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A B S T R A C T

Coordinated movements, foraging, and other higher-order cognitive tasks such as speech,
music, or decision-making are impossible without precise timing. Computational models
of interval timing, which ranges from a few hundred milliseconds to several minutes,
are expected to provide key insights into the underlying mechanisms of timing, which
are to date still largely unknown. So far, existing models have only partially replicated
key experimental observations, namely the psychophysical law (linear relation between
subjective and objective durations), the dopaminergic modulation, and the scalar property,
i.e., the linear increase of the standard deviation of temporal estimates with objective
durations. Among a number of brain regions, which, based on experimental observations
in humans, might take part in time perception, here I focus on the prefrontal cortex (PFC)
as a candidate for interval timing. Previously, various computational models for interval
timing were proposed, namely, state-space model (Buonomano, 2000), ramping activity
model (Durstewitz, 2003), synfire chains (Hass et al., 2008), and striatal beat model (Miall,
1989; Matell & Meck, 2004). Here, I test two of those four models within a computational
PFC model for their ability to replicate experimental observations on time perception by
incorporating the state-space model and the ramping activity model into a data-driven
PFC model (Hass et al., 2016).

I show that the combination of the state-dependent and the PFC model into the
state-space PFC model, successfully encodes time up to 750 ms and, within this range,
reproduces all key experimental observations. Analyzing the underlying mechanisms, I
find that the representations of different intervals rely on the natural heterogeneity in
the parameters of the network, leading to stereotypic responses of subsets of neurons.
Furthermore, we propose a theory for the mechanism underlying subsecond timing
in this model, based on correlation and ablation experiments as well as mathematical
analyses explaining the emergence of the scalar property and Vierordt’s law.

The ramping activity model was previously proposed as a time perception model
making use of slowly increasing firing rates saturating at different time points through
a calcium-dependent after-depolarizing (AD) current. For the ramping PFC model, the
calcium-dependent AD current was incorporated into the PFC model and different
readout methods for time estimation were conceived and tested for their explicit use of
the ramping property. By counting the number of neurons above respective thresholds, a
method was found that makes use of the ramping firing rates for time estimation and
successfully reproduces all three timing properties in intervals ranging from 500 – 1500 ms.

The state-dependent PFC model as well as the ramping PFC model proposed in this
work constitute the first data-driven models of interval timing in the range of hundreds
of milliseconds to several seconds that have been thoroughly tested against a variety of
experimental data. In accordance with the idea of multiple mechanisms responsible for
different scales of time perception in nervous systems as proposed in the literature, here, I
describe two computational models for interval timing operating on complementary time
scales that are in line with experimentally observed connectivities and firing statistics of
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the prefrontal cortex. With this, the two proposed models provide an ideal starting point
for further investigations of interval timing.
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Z U S A M M E N FA S S U N G

Koordinierte Bewegungen, Nahrungssuche und andere kognitive Aufgaben höherer
Ordnung wie Sprache, Musik oder Entscheidungsfindung sind ohne präzise Zeitschät-
zung unmöglich. Computergestützte Modelle der Intervallzeitschätzung, die von einigen
hundert Millisekunden bis zu mehreren Minuten reicht, können wichtige Einblicke in
die zugrundeliegenden Mechanismen der Zeitschätzung liefern, welche bis heute noch
weitgehend unbekannt sind. Bisherige Modelle haben nur teilweise wichtige experimen-
telle Beobachtungen repliziert, nämlich das psychophysikalische Gesetz (linearer Anstieg
der subjektiv wahrgenommenen Zeit), die dopaminerge Modulation und die skalare
Eigenschaft, also der lineare Anstieg der Standardabweichung von subjektiv wahrgenom-
menen Zeiten. Aus einer Reihe von Hirnregionen, die, basierend auf experimentellen
Beobachtungen an Menschen, an der Zeitwahrnehmung beteiligt sein könnten, konzen-
triere ich mich hier auf den präfrontalen Kortex (PFC) als einen Kandidaten für die
Intervallzeitschätzung. Zuvor publizierte computerbasierte Zeitwahrnehmungsmodelle
für die Intervallzeitmessung, wie etwa das state-space Modell (Buonomano, 2000), ramping
Aktivität Modell (Durstewitz, 2003), synfire Ketten (Hass et al., 2008), und das striatal beat
Modell (Miall, 1989; Matell & Meck, 2004). Hier teste ich zwei der vier Modelle, nämlich
das state-space Modell und das Ramping Aktivitätsmodell innerhalb eines datengetriebe-
nen präfrontalen Kortex (PFC) Modells auf ihre Fähigkeit experimentelle Beobachtungen
zur Zeitwahrnehmung zu replizieren.

Ich zeige, dass die Kombination des state-space Modells und des PFC-Modells zum
state-dependent PFC-Modell erfolgreich die Zeit bis 750 ms kodiert und innerhalb dieses
Bereichs alle wichtigen experimentellen Beobachtungen reproduziert. Durch die Analyse
der zugrunde liegenden Mechanismen wurde festgestellt, dass die Darstellungen unter-
schiedlicher Intervalle auf der natürlichen Heterogenität der Parameter des Netzwerks
beruhen, was zu stereotypen Reaktionen von Untergruppen von Neuronen führt. Darüber
hinaus schlage ich eine Theorie für den Mechanismus vor, der der Zeitschätzung im
Bereich unter einer Sekunde in diesem Modell zugrunde liegt. Diese Theorie basiert
auf Korrelations- und Ablationsexperimenten, sowie mathematischen Analysen, die das
Auftreten der skalaren Eigenschaft und des Vierordt’schen Gesetzes erklären.

Das ramping Modell wurde bereits als Zeitwahrnehmungsmodell vorgeschlagen, da
es sich die unterschiedlichen Sättigungszeitpunkte der ansteigenden Feuerraten der
Neuronen aufgrund des kalziumabhängigen nachdepolarisierenden Stromes zunutze
machen könnte. Für das ramping PFC-Modell wurde der kalziumabhängige nachdepo-
larisierende Strom in das PFC-Modell integriert. Anschließend wurden verschiedene
Auslesemethoden zur Zeitschätzung entwickelt und getestet ob diese Methoden auf der
Nutzung der Eigenschaft steigender Aktivitäten (ramping) beruhen. Die Bestimmung der
Anzahl der Neuronen über einem Schwellwert zu jedem Zeitpunkt, lieferte eine Methode,
mit der die Zeitschätzung mithilfe des Anstiegs der Feuerraten und deren Saturierung
ermittelt werden konnte. Darüberhinaus konnten mit der Methode erfolgreich alle drei
Zeitschätzungseigenschaften im Intervall 500 – 1500 ms reproduziert werden.
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Die in dieser Arbeit vorgeschlagenen Modelle, genauer das state-dependent PFC-Modell
sowie das ramping PFC-Modell, stellen die ersten datengetriebenen Modelle für Inter-
vallzeitmessung im Bereich von Hunderten von Millisekunden bis zu mehreren Se-
kunden dar, die umfassend gegen eine Vielzahl von experimentellen Daten getestet
wurden. Im Einklang mit der in der Literatur vorgeschlagenen Vorstellung von mehreren
koexistierenden Mechanismen, die für verschiedene Zeitskalen der Wahrnehmung in
Nervensystemen verantwortlich sein könnten, beschreibe ich hier zwei Computermodel-
le für die Intervallzeitmessung auf komplementären Zeitskalen, die mit experimentell
beobachteten Verbindungswahrscheinlichkeiten und Feuerstatistiken des präfrontalen
Kortex übereinstimmen. Damit bieten die beiden vorgeschlagenen Modelle einen idealen
Ausgangspunkt für weitere Untersuchungen der Intervallzeitmessung.
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1
I N T R O D U C T I O N

The Big Business Man smiled. “Time”, he said,
“is what keeps everything from happening at once.”

— Ray Cummings, The Girl in the Golden Atom (1919)

What is time, and how do we perceive it? While everyone seems to have an intuitive
understanding of what time is and is using the concept on a daily basis in terms like
speed, clock, day, year, etc., a concrete definition of the multifaceted term time is tricky.
In physics, time has long been assumed to be universal across different places in the
universe and only running forward, referred to as the arrow of time. The assumption of
time to be universal was abandoned by Einstein in his theory of relativity, in which,
based on the observation that the speed of light is constant in every reference frame,
Einstein concluded among other things that there is no absolute time and time must slow
down when approaching the speed of light, an effect referred to as time dilation. Many of
Einstein’s predictions were later confirmed in experiments supporting Einstein’s theory
and making the concept of time even harder to grasp.

While a clear definition of time remains elusive, the measurement of time is much
easier. In most cases, clocks make use of periodic processes, such as the rotation of the
earth, turning of hourglasses, swings of a pendulum, or the resonant frequency of atoms
in atomic clocks. The counting of periods of a periodic process can then be used to
measure and compare time, which however rests on the assumption that the duration of
a period remains constant. The degree of constancy of the periods together with errors in
the measurement process determine the accuracy of a clock. Understanding how a clock
works is relatively easy and the human species has found ways to build clocks with more
and more precision and across vast time scales ranging from the time it takes a photon to
cross a molecule measured in zeptoseconds (247 × 10

−21 s; Grundmann et al., 2020), up
to and beyond the age of the universe of 13.8 billion years (500 × 10

15 s; Aghanim et al.,
2020). Yet, neuroscience has so far not succeeded in understanding how our brain is able
to perceive, represent, and estimate time across scales.

In everyday life, the ability to estimate the passage of time across many time scales
is of fundamental importance, and malfunctions of time estimation are associated with
various disorders. As time passes, we acquire knowledge on the sense of duration and
rhythms required to, e.g., execute and coordinate movement (Merchant et al., 2013), to
forage (Lucas et al., 2013; Fontes et al., 2016), and also to perform higher-level cognitive
tasks, such as speech, music, decision-making (Brody et al., 2003; Buhusi & Meck, 2005).
To master these and many more tasks, time perception must span many orders of
magnitude, ranging from microsecond timing relevant for the detection of interaural
delays to minutes, days, and even years for long-term planning (Buhusi & Meck, 2005;
Merchant & De Lafuente, 2014). While mechanisms underlying microsecond timing are
reasonably well understood (Merchant & De Lafuente, 2014; Paton & Buonomano, 2018),
the neural basis and mechanisms for interval timing, i.e., for intermediate-scale time
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estimation, between hundreds of milliseconds to minutes, remains controversial (Paton
& Buonomano, 2018). On the interval timing scale, a number of neuropsychological
disorders are known to interfere with time perception. Specifically, time estimations
are altered in case of, e.g., attention deficit hyperactivity disorder (ADHD), depression,
schizophrenia, and Parkinson’s disease (PD) (Meltzer & Stahl, 1976; Rammsayer, 1990;
Brown & Gershon, 1993; Buhusi & Meck, 2005; Fontes et al., 2016; Howes et al., 2017). A
better understanding of time perception on the interval timing scale might therefore also
help to understand and potentially help find treatment for its dysfunction in pathological
states.

Despite the lack of a full mechanistic understanding of time perception in the brain, a
number of phenomena related to time perception have been studied in psychological and
neurobiological experiments. In both animals and humans, experiments were performed,
in which, e.g., a duration had to be estimated, allowing for the quantification of time
perception in the brain. In such experiments, it has been shown that both the estimated
times and the standard deviations of the estimated times increase linearly in relation to
realtime, which is referred to as psychophysical law of timing (Eisler, 1975) and Weber’s
law (Gibbon, 1977) respectively. Besides, experiments indicate that emotions, mood, but
also levels of various neurotransmitters, such as dopamine, can strongly impact time
perception (Droit-Volet & Meck, 2007).

While bridging the gap between psychology or behavioral neuroscience experiments
and the underlying processes of the neurobiological substrate is generally difficult, it
is still a worthwhile undertaking. Generally, different origins of biological dysfunctions
can lead to the same psychological disorder and vice versa (Khaleghi et al., 2022).
Computational neuroscience models provide a promising way to connect neurobiology
and psychology and help discern underlying causalities (Khaleghi et al., 2022). Having an
established computation model allows for studying and understanding the underlying
mechanisms in detail owing to their complete accessibility. While capturing all biological
details in computational models is impossible, the goal is to incorporate enough detail
to capture the essence of a problem. Having such a model allows not only to measure
the properties and quantities of an experiment but also offers the potential to investigate
the causes in any detail within the limits of the model. Additionally, these models allow
for making predictions, which in turn can serve as the basis for future experiments that
either match or challenge those predictions.

A variety of computational models of time perception for interval timing are currently
discussed (Hass & Durstewitz, 2014, 2016). Among these are models that make concrete
suggestions about the implementation within a spiking neural network, e.g., the state-
dependent network model proposed by Buonomano (2000), models of ramping activity
(Durstewitz, 2003), synfire chains (Abeles, 1982; Hass et al., 2008), or alternative models
that suggest time perception to occur via oscillations in the brain, such as the striatal beat
model (Miall, 1989; Matell & Meck, 2004). However, many of the existing computational
models are simplified to the point that it is unclear if the proposed mechanisms would
still work the same in a more complex, biologically plausible model.

In this work, I focus on computational models of interval timing, within the range of
several milliseconds to several seconds, with the goal of evaluating existing computa-
tional models within a more complex, biologically plausible model for their ability to
reproduce established phenomena of time perception as measured in psychological and
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neurobiological experiments in animals and humans. To this end, since the prefrontal
cortex (PFC) has been shown to be involved in interval timing (Lewis & Miall, 2006), I
incorporated two of the above-mentioned existing computational models, namely the
state-space model and the ramping activity model, into a data-driven spiking neural
network model of the PFC proposed by Hass et al. (2016). The resulting models were
tested against experimentally observed properties of interval timing.

This chapter provides an introduction to the literature on time perception, including
the definition and classification of time perception, focusing on interval timing. Next, the
experimental methods for measuring interval timing and their psychophysical properties,
such as linear timing, scalar property, and distortions of interval timing, are discussed.
This is followed by a detailed account of the neural substrate hypothesized to underlie
interval timing, including the brain regions involved, dopaminergic modulation, and
the relationship between the prefrontal cortex and dopaminergic system for interval
timing. Finally, psychological time perception models, such as the pacemaker-accumulator
model, and neurocomputational time perception models, including state-space models
and ramping activity, are reviewed.

1.1 definition and classification of time perception

Time perception is defined as the subjective experience of time, i.e., how the individual
perceives the duration of an event (Fontes et al., 2016). Therefore, time perception is
closely related to cognitive processes and influenced by environmental conditions, as
well as by the individual’s emotional state, attention, and memory (Fontes et al., 2016).
In mammalian neural circuits, time perception spans around twelve orders of magnitude
covering microsecond timing, millisecond timing, interval timing, and circadian rhythms
(Buhusi & Meck, 2005; Merchant & De Lafuente, 2014), see Fig. 1.1.

Microsecond timing is crucial, for example, in binaural hearing, in which interaural
time delays, resulting from different spatial distances between each ear and the acoustic
source, are used to spatially localize the source of the signal (Merchant & De Lafuente,
2014). Temporal distinctions and estimates ranging from a few hundred milliseconds to

µs ms s min d y
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Interval
Timing

Decision making, 
conscious time estimation, …

Daily circadian
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timing
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109 s106 s103 s1 s10-3 s10-6 s

Figure 1.1: Classification of timing across scales.
The various time scales, depicted here on a logarithmic scale, can be categorized
into microsecond timing, millisecond timing, interval timing (second to minute
range), and daily circadian rhythms.
Redrawn and adapted from Buhusi and Meck (2005).

several minutes are referred to as interval timing. Interval timing includes the millisec-
ond/subsecond range (200 – 1000 ms), which is important in various behavioral tasks,



4 introduction

such as object interception and collision avoidance, speech perception and articulation,
performance and appreciation of music and dance, motion processing, and coordination
of fine movements (Buhusi & Meck, 2005; Merchant et al., 2013; Merchant & De Lafuente,
2014). Time perception in the higher ranges of interval timing, specifically seconds to
minutes range, depends on conscious and cognitive control (Merchant & De Lafuente,
2014) and is required for various processes, such as optimal foraging (Henderson et al.,
2006), decision-making (Brody et al., 2003), sequential motor performance (Bortoletto
et al., 2011) and associative conditioning (Gallistel & Gibbon, 2000; Buhusi & Meck, 2005;
Merchant & De Lafuente, 2014).

The circadian rhythm describes the 24 h light-dark cycle that controls sleep, wakeful-
ness, appetite (Buhusi & Meck, 2005), and feeding (Merchant & De Lafuente, 2014). The
underlying mechanism is likely independent of the interval timing mechanism. The
suprachiasmatic nucleus of the hypothalamus has been identified as the most likely
location for circadian rhythm in the brain, since behavioral studies performed in animals
kept in darkness after lesion of this brain region eliminated circadian rhythm (Hastings
& Maywood, 2000; Lewis et al., 2003). Additionally, when the suprachiasmatic nucleus
is lesioned, interval timing on the scale of 10 s remains unaltered, suggesting two inde-
pendent mechanisms within the brain for interval timing and circadian rhythms (Lewis
et al., 2003).

Regarding subsecond and suprasecond interval timing, it is still unclear, whether
a single mechanism can account for both. Some studies point towards two different
timing mechanisms including different brain regions with a timing threshold at around
1300 – 2000 ms (Wiener et al., 2010). Other studies argue that interval timing relies on
a single mechanism (Merchant & De Lafuente, 2014), associating the differences in
the timing to higher demands of attention and working memory required for longer
intervals as compared to shorter intervals (Coull et al., 2011). In this work, I study the
mechanisms behind interval timing in the millisecond to several seconds range through
a neurocomputational model.

1.2 psychophysics of time perception

Over the past decades, several experiments have been conducted on animals and humans
to understand interval timing and its underlying mechanisms and find relationships
between objective and subjective time and its error margin, as well as distortions in time
perception. In the following sections, experiments conducted to measure time perception
and the results of these experiments, referred to as the psychophysics of time, including
the psychophysical law and the scalar property, are explained in detail.

1.2.1 Experimental paradigms to measure time perception

There are a variety of experimental paradigms for studying the fundamentals of interval
timing. In general, time perception tasks can be performed under two conditions, namely,
retrospective and prospective timing. While retrospective timing requires subjects to esti-
mate time without prior knowledge of the task, for prospective timing, participants are
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informed about the task in advance. For prospective timing, there are a variety of ways
to measure duration:

1. Verbal estimation: estimated times are verbalized in physical units, i.e., number of,
e.g., seconds or minutes (Grondin, 2010a, 2014; Mioni et al., 2016).

2. Reproduction: subjects have to reproduce durations presented with, e.g., a continuous
sound or flash (Buhusi & Meck, 2005; Mioni et al., 2016).

3. Interval production: subjects produce subjective duration, e.g., with finger tapping
methods, from objectively labeled durations presented by the experimenter in
physical units (Grondin, 2010a, 2014; Mioni et al., 2016).

4. Interval discrimination: participants have to differentiate multiple intervals. This can
be done in one of the following ways, cf. (Grondin, 2010a; Allman & Meck, 2012;
Grondin, 2014; Mioni et al., 2016):

a) Forced choice procedure: two consecutive intervals after which the subject decides
whether the first or second interval was longer or shorter.

b) Single stimulus: only a single stimulus needs to be judged via one of the
following methods:

i. Bisection task: subjects are trained with the shortest and longest interval
and have to discriminate for each trial, whether the presented intermediate
interval is closer to the short or longer interval.

ii. Temporal generalization task: subjects are trained with the midpoint of
several intervals and have to determine after each interval if the presented
interval is similar to the trained interval.

In contrast, retrospective timing tasks only allow for verbal estimation or interval repro-
duction tasks.

In discrimination tasks, only binary decisions have to be made by the participants,
while in all other setups, participants are asked to convey a more fine-grained estimate
of the intervals. However, the empirical data from all paradigms can be related to each
other. For the discrimination task, a psychometric density function in the form of a sigmoid
represents the cumulative (Gaussian) probability of the presented interval to be longer
than the trained interval (Allman & Meck, 2012), whereas for the other task setups,
time estimation performance can be modeled directly with a Gaussian distribution over
intervals (Thönes & Oberfeld, 2015). A number of observations can be extracted from
the measured psychometric density function of a discrimination task, i.e., the probability
of responding long p(Long|Itest) for the test intervals Itest (Grondin, 2014): The bisection
point defining the time point with p(Long|Itest) = 0.5, the difference limen (DL) and the
Weber fraction (Wf) (Carroll et al., 2009), all of which serve to describe the temporal
variability. In particular, the DL is defined as half of the distance between the durations
of p(Long|Itest) = 0.75 and p(Long|Itest) = 0.25, and Wf is computed by dividing DL by
the bisection point (Carroll et al., 2009; Grondin, 2014). In general, the bisection point and
the DL from interval discrimination tasks are related to mean and standard deviation of
duration estimates, which are important psychophysical hallmarks of timing reviewed in
the following sections.
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1.2.2 Psychophysical law of timing

The relationship of any subjectively perceived sensory process to the actual measured
physical unit can be described by the power law (Grondin, 2014)

Sest = kSN (1.1)

also called Steven’s law (Stevens, 1975) with Sest describing the estimated or perceived
stimulus quantity, S the physical stimulus quantity and k > 0 the slope. The exponent N
can be different for different sensory conditions, e.g., for smell (N = 0.6), salty taste (N
= 1.4), and for brightness (N = 0.5) (Stevens, 1975). For time perception, N is close to 1,
resulting in

Test = kTN ≈ kT . (1.2)

However, some studies report small deviations from N = 1 (N = 1.1 according to Stevens
(1975) and N = 0.9 according to Eisler (1976)). Still, the linear psychophysical law of
timing in which the realtime is proportional to the averaged representation of time is the
dominant view in the field (Eisler, 1975; Blankenship & Anderson, 1976; Allan, 1979).

For the slope k, although the averaged estimated times would be expected to agree
with realtime, i.e., k ≈ 1, a deviation from this has been found in experimental studies,
especially in interval reproduction tasks (Vierordt, 1868). Specifically, Vierordt (1868)
found that short intervals are overestimated, while longer intervals are underestimated
and therefore k < 1 (Vierordt, 1868; Glasauer & Shi, 2021). The indifference point (IP),
i.e., the point at which Test = T, may vary according to which intervals are tested
during the experiments (Lejeune & Wearden, 2009). Testing intervals within the range of
200 – 1000 ms, the IP was found to be between 600 – 800 ms with a slope k ≈ 0.5 (Kanai
et al., 2006), whereas testing intervals within the range of 400 – 2000 ms, shifts the IP to
higher values IP ≈ 1400 ms with a timing slope of k ≈ 0.9 (Franssen et al., 2006). Murai
and Yotsumoto (2016) found a slope of k ≈ 0.7 for visual stimuli and k ≈ 1.1 for auditory
stimuli for short intervals (400 – 600 ms) and a slope of around k ≈ 0.6 for longer intervals
(2000 – 3000 ms). Several studies attempted to calculate the IP using a general formula,
such as by calculating the arithmetic mean of the intervals used (Bobko et al., 1977;
Franssen et al., 2006; Lejeune & Wearden, 2009). However, other studies have not been
able to confirm this through their experiments (Woodrow, 1934; Yarmey, 2000; Lejeune &
Wearden, 2009).

1.2.3 Scalar property

Another important psychophysical property for all sensory perceptions is the increase in
standard deviation for increased stimulus magnitudes, which is referred to as Weber’s
law. In the context of timing, the estimation error increases linearly with the averaged
duration estimates ⟨Test⟩, which is referred to as the scalar property (Gibbon, 1977; Buhusi
& Meck, 2005; Lewis & Miall, 2009; Grondin, 2010a; Droit-Volet, 2013):

σTest = Wf · ⟨Test⟩ , (1.3)

where Wf is the Weber fraction and σTest the standard deviation of the duration estimates
(Grondin, 2014). If the scalar property holds true, i.e. σTest ∝ ⟨Test⟩, then the Weber
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fraction Wf = σTest/⟨Test⟩ is constant over duration estimates. Various studies have found
that the Wf is not always constant, specifically not for short or long intervals. Among
others, Getty (1975) has reported a U-shaped distribution of Wf with an initial drop for
short intervals and an increase for longer intervals, see Fig. 1.2. This U-shaped function
is the result of a sublinear (e.g., square-root) scaling of timing errors for short intervals
and a superlinear increase of timing errors for longer intervals as was tested across
various species (pigeons (Bizo et al., 2006), rats (Cantor & Wilson, 1981), and humans
(Woodrow, 1930; Getty, 1975)). Taking these empirical deviations into account, Getty
(1975) reformulated Weber’s law to a generalized version that could capture the initial
drop of the Weber fraction, but not the rise for longer intervals:

Wf(T) =
σTest(T)
⟨Test⟩

=

√
α2 +

VR

⟨Test⟩2
, (1.4)

with the residual noise variance VR and a constant value α relevant for large ⟨Test⟩:
Wf ≈ α = const. To also cover the linear increase of Wf for longer intervals, Bizo et al.
(2006) modified the version of Killeen and Weiss (1987) by defining

Wf =

√
(A⟨Test⟩)m + B⟨Test⟩+ C

⟨Test⟩
(1.5)

where A, B, C, and m are parameters requiring empirical determination, where m is
found to be varying between 2 and 3. With this additional modification, Weber fractions
observed by Getty (1975) were fitted much better, cf. solid line in Fig. 1.2. In summary,

Figure 1.2: Experimental evidence for the generalized Weber’s law
The data of two subjects are fitted for the generalized Weber’s law (eq. 1.4; (Getty,
1975)) (dashed line) and for the modified version (eq. 1.5; (Bizo et al., 2006)) with the
solid line (data from Getty (1975) and plot from Bizo et al. (2006)). Reprinted from
Behavioral Processes, Vol 71 Issues 2-3, Bizo, Chu, Sanabria, Killeen, The failure of
Weber’s law in time perception and production, Pages 201-210, copyright (2006),
with permission from Elsevier.

the scalar property seems to hold for intervals of around 200 ms (Getty, 1975; Fetterman
& Killeen, 1992; Grondin, 2001; Bizo et al., 2006) up to 2000 ms (Woodrow, 1930; Getty,
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1975) in humans, with typical Weber fractions of around 0.05 – 0.13 depending on the
experimental paradigm (Getty, 1975; Grondin, 2010b).

