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Ein relativisches Diffusionsmodell für die Erzeugung geladener
Hadronen in asymmetrischen Kollisionen

Die Produktion geladener Hadronen wird in asymmetrischen Schwerionenkollisio-
nen bei relativistischen Energien untersucht, um unser Verständnis des nicht-
perturbativen Bereiches der Quantenchromodynamik zu vertiefen. Dazu erweitern wir
das relativistische Drei-Quellen Diffusionsmodell, ein nichtgleichgewichts-statistisches
Modell durch Ersetzen der zugrundeliegenden phänomenologischen Verteilungen mit
mikroskopische Verteilungen, die auf dem Parton-Modell basieren. Die Quelle im mitt-
leren Rapiditätsbereich wird durch Gluon-Gluon-Wechselwirkungen unter Verwen-
dung der kT -Faktorisierung im Rahmen der Theorie der Gluonsättigung berechnet,
während die beiden Fragmentationsquellen durch Quark-Gluon-Wechselwirkungen
mit Hybrid-Faktorisierung und den Parton-Verteilungsfunktionen bestimmt werden.
Die Idee der Fragmentationsquellen basiert auf Baryon-Stopping, erfordert jedoch
eine Erweiterung durch einen Diffusionsprozess im Rapiditätsraum, um die Produkti-
on geladener Hadronen erklären zu können. Die abschließende Hadronisierungsphase
wird durch die Parton-Hadron-Dualität modelliert. Wir berechnen aus Lösungen einer
Fokker-Planck Gleichung numerisch die Pseudorapiditätsverteilungen für Deuteron-
Gold (d-Au) bei

√
sNN = 200 GeV und Proton-Blei (p-Pb) bei

√
sNN = 5.02 und

8.16 TeV und vergleichen sie mit experimentellen Daten von RHIC und LHC. Um
nicht-analytische Integrale zu behandeln und die für die Berechnungen erforderli-
chen numerischen Verfahren zu nutzen, wird ein neues und selbst entwickeltes C++-
Programm verwendet. Die zentralitätsabhängigen Verteilungen der produzierten ge-
ladenen Hadronen aus den Modellberechnungen zeigen eine gute Übereinstimmung
mit den experimentellen Daten. Die Modellberechnungen betonen die Relevanz der
Fragmentationsquellen für die Zentralitätsabhängigkeit geladener Hadronen, speziell
in ultra-peripheren Kollisionen.

A relativistic diffusion model for hadron production in asymmetric
heavy-ion collisions

Charged-hadron production in asymmetric heavy-ion collisions at relativistic ener-
gies is investigated to enhance our understanding of the non-perturbative regime of
Quantum Chromodynamics. We extend the three source Relativistic Diffusion model,
a nonequilibrium-statistical model, by substituting the underlying phenomenological
distributions with microscopic distributions based on the parton model. The mid-
rapidity source is computed through gluon-gluon interactions using kT -factorization
within the framework of gluon saturation, while the two fragmentation sources are
determined by quark-gluon interactions using hybrid-factorization and the parton
distribution functions. The concept of the fragmentation sources is grounded in the
phenomenon of baryon stopping but requires an extension through a diffusion process
in rapidity space allowing to explain charged-hadron production. The final hadroni-
sation stage is modeled based on parton-hadron duality. We calculate the pseudora-
pidity distributions for deuteron-gold (d-Au) at

√
sNN = 200 GeV and proton-lead

(p-Pb) at
√
sNN = 5.02 and 8.16 TeV numerically from solutions of the correspond-

ing Fokker-Planck equation and compare them with experimental data from RHIC
and LHC. In order to address non-analytical integrals and to utilize the numerical
procedures required for the computations, a novel and self-developed C++ program
is utilized. The centrality-dependent distributions of produced charged hadrons ob-
tained from the model calculations exhibit good agreement with the experimental
data. The model calculations also highlight the significance of the fragmentation
sources in comprehending the centrality dependence of produced hadrons, with par-
ticular emphasis on their pronounced influence in ultra-peripheral collisions.
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1. Introduction

In this thesis, we develop a model to calculate the longitudinal distributions of pro-
duced charged hadrons in heavy-ion collisions. The primary objective of this work
is to investigate asymmetric deuteron-gold (d-Au) and proton-lead (p-Pb) collisions
at ultra-relativistic energies. We calculate microscopic distributions of produced
charged hadrons in the framework of gluon saturation and provide the distributions
as initial conditions of an established one-dimensional diffusion model, known as
the Relativistic Diffusion model.

The significance of this work stems from its exploration of particle production in
asymmetric collisions at ultra-relativistic energies, offering a valuable approach to
gain a deeper understanding of the consequences of gluon saturation in high-energy
collisions.

1.1. Motivation

The Standard Model of particle physics serves as a comprehensive framework that
encompasses the entire spectrum of particles and accurately predicts a wide range
of physical phenomena. The model is rooted in the theory of quantum fields and
relies on the principle of local gauge invariance. It incorporates three fundamental
forces: the strong force, the weak force, and the electromagnetic force. At higher
energies the strong force becomes the dominant interaction. In this thesis our focus
is exclusively on the interactions governed by the strong force.

Quantum Chromodynamics (QCD), the theory that describes the strong force, con-
siders color-charged particles known as quarks and gluons. QCD also describes the
transition to color-neutral hadrons, which are classified into two families: mesons
and baryons. Mesons are composed of a quark-antiquark pair, while baryons con-
sist of three quarks, each carrying a different color charge. Through their combi-
nation, the quarks form color-neutral states.

The precise mechanism of confinement and chiral symmetry breaking which elu-
cidates how quarks and gluons combine to form hadrons, remains a complex and
unresolved issue. However, specific processes do not require the precise mechanism
for accurate predictions, due to a fundamental property of QCD.
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1. Introduction

The factorization theorem permits the separation of scales within a process. In
the context of collisions, the entire process can be decomposed into distinct hard-
and soft-scattering components, allowing for the description of hadron production
without the necessity for a precise understanding of the underlying mechanisms
governing hadron formation.

The concept of factorization plays a dominant role also in deep inelastic scattering,
a process where the incident particle is disrupted. By analysing such scattering
at different energy scales, various internal structures of the colliding constituents
have been unveiled. A similar progressive exploration led to the discovery of atoms
and subsequently to the identification of nuclei. It also became evident that nuclei
are composed of protons and neutrons, known as nucleons. Going even further, the
current understanding in the field reveals that nucleons themselves are comprised
of quarks and gluons.

A comparable methodology is employed in the study of particle production in
heavy-ion collisions at relativistic energies, providing an alternative perspective on
the underlying processes. In this context, the projectiles involved are hadronic
particles such as protons, deuterons, or lead nuclei. Asymmetric heavy-ion colli-
sions introduce distinct energy scales and reveal diverse aspects of the underlying
physical phenomena. Nevertheless, these processes cannot be adequately analysed
through standard perturbative methods that rely on the assumption of a small
coupling constant and an initial point-like particle.

QCD-based calculations within the framework of quantum field theories necessi-
tate the appropriate treatment of regularization and renormalization techniques.
Regularization is employed to handle singularities arising from unknown processes
at higher energies, while renormalization is utilized to address singularities result-
ing from self-interactions. To take these effects into consideration, the coupling
constant, denoted as αs, becomes energy-dependent. This is called running cou-
pling.

The behaviour of the running coupling of QCD distinguishes it from other cou-
plings of the Standard Model. Figure 1.1 illustrates the running coupling of QCD,
demonstrating that at higher energies, the theory exhibits asymptotic freedom.
Conversely, at lower energies, QCD enters a non-perturbative regime, character-
ized by the phenomenon of confinement.

The transition from perturbative to non-perturbative QCD is characterized by the
energy scale ΛQCD ≈ 200MeV. At energies below ΛQCD, the standard perturbative
loop expansion ceases to be a reliable method of calculation.

Various methods have been developed to describe the non-perturbative regime of
QCD. One such method is lattice QCD, which allows for the study of static prop-
erties within the theory. However, lattice QCD faces limitations when applied to
dynamic collisions, and it becomes particularly challenging to incorporate fermions
due to the sign problem.
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1.1. Motivation

Figure 1.1.: Energy dependence of the Quantum Chromodynamics (QCD) cou-
pling αs(Q

2) based on renormalization at higher loop-order. The ini-
tial energy scale is set to the mass of the Z-boson, MZ . At smaller
energies, the strong coupling constant αs increases, leading to a non-
perturbative regime. Figure taken from Bethke [1].

In the present understanding, the production of hadrons in heavy-ion collisions at
relativistic energies is primarily governed by the non-perturbative regime of QCD.
As a consequence, direct calculations of hadron production from first principles
are unfeasible at the current juncture. But, investigations have been conducted
to develop effective theories and phenomenological models that allow to describe
multiple aspects of hadron production. These include the framework of gluon
saturation and the theory of the Color Glass Condensate.

The abundance of initial and produced particles in heavy-ion collisions allows to
conceptualize these collisions as many-body systems. As a result, both relativis-
tic hydrodynamics and statistical diffusion models can be employed to effectively
describe various aspects of the process of hadron production.

Acquiring insights into the thermalisation process of the system’s macroscopic
degrees of freedom holds substantial significance, as the system is anticipated to not
completely attain its equilibrium state due to the hadronisation process. Therefore,
hadron production can be explained by effects of hot or cold nuclear matter [2].

11



1. Introduction

Figure 1.2.: Schematic phase diagram of Quantum Chromodynamics. The tem-
perature T and the baryon potential µB define the physical state of
the system. The baryon potential µB indicates the number of baryons
relative to the number of hadrons. Relativistic heavy-ion collisions at
LHC energies are expected to be located in the region of high temper-
atures and small baryon potential, between the hadronic phase and
the Quark-Gluon Plasma. Figure taken from Baym [3].

Figure 1.2 depicts a schematic representation of the QCD phase diagram. Heavy-
ion collisions involving a significant number of participating nuclei, such as sym-
metric Pb-Pb collisions with approximately 300 participants, are anticipated to
exhibit a larger presence of hot nuclear matter.

In recent experiments at the Large Hadron Collider (LHC) certain regions attain
temperatures high enough to produce a novel state of matter called the Quark-
Gluon Plasma (QGP). Following the deconfinement phase, the plasma cools down,
leading to confinement at the critical temperature.

In contrast, asymmetric heavy-ion collisions such as p-Pb collisions, are anticipated
to exhibit more pronounced effects of cold nuclear matter, as discussed in [4]. To
account for these effects, an accurate description of the initial state is essential.
The parton model, an effective model for the structure of the proton, provides
universal distributions known as parton distribution functions, which are employed
to describe the initial state.

12



1.2. State of the art

The determination of these parton distribution functions is achievable through
alternative experiments, such as conducted at the Hadron–Electron Ring Accel-
erator (HERA), and they are applied by invoking the factorization theorem of
QCD. Furthermore, the shift from proton to heavy-ion initial states introduces
supplementary effects, including shadowing phenomena.

In the context of our research, a significant aspect within the framework of the
parton model pertains to the behaviour of the gluon distribution at small momenta
relative to the total momenta. Empirical observations reveal a continuous increase
in gluon content at lower fractional momenta, giving rise to concerns about the
unitarity of the distribution. This issue arises due to the absence of experimental
data for very small fractional momenta.

In response to these challenges, a number of researchers have formulated an effec-
tive theoretical approach termed the Color Glass Condensate (CGC). This frame-
work offers a more comprehensive means of gluon distributions. This theory pre-
dicts the saturation of gluons through gluon recombination, a crucial characteristic
of non-abelian gauge theories.

In the CGC regime, the dynamic energy scale transitions from ΛQCD to a hard
probe scale, called the saturation scale Qs. This scale is instrumental in predicting
cold nuclear matter effects in hadron production within heavy-ion collisions, and
it aligns with the kT -factorization scheme.

Exploring baryon stopping is a promising approach to deepen our understanding of
cold nuclear matter effects, particularly as it is expected to manifest shortly after
the collision. Alongside our investigation of hadron production in asymmetric
heavy-ion collisions at relativistic energies, the study of baryon stopping holds
significant importance. Experimental investigations on this matter have already
taken place at the BNL Relativistic Heavy-Ion Collider (RHIC) [5].

After outlined various aspects concerning hadron production in heavy-ion collisions
at relativistic energies, we will now provide an overview of previous studies that
have laid the groundwork for our present research.

1.2. State of the art

A recently published paper from the ALICE collaboration provides a comprehen-
sive overview of the field of heavy-ion collisions, with a specific focus on the effects
of hot matter [6].

Earlier investigations concerning p-Pb collisions at energies of
√
sNN = 5.02TeV

are documented in [7, 8]. In these studies, calculations of pseudorapidity distribu-
tions for produced charged hadrons were conducted using comparable microscopic
frameworks.
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1. Introduction

This includes calculations with the AMPT event generator [9] as well as with
the impact-parameter dependent CGC (b-CGC) model [10]. Both show good
agreement with the centrality-dependent experimental data. However, at ultra-
peripheral collisions some significant deviations can be observed, resulting in un-
derestimating the hadron production in that region.

Furthermore, in [11] predictions for cold nuclear matter effects for p-Pb collisions
at

√
sNN = 8.16TeV have been presented and are considered as state of the art.

One of the calculations incorporated in this study and originating from [12] entails
centrality-dependent calculations for the pseudorapidity distributions of produced
charged hadrons. However, their focus is exclusively on gluon-gluon interactions.
Additionally, the transformation to pseudorapidity was performed using an effec-
tive mass, rather than considering the specific masses of the individual hadron
species and the exact transformation.

The origin of the Relativistic Diffusion model (RDM), a three source phenomeno-
logical diffusion model, can be traced back to [13]. In a further paper [14], this
model was used to investigate the experimental data from Phobos for d-Au and
Au-Au collisions. In this context, the model utilizes delta distributions as initial
conditions, which were replaced in further studies by Gaussian distributions. Sub-
sequent refinements of the RDM for Pb-Pb collisions were undertaken in studies
conducted in [15–17], whereas these advancements were also compared to p-Pb
collisions in [18].

1.3. Outline

This thesis examines charged-hadron production in heavy-ion collisions at ultra-
relativistic energies, with a primary focus on asymmetric collisions. In chapter 2,
we provide an introduction to the kinematics of heavy-ion collisions at relativistic
energies.

In section 2.1 we initiate our discussion by formulating relativistic momenta, ac-
counting for the distinctive momentum direction inherent in heavy-ion collisions.
To ensure a well-behaved Lorentz quantity, we introduce the concept of rapidity
which is determined individually for each particle species. By utilizing rapidity, we
can establish the beam rapidity and the nucleon-nucleon center of mass frame of
reference. This specific reference frame holds notable significance as it establishes
the context in which our theoretical computations have been conducted.

To be able to compare our theoretically calculated distributions with experimental
data, it is essential to establish a quantity that measures unidentified particles.
For this, we introduce section 2.2 the concept of pseudorapidity and examine the
transition between pseudorapidity and rapidity, along with its observable effects.
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1.3. Outline

In the final section, 2.3, of the kinematical introduction we examine the Glauber
Model which provides a geometric extrapolation of collision participants. Fur-
thermore, we discuss the definition of centrality classes, a concept that will be
extensively utilized in the subsequent results section.

In chapter 3, we provide an overview of the fundamentals of the parton model,
along with its extensions related to gluon saturation. We also outline the DGLAP
equation which describes the parton distribution functions within the initial pro-
ton. We discuss the framework of gluon saturation, which describes the gluon
distribution at small-x and non-zero transverse momenta, and introduce the con-
cept of rapidity evolution. For the actual calculations, we review two models of
the gluon distribution: the GBW and the KLN model.

After the introduction of the parton distribution functions, we outline the concept
of QCD factorization in chapter 4. In order to characterize hadron production, we
will introduce the kT -factorization, where hadrons are produced from interactions
between small-x gluons, and the hybrid-factorization, which yields hadrons from
quark-gluon interactions.

In contrast to the microscopic description based on the parton model, chapter 5
presents a macroscopic model known as the Relativistic Diffusion model. This
model is phenomenological and operates in a non-equilibrium statistical framework
in one dimension. It offers a statistical description of the process from the stopping-
inspired phase to subsequent time intervals associated with hadron production
within the context of heavy-ion collisions.

Chapter 6 focuses on the presentation of the extended Relativistic Diffusion model
and its details. It also elaborates on the numerical approach utilized for the calcula-
tions. Subsequently, we present two calculations of the pseudorapidity distribution
for central collisions at LHC energy. These calculations are conducted in order to
compare and contrast the two models, GWB and KLN, of the unintegrated gluon
distribution. Additionally, the pseudorapidity distributions resulting from the dif-
fusion process of the fragmentation sources for intermediate time intervals and the
transverse momentum distribution of the gluon-gluon source for three pseudora-
pidites are displayed.

In the next section, we present centrality-dependent calculations for Pb-Pb colli-
sions at LHC energy of

√
sNN = 5.02TeV to demonstrate the symmetric limit of

our predominantly asymmetric model description.

Subsequently, we discuss our computations for minimum bias collisions at three
energies:

√
sNN = 200GeV, 5.02TeV, and 8.16TeV. This allows us to investigate

the impact of increasing collision energies on our model.

In chapter 7, various centrality-dependent calculations for the pseudorapidity dis-
tribution of hadron production are presented. We start to discuss the results for√
sNN = 200GeV d-Au collisions. Despite the energy not being as high as energies

15



1. Introduction

for collisions at the LHC, these collisions are still of great interest for investigation.
The experimental data for these collisions cover a wide range of pseudorapidity val-
ues, including regions close to the beam rapidity.

Continuing to the following section, we present our calculations of centrality-
dependent pseudorapidity distributions at

√
sNN = 5.02TeV alongside experi-

mental data obtained from ATLAS and ALICE. The calculations exhibit slight
variations due to different centrality classes.

Of particular significance are the computations of centrality-dependent pseudora-
pidity distributions related to the ALICE data, depicted in figure 7.5. The recently
available experimental data covers a pseudorapidity range of |η|<5, offering novel
insights that are especially pertinent to the understanding of ultra-peripheral col-
lisions.

In the last section we provide an analysis of our model calculations for p-Pb col-
lisions at

√
sNN = 8.16TeV and present predictions for the pseudorapidity dis-

tributions up to approximately |η| < 4. Additionally, this section explores the
centrality-dependent behaviour of a key model parameter, the initial saturation
scale Q0.

Finally, in chapter 8, we conclude the discussion and provide an outlook for further
developments in describing cold nuclear matter effects on hadron production in
relativistic heavy-ion collisions.
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2. Kinematics of high-energy
collisions

In this chapter, we present the essential concepts and variables that are relevant to
relativistic heavy-ion collisions, with a strong emphasis on asymmetric collisions.
After important studies, like [19], numerous concepts have been developed to ad-
dress challenges in describing asymmetric collisions, where the laboratory frame of
reference differs from the frame in which theoretical calculations can be performed.
For symmetric collisions, these frames coincide.

The kinematics of high-energy collisions have been extensively studied and summa-
rized in various publications, and in this study, we follow the approach presented
in [20] and [21].

First, we describe symmetric collisions and establish the nucleon-nucleon center of
mass frame of reference. We define the concept of rapidity and the beam rapidity,
which are essential in characterizing the initial particle motion in such collisions.
Next, we derive the important parameter ∆y, which allows us later to transform the
system in which our calculations are performed into the experimental laboratory
system.

Before the collisions occur, there are typically two particle beams, each of which
can be described by their respective 4-momenta, denoted by pµ = (p0, px, py, pz).
With the particle mass m, the relativistic energy relation of each particle beam is
given by the equation

(mc2)2 = pµpµ, (2.1)

which we can rearrange to their energy

E2 = (mc2)2 + (pc)2, (2.2)

where p describes the three-momentum of the particle and p0 = E/c. Due to the
nature of the collision, we can always define a distinguished axis along which the
momentum of the particles can be decomposed into its longitudinal component pz
and its transverse component pT , as follows

p2 = p2z + p2
T . (2.3)

17



2. Kinematics of high-energy collisions

Further splitting of the momentum is not needed due to the expected spherical
symmetry.

In the context of heavy-ion collisions, defining the initial energy of a particle within
the beam can be accomplished by understanding the electromagnetic coupling be-
tween the beam particles and the magnetic setup in the laboratory frame of refer-
ence. The frame of reference plays an important role in the context of asymmetric
collisions. The assumption is that no transverse momentum in the beam exists,
and the acceleration of the beam particles is facilitated by the external magnetic
field.

The longitudinal component of the momenta, denoted by pz, is determined by the
experimental magnetic setup. With heavy-ions as beam particles, their longitudi-
nal momentum, referred to as pbeam, is defined by

pbeam =
Z

A
pz, (2.4)

where Z is the number of protons and A the mass number of the beam particle. In
other words, while Z protons couple to the external magnetic field, the presence
of the rest mass of the nuclei suppresses this coupling.

