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Zusammenfassung

Lebende Organismen bestehen aus semi-flexiblen Biopolymeren, die Zellen strukturelle
Integrität und Funktionalität verleihen. Semi-flexible (Bio-)polymere assemblieren in hi-
erarchischen Netzwerken, die durch das Zusammenspiel von entropischen und enthalpis-
chen Effekten bestimmt werden. Solch assemblierte Netzwerke weisen bei mechanischer
Beanspruchung ein nicht lineares Verhalten auf, wie zum Beispiel Versteifung bei Dehnung
und Erweichung durch Kompression. Diese Nichtlinearität ist auf die Vielkörpernatur auf
der Mikroskala zurückzuführen, die das Verhalten auf der Mesoskala maßgeblich beein-
flusst. Aufgrund des Mangels an nicht-generischen skalen-übergreifenden Modellen ist das
Verhalten semi-flexibler Polymernetzwerke bei mechanischer Last noch nicht vollständig
verstanden. Demnach ist das Ziel dieser Arbeit, die wichtigsten molekularen Deformations-
mechanismen in semi-flexiblen (Bio-)polymernetzwerken durch großskalige und chemisch
informierte Molekulardynamik-Simulationen zu untersuchen.

Wir haben grob-körnige Modelle für zwei semi-flexible Polymere mit ähnlichen Persis-
tenzlängen, nämlich Poly(para-phenylene ethynylene)s (PPEs) und Kollagen, mittels des
Martini 3 Kraftfeldes entwickelt, um Molekulardynamik-Simulationen unter Kraft durch-
zuführen und Bereiche mit hoher Kraftkonzentration und bruchgefährdeten Bindungen zu
identifizieren. Unsere Martini 3 Modelle erfassen die strukturellen, mechanischen und ther-
modynamischen Observablen aus atomistischen Simulationen und Experimenten aus der
Literatur weitestgehend, einschließlich der Packung zwischen denKetten, dermechanischen
Biegesteifigkeit sowie den Lösungseigenschaften.

Wir zeigen, dass die Verschränkung von PPEs in großskaligen Netzwerken mit der Ket-
tenlänge zunimmt. Zudem stellenwir fest, dass langkettigen PPEs unter Scherbeanspruchung
Scherbänder mit extremen Scherraten im Schnellband ausbilden, in dem die Bruchkräfte am
höchsten sind und Bindungen am ehesten versagen. Außerdem haben wir ein atomistisches
Strukturmodell für die Kollagenmikrofibrille mit einstellbarer Crosslinkdichte erstellt und
das Martini 3 Kraftfeld mit Gō-Potenzialen kombiniert, um eine Zunahme der Mikrofibril-
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lenstreckung bei abnehmender Crosslinkdichte zu beobachten. Unser Martini 3 Kollagen-
model eignet sich dazu, die Mikrofibrillenstreckung von atomistischen Simulationen unter
Kraft zu erfassen, die in Kollaboration mit dem Riken Institut in Kobe durchgeführt wurden.

Die beiden hier entwickelten grob-körnigenModelle für das semi-flexible PPE und Kol-
lagen ergänzen experimentelle Untersuchungen durch Vorhersage von Bindungsbrüchen in
assemblierten Polymernetzwerken. Sie verschieben die Grenze von Molekulardynamik-
Simulationen näher an die Realität, das heißt an ihre tatsächlichen biologischen oder syn-
thetischen Pendants und werden in Zukunft die Untersuchung von mikrometergroßen Sys-
temen mit verschiedenen Strukturkonfigurationen ermöglichen.
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Abstract

Living organisms build upon semi-flexible biopolymers to confer structural integrity and
functionality to cells. Semi-flexible (bio-)polymers assemble into hierarchical networks
governed by an interplay between entropic and enthalpic effects. The assembled network
features a non-linear response to mechanical load, like strain-stiffening and compression-
softening. This non-linearity stems from the many-body nature at the microscale, which
significantly influences the behaviour at the mesoscale. Due to the lack of non-generic
scale-bridging models, the response of semi-flexible (bio-)polymer networks to mechanical
stress is not yet fully understood. The aim of this thesis is thus to explore major molec-
ular deformation mechanisms of semi-flexible (bio-)polymer networks by large-scale yet
chemically informed molecular dynamics simulations.

We developed coarse-grained models for two semi-flexible (bio-)polymers with similar
persistence lengths, namely poly(para-phenylene ethynylene)s (PPEs) and collagen, using
theMartini 3 force field to performmolecular dynamics simulations under force and to iden-
tify locations of high-force concentration with bonds being prone to rupture. Our Martini
3 models largely capture key structural, mechanical and thermodynamic observables from
atomistic simulations and experiments from the literature, including interchain packing, me-
chanical bending stiffness and solvation properties.

We show that the entanglement of PPEs in large-scale bulk assemblies increases with
polymer chain length. We further observe that long-chain PPE networks under shear-flow
form shear bands with extreme shear rates in the fast band, that is, where rupture forces are
highest and bonds are likely to fail. Also, we built atomistic structural models for collagen
microfibrils with a tuneable crosslink density and combined Martini 3 with Gō-like poten-
tials to find an increase in microfibrillar stretching with decreasing number of crosslinks.
Our Martini 3 collagen model is suited to capture the force-stretching of collagen microfib-
rils from all-atom simulations, performed in collaboration with the Riken institute in Kobe.
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The two newly developed coarse-grained models for the semi-flexible PPE and collagen
complement experiments by predicting bond rupture events in the large-scale assembled
polymer networks. They push the frontier of molecular dynamics simulations more close to
realism, that is, to their actual biological or synthetic counterparts, and will in future allow
probing micrometer sized systems of various structural configurations.
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1 Introduction

Over millions of years, polymer-based biological matter has continuously adapted to their
environment and responded to mechanical stimuli to meet the divers structural and func-
tional needs of living organisms. This evolution has equipped these materials to support
processes, like cell growth and division, intracellular transport, and signaling [1, 2]. Living
systems comprise cells that are responsible for the production of biopolymers, for instance,
polynucleotides like DNA, and polypeptides like collagen and actin, which serve as the
major constituents of the extracellular matrix and cytoskeleton, respectively, and provide
mechanical stability and structural integrity to cells [3, 4]. For example in the cytoskele-
ton, stiff actin filaments are crosslinked by soft actin-binding proteins to form higher-order
structures, like filopedia bundles and cortex networks [5, 6]. Such actin-based cytoskeletons
provide cells with structural scaffolds and function as mechanosensing force transmitters to
facilitate cellular processes, such as cell shape regulation and cell migration [7–9].

In direct proximity to the cytoskeleton, separated by a biological membrane, is the ex-
tracellular matrix comprising a hierarchical network of collagen fibers, consisting of fibrils
with covalently crosslinked triple helices [10, 11]. Collagen-based fibrillar structures can
either serve as force transmitting proteins, for example, between muscles and bones, or as
structural support to the connective tissue by bearing high mechanical loads, e.g., up to
90MPa in stretched achilles tendon [12–14]. Due to its high abundance in the human body,
collagen is a commonly used biomaterial in tissue engineering to treat burns and wounds, to
confer as a biological scaffold for bone and cartilage regeneration, and to promote cell inte-
gration and proliferation in cardiovascular applications [15]. Accordingly, collagen-based
scaffolds are tailored to meet the divers mechanical and structural needs of the native tissue,
which is achieved by altering, e.g., its composition and crosslinking conditions [16–18].

Biological scaffolds thus rely on polymers with sufficient bending rigidity to maintain a
straight conformation, yet still exhibiting thermal shape fluctuations, to preserve structural
integrity and facilitate post-functionalization [4, 19, 20]. This competition between bending
energy and entropic effects is fundamental for the class of semi-flexible polymers and is
characterized by the persistence length, which describes the length scale over which the
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bond orientation persists along the chain [3, 21]. Figuratively speaking, the rigidity of a
semi-flexible polymer lies in between a stiff and flexible chain, similar to an al-dente cooked
spaghetti, which stiffness is somewhere between that of an uncooked and cooked noodle.

Beside living matter, synthetic semi-flexible polymers have been designed to capture
similar mechanical properties and include, among others, supramolecular assemblies of car-
bon nanotubes and dendronized polymers [22, 23]. Of particular interest are highly con-
jugated and conductive semi-flexible polymers, like poly(para-phenylene)s or poly(para-
phenylene vinylene)s [24, 25]. For instance, poly(para-phenylene ethynylene)s, or short
PPEs, show superior optical and optoelectronic properties, due to their conjugated back-
bone, and can be straightforwardly functionalized with various substituents [26]. Hence,
PPEs are highly attractive for biological or chemical sensor applications, and the printing
of organic electronic devices, e.g., light emitting diodes or photovoltaic cells [27–29]. In
stark contrast to conventional polymers with saturated backbone bonds, and thus rather low
persistence lengths, these PPEs feature a persistence length approaching that of their assem-
bled biological counterparts, i.e., collagen or actin, and form hierarchical networks with a
complex many-body nature [25]. Such supramolecular assemblies exhibit a non-linear vis-
coelastic response to mechanical stress, such as reversible stiffening under shear, softening
under compression, and, more generally, shape recovering from deformation [4, 19].

This non-linear response of networks comprising crosslinked or entangled semi-flexible
(bio-)polymers, like collagen or PPEs, to mechanical perturbation is governed by processes
on the microscopic to the mesoscopic scale, and, due to the lack of scale-bridging models, is
not yet fully understood. So far, modeling semi-flexible polymers mainly focused on com-
bining statistical physics-based continuum approaches, such as worm-like chain theory, with
scaling laws, and hence considering the microscopic polymer dynamics only implicitly [30].

1.1 Modeling semi-flexible Polymers under Force

Polymers are long-chain molecules consisting of many repeating segments, the so-called
monomers, and can be expressed mathematically using models from statistical physics.
For example, the freely-jointed-chain model describes a polymer as a chain of uncorrelated
linked segments of fixed length, and therefore as a random walk [31]. Besides, the freely-
rotating-chain model also fixes the bond angle between adjacent segments to introduce ori-
entational correlations along the polymer chain [32]. Godt et al., for instance, combined this
model with electron paramagnetic resonance spectroscopy experiments and computational
simulations to capture the persistence length of a single semi-flexible PPE chain [33].
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By considering the rigid limit of this freely-rotating-chain model, i.e., bond length and
bond angle approach zero, the most commonly used statistical physics-based model for
semi-flexible polymers is derived, namely the worm-like chain model [32]. According to
thismodel, semi-flexible polymers are represented in the continuum framework as inextensi-
ble elastic strands with a finite bending resistance and are expressed mathematically through
the bending Hamiltonian (eq. 2.28) [30]. Broedersz and MacKintosh reviewed advances in
the field, such as extensions of the classical worm-like chain (WLC) model to conditions
out-of-equilibrium [19]. Among others, Marko and Siggia used a stretched WLC model
to describe the response of a single DNA molecule to longitudinal stress [34–36]. Frey et
al. proposed the worm-like bundle model to consider crosslinked fibrillar structures under
shear force [37, 38]. Kroy et al. coupled a rate equation to the glassy WLC model, that
embeds single polymers in glassy environments using a mean-field approximation, to mon-
itor the competition between bond cleavage and bond formation in polymer networks under
force [39, 40]. Alternatively, effective medium theory was introduced by Morse as an elas-
tic continuum-based approximation of semi-flexible polymer networks [41]. Levine et al.
relied on effective medium theory to predict crossovers between affine and non-affine strain
regimes, andMacKintosh et al. to capture non-affine deformations with thermal fluctuations
and non-linear elastic effects in fiber networks, such as strain-stiffening [42, 43].

Despite the far-reaching success of theoretical continuum models for inferring scaling
laws, microscopic contributions due to the many-body nature of semi-flexible polymer net-
works are largely neglected. For this purpose, mesoscopic particle-based simulation tech-
niques, such as multi-particle collision dynamics, dissipative particle dynamics or brownian
dynamics, are often combined with generic bead-spring models to evolve many-body sys-
tems, subject to interparticle conservative, dissipative and random forces, in time. For ex-
ample, multi-particle collision dynamics simulations of semi-flexible polymers in solution
were performed by Nikoubashman et al. to find an increase in viscosity with persistence
length under steady shear-flow, and by Gompper et al. to describe U-shape conformations
under Poiseulle-flow [44, 45]. In addition, Frey et al. used Brownian dynamics to char-
acterize such tumbling behaviour of semi-flexible polymers in shear-flow [46]. Recently,
Winkler et al. incorporated hydrodynamic interactions into Brownian dynamics to perform
Brownian multi-particle collision dynamics simulations of semi-flexible polymers tethered
at impenetrable walls under an oscillatory shear-flow in order to confirm a transition from
U-shape to stretched conformation with increasing shear rate [47, 48].
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Hence, mesoscopic particle-based simulation methods utilize bead-spring models that,
due to their generic nature, lack molecular interactions arising from the structure and chem-
istry of the semi-flexible polymer in question, which account for the enhanced chain stiff-
ness. Furthermore, these models may not adequately capture the thermodynamic behaviour
within highly entangled semi-flexible polymer networks, since the interchain packing in
supramolecular assemblies relates to the chemical specificity of the polymer chain. As a con-
sequence of this, chemical and thermodynamic characterization is important to determine
the response of large-scale semi-flexible polymer networks to mechanical perturbation, in
particular, to resolve the actual deformation across different chemical bonds and structural
units in order to identify the exact locations of bonds being prone to rupture (Fig. 1.1).

ContinuumMesoscopicCoarse-grainedAll-atom

Figure 1.1. Multiscale modeling of semi-flexible polymers. Continuum and mesoscopic
methods are suitable to simulate large networks of semi-flexible polymers, like poly(para-
phenylene ethynylene)s shown here, at the expense of structural detail. All-atom molecular
dynamics resolves structural details, however, is limited to mid-size networks. Coarse-
grained modeling with Martini 3 not only captures sufficient atomistic details, but also en-
ables molecular dynamics simulations of large systems close to the mesoscale.

On the microscopic scale, molecular dynamics simulations are a method of choice to
determine the temporal and spatial evolution of a molecular system composed of many
atoms or beads. All-atom molecular dynamics (MD) provides detailed information about
interatomic forces and microscopic interactions, however, is limited to mid-size polymer
networks of a few thousand chains on short timescales, due to large amount of computa-
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tional resources required. For instance, McClintock et al. performed all-atom simulations
of semi-flexible polymer blends to shed light on the microscopic diffusion dynamics and
their strengthening upon welding. However, these atomistic simulations were limited to
system sizes of roughly 62, 000 atoms and time-scales below 1.25µs [49].

Alternatively, coarse-grained MD simulations cover larger spatio-temporal scales than
all-atom ones by reducing the atomistic degrees of freedom, while still taking sufficient fine-
grained information from the underlying atomistic structure into account. Coarse-grained
modeling assumes that the dynamics of supramolecular assemblies can be captured without
resolving every atomistic degree of freedom, and therefore aims to simplify a given atomistic
model by grouping several atoms together and replacing them with coarse-grained interac-
tion sites, so-called beads. Expanding on this, coarse-grained (CG) modeling averages over
fast bond vibrations to smooth the free energy landscape of the atomistic model in order to
enable the simulation of larger molecular complexes on longer timescales. Therefore, CG-
MD simulations are suitable to determine the response of large networks comprising many
semi-flexible (bio-)polymers to mechanical perturbation, while still maintaining a close to
atomistic resolution to resolve rupture-prone bonds between pairwise segments.

1.2 Martini 3 force field for semi-flexible Polymers

The Martini force field is one of the most commonly applied CG simulation methods in the
field of biomolecular and material sciences [50, 51]. It evolved over the past two decades
comprising many molecular systems, like lipid-membranes, proteins and sugars [52–54], as
well as polymers, ions and surfactants [55–57]. The success of the Martini force field can
be attributed to its generic building block principle, that enables the modeling of complex
molecular systems by coupling individual building blocks representing different chemical
moieties [58]. According to the building block principle, an average of four heavy atoms
are commonly replaced by one regular bead, although, higher resolution mappings are pos-
sible to consider structural details of complex molecules. For instance, the conjugated PPE
backbone comprises aromatic rings and triple bonds, and is thus mapped to triangles and
single beads using a two-to-one mapping with tiny beads (Fig. 1.2, left, orange).

Additionally, the Martini 3 force field combines this building block principle with a
mixed atomistic- and experimental-based parameterisation and validation strategy to derive
molecule specific force field parameters in an iterative process [59]. Most importantly, mod-
eling semi-flexible polymers with Martini 3 enables simulations of large polymer networks
close to the mesoscale, while still profiting from the underlying atomistic resolution [60].
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This scale-bridging property of theMartini 3 force field arises from its parameterisation pro-
cedure, that focuses on reproducing semi-flexible polymer type specific mechanical, struc-
tural and thermodynamic properties, such as the mechanical bending stiffness of a single
chain, the intermolecular packing and the oil-/water partitioning behaviour. In contrast to
mesoscopic methods (see section 1.1), the Martini 3 force field relies on non-generic mod-
els, hence each parameterisation is directly related to a certain type of molecule. Besides,
recent progress focused on improving the Martini 3 force field by rescaling protein-water
interactions [61–63], targeting large-scale simulations on the whole cell or the SARS-CoV-2
envelope level [64, 65], and incorporating chemical reactions [66, 67]. For now, we refer
the interested reader to section 2.2.1, and more importantly to the publication of Souza et
al. to understand the Martini 3 coarse-grained force field in greater detail [59].

Thus, the Martini 3 force field is the simulation method of choice to capture the non-
linear response of large-scale semi-flexible polymer networks tomechanical load, andmore-
over to resolve the stretching across divers chemical units to reveal rupture-prone bonds.
Due to their similar persistence length, we selected the conjugated PPE (left) and collagen
(right) as paradigmatic semi-flexible (bio-)polymers to be coarse-grained with the Martini
3 force field, and outline their chemical specifications in more detail below (Fig. 1.2).

Poly(para-phenylene ethynylene)s

PPEs are a class of semi-conductive polymers with a strongly delocalized π-electron system
extending over the entire backbone [68]. The main chain of PPEs consists of alternating
aromatic rings and triple bonds, that are linked by single carbon bonds (Fig. 1.2, left) [69].
Due to the alternation of single and multiple carbon bonds, the orbitals of the carbon atoms
overlap, such that the PPE backbone is π-conjugated, and hence features a linear shape
with an enhanced mechanical bending stiffness [70]. The persistence length of PPEs was
estimated by Cotts et al. through a combination of light scattering experiments and worm-
like chain theory (13.5 -16 nm), and byGodt et al. using computational methods and electron
paramagnetic resonance spectroscopy (14.3 -19.1 nm), as mentioned in section 1.1 [25, 33].

Even though single-chains or mixtures of few PPE chains have been studied in detail,
the dynamics of large-scale assemblies under equilibrium and out-of-equilibrium remains
to be explored fully [71, 72]. So far, CG modeling of PPEs has been restricted to the freely-
rotating-chain model proposed by Godt et al. (see section 1.1) [33]. Consequently, a model
that inporporates the atomistic structure and experimentally known chain properties is yet
to be developed, but is required to capture the many-body nature of entangled networks
comprising semi-flexible PPEs under equilibrium conditions and under shear-flow.
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Figure 1.2. Modeling semi-flexible polymers under force. The PPE backbone comprises
aromatic rings and stiff triple bonds (left) and features a persistence length close to that
of the collagen triple helix (right). Due to this, both PPE and collagen form hierarchical
networks, that determine their response to mechanical load. Of note, experimental graphics
were kindly provided by Dr. Markus Kurth, Maximilian Elter and Aysecan Ünal.1

Collagen

Collagen type I features a hierarchical structure of fibers, fibrils and crosslinked triple he-
lices with a 67 nm wide pattern of gap and overlap regions, i.e., called D-band (Fig. 1.2,
right) [73]. Collagen forms stiff triple helices with persistence lengths between 11 -15 nm
or 65 -180 nm obtained by experiments, including atomic force microscopy imaging or dy-
namic light scattering [74, 75]. Until now, Buehler et al. relied on a mesoscopic model
for the collagen microfibril to characterize the influence of crosslinks on the response of
the fibril to mechanical force [76]. Gautieri et al., however, used force-extension curves
of small peptides to parameterise the Martini 2 force field, such as the force-extension of a
glycine-proline fragment to derive the force constant of the CG bond length potential [77].

Despite such advances, the hierarchical structure of collagen, in particular, the triple he-
lical shape and crosslinks, is not adequately described by the latter, thus providing grounds
for reparameterising the collagen model with Martini 3 (Fig. 1.2, right). More importantly,
collagen fibrils were still limited to the size of one D-band, and thereby preventing the sim-

1Cryo-milling PPEs from Maximilian Elter (see section 3.4), rat tail tendon under force from Dr. Markus
Kurth, and Cryogenic electron microscopy image of collagen microfibril from Aysecan Ünal (see section 4.1).
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ulation of 300 nm-long microfibrils under force, which is essential to elucidate the response
of this crosslinked biopolymer network to mechanical perturbation on the microscale.

1.3 Aims and Scope

The aim of this doctoral thesis is to further our understanding of the structure and mechan-
ics of semi-flexible (bio-)polymers with large persistence lengths in the range of the con-
tour length. We focus on developing CG models for PPEs and collagen using the Martini 3
force field to enable simulations of multi-million particle systems, far beyond the capabili-
ties of AA simulations, on customized high-performance computing clusters. By reducing
the atomistic degrees of freedom, we aim to determine the structural alignment and force
distribution within large-scale semi-flexible (bio-)polymer networks on long timescales to
identify locations of high-force concentration, in particular, bonds being prone to rupture.

Coarse-grained poly(para-phenylene ethynylene)s networks under shear

Chapter 3 aims to elucidate the response of large-scale bulk systems composed of semi-
flexible PPEs under shear. We develop a Martini 3 model for PPEs to characterize the struc-
tural alignment under equilibrium as well as the distribution of forces under non-equilibrium
conditions, more precisely under shear-flow. We therefore seek to perform shearing simu-
lations of highly entangled networks of semi-flexible PPEs on the Martini 3 level of res-
olution to predict the distribution of forces within the bulk system and reveal locations of
high-force concentration, indicating bonds being prone to rupture. Besides, we collaborate
with Maximilian Elter from the group of Uwe Bunz at the Heidelberg University to back up
our findings, obtained form large shearing simulations, with cryo-milling experiments.

Structure generation of collagen microfibrils

We aim to determine the response of collagen microfibrils to mechanical force on the meso-
scopic scale, in particular, the influence of crosslinking on the overall force-stretching.
Therefore, we seek to build collagen fibrils close to the micrometer scale with tuneable
crosslink configurations in chapter 4, and combine themwith ourMartini 3 force field model
from chapter 5, to explore the relationship between crosslink density and fibrillar response
to mechanical load. Also, we collaborate with Jung from the Theoretical Molecular Sci-
ence Laboratory at the Riken institute in Kobe to validate our CG simulations with AA ones
(43million atoms), that were performed on the second largest supercomputer today.
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Coarse-grained collagen microfibril under force

Chapter 5 mainly focuses on combining the collagen microfibrils from chapter 4 with the
Martini 3 coarse-grained force field. We aim to identify a Martini 3 force field parameter set
for the collagen triple helix, for one divalent and one trivalent crosslink type, that enables us
to perform large-scale CG-MD simulations of differently crosslinked collagen microfibrils
under force. With our Martini 3 force field parameter set at hand, we seek to elucidate the
influence of various crosslinking configurations on the force-stretching of the collagen mi-
crofibril, in particular, to locate regions of high-force concentration within the microfibrillar
network, where bonds between structural units are likely to fail.

1.4 Outline

In order to achieve these aims, we start with introducing the basic theoretical and method-
ological concepts about, e.g., molecular dynamics simulations, the Martini 3 coarse-grained
force field, numerical integrators and applied boundary conditions, in chapter 2 of this thesis.
Subsequently, we address the specific aims outlined above, i.e., PPE networks under shear-
flow, the structure generation of differently crosslinked collagen microfibrils, and coarse-
grained collagen microfibrils under force, in chapters 3, 4 and 5 of this thesis, respectively.

Finally, we conclude with summarizing our key findings and provide an outlook about
modeling semi-flexible polymers with the Martini 3 force field and beyond. Specifically,
we comment on future modeling approaches to elucidate the response of semi-flexible (bio-
)polymer networks to mechanical stress in order to locate rupture-prone bonds, and on pos-
sible implications for technological applications, such as tissue engineering.
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2 Theory and Methods

2.1 Molecular Dynamics Simulations

Molecular dynamics is a numerical simulation method to evolve a microscopic system of
one or more molecules in time. Each molecule consists of several interacting particles,
such as atoms or coarse-grained beads, which are modeled as point masses connected by
harmonic springs, forming a classical N-body problem. Each particle possesses an instan-
taneous velocity and position in the three-dimensional Euclidean space, together defining
the energetic state of the system. To propagate the many-particle system in time, Newton’s
equations of motion are integrated numerically using customized simulation softwares, so
called molecular dynamics engines, on high-performance computing clusters.

Pioneering work in molecular dynamics simulations was performed by Alder and Wain-
wright, who solved the many-body problem for a system of several hard-spheres numeri-
cally using computational simulations [78, 79]. Later in the 1960s, Rahman introduced the,
nowadays most commonly used, Lennard-Jones potential to model pair wise interactions be-
tween liquid argon atoms [80]. Due to the growing complexity of biomolecular or polymer
systems, molecular dynamics simulations are usually performed on supercomputers or high-
performance computing clusters with thousands of cores enabling the simulation of multi-
million particle systems, such as large protein aggregates or protein-membrane complexes
solvated in explicit water. Until now, the largest molecular dynamics simulation, a crowded
1.6 billion atom system, was performed in 2020 by Jung combining a specially designed
extreme-scale molecular dynamics engine GENESIS, short for Generalized-Ensemble Sim-
ulation System, with more than 100, 000 CPU cores on the Fugaku supercomputer [81].

In the text that follows, a general overview of the basic principles of molecular dynamics
simulation is provided, mainly based on theGROningen MAchine for Chemical Simulations
(GROMACS) manual [82], the PhD theses of Florian Franz and Bogdan Costescu, former
members of the Molecular Biomechanics group [83, 84], and more [85, 86].
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2.1.1 Interparticle Interactions and Force Field

Inmolecular dynamics (MD) simulations, themotion ofN individual particles in a system of
molecules subject to internal forces acting between them, is determined by integrating New-
ton’s equations of motion numerically over time. For this, the total energy of the molecular
system is expressed mathematically with the Hamiltonian H(r,p), combining the kinetic
energy K =

∑N
i pi/2mi with a set of empirical functions representing the interparticle

potential V (r1, ..., rN) of the system as a function of the particle’s positions r1, ..., rN ,

H(r,p) =
N∑
i=1

pi

2mi

+ V (r1, ..., rN), (2.1)

where p1, ...,pN are the momenta pi = mivi of the particles with massesmi and instanta-
neous velocities vi for i = 1, ..., N particles of the many-body system.

The interparticle potential V (r1, ..., rN), often referred to as force field, contains de-
tailed information about each particle type, such as charge or mass. Moreover, it comprises
both the functional forms and an empirical parameter set, which together represent the in-
teractions within the many-body system. The potential energy for a system of molecules
originates from both intramolecular interactions between covalently bonded particles and
those between non-bonded ones. The former type of interaction is modeled with 2-, 3- or
4-body interaction, such as a bond stretching, bond angle or a dihedral angle spring-like
potential, respectively. In addition, non-bonded interactions between particles are modeled
through electrostatic and van-der-Waals interactions. Taken together, force fields provide
the essential information to describe the internal forces between particles within a molecu-
lar system, such that they are the basis for each MD simulation. The potential energy for
covalent bonds between pairs of particles i and j with position vectors ri and rj at a given
distance rij = |rj − ri| is defined by,

Vb(rij) =
∑
ij

1

2
kb
ij(rij − r0ij), (2.2)

where kb
ij is the force constant representing the interaction strength, and r0ij is the reference

distance of a specific particle pair ij with (i, j) = 1, ..., N and j ̸= i.
The 3-body interaction between triplets of particles i, j and k is defined as a harmonic

angular restriction Va(θijk) with an equilibrium value θ0ijk and a force constant kθ
ijk,

Va(θijk) =
∑
ijk

1

2
kθ
ijk(θijk − θ0ijk). (2.3)
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A dihedral angle between four particles i,j,k and l represents the angle between two
intersecting planes, each spanned by two triplets i,j,k and j,k,l. In the simplest case, like
for the improper dihedral, the potential is also modeled with a harmonic approximation.
However, for simulations of proteins or membrane lipids, more complex functional forms
are recommended. More precisely, a sum of cosine functions is used to allow the existence
of multiple minima, each representing a different conformation, such as trans- or gauche.