1.2.4 Distortions of time perception

While time perception and estimation are often quite accurate, there can be distortions of
time perception well-known from everyday life: “time seems to fly when we are having
fun and drags when we are bored” (Droit-Volet & Meck, 2007). The perceived time is
strongly fluctuating as it can speed up, slow down, or even stop depending on stimulus
properties (Wearden et al., 1998; Eagleman, 2008; Kaneko & Murakami, 2009), and the
internal participant’s state, such as attention (Polti et al., 2018), and emotions (Kanai
& Watanabe, 2006; Droit-Volet, 2013). In the following, the different factors, such as
stimulus properties, attention, and emotion are reviewed in terms of their influence on
time perception.

stimulus properties Time perception is modulated by various properties of the
stimulus. Depending on the complexity of the task, the stimulus motion, and the number
of events presented, estimated times may differ. For instance, dilation of time estimation
is measured when the number of events and the complexity of the stimuli presented
during the interval is higher (Kanai & Watanabe, 2006; Eagleman, 2008). Similarly, a
study performed by Brown (1995) has shown that time perception in the seconds range
strongly depends on stimulus motion. In estimation tasks, when subjects were shown
geometric objects that were either stationary or moving, the perceived time was longer
for moving objects.

In addition, stimulus modalities, stimulus intensities, and between-trial variation in
stimulus modalities have been shown to influence duration perception. In particular,
auditory stimuli were shown to be perceived as longer than visual stimuli (Goldstone &
Lhamon, 1974), and increasing the volume for auditory stimuli or the luminance for visual
stimuli resulted in longer durations than stimuli with lower intensities (Goldstone et al.,
1978; Xuan et al., 2007). Furthermore, the presentation of different stimulus modalities
and the order of these stimuli at the beginning and end of an interval can also influence
the perceived duration (Kanai & Watanabe, 2006). Presenting an auditory stimulus first
and then a visual stimulus (AV) for intervals in the subsecond range are perceived
as longer than first presenting a visual stimulus and then an auditory stimulus (VA)
(Grondin et al., 1996).

attention Interval timing can be altered by shifting attention (Grondin, 2008). Com-
parison of results on retrospective and prospective timing shows that knowledge about
the timing task has an influence on time estimation (Macar et al., 1994). For retrospective
timing, Ornstein (1975) suggests that the perceived duration of an interval increases with
the size and complexity of a task because of memory being “occupied” with complexity.
In contrast, in prospective timing tasks, the estimated times are shorter when the number
of stimuli is higher. When attention is focused on the timing task, the estimated duration
lengthens, whereas when attention is split between the timing task and the presented
stimulus, the estimated time is perceived as shorter (Macar et al., 1994; Angrilli et al., 1997;
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Kanai & Watanabe, 2006; Polti et al., 2018). When an absorbing stimulus is presented,
attention is mainly directed to that stimulus rather than to the timing task, leading to an
underestimation of intervals.

emotion Studies suggest that our primary emotions, such as fear, anger, joy, disgust,
sadness, and surprise (Ekman, 1999) are highly variable and strongly modulate perceived
time. There are several methods of conducting experiments that systematically alter
a person’s mood, such as iterative presentation of visual or auditory stimuli from the
standardized arousal-inducing stimulus sets (International Affective Digital Sounds
System (IADS) and International Affective Picture System (IAPS)) before the timing task,
or the administration of pharmacological substances, such as dopamine (DA) (Droit-Volet
& Meck, 2007).

Varying low/high arousal and pleasant/non-pleasant valence stimuli for duration
tasks in the range of 2 – 6 s, Angrilli et al. (1997) and Noulhiane et al. (2007) show that
emotion-inducing stimuli and, in particular, negative stimuli were perceived as longer
for duration tasks than neutral stimuli. Specifically, Angrilli et al. (1997) determine
that in high-arousal tasks, negative pictures, such as presenting a baby with an eye
tumor, lead to overestimation, whereas positive pictures, such as erotic scenes, lead to
underestimation. In contrast, for low-arousal tasks, negative pictures (e.g., dead cow)
result in underestimation and positive pictures (e.g., pet dogs) in an overestimation.
The authors find a possible explanation for the opposite effect of increasing arousal by
relating to attention. For low levels of arousal, the heart rate of the participants indicates a
higher activation to negative pictures than to positive pictures, such that one can conclude
that more attention is given to the negative stimuli which results in underestimation
(Angrilli et al., 1997; Droit-Volet & Meck, 2007). While for low arousal stimuli duration
estimation is affected by attentional factors, for high arousal levels this theory does not
hold. Hence, the authors hypothesize that the participants might form an avoidance or
defensive reaction when they are confronted with negative high-arousal stimuli. Since the
participants were not allowed to avoid the negative high-arousal stimuli during the timing
tasks, these durations were overestimated. In contrast, the positive high arousal stimuli
had an appetitive reaction such that these durations were underestimated (Angrilli et al.,
1997; Droit-Volet & Meck, 2007).

Besides the high/low arousal and positive/negative valence stimuli which are used
to modulate the speed of the interval, the distortion of timing can also be reached
by pharmacological drugs modulating our emotions. A prominent pharmacological
modulator of time perception is dopamine (Rammsayer et al., 1993; Buhusi & Meck,
2005). The effects of the dopaminergic agonists and antagonists on timing are reviewed
in section 1.3.2.

1.3 neural substrate for timing

While a lot is known about the psychological features of interval timing, a mechanistic
understanding of the neurobiological implementation is still lacking. Experiments con-
ducted in rodents and humans provide some clues about (possible) roles of different brain
regions and the impact of neuromodulatory substances such as dopamine on interval
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timing. In the following, the brain regions proposed to be involved in interval timing
and the dopaminergic system with its direct and indirect effects on interval timing are
described.

1.3.1 Brain regions related to interval timing

Since experimental evidence suggests that the neural substrate for interval timing is
distinct from the suprachiasmatic nucleus generating the circadian rhythm (Lewis et
al., 2003), the question arises as to which is the actual anatomical region of interval
timing. Functional magnetic resonance imaging (fMRI) studies performed by Lewis and
Miall (2006) indicate the involvement of the PFC, basal ganglia, and striatum (Buhusi
& Meck, 2005). A literature review by Fontes et al. (2016), highlights that brain regions,
namely the frontal cortex, parietal cortex, basal ganglia, cerebellum, and hippocampus,
are associated with time perception (Cope et al., 2014; Fontes et al., 2016; Fung et al.,
2021). The fundamental functions of the prefrontal cortex, cerebellum, and basal ganglia
and their role in timing are reviewed in the following sections.

1.3.1.1 Cerebellum

The cerebellum, which is associated with coordination, learning, and adaptation of
movement (Kandel et al., 2021), is also involved in processes such as motivation, emotional
behavior, attention, and associative learning (Fontes et al., 2016; Kandel et al., 2021).
Injuries in the cerebellum are linked to impairment in movement, which is referred
to ataxia, and to sensory deficits during active movements (Kandel et al., 2021). In
general, the cerebellum receives input from many regions of the cerebral cortex, the brain
stem, and the spinal cord and projects to the vestibular nuclei, brain stem, and, via the
thalamus, back to the cerebral cortex, including sensory, motor, prefrontal and parietal
cortex (Kandel et al., 2021).

Due to the cerebellum being involved in the coordination of movements requiring
accurate timing in the millisecond to seconds range, several studies also suggest an
involvement of the cerebellum in interval timing (Ivry & Keele, 1989; Coull et al., 2011).
This is supported by a study from Ivry and Keele (1989), which compared the capacity
of time production and time discrimination tasks in patients suffering from PD, and in
patients with cerebellar or cortical lesions. Comparing the different groups, only patients
with cerebellar lesions showed deficits in both timing variability and timing accuracy
(Ivry & Keele, 1989; Coull et al., 2011). However, unlike for patients with lesions of the
prefrontal cortex, the timing of patients with cerebellar lesions was not affected by any
manipulations of attention and working memory, suggesting that the cerebellum only
plays a role for shorter time durations that require lower levels of attention (Coull et al.,
2011). In agreement with this hypothesis, application of transcranial magnetic stimulation
(TMS) onto the cerebellum impairs timing within the subsecond timing range rather than
in the suprasecond range, while TMS onto the PFC impaired timing in the suprasecond
range and not in subsecond range (Harrington et al., 2004b; Jones et al., 2004; Coull et al.,
2011).

However, most of the studies refer to motor timing rather than perceptual timing (Ivry
& Keele, 1989; Coull et al., 2011). To understand whether both, time perception and motor
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timing, are altered in patients with cerebellar lesions which would suggest a common
timing mechanism for both, Harrington et al. (2004b) performed time perception and time
reproduction tasks, of which the latter one has a timing and a motor component. In doing
so, they observed that cerebellar damage increased the variability of time reproduction
tasks, especially clock variability, which is associated with reduced working memory and
a marginal non-significant deficit in time perception (Harrington et al., 2004b). Coull et al.
(2011) highlight these results in their review by pointing out that patients with cerebral
lesions showed either marginal, non-selective deficits or deficits within a shorter range in
time perception. These studies suggest a time-modulating function for the cerebellum
instead of a time-keeping role.

1.3.1.2 Prefrontal cortex

The PFC refers to a large region in the frontal lobe of the brain associated with various
executive functions such as cognitive and emotional control of behavior, working memory,
decision-making, and other functions (Kandel et al., 2021).

Working memory describes the system in the brain responsible for temporarily storing
information (short-term storage) for the purpose of delayed retrieval and/or processing
and manipulation of stored memories (Becker & Morris, 1999). The prefrontal cortex
is believed to be fundamental for working memory by recognizing behavioral relevant
stimuli from sensory systems, storing and integrating them in working memory and
transferring them to premotor areas to trigger an appropriate behavior (Ott & Nieder,
2019; Kandel et al., 2021).

Due to the important role of the PFC in storage and retrieval of temporary information
for working memory, this region is considered to play an important role in interval timing
(Koch et al., 2003; Coull et al., 2011; Fontes et al., 2016). Among many experimental studies
conducted in humans (Koch et al., 2003; Jones et al., 2004) and animals (Onoe et al.,
2001; Kim et al., 2009; Xu et al., 2014; Buhusi et al., 2018), Kim and his colleagues and
Buhusi and his colleagues have found that the inactivation of the PFC in rats impaired the
ability of timing during discrimination tasks. Since discrimination tasks are dependent
on clock, and memory storage and retrieval (Wearden, 1999), Kim et al. (2013) performed
another study to determine, whether the “clock” is part of the PFC. By showing increased
activity of the PFC neurons for several interval timing tasks, a more specific clock-like
involvement was proposed by Kim et al. (2013).

While there is consensus on PFC to be crucial for interval timing in general, some
argue that there might be a distinction between the suprasecond and subsecond range
and that the PFC is mainly or only involved in the suprasecond range. Evidence for
this stems from repetitive TMS stimulation of the right prefrontal cortex during short
interval timing tasks (500 ms) yielding no significant changes in task performance and
long interval timing tasks (2000 ms) yielding significantly impaired time estimation (Jones
et al., 2004). In summary, experiments suggest the involvement of the PFC in suprasecond
interval timing, which requires cognitive processes, while subsecond timing is too fast to
be dependent on cognitive control (Rammsayer, 1999; Jones et al., 2004). However, this
does not necessarily imply that the PFC cannot be involved in subsecond timing. When
subsecond discrimination tasks were studied in schizophrenic and healthy participants
using fMRI, the activity of the prefrontal cortex, among others, was shown to be high for
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healthy and significantly reduced for schizophrenic participants, indicating a relation to
the impaired abilities in the discrimination task (Davalos et al., 2011).

1.3.1.3 Basal Ganglia

The main functions of the basal ganglia are motor control, motor learning, executive func-
tions, and the control of behavior and emotions (Lanciego et al., 2012). The basal ganglia
consist of three main input nuclei, namely striatum, subthalamic nucleus, and substantia
nigra/ventral tegmental area (VTA) from which the striatum, including caudate and
putamen, provides the primary input to output nuclei of the basal ganglia. The striatum
in turn receives input from the limbic structures of the cerebral cortex, including the
amygdala and hippocampus (Kandel et al., 2021). From the dorsal striatum, caudate and
putamen innervate the thalamus indirectly via globus pallidus, nucleus subthalamicus,
and substantia nigra pars reticulata, while projections from the ventral striatum, nucleus
accumbens (NAc), are sent to the output nuclei, ventral pallidum. The dorsal pathway
receives dopaminergic input from the substantia nigra pars compact, while the ventral
pathway receives input from the VTA (Fung et al., 2021).

Due to being involved in many functions such as motivation, emotion, cognitive
and sensorimotor processes, which are related to time perception (Kandel et al., 2021),
basal ganglia are also thought to be involved in interval timing. FMRI studies have
found a correlation between timing precision and time duration during interval timing
tasks following activation of the striatum (Harrington et al., 2004a; Fung et al., 2021).
The substantia nigra and VTA, both part of basal ganglia, are primary locations of
dopaminergic neurons, which are associated with various diseases, that affect time
perception. Nevertheless, the role of the basal ganglia in timing is still a matter of
debate. While some meta-analyses verify the importance of basal ganglia for timing,
other studies indicate that patients with significant bilateral lesions perform normally in
sub- and suprasecond timing tasks, but show deficits in movement-related production
tasks (Coslett et al., 2010; Fung et al., 2021). Next, the dopaminergic system and the
involvement of dopamine in interval timing as well as the timing deficits associated with
dopaminergic dysfunctions in neuropsychological diseases will be reviewed.

1.3.2 Dopamine

Dopamine is a neurotransmitter, that is involved in many functions such as locomotion,
spatial memory, motivation, arousal, reward, and reinforcement learning, but also cogni-
tive functions like sleep regulation and lactation (Klein et al., 2019). These functions are
controlled mainly via four dopaminergic pathways starting from different regions in the
basal ganglia (Bridges, 2016; Klein et al., 2019; Kandel et al., 2021):

1. Mesolimbic pathway referring to the projection from the VTA to the NAc. The NAc
controls the reward system, and this "reward-pathway" is specifically activated
when a person is receiving rewarding or pleasurable stimuli such as alcohol, food,
or drugs. The positive feeling after these actions reinforces the behavior, which
might lead to addictions when over-stimulated.
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2. Mesocortical pathway describing the connection from VTA to PFC and cingulate
gyrus. This pathway is linked to emotions, motivation, cognition, working memory,
and decision-making.

3. Nigrostriatal pathway relates to the projection from the substantia nigra to the
striatum, which includes caudate nucleus and putamen. This pathway controls the
movement and the modulation of pain via D2-like receptors (Klein et al., 2019).

4. The tuberoinfundibular pathway originates in the hypothalamus and projects to the
pituitary gland, where it regulates the production of prolactin and other pituitary
hormones and controls reproduction and other physiological functions.

The dopaminergic neurons have highly branching axons and their terminals form
synaptic and non-synaptic contacts with excitatory and inhibitory neurons in various
brain regions. Hence, the modulatory effect of dopaminergic innervation follows the
notion of a broadcasting signal. During synaptic transmission, dopamine transmitters
packed in vesicles in a presynaptic neuron are released into the synaptic cleft in response
to an action potential, where they bind to postsynaptic receptors. The binding activates
a second messenger signaling cascade that leads to the opening of ion channels. Sub-
sequently, dopamine unbinds and is reabsorbed by the presynaptic cells (Klein et al.,
2019).

For non-synaptic contacts of dopaminergic neurons, volume transmission refers to the
process by which neurotransmitters are released into the extracellular fluid and diffuse
to target cells. Since the diffusion within the extracellular fluid is a stochastic process, the
volume transmission of dopamine is much less precise than synaptic transmission, sup-
porting the notion of dopaminergic innervation to be a broadcasting signal. Additionally,
the diffusion process leads to a delay in signal transmission so that volume transmission
has a longer time course than synaptic transmission (Kandel et al., 2021).

Dopamine transmitters are a subtype of the catecholamines that specifically bind
to metabotropic receptors (Klein et al., 2019), i.e., receptors that do not form an ion
channel themselves but activate ion channels indirectly via intracellular signaling cascades
mediated by guanine nucleotide-binding protein (G protein) (Schandry, 2011). For more
details on metabotropic receptors see section 2.2. To date, five different dopamine receptor
types have been described: D1, D2, D3, D4, and D5, with D1 and D2 being the most
frequently expressed receptors in the brain (Puig et al., 2014; Klein et al., 2019). D1

and D5 receptors, together also called D1-like receptors, have an excitatory effect by
increasing the production of 3’-5’-cyclic adenosine monophosphate (cAMP), a messenger
formed in response to metabotropic receptor activation that can initiate and modulate the
production of other neurotransmitters and receptor expression. In contrast, the remaining
receptor types, termed D2-like receptors, inhibit the signal transduction with cAMP and
have a higher binding affinity to dopamine. While D1-like receptors are mostly found
in caudate–putamen (striatum), nucleus accumbens, substantia nigra pars reticulata,
olfactory bulb, amygdala, and frontal cortex, D2-like receptors are mainly observed in
striatum, nucleus accumbens, ventral tegmental area, hypothalamus, amygdala, cortical
areas, hippocampus, and pituitary (Puig et al., 2014; Klein et al., 2019).
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1.3.2.1 Dopaminergic modulation of interval timing

Regarding time perception and its dopaminergic modulation, various studies report
that decreased dopaminergic activity, e.g., induced by dopaminergic antagonists like
haloperidol (Rammsayer et al., 1993), can slow down the internal clock leading to an
underestimation of timing intervals. In contrast, increasing levels of dopamine, e.g.,
induced by dopaminergic agonists such as cocaine and methamphetamine (Lake et al.,
2016), speed up the internal clock (Rammsayer et al., 1993; Buhusi & Meck, 2005; Thönes
& Oberfeld, 2015; Lake et al., 2016; Fung et al., 2021).

Terhune et al. (2016) conducted experiments in which participants performed temporal
bisection tasks for subsecond (300 – 700 ms) and suprasecond (1400 – 2600 ms) intervals
on visual and auditory stimuli. As part of the experiment, the spontaneous eye blinking,
measured using an eye tracker, served as a biomarker for the dopaminergic receptor level
in the striatum. Spontaneous eye blinking is specifically related to the availability of D2

receptors in the nigrostriatal pathway (Groman et al., 2014; Terhune et al., 2016). Timing
tasks were evaluated by taking into account whether participants blinked (post-blink) or
did not blink (post-no-blink) during the interstimulus intervals of the previous trial. On
the subsecond and suprasecond trials, an overestimation of the intervals was observed
for the post-blink case compared with trials of the post-no-blink case. These findings
suggest that fluctuations in striatal D2 receptor availability lead to individual differences
between trials (Terhune et al., 2016).

Other studies also emphasize that out of the two main types of dopamine receptors,
D1 and D2, the latter one has a higher potential to modify time perception (Meck,
1986; Soares et al., 2016). Meck (1986) tested various neuroleptics and their affinity for
different dopaminergic receptors in rats during a temporal bisection task, in which the
rats were reinforced only for correct longest and shortest intervals and not for correct
intermediate intervals. Among the different dopaminergic receptor types, but also among
serotonin and norepinephrine receptors, a significant correlation between the binding
affinity to the receptor type and the neuroleptic was observed only for the D2 receptors
(r = 0.98, p < 0.001). The neuroleptic drugs shifted the psychometric density function
rightward for both the shorter intervals (2 s vs. 8 s) and the longer intervals (4 s vs.
16 s), indicating a reduction in the speed of the internal clock by a fixed percentage
(Meck, 1986). In a similar task, methamphetamine, which releases several catecholamines
including dopamine, has been shown to shift the psychometric density function to the
left, increasing the internal clock. In contrast, haloperidol, a dopaminergic antagonist,
shifts the psychometric density function to the right, while a combination of both drugs
results in no shift. Together, this suggests that dopamine is an important neurotransmitter
in modulating interval time (Maricq & Church, 1983).

1.3.2.2 Neuropsychological disorders

Numerous studies have shown that the dopaminergic system plays a role in many
psychological diseases, such as schizophrenia (Meltzer & Stahl, 1976; Howes et al., 2017),
PD (Koch et al., 2008; Klein et al., 2019), ADHD (Fung et al., 2021), and depression (Brown
& Gershon, 1993; Dunlop & Nemeroff, 2007). Impairment of time perception as judged
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by time discrimination tasks compared to healthy subjects is often a comorbidity of these
diseases (Rammsayer, 1990).

For example, in some schizophrenic patients, a ∼12% increased level of dopamine D2

receptors in the striatum and hypoactivity within the PFC are observed (Guillin et al.,
2007; Ward et al., 2012). Additionally, an overestimation of intervals in verbal estimation
tasks of durations in the seconds to minutes range has been observed compared to
healthy participants (Guillin et al., 2007; Ward et al., 2012). In contrast, other studies
have shown an underestimation of intervals during production tasks, indicating that
schizophrenic patients do not exhibit a specific direction of timing deficits compared to
control subjects (Carroll et al., 2009; Ward et al., 2012; Ueda et al., 2018). Similarly, for
patients suffering from depression, a reduced speed of the internal clock was observed
compared to non-depressive subjects (Thönes & Oberfeld, 2015). Patients suffering from
PD have been shown to have various deficits in timing, both in motor timing tasks and in
perceptual timing tasks, by underestimating intervals. This slower clock speed may be
associated with decreased levels of dopamine-producing neurons in the substantia nigra
(Fung et al., 2021).

1.3.3 Dopamine in the prefrontal cortex

The medial PFC and the mesocortical pathway of the dopaminergic system are part of
the reward system of the brain. In particular, working memory tasks involving PFC have
been shown to result in elevated dopamine levels at onset and to remain at elevated levels
between trials (Seamans & Yang, 2004; Ott & Nieder, 2019), indicating an important role
for dopamine in the PFC. In general, D1-like receptors are associated to have an effect on
working memory(Sawaguchi & Goldman-Rakic, 1991; Abi-Dargham et al., 2002), whereas
D2-like receptors are associated with an impact on clock speed (Meck, 1986; Drew et al.,
2003).

In all cortical layers except for layer 5, a 10-fold higher concentration of D1-like
receptors was found as compared to D2-like receptors (Seamans & Yang, 2004). The
strongest concentration of D2-like receptors is observed in cortical layer 5. Dopaminergic
receptors are expressed in pyramidal and inhibitory cells, enabling various functional
roles of dopamine (Ott & Nieder, 2019). Around 40 – 90% (∼ 39% for sulcus principalis
of primates, ∼ 56% in the suprarhinal and ∼ 93% in the anteromedial PFC of rats) of
the dopaminergic contacts with the PFC are synaptic contacts, whereas the remaining
fraction is less specific volume transmissions (Lapish et al., 2007). Within the rat medial
PFC, 84% of dopaminergic synapses are characterized as symmetric and the remaining
percentage as asymmetric, where asymmetric synapses are generally associated with
excitatory, and symmetric with inhibitory synaptic transmission (Lapish et al., 2007).

In their analysis of the effects of dopamine on γ-Aminobutyric acid (GABA)ergic
inputs, which project to pyramidal cells in the PFC, Seamans et al. (2001) showed a
biphasic effect of the dopaminergic receptors, with an initial fast D2-receptor mediated
decrease and a prolonged D1-receptor mediated increase in the inhibitory postsynaptic
current (IPSC). The application of D1 agonists can cancel the effects of D2 agonists
through different mechanisms and result in an opposite effect and vice versa (Seamans
et al., 2001). According to Seamans et al. (2001), D1 agonists increase the excitability of
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interneurons, whereas D2 agonists decrease the release probability of GABA, resulting
in overexcitation of pyramidal cells. It has also been shown that at low dopamine
concentrations, the N-Methyl-D-aspartic acid (NMDA) currents are enhanced via D1-like
receptors, whereas at higher dopamine concentrations they are decreased via D2-like
receptors (Zheng et al., 1999). These results were confirmed by Trantham-Davidson et al.
(2004), who showed using in vivo patch clamp experiments that low concentrations of
dopamine activate D1 receptors, whereas higher concentrations activate D2 receptors. To
explain the different effects of dopamine on the prefrontal cortex and how these are linked
to working memory, Durstewitz and Seamans (2008) proposed a computational model
using multi-compartment neuron models and cell assemblies. With this computational
model, it was possible to reproduce low and high activity states in working memory tasks
associated with spontaneous activity and stimulus-specific delay activity, respectively.
Analyzing the effects of D1 and D2 receptor-mediated changes, they found that D1

modulations increased the energy barrier between high persistent activity states, making
a switch of states more difficult. Therefore, the D1 changes can help to stabilize and
maintain persistent activity with a high firing rate during working memory tasks. In
contrast, since the D2 activation has the opposite effect of D1, a D2 activation reduces the
energy barrier between the states, allowing for a fast and spontaneous switch between
the states (Durstewitz & Seamans, 2008).

1.4 models of timing

Psychology can be defined, in the words of Professor Ladd, as “the description and ex-
planation of states of consciousness as such” (James, 1892), where states of consciousness
refer to, among others, sensations, desires, emotions, and cognitions, while explanation
refers to the causes, conditions, and consequences of psychology. Cognitive psychology
is focused on mental processes, proposing theories to explain, among others, percep-
tions, meaning the processing, organization, and interpretation of sensory information.
Computational models allow for bridging the gap between psychology and neurobiol-
ogy by modeling involved circuits required for reproducing experimentally observed
psychological phenomena, which in turn allows analyzing the underlying mechanisms
in detail (Khaleghi et al., 2022). To understand interval timing, psychological timing
models but also several neurocomputational models have been proposed. Within this
section, the differences between psychological and neurocomputational models and the
most prominent representatives of these are reviewed in terms of their ability of interval
timing.

1.4.1 Psychological models of timing

Psychological models of timing refer to the type of theoretical models that focus on
explaining the results of psychological experiments rather than the underlying neural
processes. One of the first psychological models was the pacemaker accumulator model
(PAM) proposed by Creelman (1962) and Treisman (1963), in which a pacemaker emits
pulses during timing tasks and a memory system counts and stores these pulses (Treis-
man, 1963; Fung et al., 2021). Over the years, several variants of this model have been
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proposed, of which scalar expectancy theory (SET) is the most popular model (Gibbon,
1977; Fung et al., 2021). For the SET model, Gibbon (1977) added components to PAM
that would for explaining the scalar property (Hass & Durstewitz, 2014; Fung et al., 2021).
The components of the SET model and the way in which this model can be used to
explain the experimental observations of interval timing are discussed in the next section.

