latter is fully determined in a
finite-dimensional model space, given by a Grothendieck-Springer resolution of the nilpotent
cone inside the underlying Lie algebra. This provides a relation to symplectic Khovanov homo-
logy, which is known to be isomorphic to a grading-reduced version of Khovanov homology.

Zusammenfassung
Eine einflussreiche Vermutung von Witten besagt, dass es eine Floer-Theorie auf Grundla-
ge von Haydys-Witten Instantonen gibt, die einen eichtheoretischen Zugang zur Khovanov-
Homologie bietet. In dieser Arbeit wird ein neuer Ansatz für einen möglichen Beweis dieser
Behauptung untersucht. Eine der wichtigsten Erkenntnisse dieser Arbeit ist die Existenz ei-
ner hermitschen Yang-Mills-Struktur für eine „entkoppelte“ Version der Haydys-Witten- und
Kapustin-Witten-Gleichungen. Es wird gezeigt, dass unter günstigen Umständen jede Haydys-
Witten-Lösung bereits eine Lösung der entkoppelten Gleichungen ist. Dies macht sich eine Di-
chotomie zunutze, die von 𝜃-Kapustin-Witten-Lösungen auf jedemALE- oder ALF-Raum erfüllt
wird. Dieses Ergebnis verallgemeinert ein bereits zuvor bekanntes Resultat im Fall des ℝ4. Die
hermitsche Yang-Mills-Struktur führt zu einer Kobayashi-Hitchin-ähnlichen Korrespondenz.
Eine Behauptung wird aufgestellt, derzufolge Lösungen durch Schnittpunkte von Lagrange-
schen Untermannigfaltigkeiten im Moduli-Raum von Lösungen der erweiterten Bogomolny
Gleichungen klassifiziert werden. In dieser Interpretation werden Haydys-Witten Instantonen
durch pseudoholomorphe Kurven beschrieben, was zu einer mutmaßlichen Äquivalenz mit ei-
ner Floer-Homologie Lagrangescher Schnitte führt. Ein physikalischmotiviertes Argument legt
nahe, dass letztere vollständig durch einen endlichdimensionalen Modellraum bestimmt ist,
der aus einer Grothendieck-Springer-Auflösung des nilpotenten Kegels innerhalb der zugrun-
de liegenden Lie-Algebra hervorgeht. Dies stellt eine Beziehung zur symplektischen Khovanov-
Homologie her, die bekanntermaßen isomorph zu einer Version der Khovanov-Homologie mit
reduzierter Graduierung ist.
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1 Introduction

Some of the most exciting discoveries in contemporary mathematics have been influenced by
developments in physics. One area that has been particularly informed by physical intuition is
the intersection of geometric analysis and geometric topology. The underlying phenomenon is
an intricate connection between analytic and topological properties of manifolds: It seems to be
a general rule that instead of studying properties of a manifold directly, it is more insightful to
investigate moduli spaces of solutions of partial differential equations on the manifold. Insights
from classical and quantum gauge theories have proven particularly fruitful in that regard.

The mathematical study of classical and quantum gauge theories was initially driven by the
necessity to develop a framework that captures observations in particle physics, prompted by
the detection of a surprisingly versatile zoo of particles starting in the 1950s. There was a series
of notable breakthroughs in the theory of classical gauge theories during the 1980s. Many of
these results, perhaps most notably Uhlenbeck’s compactness theorem for Yang-Mills connec-
tions [Uhl82b; Uhl82a], resulted in profound insights into the properties of low-dimensional
smooth manifolds. An influential example is Donaldson-Floer theory, an infinite-dimensional
analogue of Morse theory that constructs a homological smooth invariant for a given three-
manifold 𝑋 3. The underlying chain complex is spanned by flat connections on 𝑋 3 and the
differential is determined by the number of anti-self dual connections on the cylindrical four-
manifold ℝ𝑠 × 𝑋 3 that interpolate between flat connections at the cylindrical ends 𝑠 → ±∞
[Flo88a; Flo89].

At roughly the same time, physicists realized that supersymmetric quantum theories are strong-
ly restricted by their large amount of symmetry; somuch so that certain subsectors of the theory
may only ‘see’ a small part of the structure that is present on the underlying manifold. For
example, although the laws of physics are ultimately governed by local differential equations,
observables in ‘topological’ quantum field theories1 only depend on the global topology of the
underlying manifold [Wit82; Wit88a]. In this way, the connection between geometric analysis
and topological invariants might be viewed as an incarnation of a fundamental property of
physics – or vice versa, depending on preference.

Perhaps one of the most striking examples of such a topological theory was discovered by
Witten in the late 1980s, who realized that the partition function and observables of three-
dimensional Chern-Simons theory are topological invariants [Wit89]. The only gauge-inva-
riant observables in pure Chern-Simons theory are Wilson line operators that are supported
along a knot 𝐾, the image of an embedding 𝑆1 ↪ 𝑋 3. Two knots are considered topologically

1The observables of such quantum theories typically depend on the smooth structure of the manifold.
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1 Introduction

equivalent when there is an ambient isotopy that takes one knot into the other. Witten showed
that, if one interprets the partition function in 𝐺 = 𝑆𝑈 (𝑁 ) Chern-Simons theory at level 𝑘 with
Wilson line inclusions as a Laurent polynomial in the parameter 𝑞 = exp (2𝜋𝑖/(𝑁 + 𝑘)), then
it satisfies the relation

𝑞𝑁/2 𝑍CS ( ) − 𝑞−𝑁/2 𝑍CS ( ) = (𝑞1/2 − 𝑞−1/2) 𝑍CS ( ) .

This type of equation is known as skein relation. It provides a connection between the expect-
ation value of Wilson lines that are located on three topologically distinct knots that only differ
in the vicinity of a single crossing as depicted. Witten also showed that the normalization of
the partition function is uniquely determined by the expectation value of an unknotted Wilson
line inside of 𝑋 3 = 𝑆3 and is given by

𝑍CS ( ) =
𝑞𝑁/2 − 𝑞−𝑁/2

𝑞1/2 − 𝑞−1/2
.

Polynomial knot invariants are uniquely determined by their skein relation and normalization
for the unknot. For 𝐺 = 𝑆𝑈 (2), the Chern-Simons partition function turns out to be equivalent
to the Jones Polynomial [Jon85]

𝑍CS(𝑆3, 𝐾 ; 𝑞) = 𝐽 (𝐾; 𝑞) .

More generally, for 𝐺 = 𝑆𝑈 (𝑁 ), the Chern-Simons partition function reproduces the quantum
sl(𝑁 ) polynomial invariant of 𝐾, which in turn are one-variable specializations of the three-
variable HOMFLY-PT polynomialP𝐾(𝑥 = 𝑞𝑁/2, 𝑦 = −𝑞𝑁/2, 𝑧 = 𝑞1/2−𝑞−1/2) [Fre+85; PT88].

Intriguingly, from the gauge theory point of view the invariance of the partition function
𝑍CS(𝑆3, 𝐾 ; 𝑞) under ambient isotopies is inherent to the topological nature of Chern-Simons
theory. Moreover, since the theory is exactly solvable, moving from 𝑆3 to invariants of knots
in a general three-manifold 𝑋 3 is relatively easy in gauge theory, but calculating the associ-
ated partition functions becomes challenging [LR89; LLR91]. In contrast, the definition of the
Jones polynomial relies on a projection of the knot to two-dimensions and invariance under
Reidemeister moves must be shown a posteriori.

In the late 1990s Khovanov observed that there is a categorification of the Jones polynomial,
now known as Khovanov homology [Kho99]. Khovanov homology associates to a knot 𝐾 in 𝑆3

a finite-dimensional bigraded vector space 𝐾ℎ•,•(𝐾). The Jones polynomial is the graded Euler
characteristic of this invariant:

𝐽 (𝐾; 𝑞) = ∑
𝑖,𝑗∈ℤ

(−1)𝑖𝑞𝑗 dim𝐾ℎ𝑖,𝑗(𝐾).

The graded vector space 𝐾ℎ•,•(𝐾) is the cohomology of a bigraded chain complex 𝐶•,•(𝐾) with
respect to a (1, 0)-graded differential 𝑄 (a linear map that satisfies 𝑄2 = 0). While Khovanov
homology is invariant under ambient isotopies and only depends on the knot𝐾, the larger chain
complex depends on various choices in its construction.
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1 Introduction

Figure 1.1 The five-manifold ℝ𝑠 × 𝑆3 × ℝ+𝑦 together with an embedded surface Σ𝐾 = ℝ𝑠 × 𝐾
that plays a central role in Witten’s gauge theoretic approach to Khovanov homology.

Since the inception of Khovanov homology, many more knot homologies have been construc-
ted, including but not limited to: knot Floer homology, independently discovered by Ozsváth-
Szabó and Rasmussen [OS03; Ras03]; symplectic Khovanov homology, introduced for sl(2) by
Seidel-Smith and generalized to sl(𝑁 ) by Manolescu [SS04; Man07]; and Khovanov-Rozansky
homology, a generalization of Khovanov homology that categorifies quantum sl(𝑁 ) invariants
and the HOMFLY-PT polynomial [KR08a; KR08b].

It was soon realized that Khovanov’s homological invariant must also have a physical interpret-
ation in the context of Chern-Simons theory. One such interpretation was described by Gukov,
Schwarz and Vafa, who utilized an equivalence between Chern-Simons theory and topological
string theory to relate Khovanov-Rozansky homology to the Hilbert space of BPS states of
open topological strings [GSV05]. This work sparked a significant body of research into the
structural relationships between various different homological knot invariants and topological
string theory. Amongst others, this includes a categorification of the Kauffman polynomial by
generalizing the constructions to Lie algebras so(𝑁 ) and sp(𝑁 ) and the conjectured existence
of a triply- or even quadruply-graded homological invariant at large 𝑁 that categorifies the
HOMFLY-PT polynomial [DGR05; GW05; GS11; AS12; GGS13].

Witten introduced an alternative approach that constructs Khovanov homology purely from
gauge theory [Wit11a]. This provides a conceptually cleaner explanation of categorification.
Starting from a Wilson line along 𝐾 in Chern-Simons theory and using a series of dualities
between equivalent realizations of the same physical system,Witten arrives at the Hilbert space
of BPS statesHBPS(𝐾) in five-dimensionalN = 2 supersymmetric Yang-Mills (SYM) theory on
the manifold with boundary ℝ𝑠 × 𝑆3 × ℝ+𝑦 . The space of BPS statesHBPS(𝐾) is the cohomology
of a nilpotent supersymmetry charge 𝑄 that acts on the Hilbert space of statesH(𝐾) of the the-
ory. The five-dimensional SYM theory exhibits a 𝑈 (1) × 𝑈 (1) symmetry, which translates into
a bigrading of the Hilbert space with respect to the symmetry generators 𝐹 and 𝑃, satisfying
[𝐹 , 𝑄] = 𝑄 and [𝑃, 𝑄] = 0. While the larger Hilbert spaceH•,•(𝐾) depends on various paramet-
ers of the theory, the subsector of BPS states is protected by supersymmetry and depends only
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1 Introduction

on the topology of the knot 𝐾. Crucially, Witten concludes that the following equality must
hold:

𝑍CS(𝑆3, 𝐾 ; 𝑞) = TrHBPS
(−1)𝐹𝑞𝑃 .

This equation is the physical analogue of the relation between the Jones polynomial and Kho-
vanov homology. Witten proposed that the Hilbert space of BPS states of the five-dimensional
theory H•,•

BPS(𝐾) is a homological knot invariant and that it coincides with Khovanov homo-
logy.

The relation between Witten’s approach and the earlier explanations in terms of topological
strings has been addressed in [Das+16] under the umbrella of M-theory. There is also a recent
endeavour by Aganagic to further unite these approaches from a slightly different perspective
[Aga20; Aga21].

In Witten’s approach, the vector space H•,•
BPS(𝐾) is calculated as follows. Start with the vector

space 𝐶𝐹 •,•(𝑆3, 𝐾) spanned by all supersymmetric classical ground states of the theory. The
latter are given by ℝ𝑠-invariant solutions of the equations of motion, a set of partial differential
equations known as Kapustin-Witten equations. BPS states (supersymmetric quantum ground
states) are obtained from the classical ones by taking into account quantum-mechanical instan-
ton corrections. Instanton corrections in this context arise from solutions of the Haydys-Witten
equations on ℝ𝑠 × 𝑆3 × ℝ+𝑦 that interpolate between two Kapustin-Witten solutions at 𝑠 → ±∞.
Counting Haydys-Witten instantons defines a differential 𝑄 on 𝐶𝐹 •,•, such that the space of BPS
states is given by an infinite-dimensional version of Morse theory

H•,•
BPS(𝐾) = 𝐻𝐹 •,•(𝐾) ∶= 𝐻 •(𝐶𝐹 •,•(𝐾), 𝑄) .

Since this is an analogue of Donaldson-Floer theory, we refer to this as Haydys-Witten Floer
theory.

Expanding on this recipe, Gaiotto and Witten laid out a program to calculate Khovanov ho-
mology directly from the partial differential equations in gauge theory, without relying on
dualities from string theory and quantum field theory [GW12]. One of the key ideas is to con-
struct solutions of the four-dimensional Kapustin-Witten equations on ℝ𝑡 × Σ × ℝ+𝑦 , where Σ is
a Riemann surface, by adiabatically braiding solutions of the three-dimensional specialization
known as extended Bogomolny equations (EBE) along a braid representation of 𝐾 extended in
the direction of ℝ𝑡, see Figure 1.2.

The EBE exhibit a Hermitian Yang-Mills structure that makes part of the equations invariant
under complexified gauge transformations. This suggests that there is a classification of solu-
tions in terms of holomorphic data along the lines of the Donaldson-Uhlenbeck-Yau theorem
[Don85; UY86]. Gaiotto and Witten conjectured that the relevant solutions of the extended
Bogomolny equations on Σ × ℝ+𝑦 are in one-to-one correspondence with Higgs bundles on Σ
together with the additional structure of a distinguished line subbundle that captures the pos-
ition of knot punctures in Σ. Moreover, they suggest that one can glue EBE-solutions along a
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p1(t)

p2(t)

p3(t)

Figure 1.2 In the three-dimensional context of the extended Bogomolny equations (EBE) on
Σ×ℝ+𝑦 , the knot 𝐾 reduces to a collection of points on Σ. The adiabatic approach treats these
points as slowly varying functions and assumes that, at any given time, the fields are in a
three-dimensional ground state that is well-approximated by a solution of the EBE.

stretched, slowly varying knot to obtain approximate solutions of the Kapustin-Witten equa-
tions, which in turn can be used as proxies for the classical ground states of the gauge theory.
Gaiotto and Witten showed that this procedure works in principle, by reconstructing the skein
relations of the Jones polynomial.

Over the past few years the Gaiotto-Witten program has been subject to close scrutiny from
a mathematical point of view. By now it has been proven that the solutions of the extended
Bogomolny equations on Σ×ℝ+𝑦 are indeed classified by Higgs bundles with additional structure
[HM19c; HM20], or by Opers in case of a twisted version of the EBE [HM19b]. More recently
[Dim22b] and [Sun23] have made further progress in proving variations of these claims that
play important roles at various points in Gaiotto and Witten’s work. However, it remains an
open problem to classify Kapustin-Witten and Haydys-Witten solutions along these lines, let
alone to prove that Haydys-Witten Floer homology coincides with Khovanov homology.

The present work reports new advances in that direction. Chapter 2 introduces Haydys-Witten
Floer theory and, in doing so, also provides some previously unreported results. The main
contributions of this work are presented in Chapters 3 - 5. The key insights of Chapter 3
and Chapter 4 take the form of vanishing results for the Kapustin-Witten and Haydys-Witten
equations and might be of independent interest. In Chapter 5 these insights are combined with
Gaiotto and Witten’s approach of adiabatically braiding solutions of the extended Bogomolny
equations. This leads to a conjectural relation between Haydys-Witten Floer theory and a
version of symplectic Khovanov homology. The arguments of Chapter 5 are ultimately based
on physical intuition, and while a proof along these lines currently seems out of reach, the
results presented in this work lay out a new strategy to confirm that Witten’s gauge theoretic
categorification of the Jones polynomial produces Khovanov homology.
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1 Introduction

Overview

Chapter 2 begins with a brief account of the underlying physics, after which the main focus is
put on the ingredients of Haydys-Witten Floer Theory. The Haydys-Witten equations for a pair
of (bosonic) fields (𝐴, 𝐵) are defined for any Riemannian five-manifold (𝑀5, 𝑔) that is equipped
with a preferred non-vanishing vector field 𝑣. The interplay between cylindrical ends of𝑀5 and
the vector field 𝑣 is important for understanding many of the details that arise in the description
of Floer theory. In particular, boundary conditions at both compact and non-compact ends of
𝑀5 play an important role in this regard. For this reason, a detailed introduction to various
dimensional reductions of the Haydys-Witten equations is provided. This includes, on the
one hand, the previously unreported result that dimensional reduction produces the full one-
parameter family of 𝜃-Kapustin-Witten equations, where the parameter 𝜃 ∈ [0, 𝜋] receives a
geometric interpretation as the angle between the vector field 𝑣 and the direction of dimensional
reduction. On the other hand, it is shown that the incidence angle of 𝑣 at compact ends in
general determines the use of tilted Nahm pole boundary conditions, necessitating a discussion
of their elliptic properties that, so far, has not been part of the literature. The chapter closes
with the definition of Haydys-Witten Floer homology groups and the relation with Witten’s
approach to Khovanov homology.

The main results of Chapter 3 are given by Theorem A and Theorem B, which establish a di-
chotomy for 𝜃-Kapustin-Witten solutions (𝐴, 𝜙), between the growth of the average of ‖𝜙‖2 on
geodesic spheres and the vanishing of [𝜙 ∧ 𝜙] on ALX spaces. This generalizes a similar res-
ult by Taubes that holds on Euclidean space ℝ𝑛. As an immediate consequence, Corollary C
confirms a conjecture by Nagy and Oliveira, stating that on asymptotically locally Euclidean
(ALE) and asymptotically locally flat (ALF) manifolds, and under the assumption of finite en-
ergy, any 𝐺 = 𝑆𝑈 (2) Kapustin-Witten solution satisfies 𝐹𝐴 = 0, ∇𝐴𝜙 = 0, and [𝜙 ∧ 𝜙] = 0. This
vanishing theorem has important implications for the properties of Haydys-Witten instantons
that approach Kapustin-Witten solutions at non-compact cylindrical ends.

In Chapter 4, the Haydys-Witten equations for the pair (𝐴, 𝐵) are investigated on five-manifolds
that additionally admit an almost Hermitian structure on the vector bundle ker 𝑔(𝑣 , ⋅). In this
situation, there exists a simplified version of the equations in which certain components of
𝐵 decouple from the curvature two-form 𝐹𝐴. These decoupled equations exhibit a Hermitian
Yang-Mills structure that is closely related to the analogous structure of the EBE. In particular,
the decoupled equations exhibit an enlarged invariance under complex gauge transformations,
resulting in a considerable reduction in complexity of Haydys-Witten solutions. It is shown
that the relation between the full Haydys-Witten equations and their decoupled version is cap-
tured by a Weitzenböck formula that states that the difference is governed by the asymptotic
behaviour of solutions near boundaries and non-compact ends. This implies TheoremD, which
reports necessary conditions for the asymptotic geometry of the manifold and the boundary
conditions for (𝐴, 𝐵), under which the Haydys-Witten equations reduce to the decoupled equa-
tions. Regarding the analysis near boundaries, a detailed analysis of the polyhomogeneous ex-
pansion of Haydys-Witten solutions with twisted Nahm pole boundary conditions is presented,

6



1 Introduction

generalizing work of Siqi He in the untwisted case. The corresponding analysis at non-compact
ends relies on the results of Chapter 3, specifically the vanishing theorem Corollary C.

In Chapter 5, the decoupled equations of Chapter 4 are investigated in the context of Gaiotto-
Witten’s adiabatic approach on 𝑀5 = 𝐶 × Σ × ℝ+𝑦 , where 𝐶 is either ℝ𝑠 × 𝑆1𝑡 or ℝ𝑠 × ℝ𝑡. The
Hermitian Yang-Mills structure of the decoupled equations provides the existence of homo-
topies between field configurations that are associated with knot singularities along isotopic
knots. Using this insight, and inspired by Gaiotto-Witten’s approach of adiabatically braiding
EBE-solutions along a knot 𝐾 = 𝑆1𝑡 × {𝑝𝑎(𝑡)}, it is proposed that there is an equivalence between
solutions of the decoupled version of the Kapustin-Witten equations and non-vertical paths in
the moduli space of EBE-solutions. Physical intuition suggests that there is a finite dimensional
model for the moduli space of solutions, given by a Grothendieck-Springer resolution of the Lie
algebra sl(𝑁 , ℂ). These arguments lead to Conjecture E, stating that the number of solutions to
the decoupled Kapustin-Witten equations on 𝑆1𝑡 ×ℂ×ℝ+𝑦 is bounded from below by the number
of intersection points of the Grothendieck-Springer fiber and its parallel transport along 𝐾. A
stronger claim is made in Conjecture F in the context of compact knots in ℝ𝑠 × ℝ𝑡 × ℂ × ℝ+𝑦 ,
namely that there is an isomorphism between Haydys-Witten Floer homology and symplectic
Khovanov-Rozansky homology. For 𝐺 = 𝑆𝑈 (2), symplectic Khovanov homology is known to
be isomorphic to a grading-reduced version of Khovanov homology, such that the contents of
this thesis establish a novel proof strategy for Witten’s approach to Khovanov homology.

Chapter 6 provides a brief summary of the main results and discusses possible future direc-
tions.
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2 Haydys-Witten Floer Theory

This chapter provides a review of Witten’s gauge theoretic approach to Khovanov homology.
We adopt the point of view of an instanton Floer theory associated to the Haydys-Witten equa-
tions on Riemannian five-manifolds (𝑀5, 𝑔) equipped with a non-vanishing unit vector field
𝑣.

This Haydys-Witten instanton Floer theory is a five-dimensional analogue of the well-known
four-dimensional Donaldson-Floer theory. The latter calculates topological invariants of a
three-manifold 𝑋 3 by counting the number of flat connections on it. The naive count is cor-
rected by identifying flat connections for which there is a suitable flow line that interpolates
between them. As it turns out, the relevant notion of flow lines is that of (anti-)self-dual connec-
tions on the four-dimensional cylinder 𝑊 4 = ℝ𝑠 × 𝑋 3, also known as Yang-Mills instantons.

From the point of view of physics, Yang-Mills instantons have an interpretation as quantum
mechanical corrections to the classical ground states of Chern-Simons theory. In that inter-
pretation Donaldson-Floer theory arises from four-dimensionalN = 2 super Yang-Mills (SYM)
theory on ℝ𝑠 × 𝑋 3 that is coupled to three-dimensional Chern-Simons theory on 𝑋 3 at infinity.
The coupling of Chern-Simons and SYM theory is by virtue of the fact that the Chern-Simons
functional coincides with the boundary term1of the SYM action. From that point of view, Floer
showed that the space of quantum mechanical ground states provides topological invariants of
𝑋 3, now known as Floer groups [Flo88a; Flo89].

Analogously, Haydys-Witten Floer theory can be viewed as the topological twist of a five-di-
mensional N = 2 SYM theory on ℝ𝑠 × 𝑊 4 that is coupled to a four-dimensional N = 4 SYM
theory on 𝑊 4. Classical ground states in this theory are given by 𝜃-Kapustin-Witten solutions
on 𝑊 4, while instanton corrections correspond to Haydys-Witten solutions on ℝ𝑠 × 𝑊 4 that
interpolate between two solutions. In that way, for any four-manifold 𝑊 4, Haydys-Witten
Floer theory constructs from the Morse-Smale-Witten complex 𝐶𝐹𝜃 (𝑊 4) of 𝜃-Kapustin-Witten
solutions the homology groups

𝐻𝐹𝜃 (𝑊 4) = 𝐻(𝐶𝐹𝜃 (𝑊 4), 𝑑𝑣) .

Here, assuming there is a non-vanishing vector field𝑤 on𝑊 4, the differential 𝑑𝑣 counts solutions
of the Haydys-Witten equations on the cylinder ℝ𝑠 × 𝑊 4 with respect to the fixed vector field

1In fact, the Chern-Simons functional is generally only defined with respect to a corresponding bounding four-
manifold.

9



2 Haydys-Witten Floer Theory

𝑣 = cos 𝜃𝜕𝑠 + sin 𝜃𝑤:

𝑑𝑣[𝑥] = ∑
𝜇(𝑥,𝑦)=1

#M(𝑥, 𝑦)[𝑦] .

Since there is a physical incarnation as Hilbert spaceHBPS(𝑊 4) of a topologically twisted the-
ory, it is expected that these homology groups are topological invariants of 𝑊 4. In particular,
if the four-manifold is the manifold with boundary 𝑊 4 = 𝑆3 × ℝ+ together with a knot in its
boundary 𝑆1 ↪ 𝜕𝑊 4 = 𝑆3 × {0}, an influential conjecture by Witten states that this topological
invariant coincides with Khovanov homology.

While most results presented in this chapter have previously appeared in the literature, the
definition of Haydys-Witten homology groups 𝐻𝐹𝜃 (𝑊 4) has so far not been spelled out ex-
plicitly. The definition of a one-parameter family of such homology groups utilizes the ob-
servation that dimensional reduction of the Haydys-Witten equations generally results in 𝜃-
Kapustin-Witten equations, where the value of 𝜃 is determined by the angle between 𝑣 and
the direction of dimensional reduction. In a closely related manner, the incidence angle of 𝑣
at a boundary imposes the use of twisted (or tilted) Nahm pole boundary conditions and we
also include a discussion of their analytic properties, with special focus on elliptic regularity of
Haydys-Witten and 𝜃-Kapustin-Witten solutions.

This chapter is structured as follows. We first recall some background from physics, starting
with a short overview of 4𝑑 N = 4 SYM theory with boundaries and line operators in Sec-
tion 2.1. Then we review topological twists in Section 2.2 and specify the twists relevant for
Haydys-Witten theory. Section 2.3 explains that the partition function of the four-dimensional
theory admits a categorification in terms of a Hilbert space of BPS states in a 5d N = 2 SYM
theory. These considerations explain the origin of the Haydys-Witten and Kapustin-Witten
equations, and why they are expected to give rise to an interesting Floer theory. In Section 2.4
we give short individual introductions to a slightly confusing number of differential equations
in various dimensions. These equations are relevant at different points throughout this thesis.
It is shown in Section 2.5 that they can all be viewed as dimensional reductions of the Haydys-
Witten equations. The Kapustin-Witten equations exhibit surprisingly restrictive vanishing
results on closed manifolds and it seems to be an important aspect of the theory to consider
field configurations with singular boundary conditions. This motivates the introduction of
Nahm pole boundary conditions with knot singularities, which we review in Section 2.6. The
chapter concludes with a definition of Haydys-Witten Floer theory and an explanation how
this captures the overarching philosophy behind Witten’s proposal in Section 2.7.

2.1 Supersymmetric Yang-Mills Theory with Boundaries

To set the stage and in view of later sections, we start by introducing some notation for general
manifolds. Let 𝐺 be a Lie group, and let 𝐸 → 𝑊 4 be a principal 𝐺-bundle with gauge connection
𝐴 ∈ A(𝐸) over an oriented Riemannian four-manifold (𝑊 4, 𝑔). We denote the Lie algebra of 𝐺
by g and the adjoint bundle 𝐸 ×Ad g by ad 𝐸.
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2.1 Supersymmetric Yang-Mills Theory with Boundaries

There are spinor bundles 𝑆± associated to the 𝑆𝑂(4)-frame bundle over 𝑊 4, respectively of
positive and negative chirality. The underlying Weyl spinor representations are complex con-
jugates 𝑆+ = 𝑆−. Write 𝑉 for the complexified vector representation of 𝑆𝑂(4). A standard
construction2 identifies 𝑆 ∶= 𝑆+ ⊕ 𝑆− with ∧• 𝐿 = ∧even𝐿 ⊕ ∧odd𝐿 for some choice of maximal
totally isotropic subspace 𝐿 of (𝑉 , 𝑔). The Clifford algebra 𝐶𝑙(𝑉 , 𝑔), viewed as a ‘deformation
quantization’ of the exterior algebra of 𝑉, acts naturally on ∧• 𝐿. In particular, since 𝑉 ⊂ 𝐶𝑙(𝑉 , 𝑔),
this induces a complex linear map 𝑐𝑙 ∶ 𝑉 ⊗ 𝑆± → 𝑆∓ called Clifford multiplication. Moreover,
there is a ℂ-valued inner product (𝑠, 𝑡) on 𝑆, defined by restriction to the top-degree component
of the element 𝑠 ∧ 𝑡 ∈ ∧• 𝐿. The inner product pairs each of 𝑆± with itself. In combination
with Clifford multiplication it induces a bilinear map Γ ∶ 𝑆+ ⊗ 𝑆− → 𝑉, defined by duality:
𝑔(Γ(𝑠, 𝑡), 𝑣) ∶= (𝑠, 𝑐𝑙(𝑣 , 𝑡)).

The gauge connection induces a covariant exterior derivative 𝑑𝐴 on Ω•(𝑊 4, ad 𝐸) and a Dirac
operator for spinors, given by composing the covariant derivative with Clifford multiplica-
tion

𝐷𝐴 ∶ Γ(𝑊 4, 𝑆± ⊗ ad 𝐸)
∇𝐴
⟶ Γ(𝑊 4, 𝑇 ∗𝑊 4 ⊗ 𝑆± ⊗ ad 𝐸)

𝑐𝑙∘♯
⟶ Γ(𝑊 4, 𝑆∓ ⊗ ad 𝐸) .

Let Tr(⋅) denote the trace on g. For 𝛼, 𝛽 ∈ Ω𝑘(𝑊 4, ad 𝐸) introduce the density-valued inner
product ⟨𝛼, 𝛽⟩ ∶= Tr 𝛼 ∧ ⋆𝛽 with associated norm ‖𝛼‖2 = ⟨𝛼, 𝛼⟩. For 𝑠, 𝑡 ∈ Γ(𝑊 4, 𝑆± ⊗ ad 𝐸) we
similarly write ⟨𝑠, 𝑡⟩ ∶= Tr (𝑠, 𝑡) 𝜇𝑊 4 where 𝜇𝑊 4 = √𝑔 𝑑𝑥

1…𝑑𝑥𝑛 denotes the volume form.

With that notation in place, we now specify the Lagrangian of 𝑑 = 4 N = 4 super Yang-
Mills theory. The field content consists of a gauge connection 𝐴 ∈ A(𝐸), six scalar fields
𝜙𝑖 ∈ Ω0(𝑊 4, ad𝐸), 𝑖 = 1, … , 6, and in total four Weyl spinors 𝜓𝑎 ∈ Γ(𝑊 4, 𝑆+ ⊗ ad 𝐸), 𝑎 = 1, … , 4.
The action is the sum of a kinetic and a topological term

𝑆 = 1
𝑔YM2

∫
𝑊 4

Lkin +
𝜃YM
32𝜋2 ∫𝑊 4

Tr 𝐹𝐴 ∧ 𝐹𝐴 .

For the rest of this section, we assume that 𝑊 4 is a region in Euclidean space ℝ4. In that case
the kinetic Lagrangian is given by the sum of the following two parts, where the first is purely
bosonic and the second contains all contributions that involve fermions

L𝐴,𝜙
kin = 1

2 ‖𝐹𝐴‖
2 +

6
∑
𝑖=1

‖𝑑𝐴𝜙𝑖‖
2 + 1

2

6
∑
𝑖,𝑗=1

‖[𝜙𝑖, 𝜙𝑗]‖
2 ,

L𝜓
kin =

4
∑
𝑎=1

⟨ ̄𝜓𝑎, 𝐷𝐴𝜓𝑎⟩ + ∑
𝑖=1,…,6
𝑎,𝑏=1,…,4

𝐶 𝑖𝑎𝑏⟨𝜓𝑎, [𝜙𝑖, 𝜓𝑏]⟩ .

The coefficients 𝐶 𝑖𝑎𝑏 are related to the structure constants of 𝑆𝑈 (4)𝑅, the 𝑅-symmetry of the
N = 4 super-Poincaré algebra explained in more detail below.

2Since the Clifford algebra acts on ∧• 𝐿, the latter carries a representation of so(4) ≃ ∧2 𝑉 ⊂ 𝐶𝑙(𝑉 ). Spinor repres-
entations are usually defined by this representation, see for example [Del+99].
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2 Haydys-Witten Floer Theory

The definitions of both the classical and quantum theory rely on a well-defined variational
principle for the action. For this it is necessary to specify boundary conditions. For 𝑊 4 = ℝ4,
one typically assumes that fields and their derivatives fall off sufficiently fast at infinity. In
general, however, admissible boundary conditions are determined by the requirement that any
boundary terms that arise in a variation of 𝑆 vanish.

Under a variation 𝛿𝜓𝑎 of one of the spinor fields, the variation of the action contains a bound-
ary term ∫𝜕𝑊 4 Γ⟂( ̄𝜓𝑎, 𝛿𝜓𝑎), where Γ⟂ denotes the post-composition of Γ with projection to the
direction perpendicular to the boundary. This boundary term vanishes as long as any non-zero
part of 𝜓𝑎 is orthogonal to its variations 𝛿𝜓𝑎 = 0 with respect to Γ⟂( ̄⋅, ⋅). Put differently, ad-
missible boundary conditions for 𝜓𝑎 are determined by a choice of totally isotropic subspace
S𝑎 ⊂ 𝑆+ and imposing 𝜓𝑎|𝜕𝑊 4 ∈ Γ(𝜕𝑊 4,S𝑎 ⊗ ad 𝐸). A similar analysis for the connection and
scalar fields shows that their boundary conditions are in general given by Robin-type condi-
tions, which relate normal derivatives and boundary values. All in all, admissible boundary
conditions are given by configurations that satisfy

(𝐹𝐴)𝑦𝜇 +
𝜃YM𝑔2YM
32𝜋2

𝜖𝑦𝜇𝜈𝜆(𝐹𝐴)𝜈𝜆 = 0 ,

∇𝐴𝑦 𝜙𝑖 −
6
∑
𝑗=1

𝑐𝑖𝑗𝜙𝑗 = 0 ,

𝜓𝑎|𝜕𝑊 4 ∈ Γ(𝜕𝑊 4,S𝑎) .

(2.1)

Note that the boundary conditions for the gauge field are completely fixed by a combination of
the 𝜃YM-angle and coupling constant 𝑔YM. In contrast, the coefficient functions 𝑐𝑖𝑗 are generally
not restricted, though a generic choice will break invariance under the action of 𝑆𝑈 (4)𝑅 ≃ 𝑆𝑂(6)
that rotates the scalar fields 𝜙𝑖 into linear combinations of each other.

For 𝑊 4 = ℝ4, the theory is invariant under the action of the 4𝑑 N = 4 super-Poincaré algebra.
This is the ℤ/2ℤ-graded Lie algebra 𝐴 = 𝐴0 ⊕𝐴1 with bosonic and fermionic part given by

𝐴0 = (𝑉 ⋊ so(𝑉 )) × su(4)𝑅 ,

𝐴1 = (𝑆+ ⊗ ℂ4) ⊕ (𝑆− ⊗ (ℂ4)∗) .

The inclusion of ℂ4 in the fermionic part providesN = 4 copies of the minimal super-Poincaré
algebra in four dimensions. The su(4)𝑅 part in the bosonic part is the Lie algebra of𝑅-symmetry,
which is defined to be any transformation that is represented non-trivially on𝐴1 and commutes
with the action of the Lorentz group 𝑆𝑂(𝑉 ). With respect to 𝑆𝑈 (4)𝑅, the four spinors 𝜓𝑎 are in
the defining representation ℂ4 and the six scalars 𝜙𝑖 in the six-dimensional vector representa-
tion.

The super-Poincaré algebra is equipped with a ℤ/2ℤ graded Lie bracket

[𝑥, 𝑦] = (−1)|𝑥 ||𝑦 |+1[𝑦 , 𝑥] ,

where |𝑥 | denotes the degree of homogeneous elements. As a consequence 𝐴1 carries a rep-
resentation of 𝐴0, while on 𝐴1 the Lie bracket [⋅, ⋅] ∶ 𝐴1 × 𝐴1 → 𝐴0 yields an intertwiner of

12



2.1 Supersymmetric Yang-Mills Theory with Boundaries

𝐴0-representations. For the spinorial part of 𝐴1 this intertwiner is given by Γ ∶ 𝑆+ × 𝑆− → 𝑉
extended by zero to all of 𝑆, together with the natural pairing on the ℂ4 × (ℂ4)∗ factor. It
follows that the anti-commutator of fermionic generators [𝑄1, 𝑄2] is always an element of 𝑉,
corresponding to the common adage that supersymmetry squares to translations.

Consider now 𝑊 4 = ℝ3 × ℝ+. The factor ℝ+ = [0,∞) introduces a spacetime boundary and
explicitly breaks translation invariance in the direction perpendicular to the boundary. Ac-
cordingly, only fermionic symmetries in 𝐴1 that don’t square to a translation in the normal
direction ℝ⟂ ⊂ 𝑉 can be preserved. To that end, observe that [𝑄1, 𝑄2]|ℝ⟂ is non-isotropic on
ℂ4 × (ℂ4)∗ and reduces to Γ⟂(⋅, ⋅) on 𝑆+ × 𝑆−. It follows that unbroken fermionic symmetries
are elements of a totally isotropic subspace of the form (S ⊗ ℂ4) ⊕ (S ⊗ (ℂ4)∗) ⊂ 𝐴1. As a
consequence, the remaining supersymmetry algebra can contain at most half of the original
fermionic generators.

A generic choice of boundary conditions satisfying (2.1) will not be invariant under the re-
maining super-Poincaré algebra. A complete classification of ‘half-BPS’ boundary conditions,
those that are invariant under the remaining half of the fermionic generators, is described in
[GW09b; GW09a]. Here, we only cite the result most relevant to us.

It turns out that for any choice of maximal totally isotropic subspace S ⊂ 𝑆+, there exists
a unique half-BPS boundary condition for (𝐴, 𝜙𝑖, 𝜓𝑎) that preserves the remaining half of the
super-Poincaré algebra and full gauge symmetry. There is a basis of 𝑆+ in which the choice ofS

is equivalent to fixing a generator of the form 𝑄 = (
1
𝑡
)with 𝑡 ∈ ℝ, possibly infinite (interpreted

as vanishing of the top component). Invariance of the boundary values of 𝜓𝑎 under the action
of 𝑄 fully determines the choice of what was called S𝑎 ⊂ 𝑆+ earlier. Namely, for each fermion

we must have 𝜓𝑎 = 𝜆𝑎 (
𝑡
1
) for some 𝜆𝑎 ∈ ℂ. Invariance under the remaining Lorentz group

𝑆𝑂(3), 𝑅-symmetry 𝑆𝑂(3) × 𝑆𝑂(3) ⊂ 𝑆𝑈 (4)𝑅, and supersymmetry then also fixes the boundary
conditions of the bosonic fields.

(𝐹𝐴)𝑦𝜇 +
𝑡

1 − 𝑡2
𝜖𝑦𝜇𝜈𝜆𝐹 𝜈𝜆 = 0

∇𝐴𝑦 𝜙𝑖 −
𝑡

1 + 𝑡2
𝜖𝑖𝑗𝑘[𝜙𝑗, 𝜙𝑘] = 0 , 𝑖, 𝑗, 𝑘 = 1, 2, 3

𝜙𝑖+3 = 0 , 𝑖 = 1, 2, 3

𝜓𝑎 = 𝜆𝑎 ⊗ (
𝑡
1
)

By comparison with the admissible boundary conditions of (2.1), it is clear that 𝑡
1−𝑡2 = 𝜃YM𝑔2YM

32𝜋2 .
This condition has two roots, so for any value of SYM parameters (𝑔YM, 𝜃YM) there are two
half-BPS boundary conditions that preserve the full gauge symmetry and which differ only by
a reversal of orientation. Conversely, for any choice of preserved supersymmetries S ⊂ 𝑆+,
there exists a set of SYM parameters (𝑔YM, 𝜃YM) for which the equations above determine half-
BPS boundary conditions.
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Remark. The half-BPS equations for the scalar fields form the basis of a set of conditions known
as Nahm pole boundary conditions. These conditions allow the inclusion of ’t Hooft operators
along a knot 𝐾 ⊂ 𝜕𝑊 4, by encoding a monodromy of 𝐴 and a certain singular behaviour of 𝜙𝑖
near the boundary. Since the boundary conditions encode the presence of a knot 𝐾, this plays
a crucial role in the gauge theoretic approach to Khovanov homology and is discussed in detail
in Section 2.6.

2.2 The Kapustin-Witten Twists and Localization

While the topological term ∫𝑊 4 Tr 𝐹𝐴 ∧ 𝐹𝐴 in the action functional is manifestly independent of
the metric on spacetime and only depends on the topology and smooth structure of the gauge
bundle, this is not true for Lkin. As a consequence, the partition function and observables
of 4𝑑 N = 4 super Yang-Mills theory are generally not topological invariants. However, in
supersymmetric theories it is often possible to restrict to a subsector of the theory that depends
only topologically on spacetime by a procedure known as twisting.

Below we shortly recall the twisting procedure and subsequently present the relevant twists of
4𝑑 N = 4 SYM theory. Importantly, half-BPS boundary conditions retain enough supersym-
metry that the theory still admits a topological twist. The section concludeswith an explanation
of how twisting leads to the Kapustin-Witten equations.

Topological Twists of Supersymmetric Theories Topological twists are a standard tool to
extract topological field theories from supersymmetric ones [Wit88a; Wit88b; Wit91]. Here we
closely follow expositions in [Ell13; ESW18]; for a more thorough introduction see [Von05].

First, recall from Noether’s theorem that for every continuous symmetry of the action func-
tional there is an associated conserved current 𝑗. Applying this to translation symmetry of a
field theory on ℝ𝑛 results in a conserved current for each element of ℝ𝑛. Choosing a basis 𝑥𝜇

for ℝ𝑛 the components of the associated conserved current are 𝑗𝜇 = 𝑇𝜇𝜈𝑑𝑥𝜈. The 2-tensor 𝑇 is
the (canonical) energy-momentum tensor associated to the field theory and is related to vari-
ations of the metric by 𝛿𝑔𝑆 = ∫ℝ4 𝑇𝜇𝜈 𝛿𝑔𝜇𝜈L. The observables of a theory are independent of the
metric – hence, topological invariants in the sense of physics – if the energy-momentum tensor
vanishes, so translations must act trivially.

Even if a given field theory generally depends on the metric, it is still possible that certain
protected subsectors of the theory are purely topological. This happens, for example, if there
is a non-anomalous symmetry 𝑄 with the following two properties.

• 𝑄 is nilpotent (more precisely, square-zero): 𝑄2 = 0.

• 𝑇 is 𝑄-exact: there exists a functional 𝑉 such that 𝑇 = [𝑄, 𝑉 ].
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Now recall the general fact that in any quantum theory the expectation value of a symmetry-
exact operator ⟨[𝑄,O]⟩ vanishes. This can be seen, at least formally, by the following argument.
If 𝑄 is a non-anomalous symmetry, i.e. the path-integral measure is invariant under transform-
ations induced by 𝑄 and [𝑄, 𝑆] = 0, then the following expression must be independent of the
infinitesimal parameter 𝜖

∫DΦ exp(𝜖𝑄)(O exp(−𝑆)) = ∫DΦ exp(−𝑆)(O + 𝜖[𝑄,O]) .

This can only be the case if the second term vanishes, which is exactly the statement ⟨[𝑄,O]⟩ =
0. As a particular consequence we observe that when 𝑄2 = 0, the subsector given by 𝑄-
cohomology, i.e. the set of 𝑄-invariant operators modulo those operators that are invariant for
the uninteresting reason of being 𝑄-exact, determines a viable quantum field theory in its own
right. Moreover, the fact that the energy-momentum tensor is 𝑄-exact implies that the expecta-
tion value of any 𝑄-closed observable is topologically invariant. This follows from studying the
effect of a continuous variation of the metric on the expectation value of a 𝑄-closed operator
O:

𝛿𝑔⟨O⟩ = ∫DΦ O 𝛿𝑔 exp(𝑖𝑆) = ∫DΦ O[𝑄, 𝑉 ] exp(𝑖𝑆) = ⟨[𝑄,O𝑉 ]⟩ = 0 .

In summary, if 𝑄 satisfies the two properties stated above, 𝑄-cohomology provides a topological
subsector of the theory.

Since supersymmetric theories are invariant under the super-Poincaré algebra 𝐴 = 𝐴0 ⊕ 𝐴1,
which contains nilpotent symmetries, one can ask if there are 𝑄 ∈ 𝐴1 that satisfy the two
properties described above. With regards to the first property, the set of nilpotent fermionic
elements of anyℤ/2ℤ-graded algebra forms a projective variety 𝑌 ∶= {𝑄2 = 0} ⊂ 𝐴1, known as
the nilpotence variety [ESW18]. The nilpotence variety of the super-Poincaré algebra depends
only on the spacetime dimension and quantity of supersymmetryN . In view of the discussion
above, every 𝑄 ∈ 𝑌 (𝑑,N ) gives rise to an associated 𝑄-invariant subsector of the theory.

For this to be a topological sector the energy momentum tensor must be 𝑄-exact, which it
cannot be, because 𝑄 is in the spinor representation of the Lorentz group. This problem can
sometimes be circumvented by ‘twisting’ the action of the Lorentz algebra so(𝑑) in such a way
that 𝑄 can be reinterpreted as a scalar operator. To that end note that upon restriction to 𝑄-
cohomology the symmetry algebra is broken to the stabilizer of the line spanned by 𝑄:

𝐼 (𝑄) = {𝑥 ∈ 𝐴 ∣ [𝑥, 𝑄] ∝ 𝑄} .

Other elements of 𝐴 do not preserve the kernel and image of 𝑄, and therefore do not act on
𝑄-cohomology. With respect to 𝐼 (𝑄), 𝑄 is tautologically a scalar (perhaps up to some currently
irrelevant 𝑈 (1) charges). Since the Lorentz symmetry and the semi-simple part of 𝑅-symmetry
act non-trivially on 𝑄, 𝐼 (𝑄) can’t contain generators of the corresponding subalgebras. How-
ever, it can contain combinations of the two, where the action of the Lorentz algebra is undone
by the action of 𝑅-symmetry. Indeed, 𝐼 (𝑄) may contain a bosonic subalgebra so′(𝑑) that is
isomorphic to the Lorentz algebra and is embedded in 𝐴0 as follows

so(𝑑)
1×𝛼
→ so(𝑑) × 𝑅 ⊂ 𝐴0 .
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2 Haydys-Witten Floer Theory

The map 𝛼 is (the derivative of) a non-trivial homomorphism from the Lorentz group to the
𝑅-symmetry group and is commonly known as the twisting map. Note that for any 𝑄 ∈ 𝑌,
there might exist several twisting maps and conversely the graph of a fixed twisting map might
appear in the unbroken symmetries 𝐼 (𝑄) of several 𝑄’s.

When such a twisted Lorentz symmetry exists one can view the 𝑄-invariant subsector as a
field theory with so′(𝑑) invariance in its own right. Crucially, in this reinterpretation 𝑄 is a
Lorentz scalar and the energy momentum tensor can be 𝑄-exact. This in turn is the case if all
translations are 𝑄-exact, i.e. if the subalgebra 𝐸(𝑄) ∶= [𝑄, 𝐴1] is all of 𝑉.

In summary, to twist a supersymmetric theory means to restrict to the subsector of a theory
given by 𝑄-cohomology of some nilpotent supercharge 𝑄 ∈ 𝑌, together with a choice of twisting
homomorphism that identifies a Lorentz subgroup so′(𝑑) ⊂ 𝐼 (𝑄). If 𝐸(𝑄) = 𝑉, the result is a
topological theory and is referred to as topological twist of the original theory. Topologically
twisted theories can manifestly be defined on general Riemannian manifolds 𝑀𝑛, while their
supersymmetric ‘parents’ may only make sense on very special manifolds: e.g. ℝ𝑛, or manifolds
that admit covariantly constant spinors. Although the metric of the Riemannian manifold is
needed in the definition of the action, the existence of the nilpotent symmetry 𝑄 makes sure
that the theory is independent of the metric.

Kapustin-Witten Twists N = 4 super Yang-Mills theory on ℝ4 admits several interesting
twisting maps [Yam88; Mar95]; also see [LL97] for a more complete discussion. The topological
twist that is relevant to Haydys-Witten Floer theory and Khovanov homology is commonly
dubbed Kapustin-Witten or Geometric Langlands twist. Here we cite the most relevant results;
more detailed explanations can be found in [KW07; Wit11a].

The four-dimensional Lorentz algebra is isomorphic to so(4) ≃ su(2)ℓ × su(2)𝑟, where the sub-
scripts ℓ and 𝑟 stand for left and right chiral part. The Kapustin-Witten twisting homomorphism
is given by a diagonal embedding

𝛼 ∶ so(4) ≃ su(2)ℓ × su(2)𝑟 ↪ (
su(2)ℓ 0
0 su(2)𝑟

) ⊂ su(4)𝑅 .

The centralizer of the graph of 𝛼 in so(4) × su(4)𝑅 is an additional 𝑈 (1) that acts on the two
blocks by multiplication with 𝑒±𝑖𝜔, respectively. This gives rise to a 𝑈 (1) symmetry in the
twisted theory and an associated ℤ-grading on the twisted fields. It will play the role of a
fermion number 𝐹 and will be denoted 𝑈 (1)𝐹 and ℤ𝐹 from now on.

The full nilpotence variety in 4𝑑 N = 4 SYM theory is an 11-dimensional stratified variety
[ESW18]. Of those there is a ℂℙ1-family of supercharges for which on the one hand 𝐼 (𝑄)
contains the (fixed) twisted Lorentz algebra so′(4) and on the other hand 𝐸(𝑄) = 𝑉, such that
𝑄-cohomology becomes topological after twisting.

From the point of view of the 𝑆𝑂′(4) Lorentz group, the fields transform in the following rep-
resentations
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2.2 The Kapustin-Witten Twists and Localization

• The gauge connection 𝐴 transforms trivially under 𝑅-symmetry and thus remains un-
changed.

• Four of the scalar fields 𝜙𝑖 combine into a vector representation 𝜙 with 𝐹 = 0, while
the remaining two are 𝑆𝑂(4)′ scalars that are rotated into each other by 𝑈 (1)𝐹 ≃ 𝑆𝑂(2).
Combining the latter two into 𝜎, ̄𝜎 = 𝜙5 ± 𝑖𝜙6 makes these into gℂ-valued Lorentz scalars
with fermion number 𝐹 = ±2.

• The sixteen real components of the four Weyl fermions 𝜓𝑎 distribute into two vector
representations 𝜆1, 𝜆2 of 𝑆𝑂(4)′ with 𝐹 = 1, an antisymmetric representation 𝜒 with
𝐹 = −1, and two Lorentz scalars 𝜂1, 𝜂2 with 𝐹 = −1.

On a general Riemannian manifold the field content of the twisted theory thus arranges into a
ℤ-graded chain complex, where 𝑄 acts as differential of degree 1.

𝐹 = −2 −1 0 1 2

̄𝜎 ∈ Ω1(𝑊 4, ad 𝐸ℂ)
𝜂1, 𝜂2 ∈ Ω0(𝑊 4, ad 𝐸)
𝜒 ∈ Ω2(𝑊 4, ad 𝐸)

𝐴 ∈ A(𝐸)
𝜙 ∈ Ω1(𝑊 4, ad 𝐸)

𝜆1, 𝜆2 ∈ Ω1(𝑊 4, ad 𝐸) 𝜎 ∈ Ω1(𝑊 4, ad 𝐸ℂ)

Recall that in the presence of a boundary, a totally isotropic subspace (S⊗ℂ4)⊕(S⊗(ℂ4)∗) ⊂ 𝐴1

of the fermionic symmetries can be preserved by choosing half-BPS boundary conditions as
described in Section 2.1. The preserved supersymmetry determined by S and the ℂℙ1-family
of nilpotent charges that admit a compatible Kapustin-Witten twist intersect in a single point
𝑄 [Wit11a].

Localization of Topologically Twisted Partition Function Topologically twisted N = 4
super Yang-Mills theory is defined on a general Riemannian four-manifold with boundary𝑊 4.
As before, the action is given by the expression

𝑆 = 1
𝑔YM2

∫
𝑊 4

Lkin +
𝜃YM
32𝜋2 ∫𝑊 4

Tr 𝐹𝐴 ∧ 𝐹𝐴 ,

where the Lagrangian arises from the one on flat Euclidean space by rewriting it in terms of the
𝑆𝑂′(4) fields on 𝑊 4, and adding curvature terms as necessary to make the action 𝑄-invariant.
For example the part of the Lagrangian that contains the gauge connection 𝐴 and the one-form
𝜙 ∈ Ω1(𝑊 4, ad 𝐸) is given by

L𝐴,𝜙
kin = 1

2 ‖𝐹𝐴‖
2 + ‖𝑑𝐴𝜙‖

2 + 1
2 ‖[𝜙 ∧ 𝜙]‖ + ⟨Ric 𝜙, 𝜙⟩ ,

where Ric denotes the Ricci tensor, viewed as linear map on Ω1(𝑊 4).

Let us now investigate the partition function of the topologically twisted theory, possibly in-
cluding the insertion of a ’t Hooft operator supported on 𝐾 ⊂ 𝜕𝑊 4 as specified by the BPS
boundary conditions of Section 2.1. We denote the partition function of this theory by

𝑍𝑄
SYM(𝑊

4, 𝐾) = ∫DΦ exp(−𝑆) .
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2 Haydys-Witten Floer Theory

It turns out that the path integral localizes on field configurations that obey [𝑄, Ψ] = 0, for all
Ψ with odd fermion number 𝐹. Among the fields with fermion number 𝐹 = −1 is the two-form
𝜒, with (anti-)self-dual parts 𝜒±, and a scalar 𝜂1. The action of 𝑄 on these fields produces

[𝑄, 𝜒+] = (𝐹𝐴 − [𝜙 ∧ 𝜙] + 𝑡𝑑𝐴𝜙)+ , [𝑄, 𝜒−] = (𝐹𝐴 − [𝜙 ∧ 𝜙] − 𝑡−1𝑑𝐴𝜙)− , [𝑄, 𝜂1] = 𝑑⋆4𝐴 𝜙 .

Since the topologically twisted theory only depends on 𝑄-cohomology, we can modify the ac-
tion by adding 𝑄-exact terms without changing the partition function.

𝑆′ = 𝑆 − [𝑄, 1
𝜖 ∫𝑊 4

(⟨𝜒+, [𝑄, 𝜒+]⟩ + ⟨𝜒−, [𝑄, 𝜒−]⟩ + ⟨𝜂, [𝑄, 𝜂]⟩)]

= 𝑆 − 1
𝜖 ∫𝑊 4

(‖[𝑄, 𝜒+]‖2 + ‖[𝑄, 𝜒−]‖2 + ‖[𝑄, 𝜂]‖2 + …)

The omitted terms on the right are fermion bilinears and can be neglected, since in a super-
symmetric ground state fermionic fields vanish. Taking 𝜖 → 0, the action diverges except when
[𝑄, 𝜒±] = [𝑄, 𝜂] = 0, such that the path integral localizes on field configurations that satisfy
these equations. These are known as Kapustin-Witten equations and will be discussed in much
more detail in Section 2.4.2. There is a similar localization argument for the complex scalar
𝜎 and its complex conjugate that provides the equations 𝑑𝐴𝜎 = [𝜙, 𝜎] = [𝜎, ̄𝜎] = 0. These
equations imply that 𝜎 and ̄𝜎 vanish, at least as long as (𝐴, 𝜙) are irreducible solutions of the
Kapustin-Witten equations.

A standard argument relates the expected dimension of the moduli space of solutions of the
localization equations to the index of a Dirac-like operator on 𝑊 4. In the path-integral form-
alism this index is equal to the anomaly in the fermion number 𝐹, so the partition function of
the topologically twisted theory on 𝑊 4 vanishes except when the expected dimension is zero.
As a result, the partition function reduces to a sum over classical solutions of the localization
equations on𝑊 4 that satisfy the supersymmetric boundary conditions described in Section 2.1
if 𝜕𝑊 4 ≠ ∅.

Consider now the contribution to the partition function from a given solution of the localiza-
tion equations. In expanding the path integral around the solution we assume that there are no
bosonic or fermionic zero modes and the solution fully breaks gauge symmetry, which is the
expected case if the index is zero. Taking 𝑔YM → 0, the calculation reduces to a one-loop ap-
proximation. On the one hand this results in a factor of exp(−𝜃YM𝑃) =∶ 𝑞𝑃 from the topological
part of the action. Here we abbreviated 𝑃 = 1

32𝜋2 ∫𝑊 4 𝐹 ∧ 𝐹, which is the integral of the second
Chern class of the gauge bundle 𝐸 and is known as instanton number. On the other hand, we
pick up the ratio of the fermion and boson determinant, which due to supersymmetry are equal
up to a sign (−1)𝐹, where 𝐹 is interpreted as the fermion number of the solution. It follows that
any classical solution of the localization equations contributes to the partition function with a
term (−1)𝐹𝑞𝑃.

Writing MKW for the set of classical solutions of the Kapustin-Witten equations, we find that
the topological partition function is given by

𝑍𝑄
SYM(𝑊

4, 𝐾 ; 𝑞) = ∑
Φ∈MKW

(−1)𝐹(Φ)𝑞𝑃(Φ) = ∑
𝑛∈ℤ

𝑎𝑛𝑞𝑛 .
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In rewriting the sum in the second equation, we assume that there are only finitely many solu-
tions and denote by 𝑎𝑛 the number of solutions with 𝑃 = 𝑛. Since the presence of a ’t Hooft
operator along a knot 𝐾 ⊂ 𝜕𝑊 4 is encoded in the boundary conditions, it affects the coefficients
𝑎𝑛.

To conclude this section, we cite a further key result of [Wit10; Wit11a], which states that the
action of SYM theory on 𝑊 4 = 𝑆3 × ℝ+ is equivalent to

𝑆 = [𝑄, ⋅] + 𝑖𝜓 𝐶𝑆(𝐴 + 𝑖𝜔𝜙) ,

where 𝜓 and 𝜔 are determined by 𝜃YM – or, depending on preference, the choice of preserved
supersymmetry. Aswas the case for the instanton number 𝑃, the definition of the Chern-Simons
functional in that equation needs a bit of care, see [Wit10; Wit11a; Wit11b].

The twisted partition function is independent of 𝑄-exact operators, so topologically twisted
SYM theory on 𝑊 4 = 𝑆3 × ℝ+ together with a ’t Hooft operator along 𝐾 ⊂ 𝜕𝑊 4 calculates the
Jones polynomial of 𝐾:

𝑍𝑄
𝑆𝑌𝑀(𝑆

3 × ℝ+, 𝐾) = 𝑍𝐶𝑆(𝑆3, 𝐾) = 𝐽 (𝐾) .

2.3 Hilbert Space of BPS States in Five Dimensions

The Jones polynomial admits a categorification known as Khovanov homology [Kho99]. Cat-
egorification involves replacing a classical mathematical object with a richer, more structured
object ‘one step up’ in category theory. The new object usually captures more information and
often allows for more powerful tools and insights.

In the case of Khovanov homology and the Jones polynomial, categorification replaces a poly-
nomial invariant of knots and links with a homology theory that assigns to each knot or link𝐾 a
bigraded vector space𝐾ℎ(𝐾) = ⨁𝑖,𝑗 𝐾ℎ𝑖,𝑗(𝐾). The Jones polynomial is obtained fromKhovanov
homology as the Euler characteristic of the graded vector space

𝐽 (𝐾) = ∑
𝑖,𝑗
(−1)𝑖𝑞𝑗 dim𝐾ℎ𝑖,𝑗(𝐾) .

A similar phenomenon exists in supersymmetric quantum field theories when the localization
procedure reduces the path integral to a sum over supersymmetric vacua. In such situations
the partition function can often be expressed as a trace over the Hilbert space of BPS states in
one dimension higher.

Indeed, it is well-known that 4𝑑N = 4 super Yang-Mills theory can be viewed as the low-energy
effective theory of a 5𝑑 N = 2 super Yang-Mills theory3 compactified on a small circle 𝑆1. The
Nahm pole boundary condition lifts to the five-dimensional theory by a translation-invariant
continuation in the direction of the circle. In particular, any ’t Hooft operator supported on a
knot𝐾 in 𝜕𝑊 4 lifts to an 𝑆1-invariant surface operator supported on Σ𝐾 = 𝑆1×𝐾 in the boundary
of the five-manifold. The Nahm pole boundary condition and ’t Hooft operator preserve the
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2 Haydys-Witten Floer Theory

same supersymmetry generator as in the four-dimensional theory. Furthermore, the Kapustin-
Witten twisting homomorphism of the four-dimensional theory corresponds to an analogous
topological twist in five dimensions. In particular, the topological supercharge 𝑄 that defined
the topological subsector in four dimensions, remains a nilpotent symmetry when the model
is lifted to five dimensions.

In the five-dimensional theory on 𝑆1 × 𝑊 4 one constructs the one-particle Hilbert space H by
canonical quantization on a ‘temporal’ slice, i.e. on a codimension one submanifold {𝑠} × 𝑊 4,
𝑠 ∈ 𝑆1, in the background determined by the boundary conditions. The partition function of the
topologically twisted four-dimensional theory on 𝑊 4 is then equivalent to a trace in H with
certain operator insertions:

𝑍𝑄
SYM(𝑞) = TrH(−1)𝐹𝑞𝑃 .

As before 𝐹 and 𝑃 denote fermion and instanton number, but in the five-dimensional theory
are interpreted as operators on Hilbert space. 𝑃 is given in terms of the classical integral of the
four-dimensional fields and promoted to an operator by classical quantization. The operator
𝐹 in the expansion around a classical solution is given by summing over the 𝐹-eigenvalues of
the filled Dirac sea, i.e. the total fermion number of the combination of all negative energy
states.

In this approach H plays the role of the chain complex underlying Khovanov cohomology.
Indeed, since 𝑄 is a nilpotent fermionic symmetry, it satisfies 𝑄2 = 0 and accordingly acts as
a differential on the Hilbert space. The cohomology of 𝑄 is commonly known as the space
of BPS states HBPS ∶= 𝐻 •(H, 𝑄) and, in the current situation, is spanned by supersymmetric
ground states. While the physical Hilbert space generally depends on various parameters and
perhaps on choices during quantization, BPS states are protected by supersymmetry and are
independent of continuous deformations of the theory. As a consequenceHBPS = HBPS(𝑊 4, 𝐾)
is a knot invariant and one expects that it is a gauge theoretic manifestation of Khovanov
homology.

In a first approximation, the quantum ground states of the five-dimensional theory are de-
termined by time-independent classical solutions of the equations of motion. The construction
outlined above results in the fact that these correspond to solutions of the localization equations
of the four-dimensional theory. For simplicity assume that there is a finite, non-degenerate set
of solutions MKW, in particular assume that after gauge fixing the solutions do not have bo-
sonic zero modes. Then an expansion around a given solution Φ ∈ MKW produces a single
perturbative ground state |Φ⟩ of zero energy.

To move beyond perturbation theory, consider the spaceH0 spanned by all perturbative super-
symmetric ground states. States inH0 can fail to be true quantum mechanical ground states if

3Five-dimensional super Yang-Mills theory is not UV-complete and from the physics point of view it may be more
satisfying to consider compactifications of the 6𝑑 N = (2, 0) superconformal theory or of 10𝑑 N = 1 super
Yang-Mills theory, see [Wit11a]. From the Floer theory point of view, as adopted here, the five-dimensional
interpretation is more natural.
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they are lifted from zero energy by some non-perturbative process. It is a well-known property
of supersymmetric quantum theories that eigenstates of the Hamiltonian with non-zero energy
must appear in Bose-Fermi pairs that only differ with respect to their spin statistics, which in
the current situation is given by ℤ𝐹/2ℤ. Recall thatH0 carries a ℤ𝑃 ×ℤ𝐹 grading4 with respect
to the instanton and fermion numbers. Since the fermion operator satisfies [𝐹 , 𝑄] = 𝑄, the fer-
mion numbers of such a Bose-Fermi pair differ by exactly one, while their instanton numbers
coincide.

In the present context, quantum corrections can only arise by tunneling from one classical (per-
turbative) solution to another. To understand the fundamentally quantum mechanical process
of tunneling in the context of field theories, it is helpful to slightly change perspective. The
result is the well-known application of Morse theory to Yang-Mills theory pioneered by Floer
in the context of flat connections on three-manifolds and anti-self-dual connections (Yang-Mills
instantons) on four-manifolds [Flo88a; Flo89]. For this, one reinterprets super Yang-Mills the-
ory on ℝ𝑠×𝑊 4 as supersymmetric quantummechanics on the space of field configurations over
𝑊 4, where the real coordinate 𝑠 takes the place of the time coordinate in quantum mechanics.
If one interprets the action functional of super Yang-Mills theory as potential energy, one finds
that a tunneling event corresponds to a solution of gradient flow equations [Wit82]. Following
this line of argument out in the current context and formulating everything in terms of five-
dimensional fields, one arrives at the Haydys-Witten equations on ℝ𝑠 × 𝑊 4 [Wit11a]. We will
provide a detailed description of these equations and their specializations in Section 2.4.

The space of exact BPS ground statesHBPS is now given by 𝑄-cohomology of the approximate
space H0, where 𝑄 acts by instanton corrections as explained above. Since 𝑄 has 𝐹-degree +1,
or by the Bose-Fermi pair argument from above, only gradient flows that interpolate between
solutions whose fermion numbers 𝑓𝑖 and 𝑓𝑗 differ by 1 can contribute to the correction. The
action of 𝑄 is then given by

𝑄 |Φ𝑖⟩ = ∑
Φ𝑗∈MKW

|𝑓𝑖−𝑓𝑗|=1

𝑛𝑖𝑗 |Φ𝑗⟩ ,

where 𝑛𝑖𝑗 is the signed count of instanton solutions that interpolate between the solutions Φ𝑖
and Φ𝑗.

Conceptually, the approximate Hilbert spaceH0 corresponds to the Morse-Smale-Witten com-
plex, quantum corrections are given by the instanton Floer differential associated to the Hay-
dys-Witten equations, and the Hilbert space of BPS states is given by the associated Floer co-
homology of the manifold. The mathematical formulation of this instanton Floer theory is
standard and will be summarized in Section 2.7. The key insight provided by physics is that
this Floer theory gives rise to interesting topological invariants of four-manifolds. In particular,
it suggests that there is a Floer theory interpretation of Khovanov homology that arises if one
considers a manifold with boundary, where boundary conditions encode a ’t Hooft operator
insertion.
4On general five-manifolds there is no 𝑈 (1)𝐹 symmetry, but there is still a ℤ/2ℤ grading by spin-statistics.
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2.4 The Haydys-Witten Equations and their Specializations

The instanton equations of the preceding section are conveniently summarized in a formulation
due to Haydys [Hay15]. In this section we first introduce Haydys’ geometric setup and the
Haydys-Witten equations. This provides a covariant lift of anti-self-dual equations in four
dimensions to five-manifolds 𝑀5 that are equipped with a non-vanishing vector field 𝑣.

Moreover, we review the definitions and some relevant properties of several closely related
differential equations on lower dimensional manifolds. Namely, the 𝜃-Kapustin-Witten and
Vafa-Witten equations on four-manifolds, the twisted extended Bogomolny equations on three-
manifolds, and Nahm’s equations on one-dimensional manifolds. All these equations can be
viewed as dimensional reductions of the Haydys-Witten equations. We dedicate Section 2.5 to
a detailed discussion of this fact.

2.4.1 The Haydys-Witten Equations

The Haydys-Witten Equations are a set of partial differential equations on Riemannian five-
manifolds that are equipped with a nowhere-vanishing vector field 𝑣. The equations were
introduced by Haydys on general five-manifolds [Hay15] and at roughly the same time dis-
covered independently by Witten in the special case ℝ𝑠 × 𝑋 3 × ℝ+𝑦 with 𝑣 = 𝜕𝑦 [Wit11a]. This
section closely follows the original exposition of [Hay15].

Let (𝑀5, 𝑔) be a Riemannian five-manifold and 𝑣 be a nowhere-vanishing vector field of point-
wise unit norm. Consider a principal 𝐺-bundle 𝐸 → 𝑀5 for 𝐺 a compact Lie group, write A(𝐸)
for the space of gauge connections, and denote by ad 𝐸 the adjoint bundle associated to the
Lie algebra g of 𝐺. Furthermore, for a gauge connection 𝐴 ∈ A(𝐸) we denote the associated
covariant derivative by ∇𝐴 and the exterior covariant derivative by 𝑑𝐴.

Write 𝜂 = 𝑔(𝑣 , ⋅) ∈ Ω1(𝑀) for the one-form dual to the vector field 𝑣 and observe that the point-
wise linear map

𝑇𝜂 ∶ Ω2(𝑀) → Ω2(𝑀), 𝜔 ↦ ⋆5(𝜔 ∧ 𝜂)

has eigenvalues {−1, 0, 1}, such that Ω2(𝑀) decomposes into the corresponding eigenspaces:

Ω2(𝑀) = Ω2
𝑣 ,−(𝑀) ⊕ Ω2

𝑣 ,0(𝑀) ⊕ Ω2
𝑣 ,+(𝑀) .

Below we will use the notation 𝜔+ to denote the part of 𝜔 that lies in Ω2
𝑣 ,+(𝑀).

At every point 𝑝 ∈ 𝑀5, the fiber Ω2
𝑣 ,+(𝑀)|𝑝 is a three-dimensional vector space and thus carries

a natural Lie algebra structure given by the usual cross product (⋅ × ⋅) of ℝ3, unique up to
orientation. The map 𝜎(⋅, ⋅) = 1

2 (⋅ × ⋅) ⊗ [⋅, ⋅]g determines a corresponding cross product on
Ω2
𝑣 ,+(𝑀, ad 𝐸) ≃ ℝ3 ⊗ g.
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{   = 0}

Figure 2.1

Example. To parse these constructions consider their incarnation in a small neighbourhood 𝑈
of a point 𝑝 ∈ 𝑀, see Figure 2.1. Choose orthonormal coordinates (𝑥𝑖, 𝑦)𝑖=0,1,2,3 based at 𝑝 in
such a way that 𝑣 = 𝜕𝑦 . An explicit basis of Ω2

𝑣 ,+(𝑈 )|𝑝 is given by

𝑒1 = 𝑑𝑥0 ∧ 𝑑𝑥1 + 𝑑𝑥2 ∧ 𝑑𝑥3 , 𝑒2 = 𝑑𝑥0 ∧ 𝑑𝑥2 − 𝑑𝑥1 ∧ 𝑑𝑥3 , 𝑒3 = 𝑑𝑥0 ∧ 𝑑𝑥3 + 𝑑𝑥1 ∧ 𝑑𝑥2 .

Observe that this is also a basis of the self-dual two-forms with respect to ⋆4 acting on the
orthogonal complement of 𝑣 in Ω2(𝑈 )|𝑝. We can extend the 𝑒𝑖 to a local frame over all of 𝑈 such
that an element of Ω2

𝑣 ,+(𝑈 , ad 𝐸) is of the form 𝐵 = 𝑒1 ⊗ 𝜙1 + 𝑒2 ⊗ 𝜙2 + 𝑒3 ⊗ 𝜙3 for some g-
valued functions 𝜙𝑎, 𝑎 = 1, 2, 3. Equivalently, the non-vanishing components of 𝐵 are 𝐵0𝑎 = 𝜙𝑎,
𝐵𝑎𝑏 = 𝜖𝑎𝑏𝑐𝜙𝑐. Finally, the cross product of 𝐵 with itself is given by

𝜎(𝐵, 𝐵) = 𝑒1 ⊗ [𝜙2, 𝜙3] + 𝑒2 ⊗ [𝜙3, 𝜙1] + 𝑒3 ⊗ [𝜙1, 𝜙2] ,

which in 2-form components corresponds to 𝜎(𝐵, 𝐵)𝜇𝜈 =
1
4𝑔

𝜌𝜏[𝐵𝜇𝜌, 𝐵𝜈𝜏].

Example. Consider (𝑀5, 𝑣) = (𝑊 4 × ℝ𝑦 , 𝜕𝑦 ) with product metric and denote by 𝑖 ∶ 𝑊 4 ↪
𝑊 4 × ℝ𝑦 inclusion at 𝑦 = 0. Then

Ω2
±(𝑊 4) ≃ 𝑖∗ (Ω2

𝜕𝑦,±(𝑊
4 × ℝ𝑦)) ,

where Ω2
±(𝑊 4) denotes (anti-)self-dual two-forms on𝑊 4 with respect to ⋆4. Indeed, whenever

the metric is of product type, the Hodge star operator factorizes as

⋆5(𝛼 ∧ 𝛽) = (−1)𝑘ℓ ⋆𝑊 4 𝛼 ∧ ⋆ℝ𝑦𝛽 ,

when 𝛼 ∈ Ω𝑘(𝑊 4), 𝛽 ∈ Ωℓ(ℝ𝑦) and this gives rise to the stated isomorphisms.

The two examples demonstrate that Haydys’ setup provides a covariant lift of (anti-)self-dual
2-forms into 5-manifolds. Given the relevance of gauge theory and anti-self-dual connections
in the study of 4-manifolds, Haydys then suggests to consider a closely related set of equations
in five-dimensional gauge theory. The equations make use of the following differential for
Haydys-self-dual two-forms

𝛿+𝐴 ∶ Ω2
𝑣 ,+(𝑀, ad 𝐸)

∇𝐴
−−→ 𝑇 ∗𝑀 ⊗ Ω2

𝑣 ,+(𝑀, ad 𝐸) ≃ 𝑇𝑀 ⊗ Ω2
𝑣 ,+(𝑀, ad 𝐸)

−𝚤
−−→ Ω1(𝑀, ad 𝐸) .
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Here, as usual, ∇𝐴 is the covariant derivative with respect to both, the gauge connection and the
Levi-Civita connection, while we use 𝚤 to denote contraction 𝚤(𝑢⊗𝜔) ∶= 𝚤𝑢𝜔. In normal coordin-
ates (𝑥𝜇, 𝑦)𝜇=0,1,2,3 with 𝑣 = 𝜕𝑦, the action of this differential is given by 𝛿+𝐴𝐵 = −∑3

𝜇=0 ∇𝐴𝜇 𝚤𝜇𝐵,
since by construction 𝚤𝜕𝑦𝐵 = 0.

Definition 2.1 (Haydys-Witten Equations). Let (𝑀5, 𝑣) be a Riemannian 5-manifold together
with a preferred vector field and 𝐸 → 𝑀5 a principal𝐺-bundle. With notation as above, consider
a pair (𝐴, 𝐵) ∈ A(𝐸) × Ω2

𝑣 ,+(ad 𝐸). The Haydys-Witten equations for (𝐴, 𝐵) are given by:

𝐹+𝐴 − 𝜎(𝐵, 𝐵) − ∇𝐴𝑣 𝐵 = 0

𝚤𝑣 𝐹𝐴 − 𝛿+𝐴𝐵 = 0
(2.2)

We denote the corresponding differential operator by

HW𝑣 ∶ A(𝐸) × Ω2
𝑣 ,+(ad 𝐸) → Ω2

𝑣 ,+(ad 𝐸) × Ω1(ad 𝐸) .

If 𝐵 = 0 the Haydys-Witten equations provide a five-dimensional analogue of the anti-self-dual
equations that underlie Donaldson-Floer theory on 4-manifolds. This special case was studied
from a slightly different perspective in [Fan96].

As mentioned already above, the perspective from supersymmetric Yang-Mills theory suggests
that the Haydys-Witten equations have an interpretation in the six-dimensional N = (2, 0)
SCFT. In fact they can be obtained via dimensional reduction in several, closely related ways:
from six-dimensional equations [Wit11a, sec. 5], from octonionic monopole equations on
seven-manifolds with 𝐺2 holonomy, or from Spin(7)-instantons on eight-manifolds [Che15].
The octonionic structure is closely related to the 10d N = 1 super-Poincaré algebra.

2.4.2 The Kapustin-Witten Equations

The Kapustin-Witten equations are a one-parameter family of partial differential equations
on Riemannian four-manifolds 𝑊 4. They were first described by Kapustin and Witten in the
context of the geometric Langlands program and its interpretation in quantum field theory,
in which case one considers a product of two Riemann surfaces 𝑊 4 = Σ × 𝐶 [KW07]. A few
years later the equations resurfaced in the context of the gauge theoretic approach to Khovanov
homology on manifolds of the form𝑊 4 = 𝑋 3 × ℝ+ [Wit11a]. Since then their study has grown
into an active field of research, for an incomplete list of recent developments see e.g. [GU12;
Tau13; He15; He19; Tau17a; Tan19; NO19b].

Let (𝑊 4, 𝑔) be a smooth Riemannian four-manifold and 𝐺 a compact Lie group. Consider a
principal 𝐺-bundle 𝐸 → 𝑊 4 together with a principal connection 𝐴, and denote by ad 𝐸 the
adjoint bundle associated to the Lie algebra g of 𝐺. Furthermore, consider an ad 𝐸-valued one-
form 𝜙 ∈ Ω1(𝑊 4, ad 𝐸), usually called the Higgs field. The 𝜃-Kapustin-Witten equations for the
pair (𝐴, 𝜙) and an angle 𝜃 ∈ [0, 2𝜋] are the following family of differential equations.
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Definition 2.2 (Kapustin-Witten Equations).