Vd(ϕijk) =
∑
ijkl

1

2
kϕ
ijkl(1 + cos(nϕijkl − ϕ0

ijkl), (2.4)

where kϕ
ijkl, ϕ0

ijkl and n are the force constant, reference torsion angle and multiplicity, that
sets the number of minima, e.g. conformations, in the torsion potential, respectively.

Different molecules, like alkanes or polymers, require a more sophisticated function
type to properly describe the 4-body interaction, namely the Ryckaert-Bellemans potential,
commonly used for the Optimized Potential for Liquid Simulation (OPLS) force field [87]:

Vrb(ϕijk) =
5∑

n=0

Cn cos(ϕijkl − 180°)n. (2.5)

Here, Cn are the Ryckaert-Bellemans coefficients and ϕijkl the reference torsion angle.
Note that the Ryckaert-Bellemans potential is suitable for maintaining the aromatic rings in
a planar orientation and was used to model the π-conjugated backbone of PPEs [70].

Non-bonded interactions in MD simulations are grouped into two contributions. On the
one hand, interparticle pairwise interactions are modeled with the 6-12 Lennard-Jones po-
tential VLJ(rij) and on the other, electrostatic interactions are expressed by using Coulomb’s
law VCoulomb(rij). The functional form of the 6-12 Lennard-Jones potential combines a soft
repulsive term for the overlap of electron clouds at short distances with an attractive term at
longer ones rij representing electron correlations.

VLJ(rij) =
∑
ij

4ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]
, (2.6)

where ϵij represents the well and σij zero of the Lennard-Jones (LJ) potential.
Electrostatic interactions between particles i an j separated by a distance rij and carrying

charges qi and qj , are described by incorporating the dielectric conversion factor 1/(4πϵr)
and dielectric constant ϵr through the following mathematical expression:

VCoulomb(rij) =
∑
ij

qiqj
4πϵ0ϵrrij

. (2.7)
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Altogether, the total potential energy of the molecular system is given by summation of
all bonded (eq. 2.2-2.4) and non-bonded contributions (eq. 2.6-2.7):

V (r1, ..., rN) = Vb(rij) + Va(θijk) + Vd(ϕijk) + VLJ(rij) + VCoulomb(rij). (2.8)

The potential energy function contains detailed information about the energetic state of
each particle in the system as a function of its position in the Euclidean space. To describe the
motion of a particle i in time, the internal forces exerted by the surrounding particles are de-
termined by partial differentiation of V (r1, ..., rN) with respect to ri. Due to the harmonic-
or cosine-like function types in the total potential energy (eq. 2.8), analytic derivation is
straightforward in order to obtain the total force Fi acting on a particle i:

Fi(ri) = −∂V (r1, ..., rN)

∂ri
. (2.9)

2.1.2 Time-Evolution and Numerical Integrators

The Hamiltonian H(r,p), defined by eq. 2.1, expresses the energetic state of a molecular
system ofN interacting particles as a single point (p1, ...,pN , r1, ..., rN ) in the phase space,
that is a 6N -dimensional space representing all possible states of the system. To evolve the
molecular system in time, the total differential of the HamiltonianH(r,p) is required [85]:

dpi

dt
= −∂H

∂ri
= −∂V (r1, ..., rN)

∂ri
, and (2.10)

dri
dt

= −∂H

∂pi

= − pi

mi

, (2.11)

where Hamilton’s equations of motion (eq. 2.10 and eq. 2.11) describe the behaviour of a
molecular system as a trajectory in phase space. For practical purposes, however, Hamil-
ton’s equations of motion are transformed by taking the time-derivative of eq. 2.11 and
substituting it into eq. 2.10 to derive Newton’s equations of motion,

Fi(ri) = mi
d2ri
dt2

= mi
dvi

dt
. (2.12)

Starting from Newton’s equations of motion, a system of i = 1, ..., N interacting par-
ticles, each with mass mi, we obtain a set of 3N coupled second-order linear differential
equations, which can be reformulated as a set of 2×3N coupled first-order differential equa-
tions. A general solution of the 6N first-order differential equations requires a set of initial
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conditions, given by the particles positions r1(0), ..., rN(0) and velocities v1(0), ..., vN(0).
To numerically integrate the 6N first-order differential equations, a second-order energy-
conserving leapfrog integrator is applied to propagate the system in time. The leapfrog algo-
rithm is comparable to the velocity Verlet scheme [88, 89] and based on Taylor-expanding
Newton’s equations of motion (eq. 2.12) for i = 1, ..., N particles:

ri(t+∆t) = ri(t) + vi(t+∆t/2) +O(∆t4), (2.13)

with the discretisation error in Landau-notation O(∆t4) and for the particle velocities [90],

vi(t+∆t/2) = vi(t−∆t/2) +
Fi(t)

mi

∆t+O(∆t2). (2.14)

Starting from the initial conditions, the integrator first computes the interparticle poten-
tial together with the respective forces acting on each individual particle (eq. 2.8-2.9). Next,
the position and velocity vector of each particle is updated to evolve the N-body system in
time by applying eqs. 2.13 and 2.14. It is important to comment on the time increment ∆t,
which defines the accessible timescales of a given molecular system. In order to reach long
timescales at low computational costs, the time increment should be as large as possible, al-
though limited upwards by the fastest bond vibrations in the system. In case of atomisticMD
simulations, constraint algorithms, such as LINCS or SETTLE [91–93], were developed to
eliminate high-frequency bond vibrations between heavy atoms and hydrogens making the
use of integration time steps of∆t = 2 fs possible. For coarse-grained simulations, like the
ones presented in chapter 3 and 5, high-frequency bond vibrations are smeared out, due to
the reduced degrees of freedom, enabling larger time increments of ∆t = 20 − 30 fs, as
commonly used for the Martini force field.

2.1.3 Short- and Long-Range Non-Bonded Interactions

A microscopic system consisting ofN particles, communicating through non-bonded inter-
actions, yields N(N − 1)/2 pairwise interactions. Due to the quadratic increase in compu-
tational cost with increasing number of particles [O(∆N2)], simulations of large molecular
complexes consisting of many particles are computationally demanding. To deal with these
scenarios, special MD algorithms were developed that truncate non-bonded interaction po-
tentials after a certain cut-off distance, and therefore only consider the local environment
around each particle. According to eqs. 2.7-2.6 each potential is defined as the inverse func-
tion of the interparticle distance V (rij) ∝ 1/rnij . This implies that both potentials, alongwith
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their respective forces, approach zero as the distance between particles increases. More pre-
cisely, the LJ potential decays with n = 6, which is faster than the electrostatic potential that
decays with n = 1. As a result, at a certain distance rij , LJ interactions approach zero much
faster, while the electrostatic interactions remain significant. Therefore, errors originating
from truncating pairwise LJ interactions beyond a cut-off of 1.0 − 1.2 nm are negligible.
Such truncations reduce the number of short-range interactions to be evaluated, and thus
boost computational performance. In practice, all particles in the local environment of a
reference particle, defined by a cut-off distance rc plus some additional buffer rv, are stored
in a Verlet neighbor list. While this list is used to calculate the total force on the reference
particle, it is updated less frequently to enhance computational performance [88].

For slowly decaying long-range electrostatic interactions on the other hand, the applica-
tion of the above-mentioned cut-off scheme results in unfavorable simulation artifacts and
is not sufficient for truncation purposes. Therefore, the Particle Mesh Ewald method is used
to determine the long-range electrostatic interactions between particles [94, 95]. Here, the
charges of all particles are mapped onto a discrete grid, and the electrostatic forces between
grid points are concurrently evaluated in Fourier space. Next, the grid point specific force
is distributed to all particles within the cell.

In case of coarse-grained simulations, an alternative method for the treatment of long-
range electrostatics is commonly applied, namely the reaction field method. The reaction
field method computes short-range electrostatic interactions for particles within a certain
cut-off distance to a reference particle r < rc explicitly, while long-range interactions r > rc

are treated with a mean-field approximation [96, 97]. Moreover, for long-range electrostat-
ics, the surrounding medium is modeled as a continuum with the dielectric constant ϵrf :

Vcrf (rij) =
∑
ij

qiqj
4πϵ0ϵrrij

[
1 +

ϵrf − ϵr
2ϵrf − ϵr

r3ij
rc

]
− qiqj

4πϵ0ϵrrc

3ϵrf
2ϵrf + ϵr

. (2.15)

The electrostatic contribution of the mean-field approximation is given by the constant
term in eq. 2.15 to ensure that the potential approaches zero at the cut-off distance. As an
example, for Martini 3 the dielectic constant of the reaction field is ϵrf = 15.

2.1.4 Periodic Boundary Condition

In MD simulations, the molecular system of interest, such as a polymer chain or a protein
complex, is surrounded by explicit solvent molecules, for example water or toluene. Par-
ticles in the molecular system are able to move in a predefined simulation box or unit cell
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vd

−vd

ri r′i
vdt

Figure 2.1. Periodic and Lee-Edwards boundary conditions. A Periodic boundary con-
ditions are commonly used inMD simulations to approximate an infinite systemwith a finite
one. Particles leaving one side of the unit cell (orange) reenter on the opposite. B The Lee-
Edwards boundary condition combines the periodic boundary condition with a shear-like
box-deformation. The upper and lower periodic images are deformed at constant velocity
vd and particles traversing the boundary are updated, i.e., ri to r′i.

and are subject to boundary conditions at the edges of the simulation box. To reduce edge
effects, due to the finite size of the unit cell, MD engines apply periodic boundary conditions
to approximate a large, infinite system by translating copies of the unit cell to the surround-
ings (Fig. 2.1A). More precisely, particles with a given velocity, crossing one edge of the
unit cell, are replaced by particles with the exact same velocity entering from the opposite
site. Thereby the number of particles in the unit cell is kept constant.

Besides, to prevent artifacts due to the periodicity of the molecular system, the size of
the unit cell should be chosen to be large enough to prevent unwanted interactions between
the molecule and its neighboring periodic image. For this purpose, modern MD algorithms
rely on the combination of periodic boundary conditions and theminimum image convention
algorithm. In particular, for the calculation of short-range interactions between particles, the
minimum image convention ensures that only the closest image of each particle is considered
for the pairwise interactions. The logical consequence of the minimum image convention is
that the smallest possible box size of any molecular system is at least twice the interparticle
cut-off distance of the non-bonded interactions.

2.1.5 Temperature and Pressure Coupling

Uncoupled MD simulations generate a microcanonical ensemble, in which each state is
equally probable, by keeping the particle number, unit cell volume and total energy of the
molecular system constant. Unfortunately, real-world experiments are usually performed
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under isothermal-isobaric conditions, and therefore a pressure and temperature coupling are
required to perform simulations in the canonical NpT (short for constant particle number,
pressure and temperature) ensemble. In order to control both pressure and temperature in
the simulation of a many-body system, a connection between macroscopic properties and
microscropic particles is required. The equipartition theorem states that the kinetic energy
is equally partitioned over the number of particles, such that the temperature relates to the
kinetic energy of the microscopic system, given by the particle’s velocities,

3

2
NkBT =

⟨
N∑
i=1

miv
2
i

2

⟩
. (2.16)

Here kB is the Boltzmann constant and v2i = vi · vi the dot product of the particle ve-
locity. Obviously, the macroscopic temperature of the system is controlled by scaling the
microscopic particle velocities vi. Similar to the temperature coupling, the virial theorem
relates the potential energy of a molecular system, given by the sum of intermolecular pair-
wise interactions, to the macroscopic pressure according to [98, 99]

p =
1

3V

(⟨
N∑
i=1

miv
2
i

⟩
+

N∑
i=1

⟨Fi · ri⟩

)
, (2.17)

where ri is the position vector for andFi the force acting on particle i. To match the pressure
of the molecular system to the target value, the position of each particle is rescaled.

In general, a simple coupling scheme of temperature T or pressure p to an external
heat or pressure bath was introduced by Berendsen using a first-order kinetic approach with
relaxation time constant τ , that approximates the target value exponentially:

dϕ(t)
dt

=
ϕ0 − ϕ(t)

τ
. (2.18)

Here ϕ0 = {T0, p0} represents the target temperature or pressure. Note that the Berend-
sen algorithm suppresses thermal fluctations of the kinetic energy, and therefore is not suited
to generate a proper canonical ensemble. For this reason, the Bussi-Donadio-Parrinello tem-
perature coupling was developed to enforce a canoncial distribution of the kinetic energyK
by adding a stochastic term, namely a Wiener process [100].

dK = (K0 −K)
dt
τ

+ 2

√
KK0

Nf

dW√
τ
, (2.19)

whereNf are the number of degrees of freedom, andW represents theWiener noise. The ki-
netic energy is drawn from a Boltzmann distribution P (K) ∝ eK/kBT . Hence, the velocity-
rescaling factor, given by

√
K/K0, is applied to each particle [101]. Accordingly, for the
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Berendsen pressure coupling a stochastic term was added to generate a proper canonical
ensemble. The stochastic cell rescaling barostat modifies the simulation box volume V , and
thereby rescales the particle positions isotropically with 1/ 3

√
V [102].

In practice, the Berendsen-type coupling scheme for pressure and temperature is applied
during the equilibration phase, where the macroscopic properties reach their predefined
reference values. Subsequently, production runs are performed using a Bussi-Donadio-
Parrinello temperature and Parinello-Rahman pressure coupling scheme to perform sim-
ulations in the canonical NpT ensemble [103]. Note that the Parinello-Rahman barostat not
only generates a proper canonical ensemble, but also allows anisotropic reshaping of the
unit cell. This is suitable for the equilibration of large asymmetrical boxes, for example,
the simulation box of the 335 nm long collagen microfibril discussed in chapter 5. How-
ever, for large molecular complexes the Parinello-Rahman pressure coupling suffers large
oscillations. Expanding on this, Martyna, Tobias and Klein introduced chains of subsequent
barostats to suppress such large pressure oscillations and to enable molecular dynamics sim-
ulations in highly asymmetrical boxes, like the collagen microfibrils in chapter 4 [104]. To
be as close as possible to experiments, production runs are performed under isothermal-
isobaric conditions to obtain a trajectory of the molecular system evolving over time.

2.1.6 Lee-Edwards Boundary Condition

A shear-like deformation of a molecular system is commonly required to determine the
shear-induced self-assembly of single chains, viscosity of solvated polymers or the shear
stress in a semi-flexible polymer network, such as PPEs (see section 3.3.8). To induce a
shear-flow, various approaches were developed from accelerations groups combined with
mass-weighted forces to the introduction of walls deforming at a different velocity. In 1972,
Lee and Edwards combined a laminar flow with periodic boundary conditions to derive the
Lee-Edwards boundary condition to impose shearing forces on a semi-infinite system [105].

A molecular system in a predefined unit cell is surrounded by periodic images of itself
(Fig. 2.1A), each deformed at constant velocity vd, defining the shear rate γ̇ = vD/LC ,
where LC is the box length orthogonal to the shear flow with LC = Lz. Accordingly,
the periodic images above and below are deformed at constant velocity ±vD (Fig. 2.1B),
imposing a midpoint centered linear velocity profile on the particles in the flow direction,

vi(z) = vi,Th + vD(z/LC − 0.5). (2.20)

where vi,Th =
√

kBT/m is the thermal velocity of particle i sampled from a Maxwell–
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Boltzmann distribution. To propagate a N-body system under shear in time, the shear rate
in the flow direction γ̇ez is incorporated into Newton’s equations of motion using [106],

d2ri
dt2

=
Fi

mi

+ γ̇
dri
dt

ez. (2.21)

Besides, particles crossing the bottom edge of the unit cell are reintroduced at the top
with an updated position r′i,z = ri,z + vDt and velocity v′i,z = vi,z + vD in the flow direction,
adjusted to their neighboring cell image. Note that combining the Bussi-Donadio-Parrinello
thermostat with the Lee-Edwards boundary condition restricts the velocity-rescaling of each
particle to its thermal component vi,Th, resulting in a linear velocity profile (eq. 2.20).

2.1.7 Molecular Dynamics Simulations under Force

Besides the Lee-Edwards boundary condition, modern MD engines offer the possibility to
apply external forces to the molecular systems, and thereby drive it out-of-equilibrium.
Force-probe MD simulations are suitable to determine the distribution of forces within a
large and highly hierarchical network of semi-flexible polymers, such as the collagen mi-
crofibril consisting of hundreds of intertwined molecules introduced in chapter 4 and 5.

Biasing MD simulations of collagen with an external force provides information, not
only about the force-extension dynamics of a single molecule, but also about the distribution
of forces within the microfibril. For this reason, an external pulling force is applied to the
center-of-mass of a group of particles, e.g., the caps at the protein backbone, and distributed
over the individual particles belonging to that pull group. Moreover, within the scope of this
work, a constant force acting on each pull group was used (constant force pulling), resulting
in a fast extension of the molecular system. Within a certain time, the distribution of forces
in the system reaches a stationary state, from which the analysis can take place.

2.2 Coarse-Grained Molecular Dynamics Simulations

Biological or chemical processes, involving the communication of large molecular com-
plexes, such as proteins, lipids or polymers, usually occur on long time scales beyond what
is feasible with atomistic MD simulations performed on high-performance computing clus-
ters or supercomputers. Due to the vast amount of fine-grained details within a large macro-
molecular complex, all-atom (AA) MD simulations reach a well-defined spatio-temporal
limit, defined by the number of particles and the available computational resources. In or-
der to bridge the gap between spatial and temporal scales of the molecular process and the
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available computing hardware, several techniques were developed, among others, enhanced
sampling methods, parallel computing architectures and coarse-grained modeling.

Coarse-grained modeling, based on the idea that not each atomistic degree of freedom is
required to describe the overall dynamics of large molecular complexes, aims to simplify a
given atomistic structure by grouping several atoms together and replacing themwith coarse-
grained interaction sites, so-called beads, pseudo- or super-atoms. Specifically, a molecular
system on atomistic resolution consisting of NAA atoms is mapped to coarse-grained (CG)
representation with fewer degrees of freedom NCG < NAA using a predefined mapping
scheme, as illustrated for benzene in Fig. 2.2. This CG model thus, not only requires less
evaluations of Newton’s equations of motion per integration step, but also enables larger
time increments, due to softer potentials between CG beads. In addition, CG modeling
smooths the free energy landscape of the atomistic structure by averaging over fast bond
vibrations to reduce molecular friction and accelerate the overall dynamics of the system.

In general, CG models for MD simulations are developed with an iterative procedure
given by first identifying a mapping scheme between fine- and coarse-grained resolution,
second parameterizing an interparticle potential, and third reproducing target properties
from both higher-resolution and experimental data for validation purposes. Moreover, in-
terparticle CG potentials are either parameterized though a top-down approach, reproducing
experimental key observables, or with a bottom-up scheme using fine-grained reference sim-
ulations. Further distinction is made between compound specific or transferable CGmodels.
While the former focuses on reproducing properties of certain molecules (e.g. DNA), the
latter aims to map the entire chemical compound space from fine- to coarse-grained resolu-
tion in order to obtain a transferable, general purpose CG force field, like the Martini 3 CG
force field used throughout this work [59].

Of note, Levitt and Warshel were the first to develop a simplified representation of the
bovine pancreatic trypsin inhibitor by collapsing both the Cα and side-chain atoms into one
single CG interaction site each in 1970s [107]. The parameters for their interparticle poten-
tials were derived by time-averaging effective forces between residue specific CG beads.
With the CGmodel at hand, key driving factors for protein folding were identified by search-
ing the configurational space for stable low-energy conformations [108]. In the following
sections a brief introduction for the Martini 3 coarse-grained force field together with Gō-
like potentials is given. For a more in depth explanation about the Martini 3 coarse-grained
force field the main publication with the supplementary information is recommended [59],
as well as for the Gō-Martini 3 extension [109, 110].
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2.2.1 Martini 3 Coarse-Grained Force Field

The coarse-grained Martini force field is one of the most commonly applied CG simulation
methods in the fields of biomolecular or material sciences [50, 52, 111]. In general, the
Martini force field is based on a generic building block principle [51]. Each building block
is parameterized separately to cover a broad spectrum of diverse chemical moieties. Hence,
the modeling of complex macromolecular systems is facilitated by coupling several build-
ing blocks together to new or larger molecules [112]. The parameterisation of the Martini
3 building blocks relies on reproducing experimental thermodynamic properties, like the
partitioning free energies for a broad range of chemical substances between multiple po-
lar and apolar solvents, the free energy of mixing in binary systems composed of different
compounds, or the bulk densities of organic fluids [60].

ForMartini 3, an average of four heavy atoms plus the associated hydrogens are replaced
by one CG interaction site. When taking more complex structures into account (e.g. ring-
like compounds), a higher resolution mapping is recommended, where three or two heavy
atoms plus the associated hydrogens are substituted by one small or tiny bead type [50,
113]. Reparameterised small and tiny beads with improved solute-solvent interactions better
reproduce packing properties of the system, such as oil-/ water partitioning behaviour and
bulk densities. TheMartini 3 bead types are classified as polar (P), nonpolar (N), apolar (C),
halo-compounds (X), monovalent ions (Q), divalent ions (D) and water (W). Each of the P-,
N-, C-, X- and Q-bead type is divided into subgroups describing the degree of polarity from
0 to a maximum of 6, like for the P-, N-, and C-bead type. The resulting interaction matrix
consists of four blocks (organic, ion, others, water) with 22 levels. In addition, the Martini 3
force field introduces labels to fine-tune interactions between the CG sites by dividing each
bead type into either chemical (e.g. hydrogen bonding, electron polarizability) or generic
subgroups (e.g. self-interactions or partial charges).

The optimization of bonded interactions between Martini 3 beads relies on both map-
ping AA structures to CG resolution with the center-of-geometry scheme and matching the
probability densities describing the bonded interactions between CG beads to those of the
mapped trajectory. Moreover, the obtained bond lengths are refined by taking the shape and
symmetry of the underlying atomistic structure into account, e.g. through comparison of the
solvent accessible surface area or the Connolly’s surface with AA data [59, 114]. Devel-
oping CG models within the framework of the Martini 3 force field is an iterative process
consisting of three major steps: mapping, parameterisation and validation (Fig. 2.2).
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Mapping

ParametrizationValidation

Figure 2.2. Iterative coarse-grainedmodeling withMartini 3. Mapping an AA structure,
e.g., benzene, to CG resolution with the building block principle. Parameterising bonded
and non-bonded interactions with a bottom-up and top-down approach by matching bonded
terms probability densities to AA simulation and the oil-/ water partitioning to experimental
reference data. For the validation, structural (e.g. bulk density), mechanical (e.g. persis-
tence length) or thermodynamic properties are often chosen.

For the mapping step, a given AA structure is transformed to CG resolution by follow-
ing the building block principle (e.g a benzene ring is represented by three tiny beads). For
the parameterisation of bonded and non-bonded interactions between CG beads, a mixed
top-down and bottom-up approach is applied. On one hand, the selection of chemical bead
types is based on a top-down approach by finding similar fragments in theMartini 3 data base
and comparing the partitioning free energy between hydrophilic or hydrophobic solvents to
experimental measurements. On the other hand, parameterisation of bonded terms is per-
formed using a bottom-up scheme by matching probability densities to a center-of-geometry
mapped atomistic reference simulations, as outlined above. Finally, for validation purposes,
the developed CG model should be able to reproduce key structural or thermodynamic ob-
servables, like chain stiffness or interchain packing in a bulk system.

Note that higher order structures, like the DNA double helix or the collagen triple helix,
are not reproducible with Martini 3, due to collapsing hydrogen and heavy atoms into single
interaction sites. Nonetheless, to maintain higher order protein structures, various structure-
based CG techniques, such as the Gō-model from section 2.2.2, were combined with the
Martini 3 force field, enabling the simulations of large protein complexes.
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More specific, an elastic network model uses harmonic bond potentials between back-
bone beads to preserve the native molecular structure, however, prevents large conforma-
tional changes, such as folding processes [115]. For this reason, Gō-like contact maps were
combined with theMartini CG force field to not only preserve the higher-order protein struc-
tures, but also to allow simulations of large conformational transitions using a LJ potential
for the Gō-like interactions [110].

2.2.2 Structure-Based Gō-like Potentials

Structure-based coarse-grained modeling aims to simplify the underlying atomistic struc-
ture of a biomolecule by collapsing each residue into one interaction center to yield a bead
chain model representing the amino acid sequence of complex proteins. Due to the strong
emphasis on the native structure, such CG models are suitable for studying large conforma-
tional changes, like folding processes and the kinetics of proteins [109]. Regarding Martini
3, structure-based Gō-models are commonly used to maintain tertiary structures of proteins,
e.g., the collagen triple helix, and are not required for polymers like PPEs (see section 2.2.3).

The structure-based Gō-model was introduced as a lattice model in 1975 to describe
folding processes of proteins using Monte-Carlo simulations [116]. Proteins were mapped
to a two dimensional square lattice by representing an amino acid sequence as grid points,
such that a protein is conceptualized as a self-avoiding polymeric model. In addition, the
amino acid sequence was taken into account by introducing both local bonds and non-local
interactions between neighboring and more distant lattice points within a certain contact
distance in the underlying native structure, respectively, together forming a Gō-like contact
map. Hence, in Gō-like models each protein conformation is associated with a well-defined
energetic state, such that transition probabilities between conformations can be estimated
using the Metropolis algorithm to determine the protein folding kinetics [117].

Obviously, conformational transitions obtained from structure-based CG simulations
strongly depend on the native structure of the protein complex, and therefore on the contact
map used to define the local and non-local interactions between grid points. These con-
tact maps are constructed either by geometric consideration based on overlaps of enlarged
Van-der-Waals spheres, or by taking chemical information about atom contacts into account.
The latter not only enables differentiation between repulsive and attractive contacts, but also
considers the hydrophilic and aromatic properties [109].
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2.2.3 Modeling with Gō-Martini 3

Incorporating the structure-based Gō-like approach into the physics-based Martini 3 force
field aims to preserve the tertiary structure of the protein and to enable the simulations of con-
formational changes [110]. Hence, as outlined in the previous section 2.2.2, semi-flexible
polymers with a linear shape (e.g. PPEs) can be simulated without Gō-like potentials, how-
ever, more complex molecules (e.g. collagen) require Gō-like potentials to preserve the
triple helical shape under equilibrium conditions (see chapter 5.3.5). Gō-Martini 3 uses the
atomistic structure of a molecular system to identify a Gō-like contact map by using an over-
lap criterion, besides balancing attractive and repulsive contacts [118]. Based on the derived
Gō-like contact map, additional Gō-beads are positioned at the Cα atoms of the underlying
atomistic model and introduced as virtual sites, linked to the corresponding backbone bead
of the CG model, as shown later at the top of Fig. 5.4 in chapter 5.

Pairwise interactions between Gō-beads within a certain contact distance are expressed
mathematically with a classical 6-12 LJ potential (eq. 2.6). Because of the introduced Gō-
like potentials, regular non-bonded interactions between Martini 3 beads are excluded to
ensure that the tertiary structure of the protein is well preserved. Hence, interactions between
Gō-beads through the 6-12 LJ potential are transferred to the Martini 3 model by updating
the positions of the backbone beads, that are linked through virtual sites. More precisely,
for the standard Gō-Martini 3 model, the interaction strength between Gō-beads is set to
ϵGo = 9.414 kJmol−1, i.e., 1.5 times the strength of hydrogen bonds, and the lower and
upper cut-off distance to 0.3 nm and 1.1 nm, respectively.