Before moving to asymmetric collisions, the definition of the center of mass frame
of reference for symmetric collisions is straightforward. In the laboratory frame,
the particle four-momenta of the two colliding beams are denoted as pa and pb,
and their momenta are related by

pa = −pb. (2.5)

By employing the above assumption along with the total energy of the collision,
we can define the Mandelstam variable s by

s := (pac+ pbc)
2 = (Ea + Eb)

2 = E2
cms (2.6)

Considering equal energy for both beams, we get Ecms = 2E. Based on these
definitions we can define the nucleon-nucleon center of mass frame of reference
by √

s = A
√
sNN . (2.7)

This follows by the fact that each particle beam consists of A ions, resulting in a
total of 2A ions. It is important to note that in this frame of reference, the two
nuclei approach each other with the same boost factor [21].

In the subsequent section, we proceed to a more precise depiction of the trans-
formations across various frames of reference, an important consideration in the
analysis of asymmetric collisions.
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2.1. The rapidity and identified particles

2.1. The rapidity and identified particles

In this section, we aim to define a quantity that allows the transformation of the
initial laboratory frame of reference into a co-moving system where each nucleon
has the same velocity.

In symmetric collisions, both frames of reference coincide, meaning they are equiv-
alent and lead to the same description of the physical processes. However, in asym-
metric collisions, the two frames of reference differ significantly, and the distinction
between the laboratory and the nucleon-nucleon system becomes important.

To facilitate the transformation of relativistic momenta, it is common to introduce
the concept of the rapidity y, as defined by

y =
1

2
ln

(︃
p0 + pz
p0 − pz

)︃
, (2.8)

where pz is the particle momentum in the direction of the beam axis and p0 its
energy [20]. Mathematically, one could go deeper into the concept of rapidity, pro-
viding additional details and formalisms, like the definition of light-cone variables.
However, for our purposes, the given definition of rapidity is sufficient.

Rapidity is a dimensionless quantity that experiences a transformation under longi-
tudinal Lorentz boosts by an additive constant. To illustrate this, we will establish
the center of mass rapidity, denoted as ycms, which can be defined from an arbi-
trary frame of reference, such as the laboratory frame of reference, following the
approach presented in [21].

In an arbitrary frame of reference, the center of mass energy and momentum can
be expressed as E = γcms

√
s and p = βcmsγcms

√
s, respectively, where γ represents

the Lorentz factor and is defined as γ = 1/
√︁
1− β2, with β = v/c being the ratio

of the velocity v to the speed of light c.

Using the definition of the rapidity, we can derive the center of mass rapidity,
denoted as ycms, as follows

ycms =
1

2
ln

(︃
γcms

√
s+ βcmsγcms

√
s

γcms
√
s− βcmsγcms

√
s

)︃
=

1

2
ln

(︃
1 + βcms

1− βcms

)︃
. (2.9)

On the other hand, a general longitudinal Lorentz boost with β is given by(︃
E∗

p∗∥

)︃
=

(︃
γ −γβ

−γβ γ

)︃
×
(︃
E
p∥

)︃
, (2.10)

where the transverse momentum remains the same, p∗⊥ = p⊥. In rapidity space,
the inverse Lorentz boost is given by

y =
1

2
ln

(︄
γ(E∗ + βp∗∥) + γ(βE∗ + p∗∥)

γ(E∗ + βp∗∥)− γ(βE∗ + p∗∥)

)︄
. (2.11)
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After rearranging and splitting the logarithm, the expression becomes

y =
1

2
ln

(︄
E∗ + p∗∥

E∗ − p∗∥

)︄
+

1

2
ln

(︃
1 + βcms

1− βcms

)︃
. (2.12)

Using the definition of the rapidity and the expression for the center of mass
rapidity, the transformation property of longitudinal Lorentz boosts in rapidity
space can be written as follows

y = y∗ + ycms. (2.13)

After demonstrating that rapidity undergoes longitudinal Lorentz boosts with an
additive constant only, it is important to highlight that the concept of rapidity can
also be extended to the transverse plane.

In the context of heavy-ion collisions, we can define the beam rapidity ybeam in the
laboratory frame of reference by using equation (2.4), which leads to

ybeam =
1

2
ln

(︄
2Zpz√︁

(A mc)2 + (Zpz)2 − Zpz
+ 1

)︄
, (2.14)

where m denotes the proton mass. We employ the approximation that neutrons
possess the same mass as protons. Expanding with

√︁
(A mc)2 + (Zpz)2+Zpz, we

can rewrite the previous expression as follows

ybeam =
1

2
ln

⎛⎝2Zpz

(︂√︁
(A mc)2 + (Zpz)2 + Zpz

)︂
A mc

+ 1

⎞⎠ . (2.15)

As shown, each longitudinal Lorentz boost can be expressed by an additive con-
stant. This constant between the beam rapidities for each individual particle beam
in the laboratory frame of reference and the center of mass system can be expressed
by their difference in rapidity space ∆y.

For general two particle beams with different ion configurations (Z1, A1) and
(Z2, A2), but with the same initial longitudinal momentum, pz, given by the ex-
perimental setup, ∆y can be calculated with p = δ mc as follows

∆y ≡ ybeam,2−ybeam,1 =

1

4

⎛⎝ ln

(︃
2Z1/A

2
1 δ

(︃√︂
A2

1 + Z2
1δ

2 + Z1δ

)︃
+ 1

)︃

− ln

(︃
2Z2/A

2
2 δ

(︃√︂
A2

2 + Z2
2δ

2 + Z2δ

)︃
+ 1

)︃ ⎞⎠ .

(2.16)
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2.1. The rapidity and identified particles

For relativistic collisions, we can take the limit of δ approaching infinity, which
provides a good approximation in that case. By using the continuity property of
the logarithmic function, we can move the limit inside the logarithm. Consequently,
we obtain the same expression for ∆y as mentioned in [21]

∆y ≈ 1

2
log

(︃
Z1A2

Z2A1

)︃
. (2.17)

It is interesting to note that ∆y is independent of the initial momenta and solely
depends on the ion configuration. As an example, for p-Pb collisions, we find
for momenta greater than p = 12mp, where mp denotes the proton mass, an
relative error in comparison to the exact solution of approximately 1%, where
∆y = 0.4654.

With the definitions provided above and yi := ybeam,i, we can establish a symmetric
frame of reference called the nucleon-nucleon center of mass frame of reference. In
this frame, the beam rapidity ybeam,NN of the two particle beams has the same
magnitude but opposite signs, defined by

ybeam,NN =
y1 + y2

2
. (2.18)

For completeness, as derived in [21], the beam rapidity for the center of mass frame
of reference ybeam,cms can also be defined by

ybeam,cms =
y1 + y2

2
+

1

2
ln

(︃
m1e

y1 +m2e
y2

m1ey2 +m2ey1

)︃
. (2.19)

As we already have defined the collision energy in the nucleon-nucleon center of
mass frame of reference for symmetric collisions in equation (2.7), we can now
extend this definition to include asymmetric collisions based on the beam rapidity.
The collision energy is given by

√
sNN = mc2 exp(ybeam,NN ). (2.20)

After exploring the description of heavy-ion collisions and the idea of rapidity,
it’s important to mention that using rapidity involves knowing the masses of the
underlying particles. However, in experimental settings, it is often challenging to
identify the particle species directly. As a consequence, it becomes necessary to
expand our description of heavy-ion collisions to include unidentified particles.
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2. Kinematics of high-energy collisions

2.2. The pseudorapidity and unidentified particles

The concept of rapidity considers both the mass of the particle and its momentum.
However, in cases where particle identification is either not feasible or not desired,
an alternative quantity called pseudorapidity η can be utilized. The primary ref-
erence for this section is [20].

Beginning with the definition of rapidity from (2.8) with the relativistic limit of
|p| ≫ m, we arrive at the definition of pseudorapidity as follows

η =
1

2
ln

(︃
|p|+ pz
|p| − pz

)︃
(2.21)

Having established the definition of pseudorapidity, we can now treat both rapidity
and pseudorapidity as independent variables, without assuming the relativistic
limit. The derivation of the transformation between rapidity and pseudorapidity
is of particular interest as it allows for a direct comparison of later theoretical
calculations with experimental data.

Starting with the expression for the rapidity given in equation (2.8), we can derive
the following equivalent forms

ey =

√︃
p0 + pz
p0 − pz

, e−y =

√︃
p0 − pz
p0 + pz

. (2.22)
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Figure 2.1.: The left displays a contour plot of the Jacobian J = dy/dη(η, pT )
with a fixed mass which is set to the pion mass. The lines on the plot
indicate the values of J with increments of ∆J = 0.1. The right plot
illustrates a fixed value of the Jacobian J = 0.8 for three different
hadron masses: pions, kaons and protons (from bottom to top).
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2.2. The pseudorapidity and unidentified particles

To proceed with defining the transformation, we introduce the transverse mass,
denoted as mT , and define it by

m2
T = (mc)2 + p2

T . (2.23)

It is noteworthy to mention that the transverse mass is a quantity with the unit
of momentum. Furthermore, expressions for p0 and pz can be obtained from equa-
tion (2.22), given by

p0 = mT cosh y, pz = mT sinh y. (2.24)

Having established these definitions, we proceed to derive the transformations
between rapidity and pseudorapidity. Note that we omit the vector notation for
pT in the following. The first transformation expression, denoted as η(y, pT ), is
given by

η(y, pT ) =
1

2
ln

⎛⎝
√︂
m2

T cosh2(y)−m2 +mT sinh(y)√︂
m2

T cosh2(y)−m2 −mT sinh(y)

⎞⎠ . (2.25)

The second expression shows the opposite transformation, denoted as y(η, pT ), and
is given by

y(η, pT ) =
1

2
ln

⎛⎝
√︂
p2T cosh2(η) +m2 + pT sinh(η)√︂
p2T cosh2(η) +m2 − pT sinh(η)

⎞⎠ . (2.26)

It is significant for the later comparison of our calculations with experimental data.
Therefore, we place emphasis on obtaining more details about the transformation
effects. Figure 2.1 illustrates the suppression of the transformation in different
regions of momentum space.

Due to the nature of the experimental data, observables in the context of hadron
production in heavy-ion collisions at ultra-relativistic energies are expressed in
pseudorapidity. However, our theoretical calculations are performed on the level
of mass-dependent rapidity and transverse momenta of the produced hadrons.

Consequently, we must perform a transformation of the observable N , representing
the produced charged hadrons, from N(y, pT ) to N(η, pT ). The transformation
takes the form of

d2N (η, pT )

dη dpT
=

dy(η, pT )

dη

d2N (y, pT )

dy dpT
. (2.27)
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2. Kinematics of high-energy collisions

The factor dy(η, pT )/dη is denoted as the Jacobian J and can be calculated from
the above mentioned transformation expressions. In the literature, multiple forms
of the expression are used. One of the most straightforward expressions is

dy(η, pT )

dη
=

mT cosh(η)√︂
m2 +m2

T cosh2(η)
. (2.28)

However, an alternative representation of the Jacobian can also be found, as pre-
sented in [16], given by

J(η, pT ) ≡ cosh(η)
[︁
1 + (m/pT )

2 + sinh2(η)
]︁−1/2

. (2.29)

This presents an opportunity to define an effective Jacobian ˜︁J by introducing a
parameter p := m/ ⟨pT ⟩, which represents the fraction between an effective mass
and the mean transverse momentum. With the approximation η ≈ y, we can
simplify equation (2.27), allowing us to integrate over pT without directly involving
the transformation to pseudorapidity. The resulting expression takes the form

dN

dη
= ˜︁J (p)

dN (y)

dy
(2.30)

Figure 2.2.: The diagram shows the Jacobian ˜︁J = dy/dη(p) with an effective
parameter p := m/ ⟨pT ⟩ for an average mass of ⟨m⟩ = mπ and
various average transverse momenta ⟨pT ⟩. The values of ⟨pT ⟩ are
0.4, 0.6, 0.8, 1.2, 2, 4GeV/c (from bottom to top). The Jacobian shows
significant suppression in the central region, corresponding to the mid-
rapidity regime. Figure taken from Wolschin [22].
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2.3. The Glauber model and centrality classes

In figure 2.2, we illustrate the influence of the effective Jacobian for various common
mean transverse momenta. For the chosen transverse momenta, the impact of the
Jacobian is negligible at η>2.

While we could make the assumption η≈y, we refrain from doing so to thoroughly
explore the implications of different hadron masses. Instead, we will maintain
the full transformation from rapidity to pseudorapidity to ensure a comprehensive
analysis.

From an experimental perspective, there is an alternative way to define pseudora-
pidity, which characterizes the momentum of unidentified particles. This approach
is based on an effective angle θ, defined in the laboratory frame, which measures
the angle between the particle trajectory and the beam axis. Based on [23] the
effective angle θ can be derived using the definition of pseudorapidity 2.21 and the
equation

cos(θ) =
pz
|p|

. (2.31)

Using this relationship, the pseudorapidity η is then defined as

η = ln

(︃
1− cos (θ)

1 + cos (θ)

)︃
= − ln (tan(θ/2)) . (2.32)

After defining the relevant kinematical variables for describing relativistic hadrons,
the final section introduces a concept to address the potential geometric impli-
cations arising from the collision. This consideration becomes important when
dealing with asymmetric collisions.

2.3. The Glauber model and centrality classes

So far, we have been treating the beam particles as point-like entities. However,
nuclei are inherently extended objects, and this holds true at all scales relevant to
heavy-ion collisions at relativistic energies.

The extended nature of nuclei introduces a central aspect to consider in the analysis
and interpretation of experimental results, the collision geometry. The spatial ar-
rangement and overlap of these extended objects profoundly influence the collision
dynamics. Therefore, comprehending and accurately accounting for this collision
geometry is essential for a thorough understanding of the underlying physics in
heavy-ion collisions.

In the center of mass frame, prior to the collision, the incoming two nuclei can be
envisaged as two thin disks due to Lorentz contraction along the longitudinal di-
rection. The extent of overlapping of these disks may vary in different collisions.
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2. Kinematics of high-energy collisions

Figure 2.3.: Schematic classification of heavy-ion collisions based on the Glauber
Model. Produced charged hadrons Nch are related to Glauber-
calculated quantities: the impact parameter b and the number of par-
ticipants Npart. The fraction of the measured cross section to the total
cross section σ/σtot defines the centrality classes, where 0-5% indicate
central collisions and smaller fractions of the cross section correspond
to more peripheral collisions. Figure taken from Miller [24].

Based on the collision’s geometry, several quantities can be predicted, where for
our study the number of collision participants and the centrality classes are of
importance. The conventional approach to compute these geometric quantities is
through a probabilistic model known as the Glauber model, introduced in [25],
which we elucidate in the subsequent section.

The probabilistic description begins with the consideration of the nucleon density
within nucleus A. This density is denoted by ρ(z,b) and depends on both the
longitudinal position z and the transverse position b, which also refers to the
impact parameter.
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2.3. The Glauber model and centrality classes

In many calculations, the nuclear profile function, or thickness function, emerges
as the central quantity of interest. This function is defined as follows

TA(b) =

∫︂ ∞

−∞
dz ρ(z,b). (2.33)

With the normalization condition
∫︁
db TA(b) = 1, the individual probability of a

nucleon-nucleon interaction at a specific impact parameter b is TA(b)σinel
NN . Now,

when considering a proton-nucleus collision, the probability that the proton inter-
acts with n nucleons within the nucleus is given by the expression

P (n,b) =

(︃
A

n

)︃[︁
1− TA(b)σ

inel
NN

]︁A−n [︁
TA(b)σ

inel
NN

]︁n
, (2.34)

where the first factor denotes the binomial coefficient, σinel
NN represents the inelastic

nucleon-nucleon cross-section, and A is the nucleon number in the nucleus. We
proceed to calculate the number of collisions, denoted as NpA

coll, for a given impact
parameter as follows

NpA
coll(b) ≡ NA

part(b) =

A∑︂
n=0

nP (n,b) = A TA(b)σ
inel
NN , (2.35)

where NA
part signifies the number of participants in nucleus A. It coincides with the

number of collisions Ncoll since each nucleon in nucleus A interacts only once. The
total number of participants, including the colliding proton, is then given by

Npart = 1 +NA
part(b). (2.36)

An additional property that can be determined within this model is the geometric
inelastic cross-section of the collision, denoted as σinel

pA . It can be calculated as
follows

σinel
pA =

∫︂
db

A∑︂
n=1

P (n,b) =

∫︂
db
[︂
1−

(︁
1− TA(b)σ

inel
NN

)︁A]︂
=

∫︂
db
[︁
1− exp

(︁
−A TA(b)σ

inel
NN

)︁]︁
, (2.37)

where the limit of large A has been considered for the last equality.

The Glauber model employs distinct underlying distributions, such as the Fermi
distribution or the Wood-Saxon distribution, to characterize the geometry of the
Lorentz-contracted nucleus involved in the collision. It predicts then the extent
of overlap between the two colliding beams. Commonly, the nucleon density is
described by a Fermi distribution formulated as follows

ρ(r) = ρ0
1 + w(r/R)2

1 + exp
(︁
r−R
a

)︁ , (2.38)
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2. Kinematics of high-energy collisions

where ρ0 represents the nucleon density at the nucleus center, while R denotes the
nuclear radius. The parameters a characterizes the skin depth and w accounts for
deviations from a spherical nucleon shape [24]. An illustrative example employed
at RHIC is 197Au, which is characterized by the parameter R = 6.38 fm, a =
0.535 fm and w = 0. Another example is 208Pb with the parameters R = 6.62 fm,
a = 0.546 fm and w = 0 [26].

The same conceptual framework can also find application in the context of nucleus-
nucleus collisions. In addition, it is important to highlight that the Glauber model
offers two distinct implementations for calculating these geometric properties: the
optical-limit approximation and the Monte Carlo approach. However, due to our
specific focus on asymmetric collisions, we shall abstain from further exploration
of these aspects. Comprehensive details on these aspects are expounded in [24].

One particular expression that has been instrumental in our calculations is of
significance. Analogous to equation (2.36), this expression pertains to the total
number of participants in nucleus-nucleus collisions, which is given by

Npart(b) = NA
part(b) +NB

part(b), (2.39)

where NA
part and NB

part represent the numbers of participants for nuclei A and
B. Typically, the characterized geometric properties exhibit a dependence on the
impact parameter b. However, in order to facilitate the comparison of these quan-
tities with experimental observations, the Glauber model introduces the concept
of centrality classes.

Figure 2.3 provides a schematic illustration of the hierarchical classification of
heavy-ion collisions based on their geometric attributes. The average over all
possible collision geometries is called minimum bias.

This concludes the introduction to the kinematics of relativistic heavy-ion colli-
sions. The next chapter introduces the parton model and the framework of gluon
saturation.
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In the preceding chapter, we outlined the kinematics of heavy ions at relativistic
energies. Moreover, we started to shift from considering point-like nuclei to con-
templating geometrically extended entities. In the current chapter, our objective
is to deepen our comprehension of the internal structures inherent to nuclei and
elucidate their correlation with models inspired by QCD.

We begin by laying out the concept of deep inelastic scattering. This involves
introducing partons within the infinite momentum frame and using a technique
called QCD factorization to untangle universal patterns, such as the parton distri-
bution functions. As we gradually move away from the initial assumption of the
infinite momentum frame, we can consider the inclusion of transverse momenta.
This shift leads us into the domain of gluon saturation framework, where we can
define the unintegrated gluon distribution.

The conceptional background of processes in QCD can be traced back to [27], where
the landscape of semi-hard processes is examined. For the scope of our investi-
gation, our exclusive focus centers on the significance of deep inelastic scattering
(DIS), where we follow an introduction from [28].

These processes entail the collision of electrons with more extended entities, such
as e+p or e+A collisions. The underlying interactions involve the exchange of
photons. These photons can also serve as a simplified framework to conceptual-
ize gluon exchange. An experimental configuration for the measurement of such
scatterings is provided by the Hadron–Electron Ring Accelerator (HERA).

Our exploration commences by delving into the phenomenon of electron-nucleus
scattering, focusing on a configuration where a photon is exchanged between an
electron and a nucleus, denoted as N.

The probing photon employed a wavelength denoted as λ∼1/Q, encapsulating mo-
menta described by Q. The momentum of the photon is related to its 4-momentum
by Q2 = −q2.

For nucleus N, the momentum associated with the nucleus is represented by pN .
The nucleus possesses a mass designated as MN . The invariant mass, symbolized
as W , is defined as

W 2 = (pN + q)2 =M2
N + 2pN · q + q2. (3.1)
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3. Quarks and gluons

Based on this foundation, two assumptions come into play: In the scenario where
Q2 ≫ M2

N , the scattering process is classified as deep. If we consider W 2 ≫ M2
N ,

the scattering event takes on the characteristic of being inelastic.

Let us trace the evolution as we systematically elevate the energy of the electron,
thereby causing a reduction in the wavelength λ of the probing photon.

Our investigation commences within the regime λ ≫ RN , where RN signifies the
nucleus’s radius. In this particular scenario, the photon perceives the nucleus as
a point-like entity, resulting in elastic electron-nucleus scattering with W = MN .
To quantify this, we introduce the parameter

xN ≡ Q2

2pN · q
=

(︃
Q2

2MNν

)︃
lab

= 1, (3.2)

where ν denotes the electron’s energy loss. As previously mentioned, when xN = 1,
the photon perceives the nucleus as a point-like particle.

