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Abstract

In quantum chemistry, a full quantum dynamical description of largemany-body systems
is not currently feasible. One can consider both classical and semi-classical treatments of
approximating the quantum dynamics of molecular systems to simulate simpler dynamics.
Motivated by their cost-effectiveness and the fact that chemical dynamics take place often
in an energy and density-of-states regime where a classical description can be meaningful,
a classical description of the quantum dynamics of systems is explored in this dissertation.

We first illustrate how the reaction rate is affected by the cavity effect. cis-trans iso-
merization of HONO is used as an example to demonstrate the cavity-controlled reactivity.
Due to the high dimensionality of the potential energy surface, we describe the reaction
rate through a classical reactive flux method. The quantum Hamiltonian for simulating
cavity-modified molecular dynamics is transformed into a classical mapping Hamiltonian.
We consider a single molecule inside the cavity. For simplicity, we assume the cavity is
coupled to an aligned molecule. The x− aligned case is studied in both low-friction and
strong-friction regimes of the reaction coordinate. The low(strong)-friction regime is also
known as the underdamped(overdamped) regime, which is mentioned in Grote-Hynes the-
ory. In the underdamped regime, we illustrate the key difference between a single molecule
and a collective of molecules with fixed Rabi splitting. We also show a modification of the
reaction rate with different cavity frequencies for different aligned cases. Our results show
that the modification of the reaction rate is related to the solvent environment. This will be
described in chapter 3.

We then consider free-orientated molecules inside the cavity within the underdamped
regime. Compared with aligned cases, the free orientation of molecules leads to a disorder
of light-matter coupling, which should be observed in experimental results. Since a ther-
mally excited molecule passing through the barrier is a rare event, we considerN molecules
inside the cavity with 1 activated molecule andN−1 non-activated molecule. We aim to see
how the reaction rate is affected by the number of molecules with fixed coupling strength.
We connect the enhancing rate by increasing the number of molecules with the energy trans-
fer efficiency from the activated molecule to the cavity. And the efficiency is sensitive to
the resonant frequency. Based on this observation, we also show the modification of the
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reaction rate by tuning the lifetime of the cavity. Our findings shed important new light on
the question of collective effects in chemical reactivity under vibrational strong coupling.
This will be described in chapter 4.

On the other hand, we turn to describe the fermionic dynamics through Meyer-Miller
mapping. In chapter 5, We proceed by describing the relation between the initial phase
space density of the classically mapped system and the initial configuration of the electrons,
and propose strategies to sample this phase space density. We compare the MM mapping
with exact quantum results and with different mappings explicitly designed for fermions,
namely the SMwith and without the inclusion of antisymmetry (the latter corresponds to the
original MW mapping), and to the LMM. We then compare Hubbard and impurity Hamil-
tonians, with and without interactions, and consider as well a model for excitonic energy
transfer between chromophores. In this model with interactions we show that the classi-
cal MM mapping is able to capture interference effects caused by the presence of different
energy transfer pathways leading to the same final state, both when the interferences are con-
structive and destructive. Our results show that the construction of the maximal fermionic
occupation does not seem to be necessary. Also, the performance of the mappings is sensi-
tive to sampling strategies of the initial phase-space distribution for fermions.



Zusammenfassung

In der Quantenchemie ist eine vollständige quantenmechanische Beschreibung großer
Vielteilchensysteme derzeit nicht durchführbar. Sowohl klassische als auch halbklassische
Ansätze zur Approximation der quantenmechanischen Dynamik von molekularen Syste-
men haben eine lange Geschichte und wurden durch ihre Kosteneffizienz und die Tatsache
motiviert, dass chemische Dynamiken oft in einem Energie- und Zustandsdichte-Regime
stattfinden, in dem eine klassische Beschreibung sinnvoll sein kann.

In dieser Arbeit zeigen wir, wie die Reaktionsrate durch den Hohlraumeffekt beein-
flusst wird. Wir wählen die Beschreibung der Reaktionsrate durch eine klassische reaktive
Flussmethode. Daher wird ein klassischer Zuordnungs-Hamiltonian zur Simulation von
hohlraummodifizierter molekularer Dynamik durchgeführt. Die cis-trans-Isomerisierung
von HONO wird als Beispiel verwendet, um die hohlraumgesteuerte Reaktivität zu demon-
strieren. Der Fall der x-Ausrichtung wird sowohl im Bereich geringer Reibung als auch im
Bereich starker Reibung der Reaktionskoordinate untersucht. Der Bereich geringer (starker)
Reibung wird auch als der unterdämpfte (überdämpfte) Bereich bezeichnet, wie es in der
Grote-Hynes-Theorie erwähnt wird. Danach konzentrieren wir uns auf den unterdämpften
Bereich. Wir veranschaulichen den wesentlichen Unterschied zwischen einem einzelnen
Molekül und einer Gruppe von Molekülen mit fester Rabi-Aufspaltung. Außerdem zeigen
wir eineModifikation der Reaktionsrate bei unterschiedlichen Hohlraumfrequenzen für ver-
schiedene Ausrichtungsfälle. Unsere Ergebnisse zeigen, dass die Modifikation der Reak-
tionsratemit der Lösungsmittelumgebung zusammenhängt. Dieswird imKapitel 3 beschrieben.

Dann betrachten wir frei ausgerichtete Moleküle innerhalb des Hohlraums im unter-
dämpften Bereich. Im Vergleich zu den ausgerichteten Fällen führt die freie Ausrichtung
der Moleküle zu einer Störung der Kopplung von Licht und Materie, die in experimentellen
Ergebnissen beobachtet werden sollte. Da ein thermisch angeregtes Molekül, das die Bar-
riere überwindet, ein seltenes Ereignis ist, betrachten wirN Moleküle im Hohlraum, wobei
ein Molekül aktiviert ist und N − 1 Moleküle nicht aktiviert sind. Wir möchten sehen,
wie die Reaktionsrate von der Anzahl der Moleküle mit fester Kopplungsstärke beeinflusst
wird. Wir verknüpfen die Verbesserungsrate durch Erhöhen der Anzahl der Moleküle mit
der Energieübertragungseffizienz vom aktivierten Molekül auf den Hohlraum. Die Ef-
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viii Zusammenfassung

fizienz ist empfindlich gegenüber der Resonanzfrequenz. Basierend auf dieser Beobachtung
zeigen wir auch die Modifikation der Reaktionsrate durch das Einstellen der Lebensdauer
des Hohlraums. Unsere Erkenntnisse werfen wichtiges neues Licht auf die Frage der kollek-
tiven Effekte in der chemischen Reaktivität unter Vibrationsstarker Kopplung. Dies wird im
Kapitel 4 beschrieben.

Im zweiten Teil beschreiben wir die fermionische Dynamik durch die Meyer-Miller-
Zuordnung. ImKapitel 5 fahrenwir fort, indemwir die Beziehung zwischen der anfänglichen
Phasenraumdichte des klassisch abgebildeten Systems und der anfänglichen Konfiguration
der Elektronen beschreiben und Strategien zurAbtastung dieser Phasenraumdichte vorschla-
gen. Wir vergleichen die MM-Zuordnung mit exakten quantenmechanischen Ergebnissen
und mit verschiedenen Zuordnungen, die explizit für Fermionen entwickelt wurden, näm-
lich der SM mit und ohne die Berücksichtigung der Antisymmetrie (wobei letzteres der
ursprünglichen MW-Zuordnung entspricht) und der LMM. Wir vergleichen dann Hubbard-
und Impuls-Hamiltonians, sowohl mit als auch ohne Wechselwirkungen, und betrachten
auch ein Modell für den energetischen Austausch von Exzitonen zwischen Chromophoren.
In diesem Modell mit Wechselwirkungen zeigen wir, dass die klassische MM-Zuordnung
in der Lage ist, Interferenzeffekte zu erfassen, die durch das Vorhandensein verschiedener
Energieübertragungswege zum gleichen Endzustand verursacht werden, sowohl wenn die
Interferenzen konstruktiv als auch destruktiv sind. Unsere Ergebnisse zeigen, dass der Auf-
bau der maximalen fermionischen Besetzung scheinbar nicht notwendig zu sein scheint.
Außerdem ist die Leistung der Zuordnungen empfindlich gegenüber Abtaststrategien der
anfänglichen Phasenraumverteilung für Fermionen.
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Chapter 1

Introduction

In this chapter, we first briefly introduce the cavity with vibraional strong coupling. Start-
ing from polariton states, we mention these state can be prepared by Fabry-Perot cavity.
We point out the important experimental results observing modification of reaction rate in-
side the cavity. These observations indicate the potential of controlling chemical processes
through the cavity, which inspires theoretical approaches to explain the mechanism behind
the cavity effect.

Then, we turn to introduce mixed quantum-classical approaches that have been used
in electronic dynamics and the benefits of using the mixed quantum-classical approaches.
Several mapping approaches are presented in terms of electronic states, which shows that the
electronic dynamics can be described by classical variables. Then the concept is extended
to use classical mapping for fermions. For example, Li-Miller mapping has been used to
describe fermions, which shows promising results in non-interacting systems. Here, we aim
to explore the applicability of Meyer-Miller mapping for fermions in both non-interacting
and interacting systems.

1.1 Introduction to cavity QED

In this section, we briefly mention the polariton states, which can be prepared by Fabry
Perot cavities. We then focus on the cavities with vibrational strong coupling. We describe
important experimental results of the modification of groundstate reaction rates with vibra-
tional strong coupling. These experiments inspire the theoretical approaches to explain the
modification, and the mechanism behind it, which is also the goal of this study.
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2 Introduction to cavity QED

Figure 1.1. A schematic demonstration of hybridized state between molecular states and
photon state. As the photon frequency matches the transition of the molecules, the polariton
states are formed, including upper and lower polariton states(UP and LP). The energy gap
between UP and LP is defined as Rabi splitting, ΩR.

1.1.1 Polaritonic states

Theoretical studies of hybrid states of light and matter, or polaritonic states, can be traced
back to the 1950s [1,2]. The polaritons have been experimentally observed since the 1980s [3,
4]. Most recently, polariton chemistry become an active field of study. Since experimental
research demonstrates the potential to manipulate chemical processes, various theoretical
studies have flourished with the aim of explaining the key factor of the polaritonic effect on
the processes.

The formation of the polariton is attributed to light-matter coupling. Light plays an im-
portant role in a chemical process. Photon is both a basic ingredient in chemical reactions
and a fundamental tool for the examination of molecular properties. As the coupling is weak,
the electromagnetic field of light is treated as a perturbation, which provides access for the
system to visit other quantum states. However, the assumption of the perturbation breaks
down as the coupling is strong enough to overcome the dissipating process of the photon.
In this strong coupling regime, light and molecules of the system form hybrid states, which
give different properties from individual photons and molecules. The hybrid states between
a photon and a group of molecules consist of 2 polaritonic states and a large number of dark
states(shown in fig 1.1). The polaritonic state with higher(lower) energy is denoted as up-
per(lower) polariton, which is delocalized. The energy gap between the lower polariton(LP)
and the higher polariton(UP) is defined as Rabi splitting. While the dark states are localized
and nearly degenerate manifold of states.
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1.1.2 Vibrational and electronic strong coupling

There are different ways to reach a strong coupling regime. By utilizing the surface plas-
mon [5, 6] of nanoparticles, an intense electromagnetic field is formed inside a nanocavity,
which overcomes the dissipative process. However, the resonant frequency is dependent
on the shape and size of the nanoparticles and plasmon modes. The control of their shape
and size to tune the resonant frequency is challenging. We highlight a Fabry-Perot cav-
ity [7], a type of optical microcavity, which can be used to achieve strong coupling between
photons and molecules. The cavity consists of two mirrors that trap the electromagnetic
field inside. And the frequency of the trapped field depends on the cavity size. When the
cavity frequency matches the optical transition of the molecules, the photon and molecular
states form hybrid states. The cavity can be tuned to couple with either the electronic or
the vibrational transition of the molecules, resulting in electronic strong coupling (ESC) or
vibrational strong coupling (VSC), respectively.

1.1.3 Experiments and theoretical approaches

Recently, a modified reaction rate of photoisomerization in merocyanine compounds under
ESC with optical microcavities has been reported by Ebbesen and his colleagues [8]. This
is a promising approach for manipulating fundamental chemical processes. By interacting
with a vacuum field, the rates and branching ratios of these basic chemical processes can
be altered in a reversible way. This means we can achieve selective control of excited state
reactivity, without exposing delicate molecular species or materials to the harmful effects of
intense laser fields.

Inspired by the results of Ebbesen’s group, various experimental studies have been done
to examine the cavity effect on the reaction rate of different chemical processes. [9–11] One
of the recent advances in the field is the observation of the modified efficiency of singlet
fission through strong light-matter coupling within an optical microcavity [12–14]. This
phenomenon involves the formation of polaritons that alter the relative energy levels be-
tween electron donor and acceptor manifolds, enabling the conversion of a singlet state into
two triplet states. This process could potentially enhance the external quantum efficiency
of organic optoelectronic devices by increasing the number of charge carriers generated per
photon absorbed.

On the other hand, similar studies for VSC have also been shown recently. They focus
on the manipulation of chemical reactions in the ground electronic state inside Fabry–Perot
cavities [15–17]. Concerning the ground state reactions inside the cavity with VSC, the
experiments are carried out in the dark. That is to say, the system remains in groundstate
without being excited by external laser light. The decreased reactivity is observed for silyl
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cleavage in an alkynylsilane [15,16]. While an increased reactivity is shown in the hydroly-
sis of para-nitrophenyl acetate [17]. Hence, a number of theoretical studies have been done
with the aim of explaining how the cavity enhances or suppresses the reaction rate.

To illustrate how the cavity alters the reaction rate, a singlemolecule inside the cavity has
been investigated due to simplicity. The reaction rate inside the cavity has been described
by transition state theory(TST), which concludes the VSC-modified reactivities cannot be
explained by TST [18]. To go beyond TST, a number of theoretical works describe the re-
activity through different methods. The transmission coefficient based on the Grote-Hynes
theory is utilized to describe reactivity. At first, only suppression of the reactivity is pre-
dicted [19, 20]. Later, both suppression and enhancement of the reactivity are performed,
which is connected to the solvent effect [21–23]. On the other hand, a full quantum rate is
described through the hierarchical equations of motion approach, which gives an increasing
reactivity [24].

However, experimental studies mostly report a number of molecules inside the cavity.
Theoretical studies for a single molecule must assume an ultrastrong coupling between the
cavity and the molecule in order to fix the Rabi splitting. The gap between a single molecule
with ultrastrong coupling and a collective of molecules with weak coupling is still an open
question. With the aim to illustrate the collective effect, classical molecular dynamics have
been implemented. [25–27] Due to the computational cost, a number of 1-D systems with
fixed dipole are considered in quantum calculations, which concludes the importance of the
dark states and the energy disorder [28–30]. Overall, despite many theoretical efforts, a
clear theoretical explanation of the experimentally observed modifications of ground-state
chemical reactivity is unavailable. In this study, we aim to illustrate how the reaction rate is
affected inside the cavity by investigating the isomerization of HONO inside the cavity.

1.2 Introduction to classical mapping

In this section, we first introduce the benefits of mixed quantum-classical approaches. We
then focus on classical mapping approaches. These mapping approaches are first used to de-
scribe fermionic states. Following the successful results of the mapping fermionic states, the
mapping approaches are then applied to mapping fermions, which inspires us to investigate
the application of Meyer-Miller mapping of fermionic dynamics.

1.2.1 Mixed quantum-classical approaches

A realistic simulation of complex systems with full quantum dynamics is generally in-
tractable. Therefore, we often have to partition the problem into a (small) quantum subsys-
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tem and a classical environment that can be modeled with simpler dynamics. In chemistry,
describing the dynamics of a system through mixed quantum-classical method is nothing
new [31–50]. Under nonadiabatic process, the electronic states are strongly coupled to the
nuclei coordinates, which is highly studied in the field of solar cells, vision, and photo-
synthesis, among others. When the coupling between the electronic states and the neucei
coordinates cannot be neglected, we often treat a molecular system as a subsystem of N
electronic states coupled to an environment of classical nuclear modes. The nuclei motion
is approximated by an ensemble of independent trajectories that propagate under classical
equations of motion. Among the simplest trajectory-based methods are Ehrenfest dynam-
ics [36,37], in which the nuclei move on a mean-field potential defined by the instantaneous
electronic populations, while the electronic variables follow exact subsystem dynamics ac-
cording to the instantaneous nuclear configuration. This method has a number of known
severe drawbacks.