2.3 Free Energy Calculations

Besides the aforementioned technique of CG-MD simulations, free energy calculations are
commonly used to bridge the gap between computational limitations and required timescales
for biological process, like protein-ligand binding or the partitioning of small molecules
across lipid bilayers [119]. To better understand the thermodynamics behind such biological
processes, the underlying free energy landscape is calculated, specifically the difference in
free energy between an initial state A and target B state is estimated [120].
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In general, the Helmholtz free energy F , a thermodynamic potential for the NVT en-
semble, is linked to the canonical partition function from statistical mechanics Z according
to F = −β−1 lnZ(N, V, T ) with the thermodynamic β = 1/kBT . Hence, to determine the
free energy for an arbitrary state, the partition function Z needs to be evaluated by integra-
tion over the whole phase space, which is impossible to perform in computer simulations. To
overcome this limitation, free energy calculations aim to estimate the free energy differences
between states A and B instead of an absolute value, using the following expression,

∆F = −β−1 lnZB/ZA. (2.22)

Note that the approximation∆F ≈ ∆G is valid for soft condensed matter systems with
low compressibility [121]. Accordingly, the Gibbs free energy difference ∆G in the NpT
ensemble represents a transition between states A and B along a predefined reaction co-
ordinate or order parameter. Moreover, to obtain reliable estimates of the free energy of
transferring a system from state A to state B, commonly used methods, like umbrella sam-
pling, free energy perturbation or thermodynamic integration, are based on sampling multi-
ple states along this transition path. For a more in depth explanation, the interested reader is
referred to the literature [119, 121]. Finally, a very important relationship between the free
energy difference ∆G and the partition coefficient logP , which quantifies the distribution
of a solute in a biphasic oil-/ water system, is mentioned,

logP = β · ∆G∅→A −∆G∅→B

NA · log(e)
, (2.23)

where NA is Avogado’s constant, e the Euler number and ∆G∅→A the free energy of trans-
ferring a molecule from a reference state in vacuum toA. Since∆G∅→A−∆G∅→B describes
the free energy of partitioning a molecule in a binary oil-/ water system, eq. 2.23 enables the
comparison of partitioning data for small molecules obtained fromMD simulations with ex-
perimental measurements. In other words, the free energy of partitioning is directly related
to experiments, and therefore the major validation target for selecting bead types, specifi-
cally determining non-bonded interactions for new molecules with the Martini 3 force field,
such as the divalent and trivalent collagen crosslink (see section 5.3.1).
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2.3.1 Umbrella Sampling

Umbrella samplingMD simulations are commonly used to derive a free energy profile along
a predefined reaction coordinate termed potential of mean forces (PMF). The PMF connects
two thermodynamic state points, usually separated by a free energy barrier. To overcome
such a high energetic barrier and thereby transition from one state to the other, bias is added
to the simulation, enabling proper sampling along the reaction coordinate ξ. For this reason,
the transition path is discretized in multiple windows ξi for i = 1, ..., nw, in each of which
a harmonic bias potential V (ξi) is applied to keep the molecule in a region close to ξi and
sample the molecular state independent of the barrier height. Additional fine tuning of the
harmonic bias potential is possible by adjusting the width and number of windows to ensure
homogeneous sampling along the transition path, in particular in the vicinity of peaks in the
PMF. To recover an unbiased PMF∆Gu

i (ξ) from a biased probability distribution P b
i (ξi) =

exp
(
−β∆Gb

i(ξ)
)
sampled with biased MD simulations the added biasing potential V (ξi) is

subtracted in each window using G(ξ0) as a reference [119, 121, 122],

∆Gu
i (ξ) = −β−1 lnP b

i (ξ)− V (ξ) +G(ξ0). (2.24)

Advanced analysis methods used today, like the weighted-histogram-analysis method
(WHAM) [122, 123], are suitable to correct biased probability distributions obtained from
MDsimulations inmultiplewindows at once using an iterative procedure. Here fore,WHAM
assigns a weight pi(ξ) to each biased probability distributions P b

i (ξ) to minimize the un-
certainty of the global unbiased probability distribution. Therefore, ∇piσ

2(Pu) = 0 with∑
pi = 1. Finally, a reliable unbiased PMF and its statistical error are estimated [121, 124],

P u(ξ) =
nw∑
i

pi(ξ)P
b
i (ξ). (2.25)

Within this thesis, we performed umbrella samplingMD simulations compare the octanol-
/ water partition coefficient of di(para-phenylene ethynylene) to experiments from the lit-
erature to select appropriate bead types for the Martini 3 mode of PPEs (see section 3.2.3).

2.3.2 Alchemical Transformations

Inspired by alchemists, former times scientists concerned with transmuting matter to gold,
alchemical transformation is a free energy calculation method to transition a system from an
initial stateA to an end stateB, passing through several unphysical intermediate states [119].
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Alchemical transitions rely on both a thermodynamic cycle and an order parameter λ to
enable the estimation of free energy differences between states, which are not directly acces-
sible through computer simulations. In detail, a thermodynamic cycle is a set of reversible
transitions between states, recovering the initial state at the end, and therefore conserving
the free energy along its transition path [119]. Accordingly, the free energy difference asso-
ciated to transition from statesA toB is obtained through∆∆GA→B = ∆G∅→B−∆G∅→A,
where ∅ represents a reference state for both the initial and end state (Fig. 2.3).

∆∆GA→B

∆G∅→B

∆G∅→A

λ1

λ1

λ0

λ0

Figure 2.3. Alchemical transformations. The free energy of transferring amolecule from a
hydrophobic to hydrophilic solvent∆∆GA→B is estimated by combining a thermodynamic
cycle with non-equilibrium MD-based free energy calculations. For each transition path
∅ → A or ∅ → B, multiple thermodynamic integration replicas are performed to obtain a
well-sampled work distribution for both forward and backward transition. According to the
thermodynamic cycle, these two free energy estimates are sufficient to obtain the transfer
free energy ∆∆GA→B = ∆G∅→B −∆G∅→A [Figure adapted from [125, 126]].

The free energy difference to transition from a reference state to each target state∆G∅→A

and∆G∅→B is estimated by thermodynamic integration [120]. To facilitate this, a coupling
parameter λ is introduced along the Hamiltonian. The N -body system H(r,p) (eq. 2.1)
can be integrated from the initial state at λ = 0 to the end state with λ = 1. Due to the
reversibility of the thermodynamic cycle, alchemical transitions are usually computed both
ways by gradually switching the solute-solvent interactions on for the forward (0 → 1),
and off for the backward (1 → 0) transition. The non-equilibrium work associated to the
forward W∅→S =

∫ 1

0
dλ∂λH(r,p) and backward WS→∅ =

∫ 0

1
dλ∂λH(r,p) transitions is

obtained by numerically integrating the instantaneous forces exerted on the system, where
S = {A,B} represents each target state [126]. Combining both forward P∅→S(W ) and
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backward PS→∅(W ) work distributions with Crooks fluctuation theorem enables the esti-
mation of the free energy difference associated to transitioning from A to B [127],

P∅→S(W )

P∅→S(−W )
= exp (β (W −∆G)) . (2.26)

The difference in free energy∆G, as defined in Crooks fluctuation theorem, is estimated
numerically with Bennett’s acceptance ratio method by minimizing the uncertainty of the
statistical estimate, similar toWHAM [128]. More precisely, starting from both forward and
backward work distributions, Bennett’s method represents a maximum likelihood estimator
in order to obtain an unbiased free energy difference with minimum variance [129],

⟨
1

1 + exp (β (W −∆G))

⟩
∅→S

=

⟨
1

(1 + exp (−β (W −∆G)))

⟩
S→∅

. (2.27)

Lastly, it should be noted that free energy calculations were performed to validate the
Martini 3 models for the collagen crosslinks with AA simulations (see section 5.3.1).

2.4 Semi-flexible Polymer Physics

Asmentioned in section 1.1, polymers are long macromolecules comprising many repeating
units, so-called monomers, and can be classified, depending on their mechanical bending
stifness, as flexible, semi-flexible or rigid polymers. Semi-flexible polymers, as the name
suggests, are softer than rigid polymers and stiffer than soft polymers, and are characterized
by their persistence length LP , that is within orders of magnitude of the polymer length L0.
Since the dynamics of such semi-flexible polymers is governed by a competition between
entropic and energetic contributions, the worm-like chain model and its bending Hamilto-
nian was introduced by Kratky and Porod in 1949 [30, 130]:

H =
κ

2

∫ L0

0

ds

(
d2r(s)
ds2

)2

. (2.28)

where κ = kBTLP is the bending rigidity, r(s) the three-dimensional space curve of the
polymer chain, and t(s) = ∂r(s)/∂s the tangent vector describing the local orientation of
the polymer. Accordingly, the persistence length is defined as the ratio of the thermal and
bending energy of a single worm-like chain, that is expressed through LP = κ/kBT .
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However, by integrating the orientational correlations ⟨t(s) · t(s′)⟩ along the arc length
of the polymer s, the statistical physics interpretation of the persistence length is derived [3],

⟨t(s) · t(s′)⟩ = exp (−|s− s′|/LP ) . (2.29)

where the persistence length describes the exponential decay of orientation correlations
between tangent vectors along the polymer chain. In the continuum limit, by integrating
eq. 2.29 along s, we obtain the mean-squared end-to-end distance [32, 130],

⟨R2
e⟩ = 2L2

P (exp (−L0/LP ) + L0/LP − 1) , (2.30)

which reduces to ⟨R2
e⟩ = L2

0 in the rigid rod limit,L0/LP → ∞, and to ⟨R2
e⟩ = 2LPL0 in the

random coil limit, L0/LP → 0. As a consequence of this, the behaviour of semi-flexible
polymers is determined by the polymer’s contour length, resulting in long semi-flexible
chains, that behave like a flexible polymer chain with segments of size LP [3].

In 1995, Bustamante, Marko and Siggia extended this worm-like chain model towards
stretched polymer chains to describe the out-of-equilibrium behaviour under force [36].
Here fore, a linear force-extension relation −F · z was added to the Hamiltonian from
eq. 2.28 to reduce the entropic energy, namely the amount of possible chain configurations,
and moreover enable the persistence length estimation under force, such as commonly ap-
plied for optical tweezers or atomic force microscopy experiments [34, 35],

Fz =
kB · T
4 · LP

·
((

1− z

L0

)−2

+ 4 · z

L0

− 1

)
, (2.31)

where Fz is the force in the pull direction z, that is the end-to-end distance of the polymer
chain projected on the z-dimension. It is important to note that eq. 2.31 is an interpolation
formula, that captures the overall force-stretching of worm-like polymers well, however, is
not an analytical solution, and thus possesses an error of around 10% [35].

Although, more complexmodels for the force-stretching of single worm-like chain poly-
mers exist [131, 132], the approximation of Marko et al. from eq. 2.31 suffices our require-
ments, and was used to compare the persistence length of a single collagen molecule with
atomistic simulations and experiments reported in the literature (see section 5.3.5).
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3 Coarse-grained Modeling of Poly(para-
phenylene ethynylene)s for Molecular
Dynamics under Shear Flow

This chapter is based on our previous publication about themodeling of poly(para-phenylene
ethynylene)s with the Martini 3 force field [133]. We used our CG model to shed light on
the nematic ordering of large assemblies in PPE bulk systems. Beyond, we performed non-
equilibrium CG-MD simulations under shear for large polymer bulks at different shear rates
to analyze the concentration of rupture forces within semi-flexible polymer networks.

3.1 Introduction

As mentioned in chapter 1.2, PPEs belong to the class of semi-conductive and conjugated
polymers with a strong delocalized π-electron system extending from one end of the chain
to the other [134]. Due to the π-conjugated carbon atoms, PPEs exhibit extraordinary opto-
electronic properties and have a wide range of applications, from the printing of electronic
devices, e.g., organic transistors, to the fabrication of biological or chemical sensors [135–
139]. The PPE backbone consists of aromatic rings and stiff triple bonds linked by single car-
bon bonds (Fig. 3.2A). Based on the alternation of single and multiple bonds, the π-orbitals
of the carbon atoms overlap and the electrons are delocalized over the entire backbone. This
is the reason for the planar structure of the aromatic rings, forming a linear backbone with an
increased bending stiffness [140]. Thus, PPEs are classified as semi-flexible polymers and
their bending stiffness is characterized by their persistence length [19]. Specifically, the per-
sistence length of PPEs was determined experimentally using light scattering experiments
and electron paramagnetic resonance spectroscopy combined with computational methods.
Cotts et al. estimated a persistence length of 13.5 nm-16 nm and Godt et al. of 14.3 nm-
19.1 nm [25, 33]. Accordingly, PPEs are approximately 10 to 50-fold stiffer than most con-
ventional polymers without a π-conjugated backbone, such as polyethylene (0.45±0.1 nm)
or polymethyl methacrylate (1.2± 0.1 nm) [141–144].
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The molecular origin of the high mechanical bending stiffness for PPEs has been ad-
dressed with high-level-of-accuracy quantum mechanical calculations. In fact, both the ex-
cited states and the energy barrier of the torsion angle for the backbone rotation of di(para-
phenylene ethynylene)s or bis(phenyl ethynyl) benzenes were determined by density func-
tional theory (DFT) calculations [70, 71]. Bagheri et al. combined MD with DFT simu-
lations to improve the OPLS force field by keeping the PPE backbone planar [70, 140].
Additional studies used AA-MD simulations based on the developed OPLS force field to
simulate the conformation of single PPEs and examine the rigidity and side-chain aggre-
gation in different solvents [72, 140, 145]. Nevertheless, DFT calculations and AA sim-
ulations are limited to a few PPEs in solution, since both are computationally costly [52].
Alternatively, CG-MD is a well-established approach to cover larger spatio-temporal scales
compared to AA-MD, what is achieved by reducing the atomistic degrees of freedom [50].
Godt et al. developed a simplified freely-rotating-chain model for PPEs by substituting the
phenylene ring, the bond between phenylene and ethynylene unit and the ethynylene bond
with one single bead each (see section 1.1) [33]. Although, this model reproduces the stiff
nature of PPEs on a coarser level, it lacks the chemical and thermodynamic distinction be-
tween aromatic rings and triple bonds, giving rise to the π-stacking. To our knowledge,
there exists no CGmodel that considers atomic structure and enables the simulation of large
PPE networks on long timescales, properly capturing their thermodynamic properties.

To address this issue, we developed a CG model for PPEs based on the Martini 3 force
field [59]. Martini 3 is suitable to model long-chain PPEs, while still taking the essential
chemical details of the aromatic rings and the triple bond into account, giving rise to the en-
hanced chain stiffness. For PPEs, we combined a geometrical model to consider the shape
of the conjugated backbone with an additional bending potential to fine-tune its mechani-
cal bending stiffness. Also, we analyzed the structural organization by characterizing the
nematic ordering of chains in a bulk material to find that the degree of alignment decreases
with chain length. This shows how the dynamics of long PPEs is increasingly driven by
entropic effects. Moreover, we performed shearing simulations to determine the response
of large-scale PPE bulk systems to various shear rates by applying the Lee-Edwards bound-
ary condition (see section 2.1.6). We observed that entangled networks of intermediate-
and long-chain PPEs form shear bands with extreme shear rates in the fast band, i.e., where
rupture forces are highest and bonds are prone to fail. Overall, our Martini 3 PPE model ad-
equately reproduces the transition from rigid rod to random-coil like dynamics of networks
comprising semi-flexible polymers under equilibrium and non-equilibrium conditions.
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3.2 Methods

For Martini 3, on average, four heavy atoms and their respective hydrogens are replaced by
one CG bead (see section 2.2.1) [52]. To consider more complex atomistic structures, like
aromatic rings as in the case of PPE, a higher resolution mapping is recommended, where
three or two heavy atoms plus the associated hydrogens are collapsed into one small or tiny
bead [50, 111]. We followed the bottom-up and top-down Martini procedure and defined
four tiny beads as our main building block (Fig. 3.2B). Next, we compared the octanol-
/water partitioning free energy of di(para-phenylene ethynylene) to experiments from the
literature to select the respective bead type of each building block [146, 147]. To optimize
the bonded terms, we relied on a bottom-up strategy by matching the distribution functions
for the bonded terms from CG to AA simulations [59]. Both AA- and CG-MD simulations
were performed with the GROMACS 2020 MD simulation engine [148, 149]. A protocol
regarding the simulation setup is described below.

3.2.1 All-Atom Simulation Protocol

MD simulations for PPEs on the atomistic level of detail were run with a modified version of
the OPLS force field. The modification is implemented by converting parameters from the
Polymer Consistent Force Field to OPLS and adding a Rickaert-Bellemanns function type
for the dihedral potential to ensure a planar backbone (see section 2.1.1) [70]. Bagheri et
al. performed DFT calculations to obtain an estimate of 4 kJmol−1 for the energetic barrier
of the rotation of aromatic rings, slightly above experimentally derived values of around
2 kJmol−1 to 2.5 kJmol−1 obtained from fluorescence spectroscopy [150–152].

All-Atom Single and Multiple Chains

For the parameterisation of the CGmodel, a single chain of PPE, consisting of fourmonomers,
solvated with the SPC2016 water model in a cubic simulation box was selected as a ref-
erence [153]. We used the steepest descent algorithm to energy minimize the solvated
system by gradually switching off backbone restraints. Next, we increased the tempera-
ture of the system to 300K by applying the velocity rescaling thermostat (eq. 2.19) for
500 ps with τT = 0.1 ps [101]. For the NpT equilibration, we kept the pressure at 1 bar
using the Parinello-Rahman barostat for 500 ps with τP = 2 ps and a compressibility of
4.5 · 10−4 bar−1 [103]. During the equilibration phase, we applied the Verlet-scheme to cut
off short-range electrostatics and Van-der-Waals interactions at 1.0 nm [154]. Long-range
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electrostatic contributions were treatedwith the Particle-Mesh-Ewald scheme [94, 95]. Each
solvated PPE chain was simulated for 100 ns. In case of multiple chains, we randomly dis-
tributed ten chains of the same length in a 10 × 10 × 10 nm3 simulation box, and solvated
the chains in water. We then applied the same simulation setup used for a single chain and
performed a 100 ns production run to sample the chain packing within the polymer bundle.

All-Atom Bulk System

To setup of a PPE bulk system, GROMACS was used to randomly insert 300 chains, con-
sisting of four monomers each, into a box of 80 × 80 × 80 nm3 Next, a three-step energy
minimization was performed and a stochastic dynamics integrator applied to equilibrate the
system for 1 ns at 300K in the canoncial NVT ensemble with τT = 0.1 ps [155]. Also, we
gradually deformed the box volume for 100 ns to give the polymer chains enough time to
assemble into a dense structure, and used the Parinello-Rahman barostat with τP = 2 ps and
a 1 fs time increment to pressurize the system and prevent numerical instabilities [104]. Fi-
nally, we simulated the assembled bulk for a 1µs to enable the alignment of polymer chains,
forming a densely packed network of semi-flexible PPEs.

3.2.2 Coarse-Grained Simulation Protocol

For developing a PPE CG model, we chose the Martini 3 force field [59]. We used the
polyply package to generate the structures and topology files for PPEs with various chain
lengths [112]. To calculate the neighbor list and to consider the electrostatics or Van-der-
Waals interactions, the commonly used Martini 3 simulation parameters were applied [59].
The Verlet neighbor search algorithm updated the list every 20 to 40 steps, with a buffer tol-
erance of 5 Jmol−1 ps−1. For electrostatics, the reaction-field cut off the Coulomb potential
at rc = 1.1 nm with a relative permittivity of ϵr = 15, according to eq. 2.15. We modeled
the Van-der-Waals interactions with the Lennard-Jones potential, a cut-off at rc = 1.1 nm
and the potential-shift with the Verlet scheme [55, 156]. We selected the common Martini
3 parameter set for CG-MD simulations, provided on https://www.cgmartini.nl for both the
equilibration and production phases [59, 157].

Coarse-Grained Single and Multiple Chains

Parameterisation of bonded terms was obtained from single PPE chain in solution sim-
ulations. Specifically, we performed an energy minimization of a single chain of four
monomers in vacuum with the steepest descent algorithm, and solvated the polymer chain
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in a cubic box with either Martini 3 water beads and a Van-der-Waals radius of 0.21 nm
or toluene [158]. The solvated system was energy minimized, while position restraining
the backbone beads. For the NVT ensemble, the velocity rescaling thermostat stabilized
the temperature at 300K for 5 ns with a time constant of τT = 1.0 ps. Next, the Parinello-
Rahman barostat stabilized the pressure at 1 bar with τP = 12 ps and a compressibility of
3 · 10−4 bar−1. Finally, we performed production simulations for 100 ns with a 20 fs time
increment for both the single chain and the ten chains in solution setups.

Coarse-Grained Bulk System

The bulk system for the Martini 3 model consisted of hundreds of PPE chains of varying
polymer length. To get the initial position of the chains, we used GROMACS to randomly
insert between 300 and 800 PPEs, each with a length of 20, 40 and 60 monomers, to a large
1000 × 1000 × 1000 nm3 box of vacuum. For the energy minimization of the bulk sys-
tem, we selected the steepest descent algorithm. Next, the stochastic dynamics integrator
was chosen to ensure a stochastic temperature coupling during the equilibration steps. The
stochastic integrator stabilized the temperature for 5 -8 ns at 300K with a time constant of
τT = 1.0 ps. Moreover, we shrunk the simulation box for 1µs to give the PPE chains suffi-
cient time to assemble into a dense bulk structure. To this end, we deformed the simulation
box constantly with a velocity of −1.2ms−1 to −0.8ms−1 and a reduced time increment
of 5 fs to ensure numerical stability. Starting from the deformed bulk system, we applied
the Parinello-Rahman barostat with τP = 12 ps and a slightly reduced timestep of 2 fs to
pressurize the system at 1 bar for 2 -10 ns. Finally, we performed a 5µs production run with
a timestep of 20 fs to sufficiently sample the free energy landscape of the bulk system.

Besides, to sample energetic favourable states of the polymer networks, simulated an-
nealing simulations were performed, according to theMartini setup for polymers [159–161].
The system was heated up to 400K for 20 ns, 500K for 20 ns, 600K for 160 ns and finally
to 800K for 1.8µs using a time increment of 10 fs . Next, we cooled the system down to
300K during a 400 ns equilibration stage giving the polymer chains sufficient time to self-
organize. Compared to experimental annealing cycles at ∼ 360K, we not only annealed at
higher temperatures, but also on a shorter timescales [162].
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3.2.3 Free Energy Calculations

The free energy of transferring tolane, short for di(para-phenylene ethynylene), from oc-
tanol to water is the basis for the bead type selection with Martini 3. For this purpose, we
performed biased MD simulations by umbrella sampling of tolane in an octanol-/water box
to estimate the free energy of partitioning, as well as the PMF and the partition coefficient
(eq. 2.23), quantifying the distribution of solute between the two immiscible solvents [163].
For the umbrella sampling simulations, we defined a reaction coordinate ξ pointing from
the center of water towards the center of octanol with a 0.05 nm window spacing. Next, we
restrained the solute for 100 ps with a force constant of 1000 kJmol−1 nm−2, energy mini-
mized each window with the steepest descent algorithm and equilibrated the system for 3 ns
with a 10 fs timestep. We applied the velocity rescaling thermostat to increase the temper-
ature to 300K with τT = 1 ps and the Parrinello-Rahman barostat to stabilize the pressure
at 1 bar with τP = 12 ps and a compressibility of 3 · 10−4 bar−1. To ensure proper sam-
pling of the underlying free energy landscape, each window was simulated for 500 ns with
a 25 fs timestep. To estimate the PMF according to eq. 2.25, we applied the WHAM, as
implemented in GROMACS, and compared the partition coefficient (eq. 2.23) with experi-
ments [122, 124]. We finally checked for PMF convergence by backward block averaging
the free energy barrier for tolane in the biphasic octanol-/water system using a 5 ns step
size and performed a Bayesian bootstrap analysis of complete histograms to quantify the
statistical uncertainty of the estimated free energy profile [124, 164].

3.2.4 Methods for Validation

The validation of the CG force field parameters followed a mixed bottom-up and top-down
approach by comparing properties of interest with experimental or AA simulation data.
More precisely, we focused on the mechanical bending stiffness of PPEs by estimating the
persistence length and on packing properties, such as the bulk density and the orientation of
packed chains, as validation targets. Therefore, we imported the trajectory into Python using
the Molecular Dynamics Analysis software package (MDAnalysis) and calculated the prop-
erties with the Numerical Python package (NumPy) [165, 166]. To analyze the packing, we
estimated the orthogonal distances between aligned chains, and projected the center-of-mass
(COM) of each chain onto the main COM axis of the bundle.
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Persistence Length

According to section 2.4, the persistence length describes the mechanical bending stiff-
ness of the polymer, thereby characterizing its local intrinsic flexibility, and is defined
as the rate of the exponentially decaying orientation correlations along the polymer chain
(eq. 2.29) [167, 168]. To estimate the persistence length fromMD simulations of single PPE
chains, we imported the CG trajectory into Python and applied the scalar product function
of NumPy to determine the angle between pairwise segments along the backbone θij . More
specifically, we defined the CG beads representing the triple bonds as the segments of the
polymer chain, linked adjacent segments by a vector, and then normalized each vector to
obtain the unit tangent vector. Hence, we obtained a chain of unit tangent vectors following
the backbone of the polymer. From this chain, we calculated the pairwise scalar product
ti · tj to determine the cosines of the angles cos θij enclosed by two segments i and j. Next,
we averaged over the number of segments NM = |j − i|, before averaging over time.

We also applied the worm-like chain theory to estimate the persistence length according
to eq. 2.30 [169]. For this, we used the trajectory from the single chain in solution protocol
and calculated the end-to-end distance between pairwise segments along the polymer chain.
Subsequently, we squared and averaged the end-to-end distances over the count of segments
NM , before averaging over time, as described above. After preparing the CG data, we
plotted both the averaged cosine angles ⟨cos θij⟩ and squared end-to-end distances ⟨R2

e⟩ as
a function of the count of segmentsNM . To estimate the persistence length of semi-flexible
PPEs, we fitted eq. 2.29 and eq. 2.30 to the trajectory obtained from CG simulations using
the curve fitting function from the Scientific Python package [170].

Packing Properties

The packing properties are characterized by the assembly of multiple PPEs into a parallel,
aligned bundle. We analyzed the packing of the Martini 3 model by comparing the axial and
radial displacement of single chains within a polymer bundle to experimental and AA sim-
ulation data. For the radial displacement, we determined the π-stacking by calculating the
orthogonal distance between chains of the bundle. For the axial displacement, we projected
the COM of each polymer onto the main COM axis of the bundle. More specifically, to
estimate the orthogonal distance between adjacent polymers dπ, we defined the end-to-end
vector for a single chain of the bundle Re, and linked the COM of all the other polymers
to one end of the end-to-end vector Rp. From the norm of the vector product |Re × Rp|,
we computed the area content spanned by both vectors and divided the normalized vector
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product by the length of |Re| to estimate the orthogonal distance between chains:

dπ =
|Rp ×Re|

|Re|
. (3.1)

In addition, we calculated the axial displacement describing the movement of aligned
polymers. Here fore, we projected the COM for each polymer orthogonally onto the main
COM axis of the bundle to obtain an estimate for the axial displacement. More precisely,
we defined the main COM axis as the vector between the COMs at both ends of the bundle
Rb, linked one end of the COM axis to the COM of any other polymer Rk and projected
the COM of each polymer onto the main COM axis, according to [171],

PRb
(Rk) =

Rk ·Rb

Rb ·Rb

·Rb. (3.2)

Here, PRb
(Rk) denotes the vector projection of the COM of the polymer onto the COM

axis of the bundle. We normalized the projected vector |PRb
(Rk)| and subtracted half the

length of the main COM axis |Rb| to obtain the axial displacement for the COM of each
polymer with regard to the COM of the bundle. In the end, the respective probability distri-
butions were obtained with the kernel density estimator from the Seaborn package [172].

Density of the Bulk System

For the analysis of the bulk system, we focused on both macroscopic and microscopic prop-
erties that characterize the packing of multiple PPEs within a network. On the macroscopic
scale, we calculated the bulk density of PPEs from both AA and CG simulations by per-
forming a NpT equilibration and computing the property of interest from the energy file
with GROMACS. In addition, we rescaled the Martini 3 density with the ratio of molar
masses from the AA and CG representation to enable a comparison with AA simulations.

Radial Distribution Function

On the microscopic scale, we analyzed the spatial correlation by computing the radial dis-
tribution function (RDF). To enable a comparison between Martini 3 and AA simulations,
we first mapped both the AA and CG trajectories to a resolution of one particle per aromatic
ring. We then imported the mapped trajectory into MDAnalysis, excluded the intrachain
particles and used the InterRDF command to determine the RDF between NP polymers
consisting of NM beads each. The RDF gij(r) quantifies the probability of finding bead i

from polymer I at a distance r from bead j belonging to polymer J > I [173]:
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gij(r) = (NPNMg0)
−1 ·

NP∑
I=1

NP∑
J>I

NM∑
i=1
i∈I

NM∑
j=1
j∈J

δ (|ri − rj| − r) , (3.3)

where ri and rj denote the position of particle i and j from polymer I and J with i ∈ mI

and j ∈ J , respectively, r is the distance from a reference bead i, δ is the Dirac delta function
and g0 = 4ρπr2dr a normalization factor, assuming a uniform particle distribution.

