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Chapter 1

Introduction

Tissues are a major focus of clinical research and diagnosis for a wide range of
diseases. Understanding the complex biomolecular manifestations of disease within
tissues by characterizing its morphology and biomolecular content paves the way for
exploring fundamental mechanisms of pathogenesis and for identifying diagnostic
and prognostic biomarkers and potential therapeutic targets.1 Among the many
tissue-investigation techniques, mass spectrometry imaging (MSI) has evolved into
a label-free core technology for visualization and spatially-resolved ex vivo analysis
of biomolecules directly from tissue samples.2 Biomolecules are essential cellular
components that regulate different processes important for function, communication
and cellular structure. These include, for instance, proteins, glycans, metabolites and
lipids which can be readily probed by MSI.3

Among the different MSI technologies, matrix-assisted laser desorption/ionization
(MALDI) MSI has seen a steep growth and adoption in various biomedical research
areas.4 The first demonstration of MALDI-based time-of-flight (TOF) MSI has been
conducted in 1995 by Gusev et al., where MALDI MSI was used to image the position
of various compounds (including dyes and peptides) from thin layer chromatography
plates.5 In a landmark study published in 1997, Caprioli et al. introduced a MALDI-
MSI measurement of a tissue section for the first time.6 Some years later, Stoeckli et
al. went on to publish one of the most highly cited studies in the field of MSI, which
presented MALDI-MSI protein ion images obtained from brain and brain tumor
tissues, achieving a spatial resolution of 25 µm.7 In the recent years the field of MSI
has been rapidly expanding, as enormous advances in speed, sensitivity and spatial
resolution of MSI instruments have been witnessed.8 Due to its high versatility and
capability of measuring different biomolecular classes, MALDI-MSI has seen a wide-
spread adoption in the fields of spatial proteomics, metabolomics, lipidomics and
drug discovery.3 In the latter case, MALDI-MSI has found its way into pharmaceutical
research and development, where disposition of drugs and their formulations can
be monitored alongside their pharmacodynamic and toxic effects.9–12 Importantly,
MALDI MSI has been successfully applied for probing tissue-biomolecular profiles
particularly in cancer research. Here, MALDI MSI has helped in uncovering molecular
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mechanisms concerning tumor microenvironment, immunosupression and metabolic
activity.13–15

Strong advances in MSI technology have also been accompanied by rapid devel-
opment of cutting-edge computational analysis tools and machine learning methods
custom-tailored for MSI data. MSI data for tissues is typically memory-demanding
sparse hyperspectral imaging data encoding molecular profiles (mass spectra) of
spatial units (pixels) arranged on a spatial grid.16 To address the increasing need
to handle and analyze this complex data, several open source tools and packages
have been developed (R/python) providing researchers and bioinformaticians with
valuable methods for MSI data handling, cleaning and pre-processing.17–23 Computa-
tional methods concerning dimensionality reduction, clustering and segmentation
have been proposed continuously accompanying the ever-increasing complexity
of MSI data.24 Machine and deep learning approaches have also been applied for
dimensionality reduction, peak learning and tissue classification and profiling.25–28

Reproducibility of research methods, data and findings has been gaining ever
more increasing attention in science and is subject to constant discussions.29,30 In
this regard, the MSI community invested and continues to invest efforts to improve
the reproducibility and integrity of MSI experiments. Site-to-site MSI experiments’
reproducibility has been thoroughly investigated by comparing results obtained from
MALDI MSI measurements of clinical tissue samples collected at different facilities,
measured at different sites with standard protocols.31 Computational and statisti-
cal scores have been proposed to compare standard sample preparation protocols
for processing formaline-fixed, paraffin-embedded human biopsy tissues prior to
MSI measurements.32 Quality control22,23,33, standard data formats34, spectral align-
ment35,36 and normalization methods37–39 have also been continuously developed
to ensure reproducibility, data comparability and reduce technical variability. Batch
effects, i.e. systemic sources of technical variability affecting MSI studies particularly
for tissue cohorts, have been thoroughly studied and described in a recent study pro-
viding concrete recommendations aimed to downplaying the impact of this undesired
phenomena on the reliability of MSI experiments.40

MSI has also been increasingly applied in pharmaceutical research for quantifying
tissue-drug content. Until recently MSI was described as a semi-quantitative tech-
nology and has been predominantly used for the spatial assessment of compounds’
presence in tissues and their relative change in concentrations across samples.16,41,42

However, several studies have attempted to bridge this gap describing MSI-based
quantification protocols and demonstrating that MSI can achieve quantification with
high agreement with liquid chromatography–mass spectrometry (LC-MS), the gold-
standard for quantification in tissues.43,44 To account for the inherently high technical
variability of MALDI-MSI data, quantification based on tissue mimetic models or
compound dilution series spotted onto tissue, as well as signal normalization against
stable isotope-labeled internal standards (IS) and the calculation of tissue extinction
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coefficients were introduced.45,46 Inspired by LC-MS-based quantification, linear
calibration models have been predominantly used in MALDI-MSI-based quantifi-
cation.3 However, batch effects and the limited understanding of the ionization
pathways, in-source fragmentation and cluster formation still hinder a wider adop-
tion of MALDI-MSI for quantification in (clinical) pharmacology, specifically when it
comes to tissue cohorts.21,40 While Several computational tools, which provide quan-
titation capabilities, have been previously proposed47,48, developing computational
and analytical methods specifically suited for spatial quantification via MSI is an
active area of research and development49–51.

1.1 Mass Spectrometry Imaging Basic Principles

The mass spectrometer is comprised of three distinct components: the ion source,
which ionizes the analytes (i.e. molecules such as proteins, glycans, metabolites,
lipids or drugs); the mass analyzer, which separates the analytes according to their
molecular weight; and the detector, which identifies the various analytes present
in the sample.4 There are three primary desorption/ionization methods that are
commonly utilized for obtaining MSI data from different surfaces: secondary ion
mass spectrometry (SIMS), MALDI MS, and desorption electrospray ionization (DESI)
MS. The chosen ionization technique determines which analytes can be detected (e.g.,
polar, non-polar, small molecules or proteins) as well as the spatial resolution of
the MSI measurement.52 SIMS was the first technique used to acquire images from
various surfaces including tissue sections, and it is used to analyze the composition
of solid surfaces and thin films by sputtering the surface of the specimen with a
focused primary ion beam and collecting and analyzing ejected secondary ions by
MS.4 Instead of irradiating the sample with a focused ion beam, in MALDI MSI the
biological tissues are irradiated with a laser beam after being coated with with a
matrix, typically an organic acid, which absorbs the laser energy and aids molecular
ionization.6 On the other hand, DESI imaging, which was introduced in 200453,
involves the application of an electrically charged solvent mist (electrospray) onto
the sample causing the ionization and desorption of the surface molecules which are
then transported into the mass analyzer inlet.

MALDI-based MSI has seen a wide-spread adoption of this technology in the
fields of proteomics, metabolomics, lipidomics and drug discovery. It is considered to
be a soft ionization technique that produces ions of biomolecules with minimal frag-
mentation and primarily single-charged ions when induced by the energy delivered
by a laser.3,54 MALDI MSI starts with the deposition of a dissolved chemical matrix
onto a tissue sample. This matrix is a chemical solution that, upon crystallization, pos-
sesses high energy absorbance for a certain laser wavelength. The deposited matrix
solution mixes with the sample causing the biomolecular tissue content to dissolve
in it depending on the matrix type. To avoid imaging artifacts arising from matrix
application, the matrix is homogeneously applied across the tissue sample, which is
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commonly carried out by robotic sprayers55 but also via sublimation56 or inkjet57 or
3D printers58. After solvents evaporate, the matrix crystallizes together with tissue
biomolecules which are then trapped within the co-crystals. By selecting different
matrices and depending on the technology used (e.g. MALDI-TOF or MALDI-FTICR),
different biomolecule classes can be targeted in MSI measurements.59–61 Moreover,
the physical properties of a matrix, e.g., pH, proton affinity and peak wavelength ab-
sorbance, directly affect the observed analyte sensitivity.62 2,5-Dihydroxybenzoic acid
(DHB) is the most commonly used MALDI matrix that offers adequate sensitivity for
various analyte classes in positive ion mode detection, while 9-Aminoacridine (9AA)
has been more often used for the detection of low molecular weight compounds in
negative ion mode and 1,5-Diaminonaphthalene (DAN) has been shown to provide
high sensitivity for many lipid classes in both positive and negative ion modes.63 A
comprehensive review of commonly employed MALDI matrices in MALDI MSI of
lipids could be found in the two studies of Leopold et al.64,65

The ionization process starts by irradiating the co-crystallized sample with a pul-
sating UV laser of a short wavelength. Two laser types have been predominantly
used in MALDI MSI; namely, N2 lasers with a wavelength of 337 nm and, the more
recent, Nd:YAG lasers with a wavelength of 355 nm.66 The matrix absorbs the deliv-
ered laser energy leading to a phase change, in which neutral and ionized matrix
molecules, matrix clusters and ionized biomolecules move into the gas phase. While
in gas phase, ions such as H+, Na+ and K+ are transferred between the matrix and the
analyte leading to the formation of analyte ions, or "adducts".67 The generated cations
could then be measured in positive ion mode detection. Likewise, negative ions
could also be created by abstracting H+ from the analyte or through fragmentation
during ionization, which could then be measured in negative ion mode detection.64

Several models have been proposed to explain this process such as the gas-phase
photoionization and the lucky survivor models.54,68 However, ionization pathways,
in-source fragmentation and cluster formations are still not completely understood
and are open fields for investigation.16,69

Charged matrix molecules and biomolecules are then passed to mass analyzers
where these could be measured based on their m/z property. Several types of mass
analyzers exist, e.g., TOF, ion mobility spectrometry (IMS) and Fourier transform ion
cyclotron resonance (FTICR) mass spectrometers.70 The basic principle of MALDI
TOF mass analyzers is depicted in Figure 1.1. In such systems, charged ions are
accelerated towards a detector within an electric field inside a vacuum tube. Once
the ions pass through a charged grid, they move freely in a field-free space, known
as the drift zone, where the separation of the ions according to their m/z is achieved.
The ions with lower mass reach the detector faster. The use of a reflector instead
of a linear TOF mass analyzer can further enhance peak resolution by extending
the flight trajectory. The m/z value of an ion is then determined by measuring the
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FIGURE 1.1: The basic principle of matrix-assisted laser desorption/ionization time-of-flight
(MALDI-TOF) process occurring in the mass spectrometer for positive ionization. The mass
resolving power can be improved by further extending the flight path using an electrostatic
mirror (reflector). Reproduced from Leopold et al.64 under the conditions of the Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

time it takes for that ion to traverse the distance from source to detector, i.e. time-of-
flight.64 Modern TOF mass analyzers offer high acquisition speeds, high sensitivity
and moderate mass resolving power (10-50k). In IMS-MS, an additional "filtration
step" is introduced between the ion source and the mass analyzer (which is typically
a TOF mass analyzer) where ions are separated based on their mobility through a
buffer gas in a millisecond timescale inside an ion mobility drift tube.71 A similar ion
mobility concept called trapped ion mobility spectrometry (TIMS) propels ions via a
gas flow and an electrical field, acting against the ion-flow, stops them from moving
beyond a position defined by the ion’s mobility.71

Fourier Transform-based mass analyzers such as the FTICR mass spectrometers
determine ion’s m/z based on the cyclotron frequency of the ions in a fixed magnetic
field. The basic principle of FTICR mass analyzers is depicted in Figure 1.2. In such
systems, the mass analyzer is an ion cyclotron resonance (ICR) cell situated in the
center of a superconducting magnet. Within the ICR cell, the homogeneous magnetic
field induces a circular motion in the trapped ion packets with a cyclotron frequency
which is inversely proportional to the ion mass. These ion packets are then resonantly
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FIGURE 1.2: The basic principle of data acquisition with Fourier transform ion cy-
clotron resonance (FTICR) mass spectrometers. Reproduced from van Agthoven et
al.72 under the conditions of the Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).

excited with a radio-frequency voltage applied to the excitation plates causing them
to form coherent packet formations. Fourier transformation of the transient leads to a
frequency spectrum showing peaks at the frequencies of the ions. The mass spectrum
is obtained by converting the cyclotron frequencies into m/z values.72 These analyzers
offer high sensitivity and ultra-high mass resolving power (> 1.5M at m/z 400) but
with slower acquisition rates.70,73

The mass resolving power of a mass spectrometer could be regarded as the primary
characteristic when choosing the right modality for a certain MSI-based application.
For instance, to properly distinguish isobaric compounds inherent to the complexity
of biological samples, a high resolving power at full-width at half-maximum (RFWHM

> 300k at m/z 400) is required in the absence of an upstream separation method
(such as ion mobility).74 The theoretical modeling of the mass resolving power is
challenging and is different for the different mass spectrometer types. Marshall et
al.75 reported that for FTICR mass spectrometers RFWHM inversely scales with m,
where m is the ion mass. On the other hand, the theoretical formulation of RFWHM for
TOF mass spectrometers is completely different and is relatively constant across the
mass range.76 For a more detailed description, please see section 3.3 in Chapter 3.

1.2 Mass Spectrometry Imaging Data

The data acquisition principle of MALDI MSI is depicted in Figure 1.3. A matrix-
coated tissue section mounted on a conductive glass slide is irradiated by a UV-laser
applied in a raster-like scanning. Although a high lateral (spatial) resolution MALDI-
MSI reaching down to 1.4 µm per pixel (i.e. sub-cellular scale) has been previously
reported77, typically MALDI MSI experiments employ a lateral resolution ranging
from 200 µm down to 20 µm.2 The resulting three-dimensional dataset is represented
by a so-called datacube with spatial x,y-coordinates and a mass-to-charge ratio (m/z)
depth coordinate representing the molecular information encoded into spectra of
intensities, such that for every x,y-position (pixel) a mass spectrum is recorded and
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FIGURE 1.3: MALDI MSI data acquisition. A tissue section mounted on a conductive slide
is coated with a MALDI matrix and rastered with an ionizing laser beam. This results in
hyperspectral imaging data with each pixel location encoding the detected ionized molecular
content at that laser spot. Afterwards, the recorded mass spectra are centroided and binned.
An ion intensity image represents relative intensities of the ion across all pixels.

for every m/z an m/z-specific ion intensity image is rendered which highlights the
spatial distribution of the molecule underlying that particular m/z.16

MSI data of tissues is typically memory-demanding sparse hyperspectral imaging
data. Its dimensionality (i.e. number of m/z bins) depends on the analyzer and is
usually in the order of 103 for TOF analyzers, 104 for QTOF analyzers, and over 104

for Fourier transformation-based analyzers.16 Most vendors of mass spectrometers
often include centroiding in their measurement platforms, which reduces data size
and facilitates data storage and handling especially for ultra-high-resolving power
analyzers such as FTICR or Orbitrap mass spectrometers. Spectral centroiding (i.e.
peak picking) is a process of converting a continuous spectral peak (also called profile
data) corresponding to an ion to a centroid m/z value with an associated intensity,
typically defined as the area under the peak or its maximum (see Figure 1.3).16 For
most measurement platforms and software packages, centroiding is based on SNR≥3,
i.e. only peaks whose intensity is higher than 3 times the calculated noise level are
retained. Historically, this seems to come from the IUPAC guidelines78 for defining
the limit of detection for quantifying trace elements using analytical methods which
is normally set to µ + 3σ, where µ and σ are the mean and standard deviation of the
signal of the blank (i.e. detector noise). This allows for a confidence level of >99%
that a detected signal above that threshold is not a random event (three-sigma rule).

For any molecule-of-interest (MOI), an ion image can be generated to inspect its
spatial distribution within tissue morphology. Ion images, i.e. false color renderings
of m/z intervals of interest, are generated typically by summing up all observed
(centroided or profile) ion intensities, e.g., a peak-of-interest (POI), with identical
weights (i.e. uniform mass-window weighting) within a user-defined mass-range
around a certain theoretical m/z value representing the MOI (Figure 1.4).79,80

Owing to its sparsity and complexity, MSI data often undergoes certain data
"cleaning" and pre-processing procedures depending on the acquisition platform
and application. These may include intensity normalization, baseline subtraction,
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FIGURE 1.4: Ion image generation in MSI. Typically, an ion image is generated by summing
up (with identical weights) all observed ion intensities, e.g., a peak-of-interest (POI; blue circle
and line) within a user-defined mass-range (red area) around the a certain theoretical m/z
value representing a molecule-of-interest (MOI; black circle and dashed line). If set too-high,
the user-defined mass-range could contain a background peak (orange) which might interfere
with the detected POI signal.

smoothing, peak detection (centroiding), peak alignment or binning.23,39 For targeted
applications, i.e. imaging for a specific MOI like a drug, the analysis and interpreta-
tion of MSI data often include ion image generation and visualization as described
above.9–12 However, MSI has also been used in untargeted imaging applications
where the correlation and colocalization of biomolecule ensembles is of interest,
e.g., multivariate inspection of spectral similarities across tissues or multivariate
classification for classifying tissues or spectra according to a specific property or
test. Applied untargeted analysis on MSI data could be broadly categorized into
two main categories: on one hand, unsupervised multivariate analysis where spatial
segmentation methods such as k-means clustering81, spatially-aware clustering82

and spatial shrunken centroids83 and dimensionality reduction techniques such as
principal component analysis (PCA)84, non-negative matrix factorization (NNMF)85,
probabilistic latent semantic analysis (pLSA)86 or t-distributed stochastic neighbor
embedding (t-SNE)87 are used to deduce tissue morphological similarities.24 On the
other hand, supervised multivariate analysis where spectra or tissues are labeled
based on a specific (e.g., clinically) relevant attribute and fed into classification models
to establish classifiers that can distinguish spectra or tissues based on their molecular
content.28,88–91

Several open source tools and packages20–22,92,93 as well as stand-alone soft-
ware47,48 and computational platforms23,94 have been developed for MSI data that
provide researchers and bioinformaticians with valuable methods for MSI data han-
dling, cleaning and pre-processing. Most notably, Cardinal18, MALDIquant17 and
rMSI 19 R packages have been widely adopted in the MSI community. The uni-
fied imzML data format34, proposed in 2012, has been instrumental in streamlining
data analysis pipelines for MSI data. Based on the mass spectrometry data standard
mzML95, imzML enhanced exchangeability of MSI data and analysis tools of different
MSI vendors and research labs.
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1.3 Reproducibility and Batch Effects

It is well known that the quality and information content of MALDI MSI data strongly
depends on numerous factors related to the preparation and acquisition processes.
Sample preparation, ion suppression, homogeneity of matrix application, spatial
resolution, analyte delocalization, and the availability of community-wide standard-
ized protocols have been identified as primary factors affecting reproducibility of
MSI experiments.40,96 More often than not, MALDI MSI experiments also suffer
from technical variability which includes signal intensity variations, mass inaccura-
cies, chemical and instrumental noise, as well as loss of data integrity during data
conversion processes.37,39

As MALDI MSI is increasingly applied in large-scale clinical and pharmacological
studies where cohorts of tissues are analyzed, the collective effect of the above factors
result in what has been recently called batch effects.40,97 Batch effects are systemic
sources of technical variability affecting MSI data of tissue cohorts measured in
batches which could be categorized into different levels, e.g., day-to-day (time factor),
location and operator. While the previously mentioned categories are common to
most analytical techniques, some are specific to MSI which include pixel-to-pixel,
section-to-section and slide-to-slide batch effects.40

Pixel-to-pixel batch effects mainly arise at the sample preparation step. Since
MALDI-MSI requires the application of a MALDI matrix, inhomogeneous matrix
application and crystallization leads to spatially varying matrix-related analyte sup-
pression.37 Spatial differences in tissue chemical properties and biological content
also affects the extraction and ionization efficiency of ions resulting in regional ion
suppression effects which were found to be pronounced in MALDI-based ioniza-
tion.98 Systematic biases in data acquisition can also lead to increased pixel-to-pixel
batch effects such as continuous decrease in detector sensitivity, gradual evaporation
of matrices during long acquisitions or accumulation of residual material in the ion
source.40,99 Moreover, uneven sample topology and stage tilt can lead to pixel-to-
pixel mass shifts, i.e., variations of the m/z of the same ion(s), which degrades mass
resolution and mass accuracy in MSI data.100 Differences in tissue topology can also
cause spatially-dependent variations in the laser focus, fluence and ablation spot size
resulting in inhomogeneous pixel-to-pixel ionization throughout the sample.101

Section-to-Section batch effects have similar causes as for the pixel-to-pixel case.
Here, tissue sections at different locations on the measurement slide might receive a
lower/higher exposure to laser irradiation and/or matrix application, but also differ-
ences in tissue section thickness102 as well as differences in tissue processing103 and
storage104 may lead to systematic variations on a section-to-section basis. However,
slide-to-slide variability can be considered the highest source of variation for any
MSI measurement acquired within a single location (lab) since not only pixel-to-pixel
and section-to-section variations accumulate, but this might also be significantly
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compounded by differences in sample preparation and time factors.103 These accu-
mulated effects can reach to a point where true biological response is completely
masked, especially in the biomarker discovery applications where the outcome is
extremely sensitive to disturbances in ion intensities.40

Addressing the challenge of batch effects and technical variability has been the
subject of many studies in the recent years. Site-to-site MSI experiments repro-
ducibility has been thoroughly investigated by comparing results obtained from
imaging clinical tissue samples collected at different facilities and measured at dif-
ferent sites with a standard protocol.31 Computational and statistical scores have
been proposed to compare standard sample preparation protocols for processing
formaline-fixed, paraffin-embedded human biopsy tissues prior to MSI.32 Hardware
improvements have been introduced to MALDI-MSI where modified optics can cor-
rect for coarse height differences on-the-fly101 and a new hardware configuration
can perform MALDI-based imaging of tissues in atmospheric pressure conditions77.
Cost-effective open-source hardware has been developed for matrix deposition for
MALDI MSI-based experiments that allows for development and sharing of matrix
deposition and sample preparation protocols across labs.58,105

Quality control procedures has been continuously introduced into the MSI do-
main. For instance, Gustaffson et al.106 formulated reporting standards specifically
suited for MSI experiments which try to capture and standardize accurate reporting
of both experiments and the resulting data. Fractional factorial design has been em-
ployed to optimize standard operating procedures for sample preparation107, matrix
deposition108 and MALDI MSI acquisition parameters109. Condina et al.110 went
on to suggest the use of egg white as an external control for peptide and N-glycan
MALDI-MSI to monitor detector performance and sample preparation throughout
the experiment. On the other hand, Palmer et al.80 created a gold-standard set using
collective expert judgments of 80 MSI experts to rate the relative quality between 52
pairs of ion images from MALDI-TOF-MSI data of rat brain coronal sections, which
was then used to evaluate image-based computational quality measures including
local coefficient of variation, local signal-to-noise ratio and spatial chaos111, among
others. Other tools and platforms for quality control have been proposed which can
screen for low quality spectra in MALDI MSI data22, provide an overview of mass
accuracy across the tissue sample23 and establish unified and transparent MSI data
processing pipelines based on FAIR (findable, accessible, interoperable, and reusable)
data sharing principles33.

Systematic mass misalignment has been observed early on in MALDI MSI data
which could arise from i) uneven sample topography, ii) limits in the precision of
the ion detector and iii) differences in the ions’ initial velocities at the onset of the
MALDI ionization process.35,100 Spectral alignment and mass recalibration methods
have been proposed as a remedy in which the chemical noise background observed
in MALDI peptide imaging is used as a reference for recalibration35 or, in a more
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recent study, a data-dependent internal recalibration is used based on endogenous
lipids and metabolites that are identified across a set of biologically similar tissues
and are used as internal calibrants.36

Finally, the ion intensities observed in MALDI MSI data are known to be sensitive
to the various forms of batch effects described above. Common methods for MSI data
normalization typically involve computing a scalar, e.g., spectrum total ion count
(TIC) or root mean squared (RMS), to be used as a normalization factor for each
single spectrum.37,39 Veselkov et al.94,112 proposed a normalization method based
on median fold change (MFC), which better suits inter-sample tissue comparisons.
More recently, Boskamp et al.38 reported a cross-normalization technique based
on computing spectral intensity profiles that capture the statistical distribution of
spectral intensities as a function of mass and then transforming spectral intensities to
make their statistical distributions more similar. This cross-normalization method
was evaluated in inter-lab and cross-protocol scenarios showing promising results.38

1.4 Quantification in Mass Spectrometry Imaging

MSI is now being used more frequently in pharmaceutical studies to measure tissue-
drug content. Until recently, MALDI MSI was referred to be a semi-quantitative tech-
nology and has been predominantly used for the spatial assessment of compounds’
presence in tissues and their relative change in concentrations across samples.16,41,42

Quantitative information can still be extracted with the right conditions, processing,
and software, though the degree of accuracy must be carefully monitored and rig-
orously examined. Tissue heterogeneity, ion suppression and ionization efficiency,
sample topography, batch effects (see section 1.3) and other factors are all regarded
as significant challenges in this field.3

A number of studies have made an effort to bridge this gap by testing quantifica-
tion protocols based on MALDI MSI and demonstrated that MALDI MSI can produce
quantification results with a high level of concordance with liquid chromatography-
mass spectrometry (LC-MS), which is considered the benchmark for quantification in
tissues.43 Signal normalization against a stable isotope-labeled version of the MOI
(e.g. drug) or a structurally similar compound to the MOI as an internal standards
(IS) has been essential in elevating the reliability of MALDI MSI-based quantification.
Deuterated versions of the MOI were frequently used by mixing the IS with the
matrix solution and homogeneously spraying over the slide prior to sectioning or
over the tissue sections after sectioning. The IS can then be used to correct for the
MOI signal intensity (calculated as MOI intensity/IS intensity) pixel by pixel across
tissue sections.44,46 To account for inherent tissue heterogeneity and inhomogeneous
ion suppression, Hamm et al.45 proposed the use of tissue extinction coefficient (TEC)
when quantifying olanzapine and propranolol in rat and mouse whole body sections
by MALDI-MSI. In this method, a homogeneous amount of a compound mixed with
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the matrix is sprayed over the tissue section and, once measured, TEC is calculated
for every tissue morphology part by dividing the average intensity of the compound
on tissue by the average intensity of the compound on a glass slide. The regional TEC
values can then be used as a normalization factor.45

Setting up analyte calibration curves is an important step for obtaining quantifica-
tion. Based on spotted dilution series of the MOI, calibration curves are calculated
which can be used for back-calculating MOI concentrations or amounts from detected
MSI signal levels in tissues.43 To limit the impact of slide-to-slide batch effects, re-
searchers have adopted a same-slide on-tissue spotting technique where MOI dilution
spots are applied on the same or separate "control" sections adjacent to the tissue
under study and measured within the same imaging run. This "control" can be a serial
section of the tissue under study, but researchers have also used other controls such
as liver tissue which is known to be homogeneous. Researchers have also created
techniques where the standards are spiked into tissue homogenates to boost the
homogeneity of the areas where the standards are spotted. These homogenates are
put into a mold and are then frozen, sectioned, and positioned next to the imaged
section.113,114 Developing computational methods specifically suiting spatial quan-
tification via MSI is an active area of research and development. Davoli et al. have
contributed a comprehensive review focusing on the field of spatial localization and
quantification of drugs in human tissues via MSI in clinical pharmacology.115

1.5 Mass Spectrometry Imaging in Cancer Research

Recent developments in analytical techniques, collectively known as "omics", sig-
nificantly improved our understanding of cellular metabolism. These techniques
provide valuable insights into metabolic profiles of healthy, as well as tumor tissues.
MALDI MSI employs soft ionization for the extraction and analysis of endogenous
biomolecules without destroying the sample, which allows for combining molecular
imaging with simultaneous histological evaluations for studying numerous different
cancer types in many different studies including brain, breast, lung, ovarian, prostate
and gastrointestinal cancers.1,2

One of the main areas where MALDI MSI is applied is tissue samples classifica-
tion. For instance, molecular MS profiles of tissues have been used in distinguishing
colorectal tumor from normal tissue88, discriminating breast from pancreatic cancer
metastasis in formalin-fixed paraffin-embedded (FFPE) tissues116, classification of ep-
ithelial ovarian cancer117, histo-molecular differentiation of renal cancer subtypes118

and discrimination of renal oncocytoma from renal cell cancer subtypes and normal
kidney tissues.119 MALDI MSI has also been used to uncover clinically relevant
mass signatures that correlate with colorectal cancer status, grade and survival in
large-scale tissue microarrays.120
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Owing to its spatial imaging capabilities, MALDI MSI has been also applied to
uncover intratumoral heterogeneity, a well-known factor in tumor resistance to treat-
ment in gastric and breast carcinoma.121 It has also found application in uncovering
molecular mechanisms concerning tumor microenvironment, immunosupression
and metabolic activity.14,15

Lastly, targeted measurement of anti-cancer drugs and their metabolites with
MALDI MSI has been previously reported, which allowed for the investigation of
pharmacokinetics and pharmacodynamics of drugs in tumor and surrounding tissues,
making it possible to gain insight into the penetration of treatment drugs into their
target tumor tissues.115,122

In this work, gastrointestinal stromal tumor (GIST), isocitrate dehydrogenase-wild
type (IDH-WT) glioblastoma (GB) and IDH-mutant (IDH-MUT) and -WT glioma
tissue samples were used to showcase the proposed computational methods described
in Chapter 3. The following two sections provide a brief description of these tumor
types.