Scalar-Expectancy Theory (SET)

The SET model (Gibbon, 1977) consists of three different parts: a clock stage (top row
in Fig. 1.3), a memory stage (middle row in Fig. 1.3), and a decision stage (bottom row
in Fig. 1.3). The pacemaker generates pulses that are transmitted via a switch to an

Pacemaker Accumulator

Working 
Memory

Reference 
memory

Decision stage: 

Don’t Respond

Comparator

Respond

Memory stage: 

Clock stage: 

Yes No

Switch

Figure 1.3: Scalar-Expectancy Theory (SET).
The pacemaker generates a pulse within the clock stage, which is transmitted to
an accumulator for working memory. If the response is reinforced, the number of
pulses is stored in the long-term reference memory. For each subsequent trial, the
comparator within the decision stage compares whether the number of pulses is
close to the reinforced reference and responds accordingly (Gibbon et al., 1984). The
illustration is inspired by Morita et al. (2015), licensed under Creative Commons
(CC BY version 3.0).

accumulator during an estimation task. When attention is directed to a stimulus, the
switch closes with a small delay shortly after the onset of the stimulus and opens again
at the end of the stimulus, where the stimulus duration is the interval to be estimated.
The accumulator in the working memory registers and stores the number of pulses,
which can then also be stored in the permanent reference memory in case the response
is reinforced. Finally, the decision stage consists of a comparator triggering a response
in case the presented interval stored in the working memory is close enough to the
reinforced reference memory (Gibbon et al., 1984; Droit-Volet, 2013; Fontes et al., 2016).

The SET model is capable of explaining the distortions of interval timing. Gating of
the switch within the SET model represents the subject’s attention to the interval timing
task. Arousal effects modulate the pacemaker rate, i.e., speeding up the number of pulses
sent to the accumulator, such that the intervals are perceived as longer (Lake et al., 2016).
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Various pharmacologically active substances can affect different components of the SET
model, e.g., DA is suggested to have an effect on the clock speed, cholinergic substrates
such as acetylcholine modify the memory storage (Meck, 1996; Buhusi & Meck, 2005) and
noradrenaline affects attention and therefore the switch of the SET model (Droit-Volet
& Meck, 2007). While the SET model explains the effects of pharmacologically active
substances on timing by referring to the components of the pacemaker accumulator
model, the neural basis of these components and their interactions remain unclear.

1.4.2 Neurocomputational models of timing

In contrast to psychological timing models, neurocomputational models of time percep-
tion are much more focused on a concrete implementation of time perception within
the neural substrate. However, these models can not capture every detail of the brain to
test a complex psychological phenomenon. Using differential equations, a simulation of
membrane potentials of individual neurons, networks of neurons, and their interactions
is run. This can help to understand the underlying mechanisms of time perception, e.g.,
by recording neuronal activity, measuring the effect of each receptor type, and ablation
experiments (Hass & Durstewitz, 2014).

From a wealth of computational models focusing on interval timing, four main mecha-
nisms are discussed in the literature, all of which are capable of representing interval
durations in a biologically plausible manner. These include ramping activity, in which
time is encoded by slowly increasing firing rates peaking at the end of an interval (Durste-
witz, 2003), synfire chains, where time is represented by means of subsequently active
pools of neurons connected in a feed-forward manner (Hass et al., 2008), the state-space
model, in which timing is not encoded by a dedicated tuning mechanism, but by the
intrinsic neuronal and synaptic properties (Buonomano, 2000), and the striatal beat model
proposing that timing is encoded by the synchronized beat of neuronal oscillators firing
with slightly different frequency bands (Miall, 1989; Matell & Meck, 2004). Among the
four timing models, I focused on the two arguably most promising ones with the fewest
assumptions: the state-space model and the ramping activity model.

To enable efficient large-scale simulations of the computational models for time percep-
tion within the data-driven PFC model, the preexisting MATLAB code of the PFC model
(Hass et al., 2016) had to be reimplemented in NEST, a highly optimized and parallelized
C++ simulation engine for large networks of point neurons that comes with a Python API.
Reimplementation of the model within NEST was challenging, as no C++ code for the
neuron model used in Hass et al. (2016) existed, hence requiring a C++ implementation
from scratch.

1.4.2.1 State-space model

In the state-space model, Buonomano (2000) claims that for discriminating temporal
intervals, no specific tuning mechanism is needed. Instead, intrinsic neuronal properties
are sufficient for unique trajectories through state-space (Hass & Durstewitz, 2014). The
time-dependent properties, which help to shape the excitatory postsynaptic potential
(EPSP) for interval timing, are short-term plasticity (STP) using short-term facilitation
(STF) for EPSPs and short-term depression (STD) for inhibitory postsynaptic poten-
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tials (IPSPs), as well as slow IPSPs caused by metabotropic GABA receptors (GABAB)
(Buonomano, 2000).

First, Buonomano (2000) simulated a disynaptic circuit model composed of one excita-
tory (exc.) and one inhibitory (inh.) neuron, of which the exc. neuron was equipped with
STF and the inh. neuron with STD. Both neurons were stimulated via a synapse (input) in
the beginning and at the end of an interval of ∆t = 100 ms. The disynaptic circuit consists
of five synaptic connections: Input −→ Exc., Input −→ Inh., Inh.GABAA −→ Exc., Inh.GABAB −→
Exc., Inh.GABAB −→ Inh.GABAA , of which the strength of Inh.GABAB −→ Inh.GABAA is zero
(see Fig. 1.4A).

Figure 1.4: Order selectivity of an exc. neuron within the state-space model.
A. Disynaptic circuit with one Exc. and one Inh. neuron both driven by an excitatory
input. Varying the synaptic strengths of Inh.GABAB −→ Exc. and Input −→ Exc. and
stimulating both neurons with an input at the beginning and at the end of an
interval of ∆t = 100 ms, results in specific response of the exc. neuron to either the
first pulse (green) or the second pulse (red).
B. Stepwise variation of both parameters shows different firing regimes and the
transition for ionotropic GABA receptor (GABAA) = 10 nS (left) and GABAA =
100 pA (right). The regimes indicate firing specificity to the first pulse (green), to
the second pulse (red), to both pulses (yellow), and no firing to any pulses (black).
Reprinted with permission from Journal of Neuroscience: Buonomano, D. V. (2000).
Decoding temporal information: a model based on short-term synaptic plasticity,
20(3), 1129-1141. Copyright 2000 Society for Neuroscience.
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A paired-pulse stimulation of both neurons and variation of synaptic strengths of
Inh.GABAB −→ Exc. and Input −→ Exc., resulted in various firing patterns of the exc. neuron.
For the synaptic weights marked in Fig. 1.4 in red, the exc. neuron was selective for the
second stimulus. Due to the lower synaptic weight of the Input −→ Exc. synapse, the
neuron showed a subthreshold EPSP which was increased via STF in the exc. neuron and
STD in the inh. neuron, such that the neuron fired for the second stimulus. Increasing the
weights of the input −→ Exc., Inh.GABAB −→ Exc. synapses, as shown in Fig. 1.4 in green,
the exc. neuron fired for the first stimulus due to the higher input weights. It could not
fire for the second pulse despite STF and STD because of the higher weight of Inh.GABAB ,
which induced a slow IPSP. Buonomano (2000) performed a parametric analysis, by
varying the synaptic weights of Input −→ Exc., Inh.GABAB −→ Exc. for fixed GABAA = 10 nS
and GABAA = 100 nS as shown in Fig. 1.4B left and right respectively. By doing so, he
was able to determine the transitions of four cases: the firing upon the second pulse (red),
the first pulse (green), firing upon both pulses (yellow) and no firing (black). Increasing
the synaptic weight of GABAA = 100 pA shifts the transition point rightwards (Fig. 1.4B
right).

Since the selection of suitable synaptic strengths can result in different firing patterns,
Buonomano (2000) used this effect to generate different interval firing patterns of exc.
neurons. This effect was tested in a larger network using 400 exc. neurons and 100 inh.
neurons, with random weights between the units drawn from a normal distribution.
Within this network, only some neurons were interval selective, while most of the neurons
fired for many intervals or did not fire at all. To determine whether the network is capable
of discriminating intervals, a readout layer with the same number of trained intervals (i.e.,
5 output units) receiving input from all exc. neurons was added. The readout layer was
trained on five intervals 50 – 250 ms in 50 ms steps adjusting the weights to the output
units using a supervised learning rule and was tested for generalization abilities on new
trials for 25 – 300 ms in steps of 25 ms.i Doing so, Buonomano showed that each output
unit has a Gaussian tuning curve, peaking at the corresponding interval and falling to
zero for the neighboring trained intervals.

Overall, Buonomano (2000) proposed a model capable of discriminating intervals
via the active states of neurons within the state-space. Discriminability in this model is
supported by the hidden states induced by heterogeneously distributed synaptic weights
and connections, and the interplay of time-dependent components (STP and GABAB)
(Buonomano & Maass, 2009). The hidden states are crucial for generating interval selective
neuronal firing. Since the state-space model is strongly dependent on the evolution of
STP and slow IPSP, this model can only account for intervals below 500 ms (Karmarkar
& Buonomano, 2007).

Neurobiological evidence for the mechanisms behind the state-space model has been
shown in various experiments. This includes in vivo experiments performed in electric fish,
crickets, and frogs, demonstrating that STP mechanisms and the interplay of excitation
and inhibition results in interval selective activation of neurons for sensory stimuli (Goel
& Buonomano, 2014). Additionally, in vitro stimulation of hippocampal slices of rodents
revealed that the activity of three neurons is sufficient to determine which of the neurons
were stimulated even after 15 s. This indicates that the activities of the neurons still
have a memory about the initial state when the stimulus was presented, supporting the
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notion of information storage within the state-space (Hyde & Strowbridge, 2012; Goel &
Buonomano, 2014).

While in vivo and in vitro experiments support the proposed mechanisms of interval
timing via short-term plasticity within the milliseconds to seconds range in terms of its
functionality, whether these mechanisms are used for interval timing in the brain remains
unclear (Goel & Buonomano, 2014).

1.4.2.2 Ramping Activity

The computational model of ramping or climbing activity proposed by Durstewitz (2003)
relies on a phenomenon observed in cortical structures during working memory tasks,
namely a ramping activity of neuronal firing during delay periods (Komura et al., 2001).
The ramping activity has been shown to occur on a timescale of hundreds of milliseconds
up to 10 s, which is why it has been proposed to be a good model to account for interval
timing within this range. In particular, the model describes interval timing by means of
slowly increasing firing rates, starting at the beginning of an interval and peaking at the
end of the interval to be estimated (Durstewitz, 2003).

The idea for the ramping activity model arose from several experiments on working
memory tasks recording activity of prefrontal cortex (Quintana & Fuster, 1999; Rainer et
al., 1999) and thalamic neurons (Komura et al., 2001), in which a predictive neural activity
was observed, which took the form of a slowly increasing firing rate. Specifically, Komura
et al. (2001) performed single-cell recordings during delayed stimulus-reward association
tasks within the thalamic neurons of rats. In particular, they presented auditory and
visual stimuli for 2 s, where the rats needed to lick within 2 s after a delay period of 1 s.
Sometimes the rats received a reward in the form of sucrose solution or transcranial
self-stimulation, and sometimes no reward was given. Only in the cases where a reward
was given, the authors observed an initial spike in firing rates at the onset of the stimulus,
after which the firing rates increased linearly until the time of the reward, i.e., climbing
activity. For higher reward magnitudes, the slope of the climbing activity was enhanced
and variation of the delay time shifted the peak accordingly.

To study the underlying mechanisms of ramping activity, Durstewitz (2003) proposed
a computational model, cf. Fig. 1.5A, showing that the ramping activity in a single cell
might be generated through a positive feedback loop between Ca2+ activated ADP and
spiking mediated Ca2+ influx. This refers to an observation made in in vitro prefrontal
and entorhinal pyramidal cells (Andrade, 1991; Haj-Dahmane & Andrade, 1999; Egorov
et al., 2002). Andrade (1991) used agonists to activate muscarinic acetylcholine receptors
in the prefrontal cortex and stimulated the neurons to fire an action potential, resulting in
a slow calcium-dependent inward current in these cells and therefore increased neuron
firing activity that lasted for several minutes. From recordings of the calcium dynamics
within apical dendrites of hippocampal CA1 neurons of rats, it was found that the
calcium current is caused by the activation of voltage-dependent Ca2+ channels and
NMDA type glutamate receptors (Helmchen et al., 1996). Action potentials initiated at
the soma backpropagate actively into the dendrites yielding globally increased Ca2+

levels (Helmchen et al., 1996).
In order to implement this mechanism, Durstewitz (2003) simulated one single neuron

including synaptic currents such as α−amino-3-hydroxy-5-methyl-4-isoxazolepropionic
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A B

Figure 1.5: Illustration and results of the ramping activity mechanism.
A. Illustration of the calcium-induced loop at the dendrites generating ramping
activity. (1) Membrane depolarization initiates (2) spikes which cause the voltage-
gated calcium (Ca2+) channels (3) to open. (4) Calcium influx in turn activates the
Ca2+ dependent IADP current, which again can initiate further depolarization (1)
of the cell. B The averaged conductance associated to after-depolarizing potential
(ADP) ⟨gADP⟩ and instantaneous firing rates are plotted for the trajectory (gray),
for the FR (firing rate) nullcline (solid black), and for the ⟨gADP⟩ nullcline (dashed
black). Panels below depict the shifting of the FR nullcline away from the ⟨gADP⟩
nullcline, which results in a steeper increase of the firing rate, moving the saturation
of the ramping to the left.
Figures reprinted from Durstewitz (2003) with permission from Journal of Neuro-
science: Durstewitz, D. (2003). Self-organizing neural integrator predicts interval
times through climbing activity. 23(12), 5342-5353. Copyright 2003 Society for Neu-
roscience.

acid (AMPA), NMDA, GABAA equipped with short-term plasticity, an after-depolarizing
current IADP which is dependent on Ca2+ influx and an after-hyperpolarizing current
IAHP. Stimulating the neuron with a current pulse for 5 ms resulted in a single spike while
stimulating for a duration of 250 ms triggered enough spikes to activate the calcium-
dependent loop.

To visualize the dynamics, the trajectory within the firing rate and average ADP
conductance ⟨gADP⟩ plane is plotted (gray line in Fig. 1.5B left), together with the FR (firing
rate) nullcline and the ⟨gADP⟩-nullcline. The firing rate nullcline shows the corresponding
average ADP conductance ⟨gADP⟩ required to maintain this firing rate, while the ⟨gADP⟩-
nullcline represents the actual amount of ⟨gADP⟩ that is produced at this firing rate. Hence,
for overlapping nullclines, the amount of ⟨gADP⟩ produced matches exactly the amount
required to maintain that specific firing rate and therefore represents a fixpoint of the
system. For an overlap of nullclines forming a continuum of fixpoints, i.e., a line, instead
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of a single fixpoint, this is referred to as a line attractor (Durstewitz, 2003). Shifting the
FR nullcline away from the ⟨gADP⟩ nullcline by increasing the strength of the excitability
leads to an increased slope of the firing rate over time, see right panels in Fig. 1.5B. In
addition, the saturation point of the ramping is shifted, which can be used to represent
different time intervals.

In particular, Durstewitz (2003) claims that almost parallel nullclines are essential to
generate the climbing activity. Variation of the slope γADP of the Boltzmann function
that determines the Ca2+ influx results in different states: γADP = 1 yields a single
stable fixpoint, γADP = 4 a line attractor for a subrange, and γADP = 10 many stable
and unstable fixpoints. When the line attracter is reached, γADP > 4, the variance of
the firing rates becomes maximal. This phenomenon is used in the ramping activity
model to determine the line attractor. In particular, Durstewitz (2003) implemented a
non-physiological learning algorithm using a gradient ascent method to show that cells
can move into a line attractor state by maximizing the variance.

Since the components of the ramping model have been shown to exist in the brain
and in particular in the prefrontal cortex during working memory tasks, the ramping
model is a favorable candidate for explaining the mechanisms behind interval timing.
Nevertheless, Durstewitz (2003) did not explicitly test the ramping model for the task of
time perception.

1.5 research questions and contributions

While time perception in general and interval timing in particular is key for many day-to-
day tasks and a number of neurological diseases show a comorbidity with impaired time
perception, the underlying mechanisms are still not well understood. A number of com-
putational neurobiological models have been proposed that are inspired by experimental
insights, however, proposed models are generic and not adapted to the brain regions
believed to be involved in interval timing, such as the prefrontal cortex. Additionally,
none of the models have been tested thoroughly against key psychophysical laws de-
duced from experiments, namely psychophysical law of timing, scalar property and the
modulation of time perception via dopaminergic agonists and antagonists. Among many
other models, there are two existing computational models that are based on biologically
plausible concepts, namely the ramping activity model and the state-dependent model.
However, these models are rather simplistic, e.g., only modeling a single neuron. To test,
whether these models can be incorporated into a more realistic model of the PFC, which
is assumed to have an important role in interval timing, here, I combine each of the two
models with a recently proposed strongly data-driven prefrontal cortex model capable of
reproducing electrophysiological experiments in vivo. Moreover, I test each of the models
against psychophysical laws of time perception and study the underlying mechanisms
that are key for the proper functioning of time estimation.





2
B A C K G R O U N D I N N E U R O B I O L O G Y & C O M P U TAT I O N A L
N E U R O S C I E N C E

In the field of computational neuroscience, both the emergence, propagation, and trans-
formation of electric signals within a neuron, as well as the transmission of signals via
chemical or electrical synapses between neurons and resulting interactions are mathemat-
ically modeled to be studied using analytical derivations and numerical simulations. It
is seen as an important tool to understand the underlying mechanisms, as experiments
often only provide indirect measurements of some quantities of interest, whereas within
the models all quantities are available for analysis. Generally, there are various levels of
detail available for modeling neurons and synapses. Specifically, for neurons, one can
either model and summarize the whole neuron as a single compartment or describe the
neuron as a multi-compartment model with interactions between compartments. In the
following, the computational neuroscience background for single-compartment neuron
models, synaptic, and plasticity mechanisms are introduced as a foundation for a detailed
biologically plausible network model, which in turn is used to simulate neuronal time
perception as described in subsequent chapters.

In detail, this section first reviews the Nernst equation that allows for determining the
ion distribution within and outside the cell in the absence of an action potential. Next, the
Hodgkin and Huxley model of a single compartment of a nerve cell is introduced, which
interprets the cell membrane and its gated ion channels as an active electrical circuit
producing action potentials. This is followed by a description of the mechanisms under-
lying action potential transmission via synaptic connections, including the associated
computational model and plasticity mechanisms. After describing the basic components
of spike trains and firing rates, the simulation of noisy inputs via a Poisson process is
introduced. Lastly, I discuss dynamical systems theory suitable for analyzing differential
equations as used for modeling individual neurons and further describe how chaotic
dynamics can be characterized using this framework.

2.1 modeling a neuron

Among the pioneers of computational neuroscience are Alan Lloyd Hodgkin and Andrew
Fielding Huxley, who performed intracellular recordings of a squid giant axon using
voltage-clamp techniques (Hodgkin & Huxley, 1939). In their recordings, they observed an
action potential between the intracellular and extracellular regions of the cell membrane,
which is a lipid bilayer impermeable to most ions. Within the cell membrane, there exist
specialized ion channels that selectively facilitate the passage of distinct types of ions. A
resting neuron has a high concentration of negatively charged proteins and potassium
(K+) ions inside the cell, while chloride (Cl−) ions, sodium (Na+) ions, and calcium
(Ca2+) ions are located in the extracellular space (Schandry, 2011).

25
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nernst equation The flow of ions through the ion channels is driven by electrical
forces and diffusion processes, and the equilibrium potential for each ion type can be
described by the Nernst equation

E =
kBT
qz

ln(
coutside

cinside
) (2.1)

where kB is the Boltzmann constant, T is the temperature in Kelvin and q · z the elec-
tric charge of the ion, coutside the ion concentration outside the cell and cinside the ion
concentration within the cell (Dayan & Abbott, 2001).

action potential The excess of negative charge within the inactive cell results
in a general resting membrane potential of about Vrest ∼ −70 mV (Schandry, 2011).
Positive stimulation of a neuron results in an increase of the membrane potential due to
sodium influx into the cell, which is referred to as depolarization. This is counteracted by
the sodium-potassium pump, which actively transports sodium ions out of the cell to
reestablish the resting potential. Only if the stimulation is strong enough to depolarize the
membrane potential above the threshold VT, this causes an action potential. Specifically,
exceeding VT triggers the opening of sodium channels allowing Na+ ions to enter the cell,
causing further depolarization and resulting in positive membrane potentials of ∼ 20 mV.
From this point on, the sodium channels are closed and remain inactive until the resting
potential of the membrane is restored, a phase which is referred to as the refractory period.
Shortly after VT is exceeded, the K+ channels open, allowing potassium ions to leave the
cell to restore the negative charge of the cell membrane, which is called repolarization.
Since the potassium efflux continues after the recovery of the resting potential, this
makes the cell even more negative, a process termed hyperpolarization. To restore the ion
concentrations from the resting phase, the sodium-potassium pump now actively pumps
sodium out of the cell and potassium back into the cell. The whole process from the
depolarization to the restoration of the resting potential is termed an action potential
(Dayan & Abbott, 2001; Schandry, 2011).

hodgkin-huxley model Hodgkin and Huxley described the ion flow and the
membrane potential in terms of an electrical circuit with active elements maintaining the
electrochemical gradient between the inside of the cell and the extracellular space, and a
number of nonlinear conductances controlling the opening and closing of channels. Based
on this, they proposed a set of differential equations that accurately model an action
potential as observed in experiments. In this circuit model, the double-lipid membrane
of a neuron acts as a capacitor Cm and relates the charge at the membrane Q and
the membrane potential V via Q = Cm · V. Taking the derivative on both sides yields
Cm · dV

dt = dQ
dt = I, which gives the amount of current required to change the membrane

potential.
The shift in membrane potential due to current I across the membrane by means of

ions passing through ion channels can be described by Ohm’s law with ∆V = I · R,
where R represents the resistance of the ion channel, which is the reciprocal of the
conductance g. Since ion flux can only be observed when V is not at the reversal potential
E: V ̸= E, and the current increases or decreases approximately linearly if V > E or V < E
respectively, the current flow across the ion channels can be written as the difference
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of the membrane potential and the reversal potential ∆V = V − E, which is called the
driving force. Summation of the driving forces over all ion channel types X multiplied by
the respective conductance yields the total membrane current Im:

Im =
∑

X

gX(V − EX) . (2.2)

The membrane potential within the Hodgkin-Huxley model is proportional to the sum
of ionic currents, namely a passive leakage current IL = gL (V − EL), which summarizes
ions spontaneously passing through channels, a transient sodium current INa, and a
delayed rectifier potassium current IK, equaling the capacitor current:

Cm
dV
dt

= −Im + Iext = −IL − INa − IK + Iext , (2.3)

with
INa = gNam3h (V − ENa) , IK = gKn4 (V − EK) . (2.4)

Here, ENa, EK, and EL are the respective reversal potentials, gX is the maximum con-
ductance of the respective ionic current X, and m, h, and n are dynamic state variables
used for modeling opening and closing of ion channels via additional differential equa-
tions. Specifically, m models the activation, h the inactivation of Na+, and n models the
activation of the K+ current, for details see (Dayan & Abbott, 2001). In addition, an
external current Iext was added to the above equation following the standard convention
of positive-inward, while the membrane current Im is defined as positive-outward.

integrate-and-fire models In comparison to the very detailed Hodgkin-Huxley
model, the leaky integrate-and-fire (LIF) neuron model is a simplified version that is
easier to implement and computationally less expensive to simulate. Specifically, the LIF
model is described by a linear differential equation with IL = gL (V − EL) describing an
ohmic leakage current and I = Isyn + Iext describing the sum of the external and synaptic
currents

Cm
dV
dt

= −gL (V − EL) + I . (2.5)

For large positive currents I, the membrane potential increases, and upon reaching the
threshold VT, the neuron is regarded as eliciting an action potential, and the membrane
potential V is reset to VR (Izhikevich, 2007; Barranca et al., 2014). Hence, the fast dynamics
of an action potential between the threshold VT and the reset potential VR, as captured by
the Hodgkin-Huxley model, are approximated to happen instantaneously. While being
less accurate in this regard, the LIF model can still accurately reproduce firing rates and
describe the subthreshold membrane potential dynamics. In cases in which accurate
action potential dynamics are negligible, LIF models are often preferred for large-scale
neuronal network simulations due to their favorable computational cost (Barranca et al.,
2014).

A number of modifications have been proposed for the standard LIF neuron model,
e.g., the exponential integrate-and-fire neuron model allowing for mimicking action
potential dynamics above VT, which has been shown to have a linear-plus-exponential
dependency on the synaptic currents (Badel et al., 2008; Barranca et al., 2014). The
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exponential integrate-and-fire neuron model as proposed by Fourcaud-Trocmé et al.
(2003) reads as follows:

Cm
dV
dt

= −IL + I + gL∆T exp (
V − VT

∆T
) , (2.6)

where ∆T describes the slope of the exponential increase of the membrane potential upon
reaching VT. Once V reaches beyond VT, V quickly diverges towards +∞ until being
reset at a certain threshold to VR (Barranca et al., 2014). To also account for various firing
patterns, another differential equation dw

dt coupled to the membrane potential can be
included, as done in the adaptive exponential integrate-and-fire neuron model (Gerstner
et al., 2014). This model and simplifications thereof are reviewed in detail in section 3.1.1.

2.2 synapses

The signaling of an action potential to another neuron is realized by a chemical or
electrical synapse, of which only the chemical synapse is considered for this work
and reviewed here. The action potential entering the presynaptic terminal opens Ca2+

channels, increasing the internal concentration of Ca2+ ions. The synaptic bouton contains
neurotransmitter-filled vesicles that were previously transported from the Golgi apparatus
to be released into the synaptic cleft by exocytosis, i.e., fusion of the vesicles with the cell
membrane facilitated by Ca2+ ions.