Nematic Correlation Function

In addition to the pairwise spatial correlation, we estimated the nematic correlation function
(NCF) to characterize the orientation of different polymer chains relative to each other [174].
The NCF Πij(r) quantifies the alignment of PPE chains within a bundled network by com-
bining the orientation correlations with the RDF. The NCF therefore weights the probability
of finding two beads i and j at a distance r = |ri − rj| with the absolute value of the dot
product of their tangent vectors ti and tj , as given in eq. 3.4:

Πij(r) =

∑
I

∑
J>I

∑
i∈I
∑

j∈J |ti · tj| δ (|ri − rj| − r)∑
I

∑
J>I

∑
i∈I
∑

j∈J δ (|ri − rj| − r)
. (3.4)

As before, i and j denote the beads of polymer I and J . Hence, the NCF describes the
decay of orientation correlations with increasing distance between particles r. We notice
that the upper and lower limit of eq. 3.4 are given as a step function with height one for
parallel aligned and one half for randomly oriented chains [174]. To estimate the NCF, we
extended the InterRDF command by multiplying the dot product of the unit tangent vectors
with the probability of finding bead i and j at a distance r = |ri − rj|.

Furthermore, we extended the NCF (eq. 3.4) to quantify the nematic alignment under
shear-flow, for example, shearing the xz-plane of an entangled polymer network with con-
stant velocity vD,x. The corresponding NCF Πij(y) projects the orientational correlations
between pairs of particles onto the axis orthogonal to the flow, i.e., the y-dimension:

Πij(y) =

∑
I

∑
J>I

∑
i∈I
∑

j∈J |ti · tj| δ (yi − y) δ (yj − y)∑
I

∑
J>I

∑
i∈I
∑

j∈J δ (yi − y) δ (yj − y)
, (3.5)

where yi and yj is the y-position of particle i and j, respectively. More precisely, we binned
the particles’ positions in flow direction (e.g. yi) to calculate the pairwise dot products
between all pairs of particles within each bin to derive the NCF profile. Lastly, we notice
that the upper and lower limit of the NCF profile can be derived by bin-wise integration of
eq. 3.4 along r and is given by 1 and 0.75, respectively.
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3.3 Results

The development of the Martini 3 CG model included the mapping of the underlying AA
structure to CG resolution, the identification of bead types for the non-bonded interactions
and the parameterisation of bonded terms, along with an experimental or AA based vali-
dation using an iterative process. Specifically, we validated our parameterisation against
experimental measurements from the literature, such as the mechanical bending stiffness,
the partitioning free energies, the π-stacking and the bulk density. In this section, a summa-
rizing overview about the properties used for validation purposes (Table 3.1) and the steps
performed for the force field parameterisation (Fig. 3.1) are provided, taken from [133].

Table 3.1. Validation and tuning of the CG PPE model. To optimize the Martini 3 force
field, we selected the partition coefficient, persistence length and solvent accessible surface
area (SASA) as single chain properties. For validation, we compared the packing in bundles
and mid-size bulk systems to experiments or AA simulations. For the former, we focused
on the radial and axial displacement, like the π-stacking, within a polymer bundle, and for
the latter on the bulk density and spatial correlations of mid-size polymer networks.

Property Martini 3 OPLS-AA Experimental

Properties to tune the model

Log POct−H2O [-] 4.82± 0.02 - 4.78[1]

Persistence length LP [nm] 14.7± 1.3 - 13.5− 16.0[2]

SASA [nm2] 13.20 13.22 -

Properties to validate the model

Bulk density [kgm−3] 1098 1092 -
π-stacking [nm] ∼ 0.5 ∼ 0.5 ∼ 0.4[3,4]

Side-by-side sliding peak [nm] 0 ±0.13 -
Radial distribution function [nm] 0.57 0.58 -
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Figure 3.1. Overview for modeling PPEs with Martini 3. Purple boxes provide external
information from the OPLS-AA force field or Martini 3 building block data base. Orange
boxes are force field parameterisation steps. Green rhombuses represent decision steps for
validation or tuning purposes. Bonded terms (left) are optimized with a geometrical model,
and non-bonded ones (right) due to the partitioning behaviour of tolane. As soon as both
properties agree, an extra bond angle potential is introduced to tailor the mechanical bending
stiffness of a single chain to experiments by matching the persistence length LP [25, 33].
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3.3.1 Mapping Scheme for PPE

Based on the Martini 3 building block principle, we identified the mapping scheme for PPE
that properly resembles its chemistry and shape of its π-conjugated backbone [59, 168]. The
PPE backbone consists of alternating phenyl rings and triple bonds, linked by single carbon
bonds as shown in Fig. 3.2A. Due to the alternation of single and multiple bonds, the π-
orbitals of the carbon atoms overlap, and the electrons are delocalized from one end of the
backbone to the other. To adequately represent the π-conjugated backbone of PPEs, we split
the monomer into two building blocks, using different bead types for each (Fig. 3.2B). More
precisely, we substituted the phenyl ring with three apolar TC5 beads forming a triangle
with constrained bond lengths to mimic the rigidity of the aromatic ring. For the triple bond
between the phenyl rings, we selected one slightly less polar TC4 bead.

A B

Figure 3.2. Chemical structure of PPEs and mapping. A The backbone of Poly(para-
phenylene ethynylene)s consists of alternating phenylene rings and stiff triple bonds linked
by carbon bonds. For side-chains we assume R = H. B Mapping from AA (black) to CG
(orange) resolution. The dotted lines represent the bonded potentials.

3.3.2 Parameterisation of the Bonded Potentials for PPE

The parameterisation of the bonded potentials followed a bottom-up strategy based on the
identification of bonded terms betweenMartini 3 beads and the fine-tuning through compar-
ison to AA simulations, considering the molecular shape [59]. This methodology has been
previously outlined for modeling non-complex molecular structures with Martini and partly
automated for high-throughput applications [161, 175–177]. We started with mapping the
AA trajectory to CG resolution by placing each CG bead at the center-of-geometry of the
underlying structure (Fig. 3.2A). From the mapped trajectory, we computed the probability
densities for the bonded terms and performed CG simulations to determine the exact same
distributions. Next, we iterated over the force constants and equilibrium values of the CG
force field to match the resultant distributions to the mapped AA ones (Fig. A1).
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Bonds, Angles and Torsions from All-Atom model

We started the parameterisation of the PPE backbone with the identification of bond po-
tentials between the CG beads. As shown in Fig. 3.2B, one monomer of PPE consists of
three Martini beads forming a triangular structure [BB1-BB2-BB3] and a single bead BB4

at the left and right edge of each triangle. In particular, we used three bond constraints to
model the edges of each triangle [BB1-BB2-BB3]. For the bond between the triangle and the
neighboring single beads BB3 or BB5 to BB4, we applied a bond length potential without
constraints to provide a certain degree of flexibility along the backbone. To stabilize the link-
age between mapped fragments, we introduced two bond angle potentials. The first one, we
applied between the base of the triangle and the neighboring ethyne bead [BB1-BB3-BB4],
and the second one between each side of the triangle and the adjacent single bead [BB2-BB3-
BB4]. Torsion potentials enable us to keep the aromatic rings along the backbone planar,
but also might lead to smaller time steps due to numerical instability. Thus, we reduced
the amount of dihedral angles to one improper dihedral potential between each triangle and
its two adjacent single beads [BB4-BB2-BB1-BB3] or [BB4-BB6-BB7-BB5] to prevent the
out-of-plane bending and numerical instabilities. The resulting Martini 3-based parameters
therefore allow for stable simulations with at least a 20 fs timestep. However, due to the
planar structure of the monomers, we underestimated the volume of the aromatic rings and
thereby overestimated the PPE bulk density compared to the AA one by approximately 5%
(Fig. 3.3C). Accordingly, our method required further optimization to consider the shape
and volume of the π-conjugated backbone in more detail.

Geometrical Modeling based Optimization

To reduce the density mismatch and better capture the shape of PPEs, we refined the bond
lengths and angles between the CG interaction sites. For this reason, we approximated the
polymer backbone as a chain of benzene molecules: According to Martini 3, as a concate-
nation of regular triangles with side length dB and spacing dM (Fig. 3.3A). We assumed that
the triple bond bead is positioned in the geometric center of two adjacent phenyl rings at a
distance dBT . We set the orthogonal distance between the base of the triangle and the triple
bond bead to half the altitude of the regular triangle hT =

√
3/4 · dB. According to this, we

finally derived the following equations for the unknown bond length dBT and bond angles
θAn with n = (1, 2), θ01 = 180◦ and θ02 = 120◦:

dBT =

√
h2
T +

(
dM − dB

2

)2

, and (3.6)
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θAn = θ0n − arcsin
(

hT

dBT

)
. (3.7)

As shown in Fig. 3.3A, the equations for the equilibrium bond length (eq. 3.6) and bond
angles (eq. 3.7) only depend on the side length dB and spacing dM of the triangles. To
identify each unknown, we set the distance between monomers dM to 0.7 nm, in agreement
with AA simulations (0.7 nm) and experiments (0.69 nm) [33, 158]. Besides, we deter-
mined the side length of the regular triangle dB by matching the solvent accessible surface
area (SASA) of PPEs solvated in water from Martini 3 to AA simulations [59, 114]. We
retrieved the SASA from fine-grained simulations of one small four-monomer long PPE
chain (ASASA = 13.22 nm2). By setting the side length of the triangle to dB = 0.325 nm,
the SASA with our Martini 3 model was ASASA = 13.20 nm2 (Fig. 3.3B), a value which
is in good agreement with the AA prediction. The equilibrium values obtained from this
optimized geometric modeling approach are summarized in Table 3.2.

Table 3.2. Martini 3 force field parameters for PPEs. Force constants were derived from
AA data and equilibrium values from the geometrical model.

Beads selected for bonded terms Reference value Force constant

BB1-BB2 0.325 nm constraint
BB1-BB3 0.325 nm constraint
BB2-BB3 0.325 nm constraint
BB3-BB4 0.325 nm 9000 kJmol−1 nm−2

BB1-BB3-BB4 143 ◦ 550 kJmol−1

BB2-BB3-BB4 83 ◦ 650 kJmol−1

BB4-BB8-BB12
a 180 ◦ 50 kJmol−1

BB1-BB4-BB8
a,b 165 ◦ 50 kJmol−1

BB4-BB8-BB11
a,b 165 ◦ 50 kJmol−1

BB4-BB2-BB1-BB3 0 ◦ 50 kJmol−1

a Extra harmonic bond angle potential for the π-conjugated backbone. Force constant is
set by matching the persistence length from Martini 3 to experiments [25, 33].
b Extra harmonic bond angle potential extends over both polymer ends.

On the microscale, we evaluated the solvent-excluded area by comparing the Connolly
surface for one four-monomer long PPE betweenAA (gray) andCG (blue) resolution (Fig. 3.3E).
Accordingly, both molecular surfaces coincide well with slight differences due to the map-
ping from fine- to coarse-grained resolution, i.e., an aromatic ring to a triangle.
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Figure 3.3. Geometrical model to coarse-grain PPEs with Martini 3. A The geometri-
cal model takes the shape of the π-conjugated backbone into account. PPEs are represented
as a linear chain of regular triangles with side length dB and spacing dM . The remaining
equilibrium values are calculated by trigonometrical relations (eq. 3.6- 3.8). B We tuned
the geometrical model, in particular the side length of the regular triangles dBT , through
matching the solvent accessible surface area (SASA) of a single four-monomer long PPE
chain from Martini 3 to AA simulations. CMass density for a PPE bulk system containing
300 chains with length of four monomers each. Mass density calculated from the center-
of-geometry based mapping scheme. DMass density obtained from geometrical modeling
reduces the bulk density difference between AA and Martini 3 simulations to less than 1%.
E The Connolly surface indicates minor differences between AA (gray) to CG (blue) reso-
lution due to mapping an aromatic ring with six heavy atoms to a triangle.

Modeling the π-conjugated Backbone of PPE

We also focused on modeling the π-conjugated backbone of PPEs, which spans from one
end of the polymer to the other, and is the reason for its planar shape, backbone linearity and
increased mechanical bending stiffness. We introduced an additional harmonic bond angle
potential, which extends over three neighboring TC4 beads [BB4-BB8-BB12], and has an
equilibrium value of 180◦ to keep the backbone linear. Besides, we also applied a harmonic
bond angle potential at both ends of the polymer chain to prevent the last monomer at both
ends from bending over. The bond angle potential at each end of the chain included the
outermost bead BB1 or BB11 and its two closest triple bond beads [BB4-BB8] (Fig. 3.2B).
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To this end, we derived an expression for the reference bond angle describing the π-
conjugation at both ends of the polymer by using the geometric modeling approach:

θπ = θ0π − arctan
(

hT

dB + dT

)
, (3.8)

where θπ is the equilibrium angle at both ends, and θ0π = θ01 and dB + dT is the distance
between the outermost bead and closest triple bond bead [BB1-BB4] or [BB8-BB11]. The
newly introduced harmonic bond angle potential reduces the bending motion of the back-
bone as shown by the comparison of the probability densities of three kinds of dihedral an-
gles between the CG and mapped AA simulations (Fig. A1-A2). We defined the first torsion
angle between two aromatic rings by connecting the bases of adjacent triangles [BB1-BB3-
BB5-BB7], and the second one by linking the base of the triangle to the two neighbouring
triple bond beads [BB4-BB5-BB7-BB8]. We further specified a dihedral angle from the apex
of the triangle, over the triple bond bead to the base of the adjacent triangle [BB1-BB3-BB4-
BB6] or [BB2-BB4-BB5-BB7]. We observed good agreement between the dihedral angle
probability densities obtained from the mapped AA and CG trajectory (Fig. A2). In particu-
lar, we noticed that the π-conjugation potential prevents the sampling of unwanted dihedral
configurations and keeps the aromatic rings along the backbone planar.

3.3.3 Partitioning Free Energy for Tolane

The chosen Martini 3 bead types, namely TC5 for the rings and TC4 for the triple bonds,
determine the non-bonded interactions. We evaluated the non-bonded interactions by com-
paring the solubility of such-chosen CG beads obtained in simulations with that from experi-
ments. We estimated the partitioning free energy in a biphasic octanol-/water system to com-
pute the distribution of solute between the hydrophilic and hydrophobic solvent (Fig. 3.4).
Due to the absence of experimental data regarding the solubility of PPEs, we selected tolane,
short for di(para-phenylene ethynylene), as a reference for validation purposes. We com-
puted the free energy of transferring tolane from water towards octanol and validated the
partition coefficient with experiments reported in the literature [146, 147].

For this reason, we calculated the PMF, using the WHAM, and the resultant partition-
ing free energy for tolane ∆∆GOct−H2O = 27.69 kJmol−1 in the biphasic octanol-/water
mixture. Based on a cumulative simulation of 6µs per umbrella, we performed Bayesian
bootstrapping to obtain an absolute error below 0.10 kJmol−1, and backward block averag-
ing to show convergence within 200 ns (Fig. 3.4B) [164].
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Figure 3.4. Convergence analysis for the partitioning free energy for tolane A The free
energy of transferring tolane (orange) from water (blue) to octanol (gray) was estimated by
umbrella sampling MD simulations. The reaction coordinate ξ points from the center of the
hydrophilic to the hydrophic solvent, and is split into equally spaced umbrellas. B The back-
ward block average and the absolute error of tolane’s free energy of transfer in an octanol-
/water system. For the convergence analysis, we performed backward block averaging with
a 5 ns step size and Bayesian bootstrapping to estimate the associated error. We obtained a
partitioning free energy∆∆GOct−H2O = 27.69 kJmol−1 with an error below 0.10 kJmol−1,
i.e., a partition coefficient of logPOct−H2O = 4.82±0.02, less than 0.25 kJmol−1 above ex-
periments reported in the literature [147].

For the partition coefficient of tolane logPOct−H2O = 4.82 ± 0.02, calculated with
eq. 2.23, we observe good agreement with experiments from the literature (4.78) [147].
Further, we suggest that similar chemical moieties, such as bibenzyl or trans-stilbene, could
be equally considered with our Martini 3 model due to a comparable partition coefficient of
4.70±0.20 and 4.81±0.40, respectively [146]. Table 3.3 provides experimentally measured
partition coefficients for tolane, bibenzyl and trans-stilbene from the literature [146, 147].

Table 3.3. Partition coefficients from experiments and Martini 3. Partition coefficient
for tolane, bibenzyl and trans-stilbene in a biphasic octanol-/water system [146, 147]

Chemical substance Experiments Martini 3

Tolane[147] 4.78 4.82± 0.02

Bibenzyl[146] 4.70± 0.20

Trans-stilbene[146] 4.81± 0.40
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3.3.4 Mechanical Bending Stiffness for PPE

We further refined our CGmodel by fine-tuning the mechanical bending stiffness of a single
chain such that the experimental persistence length is reproduced. The π-conjugated back-
bone of PPEs is known to induce an increased bending stiffness for a single chain which
classifies PPEs as semi-flexible polymers. To estimate the persistence length LP for the
PPE backbone, we performed simulations of a single chain in solution, and fitted both the
unit tangent vector auto-correlation between pairwise segments (eq. 2.29) and the squared
end-to-end distance (eq. 2.30) to the Martini 3 trajectory, as two independent measures for
LP . We simulated single PPEs of various chain lengths ranging from 20 to 100 monomers
with an increment of 10 in water and toluene. For each chain length, we performed 10 repli-
cas to sample the free energy landscape adequately and obtain a significant estimate for the
persistence length. To model the π-conjugated backbone and tune the chain stiffness, we
introduced an extra harmonic angle potential between neighboring TC4 beads and tuned the
force constant to match experimental persistence lengths (see section 3.3.2) [25, 33].

A B

Figure 3.5. Persistence length of PPE and PS from Martini 3. Average and standard
error for the persistence length of a single PPE (A) and Polystyrene (PS) (B) chain as func-
tion of the polymerization degree was computed in water and toluene, and estimated with
the unit tangent vector auto-correlation t⃗j · t⃗i (blue) and squared end-to-end distance R2

e

(orange). Experimental estimates for PPEs by Cotts, using light scattering experiments
(LP = 13.5-16 nm) [25], and by Godt, performing electron paramagnetic resonance spec-
troscopy (LP = 14.3-19.1 nm) [33], as well as for PS by Schelten, using low-angle neutron
scattering experiments (LP = 0.5-0.6 nm) [178], and by Pital, performing atomic force mi-
croscopy (LP = 0.2 nm) [179], are shown in green. Accordingly, semi-flexible PPEs are
30 to 50 times stiffer than the flexible PS, both in experiments and Martini 3.
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Fig. 3.5A shows the persistence length for a single PPE chain for chains of size ranging
from 20 to 100 monomers, obtained when choosing a spring constant of 50 kJmol−1 nm−2

for the additional bond angle potential of the CG model. The persistence length obtained
from the unit tangent vector auto-correlation (14.8 nm) and from the squared end-to-end
distance (14.6 nm) were comparable. A detailed summary of the persistence lengths for each
replica is given in Fig. A3-A4 for water and in Fig. A5-A6 for toluene. The persistence
lengths are largely independent of the polymer length and solely depend on the chemical
nature of the monomer [33]. The covered range, as well as the obtained average from both
estimation methods and solvents of 14.7 nm (with a standard error of 1.3 nm) is in very good
agreement with the experimental values reported from Cotts et al. (13.5 nm-16 nm).

To emphasize the distinct nature of PPEs, we performed single polystyrene (PS) in so-
lution simulations for chains consisting of 20, 60 and 100monomers with the given Martini
3 force field parameter set [55] (Fig. 3.5B). We calculated the unit tangent vector auto-
correlation (0.37 nm) and squared end-to-end distance (0.11 nm) to derive the persistence
length of this flexible polymer. By comparing the persistence lengths of PS and PPE, we
observed that semi-flexible PPEs are approximately 30 to 50 fold stiffer than flexible PS,
which is the reason for the outstanding mechanical properties of PPEs.

3.3.5 Packing within a Bundle of PPEs

We next aimed to evaluate the packing properties of systems containing multiple parallel
aligned PPEs. For validating the Martini 3 parameterisation presented here, we analyzed
the local structural organization of the semi-flexible chains, and compared it to AA-MD
simulations and experiments from the literature [180, 181]. Finally, we constructed and
equilibrated a finite bundle of short-chain PPE (10 chains, each 4 monomers in length),
and monitored two major degrees of freedom, namely the radial arrangement of aligned
polymers, and their axial displacement within the assembled bundle. These observables
jointly tested both the bonded and non-bonded interactions between CG beads, i.e., defined
in the many-body potential of the Martini 3 force field V CG(r1, ..., rN).

First, we quantified the radial displacement between PPE chains by computing the or-
thogonal distances between parallel aligned chains (eq. 3.1). We determined the probability
distribution for the π-stacking (Fig. 3.6A). The π-stacking obtained from the AA and CG
trajectories exhibits a similar behaviour. In particular, we monitored three distinct peaks of
the distribution, at ∼ 0.5 nm, 0.8-0.9 nm and 1.2-1.3 nm. Both the AA and CG simulations
show good agreement with the experimentally observed interchain distances [180, 181].
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Figure 3.6. Packing within a bundle of aligned PPEs. A Radial orientation of aligned
chains in a bundle of PPEs estimated with the π-stacking distance. Experimental measure-
ments reported in literature used for comparison [180, 181]. B Axial displacement or side-
by-side sliding of single chains within the polymer bundle. Both packing properties are
validated by comparing the probability distributions with reference to OPLS-AA data [70].

However, both models slightly overestimated the π-stacking distance with reference to
the experimental value (∼ 0.4 nm) by 15% for the first and 5% for the second and third peak.
In contrast to the AA case, for Martini 3, the probability distribution did not drop to zero
between the peaks, the second and third peaks were hardly separated, and finer structural
features seen in the AA model were lost. This reflects an overall less ordered packing of the
polymer chains, which is expected, given the loss of resolution upon coarse-graining. To
resolve the second and third peak inmore detail, a finer resolution, e.g., mapping a ring of six
heavy atoms to a rhombus of four beads, would be suitable at the expense of performance.
Still, the CG simulations capture the major features of radial packing of chains within a
bundle of semi-flexible polymer and, thus, yield the expected local structure of PPE chains.

Second, we characterized the axial degree of freedom by calculating the horizontal dis-
placement of each polymer relative to the center of the bundle. Finally, we projected the
COM of each polymer onto the main COM axis of the bundle (eq. 3.2). We compared
the probability distributions from both AA- and CG-MD simulations (Fig. 3.6B). Both the
CG and AA models show distributions around zero displacement with highly similar width.
They both strongly disfavor chains to displace relative to each other by more than 0.5 nm.
Again, the CG model fails to reproduce a finer subnanometer-scale structure of the PPEs,
i.e., a bimodal distribution with peaks at ±0.13 nm. Aromatic rings slightly prefer an axial
shift relative to one another by this length, a low-energy π-stacking mode also known for
benzene that the AA force field is able to capture [111, 182–184]. In contrast, the probability
density from Martini 3 is unimodal and centered around mode zero.
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This deviation is due to the flattened free energy surface resulting from mapping the AA
structure to CG resolution, that is, a ring of six heavy atoms to a triangle of three beads.
Yet, on the coarser scale beyond 1-2Å, the CG data closely follows the AA data. Within
the expected level of resolution of Martini 3, we conclude that our CG model accurately
represents both the axial and radial degree of freedom within a bundle of aligned PPEs.

3.3.6 Structural Organization in PPE Bulk Systems

Wenext moved from finite PPE systems to amid-size bulk systemwith full periodicity of the
polymermaterial and absence of a solvent. The system sizewas chosen such that simulations
at the atomistic scale are still feasible, and comprised 300 chains of 4 monomers each. To
describe the structural organization within such a PPE network, we focused on properties at
both the macroscopic and microscopic length scales, namely global packing by measuring
the densities and local packing by short-range structural parameters. First, we evaluated
the bulk densities from CG with AA simulations and obtained a bulk density of ρAA =

1092 kgm−3 and ρCG = 1098 kgm−3 for the AA and CG models, respectively (Fig. 3.3D).
This agreement is satisfying and suggests that the CG model largely reproduces the inter-
PPE distances. It is worth noting that experimental densities for solid-state PPEs, between
997 kgm−3 and 1118 kgm−3, obtained from X-ray powder diffraction, depend strongly on
the side-chain concentration, and are not suited for validation [69, 185].

On the microscopic scale, we characterized the local organization within the bulk system
by computing the radial distribution function (RDF) for the previously mentioned PPE net-
work. Figure 3.7 shows a snapshot of the PPE bulk obtained from an AA system (left) and
from a backmapped CG one (right,A) with their respective RDFs (B-D). For direct compar-
ison, we mapped the AA and CG trajectory to a one-bead-per aromatic ring resolution (B),
a one-bead-per triple bond resolution (C) as well as a one-bead-per aromatic ring and triple
bond resolution (D). Next, we computed the RDF for the mapped trajectories to analyze
the packing of 300 PPEs. Due to the symmetry along the backbone, the RDF between the
triple bonds (B) and the one between the aromatic and the ethynylene groups (C) are very
similar. Specifically, the RDF of the one-bead-per aromatic ring mapped AA trajectory ex-
hibits a first peak around 0.57 nm, a minimum at 0.73 nm, and a second and third peak at
0.92 nm and 1.13 nm, respectively. Hence, the PPE assembly, obtained from AA simula-
tions, possesses a high degree of local order as shown in the right panel of Fig. 3.7A. The
RDF computed from the same mapped Martini 3 trajectory exhibits a first peak at 0.58 nm,
in close agreement with the AA force field. Its second maximum at 0.74 nm is broader and
covers the second and third peaks of the RDF from the mapped AA trajectory.
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Figure 3.7. Packing in mid-size bulk systems of PPEs. A Snapshot of the AA trajectory
indicates a high degree of local order (left). Backmapping from coarse- to fine-grained
resolution reveals a decrease in order (right). B-D Comparing the RDF from mapped AA
and CG simulations using a one-bead-per aromatic ring (B), one-bear-per triple bond (C)
and one-bead-per aromatic ring and triple bond resolution (D). Independent of the mapping
scheme, Martini 3 simulations exhibit a less distinct pattern with lower order compared to
mapped AA ones. However, local ordering of the nearest neighboring chains, given by the
RDF’s first two maxima, is captured by Martini 3.

Thus, the Martini 3 model broadly shows a similar packing geometry also at such larger
distances. As expected and as also seen for finite bundles (Fig. 3.6), it is evident that the
PPE assembly obtained on the CG scale is less locally ordered (Fig. 3.7A, left). For this
reason, the CG model for PPEs did not resolve features beyond the second peak, which
is independent on the applied mapping scheme. Still, overall, the packing of the first and
second neighbors, i.e., the first and second peaks in the RDF, is captured by Martini 3.

3.3.7 Nematic Alignment in large Bulk Systems

TheMartin 3model now opens the route towards analyzing PPE assemblies at a larger length
and time scale. We set out to construct simulation systems of 300 to 800 chains, with 20

to 60 monomers, resulting in box sizes of 10 × 10 × 10 nm3 to 20 × 20 × 20 nm3. In the
largest bulk system mentioned here, around 200, 000 CG beads represent roughly 600, 000

atoms, and have been simulated for about 5µs. It is important to note that these spatial and
temporal scales are already difficult to assess at all-atom level of resolution.
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Figure 3.8. Alignment in large-scale PPE bulk systems. A-C Snapshots for bulks of 500
PPEs before A and after B annealing or 500 PS C with lengths of 20, 40 or 60 monomers.
D-F Comparing the NCF for each bulk system with various number of monomers NM and
polymers NP . Global ordering of PPEs decreases with increasing polymer chain length.
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Fig. 3.8A shows snapshots for a bulk containing 500 PPEs of 20, 40 and 60 monomers
each. It is evident that short-chains mostly align in parallel, while this alignment is lost
across larger distances when the chain length grows. To quantify this nanometer-scale chain-
alignment, we calculated the nematic correlation function (NCF). The NCF describes the
decay in structural order with increasing radial distance from a reference monomer (eq. 3.4).
The lower limit of the NCF (with 0.5) defines randomly oriented polymers, and the upper
limit (with 1.0) parallel oriented ones. Fig. 3.8D shows the NCF analysis for various chain
lengths ranging from 20 to 60monomers. We computed the average and standard deviation
for the NCF from 8 replicas. The averaged NCF increases sharply at the beginning and
decreases with increasing distance until the curve asymptotically approaches the lower limit
of 0.5. As reflected by the standard deviations, the variations in structural order reached after
independent assembly simulations varied strongly for a given chain length and system size,
as the ordering extends across length scales comparable to the system sizes.

Notwithstanding these fluctuations, the extensive sampling aided by the efficientMartini
model allowed us to reveal significant differences when modifying the PPE chain length.
Most importantly, we observe a steady decrease in ordering with increasing polymer chain
length, across the whole range of radial distances. PPEs with a chain length in the range of
their persistence length (20 monomers) show a higher degree of alignment in comparison
to longer-chain PPEs (40 or 60 monomers). The latter are less parallel and rather assemble
through entanglement as opposed to alignment. In this case, parallel alignment is maintained
on a length scale of up to ∼ 5 nm, beyond which a nano-domain forms comprising PPE
chains aligned along a different direction. The decrease in alignment with increase in chain
length can be attributed to the competition between entropic and enthalpic effects. The
influence of the entropic effects on the polymer dynamics increases with the polymer length,
thus long-chain PPEs exhibit a random coil-like behaviour with less ordering.