Another way is to, however; simulate the quantum nature of the initial state through a
quasiclassical sampling of the corresponding probability distribution. By exploring the clas-
sical limit of quantum mechanics, new theoretical concepts have been developed, including
mean-field trajectories, surface hopping [36, 37], quantum-classical Liouville method [51–
58], and various phase-space representations of quantum mechanics with the semiclassical
propagator [32, 34, 59, 60]. In addition, there is another benefit to describing quantum phe-
nomena by a classical method. The numerical effort of a quantum-mechanical calculation
increases exponentially in terms of the degrees of freedom while a classical calculation in-
creases linearly instead. These classical approaches have been applied to a wide range of
studies, including internal conversion [61], nonadiabatic process [62], and recently cavity
dynamics [63].

1.2.2 Classical mapping of electronic states

Let us focus on one of the treatments, which describes the electronic dynamics by mapping
the discrete space of diabatic or adiabatic electronic states, into a set of classical variables,
which then evolve together with the nuclei under an overall classical Hamiltonian. Several
mappings have been proposed for the electronic degrees of freedom, for example, the orig-
inal Meyer-Miller (MM) Hamiltonian consisting of one harmonic oscillator per electronic
state, and different flavors of the spin-mapping (SM) Hamiltonian, which use classical spin
degrees of freedom to map the state of the electronic subspace [34, 60]. We stress that the
nuclear-electronic MM Hamiltonian can be re-quantized, which leads to the exact quantum
dynamics. And this mapping is also known as MMST. [41]

However, the equation of motion (EOM) of fully classical mapping is not necessarily
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an approximation. Both the classical EOM of the MMmapping for the electronic states and
solving the Schrödinger equation are formally equivalent and have a close formal resem-
blance with the Ehrenfest method [32, 34]. The differences are, however, significant and
related to how initial conditions are sampled and to how observables are derived from the
trajectories [32, 34, 59, 60]. One can argue that mapping approaches provide a more fun-
damental answer to the question of how to mix classical and quantum degrees of freedom
than, e.g. Ehrenfest or surface-hopping approaches [36, 37], and often outperform them in
benchmark applications [48, 49, 64, 65].

1.2.3 Classical mapping of second quantization

Miller and White took the pioneering step to extend the concept of classical mappings to
the treatment of electrons (fermions) under a second-quantized Hamiltonian [31]. This step
can be motivated by the formal similarity between the second-quantized Hamiltonian for
bosons and fermions, and the fact that the bosonic creation/annihilation operators are anal-
ogous to the ladder operators of interacting harmonic oscillators, which can subsequently
be downgraded to classical variables to obtain useful mapping. In their work, Miller and
White arrived at a mapping for the fermionic operators using the Heisenberg correspon-
dence relation [66, 67] between matrix elements and classical variables. By construction,
theMiller-White (MW)mapping respects the sign-change rules of the the commutation rela-
tions of fermionic operators. Although it is not presented in this way in Ref. 31, this mapping
can be alternatively reached by first performing a (exact) Jordan-Wigner transformation of
the fermionic Hamiltonian into a corresponding chain of spins [68], where so-called sign-
change operators (1 − 2n̂j) appear, and then taking a spin-mapping (SM) [32–34, 60] for
each fermionic degree of freedom.

In their original work, the MW mapping was not applied to dynamical processes but it
was demonstrated that it yields the correct energy for selected electronic configurations of
the helium atom and of the hydrogen molecule. Subsequent works reformulated the MW
mapping on the basis of a Cartesian Hamiltonian, like in the original MM mapping, while
still preserving the sign-change rules of the fermionic operators. [69–72] This mapping,
called Li-Miller mapping (LMM) in a recent publication [72], yields the exact dynamics of
the fermions in Fock space for non-interacting Hamiltonians [69]. Based on these develop-
ments, promising results have been obtained in studies of electronic dynamics and quantum
transport in molecular junctions and quantum dots. [59,60,69–75] These results indicate that
a broader range of electronic processes in molecules may be approachable through classical
mappings of the electronic degrees of freedom in Fock space, which is one of themotivations
for this work.
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It turns out that the original MM mapping applied to non-interacting fermionic Hamil-
tonians, in the same way as the LMM, deliver the exact dynamics of the system when the
initial state is a physical fermionic state. Starting from this observation, in this study we
explore this formal connection and examine the applicability of the original MM mapping
to the quantum dynamics of electrons in closed systems in a second quantized setting.





Chapter 2

Theory

In this chapter, we describe the methodologies that are applied to our studies including
cavity-controlled isomerization of HONO and classical mapping for fermionic dynamics.
We first derive the Hamiltonian of cavity quantum electrodynamics(cavity QED). Then we
transform this quantum Hamiltonian into classical function with Meyer-Miller mapping on
the cavity mode. Since we focus on the modification of the reaction rate inside the cavity, a
classical reaction rate method is used.

Moreover, we perform three different mappings including Meyer-Miller mappings, spin
mapping, and Li-Miller mapping. We demonstrate how the mappings transform second
quantization operators for fermion into classical variables. In addition, two different sam-
pling methods are provided which will be discussed in non-interacting systems.

2.1 Quantized light-matter interaction

Starting from a minimally coupled coulomb Hamiltonian governing the non-relativistic dy-
namics of matter in an electromagnetic(EM) environment [76], we have:

Ĥ =
∑
i

1

2mi

[
P̂ i − ziÂ(ri, t)

]2
+ V̂ + ĤEM , (2.1)

in which the vectors are represented by bold cases. P̂ i = −iħ∇i. mi and zi represent
i-th particle’s mass and charge, respectively. Index i runs over all nuclei and electronic
coordinates. V̂ includes nuclei-nuclei, nuclei-electron, and electron-electron interaction.

Â(ri, t) represents the vector field of the EM environment. Quantized electric(Ê) and
magnetic fields(B̂) of EM can be connected to Â by Maxwell’s equations [77]. By forcing
the Coulomb gauge∇· Â = 0, a unique Â is defined and only the transverse component of
EM is included. Hence, ĤEM can be expressed by quantized electric and magnetic fields,

ĤEM =
ϵ0
2

∫
dr
[
Ê(r)2 + c2B̂(r)2

]
, (2.2)

9
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where ϵ0 is the extinct coefficient of vacuum and c is the speed of light. In additions, the
relations of Â, Ê, and B̂ can be expressed by [78]

Ê = −∂Â

∂t
, (2.3)

B̂ = ∇× Â. (2.4)

A general solutions of Â(r, t), Ê(r, t), and B̂(r, t) are expressed as a sum over all the
modes,

Â(r, t) =
∑
α

uα

(
Âαe

i(k·r−ωαt) + Â†
αe

i(−k·r+ωαt)
)

(2.5)

Ê(r, t) = i
∑
α

ωαuα

(
Âαe

i(k·r−ωαt) − Â†
αe

i(−k·r+ωαt)
)

(2.6)

B̂(r, t) = i
∑
α

k × uα

(
Âαe

i(k·r−ωαt) − Â†
αe

i(−k·r+ωαt)
)
, (2.7)

where uα is a unit vector denoting the direction of the vector potential. Focusing on ĤEM

which is a time-independent Hamiltonian, then we have

Â(r) =
∑
α

uα

(
Âαe

ik·r + Â†
αe

−ik·r
)

(2.8)

Ê(r) = i
∑
α

ωαuα

(
Âαe

ik·r − Â†
αe

−ik·r
)

(2.9)

B̂(r) = i
∑
α

k × uα

(
Âαe

ik·r − Â†
αe

−ik·r
)
. (2.10)

Combing eq 2.2 and eq 2.8, we arrive

ĤEM =
∑
α

ϵ0V ω2
α

(
Â†

αÂα + ÂαÂ
†
α

)
, (2.11)

where V represents the cavity volume [79]. In the second quantization, the photonic Hamil-
tonian can be written as,

ĤEM =
∑
α

ħωα

2

(
â†αâα + h.c.

)
=
∑
α

ħω
(
â†αâα +

1

2

)
, (2.12)

with the equivalence,

Âα ≡
√

ħ
2ϵ0ωαV

âα, Â†
α ≡

√
ħ

2ϵ0ωαV
â†α. (2.13)

Therefore, for each radiation mode α, the EM field is quantized, which corresponds to the
quantum harmonic oscillator. Also, ĤEM can be written as

ĤEM =
1

2

∑
α

(
p̂2α + ω2

αq̂
2
α

)
, (2.14)
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with canonical position and momentum,

q̂α =

√
ħ

2ωα

(
â†α + âα

)
, p̂α = i

√
ħ

2ωα

(
â†α − âα

)
. (2.15)

Therefore, eq 2.1 is rewritten as,

Ĥ =
∑
i

1

2mi

[
P̂i − ziÂ

]2
+ V̂ +

1

2

∑
α

(
p̂2α + ω2

αq̂
2
α

)
, (2.16)

We then apply Power-Zienau-Woolley (PZW) transformation [80, 81],

UPZW = exp

[
−i

ħ
µ̂ · Â

]
, (2.17)

to eq 2.16, in which µ̂ is the dipole operator of the system, µ̂ =
∑

i zir̂i. UPZW does nothing
but transform matter and photon momentum,

P̂i − ziÂ → P̂i, p̂α → p̂α + λα · µ, (2.18)

where λα =
√
1/ϵ0V uα. Thus, we have,

Ĥ =
∑
i

1

2mi

P̂ 2
i + V̂ +

1

2

∑
α

(
(p̂α + λα · µ)2 + ω2

αq̂
2
α

)
. (2.19)

Finally, a canonical transform is applied, which leads to

p̂α → −ωαq̂α, q̂α → 1

ωα

q̂α. (2.20)

And we arrive,

Ĥ =
∑
i

1

2mi

P̂ 2
i + V̂ + Ĥcav (2.21)

Ĥcav =
1

2

∑
α

(
p̂2α + ω2

α

(
q̂α − λα · µ

ωα

)2
)
. (2.22)

This form of light-matter interaction has become standard in most theoretical studies
of VSC [18, 19, 82, 83]. Details on its derivation and properties [84] can also be found
elsewhere [79,84,85]. Similarly to other studies and to facilitate comparisons, we introduce
the coupling parameter g = λ

√
ħωcav/2, which has units of electric field (using this relation

and q̂cav =
√

ħ/2ωcav(â
† + â), the linear coupling term in Ĥcav reads g ϵ · µ (â† + â)).

Eq 2.21 shows the quantum hamiltonian when considering molecules inside the cav-
ity. In this study, we aim to describe the cavity effect on the reactivity of the system in
which the molecule is described by a multi-dimensional potential energy surface. Due to
the high computational cost of the high dimensionality, we describe the reactivity of the
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system through classical mechanics. Hence, the quantum Hamiltonian is transformed into
a classical Hamiltonian

H =
∑
i

1

2mi

P 2
i + V +Hcav (2.23)

Hcav =
1

2

∑
α

(
p2α + ω2

α

(
qα − λα · µ

ωα

)2
)
. (2.24)

The classical analog description of Ĥcav is obtained by mapping position and momentum
operators of quantum harmonic oscillators into corresponding classical position andmomen-
tum variables, which is equivalent to the Meyer-Miller mapping [32, 41, 59]. The Meyer-
Miller mapping is carefully described in section 2.3. A classical description of the VSC
regime is not new and has been successfully applied to bulk systems described by force-
field potentials [25] and model Hamiltonians [19, 86]. This Hamiltonian will be used in
chapter 3 and 4.

2.2 Reaction rate beyond transition state theory

2.2.1 Reactive flux method

Here, we aim to derive the rate equation, which can be utilized to describe reactions in-
side and outside the cavity. More details can be found in the textbook written by David
Chandler [87]. Starting from a chemical reaction

A ⇐⇒ B, (2.25)

where both species A and B are at low concentration in the system. The phenomenological
rate equations can be written as

dCA

dt
= −kBACA(t) + kABCB(t), (2.26)

(2.27)

and

dCB

dt
= kBACA(t)− kABCB(t), (2.28)

where kBA and kAB are forward and backward rate constants, respectively. And CA(t) and
CB(t) denote the concentration of species A and B as functions of time. Note that the
number of molecules in the system is conserved, which means CA(t) + CB(t) = 1. When
the system reached the equilibrium, the equilibrium concentration, 〈CA〉 and 〈CB〉, should



Reaction rate beyond transition state theory 13

obey the detail balance condition, which means −kBA〈CA〉+ kAB〈CB〉 = 0. Thus one can
obtain

Keq =
〈CB〉
〈CA〉

=
kBA

kAB

. (2.29)

Combining eq 2.29 and the detail balance condition, one arrives at

〈CA〉+ 〈CB〉 =
τ−1
rxn

kAB

〈CA〉, (2.30)

where τ−1
rxn = kBA + kAB . Inserting it back into eq 2.26, then we have

∆CA(t) = CA(t)− 〈CA〉 = ∆CA(0)e
−t/τrxn . (2.31)

According to the fluctuation-dissipation theorem [87], we now have

e−t/τrxn =
∆CA(t)

∆CA(0)
=

〈θA[q(0)]θA[q(t)]− x2
A〉

xAxB

, (2.32)

in which xA and xB denotes the molar fraction of A and B, respectively. Bra and ket illus-
trate the ensemble average. θA[q(t)] represent the heavside function, which gives

θ[q(t)] = 1, q(t) < q‡ (2.33)

θ[q(t)] = 0, q(t) > q‡ (2.34)

Along the reaction coordinate, q, q‡ defines the dividing surface between species A and
B. In order to analyze the relation between τrxn and θA(t), we take the time derivative of
eq 2.32, which leads to

τ−1
rxne

−t/τrxn = −(xAxB)
−1〈θA[q(0)]θ̇A[q(t)]〉. (2.35)

Here, the dot describes a time derivative. Due to the properties of the auto-correlation func-
tion, we have

〈θA[q(0)]θ̇A[q(t)]〉 = −〈θ̇A[q(0)]θA[q(t)]〉. (2.36)

Based on the chain rule, the derivative of θ̇A[q] can be expanded as

θ̇A[q] = q̇
dθA
dq

= −q̇δ(q − q‡). (2.37)

Therefore, one can obtain

q̇
dθA
dq

= −〈q̇(0)δ[q(0)− q‡]θA[q(t)]〉 (2.38)

= 〈q̇(0)δ[q(0)− q‡]θB[q(t)]〉. (2.39)
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We note that θB[q(t)] = 1 − θA[q(t)], and 〈q̇(0)δ[q(0) − q‡]〉 = 0. This can be explained
by that velocity, q̇(0), is an odd function while the ensemble average is an even function,
which is independent of a given geometry. Finally, we obtain

τ−1
rxne

−t/τrxn = (xAxB)
−1〈q̇(0)δ[q(0)− q‡]θB[q(t)]〉. (2.40)

However, the quality in eq 2.40 is not correct for all time t. The phenomenological rate can
only be right on a time scale that is long enough to observe transient behavior and shorter
than the relaxations of the transient behavior. That is to say e−t/τrxn ≈ 1. And we have

τrxn = (xAxB)
−1〈q̇(0)δ[q(0)− q‡]θB[q(t)]〉, (2.41)

and

K(t) = kBA(t) = x−1
A 〈q̇(0)δ[q(0)− q‡]θB[q(t)]〉. (2.42)

As a result, in the whole study, we describe the reaction rate inside and outside the cavity
by eq 2.42.