1.5.1 Gastrointestinal Stromal Tumor (GIST)

GIST is a type of mesenchymal tumor that arises in the gastrointestinal tract, primarily
in stomach (60%) and small intestine (30%) but also as a metastatic tumor elsewhere
in the abdominal cavity, as well as in liver, but rarely in lungs and distant peripheral
sites. It is considered a rare disease estimated to occur with a frequency of 14-20
per million.123 GISTs are thought to arise from the interstitial cells of Cajal and are
characterized by the expression of the KIT protein (CD117), a transmembrane receptor
tyrosine kinase that plays a key role in cell proliferation and survival. Mutations in
the KIT gene are present in the majority of GISTs and result in constitutive activation
of the KIT protein, leading to uncontrolled cell growth and proliferation.124

The standard treatment for GISTs is surgical resection when feasible, with the
goal of achieving complete resection of the tumor. In patients with high-risk or
metastatic disease, treatment with tyrosine kinase inhibitors (TKIs) such as imatinib,
sunitinib, and regorafenib has been shown to be effective in controlling tumor growth
and improving overall survival. Imatinib is also considered for adjuvant treatment
in order to minimize the risk of tumor resurgence. However, GISTs are prone to
imatinib resistance, which is mainly attributed to secondary somatic mutations in
the receptor tyrosine kinases KIT, the gene product of the protooncogene c-kit, or the
platelet-derived growth factor receptor alpha (PDGFRA). For this reason, the genetic
characterization of GIST is important as it denotes the effectiveness of targeted drug
therapies.125

MALDI MSI analysis of GIST samples have been previously reported where
multiple workflows for dewaxing, antigen retrieval and on-slide digestion of formalin-
fixed and paraffin-embedded (FFPE) GIST tissue samples have been compared using
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proposed MSI-based computational and statistical scores.32 Another study used GIST
tissue samples to evaluate a novel multimodal acquisition guidance system where
upstream tissue segmentation using Fourier transform infrared (FTIR) microscopy
was used to guide downstream high resolution MALDI MSI acquisition.81

1.5.2 Glioma

Glioma is the most common type of primary brain tumor in humans. The exact
cellular origin of glioma is unknown with recent studies suggesting that astrocytes,
oligodendrocyte progenitor cells, and neural stem cells could all serve as the cell
of origin. GB is its most aggressive form of glioma (WHO grade IV)126 which is
usually rapidly fatal, with a short median overall survival rate of 12–15 months
only. While lower-grade gliomas (WHO grade II and III gliomas)126 appear less
aggressive at the time of diagnosis, they eventually progress into the malignant
phase within 5–10 years.127 The standard treatment, if feasible, is gross total resection,
followed by radiotherapy and administration of Temozolamide, a chemotherapy
drug. Temozolamide is an alkylating agent that is more toxic to cancer cells due to
inhibition of tumor cell DNA replication.127,128

IDH-WT gliomas lack mutations in the IDH type-1 or type-2 genes. Until re-
cently, GB was classified into two subtypes: IDH-WT and IDH-MUT, with IDH-WT
representing the majority (approximately 90%) of GB cases.128,129 The most recent
WHO classification of central nervous system tumors, reclassified IDH-MUT GB into
IDH-MUT astrocytoma (WHO grade 4).126,130 The main purpose of introducing this
change was to clarify the prognosis of the diagnosis; patients with this morphology
and lacking mutations in IDH have a worse overall prognosis compared to other
tumors with similar morphology but with those mutations. This change also empha-
sized that this tumor entry is specific to the adult population commonly found in
elderly patients.131

The identification of molecular subtypes, including IDH-WT and IDH-MUT
gliomas, has provided important insights into the genetic and molecular charac-
teristics of these tumors.13,128 Recently published landmark studies in this area have
laid ground for uncovering GB’s molecular and cellular landscapes aligning indi-
vidual histologic features with genomic alterations and gene expression patterns132,
established a comprehensive approach for the DNA methylation-based classification
of central nervous system tumors across all entities and age groups133 and uncovered
immunosuppressive alterations of tryptophan metabolism in GB linking that to Aryl
hydrocarbon receptor activation driven by tryptophan-catabolic enzymes.134

MALDI MSI has been previously used to probe the complex and heterogeneous
histological environment of GB. Researchers were able to discriminate neovascular-
ization from necrosis via MALDI MSI, an important factor in differentiating GM from
anaplastic astrocytoma.135 In a spatially-resolved MALDI-based multi-omics study,
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researchers uncovered evidence of tumor-host interdependence, which results in spa-
tially exclusive adaptive transcriptional programs.136 Other studies involving MALDI
MSI uncovered heterogeneity of tryptophan catabolism across GB tissues137 and pro-
vided further insight into the altered metabolic landscape of IDH-MUT gliomas by
profiling the distribution of metabolites at high anatomical spatial resolution.14 This
multi-omics setup together with MALDI MSI has been successfully used to investi-
gate transcriptional alterations, metabolic and lipidomic adaptation and alterations of
tumor cells, which can aid in suggesting therapeutic targets and evaluating treatment
effects.138
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Chapter 2

Aims

2.1 Motivation

The fundamental concept in mass spectrometry imaging (MSI) data processing, the
conversion of raw data into ion images for visualization, spatial interpretation and
molecular analysis, has not changed since the inception of the technology. Ion
images, i.e. false color renderings of mass-to-charge ratio (m/z) intervals of interest,
are used as the fundamental investigation tool in MSI for conveying the spatial
distribution of molecules-of-interest (MOIs, e.g. metabolites, drugs, lipids or proteins)
within biological tissues often compared to external histopathology annotations. Ion
images are also used as a gold-standard for validating the outcomes of computational
and machine learning methods in biomarker discovery applications in MSI.1,87,139

However, the generated ion images can be prone to technical artifacts, user input-
and user perception-bias.40,79 For instance, in a pharmaceutical study, an incorrectly
assigned mass-window width by the end-user for rendering ion images of a certain
drug, which if set too high, could include interfering noise and other interfering
background signals. Current procedures for rendering ion images from raw MSI
data typically do not include built-in methods that account for mass accuracy and
instrument- and measurement-dependent mass resolving power. Another even
more drastic source of bias originates in user’s visual perception and interpretation
of the MOI’s spatial distribution and penetration into tissue sub-compartments, a
judgment that is usually based on user’s perception of intensity differences within
the image. The color-coding of these intensities is also a source of bias as it was
shown that different color-coding schemes could result in differing interpretation of
MOIs’ spatial distributions.79 Filtering, cross-normalization and collective judgement
approaches have been shown to improve the outcome of ion image interpretation,
but they do not offer a definitive solution.37,38,80,140

Moreover, it is not uncommon in MSI studies to encounter experiments that
perform comparison of drug or metabolite distribution in test- versus reference
tissues, e.g., those dosed with drugs or carrying mutations versus controls.13,141 Here,
again, ion images are used to visually compare color-coded intensity distribution
of MOIs in both test and reference tissues put side-by-side in a single image plane.
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Unfortunately, this procedure is affected by the same pitfalls described above for the
single ion image. To remedy this qualitative comparison approach, scientists typically
resort to pooling signal intensities of the generated ion images to generate box/violin-
plots and perform statistical significance testing. This approach, however, completely
disregards the spatial dimension of the MSI experiment, making it impossible to trace
the tissue morphology where the molecule (e.g. drug) has a statistically significant
difference.

Furthermore, simultaneous mapping of metabolite ensembles within a single ion
image is lacking. In such situations, scientists typically resolves to encoding signal
intensities of MOIs using the RGB (red, green and blue) color model thus creating
a composite RGB ion images in the process.9,79 This procedure, however, can only
visualize three MOIs at a time. Methods for spatial probing of tissue characteristics
such as ion milieu, lipid saturation, or even the distribution of entire lipid classes
relative to tissue morphology could be of importance for understanding tissue-local
microenvironments, computing spatial quantitative MSI scores (e.g., local energy
score) and probe entire molecular pathways as required for translational applications.

2.2 Objectives

This work introduces the concept of spatial probabilistic mapping in MSI as a solution
to the known limitations of ion images when it comes to spatial visualization and
interpretation of MOIs’ distribution in tissue samples via MSI. It proposes a computa-
tional framework, moleculaR, that uses user-independent assignment of m/z intervals
for capturing MOIs based on the device- and measurement-dependent mass resolving
power and Gaussian-weighting of observed peaks-of-interest (POIs) for improved
reliability of metabolite/lipid/drug signals in MSI. Instead of relying on a subjective
qualitative judgment of the end-user concerning the observed spatial distribution
of an MOI within a tissue sample, moleculaR proposes molecular probabilistic maps
(MPMs) which apply pixel-wise spatial significance testing of MOI intensities against
a complete spatial randomness (CSR) model inferred from the signal intensities of
that particular MOI. The moleculaR framework also allows for spatial statistical com-
parisons of different tissues (cross-tissue MPMs, or CT-MPMs) and for collective
projections of metabolite ensembles onto a single tissue plane, followed by compu-
tation of collective projection probabilistic maps (CPPMs). Ultimately, computed
"hotspot" and "coldspot" spatial contours provide user-independent and probabilistic
localization of tissue areas where an MOI has a statistically significant non-random
relative spatial abundance or deficiency, respectively.

Furthermore, this work attempts to further investigate quantitative spatial map-
ping of drugs in tissue sections by performing tissue-drug content quantification
on an entire tissue cohort of 56 specimens of tumor and corresponding non-tumor
samples measured in triplicates on time-of-flight- (TOF)- and Fourier transform ion
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cyclotron resonance (FTICR)-MALDI-MSI modalities comparing their results to the
gold-standard ultra-high performance liquid chromatography electrospray-ionization
quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). A generalized
nonlinear calibration model is proposed as a replacement for the traditional linear
model that could better model drug-intensity response in the presence of batch effects.
Finally, an attempt is made to link cross-tissue molecular probabilistic maps to drug
quantification where tissue-drug content is estimated by iterative comparison with
single on-tissue drug dilution spots without the need for constructing calibration
curves.

The remainder of this dissertation is organized into a materials and methods
chapter where tissue samples, measurement techniques and methods implementa-
tions are thoroughly explained, a results chapter outlining the results obtained from
implementing the proposed methods and demonstrating the outcomes on different
tissue showcases and finally discussion and summary chapters.
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Chapter 3

Materials and Methods

This chapter describes methods used in this work spanning both the proposed molecu-
laR computational framework (based on the published study Abu Sammour et al.142;
sections 3.3-3.12) as well as the quantitative spatial mapping of imatinib (based on
the published study Abu Sammour et al.143; section 3.13). The chapter is sub-divided
into 13 sections: 1) Tissues and matrix-assisted laser desorption ionization mass
spectrometry imaging (MALDI-MSI) measurements, 2) Data pre-processing, 3-12)
Probabilistic spatial mapping of molecules in tissues via MSI and 13) Regression
models and quantification.

3.1 Tissues and MALDI MSI Measurements

3.1.1 Gastrointestinal Stromal Tumor (GIST) Tissue Samples

A total of 56 human Gastrointestinal Stromal Tumor (GIST) and corresponding normal
(non-tumor) tissue samples were used in this work to investigate drug quantification
with MALDI-MSI. Tissue samples were surgically removed from 27 patients after
obtaining their informed consent and approval by Medical Ethics Committee II of the
Medical Faculty Mannheim of Heidelberg University (2012-289N-MA; 2015-868R-MA;
2017-806R-MA) and was carried out in accordance with guidelines and regulations.

As part of their treatment plan, all patients received a daily dosage of 400-800
mg of imatinib orally including the day prior to the surgical intervention. Since the
elimination half-life of imatinib is approximately 16-18 hours144, the investigated
tissue specimens were assumed to have a steady state drug status at the point of
surgery. After removal, tissues were snap-frozen and stored at -80◦ C in a biobank.
Clinical treatment, surgical removal and storage took place under the supervision
of Prof. Dr. Peter Hohenberger at the Division of Surgical Oncology and Thoracic
Surgery, University Medical Center Mannheim of Heidelberg University. For all
tissue samples, histology, mitotic activity and immunohistochemistry in addition to
KIT and PDGFRA gene mutations were assessed by Prof. Dr. Alexander Marx at
the Institute of Pathology of University Medical Center Mannheim of Heidelberg
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University. Supplementary Table 8.1 provides an overview of the clinical metadata
of the tissue samples.

To establish drug calibration curves for quantification, porcine liver tissues were
used which were supplied by the local slaughterhouse and immediately snap-frozen
at -80◦ C. Each GIST sample was then sectioned in triplicate with each replicate
comprising several 8 µm-thick sections to allow for a multi-modal investigation
based on time-of-flight MALDI-MSI (MALDI-TOF-MSI), Fourier transform ion cy-
clotron resonance MALDI-MSI (MALDI-FTICR-MSI), ultra-high performance liquid
chromatography electrospray-ionization quadrupole time-of-flight mass spectrom-
etry (UHPLC-ESI-QTOF-MS), Fourier transform infrared (FTIR) microscopy81 and
hematoxylin and eaosin (H&E) histological staining. For MALDI-TOF- and MALDI-
FTICR-MSI, each target slide contained duplicated spots of an imatinib dilution series
(25, 12.5, 6.25, 3.125, 1.56, 0.78 pmol and a blank control spot) spotted onto porcine
liver tissue which is mounted adjacent to the GIST tissues under investigation (see
Supplementary Figure 8.3).

Before following on with MALDI-TOF- and -FTICR imaging, deuterated imatinib
(imatinib-D8) was sprayed onto the slide to be used as an internal standard (IS) for
normalization after which 2,5-Dihydroxybenzoic acid (DHB) MALDI matrix was
sprayed. MALDI-TOF-MSI tissue measurement was performed on an UltrafleXtreme
MS device (Bruker Daltonics) while high-resolving-power MALDI-FTICR-MSI was
acquired on a SolariX 7T XR FTICR MS (Bruker Daltonics). All MSI measurements
were recorded in positive-ion mode with a 200 and 50 µm raster width for the imatinib
dilution series part and GIST tissues, respectively. Tissue handling, FTIR microscopy,
MALDI-MSI acquisition and UHPLC-ESI-QTOF-MS were conducted by C. Marsching,
A. Geisel, K. Erich, S. Schulz, C. Ramallo Guevara and J-H Rabe at the center of Mass
Spectrometry and Optical Spectroscopy (CeMOS). Detailed information can be found
in the corresponding published study Abu Sammour et al.143

3.1.2 Isocitrate Dehydrogenase-wild type (IDH-WT) Glioblastoma (GB)
Tissue Samples

One human isocitrate dehydrogenase-wilt type (IDH-WT) glioblastoma (GB) tissue
sample and its replicate were used to develop and showcase the spatial probabilistic
methods described in sections 3.6-3.9. Patients, who had been treated at the Heidel-
berg University Hospital, gave informed consent prior to inclusion to exploratory
molecular analysis including but not limited to MALDI-MSI. The research was con-
ducted in concordance with the declaration of Helsinki and was approved by the
ethics committee at Heidelberg University, Germany (applications S-130/2022 and
AFmu-207/2017). Clinical treatment of patients and tissue storage after surgical
removal took place under the supervision of Prof. Dr. Wolfgang Wick and Dr. Tobias
Kessler at the Department of Neurology and National Center for Tumor Diseases,
Heidelberg University Hospital. H&E histological annotation was conducted by
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Prof. Dr. Andreas von Deimling at the Department of Neuropathology, Heidelberg
University Hospital.

Frozen GB tissue was cryosectioned with 10 µm thickness and mounted on conduc-
tive indium-tin-oxide (ITO) slides. 1,5-diaminonaphthalene (DAN) MALDI matrix
was sprayed onto the target slide. High-resolution MALDI-FTICR-MSI measurements
were acquired on a Solarix 7T XR (Bruker Daltonics) in negative- and positive-ion
modes (same spot) with a 50 µm lateral spatial resolution and mass-to-charge ratio
(m/z) 100-1200 range. Profile (continuous; see section 1.2) MSI data was saved with a
data reduction factor of 97% in addition to centroided mass spectra (SQLite peaks
list) which were generated during acquisition. The reduced profile data was then
used to randomly sample a single spectrum for the estimation of the full-width at
half-maximum (FWHM) model (see section 3.3) while centroided data was used
for the subsequent analysis. Tissue handling, and MALDI-MSI acquisition were
conducted by C. Marsching and C. Ramallo Guevara at the center of mass spectrom-
etry and optical spectroscopy (CeMOS). Detailed information can be found in the
corresponding study Abu Sammour et al.142

3.1.3 Glioma Tissue Samples

Five sets of human control, IDH-WT and IDH-mutant (IDH-MUT) high-grade glioma
tissue samples were previously collected from adult patients undergoing brain
surgery after informed consent. Patient sample collection was carried out at the
Freiburg University Hospital under the ethics protocol 472/15. Clinical treatment of
patients and tissue storage and handling were coordinated by Dr. Mirco Friedrich
and Prof. Dr. Michael Platten from the Clinical Cooperation Unit Neuroimmunology
and Brain Tumor Immunology, German Cancer Research Center (DKFZ) in Heidel-
berg, Germany and their associates13. For the MALDI-FTICR-MSI measurements,
frozen tissue sections were mounted on conductive ITO glass slides such that every
slide would contain one set of three glioma tissue sections: control, IDH-WT and
IDH-MUT. These slides were spray-coated with 1,5-DAN MALDI matrix using an
HTX TM-Sprayer (HTX Technologies) and high-resolution MALDI-FTICR-MSI data
was acquired on a 7T SolariX XR (Bruker Daltonics) in negative-ion mode within a
mass range of m/z 100-1200 at 50 µm lateral spatial resolution. Spectra were acquired
using 1 million transient data points (FID 0.4893s) with an online calibration using
an internal lock mass of m/z 157.076025. Further detailed description of the sample
collection processes is to be found in the corresponding study of Friedrich et al.13

Only one slide, namely "set1" described in Friedrich et al.13 was showcased in this
work.

Profile (continuous; see section 1.2) MSI data was saved with a data reduction
factor of 97% in addition to centroided mass spectra (SQLite peaks list) which were
generated during acquisition. The reduced profile data was then used to randomly
sample a single spectrum for the estimation of the FWHM model (see section 3.3)
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while centroided data was used for the subsequent analysis. Tissue handling, and
MALDI-MSI acquisition were conducted by C. Ramallo Guevara at the center of
Mass Spectrometry and Optical Spectroscopy (CeMOS). Detailed information on
the acquisition parameters and tissue handling can be found in the corresponding
published study of Friedrich et al.13

3.1.4 Mouse Brain Tissue Samples

Fresh-frozen mouse brains of female wilt-type C57BL/6N mice, sacrificed at 12
weeks of age for the purpose of breeding control, were obtained from the German
Cancer Research Center (DKFZ). Tissues were sliced at 10 µm thickness, mounted
on conductive ITO slides and sprayed-coated with 4-phenyl-α-cyanocinnamic acid
amide (PhCCAA) matrix. This resulted in eight sagittal mouse brain tissue serial
sections each mounted on a conductive ITO slide.

MALDI-FTICR-MSI was performed on the first six sections as described in section
3.1.2 but with 20 µm lateral resolution in the mass range between m/z 100-3000 in
negative ion mode. Trapped ion mobility spectrometry time-of-flight (timsTOF)
MALDI-MSI data of one tissue section was obtained on a timsTOF fleX (Bruker
Daltonics) also in negative ion mode in the mass range of m/z 600-1800. Finally, an
additional MALDI-TOF-MSI measurement was obtained for the last section on a
Rapiflex MALDI-TOF MS (Bruker Daltonics) with the same ion mode and mass range.

Tissue handling and MALDI-MSI acquisition were conducted by C. Marsching
at the center of mass spectrometry and optical spectroscopy (CeMOS). Detailed
information on measurements and tissue handling can be found in the corresponding
study Abu Sammour et al.142. Additionally, previously published publicly available
MALDI-TOF-MSI of the APP NL-G-F Alzheimer’s disease mouse model145 was
re-used in this work (Figure 4.9de).

3.2 Data Pre-processing

3.2.1 Gastrointestinal Stromal Tumor (GIST) MALDI-MSI Data

The imatinib quantification study143 comprised a total of 48 MALDI-TOF-MSI and
three MALDI-FTICR-MSI measurements, which were all exported into the open
imzML format34 using FlexImaging software (v. 4.1; Bruker Daltonics). Each mea-
surement slide contained duplicated spots of an imatinib dilution series (25, 12.5, 6.25,
3.125, 1.56, 0.78 pmol and a blank control spot) spotted onto porcine liver tissue which
is mounted adjacent to the GIST tissues under investigation (see Supplementary
Figure 8.3).

A mass-binning rate of 120,000 bins per spectrum was used during conversion
for the continuous (i.e. profile) MALDI-TOF-MSI data while an in-house conversion
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tool was used to directly convert the centroided SQLite peaks list of MALDI-FTICR-
MSI data directly into a processed (i.e. centroided) imzML. MALDIquant and and
MALDIquantForeign R packages17 were used to import imzML data into R146. All
subsequent analysis and visualization of MSI data was carried out via MALDIquant,
ggplot2 and fmsb R packages which are all publicly accessible. The sprayed IS, imatinib-
D8, was used to normalize all mass spectra to the maximum peak intensity over the
mass-window range m/z 502.32 ± 100 ppm and ± 10 ppm for MALDI-TOF-MSI and
MALDI-FTICR-MSI, respectively.

3.2.2 IDH-WT Glioblastoma (GB) MALDI-MSI Data

This dataset, described in section 3.1.2, comprised two inter-slide measurements
of one IDH-WT GB tissue and its serial section (see Figure 4.9 and Supplemen-
tary Figure 8.1) as described in the corresponding study Abu Sammour et al.142.
Centroided MALDI-FTICR-MSI measurement data, described in section 3.2.2, were
converted into an imzML format34 via an in-house tool directly from the SQLite
peaks list data. The centroided imzML data was imported into R (v. 4.0.2)146 via the
MALDIquantForeign and subsequently analyzed with MALDIquant packages17.

To estimate the FWHM model as a function of m/z-axis (see section 3.3), one ran-
domly chosen pixel representing a continuous (profile) mass spectrum was exported
as a CSV file via FlexImaging software (v. 5.0; Bruker Daltonics). FWHM values were
estimated for all peaks and plotted against the m/z-axis which were then used to
model a continuous relationship of FWHM as a function of m/z-axis by running a
locally-estimated scatter-plot smoothing (LOESS) as described in section 3.3 (see also
Figure 4.2). To remove spurious random peaks in the centroided MALDI-MSI data,
peaks that occurred in less than 1% of all pixels were filtered out.

Peak binning was curried out via MALDIquant17; the observed peak masses of all
pixels of the MALDI-MSI measurement were grouped and sorted into a single vector
and the difference between each neighboring pair was computed. Then iterative
bisecting was applied on the mass vector, each time at the largest difference, until all
peaks within each bin fulfilled the criterion |mij − m̄j|/m̄j < (∆m/m); where mij the
mass of the i-th peak at the j-th bin, m̄j is the mean mass of all peaks present in the
j-th bin (bin center; the new peak position) and ∆m/m is the specified tolerance for
maximal relative peak deviation of peak positions to be considered as identical which,
for this work, was set to 12 ppm (= ∆m/m; ∆m =FWHM at m/z 400 ≈ 0.0048 Da;
m =m/z 400). Since the focus of this study was on the lipidome, m/z 400 was chosen.

Binned MALDI-MSI data (negative- and positive-ion modes) was then exported
back into imzML format via MALDIquantForeign in order to apply data-driven pixel-
wise mass recalibration based on endogenous biological signals36 after which it was
uploaded into the METASPACE annotation platform (https://metaspace2020.eu)147

to conduct lipid identification against the SwissLipids database148. The resulting
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identifications were then fetched as CSV files and only verified (i.e. annotated) lipids
were then considered as molecules-of-interest (MOIs) for the molecular probabilistic
maps (MPMs) and collective projection probabilistic maps (CPPMs).

To transform the histological annotations of the corresponding H&E images into
the MALDI-MSI coordinates, semi-automatic multi-modal image registration was
applied between the optical MSI image, which is acquired prior to MALDI-MSI
measurement, and the corresponding H&E images. The Semi-automatic multi-modal
image registration was carried out by J. Cordes using the previously published M2aia
tool149 as described in detail in Abu Sammour et al.142

3.2.3 IDH-MUT and -WT Glioma MALDI-MSI Data

This dataset comprised one MALDI-FTICR-MSI measurement (one slide) of a sets
of three Glioma tissue sections: control, IDH-WT and IDH-MUT as described in
section 3.1.3. Only IDH-WT and IDH-MUT glioma sections were used for this
work in the context of cross-tissue molecular probabilistic maps (CT-MPMs). The
corresponding centroided MALDI-FTICR-MSI measurement data was converted into
an imzML format via an in-house tool directly from the SQLite peaks list data. The
centroided imzML34 data was imported into R (v. 4.0.2)146 via MALDIquantForeign
and subsequently analyzed with MALDIquant packages.17

To avoid including non-tissue measurement regions (due to tissue tears, folds
and cuts), matrix-only regions were identified based on pixel total ion count (TIC)
and filtered out by employing unimodal histogram thresholding.150 The rest of the
pre-processing was similar to the one described in section 3.2.2 except for the binning
tolerance which was set to 6 ppm (= ∆m/m; ∆m =FWHM at m/z 200 ≈ 0.0012 Da;
m =m/z 200) to accommodate the mass range of the MOI, Tryptophan, at m/z 203.0815.
The search mass-window used for identifying Tryptophan signal was inferred from
fitted FWHM vs m/z-axis curve as described in section 3.3.

3.2.4 Mouse Brain MALDI-MSI Data

This cohort comprised six MALDI-FTICR-MSI, one MALDI-timsTOF-MSI and one
MALDI-TOF-MSI data of sagittal mouse brain tissue serial sections. The MALDI-
FTICR-MSI of the mouse brain tissue was pre-processed similar to the MALDI-FTICR-
MSI of the GB tissue described in section 3.2.2. The centroided MALDI-timsTOF-MSI
mouse brain data was converted into an imzML format via an in-house tool directly
from the SQLite peaks list data. The centroided imzML34 data was imported into R
(v. 4.0.2)146 via MALDIquantForeign and subsequently analyzed with MALDIquant
packages.17

FWHM model fitting was performed on a randomly chosen profile spectrum and
peak binning was performed via MALDIquant as described in section 3.2.2. The
profile MALDI-TOF-MSI mouse brain data was pre-processed as described in section
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3.2.2 but without applying IS normalization as no IS was sprayed during sample
preparation. All pre-processed centroided MALDI-MSI data was then exported into
a centroided (processed) imzML format and uploaded into the METASPACE annota-
tion platform (https://metaspace2020.eu)147 to conduct lipid annotation against the
SwissLipids database.148

3.3 Full-Width at Half-Maximum (FWHM) Model Fitting

Rendering ion images of MOIs always entails the selection of an appropriate mass-
search-window where that MOI signal is to be found. In order to achieve a user-
independent and modality-, measurement- and data-specific assignment of this
mass-window width, a mass resolving power-dependent estimation could be thought
of as a suitable and unbiased property to specify the mass-window width at a given
m/z. However, theoretical modeling of the mass resolving power is challenging and
is different for the different mass spectrometer types. Marshall et al.75 reported that
for FTICR mass spectrometers whose mass resolving power* is RFWHM = m/∆m50%,
the FWHM ∆m50% of a mass spectrum peak at an ion mass m could be calculated by
the following relationship75

∆m50% =
7.589m2

q B TFID
(3.1)

where q is the ion charge, B is the magnetic field strength at the center of the trap
of the mass spectrometer and TFID is the free-induction-decay time. This state is
referred to as the low-pressure limit, since ion-neutral collisions inside the trap are
neglected. However, if ion-neutral as well as ion-ion collisions are considered, ∆m50%

can be described by75

∆m50% =
2
√

3 m2

q B τ
(3.2)

where, τ is the damping constant of the radial ion motion. Equations 3.1 and 3.2
show that peaks’ FWHM ∆m50% for FTICR mass spectrometers scales with m2.**

On the other hand, the theoretical formulation of mass resolving power for TOF
mass spectrometers is completely different76 and, therefore, an empirical method
for estimating mass resolving power from data independent of the measurement
device would be more suitable. This was achieved by plotting all individual peaks’
(SNR ≤ 3) FWHM as a function of m/z and then fitting a locally-estimated scatter-plot

*The terms mass resolution and mass resolving power have been often used interchangeably in
literature. To avoid ambiguity, the recommendation of Murray et al.151 has been adopted throughout
this dissertation.

**The literature review underlying this paragraph as well as Equations 3.1 and 3.2 was contributed
by S. Schmidt as mentioned in the author contributions section in the cited study Abu Sammour et
al. 142
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smoothing (LOESS) curve that would approximate FWHM at any given m/z-value and
therefore provide an estimate for the mass resolving power at any given m/z. Since the
proposed method deals mainly with centroided MSI data, the peaks FWHM values
are calculated from the provided randomly chosen profile spectrum corresponding
to the MSI data under investigation.

When a FWHM model is fitted, for any given m/z MOI, the estimated FWHM
could be used to infer the corresponding standard deviation σw of a hypothetical
Gaussian that could be used to represent the theoretical MOI peak shape and, hence,
its extent35,48, which is governed by FWHM = 2

√
2 ln2 σw. This enables data-driven

calculation of the mass-search-window width taken as mMOI ± 3σw (i.e. the span of
the erected Gaussian-window; mMOI is the m/z value at MOI) independent of the user,
measurement device and measurement parameters while also taking into account the
mass resolving power at that mass range.

3.4 Gaussian Mass-Window Weighting

As described in section 3.3, the main rational of fitting a data-driven FWHM model
as a function of m/z is to implement a user-independent estimation of a device-,
measurement- and mass range-appropriate mass-search-window for rendering MOI
ion images. However, the proposed method also allows for the use of a Gaussian
mass-window weighting scheme instead of the classical and more common method
of uniform mass-window weighting (see section 1.2). For any MOI, considering
ion mode and expected adduct formations, its theoretical monoisotopic mass, mMOI ,
is computed or taken from a curated database. For this m/z, the expected data-
dependent FWHM and σw of a Gaussian envelope centered at m/z mMOI are deter-
mined as described in section 3.3. This Gaussian envelope, after scaling to [0,1] range,
is then used as an intensity-weighting function for any detected peaks-of-interest
(POIs) which could occur within the mass-search-window mMOI ± 3σw (i.e. the span
of the Gaussian) such that the MOI pixel intensity MOIpixel for every pixel could be
estimated by Σp

j=1wj ij where p is the number of peaks observed within mMOI ± 3σw,
and wj is the corresponding Gaussian weight at the j-th peak with intensity ij. This
type of weighting is expected to reduce the impact of proximal background signals
on the estimation of MOIpixel .

3.5 Spatial Point Pattern (SPP) Representation of MSI Data

A spatial point pattern (SPP) is a dataset representing spatial locations of points
within a given spatial area or window. A point, in this context, could generally
represent any event or observation generated by a certain spatial process within a
spatial area or window, e.g., locations of tress in a forest, locations of volcanoes on
the global map or car accidents or crime incidents within a certain city.152
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MSI data is commonly represented by raster images made up of a uniform grid of
pixels which represent the laser shots positions (see section 1.2). Generally speaking,
the difference between SPP and raster image representations could be described
as the difference between vector- and raster-based graphics; they are equivalent
representations of the same spatial distribution, but each provides a unique set of
tools and methods that are tailored to the specific nature of each representation. In
this work, switching to an SPP representation for MSI data is dictated by the need for
generating complete spatial randomness (CSR) SPP models which would describe
the spatial null hypothesis (absence of spatial structures) of MOI SPPs as described in
section 3.6. MSI ion images of a certain MOI are raster images with a uniform spatial
grid, but creating a corresponding CSR model within the same spatial domain (i.e.
on a spatial grid) would directly violate the randomness criterion of such models.
Therefore, in order to facilitate the direct and homogeneous comparison between
MOI and a corresponding CSR model, MOI spatial intensities must be converted into
an SPP representation.

Once MOI’s intensities are computed according to the Gaussian mass-window
weighting method described in section 3.4, these intensities are then represented
by marked (i.e. intensity-weighted) points within an SPP of MOI signals, SPPMOI ,
whose locations are the MSI-pixel x, y-coordinates distributed in a spatial 2D contour
Φtissue representing the tissue section with a spatial point density Λ, which equals the
number of points per unit area, i.e., the average spatial density of all points n within
Φtissue or n/Atissue where Atissue is the total area of Φtissue. The spatstat framework152

has been used extensively throughout this work for analysis and manipulation of
SPP-encoded MSI data.