However, as the energy increases, the value of xN diminishes below 1, implying the
existence of an internal structure. This phenomenon is illustrated by the peak of
xN (Q2) shifting to xN = 1/A, where A represents the number of bounded point-
like particles within the nucleus, called nucleons. That is conceptualized as deep
(Q2 ≫M2

N ) inelastic (W 2 ≫M2
N ) electron-nucleus scattering.

As the energy scale increases, a corresponding progression of observed substruc-
tures ensues, facilitating the interpretation of the nucleon, particularly the proton,
as an extended entity endowed with momentum p. The definition of x is then
given by

x =
Q2

2p · q
. (3.3)

Analogous to the identification of nucleons, an observation arises from the energy
dependence of the variable x, which manifests a peak at x = 1/3, providing an
indication of the presence of valence quarks within the proton. The variable x is
called the Bjorken scaling variable [29].

As we increase the energy even further, an intriguing phenomenon known as
Bjorken scaling violation becomes evident. However, this deviation does not stem
from additional substructures within the quarks. Instead, it is a manifestation of
QCD effects exerted on quarks and gluons with the effects of the running coupling
of the QCD constant αs.

In the upcoming sections, we undertake a thorough investigation into the quark
and gluon composition within the proton, with a particular focus on the context of
relativistic heavy-ion collisions. We commence by introducing the Parton model,
a theoretical construct employed to describe Parton distribution functions. Sub-
sequently, we investigate the concept of gluon saturation within dense systems.
Finally, our discourse concludes by outlining two distinct models that provide an
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3.1. The Parton model

effective description of the gluon distributions pertinent to our subsequent compu-
tational analyses.

3.1. The Parton model

Following our exploration of the fundamental structure within the proton in the
previous section, we now embark on a comprehensive examination of the Parton
model.

We begin by considering the Lagrangian formulation of Quantum Chromodynamics
(QCD) [30], which takes the form of

LQCD = q̄f
(︁
i /D −m

)︁
qf − 1

4
F a
µνF

µν
a , (3.4)

which is invariant under the local SU(3) non-abelian gauge group. This symmet-
rical group introduces the notion of three distinct color charges. The primary con-
stituents of the particle framework are represented by the substantial quark fields,
designated as qf , and belong to the fundamental representation of the SU(3) gauge
group.

The concept of local gauge invariance associated with the Dirac operator /D, which
assumes the adjoint representation, introduces the gluon fields. These fields act as
the carriers of the strong force, governing the interactions between particles.

The strength of these interactions, characterized by the strong coupling constant
αs, defines the dynamics underlying the exchange of particles between quark and
gluon fields.

The application of perturbative expansions within this theory gives rise to diver-
gences in observables. To address these divergences and restore meaningful results,
a process known as renormalization needs to be applied. This process involves the
introduction of a new non-physical energy scale denoted as µ and an alteration in
the energy-dependent behaviour of the coupling constant.

The leading-order equation governing the renormalized strong coupling in the min-
imal subtraction (MS¯ ) scheme [28] is expressed as

αs(Q
2) =

αs(µ
2)

1 + b0αs(µ2) log(Q2/µ2)
, (3.5)

where the constant b0 is defined as b0 = (33−2nf )/12π, and the term nf indicates
the count of quark fields. In the context of the MS¯ scheme, the value of nf is set
to nf = 5. An important value for the strong coupling is given at the Z-Boson
mass MZ by

αs(MZ) = 0.117± 0.002. (3.6)
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Our focus now shifts exclusively towards unraveling the internal structure of the
proton. Our review follows reference [28]. For the description of the underlying
physical processes, it is common to use the Bjorken-x, which effectively quantifies
the proportion of momentum held by the fundamental constituents, known as
partons, relative to the proton’s overall momentum.

As previously highlighted, deep inelastic scattering serves as a powerful tool for
probing the underlying composition of the proton. This composition finds descrip-
tion through the proton’s structure function denoted as Fa.

Utilizing the QCD factorization theorem [31] these structure functions can be
universally expressed across all orders of DIS processes, as depicted by the following
equation

Fa(x,Q
2) =

∑︂
i=q,q̄,g

∫︂ 1

0

dy

y
fi(y,Q

2)Ca,i

(︁
x/y, αs(Q

2)
)︁
+O

(︁
Λ2
QCD/Q

2
)︁
, (3.7)

where y is linked to the scattering angle. Both variables x and y are confined
within the range of 0 to 1. Notably, y = 0 corresponds to forward scattering, while
y = 1 signifies backward scattering [28].

The factorization theorem facilitates the disentanglement of short-distance inter-
actions from their long-distance counterparts within the process. In particular, the
introduction of the universal parton density fi accounts for the extended distance
behavior, although its calculation eludes perturbative QCD methodologies. How-
ever, the energy-dependence can be appraised through the evaluation of a specific
evolution equation.

The second component in equation (3.7), denoted as Ca,i, incorporates the short-
distance characteristics of the processes. These short-distance behaviors are spe-
cific to each observable, while the long-distance behavior is deemed universal and
unaffected by the particular process.

According to [28], it is noteworthy to highlight that the structure inherits a collinear
divergence when the gluon is emitted parallel to the incoming quark, along with a
soft divergence when the energy of the emitted gluon approaches zero.

Ca,i can also be reformulated in the context of the splitting functions P , which
can be deduced from the Feynman diagrams corresponding to particular processes.
Further elaboration on the derivation is provided in [28].

For the forthcoming discourse, we introduce the common abbreviation for the
convolution integral as

P ⊗ f :=

∫︂ 1

x

dy

y
fq(y)P

(︃
x

y

)︃
. (3.8)
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The energy dependency of the parton distribution functions (PDF), where we
introduce the quark distribution denoted as q = fq and the gluon distribution as
g = fg, is delineated by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution equation [32]. For the quark distribution function q, this equation takes
the form

∂q(x,Q2)

∂ logQ2
=
αs(Q

2)

2π
(Pqq ⊗ q + Pqg ⊗ g) , (3.9)

where the splitting function Pqg signifies the transition from gluon to quark. The
DGLAP equation for the gluon distribution function g is expressed as follows

∂g(x,Q2)

∂ logQ2
=
αs(Q

2)

2π

(︄∑︂
i

Pgq ⊗ (qi + q̄i) + Pgg ⊗ g

)︄
. (3.10)

The splitting functions can be generally represented as a series expansion in powers
of αs, given by

Pab(αs, z) = PLO
ab (z) + αsP

NLO
ab (z) +O(α2

s), (3.11)

where ab represents the transition from state b to state a. When examining the
initial state of the DGLAP equations, a challenge arises in determining f(x,Q2

0)
through perturbative methods. Therefore, it is common to use a parameterization
of the first moment of parton distribution function xf(x,Q2

0). Its common form is
given by

xf(x,Q2
0) = A xδ(1− x)ν(1 + ϵ

√
x+ γx). (3.12)

In this equation, the parameter A is determined by adhering to summation rules,
while δ and ν respectively delineate the influences at lower and higher values of x
[33], with distinct values applicable to each individual parton. The values of ϵ and
δ include higher-order effects.

The parametrization must adhere to the overall structure of the proton, which
is predominantly governed by three primary sum rules. For the up-quarks, these
rules manifest as follows ∫︂ 1

0
(u− ū) dx =

∫︂ 1

0
uv dx = 2, (3.13)

Similarly, for the down-quarks:∫︂ 1

0

(︁
d− d̄

)︁
dx =

∫︂ 1

0
dv dx = 1. (3.14)

In addition, the principle of momentum conservation must be fulfilled. Thus, we
employ the first moment of the parton distribution functions as given∫︂ 1

0
dz z

(︄∑︂
i

[︁
qi(z,Q

2) + q̄i(z,Q
2)
]︁
+ g(z,Q2)

)︄
= 1. (3.15)
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Figure 3.1.: Parton distribution functions (PDFs) for the proton at next-to-leading-
order xf(x,Q2) using the Martin-Stirling-Thorne-Watt parametriza-
tion (MSTW 2008) are displayed at fixed energy scales: Q2 = 10GeV2

and 104GeV2. Figure taken from Martin [33].

This conservation requirement holds for all values of Q2.

Numerous collaborations engage in the precise determination of the factors in-
herent to such parametrization. An illustration of the outcomes from one such
parametrization is depicted in figure 3.1, showcasing the MSTW2008 parametriza-
tion [33] across two distinct energy scales. This specific parametrization will be
employed in subsequent calculations.

Having established the parton distribution functions for quarks and gluons, the fo-
cus of our discourse now shifts toward elucidating the depiction of gluons exhibiting
low fractional momentum in relation to the overall proton momentum.

3.2. Gluon saturation

In the domain characterized by low momentum fraction of gluons (small-x), the
applicability of the DGLAP equation becomes limited. This leads to the emergence
of an additional rapidity evolution that complements the conventional DGLAP
evolution for the gluon distribution.
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3.2. Gluon saturation

In the historical context, the Gribov-Levin-Ryskin (GLR) equation [34] is the first
non-linear perturbative QCD evolution equation tailored to this specific scenario.
It introduced the concept of parton recombination and the notion of saturation,
thus extending the DGLAP evolution of the gluon distribution [35]. The formula-
tion of this equation is as follows

∂(xg)

∂ lnQ2
= Pgg ⊗ g + Pgq ⊗ q − 81α2

s

16R2Q2

∫︂
dx′

x′
[︁
x′g
(︁
x′, Q2

)︁]︁2
, (3.16)

where x is the usual Bjorken scaling variable in DIS. The equation considers two
gluon ladders recombining into a single gluon ladder, a fan diagram [28].

Further theoretical analyses have revealed that within the realm of small-x, gluons
exhibit a high population density, leading in a dependence within the expansion of
the splitting function xPgg(x) on both the coupling constant αs and the logarithm
of the reciprocal of x, represented as ln(1/x) [28]. Each term within this expansion
takes the form

αn
s ln

n−1(1/x). (3.17)

In scenarios where the condition αs ln(1/x) ∼ 1 holds, the applicability of the
DGLAP expansion for the splitting function becomes limited. This breakdown
is particularly pronounced at low values of x. The second factor represents an
alternate approach in defining the rapidity, denoted as Y . We utilize a distinct
symbol here to emphasize the divergence in the origins of these definitions. The
rapidity Y is expressed as follows

Y = ln(x0/x), (3.18)

where x0 serves as a gauge of the overall system energy. For x = 1, it correlates
with the beam rapidity. In the literature, common values are either x0 = 1 or
x0 = 3× 10−4.

By adopting this definition, the process of resummation can be applied to the split-
ting function. Under the conjecture of logarithmic transverse momentum diffusion
at small-x, coupled with the gluon density saturation within this region [28], the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation [36, 37] surfaces as the
governing equation for rapidity evolution. This equation is expressed for the gluon
distribution fg in the subsequent manner

∂fg
∂Y

= K ⊗ fg = λfg, (3.19)

where K represents the BFKL kernel, and λ signifies its leading eigenvalue [28]. It
is given by λ = 12αs ln 2/π, and the solution can be represented as

fg ∼ eλ ln(x0/x) ∼ (x/x0)
−λ. (3.20)
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3. Quarks and gluons

The interpretation of λ can be understood in terms of the emergence of propagating
waves. The saturation front moves at a constant speed λ, which is equivalent to
the exponential increase of the saturation momentum with Y [38].

This evolution indicates the emergence of a novel dynamic energy scale, denoting
the saturation of the gluon distribution. We define the saturation scale Qs in
leading-order as

Q2
s(Y ) = Q2

0e
λY , (3.21)

where Q2
0 is some non-perturbative initial scale and λ ≈ 4.9αs for fixed αs [38].

An alternative computation yields λLO ≈ 4.8αs(Q
2)Nc/π [35]. Further analyses of

λ are carried out in several literature sources, with particular emphasis on [39].

At high energies and rapidities, the condition Qs ≫ ΛQCD holds for the saturation
scale, implying that Qs serves as the prevailing dynamic energy scale. Additionally,
the running coupling α(Qs) remains within the perturbative expansion regime,
where α(Qs) ≪ 1 [40].

When considering the effect of the running coupling αs, the expression undergoes
modification [38], resulting in

Q2
s(Y ) = Q2

0e
√

λ(Y+Y0), (3.22)

where Q2
0 and Y0 are the corresponding initial conditions. Numerous additional

expressions and calculations exist to ascertain the saturation scale. We restrict
our attention to only one alternative solution, which also includes an energy de-
pendence. Here, Q2

s is given as follows [41]

ln
(︁
Q2

s(Y,W )/Λ2
QCD

)︁
=√︃

2λ ln
(︂
Q2

0/Λ
2
QCD

)︂
[ln(W/W0) + Y ] + ln2

(︂
Q2

s(W0)/Λ2
QCD

)︂
, (3.23)

where W =
√
sNN and W0 accounts for the initial energy.

The discourse concerning the theoretical determination of the saturation scale ex-
ponent λ remains incomplete at this juncture, owing to the existence of multiple
values arising from next-leading-order eigenvalues and various BFKL kernels.

Another consideration that warrants investigation involves the proposition that
the gluon distribution scales with A1/3 for very large nuclei, as initially proposed
in [42, 43]. The argument is as follows:

Although the color charge experiences screening, resulting in an average color
charge of order

√
N , where N signifies the total color charge within each spatial

region, the coherence of the color field results in a gluon density on the order of
N . The density of valence quarks per unit transverse area is proportional to A1/3.
Consequently, the gluon density also follows a A1/3 scaling [42].
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3.2. Gluon saturation

A slightly different rationale for the A1/3 proportionality, known as the so called
oomph factor [35], is outlined in [44] as follows. Consider the wave function of a
nucleus boosted to a high momentum, resulting in Lorentz contraction and con-
finement of partons to a thin sheet in the transverse plane.

Each parton occupies a transverse area of π/Q2, governed by the uncertainty
principle and its transverse momentum Q. This leads to a cross-section, which
can be probed, of σ ∼ αs(Q

2)π/Q2. In contrast, the entire transverse area of the
nucleus is SA ∼ πR2

A. Consequently, if the number of partons NA surpasses a
threshold

NA ∼ SA
σ

∼ 1

αs(Q2)
Q2R2

A, (3.24)

they begin to overlap within the transverse plane, initiating mutual interactions
that impede the further growth of parton densities. This phenomenon occurs when
the transverse momenta of the partons are on the order of

Q2
s ∼ αs(Q

2
s)
NA

R2
A

∼ A1/3, (3.25)

which is called the saturation scale. We used that the transverse area scales like
A2/3. Building upon this assumption, we conclude our discussion of the saturation
scale by presenting a refined definition for equation (3.21) as depicted below

Q2
s (x) = A1/3Q2

0(x/x0)
−λ, (3.26)

where we have utilized equation (3.18) to recast the expression in terms of the
Bjorken-x. After having explored specific consequences of the BFKL equation in
characterizing gluons, we proceed to investigate the theory of gluon saturation.

A key theoretical advancement in this context is represented by the Balitsky-
Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (B-JIMWLK) [45][46–
56] evolution equation, which serves as the governing framework for the evolution
of small-x QCD wavefunctions.

This equation is equivalent to an infinite set of coupled non-linear integro-differential
evolution equations for the expectation values of the different correlators of Wilson
lines averaged over the target gluon field configurations [57].

As outlined in [35], under the large-Nc limit, the complete B-JIMWLK hierar-
chy, specifically the Balitsky hierarchy as its alternative form, simplifies to a sin-
gle, closed equation for the x-dependence of the dipole amplitude, known as the
Balitsky-Kovchegov (BK) equation [45, 58]. This equation is the mean-field ap-
proximation [38] and represents the simplest non-linear ln(1/x) evolution equation
in that hierarchy.

In its linear form, the BK equation corresponds to the BFKL equation, as men-
tioned in [40]. The BK equation can also be viewed as an expansion of the GLR
equation, incorporating multiple-ladder recombination, as discussed in [59].
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3. Quarks and gluons

To further explore the BK equation, we can introduce the color dipole amplitudes
using Wilson lines [60]. The dipole amplitude in the fundamental representation
NF , associated with the Wilson line V , is given by

NF (x1,x2) ≡
1

Nc
Trc
⟨︂
V (x1)V

†(x2)− 1
⟩︂
, (3.27)

while the color dipole amplitude in the adjoint representation NA, with Wilson
line U , is defined as

NA(x1,x2) ≡
1

N2
c − 1

Trc
⟨︂
U(x1)U

†(x2)− 1
⟩︂
. (3.28)

In this definition, we redefined x1 = b+rt/2 and x2 = b−rt/2, where b represents
the impact parameter. Occasionally, this concept is also defined as the color dipole
scattering matrix element, denoted as S, which is given by N = 1− S, as seen in
[61, 62]. For a more comprehensive understanding, we refer to [60] .

In the context of this research, we will refrain from delving into the detailed def-
inition of Wilson lines due to the current limitations in obtaining meaningful re-
sults from such an approach. Instead, we will adopt a more pragmatic approach
prevalent in contemporary literature by employing a phenomenological model to
characterize the dipole amplitude.

By introducing a dependence on rapidity to the dipole amplitude and denoting it
as Nxy(Y ) ≡ N(x,y, Y ), the BK equation can be expressed as provided in [28]
by

∂Nxy

∂ lnQ2
=
Ncαs

π

∫︂
d2z

2π
K(x,y, z) [Nxz +Nyz −Nxy −NxzNyz] , (3.29)

with the leading-order BK kernel [40] and Nc = 3 given by

KLO(x,y, z) =
(x− y)2

(x− z)2 (y − z)2
. (3.30)

Including running coupling corrections to the BK (rcBK) equation translates into
an improved kernel, called the rcBK evolution kernel [63, 64]. It is reviewed in [12]
and with r = r1 + r2 and r = x− y, r1 = x− z and r2 = y − z, given by

Krun(r, r1, r2) =

Ncαs(r
2)

2π2

[︃
1

r21

(︃
αs(r

2
1)

αs(r22)
− 1

)︃
+

r2

r21r
2
2

+
1

r22

(︃
αs(r

2
2)

αs(r21)
− 1

)︃]︃
. (3.31)

The middle term represents KLO. An interesting observation is that Nc/2π
2 =

0.152, which is of the same order as αs(Q
2) for Q ∼ 12GeV. The solution to the

rcBK equation was obtained numerically in [65].

38



3.3. Models for the gluon

The nuclear unintegrated gluon distribution (UGD), necessary for hadron produc-
tion in both kT - and hybrid-factorization frameworks, is interconnected with the
quark and gluon dipole scattering amplitudes through a two-dimensional Fourier
transforms. The UGD is expressed [12] as follows

φ(k,R, x) =
CF

αs(k)(2π)3

∫︂
d2r e−ik·r ∇2

rNA(r,R, x), (3.32)

where x corresponds to the Bjorken scaling variable, related with the rapidity
through equation (3.18). The transverse size of the dipole is denoted by r, while
R represents the transverse position at which the hadron target is probed. The
parameter k2 specifies the scale of internal momentum transfer. We omit the
vector notation and using only its magnitude here.

The function φ is dimensionless and signifies the quantity of gluons within a unit
transverse area and a cell in transverse momentum space [12]. A slightly different
definition can we found in [66], which defines the UGD as

φ(k, x) =

∫︂
d2r

2πr2
e−ik·r NA(r, x). (3.33)

This definition can be seen as a specific realisation of equation (3.32) in case of
NA ∼ exp

(︁
−r2

)︁
).

The connection between the gluon dipole scattering amplitude, which is essential
for the unintegrated gluon distribution, and the quark dipole scattering amplitude
can be formulated in the large-Nc limit as described in [12] as

NA(r,R, x) = 2NF (r,R, x)−N2
F (r,R, x). (3.34)

3.3. Models for the gluon

Having discussed the rapidity evolution of the color dipole amplitude, our attention
now shifts towards elucidating the initial gluon distribution and reviewing specific
solutions to the evolution equations. As an exact solution to one of the rapidity
evolution equations is not presently available, we resort to employing phenomeno-
logical models to characterize the initial color dipole amplitude.

These models can be employed as initial conditions for either the rcBK equation
or, from a historical perspective, the BFLK equation. Given the multitude of
published models, our focus will be on specific ones. The initial model describing
the color dipole amplitude is the McLerran-Venugopalan model [43]. This model
is formulated as follows

NMV
A (r, Y = 0) = 1− exp

[︄
−

(︄
r2Q2

s,0

4

)︄γ

ln

(︃
4

r ΛQCD
+ e

)︃]︄
, (3.35)
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3. Quarks and gluons

where Q2
s,0 represents the initial saturation scale and γ stands for an anomalous

dimension.

Another model, the Golec-Biernat and Wüsthoff (GBW) model, was independently
introduced in [67, 68], albeit in a different formulation. This model utilizes the
definition of the color dipole amplitude as follows

NGBW
A (r, Y = 0) = 1− exp

[︄
−

(︄
r2Q2

s,0

4

)︄]︄
, (3.36)

resulting in the aforementioned GBW model, outlined in [69]. The original formu-
lation of the model provides a definition for the unintegrated gluon distribution.