( cos 𝜃
2 (𝐹𝐴 − 1

2 [𝜙 ∧ 𝜙]) − sin 𝜃
2 𝑑𝐴𝜙 )+ = 0

( sin 𝜃
2 (𝐹𝐴 − 1

2 [𝜙 ∧ 𝜙]) + cos 𝜃
2 𝑑𝐴𝜙 )− = 0

𝑑⋆4𝐴 𝜙 = 0

(2.3)

The corresponding differential operator is denoted

KW𝜃 ∶ A(𝐸) × Ω1(𝑋 4, ad 𝐸) → Ω2
+(𝑋 4, ad 𝐸) × Ω2

−(𝑋 4, ad 𝐸) × Ω0(𝑋 4, ad 𝐸) .

For 𝜃 ≠ 0 (mod 𝜋) the self-dual and anti-self-dual parts in (2.3) can be combined into the
following single expression

𝐹𝐴 − 1
2 [𝜙 ∧ 𝜙] + cot 𝜃𝑑𝐴𝜙 − csc 𝜃 ⋆4 𝑑𝐴𝜙 = 0 . (2.4)

Furthermore, as observed already by Kapustin andWitten [KW07] and discussed in more detail
by Gagliardo and Uhlenbeck [GU12], this is equivalent to phase-shifted conjugate anti-self-dual
equations for the 𝐺ℂ-gauge connection 𝐴 + 𝑖𝜙:

𝐹𝐴+𝑖𝜙 = 𝑒𝑖(𝜋−𝜃) ⋆4 𝐹𝐴+𝑖𝜙 . (2.5)

This point of view suggests the applicability of several powerful results from the theory of self-
dual Yang-Mills connections and geometric analysis in general. For example it is apparent from
(2.5) that in the case 𝜙 = 0 the one-parameter family of Kapustin-Witten equations interpolates
between Donaldson’s anti-self-dual equations (𝜃 = 0) and self-dual equations (𝜃 = 𝜋).

Remark. In the literature it is more common to parametrize the family of Kapustin-Witten
equations by 𝜃𝐺𝑈 = 𝜃/2 ∈ [0, 𝜋/2]. However, when viewed as dimensional reduction of the
Haydys-Witten equations as explained in Section 2.5, the parameter 𝜃 obtains a geometric in-
terpretation as angle between the non-vanishing vector field 𝑣 and the direction of invariance.
This motivates the slightly non-standard choice of normalization used throughout this thesis.
The naturality of 𝜃, as opposed to 𝜃GU, can also be seen from equations (2.4) and (2.5), where
our normalization avoids an additional factor of two.

At the midpoint 𝜃 = 𝜋/2, the equations are usually referred to as ‘the’ Kapustin-Witten equa-
tions and written more succinctly as

𝐹𝐴 − 1
2 [𝜙 ∧ 𝜙] − ⋆4𝑑𝐴𝜙 = 0

𝑑⋆4𝐴 𝜙 = 0

InWitten’s approach to Khovanov homology these are considered on𝑋 3×ℝ+𝑦 and their solutions
are generators of the Morse-Smale-Witten complex of BPS states.

Moduli spaces of Kapustin-Witten solutions play a fundamental role in Haydys-Witten theory.
In their original article, Kapustin and Witten realized that on closed manifolds the study of
solutions is relatively simple.
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Theorem 2.3 ([KW07; GU12]). Let 𝐸 → 𝑊 4 be an 𝑆𝑈 (2) principal bundle over a compact man-
ifold without boundary. Assume (𝐴, 𝜙) satisfies the 𝜃-Kapustin-Witten equations with 𝜃 ∈ (0, 𝜋).
If 𝐸 → 𝑊 4 has non-zero Pontryagin number then 𝐴 and 𝜙 are identically zero. Otherwise 𝐴 + 𝑖𝜙
is a flat 𝑃𝑆𝐿(2, ℂ) connection; equivalently 𝐹𝐴 = [𝜙 ∧ 𝜙] and ∇𝐴𝜙 = 0.

As a consequence, one mostly concentrates on open manifolds or manifolds with boundary.
Recently, solutions of Kapustin-Witten equations have been studied on ℝ4 and it turns out that
also in this case solutions are also remarkably constrained.

Theorem 2.4 (Taubes’ dichotomy [Tau17a]). Let 𝑊 4 = ℝ4, 𝐺 = 𝑆𝑈 (2), and define 𝜅2(𝑟) ∶=
𝑟−3 ∫𝜕𝐵𝑟 ‖𝜙‖

2. Assume that (𝐴, 𝜙) is a solution of the Kapustin-Witten equations, then either there
is an 𝑎 > 0 such that lim inf𝑟→∞ 𝜅/𝑟𝑎 > 0 or [𝜙 ∧ 𝜙] = 0.

In a similar way, the Kapustin-Witten energy

𝐸KW = ∫
𝑊 4

(‖𝐹𝐴‖
2 + ‖∇𝐴𝜙‖

2
+ ‖[𝜙 ∧ 𝜙]‖2)

offers some degree of control over the asymptotic behaviour of the Higgs field 𝜙 on manifolds
with controlled asymptotic volume growth (ALX spaces).

Theorem 2.5 (Kapustin-Witten solutions on ALE and ALF spaces [NO21, Main Theorem 1]).
Assume 𝑊 4 is an ALE or ALF gravitational instanton and (𝐴, 𝜙) is a finite energy solution of the
𝜃-Kapustin-Witten equations, 𝜃 ≠ 0 (mod 𝜋). Then 𝜙 has bounded 𝐿2-norm.

Since bounded 𝐿2-norm in particular implies bounded 𝐿2-average on spheres, it follows that
for finite energy solutions on ℝ4 and 𝑆1 × ℝ3 the function 𝜅 → 0. In combination with Taubes’
dichotomy this yields the following corollary.

Corollary 2.6. On ℝ4, ℝ3 × 𝑆1 and compact manifolds, solutions of the 𝜃-Kapustin-Witten equa-
tions with finite positive energy are such that 𝐴 is flat, ∇𝐴𝜙 = 0, and [𝜙 ∧ 𝜙] = 0.

In Chapter 3, we prove a generalization of Taubes’ dichotomy to any ALE or ALF space. It then
follows that Corollary 2.6 actually applies to ALE, ALF, and compact manifolds.

2.4.3 The Vafa-Witten Equations

The Vafa-Witten equations are partial differential equations on a four-manifold𝑊 4. They were
first discovered by Vafa andWitten in the context of 4dN = 2 super Yang-Mills theory [VW94].
Their solutions give rise to topological invariants of four-manifolds. The equations have since
been subject to close scrutiny both in physics and mathematics, see [Mar10; Tan17; Tau17b;
Tan19; GSY22; OT22] and references therein.
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Let (𝑊 4, 𝑔) be a smooth Riemannian four-manifold and 𝐺 a compact Lie group. Consider a
principal 𝐺-bundle 𝐸 → 𝑊 4 together with a principal connection 𝐴, and denote by ad 𝐸 the
adjoint bundle associated to the Lie algebra g of 𝐺. Let 𝐵 ∈ Ω2

+(𝑊 4) be a self-dual two-form
with respect to the Hodge star operator and 𝐶 ∈ Ω0(𝑊 4, ad 𝐸) a section of ad 𝐸. In complete
analogy to the situation in Haydys’ setup, there is a three-dimensional cross product 𝜎(⋅, ⋅) =
1
2 (⋅ × ⋅) ⊗ [⋅, ⋅]g on Ω2

+(𝑊 4, ad 𝐸).

The Vafa-Witten equations for the triple (𝐴, 𝐵, 𝐶) are the following partial differential equa-
tions.

Definition 2.7 (Vafa-Witten Equations).

𝐹+𝐴 − 𝜎(𝐵, 𝐵) − 1
2 [𝐶, 𝐵] = 0 (2.6)

𝑑⋆4𝐴 𝐵 + 𝑑𝐴𝐶 = 0

We denote the associated differential operator by VW (𝐴, 𝐵, 𝐶).

The Vafa-Witten equations are closely related to the Kapustin-Witten equations equations. For
one, we will later describe in detail that both arise as dimensional reduction of the Haydys-
Witten equations. Furthermore, it is well known that on Euclidean space the 𝜃 = 0 version of
the Kapustin-Witten equations and the Vafa-Witten equations are equivalent. The correspond-
ence arises by combining the components of 𝐵 = ∑3

𝑖=1 𝜙𝑖(𝑑𝑥0 ∧ 𝑑𝑥 𝑖 +
1
2 𝜖𝑖𝑗𝑘𝑑𝑥

𝑗 ∧ 𝑑𝑥𝑘) and 𝐶 into
a one-form 𝜙 = 𝐶𝑑𝑥0 + 𝜙𝑖𝑑𝑥 𝑖.

2.4.4 The Extended Bogomolny Equations

The extended Bogomolny equations (EBE) are a set of partial differential equations on a three-
manifold 𝑋 3. As the name suggests, they are an extension of Bogomolny’s magnetic monopole
equations on three-manifolds [Bog76; JT80; AH88]. The latter are a dimensional reduction of
the self-dual Yang–Mills equations from four dimensions to three dimensions. From a purely
three-dimensional point of view, the EBE can be viewed as complexification of the Bogomolny
equations [NO19a].

In the context of Haydys-Witten theory, the EBE – in fact a one-parameter family called twis-
ted extended Bogomolny equations (TEBE) – appear as dimensional reduction of the Haydys-
Witten (or Kapustin-Witten) equations to three dimensions. They play an important role in the
definition of the Nahm pole boundary conditions in the presence of knots, because a ’t Hooft
operator, upon reduction to three dimensions, reduces to the insertion of a monopole-like solu-
tion of the EBE.

Let (𝑋 3, 𝑔) be a Riemannian three-manifold and 𝐸 → 𝑋 3 a 𝐺-principal bundle. Consider a
gauge connection 𝐴, a one-form 𝜙 ∈ Ω1(𝑋 3, ad 𝐸), and two functions 𝑐1, 𝑐2 ∈ Ω0(𝑋 3, ad 𝐸).
The extended Bogomolny equations are the following set of differential equations for the tuple
(𝐴, 𝜙, 𝑐1, 𝑐2):
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Definition 2.8 (Extended Bogomolny Equations).

𝐹𝐴 − 1
2 [𝜙 ∧ 𝜙] + ⋆3 (𝑑𝐴𝑐1 − [𝑐2, 𝜙]) = 0

𝑑𝐴𝑐2 + [𝑐1, 𝜙] − ⋆3𝑑𝐴𝜙 = 0

𝑑⋆3𝐴 𝜙 − [𝑐1, 𝑐2] = 0

(2.7)

We write EBE (𝐴, 𝜙, 𝑐1, 𝑐2) for the associated differential operator.

As a side remark, note that the equations admit several specializations, each of which had
important reverberations in contemporary mathematics.

• If 𝜙 = 𝑐2 = 0 these are the Bogomolny equations for a magnetic monopole (𝐴, 𝑐1) on a
three-manifold 𝑋 3.

• If 𝑋 3 = Σ × ℝ𝑦, 𝑐1 = 𝑐2 = 0, and (𝐴, 𝜙) are independent of 𝑦, the equations reduce
to Hitchin’s equations for a Higgs bundle over Σ [Hit87a]. Note that solutions to the
𝑦-invariant equations provide natural stationary boundary conditions at non-compact
ends.

• If 𝑋 3 = Σ × ℝ𝑦, 𝐴 = 𝑐2 = 0, and 𝜙 is independent of Σ, they reduce to Nahm’s equations
[Nah83]. These will be described in more detail in the upcoming Section 2.4.5.

Since the extended Bogomolny equations can be obtained by a dimensional reduction of the
𝜃 = 𝜋/2 version of the Kapustin-Witten equations (cf. Section 2.5), it’s clear that there should
also be a one-parameter family of EBEs, defined by dimensional reduction for any value of
𝜃 ∈ [0, 𝜋]. The result is known as 𝜃-twisted extended Bogomolny equations (TEBE) [Dim22a].

Definition 2.9 (Twisted Extended Bogomolny Equations).

𝐹𝐴 − 1
2 [𝜙 ∧ 𝜙] + cot 𝜃 𝑑𝐴𝜙 + csc 𝜃 ⋆3 (𝑑𝐴𝑐1 − [𝑐2, 𝜙]) = 0

𝑑𝐴𝑐2 + [𝑐1, 𝜙] + cot 𝜃 (𝑑𝐴𝑐1 − [𝑐2, 𝜙]) − csc 𝜃 ⋆3 𝑑𝐴𝜙 = 0

𝑑⋆3𝐴 𝜙 − [𝑐1, 𝑐2] = 0

(2.8)

We write TEBE 𝜃 (𝐴, 𝜙, 𝑐1, 𝑐2) for the associated differential operator.

Observe that for 𝜃 = 𝜋/2, one obtains the untwisted EBE of equation (2.7).

Let us also mention the work of Nagy and Oliveira in [NO19a; NO19b], where the TEBE are
investigated at 𝜃 = 0 and 𝜋/2, respectively. From their point of view, the two sets of equa-
tions arise from two ways to extend the Hodge star operator to the complexification of the
principal bundle. From our point of view, these are special points of a one-parameter family
of extended Bogomolny equations, and their findings are analogues in three dimensions of the
interpretation of the Kapustin-Witten equations as shifted anti-self dual equations (2.5) of a
complex connection in four dimensions, as explained by Gagliardo and Uhlenbeck [GU12] and
summarized in Section 2.4.2.
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Sometimes the EBE are defined only for a triple (𝐴, 𝜙, 𝑐1). The reason for this is the following
result.

Proposition 2.10. Assume (𝐴, 𝜙, 𝑐1, 𝑐2) is an irreducible solution of the extended Bogomolny
equations on a Riemannian three-manifold 𝑋 3. If 𝑋 3 is closed, or if it has ends at which the
fields satisfy boundary conditions such that ∫𝑋 3 𝑑 Tr (𝑐1 ∧ 𝑑𝐴𝑐2 − [𝑐1, 𝑐2] ∧ ⋆3𝜙) = 0, then 𝑐2 = 0.

Proof. The proof was originally outlined in [Wit11a, p. 58]. The following, more explicit
presentation of the argument is taken from [HM19c].

If we set

𝐼1 = ∫
𝑋 3

‖𝐹𝐴 − 1
2 [𝜙 ∧ 𝜙] + ⋆3𝑑𝐴𝑐1‖

2
+ ‖⋆3𝑑𝐴𝜙 − [𝑐1, 𝜙]‖

2 + ‖𝑑⋆3𝐴 𝜙‖
2
,

𝐼2 = ∫
𝑋 3

‖[𝑐2, 𝜙]‖
2 + ‖𝑑𝐴𝑐2‖

2 + ‖[𝑐1, 𝑐2]‖
2 ,

𝐼3 = ∫
𝑋 3

𝑑 Tr (𝑐1 ∧ 𝑑𝐴𝑐2 − [𝑐1, 𝑐2] ∧ ⋆3𝜙) ,

then there is a Weitzenböck formula

∫
𝑋 3

‖EBE (𝐴, 𝜙, 𝑐1, 𝑐2)‖
2 = 𝐼1 + 𝐼2 + 𝐼3 .

By assumption 𝐼3 = 0, either because 𝜕𝑀 = ∅ or because the boundary conditions on (𝑐1, 𝑐2)
are exactly such that 𝐼3 vanishes. The remaining terms in the Weitzenböck formula are non-
negative, so any solution of the extended Bogomolny equations also satisfies 𝐼1 = 𝐼2 = 0.
If 𝑐2 ≠ 0, vanishing of the terms in 𝐼2 implies that the pair (𝐴, 𝜙) is reducible, which is in
contradiction to our assumption and concludes the proof.

An astoundingly important fact about the EBE is that over three-manifolds of the form 𝑋 3 =
Σ × ℝ, for some Riemann surface Σ, they admit a Hermitian Yang-Mills structure [Wit11a]. To
see this one introduces three differential operators

D1 = ∇𝐴1 + 𝑖∇𝐴2 , D2 = [𝜙1, ⋅] + 𝑖[𝜙2, ⋅] , D3 = ∇𝐴3 + 𝑖[𝜙3, ⋅] .

The extended Bogomolny equations are then equivalent to

[D𝑖,D𝑗] = 0 ,
3
∑
𝑖=1

[ D𝑖 ,D𝑖] = 0 .

These equations are equivalent to the Hermitian Yang-Mills equation for a Hermitian connec-
tion on a holomorphic vector bundle over Σ × ℝ.

More generally, the 𝜃-TEBE exhibit a Hermitian Yang-Mills structure if 𝑐2 − tan 𝛽/3 𝑐1 = 0,
where 𝛽 denotes the complementary angle 𝛽 = 𝜋/2 − 𝜃 [GW12]. Note that for 𝜃 = 𝜋/2 this
condition is automatically satisfied for all irreducible solutions due to Proposition 2.10.
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The Hermitian Yang-Mills structure is an important tool in the classificatio of solutions of
the EBE and TEBE. It has been used to prove a Kobayashi-Hitchin correspondence between
solutions of the EBE and Higgs bundles with certain extra structure [GW12; HM19c; HM20].
First analogous results regarding the classification of TEBE-solutions have been achieved in
[HM19b; Dim22a]. We will discuss this in much more detail in Chapter 5, where we utilize
a similar Hermitian Yang-Mills structure to determine certain solutions of the Haydys-Witten
and Kapustin-Witten equations, respectively.

2.4.5 Nahm’s equations

Nahm’s equations are ordinary, non-linear differential equations for a vector bundle of g-valued
functions over a one-dimensional interval 𝐼. The equations rely on the existence of a cross
product on the vector bundle. As is well known, real vector spaces with a (bilinear) cross
product are in correspondence with the imaginary part of normed division algebras. Corres-
pondingly, the associated equations are referred to as complex, quaternionic, and octonionic
Nahm equations, depending on the rank of the vector bundle.

The equations were originally introduced in the quaternionic case by Nahm and play an im-
portant role in the classification of monopoles [Nah83; Hit83; Don84]. They can be viewed as
dimensional reductions either from anti-self dual Yang-Mills equations on four-manifolds or
equivalently from Bogomolny’s monopole equations on three-manifolds.

The octonionic Nahm equations first appear in [GT93]. They have recently attracted renewed
attention in the context of Spin(7)-instantons on eight-dimensional manifolds and monopoles
on seven-dimensional manifolds with 𝐺2 holonomy [Che15; CN22]. Also see the recent art-
icle by He [He20] for a discussion of the moduli space of solutions for the octonionic Nahm
equations.

In the context of Haydys-Witten theory, a dimensional reduction of the Haydys-Witten equa-
tions from five to one dimension in general gives rise to a twisted version of the octonionic
Nahm equations. Since the Haydys-Witten equations can be viewed as a lift of self-dual Yang-
Mills equations to five dimensions, it’s not too surprising that a variant of Nahm’s equations
appears. The twisted octonionic Nahm equations play an intermittent but important role in the
definition of the Nahm pole boundary conditions.

Below, we first provide the general definition of Nahm’s equations and state explicit formulae
for each case, mostly following a similar exposition in [He20]. Subsequently, the twisted oc-
tonionic equations are introduced and we explain the underlying structure from the point of
view of octonionic multiplication.

Let 𝐺 be a compact Lie group with Lie algebra g and 𝐼 a real interval with coordinate 𝑦. Con-
sider a trivial 𝐺-principal bundle 𝐸 over 𝐼 with connection 𝐴 = 𝐴𝑦𝑑𝑦 and denote the associated
covariant derivative by ∇𝐴𝑦 = 𝑑

𝑑𝑦 +[𝐴𝑦, ⋅]. Let𝕍 be one of the normed division algebras ℂ,ℍ,𝕆.
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Write (Im𝕍, ×) for its imaginary part together with the cross product induced by multiplica-
tion.

We consider the trivial bundle Im𝕍⊗ ad 𝐸 → 𝐼. Let the tuple X = (𝑋1, … , 𝑋𝑘) denote a section
of this bundle, where 𝑘 = dimℝ𝕍 − 1. In particular, the components 𝑋𝑖 are g-valued functions
over 𝐼. This bundle admits a cross product, induced by the cross product on Im𝕍 and the Lie
bracket on g and given by

X × X = ∑
𝑖,𝑗,𝑘

𝑓𝑖𝑗𝑘 𝑒𝑖 ⊗ [𝑋𝑗, 𝑋𝑘] ,

where 𝑓𝑖𝑗𝑘 are the structure constants of 𝕍.

Let 𝐸 be a 𝐺-principal bundle over an interval 𝐼 with gauge connection 𝐴 and denote a section
X ∈ Γ(𝐼 , Im𝕍⊗g). The Nahm equations associated to𝕍 are the following system of non-linear,
ordinary differential equations for the pair (𝐴,X)

Definition 2.11 (Nahm Equations).

∇𝐴𝑦 X + X × X = 0

We will occasionally write Nahm𝕍 (𝐴,X) for the associated differential operator.

Remark. The division algebras only appear fiberwise, in the multiplication of sections. In par-
ticular, the underlying differential equations are based in real analysis, as opposed to complex,
quaternion, or octonion analysis. Furthermore, Nahm’s equations only make use of pairwise
products, such that the non-associativity of octonions does not play a role.

For 𝕍 = ℂ the section X corresponds to a single ad 𝐸-valued function 𝑋1, while the cross
product on Imℂ is the zero map. Hence, the complex Nahm equation is the single equation

∇𝐴𝑦 𝑋1 = 0 ,

which is just the statement that 𝑋1 is covariantly constant along 𝐼.

For 𝕍 = ℍ the section consists of three components X = (𝑋1, 𝑋2, 𝑋3) and the structure
constants are the completely anti-symmetric tensor 𝜖𝑖𝑗𝑘, for 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3}, which is 1 when
𝑖𝑗𝑘 = 123.

∇𝐴𝑦 𝑋𝑖 +
1
2
𝜖𝑖𝑗𝑘[𝑋𝑗, 𝑋𝑘] = 0

The quaternionic Nahm equations are typically simply known as ‘the’ Nahm equations. An
important set of solutions are Nahm pole solutions (𝐴,X) = (0, 𝑋1, 𝑋2, 𝑋3), with 𝑋𝑖 =

t𝑖
𝑦 , where

t𝑖 ∈ g satisfy su(2) commutation relations.

For 𝕍 = 𝕆 the section has seven components X = (𝑋1, … , 𝑋7). A possible choice of struc-
ture constants5 for the octonions is given by the completely antisymmetric tensor 𝑓𝑖𝑗𝑘, 𝑖, 𝑗, 𝑘 ∈
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{1, … 7}, that is +1 when 𝑖𝑗𝑘 is any of 123, 145, 176, 246, 257, 347, or 365. Explicitly, the octo-
nionic Nahm equations are given by

∇𝐴𝑦 𝑋1 + [𝑋2, 𝑋3] + [𝑋4, 𝑋5] − [𝑋6, 𝑋7] = 0

∇𝐴𝑦 𝑋2 − [𝑋1, 𝑋3] + [𝑋4, 𝑋6] + [𝑋5, 𝑋7] = 0

∇𝐴𝑦 𝑋3 + [𝑋1, 𝑋2] + [𝑋4, 𝑋7] − [𝑋5, 𝑋6] = 0

∇𝐴𝑦 𝑋4 − [𝑋1, 𝑋5] − [𝑋2, 𝑋6] − [𝑋3, 𝑋7] = 0

∇𝐴𝑦 𝑋5 + [𝑋1, 𝑋4] − [𝑋2, 𝑋7] + [𝑋3, 𝑋6] = 0

∇𝐴𝑦 𝑋6 + [𝑋1, 𝑋7] + [𝑋2, 𝑋4] − [𝑋3, 𝑋5] = 0

∇𝐴𝑦 𝑋7 − [𝑋1, 𝑋6] + [𝑋2, 𝑋5] + [𝑋3, 𝑋4] = 0

Note that solutions of the quaternionic Nahm equations give rise to solutions of the octo-
nionic Nahm equations: If (𝐴, 𝑋1, 𝑋2, 𝑋3) is a solution of the quaternionic equations, then
(𝐴, 𝑋1, 𝑋2, 𝑋3, 0, 0, 0, 0) is a solution of the octonionic equations. For more aboute the moduli
space of the octonionic Nahm equations see [He20].

We will also come across a twisted version of the octonionic equations. To explain this, it is
convenient to first rename components as X = (𝑋1, 𝑋2, 𝑋3, 𝑌 , 𝑍1, 𝑍2, 𝑍3). We can then express
the octonionic Nahm equations in terms of 𝜖𝑖𝑗𝑘 with 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3} and 𝜖123 = 1 as

∇𝐴𝑦 𝑋𝑖 + [𝑌 , 𝑍𝑖] + 𝜖𝑖𝑗𝑘 (
1
2 [𝑋𝑗, 𝑋𝑘] −

1
2 [𝑍𝑗, 𝑍𝑘]) = 0

∇𝐴𝑦 𝑌 − [𝑋𝑖, 𝑍𝑖] = 0

∇𝐴𝑦 𝑍𝑖 − [𝑌 , 𝑋𝑖] − 𝜖𝑖𝑗𝑘[𝑋𝑗, 𝑍𝑘] = 0

In this notation the twisted equations arise frommixing the terms that appear in the last column
by a rotation of angle 𝛽 ∈ [0, 𝜋], as follows:

∇𝐴𝑦 𝑋𝑖 + [𝑌 , 𝑍𝑖] + 𝜖𝑖𝑗𝑘 ( cos 𝛽 (12 [𝑋𝑗, 𝑋𝑘] −
1
2 [𝑍𝑗, 𝑍𝑘]) + sin 𝛽 [𝑋𝑗, 𝑍𝑘]) = 0

∇𝐴𝑦 𝑌 − [𝑋𝑖, 𝑍𝑖] = 0

∇𝐴𝑦 𝑍𝑖 − [𝑌 , 𝑋𝑖] − 𝜖𝑖𝑗𝑘 (− sin 𝛽 (12 [𝑋𝑗, 𝑋𝑘] −
1
2 [𝑍𝑗, 𝑍𝑘]) + cos 𝛽 [𝑋𝑗, 𝑍𝑘]) = 0

The twisted equations may be viewed as the result of deforming the cross product on Im𝕆. To
explain this, first recall that by the Cayley-Dickson construction octonions can be viewed as a
product of the quaternions equipped with a particular multiplication. Explicitly, if we denote
the basis of the quaternions by (1, 𝑖, 𝑗, 𝑘), we can identify the basis elements of 𝕆with 1 = (1, 0),
𝑒1 = (𝑖, 0), 𝑒2 = (𝑗, 0), 𝑒3 = (𝑘, 0), ℎ = (0, 1), 𝑓1 = (0, 𝑖), 𝑓2 = (0, 𝑗), 𝑓3 = (0, 𝑘). As real vector
spaces, the imaginary octonions can then be identified with the direct sum Im𝕆 = Imℍ ⊕
ℝ ⊕ Imℍ. Observe that this corresponds precisely to the previous renaming of components
X = (𝑋 , 𝑌 , 𝑍). Octonionic multiplication can be summarized as follows: 1 is the unit element,

5We use a slightly different convention than [He20]; the two choices differ by 𝑒7 ↦ −𝑒7.
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for any other basis element set (𝑥𝑖)2 = −1, and for the remaining imaginary products specify
𝑥 × 𝑦 ∶= 1

2 (𝑥𝑦 − 𝑦𝑥) = 𝑥𝑦 to be given by 𝑒𝑖 × 𝑓𝑖 = −ℎ and when 𝑖 ≠ 𝑗 by

𝑒𝑖 × 𝑒𝑗 = 𝜖𝑖𝑗𝑘 𝑒𝑘 𝑓𝑖 × 𝑓𝑗 = −𝜖𝑖𝑗𝑘 𝑒𝑘 𝑒𝑖 × 𝑓𝑗 = −𝜖𝑖𝑗𝑘 𝑓𝑘 ℎ × 𝑒𝑖 = −𝑓𝑖 ℎ × 𝑓𝑖 = 𝑒𝑖

Clearly, octonionic multiplication does not preserve the decomposition as real vector spaces.
In particular, ℎ maps one of the Imℍ factors into the other. This is used to deform the cross
product by a rotation between the two factors of Imℍ. More precisely, whenever the product
has values in one of the Imℍ’s, we post-compose it with the left-action of cos 𝛽 1 + sin 𝛽 ℎ,
which corresponds to adjusting the following multiplications.

𝑒𝑖 ×𝛽 𝑒𝑗 = (cos 𝛽 1 + sin 𝛽 ℎ) (𝑒𝑖 × 𝑒𝑗) = 𝜖𝑖𝑗𝑘 (cos 𝛽 𝑒𝑘 − sin 𝛽 𝑓𝑘)

𝑓𝑖 ×𝛽 𝑓𝑗 = (cos 𝛽 1 + sin 𝛽 ℎ) (𝑓𝑖 × 𝑓𝑗) = −𝜖𝑖𝑗𝑘 (cos 𝛽 𝑒𝑘 − sin 𝛽 𝑓𝑘)

𝑒𝑖 ×𝛽 𝑓𝑗 = (cos 𝛽 1 + sin 𝛽 ℎ) (𝑒𝑖 × 𝑓𝑗) = −𝜖𝑖𝑗𝑘 (sin 𝛽 𝑒𝑘 + cos 𝛽 𝑓𝑘)

Here 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3} andwe sum over repeated indices. All other products remain unchanged.

With this deformation the twisted version of the octonionic Nahm equations can be succinctly
defined by the following equations.

Definition 2.12 (Twisted Octonionic Nahm Equations).

∇𝐴𝑦 X + X ×𝛽 X = 0

More explicitly, writing X = (𝑋1, 𝑋2, 𝑋3, 𝑌 , 𝑍1, 𝑍2, 𝑍3) as above, the 𝛽-twisted octonionic equa-
tions are

∇𝐴𝑦 𝑋𝑖 + [𝑌 , 𝑍𝑖] + 𝜖𝑖𝑗𝑘 ( cos 𝛽 (12 [𝑋𝑗, 𝑋𝑘] −
1
2 [𝑍𝑗, 𝑍𝑘]) + sin 𝛽[𝑋𝑗, 𝑍𝑘]) = 0

∇𝐴𝑦 𝑍𝑖 − [𝑌 , 𝑋𝑖] − 𝜖𝑖𝑗𝑘 (− sin 𝛽 (12 [𝑋𝑗, 𝑋𝑘] −
1
2 [𝑍𝑗, 𝑍𝑘]) + cos 𝛽[𝑋𝑗, 𝑍𝑘]) = 0

∇𝐴𝑦 𝑌 − [𝑋𝑖, 𝑍𝑖] = 0

(2.9)

We will occasionally denote the associated differential operator by Nahm𝕆,𝛽 (𝐴,X).

The embedding of quaternionic solutions into the moduli space of octonionic solutions carries
over to the twisted case by rotating 𝑋 into 𝑍: If (𝐴, 𝑋) = (𝐴, 𝑋1, 𝑋2, 𝑋3) is a solution of the
quaternionic Nahm equations, then

(𝐴, cos 𝛽 𝑋 , 0, sin 𝛽 𝑋 𝜏 ) ∶= (𝐴, cos 𝛽 𝑋1, cos 𝛽 𝑋2, cos 𝛽 𝑋3, 0, sin 𝛽 𝑋1, sin 𝛽 𝑋3, sin 𝛽 𝑋2)

is a solution of the 𝛽-twisted octonionic Nahm equations. Note that the identification of 𝑋with
𝑍 involves an anti-cyclic permutation of components, denoted by 𝜏 = (132).
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Figure 2.2

2.5 Dimensional Reductions of the Haydys-Witten Equations

As mentioned before, each of the equations presented in Section 2.4 can be viewed as a dimen-
sional reduction of the Haydys-Witten equations. Here we explicitly perform the reduction
step and explain how the various one-parameter families arise naturally from Haydys’ five-
dimensional geometry.

Throughout this section, we denote the Haydys-Witten fields by (�̂�, �̂�) to explicitly distinguish
them from four-dimensional fields 𝐴, 𝐵 and 𝜙 and three-dimensional fields �̃� and ̃𝜙. For con-
venience let us repeat the Haydys-Witten equations, as defined in Equation 2.2.

𝐹+�̂� − 𝜎(�̂�, �̂�) − ∇�̂�𝑣 �̂� = 0

𝚤𝑣𝐹�̂� − 𝛿+�̂� �̂� = 0
(2.10)

Dimensional reduction on 𝑀5 = ℝ𝑘 × 𝑌 5−𝑘 assumes that the fields (�̂�, �̂�) and all gauge trans-
formations are independent of the position in ℝ𝑘. Equivalently, if we write 𝑢𝑖, 𝑖 = 1, … , 𝑘, for a
set of orthonormal coordinate vector fields on ℝ𝑘, then �̂� and �̂� are invariant under the action
of all 𝑢𝑖’s. This only makes sense if the angles 𝑔(𝑢𝑖, 𝑣) = cos 𝜃𝑖 are constant, since otherwise
already the equations depend inherently on the position in ℝ𝑘. Below, we discuss dimensional
reduction for 𝑘 = 1, 2 and 4, which leads to the 𝜃-Kapustin-Witten equations, 𝜃-twisted extended
Bogomolny equations, and 𝛽-twisted octonionic Nahm equations, respectively.

2.5.1 ℝ-invariant Solutions

Consider a product space𝑀5 = ℝ𝑠×𝑊 4 equippedwith a productmetric and denote the inclusion
of 𝑊 4 at 𝑠 = 0 by 𝑖 ∶ 𝑊 4 ↪ ℝ𝑠 × 𝑊 4. Let 𝑢 ∶= 𝜕𝑠 be the unit vector field tangent to ℝ𝑠 and
assume that 𝑔(𝑢, 𝑣) = cos 𝜃 is constant. The angle 𝜃 can either be thought of as the glancing
angle between 𝑣 and the direction of invariance ℝ𝑠, or equivalently as incidence angle of 𝑣 on
the hypersurface 𝑊 4, see Figure 2.2.
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As explained in Section 2.4.1, Haydys’ geometric setup provides a lift of four-dimensional (anti-
)self-dual two-forms into five dimensions. Loosely speaking, this was achieved by identify-
ing the orthogonal complement of 𝑣 with the tangent space of four-manifolds 𝑊 4 that foliate
𝑀5. When 𝑢 and 𝑣 are aligned, dimensional reduction simply recovers the self-dual two forms.
However, in general 𝑢 and 𝑣 are not necessarily aligned and the consequences of imposing 𝑢-
invariance depend on the interplay between the orthogonal complements of 𝑢 and 𝑣. To that
end observe that 𝑢 and 𝑣 define a distribution Δ(𝑢,𝑣) ⊂ 𝑇𝑀. Since 𝑢 and 𝑣 are non-vanishing
and 𝜃 is constant, Δ(𝑢,𝑣) is regular, i.e. a vector bundle. We now have to distinguish two cases:
𝜃 ≡ 0 (mod 𝜋) and 𝜃 ≠ 0.

If 𝜃 ≡ 0 (mod 𝜋) or equivalently if 𝑢 = ±𝑣, the vector bundle Δ(𝑢,𝑣) has rank one. In this case
the orthogonal complements of 𝑢 and 𝑣 are identical, perhaps up to a reversal of orientation, and
dimensional reduction is fairly straightforward. The gauge connection splits into �̂� = �̂�𝑠𝑑𝑠+𝐴,
where 𝐴 = 𝑖∗�̂� is a connection over 𝑊 4. The component �̂�𝑠 can be reinterpreted as an ad 𝐸-
valued function 𝐶 ∈ Ω0(ad 𝐸), since gauge transformations are assumed to be 𝑢-invariant6.
Regarding �̂�, recall from Section 2.4.1 that there is an isomorphism 𝑖∗(Ω2

𝜕𝑠,+(ℝ𝑠 × 𝑊 4)) ≃
Ω2
+(𝑊 4). As a result (�̂�, �̂�) pull back to a triple of fields (𝐴, 𝐵, 𝐶) on the four-manifold 𝑊 4,

where 𝐴 is a gauge connection, 𝐵 is a self-dual two-form, and 𝐶 is an ad 𝐸-valued function.
With these identifications in place, note that ∇�̂�𝑣 �̂� = [𝐶 ∧ 𝐵], 𝚤𝑣𝐹�̂� = 𝑑𝐴𝐶, and 𝛿+�̂� �̂� = 𝑑⋆4𝐴 𝐵.
Plugging this into the Haydys-Witten equations for (�̂�, �̂�) immediately yields the Vafa-Witten
equations (2.6) for the triple (𝐴, 𝐵, 𝐶).

If 𝜃 ≢ 0 (mod 𝜋), the vector bundle Δ(𝑢,𝑣) has rank two. The tangent bundle splits into ortho-
gonal complements 𝑇𝑀 = Δ(𝑢,𝑣)⊕Δ⟂

(𝑢,𝑣) and this induces a similar decomposition for one-forms
as sections of (Δ(𝑢,𝑣))∗ ⊕ (Δ⟂

(𝑢,𝑣))
∗. Moreover, since Δ(𝑢,𝑣) admits the two linearly independent

global sections 𝑢 and 𝑣, it is trivial. It follows that there is a non-vanishing vector field 𝑤 that to-
getherwith 𝑢 provides an orthonormal basis ofΔ(𝑢,𝑣). In this basis 𝑣 is given as 𝑣 = cos 𝜃𝑢+sin 𝜃𝑤
and we can define 𝑣⟂ ∶= − sin 𝜃𝑢 + cos 𝜃𝑤 , which is the unique (up to a sign) unit vector field
in Δ(𝑢,𝑣) that is orthogonal to 𝑣.

Crucially, contraction with 𝑣⟂ provides an isomorphism between 𝑢-invariant self-dual two-
forms and sections of (Δ⟂

(𝑢,𝑣))
∗. One way to see this is to observe that locally the following

two-forms provide a basis of Ω2
𝑣 ,+ (cf. Section 2.4.1):

𝑒𝑖 = 𝜂⟂ ∧ 𝑑𝑥 𝑖 + 1
2 𝜖𝑖𝑗𝑘𝑑𝑥

𝑗 ∧ 𝑑𝑥𝑘 , 𝑖 = 1, 2, 3 ,

Here 𝜂⟂ is the (global) one-form dual to 𝑣⟂ and 𝑑𝑥 𝑖 are (local) sections of (Δ⟂
(𝑢,𝑣))

∗. If we write

�̂� = ∑𝑖 𝜙𝑖𝑒𝑖, contraction with 𝑣⟂ yields a one-form 𝚤𝑣⟂�̂� = ∑𝑖 𝜙𝑖𝑑𝑥 𝑖. Using this isomorphism,
the 𝑢-invariant fields (�̂�, �̂�) on ℝ𝑠 × 𝑊 4 can be reinterpreted as a gauge connection 𝐴 and an
ad 𝐸-valued one-form 𝜙 on 𝑊 4.

6In general 𝚤𝑢�̂� transforms as 𝚤𝑢�̂� ↦ 𝑔−1𝚤𝑢�̂�𝑔 + 𝑔−1∇�̂�
𝑢 𝑔 under gauge transformations. If the gauge transformation

𝑔 is 𝑢-invariant the second term vanishes and 𝚤𝑢�̂� is equivalent to an ad 𝐸-valued function.
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To make this explicit, consider for the moment the example of Euclidean space ℝ𝑠 × ℝ4 with
Cartesian coordinates (𝑠, 𝑡 , 𝑥𝑎)𝑎=1,2,3, chosen in such a way that

𝑢 = 𝜕𝑠 , 𝑤 = 𝜕𝑡 , and 𝑣 = cos 𝜃 𝜕𝑠 + sin 𝜃 𝜕𝑡 .

The gauge connection can be split into �̂� = �̂�𝑠𝑑𝑠 +𝐴, where 𝐴 is the part of the connection on
ℝ4. Furthermore, we can combine the remaining component �̂�𝑠 with the 3 components 𝜙𝑖 of 𝐵
into a one-form 𝜙 = �̂�𝑠𝑑𝑡 + ∑𝑖 𝜙𝑖𝑑𝑥 𝑖 on ℝ4.

The definitions in the Euclidean case are the local model underlying the following identifica-
tions for general manifolds ℝ𝑠 × 𝑊 4:

𝐴 ∶= 𝑖∗�̂� , 𝜙 ∶= �̂�𝑠 ∧ 𝑤♭ + 𝚤𝑣⟂�̂� .

Remark. To shed some more light on the definition of 𝜙, it might be helpful to directly compare
the situations for 𝜃 = 0 and 𝜃 ≠ 0. In both cases, the pullback of �̂� provides a gauge connection
on the pullback bundle 𝑖∗𝐸 → 𝑊 4 and projects out the component �̂�𝑠, which on its own can be
viewed as an ad 𝐸-valued function. The difference arises in the reinterpretation of �̂�. If 𝜃 ≠ 0
and we pull back �̂� to a two-form on 𝑊 4, as we do when 𝜃 = 0, we would on the one hand
project out any components that annihilate 𝑢 and on the other hand wouldn’t obtain a generic
(self-dual) two-form on 𝑊 4. Instead, we consider the contraction 𝚤𝑣⟂�̂� as a section of (Δ⟂

(𝑢,𝑣))
∗,

which contains neither 𝑢♭- nor 𝑤♭-components. The absence of terms proportional to 𝑢♭ (= 𝑑𝑠)
ensures that the pullback is injective, i.e. does not project out any components of 𝚤𝑣⟂�̂�. Using
�̂�𝑠 as the missing 𝑤♭-component we then obtain a generic one-form 𝜙 on 𝑊 4.

To determine the reduction of the Haydys-Witten equations in terms of (𝐴, 𝜙) on 𝑊 4, it is
sufficient to investigate the differential equations (2.10) in arbitrarily small neighbourhoods of
a point 𝑥. Hence, choose normal coordinates (𝑠, 𝑡 , 𝑥 𝑖)𝑖=1,2,3 at 𝑥 such that 𝑢 = 𝜕𝑠, 𝑤 = 𝜕𝑡, and
𝑣 = cos 𝜃𝜕𝑠 + sin 𝜃𝜕𝑡. Due to 𝑢-invariance and after setting �̂�𝑠 = 𝜙𝑡, we find

∇�̂�𝑣⟂ = − sin 𝜃[𝜙𝑡, ⋅] + cos 𝜃∇𝐴𝑡 , (𝐹�̂�)𝑠𝜇 = −∇𝐴𝜇 𝜙𝑡 .

The second of the Haydys-Witten equations (2.10) thus becomes

0 = 𝚤𝑣𝐹�̂� − 𝛿+�̂� �̂�

= (cos 𝜃 𝚤𝜕𝑠 + sin 𝜃 𝚤𝜕𝑡)𝐹�̂� + (∇�̂�𝑣⟂ 𝚤𝑣⟂ +∑∇�̂�𝑖 𝚤𝜕𝑖)�̂�

= (−∇𝐴𝑡 𝜙𝑡 −
3
∑
𝑖=1

∇𝐴𝑖 𝜙𝑖) 𝜂⟂

+ ∑
(𝑖𝑗𝑘)

(sin 𝜃 (𝐹𝑡 𝑖 − [𝜙𝑡, 𝜙𝑖]) + cos 𝜃 (∇𝐴𝑡 𝜙𝑖 − ∇𝐴𝑖 𝜙𝑡) − (∇𝐴𝑗 𝜙𝑘 + ∇𝐴𝑘 𝜙𝑗)) 𝑑𝑥
𝑖 ,

where the sum in the last line is over cyclic permutations of (123). The 𝜂⟂-component of
this equation states 𝑑⋆4𝐴 𝜙 = 0, which is the 𝜃-independent part of the Kapustin-Witten equa-
tions (2.3). The 𝑑𝑥 𝑖-components imply vanishing of the 𝑡 𝑖-components of the Kapustin-Witten
equations as given in equation (2.4).
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For the evaluation of the first of the Haydys-Witten equations (2.10) we expand

𝐹+�̂� = ∑
(𝑖𝑗𝑘)

(− sin 𝜃𝐹𝑠𝑖 + cos 𝜃𝐹𝑡 𝑖 + 𝐹𝑗𝑘)(𝜂⟂ ∧ 𝑑𝑥 𝑖 + 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘)

and similarly for 𝜎(�̂�, �̂�) = ∑(𝑖𝑗𝑘)[𝜙𝑗, 𝜙𝑘](𝜂⟂ ∧ 𝑑𝑥 𝑖 + 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘). The equations then become

0 = 𝐹+�̂� − 𝜎(�̂�, �̂�) − ∇�̂�𝑣 �̂�

= ∑
(𝑖𝑗𝑘)

(sin 𝜃 ∇𝐴𝑖 𝜙𝑡 + cos 𝜃 𝐹𝑡 𝑖 + 𝐹𝑗𝑘 − [𝜙𝑗, 𝜙𝑘] − cos 𝜃 [𝜙𝑡, 𝜙𝑖] − sin 𝜃∇𝐴𝑡 𝜙𝑖)(𝜂⟂ ∧ 𝑑𝑥 𝑖 + 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑘)

This implies that also the 𝑖𝑗-components of the Kapustin-Witten equations (2.4) vanish. To see
this multiply by sin 𝜃 and use the 𝑑𝑥 𝑖-component of the earlier equation to replace sin 𝜃(𝐹𝑡 𝑖 −
[𝜙𝑡, 𝜙𝑖]).

In summary, the key result of this section is the following statement.

Proposition 2.13. Let 𝑀5 = ℝ × 𝑊 4 equipped with a product metric and a non-vanishing unit
vector field 𝑣. Write 𝑢 for the unit vector field along ℝ and assume 𝑔(𝑢, 𝑣) = cos 𝜃 is constant.
Let (�̂�, �̂�) be Haydys-Witten fields on 𝑀5, write 𝐴 = 𝑖∗�̂� for the pullback connection on 𝑊 4, and
depending on the value of 𝜃 define fields on 𝑊 4 as follows

𝜃 = 0 ∶ 𝐵 = 𝑖∗�̂� , 𝐶 = �̂�𝑠

𝜃 ≠ 0 ∶ 𝜙 = �̂�𝑠𝑤♭ + 𝚤𝑣⟂�̂�

Then 𝑢-invariant Haydys-Witten equations for (�̂�, �̂�) are either equivalent to the Vafa-Witten
equations for (𝐴, 𝐵, 𝐶) if 𝜃 ≡ 0 (mod 𝜋), or to the 𝜃-Kapustin-Witten equations for (𝐴, 𝜙) other-
wise.

HW𝑣 (�̂�, �̂� )
ℝ-inv.
⟿ {

VW (𝐴, 𝐵, 𝐶) 𝜃 ≡ 0 (mod 𝜋) ,

KW𝜃 (𝐴, 𝜙) else

Let us stress that dimensional reduction is not continuous at 𝜃 = 0. For general four-manifolds,
the Vafa-Witten equations and 𝜃 = 0 version of the Kapustin-Witten equations are not equival-
ent. From the perspective of the Haydys-Witten equations, it should be expected that there is a
possibly non-trivial relation between solutions of these equations whenever the four-manifold
admits a non-vanishing vector field. This is well-known for 𝑊 4 = ℝ4, where the Vafa-Witten
and 𝜃 = 0 Kapustin-Witten equations are equivalent by identifying 𝜙 = 𝐶𝑑𝑥0 + 𝐵0𝑖𝑑𝑥 𝑖.

The dimensional reductions of the Haydys-Witten equations have previously been carried out
for the cases 𝜃 = 0 and 𝜋/2 by Witten [Wit11a], and independently for 𝜃 = 0 and in slightly
more generality by Haydys [Hay15]. Concretely, Witten considered the case where the five-
manifold is 𝑀5 = ℝ𝑠 × 𝑋 3 × ℝ+𝑦 and 𝑣 = 𝜕𝑦. On the one hand he investigates ℝ𝑠-invariant
solutions, i.e. dimensional reduction with respect to 𝑢 = 𝜕𝑠. In this situation the glancing angle
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is 𝜃 = 𝜋/2 (or 3𝜋/2; the two cases differ only by a reversal of orientation). Witten explains that
setting 𝜙 = �̂�𝑠𝑑𝑦 +𝐵𝑠𝑖𝑑𝑥 𝑖, the 𝑢-invariant Haydys-Witten equations are equivalent to the 𝜃 = 𝜋

2
version of the Kapustin-Witten equations. This is in accordance with the general definition
𝜙 = 𝚤𝑢�̂� ∧ 𝑤♭ + 𝚤𝑣⟂�̂�, because in the current situation 𝑢 = 𝜕𝑠, 𝑤♭ = 𝑑𝑦, and 𝑣⟂ = −𝜕𝑠. On
the other handWitten also shortly inspected ℝ+𝑦 -invariant solutions, which provide non-trivial
boundary conditions at 𝑦 → ∞. Since in that case 𝑢 = 𝜕𝑦 coincides with 𝑣, the glancing angle is
𝜃 = 0 and the equations reduce to the Vafa-Witten equations. This was observedmore generally
by Haydys for ℝ𝑦-invariant solutions on 𝑀5 = ℝ𝑦 × 𝑊 4 with 𝑣 = 𝜕𝑦 [Hay15, sec. 4.1].

Let us remark that Witten explains in great detail that the full Haydys-Witten equations on
ℝ𝑠 × 𝑋 3 × ℝ+𝑦 represent antigradient flow equations (with respect to a conveniently chosen
functional) that interpolate between 𝜃 = 𝜋/2 Kapustin-Witten solutions at 𝑠 → ±∞. Haydys
similarly explains that the full Haydys-Witten equations on ℝ𝑠×𝑊 4 represent antigradient flow
equations that interpolate between Vafa-Witten solutions at 𝑠 → ±∞.

Both of these statements can be viewed as special case of the more general fact that on ℝ𝑠 ×𝑊 4

the equations HW𝑣 (�̂�, �̂�) = 0 take the form of flow equations that interpolate between ℝ𝑠-
invariant solutions at 𝑠 → ±∞. In particular, for 𝜃 ≠ 0, 𝜋/2, the Haydys-Witten equations on
ℝ𝑠 × 𝑊 4 are equivalent to the following equations.

∇𝐴𝑠 𝐴 = −𝚤𝜕𝑠 (𝑑𝐴𝜙 − ⋆4 (cos 𝜃 (𝐹𝐴 − [𝜙 ∧ 𝜙]) + sin 𝜃 𝑑𝐴𝜙))

∇𝐴𝑠 𝜙 = −𝚤𝜕𝑠 (𝐹𝐴 − ⋆4 (− sin 𝜃 (𝐹𝐴 − [𝜙 ∧ 𝜙]) + cos 𝜃 𝑑𝐴𝜙))

𝑑⋆4𝐴 𝜙 = 0

2.5.2 ℝ2-invariant Solutions

Consider a product space𝑀5 = ℝ2×𝑋 3 equipped with a product metric and denote by 𝑖 ∶ 𝑋 3 ↪
ℝ2 × 𝑋 3 inclusion at the origin of ℝ2. Let 𝑠1 and 𝑠2 be Cartesian coordinates on ℝ2 and 𝑢1, 𝑢2
the associated coordinate vector fields. Assume that 𝑔(𝑢1, 𝑣) = cos 𝜃1 and 𝑔(𝑢2, 𝑣) = cos 𝜃2 are
constant. In fact we are free to choose coordinates in such a way that 𝑢2 and 𝑣 are orthogonal,
fixing 𝜃2 = 𝜋/2, see Figure 2.3. The dimensional reduction only depends on the remaining
parameter 𝜃 ∶= 𝜃1, which is the glancing angle between 𝑣 and ℝ2.

Instead of imposing ℝ2-invariance from scratch, we may proceed by iteration: First utilize
the results of Section 2.5.1 to determine the dimensional reduction along one of the directions
and afterwards additionally demand invariance in the second direction. Due to the results of
the previous section it’s clear that we need to distinguish between the cases 𝜃 ≡ 0 and 𝜃 ≢ 0
(mod 𝜋).

In the case where 𝜃 = 0 (the case 𝜃 = 𝜋 follows from this by a reversal of orientation), we
start by imposing 𝑢2-invariance. By Proposition 2.13 this leads to a pair (𝐴, 𝜙) on ℝ𝑠1 × 𝑋

3 that
satisfies the 𝜃2 = 𝜋/2 version of the Kapustin-Witten equations. The Higgs field is given by
𝜙 = �̂�𝑠2𝑑𝑠1 − 𝚤𝑢2�̂�, while 𝐴 is the pullback connection.
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Figure 2.3

In the case where 𝜃 ≠ 0, it is more convenient to first consider 𝑢1-invariance, which leads to
the 𝜃-Kapustin-Witten equations for a (different) pair (𝐴, 𝜙). The Higgs field is given by 𝜙 =
�̂�𝑠1𝑤

♭+ 𝚤𝑣⟂�̂�, where 𝑤 and 𝑣⟂ are the sections of Δ(𝑢1,𝑣) that were introduced in Section 2.5.1.

Still for 𝜃 ≠ 0, it is helpful to have a closer look at the structure of Ω2
𝑣 ,+(ℝ2 × 𝑋 3), to simplify

the subsequent dimensional reduction along 𝑢2. Observe that 𝑤 is a non-vanishing vector field
that is orthogonal to both 𝑢1 and 𝑢2, i.e. it is the pushforward of a non-vanishing vector field on
𝑋 3. Let us generalize the notation from the previous section and denote by Δ(𝑢1,𝑢2,𝑣) the regular
distribution spanned by the three vector fields 𝑢1, 𝑢2, and 𝑣. Since 𝜃 ≠ 0, this distribution is
a trivial subbundle of 𝑇𝑀5 of rank 3 that admits an orthonormal basis of sections (𝑢1, 𝑢2, 𝑤).
The orthogonal complement Δ⟂

(𝑢1,𝑢2,𝑣)
is a rank 2 subbundle of 𝑇𝑋 3 orthogonal to 𝑤. It follows

that the tangent space 𝑇𝑋 3 splits into a trivial one-dimensional part, spanned by 𝑤, and a two-
dimensional part that we denote Δ⟂

(𝑢1,𝑢2,𝑣)
. This provides a splitting ofΩ1(ℝ𝑠2 ×𝑋

3) into sections
of 𝐶∞(𝑀5)𝑑𝑠2⊕𝐶∞(𝑀5)𝑤♭⊕(Δ⟂

(𝑢1,𝑢2,𝑣)
)∗, which in turn induces the existence of a global section

𝑒1 ∶=
1
2 (1 + 𝑇𝜂) (𝜂⟂ ∧ 𝑑𝑠2) of Ω2

𝑣 ,+. As a consequence �̂� splits globally into

�̂� = 𝜙1𝑒1 + 𝜑 .

In the usual local basis, the two-form 𝜑 is given by 𝜑 = 𝜙2𝑒2 + 𝜙3𝑒3. With respect to this
expression of �̂� and the splitting of Ω1(ℝ𝑠2 × 𝑋 3), the Higgs field is defined as 𝜙 = 𝜙1𝑑𝑠2 +
�̂�𝑠1𝑤

♭ + 𝚤𝑣⟂𝜑. In local coordinates (𝑠2, 𝑥 𝑖)𝑖=1,2,3 of ℝ𝑠2 × 𝑋
3 this reduces to 𝜙 = 𝜙1𝑑𝑠2 + �̂�𝑠1𝑑𝑥

1 +
𝜙2𝑑𝑥2 + 𝜙3𝑑𝑥3.

We are now ready to perform dimensional reduction along the second direction. In either case,
denote the remaining direction of invariance by 𝑠, i.e. 𝑠 = 𝑠1 if 𝜃 = 0 and 𝑠 = 𝑠2 if 𝜃 ≠ 0.
We are in the situation of either the 𝜋/2- or 𝜃-version of the Kapustin-Witten equations for
(𝐴, 𝜙) on ℝ𝑠 × 𝑋 3. Imposing invariance in the second direction thus corresponds to a fairly
straightforward dimensional reduction of the Kapustin-Witten equations: Regardless of the
five-dimensional origin of 𝜙 and𝐴 they split onℝ𝑠×𝑋 3 as 𝜙 = 𝑐1𝑑𝑠+ ̃𝜙 and𝐴 = 𝑐2𝑑𝑠+�̃�. As usual,
we view the 𝑑𝑠 components 𝑐1 and 𝑐2 as ad 𝐸-valued functions over 𝑋 3. Choose an orientation,
say 𝑑𝑠 ∧𝜇𝑋 3 , and determine the individual terms in the Kapustin-Witten equations (2.4) in terms
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of (�̃�, ̃𝜙, 𝑐1, 𝑐2), whilst dropping any derivatives in the direction of 𝑠:

𝐹𝐴 = 𝑑�̃�𝑐2 ∧ 𝑑𝑠 + 𝐹�̃�
1
2 [𝜙 ∧ 𝜙] = −[𝑐1, ̃𝜙] ∧ 𝑑𝑠 + 1

2 [
̃𝜙 ∧ ̃𝜙]

𝑑𝐴𝜙 = −([𝑐2, ̃𝜙] − 𝑑�̃�𝑐1) ∧ 𝑑𝑠 + 𝑑�̃� ̃𝜙

⋆4𝑑𝐴𝜙 = ⋆3𝑑�̃� ̃𝜙 ∧ 𝑑𝑠 + ⋆3([𝑐2, ̃𝜙] − 𝑑�̃�𝑐1)

Plugging these expressions into (2.4) yields the first two lines of the TEBE (2.8). The third
equation of the TEBE follows from the remaining constraint 0 = 𝑑⋆4𝐴 𝜙 = −[𝑐1, 𝑐2] + 𝑑⋆3�̃�

̃𝜙.

Proposition 2.14. Let 𝑀5 = ℝ2 × 𝑋 3 equipped with a product metric and a non-vanishing unit
vector field 𝑣. Write 𝑢𝑖, 𝑖 = 1, 2, for Cartesian vector fields on ℝ2, chosen such that 𝑔(𝑢1, 𝑣) = cos 𝜃
and 𝑔(𝑢2, 𝑣) = 0, and assume both angles are constant. Let (�̂�, �̂�) be Haydys-Witten fields on 𝑀5,
write �̃� = 𝑖∗�̂� for the pullback connection on 𝑋 3, and depending on the value of 𝜃 define fields on
𝑋 3 as follows.

𝜃 = 0 ∶ ̃𝜙 = −𝚤𝑢2�̂� , 𝑐1 = �̂�𝑠2 , 𝑐2 = �̂�𝑠1

𝜃 ≠ 0 ∶ ̃𝜙 = �̂�𝑠1𝑤
♭ + 𝚤𝑣⟂𝜑 , 𝑐1 = 𝜙1, 𝑐2 = �̂�𝑠2

Then (𝑢1, 𝑢2)-invariant Haydys-Witten equations for (�̂�, �̂�) are equivalent to the EBE if 𝜃 = 0 or
to the 𝜃-twisted extended Bogomolny equations for (�̃�, ̃𝜙, 𝑐1, 𝑐2).

HW𝑣 (�̂�, �̂�)
ℝ2-inv.
⟿ {

EBE (�̃�, ̃𝜙, 𝑐1, 𝑐2) 𝜃 ≡ 0 (mod 𝜋) ,

TEBE 𝜃 (�̃�, ̃𝜙, 𝑐1, 𝑐2) else

The dimensional reduction of the Haydys-Witten equations to three-manifolds inherits the dis-
continuity at 𝜃 = 0 that is already present in the reduction to four-manifolds. In particular, in
the limit 𝜃 → 0 dimensional reduction does not lead to the 𝜃 = 0 version of the TEBE, but
instead to the ‘untwisted’ 𝜋/2 version. As before, this behaviour is encoded in the rank of the
regular distribution Δ(𝑢1,𝑢2,𝑣) spanned by 𝑢1, 𝑢2 and 𝑣. If 𝜃 ≡ 0 (mod 𝜋), i.e. if 𝑣 is orthogonal
to 𝑋 3, Δ(𝑢1,𝑢2,𝑣) is of rank two and dimensional reduction leads to the (untwisted) EBE. If 𝜃 ≢ 0
(mod 𝜋), the distribution Δ(𝑢1,𝑢2,𝑣) has rank three, there exists a non-vanishing vector field 𝑤
on 𝑋 3, and dimensional reduction produces 𝜃-TEBE.

Another special situation arises when 𝑣 is parallel to 𝑋 3, since then dimensional reduction leads
to the 𝜋/2-TEBE, which we recall are just the (untwisted) EBE. However, the existence of the
vector field 𝑤 provides additional structure that allows us to continuously deform the 𝜋/2-TEBE
to generic 𝜃-TEBE by rotating 𝑣 ↦ 𝑣 = cos 𝜃𝑢1 + sin 𝜃𝑤. Such a continuous deformation does
not exist if the EBE arise from a dimensional reduction for which Δ(𝑢1,𝑢2,𝑣) is of rank 2. In that
case any small deformation of 𝑣 ↦ 𝑣 +𝜖𝑤, lifting 𝑣 off the plane spanned by 𝑢1 and 𝑢2, leads to a
discontinuous jump from 𝜋/2-EBE to 𝜃𝜖-TEBE, where 𝜃𝜖 is the corresponding (small) glancing
angle.
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Figure 2.4

The idea of deforming (or twisting) the EBE away from 𝜃 = 𝜋/2 is used to great effect by
Gaiotto and Witten in [GW12]. In their setup, they consider the dimensional reduction of the
Haydys-Witten equations from

𝑀5 = ℝ𝑠 × ℝ𝑡 × Σ × ℝ+𝑦 → Σ × ℝ+𝑦 = 𝑋 3 .

The three vector fields of interest are 𝑢1 = 𝜕𝑠, 𝑢2 = 𝜕𝑡 and 𝑤 = 𝜕𝑦. When 𝑣 = 𝜕𝑦, dimensional
reduction results in the EBE. However, we are in the situation where Δ(𝑢1,𝑢2,𝑣) is of rank three
and we can deform the EBE equations away from 𝜃 = 𝜋/2, e.g. by considering 𝑣 = cos 𝜃𝑢1 +
sin 𝜃𝑤.

2.5.3 ℝ4-invariant Solutions

Consider now the case𝑀5 = ℝ4 × 𝐼, where 𝐼 is a real interval, and let 𝜕𝑦 be the coordinate vector
field along 𝐼. Assume Haydys’ preferred vector field 𝑣 is such that the incidence angle between
𝑣 and ℝ4 – determined by 𝑔(𝑣 , 𝜕𝑦) = cos 𝛽 – is constant. On ℝ4 fix Cartesian coordinates (𝑠, 𝑥 𝑖),
𝑖 = 1, 2, 3, where 𝜕𝑠 is the vector field that satisfies 𝑔(𝑣 , 𝜕𝑠) = sin 𝛽, while 𝑔(𝑣 , 𝜕𝑖) = 0. In these
coordinates 𝑣 = sin 𝛽𝜕𝑠 + cos 𝛽𝜕𝑦, see Figure 2.4. Notice that in the current situation 𝛽 is the
incidence angle between 𝑣 and the hyperplane of invariant directions. This is in contrast to the
preceding discussions, where it was more convenient to use the glancing angle 𝜃 = 𝜋/2 − 𝛽.

Write �̂� = 𝐴𝑠𝑑𝑠 + ∑𝑖𝐴𝑖𝑑𝑥 𝑖 + 𝐴𝑦𝑑𝑦 and �̂� = ∑𝑖 𝜙𝑖𝑒𝑖 with 𝑒𝑖 =
1
2 (1 + 𝑇𝜂)(𝜂⟂ ∧ 𝑑𝑥 𝑖). Under the

assumption that �̂� and �̂� are independent ofℝ4, the components𝐴𝑠,𝐴𝑖 and 𝜙𝑖, 𝑖 = 1, 2, 3, become
a collection of seven g-valued functions on 𝐼, while 𝐴 = 𝐴𝑦𝑑𝑦 provides a gauge connection
over 𝐼. As a result dimensional reduction of the Haydys-Witten equations is relatively straight-
forward. The 𝑖-th component (with respect to the basis {𝑒1, 𝑒2, 𝑒3} of Ω2

𝑣 ,+) of the Haydys-Witten
equations (2.2) is given by

0 = (𝐹+�̂� − 𝜎(�̂�, �̂�) − ∇�̂�𝑣 𝜙)𝑖
= (cos 𝛽𝐹𝑠𝑖 − sin 𝛽𝐹𝑦𝑖 +

1
2 𝜖𝑖𝑗𝑘𝐹𝑗𝑘) −

1
2 𝜖𝑖𝑗𝑘[𝜙𝑗, 𝜙𝑘] − cos 𝛽∇𝐴𝑦 𝜙𝑖 − sin 𝛽∇𝐴𝑠 𝜙𝑖

= − sin 𝛽(∇𝐴𝑦 𝐴𝑖 + [𝐴𝑠, 𝜙𝑖]) − cos 𝛽(∇𝐴𝑦 𝜙𝑖 − [𝐴𝑠, 𝐴𝑖]) −
1
2 𝜖𝑖𝑗𝑘([𝜙𝑗, 𝜙𝑘] − [𝐴𝑗, 𝐴𝑘])
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2 Haydys-Witten Floer Theory

Meanwhile, the second of the Haydys-Witten equations becomes

0 = 𝚤𝑣𝐹�̂� − 𝛿+�̂� �̂�

= (cos 𝛽𝚤𝜕𝑦 + sin 𝛽𝚤𝜕𝑠)𝐹�̂� + (∇�̂�𝑠 𝚤𝑠 + ∇�̂�𝑦 𝚤𝑦 +∑∇�̂�𝑖 𝚤𝑖)𝐵

= (∇𝐴𝑦 𝐴𝑠 + [𝐴𝑖, 𝜙𝑖]) 𝜂⟂ + (cos 𝛽 (∇𝐴𝑦 𝐴𝑖 + [𝐴𝑠, 𝜙𝑖]) − sin 𝛽 (∇𝐴𝑦 𝜙𝑖 − [𝐴𝑠, 𝐴𝑖]) − 𝜖𝑖𝑗𝑘[𝐴𝑗, 𝜙𝑘]) 𝑑𝑥 𝑖

The component proportional to 𝜂⟂ is exactly the third of the twisted octonionic Nahm equa-
tions (2.9), while the remaining equations are just a linear combination of the first two lines
of these equations. To see this, multiply the 𝑖-th components of the two equations with sin 𝛽
and cos 𝛽, respectively, and add them up (and vice versa with subsequent subtraction). More
explicitly, the reduced Haydys-Witten equations are thus rearranged to read

∇𝐴𝑦 𝜙𝑖 − [𝐴𝑠, 𝐴𝑖] + 𝜖𝑖𝑗𝑘 ( cos 𝛽 1
2 ([𝜙𝑗, 𝜙𝑘] − [𝐴𝑗, 𝐴𝑘]) + sin 𝛽[𝜙𝑗, 𝐴𝑘]) = 0

∇𝐴𝑦 𝐴𝑖 + [𝐴𝑠, 𝜙𝑖] − 𝜖𝑖𝑗𝑘 (− sin 𝛽 1
2 ([𝜙𝑗, 𝜙𝑘] − [𝐴𝑗, 𝐴𝑘]) + cos 𝛽[𝜙𝑗, 𝐴𝑘]) = 0

∇𝐴𝑦 𝐴𝑠 + [𝐴𝑖, 𝜙𝑖] = 0

These are exactly the 𝛽-twisted octonionic Nahm equations forX = (𝜙1, 𝜙2, 𝜙3, −𝐴𝑠, 𝐴1, 𝐴2, 𝐴3).

Proposition 2.15. Let 𝑀5 = ℝ4 × 𝐼, where 𝐼 is a connected one-dimensional manifold, equipped
with a product metric and a preferred non-vanishing unit vector field 𝑣. Write 𝑢 for the unit vector
field on 𝐼. Assume 𝑔(𝑢, 𝑣) = cos 𝛽 is constant and (�̂�, �̂�) are invariant under translations in ℝ4

and arranged into the pair (𝐴,X) as specified above. Then the Haydys-Witten equations reduce to
the 𝛽-twisted octonionic Nahm equations.

HW𝑣 (�̂�, �̂�)
ℝ4−inv.
⟿ Nahm𝕆,𝛽 (𝐴,X)

2.6 The Nahm Pole Boundary Condition

The Nahm pole boundary conditions with knot singularities play a fundamental role in the re-
lation between Haydys-Witten theory and Khovanov homology. They prescribe an asymptotic
equivalence of the fields (𝐴, 𝐵)with a certain set of singular model solutions near the boundary.
Which model solutions to use depends on whether one is in the vicinity of a knot or not.

Recall from Section 2.3 that in the five-dimensional setting a knot is supported on a two-
dimensional surface Σ𝐾 inside the four-dimensional boundary of 𝑀5; one direction is parallel
to the longitude of the original, one-dimensional knot 𝐾, while the other direction arises from
extending 𝐾 along the additional flow direction of Floer theory. Typically Σ𝐾 arises in this way
from either a compact knot or a collection of infinitely extended strands embedded in 𝑋 3, so for
all intents and purposes Σ𝐾 is either an embedding of ℝ × 𝑆1 or a disjoint union of ℝ2’s. Never-
theless, Nahm pole boundary conditions are defined for general embedded surfaces, including
link cobordisms and knotted surfaces.
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The singular structure of the model solutions comes in two flavours. First, denoting by 𝑦 a
boundary-defining function, the fields diverge as 𝑦−1. Second, near the position of a knot they
display a monopole-like behaviour associated to a singularity inside of ad 𝐸.

A careful analysis of the Nahm pole boundary conditions with knot singularities is described
in great detail in [MW14; MW17]. These articles make use of Melrose’s 𝑏-calculus [Mel90];
or rather a variant of it that was introduced by Mazzeo [Maz91] and further developed by
Mazzeo-Vertman [MV13]. In this context it is natural to consider the geometric blowup of 𝑀5

along Σ𝐾. This is the manifold with corners, denoted by [𝑀5; Σ𝐾], whose underlying set of
points is the disjoint union of 𝑀5 and the inward-pointing unit normal bundle of Σ𝐾. Many
analytic properties of differential operators and their solutions become more apparent when
viewed as conormal distributions on the blowup. As long as an explicit distinction between
the original manifold and its blowup is irrelevant, we’ll simply denote the blowup by 𝑀5, the
original boundary component after removing Σ𝐾 by 𝜕0𝑀5, and the newly introduced boundary
at Σ𝐾 by 𝜕𝐾𝑀5.

The definition of Nahm pole boundary conditions features an aspect that arises naturally in
the context of the blowup [𝑀5; Σ𝐾]. Namely, the boundary conditions for the two types of
boundary 𝜕0𝑀 and 𝜕𝐾𝑀 have individual descriptions. Near 𝜕0𝑀 the Haydys-Witten pair (𝐴, 𝐵)
is locally modeled on maximally symmetric, ℝ4-invariant Nahm-pole solutions of the Haydys-
Witten equations on ℝ4 × ℝ+𝑦 , while near 𝜕𝐾𝑀 the model solution is that of an EBE-monopole
on ℝ2 × ℝ+𝑦 .

Belowwe provide descriptions of these two distinct model solutions, followed by a definition of
the Nahm pole boundary conditions with knot singularities on general manifolds. We conclude
with the investigation of the analytic properties of the Haydys-Witten equations with 𝛽-twisted
Nahm pole boundary conditions, which has not yet appeared in the literature.

2.6.1 Model Solutions without Knot Singularity

Consider Euclidean half-space ℝ4 × ℝ+𝑦 and denote Cartesian coordinates by (𝑠, 𝑥 𝑖, 𝑦)𝑖=1,2,3. As-
sume that 𝑣 = sin 𝛽𝜕𝑠 + cos 𝛽𝜕𝑦, where the incidence angle 𝛽 between 𝑣 and the boundary is
constant. This geometry is invariant under translations parallel to the boundary, and accord-
ingly, we demand that the model solutions are independent of the position in the boundary.
Proposition 2.15 states that they must then be solutions of the 𝛽-deformed octonionic Nahm
equations on ℝ+.

Let 𝜌 ∶ su(2) → g be a Lie algebra homomorphism and denote by (t𝑖)𝑖=1,2,3 the image of the
standard basis of su(2) under 𝜌. Furthermore, let us fix the anti-cyclic permutation 𝜏 = (132).
As mentioned in Section 2.4.5, one easily checks that the following is a solution of the 𝛽-twisted
octonionic Nahm equations (2.9)

𝐴𝑖 =
sin 𝛽 t 𝜏 (𝑖)

𝑦
, 𝜙𝑖 =

cos 𝛽 t𝑖
𝑦

, 𝐴𝑠 = 𝐴𝑦 = 0 . (2.11)
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Since the fields exhibit a pole at 𝑦 = 0 these are called (𝛽-twisted or tilted) Nahm pole solutions.
We say the Nahm pole is regular, if 𝜌 is a principal embedding in the sense of Kostant, i.e. if
the commutant of su(2) in g is a Cartan subalgebra. These solutions are the local model for the
Nahm pole boundary condition near 𝜕0𝑀.

If 𝑣 = 𝜕𝑦 is orthogonal to the boundary, i.e. 𝛽 = 0, the gauge field𝐴 vanishes and themodel solu-
tion coincides with the standard, untwisted Nahm pole solution described in [Wit11a; MW14].
The twisted Nahm pole model solutions have previously appeared in the context of supersym-
metric boundary conditions in [GW09b, sec. 4] and their role in calculating the Jones polyno-
mial via gauge theory was described in [GW12].

2.6.2 Model Solutions with Knot Singularity

Consider, again, Euclidean half-space ℝ4 × ℝ+𝑦 , but now assume that we additionally include
a ’t Hooft operator supported on a single, infinitely extended ‘strand’. More precisely, in five-
dimensions this corresponds to the inclusion of a distinguished two-dimensional plane Σ𝐾 = ℝ2

in the boundary ofℝ4×ℝ+. Denote Cartesian coordinates (𝑠, 𝑡 , 𝑥2, 𝑥3, 𝑦), where Σ𝐾 extends along
the (𝑠, 𝑡)-plane. For simplicity assume that 𝑣 = cos 𝜃𝜕𝑠 + sin 𝜃𝜕𝑦. To make contact with notation
in Section 2.5.2: the orthonormal coordinate vector fields parallel to Σ𝐾 coincide with 𝑢1 = 𝜕𝑠
and 𝑢2 = 𝜕𝑡, while the unit normal vector 𝑤 = 𝜕𝑦 plays the role of a distinguished global vector
field on the remaining three-manifold 𝑋 3 = ℝ2𝑥2,𝑥3 × ℝ+𝑦 . For reasons that will become clear
momentarily, we only consider 𝜃 ≢ 0 (mod 𝜋).

As a first step we demand that the model solutions are invariant with respect to translations
along Σ𝐾. Due to Proposition 2.14, this means that the relevant model is a solution of the 𝜃-
TEBE (2.8) for three-dimensional fields (�̃�, ̃𝜙, 𝑐1, 𝑐2) on ℝ2𝑥2,𝑥3 × ℝ+𝑦 . Since 𝜃 ≠ 0 we are in the
situation where the Haydys-Witten fields are expressed as𝐴 = 𝐴𝑠𝑑𝑠+𝐴𝑡𝑑𝑡 +�̃� and 𝐵 = 𝜙1𝑒1+𝜑,
where the two-form 𝜑 = 𝜙2𝑒2+𝜙3𝑒3 is such that 𝚤𝑣⟂𝜑 = 𝜙2𝑑𝑥2+𝜙3𝑑𝑥3. Disentangling the general
definitions of Proposition 2.14 in this way specifies the three-dimensional fields in terms of the
components of (𝐴, 𝐵) as follows:

�̃� = 𝐴2𝑑𝑥2 + 𝐴3𝑑𝑥3 + 𝐴𝑦𝑑𝑦 , ̃𝜙 = 𝜙2𝑑𝑥2 + 𝜙3𝑑𝑥3 + 𝐴𝑠𝑑𝑦 , 𝑐1 = 𝜙1, 𝑐2 = 𝐴𝑡 .

For the case 𝜃 = 𝜋/2 and 𝐺 = 𝑆𝑈 (2) the relevant model solutions of the 𝜋/2-TEBE (which
are simply the untwisted EBE) were described by Witten [Wit11a]. Introduce (hemi-)spherical
coordinates (𝑅, 𝜓 , 𝜗) onℝ2𝑥2,𝑥3×ℝ

+
𝑦 ≃ [0,∞)𝑅×𝐻 2

𝜗 ,𝜓, where𝑅 ∈ [0,∞), 𝜓 ∈ [0, 𝜋/2] and 𝜗 ∈ [0, 2𝜋]
are given by

𝑅2 = 𝑥22 + 𝑥23 + 𝑦2 , cos 𝜓 =
𝑦
𝑅
, cos 𝜗 =

𝑥2
𝑥22 + 𝑥23

.

Let (t𝑖)𝑖=1,2,3 denote a standard basis of su(2) and view t1 as the generator of a fixed Cartan
subalgebra. Introduce, by abuse of notation, the sl(2, ℂ)-valued function 𝜑 = 𝜙2 − 𝑖𝜙3 that con-
veniently combines the components 𝜙2 and 𝜙3 of the two form 𝜑 of the same name. Similarly,
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denote by 𝐸 = t2 − 𝑖t3, 𝐻 = t1, and 𝐹 = t2 + 𝑖t3 the elements of an sl(2, ℂ)-triple (𝐸, 𝐻 , 𝐹 ). Fi-
nally, express the components of the three-dimensional gauge connection in terms of spherical
coordinates �̃� = 𝐴𝑅 𝑑𝑅+𝐴𝜓 𝑑𝜓 +𝐴𝜗 𝑑𝜗. The knot singularity solutions of the EBE with charge
𝜆 ∈ ℤ in terms of the components of (𝐴, 𝐵) are given by the following expressions.