To exclude effects from the limited system size, we also examined the influence of the
number of polymer chains on the NCF (Fig. 3.8D, lighter colors). We compared networks
consisting of 300, 500 and 800 chains (e.g. system sizes of 12.1× 12.1× 12.1 nm3, 14.3×
14.3× 14.3 nm3 and 16.9× 16.9× 16.9 nm3 for a 40monomers long chain), and found that
the alignment of PPEs within a bulk system is constant with increasing number of polymers,
and hence independent of the box size. Starting from the equilibrated bulk structures, we
confirmed our observation regarding the decrease in order with increasing chain length and
distance through annealing simulations of PPE networks (Fig. 3.8B,E). Here, we observe
an overall very high degree of order across different chain lengths, and independent of the
box size. To put our observations for semi-flexible PPEs into perspective, we constructed
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bulk systems of flexible PS containing 300 and 500 chains with 20, 40 and 60 monomers
each to characterize their chain alignment with the NCF (Fig. 3.8C,F). Specifically, PS bulk
systems show an overall very low degree of structural order with a NCF below 0.6, this
indicates random oriented chains with no preferred direction of alignment, in contrast to
semi-flexible PPEs, showing chain length dependent ordering.

Taken together, these results show a decay in nematic alignment of PPE chains on the
nanometer length scale, resulting in the formation of nano-crystalline domains. The loss of
interchain alignment is more pronounced for long-chain PPEs which form nano-domains on
the ∼ 5 nm scale, independent from the system size. Longer chains show more chain fluc-
tuations and thus entanglement, which prevents the preferred interchain alignment observed
for PPEs with shorter chain lengths, i.e., lengths in the range of their persistence length.

3.3.8 Nematic Alignment in large Bulk Systems under Shear

We extended our CG-MD simulations to non-equilibrium conditions by performing shear-
ing simulations of large bulk systems containing thousands of PPEs, consisting of 20, 60 or
120 monomers each, to monitor the shear-induced structural changes, to analyze the force
concentration within the network and to predict bond rupture events. For each system, we
ensured that the characteristic box length is longer than the contour of the polymerLC > L0

to exclude periodic boundary effects. Hence, the largest bulk system probed here comprised
around 12million CG beads (25, 000 PPEs with 120monomers each), i.e., far beyond the ca-
pabilities of AA simulations. Note that shearing simulations were performed with the GRO-
MACS 2023 developer version fc221d406a1in the NVT ensemble, since the Lee-Edwards
boundary condition (see section 2.1.6) was not yet implemented for NpT conditions. Thus,
we recommend to interpret the following results with caution, although, shearing simula-
tions from the literature have been performed under NVT conditions before [186, 187].

We constructed PPE bulk systems composed of chains with 20, 60 and 120 monomers
and applied shear rates of γ̇ = 0.01 ns−1, γ̇ = 0.1 ns−1 and γ̇ = 1.0 ns−1 to drive the system
out-of-equilibrium. Fig. 3.9A shows snapshots of the sheared polymer networks composed
of 1, 500; 11, 000 or 25, 000 chains consisting of 20, 60 or 120 monomers, respectively, at
a shear rate of γ̇ = 1.0 ns−1. It is obvious that, at such a high shear rate, short chains (20
monomers) mostly align parallel to the imposed shear flow, while this alignment is partly
lost for networks of intermediate (60 monomers) or long (120 monomers) semi-flexible
polymers, instead, suggesting the formation of shear bands parallel to the flow direction.

1Issue #4607 from GitLab repository of GROMACS 2023 processed by Berk Hess (06.10.2022) [82].
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Figure 3.9. Large-scale PPE bulk systems under shear-flow. A Snapshots of bulk sys-
tems composed of 1, 500; 11, 000 or 25, 000 PPEs at an imposed shear rate of γ̇ = 1.0 ns−1

(left to right). B Particles’ velocity profile vx(y) for networks composed of PPEs of length 20
(blue), 60 (orange) and 120 (green) monomers at shear rates of γ̇ = 1.0 ns−1, γ̇ = 0.1 ns−1

and γ̇ = 0.01 ns−1 (left to right). C NCF profile for each bulk system at the starting config-
uration (dashed) and under shear (solid). Nematic alignment increases with shear rate and
drops sharply at the interface between shear bands.

To show the formation of shear banding, we calculated the velocity profile of each bulk
system by binning the x-component of the instantaneous particle velocities vi,x orthogonal
to the shear in y-direction vi,x(y). We further normalized vi,x to the imposed deformation
velocity vD,x to obtain a non-dimensional velocity profile, and thereby enable the compari-
son across different shear rates. Of note, a velocity profile with a linear shape represents a
homogeneous deformation with a constant shear rate, however, a non-linear velocity profile
suggests the formation of shear bands with different shear rates [188, 189].
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Fig. 3.9B presents the velocity profiles for bulk systems composed of 20 (blue), 60 (or-
ange) and 120 (green) monomers-long PPEs and the analytical solution vx(y) = γ̇ ·y (gray)
according to eq. 2.20 (see section 2.1.6). We observed a tendency for networks of short-
and long-chain PPEs to develop a linear velocity profile at high and low shear rates, re-
spectively. In contrast, networks comprising PPEs beyond 20 monomers reveal non-linear
velocity profiles at an intermediate and high imposed shear rate combined with the forma-
tion of shear bands, resulting in extreme shear rates in the fast band. Most importantly, shear
rates of bulk systems composed of intermediate- (60 monomers) and long-chain PPEs (120
monomers) are two to three and three to four times higher, respectively, than the imposed
one. As reflected by the spread of the velocity profile, small scale motions of particles due
to thermal fluctuations are mostly seen at medium and low imposed shear rates across all
chain lengths, although, this effect decreases with increasing chain length of PPEs.

In order to combine the shear-induced strand alignment with the non-linear velocity pro-
files of the bulk systems, we extended the NCF towards shearing simulations by projecting
the particles’ velocities onto the axis orthogonal to the shear-flow (eq. 3.5), such that a NCF
profile with an upper limit for parallel chains (with 1.0) and a lower limit for random ori-
ented ones (with 0.75) is obtained (Fig. 3.9C). Note that the NCF profile of each starting
configuration is shown (dashed) to emphasize the increase in nematic order upon shearing.

The NCF profiles show differences in alignment depending on the polymer length and
shear rate. While bulk networks composed of short-chain PPEs (20 monomers) mostly
align in parallel, independent of the shear rate, the nematic order of bulk systems containing
intermediate- and long-chain PPEs increases with shear rate. Particularly, at the interface
between the fast (high shear rate) and slow band (low shear rate), the nematic alignment in
bulk systems of intermediate- (orange) and long-chain PPEs (green) rises by nearly 50% for
the high (left) and by 25% for the intermediate imposed shear rate (center).

More precisely, as the imposed shear rate increases from 0.1 ns−1 to 1.0 ns−1, the chain
alignment in each shear band decreases, due to the presence of small scale thermal fluctua-
tions at medium imposed shear rates, as evident from the velocity profile. Such fluctuations
enable the disentanglement of semi-flexible PPEs in highly entangled networks. However,
at the lowest imposed shear rate, we observed a linear velocity profile for bulk systems com-
posed of long-chain PPEs with a very low degree of order, suggesting a highly entangled
network, that is purely dominated by entropic effects.
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Taken together, the non-equilibrium dynamics of entangled PPE networks, i.e., com-
posed of chains beyond 20 monomers, can be attributed to a competition between entropic
and enthalpic effects. The dynamics of networks comprising intermediate- and long-chain
PPEs, i.e., usually driven by entropic effects under equilibrium (see section 3.3.7), is altered
due to the imposed shear-flow, that represents an external force stretching the polymers.
This shear-force favours the enthalpic contribution of the Hamiltonian, restricts the con-
formational space of PPEs and induces strand alignment. Conversely, in bulk systems of
long-chain PPEs, excessive shear rates suppress thermal fluctuations orthogonal to the flow
in y-direction, thereby preventing chain-disentanglement across the whole system and fos-
tering the formation of shear bands with extreme shear rates in the fast band.

3.3.9 Rupture Forces in large Bulk Systems under Shear

We now turn towards the force distribution analysis within the semi-flexible PPE networks
under shear. For this purpose, we combined intermonomer distances with an effective force
constant of kb

eff =
(
k−1
BT + k−1

B + k−1
BT

)−1, where kB is the force constant between two tri-
angle beads and kBT the one between triple bond and adjacent triangle bead (Tab. 3.2), to
estimate the rupture force between adjacent segments. Due to the constraints, mimicking the
rigidity of the aromatic ring, we obtained an effective force constant of 4, 500 kJmol−1 nm−2,
assuming k−1

B → 0. This effective force constant is used to estimate the pairwise rupture
forces between two monomers i and j with F r

ij = kb
eff (rij − r0ij). It is worth noting that the

reference intermonomer distance of each bulk system was determined from the respective
starting configuration and set to 0.6925 nm as well as 0.6934 nm for networks comprising
short- and intermediate- as well as long-chain PPEs, respectively.

Fig. 3.10A shows the rupture force profile of each bulk system under shear, obtained
by projecting pairwise forces onto the axis orthogonal to the flow in y-direction. Specifi-
cally, we first calculated pairwise forces between monomers of individual chains, binned
them according to their y-position and defined the bin-wise rupture force as the maximum
pairwise force. Finally, for each bin, we determined both average and standard deviation of
the maximum rupture forces over time. It is evident, that, independent of the shear rates ap-
plied here, rupture forces within bulk systems of intermediate and long semi-flexible PPEs
are overall higher than those of shorter chains.

Specifically, at the lowest shear rate of 0.01 ns−1 rupture forces are constant and uni-
formly distributed over the bulk network. However, this uniform distribution is lost at higher
shear rates, where non-linear rupture force profiles arise, that coincide with the velocity and
NCF profiles from section 3.3.8 (Fig. 3.9B-C). Most importantly, rupture forces for systems
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composed of intermediate- and long-chain PPEs are elevated in the fast band, where shear
rates can be two to four times larger than the imposed ones (Fig. 3.9A). More quantitatively,
networks of intermediate and long PPEs at medium or high shear rates, exhibit rupture forces
of 570± 55 pN or 590± 55 pN and 720± 70 pN or 740± 70 pN, respectively.

A

B

Figure 3.10. upture forces in bulk systems of large-chain PPEs under shear-flow. A
Profile of pairwise rupture forces shows an increase with chain length and shear rate. BBond
rupture analysis predicts peak of time-averaged pairwise forces at the center of intermediate-
(orange) and long-chain PPEs (green) at medium and high imposed shear rates.

Due to the superior scale-bridging property of Martini 3, that is the ability to combine
non-linear mesoscopic effects, such as shear banding, with a fine-grained bond rupture anal-
ysis, we could identify a chain length dependence of the pairwise rupture forces along the
PPE backbone (Fig. 3.10B). More specifically, while bulk systems composed of short-chain
semi-flexible PPEs show a uniform distribution of rupture forces, which is independent of
the applied shear rate, bulk systems of intermediate- and long-chain PPEs show a distinct
peak, that is located at the center of the polymer at medium and high imposed shear rates.

This suggests an entropically driven bond cleavage process, meaning bond ruptures
favour polymer chains of equal length to maximize the overall conformational entropy, as
previously reported in the literature [190]. Consequently, semi-flexible polymer networks
under shear are subject to continuous bond scissions until PPE reaches the length of its per-
sistence length, where shear bands cease to exist and rupture forces are uniformly distributed
along the polymer backbone, hence no preferred bond cleavage location can be identified.
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3.4 Conclusions and Discussion

In this chapter, we have developed aMartini 3 model for the π-conjugated backbone of PPEs
whichwe validated against experimental properties for single chains and bulkmixtures, such
as the partition behaviour or interchain packing. The CG model reproduced the π-stacking
and axial displacement of polymers in a bundle as observed in AA simulations [180, 181].
With the Martini 3 model at hand, we shed light on the structural alignment of PPEs at larger
length scales. We found that the overall high nematic order is partly lost for longer chains
(Fig. 3.8D,E). In detail, the assembly of semi-flexible polymers with chain lengths in the
range of the persistence length exhibits parallel alignment across up to ∼ 6 nm.

Benefiting from the computational boost upon coarse-graining, we combined the scale-
bridging properties ofMartini 3 with the Lee-Edwards boundary condition to perform shear-
ing simulations of bulk systems containing thousands of semi-flexible PPE chains to eluci-
date their structural alignment and force distribution. We observed that above a critical shear
rate, shear band formation in highly entangled polymer networks arises with extreme shear
rates located in the fast band (Fig. 3.9). Such extreme shear rates result in highly parallel
aligned chains, which are subject to high rupture forces, eventually leading to bond ruptures,
in particular, at the center of the backbone (Fig. 3.10). Accordingly, we predict that shear
band formation and force distribution within entangled PPE networks under shear-flow is
mainly governed by the imposed shear rate, the persistence and polymer length.

It is important to note that shear banding of entangled polymer solutions was observed
experimentally by particle-tracking velocimetry [191]. Specifically, Wang et al. found
shear band formation in polybutadiene solutions using a large-amplitude oscillatory shear
method [192, 193]. Burroughs et al. used rheomicroscopy to observe shear banding in
polystyrene and polybutadiene networks during start-up Taylor-Couette flow [194, 195],
and Boukany et al. in entangled DNA solutions using a rotational rheometer [196, 197]. Of
note, Wang et al. stressed the importance of combining non-linear polymer rheology with
molecular processes to elucidate the response of chain entanglement under shear [188]. Re-
cently, Khomami et al. performed generic model-based dissipative particle dynamics sim-
ulations to propose shear-induced chain-disentanglement and stochastic chain dynamics as
key factors for shear banding (see section 1.1) [198, 199]. Expanding on this, we observed
that stochastic chain dynamics alone not suffices to explain shear banding in entangled net-
works. We further emphasize that the balance between entropic and enthalpic contributions
within supramolecular assemblies, governed by shear rate, persistence and polymer length,
might be key to the origin of this non-linear response to a shear-like deformation.
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It is thus evident, that bulk systems composed of intermediate- and long-chain PPEs
form shear bands with extreme shear rates, causing high rupture forces, preferably at the
chain backbone center, and thereby approximately halving the polymer length. Such bond
cleavages under shear continue until the length of the PPE chain is reduced to its persistence
length, that is 15 nm or roughly 20monomers, preventing shear band formation and thereby
fostering a homogeneous shear deformation. This results in a uniform distribution of rup-
ture forces along the backbone of PPEs, and thus reduces the likelihood of bond rupture
events. Beside simulations, time-varying cryo-milling experiments of PPEs were combined
with gel permeation chromatography (GPC) measurements by Maximilian Elter to show
convergence of mass distributions towards half the initial mass (Fig. 3.11).

Figure 3.11. Gel permeation chromatography of cryo-milled PPEs. GPCmeasurements
of solid-state PPEs subsequent to time-varying cryo-milling experiments at 30Hz under
liquid nitrogen2. Specifically, PPEs were exposed to mechanical stress by the cryo-mill
(right) and their mass distribution observed by GPC measurements to show convergence
towards half the initial mass (left). It is important to note that experimental measurements,
data analysis and visualization were performed and kindly provided by Maximilian Elter.

2Experimental measurements, data analysis and visualization were performed and kindly provided byMax-
imilian Elter from the group of Uwe Bunz at the Heidelberg University. (15.09.2023)
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Specifically, by comparing the time-evolution of the GPC mass distributions, we ob-
served a halving of the initial mass after either 18min, 36min or 72min of cryo-milling
time. This suggests that PPE networks under mechanical load roughly halve until a lower
chain length is reached, e.g., after 18min, below which prolonged mechanical stress, i.e.,
longer cryo-milling times, not automatically leads to shorter polymer lengths. By combining
the experiments with our Martini 3 shearing simulations, we can attribute this observation to
the fact that shear bands with extreme shear rates, leading to high rupture forces, only form
in networks of intermediate- and long-chain PPEs (Fig. 3.9). Short-chain PPE bulks, how-
ever, show a uniform distribution of rupture forces, where chemical bonds are less likely to
fail, and thus GPC mass distributions stay constant with increasing cryo-milling time.

Beside shear banding, the Martini 3 force field can be straightforwardly extended to
comprise side-chains of different chemistry (R in Fig. 3.2A) to analyze the packing of PPEs
in greater detail. In addition, backmapping the Martini 3 bulk system to fine-grained res-
olution allows an advanced analysis on different length scales depending on the required
degree of detail. For example, combining our CG model with the backmapping routines or
hybrid methods could, e.g., help understand electronic properties, conductance or excited
states in the environment found in bulk networks of semi-flexible PPEs.

In particular, combining yet unknown backmapping procedures, based on the symmetry
of the PPE backbone, with AA or quantum mechanics calculations is expected to facilitate
incorporation of bond rupture events, which are performed on the atomistic level of detail,
into coarse-grained modeling. Alternatively, extending hybrid simulations methods, such as
Kinetic Monte Carlo/ Molecular Dynamics (KIMMDY) [200], to the Martini 3 force field
could be the way to bridge the atomistic scale by the usage of bond dissociation energies
from quantum mechanics calculations. However, this poses quiet some challenges, among
others, transferring rupture forces to CG resolution, handling bond ruptures inside beads and
developing an automated mapping and bead type selection scheme for divers breakages.

Notwithstanding these rather technical challenges, non-linear rheological experiments of
entangled PPE networks might complement our findings concerning shear band formation,
and jointly guide our efforts in 3D printing such highly conjugated polymers with tuneable
electronic and mechanical properties.
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4 Structure Generation of Collagen
Microfibrils with ColBuilder2

This chapter is concerned with the structure generation of collagen microfibrils within the
size range of its molecule. An overview of collagen’s hierarchical structure is given, be-
fore presenting the lattice-based optimization scheme to generate collagen microfibrils of
different crosslink densities with ColBuilder2. This project was performed in collaboration
with Benedikt Rennekamp from our group and Jaewoon Jung from the Riken Center for
Computational Science in Kobe. Note that all-atom simulations of the collagen microfibrils
were performed by Jung using the GENESIS molecular dynamics engine on the Fugaku
supercomputer, while the simulation setup was developed jointly with Rennekamp.

4.1 Introduction

As outlined in chapter 1, collagen type I is an important protein in the human body, that,
among others, transmits forces, provides structural integrity and renders our tissue mechan-
ically by bearing high mechanical loads. Due to these exceptional requirements, collagen
features a hierarchical structure from the atomic- to the mesoscale (Fig. 4.1) [10]. Collagen
is a structural protein rich in glycine (GLY), proline and hydroxyproline with a common
GLY-X-Y repetition unit, where X and Y are two random amino acids. Around 340 of such
amino acids segments form a single collagen strand that further assembles, together with two
more strands, into the collagen triple helix. Hence, the collagen molecule consists of three
right-handed helices, specifically two α1 helices and one α2 helix, with all GLY residues
pointing towards the inner core [10]. The collagen molecule extends up to 300 nm in length
with 1.5 nm in diameter and is the building block or unit cell of the microfibril.

On a larger scale, many of these building blocks form an intertwinedmicrofibrillar struc-
ture of triple helices exhibiting the 67 nm wide pattern of gap and overlap regions [73, 201].
At the interface between gap and overlap, two triple helices are enzymatically crosslinked.
The type of crosslink influences the mechanical response of the collagen microfibril and
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also changes under mechanical load. More precisely, the divalent (pre-mature) crosslink
connects two lysine side-chains from different collagen molecules, and further reacts to a
trivalent (mature) crosslink linking three side-chains of the two separate triple helices [10].

Fiber

Fibrils Triple helices
Helical strand

Amino acids

300 nm

67 nm

Gap Overlap

Figure 4.1. Hierarchical structure of collagen. The collagen triple helix consists of three
strands, each with around 340 GLY-X-Y segments, where X,Y are mostly proline and hy-
droxyproline. Many collagen molecules (triple helices) assemble into a higher-order struc-
ture with a periodic pattern, i.e., the 67 nm-long D-band with gap and overlap region. Cryo-
genic electron microscopy image of a collagen microfibril from rat tail tendon was kindly
provided by Aysecan Ünal1. The D-band pattern is clearly visible. Of note, the artwork of
collagen’s hierarchical structure (left) was provided byAgnieszkaObarska-Kosinska2 [202].

Up to now, our atomistic models for the collagen fibril were limited to one D-band of
67 nm, or one gap and overlap region, and we are not aware of any larger atomistic models
of collagen that have been investigated so far [203]. Hence, many of the long triple helices
are only crosslinked at one end, but not connected to other triple helices. Accordingly, we
have not yet been able to simulate the full mechanical interplay in the network of fibrils.
In addition, we only used one type of crosslink, namely the divalent one, however, since
the mechanical response critically depends on the type of crosslinking of individual strands
within the microfibrillar structure, we developed a workflow for the generation of 300 nm-
long microfibrillar divalent or trivalent crosslinked collagen structures, named ColBuilder2.
For this purpose, we combined the crystal contacts tool from UCSF Chimera with a struc-
tural optimization algorithm on a Bravais lattice to automatize the generation of microfibrils

1Modified by Agnieszka Obarska-Kosinska former group member of Frauke Gräter.
2Image was taken by Aysecan Ünal group member of Frauke Gräter at Heidelberg University.
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with arbitrary packing and shape, such as fibrillar length and diameter [204].
In addition, we realized further specifications, like the ratio of divalent to trivalent

crosslinks or the introduction of random crosslink mutations, i.e., replacing randomly se-
lected crosslinks with Lysine residues. Together with Jung from Riken, we performed pre-
liminary AA simulations on Fugaku to validate the structural stability and to determine the
influence of crosslinking on the mechanical response of the collagen microfibril.

4.2 Methods

The coordinate file for a single collagen type I triple helix was downloaded from the Col-
Builder webserver (https://colbuilder.h-its.org), containing atomic positions, atom types and
amino acid residues, and the crystal symmetry information about the unit cell. The crystal
contacts tool from Chimera was used to generate copies of this unit cell, translate them ac-
cording to the symmetry information and delete overlapping copies to obtain a higher-order
crystal structure of collagen [204]. For optimization purposes, the structure was mapped on
a Bravais lattice and optimized regarding structural homogeneity and crosslink connectivity.

4.2.1 Higher-Order Crystal Structure

To generate a higher-order crystal structure from a single coordinate file, the crystal contacts
command fromChimera was applied [204]. The coordinate file of the collagenmolecule and
the desired contact distance were provided. The crystal contacts command read the crystal
information from the coordinate file, more precisely the lattice parameters a, b, c, α, β, γ and
space group GSP , to define the unit cell of the molecule. Next, many symmetry copies of
this unit cell were generated and positioned in the surrounding environment, each copy with
an Euclidean transformation matrix T = (R, t) given by a rotationalR and translational t
contribution. Clashes between overlapping atoms i and j with Van-der-Waals radii rw,i and
rw,j from different symmetry copies were identified according to [204],

ζij = rw,i + rw,j − rij −∆ij, (4.1)

where ζij denotes the overlap between two atoms, rij = |ri−rj| is the interatomic distance
and∆ij a buffer set to 0.0 nm. Symmetry copies with ζij ≥ −0.04 nm were marked as close
contacts and removed from the resulting higher-order structure. We obtained a coordinate
file of the higher-order collagen structure and the transformation matrixT of each symmetry
copy, enabling refinement of the unit cell arrangement on a discrete Bravais lattice.
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4.2.2 Bravais Lattice

The Bravais lattice is an abstract concept to map higher-order structures in Cartesian coor-
dinate space R3 on a lattice of infinite discrete points Z3. The unit cell of each symmetry
copy is represented as a single point on a Bravais lattice. Higher-order crystal structures
comprising many unit cells are collapsed into a set of integer points forming a well-defined
geometrical arrangement. Therefore, the crystal orientation matrixC was derived from the
lattice parameters to link the unit cells in the Cartesian coordinate space to points on the Bra-
vais lattice, and vice versa. For example, the crystal orientation matrixC = (cij)(i,j)=(x,y,z)

for a triclinic unit cell with space group 1, cell lengths a, b, c and angles α, β, γ reads [205],

C =


a b · cos γ c · cos β
0 b · sin γ c ·

(
cosα− cosβ·cos γ

sin γ

)
0 0

√
c2 − c2xz − c2yz

 , (4.2)

where the crystal orientation matrix C for the triclinic unit cell is an upper-triangle matrix
with all elements below the main diagonal set to zero. Accordingly, a symmetry copy of a
unit cell, translated by t from its origin in the Cartesian coordinate space, was mapped to a
single point p on a Bravais lattice with eq. 4.3, and backmapped with eq. 4.4:

p = C−1t, (4.3)

t = Cp. (4.4)

4.2.3 All-Atom Simulation Protocol

While the ColBuilder2 framework primarily serves to generate large collagen microfibrils
with various sizes and crosslink configurations at theMartini 3 CG level (see next chapter 5),
we also performed all-atom (AA) molecular dynamics (MD) simulations to validate their
stability and force-extension behaviour with experiments from the literature. We built the
topology of the collagen microfibril with GROMACS 2023 by combining the Amber99sb*-
ildnp force field from the ColBuilder webportal with the pdb2gmx tool from GROMACS,
using ColBuilder2 [82, 203]. Next, we energy minimized the collagen microfibril in a
32 × 32 × 455 nm3 box of vacuum, added TIP3P water molecules, neutralized the system
with counter ions and energy minimized the system once more. Since the solvated microfib-
rillar system contained around 43million atoms, we relied on the Fugaku supercomputer to
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perform AA simulations under force within a reasonable time. As a consequence of this,
all subsequent simulations in equilibrium and under force were performed by Jung using
the MD engine GENESIS on Fugaku, the second fastest supercomputer in the world. In the
following, we outline the steps performed for preparing the solvated collagen microfibril for
MD simulations under force. For a more detailed explanation of electrostatics, thermostats
and barostats in GENESIS, we refer to the publication by Jung et al. [81].

To obtain a solvated collagenmicrofibril under isothermal-isobaric conditions, Jung first
gradually increased the temperature from 0 to 300Kwithin 10 ns, and maintained the system
for another 10 ns at the target temperature using a velocity rescaling type of coupling [81].
Next, Jung applied the Martyna-Tobias-Klein barostat to keep the pressure at 1 bar, with a
0.2 ps time constant (see section 2.1.5). Then, the time increment was gradually increased
during the NpT equilibration from 0.5 fs to 2 fs over a total simulation time of 20 ns. More
precisely, Jung started with a 500 ps NpT simulation with a 0.5 fs time step, followed by
500 ps with 1 fs, and ended with a 19 ns-long simulation with the commonly used 2 fs time
step. During all equilibration simulations, backbone atoms were position-restrained with a
force constant of 1000 kJmol−1 nm−2. Finally, we obtained an equilibrated system for each
collagen microfibril, i.e., the pure trivalent, mixed divalent-trivalent and partly trivalent
crosslinked microfibril, under isothermal-isobaric conditions.

To simulate the non-equilibrium behaviour of each collagen microfibril and moreover
validate the structural stability under an external force, we applied a multi-step constant
force simulation setup to arrive at the target pulling force of 1 nN per strand. Specifically,
Jung performed five successive MD simulations under constant force, gradually increasing
the force from 0 to the target value using an increment of 200 pN. Within 10 ns simula-
tion time, we reached our target force of 1 nN per strand. Jung continued the simulations
under force for each type of crosslinked collagen microfibril for another 250 ns to ensure
full connectivity and stability. Finally, we calculated the axial distance between adjacent
crosslink layers, each located at the gap-overlap transition along the microfibril, to analyze
the mechanical response of differently crosslinked collagen microfibrils on the mesoscale.
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4.3 Results

The modeling of the collagen microfibril was based on optimizing the higher-order structure
from the crystal contacts tool with a refinement step performed on a Bravais lattice. For
this reason, we mapped the entire structure to a set of points on a Bravais lattice, identified
crosslinked molecules and performed an optimization procedure. In detail, we added extra
points on the lattice, backmapped them to Cartesian coordinates (eq. 4.4) and translated
the crosslinks to identify crosslinked molecules. Finally, an optimized structure of a fully
crosslinked collagenmicrofibril was obtained to be used for production runMD simulations.