Neurotransmitters bind to receptors on the dendrites of postsynaptic neurons, opening
ion channels and causing a local change of the membrane potential. Depending on the
receptor type, the postsynaptic neuron generates an excitatory postsynaptic potential
(EPSP) or an inhibitory postsynaptic potential (IPSP). While a single EPSP is often not
sufficient to cause an action potential in the postsynaptic axon, mammalian cortical
neurons receive input via 1000 – 10 000 synapses (Braitenberg & Schüz, 2013), such that
the combined EPSPs can elicit action potentials in the postsynaptic cell, while IPSPs can
prevent the postsynaptic neuron from firing. Only when the accumulated membrane
potential change at the axon hillock surpasses a threshold, voltage-gated sodium channels
open, and an action potential is triggered and transmitted along the axon to the synaptic
terminals (Dayan & Abbott, 2001; Schandry, 2011).

receptor types Neurotransmitter receptors can be classified into two major types:
receptors that form an ion channel opening upon binding of a neurotransmitter, referred
to as ionotropic receptors, and receptors only activating other ion channels indirectly via
intracellular signaling pathways mediated by guanine nucleotide-binding proteins (G
proteins), referred to as metabotropic receptors. Metabotropic receptors can open multiple
channels simultaneously and cause long-lasting changes within a neuron, such as receptor
formation and removal. The ionotropic transmission is much faster than the metabotropic
transmission (Schandry, 2011).

The most abundant neurotransmitters are glutamate for excitatory transmission and
γ-Aminobutyric acid (GABA) for inhibitory transmission. Glutamate binds to two im-
portant ionotropic receptors, α−amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) and N-Methyl-D-aspartic acid (NMDA) receptors, of which AMPA opens and
deactivates the channel faster than NMDA. The longer timescales of NMDA receptor
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dynamics, which have an important role in learning and memory, result from the fact that
NMDA receptors in the resting state are additionally blocked with magnesium (Mg2+)
ions, which first must be removed by depolarization. The prime receptors binding the
neurotransmitter GABA are ionotropic GABA receptors (GABAA) and metabotropic
GABA receptors (GABAB), of which GABAA produces a fast Cl− conductance and
GABAB a slow K+ conductance (Dayan & Abbott, 2001; Schandry, 2011).

computational model of synaptic currents The change in membrane poten-
tial for a postsynaptic neuron upon a presynaptic action potential can be described by
synaptic currents Isyn (defined positive-inward, i.e., same sign as membrane currents) for
various receptor types X with

Isyn(t) =
∑

X

gsyn,X(t)(V − EX) , (2.7)

where EX describes the equilibrium potential and gsyn,X(t) the synaptic conductance
modeled by the opening and closing phases of ion channels X (Dayan & Abbott, 2001).

In the simplest case, the postsynaptic channels open instantaneously after presynaptic
vesicle release such that the time course of the opening phase τon can be neglected
τon → 0 and the synaptic conductance is reset upon a presynaptic spike at time tsp, while
the time course of the closing phase follows an exponential decay with time constant τoff:

dgsyn

dt
= −

gsyn

τoff

gsyn(t = tsp) → gsyn(t = tsp − dt) + gmax
syn

(2.8)

Note that index X referring to the receptor type has been dropped to simplify notation.
The analytic solution of this ordinary differential equation (ODE) yields a superposition
of exponentials for the channel conductance gsyn(t) of the following form:

gsyn(t) =
∑

{tsp|tsp⩽t}

gmax
syn e−

t−tsp
τoff , (2.9)

with the maximum conductance gmax
syn for an isolated spike (Gerstner et al., 2014). Here,

{tsp|tsp ⩽ t} refers to all presynaptic spike times up to time t.
In case of a fast but non-neglectable time constant τon for the opening of channels

τoff > τon > 0, as, e.g., for metabotropic receptors, synaptic conductance can be modeled
by a coupled ODE as follows:

dg
dt

= g̃ −
g
τoff

dg̃
dt

= −
g̃
τon

g̃(t = tsp) → g̃(t = tsp − dt) +
g0

τ̃

, (2.10)

where g̃ is an auxiliary variable describing the time course for the channel opening,
g = gsyn describes the synaptic conductance as opening and closing of the channel, g0
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is the maximum conductance for an isolated spike, and τ̃ = τonτoff
τoff−τon

is a constant with
τ̃ > 0, since τon < τoff. Solving this ODE results in a superposition of double exponential
functions

gsyn(t) =
∑

{tsp|tsp⩽t}

g0(tsp)

(
e−

t−tsp
τoff − e−

t−tsp
τon

)
, (2.11)

where, in general, the maximum conductance g0(tsp) = gmax
syn a(tsp) can also be equipped

with plasticity via a(tsp). A detailed derivation of this solution from the coupled ODE is
shown in appendix A.1.

Depending on the values for reversal potential EX, the maximal synaptic conductance
gmax

syn , and the time constants τon and τoff, different receptor types (AMPA, NMDA,
GABAA and GABAB) can be modeled using the above equations. Note that for the
purpose of simulating spiking neural networks, the maximum synaptic conductance for
a connection is set to gmax

syn = |w| gmax
syn,X, where w is the dimensionless synaptic weight and

the sign of w denotes excitatory (w > 0) and inhibitory (w < 0) synaptic connections
respectively. The sign of w, however, is merely used in the control flow of the simulation,
while only the respective equilibrium potential EX relative to the membrane potential
V determines an excitatory (EX > V) or inhibitory (EX < V) effect on the postsynaptic
membrane potential, cf. equation 2.7.

connection rules Connections of a spiking neural network can be represented
by a set of nodes corresponding to neurons, and a set of directed edges between nodes
representing synaptic connections, where the direction indicates the signal flow from
the presynaptic to the postsynaptic neuron. The possibility of multiple synapses per
connection for any pair of neurons requires multiple directed edges, and hence in
general the set of nodes and directed edges describe a directed multigraph. The number
of incoming and outgoing connections/edges of a neuron/node is referred to as the
indegree and outdegree of that neuron/node.

In order to connect a group of NA presynaptic neurons A with a group of NB post-
synaptic neurons B for building a neuronal network, various types of connection rules
can be used, such as all-to-all, in which each node of A is connected to every node of B
and therefore the total number of connections is NA · NB, while the outdegree for A is
NB, and the indegree for B is NA. In contrast, for one-to-one connectivity, only possible
with NA = NB, the i-th neuron from A is connected to the i-th neuron from B, and hence
indegree and outdegree are both 1. Furthermore, one can use random connection rules
between two groups, such as fixed indegree, i.e., each neuron in A is randomly connected
to neurons in B such that each neuron in B has a fixed number Nconn of connections.
Similarly, one can choose fixed outdegree, where each neuron in A has a fixed number
of outgoing connections to neurons in B or fixed total number, in which both groups of
neurons are connected via a total number of Nconn connections1.

While many pairwise connection probabilities between cell types are known from
experiments, higher order connectivities are much harder to access experimentally
and still largely unknown even for well-studied brain regions as, e.g., barrel cortex in
rodents (Klinger et al., 2021). Therefore, pairwise Bernoulli connections make the least
assumptions and are often used for computational models. The binomial distribution

1 https://nest-simulator.readthedocs.io/en/v3.4/synapses/connection_management.html

https://nest-simulator.readthedocs.io/en/v3.4/synapses/connection_management.html
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B(n, p) arises from n independent Bernoulli experiments with probability p, and hence the
Bernoulli distribution is a special case of the binomial distribution with n = 1. A random
variable X that is drawn from a Bernoulli distribution X ∼ B(n = 1, p) can have two states:
X = 1 with a probability P(X = 1) = p, and X = 0 with a probability P(X = 0) = 1− p = q.
For n independent repetitions of Bernoulli experiments {Xi ∼ B(1, p)|i = 1, . . . , n}, the
sum of the random variables Z =

∑
i Xi of the individual experiments follows a binomial

distribution Z ∼ B(n, p). The mean and variance of the binomial distribution are:

⟨Z⟩Z∼B(n,p) = n · p ,

Var(Z)Z∼B(n,p) = n · pq = n · p(1 − p) .
(2.12)

From this follows that the total number of connections Nconn for the pairwise Bernoulli
connectivity rule follows a binomial distribution Nconn ∼ B(n = NANB, p) with on average
NANB · p connections, while the outdegree of group A follows B(n = NB, p) with a mean
of NB · p, and similarly the indegree of group B follows B(n = NA, p) with mean of NA · p.

The connectivity rule described above only determines whether to have a connection
between any pair of neurons in A and B. However, the strength of this connection is
determined by synaptic weights and the implemented receptor type. Additionally, the
strength of the connection can be dynamic in the case of plasticity mechanisms, as
described in the next section.

2.3 plasticity

Two neurons are connected with a synaptic weight w, which can be increased or decreased
by learning mechanisms such as spike timing dependent plasticity (STDP) and short-term
plasticity (STP). While STDP acts on time scales of several minutes with long-lasting
effects, changes in the synaptic weight due to STP last on the order of milliseconds to
tens of seconds (Dayan & Abbott, 2001).

Long-term homosynaptic plasticity on the basis of associative or Hebbian learning
describes the process of long-lasting and persistent changes in synaptic efficacy based on
past activities. STDP refers to both long-term potentiation (LTP) and long-term depression
(LTD) depending on the ordering of the pre- and postsynaptic spikes in time (Markram
et al., 1997). More specifically, if a synapse was active and the presynaptic action potential
preceded the postsynaptic action potential and therefore the synapse could have a causal
role in the postsynaptic firing, the synapse is strengthened, a process called LTP. This is
summarized in the well-known mnemonic “cells that fire together, wire together” (Shatz,
1992; Markram et al., 2011). In contrast, if a synapse was active, but the presynaptic
neuron fired after the postsynaptic neuron, the synaptic connection can not be the cause
of the postsynaptic spike, and as a consequence, the synaptic weight decreases. This is
referred to as LTD and can be summarized in the mnemonic: “cells that fire out of sync,
lose their link” (Shatz, 1992; Markram et al., 2011). While STDP is generally an important
plasticity mechanism to consider in computational neuroscience, the synaptic changes
typically happen over time scales of minutes (Markram et al., 1997). In this work, the
focus is on much shorter time horizons up to a few seconds, and therefore long-term
plasticity and specifically STDP is not discussed in more detail and not considered for
the models.
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In contrast to long-term plasticity, the effects of short-term plasticity are on shorter time
scales, ranging from milliseconds to tens of seconds (Dayan & Abbott, 2001). Short-term
plasticity can be divided into two classes: short-term depression (STD) and short-term
facilitation (STF). When for a number of consecutive presynaptic spikes the excitatory
postsynaptic current (EPSC) amplitude decreases at the postsynaptic cell, this effect is
referred to as STD, see voltage clamp traces in Fig. 2.1a. In contrast, when repeated
stimulation leads to an amplification of EPSCs, this effect is termed STF (Dayan & Abbott,
2001), cf. EPSC in Fig. 2.1b.

Figure 2.1: Illustration of the mechanisms of STD and STF
EPSCs (in black) recorded at the postsynaptic cell upon consecutive stimulations
of a presynaptic cell. a Short-term depression results in a weaker second EPSC
(black) due to the lower number of vesicles available for release upon the second
stimulation. b Short-term facilitation leads to a stronger second peak of EPSC
(black) due to the higher Ca2+ buffer concentration and additional spike-triggered
Ca2+ influx into the cell. Reprinted from Nature Reviews Neuroscience, 5(8), 630-
640, Blitz, D. M., Foster, K. A., & Regehr, W. G., Short-term synaptic plasticity:
a comparison of two synapses, copyright (2004) with permission from Springer
Nature Limited, CCC RightsLink.

neurobiology From the neurobiological perspective, STD is induced at the presy-
naptic neuron by the reduced release of neurotransmitters either by decreased release
probability or by decreased number of vesicles in the readily releasable pool at the synap-
tic bouton, see Fig. 2.1a. A synaptic potentiation over multiple stimuli is mediated at the
presynaptic cell by the general increase of the intracellular calcium level, illustrated in
green in Fig. 2.1b, and by the additional spike-triggered influx of Ca2+ via voltage-gated
calcium channels (Blitz et al., 2004).

While STF and STD are the most well-known properties of short-term plasticity with
alterations on the presynaptic side, there are other mechanisms that can change synaptic
efficacy on the postsynaptic cell, such as desensitization and saturation. Desensitization
refers to the process by which ion channels enter a non-responsive state, resulting in
decreased EPSP after multiple stimulations. In contrast, saturation describes the state, at
which some receptors remain bound with their neurotransmitter due to a high binding
affinity, such that only a few receptors are available to bind to the newly released
neurotransmitters upon consecutive stimulation (Blitz et al., 2004).
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computational modeling of stp A widely used model for STP was developed
by Markram et al. (1998) and refined by Maass and Markram (2002). This model describes
the amplification and attenuation of the synaptic efficacy between successive spikes n
and n + 1 due to short-term plasticity. To this end, the synaptic efficacy is determined
by the product of A, the ’weight’ of the synapse, U, the fraction of synaptic resources
used for a single spike (utilization), R, the fraction of available synaptic resources, and
the time constants τrec and τfac for the recovery from synaptic depression and facilitation
respectively. The model uses recursive equations to express the amplitude An of the
postsynaptic potential via the state variables u and R, where initial conditions are u1 = U
and R1 = 1. For the nth spike, the amplitude of the postsynaptic potential An describing
the absolute synaptic efficacy is given by

An = AunRn = unRn (2.13)

with Rn describing the fraction of available synaptic efficacy for the n-th spike, A = 1 for
notational simplicity, and unRn the used fraction of efficacy for the nth spike. It follows
that the remaining fraction of available efficacy after the n-th spike is Rn − unRn, and
consequently the fraction missing immediately after the n-th spike is 1 − (Rn − unRn).
After a spike is triggered, the missing fraction recovers exponentially with τrec at time
∆tn after the n-th spike, changing the formula to 1 − (Rn − unRn)e

−∆tn
τrec . Thus, the fraction

that is available when the (n + 1)-th spike arrives at time ∆tn can be formulated as

Rn+1 = 1 − (1 − (Rn − unRn)) · e−
∆tn
τrec (2.14)

Similarly, un+1 ∈ [U, 1] referring to the utilization associated with short-term facilitation,
is increased from un to U(1 − un) + un following the nth spike, from where it recovers
back to U with τfac. Hence, un+1 for (n + 1)-th spike can be described as

un+1 = U + (U(1 − un) + un − U) e
−∆tn

τfac . (2.15)

For more details, cf. Markram et al. (1998) and Maass and Markram (2002).

2.4 spike trains and firing rates

The action potentials elicited by a neuron can be summarized by a list of spike times
within the simulation time T, referred to as spike trains. For analysis, such as comparing
spike trains over trials, the firing rates are estimated from the spike trains by various
methods. The simplest way to compute the average firing rate of a neuron uses the
spike-count rate ⟨r⟩, i.e., the number of action potentials n is divided by the duration of
the specific trial T (Dayan & Abbott, 2001):

⟨r⟩ = n
T

. (2.16)

Since this average can be dependent on the time horizon T, another way to compute
the instantaneous firing rate of a neuron, is the inverse of the time interval between two
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adjacent spikes, which is referred to as interspike interval (ISI). If tn is the time of the
n-th spike in a set of N spikes, then ISIn and firing rate rn are defined as

ISIn = tn+1 − tn , n = 1, 2, . . . , N − 1 ,

rn =
1

ISIn
.

(2.17)

This method gives a better time resolution than just an average over the whole simulation
time T and can, e.g., be used to detect burst activity (Chen et al., 2009). However, the
fluctuation of rn can be quite high for highly variable ISIs, which motivates the use of
more sophisticated methods that estimate the firing rate r(n ·∆t), n = 0, . . . , N, N∆t = T
for fixed time intervals ∆t, or in the continuous domain r = r(t), t ∈ [0, T], cf. (Dayan &
Abbott, 2001):

1. Discrete-time firing rate: In order to calculate discrete firing rates, the simulation
time is partitioned into bins of equal size (∆t), and the number of spikes between
the time t and t+∆t in a single trial or in a trial-averaged neural response is counted.
The smaller ∆t, the better the temporal resolution, but the higher the variability
across trials. The calculated firing rates with this method strongly depend on the
size of the window and the placement of the bins.

2. Sliding window with a bin: To determine better firing rates without the depen-
dency on the placement of the bins, a sliding window counting the number of
spikes can be used. Nevertheless, sliding the window may result in correlated firing
rates if spikes were considered twice.

3. Convolution of spike trains with kernels: To estimate smooth time continuous
firing rates, various probability distributions, e.g., Gaussian kernel, can be applied
to the window. Writing the spike train as a Dirac δ distribution with spike times ti

ρ(t) =
n∑

i=1

δ (t − ti) , (2.18)

the firing rates can be computed by a convolution with the window function

rapprox(t) =
∫∞
−∞ dτ w(τ)ρ(t − τ)

=

n∑
i=1

w (t − ti)

, (2.19)

where the defining property of the Dirac δ distribution
∫∞
−∞ f (t)δ(t − t0)dt = f (t0)

was used. By adjusting the window function w(τ), the resulting firing rates can
have different properties. The use of a Gaussian kernel leads to a smoothening
of the firing rates, taking into account the spike information uniformly over time,
see the blue shaded region in Fig. 2.2. However, note that a Gaussian kernel takes
spikes at times ti > t into account and therefore the resulting firing rate r(t) at time
t is estimated based on spikes in the future, which is said to be non-causal. An
alternative causal kernel is the α function:

w(τ) = [α2τ exp(−ατ)]+ (2.20)
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𝜏 = 0

𝜏 > 0𝜏 < 0

Figure 2.2: Shape of spike train kernels
The Gaussian kernel is depicted in blue uniformly distributed around the consid-
ered time τ with a temporal resolution of σ = 50 ms. The causal kernel around τ is
illustrated in red for α = 50 ms, with values below τ < 0 assigned to zero (see eq.
2.19).

with 1

α determining the temporal resolution, i.e., the window size of the function
analogous to ∆t (Dayan & Abbott, 2001). Here, [z]+ refers to a half-wave rectification:

[z]+ =

z if z ⩾ 0

0 otherwise
. (2.21)

The shape of a causal kernel which is 0 for τ < 0 is depicted in Fig. 2.2. A caveat of
a causal kernel like the α function is that the peak firing rate tends to be slightly
shifted compared to non-causal symmetric window functions.

2.5 poisson process

In general, the probability of an event such as an action potential occurring at a given
time depends on the entire history of preceding events. If no dependency is observed,
the events are statistically independent and the process is referred to as a Poisson process
P(λ), with λ = rT the average number of spikes within time T. The Poisson process can be
classified as homogeneous if the firing rate r is constant over time, and as inhomogeneous
if there is a time-dependent firing rate r(t) (Dayan & Abbott, 2001). In this work, I used
the homogeneous Poisson process to model stochastic neuronal firing. The probability
distribution PT[n] for n arbitrarily ordered spikes at spike rate r within a duration of T
for a Poisson process P(rT) is given by

PT[n] =
(rT)n

n!
exp (−rT) . (2.22)

Setting n = 0, the probability of not firing a spike for period τ is Pτ[0] = exp(−rτ). As
the probability for one spike in an infinitesimal interval ∆t is r∆t, the probability of no
spike for a duration of τ, followed by a spike between t0 + τ and t0 + τ+∆t is given by

P[τ ⩽ t1 − t0 < τ+∆t] = r∆t · exp (−rτ) .

Hence, in the limit of ∆t → 0 the probability density distribution of an ISI of duration τ

is given by an exponential distribution

p(ISI = τ) = r exp (−rτ) , (2.23)
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for which mean and variance are

⟨τ⟩ =
∫∞

0

dτ τr exp(−rτ) =
1

r
,

Var(τ) =
∫∞

0

dτ τ2r exp(−rτ) − ⟨τ⟩2 =
1

r2
.

(2.24)

Therefore, the coefficient of variation (CV) of a homogeneous Poisson process is CV =
στ/⟨τ⟩ = 1 (Dayan & Abbott, 2001).

spike statistics of summed poisson-distributed spike trains For some
simulations, neurons receive inputs from multiple sources with Poisson-distributed spike
trains. The resulting distribution of the summed spike train is therefore of interest.
Generally, for N independent, Poisson-distributed random variables {Xi ∼ P(λi) | i =
1, . . . , N}, it holds that the sum of those random variables X =

∑N
i=1

Xi is also Poisson-
distributed: X ∼ P(λ), with λ =

∑
i λi (Croot, 2008). Hence, a summed spike train of N

Poisson neurons with equal firing rate ri = rsingle yields the same spike statistics as a
spike train from a single Poisson neuron with firing rate r = rsingleN. The latter can be
computationally more efficient and therefore may allow speeding up simulations.

2.6 dynamical systems and chaos

Dynamical systems theory studies and characterizes the set of solutions and how they
change depending on the choice of certain parameters for discrete or continuous evolution
equations of variables u⃗. The description here follows Gros (2010) and Izhikevich (2007).
For this work, mainly nonlinear coupled first order ODEs of the following form

du⃗
dt

= f⃗ (u⃗, a⃗, t) (2.25)

are considered, where f⃗ describes the instantaneous rate of change for the variables u⃗ and
is a potentially nonlinear function of the variables u⃗, the time t, and constant parameters
a⃗. Note that any higher-order ordinary differential equation can be reformulated to
match the above equation by introducing auxiliary variables and adding corresponding
first-order differential equations.

In case of an explicit time dependence f⃗ = f⃗ (u⃗, a⃗, t), the dynamical system is termed
non-autonomous, and in case of no explicit time dependence f = f⃗ (u⃗, a⃗) autonomous. For this
work, mainly autonomous dynamical systems are of relevance. The phase space or phase
plane is the space spanned by the allowed values for all variables u⃗, t. The phase portrait
is a geometric representation of the trajectories, i.e., the solutions u⃗(t) of the dynamical
system, for various initial conditions. Specifically, for a set of initial conditions u⃗0, the
right-hand side f⃗ (u⃗0) is plotted as a vector field, which gives an idea about the set of
trajectories and their characteristics.

To study properties of dynamical systems, among the first things to consider are the
nullclines of the system, which are defined by fi = 0, where i denotes the i-th dimension of
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f⃗ . Therefore, at nullclines, the right-hand side of the ODE is zero for at least one variable.
In the case of a two-dimensional autonomous system

du1

dt
= f1(u1, u2, a⃗)

du2

dt
= f2(u1, u2, a⃗)

(2.26)

these nullclines correspond to horizontal (f2-nullcline), or vertical (f1-nullcline) vectors of
the vector field in the u1, u2 plane of the phase portrait. At the intersection of all nullclines
u⃗∗, the right-hand side is zero for the rate of change of all variables, and therefore these
intersections are fixpoints/equilibria of the system, with u⃗(t = 0) = u⃗(t) = u⃗∗ for all t ⩾ 0.

The analysis of dynamical systems often starts with the characterization of fixpoints in
terms of their stability. Specifically, fixpoints are stable, if any trajectory starting sufficiently
close to the fixpoint remains near it for all t ⩾ 0. In case of converging trajectories towards
the fixpoint, the fixpoint is considered asymptotically stable. Any fixpoint that is not stable
is called unstable and will generally have diverging trajectories, even when starting in
very close vicinity to the fixpoint. The stability of a fixpoint can be visualized in the
phase portrait, or studied analytically by linearizing f⃗ around the fixpoint u⃗∗ by means
of a Taylor series up to first order:

du⃗
dt

∣∣∣∣⃗
u∗

≈ J(u⃗ − u⃗∗︸ ︷︷ ︸
u⃗

) , (2.27)

where J is the Jacobian matrix containing the first order partial derivatives of f⃗ : Jij =
∂fi
∂uj

∣∣∣⃗
u∗

evaluated at the fixpoint. Note that f⃗ (u⃗∗) = 0 has already been taken into account. For a
two-dimensional system, the eigenvalues λ± of J can be computed analytically from the
trace τ = tr(J) and the determinant ∆ = det(J):

λ± =
τ±

√
τ2 − 4∆

2

(2.28)

From the eigenvalues λ±, and associated eigenvectors v⃗± of the matrix J, the general
solution of the linearized dynamical system in the vicinity of the fixpoint can be written
as

u⃗ = c+v⃗+ exp(λ+t) + c−v⃗− exp(λ−t) . (2.29)

Generally the eigenvalues λ± can be complex numbers λ± ∈ C and their real parts
Re(λ±) determine whether the trajectories are attracted Re(λ±) < 0 (stable), or repelled
Re(λ±) > 0 (unstable) by the fixpoint in the direction of the associated eigenvector v⃗±.
If both eigenvalues have opposite signs (for ∆ < 0), the direction of the corresponding
eigenvector with a negative sign is attractive, while the other direction is repulsive, which
is termed a saddle. For ∆ > 0 there can be a nonzero imaginary part of λ± with the two
eigenvalues being complex conjugate to each other: λ+ = λ−. Depending on the real part,
this is either a stable focus, or an unstable focus. Following the categorization of Izhikevich
(2007), a full account of all possible cases for τ and ∆, the qualitatively different phase
space trajectories for the linearized dynamical system and the associated stability of the
fixpoint for the two-dimensional case is shown in Fig. 2.3.
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Figure 2.3: Classification of fixpoints in two-dimensional dynamical systems according to the
trace τ and the determinant ∆ of the Jacobian of the linearized system around the
fixpoint. Reprinted with permission from MIT Press from Izhikevich (2007).

The constant parameters a⃗ of the nonlinear dynamical system will generally affect the
location and stability of fixpoints and can be thought of as external control parameters
that can be used to change the behavior of the dynamical system. For instance, in the
case of a neuron model, one such parameter a, might represent a current injection a = I
that can drive a neuron from resting (for I = 0) to firing to bursting activity. Hence, the
parameters can qualitatively change the phase portrait of the dynamical system, and the
transition between qualitatively different behaviors is termed bifurcation. The bifurcations
for a two-dimensional linear dynamical system depending on τ, and ∆ are depicted in
Fig. 2.3.

A fixpoint, for which Re(λ±) ̸= 0, is called hyperbolic and according to the Hartman-
Grobman theorem, the linearized dynamical system is topologically equivalent to the
nonlinear dynamical system around that fixpoint and therefore completely describes the
qualitative behavior in the vicinity of the fixpoint (Izhikevich, 2007). However, in general
for non-hyperbolic fixpoints, when the fixpoint undergoes a bifurcation, higher-order
terms can play a crucial role in the qualitative behavior of the system. For instance, at a
saddle-node bifurcation, occurring for instance when a stable fixpoint merges with a saddle,
trajectories are attracted from one side and repelled towards the other side.