The exact reactive flux is obtained in the limit t → ∞, in practice when the plateau for
K(t) is reached [88]. This occurs when all classical trajectories starting from the dividing
surface become trapped at either the reactants or products side. For example, for the isomer-
ization reaction of n-butane in the low-friction the environment of a van der Waals liquid
this relaxation time is about 1 ps [89]. Now, since [87]

lim
t→0+

K(t) = KTST , (2.43)

one can introduce a transmission coefficient κ(t) as K(t) = κ(t)KTST , which can be eval-
uated as the quotient of the numerically exact reactive flux and the reactive flux without
recrossing, i.e. the TST assumption. KTST can be evaluated conveniently using Eyring’s
equation [90,91], which will be shown in later, while κ(t) is obtained from classical trajec-
tories.

2.2.2 Reaction rate inside and outside cavity

As has been discussed in other works [18,92,93],K(c)
TST is, to a good approximation, insensi-

tive to cavity effects (here and in the following we use a super-index to indicate in-cavity or
out-of-cavity quantities). Therefore, we considerK(c)

TST to be completely cavity-independent
and describe the cavity effect on the rate through the ratio

R =
K(c)

K(0)
=

κ(c)K
(c)
TST

κ(0)K
(0)
TST

≈ κ(c)

κ(0)
, (2.44)
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where K(0) = κ(0)K
(0)
TST is the formally exact classical rate outside the cavity. Here and

in the following, transmission coefficients and rate constants without a time argument refer
to their plateau value. Clearly, both κ(c) and κ(0) lie in the [0, 1] range whereas the ratio R

can be both larger or smaller than one, corresponding to a chemical rate enhancement or
suppression, respectively.

2.2.3 Reaction rate for the ensemble

It is important to define how to calculate the reactive flux with the expression in Eq. 2.42
when considering a molecular ensemble, since all coordinates of all molecules enter in the
definition of the various quantities. In doing so, it is essential to realize that the fraction of
activated molecules (AM), FAM , those which are undergoing the chemical transformation
at a specific moment in time, to non-activated molecules (NAM) is in general very small.
For a unimolecular reaction with a forward rate constant K and a total of N molecules
coupled to the cavity, the rate of molecules that start the transformation per unit of time is
dN/dt = KN . Multiplying by ∆TS , the amount of time the molecule spends crossing the
transition state (TS), and dividing by the total number of moleculesN results in an estimate
for FAM = K∆TS . Considering a rate of about 10−4 s−1 as in the example of Ref. 94, and
with∆TS ≈ 10−13 s for a typical reaction in solution [95], one obtains FAM ≈ 10−17. A rate
of 104 s−1, of the order of the HONO isomerization studied here, results in FAM ≈ 10−9,
still negligible compared to the fraction of spectator NAMs. Hence, when considering the
modification of chemical rates for ensembles under strong coupling, onemust assume that on
average only one AM crosses the barrier at a time. In our classical treatment of the reactive
flux, this means that the sampling of transition state configurations according to Eq 2.42
is performed for one molecule only, while the other molecules are in thermal equilibrium
close to their minimum energy configurations in the reactant potential energy well. Every
set of different model parameters of the simulations studied below consists of a batch of
104 trajectories sampled from a canonical ensemble. The simulations are built on top of the
OpenMM package for customizable molecular simulation. [96]

2.2.4 Transition state rate evaluation

Although TST rates can be directly evaluated using Eq. 2.43, we find it more convenient to
use Eyring’s equation

KTST =
1

βh

Z‡

ZR
e−β∆E (2.45)

where Z‡ and ZR correspond to the partition function of transition state (TS) and reactant,
respectively. The partition functions are evaluated as usual by optimizing the reactant and TS



16 Meyer-Miller Mapping

stationary point geometries for each set of parameters and constructing and diagonalizing
the Hessian matrix to obtain separable normal modes. Finally, the quantum mechanical
partition functions for the oscillators in the reactants and TS are evaluated using the well-
known textbook expressions. ∆E in Eq. 2.45 corresponds to the difference of zero-point
energies between reactants and TS. Note that the dividing surface between the reactant and
the product is consistent both inside and outside the cavity. Hence, KTST stays consistent
both inside and outside the cavity.

2.3 Meyer-Miller Mapping

2.3.1 Mapping of second quantization

The second-quantized Hamiltonian for a many-body system of fermions (electrons in our
case) and bosons takes the general form

Ĥ = Ĥ(1) + Ĥ(2) (2.46)

Ĥ =
F∑
ij

hija
†
iaj +

1

2

F∑
ijkl

Vijkla
†
ia

†
jalak, (2.47)

where i, j, k and l run over all single particle states and F is the number of single-particle ba-
sis functions used to expand the Fock space. We refer to the annihilation (creation) operators
as â(†)j in general and specialize them to b̂j for bosons and ĉj for fermions whenever this dis-
tinction is needed. These operators obey the respective commutation and anti-commutation
relations

[b̂i, b̂
†
j] = δij; [b̂i, b̂j] = [b̂†i , b̂

†
j] = 0; (2.48)

{ĉi, ĉ†j} = δij; {ĉi, ĉj} = {ĉ†i , ĉ
†
j} = 0. (2.49)

As is well known, for bosons one can identify the creation and annihilation operators with the
ladder operators of a set of harmonic oscillators, one for each bosonic mode, which obey the
same commutation relations. The ladder operators can be expressed using the corresponding
positions and momenta

b̂j 7→
1√
2
(ip̂j + q̂j)

b̂†j 7→
1√
2
(−ip̂j + q̂j),

(2.50)

leading to a form of the bosonic Hamiltonian with a simple classical analog. Note that ħ is
set to be 1 which is also applied to all the other equations in below.

In addition, it is useful to first discuss in some detail the properties of a classical approx-
imation to the dynamics of the Ĥ(1) term for bosons before considering fermions. Using the
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relations (2.50) and replacing quantum operators with classical variables one arrives at the
Hamiltonian function

H
(1)
B;cl(p, q) =

1

2

(
p+ hp+ q+ hq

)
− γ Tr[h], (2.51)

where the column arrays p and q collect all momenta and positions, respectively, and h is
the matrix with elements hij . The γ factor takes values between 0 and 1/2 and it does not
affect the classical equations of motion. However, it determines the amount of zero-point
energy available to the classical system when sampling initial conditions [32, 97]. Hence,
the results obtained with the mapping for interacting systems depend on γ. In the numerical
results discussed below we have made the experience, similarly to other applications in the
literature [59,60], that γ ≈ 0.366works best, and this is the value we keep throughout. This
Hamiltonian is identical with the electronic part of the original MMHamiltonian [32,41,59],
although in this case the classical oscillators do not map the amplitudes of the electronic
states, but instead the number of particles in each single particle state, nj = (p2j +q2j )/2−γ.

2.3.2 Equation of motion

The equations of motion of the classical positions and momenta follow from the usual pre-
scription: substitute the commutator with the Poisson bracket in the corresponding Heisen-
berg equations of motion, or equivalently derive Hamilton’s equations directly from the
classical form of the Hamiltonian. The linear Hamilton’s equations arising from Hamilto-
nian (2.51) are

•
q = hp; −•

p = hq (2.52)

and they are equivalent to the time-dependent Schrödinger equation (TDSE)

i
•
c = h c, (2.53)

when the complex coefficients c = (q + ip)/
√
2 are introduced. This analogy between

Hamilton’s equations and the TDSE was already recognised by Meyer and Miller in their
original work on the MM mapping [32, 59]. However, in the MM case, the coefficients in
Eq. (2.53) are normalized to 1, whereas in the non-interacting bosonic case they are normal-
ized to the number of particles, P = c∗c. This results in the caveat that unique Fock-space
states |n〉 ≡ |{n1, . . . , nF}〉 do not have a unique parametrization in terms of c (or q, p)
because an arbitrary phase can be added to every element of c without altering |n〉, whereby
different parametrizations of |n〉 lead to different dynamics of the expansion coefficients.
This fact is illustrated numerically in some of the examples in section 5.1 of chapter 5.
Remacle and Levine had already encountered the non-uniqueness of Eq. (2.52, 2.53) to de-
scribe amany-body system of non-interacting electrons through a single classical trajectory,
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but a workaround was not proposed and only applications to one-electron systems were dis-
cussed [98].

This caveat can be resolved, still for non-interacting bosons, by considering the time-
evolution of the corresponding Wigner density function [99, 100]

•
ρW (q, p) = −2H(1)(q, p) sin

(
Λ

2

)
ρW (q, p), (2.54)

where Λ =
↼

∇q

⇀

∇p −
↼

∇p

⇀

∇q, and AWΛBW ≡ {AW , BW} indicates the Poisson bracket.
Under the quadratic Hamiltonian H(1) only the lowest order expansion of the sine function
in Eq. (2.54) contributes and one immediately arrives at the classical Liouville equation for
the density,

•
ρ(q, p) = {H(1)(q, p), ρ(q, p)}, (2.55)

which delivers the exact phase-space dynamics of the non-interacting system. This density
can be propagated as a swarm of classical trajectories matching the quantum mechanical
initial conditions, which is the same as the Wigner classical approximation of Heller [35].
For non-interacting bosons this is not an approximation, but an alternative way to compute
the exact dynamics of the system.

Up to now our discussion has been centered on bosonic particles and we have not made
progress yet towards our primary goal, the classical mapping of fermionic particles. Let us
return to the quantum mechanical problem and consider the time evolution of the single-
particle density matrix elements 〈â†j âi〉

d

dt
〈â†j âi〉 = i

(
F∑
k

hkj〈â†kâi〉 −
F∑
l

hil〈â†j âl〉

)
. (2.56)

Equation (2.56) is a closed expression: once the F populations 〈n̂j〉 and the F (F − 1) off-
diagonal terms 〈â†j âi〉 are specified, their evolution follows uniquely. The key observation is
that Eq. (2.56) is identical for bosons and for fermions. In other words, the same initial one-
body density of non-interacting bosonic and fermionic systems has the same time evolution.

The important consequence for our purposes is that the originalMMmapping in Eq. (2.51)
also delivers the exact quantum dynamics of non-interacting Hamiltonians for many-body
fermionic systems once the initial one-body density matrix of the fermionic state has been
mapped onto the corresponding phase-space density in Eq. (2.55). This result will be illus-
trated with various numerical examples in chapter 5. Note that we have made no attempt to
include the anti-symmetry of the fermions through a Jordan-Wigner transformation, [68] nor
to limit the maximum occupation of the orbitals with a spin mapping (SM) model [31, 60].
As is known [69–71], the mappings based on those concepts do not deliver the exact dynam-
ics in the non-interacting limit and, as we will show, they indeed perform poorly compared
to the MM mapping, with and without interactions.
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The exact dynamics in the non-interacting limit is reproduced as well by the LMMmap-
ping, which is explicitly devised for fermions [69–72], but at the cost of doubling the size
of the classical phase-space compared to the MM mapping. For the range of examples with
interactions considered in this work, though, we could not see any significant advantage of
the LMM over the MM mapping. It is worth mentioning, however, that the LMM has been
developed for, and applied to, semiclassical initial value calculations, [69–71] whereas in
this work we consider it in a fully linearized, classical context. For completeness, both the
SM and LMM are described in the following sections.

2.4 Spin Mapping

The SM mapping has already been utilized as a classical analog for electronic degrees
of freedom (DOF) for a finite set of electronic states [32, 33, 60, 101] and for interacting
fermions [75]. One proceeds by first mapping the fermionic creation-annihilation operators
to the angular momentum operators for spin 1/2 degrees of freedom

ĉi 7→ σ̂i,x + iσ̂i,y

ĉ†i 7→ σ̂i,x − iσ̂i,y,
(2.57)

where σ̂i,z = 1/2 (σ̂i,z = −1/2) corresponds to the occupied (empty) i − th one-particle
state. The classical Hamiltonian function (for non-interacting particles) without Jordan-
Wigner transformation (JWT) reads

H
(1)
SM(σx, σy, σz) =

∑
i

hii

(
σz,i +

1

2

)
+ 2

∑
i>j

hij (σx,iσx,j + σy,iσy,j) .
(2.58)

with classical equations of motion [60]

dσi

dt
=

∂H(σi)

∂σi

× σi (2.59)

σi = (σx,i, σy,i, σz,i). (2.60)

On the other hand, the JWT [102] exactly maps a fermionic Hamiltonian to a spin-chain
Hamiltonian that yields matrix elements with the correct fermionic phase. This transforma-
tion is also the key ingredient involved in the description of fermions in second-quantization
within the MCTDH method [103,104]. Through JWT, the anti-symmetry of the fermionic
quantum-mechanical operators is transformed into an equivalent form based on spin-1/2
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degrees of freedom,

ĉ†i →
i−1∏
k=1

Ŝk · σ̂+
i (2.61)

ĉi →
i−1∏
k=1

Ŝk · σ̂−
i (2.62)

with Sk = exp(iπn̂k). Here, σ̂±
i are spin-1/2 ladder operators and Ŝk are sign-change

operators acting locally on index k such that Ŝk|0k〉 = |0k〉; Ŝk|1k〉 = −|1k〉, and the spin
states are used to indicate occupation: |↓k〉 → |0k〉; |↑k〉 → |1k〉. The sign-change operators
can also be written as Ŝk = 1− 2n̂k, where n̂k = σ̂+

k σ̂
−
k . This substitution together with the

JWT relations (2.61) and the SM result precisely in the original MWmapping for fermionic
Hamiltonians (cf. Eqs. 2.10 and 2.13 in Ref. 31). Thus, it seems reasonable to combine the
SM with the JWT, which introduces phase operators Ŝk = exp(iπn̂k), and then introduce
the corresponding classical functions. These can take the form

Sk = (1− 2nk), (2.63)

where the occupation nj(x⃗) depends on the explicit classical variables x⃗ used in the corre-
spondingmapping. The SM+JWT classical analogHamiltonian for non-interacting particles
then takes the form

H
(1)
SM+JWT(Sx, Sy, Sz) =

∑
i

hii

(
Sz,i +

1

2

)

+ 2
∑
i>j

i−1∏
k=j+1

hij(1− 2nk) (Sx,iSx,j + Sy,iSy,j) .

(2.64)

Comparing Eq. (2.64) with the relation 2.10 in Ref. 31 shows that this procedure is equiva-
lent to the original Miller-White mapping.

2.5 Li-Miller Mapping

The Li-Miller mapping (LMM) uses the concept of quaternion operators to capture the
properties of second-quantized fermionic operators and to construct a classical mapping
for them [69–71]. This results in a mapping where each fermionic DOF is mapped to two
classical DOFs (two position-momentum pairs). The LMM has been introduced in the con-
text of semi-classical initial-value representation calculations mechanics [69–71], whereas
here we use it in a fully linearized context. Recent applications of a classical analog to
quantum transport of fermions have modified the LMM mapping in a way that makes it
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possible to describe a few extra types of fermionic operator products, and termed it com-
plete quasicalssical mapping (CQM) [72]. In our applications, the LMM and CQM maps
are equivalent. The corresponding Hamiltonian reads

H
(1)
LMM(px, qx, py, qy) =

1

2

(
q+x hpy − q+y hpx

)
+ γTr[h]. (2.65)

Furthermore, the corresponding Hamilton equations of motion for a non-interacting Hamil-
tonian is written as,

•
qx = −hqy;

•
px = −hpy

•
qy = hqx;

•
py = hpx.

(2.66)

This indicates that each site of LMM requires 4 variables, which is two times more than
the variables used in the MM mapping. The extra variables used in LMM are for fermionic
properties. In chapter 5, we compare the MM to the LMM in different systems. We aim to
show the extra variables used in the LMM improve little when describing fermionic dynam-
ics.

2.6 Initial space density

Two equivalent propagation strategies are available for non-interacting systems: (i) The
initial fermionic Fock-space state is mapped onto a corresponding phase-space distribu-
tion, Eq. (2.55), which can then be conveniently discretized as N phase-space trajectories,
each evolving as 2F coupled Hamilton’s equations. (ii) The one-body density matrix corre-
sponding to the initial fermionic state is propagated according to the F 2 coupled differential
Eqs. (2.56). The former strategy is our working approximation for interacting Hamiltonians.
The latter strategy, propagating the one-body density matrix, becomes essentially equivalent
to solving the full quantum-mechanical problem once interactions are included, and we do
not consider approximations along that line.