4.3.1 Collagen Microfibril on a Bravais Lattice

The atomistic model for the collagen microfibril consists of several symmetry copies of the
same collagen triple helix from ColBuilder, aligned in a well-defined manner reflecting its
crystal structure. The coordinate file defines each collagen triple helix as a set of atoms
A = {a1, ..., aN} at certain positionsQ = (q1, ..., qN) together with the crystal information
of the unit cell u given by its lattice parameters a, b, c, α, β, γ, space groupGSP and crystal
orientation matrix C (eq. 4.2). By applying the crystal contacts tool, a symmetry copy of
the unit cell u′ was positioned in direct proximity of the initial unit cell u by first generating
a new set of atoms A′ = A and transforming them according to [205]:

T (qi) = Rqi + t, (4.5)

where T is a Euclidean transformation of qi with i = 1, .., N , R the rotation matrix with
det (R) = 1 and t the translation vector of the origin. Each atom of the new set of atoms
A′ was thus translated by the same vector t, such that a translated symmetry copy of the
collagen triple helix with positionsQ′ = (q′

1, ..., q
′
N) and q′

i = T (qi) is obtained. Of note,
per definition the initial unit cell u is located at the origin of the coordinate system.

On a Bravais lattice with dimensions (nx, ny, nz) ∈ Z3, this setup is represented by
two points p and p′, one for the unit cell of the collagen triple helix u at the lattice origin
and one for its symmetry copy u′. According to eq. 4.3, the translated symmetry copy
u′ is mapped to the point p′ = C−1t on a Bravais lattice. Hence, a collagen microfibril
consisting ofNs symmetrical copies with unit cells u1, .., uNs , each positioned according to
the transformations T1, ..,TNs (eq. 4.5), is mapped to a set of discrete points on a Bravais
lattice p1, ..,pNs , forming a geometrical configuration, i.e., dependent on the unit cell.
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A B

Figure 4.2. Bravais lattice for the collagen microfibril. A Bravais lattice for the mi-
crofibril obtained from the crystal contacts tool with a contact distance of 6 nm. Each point
represents one collagen triple helix. A non-homogeneous distribution of points is evident
indicating a non-uniform packing in the higher-order crystal structure. B Single, pairs and
triplets of crosslinked collagen triple helices are colored in green, blue and orange.

Fig. 4.2A shows the Bravais lattice for the higher-order crystal structure of collagen
obtained from the crystal contacts tool in Chimera [204]. We combined the atomistic coor-
dinate file of Rattus norvegicus, which is based on the PDB file 3HR2 and was downloaded
from the ColBuilder webportal, with a contact distance of 6 nm to obtain a higher-order
crystal structure for the collagen microfibril [73, 203]. Note that the contact distance is
the only input parameter for the crystal contacts tool, defining the distance inside of which
symmetry copies are generated. For the structural analysis of the microfibril, we mapped
the unit cell of each collagen triple helix on a Bravais lattice (eq. 4.3) to characterize the
arrangement and distribution of the lattice points. As expected by the nature of the triclinic
crystal system, the points exhibit a centrosymmetrical pattern with an inversion center at the
lattice origin. In addition, more points are in the vicinity of the lattice origin than towards the
edges, suggesting a denser packing of collagen triple helices. Hence, the microfibril exhibits
a non-homogeneous distribution of unit cells with a looser packing towards the edges.

In addition, regarding the target application, namely performing MD simulations of a
crosslinked collagen microfibril under force, we ensured full connectivity between collagen
triple helices, preventing them from being pulled out during simulations, by an interatomic
distance analysis on the microscopic scale. We calculated intercrosslink distances between
different triple helices to identify links within the higher-order crystal structure. We de-
fined pairs and triplets of crosslinked collagen triple helices when the interatomic distance
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reached below a 0.3 nm cut-off distance. Fig. 4.2B show the Bravais lattice from A together
with a color code related to number of connections; more precisely single, pairs and triplets
of connected triple helices are colored in green, blue and orange, respectively. While the
majority of collagen triple helices are linked by either one (73%) or on both ends (18%),
the non-connected triple helices still account for about (9%). Obviously, this amount of
singles, pairs and triplets depends to a large extent on the crystal contacts input parameter,
that is the contact distance. Moreover, collagen triple helices belonging to triplets are lo-
cated at the center and the edges of the lattice only, thereby revealing that the crosslink at
each end of the biopolymer is linked to another one, and that the size of the microfibril is
within the range of the collagen triple helix. Divalently crosslinked triple helices, however,
are present over the entire length of the microfibril. Due to the non-uniform distribution of
lattice points towards the edges and the amount of non-connected triple helices, the oppor-
tunity for structural optimization arises. Specifically, we aim to achieve the most uniform
distribution of points possible through a denser molecular packing towards the lattice edges
using a computational approach for flexible and optimized structure generation.

4.3.2 Structural Optimization on a Bravais Lattice

The computational workflow for the structural optimization of the collagenmicrofibril builds
directly on the preceding ColBuilder webserver and is based on an iterative addition and
crosslinking of new collagen triple helices to already existing ones. Fig. 4.3 provides a flow
chart showing the computational workflow for ColBuilder2. The color coding relates to
external (purple) and internal process steps performed on a Bravais lattice (gray) and in the
Cartesian coordinate space (turquoise).

For algorithmic reasons, it should be noted that in the following we consider a collagen
microfibril consisting of several triple helices as a system of models with certain properties.
Accordingly, ColBuilder2 combines a model µ1 from the ColBuilder webserver with the
crystal contacts tool to generate a system of models µ = (µ1, ...µM), each with individual
properties. Each model µi contains information about its crosslinks Ac

i ⊂ Ai, Euclidean
transformation Ti (eq. 4.5) and Bravais lattice point pi. Both crosslinks at the telopeptide
region of the triple helix are further characterized by their types, such as divalent or trivalent,
residue id and name, atomic positions Qc

i = (qc
i,1, ..., q

c
i,K) in Cartesian coordinates, state

of mutation and their potential contacts to any other model µj with µj ∈ µ ∧ µj ̸= µi. As a
reminder, a contact between models µi and µj is established once the interatomic distance
dk,l(q

c
i,k, q

c
j,l) between pairs of atoms aci,k and acj,l with positions qc

i,k and qc
j,l is below 0.3 nm.
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Figure 4.3. Flow chart for ColBuilder2. Steps performed on a Bravais lattice (gray) and in
Cartesian coordinate space (turquoise) to optimize the structure of the collagen microfibril.
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A system thus emerges from an ensemble of models, with their individual properties
mapping the collagen microfibril as a whole on a Bravais lattice, as a starting point for the
structural optimization procedure. Next, we calculated all intercrosslink distances to identify
connected models and checked the optimize decision in Fig. 4.3. The optimization step aims
to maximize the molecular packing within the collagen microfibril under the condition of
fully crosslinked collagen triple helices.

A BPz,opt p′ ∈ Pz,opt

lz ∈ lz

Figure 4.4. Structural optimization of the collagen microfibril on a Bravais lattice. A
Structural optimization by selecting a layer (green), spanning a solution space (red), drawing
a random point (purple) and identifying crosslinked molecules. B The optimized Bravais
lattice for the collagen microfibril is centrosymmetric with a uniform point distribution.

We started with defining the solution space of the structural optimization procedure by
δ = (δx, δy, δz) to restrict an infinite set of possible solutions to a finite one. We used
the δz restriction to select the number of nx,ny-layers, counted from both edges in the nz-
dimension. For example, δz = 2 binds the solution space to points in the upper and lower
two layers lz = {nz,min + δz, nz,min + δz − 1, nz,max − δz, nz,max − δz + 1} (Fig. 4.4A).

Each nx,ny-layer at a fixed position lz ∈ lz contains a set of points Pz = (pi,x,pi,y, lz),
with i = 1, ..., Nz (green). From this layer, we determined the extreme values in the nx,ny-
dimensions given by nx,min and nx,max or ny,min and ny,max, respectively. By combining
these extreme values with the solution space restrictions δx and δy, we defined two more
vectors lx = {nx,min − δx, ..., nx,max + δx} and ly = {ny,min − δy, ..., ny,max + δy} to
span a rectangular plane of discrete points Pz,rec = (lx, ly, lz). By subtracting the already
existing points Pz from Pz,rec, we derived a set of points Pz,opt = Pz \ Pz,rec representing
the solution space for layer lz of the structural optimization problem (Fig. 4.4A, red).

From this solution space, we drew a random point p′ ∈ Pz,opt, mapped this point to
the Cartesian coordinate space with eq. 4.4 to obtain the transformation matrix T ′ with its
translation vector t′. In the Cartesian coordinate space, the model at the origin µ1 is selected
and its crosslink positionsQc

1 are translated by t′ to a new locationQc′
1 (eq. 4.5).
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Next, we calculated the intercrosslink distances between the potential model µ′ and the
already existing ones µ to identify contacts between crosslinks according to our predefined
criteria. If the intercrosslink distance was above the 0.3 nm cutoff, the model µ′ was ne-
glected and on the other hand, if the contact criteria was fulfilled, the model was added to
the system with µM+1 = µ′. In both cases, we subtracted the point p′ from the solution
space Pz,opt = Pz,opt \ p′, before the next point was drawn and the procedure started again.

Once the solution space of a certain (lx, ly, lz)-layer was empty Pz,opt = ∅, we updated
the set of optimization layers l′z ∈ lz \ lz and selected the next (lx, ly, l′z)-layer with l′z ∈ l′z

to perform the same optimization steps as before. This procedure was repeated until the
set of layers was empty lz = ∅, and therefore an optimized system of models µ′, as well
as their transformation matrices T ′ were determined. The latter was combined with the
matrixset command in Chimera to generate an optimized atomistic structure of the collagen
microfibril. Finally, we post-processed the fibril by cutting each triple helix to a length of
around 335 nm, and capping both termini with neutral Acetyl (ACE) or N-Methyl (NME)
residues to enable the generation of topology files for MD simulations.

Before proceeding with a more detailed examination of the crosslinked microfibrils, it
is worth mentioning that we performed the structural optimization of the collagen microfib-
ril, used for the AA simulations, manually, since the optimization algorithm, as shown in
Fig. 4.3, was developed afterwards. However, a direct comparison of the manually opti-
mized lattice from Fig. 4.5A with the optimized one from ColBuilder2 Fig. 4.4B reveals
only slight differences, so that they can be regarded as equivalent. Obviously, by choosing
another solution space for the optimization problem δ, such as taking up to the fourth layer in
the nz-dimension into account δz = 4, a Bravais lattice with a slightly different geometrical
arrangement of points is obtained, in particular, for layers closer to the lattice origin.

4.3.3 Crosslink Specification for Collagen Microfibrils

The microfibril comprises many collagen molecules that are linked through covalent bonds
formed in the telopeptide region at both ends of the triple helix. Such intermolecular crosslinks
are the product of an enzyme-catalyzed reaction between two or three strands of two different
collagen triple helices [10]. Due to the large variety of divalent and trivalent crosslinks, we
focused on the divalent keto-amine crosslink, i.e., hydroxylysine-keto-norleucine (HLKNL),
and its mature-trivalent form, i.e., hydroxylysyl-pyridinoline (PYD), although, any other
type is equally suitable for structure generation with ColBuilder2 [203]. Note that a more
in-depth analysis of these two crosslink types is provided later in section 5.3.1 of this thesis.
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The crosslink specification for collagenmicrofibrils, generatedwith ColBuilder2, is pos-
sible by either mixing interconnected collagen triple helices with different crosslink types,
or by introducing random mutations to crosslinks within the microfibril, that means re-
placing a randomly chosen crosslink with a Lysine residue. Therefore, in both cases the
crosslink density is altered, affecting the mechanical response of the microfibril both on
the macroscopic and microscopic scale. For the mixed crosslinked fibrils, we extended the
ColBuilder2 workflow by first generating the whole microfibril for each crosslink type, and
second mixing differently crosslinked triple helices together in a random way. By provid-
ing crosslink type and ratio within the collagen microfibril as input to ColBuilder2, pairs
and triplets of connected triple helices with certain crosslink types are selected randomly to
generate a microfibril comprising various crosslinked molecules.

We further introduced random crosslink mutations within the microfibril to reduce the
amount of total crosslinks formed. As input amutation rate is required, that is, the proportion
of mutated crosslinks within the fibril. Mutations were performed randomly by calling the
swapaa command from Chimera, however, are subject to an external constraint [204]. To
maintain full connectivity of crosslinked collagen molecules and prevent strands from being
pulled out during AA simulations under force, it is important that at least one of the two
crosslinks is present in each telopeptide region to form a covalent bond with its matching
counterpart. For this reason, we introduced a crosslink specificmutation state for eachmodel
that suppressed undesiredmutations to prevent mutation rates above 50% (see section 4.3.2).

A B

Figure 4.5. Microfibrillar collagen structures for MD simulations. A Bravais lattice of
the collagen microfibril used for AA simulations. This lattice was optimized manually using
the add-connect principle as explained above, since the automatisation of ColBuilder2 was
developed afterwards. B Collagen microfibril with crosslink cross-section for three setups,
namely a pure trivalent (red, above), mix divalent (green) and trivalent (red, center) or partly
mutated trivalent (red, below) crosslinked microfibril.
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Fig. 4.5B shows the structure of the collagen microfibril, generated based on the Bravais
lattice fromA, with three different kinds of crosslink setups, namely a pure trivalent (above),
a mixed divalent-trivalent (center) and a trivalent setup with randomly mutated crosslinks
(below). The pure trivalent crosslinked microfibril consists of five overlap and gap regions
and is around 335 nm in length (see section 4.1). At the transition between gap and over-
lap, the trivalent PYD crosslink is located (red) to link adjacent triple helices. In close
proximity to the fibril, we display the cross-section of the microfibril with equally spaced
crosslinks forming a rounded shape. For the mixed divalent-trivalent crosslinkedmicrofibril
(center), we defined four types of crosslinked collagen molecules based on its crosslink at
each telopeptide region, namely divalent-divalent, trivalent-divalent, divalent-trivalent and
trivalent-trivalent crosslinked collagen molecules. Next, we mixed each of these in equal
proportions to generate the mixed crosslinked microfibril containing both divalent HLKNL
(green) and trivalent PYD (red) crosslinks. We also reduced the number of formed PYD
crosslinks within the pure trivalent crosslinked microfibril by randomly mutating trivalent
crosslinks to Lysine residues with an upper limit of 30%. Accordingly, the trivalent partly
mutated crosslinked microfibril consists of 70% pure PYD crosslinks, therefore features a
much lower crosslink density compared to the other two microfibrils. In particular, this is
evident when comparing cross-sections, as the mutant collagen microfibril reveals distinct
gaps in the structure that are neither present in the pure trivalent, nor in the mixed divalent-
trivalent crosslinked microfibrillar structure.

4.3.4 Collagen Microfibrils under Force

The collagen microfibrils now enable the analysis of the crosslink density on the mechanical
response of the fibril by performing AA simulations under force. Therefore, we first gener-
ated the topology files for pairs and triplets of crosslinked collagen triple helices with Col-
Builder2 by combining the information about crosslinked triple helices with the pdb2gmx
command from GROMACS. Hence, we obtained one topology per crosslinked collagen
molecules and included each into the main topology of the microfibril to speed up the topol-
ogy generation process from a couple of weeks to a few hours. Each solvated microfibrillar
system comprised around 43million atoms and, up to now, was simulated for 250 ns using
the GENESIS MD engine on the Fugaku supercomputer at the Riken institute in Kobe.

Fig 4.6 shows a snapshot of the collagen microfibril with partly mutated trivalent PYD
crosslinks under a pulling force of 1 nN per strand. It is obvious that no collagen molecule
of the microfibrillar structure is pulled out during the simulation, and that gap and overlap
regions differ in terms of molecular packing and stretching under force. While the overlap
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region consists of many parallel aligned collagen triple helices, the elongation is rather short
compared to the gap region, with more intertwined triple helices. To characterize this dif-
ference more quantitatively, we calculated the axial Euclidean distances between crosslink
layers at the gap and overlap transitions, as well as the overall end-to-end distance of the
collagen microfibril. For the former, we selected the Cα atom of each trivalent and divalent
crosslink from the α1 strand of the triple helix, and used their center-of-mass as reference
for the gap and overlap elongation along the fibrillar axis.

Figure 4.6. Collagen microfibrils under force. Mesoscopic observables from AA simu-
lations of a pure trivalent (blue), mixed divalent-trivalent (green) and partly trivalent (red)
crosslinked microfibril under force are the end-to-end (top, left), D-band lengthening (top,
right), overlap distance (bottom, left) and the ratio between the gap and overlap elongation
(bottom, right). Estimates from AA simulations are shown together with reference values
for the D-band lengthening and the gap-overlap strain ratio from experiments [206–209].
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We monitored the end-to-end distance (top, left), the D-band extension (top, right), the
elongation of the overlap region (bottom, left) and the ratio between the overlap and gap
extension (bottom, right) for each of the three differently crosslinked microfibrils (Fig. 4.6).
Each of these distance measures increases sharply when the force starts acting right at the
beginning of the simulation, before approaching a constant value asymptotically. During the
course of the AA simulation under force, the 335 nm-long microfibril extends by approx-
imately 23%, with the partly trivalent crosslinked one stretching the most with more than
409 nm (insight, red) followed by the pure trivalent (blue) or mixed crosslinked microfibril
(green) with around 408 nm. A similar trend is also observed for the D-band stretching, re-
sulting from the sum of gap and overlap region, with an elongation of 82.4 nm and 82.8 nm
for the pure trivalent and mixed divalent-trivalent as well as the partly trivalent crosslinked
microfibril, respectively. Of note, the 22% applied strain D-band elongation reproduces AA
simulations of smaller systems under force (82.5 ± 1.0 nm) and atomic force microscopy
(AFM) nanoindentation experiments from the literature (80 nm to 82.5 nm) [206–209].

In contrast, for the stretching of the overlap region, we observed a sudden increase
in extension right at the beginning from 27.9 nm to 31.3 nm, followed by a gradual de-
crease approaching a constant value of 30.3 nm and 30.7 nm for the mixed divalent-trivalent
crosslinked and the pure and partly trivalent crosslinked microfibril, respectively. Accord-
ingly, the gap region for the partly trivalent and mixed crosslinked microfibril expands from
39.7 nm to 52.1 nm followed by the extension of the pure trivalent one with 51.7 nm. Hence,
on average, we obtained an overlap-gap strain ratio of 25% to 30% (bottom, right), imply-
ing that the overlap region is roughly three-to-four times stiffer than the gap region. This
fact agrees well with AFM nanoindentation experiments from the literature reporting a 25%
to 100% increased stiffness in the overlap region compared to the gap region [208, 209].

Obviously, these mechanical properties proposed for the structural validation of the col-
lagen microfibril strongly depend on the type of collagen molecule, like achilles or rat tail
tendon, the experimental conditions, e.g., fibril humidity and surrounding temperature, and
the force or strain applied to the collagen microfibril. Notwithstanding these environmen-
tal uncertainties, our collagen microfibrillar structure largely reproduces key structural and
mechanical observables obtained from experiments reported in the literature, in particular,
the D-band lengthening and the overlap-gap strain ratio.
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4.4 Conclusions

In this chapter, we developed a computational workflow for building collagen microfib-
rils in the range of the entire molecule by combining the coordinate file of a single triple
helix and its crystal symmetry information with an optimization algorithm on a Bravais
lattice. We demonstrated the capabilities of ColBuilder2 by generating a 335 nm-long col-
lagen microfibril with different crosslink configurations, such as a pure trivalent, a mixed
divalent-trivalent and a partly mutated trivalent crosslinked microfibril. We further vali-
dated their structural stability by performing large-scale AA-MD simulations under force
using the GENESIS MD engine on the Fugaku supercomputer. As a result, we not only
found no unwinding and pulling out of collagen molecules, but also that our microfibrillar
structure largely reproduces key structural and mechanical observables from experiments,
like the D-band lengthening and the strain ratio between overlap and gap regions.

We propose to use ColBuilder2 for the generation of large collagen microfibrils for dif-
ferent species with individual shape, e.g., fibril length and diameter, and various crosslink
specifications, to analyze the triple helical packing within the microfibril together with an
experimental validation. Furthermore, combining ColBuilder2 with our Martini 3 force
field parameterisation from the next chapter 5 enables large-scale CG-MD simulations of
differently crosslinked collagen microfibrils under equilibrium conditions and under force.

Beyond ColBuilder2, we suggest to analyze pairwise forces within the collagen mi-
crofibril through force distribution analysis to identify locations of high-force concentration
and determine the influence of crosslinking on the mechanical response [84, 211]. Finally,
combining hybrid reactive MD schemes, e.g., Kinetic Monte Carlo/Molecular Dynamics
(KIMMDY), with the collagen microfibril could benefit our understanding of covalent bond
ruptures and the subsequent radical migration within the fibrillar network [200].

Overall, we demonstrated that ColBuilder2 is suitable to generate atomistic coordinate
and topology files of collagen microfibrils of arbitrary shape from different species with
various crosslink densities. ColBuilder2 can be extended to coarse-grained (CG) MD-
simulations by incorporating the Martini 3 collagen model from chapter 5 into the topol-
ogy generator. This enables CG-MD simulations of differently crosslinked collagen mi-
crofibrils, while still keeping an eye on the atomistic details to ensure, e.g., the differenti-
ation between protein backbone and crosslink beads. By screening the response of various
crosslinked collagen microfibrils to mechanical stress on longer timescales, insights into the
maturation of divalent crosslinks across different species, i.e., important for aging and var-
ious diseases, like the bruck syndrome or osteogenesis imperfecta, might be gained [212].
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5 Coarse-grained Modeling of Collagen
for Molecular Dynamics under Force

In this chapter, we focused on developing a coarse-grainedmodel for collagen using theMar-
tini 3 force field. Our coarse-grained model reproduces the helical shape and mechanical
bending stiffness of the collagen triple helix, as well as solvation properties of one divalent
(pre-mature) and trivalent (mature) crosslink. We thus present Martini 3 force field param-
eters for the collagen microfibril that are ideally suited, after some refinement of the bond
length potential, to be used in large-scale molecular dynamics simulations for predicting the
influence of crosslinking on the collagen fibrillar network under mechanical load.

5.1 Introduction

Building on the previous chapter 4, collagen-based tissue features a hierarchical higher-
order structure consisting of collagen fibers, which comprise many collagen microfibrils.
Each microfibrillar structure is further composed of collagen triple helices, which are linked
through divalent and trivalent crosslinks, e.g., hydroxylysine-keto-norleucine (HLKNL) and
hydroxylysyl-pyridinoline (PYD), respectively [213, 214]. Due to the stiff nature of the
triple helix, collagen is classified as a semi-flexible biopolymer and characterized by its
persistence length (see section 1.2) [215]. Experimental studies reported persistence lengths
ranging between 11 nm to 15 nm and 65 nm to 180 nm, depending on the experimental setup,
such as the measurement device utilized and salt concentration [74, 75, 215]. Specifically,
persistence lengths derived from electron microscopy, dynamic light scattering and rheo-
logical experiments were large compared to those obtained from atomic force microscopy
imaging and optical tweezers stretching. Notwithstanding these variations, collagen is an
outstanding protein that combines an increased backbone rigidity with a remarkable higher-
order structure to regulatemechanical signals on themicro- andmacroscale (see section 1.1).
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For this reason, computational simulation methods ranging from the atomistic to the
mesoscopic scale can be employed to obtain a more in-depth understanding of the pro-
cesses involved in collagen’s response to mechanical load. Starting from the bottom, all-
atom molecular dynamics simulations of collagen were performed for a single molecule
and a 67 nm-long fibrillar structure to study mechanical processes, like triple helical fold-
ing and stress concentration within crosslinked fibrils, respectively [216–219]. Buehler
et al. performed all-atom (AA) molecular dynamics (MD) simulations of a 84 nm-long
collagen molecule to derive a mesoscopic model of the collagen fibril in order to moni-
tor the influence of crosslinking onto the stress-strain response [76]. Vaughan et al. fur-
ther extended this model to characterize the influence of mineralization on collagen’s re-
sponse to mechanical load [220]. Although this mesoscopic model qualitatively reproduces
the strength of collagen, it lacks a clear chemical and thermodynamic distinction between
amino acid and crosslink type, and moreover it lacks the triple helical shape giving rise
to the stiff nature of the collagen molecule. Gautieri et al. developed a coarse-grained
model for the collagen triple helix, using the Martini 2 force field, by matching force-
extension curves of small peptides, such as glycine-proline, glycine-proline-hydroxyproline
and glycine-proline-hydroxyproline-glycine, to AA-MD simulations for parameterising the
bond length, bond angle and torsion angle potential, respectively [77]. Hence, there exists no
coarse-grained collagen model that considers the underlying atomistic structure of the triple
helix and enables the simulation of large crosslinked microfibrils close to AA resolution.

Here, we present a preliminary coarse-grained (CG) model for collagen based on the
Martini 3 force field to perform large-scale CG-MD simulations of collagen microfibrils
under equilibrium conditions and under force [59]. By combining a non-equidistant bond
length potential with a structure-based Gō-model, we maintained the collagen triple he-
lix and fine-tuned the mechanical bending stiffness by matching the persistence length to
AA simulations, using worm-like chain theory. We further performed non-equilibrium free
energy calculations of the divalent HLKNL and trivalent PYD crosslink to select suitable
bead types. We matched the force-stretching of a 67 nm-long collagen molecule and diva-
lent crosslinked fibril to AA simulations by iterating over the bonded terms force constants
to capture the response of the 335 nm-long microfibril to mechanical load.

Overall, our Martini 3 collagen model is expected to largely capture the force-extension
from AA simulations and to perform CG-MD simulations of large collagen microfibrils
under force. This, combined with ColBuilder2 from chapter 4, paves the way for a more
comprehensive exploration of the interplay between crosslink configuration, microfibrillar
structure and mechanical load from the microscopic to the mesoscopic scale.
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5.2 Methods

AA- and CG-MD simulations were performed using GROMACS (version 2023) [148, 221].
Moreover, the Martini 3 force field was combined with Gō-like potentials to obtain a CG
model for collagen, that is suitable for large-scale CG simulations under force [50, 59]. AA
simulations were based on two different kind of atomistic force fields. The Amber99sb*-
ildnp force field (Amber99) [222, 223] was selected to run simulations of the collagen triple
helix and 67 nm-long divalent crosslinked fibril. The Chemistry at HarvardMacromolecular
Mechanics (Charmm36) force field [224–227] was used to parameterise the divalent and
trivalent crosslink through non-equilibrium MD-based free energy calculations.

5.2.1 All-Atom Simulation Protocol

While AA simulations of the collagen triple helix were based on Amber99, the divalent
HLKNL and trivalent PYD crosslink were parameterised with Charmm36. This mixed force
field parameterisation setup allowed us to obtain more accurate reference simulations for
both crosslinks, since Amber99 requires capped protein termini for the topology generation,
which falsifies the free energy estimates, and Charmm36 does not. Besides, we applied the
Verlet scheme to cut off short-range electrostatic and Van-der-Waals interactions at 1 nm and
the particle-mesh Ewald method to treat long-range electrostatics [95, 114, 154].

Collagen molecule and fibrils in water

We chose a single collagen triple helix with a contour length in the range of the D-band, that
is 67 nm, to determine the Martini 3 force field parameters for the bonded interactions [73].
We solvated the collagen molecule in a rectangular simulation box with the TIP3P water
and neutralized the solvated system with counter ions [224]. We applied the steepest de-
scent algorithm to energy minimize the neutralized system, while position restraining the
heavy atoms along the protein backbone with 1000 kJmol−1 nm−2. The velocity rescal-
ing thermostat kept the temperature constant for 1 ns at 310K with τT = 0.1 ps [101].
The pressure was stabilized at 1 bar operating the Parrinello-Rahman barostat for 2 ns with
τP = 2 ps and a compressibility of 4.5 · 10−4 bar−1 [103, 104]. During these equilibration
steps, a harmonic potential position restrained the heavy atoms of the collagen backbone
with 1000 kJmol−1 nm−2. Next, we cut the 300 nm-long collagen triple helix into three
67 nm-long pieces, simulated each piece separately for 100 ns and merged the individual tra-
jectories to ensure sufficient diversity of amino acid sequences along the collagen backbone.
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For the fibrillar structures, we relied on AA simulations performed by Rennekamp and Jung.
Rennekamp solvated the 67 nm-long collagen fibril with TIP3P water and neutralized the
system with counter ions, before performing a 10 ns NVT equilibration at 300K operating
the velocity rescaling thermostat followed by another 10 ns NpT equilibration at 1 bar with
the Parinello-Rahman barostat, while keeping the backbone atoms position restrained using
the aforementioned force constant [206]. For the large 335 nm-long collagen microfibrils,
AA simulations were performed by Jung at the Riken institute (see section 4.2.3).