In addition to fixpoints, which is the simplest class of an attractor, there can be
more complex geometries that attract nearby trajectories. For instance, in the case of a
continuum of fixpoints along a line, a line attractor emerges. Another class of attractors,
also relevant for the periodic spiking activity of neurons, is the limit cycle, which results
in a periodic orbit in phase space that attracts when starting at nearby points. The set of
start locations in the phase space for which the long-term trajectory reaches an attractor
defines a region, which is called the basin of attraction.

To characterize a dynamical system, it is often of interest how trajectories starting at
nearby locations in phase space, e.g., u⃗1 and u⃗2 = u⃗1 + δ⃗0, at a distance of ||⃗δ0||, evolve
with respect to each other. This can be quantitatively characterized by the Lyapunov
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exponent λ, where an exponential evolution of the distance δ(t), based on the general
solution of the linearized dynamical system, is assumed:

||δ(t)|| ≈ exp(λt)||⃗δ0|| . (2.30)

Generally, the Lyapunov exponent depends on the starting points and the orientation of
δ⃗0, however, usually, the maximum Lyapunov exponent is of interest. In the case of λ < 0,
trajectories converge, while λ > 0 means that the long-term behavior has an exponential
sensitivity to the initial conditions. This indication of chaotic behavior has for instance
been studied in the Lorentz system, which for certain parameter settings has a strange
attractor with this exponential sensitivity to the initial conditions.





3
M O D E L I N G F R A M E W O R K

In this work, interval timing models are tested within a data-driven computational
prefrontal cortex (PFC) model for their ability to reproduce well-established timing
properties. In this chapter, I first describe the PFC model developed by Hass et al. (2016)
including the neuron model, neuron and synapse types, and the overall composition of
a single cortical column of this model. Next, all modifications required to implement
different interval timing models are described. Specifically, metabotropic GABA receptor
(GABAB) for the state-space model (Buonomano, 2000), calcium (Ca2+) current for the
ramping model (Durstewitz, 2003), dopaminergic modulation, and Poisson noise are
introduced. This is followed by a description of interval timing models, training of a
readout layer, and alternative time estimation methods.

3.1 computational prefrontal cortex model

To model time perception in the PFC, the data-driven spiking neural network model
proposed by Hass et al. (2016) was used. Hass et al. (2016) derived the parameters of
the neuronal model from anatomical and electrophysiological data from in vivo and in
vitro experiments in rodents. Specifically, experimentally observed distributions were
used to fit analytically defined distributions of neuronal parameters. For in silico experi-
ments, neuron parameters were randomly drawn from these distributions. This results
in a computational PFC model that is able to reproduce the main features of in vivo
recordings, including spike trains, spike statistics, local field potentials, and membrane
potential fluctuations. Importantly, the authors show that matching of neuronal parameter
distributions as described above is sufficient to achieve spiking activities statistically in-
distinguishable from the experimentally recorded spike trains without further parameter
tuning. Further Hass et al. (2016) demonstrate the robustness of the model to synaptic
changes, making it an experimentally grounded model for studying cognitive tasks like
working memory in the PFC (Hass et al., 2022). In the following, the PFC model will be
described in more detail Hass et al. (2016).

41
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3.1.1 SimpAdEx neuron model

Each neuron within the PFC model is simulated using the differential equations of the
simplified adaptive exponential (simpAdEx) integrate-and-fire neuron model (Hertäg
et al., 2012):

Cm · dV
dt = −gL · (V − EL) + gL ·∆T · e

(
V−VT
∆T

)
+ I − w ≡ wV − w

dw
dt =

0 if |w − wV | >
τm
τw

wV or V > VT[
1 − τm

τw

]
dwV
dV

dV
dt otherwise

if V > Vup then V → VR
}

clamp for trefand w → wR = w + b

if w = w← =
(

1 + τm
τw

)
wV, then w → w→ =

(
1 − τm

τw

)
wV ,

(3.1)

where Cm is the membrane capacitance, V the membrane potential, gL the leak con-
ductance, EL the reversal potential, ∆T the slope parameter for the exponential term,
I = Iext − Isyn the summed current from synaptic Isyn and external Iext (e.g., background
current) inputs, and the spike-triggered adaptation variable w. Note that by standard
convention, external currents Iext are defined as positive-inward, whereas the membrane
current is defined as positive-outward (Dayan & Abbott, 2001).

The phase space portrait of this model for sharp and broad resets without and with
undershoot is shown in Fig. 3.1A and Fig. 3.1B respectively. The exponential term in dV

dt
induces a strong increase of the membrane potential once the membrane threshold VT is
exceeded (Hertäg et al., 2012). The spike-triggered adaptation variable w is represented
with an additional differential equation, with time constants τm and τw for the membrane
and adaptation respectively, and wV the V-nullcline of the system. If V crosses the peak
potential Vup, the membrane potential is set to the reset potential VR, w is increased by a
fixed value b, cf. blue dotted lines in Fig. 3.1, and to simulate a refractory period both
variables are clamped at those values for a duration of tref = 5 ms.

As w increases through a spike, the growth of the membrane potential V is attenuated,
making it harder for the neuron to fire. The nonzero part of the differential equation
for w is only applied for subthreshold membrane potentials and if w is in the vicinity
of the V-nullcline wV, specifically |w − wV | ⩽

τm
τw

wV. Hence, for most parts of the phase
plane, w is constant with horizontally oriented trajectories, cf. Fig. 3.1. If, however, w
approaches the V-nullcline from the left, crossing w = w→ = (1 − τm

τw
)wV, the differential

equation for w ensures that w follows the V-nullcline at distance w→ up to V = VT,
cf. Fig. 3.1A. Approaching the V-nullcline from the right leads to a reset whenever
w = w← = (1 + τm

τw
)wV to w → w→ in order to avoid a singularity whenever the

horizontal trajectory crosses the V-nullcline (Hertäg et al., 2012), cf. Fig. 3.1B.
The simpAdEx integrate-and-fire neuron model is a simplification of the adaptive

exponential (AdEx) model based on a separation of time scales of the two state variables
V and w, which is valid for τm

τw
≪ 1, allowing for analytical integration and therefore

enabling efficient fitting of electrophysiological data (Hertäg et al., 2012).
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Figure 3.1: Phase portrait of the simpAdEx neuron model for sharp (A) and broad (B) resets.
Phase space trajectories are given by the blue and green curves in the w-V phase
plane, where the starting point is given by the filled circles, resets are indicated by
dotted blue lines (for visual clarity only for the first two resets), reset points by open
blue squares, and the green trajectory shows the limit cycle for periodic spiking
that is ultimately reached after a few spikes. The V nullcline w = wV is shown in
red and the envelope (w→, w←), within which the differential equation for w can
be nonzero, is indicated by gray lines. Above VT (dashed vertical line), dw

dt = 0 and
therefore all trajectories run strictly horizontal except for resets at Vup (cf. equation
3.1). A For a reset wR < wV(VR), the trajectory approaches the V-nullcline from the
left, corresponding to immediate increase of V and therefore a sharp reset (without
undershoot). B For a reset wR > wV(VR), the trajectory approaches the V-nullcline
from the right corresponding to an initial decrease of V representing a broad reset
with an after-hyperpolarizing current (undershoot). Modified from Hertäg et al.
(2012), licensed under Creative Commons CC-BY (version 4.0)

3.1.2 Synapses

SimpAdEx neurons are connected via conductance-based synapses for different receptor
types X ∈ {AMPA, GABAA, NMDA}, where the postsynaptic current Isyn of a presynaptic
spike train {tsp} is computed using double exponential functions:

IX = s(V) gX (V − Ex
rev) ,

gX(t, {tsp}) = gmax
X

∑
{tsp|tsp+τD⩽t}

a
(
tsp

) (
e−(t−tsp−τD)/τx

off − e−(t−tsp−τD)/τx
on

)
,

s(V) =

1.08 (1 + 0.19 · exp (−0.064V))−1 if X = NMDA

1 otherwise
.

(3.2)
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A B

Figure 3.2: Network of the PFC model (Hass et al., 2016).
A. Schematic of the PFC network with layers 2/3 and 5 excitatory (pyramidal
cell (PC)) and inhibitory neurons (interneurons (INs)) and their connectivities
(black: excitatory and gray: inhibitory; width of the lines represent the connection
strength). B. Connectivities and connection probabilities between different neuron
types, including three types of short-term plasticities (E1/I1, E2/I2, E3/I3). Arrows
connecting one neuron type to a shaded block indicate that the specific connection
type is equal for all neurons within both types. Other neuron types, e.g., excitatory
neurons, are equipped with all three plasticity types represented by arrows and
percentages of pairwise connection probabilities.
Both panels were taken from Hass et al. (2016), licensed under Creative Commons
Attribution 4.0 International (CC BY 4.0).

In the equation describing the conductance dynamics gX(t, {tsp}), the second exponential
term describes the opening of the channel with a rise time constant τon, while the first
exponential accounts for the closing of the channel with a decay time constant τoff. Both
opening and closing processes start after a synaptic transmission delay τD. The reversal
potential for AMPA and NMDA is Erev = 0 mV and the rise and decay time constants are
τon,AMPA = 1.4 ms, τoff, AMPA = 10 ms, τon, NMDA = 4.3 ms, and τoff, NMDA = 75 ms. For
NMDA synapses, an additional nonlinear voltage-dependent term s(V) is multiplied
by the current to simulate magnesium blockade at lower voltages, see equation 3.2. The
reversal potential for ionotropic GABA receptor (GABAA) was set to Erev = −70 mV
and the time constants to τon, GABAA = 3 ms, τoff, GABAA = 40 ms (Hass et al., 2016).
The average strength of synaptic connections is shown in Fig. 3.2A, where black lines
represent excitatory connections and gray lines represent inhibitory connections. For
details about the exact parameters of the underlying distributions of synaptic weights,
as well as for the pairwise connection probabilities, see Hass et al. (2016, Table 3). For
the simulation, synaptic weights were drawn using a pseudorandom number generator
with a fixed seed over all trials. Since NEural Simulation Tool (NEST) (Jordan et al.,
2019) requires the synaptic conductance to be expressed as differential equations, the
function gX(t, {tsp}) was rewritten as a coupled ordinary differential equation (ODE) that
yields a double exponential, for derivation see appendix A.1. Each synaptic connection
is equipped with short-term plasticity by the factor a(tsp) in equation 3.2, implemented
using the corrected version of Markram et al. (1998), for details see section 2.3. Three



3.2 pfc model variants for interval timing 45

different types of plasticity are implemented within the PFC model, namely short-term
facilitation (E1/I1), short-term depression (E2/I2) and a combined version of both (E3/I3)
(Gupta et al., 2000; Wang et al., 2006), compare Fig. 3.2 B.

The different cell types were connected using pairwise Bernoulli connections as was
described in section 2.2, where the probabilities p were taken from the literature, mostly
from studies on rodents, but also on monkeys, ferrets, and cats (Hass et al., 2016). The
network also consists of a cross-column component, in which the connection probability
decays with distance. Since I am only interested in the simulation of a single column, this
type of connectivity is ignored for the purpose of this work.

The current I driving the membrane potential away from its resting state, comprises
both synaptic currents and a constant background current. To emulate synaptic inputs
from neurons from other columns or brain areas not simulated here, a constant back-
ground current of Iback,PC = 250 pA for PCs and of Iback,IN = 200 pA for INs was added to
I.

3.1.3 PFC network composition

The PFC model is organized horizontally into one or more cortical columns, and vertically
into two laminar components, namely layer 2/3 and layer 5. Of the N = 1000 neurons
contained in one cortical column in this model, 47.0 % are assigned to layer 2/3 pyramidal
cells, 38.0 % to layer 5 pyramidal cells, 10.4 % to layer 2/3 INs and the remaining 4.6 %
to layer 5 INs. The INs comprise fast-spiking cells for local INs (IN-L) both within the
same layer and column, bitufted cells for cross-layer INs (IN-CL), Martinotti cells for
far-reaching INs (IN-F) outside the column and within layers and basket cells for cross
column connections (IN-CC) (Hass et al., 2016). The detailed composition of neuron
types in a cortical column as proposed by Hass et al. (2016) is listed in Table 3.1. For the
purpose of this work, only a single cortical column of the model is considered.

3.2 pfc model variants for interval timing

To test whether existing time perception models can reproduce the timing properties
within a PFC model, the model presented above was extended by the features required
for the different time perception models discussed in the literature. These include the
implementation of the GABAB current for incorporating the state-space model (Buono-
mano, 2000), the calcium current for testing the ramping activity model (Durstewitz,
2003), dopaminergic modulation, and noise.

3.2.1 Poisson noise

Since the response of biological neurons can be noisy and often varies over multiple
trials of the same experiment, it is common to introduce noise into computational neuron
models. For the purpose of this work, adding noise to generate trial variability allows
for testing the generalization capabilities of the time estimation model for new trials
not observed during training. Here, the neuronal and synaptic parameters generated
from Gaussian and Gamma distributions as described above are kept constant over trials,
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Table 3.1: Neuron types and composition for a single cortical column in the PFC model as
proposed by Hass et al. (2016).
Abbreviations: E: Excitatory neurons, IN-L: local interneurons equipped with short-
term facilitation (STF), IN-L-d with short-term depression (STD), IN-CL: cross-
layer interneurons equipped with STD, IN-CL-AC with STF, IN-CC: cross-column
interneurons, IN-F: far-reaching interneurons (IN-F).

layer class neuron type fraction [%]

2/3 exc. E 47.0
inh. IN-L 1.55

IN-L-d 1.55

IN-CL 1.3
IN-CL-AC 1.3
IN-CC 2.6
IN-F 2.1

5 exc. E 38.0
inh. IN-L 0.25

IN-L-d 0.25

IN-CL 0.25

IN-CL-AC 0.25

IN-CC 1.8
IN-F 1.8

which is also referred to as frozen noise, since the time scales over which these parameters
vary, if at all, are typically long. Instead, noise was modeled by adding synaptic inputs
from Poisson neurons representing the variability of sensory and other neurons not
simulated here.

For all simulations, NPoisson = 10 Poisson neurons were connected to the network with
a firing rate of fPoisson = 1 Hz, a synaptic weight of wPoisson = 0.5 and a fixed total number
of 10 000 connections. Connectivities were kept constant over trials by choosing the same
seed value for the pseudorandom number generator, while the seed of the Poisson spike
train generator was set to the trial number such that Poisson spike trains differed over
trials.

A typical cortical neuron receives inputs via ∼1000 – 10 000 synapses (Murre & Sturdy,
1995; Braitenberg & Schüz, 2013), however, in the above-described setup, I only simulate a
single Poisson neuron input in addition to the around 100 – 800 inputs from the network
neurons. Therefore, to test the limitations with respect to noise levels, the firing rates of
Poisson neurons were increased to 1000 Hz, emulating 1000 inputs of 1 Hz, cf. section
2.5. However, to avoid overexcitation, the background current Iback and synaptic weights
wPoisson were reduced accordingly. To test different noise levels, synaptic weights of the
Poisson neurons were set to wPoisson = {3, 5, 7, 10}× 10

−3 and the background current Iback

was reduced by −7 %,−21 %,−36 %,−50 % w.r.t the default. Specifically, for each synaptic
weight factor, the background current Iback was optimized using a grid search to minimize
the root-mean-square error (RMSE) of averaged firing rates per neuron type and layer.
The time-averaged subthreshold membrane potential fluctuation, i.e., after removal of
spikes, was shown to be at 4 mV during patch clamp in vitro experiments of neurons from
rat prefrontal cortex (Destexhe et al., 2001), which has already been reproduced within
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Figure 3.3: Subthreshold membrane potential fluctuations for different strengths of Poisson
noise
Distribution of standard deviations of the subthreshold membrane potentials over
time for neurons with at least 1 spike for the state-dependent PFC model with
1 Hz in black and for different strengths of Poisson noise with 1000 Hz (from dark
to lighter colors). The mean µ and variance σ of the respective distributions are
denoted in the figure legend.

the PFC model (Hass et al., 2016). After optimizing the background current to compensate
for the higher firing rates due to Poisson noise, the averaged subthreshold membrane
potential fluctuations were around 2 – 3 mV, cf. Fig. 3.3, consistent with experiments.

3.2.2 Dopaminergic modulation

The agonistic and antagonistic D2 receptor modulations were simulated by modifying
various neuronal and synaptic properties of the model. To alter neuronal parameters, the
changes were obtained from our own unpublished experiments performed by Tatiana
Golovko, in which the D2 receptor agonist quinpirole (Eilam et al., 1989) was applied in
vitro with a concentration of 10 µM. The changes in synaptic conductance were found
in the literature, as indicated. For simulations, the changes in neuronal and synaptic
modulation under the application of dopamine agonist quinpirole as listed in Table 3.2
were interpreted as 100% agonistic modulation, the unchanged parameters from the
model as 0% modulation, and for intermediate quinpirole concentrations I used linear
interpolation of synaptic and neuronal parameter changes.

In contrast to the agonistic modulation, for which data for the changes in neuronal and
synaptic parameters were available, these were lacking for antagonistic dopamine (DA)
modulation. Therefore, I assumed that the antagonistic DA has a directly opposite effect
and extrapolated the change in neuronal and synaptic parameters from 0% to −100% to
simulate the antagonistic modulation via DA.

For the simulation of acute change in neuronal activity induced by dopamine, the
modulation was only applied during the test phase of time estimation, while readout
weights were trained based on the unmodulated neuron activities. To examine long-term
plasticity-based adaptions induced by dopamine, I also retrained the readout weights in
a second step for the case of ±30% agonistic and antagonistic modulation.
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Table 3.2: Parameter alterations for D2 modulation.

parameters change data source

Neuronal parameters
Reset potential VR -5.2%


Unpublished
experiments

Membrane threshold VT -3.7%
Membrane capacity Cm +1.2%
Leak conductance gL -14.2%
Leak reversial potenital EL +6.6%
Exponential slope parameter ∆T +27.8%
Peak Potential Vup -4.1%
Adaptation time constant τw -14.2%
Spike-triggeried adaptation b +9.8%

Synaptic parameters
Peak conductance NMDA gNMDA -20% (Zheng et al., 1999)

(Kotecha et al., 2002)
(Seamans & Yang, 2004)

Peak conductance GABA gGABA -50% (Seamans et al., 2001)

3.2.3 State-dependent PFC model

To incorporate the state-space model introduced by Buonomano (2000) within the PFC
model, GABAB-type synapses were added to the PFC model. GABAB is of special
importance since Buonomano has shown that time-dependent properties such as short-
term plasticity and slow inhibitory postsynaptic potentials (IPSPs) caused by GABAB-type
synapses are essential for encoding durations up to 400 ms. This was done using the
conductance-based double exponential function from equation 3.2 (section 3.1.2) with
reversal potential Erev = −90 mV, rise time constant τon,GABAB = 100 ms, decay time
constant τoff, GABAB = 200 ms, and peak conductance gpeak,GABAB = 1

5
· gpeak, GABAA =

0.2 nS following Golomb et al. (1994). To counteract the strong inhibition in the network
by another inhibitory synapse type, the peak conductance of GABAA and GABAB were
reduced by factors λGABAA = 0.3, and λGABAB = 0.3 respectively, which were determined
by a grid search minimizing the RMSE deviation of mean firing rates as compared to the
PFC model from Hass et al. (2016) where firing rates were computed first per neuron
type and then summed. Additionally, the inhibition added by GABAB was compensated
by increasing the background current Iback of all neurons by a factor of λIback = 1.4. These
adjustments lead to matching firing statistics of the PFC and the state-dependent PFC
model, cf. Table 3.3 and Figs. 3.4A and B.

comparison of spike-statistics To verify that both the PFC and the state-
dependent PFC model show similar spiking behavior, the spike statistics were compared
analogous to Hass et al. (2016). Specifically, the averaged ISIs for each neuron with
more than 10 spikes were computed (Hass et al., 2016), and based on the correspond-
ing histogram, see Fig. 3.4C for the PFC and state-dependent PFC model, a similar
number of active neurons for the averaged ISIs was observed. Similarly, the histograms
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Figure 3.4: Spike statistics of the PFC and the state-dependent PFC model
The raster plots are shown for the PFC model without GABAB in A and for the
state-dependent PFC model with GABAB in B. C The number of active neurons is
depicted as a histogram for the averaged interspike interval (ISI). D The coefficient
of variation (CV) per neuron for neurons with more than 10 spikes is shown in
black for the PFC model and in green for the state-dependent PFC model. E The
standard deviation of the subthreshold membrane potential over time for neurons
with nonzero firing rate is shown as a histogram for both models.

of CVs overlap, see Fig. 3.4C, although CVs statistics were slightly shifted to smaller
values for the state-dependent PFC model. The standard deviations of the subthreshold
membrane potentials of neurons over time with at least 1 spike are depicted in Fig.
3.4E. The averaged standard deviation for the state-dependent PFC model is slightly
larger (µσ(V), state-dependent = 3.8 mV, σσ(V), state-dependent = 2.4 mV) as compared to the
PFC model (µσ(V), PFC = 2.2 mV, σσ(V), PFC = 1.3 mV), however, both values are close to
the experimental observation of µσ(V) = 4 mV (Destexhe et al., 2001).
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Table 3.3: Comparison of the averaged firing rates between the PFC and the state-dependent
PFC model
Abbreviations: E: Excitatory neurons, IN-L: local interneurons equipped with STF,
IN-L-d with STD, IN-CL: cross-layer interneurons equipped with STD, IN-CL-AC
with STF, IN-CC: cross-column interneurons, IN-F: far-reaching interneurons (IN-F).

layer class fPFC fGABAB

[Hz] [Hz]

2/3 E 0.4 0.3
IN-L 53.1 57.0

IN-L-d 37.8 37.7
IN-CL 22.6 20.5

IN-CL-AC 23.2 23.3
IN-CC 5.4 5.9
IN-F 2.5 7.9

5 E 2.3 2.1
IN-L 47.9 53.0

IN-L-d 55.0 55.7
IN-CL 20.5 25.0

IN-CL-AC 29.3 33.4
IN-CC 17.8 15.3
IN-F 8.2 12.0

3.2.4 Ramping PFC model

Time estimation in the ramping activity model proposed by Durstewitz (2003) is based
on slowly increasing firing rates peaking at the end of the interval to be estimated (Hass
& Durstewitz, 2016). The increase in the firing rate is reached by a positive feedback
loop between Ca2+-activated after-depolarizing current IADP and a spike mediated Ca2+-
influx (Durstewitz, 2003). To incorporate this mechanism into the PFC model, the after-
depolarizing current IADP, which is controlled by the gating variable m representative of
the Ca2+-dependent activation gate, is subtracted from the right-hand side of dV/dt in
equation 3.1. The IADP current can be described by the following equations:

IADP = gADP,maxm (V − EADP) ,

dm
dt = m∞−m

τADP
with m∞ =

(
1 + exp

(
γADP

(
θADP −

[
Ca2+

]
i

)))−1 ,
(3.3)

with the reversal potential EADP = 35 mV, the time constant τADP = 35 ms and half-
maximum activation value θADP = 1.0 (Durstewitz, 2003). The slope γADP determines
the existence and dynamics of the line attractor required for ramping activity, while the
maximal after-depolarizing potential (ADP) conductance, gADP, max, controls the speed of
ramping and the maximum firing rate. Accordingly, the values for γADP and gADP, max

are chosen depending on the experimental setup, see chapter 5.
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Following Durstewitz (2003), the current of the spike-triggered calcium influx was
simulated using a double-exponential function[

Ca2+
]

i (t) = ACa
∑

{tsp|tsp⩽t}

(
e−(t−tsp)/τCa,off − e−(t−tsp)/τCa,on

)
, (3.4)

where
{

tsp
}

is the spike train of the respective neuron,
{

tsp|tsp ⩽ t
}

refers to the spike
train up to spike times ⩽ t, the amplitude ACa is set to ACa = 0.2, the rise time τCa,on

to τCa,on = 1 ms and decay time τCa,off time constants to τCa,off = 120 ms (Durstewitz,
2003). Note that the model of Ca2+ influx (equation 3.4) is similar to the synaptic currents
(equation 3.2), however, synaptic currents are triggered by the presynaptic spike train,
while Ca2+ influx is triggered by the spike train of the same neuron and not mediated by
a synapse. To still reuse code, Ca2+ currents were modeled via a pseudo Ca2+ autapse
without synaptic delay τD = 0, for which pre- and post-synaptic spike trains match. For
the simulation in NEST, the calcium influx

[
Ca2+

]
i was expressed in terms of a coupled

ODE, cf. appendix A.1. All pyramidal neurons within the PFC model were connected via
a pseudo Ca2+ autapse with a weight of w = 1.

As described by Durstewitz (2003), varying the slope of the after-depolarization current
γADP allows finding the line attractor with minimal deviation between gADP and firing
rate nullclines resulting in a maximized standard deviation of the firing rates σFR. Instead
of implementing the learning rule using the gradient ascent method during the simulation
as described in Durstewitz (2003), I performed a grid search over γADP, which was easier
to implement and could be parallelized as each choice of γADP can run as a separate
simulation.

As a first verification of this approach, the calcium current was implemented within a
single simpAdEx neuron driven by Iback = 200 pA and connected to itself via an autapse
for the calcium-induced loop. Here, Poisson noise and other synaptic currents were not
included. The neuron was stimulated at ts = 500 ms with a step current of Is = 100 pA for
10 ms. For this, gADP, max was set to gADP, max = 25 nS, γADP was varied within the interval
γADP ∈ [0.0, 10.0] in steps of 0.1, ACa was set to ACa = 0.133 (Durstewitz, 2003), and the
firing rates were computed by taking the inverse of the ISIs, cf. Fig. 5.1A. After finding a
suitable γADP value, different saturation points, and slopes were determined by varying
gADP, max ∈ [1.0, 50.0] in steps of 2. While this could be used to achieve heterogeneity in
saturation points, for the PFC network the variability in neuronal and synaptic parameters
is sufficient to generate a similar heterogeneity.