Another interesting model discussed in [40] is the Boer-Utermann-Wessels (BUW)
model [70]. In this model, the color dipole amplitude is defined as follows

NBUW
A (r, Y = 0) = 1− exp

⎡⎣−(︄r2Q2
s,0

4

)︄γ(r,Y )
⎤⎦ , (3.37)

where γ(r, Y ) is also an anomalous dimension. Note that the model is a simple
Glauber-like formula [71].
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Figure 3.2.: The curves represent unintegrated gluon distributions φ(k) calculated
by the GBW model at three different energy scales, plotted as a func-
tion of momentum k.
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3.3. Models for the gluon

In the subsequent discussion, we will substitute the initial saturation scale Qs,0,
which is defined at a specific rapidity, with the rapidity-dependent saturation scale
Qs(Y ). The specific form of this scale relies on the underlying evolution equation
being considered. We will narrow down our further exploration to the solution of
the BFLK equation, where the saturation scale takes the form of Qs(x) in terms
of Bjorken-x, as described by equation (3.26).

Up to this point, the definitions of the color dipole amplitude have been established
based on the transverse size r. However, when applying these dipole amplitudes
within the context of factorization, they need to be transformed into momentum
space characterized by k.

In accordance with [40] and [61], this transformation resembles that depicted in
equation (3.32), and can be expressed as follows

˜︁NA(k, x) =

∫︂
d2r eik·r (1−NA(r, x)) . (3.38)

Applying this transformation to the BUW model allows us to deduce analytical
expressions for the adjoint dipole amplitude when γ takes on values of 1 and 1/2,
as demonstrated in [60]. For the case of γ = 1/2, the dipole amplitude assumes
the form

˜︁Nγ=1/2
A (k2, x) =

∫︂
d2r eik·rN

γ=1/2
A (r) =

32π

Q2
s(x)

(︃
1 +

16k2

Q2
s(x)

)︃−3/2

, (3.39)

whereas for γ = 1, it takes the form

˜︁Nγ=1
A (k2, x) =

∫︂
d2r eik·rNγ=1

A (r) =
4π

Q2
s(x)

exp
(︁
−k2/Q2

s(x)
)︁
. (3.40)

Using a definition analogous to that presented in equation (3.33), the unintegrated
gluon distribution φ can be expressed as

φ(k, x) = k2 ˜︁NA (k, x) . (3.41)

This allows us to infer that k2Nγ=1
A (k2, x) corresponds to the original formulation

of the GBW model, as discussed in [67, 68]. We expand upon the model by
imposing the condition φ ∼ k2/(3π2αs(k

2)) [72, 73], which leads us to the following
expression for the gluon distribution

φ (k, x) =
1

3π2αs(Q2)

4πk2

Q2
s(x)

exp
(︁
−k2/Q2

s(x)
)︁
. (3.42)

The results of our calculation of the unintegrated gluon distribution using the GBW
model are depicted in figure 3.2. The calculation employs equation (3.42) for the
gluon distribution and equation (3.26) for the saturation scale, with parameters
x0 = 3 × 10−4, A = 1, and λ = 0.288 as specified in [67] . The diagram can be
compared to similar calculations presented in [12] and [73]. For the calculation, a
specific parametrization of the running coupling is employed, and its details will
be provided at the end of this section.
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Figure 3.3.: The curves represent unintegrated gluon distributions φ(k) calculated by
the KLN model at three different energy scales, plotted as a function of
momentum k.
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Figure 3.4.: Comparison of the unintegrated gluon distribution (UGD) φ(k) obtained
through calculations using the GBW and KLN models at x0 = 0.3. To
improve visibility, the KLN model results were magnified by a factor of 5.
The solid curves correspond to the UGD without considering the large-x
suppression factor, while the dashed curves depict the UGD with inclusion
of the large-x suppression factor. The dot-dashed curve illustrates the UGD
computed using the GBW model with x0 = 0.03. The choice of x0 = 0.3
represents a typical large-x value, and x0 = 0.03 reflects the variation in the
UGD within the GBW model as the parameter x0 decreases.
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3.3. Models for the gluon

The final model which we present is the Kharzeev-Levin-Nardi (KLN) model [41,
44, 72, 74, 75]. The exposition of this model is based on [76]. It establishes
the unintegrated gluon distribution φ based on the corresponding bremsstrahlung
radiation spectrum [72] for momenta greater than the saturation scale. It can be
formulated as

φKLN (k, x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2CF

3π2αs(Q2)
, k2 ≤ Q2

s(x)

2CF

3π2αs(Q2)

Q2
s(x)

k2
, k2 > Q2

s(x).

(3.43)

The parameter k2 defines the internal momentum transfer scale, and x corre-
sponds to the Bjorken scaling variable, connected to the rapidity through equa-
tion (3.18).

The color factor CF establishes the probability associated with a gluon’s interaction
with a quark. For the number of colors Nc = 3, it can be expressed as

CF :=
N2

c − 1

2Nc
= 4/3. (3.44)

This coefficient is also evident in earlier studies, such as [44] , and the structure of
this model can also be observed in equations derived in [77] and [78]

The outcomes of our computation regarding the unintegrated gluon distribution
utilizing the KLN model are illustrated in figure 3.3. The calculation makes use
of equation (3.43) to represent the gluon distribution and equation (3.26) for the
saturation scale, with specific parameters being x0 = 3 × 10−4, A = 1, and λ =
0.288. However, it is necessary to rescale the results by a factor of 1/2π in order to
align them with the range of the GBW model employing the same parameters.

The applicability of this presented formalism is anticipated to be limited to small
values of x. Incorporating this condition into practical calculations is not straight-
forward. To mitigate the impact of contributions from large-x, an additional factor
is introduced, leading to a modification of the KLN model as follows

φ∗
KLN (k, x) = (1− x)4 φKLN (k, x) . (3.45)

The rationale behind introducing this factor is to reduce overcounting for large
value of x, which adheres to quark counting rules [79, 80] and aims to simulate the
behaviour of the distribution as x approaches 1.

This factor can also be applied to various models, such as the GBW model. Fig-
ure 3.4 illustrates the impact of this suppression factor on both the GBW and
KLN models, utilizing the same model parameters as in figure 3.2 and 3.3.
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3. Quarks and gluons

For these calculations, a similar approach is taken for the running of the strong
coupling constant as in [12]. It is defined by

αs(r
2) =

4π

β ln

(︃
4C2

r2Λ2
QCD

+ µ

)︃ , (3.46)

where β = 11−2/3Nf = 9 with Nf = 3 and ΛQCD = 0.241GeV. The parameter is
introduced to regulate the strong coupling for large dipole sizes and is determined
by the condition αs(∞) = αfr = 0.5 [12], resulting in µ = 16.322. A very similar
but slightly different parametrization of the strong coupling constant can also be
found in [11].

We can substitute r2 with 1/k2 in equation 3.46, as it presupposes the application
of αs prior to performing the Fourier transformation required for computing the
unintegrated gluon distribution from the dipole amplitude. Consequently, it is
permissible to assign a value of C = 1, as this adjustment considers the inherent
uncertainty associated with the Fourier transform, as elucidated in [12]. Therefore,
our parametrization of αs is expressed as follows:

αs(k
2) =

4π

β ln

(︃
4k2

Λ2
QCD

+ µ

)︃ . (3.47)

In this chapter, we have examined the parton model’s description of quarks and
gluons, focusing on its energy dependence within a nucleus. Furthermore, we in-
troduced the concept of gluon saturation and explored the behaviour of gluons
at small-x. Lastly, we discussed two models that provide descriptions of the un-
integrated gluon distribution. In the subsequent chapter, our attention will turn
towards the factorization that facilitate the description of hadron production by
combining insights from the parton model and gluon saturation.
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4. Charged-hadron production

After providing an overview of deep inelastic scattering and revisiting certain as-
pects of the parton model, which encompass the characterization of quarks and
gluons confined within a proton, our attention now shifts towards investigating the
cross section associated with charged-hadron production.

The chapter commences with the presentation of the factorization theorem, fol-
lowed by the introduction of two distinct factorization schemes. These include the
kT -factorization for interactions involving gluon-gluon interactions, and the hybrid-
factorization for interactions involving quarks-gluons interactions. Both of these
schemes carry substantial importance in providing a comprehensive description of
charged-hadron production in heavy-ion collisions.

The complexity of QCD calculations is notably high, especially when considering
both initial and final hadron states. In the context of a scattering process, the
ability to untangle the cross section of the entire process into distinct, indepen-
dent components would be of immense utility. This involves segregating the cross
sections associated with hard and soft processes.

Fundamentally, the capacity to disentangle cross sections dependent on short-range
processes from those that exhibit universal and long-range characteristics would
be highly advantageous. This property is commonly known as factorization. A
formal proof that QCD exhibits such factorization is provided in [81].

In the context of this work, our goal is to describe hadron production resulting
from heavy-ion collisions. Consequently, our focus is solely on hard processes. The
QCD factorization of hard processes has already been investigated in [31].

Our approach begins with a simpler collision, namely electron-hadron scattering.
From this foundation, we can extrapolate the factorization of cross sections for
more complex collisions.

Based on [31], we establish a parallel definition, akin to that in section 3.1, of a
parton distribution denoted as fa/H(ξ). This distribution represents the likelihood
that an electron will interact with a non-interacting parton of species a, carrying a
fraction ξ of the hadron’s momentum. We consider the cross section for the inter-
action of an electron with such a parton, characterized by a momentum transfer
Q2, as the Born cross section σB(Q2, ξ).
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4. Charged-hadron production

When considering free partons, where the condition ξ > x ≡ 2p · q/Q2 holds, it
results in the total cross section for deep inelastic scattering of a hadron by an
electron:

σeH(x,Q2) =
∑︂
a

∫︂ 1

x
dξ fa/H(ξ)σB

(︁
x/ξ,Q2

)︁
. (4.1)

This expression represents the parton model cross section for deeply inelastic scat-
tering, as described in [31].

As mentioned in [31], the Drell-Yan cross section serves as a significant example,
elucidating hadron-hadron scattering that results in the production of a pair of
leptons in the final state. By adapting this cross section to the parton model
framework, the process is given by direct annihilation of a parton and anti-parton
pair, sourced from each of the interacting hadrons, within the Born approximation,
denoted as σ′B(Q

2, y).

The interactions responsible for producing the distributions of these individual
partons occur on a timescale much longer than that of annihilation. Furthermore,
final-state interactions involving the remaining partons occur too late to influence
the annihilation process [31]. Consequently, we extend the expression given in
equation (4.1) to encompass the parton model description of the Drell-Yan cross
section, which is given in [31] as

dσ

dQ2dy
=
∑︂
a

∫︂ 1

xA

dξA

∫︂ 1

xB

dξB fa/A(ξA) fā/B(ξB) σ
′
B(Q

2, y), (4.2)

where xA and xB are given by

xA = exp(+y)
√︁
Q2/s, xB = exp(−y)

√︁
Q2/s. (4.3)

An essential point to highlight is that the Lorentz contraction of the hadrons in
the center of mass frame of reference is an important factor for achieving the
universality of parton distributions [31]. Building upon this definition, we can now
introduce the ideas of kT -factorization and hybrid-factorization.

4.1. The kT -factorization

In the realm of charged-hadron production in high-ion collisions at relativistic en-
ergies, the kT -factorization becomes highly important. This is because a significant
number of the resulting hadrons are expected to be well explained by this idea and
the related gluon-gluon interactions.
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4.1. The kT -factorization

The foundation of kT -factorization traces its origins to [82–86], whereas the fac-
torized form of the inclusive cross section, is mentioned in [87], which takes the
following form

dσ

dyd2kT
=

2αs

CFk
2
T

∫︂
d2kT

fA(ξA,k
2
T ) fB(ξB, |kT − qT |

2)

q2T (kT − qT )
2

. (4.4)

Here, ξA and ξB represent the values of the Bjorken-x variable corresponding to
the gluons in each of the colliding particles. The symbol CF is defined as given in
equation equation (3.44).

The unintegrated gluon distributions, denoted as fA(ξA, q2T ) and fB(ξB, |kT − qT |
2),

are the probability to find a gluon that carries ξ fraction of energy with kT trans-
verse momentum in the projectile or target [10]. It is in general given by equa-
tion (3.32). A different definition can be found in [35]

dσA+B→g

dyd2pTd
2Rd2b

=
2

CFp2
T

∫︂
d2kT

4
×

αs(Q) φA

(︄
|pT + kT |2

2
, b

)︄
φB

(︄
|pT − kT |2

2
, R− b

)︄
,

(4.5)

which is also based on equation (4.4) but uses a slightly different definition of
the unintegrated gluon distribution, given by φi(k

2) ∼ fi(k
2)/k2. The sightly

difference in the definition can also be found in [60].

We introduced a abbreviation to make the equation more readable: φi ≡ φi(xi).
The definitions of xA and xB follow from equation (4.3) and adjusting to the
context of heavy-ion collisions. This indicates that the Bjorken-x are defined by

xA =
mT√
sNN

ey, xB =
mT√
sNN

e−y. (4.6)

This also shows that the definition is similar to equation (2.20) with pT = 0.
equation (4.5) uses the definition of 4.6 but with m = 0.

The employed model for computing charged-hadron production via kT -factorization
is a hybrid combination of these approaches. In contrast to considering impact-
parameter-dependent unintegrated gluon distributions, our approach involves scal-
ing the cross-section by the number of participants.

It’s important to note that in the context of asymmetric collisions, two distinct
processes must be calculated: A + B → g and B + A → g. It can be seen by
applying our model to symmetric collisions.
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4. Charged-hadron production

The final expression defining the production of charged hadrons in asymmetric
collisions is as follows

d3Nh
gg

dydp2
T

=
2

CF

αs(m
2
T )

m2
T

∫︂ pT

0
dk2

T

[︃
N1φ1

(︂
x1,k

2
T

)︂
φ2

(︂
x2, |mT − kT |2

)︂
+N2φ2

(︂
x2,k

2
T

)︂
φ1

(︂
x1, |mT − kT |2

)︂ ]︃
.

(4.7)

We employ the model for the unintegrated gluon distribution outlined in (3.43,)
incorporating the suppression factor as described in (3.45), and also utilize the
model discussed in (3.42) for subsequent calculations.

In terms of the scale for the running of αs, we adopt the internal momentum scale
Q2 defined within the unintegrated gluon distribution, which can take on values of
either Q2 = k2

T or |mT − kT |2. This choice is supported by the discussions found
in [76] and [73].

4.2. The hybrid-factorization

In this section, certain aspects of the parton model are revisited, as previously dis-
cussed in chapter 3. However, the primary emphasis now shifts towards examining
the interactions between quarks and gluons.

To examine the spectrum of produced hadrons in the forward direction near the
beam rapidity, a comprehensive analysis of multiple Feynman diagrams is essen-
tial, as illustrated in [60]. We follow the derivation of [60] in this section. The
pertinent Feynman diagrams incorporate recoil effects in gluon production. The
accumulation of these diagrams results in the subsequent expression∫︂ 1

x

dξ

ξ

{︃
q0(x/ξ)

(︃
δ(1− ξ) +

αs

2π
log

Q2

Λ2
Pq/q(ξ)

)︃
+ g0(x/ξ)

αs

2π
log

Q2

Λ2
Pq/g(ξ)

}︃
NF (ξ, kt, b),

(4.8)

where q0(x/ξ) and g0(x/ξ) represent the bare (parton model) quark and gluon
distribution functions, as documented in [60]. Pq/q and Pq/g stand for the DGLAP
splitting functions, detailing transitions from quark species to quark species and
from gluons to quark species, which are also defined section 3.1.

Here, x denotes the momentum fraction of the initial parton, while ξ signifies the
momentum fraction of a produced gluon. The fundamental and adjoint represen-
tations of the dipole cross section are denoted NF/A Additionally, kt represents the
transverse momentum, and the impact parameter dependence is captured by b.
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4.2. The hybrid-factorization

These combined splitting functions can be integrated into the quark distribution
function of a proton, denoted as fq/p(x/ξ,Q2), subsequent to utilizing the DGLAP
evolution equation. Employing the convolution symbol ⊗, we can express (4.8)
as

fq/p(x/ξ,Q
2)⊗NF (ξ, pT , b) . (4.9)

This encompasses the integration over the momentum fraction of produced gluons.
Upon considering an alternate set of Feynman diagrams, a parallel equation is
derived for the gluon distribution function within a proton after incorporating the
DGLAP evolution

fg/p(x/ξ,Q
2)⊗NA (ξ, pT , b) . (4.10)

In this case, the dipole amplitude NA utilizes the adjoint representation, as op-
posed to the fundamental representation. This approach is similarly applied to
two additional sets of Feynman diagrams, encompassing the basic fragmentation
functions for quarks and gluons, denoted as D0

q(x/ξ) and D0
g(x/ξ). This leads to

the expressions
Dq(x/ξ,Q

2)⊗ ˜︁NF (ξ, kt, b) , (4.11)

and
Dg(x/ξ,Q

2)⊗ ˜︁NA (ξ, kt, b) , (4.12)

where we used ˜︁NF,A (ξ, kt, b) ≡ NF,A (ξ, kt/ξ, b) /ξ
2. (4.13)

By combining these successive stages, the representation of one-parton radiation
can be encapsulated within a unified equation, expressed as

fq(Q
2)⊗NF ⊗D0

q+q
0 ⊗ ˜︁NF ⊗Dq(Q

2)

+fg(Q
2)⊗NA ⊗D0

g + g0 ⊗ ˜︁NA ⊗Dg(Q
2).

(4.14)

Here, the convolution is performed over the variable x. The inclusion of additional
contributions results in equation (4.14) evolving into a comprehensive representa-
tion at the one-loop order, expounded in detail in Appendix A of [60].

We establish a connection between the complete result at the one-loop order and
the cross section, as discussed in [88], yielding the following expression for the cross
section of asymmetric proton-nucleus scattering

xF
dσ (pA→ hX)

dxF dp2T db2
=

1

(2π)2

∫︂ 1

xF

dxp
xp
xF

[︃
fq/p

(︁
xp, Q

2
f

)︁
NF

(︃
xp
xF

pT , b

)︃
Dh/q

(︃
xF
xp
, Q2

f

)︃
+ fg/p

(︁
xp, Q

2
f

)︁
NA

(︃
xp
xF

pT , b

)︃
Dh/g

(︃
xF
xp
, Q2

f

)︃]︃
,

(4.15)
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4. Charged-hadron production

where A represents the nucleus and h stands for the produced hadron. The frag-
mentation scale is designated as Q2

f , and xF denotes the Feynman-x, which is
defined as

xF = xpT /kT , (4.16)

where pT signifies the transverse momentum of the produced hadron and kT sym-
bolizes the transverse momentum of the parton [89]. For further exploration, we
integrate over the impact parameter and utilize an effective impact parameter
denoted as ⟨b⟩, which corresponds to the minimum bias centrality.

Now, we proceed to specify the gluon dipole amplitude N . Assuming that we
are operating in the small-x regime and considering the saturation of the gluon
distribution function, we can define an effective saturation scale for a given effective
impact parameter

⟨︁
Q2

s (b)
⟩︁
. With this dynamically varying energy scale, as widely

discussed in section 3.2, we can express equation (4.15) for large rapidities [90]
as

dNm.b.

π dyh dp2T
=

1

(2π)2

∫︂ 1

xF

dxp
xp
xF

[︃
fq/p

(︁
xp, Q

2
f

)︁
NF

(︃
xp
xF

pT , yA,
⟨︁
Q2

s(b)
⟩︁)︃

Dh/q

(︃
xF
xp
, µ2f

)︃
+ fg/p

(︁
xp, Q

2
f

)︁
NA

(︃
xp
xF

pT , yA,
⟨︁
Q2

s(b)
⟩︁)︃

Dh/g

(︃
xF
xp
, µ2f

)︃]︃
,

(4.17)

where µf represents the fragmentation scale of the fragmentation function. We can
proceed to analyse this equation further following the methodology presented in
[91]. To begin, we establish the fraction z of quark energy carried by the produced
hadrons as follows

z(x) := xF /x, (4.18)

where z(1) = xF and z(xF ) = 1 serve as the boundary conditions. For the sake of
completeness, the differential dz is expressed as follows

dx/xF = −x2/x2Fdz = −dz/z2. (4.19)

Moreover, considering massive constituents that contribute an additional portion
of the transverse momentum, we can define an effective transverse momentum,
denoted as qT , by

qT := mT /z =
√︂
p2T +m2/z. (4.20)

After using the last three steps, equation (4.17) can be rearranged to

dN(pA→ hX)

π dyh d2pT
=

1

(2π)2

∫︂ 1

xF

dz

z2

[︃
Dh/q

(︁
z, µ2f

)︁
xpfq/p

(︁
xp, Q

2
f

)︁ 1

q2T
φF (yA, qT )

+ Dh/g

(︁
z, µ2f

)︁
xpfg/p

(︁
xp, Q

2
f

)︁ 1

q2T
φA (yA, qT )

]︃
.

(4.21)
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4.2. The hybrid-factorization

This equation coincides with the one presented in [92], after rearranging the vari-
ables z and qT . Furthermore, we employ a similar relationship between the unin-
tegrated gluon distributions as outlined in equation (4.13).