Using the relations (2.50) with the single-particle density matrix elements 〈â†j âi〉 and
equating expectation values to classical phase-space averages, one can write the relation

〈â†j âj〉 =
1

2

∫
( p2j + q2j − 2γ ) ρ(q, p) dFq dFp (2.67)

〈â†j âi〉 =
1

2

∫
( pjpi + qjqi − ipjqi + iqjpi ) ρ(q, p) dFq dFp

between the quantum mechanical matrix element of the one-body density and the classi-
cal phase-space average of position and momenta for the MM mapping. The phase-space
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density can be represented by a discrete set of N phase-space points (p(k), q(k)),

〈â†j âj〉 =
1

N

N∑
k=1

1

2
( p

(k)
j

2
+ q

(k)
j

2
− 2γ ) (2.68)

〈â†j âi〉 =
1

N

N∑
k=1

1

2
( p

(k)
j p

(k)
i + q

(k)
j q

(k)
i − ip

(k)
j q

(k)
i + iq

(k)
j p

(k)
i ) .

It is more convenient to discuss the sampling of initial conditions in terms of the correspond-
ing action-angle variables, [32, 97] whose relation to (qj, pj) follows compactly as

qj + ipj =
√

2(nj + γ)eiϕj . (2.69)

Using Eq. (2.69), Relation (2.68) becomes

〈â†j âj〉 =
1

N

N∑
k=1

n
(k)
j (2.70a)

〈â†j âi〉 =
1

N

N∑
k=1

√
(n

(k)
j + γ)(n

(k)
i + γ)ei(ϕ

(k)
i −ϕ

(k)
j ). (2.70b)

Let us consider first the simple case that the initial state in Fock space corresponds to a
single configuration with one single electron, |j〉 ≡ |01, . . . , 1j, . . . 0F 〉, in the occupation
number representation. In this case 〈â†j âj〉 = 1 and all other matrix elements of the one-body
density matrix are zero. Therefore the one-body density matrix can be mapped to a single
phase-space point with action variables nj = 1, nl = 0 for l 6= j and all angle variables
ϕm = 0. Integrating the corresponding classical trajectory is of course equivalent to solving
the corresponding TDSE, Eq. (2.53). Another illustrative example is the single-electron
case where the initial state is a linear superposition of configurations

|Ψ〉 =
F∑

j=1

Cj|j〉 (2.71)

where Cj are complex expansion coefficients and |j〉 are the single-electron configurations
defined above. Now, by setting γ = 0, Eqs. (2.70) can be fulfilled simultaneously by a single
phase-space point where the action-angle variables are chosen such thatCj =

√
nje

iϕj . This
situation is analogous to setting γ = 0 in the original MM mapping for electronic states,
which then reverts to an Ehrenfest model with a single trajectory. If γ 6= 0, the one-body
density of the single-electron state (2.71) cannot be described, in general, by a single phase-
space point according to Eqs. (2.70).

A more useful case corresponds to a single-configuration many-body state of the form
|11, 12, . . . , 1m, 0l, . . . , 0F 〉, for example a Hartree-Fock approximation of the ground elec-
tronic state or an excited state that can be initially well described as a single configuration.



Initial space density 23

ϕ1 ϕ2 ϕ3

Trj 1 0 π/4 3π/4
Trj 2 0 3π/4 π/4
Trj 3 0 5π/4 7π/4
Trj 4 0 7π/4 5π/4

Table 2.1. In a system with 3 DOFs, an instance is presented by solving Equation (2.68).

For such a state, the one-body density matrix is diagonal with 〈â†j âj〉 = nj . Independently
of the choice of γ, it is clearly impossible to fulfill, e.g., that

〈â†1â1〉 = 〈â†2â2〉 = 1 (2.72a)

〈â†2â1〉 = 0 (2.72b)

with one single phase-space point. One can think of different ways to sample initial con-
ditions that fulfill Eqs. (2.70), for example by introducing a specific number N of initial
phase-space points and then solving Eqs. (2.70) for all unknown n

(k)
j , ϕ

(k)
j parameters. For

instance, it is possible to set all n(k)
j of each k-point equal to the corresponding spin-orbital

populations, Eq. (2.70a), while the remaining angle variables of each k-point must then be
determined such that the remaining sum of phases in Eq. (2.70b) vanishes. This corresponds
to determining F ×N unknowns for the corresponding set of F (F − 1)/2 non-linear equa-
tions and it is not clear, a priori, what is the smallest numberN of phase-space points needed
to map a specific density. We have made no attempt to systematically solve Eq. (2.70b) for
the angles of general initial states. We illustrate the concept with a simple example with
F = 3 spin-orbitals and 2 particles, which will be considered later numerically. Starting
with state |1, 1, 0〉, one needs at least N = 4 points (trajectories) to reproduce the corre-
sponding one-body density matrix and one can easily verify that the angles in Table 2.1
result in the cancellation of the phase factors in Eq. (2.70b). Clearly, the choice of angles in
Table 2.1 is not unique, only the angle differences between each DOF matter.

Alternatively to the discrete sampling just introduced, it is possible to perform a ran-
dom sampling of the initial angle variables. For single-configuration initial states, where
all off-diagonal matrix elements of the one-body density matrix are zero, this is the most
straightforwardway to determine initial conditions. The disadvantage is that onemay end up
propagating more classical trajectories than strictly needed. For systems with many single-
particle states (orbitals) F , this is however a straightforward way to proceed, as compared
to solving Eq. (2.70b) for some specific discretization N . In section 5.1, we numerically
illustrate how, for non-interacting systems, both a small set of trajectories with initial an-
gles chosen to fulfill Eq. (2.70b), and a randomly sampled ensemble with a larger number
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of trajectories, yield the exact one-body dynamics of the system. In section 5.1, for interact-
ing Hamiltonians, Eq. (2.55) is not equivalent to Eq. (2.54) and therefore the former does
not reproduce the exact dynamics of the one-body density. Moreover, different classical
phase-space distributions representing the same initial one-body density result in different
time evolutions.

Finally, multi-configurational many-body states have, in general, a non-diagonal one-
body density matrix that cannot be factorized. Because the off-diagonal elements are not
necessarily equal to zero, the random sampling strategy cannot be applied, and one is left
with the alternative of solving Eqs. (2.70) to determine the initial ensemble of phase space
points. In this study, we focus instead on single-configuration initial states.



Chapter 3

Dynamics of molecules with fixed
orientation inside cavity

Ground state reaction in cavity with vibronic strong coupling (VSC) has been developed re-
cently in polaritonic chemistry since the pioneering demonstrations of Rabi splitting in the
infrared domain in Fabry-Perot configurations [8, 94, 105]. Due to its potential to modify
and ultimately manipulate the mechanisms and thermal reaction rates through the vaccum
fields of cavities [106–108]. Besides important breakthroughs in the linear and non-linear
spectroscopy of VSC systems [106–109], the more spectacular results remain the experi-
ments reporting the modification of chemical rates in cavities by the Ebbesen group and
others [15–17,110–112]. These experiments have triggered the proposal of several theoreti-
cal models to explain how the cavity modifies the ground electronic state structure [113] and
spectroscopy [114] and, more recently, how it modifies reaction rates [18–20,28,83,92,93].
Theoretical models based on the Grote-Hynes theory [115] predict the suppression of the
transmission coefficient with increasing cavity coupling due to increased friction at the top
of the reaction barrier [19, 20, 83]. How cavities can enhance chemical reactions [17, 29],
how sharp resonances of the cavity with vibrational modes affect the mechanism [16, 17],
and how these effects survive in the collective VSC regime, have remained poorly under-
stood questions.

In this chapter, we theoretically demonstrate that both enhancement and suppression of
reaction rates are possible within a cavity for realistic chemical processes. Themolecules are
kept at a fixed orientation with respect to the polarization direction of the cavity mode. We
first focus on the coupling of theµx dipole component to the cavity polarizaton. Althoughwe
rely on classical rate theory [91], we note that tunneling correction for hydrogen abstraction
reactions at 300 K result in variations of the rate within the same order of magnitude [116].
For reactions involving heavier elements, quantum corrections to the rates are even more
insignificant. Along these lines, there is no reason to assume, a priori, that photonic mode

25



26 HONO inside cavity

with frequencies similar to the atomic vibrations, and in thermal equilibrium, shall result in
significant quantum effects that affect the general conclusions derived from classical rate
theories for VSC systems. This does not exclude situations where quantum effects may be
important for quantitative descriptions of cavity-modified rates in reactions involving light
atoms, as it is sometimes the case for rates outside cavities [116–118].

3.1 HONO inside cavity

3.1.1 isomerization of HONO

The simplicity of the unimolecular reaction mechanism in HONO makes it an ideal bench-
mark system to understand how dynamical cavity effects can modify chemical rates as
compared, e.g., to bimolecular reactions in solution [16, 119]. We base our study on the
CCSD(T)-quality ab initio potential energy surface (PES) of Richter et al. [120], which fea-
tures a reaction barrier height of about 0.51 eV (49 kJ/mol) and where the trans isomer is
11 meV more stable than the cis one. Quantum dynamics studies of the HONO isomer-
ization triggered by strong laser pulses have been based on this PES [121, 122]. Despite
its simplicity, this chemical reaction constitutes a fully coupled and rich dynamical system.
Similarly to other isomerization reactions, e.g. involving hydrocarbons [89, 123, 124], it
takes place in the underdamped regime. A corresponding diagram illustrating the reaction
coordinate and the cis and trans configurations is found in Fig. 3.1 in the form of a Newman
diagram with the central N-O bond perpendicular to the plane of the paper and at the origin
of the (x, y)-plane.

3.1.2 Cavity Hamiltonian of HONO inside cavity

In section 2.1 of chapter 2, the Hamiltonian is derived from the Coulomb-gauge light-matter
interaction Hamiltonian by taking the long wave approximation followed by a unitary trans-
formation to the length form [18, 79, 125]. To describe how the isomerization reaction is
affected by the cavity mode, we start from a classical analog of Hamiltonian for a molecular
ensemble coupled to one cavity mode

H =
N∑
l=1

H
(l)
mol +Hcav (3.1)
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b)

Figure 3.1. a) cis-trans isomerization reaction in HONO. The axes indicate the body-
fixed frame of the molecules in the simulation. The presence of the cavity is indicated
schematically and is not to scale. HONO is characterized by 6 vibrational coordinates:
3 stretching modes, O−H, O−N and N=O; 2 bending modes, H−O−N and O−N=O; 1
torsion mode τ , the isomerization reaction coordinate. b) Newman diagram of the HONO
molecule showing the definition of the body-fixed axes. The hydrogen atom is on the front
side, the terminal oxygen atom is on the back, and the remaining oxygen and nitrogen atoms
lie at the origin of the diagram along the perpendicular z-axis. The (y, z)-plane is determined
by the ONO atoms, and the reaction coordinate τ corresponds to the dihedral rotation of the
H-atom around the z-axis and on the (x, y)-plane. Its origin is set at the minimum energy
configuration of the cis region. The transition state lies at about 90 and by symmetry also
at about 270 degrees.

with

H
(l)
mol =

F∑
jl=1

P 2
jl

2Mjl

+ V (R1l . . . RFl
), (3.2)

Hcav =
1

2

p2cav + ω2
cav

(
qcav +

λ

ωcav

·
N∑
l=1

µ̂(l))

)2
 . (3.3)

V (R1l . . . RFl
) denotes the ground electronic state potential energy surface (PES) of the

l-th molecule with momenta Pjl and positionsRjl . Hence, the Born-Oppenheimer (BO) ap-
proximation is assumed within each molecule, andµ(l) ≡ µ(l)(R1l . . . RFl

) is the permanent
dipole vector of the l-th molecule.

3.1.3 Dipole of HONO

In this chapter, the molecules are kept at a fixed orientation with respect to the polarization
direction of the cavity mode(Fig. 3.1a). In this way, we focus on the coupling of a spe-
cific dipole component to the cavity polarization. The permanent dipole moment of HONO
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has been evaluated at the MP2 level of theory using the atomic basis 6-311g++(d,p) and is
described as a function of the reaction coordinate or the torsion coordinate. In this treat-
ment, we approximate the dipole strongly depends on the reaction coordinate, and neglect
the modulation of the dipole due to other internal coordinates.

Figure 3.2. Permanent dipole of the HONO molecule in atomic units as a function of the
torsion coordinate τ . The axes are referred to as the molecular frame axis in Fig. 3.1a.

3.1.4 Reactive flux rate of HONO isomerization

The cis-trans reaction rate is described with the reactive flux method for the classical rate
constant [87–89,123, 124]

K(t) = x−1
cis〈τ̇(0) δ[τ(0)− τ ‡] θ[τ(t)]〉, (3.4)

where xcis is the equilibrium fraction of HONO at the cis geometry, τ̇(0) is the initial velocity
of a phase-space point perpendicular to the dividing surface between reactants and products,
and τ ‡ is the torsion angle corresponding to the transition state geometry. The derivation
of the reactive flux method is shown in section 2.2 of chapter 2. The brackets indicate the
canonical ensemble average over trajectories, where we considered a temperature of 300 K
throughout. The Heaviside function θ[τ ] is defined to be one for the trans configurations,
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and zero otherwise. The exact rate is obtained when K(t) reaches the plateau value. As
mentioned in section 2.2 of chapter 2, we choose the same dividing surface between cis and
trans. Hence, a consistent KTST is expected, which is shown in fig 3.3. The modification
of the reactivity is reflected by the transmission coefficient, κ.

Figure 3.3. The ratio of K(c)
TST and K

(0)
TST is presented. K(0)

TST is transition state theory rate
outside the cavity while K(c)

TST is the transition state theory rate inside the cavity. KTST is
calculated using Eyring’s equation. The frequencies for ωcav are taken to be resonant with
the harmonic vibrational frequencies of HONO.

3.2 x-polarized

3.2.1 Single molecule inside cavity

We first consider a single HONO molecules coupled to a cavity mode which is x-polarized
with respect to the molecular frame. Under this circumstance, the largest variation of the
dipole moment occurs at the transition state (TS) of the reaction coordinate i.e. τ ‡ ≈
π/2(shown in fig 3.2). Outside the cavity, κ(0) ≈ 0.23 at 300 K, the plateau value of
the black curve in Fig. 3.4a. This low transmission can be explained by that the activated
trajectories have a slow intra-molecular vibrational energy redistribution (IVR) rate in the
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underdamped regime. As the HONO molecule is inside the cavity, the plateau value stabi-
lizes at a larger total transmission κ(c) is observed, which is shown in the red, blue and green
curves of Fig. 3.4a. The increasing κ(c) implies that the cavity enhances the chemical reac-
tion, which is illustrated by the ratio of the total transmission coefficient compared to κ(0),
i.e. R. This is summarized by the red trace in Fig 3.4c. In addition, one observes R firstly
increases as coupling strength, g, increases. This enhancing reaction rate can be explained
by our theoretical framework: the cavity provides an extra energy redistribution pathway
for a system with a low-friction reaction coordinate. However, as the cavity coupling to
the torsion coordinate further increases, a turning point is reached for g > 3 V/nm. The
amount of recrossing at the barrier keeps increasing as well, thus finally reverting the trend
and decreasing the transmission again. This has been pointed out as the Kramers turning
point [115], which, e.g., was predicted long ago for the isomerization of cyclohexane as a
function of solvent viscosity [124]. Figure 3.4a illustrates its origin in the quick drop of
κ(c)(t) at short times for the strongest cavity coupling.

3.2.2 Single molecule inside cavity with bath mode

We have already discussed the case of gas-phase HONO and how its reaction rate is influ-
enced by the presence of a cavity. Now, we want to explore the effect of the cavity on the
reaction rate of HONO in the solution phase, which requires introducing an external bath.
By coupling HONO to an external bath, the overdamped regime of the Grote-Hynes the-
ory is achieved. Figure 3.4b shows how now κ(c)(t) and κ(0)(t) quickly reach their plateau
value within a few tens of femtoseconds, meaning that activated trajectories visit the region
of the TS only once or twice. Since the plateau is reached quickly, the cavity’s influence
is limited to a short period near the top of the barrier, where it can enhance the recrossing
rate and lower the transmission coefficient As illustrated in Fig.3.4c by the green trace, now
R < 1: the chemical rate in the cavity is reduced for all coupling strengths. This is the
regime captured in Refs 19, 20, 83.