3.6 Molecular Probabilistic Maps (MPMs)

The aforementioned MOI SPPs, or SPPMOI , are then used to computationally deduce
molecular probabilistic maps (MPMs) which provide a user-independent spatial
evaluation of the MOI’s distribution. First, a complete spatial randomness (CSR)
model CSRMOI is generated within the same tissue window Φtissue which is used to
represent a sample of random events to be considered as an intrinsic control or a
spatial null hypothesis specific to the MOI under study. Previously published CSR
generating models primarily dealt with unmarked (unweighted) SPPs which only
considered points locations153,154. In MSI data, however, each point must carry an
intensity value (representing pixel signal intensity) in addition to the x, y-coordinate
and, therefore, CSRMOI must model randomness in spatial locations as well as in
signal intensities in an unbiased way. This criterion has been achieved in this work by
randomly permuting SPPMOI marked points, which basically has the effect of spatial
reshuffling of SPPMOI points, until they assume a homogeneous spatial Poisson
process152 with equal spatial point density Λ, thus effectively dissolving any spatial
clustering or autocorrelation of signals.
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Next, to capture MOI’s spatial trend, kernel density estimation (KDE) is applied
on both ends (SPPMOI and its corresponding CSRMOI) via an isotropic (since no spe-
cific “direction” is assumed for MOI) bivariate Gaussian kernel155 (also see section
3.8) which are then sum-normalized to compute weighted spatial density functions
ρMOI(x, y) and ρCSR(x, y), respectively. Let fMOI(k) and fCSR(k) denote the density
functions of intensities k obtained from the resulting ρMOI(x, y) and ρCSR(x, y), respec-
tively. As a consequence of the central limit theorem, and as a convenient byproduct
of applying KDE on CSRMOI , the intensity distribution fCSR(k) converges towards
a normal distribution as the bandwidth increases, which in practice can already be
observed for low bandwidth values. This does not necessarily apply to fMOI(k) (see
Figure 4.12). Hence

fCSR(k) ∼=
1

σCSR
√

2 π
e−

1
2 (

k−µCSR
σCSR

)2
(3.3)

where µCSR and σCSR are the mean and standard deviation of ρCSR(x, y). To iden-
tify areas with higher likelihood of showing a significant relative spatial abundance
of MOI when compared to a random distribution (so-called MOI hotspot; i.e. non-
random spatial accumulations of MOI intensities) and, on the other hand, areas which
have a higher likelihood of showing a significant relative spatial deficiency of MOI
(so-called MOI coldspot; i.e. non-random spatial depletion of MOI intensities), the
lower and upper tail p-values are computed for every pixel intensity in ρMOI(x, y)
against the null distribution fCSR(k) resulting in two spatial maps of lower and upper
tail p-values Plwr(x, y) and Pupr(x, y), respectively.

Next, to account for the inherent multiple testing problem, Benjamini-Hochberg
p-value correction is applied resulting in P∗

lwr(x, y) and P∗
upr(x, y) (see Figure 4.8).

Then null-hypothesis significance testing is carried out by comparing each corrected
p-value in P∗

lwr(x, y) and P∗
upr(x, y) against a significance level of α = 0.05. Locations

that reject the null-hypothesis are declared to belong to either an MPM hotspot
(xhs, yhs) or coldspot (xcs, ycs) if

(xhs, yhs) ∈ {x, y : P∗
upr(xhs, yhs) ≤ α}

(xcs, ycs) ∈ {x, y : P∗
lwr(xcs, ycs) ≤ α}

(3.4)

The MOI’s molecular probabilistic map, MPMMOI is then defined as a composite
representation of MOI spatial density of Gaussian weighted intensities (section 3.4),
with MOI hotspots and/or coldspots superimposed as polygonal contours identifying
areas of MOI significant abundance and deficiency, respectively.
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3.7 Cross-tissue molecular Probabilistic Maps (CT-MPMs)

Ion intensity distributions of metabolites or drugs are compared between test and
reference tissues, e.g. those dosed with a drug or carrying certain mutations versus
controls, in two steps: First, areas of significant relative spatial abundance/deficiency
are computed in the test tissue (testing against the spatial null hypothesis; MPM
method described above) as described in the preceding section 3.6. Then the signal
intensities of the reference tissue are used to infer a non-parametric (distribution-free)
empirical cumulative distribution function (eCDF) which acts as an estimator of the
underlying cumulative distribution function. All MOI intensities of the test tissue are
then tested against it (i.e. the inferred eCDF) in order to find the likelihood of them
(i.e. signal intensities of the test tissue) being drawn from the signal distribution of the
reference tissue. More precisely, the lower and upper tail p-values are computed for
every MOI intensity in SPPMOI of the test tissue against the inferred eCDF of the refer-
ence tissue and Benjamini-Hochberg correction is applied to account for the inherent
multiple testing problem. Similar to the “within-tissue” MPM method described in
the preceding section, the p-value threshold beyond which the null hypothesis is
rejected is set to α = 0.05. Finally, test tissue intensities which reject both the spatial
and test-vs-reference intensity distributions null hypotheses are designated as having
significant cross-tissue relative spatial abundance/deficiency. In other words, pixel lo-
cations of these intensities could be described as areas of the test tissue which exhibit
a statistically significant non-random spatial MOI abundance/deficiency pattern and
contain intensities that are unlikely to belong to the distribution of MOI intensities of
the reference tissue.

3.8 Kernel Density Estimation (KDE) Bandwidth

KDE is a nonparametric technique commonly used for the estimation of the under-
lying probability density functions (a.k.a. density estimation) based on observed
data points156. KDE is a key step in the MPM workflow: i) It captures the overall
spatial trend of the MOIs’ intensities and ii) it forces fCSR to converge to a normal
distribution (see section 3.6). This, however, makes MPMs sensitive to the chosen
kernel bandwidth hKDE. To prevent spatial over-smoothing, this work introduced a
method for KDE bandwidth estimation which takes into account the inherent spatial
autocorrelation of MSI measurements157.

This has been achieved by applying KDE smoothing iteratively with hKDE varying
from 1 to 10 (pixels; multiples of 50 µm in this work) in 0.5 increments, during
each iteration the global Moran’s I statistic, a measure of spatial autocorrelation,
is determined (via the raster package; first order Queen’s case adjacency with unit
weights). The optimal hKDE is then determined by finding the point of maximum
curvature, i.e. the “knee” point, via the Kneedle method158 in the Moran’s I vs hKDE
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plot. This is the point, after which an increase in hKDE does not result in a considerable
increase in the spatial autocorrelation of the smoothed density image.

In other words, the KDE bandwidth at which the Moran’s I statistic’s rate of change
abruptly falls, is the scale, at which it is expected that random pixel fluctuations are
smoothed away and important spatial structures/features/patterns start dominating
the spatial landscape.

3.9 Collective Projections Probability Maps (CPPMs)

This work further extends the concept of MPM to cover situations where there is an
interest in investigating the collective distribution of a custom group of metabolites
that could share a certain similarity (ex. lipid classes).

Given a set of target MOIs C ∈ {MOI1, MOI2, . . . , MOIm}, which in this work are
queried from the SwissLipids database (https://www.swisslipids.org)148 and verified
against the POI-MOI matching platform METASPACE (https://metaspace2020.eu)147,
for each single MOIi an SPP representation SPPi is calculated as described in sections
3.4-3.5. Next, all individual SPPi are projected into the same tissue plane Φtissue

resulting in an SPP for the collective projection, SPPC.

Since SPP representations do not restrict the number or location of points in the
point pattern, a single SPP can hold any number of points coming from any number of
MOIs. Since POI-MOI matching usually reports a group of candidate molecules for a
single POI (at a given FDR, metabolite database and mass resolving power), mapping
MOIs to POIs could result in duplicated representations of POIs within CPPMs. This
problem is mitigated by filtering out duplicated counts of the same m/z value by
incorporating only the intensities of unique masses present in SPPC. Moreover, if
two MOIs of the MOI set C overlap due to insufficient resolving power of the mass
spectrometer at m/z MOI, the Gaussian mass-window weighting compensates for
this, provided that the two MOIs are at least partly resolved (See Figures 4.5, 4.6 and
4.7 exemplifying resolved, partially resolved and unresolved MOIs, respectively).

Intensity z-score normalization (i.e. standardization) is then applied on the intensi-
ties of each individual SPPi within SPPC by subtracting its (i.e. SPPi) intensities mean
and dividing by the standard deviation. This type of transformation aims to equalize
the variance of measured MOI intensities by setting the mean intensity of each MOI
equal to zero, thereby adjusting for differences in the offset between MOIs with high
and low intensity ranges, while, at the same time, setting the standard deviation
of intensities equal to one159. This is done to (at least partially) compensate for the
inherent heteroscedasticity and possible differences in ionization efficiency between
the individual MOIis. Then CSRC is created and subsequently KDE is applied to
both SPPC and CSRC , in order to compute MPMC as described in section 3.6, i.e.
the resulting collective projection probabilistic map CPPM is equivalent to MPMC.
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The naming distinction is only made to emphasize that CPPMs are based on the
visualization of multiple MOIs at a time.

3.10 Spatial Arithmetic Expressions

The proposed method also allows for basic arithmetic operations on MOIs’ SPPs
which could be useful in situations when a ratio of two MOIs is desired or when
a more complex composite score is of interest. This could be achieved, first, by
converting the set of input SPPMOIs into corresponding pixel-based images with
equal pixel grids. Afterwards the spatial expression is evaluated on a pixel-by-pixel
basis. Calculation artifacts such as division by zero (i.e. absence of a peak in that
pixel) are computationally dropped during the conversion back to SPP, while low
values in the denominator (representing detector baseline or very low peak intensities)
are not expected because moleculaR works mainly with centroided (SNR ≥ 3) MSI
data. The resulting raster image is then converted back to an SPP whose points are
carrying the respective computed pixel intensities. This SPP is then fed into the MPM
framework as described in section 3.6. No arithmetic operations are applied on the
hotspot/coldspot contours.

3.11 Synthetic Data Generation

In order to validate the proposed methods, a ground-truth SPP data was simulated
based on four pre-defined spatial patterns of simulated foregrounds representing
high MOI abundance: i) Single central circle of radius 25 length units (Figure 4.14a),
ii) five equidistantly placed circles of 10 length units radius (Figure 4.14b), iii) a
ring-like structure with 30 and 20 length units for outer and inner radii, respectively
(Figure 4.14c) and iv) a dominant central circle of 20 length units radius with four
adjacent smaller ones of 5 length units radius each (Figure 4.14d).

Each foreground pattern was placed within a square window of 100 length units
denoting the background. Points were distributed within foreground and back-
ground areas according to a homogeneous spatial Poisson point process with spatial
point densities Λ of 0.4 and 0.3 points per unit area for foreground and background,
respectively. Points’ intensity values (marks) were sampled from above and below
the upper quartile (i.e. Q3) of the empirical intensities of i) a MALDI-FTICR-MSI
measurement of a human IDH-WT GB tissue sample (section 3.1.2; Figure 4.9a) at m/z
544.3009 ([PE(20:1)+Na]+; FDR ≤ 0.2) or ii) a MALDI-TOF-MSI measurement of a hu-
man gastrointestinal stromal tumor (GIST) tissue sample (section 3.1.1; Figure 4.32e)
at m/z 494.2662 (imatinib [M+H]+) for the simulated foreground and background
areas, respectively.

The difference in spatial point densities and marked intensities accounts for the
increased signal intensities and spatial density of peak signals, which is normally
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observed for areas of high relative abundance of an MOI (i.e. high spatial autocorre-
lation) which indicate a probable biological process spatially localized within a given
tissue morphology.

The evaluation proceeded by testing the ability of MPMs to localize the simulated
foreground correctly and identify points exhibiting significant relative spatial abun-
dance visually and by computing Dice similarity coefficient (DSC) values between
the foreground areas and estimated MPM hotspots (see Figure 4.14). Moreover, the
simulated ground-truth was also used for validating the proposed KDE bandwidth es-
timation method (section 3.8), by iteratively estimating MPM for every simulated SPP
type using incrementally assigned KDE Gaussian bandwidth hKDE , which was varied
from values of 0 to 10 length units in 0.1 incremental steps. During each iteration,
DSC was computed between the estimated hotspot contour and the ground-truth
foreground used for generating the simulated SPP.

3.12 Artificially Added Noise

To further test the proposed methods for stability and robustness against noise
sources commonly observed in MALDI MSI, raw data was artificially “contaminated”
with different noise types (see Figure 4.18): i) random Gaussian noise, ii) presence
of abnormally high-intensity peak artifacts (“intensity artifacts”), and iii) added
overlapping peaks at an arbitrary 2σw distance away from m/z MOI (“interference”).

For added Gaussian noise, intensities were sampled from a Gaussian distribution
fGaussian with µnoise = µMOI and σnoise= σMOI and added to all pixels of the MSI data,
where µnoise and σnoise are the mean and standard deviation of fGaussian and µMOI and
σMOI are the mean and standard deviation of the MOI intensity distribution fMOI .
Moreover, MPMs were tested against a Gaussian noise source with varying σnoise=
σk (k = 0 . . . 10), where σ0 =

√
µMOI and σk = k σMOI for k = 1 . . . 10. For k = 0, the

resulting noise is similar to Poisson noise with λPoisson = µMOI ≫ 1000 (see Figure
4.20).

The same computational experiment was repeated, this time spiking sampled
noise in the vicinity of m/z MOI (point iii above) at m/z MOI + 2σw, where σw is the
standard deviation of the Gaussian envelope inferred from fitted FWHM vs m/z-axis
curve as described in section 3.4. For added intensity artifacts (point ii above), noise
intensities were sampled from a uniform rectangular distribution whose range far
exceeded the range of the MOI intensity distribution fMOI . These were added to
n = 10 random pixels of the MSI data, but also, for an extended evaluation, with a
varying number of intensity artifacts n (up to n = 5000; ≈ 20% of the total tissue
pixels) randomly placed within the tissue window (see section 4.4.6).

An additional evaluation was performed by comparing MOIs’ hotspots of raw
data and its artificially contaminated counterpart for 142 MOIs (identified with FDR ≤
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0.2 in positive ion mode against the SwissLipids148 database) of a MALDI-FTICR-MSI
measurement of the human IDH-WT GB tissue section described in section 3.1.2, each
time computing DSC values of MPM-based hotspots of raw and contaminated MOIs
(Figure 4.19). The higher the DSC value for a particular artificial noise contamination,
the lower the proposed method is impacted by that type of artificial noise.

3.13 Regression Models and Quantification

The imatinib quantification study143 comprised a total of 48 MALDI-TOF-MSI and
three MALDI-FTICR-MSI measurements (slides) each containing duplicated spots
of an imatinib dilution series (25, 12.5, 6.25, 3.125, 1.56, 0.78 pmol and a blank
control spot) spotted onto porcine liver tissue which is mounted adjacent to the GIST
tissues (see Supplementary Figure 8.3) for constructing intra-measurement linear and
nonlinear drug calibration curves as proposed in the published study Abu Sammour
et al.143 and described in the following two sections.

3.13.1 Linear Calibration Model

Linear calibration curves, which are predominantly used for quantification MALDI-
MSI studies78,160, has been fitted to the imatinib dilution for every measurement
slide. Here, linear regression has been performed to assess the linear relation between
imatinib signal intensity y (arb. units; normalized to IS) and amount of spotted
Imatinib x (pmol) such that

y = a x + b (3.5)

Where a is the slope and b is the y-intercept. To express the limit of detection
(LOD), let yLimit denote the smallest detectable signal intensity and yBlank and σBlank

are the mean and the standard deviation of the signal intensity in the blank (control)
measurement area, respectively. Assuming a normal distribution of the detector noise
signal it can be stated that

yLimit = ȳBlank + k σBlank (3.6)

Where k is a factor normally equal to 3 for a confidence level >99.7% i.e. the
smallest reliably detectable drug signal is k = 3 standard deviations above the mean
signal, all measured within the blank (control) measurement area. Equation 3.5 can
be re-written to reflect LOD

yLimit = a xLimit + ȳBlank (3.7)

Which could be substituted into Equation 3.6 to yield
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xLimit =
k σBlank

a
(3.8)

Where xLimit = LOD for k = 3 and xLimit = the limit of quantification (LOQ) for
k = 10.78,160 In other words, LOD and LOQ for a linear regression model can be
expressed (here, in the unit of pmol) conveniently by the standard deviation of the
signal of interest in the blank (i.e. detector baseline) and the slope of the fitted model.
Moreover, for centroided (peak-picked) MALDI-MSI data where the background
detector noise is normally eliminated during pre-processing, LOD and LOQ could
still be estimated since σBlank can also be approximated by the standard error of the
y-intercept in the fitted linear model.

To limit the effect of heteroscedasticity on the regression model, which is normally
observed in MALDI-MSI37,39,161, a weighted linear regression has been performed
such that each calibration point (representing the mean intensity of the drug signal
within the respective dilution area) was down weighted by its pixel-wise variance
within that area.

3.13.2 Generalized Nonlinear Calibration Model

Although linear calibration curves are the norm in quantitative MALDI MSI as dis-
cussed in the previous section, a nonlinear behavior of the Imatinib dilution series
which closely resembles a power-function response was observed in all measured
MALDI-TOF-MSI and MALDI-FTICR-MSI GIST datasets (see section 4.5. To accom-
modate this observation, a nonlinear regression was performed by fitting a power
function as a calibration curve in the form of

y = a xb + c (3.9)

Where a, b and c are constants, c was added to represent the superimposed detector
noise (background signal when the drug signal is absent). Note that as b → 1, the
model’s response approaches linearity and the above equation reduces to an equation
of a line. To quantify the LOD and LOQ, Equation 3.9 can be re-written as follows

yLimit = a xb
Limit + ȳBlank (3.10)

Rearranging the above equation and plugging Equation 3.6 into it yields

xLimit = (
k σBlank

a
)1/b (3.11)

Where xLimit = LOD for k = 3 and xLimit = LOQ for k = 10.78,160 Therefore, similar
to the linear model, the LOD and LOQ for the nonlinear fit can be conveniently
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expressed as a function of the standard deviation of the signal of interest in the blank
measurement area (i.e. detector baseline) and the coefficients of the fitted model a
and b.

Moreover, and similar to the linear case, for centroided (peak-picked) MALDI-
MSI data where the background detector noise is normally eliminated during pre-
processing, σBlank can be approximated by the standard error of coefficient c derived
from the nonlinear model fit. The nonlinear regression was also weighted by the
inverse of the variance of each calibration point to limit the impact of the signal
heteroscedasticity37,39,161 on the fitted model.
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Chapter 4

Results

This chapter outlines the results obtained from implementing the methods discussed
in the preceding chapter demonstrating the outcomes on different tissue showcases.
The chapter is sub-divided into five sections: 1) The moleculaR package, 2) data-driven
modeling of mass spectrum peaks as a function of mass-to-charge ratio (m/z), 3)
Gaussian versus uniform mass-window weighting, 4) probabilistic spatial mapping
of molecules in tissues via mass spectrometry imaging (MSI) and 5) quantitative
spatial mapping of imatinib in gastrointestinal stromal tumor (GIST) tissue samples.
Sections 4.2-4.4 are based on the proposed moleculaR framework142 while section 4.5
is based on the study Abu Sammour et al.143

4.1 The moleculaR Package

The computational framework, moleculaR, has been made available for the scientific
community as an open-source R package deposited on Github (https://github.com/
CeMOS-Mannheim/moleculaR). All methods described in sections 3.3-3.12 have
been implemented in R and provided to the end-user in a well-documented structure.
Additional helping functions have also been provided for importing MSI data, basic
pre-processing, simulation, conversion to spatial point pattern (SPP) and sparse ma-
trix representations and visualization of the results. As of this writing, the moleculaR
package constitutes 40 functions and methods and >3000 lines of code.

moleculaR comes pre-loaded with an example data of the glioblastoma (GB) tissue
sample (section 3.1.2) and is capable of importing metabolite annotation results from
the METASPACE annotation engine (https://metaspace2020.eu)147 to compute FDR-
verified moleculaR probabilistic maps (MPMs) and collective projection probabilistic
maps (CPPMs). moleculaR also provides a graphical user interface* developed using
the shiny framework in R which can be run locally or hosted remotely on a server.
Code vignettes are also provided as part of the package to illustrate its basic function-
ality, one such vignette is illustrated in section 8.3 in the Appendix. Data used in this
work is available for download (https://metaspace2020.eu/ project/abusammour-
2022) in the imzML34 data format.

*The graphical user interface based on shiny was developed with contribution from J. L. Cairns
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4.2 Data-driven Modeling of Mass Spectrum Peaks

Rendering ion images of molecules-of-interest (MOIs) in MSI always entails the
selection of an appropriate mass-search window where that MOI signal is to be
found.79 In order to achieve a user-independent and modality-, measurement- and
data-specific assignment of this mass-window width, the measurement-specific mass
resolving power, RFWHM, was chosen as a suitable and unbiased property to define the
extent of the mass-window width for any given MOI. However, mass resolving power
theoretical modeling is different depending on the mass spectrometer technology
(see section 3.3). This has called for an empirical estimation of this property by
plotting the full-width at half-maximum (FWHM), or ∆m50%, values for individual
mass peaks, whose signal-to-noise ratio (SNR) ≥ 3, as a function of ion mass m and
then fitting a locally-estimated scatter-plot smoothing (LOESS) curve that would
approximate FWHM at any given m/z-value and therefore provide an estimate for
the mass resolving power at any given mass range since RFWHM = m/∆m50%.

Figure 4.1 demonstrates FWHM modeling as a function of ion m/z for Fourier
transform ion cyclotron resonance (FTICR; Solarix, Bruker Daltonics), time-of-flight
(TOF; rapifleX, Bruker Daltonics) and Trapped ion mobility spectrometry time-of-
flight (timsTOF; timsTOFflex, Bruker Daltonics) matrix-assisted laser desorption
ionization (MALDI) MSI devices. For each case, peaks of 100 randomly sampled
spectra were used to construct the FWHM vs ion m/z plot (black points in Figure
4.1). Despite the clearly observed fluctuations of the detected FWHM values along
the y-axis, it can be seen that for the MALDI-FTICR-MSI case, the fitted FWHM
model closely follows the FWHM theoretical expectation (Equation 3.2) for the mass
spectrometer. For time-of-flight-based mass spectrometers (Figure 4.1bc), the fitted
FWHM model deviates somewhat from the expected linear (i.e. constant) behavior76

but not significantly when compared to the case of FTICR in Figure 4.1a.

moleculaR is designed to work with centroided MSI data (i.e. not profile, retaining
only m/z values and corresponding signal intensities of the detected/observed peaks
in any given spectrum; see section 1.2). Since peaks’ FWHM values cannot be
computed for centroided data, this information has to be supplied externally in the
form of a profile spectrum randomly chosen from the same MSI measurement data.
To test if one randomly chosen spectrum could be representative of the entire MSI
measurement data to correctly model the inherent FWHM as a function of the m/z-axis,
a comparison has been performed between FWHM models generated based on one
and 100 randomly chosen spectra of a Glioblastoma (GB) tissue MALDI-FTICR-MSI
measurement in both positive and negative ion modes (total of four measurements;
Figure 4.2). The results illustrate that a single spectrum could indeed be enough
to generate a FWHM model for an entire MSI measurement. Also, when all four
fitted models are superimposed, it can be seen in Figure 4.2c that the chosen ion
mode has rather no influence on the FWHM model outcome, which is theoretically
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expected (see section 3.3). Moreover, six arbitrary peaks taken from the sampled
positive and negative ion mode spectra were compared, such that the corresponding
FWHM values were manually measured by the vendor software and estimated based
on the fitted FWHM curves (Figure 4.2d). The differences observed ranged between
0.0001 Da and 0.0021 Da for the lower and higher mass range, respectively.

FIGURE 4.1: Comparison of fitted full-width at half-maximum (FWHM) curves as a function
of ion mass for a) FTICR, b) rapifleX TOF and 3) timsTOFflex MALDI MSI devices. For every
case, 100 randomly chosen mass spectra were evaluated for the FWHM curve via locally
estimated scatter-plot smoothing (LOESS; green curve). Panel a shows a comparison between
the calculated theoretical FWHM vs mass relationship excluding ion collisions (low-pressure
limit; dashed blue curve; Equation 3.1) and including ion collisions (dashed pink curve;
Equation 3.2; z is the ion charge) on one hand, and the empirical FWHM vs m/z based on
the estimated FWHM values (solid green curve; LOESS) for the MALDI-FTICR-MSI data.
The estimated FWHM model based on empirical data closely follows the FWHM theoretical
expectation for the mass spectrometer. Figure was adapted from Abu Sammour et al.142 with
partial contribution from S. Schmidt and with permission from Springer Nature.
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FIGURE 4.2: Modeling FWHM as a function of m/z for MALDI-FTICR-MSI data for the human
Isocitrate Dehydrogenase-Wild Type (IDH-WT) glioblastoma (GB) tissue section and its serial
section as a technical replicate (section 3.1.2; Figure 4.9a). a) locally-estimated scatter-plot
smoothing (LOESS) curves were fit to FWHM vs m/z data points for this GB tissue data
based on a single versus 100 randomly chosen spectra for the positive ion- (left panel) and
negative ion (right panel) modes. b) Same as a but created for the GB tissue replicate data. c)
a and b superimposed showing similar behavior of FWHM fitted curves for data that has
been measured with the same measurement parameters. d) Six arbitrary peaks taken from
the sampled positive ion (left column) and negative ion (right column) mode spectra in c.
The corresponding FWHM values (black) are displayed as provided by the vendor software
(DataAnalysis version 5.3; Bruker Daltonics) and as estimated based on the fitted FWHM
curves (green). Figure was adapted from Abu Sammour et al.142 with partial contribution
from S. A. Mohammed and with permission from Springer Nature.
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4.3 Gaussian vs Uniform Mass-window Weighting

The preceding section described the empirical modeling of FWHM as function of m/z
for any given MALDI-MSI data that could be used to estimate peaks’ FWHM values
(and hence the mass resolving power) at any given m/z value. This is then used to
calculate the mass-window width needed for rendering MOI ion intensity images
in a user-independent and device-, measurement- and mass range-appropriate way.
This has been achieved by exploiting the direct relation between the FWHM and the
standard deviation σw of a hypothetical Gaussian that could be used to represent
the theoretical MOI peak shape and, hence, its extent35,48, which is governed by
FWHM = 2

√
2 ln2 σw (see section 3.3). This enables data-driven calculation of

the mass-search-window width taken as mMOI ± 3σw (i.e. the span of the erected
Gaussian-window; mMOI is the MOI’s m/z value).

The described Gaussian envelope helps not only in determining the extent of
the MOI- and peaks’ FWHM-specific mass-window but also provides a convenient
framework for down-weighting proximal interfering signals in the vicinity of m/z
MOI (Figure 4.3). This is achieved by assigning corresponding Gaussian weights
for all peaks-of-interest (POIs; i.e. observed peak signals within the estimated mass-
window; see section 1.2) such that, the further the measured m/z (= POI or interference
in Figure 4.3) from the theoretical m/z (= MOI; dashed black line in Figure 4.3), the
lower the weight it receives in the final ion representation.

FIGURE 4.3: Data-dependent Gaussian weighting of ion intensities and transformation into a
spatial point pattern (SPP) representation of a molecule-of-interest (MOI). Full-width at half-
maximum (FWHM) values are computed for all peaks of a randomly chosen full profile mass
spectrum and curve-fitted to model FWHM as a function of m/z. For any m/z MOI (dashed
black line), a Gaussian envelope is computed whose standard deviation σw is inferred from
the estimated FWHM at m/z MOI. All observed peaks (peak-of-interest, i.e. POI: solid blue
line; interference: solid orange line), which fall within the span of the calculated Gaussian
envelop centered at m/z MOI, are Gaussian-weighted, thereby down-weighting proximal
interfering signals. Figure was adapted from Abu Sammour et al.142 with partial contribution
from M. Rittel and with permission from Springer Nature.
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To explore the effects of Gaussian mass-window weighting, MALDI-FTICR-MSI
data of an Isocitrate Dehydrogenase-Wild Type (IDH-WT) glioblastoma (GB) sample
(section 3.1.2) was artificially "contaminated" with a random Gaussian noise source
by computationally spiking in an interfering signal at successive mass intervals (mul-
tiples of σw) away from an example MOI, PE(20:1)[M+Na]+ (Figure 4.4). Pixel-wise
mean squared error (MSE) between raw data image and the artificially contaminated
version was computed at increasing m/z distances measured away from m/z MOI
for both, uniform and Gaussian mass-window weighting within the extent of the
estimated mass-window (Figure 4.4b). Not surprisingly, Gaussian mass-window

FIGURE 4.4: The effect of Gaussian mass-window weighting on an exemplary molecule-of-
interest (MOI), PE(20:1)+Na+ (monoisotopic m/z 544.3009; FDR ≤ 0.2), „contaminated” with
an artificial noise source (see Figure 4.18ab; interference type spiked at a close proximity of m/z
MOI). a) Raw ion image of m/z 544.3009 of an MALDI-FTICR-MSI Isocitrate Dehydrogenase-
Wild Type (IDH-WT) glioblastoma (GB) data (estimated FWHM = 0.0082; corresponding
to σw = 0.0193). b) Pixel-wise mean squared error (MSE) between raw data image in a and
artificially contaminated data image computed for increasing m/z distances measured in
multiples of σw away from m/z MOI (MOI + Factor×σw). Compared to the standard uniform
mass window weighting (indicated as “sum”; dashed line in b), Gaussian mass-window
weighting method handles interference noise (modeling proximal background signals) more
effectively, which is also optically evident in the lower panel of c. Figure was adapted from
Abu Sammour et al.142 with permission from Springer Nature.
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weighting was more effective in removing interference noise (modeling proximal
background signals), as indicated by the computed MSE (Figure 4.4b) and by visual
inspection (Figure 4.4c).

To further validate this approach, two adjacent MOIs*, phosphatidylserine PS(40:6)
[M-H]− (m/z 834.5290) and C20:0 sulfatide (3’-sulfo) GalCer(38:1) [M-H]− (m/z 834.5770)
were visualized in adjacent sagittal mouse brain sections (see section 3.1.4) for a cross-
platform comparison using FTICR (Figure 4.5), timsTOF (Figure 4.6) and TOF (Figure
4.7) MALDI-MSI data. Here, for the MALDI-FTICR-MSI case shown in Figure 4.5, at
a calculated mass resolving power of 45k corresponding to a 3σw of 0.0237 Da, a clear
separation for both uniform and Gaussian mass-window weighting was expected.
However, due to the presence of Fourier transform-specific artifacts, formally known
as side lobes162, the position of the upper side lobe signal of m/z 834.5290 (MOI1) was
directly at the lower edge of the estimated (from data) mass-window of m/z 834.5770
(MOI2). This can be clearly observed in the centroided overview sum spectrum in
lower panel of Figure 4.5. In uniform mass-window weighting, all observed POI
are equally weighted and, therefore, the mentioned artifact directly interferes with
the rendered ion intensity image of m/z 834.5770 (MOI2) resulting in a homogeneous
intensity distribution for m/z 834.5770 (MOI2) throughout the tissue section (“sum”;
Figure 4.5). The Gaussian mass-window weighting, on the other hand, successfully
down-weights this interference, as indicated by the distinguishable intensity images
for both MOIs.