Inspired by [93], the final equation we utilize to compute the single-inclusive hadron
production, considering solely valence quark-gluon scattering, is expressed by

d3N

dyhd2pT
=

K

(2π)2
1

m2
T

∫︂ 1

xF

dz Dh/q

(︁
z, µ2f

)︁
xpfq/p

(︁
xp, Q

2
f

)︁
φF (yA, qT ) , (4.22)

where we use Q2
f = µ2f = p2T . The K-factor is introduced to account for higher-

order corrections and additional dynamical effects that are not encompassed within
the hybrid framework, as mentioned in [40], and includes a factor of order 2π that
is required to make kT - and hybrid-factorization consistent with each other in the
context of our Relativistic Diffusion model.

As previously stated, asymmetric collisions necessitate separate calculations for
both fragmentation sources by interchanging the roles of the projectile and target.
In this context, we adjust the parton distribution functions of the nucleus by scaling
them with the number of participants as follows

xAfq/A = Npart xpfq/p, (4.23)

which is similarly indicated by [94]. It is important to highlight that φF corre-
sponds to the adjoint representation, as elucidated in equation (3.34), which leads
to an additional scaling of the saturation scale as follows [41, 71, 74, 94]

Q2
s →

NC

CF
Q2

s =
4

9
Q2

s. (4.24)

This chapter outlined two factorization schemes, which can be utilized for describ-
ing rapidity distributions for charged-hadron production at relativistic heavy-ion
collisions.
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5. Diffusion approach to
charged-hadron production

In this chapter, we present an non-equilibrium statistical model known as the Rel-
ativistic Diffusion model (RDM). The foundation of this model rests upon the as-
sumption that the underlying microscopic processes exhibit Markovian characteris-
tics. Formulated in one dimension, the RDM draws from the Uhlenbeck-Ohrnstein
process as its theoretical framework.

The employed Uhlenbeck-Ohrnstein process facilitates the transition from initial
distributions, motivated by stopping phenomena, to distributions that describe
hadron production.

5.1. The Fokker-Planck equation

Statistical distribution functions serve as a foundational framework for elucidating
the behaviour of physical processes. The intricate nature of these processes allows
for the formulation of diverse assumptions regarding the underlying microscopic
dynamics. The Markov process holds a preeminent status among stochastic pro-
cesses. It can be locally defined within the framework of differential equations, as
well as globally expounded through the application of integrals.

The global equation for Markov processes is called the Chapman-Kolmogorov equa-
tion [95] and is expressed through transition probabilities

p2(x3|x1) =
∫︂

dx2p2(x3|x2)p2(x2|x1), (5.1)

with xi denoting abstract states.

Interpretation of this can be elucidated as follows: The likelihood of state x3
materializing subsequent to the occurrence of state x1 is calculable by considering
the probabilities associated with all intermediary states x2. In the domain of field
theory, the transition probability p2 is also known as the propagator.

For the purpose of resolving solutions within the context of the Chapman-Kolmogorov
equation, the introduction of a local formulation proves advantageous. For this
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5. Diffusion approach to charged-hadron production

work, we exclusively employ the one-dimensional representation of the Chapman-
Kolmogorov equation.

It is important to note that the Chapman-Kolmogorov equation assumes the form
of an integral equation, and its inherent global nature renders the task of solution
derivation challenging. Nevertheless, it becomes feasible to convert it into a local-
ized equation by imposing suitable assumptions that pertain to the behaviour on
short time scales.

In pursuit of the derivation of the localized expression for the Chapman-Kolmogorov
equation, we postulate that the first moment of the statistical distribution function
is proportional to ∆t, yielding the relationship∫︂

dx2 (x2 − x1) p2(x2, t+∆t|x1, t) = J(x1, t)∆t+O(∆t2). (5.2)

The term J(x1, t) is identified as the drift function. Similarly, for the second
moment, we assume a proportionality to ∆t, resulting in∫︂

dx2 (x2 − x1)
2 p2(x2, t+∆t|x1, t) = 2D(x1, t)∆t+O(∆t2), (5.3)

where D(x1, t) denotes the diffusion function. The presence of a factor of two
preceding the diffusion function is a conventional choice.

Combining of these two expressions culminates in a localized equation that charac-
terizes the Markov process. Later, we use this equation in rapidity space. There-
fore, we rename the variable x to y. To further align with the intended usage,
we rename the statistical distribution function to R(y, t). As a consequence, we
arrive at the formulation of the localized Chapman-Kolmogorov equation in one
dimension [96]: (︃

∂

∂t
+

∂

∂y
J(y, t)− ∂2

∂y2
D(y, t)

)︃
R (y, t) = 0. (5.4)

This equation is called the Fokker-Planck equation. An insightful article discussing
this equation is available in [97].

In the context of our analysis, centered on the evolution of rapidity distributions
in heavy-ion collisions, we make two physical assumptions. The first assumption
pertains to the constancy of the diffusion coefficient, denoted byD. This coefficient
encapsulates the underlying microscopic physics, which is anticipated to exhibit
time- and rapidity-independence, as emphasized in [98], leading to the expression

∂

∂t
R(y, t) +

∂

∂y
[J(y)R(y, t)]−Dy

∂2

∂y2
R(y, t) = 0 (5.5)
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5.1. The Fokker-Planck equation

Based on the conjecture that the stationary solution adheres to a relativistic Boltz-
mann distribution, the characterization of the drift term J(y) can be deduced [99]
yielding the expression

J(y) = −mTD

T
sinh(y), (5.6)

where mT is defined as in equation (2.23) and T denotes the temperature T. In
the following step, we embark on a perturbative expansion of the drift term up to
the leading order. This expansion leads to the concept known as the relaxation
ansatz [100], in which the drift term assumes the form

J(y) =
yeq − y

τy
. (5.7)

Here, τy represents the rapidity relaxation time, dictating the temporal trajectory
by which the system converges to thermal equilibrium. Furthermore, yeq desig-
nates the specific rapidity value at which the system reaches thermal equilibrium.
Notably, this value differs from zero solely in the context of asymmetric collisions.

The study conducted in [101] demonstrated that the discrepancies between the
solutions derived from the full drift term and the drift term augmented with the
relaxation ansatz are negligibly small within the localized region of the solution.

Furthermore, the solution for the linear Fokker-Planck equation with the relaxation
ansatz can be expressed analytically. This fact prompts us to proceed with this
assumption for our further analysis. The Fokker-Planck equation incorporating
the relaxation ansatz is presented as follows

∂

∂t
R(y, t) = − 1

τy

∂

∂y
[(yeq − y)R(y, t)] +Dy

∂2

∂y2
R(y, t). (5.8)

The derived equation corresponds to a significant physical phenomenon known
as the Uhlenbeck-Ohrnstein process [102]. This linear Focker-Planck equation is
associated with an underlying dynamics featuring a positive harmonic potential
centered at yeq. Given a specific initial state positioned at ymax, the distribution
function’s locality extends towards yeq.

Furthermore, the derivation of the diffusion coefficient D can be accomplished
using the dissipation-fluctuation theorem, also known as the Einstein relation.
This relation is expressed as follows

Dy = αT ≃ f (τy, T ) , (5.9)

where T signifies the temperature of the equilibrium distribution. The function f
can be elaborated upon, leading to an analytical expression for the diffusion term
as demonstrated in [13]:

Dy(τy, T ) =
1

2πτy

[︄
c(
√
s, T )m2T

(︃
1 + 2

T

m
+ 2

T

m

)︃2
]︄−2

exp

(︃
2m

T

)︃
, (5.10)
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5. Diffusion approach to charged-hadron production

with the proton mass m. A comprehensive formulation for c(
√
s, T ) can be also

found in [13].

The subsequent section will encompass the presentation and assessment of the
analytical solution to this linear Fokker-Planck equation under specific initial con-
ditions.

5.2. Solution of the linear Fokker-Planck equation

The linear Fokker-Planck equation can be analytically solved for various initial
conditions. Let us begin by considering an out-of-equilibrium initial state. Specif-
ically, we examine the initial condition where the distribution R(y, t) at t = 0 is
concentrated around a distinct value y = ymax, with ymax ̸= yeq, described by the
expression

R(y, 0) = δ (y ∓ ymax) . (5.11)

The solution for the linear Fokker-Planck equation can be achieved through a
Fourier transformation, as demonstrated in [101]. In this approach, ˜︁R(k, t) repre-
sents the Fourier transform of R(y, t). The resulting equation becomes

∂

∂t
˜︁R(k, t) + k

τy

∂

∂k
˜︁R(k, t) = [︃ ik

τy
yeq − k2Dy

]︃ ˜︁R(k, t). (5.12)

By applying the method of characteristics, we transform the partial differentials
∂y and ∂t into total differentials ds, using the expression

d ˜︁R(k(s), t(s))
ds

=
∂ ˜︁R(k, t)
∂t

dt

ds
+
∂ ˜︁R(k, t)
∂k

dk

ds
. (5.13)

The solution of the Fourier transformed function takes the form

˜︁R(k0, t) = ˜︁R(k0, 0) exp [︃ik0yeq(et/τy − 1)− Dyτy
2

k20(e
2t/τy − 1)

]︃
. (5.14)

Upon retransformation, the analytic solution R(y, t) is given by

R(y, t) =
1√︂
2πσ2y

exp

(︄
−(y − ⟨y⟩)2

2σ2y

)︄
. (5.15)

This analytical form corresponds to a Gaussian distribution. The first moment
of this Gaussian distribution, representing the mean value ⟨y(t)⟩, is provided by
[16]

⟨y(t)⟩ = yeq [1− exp (−t/τy)]± ymax exp (−t/τy) . (5.16)
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The second moment, corresponding to the width σ2(t), is determined by

σ2(t) = Dyτy[1− exp(−t/2τy)]. (5.17)

The non-equilibrium characteristics of this initial condition are clearly observed in
the temporal evolution of its first and second moments, wherein only in the limit
of t→ ∞ do the exponential functions vanish and y approaches yeq. The scenario
of ymax → yeq corresponds to nearly equilibrium initial conditions:

R(y, 0) = δ (y − yeq) , (5.18)

as in this case, the first moment becomes independent of time.

With the analytical solution of the linear Fokker-Planck equation established, the
subsequent section will provide a comprehensive review of the Relativistic Diffusion
model.

5.3. The Relativistic Diffusion model

After deriving the solution for the linear Fokker-Planck equation using the relax-
ation time ansatz, we proceed to review the Relativistic Diffusion model, which
was initially introduced in [13].

The equilibrium distribution is assumed to be the Boltzmann distribution due to
the high energies [99] and is given by

E
d3N

dp3
∝ E exp(−E/T ) = m⊥ cosh(y) exp(−m⊥ cosh(y)/T ), (5.19)

where equation (2.24) has been employed. Consequently, the longitudinal produc-
tion can be expressed as follows

E
dN

dy
(y, t) = c

∫︂ ∞

m
m2

⊥ cosh(y)R(y, t) dm⊥, (5.20)

where m denotes typically the proton mass and R(y, t) represents the statistical
distribution function. The underlying assumption of this model is that the pro-
duction yield can be described as the incoherent superposition of three distinct
sources [16], which can be formulated as follows

dN ch

dy
(τint) = N1

chR1 (y, τint) +N2
chR2 (y, τint) +Ngg

chRgg (y, τint) , (5.21)

where N1,2
ch correspond to the produced charged hadrons in the fragmentation

sources, while Ngg
ch accounts for charged-hadron production in the mid-rapidity

source.
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5. Diffusion approach to charged-hadron production

The temporal parameter is set to the interaction time t = τint, as the model
assumes interactions between t = 0 and t = τint due to the nature of the underlying
microscopic interactions.

This model can be applied to investigate charged-hadron production in relativistic
heavy-ion collisions. However, evaluating this model presents several challenges.

Owing to the nature of QCD interactions, an energy scale ΛQCD ≈ 200MeV exists,
indicating a phase transition from quark-gluon interaction to hadron production.
This naturally defines a time scale τint = 6 − 8 fm/c [16], during which interac-
tions between constituents cease and asymptotic states, namely the hadrons, are
produced. Only in the limit τint → ∞ can the system reach global equilibrium.
Nevertheless, determining the distinct time scales τint and τy directly in relativistic
heavy-ion collisions poses a challenge. Previous investigations have shown that the
entire system collectively expands in longitudinal and transverse direction [103].

When applying this model to asymmetric collisions, it becomes necessary to for-
mulate the mean value of the equilibrium rapidity, denoted as yeq and calculated
as defined in [16]

yeq(b) = −1

2
ln

⟨︂
m

(1)
T (b)

⟩︂
exp(ymax) +

⟨︂
m

(2)
T (b)

⟩︂
exp(−ymax)⟨︂

m
(2)
T (b)

⟩︂
exp(ymax) +

⟨︂
m

(1)
T (b)

⟩︂
exp(−ymax)

. (5.22)

This equation is associated with equation (2.19) where ymax corresponds to ybeam
and

⟨︂
m1,2

T (b)
⟩︂

represents the average centrality-dependent transverse mass. The
latter is defined, as in equation (2.23), as⟨︂

m1,2
T (b)

⟩︂
=
√︂
m2

1,2(b) + ⟨pT ⟩2, (5.23)

where ⟨pT ⟩ stands for the average transverse momentum and m2
1,2(b) = mpN

1,2
part

involves the participant mass. When ymax is large, the last equation simplifies to

yeq(b) =
1

2
ln

⟨︂
m

(2)
T (b)

⟩︂
⟨︂
m

(1)
T (b)

⟩︂ . (5.24)

Following the introduction of the Relativistic Diffusion model, the subsequent
chapter will involve the application of this model. We will employ initial con-
ditions derived from microscopic quark-gluon interactions for the fragmentation
source, as well as for the mid-rapidity source obtained from gluon-gluon interac-
tions. These conditions will be applied to different collision scenarios, where we
compute the corresponding pseudorapidity distributions.
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6. Results for charged-hadron
production

In this chapter, we introduce a novel model designed to elucidate the pseudorapid-
ity distributions of produced charged hadrons in primarily asymmetric relativistic
heavy-ion collisions. The foundation of our model is the well-established Relativis-
tic Diffusion model (RDM), as detailed in section 5.3.

We embark on an exhaustive investigation centered on central p-Pb collisions. We
explore two distinct models for the unintegrated gluon distribution, examine the
distributions stemming from the diffusion process at intermediate times, and show
the transverse momentum dependency of charged-hadron production distribution
for various pseudorapidity values.

Our exploration commences with an analysis of pseudorapidity distributions for
symmetric Pb-Pb collisions at LHC energies of

√
sNN = 5.02TeV across varying

centrality classes. This investigation showcases the model’s capability to explain
symmetric collisions. Moreover, this experimental dataset has been available for a
considerable period and provides data in a broader range in pseudorapidity space
at LHC energies, encompassing pseudorapidity values up to η=5, whereas similar
datasets for asymmetric collisions only extend up to η=2.

Subsequently, we present computed pseudorapidity distributions for minimum bias
collisions at three incident energies and compare them with experimental data.
This comparison allows us to observe the transition of the pseudorapidity distri-
butions from RHIC energies to LHC energies. Specifically, we compare the pseu-
dorapidity distributions for d-Au collisions at

√
sNN = 200GeV with Phobos data

and with those at LHC energies of
√
sNN = 5.02TeV and 8.18TeV for p-Pb colli-

sions. The experimental data used for comparison at LHC energies were obtained
through measurements conducted by the CMS experiment.

6.1. The central p-Pb collision at
√
sNN = 5TeV

The presented model builds upon the Relativistic Diffusion model, see section 5.3,
which delineates the production of charged hadrons through three underlying
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6. Results for charged-hadron production

sources: the mid-rapidity source and two fragmentation sources. The latter under-
goes an additional drift-diffusion process, commonly abbreviated as diffusion.

It is justified by a macroscopic equilibration process that facilitates the time evolu-
tion of distributions from τh to τint, with τy delineating its temporal scale. In this
context, the time scale τh signifies the abstract time associated with factorization,
while τint pertains to the instance when the hadrons are in free motion as the final
state, also termed freeze-out time.

This foundational structure remains integral to our extended model, which charac-
terizes the pseudorapidity distribution of charged-hadron production as expressed
by

dNch

dη
=

dNgg
ch (η)

dη
+

dN qg
pro(η, τint/τy)

dη
+

dN qg
tar(η, τint/τy)

dη
, (6.1)

where the pseudorapidity η is defined as in equation (2.21). Ngg
ch characterizes the

yield of produced charged hadrons originating from the mid-rapidity source and is
determined through the kT -factorization approach based on small-x gluon-gluon
interactions.

N qg
pro andN qg

tar denote the yields of produced charged hadrons resulting from hybrid-
factorization, based on quark-gluon interactions, and involving an additional dif-
fusion process towards smaller rapidity. The pertinent variables will be defined
subsequently.

The yield of produced charged hadrons per pseudorapidity interval from the mid-
rapidity source can be expressed as

dNgg
ch (η)

dη
=
∑︂
h

∫︂ pmax

0
2πpTdpT Jh(η, pT )

d2Ngg
h (y(η), pT )

dydpT
, (6.2)

where we have incorporated the two-dimensional transverse momentum by

dp2
T = 2πpTdpT . (6.3)

The yield of produced charged hadrons, d2Ngg
h /dydpT , is defined according to

equation (4.7), where a summation is performed over the charged hadron species,
including h = π±,K±, p±. Importantly, in the sense of this equation these species
differ only in the mass of the produced hadron. A factor of 2 is applied to account
for particle and anti-particle contributions.

It is also worth noting that the principle of parton-hadron duality is employed to
establish a connection between the produced gluons and the corresponding mea-
surable hadrons.

By using equation (4.6), we can define the limit of the transverse momentum by

p2max =
√
sNNe

−2|y| −m2, (6.4)
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6.1. The central p-Pb collision at
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following from xmax = 1, where |y| accounts for the definition of the projectile,
either A or B.

The theoretical model is computed in the rapidity frame of reference defined in the
nucleon-nucleon center of mass, denoted as yNN . When comparing these calcula-
tions to experimental data, a series of transformations are required, including the
conversion from yNN to the laboratory frame rapidity ylab, and subsequently to the
pseudorapidity η. The corresponding Jacobian, denoted as Jh(η, pT ), is defined in
equation (2.28). It should be noted that the Jacobian is uniquely defined for each
individual hadron species.

We have incorporated the running coupling, which are parametrized as shown in
equation (3.47), into the factorization schemes by substituting αs with αs(Q

2),
with the energy scale specified in the corresponding sections.

Furthermore, the microscopic contribution attributed to the mid-rapidity source
will not undergo any supplementary macroscopic diffusion process.

In the case of asymmetric collisions, it becomes necessary to differentiate between
the two individual fragmentation sources. Each source i is calculated indepen-
dently. The yield per pseudorapidity interval for an individual fragmentation
source N qg

i is defined as follows

dN qg
i (η, τ iint/τ

i
y)

dη
= ˜︁J (︃⟨pT ⟩

mπc

)︃
dN qg

i (y ≡ η, τ iint/τ
i
y)

dy
, (6.5)

Here, τ iint/τ
i
y represents the evolution in the diffusion process from the theoreti-

cal timescale after hybrid-factorization has taken place to the moment at which
hadronisation is completed and the hadrons are moving freely.

Similarly to the mid-rapidity source, we also need to perform transformations from
yNN to ylab and then to η. However, due to the one-dimensional nature of the dif-
fusion along the beam direction, which results in the loss of the precise transverse
momentum distribution, the exact transformation cannot be employed. Conse-
quently, we rely on the effective Jacobian as defined in equation (2.29), coupled
with the approximation of y ≈ η.

Our calculations for charged hadrons stemming from the fragmentation sources
exclusively involve pions. This approximation is justifiable owing to the relatively
lower mass of pions in comparison to kaons and protons, along with the suppression
effects introduced by the fragmentation functions.

The initial yield per rapidity interval for an individual fragmentation source based
on hybrid factorization, at the abstract time τh, is expressed as follows

dN qg
i

dy
(y, τh) =

∫︂ pmax

0
2πpTdpT

d2N qg
π

dydpT
(y, pT ). (6.6)
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6. Results for charged-hadron production

The d2N qg
π /dydpT originates from quark-gluon interactions within hybrid factor-

ization and is defined by equation (4.22). This initial distribution is subsequently
applied to the relativistic diffusion process, governed by a Fokker-Planck equation.
The definition of the diffusion process is provided by equation (5.8).

The final yield resulting from the evolution of the diffusion process until τint char-
acterizes the production of charged hadrons from the underlying fragmentation
source.

The hybrid factorization employs quark parton distribution functions. We utilize
the up-valence quark distribution derived from the MSTW2008 [33] parametriza-
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Figure 6.1.: Calculated pseudorapidity distributions of produced charged hadrons
for p-Pb collisions at

√
sNN = 5.02TeV for the central collisions (0-

5%). The data for |η| < 2.0 come from the ALICE detector [104],
whereas the data for |η|>2.0 come from [105].
The solid distribution shows the full-calculated pseudorapidity distri-
bution based on the unintegrated gluon distributions with KLN model,
whereas only the dot-dashed distribution shows the unintegrated gluon
distributions with GBW model. The further distributions are calcu-
lated with the KLN model. The dashed distribution shows only pi-
ons produced by gluon-gluon interactions and the dotted distributions
show the produced pions coming from quark-gluon interactions.
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6.1. The central p-Pb collision at
√
sNN = 5TeV

tion. This parametrization is presented as a numerical library, establishing the
initial conditions and further evolving them to the relevant energy scale through
an extrapolation of the DGLAP equation.