3.2.3 Cavity with various cavity frequency

In this section, we focus on the case of sharp resonant effects, which occur when a specific
cavity frequency causes a significant modification of the chemical rates. The resonance be-
tween the cavity and vibrational modes of the molecule can affect the outcome of reactive
events, as shown by trajectory calculations. However, the connection between this reso-
nance and the actual change in chemical rates is still unknown [82,126]. Our simulations of
the transmission coefficient in the underdamped, slow IVR regime reveal sharp resonances
in the rate constant effect as a function of ωcav. As already discussed, in this regime the ef-
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a) b)

c) d)

Figure 3.4. a) Transmission coefficient κ(c)(t) for various cavity-coupling strengths g

(V/nm) for N = 1, ωcav = 640 cm−1 and the cavity polarization aligned with HONO’s
x-axis. The asymptotic values have been obtained by extrapolating the last 1500 fs with
an exponential decay and read κ = (0.23, 0.27, 0.30, 0.33, 0.27) for the coupling strengths
g = (0, 0.75, 1.5, 3.0, 6.0), respectively. b) same as a) but with the HONO molecules cou-
pled to a bath. The shaded area on top of the solid lines indicates the standard deviation of
the average over trajectory runs. c) Asymptotic R = κ(c)/κ(0) for the curves in a) (red) and
b) (green). d) R for increasing number of molecules at constant total polaritonic coupling.

fect of the cavity is to introduce extra energy redistribution pathways, whereby the effect at
short times while passing the TS barrier region is not so important. Thus, when the cavity is
resonant with a vibrational mode that happens to be strongly coupled to the reaction coordi-
nate, the enhancement of the rate is more prominent. As seen in Fig. 3.5,R ≈ 1.8when ωcav

is resonant with the O-N stretching mode at 900 to 1000 cm−1. This can be connected to
the peak observed in the spectrum of the velocity-velocity auto-correlation function, which
will be discussed in the next chapter.

3.2.4 Collective regime with fixed rabi splitting

In experiments reporting modifications of chemical rates in Fabry-Perot configurations, a
collective of molecules are prepared inside the cavity. Due to the computational cost, the-
oretical studies often assume a single molecule with ultra-strong coupling to the cavity to
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Figure 3.5. Rates ratio R for various coupling strengths gω = gµ‡
x/ωcav as a function

of ωcav, where µ‡
x is µx at the TS. Vertical bars represent standard deviations over the run

trajectories. For gω = 3.34E−3, ωcav is scanned in steps of 200 cm−1 and the red dashed
line is meant to guide the eye. For the other coupling strengths ωcav is chosen to be resonant
with the fundamental vibrational modes of HONO: ωONO = 609, ωτ = 640, ωON = 852,
ωHON = 1263, ωNO = 1641, and ωOH = 3426 cm−1.
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a) b)

Figure 3.6. Potential energy surface cut for a) 1 and b) 100 HONO molecules as a func-
tion of the reaction coordinate τ and the cavity displacement qcav − q‡cav (q‡cav is the cavity
displacement at the TS). For N = 1 the light-matter coupling is g = 8 V/nm. The cav-
ity coupling in b) is scaled by 1/

√
N to keep a constant overall light-matter interaction.

The color levels start at 0 for the lightest tone and increase in steps of 0.2 eV. The red line
indicates the minimum energy path. The vertical dashed line separates the cis and trans
configurations.

reach the same Rabi splitting reported in experiments. The gap between a single molecule
and a collective molecules inside the cavity with the same Rabi splitting is still an open
question. To shed some light on this issue, we have performed trajectory calculations of
the transmission coefficient for an increasing number of moleculesN coupled to the cavity,
again without an extra bath. The coupling per molecule is scaled as usual by a factorN−1/2

as a means to keep the overall light-matter coupling constant [127]. Starting from N = 1,
g = 1 V/nm, and ωcav = 852 cm−1, one sees in Fig. 3.4d how, for increasing N , the cavity
effect gradually fades away. Responsible for the gradual trend R → 1 is the decoupling of
the reaction coordinate from the cavity displacement with increasing N , as seen by com-
paring the curvature of the minimum energy path (MEP) in Figs. 3.6a, N = 1, and 3.6b,
with N = 100. This reduction of the MEP curvature as N increases, and thus the reduced
friction caused by the cavity, implies that in the largeN limit the cavity is not able to “cage”
the TS and induce a decrease of the transmission coefficient through this mechanism. This
indicates that with the fixed Rabi splitting, a single molecule inside the cavity describes a
significantly different PES from a collective of molecules inside the cavity, which may lead
to different mechanisms of dynamics.

3.3 Other polarized direction

Following the calculations in the previous section, a single HONO inside a cavity with either
y or z-polarized is performed. Fig. 3.7 showsR as a function of cavity frequency with either
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Figure 3.7. Rates ratio R as a function of ωcav with fixed gω = 3.34E−3. Vertical bars
represent standard deviations over the run trajectories.

y or z-polarized. Compared with x-polarized, the enhancement of the rate is prominent
when ωcav is resonant with the torsion mode of the reaction coordinate at 600 cm−1 and
1200 cm−1 when the cavity is y-polarized. On the other hand, as the cavity is z-polarized,
the enhancement of the rate is prominent at 1000 cm−1 which is similar with the x-polarized
results. The different results between the three polarized cavities can be attributed to the
spectrum of the dipole-dipole auto-correlation function, whichwill be discussed in chapter 4.
We stress that the enhancement of the reaction rate is highly correlated to the polarized
direction of the cavity. In experiments, molecules can freely orientate in solutions. The
actual dipole component coupled to the cavity varies as time evolves. In the next chapter,
we will focus on molecules, which randomly orientate inside the cavity.

3.4 Conclusion

In this chapter, we theoretically demonstrate that both enhancement and suppression of re-
action rates are possible within a cavity for realistic chemical processes. The molecules
are kept at a fixed orientation with respect to the polarization direction of the cavity mode.
We first focus on the coupling of the µx dipole component to the cavity polarization. The
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modification of the reaction rate is connected to the interaction between the reaction coor-
dinate and the surroundings. The weak(strong) interaction leads to the reaction occurring at
under-damped(over-damped) regime, which enhances(suppresses) the reaction rate. In the
under-damped regime, sharp resonant effects are observed with different polarized cavities.
We emphasize that the enhancement of the reaction rate is relevant to the dipole component
coupled to the cavity.





Chapter 4

Dynamics of multiple molecules with
random orientation inside cavity

In this chapter, we extend our study in chapter 3, which focuses on a single HONOmolecule
with fixed orientation to ensembles of freely rotating HONO molecules in the gas phase
(shown in fig 4.1) and explore the collective effects on the reaction rate. We choose a cou-
pling strength such that an effect is seen for one single molecule, but such that the Rabi
splitting is still buried within the linewidth of the molecular infrared absorption. Under
such conditions, we investigate the scenario where the addition of molecules with a fixed
coupling strength leads to the appearance of vibropolaritonic bands. We aim to demonstrate
that the resonant interaction of the activated molecule with the vibropolaritonic bands has
the same effect as the direct interaction of a single molecule with the cavity mode. More-
over, we show in detail how their orientation of the activated and non-activated molecules
may differ for optimal interaction with the cavity, and the resonance may frequency may
shift for the activated molecule due to its higher energy content. To improve computational
efficiency of simulating an ensemble molecules inside the cavity, OpenMMpackage is used.
More details of OpenMM can be found in Appendix A.

4.1 HONO cluster inside a cavity

4.1.1 HONO cluster

As mentioned in section 2.2 of chapter 2, thermally activated molecules passing the top of
the barrier is a rare event. Consider N HONO molecules inside the cavity, 1 HONO is an
activatedmolecule(AM)whileN−1HONOmolecules are non-activatedmolecules(NAMs)
when preparing a set of trajectories(shown in fig 4.1). We assume the reaction occurs in the
gas phase, which means the interactions between HONOmolecules are neglected. Since we

37



38 HONO cluster inside a cavity

Figure 4.1. HONO molecules in a cavity. One activated molecule (Red circle) is pre-
sented, while the others are non-activated molecules. The presence of the cavity is indicated
schematically and is not to scale.

investigate the reaction rate in an underdamped regime, an enhancement of the reaction rate
is expected as N increases with a fixed coupling strength based on the results in chapter 3.

4.1.2 Dipole of HONO

In this chapter, we consider HONO molecules freely orientate inside the cavity. Also, we
aim to include the contribution of all the nuclei coordinates to the dipole. To reduce com-
putational cost of simulations, we use a simple partial charge model of the dipole(fig 4.2)
for its three components that agrees qualitatively well with calculated cuts of the ab initio
dipole surfaces(fig 3.2).

In the partial charge model, the dipole of a molecule can be described as a sum of dipoles
contributed by atoms of the n-th molecule, which is expressed as:

µ
(n)
mol =

∑
i

δiRi
(n), (4.1)

where δi and Ri represents the partial charge and the position of atom i, respectively. And
index i runs over all atoms of the molecule. Note thatµmol andRi are vectors. If the system
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b)

Figure 4.2. Under cartesian coordinates, three dipole components are plotted as a function
of the reaction coordinate.

includes more than one molecule, the dipole of the system is expressed by:

µsys =
∑
n

µ
(n)
mol. (4.2)

The partial charge of HONO is listed in Table 4.1. O1 represents the oxygen atom con-
nected with the hydrogen and the nitrogen atom while O2 represents the other oxygen atom
connected with the nitrogen atom only.

The three spatial directions of the dipole in the body-fixed molecular frame along the re-
action coordinate τ are shown in Fig 4.2. The modulation of the µz component is very small
as a function of τ and its largest modulation occurs instead in the stretching and bending
modes of the molecular skeleton.

Table 4.1. Partial charge of HONO molecule

H O1 N O2
partial charge (a.u.) 0.401 -0.373 0.103 -0.131
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4.2 Cavity effect in collective regime with fixed coupling
strength

We perform 3 different cases describing the coupling between the cavity and the HONO
molecules. The first case is the molecules are kept at a fixed orientation with respect to the
polarization direction of the cavity mode. In this way, we focus on the coupling of the µx

dipole component to the cavity polarization. The second case follows the first one, but we
focus on the coupling of the µy dipole component to the cavity polarization, instead. The
third case is the molecules randomly orientate at every time step. The actual coupling of
the dipole component to the cavity polarization is a linear combination of µx, µy, µz, which
should be evaluated based on the orientation of each molecule.

In fig 4.3a, we demonstrate transmission coefficients as a function of N in which the
HONO molecules randomly orientate. Outside the cavity, κ(0) ≈ 0.23 at 300 K is the
plateau value of the black curve. This relatively low transmission is caused by a slow rate
of intra-molecular vibrational energy redistribution (IVR) of the activated trajectories in
the underdamped regime, which has been mentioned in chapter 3. For a single molecule
(N = 1) inside the cavity with fixed g = 0.4 V/nm, one sees the plateau values stabilizes at
a larger value. AsN increases, κ(c) is further enhanced according to the orange, blue curves.
The cavity accelerates the chemical reaction by increasing the total transmission coefficient
compared to κ(0), i.e. R > 1. This is illustrated by the blue trace in Fig 4.3b.

Next, we consider N = 64, where one molecule corresponds to the AM while N − 1

are NAMs. Rather than fixing the macroscopic Rabi splitting by multiplying the coupling
strength with the 1/

√
N factor, we keep it constant to g = 0.4 V/nm. Hence, the AM is

coupled to the cavity with the same coupling strength in both the N = 1 and the N = 64

cases. This way, we ensure a genuine collective modification of the dynamics of the AM
through the presence of non-activated molecules by avoiding an artificial re-scaling of the
cavity to single-molecule coupling. And these molecules are indirectly coupled to the AM
through the cavity mode. For N = 64, κ(c) is further enhanced, as seen by comparing the
orange and blue curves in Fig 4.3a. The cavity plus NAMs further accelerate the chemical
reaction by increasing the total transmission coefficient compared to κ(0) and to κ(c)(N = 1)

i.e. R > 1.

The plateau value as a function of the number of molecules is shown in Fig 4.3a. One
observes that the effect stagnates atN ≈ 36 for the choice of model parameters. As such, the
reported modification does not explain the macroscopically large N limit, which remains
a standing unresolved issue in the field, but which is not the focus of this contribution.
However, our simulations shed important light on the distinct roles played by the AM and
NAMs in the few molecules, vibrational strong coupling regime. Thus, in the following
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our goal is to explain the mechanisms by which the added NAMs modified the reaction rate
of the AM, even though the AM and NAMs not directly coupled and only see each other
indirectly through the cavity degree of freedom.

Let us first compare the simulations with randomly oriented initial conditions to simula-
tions performed with aligned molecules, which is defined in chapter 3. When all molecules
have their x-aligned with the cavity polarization the collective effect disappears, as illus-
trated by the orange trace in Fig 4.3b. On the other hand, when the cavity polarization is
aligned with HONO’s y-axis, the enhancement of the reaction rate with increasingN is even
more pronounced as compared with the randomly oriented case. WhenN = 1, R is similar
for all three cases. However, when N > 1, a modification of reaction rate is only observed
for randomly oriented and y-aligned cases. This observation indicates them importance of
the orientation of the molecules with respect to the cavity polarization. Also, the AM and
the N − 1 NAM (spectators) play different roles in connection with their orientation inside
the cavity.

As molecules are x-axis oriented with respect to the cavity polarization, the largest vari-
ation of the permanent dipole occurs at the transition state region, which is shown in blue
trace in Fig. 4.2b. Hence, the AM efficiently couples with the cavity in this orientation.
On the other hand, the AM also couples efficiently with the cavity when its y-axis is ori-
ented with the cavity polarization. Here, the most efficient coupling will occur when the
AM visits the cis or trans regions of the configurational space (see orange trace in Fig. 4.2),
which occurs just a few femtoseconds before or after having passed the TS. This situation
is radically different for the NAMs. The energy content of the NAMs along the reaction
coordinate is thermal and much lower than the AM, which leads to that the NAMs are not
able to visit the TS region. Thus, they are confined to oscillate close to the potential energy
minimum, where, in the case of HONO, ∂µx/∂τ = 0. Thus, when the cavity is tuned to the
frequency of the HONO torsion, only y-aligned NAMs can participate, whereas x-aligned
NAMs are literally invisible to the cavity. Summarizing, both the AM and theN − 1 NAM
must be efficiently coupled to the cavity for collective effects to take place, which may not
necessarily occur for the same orientation, or even cavity frequency, as we illustrate in the
next section.

4.3 Collective effect with different cavity frequency

In the previous section, we have already shown the modification of reaction rate arising
from molecular orientation. The mechanism by which the NAMs modulate the reaction
rate is not obvious and requires further exploration. Figure 4.4 shows R as a function of
ωcav from 400 cm-1 to 800 cm-1. Interestingly, the rate modification peaks at a different
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a)

b)

Figure 4.3. a) Transmission coefficient κ(c)(t) with fixed g = 0.4 (V/nm) with different
N , ωcav = 640 cm−1 b) R for increasing number of molecules with fixed g = 0.4 V/nm
(see text for details). Random case means that all molecules always randomly orientate
when evolution. Aligned x(y) molecules mean that the cavity polarization is aligned with
HONO’s x(y)-axis and orientations of all HONO are fixed at all time.

a) b)

Figure 4.4. a) R for various cavity frequency from 400 to 800 cm-1. g = 0.4 V/nm and
T = 300 K for all calculations. b) A ratio of R(N = 64) and R(N = 1)

frequency for the casesN = 1, 490 cm−1, andN = 64, 510 cm−1, with the single molecule
case (thus necessarily the AM) being red-shifted by roughly 20 cm−1. Considering the
ratio of R(N = 64)/R(N = 1), one sees that the maximum collective effect peaks at
ωcav ≈ 600 cm−1. The difference observed in figure 4.4 implies that the reaction rate can
be altered by the resonance condition between the cavity and the AM, which is influenced
by the NAMs. To shed light on this matter, we present spectrum of molecules and cavities
in the next section.