The grid search for finding optimal γADP values to maximize firing rate variability was
integrated into the PFC model. Specifically, layer 2/3 excitatory neurons were stimulated
with a step current of Istim = 600 pA at tstim = 1 ms for a duration of ∆tstim = 100 ms.
The after-depolarization current IADP of the Ca2+ influx was modeled using a maximal
conductance of gADP, max = 3.0, with each neuron connected to itself via an autapse,
ACa = 0.2 and θADP = 1.0. As IADP causes an overexcitation of the network, it was
compensated by reducing the background current Iback to 80% of the original value. To
find optimal γADP values, a grid search over the interval γADP ∈ [1.0, 15.0] in steps of 0.2
was performed, in which the selected values were applied to all 850 pyramidal neurons.
The network was then simulated for 6000 ms, the firing rates were computed from
spike trains using the causal kernel as described in section 2.4 (kernel size σ = 30 ms),
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and σFR for neurons with ⩾10 spikes were determined. For 222 out of 850 neurons,
optimal γADP resulting in maximum σFR could be identified. The remaining neurons
(predominantly layer 2/3) were largely inactive, i.e., having <10 spikes for all γADP and
therefore corresponding γADP values could not be optimized for ramping activity. For
the remaining 628 neurons, γADP was set to the average ⟨γADP⟩ = 4.5.

comparison of spike-statistics To test whether the suggested ramping PFC
model with optimized γADP still reproduces the experimentally observed spike statistics
for which the original PFC model was optimized, both models were simulated and spike
statistics were compared. For this, stimulation was turned off in order to compare the
steady state of the ramping PFC model with the original PFC model.

Table 3.4: Comparison of the firing rates between the PFC and the ramping PFC model. The
calcium-triggered loop in layer 2/3 excitatory neurons in the ramping PFC model
yields two-fold increased firing rates, while the firing rates of layer 5 excitatory
neurons remain roughly unchanged and the firing rates of most inhibitory neurons
decrease.
Abbreviations: E: Excitatory neurons, IN-L: local interneurons equipped with STF,
IN-L-d with STD, IN-CL: cross-layer interneurons equipped with STD, IN-CL-AC
with STF, IN-CC: cross-column interneurons, IN-F: far-reaching interneurons (IN-F).

layer class fPFC fRamping

[Hz] [Hz]

2/3 E 0.4 0.9
IN-L 53.1 34.7

IN-L-d 37.8 27.8
IN-CL 22.6 17.6

IN-CL-AC 23.2 26.8
IN-CC 5.4 5.1
IN-F 2.5 5.7

5 E 2.3 2.5
IN-L 47.9 25.7

IN-L-d 55.0 46.5
IN-CL 20.5 28.1

IN-CL-AC 29.3 13.9
IN-CC 17.8 19.6
IN-F 8.2 2.8

As an effect of the calcium-triggered loop in excitatory neurons, I observed a two-fold
increase in firing rates for layer 2/3 excitatory neurons and decreased levels of inhibition
in the ramping PFC model fRamping compared to the PFC model fPFC, cf. Figs. 3.5A and
B and Table 3.4. Similar to Hass et al. (2016), spike statistics for averaged ISIs and CVs
of ISIs were compared for neurons with ⩾ 10 spikes, while the standard deviation over
time of subthreshold membrane potentials was compared for neurons with ⩾ 1 spike.

For the averaged ISIs, I found a similar distribution for both models, see Fig. 3.5C. The
corresponding coefficients of variation CVs of the ISIs are shifted toward higher values for
the ramping model, with averaged CV values of µCV, original = 0.4 and µCV, ramping = 0.6.
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Figure 3.5: Comparison of the spike statistics between PFC model and ramping PFC model
The spiking activities of all neurons are depicted in a raster plot for the PFC model
in A and for the ramping PFC model in B. For neurons with ⩾ 10 spikes, C the
averaged inter-spike interval (ISI) per neuron and D the corresponding coefficient
of variation (CV) per neuron are shown as histograms for the PFC model in black
and for the ramping PFC model in green. E Similarly, the standard deviation of the
subthreshold membrane potential over time for neurons with ⩾ 1 spike are plotted
as histograms.

In experiments, the standard deviation over time of subthreshold membrane potentials,
i.e., after removal of the spikes, averaged across neurons, was determined to be around
4 mV (Destexhe et al., 2001). In simulation, considering the subthreshold membrane
fluctuations of the spiking neurons, similar standard deviations are obtained for the
ramping PFC model (µσ(V), ramping = 2.5 mV,σσ(V), ramping = 1.5 mV) as for the original
PFC model (µσ(V), original = 2.2 mV,σσ(V), original = 1.3 mV).

3.3 time estimation in pfc models

To quantitatively evaluate how well the augmented PFC models encode time based on
the time stimuli presented to it, a duration predicting readout layer was added to the
network. Here, I describe in detail the interval timing task, how the input to the readout
layer is extracted from the network spike trains, how the readout layer is trained, how the
time is estimated from this, and how readout weights are evaluated. Finally, alternative
readout methods are described for the ramping PFC model.
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3.3.1 Interval timing task

To test interval timing within the state-dependent PFC model, all neurons of the network
were stimulated at the beginning and at the end of an interval with a step current of
Is = 220 pA for ∆ts = 10 ms, cf. Fig. 3.6. Inter-stimulus intervals {∆t1, . . . ,∆t15} ranging
from ∆t1 = 50 ms to ∆t15 = 750 ms in steps of 50 ms were used for training a readout
layer. Prior to the application of the first stimulus, the network has time to reach its
steady state within 1500 ms.
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Figure 3.6: Illustration of the state-dependent model for interval timing
The PFC network, of which a subset of 10% is depicted in the center gray box with
layer 2/3 and layer 5 neurons (excitatory: blue, inhibitory: red, connectivities: gray
arrows) is stimulated at the beginning and the end of several inter-stimulus intervals
(color-coded from ∆t1 = 50 ms to ∆t15 = 750 ms). Spike trains are extracted within
a window around the second stimulus to compute network states and train the
weights of the readout layer via least squares. Having trained the readout weights,
this allows for predicting the estimated inter-stimulus intervals ∆ttest.

In contrast, to test interval timing within the ramping PFC model, only layer 2/3

pyramidal neurons of the network were stimulated at the beginning of an interval with a
step current of Is = 600 pA for ∆ts = 100 ms, cf. Fig. 3.7. The readout layer was trained
for 200 – 6000 ms in 200 ms steps. First, the network was stimulated at t = 1 ms without
letting the network reach its steady state. In a separate experiment, after finding suitable
parameters yielding a steady state, the network was stimulated at t = 1000 ms.
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Figure 3.7: Illustration of the ramping activity PFC model for interval estimation with a
readout layer
The pyramidal cells of layer 2/3 are stimulated once with a step current Istim =

600 pA for 100 ms. To estimate various intervals (color-coded; 200 ms to 6000 ms in
200 ms steps), a readout layer is trained (orange arrows denote data flow). For this,
training states are extracted and projected via the readout weights to match targets
representative of the respective intervals, where readout weights were trained using
linear least squares. To test time estimation performance in 50 ms steps (green
arrows), test states were extracted from 50 trials not used for training.

3.3.2 Readout layer input

For the input of the readout layer, states of all NK = 1000 neurons k = 1, . . . , NK within a
given time window ∆tw are extracted from the spike trains {tk

sp} following the readout
mechanisms of a liquid state machine (Maass et al., 2002; Kaiser et al., 2017). Specifically,
the state Sk

i for the i-th readout time ti from the spike train of the k-th neuron is computed
by a weighted sum over spike times within a time interval ∆tw = tw2

− tw1
around ti, with

an exponential discounting for earlier spikes and an exponential decay rate of τ:

Sk
i =

∑
{tk

sp}

wi(tk
sp) ,

wi(tk
sp) =


exp

(
−

(ti+tw2
)−tk

sp
τ

)
if tk

sp ∈ [ti − tw1
, ti + tw2

]

0 otherwise
.

(3.5)

The hyperparameters that determine the states are the endpoint tw2
of the window

relative to the readout time ti, the size of the window ∆tw, and the exponential weight
decay rate τ. These parameters were determined using a grid search optimizing for
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minimal root-mean-square error RMSET between the estimated test and the objective time
tobj over a subset of training intervals (Ntrain trials = 50). Details about training and time
estimation can be found in section 3.3.3. In a first coarse grid search for parameters tw2

,
∆tw and τ, I found τ → ∞, which amounts to counting the spikes in the interval ∆tw

without exponential discount, to give lowest RMSET for all settings of the remaining
two parameters. Therefore, I fixed τ → ∞ and further optimized the two parameters ∆tw

and tw2
using a grid search on a finer scale depicted in Fig. 3.8B for the state-dependent

PFC model and in Fig. 3.9A for the ramping PFC model. For the state-dependent PFC
model, the smallest error (⟨RMSET⟩trials = 45.6 ms) was determined for ∆tw = 25 ms, tw2

= 20 ms and τ → ∞ as indicated by the red box in Figs. 3.8A and B. For the ramping

Figure 3.8: Grid search over window parameters for the state-dependent PFC model for state
representation of the readout layer input
A. Raster plot of all 1000 neurons with two stimulations (initial stimulus for 10 ms
at t0 = 1500 ms and readout stimulus for 10 ms starting at t2 = t0 + 100 ms) to
reproduce an interval of ∆t2 = 100 ms. The red box shows the window in which
the states from the spike trains are extracted (right: zoomed-in view). B. Result of a
grid search to find the optimal parameters for the window with varying window
size and end time. The best parameter set was selected by the minimum RMSET
value (red box).

PFC model, the fine-scale grid search, varying ∆tw from 10 – 190 ms in steps of 20 ms
and end times tw2

from 10 – 90 ms in steps of 10 ms, showed a steady decline of RMSET

for increasing window size, see Fig. 3.9A. The minimum RMSET was observed for ∆tw

at the edge of the grid search interval ∆tw = 190 ms, and for tw2
at tw2

= 30 ms with
⟨RMSET⟩trials = 570.5 ms, see red boxes in Fig. 3.9A and B. Although even larger window
sizes lead to even lower RMSET, I decided to use ∆tw = 190 ms as an upper limit, since a
larger window size also implies that intervals shorter than ∆tw − tw2

= 160 ms can not be
estimated within the proposed framework.

3.3.3 Training of the readout layer

Here, I follow the derivations for least squares and ridge regression from Bishop (2006).
Interval durations are predicted by the readout layer by means of dedicated readout

units {oi ⊂ R | i = 1, . . . , Nr} with valid activities between 0 and 1, cf. color-coded readout
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Figure 3.9: Grid search over window parameters for the ramping PFC model for state repre-
sentation of the readout layer input
A The raster plot of all 1000 neurons which were stimulated at tstim = 1 ms and
the window of the selected parameter combination to estimate an interval duration
of 200 ms with ∆tw = 190 ms and tw2 = 30 ms. B The averaged RMSET values are
shown for a grid search in which ∆tw and tw2

were varied. The best parameter
combination is indicated with the red box.

units in Fig. 3.6 for the state-dependent PFC model and in Fig. 3.7 for the ramping PFC
model. The number of readout units Nr matches the number of training intervals and
each readout unit is optimized to be active, i.e., have a value of 1, for the respective
training time interval and be inactive, i.e., have a value of 0, for the remaining time
intervals. Note that output activities were at this point not explicitly enforced to be within
the interval [0, 1].

To turn the state vector S⃗i ∈ RNK of the i-th readout time from all NK neurons into an
estimated time, a training set of examples of pairs of state vectors S⃗l and corresponding
targets t⃗l was constructed {(S⃗l, t⃗l) | l = 1, . . . , NL}. The size of the training set NL =

Ntrain trials · Nr was based on all combinations of training trials Ntrain trials, i.e., simulations
with different seeds for the pseudorandom number generator, and training intervals Nr.

Using the training set, a number of machine learning methods can be used to construct
a function f , for which f (S⃗l) ≈ t⃗l for all l. For this work, I focused on the simplest methods,
namely linear least squares and ridge regression. In both cases, the function f takes the
form of a simple linear projection

f (S) = WTS = O , (3.6)

with a (readout) weight matrix W = (w⃗1, . . . , w⃗Nr) ∈ RNK×Nr , the state matrix S =

(S⃗1, . . . , S⃗NL) ∈ RNK×NL , and the output matrix O = (⃗o1, . . . , o⃗NL) ∈ RNr×NL . When setting
equation 3.6 equal to T = (⃗t1, . . . , t⃗NL) ∈ RNr×NL , this defines a system of NL linear
equations for each output unit:

fi(S⃗l) = w⃗T
i S⃗l

!≈ til = (⃗tl)i for all l (3.7)

To keep the notation simple, from here on each readout unit is treated separately, and the
associated index i is omitted. This system of equations will generally be overdetermined,
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since per output unit there are NK = 1000 unknowns in w⃗ and at least NL = Ntrain trials ·
Nr ⩾ 100 · 15 = 1500 equations. Hence, if equations are linearly independent, there will
generally be no exact solution for w⃗ that solves all equations. Instead, one often assumes
a Gaussian noise model for t

t = w⃗TS⃗ + ϵ (3.8)

with ϵ being drawn from a normal distribution ϵ ∼ N(0,σ2). A solution for w⃗ that fits
states to noisy targets can be found by minimizing the loss function L

L =
1

2

∑
l

(tl − w⃗TS⃗l)
2 +

λ

2

w⃗Tw⃗ (3.9)

with respect to w⃗. For λ = 0, L is the least squares loss, while λ > 0 corresponds to
ridge regression with a regularization term that makes small weights in w⃗ favorable
and can yield better generalization. Both least squares loss and ridge regression have a
closed-form solution for w⃗.

Once readout weights W have been determined, the performance of time estimation
can be evaluated by presenting test intervals at a smaller step size and therefore also
in between training intervals using a different set of test trials non-overlapping with
training trials. The durations of the presented test intervals were estimated using the
readout layer by normalizing the readout unit activities by the sum of all readout unit
activities, multiplying them with the respective training time intervals, and summing
across all readout units. For the state-dependent PFC model, additionally, the negative
output values were set to 0 prior to normalization, which was not done for the ramping
PFC model. The standard deviation of the estimated times was evaluated across trials.

For the state-dependent PFC model, training was done with 300 trials starting from
50 ms up to 750 ms in 50 ms steps and evaluated with 50 test trials in 25 ms steps over
the whole training interval range. For the ramping PFC model, training was performed
with 100 trials in 200 ms steps starting from 200 ms up to 6000 ms and the model was
tested with 50 test trials in 50 ms steps. An overview of added parameters for the state-
dependent, and the ramping PFC model and for the training of the readout layer is
shown in Table 3.5.

3.3.4 Analysis of readout weights and interval-encoding pools

To better understand the intrinsic mechanisms and features in the network that lead to
an encoding of a specific interval, each neuron was first assigned to a training interval by
means of a maximal weight in the readout layer weight matrix in comparison to other
intervals similar to Buonomano (2000). Note that the same neuron was not considered
for the remaining training intervals and therefore groups of neurons assigned to the
same interval formed interval-encoding pools (IEPs). Then, for each IEP, the weight
matrix and neuron IDs were sorted according to the weight magnitude of the neurons
within the pool. For the readout weights of the state-dependent PFC model, only neurons
with positive weights above 0.1 were considered to examine the functional role of these
neurons for encoding time. In contrast, for the ramping PFC model, all positive weights
were considered since the maximum value was around 0.06. Based on this assignment
of neurons to IEPs and their relative importance within the pool in terms of the weight
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Table 3.5: Overview of parameters added for the state-dependent, and the ramping PFC
model.

state-dependent ramping

pfc model pfc model

PFC network parameters
GABAB synapses ✓ ✗
λGABAA 0.3 1.0
λGABAB 0.3 0.0
λIback 1.4 0.8
Is 220 pA 600 pA
∆ts 10 ms 100 ms
Is on all neurons layer 2/3 exc.
IADP ✗ ✓
NPoisson 10 10

fPoisson 1 Hz 1 Hz
wPoisson 0.5 0.5
pPoisson 10% 10%

Readout states
∆tw 25 ms 190 ms
tw2

20 ms 30 ms
τ → ∞ → ∞
Training of readout weights
Trials 300 100

Intervals 50 – 750 ms 200 – 6000 ms
Stepsize 50 ms 200 ms

Testing of readout weights
Trials 50 50

Intervals 50 – 750 ms 200 – 6000 ms
Stepsize 25 ms 50 ms

magnitude, differences in neuronal and synaptic parameters, as well as differences in
spiking activities are analyzed across IEPs ideally revealing which mechanisms are
responsible for encoding time.

3.3.5 Alternative readout methods

To study the unmediated relation between ramping activity and time estimation, alterna-
tive readout methods were conceived, which estimate time solely based on increasing
firing rates of neurons. To this end, the neuron-to-neuron variability of saturation points
was used to determine a per neuron activity threshold, beyond which the respective
neuron is considered active. Then, this was used to predict time intervals either based on
the single neuron that most recently turned active or based on the number of neurons
that are active at a given point in time.
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activity threshold To determine the saturation points of the individual neurons
and relate them to the corresponding point in time, a firing rate threshold was chosen
per neuron. First, the firing rates of each neuron per trial were computed using the
causal kernel (α = 50 ms, details, see section 2.4). Then, the times at which 90 % of the
per-trial maximum firing rate of a neuron is reached is averaged over trials and declared
as the estimated time Test,Th of the respective neuron and associated to the corresponding
trial-averaged 90% firing rate threshold fTh = 0.9 · fmax. Pairs of firing rate thresholds
and times, (fTh, Test,Th), determined per neuron are based on a set of 100 trials. For this
method, the estimated time on unseen trials is then simply the largest Test,Th from the set
of neurons that are above their firing rate thresholds fTh. The time estimation quality of
this method was evaluated based on a set of 50 trials. Note that for neurons that do not
stay at saturated activity, the firing rate can decrease below the threshold after having
exceeded their respective threshold. Hence, time estimates based on this method are not
guaranteed to be monotonically increasing. Furthermore, being based on a single neuron
with the largest Test,Th makes time estimates obtained with this method susceptible to
noise-based variability over trials. Therefore, a second ramping activity-based readout
method was conceived that addresses both caveats and is expected to be more robust.

number of active neurons To base the time estimation on the full set of neurons
that are above their respective thresholds and to make estimated times monotonically
increasing, another readout method was developed. Specifically, the times of crossing the
thresholds Test,Th and the corresponding firing rates fTh = 0.9 · fmax over 100 trials were
computed as before (details described above). However, to guarantee a monotonically
increasing number of active neurons and correspondingly monotonically increasing time
estimates, neurons that exceeded the firing rate threshold once remain labeled as active
even if the firing rate drops below the threshold again. Based on fest,Th as computed from
a set of 100 trials, the number of active neurons Nactive, which exceeded their respective
thresholds at least once, were determined per trial in 200 ms steps starting from 100 ms.
Then, the per-trial and per-interval t number of active neurons Nactive(t) was averaged
over trials to yield ⟨Nactive⟩(t), see Fig. 3.10A. While in each individual trial, Nactive(t) is
monotonically increasing over time intervals, this is not necessarily guaranteed for the
trial average. Hence, to determine the inverse function t(Nactive) = ⟨Nactive⟩−1 that is then
used to estimate time based on the number of active neurons, non-increasing stretches
in ⟨Nactive⟩ are left out. The resulting set of ⟨Nactive⟩ and associated times is then linearly
interpolated and extrapolated to relate any active neuron count to a time estimate, see
red curve in Fig. 3.10B. The described method was evaluated on 50 test trials in 10 ms
steps.

3.4 simulation details

The simulation runtime for the PFC model using the MATLAB code by Hass et al. (2016),
available via ModelDB1, took up to 17 min for a simulation time of 6 s to generate the
parameters and integrate the differential equations using an explicit 2

nd-order Runge-
Kutta method with a maximum time step of 0.05 ms. To simulate a larger series of

1 https://senselab.med.yale.edu/ModelDB/ShowModel?model=189160

https://senselab.med.yale.edu/ModelDB/ShowModel?model=189160
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Figure 3.10: Number of active neurons
A The number of active neurons above threshold Nactive for various time points
averaged over 100 trials with standard deviations in 200 ms steps starting from
100 ms. B The inverse of A with the interpolated curve in red.

experiments or more complex networks in a short period of time, the MATLAB code
to solve the PFC model equations was reimplemented within Python using the NEST
simulator package. NEST is suitable to simulate spiking neural networks of any size,
focusing on the dynamics, interactions, and plasticity while not modeling morphology
of individual neurons2. The wide scope of predefined neuron and synapse models,
which are implemented in and integrated into an optimized and parallelized C++ code,
make NEST an ideal choice for simulating the network with short runtime. However,
since the simpAdEx neuron model was not included within the predefined models
provided by NEST, the simpAdEx was implemented from scratch, based on a preliminary
version by Santiago Moreno, with the help of Jakob Jordan, a co-developer of NEST.
After reimplementation of the MATLAB code within NEST using an embedded Runge-
Kutta (2, 3) method, simulation runtime was indeed reduced to 1.5 min. Specifically, for
all simulations in this work, neuronal and synaptic parameters of the PFC model as
described by Hass et al. (2016) were generated once in MATLAB (version R2020a), stored
to disk, and then read within Python (version 3.8.12) to run the simulations in NEST
(version: 2.18.0, Jordan et al., 2019).

All additions to the PFC model described in this thesis were implemented within
Python/NEST, including Poisson neurons and connections, dopamine modulation,
GABAB synapses (same connections as GABAA drawn in MATLAB, but different synaptic
weights drawn within Python/NEST), and calcium influx.

The readout layer was implemented using SciPy (version 1.7.3) to compute the readout
weights via least squares and using NumPy (version 1.19.5) to compute the readout unit
activities via matrix multiplications. Statistical analyses were also performed using SciPy.

Furthermore, multiple independent simulations were parallelized across CPU cores
and nodes using the Python package ray3 (version 1.1.0) in conjunction with slurm on
the bwUniCluster (2.0). The bwUniCluster is a high-performance computing platform,

2 https://ebrains.eu/service/nest-simulator/
3 https://github.com/ray-project/ray/tree/ray-1.1.0

https://ebrains.eu/service/nest-simulator/
https://github.com/ray-project/ray/tree/ray-1.1.0
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which is funded by the Ministry of Science, Research and the Arts Baden-Württemberg
and the Universities of the State of Baden-Württemberg.

3.5 minimal model

The following method has been proposed and tested by Joachim Hass and was published
in the context of Ravichandran-Schmidt and Hass (2022):

“In order to further understand how the firing rate of the network changes over
time, we constructed a minimal model comprising a single neuron that is subject to
the same synaptic currents and external inputs that are present in the PFC model.
The neuron is modeled as a leaky integrate-and-fire neuron with parameters that are
identical to the average values for an L23 pyramidal cell in the PFC model (C=170 pF,
gL = 5.85 nS, EL = −75.5 mV, Vth=−65 mV). AMPA, GABAA, NMDA, and GABAB

synapses are modeled as in the PFC model (without STP). Except for GABAB, all
synapses are stimulated by a Poisson spike train with λ = 0.25, simulating random spike
trains at 4000 Hz for both the excitatory and inhibitory synapses, balancing excitation
and inhibition. To reproduce the effect of GABAB after the first stimulation, the GABAB

synapse is only stimulated by 20 spikes during the first 20 ms of the simulation in
response to the first stimulus that marks the beginning of the interval. This simplification
is justified by the fact that the first stimulus elicits a much stronger effect on GABAB

compared to the ongoing activity and this strong initial activation is one of the essential
features of the model that enables time perception. The neuron is subject to a constant
background current of 40 pA, which is raised to 90 pA for 20 ms at the time of the second
stimulus. The interval duration is varied between 50 ms and 500 ms in steps of 25 ms. We
simulated N = 100 independent neurons and computed the mean and standard deviation
of the membrane potential over all neurons at each of these durations. Assuming a
normal distribution of the membrane potential, we then computed the probability p
of the membrane potential to exceed the firing threshold Vth and interpreted N · p as
the firing rate at a given time, which is depicted in Fig. 4.13. The different curves in
this figure were generated by varying Vth between −67 and −63 mV in steps of 0.1 mV.
Similar results are obtained by simply counting the number of neurons exceeding Vth in
each case.”

3.6 analysis

In the following, employed neuroscientific and mathematical/statistical analyses to
understand the obtained results are discussed. These encompass various techniques
including the calculation of the root-mean-square error (RMSE) to compare the firing
rates and the timing results, the rheobase, and the Lyapunov exponent to analyze the
chaotic regimes of the prefrontal cortex (PFC) network.
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root-mean-square error For a number of N observations yi for i = 1, ...N and for
the same number of predictions ŷi, a measure to compare the results is the RMSE:

RMSE =

√∑N
i=1

(yi − ŷi)
2

N
(3.10)

In this work, the RMSE is used to compare the error of the results to the observations
such as firing rates, objective time, and linear and square-root fit.

rheobase The minimum electrical current I of infinite duration that drives a neuron
from the resting state to the initiation of an action potential is called the rheobase (Chase
& Morales, 2005). The rheobase Irheo of an adaptive exponential (AdEx) integrate and fire
neuron model was derived by Hertäg et al. (2012):

Irheo = (a + gL) ·
[

VT − EL −∆T +∆T · ln
(

1 +
a

gL

)]
. (3.11)

Since for the simplified adaptive exponential (simpAdEx) model, the subthreshold
adaptation variable a = 0, the rheobase simplifies to:

Irheo = gL · (VT − EL −∆T) . (3.12)

chaotic dynamics In order to determine whether the PFC model for time estimation
is in a chaotic or non-chaotic regime, the stimulation current at t =1500 ms was slightly
perturbed (∼ 0.001 – 0.02 pA depending on the ablation experiment performed) and
compared with the non-perturbed case, similar to Laje and Buonomano (2013). The firing
rates were determined by convolving the spike trains of each neuron with a causal kernel
with α = 50 ms, see section 2.4. The Lyapunov exponent is computed by first determining
the Euclidean distance between both per-neuron firing rate trajectories as follows:

d(t) =
√∑

i

(Fi(t) − Fi,pert(t))2 , (3.13)

where i denotes the neuron index. From this, the Lyapunov exponent λ is calculated by
taking the slope of the logarithmic distance shortly after the perturbation:

λ =
log d(t2)

d(t1)

t2 − t1

. (3.14)

For the default state-dependent PFC model, the network was stimulated at t = 1500 ms
with a step current of Istim = 220 pA and perturbed by increasing the step current to
Istim = 220.02 pA. The Lyapunov exponent is then computed using equation 3.14 with
t2 = 2000 ms and t1 = 1600 ms. The Lyapunov exponents for the ablation experiments
were calculated similarly, varying the perturbation current for each case and choosing
the minimum value required to slightly drive the firing state away from the unperturbed
state and calculating the Lyapunov value in a small window after the perturbation in
which logarithmic distance grows linearly.