5.2.2 Coarse-Grained Simulation Protocol

For generating a CG model for collagen with the Martini 3 force field, we relied on the
martinize2 transformation tool to obtain both coordinate and topology file of the Martini 3
force field, using an atomistic coordinate file as input [59, 228]. The common Martini 3 pa-
rameter setup was selected for the CG simulations regarding the neighbor list, electrostatics
and Van-der-Waals interactions [50, 52]. In detail, the Verlet scheme updated the neighbor
list every 20 to 40 steps, using a buffer tolerance of 5 Jmol−1 ps−1, and the reaction-field
algorithm cut off the electrostatics at 1.1 nmwith a relative permittivity of ϵr = 15 [58]. The
Van-der-Waals interactions were expressed through a Lennard-Jones potential with a shift at
0.9 nm and cut-off at 1.1 nm [51]. Overall, we selected the Martini 3 simulation parameters
suggested on their webportal to perform MD simulations (https://www.cgmartini.nl) .

Collagen molecule and fibrils in water

We simulated a single collagen molecule in water to derive the bonded parameters for the
Martini 3 force field. We solvated each of the three collagen triple helices in a rectangular
simulation box using Martini 3 water beads with a Van-der-Waals radius of 0.21 nm. Next,
we neutralized the system with counter ions and energy minimized the system with the
steepest descent algorithm, prior to stabilizing the temperature for 5 ns at 310K operating
the velocity rescaling thermostat with τT = 1 ps. Pressure equilibration was performed with
the Parrinello-Rahman barostat by keeping the pressure constant for 10 ns at 1 bar using a
compressibility of 3 · 10−5 bar−1 and τP = 12 ps. Starting from the equilibrated system,
we performed production runs not only under equilibrium conditions for 100 ns, but also
out-of-equilibrium applying constant force pulling to determine the force-stretching of our
collagen triple helix. For the higher-order crystal structures, we followed the above outlined
steps to obtain an energy minimized system and performed a subsequent two-step NVT and
NpT equilibration procedure. In detail, we equilibrated the system under NVT conditions
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with a reduced 2 fs timestep for 0.5 ns and continued for another 4.5 ns with a 10 fs time
increment. The NpT equilibration was performed with a timestep of 1 fs for 2 ns, 2 fs for 3 ns
and 10 fs for 8 ns, while position restraining the backbone beads with 1000 kJmol−1 nm−2.
Finally, we obtained an equilibrated collagen molecule and fibril under isothermal-isobaric
conditions, as a starting point for constant force pulling simulations.

5.2.3 Topology Generation for the Collagen Fibrils

Beginning from the microfibrillar structure from ColBuilder2, we obtained 231 coordinate
files, one for the collagen microfibril and 230 for each molecule, together with a connect
file, containing information about all pairs and triplets of crosslinked triple helices within the
microfibril. In general, to obtain the topology of the collagen microfibril with Gō-Martini
3, we used a bottom-up approach by building the topology of each collagen molecule indi-
vidually, before merging them according to their crosslinking information.

First, we started with pre-processing the coordinate file of a single collagen molecule
and called the martinize2 command to derive the Martini 3 force field topology and coor-
dinate file [228]. We used the contact map analysis script to determine close contacts of
the atomistic structure by combining a structural- and chemical-based approach [229]. We
further provided the coordinate file from Martini 3 and the atomistic contact map as input
for the create_goVirt.py script to obtain the Gō-Martini 3 topology and coordinate file of the
collagen molecule by merging the physics- and structure-based modeling approaches [110].

Second, based on the crosslinked collagen triple helices within the fibrillar structure, as
listed in the connect file from ColBuilder2, we merged topology files of pairs and triplets of
crosslinked collagen triple helices together into single files. We next added bond length and
bond angle potentials between the crosslink beads to the topology of the crosslinked collagen
molecules. Third, and in contrast to the standard Gō-Martini 3 approach, we defined Gō-
like Lennard-Jones interactions between virtual sites as pairs, instead of introducing new
bead types, usually one for each virtual site, to enable the generation of a multi-million
particle systems using grompp from GROMACS (version 2023) [221]. Of note, combining
the original definition of virtual sites in Gō-Martini 3 with grompp is not recommended, due
to large amount of memory and time required for generating run input files.

Finally, the topology file of a crosslinked collagen molecule is composed of pairs and
triplets of collagen triple helices with their Gō-Martini 3 topology files and the bonded
terms of the divalent and trivalent crosslink. Taken all topology files of crosslinked collagen
molecules together, that is 101 separate topology files, we obtained our main topology for
one of the three collagen microfibrils using the Gō-Martini 3 force field approach.
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5.2.4 Non-equilibrium Free Energy Calculations

The selection of Martini 3 bead types for both crosslinks, namely the divalent HLKNL
and trivalent PYD crosslink, was based on comparing partition coefficients from Martini
3 with experiments from the literature and AA simulations [59]. As outlined in section 2.3,
the partition coefficient quantifies the distribution of a compound between two immisci-
ble phases, such as octanol and water, and depends on the partitioning free energy of the
solute (eq. 2.23). By performing non-equilibrium MD-based free energy calculations, we
estimated the free energy associated with transferring a compound from water S1 to a hy-
drophobic solvent S2 using a thermodynamic cycle, ∆∆GS1→S2 = ∆G∅→S2 − ∆G∅→S1

(Fig. 2.3). The solvation free energy of each compound in water ∆G∅→S1 and a hydropho-
bic solvent ∆G∅→S2 was estimated by thermodynamic integration (see section 2.3.2). Un-
certainty quantification for the estimated free energy differences due to solvation ∆G was
obtained by bootstrapping and error propagation.

We used the Charmm-Gui input generator to obtain the coordinate and topology files
from the Charmm36 force field for both crosslinks [227, 230, 231]. Prior to thermody-
namic integration, we solvated each compound in water and octanol, and neutralized the
system, if needed [120]. For PYD, for instance, we inserted one chlorid ion to compensate
the charged nitrogen N+, located at the pyridine ring, to obtain a system with net charge
zero. Subsequently, we energy minimized the system using the steepest descent algorithm
and performed a NVT equilibration for 50 ns operating the Berendsen thermostat at 310K
in each end state, λ = 0 and λ = 1 [99]. From both end state ensembles, we discarded the
first 10 ns and extracted 100 starting configurations. Alchemical transitions were completed
in both directions, 0 → 1 and 1 → 0, using an equally spaced coupling parameter λ and the
GROMACS implementation for free energy calculations [221]. During the 2 ns to 10 ns ther-
modynamic integration simulations, temperature was implicitly kept constant at 310K using
a stochastic dynamics integrator, while pressure was maintained at 1 bar using the stochastic
rescaling barostat with τP = 5 ns and a compressibility of 4.5·10−5 bar−1 [102, 155]. AGap-
sys soft-core potential was selected (αLJ = 0.85, σLJ = 0.3 andαQ = 0.3) to prevent singu-
larities when changing the Lennard-Jones and Coulomb interactions together [232]. Finally,
we relied on the pmx package by Gapsys et al. to quantify the free energy of transferring
each compound between solvents, and iterated over the selected bead types and mapping
schemes to match the free energy estimates from Martini 3 to AA simulations [126, 232].
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5.2.5 Collagen Molecule and Fibril under Force

MD simulations under force were completed to compare the elongation of a single colla-
gen molecule between AA and CG resolution in the entropic and enthalpic force-extension
regime, i.e., where entropic and enthalpic effects govern the response to mechanical stress,
respectively. As explained in section 2.4, the physics-based model from Kratky and Porod
is suitable to quantify the mechanical bending stiffness of a semi-flexible polymer in the
entropic force-extension regime by its persistence length [30]. Marko and Siggia extended
the worm-like chain theory towards conditions under force by introducing a linear force-
extension relation to the Hamiltonian of a single chain to derive an interpolation equation
for the force-stretching of a semi-flexible biopolymer (eq. 2.30) [34–36]. With their inter-
polation equation at hand, we were able to match the persistence length of the collagen triple
helix from CG to AA simulations under force and to experiments from the literature.

Starting configurations were generated by aligning the collagen triple helix in the y-
dimension and performing a short NpT equilibration with the aforementioned protocol,
while keeping the Cα atoms position restrained with 1000 kJmol−1 nm−2. MD simulations
under constant force were performed with force constants ranging between 30 to 1500 pN
per helical strand, applied at both ends of the collagen backbone, pointing orthogonal to the
helix alignment in the z-direction. Due to the orthogonal pulling, the collagen triple helix
rotated and straightened until a steady-state under force was reached. From the constant
force MD simulations in the entropic regime (Fz ≤ 100 pN), we estimated the persistence
length of a single molecule using the stretched worm-like chain theory (eq. 2.30).

In the enthalpic force-extension regime, we performed MD simulations of the 67 nm-
long collagen molecule and divalent or trivalent crosslinked fibril under force without and
with extra rotational restraints to monitor the effect on the unwinding of the triple helices,
as proposed by Zapp et al. [218]. Specifically, we applied torque restraints with a force con-
stant of 2, 000 kJmol−1 nm−2 and 1, 000, 000 kJmol−1 nm−2 for AA- and CG-MD simula-
tions, respectively, and moreover performed constant force pulling simulations using force
constants ranging from 300 pN to 1500 pN. Note that the AA-MD simulations of the 67 nm-
long divalent crosslinked fibril under force were performed by Rennekamp [206, 218].
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5.3 Results

As introduced in section 1.2, the Martini 3 force field relies on a building block principle for
mapping a givenAA structure to CG resolution, and on amixed top-down and bottom-up pa-
rameterisation strategy for the non-bonded and bonded interactions, respectively [59, 161].
With the aim of performing CG simulations of the collagen microfibril with the Martini
3 force field, we split the complex fibrillar system into smaller blocks, for each of which
a CG model was developed. Accordingly, the collagen microfibril is composed of many
triple helices, which are linked through divalent HLKNL and trivalent PYD crosslinks. We
hence followed the Martini 3 philosophy to parameterise each crosslink and the collagen
triple helix individually, before assembling them into microfibrillar collagen structures.

Mapping scheme and bead type selection for crosslinks were optimized by comparing
partition coefficients, obtained from alchemical transitions, with reference values and AA
simulations. Furthermore, probability densities from Martini 3 simulations were matched
to those from mapped AA ones using direct Boltzmann-inversion to determine the parame-
ters for the bonded terms between protein backbone beads. Validation targets were defined
through structural and mechanical properties, such as the triple helical shape, given by the
rise per residue and residues per turn, the mechanical bending stiffness, characterized by
the persistence length, and the force-extension in the enthalpic force-stretching regime. For
now, we provide an overview about the major steps involved in setting up a CG description
for collagen based on the Martini 3 force field in the flow-sheet diagram 5.2.

5.3.1 Mapping and Bead Type Selection for Crosslinks

Mapping complex molecules, such as HLKNL and PYD, from AA to CG resolution with
Martini 3, determines all subsequent steps in the parameterisation process [55]. In Mar-
tini 3, on average, two-to-four heavy atoms plus the associated hydrogens are mapped to
a single CG interaction site, located at the center-of-geometry of the underlying AA struc-
ture. Functional groups, e.g., carboxyl groups, are kept together, and the symmetry and
shape of the atomistic structure is retained as much as possible [59, 111]. Following these
guidelines, we defined a symmetrical plane in the center of the HLKNL crosslink, i.e., at
the secondary amine group, which has an alcohol and a ketone group attached on each side
(Fig. 5.1A, right). Bearing the symmetrical property of the crosslink in mind, we selected
a small SP1d bead to represent the hydrogen donor characteristics of the secondary amine
group, and used a regular four-to-one mapping for 1-propanol and 1-propanone. To differ-
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entiate between both sides of the amine group, we chose a polar P1 bead for the alcohol and
an intermediate hydrophilic bead, i.e., the N6a bead, for the ketone group on the other side.

A B

Figure 5.1. Mapping and bead type selection for crosslinks with Martini 3. AMapping
and bead types of the trivalent PYD (left) and divalent HLKNL (right) crosslink in Mar-
tini 3. B Non-equilibrium free energy calculations to compare the octanol-/water partition
coefficient of each compound from CG to AA simulations (top,right). Bonded interactions
were tuned by matching the solvent accessible surface area from Martini 3 to AA simula-
tions (bottom, left). The Conolly surface for both divalent (top, left) and trivalent (bottom,
right) crosslink agree well between fine-(gray) and coarse-grained (blue) resolution.

For PYD, only small and tiny beads were used to map the atomistic structure to CG
resolution in order to emphasise the aromatic nature of the crosslink (Fig.5.1A, left). The
central pyridine ring was represented by three tiny beads, namely one TQ2p bead for the
nitrogen, one TP1q for the phenol and one TC6q for the benzene building block, forming
a triangular structure reflecting its planar shape and rigidity. Due to the positive charged
nitrogen, q-labels were introduced to distribute the charge over all tiny beads involved in
the mapping of pyridine. Hence, according to the charge distribution in Amber99, charges
of q = 0.7 e, q = 0.2 e and q = 0.1 e were assigned to the TQ2p, TP1q and TC6q bead,
respectively. In addition, the trivalent crosslink features three chemical links connecting
two triple helices (Fig.5.1A, left). The backbone beads from two strands of one triple helix,
namely Cα,2 and Cα,3, were linked to the pyridine ring using a moderate polar TC4 bead.
The last link between the charged nitrogen and Cα,1 was accomplished with one SP1 bead
representing the polar character of ethanol, and one more moderate TC4 bead for ethane.
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Figure 5.2. Overview for modeling collagen with Martini 3. Purple boxes represent the
atomistic structures obtained from the ColBuilder webportal, e.g., the collagen triple helix,
the fibril and the divalent and trivalent crosslink [203]. Turquoise boxes are the AA and
Martini 3 force fields. Gray boxes are steps performed for parameterising the Martini 3
force field. Green rhombuses are decision boxes for validation and tuning purposes, such
as matching bonded terms distributions (left) and partition coefficients to AA data (right).
As soon as both conditions agree, Gō-like potentials were used to tailor the chain stiffness
to AA simulations by matching the persistence length.
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5.3.2 Partitioning Free Energy for Crosslinks

The bead type selection was based on comparing partition coefficients for both crosslinks
from Martini 3 with AA simulations [58]. The partition coefficient of each compound
was determined in an octanol-/water system using non-equilibrium MD-based free energy
calculations. To estimate the free energy of transferring each crosslink from octanol to
water, we combined the pmx package with a thermodynamic cycle, i.e., ∆∆GS1→S2 =

∆G∅→S2 −∆G∅→S1 (Fig. 2.3) [126, 232]. In detail, we performed four separate replicates
with 100 backward and forward transitions each, yielding a cumulative simulation time of
4µs, to ensure sufficient sampling of both crosslink compounds.

Building on this exhaustive sampling of the conformational space, we obtained an es-
timate for the free energy of partitioning for the divalent and trivalent crosslink, that is
∆∆GW→O = −19.06± 0.07 kJmol−1 as well as ∆∆GW→O = −58.98± 0.43 kJmol−1,
respectively. In addition, we facilitated the experimental- and AA-based validation by cal-
culating the partition coefficients with eq. 2.23 (Fig.5.1B). We observed sufficient agree-
ment for the partition coefficients of the divalent and trivalent crosslink between Martini 3
(−3.05± 0.01 and −9.96± 0.08) and AA simulations (−3.11± 0.05 and −10.26± 0.44).

However, by comparing ourMD-based partition coefficients of the divalent and trivalent
crosslinkwithmachine-learned predictions from rdkit [233] (−2.11 and−5.46) and the atom
additive method xlogp3 from PubChem [234] (−7.1 and−8.6) only a qualitative agreement
was found. This is attributed to the chemical nature of each crosslink, which bears features,
like a charged nitrogen in the pyridine ring, that are not well captured by the predictions.

5.3.3 Parameterising Bonded Terms for Crosslinks

In Martini 3, the parameterisation of bonded interactions between CG beads is based on a
bottom-up approach by matching probability densities of the bonded terms in an iterative
process to mapped AA simulations [111]. We followed the previously mentioned simula-
tion protocol to obtain an equilibrated isothermal-isobaric ensemble for each crosslink in
water and used a center-of-geometry based scheme to map the atomistic trajectory to CG
resolution. From this mapped trajectory, we calculated bond distances, bond angles and
torsion angles between crosslink beads and their respective probability distributions. By it-
erating over the force constants and reference values of theMartini 3 force field, wematched
the CG probability densities to the mapped AA ones, following the standard procedure for
parameterising new molecules with Martini 3 (Fig. A7-A8) [59, 235].
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Accordingly, bond lengths between Martini 3 beads were rescaled by matching the sol-
vent accessible surface area (SASA) to AA simulations to reproduce the shape of the atom-
istic structure. After rescaling, as expected, the SASA retrieved from Martini 3 simulations
for the divalent (6.2± 1.1 nm2) and trivalent crosslink (9.7± 3.5 nm2) agree well with esti-
mates from AA simulations (6.5±2.9 nm2 and 9.8±2.2 nm2) (Fig. 5.1B, left). Tab. 5.1 lists
the Martini 3 force field parameters for the trivalent (above) and divalent (below) crosslink.

Table 5.1. Martini 3 force field parameters for crosslinks. Martini 3 parameter set for 3
bonded terms of the trivalent PYD (above) and divalent HLKNL crosslink (below).

Bonded term Reference value Force constant

BB1-TC4 0.270 nm 11000 kJmol−1 nm−2

TC4-SP1 0.250 nm 12000 kJmol−1 nm−2

SP1-TQ2p 0.260 nm 7000 kJmol−1 nm−2

TQ2p-TP1q 0.250 nm 70000 kJmol−1 nm−2

TQ2p-TC6q 0.270 nm 70000 kJmol−1 nm−2

TP1q-TC6q 0.395 nm 70000 kJmol−1 nm−2

TP1q-TC4 0.230 nm 12000 kJmol−1 nm−2

TC6q-TC4 0.290 nm 9000 kJmol−1 nm−2

BB2-TC4 0.250 nm 9000 kJmol−1 nm−2

BB3-TC4 0.250 nm 9000 kJmol−1 nm−2

BB1-TC4-SP1 180◦ 150 kJmol−1

TC4-SP1-TQ2p 180◦ 150 kJmol−1

SP1-TQ2p-TP1q 180◦ 150 kJmol−1

SP1-TQ2p-TC6q 100◦ 150 kJmol−1

TP1q-TC4-BB2 140◦ 150 kJmol−1

TC6q-TC4-BB3 140◦ 150 kJmol−1

BB1-P1 0.310 nm 10000 kJmol−1 nm−2

P1-SP2 0.415 nm 7000 kJmol−1 nm−2

SP2-N6a 0.365 nm 5000 kJmol−1 nm−2

N6a-BB2 0.360 nm 9000 kJmol−1 nm−2

BB2-N6a-SP2 140◦ 150 kJmol−1

N6a-SP2-P1 140◦ 50 kJmol−1

SP2-P1-BB1 140◦ 150 kJmol−1
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On amicroscopic scale, we compared AA- (gray) and CG-based Conolly surfaces (blue)
of each crosslink to identify the subtle differences in the molecular structure (Fig 5.1B). We
found that the CGmodel for the PYD crosslink largely reproduces theVan-der-Waals surface
area from the AA structure with slight deviations near the protein backbone beads. A similar
trend is observed for the Conolly surface of the divalent crosslink. These slight deviations
can be attributed to the loss of fine-grained information upon coarse-graining.

5.3.4 Parameterising Bonded Terms for the Collagen Molecule

The collagen molecule exhibits a triple helical structure that is the reason for its unique
mechanical properties arising from the intra- and interhelical interactions. Therefore, we
examined the parameterisation of bonded terms thoroughly. Beyond the standardized Mar-
tini 3 bonded potentials parameterisation scheme, we combined a conditional probability
distribution with direct Boltzmann-inversion to reproduce the symmetry and shape of the
collagen triple helix. For this purpose, we performed AA equilibrium simulations of three
different 67 nm-long collagen molecules in water for 100 ns, before applying a center-of-
geometry based mapping scheme to the protein backbone. From the mapped trajectories,
we measured bond lengths, bond angles and torsion angles between backbone beads and
used their probability distributions as our major parameterisation targets (Fig. 5.3A, blue).

The probability distributions for the bond angle and dihedral angle are unimodal with a
peak at 138 ◦ and 76 ◦ and a width of approximately 17 ◦ and 27 ◦. For the bond length distri-
bution, however, we observed a pronounced tail implying an underlying bimodal character
(Fig. 5.3A, left). As a consequence of this, bond lengths between mapped backbone beads
are non-equidistant, and thus amino acid sequence specific. We therefore performed direct
Boltzmann-inversion by fitting a Gaussian P (q) to the measured probability distributions to
derive the Martini 3 force field parameters for each bonded term, separately [236]:

P (q) = Cq · exp
(
−1

2

(q − µq)
2

σ2
q

)
, (5.1)

where q denotes a single degree of freedom, e.g., the bond distance rij , bond angle θijk and
torsion angle ϕijkl, and µq, σ2

q and Cq are the mean, variance and amplitude of the fitted
Gaussian, respectively. For Boltzmann-inversion, we assume each degree of freedom to be
independent in the canonical ensemble, and thus obeying a Boltzmann distribution [236]:

P (q) = Z−1 · exp
(
−β · V CG(q)

)
, (5.2)

whereZ is the partition function taken over the ensemble andV CG(q) theMartini 3 potential.
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Figure 5.3. Bonded terms for the collagen triple helix A Direct Boltzmann-inversion
(green) was performed to derive Martini 3 parameters from mapped AA trajectories (blue).
We conditioned the bond length distribution on short distances d < x0 to identify amino
acid types involved in the tail of the distribution (blue, right). B Bond length (left),
bond angle (center) and torsion angle (right) distributions from CG simulations (orange)
are matched to AA ones (blue) by iterating over the Martini 3 force field parameters.
CWe performed a structural validation by comparing the rise per residue (left) and residues
per turn (right) from Martini 3 with AA simulations and experiments [237–241].
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By comparing the mean µq and variance σ2
q of the Gaussian function (eq. 5.1) to the

Boltzmann-distribution (eq. 5.2), the reference values and force constants of each bonded
term of the Martini 3 force field can be obtained in a straightforward manner. As an exam-
ple, the reference distance r0ij and force constant kb

ij of the harmonic bond length potential
V CG
b (rij) = kb

ij · (rij − r0ij)
2 are derived according to r0ij = µb and 1/kb

ij = βσ2
b .

Due to the pronounced tail of the bond length probability distribution, we used a bi-
modal Gaussian, namely the sum of two Gaussians, to estimate the mean and variance of
each distribution separately, and thereby take the non-equidistance of the mapped collagen
backbone into account. We identified the first Gaussian, representing the tail of the distribu-
tion, at µb,1 = 0.319 nm with σb,1 = 0.011 nm, and the second one at µb,2 = 0.355 nm with
σb,2 = 0.014 nm. Note that the latter represents the main part of the probability distribution.
We further assigned bond distances to each amino acid type to identify those types of amino
acids involved in short bond lengths. Therefore, we first determined the point of intersect-
ing Gaussians at xO = 0.329 nm, second calculated Euclidean distances between adjacent
backbone beads, and third filtered them under the condition d < xO. Next, we assigned a
probability to each residue type r depending on whether its backbone bead was the start BB1

or end bead BB2 of the bond. Hence, the conditional probability P (d < xO|r =BBi) with
i = (1, 2) was constructed to quantify the likelihood of each residue type being involved in
either short or long bond distances (Fig. 5.3A, blue, right). We found that mapped proline-
like amino acids, e.g., hydroxyproline (HYP) and proline (PRO), are largely responsible for
the tail of the bond length probability distribution.

Consequently, we chose two individual bond length potentials, one for arbitrary amino
acid sequences and one for HYP/PRO-X combinations, where X is a random amino acid, to
reproduce the bond length distribution frommappedAA simulations with theMartini 3 force
field (Fig. 5.3B). By matching the bonded terms distributions fromMartini 3 to mapped AA
simulations, we derived a fine-tuned parameter set for our collagen model (Tab. 5.2). It is
worth noting that the reference values for the bond length distributions are slightly above
those derived from Boltzmann-inversion, however, still not completely matching the AA-
based distributions, and thus suggesting too soft bond length potentials (see section 5.3.6).

Nonetheless, we finally validated the triple helical structure of our CG collagen model
by comparing the helical pitch to AA simulations and experiments from the literature [237–
242]. The helical pitch is a structural property that jointly quantifies the axial and radial
degree of freedom and is given by two helical observables. The rise per residue (left) char-
acterizes the axial degree of freedom of the collagen triple helix, while the residues per turn
(right) quantifies its radial degree of freedom (Fig. 5.3C).
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Table 5.2. Martini 3 force field parameters for the collagen model. Martini 3 parameters
obtained from matching bonded terms distributions from CG to mapped AA simulations.

Bonded term Reference value Force constant

BB1-BB2
a 0.360 nm 14000 kJmol−1 nm−2

BB1-BB2
b 0.321 nm 24000 kJmol−1 nm−2

BB1-BB2-BB3 138 ◦ 152 kJmol−1

BB1-BB2-BB3-BB4 76 ◦ 17 kJmol−1

a Bond length potential for all amino acid sequences, except those with HYP/PRO-X.
b Bond length potential for amino acid sequences with HYP/PRO-X.

First, we characterized the radial degree of freedom by counting the residues per turn
(left) for each strand of the collagen triple helix using the protein helices analysis pack-
age from MDAnalysis [165, 243]. We more precisely selected four adjacent Cα atoms and
linked them in sequence by Euclidean vectors to determine the respective bisectors b13 and
b24 (black). Next, we calculated the dot product of the bisectors to estimate the enclosed
angle, i.e., the helical twist αH , and the residues per turn. To better compare the AA simu-
lations with Martini 3, we determined the respective probability distribution to demonstrate
that both AA and CG simulations exhibit a similar behaviour with peaks at 2.96 and 3.15

residues per turn, respectively. In comparison with experiments reported in the literature,
both Martini 3 and AA simulations marginally underestimate this helical property by ap-
proximately 5% and 10%, respectively [239, 240, 242].

Second, we again used the protein helix analysis package to describe the axial degree
of freedom based on the rise per residue. We defined the local helix axis as the normal vec-
tor of the plane spanned by the two bisectors b13 and b24. We next projected the position
vector between the inner two Cα atoms r23 onto the local helix axis, to estimate the rise per
residue within groups of four Cα atoms. Once again, for validation purposes, we computed
the corresponding probability distributions from AA and Martini 3 simulations. More pre-
cisely, the AA-based distribution exhibits a define peak at 0.307 nm and the Martini 3 one
at 0.304 nm, which is slightly above experimental values obtained from X-ray fiber diffrac-
tion (0.290 nm) [237, 238]. Notwithstanding these deviations, we concluded that our CG
collagen model captures both the axial and radial degree of freedom of each helical strand
well enough, and largely reproduces the shape of the collagen triple helix.
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5.3.5 Collagen Molecule under Force

We next improved our CG collagen model by fine-tuning both the mechanical bending and
stretching stiffness in the entropic and enthalpic force-extension regime, such that persis-
tence lengths from experiments and AA simulations are captured. Note that the entropic
and enthalpic regime is given by the force range in which entropic and enthalpic effects
dominate the biopolymer’s response to mechanical load (see section 5.2.5). Specifically,
we applied constant force pulling simulations of a single collagen triple helix using force
constants between 30 pN to 100 pN per strand for the entropic force-extension regime, and
300 pN to 1500 pN per strand for the enthalpic force-stretching regime.

In the entropic force-extension regime, we applied the worm-like chain model (eq. 2.31)
to match the persistence length of a single collagen triple helix from Martini 3 to AA simu-
lations and experiments from the literature by adjusting the strength of the Gō-like potential
ϵGo. In detail, we combined Gō-like potentials with the Martini 3 force field to maintain the
triple helical structure of the collagen molecule. For this reason, we relied on the workflow
and implementation proposed by Moreira and Poma, that is, first determine a Gō-like con-
tact map from the atomic structure, second identify close contacts within the molecule, third
assign virtual sites to each backbone bead, and finally introduce non-bonded Lennard-Jones
interactions between virtual sites [229]. According to this, Gō-like potentials between vir-
tual sites (orange) maintained the collagen triple helix during production runs by updating
the positions of the respective CG backbone beads (Fig. 5.4, black).

By further adjusting the depth of the potential well ϵGo, the strength of the interhelical
interactions can be tuned to match the persistence length from AA simulations. Hence, we
selected a potential well of ϵGo = 15 kJmol−1 to reproduce the persistence length in the
entropic force-extension regime. According to worm-like chain fits to the simulation data,
the persistence length from AA (4.77 nm) and CG simulations (4.60 nm) with a respective
contour length of 72.48 nm and 73.40 nm are in very close proximity (Fig. 5.4, left).