4.4 Spectrum of HONO and cavity

Fig. 4.5a compares the spectrum of the velocity-velocity correlation function of the reaction
coordinate, Ivv(ω), for AM and NAM i.e. for HONO trajectories sampled from a thermal
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distribution at the TS dividing surface, and for HONO molecules in thermal equilibrium
around the cis configuration, respectively. Fig. 4.5a shows that the vibrational frequency of
the AM along the reaction coordinate is red-shifted compared to the NAM, which is caused
by the anharmonicity of the potential well along this coordinate and the higher energy con-
tent of the AM. Quantum mechanically, the anharmonic vibrational energy levels with the
excitation localized along the reaction coordinate become closer, in particular ν̃01 = 632,
ν̃12 = 581, ν̃23 = 555, ν̃34 = 515, and ν̃45 = 467 cm−1 [120, 122], which classically results
in a longer oscillation period at higher energy. The velocity-velocity spectrum of the NAMs
can be compared with the spectrum of the dipole-dipole correlation function [128, 129],
Iµµ(ω), confirming that the peak at about 600 cm−1 in Ivv(ω) corresponds to the vibra-
tional frequency of the NAM along the reaction coordinate. To validate the classical spectra
we compare to an anharmonic quantum mechanical spectrum calculated with the MCTDH
approach using the Heidelberg package [130, 131] and showing qualitatively good agree-
ment(shown in fig 4.6).

The velocity-velocity spectrum of the NAMs explains the observed peak in fig 4.4a as
N = 1. AsN = 1, only the AM is inside the cavity, one can reach the largest rate modifica-
tion by tuning the cavity to be resonant with the vibrational frequency of the AM. However,
asN increases, the largest rate modification occurring toward higher cavity frequencies can-
not be directly explained by this blue-shifted vibrational frequency of the NAMs compared
to the AM. As ωcav shifts to the blue, the AM should go off-resonance while the NAMs are
not undergoing the chemical reaction, so the fact that they are resonant with the blue-shifted
cavity should not change the transmission coefficient of the AM unless this has some direct
effect on it. Figures 4.5b and 4.5c show the spectrum of the velocity-velocity correlation
function, Ivv(ω), for the cavity mode for ωcav = 490 and 640 cm−1, respectively, and for
0, 1 and 64 molecules in the cavity. At ωcav = 490 cm−1, Ivv(ω) presents a single peak
at 490 cm−1 in all cases, without the formation of polaritonic peaks due to the relatively
small single-molecule coupling, and with just a small red-shift for N = 64. On the other
hand, and in stark contrast, Ivv(ω) presents two polaritonic peaks for the N = 64 case and
ωcav = 640 cm−1. Indeed, we want to emphasize that our choice of single-molecule cou-
pling strength has been made such no polaritonic branches exist for one single molecule but
they develop while increasing the number of molecules at fixed coupling from N = 1 to
N = 64, and still strong enough that the isomerization rate is affected forN = 1. Hence, at
ωcav = 640 cm−1 the cavity is resonant with the NAMs and the collective coupling is strong
enough to split the cavity frequency in an upper (UP) and lower polaritonic (LP) resonance.
The LP is resonant with the frequency of the AM, which leads to an efficient coupling and to
the corresponding modification of the rate. Thus, the following conclusions can be drawn:
(1) For an effective modification of the rate in the single-molecule, strong coupling regime,
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the AM must be efficiently coupled and resonant with the cavity. This can be through the
reaction coordinate directly or through other modes anharmonically coupled to the reaction
coordinate, as we have demonstrated in chapter 3. (2) In the collective N >> 1 strong-
coupling regime, the AM must be resonant with the cavity mode dressed by the NAMs,
meaning for example resonances of the AM with polaritonic modes formed by the N − 1

spectators and the cavity.

4.5 Energy distribution between molecules and cavity

Until now, we have performed the spectra to illustrate how the reaction rate and ωcav is
affected by including the NAMs inside the cavity. The underlying physical mechanism by
which the cavity plus NAMs change the reaction rate of AM is still not fully understood.
For this, we focus on the total energy variation of the AM after it has passed the transition
state, ∆E = E(t) − E(0), as a function of time as plotted in Fig 4.7. The total energy of
the cavity plus all molecules is divided into three subsystems, the AM, the NAMs and the
cavity, and we consider the case for random molecular orientation. The energy barrier is
about 4000 cm−1 or 20 kBT at T = 300 K.

The fastest energy loss from the AM occurs for N = 1 and ωcav = 490 cm-1, closely
followed by N = 64 and ωcav = 490 cm-1 (blue and orange traces). The corresponding
relative change in rate isR = 1.9 andR = 1.8, respectively (cf. Fig. 4.4b). The energy loss
from the AM is slower at ωcav = 640 cm-1 than at ωcav = 490 cm-1. At ωcav = 640 cm-
1, the N = 64 case loses AM energy faster than N = 1, since in the latter situation the
resonance of the AM is largely detuned from the cavity, whereas for N = 64 the AM is
resonant with the lower polaritonic state. The corresponding relative changes in the reaction
rate are R = 1.4 and R = 1.2 for the N = 64 and N = 1 cases, respectively. Thus, the
relative change in rate and the energy loss from the AM at short times are directly correlated.
The better the AM is resonant with a mode of the cavity plus NAMs, the fastest the energy
exchange of the AM with the rest of the system at short times after crossing the TS, and
the largest relative change in the chemical reaction rate. Only the energy transfer at short
times is relevant since κ(c)(t) reaches its plateau value when the AM becomes, on average,
trapped in the reactant or product wells due to energy loss.

4.6 Cavity with friction

Based on the result of Fig 4.3 and 4.7, the key factor of enhancing the reaction rate is relevant
to the energy transfer efficiency between the cavity andAM.We expect that cavity lossmight
also help the cavity take energy from the AM. To confirm this, a single HONO is considered
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a)

b)

c)

Figure 4.5. a) IR spectrum of non-activated HONO(NAM) and activated HONO(AM).
The spectra are shown in absolute value. b) Velocity-velocity correlation spectrum of the
cavity mode for ωcav = 490 cm−1. c) Same as b) for ωcav = 640 cm−1. g = 0.4 V/nm and
Nmol = 0, 1, 64.

inside a cavity with friction. That is to say, the lifetime of the cavity is no longer infinite.
Describing the cavity loss through the lifetime of the cavity is nothing new. The lifetime of
the cavity has been used to study the relaxation of polariton states [132].

In our simulation, a cavity with friction is equivalent to a damping oscillator. A wave
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Figure 4.6. A comparison of quantum and classical IR spectra of spectator molecules. The
classical one is obtained by the Fourier transform of dipole-dipole autocorrelation function.

a)
b)

Figure 4.7. a) The energy difference, ∆E = E(t)− E(0), of AM as a function of time is
plotted with g = 0.4 V/nm and T = 300 K for all calculations. b) The average energy loss,
E(t)−E(0)/t, of AM within the first 0.5 ps is plotted as a function of R. The color of each
point corresponds to the conditions shown in a).

packet of a damping oscillator can be described by Ae−t/Γ, where A and T are constant.
And the friction is defined as 1/Γ. This implies that an open system is generated when
put molecules inside the cavity with friction. An irreversible IVR pathway occurs and one
can expect the cavity can efficiently take energy from the AM. Considering the random
orientated case with fixed ωcav = 640 cm-1 and g = 0.4 V/nm, one sees in fig 4.8 that
R is largely enhanced when the friction on the cavity increases, which provides a similar
behavior with the results in fig 4.3. This confirms that the reaction rate inside the cavity can
be enhanced by the cavity loss or an irreversible energy pathway. Hence, the energy transfer
efficiency in the short term plays a critical role when altering reactivity.
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Figure 4.8. R for various friction on cavity for Nmol = 1 with fixed g = 0.4 V/nm,
ωcav = 640 cm−1. Black dashed line represents the maximum of R.

4.7 Conclusion

In this chapter, we increase the number of molecules inside the cavity with fixed coupling
strength. This treatment leads to that the Rabi splitting increases as the number of the
molecules increases. In the y-aligned and free-orientated case, an enhancement of the reac-
tion rate is observed. However, in the x-aligned case, the reaction rate changes little when
adding molecules inside the cavity. The difference between each case can be explained by
the modulation of the dipole. The largest modulation in the transmission coefficient occurs
when the reaction coordinate in the activated molecule becomes resonant with the cavity
or a polaritonic resonance of the cavity with the non-activated molecules. We stress that
the enhancement of the reaction rate is sensitive to the energy transfer efficiency from the
activated molecule to the cavity. This is also observed when adding friction to the cavity.





Chapter 5

Meyer-Miller mapping for fermionic
dynamics

In this chapter, in order to explore the application of MMmapping of fermions, we compare
the MM mapping with exact quantum results and with different mappings explicitly de-
signed for fermions including the SM and the LMM in both non-interacting and interacting
systems. Except in the discussion of Fig 5.3a, where an explicit comparison between discrete
and random sampling is made, the initial conditions for all classical mapping calculations
and for all benchmarked mappings are generated by random sampling of the angle variables.
All quantum calculations are obtained using the multi-configuration time-dependent Hartree
(MCTDH) approach [130,131,133] in the second-quantization representation (SQR) formu-
lation [103,104,134], which is equally applicable to fermions and bosons. In Section 5.1, we
address several many-body systemswithout interactions, where the performance of different
mapping are discussed. We then demonstrate different sampling methods in 3-site system
to illustrate the perfomance of the MM mapping of fermions is attributed to the descrip-
tion of the density matrix. In Section 5.2, we compare Hubbard and impurity Hamiltonians,
with interactions, and consider as well a model for excitonic energy transfer between chro-
mophores. In this model with interactions we show that the classical MM mapping is able
to capture interference effects caused by the presence of different energy transfer pathways
leading to the same final state, both when the interferences are constructive and destructive.
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Figure 5.1. Structure of a) 2-site and b) 3-site tight-binding systems. The arrows indicate
the occupation of the orbitals at t = 0 and the dashed lines represent the one-body transfer
integrals hij .

5.1 Non-interacting system

We start from comparing the MM and SM mapping with the exact electron dynamics in 2-
and 3-site tight-binding Hamiltonians

Ĥtb =
F∑

⟨i,j⟩

∑
σ=α,β

T (ĉ†j,σ ĉi,σ + h.c), (5.1)

where 〈i, j〉 indicates that the sum runs over nearest neighbors only. A diagram indicating
the interactions between the sites is shown in fig 5.1, where orbital interaction terms are
marked with a dotted line and are all set to T = −0.05 Hartree.

For the MM mapping, the relations(eq 2.50) is applied to Hamiltonian(eq 5.1) to reach
the classical Hamiltonian function. For the spin mapping, Jordan-Wigner transformation is
applied to the fermionic quantum-mechanical operators(eq 2.61) and we arrive at the clas-
sical Hamiltonian at the basis of spin-1/2(eq 2.64). Moreover, for the Li-Miller mapping,
the concept of quaternion operators is used to capture the properties of second-quantized
fermionic operators, which arrives at the Hamiltonian in eq 2.65.



Non-interacting system 51

5.1.1 2-site system

We examine now the population dynamics of the 2-site tight-bindingmodel starting with site
1 fully populated, fig 5.1a. Note that when applying the JWT to the tight-binding binding
Hamiltonian (5.1) with linear topology one arrives at a pure spin-1/2Hamiltonian where all
Ŝk operators have canceled. Therefore, SM and MW (meaning JWT+SM) are equivalent.
Fig 5.2 shows that the MM representation yields the exact dynamics. This is not surprising
since the MMmapping describes the exact dynamics in the non-interacting case, which has
been shown in section 2.3 of chapter 2.

On the other hand, one may think a classical SM representation should also deliver an
accurate approximation to the quantum dynamics or even be superior to the MM mapping
since we are dealing with a quantum spin Hamiltonian. Fig 5.2 shows how the SM fails to
reproduce the exact population dynamics. In fact, the equations of motion of the SM model
are not fully linear, which leads to continuous dissipation of the classical trajectories in
phase space, and hence to their failure to reproduce the correct amplitude of the population
oscillations. This observation is not new, and the reason why Miller and collaborators have
developed the LMM Cartesian (oscillator-based) version of the original MW mapping in
recent years [69–72].

5.1.2 3-site system

Uniform sampling

Matters turn more interesting when considering a 3-site tight-binding Hamiltonian with
cyclic topology, where the initial occupation of the sites is shown in fig 5.1b. Now, the
sign-change operator Ŝ2 of the JWT survives in the term proportional to h13, meaning that
the SM and SM+JWT mappings result in different classical Hamiltonians. As expected
from our theoretical considerations, the MM mapping reproduces the exact population dy-
namics, even if now the JWT yields a sign-change operator(cf. fig 5.3a). The same is found
to be true for the LMM, which explicitly considers the anti-commutation relations of the
fermionic operators. The SM+JWT mapping, instead, again fails to represent the correct
site-population dynamics, now even more dramatically than before.

Discrete sampling

For comparison, we also examine the dynamics of the same 3-site Hamiltonian(6 DOFs) but
now the initial one-body density matrix is mapped to N = 8 trajectories. The population
dynamics in fig 5.3b shows that MM and LMM reproduce the quantum results while the
SM and SM+JWT mapping fails to describe the time evolution of the populations and even
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Figure 5.2. Time-dependent population of site 1, n1α, in the 2-sites tight-binding system
for exact fermionic and bosonic dynamics, and for the MM and SM mapping approaches.
The transfer integral is set to T = −0.05 Hartree.
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Figure 5.3. Time-dependent population of site 1, n1α, in the 3-sites cyclic tight-binding
system for exact fermionic and bosonic dynamics, and for theMM, SM, SM+JWT and LMM
mapping approaches. (a) initial conditions generated by homogeneous random sampling.
(b) discrete sampling initial conditions withN = 8 trajectories. In both cases all approaches
yield the exact result, except the SM and SM+JWT ones.
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maintain the oscillatory behavior in the long-term. The two SM-based mappings yield dif-
ferent results when compared among themselves and the SMmapping follows more closely
the oscillations of the quantum mechanical population dynamics. From this observation,
we obtain a first hint at the fact that, including antisymmetry with a JWT before perform-
ing the classical mapping, which is implicit in the MW and LMM treatments [31, 72], may
not actually be relevant to the mapping of fermions and may indeed be counterproductive,
resulting in a classical Hamiltonian with higher-order interactions than simpler mappings
and a more chaotic classical dynamics that deviates earlier from the correct quantum result.
Comparing the random and discrete sampling results of SM-based mappings in fig 5.3a and
5.3b, we also notice that the discrete mapping based on N = 8 trajectories leads to a better
description of the oscillations of the populations than the random-sampling results, since
fewer trajectories hinder dissipation (through averaging) in the classical phase-space.

Populations of individual trajectories

Here, we want to examine the population dynamics in the 3-site system from the perspec-
tive of the individual trajectories in the random-sampling case. The population of site 1
for each of 1000 trajectories can clearly grow above n1 = 1 both for the LMM and MM
mappings as seen in fig 5.4. Nonetheless these trajectories reproduce in average the exact
population dynamics. The common wisdom is that fermionic mappings need to be limited
by the construction of the maximum value of the classical action variables at the trajectory
level because there can be no more than one fermion per spin-orbital. We see, however, that
imposing this restriction at the level of individual trajectories is not required for many-body
systems without interactions, as only the average value from all trajectories can be given a
physical meaning. Even the fermion-tailored LMM can reach populations larger than 1 (cf.
fig 5.4b) and still yield the exact averaged population dynamics.