𝐴𝜗 = −(𝜆 + 1) cos2 𝜓
(1 + cos 𝜓)𝜆 − (1 − cos 𝜓)𝜆

(1 + cos 𝜓)𝜆+1 − (1 − cos 𝜓)𝜆+1
𝐻

𝜙1 = −𝜆 + 1
𝑅

(1 + cos 𝜓)𝜆+1 + (1 − cos 𝜓)𝜆+1

(1 + cos 𝜓)𝜆+1 − (1 − cos 𝜓)𝜆+1
𝐻

𝜑 =
(𝜆 + 1)

𝑅
sin𝜆 𝜓 exp(𝑖𝜆𝜗)

(1 + cos 𝜓)𝜆+1 − (1 − cos 𝜓)𝜆+1
𝐸

𝐴𝑠 = 𝐴𝑡 = 𝐴𝑅 = 𝐴𝜓 = 0

These solutions exhibit a singular behaviour in several distinct ways. First, the components of
𝐵 diverge with rate 𝑅−1 as 𝑅 → 0. Second, whenever 𝑅 ≠ 0 the solution is asymptotically equi-
valent to the (untwisted) Nahm pole solution as we approach the original boundary component
𝜓 → 𝜋/2. This compatibility will be relevant in the definition of the boundary conditions on
general manifolds. Third, and most importantly, the solutions exhibit a monopole-like singu-
larity. This is characterized by a nontrivial monodromy of the connection as one moves around
the origin in the (𝑥2, 𝑥3)-plane. The monodromy is supported by a non-trivial behaviour of 𝜑,
which picks up an extra factor7 of 𝑒2𝜋𝑖𝜆 when 𝜗 increases by 2𝜋, and vanishes on the half-line
𝜓 = 0 that sits over the origin in the (𝑥2, 𝑥3)-plane. An insightful way to view the behaviour of 𝜑
is to observe that it takes values in the nilpotent coneN ⊂ gℂ = sl(2, ℂ) and that it approaches
the cone singularity of N for 𝜓 → 0.

Analogous solutions for the more general case 𝜃 = 𝜋/2 and 𝐺 = 𝑆𝑈 (𝑁 ) have been constructed
by Mikhaylov in [Mik12]. In this case the solution is labeled by an element of the co-character
lattice 𝜆 ∈ Γ∨ch = Hom(ℂ×, 𝐺ℂ), or equivalently, by a representation of the Langlands dual
group 𝐺∨

ℂ. From the physics perspective 𝜆 corresponds to a choice of magnetic charge. In
this generalization the (untwisted) Nahm pole divergence of order 𝑅−1 remains unchanged.
However, the singular behaviour within the nilpotent coneN ⊂ sl(𝑁 , ℂ) has a richer structure,
since the nilpotent cone has various singularities, see for example [CM93]. The co-character 𝜆
determines which of these singularities 𝜑 approaches as 𝜓 → 0.

With regard to a generalization by twisting, Gaiotto and Witten describe in [GW12] that it
is sometimes beneficial to consider the 𝜃-TEBE for 𝜃 ≠ 𝜋/2. They predicted that there are
analogous knot singularity solutions also in these cases. This has recently been confirmed for
𝐺 = 𝑆𝑈 (2) by Dimakis [Dim22a], who utilized a continuity argument to prove the existence of
knot singularity solutions for the 𝜃-TEBE for any 𝜃 ∈ (0, 𝜋). The deformation of 𝜃 away from
𝜋/2 to 𝜋/2 − 𝛽 has the effect that the Nahm pole divergence of order 𝑅−1 that appears in 𝐵 is
rotated into 𝐴, in very much the same way as is the case for the twisted Nahm pole solution

7𝜑 remains single-valued, since for 𝐺 = 𝑆𝑈 (𝑁 ) only integer values appear, while for 𝐺 = 𝑆𝑂(𝑁 ) half-integer values
may appear, but then the Lie algebra is really psl(2, ℂ), where multiplication by −1 is modded out.
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in (2.11). As we have seen in Proposition 2.14, the dimensional reduction of the Haydys-Witten
equations for 𝜃 = 0 is generally not continuously connected to the 𝜃 ≠ 0 reductions, such that
continuity methods break down at 𝜃 = 0. It is not currently known if there are knot singularity
models for 𝜃 ≡ 0 (mod 𝜋).

Both of these generalizations are given by less explicit descriptions than the model solutions
above and the exact formulas, where available, do not provide additional insights. For our
purposes it will suffice to assume that model solutions exist for any 𝜃 ∈ (0, 𝜋) and 𝐺 = 𝑆𝑈 (𝑁 ),
and are labeled by a magnetic charge 𝜆 ∈ Γ∨char.

2.6.3 From Model Solutions to Boundary Conditions

Let𝑀5 be a Riemannian manifold with a single boundary component, together with a preferred
non-vanishing unit vector field 𝑣 that approaches the boundary at a constant angle. We take this
to mean that there is a tubular neighbourhood of the boundary 𝑈 = 𝜕𝑀5 × [0, 𝜖)𝑦, on which the
incidence angle cos 𝛽 = 𝑔(𝑣 , 𝜕𝑦) is constant. Furthermore, let Σ𝐾 ⊆ 𝜕𝑀5 be an embedded surface
and assume that also the glancing angle cos 𝜃 = min𝑢∈𝑇Σ𝐾 𝑔(𝑢, 𝑣)/ ‖𝑢‖ is constant. To simplify
the discussion we assume that the incidence and glancing angle are related by 𝜃 = 𝜋/2−𝛽. This
is equivalent to the assumption that there is a neighbourhood of 𝜕𝐾𝑀where 𝑣 = cos 𝜃𝑢+sin 𝜃𝜕𝑦
for some non-vanishing unit vector field 𝑢 ∈ 𝑇Σ𝐾.

As explained in the introductory paragraphs of this section, we promote 𝑀5 to the geometric
blowup along Σ𝐾, such that there are two boundary components, 𝜕0𝑀 and 𝜕𝐾𝑀. In the preced-
ing sections we have described the model solutions that shall describe the local behaviour of
the fields at each of the two boundaries. A complete boundary condition requires a global spe-
cification of the fields on 𝜕𝑀 = 𝜕0𝑀 ⊔ 𝜕𝐾𝑀. Since the model solutions diverge at the boundary,
this involves additional data regarding the leading order on tubular neighbourhoods of 𝜕0𝑀 and
𝜕𝐾𝑀, respectively. The descriptions on these neighbourhoods must of course be compatible on
intersections.

We start by fixing the global boundary data on 𝜕0𝑀. Consider a tubular neighbourhood 𝑈 =
𝜕0𝑀 × [0, 𝜖)𝑦 on which 𝑔(𝜕𝑦 , 𝑣) = cos 𝛽 is constant. The components of 𝐴 and 𝐵 in the Nahm
pole model (2.11) are given by the same expression, up to a relative rotation with respect to the
incidence angle 𝛽. For this reason it is helpful to recall that there is a relation between one-forms
and self-dual two forms on 𝑈. Hence, note that whenever the incidence angle 𝛽 ≠ 0, 𝑣 induces
a non-vanishing vector field 𝑢 parallel to 𝜕0𝑀. This leads to a splitting of the tanget space
𝑇𝑈 ≃ Δ(𝑢,𝑣) ⊕ Δ⟂

(𝑢,𝑣), where the orthogonal complement Δ⟂
(𝑢,𝑣) is a vector bundle of rank three.

As in Section 2.5, contraction with 𝑣⟂ then provides an isomorphism between Ω2
𝑣 ,+(𝑈 ) and

sections of (Δ⟂
(𝑢,𝑣))

∗. In coordinates (𝑠, 𝑥 𝑖, 𝑦)𝑖=1,2,3 where 𝑣 = sin 𝛽𝜕𝑠 + cos 𝛽𝜕𝑦, the isomorphism
identifies ∑𝜙𝑖𝑒𝑖 ↦ ∑𝜙𝑖𝑑𝑥 𝑖, where 𝑒𝑖 denotes the usual basis of Ω2

𝑣 ,+(𝑈 ). It follows that any
ad 𝐸-valued self-dual two-form over 𝑈 is equivalent to an ad 𝐸-valued one-form on a subbundle
of 𝑇𝑈:

Ω2
𝑣 ,+(𝑈 , ad 𝐸) ≃ Hom(Δ⟂

(𝑢,𝑣) , ad 𝐸) .
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To keep notation at a minimum, this identification will be used implicitly in the formulas be-
low.

Regardless of the value of 𝛽, the three-dimensional cross product on Ω2
𝑣 ,+(𝑈 ) (cf. Section 2.4.1)

provides each fiber with the Lie algebra structure of su(2). Thus, at every point in the tubular
neighbourhood 𝑈, any ad 𝐸-valued self-dual two-form 𝜙𝜌 that satisfies 𝜙𝜌 − 𝜎(𝜙𝜌, 𝜙𝜌) = 0 gives
rise to a Lie algebra homomorphism 𝜌 ∶ su(2) → g. If we denote the image of the standard
basis of su(2) under 𝜌 by (t𝑖)𝑖=1,2,3, then 𝜙𝜌 = ∑3

𝑖=1 t𝑖𝑒𝑖 in the usual local basis.

Conversely, a smooth family of homomorphisms {𝜌𝑝 ∶ su(2) → g}𝑝∈𝑈 determines a unique
two-form 𝜙𝜌 ∈ Ω2

𝑣,+(𝑈 , ad 𝐸) that satisfies 𝜙𝜌 − 𝜎(𝜙𝜌, 𝜙𝜌) = 0. Moreover, {𝜌𝑝} also induces
another two form 𝜙𝜏𝜌, related to 𝜙𝜌 by a change of orientation of Ω2

𝑣 ,+(𝑈 ) from (𝑒1, 𝑒2, 𝑒3) to
(𝑒1, 𝑒3, 𝑒2). In a local basis 𝜙𝜏𝜌 = ∑𝑖 t 𝜏 (𝑖)𝑒𝑖 where 𝜏 is the anti-cyclic permutation (132) from
earlier. Since 𝜎(⋅, ⋅) is defined with respect to the original orientation on Ω2

𝑣 ,+(𝑈 , ad 𝐸), 𝜙𝜏𝜌 sat-
isfies 𝜙𝜏𝜌 + 𝜎(𝜙𝜏𝜌, 𝜙𝜏𝜌) = 0.

Hence, let 𝜌 ∶ su(2) → ad 𝐸 be a Lie algebra homomorphism and consider the Haydys-Witten
fields on 𝑈 that are given by

𝐴𝜌,𝛽 =
sin 𝛽 𝜙𝜏𝜌

𝑦
, 𝐵𝜌,𝛽 =

cos 𝛽 𝜙𝜌
𝑦

.

Locally (𝐴𝜌,𝛽, 𝐵𝜌,𝛽) coincide with the Nahm pole solutions, perhaps up to conjugation in g.
The main take-away is that the boundary data at 𝜕0𝑀 is fully determined by a choice of 𝑦-
independent two-form 𝜙𝜌 ∈ Ω2

𝑣 ,+(𝑈 , ad 𝐸) in a tubular neighbourhood 𝑈 of 𝜕0𝑀.

Moving on to the boundary component 𝜕𝐾𝑀, denote by 𝑉 = 𝜕𝐾𝑀 × [0, 𝜖]𝑅 a tubular neighbour-
hood. 𝑉 is the product of Σ𝐾 and the filled hemisphere 𝐻 2

𝜓 ,𝜗 × [0, 𝜖]𝑅, where the latter admits
global coordinates (𝜓 , 𝜗 , 𝑅). Wewish to impose that at leading order 𝑅−1 the behaviour of (𝐴, 𝐵)
is described completely by the knot singularity model solution. The only degree of freedom is
the choice of su(2) generators t𝑖 ∈ g at each point in 𝑉. However, except for the points at 𝜓 = 0
or 𝑅 = 0, every 𝑝 ∈ 𝑉 is also contained in the tubular neighbourhood 𝑈 of 𝜕0𝑀, where 𝜙𝜌 already
determines a triple (t𝑖)𝑖=1,2,3. Since the hemisphere at 𝑅 = 0 corresponds to a single point on
the original manifold and the line 𝜓 = 0 is of codimension two, the two-form 𝜙𝜌 ∈ Ω2

𝑣 ,+(𝑈 , ad 𝐸)
extends uniquely to all of 𝑉.

It remains to note that since 𝜃 ≠ 0, the two-form decomposes on 𝑉 into 𝜙𝜌 = (𝜙𝜌)1𝑒1 + 𝜑𝜌. This
splitting provides a natural distinction between 𝐻 and 𝐸 in the model solutions, by identifying
the (𝜙𝜌)1 component with the Cartan element 𝐻. Using this to replace the generators t𝑖 in the
knot singularity solutions by (𝜙𝜌)𝑖, i.e. pointwise by the image of the induced map 𝜌 ∶ su(2) →
g, determines a unique field configuration (𝐴𝜆,𝜃, 𝐵𝜆,𝜃) of order O(𝑅−1) on all of 𝑉.

In the more general situation with 𝜃 ≠ 𝜋/2 − 𝛽, the same discussion goes through with minor
modifications when identifying coordinates and field components over 𝑈 and 𝑉, respectively.
We can now state the definition of the regular Nahm pole boundary conditions.
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Definition 2.16 (Regular Nahm Pole Boundary Conditions with Knot Singularities). Assume 𝑣
approaches 𝜕0𝑀 at a constant incidence angle 𝛽 (≠ 𝜋/2) and has glancing angle 𝜃 (≠ 0) with Σ𝐾.
Let {𝜌𝑝 ∶ su(2) → g} be a smooth family of principal embeddings on a tubular neighbourhood
of the boundary and 𝜙𝜌, 𝜙𝜏𝜌 the associated self-dual two-forms. The Haydys-Witten pair (𝐴, 𝐵)
satisfies the regular Nahm pole boundary conditions at 𝜕𝑀, with knot singularity of weight
𝜆 ∈ Γ∨char along Σ𝐾, if for some 𝜖 > 0

(i) near 𝜕0𝑀: (𝐴, 𝐵) = (𝐴𝜌,𝛽 , 𝐵𝜌,𝛽 ) +O(𝑦−1+𝜖)

(ii) near 𝜕𝐾𝑀: (𝐴, 𝐵) = (𝐴𝜆,𝜃 , 𝐵𝜆,𝜃 ) +O(𝑅−1+𝜖)

and such that the leading orders are compatible at the corner 𝑅 = 𝑦 = 0. This means that in
spherical coordinates, where 𝑦 = 𝑅 cos 𝜓, the expansion is of product type (𝐴, 𝐵) = (𝐴𝜆,𝜃, 𝐵𝜆,𝜃)+
O(𝑅−1+𝜖 cos 𝜓−1+𝜖).

Remark. There is an analogous definition associated to arbitrary embeddings 𝜌 ∶ su(2) → g.
However, throughout this thesis we only consider the regular Nahm pole boundary conditions
and omit a discussion of the more general case.

2.6.4 Elliptic Theory of Nahm Pole Boundary Conditions

In this section, we summarzie some relevant analytic properties of the Haydys-Witten equa-
tions. The fundamental questions include under which conditions HW𝑣 , acting on appropri-
ate function spaces, is Fredholm and to analyze the regularity of solutions of HW𝑣 (𝐴, 𝐵) = 𝑓.
These properties are controlled by the fact that the Haydys-Witten and Kapustin-Witten oper-
ators are elliptic.

As is common for gauge theoretic equations, the Haydys-Witten and Kapustin-Witten equa-
tions on their own are not elliptic ‘on the nose’. But they become elliptic after choosing a
reference connection 𝐴0 and imposing additionally that the linearization of the gauge action
vanishes. Since ellipticity depends only on the principal symbol, we are free to add terms in
subleading orders of derivatives. In the context of Nahm pole boundary conditions it is conveni-
ent to include, in this way, the leading order term 𝐵NP that captures the Nahm pole behaviour
of 𝐵. The gauge fixing equation we use is

𝑑⋆𝐴0(𝐴 − 𝐴0) + 𝜎(𝐵NP, 𝐵 − 𝐵NP) = 0 . (2.12)

From now on we always assume that the Haydys-Witten (and Kapustin-Witten) equations in-
clude this equation.

On closed manifolds, standard elliptic theory provides answers to many of the relevant analytic
questions. On manifolds with boundary, however, these considerations are complicated by the
choice of boundary conditions. In particular, under the assumption of Nahm pole boundary
conditions with knot singularities, the associated differential operators are known to be ‘depth-
two incomplete iterated edge (iie) operators’. The study of such operators is part of the larger
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framework of geometric microlocal analysis and may be viewed as a variant of Melrose’s 𝑏-
calculus. We refer to [MW17, Sec. 8 & 9] for a very clear, if concise, account of the relevant ideas.
Also see [Maz91; MV13] for a more detailed discussion of much of the relevant background.

The results we discuss here, as well as most of the necessary background, have previously been
described in great detail in the context of the 𝜃 = 𝜋/2 version of the Kapustin-Witten equations
[MW14; MW17]. In these articles Mazzeo and Witten proved that the Nahm pole boundary
conditions with knot singularities amend the Kapustin-Witten operator to an elliptic system.
At the heart of the analysis lies the determination of formal rates of growth for homogeneous
solutions of the linearization of the Kapustin-Witten equations. As is usually the case, ellipticity
is accompanied by a regularity theorem, showing that these formal growth rates provide the
building blocks for an asymptotic expansion of solutions ofHW𝑣 (𝐴, 𝐵) = 𝑓 near the boundaries
of [𝑀; Σ𝐾].

In this context, regularity is described in terms of polyhomogeneous functions, which are
defined by the existence of asymptotic expansions with respect to scale functions of the form
𝑦𝛼(log 𝑦)𝑘. To make this more precise, let us call Δ ⊂ ℂ × ℕ an indicial set if it is a countable
subset that is ‘bounded from the left’ inℂ and contains only ‘finite towers’ inℕ. In other words,
for any 𝛼0 ∈ ℝ, there are only finitely many elements (𝛼, 𝑘) ∈ Δ with Re 𝛼 ≤ 𝛼0 and if (𝛼, 𝑘) ∈ Δ
then so is (𝛼, 𝑘 − 1). A function 𝑓 is polyhomogeneous at a submanifold {𝑦 = 0} if there is
an indicial set Δ such that 𝑓 ∼ ∑(𝛼,𝑘)∈Δ 𝑓𝛼,𝑘 𝑦𝛼(log 𝑦)𝑘 as 𝑦 → 0, where the functions 𝑓𝛼,𝑘 are
independent of 𝑦.

Theorem 2.17 (Elliptic Regularity, cf. [MW14, Prop. 5.9], [MW17, Thm. 9.6]). The Haydys-
Witten and Kapustin-Witten operators, together with 𝛽-twisted Nahm pole boundary conditions
with knot singularities, are elliptic iie operators. Assume that (𝐴, 𝐵) is a solution of the Haydys-
Witten equations that satisfies the 𝛽-twisted Nahm pole boundary conditions with 𝜃-twisted knot
singularities. Denote by 𝐴NP and 𝐵NP the leading terms of (𝐴, 𝐵) at the boundary, choose a ref-
erence connection 𝐴0 = 𝐴NP + 𝜔 where 𝜔 is a connection on the restriction of 𝐸 to the boundary,
and write 𝐴 = 𝐴NP + 𝜔 + 𝑎 and 𝐵 = 𝐵NP + 𝑏. Then 𝑎 and 𝑏 are polyhomogeneous on [𝑀; 𝐾], i.e.
there are asymptotic expansions

𝑎 ∼ ∑(𝛼,𝑘)∈Δ0
𝑎𝛼,𝑘 𝑦𝛼(log 𝑦)𝑘 , 𝑏 ∼ ∑(𝛼,𝑘)∈Δ0

𝑏𝛼,𝑘 𝑦𝛼(log 𝑦)𝑘 (𝑦 → 0)

𝑎 ∼ ∑(𝛽,𝑚)∈Δ𝐾
𝑎𝛽,𝑚 𝑅𝛽(log𝑅)𝑚 , 𝑏 ∼ ∑(𝛽,𝑚)∈Δ𝐾

𝑏𝛽,𝑚 𝑅𝛽(log𝑅)𝑚 (𝑅 → 0)

and corresponding product-type expansions near the corner 𝑦 = 𝑅 = 0, that are compatible with
the fact that 𝑦 = 𝑅 cos 𝜓. Moreover, the indicial sets Δ0 and Δ𝐾 are bounded from the left by 𝛼 ≥ 1
and 𝛽 ≥ 0, respectively.

A complete proof for the case with 𝛽 = 0 (equivalently 𝜃 = 𝜋/2) was provided by Mazzeo
and Witten in [MW14; MW17]. The proof for other values of 𝛽 is completely analogous, so we
refrain from reproducing the full details here. Instead, we only quote themain line of arguments
and concentrate on the calculations of formal growth rates to determine the indicial sets Δ0 and
Δ𝐾.
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Consider the Haydys-Witten operator on the stratified space (𝑀5 ⧵ 𝜕𝑀5) ⊔ (𝜕𝑀5 ⧵ Σ𝐾) ⊔ Σ𝐾
as a depth 2 iie operator of order 1. This means that in a neighbourhood of each stratum its
linearization takes a certain iterative form, that combines a differential operator on the stratum
with an iie operator (of smaller depth) on the link. For example, in coordinates (𝑠, 𝑡 , 𝑅, 𝜓 , 𝜗) in a
neighbourhood of a point on the lowest (depth 2) stratum Σ𝐾, the linearization must look like

𝐿 = (𝐿𝑠𝜕𝑠 + 𝐿𝑡𝜕𝑡) + 𝐿𝑅𝜕𝑅 + 1
𝑅
(𝐿𝜓𝜕𝜓 + 𝐿𝜗𝜕𝜗 +

1
cos 𝜓

𝐿0) ,

where each 𝐿𝑖 is a smooth (or polyhomogeneous) endomorphism of g. Note that for 𝜓 → 𝜋/2
(i.e. cos 𝜓 → 0) one approaches points in the middle (depth 1) stratum 𝜕𝑀5 ⧵ Σ𝐾. The operator
that is multiplied with 𝑅−1 is itself an iie operator of depth 1, exemplifying the iterative nature
of the definition. Linearizing the Haydys-Witten operator around (𝐴NP, 𝐵NP) indeed yields an
operator of that form.

The definition of full ellipticity as iie operator then involves three properties. The first property
is invertibility of the ‘iie symbol’, which is a suitable analogue of the principal symbol ofHW𝑣 ,
while the second and third property are the iterative invertibility of certain model operators,
called ‘normal operators’, at points on strata of increasing depth.

To determine the iie symbol, one considers the non-singular operator 𝑅 cos 𝜓𝐿 and replaces
derivatives by covectors according to a rule that takes into account the depth of the associated
stratum. In the specific case above, one replaces 𝑅 cos 𝜓𝜕𝑠 and 𝑅 cos 𝜓𝜕𝑡 by −𝑖𝜉1 and −𝑖𝜉2, re-
spectively, while cos 𝜓𝜕𝜓 and cos 𝜓𝜕𝜗 are similarly replaced by −𝑖𝜉3 and −𝑖𝜉4, and subleading
orders of differentiation (here 𝐿0 of order 0) are discarded. Invertibility of the iie symbol of
the Haydys-Witten equations immediately carries over from the same result for the Kapustin-
Witten equations.

The two normal operators are determined as follows. A tubular neighborhood in 𝑀5 of either
of the two strata 𝑆 = 𝜕𝑀5 ⧵Σ𝐾 or 𝑆 = Σ𝐾 is diffeomorphic to a bundle of cones 𝐶(𝑍), where 𝑍 is
either a point or the hemisphere 𝐻 2, respectively. For any 𝑝 ∈ 𝑆 the normal operator 𝑁𝑝(𝐿) is
defined as the scale- and translation-invariant operator on 𝑇𝑝𝑆×𝐶(𝑍), that is induced by freezing
the coefficient functions 𝐿𝑖 to their values at the point 𝑝. In general, the properties of 𝑁𝑝(𝐿)
may depend on 𝑝 ∈ 𝑆 as a parameter, but this is fortunately not the case in our situation.

Invertibility of 𝑁𝑝(𝐿), acting on appropriately defined ‘iterated edge Sobolev spaces’ on the
blowup [𝑀; 𝑆], depends on the formal rates of growth for solutions of 𝐿𝑢 = 0. These rates are
called the indicial roots of 𝑁𝑝(𝐿) and are determined by solving the condition 𝑁𝑝(𝐿)(𝜌𝜆𝑢) =
O(𝜌𝜆) for 𝜆, where 𝜌 denotes a boundary defining function of the (blown-up) stratum under
consideration. The key property we need to show is that, under the assumption of regular
Nahm pole boundary conditions, there are no indicial roots in an interval (𝜆, 𝜆) that contains -
1. Once this is established,𝑁𝑝(𝐿) is invertible on function spaces associated to the scale function
𝜌𝜇 for any weight 𝜇 ∈ (−1, 𝜆 ). As a consequence, the Haydys-Witten operator is an elliptic
iie operator and the indicial sets Δ0 and Δ𝐾 in the polyhomogeneous expansion of 𝑎 and 𝑏 are
bounded from the left by 𝜆.
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As it turns out, the relevant indicial roots 𝜆̲ and 𝜆 are independent of the twisting angle 𝛽.
Abstractly, the reason for this is that the Haydys-Witten equations with 𝛽-twisted Nahm pole
boundary conditions are locally equivalent to Haydys-Witten equations with untwisted Nahm
pole boundary conditions, but where instead the corrections 𝑎 and 𝑏 are rotated into each other
by an angle −𝛽. In what follows, this statement is explained in full detail for the indicial equa-
tions at the depth 1 stratum 𝜕𝑀5 ⧵ Σ𝐾. Subsequently, we also comment on the indicial roots of
the depth 2 stratum Σ𝐾, where indicial roots are known only implicitly.

Let 𝑝 ∈ 𝜕𝑀5 ⧵ Σ𝐾, in which case the normal operator 𝑁𝑝(𝐿) acts on pairs of functions (𝑎, 𝑏)
over 𝑇𝑝(𝜕𝑀5 ⧵ Σ𝐾) × 𝐶({pt.}) ≃ ℝ4 × ℝ+𝑦 . Assume that (𝑎, 𝑏) are ℝ4-invariant and, moreover,
that they are of the form 𝑎 = 𝑦𝜆𝑎0 and 𝑏 = 𝑦𝜆𝑏0 for some 𝑦-independent, g-valued differential
forms 𝑎0, 𝑏0. Since the Nahm pole terms are proportional to 𝑦−1 (and their contributions at
order 𝑦−2 vanish by construction), the leading order of 𝑁𝑝(𝐿)(𝑎, 𝑏) is 𝑦𝜆−1. Terms at this order
arise from the action of 𝜕𝑦, as well as from commutators with 𝐴NP or 𝐵NP. The condition
𝑁𝑝(𝐿)(𝑦𝜆𝑎0, 𝑦𝜆𝑏0) = O(𝑦𝜆) then corresponds to equations that arise from setting to zero the
terms proportional to 𝑦𝜆−1. These are to be interpreted as equations for 𝜆 and determine the
indicial roots.

More concretely, since the indicial equations invoke ℝ4-invariance, it is clear from Proposi-
tion 2.15 that the indicial equations are equivalent to the linearization of the 𝛽-twisted octo-
nionic Nahm equations around (𝐴NP, 𝐵NP). In the current situation the leading order terms are
given by the model solutions 𝐴NP

𝑖 = 𝑦−1 sin 𝛽 t𝜏 (𝑖) and 𝐵NP𝑖 = 𝑦−1 sin 𝛽 t𝑖. Plugging 𝐴NP + 𝑦𝜆𝑎
and 𝐵NP+𝑦𝜆𝑏 into these equations and extracting the terms at order 𝑦𝜆−1 leads to the following
set of indicial equations

𝜆𝑏𝑖 + sin 𝛽 [t𝜏 (𝑖), 𝑎𝑠] − cos 𝛽 [t𝑖, 𝑎𝑦]

+ 𝜖𝑖𝑗𝑘 (cos2 𝛽 [t𝑗, 𝑏𝑘] + sin cos 𝛽 [t𝑗, 𝑎𝑘] − sin cos 𝛽 [t𝜏 (𝑗), 𝑎𝑘] + sin2 𝛽 [t𝜏 (𝑗), 𝑏𝑘]) = 0 (2.13)

𝜆𝑎𝑖 − cos 𝛽 [t𝑖, 𝑎𝑠] − sin 𝛽 [t𝜏 (𝑖), 𝑎𝑦]

− 𝜖𝑖𝑗𝑘 (cos2 𝛽 [t𝑗, 𝑎𝑘] − sin cos 𝛽 [t𝑗, 𝑏𝑘] + sin cos 𝛽 [t𝜏 (𝑗), 𝑏𝑘] + sin2 𝛽 [t𝜏 (𝑗), 𝑎𝑘]) = 0 (2.14)

𝜆𝑎𝑠 − cos 𝛽 [t𝑖, 𝑎𝑖] + sin 𝛽 [t𝜏 (𝑖), 𝑏𝑖] = 0 (2.15)

𝜆𝑎𝑦 + sin 𝛽 [t𝜏 (𝑖), 𝑎𝑖] + cos 𝛽 [t𝑖, 𝑏𝑖] = 0 (2.16)

The first three equations arise from the 𝛽-twisted octonionic Nahm equations (2.9), while the
last is the gauge fixing condition (2.12).

When 𝛽 = 0, and thus 𝜃 = 𝜋/2, the equations decouple into two quaternionic Nahm-like
equations for (𝑎𝑦 , �⃗� = (𝑏1, 𝑏2, 𝑏3)) and (𝑎𝑠 , 𝑎 = (𝑎1, 𝑎2, 𝑎3)), respectively. Up to a reinterpretation
of 𝑎𝑠, these are the indicial equations for the 𝜃 = 𝜋/2 version of the Kapustin-Witten equations
that were analyzed by Mazzeo and Witten. As will be explained momentarily, an analogous
decoupling also exists for 𝛽 ≠ 0, and this will ultimately lead to the conclusion that the indicial
roots at 𝜕𝑀5 ⧵ Σ𝐾 do not depend on 𝛽 at all. In the upcoming discussion we closely follow the
exposition for the case 𝛽 = 0 in [MW14, Sec. 2.3].
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The Lie algebra su(2) acts on the fields in (2.13)-(2.16) in various ways and this can be exploited
to simplify the equations. Below, we denote by 𝑉𝑗 the 2𝑗 + 1 dimensional representations of
su(2), where 𝑗 is a non-negative half-integer, commonly called spin.

First, consider the subalgebra su(2)t ⊆ g that is spanned by (t𝑖)𝑖=1,2,3. It is the image of 𝜌 ∶
su(2) → g and depends on the choice of 𝜙𝜌 in the Nahm pole boundary condition. Since we
are only concerned with regular Nahm pole boundary conditions, 𝜌 is a principal embedding
and su(2)t is a regular subalgebra. Under the adjoint action of su(2)t, the Lie algebra g then
decomposes8 into a direct sum of non-zero integer spin representations 𝑉𝑗. Observe that none
of the terms in the indicial equations mixes components with values in distinct 𝑉𝑗’s (the action
of t𝑖 preserves 𝑉𝑗 by definition). This means that in solving the equations we can from now on

assume that 𝑎𝑠, 𝑎𝑦, 𝑎 and �⃗� all take values in the same representation 𝑉𝑗.

Second, there is an su(2) action on the vector degrees of freedom of 𝑎 and �⃗�, which we denote
su(2)s with generators (s𝑖)𝑖=1,2,3. For this, recall from Section 2.4.5 that in the quaternionic
Nahm equations we think of the vectors 𝑎 and �⃗� as elements of g ⊗ Imℍ. The imaginary
quaternions Imℍ naturally form an su(2) representation, induced by acting with commutators
(= cross product) on themselves. Slightly abusing notation, this action is represented on ℝ3 ≃
Imℍ by multiplication with the 3 × 3-matrices (s𝑖)𝑗𝑘 = −𝜖𝑖𝑗𝑘.

If 𝛽 ≠ 0, we need to take into account that the two quaternionic parts combine into (𝑎𝑦, �⃗�, 𝑎𝑠, 𝑎) ∈
g ⊗ 𝕆. There is an analogous su(2)s action on each of the vector space summands of 𝕆 ≃ ℝ ⊕
Imℍ⊕ℝ⊕Imℍ, which is again induced by taking commutators with elements of the first Imℍ-
factor (and subsequently discarding any terms that land outside the summand in question).
Specifically, we define su(2)s by the action of its generators (s𝑖)𝑖=1,2,3 as follows. The action on
𝑎𝑦 and 𝑎𝑠 is trivial, i.e. generators are represented by multiplication with s𝑖 = 0. Meanwhile,

the action on �⃗� is represented by the 3 × 3 matrices (s𝑖)𝑗𝑘 = −𝜖𝑖𝑗𝑘 as in the quaternionic case.
The action on 𝑎 is similar but comes with an additional subtlety, since octonionic multiplication
introduces an additional sign in the action of Imℍ. In this case the (octonionic) action of the
imaginary quaternions is represented by the 3 × 3-matrices (𝐴𝑖)𝑗𝑘 = +𝜖𝑖𝑗𝑘, which satisfy the
commutation relations [𝐴𝑖, 𝐴𝑗] = −𝜖𝑖𝑗𝑘𝐴𝑘. This only provides an su(2)s representation if we
set s𝑖 = 𝐴𝜏 (𝑖) with an additional anti-cyclic permutation 𝜏 = (132). In conclusion, 𝑎𝑠 and 𝑎𝑦
take values in the trivial representation 𝑉0, while 𝑎 and �⃗� are elements of three-dimensional
representations 𝑉1, where the generators s𝑖 act as described above.

Third, the indicial equations are invariant under su(2)f, generated by the action of f𝑖 ∶= t𝑖 ⊗
1+1⊗ s𝑖 on g⊗𝕆. If the fields take values in 𝑉𝑗 ⊂ g, they decompose under the action of su(2)f
as follows.

𝑎𝑠, 𝑎𝑦 ∈ 𝑉𝑗 ⊗ 𝑉0 = 𝑉 0
𝑗

𝑎, �⃗� ∈ 𝑉𝑗 ⊗ 𝑉1 = ⨁
𝜂∈{−,0,}

𝑉 𝜂
𝑗

8For a generic su(2)-subalgebra this decomposition exists only for the complexification gℂ, in which case the
decomposition may also involve half-integer spins.
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Here we have introduced 𝑉 𝜂
𝑗 ≃ 𝑉𝑗+𝜂 to denote representations with total spin 𝑗 + 𝜂. It’s worth

pointing out that for fixed 𝑗, according to the first line, the components 𝑎𝑠 and 𝑎𝑦 can only be
non-zero when 𝜂 = 0.

Now, to better understand the indicial equations, consider the ‘spin-spin’ operator

J ∶= t ⋅ s =
3
∑
𝑖=1

t𝑖 ⊗ s𝑖 .

This operator yields the expressions in (2.13) and (2.14) that contain 𝜖𝑖𝑗𝑘. Indeed, denoting

𝑎𝜏 = (𝑎1, 𝑎3, 𝑎2) and �⃗�𝜏 = (𝑏1, 𝑏3, 𝑏2), the action of J is given by

( J 𝑎 )𝑖 = −𝜖𝑖𝑗𝑘[𝑡𝜏 (𝑗), 𝑎𝑘] ( J �⃗� )𝑖 = 𝜖𝑖𝑗𝑘[𝑡𝑗, 𝑏𝑘]

( J 𝑎 𝜏 )𝜏 (𝑖) = 𝜖𝑖𝑗𝑘[𝑡𝑗, 𝑎𝑘] ( J �⃗� 𝜏 )𝜏 (𝑖) = −𝜖𝑖𝑗𝑘[𝑡𝜏 (𝑗), 𝑏𝑘]

The action of J on elements of 𝑉 𝜂
𝑗 is determined by the quadratic Casimir operators of the

three su(2) actions. In general, the quadratic Casimir operator of su(2) with basis c𝑖 is defined
by 𝐶2 = −∑3

𝑖=1 c
2
𝑖 . On a spin 𝐽 representation it takes the constant value 𝐶2 = 𝐽(𝐽 + 1). In

our case there are three such operators 𝐶2t , 𝐶2s and 𝐶2f , associated to the three su(2) actions on
g⊗𝕆. The values 𝐶2t = 𝑗(𝑗 + 1) and 𝐶2s = 2 are fixed, while 𝐶2f depends on 𝑉 𝜂

𝑗 and takes values
(𝑗 + 𝜂)(𝑗 + 𝜂 + 1). The relevance of this is that the spin-spin operator is equivalent to

J = −1
2
(𝐶2f − 𝐶2t − 𝐶2s ) ,

such that 𝑉 𝜂
𝑗 , 𝜂 = −1, 0, 1, are eigenspaces of J with eigenvalues 𝑗 + 1, 1, and −𝑗, respectively.

Note that orientation reversal via 𝜏 does not preserve the total spin: if 𝑎 ∈ 𝑉 𝜂
𝑗 then 𝑎𝜏 does

not have definite spin with respect to su(2)f, but is instead given by some non-trivial linear
combination in ⊕𝜂𝑉

𝜂
𝑗 . Since the indicial equations (2.13)-(2.16) contain contributions from 𝑎,

𝑎𝜏, �⃗�, and �⃗�𝜏, its not possible to restrict the equations to 𝑉 𝜂
𝑗 . However, by taking suitable linear

combinations of (2.13) and (2.14), one can rewrite these as a set of decoupled equations in
sin 𝛽 𝑎 + cos 𝛽 �⃗� and cos 𝛽 𝑎 − sin 𝛽 �⃗�.

On the one hand, if we restrict to 𝜂 ≠ 0, the terms containing 𝑎𝑠 and 𝑎𝑦 vanish. In this case the
indicial equations are equivalent to

𝜆 (sin 𝛽 𝑎 + cos 𝛽 �⃗�) + J (sin 𝛽 𝑎 + cos 𝛽 �⃗�) = 0

𝜆(cos 𝛽 𝑎 𝜏 − sin 𝛽 �⃗� 𝜏) − J (cos 𝛽 𝑎 𝜏 − sin 𝛽 �⃗� 𝜏) = 0

On the other hand, if 𝜂 = 0, we can replace the terms containing 𝑎𝑠 and 𝑎𝑦 by utilizing that
equations (2.15) and (2.16) are solved by

𝑎𝑖 =
𝜆

𝑗(𝑗 + 1)
(cos 𝛽 [t𝑖, 𝑎𝑠] + sin 𝛽 [t𝜏 (𝑖), 𝑎𝑦])

𝑏𝜏 (𝑖) =
𝜆

𝑗(𝑗 + 1)
(− sin 𝛽 [t𝑖, 𝑎𝑠] + cos 𝛽[t𝜏 (𝑖), 𝑎𝑦])
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Solving for [t, 𝑎𝑦] and [t, 𝑎𝑠] and plugging it into the linear combinations of (2.13) and (2.14)
yields

(𝜆 −
𝑗(𝑗 + 1)

𝜆
) (sin 𝛽 𝑎 + cos 𝛽 �⃗�) + J (sin 𝛽 𝑎 + cos 𝛽 �⃗�) = 0

(𝜆 −
𝑗(𝑗 + 1)

𝜆
) (cos 𝛽 𝑎 𝜏 − sin 𝛽 �⃗� 𝜏) − J (cos 𝛽 𝑎 𝜏 − sin 𝛽 �⃗� 𝜏) = 0

In any case, the indicial equations reduce to an eigenvalue problem for the spin-spin operator
J. Using the fact that 𝑉 𝜂

𝑗 are eigenspaces of J, where the eigenvalue is determined by Casimir
operators, leads to the following table of indicial roots:

(sin 𝛽 𝑎 + cos 𝛽 �⃗�) ∈ 𝑉 𝜂
𝑗 ∶ 𝜆 = {

𝑗 𝜂 = 1
−(𝑗 + 1), 𝑗 𝜂 = 0
−(𝑗 + 1) 𝜂 = −1

(cos 𝛽 𝑎 − sin 𝛽 �⃗�)𝜏 ∈ 𝑉 𝜂
𝑗 ∶ 𝜆 = {

−𝑗 𝜂 = 1
𝑗 + 1, −𝑗 𝜂 = 0
𝑗 + 1 𝜂 = −1

This concludes the evaluation of indicial roots at points in the depth 1 stratum 𝜕𝑀 ⧵ Σ𝐾. Cru-
cially, the list of indicial roots coincides with the one for the 𝜋/2-version of the Kapustin-
Witten equations determined in [MW14]. Note, in particular, that there are no indicial roots in
[𝜆, 𝜆] = [−2, 1], such that the indicial set Δ0 is bounded from the left by 1.

Moving on to a short descrpition of the depth 2 stratum, let 𝑝 ∈ Σ𝐾. In this case the normal op-
erator 𝑁𝑝(𝐿) acts on functions over 𝑇𝑝Σ𝐾 × 𝐶(𝐻 2) ≃ ℝ2𝑠,𝑡 × [0,∞)𝑅 ×𝐻 2

𝜓 ,𝜗. The indicial equations

now arise from considering ℝ2𝑠,𝑡-invariant functions of the form (𝑅𝜆𝑎, 𝑅𝜆𝑏), where 𝑎, 𝑏 are inde-
pendent of 𝑅. Equivalently, according to Proposition 2.14, these are determined by plugging in
𝐴 = 𝐴𝜃,𝜆+𝑅𝜆𝑎 and 𝐵𝜃,𝜆+𝑅𝜆𝑏 into the 𝜃-TEBE and extracting the terms at leading order 𝑅𝜆−1.

The evaluation of these equations is somewhat more involved than before. The indicial roots
of 𝜃-twisted knot singularities near 𝜕𝐾𝑀 were determined for the 𝜃-Kapustin-Witten equations
by Dimakis.

Lemma 2.18 ([Dim22a, Lemma 3.5]). If 𝐺 = 𝑆𝑈 (2) and (𝐴, 𝜙) ∼ (𝐴𝜆,𝜃, 𝜙𝜆,𝜃) as 𝑅 → 0, then the
set of indicial roots at 𝜓 = 𝜋/2 is {−1, 2} in accordance with the Nahm pole boundary condition,
at 𝜓 = 0 is {−𝜆 − 1, 0, 0, 𝜆 + 1}, and there are no indicial roots in the interval (−2, 0) at 𝑅 = 0.

Importantly, the indicial roots at 𝜓 = 𝜋/2 are compatible with the indicial roots at the depth 1
stratum, such that the depth 2 normal operator is iteratively invertible (roughly: it is invertible
on certain rescaled versions of the function spaces on which the depth 1 normal operator is
invertible). We conclude that the Haydys-Witten operator is an elliptic iie operator, since up to
a reinterpretation of field components its normal operator at glancing angle 𝜃 coincides with the
normal operator of the 𝜃-Kapustin-Witten operator. In particular, the indicial set Δ𝐾 is bounded
from the left by 𝜆 = 0.
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2.7 Haydys-Witten Homology

We now have all ingredients at hand to qualitatively define Haydys-Witten Homology, which
assigns a Floer-type instanton homology 𝐻𝐹(𝑊 4) to any Riemannian four-manifold. The con-
struction is a standard application of the ideas of Floer theory and is summarized in Sec-
tion 2.7.1. In fact, if 𝑊 4 admits a non-vanishing unit vector field 𝑤, there is a one-parameter
family of such homology groups 𝐻𝐹𝜃 (𝑊 4), 𝜃 ∈ [0, 𝜋]. Moreover, the construction is functorial:
Any cobordism (𝑀5, 𝑣), where 𝑣 is a non-vanishing vector field on 𝑀5, provides a linear map
between the homology theories associated to its boundaries. In particular, there are natural
linear maps between homology groups for different values of 𝜃.

It’s to a large extend unclear under what conditions Haydys-Witten homology has a fully rigor-
ous meaning. Currently the most important missing parts are compactness and gluing results
for the moduli space of Kapustin-Witten and Haydys-Witten solutions. There have been some
important advances in this direction, mostly due to Taubes [Tau13; Tau17b; Tau18; Tau19;
Tau21], but also see [Tan19; He19].

We conclude this section with a short explanation of Witten’s proposal regarding Khovanov
homology from the perspective of Haydys-Witten Floer theory in Section 2.7.2. This has attrac-
ted a lot of attention and is also the topic that lies at the heart of this thesis. The fact that there
is a relation to an already existing homology theory provides an important testing ground for
the general ideas of Haydys-Witten Floer theory and hints at the information that is measured
by the homology. Conversely, one may hope to ‘read off’ properties of Khovanov homologies
on general three-manifolds from general properties of Floer-like theories.

2.7.1 An Instanton Floer Homology for the Haydys-Witten Equations

The way things have been set up, it is convenient to explain the construction of Haydys-Witten
homology from the perspective of the five-dimensional Haydys-Witten geometry. Let 𝑀5 be
a non-compact Riemannian manifold with corners, 𝐺 a simply connected compact Lie group,
and 𝐸 → 𝑀5 a principal 𝐺-bundle. Assume 𝑀5 is equipped with a non-vanishing unit vector
field 𝑣 that approaches ends at constant angles. The standard example to keep in mind is𝑀5 =
ℝ𝑠 × 𝑋 3 × ℝ+𝑦 with 𝑣 = sin 𝜃𝜕𝑠 + cos 𝜃𝜕𝑦. Note that𝑀5 may have ‘corners at infinity’, commonly
called poly-cylindrical ends, that separate non-compact ends at which 𝑣 has different incidence
angles. If we wish to include a ’t Hooft operator supported on some embedded surface Σ𝐾 ⊂ 𝜕𝑀
in one of the boundary components, then we implicitly take𝑀5 to be the blowup along Σ𝐾 and
label the newly introduced boundary component 𝜕𝐾𝑀 with a magnetic charge 𝜆 ∈ Γ∨char.

Denote by B a complete collection of boundary conditions for Haydys-Witten fields (𝐴, 𝐵) on
𝑀5. We think of this as a set that contains for each end of 𝑀5 the information of the type of
boundary condition and any choices associated to it. For example, this might be the choice of
𝛽-twisted Nahm pole boundary conditions, which involves boundary data 𝜙𝜌 ∈ Ω2

𝑣 ,+([0, 𝜖)𝑦 ×
𝑊 4). Similarly, if the boundary arises from the blowup of a surface Σ𝐾 and is labeled with a
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non-zero charge 𝜆 ∈ Γ∨char, then B associates the description of a knot singularity within a
Nahm pole boundary conditions. At non-compact ends we generally demand that the fields
approach ℝ-invariant solutions, soB specifies a choice of 𝜃-Kapustin-Witten solution (or Vafa-
Witten solution if 𝜃 = 0). We writeMHW(𝑀5, 𝑣 ; B) for the space of Haydys-Witten solutions
that satisfy the boundary conditions determined byB, modulo gauge transformations that act
trivially at boundaries and non-compact ends.

Let us now consider five-manifolds of the form𝑀5 = ℝ𝑠×𝑊 4, where𝑊 4 is a smooth Riemannian
manifold with corners, not necessarily compact. 𝑀5 always admits the non-vanishing vector
field 𝑣 = 𝜕𝑠, which approaches the ends at 𝑠 = ±∞ with incidence angle 𝜃 = 0. Whenever
𝑊 4 admits a non-vanishing unit vector field 𝑤, there is a natural one-parameter family of non-
vanishing vector fields 𝑣 = cos 𝜃𝜕𝑠 + sin 𝜃𝑤, with 𝜃 ∈ [0, 𝜋], that interpolates between 𝜕𝑠 and 𝑤.
There are, of course, many other possible choices of 𝑣 on ℝ𝑠 × 𝑊 4; in particular, 𝜃 could vary
along ℝ𝑠, such that the angles at 𝑠 = ±∞ need not coincide. We will come back to this later,
in the more general context of cobordisms (𝑀5, 𝑣) between four-manifolds with associated
incidence angles (𝑊 4, 𝜃) and (�̃� 4, ̃𝜃). For now consider the cylinder 𝑀5 = ℝ𝑠 × 𝑊 4 and fix
𝑣 = cos 𝜃𝜕𝑠 + sin 𝜃𝑤 for some constant 𝜃.

The boundary conditions at 𝑠 → ±∞ are classified by solutions of the 𝜃-Kapustin-Witten equa-
tions on 𝑊 4. Denote the moduli space of Kapustin-Witten solutions modulo gauge transform-
ations byMKW(𝑊 4, 𝜃). Given 𝑥, 𝑥′ ∈ MKW(𝑊 4, 𝜃), a complete set of boundary conditions on
𝑀5 = ℝ𝑠×𝑊 4 is given by additionally specifying boundary conditions for each of the remaining
ends. Let us denote this by

B = b ⊔ { lim
𝑠→−∞

(𝐴, 𝐵) = 𝑥 } ⊔ { lim
𝑠→+∞

(𝐴, 𝐵) = 𝑥′ } .

The choices collected in b have to be be compatible with 𝑥 and 𝑥′ at corners of𝑀5. This means
that b has to be chosen in such a way that it interpolates between the boundary conditions that
𝑥 and 𝑥′ satisfy. One can think of this as a collection of four-dimensional instantons, one for
each end of 𝑀5.

A simple, yet non-trivial example of such a boundary instanton arises for𝑀5 = ℝ𝑠 ×𝑋 3 ×ℝ+𝑦 at
𝑦 → ∞. First note that a natural boundary condition for a Kapustin-Witten solution 𝑥 = (𝐴, 𝜙)
on 𝑋 3 × ℝ+𝑦 is that it approaches a flat connection (𝐴𝜎 , 0) as 𝑦 → ∞, specified by a choice of a
group homomorphism 𝜎 ∶ 𝜋1(𝑋 3) → 𝐺. Hence, assume that 𝑥, 𝑥′ ∈ MKW(𝑋 3×ℝ+𝑦 , 𝜃) approach
flat connections associated to 𝜎 and 𝜎 ′, respectively. A consistent boundary condition at the
non-compact end 𝑦 → ∞ of 𝑀5 = ℝ𝑠 × 𝑋 3 × ℝ+𝑦 must then be a solution of 𝛽-Kapustin-Witten
equations on ℝ𝑠 × 𝑋 3 that interpolates between the two flat connections 𝐴𝜎 and 𝐴𝜎 ′ . In the
special case where 𝛽 = 0 and 𝜙 = 0, this is equivalent to a choice of self-dual connection, i.e. a
Donaldson-Floer instanton, on the four-manifold ℝ𝑠 × 𝑋 3 that sits at 𝑦 = ∞.

Let us now define the Morse-Smale-Witten complex that underlies Haydys-Witten homology.
For simplicity assume that there is only a finite set9 of Kapustin-Witten solutions on 𝑊 4 and
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consider the free abelian group generated by these solutions:

𝐶𝐹𝜃 = ⨁
𝑥∈MKW(𝑊 4,𝜃)

ℤ [𝑥] .

Note that, by definition, elements of 𝐶𝐹𝜃 are stationary solutions of the Haydys-Witten equa-
tions – or equivalently, critical points of an appropriate Kapustin-Witten functional. This co-
incides with the usual construction of the Morse-Smale-Witten complex in Morse theory.

The Morse-Smale-Witten complex is equipped with a differential 𝑑𝑣 that counts Haydys-Witten
instantons that interpolate between 𝑥 and 𝑦. To make this precise, consider the moduli space
of Haydys-Witten solutions where the fields (𝐴, 𝐵) approach 𝑥 and 𝑦 as 𝑠 → ±∞, respectively,
and moreover satisfy some fixed boundary conditions b at the remaining boundaries and non-
compact ends. This moduli space always admits an ℝ-action by translation 𝑠 ↦ 𝑠 + 𝑐 along
the flow direction ℝ𝑠, which maps one solution to an equivalent one that differs only by the
parametrization of ℝ𝑠. To count instantons we thus consider the quotient of the moduli space
by this action. Also, we need to take into account that several instantons at the boundary might
provide a consistent choice of boundary conditions b. As a result Haydys-Witten instantons
that interpolate from 𝑥 to 𝑦 are classified by

M(𝑥, 𝑦) ∶= ⋃
b

MHW ( ℝ𝑠 × 𝑊 4, 𝑣 ; B = b ⊔ { lim
𝑠→−∞

(𝐴, 𝐵) = 𝑥 } ⊔ { lim
𝑠→+∞

(𝐴, 𝐵) = 𝑦 })/ℝ .

On grounds of general properties of elliptic differential operators, this is expected to be a
smooth oriented manifold.

Note that the boundary conditions b are sometimes classified by an analogous moduli space of
instanton solutions in one dimension less. The disjoint union of possible boundary conditions
then is equivalent to a product of smooth manifolds. For example, in the context of boundary
instantons at 𝑦 = ∞ on the five-manifold ℝ𝑠 × 𝑋 3 × ℝ+𝑦 , the moduli space is of the form

M(𝑥, 𝑥′) = MHW ( lim
𝑠→±∞

(𝐴, 𝐵) = {
𝑥, lim𝑦→∞ 𝑥 = 𝜎
𝑥′, lim𝑦→∞ 𝑥′ = 𝜎 ′

) ×Masd(𝜎 , 𝜎 ′) ,

whereMasd(𝜎 , 𝜎 ′) is the moduli space of anti-self-dual connections on ℝ𝑠 ×𝑋 3 that interpolate
between 𝐴𝜎 and 𝐴𝜎 ′ .

In the definition of 𝑑𝑣 we rely on the dimension of M(𝑥, 𝑦). In Morse theory, i.e. on finite
dimensional manifolds, the Morse-Smale-Witten complex carries a natural ℤ-grading by the
Morse index, defined by the number of negative eigenvalues of the Hessian at a given critical
point. Since this determines the number of unstable flow directions in the vicinity of a critical
point, the difference between the index of distinct critical points determines the dimension of
the moduli space of flows M(𝑥, 𝑦). In the infinite dimensional setting the Morse index does

9This is equivalent to the statement that the moduli space is a compact manifold of dimension zero, which is
something one would ultimately like to prove.
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not make sense; the linearization of the Kapustin-Witten operator typically has infinitely many
negative eigenvalues10. Observe, however, that the difference of Morse indices only depends
on the relative change of negative eigenvalues along a flow line. This is known as the spectral
flow of an operator and has an analogue in Floer theory. Thus, as is common in Floer theory,
we define a relative index 𝜇(𝑥, 𝑦) for any pair of generators 𝑥, 𝑦 ∈ MKW(𝑊 4, 𝜃), by the spectral
flow of the Kapustin-Witten differential operator along a Haydys-Witten instanton. This, in
turn, coincides with the index of the Haydys-Witten differential operator when it acts on fields
that are subject to the complete set of boundary conditions B.

𝜇(𝑥, 𝑦) ∶= indHW𝑣 |B

Themoduli space of Haydys-Witten instantonsM(𝑥, 𝑦) is expected to have dimension 𝜇(𝑥, 𝑦)−
1. Notably, it is zero-dimensional whenever 𝜇(𝑥, 𝑦) = 1, in which case we denote by #M(𝑥, 𝑦)
the signed count of its (oriented) elements.

The Floer differential is the linear map 𝐶𝐹𝜃 → 𝐶𝐹𝜃 defined by

𝑑𝑣 [𝑥] = ∑
𝜇(𝑥,𝑦)=1

#M(𝑥, 𝑦) ⋅ [𝑦] .

One expects that 𝑑2𝑣 = 0, such that (𝐶𝐹𝜃 , 𝑑𝑣) is indeed a cochain complex. The standard proof
in Floer theory relies on compactness and gluing theorems for the flow equations. More pre-
cisely, consider the compactification of the moduli space of gradient flows with relative index 2,
which is an oriented manifold of dimension 1. If the Haydys-Witten equations with boundary
conditionsB are well-behaved, the compactification is fully determined by adding broken flow
lines. The latter are exactly what we need to count when calculating 𝑑2𝑣 . Oriented manifolds
of dimension one are either circles, which don’t have boundary components and can’t con-
tribute to 𝑑2𝑣 , or intervals with boundary components of opposite orientation. It follows that
contributions to 𝑑2𝑣 always arise in pairs of opposite orientation and consequently add up to
0.

Definition 2.19 (Haydys-Witten Homology). The Haydys-Witten homology associated to a
four-manifold 𝑊 4 is the homology of the chain complex (𝐶𝐹𝜃 , 𝑑𝑣):

𝐻𝐹𝜃 (𝑊 4) ∶= 𝐻(𝐶𝐹𝜃 , 𝑑𝑣) .

It might be helpful to emphasize that only the 𝜃 = 0 version of this homology theory exists for
arbitrary Riemannian four-manifolds and Proposition 2.13 states that in that case the Morse-
Smale-Witten complex is generated by Vafa-Witten solutions. The one-parameter family of
homology groups only exists if 𝑊 4 admits a non-vanishing vector field 𝑤. Since any non-
compact manifold automatically admits a non-vanishing vector field, this is only an obstruction
for compact manifolds. Recall, that according to paragraph 4.4.3, finite energy solutions of

10We have encountered a similar situation in the path-integral description, where we mentioned a grading by the
‘fermion number of the filled Dirac sea’. This makes sense only after choosing a reference vacuum for which
the fermion number is defined to be zero.

58
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the 𝜃-Kapustin-Witten equations on compact manifolds are trivial whenever 𝜃 ≠ 0, so in this
case one could arguably define 𝐻𝐹𝜃 (𝑊 4) to be the trivial group. Therefore, the only situation
where 𝐻𝐹𝜃 (𝑊 4) with 𝜃 ≠ 0 remains ambiguous is in the context of infinite energy solutions
on compact manifolds, which for example appear in connection with Nahm pole boundary
conditions.

Instanton Grading The Morse-Smale-Witten complex 𝐶𝐹𝜃 is naturally ℤ-graded by the in-
stanton number of the principal bundle 𝐸 → 𝑊 4, which up to a constant is the integral of the
first Pontryagin class 𝑝1(ad 𝐸) = 1

8𝜋2 Tr 𝐹𝐴 ∧ 𝐹𝐴. The complex decomposes into submodules

𝐶𝐹 𝑘𝜃 , spanned by Kapustin-Witten solutions with instanton number 𝑘 ∈ ℤ:

𝐶𝐹 •𝜃 = ⨁
𝑘∈ℤ

𝐶𝐹 𝑘𝜃 .

To understand the interaction between the instanton grading and the differential 𝑑𝑣, observe
that 𝑝1(ad 𝐸) is a conserved four-form current. We can consider the associated charge at any
time 𝑠 ∈ ℝ𝑠:

𝑃(𝑠) = 1
32𝜋2 ∫{𝑠}×𝑊 4

Tr 𝐹𝐴 ∧ 𝐹𝐴 .

Although the integrand is conserved, current density may disappear at boundaries and non-
compact ends of 𝑊 4 as we follow the flow along ℝ𝑠. The difference in instanton number
between the start and end point 𝑠 → ±∞ of a Haydys-Witten instanton is given by Stokes’
theorem.

Δ𝑃 ∶= lim
𝑠→∞

(𝑃(𝑠) − 𝑃(−𝑠)) = ∑ 1
32𝜋2 ∫𝜕𝑖𝑀

Tr 𝐹𝐴 ∧ 𝐹𝐴

The right hand side is a sum over all boundaries and non-compact ends of𝑀5, except the ones
at 𝑠 = ±∞ (which appear on the left hand side). Each end contributes with its own instanton
number, or more precisely the instanton number associated to the pullback of 𝐸 to 𝜕𝑖𝑀.

In conclusion, the differential 𝑑𝑣 generally doesn’t preserve the grading on 𝐶𝐹 •𝜃 and consequent-
ly there is no ℤ-grading on 𝐻𝐹𝜃 (𝑊 4). However, the topology of the pullback bundles at ends
of 𝑀5 may arguably be viewed as part of the boundary data b, so the change in 𝑃-grading is
ultimately controlled by the interplay of all the boundary conditions that are imposed on the
Haydys-Witten instantons. For example, one could choose to only take into account Haydys-
Witten instantons for which Δ𝑃 is fixed, such that 𝑑𝑣 has a fixed degree Δ𝑃.

Cobordisms Let us shortly comment on the functorial properties of Haydys-Witten Floer
theory. Assume (𝑀5, 𝑣) is a cobordism that interpolates between four-manifolds (𝑊 4, 𝜃) and
(�̃� 4, ̃𝜃), where 𝜃, ̃𝜃 denote the incidence angles between 𝑣 and the boundaries. We promote the
boundaries to non-compact ends by gluing in cylindrical ends (−∞, 0]𝑠 × 𝑊 4 and [0, ∞)𝑠 × �̃� 4,
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2 Haydys-Witten Floer Theory

respectively. The vector field 𝑣 extends to a unique constant vector field on the cylinders, since
we assume that 𝑣 is already constant in some tubular neighbourhood of the boundaries.

To each end associate the corresponding Morse-Smale-Witten complex of boundary conditions
𝐶𝐹𝜃 (𝑊 4) and 𝐶𝐹 ̃𝜃(�̃�

4). We can proceed exactly as before to define a linear map

Φ(𝑀5,𝑣) ∶ 𝐶𝐹𝜃 (𝑊 4) → 𝐶𝐹 ̃𝜃 (�̃�
4) , [𝑥] ↦ ∑

𝜇(𝑥,𝑦)=1
#M(𝑥, 𝑦)[𝑦] .

The only difference is that we now count Haydys-Witten solutions on (𝑀5, 𝑣) instead of the
cylinder (ℝ𝑠 × 𝑊 4, 𝑣 = 𝜕𝑦).

Under appropriate compactness and gluing assumptions for the Haydys-Witten equations, the
induced map Φ(𝑀5,𝑣) is a chain map:

Φ(𝑀5,𝑣) ∘ 𝑑𝑣 = 𝑑𝑣 ∘ Φ(𝑀5,𝑣) .

One way to see this is to realize that the concatenation of Φ(𝑀5,𝑣) and 𝑑𝑣 is determined by
the number of broken flow lines of index 2 on 𝑀5, since we glue the instantons described
by 𝑑𝑣 to either the initial or final cylindrical end of 𝑀5. As before, these broken flow lines
are in correspondence with the boundary components of the moduli space of Haydys-Witten
instantons of index 2. Since the relevant moduli space is the same, regardless of the order of
Φ(𝑀5,𝑣) and 𝑑𝑣, these counts coincide.

It follows that Φ(𝑀5,𝑣) induces a linear map on homology:

(Φ(𝑀5,𝑣))∗ ∶ 𝐻𝐹𝜃 (𝑊 4) → 𝐻𝐹 ̃𝜃 (�̃�
4) .

Hence, Haydys-Witten homology is a functor from the category of five-dimensional cobord-
isms, equipped with a non-vanishing vector field, to the category of groups. It is, therefore,
a topological quantum field theory (TQFT) in the sense of the Atiyah-Segal axioms. From the
point of view of physics it is the TQFT that arises by a topological twist of 5𝑑 N = 2 super
Yang-Mills theory on ℝ𝑠 × 𝑊 4 coupled to 4𝑑 N = 4 super Yang-Mills theory at 𝑠 = ±∞.

2.7.2 Relation to Khovanov Homology

Haydys-Witten Floer theory was introduced by Witten to describe Khovanov homology in
terms of quantum field theory. Witten showed that there is a relation between Haydys-Witten
Floer homology and Chern-Simons theory on 𝑋 3 – and thus knot invariants – if one considers
four-manifolds of the form 𝑊 4 = 𝑋 3 × ℝ+𝑦 with Nahm pole boundary conditions at 𝑦 = 0
[Wit10; Wit11a]. Under this correspondence, a knot carries over to a magnetically charged ’t
Hooft operator embedded in the boundary 𝜕𝑊 4 = 𝑋 3. As explained in Section 2.6, this setup
is geometrized by considering the blowup [𝑊 4; 𝐾] and imposing a certain singular behaviour
at the blown up boundary 𝜕𝐾𝑊.

Hence, let us associate to a pair (𝑋 3, 𝐾) the Haydys-Witten homology of [𝑋 3 × ℝ+𝑦 ; 𝐾]. The
vector field 𝑤 = 𝜕𝑦 provides a non-vanishing vector field on 𝑊 4, so there is a one-parameter
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family of Haydys-Witten homologies with respect to 𝑣 = cos 𝜃𝜕𝑠 + sin 𝜃𝜕𝑦, 𝜃 ∈ [0, 𝜋]. The
associated Morse-Smale-Witten complex 𝐶𝐹𝜃 is spanned by solutions of the 𝜃-Kapustin-Witten
equations that satisfy suitable Nahm pole boundary conditions with knot singularities.

The differential 𝑑𝑣 counts Haydys-Witten instantons on the cylinder 𝑀5 = ℝ𝑠 × [𝑊 4; 𝐾]. This
manifold is equivalent to the one obtained by first lifting the knot to the ℝ𝑠-invariant surface
Σ𝐾 = ℝ𝑠 × 𝐾 × {0} inside the boundary of ℝ𝑠 × 𝑊 4 and blowing up afterwards, i.e.

𝑀5 = ℝ𝑠 × [𝑊 4; 𝐾] = [ℝ𝑠 × 𝑊 4; Σ𝐾] .

As always, we leave the blowup mostly implicit and simply write 𝑀5 = ℝ𝑠 × 𝑋 3 × ℝ+𝑦 with
original boundary 𝜕0𝑀 at 𝑦 = 0 (with Σ𝐾 removed) and blown up boundary 𝜕𝐾𝑀.

To fully determine 𝑑𝑣 it remains to specify which kind of boundary conditions b the Haydys-
Witten instantons on (𝑀5, 𝑣) shall satisfy:

• At 𝜕0𝑀5 the fields satisfy the 𝛽-twisted regular Nahm pole boundary condition, where the
incidence angle is given by 𝛽 = 𝜋/2 − 𝜃. The boundary data 𝜙𝜌 of the five-dimensional
Nahm pole boundary condition is the unique ℝ𝑠-invariant continuation of some fixed
four-dimensional Nahm pole boundary condition at 𝜕0𝑊 4.

• At 𝜕𝐾𝑀5, the fields exhibit a knot singularity and are otherwise consistent with the sur-
rounding Nahm pole boundary conditions. Since the glancing angle between 𝑣 and Σ𝐾 is
𝜃, the knot singularity is modeled on solutions of the 𝜃-TEBE.

• At 𝑦 → ∞ the fields approach an ℝ𝑦-invariant finite energy solution of the Haydys-
Witten equations. This corresponds to a solution of the 𝛽-Kapustin-Witten equations,
where 𝛽 = 𝜋/2 − 𝜃.

• At any non-compact end or boundary of 𝑋 3, the fields approach maximally symmetric,
stationary solutions of the Haydys-Witten equations that are compatible with the bound-
ary conditions at adjacent boundaries and independent of the flow direction ℝ𝑠. What
exactly this means is best described on a case-by-case basis.

The first two items just spell out the Nahm pole boundary conditions with knot singularity,
as described more thoroughly in Section 2.6. For 𝑦 → ∞ there might be non-trivial boundary
instantons, classified by solutions of 𝛽-Kapustin-Witten solutions on ℝ𝑠 × 𝑋 3. Note that for
𝑋 3 = 𝑆3 or ℝ3 there are no non-trivial Kapustin-Witten solutions with finite energy, because
of the vanishing result of Corollary 2.6. Since the rest of the boundary conditions are explicitly
ℝ𝑠-invariant, the differential 𝑑𝑣 preserves the instanton grading and Haydys-Witten homology
is ℤ-graded.

By definition, Haydys-Witten homology 𝐻𝐹𝜃 ([𝑋 3 × ℝ+𝑦 ; 𝐾]) is given by solutions of the 𝜃-
Kapustin-Witten equations, subject to Nahm pole boundary conditions with knot singularities
at 𝑦 = 0, modulo Haydys-Witten instantons. Witten originally described the case where 𝑣 = 𝜕𝑦,
in which case 𝐶𝐹𝜋/2 is spanned by solutions of the 𝜃 = 𝜋/2 version of the Kapustin-Witten
equations, in which case boundary instantons at 𝑦 → ∞ are given by Vafa-Witten solutions
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on ℝ𝑠 × 𝑋 3. As mentioned earlier, the deformation to 𝜃 ≠ 𝜋/2 was considered by Gaiotto and
Witten soon afterwards.

Witten’s gauge theoretic approach to Khovanov homology is now summarized by the following
statement.

Conjecture ([Wit11a]). Haydys-Witten homology 𝐻𝐹𝜃([𝑋 3 × ℝ+𝑦 ; 𝐾]) is a topological invariant
of the pair (𝑋 3, 𝐾). In particular, if 𝑋 3 = 𝑆3 (or ℝ3) and 𝜃 = 𝜋/2, this invariant is ℤ-graded and
coincides with Khovanov homology:

𝐻𝐹 •𝜋/2([𝑆
3 × ℝ+𝑦 ; 𝐾]) = 𝐾ℎ•(𝐾) .

Moreover, any knot cobordism Σ induces a map on Haydys-Witten homology via the five-dimen-
sional cobordism 𝑀5 = [ℝ𝑠 × 𝑋 3 × ℝ+𝑦 ; Σ], and this coincides with the corresponding map on
Khovanov homology.
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3 Growth of the Higgs Field for Kapustin-Witten
Solutions on ALE and ALF Gravitational
Instantons

Let 𝐺 = 𝑆𝑈 (2) and consider a principal 𝐺-bundle 𝐸 over a complete Riemannian manifold
(𝑊 𝑛, 𝑔) of dimenson 𝑛. Throughout, we assume that 𝑊 𝑛 is an ALX manifold. Suffice it to say
for now that we take this to mean 𝑊 𝑛 is a non-compact manifold with fibered ends such that
the 𝑘-dimensional fibers have bounded volume. Consequently, the volume of geodesic balls
asymptotically grows like 𝑟𝑛−𝑘.

Denote by (𝐴, 𝜙) ∈ A(𝐸) × Ω1(𝑊 𝑛, ad 𝐸) a pair consisting of a connection on 𝐸 and an ad 𝐸-
valued one-form. We write ⋆ for the Hodge star operator and equip Ω𝑘(𝑊 𝑛, ad 𝐸) with the
density-valued inner product ⟨𝑎, 𝑏⟩ = Tr 𝑎 ∧ ⋆𝑏. Upon integration this provides the usual 𝐿2-
product ⟨𝑎, 𝑏⟩𝐿2(𝑊 ) = ∫𝑊 𝑛⟨𝑎, 𝑏⟩ on Ω𝑘(𝑊 𝑛, ad 𝐸). Throughout, we assume that 𝐴 and 𝜙 have
enough derivatives and are locally square-integrable.

In this chapter we report on a property of the pair (𝐴, 𝜙) whenever it satisfies the second order
differential equation

∇𝐴†∇𝐴𝜙 + 1
2
⋆ [⋆[𝜙 ∧ 𝜙] ∧ 𝜙] + Ric 𝜙 = 0 . (3.1)

Here ∇𝐴† is the formal adjoint of ∇𝐴 with respect to the 𝐿2-product and the Ricci curvature is
viewed as an endomorphism of Ω1(𝑊 , ad 𝐸).

The differential equation (3.1) is of particular relevance in the context of the Kapustin-Witten
equations. To see this, consider for the moment the case of a four-manifold 𝑊 4 and define the
Laplace-type differential operator on Ω1(𝑊 , ad 𝐸):

Δ̃𝐴(𝜙) = −𝑑𝐴𝑑⋆𝐴𝜙 + ⋆2𝑑𝐴(𝑑𝐴𝜙)− ,

where 𝑑⋆𝐴 = ⋆𝑑𝐴⋆ is the usual codifferential and (⋅)± denotes the (anti-)self-dual part of a given
two-form. Compare this operator with the 𝜃-Kapustin-Witten equations for (𝐴, 𝜙) (cf. Sec-
tion 2.4.2), which are given by

( cos 𝜃
2 (𝐹𝐴 − 1

2 [𝜙 ∧ 𝜙]) − sin 𝜃
2 𝑑𝐴𝜙 )+ = 0 ,

( sin 𝜃
2 (𝐹𝐴 − 1

2 [𝜙 ∧ 𝜙]) + cos 𝜃
2 𝑑𝐴𝜙 )− = 0 ,

𝑑⋆𝐴𝜙 = 0 .
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Clearly, if (𝐴, 𝜙) is a solution of the 𝜃 = 0 version of the Kapustin-Witten equations, then Δ̃𝐴𝜙 =
0. Moreover, using a Bochner-Weitzenböck identity that relates Δ̃𝐴 and the Bochner Laplacian

∇𝐴
†
∇𝐴, as well as the remaining part of the 0-Kapustin-Witten equations 𝐹+𝐴 = [𝜙 ∧ 𝜙]+, one

finds that harmonicity of 𝜙 with respect to Δ̃𝐴 is equivalent to equation (3.1). In fact a very
similar argument shows that the same is true if (𝐴, 𝜙) is a solution of the 𝜃-Kapustin-Witten
equations [Tau13; Tau17a; NO21].

Let us now return to general 𝑛-manifolds. In what follows, we are guided by the intuition that
if 𝜙 satisfies (3.1), then it is harmonic with respect to some well-behaved Laplace-type operator.
In particular, one should expect that it satisfies an appropriate analogue of the mean-value
principle. Hence, fix some point 𝑝 ∈ 𝑊 4, denote by 𝐵𝑟 the closed geodesic ball of radius 𝑟
centered at 𝑝, and consider the non-negative function 𝜅 on [0, ∞) that is defined by

𝜅2(𝑟) = 1
𝑟𝑛−𝑘−1 ∫𝜕𝐵𝑟

‖𝜙‖2 . (3.2)

As a consequence of the asymptotic volume growth on 𝑊 𝑛, 𝜅(𝑟) is related to the average value
of ‖𝜙‖ on geodesic spheres 𝜕𝐵𝑟 with large radius 𝑟. The mean-value principle for Laplace-type
differential operators then suggests that 𝜙 should satisfy an inequality of the form ‖𝜙(𝑝)‖ ≤ 𝜅(𝑟)
for 𝑟 > 0. Although contributions from non-trivial curvature in the interior of 𝐵𝑟 in general
preclude this naive mean-value inequality, the controlled asymptotics of ALX spaces retains
enough control to deduce analogous bounds for points that are far away from 𝑝.

A classical consequence of the mean-value principle is a relation between the asymptotic be-
haviour of 𝜅 at large radius and the values of 𝜙 in the interior of the ball. For example, if the
naive mean-value inequality was satisfied at every point 𝑝 ∈ 𝑊 𝑛 and 𝜅(𝑟) → 0 as 𝑟 → ∞, then
𝜙 would be identically zero everywhere.

For𝑊 𝑛 = ℝ𝑛, Theorem 2.4 by Taubes generalizes this kind of statement to a dichotomy between
the growth of 𝜅(𝑟) at infinity and the vanishing of [𝜙 ∧ 𝜙] on all of 𝑊 𝑛 [Tau17a]. Here we
prove that this dichotomy holds more generally if 𝑊 𝑛 is an ALX gravitational instanton (this
is Theorem 3.19 below):

Theorem A. Let 𝑊 𝑛 be a complete, Ricci flat ALX manifold of dimension 𝑛 ≥ 2 with asymptotic
fibers of dimension 𝑘 ≤ 𝑛 − 1 and sectional curvature bounded from below. Consider (𝐴, 𝜙) as
above and assume the pair satisfies the second-order differential equation (3.1). Then either

(i) there is an 𝑎 > 0 such that lim inf𝑟→∞
𝜅(𝑟)
𝑟𝑎 > 0, or

(ii) [𝜙 ∧ 𝜙] = 0.

If the fields (𝐴, 𝜙) are solutions of the 𝜃-Kapustin-Witten equations and have square-integrable
field strength we can say slightly more (cf. Theorem 3.20).

TheoremB. Let𝑊 4 be a complete, Ricci flat ALXmanifold of dimension 4with asymptotic fibers
of dimension 𝑘 ≤ 3 and sectional curvature bounded from below. Assume (𝐴, 𝜙) are solutions of
the 𝜃-Kapustin-Witten equations and satisfy ∫𝑊 4 ‖𝐹𝐴‖

2 < ∞, then either
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(i) there is an 𝑎 > 0 such that lim inf𝑟→∞
𝜅(𝑟)
𝑟𝑎 > 0, or

(ii) [𝜙 ∧𝜙] = 0, ∇𝐴𝜙 = 0, and 𝐴 is self-dual if 𝜃 = 0, flat if 𝜃 ∈ (0, 𝜋), and anti-self-dual if 𝜃 = 𝜋.

As an immediate consequence of Theorem B and Theorem 2.5 we are able to generalize Corol-
lary 2.6, confirming a conjecture of Nagy and Oliveira. For this recall the definition of Kapustin-
Witten energy

𝐸KW = ∫
𝑊 4

(‖𝐹𝐴‖
2 + ‖∇𝐴𝜙‖

2
+ ‖[𝜙 ∧ 𝜙]‖2) .

Corollary C (Nagy-Oliveira Conjecture [NO21]). Let (𝐴, 𝜙) be a finite energy solution of the
𝜃-Kapustin-Witten equations with 𝜃 ≠ 0 (mod 𝜋) on an ALE or ALF gravitational instanton and
let 𝐺 = 𝑆𝑈 (2). Then 𝐴 is flat, 𝜙 is ∇𝐴-parallel, and [𝜙 ∧ 𝜙] = 0.

Proof. Under the given assumptions, the main result of Nagy and Oliveira [NO21, Main The-
orem 1] states that 𝜙 has bounded norm and thus, in particular, bounded average over spheres.
It follows that lim inf𝑟→∞

𝜅(𝑟)
𝑟𝑎 → 0 for any 𝑎 > 0, while the finite energy condition subsumes

square-integrability of 𝐹𝐴. Therefore, Theorem B implies that [𝜙 ∧ 𝜙] = 0, ∇𝐴𝜙 = 0, and that 𝐴
is flat.

Remark. The preceding argument was used by Nagy and Oliveira to establish Corollary 2.6,
which holds for 𝑊 4 = ℝ4 and 𝑆1 × ℝ3 [NO21, Corollary 1.3]. Nagy and Oliveira relied on
a version of Theorem B that applies to 𝑊 4 = ℝ4 and was provided by Taubes alongside the
original dichotomy [Tau17a]. Their conjecture stemmed from the expectation that Taubes’
results can be extended to ALX spaces in general.