For the case of MALDI-timsTOF-MSI of Figure 4.6, uniform mass-window weight-
ing was ineffective in distinguishing the above two MOIs. The centroided overview
sum spectrum in lower panel of Figure 4.6 shows a clear overlap between the data-
estimated mass-windows due to the lower mass resolving power (≈ 15k at that mass
range) compared to the case of MALDI-FTICR-MSI above. Despite this, Gaussian
mass-window weighting was able to down-play the effects of proximal interfering
peaks for both MOIs producing distinctive ion intensity images in accordance with
the result obtained from MALDI-FTICR-MSI.

On the other hand, both POI weighting methods failed to differentiate between
both MOIs for the MALDI-TOF-MSI case of Figure 4.7 owing to the sub-standard
mass resolving power of just about 5,000 for that particular measurement which
resulted in almost a complete overlap between of the data-estimated mass-windows
as seen in the centroided overview sum spectrum in lower panel of Figure 4.7.

*The presence of these two MOIs was first noted and reported by J.L. Cairns
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FIGURE 4.5: Comparison of Gaussian and uniform mass-window weighting shown on
MALDI-FTICR-MSI data. Gaussian mass-window weighting (at m/z 834.5290, FWHM =
0.0186; σw = 0.0079; 3σw = 0.0237; mass resolving power ≈45k) of exemplary molecules-of-
interest (MOIs), phosphatidylserine PS(40:6) [M-H]− (MOI1; m/z 834.5290; FDR ≤ 0.05; light
red) and C20:0 Sulfatide (3’-sulfo) GalCer(38:1)[M-H]− (MOI2; m/z 834.5770; FDR ≤ 0.10;
turquoise) shown for a sagittal mouse brain MALDI-FTICR-MSI data (section 3.1.4). The
mass spectrum in the lower panel shows a centroided overview sum spectrum generated
by summing up all peak intensities throughout the entire measurement. The color-coded
Gaussians represent Gaussian mass-window weighting envelopes for the above mentioned
MOIs (red dotted line for MOI1 and turquoise dotted line for MOI2). The mass window
width is inferred from the mass resolving power at the respective MOI and taken as the
calculated m/z MOI ± 3σw (i.e. the span of each Gaussian envelope width of the colored
areas of each MOI individually) for both uniform mass-window weighting (“sum”; upper
row) and Gaussian mass-window weighting (middle row). Note the two side lobe peaks162

(black arrows) of MOI1 with the one at m/z 834.5540 falling within the calculated mass
window of MOI2. This interfering peak results in a homogeneous intensity distribution for
MOI2 throughout the tissue section based on uniform window weighting (“sum”), while the
Gaussian–weighted method successfully down-weights this interference, as indicated by the
distinguishable intensity images for both MOIs. Figure was adapted from Abu Sammour
et al.142 with permission from Springer Nature. The presence of MOI1 and MOI2 was first
noted and reported by J.L. Cairns.
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FIGURE 4.6: Comparison of Gaussian and uniform mass-window weighting shown on
MALDI-timsTOF-MSI data. Gaussian mass-window weighting (at m/z 834.5290, FWHM =
0.0539; σw = 0.0229; 3σw = 0.0687; mass resolving power ≈15k) of exemplary molecules-of-
interest (MOIs), phosphatidylserine PS(40:6)[M-H]− (MOI1; m/z 834.5290; FDR ≤ 0.05; light
red) and C20:0 Sulfatide (3’-sulfo) GalCer(38:1)[M-H]− (MOI2; m/z 834.5770; FDR ≤ 0.10;
turquoise) shown for a sagittal mouse brain MALDI-timsTOF-MSI data. The mass spectrum
in the lower panel shows a centroided overview sum spectrum generated by summing up all
peak intensities throughout the entire dataset. The color-coded Gaussians represent Gaussian
mass-window weighting envelopes for the above mentioned MOIs (red dotted line for MOI1
and turquoise dotted line for MOI2). The mass window width is inferred from the mass
resolving power at the respective MOI and taken as the calculated m/z MOI ± 3σw (i.e. the
span of each Gaussian envelope width of the colored areas of each MOI individually) for both
uniform mass-window weighting (“sum”; upper row) and Gaussian mass-window weighting
(middle row). The results indicate that Gaussian-weighting is able to down-play the effects of
proximal interfering peaks. Figure was adapted from Abu Sammour et al.142 with permission
from Springer Nature. The presence of MOI1 and MOI2 was first noted and reported by J.L.
Cairns.
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FIGURE 4.7: Comparison of Gaussian and uniform mass-window weighting shown on
MALDI-TOF-MSI data. Gaussian mass-window weighting (at m/z 834.5290, FWHM = 0.1991;
σw = 0.0845; 3σw = 0.2536; mass resolving power ≈5k) of exemplary molecules-of-interest
(MOIs), phosphatidylserine PS(40:6)[M-H]− (MOI1; m/z 834.5290; FDR ≤ 0.05; light red) and
C20:0 Sulfatide (3’-sulfo) GalCer(38:1)[M-H]− (MOI2; m/z 834.5770; FDR ≤ 0.10; turquoise)
shown for sub-standard (used on purpose) sagittal mouse brain MALDI-TOF-MSI data. The
mass spectrum in the lower panel shows a centroided overview sum spectrum generated by
summing up all peak intensities throughout the entire dataset. The color-coded Gaussians
represent Gaussian mass-window weighting envelopes for the above mentioned MOIs (red
dotted line for MOI1 and turquoise dotted line for MOI2). The mass window width is inferred
from the mass resolving power at the respective MOI and taken as the calculated m/z MOI
± 3σw (i.e. the span of each Gaussian envelope width of the colored areas of each MOI
individually) for both uniform mass-window weighting (“sum”; upper row) and Gaussian
mass-window weighting (middle row). The mass resolving power of this measurement was
insufficient for distinguishing the mentioned MOIs as was possible with MALDI-FTICR-MSI
(Figure 4.5) and MALDI-timsTOF-MSI (Figure 4.6). Figure was adapted from Abu Sammour
et al.142 with permission from Springer Nature. The presence of MOI1 and MOI2 was first
noted and reported by J.L. Cairns.
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4.4 Probabilistic Spatial Mapping of Biomolecules in MSI

This work proposes an alternative way of studying the spatial distribution of MOIs
in a tissue samples and is based on the corresponding study of Abu Sammour et
al.142 The preceding two sections showed how the the proposed moleculaR framework
introduces i) user-independent rendering of ion intensities where the mass-window
is estimated based on the mass-resolving power of the mass spectrometer (section
4.2) and ii) a new mass-window weighting scheme which down-plays interfering
background signals (section 4.3). More importantly, this work proposes a user-
independent spatial interpretation of the distribution of MOI’s signal relative to the
tissue morphology via spatial probabilistic mapping. In the following subsections, an
attempt is made to visually explain, evaluate, showcase and validate the methods
described in sections 3.6-3.12 of Chapter 3.

4.4.1 Molecular Probabilistic Maps (MPMs)

The main idea of this approach is to compare the MOI’s spatial distribution against
a complete spatial randomness (CSR) model to find areas which exhibit statistically
significant non-random spatial patterns of MOI intensities independent of how an
end-user may perceive its (i.e. MOI’s) spatial relative abundance or deficiency.

The creation of the CSR model requires a gridless representation of the centroided
MSI data, because creating an MOI-based CSR model within the same spatial domain
(i.e. on a spatial grid) would directly violate the randomness criterion of such models
(see section 3.5 for details). To achieve this, MOI pixel intensities (centroided; SNR
≥ 3) are converted into a spatial point pattern (SPP) representation152 as follows:
Once MOI’s pixel intensities are computed according to the Gaussian mass-window
weighting method (section 4.3), these pixels are then represented by marked data
points (i.e. data points carrying ion intensities) within an SPP of MOI signals. The
locations of these data points are the MSI-pixels x, y-coordinates placed in a spatial 2D
contour representing the tissue section as shown in the rightmost tissue illustration
of Figure 4.3 and Figure 4.8a.

Next, to create the CSR model corresponding to a given MOI, random spatial
permutation (i.e. spatial "reshuffling") is applied to the data points of the MOI’s SPP,
until they assume a homogeneous spatial Poisson process152, which is then used as
the spatial null distribution for significance testing (Figure 4.8a). As a consequence of
applying kernel density estimations (KDE) via an isotropic Gaussian on both sides
(see section 4.4.4), the sample distribution of the intensities, fCSR(k) in Figure 4.8a,
derived from the CSR spatial density image, is expected and observed to converge
towards a normal distribution (see section 4.4.4). This then forms the basis for a
pixel intensity-wise significance testing based on the CSR null distribution to isolate
intensities of MOI’s density image that are unlikely to occur if generated by a random
spatial process. Figure 4.8b provides an illustration of this process: For each pixel
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intensity value in the MOI’s spatial density function, ρMOI(x, y), a lower- and upper-
tail p-values are computed based on the null distribution fCSR(k) resulting in two
spatial maps of lower and upper tail p-values Plwr(x, y) and Pupr(x, y) in Figure
4.8b, respectively. These p-values are then Benjamini-Hochberg-corrected. Spatial
null-hypothesis significance testing is carried out against a significance level α of 0.05.

Consequently, MPM hotspot and coldspot contours are defined as locations where
the null-hypothesis is rejected for the upper- or lower-tail corrected p-values, thus

FIGURE 4.8: Molecular Probabilistic Map (MPM) computational workflow. a) A correspond-
ing complete spatial randomness (CSR) model is created for each molecule-of-interest’s (MOI;
here SM(d36:4)[M+H]+; FDR ≤ 0.10; FTICR MSI) spatial point pattern (SPP) with equal
spatial point density. Kernel density estimation (KDE) is applied for both, thus resulting
in weighted spatial density functions, ρMOI(x, y) and ρCSR(x, y). The intensity distribution
function fCSR(k), which converges to a normal distribution (Figure 4.12), then serves as the
null distribution against which the pixel intensities of ρMOI(x, y) are tested. b) For each
pixel intensity value in ρMOI(x, y) lower and upper tail p-values are computed based on
the null distribution fCSR(k) resulting in two spatial maps of lower and upper tail p-values
Plwr(x, y) and Pupr(x, y), respectively. These p-values are then Benjamini-Hochberg corrected
and null-hypothesis significance testing is carried out against a significance level α of 0.05.
MPM hotspots (red/white contours) and coldspots (blue/white contours) are accordingly
defined as locations where the null-hypothesis is rejected for the upper or lower tail corrected
p-values, respectively. Figure was adapted from Abu Sammour et al.142 with permission
from Springer Nature.
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signifying areas of significant MOI relative spatial abundance or deficiency, respec-
tively (Figure 4.8). MPMs are therefore composite representations of MOI’s spatial
distribution on a raster grid with data-dependent Gaussian weighted intensities
and superimposed hotspot and/or coldspot contours indicating areas of statistically
significant non-random spatial patterns of MOI intensities.

Spatial probabilistic mapping can be used to outline MOIs’ significant relative
spatial abundance or deficiency relative to vital tumor regions as inferred from a neu-
ropathologist’s annotation. To demonstrate this, two example MOIs, sphingomyelin
SM(d36:4)[M+H]+ (m/z 725.5592; FDR ≤ 0.10) and the phosphatidylserine PS(36:1)[M-
H]− (m/z 788.5447; FDR ≤ 0.05), have been visualized in an neurooncology example
of a fresh-frozen tissue section of an IDH-WT GB (Figure 4.9ab). In the typical in-
terrogation procedure employed in MSI, based on his own visual perception of the
intensity values, an end-user will roughly judge whether the shown MOIs had a
relatively higher (or lower) spatial abundance in the viable tumor area of the GB
sample in Figure 4.9b (green mesh). MPMs, on the other hand, provide MOI hotspot
designations based on a probabilistic model indicating that PS(36:1)[M-H]− but not
SM(d36:4)[M+H]+, had higher relative spatial abundance in the viable tumor (and
surrounding) area, as indicated by the respective MPM hotspot contours. Contrary to
PS(36:1)[M-H]−, the method showed a coldspot for SM(d36:4)[M+H]+ in the viable
tumor region indicating statistically significant relative spatial deficiency (Figure
4.9b).

Since the analytical ground-truth for the above mentioned metabolites in the GB
example were unknown, MPM has been applied on another example for which MOI
distributions had previously been published. As depicted in Figure 4.9c, applied on a
MALDI-FTICR-MSI data of a sagittal mouse brain section, MPM of C24:1 sulfatide ((3’-
sulfo)GalCer(d42:2)[M-H]−; m/z 888.6240), previously reported to be present in the
midbrain and white matter regions163, revealed MPM hotspot contours that coincided
well with these regions as referenced by the Allen mouse brain atlas164 (purple
regions Figure 4.9c; Allen Reference Atlas – Mouse Brain [brain atlas]. Available from
atlas.brain-map.org).

moleculaR’s MPM workflow was also applied on a more difficult scenario of
a MALDI-TOF-MSI measurement of a brain tissue sample of an Alzheimer’s dis-
ease mouse model. Here a comparison was conducted between MPMs and the
previously reported PlaquePicker145 for their ability to detect sparsely distributed
fine-structured amyloid peptide Aβ1−38 (m/z 4060.5) plaques. Out of the box, MPM
hotspots (red/white contours of Figure 4.9d) were able to localize pockets of Aβ1−38

plaques referenced by PlaquePicker (pixels highlighted in red in Figure 4.9d). One
notable distinction was that the generated MPM disregarded subsets of single-pixels
assumed to be plaques by PlaquePicker. This could be attributed to the fact that, unlike
PlaquePicker, which strictly relies on image-global intensity thresholding, MPMs also
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FIGURE 4.9: Molecular probabilistic Maps (MPM) for spatial probabilistic mapping of MOI
hotspot and coldspot contours indicating areas of increased and decreased, respectively,
MOI relative spatial abundance in tissue. a) Hematoxylin and eosin (H&E)-stained human
glioblastoma (GB) tissue section annotated by an expert neuropathologist (VT: vital tumor;
VT-Vasc: vascularized vital tumor; Subnecr: pre-necrotic; Necr: necrotic). b) Comparison of
MALDI-FTICR-MSI ion images and corresponding MPM hotspot (red/white) and coldspot
(blue/white) contours of SM(d36:4)[M+H]+ and PS(36:1)[M-H]− (FDR ≤ 0.10; FTICR MSI)
relative to VT regions (green mesh). c) MPM of m/z 888.6240 (C24:1 Sulfatide [M-H]−;
FTICR MSI), previously reported to be present in midbrain and white matter (fiber tracts)
regions163, in a sagittal mouse brain section. Hotspot contours correctly outline these regions,
as referenced by purple areas in a brain atlas example (adapted from the Allen Reference
Atlas - Mouse Brain; atlas.brain-map.org).164 d) MPM of amyloid peptide Aβ1−38 (m/z 4060.5;
MALDI-TOF-MSI) in plaques in an Alzheimer’s disease mouse model.145 MPM hotspot
contours localized pockets of Aβ1−38-containing amyloid plaques, as referenced by the
previously reported PlaquePicker method145 (pixels highlighted in red). e) moleculaR enables
the custom assignment of KDE bandwidth based on a theoretical size consideration. Out-of-
the-box moleculaR (green spots) used data-inferred KDE bandwidth of 2.5 pixels (equivalent
to 50 µm; left panel and also part d). MPMs correctly identified pockets of Aβ1−38 plaques
declared as such by PlaquePicker (red spots), but tends to not identify small, single-pixel-
sized ones (left panel). Since Aβ1−38 plaques are known to vary in shape and size, the KDE
bandwidth was assigned to a single pixel length, corresponding to the smallest possible scale
of 20 µm (i.e. the spatial resolution limit of the measurement) or 400 µm2 pixel area. The
resulting hotspot contours provide a more precise overlap (yellow) to the spots declared
as Aβ1−38 plaques by PlaquePicker. Figure was adapted from Abu Sammour et al.142 with
permission from Springer Nature. Part c, upper panel was contributed by M. Rittel.

take into account the spatial co-dependence of analyte signals which could be an
important criteria for filtering out spurious outlier single-pixel signals.

Furthermore, MPMs also allows for manual fine-tuning of the KDE bandwidth
(see section 4.4.4) against an orthogonal (e.g., Optical) method or inferred from
what is theoretically expected for the object being imaged (ex. minimum theoretical
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plaque diameter or mean diameter of single cells imaged in a single cell MSI data
experiment). This his been tested on the amyloid plaques example above and shown
in Figure 4.9e. When the KDE bandwidth value is adjusted to a single pixel length,
corresponding to the smallest possible scale of 20 µm (i.e. the spatial resolution limit
of the measurement) or 400 µm2 pixel area, the resulting hotspot contours provide a
more precise overlap (yellow areas in Figure 4.9e) to the spots declared as Aβ1−38

plaques by PlaquePicker.

4.4.2 Cross-tissue Molecular Probabilistic Maps (CT-MPMs)

In MSI studies, it is not uncommon to encounter experiments that perform compar-
ison of drug or metabolite distribution in test- versus reference tissues, e.g., those
dosed with drugs or versus controls. Here, the proposed cross-tissue molecular
probabilistic maps (CT-MPM) enables spatial statistical testing where normally only
pooled signal intensities are used for statistical comparisons (e.g., box/violin-plots of
Figure 4.10b) that disregard the spatial localization of MOIs under study (see section
3.7).

The proposed CT-MPM workflow has been tested on previously published data

FIGURE 4.10: Cross-tissue molecular probabilistic maps (CT-MPMs) enable spatially-aware
cross-tissue comparison of tryptophan [Trp-H]+ in isocitrate dehydrogenase-mutant (IDH-
MUT) (test tissue) with IDH-wild type (IDH-WT) glioma (reference tissue). a) Ion images of
test and reference tissue samples showing the spatial distribution and intensity of tryptophan.
b) Pooled signal intensities of tryptophan in the test and reference tissue samples are used
to create a box/violin-plot which indicates significantly higher tryptophan levels in IDH-
MUT- compared to IDH-WT glioma. This common practice, however, does not convey any
statistical information on where the tryptophan signal had significantly higher accumulation
relative to the test tissue morphology (∗∗∗P < 0.001; two-sided Wilcoxon rank sum test).
c) CT-MPM enables spatial statistical testing of tryptophan localizing areas of significant
cross-tissue relative spatial abundance. This is achieved by first finding hotspots/coldspots,
i.e. areas of significant relative spatial abundance/deficiency as in Figure 4.8. Then all
pixel intensities of the test tissue (here, IDH-MUT glioma) are tested against the empirical
cumulative distribution function (eCDF) inferred from the pixel intensities of the reference
tissue (here, IDH-WT glioma). Test tissue intensities which reject both the spatial null (=
MOI is spatially randomly distributed) and Test-vs-Reference intensity distributions null
hypotheses are designated as having significant cross-tissue relative abundance/deficiency.
Figure was adapted from Abu Sammour et al.142 with permission from Springer Nature.
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of immunosuppression-associated tryptophan (Trp) in IDH-mutant (IDH-MUT) com-
pared to IDH-WT glioma.13 This was achieved by first finding areas of MOI’s (=
[Trp-H]−; m/z 203.0815) significant relative spatial abundance/deficiency (i.e. testing
against the spatial null hypothesis to find MOI hotspots/coldspots) as shown in
Figure 4.8. Then the (distribution-free) empirical cumulative distribution function
(eCDF) is inferred from the signal intensities of the reference tissue (IDH-WT glioma;
tissue sample at the bottom of Figure 4.10ac) and all signal intensities of the test tissue
(IDH-MUT glioma; tissue sample at the top of Figure 4.10ac) are tested against it in
order to find the likelihood of them (i.e. signal intensities of the test tissue) being
drawn from the signal distribution of the reference tissue (Figure 4.10c). The p-value
threshold, beyond which the null hypothesis is rejected, is set to a significance level
α = 0.05 and Benjamini-Hochberg correction is applied to account for the inherent
multiple testing problem. Only test tissue intensities, which reject both the spatial,
and intensity sample distributions null hypotheses are designated as having sig-
nificant cross-tissue relative abundance/deficiency (hotspot/coldspot contours of
Figure 4.10c). The observed results demonstrated that the test tissue pixel intensities
of Trp which were marked by hotspot contours are not homogeneously distributed
across the tissue section. In other words, not all parts of the test tissue (IDH-MUT
glioma) contained significantly higher Trp intensities compared to the reference tissue
(IDH-WT glioma). This observation highlights the utility of CT-MPMs in cross-tissue
spatial analysis, especially for comparing heterogeneous tissue samples.

4.4.3 Collective Projections Probabilistic Maps (CPPMs)

The previous sections discussed probabilistic mapping of metabolites/drugs from
a single molecule perspective. The proposed framework moleculaR also proposes
data-integrating probabilistic maps of larger metabolite (or other biomolecules) sets or
ensembles, typically assembled based on MSI scientists’ research interests (see section
3.9). MSI data for every metabolite in a molecular ensemble is transformed to its
respective SPP representation, and then all of these SPPs are collectively projected into
a single image space which is then followed by spatial probabilistic mapping using
the proposed MPM workflow (section 4.4.1), hence the name: collective projections
probabilistic maps (CPPMs; Figure 4.11a).

This computational framework permits spatial evaluation of composite numeric
scores obtained by applying basic arithmetic operations on spatial point patterns of
multiple MOIs (see section 3.10). For instance, Figure 4.11b illustrates how the SPPs
of nucleotides [ATP-H]−, [ADP-H]− and [AMP-H]− (upper row of Figure 4.11b) can
be combined together to generate MPMs of their signal distribution, individually
relative to their sum (bottom row of Figure 4.11b). Even more complex scores could
be achieved such as the adenylate energy charge14 (([ATP-H]−+ 1

2 [ADP-H]−)/([ATP-
H]− + [ADP-H]− + [AMP-H]−); top right of Figure 4.11b), an index used commonly
to indicate the energy status of biological cells by providing a score of the degree of
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FIGURE 4.11: Collective projection probabilistic maps (CPPMs) of metabolite ensembles for
visualization and interpretation of scores for energy metabolism, of glycerophospholipid
(GPL) remodeling pathways, or of ion milieu. a) Spatial point patterns (SPPs) for a user-
chosen ensemble of molecules-of-interest (MOIs) are collectively projected onto the same
tissue plane. A molecular probabilistic map (MPM; as described in Figure 4.8) is then
computed for this ensemble of SPPs. b) CPPMs enable basic arithmetic manipulations on
SPPs of multiple MOIs such as the nucleotides [ATP-H]−, [ADP-H]− and [AMP-H]− (FDR ≤
0.2; upper row), e.g., normalization against the sum of these nucleotides (bottom row; Σ =
[ATP-H]− + [ADP-H]− + [AMP-H]−). CPPMs also allow for hotspot and coldspot contours
for complex spatial quantitative scores such as adenylate energy charge14,165 and adenylate
kinase mass action ratio166. Green mesh indicates co-registered vital tumor regions (Figure
4.9a). c) CPPMs enable spatial investigation of GPL remodeling (Lands’ cycle) in glioblastoma
(GB) by visualizing lipid classes (FDR ≤ 0.5) on the same tissue plane. Upper panel: CPPMs
of all lyso-GPLs and single classes (LPC, LPE, LPS, LPI; top row) compared to all GPLs and
GPL classes (PC, PE, PS, PI; bottom row). Lyso- and non-lyso-GPL pairs are normalized to
their sum (ex. for LPC and PC, Σ represents the sum of LPCs and PCs). Lower panel: Rainfall
plots of the expression levels of selected Lands’ cycle enzymes in normal brain (blue; GTEx
data) and GB (red; TCGA data) both represented as log2 transcripts per million (two-sided
Wilcoxon rank-sum test, ** P < 0.01, **** P < 0.0001). Numbers in parenthesis = METASPACE-
verified147 at FDR ≤ 0.2. d) Analysis of the tissue’s alkali ion milieu. Top: CPPMs for all
(lyso-)GPLs (= lyso-GPLs + GPLs; FDR≤0.5). Left column from top: 1. CPPM of all potassium
adducts of (Lyso-)GPLs, 2. of all potassium adducts of (Lyso-)GPLs relative to sum of all
(lyso-)GPL adducts, and 3. CPPM of all potassium adducts of only lyso-GPLs relative to the
overall sum of all (Lyso-)GPL adducts. Right column: As left column but showing sodium
adducts. Figure was adapted from Abu Sammour et al.142 with permission from Springer
Nature. Part c, lower panel was contributed by A. Sadik.
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the strictly regulated phosphorylation of the ATP-ADP-AMP system.165 Moreover,
adenylate kinase mass action ratio166, also known as the adenylate kinase equilibrium
constant167, can also be computed as [ATP-H]− [AMP-H]−/([ADP-H]−)2 (bottom
right of Figure 4.11b). This score reflects the relative concentrations of the adenine
nucleotides and their effect on the reversible reaction ATP+AMP ⇀↽ 2ADP.168 Within
the limits of error propagation (see section 5.7), such complex scores could be used to
infer tissue’s metabolic states relative to tissue morphology.

CPPMs also allow for the study of Lands cycle, a process of phospholipid re-
modeling in which the acyl chains of phospholipids are modified by deacylation
and reacylation reactions resulting in new phospholipids with different acyl chain
compositions.169 CPPMs of all detected glycerophospholipids (GPLs) and their lyso-
glycerophospholipids (lyso-GPLs) counterpart have been examined in the IDH-WT
GB example described above as shown in Figure 4.11c. An enrichment of GPLs and
concomitant depletion of lyso-GPLs was observed in the viable tumor of the IDH-WT
GB tissue sample of Figure 4.11c and its serial section shown in Supplementary
Figure 8.1c. The same could be said for the individual lipid classes of PC, PA, PS
but less so of PI and their corresponding lyso-GPL cleavage products, LPC, LPA,
LPS and LPI. Retrospective transcript expression profiling of Lands cycle enzymes
revealed overexpression of various acyltransferase genes (LPCAT1, AGPAT1, LPCAT3,
MBOAT7) in GB compared to normal brain tissue that support the CPPM-based
assessment (Figure 4.11c).

Another set of examples that illustrates the type of analyses that CPPMs enable,
examines the ion milieu makeup in cancer tissue by targeting potassium or sodium
adducts of detected lipids in a tissue sample. As observed in Figure 4.11d, the
CPPM of potassium adducts of all (lyso-)GPLs (i.e. GPLs plus lyso-GPLs) revealed
their higher abundance in vital tumor and surrounding areas, whereas the CPPM
of projected sodium adducts was more pronounced in necrotic tissue. Furthermore,
repeating these computations but normalized by their sum (i.e. by all (lyso-)GPLs),
further supported the above observation in addition to showing significant relative
spatial deficiency (coldspot) in vital tumor for the projected sodium adducts of
(lyso-)GPLs.

4.4.4 KDE Bandwidth Estimation Validation

KDE is a key step in the MPM workflow: i) It captures the overall spatial trend of the
MOIs’ intensities; ii) it forces fCSR to converge to a normal distribution and, iii) being a
low-pass filter, its application results in the desired by-product of smoothing technical
variations and noise fluctuations when estimating hotspots/coldspots which has in
turn a positive outcome on the method’s tolerance to pixel-to-pixel batch effects, and
section-to-section/slide-to-slide batch effects40 (see section 4.4.6).
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To test point ii above, namely the convergence of fCSR (i.e. the sample distribution
of intensities k of the weighted spatial density ρCSR(x, y) as shown in Figure 4.8a)
to a normal distribution as previously described in section 4.4.1, fMOI(k) and cor-
responding fCSR(k) were plotted for three arbitrary lipids detected in the IDH-WT
GB tissue sample shown in Figure 4.12. When varying the KDE bandwidth, it can
be observed, that while fMOI(k) does not necessarily converge onto a normal dis-
tribution for the range of bandwidths under consideration, as a consequence of the
central limit theorem, the corresponding intensity distribution fCSR(k) approximates
a normal distribution as the bandwidth increases, which could already be observed
at smaller bandwidth values.

FIGURE 4.12: Intensity distributions fMOI(k) (first column) and fCSR(k) (second column)
corresponding to the 2D spatial densities of the MOI, ρMOI(x, y) , and of the complete spatial
randomness (CSR) model, ρCSR(x, y) , respectively, of three arbitrary m/z that putatively
correspond to the indicated lipids (rows). While fMOI(k) does not necessarily converge onto
a normal distribution for the range of bandwidths under consideration (first column), as a
consequence of the central limit theorem, the corresponding intensity distribution fCSR(k)
approximates a normal distribution as the bandwidth increases, even for smaller bandwidth
values (second column). Figure was adapted from Abu Sammour et al.142 with permission
from Springer Nature.
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Estimating an optimal data-dependent KDE scale (bandwidth) is of high impor-
tance, which, on its own, is a well-known challenge.170 This is because MPMs are
sensitive to the chosen kernel bandwidth hKDE (see section 3.8). To prevent spatial
over-smoothing, which is associated with high bandwidth numbers, this work pro-
poses a method for KDE bandwidth estimation which takes into account the MOI’s
spatial autocorrelation157 estimated over a scale-space representation171 of the MOI
intensity image. More precisely, the bandwidth hKDE is varied iteratively and during
each iteration the global Moran’s I statistic, a measure of spatial autocorrelation, is
determined. The optimal hKDE is then determined by finding the point of maximum
curvature, i.e. the “knee” point in the Moran’s I vs hKDE plot as shown in Figure 4.13.

FIGURE 4.13: Bandwidth estimation for the kernel density estimation (KDE) procedure
as part of the molecular probabilistic map (MPM) workflow (Figure 4.8a) evaluated for
putative PS(36:1)[M-H]− at m/z 788.5447 (Figure 4.9b). The KDE bandwidth hKDE is varied
iteratively from values of 1 to 10 (i.e., pixels; multiples of 50 µm for this measurement) in
0.5 incremental steps. During each iteration KDE is applied, and the Moran’s I statistic, a
measure of autocorrelation, is determined. The optimal hKDE is then determined by finding
the point in the Moran’s I vs bandwidth hKDE plot, at which the spatial autocorrelation
levels-off, i.e. after which an increase in hKDE does not result in a considerable increase in the
spatial autocorrelation of the smoothed density image. This “knee” point is estimated via the
kneedle method158. Figure was adapted from Abu Sammour et al.142 with permission from
Springer Nature.
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This is the point, after which an increase in hKDE does not result in a considerable
increase in the spatial autocorrelation of the smoothed density image and at which
it is expected that random pixel fluctuations are smoothed away while important
spatial structures/features/patterns start dominating the spatial landscape.