As for the fragmentation functions, we implement the AKK parametrization [106]
ourselves. It takes the following form

Dh±
i (z,M2

0 ) = Nh±
i za

h±
i (1− z)b

h±
i

(︃
1 + ch

±
i (1− z)d

h±
i

)︃
(6.7)

whereM0 =
√
2GeV/c2 and the parametersN, a, b, c, d are involved. These param-

eters relate to the transition from the underlying partons to the produced hadrons
and are provided separately for each hadron species in [106]. This parametrization
assumes symmetrical production of both hadrons and antihadrons. For our calcu-
lations, we solely employ the fragmentation function for pions π±. In principle,
the fragmentation functions should also be evolved to match the energy scale of
the system using the DGLAP equation. However, in this specific calculation, the
energy scale of the fragmentation function is held constant at M2

0 .

The parameters governing the fragmentation function for the production of a pion
from an up-quark are as follows: N = 0.32, a = −2.07, b = 0.96, c = −0.81, and
d = 2.91 [106]. In contrast to the AKK parametrization, alternative approaches
to parametrize the fragmentation functions have been proposed [90].

The unintegrated gluon distributions for both factorization schemes are charac-
terized by the model values λ = 0.288 and x0 = 1. While the value of Q0 is
set separately for each calculation, it remains constant within each calculation for
both factorization schemes.

Figure 6.1 presents the calculated pseudorapidity distributions of produced charged
hadrons for central p-Pb collisions at

√
sNN = 5.02TeV. Detailed values of the

model parameters will be provided in the subsequent chapter, specifically in ta-
ble 7.6. The solid curve in the figure corresponds to the calculation based on the
KLN model, demonstrating good agreement with the experimental data.

The distribution shown as dot-dashed curves illustrates the calculated results using
the unintegrated gluon distributions by the GBW model. This specific model em-
ploys an identical set of parameters, thereby indicating that its alignment with the
data will be comparatively less precise compared to the KLN model calculation.

Despite this, the depiction of the overall maxima, particularly in the backward
region tends to overestimate the observed charged-hadron production to a signifi-
cant extent. This discrepancy might originate from the inherent simplicity of the
model in conjunction with its leading-order BFKL rapidity evolution, which may
not adequately capture the behaviour at higher rapidities.

Figure 6.2 depicts the calculated diffusion process for the pseudorapidity distri-
butions originating from both fragmentation sources, which was used in the same
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Figure 6.2.: Calculated diffusion process for pseudorapidity distributions of the fragmen-
tation sources. The initial distributions, indicated by its peak position being
the largest rapidity, is calculated within the hybrid-factorization scheme,
whereas the final distribution shows the distribution associated to produced
charged hadrons.
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Figure 6.3.: Calculated transverse momentum distributions of produced charged hadrons
for p-Pb collisions at

√
sNN = 5.02TeV for the central collisions (0-5%). The

distributions are shown for three pseudorapidity values.
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√
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calculation underlying figure 6.1. The figure visually demonstrates that each peak
experiences a shift towards the equilibrium rapidity yeq, which is situated close
to mid-pseudorapidity. Concurrently, the distributions undergo a diffusion that
leads to an enlargement of their widths. This depiction corresponds to the time
interval spanning from τh to τint. It is important to note that this model does
not encompass the treatment of the initial distribution prior to the collision or the
equilibrium distribution.

In contrast to the macroscopic diffusion process, figure 6.3 presents the computed
transverse momentum distributions for three distinct pseudorapidity values of the
same calculation shown in figure 6.1.

On the numerics

In the course of this thesis, we developed a C++ program starting from scratch,
aimed at addressing the intricate non-analytical integrals and resolving the dif-
ferential equation. This endeavour demanded substantial effort and a significant
time investment to arrive at the present state of the code, which we have now
achieved.

For the computation of the momentum integrals, we employed the QAG adap-
tive integration with 61 point Gauss-Kronrod rules method sourced from the GSL
Numerical library [107, 108].

To solve the Fokker-Planck equation, we employed a finite-element method, which
was implemented by [109, 110].

Based on these two library implementation a new problem occurred, the different
implementations of their underlying grids on which the integrals and the differential
equations are solved.

To tackle this issue and refine the corresponding grids we needed to add an inter-
polation method to transform between the different algorithms.

Therefore, we also included the spline library from the GSL Numerical library , in
particular we use the Non-rounded Akima spline with natural boundary conditions
to refine the grids.

Finally, we also included the ROOT library [111] into our codebase to perform
χ2-minimization.
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6.2. Symmetric collisions at
√
sNN = 5TeV

In this section, we present our computations of centrality-dependent pseudorapid-
ity distributions for the production of charged hadrons in Pb-Pb collisions at LHC
energies.

While the primary emphasis of this investigation revolves around asymmetric col-
lisions, the consideration of symmetric collisions provides a pivotal limit that aids
in validating our calculations. More specifically, our calculations encompass dis-
tinct forward and backward rapidity regions. Under the conditions of symmetric
collisions, these two rapidity domains must coincide, when they are mirrored.

For symmetric systems the differentiation between the laboratory and center of
mass frame of reference becomes dispensable. Furthermore, the mass numbers A1

and A2 are identical, likewise the numbers of participants N (1)
part and N (2)

part.

For our analysis, we have opted to utilize experimental data obtained by the AL-
ICE collaboration at

√
sNN = 5.023TeV [112]. The experimental setup for this

measurement involved a proton beam momentum of pbeam = 4TeV/c. When ap-
plied to the corresponding lead beam, this translates to a beam momentum of
pbeam = 1.577TeV/c, as mentioned in equation (2.4).

Using equation (2.14), we can calculate the beam rapidity, yielding ybeam = 8.586.
Subsequently, equation (2.20) enables us to precisely determine the value of

√
sNN ,

a quantity conventionally used to classify sets of experimental data in the realm of
relativistic heavy-ion collisions. However, it is essential to understand the method-
ology behind calculating the exact value of

√
sNN , particularly in the context of

asymmetric collisions.

Our computations of the pseudorapidity distributions utilize the extended Rela-
tivistic Diffusion model. In this approach, the mid-rapidity source is determined
through gluon-gluon interactions employing kT -factorization, while the two frag-
mentation sources stem from quark-gluon interactions and hybrid-factorization.

We also incorporate an additional diffusion process, as introduced in equation (5.8),
that evolves from the time corresponding to baryon stopping to the time cor-
responding to charged-hadron production. This entire process is scaled by the
number of participants Npart to account for multiple nucleon-nucleon interactions.
Comprehensive details of these calculations are available in chapter 6.

The geometric parameters required for these calculations are provided by exper-
imental collaborations and will be subsequently presented. The data sources for
these parameters are the same as those used for the experimental data.

For the gluon saturation scale Q2
s, see equation (3.26), we adopt commonly used

values, such as λ = 0.288 as reported in [66], for the gluon saturation scale ex-
ponent. However, the initial saturation momentum Q2

0 linked to the unintegrated
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Figure 6.4.: Calculated pseudorapidity distributions of produced charged hadrons
for Pb-Pb collisions at

√
sNN = 5.02TeV compared with data mea-

sured by ALICE for various centrality classes [112]. The solid curves
represent the calculated distributions of produced charged hadrons us-
ing the extended Relativistic Diffusion model. The centrality classes
are given from top to bottom as follows: 0-5%, 5-10%, 10-20%, 20-
30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, 80-90%.

gluon distribution varies according to the centrality. We will delve into the specifics
of this aspect in the subsequent discussions.

To delineate the pseudorapidity distributions originating from hybrid-factorization
as fragmentation sources for charged-hadron production, we incorporate a diffusion
process that evolves our rapidity distributions to τint, utilizing the time scale τy.
These distributions exhibit significant deviations from the equilibrium distribution
characterized by yeq.

Subsequently, after evolving the distribution, we proceed with the transformation
to pseudorapidity through equation (2.29), incorporating ⟨pT ⟩ values ranging from
0.5GeV/c for central collisions to 0.3GeV/c for ultra-peripheral collisions. It is of
significance to emphasize that the transformation from rapidity to pseudorapidity
for the gluon-gluon source is devoid of additional parameters. Consequently, the
precise transformation outlined in equation (2.28) is directly utilized.
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central.(%) Nch Ngg
ch Ngg

π Ngg
K Ngg

π N qg
Pb Rgg

qg

0-5 17923 13857 4859 4670 4329 2033 3.4

5-10 15109 11675 4101 3935 3639 1717 3.4

10-20 11505 8848 3113 2983 2752 1329 3.3

20-30 7873 6058 2135 2043 1880 908 3.3

30-40 5218 3989 1409 1346 1233 615 3.2

40-50 3287 2505 887 845 772 391 3.2

50-60 1907 1440 512 487 442 234 3.1

60-70 1009 757 270 256 231 126 3.0

70-80 485 360 129 122 109 63 2.9

80-90 198 145 52 49 43 27 2.7

Table 6.1.: Calculated produced charged hadrons Nch for Pb-Pb collisions at√
sNN = 5.02TeV for various centrality classes. The calculations in-

tegrate over the full range of pseudorapidity. The extended Relativis-
tic Diffusion model comprises three individual production sources: the
mid-rapidity source Ngg

ch and two identical fragmentation sources N qg
Pb.

The produced charged hadrons for the mid-rapidity include pions Ngg
π ,

kaons Ngg
K , and protons Ngg

p , whereas the fragmentation regions only
contain pions. The ratio between the mid-rapidity region and the com-
bined fragmentation regions is shown by Rqg

gg = Ngg
ch /ΣiN

qg
i .

Figure 6.4 presents the computed centrality dependence for diverse centrality
classes. The sub-distributions have not been visually represented.

Table 6.1 presents the overall amount of produced hadrons computed using the
extended Relativistic Diffusion model. This tally encompasses pions, kaons, and
protons stemming from the mid-rapidity source, and exclusively pions for the frag-
mentation sources., which is justified as first approximation by the suppression
of heavier particles within the fragmentation functions. The majority of hadron
production occurs within the gluon-gluon mid-rapidity source. The classification
of centrality classes is determined by the ALICE collaboration and is detailed in
table 6.2.

The amount of produced hadrons demonstrates a steady increase, with approx-
imately ∼ 100 times more hadrons produced in central collisions compared to
ultra-peripheral collisions.

Upon examining the ratio between the mid-rapidity source and the combined frag-
mentation sources, denoted as Rgg

qg = Ngg
ch /(N

qg+N qg), we discern a similar mono-
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6. Results for charged-hadron production

tonic trend. Interestingly, this ratio also follows a relatively straightforward rela-
tionship, expressed as

Rgg
qg ∼ A2/3Npart

2A1/3Npart
=
A1/3

2
≈ 3, (6.8)

where the mass number is APb = 208. The number of participants Npart are
shown in table 6.2. This phenomenon can be rationalized by considering the kT -
factorization.

This scaling is proportional to A1/3 for each implicated Qs, and further scales
with Npart to quantify how many of such processes taking place. Conversely, the
denominator, which encompasses the hybrid-factorization, entails the summation
of the two fragmentation sources, see equation (6.1). Each of these sources scales
by the product of Qs and the number of Npart processes.

Analysing the specific ratio, the production resulting from gluon-gluon interactions
relative to quark-gluon interactions decreases as one moves from central collisions
to ultra-peripheral collisions. This observation offers an initial glimpse into the
trends that will manifest more prominently in the context of asymmetric collisions,
which will be further explored in subsequent discussions.

The observed mass dependence depicted in table 6.1 deviates from the anticipated
mass distribution, which is approximately composed of 83% pions, 13% kaons, and

centrality (%) NPb
part Q2

0 (GeV2/c2) Dτy τint/τy χ2/Ndof

0-5 190.00 0.013 3.0 1.00 1.756

5-10 166.50 0.012 4.0 1.00 1.269

10-20 131.50 0.012 4.0 0.90 1.084

20-30 94.00 0.011 6.0 0.90 0.833

30-40 65.50 0.011 6.0 0.80 0.726

40-50 43.15 0.010 7.0 0.70 0.638

50-60 26.80 0.009 7.0 0.70 0.802

60-70 15.20 0.009 7.0 0.70 0.918

70-80 7.80 0.008 7.0 0.60 0.803

80-90 3.65 0.007 8.0 0.50 0.948

Table 6.2.: Model parameters extracted from the Relativistic Diffusion model
used to compute pseudorapidity distributions for Pb-Pb collisions at√
sNN = 5.02TeV. The number of participants Npart were sourced

from [112]. The parameters τint/τy and Dτy are dimensionless.
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4% protons, as shown in [113, 114] for similar collision configurations. Utilizing the
transverse mass mT instead of the transverse momentum pT in the factorization
scheme is not enough to predict the mass dependency. A more refined model for the
parton-hadron transition needs to be considered to describe the mass distribution
more accurately.

Table 6.2 shows the model parameter from the extended Relativistic Diffusion
model. The number of participants Npart are obtained from the ALICE collab-
oration, where they calculated these with the Glauber Monte Carlo simulations.
In symmetric collisions participants for projectile and target are treated the same,
which leads to Npart = ⟨Npart⟩ /2.

The computation for central collisions involves the utilization of specific parameters
for the diffusion coefficient D and interaction time τint. These values are deter-
mined through fitting to experimental data, whereas τy is expressed in multiples
of fm/c.

In a broader context, a more accurate estimation could be achieved by employing
an alternative diffusion process that takes into account the initial parton distribu-
tions of the particles before the collision, which could then be compared with the
measured total collision time.

Albeit, our model description only allows for the interpretation of the centrality
dependence of these values.

Considering ultra-peripheral collision, the interaction time diminishes, resulting in
a reduced level of equilibration compared to central collisions. This phenomenon
can be attributed to the lower number of participating particles in such collisions,
causing them to exit the interaction region more rapidly. Consequently, the likeli-
hood of further scattering events decreases.

Moreover, as collisions become more peripheral, the diffusion coefficient experiences
an increase. This observation suggests that, in the event of a collision, described
by the diffusion process, the produced hadrons undergo a greater momentum loss
in the beam direction.

The corresponding unintegrated gluon distribution is only applicable within the
small-x limit. However, when calculating the distributions of produced hadrons,
integration over a combination of x1 and x2 is involved, which is determined by
the collision kinematics. Generally, this lies outside the small-x limit. To address
this challenge in the large pseudorapidity regime, two potential approaches are
considered.

In our initial implementations, we addressed these effects by introducing an ef-
fective parameter xcut to manage the regime where the approximation of gluon
saturation is not applicable. A more refined approach involves incorporating a
suppression factor, specifically of the form (1− x)4, as detailed in section 3.3.
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Figure 6.5.: Influence of the large-x suppression factors on pseudorapidity distri-
butions of hadron production.Curves show: f(x) = (1 − x)4 (inside),
f(x) = (1− x)2 (outside).

However, when examining the region of large pseudorapidity near the beam rapid-
ity, our model appears to underestimate the production of hadrons. To grasp the
impact of this phenomenon, figure 6.5 illustrates the effect of the large-x suppres-
sion factor applied to the gluon distribution on the pseudorapidity distribution of
charged-hadron production.

This is achieved by varying the exponent of the suppression factor. The graph
showcases two curves: one where the exponent lies within the typical range, and
another where a slightly different factor is utilized, namely (1−x)2. This adjusted
factor aligns the model’s predictions with the experimental data more effectively.

In contrast, the large-x behaviour in the MSTW parametrization of the gluon
distribution is characterized by the functional form of (1− x)5.4 [33].

Having examined the symmetric realization of our model calculation, we now turn
our attention to analysing asymmetric collisions.
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6.3. Energy dependence: from RHIC to LHC

This section presents the calculations conducted for minimum bias collisions at
three distinct energy levels:

√
sNN = 0.2, 5.02, and 8.16TeV. Figure 6.6 shows

the calculated pseudorapidity distributions for these energies. They agree with the
experimental data.

In table 6.3, the produced hadrons for the underlying gluon-gluon and fragmen-
tation sources are tabulated. These values exhibit a monotonous trend with re-
spect to energy, with the contributions of the gluon-gluon source becoming more
prominent at higher energies. Notably, for LHC energies, the contributions of
the projectile-like and target-like fragmentation sources are of comparable magni-
tudes.

Table 6.4 shows similar initial saturation scale values Q2
0 for all three energy levels.

This observation indicates that Q2 not only scales with A1/3 but also depends on
centrality. Considering the diffusion parameter, it shows that for

√
sNN = 200GeV

the hybrid factorization are very near to the time scale similar to the time scale of
the charged-hadron production.

With increasing energy the diffusion coefficients of the target-like fragmentation
source increases, as well as, the interaction time, which means the fragmentation
sources thrive through the equilibrium. But also the overall model parameter for
the LHC energies are very similar.

In region of the target heavy-ion, for low energies the fragmentation source is far-
from-equilibrium, because it is near to the hadronisation phase. Consequently,

√
sNN Nch Ngg

ch Ngg
π Ngg

K Ngg
p N qg

tar N qg
pro Rtar

pro Rgg
qg

200GeV 83.5 27.8 10.8 9.4 7.5 43.1 12.6 3.4 0.5

5.02TeV 185.1 141.3 50.5 47.6 43.1 22.1 21.9 1.0 3.2

8.16TeV 228.4 176.9 62.9 59.6 54.4 27.1 24.8 1.1 3.4

Table 6.3.: Calculated produced charged hadrons Nch for minimum bias p-Pb and
d-Au collisions at various energies. The extended Relativistic Diffusion
model comprises three individual production sources: the mid-rapidity
source Ngg

ch and two fragmentation sources N qg
pro/tar. The produced

charged hadrons for the mid-rapidity include pions Ngg
π , kaons Ngg

K ,
and protons Ngg

p , whereas the fragmentation regions only contain pi-
ons. The ratio between the two fragmentation sources are shown as
Rtar

pro = N qg
tar/N

qg
pro. The ratio Rqg

gg = Ngg
ch /ΣiN

qg
i represents the propor-

tion of produced charged hadrons in the mid-rapidity region compared
to the combined fragmentation regions.
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Figure 6.6.: Calculated pseudorapidity distributions of produced charged hadrons
for p-Pb and d-Au collisions at different energies. Compared with
data from Phobos [115] and CMS [116]. Pseudorapidity distributions
at

√
sNN = 200GeV, 5.02TeV and 8.16TeV (from bottom to top).

hadrons escape the interaction region at a faster rate. Additionally, hadrons sense
a greater momentum loss in the beam direction with increasing energy, while main-
taining consistency for LHC energies.

√
sNN N tar

part Q2
0 (GeV2/c2) Dproτy τproint /τy Dtarτy τ tarint /τy χ2/Ndof

200GeV 6.60 0.05 2.0 0.1 8.0 0.2 0.803

5.02TeV 6.87 0.06 2.9 0.6 13.0 0.9 0.340

8.16TeV 7.09 0.06 2.9 0.6 13.0 1.0 0.142

Table 6.4.: Model parameters extracted from the Relativistic Diffusion model used
to compute pseudorapidity distributions for p-Pb and d-Au minimum
bias collisions. The number of participants N tar

part were sourced from
[117] and [116]. The parameters τ iint/τ

i
y and Diτ iy are dimensionless.
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7. Centrality dependence of
pseudorapidity distributions

In this chapter, we present our calculations of centrality-dependent pseudorapidity
distributions and compare them with experimental data from Phobos and LHC.
The extended Relativistic Diffusion model and its numerical implementation have
been discussed in the previous chapter. Here, our primary focus lies in exploring
the centrality dependence of our calculations.

We commence with an investigation of pseudorapidity distributions of asymmetric
d-Au collisions at Phobos energies of

√
sNN = 200GeV, covering multiple central-

ity classes. Despite the lower energy in comparison to LHC collisions, the extensive
coverage of the experimental data in pseudorapidity space near the beam rapidity
provides significant value for comparison and analysis.

In the subsequent section, we examine the centrality dependence of our calculations
and compare them with ATLAS data at

√
sNN = 5.02TeV. These data were

the initial collection of data that served our purpose for analysing asymmetric
collisions, encompassing a broader extent of pseudorapidity space. The selection
of centrality classes for ultra-peripheral collisions exhibits implications compared
to the centrality classes from ALICE.

In the following part of this section, we present the main results of our calcula-
tions for the pseudorapidity distributions for p-Pb collisions. These outcomes are
compared with the recently published expanded data provided by the ALICE col-
laboration at

√
sNN = 5.02TeV. These data encompass a broader pseudorapidity

range, extending up to η = 5. The improved data permits a more comprehensive
analysis of ultra-peripheral collisions.

The subsequent section presents a comparison between our computational results
for p-Pb collisions at

√
sNN = 8.16TeV and the experimental data obtained from

ALICE. This section also includes predictions for a wider pseudorapidity range,
spanning from η = 2 to η = 5. The last part of the section concludes with a
detailed examination of the minor variations in the initial saturation scale across
all the calculated collisions, highlighting their centrality dependence.
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7. Centrality dependence of pseudorapidity distributions

Figure 7.1.: Schematic demonstration of the ALICE detector and the two possi-
ble beam configurations of asymmetric heavy-ion collisions. The mo-
menta are determined by the experimental setup. For p-Pb collisions
at

√
sNN = 5.02TeV, the momentum of the proton beam is fixed to

4TeV, and the lead beam momentum is scaled by a factor of Z/A.
Figure taken from Ploskon [118].