The main insight reported in this chapter is that Taubes’ proof strategy for the special case
𝑊 𝑛 = ℝ𝑛 carries over to general ALX spaces. This is a consequence of the well-behaved
asymptotic volume growth, where problems that arise from non-zero curvature in the interior
can be excised. Hence, the proof of Theorem A closely follows the one provided by Taubes in
[Tau17a].

We proceed as follows: In Section 3.1 we collect the relevant definitions and recall several clas-
sical results that will be used throughout. Then, in Section 3.2, we investigate the derivative of
𝜅 and introduce the relevant analogue of Almgren’s frequency function, as well as a function
that captures contributions from the mean curvature of the geodesic sphere. The key finding
of that section is that 𝜅 is asymptotically almost non-decreasing, which is a prerequisite for
most of the heavy lifting in subsequent sections. In Section 3.3, we present a somewhat un-
usual version of unique continuation that is satisfied by 𝜅. The main insight is the content of
Section 3.4, where we explain that slow asymptotic growth of 𝜅 results in bounds for the fre-
quency function. All these results are refined with respect to the components of the one-form
𝜙 = ∑𝑖 𝜙𝑖𝑑𝑥 𝑖 by introducing in Section 3.5 what we call the correlation tensor. Using a second
line of arguments, we also determine a priori bounds of the type ‖𝜙(𝑥)‖ ≤ 𝜅(𝑟) in Section 3.6,
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which are the anticipated analogues of the mean value inequalities mentioned already above.
Finally, all these ingredients are combined into a proof of Theorem A in Section 3.7, while the
proof of Theorem B occupies Section 3.8.

3.1 ALX Manifolds and Classical Results in Riemannian Geometry

For the purposes of this thesis, an ALX space is a non-compact complete Riemannian manifold
that asymptotically looks like a fibration of closed manifolds, where the fibers have bounded
volume. This is made precise in the following definition.

Definition 3.1 (ALX𝑘 Manifold). Let (𝑊 𝑛, 𝑔) be a complete Riemannian manifold of dimension
𝑛 and fix 𝑝 ∈ 𝑊 𝑛. Let 𝜋𝑌 ∶ 𝑌 𝑛−1 → 𝐵𝑛−𝑘−1 be a fibration over an 𝑛 − 𝑘 − 1-dimensional
closed Riemannian base (𝐵, 𝑔𝐵) with 𝑘-dimensional closed Riemannian fibers (𝑋 , 𝑔𝑋). Equip
(0, ∞)𝑟 × 𝑌 with the model metric 𝑔∞ = 𝑑𝑟2 + 𝑔𝑋 + 𝑟2𝑔𝐵. We say 𝑊 𝑛 is an ALX𝑘 manifold if its
end is modeled on (0, ∞) × 𝑌, that is, if there exists 𝑅 > 0 such that there is a diffeomorphism
𝜑 ∶ 𝑊 𝑛 ⧵ 𝐵𝑅(𝑝) → (𝑅,∞) × 𝑌 𝑛−1 that satisfies for 𝑗 = 0, 1, and 2

lim
𝑟→∞

𝑟 𝑗 ‖(∇LC)𝑗 (𝑔 − 𝜑∗𝑔∞)‖𝐿∞(𝜕𝐵𝑟) = 0 . (3.3)

Proposition 3.2. If (𝑊 𝑛, 𝑔) is an ALX𝑘 space then

vol𝐵𝑟(𝑝) ∼ 𝑟𝑛−𝑘 vol𝑋 (𝑟 → ∞) .

Definition 3.3. We call an ALX space 𝑊 𝑛 a gravitational instanton if it is Ricci flat, sectional
curvature is bounded from below, and the Riemann curvature tensor satisfies the decay condi-
tion |Rm| (𝑥) ≤ 𝑑(𝑝, 𝑥)−2−𝜖 for some 𝜖 > 0.

Remarks.

• ALX spaces are usually considered in the context of four-manifolds and the ‘X’ is a place-
holder for the following cases: ALE or Asymptotically Locally Euclidean (𝑘 = 0), ALF or
Asymptotically Locally Flat (𝑘 = 1), ALG (𝑘 = 2), ALH (𝑘 = 3), where the last two are
named by induction.

• We do not demand that ALX gravitational instantons are hyperkähler, while we add the
possibly non-standard condition of bounded sectional curvature.

Examples.

• The prototypical example of an ALE manifold is Euclidean space ℝ𝑛. In this case there is
the obvious diffeomorphism ℝ𝑛 ⧵ {0} ≃ (0,∞) × 𝑆𝑛−1 via spherical coordinates, the metric
is 𝜑∗𝑔 = 𝑑𝑟2 + 𝑟2𝑔𝑆𝑛−1 = 𝑔∞, and the volume of balls grows with the radius as 𝑟𝑛.
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• A prototypical example of an ALF space is 𝑆1 × ℝ𝑛−1 with the product metric 𝑔 = 𝑑𝑡2 +
𝑔ℝ𝑛−1 . Again, spherical coordinates on theℝ𝑛−1 factor provide a diffeomorphism to (0, ∞)×
𝑆1 × 𝑆𝑛−2 with metric 𝜑∗𝑔 = 𝑑𝑟2 + 𝑑𝑡2 + 𝑟2𝑔𝑆𝑛−2𝑟

, such that 𝑆1 has constant size, while 𝑆𝑛−2𝑟
is the sphere of radius 𝑟 centered at 0 ∈ ℝ𝑛−1. Once the volume of 𝑆1 is ‘filled’, the volume
of a geodesic ball approaches a growth of order 𝑟𝑛−1.

• Famous examples of less trivial four-dimensional ALF gravitational instantons are (multi-
centered) Taub-NUT spaces. These are 𝑆1-fibrations over ℝ3, where the 𝑆1-fiber has
asymptotically finite volume.

• Motivated by an influential conjecture by Gaiotto, Moore, and Neitzke about the asymp-
totic geometry of the moduli space of 𝑆𝑈 (𝑁 ) Higgs bundles [GMN11], it has recently
been proved that the moduli space of 𝑆𝐿(2, ℂ)-Higgs bundles on the 4-punctured sphere
is an example of a four-dimensional hyperkähler ALG gravitational instanton [Fre+20].

Theorem 3.4 (Global Laplacian Comparison Theorem [Cal58]). If Ric ≥ (𝑛 − 1)𝐾 and 𝑟(𝑥) =
𝑑(𝑝, 𝑥) denotes the geodesic distance function based at a point 𝑝, then

Δ𝑟 ≤ (𝑛 − 1)Δ𝐾𝑟 ,

where on the right hand side Δ𝐾 is the Laplacian on the unique complete, 𝑛-dimensional, simply
connected space of constant sectional curvature 𝐾.

Remark. Since 𝑟 is not necessarily differentiable the global Laplacian comparison must be un-
derstood in a weak sense, e.g. in the weak sense of barriers as in the work of Calabi [Cal58].
However, for our purposes it is sufficient to consider the smooth locus of 𝑟, where the inequality
holds as stated.

Proposition 3.5 (Mean Curvature Comparison on ALX spaces). Let 𝑊 𝑛 be an ALX𝑘 space and
fix a point 𝑝 ∈ 𝑊 𝑛. The Laplacian of the distance function 𝑟(𝑥) = 𝑑(𝑝, 𝑥), or equivalently the mean
curvature of the geodesic sphere of radius 𝑟 based at 𝑥, has the following asymptotic behaviour.

Δ𝑟 ∼ {

𝑛−1
𝑟 (𝑟 → 0)

𝑛−𝑘−1
𝑟 (𝑟 → ∞)

Furthermore, if Ric ≥ 0, then it is bounded from above by

Δ𝑟 ≤ 𝑛 − 1
𝑟

.

Proof. For a start, note that 𝑟(𝑥) is smooth on 𝑀 ⧵ {𝑝,Cut(𝑝)}, where Cut(𝑝) is the cut locus
of 𝑝. It is a standard result that the cut locus on a complete Riemannian manifold has measure
zero, so 𝑟 is differentiable almost everywhere. The Gauss lemma tells us that ∇LC𝑟 = 𝜕𝑟 is
the radial vector field of unit norm and is normal to geodesic spheres. As an aside, note that
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Δ𝑟 = tr(∇LC)2𝑟 is the trace of the second fundamental form of the geodesic sphere and as such
is identical to its mean curvature.

The asymptotic behaviour for 𝑟 → 0 follows e.g. by a direct calculation in Riemann normal
coordinates. In particular, use 𝑔𝑖𝑗 = 𝛿𝑖𝑗 +O(𝑟2) and Γ𝑖𝑗𝑘 = O(𝑟) and then observe that at leading
order the result is identical to the Euclidean case, while higher order corrections are O(𝑟):

Δ𝑟 = 𝑛 − 1
𝑟

+O(𝑟) .

When 𝑟 → ∞ the ALX𝑘 condition (3.3) implies that Δ𝑟 ∼ Δ∞𝑟, where Δ∞ denotes the Laplacian
associated to 𝑔∞ on (0, ∞) × 𝑌 𝑛−1. Under the diffeomorphism to (0, ∞) × 𝑌 𝑛−1 the distance
function is identified with the coordinate on the first factor. Since the model metric is block
diagonal and only depends on 𝑟 via the 𝑟2 factor in front of 𝑔𝐵, we can calculate Δ𝑔∞𝑟 explicitly.
Let (𝑒𝑖)𝑖=1,…,𝑛 be an orthonormal frame of (0, ∞) × 𝑌 such that 𝑒1 = 𝜕𝑟, 𝑒2, … , 𝑒𝑘+1 are tangent
to the fibers, and 𝑒𝑘+2, … , 𝑒𝑛 are tangent to the base. Write ∇ for the Levi-Civita connection
associated to 𝑔∞. By a direct calculation ∇𝑒𝑖𝜕𝑟 =

1
𝑟 𝑒𝑖 for 𝑖 = 𝑘 + 2,… , 𝑛 − 1 and zero otherwise.

Hence,

Δ𝑔∞𝑟 = tr∇2𝑟 = 𝑔 𝑖𝑗𝑔(∇𝑒𝑖𝜕𝑟 , 𝑒𝑗) =
tr 𝑔𝐵
𝑟

= 𝑛 − 𝑘 − 1
𝑟

.

Finally, the upper bound in the case that Ric is non-negative follows directly from the Laplacian
Comparison Theorem (Theorem 3.4).

Theorem 3.6 (Bishop-Gromov’s Volume Comparison). Let (𝑀, 𝑔) be a complete Riemannian
manifold and assume Ric ≥ (𝑛−1)𝐾. Denote by vol𝐵𝑟(𝑝) the volume of the geodesic ball of radius
𝑟 based at 𝑝 ∈ 𝑀. Similarly write vol𝐾 𝐵𝑟(𝑝𝐾) for the volume of a geodesic ball with the same radius
inside the unique complete, 𝑛-dimensional, simply connected space of constant sectional curvature
𝐾 at an arbitrary point 𝑝𝐾. Then the function defined by

𝑟 ↦
vol𝐵𝑟(𝑝)

vol𝐾 𝐵𝑟(𝑝𝐾)

is non-decreasing and approaches 1 as 𝑟 → 0. This implies, in particular, vol𝐵𝑟(𝑝) ≤ vol𝐾 𝐵𝑟(𝑝𝐾)
and vol 𝜕𝐵𝑟(𝑝) ≤ vol𝐾 𝜕𝐵𝑟(𝑝𝐾).

Lemma 3.7. For any point 𝑥 in the interior of 𝐵𝑟(𝑝) there is a smooth, positive Green’s function
𝐺𝑥 for the Dirichlet-Laplace problem on 𝐵𝑟(𝑝) with singularity at 𝑥, i.e. Δ𝐺𝑥(𝑦) = 𝛿𝑥(𝑦) and
𝐺𝑥(𝜕𝐵𝑟(𝑝)) = 0. If 𝑊 𝑛 is a Ricci non-negative ALX𝑘 space with effective dimension 𝑛 − 𝑘 > 2, then
for any 𝜖 > 0 there is a distance 𝐷 such that whenever 𝑑(𝑥, 𝑦) > 𝐷 the Green’s function is bounded
by

𝐺𝑥(𝑦) ≤
(1 + 𝜖) 𝑐

vol𝑋 𝑑(𝑥, 𝑦)𝑛−𝑘−2
,

where the constant 𝑐 depends only on 𝑛.
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Proof. The existence of a positive Green’s function on compact, connected manifolds with
boundary is standard. The bound follows immediately from Theorem 5.2 in Li-Yau’s seminal
work [LY86]. Their theorem states

𝐺𝑥(𝑦) ≤ 𝑐 ∫
∞

𝑟2
1

vol𝐵√𝑡(𝑥)
𝑑𝑡 ,

where 𝑟 = 𝑑(𝑥, 𝑦) denotes the Riemannian distance between 𝑥 and 𝑦 and the constant 𝑐 depends
only on 𝑛.

Let 𝜖 > 0. By Proposition 3.2 there is a distance 𝑅 ≥ 0, such that whenever 𝑟 ≥ 𝑅 we find

𝐺𝑥(𝑦) ≤ 𝑐 ∫
∞

𝑟2
1 + 𝜖

vol𝑋 𝑡(𝑛−𝑘)/2
𝑑𝑡 =

(1 + 𝜖) 𝑐
vol𝑋 𝑟𝑛−𝑘−2

.

3.2 The Frequency Function

As explained in the introduction, we are interested in the growth of the function 𝜅 defined
in (3.2) and which captures the 𝐿2-mean of the Higgs field 𝜙 on large geodesic spheres. On
our way to show that 𝜅 must have some minimal asymptotic growth, the first step is to realize
that for large enough radii it can only decrease at an arbitrarily small rate. To make this more
precise, let us introduce the following notation.

Definition 3.8. For 𝜖 > 0 we say 𝜅 is 𝜖-almost non-decreasing whenever its derivative is
bounded from below according to 𝑑𝜅

𝑑𝑟 ≥ − 𝜖𝜅
𝑟 . Furthermore, in this context 𝜅 is called asymptotic-

ally almost non-decreasing if for any 𝜖 > 0 there is some (large) radius 𝑅, such that 𝜅 is 𝜖-almost
non-decreasing on [𝑅,∞), i.e. its derivative satisfies 𝑑𝜅

𝑑𝑟 ≥ − 𝜖𝜅
𝑟 for all 𝑟 ≥ 𝑅.

To learn more about the potential growth and decay rates of 𝜅, the upcoming proposition estab-
lishes its derivative and provides first estimates in the limit of small and large radius, respect-
ively. The function 𝑁(𝑟) that arises in that context is an analogue of the frequency function as
introduced by Almgren [Alm79] and we will refer to it by that name. The function 𝐷(𝑟)will be
called mean curvature deviation, as it is related to the average deviation of the mean curvature
of the geodesic sphere from its limit at infinity.

Proposition 3.9. Assume the pair (𝐴, 𝜙) satisfies (3.1). Whenever 𝜅 is non-zero its derivative is

𝑑𝜅
𝑑𝑟

=
(𝑁 + 𝐷) 𝜅

𝑟
,

69



3 Growth of the Higgs Field for Kapustin-Witten Solutions

where 𝑁 and 𝐷 are given by

𝑁(𝑟) = 1
𝑟𝑛−𝑘−2𝜅2 ∫𝐵𝑟

(‖∇𝐴𝜙‖
2
+ ‖[𝜙 ∧ 𝜙]‖2 + ⟨Ric 𝜙, 𝜙⟩) (3.4)

𝐷(𝑟) = 1
2𝑟𝑛−𝑘−2𝜅2 ∫𝜕𝐵𝑟

(Δ𝑟 − 𝑛 − 𝑘 − 1
𝑟

) ‖𝜙‖2 . (3.5)

Moreover, if Ric ≥ 0, then 𝑁 is non-negative, 𝐷 is bounded from above by 𝑘/2, lim𝑟→0 𝐷 = 𝑘/2,
and lim𝑟→∞ 𝐷 = 0. As a consequence, if 𝜅 is not identically zero near 𝑟 = 0, then it is increasing
on small enough neighbourhoods of 0. Similarly, if 𝜅 is not asymptotically zero as 𝑟 → ∞, then it
is asymptotically almost non-decreasing.

Proof. The derivative of 𝜅 can be calculated from 𝑑𝜅
𝑑𝑟 = 1

2𝜅
𝑑
𝑑𝑟𝜅

2. Thus, denote by 𝑋 the radial
unit vector field on 𝐵𝑟 and observe that

𝜅2(𝑟) = 1
𝑟𝑛−𝑘−1 ∫𝜕𝐵𝑟

‖𝜙‖2 = 1
𝑟𝑛−𝑘−1 ∫𝐵𝑟

L𝑋 ‖𝜙‖2 .

By the product and Leibniz’ integral rule the derivative is then given by

𝑑
𝑑𝑟
𝜅2(𝑟) = −𝑛 − 𝑘 − 1

𝑟
𝜅2 + 1

𝑟𝑛−𝑘−1 ∫𝐵𝑟
L𝑋 ∘ L𝑋 ‖𝜙‖2 .

We can write the integral on the right hand side equivalently as an integral over the trace
of the (asymmetric) second Lie derivative L2

𝑌 ,𝑍 ∶= L𝑌 ∘ L𝑍. To see this denote by (𝑟 , 𝜃𝑖) polar
normal coordinates on 𝐵𝑟 and note that in these coordinates the metric is block-diagonal, i.e.
𝑔 = 𝑑𝑟2 + 𝑔𝑆𝑛−1 . Since for any top-form 𝜔 the pullback of 𝚤𝜕𝜃𝑖𝜔 to the boundary of the geodesic
ball is zero, one finds

∫
𝐵𝑟
L2
𝑋 ,𝑋 ‖𝜙‖2 = ∫

𝐵𝑟
(L2

𝑋 ,𝑋 + 𝑔 𝑖𝑗𝑆𝑛−1L
2
𝜕𝜃𝑖 ,𝜕𝜃𝑗

) ‖𝜙‖2 = ∫
𝐵𝑟
tr𝑇𝑀 L2 ‖𝜙‖2 .

Next, for any vector field 𝑌 and top-form 𝜔 we may express the action of the Lie derivative
in terms of the Levi-Civita connection as L𝑌𝜔 = ∇𝑌𝜔 + div 𝑌 𝜔. Using this we can write the
second Lie derivative as

L2
𝑌 ,𝑍 ‖𝜙‖2 = (∇𝑌 + div 𝑌 ) ∇𝑍 ‖𝜙‖

2 + L𝑌 (div𝑍 ‖𝜙‖2) .

Furthermore, we use ad-invariance and metric compatibility to write ∇𝑌⟨𝜙, 𝜙⟩ = 2⟨𝜙, ∇𝐴𝑌 𝜙⟩, and
use that the formal adjoint is given by ∇𝐴𝑌 + div 𝑌 = −(∇𝐴𝑌 )

†. This leads to

∫
𝐵𝑟
tr𝑇𝑀 L2 ‖𝜙‖2 = 2∫

𝐵𝑟
(‖∇𝐴𝜙‖

2
− ⟨𝜙, ∇𝐴

†
∇𝐴𝜙⟩) + ∫

𝐵𝑟
tr𝑇𝑀 (L⋅ div(⋅) ‖𝜙‖2)

= 2∫
𝐵𝑟
(‖∇𝐴𝜙‖

2
+ ‖[𝜙 ∧ 𝜙]‖2 + ⟨𝜙,Ric 𝜙⟩) + ∫

𝜕𝐵𝑟
Δ𝑟 ‖𝜙‖2 ,

where we used the second order differential equation (3.1) in the first term and that the only
non-zero contribution in the second term contains the mean curvature of the geodesic sphere
since div𝑋 = Δ𝑟.
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All in all, as long as 𝜅 ≠ 0, the derivative is given by

𝑑𝜅
𝑑𝑟

= 1
𝜅𝑟𝑛−𝑘−1 ∫𝐵𝑟

(‖∇𝐴𝜙‖
2
+ ‖[𝜙 ∧ 𝜙]‖2 + ⟨𝜙,Ric 𝜙⟩) + 1

2𝜅𝑟𝑛−𝑘−1 ∫𝜕𝐵𝑟
(Δ𝑟 − 𝑛−𝑘−1

𝑟 ) ‖𝜙‖2 ,

which yields the desired result upon identification of the terms on the right hand side with the
definitions of 𝑁 and 𝐷 in (3.4) and (3.5), respectively.

Now assume Ric ≥ 0. On the one hand, 𝑁 is then clearly non-negative. On the other hand, the
results for Δ𝑟 from Proposition 3.5 immediately provide both the global upper bound and the
limits of 𝐷.

Combining these facts with the formula for 𝑑𝜅
𝑑𝑟 leads to the conclusion that 𝜅 is (almost) non-

decreasing at both ends: Since𝐷 is continuous and lim𝑟→0 𝐷 = 𝑘/2, 𝐷must be positive on some
small interval [0, 𝑠). Thus, if 𝜅 is non-zero somewhere in that interval then it is increasing. The
asymptotic bound for 𝑟 → ∞ works out similarly, where according to Proposition 3.5 for any
𝛿 > 0 there is an interval [𝑅,∞) on which

Δ𝑟 ≥ 1
1 + 𝛿

𝑛 − 𝑘 − 1
𝑟

.

After a suitable choice of 𝛿 this yields the desired bound 𝑑𝜅
𝑑𝑟 ≥ − 𝜖𝜅

𝑟 for any 𝜖 > 0, which concludes
the proof.

In the preceding proposition we already encountered lower bounds for 𝑑𝜅
𝑑𝑟 near 𝑟 = 0 and

𝑟 → ∞. But when we keep track of 𝑁 it becomes clear that 𝑑𝜅
𝑑𝑟 satisfies stronger bounds than

recorded so far. This is the content of the following two corollaries. The first records a global
growth limitation, while the second determines asymptotic lower and upper bounds, both in
dependence of the frequency function 𝑁.

Corollary 3.10. Assume 𝜅 ≠ 0 on [𝑟0, 𝑟1], then

𝜅(𝑟1) ≤ 𝜅(𝑟0) exp∫
𝑟1

𝑟0

𝑁(𝑡) + 𝑘/2
𝑡

𝑑𝑡 .

Proof. Since 𝜅 ≠ 0, we can rely on Proposition 3.9. In particular, using the global bound 𝐷 ≤
𝑘/2, the derivative of 𝜅 is bounded by 𝑑𝜅

𝑑𝑟 ≤
(𝑁+𝑘/2)

𝑟 𝜅. By Grönwall’s inequality, 𝜅 then can’t
become larger than a solution of the underlying differential equation, which is the stated bound.

Corollary 3.11. Let 𝜖 > 0 and 𝑅 be such that |𝐷| ≤ 𝜖 on [𝑅,∞). If 𝜅 has no zeroes in [𝑟0, 𝑟1] ⊂
[𝑅,∞) then it is bounded at 𝑟1 from both sides as follows

𝜅(𝑟0) exp∫
𝑟1

𝑟0

𝑁(𝑡) − 𝜖
𝑡

𝑑𝑡 ≤ 𝜅(𝑟1) ≤ 𝜅(𝑟0) exp∫
𝑟1

𝑟0

𝑁(𝑡) + 𝜖
𝑡

𝑑𝑡 . (3.6)

Consequently, bounds for the frequency function on [𝑟0, 𝑟1] have the following effect:
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• if 𝑎 ≤ 𝑁 then 𝜅(𝑟1) ≥ ( 𝑟1𝑟0 )
𝑎−𝜖𝜅(𝑟0)

• if 𝑁 ≤ 𝑏 then 𝜅(𝑟1) ≤ ( 𝑟1𝑟0 )
𝑏+𝜖𝜅(𝑟0)

Proof. Since |𝐷| ≤ 𝜖 and 𝜅 is non-zero on [𝑟0, 𝑟1], its derivative is bounded in both directions as
follows

(𝑁 − 𝜖) 𝜅
𝑟

≤ 𝑑𝜅
𝑑𝑟

≤
(𝑁 + 𝜖) 𝜅

𝑟
.

Grönwall’s inequality states that 𝜅 is then bounded in either direction by the corresponding
solutions of the underlying differential equations, which is exactly (3.6).

Clearly, if the frequency function is bounded below by some 𝑎 ≥ 0 the first inequality in (3.6)
reduces to

𝜅(𝑟1) ≥ 𝜅(𝑟0) exp∫
𝑟1

𝑟0

𝑎 − 𝜖
𝑠

𝑑𝑠 = (
𝑟1
𝑟0
)
𝑎−𝜖

𝜅(𝑟0) .

The same argument, but based on the second inequality, yields the corresponding upper bound
if 𝑁 is bounded from above.

We will later also need the derivative of 𝑁, which is given directly by the product and Leibniz’
integral rule.

𝑑
𝑑𝑟
𝑁 = 1

𝑟𝑛−𝑘−2𝜅2 ∫
𝜕𝐵𝑟

(‖∇𝐴𝜙‖2 + ‖[𝜙 ∧ 𝜙]‖2 + ⟨Ric 𝜙, 𝜙⟩) − (𝑛 − 𝑘 − 2 + 2(𝑁 + 𝐷))𝑁
𝑟

(3.7)

As an immediate consequence, we see that if 𝑁 is ever small, then it can’t have been very much
larger at nearby smaller radii 𝑠 < 𝑟. This observation is recordedmore precisely in the following
proposition.

Proposition 3.12. Assume Ric ≥ 0. If 𝑁 ≤ 1 on some interval [𝑟0, 𝑟1], then 𝑁(𝑟0) ≤ ( 𝑟1𝑟0 )
𝑛
𝑁(𝑟1).

Moreover, whenever 𝑁(𝑟) < 1 at some 𝑟 ∈ (0, ∞) then 𝑁 ≤ 1 on the interval [𝑁 (𝑟)1/𝑛 𝑟 , 𝑟].

Proof. Since Ric is non-negative the same is true for the first term in (3.7). Moreover, in that
case 𝐷 ≤ 𝑘

2 by Proposition 3.9. Assume now that 𝑁 ≤ 1 on all of [𝑟0, 𝑟1]. Then 𝑁 satisfies the
following differential inequality for any 𝑟 ∈ [𝑟0, 𝑟1]

𝑑𝑁
𝑑𝑟

≥ −𝑛 𝑁
𝑟

.

Grönwall’s inequality states that then for any pair 𝑠 ≤ 𝑟 in [𝑟0, 𝑟1] the following inequality holds

𝑁(𝑟) ≥ (𝑠
𝑟
)
𝑛
𝑁(𝑠) ,

which proves the first part of the statement.

Now assume 𝑁(𝑟) < 1 for some 𝑟 ∈ (0, ∞). By continuity, 𝑟 must be contained in some interval
[𝑟0, 𝑟1] on which 𝑁 ≤ 1, so we can use the preceding inequality in the form 𝑁(𝑠) ≤ (𝑟/𝑠)𝑛𝑁(𝑟).
The right hand side is less than or equal to 1 as long as 𝑠 ≥ 𝑁 (𝑟)1/𝑛 𝑟.
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3.3 Asymptotically Unique Continuation

In this section, we observe that unless 𝜅 is the zero function, it cannot have zeroes in (𝑅,∞) for
some large enough radius 𝑅. This rests on Aronszajn’s unique continuation theorem, which
states that a non-trivial solution of an elliptic second order differential equation cannot exhibit
zeroes of infinite order [Aro57]. As it turns out, Aronszajn’s theorem applies1 to the elliptic
differential equation (3.1). This was already observed by Taubes in several closely related situ-
ations, see e.g. [Tau13, Sec. 3a], [Tau17a, Sec. 2c], and [Tau18, Sec. 2e]. It follows that
whenever the Higgs field 𝜙 vanishes on an open subset of 𝑀, then it must be identically zero.
This, in turn, implies that whenever 𝜅 is non-trivial it can’t vanish on an open subset of [0, ∞).

Now note that any real function on [0, ∞) that is both non-negative and non-decreasing has
the following property: if it is non-zero at a particular point 𝑟0, it will remain non-zero for any
subsequent point 𝑟 > 𝑟0. In combination with a unique continuation property, such a function
is then clearly either identically zero or strictly positive on all of (0, ∞). Although 𝜅 is not non-
decreasing, there is some large radius 𝑅 beyond which it is ‘non-decreasing enough’ to draw
the same conclusion on [𝑅,∞).

To make this precise, recall that 𝜅 is continuous, non-negative, and 𝜖-almost non-decreasing at
large radius. With respect to the last property, fix some 𝜖 > 0 with associated radius 𝑅 ≥ 0.
Assume 𝜅(𝑟0) ≠ 0 for some 𝑟0 ∈ [𝑅,∞). Since 𝜅 is 𝜖-almost non-decreasing, the first bullet of
Corollary 3.11 with respect to the bound 0 ≤ 𝑁 provides a strictly positive lower bound for any
larger radius 𝑟 ≥ 𝑟0

𝜅(𝑟) ≥ (
𝑟0
𝑟
)
𝜖
𝜅(𝑟0) ,

which prevents 𝜅 from vanishing at any larger radius, at least as along as 𝑟0 ≠ 0. Note that, if the
mean curvature deviation 𝐷 as defined in equation (3.5) is bounded from below, then there is a
possibly large choice of 𝜖 for which 𝑅 = 0, such that the conclusion holds for any 𝑟0 ∈ (0,∞).

Now assume there is a 𝑡 > 𝑅 at which 𝜅(𝑡) = 0. According to the result above, this can only be
the case if 𝜅 vanishes on the interval [𝑅, 𝑡]. It follows that 𝜙 vanishes on the open set 𝐵𝑡(𝑝) ⧵
𝐵𝑅(𝑝) and consequently is identically zero due to the unique continuation property of (3.1). In
conclusion, we arrive at the following result.

Lemma 3.13. Assume Ric ≥ 0 and that sectional curvature is bounded from below. There is a
radius 𝑅 ≥ 0, such that 𝜅 is either strictly positive on (𝑅,∞) or vanishes on all of [0, ∞). Moreover,
one can choose 𝑅 = 0 if the mean curvature deviation 𝐷 is bounded from below.

1Equation (3.1) is non-linear, while Aronszajn’s theorem pertains to linear differential equations. Assuming, as
we do, that 𝜙 is regular enough, say 𝐶3, we may pass to the linearization of (3.1) and deduce the desired unique
continuation property from there.
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3 Growth of the Higgs Field for Kapustin-Witten Solutions

Remark. It is also instructive to investigate the behaviour of 𝜅 near one of its zeroes 𝜅(𝑡) = 0,
where the growth rate of 𝜅 is controlled by the frequency function 𝑁 and the mean curvature
deviation 𝐷. Observe that if 𝑡 ≠ 0 and 𝑁 is bounded from above on (𝑡, 𝑟0], then the assumptions
𝜅(𝑡) = 0 and 𝜅(𝑟0) ≠ 0 lead to a contradiction. To see this use Corollary 3.10 with the upper
bound 𝑁 ≤ 𝑏, which yields

𝜅(𝑟) ≥ ( 𝑟
𝑟0
)
𝑏+𝑘/2

𝜅(𝑟0) for all 𝑟 ∈ (𝑡, 𝑟0] .

The right hand side is strictly positive and prevents 𝜅 from vanishing at 𝑟0. Thus, a version of
Lemma 3.13 also follows from a proof that 𝑁 is a priori bounded on any interval (𝑡, 𝑟0] in which
𝜅 does not have zeroes.

3.4 Slow Growth and Bounded Frequency

We have previously seen that an upper bound for 𝑁 leads to bounded growth of 𝜅. The goal
of this section is to show that the converse is true when 𝑟 → ∞. More precisely, we show that
whenever 𝜅 grows slower thanO(𝑟𝑎) between two large radii, then 𝑁must have been bounded
from above on an interval leading up to the violation. Note that such violations must occur for
arbitrarily large radii when 𝜅 is not asymptotically bounded below by 𝑟𝑎, which is the situation
of the second alternative in Theorem A. Accordingly, the upcoming lemma and its refinement
in Section 3.5 play a crucial role in the proof of the main theorem.

Lemma 3.14. Assume 𝜅 is not asymptotically zero. Fix an 𝜖 > 0 and denote by 𝑅 the radius
beyond which |𝐷| ≤ 𝜖. If there is a pair of radii 𝑟0 ≤ 𝑟1 in [𝑅,∞) and an 𝑎 ≥ 0 such that

𝜅(𝑟1) ≤ ( 𝑟1𝑟0)
𝑎−𝜖

𝜅(𝑟0), then there exists a radius 𝑡 ∈ [𝑟0, 𝑟1] such that

(i) 𝑁(𝑡) ≤ 𝑎.

Moreover, if 𝑎 < 1 the following holds on the interval [�̃�, 𝑡], where �̃� = max(𝑎
1
2𝑛 𝑡 , 𝑅).

(ii) 𝑁 < √𝑎,

(iii) 𝜅 ≥ 𝑎
√𝑎+𝜖
2𝑛 𝜅(𝑡).

Proof. To see (i) assume to the contrary that 𝑁 > 𝑎 on all of [𝑟0, 𝑟1]. Then the first bullet in
Corollary 3.11 states that

𝜅(𝑟1) > (
𝑟1
𝑟0
)
𝑎−𝜖

𝜅(𝑟0) ,

which violates the assumption that 𝜅(𝑟1) satisfies exactly the opposite inequality. Hence, there
is a 𝑡 ∈ [𝑟0, 𝑟1] at which 𝑁(𝑡) ≤ 𝑎.

For (𝑖𝑖), assume that 𝑎 < 1 and note that then the same is true for 𝑁(𝑡). In that case we conclude
via the second part of Proposition 3.12 that 𝑁 ≤ 1 on [𝑁 (𝑟)1/𝑛 𝑡 , 𝑡]. Since 𝑁(𝑡) ≤ 𝑎 < √𝑎,
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this interval contains as a subinterval [𝑎1/2𝑛 𝑡 , 𝑡]. Then the first part of Proposition 3.12 for
𝑠 ∈ [𝑎1/2𝑛 𝑡 , 𝑡] yields

𝑁(𝑠) ≤ ( 𝑟
𝑠
)
𝑛−𝑘

𝑁(𝑡) ≤ 1
√𝑎

𝑁 (𝑡) ≤ √𝑎 ,

which proves that the same is true on the possibly smaller interval [�̃�, 𝑡]where the lower bound
is determined by �̃� ∶= max(𝑎1/2𝑛 𝑡 , 𝑅).

Finally, (𝑖𝑖𝑖) follows from 𝑁 ≤ √𝑎 on [�̃�, 𝑡] and the second bullet of Corollary 3.11, which
provides the bound

𝜅(𝑡) ≤ (𝑟
𝑡
)
√𝑎+𝜖

𝜅(𝑟) ≤ 𝑎−
√𝑎+𝜖
2𝑛 𝜅(𝑟) ,

where in the last step we used 𝑎1/2𝑛 𝑡 ≤ �̃� ≤ 𝑟 for any 𝑟 ∈ [�̃�, 𝑡].

3.5 The Correlation Tensor

There is an Ω1
𝑝⊗Ω1

𝑝-valued function 𝑇 that refines 𝜅2 to the effect that it resolves the behaviour
of the components of 𝜙. Note that, being a one-form, 𝜙 can be evaluated in particular on the unit
vector field on 𝐵𝑟(𝑝) that is defined by parallel transport of a unit vector 𝑣 ∈ 𝑇𝑝𝑊 along radial
geodesics. The output is a smooth function 𝜙𝑣 on 𝐵𝑟(𝑝) ⧵ Cut(𝑝) that captures the evolution
of the 𝑣-component of 𝜙 along the geodesics emanating from 𝑝. This allows the definition of
what we will call the correlation tensor 𝑇 ∶ 𝑊 4 × (0,∞) → Ω1

𝑝 ⊗ Ω1
𝑝. Its value on 𝑣 , 𝑤 ∈ 𝑇𝑝𝑊 is

defined by

𝑇 (𝑝, 𝑟)(𝑣 , 𝑤) = 1
𝑟𝑛−𝑘−1 ∫𝜕𝐵𝑟(𝑝)

⟨𝜙𝑣, 𝜙𝑤⟩ . (3.8)

Note, in particular, that tr𝑇𝑝𝑊 𝑇 (𝑝, 𝑟) = 𝜅2(𝑝, 𝑟), while the induced quadratic form 𝜅2𝑣 ∶= 𝑇 (𝑣 , 𝑣)
returns a version of the function 𝜅2 that is based on the component 𝜙𝑣. Just like 𝜅𝑣(𝑝, 𝑟) has an
interpretation as the mean value of 𝜙𝑣 on the geodesic sphere, the value of 𝑇 (𝑣 , 𝑤)measures the
correlation between the components 𝜙𝑣 and 𝜙𝑤 on the geodesic sphere; hence its name.

An important observation is that 𝜅𝑣 satisfies essentially the same properties as 𝜅. In fact, if
𝜙 satisfies the main assumption (3.1), then 𝜙𝑣 satisfies the following analogous second order
equation

∇𝐴†∇𝐴𝜙𝑣 +
1
2
⋆ [⋆[𝜙 ∧ 𝜙𝑣] ∧ 𝜙] + Ric(𝜙)(𝑣) + tr𝑇𝑀 ∇𝐴† (𝜙(∇𝑣)) = 0 . (3.9)

As a consequence, the derivative of 𝜅𝑣 comes with its own version of the frequency function
and mean curvature deviation, denoted 𝑁𝑣 and 𝐷𝑣.

𝑑𝜅𝑣
𝑑𝑟

=
𝑁𝑣 + 𝐷𝑣

𝑟
𝜅𝑣
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3 Growth of the Higgs Field for Kapustin-Witten Solutions

The functions 𝑁𝑣 and 𝐷𝑉 are given by essentially the same expressions as before, but with 𝜙
replaced by 𝜙𝑣 as follows.

𝑁𝑣 =
1

𝑟𝑛−𝑘−2𝜅2𝑣
∫
𝐵𝑟
(‖∇𝐴𝜙𝑣‖2 + ‖[𝜙 ∧ 𝜙𝑣]‖

2 + ⟨Ric(𝜙)(𝑣), 𝜙𝑣⟩) (3.10)

𝐷𝑣 =
1

𝑟𝑛−𝑘−1𝜅2𝑣
∫
𝜕𝐵𝑟

(Δ𝑟 − 𝑛 − 𝑘 − 1
𝑟

) ‖𝜙𝑣‖
2

+ tr𝑇 𝜕𝐵𝑟(𝑝) ((∇
𝐴𝜙)(∇𝑣)) + 𝜙(∇†∇𝑣)

Proposition 3.15. Let 𝑣 ∈ 𝑇𝑝𝑊. All previous results hold verbatim when we replace 𝜅 and 𝑁 by
𝜅𝑣 and 𝑁𝑣, respectively.

There are in fact analogous results for the correlation tensor 𝑇. To see this define the (Frobenius)
norm of 𝑇 with respect to the inner product on Ω1

𝑝 ⊗ Ω1
𝑝 induced by the metric, i.e.

‖𝑇 ‖2 = 𝑔𝜇𝜌𝑔𝜈𝜎𝑇𝜇𝜈𝑇𝜌𝜎 .

In this expression the metric is evaluated at the point 𝑝. The norm of 𝑇 satisfies 1
𝑐 𝜅

2 ≤ ‖𝑇 ‖ ≤ 𝜅2

for some constant 𝑐. The tensor 𝑇 is differentiable with respect to 𝑟 and there is then a (possibly
larger) 𝑐 such that the following inequality holds.

‖𝑑𝑇
𝑑𝑟
‖ ≤ 𝑐 𝑁 + 𝐷

𝑟
‖𝑇 ‖

Below we will also use the notation 𝑇 ′ ∶= 𝑑𝑇
𝑑𝑟 .

From now on view 𝑇 as linear map from 𝑇𝑝𝑊 → 𝑇𝑝𝑊. If 𝑇 has zero as an eigenvalue at some ra-
dius 𝑟 and 𝑣 denotes the associated eigenvector, then 𝜅2𝑣 (𝑟) = 0. As a consequence of the unique
continuation property in Lemma 3.13, there is an 𝑅 > 0 such that 𝜅𝑣 must be identically zero if
𝑟 is larger than 𝑅. This in turn implies that the component 𝜙𝑣 vanishes on all of𝑊 𝑛. Therefore,
in the definition of 𝑇 we will restrict ourselves to the subspace of 𝑇𝑝𝑊 that is orthogonal to the
zero eigenspace of 𝑇 at infinity. The correlation tensor then has strictly positive eigenvalues on
an interval (𝑅,∞) for some large enough 𝑅.

Denote by 𝜆 ∶ (0,∞) → ℝ the function that assigns to a radius 𝑟 the smallest eigenvalue of 𝑇 (𝑟).
By the preceding paragraph we may assume that this function is non-zero on all of (𝑅,∞).
Clearly 𝜆 ≤ 𝜅2, as the latter is the trace of 𝑇, so it should be noted that under this assumption 𝜅
is necessarily non-zero on (𝑅,∞).

Since the eigenvalues of a differentiable one-parameter family of matrices may coincide and
cross each other, the smallest eigenvalue function is generally not differentiable, see e.g. [Kat95,
§6.4]. In absence of exact differentiability, the following proposition provides estimates for the
finite differences of 𝜆 and in effect states that 𝜆 is nearly differentiable.
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Proposition 3.16. The finite differences of the smallest-eigenvalue function 𝜆 at any 𝑟 ∈ (0, ∞)
satisfy the following bounds: Denote by 𝑣 a unit length eigenvector of 𝑇 (𝑟) with eigenvalue 𝜆(𝑟)
and let Δ > 0.

𝜆(𝑟 + Δ) − 𝜆(𝑟) ≤ ⟨𝑣 , 𝑇 ′(𝑟) 𝑣⟩ Δ +O(Δ2)

𝜆(𝑟) − 𝜆(𝑟 − Δ) ≥ ⟨𝑣 , 𝑇 ′(𝑟) 𝑣⟩ Δ +O(Δ2)

Moreover, 𝜆 is locally Lipschitz continuous on (0, ∞).

Proof. For any 𝑟 ∈ (0, ∞) denote by 𝑣𝑟 an eigenvector of 𝑇 (𝑟) with eigenvalue 𝜆(𝑟). For Δ ≥ 0
we then have

𝜆(𝑟 + Δ) − 𝜆(𝑟) = ⟨𝑣𝑟+Δ, 𝑇 (𝑟 + Δ)𝑣𝑟+Δ⟩ − ⟨𝑣𝑟, 𝑇 (𝑟)𝑣𝑟⟩ ≤ ⟨𝑣𝑟, (𝑇 (𝑟 + Δ) − 𝑇 (𝑟))𝑣𝑟⟩ .

To get the upper bound on the right hand side note that the smallest eigenvalue at 𝑟 + Δ is
𝜆(𝑟 + Δ), so the evaluation of 𝑇 (𝑟 + Δ) on 𝑣𝑟 can only ever result in the same or larger values.
The upper bound for the forwards finite difference is then a consequence of Taylor’s theorem.
Up to a minus sign the lower bound for the backwards finite difference in the second inequality
follows in exactly the same way.

The Lipschitz property of 𝜆 follows by paying closer attention to the remainder in Taylor’s
theorem. Consider a pair 𝑠 < 𝑟 ∈ (0,∞) and Taylor’s theorem at zeroth order

𝑇 (𝑟) = 𝑇 (𝑠) + 𝑅0(𝑟) .

A standard estimate for the remainder states ‖𝑅0(𝑟)‖ ≤ sup(𝑟 ,𝑠) ‖𝑇
′‖ (𝑟 − 𝑠), as long as the deriv-

ative is bounded on the given interval. As mentioned before, the derivative of 𝑇 at any radius
̃𝑟 is bounded by a multiple of 𝑁+𝐷

̃𝑟 ‖𝑇 ( ̃𝑟 )‖. Recall from Proposition 3.9 that 𝐷 ≤ 𝑘
2 . Also, as was

discussed in the context of the unique continuation property, 𝑁 is bounded on any compact
interval on which 𝜅 is non-zero. It follows that 𝜆 is Lipschitz on any compact [𝑠, 𝑡] ⊂ (0, ∞),
since

|𝜆(𝑟) − 𝜆(𝑠)| ≤ |⟨𝑣𝑠, (𝑇 (𝑟) − 𝑇 (𝑠))𝑣𝑠⟩| ≤ 𝑐 |𝑟 − 𝑠| .

Equivalently (since (0, ∞) is locally compact): 𝑇 is locally Lipschitz.

We can use the preceding proposition to show that, similar to 𝜅, the function 𝜆 is asymptotically
almost non-decreasing. The idea here is that 𝜆 consists of piecewise smooth segments, each
coinciding with a function 𝜅2𝑣 for some 𝑣. Any 𝜅𝑣 is eventually 𝜖-almost non-decreasing, so
an analogues statement must be true for 𝜆. Observe from the proof of Proposition 3.9 that
asymptotic bounds for the mean curvature deviation 𝐷𝑣 only depend on the asymptotics of the
mean curvature Δ𝑟, which is independent of 𝑣. Thus, if 𝐷 is bounded from below by −𝜖, then
the same is true for 𝐷𝑣.

Hence, let 𝑅 be such that |𝐷| ≤ 𝜖 for any larger radius and consider points 𝑟 > 𝑠 ≥ 𝑅. Define an
equidistant partition of the interval [𝑠, 𝑟] = ⋃𝑀−1

𝑘=0 [𝑟𝑘, 𝑟𝑘+1] where 𝑟𝑘 = 𝑠 + 𝑘
𝑀 (𝑟 − 𝑠). Then,
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3 Growth of the Higgs Field for Kapustin-Witten Solutions

denoting by 𝑣𝑘 an eigenvector with eigenvalue 𝜆(𝑟𝑘), the two estimates in Proposition 3.16
imply

𝜆(𝑟) = 𝜆(𝑠) +
𝑀
∑
𝑘=1

(⟨𝑣𝑘, 𝑇 ′(𝑟𝑘) 𝑣𝑘⟩
𝑟 − 𝑠
𝑀

+O ( 1
𝑀2 ) ) .

This can be rewritten by using ⟨𝑣 , 𝑇 ′𝑣⟩ = 𝑑
𝑑𝑟𝜅

2
𝑣 and the fact that each 𝑣𝑘 is an eigenvector with

the smallest eigenvalue at 𝑟𝑘, i.e. 𝜅2𝑣𝑘(𝑟𝑘) = 𝜆(𝑟𝑘).

𝜆(𝑟) = 𝜆(𝑠) + 2
𝑀
∑
𝑘=1

𝜆(𝑟𝑘)
(𝑁𝑣𝑘(𝑟𝑘) + 𝐷𝑣𝑘(𝑟𝑘))

𝑟𝑘
𝑟 − 𝑠
𝑀

+O ( 1
𝑀
) (3.11)

Since 𝑁𝑣𝑘 ≥ 0 and |𝐷𝑣𝑘 | ≤ 𝜖 we find that 𝜆 satisfies the following inquality on [𝑅,∞)

𝜆(𝑟) − 𝜆(𝑠)
𝑟 − 𝑠

≥ −2𝜖
𝑀

𝑀
∑
𝑘=1

𝜆(𝑟𝑘)
𝑟𝑘

+O ( 1
𝑀
) .

This is the finite difference analogue of the differential inequality satisfied by 𝜅 when it is 𝜖-
almost non-decreasing. We will correspondingly say that 𝜆 is 𝜖-almost non-decreasing when it
satisfies this inequality.

Remark. To make the relation to an 𝜖-almost non-decreasing function as given in Definition 3.8
more apparent, observe that the right hand side of the last inequality contains the arithmetic
mean of the function 𝜆/𝑟 for the given partition of [𝑠, 𝑟]. If one takes 𝑀 → ∞ this expression
approaches the mean value of 𝜆/𝑟 on the given interval. Seeing that 𝜆 is continuous, it is then
a consequence of the (integral) mean value theorem that there is a point 𝑡 ∈ [𝑠, 𝑟] at which the
right hand side is given by 𝜆(𝑡)/𝑡, such that

𝜆(𝑟) − 𝜆(𝑠)
𝑟 − 𝑠

≥ −
2𝜖𝜆(𝑡)

𝑡
.

If 𝜆 is differentiable at 𝑟, the limit 𝑠 → 𝑟 exactly recovers the differential inequality of a 2𝜖-almost
non-decreasing function.

The fact that 𝜆 is asymptotically 𝜖-almost non-decreasing allows us to extend Lemma 3.14 in
such a way that it also provides bounds for 𝑁𝑣 and 𝜅𝑣, where 𝑣 is a unit eigenvector of 𝑇 (𝑡)
associated to the smallest eigenvalue 𝜆(𝑡) at some distinguished 𝑡 ∈ [𝑟0, 𝑟1]. This is the content
of the next lemma.

Lemma 3.17. Fix 𝜖 > 0 and denote by 𝑅 the radius beyond which |𝐷| ≤ 𝜖. Let 𝑟0, 𝑟1 ∈ [𝑅,∞)

be a pair of radii such that 𝑟1 is larger than any of 4𝑟0, (𝜅2(𝑟0)/𝜆(𝑟0))
1
2𝑎 𝑟0, and 𝑟1/(1−100√𝑎)0 . If

𝜅(𝑟1) ≤ ( 𝑟1𝑟0)
𝑎−𝜖

𝜅(𝑟0) and 𝑎 is sufficiently small (e.g. 𝑎1/4𝑛 < 0.1), then there exists a radius 𝑡 ∈

[𝑟1−100√𝑎1 , 𝑟1] of the following significance:

Let 𝑣 be an eigenvector of 𝑇 (𝑡) associated to the smallest eigenvalue 𝜆(𝑡) and set �̃� ∶= max (𝑎
1
8𝑛 𝑡 , 𝑅).

On all of [�̃�, 𝑡]
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(i) 𝑁 ≤ 𝑎1/4 and 𝜅 ≥ 𝑎
𝑎1/4+𝜖

4𝑛 𝜅(𝑡)

(ii) 𝑁𝑣 ≤ 𝑎1/4 and 𝜅𝑣 ≥ 𝑎
𝑎1/4+𝜖

4𝑛 𝜅𝑣(𝑡)

Proof. Let 𝜖 > 0, denote by 𝑅 the radius beyond which |𝐷| ≤ 𝜖, and assume √𝑎 < 1. The proof
proceeds by establishing the existence of regions in [𝑟0, 𝑟1] where both 𝑁 and 𝑁𝑣 are less or
equal to √𝑎 at the same time. The stated bounds then follow from Lemma 3.14 (with 𝑎 replaced
by √𝑎 everywhere).

First, regarding the condition 𝑁 ≤ √𝑎, observe that the set

𝐼 = { 𝑟 ∈ [log 𝑟0, log 𝑟1] ∣ 𝑁 (exp 𝑟) > √𝑎 }

makes up at most √𝑎 of the length of the surrounding interval. To see this, write 𝐼 = ∐(𝑎𝑘, 𝑏𝑘)
and then go from 𝜅(𝑟0) to 𝜅(𝑟1) by iteratively using Corollary 3.11, with bounds 𝑁 > √𝑎 on each
(𝑎𝑘, 𝑏𝑘) and 𝑁 ≥ 0 on the intervals [𝑏𝑘, 𝑎𝑘+1] in between. This leads to

𝜅(𝑟1) ≥ (
𝑟1
𝑟0
)
−𝜖

∏
𝑘

(
𝑏𝑘
𝑎𝑘
)
√𝑎

𝜅(𝑟0) .

This inequality is only compatible with the assumption that 𝜅(𝑟1) ≤ (𝑟1/𝑟0)𝑎−𝜖𝜅(𝑟0) if

∑
𝑘
(log 𝑏𝑘 − log 𝑎𝑘) ≤ √𝑎 (log 𝑟1 − log 𝑟0) .

Equivalently, if |𝐼 | ≤ √𝑎 |[log 𝑟0, log 𝑟1]|.

An analogous statement for points that satisfy the condition 𝑁𝑣 ≤ √𝑎 makes use of a slightly
longer argument. As before, we set out to investigate the measure of the set on which 𝑁𝑣 > √𝑎.
Denote by 𝐿 the largest integer such that 2𝐿𝑟0 < 𝑟1 and consider the sequence {2ℓ𝑟0}ℓ=0,1,…,𝐿−1.
For each pair of neighbours in this sequence we can apply equation (3.11) in the form

𝜆(2𝑠) ≥ 𝜆(𝑠) + 1
𝑀

𝑀
∑
𝑘=1

𝜆(𝑠𝑘) (𝑁𝑣𝑘(𝑟𝑘) − 𝜖) +O ( 1
𝑀
) , (3.12)

where 𝑠𝑘 = (1+𝑘/𝑀) 𝑠 and 𝑣𝑘 denotes an eigenvector of 𝑇 (𝑠𝑘)with eigenvalue 𝜆(𝑠𝑘). Next, note
that Corollary 3.11 with the lower bound 𝑁 ≥ 0 provides

𝜆(𝑠𝑘) = 𝜅2𝑣𝑘(𝑠𝑘) ≥ (
𝑠𝑘
𝑠
)
−2𝜖

𝜅2𝑣𝑘(𝑠) ≥
1
4
𝜆(𝑠) .

Here the last inequality holds by virtue of 𝑠𝑘/𝑠 < 2 and because 𝜆(𝑠) is the smallest eigenvalue
of 𝑇 at 𝑠, such that 𝜅2𝑣𝑘(𝑠) = 𝑇 (𝑠)(𝑣𝑘, 𝑣𝑘) can’t be smaller. Also introduce for the moment the
notation ⟨𝑁𝑣⟩ℓ for the average of {𝑁𝑣𝑘(𝑠𝑘)}𝑘=1,…,𝑀 in the interval [2ℓ𝑟0, 2ℓ+1𝑟0]. The inequality in
(3.12) becomes

𝜆(2ℓ+1𝑟0)
𝜆(2ℓ𝑟0)

≥ 1 + 1
4
(⟨𝑁𝑣⟩ℓ − 𝜖) +O ( 1

𝑀
) .
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In the last of these pairings we can use 𝑟1 as endpoint of the interval instead of 2𝐿𝑟0 without
changing the inequality, since 𝑟1 − 2𝐿−1𝑟0 > 2𝐿−1𝑟0 and 𝑟1 ≤ 2𝐿+1𝑟0. Hence, the product of all
these ratios yields

𝜆(𝑟1)
𝜆(𝑟0)

≥
𝐿−1
∏
ℓ=0

(1 +
⟨𝑁𝑣⟩ℓ − 𝜖

4
+O ( 1

𝑀
)) .

Let 𝑓 denote the fraction of {0, 1, … , 𝐿 − 1} for which ⟨𝑁𝑣⟩ℓ +O(1/𝑀) > √𝑎. Then the product
simplifies to

𝜆(𝑟1)
𝜆(𝑟0)

≥ (1 + √𝑎 − 𝜖
4

)
𝑓 𝐿

(1 − 𝜖
4
+O ( 1

𝑀
))

(1−𝑓 )𝐿
.

On the left use that 𝜆(𝑟1) ≤ 𝜅2(𝑟1) ≤ ( 𝑟1𝑟0)
2(𝑎−𝜖)

𝜅2(𝑟0) to replace 𝜆(𝑟1). Upon taking logarithms
on both sides the resulting inequality reads

2(𝑎 − 𝜖) log (
𝑟1
𝑟0
) + log (

𝜅2(𝑟0)
𝜆(𝑟0)

) ≥ 𝑓 𝐿 log (1 + √𝑎 − 𝜖
4

) + (1 − 𝑓 )𝐿 log (1 − 𝜖
4
+O ( 1

𝑀
)) .

This can be simplified in several ways: (1) Because 2𝐿+1𝑟0 > 𝑟1 and as long as we make sure that
𝑟1 ≥ 4𝑟0 we can assume 𝐿 > 1

2 log 𝑟1/𝑟0. (2) Since √𝑎 − 𝜖 < 1 the term log (1 + (√𝑎 − 𝜖)/4) is no
smaller than (√𝑎 − 𝜖)/8. (3) By taking 𝑀 large, we can make sure that log (1 − 𝜖/4 +O(1/𝑀))
is larger than −𝜖. Plugging everything in and solving for 𝑓 leads to the following upper bound

𝑓 < 32√𝑎 (1 +
log (𝜅2(𝑟0)/𝜆(𝑟0))
2𝑎 log (𝑟1/𝑟0)

) .

In particular, if 𝑟1 > (𝜅2(𝑟0)/𝜆(𝑟0))
1
2𝑎 𝑟0 we find that 𝑓 < 64√𝑎.

Consider the subset 𝐽 ⊂ [log 𝑟0, log 𝑟1] that consists of those intervals [log 2ℓ𝑟0, log 2ℓ+1𝑟0] on
which ⟨𝑁𝑣⟩ℓ is larger than √𝑎. The inequality for 𝑓 now tells us that the length of 𝐽 can be at
most 64√𝑎 |[log 𝑟1, log 𝑟0]|. This means that the union of 𝐽 with the interval 𝐼 from the first part
has bounded measure

|𝐼 ∪ 𝐽 | < 65√𝑎 |[log 𝑟0, log 𝑟1]| .

We conclude that whenever √𝑎 is sufficiently small (for example √𝑎 < 0.01), then there exists a

point log(𝑡1) that is neither in 𝐼 nor in 𝐽. In fact, if 𝑟0 < 𝑟1−100√𝑎1 , we can moreover find a 𝑡1 that
is larger than 𝑟1−100√𝑎1 , since the measure of [𝑟1−100√𝑎1 , 𝑟1] is still larger than 𝐼 and 𝐽 combined.

Choose and fix a 𝑡1 with these properties. On the one hand this means that 𝑁(𝑡1) ≤ √𝑎 and

Lemma 3.14 implies that on the interval [�̃�1, 𝑡1] we have 𝑁 < 𝑎1/4 and 𝜅 ≥ 𝑎
𝑎1/4+𝜖

4𝑛 𝜅(𝑟). Here, �̃�1
is the larger of 𝑎1/4𝑛𝑡1 and 𝑅. On the other hand it means that 𝑡1 is from an interval [2ℓ𝑟0, 2ℓ+1𝑟0]
on which the average value ⟨𝑁 ⟩ℓ is less than √𝑎. Consequently, the partition of that interval

contains a radius 𝑡2 at which 𝑁𝑣(𝑡2) < √𝑎. We again deduce that 𝑁𝑣 < 𝑎1/4 and 𝜅𝑣 ≥ 𝑎
𝑎1/4+𝜖

4𝑛 𝜅𝑣(𝑟)
on [�̃�2, 𝑡2], where �̃�2 is the larger of 𝑎1/4𝑛𝑡2 and 𝑅.
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Finally, [�̃�1, 𝑡1] and [�̃�2, 𝑡2] intersect whenever 𝑎 is small enough. To see this explicitly, assume
w.l.o.g that 𝑡1 > 𝑡2 and note that 𝑡1/𝑡2 ≤ 2 since both are contained in an interval of the form
[2ℓ𝑟0, 2ℓ+1𝑟0]. It follows that �̃�1/𝑡2 < 2𝑎1/4𝑛, which is less than one if for example 𝑎1/4𝑛 < 0.1.
The upper bound of 0.1 is convenient, because we then also have �̃�1 < 𝑎1/8𝑛𝑡2, such that choos-
ing 𝑡 = 𝑡2 and �̃� = max(𝑎1/8𝑛𝑡 , 𝑅) concludes the proof.

3.6 A Priori Bounds

The final ingredient for the proof of Theorem A are pointwise a priori bounds for ‖𝜙‖ in terms
of 𝜅, as well as estimates for the volume of the subsets of 𝐵𝑟 on which ‖𝜙‖ is small compared to
that upper bound. These are the promised analogues of the mean value inequality.

The proof relies mainly on the standard approach to the mean-value inequality and the fact
that according to Proposition 3.9, 𝜅 can’t decrease too rapidly at infinity. However, due to the
asymptotic nature of the latter statement and the related lack of control in the interior, these
bounds only hold for points that lie in some large spherical geodesic shell surrounding 𝑝.

Below we use the notation 𝑆(𝑟1, 𝑟2) for the closed spherical geodesic shell based at 𝑝 with inner
radius 𝑟1 and outer radius 𝑟2, i.e. all points that satisfy 𝑟1 ≤ 𝑑(𝑝, 𝑥) ≤ 𝑟2. Moreover, we write
𝑓Ω𝑖 ∶=

volΩ𝑖
volΩ for the fraction that a subset Ω𝑖 occupies within its corresponding surrounding

set Ω.

The following result holds verbatim if we replace 𝜙, 𝜅 and 𝑁 by the versions 𝜙𝑣, 𝜅𝑣 and 𝑁𝑣
associated to a unit vector 𝑣 ∈ 𝑇𝑝𝑊.

Lemma 3.18. Let 𝑊 𝑛 be an ALX𝑘 space of dimension 𝑛, 𝑝 ∈ 𝑊 𝑛, Ric ≥ 0, and assume (𝐴, 𝜙) is
a solution of (3.1). For any 𝜖 ∈ (0, 1/2) there exists a radius 𝑅 ≥ 0 and constants 𝑐𝑖 > 1 that only
depend on 𝑛 and 𝑘, such that for sufficiently large 𝑟 ≥ 𝑅 the following holds.

(i) ‖𝜙(𝑥)‖ ≤ 𝑐0
𝜅(𝑟)

√vol𝑋
for any 𝑥 ∈ 𝑆 (𝑅 + 𝑟−𝑅

8 , 𝑟 − 𝑟−𝑅
8 ),

(ii) Let 𝑡 ∈ [𝑅+ 6
8 (𝑟 −𝑅), 𝑅+ 7

8 (𝑟 −𝑅)] and assume that 𝑁 ≤ 1 on [𝑡, 𝑟]. Then the subsetΩ1 ⊆ 𝜕𝐵𝑡
on which ‖𝜙(𝑥)‖ ≤ 1

2
𝜅(𝑟)

√vol𝑋
has relative volume 𝑓Ω1 ≤ 𝑐1𝜖 + 𝑐2√𝑁 .

Proof. Throughout the proof we fix some 𝜖 ∈ (0, 1/2) and choose 𝑅 to be some large enough
radius, such that on the one hand 𝜅 is 𝜖-almost non-decreasing as provided by Proposition 3.9
and on the other hand vol𝐵𝑟 ≤ (1 + 𝜖) vol𝑋 𝑟𝑛−𝑘 for any 𝑟 ≥ 𝑅 as in Proposition 3.2. Assume
for now simply that 𝑟 > 𝑅 is some fixed outer radius. We will collect conditions on 𝑟 as we go
and will find that they can always be met by choosing some larger 𝑟 to start with.

ad (i)

In this part of the proof we use a specific bump function 𝛽 on 𝑊 4 with compact support inside
the geodesic shell 𝑆(𝑅, 𝑟), constructed as follows. Denote by 𝛽ℝ a non-increasing function on
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ℝ that is equal to 1 on (−∞, 1416) and equal to 0 on (1516 , ∞). Use this to define a corresponding
function on 𝑊 4 by the rule

𝛽(𝑥) = 𝛽ℝ ( |
𝑑(𝑝, 𝑥) − 𝑟+𝑅

2
𝑟−𝑅
2

| ) .

The function 𝛽 vanishes on the inner ball 𝐵𝑅+ 𝑟−𝑅
32
(𝑝), is equal to 1 on the geodesic shell with

inner radius 𝑅 + 𝑟−𝑅
16 and outer radius 𝑟 − 𝑟−𝑅

16 , and is zero again outside of 𝐵𝑟− 𝑟−𝑅
32
(𝑝). Note in

particular that 𝛽 and its derivatives have compact support in the interior of 𝑆(𝑅, 𝑟). Furthermore,
the gradient and Laplacian of 𝛽 are bounded as follows

|𝑑𝛽| ≤ 32
(𝑟 − 𝑅)

|Δ𝛽| ≤ 32
(𝑟 − 𝑅)2

.

Denote by 𝐺𝑥 the positive Dirichlet Green’s function of the Laplacian on 𝐵𝑟(𝑝) based at 𝑥 ∈
𝐵𝑟(𝑝). Recall from Lemma 3.7 that, due to the volume growth of𝑊 𝑛, for large enough distances
the Green’s function and its derivative are bounded from above as follows

𝐺𝑥(𝑦) ≤
(1 + 𝜖)𝑐

vol𝑋 𝑑(𝑥, 𝑦)𝑛−𝑘−2
|𝑑𝐺𝑥(𝑦)| ≤

(1 + 𝜖)𝑐
vol𝑋 𝑑(𝑥, 𝑦)𝑛−𝑘−1

,

where 𝑐 depends only on the dimension 𝑛.

With that in mind we now note that contracting equation (3.1) with ⟨⋅, 𝜙⟩ leads to

1
2
Δ𝐵 ‖𝜙‖

2 + ‖∇𝐴𝜙‖2 + ‖[𝜙 ∧ 𝜙]‖2 + ⟨Ric 𝜙, 𝜙⟩ = 0 , (3.13)

where Δ𝐵 = ∇†∇ is the Bochner Laplacian associated to the Levi-Civita connection. This equa-
tion impliesΔ𝐵 ‖𝜙‖

2 ≤ 0, so the function ‖𝜙‖2 is subharmonic2 and accordingly satisfies a version
of the mean-value inequality. To see this directly, multiply (3.13) by 𝛽𝐺𝑥 and integrate over
𝐵𝑟(𝑝)

∫
𝐵𝑟(𝑝)

𝛽𝐺𝑥 (Δ𝐵 ‖𝜙‖
2 + ‖∇𝐴𝜙‖2 + ‖[𝜙 ∧ 𝜙]‖2 + ⟨Ric 𝜙, 𝜙⟩) = 0 .

Upon integration by parts in the first term, using that 𝛽𝐺𝑥 = 0 on 𝜕𝐵𝑟(𝑝), and assuming that 𝑥
is an element of the geodesic shell on which 𝛽 = 1, we find

‖𝜙(𝑥)‖2 + ∫
𝐵𝑟(𝑝)

(𝑔−1(𝑑𝛽, 𝑑𝐺𝑥) + (Δ𝐵𝛽)𝐺𝑥) ‖𝜙‖
2

+ ∫
𝐵𝑟(𝑝)

𝛽𝐺𝑥 (‖∇𝐴𝜙‖2 + ‖[𝜙 ∧ 𝜙]‖2 + ⟨Ric 𝜙, 𝜙⟩) = 0 .

Since Ric ≥ 0, the last term on the left hand side is non-negative, so the equation provides the
following estimate.

‖𝜙(𝑥)‖2 ≤ |∫
𝐵𝑟(𝑝)

(𝑔−1(𝑑𝐺𝑥, 𝑑𝛽) + 𝐺𝑥Δ𝐵𝛽) ‖𝜙‖
2|

2Note that the Bochner and connection Laplacian differ by a sign: Δ𝐵 = − tr∇2.
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Assume 𝑥 ∈ 𝑆(𝑅 + 𝑟−𝑅
8 , 𝑟 − 𝑟−𝑅

8 ), such that the distance from 𝑥 to the support of 𝑑𝛽 and Δ𝛽
is greater or equal to 𝑟−𝑅

16 . Furthermore, make 𝑟 large enough that the previously mentioned

bounds on 𝐺𝑥(𝑦) hold for all points with distance 𝑑(𝑥, 𝑦) ≥ 𝑟−𝑅
16 . Then, using the Cauchy-

Schwarz inequality on the first term and the estimates for 𝐺, |𝑑𝐺|, |𝑑𝛽| and |Δ𝐵 𝛽|, we arrive
at

‖𝜙(𝑥)‖2 ≤
32(1 + 𝜖)𝑐

vol𝑋 (𝑟 − 𝑅)𝑛−𝑘 ∫𝑆(𝑅,𝑟)
‖𝜙‖2 .

As final step use that in the given domain of integration 𝜅 is 𝜖-almost non-decreasing. Hence,
Corollary 3.11 with 𝑁 ≥ 0 provides the estimate 𝜅(𝑡) ≤ ( 𝑟𝑡 )

𝜖
𝜅(𝑟) for all 𝑡 ≤ 𝑟. The integral in

the last equation is thus bounded from above by

∫
𝑆(𝑅,𝑟)

‖𝜙‖2 = ∫
𝑟

𝑅
𝑑𝑡 𝑡𝑛−𝑘−1𝜅2(𝑡) ≤ 𝑟𝑛−𝑘

𝑛 − 𝑘 − 2𝜖
𝜅2(𝑟) .

Plugging this in, assuming 𝑟 > 2𝑅, and using 𝜖 < 1/2 leads to

‖𝜙(𝑥)‖2 ≤ 2𝑛−𝑘+6𝑐
(𝑛 − 𝑘 − 1) vol𝑋

𝜅2(𝑟) ≤ 𝑐20
𝜅2(𝑟)
vol𝑋

.

We note that 𝑐0 only depends on the dimension of𝑊 𝑛 and the dimension of the fibers at infinity.

ad (ii)

Fix some radius 𝑡 ∈ [𝑅+ 6
8 (𝑟 −𝑅), 𝑅+ 7

8 (𝑟 −𝑅)] and consider the associated geodesic sphere 𝜕𝐵𝑡.
We are interested in the volume of the subset of 𝜕𝐵𝑡 where ‖𝜙‖ is small compared to the bound
in (i).

Hence, write Ω1 ⊆ 𝜕𝐵𝑡 for the points where ‖𝜙(𝑥)‖ ≤
𝜅(𝑟)

2√vol𝑋
. Also introduce Ω2 ⊆ 𝜕𝐵𝑡 to denote

the set of points at which ‖𝜙(𝑥)‖ ≤ (1 + √𝑁(𝑟)) 𝜅(𝑟)
√vol𝑋

. Since 𝑁 ≥ 0, Ω2 contains Ω1.

Split up the contributions to 𝜅2(𝑡) that arise from integration over Ω1, Ω2 ⧵ Ω1, and their com-
plement Ω3 = 𝜕𝐵𝑡 ⧵ Ω2.

𝜅2(𝑡) = 1
𝑡𝑛−𝑘−1

(∫
Ω1

‖𝜙‖2 + ∫
Ω2⧵Ω1

‖𝜙‖2 + ∫
Ω3

‖𝜙‖2)

On Ω1 the integrand is bounded by 𝜅2(𝑡)
4 vol𝑋 , on Ω2 ⧵ Ω1 we use (1 + √𝑁)2 𝜅

2(𝑟)
vol𝑋 , and the integral

over Ω3 can’t be larger than 𝜅2(𝑡) in any case.

With regard to the last of these bounds we now make use of the fact that 𝜅 is almost non-
decreasing, which allows us to compare 𝜅2(𝑡) to 𝜅2(𝑟). To that end consider the derivative of
𝜅2.

𝑑𝜅2

𝑑𝑟
|
̃𝑟
= 2𝑁 + 𝐷

̃𝑟
𝜅2( ̃𝑟 ) ≥ −2𝜖 ̃𝑟1+2𝜖

𝑟2+2𝜖
𝜅2(𝑟)
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For the estimate on the right hand side we have used on the one hand that 𝑁 ≥ 0 and 𝐷 ≥ −𝜖,
and on the other hand that 𝑁 ≤ 1 such that Corollary 3.11 implies that 𝜅2( ̃𝑟 ) ≥ ( ̃𝑟/𝑟)2+2𝜖𝜅2(𝑟).
Integration from 𝑡 to 𝑟 leads to

𝜅2(𝑡) ≤ 𝜖
1 + 𝜖

(2 − ( 𝑡
𝑟
)
2+2𝜖

) 𝜅2(𝑟) .

Since 𝑡 ≤ 𝑟, we may as well use the somewhat simpler statement 𝜅2(𝑡) ≤ 2𝜖𝜅2(𝑟).

Plugging in the corresponding bounds on each of the Ω𝑖, writing volΩ𝑖 = 𝑓Ω𝑖 vol 𝜕𝐵𝑡, 𝑓Ω2 ≤ 1,
and using vol 𝜕𝐵𝑡 ≤ (1 + 𝜖) vol𝑋𝑡𝑛−𝑘−1 thus leads to

𝜅2(𝑡) ≤ (1
4
𝑓Ω1 + (1 − 𝑓Ω1) (1 + √𝑁(𝑟) )2 + 2𝜖) (1 + 𝜖)𝜅2(𝑟)

≤ (1 + 2𝜖 − 3
4
𝑓Ω1) (1 + √𝑁(𝑟) )2(1 + 𝜖)𝜅2(𝑟) ,

which can be rearranged to

𝑓Ω1 ≤
4
3
(1 + 2𝜖 −

𝜅2(𝑡)

(1 + √𝑁(𝑟) )2 (1 + 𝜖)𝜅2(𝑟)
) . (3.14)

To make this expression more useful we’ll now also need a lower bound for 𝜅2(𝑡) in terms of
𝜅2(𝑟). This can again be achieved by considering the derivative of 𝜅2. In this case we observe
that the following function is non-decreasing in ̃𝑟.

̃𝑟 ↦ ̃𝑟𝑛−𝑘−2𝜅2( ̃𝑟 )𝑁 ( ̃𝑟 ) = ∫
𝐵 ̃𝑟(𝑝)

‖∇𝐴𝜙‖2 + ‖[𝜙 ∧ 𝜙]‖2 + ⟨Ric(𝜙), 𝜙⟩

Moreover, since 𝜅 is 𝜖-almost non-decreasing for ̃𝑟 > 𝑅, we have |𝐷| ≤ 𝑁 + 𝜖. This yields the
following upper bound for the derivative of 𝜅2:

𝑑𝜅2

𝑑𝑟
|
̃𝑟
= 2𝑁 + 𝐷

̃𝑟
𝜅2( ̃𝑟 ) ≤ 4 𝑟𝑛−𝑘−2

̃𝑟𝑛−𝑘−1
𝑁(𝑟)𝜅2(𝑟) + 2𝜖 𝑟2𝜖

̃𝑟1+2𝜖
𝜅2(𝑟) .

Integration3 from 𝑡 to 𝑟 now leads to

𝜅2(𝑟) − 𝜅2(𝑡) ≤ 4
𝑛 − 𝑘 − 2

(𝑟
𝑡
)
𝑛−𝑘−2

𝑁(𝑟)𝜅2(𝑟) + ((𝑟
𝑡
)
2𝜖
− 1) 𝜅2(𝑟) .

Recall that 𝑟/𝑡 < 4/3 and observe that thus (𝑟/𝑡)2𝜖 − 1 < 𝜖 for any choice of 𝜖 ∈ (0, 1/2). It
follows that

𝜅2(𝑡) ≥ (1 − 𝜖 − 𝑐𝑁 (𝑟)) 𝜅2(𝑟) ,

where the constant 𝑐 only depends on 𝑛 and 𝑘. Plugging this lower bound for 𝜅2(𝑡) into (3.14)
and using that 𝜖, 𝑁 < 1, we conclude that

𝑓Ω1 ≤ 𝑐2𝜖 + 𝑐3√𝑁(𝑟) ,

where 𝑐2 and 𝑐3 only depend on 𝑛 and 𝑘.
3For notational simplicity we assume here that 𝑘 ≠ 𝑛−2. However, the result holds similarly for the case 𝑘 = 𝑛−2,
where the only difference is that upon integration the formulas contain logarithms.
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3.7 Proof of Taubes’ Dichotomy on ALX spaces

We are now in a position to prove Theorem A. As advertised before, the arguments are in
complete analogy to Taubes’ original proof [Tau17a].

Theorem 3.19. Let 𝑊 𝑛 be an ALX𝑘 gravitational instanton of dimension 𝑛 ≥ 2 with asymptotic
fibers of dimension 𝑘 ≤ 𝑛 − 1 and fix a point 𝑝 ∈ 𝑊 𝑛. Assume (𝐴, 𝜙) satisfies the second-order
differential equation (3.1). Then

(i) either there is an 𝑎 > 0 such that lim inf𝑟→∞
𝜅(𝑟)
𝑟𝑎 > 0,

(ii) or [𝜙 ∧ 𝜙] = 0.

Proof. It is sufficient to consider the case where 𝜅 is not asymptotically zero, since otherwise 𝜅 –
and thus 𝜙 – vanish identically due to the unique continuation property of Lemma 3.13. By the
same reasoning one also finds that 𝜙𝑣 = 0 whenever 𝜅𝑣 has compact support. As a consequence
it is sufficient to consider the components of 𝜙 that are in the complement of the zero eigenspace
of 𝑇 at infinity, such that the smallest eigenvalue function satisfies 𝜆 > 0 at large enough radii
(see the related discussion in Section 3.5). Also, note that when only a single component 𝜙𝑣 is
non-zero at infinity, then [𝜙 ∧ 𝜙] = 0 everywhere. Hence, we assume from now on that 𝑇 acts
on a vector space of dimension at least 2.

To prove the dichotomy stated in the theorem, assume that 𝜅 is not asymptotically bounded
below by any positive power of 𝑟. This means that for any small 𝑎 > 0 (say, for example,
small enough that 𝑎1/8𝑛 < 0.1) we can do the following: Set 𝜖 = 𝑎/2 and let 𝑅 > 1 be a radius
beyond which |𝐷| ≤ 𝜖, vol𝐵𝑟(𝑝) ≤ (1 + 𝜖) vol𝑋𝑟𝑛−𝑘, and such that the smallest eigenvalue
function 𝜆 > 0 on all of (𝑅,∞). Then we can find an arbitrarily large 𝑟1 ∈ [𝑅,∞) such that
𝜅(𝑟1) ≤ ( 𝑟1𝑅 )

𝑎−𝜖
𝜅(𝑅). In particular we may choose some 𝑟1 that is larger than each of the four

numbers 4𝑅, (𝜅2(𝑅)/𝜆(𝑅))1/2𝑎 𝑅, 𝜅(𝑅)−1/𝑎, and 𝑅1/(1−100√𝑎). We are then in the situation in
which we can rely on Lemma 3.17. The arguments in the upcoming six parts show that this
leads to a contradiction if 𝑁 ≠ 0 and 𝑎 is too small.

Part 1 Recall that Lemma 3.17 provides the existence of a distinguished radius

𝑡 ∈ [𝑟1−100√𝑎1 , 𝑟1] ⊆ [𝑅, 𝑟1] .