5.2 Interacting system

In the previous section, we show that the MM mapping is in good agreement with the ex-
act electron dynamics in non-interaction systems as our expectation. We note that the MM
mapping reproduces the exact quantum dynamical results whenever the initial phase space
distributionmatches the initial one-body density of the system. Next, we benchmark the per-
formance of the MM mapping in interacting systems against other mappings, and against
exact quantum dynamical results. We consider first the Hubbard Hamiltonian, which con-
sists of a tight-binding Hamiltonian plus an on-site repulsion Uĉ†i,αĉi,β ĉ

†
i,αĉi,β . The classical

mapping for the Hubbard interaction term takes the form Uniαniβ , where niσ are func-
tions of the classical phase-space variables. We have already seen the limitations of SM
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Figure 5.4. Time-dependent population of site 1, n1α, for each single trajectory in the 3-
sites cyclic tight-binding system for a) the MMmodel and b) the LMMmodel. Both sets of
trajectories yield the same exact expectation value of the population for this non-interacting
Hamiltonian. The expectation value 〈n1α〉 over the trajectories is shown as a thick black
line.
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and SM+JWT in the non-interacting systems. Here, we mainly focus on the comparison of
MM, LMM and the exact quantum results. We start from a 3-site cyclic chain with on-site
repulsion terms followed by the simulation of different impurity Hamiltonians. Again, the
topology of the systems is shown in fig 5.1. Afterwards, we compare the mappings in their
ability to describe excitonic energy transfer between model chromophores.

5.2.1 3-site cyclic system

Figure 5.5a shows the time evolution of the n1α population in the 3-site cyclic system for
the ratio |U/T | = 1 between the transfer integral and the on-site repulsion. The initial state
is the same as for the bosonic and fermionic exact dynamics ( Fig 5.1b) and their popu-
lation dynamics remain practically identical for more than one period of oscillation. Nat-
urally, fermionic and bosonic population dynamics diverge as time progresses and follow
a completely different time evolution already after about two periods of oscillation. Both
the MM and LMM capture the period of the first oscillation, and the MM follows more
closely the trace of both exact fermions and bosons. Incidentally, the MM mapping follows
more closely the fermionic than the bosonic population, whereas the LMM is closer to the
bosonic than to the fermionic trace after a few oscillations. These results are constrained to
this particular system and parameters. The applicability of the observation requires further
investigations. Two important aspects that we are going to explore with further numeri-
cal examples: i) The MM, which one could consider as the genuine mapping for bosons,
does not necessarily reproduce the bosonic dynamics better than the fermionic one. ii) The
LMM, which is designed to reproduce certain aspects of fermionic systems, can indeed in
some instances yield results closer to the bosonic time evolution and does not necessarily
reproduce the fermionic dynamics more accurately than the simpler MM prescription.

For non-interacting systems, we have seen how a set of trajectories yields the exact evo-
lution of the populations and one-body correlations. The choice of the set of trajectories is
not unique and the only condition is that the set of trajectories exactly maps the initial one-
body density of the quantum system. For interacting systems, this is not the case anymore.
Different initial ensembles encode different two-body densities, and these evolve differently
under interactions. The population dynamics in fig 5.5b corresponds to the same parameters
as in fig 5.5a but now the initial density one-body density is mapped with only N = 8 tra-
jectories, instead of a uniform sampling. Both MM and LMM are found to perform worse in
comparison with the quantum mechanical results than the uniform sampling results. How-
ever, compared to the uniform sampling, the ensemble dynamics of the discrete sampling
retains oscillations for a longer time because a smaller number of phase-space points are
being averaged. This indicates that a possible strategy to improve on these results might in-
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volve mapping both the one- and two-body densities of the quantum system to the smallest
possible number of trajectories, but we are not pursuing this strategy here and instead use
the uniform sampling strategy in the following.

In the strong repulsion limit, U >> T the fermionic and bosonic exact quantum dy-
namics in Fig 5.5c quickly diverge. It is surprising that both MM and LMM mappings still
reproduce the fermionic dynamics rather well at early times, and we have not been able
to develop an intuitive explanation for this fact. An extreme example consists of a sys-
tem with all spin-orbitals occupied. Under fermionic statistics, such a system is blocked:
all its orbital populations remain equal to 1 at all times. Its bosonic counterpart, though,
does not experience this Fermi blockade and its populations can present fluctuations. These
fluctuations vanish for a non-interacting system, or in the case that the transfer integrals
and on-site repulsions are fully symmetric. Figure 5.5d shows the populations of the fully-
occupied Hubbard system with |U/T | = 1 (with U = 0 for site 1 only). Whereas the
quantum fermionic populations remain constant, the bosonic populations fluctuate and so
do the populations calculated with both mappings to within a similar range. Intriguing are
the fluctuations of the LMM, which is devised to reproduce the behaviour of fermions. This
indicates again that the LMM is not superior to the simpler MM prescription at reproducing
the dynamics of a fermionic system, and they perform similarly in this connection.

5.2.2 Impurity Hamiltonian

Impurity models describe electron transport processes and have been approached by clas-
sical mappings in recent works [72]. Here we consider two tight-binding chains (left and
right) of N conduction orbitals coupled to a central single-impurity orbital with a local in-
teraction term U ( fig 5.1c). In total each model consists of 2N + 1 sites and we consider
chains with N = 3, 10.

Simulations in theN = 3 system (7 sites) can still be easily performed quantummechan-
ically and comparisons with the classical mappings are shown in Fig 5.6. Simulations with
N = 10 are only approached using the classical mappings. We consider weak and stronger
interaction regimes, |U/T | = 0.1 and |U/T | = 1, respectively, and set all electrons to be
on the left conduction chain of the impurity model at t = 0. These are quite extreme initial
conditions in terms of chemical potential if one compares with simulations aimed at repro-
ducing steady-state conditions of the impurity model [72]. We emphasize that our goal is to
benchmark and characterize the performance of the mappings against full quantum results,
rather than reproduce specific experimental conditions.

The population (number of electrons) of the left conduction chain and of the central
impurity site for theN = 3 are shown for the two coupling strengths in Fig 5.6. The quantum
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Figure 5.5. Population dynamics of n1α for the 3-site cyclic Hubbard model with T =

−0.05 and U = 0.05, except c) where U = 0.5. In d), the energy of each is site is slightly
tilted. E1 = −0.02, E2 = 0.0, and E3 = 0.02. a) uniform sampling; b) discrete sampling;
c) strong interaction; d) all spin-orbitals initially populated.

fermionic and bosonic dynamics are similar for both coupling strengths when starting from a
fermionic initial state. The exact fermionic calculations require 64 single particle functions
(SPF) to span the corresponding sub-Fock spaces of the left and right conduction chains and
4 SPFs for the middle site [104]. The truncated fermionic calculation uses a basis of 40
SPFs for the left and right sites and 4 SPFs for the middles site.

In the case of weak interaction, both the quantum bosonic and fermionic dynamics (red
and black traces) remain very similar and both the MM and LMM mappings reproduce the
population dynamics extremely well, as seen in Fig 5.6a and Fig 5.6c. The worst result
corresponds to the non-exact quantum mechanical calculation with 40 SPFs (blue trace).
The reason for this is easily understood. In calculations based on a second-quantization
representation [103, 104], the correlation between the computational degrees of freedom
(i.e. the orbital occupations) depends on the hopping integrals T , not on the on-site electron
repulsion U . Indeed, the case of stronger electron-electron repulsion is comparatively better
described by the approximate quantum calculation as compared to the exact result.
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Figure 5.6. In a linear chain system(N = 3), a) & b) nL and c) & d) nM are described. In
the system, a) & c) (T, U) = (−0.05, 0.005) while b) & d) (T, U) = (−0.05, 0.05). For all
classical mappings, trajectories are generated by the uniform sampling.

Even in the case of stronger coupling, |U/T | = 1, both classical mappings are able
to reproduce the population of the conduction chains and impurity site remarkably well
(fig5.6b and 5.6d). Interestingly, the population of the impurity never surpasses 〈nM〉 = 1

for either classical mapping even when the electronic flux towards the right conduction
chain is maximal during the first 100 au of time. This again strengthens the observation
that enforcing a limitation of the maximal population of the fermionic degrees of freedom
via the classical mapping (e.g. using classical spin DOFs) is unnecessary, and that the MM
performs similarly as LMM while using half the number of classical DOFs.

Finally, we consider an impurity model with N = 10 sites in each conduction chain
and show its population dynamics, in Fig 5.7. where we compare the MM and the LMM
for both interaction strengths. As the number of sites increases, the averaged populations
of the left, central and right sites becomes more similar between both mappings. The small
fluctuations of the central impurity in fig 5.7 are perfectly captured and the population of
the impurity does not grow above 1.
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Figure 5.7. In a linear chain system(N = 10), a) & b) nL and c) & d) nM are described. In
the system, a) & c) (T, U) = (−0.05, 0.005) while b) & d) (T, U) = (−0.05, 0.05). For all
classical mappings, trajectories are generated by uniform sampling.
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5.2.3 Exciton energy transfer

In the previous section, we have shown that theMMmapping can be accurate in systemswith
weak andmedium interactions. Here, we benchmark the applicability of theMMmapping to
a second-quantization model for inter-molecular energy transfer between electronically ex-
cited molecules mediated by dipole-dipole interactions, i.e. excitonic energy transfer (EET).
Although EET has been very successfully described by variational full quantum simulations,
for example based on the MCTDH approach [135], realistic excitonic complexes may con-
sist of many thousands of degrees of freedom, in which case mapping-based approaches
might be a useful alternative.

We benchmark the MM and LMM to EET on ethylene clusters (fig5.8) in various con-
figurations, while keeping the nuclei fixed. Each ethylene molecule is described within an
orbital approximation and the construction of the EET model parameters for each cluster
proceeds as follows: Localized molecular orbitals are obtained for each ethylene molecule
through a separate Hartree-Fock calculation using a minimal atomic basis. Only the highest
occupiedmolecular orbital (HOMO) and lowest occupiedmolecular orbital (LUMO) in each
subsystem are further considered to describe the EET. Hence, each model consists of 4N
spin-orbitals, where N is the number of ethylene molecules. The electrons are considered
independent within each monomer and interact with the electrons of the other monomers via
the two-electron Coulomb integrals involving the HOMOs and LUMOs of each monomer
pair. Exchange terms are negligible due to distance between the monomers. The one- and
two-body electronic integrals for each cluster configuration are provided as supporting in-
formation.

Energy transfer in a dimer system

We first consider two ethylene molecules facing each other and separated by 10 Å (fig5.8a).
The initial state consists of one of the molecules singly excited (HOMO→LUMO) and the
other molecule in its ground electronic state. The two localized excitonic states are reso-
nant, resulting in a simple periodic EET with a period of about 200 fs. The direct Coulomb
repulsion integrals between HOMO and LUMO orbitals in different monomers have values
of roughly 1 eV, which contribute to energy shifts of the orbitals. The Coulomb integrals
of the form V LII ,HI

LI ,HII
directly drive the exchange of excitation between the monomers and

have a value of roughly 50 cm−1. The EET dynamics is approximately captured by the MM
and LMM mappings during the first period as seen in Figure (5.9), where the energy of the
acceptor molecule is shown in units of the HOMO-LUMO energy gap. Both mappings fail
to capture the full recursions of the exact dynamics due classical phase space dissipation of
the ensemble of trajectories. Crucially, however, MM reproduces the initial rate of energy
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Figure 5.8. Ethylene a) dimer, b) trimer, and c) tetramer used in the EET simulations.

transfer while LMM deviates from the exact curve almost from the onset.

Geometrical effects in excitonic energy transfer

Next, we consider the situation where the EET proceeds through a bridging molecule (Fig-
ure (5.8 b)). The relative orientation between the C-C axis of the donor/acceptor and bridge
molecules determines the strength of the dipole-dipole coupling, being it equal to zero for
an orthogonal configuration. In the studied cluster, the donor and acceptor systems have a
relative orientation of 90 degrees and therefore there is zero energy transfer between them
without the intervention of the bridging molecule. A similar system was considered, e.g.,
in Ref. 136. The bridging system is considered at three angles θ = 0, 30, 45 with respect to
the acceptor molecule. For θ = 0, no EET can occur because the transition dipole moments
between the donor and the acceptor, as well as the mediator and the acceptor, are zero. For
θ = 30 deg., partial EET to the acceptor becomes possible. This partial EET is captured
by both the MM and LMM mappings. In both cases, the classical models yield a smaller
amount of energy transfer by 10 to 20% with respect to full quantum results after the first
half period. As seen in fig (5.10a, 5.10b), the time-scale of the first period is well captured
by the MM mapping, whereas LMM again yields a slower EET dynamics than the exact
result. The general trends are similar for θ = 45 degrees. The EET to the acceptor molecule
is almost complete after the first half period. Both classical models yield a smaller total
energy transfer by about 20% and LMM again yields a slower EET dynamics than the exact
result.
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Figure 5.9. Energy (in units of the HOMO-LUMOenergy gap∆E) of the acceptor ethylene
molecule in the ethylene dimer system.

Interference between two pathways

Finally, we consider a cluster with four monomers, two acting as donor (I) and acceptor (IV)
systems, while the two other monomers (II, III) act as a symmetrical bridge between the
former two. In all cases, monomer I is initially excited at t = 0 and the energy of monomer
IV as a function of time is shown in Figure (5.11). The EET is faster when the two bridging
pathways constructively interfere. These kinds of coherent EET dynamics involving various
pathways are known to operate in models of light-harvesting complexes [137]. The onset of
the EET process is well captured by the MM mapping, while the EET described by LMM
is slower (cf. slopes during first 100 fs in fig (5.11a) and (5.11b)). After the first period,
about 120 fs, both mappings deviate from the exact result and do not capture the almost
complete back-transfer to monomer I after about 270 fs. When one of the pathways is
completely suppressed, the EET process also reaches almost 100%yield, although it requires
now a longer time, roughly 220 fs, until monomer IV is fully excited. Similarly, as before,
the initial EET dynamics and the duration of the first half period are captured by the MM
mapping. For all the considered ethylene clusters, the MM mapping properly describes the
EET rate while the LMM underestimate the EET rate in the first half period.

Next, we artificially change the sign of the coupling matrix element between monomers
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Figure 5.10. Energy of the acceptor monomer in the ethylene trimer system (normalized
to the HOMO-LUMO energy gap). The donor is initially excited to the first singlet excited
state. a) MM mapping and b) LMM mapping compared to the exact quantum mechanical
result for different relative orientations of central monomer.
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II and IV. This results in a destructive interference and the EET process is strongly sup-
pressed, reaching only about 10 to 20% of the EET yield compared to the constructive case.
Interestingly, the classical mappings capture this destructive interference effect and describe
a strongly suppressed EET process. In this example, LMM reproduces the exact quantum
result slightly better than MM at short times, and both mappings describe the EET dynamics
approximately to within 10 to 20% of the HOMO-LUMO energy gap for the whole duration
of the simulation, about 500 fs.

5.3 Conclusion

In this chapter, the application of MM mapping of fermions is explored. In both non-
interacting and interacting systems, the MM mapping is compared with the quantum cal-
culation and various classical mappings. The MM mapping provides an exact description
to represent the one-body density of a quantum system that is composed of non-interacting
particles, as long as the initial state can be prepared from fermionic occupations. This is be-
cause the one-body density and the one-body dynamics are the equivalent for both fermionic
and bosonic systems that start from the same initial state. In interacting systems, the MM
mapping deviates from the quantum calculations due to the improper description of the two-
body densities. This is also observed in LMM, which is designed for mapping fermions. For
excited state energy transfer, the MMmapping captures the initial EET rate and later on de-
viates from the exact dynamics. Our results show that the MM mapping does not perform
worse than mappings designed specifically for fermions.
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Figure 5.11. Energy of the acceptor monomer in the ethylene tetramer system (normalized
to the HOMO-LUMO energy gap). The donor is initially excited to the first singlet excited
state. a) MM mapping and b) LMM mapping compared to the exact quantum mechanical
result.



Chapter 6

Summary and Outlook

In this thesis, we theoretically study cavity-controlled isomerization of HONO and explore
the applicability of Meyer-Miller mapping for fermionic dynamics.

In chapter 3 and 4, we describe how the cavity alters the reaction rate of HONO isomer-
ization. The reaction rates inside and outside the cavity are described by the reactive flux
method, which is a fully classical method. We stress that no quantum effect is included in
our study. Also, when investigating the modification of the reaction rate, a perfect cavity is
assumed except for the last section of chapter 4.