Experimental studies suggest persistence lengths for a 300 nm-long collagen molecule
between 11 nm to 15 nm and 65 nm to 180 nm, dependent on the experimental setup (see
section 5.1) [74, 75, 215]. While large persistence lengths were obtained from electron mi-
croscopy, dynamic light scattering and rheological experiments, the lower ones were mea-
sured by a combination of atomic force microscopy imaging and optical tweezers stretching
with worm-like chain theory [74]. Since the latter more resemble our MD simulations, we
chose this range of persistence lengths between 11 nm to 15 nm as a reference to confirm
the mechanical bending stiffness of our Gō-Martini 3 collagen model.
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Figure 5.4. Force-extension of the collagen triple helix. Virtual sites for each colla-
gen backbone bead (black) are introduced and linked by Gō-like potentials (orange, top).
Combining such Gō-like potentials withMartini 3 (bottom, orange) to match the persistence
length (eq. 2.30) of a single collagen molecule to AA simulations under force (bottom, blue).
Note that the rotational restraints used by Zapp et al. to prevent the triple helix unwinding,
increase the overall chain stiffness (bottom, green vs. blue) [218].

In the enthalpic force-stretching regime, we focused on pulling forces ranging from
300 pN to 1500 pN per strand, that is, where covalent bonds are likely to rupture (gray) and
triple helices tend to unwind (Fig. 5.4, right). By comparing the collagen molecule force-
stretching between AA and Gō-Martini 3 simulations, we observe an acceptable agreement,
apart from the highest rupture force at 1500 pN. Specifically, for forces of 300 pN, 500 pN,
750 pN and 1000 pN, we calculated end-to-end distances of 73.63 nm, 77.25 nm, 80.34 nm
and 82.61 nm as well as 74.41 nm, 77.33 nm, 80.09 nm and 84.44 nm from AA and CG sim-
ulations. Both models thus deviate marginally by less than 4% of the contour length, i.e.,
67 nm. However, at the highest rupture force of 1500 pN applied here, the CG-based colla-
gen triple helix stretches up to 90.45 nm, that is 5.19 nm more than the AA one.

Despite this absolute agreement, our CG model is not able to reproduce the slope of the
AA-based force-stretching curve. In detail, we observe too much stretching at forces above
750 pN, suggesting that our CG model is not able to capture the bond stretching appropri-
ately. This assumption is confirmed by looking at the bond length probability distribution
(Fig. 5.3B, left), namely that the CG distribution is slightly wider than the AA one, suggest-
ing that too small force constants for the bond length potentials were chosen.
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Finally, it is important to comment on the triple helix unwinding, that was observed for
both AA and CG simulations under force. On the atomistic scale, rotational restraints were
introduced by Zapp et al. to prevent the triple helix unwinding, which, however, increases
the overall stiffness of the collagen molecule (blue) compared to a situation without rota-
tional restraints (Fig. 5.4, green) [218]. On the coarser level, we could prevent the triple
helix unwinding by either choosing a deeper Gō-potential well ϵGo, which reduces the over-
all flexibility, or by extra rotational restraints, which restricts the time increment to 5 fs.

5.3.6 Collagen Fibril under Force

We now move from one single collagen molecule to an ensemble of more than 40 parallel
aligned crosslinked triple helices forming a 67 nm-long fibrillar structure, as provided on the
ColBuilder webserver [73, 203]. We chose this intermediate system size due to the D-band
pattern of the collagen microfibril (see section 4.1), and its feasibility to be still simulated
with AA-MD on standard high-performance computing clusters. Once again, we selected
the force-stretching behaviour as our main observable for validating the mechanical stiffness
of collagen. CG simulations of divalent and trivalent crosslinked collagen fibrils with and
without rotational restraints were performed under constant force applying force constants
ranging from 300 pN to 1500 pN and the respective end-to-end distances were measured.

Fig. 5.5A shows the force-stretching behaviour of the 67 nm-long divalent crosslinked
collagen fibril from AA (blue) and Gō-Martini 3 simulations with (red) and without (green)
additional torque restraints under force. We performed constant force pullingwith force con-
stants in the bond rupture regime, that is between 300 pN to 1500 pN per strand. More pre-
cisely, for pulling forces of 300 pN, 500 pN, 750 pN and 1000 pN per strand, we calculated
end-to-end distances of 74.43 nm, 77.83 nm, 80.93 nm and 83.20 nm as well as 75.42 nm,
78.74 nm, 82.30 nm and 84.90 nm from AA- and CG-MD simulations under force, respec-
tively, employing additional rotational restraints force constant of 2, 000 kJmol−1 nm−2 and
1, 000, 000 kJmol−1 nm−2, respectively. At the highest force (1500 pN per strand), our col-
lagen CG model fails to reproduce AA simulations by more than 5 nm, which is to be ex-
pected, as protein backbone bonds are softer and likely to lengthen at high forces.

Without rotational restraints, slightly larger elongations of 75.42 nm, 82.30 nm, 84.90 nm
and 91.93 nm were obtained. Similar to the previous single collagen molecule under force
case, we observe an overstretching of our current Gō-Martini 3 model, in particular at high
forces above 750 pN, which is still present even with such a high torque restraint force
constant, that, however, restricts the time increment of CG simulations to 5 fs.
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A B

Figure 5.5. Force-stretching of the collagen fibrils. A Comparing the force-stretching of
the 67 nm-long divalent crosslinked fibril fromAA (blue) andGō-Martini 3 simulations with
(green) and without (red) torque restraints. B Force-stretching of the 67 nm-long divalent
or trivalent crosslinked collagen fibril from Gō-Martini 3 simulations under force.

Next, we compared the force-stretching of the divalent and trivalent crosslinked colla-
gen fibril for the exact same pulling forces using the Gō-Martini 3 model with and without
rotational restraints (Fig. 5.5B). In detail, we obtained end-to-end distances of 75.07 nm,
78.00 nm, 81.44 nm and 85.05 nm for the trivalent crosslinked fibril with as well as 75.91 nm,
79.00 nm, 82.53 nm and 85.86 nm without extra torque restraints. Once more, such torque
restraints increased the overall stiffness of the collagen fibril, both on the AA and CG scale,
however, are not sufficient to explain the deviation between our collagen CG model and
the AA simulations in the high-force regime. Of note, torque restraints were only required
for rather small collagen fibrils, which lack sufficient crosslinking across triple helices to
prevent unwinding, and therefore can be omitted when moving towards larger systems.

5.3.7 Collagen Microfibril under Force

Notwithstanding the weakness, that the devised Gō-Martini 3 parameterisation is still pre-
liminary, we performed CG-MD simulations under force, for each of the three 335 nm-long
collagen microfibrils presented in chapter 4, to demonstrate the feasibility of using the Mar-
tini 3 force field for such covalently crosslinked networks of semi-flexible biopolymers.
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Each microfibril is composed of 230 triple helices with 177 to 248 crosslinks, forming
101 crosslinked molecules with around 43million atoms in total. Upon coarse-graining, this
reduces to less than 4.5million beads and comes in reach for high-performance computing
clusters like Helix1. Due to the structural complexity of the microfibril, we briefly refer to
the topology generation process of the Gō-Martini 3 model in section 5.2.3.

A B

C

Figure 5.6. Force-stretching of the collagen microfibrils. A The overall end-to-end
distance of the three collagen microfibrils under force (center) from AA simulations with
(solid) and CG simulations without torque restraints (dashed). B The influence of torque
restraints on the force-stretching of the collagen microfibrils from CG simulations. C Com-
paring the elongation of the D-band and gap region from AA to CG simulations under force.

1The bwFor cluster Helix is the high-performance computing cluster of the state of Baden-Württemberg.
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Fig. 5.6A presents preliminary results, like the end-to-end distance (top), D-band and gap
stretching (bottom) for each of the three collagen microfibrils, i.e., the pure trivalent (blue),
the mixed divalent-trivalent (green) and the partly mutated trivalent crosslinked one (red),
from AA- and CG-MD simulations with (solid) and without (dashed) rotational restraints
under force. Due to the limited CG simulation time so far, we restrict ourselves to a more
qualitative analysis, since we can not confirm convergence of our simulations.

Overall, we observed an excessive stretching of our collagen CGmodel compared to the
AA simulations, which occurs regardless of the type of crosslink and distance measure, e.g.,
the D-band stretching and the end-to-end distance. More precisely, while our collagen CG
model is able to capture slight differences on the microscopic scale, namely the influence
of the crosslink density on the extension of the microfibril, it overstretches by roughly 15%,
which might be due to a too soft bond length potential force constant (see section 5.3.5). Up
to now, employing extra rotational restraints with the same force constants as before, seems
to influence the overall stiffness of the collagen microfibril only implicitly, by post-poning
the time at which maximum stretching is achieved (Fig. 5.6B).

Specifically, the pure trivalent and mixed divalent-trivalent crosslinked collagen mi-
crofibril demonstrate an overall lower elongation compared to the partly mutated trivalent
crosslinkedmicrofibril, that is evident on bothAA- andCG-MD simulations under force (see
section 4.3.4). As mentioned in chapter 4, this might be attributed to the reduced number
of trivalent crosslinks, forming a thinner network of crosslinked collagen triple helices with
fewer links, and therefore leading to a larger extension. Moreover, when comparing the gap
stretching for the differently crosslinked microfibrils, it is obvious that the partly trivalent
crosslinked one still elongates, suggesting that the mechanical forces are not yet evenly dis-
tributed within the fibrillar network. This could prompt the assumption that the distribution
of forces is facilitated in highly crosslinked microfibrillar networks at such high mechanical
loads. Obviously, this needs to be verified by monitoring longer simulation times and lower
pulling forces, since our Gō-Martini 3 simulations of the differently crosslinked collagen
microfibrils are not converged yet.

In other words, with decreasing number of crosslinks, forces are less equally distributed
within the collagen microfibril, such that, in the event of a sudden mechanical perturbation,
more locations of high-force concentration arise, and thus the likelihood of bond rupture
events increases. Apparently, this is a conclusion that can only be drawn from a microscopic
analysis of the bond rupture forces along the protein backbone, rather than by comparing
the force-stretching of differently crosslinked microfibrils on the mesoscale.
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5.4 Conclusions and Discussion

In this chapter, we derived a preliminary CG model for the semi-flexible biopolymer colla-
gen using the Martini 3 force field, and validated our parameterisation against experimental
and AA simulation data for structural and mechanical properties of a single molecule, such
as the helical pitch and the entropic force-extension behaviour, besides thermodynamic and
volumetric properties for the divalent (pre-mature) and trivalent (mature) crosslink.

Our Martini 3 model largely reproduces the octanol-/water partitioning and surface area
of the divalent and trivalent crosslink (Fig. 5.1), and the overall shape of the collagen triple
helix retrieved fromAA simulations (Fig. 5.3). However, when comparing the force-stretching
of the 67 nm-long collagen triple helix and divalent crosslinked fibril fromMartini 3withAA
simulations, we observed strong deviations, in particular, for pulling forces above 750 pN
per strand (Fig. 5.4-5.5). Nonetheless, we demonstrated that our CG model is suitable to
perform MD simulations of the pure trivalent, mixed divalent-trivalent and partly mutated
trivalent crosslinked collagen microfibril under force, since it captures slight differences in
the force-extension observable due to varying crosslink configurations (Fig. 5.6).

We hence recommend to reparameterise the current Martini 3 force field for collagen to
adequately capture the force-extension in the entropic and enthalpic regime by increasing
the force constants of the bond length potentials. Most importantly, it should be critically
assessed whether applying rotational restraints for preventing unwinding of the triple helices
in microfibrillar structures under force are required, since they restrict the time increment of
the simulations to 5 fs, and thereby cause a great loss of computational performance. In this
regard, due to the limited size of the 67 nm-long collagen systems, e.g., single molecule and
fibril, additional torque restraints were required, however, can be omitted when moving to
larger systems (Fig. 5.6). This fact shows the capability of Martini 3 to perform simulations
of large-scale collagen microfibrils under force without relying on additional constraints,
that were introduced to mimic biological conditions [218]. According to this, we expect
that our Martini 3 collagen model combined with the ColBuilder2 framework enables com-
putational studies closer to its actual biological counterpart to explore the complex interplay
between crosslinking and mechanical properties on long timescales (see chapter 4).

Moreover, we anticipate that this combination is suited to address questions about the
influence of various crosslink configurations on the mechanical response of collagen mi-
crofibrils. Beside the crosslinks explored so far, the Martini 3 building block facilitates the
introduction of yet unparameterised crosslink topologies, e.g., the trivalent pyrrole and syn-
thetic genipin crosslink [244]. Incorporating new crosslink topologies into the collagen mi-
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crofibril is expected to complement experimental studies in tissue engineering, for instance,
by screening the response of various crosslinked microfibrils to mechanical load. We thus
foresee that analyzing the force distribution within collagen microfibrils of various crosslink
configurations might guide our understanding in engineering collagen-based scaffolds with
tuneable mechanical properties to meet the divers requirements in tissue engineering for,
among others, biomedical applications.

As already mentioned in the discussion about our Martini 3 PPE model in section 3.4,
extending reactive MD simulations to the Martini 3 force field is the way to an in-depth
understanding about the force distribution within large-scale semi-flexible (bio-)polymer
networks. We predict that reactive CG-MD simulations of collagen microfibrils comprising
various crosslink configurations could elucidate molecular processes that prevent macro-
scopic failure modes, such as the recently shown radical scavenging on dihydroxy-phenyl-
alanine (DOPA) and the sacrificial bond ruptures in trivalent crosslinks [206, 218].

Expanding on this, by performing multiple bond ruptures within large-scale collagen
microfibrils, while continuously monitoring the distribution of pairwise forces within the
fibrillar network, could provide access to molecular processes governing macroscopic fail-
ure prevention, which can not be captured by AA simulations due to the long timescales
involved. This is therefore expected to provide insights into potential repair mechanisms
on the microscale, for instance, recombination of DOPA residues with nearby Lysine-like
residues, i.e., rupture fragments from former crosslinks, to maintain the overall structural
integrity and mechanical stability of collagen’s fibrillar network2.

2This idea was picked up from a joint discussion with Prof. Dr. Frauke Gräter in Kobe. (March 2023)
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6 Summary and Conclusions

Mechanical degradation of polymer-basedmaterial undermechanical load can lead tomacro-
scopic failure modes, such as mechanical fatigue, that is governed by microscopic processes
within large semi-flexible (bio-)polymer assemblies. The aim of this thesis was to shed
light on the structural alignment and response of large-scale semi-flexible (bio-)polymer
networks, namely poly (para-phenylene ethynylene)s bulk systems and collagen microfib-
rils, to an external mechanical perturbation. We developed a coarse-grained model for each
(bio-)polymer using the Martini 3 force field, identified locations of high-force concentra-
tion within semi-flexible PPE networks, derived an algorithm for the structural generation
of collagen microfibrils with different crosslink configurations, and performed preliminary
coarse-grained (CG) simulations of these collagen microfibrils under force.

Coarse-grained poly(para-phenylene ethynylene)s networks under shear

We developed a CG model for PPEs with the Martini 3 force field to enable computational
studies of PPEs in large-scale assemblies under equilibrium and non-equilibrium conditions.
To be more precise, we used an optimization geometrical approach to take the shape of the
π-conjugated backbone into account, and applied an additional angular restriction to tune
its mechanical bending stiffness by matching the persistence length to experiments from the
literature. Our Martini 3 model reproduces key structural and thermodynamic observables
of single PPE chains and mixtures, such as bulk density, interchain packing and π-stacking
within bundles of semi-flexible polymers. We also show that chain entanglement increases
at the expense of nematic order with growing polymer chain length (Fig. 3.8).

In addition, non-equilibrium shearing simulations revealed the formation of shear bands
within bulk systems composed of intermediate- (60 monomers) and long-chain PPEs (120
monomers) leading to extreme shear rates and rupture forces in the high shear rate band
(Fig. 3.9). Since this is not existent for networks of short chains (20 monomers), we con-
cluded that intermediate- and long-chain PPEs in sheared bulk assemblies preferably break
at the center until a lower chain length in the range of the persistence length is reached, upon
which rupture forces are equally distributed and bond ruptures are less prominent (Fig. 3.10).
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Even though shear banding was already observed by rheological experiments, the micro-
scopic origin of this non-linearity still remains elusive [188, 191, 193, 197]. Recent meso-
scopic simulations proposed flow-induced chain disentanglement and localized stochastic
chain dynamics as main contributors to shear band formation in entangled polymer solu-
tions [198, 199, 245]. This, however, neglects the influence of enthalpic effects on the
response to large deformations, which play an important role for shear banding in entangled
networks comprising semi-flexible PPEs (see section 3.4). Due to the chemical specifica-
tion and thermodynamic-based parameterisation, we expect our Martini 3 model to provide
meaningful insights into the non-linear response of semi-flexible PPE networks to mechan-
ical load, for example, by elucidating the influence of the inter-PPE force balance on shear
band formation, as proposed by Wang et al. from theoretical considerations [246].

Structure generation of collagen microfibrils

Up to now, our atomistic models for the collagen type I fibril were limited to one D-band
(67 nm), such that many of the 300 nm-long triple helices were only crosslinked at one
end, but not connected to other triple helices. We implemented a computational workflow,
termedColBuilder2, to build collagenmicrofibrils with tunable crosslink density by combin-
ing the crystal symmetry information with a lattice-based structure optimization procedure
(Fig. 4.3). We demonstrated the versatility of our computational optimization scheme by
generating three differently crosslinked 335 nm-long collagen microfibrils, that is one pure
trivalent, one mixed divalent-trivalent and one partly mutated trivalent crosslinked colla-
gen microfibril. We further collaborated with Jung to perform all-atom molecular dynam-
ics (MD) simulations under force using the supercomputer at Riken to finally verify the
structural properties of our atomistic models with experiments from the literature, such as
end-to-end distance, D-band stretching and overlap-gap strain ratio (Fig. 4.6).

Coarse-grained collagen microfibril under force

We derived Martini 3 force field parameters for collagen microfibrils by first identifying
relevant compounds of the fibrillar network, e.g., the divalent and trivalent crosslink as well
as the collagen triple helix, and second by parameterising each compound individually. In
detail, we combined the Martini 3 building block principle with non-equilibriumMD-based
free energy calculations to select an appropriate mapping scheme and bead types for each
crosslink by comparing their oil-/water partitioning and surface area with all-atom simula-
tions (Fig. 5.1). Also, we relied on direct Boltzmann-inversion and non-equidistant bond
length potentials tomaintain the triple helical shape of collagen, andmoreover superimposed
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Gō-like potentials to refine the mechanical bending stiffness. Our Gō-Martini 3 model for
collagen reproduces key structural and mechanical properties from AA simulations and ex-
periments, such as the helical pitch and the stiff nature of the collagen triple helix, that is
given by the persistence length in the entropic force-extension regime (Fig. 5.4A).

However, our parameterisation lacks the force-stretching of a single collagen molecule,
fibril and microfibril in the enthalpic force-extension regime, in particular, for pulling forces
above 750 pN (Fig. 5.4B-5.5A). At such high pulling forces, our CG model exhibits too
much elongation, which can be attributed to soft bond length potentials arising from too low
force constants (Fig. 5.3B, left). Notwithstanding this preliminary state, our Gō-Martini 3
model for collagen captures the force-stretching of the three differently crosslinked colla-
gen microfibrils from AA simulations, and is therefore suited to determine the distribution
of pairwise forces within microfibrillar networks, specifically to detect bonds between seg-
ments along the protein backbone and along crosslinks that are prone to rupture.

Furthermore, the building block principle of the Martini 3 force field facilitates the in-
corporation of yet unparameterised crosslink topologies, such as the trivalent pyrrole, the
synthetic glutaraldehyde or genipin crosslink, to analyze their influence on the force distri-
bution within the collagen microfibril under mechanical load [244, 247]. In this regard, we
predict that ourMartini 3 model could guide experimental studies, concerned with rendering
collagen-based scaffolds towards certain mechanical properties, by efficiently screening the
response of collagen microfibrils with various crosslink configurations to mechanical stress.

6.1 Perspective on semi-flexible Polymers under Force

The Martini 3 force field

Modeling semi-flexible polymers, e.g., collagen or PPE, with the Martini 3 force field
largely focused on reproducing mechanical, structural and solvation properties from the
atomistic models and experiments from the literature. In particular, modeling complex
molecular structures with the Martini 3 building block principle is not straightforward. For
example, while the π-conjugated backbone of PPEs was captured with a geometrical model,
maintaining the collagen triple helix under force posed quiet a challenge.

In practice, solely applying the Martini 3 force field to maintain the helical shape of a
particular molecule is not sufficient, such that structure-based models, e.g., elastic-network
and Gō-like potentials are commonly used (see section 5.3.5) [115, 248]. Specifically, pre-
serving the triple helix of the 67 nm-long collagen molecule and divalent crosslinked fibril
under force required additional rotational restraints at each protein termini (both AA and
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CG) [218]. Obviously, such restraints introduce an unwanted bias to MD simulations, how-
ever, are required for small fibrillar systems to reduce boundary effects, e.g., triple helix
unwinding, and can be omitted for larger microfibrillar systems (Fig. 5.5-5.6). This demon-
strates the success of the Martini 3 force field by enabling large CG-MD simulations of var-
ious crosslinked collagen microfibrils under force on long timescales in order to get closer
to their real biological counterparts on the micrometer scale.

Yet, as already known from the Martini 2 force field, modeling biopolymers with com-
plex helical shapes (e.g. DNA) required new bead types to capture fine structural details,
namely the tiny bead (see section 1.2). Uusitalo et al., for instance, combined such tiny
beads with an elastic-network model to reproduce the double helical shape and persistence
length of RNA from AA simulations and experiments, however, was limited to a 10 fs time
increment [248]. Although, the reduced time step issue was resolved in the Martini 3 force
field by reparameterised cross-interactions between beads of different size, a well-defined
parameter set, andmore preferably detailed instructions onmodeling complex helical shapes
are still missing. Promising progress in this matter is pursued by Grünewald, who aims to
improve the way helices are modeled in general1. According to Grünewald, the future heli-
cal model in the Martini 3 force field might rely on a single CG bead, that is located at the
Cα atom of the atomistic structure and linked through constraints to four virtual sites, each
of which represents the N-, C-, O- and H-atom in direct proximity. Besides, this atomistic
description of the protein backbone is expected to become handy when incorporating hy-
brid MD-schemes, like Kinetic Monte Carlo/Molecular Dynamics (KIMMDY) [200] (see
section 3.4), into the Martini 3 force field to enable reactive CG-MD simulations.

Large poly(para-phenylene ethynylene)s bulks and collagen microfibrils under force

Expanding on this, we predict that incorporating KIMMDY into the Martini 3 force field
might proof fruitful to determine rupture events in semi-flexible (bio-)polymer networks,
and thereby gain insights into the molecular processes leading to macroscopic failure modes.
For example, performing multiple rupture events in collagen microfibrils is assumed to af-
fect the force distribution within the fibrillar network by, among others, altering force trans-
mission pathways and the capability to provide as a structural scaffold. Furthermore, multi-
ple rupture events might even reveal evolutionary-based prevention mechanisms for catas-
trophic failure, such as radical scavenging on DOPA subsequent to homolytic bond cleavage
and possible crosslink formation with close by Lysine-like residues2(see section 5.4) [218,

1Based on a personal conversation with Dr. Fabian Grünewald, core-developer of Martini 3. (17.07.2023)
2This idea was picked up from a joint discussion with Prof. Dr. Frauke Gräter in Kobe. (March 2023)
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249]. In a way, knowledge about these evolutionary-based protection mechanisms on the
molecular scale is anticipated to guide post-functionalization in tissue engineering aiming
to slow down biopolymer-based matter degradation and aging processes [206].

Beside collagen, combining reactive CG-MD simulations with our Martini 3 PPE model
could help elucidate the time-evolution of shear banding within networks comprising semi-
flexible polymers under shear-flow on the molecular scale. In detail, we expect that through
continuous bond scissions of long-chain PPEs a complex many-body network of chains with
different lengths arises, that more closely resembles the cryo-milling experiments (see sec-
tion 3.4). This might shed light into molecular processes governing the formation and deple-
tion of shear banding in entangled semi-flexible polymer networks, for example, bond rup-
ture induced chain-disentanglement leading to bulk systems containing short-chain PPEs.

Finally inspired by nature, Fitzpatrick et al. combined brownian dynamics simulations
with microrheological experiments to reveal a non-linear visoelastic response of composites
comprising stiff actin and soft DNA biopolymers to mechanical load [174, 250]. Accord-
ingly, we propose the Martini 3 force field to probe blends of stiff and soft polymers, e.g.,
PPE and polymethyl methacrylate (see section 3.1), to observe a similar non-linearity un-
der force. Probing the response of such composites to shear-flow on the microscale could
provide meaningful insights into their processability for, e.g., additive manufacturing pro-
cesses. More visionary, incorporating PPEs into composites could leverage their potential
as radical sponges, e.g., similar to DOPA in collagen-based tissue [249]. This is expected to
slow down mechanical degradation and could increase the lifespan of polymer-based matter
under cyclic mechanical load by reducing the likelihood of mechanical failure modes, e.g.,
polymer fatigue due to homolytic bond scission.

Beyond the Martini 3 force field

Molecular simulations were recently disrupted by machine-learning (ML) approaches, that
are expected to overcome the limitations of our physics-based simulation methods, i.e., lim-
ited computational resources to access the time and length scales required for certain bio-
logical processes [251]. Although, we now leave the well-defined boundaries of the Martini
3 force field to the promising field of ML-CG modeling, the basic steps still remain, that
is identifying a mapping scheme, defining the potential energy surface and validating with
higher-resolution and experimental data. While most ML-CG force fields focused on cap-
turing the potential energy surface of the molecular structure (e.g. CGnets), only some at-
tempted to tackle the far more complex issue of data-driven mapping schemes arising from
the dimensionality reduction [252–254]. Recently, Majewski et al. introduced a single
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neural-network architecture, that was able to capture the thermodynamics of twelve struc-
turally diverse proteins, and therefore paves the way towards transferable CG force fields,
that is the holy grail in the field of CG modeling [255].

Even though the current ML-CG force fields are not yet applicable to systems on the
scale of the semi-flexible (bio-)polymer networks probed in this thesis, we expect such force
fields to change the field of molecular simulations permanently. Furthermore, combining
large language models to guide chemical intuition, e.g., an optimized mapping scheme, with
quantum mechanical calculations to capture essential physics, e.g., a delocalized π-electron
system, could proof fruitful in the future. Specifically, such visionaryML-based approaches
might be suitable to automate CGing for high-throughput screening applications, e.g., drug
discovery and design, and to overcome current limitations in MD simulations, that is bal-
ancing biomolecular processes, chemical accuracy and computational resources [256, 257].
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Figure A1. Matching probability densities based on a center-of-geometry mapping.
Probability densities for bond length (top), bond angle (middle) and dihedral angle potentials
(bottom) obtained from a center-of-geometry mapping. Good agreement for probability
densities from Martini 3 and mapped AA simulations. However, probability densities for
dihedral angles were wider than the AA ones.
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Figure A2. Comparing probability densities obtained from the geometrical model.
Probability densities for bond length (top), bond angle (middle) and dihedral angle poten-
tials (bottom) partly deviate from the mapped AA ones. The additional harmonic bond angle
potential reduces the width of the dihedral angle probability densities.
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Figure A3. Persistence length for PPE in water. Fitting the unit tangent vector auto-
correlation (eq. 2.29) to a Martini 3 trajectory for a single 20- to 100-monomer long PPE
chain in water.
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Figure A4. Persistence length for PPE in water. Fitting the squared end-to-end distances
from the worm-like chain theory (eq. 2.30) to a Martini 3 trajectory for a single 20- to 100-
monomer long PPE chain in water.
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Figure A5. Persistence length for PPE in toluene. Fitting the unit tangent vector auto
correlation (eq. 2.29) to a Martini 3 trajectory for a single 20- to 100-monomer long PPE
chain in toluene.
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Figure A6. Persistence length for PPE in toluene. Fitting the squared end-to-end dis-
tances from the worm-like chain theory (eq. 2.30) to a Martini 3 trajectory for a single 20-
to 100-monomer long PPE chain in toluene.
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Figure A7. Bonded terms for divalent HLKNL crosslink. Probability densities for
bonded terms of the divalent HLKNL crosslink from the mapped AA trajectory (blue) and
Martini 3 simulations (orange).
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Figure A8. Bonded terms for trivalent PYD crosslink. Probability densities for bonded
terms of the trivalent PYD crosslink from the mapped AA trajectory (blue) and Martini 3
simulations (orange).
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