In this part we collect our previous results and slightly expand on our knowledge about the
eigenvalues of 𝑇 at and below 𝑡.

Write 𝑢 and 𝑣 for unit eigenvectors associated to the largest and smallest eigenvalue of 𝑇 (𝑡),
respectively. Recall that these eigenvalues coincide at 𝑡 with the values of 𝜅2𝑢(𝑡) and 𝜅2𝑣 (𝑡), so
they satisfy 𝜅2𝑣 (𝑡) ≤ 𝜅2𝑢(𝑡). If 𝜅2𝑣 (𝑡) ≠ 𝜅2𝑢(𝑡) the eigenvectors 𝑣 and 𝑢 are guaranteed to be ortho-
gonal. Otherwise 𝑇 (𝑡) is a multiple of the identity matrix and we choose an arbitrary pair of
orthonormal vectors.
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Denote by �̃� the larger of 𝑎
1
8𝑛 𝑡 and 𝑅. Lemma 3.17 establishes that on the interval 𝐼 ∶= [�̃�, 𝑡] the

frequency functions 𝑁 and 𝑁𝑣 are bounded from above by 𝑎1/4 and provides associated lower
bounds for 𝜅 and 𝜅𝑣. As we show now, analogous estimates hold for 𝑁𝑢 and 𝜅𝑢.

First observe that the largest eigenvalue satisfies 𝜅2𝑢(𝑡) ≥
1
𝑛𝜅

2(𝑡) since 𝜅2 is the trace of 𝑇. From
this and the definition of 𝑁 and its 𝑁𝑢 version (cf. Proposition 3.9 and (3.10), respectively) it
follows that 𝑁𝑢(𝑡) ≤ 𝑛𝑁 (𝑡). As a consequence 𝑁𝑢 ≤ 𝑛𝑎1/4 and, as long as we make sure that
𝑎1/4 < 1/𝑛, a small variation of the second part of Proposition 3.12 finds that 𝑁𝑢 ≤ 𝑎1/8 on all of
𝐼. Since𝑁𝑢 is bounded from above, we can now deduce bounds on 𝜅𝑢 as usual via Corollary 3.11.

𝜅𝑢 ≥ 𝑎
𝑎1/8+𝜖

8𝑛 𝜅𝑢(𝑡) .

In the current situation with 𝜖 = 𝑎/2 this bound and its analogue for 𝜅𝑣 can be simplified

considerably. For that observe that 𝑎𝜖 = 𝑎𝑎/2 is certainly larger than 1/2, and similarly 𝑎
𝑎1/4

4𝑛 >

(1/2)
4
4𝑛 > 1/2 and 𝑎

𝑎1/8

8𝑛 > 1/2. Applying these observations to the bounds for 𝜅𝑢 and 𝜅𝑣 results
in the main conclusions of this part.

In conclusion, the following estimates hold on all of 𝐼 = [�̃�, 𝑡]:

• 𝑁𝑣 ≤ 𝑎1/4 and 𝜅𝑣 ≥
1
4𝜅𝑣(𝑡)

• 𝑁𝑢 ≤ 𝑎1/8 and 𝜅𝑢 ≥
1
4𝜅𝑢(𝑡)

Part 2 We now focus on the upper half of 𝐼 = [�̃�, 𝑡] and investigate the values of the correl-
ation tensor 𝑇 evaluated on the two unit eigenvectors 𝑢 and 𝑣 from Part 1. Since 𝑢 and 𝑣 are
orthogonal, we know that 𝑇 (𝑡)(𝑢, 𝑣) = 0. As a result, for any 𝑠 ∈ [ �̃�+𝑡2 , 𝑡] the norm of 𝑇 (𝑢, 𝑣) is
bounded by

|𝑇 (𝑠)(𝑢, 𝑣)| ≤ ∫
𝑡

𝑠
|
𝑑𝑇 (𝑢, 𝑣)

𝑑𝑟
| 𝑑𝑟 .

The derivative of 𝑇 follows from differentiation of (3.8) and works out in complete analogy to
the derivative of 𝜅 in Proposition 3.9. In particular, upon use of equation (3.9), we find

𝑑𝑇 (𝑢, 𝑣)
𝑑𝑟

= 1
𝑟𝑛−𝑘−1 ∫𝐵𝑟

( ⟨∇𝐴𝜙𝑢, ∇𝐴𝜙𝑣⟩ + ⟨[𝜙 ∧ 𝜙𝑢], [𝜙 ∧ 𝜙𝑣]⟩ + ⟨Ric(𝜙)(𝑢), 𝜙𝑣⟩ + ⟨𝜙𝑢,Ric(𝜙)(𝑣)⟩)

+ 1
𝑟𝑛−𝑘−1 ∫𝜕𝐵𝑟

(Δ𝑟 − 𝑛 − 𝑘 − 1
𝑟

) ⟨𝜙𝑢, 𝜙𝑣⟩ .

At this point we assume that𝑊 𝑛 is Ricci flat since then the terms that involve Ric 𝜙 vanish and
we can use the Cauchy-Schwarz inequality in the first integral. Also, on (𝑅,∞) the absolute
value of the bracket in the second integral is less than 𝜖 and upon use of this bound we can also
use the Cauchy-Schwarz inequality there. This provides the upper bound

|
𝑑𝑇 (𝑢, 𝑣)

𝑑𝑟
| ≤ 1

𝑟
𝜅𝑢(𝑟)𝜅𝑣(𝑟)√𝑁𝑢(𝑟)𝑁𝑣(𝑟) + 𝜖𝜅𝑢(𝑟)𝜅𝑣(𝑟) .
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From Part 1 we know that both 𝑁𝑢 and 𝑁𝑣 are less or equal to 𝑎1/8, while we have set things up
such that 𝜖 < 𝑎 < 𝑎1/8. Since on the present interval both 𝜅𝑢 and 𝜅𝑣 are 𝜖-almost non-decreasing,
we can use the estimate 𝜅𝑢(𝑟) ≤ ( 𝑡𝑟)

𝜖
𝜅𝑢(𝑡) and the analogous expression for 𝜅𝑣. Integration from

𝑠 to 𝑡 leads to

|𝑇 (𝑠)(𝑢, 𝑣)| ≤ 𝑎1/8𝜅𝑢(𝑡)𝜅𝑣(𝑡) (
𝑡
𝑠
)
1+2𝜖

≤ 4𝜅𝑢(𝑡)𝜅𝑣(𝑡)𝑎1/8 , (3.15)

where in the last inequality we have used that 𝑡/𝑠 ≤ 2 and 𝜖 < 1/2. The main result of this part

then is that |𝑇 (𝑢, 𝑣)| is smaller by a factor of O(𝑎1/8) than 𝜅𝑢(𝑡)𝜅𝑣(𝑡) on all of [ �̃�+𝑡2 , 𝑡].

Part 3 The goal of this part is to show that there exist points in 𝐽 = [�̃� + 6
8 (𝑡 − �̃�), �̃� + 7

8 (𝑡 − �̃�)]
for which the integrals that appear in 𝑁𝑢 and 𝑁𝑣 are both small. This interval is of significance,
because it corresponds to radii that are contained in the geodesic shell that appears in item (iii)
of Lemma 3.18.

Denote by 𝜈𝑢 ∶= (‖∇𝐴𝜙𝑢‖2 + ‖[𝜙 ∧ 𝜙𝑢]‖
2) the integrand in 𝑁𝑢 and analogously for 𝜈𝑣 . Consider

the following sets of radii in 𝐽.

𝐽𝑢 ∶= { 𝑠 ∈ 𝐽 | ∫
𝜕𝐵𝑠

𝜈𝑢 ≤
1

2 |𝐽 |
𝑡𝑛−𝑘−2 𝜅2𝑢(𝑡) 𝑎1/16 } (3.16)

𝐽𝑣 ∶= { 𝑠 ∈ 𝐽 | ∫
𝜕𝐵𝑠

𝜈𝑣 ≤
1

2 |𝐽 |
𝑡𝑛−𝑘−2 𝜅2𝑣 (𝑡) 𝑎1/16 } (3.17)

Note for later that |𝐽 | = |𝐼 | /8, where 𝐼 = [�̃�, 𝑡], so the fact that 𝑎1/8𝑛𝑡 ≤ �̃� and using 𝑎1/8𝑛 < 0.5
yields |𝐽 | ≥ 𝑡

16 .

The measure of 𝐽𝑢 is bounded from below, since

𝑡𝑛−𝑘−2𝜅2𝑢(𝑡)𝑁𝑢(𝑡) ≥ ∫
𝐽
𝑑𝑠 ∫

𝜕𝐵𝑠
𝜈𝑢 ≥ (|𝐽 | − |𝐽𝑢|)

1
2|𝐽 |

𝑡𝑛−𝑘−2 𝜅2𝑢(𝑡) 𝑎1/16 ,

and similarly for 𝐽𝑣. Since both 𝑁𝑢(𝑡), 𝑁𝑣(𝑡) ≤ 𝑎1/8, we find

|𝐽𝑢| , |𝐽𝑣| > (1 − 2𝑎1/16) |𝐽 | .

Since 2𝑎1/16 < 0.5 (recall that 𝑎1/8𝑛 < 0.1 and 𝑛 ≥ 2 in any case), it follows that 𝐽𝑢 and 𝐽𝑣 must
intersect. Hence, choose and fix from now on a point 𝑟 ∈ 𝐽 at which both (3.16) and (3.17) are
satisfied.

Part 4 As a next step we establish an 𝐿2-bound for the function Tr 𝜙𝑢𝜙𝑣 on 𝜕𝐵𝑟, where 𝑟 is the
fixed radius we found in Part 3. For this we view 𝜕𝐵𝑟 with the induced metric as a compact
Riemannian manifold and rely on a Poincaré inequality. Note that Tr 𝜙𝑢𝜙𝑣 is the integrand that
defines the correlation tensor 𝑇 (𝑟)(𝑢, 𝑣), so up to normalization the latter yields the average
value of Tr 𝜙𝑢𝜙𝑣 on 𝜕𝐵𝑟.

87



3 Growth of the Higgs Field for Kapustin-Witten Solutions

First note that the derivative of Tr 𝜙𝑢𝜙𝑣 is bounded by

‖𝑑 Tr 𝜙𝑢𝜙𝑣‖ ≤ ‖∇𝐴𝜙𝑢‖ ‖𝜙𝑣‖ + ‖𝜙𝑢‖ ‖∇𝐴𝜙𝑣‖ .

Because 𝑟 lies inside the geodesic shell of Lemma 3.18 we know that ‖𝜙𝑢‖ ≤ 𝑐0𝜅𝑢(𝑡) and ‖𝜙𝑣‖ ≤
𝑐0𝜅𝑣(𝑡). In light of the fact that both (3.16) and (3.17) are satisfied at 𝑟 and using the Cauchy-
Schwarz inequality, we find that

∫
𝜕𝐵𝑟

‖𝑑 Tr 𝜙𝑢𝜙𝑣‖
2 ≤ 16𝑐20 𝑡𝑛−𝑘−3𝜅2𝑢(𝑡)𝜅2𝑣 (𝑡)𝑎1/16 .

Consider now the function 𝐺 = Tr 𝜙𝑢𝜙𝑣 −
𝑇 (𝑟)(𝑢,𝑣)
𝛼 vol𝑋 on the geodesic sphere 𝜕𝐵𝑟, where the nor-

malization factor 𝛼 is chosen such that 𝐺 captures the deviations of Tr 𝜙𝑢𝜙𝑣 from its average
value on 𝜕𝐵𝑟. It follows that 𝐺 satisfies ∫𝜕𝐵𝑟 𝐺 = 0 and 𝑑𝐺 = 𝑑 Tr 𝜙𝑢𝜙𝑣. Since 𝜕𝐵𝑟 is a compact
Riemannian manifold without boundary and Ric ≥ 0, the following Poincaré inequality holds
(see e.g. [Li82, Thm. 3])

∫
𝜕𝐵𝑟

|𝐺|2 ≤ 2𝑑2
𝜋2 ∫

𝜕𝐵𝑟
‖𝑑𝐺‖2 .

Here 𝑑 denotes the diameter of the geodesic sphere 𝜕𝐵𝑟, which is bounded by some constant
multiple of its radius 𝑑 ≤ ̃𝑐𝑟. The constant ̃𝑐 can be chosen uniformly for all geodesic spheres
based at 𝑝 ∈ 𝑊 𝑛 and only depends on 𝑛 and 𝑘, because by Definition 3.3 curvature approaches
zero at infinity such that the geometry of geodesic spheres effectively becomes that of the stand-
ard sphere 𝑆𝑛−𝑘−1𝑟 embedded in ℝ𝑛−𝑘. Together with (3.15) and the usual volume comparison
for 𝜕𝐵𝑟, this leads to the desired 𝐿2-bound for Tr 𝜙𝑢𝜙𝑣. Specifically, there is a constant 𝐶 > 1
such that

∫
𝜕𝐵𝑟

|Tr 𝜙𝑢𝜙𝑣|
2 ≤ ̃𝑐2𝑟2 ∫

𝜕𝐵𝑟
‖𝑑𝐺‖2 + ∫

𝜕𝐵𝑟
(
𝑇 (𝑟)(𝑢, 𝑣)
𝛼 vol𝑋

)
2
≤ 𝐶𝑡𝑛−𝑘−1𝜅2𝑢(𝑡)𝜅2𝑣 (𝑡)𝑎1/16 . (3.18)

From now on we allow the value of 𝐶 to increase from one equation to the next.

Part 5 Our next goal is to derive a closely related 𝐿2-bound for the function |𝜙𝑢| ⋅ |𝜙𝑣| on
𝜕𝐵𝑟, where |𝜙𝑢| denotes pointwise application of the norm induced by the Killing form. It is a
property of su(2) that

|[𝜙𝑢, 𝜙𝑣]|
2 = 4 |𝜙𝑢|

2 |𝜙𝑣|
2 − 4Tr (𝜙𝑢𝜙𝑣)

2 .

Moreover, since 𝑢 and 𝑣 are orthonormal ‖[𝜙 ∧ 𝜙𝑣]‖
2 ≥ |[𝜙𝑢, 𝜙𝑣]|

2 𝜇𝑊 𝑛 , so we can bound the fol-
lowing integral with the help of (3.17).

∫
𝜕𝐵𝑟

|𝜙𝑢|
2 |𝜙𝑣|

2 − ∫
𝜕𝐵𝑟

|Tr 𝜙𝑢𝜙𝑣|
2 = 1

4 ∫𝜕𝐵𝑟
|[𝜙𝑢, 𝜙𝑣]|

2 ≤ 1
4 ∫𝜕𝐵𝑟

𝜈𝑣 ≤ 2 𝑡𝑛−𝑘−3 𝜅2𝑣 (𝑡) 𝑎1/16

Together with (3.18), the main result of Part 4, this leads to

∫
𝜕𝐵𝑟

|𝜙𝑢|
2 |𝜙𝑣|

2 ≤ (𝐶 + 2
𝑡2𝜅2𝑢(𝑡)

) 𝑡𝑛−𝑘−1 𝜅2𝑢(𝑡) 𝜅2𝑣 (𝑡) 𝑎1/16 .
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Observe that things have been set up in such a way that 𝑡2𝜅2𝑢(𝑡) > 1: First, 𝜅𝑢 is almost non-
decreasing, so 𝜅2𝑢(𝑡) ≥ (𝑡/𝑅)2𝜖𝜅2𝑢(𝑅). Second, we know that 𝜅2𝑢(𝑅) ≥ 𝜆(𝑅) since the latter is
the smallest eigenvalue of 𝑇 (𝑅). Third, we have previously chosen 𝑟1 large enough that 𝜆(𝑅) >
(𝑅/𝑟1)2𝑎𝜅2(𝑅). Fourth, 𝑡 is larger than 𝑟

1−√100𝑎
1 while 𝑅 > 1. Plugging everything together yields

𝑡2𝜅2𝑢(𝑡) ≥ 𝑟2(1−100√𝑎−4𝑎)1 𝜅2(𝑟1) > 𝑟2𝑎1 𝜅2(𝑟1) ,

where the last step follows via 𝑎1/4𝑛 < 0.1 and 𝑛 ≥ 2. Finally, recall that we have also explicitly
chosen 𝑟1 to be large enough that the rightmost expression is larger than 1.

The upshot of this part is that there exists a (larger) constant 𝐶 > 1 that only depends on 𝑛 and
𝑘, such that

∫
𝜕𝐵𝑟

|𝜙𝑢|
2 |𝜙𝑣|

2 ≤ 𝐶𝑡𝑛−𝑘−1 𝜅2𝑢(𝑡) 𝜅2𝑣 (𝑡) 𝑎1/16 . (3.19)

Part 6 In this final part, we combine the results of the previous five parts with item (ii) of
Lemma 3.18. Thus, write Ω1 for the subset of 𝜕𝐵𝑟 where ‖𝜙𝑢‖ ≤

𝜅𝑢(𝑡)
2 vol𝑋 .

The inequality in (3.19) remains true if we restrict the domain of integration to 𝜕𝐵𝑟 ⧵ Ω1, such
that

𝜅2𝑢(𝑡)
4 vol𝑋 ∫

𝜕𝐵𝑟⧵Ω1

|𝜙𝑣|
2 ≤ ∫

𝜕𝐵𝑟⧵Ω1

|𝜙𝑢|
2 |𝜙𝑣|

2 ≤ 𝐶𝑡𝑛−𝑘−1 𝜅2𝑢(𝑡) 𝜅2𝑣 (𝑡) 𝑎1/16 .

More concisely, this leads to the inequality

∫
𝜕𝐵𝑟⧵Ω1

|𝜙𝑣|
2 ≤ 𝐶 vol𝑋𝑡𝑛−𝑘−1𝜅2𝑣 (𝑡)𝑎1/16 .

Meanwhile, item (𝑖) of Lemma 3.18 provides the upper bound |𝜙𝑣| ≤ 𝑐20𝜅2𝑣 (𝑡). Writing volΩ1 =
𝑓Ω1 vol𝐵𝑟 this leads to

∫
Ω1

|𝜙𝑣|
2 ≤ 𝑓Ω1(1 + 𝜖) vol𝑋 𝑟𝑛−𝑘−1𝑐20𝜅2𝑣 (𝑡) .

Item (𝑖𝑖) of Lemma 3.18 states that 𝑓Ω1 ≤ 𝑐1𝜖 + 𝑐2√𝑁𝑢(𝑡). Recall from Part 1 that 𝑁𝑢(𝑡) ≤ 𝑎1/8

while 𝜖 = 𝑎/2, such that 𝑓Ω1 is bounded by some multiple of 𝑎1/16.

It follows that the sum of the two integrals satisfies

∫
𝜕𝐵𝑟

|𝜙𝑣|
2 ≤ 𝐶𝑡𝑛−𝑘−1𝜅2𝑣 (𝑡)𝑎1/16 .

This is equivalent to the statement that 𝜅2𝑣 (𝑟) ≤ 𝐶𝑎1/16𝜅2𝑣 (𝑡). Finally, combining this with the
bound 𝜅2𝑣 (𝑟) ≥

1
4𝜅

2
𝑣 (𝑡) from Part 1 culminates in the inequality

𝜅2𝑣 (𝑡) ≤ 4𝐶𝑎1/16𝜅2𝑣 (𝑡) ,

which is absurd, as we are free to choose 𝑎 arbitrarily small and in particular such that 𝑎1/16 <
1
4𝐶 .
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3 Growth of the Higgs Field for Kapustin-Witten Solutions

3.8 Proof of Taubes’ Dichotomy for Kapustin-Witten Solutions

In this section we prove Theorem B, which enhances Theorem 3.19 for solutions of the Ka-
pustin-Witten equations on four-manifolds. We again closely follow Taubes’ arguments, who
proved an analogous statement in case the four-manifold is Euclidean space ℝ4.

Theorem 3.20. Let𝑊 4 be an ALX gravitational instanton of dimension 4, with asymptotic fibers
of dimension 𝑘 ≤ 3, and such that sectional curvature is bounded from below. Assume (𝐴, 𝜙) are
solutions of the 𝜃-Kapustin-Witten equations and if 𝜃 ≢ 0, 𝜋 also assume that ∫𝑊 4 ‖𝐹𝐴‖

2 < ∞, then

(i) either there is an 𝑎 > 0 such that lim inf𝑟→∞
𝜅(𝑟)
𝑟𝑎 > 0,

(ii) or [𝜙 ∧ 𝜙] = 0, ∇𝐴𝜙 = 0, and 𝐴 is self-dual if 𝜃 = 0, flat if 𝜃 ∈ (0, 𝜋), and anti-self-dual if
𝜃 = 𝜋.

Proof. Since solutions of the Kapustin-Witten equations also satisfy equation (3.1), the dicho-
tomy of Theorem 3.19 holds. It remains to show that in the case where [𝜙 ∧ 𝜙] is identically
zero, also ∇𝐴𝜙 vanishes and 𝐴 is either (anti-)self-dual or flat as stated. Hence, assume from
now on that [𝜙 ∧ 𝜙] = 0. At points where 𝜙 is non-zero the Higgs field can then be written as
𝜙 = 𝜔 ⊗ 𝜎, where 𝜔 ∈ Ω1(𝑀) and 𝜎 ∈ Γ(𝑀, ad 𝐸), normalized such that ‖𝜎‖ = 1.

Consider first the case where 𝜃 = 0 (this also covers the case 𝜃 = 𝜋 by a reversal of orientation).
The Kapustin-Witten equations then state on the one hand 𝐹+𝐴 = 0, so 𝐴 is anti-self-dual, and
on the other hand (𝑑𝐴𝜙)− = 0 and 𝑑𝐴 ⋆ 𝜙 = 0. The latter two equations can only be satisfied if
the constituents of 𝜙 satisfy ∇𝐴𝜎 = 0 and (𝑑𝜔)− = 0 = 𝑑 ⋆ 𝜔. In particular 𝜎 is guaranteed to be
covariantly constant at points where 𝜙 ≠ 0.

The zero locus of 𝜙 coincides with the zero locus of 𝜔. Since the one-form 𝜔 satisfies the first
order differential equations from above, it is an example of what Taubes calls a ℤ/2 harmonic
spinor in [Tau14]. In that article he investigates the zero locus of such ℤ/2 harmonic spinors
in general and Theorem 1.3 of [Tau14] states that the zero locus has Hausdorff dimension 2.
The relevance for us is that the complement of the zeroes of 𝜔 in any given ball in 𝑊 4 is path
connected. This means that 𝜎 can be defined at points where 𝜔 = 0 by parallel transport along
paths where 𝜔 is non-zero. Since 𝐴 is smooth and 𝜎 is ∇𝐴-parallel, parallel transport along two
different paths results in the same value.

Since 𝜎 is defined everywhere, the same is true for 𝜔 = 1
2 Tr(𝜙𝜎). The elliptic differential

equations (𝑑𝜔)− = 0 = 𝑑 ⋆ 𝜔 imply that ‖𝜔‖2 is subharmonic. Thus, by a classical result of
Yau [Yau76, Theorem 3 & Appendix (ii)], either ‖𝜔‖2 is constant or lim𝑟→∞ 𝑟−1 ∫𝐵𝑟 ‖𝜔‖

2 > 0. The
latter is precluded by our assumptions and we conclude that ∇𝐴𝜙 = 0.

In the case that 𝜃 ≢ 0 (mod 𝜋), neither of the terms (𝑑𝐴𝜙)± vanishes automatically. However, if
we additionally assume that 𝐹𝐴 is square-integrable, we can employ Uhlenbeck’s compactness
theorem for (anti-)self-dual connections to deduce that 𝐴 must be flat. To see this, first note
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3.8 Proof of Taubes’ Dichotomy for Kapustin-Witten Solutions

that we can find a coefficient 𝑐(𝜃) such that the connection 𝐴 + 𝑐(𝜃)𝜙 satisfies the 𝜋/2 version
of the Kapustin-Witten equations, so it is sufficient to consider the case 𝜃 = 𝜋/2.

With that in mind and since [𝜙 ∧ 𝜙] = 0, the Kapustin-Witten equations state that 𝐹𝐴 = ⋆𝑑𝐴𝜙.
As a consequence the connection �̂� ∶= 𝐴 + 𝜙 is self-dual. Since ∫𝑊 4‖𝐹�̂�‖

2 < ∞, this connection
�̂� is the pullback of a smooth, regular connection on the one-point compactification of 𝑊 4. In
fact, by Uhlenbeck’s removable singularities theorem [Uhl82b, Thm. 4.1 & Cor. 4.2], the field
strength at large radius falls off as ‖𝐹�̂�‖ ≤

𝑐
𝑟4 . Keeping this in mind, note that ∇�̂�𝜙 = ∇𝐴𝜙, such

that 𝐹�̂� = 2(𝑑�̂�𝜙)
+ and

∫
𝐵𝑟
‖𝐹�̂�‖

2 = 2∫
𝐵𝑟
Tr 𝐹�̂� ∧ 𝑑�̂�𝜙 = 2∫

𝜕𝐵𝑟
Tr 𝐹�̂� ∧ 𝜙 ,

where we have used Stokes’ theorem and the Bianchi identity in the last equality. With the
bound on ‖𝐹�̂�‖ the integral on the right is bounded by a multiple of 𝜅

𝑟𝑘+1 , which approaches 0
for 𝑟 → ∞, so �̂� is flat. From here we are back in the situation where (𝑑𝐴𝜙)+ = 0 = 𝑑𝐴 ⋆ 𝜙 and
the same argument as before leads to ∇𝐴𝜙 = 0.
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4 The Decoupled Haydys-Witten Equations and a
Weitzenböck Formula

Throughout this chapter, let (𝑀5, 𝑔) be an oriented five-manifold with poly-cylindrical ends,
where ends may be located at either finite or infinite geodesic distance. Assume 𝑀5 admits a
non-vanishing unit vector field 𝑣 and that the subbundle ker 𝑔(𝑣 , ⋅) ⊂ 𝑇𝑀5 admits an almost
Hermitian structure. This means that there is an almost complex structure 𝐽 ∶ ker 𝑔(𝑣 , ⋅) →
ker 𝑔(𝑣 , ⋅) that is compatible with the metric, i.e. 𝑔(𝐽 ⋅, 𝐽 ⋅) = 𝑔(⋅, ⋅).

In this chapter we investigate the Haydys-Witten equations on manifolds (𝑀5, 𝑔, 𝑣 , 𝐽 ). The
existence of 𝐽 provides a specialization of the equations that we call decoupled Haydys-Witten
equations. Crucially, the decoupled version of the equations exhibits a Hermitian Yang-Mills
structure, which provides additional tools in solving the equations. This structure becomes
most apparent in the 4D-formulation of the Haydys-Witten equations, an extension ofWitten’s
3D-formulation of the extended Bogomolny equations (EBE) [Wit11a], which is introduced
below and used throughout the introduction. The main contribution consists in working out
conditions under which the Haydys-Witten equations reduce to the decoupled version.

Curiously, in the context of Witten’s gauge theoretic approach to homological knot invari-
ants [Wit11a], manifolds are generally equipped with the additional structure (𝑔, 𝑣 , 𝐽 ). In
that situation one considers the Haydys-Witten equations on five-manifolds of the form 𝑀5 =
ℝ𝑠×𝑋 3×ℝ+𝑦 , equipped with a product metric 𝑔, and sets 𝑣 = 𝜕𝑦. The subbundle ker 𝑔(𝑣 , ⋅) is then
simply the tangent space of ℝ𝑠 × 𝑋 3, which always admits an almost complex structure, as it is
an open and orientable four-manifold. Conjecturally, when 𝑋 3 = ℝ3 or 𝑆3 and in the presence
of a magnetically charged knot 𝐾 ⊂ 𝑋 3, the homology groups obtained from 𝜃-Kapustin-Witten
solutions (stationary Haydys-Witten solutions) at 𝑠 → ±∞ modulo Haydys-Witten instantons
reproduces a knot invariant known as Khovanov homology. Hence, the results presented here
may offer a fresh perspective on the gauge theoretic approach to Khovanov homology.

In the following we briefly introduce the 4D-formulation of the Haydys-Witten equations and
the decoupled version of the equations, see Section 4.1 for a more detailed, global discussion.
For this, let 𝐺 denote a compact Lie group, 𝐺ℂ its complexification, 𝐸 → 𝑀5 a 𝐺-principal
bundle, and 𝐸ℂ the associated 𝐺ℂ-principal bundle. Furthermore, let A(𝐸) denote gauge con-
nections and write Ω2

𝑣 ,+(𝑀5) for Haydys’ self-dual two-forms with respect to 𝑣 [Hay15].

Given a pair (𝐴, 𝐵) ∈ A(𝐸) × Ω2
𝑣 ,+(𝑀5, ad 𝐸) and an almost complex structure 𝐽, one can locally

define four differential operatorsD𝜇 that act on sections of ad 𝐸ℂ. To that end, consider normal
coordinates (𝑥 𝑖, 𝑦)𝑖=0,1,2,3 near a point 𝑝, chosen in such a way that 𝑣 = 𝜕𝑦 and that 𝐽 takes
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the canonical form with respect to the coordinate vector fields 𝜕𝑖 at 𝑝. In these coordinates,
𝐵 = ∑3

𝑎,𝑏,𝑐=1 𝜙𝑎(𝑑𝑥0 ∧ 𝑑𝑥𝑎 +
1
2 𝜖𝑎𝑏𝑐𝑑𝑥

𝑏 ∧ 𝑑𝑥 𝑐). The four differential operators are defined by

D0 = ∇𝐴0 + 𝑖∇𝐴1 D1 = ∇𝐴2 + 𝑖∇𝐴3
D2 = ∇𝐴𝑦 − 𝑖[𝜙1, ⋅] D3 = [𝜙2, ⋅] − 𝑖[𝜙3, ⋅]

There is a complex conjugation, induced from ad 𝐸ℂ, that we denote by D𝜇. Furthermore, 𝐺ℂ-
valued gauge transformations act on the operators by conjugation, i.e. D𝜇 ↦ 𝑔D𝜇𝑔−1.

In this formulation, the Haydys-Witten equations HW𝑣 (𝐴, 𝐵) = 0 are given by

[D0,D𝑖] −
1
2 𝜀𝑖𝑗𝑘[D𝑗,D𝑘] = 0 , 𝑖 = 1, … , 3 , (4.1)
3
∑
𝜇=0

[D𝜇,D𝜇] = 0 . (4.2)

A typical approach in solving equations of this type is to utilize their symmetry properties.
Since there is an action by complex gauge transformation, one natural idea is to use a Don-
aldson-Uhlenbeck-Yau type approach, where one first extracts some underlying holomorphic
data from 𝐺ℂ-invariant parts of the equations, and subsequently hopes to find a complex gauge
transformation that ensures also the remaining equations are satisfied.

Unfortunately, while the Haydys-Witten equations are invariant under 𝐺-valued gauge trans-
formations and the action lifts naturally to 𝐺ℂ, neither (4.1) nor (4.2) are invariant under 𝐺ℂ-
valued gauge transformations. There is, however, a subset of solutions for which the three
equations in (4.1) decompose into their 𝐺ℂ-invariant parts. This is given by solutions that sat-
isfy the following equations:

[D𝜇,D𝜈] = 0 , 𝜇, 𝜈 = 0, … , 3 ,
3
∑
𝜇=0

[D𝜇,D𝜇] = 0 .
(4.3)

We refer to (4.3) as decoupled Haydys-Witten equations and denote them by dHW𝑣 ,𝐽 (𝐴, 𝐵) = 0.
A global version of these equations is provided in Section 4.1. The commutativity equations
are 𝐺ℂ-invariant and can be interpreted as a complex moment map condition in a hyper-Kähler
reduction, while the remaining equation provides the real moment map condition. Put differ-
ently, the decoupled equations exhibit a Hermitian Yang-Mills structure, such that a Donaldson-
Uhlenbeck-Yau type approach and other powerful tools become available.

Clearly, whenever dHW𝑣 ,𝐽 (𝐴, 𝐵) = 0, then HW𝑣 (𝐴, 𝐵) = 0. Here, we prove that in certain
situations the reverse is true, such that the Haydys-Witten equations reduce to the decoupled
Haydys-Witten equations. This is controlled, on the one hand by the (asymptotic) geometry,
and on the other hand by the asymptotic behaviour of the fields (𝐴, 𝐵), at boundaries and
cylindrical ends of 𝑀5. Crucially, we need to assume that (a) boundaries of 𝑀5 are flat and
(𝐴, 𝐵) satisfies Nahm pole boundary conditions with knot singularities, and (b) non-compact
ends of 𝑀5 are asymptotically locally Euclidean (ALE) or flat (ALF) gravitational instantons
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Figure 4.1 A polycylindrical five-manifold with boundaries and corners. In Haydys-Witten
Floer theory one includes embeddings of knotted surfaces Σ𝐾 as additional boundary faces
by a geometric blowup. The blown-up boundaries intersect the original ambient boundary
in corners of depth two.

and (𝐴, 𝐵) approaches a finite energy solution of the 𝜃-Kapustin-Witten equations. For the
sake of brevity, we omit further technical conditions for now and instead refer to assumptions
(A1) - (A4) in Section 4.5 for details. With that understood, the main result is as follows (this is
Theorem 4.11 below).

Theorem D. Let 𝐺 = 𝑆𝑈 (2), 𝑀5 a manifold with poly-cylindrical ends, 𝑣 a non-vanishing vector
field that approaches ends at a constant angle, and 𝐽 an almost Hermitian structure on ker 𝑔(𝑣 , ⋅).
Assume HW𝑣 (𝐴, 𝐵) = 0 and that assumptions (A1) - (A4) are satisfied, then dHW𝑣 ,𝐽 (𝐴, 𝐵) = 0.

The proof of Theorem D is based on a Weitzenböck formula of the form

∫
𝑀5

‖HW𝑣 (𝐴, 𝐵)‖
2 = ∫

𝑀5
‖dHW𝑣 ,𝐽 (𝐴, 𝐵)‖

2 + ∫
𝑀5

𝑑𝜒 . (4.4)

From this it’s clear that whenever HW𝑣 (𝐴, 𝐵) = 0 and any boundary contributions (including
contributions from non-compact ends) in ∫𝑀5 𝑑𝜒 vanish, then also dHW𝑣 ,𝐽 (𝐴, 𝐵) = 0. The key
insights of this chapter lie in determining conditions under which all boundary contributions
vanish, if one imposes Nahm pole boundary conditions at finite distances and asymptotically
stationary solutions at infinity. Due to the two different flavours of boundary conditions, we
rely on two distinct facts: Elliptic regularity of the Nahm pole boundary conditions, on the one
hand, and a vanishing theorem for solutions of 𝜃-Kapustin-Witten solutions on ALE and ALF
spaces, on the other. Let us shortly explain how these two facts appear in the proof.

First, the Nahm pole boundary conditions for (𝐴, 𝐵) state, in particular, that at order 𝑦−1 the
fields satisfy the extended Bogomolny equations (EBE), which in the 4D formalism correspond
to

D0 = 0 , [D𝑖,D𝑗] = 0 𝑖, 𝑗 = 1, … , 3 ,
3
∑
𝑖=1

[D𝑖,D𝑖] = 0 .
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This means that the leading order terms are already solutions of the decoupled Haydys-Witten
equations. As will be discussed in detail below, elliptic regularity of the Haydys-Witten equa-
tions states that deviations from the EBE-solutions can only appear at order 𝑦1+𝛿, for some
𝛿 > 0 [MW14; MW17; He18]. This, in turn, implies that 𝜒 only involves terms of order 𝑦 𝛿. As a
consequence, any contributions to ∫ 𝑑𝜒 from boundaries with Nahm pole boundary conditions
vanish.

We expect that Theorem D is also generally true in the presence of knot singularities. Unfor-
tunately, the twisted knot singularity solutions are only known implicitly (by a continuation
argument) [Dim22a], such that extracting information from elliptic regularity is difficult. Al-
though we currently have no proof for this extension of the result, we include a discussion of
the relevant boundary conditions and state a necessary condition that is known to be satisfied
in the untwisted case.

Second, and perhaps more surprisingly, the boundary terms also vanish at asymptotic ends
when the fields approach stationary solutions of the Haydys-Witten equations, or equivalently
solutions of the 𝜃-Kapustin-Witten equations, with finite energy. This relies on the vanishing
theorem given in Corollary C, originally conjectured by Nagy and Oliveira [NO21] and proven
in Chapter 3. The vanishing theorem states that for a finite energy solution of the 𝜃-Kapustin-
Witten equations on an ALE or ALF gravitational instanton 𝐴 is flat, 𝜙 is ∇𝐴-parallel, and
[𝜙 ∧ 𝜙] = 0.

This chapter is structured as follows: In Section 4.1 we summarize Haydys’ geometry and the
Haydys-Witten equations, define the decoupled Haydys-Witten equations, and establish the
promised Weitzenböck formula. In Section 4.2 we further specify the basic geometric setting
that is necessary to specify boundary conditions and which is used in evaluating the integral
of the exact term in the Weitzenböck formula. A key step in this discussion is an investiga-
tion of the polyhomogeneous expansion of a twisted Nahm pole solution of the Haydys-Witten
equations, which is presented in Section 4.3. Subsequently, in Section 4.4, we determine the
asymptotic behaviour of 𝜒 at the various boundaries and ends, filling in the details of the re-
maining boundary conditions as we go. Finally, in Section 4.5, we bring everything together
and show that in certain situations the boundary term in (4.4) vanishes, which immediately
implies Theorem D.

4.1 The Decoupled Haydys-Witten Equations and a Weitzenböck Formula

In this section, we introduce the global version of the Haydys-Witten equations and their de-
coupled version, and establish a Weitzenböck formula that relates it to the full Haydys-Witten
equations.

Let (𝑀5, 𝑔) be an oriented complete Riemannian manifold. Consider a principal 𝐺-bundle 𝐸 →
𝑀5 for some compact Lie group 𝐺, write A(𝐸) for the space of gauge connections, and denote
by ad 𝐸 the adjoint bundle associated to the Lie algebra g of 𝐺.
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Assume 𝑀5 admits a non-vanishing unit vector field 𝑣 and write 𝜂 = 𝑔(𝑣 , ⋅) ∈ Ω1(𝑀) for its
dual one-form. Since 𝑣 is non-vanishing, the distribution ker 𝜂 ⊂ 𝑇𝑀5 is regular, i.e. a vector
subbundle, of rank 4. Observe that the pointwise linear map

𝑇𝜂 ∶ Ω2(𝑀) → Ω2(𝑀), 𝜔 ↦ ⋆5(𝜔 ∧ 𝜂)

has eigenvalues {−1, 0, 1}, such that Ω2(𝑀) decomposes into the corresponding eigenspaces:

Ω2(𝑀) = Ω2
𝑣 ,−(𝑀) ⊕ Ω2

𝑣 ,0(𝑀) ⊕ Ω2
𝑣 ,+(𝑀) .

Here Ω2
𝑣 ,0(𝑀) has rank 4, while the (anti-)self-dual parts have rank 3. We use the notation 𝜔+

to denote the part of 𝜔 that lies in Ω2
𝑣 ,+(𝑀).

Since Ω2
𝑣 ,+(𝑀) has rank 3, the usual cross product (⋅ × ⋅) of ℝ3 provides it with a Lie algebra

structure. The map 𝜎(⋅, ⋅) = 1
2 (⋅ × ⋅) ⊗ [⋅, ⋅]g then determines a corresponding cross product

on Ω2
𝑣 ,+(𝑀, ad 𝐸). This map is unique up to a choice of orientation and is locally given by the

product on ℝ3 ⊗ g.

Consider a pair (𝐴, 𝐵) ∈ A(𝐸) × Ω2
𝑣 ,+(ad 𝐸), consisting of a gauge connection 𝐴 and a self-

dual two form 𝐵. Let ∇𝐴 denote the covariant derivative on Ω2
𝑣 ,+(ad 𝐸) induced by 𝐴 and the

Levi-Civita connection, and define 𝛿+𝐴 ∶ Ω2
𝑣 ,+(𝑀, ad 𝐸) → Ω1(𝑀, ad 𝐸) by the composition

𝛿+𝐴𝐵 = −𝑔𝜇𝜌𝜄𝜇∇𝐴𝜌 𝐵. The Haydys-Witten equations are defined by:

𝐹+𝐴 − 𝜎(𝐵, 𝐵) − ∇𝐴𝑣 𝐵 = 0 ,

𝚤𝑣 𝐹𝐴 − 𝛿+𝐴𝐵 = 0 .
(4.5)

Assume now that there is an almost complex structure 𝐽 on the vector bundle ker 𝜂 → 𝑀5 that
is compatible with the metric, i.e. 𝑔(𝐽 ⋅, 𝐽 ⋅) = 𝑔(⋅, ⋅). Note that 𝐽 lifts, via the tensor product
𝐽 ⊗ 𝐽, to a map on Ω2

𝑣 ,+(𝑀5). At each point this map has eigenvalues {+1, −1, −1}. To see this,
let 𝑝 ∈ 𝑀5 and (𝑥𝜇, 𝑦)𝜇=0,…,3 be coordinates in a neighbourhood of 𝑝, such that 𝑣 = 𝜕𝑦 and
chosen in such a way that 𝑑𝑥𝜇 is a canonical basis of 𝐽, i.e. 𝐽𝑑𝑥0 = 𝑑𝑥1 and 𝐽𝑑𝑥2 = 𝑑𝑥3. The
two-forms 𝑒𝑖 = 𝑑𝑥0 ∧ 𝑑𝑥 𝑖 + 1

2 𝜖𝑖𝑗𝑘𝑑𝑥
𝑗 ∧ 𝑑𝑥𝑘, 𝑖 = 1, 2, 3, are a local basis of Ω2

𝑣 ,+. One easily sees
that 𝐽 𝑒1 = +𝑒1 and 𝐽 𝑒2/3 = −𝑒2/3.

The decoupled Haydys-Witten equations arise if one sets to zero the −1-eigenparts of the ex-
pressions in the Haydys-Witten equations (4.5) that contain 𝐵, independently from the remain-
ing terms:

Definition 4.1 (Decoupled Haydys-Witten Equations).

1+𝐽
2 (𝜎(𝐵, 𝐵) + ∇𝐴𝑣 𝐵) = 𝐹+𝐴

1−𝐽
2 (𝜎(𝐵, 𝐵) + ∇𝐴𝑣 𝐵) = 0

𝛿+𝐴
1+𝐽
2 𝐵 = 𝚤𝑣𝐹𝐴 𝛿+𝐴

1−𝐽
2 𝐵 = 0

We denote the associated differential operator by dHW𝑣 ,𝐽 .

97



4 The Decoupled Haydys-Witten Equations and a Weitzenböck Formula

In these equations the part of the 𝐵-terms that is located in the negative eigenspaces is de-
coupled from the gauge curvature, hence the name. A direct calculation in coordinates shows
that the decoupledHaydys-Witten equations are locally equivalent to (4.3) in the 4D-formalism.

To find a relation betweenHW𝑣 and dHW𝑣 ,𝐽 , split the terms in the Haydys-Witten equations
that involve 𝐵 into their positive and negative eigenparts with respect to 𝐽. To simplify notation,
write 𝐽± ∶= 1±𝐽

2 as shorthand for the projection to the ±1-eigenspaces of 𝐽 in Ω2
𝑣 ,+.

Denote by ⋆ the Hodge star operator and equip Ω𝑘(𝑀5, ad 𝐸) with the density-valued inner
product ⟨𝑎, 𝑏⟩ = Tr 𝑎 ∧ ⋆𝑏. Upon integration this provides the usual 𝐿2-product ⟨𝑎, 𝑏⟩𝐿2(𝑊 ) =
∫𝑊 𝑛⟨𝑎, 𝑏⟩ on Ω𝑘(𝑊 𝑛, ad 𝐸). The (density-valued) 𝐿2-norm of the Haydys-Witten operator can be
rewritten as follows

‖HW𝑣 (𝐴, 𝐵)‖
2 = ‖𝐹+𝐴 − (𝐽+ + 𝐽−) (𝜎(𝐵, 𝐵) + ∇𝐴𝑣 𝐵)‖

2
+ ‖𝚤𝑣𝐹𝐴 − 𝛿+𝐴 (𝐽+ + 𝐽−) 𝐵‖2

= ‖dHW𝑣 ,𝐽 (𝐴, 𝐵)‖
2 − 2 ⟨𝐹+𝐴 , 𝐽

− (𝜎(𝐵, 𝐵) + ∇𝐴𝑣 𝐵)⟩ − 2 ⟨𝚤𝑣𝐹𝐴 − 𝛿+𝐴𝐽
+𝐵, 𝛿+𝐴𝐽

−𝐵⟩

Here we used that the ±1 eigenspaces of 𝐽 in Ω2
𝑣 ,+ are orthogonal with respect to ⟨⋅, ⋅⟩ to remove

one of the mixed terms on the right hand side. In the next step we will observe that the extra
terms on the right hand side are in fact total derivatives.

First, notice that

𝑑 Tr (𝐹𝐴 ∧ 𝐽−𝐵) = Tr (𝐹𝐴 ∧ 𝑑𝐴𝐽−𝐵) = Tr (𝐹+𝐴 ∧ 𝑑𝐴𝐽−𝐵 + 𝐹 0𝐴 ∧ 𝑑𝐴𝐽−𝐵)

= Tr (𝐹+𝐴 ∧ ∇𝐴𝑣 𝐽−𝐵 ∧ 𝜂 + 𝚤𝑣𝐹𝐴 ∧ 𝑑𝐴𝐽−𝐵 ∧ 𝜂)

= ⟨𝐹+𝐴 , ∇
𝐴
𝑣 𝐽−𝐵⟩ + ⟨𝚤𝑣𝐹𝐴, 𝛿+𝐴𝐽

−𝐵⟩ .

Here we used the following steps: On the first line we use the Bianchi identity 𝑑𝐴𝐹𝐴 = 0 and
then decompose 𝐹𝐴 = 𝐹+𝐴 +𝐹 0𝐴+𝐹−𝐴 , utilizing that 𝐹

−
𝐴 ∧𝐵 = 0; for the second line note that only

∇𝐴𝑣 𝜂∧ contributes to the wedge product; and for the last line we use that 𝐵 ∧ 𝜂 = ⋆𝐵 and that the
action of 𝑑⋆𝐴 on 𝐽−𝐵 coincides with 𝛿+𝐴 .

Second, there is a similar equality for the remaining terms, as can be seen in local coordinates
(𝑥𝜇, 𝑦)𝜇=0,…,3 by expanding both sides in the local basis 𝑒𝑖, 𝑖 = 1, 2, 3, of Ω2

𝑣 ,+(𝑀) that was
introduced above.

𝑑 Tr (𝛿+𝐴𝐽
+𝐵 ∧ 𝐽−𝐵 ∧ 𝜂) = ⟨𝐹+𝐴 , 𝐽

−𝜎(𝐵, 𝐵)⟩ − ⟨𝛿+𝐴𝐽
+𝐵, 𝛿+𝐴𝐽

−𝐵⟩ .

With these identifications we arrive at the following lemma.

Lemma 4.2. There is a Weitzenböck formula adapted to the decoupled Haydys-Witten equations

∫
𝑀5

‖HW𝑣 (𝐴, 𝐵)‖
2 = ∫

𝑀5
(‖dHW𝑣 ,𝐽 (𝐴, 𝐵)‖

2 + 𝑑𝜒) ,

where the exact term 𝜒 = 𝜒1 + 𝜒2 is given by

𝜒1 = −2Tr (𝐹𝐴 ∧ 𝐽−𝐵)

𝜒2 = −2Tr (𝛿+𝐴𝐽
+𝐵 ∧ 𝐽−𝐵 ∧ 𝜂)
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4.2 Poly-Cylindrical Ends and Boundary Conditions

4.2 Poly-Cylindrical Ends and Boundary Conditions

In Witten’s approach to Khovanov homology, one considers manifolds of the form ℝ𝑠 ×𝑋 3 ×ℝ+𝑦 ,
which possess both a boundary and non-compact ends. Moreover, the non-vanishing vector
field 𝑣 = 𝜕𝑦 differentiates between the non-compact directionsℝ𝑠 andℝ+𝑦 , byway of the glancing
angles 𝜃 = 𝜋/2 and 𝛽 = 0, respectively. This structure is well-described by manifolds with
poly-cylindrical ends and boundaries.

In the literature, poly-cylindrical ends are typically assumed to be located at geodesic infinity.
In this case poly-cylindrical manifolds are identifiedwith the interior of amanifold with corners
that is equipped with a metric, such that any boundary point lies at infinity and the metric is
of product type within some small tubular neighborhood. Sometimes the definition is further
relaxed by assuming that the metric on the manifold with corners is an exact 𝑏-metric in the
sense of Melrose [Mel95; Mel96]. In this latter case the metric on 𝑀 approaches a product
metric exponentially fast, or put differently, its asymptotic expansion in {𝑥𝑘}𝑘∈ℤ vanishes to all
orders. We expect that our results can be generalized to this situation, though we don’t further
pursue this here.

In our situation, we also want to include boundaries and corners at finite distance. Therefore,
when we talk about a (poly-)cylindrical end of a manifold we always take this to encompass
boundaries (and corners) at both, finite and infinite geodesic distance. We will now set up
notation that will be used in the rest of this chapter and provide definitions for the underlying
geometry. After that, we also provide a first description of the relevant boundary conditions.

Let𝑀 be a manifold with corners. For any 𝑝 ∈ 𝑀 choose a chart (𝑈 , 𝜙)with 𝜙(𝑥) = 𝑝 and define
the depth of 𝑝 by the number of components of 𝑥 that are zero. This coincides with the number
of boundary faces of 𝑀 that contain 𝑝 and is independent of the choice of chart. Define the
depth-𝑘 stratum of 𝑀 to be the points

𝑆𝑘(𝑀) ∶= { 𝑝 ∈ 𝑀 | depth(𝑝) = 𝑘 } .

The interior of 𝑀 corresponds to 𝑆0(𝑀), while all boundary faces of codimension one are con-
tained in the boundary stratum 𝜕𝑀 ∶= 𝑆1(𝑀), and more generally points that lie on corners of
codimension 𝑘 are collected in 𝑆𝑘(𝑀). Clearly 𝑀 = ⊔𝑛𝑘=0𝑆

𝑘(𝑀), providing a stratification of 𝑀.
Each stratum 𝑆𝑘(𝑀) is a manifold of dimension 𝑛 − 𝑘, since corners of higher codimension are
explicitly excluded.

The boundary stratum is a disjoint union of connected components 𝜕𝑀 = ⊔𝑖∈𝐼 𝜕𝑖𝑀, where for
simplicity we assume that 𝐼 is finite. Let us emphasize that each boundary face 𝜕𝑖𝑀 is an open
manifold without boundary. We typically denote a boundary defining function of the boundary
face 𝜕𝑖𝑀 by 𝑠𝑖.

Definition 4.3. A manifold with poly-cylindrical ends is a complete Riemannian manifold
(𝑀, 𝑔) that is diffeomorphic to a submanifold (with corners) of a compact manifold with corners
𝑀0, equipped with a metric 𝑔0 that pulls back to 𝑔, and such that the following conditions are
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4 The Decoupled Haydys-Witten Equations and a Weitzenböck Formula

satisfied: For each boundary component 𝜕𝑖𝑀0 there exists a tubular neighbourhood [0, 𝜖)𝑠𝑖 ×
𝜕𝑖𝑀0, on which 𝑔0 is either

𝑔0 = 𝑑𝑠2𝑖 + ℎ𝜕𝑖𝑀 or 𝑔0 =
𝑑𝑠2𝑖
𝑠2𝑖

+ ℎ𝜕𝑖𝑀 ,

where ℎ𝜕𝑖𝑀 is a complete metric on 𝜕𝑖𝑀. Moreover, this is compatible at corners, i.e. there exists
a neighbourhood [0, 𝜖)𝑚 × 𝑋 𝑛−𝑚 of each connected component of 𝑆𝑘(𝑀), where

𝑔0 = ∑
𝑘∈𝐾

𝑑𝑠2𝑘
𝑠2𝑘

+ ∑
𝑖∈𝐼⧵𝐾

𝑑𝑠2𝑖 + ℎ𝑋 𝑛−𝑚

Example. Let 𝑀5 = ℝ𝑠 × 𝑋 3 × ℝ+𝑦 , together with the product metric 𝑔 = 𝑑𝑠2 + 𝑔𝑋 3 + 𝑑𝑦2.
Consider the compact manifold with corners 𝑀0 = [−1, 1]𝑠0 × 𝑋 3 × [0, 1]𝑦0 , equipped with

𝑔0 = ( 𝑑𝑠0
1−|𝑠0|

)2 + ℎ𝑋 3 + ( 𝑑𝑦0
1−𝑦0

)2. Then the map that takes 𝑠0 ↦ 𝑠 = − sgn(𝑠0) log(1 − |𝑠0|) and

𝑦0 ↦ 𝑦 = − log(1−𝑦0) defines an isometry between the submanifold 𝑈 = (−1, 1)𝑠0 ×𝑋
3×[0, 1)𝑦0

and (𝑀5, 𝑔).

A poly-cylindrical manifold admits a convenient compact exhaustion by a family of manifolds
with corner𝑀𝜖 that mirrors the poly-cylindrical structure of𝑀. To make this precise, note that
ℎ ∶= (∏𝑘∈𝐾 𝑠

2
𝑘) ⋅ 𝑔0 ∶ 𝑇𝑀0 × 𝑇𝑀0 → ℝ defines a Riemannian metric on 𝑀0. Let 𝑑ℎ(𝑥, 𝑦) denote

the induced distance function and define 𝑀𝜖 = { 𝑥 ∈ 𝑀0 | 𝑑ℎ(𝑥, 𝜕𝑖𝑀0) ≥ 𝜖 }. We equip 𝑀𝜖 with
the restriction of 𝑔, making it into a compact Riemannian manifold with poly-cylindrical ends
that approaches 𝑀 for 𝜖 → 0. We will use the manifolds 𝑀𝜖 to regularize the integrals in the
Weitzenböck formula Lemma 4.2. In particular, since 𝑀𝜖 is compact, the following version of
Stokes’ theorem holds.

Theorem 4.4 (Stokes’ Theorem on Manifolds with Corners [Whi57]). Let 𝑀𝜖 be a compact
manifold with corners, then

∫
𝑀𝜖

𝑑𝜒 = ∑
𝑖∈𝐼

∫
𝜕𝑖𝑀𝜖

𝜒 ,

where the sum on the right hand side is over all boundary faces of codimension one.

Each of the boundaries of𝑀𝜖 can be thought of as an ‘𝜖-displacement’ of the corresponding end
of 𝑀 into the interior. By this we mean that for each end [0, 1)𝑠 × 𝑊 of 𝑀, the corresponding
end of 𝑀𝜖 can be identified with an embedding of [𝜖, 1]𝑠 × 𝑊 ↪ [0, 1)𝑠 × 𝑊. At non-compact
ends, the distance between points with 𝑠 = 𝜖 and 𝑠 = 1 is finite and proportional to 𝜖−1, while
points at 𝑠 = 0 reside at infinity.

From now on let (𝑀5, 𝑔) denote a poly-cylindrical five-manifold andwrite (𝑀0, 𝑔0) for a suitable
ambient manifold. Throughout, we take 𝜕𝑀5 to include both, its boundary components and
non-compact cylindrical ends, i.e. we identify the boundary faces 𝜕𝑖𝑀5 with the corresponding
boundary components of 𝑀0.
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Let [0, 𝜖)𝑠×𝑊 4 be a tubular neighbourhood of a cylindrical end and denote the inward-pointing
unit-normal vector field by 𝑢. In case of a boundary this means that 𝑢 = 𝜕𝑠, while for a non-
compact end we have 𝑢 = 𝑠𝜕𝑠. We say 𝑣 approaches a cylindrical end at constant angle if there is
a tubular neighbourhood1 on which the incidence angle 𝑔(𝑢, 𝑣) = cos 𝜃 is constant. This angle
determines the natural boundary conditions at a given cylindrical end.

We will now give a first overview of the relevant boundary conditions, first for boundaries
and then for non-compact ends. The classes of boundary conditions serve as organizational
structure for the rest of the chapter. A detailed discussion, in particular for the Nahm pole
and knot singularity model solutions, will be given later, see Section 4.3 and Section 4.4.2,
respectively.

At a boundary with incidence angle 𝑔(𝑢, 𝑣) = cos 𝛽, 𝛽 ≠ 𝜋/2, we impose 𝛽-twisted Nahm
pole boundary conditions, which fix the maximal rate of growth of (𝐴, 𝐵) as one approaches
the boundary. The condition specifies that (𝐴, 𝐵) are asymptotic to a model configuration
(𝐴𝜌,𝛽, 𝐵𝜌,𝛽) of order O(𝑦−1). The model configuration is associated to a choice of Lie algebra
homomorphism 𝜌 ∶ su(2) → g.

It is also possible to include knot singularities of weight 𝜆 ∈ Γ∨char in the co-character lattice
of g. In that case one considers the geometric blowup of a surface Σ𝐾 ⊂ 𝜕𝑀, which introduces
an additional boundary 𝜕𝐾𝑀 ≃ Σ𝐾 × 𝐻 2, where 𝐻 2 denotes the two-dimensional hemisphere.
While the incidence angle of 𝑣 at this new boundary can no longer be constant, we assume
that 𝑣 maintains a constant glancing angle 𝜃 with Σ𝐾. At the knot boundary 𝜕𝐾𝑀, the fields
must then be asymptotic to another model configuration (𝐴𝜆,𝜃, 𝐵𝜆,𝜃) of order O(𝑅−1), where 𝑅
denotes the radial distance to Σ𝐾.

The Haydys-Witten pair (𝐴, 𝐵) satisfies 𝛽-twisted Nahm pole boundary conditions at 𝜕𝑀, with
knot singularity of weight 𝜆 ∈ Γ∨char along Σ𝐾, if for some 𝜖 > 0

(i) near 𝜕0𝑀: (𝐴, 𝐵) = (𝐴𝜌,𝛽, 𝐴𝜌,𝛽) +O(𝑦−1+𝜖)

(ii) near 𝜕𝐾𝑀: (𝐴, 𝐵) = (𝐴𝜆,𝜃, 𝐵𝜆,𝜃) +O(𝑅−1+𝜖)

Consider now the case of a non-compact end [0, 𝜖)𝑠 × 𝑊 4 with incidence angle 𝑔(𝑢, 𝑣) = cos 𝜃.
Natural boundary conditions at non-compact ends are given by stationary (𝑠-invariant) solu-
tions of the underlying differential equations. It turns out that the specialization to 𝑠-invariant
Haydys-Witten equations is given either by theVafa-Witten equations or the 𝜃-Kapustin-Witten,
depending on the value of 𝜃:

HW𝑣 (𝐴, 𝐵)
𝑠-inv.
⇝ {

VW (�̃�, �̃�, 𝐶) 𝜃 ≡ 0 (mod 𝜋) ,
KW𝜃 (�̃�, 𝜙) else

If 𝜃 ≠ 0 (mod 𝜋), there must be a non-vanishing vector field 𝑤 on 𝑊 4, such that 𝑣 = cos 𝜃𝑢 +
sin 𝜃𝑤. Moreover, we can define an orthogonal vector field 𝑣⟂ = − sin 𝜃𝑢 + cos 𝜃𝑤. With this

1This is equivalent to an asymptotic equivalence of 𝑔(𝑢, 𝑣) − cos 𝜃 ∼ 0 as 𝑠𝑖 → 0. It seems reasonable that this
condition can be slightly weakened to 𝑔(𝑢, 𝑣) ∼ cos 𝜃.
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4 The Decoupled Haydys-Witten Equations and a Weitzenböck Formula

Figure 4.2 Witten’s setup is captured by a polycylindrical manifold 𝑀5 = ℝ𝑠 × 𝑋 3 × ℝ+𝑦 ,
blown-up along a surface embedding Σ𝐾 = ℝ𝑠 × 𝐾 in the boundary at 𝑦 = 0. For each of the
four boundary classes, the incidence angles of the vector field 𝑣 = 𝜕𝑦 at a given boundary
component determines the natural boundary condition.

notation, the four-dimensional fields above are given in terms of (𝐴, 𝐵) as follows

�̃� ∶= 𝑖∗𝐴 ,
�̃� = 𝑖∗𝐵 , 𝐶 = 𝐴𝑠

𝜙 ∶= 𝑖∗ (𝚤𝑣⟂𝐵 + 𝐴𝑠 ∧ 𝑤♭)

Wewill consider stationary solutions that either satisfy a finite energy condition, or that exhibit
a 𝛽 = (𝜋/2 − 𝜃)-twisted Nahm pole at one of the adjacent corners of 𝑀5.

We arrange the ends of 𝑀5, in accordance with these boundary conditions, into the following
four classes:

(1) Nahm pole boundaries 𝜕NP𝑀,
(2) Knot boundaries 𝜕𝐾𝑀,
(3) Kapustin-Witten ends with finite energy 𝜕KW𝑀, and
(4) Kapustin-Witten ends with Nahm poles, denoted by 𝜕NP-KW𝑀.

Let us shortly exemplify this in connection with the gauge theoretic approach to Khovanov
homology. In this situation one considers the five-manifold 𝑀5 = ℝ𝑠 × 𝑋 3 × ℝ+𝑦 together with
the vector field 𝑣 = 𝜕𝑦. In presence of a knot 𝐾 ⊂ 𝑋 3, one then moves to the geometric blowup
[𝑀5; Σ𝐾], where Σ𝐾 = ℝ𝑠 × 𝐾. The blown-up manifold has two types of boundary components.
First, a Nahm pole boundary 𝜕NP𝑀, corresponding to those original boundary points at 𝑦 = 0
that are not part of the Σ𝐾. Second, a knot boundary 𝜕𝐾𝑀5, given by the points of the unit
normal bundle over the surface Σ𝐾. 𝑀5 also has several cylindrical ends. A Kapustin-Witten
end appears at 𝑦 → ∞, where the angle between 𝑣 and the inward pointing unit normal vector
−𝜕𝑦 is 𝜃 = 0, such that the fields approach a solution of the Vafa-Witten equations (hence, this
should really be called a Vafa-Witten end). Kapustin-Witten ends with additional Nahm poles
at a corner of𝑀5 appear at 𝑠 → ±∞, where fields approach a Kapustin-Witten solutions with a
Nahm pole located at the corner {𝑦 = 0, 𝑠 = ±∞}.
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Remark. In case (3) the fields (𝐴, 𝐵) approach a stationary, finite energy solution of the Kapus-
tin-Witten equations, such that one can determine the behaviour of 𝜒with help of the vanishing
theorem for 𝜃-Kapustin-Witten solutions. In the situation of (4) we similarly ask for a stationary
solution, but the fields exhibit a Nahm pole at an adjacent corner. In this situation the fields
diverge and, in particular, do not have finite energy.

4.3 Polyhomogeneous Expansion of Twisted Nahm Pole Solutions

In this section we investigate the asymptotic behaviour of a Haydys-Witten solution (𝐴, 𝐵)
in the vicinity of a Nahm pole boundary 𝜕NP𝑀, i.e. under the assumption that (𝐴, 𝐵) satisfy
twisted Nahm pole boundary conditions without knot singularities. The goal of this analysis
is to extract the leading order behaviour of 𝐹𝐴 and 𝛿+𝐴𝐽

+𝐵 near a Nahm pole boundary, which
is later used to determine the asymptotics of 𝜒.

The analysis goes back to an essentially identical discussion for the 𝜃 = 𝜋/2 version of the
Kapustin-Witten equations with untwisted Nahm pole boundary conditions by Mazzeo and
Witten in [MW14]. There, a Weitzenböck formula on ℝ3 × ℝ+ very similar to Lemma 4.2 –
in fact a more restrictive one – was established and then utilized to determine the analytic
properties of the Nahm pole boundary conditions in the first place. While Mazzeo and Witten
already touched on the leading and constant orders for general four-manifolds, Siqi He has
later expanded on the constraints that arise for subleading orders on general four-manifolds
and unveiled a deep relation to the geometry of the boundary [He18].

To set the stage, let 𝑈 = 𝑊 4 × [0, 1)𝑦 be a tubular neighbourhood of a Nahm pole boundary
𝜕NP𝑀. Write 𝑢 = 𝜕𝑦 for the inward-pointing, unit normal vector field. As always, assume that
the incidence angle determined by 𝑔(𝑢, 𝑣) = cos 𝛽 is constant on all of 𝑈. Whenever 𝛽 ≠ 0 there
is a non-vanishing unit vector field 𝑤 on 𝑊 4, such that 𝑣 = sin 𝛽𝑤 + cos 𝛽𝑢.

Let us shortly recall some additional details about the Nahm pole boundary conditions on 𝜕NP𝑀,
see [MW14; MW17]. Let 𝜙𝜌 ∈ Ω2

𝑣 ,+(𝑈 , ad 𝐸) be some fixed boundary configuration associated
to the Nahm pole boundary conditions on 𝑈. This means that it satisfies 𝜙𝜌 − 𝜎(𝜙𝜌, 𝜙𝜌) = 0,
such that its components (𝜙𝜌)𝑖 = t𝑖, 𝑖 = 1, 2, 3, span an su(2) subalgebra inside of g. There is
a unique corresponding two-form that satisfies 𝜙𝜏𝜌 + 𝜎(𝜙𝜏𝜌, 𝜙𝜏𝜌) = 0. Here 𝜏 = (132) denotes an
anticyclic permutation that acts on components by (𝜙𝜏𝜌)𝑖 = (𝜙𝜌)𝜏 (𝑖) and is related to a reversal
of orientation on Ω2

𝑣 ,+(𝑈 ). If 𝛽 ≠ 0, there is an isomorphism by which we can view elements of
Ω2
𝑣 ,+(𝑈 ) as the one-forms dual to a rank 3 subbundle Δ⟂

(𝑢,𝑣) ⊂ 𝑇𝑈. Here, Δ⟂
(𝑢,𝑣) is the orthogonal

complement of the subbundle spanned by 𝑢 and 𝑣. With that in mind, the Nahm pole boundary
condition states that as 𝑦 → 0, 𝐴 and 𝐵 are asymptotic to

𝐴𝜌,𝛽 = sin 𝛽
𝜙𝜏𝜌
𝑦

, 𝐵𝜌,𝛽 = cos 𝛽
𝜙𝜌
𝑦

.
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4 The Decoupled Haydys-Witten Equations and a Weitzenböck Formula

Near a Nahm pole, the Haydys-Witten equations are amended by the following gauge fixing
condition

𝑑⋆5𝐴0(𝐴 − 𝐴0) + 𝜎(𝐵NP, 𝐵 − 𝐵NP) = 0 ,

making the equations into an elliptic system of differential equations.

Ultimately, we want to investigate the leading order of the functions 𝜒1 = −2Tr(𝐹𝐴 ∧ 𝐽−𝐵) and
𝜒2 = −2Tr(𝛿+𝐴𝐽

+𝐵 ∧ 𝐽−𝐵 ∧ 𝜂) near 𝜕NP𝑀. Since this involves derivatives and products of 𝐴
and 𝐵, we need to study the subleading orders in a polyhomogeneous expansion of 𝐴 and 𝐵 as
𝑦 → 0.

Write 𝐴 = 𝑦−1 sin 𝛽 𝜙𝜏𝜌 + 𝜔 + 𝑎 and 𝐵 = 𝑦−1 cos 𝛽 𝜙𝜌 + 𝑏, where by assumption of the Nahm
pole boundary condition 𝑎, 𝑏 ∈ O(𝑦−1+𝜖), while 𝜔 is a gauge connection on the restriction of 𝐸
to 𝑊 4, smoothly extended into the bulk. If (𝐴, 𝐵) is a solution of the Haydys-Witten equations
that satisfies Nahm pole boundary conditions, then an elliptic regularity theorem Mazzeo and
Witten [MW14] states that there exist polyhomogeneous expansions

𝑎 ∼ ∑
(𝛼,𝑘)∈Δ0

𝑎𝛼,𝑘(𝑥𝜇) 𝑦𝛼(log 𝑦)𝑘 , 𝑏 ∼ ∑
(𝛼,𝑘)∈Δ0

𝑏𝛼,𝑘(𝑥𝜇) 𝑦𝛼(log 𝑦)𝑘 (𝑦 → 0) ,

where the indicial set Δ0 ⊂ ℂ ×ℕ is bounded from the left by 1 (in particular 𝑎0,𝑘 = 𝑏0,𝑘 = 0).

Plugging 𝐴 = 𝑦−1 sin 𝛽 𝜙𝜏𝜌 + 𝜔 + 𝑎 and 𝐵 = 𝑦−1 cos 𝛽 𝜙𝜌 + 𝑏 into the Haydys-Witten equations
then determines a sequence of constraints on the functions 𝑎𝛼,𝑘 and 𝑏𝛼,𝑘. For our purposes it
will suffice to determine 𝜒 up to O(𝑦 𝛿), 𝛿 > 0, so we only need to consider an expansion up
to order 𝑦2+𝛿. We will see below that for generic values of 𝛽 only the following terms in the
expansion are non-zero.

𝑎 = 𝑎1,1 𝑦 log 𝑦 + 𝑎1,0 𝑦 + 𝑎2,1 𝑦2 log 𝑦 + 𝑎2,0 𝑦2 +O(𝑦5/2)

𝑏 = 𝑏1,1 𝑦 log 𝑦 + 𝑏1,0 𝑦 + 𝑏2,1 𝑦2 log 𝑦 + 𝑏2,0 𝑦2 +O(𝑦5/2)

Moreover, the coefficient functions satisfy additional constraints that link them to the Rieman-
nian curvature of the manifold. In particular, the log 𝑦-terms vanish if sectional curvature is
flat in any plane that contains 𝑤.

To make this more precise, we need to establish analogues of the tools that were used in the
discussion of indicial roots in [MW14] and [He18]. First, the fibers of ad 𝐸 decompose under the
action of (𝜙𝜌)𝑖 = t𝑖 ∈ su(2)t as a direct sum of spin 𝑗 representations. We denote the associated
vector bundles by 𝑉𝑗, 𝑗 ∈ 𝐽. Since we consider regular Nahm pole conditions, only positive
integers 𝑗 appear; in fact for 𝐺 = 𝑆𝑈 (𝑁 ) one finds 𝐽 = {1, … , 𝑁 − 1} [MW14]. Second, there
is an action by rotations so(3) ≃ su(2)s on Ω2

𝑣 ,+(𝑊 4) and (Δ⟂
(𝑢,𝑣))

∗. For fixed 𝑗, the bundles
Ω2
𝑣 ,+(𝑊 4, ad 𝐸) and Hom(Δ⟂

(𝑢,𝑣), 𝑉𝑗) ⊂ Ω1(𝑊 4, ad 𝐸) thus further decomposes under a combined
su(2)f action, generated by f𝑖 = t𝑖 + s𝑖, into a direct sum of bundles 𝑉−

𝑗 , 𝑉
0
𝑗 , and 𝑉+

𝑗 of total
spin 𝑗 − 1, 𝑗 and 𝑗 + 1, respectively. To simplify notation, we will furthermore write 𝑉 𝑤

𝑗 ∶=
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𝐶∞(𝑊 4, 𝑉𝑗) 𝑤♭, where we let su(2)s acts trivially. All in all, the relevant ad 𝐸-valued differential
forms decompose as

Ω1(𝑊 4, ad 𝐸) = ⨁
𝑗∈𝐽

( 𝑉 𝑤
𝑗 ⊕ 𝑉−

𝑗 ⊕ 𝑉 0
𝑗 ⊕ 𝑉+

𝑗 )

Ω2
𝑣 ,+(𝑊 4, ad 𝐸) = ⨁

𝑗∈𝐽
(𝑉−

𝑗 ⊕ 𝑉 0
𝑗 ⊕ 𝑉+

𝑗 )

This decomposition is helpful, because the leading order terms 𝐴NP = 𝑦−1 sin 𝛽𝜙𝜏𝜌 and 𝐵NP =
𝑦−1 cos 𝛽𝜙𝜌 are invariant under the action of su(2)f and, as a consequence, the constraints for
𝑎𝛼,𝑘 and 𝑏𝛼,𝑘 decompose into their 𝑉 𝜂

𝑗 -valued components. However, there is an additional
subtlety regarding invariance of the Nahm pole terms under the action of su(2)f. To see this,
let rotations su(2)s act on Ω2

𝑣 ,+ with the ‘standard’ orientation on (𝑒1, 𝑒2, 𝑒3) and assume this
basis is identified with (𝑑𝑥1, 𝑑𝑥2, 𝑑𝑥3) ∈ (Δ⟂

(𝑢,𝑣))
∗. Then 𝜙𝜌 = ∑𝑖 t𝑖𝑒𝑖 or equivalently ∑𝑖 t𝑖𝑑𝑥 𝑖 is

an element of the trivial representation 𝑉−
1 ⊂ Ω2

𝑣 ,+(𝑊 4, ad 𝐸) ≃ Hom(Δ⟂
(𝑢,𝑣), ad 𝐸), such that 𝐵

NP

is invariant. Unfortunately, under this identification 𝜙𝜏𝜌 = ∑𝑖 t𝜏 (𝑖)𝑑𝑥 𝑖 = t1𝑑𝑥1 + t2𝑑𝑥3 + t3𝑑𝑥2

is not invariant, since orientation reversal 𝜙𝜌 ↦ 𝜙𝜏𝜌 does not preserve 𝑉−
1 . To remedy this, we

need rotations to act on the Δ⟂
(𝑢,𝑣)-part of 𝐴 with the opposite orientation (𝑑𝑥1, 𝑑𝑥3, 𝑑𝑥2). With

that choice 𝜙𝜏𝜌 is an element of the trivial representation �̃�−
1 , with respect to the analogous (but

different) decomposition

Ω1(𝑊 4, ad 𝐸) = ⨁
𝑗∈𝐽

(�̃� 𝑤
𝑗 ⊕ �̃�−

𝑗 ⊕ �̃� 0
𝑗 ⊕ �̃�+

𝑗 ) .

𝐴NP becomes invariant under su(2)f only with that choice. We denote the restriction of a given

differential form 𝛼 to one of the subspaces 𝑉 𝜂
𝑗 or �̃� 𝜂

𝑗 in this decomposition by (𝛼)𝑗,𝜂 or (𝛼)𝑗,𝜂,
respectively.

Example. In a local basis (𝑒𝑖)𝑖=1,2,3 of Ω2
𝑣 ,+(𝑈 , ad 𝐸) the subbundles 𝑉 𝜂

1 ⊂ Ω2
𝑣 ,+(𝑊 4, ad 𝐸) are

given by:

𝑉−
1 = span {t1𝑒1 + t2𝑒2 + t3𝑒3} ,

𝑉 0
1 = span {t𝑖𝑒𝑗 − t𝑗𝑒𝑖}𝑖≠𝑗 ,

𝑉+
1 = span {t1𝑒1 − t2𝑒2, t1𝑒1 − t3𝑒3, t𝑖𝑒𝑗 + t𝑗𝑒𝑖}𝑖≠𝑗 .

Substituting 𝑒𝑖 by 𝑑𝑥 𝑖 provides the corresponding basis under the isomorphism ofΩ2
𝑣 ,+(𝑊 4, ad 𝐸)

andHom(Δ⟂
(𝑢,𝑣), ad 𝐸) ⊂ Ω1(𝑊 4, ad 𝐸). This is the correct decomposition for the action of su(2)f

on 𝐵 and its expansions 𝜙𝜌, 𝑏𝛼,𝑘. In contrast, for the decomposition ofΩ1(𝑊 4, ad 𝐸)with respect
to the reverse orientation, a corresponding basis of �̃� 𝜂

1 , 𝜂 ∈ {−, 0, +}, is obtained from the one
above by replacing 𝑒𝑖 with 𝑑𝑥𝜏 (𝑖). For example �̃�−

1 = span {t1𝑑𝑥1 + t3𝑑𝑥2 + t2𝑑𝑥3}. This is the
correct basis for the action of su(2)f on 𝐴 and its expansions 𝜙𝜏𝜌, 𝑎𝛼,𝑘.

The upcoming lemma and its proof specify the algebraic constraints the Haydys-Witten equa-
tions put on the coefficient functions in the polyhomogeneous expansion up to order 𝑦2. See
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4 The Decoupled Haydys-Witten Equations and a Weitzenböck Formula

[He18] for a similar and more extensive investigation of these constraints in the case of 𝜋/2-
Kapustin-Witten solutions with Nahm pole boundary conditions.

As becomes clear during the proof, we have to exclude a finite set of angles at which certain
spin-𝑗 modes of 𝚤𝑤𝑎, i.e. the components (𝑎𝛼,𝑘)𝑗,𝑤, become free parameters. Explicitly, these
values are given by:

cos 2𝛽 ∈ {− 2𝑗+3
(𝑗+1)2 ,

2𝑗−1
𝑗2 , −3𝑗2−4𝑗+3

𝑗(𝑗+1)2 , −3𝑗2+2𝑗−4
𝑗2(𝑗+1) }

𝑗∈𝐽

The statement of the following lemma holds whenever 𝛽 is not of that form.