To validate the proposed method described above, SPP data was simulated based
on four different spatial patterns of ground-truths (see section 4.4.5 for a detailed
description). As depicted in Figure 4.14, MPM was applied iteratively for every
simulated SPP type with step-wise assignments for the KDE bandwidth hKDE, which

FIGURE 4.14: Use of simulated data (see section 4.4.5) for evaluating the proposed kernel
density estimation (KDE) bandwidth estimation method (section 3.8; Figure 4.13) as part of
the molecular probabilistic map (MPM) workflow. For each simulated spatial point pattern
(SPP) in a, b, c, and d, MPM was estimated with the KDE bandwidth estimation method
shown in Figure 4.13 and the Dice similarity coefficient (DSC) was computed between the
calculated hotspot contour (red) and the ground-truth shape (green) based on which the
simulated SPP was created. DSCs of all simulation types showed high degree of overlap
(yellow) at 0.96, 0.89, 0.94 and 0.91 for a, b, c, and d, respectively. Moreover, MPM was
iteratively estimated for every simulated SPP type using an assigned KDE bandwidth hKDE ,
which was varied from values of 0 to 10 length units in 0.1 incremental steps. During each
iteration, DSC was computed between the estimated hotspot contour and the ground-truth
shape used for generating the simulated SPP. The resulting curves suggest that the proposed
KDE bandwidth estimation method of MPM coincides with the highest (i.e. optimum) DSC
for all simulated SPPs. Figure was adapted from Abu Sammour et al.142 with permission
from Springer Nature.
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was varied from values of 0 to 10 length units in 0.1 incremental steps. During
each iteration, DSC was computed between the estimated hotspot contour and the
foreground shape (representing high MOI abundance) of the ground-truth used for
generating the simulated SPP. It can be observed from the Dice similarity coefficient
(DSC) vs Bandwidth curves that the estimated KDE bandwidth (based on the pro-
posed method described above) coincides with the highest (i.e. optimum) DSC for all
simulated SPPs (shown as vertical dashed line in Figure 4.14). Additionally, DSCs of
all simulated SPPs showed high degree of overlap (yellow areas in Figure 4.14) of
more than 89%.

4.4.5 Assessment of moleculaR’s Performance on Simulated Data

In order to test the validity of the proposed MPM workflow, a computational method
for generating artificial data that mimics a hypothetical analyte distribution according
to a predefined spatial ground-truth has been attempted. Uniform Poisson SPPs of
four different patterns of ground-truth were simulated as described in section 3.11
and shown in Figures 4.14-4.15: i) Single central circle of radius 25 length units, ii)
five equidistantly placed circles of 10 length units radius, iii) a ring-like structure
with 30 and 20 length units for outer and inner radii, respectively and iv) a dominant
central circle of 20 length units radius with four adjacent smaller ones of 5 length
units radius each. Each of these patterns, representing heightened MOI presence (i.e.
foreground), was placed within a square window of 100 length units denoting the
background. Their Intensity values were sampled from above and below the upper
quartile (i.e. Q3) of the empirical intensities of a MALDI-FTICR-MSI measurement of
IDH-WT GB tissue sample (Figure 4.9ab) at m/z 544.3009 (PE(20:1)[M+Na]+; FDR ≤
0.2) for foreground and background, respectively.

When applying the MPM workflow on each of the simulated SPPs, MPM hotspots
were able to reliably localize all foregrounds (green contours in the SPP plots in
Figures 4.14-4.15) and identify points exhibiting significant relative spatial abundance
(green points on density and surface plots in Figure 4.15). Moreover, as described
in the preceding section, high degree of overlap between the detected hotspots and
respective foreground shapes was observed as judged by the high DSC score of more
than 0.89 (Figure 4.14).

It is important to note, that the simulated SPP of Figure 4.15d was specifically
created to test whether larger foregrounds (i.e. large areas of high MOI abundance)
would obstruct smaller ones by having too much weight in the resulting SPP. For
this purpose, the foregrounds have been arranged into a central bigger circle of 20
length units radius and four adjacent smaller circles of 5 length units. Despite the
big difference in foreground circle areas (smaller circles are 16 times smaller than the
central one), MPM was able to correctly localize all four smaller local hotspots (Figure
4.15d) with high overlap between the estimated MPM hotspots and foreground shape
indicated by a high DSC of 0.94 (Figure 4.14c).
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Since SNR of MALDI-FTICR data is commonly high, and typically better than
MALDI-TOF instruments, the same test above has been repeated on a more challeng-
ing case based on MALDI-TOF data. The MPM workflow was tested on simulated
SPPs based on the same ground-truth patterns described above, this time sampling
intensities from above and below the upper quartile of the empirical intensities of a
MALDI-TOF-MSI measurement of a human gastrointestinal stromal tumor (GIST)

FIGURE 4.15: Molecular probabilistic maps (MPMs) correctly assign significant relative
spatial abundance in simulated data. a) Synthetic homogeneous Poisson spatial point pattern
(SPP) simulating an MOI spatial ground-truth with a circular central foreground of radius
25 length units embedded in a non-hotspot background (top-left; also see ground-truth
in Figure 4.14). Intensity values were sampled from above and below the upper quartile
(i.e. Q3) of the empirical intensities of a MALDI-FTICR-MSI measurement of a human
isocitrate dehydrogenase-wild type (IDH-WT) glioblastoma (GB) tissue sample (Figure 4.9a)
at m/z 544.3009 (PE(20:1)[M+Na]+; FDR ≤ 0.2) for the foreground and background areas,
respectively (foreground n≈570 with spatial point density of ≈0.4 points per unit area;
back¬ground n≈1970 with spatial point density of ≈0.3 points per unit area; mean signal
intensity of foreground/mean signal intensity background ≈2.3). The corresponding spatial
density image (top row; middle) and 3D surface plots (top row; right) are shown. MPM
contours were able to localize the simulated foreground correctly (green contours; bottom row;
left) and identify points exhibiting significant relative spatial abundance (green points; bottom
row; middle and right). b) Simulated SPP for an MOI spatial ground-truth similar to a with
five identical circular foregrounds of 10 length units radius (foreground n≈470; background
n≈1950; same spatial point density as in a; mean signal intensity of foregrounds/mean
signal intensity background ≈2.3). MPM contours were able to localize and identify hotspot
points in all foreground areas. c) Simulated spatial point pattern (SPP) showing a ring-like
foreground with 30 and 20 length units for outer and inner radii, respectively (foreground
n≈520; background n≈1950; same spatial point density as in a; mean signal intensity of
foreground/mean signal intensity background ≈2.3). d) Simulated SPP with a central circle of
20 length units radius and four adjacent smaller circles of 5 length units radius as foregrounds
(central circle area/peripheral circle area = 16; hotspot n ≈430; background n≈1950; same
spatial point density as in a; mean signal intensity of foregrounds/mean signal intensity
background ≈2.3). Figure was adapted from Abu Sammour et al.142 with permission from
Springer Nature.
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tissue sample (Figure 4.32cde) at 494.2662 m/z (imatinib [M+H]+; SNR ≥ 3) for
foreground and background, respectively. The MPM method was able to correctly
identify points exhibiting significant relative spatial abundance within the simulated
foreground (green points on density and surface plots in Figure 4.16).

Validation via simulated data was also attempted for CT-MPMs. As outlined in sec-
tion 3.7 and shown in section 4.4.2, CT-MPMs identify areas of the test tissue, which
exhibit a statistically significant non-random spatial MOI abundance/deficiency pat-
tern and contain intensities that are unlikely to belong to the distribution of MOI
intensities in the reference tissue. To validate this cross-tissue variant of the MPM
method, four cases of test and reference SPPs were simulated as depicted in Figure
4.17. In case (a) it is expected that both the spatial and test-vs-reference intensity

FIGURE 4.16: Molecular Probabilistic Maps (MPMs) correctly assign significant relative
spatial abundance/deficiency in simulated data. For all four spatial ground-truths shown in
Figure 4.15, intensity values were sampled from above and below the upper quartile of the
empirical intensities of a MALDI-TOF-MSI measurement of a human gastrointestinal stromal
tumor (GIST) tissue sample (Figure 4.32e) at m/z 494.2662 (imatinib [M+H]+; SNR ≥ 3) for
the ground-truth foreground (representing MOI high abundance) and background areas,
respectively. Spatial parameters of the simulated SPPs were similar to the ones described in
Figure 4.15.The MPM method was able to identify points exhibiting significant relative spatial
abundance (green points on density and surface plots) in accordance with the corresponding
ground-truth. Figure was adapted from Abu Sammour et al.142 with permission from Springer
Nature.
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FIGURE 4.17: Validation test of cross-tissue molecular probabilistic maps (CT-MPMs) based
on a simulated spatial point patterns (SPP) in “Test” versus “Reference” datasets. A simulated
ground-truth foreground (a spatial circular structure; see Figure 4.14a) in the “Test” -SPP is
either present (a, c, d) or absent (b). Moreover, a statistically significant difference between
the simulated MOI intensities of “Test”- and “Reference”-SPPs is either present (a, b, d)
or absent (c). “Test” and “Reference” SPP intensities in a and b were drawn from normal
distributions with µ of 0.75 and 0.25 (σ = 0.1 for both), respectively. In c, they were drawn
from the same normal distribution with µ = 0.5 and σ = 0.1, and in d from the empirical
intensities of a MALDI-FTICR-MSI measurement of isocitrate dehydrogenase-mutant (IDH-
mut) (“Test”) and IDH-wild type (WT) (“Reference”) human glioma tissue sample (Figure
4.10a) at m/z 203.0815 ([Trp-H]−). Simulated SPPs were generated as described in Figure
4.15. “Test” SPP points’ intensities, for which both the spatial null hypothesis (i.e. MOI
intensities follow a complete spatial randomness model) and the Test-vs-Reference intensity
distributions null hypothesis are rejected, are labeled with green points for having significant
cross-tissue relative abundance (right-most panels of a and d). Despite the statistically
significant difference in MOI intensity distributions in b, no significant cross-tissue relative
abundance was detected in the corresponding “Test” SPP, because it did not exhibit a spatial
pattern (i.e. it consequently did not reject the spatial null hypothesis). On the other hand,
despite the clear presence of a non-random spatial pattern in c, no significant cross-tissue
relative abundance was detected because MOI intensities of the “Test” and “Reference” SPPs
were drawn from the same intensity distribution. Figure was adapted from Abu Sammour et
al.142 with permission from Springer Nature.
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distributions null hypotheses are rejected, since a simulated spatial structure of high
MOI abundance (foreground) is present and intensity values are sampled from dif-
ferent normal distributions (Figure 4.17a). In case (b) the spatial null hypothesis
is accepted, but the intensity distribution null hypothesis is rejected, because no
simulated high-MOI area is present but intensity values are again sampled from
different normal distributions (Figure 4.17b). In case (c) the spatial null hypothe-
sis is rejected while the intensity distributions null hypothesis is accepted, since a
simulated high-MOI area is present, but here intensity values are sampled from the
same normal distribution (Figure 4.17c). Finally, in case (d) it is expected that both
the spatial and test-vs-reference intensity distributions null hypotheses are rejected,
since a simulated foreground is present and intensity values were sampled from the
empirical intensities of a MALDI-FTICR-MSI measurement of IDH-MUT (“Test”) and
IDH-WT (“Reference”) human glioma tissue sample (see box/violin-plots of Figure
4.10b) at m/z 203.0815 (Figure 4.17d). The results demonstrated that the generated
CT-MPMs on simulated data, in accordance with experiment expectations, correctly
identified only the first and last cases to include areas of significant cross-tissue
relative spatial abundance (Figure 4.17).

4.4.6 Assessment of moleculaR’s Robustness against Superimposed Noise

MALDI-MSI data is not devoid of noise and signal interference which are caused by
various factors accompanying the data generation process.40 Since this is the case,
any proposed new workflow must also possess at least some degree of resilience
against commonly encountered technical variability. To address this important point,
the robustness of the proposed molecular probabilistic mapping against various types
of artificially added noise was systematically investigated.

Three different noise types have been added to the data; on one hand, artificial
Gaussian and interference noise types and, on the other, artificial intensity artifacts
(Figure 4.18ab). The intensities of both artificial Gaussian and interference noise types
are sampled from a Gaussian distribution whose mean and standard deviation are
equal to those of the intensities of the raw MOI signal. The difference between the two
is that the former was randomly spiked exactly at the m/z MOI while the latter at an
arbitrary distance of 2σw away from m/z MOI to represent an interfering signal (hence
the name, artificial interference noise; σw is the standard deviation of the Gaussian
weighting envelop as described in section 3.4). On the other hand, the intensities
of the artificial intensity artifacts type were sampled from a uniform rectangular
distribution whose range exceeds the range MOI’s signal intensities to represent
random (and typically few) single pixels of extremely high intensities (relative to
the mean signal intensity of the measurement) in MSI measurements. These are
thought to arise from tissue gaps (ex. tears), inhomogeneous matrix crystal spatial
distribution, ion source contamination or abrupt chemical inhomogeneities.
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Sphingomyelin SM(d34:2)[M+H]+ (m/z 701.5592; FDR ≤ 0.1) was chosen as a test
MOI for evaluating the effect of the above mentioned noise source on its raw signal
and the resulting MPMs each time comparing the result to the current benchmark,
i.e. the classical ion images (see section 3.3). MPMs were rather robust against
different types of computationally added noise. As shown in Figure 4.18c, despite
the degraded visual quality of artificially “contaminated” data, MPMs were able to
identify areas of significant metabolite spatial relative abundance. This is evidenced
by the high degree of overlap (yellow areas in Figure 4.18c) for all noise types between
estimated MPM hotspot contours of raw (green areas in Figure 4.18c) and artificially
“contaminated” data (red areas in Figure 4.18c), as judged by their respective DSC
scores of 0.85, 0.97 and 0.98 for artificially added Gaussian noise, intensity artifacts or
interference peaks placed in the m/z proximity of the MOI, respectively.

The testing procedure described above has been expanded to include 142 different
MOIs detected in the same GB tissue sample (positive ion mode; all METASPACE-
verified147 based on the SwissLipids148 database at FDR ≤ 0.2). The results observed
in Figure 4.19 revealed median DSC scores of 0.91, 0.98 and 0.98 for these three types
of added noise, respectively.

The performance of the proposed method was further tested against superim-
posed artificial noise by varying the standard deviation of the sampled Gaussian
noise relative to the standard deviation of the raw signal of an example MOI sphin-
gomyelin SM(d34:2)[M+H]+ (Figure 4.20). Starting with a rather low noise dispersion
resembling that of a Poisson noise (see section 3.12), the standard deviation of the
spiked noise was varied all the way up to 10 times the standard deviation of the
raw MOI signal. At each iteration two similarity scores were calculated namely;
DSC between the MPM hotspot contours of raw and noise-contaminated MOI data
as a performance indicator for MPM and the normalized cross correlation (NCC)
as a performance indicator for the visual image similarity between raw and noise-
contaminated ion images (Figure 4.20b). The results indicated that the proposed
method was able to withstand Gaussian noise sources up to 4 times the standard
deviation of the raw MOI signal retaining hotspot overlap of above 0.75 DSC, all this
while observing noticeable visual image degradation (Figure 4.20c).

A similar computational experiment was repeated this time resembling the ar-
tificial interference noise (Figure 4.18ab) with sampled noise spiked in the vicinity
of the same MOI, sphingomyelin SM(d34:2)[M+H]+, at an arbitrary distance of 2σw

away) of m/z MOI. Again the standard deviation of the sampled Gaussian noise was
varied relative to the standard deviation of the raw MOI signal starting with a low
noise dispersion resembling that of a Poisson noise all the way up to 10 times the
standard deviation of the raw MOI signal as demonstrated in Figure 4.21. Owing to
the proposed Gaussian mass-window weighting, MPM hotspot contours are able to
withstand artificial interference noise (spiked at m/z MOI + 2σw) with σnoise up to 10
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times σMOI retaining hotspot contours overlap of 0.91 DSC, all this while observing
clear visual degradation of the corresponding ion images which is also mirrored in
their computed NCC relative to the raw ion image.

Finally, a similar computational experiment has been repeated with the last type
of artificial noise contamination namely, artificial intensity artifacts. Intensity artifacts
were added iteratively according to the scheme in Figure 4.18ab to the peak signal of
sphingomyelin SM(d34:2)[M+H]+, each time varying the number of intensity arti-
facts n (up to n = 5000; ≈ 20% of the total tissue pixels) randomly placed within the
tissue window (Figure 4.22). At each iteration the DSC score was computed between
the estimated MPM hotspot contours of the raw and artificially contaminated data

FIGURE 4.18: Molecular probabilistic maps (MPMs) are robust against various forms of
artificially added noise. a) Schematic representation of ion intensity sample distributions of
a typical molecule-of-interest (MOI) ( fMOI(k); dashed black curve) and of the correspond-
ing Gaussian distribution ( fGaussian(k); orange) from which artificial Gaussian noise and
artificial interference noise were sampled. Mean and standard deviation of fGaussian(k) are
equal to those of fMOI(k). fint−arti f acts(k) is a uniform rectangular distribution whose range
exceeds the range of fMOI(k) (see dotted x-axis). b) Artificial Gaussian noise is sampled
from fGaussian(k) and is added to all pixels to the raw signal of m/z MOI present in each
pixel. Artificial interference noise is also sampled from fGaussian(k) but is added to all pixels
arbitrarily at m/z MOI + 2σw where σw is the standard deviation of the Gaussian weighting
envelop (see section 3.4 and Figure 4.3). The latter is a function of the mass resolving power
at m/z MOI (see section 3.3). Artificial intensity artifact noise is sampled from fint−arti f acts(k)
and is added to n = 10 randomly selected pixels at m/z MOI. c) MPMs (middle row) but not
ion images (upper row) of exemplary sphingomyelin SM(d34:2)[M+H]+ (m/z 701.5592; FDR
≤ 0.1) are robust against various forms of artificially added noise and signal artifacts: artificial
Gaussian noise (second column), artificial intensity artifacts i.e. presence of abnormally-high-
intensity peaks (third column) and artificial interference noise added 2σw away from m/z
MOI (fourth column). Despite the degraded visual quality of artificially contaminated data,
MPMs are able to identify areas of significant metabolite spatial relative abundance. This is
demonstrated by the high degree of overlap (yellow) for all noise types between estimated
MPM hotspot contours of raw (green) and artificially contaminated data (red), as judged by
their Dice similarity coefficient (DSC). Figure was adapted from Abu Sammour et al.142 with
permission from Springer Nature.
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while also computing the NCC similarity metric between the raw and artificially
contaminated ion images (Figure 4.22b). MPM hotspot contours were able to with-
stand added single-pixel intensity artifacts of n = 450 randomly placed within the
tissue window reliably delineating the correct hotspot area and retaining hotspot
contours overlap of 0.78 DSC, all this while observing clear visual degradation of the
corresponding ion images relative to the raw ion image which is also mirrored in
their computed NCC which falls below the 0.5 mark for the same n (Figure 4.22bc).

FIGURE 4.19: Dice similarity coefficients (DSC) computed for MOI estimated hotspot contours
between raw data and artificially contaminated (with different types of noise) data of 142
MPMs of MOIs identified in METASPACE147 with FDR ≤ 0.2 in positive ion mode. Noise
was artificially added according to the three noise types presented in Figure 4.18; artificial
Gaussian noise added to MOI (first row of a; red curve in b), presence of abnormally high-
intensity peak artifacts (second row of a; green curve in b) and artificial interfering noise
occurring within the span of the theoretical Gaussian envelop specific for MOI (2σw away
from m/z MOI; third row of a; blue curve in b). Median DSC values were 0.91 (dashed
red line), 0.98 (dashed green line) and 0.98 (dashed blue line) for Gaussian noise, intensity
artifacts and interference, respectively. Figure was adapted from Abu Sammour et al.142 with
permission from Springer Nature.
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FIGURE 4.20: Evaluating the robustness of molecular probabilistic maps (MPMs) against
artificially added Gaussian noise spiked at m/z of a molecule-of-interest (MOI). a) Ion image
and MPM of an example MOI, sphingomyelin SM(d34:2)[M+H]+ (FDR ≤ 0.1). b) Gaussian
noise was added iteratively according to the scheme in Figure 4.18 to the peak signal of a with
varying σnoise = σk (k = 0 . . . 10), where σ0 =

√
µMOI and σk = kσMOI for k = 1 . . . 10 and

σMOI and µMOI are the standard deviation and mean of the signal intensities of MOI. Note
that for k = 0, the resulting noise is similar to Poisson noise with λPoisson = µMOI ≫ 1000.
At each iteration the Dice similarity coefficient (DSC) was computed between the estimated
MPM hotspot contour of the raw and artificially contaminated data (black solid curve)
while also computing the normalized cross correlation (NCC) similarity metric between the
raw and artificially contaminated images (red solid curve). c) Visual illustrations of MOI
signal intensity distribution fMOI(k) relative to the added noise distribution fnoise(k) at each
noise iteration (first row), corresponding ion images (second row), calculated MPM hotspot
contours (third row) and hotspot contours overlap between raw and artificially contaminated
data (bottom row). MPM hotspot contours are able to withstand Gaussian noise with σnoise up
to 4 times σMOI retaining hotspot contours overlap of above 0.75 DSC, all this while observing
clear visual degradation of the corresponding ion images which is also mirrored in their
computed NCC relative to the raw ion image. Figure was adapted from Abu Sammour et
al.142 with permission from Springer Nature.
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FIGURE 4.21: Evaluating the robustness of molecular probabilistic maps (MPMs) against arti-
ficially added interference noise spiked in the vicinity (i.e. 2σw away) of m/z of a molecule-of-
interest (MOI). a) Ion image and MPM of an example MOI, sphingomyelin SM(d34:2)[M+H]+

(FDR ≤ 0.1). b) Artificial interference noise was added iteratively according to the scheme in
Figure 4.18 at 2σw away from the peak signal of a (i.e. at m/z MOI + 2σw; σw is the standard
deviation of the Gaussian weighting envelop) with varying σnoise = σk (k = 0 . . . 10), where
σ0 =

√
µMOI and σk = kσMOI for k = 1 . . . 10 and σMOI and µMOI are the standard deviation

and mean of the signal intensities of MOI. Note that for k = 0, the resulting noise is similar to
Poisson noise with λPoisson = µMOI ≫ 1000. At each iteration the Dice similarity coefficient
(DSC) was computed between the estimated MPM hotspot contours of the raw and artificially
contaminated data (black solid curve) while also computing the normalized cross correlation
(NCC) similarity metric between the raw and artificially contaminated ion images (red solid
curve). c) Visual illustrations of MOI signal intensity distribution fMOI(k) relative to the
added noise distribution fnoise(k) at each noise iteration (first row), corresponding ion images
(second row), calculated MPM hotspot contours (third row) and hotspot contours overlap
between raw and artificially contaminated data (fourth row). As a consequence of Gaussian
mass-window weighting, MPM hotspot contours are able to withstand artificial interference
noise (spiked at m/z MOI + 2σw) with σnoise up to 10 times σMOI retaining hotspot contours
overlap of 0.91 DSC, all this while observing clear visual degradation of the corresponding
ion images which is also mirrored in their computed NCC relative to the raw ion image.
Figure was adapted from Abu Sammour et al.142 with permission from Springer Nature.



Chapter 4. Results 67

FIGURE 4.22: Evaluating the robustness of MPM against artificially added intensity artifacts
spiked at m/z of a molecule-of-interest (MOI). a) Ion image and MPM of an example MOI,
sphingomyelin SM(d34:2)[M+H]+ (FDR ≤ 0.1). b) Intensity artifacts were added iteratively
according to the scheme in Figure 4.18ab to the peak signal of a, with a varying number of
intensity artifacts n (up to n = 5000; ≈ 20% of the total tissue pixels) randomly placed within
the tissue window. At each iteration the Dice similarity coefficient (DSC) was computed
between the estimated MPM hotspot contour of the raw and artificially contaminated data
(black solid curve) while also computing the normalized cross correlation (NCC) similarity
metric between the raw and artificially contaminated images (red solid curve). c) Visual
illustrations of noise-contaminated ion images (first row), calculated MPM hotspot contours
(second row) and hotspot contours overlap between raw and artificially contaminated data
(bottom row). MPM hotspot contours are still able to withstand added single-pixel intensity
artifacts of n = 450 randomly placed within the tissue window reliably delineating the correct
hotspot area and retaining hotspot contours overlap of 0.78 DSC, all this while observing clear
visual degradation of the corresponding ion images relative to the raw ion image which is
also mirrored in their computed NCC (red curve in b) which falls below the 0.5 mark (dashed
horizontal line in b) for the same n. Figure was adapted from Abu Sammour et al.142 with
permission from Springer Nature.
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4.4.7 Assessment of moleculaR’s Stability against Random Permutations

As previously shown in section 4.4.1, the MPM approach relies on a CSR model
against which the the MOI’s spatial distribution is compared to find areas which
exhibit statistically significant non-random spatial patterns of MOI intensities inde-
pendent of how an end-user may perceive its (i.e. MOI’s) spatial relative abundance
or deficiency.

Since each MOI-specific CSR model is unique for every MPM evaluation, it was
important to test the impact of the stochastic nature of the CSR model on the stability
of the generated MPM hotspot/coldspot contours. For this purpose, the MPM
evaluation for an example MOI, PE(20:1)[M+Na]+ at m/z 544.3009 (MALDI-FTICR-
MSI data of the IDH-WT GB tissue sample shown in Figure 4.9a), was repeated 100

FIGURE 4.23: Stability of molecular probabilistic maps (MPMs) for 100 permutations of the
generated complete spatial randomness (CSR) model. MPM was re-computed 100 times for
the example MOI, PE(20:1)[M+Na]+ (m/z 544.3009; FDR ≤ 0.2) of the isocitrate dehydrogenase-
wild type (IDH-WT) glioblastoma (GB) tissue section of Figure 4.9a, each time generating a
different random permutation of the CSR model. For each iteration, the area of the MOI’s
MPM hotspot (red curve) and coldspot (blue curve) contours relative to the total tissue area
was computed. The overlap (yellow) between the hotspot and coldspot contour of the 25th,
50th and 75th iterations relative to the hotspot and coldspot areas of the 1st iteration are
shown as examples. Relative areas’ mean and standard deviation were 0.3234 and 0.0045
for hotspot contours, respectively, and 0.3771 and 0.0036 for coldspot contours, respectively.
DSCs mean and standard deviation between hotspot and coldspot contour areas of each
run relative to that of the first run were 0.9883 and 0.0069, respectively, for hotspot contours
and 0.9914 and 0.0046 for coldspot contours, respectively. Figure was adapted from Abu
Sammour et al.142 with permission from Springer Nature.
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times, each time with a different CSR permutation as shown in Figure 4.23. The results
demonstrated that the estimated hotspot and coldspot areas relative to the total tissue
area were stable across all iterations, with mean overlap DSCs of 0.988 and 0.991
between the hotspot and coldspot areas, respectively, for each of the 100 iterations

FIGURE 4.24: Stability testing of molecular probabilistic maps (MPMs) of an MOI ground
truth area (central green filled circle) using simulated data. Here, areas of high-intensity
points (black filled circles) were cumulatively (a) or iteratively (b) added to a ground-truth.
A simulated spatial point pattern (SPP) was created based on the ground-truth of Figure
4.14a and as described in Figure 4.15a. a) Secondary areas containing high-intensity points
(black filled circles) were cumulatively added to an MOI ground truth containing a central
area (green filled circles; upper row). At each step, an MPM was computed for the entire
simulated SPP (i.e. central plus added secondary areas), but the Dice similarity coefficient
(DSC) was calculated between the green area and its computed MPM hotspot only (i.e. the
spotted secondary black areas where excluded from the DSC computation). The MPM hotspot
contours of the central green area were unaffected by the cumulative addition of points/areas
of high intensity. b) Additionally, 100 random ground-truths were created, each time spotting
one secondary area (dashed circles) with a randomly chosen radius and position around the
central area (green filled circle). At each iteration, MPM and DSC values were computed as
described in a. Similar to a, the computed MPM hotspot contours of the central area were
rather unaffected, as indicted by the low variance of the computed DSC values (µ = 0.972,
σ = 0.001). Figure was adapted from Abu Sammour et al.142 with permission from Springer
Nature.
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relative to that of the first iteration. The standard deviations of the computed DSCs
was below 0.01 which is also evident by the limited fluctuation of the red and blue
curves of Figure 4.23 representing the computed areas of MOI’s MPM hotspots and
coldspots relative to the total tissue area.

The impact of cumulatively or iteratively spiking complete areas of high-intensity
points into a simulated SPP on the hotspot contours was also considered. For cumula-
tive addition case, secondary high-intensity areas (black filled circles in Figure 4.24a)
were step-wise added to a simulated SPP containing one central circular foreground
(green filled circles in Figure 4.24a) and the overlap between the estimated MPM
hotspot and foreground was computed solely based on the central circle, which
remained rather unaffected (Figure 4.24a). Additionally, 100 secondary high-intensity
foreground areas with varying radii were spotted iteratively at varying positions
randomly assigned around the primary foreground area (Figure 4.24b). At each
iteration, MPM and DSC values were computed as in the previous step. Similarly, the
estimated hotspot contours of the main simulated hotspot were rather not affected as
indicted by the box/violin-plot of the computed DSC values.

4.4.8 Assessment of moleculaR’s Robustness against Batch Effects

MALDI-MSI data generation is known to be affected by systematic sources of tech-
nical variation, the so-called batch effects. Batch effects can occur at different levels;
sample preparation and measurement-specific pixel-to-pixel, tissue section-to-section
and measurement slide-to-slide batch effects.40 Since these batch effects are largely
unavoidable, it was important to evaluate the performance of MPMs when sources of
technical variation are present in the MSI data.

To (partially) compensate for pixel-to-pixel batch effects in MALDI-MSI data,
typically intensity normalization techniques are applied.40 Therefore, comparing the
resulting MPM of a given raw MOI data to the MPM of its (i.e. MOI’s) intensity-
normalized version would in principle provide insight on how MPMs change with
different levels of pixel-to-pixel variations. To this end, using the MALDI-FTICR-MSI
data of the IDH-WT GB tissue section along with its serial section, MPMs have been
generated for three example lipids shown in Figure 4.25. MPMs were tested based on
three different versions of each MOI; raw data (without intensity normalization), total-
ion-count (TIC) normalization and root mean squared (RMS) normalization. MPM
hotspot and coldspot contours show good agreement irrespective of the normalization
type or the lack thereof, which could also be seen for the IDH-WT GB serial section of
Supplementary Figure 8.2.

To test how MPMs compare in inter-sample and inter-measurement scenarios
(representing section-to-section and slide-to-slide batch effects, respectively), MPMs
of the same example MOIs mentioned above have been compared in two serial
sections of the IDH-WT GB tissue (Figure 4.26) based on raw (without normalization)
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FIGURE 4.25: Comparison of the resulting molecular probabilistic maps (MPMs) of three
exemplary lipids shown on the isocitrate dehydrogenase-wild type (IDH-WT) glioblastoma
(GB) tissue section measured with MALDI-FTICR-MSI based on raw data (without intensity
normalization), total-ion-count (TIC) and root mean squared (RMS) normalization. MPM
hotspot/coldspot contours show good agreement irrespective of the normalization type or the
lack thereof as also shown for the serial section of Supplementary Figure 8.2. The intensity
range has been rescaled for every image independently to the range 0 to 10 arb. units. Figure
was adapted from Abu Sammour et al.142 with permission from Springer Nature.