4
R E S U LT S – S TAT E - D E P E N D E N T P F C M O D E L

In this chapter, the state-dependent prefrontal cortex (PFC) model is shown to be able to
reproduce established experimental findings of interval timing within a limited range.
To understand the results, the limitations and underlying mechanisms of the model are
analyzed using ablation experiments by dissecting the network into pools of neurons that
represent a specific interval. Finally, we propose a theoretical account for the generation
of subsecond timing following Weber’s law within this model that also hints at possible
generalizations beyond the particular model presented here and links violations of
Weber’s law with the occurrence of Vierordt’s law.

The following chapter has been published as part of Ravichandran-Schmidt and Hass
(2022). The mathematical analysis in section 4.2.3 was performed and written by Joachim
Hass and everything else was performed and written by myself.

4.1 reproduction of experimental results

All neurons within the state-dependent PFC network were stimulated in the beginning
and at the end of an interval with a short step current (Is = 220 pA, duration 10 ms), cf.
Fig. 3.6. The raster plots of all neurons for exemplary inter-stimulus intervals are shown
in appendix A.2, Fig. A.1. After simulating, states were extracted within a window, see
section 3.3.2, the weights of the readout units were trained with various inter-stimulus
intervals (∆ttrain = 50 - 750 ms) in 50 ms steps and tested in 25 ms steps.

The normalized outputs of the trained readout units for different test intervals ∆ttest

are shown in Fig. 4.1A. Each readout unit has a bell-shaped tuning curve peaking at its
respective interval and dropping to zero at neighboring time points, allowing the model
to generalize to intervals it has not seen during training. Testing an inter-stimulus interval
in between two trained intervals, e.g. 125 ms, leads to a co-activation of the 100 ms and
150 ms readout unit. For intervals longer than 300 ms, the tuning curves become broader.

To test the linearity of the psychophysical law, the averaged subjective time is calculated
by multiplying the output values of the readout units with their corresponding ∆ttrain

and summing over all readout units. As can be seen in Fig 4.1B, the estimated times are
well described by a straight line (Fig 4.1B), with a fit error of RMSET = 49.3 ± 10.5 ms.
Furthermore, an overestimation of shorter and an underestimation of longer intervals is
observed (Fig. 4.1B), in agreement with Vierordt’s law. Fitting the straight line (y = ax+ b),
yields a = 0.8± 0.1 and b = 69.9± 16.0. The slope a is within the range of the experimental
observations (Kanai et al., 2006; Murai & Yotsumoto, 2016) and significantly differs from
1.0 (one sample t-test: t(49) = −24.06, p < 0.001). The indifference point (IP) of the
averaged estimated times can be found at IP = 530 ms, also in line with experimental
studies (Woodrow, 1934).

To test the scalar property, the evolution of the standard deviation of the estimated
times over 50 trials was computed, as shown in Fig. 4.1C. Fitting the data to a straight

65
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A

B C D
RMSET  = 49.3 ± 10.5ms RMSEl = 3.5ms; RMSEs = 4.3ms 

Inter-Stimulus Interval [ms]

Figure 4.1: Psychophysical law and scalar property
A Illustration of mean and standard deviation of readout units (color-coded) for
various test intervals. B Mean and standard deviation of subjective time (estimated
over 50 trials) as a function of test intervals together with a linear fit (dashed-
dotted-line) and the objective time (dashed black line). C Standard deviations of the
estimated time as a function of test interval durations, fitted to a linear (red curve)
and to a square root function (blue curve). D The trial averaged Weber fraction as a
function of test interval durations. The horizontal line depicts the average value
between (400 - 750 ms).

line (in red) as predicted by the scalar property, results in a root-mean-squared error
of RMSEl = 3.5 ms. Additionally, the trial-averaged Weber fraction (Wf) was computed,
restricted to the range of 400 - 750 ms (green line in Fig. 4.1D) to control for the fact
that constant errors (the offset of the line) dominate at shorter intervals, causing the
Wf to decrease – a phenomenon that is well known as generalized Weber’s law (Bizo
et al., 2006). The Wf of 0.059 matches experimental observations (Getty, 1975; Halpern &
Darwin, 1982). To test if the data can be better fitted using the square root function, this
fit is also included (Fig. 4.1C in red), showing a slightly higher error of RMSEs = 4.3 ms.
Computing the readout weights using ridge regression instead of linear least squares
yields almost identical results, cf. appendix A.2, Fig. A.2.

Both properties, the linear psychophysical law, and the scalar property were further
evaluated using several sets of neuronal and synaptic parameters randomly drawn from
experimentally validated distributions (Hass et al., 2016). For ten parameter sets, the
psychophysical law is well-fitted by a linear function with an average fitting error of
RMSET = 49.1 ± 9.2 ms, and a slope of 0.85 ±0.05, which differs significantly from 1.0
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(one sample t-test: t(499) = −74.8, p < 0.001). The IP of the averaged estimated time is
545.5 ± 23.3 ms.

Regarding the adherence of the state-dependent PFC mode to the scalar property, from
Fig. 4.1C and based on very similar RMSE values for linear and square root fit, it is not
self-evident to determine whether the standard deviation follows a linear or a square root
function. To distinguish linear and square root fit results, the simulations were repeated
for the same ten parameter sets, but with a larger number of ∆ttest (10 ms instead of
25 ms) and the standard deviations were averaged across all parameter sets (Fig. 4.2). Up
to interval durations of 500 ms, the standard deviations are well approximated by a linear
function. However, for longer ∆ttest, the standard deviations saturate to a constant value.
Overall, the data can be approximated by a piecewise linear function of the form

y =

{
a · x + b for x ⩽ c
a · c + b otherwise ,

(4.1)

with a = 0.06 ± 0.02, b = 10.2 ± 2.5 and c = 530.0 ± 89.5. The fitting error RMSEpl =

1.22 ± 0.04 ms for this function is lower compared to both the linear (y = ax + b with
a = 0.04± 0.01, b = 13.9± 1.6, RMSEl = 2.5± 0.1 ms, paired t-test: t(10) = −34.0, p < 0.001)
and square root fits (y =

√
ax + b with a = 1.9 ± 0.7, b = 2.6 ± 2.9, RMSEs = 2.1 ± 0.1 ms,

paired t-test: t(10) = −32.5, p < 0.001). Fixing c at 500 ms yields only slightly different
results, so the RMSE values can be compared despite the different numbers of parameters.
As evident from Fig. 4.1B, the interval duration of 500 ms at which the standard deviation
saturates coincides with the duration where the psychophysical law starts to deviate
from a one-to-one relation with objective time.

200 400 600
Objective Time [ms]

20

30

40

 [m
s]

Figure 4.2: Validity of the scalar property in the state-dependent PFC model
Standard deviations of the estimated times as a function of test interval durations
averaged across ten parameter sets. The red line shows the best fit to a piecewise
linear function, saturating for ∆ttest above a threshold (see text for details).

To examine the modulation of subjective duration by the D2 dopamine receptor, a
transient change of D2 receptor activation was simulated by changing the neuronal and
synaptic parameters by the values summarized in Table 3.2, (see section 3.2.2 for details),
which reflect the experimentally observed effects of D2 in vitro. These changes were only
applied for the test phase, while for training, the same parameters were used as before.
The full range of altered time estimates for DA modulation from 0 % to ±100 % for ∆ttest

of 50 - 750 ms is presented in appendix A.2, Fig. A.3. The shift of the activation of the
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output neurons for increasing dopaminergic modulation is shown in the appendix A.2,
Fig. A.4 for the readout neuron encoding the 400 ms interval.
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Figure 4.3: Effects of dopaminergic modulation
A Subjective duration as a function of test interval durations between 200 - 600 ms
without modulation (black curve), for agonistic (blue curves) and antagonistic (red
curves) D2 modulation. B The slope of the linear psychophysical law for modulation
of both synaptic and neuronal parameters (black curve), for synaptic modulation
alone (magenta curve), and for neuronal modulation alone (green curve). The
dashed vertical line indicates the point without modulation. C Standard deviations
of the estimated time as a function of test interval durations for D2 modulation
between −50 % and 20 %.

As both agonistic and antagonistic modulation show boundary effects for DA modu-
lations > ±50 % and for longer and shorter intervals (cf. appendix A.2, Fig. A.3), only
intervals within a range of 200 ms - 600 ms and DA modulations up to ±50 % were
considered further, see Fig 4.3A. Within this limited range of durations and modulation
levels, subjective time shortens for antagonistic modulation (Fig 4.3A, from darker to
brighter red colors), and lengthens for mild agonistic modulation (Fig 4.3A, from darker
to brighter blue colors), consistent with experimental results (Rammsayer et al., 1993;
Buhusi & Meck, 2005). In Fig. 4.3B (black curve), the slope of a linear fit to the psy-
chophysical law for each level of D2 modulation is shown. The slopes reach a maximum
around 20 % (one-way ANOVA over 50 trials, F(10, 539) = 299.3, p < 0.001) and drop
again for higher values. To further assess the mechanism of D2 modulation of subjective
time, the modulation was restricted to synaptic (Fig. 4.3B, magenta curve) and neuronal
(Fig. 4.3B, green curve) parameters only. For the synaptic modulation, slopes are very
similar to the modulation of synaptic and neuronal parameters combined, while the
neuronal modulation alone only has an effect at strong agonistic modulation, where
it further decreases the slope. Hence, dopaminergic modulation, as simulated here, is
mainly driven by the synaptic parameter changes.

To assess a potential dopaminergic modulation of timing errors (Fig. 4.3C), a linear
function was fitted to the standard deviations within the range of modulations where
subjective duration linearly increases (−50 % - 20 %), but a systematic change was neither
observed in the slope (linear regression: slope = -0.03, p = 0.20, R2 = 0.26) nor in the
intercept (linear regression: slope = 9.62, p = 0.16, R2 = 0.30) of Weber’s law (note that the
constant offset for longer durations was irrelevant in this case). The standard deviations
and the slopes over the full range of durations and modulations are shown in appendix
A.2, Fig. A.5.
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A B

Figure 4.4: Retraining after mild dopaminergic modulation.
Estimated times (panel A) and the corresponding standard deviations (panel B)
as a function of test interval durations for agonistic (30 %, red) and antagonistic
modulation (−30 %, blue) after retraining. The estimated times and the standard
deviations from Fig. 4.1 are shown in black for comparison.

So far, only the acute modulation of D2 was simulated by applying the changes to the
test trials, while leaving the training trials unaffected by dopamine. If the readout weights
are retrained under D2 modulation, the impaired time estimation can be compensated
as tested for ±30 % agonistic and antagonistic modulation respectively. Fig.4.4 shows
the psychophysical law (in red, RMSET = 51.0 ± 8.6 ms with fitting parameters of a =

0.82 ± 0.04 and b = 71.9 ± 14.3 over the full range (y = ax + b)) and Weber’s law (with fit
parameters of the piecewise linear fit: a = 0.04, b = 11.5 and c = 650.0) for the retrained
agonistic dopaminergic modulation of 30 %. Similarly, the psychophysical law (RMSET

= 54.1 ± 11.3 ms with fitting parameters a = 0.81 ± 0.05 and b = 77.5 ± 18.4 over the
full range (y = ax + b) and Weber’s law (with fit parameters of the piecewise linear fit:
a = 0.04, b = 13.0 and c = 597.7) for the retrained antagonistic dopaminergic modulation
of −30 % are depicted in blue in Fig. 4.4. For comparison, the results from the original case
as presented in Fig. 4.1B are included in black. Consistent with these results, a one-way
ANOVA of the slopes of the psychophysical law did not show significant differences
between the three cases (F(2, 147) = 1.5 and p = 0.2).

4.1.1 Limitations of the model

To examine the potential limitations of the model, longer intervals and higher noise
levels were considered. Training the readout network for interval durations up to 2000 ms
and testing within the same range, a less accurate time perception was determined. In
particular, the slope of the psychophysical law is much smaller compared to the shorter
range, implying a more pronounced Vierordt’s law (slope = 0.7 ± 0.1, one sample t-test to
compare to identity (t(49) = -35.57, p < 0.001), with the IP shifted towards longer intervals
(IP = 852.9± 186.3 ms), cf. Fig. 4.5A. While the slope matches experimentally observed
values of 0.5 – 1.1 (Franssen et al., 2006; Kanai et al., 2006; Murai & Yotsumoto, 2016),
the IP for a similar range 400 – 2000 ms is higher at ≈ 1400 ms in experiments (Franssen
et al., 2006). Calculating the error with respect to the expected time yields RMSET =
264.0 ± 43.4 ms, cf. Fig. 4.5A. The fit error of the standard deviation to the piecewise
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linear fit is RMSEpl = 28.7 ms with fitting parameters a = 0.26, b = −3.9 and c = 615.0, cf.
Fig. 4.5B.

Table 4.1: Parameters for different noise levels with 1000 Hz Poisson neurons

psychophysical law scalar property

Iback red. wPoisson RMSET slopes ip piecewise linear fit

[%] [ms] [ms] a b c

baseline
(1 Hz) 0.5 49.3 ± 10.5 0.8 ± 0.1 530.0 0.04 9.8 910.4

1000 Hz
−7 0.003 69.3 ± 17.6 0.7 ± 0.1 472.0 0.05 14.2 625.0
−21 0.005 90.5 ± 23.4 0.7 ± 0.1 512.5 0.1 14.7 454.2
−36 0.007 107.9 ± 25.6 0.6 ± 0.1 477.7 0.12 13.5 452.5
−50 0.010 120.1 ± 30.2 0.5 ± 0.1 458.7 0.17 14.7 370.6

To ensure variability across trials, the neurons were originally connected with NPoisson =

10 Poisson neurons with a firing rate of 1 Hz. However, a typical cortical neuron has
approximately 1000 – 10 000 connections with other neurons (Murre & Sturdy, 1995;
Braitenberg & Schüz, 2013) and can thus be subject to much higher noise levels. To
investigate whether subsecond timing still works in this case, the firing rates of the 10

Poisson neurons were increased to f = 1000 Hz, corresponding to 1000 Poisson neurons
firing at 1 Hz, while weights were reduced accordingly. Time estimates were computed
for different noise levels by decreasing the background current Iback and simultaneously
increasing the Poisson neuron weights wPoisson (see section 3.2.1) to avoid overexcitation
and keep the standard deviation of the subthreshold membrane potential (Fig. 3.3)
constant, cf. Table 4.1 and Fig. 4.5C and D.

For increasing noise levels, less accurate timing was found. In particular, the linear
timing error increases, and Vierordts law becomes more pronounced, as noise levels
increase, see Table 4.1. The piecewise linear function provides a good fit for the standard
deviations with small RMSEpl (Table 4.1) for all noise levels, however the cut-off value c
is shifted towards shorter intervals for higher noise levels (see Fig. 4.5D).

4.2 mechanisms of subsecond timing

Given that interval timing, works within the state-dependent PFC model at least for
limited noise levels and intervals up to 750 ms, I next aimed to understand the underlying
mechanisms of timing within this model. In the first step, ablation experiments were
performed by systematically disabling specific components of the network to determine
which of them are critical for which aspect of timing in the model. This was followed
by correlation experiments to test for pools of neurons that encode specific intervals
and how they differ from non-predictive neurons and from neurons that are predictive
for other intervals. Furthermore, a simplified model to explain the origin of the scalar
property and Vierordt’s law was studied. Next, alternative mechanisms were tested for
their existence, specifically, sequential activation of groups as expected for synfire chains



4.2 mechanisms of subsecond timing 71

orig. 1Hz,
-7%
-21%
-36%
-50%

A B

C D

Figure 4.5: Limitations of timing in the state-dependent PFC model.
Estimated time (panels A, C) and standard deviations (panels B, D) as a function
of test interval durations for longer durations up to 2000 ms (panels A, B) and
for higher noise levels (panels C, D). Lighter colors in panels C and D represent
higher noise levels(see legend in C). The corresponding Poisson weights and the fit
parameters are shown in Table 4.1.

(Hass et al., 2008), and ramping activity as observed in the climbing activity model
proposed by Durstewitz (2003).

4.2.1 Ablation experiments

In this section, the importance of the model for the timing results was analyzed by
systematically removing them. Specifically, three main ingredients were studied, namely
synaptic processes with long time constants, heterogeneity of neuronal and synaptic pa-
rameters, and irregular background activity (induced by constant background currents).

Regarding synaptic dynamics, there are three elements with long time constants that
might influence the estimation of time: NMDA currents, GABAB currents, and STP of
each of the synaptic currents. In order to test their respective influence on time estimation,
ablation experiments were conducted by removing each of these synaptic mechanisms,
adjusting the background current and synaptic weights to compensate for missing inputs,
and retraining the readout layer. The exact adjustments can be found in appendix in Table
A.1. The resulting fitting errors RMSET for the linear psychophysical law, the parameters
of Vierordt’s law (slope and IP), and the Lyapunov exponents are shown in Table 4.2,
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A B C

ED F

Figure 4.6: Ablation experiments.
Estimated times (panels A-C) and standard deviations (panels D-F) averaged over
five parameter sets as a function of test interval durations for different ablation
experiments. A, D Removal of synaptic processes, namely N-Methyl-D-aspartic
acid (NMDA) (magenta curves) and metabotropic GABA receptor (GABAB) (blue
curves) currents, short-term plasticity (STP) (red curves), and the combination
of all three (cyan curves). B, E Removal of heterogeneity in neuronal parameters
(red curves), in synaptic parameters (blue curves), and in both (magenta curves),
additional reduction to one type of STP within each pair of neuron types (light blue
curves) and removal of the heterogeneity of synaptic delays only (green curves).
C, F Removal of the background current within the PFC model (red curves). In all
panels, the original results from Fig. 4.1B and C are shown in black for comparison.
The corresponding fitting errors and fit parameters can be found in Tables 4.2 and
4.3.

while the parameters related to Weber’s law, such as RMSEpl and the fit parameters for
the piecewise linear fit are presented in Table 4.3. The Lyapunov exponents (see section
3.6) were estimated for a subset of the ablation experiments to test whether there might
be intrinsically generated noise by chaos (as indicated by positive Lyapunov exponents)
important for generating the scalar property. Except for removing the background current,
all other tested ablation experiments showed positive Lyapunov exponents, as expected
when operating in the chaotic regime.

Removing NMDA synapses had no effect on estimated times, see Fig. 4.6A and D in
magenta, Table 4.2 and Table 4.3. In contrast, when removing STP time estimation gets
worse reflected in a much more pronounced Vierordt’s law, and the standard deviation is
increased compared to the original state-dependent PFC model, see Table 4.2, Table 4.3
and Fig. 4.6A,D in red. This effect is even more pronounced when GABAB is removed,
such that inhibition is limited to ionotropic GABA receptors (GABAA) with much faster
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Table 4.2: Ablation experiments to identify important components for linear timing.

ablation RMSET slopes two sample ip lyapunov

[ms] t-test of slopes [ms]
to original

original 49.5 ± 0.84 ± 538.9 ± 7.0
3.6 0.01 17.1

Synaptic mechanisms

no NMDA 47.5 ± 0.85 ± t(497)=2.32, 532.1 ± 3.75

1.3 0.01 p < 0.02 14.0

no GABAB
129.5 ± 0.48 ± t(396)=−56.89, 445.7 ± 151.0

4.5 0.03 p < 0.001 14.0

no STP 99.4 ± 0.61 ± t(312)=−25.0, 388.5 ± 10.0
13.9 0.06 p < 0.001 41.2

no NMDA & 153.6 ± 0.35 ± t(355)=−66.4, 424.1 ± 130.0
no GABAB & no STP 7.3 0.04 p < 0.001 17.6

Heterogeneity

homogen. neurons 57.3 ± 0.81 ± t(491)=−5.92, 538.6 ± 6.2
7.9 0.03 p < 0.001 7.8

homogen. synapses 45.1 ± 0.86 ± t(484)=−4.49, 548.2 ± 14.5
1.9 0.01 p < 0.001 25.1

homogen. neurons & 52.8 ± 0.84 ± t(492)=−1.6, 486.8 ± 7.5
synapses 8.4 0.03 p = 0.1 171.5
homogen. neurons, syn., 118.5 ± 0.53 ± t(304)=−31.34, 427.9
1 type of STP 15.7 0.08 p < 0.001 17.2

homog. syn. delays 47.2 ± 0.86 ± t(494)=4.03, 559.2 ±
2.8 0.01 p < 0.001 19.0

Irregular background activity
no background 77.0 ± 0.71 ± t(413)=−21.67, 390.5 ± -15.9
current 5.2 0.01 p < 0.001 53.0

time constants, see Fig. 4.6A,D in blue. To test the combined effect of GABAB, STP and
NMDA, all three of them were removed in a further simulation, which yielded a slope
of 0.35 ± 0.04 for time estimation and an even higher standard deviation and decreased
slope a compared to ablating GABAB alone, see Fig. 4.6A,D in cyan.

In the next step, I tested the role of heterogeneity in neuron and synapse parameters. In
the original simulations, these parameters were randomly drawn from distributions that
are specific for each neuron and synapse type (Hass et al., 2016). Here, I use homogeneous
parameters within each neuron type. To this end, I first removed the heterogeneity within
each neuron type for the neuronal parameters, second, for the synaptic parameters
connecting each pair of neuron types, and finally for both parameter sets. For all three
ablations, I observe similar slopes of the linear timing but only for homogeneous neuronal
and synaptic parameters a slightly shifted IP, see Suppl. Table 4.2 and Suppl. Table 4.3).
The heterogeneity was further reduced by using only one single type of STP for each
pair of neuron types (see section 3.1.2 for details). This manipulation resulted in a much
more pronounced Vierordt’s law with a slope of around 0.53 ± 0.08, a reduced IP, higher
standard deviations with larger offset b, and a smaller cutoff value for c, see the cyan
line in Fig. 4.6B and E and entries in Table 4.2 and Table 4.3. Finally, using homogeneous
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Table 4.3: Ablation experiments to identify important components of Weber’s law

ablation RMSEpl piecewise linear fit

[ms] a b c

original 3.6 ± 0.05 ± 9.4± 532.4 ±
0.4 0.01 1.4 75.1

Synaptic mechanisms
no NMDA 3.7 ± 0.05 ± 9.5± 550.6±

0.6 0.004 1.5 35.8
no GABAB 7.3 ± 0.05± 47.3± 663.7 ±

1.3 0.04 9.0 344.5
no STP 5.4 ± 0.09± 29.4 ± 439.9±

0.5 0.03 2.3 138.1
no NMDA, no GABAB & no STP 7.7 ± 0.03± 70.6± 429.0±

1.2 0.04 11.0 335.5

Heterogeneity
homogen. neurons 5.6 ± 0.07 ± 14.5 ± 490.4±

1.9 0.04 5.4 182.2
homogen. synapses 4.0 ± 0.04 ± 13.4 ± 645.1±

0.4 0.01 2.9 69.4
homogen. neurons, synapses 5.3 ± 0.04 ± 15.2± 698.0 ±

2.2 0.01 6.5 239.9
homogen. neurons, syn., 1 type of STP 9.9 ± 0.15± 48.6± 318.7±

1.4 0.17 33.8 376.1
homog. syn. delays 3.4 ± 0.05 ± 10.8 ± 540.6 ±

0.2 0.001 2.7 82.0

Irregular background activity
no background current 5.2 ± -0.07± -8.8 ± 658.9±

1.5 0.1 112.9 900.9

synaptic delays (which are also randomly drawn in the original simulations) for all
synapses does not affect timing, see green line in Fig. 4.6B and E and entries in Table 4.2
and Table 4.3.

In order to determine whether the background current applied to the neurons might
be responsible for the linear timing results, the background current was removed from all
neurons, such that no pronounced activity could be seen between stimulations. Removing
the background current only impaired timing results up to 200 ms (Table 4.2 and Fig.
4.6C), and yield a decreasing standard deviation with a negative slope a = −0.07 (Table
4.3 and Fig. 4.6F).

4.2.2 Interval-encoding pools

To understand the key features of interval discrimination, each neuron in the network
was associated with a specific interval it encodes according to the readout neuron with
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the highest readout weights (see section 3.3.4 for details), similar to (Buonomano, 2000).
The subset of neurons encoding the same interval form an interval-encoding pool (IEP).
For the association to IEPs, only neurons with maximum positive readout weights above
0.01 were considered and therefore 571 out of 1000 neurons were not assigned to an IEP.
Remaining neurons formed pools of size 14.3 ± 4.6 (min = 4, max = 23). A depiction
of neuron pools and corresponding readout weights can be found in Fig. 4.7A. For
visualization purposes, the neurons within a pool were additionally sorted from low to
high weights.

A C
Fit

Encoded Interval Duration [%] Test Interval Duration [%] Encoded Interval Duration [ms]

B
Fit

Figure 4.7: Readout weights and normalized mean activities within interval-encoding pools
(IEPs)
A. Neurons are associated with readout units based on the largest weight w among
the neuron-specific set of weights onto readout units provided that the largest
weight is above the threshold 0.01. The set of neurons associated to the same
readout unit forms an IEP. The weight matrix is first sorted by this association to
IEPs and then within each IEP, weights are sorted in ascending order. Here, weights
of non-associated neurons with a maximum weight below the threshold of 0.01

are not shown. The horizontal lines show the borders of the IEPs and the vertical
lines separate the encoded intervals. The color scale is linear for |w| ⩽ 0.1 followed
by log

10
-scale. B Normalized average readout weights of neurons within IEPs as a

function of the normalized encoded interval durations of each pool (color-coded by
the readout intervals). The dashed line is the best fit using a sum of two Gaussians
of all curves. C Mean activity over 50 trials within a pool normalized for each
test interval by the encoded duration of each pool and color-coded by the readout
intervals, see legend in B. The dashed line represents the best fit of the stereotypic
firing rate profiles.

Calculating the normalized average weight distribution from the neurons in each pool
to their respective readout neuron yields stereotypic weight profiles, which we term
temporal receptive fields: Weights peak shortly before the time that the respective pool
represents and suppress contributions from both earlier and later pools asymmetrically
(Fig. 4.7B). Furthermore, the states of neurons in each IEP in response to the second
stimulus were found to establish stereotypic firing rate profiles for most pools: the
normalized firing rate increases until 100 % of the elapsed time for the respective pool is
reached and saturates for all longer intervals, see Fig. 4.7C. Taken together, these results
indicate that each pool translates the time elapsed relative to the interval it represents
into a similar firing rate code and also transfers this code to its respective readout neuron
using a stereotypic weight profile.
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What makes a pool interval specific?