Before starting the discussion of our findings, it is essential to highlight a key
aspect concerning asymmetric collisions. Illustrated in figure 7.1 is a schematic
representation of the experimental arrangements and the two potential conven-
tions for handling asymmetric collisions. Our preference aligns with the second
convention, wherein forward rapidities are linked to the particle beam resembling
the projectile, consisting of deuterons and protons. In parallel, backward rapidities
correspond to the particle beam akin to the target, which in our instance comprises
gold and lead nuclei.
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7.1. Asymmetric d-Au collisions at
√
sNN = 200GeV

We provide an analysis of the centrality-dependent calculations of pseudorapidity
distributions for produced charged hadrons in d-Au collisions at RHIC energies.
Asymmetric collisions necessitate the separate calculation of forward and backward
rapidities, unlike the simple mirroring employed in symmetric collisions.

The relevant experimental data have been reported in multiple papers. The min-
imum bias data were published in [115], while centrality-dependent data can be
found in [119]. A review of Phobos data has also been published in [117].

This dataset, stemming from experiments conducted prior to LHC energies, cov-
ers pseudorapidity measurements up to nearly the beam rapidity. This extensive
coverage allows for comprehensive testing of the full shape of the distribution.
However, it is important to note that the deuteron is significantly more complex
than a simple combination of a proton and a neutron.

In d-Au collisions, the beam momenta are set such that the energy per nucleon-
nucleon pair is given by

√
sNN = 200GeV, corresponding to ybeam = 5.362. The

shift in rapidity between the laboratory frame and the nucleon-nucleon pair ref-
erence frame is ∆y = 0.110, which needs to be considered when comparing the
calculated rapidity distributions with data.

The experimental data adhere to the same convention as that employed in this
thesis, where positive rapidity is attributed to the deuteron beam. The geometric
parameters required for these calculations are established by experimental collabo-
rations and will be subsequently presented. The data sources for these parameters
are the same as those used for the experimental data.

We performed computations of the pseudorapidity distributions using the extended
Relativistic Diffusion model as outlined in section 6.1.

For the gluon saturation scale exponent we use λ = 0.288 and x0 = 1. The
initial saturation momentum Q2

0, linked to the unintegrated gluon distribution,
also exhibits a minor dependence on centrality.

To account for the fragmentation sources, we introduce a diffusion process that
evolves our rapidity distributions towards τint, using the time scale τy. However, the
specific value of the time scale based on τy remains elusive within our model. These
distributions significantly deviate from the equilibrium distribution characterized
by yeq. For the Jacobian of the fragmentation sources, we employ ⟨pT ⟩ values
between 0.4GeV/c and 0.5GeV/c, along with the pion mass mπ.

In figure 7.2, the computed centrality dependence for various centrality classes
is depicted. The outcomes derived from our analysis reveal a notable alignment
between the computed results and the experimental data, spanning a wide range
of pseudorapidity values. Specifically, the model adeptly captures the behaviour
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7. Centrality dependence of pseudorapidity distributions
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Figure 7.2.: Calculated pseudorapidity distributions of produced charged hadrons
for d-Au collisions at

√
sNN = 200GeV compared with Phobos data

for different centrality classes [119]. The solid curves show the pro-
duced charged hadron distributions calculated by the extended Rela-
tivistic Diffusion model. The dot-dashed curves show the model con-
tribution for the mid-rapidity region for produced pions, kaons and
protons, whereas the dashed curves show the contribution only for pi-
ons. Kaons and protons are not explicitly shown. The dotted curves
show the model contribution for pions coming from the two fragmen-
tation regions.
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7.1. Asymmetric d-Au collisions at
√
sNN = 200GeV

of the mid-rapidity region across all examined centrality classes with a high level
of precision. Moreover, the positive rapidity region associated with the deuteron-
going side shows agreement with the measured data. However, further discussion
is warranted for the negative rapidity region linked to the gold-going side.

This proficiency extends further to the replication of the both peaks observed in
the charged-hadron production. The influence of the Jacobian for the mid-rapidity
source is found to be negligibly small. As a consequence, the dip observed in the
mid-rapidity region can be attributed to the smallness of the fragmentation sources
at midrapidity.

A comparison between our calculations and previously published results, such as
[74], reveals a better agreement with the experimental data. Our calculations
demonstrate improved agreement within the mid-rapidity regime. A comparison
with the Relativistic Diffusion model utilizing Gaussian rapidity distributions [14]
yields compatible results. Even the sub-distributions exhibit remarkable agree-
ment, barring the ultra-peripheral collisions where our calculations indicate a more
pronounced contribution from the fragmentation sources.

Regarding the gold-going side, the phenomenon of underestimating hadron pro-
duction has also been observed in previous calculations, as evident in [120] and
[121]. These findings are particularly relevant in the light of the binding energy
of a proton (928.9MeV) or neutron (927.7MeV), which are significantly higher
than that of a deuteron (2.225MeV). Consequently, shortly after a collision, the
deuteron is expected to decay into two free nucleons.

Considering this decay process, it becomes apparent that the validity of the Glauber-
calculated number of participants could be questioned, as the assumption of a sin-
gle collision may not hold. To address this, we scale NAu

part by a factor of 2.2. This
adjustment leads to a more accurate description of the observed trends.

Table 7.1 presents the total amount of produced hadrons, computed through the
utilization of the extended Relativistic Diffusion model. This summation encom-
passes pions, kaons, and protons stemming from the mid-rapidity source, with
exclusively pions emerging from the fragmentation sources.

The preponderance of hadrons arises from the gluon-gluon mid-rapidity source.
The classification of centrality classes is taken from the Phobos collaboration and
is delineated in table 7.2.

The amount of produced hadrons Nch exhibits a monotonically increasing trend,
with central collisions yielding ∼7 more hadrons than ultra-peripheral collisions.

It is intriguing to observe that the ratio RAu
d representing the production of hadrons

between the fragmentation sources shifts towards the deuteron’s fragmentation
source.
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7. Centrality dependence of pseudorapidity distributions

central. Nch Ngg
ch Ngg

π Ngg
K Ngg

p N qg
Au N qg

d RAu
d Rgg

qg

0-20% 162.7 52.4 20.3 17.7 14.4 94.7 15.7 6.0 0.475

20-40% 110.4 36.2 14.1 12.3 9.8 59.7 14.5 4.1 0.488

min.bias 83.5 27.8 10.8 9.4 7.5 43.1 12.6 3.4 0.499

40-60% 73.7 24.9 9.7 8.5 6.7 35.9 12.9 2.8 0.510

60-80% 45.5 16.1 6.3 5.5 4.3 18.9 10.4 1.8 0.549

80-100% 25.9 9.2 3.6 3.1 2.4 9.2 7.5 1.2 0.550

Table 7.1.: Calculated produced charged hadrons Nch for d-Au collisions at√
sNN = 200GeV for various centrality classes and minimum bias. The

calculations integrate over the full range of pseudorapidity. The ex-
tended Relativistic Diffusion model comprises three individual pro-
duction sources: the mid-rapidity source Ngg

ch and two fragmentation
sources N qg

d/Au. The produced charged hadrons for the mid-rapidity
include pions Ngg

π , kaons Ngg
K , and protons Ngg

p , whereas the frag-
mentation regions only contain pions. The ratio between the two
fragmentation sources are shown as RAu

d = N qg
Au/N

qg
d . The ratio

Rqg
gg = Ngg

ch /ΣiN
qg
i represents the proportion of produced charged

hadrons in the mid-rapidity region compared to the combined frag-
mentation regions.

central. NAu
part Q2

0 (GeV2/c2) Ddτy τdint/τ
d
y DAuτy τAu

int /τy χ2/Ndof

0-20% 13.5 0.054 2.0 0.1 9.0 0.1 0.890

20-40% 8.9 0.051 2.0 0.1 8.0 0.2 1.019

min.bias 6.6 0.050 2.0 0.1 8.0 0.2 0.803

40-60% 5.4 0.050 2.0 0.1 8.0 0.2 1.280

60-80% 2.9 0.050 2.0 0.1 7.0 0.3 1.132

80-100% 1.6 0.042 3.0 0.2 6.0 0.4 0.180

Table 7.2.: Model parameters extracted from the Relativistic Diffusion model used
to compute pseudorapidity distributions for d-Au collisions at

√
sNN =

200GeV. The number of participants NAu
part were sourced from [117].

The parameters τ iint/τ
i
y and Diτ iy are dimensionless.
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√
sNN = 200GeV

Also for this calculation, we see a slight deviation compared to the data for pseu-
dorapidities near the beam rapidity. As for symmetric collisions the suppression
factor of (1−x)4 might be a reason, why the hadron production is underestimated
in that area.

Table 7.2 presents a comprehensive overview of the cumulative yield of produced
hadrons, calculated using the extended Relativistic Diffusion model. The results
are categorized into distinct centrality classes, ranging from the most central (0-
20%) to the most peripheral (80-100%) collisions. The number of participants for
the deuteron, Nd

part, are given by 2.0, 1.9, 1.7, 1.4, 1.1 and for minimum bias 1.7
[117].

The cumulative count includes pions, kaons, and protons originating from the mid-
rapidity source, while exclusively pions emerge from the fragmentation sources.
Notably, the primary contribution to the hadron yield arises from the gluon-gluon
mid-rapidity source.

Concerning the parameter governing the diffusion process, it is noteworthy that
both fragmentation sources exhibit very short interaction times. One plausible
explanation is that the potential for longitudinal momentum loss is constrained
considerably due to the relatively low overall energy, as compared to energies at
the LHC.

Given the limited duration of interaction times, the influence of the diffusion pro-
cess is extremely minor, preventing a valuable interpretation of the centrality de-
pendence of the diffusion coefficient.

We continue with collisions at LHC energies.
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(a) Experimental data from ATLAS (pT > 0) [122]. The centrality classes from top to
bottom are 0-1%, 1-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-60%, 60-90%.
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(b) Experimental data from ALICE for |η|<2 from [104], all others from [105].
The centrality classes from top to bottom are 0-5%, 5-10%, 10-20%, 20-40%, 40-60%,
60-80%, 80-100%.

Figure 7.3.: Calculated pseudorapidity distributions of produced charged hadrons
for p-Pb collisions at

√
sNN = 5.02TeV compared with data for vari-

ous centrality classes. The solid curves represent the calculated distri-
butions of produced charged hadrons using the extended Relativistic
Diffusion model.
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7.2. Charged hadrons for p-Pb collisions at 5TeV

We conduct an analysis of centrality-dependent calculations focusing on the pseu-
dorapidity distributions of produced charged hadrons in p-Pb collisions at

√
sNN =

5TeV. To conduct a comprehensive analysis, we compare our calculations with
experimental data obtained from both the ALICE and ATLAS collaborations.

This choice is motivated by several factors. Firstly, the ATLAS data covers a
broader range in pseudorapidity over an extended period of time. But, ALICE
recently published experimental data for the pseudorapidity range of η < 5. Fur-
thermore, variations in the centrality classes between the two collaborations offer
an intriguing avenue for comparison.

For asymmetric collisions, distinct calculations are necessitated for forward and
backward rapidities. In the case of p-Pb collisions, the proton and lead beams
possess disparate momenta: 4.0TeV/c for the proton beam and 1.577TeV/c for the
lead beam. These beam momenta correspond to beam rapidities of ypbeam = 9.051
and yPb

beam = 8.120, respectively. As a result, the energy per nucleon-nucleon pair is√
sNN = 5.023TeV, which corresponds to a beam rapidity in the nucleon-nucleon

frame of reference of ybeam = 8.586.

It is important to account for a rapidity shift of ∆y = 0.465 between the labora-
tory frame and the nucleon-nucleon pair reference frame when calculating rapidity
distributions.

To conform with the convention embraced in this thesis, wherein positive rapidity
corresponds to the proton beam, a transformation of the experimental data of
ALICE from the laboratory frame Pb-p to p-Pb, as illustrated in figure 7.1, was
required. The procedure involves shifting the experimental data to the center of
mass frame, performing a mirroring operation, and then shifting it to the other
laboratory frame.

The geometric parameters essential for these calculations are established through
collaborations within the experimental community and will be subsequently de-
tailed. These parameter sources are consistent with those employed for the exper-
imental data.

To perform the computations, we apply our extended Relativistic Diffusion model
with the three production sources, which is elucidated in section 6.1. These include
the mid-rapidity source Ngg

ch and two fragmentation sources N qg
p/Pb, which collec-

tively shape the spectra of charged hadrons. The mid-rapidity source encompasses
various charged hadrons such as pions Ngg

π , kaons Ngg
K , and protons Ngg

p , while
the fragmentation sources only involve pions.

In this process, we adhere to the same parameter values as employed in the preced-
ing calculations. Specifically, we use a gluon saturation scale exponent λ = 0.288
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Figure 7.4.: Calculated pseudorapidity distributions of produced charged hadrons
for p-Pb collisions at

√
sNN = 5.02TeV compared with ATLAS data

for different centrality classes and pT >0 [122]. The solid curves show
the produced charged hadron distributions calculated by the extended
Relativistic Diffusion model. The dot-dashed curves show the model
contribution for the mid-rapidity region for produced pions, kaons and
protons, whereas the dashed curves show the contribution only for pi-
ons. Kaons and protons are not explicitly shown. The dotted curves
show the model contribution for pions coming from the two fragmen-
tation regions.
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7.2. Charged hadrons for p-Pb collisions at 5TeV

and x0 = 1. The initial saturation momentum Q2
0, exhibits only minor variations

in response to changes in centrality.

To account for the contributions from the fragmentation sources, we introduce a
diffusion mechanism that guides our rapidity distributions towards τint, utilizing
the time scale τy. However, the precise value of the time scale derived from τy
remains uncertain within our model. It is worth noting that these distributions
deviate significantly from the equilibrium distribution characterized by yeq.

For the calculation of the Jacobian associated with the fragmentation sources, we
employ an average transverse momentum ⟨pT ⟩ value of 0.3GeV/c and the pion
mass mπ.

The computed pseudorapidity distributions for p-Pb collisions compared with AT-
LAS and ALICE data are illustrated in figure 7.3. They both show good agree-
ment with the experimental data. Similar calculations but using different models
are presented in [8], but these are confined to the experimental data reported in
[104].

Notably, as of the completion of this thesis, there are no other published calcula-
tions available for the recently released data from [105].

Calculations compared with ATLAS data

A notable distinction in the ATLAS data lies in the selection of the centrality
classes. Specifically, the most peripheral collisions are defined within the range of
60% to 90%.

Figure 7.4 illustrates the computed centrality dependence across various centrality
classes. Our analysis demonstrates a remarkable concurrence between the calcu-
lated results and the experimental data, encompassing a diverse range of pseudora-
pidity values. The model effectively captures the characteristics of the mid-rapidity
region for all examined centrality classes with a high degree of accuracy.

An overview of the total yield of produced hadrons, calculated through the imple-
mentation of the extended Relativistic Diffusion model is provided in Table 7.3

The outcomes are categorized into distinct centrality classes, spanning from the
most central (0-1%) to the most peripheral (60-90%) collisions. This inquiry en-
compasses the entire pseudorapidity spectrum, facilitating a thorough investigation
of particle production dynamics.

The cumulative count encompasses pions, kaons, and protons originating from
the mid-rapidity source, while exclusively pions emerge from the fragmentation
sources. The primary contribution of hadrons stems from the gluon-gluon mid-
rapidity source.
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7. Centrality dependence of pseudorapidity distributions

central. Nch Ngg
ch Ngg

π Ngg
K Ngg

p N qg
Pb N qg

p RPb
p Rgg

qg

0-1% 590.9 481.3 168.8 161.8 150.5 82.1 27.7 3.0 4.4

1-5% 467.0 374.8 132.2 126.1 116.5 66.5 25.9 2.6 4.1

5-10% 395.8 315.4 111.6 106.2 97.6 55.6 25.0 2.2 3.9

10-20% 325.8 257.5 91.5 86.7 79.3 44.4 24.1 1.8 3.8

20-30% 270.2 211.5 75.4 71.3 64.8 35.8 23.1 1.5 3.6

30-40% 228.5 176.6 63.1 59.5 54.0 29.5 22.6 1.3 3.4

40-60% 171.8 129.7 46.5 43.8 39.5 20.3 21.9 0.9 3.1

60-90% 92.6 64.3 23.3 21.8 19.3 8.4 19.9 0.4 2.3

Table 7.3.: Calculated produced charged hadrons Nch for p-Pb collisions at√
sNN = 5.02TeV for various centrality classes and minimum bias.

The calculations integrate over the full range of pseudorapidity. The
extended Relativistic Diffusion model comprises three individual pro-
duction sources: the mid-rapidity source Ngg

ch and two fragmentation
sources N qg

p/Pb. The produced charged hadrons for the mid-rapidity
include pions Ngg

π , kaons Ngg
K , and protons Ngg

p , whereas the fragmen-
tation regions only contain pions.

central. NPb
part Q2

0(GeV/c)2 Dpτy τpint/τy DPbτy τPb
int /τy χ2/Ndof

0-1% 17.2 0.098 1.5 0.80 6.0 0.30 0.124

1-5% 15.1 0.085 1.5 0.80 6.0 0.35 0.357

5-10% 13.6 0.078 1.5 0.72 10.0 0.40 0.435

10-20% 12.0 0.070 1.5 0.60 11.0 0.80 0.190

20-30% 10.4 0.065 2.0 0.60 13.0 0.80 0.151

30-40% 8.8 0.062 2.2 0.60 13.0 0.80 0.175

40-60% 6.4 0.058 3.0 0.55 13.0 1.00 0.065

60-90% 3.0 0.047 5.0 0.38 13.0 1.00 0.112

Table 7.4.: Model parameter from Relativistic Diffusion model for calculated pseu-
dorapidity distributions for p-Pb collisions at

√
sNN = 5.02TeV. The

number of participants NPb
part were taken from the Glauber Monte Carlo

calculations by ATLAS [122] for different centrality classes. In asym-
metric collisions participants for projectile and target are treated sep-
arately, where ⟨Npart⟩ = Np

part +NPb
part with Np

part = 1.

86



7.2. Charged hadrons for p-Pb collisions at 5TeV

The classification of centrality classes is derived from the ATLAS collaboration
and is delineated in table 7.4. The count of produced hadrons Nch exhibits a
monotonic trend, with central collisions yielding approximately six times more
hadrons compared to ultra-peripheral collisions.

Two essential ratios are offered to illuminate the underlying production mech-
anisms. The first, denoted as RPb

p , gauges the relative production of charged
hadrons between the two distinct fragmentation sources. The ratio undergoes a
decreasing transition as collisions become more ultra-peripheral, leading to a shift
in production emphasis towards the proton-like fragmentation source.

The ration RPb
p states a value of less than 0.5 for ultra-peripheral collisions. How-

ever, when observing the amplitudes of both peaks in figure 7.4 for the most
peripheral collisions, the mentioned shift in the relevance of the fragmentation
sources is not discernible as a shift in the global peak towards the proton-going
region.

The underlying reason for this is still the substantial asymmetry of the gluon-gluon
source towards the lead-going region, attributed in the definition of the selected
centrality class. The chosen centrality class spans a wide range (60-90%) and
excludes the most ultra-peripheral region (90-100%).

The ratio denoted as Rqg
gg serves to characterize the proportion of charged hadrons

originating from the mid-rapidity region in comparison to the collective contribu-
tions from the fragmentation regions, which has an scaling behaviour of

Rgg
qg ∼ A1/3Npart

A1/3 +Npart
. (7.1)

Upon further analysis of the model parameters listed in table 7.4 concerning the
diffusion process, it shows that the behaviour of the proton-going fragmentation
sources exhibits similarities to that of the Pb-Pb fragmentation sources, as men-
tioned in section 6.2.

However, a contrasting pattern emerges for the lead-going fragmentation source. In
this scenario, the produced hadrons exhibit a more pronounced loss of momentum
in the beam direction, consequently driving an elevation in the diffusion coefficient.
Concurrently, the interaction time also experiences an increase. The interaction
time signifies the duration during which the produced hadron is in the process of
attaining its ultimate momentum state.
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7. Centrality dependence of pseudorapidity distributions

 0

 15

 30

 45

 60

         

0−5%

 

 

 

 

 

         

5−10%

 0

 10

 20

 30

 40

         

10−20%

d
N

/d
η

la
b

 

 

 

 

 

         

20−40%

 0

 5

 10

 15

 20

         

min. bias

 

 

 

 

 

         

40−60%

 0

 3

 6

 9

 12

−8 −6 −4 −2  0  2  4  6  8

60−80%

ηlab

 

 

 

−8 −6 −4 −2  0  2  4  6  8

80−100%dN/dη x 2

ηlab

Figure 7.5.: Calculated pseudorapidity distributions of produced charged hadrons
for p-Pb collisions at

√
sNN = 5.02TeV. The data are measured

by the ALICE collaboration and represent different centrality classes.
The data for minimum bias come from [123]. The data for the different
centrality classes for |η|< 2.0 come from [104], whereas for |η|> 2.0
from [105]. The solid distribution shows the full-calculated pseudo-
rapidity distribution, whereas the dot-dashed distribution shows the
combined distribution of charged hadrons produced by gluon-gluon in-
teractions for pions, kaons and protons. The dashed distribution shows
only the pions produced by gluon-gluon interactions and the dotted
distributions show the produced pions coming from quark-gluon inter-
actions. Kaons and protons are not shown explicitly for gluon-gluon
interactions. The most peripheral distribution is scaled by a factor of
two for better visibility.
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7.2. Charged hadrons for p-Pb collisions at 5TeV

Calculations compared with ALICE data

Figure 7.5 shows the calculated centrality dependence across a range of centrality
classes. When compared to the data from ATLAS, it is important to note that the
data obtained from ALICE corresponds to slightly different centrality classes.