Lemma4.5. Assume𝐴 = 𝑦−1 sin 𝛽 𝜙𝜏𝜌+𝜔+𝑎 and 𝐵 = 𝑦−1 cos 𝛽 𝜙𝜌+𝑏 are a solution of the Haydys-
Witten equations on 𝑊 4 × ℝ+𝑦 with respect to the non-vanishing vector field 𝑣 = sin 𝛽𝑤 + cos 𝛽𝜕𝑦.
Then 𝜔 pulls back under 𝜙𝜌 to the Levi-Civita connection on 𝑇𝑊 4 and ∇𝜔𝑤𝜙𝜌 = 0. Furthermore, if 𝛽
is generic, then 𝑎1,𝑘 = 𝑏1,𝑘 = 𝑎2,𝑘 = 𝑏2,𝑘 = 0 for all 𝑘 ≥ 2. The solution is smooth up to the boundary
(i.e. 𝑎1,1 = 𝑏1,1 = 0), if and only if the Riemannian curvature satisfies (cos 𝛽𝚤𝑤𝐹𝜔+𝚤𝑤⋆4𝐹𝜔)|𝑉 +

1 /�̃� 0
1
=

0. Finally, if 𝐹𝜔 = 0, the polyhomogeneous expansion up to order 𝑦2+𝛿, 𝛿 > 0, reduces to

𝑎 = 𝑦 sin 𝛽 (𝐶1,+)𝜏 + 𝑦2 (sin 𝛽 𝐶2,+ + cos 𝛽 𝐷1,−)𝜏 +O(𝑦2+𝛿)

𝑏 = 𝑦 cos 𝛽 𝐶1,+ + 𝑦2 (cos 𝛽 𝐶2,+ − sin 𝛽 𝐷1,−) +O(𝑦2+𝛿)

where 𝐶1,+ ∈ 𝑉+
1 /�̃� 0

1 , 𝐷1,− ∈ 𝑉−
1 , and 𝐶2,+ ∈ 𝑉+

2 /�̃� 0
2 remain unconstrained.

Corollary 4.6. Denote by 𝑖𝑦 ∶ 𝑊 4 ↪ 𝑊 4 × ℝ+𝑦 inclusion at 𝑦. For generic 𝛽 and if 𝐹𝜔 = 0, the
total field strength pulls back to

𝑖∗𝑦(𝐹𝐴) = 𝑦−2 (sin2 𝛽 [𝜙𝜏𝜌 ∧ 𝜙𝜏𝜌]) + 𝑦0 (sin2 𝛽 [𝜙𝜏𝜌 ∧ (𝐶1,+)𝜏])

+ 𝑦1 (sin 𝛽 𝑑𝜔(𝐶1,+)𝜏 + sin2 𝛽[𝜙𝜏𝜌 ∧ (𝐶2,+)𝜏] + sin 𝛽 cos 𝛽 [𝜙𝜏𝜌 ∧ (𝐷1,−)𝜏]) +O(𝑦1+𝛿)

Meanwhile, the 𝑑𝑥2- and 𝑑𝑥3- components of 𝛿+𝐴𝐽
+𝐵 are specified by

𝑖∗𝑦(𝛿+𝐴𝐽
+𝐵) ∝ 𝑦−2 sin 𝛽 cos 𝛽 ([(𝜙𝜏𝜌)3, (𝜙𝜌)1]𝑑𝑥2 − [(𝜙𝜏𝜌)2, (𝜙𝜌)1]𝑑𝑥3)

+ 𝑦0 sin 𝛽 cos 𝛽 ( ([(𝜙𝜏𝜌)3, (𝐶1,+)1] + [(𝐶1,+)𝜏3, (𝜙𝜌)1]) 𝑑𝑥2

− ([(𝜙𝜏𝜌)2, (𝐶1,+)1] + [(𝐶1,+)𝜏2, (𝜙𝜌)1]) 𝑑𝑥3)

+ 𝑦1 ( (cos 𝛽 ∇𝜔3 (𝐶1,+)1 + sin 𝛽 cos 𝛽 [(𝜙𝜏𝜌)3, (𝐶2,+)1] − sin2 𝛽 [(𝜙𝜏𝜌)3, (𝐷1,−)1]) 𝑑𝑥2

− (cos 𝛽 ∇𝜔2 (𝐶1,+)1 + sin 𝛽 cos 𝛽[(𝜙𝜏𝜌)2, (𝐶2,+)1] − sin2 𝛽 [(𝜙𝜏𝜌)2, (𝐷1,−)1]) 𝑑𝑥3)

+O(𝑦1+𝛿)

The rest of this section is occupied with the proof of Lemma 4.5.
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Proof. The proof is analogous to the analysis in [He18], which covers the case 𝛽 = 0. Hence,
assume that 𝛽 ≠ 0, in which case there is an isomorphism Ω2

𝑣 ,+(𝑈 , ad 𝐸) ≃ Hom(Δ⟂
(𝑢,𝑣), ad 𝐸).

We use this equivalence to first re-express the Haydys-Witten equations (4.5) purely in terms
of one-forms. This simplifies the evaluation of the formulas later on.

Fix a gauge in which 𝐴𝑦 = 0 and choose as reference connection 𝐴0 = 𝑦−1 sin 𝛽 𝜙𝜏𝜌 + 𝜔, where
𝜔 is the pullback of a connection on 𝐸 → 𝑊 4. Note that when we view 𝐵 as an element
of Hom(Δ⟂

(𝑢,𝑣), ad 𝐸) ⊂ Ω1(𝑊 4 × ℝ+𝑦 , ad 𝐸), it does not have a 𝑑𝑦-component: in coordinates

(𝑠, 𝑥 𝑖, 𝑦)𝑖=1,2,3 with 𝑣 = sin 𝛽𝜕𝑠 + cos 𝛽𝜕𝑦, the two-form 𝐵 = ∑3
𝑖=1 𝜙𝑖𝑒𝑖 is identified with the one-

form ∑3
𝑖=1 𝜙𝑖𝑑𝑥 𝑖. Since the coefficients 𝜙𝜏𝜌, 𝜙𝜌, 𝑎𝛼,𝑘 and 𝑏𝛼,𝑘 are independent of 𝑦 and as they

don’t have 𝑑𝑦-components, we can view them as elements of Ω1(𝑊 4, ad 𝐸). Motivated by this,
we slightly abuse notation in the upcoming version of the Haydys-Witten equations (4.6) - (4.9)
and treat 𝐴 and 𝐵 as one-forms on 𝑊 4 × {𝑦}. (Specifically, we implicitly take the pullback and
drop any 𝑑𝑦-components in 𝐹𝐴 and 𝑑𝐴𝐵.) With that understood, the Haydys-Witten equations
can be brought into the form

𝜕𝑦𝐴 = −𝚤𝑤 (𝑑𝐴𝐵 − sin 𝛽 ⋆4 (𝐹𝐴 − [𝐵 ∧ 𝐵]) − cos 𝛽 ⋆4 𝑑𝐴𝐵) (4.6)

𝜕𝑦𝐵 = 𝚤𝑤 (𝐹𝐴 + cos 𝛽 ⋆4 (𝐹𝐴 − [𝐵 ∧ 𝐵]) − sin 𝛽 ⋆4 𝑑𝐴𝐵) (4.7)

𝜕𝑦 (𝚤𝑤𝐴) = 𝑑⋆4𝐴 𝐵 (4.8)

0 = 𝑑⋆4𝜔 𝑎 + sin 𝛽 ⋆4 [𝜙𝜏𝜌 ∧ ⋆4𝑦−1𝑎] + cos 𝛽 ⋆4 [𝜙𝜌 ∧ ⋆4𝑦−1𝑏] (4.9)

Plugging the polyhomogeneous expansions of 𝐴 and 𝐵 into the terms that appear in these
equations yields:

𝐹𝐴 = 𝑦−2( sin2 𝛽 [𝜙𝜏𝜌 ∧ 𝜙𝜏𝜌] + sin 𝛽 𝜙𝜏𝜌 ∧ 𝑑𝑦) + 𝑦−1( sin 𝛽 𝑑𝜔𝜙𝜏𝜌) + 𝑦0(𝐹𝜔)

+ ∑
(𝛼,𝑘)≥0

𝑦𝛼(log 𝑦)𝑘 (𝑑𝜔𝑎𝛼,𝑘 + sin 𝛽[𝜙𝜏𝜌 ∧ 𝑎𝛼+1,𝑘] − (𝛼 + 1)𝑎𝛼+1,𝑘 ∧ 𝑑𝑦 − (𝑘 + 1)𝑎𝛼+1,𝑘+1 ∧ 𝑑𝑦)

[𝐵 ∧ 𝐵] = 𝑦−2 (cos2 𝛽 [𝜙𝜌 ∧ 𝜙𝜌]) + ∑
(𝛼,𝑘)≥0

𝑦𝛼(log 𝑦)𝑘 (cos 𝛽[𝜙𝜌 ∧ 𝑏𝛼+1,𝑘])

𝑑𝐴𝐵 = 𝑦−2 (sin 𝛽 cos 𝛽 [𝜙𝜏𝜌 ∧ 𝜙𝜌] + cos 𝛽 𝜙𝜌 ∧ 𝑑𝑦) + 𝑦−1 (cos 𝛽 𝑑𝜔𝜙𝜌)

+ ∑
(𝛼,𝑘)≥0

𝑦𝛼(log 𝑦)𝑘 (𝑑𝜔𝑏𝛼,𝑘 + sin 𝛽 [𝜙𝜏𝜌 ∧ 𝑏𝛼+1,𝑘] + cos 𝛽 [𝜙𝜌 ∧ 𝑎𝛼+1,𝑘]

−(𝛼 + 1)𝑏𝛼+1,𝑘 ∧ 𝑑𝑦 − (𝑘 + 1)𝑏𝛼+1,𝑘+1 ∧ 𝑑𝑦)

𝑑⋆4𝐴 𝐵 = 𝑦−1 (cos 𝛽 𝑑⋆4𝜔 𝜙𝜌) + ∑
(𝛼,𝑘)≥0

𝑦𝛼(log 𝑦)𝑘 (𝑑⋆4𝜔 𝑏𝛼,𝑘 + sin 𝛽 ⋆4 [𝜙𝜏𝜌 ∧ ⋆4𝑏𝛼+1,𝑘]

− cos 𝛽 ⋆4 [𝜙𝜌 ∧ ⋆4𝑎𝛼+1,𝑘])

Here we write (𝛼, 𝑘) ≥ 0 for pairs of exponents with Re 𝛼 ≥ 0. Using (𝜕𝑦𝐴)𝑖 = −(𝐹𝐴)𝑖𝑦 and
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(𝜕𝑦𝐵)𝑖 = −(𝑑𝐴𝐵)𝑖𝑦, we can now read off the contributions to the Haydys-Witten equations from
each of these expressions, order by order in 𝑦𝛼(log 𝑦)𝑘.

O(𝑦−2)

At order O(𝑦−2) only equations (4.6) and (4.7) are non-trivial. Using that 𝚤𝑤(⋆4[𝜙𝜏𝜌 ∧ 𝜙𝜌]) =
1
2 𝚤𝑤(⋆4[𝜙

𝜏
𝜌 ∧ 𝜙𝜏𝜌] + ⋆4[𝜙𝜌 ∧ 𝜙𝜌]), the Haydys-Witten equations then state:

𝜙𝜏𝜌 = −𝚤𝑤 (⋆4[𝜙𝜏𝜌 ∧ 𝜙𝜏𝜌])

𝜙𝜌 = 𝚤𝑤 (⋆4[𝜙𝜌 ∧ 𝜙𝜌])

This is satisfied, since under the isomorphism Ω2
𝑣 ,+(𝑈 , ad 𝐸) = Hom(Δ⟂

(𝑢,𝑣), ad 𝐸) the expression
𝚤𝑤(⋆4[𝜙𝜌∧𝜙𝜌]) is identifiedwith 𝜎(𝜙𝜌, 𝜙𝜌). By construction of the Nahm pole boundary condition
𝜙𝜌 − 𝜎(𝜙𝜌, 𝜙𝜌) = 0, while the same is true for 𝜙𝜏𝜌 with the opposite sign.

O(𝑦−1)

The first additional constraint arises at O(𝑦−1), where we find

0 = 𝚤𝑤 (cos 𝛽 𝑑𝜔𝜙𝜌 − sin2 𝛽 ⋆4 𝑑𝜔𝜙𝜏𝜌 − cos2 𝛽 ⋆4 𝑑𝜔𝜙𝜌)

0 = −𝚤𝑤 (sin 𝛽 𝑑𝜔𝜙𝜏𝜌 + sin 𝛽 cos 𝛽 ⋆4 𝑑𝜔𝜙𝜏𝜌 − sin 𝛽 cos 𝛽 ⋆4 𝑑𝜔𝜙𝜌)

0 = cos 𝛽 𝑑⋆4𝜔 𝜙𝜌

These equations are satisfied if the tensor2 ∇𝜔𝜙𝜌 vanishes. This means that 𝜙𝜌 intertwines
the Levi-Civita and gauge connection on 𝑇𝑊 4: On the one hand, 𝜔 must pull back under 𝜙𝜌 ∶
Δ⟂
(𝑢,𝑣) → ad 𝐸 to the Levi-Civita connection on Δ⟂

(𝑢,𝑣). This also implies that the restriction of 𝜔
to Δ⟂

(𝑢,𝑣) ⊂ 𝑇𝑊 4 is valued in 𝜌(su(2)) = 𝑉1 ⊂ ad 𝐸. On the other hand, the 𝑤♭-component of 𝜔
must be such that ∇𝜔𝑤𝜙𝜌 = 0, i.e. 𝜙𝜌 extends along 𝑤 by parallel transport. Since the Levi-Civita
connection acts trivially on ad 𝐸, it preserves 𝑉1 ⊂ ad 𝐸 and we find that also 𝚤𝑤𝜔 ∈ 𝑉1. We note
that 𝚤𝑤 ⋆4 𝐹𝜔 and 𝚤𝑤𝐹𝜔 are then elements of 𝑉−

1 ⊕𝑉 0
1 ⊕𝑉+

1 and are determined by the Riemannian
curvature of𝑊 4. Furthermore, the exterior covariant derivative satisfies the followingmapping
properties (cf. [Hen12, p.5]):

𝚤𝑤 ⋆4 𝑑𝜔 ∶ 𝑉 𝑤
𝑗 → 0 , 𝑉−

𝑗 → 𝑉 0
𝑗 , 𝑉 0

𝑗 → 𝑉−
𝑗 ⊕ 𝑉 0

𝑗 ⊕ 𝑉+
𝑗 , 𝑉+

𝑗 → 𝑉 0
𝑗 ⊕ 𝑉+

𝑗

𝚤𝑤𝑑𝜔 ∶ 𝑉 𝑤
𝑗 → 𝑉−

𝑗 ⊕ 𝑉 0
𝑗 ⊕ 𝑉+

𝑗 , 𝑉 𝜂
𝑗 → 𝑉 𝜂

𝑗 , 𝜂 ∈ {−, 0, +}
(4.10)

With a view at the expansions of 𝐹𝐴 and 𝑑𝐴𝐵, it becomes clear that these identities will be
helpful in the upcoming analysis, starting at order O(𝑦0(log 𝑦)𝑘).

O(𝑦0(log 𝑦)𝑘)

Examining the higher order expansions of the right hand side of (4.6) - (4.9), one finds that the
equations will from now on involve terms of the form 𝚤𝑤 ⋆4 [𝜙𝜌 ∧ ⋅] and its analogue with respect

2Here, as always, ∇𝜔 is the product connection on Ω1(𝑊 4 × ℝ+
𝑦 , ad 𝐸) that is induced by the Levi-Civita connection

and the gauge connection 𝜔.
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to 𝜙𝜏𝜌. These are global versions of the spin-spin operator J ∶= s ⋅ t, as they act pointwise

by ∑3
𝑎=1 s𝑎 ⊗ t𝑎. Indeed, taking into account that rotations act on 𝑎𝛼,𝑘 and 𝑏𝛼,𝑘 with opposite

orientation one finds

J𝑎𝛼,𝑘 = −𝚤𝑤 ⋆4 [𝜙𝜏𝜌 ∧ 𝑎𝛼,𝑘] J𝑏𝛼,𝑘 = 𝚤𝑤 ⋆4 [𝜙𝜌 ∧ 𝑏𝛼,𝑘]

The vector bundles 𝑉 𝜂
𝑗 , 𝜂 ∈ {−, 0, +}, are eigenspaces of the spin-spin operator with eigenvalues

𝑗 + 1, 1, and −𝑗. Meanwhile, J sends 𝑉 𝑤
𝑗 to zero. We will also use that 𝚤𝑤[𝜙𝜌 ∧ ⋅] maps 𝑉 𝑤

𝑗 → 𝑉 0
𝑗

and 𝑉 𝜂
𝑗 → 0, 𝜂 ∈ {−, 0, +}.

Equipped with this, we can now proceed to the constraints that arise for the tower of log 𝑦
terms at order 𝑦0. Hence, consider equations (4.6) - (4.9) at O((log 𝑦)𝑘), where 𝑘 is the largest
integer such that (1, 𝑘) ∈ Δ0. The existence of such a maximal value is part of the defining
properties of a polyhomogeneous expansion. For the moment assume that 𝑘 ≥ 2, we will treat
the cases 𝑘 = 1 and 𝑘 = 0 in the end.

We now introduce the following linear combinations of 𝑉−
𝑗 ⊕ 𝑉 0

𝑗 ⊕ 𝑉+
𝑗 -parts of 𝑎𝛼,𝑘 and 𝑏𝛼,𝑘:

𝑐𝛼,𝑘 ∶= sin 𝛽 𝑎𝜏𝛼,𝑘 + cos 𝛽 𝑏𝛼,𝑘 ,

𝑑𝛼,𝑘 ∶= cos 𝛽 𝑎𝜏𝛼,𝑘 − sin 𝛽 𝑏𝛼,𝑘 .

Note, in particular, that 𝑐𝛼,𝑘 and 𝑑𝛼,𝑘 do not include the component (𝑎1,𝑘)𝑗,𝑤. Appropriate linear
combinations of (4.8) and (4.9) then state

sin 𝛽 𝚤𝑤𝑎1,𝑘 = cos 𝛽 ⋆4 [𝜙𝜌 ∧ ⋆4𝑐1,𝑘] + sin 𝛽 ⋆4 [𝜙𝜌 ∧ ⋆4𝑑1,𝑘]

cos 𝛽 𝚤𝑤𝑎1,𝑘 = sin 𝛽 ⋆4 [𝜙𝜏𝜌 ∧ ⋆4𝑐1,𝑘] − cos 𝛽 ⋆4 [𝜙𝜏𝜌 ∧ ⋆4𝑑1,𝑘]

These equations can be brought in a slightly more helpful form. Note that the operator [𝜙𝜌 ∧
⋆4[𝜙𝜌 ∧ ⋆4 ⋅ ]] annihilates 𝑉±

𝑗 and acts on 𝑉 0
𝑗 as ∑𝑖[t𝑖, [t𝑖, ⋅]], which is just (the negative of) the

quadratic Casimir on 𝑉𝑗. Applying [𝜙𝜌 ∧ ⋅] to the equations thus simplifies the operation on the
right hand side to a simple multiplication by −𝑗(𝑗 + 1). In complete analogy [𝜙𝜏𝜌 ∧ ⋆4[𝜙𝜏𝜌 ∧ ⋆4 ⋅ ]]
annihilates �̃�±

𝑗 and acts on �̃� 0
𝑗 by multiplication with −𝑗(𝑗 + 1). This results in (4.13) and (4.14)

below. Including appropriate linear combinations of (4.6) and (4.7), the coefficient functions in
the polyhomogeneous expansion have to be compatible with the following four conditions.

𝑐1,𝑘 + J𝑐1,𝑘 = sin 𝛽 cos 𝛽 (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘] − 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,𝑘]) (4.11)

𝑑1,𝑘 − J𝑑1,𝑘 = − cos2 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘] − sin2 𝛽 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,𝑘] (4.12)

𝑗(𝑗 + 1) (cos 𝛽 𝑐1,𝑘 + sin 𝛽 𝑑1,𝑘)
𝑗,0 = sin 𝛽 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,𝑘] (4.13)

𝑗(𝑗 + 1) (sin 𝛽 𝑐1,𝑘 − cos 𝛽 𝑑1,𝑘)
𝑗,0 = cos 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘] (4.14)

Observe that the terms on the left only depend on 𝑐1,𝑘 and 𝑑1,𝑘 and thus only on the 𝑉−
𝑗 ⊕𝑉 0

𝑗 ⊕𝑉+
𝑗

components of 𝑎1,𝑘 and 𝑏1,𝑘. Meanwhile, the right hand side only depends on the remaining
𝑉 𝑤
𝑗 component (𝑎1,𝑘)𝑗,𝑤. Moreover, all terms on the right are necessarily located in 𝑉 0

𝑗 + �̃� 0
𝑗

(fiberwise sum of subspaces). To solve the equations we distinguish between the following six
cases:
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(I) 𝑉−
𝑗 /�̃�

0
𝑗

(II) 𝑉+
𝑗 /�̃�

0
𝑗

(III) 𝑉−
𝑗 ∩ �̃� 0

𝑗

(IV) 𝑉+
𝑗 ∩ �̃� 0

𝑗

(V) 𝑉 0
𝑗 /�̃�

0
𝑗

(VI) 𝑉 0
𝑗 ∩ �̃� 0

𝑗

In fact, a combination of the metric and Killing form provides an inner product on each 𝑉 𝜂
𝑗 , such

that we can (and do) identify the quotient spaces with the orthogonal complement of �̃� 0
𝑗 inside

of 𝑉 𝜂
𝑗 (but reflecting this in the notation only adds unnecessary complexity). In the upcoming

paragraphs we will write 𝛼|(I) to denote restriction to the subspace specified in case (I), et cetera.
Let us note at this point that 𝑗 = 1 is slightly special, since 𝑉−

1 ∩ �̃� 0
1 = {0}.

When we restrict (4.11) - (4.14) to either of the subspaces in (I) or (II), all terms on the right
hand side vanish. In particular, (4.11) and (4.12) reduce to simple eigenvalue equations. Since J
acts on 𝑉−

𝑗 with eigenvalue 𝑗 + 1 (which is strictly larger than 1), we immediately find 𝑐1,𝑘|(I) =
0 = 𝑑1,𝑘|(I) for any 𝑗. Similarly, since J acts on 𝑉+

𝑗 with eigenvalue −𝑗, we get 𝑐1,𝑘|(II) = 0, except
perhaps when 𝑗 = 1, while 𝑑1,𝑘|(II) = 0 in any case. For the 𝑗 = 1 component of 𝑐1,𝑘|(II) we can
rely on the analogue of (4.11) at the subleading order O((log 𝑦)𝑘−1), which states

𝑘𝑐1,𝑘 + 𝑐1,𝑘−1 + J𝑐1,𝑘−1 = sin 𝛽 cos 𝛽 (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘−1] − 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,𝑘−1])

Upon restriction to 𝑉+
1 /�̃� 0

1 this reduces to 𝑘𝑐1,𝑘|(II) = 0.

Restriction to the subspaces in (III) and (IV) works out slightly differently, because there the
restriction of 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘] doesn’t vanish (though we still have vanishing of 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,𝑘]). Con-
centrate on case (III) first, where 𝐽 has eigenvalue 𝑗 +1. We find that (4.11) and (4.12) determine

𝑐1,𝑘|(III) =
sin 𝛽 cos 𝛽

𝑗+2 (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎])𝑗,− and 𝑑1,𝑘|(III) =
cos2 𝛽

𝑗 (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎])𝑗,−. However, when plugging
this into (4.14), we get the following consistency condition:

𝑗(𝑗 + 1) (
sin2 𝛽 cos 𝛽

𝑗 + 2
−
cos3 𝛽

𝑗
) (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘])𝑗,− = − cos 𝛽(𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘])𝑗,−

This can only be satisfied if cos 2𝛽 = − 2𝑗+3
(𝑗+1)2 or if (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘])𝑗,− = 0. Interestingly, for

any 𝑗 ≥ 2 there exists a single value of 𝛽 ∈ (0, 𝜋/2) for which the first equation is satisfied.
Therefore, whenever 𝛽 is related to one of the spins 𝑗 in this way, both (𝑐1,𝑘)𝑗,− and (𝑑1,𝑘)𝑗,− are
given as stated above by a multiple of (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘])𝑗,−. For generic values of 𝛽, however, we
find that (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘])𝑗,− vanishes, and thus also 𝑐1,𝑘|(III) = 𝑑1,𝑘|(III) = 0.

For case (IV), recall that 𝐽 acts with eigenvalue −𝑗 on 𝑉+
𝑗 . If 𝑗 = 1, equation (4.11) directly

yields 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘]|(IV) = 0, such that 𝑑1,𝑘|(IV) = 0 by (4.12) and 𝑐1,𝑘|(IV) = 0 by (4.14). Oth-

erwise, for 𝑗 ≥ 2, equations (4.11) and (4.12) specify 𝑐1,𝑘|(IV) = sin 𝛽 cos 𝛽
1−𝑗 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘]|(IV) and

𝑑1,𝑘|(IV) = − cos2 𝛽
1+𝑗 𝚤𝑤[𝜙

𝜏
𝜌 ∧ 𝑎1,𝑘]|(IV). Plugging these expressions into (4.14) now leads to the con-

dition cos 2𝛽 = 2𝑗−1
𝑗2 if 𝑗 ≥ 2. In this condition, we can also allow 𝑗 = 1 as input, since the

corresponding solution is 𝛽 = 0, which we exclude anyway. If 𝛽 coincides with one of these
special values, (𝑐1,𝑘)𝑗,+ and (𝑑1,𝑘)𝑗,+ are determined as above in terms of (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘])𝑗,+. For
generic values of 𝛽, we have (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘])𝑗,+ = 𝑐1,𝑘|(IV) = 𝑑1,𝑘|(IV) = 0
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Case (V) is comparatively simple. Observe that 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘]|(V) = 0 and that 𝐽 acts with eigen-
value 1. This means that (4.12) immediately provides 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,𝑘]|(V) = 0, such that (4.11) states
𝑐1,𝑘|(V) = 0 and as a consequence (4.13) yields 𝑑1,𝑘|(V) = 0.

Finally, we arrive at case (VI), where neither 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘]|(VI) nor 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,𝑘]|(VI) vanish. Let
us first consider generic values of 𝛽, where we already know that (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘])𝑗,± = 0. Us-
ing (𝚤𝑤[𝜙𝜌 ∧ 𝑎1,𝑘])𝜏 = 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘] and that acting with 𝜏 twice is the identity map, we can then
deduce that 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,𝑘] decomposes into a sum of 𝜏-eigenvectors inside of 𝑉 0

𝑗 ∩ �̃� 0
𝑗 with eigen-

values ±1. Plugging this decomposition into (4.11) - (4.14) then shows that there can only be
non-trivial solutions if 𝑗 = 1 and 𝛽 = 𝜋/2. Since we excluded 𝛽 = 𝜋/2 already in the definition
of the Nahm pole boundary condition, we find that (𝑎1,𝑘)𝑗,𝑤 = (𝑐1,𝑘)𝑗,0 = (𝑑1,𝑘)𝑗,0 = 0 for all 𝑗.

Still in case (𝑉 𝐼 ), but when 𝛽 is one of the special values cos 2𝛽 = − 2𝑗+3
(𝑗+1)2 or

2𝑗−1
𝑗2 , it is no longer

assured that (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘])𝑗,± vanishes. As a result we can’t decompose it into ±-eigenparts of 𝜏
within 𝑉 0

𝑗 ∩�̃�
0
𝑗 . In this situation equations (4.11) - (4.14) instead provide (𝑐1,𝑘)𝑗,0 = − tan 𝛽 𝚤𝑤[𝜙𝜌∧

𝑎1,𝑘] and (𝑑1,𝑘)𝑗,0 = 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,𝑘].

By way of an intermediate conclusion, it can thus be stated that for generic 𝛽 and 𝑘 ≥ 2,
the functions 𝑎1,𝑘 and 𝑏1,𝑘 vanish. Meanwhile, if 𝛽 is one of the (finitely many) special angles
determined by cos 2𝛽 = − 2𝑗+3

(𝑗+1)2 or 2𝑗−1
𝑗2 , their spin 𝑗 components are not necessarily zero and

are determined – via 𝑎𝜏1,𝑘 = sin 𝛽 𝑐1,𝑘+cos 𝛽 𝑑1,𝑘 and 𝑏1,𝑘 = cos 𝛽 𝑐1,𝑘−sin 𝛽𝑑1,𝑘 – by the following
expressions

𝑐1,𝑘 =
sin 𝛽 cos 𝛽

𝑗 + 2
(𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘])

𝑗,−
− tan 𝛽 (𝚤𝑤[𝜙𝜌 ∧ 𝑎1,𝑘])

𝑗,0
−
sin 𝛽 cos 𝛽

𝑗 − 1
(𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘])

𝑗,+

𝑑1,𝑘 =
cos2 𝛽

𝑗
(𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘])

𝑗,−
+ (𝚤𝑤[𝜙𝜌 ∧ 𝑎1,𝑘])

𝑗,0
−
cos2 𝛽
𝑗 + 1

(𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,𝑘])
𝑗,+

(4.15)

The lower order terms 𝑎1,𝑘′ and 𝑏1,𝑘′ , 0 ≤ 𝑘′ < 𝑘 are then determined by induction. Let us stress
that the possible values of 𝑗 ≥ 2 are determined by the (finitely many) spins 𝑗 ∈ 𝐽 that appear
in the decomposition of ad 𝐸 under the action of su(2)s.

As an aside, note that all components are determined by the free parameters (𝑎1,𝑘)𝑗,𝑤, (𝑎1,𝑘−1)𝑗,𝑤,
and so on, which describe the 𝑦-dependence of 𝚤𝑤𝐴, i.e. the 𝑤♭-component of the gauge con-
nection. While our current analysis cannot determine the maximal power of (log 𝑦)𝑘, this is in
general controlled by the geometry and topology of 𝐸 → 𝑀5. For example, if the boundary is
of the form 𝑊 4 = ℝ × 𝑋 3 and 𝑤 is the vector field parallel to the real line, then upon dimen-
sional reduction 𝚤𝑤𝐴 would be identified with the 𝑑𝑦-component of a one-form 𝜙 that satisfies
the Kapustin-Witten equations. In that situation a well-known vanishing theorem states that
𝚤𝑤𝐴 vanishes if 𝐴 + 𝑖𝜙 approaches an irreducible flat connection at 𝑦 → ∞. In that way, the
regularity of twisted Nahm pole solutions is further controlled by global data, away from the
boundary.

The arguments above break down at 𝑘 = 1, where in case (II) it is no longer possible to deduce
that the 𝑉+

1 /�̃� 0
1 part of 𝑐1,1 vanishes. This is because for this component we needed to rely
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4 The Decoupled Haydys-Witten Equations and a Weitzenböck Formula

on the subleading order of (4.6) and (4.7). For 𝑐1,1|(II) this means that we have to look at the
equations at order O(1), which receive an additional contribution from 𝐹𝜔:

𝑐1,1 + 𝑐1,0 + J𝑐1,0 = cos 𝛽 𝚤𝑤𝐹𝜔 + 𝚤𝑤 ⋆4 𝐹𝜔 + sin 𝛽 cos 𝛽 (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,0] − 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,0])

𝑑1,0 − J𝑑1,0 = − sin 𝛽 𝚤𝑤𝐹 𝜏𝜔 − cos2 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,0] − sin2 𝛽 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,0]

Since the terms that contain 𝐹𝜔 are located in 𝑉−
1 ⊕𝑉 0

1 ⊕𝑉+
1 , only these parts of 𝑐1,1, 𝑐1,0 and 𝑑1,0

are affected by curvature contributions. Note that the special values of 𝛽 are related to spins
𝑗 ≥ 2, so there are no additional contributions to the 𝑉−

1 ⊕ 𝑉 0
1 ⊕ 𝑉+

1 part of the equations. By
restriction of the O(1) equations to 𝑉−

1 , 𝑉 0
1 , and 𝑉+

1 (remembering that 𝑉−
1 ∩ �̃� 0

1 = {0}) we thus
obtain

𝑐1,1 = (cos 𝛽 𝚤𝑤𝐹𝜔 + 𝚤𝑤 ⋆4 𝐹𝜔) |𝑉 +
1 /�̃� 0

1

𝑐1,0 =
1
3 (cos 𝛽 𝚤𝑤𝐹𝜔 + 𝚤𝑤 ⋆4 𝐹𝜔)

1,−

+ 1
2 (cos 𝛽 𝚤𝑤𝐹𝜔 + 𝚤𝑤 ⋆4 𝐹𝜔 + sin 𝛽 cos 𝛽 (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,0] − 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,0]))

1,0

− 1
2 (cos 𝛽 𝚤𝑤𝐹 𝜏𝜔 + sin 𝛽 cos 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,0]) |𝑉 +

1 ∩�̃� 0
1
+ 𝐶1,+

𝑑1,0 = (sin 𝛽 𝚤𝑤𝐹 𝜏𝜔)
1,− + 1

2 (𝚤𝑤[𝜙𝜌 ∧ 𝑎1,0] − cot 𝛽 𝑐1,0)
1,0

− 1
2 (sin 𝛽 𝚤𝑤𝐹 𝜏𝜔 + cos2 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,0])

1,+

Here, 𝐶1,+ ∈ 𝑉+
1 /�̃� 0

1 is some undetermined ‘integration constant’ that cannot be fixed by the
current analysis. In contrast, 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,0] and 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,0] are further restricted by the O(1)
versions of (4.13) and (4.14) (which remain unchanged) and consequently depend explicitly on
𝐹𝜔. Indeed, if the 𝐹𝜔 contributions to the O(1) equations vanish, our earlier arguments show
that, apart from 𝑐1,0 = 𝐶1,+, all coefficient functions vanish.

Finally, if 𝛽 is one of the special angles where cos 2𝛽 = − 2𝑗+3
(𝑗+1)2 or 2𝑗−1

𝑗2 , then the results for
𝑐1,1, 𝑐1,0 and 𝑑1,0 differ only by additionally including the terms induced by (4.15), which only
appear for spins 𝑗 ≠ 1.

Themain take away of this discussion is that, for generic 𝛽 and in absence of curvature contribu-
tions, the functions 𝑎1,𝑘 and 𝑏1,𝑘 vanish for all 𝑘 ≥ 1, while they are proportional to 𝐶1,+ ∈ 𝑉+

1 /�̃� 0
1

for 𝑘 = 0.

O(𝑦1(log 𝑦)𝑘)
For the constraints at orderO(𝑦(log 𝑦)𝑘) the analysis is very similar. The main difference is that
the equations now incorporate terms of the form 𝑑𝜔𝑐1,𝑘. As before, let 𝑘 be the largest integer
for which (2, 𝑘) ∈ Δ0. The Haydys-Witten equations (4.6) - (4.9) now become

(2𝑐2,𝑘 + J𝑐2,𝑘) − 𝚤𝑤𝑑𝜔𝑑𝜏1,𝑘 − 𝚤𝑤 ⋆4 𝑑𝜔𝑎1,𝑘 = sin 𝛽 cos 𝛽 (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎2,𝑘] − 𝚤𝑤[𝜙𝜌 ∧ 𝑎2,𝑘])

(2𝑑2,𝑘 − J𝑑2,𝑘) + 𝚤𝑤𝑑𝜔𝑐𝜏1,𝑘 − (𝚤𝑤 ⋆4 𝑑𝜔𝑏1,𝑘) 𝜏 = − cos2 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎2,𝑘] − sin2 𝛽 𝚤𝑤[𝜙𝜌 ∧ 𝑎2,𝑘]

𝑗(𝑗 + 1) (cos 𝛽 𝑐2,𝑘 + sin 𝛽 𝑑2,𝑘)
𝑗,0 = sin 𝛽 𝚤𝑤[𝜙𝜌 ∧ 𝑎2,𝑘]

𝑗(𝑗 + 1) (sin 𝛽 𝑐2,𝑘 − cos 𝛽 𝑑2,𝑘)
𝑗,0 = cos 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎2,𝑘]
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4.3 Polyhomogeneous Expansion of Twisted Nahm Pole Solutions

We have again arranged this such that the right hand side is contained in 𝑉 0
𝑗 +�̃�

0
𝑗 . Moreover, we

know that for generic values of 𝛽 and any 𝑘 ≥ 2, the functions 𝑐1,𝑘 and 𝑑1,𝑘 vanish completely,
such that the derivatives on the left hand side disappear. In that situation essentially the same
arguments as before show that (𝑎2,𝑘)𝑗,𝑤 = 𝑐2,𝑘 = 𝑑2,𝑘 = 0, as long as we additionally exclude the

special angles determined by cos 2𝛽 = −3𝑗2−4𝑗+3
𝑗(𝑗+1)2 or −3𝑗2+2𝑗−4

𝑗2(𝑗+1) .

In carrying out these arguments, we need to rely on the subleading equations atO(𝑦(log 𝑦)𝑘−1)
again. Here, the subleading equations provide conditions for the 𝑉+

2 /�̃� 0
2 part of 𝑐2,𝑘 and the

𝑉−
1 /�̃� 0

1 (= 𝑉−
1 ) part of 𝑑2,𝑘, which are projected out from the equations at order O(𝑦(log 𝑦)𝑘).

Specifically, the equation for the 𝑐-terms at order O(𝑦(log 𝑦)𝑘−1) is

(𝑘𝑐2,𝑘 + 2𝑐2,𝑘−1 + J𝑐2,𝑘−1) − 𝚤𝑤𝑑𝜔𝑑𝜏1,𝑘−1 − 𝚤𝑤 ⋆4 𝑑𝜔𝑎1,𝑘−1
= sin 𝛽 cos 𝛽 (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎2,𝑘−1] − 𝚤𝑤[𝜙𝜌 ∧ 𝑎2,𝑘−1])

The 𝑉+
2 /�̃� 0

2 part of this equation simply states 𝑘𝑐2,𝑘|(II) = 0 for all 𝑘 ≥ 1 (for 𝑘 = 1, 2 notice that
𝑐1,𝑘 and 𝑎1,𝑘 are elements of 𝑉−

1 ⊕ 𝑉 0
1 ⊕ 𝑉+

1 ). Similarly, the equation for the 𝑑 terms at order
O(𝑦(log 𝑦)𝑘−1) states

(𝑘𝑑2,𝑘 + 2𝑑2,𝑘−1 − J𝑑2,𝑘−1) + 𝚤𝑤𝑑𝜔𝑐𝜏1,𝑘−1 − (𝚤𝑤 ⋆4 𝑑𝜔𝑏1,𝑘−1)𝜏

= − cos2 𝛽 𝚤𝑤[𝜙𝜌 ∧ 𝑎2,𝑘−1] − sin2 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎2,𝑘−1]

For 𝑘 > 2 the 𝑉−
1 part of this equation simply states (𝑘𝑑2,𝑘)1,− = 0. For 𝑘 = 2 we instead have

(2𝑑𝜏2,2 + 𝚤𝑤𝑑𝜔𝑐1,1 − 𝚤𝑤 ⋆4 𝑑𝜔𝑏1,1)1,− = 0. Note that 𝑏1,1 = cos 𝛽 𝑐1,1 is an element of 𝑉+
1 /�̃� 0

1 . By
comparison with the mapping properties (4.10), we conclude that also (𝑑2,2)1,− = 0.

The equations at orderO(𝑦(log 𝑦)) andO(𝑦) involve derivatives of 𝑐1,1, 𝑐1,0 and 𝑑1,0, which are
all contained in 𝑉−

1 ⊕ 𝑉 0
1 ⊕ 𝑉+

1 , so only these parts of 𝑐2,1, 𝑑2,1, 𝑐2,0 and 𝑑2,0 may be non-zero.
By restricting the equations to the various possible subspaces (and since 𝑉−

1 ∩ �̃� 0
1 = {0}) one

obtains

𝑐2,1 =
1
3 (sin 𝛽 𝚤𝑤 ⋆4 𝑑𝜔𝑐1,1 + sin 𝛽 cos 𝛽 (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎2,1] − 𝚤𝑤[𝜙𝜌 ∧ 𝑎2,1]))

1,0

+ (sin 𝛽 𝚤𝑤 ⋆4 𝑑𝜔𝑐1,1 + sin 𝛽 cos 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎2,1])
1,+

𝑑2,1 = (−𝚤𝑤𝑑𝜔𝑐𝜏1,0 + (𝚤𝑤 ⋆4 𝑑𝜔𝑏1,0)𝜏)
1,−

+ (−𝚤𝑤𝑑𝜔𝑐𝜏1,1 + (𝚤𝑤 ⋆4 𝑑𝜔𝑏1,1)𝜏 − cos2 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎2,1] − sin2 𝛽 𝚤𝑤[𝜙𝜌 ∧ 𝑎2,1)
1,0

+ 1
3 (−𝚤𝑤𝑑𝜔𝑐

𝜏
1,1 + (𝚤𝑤 ⋆4 𝑑𝜔𝑏1,1)𝜏 − sin2 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎2,1])

1,+

Since the O(𝑦 log 𝑦) terms are non-zero, they appear in the O(𝑦) equations and, accordingly,
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4 The Decoupled Haydys-Witten Equations and a Weitzenböck Formula

in the following result for 𝑐2,0 an 𝑑2,0:

𝑐2,0 =
1
4 (𝚤𝑤𝑑𝜔𝑑

𝜏
1,0 + 𝚤𝑤 ⋆4 𝑑𝜔𝑎1,0)

1,−

+ 1
3 (𝚤𝑤𝑑𝜔𝑑

𝜏
1,0 + 𝚤𝑤 ⋆4 𝑑𝜔𝑎1,0 + sin 𝛽 cos 𝛽 (𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,0] − 𝚤𝑤[𝜙𝜌 ∧ 𝑎1,0]) − 𝑐2,1)

1,0

+ (𝚤𝑤𝑑𝜔𝑑𝜏1,0 + 𝚤𝑤 ⋆4 𝑑𝜔𝑎1,0 + sin 𝛽 cos 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎1,0] − 𝑐2,1)
1,+

+ 𝐶2,+

𝑑2,0 = 𝐷1,− + (−𝚤𝑤𝑑𝜔𝑐𝜏1,0 + (𝚤𝑤 ⋆4 𝑑𝜔𝑏1,0) 𝜏 − cos2 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎2,0] − sin2 𝛽 𝚤𝑤[𝜙𝜌 ∧ 𝑎2,0] − 𝑐2,1)
1,0

+ 1
3 (−𝚤𝑤𝑑𝜔𝑐

𝜏
1,0 + (𝚤𝑤 ⋆4 𝑑𝜔𝑏1,0) 𝜏 − cos2 𝛽 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎2,0] − 𝑐2,1)

1,+

Here, 𝐶2,+ ∈ 𝑉+
2 /�̃� 0

2 and 𝐷1,− ∈ 𝑉−
1 remain undetermined. While we do not reproduce explicit

formulas, it is easy to see that 𝚤𝑤[𝜙𝜌 ∧ 𝑎2,𝑘] and 𝚤𝑤[𝜙𝜏𝜌 ∧ 𝑎2,𝑘] are fully determined by the bottom
two Haydys-Witten equations.

The main conclusion of this part is that for generic 𝛽 and in absence of curvature contributions
to theO(1) equations (such that 𝑎1,𝑘 = 𝑏1,𝑘 = 0 for 𝑘 ≥ 1) all components of 𝑐2,𝑘 and 𝑑2,𝑘 vanish,
except for the functions 𝐶2,+ and 𝐷1,− that appear at 𝑘 = 0.

4.4 Asymptotics of the Boundary Term

We now determine the asymptotic behaviour of 𝜒 = 𝜒1 + 𝜒2 at cylindrical ends of 𝑀5, where
we recall from Lemma 4.2 that

𝜒1 = −2Tr (𝐹𝐴 ∧ 𝐽−𝐵) ,

𝜒2 = −2Tr (𝛿+𝐴𝐽
+𝐵 ∧ 𝐽−𝐵 ∧ 𝜂) .

In doing so, we assume that we evaluate 𝜒 for a Haydys-Witten solution, which is the situation
we are interested in for the Weitzenböck formula.

Since we eventually need to pullback 𝜒 to the boundary, it is important to understand the inter-
play between the vector subbundles ker 𝜂 and 𝑇 (𝜕𝑖𝑀), with a particular focus on the properties
of 𝐽. Thus, let 𝑈 = [0, 1)𝑠𝑖 × 𝜕𝑖𝑀5 be a cylindrical end and let 𝑢 denote the inward-pointing
unit normal vector. This means that near a compact end 𝑢 = 𝜕𝑠𝑖 , while at a non-compact end
𝑢 = 𝑠𝑖𝜕𝑠𝑖 . Assume that 𝑔(𝑢, 𝑣) = cos 𝜃 is constant on all of 𝑈.

If 𝜃 = 0, 𝑢 and 𝑣 are parallel and ker 𝜂 = 𝑇𝜕𝑖𝑀. In this situation 𝐽 simply corresponds to an almost
Hermitian structure on 𝜕𝑖𝑀. If 𝜃 ≠ 0, 𝑢 and 𝑣 are linearly-independent, non-vanishing vector
fields on the tubular neighbourhood and span a regular distribution Δ(𝑢,𝑣) ⊂ 𝑇𝑈 of rank two.
Since ker 𝜂 has rank four, the two distributions intersect in a line bundle 𝐿 ⊂ 𝑇𝑈. At each point,
𝐿 specifies a direction in the (𝑢, 𝑣)-plane that is perpendicular to 𝑣. We denote the generating
unit vector field by 𝑣⟂ and fix its orientation such that 𝑔(𝑢, 𝑣⟂) = − sin 𝜃, such that it points
into the interior. The vector fields are related by 𝑣 = sin 𝜃𝑤 +cos 𝜃𝑢 and 𝑣⟂ = cos 𝜃𝑤 − sin 𝜃𝑢.
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Starting from 𝑣⟂, we can always find a local basis of ker 𝜂 that interacts nicely with the almost
complex structure 𝐽. It is given by {𝑣⟂, 𝑤1 = 𝐽𝑣⟂, 𝑤2, 𝑤3 = 𝐽𝑤2}, where 𝑤2 is some local section
of 𝑇 𝜕𝑖𝑀 that is orthogonal to 𝑣, 𝑣⟂, and 𝐽 𝑣⟂. This induces an associated basis of Ω2

𝑣 ,+(𝑈 ), given
by

𝑒𝑖 = 𝜂⟂ ∧ 𝑤♭
𝑖 + 1

2 𝜖𝑖𝑗𝑘𝑤
♭
𝑗 ∧ 𝑤♭

𝑘

and that satisfies 𝐽 𝑒1 = +𝑒1 and 𝐽 𝑒2/3 = −𝑒2/3.

We start our investigation of the asymptotics of 𝜒 with Nahm pole boundaries 𝜕NP𝑀 in Sec-
tion 4.4.1. Though we only establish Theorem D in the context of pure Nahm pole boundary
conditions, we also include a short discussion of the expected behaviour of 𝜒 near knot bound-
aries 𝜕𝐾𝑀 in Section 4.4.2. Subsequently, we discuss Kapustin-Witten ends with either finite
energy or Nahm poles in Section 4.4.3.

4.4.1 Nahm Pole Boundaries

Consider a Nahm pole boundary component 𝜕NP𝑀5. Let 𝑊 4 × [0, 1)𝑦 denote a tubular neigh-
bourhood, where𝑊 4 is a complete Riemannian manifold without boundary, and write 𝜇𝑊 4 for
the induced volume form. Write 𝑢 = 𝜕𝑦 for the inward-pointing unit normal vector field and
assume 𝑔(𝑢, 𝑣) = cos 𝛽 is constant, with 𝛽 ∈ [0, 𝜋/2). Furthermore, denote by 𝑖𝑦 ∶ 𝑊 4 ↪
𝑊 4 × [0, 1)𝑦 inclusion of 𝑊 4 at 𝑦.

Recall from Section 4.1 that there is a local basis {𝑣⟂, 𝑤𝑖}𝑖=1,2,3 of ker 𝜂, where each 𝑤𝑖 is parallel
to 𝑇𝑊 4, and associated to it a basis {𝑒𝑖}𝑖=1,2,3 of Ω2

𝑣 ,+(𝑊 4 × [0, 1)𝑦) for which 𝐽−𝐵 = 𝐵2𝑒2 + 𝐵3𝑒3.
Let (𝑠, 𝑥 𝑖, 𝑦)𝑖=1,2,3 be coordinates that make these into coordinate vector fields. With that choice
we have 𝑣 = sin 𝛽𝜕𝑠 + cos 𝛽𝜕𝑦, 𝑣⟂ = cos 𝛽𝜕𝑠 − sin 𝛽𝜕𝑦, 𝑤 = 𝜕𝑠, and 𝑤𝑖 = 𝑑𝑥 𝑖.

Proposition 4.7. Assume (𝐴, 𝐵) is a 𝛽-twisted regular Nahm pole solution of the Haydys-Witten
equations. If 𝛽 is generic, 𝐹𝜔 = 0 and ∇𝜔𝑠 (𝐶1,+)2 + ∇𝜔1 (𝐶1,+)3 = ∇𝜔𝑠 (𝐶1,+)3 − ∇𝜔1 (𝐶1,+)2 = 0, then
there is a 𝛿 > 0 and a constant 𝐶 such that

𝑖∗𝑦𝜒 ∼ 𝐶𝑦 𝛿𝜇𝑊 4 (𝑦 → 0)

Proof. Consider first the term 𝜒1 = −2Tr(𝐹𝐴 ∧ 𝐽−𝐵). Postponing the discussion of the 𝑑𝑠-
components for themoment, let’s concentrate on the contributions from (𝐹𝐴)𝑖𝑗𝑑𝑥 𝑖∧𝑑𝑥 𝑗. Observe
that 𝑒𝑖 pulls back to cos 𝛽𝑑𝑠 ∧ 𝑑𝑥 𝑖 + 1

2 𝜖𝑖𝑗𝑘𝑑𝑥
𝑗 ∧ 𝑑𝑥𝑘. Fixing an orientation in which 𝜇𝑊 4 = √𝑔𝑑𝑠 ∧

𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3, we find that these contributions are given by ((𝐹𝐴)12𝐵3 − (𝐹𝐴)13𝐵2) cos 𝛽𝜇𝑊 4 .

Plugging the expansions of Lemma 4.5 and Corollary 4.6 into this formula, we encounter the
following terms at orders 𝑦−3 and 𝑦−1

𝑦−3𝑖∗𝑦 Tr([𝜙𝜏𝜌 ∧ 𝜙𝜏𝜌] ∧ 𝐽−𝜙𝜌) ∝ Tr([t𝜏1, t𝜏2]t3) − Tr([t𝜏1, t𝜏3]t2) = −2Tr(t2t3) = 0

𝑦−1𝑖∗𝑦 Tr([𝜙𝜏𝜌 ∧ 𝜙𝜏𝜌] ∧ 𝐽−𝐶1,+) + 𝑦−1𝑖∗𝑦 Tr([𝜙𝜏𝜌 ∧ (𝐶1,+)𝜏] ∧ 𝐽−𝜙𝜌)
∝ Tr (−t2(𝐶1,+)3 − t3(𝐶1,+)2) + Tr (t2(𝐶1,+)3 + t3(𝐶1,+)2]) = 0
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Meanwhile, at order O(1), we have the following contributions

𝑖∗𝑦 Tr([𝜙𝜏𝜌 ∧ 𝜙𝜏𝜌] ∧ 𝐽−𝐶2,+) = 0 𝑖∗𝑦 Tr([𝜙𝜏𝜌 ∧ 𝜙𝜏𝜌] ∧ 𝐽−𝐷1,−) = 0

𝑖∗𝑦 Tr([𝜙𝜏𝜌 ∧ (𝐶2,+)𝜏] ∧ 𝐽−𝜙𝜌) = 0 𝑖∗𝑦 Tr([𝜙𝜏𝜌 ∧ (𝐷1,−)𝜏] ∧ 𝐽−𝜙𝜌) = 0

On the left we used that the subspaces 𝑉1, 𝑉2 ⊂ g are orthogonal with respect to the trace
(keeping in mind that the action of 𝜙𝜌 ∈ 𝑉1 preserves 𝑉2), while the equations on the right
similarly use 𝐷1,− ∈ 𝑉−

1 insofar that 𝐷1,− ∝ 𝜙𝜌, such that the trace vanishes by the same
calculation as at order O(𝑦−3).

According to Corollary 4.6, the only 𝑑𝑠-component of 𝐹𝐴 can arise from 𝑑𝜔𝐶1,+, which appears
at O(1). As we have seen, all other contributions vanish, so we are left with

𝑖∗𝑦𝜒1 = − 2𝑖∗𝑦 Tr(sin 𝛽 cos 𝛽 𝑑𝜔(𝐶1,+)𝜏 ∧ 𝐽−𝜙𝜌)

= − 2 sin 𝛽 cos2 𝛽 𝜇𝑊 4 Tr ((∇𝜔𝑠 (𝐶1,+)2 + ∇𝜔1 (𝐶1,+)3)t3 + (∇𝜔𝑠 (𝐶1,+)3 − ∇𝜔1 (𝐶1,+)2)t2)

− 2 sin 𝛽 cos2 𝛽 𝜇𝑊 4 Tr (∇𝜔3 (𝐶1,+)1t2 − ∇𝜔2 (𝐶1,+)1t3) +O(𝑦 𝛿)

The first line of the result vanishes by assumption, while the remaining terms cancel in com-
bination with 𝜒2.

Hence, moving on to 𝜒2 = −2Tr(𝛿+𝐴𝐽
+𝐵 ∧ 𝐽−𝐵 ∧ 𝜂). Note that 𝑖∗𝑦𝜂 = sin 𝛽𝑑𝑠 and as a result

only the 𝑑𝑥2- and 𝑑𝑥3-components of 𝛿+𝐴𝐽
+𝐵 can contribute to this expression. Specifically,

we get 𝑖∗𝑦𝜒2 = 2Tr ((𝛿+𝐴𝐽
+𝐵)2𝐵2 + (𝛿+𝐴𝐽

+𝐵)3𝐵3) sin 𝜃𝜇𝑊 4 . Upon plugging in Lemma 4.5 and
Corollary 4.6 one encounters essentially the same expressions as for 𝜒1. The only non-zero
terms are again those that contain derivatives of 𝐶1,+, which are now given by

𝑖∗𝑦𝜒2 = 2 sin 𝛽 cos2 𝛽𝜇𝑊 4 Tr (∇𝜔3 (𝐶1,+)1t2 − ∇𝜔2 (𝐶1,+)1t3) +O(𝑦 𝛿)

These cancel the remnants of 𝑖∗𝑦𝜒1, which concludes the proof.

4.4.2 Knot boundaries

Consider a boundary face of type 𝜕𝐾𝑀 and remember that it arises by blowup of a knot surface
Σ𝐾. Let Σ𝐾 × 𝐻 2 × [0, 1)𝑅 denote a tubular neighbourhood, where 𝐻 2 is the two-dimensional
hemisphere. Moreover, assume that the glancing angle 𝜃 between 𝑣 and Σ𝐾 is constant. If
𝜃 ≠ 𝜋/2, there is a non-vanishing vector field 𝑢 parallel to Σ𝐾 such that 𝑔(𝑢, 𝑣) = sin 𝜃.

In analyzing the behavior of the function 𝜒 near 𝜕𝐾𝑀, we encounter some difficulties. The poly-
homogeneous expansion of (𝑎, 𝑏) in this case starts at 𝑦0. While the leading order of 𝜒 remains
essentially unchanged, given by straightforward analogues of the 𝑦−3-terms from earlier, the
additional 𝑦0-modes of 𝑎 and 𝑏 lead to new contributions, beginning at O(𝑦−2).

To determine these contributions, we need to repeat the analysis of the polyhomogeneous ex-
pansion near 𝜕𝐾𝑀, but now based on the knot singularity model solutions. In this case, one
considers model solutions (𝐴𝜆,𝜃, 𝐵𝜆,𝜃) that are solutions of a 𝜃-twisted version of the extended
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Bogomolny equations (TEBE). Unfortunately, unlike the Nahm pole solutions, these knot sin-
gularity solutions are to the most part known only implicitly. For 𝐺 = 𝑆𝑈 (𝑁 ) and 𝜃 = 𝜋/2 the
solutions have been described in [Mik12], while the existence of solutions for 𝐺 = 𝑆𝑈 (2) and
general 𝜃 ∈ (0, 𝜋/2] is described by a continuation argument due to [Dim22a].

For the specific case with 𝐺 = 𝑆𝑈 (2) and 𝜃 = 𝜋/2, the solutions have been described in [Wit11a]
and can be given explicitly. To do so, introduce coordinates (𝑠, 𝑡 , 𝜓 , 𝜗 , 𝑅) on Σ𝐾×𝐻 2×[0, 1)𝑅, (𝑠, 𝑡)
are local coordinates on the surface Σ𝐾 that wewill also collectively refer to as 𝑧, while𝑅 ∈ [0, 1),
𝜓 ∈ [0, 𝜋/2] and 𝜗 ∈ [0, 2𝜋] are global coordinates on the filled hemisphere. Let (t𝑖)𝑖=1,2,3 denote
a standard basis of su(2) and view t1 as the generator of a fixed Cartan subalgebra. Introduce
the sl(2, ℂ)-valued function 𝜑 = 𝜙2 − 𝑖𝜙3 as a convenient combination of the components 𝜙2
and 𝜙3 of 𝐵 = ∑3

1 𝜙𝑖𝑒𝑖. Similarly, denote by 𝐸 = t2 − 𝑖t3, 𝐻 = t1, and 𝐹 = t2 + 𝑖t3 the elements of
an sl(2, ℂ)-triple (𝐸, 𝐻 , 𝐹 ). The knot singularity solutions with charge 𝜆 ∈ ℤ are given by

𝐴𝜗 = −(𝜆 + 1) cos2 𝜓
(1 + cos 𝜓)𝜆 − (1 − cos 𝜓)𝜆

(1 + cos 𝜓)𝜆+1 − (1 − cos 𝜓)𝜆+1
𝐻

𝜙1 = −𝜆 + 1
𝑅

(1 + cos 𝜓)𝜆+1 + (1 − cos 𝜓)𝜆+1

(1 + cos 𝜓)𝜆+1 − (1 − cos 𝜓)𝜆+1
𝐻

𝜑 =
(𝜆 + 1)

𝑅
sin𝜆 𝜓 exp(𝑖𝜆𝜗)

(1 + cos 𝜓)𝜆+1 − (1 − cos 𝜓)𝜆+1
𝐸

𝐴𝑠 = 𝐴𝑡 = 𝐴𝑅 = 𝐴𝜓 = 0

We refer to these as the untwisted knot singularity model solutions.

The higher orders in a polyhomogeneous expansion of (𝐴, 𝐵) around these model solutions was
previously investigated by He [He18; HM19a]. Originally this was for Nahm pole solutions
of the 𝜃 = 𝜋/2 Kapustin-Witten equations, i.e. in four dimensions. However, the 𝜃 = 𝜋/2
Kapustin-Witten equations are equivalent to a dimensional reduction of the Haydys-Witten
equations along a direction perpendicular to 𝑣, and along which 𝐾 extends to Σ𝐾. After an
inconsequential reinterpretation of field components, the polyhomogeneous expansion carries
over to the Haydys-Witten equations with knot singularity. Indeed, in that context the glancing
angle between 𝑣 and Σ𝐾 is 𝜃 = 𝜋/2, such that the untwisted knot singularity solutions are
natural boundary conditions.

Theorem 4.8 ([He18; HM19a]). Let (𝐴, 𝐵) be a solution of the Haydys-Witten equations that sat-
isfies Nahm pole boundary conditions with a knot singularity of weight 𝜆 and with glancing angle
𝜃 = 𝜋/2. Correspondingly, write 𝐴 = 𝐴𝜆,𝜋/2 + 𝑎 and 𝐵 = 𝐵𝜆,𝜋/2 + 𝑏 with 𝑎, 𝑏 ∈ O(𝑅−1+𝜖𝑠−1+𝜖).
Then 𝑎 and 𝑏 are polyhomogeneous in 𝑅 and 𝑠, with non-negative exponents. In particular they
satisfy the estimates

|∇ℓ𝑧∇𝑚𝑅∇
𝑛
cos 𝜓 𝑎|C0 ≤ 𝐶ℓ,𝑚,𝑛𝑅−𝜖−𝑚(cos 𝜓)2−𝜖−𝑛 , |∇ℓ𝑧∇𝑚𝑅∇

𝑛
cos 𝜓 𝑏|C0 ≤ 𝐶ℓ,𝑚,𝑛𝑅−𝜖−𝑚(cos 𝜓)1−𝜖−𝑛

for any 𝜖 > 0 and ℓ, 𝑚, 𝑛 ∈ ℕ.
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We can use this to determine the leading order of 𝜒 in the case of 𝜃 = 𝜋/2 knot singularit-
ies along 𝜕𝐾𝑀. For this, let 𝑖𝑅 ∶ Σ𝐾 × 𝐻 2 ↪ Σ𝐾 × 𝐻 2 × [0, 1)𝑅 denote inclusion at radius 𝑅 and
write 𝜇Σ𝐾×𝐻 2

𝑅
for the pullback of the volume form under 𝑖𝑅, i.e. to the hemisphere (or cylinder) of

radius 𝑅. First, since the 𝑑𝑅-components of 𝐹𝐴 drop out under pullback and the remaining com-
ponents contain at most one derivative ∇cos 𝜓, only components of 𝐹𝐴 of orderO(𝑅−𝜖(cos 𝜓)1−𝜖)
contribute to 𝜒1. Furthermore, 𝐽−𝐵 = O(𝑅−1(cos 𝜓)−1), such that 𝜒1 = −2Tr(𝐹𝐴 ∧ 𝐽−𝐵) ∼
𝐶𝑅−1−𝜖(cos 𝜓)−𝜖)𝜇Σ𝐾×𝐻 2

𝑅
Second, 𝛿+𝐴𝐽

+𝐵 does not contain∇𝑅 and the leading order contributions
of the product 𝐽+𝐵 ∧ 𝐽−𝐵 at 𝑅−2(cos 𝜓)−2 vanish by construction of the underlying Nahm pole
(Tr(𝐻𝐸) = 0). We conclude that also 𝜒2 = −2Tr(𝛿+𝐴𝐽

+𝐵∧𝐽−𝐵∧𝜂) ∼ 𝐶𝑅−1−𝜖(cos 𝜓)−𝜖)𝜇Σ𝐾×𝐻 2
𝑅
. In

fact, when the assumptions of Section 4.4.1 are satisfied, the exponent of cos 𝜓 can be improved
to (cos 𝜓)𝛿, for some 𝛿 > 0. This follows from the fact that 𝑅 cos 𝜓 = 𝑦 and for fixed 𝑅 ≠ 0, the
expansion in cos 𝜓 must be consistent with the expansion in 𝑦 𝛿 given in Proposition 4.7.

All in all, if (𝐴, 𝐵) are Haydys-Witten solutions that satisfy (untwisted) Nahm pole boundary
conditions near 𝜕𝐾𝑀, then 𝜒 is of order 𝑅−1−𝜖(cos 𝜓)𝛿, for some 𝛿 > 0. It is natural to expect that
for general 𝜃 ∈ (0, 𝜋/2] the behavior of the polyhomogeneous expansions of 𝐴 and 𝐵 near 𝜕𝐾𝑀
follows a similar pattern to the one we observed for the pure 𝛽-twisted Nahm pole solutions at
𝜕NP𝑀. Specifically, if 𝐴 = 𝐴𝜆,𝜃 + 𝑎 and 𝐵 = 𝐵𝜆,𝜃 + 𝑏 with respect to the twisted model solutions,
it is still true that 𝑎 and 𝑏 admit polyhomogeneous expansions of order O(𝑅−𝜖(cos 𝜓)−𝜖). In
analogy to the cancellations in the case of Nahm pole boundary conditions, we then expect
that 𝑎 and 𝑏 are restricted in a way that makes any contributions to 𝜒 below 𝑅−1−𝜖(cos 𝜓)𝛿

vanish.

In any case, as we will see below, the following asymptotic behaviour of 𝜒 near a knot boundary
𝜕𝐾𝑀 is sufficient to extend Theorem D to situations with knot singularities:

𝜒 ∼ 𝐶𝑅−2+𝛿(cos 𝜓)𝛿𝜇Σ𝐾×𝐻 2
𝑅

(𝑅 → 0)

It’s likely that such a result only holds under certain conditions on the topology and geometry
of 𝐸 → 𝑀5 and Σ𝐾 ⊂ 𝜕NP𝑀.

4.4.3 Kapustin-Witten ends

We now consider Kapustin-Witten ends 𝜕KW𝑀5 and 𝜕NP−KW𝑀5. As explained in Section 4.2,
we take this to mean non-compact ends at which fields converge to a Kapustin-Witten solution
with either finite energy or with Nahm pole at a corner of𝑀5, respectively. We let [0, 1)𝑠 ×𝑊 4

be a tubular neighbourhood and denote by 𝑖𝑠 ∶ 𝑊 4 ↪ [0, 1)𝑠 × 𝑊 4 inclusion of 𝑊 4 at 𝑠. Write
𝑢 = 𝑠𝜕𝑠 for the inward-pointing unit normal vector field and assume 𝑔(𝑢, 𝑣) = cos 𝜃 is constant.
As usual, if 𝜃 ≠ 0, let 𝑤 be the non-vanishing unit vector field on 𝑊 4 with respect to which
𝑣 = cos 𝜃𝑢 + sin 𝜃𝑤.

We begin with a general result about the pullback of 𝜒 in dependence of the limiting field
configuration. Hence, assume (𝐴, 𝐵) approaches a solution of the 𝜃-Kapustin-Witten equations
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(�̃�, 𝜙) on 𝑊 4. In a local basis (𝑠, 𝑡 , 𝑥 𝑖)𝑖=1,2,3 with 𝑤 = 𝜕𝑡, the pullback of 𝜒 = 2Tr(𝐹𝐴 ∧ 𝐽−𝐵 +
𝛿+𝐴𝐽

+𝐵 ∧ 𝐽−𝐵 ∧ 𝜂) is then given by

1
2 lim𝑠→0

𝑖∗𝑠 𝜒 = cos 𝜃 Tr ((𝐹+�̃� )𝑡2𝜙2 + (𝐹+�̃� )𝑡3𝜙3)𝜇𝑊 4 + sin 𝜃 Tr (∇�̃�2 𝜙1 𝜙3 − ∇�̃�3 𝜙1 𝜙2)𝜇𝑊 4 (4.16)

Here, 𝐹+�̃� denotes the self-dual part with respect to the four-dimensional Hodge operator ⋆𝑊 4 .

Finite Energy Solutions. Kapustin and Witten observed that Kapustin-Witten solutions on
closed manifolds are highly restricted [KW07]. A similar result was established by Nagy and
Oliveira for finite energy solutions on ALE and ALF gravitational instantons [NO21]. The
energy in question, usually called Kapustin-Witten energy, is defined by the functional

𝐸KW = ∫
𝑊 4

‖𝐹�̃�‖
2 + ‖∇�̃�𝜙‖

2
+ ‖[𝜙 ∧ 𝜙]‖2

Nagy and Oliveira observed that for finite energy solutions the norm of the Higgs field is
bounded, which yields surprisingly strong restrictions for solutions on ℝ4 and 𝑆1 × ℝ3, when
combined with a result by Taubes [Tau17a]. As proposed by Nagy and Oliveira, we were able
to generalize this to arbitrary ALE and ALF gravitational instantons in Chapter 3. The situation
is summarized by the following two theorems.

Theorem ([KW07; GU12]). Let 𝐸 → 𝑊 4 be an 𝑆𝑈 (2) principal bundle over a compact manifold
without boundary. Assume (𝐴, 𝜙) satisfies the 𝜃-Kapustin-Witten equations with 𝜃 ∈ (0, 𝜋). If
𝐸 → 𝑊 4 has non-zero Pontryagin number, then 𝐴 and 𝜙 are identically zero. Otherwise 𝐴 + 𝑖𝜙 is
a flat 𝑃𝑆𝐿(2, ℂ) connection; equivalently 𝐹𝐴 = [𝜙 ∧ 𝜙] and ∇𝐴𝜙 = 0.

Theorem (Corollary C). Let (𝐴, 𝜙) be a finite energy solution of the 𝜃-Kapustin-Witten equations
with 𝜃 ≠ 0 (mod 𝜋) on an ALE or ALF gravitational instanton and let 𝐺 = 𝑆𝑈 (2). Then 𝐴 is flat,
𝜙 is ∇𝐴-parallel, and [𝜙 ∧ 𝜙] = 0.

In combination with equation (4.16), we immediately arrive at the following result.

Proposition 4.9. Let 𝐺 = 𝑆𝑈 (2) and 𝜃 ≢ 0 (mod 𝜋). Assume (𝐴, 𝐵) approaches a finite energy
solution of the 𝜃-Kapustin-Witten equations on 𝑊 4 as 𝑠 → 0. If 𝑊 4 is an ALE or ALF gravita-
tional instanton, or if 𝑊 4 is compact and either (i) 𝐸 → 𝑊 4 has non-zero Pontryagin number or
(ii) 𝜃 = 𝜋/2, then lim𝑠→0 𝑖∗𝑠 𝜒 = 0.

Proof. If𝑊 4 is an ALE or ALF gravitational instanton, both terms in (4.16) vanish directly. The
first since �̃� is flat and the second since 𝜙 is ∇�̃� parallel.

If 𝑊 4 is compact, 𝐴 and 𝜙 can only be non-zero if the Pontryagin number of 𝐸 → 𝑊 4 is
zero and, furthermore, in that case 𝐹�̃� = [𝜙 ∧ 𝜙] and ∇�̃�𝜙 = 0. It follows that lim𝑠→0 𝑖∗𝑠 𝜒 =
2 cos 𝜃 Tr([𝜙1, 𝜙2]𝜙3)𝜇𝑊 4 , which vanishes if 𝜃 = 𝜋/2.
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We make two observations. First, if 𝜃 ≡ 0 (mod 𝜋), the natural boundary condition for (𝐴, 𝐵)
are finite energy solutions (�̃�, 𝐵, 𝐶) of the Vafa-Witten equations on𝑊 4. On ℝ4 the Vafa-Witten
and 𝜃 = 0 Kapustin-Witten equations are equivalent by an identification of 𝜙 = 𝐶𝑑𝑥0 + 𝐵0𝑖𝑑𝑥 𝑖.
According to the result by Taubes mentioned earlier, any solution with bounded ‖𝜙‖ satisfies
𝜎(𝐵, 𝐵) = [𝐵, 𝐶] = 0 and ∇𝐴𝐵 = ∇𝐴𝐶 = 0 [Tau17a].

It is not currently known if Vafa-Witten solutions on ALX spaces have a similar property. How-
ever, the Vafa-Witten equations are still closely related to the 𝜃 = 0 version of the Kapustin-
Witten equations, and Taubes’ result has been established for the latter in Chapter 3. Onemight
thus expect that, at least in certain situations, the vanishing results carry over to Vafa-Witten
solutions. Whenever this is the case, the Vafa-Witten equations 𝐹+�̃� = 𝜎(𝐵, 𝐵)+ [𝐵, 𝐶] reduce to
anti-self-dual equations for �̃�, in which case lim𝑠→0 𝑖∗𝑠 𝜒 = 𝐹+�̃� ∧𝑖∗𝑠 𝐽−𝐵 = 0, as we found above.

Second, the fact that 𝜒 converges to zero holds at two ends of a spectrum of asymptotic volume
growth of 𝑊 4. On the one hand, in the case of compact manifolds with bounded volume or
equivalently asymptotic volume growth of order 𝑟0, and on the other hand, on ALF and ALE
manifolds with asymptotic volume growth of order 𝑟3 and 𝑟4, respectively. For ALG and ALH
gravitational instantons, the proof strategy of Nagy and Oliveira result doesn’t work, because
they rely on the existence of a positive Green’s function for the Laplacian. The approach to
Taubes’ dichotomy fails for ALH manifolds for much the same reason.

To the best of the authors knowledge it is currently not known if an analogue of the results
of Nagy and Oliveira should be expected to be true or false on ALG and ALH gravitational
instantons. However, from the physics perspective there is no obvious reason to single out
intermediate volume growth like that. On the contrary, in Witten’s approach to Khovanov
homology, where one considers 𝑀5 = ℝ𝑠 × 𝑋 3 × ℝ+𝑦 , it is natural to expect simplifications
whenever 𝑋 3 has additional substructure.

For example, one expects that Khovanov homology arises for 𝑋 3 = 𝑆3, in which case 𝑀5 has
an ALH end 𝑊 4 = ℝ𝑠 × 𝑆3 at 𝑦 → ∞. Also, Gaiotto and Witten recovered the Jones polynomial
purely by adiabatically braiding solutions of the EBE under the assumption that 𝑋 3 = ℝ𝑡 × Σ2,
in which case one encounters an ALG manifold at 𝑦 → ∞. It thus seems plausible to postu-
late that the results of this section hold, more generally, whenever 𝑊 4 is a complete Ricci-flat
Riemannian manifold with sectional curvature bounded from below and (𝐴, 𝐵) approaches a fi-
nite energy solution of the 𝜃-Kapustin-Witten equations (𝜃 ≠ 0, 𝜋) or the Vafa-Witten equations
(𝜃 = 0).

NahmPoles at Corners. Wenowdiscuss the behaviour of 𝜒 at non-compact ends of the class
𝜕NP−KW𝑀5. As before, we denote by [0, 1)𝑠 × 𝑊 4 a tubular neighbourhood. In this situation
we still demand that (𝐴, 𝐵) converges to a 𝜃-Kapustin-Witten solution (�̃�, 𝜙) on 𝑊 4 as 𝑠 → 0.
But in contrast to earlier, we now assume that (�̃�, 𝜙) satisfies 𝛽-twisted Nahm pole boundary
conditions at an adjacent corner of 𝑀5 – or equivalently at a boundary of 𝑊 4. Observe that
(�̃�, 𝜙) cannot have finite energy if it exhibits a Nahm pole, such that Proposition 4.9 doesn’t
apply.
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In the absence of a finite energy condition, we now also have to specify boundary conditions at
non-compact ends [0, 1)𝑠′ ×𝑋 3 of𝑊 4. We demand that �̃�+ 𝑖𝜙 converges to a flat 𝐺ℂ connection
on 𝑋 3 as 𝑠′ → 0. From now on we refer to these configurations simply as Nahm pole solutions
of the 𝜃-Kapustin-Witten equations.

Remark. Note that a non-compact end [0, 1)𝑠′ × 𝑋 3 of 𝑊 4 corresponds to a ‘corner at infinity’
[0, 1)𝑠 × [0, 1)𝑠′ × 𝑋 3 of 𝑀5. This corner is adjacent to two non-compact ends of 𝑀5, at which
(𝐴, 𝐵) converges to a corresponding solution of the 𝜃- or 𝜃′-Kapustin-Witten equation, respect-
ively. The two associated asymptotic boundary conditions, which demand that both �̃� + 𝑖𝜙 and
�̃�′+𝑖𝜙′ are flat connections on𝑋 3, have to be consistent with the fact that both Kapustin-Witten
solutions arise from the common five-dimensional fields (𝐴, 𝐵). Put differently: If we view 𝐵
as a one-form by the usual isomorphism, the pullback of 𝐴 + 𝑖𝐵 converges to a flat connection
on 𝑋 3 as 𝑠, 𝑠′ → 0.

We similarly need to ensure that the boundary conditions are compatible at corners [0, 1)𝑠 ×
𝑋 3 × [0, 1)𝑦 that are adjacent to a 𝜃-Kapustin-Witten end as 𝑠 → 0 and a 𝛽-Nahm pole as 𝑦 → 0.
This is only the case if 𝛽 = 𝜋/2 − 𝜃, since otherwise the 𝛽-twisted Nahm pole model solutions
are not solutions of the 𝜃-Kapustin-Witten equations.

Proposition 4.10. Assume (𝐴, 𝐵) approaches a solution of the 𝜃-Kapustin-Witten equations on
𝑊 4. Then

lim
𝑠→0

𝑖∗𝑠 𝜒 = 2
3 𝑖
∗
0 Tr (𝜎(𝐵, 𝐵) ∧ 𝐵) + 2 sin 𝜃

cos2 𝜃 𝑖
∗
0𝑑 Tr (𝚤𝑤(𝐽+𝐵) ∧ 𝐽−𝐵) .

and the expression is exact if 𝜃 = 𝜋/2.

Proof. This is a rewriting of equation (4.16). Since (�̃�, 𝜙) satisfy the 𝜃-Kapustin-Witten equa-
tions, we can replace the field strength by 𝐹�̃� = 1

2 [𝜙 ∧ 𝜙] − cot 𝜃𝑑�̃�𝜙 + csc 𝜃 ⋆4 𝑑�̃�𝜙. After a short
calculation (and slightly miraculous cancellations), we find

lim
𝑠→0

𝑖∗𝑠 𝜒 = 2 cos 𝜃 Tr([𝜙1, 𝜙2]𝜙3)𝜇𝑊 4 + sin 𝜃 Tr(∇𝐴2 (𝜙1𝜙3) − ∇𝐴3 (𝜙1𝜙2))𝜇𝑊 4 ,

which is a local representation of the expression above and shows that the right hand side is
exact if cos 𝜃 = 0

4.5 Vanishing of the Boundary Term

We can now show that the contributions from the exact term in the Weitzenböck formula of
Lemma 4.2 vanishes when the various conditions we have encountered in Section 4.3 and Sec-
tion 4.4 are satisfied. In summary we make the following assumptions:

(A1) At 𝜕NP𝑀5 the fields satisfy regular 𝛽-twisted Nahm pole boundary conditions for some
generic 𝛽. Writing 𝐴 = 𝑦−1 sin 𝛽𝜙𝜏𝜌 + 𝜔 + 𝑎 and 𝐵 = 𝑦−1 cos 𝛽𝜙𝜌 + 𝑏, assume that 𝐹𝜔 = 0
and that ∇𝜔𝑠 𝑏2 + ∇𝜔1 𝑏3 = O(𝑦2) and ∇𝜔𝑠 𝑏3 − ∇𝜔1 𝑏2 = O(𝑦2) (cf. Section 4.4.1).
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4 The Decoupled Haydys-Witten Equations and a Weitzenböck Formula

(A2) At 𝜕𝐾𝑀5 the fields are asymptotic to knot singularity models and there is some 𝛿 > 0
such that 𝑖∗𝑅𝜒 ∼ 𝐶𝑅−2+𝛿(cos 𝜓)𝛿𝜇Σ𝐾×𝐻 2

𝑅
as 𝑅 → 0 (cf. Section 4.4.2).