FIGURE 4.26: Comparison of the resulting molecular probabilistic maps (MPMs) of three ex-
emplary lipids shown on two IDH-WT glioblastoma (GB) tissue technical replicates analyzed
by MALDI-FTICR-MSI on separate slides (i.e., separate measurement runs) based on raw data
(without intensity normalization). MPMs show good agreement across both tissue replicates
referenced by the similar localization for the MOIs’ hotspots/coldspots. The intensity range
has been re-scaled to the range 0 to 10 arb. units independently for every shown MPM. Figure
was adapted from Abu Sammour et al.142 with permission from Springer Nature.
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FIGURE 4.27: Gaussian mass-window weighted intensity images and the corre-
sponding molecular probabilistic maps (MPMs) of a molecule-of-interest (MOI), (3’-
sulfo)GalCer(d42:2)[M-H]− (m/z 888.6240; FDR ≤ 0.05) shown on MALDI-FTICR-MSI datasets
of six serial sections of sagittal mouse brain tissue measured on different slides (measurement
runs). Despite the striking differences in (total-ion-count (TIC)-normalized) ion intensities
across the tissue replicates, MPM hotspot contours show high similarity in their spatial
localization highlighting white matter and mid brain regions. Note that the intensity range
has been re-scaled to the range 0 to 10 arb. units independently for every shown MPM. Figure
was adapted from Abu Sammour et al.142 with permission from Springer Nature.
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MALDI-FTICR-MSI data. The corresponding MPMs showed good agreement across
both tissue replicates referenced by the similar localization for the MOIs’ hotspots
and coldspots. Moreover, the MOI (3’-sulfo)GalCer(d42:2)[M-H]−, mentioned in
Figure 4.9c, has been used to generate MPMs for MALDI-FTICR-MSI datasets of
six serial sections of sagittal mouse brain tissue measured on different slides (i.e.
inter-sample and inter-measurement case). Figure 4.27 illustrates that despite the
striking differences in (TIC-normalized) ion intensities across the tissue replicates,
MPM hotspot contours show high similarity in their spatial localization highlighting
white matter and mid brain regions.

4.5 Quantitative Spatial Mapping of Imatinib in Tissues

The preceding section 4.4 demonstrated how spatial probabilistic mapping of any
given MOI can help in the spatial analysis and interpretation of MOI’s signal distri-
bution in a given tissue sample independent from user’s own judgment and despite
the presence of various technical variability sources. This section attempts to inves-
tigate the applicability of the cross-tissue probabilistic spatial mapping concept in
quantitative spatial mapping of drugs in tissue sections by utilizing the capabilities
of CT-MPMs. First, a generalized nonlinear calibration model based on drug dilution
series is proposed as a replacement for the traditional linear model that takes into
account the inherent measurement nonlinearities characteristic to MALDI-MSI data.
It’s applicability is then tested in a clinical pharmacology setup by MALDI-MSI-based
tissue-drug content quantification of an entire cohort of tumor tissues in a clinical
pharmacology setup. Finally, an attempt is made to derive spatial relative quantifica-
tion based on cross-tissue spatial probabilistic mapping. The results described in this
section are based on the corresponding study of Abu Sammour et al.143 and on the
methods described in sections 3.1.1, 3.2.1 and 3.13 of Chapter 3.

4.5.1 Calibration Curves and Quantification of Imatinib

The aim of this work was the quantitative spatial mapping of imatinib, a tyrosine
kinase inhibitor (TKI), in 56 resection specimens of tumor and surrounding non-tumor
tissues from 27 patients with biopsy-proven GIST (see section 1.5.1) who received
imatinib as first line treatment but presented with refractory disease. GIST tissue
specimens were distributed across 48 measurement slides each containing several
tumor and surrounding non-tumor tissues alongside with an imatinib dilution series
spotted onto a porcine liver tissue as shown in Supplementary Figure 8.3 (see section
3.1.1).

To perform imatinib quantification, a calibration curve has to be fitted to its
dilution series. In this work, an imatinib dilution series of 25, 12.5, 6.25, 3.125, 1.56,
0.78 pmol and a blank control were spotted on a porcine liver. Figure 4.28a shows
a MALDI-TOF-MSI data of an imatinib dilution series of a given sample shown
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as surface and imatinib peak detection plots where green pixels indicate imatinib
detection at SNR ≥ 3. Typically the end-user manually encircles tissue regions to
be included in the computation of calibration curves. In contrast, to avoid signal
dilution by areas/pixels that do not carry the signal of interest, this work proposes a
computational definition of drug-bearing areas where only pixels where the drug is
detected with SNR ≥ 3 are taken into account.

It can be seen from Figure 4.28a that the lower the drug concentration spotted, the

FIGURE 4.28: Imatinib calibration curves based on dilution series deviate from linearity.
a) Imatinib ion intensity surface plot (left column) and imatinib peak detection plot (right
column; green pixels indicate imatinib detection at SNR ≥ 3) based on a dilution series for one
of the MALDI-TOF-MSI quantification datasets. b) Fitted nonlinear calibration curves based
on drug-bearing pixels (i.e. pixels where imatinib peak was detected at SNR ≥ 3; green curve)
and user-defined areas (i.e. visually defined measurement areas; red curve) for a chosen
MALDI-TOF-MSI dilution series data. Solid circles represent the mean drug intensity of
pixels depending on the method used. c) Nonlinearity response observed in all (left panel) 48
and (right panel) 3 calibration curves obtained for MALDI-TOF-MSI and MALDI-FTICR-MSI
quantification measurement sets, respectively. Figure was adapted from Abu Sammour et
al.143 with permission from Springer Nature.
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more the outlines of drug-spotted areas diverge from the expected circular shape and
the more spatially heterogeneous the signal is. Moreover, this signal heterogeneity,
which leads to signal dilution by pixels not bearing the drug signal, could have
a substantial effect on the down-stream drug normalized intensity vs. dilution
amount as shown by the fitted nonlinear curves in Figure 4.28b. The described signal
heterogeneity can also take place at the tissue where the drug is to be quantified,
especially for heterogeneous tumor tissues where the drug is observed to be sparsely
distributed (see Figure 4.30c).

More importantly, all drug dilution series measured either with MALDI-TOF-
MSI (n=48) or MALDI-FTICR-MSI (n=3) deviated from linearity (Figure 4.28c). This
deviation is observed to resemble a power function, y = axb + c (Equation 3.9), where
a, b and c are constants and c was added to represent the superimposed detector

FIGURE 4.29: Generalized nonlinear compared to linear regression models for calibration in
MSI. Imatinib calibration curves for a sample dataset by linear (red) and generalized nonlinear
regression (green) for a) MALDI-TOF-MSI, b) MALDI-FTICR-MSI and c) UHPLC-ESI-QTOF-
MS. Grey circles represent the mean intensity of the imatinib-containing pixels within a
dilution series area. d) Residual standard error (RSE) computed for linear and generalized
nonlinear calibration curves of the 48 MALDI-TOF-MSI measurements (Figure 4.28c). Figure
was adapted from Abu Sammour et al.143 with permission from Springer Nature. Part d was
contributed by C. Marsching.
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noise (see section 3.13.2).

To test the proposed generalized nonlinear calibration fit proposed in this work
(see section 3.13.2), both linear and nonlinear calibration curve fitting has been
performed for a sample dataset measured by MALDI-TOF-MSI, MALDI-FTICR-MSI
and the gold-standard UHPLC-ESI-QTOF-MSI. It can be observed in Figure 4.29ab
that the generalized nonlinear calibration provided a better fit indicated by the 6-
and 3- fold better residual standard error (RSE) for MALDI-TOF-MSI and MALDI-
FTICR-MSI, respectively. Moreover, RSE for the nonlinear fits was significantly lower
(∗∗∗∗P < 0.0001; n = 48) compared to linear case (Figure 4.29d). Interestingly, for
the exponent b in all nonlinear fits, it was consistently observed that b ≥ 1 and
0 < b < 1 for TOF- and FTICR-MALDI-MSI, respectively, as also observed in the
sample dataset of Figure 4.29ab. Lastly, the linear and nonlinear fits were nearly
identical for UHPLC-ESI-QTOF-MS calibration resulting in an identical RSE which
indicates a true linear response of the system (Figure 4.29c).

4.5.2 Quantitative Analysis of Imatinib Content in GIST

The generalized nonlinear calibration model described in the preceding section has
been used evaluate the mean imatinib content in normal and tumor tissue sections
(in pmol/section) based on MALDI-MSI compared to the gold-standard, i.e. lin-
ear calibration model based on UHPLC-ESI-QTOF-MS, for the entire GIST cohort.
The mean imatinib signal intensity in MALDI-MSI data was calculated solely from
imatinib-containing pixels (SNR ≥ 3 for m/z 494.26).

As illustrated in Figure 4.30ab, most tissue sections with imatinib levels above
the limit of quantification (LOQ) for both MS methods corresponded to normal liver
tissue. This higher but sparse accumulation of imatinib in normal liver tissue can also
be observed in the tissue overview of Supplementary Figure 8.4 and Figure 4.30c. In
these cases, imatinib quantified by MALDI-TOF-MSI displayed acceptable correlation
with results from the one based on UHPLC-ESI-QTOF-MS. However, MALDI-TOF-
MSI tended to underestimate imatinib content. Nevertheless, 78% of all samples,
in which imatinib could be quantified, were inside a window of a 2-fold difference
(grey area in Figure 4.30d). MALDI-FTICR-MSI matched the UHPLC-ESI-QTOF-MS
results even more closely (Figure 4.30e) where 87% of all samples that reached the
MALDI-FTICR-MSI measurement round were within a 2-fold difference relative to
UHPLC-ESI-QTOF-MS.

4.5.3 Limited Imatinib Uptake in Metastatic GIST

Since imatinib is the standard first line treatment for GIST, the aim of this work was to
investigate imatinib’s tumor penetration capability in human GIST samples. For this
purpose and as described in the preceding sections, the GIST tissue cohort was im-
aged with MALDI-TOF-MSI (n =27; in triplicates when enough tissue was available)
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FIGURE 4.30: Comparison MALDI-TOF-MSI and UHPLC-ESI-QTOF-MS quantification of
imatinib in gastrointestinal stromal tumor (GIST) for a) the surrounding normal and b) tumor
tissues. c) A liver metastasis tissue sample showing imatinib detection in MALDI-TOF-MSI
(bottom; green pixels) and corresponding hematoxylin and eosin (H&E)-stained image (top).
d) A correlation plot showing MALDI-TOF-MSI on the x-axis and UHPLC-ESI-QTOF-MS
on the y-axis, both log2-scaled. The dashed red line represents an identity line (1:1 line)
with the log2 fold change of 1 represented by the grey area around it. e) Comparison of
MALDI-TOF-MSI, UHPLC-ESI-QTOF-MS and MALDI-FTICR-MSI imatinib quantification
for five (replicated three times each) unaffected liver samples. Figure was adapted from Abu
Sammour et al.143 with permission from Springer Nature

for spatial quantitative mapping of imatinib and subsequently with UHPLC-ESI-
QTOF-MS (n =18; in triplicates when enough tissue was available) for validation
(see Supplementary Figures 8.3 and 8.4 and previous section 4.5.2). Follow-up
histopathological examination suggested that 26 of the tumor tissue replicates exam-
ined contained only slight traces of regressive tumor areas with fibrosis and necrotic
tissue throughout. They were, therefore, omitted from analysis.

Quantification of imatinib (pmol/section) in tumor tissue sections and their cor-
responding non-tumor (normal) control tissues by MALDI-TOF-MSI revealed that
despite continuous administration of the prescribed dosage of imatinib until surgery
(see Supplementary Table 8.1), in most tumor sections (48 of 60 sections; 80%, in
MALDI-TOF-MSI and 31 of 44; 70%, in UHPLC-ESI-QTOF-MS), imatinib content was
below LOQ regardless of its type (i.e. primary tumor or metastasis) and mutation
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FIGURE 4.31: Liver metastases of gastrointestinal stromal tumor (GIST) is observed to have
limited uptake of imatinib independent of mutation status. a) Imatinib content in pmol
per tissue section in MALDI-TOF-MSI data for 23 GIST (“Tumor”; red) and corresponding
non-tumor (“Normal”; blue) tissue specimens using nonlinear calibration model (n = 3 per
tissue specimen when available). b) Imatinib content in pmol per section in UHPLC-ESI-
QTOF data for 18 GIST (“Tumor”; red) and corresponding non-tumor (“Normal”; blue) tissue
specimens using linear calibration (n = 3 per tissue specimen when available). c) Three
sample A replicates containing both “Normal” and “Tumor” tissue based on histopathological
re-examination (left column). For verification, three different imatinib ionization states where
visualized, namely; protonated ([M+H]+), sodiated ([M+Na]+) and potassiated ([M+K]+).
Additionally, N-desmethylimatinib, a known metabolite of imatinib172, and Heme B, a proven
MALDI-MSI vasculature marker,173 were visualized. Signal absence and detection (at SNR ≥
3) are encoded by red and green pixels, respectively. Figure was adapted from Abu Sammour
et al.143 with permission from Springer Nature.
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status (Figure 4.31ab). In comparison, for the corresponding non-tumor (normal)
tissue sections, 40 of 83 sections (48%) and 23 of 54 sections (43%) contained imatinib
amounts below LOQ for MALDI-TOF-MSI and UHPLC-ESI-QTOF-MS, respectively.
Figure 4.31ab also shows that imatinib levels were higher in normal liver tissues
compared to the others. Furthermore, the orally administered imatinib showed low
uptake and/or retention in metastatic GIST in liver despite the high accumulation of
the drug in the surrounding normal liver tissue (Figure 4.31ab).

One noticeable exception to the observation mentioned above is sample A, which
showed comparable amounts of imatinib present in both normal and metastatic GIST
tissues observed in both MALDI-TOF-MSI and UHPLC-ESI-QTOF-MS measurements
as shown in Figure 4.31ab. Upon histopathological re-examination, all three replicates
of sample A were found to contain both normal hepatic and metastatic GIST tissues
as can be seen in Figure 4.31c. Here, the spatially-resolved MALDI-TOF-MSI shows
that the imatinib signal (SNR ≥ 3) was mainly accumulated in the non-tumor regions
of the tissue sections for all three replicates (Figure 4.31c). Visualizing ion intensities
for the sodium and potassium adducts of imatinib provides further evidence of
this observation by showing that the absence of the targeted drug is not caused
by differential tissue-dependent adduct formations. Additionally, to rule out the
possibility that the drug has been completely metabolized within tumor areas, N-
desmethylimatinib (m/z 480.25), a known metabolite of imatinib,172 was visualized as
demonstrated in Figure 4.31c. It can be seen that the signal of N-desmethylimatinib
(SNR ≥ 3) showed clear co-localization with imatinib mainly accumulating in normal
liver tissue. Lastly, the Heme B signal (m/z 616.17), a proven MALDI-MSI marker
of vasculature173 has been also visualized, which showed decreased signal intensity
within the tumor core when compared with the surrounding hepatic tissue as seen in
Figure 4.31c.

4.5.4 Imatinib Tissue-content Estimation via Cross-tissue Molecular Prob-
abilistic Maps (CT-MPM)

Previously, in section 4.4.2, it has been shown how cross-tissue probabilistic mapping
can be used to perform signal distribution comparison of a given metabolite in test-
versus reference tissues providing spatially-aware localization and per pixel statistical
significance testing. While the preceding sections 4.5.1-4.5.3 have shown the results
of imatinib quantification using drug calibration curves based on drug dilution series,
the proposed CT-MPMs could also be used to provide discrete estimation of tissue-
drug content by comparing the signal intensities of the drug in the test tissue to its
intensities in the drug dilution spots.

Figure 4.32 demonstrates how CT-MPMs can be used to spatially localize areas of
significant cross-tissue relative spatial abundance of imatinib in GIST tissue sample A
when compared against a series of imatinib dilution spots in MALDI-TOF-MSI data.
For validation, tissue-drug content quantification has been performed via calibration
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curves fitted to the imatinib dilution series as described in the preceding sections.
For MALDI-TOF-MSI, the nonlinear model has been used (Figure 4.32ab) while for
UHPLC-ESI-QTOF-MS a linear calibration curve has been fitted separately.

The calculated mean imatinib content in sample A was 7.78 pmol (95% CI 7.28,
8.46 pmol) and 7.81 pmol (95% CI 7.63, 7.99 pmol) based on MALDI-TOF-MSI and
UHPLC-ESI-QTOF-MS quantification, respectively. Consecutive comparison of the
imatinib-tissue content against four imatinib dilution spots (3.125, 6.25, 12.5 and 25
pmol) showed a gradual decrease in the number of pixel-intensities (zero at 25 pmol)
that were detected as significant cross-tissue relative spatial abundance of imatinib
(hotspot contours of Figure 4.32f-i). The cross-tissue test carried out against the
imatinib dilution spot of 6.25 pmol, i.e. the closest to the reported mean imatinib-
tissue content by both measurement methods, showed that the distributions of drug
signal intensities for both test (=sample A tissue) and reference (= 6.25 pmol dilution
spot) are not significantly different as evidenced by the high p-value (two-sided
Wilcoxon rank sum test). Moreover, this comparison revealed that the areas in the
normal tissue part with significant cross-tissue relative spatial abundance of imatinib
(hotspot contours of Figure 4.32g) were spatially sparse and coincided with the high-
intensity pixels in the imatinib intensity image of Figure 4.32e. More importantly,
clear spatial heterogeneity in imatinib-tissue content has been observed with some
pixels showing much higher levels than the reported mean per tissue as evidenced by
the few hotspots in Figure 4.32h indicating imatinib amounts above 12.5 pmol, which
is much higher than the mean imatinib content estimated based on calibration curves
(7.78 pmol and 7.81 pmol based on MALDI-TOF-MSI and UHPLC-ESI-QTOF-MS
quantification, respectively).
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FIGURE 4.32: The cross-tissue molecular probabilistic map (CT-MPM) workflow was used
to spatially localize areas of significant cross-tissue relative abundance of imatinib in a
gastrointestinal stromal tumor (GIST) tissue sample when compared against a series of
imatinib dilution spots in MALDI-TOF-MSI data. a) Optical image of a porcine tissue section
where the imatinib dilution series (25, 12.5, 6.25, 3.125, 1.56, 0.78 pmol and a blank control) was
spotted. MALDI-TOF-MSI measurement regions are indicated by dashed polygons. MALDI-
TOF-MSI pixels with imatinib signal (SNR ≥ 3; m/z 494.2662; [M+H]+) are superimposed. b)
Generalized nonlinear (green) and linear (red) regression models fitted to the imatinib dilution
series in a. c) Optical image of a metastatic GIST tissue sample with superimposed MALDI-
TOF-MSI pixels with imatinib signal (SNR ≥ 3). d) Histopathology-annotated hematoxylin
and eosin (H&E) image of the resected GIST tissue c showing both tumor (red) and non-tumor
(normal; green) tissue. e) An intensity image of imatinib in the GIST tissue sample c. Mean
imatinib content in the sample tissue was found to be 7.78 pmol (95% CI 7.28, 8.46 pmol) and
7.81 pmol (95% CI 7.63, 7.99 pmol) based on MALDI-TOF-MSI and UHPLC-ESI-QTOF-MS
quantification, respectively. Panels f-e illustrate CT-MPMs computed for the tissue sample in
c compared against imatinib dilution series spots of 3.125 (f), 6.25 (g), 12.5 (h) and 25 pmol (i),
respectively. CT-MPMs are able to spatially localize tissue areas with significant cross-tissue
relative abundance of imatinib, which mainly concentrate in the non-tumor tissue part. Figure
was adapted from Abu Sammour et al.142 with permission from Springer Nature
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Chapter 5

Discussion

This chapter provides a discussion on the proposed methods (Chapter 3) and their
resulting outcomes, which were demonstrated in Chapter 4. This is followed by a
discussion on methods limitations and ended with a conclusion.

5.1 Mass Resolving Power and Mass Peaks’ FWHM

The term resolution is a key concept in mass spectrometry, which describes the ability
to resolve mass spectrum intensity peaks. Mass resolution and mass resolving power
are two terms that have been often interchangeably used to refer to the ability of
a mass spectrometer to separate intensity peaks that are close together in a mass
spectrum. Over the years, the international union for pure and applied chemistry
(IUPAC) and the American society for mass spectrometry have recommended similar
definitions of mass resolution and mass resolving power, leading to confusion about
the proper use of these terms.151 To avoid ambiguity, the recommendation of Murray
et al.151 has been adopted throughout this dissertation in which the use of mass
resolving power rather than mass resolution as a quantitative measure is encouraged
and, for this work, is given by RFWHM = m/∆m50%, where m is the ion mass and
∆m50% is obtained from the peak’s full-width at half-maximum (FWHM).

Together with spatial resolution, sensitivity and acquisition speed, the mass resolv-
ing power of a mass spectrometer could be regarded as the primary characteristics
when choosing the right modality for a certain MSI-based application.10 The theoret-
ical modeling of the mass resolving power and mass peaks’ FWHM is challenging
and is different for the different mass spectrometer types. Marshall et al.75 reported
that for Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, mass
peaks’ FWHM scales with m2 and is, therefore, a nonlinear function of the ion mass
m (see Equations 3.1 and 3.2 in section 3.3). On the other hand, the theoretical formu-
lation of mass peaks’ FWHM as a function of mass range for TOF mass spectrometers
is completely different and is relatively constant across the mass range.76

In this work, an empirical method for estimating mass peaks’ FWHM from data
has been developed, which is central for rendering ion intensity images as will be
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discussed in the following section. This was achieved by plotting all FWHM values
of individual mass spectrum peaks (whose signal-to-noise ration, SNR, is ≥ 3) as
a function of mass-to-charge ratio (m/z) and then fitting a locally-estimated scatter-
plot smoothing (LOESS) curve that would approximate FWHM at any given m/z
value and therefore provide an estimate for the mass resolving power at any given
mass range. The results of this fitting has been demonstrated in Figure 4.1 for three
different mass spectrometers: FTICR (Solarix, Bruker Daltonics), time-of-flight (TOF;
rapifleX, Bruker Daltonics) and trapped ion mobility spectrometry time-of-flight
(timsTOF; timsTOFflex, Bruker Daltonics) matrix-assisted laser desorption ionization
mass spectrometry imaging (MALDI-MSI) devices. Considerable fluctuations of
the detected FWHM values along the y-axis has been observed, which could be
attributed to the overlap of adjacent peaks, partially resolved isotopes, space charge
effects or side lobes.162 Despite this, the fitted FWHM model for the MALDI-FTICR-
MSI case closely followed the FWHM theoretical expectation (Equation 3.2) for the
mass spectrometer, which could be explained by the smoothing characteristic of the
LOESS model that seemed to compensate for FWHM fluctuations by smoothing out
deviations. For time-of-flight-based mass spectrometers (Figure 4.1bc), the fitted
FWHM model deviates somewhat from the expected linear (i.e. constant) behavior76

but not significantly when compared to the case of FTICR.

The proposed methods are designed to work with centroided MSI data (i.e. pro-
cessed – not profile, retaining only m/z values and corresponding signal intensities of
the detected/observed peaks in any given spectrum; see section 1.2). Since peaks’
FWHM values cannot be computed for centroided data, this information has to be
supplied externally in the form of a profile spectrum randomly chosen and externally
provided by the end-user from the same MSI data. To test if one randomly chosen
spectrum could be representative of the entire MSI measurement data, a comparison
has been performed between FWHM models generated based on one and 100 ran-
domly chosen spectra of a glioblastoma (GB) tissue MALDI-FTICR-MSI measurement
in both positive and negative ion modes (Figure 4.2). The results illustrate that a
single spectrum could indeed be enough to generate a FWHM model for an entire
MSI measurement. The location that the chosen full profile spectrum is taken from
seems irrelevant. The same can be said for the identities of the peaks present in it. This
could be explained by the fact that for any MSI measurement, the sample is measured
with the same measurement parameters, and therefore resolving power as a function
of m/z is expected to be similar across the tissue while deviations in the measured
FWHM values are handled by the smoothing capabilities of the LOESS model as
described above. However, relying on one single spectrum for this estimation could
be seen as a downside of this approach since a user might (randomly) select a corrupt
spectrum (a spectrum that only contains noise). To address this possibility, moleculaR
allows for employing more than one profile spectrum for FWHM model fitting.
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5.2 Capturing the Molecule-of-interest

Ion images, i.e. false color renderings of m/z intervals of interest, are used as the fun-
damental investigation tool in MSI for conveying the spatial distribution of molecules-
of-interest (MOIs, e.g. metabolites, drugs, lipids or proteins) within biological tissues
often compared to external histopathology annotations. The conversion of raw data
into ion images for visualization, spatial interpretation and molecular analysis, has
not changed since the inception of the technology and normally does not include
built-in methods that account for mass accuracy and instrument- and measurement-
dependent mass resolving power.

Ion images are typically generated by summing up all observed (centroided or
profile) ion intensities with identical weights (i.e. uniform mass-window weighting)
within a user-defined mass-range around a certain theoretical m/z value representing
the MOI (see section 1.2).79,80 In other words, rendering ion images of MOIs always
entails the selection of an appropriate mass-search-window where that MOI signal
is to be found. This, however, could be a source of bias. For instance, in a targeted
drug-uptake study, an incorrectly assigned mass-window width by the end-user for
rendering ion images of a certain drug, which if set too high, could include interfering
noise and other interfering background signals.

In this work, an attempt was made to develop a data-driven user-independent
method for estimating an appropriate width for the mass-search-window at a given
m/z MOI based on the mass resolving power of the mass spectrometer. After estimat-
ing an empirical FWHM model as described in the preceding section, for any given
m/z MOI, the model could be used to infer the corresponding standard deviation σw

of a hypothetical Gaussian that could be used to represent the theoretical MOI peak
shape and, hence, its extent35,48, which is governed by FWHM = 2

√
2 ln2 σw. This en-

ables data-driven calculation of the mass-search-window width taken as mMOI ± 3σw

(i.e. the span of the erected Gaussian-window; mMOI is the m/z value of the MOI)
independent of the user, measurement device and measurement parameters while
also taking into account the mass resolving power at that mass range.

The described Gaussian envelope helps not only in determining the extent of the
MOI mass-window but also provides a convenient framework for down-weighting
proximal interfering signals in the vicinity of m/z MOI (see Figure 4.3). This is
achieved by assigning corresponding Gaussian weights for all observed peaks-of-
interest (POIs; i.e. observed peak signals within the estimated mass-window) such
that, the further the measured m/z POI from the theoretical m/z, the lower the weight
it receives in the final ion representation. The effectiveness of the Gaussian mass-
window weighting was demonstrated against the typical uniform mass-window
weighting by i) artificially "contaminating" the raw data of a MALDI-FTICR-MSI
measurement of an isocitrate dehydrogenase-wild type (IDH-WT) GB sample with a
random Gaussian noise source at successive mass intervals (multiples of σw) away
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from an example MOI and by ii) visualizing two adjacent MOIs in sagittal mouse
brain sections measured on FTICR- (Figure 4.5), timsTOF- (Figure 4.6) and MALDI-
TOF- (Figure 4.7) MSI modalities in a cross-platform setup (see section 4.3). The
results illustrated that Gaussian mass-window weighting was more effective in
removing interference noise and observed peaks (weather artificial, real or caused by
artifacts) which (partially) overlap with the MOI signal. It should be noted, however,
that a complete overlap of POI signals cannot be remedied, not even by Gaussian
mass-window weighting as in the shown case of MALDI-TOF-MSI (Figure 4.7).

In all presented cases, the uniform mass-window weighting, typically used for ion
image generation, struggled in separating the showcased signals. It could be argued,
that an experienced end-user would typically further refine the used mass-window
width by inspecting mean spectra and would therefore arrive to results similar to the
ones obtained by the Gaussian mass-window weighting. This, however, would make
the entire process heavily user-dependent which would undoubtedly cast a shadow
over the inter-operator reproducibility of ion images and their rendering. In this
regard, the proposed Gaussian mass-window weighting avoids this user dependence
and can be considered as a step in the right direction.

5.3 Molecular Probabilistic Maps (MPMs) vs. Ion Images

In MSI, ion images, i.e. false color renderings of m/z intervals, remain the gold-
standard for the visualization and spatial interpretation of MOIs in any given sample.
Typically ion images are generated by integrating (with equal weights) ion intensities
of all peaks present in a user-defined mass-window centered at the m/z MOI.79 This
work proposes a computational framework, moleculaR, that suggests an alternative
way for studying the spatial distribution of MOIs in tissue samples. In the previous
two sections, a discussion has been provided on the proposed user-independent
rendering of ion intensities where the mass-window is estimated based on the mass-
resolving power of the mass spectrometer (section 5.1) and the filtration of interfering
background signals through the Gaussian mass-window weighting (section 5.2). But
more importantly, the primary aim of this work is to propose a user-independent spa-
tial interpretation of the distribution of MOI’s signal relative to the tissue morphology
via spatial probabilistic mapping.

The central idea in this spatial probabilistic analysis concept is the comparison
between MOI’s detected spatial distribution within a tissue sample against a complete
spatial randomness (CSR) model created out of the same MOI’s signals. This spatial
comparison scans for tissue areas that exhibit statistically significant non-random
spatial patterns of MOI intensities independent of how an end-user may perceive
its spatial accumulation or deficiency. Previously published CSR generating models
primarily dealt with unmarked (unweighted) spatial point patterns (SPPs) which
only considered points locations.153,154 In particular, Kather et al.153 proposed a
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similar concept for detecting angiogenic hotspots in immunostained histological
whole-slide images. After computational extraction of blood vessels locations by
image segmentation, a corresponding CSR model was used as a spatial control. In
MSI data, however, each point must carry an intensity value (representing pixel
signal intensity and indicating MOI local abundance in tissue) in addition to the x, y-
coordinate. Therefore, the corresponding CSR map must model randomness in spatial
locations as well as in signal intensities in an unbiased way. This has been achieved
by randomly permuting intensity-marked points, which basically has the effect of
spatial reshuffling of MSI pixels, until they assume a homogeneous spatial Poisson
process152, thus effectively dissolving any spatial clustering or autocorrelation of
signals. Another approach involving hotspot identification in marked (i.e. signal
intensity weighted) SPPs of spatial transcriptomics data has been reported by Edsgärd
et al.174 In their approach, the x, y-positions of marked points remained stationary
while the signal intensities (expression level) were randomly reassigned repeatedly,
up to 1000 times, to establish a per-point null distribution based on the resampling of
the mark distribution. This approach, however, has relatively high computational
complexity as all possible point pairs for every permutation need to be assessed. This
hinders its application in MALDI-MSI experiments, which typically employ higher
spatial resolutions (20-50 µm in this work), yielding much larger numbers of spatial
points, compared to the spatial resolution of 200 µm reported in the above study.

While MOI signals spatial representation inherit the discretized and gridded
nature of the MSI data (see section 1.2), creating a CSR model on a spatial grid
would directly violate such models’ randomness criterion. As a result, MOI pixel
intensities are mapped into an SPP representation (see section 3.5 for details) in
order to facilitate a direct and homogeneous comparison between the MOI and the
corresponding CSR model. It is important to note, however, that the final MPM is
represented not as an SPP but as a gridded image with hotspots and/or coldspots
superimposed as polygonal contours. This was chosen because, for the end-user, who
is used for working with gridded MSI data, a visualization based on SPPs would be
very unfamiliar and thus might cause unnecessary confusion.