The most significant distinction can be attributed to the delineation of ultra-
peripheral collisions. In the ALICE data, this category extends to include the most
peripheral region and reduces the range of less peripheral collisions (80-100%).

Our analysis exhibits a remarkable agreement between the computed outcomes
and the experimental data, spanning a wide spectrum of pseudorapidity values.

In table 7.5 we see the calculated produced charged hadrons. Considering the ratio
of the mid-rapidity and of the combined fragmentation sources we found the same
relation than for ATLAS data.

In the context of ultra-peripheral collisions, a transition is observed wherein the
dominant peak, the global maximum, of the pseudorapidity distribution shifts
from the negative to the positive pseudorapidity region. This shift signifies that in
the region, associated with the proton, a higher number of hadrons are produced
compared to the lead region.

This phenomenon finds explanation within our model, indicating the relevance of
fragmentation sources in describing the production of charged hadrons.

The rationale behind this observation can be elucidated as follows. We investigate
the scaling behaviour of the fraction of produced hadrons originating from the
fragmentation sources, denoted as RPb

p . Its scaling behaviour is basically governed
by ∼NPb

part A
−1/3, primarily influenced by the fact that the lead serves both as the

projectile and the target within collisions.

For situations where A1/3>NPb
part, it is anticipated that the proton-like fragmen-

tation source yields more hadrons than the Pb-like fragmentation source. So far
the same argument can be applied to the data of ultra-peripheral collisions at
ATLAS.

Furthermore, it is anticipated that the gluon-gluon source will exhibit a symmetri-
cal nature, regarding positive and negative rapidities, in the limit ofNPb

part, resulting
in an approximately constant behaviour within the region where both peaks are
situated, particularly evident in the case of the most ultra-peripheral collisions, as
depicted in Figure 7.5.

In conclusion, the scaling behaviour of the fragmentation sources with respect to
centrality, combined with the constant nature of the mid-rapidity source, char-
acterizes the transition of the dominant peak towards ultra-peripheral collisions
within the pseudorapidity distribution.
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7. Centrality dependence of pseudorapidity distributions

central. Nch Ngg
ch Ngg

π Ngg
K Ngg

p N qg
Pb N qg

p RPb
p Rgg

qg

0-5% 478.7 386.7 136.1 130.1 120.5 66.1 26.1 2.5 4.2

5-10% 384.8 307.3 108.7 103.4 95.2 53.1 24.7 2.1 3.9

10-20% 320.3 253.9 90.2 85.5 78.2 42.9 23.8 1.8 3.8

20-40% 246.0 191.9 68.5 64.7 58.8 31.6 22.6 1.4 3.5

min.bias 187.5 143.8 51.4 48.5 43.9 22.0 21.8 1.0 3.3

40-60% 169.0 127.8 45.8 43.1 38.9 19.9 21.3 0.9 3.1

60-80% 105.9 75.8 27.4 25.6 22.8 10.4 19.8 0.5 2.5

80-100% 49.7 31.0 11.6 10.5 8.8 3.7 15.1 0.2 1.6

Table 7.5.: Calculated produced charged hadrons Nch for p-Pb collisions at√
sNN = 5.02TeV for various centrality classes and minimum bias.

The extended Relativistic Diffusion model comprises three individual
production sources: the mid-rapidity source Ngg

ch and two fragmenta-
tion sources N qg

i . The produced charged hadrons for the mid-rapidity
include pions, kaons, and protons, whereas the fragmentation regions
only contain pions. The ratio between the two fragmentation sources
are shown as RPb

p = NPb/Np, whereas the ratio Rqg
gg = Ngg/N qg repre-

sents the proportion of produced charged hadrons in the mid-rapidity
region compared to the combined fragmentation regions.

central. NPb
part Q2

0(GeV/c)2 Dpτy τpy /τy DPbτint τPb
int /τy χ2/Ndof

0-5% 14.70 0.090 1.5 0.80 6.0 0.40 0.342

5-10% 13.00 0.079 1.5 0.72 10.0 0.40 0.250

10-20% 11.70 0.071 1.5 0.60 11.0 0.80 0.349

20-40% 9.40 0.064 2.0 0.60 13.0 0.80 0.256

min.bias 6.90 0.061 2.9 0.60 13.0 0.90 0.100

40-60% 6.42 0.057 3.0 0.60 13.0 1.00 0.207

60-80% 3.81 0.048 5.0 0.45 13.0 1.50 0.202

80-100% 1.94 0.028 9.5 0.35 13.0 2.20 0.545

Table 7.6.: Model parameter from Relativistic Diffusion model for calculated pseu-
dorapidity distributions for p-Pb collisions at

√
sNN = 5.02TeV. The

number of participants NPb
part were taken from the Glauber Monte Carlo

calculations by ALICE [123] for different centrality classes. In asym-
metric collisions participants for projectile and target are treated sep-
arately, where ⟨Npart⟩ = Np

part +NPb
part with Np

part = 1.
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7.3. Charged hadrons for p-Pb collisions at 8TeV

7.3. Charged hadrons for p-Pb collisions at 8TeV

We delve into a comprehensive analysis of centrality-dependent calculations, con-
cerning the pseudorapidity distributions of produced charged hadrons in p-Pb col-
lisions. This pertains to the highest currently available energy regime at LHC.

In the context of asymmetric collisions, distinct calculations are required for for-
ward and backward rapidities, unlike the simplified symmetry assumptions appli-
cable to symmetric collisions. The experimental data encompasses a range of 3.6
units of pseudorapidity (|η|<1.8) and has been published in [124].

In p-Pb collisions, the proton and lead beams possess differing momenta: 6.5TeV/c
for the proton and 2.563TeV/c for the lead beam. The corresponding beam ra-
pidities are ypbeam = 9.536 and yPb

beam = 8.606. This configuration results in an
energy per nucleon-nucleon pair of

√
sNN = 8.162TeV, corresponding to a beam

rapidity in the nucleon-nucleon frame of reference of ybeam = 9.071.

It’s important to consider a rapidity shift of ∆y = 0.465 between the laboratory
frame and the nucleon-nucleon pair reference frame, which remains consistent with
other LHC energies, when calculating rapidity distributions.

central. Nch Ngg
ch Ngg

π Ngg
K Ngg

p N qg
Pb N qg

p RPb
p Rgg

qg

0-5% 649.3 538.7 188.3 181.1 169.4 82.6 29.7 2.8 4.8

5-10% 512.5 419.5 147.3 141.1 131.1 65.6 28.4 2.3 4.5

10-20% 414.3 335.0 118.2 112.7 104.1 53.4 26.8 2.0 4.2

20-40% 305.3 241.6 85.7 81.4 74.5 38.9 25.2 1.5 3.8

min.bias 228.4 176.9 62.9 59.6 54.4 27.1 24.8 1.1 3.4

40-60% 203.1 155.5 55.4 52.4 47.6 23.9 24.0 1.0 3.2

60-80% 115.2 81.8 29.5 27.7 24.7 11.8 21.6 0.5 2.5

80-100% 44.0 26.0 9.9 8.9 7.2 3.7 14.6 0.3 1.4

Table 7.7.: Calculated produced charged hadrons Nch for p-Pb collisions at√
sNN = 8.16TeV for different centrality classes. The centrality classes

are comparable with ALICE data from [124]. Calculations include the
full range of pseudorapidity. The RDM consists of three individual pro-
duction sources, the mid-rapidity source Ngg and two fragmentation
sources N qg

i . The ratio between the fragmentation regions is shown via
RPb

p = NPb
qg /N

p
qg. The ration between the mid-rapidity region and the

combined fragmentation region is shown via Rgg
qg = Ngg/N qg. The pro-

duced charged hadrons for the mid-rapidity contain pions, kaons and
protons, whereas the fragmentation regions only contain pions.
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7. Centrality dependence of pseudorapidity distributions
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Figure 7.6.: Calculated pseudorapidity distributions of produced charged hadrons
for p-Pb collisions at

√
sNN = 8.16TeV compared with ALICE data

for different centrality classes [124]. The solid curves show the pro-
duced charged hadron distributions calculated by the extended Rela-
tivistic Diffusion model. The dot-dashed curves show the model con-
tribution for the mid-rapidity region for produced pions, kaons and
protons, whereas the dashed curves show the contribution only for pi-
ons. Kaons and protons are not explicitly shown. The dotted curves
show the model contribution for pions coming from the two fragmenta-
tion regions. The scale of the most peripheral centrality is scaled by a
factor of two for better visibility. The experimental data are mirrored
from Pb-p to p-Pb convention.
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7.3. Charged hadrons for p-Pb collisions at 8TeV

central. NPb
part Q2

0(GeV/c)2 Dpτy τpint/τy DPbτy τPb
int /τy χ2/Ndof

0-5% 16.00 0.092 1.0 1.00 13.0 0.40 0.477

5-10% 14.00 0.080 1.5 0.80 13.0 0.60 1.697

10-20% 12.40 0.070 1.5 0.80 13.0 0.80 0.828

20-40% 9.90 0.061 2.0 0.70 13.0 1.00 0.492

min.bias 7.09 0.058 2.9 0.60 13.0 1.00 0.065

40-60% 6.47 0.054 3.0 0.60 13.0 1.00 0.240

60-80% 3.53 0.043 5.0 0.45 6.0 1.50 0.066

80-100% 1.76 0.019 13.0 0.25 4.0 1.50 0.090

Table 7.8.: Model parameter from Relativistic Diffusion model for calculated pseu-
dorapidity distributions for p-Pb collisions at

√
sNN = 8.16TeV. The

number of participants NPb
part were taken from the Glauber Monte Carlo

calculations by ALICE with the CL1 estimator [124] for different cen-
trality classes. In asymmetric collisions participants are treated sepa-
rately, where ⟨Npart⟩ = Np

part +NPb
part with Np

part = 1.

In figure 7.6, we present the computed centrality dependence for different cen-
trality classes. The results obtained from our analysis demonstrate a remarkable
agreement between the computed values and the experimental data. Our model
accurately captures the behaviour of the mid-rapidity region across all investigated
centrality classes with a high degree of accuracy.

The effectiveness of our model is further demonstrated by its ability to accurately
replicate the expected presence of dual maxima in the distribution of charged-
hadron production. Furthermore, our analysis reveals that the influence of the
Jacobian related to the mid-rapidity source is insignificantly small. As a result,
the depression observed in the mid-rapidity region can be attributed to the absence
of the fragmentation sources.

Table 7.7 provides an overview of the total quantity of produced hadrons, as com-
puted using the extended Relativistic Diffusion model.

The predominant contribution of hadrons is attributed to the gluon-gluon mid-
rapidity source. The count of produced hadrons Nch exhibits a monotonic increase,
with central collisions producing ∼ 15 times more hadrons compared to ultra-
peripheral collisions.

The model parameter describing the diffusion process are shown in table 7.8. The
diffusion process for the proton-going fragmentation source share the same cen-
trality behaviour as for p-Pb collision at

√
sNN = 5.02TeV.
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7. Centrality dependence of pseudorapidity distributions
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Figure 7.7.: Double logarithmic plot illustrating the centrality dependence of Q2
0,

considering Npart for RHIC and LHC energies. In cases of asymmetric
collisions, participants from the projectile and target are treated indi-
vidually, with target participants being employed here. The upper blue
curve pertains to calculation in comparison with ATLAS data, while
the lower curve corresponds to the calculations compared to ALICE.

√
sNN (TeV) ˆ︁Q2

0 (GeV2/c2) N0 d

Pb-Pb ALICE 5.023 0.0030 1.00 0.8467

d-Au PHOBOS 0.200 0.0201 1.30 0.8398

p-Pb ATLAS 5.023 0.0132 1.32 3.0148

p-Pb ALICE 5.023 0.0127 1.49 3.3397

p-Pb ALICE 8.160 0.0066 1.21 6.2217

Table 7.9.: Values for the centrality-depended parametrization of Q2
0, fitted to the

results of previous calculations of the pseudorapidity distributions at
RHIC and LHC energies.
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7.3. Charged hadrons for p-Pb collisions at 8TeV

Centrality dependence of the initial saturation scale

The initial saturation scale momentum Q0, as employed in the definition of the
saturation scale, see equation (3.26), fixes the saturation scale at a y = 0 to a
specific value.

In the literature, the initial saturation scale was fixed to Q2
0 = 0.09GeV2/c2,

obtained from fitting HERA data [67].

Nonetheless, there exists no direct calculation relying on a fixed Q0 in conjunction
with the number of participants derived from computations by the corresponding
experimental collaborations. Instead, the collision’s geometry is translated into
the treatment of the dipole cross section, mainly involving adjustments to the
thickness function [10, 12].

The dependence of Q2
s on the mass number A can be regarded as an approximation

applicable primarily to very large collision systems. However, the behaviour of this
dependence when the mass number decreases or when only a limited number of
participants are involved remains largely unexplored.

In accordance with calculations presented in [121], Q2
s itself is adjusted in relation

to the number of participants. Consequently, we opt to incorporate this uncertainty
by allowing a slight variability in Q2

0.

Based on the centrality-dependent calculations of pseudorapidity distributions dis-
cussed in the preceding sections, our objective is to establish a parametrization for
this centrality dependence.

Our proposition involves a scaling of Q2
s in correspondence with the running cou-

pling, as defined in equation (3.46), leading to a refined formulation of Q2
0. This

revised definition is designated as ˆ︁Q2
0 and is expressed as

ˆ︁Q2
0 = Q2

0 αs(p
2). (7.2)

Subsequently, we proceed to establish a parametrization for p2, defined by

p2 :=
(︁
N tar

part/N0

)︁d
Λ2
QCD, (7.3)

where ΛQCD signifies the relevant energy scale, and N0 is set to N0 = 1 for symmet-
ric collisions and increases for asymmetric collisions. The parameter d represents
an anomalous dimension and resists a physical interpretation.

Figure 7.7 depicts a double logarithmic plot featuring the required values of Q2
0 for

the description of pseudorapidity distributions across various collisions, along with
the fitted curves. Remarkably, these curves exhibit satisfactory agreement within
the designated range.
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8. Conclusion

This thesis presented a successful model that describes pseudorapidity distributions
for produced charged hadrons in asymmetric relativistic heavy-ion collisions. Our
model drew inspiration from the three-source Relativistic Diffusion model (RDM),
as detailed in section 5.3, but we introduced a novel approach to determine the
underlying produced charged hadron distributions. These distributions were suc-
cessfully linked to the parton model and to the framework of gluon saturation.

Asymmetric collisions introduce a heightened level of complexity compared to
symmetric heavy-ion collisions. This increased complexity predominantly stems
from the intricate demands associated with accurately handling the corresponding
frames of reference. Therefore, we introduced a range of established concepts in
chapter 2 to effectively manage the kinematic aspects of asymmetric relativistic
heavy-ion collisions.

In our novel approach to determine the three sources, we reviewed the parton model
in chapter 3, which introduced the concepts of quarks and gluons. After that, we
outlined the framework of gluon saturation and its rapidity evolution equations,
leading to the establishment of unintegrated gluon distributions in section 3.3.

By employing two distinct QCD-factorization schemes, namely the kT - and hybrid-
factorization, which were delineated in chapter 4, we integrated all the foundational
elements. This approach enabled us to successfully compute pseudorapidity dis-
tributions for charged hadrons produced at various relativistic energy scales.

Providing a more detailed account of the three microscopic contributions, our
model characterized the colliding particles in terms of their quark and gluon con-
stituents. By employing small-x gluon-gluon interactions within the context of
kT -factorization, we effectively computed the first component of the complete pseu-
dorapidity distributions and established their connection to the mid-rapidity source
of the RDM.

The determination of the two fragmentation sources involved utilizing quark-gluon
interactions within the hybrid-factorization scheme. However, due to the inher-
ent characteristics of hybrid-factorization, which is primarily employed to describe
stopping processes within a collision, the computed distributions required an addi-
tional diffusion process to yield meaningful results for describing produced charged
hadrons.
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8. Conclusion

This additional diffusion process is governed by a Fokker-Planck equation, as shown
in equation (5.8), which accounts for the distinct time scales associated with the
stopping process and the production of charged hadrons.

To address the complicated calculations of the underlying non-analytical integrals,
the utilization of the parton distribution functions and solving the differential equa-
tions, we developed a feature-rich C++ program, which is outlined in section 6.1,
to numerically compute the pseudorapidity distributions.

Employing the model we developed, the extended Relativistic Diffusion model, we
conducted an investigation into central p-Pb collisions, considering two distinct
models for the unintegrated gluon distribution, as detailed in section 6.1. Our
analysis indicates that the KLN model (3.43) provides a better description of the
experimental data, as illustrated in (6.1). The variations between the models are
visualized in 3.4.

Subsequently, we proceeded to explore the centrality-dependent pseudorapidity dis-
tributions for asymmetric collisions. This exploration encompassed the analysis of
Phobos data at

√
sNN = 200GeV (7.2), alongside LHC data at

√
sNN = 5.02TeV

(7.4 and 7.5) and
√
sNN = 8.16TeV (7.6). The computed pseudorapidity distri-

butions accurately match the experimental data across a wide range of pseudora-
pidity values. In addition, also the sub-distributions of the different sources were
presented.

The key findings are detailed in section 7.2, where we conduct a comparison be-
tween our computed pseudorapidity distributions and recently released data from
ALICE. The experimental results exhibit notable characteristics. They encompass
a pseudorapidity range extending up to η=5. Furthermore, the categorization of
the centrality classes incorporates ultra-peripheral collisions up to 100%. No prior
publications have undertaken further investigations of these specific experimental
data related to p-Pb collisions.

The examination of centrality-dependent pseudorapidity distributions correspond-
ing to the experimental ALICE data revealed significant indications of the frag-
mentation sources within our three-source model. In the context of asymmetric
collisions, the peaks of produced charged hadrons tend to concentrate in the vicin-
ity of the direction of the heavy-ion target. This scaling behaviour is generally
achievable through the inherent nature of the gluon-gluon source.

However, as depicted in figure 7.5, in the case of ultra-peripheral collisions, the
experimental ALICE data exhibit a distinct behaviour. In this scenario, the peak
of produced charged hadrons shift towards the region aligned with the direction
of the projectile-like particle, the proton. This scaling trend cannot be accounted
for solely by the gluon-gluon source, but can be accurately described by our three-
source model. Further insights into this discussion are expounded upon in sec-
tion 7.2.
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Predictions were made for the larger pseudorapidity regions for the centrality-
dependent pseudorapidity distributions in p-Pb collisions at

√
sNN = 8.16TeV,

exhibiting a similar trend extending to ultra-peripheral collisions, see figure 7.6.

An enhancement in our approach involves the utilization of the precise transforma-
tion between rapidity and pseudorapidity for the gluon-gluon source, as outlined in
section 2.2, as opposed to relying on an effective transformation with a parameter
that can be freely chosen.

This refinement is particularly important to accurately determine the initial con-
dition of the gluon distributions at y=0 for the rapidity evolution equation. To
handle the precise transformation, our model also incorporates the masses of the
hadron species.

The implications of this refinement for our model calculations resulted in sig-
nificantly reduced suppression from the pseudorapidity transformation at mid-
rapidity, a phenomenon evident from other calculations documented in the litera-
ture.

Consequently, it can be inferred that the dip observed around η = 0 in charged-
hadron production cannot be explained solely by the Jacobian transformation.
Instead, the absence of the fragmentation sources plays a significant role in this
suppression around η=0, as these sources essentially peak at the same pseudora-
pidity where the distribution of charged-hadron production reaches its two local
maxima. This observation can be exploited to accurately ascertain both the initial
saturation scale and its dependence on the centrality.

Another distinct aspect of our approach pertains to the characterization of collision
geometries. Our model employs pre-existing Glauber-based calculations provided
by experimental collaborations, quantified in terms of the number of participants
involved in a heavy-ion collision. This approach aims to facilitate a more profound
comprehension of the individual contributions stemming from both the collisions’
geometric aspects and the intricate interplay of microscopic interactions involving
quarks and gluons.

The extended Relativistic Diffusion model holds potential for further enhancement
across various aspects.

A more sophisticated rapidity evolution equation, such as the rcBK equation, could
be employed, albeit demanding additional numerical implementation efforts. En-
hanced initial conditions would also likely result in better alignment with data
closer to the beam rapidity.

An improved diffusion coefficient, leading to the exact equilibrium state, or even
a two-dimensional realisation of the diffusion process, could also enhance the de-
scription of the fragmentation sources.
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