In chapter 3, our main contribution has been to identify dynamical effects played by
the cavity in the low-friction (or underdamped) regime of the reaction coordinate. In this
regime, the cavity effect is twofold: (1) It accelerates the chemical rate by increasing the
friction compared to the cavity-free system. The acceleration is attributed to the reduction
of the recrossing. This reduction indicated trajectories are stabilized when visiting reac-
tant and product regions, thus increasing the transmission coefficient κ(c) compared to κ(0).
As the cavity coupling keeps increasing, the overall increased friction can introduce again
more coupling at the barrier and the trend can overturn. The well-known Kramers turnover
situation is reached, and this regime can exist in the condensed phase [115, 124]. (2) In
the low-friction regime, sharp resonant effects are possible. These are related to the new
IVR pathways offered by the cavity. In the products-side, they dissipate energy from the
nascent hot products. In the reactants-side, the resonances funnel energy into the nascent
activated complexes. Numerically, the former is captured by trajectories starting towards
the products-side and being effectively captured there. The latter is captured by the tra-
jectories initially moving towards reactants and being effectively captured as well. If this
reactants-side capture would be ineffective, they would be counted as products but with a
negative contribution to the flux, in this way lowering the transmission (cf. Eq. 3.4). When
a bath is added to the HONO molecule and the overall friction is sufficiently increased, the
model reverts to the already known as the overdamped regime where the cavity only affects
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the recrossings at the top of the reaction barrier.

In chapter 4 we have investigated the effect of a cavity mode coupled to an ensem-
ble of randomly oriented HONO molecules in the gas phase on the rate of the cis-trans
isomerization reaction. Our simulations demonstrate that the activated molecule, which un-
dergoes the chemical reaction at a given instant of time, and the ensemble of non-activated
molecules, play fundamentally different roles. Specifically, the orientation with respect to
the cavity that leads to the largest effect can be different for the activated molecule and the
non-activated molecules. Also, the relevant resonances of the activated molecule that cou-
ple with the cavity may be shifted with respect to those of the non-activated molecules due
to the much larger energy content of the former and the anharmonicity of the vibrational
modes.

The largest modulation in the transmission coefficient occurs when the reaction coor-
dinate (or a mode strongly coupled to the reaction coordinate) in the activated molecule
becomes resonant with the cavity or a polaritonic resonance of the cavity with the non-
activated molecules. This does not mean that the polaritonic resonance is already populated
at room temperature before the chemical reaction takes place. It means that the polaritonic
mode exists and it can be populated through coupling to a resonant subsystem, in this case the
activated molecule. Finally, the main mechanistic cause for the relative change in the trans-
mission coefficient, R = κ(c)/κ(0), is the average energy loss from the activated molecule
at short times, meaning until κ(c) reaches its plateau value, due to the resonant coupling to
the rest of the polaritonic system. This can also be demonstrated by introducing lifetime of
the cavity, which enhances the energy loss from the AM to the cavity.

Our simulations cover the single-molecule to small-ensemble strong coupling regime in
the gas phase, and therefore one should be cautious about extrapolating our results to the
macroscopic limit of largeN in Fabry-Perot cavity experiments. Strong coupling in the gas
phase with methane molecules has recently been observed by the Weichman’s group [138],
and this could represent an interesting avenue for gas-phase experiments of cavity-modified
molecular reactivity under well-controlled conditions, where solid mechanistic insights can
be gained by the interplay of experiment and theory. From a practical perspective, although
the alteration of rates by Fabry-Perot cavities holds great mechanistic interest, the relatively
small alterations achieved in most cases studied so far compared to chemical catalysts raise
doubts regarding the viability of Fabry-Perot cavities as general catalytic components.

Our findings of chapter 3 and 4 shed important new light onto the question of collective
effects in chemical reactivity under vibrational strong coupling. However, it still remains for
future work to better understand how these cavity e�ects can survive in actual liquid phases
and in the collective regime for truly macroscopic numbers of molecules. It is plausible
these answers lie beyond the Hamiltonian of non-interacting molecules with idealized cavity
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modes, and unveiling them may require studies of the transmission coe�cient with full
consideration of the molecular as well as electromagnetic environments.

In chapter 5, we have investigated and compared the performance of different classical
mappings (MM, SM, SM+JWT, LMM) to simulate the dynamics of fermions (electrons)
in Fock space. Our aim has been to examine the advantages and limitations of the MM
mapping and to contrast it with the LMM mapping, which incorporates specific features
designed to improve the classical representation of fermionic dynamics in Fock space.

The MM mapping provides an exact description to represent the one-body density of a
quantum system that is composed of non-interacting particles, as long as the initial state can
be prepared from fermionic occupations. This is because the one-body density and the one-
body dynamics are the equivalent for both fermionic and bosonic systems that start from
the same initial state. To map the quantum one-body density to the classical phase space,
an ensemble of trajectories is required. An exception occurs when there is only one elec-
tron included in the system. The phase-space mapping can be achieved either by randomly
sampling the classical angle coordinates while selecting action-coordinate values that fulfill
the initial quantum populations, or by picking a discrete set of points that yield the quan-
tum one-body density when averaged under Eq (2.67). Both schemes are equivalent in the
non-interacting case.

The SM mapping, with or without a Jordan-Wigner transformation, fails to describe the
dynamics of non-interacting systems. This fact was already known and is due to the non-
linear nature of Hamilton’s equations originating from these models [69–71]. Importantly,
combining the Jordan-Wigner transformation with the SM, which has been shown to be
equivalent to the original MW mapping [31], does not result in any improvement.

We further considered the LMM mapping for fermions in comparison with the simpler
MM mapping. LMM uses two vectorial coordinates per fermionic degree of freedom to
restrict its maximal occupation and accounts for the sign-rules of fermionic matrix elements
through the form of the interacting terms of the classical analog. LMM is in spirit simi-
lar to the original MW mapping. It can be obtained by mapping each fermionic DOF to
two harmonic oscillators plus including the classical functions of the sign-change operators
of a Jordan-Wigner transformation. LMM yields linear equations of motion for the non-
interacting case and hence the exact one-body dynamics, but it uses twice as many degrees
of freedom as the simpler MM mapping. These two mappings were applied to Hubbard-
like cyclic models, to linear-chain impurity models and models of excitonic energy transfer.
Cyclic models provide important insights into the role of anti-symmetry in classical map-
pings for fermions. In the cyclic systems, sign-change operators survive after applying the
Jordan-Wigner transformation, while these operators are absent in the corresponding linear
models. We found that inclusion of these non-linear terms in the MM (and SM) mapping
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does more harm than good and worsens the description in all considered examples. As men-
tioned, linear tight-binding and Hubbard Hamiltonians do not feature sign-change operators
after the JWT. Hence, the only actual difference between MM and LMMmappings in these
examples is the limitation of the maximal orbital occupation in the LMM case. However,
this enforced limitation of the LMM mappping plays no particular role in the considered
impurity models. The orbital occupation in the central impurity site is very similar in both
mappings and always below the maximal occupation of 1 electron per spin-orbital.

Finally, we considered the process of excitonic energy transfer in model clusters of ethy-
lene. In the models, monomers interact via the two-body integrals calculated from localized
Hartree-Fock orbitals in each monomer. We found that the MM mapping correctly cap-
tures the initial EET rate (roughly the first half period) and later on deviates from the exact
dynamics.

Compared to MM, LMM gives similar results in terms of the overall EET efficiency and
the interference patterns between different EET pathways. However, LMM tends to under-
estimate the energy transfer efficiency of EET, which may be important for some applica-
tions. Both LMM and MM can capture the quantum effects of constructive and destructive
interferences that arise from the coherent coupling of the donor and acceptor chromophores.

Our results of chapter 5 indicate that the original MM mapping may be a valid classical
analog alternative for the description of fermions in Fock space, and that it does not perform
worse than mappings designed specifically for fermions. Our results also cast a question
mark onwhether the Jordan-Wigner transformation (or an equivalent formulation) is a useful
addition to classical mapping strategies for fermions. Our conclusion is that it should be
avoided. A limitation by the construction of the maximal fermionic occupation does not
seem to be necessary either, at least within the bench-marked examples. In fact, in most of
the considered examples, theMMmapping outperforms themore complicated LMM. Future
work shall consider sampling strategies of the initial phase-space distribution designed for
fermions, i.e. explicitly solving Eqs. (2.70) for a discrete set of phase-space points, as well
as the inclusion of nuclear displacements.
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Appendix A

OpenMM implementation

In chapter 4, we increase the size of the system from one molecule to 64molecules. In order
to reach higher computational efficiency, we build our molecular simulation on the top of
OpenMM package. [96] There are several advantages of the OpenMM package. For exam-
ple, OpenMM provides an efficient algorithm of equations of motion. Also, it is possible to
do parallel calculations with GPU. The most important is that OpenMM allows developers
to customize their potential energy surface, which means Hcav can be implemented. In this
chapter, we aim to describe how we prepare calculations step by step through OpenMM.

In practice, we first prepare molecular structure, which is stored in a protein data bank
(PDB) file. In OpenMM, several potential energy or forcefields have already been imple-
mented, including vibrational energy, torsional energy, and various non-bonded interac-
tions. And these forcefields can be described in XML files. On the other hand, considering
molecules inside the cavity,Hcav, which has not been implemented in OpenMM yet, can be
described by the function, CustomNonbondedForce, in OpenMM package. To prepare tra-
jectories, we use the Langevin equation of motion to obtain a canonical ensemble. Finally,
the trajectories are propagated under the Verlet equation of motion. And all these equations
of motion can be found in OpenMM package.

A.1 Preparation of molecule

As mentioned, molecular structures are described in PDB files, which have been widely
used in quantum mechanics and molecular dynamics. Not only small molecules, large sys-
tem such as proteins can also be described in PDB files. Due to the ample information on
proteins, the PDB format is designed to include all required information to describe the sys-
tem for small and large molecules. The rules are summarized in Table A.1. In our study,
we only use two types including ATOM and TER (see in Table A.2). For a single HONO
molecule, all four atoms can be easily implemented in the type of ATOM. On the other
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hand, we also need to manually add a cavity into the PDB file. The cavity here is treated as
a virtual atom interacting with the HONO molecules.

Table A.1. Protein data bank format

Record Type Columns Data Data Type
ATOM 1-4 ATOM character

7-11 Atom serial number integer
13-16 Atom Name character
17 Alternate location indicator character

18-20 Residue name character
22 Chain identifier character

23-26 Residue sequence number integer
27 Code for insertions of residues character

31-38 X orthogonal Angstrom coordinate floating
39-46 Y orthogonal Angstrom coordinate floating
47-54 Z orthogonal Angstrom coordinate floating
55-60 Occupancy floating
61-66 Temperature factor floating
73-76 Segment identifier (optional) character
77-78 Element symbol character
79-80 Charge (optional) character

TER 1-3 TER character
7-11 Serial number integer
18-20 Residue name character
22 Chain identifier character

23-26 Residue sequence number integer
27 Code for insertions of residues character

A.2 Description of Hamiltonian in OpenMM

Based on the Hamiltonian in eq 2.23, one need to describe the kinetic energy of both HONO
molecules and the cavity, the potential energy of the HONO molecules, and the interaction
between the HONO molecules and the cavity. In terms of the kinetic energy part, OpenMM
can evaluate them automatically if we provide mass of each particle in the XML file. Since
we aim to use an ab initio potential energy surface, the CustomBondForce function is
utilized to describe on the top of OpenMM. For the same reason, the CustomBondForce
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Table A.2. Selected Protein Data Bank Record Types

ATOM atomic coordinate record containing the x,y,z orthogonal
Angstrom coordinates for atoms in standard residues

(amino acids and nucleic acids).
TER indicates the end of a chain of residues. For example,

a hemoglobin molecule consists of four subunit chains,
which are not connected. TER indicates the end of a chain
and prevents the display of a connection to the next chain.

function is utilized to build Hcav in OpenMM.

A.3 Sampling of trajectories

In order to obtain the ensemble average in Eq. 3.4, one needs to prepare a set of trajecto-
ries, which represent all possible microscopic configurations in a canonical ensemble at TS.
The probability distribution of a canonical ensemble is given by the Boltzmann distribution,
which describes the probability of finding the system in a particular energy state. The Boltz-
mann distribution is proportional to the exponential of the negative energy divided by the
thermal energy of the system:

P (E) =
1

Z
e

−E
kBT , (A.1)

where E denotes the energy of the configuration, kB is the Boltzmann constant, T is the
temperature. Z denotes the partition function, which is the sum of the exponential of all
possible energy of the configuration in the system:

Z =
∑
µ

e
−Eµ
kBT . (A.2)

In our case, all microscopic configurations of the canonical ensemble is above TS, the prob-
ability is rewritten as:

P ′(i) =
1

Z ′ e
−(E(µ)−E‡)

kBT , (A.3)

where E‡ denotes the minimal energy at TS. And Z ′ represents a new partition function,
which is written as:

Z ′ =
∑
µ

e
−(Eµ−E‡)

kBT . (A.4)

In this research, we considerN molecules collectively coupled to an optical cavity. In prac-
tice, forN molecules, onemolecule is prepared at the top of the barrier between cis and trans
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(activated) while the otherN − 1molecules stay at either cis or trans (non-activated) in our
system(Fig 4.1). Throughout this work, the system is thermalized through the Langevin
equation of motion [139] at 300 K. The thermalization is reached by three cycles of 20 ps
propagation and optimization of the geometry of the system. After thermalization, one tra-
jectory is obtained for every 100 fs propagation to confirm the independence between each
trajectory. To reach convergence, the ensemble average is obtained through 10000 trajecto-
ries, which is propagated through the Verlet equation of motion [140,141].

A.4 Verlet equation of motion

The Verlet equation of motion is a numerical integration algorithm used to solve the equa-
tions ofmotion for a system of particles in classical mechanics. It is widely used inmolecular
dynamics simulations to model the motion of atoms and molecules over time. The Verlet
algorithm is a second-order method, which means that it has a higher accuracy compared
to first-order methods like the Euler method [142]. Several alogrithm has been developed
to implement Verlet integration [140,141]. A basic way can be derived based on the Taylor
series expansion. The Verlet algorithm can be written as:

q(t+∆t) = 2q(t)− q(t−∆t) +
dv

dt
dt2 +O(∆t4) (A.5)

v(t) =
1

2
(q(t+∆t)− q(t−∆t))/∆t+O(dt3)) (A.6)

The Verlet algorithm is computationally efficient and stable, and it conserves energy and
momentum to a high degree of accuracy. This makes it a popular choice for molecular dy-
namics simulations of large systems, where accuracy and efficiency are important. Overall,
the Verlet equation of motion provides a accurate method for simulating the motion of parti-
cles in classical mechanics, and is widely used in molecular dynamics simulations to study
the behavior of atoms and molecules in a wide range of physical and chemical systems.

A.5 Langevin equation of motion

The Langevin equation of motion is a stochastic differential equation that describes the mo-
tion of a particle or molecule in a fluid, subject to a heat bath. It is a fundamental equation in
the study of Brownian motion and has important applications in statistical physics, molec-
ular dynamics simulations, and other areas of physics. The Langevin equation is given by:

mi
dvi
dt

= Fi − γvi + ηi, (A.7)

where mi is the mass of the i-th particle, vi is its velocity at time t, and γ is friction coef-
ficient. ηi is an uncorrelated random force, which represents the effect of the surrounding.
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The random force η is often modeled as a normal distribution with mean zero and variance
2miγkBT , where T is the temperature of the heat bath. η is assumed to be uncorrelated in
time and to satisfy the fluctuation-dissipation theorem, which relates the strength of the ran-
dom force to the friction coefficient. The integration is done using the Langevin leap-frog
method [139]. In each step, the positions and velocities are updated as follows:

vi(t+∆t/2) = vi(t−∆t/2)α + Fi(t)(1− α)/γmi +
√

kBT (1− α)/miηi (A.8)

qi(t+∆t) = qi(t) + vi(t+∆t/2)∆t, (A.9)

where qt represent position of the i− th particle, ∆t denotes the time step, and α = e−γ∆t.
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