(A3) At 𝜕KW𝑀5 the fields approach a finite energy solution of the 𝜃-Kapustin-Witten equa-
tions. The boundary face 𝜕KW𝑀5 is either a) an ALE or ALF gravitational instanton, b) a
compact manifold on which the bundle 𝐸 → 𝜕KW𝑀5 has non-zero Pontryagin number,
or c) a compact manifold with incidence angle 𝜃 = 𝜋/2 (cf. Section 4.4.3).

(A4) At 𝜕NP−KW𝑀5 the incidence angle is 𝜃 = 𝜋/2 and the fields approach Kapustin-Witten
solutions with Nahm poles at boundaries. Moreover, at non-compact cylindrical ends
of 𝜕NP−KW𝑀5, the combination 𝐴 + 𝑖𝐵 converges to a flat 𝐺ℂ connection that satisfies
𝐽−𝜎(𝐵, 𝐵) = 0. (cf. Section 4.4.3).

Theorem 4.11. Let 𝐺 = 𝑆𝑈 (2), 𝑀5 a manifold with poly-cylindrical ends, 𝑣 a non-vanishing
vector field that approaches ends at a constant angle, and 𝐽 an almost Hermitian structure on
ker 𝜂. Assume HW𝑣 (𝐴, 𝐵) = 0 and that (A1) - (A4) are satisfied, then dHW𝑣 ,𝐽 (𝐴, 𝐵) = 0.

Proof. Our starting point is a regularized version of the Weitzenböck formula of Lemma 4.2,
obtained by restricting the domain of integration to the compact submanifold with corner 𝑀5

𝜖
introduced in Section 4.2 and taking 𝜖 → 0.

∫
𝑀5

‖HW𝑣 (𝐴, 𝐵)‖
2 = ∫

𝑀5
‖dHW𝑣 ,𝐽 (𝐴, 𝐵)‖

2 + lim
𝜖→0∫𝑀5

𝜖

𝑑𝜒

According to Stokes’ theorem, the contributions of the exact term are now determined by

lim
𝜖→0∫𝑀𝜖

𝑑𝜒 = ∑
𝑖∈𝐼

lim
𝜖→0∫𝜕𝑖𝑀𝜖

𝜒 .

We address the integrals for each of the four boundary classes independently.

NahmPole Boundaries: Let𝑊 4×[0, 1)𝑦 be a tubular neighbourhood of a Nahm pole bound-
ary 𝜕NP𝑀5. The boundary face 𝜕𝑁𝑃𝑀𝜖 is a subset of the 𝜖-displacement {𝜖} ×𝑊 4 ↪ [0, 1)𝑠 ×𝑊 4.
We know from Proposition 4.7 that there is some 𝛿 > 0 such that 𝑖∗𝑦𝜒 ∼ 𝐶𝑦 𝛿𝜇𝑊 4 as 𝑦 → 0. This
provides the estimates

lim
𝜖→0

|∫
𝜕NP𝑀𝜖

𝑖∗𝜖𝜒| ≤ lim
𝜖→0∫𝜕NP𝑀𝜖

|𝑖∗𝜖𝜒| ≤ lim
𝜖→0∫𝑊 4×{𝜖}

|𝐶| 𝜖𝛿𝜇𝑊 4 = 0 .

We have used that the leading order of the pullback of 𝜒 extends unchanged to all of 𝑊 4, due
to compatibility of boundary conditions at corners.
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4.5 Vanishing of the Boundary Term

Knot Boundaries: Let Σ𝐾 × 𝐻 2
𝜓 ,𝜗 × [0, 1)𝑅 be a tubular neighbourhood of a knot boundary

𝜕𝐾𝑀5, where 𝐻 2
𝜓 ,𝜗 denotes the two-dimensional hemisphere, parametrized by 𝜓 ∈ [0, 𝜋/2] and

𝜗 ∈ [0, 2𝜋]. The associated boundary of the regularized manifold 𝜕𝐾𝑀5
𝜖 is contained in the

𝜖-displacement Σ𝐾 × 𝐻 2 × {𝜖} = Σ𝐾 × 𝐻 2
𝜖 . The pullback of the volume form to the hemi-

sphere of radius 𝑅 = 𝜖 is given by 𝜇Σ𝐾×𝐻 2
𝜖

= 𝜖2𝑑𝜓𝑑𝜗𝜇Σ𝐾 . Assuming explicitly that 𝑖∗𝑅𝜒 ∼
𝑐𝑅−2+𝛿(cos 𝜓)𝛿𝜇Σ𝐾×𝐻 2

𝑅
as 𝑅 → 0, we find

lim
𝜖→0

|∫
𝜕𝐾𝑀5

𝜖

𝑖∗𝜖𝜒| ≤ lim
𝜖→0∫Σ𝐾×𝐻 2×{𝜖}

|𝑖∗𝜖𝜒| ≤ lim
𝜖→0∫Σ𝐾

∫
𝐻 2

|𝐶| 𝜖−2+𝛿𝜖2𝑑𝜓𝑑𝜗𝜇Σ𝐾 = 0 ,

where we have used the Fubini-Tonelli theorem to split off integration along Σ𝐾. In extending
the integral from 𝜕𝐾𝑀𝜖 to all of Σ𝐾×𝐻 ×{𝜖}, we have used the compatibility of knot singularities
with the pure Nahm pole boundary conditions (which are the only boundary conditions that
are adjacent to knot singularities) at the corner cos 𝜓 → 0.

Kapustin-Witten Ends: Let [0, 1)𝑠 × 𝑊 4 be a tubular neighbourhood of a Kapustin-Witten
end 𝜕KW𝑀5. Proposition 4.9 states that lim𝑠→0 𝑖∗𝑠 𝜒 = 0. Since 𝜕KW𝑀𝜖 ⊂ 𝑊 4 and 𝑊 4 is ALE
or ALF, its volume grows asymptotically at most with 𝜖−4. Looking back at (4.16), the rate of
decay of 𝜒 is determined by how fast 𝐹𝐴 and ∇𝐴𝜙 approach zero as 𝑠 → 0. Since the Haydys-
Witten equations represent flow equations of the Kapustin-Witten equations, a typical solution
is expected to decay exponentially fast towards the stationary solution. We conclude that in
the limit 𝜖 → 0:

lim
𝜖→0

|∫
𝜕KW𝑀5

𝜖

𝜒| ≤ lim
𝜖→0∫𝜕KW𝑀5

𝜖

|𝑖∗𝜖𝜒| = 0 .

Kapustin-Witten Ends with Nahm Poles: Let [0, 1)𝑠×𝑊 4 be a non-compact end of𝑀5 and
assume that 𝑔(𝜕𝑠, 𝑣) = 0, i.e. 𝜃 = 𝜋/2. As before, denote by 𝑖𝑠 ∶ 𝑊 4 ↪ [0, 1)𝑠 × 𝑊 4 inclusion of
𝑊 4 at 𝑠.

Assume (𝐴, 𝐵) converges to a Kapustin-Witten solution (�̂�, 𝜙) that exhibits a Nahm pole at a
boundary of 𝑊 4. Since 𝜃 = 𝜋/2, Proposition 4.10 states that lim𝑠→0 𝑖∗𝑠 𝜒 = 𝑑𝜔, where 𝜔 =
Tr (𝚤𝑤(𝐽+𝐵) ∧ 𝐽−𝐵). It follows that

lim
𝑠→0∫𝜕NP-KW𝑀𝜖

𝑖∗𝑠 𝜒 = ∫
𝑊 4

𝑑𝜔

and it remains to determine the integral of 𝑑𝜔 over 𝑊 4.

For this, let 𝐵𝑟(𝑝) denote the (four-dimensional) ball of radius 𝑟 centered at some point 𝑝 ∈ 𝑊 4

and 𝜇𝐵𝑟(𝑝) its volume form. A classic result by Yau then states the following.

Theorem ([Yau76, Theorem 3 & Appendix (ii)]). If lim inf𝑟→∞ 𝑟−1 ∫𝐵𝑟(𝑝) |𝜔| 𝜇𝐵𝑟(𝑝) = 0, then
∫𝑊 4 𝑑𝜔 = 0.
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4 The Decoupled Haydys-Witten Equations and a Weitzenböck Formula

Near the boundary we can rely on Lemma 4.5. Applied to the Kapustin-Witten solution (�̃�, 𝜙)
with 𝛽 = 𝜋/2 − 𝜃 = 0, this yields in the limit 𝑦 → 0

𝜔 = 𝑦−2 Tr(t1t2 + t1t3) + 𝑦0 Tr(t1(𝐶1,+)2 + t1(𝐶1,+)3 + (𝐶1,+)1t2 + (𝐶1,+)1t3) +O(𝑦 𝛿) .

The term proportional to 𝑦−2 vanishes and the term at constant order is assumed to be integ-
rable on 𝑋 3, such that contributions from the Nahm pole to the integral ∫𝐵𝑟(𝑝) |𝜔| are harmless.

At a non-compact end [0, 1)𝑠 × 𝑋 3 of 𝑊 4, the asymptotic boundary condition states that 𝐴+ 𝑖𝐵
approaches a flat 𝑆𝐿(2, ℂ)-connection on 𝑋 3 that satisfies 𝐽−𝜎(𝐵, 𝐵) = 0. Equivalently, the
component 𝜙1 of 𝐽+𝐵 commutes with the components 𝜙2/3 of 𝐽−𝐵. This is for example the
case if 𝑋 3 is a product 𝑆1 × Σ, where Σ is a Riemann surface and the almost complex structure
𝐽 is the direct sum of complex structures on the cylinder [0, 1)𝑠 × 𝑆1 and Σ. In any case, since
[𝜙1, 𝜙2] = [𝜙1, 𝜙3] = 0 we find that 𝜔 = Tr(𝜙1𝜙2) +Tr(𝜙1𝜙3) → 0. Assuming 𝐴+ 𝑖𝐵 converges to
the flat connection faster than the volume of the geodesic balls 𝐵𝑟(𝑝) grows, we conclude that
∫𝑊 4 𝑑𝜔 = 0.

Conclusion: Since all boundary contributions to the exact term vanish in the limit 𝜖 → 0,
we arrive at

∫
𝑀5

‖HW𝑣 (𝐴, 𝐵)‖
2 = ∫

𝑀5
‖dHW𝑣 ,𝐽 (𝐴, 𝐵)‖

2 + lim
𝜖→0∫𝑀5

𝜖

𝑑𝜒 = ∫
𝑀5

‖dHW𝑣 ,𝐽 (𝐴, 𝐵)‖
2 .

Seeing that the integrands on both sides are non-negative, we find that wheneverHW (𝐴, 𝐵) =
0 also dHW (𝐴, 𝐵) = 0, which concludes the proof.
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Khovanov Homology

Let 𝑀5 = 𝐶 × Σ × ℝ+𝑦 , where 𝐶 and Σ are Riemann surfaces, and assume 𝑀5 is equipped with
a product metric 𝑔 and the non-vanishing unit vector field 𝑣 = 𝜕𝑦. Write 𝜂 = 𝑔(𝑣 , ⋅) and
observe that ker 𝜂 coincides with the tangent space of 𝐶 ×Σ. Throughout, we let 𝐽 be the almost
complex structure on ker 𝜂 that is induced by the complex structures on 𝐶 and Σ, respectively.
We consider a principal 𝐺-bundle 𝐸 → 𝑀5 for 𝐺 = 𝑆𝑈 (𝑁 ) and denote by ad 𝐸 its adjoint
bundle.

In this chapter we investigate the decoupled Haydys-Witten equations on𝑀5 with respect to 𝑣
and 𝐽, as introduced in Chapter 4 (also see Section 2.4.1 for more detailed definitions). These are
equations for a pair of connection𝐴 ∈ A(𝐸) andHaydys’ self-dual two-form𝐵 ∈ Ω2

𝑣 ,+(𝑀5, ad 𝐸).
𝐽 lifts to a map on Ω2

𝑣 ,+(𝑀5) with eigenvalues ±1. The decoupled Haydys-Witten equations
(dHW) are defined by

1+𝐽
2 (𝜎(𝐵, 𝐵) + ∇𝐴𝑣 𝐵) = 𝐹+𝐴

1−𝐽
2 (𝜎(𝐵, 𝐵) + ∇𝐴𝑣 𝐵) = 0 (5.1)

𝛿+𝐴
1+𝐽
2 𝐵 = 𝚤𝑣𝐹𝐴 𝛿+𝐴

1−𝐽
2 𝐵 = 0

We are interested in solutions of these equations and focus on their role in the context of Wit-
ten’s gauge theoretic approach to Khovanov homology [Wit11a]. As described in much more
detail in Chapter 2, one constructs a Floer cochain complex out of solutions of the Kapustin-
Witten equations on the four-manifold 𝑊 4 = 𝑋 3 × ℝ+𝑦 , subject to certain singular boundary
conditions with monopole-like behaviour along a knot 𝐾 ⊂ 𝜕𝑊 4 = 𝑋 3. Its cohomology with
respect to the Floer differential, which counts the number of solutions of the (full) Haydys-
Witten equations on 𝑀5 = ℝ𝑠 × 𝑊 4 that interpolate between the Kapustin-Witten solutions at
𝑠 → ±∞, is expected to be a topological invariant. Witten conjectures that for 𝑋 3 = 𝑆3 or ℝ3,
this topological invariant coincides with Khovanov homology.

The results obtained in Chapter 4 raise hope that, on nice enough manifolds, every solution
of the Haydys-Witten (and Kapustin-Witten) equations is already a solution of the decoupled
version of the equations. This is advantageous, because the decoupled equations exhibit a Her-
mitian Yang-Mills structure that simplifies their analysis considerably. In particular, they con-
tain as a subset the extended Bogomolny equations (EBE), and for the latter it is possible to ex-
ploit the corresponding Hermitian Yang-Mills structure to establish a classification in terms of
Higgs bundles over Σ with certain extra structure [HM19c; HM20; HM19b; Dim22b; Sun23].
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This classification of EBE-solutions follows an earlier conjecture of Gaiotto and Witten from
their highly influential article [GW12]. In that work, they further propose to determine solu-
tions of the Kapustin-Witten equations by way of an ‘adiabatic braiding’ of EBE-solutions.
While they were able to show that these ideas lead to an action of the braid group on the
Poincaré polynomial of the Floer complex in terms of the Jones representation of Virasoro con-
formal blocks, a direct calculation on the level of Floer homology remains an open problem.

It should be noted that Gaiotto and Witten also laid out an Atiyah-Floer type program to cal-
culate the invariants associated to Haydys-Witten Floer theory, where instanton Floer the-
ory is replaced by a Lagrangian intersection Floer theory. For this, fix a Heegard splitting
𝑊 4 = 𝐻1 ∪Σ 𝐻2 and suppose that we stretch the metric transversely to 𝐻1 ∩ 𝐻2 such that the
two handlebodies are joined by a long neck of the form [−𝐿, 𝐿]𝑡 × Σ, 𝐿 >> 1. Position the knot
𝐾 such that the portion of the knot in the long neck consists of a set of parallel straight lines
[−𝐿, 𝐿]𝑡×{𝑝𝑗}, intersecting Σ×{0} in a finite collection of points. IfMΣ denotes the Gℂ character
variety of Σ, then the character varieties of the 𝐻𝑖 are Lagrangians 𝐿1, 𝐿2 ⊂ MΣ. The moduli
space of Kapustin-Witten solutions over [−𝐿, 𝐿]𝑡 × Σ × ℝ+𝑦 that are invariant in the direction of
𝑡 provides a third Lagrangian 𝐿3. In the absence of knots, the Atiyah-Floer conjecture states
that Lagrangian intersection Floer homology of 𝐿1 and 𝐿2 is an invariant of 𝑊 4 and that this
invariant coincides with the original instanton Floer cohomology, see [AM20; DF17] for recent
progress. Including the effect of knots and counting instead holomorphic triangles that span
between 𝐿1, 𝐿2, 𝐿3 in MΣ conjecturally yields the coefficients of the Jones polynomial. We
refer to [Guk+17] for more details and advances in this approach.

In the present work, however, we remain on the side of instanton Floer theory and investigate
the implications of the adiabatic approach on solutions of the decoupled Haydys-Witten and
Kapustin-Witten equations directly. The adiabatic condition can be viewed as the assumption
that on a given slice [−𝐿, 𝐿]𝑡 × Σ × ℝ+𝑦 the knot position varies only slightly in 𝑡, such that one
obtains a Kapustin-Witten solution from a smooth family of EBE-solutions that ‘remain in the
ground state’ when one moves from 𝑡 = −𝐿 to 𝐿. This means that Kapustin-Witten solutions
should be related to certain well-behaved paths in the moduli space of EBE-solutions.

Let us explain this in more detail. Consider the decoupled Kapustin-Witten equations on 𝑆1𝑡 ×ℂ
and a knot of the form 𝐾 = ⨆ 𝑘

𝑎=1{(𝑡 , 𝑝𝑎(𝑡), 0)}. The collection of trajectories {𝑝𝑎(𝑡)}𝑎=1,…,𝑘 can
be viewed as a loop 𝛽 ∶ 𝑆1𝑡 → Conf𝑘 ℂ in the configuration space of 𝑘 distinct, ordered points
in ℂ. Write MdKW

𝐾 for the moduli space of dKW-solutions subject to Nahm pole boundary
conditions with knot singularities along 𝐾. We can viewMdKW

𝐾 as fiber of a bundleMdKW →
ΩConf𝑘 ℂ, where the fiber map sends each solution to the knot at which the solution exhibits a
knot singularity. There is an analogous fiber bundle for solutions of the extended Bogomolny
equations MEBE → Conf𝑘 ℂ that sends a solution to the position of knot singularities 𝐷 =
{𝑝𝑎}𝑎=1,…,𝑘 ⊂ Σ.

The adiabatic approach can now be interpreted as the statement that one expects that there is
a bundle map of the form
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p1(t)
p2(t)

p3(t)

Figure 5.1 A general knot 𝐾 in the boundary of 𝑊 4 = 𝑆1𝑡 × Σ × ℝ+𝑦 varies with time. The
adiabatic approach can be viewed as stretching the size of 𝑆1𝑡 , such that at any given time 𝑡,
the fields (𝐴, 𝜙) are well-approximated by a solution of the extended Bogomolny equations.

MdKW ΩMEBE

ΩConf𝑘 Σ

The following result by He and Mazzeo establishes the existence of such a map for the case of
𝑆1-invariant Kapustin-Witten solutions.

Theorem ([HM19a]). Every solution of the EBE on Σ × ℝ+ with Nahm pole boundary condition
and knot singularities at a divisor 𝐷 = {𝑧𝑎}𝑎=1,…,𝑘 ⊂ Σ lifts to an 𝑆1-invariant solution of the
KW-equations with knot singularities along the 𝑆1-invariant knot 𝐾 = 𝑆1 × 𝐷. Moreover, every
𝑆1-invariant solution of the KW-equations is given by such a lift and there is a bijection between
moduli spaces

MKW
𝑆1×𝐷 → MEBE

𝐷 .

Note that, as dimensional reduction of the Kapustin-Witten equations, any EBE-solution pro-
vides an 𝑆1-invariant solution of the Kapustin-Witten equations. So the content of the theory is
that also the reverse is true and any 𝑆1-invariant solution is necessarily a lift of an EBE-solution.
This also means that the target space of the bundle mapmust be the space of non-vertical loops,
which we will denote by ΩℎMEBE.

The proof of He and Mazzeo’s theorem is based on a Weitzenböck formula that equates the full
Kapustin-Witten equations with the EBE up to certain boundary terms. A prerequisite for this
Weitzenböck formula is the assumption that the position of knot singularities is 𝑆1𝑡 -invariant.
This assumption will be dropped in the analysis presented here, such that solutions can have a
richer structure.
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Instead of the Weitzenböck formula of He and Mazzeo, we rely on the Hermitian Yang-Mills
structure of the decoupled equations1. This structure is most easily described in the 4D-
formalism, where one uses the Haydys-Witten fields (𝐴, 𝐵) to define four ad 𝐸ℂ-valued differ-
ential operators D𝜇, 𝜇 = 0, 1, 2, 3 (see Section 5.1). In terms of these operators, the decoupled
Haydys-Witten equations are equivalent to

[D𝜇,D𝜈] = 0, 𝜇, 𝜈 = 0, 1, 2, 3 ,
3
∑
𝜇=0

[D𝜇,D𝜇] .

Crucially, the set of equations on the left is invariant under complex gauge transformations Gℂ,
while the remaining equation on the right can be viewed as a real moment map condition. As
a consequence, it’s possible to first solve the easier Gℂ-invariant part of the equations and sub-
sequently solve for a complex gauge transformation that solves the moment map condition.

In a first step, following the adiabatic approach of Gaiotto and Witten, we consider a situation
where the knot 𝐾 is a small deformation of an 𝑆1-invariant one 𝐾 ′. More precisely, we assume
that the two knots are connected by awell-behaved isotopy 𝛽•, where 𝛽0 = 𝐾 ′ and 𝛽1 = 𝐾. Since
the underlying theory is topological, such an isotopy can not have a large effect on the solution.
We then introduce an Ansatz that solves the Gℂ-invariant part of the decoupled Haydys-Witten
equations and exhibits a knot singularity along the knot trajectories determined by 𝛽𝑞(𝑡) at
each point 𝑞 ∈ [0, 1] of the isotopy. Put differently, the isotopy provides a deformation from
an initially 𝑆1-invariant Ansatz with knot singularities along the 𝑆1-invariant knot 𝐾 ′, to a
𝑡-dependent Ansatz with knot singularities along the 𝑡-dependent knot 𝐾. We propose that
this isotopy Ansatz provides a way to transport a solution of the decoupled Haydys-Witten
equations with 𝑆1-invariant knot to a solution with 𝑡-dependent knot.

Another main tool that we make extensive use of is a physically motivated reduction from
the infinite-dimensional moduli space of Kapustin-Witten solutions (before gauge fixing) to a
finite-dimensional model space. The space in question is related to a partial Grothendieck-
Springer resolution of sl(𝑁 ) that is naturally fibered over the configuration space of points.
Motivated by these considerations, we formulate Conjecture E stating that on 𝑆1𝑡 × Σ × ℝ+𝑦 ,
the number of intersection points of the Grothendieck-Springer fiber and its parallel transport
along 𝑆1𝑡 determines a lower bound for the number of solutions to the decoupled Kapustin-
Witten. Moreover, taking this line of argument to its logical conclusion, we state a stronger
version Conjecture F, claiming that Haydys-Witten Floer theory is isomorphic to symplectic
Khovanov-Rozansky homology defined by Seidel, Smith and Manolescu [SS04; Man07]. Since
symplectic Khovanov homology (associated to 𝐺ℂ = 𝑆𝐿(2, ℂ)) is isomorphic to a grading re-
duced version of Khovanov homology [AS19], the arguments developed in this chapter provide
a novel approach to prove Witten’s conjecture, complementary to the Atiyah-Floer approach
pursued in the Gaiotto-Witten program.

This chapter is arranged into two parts.

1In a sense, the Weitzenböck formula of He and Mazzeo is replaced by the one of Chapter 4 that establishes the
decoupling of the equations on 𝑀5 = 𝐶 × Σ × ℝ+

𝑦 .
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Sections 5.1 - 5.4 provide a review of the relevant background and we use the opportunity to
fix some of the notation used in the remainder of this chapter. Specifically, Section 5.1 spells
out the Hermitian Yang-Mills structure of the decoupled Haydys-Witten equations; Section 5.2
provides some notation regarding Lie algebras and adjoint orbits; Section 5.3 introduces the
Nahm pole boundary conditions with knot singularities in a form that is adjusted to the Her-
mitian Yang-Mills structure; and Section 5.4 summarizes the results of He and Mazzeo for solu-
tions of EBE-solutions [HM19c; HM20], highlighting certain aspects that will have close ana-
logues in subsequent discussions for solutions of the decoupled Haydys-Witten and Kapustin-
Witten equations.

Sections 5.5 - 5.10 formalize the adiabatic approach. We introduce the isotopy Ansatz and an as-
sociated expansion of the decoupled Haydys-Witten equations in Section 5.5 and subsequently
describe in Section 5.6 a strategy to obtain solutions of the decoupled Kapustin-Witten equa-
tions for any null-isotopic single-stranded knot by use of a continuity argument. In Section 5.7
we explain the relation between solutions of the decoupled Haydys-Witten equations and paths
in the moduli space of Higgs bundles (E , 𝜑) that are equipped with the additional structure of a
distinguished line subbundle 𝐿. Based on physical intuition, we propose that for our purposes
the Grothendieck-Springer fibration can be used to model the moduli space of triples (E , 𝜑, 𝐿)
in Section 5.8 and using these insights, we formulate Conjecture E. In Section 5.9 we explain
that one naturally obtains Lagrangian submanifolds of the fibers when the 𝑆1𝑡 -factor is decom-
pactified to ℝ𝑡 and studies compact knots as braid closures. Finally, Section 5.10 incorporates
Haydys-Witten instantons into the setting, which leads to Conjecture F that Haydys-Witten
instanton Floer homology coincides with symplectic Khovanov homology.

5.1 Hermitian Yang-Mills Structure of the Decoupled Haydys-Witten
Equations

Let 𝑀5 = 𝐶 × Σ × ℝ+𝑦 , where 𝐶 and Σ are Riemann surfaces, equipped with a product metric
𝑔 and fix the non-vanishing unit vector field 𝑣 = 𝜕𝑦. In this situation ker 𝜂 coincides with the
tangent space of 𝐶 × Σ. Let 𝐽 be the almost complex structure on ker 𝜂 that is induced by the
complex structures on 𝐶 and Σ.

In the context of Haydys-Witten Floer theory, we always assume that 𝐶 contains the non-
compact flow direction and correspondingly is either 𝐶 ≃ ℝ𝑠 × ℝ𝑡 or ℝ𝑠 × 𝑆1𝑡 with the corres-
ponding standard complex structure. In contrast, Σ might generally be an arbitrary Riemann
surface. In the end, we will be most interested in the special case Σ = ℂ, because in that case
Haydys-Witten Floer theory can be related to Khovanov homology. We let (𝑤, 𝑧) denote holo-
morphic coordinates on 𝐶 × Σ and will also write 𝑤 = 𝑠 + 𝑖𝑡 and 𝑧 = 𝑥2 + 𝑖𝑥3 in terms of real
coordinates.

Consider a principal bundle 𝐸 over𝑀5 for 𝐺 = 𝑆𝑈 (𝑁 ) and let 𝐺ℂ and 𝐸ℂ denote their complexi-
fications. Let 𝐴 ∈ A(𝐸) be a gauge connection and 𝐵 ∈ Ω2

𝑣 ,+(𝑀5, ad 𝐸) an element of Haydys’
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self-dual two-forms with respect to 𝑣 (cf. Section 2.4.1). In holomorphic coordinates 𝐵 is locally
determined by

𝐵 = 𝑖𝜙1(𝑑𝑤 ∧ 𝑑 ̄𝑤 + 𝑑𝑧 ∧ 𝑑 ̄𝑧) + 𝜑 𝑑𝑤 ∧ 𝑑𝑧 + 𝜑 𝑑 ̄𝑤 ∧ 𝑑 ̄𝑧.

In real coordinates, this corresponds to 𝐵 = ∑3
𝑎=1 𝜙𝑎(𝑑𝑥0 ∧ 𝑑𝑥𝑎 +

1
2 𝜖𝑎𝑏𝑐𝑑𝑥

𝑏 ∧ 𝑑𝑥 𝑐), where com-
ponents are related by 𝜑 = 𝜙2 − 𝑖𝜙3, 𝜑 = 𝜙2 + 𝑖𝜙3.

Introduce the following differential operators D𝜇 that act on sections of ad 𝐸ℂ.

D0 = 2∇𝐴̄𝑤 = ∇𝐴0 + 𝑖∇𝐴1 D1 = 2∇𝐴̄𝑧 = ∇𝐴2 + 𝑖∇𝐴3 (5.2)

D2 = ∇𝐴𝑦 − 𝑖[𝜙1, ⋅] D3 = [𝜑, ⋅] = [𝜙2, ⋅] − 𝑖[𝜙3, ⋅]

The complex structure of ad 𝐸ℂ induces a complex conjugation that we will denote byD𝜇. Fur-
thermore, there is an action of 𝐺ℂ-valued gauge transformations 𝑔(𝑥) ∈ Gℂ(𝑀5) by conjugation
D𝜇 ↦ 𝑔(𝑥)−1D𝜇𝑔(𝑥).

The Haydys-Witten equations are equivalent to

[D0,D𝑖] −
1
2 𝜖𝑖𝑗𝑘[D𝑗,D𝑘] = 0 , 𝑖, 𝑗, 𝑘 = 1, 2, 3 ,

3
∑
𝜇=0

[D𝜇,D𝜇] = 0 ,

while the decoupled Haydys-Witten equations correspond to the specialization

[D𝜇,D𝜈] = 0 , 𝜇, 𝜈 = 0, 1, 2, 3 ,
3
∑
𝜇=0

[D𝜇,D𝜇] = 0 .

The decoupled Haydys-Witten equations on 𝐶 × Σ × ℝ+𝑦 are an extension of the EBE on Σ × ℝ+𝑦 ,
which are given by exactly the same equations and additionally satisfy D0 = 0.

Consider the submanifold 𝐶 × Σ × {𝑦} for some fixed 𝑦. The structure we have described above
becomes that of a Kähler manifold (𝐶 × Σ, 𝜔), where the Kähler form is defined by 𝜔 = 𝑔(𝐽 ⋅, ⋅),
together with a complex vector bundle ad 𝐸ℂ. This vector bundle is equipped with a Hermitian
metric ℎ, with respect to which A is Hermitian.

We can view the four operators D𝜇 and their complex conjugates as holomorphic and anti-
holomorphic components of a complexified covariant derivative associated to the Hermitian
connection A on ad 𝐸ℂ. By this we mean the ℂ-linear map ∇A ∶ Γ(ad 𝐸ℂ) → Γ(𝑇 ∗ℂ𝑀 ⊗ ad 𝐸ℂ)
that is locally given by ∇A𝜕𝜇 = D𝜇 and ∇A𝜕𝜇 = D𝜇. Here we denote by 𝜕𝜇 = ̂𝐽 𝜕𝜇 a local orthonormal

frame of 𝑇ℂ𝑀 with respect to the standard complex structure ̂𝐽. The covariant derivative has
the property that it vanishes automatically in the direction of the vector field 𝑣, i.e. D𝑣 = 0. Let
𝐹A ∈ Ω2

ℂ(𝑀
5, ad 𝐸ℂ) be its curvature two-form, defined by

(𝐹A)𝜇𝜈 𝑠 = [D𝜇,D𝜈]

Denote by 𝐹𝑝,𝑞A the (𝑝, 𝑞)-part of the field strength. Since D𝑣 = 0, the field strength 𝐹A is an
element of the subbundle Ω2

𝑣 ,−(𝑀5, ad 𝐸ℂ)⊕Ω2
𝑣 ,+(𝑀5, ad 𝐸ℂ), where the map 𝑇𝜂 ∶= ⋆5(𝜂∧ ⋅) acts
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on the summands with eigenvalues ±1, respectively. The anti-self-dual anti-holomorphic part
of 𝐹A is then given by

1
2
(𝐹 2,0A − 𝑇𝜂 ̂𝐽 𝐹 0,2A ) = ∑((𝐹A)0𝑖 −

1
2 𝜖𝑖𝑗𝑘 (𝐹A)𝑗𝑘 )(𝑑𝑥

0 ∧ 𝑑𝑥 𝑖 + 1
2 𝜖𝑖𝑗𝑘 𝑑𝑥

𝑗 ∧ 𝑑𝑥𝑘)

Furthermore, there is an inner product Λ𝜔 ∶ Ω1,1
ℂ (𝐶 × Σ) → Ω0

ℂ(𝐶 × Σ), induced by the Kähler
form 𝜔 = 𝑔(𝐽 ⋅, ⋅) and normalized such that in coordinates and if the metric on 𝐶 × Σ is flat
𝜔 = 𝑖/2(𝑑𝑥0 ∧ 𝑑 ̄𝑥0 + … + 𝑑𝑥3 ∧ 𝑑 ̄𝑥3). Application of Λ𝜔 to 𝐹A corresponds to the trace of its
mixed part [D𝜇,D𝜈]. With this the Haydys-Witten equations become anti-holomorphic anti-
self-duality equations

𝐹 2,0A − 𝑇𝜂 ̂𝐽 𝐹 0,2A = 0 , Λ𝜔𝐹A = 0 ,

while the decoupled Haydys-Witten equations are then equivalent to the Hermitian Yang-Mills
equations

𝐹 2,0A = 0 , Λ𝜔𝐹A = 0 .

The first equation, 𝐹 2,0A = 0, is invariant under complex gauge transformations Gℂ(𝑀5), while
the equation Λ𝜔𝐹A = 0 is only invariant under the subgroup of unitary gauge transformations
with respect to the metric ℎ. More explicitly: those gauge transformation that satisfy 𝑔ℎ𝑔 = ℎ.
Accordingly, the second equation describes a real moment map condition. This extends the
Hermitian-Yang-Mills structure of the EBE.

The work of Donaldson [Don85; Don87a] and Uhlenbeck-Yau [UY86] shows that the geometric
data of solutions to the 𝐺ℂ-invariant equations play an important role in understanding the
solutions of the full equations. The main underlying idea is that one can first solve the easier
Gℂ-invariant equations and subsequently try to find a complex gauge connection such that the
solution satisfies the remaining real momentmap condition. Indeed, themodel solutions for the
Nahm pole boundary conditions are constructed in this way, and this is what will be discussed
in the next section.

5.2 Adjoint Orbits and Slodowy Slices

This section introduces the relevant notation and certain standard constructions for the Lie
algebra sl(𝑁 , ℂ) that will be used in the rest of this chapter. Throughout, we choose and fix
a Cartan subalgebra h and a Chevalley basis {𝐻𝑖, 𝐸±𝑖 }𝑖∈{1,…,𝑁−1} of sl(𝑁 , ℂ) with Cartan matrix
𝐴𝑖𝑗. The Lie bracket satisfies

[𝐻𝑖, 𝐻𝑗] = 0, [𝐻𝑖, 𝐸±𝑗 ] = ±𝐴𝑗𝑖𝐸±𝑗 , [𝐸+𝑖 , 𝐸−𝑗 ] = 𝛿𝑖𝑗𝐻𝑖 .

An element 𝑋 ∈ sl(𝑁 , ℂ) is called regular if the dimension of its centralizer 𝑍sl(𝑁 ,ℂ)(𝑋) = {𝑌 ∈
sl(𝑁 , ℂ)|[𝑌 , 𝑋 ] = 0} is minimal, i.e. it is equal to the dimension of the Cartan subalgebra h. An
element 𝐸 ∈ sl(𝑁 , ℂ) is nilpotent if there is a positive integer such that (ad𝐸)𝑛 = 0. Let 𝜋1, … , 𝜋𝑠
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be a collection of positive integers that satisfy 𝜋1 + … + 𝜋𝑠 = 𝑁. Denoting by 𝐽𝜋𝑖(𝜆) a Jordan
block of size 𝜋𝑖 with eigenvalue 𝜆, the Jordan normal form of a nilpotent element is given by

𝐸𝜋 = (
𝐽𝜋1(0)

⋱
𝐽𝜋𝑠(0)

)

More generally, we use the notation 𝜋 = [𝜋1𝜈1 …𝜋𝑠𝜈𝑠] for partitions of 𝑁, where 𝜈𝑖 denote mul-
tiplicities such that 𝑁 = 𝜈1𝜋1 + … + 𝜈𝑠𝜋𝑠, and entries are ordered according to 𝜋1 ≥ 𝜋2 ≥ …𝜋𝑠 .
The Jordan normal form of a regular nilpotent element is associated to the partition 𝜋 = [𝑁 ],
while the Jordan normal form of 0 corresponds to 𝜋 = [1𝑁].

The orbit of an element 𝑋 ∈ sl(𝑁 , ℂ) under the adjoint action of 𝑆𝐿(𝑁 , ℂ) is denoted by

O(𝑋) = { 𝑔𝑋𝑔−1 | 𝑔 ∈ 𝑆𝐿(𝑁 , ℂ) } .

The adjoint orbits of nilpotent elements are classified by partitions of 𝑁. For any nilpotent
element 𝐸, the associated partition 𝜋 is determined by its Jordan normal form. For a given
partition 𝜋, we write O𝜋 = O(𝐸𝜋) and any orbit of nilpotent elements is of that form.

The orbit O[𝑁 ] corresponds to the adjoint orbit of regular nilpotent elements and will also be
denoted by Oreg. The closure of the regular nilpotent orbit N ∶= Oreg is called the nilpotent
cone of sl(𝑁 , ℂ). The nilpotent cone is an algebraic variety that contains all nilpotent orbits of
sl(𝑁 , ℂ) as lower dimensional strata as its singular loci.

Nilpotent orbits come with a partial order, defined by settingO𝜋 ≤ O𝜌 ifO𝜋 ⊆ O𝜌. This partial
order is equivalent to the dominance order on the set of partitions of 𝑁, where 𝜋 ≤ 𝜌 if and
only if 𝜋1 + … + 𝜋𝑘 ≤ 𝜌1 + … + 𝜌𝑘 for all 𝑘.

𝜋 ≤ 𝜌 ⟺ O𝜋 ≤ O𝜌 .

The Jacobson-Morozov theorem states that for any non-zero nilpotent element 𝐸 there exists
an sl2-triple (𝐸, 𝐻 , 𝐹 ), i.e. elements that satisfy the sl(2, ℂ) commutation relations [𝐻 , 𝐸] = 2𝐸,
[𝐸, 𝐹 ] = 𝐻, [𝐻 , 𝐹 ] = −2𝐹. Moreover, 𝐻 and 𝐹 are unique up to conjugation by elements of the
centralizer 𝑍𝑆𝐿(𝑁 ,ℂ)(𝐸) = {𝑔 ∈ 𝑆𝐿(𝑁 , ℂ)|𝑔𝐸𝑔−1 = 𝐸}.

Let 𝜋 be a partition of𝑁 and fix a nilpotent element 𝐸 ∈ O𝜋. Choose a completion to an sl2-triple
(𝐸, 𝐻 , 𝐹 ). The affine subspace of sl(𝑁 , ℂ) defined by

S𝐸 ∶= 𝐸 + ker ad𝐹

is called the Slodowy slice to O𝜋 at 𝐸. Slodowy slices are transversal slices in sl(𝑁 , ℂ). This
means that that they have transverse intersections with all adjoint orbits in sl(𝑁 , ℂ). We will
also write S𝜋 for the Slodowy slice toO𝜋 at our favourite element of the orbit, the Jordan normal
form 𝐸𝜋.
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5.3 The Hermitian Version of the Nahm Pole Boundary Conditions

The Nahm pole boundary conditions are modeled on certain singular solutions of Nahm’s equa-
tions over ℝ+𝑦 and, in the presence of knots, on monopole solutions of the extended Bogomolny
equations (EBE) over ℂ × ℝ+𝑦 [Wit11a; MW14; MW17]. Both of these equations are dimen-
sional reductions of the (decoupled) Haydys-Witten equations (5.1) (cf. Section 2.5). The EBE
arise by setting D0 = 0, while Nahm’s equations correspond to the case D0 = D1 = 0. Note
that both equations retain the Hermitian Yang-Mills structure of the decoupled Haydys-Witten
equations.

In this section we first provide a short review of the derivation of the model solutions. This
was described for 𝑆𝑈 (2) by Witten and later for 𝑆𝑈 (𝑁 ) by Mikhaylov [Wit11a; Mik12]. In
Section 5.5 we extend the original Ansatz of Witten and Mikhaylov to the situation of the
decoupled Haydys-Witten equations with D0 ≠ 0. The section concludes with a definition
of the Nahm pole boundary conditions of Section 2.6, viewed as a condition on a complex
gauge transformation. This was described in a very similar way by He and Mazzeo in [HM19c;
HM20].

For the rest of this section assume that Σ = ℂwith holomorphic coordinate 𝑧 = 𝑥2+𝑖𝑥3. Wewill
also use polar coordinates 𝑧 = 𝑟𝑒𝑖𝜗 on ℂ and (hemi-)spherical coordinates (𝑅, 𝜓 , 𝜗) on ℂ × ℝ+𝑦 ,
where 𝑅 = 𝑟2 + 𝑦2, cos 𝜓 = 𝑦

𝑅 , and 𝜗 is the azimuthal angle in the complex plane. Note that in
spherical coordinates the boundary 𝑦 = 0 corresponds to points with 𝜓 = 𝜋/2.

The Hermitian Yang-Mills structure of the decoupled Haydys-Witten equations suggests a
way to solve the equations: Following the ideas of Donaldson-Uhlenbeck-Yau [Don85; UY86;
Don87a], one starts from holomorphic data that satisfies the Gℂ-invariant equations [D𝑖,D𝑗] =
0 and then determines a gauge transformation 𝑔 ∈ Gℂ(ℂ × ℝ+𝑦 ) that solves the moment map

condition ∑3
𝑖=1[D𝑖,D𝑖] = 0 [Wit11a; Mik12; GW12]. We start with a description of Nahm pole

solutions and afterwards discuss monopole solutions that additionally incorporate knot singu-
larities.

Nahm Pole Solutions Let 𝐸 ∈ N be a nilpotent element and consider as an initial Ansatz

𝐴0 = 0 , 𝜑0 = 𝐸 , 𝜙01 = 0 . (5.3)

Using the definitions in (5.2), this field configuration clearly satisfies Nahm’s equations, which
are given by [D2,D3] = 0. Since 𝜑 = 𝜙2 + 𝑖𝜙3, the complex conjugate 𝜑0 = 𝜙2 − 𝑖𝜙3 =∶ 𝐹
determines a unique sl2-triple (𝐸, 𝐻 , 𝐹 ).

We now ask for a complex gauge transformation 𝑔0 ∈ Gℂ(ℝ+𝑦 ) that maps the fields of this initial

Ansatz to a solution of the real moment map ∑3
𝑖=2[D𝑖,D𝑖] = 0. Since the unitary part of the

gauge transformation drops out, we can assume that 𝑔0 takes values in exp 𝑖g with respect to
the Cartan decomposition 𝐺ℂ = 𝐺 ⋅ exp 𝑖g. Writing 𝑔0 = exp 𝜓, assuming that 𝜓 ∈ 𝑖h and only
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depends on 𝑦, and plugging the transformed operator 𝑔0D𝑖𝑔−10 into the moment map equation
leads to

𝜕2𝑦𝜓 + 1
2
[𝜑0, 𝑒2𝜓𝜑0𝑒−2𝜓] = 0 . (5.4)

This equation has a simple solution2, given by

𝑔0 = exp(− log 𝑦 𝐻) . (5.5)

The action of 𝑔0 on D𝜇 transforms the initial Ansatz (5.3) into the Nahm pole solution

𝐴 = 0 , 𝜑 = 𝐸
𝑦
, 𝜙1 =

𝐻
𝑦
.

Observe that the choice of nilpotent element 𝐸 ∈ N in the initial Ansatz (5.3) uniquely determ-
ines the Nahm pole solution. We call the solution a regular Nahm pole if 𝐸 ∈ Oreg and in that

case there always exists a constant 𝑔 ∈ 𝐺ℂ such that 𝑔𝐸𝑔−1 = 𝐸[𝑁 ] = ∑𝑁−1
𝑖=1 𝐸+𝑖 .

Monopole Solutions To include the presence of knots, we additionally want to add a mo-
nopole-like behaviour near the points 𝑝𝑎 at which 𝐾 intersects Σ. Monopoles are characterized
by the fact that they exhibit a monodromy of magnetic charge 𝜆 ∈ Γ∨char around the origin in
ℂ. The monodromy is carried by the behaviour of 𝜑 when moving in a circle around the origin
𝑧 = 𝑟𝑒𝑖𝜗 ↦ 𝑟𝑒𝑖(𝜗+2𝜋). This is encoded in the following knot singularity Ansatz

𝐴𝜆 = 0 , 𝜑𝜆 =
𝑁−1
∑
𝑖=1

𝑧𝜆𝑖𝐸+𝑖 , 𝜙𝜆1 = 0 . (5.6)

This provides an initial solution of the Gℂ-invariant part of the EBE, given by [D𝑖,D𝑗] = 0,
𝑖 = 1, 2, 3.

In this Ansatz 𝜑𝜆 is an element of Oreg for all 𝑧 ≠ 0, but exactly at 𝑧 = 0 it is an element of
some subordinate orbit O𝜋. The partition 𝜋 is given by the Jordan blocks of 𝜑𝜆|𝑧=0. It can be
determined from the weight 𝜆 bymoving through the entries of 𝜆 = (𝜆1, … , 𝜆𝑁−1), counting the
number of consecutive 𝜆𝑖 with value 0, and shifting the resulting counts by +1. For example,
if the knot is labeled by a co-character that corresponds to either the fundamental or anti-
fundamental representation, one finds:

𝜆 = (⎵
0
1, 0, … , 0⎵⎵⎵⎵⎵⎵⎵⎵

𝑁−2
) or (0, … , 0⎵⎵⎵⎵⎵⎵⎵⎵

𝑁−2
, 1 )⎵

0
 𝜋 = [(𝑁 − 1) 1] .

In that case 𝜑𝜆|𝑧=0 is an element of the (unique) subregular nilpotent orbit Osubreg = O[𝑁−1 1].
Note that the same is true when the knot is labeled by any symmetric or anti-symmetric repres-
entation of sl(𝑁 , ℂ), since these correspond to the co-characters 𝜆 = (𝑛, 0, … , 0) and (0, 0, … , 𝑛).
Higher (anti-)symmetric representations can be distinguished from the fundamental ones be-
cause the associated monodromies have higher winding number.

2Use Lie’s expansion formula (also attributed to Campbell and Hadamard): 𝑒𝑋𝑌 𝑒−𝑋 = ∑[𝑋 , 𝑌 ]𝑘/𝑘!, where [𝑋 , 𝑌 ]𝑘 =
[𝑋 , [𝑋 , 𝑌 ]𝑘−1] and [𝑋 , 𝑌 ]0 = 𝑌.
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Let us note for later, that the Ansatz in (5.6) is of the form 𝜑𝜆 = 𝐸 + 𝐾(𝑧, 𝜆) for some basepoint
𝐸 ∈ O𝜋 together with a choice of sl2-completion (𝐸, 𝐻 , 𝐹 ), and where 𝐾(𝑧, 𝜆) ∈ ker 𝐹 ∩N is a
holomorphic function that vanishes at 𝑧 = 0. Put differently, 𝜑𝜆 is a map from ℂ to the Slodowy
slice 𝑆𝐸 ∩N that sends 𝑧 = 0 to the basepoint 𝐸 and monodromy prescribed by 𝜆.

Consider now a complex gauge transformation 𝑔𝜆 ∈ Gℂ(ℂ × ℝ+𝑦 ) and assume it is of the form
𝑔𝜆 = exp 𝜓 for some 𝜓 ∈ 𝑖h. The moment map condition becomes

(Δ𝑧, ̄𝑧 + 𝜕2𝑦 ) 𝜓 + 1
2
[𝜑𝜆, 𝑒2𝜓𝜑𝜆𝑒−2𝜓] = 0 (5.7)

Here Δ𝑧, ̄𝑧 = 4𝜕𝑧𝜕 ̄𝑧 denotes the Laplacian on ℂ. Note that this is simply the three-dimensional
version of (5.4). Since any solution of (5.7) gives rise to a solution of the extended Bogomolny
equations, we will abbreviate this equation by EBE (𝜓 ) = 0.

Mikhaylov proved that, for 𝐺 = 𝑆𝑈 (𝑁 ) and any weight 𝜆 ∈ Γ∨char, there exists a unique solution
𝑔𝜆 that is compatible with the Nahm pole solution at boundary points away from 𝑧 = 0. The
explicit formulae are unfortunately somewhat unwieldy; we refer to [Mik12] for a detailed
description of the general case.

For 𝐺 = 𝑆𝑈 (2), the Cartan subalgebra is spanned by a single element 𝐻 and 𝜆 is a single non-
negative half-integer. In that case 𝑔𝜆 is comparatively simple. In spherical coordinates (𝑅, 𝜓 , 𝜗)
on ℂ×ℝ+𝑦 and using 𝑠 = sin(𝜋/2− 𝜓) as boundary defining function on ℂ⧵ {0} ×ℝ+𝑦 , 𝑔𝜆 is given
by

𝑔𝜆 = exp ( log 𝜆 + 1
𝑅𝜆+1𝑠𝑠𝜆

𝐻 ) . (5.8)

Here we used the abbreviation 𝑠𝜆 = ∑𝜆
𝑘=0(1 + 𝑠)𝑛−𝑘(1 − 𝑠)𝑘 = (1+𝑠)𝜆+1−(1−𝑠)𝜆+1

2𝑠 . The action of 𝑔𝜆
on D𝜇 yields the field configuration:

𝐴𝜗 = −(𝜆 + 1) cos2 𝜓
(1 + cos 𝜓)𝜆 − (1 − cos 𝜓)𝜆

(1 + cos 𝜓)𝜆+1 − (1 − cos 𝜓)𝜆+1
𝐻 ,

𝜙1 = −𝜆 + 1
𝑅

(1 + cos 𝜓)𝜆+1 + (1 − cos 𝜓)𝜆+1

(1 + cos 𝜓)𝜆+1 − (1 − cos 𝜓)𝜆+1
𝐻 ,

𝜑 = 𝜆 + 1
𝑅

sin𝜆 𝜓 exp(𝑖𝜆𝜗)
(1 + cos 𝜓)𝜆+1 − (1 − cos 𝜓)𝜆+1

𝐸 ,

𝐴𝑠 = 𝐴𝑡 = 𝐴𝑅 = 𝐴𝜓 = 0 .

These are exactly the knot singularity model solutions of the EBE that were already described
in Section 2.6.

The Nahm Pole Boundary Conditions We are now ready to provide a definition of the
Nahm pole boundary conditions that is convenient for the discussions in this chapter.
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Definition 5.1 (Nahm Pole Boundary Condition). Consider three-manifolds of the form Σ ×
ℝ+𝑦 . Let 𝑔0 and 𝑔𝜆 be the singular gauge transformations given in equations (5.5) and (5.8),
respectively. The fields (𝐴, 𝜑, 𝜙1) satisfy regular Nahm pole boundary conditions with knot
singularities at 𝐷 = ⨆{𝑝𝑎} ⊂ Σ if

• in a neighbourhood of a boundary point (𝑝, 0) ∈ (Σ ⧵𝐷) × ℝ+𝑦 away from knot insertions,
there exists a 𝐺ℂ-valued gauge transformation of the form 𝑔 = 𝑔0𝑒𝑢 with |𝑢|+|𝑦𝑑𝑢| < 𝐶𝑦 𝜖,
such that

(𝐴, 𝜑, 𝜙1) = 𝑔 ⋅ (0,∑𝐸+𝑖 , 0)

• in a neighbourhood of a knot insertion (𝑝𝑎, 0) ∈ Σ × ℝ+𝑦 of weight 𝜆, there exists a gauge
transformation of the form 𝑔 = 𝑔𝜆𝑒𝑢 with |𝑢| + |𝑅𝑠 𝑑𝑢| ≤ 𝐶𝑅𝜖𝑠𝜖, such that

(𝐴, 𝜑, 𝜙1) = 𝑔 ⋅ (0,∑𝑧𝜆𝑖𝐸+𝑖 , 0)

Up to an inconsequential reinterpretation of field components, this definition lifts to Nahm pole
boundary conditions for Kapustin-Witten fields (𝐴, 𝜙) on four-manifolds 𝑋 3 × ℝ+𝑦 and Haydys-
Witten fields (𝐴, 𝐵) on five-manifolds 𝑊 4 × ℝ+𝑦 . In higher dimensions, knot singularities are
supported along a knot 𝐾 ⊂ 𝑋 3 × {0} or a surface Σ𝐾 ⊂ 𝑊 4 × {0}, respectively.

5.4 EBE-Solutions and Higgs bundles

The Hermitian Yang-Mills structure of the extended Bogomolny equations on Σ × ℝ+𝑦 suggests
that there is a deep relation between full solutions and the simpler holomorphic data that un-
derlies the initial knot singularity Ansatz (5.6). Indeed, there is a Kobayashi-Hitchin corres-
pondence between solutions of the extended Bogmolny equations on Σ × ℝ+𝑦 and Higgs bundle
data on Σ. This correspondence was originally proposed by Gaiotto and Witten in [GW12] and
has since been proven by He and Mazzeo [HM19c; HM20] (also see [HM19b; Dim22b; Sun23]
for variations of correspondence). Here we repeat the relevant definitions, review parts of the
proof that will be of particular relevance to us, and use the opportunity to fix some notation.

We are interested in solutions of the EBE on Σ × ℝ+𝑦 that, on the one hand, satisfy Nahm pole
boundary conditions with knot singularities at the boundary, and for which, on the other hand,
𝐴 + 𝑖𝜑 approaches a flat 𝐺ℂ connection as 𝑦 → ∞. Let 𝐷 = {(𝑝𝑎, 𝜆𝑎)}𝑎=1,…,𝑘 denote a collection
of points 𝑝𝑎 ∈ Σ that are decorated with weights 𝜆𝑎 ∈ Γ∨char in the co-character lattice of g. The
moduli space of EBE-solutions with knot singularity data 𝐷 will be denoted by:

Definition 5.2 (Moduli Space of EBE Solutions).

M̂EBE
𝐷 ∶= { EBE (𝐴, 𝜑, 𝜙1) = 0 | (𝐴, 𝜑, 𝜙1) satisfies Nahm-pole boundary conditions as 𝑦 → 0,

has knot singularities at 𝐷, and approaches an irreducible flat 𝑆𝐿(𝑁 , ℂ) connection as 𝑦 → ∞}
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5.4 EBE-Solutions and Higgs bundles

The absence of a knot will be denoted by 𝐷 = ∅, in which case MEBE
∅ is the moduli space of

pure Nahm pole solutions.

Let G0(Σ × ℝ+𝑦 ) be the subset of (real) gauge transformations that vanish at the boundary. We
also define the moduli space given by the quotient

MEBE
𝐷 = M̂EBE

𝐷 /G0(Σ × ℝ+𝑦 ) .

Remark. We only mod out G0(Σ×ℝ+𝑦 ) because the configuration of the fields at the boundary is
in principle a physical observable; relatedly, from the perspective of mathematics, the boundary
configuration is part of the input of the variational principle.

We have seen in the previous section, for Σ = ℂ, that once the data of an initial solution of
[D𝑖,D𝑗] = 0 is fixed, the remaining real moment map equation determines a unique complex
gauge transformation, 𝑔0 or 𝑔𝜆, that transforms the Ansatz into a proper solution of the exten-
ded Bogomolny equations. The Kobayashi-Hitchin correspondence states that this generalizes
to arbitrary Riemann surfaces Σ, where the initial solution is replaced by certain holomorphic
data over Σ. In the following, we introduce the relevant geometric objects over Riemann sur-
faces Σ.

Let (E , ̄𝜕E ) be a holomorphic vector bundle over Σ. Denote the canonical bundle3 over Σ by 𝐾
and write Ω1,0(End E) = 𝐻 0(End E ⊗ 𝐾) for the space of holomorphic one-forms with values
in the endomorphism bundle of E .

Definition 5.3 (Higgs Bundle). A Higgs bundle (E , 𝜑) is a holomorphic vector bundle (E , ̄𝜕E )
over Σ, together with a holomorphic one-form 𝜑 ∈ Ω1,0(End E) called the Higgs field.

We will always assume that det E = OΣ, the sheaf of holomorphic functions on Σ, and that
deg E = 0. In that situation, a Higgs bundle is called stable if deg 𝑉 < 0 for any holomorphic
subbundle 𝑉 that satisfies 𝜑(𝑉 ) ⊂ 𝑉 ⊗ 𝐾 and polystable if it is a direct sum of stable Higgs
bundles.

We denote the moduli space of Higgs bundles by M̂Higgs and as above write MHiggs for its
quotient by 𝑆𝐿(𝑁 , ℂ)-valued gauge transformations Gℂ(Σ). By a famous result of Hitchin, for
any Higgs bundle there exists an irreducible solution of the Hitchin equations if and only if
it is stable (and a reducible solution if and only if polystable) [Hit87b]. Instead of introducing
the Hitchin equations, we use that any solution of the Hitchin equations is associated to a
flat 𝑆𝐿(𝑁 , ℂ) connection, which are classified by 𝜌 ∶ 𝜋1(Σ) → 𝑆𝐿(𝑁 , ℂ). A series of articles
by Hitchin, Donaldson, Simpson, and Corlette famously culminated in a proof that there is
a diffeomorphic equivalence between the moduli spaces of stable Higgs bundles, irreducible
solutions of the Hitchin equations, and irreducible flat connections [Don87b; Cor88; Hit87a;
Sim90; Sim92].

3This is the dual of the complex vector bundle 𝑇Σ, where fibers are given by complex linear maps on the tangent
space of Σ.
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In the study of Higgs bundles an important role is played by the Hitchin fibration. It is loc-
ally built from the adjoint quotient map, which sends a matrix in sl(𝑁 , ℂ) to its generalized
eigenvalues:

𝜒 ∶ sl(𝑁 , ℂ) → h/W , 𝐴 ↦ (𝑐2(𝐴), … , 𝑐𝑁(𝐴)) ,

where h is the Cartan subalgebra, W the Weyl group, and 𝑐𝑗(𝐴) denote the invariant polyno-
mials of sl(𝑁 , ℂ) as determined by det(𝜆1 − 𝐴) = ∑𝜆𝑁−𝑗(−1)𝑗𝑐𝑗(𝐴). The Hitchin fibration lifts
this to the level of Higgs bundles [Hit87b].

MHiggs →
𝑛

⨁
𝑖=1

𝐻 0(Σ, 𝐾 𝑖+1)

(E , 𝜑) ↦ (𝑐2(𝜑), … , 𝑐𝑁(𝜑))

The Hitchin component (or Hitchin section)MHit is the section of this fibration that associates
to the invariants (𝑞2, … 𝑞𝑁) the gauge orbit of the following Higgs bundle

E = 𝐾−𝑁−1
2 ⊕ 𝐾−𝑁−1

2 +1 ⊕ … ⊕ 𝐾
𝑁−1
2 , 𝜑 =

⎛
⎜
⎜
⎜
⎝

0 ∗ 0
0 ⋱ 0

⋱ ∗
𝑞𝑁 … 𝑞2 0

⎞
⎟
⎟
⎟
⎠

Given a Higgs bundle (E , 𝜑) and a holomorphic line subbundle 𝐿 ⊂ E , there is an associated
divisor d = d(𝐿, 𝜑) that encodes the linear dependencies between the ‘subbundles’ 𝐿, 𝜑(𝐿), …,
𝜑𝑛(𝐿) of E . To make this precise, introduce the following maps, which capture these linear
dependencies by virtue of being antisymmetric

𝑓𝑖 ∶= 1 ∧ 𝜑 ∧ … ∧ 𝜑𝑖 ∶ 𝐿𝑖 → 𝐾
𝑖(𝑖+1)
2 ⊗ 𝐿−(𝑖+1) ⊗ ∧𝑖+1E .

The divisor associated to (𝐿, 𝜑) is constructed from the zeroes of 𝑓𝑖 and their vanishing orders.

d(𝐿, 𝜑) ∶= ∑
𝑖=1,…,𝑛
𝑝∈Σ

ord𝑝 𝑓𝑖 ⋅ 𝑝

Following [HM19c; HM20], we call d(𝐿, 𝜑) effective if at each point 𝑝 the tuple

𝜆 = ( ord𝑝 𝑓1 , ord𝑝 𝑓1 − ord𝑝 𝑓2 , … , ord𝑝 𝑓𝑛−1 − ord𝑝 𝑓𝑛)

has only non-negative entries. In that case we also write d(𝐿, 𝜑) = {(𝑝𝑎, 𝜆𝑎)}𝑎=1,…,𝑘.

Definition 5.4 (Effective Triples). An effective triple (E , 𝜑, 𝐿) consists of a stable Higgs bundle
(E , 𝜑) together with a holomorphic line bundle 𝐿 such that the divisor d(𝐿, 𝜑) is effective.

The moduli space of effective triples will be denoted M̂(E ,𝜑,𝐿) and we also write M(E ,𝜑,𝐿) for
its quotient by Gℂ(Σ).

We have now collected all ingredients to state the Kobayashi-Hitchin correspondence for solu-
tions of the extended Bogomolny equations on Σ × ℝ+𝑦 .

138



5.4 EBE-Solutions and Higgs bundles

Theorem 5.5 ([HM19c; HM20]). There are bijections

MEBE
∅

𝐼𝑁𝑃−−−→ MHit , MEBE
𝐷

𝐼𝑁𝑃𝐾−−−−→ M(E ,𝜑,𝐿)

For recent variants of this result on Σ = ℂ we also refer to [Dim22b], who elaborated on the
situation for nilpotent Higgs fields, as well as [Sun23], for the case that 𝜙1 approaches a non-
zero value at 𝑦 → ∞, a situation that is also known as ‘real symmetry breaking’ [GW12]. In
the remainder of this section we provide a brief review of the construction of 𝐼𝑁𝑃 and 𝐼𝑁𝑃𝐾.

As a start, one observes that any Nahm pole solution of the EBE equations determines an ef-
fective triple. This was originally explained by Gaiotto and Witten and can be seen as follows.
For the moment, write 𝑉 for the associated vector bundle of the 𝑁-dimensional fundamental
representation of 𝑆𝐿(𝑁 , ℂ) (the gauge group of the complexified principal bundle 𝐸ℂ). Denote
by 𝑉𝑦 the restriction of 𝑉 to Σ × {𝑦}. Observe that D1 provides a ̄𝜕 operator on 𝑉𝑦 that satisfies
̄𝜕2 = 0. By the Newlander-Nirenberg theorem, this makes 𝑉𝑦 into a holomorphic vector bundle

that we will denote by E𝑦. Next, D3 = ad𝜑 can be interpreted as a 𝐾Σ-valued endomorphism of
E𝑦 and, moreover, [D1,D3] = 0 implies that D1𝜑 = 0, so this endomorphism is holomorphic.
Put differently, if we let 𝜑𝑦 be the restriction of 𝜑 to (ad 𝐸ℂ)𝑦, we obtain a family of Higgs
bundles (E𝑦, 𝜑𝑦) over Σ. Finally, D2 = ∇𝐴𝑦 − 𝑖[𝜙1, ⋅] provides a notion of parallel transport in the
𝑦-direction of Σ × ℝ+𝑦 . The equations [D1,D2] = [D2,D3] = 0 then imply that the family of
Higgs bundles is parallel with respect to D2. The boundary conditions at 𝑦 → 0 and 𝑦 → ∞
provide two additional points of data.

On the one hand, the asymptotic boundary condition at 𝑦 → ∞, namely that (𝐴, 𝜑, 𝜙1) converges
to an irreducible flat 𝑆𝐿(𝑁 , ℂ) connection, is equivalent to the statement that the one-parameter
family (E𝑦, 𝜑𝑦) consists of stable Higgs bundles. Since the one-parameter family is parallel
with respect to D2, it is then fully determined by specifying the limiting stable Higgs bundle
(E∞, 𝜑∞).

On the other hand, the Nahm pole boundary condition at 𝑦 = 0 with knot singularity data
𝐷 = {(𝑝𝑎, 𝜆𝑎)}𝑎=1,…,𝑘 determines a distinguished line bundle 𝐿 → Σ×ℝ+𝑦 as follows. Let {𝑈𝑎}𝑎=0,…𝑘
be a collection of open disks, with 𝑈0 an open set that does not contain any 𝑝𝑎 and the remaining
𝑈𝑎 centered at 𝑝𝑎, respectively, and such that⋃

𝑘
𝑎=0 𝑈𝑎 = Σ. Use spherical coordinates (𝑅𝑎, 𝜗𝑎, 𝜓𝑎)

with boundary defining function 𝑠 = sin(𝜋/2 − 𝜓) on 𝑈𝑎 × ℝ+.

𝐿 ∶= {𝑢 ∈ Γ(Σ × ℝ+𝑦 , ad 𝐸ℂ) | D2𝑢 = 0 , lim
𝑦→0

|𝑦−(𝑁−1)/2+𝜖𝑢| = 0 on 𝑈0,

and lim
𝑠→0

|𝜓−(𝑁−1)/2+𝜖
𝑎 𝑢| = 0 on 𝑈𝑎, 𝑎 = 1, … , 𝑘, 𝜖 > 0} .

This is a line bundle by definition of the Nahm pole boundary condition. To see this note that
D2𝑢 = 𝜕𝑦𝑢 − 𝑖𝜙1𝑢 = 0. Away from knot insertions 𝜙1 = 𝐻/𝑦 has eigenvalues (𝑁 − 1)/2𝑦,
(𝑁 − 2)/2𝑦, …, −(𝑁 − 1)/2𝑦, such that there is only a single component of 𝑢 whose parallel
transport vanishes at the maximal possible rate 𝑦 (𝑁−1)/2. At a knot insertion 𝑝𝑎, the same
argument with the version of 𝜙1 for a monopole solution shows that the maximal vanishing

139



5 Comoving Higgs Bundles and Symplectic Khovanov Homology

rate is 𝜓−(𝑁−1)/2
𝑎 . 𝐿 is commonly called the vanishing line bundle. For each 𝑦 ∈ ℝ+𝑦 it is a

holomorphic subbundle of E𝑦.

In summary, the vanishing line bundle over Σ × ℝ+ determines a unique holomorphic line sub-
bundle of E . Moreover, the divisor d(𝐿, 𝜑) is effective and at each point 𝑝 the zeroes of 𝑓𝑖 are ex-
actly such that their vanishing orders are related to the co-character by 𝜆 = (ord𝑝(𝑓1), ord𝑝(𝑓2)−
ord𝑝(𝑓1), …). In absence of knot singularities the divisor is empty and one can show that the
Higgs bundle is an element of the Hitchin section.

Proving that each effective triple (E , 𝜑, 𝐿) gives rise to a solution of the extended Bogomolny
equations, involves more work. This part of the theorem is due to He and Mazzeo and we refer
to [HM20, Sec. 7] for more details. Since we later find that similar arguments should apply to
solutions of the decoupled Haydys-Witten equations, we summarize the basic approach while
omitting the necessary analytic prerequisites.

Assume we are given an effective triple (E , 𝜑, 𝐿). From the discussion above it’s clear that the
effective divisor d(𝐿, 𝜑) determines the position and charges {(𝑝𝑎, 𝜆𝑎)}𝑎=1,…,𝑘 of knot singularit-
ies. The main insight is that the effective triple provides enough information to construct a field
configuration (𝐴, 𝜑, 𝜙1) on Σ × ℝ+𝑦 that satisfies the Nahm pole boundary conditions with knot
singularities and is a solution of the EBE at leading order in 𝑦−1. This approximate solution
can subsequently be improved, order by order in 𝑦, to a unique, proper solution of the EBE.
For the construction we choose an open cover of Σ, consisting of an open set 𝑈0 that does not
contain any of the points 𝑝𝑎 and non-intersecting open disks 𝑈𝑎 centered at 𝑝𝑎. This is used to
construct field configurations on each of the 𝑈𝑗 independently, which are then glued over 𝑈0 to
an approximate solution on Σ. The construction proceeds in four steps.

First, dropping the index 𝑎 for the moment, we restrict to a small disk 𝑈 centered at 𝑝 and extract
from (E , 𝜑, 𝐿) a field configuration on 𝑈 × ℝ+𝑦 that looks like the knot singularity Ansatz (0, 𝜑 =
∑𝑖 𝑧𝜆𝑎𝐸

+
𝑖 , 0). Let 𝑧 be a holomorphic coordinate on 𝑈 and use spherical coordinates (𝑅, 𝜓 , 𝜗) on

𝑈 × ℝ+𝑦 . Write 𝜑 = 𝜑𝑧𝑑𝑧 and set 𝐿1 ∶= 𝐿 and 𝐿𝑖+1 ∶= 𝜑𝑧(𝐿𝑖). Choose a non-vanishing section 𝑒1
of 𝐿 and extend it to a local holomorphic frame {𝑒1, ̂𝑒2, … ̂𝑒𝑛+1}. Let 𝜆1 be the order of vanishing
of 1 ∧ 𝜑𝑧 ∶ 𝐿2 → ∧2E . We can now write 𝜑𝑧(𝑒1) = 𝑓 𝑒1 + 𝑧𝜆1 ∑𝑛+1

𝑖=2 𝑐𝑖 ̂𝑒𝑖, where at least one of the 𝑐𝑖
is non-vanishing at 𝑧 = 0, because the map 1∧𝜑𝑧∧…∧𝜑𝑛𝑧 ∶ 𝐿1∧𝐿2∧…𝐿𝑛+1 → det E fails to be an
isomorphism exactly at 𝑧 = 0. Setting 𝑒2 ∶= ∑𝑛+1

𝑖=2 𝑐𝑖 ̂𝑒𝑖, we have arranged that 𝜑𝑧(𝑒1) = 𝑓 𝑒1+𝑧𝜆1𝑒2.
Next, let 𝜆2 be the order of vanishing of 1∧𝜑𝑧∧𝜑2𝑧 , such that 𝜑𝑧(𝑒2) = 𝑓1𝑒1+𝑓2𝑒2+𝑧𝜆2 ∑

𝑛+1
𝑖=3 𝑐𝑖 ̂𝑒𝑖, and

proceed by induction. We obtain a frame {𝑒1, … , 𝑒𝑛+1} for which 𝜑𝑧(𝑒𝑖) = 𝑧𝜆𝑎𝑒𝑖+1 + span {𝑒1, … 𝑒𝑖}
Equivalently, when viewed as an End E-valued function, 𝜑𝑧 = ∑𝑧𝜆𝑎𝐸+𝑖 , as required.

In the second step, we act on (0,∑ 𝑧𝜆𝑖𝐸+𝑖 , 0)with the singular gauge transformation 𝑔𝜆 of Equa-
tion 5.8. The result is of order O(𝑅−1𝑠−1), as is required for a field configuration that satisfies
Nahm pole boundary conditions with knot singularity at 𝑝 of weight 𝜆. Note, in particular, that
when 𝑅 ≠ 0 and 𝑠 → 0, the gauge transformation is of order (𝑅𝑠)−1 = 𝑦−1 and is asymptotically
equivalent to 𝑔0.
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The third step constructs a global gauge transformation 𝑔 over Σ×ℝ+𝑦 from the collection of local
frames and gauge transformations {𝑔𝜆𝑎} for each 𝑈𝑎 ×ℝ+𝑦 . For this, choose a holomorphic frame
on 𝑈0 and denote by 𝑔0 the gauge transformation defined in equation (5.5). On the overlaps
𝑈0 ∩ 𝑈𝑎, the holomorphic frames are related by an explicit transition function, given by

𝑔0𝑎 = exp ( − log 𝑟
𝑛
∑
𝑖=1

𝜆𝑎,𝑗𝐴−1
𝑖𝑗 𝐻𝑖)

We find that in the limit 𝑠𝑎 → 0 each 𝑔𝜆𝑎 is equivalent to 𝑔0𝑒𝑢 with |𝑢| + |𝑦𝑑𝑢| < 𝐶𝑦 𝜖. Gluing
the various gauge transformations with help of a partition of unity produces a global gauge
transformation 𝑔 over Σ. By construction, 𝑔 determines a field configuration that satisfies Nahm
pole boundary conditions with knot singularities along 𝐾.

In the final step, the approximate solution is improved to a proper solution of the equations. For
this, one first improves the approximation near knot singularities for each 𝑈𝑎 × ℝ+𝑦 by solving
the moment map equation to desired precision, order by order in 𝑅. Determining in that way
the higher order terms of 𝑔𝜆𝑎 , and if necessary using Borel resummation to find a function that
has the given expansion, one obtains a gauge transformation 𝑔 on all of Σ × ℝ+𝑦 for which the
solution near 𝑝𝑎 vanishes to all orders as 𝑅𝑎 → 0. Carrying out an analogous procedure for the
higher orders of 𝑔 in an expansion in 𝑦 yields a unique solution of the extended Bogomolny
equations.

5.5 The Isotopy Ansatz

In this section we return to investigate the decoupled Haydys-Witten equations over 𝑀5 =
𝐶 × Σ × ℝ+𝑦 . In contrast to the analysis of the extended Bogomolny equations reviewed in the
preceding sections, we now investigate situations in which D0 is non-zero. For the time being,
we assume that 𝐶 = ℝ𝑠 × 𝑆1𝑡 and restrict ourselves to the investigation of ℝ𝑠-invariant solutions
of the decoupled Haydys-Witten equations in temporal gauge 𝐴𝑠 = 0. This corresponds to
a dimensional reduction of the decoupled Haydys-Witten equations for which D0 = 𝑖𝐷𝑡. The
result are differential equations over the four-manifold 𝑆1𝑡 ×Σ×ℝ+𝑦 that correspond to a decoupled
version of the Kapustin-Witten equations.

We start here with an analogue of the considerations in Section 5.3, where we described the
Nahm pole and monopole model solutions. Let Σ = ℂ with complex coordinate 𝑧 = 𝑥2 + 𝑖𝑥3.
Consider a single-stranded knot 𝐾 that extends along 𝑆1𝑡 , and view it as the image of

𝛽 ∶ 𝑆1𝑡 → 𝑆1𝑡 × ℂ × ℝ+

𝑡 ↦ (𝑡, 𝑧0(𝑡), 0)

There always exists an isotopy 𝛽• that connects 𝛽0(𝑡) = (𝑡, 0, 0), the 𝑆1-invariant knot centered
at the origin in ℂ, to 𝛽1(𝑡) = 𝛽(𝑡). To be specific, let us choose the isotopy

𝛽• ∶[0, 1]𝑞 × 𝑆1𝑡 → 𝑆1𝑡 × ℂ × ℝ+𝑦
(𝑞, 𝑡) ↦ (𝑡, 𝑞𝑧0(𝑡), 0)
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Figure 5.2 Isotopy 𝛽• interpolating between the 𝑆1𝑡 -invariant strand 𝛽0 centered at the origin
of ℂ and a non-trivial single stranded knot 𝛽1. The isotopy describes a homotopy of traject-
ories 𝜁𝑞(𝑡) that interpolate from the constant to the original trajectory 𝑧0(𝑡).

For fixed 𝑞 ∈ [0, 1], introduce the comoving holomorphic coordinate 𝜁𝑞(𝑡) = 𝑧 − 𝑞𝑧0(𝑡) ∈ ℂ. The
knot defined by 𝛽𝑞 lies at the origin {𝜁𝑞 = 0} of the complex plane parametrized by 𝜁𝑞. Let us
also introduce polar coordinates 𝜁𝑞 = 𝑟𝑞𝑒𝑖𝜗𝑞 . We often drop the subscript 𝑞 from 𝜁𝑞, 𝑟𝑞 and 𝜗𝑞 and
only highlight the dependence on 𝑞 ∈ [0, 1] where necessary.

Our starting point is the following generalization of the Ansatz (𝐴𝜆, 𝜑𝜆, 𝜙𝜆1 ) in equation (5.6)
that was the starting point in Section 5.3 to find the monopole model solutions:

𝐴𝛽
𝑡 =

𝑞 ̇𝑧0
𝜁

𝑁−1
∑
𝑖,𝑗

𝜆𝑖𝐴−1
𝑖𝑗 𝐻𝑗 , 𝐴𝛽

𝑧 = 𝐴𝛽
𝑦 = 0 , 𝜑𝛽 =

𝑁−1
∑
𝑖=1

𝜁 𝜆𝑖𝐸+𝑖 , 𝜙𝛽1 = 0 . (5.9)

For each 𝑞 ∈ [0, 1], this provides an initial solution of the equations [D𝜇,D𝜈] = 0. We call

(𝐴𝛽, 𝜑𝛽, 𝜙𝛽1 ) the isotopy Ansatz for the decoupled Kapustin-Witten equations.

The singular behaviour of 𝜑𝛽 at 𝜁 = 0 exactly encodes the presence of a single stranded ’t
Hooft operator of charge 𝜆 ∈ Γ∨char along 𝛽𝑞 = (𝑡, 𝑞𝑧0(𝑡)). In particular, for any fixed 𝑡 ∈ 𝑆1𝑡 , the
terms at order 𝑞0 are equivalent to the initial Ansatz (𝐴𝜆, 𝜑𝜆, 𝜙𝜆) of (5.6) with knot singularity
at 𝑧 = 𝑞𝑧0(𝑡). Corrections due to the 𝑡-dependence of the knot singularity arise only at order
O(𝑞1). Note, in particular, that for 𝑞 = 0 the Ansatz genuinely coincides with (0,∑𝑖 𝑧𝜆𝑖𝐸

+
𝑖 , 0) =

(𝐴𝜆, 𝜑𝜆, 𝜙𝜆), where the knot is 𝑆1-invariant and located at 𝑧 = 0.

We propose that, by a continuity argument along the isotopy parameter 𝑞 ∈ [0, 1], one can
find a complex gauge transformation 𝑔𝛽 ∈ Gℂ(𝑆1𝑡 × ℂ × ℝ+𝑦 ) that, on the one hand, solves the
moment map condition ∑[D𝜇,D𝜇] = 0 and, on the other hand, encodes Nahm pole boundary

conditions. Hence, given (𝐴𝛽, 𝜑𝛽, 𝜙𝛽1 ), apply a complex gauge transformation 𝑔𝛽 = exp 𝜓 with
𝜓 ∈ 𝑖h. The moment map condition becomes

dKW (𝜓 ) = (𝜕2𝑡 + Δ𝑧, ̄𝑧 + 𝜕2𝑦 ) 𝜓 + 1
2 [𝜑

𝛽, 𝑒2𝜓𝜑𝛽𝑒−2𝜓] = 0 , (5.10)
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where we have used that 𝐴𝛽
𝑧 = 𝐴𝛽

𝑦 = 𝜙𝛽1 = 0 and also that 𝐴𝛽
𝑡 and 𝜓 ∈ h, such that

[𝐴𝛽
𝑡 , 𝑒2𝜓𝐴

𝛽
𝑡 𝑒−2𝜓] = 0 .