The MOI-specific CSR model is generated by random permutations of the MOI’s
SPP data points. This means that the generated CSR model is unique for every MPM
evaluation, which, consequently, has a direct effect on the resulting hotspot/coldspot
contours. For this purpose, computational experiments involving real and simulated
data has been carried out to test the impact of the stochastic nature of the CSR model
on the stability of the generated MPM hotspot/coldspot contours (see section 4.4.7).
The results indicated that MPMs are rather robust against such permutation tests.
This could be explained by the smoothing effect of the kernel density estimation
(KDE) step at the heart of the MPM method, in which, fluctuations in the resulting
CSR are relatively smoothed out.

The beneficial effect of the KDE step, which is internally performed with each
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MPM evaluation, does not seem to stop here. MPMs have been extensively tested
against three types of superimposed artificial noise sources showing remarkable
resilience and stability (see section 4.4.6). Even when the intensity of the added
artificial noise is increased (by increasing its standard deviation σnoise; see Figures
4.20-4.21), the resulting MPMs are able to withstand noise with σnoise up to 4 and 10
times σMOI (i.e. the standard deviation of the raw MOI signal) for artificially added
Gaussian and interference noise, respectively. Such noise levels are much higher
than the previously reported and typically expected Poisson noise inherent to MSI
data.175 Moreover, MPMs were also shown to be robust against spiking intensity
artifacts showing resilience to up to an unlikely n = 450 randomly placed high
intensity artifacts (see Figure 4.22). It is important to note that in all artificial noise
“contamination” experiments, obvious visual degradation and high dissimilarity
between raw and artificially contaminated data was observed in the corresponding
“classical” ion images. This could be explained by the fact that MPMs employ i)
Gaussian mass-window weighting which might be able to tune down interfering
peaks proximal to the m/z MOI that may obstruct ion images and ii) the KDE step,
which is expected to conveniently reduce technical variations and noise fluctuations
during the process of hotspot/coldspot estimation.

MALDI-MSI data generation is known to be affected by systematic sources of
technical variation, the so-called batch effects. Batch effects can occur at different
levels: sample preparation and measurement-specific pixel-to-pixel, tissue section-
to-section and measurement slide-to-slide batch effects (see section 1.3 in Chapter
2).40 Since these batch effects are largely unavoidable, it was important to evaluate
the performance of MPMs when sources of technical variation are present in the MSI
data. Here, MPMs were shown to be largely stable in experimental setups where
pixel-to-pixel, section-to-section and slide-to-slide batch effects are involved (see
section 4.4.8).

Following the discussion above, it can be seen that the application of KDE within
the MPM framework has three main advantages: i) it captures the overall spatial
trend of the MOI’s intensities, ii) it forces spatial null distribution ( fCSR(k) in Figure
4.8b; see section 4.4.1) to converge to a normal distribution (see Figure 4.12) and,
being a low-pass filter, iii) it has the often-desired outcome of smoothing technical
variations and noise fluctuations during the process of hotspot/coldspot estimation
which has in turn a positive outcome on the method’s tolerance to pixel-to-pixel,
section-to-section and slide-to-slide batch effects (see section 4.4.8). However, KDE
application requires estimating an optimal data-dependent smoothing scale (i.e.
kernel bandwidth) which, on its own, is a well-known challenge.170 Smoothing SPPs
with high KDE bandwidths while generating MPMs has the potential adverse effect
of overlooking fine, small or sparse spatial structures which leads to their exclusion
from being characterized as hotspots/coldspots. To address this issue, a data-driven
mechanism for KDE bandwidth estimation has been proposed in this work based
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on spatial autocorrelation that prevents spatial over-smoothing (see sections 3.8 and
4.4.4).

Spatial autocorrelation measures the degree of spatial co-dependency of obser-
vations (pixels or points) existing in a defined neighborhood size within a spatial
window.157 The idea behind this step-wise evaluation of autocorrelation as a function
of smoothing comes from scale-space theory in computer vision, where an image
is represented by a one-parameter (i.e. the smoothing scale) family of smoothed
images.171 The proposed KDE bandwidth estimation method is based on the hypoth-
esis that, in a Moran’s I vs smoothing bandwidth plot, the point at which Moran’s
I statistic rate of change abruptly falls, is the scale at which exactly those random
pixel fluctuations or small variations are reduced or smoothed away and important
spatial structures/features/patterns start dominating the spatial landscape. This
hypothesis seems to hold true when MPMs were tested against various types of
artificially added noise as discussed above. It is, nevertheless, important to define
the spatial scale of such small variations. Here, it is known from scale space theory,
that when convolving a Gaussian kernel with an image, only image structures much
smaller than the scale parameter (i.e. the bandwidth of the Gaussian kernel; see
section 4.4.4) will be largely smoothed away in the process.171 Considering that the
computed KDE bandwidth values for all cases shown in this work were between 2
and 2.6 pixels, structures that could be smoothed away and, as a result, overlooked
by MPMs are thus smaller than 2 pixels. Moreover, structures with cross-sections
smaller than this but with high intensity (indicating high SNR or MOI abundance)
will largely resist this smoothing and would still be seen as hotspots. The test case of
the APP NL-G-F Alzheimer’s disease mouse model brain (see Figure 4.9d) measured
in linear mode MALDI-TOF-MSI (at low SNR) provides a clear example; sparsely
distributed and fine amyloid plaques Aβ1−38 (m/z 4060.5) were detected as hotspots.
In this example, however, the generated MPM disregarded subsets of single-pixels
assumed to be plaques by the previously published PlaquePicker145 specifically de-
signed to do this task. This could be attributed to the fact that, unlike PlaquePicker,
which strictly relies on image-global intensity thresholding, MPMs also take into
account the spatial co-dependence of MOI signals which could be an important cri-
teria for filtering out spurious outlier single-pixel signals. Whether the single-pixel
signals labeled as plaques by PlaquePicker but disregarded by MPMs are in fact Aβ1−38

plaques would have to be a subject for additional experimentation with orthogonal
methods. Nonetheless, moleculaR also allows for the manual fine-tuning of the KDE
bandwidth, which can be fine-tuned against an orthogonal (e.g. optical) method or
simply inferred from what is theoretically expected for the object being imaged (see
Figure 4.9d).

Several showcases have been provided where the MPM method has been applied
on MALDI MSI data generated by different mass spectrometers including FTICR-,
timsTOF- and TOF-MALDI-MSI devices (see section 4.4.1) as well as on simulated
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data based on empirical intensities derived from actual MALDI-MSI data (see sec-
tion 4.4.5). In all demonstration cases, MPMs were benchmarked against the typical
interrogation procedure employed in MSI: on the one hand, an end-user’s visual
perception of intensity values, who is judging roughly whether an MOI had a rela-
tively higher spatial abundance in a certain tissue morphology. On the other hand,
MPMs, which provide MOI hotspot/coldspot designations of non-random spatial
patterns based on a statistical model. For example, as illustrated in Figure 4.9, look-
ing at ion images, the researcher would be relying on their subjective perspective
based on visual differentiation of color-coded intensities to describe and localize MOI
accumulation while MPMs clearly outline MOI hotspots and coldspots relative to
the tissue morphology without leaving any room for the end-user’s personal opin-
ion. Simulation-based experiments mimicking ground-truth have also shown that
MPMs were able to reliably localize all simulated high-MOI areas and identify points
exhibiting significant relative spatial abundance (see section 4.4.5).

Different probabilistic analysis concepts have been previously applied on MSI
data. Hanselmann et al.86 applied probabilistic latent semantic analysis (pLSA) for
unsupervised dimensionality reduction of MSI data and used Akaike information
criterion (AIC) for data-driven estimation of the number of components of the pLSA
model. Bemis et al.83 proposed spatial shrunken centroids, a probabilistic segmen-
tation method, for segmentation of MSI data into newly discovered homogeneous
segments of similar molecular content. Pamler et al.147 were the first to introduce
false discovery rate (FDR)-controlled metabolite annotation to the MSI field. In that
setup, the FDR, an important statistical measure for the quantification of annotation
quality, is defined as the ratio of false positives to the total number of annotations.
These three concepts are, however, different in scope and aims from the probabilistic
spatial mapping introduced in this work. For instance, pLSA and spatial shrunken
centroids are multivariate analysis techniques that are designed to discover tissue
morphological similarities based on the entire molecular content present in each
pixel of the MSI data. Similarly, the FDR-based metabolite annotation approach
attempts to solve an entirely different problem with the help of target–decoy-based
FDR-estimation the goal of which is to test if a detected and observed POI (i.e. MS
peak) is the sought-after MOI (i.e. the actual molecule). In contrast, the proposed
spatial probabilistic mapping applies a probabilistic concept in order to spatially
localize non-random patterns of detected MOI signals in order to assist the user in
spatial interpretation.

Perhaps the closest concept to the proposed MPMs is the measure of spatial
chaos111, a score that has been introduced to i) automatically select spatially struc-
tured ion images in MSI data and ii) has been reused later as a computational measure
of ion image quality, which was tested against a curated set of ion images based on
collective expert judgments80, and iii) as part of the FDR-based annotation engine
described above to quantify the likelihood of the presence of a metabolite with a
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given sum formula in the MSI data147. The difference here, is that the measure of
spatial chaos tries to test if an ion image exhibits a non-random pattern or not. In
contrast, moleculaR provides the added benefit of spatially localizing non-random
patterns within ion intensity images. Furthermore, the measure of chaos returns a
value between 0 and 1, which is high for spatially structured images and low for noisy
images and does not provide a definitive data-driven threshold to separate noisy
from structured images. In contrast, MOI hotspot/coldspot contours computed by
moleculaR are based on pixel-wise statistical significance testing against a spatial null
distribution derived from a CSR model with a p-value threshold set to a significance
level α = 0.05, Benjamini-Hochberg corrected. Moreover, similar to the measure of
spatial chaos, MPMs can also be used for automated screening for spatially structured
ion signals in MSI data such that the absence of detected hotspot/coldspot contours
would indicate POI signals resembling random noise.

5.4 Cross-tissue Molecular probabilistic maps (CT-MPMs)

CT-MPMs are valuable in scenarios where it is necessary to compare the distribution
of metabolite or drug signals between test and reference tissues. This is particularly
relevant in cases where drugs are administered or specific mutations are present.
CT-MPMs allow for cross-tissue spatial statistical testing, unlike traditional statistical
comparisons that solely focus on signal intensities which are pooled together and
represented by box/violin plots (e.g. see Figure 4.10), which do not account for
the spatial localization of the MOI under study. CT-MPMs not only determine the
presence of hotspots/coldspots in the test tissue, but also evaluate whether and
where the intensity distribution in the test tissue differs significantly from that in
the reference tissue (see section 4.4.2). In other words, CT-MPMs identify the pixel
locations in the test tissue that carry intensities that are unlikely to belong to the
distribution of reference tissue pixel intensities and exhibit a non-random spatial
pattern which makes CT-MPMs even stricter than MPMs.

CT-MPMs have been showcased on a previously published data involving IDH-
mutant (IDH-MUT) and IDH-WT glioma samples measured in MALDI-FTICR-MSI.13

The advantage of using CT-MPMs can clearly be seen where instead of only report-
ing box/violin plots of the tryptophan signal intensity, one can also get a visual
illustration of the spatial tissue-context in the test tissue (IDH-MUT glioma) sample
where the tryptophan signal has significantly higher relative spatial abundance when
compared to the reference tissue (IDH-WT) sample (see Figure 4.10). The true spatial
distribution (i.e. the ground-truth) of the tryptophan signal cannot be inferred and
therefore CT-MPMs had to be validated using other means. This has been accom-
plished by utilizing the developed SPP simulation methods described previously (see
section 4.4.5). In that experimental setup, the generated CT-MPMs on simulated data
correctly identified only the case in which a simulated spatial structure of high-MOI
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abundance was present and intensity values were sampled from different normal
distributions (shown in Figure 4.17a).

It must be noted that, as is the case with classical drug/metabolite intensity
distribution testing of Test-vs-Reference tissues, which is commonly encountered in
the MSI literature, it is important to ensure that the signal intensities of both test and
reference tissues are comparable. This requires observing appropriate experimental
design, which deliberately minimizes technical variation (e.g., placing them on the
same slide to be measured in a single measurement)40 and/or by relying on robust
intensity normalization methods.37–39,94

5.5 Collective Projection Probabilistic Maps (CPPMs)

Typically ion images are used to encode signal intensities of a single MOI at a time.
For simultaneous visualization of multiple MOIs, researchers sometimes resolve to
the RGB (red, green and blue) color model where a single MOI map is assigned to a
single color channel thus creating a composite RGB ion images in the process.9,79 This
procedure, however, can only visualize few MOIs at a time. The proposed framework,
moleculaR, provides researchers with the ability to visualize not only one molecular
entity at a time or per color-channel but also a custom list of biomedically relevant
MOIs if needed. This list depends on their research question. For example, the
researcher might want to investigate the collective intensity of a subset of saturated
lipids within a certain lipid class and correlate its signal accumulation to the tissue-
local microenvironment. More importantly, these collective visualizations can take
full advantage of the probabilistic mapping methodology discussed in the preceding
sections.

As an example, CPPMs were used to study all glycerophospholipids (GPLs) and
lyso-glycerophospholipids (lyso-GPLs) in the two IDH-WT GB serial sections (Figure
4.11 and Supplementary Figure 8.1) in an attempt to investigate phospholipid remod-
eling (Lands cycle) across the GB tissue morphology. In this process, acyl chains of
phospholipids are modified by deacylation and reacylation reactions resulting in new
phospholipids with different acyl chain compositions thereby affecting their impact
on biological processes.169. Here, CPPMs of all lyso-GPLs and single classes (LPC,
LPE, LPS, LPI) compared to all GPLs and single GPL classes (PC, PE, PS, PI) suggested
enrichment of GPLs and depletion of lyso-GPLs in viable tumor regions (see Figure
4.11c). This observation was supported by retrospective transcript expression profil-
ing of Lands cycle enzymes which showed overexpression of various acyltransferase
genes (LPCAT1, AGPAT1, LPCAT3, MBOAT7) in GB compared to normal brain tissue
but less changes in PLA2G6 expression. Previous studies reported the implication
of acyltransferases in cancer progression and drug resistance, for instance, AGPAT
isoforms overexpression has been shown to correlate with increased risk of tumor
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development or aggressiveness of several tumors types176 while upregulation of
LPCAT1 has been observed in multiple tumors.177

In another assessment, CPPMs of potassium and sodium adducts of lipids across
lipid classes detected in the same GB tissue sections suggested that potassium adducts
of all (lyso-)GPLs (i.e. GPLs and lyso-GPLs together) were more abundant in vital
tumor and surrounding areas while sodium adducts were more pronounced in
necrotic tissue showing significant relative spatial deficiency (coldspot) in vital tumor
(see Figure 4.11d). This observation agrees with previously published data where
highly abundant Na+-adducts colocalized with necrotic tissue in xenografts of five
different tumor cell lines.139 Deen et al. have also previously shown that sodium
magnetic resonance imaging (MRI) can serve as an indicator of tumor cellularity
in vivo based on the fact that the sodium-potassium pump maintains high overall
intracellular potassium and low sodium concentrations in viable cells and higher
cellularity corresponds to a lower tissue sodium concentration.178

This computational framework further enables spatial evaluation of composite
numeric scores obtained by applying basic arithmetic operations on SPPs of multiple
MOIs in different ways. This has been showcased with the adenine nucleotides [ATP-
H]-, [ADP-H]- and [AMP-H]-, which were visualized individually and relative to
their collective sum, as well as in more complex scores such as the adenylate energy
charge, an index used commonly to indicate the energy status of biological cells
by providing a score of the degree of the strictly regulated phosphorylation of the
ATP-ADP-AMP system.165 The observed results suggest that areas of high adenylate
energy charge overlap with tissue regions annotated as viable tumor. Previously,
Fack et al.14 reported higher energy charge score of patient-derived xenografts in
IDH-WT glioma when compared to IDH-MUT and control (normal) brain tissue
and suggested that the energy charge score correlates with tumor proliferation and
aggressiveness. Additionally, Torata et al.179 also observed higher energy charge
score in breast carcinoma when compared to normal tissue in a MALDI-MSI-based
experiment comprising a cohort of 119 samples. Likewise, adenylate kinase mass
action ratio166, also known as the adenylate kinase equilibrium constant167, can also
be computed. This score reflects the relative concentrations of the adenine nucleotides
and their effect on the reversible reaction ATP+AMP ⇀↽ 2ADP, which is catalyzed by
adenylate kinase, a phosphotransferase enzyme; a high mass action ratio means that
the reaction is biased towards production of ADP from ATP and AMP, while a low
mass action ratio means that it is biased towards the reverse reaction.168

Taken together, the showcased examples suggest that CPPMs of molecular ensem-
bles in MSI may provide insights into spatially resolved pathophysiology or can be
potentially used to localize viable tumor areas with high cellularity in highly hetero-
geneous tissue samples without the need for external histopathological annotation
which would not be possible by single molecule ion images or MPMs not involving
collective projections. It must be noted, however, that the above observations will
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obviously require extensive follow-up studies with larger sample cohorts, before
clinically valid statements can be made.

5.6 Drug Quantification in the Presence of Batch Effects

In this work an attempt was made to further investigate quantitative spatial map-
ping of drugs in tissue sections by performing tissue-drug content quantification
on an entire tissue cohort of 56 specimens of gastrointestinal stromal tumor (GIST)
and corresponding non-tumor samples. Sample measurements were conducted
in triplicates on TOF- and FTICR-MALDI-MSI modalities comparing their results
to the gold-standard ultra-high performance liquid chromatography electrospray-
ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS).
The study aimed at improving computational calibration in MALDI-TOF-MSI and to
cast light onto the effectiveness of uptake (or lack of export or tissue metabolism) of
the therapeutic tyrosine kinase inhibitor (TKI), imatinib, into GIST tissue.

All slides, on which tissue sections were mounted for MALDI-MSI measurements,
featured an imatinib dilution series spotted onto porcine liver tissue and spray-
coated with deuterated imatinib-D8 for calibration and normalization. It has been
observed that all drug dilution series signal intensity responses measured either with
MALDI-TOF-MSI (n = 48) or MALDI-FTICR-MSI (n = 3) deviated from linearity
(see Figure 4.28). A similar behavior has already been reported by Pirman and co-
workers, and was attributed to the matrix-to-analyte ratio such that increasing the
matrix spray-coating time resulted in an increased deviation from linearity of the
intensity response.46 Moreover, the complex MALDI process, non-uniform tissue-
ion suppression resulting in pixel-to-pixel batch effects, interference from matrix
background signals, and different ion detection/counting technologies are all factors
that could contribute to the observed nonlinear response.96 While it is typical for
MALDI-TOF and -FTICR-MSI drug quantification investigations to employ linear
calibration for drug dilution series, this linearity may not always be guaranteed,
particularly in the case of scarce and heterogeneous tissue samples even when the
matrix-to-analyte ratios have been optimized.45 This is especially the case for clinical
samples which are obtained from different individuals and typically contain different
amounts of the target analyte. Hence, in this work, it was hypothesized that a
nonlinear calibration may better model the system’s response and can be generally
more applicable, especially in clinical pharmacology. Moreover, when comparing the
typical linear and nonlinear calibration curves for UHPLC-ESI-QTOF-MS calibration,
both fits were nearly identical with the b exponent converging to unity (see Equation
3.9 and Figure 4.29c), indicating a true linear response for UHPLC-ESI-QTOF-MS.
This highlights the generalizability and the ability of the proposed calibration method
to not only model the calibration curves of analytes but also convey a quantitative
assessment of its deviation from linearity.
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Interestingly, a very recent study went as far as to suggest a deep learning-based
regression model for predicting chlordecone, a carcinogenic pesticide, in mouse liver
tissue via MALDI-TOF-MSI to account for the inherent signal variability.180 Dewez et
al.50 have also observed substantial heterogeneity in ion suppression across a tissue
sample while conducting quantification of an endogenous peptide of histone H4
by MALDI-MSI. They proposed a novel multi-labeling approach where a mixture
of isotopically labeled internal standards (ISs), each at a different concentration, is
applied to the sample, thus making it possible to create per-pixel internal calibration
curves that account for local ionization differences. One challenge of such a method is
that the matrix-to-analyte ratio described above can quickly become a limiting factor
for the number of data points used for constructing per-pixel calibration curves since
spraying additional concentration layers of ISs can increase this ratio and could cause
an increased deviation from linearity of the intensity response.

Despite the known challenges of batch effects, quantitative MALDI-MSI pro-
vides the crucial benefit of spatial mapping of drug distribution over UHPLC-ESI-
QTOF-MS-based quantification. This spatial aspect, and together with overlaid
histopathological tissue annotations, enable colocalization analysis of drugs and their
metabolites plus other relevant biomolecules within different tissue morphologies.
A clear example of this has been shown with one GIST sample (sample A) and its
three replicates, whose histopathological assessment and MALDI-MSI measurements
showed obvious heterogeneity containing both normal liver and metastatic GIST
tissue (see Figure 4.31c). Here, MALDI-MSI was instrumental in deducing that the
apparent similar levels of imatinib in normal and tumor tissue as seen by UHPLC-
ESI-QTOF-MS were caused by the presence of unknown fractions of non-tumor tissue
in the tumor sample.

In order to achieve efficacy, drugs that target cancer must be able to penetrate
tissue sufficiently. In this work, the ability of imatinib to penetrate tumors in samples
of human GIST was investigated. The results showed that despite the drug being
present at high levels above the limit of quantification (LOQ) in the normal liver
tissue surrounding the metastatic GIST, the orally administered imatinib showed
limited uptake or retention in metastatic GIST, independent of mutation status, with
amounts below LOQ. A subsequent spatially-resolved analysis by MALDI-MSI re-
vealed that the drug apparently was unable to penetrate into the metastatic tumor
despite high concentrations within the surrounding liver tissue. Additionally, ion
intensity maps of sodium and potassium adducts of imatinib as well as its metabo-
lite, N-desmethylimatinib, revealed that the lack of imatinib within metastatic GIST
in liver was not due to differential tissue-dependent adduct formations or to the
possibility of it being completely metabolized within the tumor tissue. Reasons
for such discrepancy between imatinib amount in normal hepatic and metastatic
GIST could be attributed to characteristics common to solid tumors such as poorly
organized vasculature, increased interstitial fluid caused by the lack of functional
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lymphatics and/or inflammation and abnormal structures of the extracellular ma-
trix.181 However, it has been previously reported that tumor vascularity decreases
in GIST metastases after treatment with imatinib.182 Imaging of Heme B, a proven
MALDI-MSI marker of vasculature173, supported these results suggesting lower vas-
culature within the tumor core when compared with the surrounding hepatic tissue.
The findings of this study on the lack of drug penetration into tumor tissue also
supports previous MALDI-MSI-based drug studies involving different cell line-based
and patient-derived xenograft models.183–185

Finally, the proposed spatial probabilistic mapping discussed in the previous
sections was combined with the MALDI-MSI-based spatial quantitative mapping of
drug signals based on dilution series (see section 4.5.4). Here, CT-MPMs were gener-
ated to spatially localize areas of significant cross-tissue relative spatial abundance
of imatinib in the GIST tissue sample A (test tissue) when compared against a series
of imatinib dilution spots (reference tissue) in MALDI-TOF-MSI data. Consecutive
cross-tissue comparisons revealed high spatial heterogeneity in drug-tissue content
with some pixels showing much higher levels than the reported mean per tissue as
evidenced by the detected cross-tissue hotspots restricted spatially to small parts
of the tissue section (e.g. few hotspots in Figure 4.32h indicating imatinib amounts
above 12.5 pmol while the mean imatinib content based in calibration curves was
7.78 pmol and 7.81 pmol based on MALDI-TOF-MSI and UHPLC-ESI-QTOF-MS
quantification, respectively). These findings illustrate how the probabilistic spatial
mapping through CT-MPMs could potentially be used to spatially investigate tissue
drug content against single spots of therapeutic or toxic drug concentration spotted
alongside the tissue section without the need for preparing drug dilution series and
drug calibration curves, thereby, saving effort and time and reducing the impact of
batch effects on the outcome.

5.7 Methods Limitations

This work presented a computational framework, moleculaR, which proposes a user-
independent MALDI-MSI-based spatial interpretation of the distribution of single
MOIs and MOI ensembles relative to the tissue morphology via spatial probabilistic
mapping. As in the case of ion images, moleculaR does its calculations based on ion
signal intensities generated by the MALDI ionization processes, which inevitably
adds technical variability to biology-related variability.40 moleculaR should not be
considered as an MSI data denoising method, because it was not primarily designed to
detect and filter out technical variability. Despite the internal mechanisms of Gaussian
mass-window weighting and KDE smoothing, both of which are expected to reduce
the impact of signal uncertainty on the hotspot/coldspot contours, each ion intensity
image will still contain an unknown amount of non-biological technical variability.
This aspect is even more pronounced in situations where arithmetic operations are
applied to individual SPPs of MOIs whose uncertainty could be carried on to the
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composite image representation through error propagation. In particular, division of
variables may be prone to uncertainty amplification.

The effectiveness of the proposed Gaussian mass-window weighting, which serves
as a protection against possible proximal background signals by down-weighting
them relative to m/z MOI, has been demonstrated on real data as well as in artificial se-
tups (see section 5.2). It, however, does not protect against mis-calibrated/misaligned
MSI data. In such situations, it is strongly advised to utilize data-adaptive MSI recal-
ibration methods.36 On the other hand, the reliance of the Gaussian mass-window
weighting on the estimated FWHM model, which, itself, is based on a single spectrum
provided externally by the end-user could also be seen as a downside of this approach
since the end-user might accidentally select a corrupt spectrum (a spectrum that only
contains noise). To address this possibility, moleculaR allows for employing more than
one profile spectrum for FWHM model fitting.

Another important workflow, that might be sensitive in particular to slide-to-slide
batch effects, is the CT-MPM approach. Here, as in the commonly encountered
drug/metabolite intensity distribution testing of test-vs-reference tissues, it is im-
portant to ensure that the signal intensities of both test and reference tissues are
comparable. This requires observing appropriate experimental design, which de-
liberately minimizes technical variation (ex. placing them on the same slide to be
measured in a single measurement)40 and/or by relying on robust intensity normal-
ization methods.37–39,94 This also applies to the discussed idea of CT-MPM-based
quantitative spatial mapping.

The beneficial effects of the KDE step, which is internally performed with each
MPM evaluation, has been discussed in section 5.3. However, KDE application re-
quires estimating an optimal data-dependent smoothing scale (bandwidth) which, on
its own, is a well-known challenge.170 To resolve this issue, this work has proposed
a data-driven mechanism for KDE bandwidth estimation based on spatial autocor-
relation157 that prevents spatial over-smoothing (see section 3.8). This method has
been validated on real as well as simulated data (see section 4.4.4). However, the
dependence of the resulting MPM hotspots/coldspots on the KDE bandwidth might
still be seen as a limitation to the proposed method resulting in an uncertainty that
would require a MALDI-MSI-based phantom sample with controlled molecular con-
tent to quantify, which, unfortunately, has not yet been developed within the MSI
community.

It is important to note that moleculaR does not provide a framework for testing if
a detected and observed POI (i.e. MS peak) is the sought-after MOI (i.e. the actual
molecule). Analogous to "classical" ion images, it rather permits the end-user to
analyze and visualize single MOIs or MOI ensembles that he/she is interested in.
Whether the intensity distribution observed is, in fact, the desired MOI (drug, metabo-
lite, etc.) is a question that must be validated by orthogonal analytical approaches
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such as MS/MS fragmentation or ion mobility MS and/or accurate mass and sum
formula determination at very high resolving power. Throughout this work, the
METASPACE annotation engine147 (https:// metaspace2020.eu), has been used for
POI-MOI matching based on the SwissLipids148 database and the false discovery
rate (FDR) has been reported when possible. False positive matching is unavoidable.
If a false positive POI-MOI match (through an external method) may occur for an
interfering peak that is observed in a close proximity of the theoretical m/z MOI
which also happen to have a degree of spatial autocorrelation (i.e. possesses a spatial
pattern), then moleculaR will provide an MPM that shows hotspots/coldspots for that
particular POI. It is important to note, however, that ion images, which are still the
current norm in studying spatial distribution of MOIs in MSI, will also fail in this case.
More importantly, for all reported results involving MPMs and, in particular, CPPMs,
an unknown degree of uncertainty is present caused by in-source fragmentation and
modification of lipids that might happen during the MALDI ionization process.63,186

This work further investigated quantitative spatial mapping of drugs in tissue
sections by performing nonlinear calibration-based tissue-drug content quantifica-
tion on an entire tissue cohort of GIST specimens on TOF- and FTICR-MALDI-MSI
modalities comparing their results to the gold-standard UHPLC-ESI-QTOF-MS. Here,
due to the limited tissue availability and since all measurements were conducted in
triplicates, some samples were completely used up before reaching the next round of
measurements with UHPLC-ESI-QTOF-MS and MALDI-FTICR-MSI. This has nega-
tively impacted quantification comparisons across these three modalities. It must also
be stated that, while MALDI-TOF- and -FTICR-MSI have historically been compared
to UHPLC-MS as the definitive method for quantification, it is important to exercise
caution when performing such validation. This is because MALDI-MSI provides
quantification on a pixel-by-pixel basis of a very thin tissue surface layer187, whereas
UHPLC-MS quantifies the drug within a tissue volume. In the case of MALDI-MSI,
due to its proximity to the applied matrix, the spray-coated IS as well as on-tissue
spotted drug within the dilution series might exhibit different mass transfer kinetics
into the MALDI matrix when compared to endogenous analytes in the cellular envi-
ronment.50,51 This and other previously reported factors affecting MALDI-MSI-based
quantification, such as the various types of batch effects40, may add to the uncertainty
in drug-tissue quantification, despite the promising results reported in this work and
in previous studies.

5.8 Conclusion

This work introduces a computational framework, moleculaR, which proposes the
concept of spatial probabilistic mapping in MSI as a solution to the known limitations
of ion images when it comes to spatial visualization and interpretation of MOIs’
distribution in tissue samples via MSI. It provides user-independent solutions for the
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conversion of raw data into ion intensity images; namely, data-driven FWHM model-
ing for the calculation of the mass-search window, Gaussian mass-window weighting
for improved signal reliability, user-independent spatial interpretation of the dis-
tribution of single MOIs and MOI ensembles based spatial probabilistic mapping
through MPMs and CPPMs as well as CT-MPMs for the cross-tissue spatially-aware
comparison of metabolite or drug signals distribution between test and reference
tissues.

The different parts of the framework have been tested and validated on MALDI-
MSI data measured with different mass spectrometers including ultra-high-resolution
MALDI-FTICR, high-resolution MALDI-timsTOF and MALDI-TOF mass spectrome-
ters featuring different tissue samples; namely, human IDH-WT GB, human IDH-WT
and -MUT glioma, human GIST, wild-type mouse brain, porcine liver and APP
NL-G-F Alzheimer’s disease mouse tissue samples. Moreover, simulation-based
experiments mimicking MALDI-MSI ground-truth have also been developed and
utilized to test the proposed workflows.

The observed results suggest that moleculaR is equally applicable for ultra-high-
resolution MSI like magnetic resonance mass spectrometry (MRMS), for high-resolution
instruments like MALDI-timsTOF or for MALDI-TOF mass spectrometers. The ap-
plicability of the proposed methods is also expected to include other types of mass
spectrometry imaging data, which, however, requires follow-up testing. Furthermore,
the results suggest that the proposed spatial probabilistic mapping represented by
MPMs, CPPMs and CT-MPMs shall replace or complement ion images for the spatial
analysis of MOI because of its valuable benefit of enabling localization of significant
relative spatial abundance or deficiency of MOIs. moleculaR has been released as
an open-source R package (https:// github.com/CeMOS-Mannheim/moleculaR)
complementing leading MSI-bioinformatics packages and the results depicted and
discussed in this work have been made available to the scientific community.142

In this work an attempt was also made to further investigate the applicability of
the cross-tissue probabilistic spatial mapping concept in quantitative spatial map-
ping of drugs in tissue sections. A generalized nonlinear calibration model based
on drug dilution series was proposed as a replacement for the traditional linear
model that takes into account the inherent measurement nonlinearities characteristic
to MALDI-MSI data. It’s applicability was then tested in a clinical pharmacology
setup by MALDI-MSI-based tissue-drug content quantification of an entire cohort of
tumor tissue samples. The findings illustrated emphasize the significant potential of
MALDI-MSI as a technique for investigating the spatial distribution of targeted drugs
in oncology. This methodology could be further transferred to other clinical drugs
beyond the example of imatinib presented in this work. In particular, MALDI-MSI
could serve as a complementary method to evaluate the pharmacokinetics of drugs
and their metabolites in tissue specimens post-surgery, providing insight into drug
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uptake and tissue penetration efficiency and their impact on treatment resistance. Fur-
thermore, the combination of spatial probabilistic and quantitative mapping through
the use of CT-MPMs could potentially be used to spatially investigate tissue drug
content and predict therapeutic sensitivity of diseased tissues. Findings presented
and discussed in this work have been made available to the scientific community.143
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Chapter 6

Summary

Ion images, i.e. false color renderings of mass-to-charge ratio (m/z) intervals of interest,
are used as the fundamental investigation tool in mass spectrometry imaging (MSI)
for conveying the spatial distribution of molecules-of-interest (MOIs, e.g., metabolites,
drugs, lipids or proteins) within biological tissues that are often compared to external
histopathology annotations. Ion images are also used as a gold-standard for vali-
dating the outcomes of computational and machine learning methods in biomarker
discovery applications in MSI.1,87,139 However, the conversion of raw MSI data into
ion images for visualization, spatial interpretation and molecular analysis has not
changed since the inception of the technology. Moreover, the generated ion images
can be prone to technical artifacts, user input- and user perception-bias.40,79

The aim of this work was to address the known limitations of ion images when
it comes to spatial visualization and interpretation of MOIs’ distribution in tissue
samples with MSI. The proposed solution is a computational framework, moleculaR,
that employs a user-independent assignment of m/z intervals for capturing MOIs
based on the device- and measurement-dependent mass resolving power along with
Gaussian-weighting of observed peaks-of-interest (POIs) for improved reliability of
metabolite/lipid/drug signals in MSI. Instead of relying on the subjective qualitative
judgment of the end-user concerning the observed spatial distribution of an MOI
within a tissue sample, moleculaR proposes molecular probabilistic maps (MPMs),
which apply pixel-wise spatial significance testing of MOI intensities against a com-
plete spatial randomness (CSR) model inferred from the signal intensities of that
same MOI. moleculaR also allows for spatial statistical comparisons of different tis-
sues (cross-tissue MPMs or CT-MPMs) and for collective projections of metabolite
ensembles onto a single tissue plane, followed by computation of collective projection
probabilistic maps (CPPMs). Ultimately, computed "hotspot" and "coldspot" spa-
tial contours provide user-independent and probabilistic localization of tissue areas
where an MOI has a statistically significant non-random relative spatial abundance
or deficiency, respectively.

The different parts of the framework have been tested and validated on matrix-
assisted laser desorption ionization (MALDI) MSI data measured with different mass
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spectrometers including ultra-high-resolution Fourier transform ion cyclotron reso-
nance (FTICR), high-resolution trapped ion mobility spectrometry time-of-flight
(timsTOF) and TOF mass spectrometers, featuring different tissue samples and
simulation-based experiments mimicking MALDI-MSI ground-truth, which have
been developed and utilized to test the proposed workflows. The observed results in-
dicated the cross-platform applicability of moleculaR. Furthermore, the results suggest
that the proposed spatial probabilistic mapping represented by MPMs, CPPMs and
CT-MPMs shall replace or complement ion images for the spatial analysis of MOIs
because of its valuable benefit of enabling localization of significant relative spatial
abundance/deficiency of MOI signal intensities. moleculaR has been released as an
open-source R package complementing leading MSI-bioinformatics packages and the
results depicted and discussed in this work have been made available to the scientific
community.142

Furthermore, this work attempted to investigate quantitative spatial mapping of
drugs in a tissue sections. Here, a generalized nonlinear calibration model based on
drug dilution series was proposed as a replacement for the traditional linear model
that takes into account the inherent measurement nonlinearities characteristic to
MALDI-MSI data. It’s applicability was then tested in a clinical pharmacology setup
by performing tissue-drug content quantification on an entire tissue cohort of gastroin-
testinal stromal tumor (GIST) specimens on TOF- and FTICR-MALDI-MSI modalities,
comparing their results to the gold-standard ultra-high performance liquid chro-
matography electrospray-ionization quadrupole time-of-flight mass spectrometry
(UHPLC-ESI-QTOF-MS). The findings revealed striking inefficiency in imatinib pen-
etration into GIST liver metastases. This was despite the abundant imatinib levels
beyond the limit of quantification (LOQ) observed within the corresponding healthy
liver tissues surrounding the metastatic GIST, thus providing evidence for secondary
drug resistance independent of mutation status. This emphasizes the significant
potential of MALDI-MSI as a technique for investigating the spatial distribution
of targeted drugs in oncology. In particular, MALDI-MSI could serve as a comple-
mentary method to evaluate the pharmacokinetics of drugs and their metabolites in
resected specimens post-surgery, shedding light on the role of drug uptake and tissue
penetration efficiency in treatment resistance. The results depicted and discussed
have been made available to the scientific community.143

Finally, an attempt was made to combine the proposed spatial probabilistic map-
ping with the MALDI-MSI-based spatial quantitative mapping of drug signals in
tissues. The results suggest that the probabilistic spatial mapping through CT-MPMs
could potentially be used to spatially investigate tissue drug content, e.g., against
single spots of therapeutic or toxic drug concentration spotted alongside the tissue
section, without the need for preparing drug dilution series and drug calibration
curves, thereby, saving effort and time and reducing the impact of batch effects on
the outcome.
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FIGURE 8.1: CPPMs of a technical replicate of the Glioblastoma (GB) tissue section show-
cased in Figure 4.11. a) H&E-stained image of the tissue section highlighting different GBM
anatomical regions (VT: vital tumor; VT-Vasc: vital tumor with high vascularization; Subnecr:
areas of pre-necrotic tissue; Necr: necrotic tissue). b) CPPMs enable basic arithmetic opera-
tions on SPPs. Green mesh indicates co-registered vital tumor regions. SPPs of [ATP-H]−,
[ADP-H]− and [AMP-H]− (FDR ≤ 0.2; upper row) and their sum-normalized CPPMs (bottom
row; Σ = [ATP-H]− + [ADP-H]− + [AMP-H]−). CPPMs also enable complex spatial quan-
titative scores such as adenylate energy charge (([ATP-H]−+ 0.5 * [ADP-H]−)/([ATP-H]−

+ [ADP-H]− + [AMP-H]−); top right) and adenylate kinase mass action ratio ([ATP-H]−

* [AMP-H]−/([ADP-H]−) 2; bottom right). c) CPPMs enable spatial investigation of glyc-
erophospholipid remodeling (Lands’ cycle) in GB by visualizing structurally similar lipids
(FDR ≤ 0.5) within the same image space. Upper panel: CPPMs of all Lyso-GPLs compared to
all GPLs (leftmost column). Lyso- and non-lyso-GPL pairs are normalized to their sum (ex. for
LPC and PC, Σ represents the sum of all LPC and PC lipids). Lower panel is identical to the
one shown in Figure 4.11c, replicated here for convenience. d) Analysis of the tissue’s alkali
ion milieu. Note that (Lyso-)GPLs refers to Lyso-GPLs plus GPLs. Numbers in parenthesis =
METASPACE-verified147 lipids (FDR ≤ 0.2). left column: CPPMs of all detected potassium
adducts of (Lyso-)GPLs (PC, LPC, PE, LPE, PS, LPS, PI, LPI), CPPMs of all detected potassium
adducts of (Lyso-)GPLs relative to the overall sum of all (Lyso-)GPL adducts and CPPMs of
all detected potassium adducts of Lyso-GPLs relative to the overall sum of all (Lyso-)GPL
adducts. right column: CPPMs of all detected sodium adducts of (Lyso-)GPLs, CPPMs of
all detected sodium adducts of (Lyso-)GPLs relative to the overall sum of all (Lyso-)GPL
adducts and CPPMs of all detected sodium adducts of GPLs relative to the overall sum of all
(Lyso-)GPL adducts. Figure was adapted from Abu Sammour et al.142 with permission from
Springer Nature. Part c (lower panel) was contributed by A. Sadik.
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FIGURE 8.2: Comparison of the resulting molecular probabilistic maps (MPMs) of three
exemplary lipids shown on a IDH-WT Glioblastoma (GB) serial tissue section measured with
MALDI-FTICR-MSI based on raw data (without intensity normalization), total-ion-count
(TIC) normalization and root mean squared (RMS) normalization. MPM hotspot and coldspot
contours show good agreement irrespective of the normalization type or the lack thereof as
also shown for the serial section of Figure 4.25. Figure was adapted from Abu Sammour et
al.142 with permission from Springer Nature.

FIGURE 8.3: Layout of the sample slide used for MALDI-TOF-MSI and MALDI-FTICR-MSI
quantification of imatinib in GIST. Two series of imatinib dilution spots (a = 25 pmol; b = 12.5
pmol; c = 6.25 pmol; d = 3.125 pmol; e = 1.5625 pmol; f = 0.78125 pmol; 0 = control) as well as
two spots for mass calibration (CS; green) were spotted onto a porcine liver section mounted
on the left side of each ITO slide. Per slide, normal tissue (N; upper row) and tumor tissue (T;
lower row) of four tissue specimens were analyzed. Figure was adapted from Abu Sammour
et al.143 with permission from Springer Nature and contributed by C. Marsching.
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FIGURE 8.4: Imatinib detection and distribution in all tumor (T) and non-tumor (N) samples
of the GIST study (not to scale). Green and red pixels indicate imatinib signal detection at
SNR ≥ 3 and absence, respectively. Three cryosections were prepared per tissue specimen,
and tissue specimens are coded by single or double letters. Tissues identified as stomach,
colon or intestine are primary tumors. All others were metastases. Figure was adapted from
Abu Sammour et al.143 with permission from Springer Nature.
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8.2 Supplementary Tables

TABLE 8.1: GIST patients clinical and pathological meta data as described in Abu Sammour
et al.143 Independent of therapeutic dosing, all patients received daily dosage of 400-800 mg
imatinib until the day of surgery (n.i. = not identified; HPF = high power field). Table was
adapted from Abu Sammour et al.143 with permission from Springer Nature

Organ (ID)
Metastasis (m)

or primary
tumor (p)

Sex
(f/m)

Age at
surgery

Imatinib regime
(months at
that dose)
(mg/day)

Mutations
mitosisactivity

C-Kit PDGFRA

Liver (A) m f 44
91
400

Ex9;11;13;17 Ex18 50/50 HPF

Liver (C) m m 56
15/11/62
400/600/800

Ex17 — n.i.

Liver (G) m f 47
17
800

Ex9;11;13;17 Ex18 n.i.

Liver (J) m m 50
82
800

Ex11;17 Ex18 36/50 HPF

Liver (K) m m 45
45
400

Ex11;13 — 11/10 HPF

Liver (L) m f 49
7/15
400/800

Ex11 — 1/50 HPF <7/1 HPF

Liver (M) m m 56
33/25
400/600

n.i. n.i. 38/50 HPF

Liver (U) m m 62
n.i.
n.i.

Ex11 — 3/50 HPF

Liver (V) m f 67
31
400

Ex9;11;13;17 Ex12;14;18 92/50 HPF

Liver (W) m m 73
89
400

Ex9;11;13;17 Ex18 33/50 HPF

Liver (W) m m 73
88
400

— — 33/50 HPF

Liver (Z) m m 49
n.i
n.i.

Ex11;13 Ex18 65/50 HPF

Peritoneum (I) m f 42
11
400

Ex11 — 12/50 HPF

Peritoneum (N) m m 84
72
400

Ex13 — 85/50 HPF

Peritoneum (P) m m 62
62
400

Ex12 — 4/50 HPF

Peritoneum (Q) m m 45
8

400
Ex11 — 147/50 HPF

Peritoneum (R) m m 76
36
400

Ex9;11;13;17 Ex18 30/50 HPF

Stomach (D) p f 76
10
400

Ex11 — Not vital

Stomach (F) p m 52
6
400

Ex11 — <1/50 HPF

Stomach (T) p m 69
13
n.i.

— — 90/50 HPF

Stomach (X) p f 87
7
400

Ex9;11;13;17 Ex18 10/50 HPF

Thorax wall (E) m m 76
26/5
400/800

Ex11;117 Ex12;14;18 115/50 HPF

Abdomen (Y) p m 43
n.i.
400

— Ex15 10/50 HPF

Intestine (B) p m 66
10
400

Ex13 — 5/50 HPF

Intestine (AA) p m 44
10
800

Ex9 — 4/50 HPF

Intestine (AB) m m 63
50
400

Ex9;11;117 Ex12;14;18 17/50 HPF

Lung (S) m m 74
28
400

Ex11 — 40/50 HPF

Colon (O) p f 80
12
400

Ex9;11;13;17 — >5/50 HPF
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Introduction
The moleculaR R package provides a computational framework that introduces probabilistic mapping and
point-for-point statistical testing of metabolites in tissue via Mass spectrometry imaging. It enables collective
projections of metabolites and consequently spatially-resolved investigation of ion milieus, lipid pathways or
user-defined biomolecular ensembles within the same image.

moleculaR comes pre-loaded with the SwissLipids database and with is capable of importing metabolite
annotation results from the METASPACE platform to compute FDR-verified moleculaR probabilistic maps
(MPMs) and collective projection probabilistic maps (CPPMs).

Installation & Loading Example Data
moleculaR can be installed via devtools, note that you need to set build_vignettes=TRUE to build this
vignette during package installation. Once installed, moleculaR could be loaded using library():
# not run
install.packages("devtools")
devtools::install_github("CeMOS-Mannheim/moleculaR", build_vignettes=TRUE)

library(moleculaR)

Importing & Processing MSI Data
Under the hood moleculaR is mainly based on MALDIquant, spatstat and Matrix packages and provides
some additional tools to help import and process any given MSI dataset. Please note that currently only
centroided MSI data is supported. moleculaR expects two mandatory data inputs; a (processed) imzML file
and an additional tsv file which contains a full continuous spectrum (with m/z and intensity columns) which
either represents a random pixel within the imaging dataset or an average spectrum.
#-- not run --#

# read MSI data
imzmlFile <- "pathToFile.imzML"
msData <- readCentrData(path = imzmlFile)

# single spectrum
spectrFile <- "pathToFile.tsv"
msSpectr <- readSingleSpect(spectrFile)

moleculaR also accepts one optional input which is the annotations results for the given dataset which the
user could retrieve from METASPACE (https://metaspace2020.eu) provided, of course, that the same dataset
has been previously uploaded there for annotation. When this input is provided, moleculaR takes these into
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consideration to filter out detections which were not verified by METASPACE at a certain FDR specified by
the user.
#-- not run --#

# load the metaspace annotations file
pathToMtspc <- "pathToFile.csv"
mtspc <- read.csv(file = pathToMtspc, skip = 2, header = TRUE,

colClasses = "character")

Finally, the SwissLipid database, which is provided with moleculaR ,must be loaded:
#-- not run --#

# load the processed swisslipids db
pathTosldb <- system.file("extdata", "swisslipids-speciesOnly-sep2020.tsv",

package = "moleculaR", mustWork = TRUE)
sldb <- loadSwissDB(pathTosldb)

For subsequent analysis, an S3 fwhm object must be created which will hold information about full width at
half maximum (FWHM) as a function of m/z axis and will be used to estimate FWHM at any given m/z
value (for more info see ?estimateFwhm):
#-- not run --#

# estimate fwhm from msSpectr
fwhmObj <- estimateFwhm(s = msSpectr)

Before applying any preprocessing methods, it is highly recommended to perform peak-binning and peak
filtering on msData, subsequently the user may apply any preprocessing methods provided by MALDIquant
(keeping in mind that this is a centroided dataset).
#-- not run --#

# bin peaks
msData <- MALDIquant::binPeaks(msData,

#focusing on lipids:
tolerance = getFwhm(fwhmObj, 400)/400,
method = "relaxed")

# filter out peaks which occur in less than 1% of the time
# Note: use 'moleculaR::' namespace to distinguish it from MALDIquant::filterPeaks
# if MALDIquant is loaded.
msData <- moleculaR::filterPeaks(x = msData, minFreq = 0.01)

Walkthrough - Example Data
moleculaR also comes pre-loaded with an example MALDI MSI dataset. This dataset has been heavily
reduced and filtered in order to make it available with the package. Consequently, the
illustrations shown in this vignette are just to have an overview of the functionality of the
different commands and might not be indicative of the molecular content of that tissue sample.
To load the example data (assuming that the package has been already loaded):
library(moleculaR)
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data("processed-example-Data")

# to see the loaded objects
ls()
#> [1] "fwhmObj" "msData" "mtspc" "sldb"

msData represents a centroided MALDI MSI dataset stored as a list of MassPeaks objects (see
?MALDIquant::MassPeaks for more details), fwhmObj is an S3 object of type fwhm storing the calculated
full width at half maximum (FWHM) information of msData (see ?moleculaR::fwhm for more details),
mtspc is a data frame storing the associated annotations file (<0.2 FDR) which is downloaded directly from
METASPACE (https://metaspace2020.eu) and sldb is a data frame storing the SwissLipids database filtered
to only include the identifications outlined in mtspc.

Since moleculaR relies internally on spatial data, a spatial window can be created to represent the tissue
boundaries:
spwin <- createSpatialWindow(pixelCoords = MALDIquant::coordinates(msData),

clean = TRUE,
plot = TRUE)

-

To investigate FWHM as a function of m/z axis one could simply plot fwhmObj:
plot(fwhmObj)
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Or, to find the estimated FWHM at any given of m/z value one could simply pass fwhmObj to GetFwhm
method:
# FWHM at m/z 400
getFwhm(fwhmObj, 400)
#> [1] 0.004822831

To speed up downstream analysis, moleculaR relies on a sparse matrix representation of the MSI data. To
this end, msData has to be first converted to an S3 object of type moleculaR::sparseIntensityMatrix:
#// create sparse matrix representation
spData <- createSparseMat(x = msData)

Molecular Probabilistic Maps (MPMs)
moleculaR introduces the idea of molecular probabilistic maps (MPMs) the main goal of which is to reduce
the reliance on user’s subjective opinion on the extent of spatial distribution of analytes within a given tissue
section. Instead MPMs provide a user-independent statistical testing on the likelihood that a certain spatial
intensity distribution has a significant relative abundance (i.e. analyte hotspot) or deficiency (i.e. analyte
coldspot) within the tissue space. To illustrate this, consider as an example a peak-of-interest (POI) of
788.5447 m/z.
# input by m/z value
queryMass <- 788.5447
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moleculaR provides searchAnalyte method to retrieve intensity values at a specific m/z with a mass-window
dictated by the estimated FWHM at that same m/z value (see ?moleculaR::searchAnalyte for more info).
Moreover, searchAnalyte gives the user the possibility to choose which weighting method to choose, for
example, setting the argument wMethod="sum" will generate the so called “ion image” as all peaks appearing
within the estimated mass-window will be summed up (i.e. uniform mass-window weighting):
# compute the regular ion image - returns an AnalytePiontPattern
sppIonImage <- searchAnalyte(m = queryMass,

fwhm = getFwhm(fwhmObj, queryMass),
spData = spData,
spwin = spwin,
wMethod = "sum")

# compute a raster image of the sppIonImage
ionImage <- spp2im(sppIonImage)

# plot ion image
plotImg(ionImage)

-

Now to compute a FWHM-dependent Gaussian weighted analyte point pattern representation, set
wMethod="Gaussian":
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# compute spatial point pattern of the analyte
sppMoi <- searchAnalyte(m = queryMass,

fwhm = getFwhm(fwhmObj, queryMass),
spData = spData,
spwin = spwin,
wMethod = "Gaussian")

# plot SPP
plotAnalyte(sppMoi, main = paste0("SPP of m/z ", round(queryMass, 4)))

-

# plot the corresponding raster image
plotImg(spp2im(sppMoi), main = paste0("Raster image of m/z ", round(queryMass, 4)))
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The probMap could then be called with the default parameters to calculate the corresponding MPM of the
above POI (see ?probMap for details) and the generic plot could be used on the result to plot a composite
detailed illustration (see ?plot.molProbMap for details):
#// compute MPM - default parameters
probImg <- probMap(sppMoi)

#// plot everything together
par(cex.lab = 2, cex.main = 2, cex.axis = 1.5)
plot(probImg, what = "detailed", ionImage = ionImage)
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Collective Projections Probabilistic Maps (CPPMs)
Another concept introduced by moleculaR is the collective projections probabilistic maps (CPPMs) which, as
the name implies, provides a framework for visualization of a set of analytes collectively in a single image
space. This could be of interest when, for example, a user is interested in visualization a set of analytes with
a certain similarity (structure, functionality, etc.).

CPPMs - Lipid Classes
As moleculaR is lipidome-focused in this example, the test MSI dataset is screened against the internal
instance of the SwissLipids database and is optionally verified by an externally provided lipidome annotation
file downloaded from METASPACE for the given MSI dataset (pre-loaded for the current example). The
batchLipidSearch method then is used to do this screening (for more details see ?batchLipidSearch):
cat("Batch lipid search is ongoing - this will take several minutes - \n")

lipidHits <- batchLipidSearch(spData = spData, fwhmObj = fwhmObj, sldb = sldb,
spwin = spwin,
adduct = c("M+H", "M+Na", "M+K"),
numCores = 4,
verifiedMasses = as.numeric(mtspc$mz),
confirmedOnly = TRUE, verbose = TRUE)

lipidHits

The results is an S3 object of type spatstat::ppp and moleculaR::analytePointPattern which contains
all lipid identifications (against SwissLipids database) according to the provided mtspc annotation file. The
metaData of the detected analytes are found in the metaData slot:
# show metaData
head(lipidHits$metaData)
#> idx mzVals mzConfirmed mode adduct lipidID sumformula abbrev ...
#> M+H 1659378808 327.1567 TRUE positive M+H SLM:000055220 C13H25O7P LPA(10:0) ...
#> M+H1 1659179733 299.1254 TRUE positive M+H SLM:000055283 C11H21O7P LPA(8:0) ...
#> M+H2 1659302815 496.3398 TRUE positive M+H SLM:000055318 C24H50NO7P LPC(16:0) ...
#> M+Na 1659222965 518.3217 TRUE positive M+Na SLM:000055318 C24H50NO7P LPC(16:0) ...
#> M+H3 1659375015 494.3241 TRUE positive M+H SLM:000055319 C24H48NO7P LPC(16:1) ...
#> M+H4 1659320885 524.3711 TRUE positive M+H SLM:000055322 C26H54NO7P LPC(18:0) ...

To list all lipid classes which were detected (and confirmed by METASPACE; if confirmedOnly=TRUE):
# Show all detected lipid classes
unique(lipidHits$metaData$lipidClass)
#> [1] "LPA(x:x)" "LPC(x:x)" "LPC(O-x:x)" "LPE(x:x)" "LPS(x:x)" "PA(x:x)" "PA(O-x:x)"
#> [8] "PC(x:x)" "PC(O-x:x)" "PE(x:x)" "PE(O-x:x)" "PG(x:x)" "PS(x:x)" "PS(O-x:x)"
#> [15] "TG(x:x)" "HexCer(tx:x)" "HexCer(dx:x)" "Hex2Cer(dx:x)" "SM(dx:x)" "PE-Cer(dx:x)"
#> "PGP(x:x)"
#> [22] "BMP(x:x) | LBPA" "SE(x:x)" "PG(O-x:x)" "Cer(tx:x)" "TG(O-x:x)" "LPG(O-x:x)"

To generate class-specific lipid maps, subsetAnalytes could be used to filter lipidHits according to lipid
classes. Note that subsetAnalytes subsetting is always based on the column names of lipidHits$metaData.
Afterwards one could directly apply probMap method and produce a CPPM for all hit instances for a given
lipid class. Note that for CPPMs it is highly recommended to apply z-score transformation to account for
differences in ionization efficiency of the MOIs constituting the CPPM:
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# z-score transformation
lipidHits <- transformIntensity(lipidHits, method = "z-score")

# choose one lipid species
lipidClass <- "PA(x:x)"

# subset lipidHits
paHits <- subsetAnalytes(lipidHits, lipidClass == "PA(x:x)")

# compute MPM - default parameters
probImg <- probMap(paHits)

#// plot everything together
par(cex.lab = 2, cex.main = 2, cex.axis = 1.5)
plot(probImg, what = "detailed")
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CPPMs - Ion Milieus
Same as with lipid class maps, one could create representations of a custom set of analytes. Suppose that ion
milieus distribution of all (lyso)glycerophospholipids ‘(lyso)GPLs’ which are the mian constituent of biological
membraes. One could first subset lipidHits to include PA, PS, PE, PC, PI, PG, LPA, LPS, LPE, LPC,
LPI, and LPG:
# create a subset representing lysoGPLs
ofInterest <- c("LPA(x:x)", "LPC(x:x)", "LPE(x:x)", "LPG(x:x)","LPI(x:x)", "LPS(x:x)",

"PA(x:x)", "PC(x:x)", "PE(x:x)","PG(x:x)", "PI(x:x)", "PS(x:x)")
# subset lipidHits
lysoGPLs <- subsetAnalytes(lipidHits, lipidClass %in% ofInterest)
lysoGPLs
#> Marked planar point pattern: 5794229 points
#> Mark variables: idx, intensity
#> window: polygonal boundary
#> enclosing rectangle: [108.45, 305.55] x [139.45, 314.55] units

# detected classes
cat("detected lipid classes: \n")
#> detected lipid classes:
unique(lysoGPLs$metaData$lipidClass)
#> [1] "LPA(x:x)" "LPC(x:x)" "LPE(x:x)" "LPS(x:x)" "PA(x:x)" "PC(x:x)"
#> [7] "PE(x:x)" "PG(x:x)" "PS(x:x)"

Then one could further use subsetAnalytes to subset lysoGPLs according to any analyte characterestic of
the metaData table i.e.
# meta data table columns
colnames(lysoGPLs$metaData)
#> [1] "idx" "mzVals" "mzConfirmed" "mode" "adduct" "lipidID" "sumformula" "abbrev"
#> [9] "numDoubleBonds" "lipidClass" "chainLength"

To this end, one could visualize for example all [M+K]+ adducts of detected (lyso)GPLs:
# detected adducts
cat("detected adducts: ")
#> detected adducts:
table(lysoGPLs$metaData$adduct)
#>
#> M+H M+K M+Na
#> 134 26 99
# subsetting
kHits <- subsetAnalytes(lysoGPLs, adduct == "M+K")
# or NHits <- subsetAnalytes(lysoGPLs, adduct == "M+Na")
# or HHits <- subsetAnalytes(lysoGPLs, adduct == "M+H")

To apply CPPMs and plot the result for [M+K]+:
# compute CPPM
probImg = probMap(kHits)

par(cex.lab = 2, cex.main = 2, cex.axis = 1.5)
plot(probImg, what = "detailed")
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CPPMs - Lipid Saturation
The same technique could applied to investigate lyso(GPLs) saturation (saturated, mono-unsaturated, di-
unsaturated and poly-unsaturated) within one image space by subsetting based on the number of double-bonds
of the lipid fatty acid chain.
detectedSaturation <- c("sat", "mono-unsat", "di-unsat", "poly-unsat")

# subsetting
satHits <- subsetAnalytes(lysoGPLs, numDoubleBonds == 0)
# or monoHits <- subsetAnalytes(lysoGPLs, numDoubleBonds == 1)
# or diHits <- subsetAnalytes(lysoGPLs, numDoubleBonds == 2)
# or polyHits <- subsetAnalytes(lysoGPLs, numDoubleBonds > 2)

input for the specific saturation
# compute CPPM
probImg = probMap(satHits)
#> Attempting to generate 1408331 random points

par(cex.lab = 2, cex.main = 2, cex.axis = 1.5)
plot(probImg, what = "detailed")
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Session Information

sessionInfo()
#> R version 4.0.2 (2020-06-22)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 19044)
#>
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=English_Germany.65001 LC_CTYPE=English_Germany.1252
#> LC_MONETARY=English_Germany.65001 LC_NUMERIC=C
#> [5] LC_TIME=English_Germany.65001
#> system code page: 65001
#>
#> attached base packages:
#> [1] stats graphics grDevices datasets utils methods base
#>
#> other attached packages:
#> [1] moleculaR_0.9.0
#>
#> loaded via a namespace (and not attached):
#> [1] terra_1.4-11 xfun_0.28 splines_4.0.2 lattice_0.20-45
#> colorspace_2.0-2 spatstat.utils_2.2-0
#> [7] vctrs_0.3.8 testthat_3.1.0 htmltools_0.5.2 viridisLite_0.4.0
#> mgcv_1.8-38 utf8_1.2.2
#> [13] rlang_0.4.12 spatstat.data_2.1-0 pillar_1.6.4 glue_1.5.0
#> withr_2.4.2 sp_1.4-5
#> [19] lifecycle_1.0.1 stringr_1.4.0 spatstat.core_2.3-0 munsell_0.5.0
#> gtable_0.3.0 raster_3.5-2
#> [25] codetools_0.2-16 evaluate_0.14 knitr_1.36 fastmap_1.1.0
#> import_1.2.0 parallel_4.0.2
#> [31] fansi_0.5.0 highr_0.9 Rcpp_1.0.7 tensor_1.5
#> renv_0.13.0 scales_1.1.1
#> [37] desc_1.4.0 pkgload_1.2.3 abind_1.4-5 deldir_1.0-6
#> gridExtra_2.3 ggplot2_3.3.5
#> [43] digest_0.6.28 stringi_1.7.5 spatstat.sparse_2.0-0 polyclip_1.10-0
#> grid_4.0.2 rprojroot_2.0.2
#> [49] cli_3.1.0 tools_4.0.2 magrittr_2.0.1 goftest_1.2-3
#> tibble_3.1.6 crayon_1.4.2
#> [55] pkgconfig_2.0.3 ellipsis_0.3.2 Matrix_1.3-4 viridis_0.6.2
#> rpart_4.1-15 R6_2.5.1
#> [61] MALDIquant_1.20 spatstat.geom_2.3-0 nlme_3.1-153 compiler_4.0.2
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