Note that (5.10) is just the four-dimensional version of the one-dimensional equation (5.4) and
the three-dimensional equation EBE (𝜓 ) = 0 in (5.7).

To keep notation at a minimum we restrict the following discussion to 𝐺 = 𝑆𝑈 (2), though the
general case with 𝐺 = 𝑆𝑈 (𝑁 ) is not much different. Assume 𝜓 = 𝜓(𝑡, 𝑧, 𝑦)𝐻, 𝜑𝛽 = 𝜁 𝜆𝐸, and
𝜑 = ̄𝜁 𝜆𝐹, where (𝐸, 𝐻 , 𝐹 ) is the standard basis of sl(2, ℂ). We can then bring (5.10) into the
slightly more explicit form

dKW𝑞 (𝜓 ) = (𝜕2𝑡 +
1
2
Δ𝑧, ̄𝑧 + 𝜕2𝑦 )𝜓 − 𝑟2𝜆𝑞 exp(2𝜓 ) = 0 . (5.11)

Drawing inspiration from Gaiotto-Witten’s adiabatic approach, we now restrict to functions
𝜓(𝜁 , 𝑦 ; 𝑧0(𝑡)) that depend on 𝑡 only through 𝑧0(𝑡) and its appearance in the comoving coordin-
ate 𝜁 = 𝑧 − 𝑞𝑧0(𝑡). The operator dKW• describes a homotopy of differential operators and
associated boundary conditions. It interpolates between the operator dKW0 = EBE together
with an 𝑆1-invariant knot singularity along 𝐾 = (𝑡, 0, 0) on the one hand, and the decoupled
Kapustin-Witten equations dKW𝑞=1 with a knot singularity along 𝐾 = (𝑡, 𝑧0(𝑡), 0) on the
other.

Given the assumption that 𝜓 depends adiabatically on 𝑡, we can replace Δ𝑧, ̄𝑧 = Δ𝜁 , ̄𝜁 and split
the differentiation with respect to 𝑡 into its contributions from the comoving coordinate 𝜁 and
explicit appearances of 𝑧0(𝑡):

𝜕2𝑡 = ̃𝜕2𝑡 − 𝑞 ( ̈𝑧0𝜕𝜁 + ̈̄𝑧0𝜕 ̄𝜁) − 2𝑞 ( ̇𝑧0𝜕𝜁 + ̇̄𝑧0𝜕 ̄𝜁) ̃𝜕𝑡 + 𝑞2 ( ̇𝑧0𝜕𝜁 + ̇̄𝑧0𝜕 ̄𝜁)
2 .

The notation ̃𝜕𝑡 on the right hand side shall reflect that this derivative only acts on 𝑧0(𝑡) (and
its derivatives).

Observe that equation (5.10) naturally organizes into powers of 𝑞. Accordingly, we make the
formal Ansatz 𝜓 = ∑𝑛≥0 𝑞𝑛𝜓 (𝑛). Plugging this into (5.10) and expanding the exponential func-
tion in powers of 𝑞 leads to:

dKW𝑞 (𝜓 ) = EBE 𝑞 (𝜓 (0)) +∑
𝑛≥1

𝑞𝑛 dKW (𝑛)
𝑞 (𝜓 (𝑛); 𝜓 (0), … , 𝜓 (𝑛−1)) . (5.12)

We call this the homotopy expansion of dKW• induced by the knot isotopy 𝛽 The operator at
zeroth order of the expansion is a comoving, or ‘adiabatic’, version of the extended Bogomolny
equations in equation (5.7):

EBE 𝑞 (𝜓 (0)) = (Δ𝜁 , ̄𝜁 + 𝜕2𝑦 ) 𝜓 (0) − 𝑟2𝜆𝑞 exp(2𝜓 (0)) .

Corrections to the adiabatic operator appear at order 𝑞𝑛 with 𝑛 ≥ 1 and are given by the fol-
lowing linear second-order operators

dKW (𝑛)
𝑞 (𝜓 (𝑛); 𝜓 (0), … , 𝜓 (𝑛−1)) = 𝐿𝑞𝜓 (𝑛) + 𝐾 (𝑛)

𝑞 (𝜓 (0), … , 𝜓 (𝑛−1)) .
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The linear differential operator 𝐿𝑞 is a comoving version of (5.11) and independent of 𝑛

𝐿𝑞 = ̃𝜕2𝑡 + Δ𝜁 , ̄𝜁 + 𝜕2𝑦 − 𝑟2𝜆 exp(2𝜓 (0)) .

In contrast, the inhomogeneous terms in 𝐾 (𝑛)
𝑞 depend explicitly on the solutions of the lower

order equations. Using the notation 𝜋 ⊢ 𝑛 for a partition of 𝑛 into |𝜋 | = 𝑠 positive integers 𝜋𝑖 of
multiplicity 𝜈𝑖, the inhomogeneous terms are given by

𝐾 (𝑛)
𝑞 = − ( ̈𝑧0𝜕𝜁 + ̈̄𝑧0𝜕 ̄𝜁)𝜓

(𝑛−1) − ( ̇𝑧0𝜕𝜁 + ̇̄𝑧0𝜕 ̄𝜁) ̃𝜕𝑡𝜓 (𝑛−1) + ( ̇𝑧0𝜕𝜁 + ̇̄𝑧0𝜕 ̄𝜁)
2𝜓 (𝑛−2)

− 𝑟2𝜆𝑞 exp(2𝜓 (0)) ∑
𝜋⊢𝑛
𝜋≠[𝑛]

|𝜋 |
∏
𝑖=1

1
𝜈𝑖!

(𝜓 (𝜋𝑖))
𝜈𝑖 .

Since 𝐿𝑞 is independent of 𝑛, the operators dKW (𝑛)
𝑞 only differ in the inhomogeneous terms

𝐾 (𝑛)
𝑞 determined by the lower order solutions 𝜓 (𝑘), 0 ≤ 𝑘 ≤ 𝑛 − 1. In particular, when 𝐾 (𝑛)

𝑞

is bounded each dKW (𝑛)
𝑞 is a Laplace-type operator and one can rely on the theory of elliptic

operators. More generally, since 𝜓 (0) encodes Nahm pole boundary conditions and knot singu-
larities, dKW (𝑛)

𝑞 is expected to be an iterated edge operator.

5.6 The Method of Continuity

We propose that a continuity argument along the homotopy parameter 𝑞 ∈ [0, 1] guarantees the
existence of a solution of the decoupled Kapustin-Witten equations. While a proof is currently
out of reach, we sketch a strategy that offers potential avenues for further exploration.

Recall that our current goal is to determine a gauge transformation 𝑔𝛽 such that 𝑔𝛽 ⋅ (𝐴𝛽, 𝜑𝛽, 𝜙𝛽1 )
satisfies the decoupled Kapustin-Witten equations and exhibits Nahmpole boundary conditions
as 𝑦 → 0 with knot singularities at 𝛽𝑞=1 = 𝐾. Using the homotopy expansion (5.12) of the
decoupled Kapustin-Witten equations induced by the knot isotopy 𝛽•, it suffices to show that
the set

I = { 𝑞 ∈ [0, 1] | ∃ 𝜓 =
∞
∑
𝑛=0

𝑞𝑛𝜓 (𝑛) s.t. dKW (𝑛)
𝑞 (𝜓 (𝑛)) = 0, 𝑛 ≥ 0 } ⊆ [0, 1]

is non-empty, open and closed.

In the following we lay out some initial considerations for each of these assertion. Unfortu-
nately, the proof strategy relies on analytic properties of the operators dKW (𝑛)

𝑞 that are cur-
rently not available and need a detailed investigation of their iterated edge structure.

I is non-empty. At 𝑞 = 0 the knot 𝛽0 is the 𝑆1-invariant single-stranded knot located at the
origin of the complex plane. In this case the equations reduce to 0 = dKW𝑞=0 (𝜓 ) = EBE (𝜓 (0)),
a solution of which is provided by the results of [Mik12], so 0 ∈ I .
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I is open. Let 𝑞0 ∈ I . We would like to show that there is an open neighbourhood 𝑈𝑞0
of 𝑞0 in I . For this, we first explain that in favourable circumstances there is such an open
neighbourhood 𝑈 (𝑛)

𝑞0 for each dKW (𝑛)
𝑞0 , individually.

Starting at O(𝑞0), let 𝜓 (0) be a solution of EBE 𝑞0 (𝜓
(0)) = 0. This means that at each 𝑡 ∈ 𝑆1𝑡 it is

given by (5.8) with 𝑧 replaced by 𝜁𝑞0(𝑡). Explicitly, 𝜓
(0) = log 𝜆+1

𝑅𝜆+1
𝑞0 𝑠𝑞0(𝑠𝑞0)𝜆

, where 𝑅𝑞0 and 𝑠𝑞0 are

spherical coordinates based at (𝑞0𝑧0(𝑡), 0) ∈ ℂ × ℝ+𝑦 . If we replace 𝑞0 in this expression by any
other 𝑞 ∈ [0, 1], the resulting function is again a solution of the extended Bogomolny equations,
namely of EBE 𝑞 (𝜓 (0)(𝜁𝑞(𝑡), 𝑦)) = 0. It follows that 𝑈 (0) = [0, 1] is an open neighbourhood of
𝑞0 for which there are solutions of EBE 𝑞 (𝜓 (0)) = 0, as requested.

Moving on to higher orders, let 𝑛 ≥ 1 and (𝑞0, 𝜓 (𝑛)) a solution, i.e. dKW (𝑛)
𝑞0 (𝜓

(𝑛)) = 0. As-

sume that the map dKW (𝑛)
• ∶ [0, 1] ×X → Y is Fréchet differentiable and that its linearization

L(𝑛)
(𝑞0,𝜓 (𝑛))(0, −) at the point (𝑞0, 𝜓

(𝑛)
0 ) is an isomorphism of Banach spaces (where X ,Y are some

appropriate function spaces that are attuned to Nahm pole boundary conditions with knot
singularity). The implicit function theorem then guarantees the existence of an open neigh-
bourhood 𝑈 (𝑛)

𝑞0 ⊂ [0, 1] of 𝑞0 and a function 𝐺(𝑛) ∶ 𝑈 (𝑛)
𝑞0 → X , such that dKW (𝑛)

𝑞 (𝐺(𝑛)(𝑞)) = 0

for all 𝑞 ∈ 𝑈 (𝑛)
𝑞0 .

It remains to show that the size of 𝑈 (𝑛)
𝑞0 is bounded from below by some non-zero radius. In

that case the intersection 𝑈𝑞0 ∶= ⋂𝑛∈ℕ 𝑈 (𝑛)
𝑞0 is open. The size of the open neighbourhoods 𝑈 (𝑛)

𝑞0
can be estimated from Lipschitz properties of the full Fréchet differential at (𝑞0, 𝜓 (0)). Since the
physical theory is topological, we can stretch the radius of 𝑆1𝑡 and make |(𝑑/𝑑𝑡)𝑛𝑧0| arbitrarily
small. We expect that this can be leveraged to gain control over the Fréchet differential. Once
one has access to such bounds for each dKW (𝑛)

𝑞0 , one can conclude that for any point 𝑞0 ∈ I
the set 𝑈𝑞0 is open.

By construction, for all 𝑞 ∈ 𝑈𝑞0 there is a sequence 𝜓
(𝑛) that satisfies dKW (𝑛)

𝑞 (𝜓 (𝑛)) = 0. In a

last step, one needs to determine a function 𝜓 that has the formal power series 𝜓 = ∑𝑞𝑛𝜓 (𝑛)

near 𝑞 ∈ 𝑈. Recall that 𝜓 is assumed to be an adiabatic solution, in the sense that for small
changes in time 𝑡 → 𝑡 + 𝜖 the higher orders 𝜓 (𝑛) provide only miniscule adjustments that
keep the configuration ‘in equilibrium’, i.e. near a solution of the EBE. This suggests that the
corrections 𝜓 (𝑛) are small, and we expect they are small enough that the formal power series
either converges or might be dealt with by Borel resummation for any 𝑞 that is close enough to
𝑞0.

I is closed. Consider a sequence {𝑞𝑘} ⊂ I , together with a corresponding sequence {𝜓𝑘}, such
that dKW𝑞𝑘 (𝜓𝑘) = 0. {𝑞𝑘} converges in [0, 1] to some 𝑞 ∶= lim𝑘→∞ 𝑞𝑘. We need to show that
a subsequence of 𝜓𝑘 converges to a corresponding 𝜓, such that dKW𝑞 (𝜓 ) vanishes to arbitrary
order in 𝑞.

The desired statement would follow if we knew that the moduli space of solutions is compact.
Unfortunately, there is not yet a complete description of the moduli spaces of Kapustin-Witten
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5 Comoving Higgs Bundles and Symplectic Khovanov Homology

solutions. Although there has recently been progress for solutions on 𝑋 3 × ℝ+ when 𝑋 3 is
compact [Tau18], the theory appears to involve a few subtleties that preclude a naive compact-
ness result (also see related advances in [Tau19; Tau21]). Less is known about solutions of the
decoupled Kapustin-Witten equations, but we expect that their Hermitian Yang-Mills structure
provides some additional control.

In the situation relevant to us, it might be possible to directly construct a limiting solution,
despite the lack of a general compactness theorem. As before, this works almost trivially at
order 𝑞0. To see this, consider for each 𝜓𝑘 the associated formal expansion 𝜓𝑘 = ∑𝑞𝑛𝜓 (𝑛)𝑘 . The

terms at order 𝑞0 define a sequence of EBE-solutions 𝜓 (0)𝑘 = log 𝜆+1
𝑅𝜆+1
𝑞𝑘 𝑠𝑞𝑘(𝑠𝑞𝑘)𝜆

. This is continuous

in the isotopy parameter, so in the limit 𝑞𝑘 → 𝑞 it approaches a limit 𝜓 (0) where 𝑞𝑘 is replaced
with 𝑞. The limit then satisfies EBE 𝑞 (𝜓 (0)) = 0.

At order 𝑞1 we are given the sequence of functions 𝜓 (1)𝑘 that each satisfy dKW (1)
𝑞𝑘 𝜓

(1)
𝑘 = 0 with

respect to their associated 𝑞𝑘. Evaluating the action of dKW (1)
𝑞 on each of the 𝜓 (1)𝑘 produces an

error term

dKW (1)
𝑞 (𝜓 (1)𝑘 ; 𝜓 (0)) = 𝐿𝑞𝜓 (1) + 𝐾 (1)

𝑞 (𝜓 (0)) .

The analytic properties of the Laplace-type iterated edge operator 𝐿𝑞 are comparatively well-
understood and it should be possible to utilize these to determine the size of the associated error
term in relation to the distance 𝑞 −𝑞𝑘. The formula for the inhomogeneities 𝐾 (1)

𝑞 states that it is

proportional to ̈𝑧0. It follows that 𝐾
(1)
𝑞 is controlled by the magnitude of ̈𝑧0, which can be made

small by further stretching the knot in the direction of 𝑡. Although we do not currently have a
proof, we expect that one can construct an approximate solution 𝜓 (1) from 𝜓 (1)𝑘 and improve it
to arbitrary precision by taking 𝑘 → ∞.

Moving on from there, one can then proceed order by order in 𝑞 and in the end use a resum-
mation argument to produce a solution 𝜓 = ∑𝑞𝑛𝜓 (𝑛).

5.7 Comoving Higgs Bundles

In this section we move from a single-stranded knot in 𝑆1𝑡 × ℂ to the more general case of
braids on 𝑘 strands in 𝑆1𝑡 × Σ. We find that the initial holomorphic data underlying the isotopy
Ansatz (5.9) is captured by a one-parameter family of effective triples. This is in analogy to
the relation between the initial knot singularity Ansatz (5.6) and effective triples reviewed in
Section 5.4.

Let𝐾 = ⨆ 𝑘
𝑎=1{(𝑡 , 𝑝𝑎(𝑡), 0)} be a braid in the boundary of 𝑆1𝑡 ×Σ×ℝ+𝑦 . The collection of trajectories

{𝑝𝑎(𝑡)}𝑎=1,…,𝑘 can be viewed as the image of a map 𝛽 ∶ 𝑆1𝑡 → Conf𝑘 Σ in the configuration space
of 𝑘 distinct, ordered points in Σ. Equivalently, 𝛽 is an element of the loop space ΩConf𝑘 Σ. The
homotopy classes of loops form what is known as the pure braid group on Σ.
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We are interested in the moduli space of solutions of the decoupled Kapustin-Witten equa-
tions.

Definition 5.6 (Moduli Space of decoupled Kapustin-Witten solutions).

M̂dKW
𝐾 ∶= { dKW (𝐴, 𝜙) = 0 | (𝐴, 𝜙) satisfies Nahm-pole boundary conditions as 𝑦 → 0

with knot singularities at 𝐾 and converges to a flat 𝑆𝐿(𝑛 + 1, ℂ) connection as 𝑦 → ∞}

As before, we denote byMdKW
𝐾 the quotient by real gauge transformations G0(𝑆1𝑡 ×Σ×ℝ+𝑦 ) that

vanish at the boundary. However, most of the upcoming discussions will focus on the infinite
dimensional moduli spaces before modding out gauge transformations.

We now slightly change perspective and view the knot singularity data as part of the moduli
of the problem. Assume, for the sake of simplicity, that all strands of 𝐾 are labeled by the same
weight 𝜆 ∈ Γ∨char. Specifically, we will from now on view the moduli spaces M̂dKW

𝐾 as fibers of
a bundle

M̂dKW

ΩConf𝑘 Σ

The fiber map sends each solution to the loop 𝛽 along which the solution exhibits a knot sin-
gularity.

There is an analogous fiber bundle M̂EBE → Conf𝑘 Σ for solutions of the extended Bogomolny
equations. In this case the fibers are given by M̂EBE

𝐷 with fixed knot singularity data 𝐷 =
{(𝑝𝑎, 𝜆)}𝑎=1,…,𝑘 and the fiber map sends a given solution to {𝑝𝑎}𝑎=1,…,𝑘 ∈ Conf𝑘 Σ.

Recall from Section 5.4 that the moduli spaces MEBE
𝐷 are in bijection with the moduli space

of effective triplesM(E ,𝜑,𝐿), where the associated divisor d(𝜑, 𝐿) was required to coincide with
the knot singularity data 𝐷. Reinterpreting the data of the divisor as part of the moduli of an
effective triple, we obtain a corresponding fiber bundle

M̂(E ,𝜑,𝐿)

Conf𝑘 Σ

The fiber map sends each effective triple to the points of its divisor d(𝐿, 𝜑) = {(𝑝𝑎, 𝜆𝑎)}𝑎=1,…𝑘.

Remark. More generally, if one includes the information of weights 𝜆𝑎 at each point, the base
of the preceding fibrations is the configuration space of labeled points Conf𝑘(Σ; 𝜆1, … , 𝜆𝑘) and
its corresponding loop space, respectively.
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The same arguments as in Section 5.4 can be used to show that any solution (𝐴, 𝜙) of the de-
coupled Kapustin-Witten equations gives rise to a one-parameter family of ‘comoving’ effective
triples {(E𝑡, 𝜑𝑡, 𝐿𝑡)}𝑡∈𝑆1 . To see this, assume (𝐴, 𝜙) is a solution of the decoupled Kapustin-Witten
equations with knot singularity along a braid 𝛽 = ⨆{𝑝𝑎(𝑡)}. Let D𝜇 denote the operators asso-
ciated to (𝐴, 𝐵) and work in temporal gauge 𝐴𝑠 = 0, such that D0 = 𝑖𝐷𝑡.

The decoupled Kapustin-Witten equations contain the equations [D𝑖,D𝑗] = 0, 𝑖, 𝑗 = 1, 2, 3.
Denote by 𝑉 the vector bundle associated to the fundamental representation of 𝑆𝐿(𝑁 , ℂ) and
let 𝑉(𝑡,𝑦) be its restriction to {𝑡}×Σ×{𝑦}. As before,D1 provides a ̄𝜕 operator, making 𝑉(𝑡,𝑦) into a
holomorphic vector bundle E(𝑡,𝑦), while D3 = ad𝜑 is a holomorphic 𝐾Σ-valued endomorphism
of E(𝑡,𝑦). The associated family of Higgs bundles (E(𝑡,𝑦), 𝜑(𝑡,𝑦)) over Σ is parallel with respect
to D2, such that for each 𝑡 ∈ 𝑆1 the Higgs bundle is determined via parallel transport of a
stable reference Higgs bundle (E𝑡, 𝜑𝑡) that sits, for example, at 𝑦 = ∞. Finally, for each 𝑡 ∈ 𝑆1,
the boundary condition at 𝑦 → 0 determines a vanishing line bundle 𝐿𝑡 ⊂ E𝑡 whose divisor
d(𝐿, 𝜑) = {𝑝𝑎(𝑡), 𝜆}.

The decoupled Kapustin-Witten equations additionally include the operator D0, which yields
a notion of parallel transport along 𝑆1𝑡 . The equations [D0,D𝑖] = 0 state that (E𝑡, 𝜑𝑡, 𝐿𝑡) is
parallel. Equivalently, parallel transport via D0 defines an Ehresmann connection on M̂(E ,𝜑,𝐿)
with respect to which (E𝑡, 𝜑𝑡, 𝐿𝑡) is a horizontal lift of the braid 𝛽.

Denote by ΩℎM̂(E ,𝜑,𝐿) the space of non-vertical loops, i.e. those loops that are horizontal with
respect to some Ehresmann connection. The discussion above implies that there is the following
Kobayashi-Hitchin-like bundle map:

M̂dKW ΩℎM̂(E ,𝜑,𝐿)

ΩConf𝑘 Σ

̂𝐼KH

We expect that this descends to a corresponding map on quotient spaces

𝐼KH ∶ MdKW → ΩℎM̂(E ,𝜑,𝐿)/Gℂ(𝑆1𝑡 × Σ) .

After modding out gauge transformations, He and Mazzeo’s classification of 𝑆1-invariant Ka-
pustin-Witten solutions in terms of EBE-solutions corresponds to a bijection of fibers over con-
stant loops in ΩConf𝑘 Σ. Keeping in mind that according to Theorem 5.5 there is a bijection
𝐼𝑁𝑃𝐾 ∶ MEBE → M(E ,𝜑,𝐿), this fits into the bundle map picture as follows

MdKW ΩℎM(E ,𝜑,𝐿) M(E ,𝜑,𝐿)

ΩConf𝑘 Σ Conf𝑘 Σ

𝐼KH

𝐼𝑁𝑃𝐾

const.

const.
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As a next step, we describe how to obtain a solution of the decoupled Kapustin-Witten equations
from a family of effective triples. Hence, suppose we are given a non-vertical loop of effective
triples 𝛾 (𝑡) = (E(𝑡), 𝜑(𝑡), 𝐿(𝑡)). The knot singularity data associated to 𝛾 (𝑡) under the fiber map
is a braid 𝛽(𝑡) = {𝑝𝑎(𝑡)}𝑎=1,…,𝑘. We wish to construct from 𝛾 a field configuration (𝐴, 𝐵) that
exhibits a Nahm pole with knot singularities along 𝛽 and satisfies the decoupled Kapustin-
Witten equations.

Under the assumption that the continuity method of Section 5.6 provides a solution for any
single-stranded knot in ℂ, this can be achieved by essentially the same arguments as in the con-
text of the Kobayashi-Hitchin correspondence for EBE-solutions described in Section 5.4. To
that end, cover the manifold by open slices 𝑉𝑖 = (𝑡𝑖−𝜖, 𝑡𝑖+𝜖)×Σ×ℝ+ and write 𝛽𝑖 = {𝑝𝑖,𝑎(𝑡)}𝑎=1,…𝑘
for the part of the braid that lies in 𝑉𝑖. Choose the slices 𝑉𝑖 thin enough that there exists an iso-
topy that interpolates between 𝛽𝑖 and some 𝑆1-invariant braid {𝑃𝑖,𝑎 = const.}𝑎=1,…,𝑘 ∈ Conf𝑘 Σ.
Moreover, we demand that this isotopy is of a particularly mild form, namely such that there ex-
ist non-intersecting discs 𝑈𝑖,𝑎, centered at 𝑃𝑖,𝑎, which each contain the corresponding trajectory
𝑝𝑖,𝑎(𝑡) for all 𝑡 ∈ (𝑡𝑖 − 𝜖, 𝑡𝑖 + 𝜖) and the isotopy that connects 𝑝𝑖,𝑎(𝑡) to 𝑃𝑖,𝑎.

We construct an approximate solution of the decoupled Kapustin-Witten equations according
to the following outline. Starting with a single slice 𝑉𝑖, choose an open cover of Σ consisting
of an open set 𝑈𝑖,0 that does not contain any of the trajectories 𝑝𝑖,𝑎(𝑡), together with the open
discs 𝑈𝑖,𝑎 described above. Using the method of continuity of Section 5.6, we now that there
is a field configuration that satisfies Nahm pole boundary conditions with knot singularity on
each (𝑡𝑖 − 𝜖, 𝑡𝑖 + 𝜖) × 𝑈𝑖,𝑎 × ℝ+𝑦 independently. These configurations are then glued ‘horizontally’
over 𝑈𝑖,0 to an approximate solution on 𝑉𝑖, which subsequently can be glued ‘vertically’ over the
intersections of 𝑉𝑖 ∩ 𝑉𝑖+1 to produce an approximate solution on 𝑆1 × Σ × ℝ+𝑦 . The construction
proceeds in five steps.

First, dropping the indices 𝑖 and 𝑎 for the moment, consider a small disk 𝑈 centered at 𝑃 and
containing the trajectory 𝑝(𝑡) of a single strand. Let 𝑧 be a holomorphic coordinate on 𝑈, assume
𝑃 corresponds to 𝑧 = 0, and denote the coordinates of 𝑝(𝑡) by 𝑧0(𝑡). We also use coordinates
(𝑡, 𝑅, 𝜓 , 𝜗), with spherical coordinates on the second and third factor of 𝑆1𝑡 × 𝑈 × ℝ+𝑦 . We may
then extract from 𝛾 (𝑡) = (E(𝑡), 𝜑(𝑡), 𝐿(𝑡)) a field configuration on [𝑡𝑖−𝜖, 𝑡𝑖+𝜖]×𝑈 ×ℝ+𝑦 that looks

like the isotopy Ansatz (𝐴𝛽, 𝜑𝛽, 𝜙𝛽1 ) as given in (5.9): Recall that for each 𝑡 ∈ (𝑡𝑖 − 𝜖, 𝑡𝑖 + 𝜖), the
effective triple defines a frame {𝑒1, … 𝑒𝑛+1} of E𝑡 with respect to which the Higgs field is of the
form 𝜑(𝑡) = ∑(𝑧 − 𝑧𝑎(𝑡))𝜆𝑖𝐸+𝑖 𝑑𝑧. The isotopy that connects 𝑃 to 𝑝(𝑡), and which is contained in
𝑈 by assumption, is homotopy equivalent to the isotopy given by 𝜁𝑞(𝑡) = 𝑧 − 𝑞𝑧𝑎(𝑡). Replacing
𝑧 − 𝑧𝑎(𝑡) by 𝜁𝑞(𝑡) in the expression for 𝜑(𝑡) then provides the 𝑞0 part of the isotopy Ansatz. To

get the part proportional to 𝑞1, we identify the gauge field component 𝐴𝛽
𝑡 with the connection

form of some Ehresmann connection with respect to which 𝛾 is horizontal. Since𝐷𝑡𝜑(𝑡) = 0, the
connection form satisfies [𝐴𝑡, 𝜑(𝑡)] = −𝑖𝜕𝑡𝜑(𝑡). This is solved by setting 𝐴𝛽

𝑡 =
𝑞 ̇𝑧𝑎
𝜁 ∑𝜆𝑖𝐴−1

𝑖𝑗 𝐻𝑗.

In the second step, we rely on the method of continuity to invoke the existence of a complex
gauge transformation 𝑔𝑈 that maps the field configuration (𝐴𝛽, 𝜑𝛽, 𝜙𝛽1 ) to an approximate solu-
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Figure 5.3 Illustration of the covering of 𝑆1𝑡 × Σ ×ℝ+𝑦 that is used in the iterative construction
of approximate solutions of the decoupled Kapustin-Witten equations for a multi-stranded
and time-dependent knot.

tion of the decoupled Kapustin-Witten equations on (𝑡𝑖 − 𝜖, 𝑡𝑖 + 𝜖) × 𝑈 × ℝ+𝑦 . By construction,
this satisfies the Nahm pole boundary conditions with knot singularity at 𝑝(𝑡).

The third step constructs a gauge transformation 𝑔𝑉𝑖 on 𝑉𝑖 = (𝑡𝑖 − 𝜖, 𝑡𝑖 + 𝜖) × Σ × ℝ+𝑦 from
the collection of local frames and gauge transformations {𝑔𝜆𝑎} associated to 𝑈𝑎. To do so, we
additionally choose a holomorphic frame on (𝑡𝑖 − 𝜖, 𝑡𝑖 + 𝜖) × 𝑈0 × ℝ+𝑦 and let 𝑔0 be the gauge
transformation defined in (5.5). Just as before, on the overlaps 𝑈0 ∩ 𝑈𝑎, the holomorphic frames
are related by the transition functions

𝑔0𝑎 = exp ( − log 𝑟
𝑛
∑
𝑖=1

𝜆𝑎,𝑗𝐴−1
𝑖𝑗 𝐻𝑖)

Gluing the gauge transformations 𝑔0 and 𝑔𝑈𝑎 via a partition of unity produces the desired 𝑔𝑉𝑖 .

Fourth, the holomorphic frames on 𝑈𝑖,0 and 𝑈𝑖+1,0 are equivalent up to gauge transformations,
so they can in turn can be glued with 𝑔𝑉𝑖+1 on the intersection 𝑉𝑖 ∩ 𝑉𝑖+1.

The resulting field configuration is a first approximation to a solution of the decoupled Kapu-
stin-Witten equations. It is of order O(𝑦−1) away from the braid 𝛽 and of order O(𝑅−1𝑠−1)
near any of its strands, which means that it satisfies Nahm pole boundary conditions with knot
singularities. The approximation can be improved order by order, first to desired precision in
𝑅 near any point 𝑝 ∈ 𝐾 and afterwards in 𝑦.
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5.8 Effective Triples, Monopoles, and the Grothendieck-Springer Fibration

We propose that when Σ = ℂ, there is a finite-dimensional fiber bundle that encodes enough
of the infinite-dimensional moduli space of EBE solutions to provide existence results for solu-
tions of the decoupled Kapustin-Witten equations. The fiber bundle in question is a variant of
the Grothendieck-Springer resolution of sl(𝑘𝑁 , ℂ), which also appears in the definition of sym-
plectic Khovanov homology [SS04; Man07]. The motivation to consider this space as a finite-
dimensional model of the problem is ultimately based in physical properties of the system and
motivated by observations of Gaiotto and Witten [GW12]. In some sense this is comparable to
an ADHM-like approach, where the construction of Yang-Mills instantons is reduced to a finite
dimensional problem in linear algebra [Ati+78].

Consider the image of a braid 𝛽 on 𝑘 strands in 𝑆1𝑡 ×ℂ and denote the trajectories of the strands
in ℂ by 𝑧𝑎(𝑡). Our interest is in the time evolution of 𝑘-monopole solutions of the extended
Bogomolny equations along 𝛽. For this, we view themonopole insertions at (𝑡, 𝑧𝑎(𝑡), 0) in 𝑆1𝑡 ×ℂ×
ℝ+𝑦 as ‘heavy particles’ with magnetic charge 𝜆𝑎, that trace out fixed, non-colliding trajectories
in ℂ. Since the underlying physical theory is topological, these particles don’t interact and
the multi-particle system is equivalent to the union of 𝑘 single particles. Correspondingly, the
configuration of each individual monopole is fully determined in a small neighbourhood. The
assumption that the particles are ‘heavy’ means that the evolution of each monopole along 𝑆1𝑡
is viewed as an externally determined background in which the quantum theory lives. More
specifically, the quantum system starts at an initial time in some ground state and then evolves
adiabatically along 𝑆1𝑡 , meaning that at any given time 𝑡 the system remains in a ground state
of the corresponding, fixed background configuration at that time. This picture suggests that,
as a first step, we need to determine the moduli of a collection of 𝑘 individual monopoles.

According to the Kobayashi-Hitchin correspondence discussed in Section 5.4, a 𝑘-monopole
solution of the extended Bogomolny equations is determined by an effective triple. Hence,
assume we are given (E , 𝜑, 𝐿) with associated divisor d(𝐿, 𝜑) = {(𝑧𝑎, 𝜆𝑎)}𝑎=1,…,𝑘. Due to the
physical argument above, we now restrict our attention to the moduli of the Higgs field 𝜑
near the points of d(𝐿, 𝜑). We have seen in Section 5.4 and Section 5.7 that on a small enough
disc 𝑈𝑎 ⊂ ℂ centered at 𝑧𝑎 the pair (𝐿, 𝜑) is equivalent to the data contained in the Ansatz
𝜑𝜆|𝑈𝑎 = ∑𝑖 𝑧𝜆𝑎,𝑖𝐸

+
𝑖 . The latter, in turn, is determined by the choice of

(i) a nilpotent element 𝐸𝑎 ∈ O𝜋𝑎 , such that 𝜑𝜆|𝑧=0 = 𝐸𝑎, and

(ii) a nilpotent element 𝐾𝑎 ∈ ker 𝐹𝑎, such that 𝜑𝜆|𝑧=1 = 𝐸𝑎 + 𝐾𝑎 ∈ Oreg.

Recall from Section 5.3 that the partition 𝜋𝑎 = [𝜋𝑎,1…𝜋𝑎,𝑠] is determined by themonopole charge
𝜆𝑎 and given by counting the numbers of consecutive Dynkin labels in 𝜆𝑎 = (𝜆𝑎,1, … , 𝜆𝑎,𝑛) that
vanish. We conclude that individual monopoles are determined by a choice of element in the
intersection of the Slodowy slice S𝐸𝑎 and the regular nilpotent orbit Oreg in sl(𝑁 , ℂ).

A naive approach to keep book of all 𝑘 monopoles simultaneously is to combine their moduli
into a coproduct. In finite dimensions this amounts to putting everything together into a single
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matrix 𝑌 of size 𝑘𝑁.

𝑌 ∶= (
𝐸1 + 𝐾1 0 0

0 ⋱ 0
0 0 𝐸𝑘 + 𝐾𝑘

)

Put differently, 𝑌 is an element of

(S𝐸1 ∩Oreg) ⊕ … ⊕ (S𝐸𝑘 ∩Oreg) ⊂ sl(𝑘𝑁 , ℂ) .

Remember thatOreg = O[𝑁 ] and let 𝜌 = [𝑁 𝑘] be the partition of 𝑘𝑁 that consists of 𝑘 copies of𝑁.
Similarly, denote the partition of 𝑘𝑁 that is obtained from concatenating all 𝜋𝑎 by 𝜋 = [𝜋1…𝜋𝑘].
There exists a 𝑔 ∈ 𝑆𝐿(𝑘𝑁 , ℂ) that maps 𝐸1⊕…⊕𝐸𝑘 to its Jordan normal form 𝐸𝜋. It follows that
the 𝑘-monopole configuration 𝑌 is always conjugate to an element of S𝜋∩O𝜌 (recall S𝜋 ∶= S𝐸𝜋).
The upcoming constructions only depend on the topology and geometry of Slodowy slices,
which are independent of the base point. Accordingly, we from now on consider a 𝑘-monopole
configuration to be determined by a choice of

𝑌 ∈ S𝜋 ∩O𝜌 ⊂ sl(𝑘𝑁 , ℂ) . (5.13)

Unfortunately, there are fundamental problems in determining Kapustin-Witten solutions from
nilpotent Higgs bundles directly [GW12; Dim22b; Sun23]. Inspired by the ‘complex symmetry
breaking’ suggested by Gaiotto and Witten to circumvent these problems, and also because we
wish to encode the positions 𝑧𝑎 of the monopoles, we modify the naive approach. Namely, we
additionally encode the position 𝑧𝑎 of each strand by a deformation of the nilpotent orbit O𝜌
that appears in (5.13).

Define the traceless, diagonal 𝑁 × 𝑁-matrix

𝐷(𝑧𝑎) = diag (𝑧𝑎, … , 𝑧𝑎, −(𝑁 − 1)𝑧𝑎) ∈ sl(𝑁 , ℂ) .

We call 𝑧𝑎 ‘thick’ eigenvalue of 𝐷(𝑧𝑎) as it appears with multiplicity 𝑁 − 1, while we refer to
the remaining eigenvalue −(𝑁 − 1)𝑧𝑎 as ‘thin’.

For fixed 𝑡 ∈ 𝑆1𝑡 , denote the position of the strands by 𝐷 = {𝑧𝑎(𝑡)}𝑎=1,…,𝑘 ∈ Conf𝑘 ℂ. Write O𝜌,𝐷
for the adjoint orbit of 𝐷(𝑧1) ⊕ … ⊕ 𝐷(𝑧𝑘) in sl(𝑘𝑁 , ℂ) and consider the map

𝑌 ↦ 𝑌 + (𝐷(𝑧1) ⊕ … ⊕ 𝐷(𝑧𝑘)) .

The eigenvalues of the new matrix are given by the positions 𝑧𝑎, each with (generalized) eigen-
space of dimension (𝑁 − 1), and the values −(𝑁 − 1)𝑧𝑎 with eigenspace of dimension 1. This
defines a smooth deformation O𝜌  O𝜌,𝐷.

We conclude that the moduli space of 𝑘 monopoles of charge 𝜆 and located at 𝐷 = {𝑧𝑎} is given
by

Y𝜋,𝜌,𝐷 ∶= S𝜋 ∩O𝜌,𝐷 ⊂ sl(𝑘𝑁 , ℂ) .

As an intersection of a Slodowy slice with an adjoint orbit, Y𝜋,𝜌,𝐷 is a finite dimensional Kähler
manifold.
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5.8 Effective Triples, Monopoles, and the Grothendieck-Springer Fibration

Remark. Going from M̂(E ,𝜑,𝐿) → Y𝜋,𝜌,𝐷 can be interpreted as modding out a class of ‘large’
gauge transformations that are non-zero at the boundary. A priori, we are not allowed to mod
out such gauge transformations, because the associated boundary conditions are physically dis-
tinguishable. However, there is some evidence that for the class of large gauge transformations
in question the is always a Haydys-Witten instantons that interpolates between the associated
two (a priori inequivalent) solutions of the decoupled Haydys-Witten equations. Such a result
would provide a good a posteriori justification for replacing the moduli space of effective triples
by Y𝜋,𝜌,𝐷. We further comment on this in Section 5.10.

A variant of the space Y𝜋,𝜌,𝐷 plays a major role in the definition of symplectic Khovanov ho-
mology and symplectic sl(𝑁 , ℂ)-Khovanov-Rozansky homology [SS04; Man07]. Importantly,
Y𝜋,𝜌,𝐷 can be viewed as a fiber of whatManolescu calls a restricted partial simultaneous Grothen-
dieck resolution of the adjoint quotientmap. For our purposes it will suffice to define the relevant
version of the adjoint quotient map ‘by hand’ and we refer to [Man07] for a more satisfactory
exposition of the general construction.

Remember that the adjoint quotient map 𝜒 ∶ sl(𝑘𝑁 , ℂ) → h/W sends a matrix to its gen-
eralized eigenvalues. Denote by sl(𝑘𝑁 , ℂ)[(𝑁−1)𝑘1𝑘] the space of traceless 𝑘𝑁 × 𝑘𝑁 matrices
that have 𝑘 pairs of eigenvalues that cancel each other in the trace, where each pair has one
‘thick’ eigenvalue of algebraic multiplicity 𝑁 − 1 and one ‘thin’ eigenvalue of multiplicity 1,
respectively. A prototypical element of this space is 𝐷(𝑧1) ⊕…⊕𝐷(𝑧𝑘), but we explicitly allow
non-diagonalizable elements with Jordan blocks of size greater than 1. Define ̃𝜒 to be the map
that sends an element of sl(𝑘𝑁 , ℂ)[(𝑁−1)𝑘1𝑘] to its thick eigenvalues (𝑧1, … , 𝑧𝑘) ∈ Conf𝑘 ℂ:

̃𝜒 ∶ sl(𝑘𝑁 , ℂ)[(𝑁−1)𝑘 1𝑘] → Conf𝑘 ℂ

We will simply refer to this as Grothendieck-Springer fibration. With that understood Y𝜋,𝜌,𝐷
is equivalent to the following fiber of ̃𝜒:

Y𝜋,𝜌,𝐷 = ̃𝜒 |−1𝑆𝜋 (𝐷(𝑧1) ⊕ … ⊕ 𝐷(𝑧𝑘)) .

Our discussion so far shows that every effective triple (E , 𝜑, 𝐿)with divisor d(𝐿, 𝜑) = 𝐷 determ-
ines an element 𝑌 ∈ Y𝜋,𝜌,𝐷. This induces the following bundle map:

M̂(E ,𝜑,𝐿) 𝑆𝜋 ∩ sl(𝑘𝑁 , ℂ)[(𝑁−1)𝑘 1𝑘]

Conf𝑘 ℂ

Υ

̃𝜒 |𝑆𝜋

(5.14)

Υ is clearly not injective, since it maps effective triples that differ in regions of Σ sufficiently far
from any monopole insertions to the same element in Y𝜋,𝜌,𝐷. However, we expect that Υ is sur-

jective. If this holds, we are guaranteed that for every non-vertical path in sl(𝑘𝑁 , ℂ)[(𝑁−1)𝑘 1𝑘],
there exists at least one non-vertical path in M̂(E ,𝜑,𝐿), which in turn determines a solution of
the decoupled Kapustin-Witten equations by the arguments presented in Section 5.7.
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β

Confkℂ

Figure 5.4 The fixed points of rescaled parallel transport ℎresc𝛽 ∶ Y𝜋,𝜌,𝐷 → Y𝜋,𝜌,𝐷 along a
pure braid 𝛽 determine inequivalent horizontal lifts of 𝛽.

As discussed in [SS04, Sec. 4A] and [Man07, Sec. 4.1], since sl(𝑘𝑁 , ℂ)[(𝑁−1)𝑘 1𝑘] carries a Kähler
metric, there exists a suitable notion of (rescaled) parallel transport along paths 𝛽 ∶ [0, 1] →
Conf𝑘 ℂ from 𝐷 = 𝛽(0) to 𝐷′ = 𝛽(1).

ℎresc𝛽 ∶ Y𝜋,𝜌,𝐷 → Y𝜋,𝜌,𝐷′ .

Some care is needed in defining ℎresc𝛽 , since sl(𝑘𝑁 , ℂ)[(𝑁−1)𝑘 1𝑘] is not compact and ̃𝜒 may fail

to be a proper map. In that situation the integral lines of the vector field 𝐻𝛽 = ̇𝛽 ∇ ̃𝜒/ ‖∇ ̃𝜒 ‖2,
which is parallel to 𝛽 and orthogonal to the fibers, may not exist at all times. To circumvent this
problem, one rescales 𝐻𝛽 in such a way that its integral lines stay in some controlled compact

subset of sl(𝑘𝑁 , ℂ)[(𝑁−1)𝑘 1𝑘]. Strictly speaking, ℎresc𝛽 is only well-defined on (arbitrarily large)
compact subsets.

We can apply parallel transport along a pure braid 𝛽 ∶ 𝑆1 → Conf𝑘 ℂ, in which case Y𝜋,𝜌,𝐷 =
Y𝜋,𝜌,𝐷′ . Horizontal lifts of 𝛽 that start and end at the same point inY𝜋,𝜌,𝐷 are then in one-to-one
correspondence with fixed points of ℎresc𝛽 . With this we arrive at one of the main claims of this
chapter:

Conjecture E. The number of solutions to the decoupled Kapustin-Witten equations on 𝑆1𝑡 ×ℂ×ℝ+𝑦
with knot singularities along 𝛽 of weight 𝜆 is bounded from below by the number of fixed points
of ℎresc𝛽 .

In the upcoming sections the ideas of this section are applied to a slightly different setting. This
leads to a considerably stronger version of Conjecture E, providing an interpretation ofWitten’s
conjecture that Haydys-Witten instanton homology is related to Khovanov homology.
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Figure 5.5 Left: Every knot 𝐾 can be viewed as closure of a bipartite braid 𝛽 × id embedded
in [−𝐿, 𝐿]𝑡 × ℂ by gluing in cups and caps. Right: Gluing instructions for cups and caps are
captured by a crossingless matching m consisting of 𝑘 disjoint arcs 𝛿𝑖 ⊂ ℂ.

5.9 From Braids to Knots

We now apply the ideas of the previous section to the decoupled Kapustin-Witten equations
with knot singularities along a compact knot 𝐾 in the boundary of 𝑊 4 = ℝ𝑡 × ℂ × ℝ+𝑦 . Since
the factor of 𝑆1𝑡 is decompactified, we can no longer identify 𝐾 with an element of ΩConf𝑘 ℂ.
However, by Alexander’s theorem any knot 𝐾 can be represented as the closure of a braid 𝛽 on
𝑘 strands.

Let us denote the configuration space of 2𝑘 points that are partitioned into two individual sets
of 𝑘 points by Conf𝑘,𝑘 ℂ. The closure of a braid 𝛽 is determined by the following data. First, an
embedding of a bipartite braid of the form 𝛽 × id ∶ [−𝐿, 𝐿]𝑡 → Conf𝑘,𝑘 ℂ into [−𝐿, 𝐿] × ℂ, where
the identity braid on the second set of points is constant. And second, by a choice of crossingless
matching between the two sets of points determined by 𝛽 × id at 𝑡 = −𝐿, and analogously for
𝑡 = 𝐿. To make this precise, assume the bipartite braid 𝛽 × id determines a collection of points
𝐷 = {(𝑝1, … , 𝑝𝑘), (𝑞1, … 𝑞𝑘)} at 𝑡 = 𝐿. A crossingless matching of 𝐷 is a collection of 𝑘 disjoint
embedded arcs m = (𝛿1, … , 𝛿𝑘) in ℂ, with starting points 𝛿𝑖(0) = 𝑝𝑖 and endpoints 𝛿𝑖(𝑇 ) = 𝑞𝑖.
The arcs 𝛿𝑖 determine which strands are glued together by cups below 𝑡 = −𝐿 (respectively, by
caps above 𝑡 = 𝐿) to make the open braid 𝛽 × id ∶ [−𝐿, 𝐿]𝑡 → Conf𝑘,𝑘 ℂ into a closed knot in
ℝ𝑡 × ℂ.

More abstractly, a crossinglessmatching determines an extension of 𝛽×id into the singular locus
of Conf𝑘,𝑘 ℂ ≃ Conf2𝑘 ℂ. Here we view the closure of the configuration space as a stratified
space by identifying configurations of 𝑘 points with two identical points as a configuration of
𝑘 − 1 points, and so on. The associated stratification is given by the inclusions Conf𝑘−1 ℂ ⊂
Conf𝑘 ℂ, with lowest stratum Conf0 ℂ = ∅. An entrance path in a stratified space is a path that
starts in a higher-dimensional stratum and can only transition into lower-dimensional strata
or remain in the same stratum: it only ever enters lower-dimensional strata.

A single arc 𝛿𝑖 can be viewed as an entrance path [0, 1] → Conf𝑘,𝑘 ℂ that starts in the top
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stratum Conf𝑘,𝑘 ≃ Conf2𝑘 ℂ and ends in the lower stratum Conf2𝑘−1 ℂ. For this one identifies
the arc with the path determined by 𝑝𝑖(𝑡) = 𝛿(𝑡/2 ⋅ 𝑇 ) and 𝑞𝑖(𝑡) = 𝛿𝑖((1 − 𝑡)/2 ⋅ 𝑇 )). Moreover,
after two points have been matched, the two strands of the braid are closed off and for the
purposes of describing the knot closure we can simply forget about the endpoint, further map-
ping Conf2𝑘−1 ℂ → Conf2𝑘−2 ℂ which is then identified with Conf𝑘−1,𝑘−1 ℂ in the obvious way.
By successively following the arcs in m = (𝛿1, … , 𝛿𝑘), a crossingless matching thus defines an
entrance path that starts in Conf𝑘,𝑘 and ends in ∅.

Example. Consider the case of four points {(𝑝1, 𝑝2), (𝑞1, 𝑞2)} and an arc 𝛿1 that connects 𝑝1 and
𝑞1 at 𝛿1(1) = 𝑟 ∈ ℂ. Then this determines the following entrance path connecting Conf2,2 ℂ to
Conf1,1 ℂ

Conf2,2 ℂ ≃ Conf4 ℂ ⊃ Conf3 ℂ ⊃ Conf2 ℂ ≃ Conf1,1 ℂ

{(𝑝1(𝑡), 𝑝2), (𝑞1(𝑡), 𝑞2)} → {(𝑟 , 𝑝2), (𝑟 , 𝑞2)} ≃ {𝑟 , 𝑝2, 𝑞2} → {𝑝2, 𝑞2} ≃ {(𝑝2), (𝑞2)}

Closing off an open braid by cups and caps imposes constraints on 𝑘-monopole configurations.
From the point of view of two individual monopoles, located at 𝑝𝑖 and 𝑞𝑖, the matching arc
𝛿𝑖 specifies that their two configurations must be identical at 𝛿𝑖(1). But this also means that
they can’t be too different for 1 − 𝜖. In that way a crossingless matching m forces monopole
configurations near 𝑡 = ±𝐿 to be elements of a compact Lagrangian subspace 𝐿m ⊂ Y𝜋,𝜌,𝐷.
While we approach the problem from a slightly different perspective, the construction of 𝐿m is
equivalent to the one described by Seidel-Smith and Manolescu [SS04; Man07]. We proceed by
induction on the number of arcs 𝑘 in a given matching.

Start with 𝑘 = 1. Thematchingm contains a single arc 𝛿, matching 2 points {(𝑝), (𝑞)} ∈ Conf1,1 ℂ
that are labeled by the same partition 𝜋1 = 𝜋2 = 𝜋. Interpret the arc as an entrance path
𝛿 ∶ [0, 1] → Conf1,1 ℂ, starting at 𝛿(0) = (𝑝, 𝑞) ∈ Conf1,1 ℂ and ending at 𝛿(1) = 𝑟 ∈ Conf1 ℂ.
There is nothing special about the choice of 𝑟, so we pick 𝑟 = 0 for simplicity. The Grothendieck-
Springer fibration ̃𝜒 ∶ sl(2𝑁 , ℂ)[(𝑁−1)212] → Conf1,1 ℂ has singular fibers over configurations
with 𝑝 = 𝑞. The singularity in the fibers corresponds to the loci of matrices with Jordan blocks
larger than 1.

Use naive (as opposed to rescaled) parallel transport ℎ𝛿 along 𝛿 to define, for sufficiently small
𝑡 ∈ [0, 1], the following subsets of the fibers near the singular locus 𝑝 = 𝑞 = 0:

𝐿1−𝑡 ∶= { 𝑌 ∈ Y[𝜋2],[𝑁 2],𝛿(1−𝑡) |
ℎ𝛿|[0,𝑠] is defined in a neighbourhood of 𝑌 for all 𝑠 < 1,

ℎ𝛿(𝑠)(𝑌 )
𝑠→1
⟶ 𝐷(𝑟) ⊕ 𝐷(𝑟) = 0

}

It follows from [Man07, Sec. 4.3] that 𝐿𝑡 is diffeomorphic to the direct sum of two copies of
ℂ𝑃𝑁−1 when 𝜋 = [(𝑁 − 1)1] (which corresponds to a magnetic charge 𝜆 = (1, 0… , 0) or
equivalently a strand labeled by the fundamental representation). Each of the two projective
spaces arises as a quotient of an ordinary vanishing cycle 𝑆2𝑛−1 by an 𝑆1 action. For more
general magnetic charges 𝜆 it is expected that one obtains vanishing Grassmannians instead of
vanishing projective spaces.
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Figure 5.6 Inductive construction of the vanishing cycle 𝐿m. For a given arc 𝛿𝑖 of a crossing-
less matching m = (𝛿1, … 𝛿𝑘),

In any case, 𝐿1−𝑡 is a Lagrangian submanifold of Y𝜋,[𝑁 2],𝛿(1−𝑡). We then use rescaled parallel
transport ‘backwards’ along 𝛿 to move 𝐿1−𝑡 all the way to a subspace 𝐿0 in the initial fiber
Y[𝜋2],[𝑁 2],𝛿(0).

For the induction step, assume we are given the positions of 2𝑘 strands 𝐷 = {(𝑝𝑎), (𝑞𝑎)}𝑎=1,…,𝑘 ∈
Conf𝑘,𝑘 ℂ, labeled by an admissible partition 𝜋 = [𝜋𝑝1 …𝜋𝑞1 …] of 2𝑘𝑁, and a crossingless match-
ing m = (𝛿1, … , 𝛿𝑘). We are interested in the effect of matching points along 𝛿1 ∶ [0, 1] →
Conf𝑘,𝑘 ℂ, so we consider m(𝑡) = (𝛿1(𝑡), 𝛿2, … 𝛿𝑘) with 𝑚(0) = 𝐷. Denote by 𝐷′, 𝜋 ′, and m′ the
objects that are obtained from 𝐷, 𝜋, and m after removing (𝑝1, 𝑞1) along the arc 𝛿1.

Observe that we can split

sl(2𝑘𝑁 , ℂ)[𝑁
2𝑘12𝑘] = sl((2𝑘 − 2)𝑁 , ℂ)[𝑁

2𝑘−212𝑘−2] ⊕ sl(𝑁 , ℂ)[(𝑁−1)1] .

The space Y𝜋 ′,[𝑁 2𝑘−212𝑘−2],𝐷′ can be identified with a fiber of

sl((2𝑘 − 2)𝑁 , ℂ)[𝑁
2𝑘−212𝑘−2] ⊕ {0}

̃𝜒
→ Conf𝑘−1,𝑘−1 .

By assumption, we have a Lagrangian 𝐿m′ ⊂ Y𝜋 ′,[𝑁 2𝑘−212𝑘−2],𝐷′ . Using parallel transport, we
can move this Lagrangian into the singular locus of Y𝜋,[𝑁 2𝑘12𝑘],m(1). By a relative version of the
previous construction, one obtains for small 𝑡 a vanishing Lagrangian 𝐿m(1−𝑡) ⊂ Y𝜋,[𝑁 2𝑘],m(1−𝑡)
that is diffeomorphic to 𝐿m′(1−𝑡) ⊕ 𝐿1−𝑡 Using rescaled parallel transport along m(𝑡), we move
this to the fiber over m(0), which yields the desired Lagrangian 𝐿m ⊂ Y𝜋,𝜌,𝐷.

Using this construction, we attach two Lagrangian vanishing spaces 𝐿−, 𝐿+ ⊂ Y𝜋,𝜌,𝐷 to a choice
of crossingless matchings at 𝑡 = −𝐿 and 𝑡 = 𝐿, respectively. Parallel transport of 𝐿− along the
braid provides a horizontal path in the Grothendieck-Springer fibration and any point in the
intersection ℎresc𝛽×id𝐿− ∩ 𝐿+ corresponds to a path that connects the bottom part of the path to

157



5 Comoving Higgs Bundles and Symplectic Khovanov Homology

β id

L

-L Conf2kℂ

Conf2ℂ

δ1

δk

δ1

Conf2ℂ

δk

Figure 5.7 Points in the intersection ℎresc𝛽×id𝐿− ∩𝐿+ determine horizontal lifts of the braid clos-

ure 𝛽. Each horizontal lift determines away to glue solutions of the EBE to a globalmonopole
configuration along 𝐾 ⊂ 𝜕ℝ𝑡 × ℂ.

the top one. The pre-image of such a path under the bundle map Υ in (5.14) then contains
at least one non-vertical family of effective triples, which in turn determines a solution of the
decoupled Haydys-Witten equations.

5.10 The Floer Differential and Symplectic Khovanov Homology

In this section we describe implications of our discussion forWitten’s gauge theoretic approach
to Khovanov homology and formulate a second main conjecture. For this we return to the full
decoupled Haydys-Witten equations on𝑀5 = 𝐶 × Σ × ℝ+𝑦 , where 𝐶 = ℝ𝑠 × ℝ𝑡 with holomorphic
coordinate 𝑤 = 𝑠 + 𝑖𝑡, and Σ = ℂ with holomorphic coordinate 𝑧.

Let us start with a brief reminder of Haydys-Witten Floer homology 𝐻𝐹𝜋/2(𝑊 4) in the context
of Khovanov homology (see Section 2.7). Assume𝑊 4 = ℝ𝑡×ℂ×ℝ+𝑦 and that we are given a knot
𝐾 ⊂ 𝜕𝑊 4 = ℝ𝑡 × ℂ. The Floer cochain complex is defined to be the abelian group generated
by solutions of the 𝜃 = 𝜋/2-version of the Kapustin-Witten equations that satisfy Nahm pole
boundary conditions with knot singularities along 𝐾:

𝐶𝐹𝜋/2([𝑊 4; 𝐾]) ∶= ⨁
𝑥∈MKW(𝑊 4)

ℤ[𝑥] .

Equip𝑀5 = ℝ𝑠×𝑊 4 with the non-vanishing vector field 𝑣 = 𝜕𝑦 and extend 𝐾 to the translation-
invariant surface Σ𝐾 = ℝ𝑠 × 𝐾 in the boundary of 𝑀5. Then there is an associated Floer co-
homology group 𝐻𝐹𝜋/2([𝑊 4; 𝐾]) ∶= 𝐻(𝐶𝐹𝜋/2, 𝑑𝑣) with respect to the Haydys-Witten Floer
differential defined by

𝑑𝑣𝑥 = ∑
𝜇(𝑥,𝑦)=1

𝑚𝑥𝑦 ⋅ 𝑦 .

158



5.10 The Floer Differential and Symplectic Khovanov Homology

Here 𝑚𝑥𝑦 is the signed count of Haydys-Witten instantons on 𝑀5, subject to the following
conditions

⎧
⎪⎪

⎨
⎪⎪
⎩

HW𝑣 (𝐴, 𝐵) = 0

lim𝑠→−∞(𝐴, 𝐵) = 𝑥, lim𝑠→+∞(𝐴, 𝐵) = 𝑦

(𝐴, 𝐵) satisfy regular Nahm pole boundary conditions

with knot singularities along Σ𝐾

Witten’s approach to Khovanov homology is the proposal that𝐻𝐹𝜋/2([𝑊 4, 𝐾], 𝑣 = 𝜕𝑦) coincides
with Khovanov homology.

The manifold𝑀5 = 𝐶 ×Σ ×ℝ+𝑦 with 𝐶 = ℂ𝑤 and Σ = ℂ𝑧 is special in two important ways. First,
there are no non-trivial Vafa-Witten solutions at 𝑦 → ∞, such that there is an instanton grading
𝐻𝐹 •𝜋/2([ℝ𝑡 × ℂ × ℝ+𝑦 , 𝐾], 𝑣 = 𝜕𝑦). In fact, physical considerations suggest that there actually is a
bigrading, where the second grading is related to an absolute version of the Maslov index (cf.
Section 2.3). Second, looking at conditions (A1) - (A4) of Theorem D and writing 𝐵 = 𝐵NP + 𝑏,
with component 𝑏𝑧 = 𝑏2+ 𝑖𝑏3, we find that in the current situation any Haydys-Witten solution
that satisfies 𝐷 ̄𝑤 𝑏𝑧 = O(𝑦2) is already a solution of the decoupled Haydys-Witten equations.
While it is unclear if there are solutions for which the order 𝑦1 term of 𝑏𝑧 is not holomorphic,
we take this observation as strong motivation to assume that all Haydys-Witten instantons are
solutions of the decoupled equations.

In Section 5.9 we have already described that solutions of the decoupled Kapustin-Witten equa-
tion on𝑊 4 = ℝ𝑡×ℂ×ℝ+𝑦 with knot singularities are related to intersections of certain Lagrangian
subspaces of Y𝜋,𝜌,𝐷. To determine the Floer differential it remains to describe Haydys-Witten
instantons on 𝑀5 that interpolate between Kapustin-Witten solutions at 𝑠 → ±∞. Observe,
again, that the decoupled Haydys-Witten equations contain the extended Bogomolny equa-
tions [D𝑖,D𝑗] = 0. As before, the latter define a family of effective triples, now parametrized
by 𝐶 and given by a map

𝑢 ∶ 𝐶 → M(E ,𝜑,𝐿) , 𝑤 ↦ (E(𝑤), 𝜑(𝑤), 𝐿(𝑤)) .

The remaining Gℂ-invariant equations [D0,D𝑖] = 0 become equivalent to Cauchy-Riemann
equations 𝐷 ̄𝑤𝑢 = 0, so 𝑢 is a pseudo-holomorphic disc.

We now embark on a short detour and briefly review the definition of Lagrangian Intersection
Floer theory [Flo88b] (omitting virtually all technical details). Let (𝑀, 𝜔) be a Kähler manifold
and consider closed connected Lagrangian submanifolds 𝐿, 𝐿′ ⊂ 𝑀. Let 𝑂𝑥 denote the orienta-
tion group of the point 𝑥, defined as the group that is generated by the two possible orientations
of 𝑥 together with the relation that their sum is zero (thus, 𝑂𝑥 is non-canonically isomorphic to
ℤ). The Lagraingian Intersection cochain complex is defined to be the abelian group

𝐶𝐹(𝐿, 𝐿′) ∶= ⨁
𝑥∈𝐿∩𝐿′

𝑂𝑥
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From this one defines Lagragian Intersection Floer cohomology 𝐻𝐹(𝐿, 𝐿′) ∶= 𝐻(𝐶𝐹(𝐿, 𝐿′), 𝑑𝐽)
as cohomology with respect to the differential

𝑑𝐽𝑥 = ∑
𝑦∈𝐿∩𝐿′

𝑛𝑥𝑦𝑦 .

Here 𝑛𝑥𝑦 is a signed count of pseudoholomorphic discs, with respect to a generic smooth family
of 𝜔-compatible almost complex structures {𝐽𝑡}, that are subject to the following conditions.

⎧⎪⎪

⎨
⎪⎪
⎩

𝑢 ∶ ℝ𝑠 × [0, 1]𝑡 → 𝑀

𝜕𝑠𝑢 + 𝐽𝑡(𝑢)𝜕𝑡𝑢 = 0

𝑢(𝑠, 0) ∈ 𝐿, 𝑢(𝑠, 1) ∈ 𝐿′

lim𝑠→−∞ 𝑢(𝑠, ⋅) = 𝑥, lim𝑠→∞ 𝑢(𝑠, ⋅) = 𝑦

An example of a Lagrangian Intersection Floer theory that is of particular relevance to us is
symplectic Khovanov-Rozansky homology of a knot 𝐾, developed by Seidel-Smith and Man-
olescu [SS04; Man07]. The starting point are Lagrangian submanifolds �̃�± of sl(𝑁 , ℂ) that are
constructed in exactly the same way as the vanishing spaces 𝐿± above. However, there is a
crucial difference between the fibration that is used here and the one defined more carefully by
Seidel-Smith and Manolescu. From the perspective of physics it was natural to encode each of
the 2𝑘 monopoles of the braid closure ̄𝛽 = 𝐾 in an individual sl(𝑁 , ℂ)-block, leading to a con-
struction of 𝐿± in sl(2𝑘𝑁 , ℂ). In contrast, symplectic Khovanov-Rozansky homology is more
efficient and utilizes the thin eigenvalues to encode the position of the 𝑆1-invariant part of the
braid closure ̄𝛽, such that the associated Lagrangian submanifolds �̃�± live in sl(𝑘𝑁 , ℂ).

Given �̃�±, symplectic Khovanov-Rozansky for a braid 𝛽 on 𝑘 strands is defined as the Lagrangian
Intersection Floer theory of ℎresc𝛽×id�̃�− and �̃�+ ⊂ sl(𝑘𝑁 ).

Definition 5.7 (Symplectic Khovanov Homology [SS04; Man07]).

H•
symp. Kh(𝐾) ∶= 𝐻𝐹 •(ℎresc𝛽×id�̃�−, �̃�+)

Seidel-Smith proved that symplectic Khovanov homology is a knot invariant for sl(2, ℂ) and
Manolescu generalized the construction and proof to sl(𝑁 , ℂ). It is expected that symplectic
Khovanov homology coincides with a grading-reduced version of Khovanov-Rozansky homo-
logy. In fact, this has been proven for sl(2, ℂ) by Abouzaid and Smith:

Theorem 5.8 ([AS19]). Let g = sl(2, ℂ). Then for any oriented link𝐾 one has an absolute grading
and an isomorphism

H𝑘
symp. Kh(𝐾) ≃ ⨁

𝑖−𝑗=𝑘
H𝑖,𝑗

Kh(𝐾)
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5.10 The Floer Differential and Symplectic Khovanov Homology

Let us now return to Haydys-Witten instanton Floer theory. Since solutions of the decoupled
Kapustin-Witten equations are related to Lagrangian intersections, we conjecture that the Hay-
dys-Witten Floer complex can be replaced by

𝐶𝐹𝜋/2([ℂ × ℝ+𝑦 ; 𝐾]) = 𝐶𝐹(𝐿−, 𝐿+)

Moreover, by our explanations above, the Haydys-Witten Floer differential is determined by
pseudo-holomorphic discs 𝑢 that satisfy the following conditions.

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑢 ∶ ℝ𝑠 × [−𝐿, 𝐿]𝑡 → sl[(𝑁−1)2𝑘 12𝑘]

𝜕𝑠𝑢 + 𝑖𝜕𝑡𝑢 = 0

lim𝑠→−∞ 𝑢(𝑠, ⋅) = 𝑥, lim𝑠→∞ 𝑢(𝑠, ⋅) = 𝑦

𝑢(𝑠, −𝐿) ∈ 𝐿−, 𝑢(𝑠, +𝐿) ∈ 𝐿+

The last condition is satisfied by virtue of ℝ𝑠-invariance of Σ𝐾. In conclusion, we claim that
Haydys-Witten Floer homology coincides with Lagrangian Intersection homology

𝐻𝐹𝜋/2([ℝ𝑡 × ℂ × ℝ+𝑦 ; 𝐾]) = 𝐻𝐹(ℎresc𝛽×id𝐿−, 𝐿+) .

While the right hand side is not symplectic Khovanov-Rozansky homology, the difference is
only in handling the constant parts of the knot closure ̄𝛽 = 𝛽 × id. Motivated by He and
Mazzeo’s classification of 𝑆1-invariant Kapustin-Witten solutions, we propose that the effect of
the 𝑘 𝑆1-invariant monopoles supported on id can be neglected. Using this, we arrive at the
second main conjecture of this thesis.

Conjecture F. Haydys-Witten Floer homology of [ℝ𝑡 × ℂ × ℝ+𝑦 ; 𝐾] coincides with symplectic
Khovanov-Rozansky homology

𝐻𝐹 •𝜋/2([ℝ𝑡 × ℂ × ℝ+𝑦 ; 𝐾]) = H•
symp. Kh(𝐾) .

Theorem 5.9. If Conjecture F is true, then Haydys-Witten Floer theory with 𝐺 = 𝑆𝑈 (2) coincides
with a grading reduced version of Khovanov homology.

𝐻𝐹 𝑘𝜋/2([ℝ𝑡 × ℂ × ℝ+𝑦 ; 𝐾]) ≃ ⨁
𝑖−𝑗=𝑘

Kh𝑖,𝑗(𝐾) .
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6 Conclusion and Outlook

Witten’s gauge theoretic approach to Khovanov homology has come across large interest in
the mathematical community, as it provides an intriguing example of the connection between
geometric analysis and topological invariants of manifolds and knots. So far, a lot of focus was
put onGaiotto andWitten’s program to calculate Khovanov homology by adiabatically braiding
solutions of the extended Bogomolny equations (EBE). Underlying this is the Hermitian Yang-
Mills structure of the EBE, which makes the problem tractable. By now, several conjectures
that arose from that work have been rigorously proven, most prominently a Kobayashi-Hitchin
correspondence between solutions of the EBE andHiggs bundles with certain additional data.

Themain contribution of the present work is a way to extend these ideas to the Kapustin-Witten
and Haydys-Witten equations. This builds on insights into the behaviour of Kapustin-Witten
and Haydys-Witten solutions in certain geometric settings. It was shown in Theorem A and B
of Chapter 3, that solutions of the 𝜃-Kapustin-Witten equations on ALE and ALF gravitational
instantons satisfy a dichotomy between either some minimal asymptotic growth of the Higgs
field 𝜙 or vanishing of [𝜙 ∧ 𝜙] everywhere. By prior work of Nagy and Oliveira, these results
immediately implied the vanishing theorem Corollary C for finite energy solutions. The lat-
ter was used in Chapter 4 to obtain control over the boundary behaviour of Haydys-Witten
solutions at cylindrical ends at infinity. Similar control at boundaries was achieved by a de-
tailed analysis of polyhomogeneous expansions of 𝜃-Kapustin-Witten solutions with twisted
Nahm pole boundary conditions. Taken together, this resulted in a number of sufficient con-
ditions for Theorem D, establishing that, in certain geometric situations, the Haydys-Witten
equations simplify to a decoupled version of the equations that exhibit a Hermitian Yang-Mills
structure.

While the vanishing results of Chapter 3 and Chapter 4 might be of independent interest, their
appearance in this thesis arose due to the associated reduction in complexity of Haydys-Witten
instantons in the context of Khovanov homology. This is the content of Chapter 5, which laid
out how the Hermitian Yang-Mills structure of the decoupled equations may be exploited to
generalize the known Kobayashi-Hitchin equivalence for the EBE to a correspondence between
Haydys-Witten instanton homology and symplectic Khovanov homology. Inspired by Gai-
otto and Witten’s adiabatic braiding of EBE-solutions, a relation between decoupled Kapustin-
Witten solutions and non-vertical paths in the moduli space of EBE-solutions was proposed.
By a physically motivated argument, it was suggested that one can replace the moduli space
of EBE-solutions by a finite-dimensional model fibration known as Grothendieck-Springer res-
olution of sl(𝑁 , ℂ). These ideas culminated, on the one hand, in Conjecture E, which claims
that the number of decoupled Kapustin-Witten solutions on 𝑆1𝑡 ×ℂ×ℝ+𝑦 is bounded from below
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by the number of intersections of the fiber of this space with its parallel transport along the
knot. On the other hand, a stronger variant of this conjecture on ℝ𝑡 × ℂ × ℝ+𝑦 was formulated,
stating that Haydys-Witten Floer theory is isomorphic to symplectic Khovanov-Rozansky ho-
mology. Since for 𝐺 = 𝑆𝑈 (2) the latter is known to coincide with a grading-reduced version of
Khovanov homology, this provides a novel approach to Witten’s conjecture.

Although the results of this thesis add to a rigorous understanding of Haydys-Witten and
Kapustin-Witten solutions and provide several novel ideas regarding Gaiotto-Witten’s adiabatic
approach, many key properties of Haydys-Witten Floer theory and its connection to Khovanov
homology remain elusive. Most notably, any problems regarding compactness or gluing the-
orems, which lie at the very heart of a well-defined instanton Floer theory, were thoroughly
ignored. Also, much of the discussion in Chapter 5 remains speculative and passes only at the
physics-level of rigor. Consequently, it remains an open problem to classify Kapustin-Witten
and Haydys-Witten solutions, let alone calculate Haydys-Witten instanton homology, using the
adiabatic approach.

One interesting question arose in Chapter 5 for Haydys-Witten solutions (𝐴, 𝐵) on 𝐶 × Σ × ℝ+𝑦
with 𝐶 = ℂ𝑤 and Σ = ℂ𝑧. In describing the relation of Haydys-Witten instanton homology with
symplectic Khovanov homology, it was assumed that if one writes 𝐵 = 𝐵NP + 𝑏, the function
𝑏𝑧 = 𝑏2 + 𝑖𝑏3 ∈ O(𝑦1) is holomorphic in 𝑤 at leading order, i.e. 𝐷 ̄𝑤𝑏𝑧 = O(𝑦2). This condition is
a part of assumption (A1) in Theorem D. If this is false, then there might exist Haydys-Witten
and Kapustin-Witten solutions that are not captured by symplectic Khovanov homology.

Another interesting avenue in that context would be a detailed investigation of assumption
(A2), which is concerned with the asymptotics of 𝛽-twisted knot singularity conditions. Al-
though the corresponding model solutions are only known implicitly, it might be possible to
use Dimakis’ continuity argument to also determine the asymptotic behaviour of 𝜒 near 𝜕𝐾𝑀.

Results like this, which clarify the properties of twisted Nahm pole boundary conditions with
knot singularities, would open up an avenue to directly investigate Haydys-Witten homology
groups 𝐻𝐹𝜃 (𝑊 4) for angles 𝜃 ≠ 𝜋/2 in the context of knot homologies. More generally, it
would be interesting to further investigate the maps 𝐻𝐹𝜃 (𝑊 4) → 𝐻𝐹𝜃′(𝑊 4), since the physical
realization of these groups seem to suggest that this is a so-far unknown example of wall-
crossing of BPS states.

Clearly, much remains to be done to proveWitten’s conjecture and fully understand the connec-
tions between Haydys-Witten Floer homology and knot homologies. Nonetheless, the present
work also offers avenues for future research in directions beyond the analytical foundations.
If one assumes that there is an isomorphism between Haydys-Witten instanton homology and
symplectic Khovanov homology, as proposed in Conjecture F, then there is something to be
said about aspects of knot homologies that have not yet been addressed in the gauge theoretic
approach.

As was mentioned in the introduction, a conjectural realization of Khovanov homology in a
physical system was achieved in [GSV05] by using a duality between Chern-Simons theory
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and topological string theory. The conjecture states that Khovanov homology coincides with
the Hilbert spaces of BPS states in topological string theory. In fact, a few years later it was
shown by [LM05] that the HOMFLY-PT polynomial arises from this in a large 𝑁 limit.

Although Witten’s approach and the earlier result of [GSV05] are now known to be closely re-
lated, as described in [Das+16], there remain several open questions. The most obvious missing
link is that it is not at all obvious how to describe HOMFLY-PT homology inWitten’s approach.
From the gauge theory perspective of Haydsy-Witten Floer theory, the large 𝑁 limit must be
related via the AdS/CFT correspondence to a supergravity theory. Since a categorification on
the gauge side must correspond to a categorification on the gravity side, this line of argument
offers a way to investigate a categorification of topologically twisted AdS/CFT correspondence
(cf. [CL16]). This would lift AdS/CFT correspondence to an isomorphism of Hilbert spaces
rather than an equality of partition functions.

Another subject that is raised by the large 𝑁 behaviour of the topological string BPS states is
the emergence of ‘stability’ at large 𝑁. Over the years this has lead to a number of conjectures
relating HOMFLY-PT homology to sl𝑁-homologies.

Conjecture ([DGR05]). There is a triply graded homology theoryH𝜆(𝐾) categorifying the HOM-
FLY-PT polynomial, coming with differentials { 𝑑𝑁 }𝑁∈ℤ satisfying the axioms

(i) Grading: 𝑑𝑁 is of degree (−2, 2𝑁 , −1) for 𝑁 > 0; 𝑑0 is of degree (−2, 0, −3); 𝑑𝑁 is of degree
(−2, 2𝑁 , −1 + 2𝑁) for 𝑁 < 0.

(ii) Anticommutativity: {𝑑𝑁, 𝑑𝑀} = 0 for all 𝑁 ,𝑀 ∈ ℤ.

(iii) Symmetry: There is an involution 𝑓 ∶ H𝜆
𝑖,𝑗,∗(𝐾) → H𝜆

𝑖,−𝑗,∗(𝐾) such that 𝑓 𝑑𝑁 = 𝑑−𝑁𝑓.

For all 𝑁 > 0 the homology with respect to 𝑑𝑁 is isomorphic to coloured sl(𝑁 , ℂ) Khovanov-
Rozansky homology:

𝐻∗( ⨁
𝑖𝑁+𝑗=𝑝

H𝜆
𝑖,𝑗,𝑘(𝐾) , 𝑑𝑁) = 𝐾ℎ𝑅𝜆,sl𝑁(𝐾) .

Similarly for 𝑁 = 0 the homology of (⨁𝑖H𝜆
𝑖,𝑗,𝑘, 𝑑0) is isomorphic to knot Floer homology.

This conjecture was weakened by Rasmussen [Ras16], who argued that a priori one should ex-
pect to find spectral sequences instead of differentials. In fact he was able to proof the following
theorem.

Theorem ([Ras16]). For each 𝑁 > 0, there is a spectral sequence 𝐸𝑘(𝑁 ) that starts at H𝜆(𝐾) and
converges to 𝐾ℎ𝑅𝜆,sl𝑁(𝐾). The higher terms in this sequence are invariants of the knot 𝐾.
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Note however, that the spectral sequences of Rasmussen do not explain the negative differ-
entials 𝑑−𝑁 that are expected to be present as well. Furthermore, in all known examples the
spectral sequence abuts at the second page, which is consistent with the existence of differen-
tials 𝑑𝑁.

Assuming Conjecture F is true, there should be a way to recover Rasmussen’s spectral se-
quences in gauge theory. From the physics perspective, going from large 𝑁 to some finite
𝑁 is related to ‘Higgsing’ a large number of the components of the gauge connection, until
only 𝑆𝑈 (𝑁 ) gauge symmetry is left over. It might be possible to construct in that way differen-
tials 𝑑𝑁, providing a deeper reason for the observation above. However, to make this work one
would first need to find a description of the triply-graded homologyH𝜆(𝐾) in gauge theory.

In summary, although the Kapustin-Witten andHaydys-Witten equations have been studied ex-
tensively over the last decade, Haydys-Witten Floer theory is still at an early stage and promises
many new and deep insights into the relation between geometric analysis and topology.
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