Having confirmed the functional relevance of the interval-sensitive pools of neurons, the
mechanism that underlies this sensitivity was investigated next. To this end, the synaptic
currents at different points in time across different pools, as well as the most relevant
neuronal and synaptic parameters, were compared.

1 2 3

1 2 3

A B

C D E
1 2 3

Time  [ms]
-500            0      500             1000

Time  [ms]
-500            0      500             1000

total
total

total

Figure 4.8: Synaptic currents within interval-encoding pools.
The pool-averaged excitatory (panel A) and inhibitory (panel B) synaptic currents
as a function of simulation time. The three circles and the dashed lines mark three
ranges over time within which the synaptic currents are compared, namely before
stimulation ((1), −500 ms to −5 ms), during the first stimulation ((2), −5 ms to
20 ms), and during the second stimulation ((3), −5 ms + ∆t to −5 ms +∆t + 20 ms).
For the pre-stimulation range (1), mean and standard deviation (over neurons in
the pool) of time-averaged synaptic currents are shown in panel C. For the time
ranges around first (2) and second stimulation (3), mean and standard deviation
(over neurons in the pool) of peak synaptic currents are shown in panels D and E
respectively. For each case, average excitatory (blue curves), inhibitory (red curves),
and overall currents (black curves) are shown for each pool as a function of the
duration encoded in each pool.

First, the pool-averaged sum of all synaptic currents was computed and separated
for excitatory and inhibitory currents, as shown in Fig. 4.8A and B. As expected, all
synaptic currents peak upon the first stimulus and after the respective second stimulus.
The absolute amplitude of synaptic currents was compared for the trained intervals
before the first stimulus (Fig. 4.8C by averaging over the time between t = −500 ms to
t = −5 ms), then the peak values were computed in response to the first stimulus (Fig.
4.8D over the range t = −5 ms to t = 20 ms) and in response to the second stimulus (Fig.
4.8E, over t = −5 ms +∆t to t = −5 ms +∆t + 20 ms) between pools. Both excitatory and



4.2 mechanisms of subsecond timing 77

A B
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Figure 4.9: Excitability of interval-encoding pools
A Averaged rheobase (see section 3.6 for details) and B the difference of the rheobase
to the total synaptic current within each pool before stimulation as a function of
the duration encoded in each pool, cf. black line in Fig. 4.8C.

inhibitory currents increase in pools encoding longer intervals ∆t in all three regimes
(Fig. 4.8C, D, and E). This linear effect is most pronounced for ∆t up to 400 ms, but was
present throughout ∆t, for statistical tests see Table 4.4. Also, the total current (the sum
of excitatory and inhibitory currents) results in a statistically significant increase across
IEPs (see Table 4.4).

In order to determine the role of neuronal excitability for encoding different intervals,
the averaged rheobase was determined for each pool (Fig. 4.9A) and subtracted from the
averaged total synaptic current per neuron within the range t = −500 ms to t = −5 ms,
cf. black line in Fig. 4.8C. While the rheobase (slope = 0.02, R2 = 0.13, p = 0.2) does
not differ between pools, both the total synaptic current (Table 4.4 - before stimulation,
total) and the mean (neuron-wise) difference between rheobase and total synaptic current
significantly differ over the whole interval range between 50 and 750 ms (linear regression:
slope = 0.07 and R2 = 0.8, p < 0.01), see Fig. 4.9B. This implies that a higher overall
current is needed to make the neurons encoding longer intervals fire. In contrast, if
only those neurons within IEPs below the weight threshold of 0.01 were considered,
the difference of the rheobase to the synaptic current does not depend on the preferred
interval duration (slope = 0.065, R2 = 0.20, p = 0.098).

To test whether differences in the synaptic currents between pools are determined by
differences in static neuronal and synaptic parameters, as a next step, a linear discriminant
analysis was performed indicating which variables are most important to separate the
pools encoding different intervals. Regarding neuron parameters, the rheobase, the
membrane time constant (computed as τmem = CL/gL), and the time constant of the
adaptation current tw (see section 3.1 for details) were considered. For the synaptic
parameters, the synaptic connections and synaptic weights differentiated by inhibitory
and excitatory neurons projecting onto a given neuron within an IEP, as well as the
averaged synaptic delays, and the three parameters of short-term synaptic plasticity (U,
trec and tfac) were considered.

In the discriminant analysis, the above-mentioned variables were used to predict which
interval within the range between 50 and 500 ms each given neuron encodes. The analysis
(using z-scores of all 15 independent variables) yields three discriminant functions that
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Table 4.4: Linear regression of synaptic currents in the state-dependent PFC model
Synaptic currents within IEP before stimulation (−500 ms to t = −5 ms), after the first
stimulation (t = −5 ms to t = 20 ms) and after the second stimulation (t = −5 ms+∆t
to t = −5 ms+∆t+ 20 ms) over encoding intervals were fitted using linear regression.

stimulation linear regression

slope p R2

(1) before stimulation
Exc. currents 0.1 0.01 0.4
Inh. currents −0.1 0.01 0.4
Total −0.05 0.01 0.4
(2) first stimulus
Exc. currents 0.6 0.02 0.4
Inh. currents −0.4 <0.001 0.7
Total 0.6 0.01 0.4
(3) second stimulus
Exc. currents 0.6 0.01 0.4
Inh. currents −0.3 <0.001 0.7
Total 0.2 0.03 0.3

separate ∆t significantly. However, the first function contains 76 % of the discrimination
potential, while the other two only add 10 % and 7 %, respectively. The first function takes
significantly larger values for neurons that represent longer intervals (Wilk’s lambda:
0.55, χ2(135) = 841.1, p < 0.01). The structure matrix (Table 4.5) reveals that, among the
synaptic parameters, the inhibitory and excitatory weights, the number of inhibitory
synapses projecting onto the neuron, the synaptic delay of the excitatory, and the STP
time constants of the inhibitory synapses are most important for differentiating between
the different intervals. Among the neuronal parameters, the membrane time constant
and the rheobase are the most important for the differentiation.

Furthermore, the role of the above-mentioned variables for discriminating between
interval durations (up to 750 ms) was examined by plotting their mean values for each
pool against the interval duration that is represented by that pool and testing whether a
linear regression with the durations yields a slope that is significantly different from zero,
see Table 4.5. The analysis of synaptic parameters over IEPs are shown for excitatory
synapses in blue, for inhibitory synapses in red, and for the sum of these two in gray, see
Fig. 4.10A-C. Corresponding linear regression and linear discriminant analysis results for
all conditions are listed in Table 4.5. Indeed, for inhibitory and excitatory synapses as
well as their aggregate, the absolute values of summed synaptic weights (Fig. 4.10A) and
the number of synaptic inputs (4.10B) onto neurons within an IEP increase over pools
encoding longer intervals. An increase in the average synaptic delays for longer intervals
for excitatory and both synapses (Fig. 4.10C) and an increase in the average membrane
time constants τmem across pools for intervals up to 400 ms (linear regression: slope = 0.03,
p = 0.008, R2 = 0.72)(Fig. 4.10F) is observed. Furthermore, the facilitating time constants
within the excitatory (Fig. 4.10D) and inhibitory neurons (Fig. 4.10E) show an increase
for increasing intervals in the respective pools, up to ∼ 400 ms. At the same time, the
depression time constants τref are decreased up to ∼ 400 ms, cf. Fig. 4.10D for excitatory
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Table 4.5: Discriminant function analysis between interval selective pools (50 - 500 ms).
The horizontal line divides the results between significant and non-significant ranges,
as an absolute Z-scores above 0.3 is considered significant. Linear regression was
calculated for parameters (see Fig. 4.10) within the interval selective pools over the
full range (50 - 750 ms).

type z-score linear regression

slope p R2

Inh. syn. weights w 0.85 −0.18 <0.001 0.65

Exc. syn. weights w 0.69 0.75 0.004 0.47

Inh. syn. connectivity pconn 0.61 0.03 <0.001 0.65

Exc. syn. delays τD 0.56 6 × 10
−4 <0.001 0.65

Inh. depressing time constants τrec,in 0.56 −0.39 0.12 0.17

Inh. facilitating time constants τfac,in −0.56 0.10 0.68 0.01

Rheobase Irheo 0.46 0.02 0.20 0.13

Membrane time constant τmem = Cm/gL 0.43 0.008 0.07 0.23

UE (STP) 0.29 2 × 10
−5

0.01 0.40

Exc. depressing time constants τrec,ex −0.20 −0.11 0.01 0.42

UI (STP) 0.19 −9 × 10
−5

0.26 0.10

Exc. facilitating time constants τfac,ex 0.19 0.09 0.01 0.40

Exc. syn. connectivity pconn −0.18 0.22 0.04 0.30

Adaptation time constant τw 0.14 0.01 0.33 0.07

Inh. syn. delays τD −0.04 3 × 10
−5

0.40 0.05

neurons and Fig. 4.10E for inhibitory neurons. In contrast to the discriminant analysis,
a non-significant increase in the rheobase is found within the subrange, although the
structure matrix of the discriminant analysis reveals a strong score, showing that both
analyses do not necessarily need to yield identical results for each parameter.
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Figure 4.10: Neuronal and synaptic properties within IEPs , as a function of the duration
encoded in each pool
A Summed synaptic weights onto neurons within IEPs for positive weights only
(blue curves), negative weights only (red curves), and all weights (gray curves).
B and C Same as in A for the number of inputs and for the synaptic delays
respectively. D Time constants of short-term facilitation (τfac) and depression
(τrec) for excitatory neurons within IEPs. E Same as D for inhibitory neurons. F
Membrane time constants τmem for both neuron types within each pool.

4.2.3 Origin of the scalar property

In this section, a mathematical framework is proposed to explain the timing mechanisms
of the state-dependent PFC model. The framework and reasoning were conceived by
Joachim Hass, while plots based on simulations of the state-dependent PFC model were
generated by myself, and published as part of Ravichandran-Schmidt and Hass (2022).

“Here, we discuss how the scalar property of the timing errors may arise in the
state-dependent model. To this end, we first recall how the duration estimate Test(t) is
computed from the network and the output neurons in mathematical terms (Fig. 4.11).
We then compute the mean and the standard deviation of this estimate for a special case
to show that the scalar property arises from a) the scalar invariance of the firing rates of
the neurons in the IEPs and b) the coupling between mean and standard deviation of the
firing rates by means of the binomial distribution. In the appendix A.4, we illustrate how
this derivation can be generalized under the assumption that the tuning curves of the
output neurons follow the same shape for all intervals. Finally, we explain how the scalar
invariance of the firing rates in the neuron pools of the network comes about using a
minimal model that captures the main features of the full network.
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Figure 4.11: Overview on the derivation of the scalar property
A Translating the activity within IEPs (bottom, blue: excitatory, and red: inhibitory)
into timing estimates and their standard deviations (top). B,C Multiplying the
readout units with their corresponding time duration and summing up over all
readout units leads to the estimated times and the scalar property. D Tuning
curve-shaped outputs are generated within the readout neurons with a defined
relation between mean and standard deviation (panel E). F Synaptic weights from
the pools to the output neurons, forming a stereotypic temporal receptive field. G
Firing probabilities peaking at one close to the encoded time of each of the pools.
H Relation of mean and standard deviations of the firing rates, following from the
binomial distribution.

As summarized in Fig. 4.11A, durations are estimated in the model using the state-
dependent network, divided into N IEPs, and the same number of output neurons, each
of which encoding an interval duration Ti. The activity levels of the output neurons Oi(t)
are multiplied by the respective duration Ti and summed to form the duration estimate
Test(t). Furthermore, the outputs Oi(t) arise from the firing rate states FRi(t) of each IEP
of the network, multiplied by the output weights wij. Thus,

Test(t) =
N∑

i=1

TiOi(t) =
N∑

i=1

Ti

N∑
j=1

wijFRj(t). (4.2)

To highlight the main features of the model that give rise to the scalar property, we
first restrict ourselves to estimate durations that are identical to the ones that are encoded
in a single IEP (t = Ti) and reduce the model to contain only the one output neuron
associated with this IEP. Under these assumptions, equation 4.2 reduces to
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Test(Ti) = TiwiiFRi(Ti) (4.3)

The scalar property requires that σTest(Ti) ∝ ⟨Test⟩(Ti), where σTest(Ti) and ⟨Test⟩(Ti)

are the mean and standard deviation of Test at time Ti, respectively. As Ti and wii are
constant, it follows ⟨Test⟩(Ti) = Tiwii⟨FRi⟩(Ti) and σTest(Ti) = TiwiiσFRi(Ti). Two features
of the model allow us to directly relate these two moments: First, as seen in Fig. 4.7C,
the firing rate curves FRi(t) follow a stereotypic and time-invariant shape for all IEPs
i. Thus, one can write FRi(t) = FR(t/Ti). In particular, for t = Ti, the firing rates are
FRi(Ti) = FR(Ti/Ti) = FR(1), which is constant across pools. Second, note that each
pool consists of Ni neurons, each with firing probability pi(t) at a given time t. If each
neuron is assumed to fire not more than one spike in response to the second stimulus
(which is true for the vast majority of neurons within all IEPs), the firing rate (i.e., the
number of firing neurons) follows the binomial distribution (Fig. 4.11H). This distribution
describes the number of successes (here: spikes) in a sequence of N random experiments
(here: neurons), where each success has the same probability p. The mean firing rate
⟨FRi⟩ = Nipi of the pool i and its standard deviation σFRi =

√
Nipi(1 − pi) =

√
Ni(pi − p2

i )

are known from this distribution. Using the first relation, the mean firing rate at time
Ti in pool i can be expressed as FRi(Ti) = FR(1) = Nip∗, where p∗ is the (constant) peak
firing probability of all pools at the time Ti that pool represents.

From the above considerations, and by setting the weight wii to 1/(Nip∗), such that
⟨Test⟩(Ti) = Ti, it follows that

σTest(Ti) =

√
Ni(p∗− p∗2)

Nip∗
Ti ∝ Ti = ⟨Test⟩(Ti) , (4.4)

which is the statement of the scalar property. The proportionality constant, the Weber
fraction, can be approximated by

√
(1 − p∗)/Ni for p∗ close to one.
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Figure 4.12: Binomial distribution of firing rate probabilities.
Standard deviation of the firing probabilities as a function of the mean. The curves
are well-fitted by the relation predicted by the binomial distribution (dotted line).
For longer intervals, smaller firing rates and higher standard deviations occur. The
colors correspond to the intervals that are represented in each pool (see the color
bar, cf. Fig. 4.1A).

To verify that the binomial distribution provides a good approximation to our data,
Fig. 4.12 shows the relation between the mean and standard deviation of the firing
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probabilities pi of each pool. The dotted curve represents the relation predicted by the
binomial distribution. The probability pi is estimated by normalizing the mean firing rates
FRi to the maximal value in each pool. The standard deviation is fitted to the relation
from the binomial distribution, σFRi =

√
Nipi(1 − pi) and the values in the figure are

divided by the fit parameter
√

Ni. The fit is best for pools representing short intervals.
For intervals above 400 ms, the firing probability pi decreases and thus, the standard
deviation increases. The estimated Ni values from the fit match the actual pool sizes well
(estimate from the fit to the binomial distribution: 16 ± 5, average actual pool size: 14 ± 5)
with no statistical difference (two-sample t-test: t(28) = 0.936, p = 0.36).

In the appendix, see A.4, we illustrate how the above computations can be generalized
to arbitrary durations t and the full range of neurons. Importantly, this generalization
requires that the shape of the output tuning curves Oi(t) are largely conserved across
output neurons i. In the following section, we discuss consequences of violating this
assumption, which apparently occurs at longer durations (cf. Fig. 4.1A). Finally, we
discuss how the stereotypic firing rate profiles (Fig. 4.7C) for the different IEPs of the
network may arise.

The profiles approximate the cumulative normal distribution, which follows from the
fact that each neuron fires as soon as its particular firing threshold is crossed, which is
governed by a stochastic process: Given that the membrane potential of each neuron
is driven by noise that can be approximated by a normal distribution, the probability
to cross the threshold at a given time is the cumulative normal distribution with the
difference of the mean membrane potential ⟨Vi(t)⟩ from the threshold Vth,i as the mean.
Note that this difference is decreased by the second stimulus, and we assume that the
inputs are balanced such that the membrane potential is well below the threshold without
the second stimulus, but close to the threshold in the presence of the second stimulus.
In the following, we only consider the membrane potential under the influence of the
second stimulus and assess under which conditions it may cross the threshold.

The standard deviation of the membrane potential does not systematically change over
time, as neurons are driven back toward their resting potential by leak currents, which
can be described by the Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930) for
which the standard deviation is constant in time. Thus, the change in pi(t) over time
is mainly driven by changes in the mean membrane potential ⟨Vi(t)⟩. The main driver
of this change over time is the slow GABAB inhibition after the first stimulus, which
effectively prevents neurons from firing in response to a second stimulus within a certain
window of time. Apart from the time constant of the GABAB conductance, this time
window is determined by the neuronal and synaptic parameters within each pool. As
we have seen in Fig. 4.9, the mean current difference to the neurons’ rheobase increases
for pools encoding longer intervals (which can be translated into the difference between
the average membrane potential and the firing threshold). Thus, more of the inhibition
from the first stimulus must be worn off before those pools can respond to the second
stimulus, which happens at later times. In summary, the increase of pi over time is mainly
due to a gradual decay of long-term inhibition which decreases the difference between
average membrane potential and firing threshold and thus, increases the chance of each
neuron to fire. The different parameters in each pool determine the speed by which pi

increases over time.
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To verify that the observed scaling of pi can be reproduced by the mechanism described
above, we have constructed a minimal model simulating a single neuron that receives a
large amount of random, balanced excitatory and inhibitory currents and is subject to a
GABAB current following the time of the first stimulus and to a fixed depolarization at
the time of the second stimulus (see section 3.5 for details). Simulating this neuron for a
large number of trials allows estimating pi for a given firing threshold Vth,i. For simplicity,
we simulate the different pools by varying Vth,i, although the above results suggest a
variation of the synaptic properties. For each simulated pool i, we compute the first time
Ti at with pi exceeds 95% and record Ti as the represented duration of this pool. When
time is scaled by this duration, pi(t/Ti) shows the same cumulative normal distribution
time course for each pool (Fig. 4.13), as we see in the network model (Fig. 4.7D).
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Figure 4.13: Results from the minimal model.
Normalized firing rate as a function of simulated time, shown as a fraction of the
encoded interval duration of each pool (color-coded). Each curve was generated by
a different threshold for the membrane potential to elicit a spike. Higher thresholds
lead to longer durations that need to elapse before that first spike (cf. Fig. 4.9).
When scaling this time by the duration Ti at which the neuron spikes with 95%,
the firing rate curves for all durations largely overlap, as in Fig. 4.7D for the full
model.

Deviations from the scalar property and the origin on Vierordt’s law

As mentioned in the previous section, the scalar property relies on the assumption that
the output tuning curves have the same shape for all output neurons. From Fig. 4.1A, it is
apparent that this assumption is violated for output neurons representing intervals that
are longer than 350 ms, where the tuning curves quickly grow broader as the interval
durations increase. The widths of these tuning curves reflect the standard deviation
of the underlying firing rate curves. Indeed, Fig. 4.12 shows that for longer intervals,
higher standard deviations of the firing rates occur as the mean firing rates decrease and
thus, the standard deviations move towards the middle of the half-circle implied by the
binomial distribution. Here, we discuss the consequences of violating the assumption of
stereotypic tuning curves of the output neurons.
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Figure 4.14: Relation between Vierordt’s law and the scalar property.
Comparing the minimal standard deviation of the output curves Oj against the
slope of Vierordt’s law for the different cases, results in a strong negative linear
trend. The smaller the standard deviation, the better the estimation.

If we consider the most extreme case where all curves Oj are completely flat such
that all intervals contribute to the estimate with the same weight, it follows from the
normalization of Oj(t) to one that for each time t∗, the same duration estimate ⟨Test⟩ is
generated independently of the real time t∗, which is the average over all represented
intervals Tj. As the standard deviations are linked to the mean duration estimate, the
standard deviations are also constant in time in this case. In intermediate cases, combining
constant, sharp tuning curves Oj for short intervals Tj and increasingly broader curves
for longer intervals, the scaling of both the mean and standard deviation are shifted
away from the linear relations described in equations A.9 and A.12 towards constant
values. This implies that deviations from the scalar property and Vierordt’s law, the
observation that long intervals are underestimated and short ones are overestimated, are
mechanistically linked. Indeed, for most manipulations described above, a strong negative
linear relation is found between the slope of Vierordt’s law and the minimal standard
deviation of the output curves Oj, see Fig. 4.14 (r = −0.96, t(12) = −11.88, p < 0.01).”

4.2.4 Consideration of alternative mechanisms

Having found a potential mechanism for time perception in accordance with the experi-
mental results, I next checked whether other possible mechanisms could explain timing
within the state-dependent PFC model. First, I tested whether the IEPs show ramping
activity over time, cf. Fig. 4.15A, to test for the timing model proposed by Durstewitz
(2003). I calculated the trial averaged firing rate of each neuron step-wise in 10 ms bins for
all test intervals (color-coded). An increase in the firing rate over time, which maximizes
at the corresponding timing interval, could not be seen here, see Fig. 4.15A.

Lastly, I tested whether there is a sequential activation of subsequent pools analogous
to a synfire chain (Hass et al., 2008) from shorter intervals to longer intervals as illustrated
in the schematic in Fig 4.15B. To this end, I calculated the summed synaptic weights from
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Figure 4.15: Consideration of alternative mechanisms.
A Averaged binned firing rate (binning interval of 10 ms) in each IEP (color-coded)
as a function of binned simulation time plotted to test for ramping activity. The
shaded region indicates the standard deviation over 50 trials. B Illustration of a
hypothetical sequential activation of IEPs. C The average synaptic weights from
each pre-synaptic pool (rows) to each postsynaptic pool (columns) are normalized
by the overall input to each pool.

the neurons encoding shorter intervals to a subsequent postsynaptic interval encoding
neuron (cf. Fig 4.15B). These synaptic weights were normalized by the overall synaptic
weight the neuron receives from all neurons and averaged over all postsynaptic neurons.
The synaptic correlation activations between the pools were computed for all interval
combinations and not only for the subsequent pools. Fig 4.15C shows the normalized
fraction of synaptic weights from one pool to another. This fraction is relatively small
compared to the overall synaptic weight onto the neurons and specifically, no sequential
activation of pools could be seen in the pool-to-cool connectivity matrix. Thus, these
results are not consistent with a sequential activation of the pools.



5
R E S U LT S - R A M P I N G P F C M O D E L

In this chapter, as a first step, the calcium-triggered after-depolarizing potential (ADP)
current is implemented within a single neuron to verify the ramping activity approach.
Next, the results of testing the timing properties within the ramping prefrontal cortex
(PFC) model are presented. Specifically, three different methods: (1) trainable readout
layer, (2) activity threshold, and (3) number of active neurons are evaluated for their
ability to estimate time from the ramping PFC model’s internal state. As method (3) turns
out to have favorable properties, it is then used to study dopaminergic modulation.

5.1 single neuron ramping activity

Before incorporating the mechanisms of ramping activity into the PFC model, the
calcium-triggered ADP current IADP was first tested within a single simplified adaptive
exponential (simpAdEx) neuron model. The effect of varying γADP ∈ [0.0, 10.0] in steps
of 0.1 on firing rates is shown in Fig. 5.1A. The standard deviation over time of the firing
rates σFR for various γADP takes its maximum for γADP = 3.9, see the dashed line in Fig.
5.1A and the plus sign in Fig. 5.1B. This is in line with the findings in Durstewitz (2003),
where γADP was reported to be at 4.0 for a single neuron. For fixed γADP = 3.9, ramping
activity with different saturation points and slopes can be achieved by varying the peak
conductance gADP, max ∈ [1.0, 50.0] in steps of 2.0, cf. Fig. 5.1C.
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Figure 5.1: Optimization of γADP and varying gADP, max in a single neuron
A The firing rates are plotted for various γADP (color-coded) at fixed gADP, max =
25 nS. The dashed black line indicates γADP = 3.9, which yields the highest standard
deviation σFR, as shown in the next panel. B The corresponding σFR as a function
of γADP. C Taking the optimized γADP = 3.9 and varying gADP, max yields different
slopes and saturation points of the firing rates.

5.2 readout layer

The readout layer, previously used for the state-dependent model, was optimized via a
grid search to obtain the best performance on the ramping PFC model, as described in

87
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section 3.2.4. To evaluate linear timing and scalar property for the readout layer method,
the states were generated from spikes in a window around the observed interval, the
readout weights were trained with 100 trials for intervals from 200 ms to 6000 ms in
200 ms steps and tested with 50 unseen test trials in 50 ms steps. The outputs of the
trained readout units for the test intervals are shown in Fig. 5.2A.

Inter-Stimulus Interval [ms]

RMSET = 649.5 ± 121.8 ms RMSEl = 65.2 ms RMSEs = 60.6 ms

A

B C D

Figure 5.2: Estimated times and scalar property for the ramping PFC model with readout
layer
A Mean (color-coded line plots) and standard deviation (shaded regions) of readout
unit outputs over test trials plotted against the test intervals. B Trial averaged
estimated times and corresponding standard deviations (shaded regions) over
test trials versus test intervals. C Standard deviations depicted in B fitted with a
linear (red) and a square root fit (green). D Trial-averaged Weber fractions on test
durations. The horizontal green line depicts the average value between 2000 ms and
6000 ms with a Weber fraction of Wf = 0.13.

Similar to the state-dependent PFC model, each readout unit responds maximally to
the corresponding trained timing interval, with coactivation of the neighboring readout
units at steps in between two trained intervals. With increasing interval durations,
the peaks of the units decrease and simultaneously the widths of the tuning curves
become broader. Multiplication of each normalized readout unit with its corresponding
training interval and summation over all units yields the estimated times, shown in
Fig.5.2B. Here, in contrast to the readout layer used in the state-dependent PFC model,
clipping of negative values before the normalization of readout units led to worse results
in time estimation, and hence clipping was turned off. Without clipping of negative
values, a linear increase of estimated times is observed. A linear fit (y = ax + b) yields
a = 0.89 ± 0.09 and b = 369.9 ± 207.9 and a fit error of RMSET = 649.5 ± 121.8 ms
matching experimental findings. Up to 2100 ms there is very little mismatch between
estimated times and the objective time, while between 2100 ms and 4500 ms the time is
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overestimated and above 4500 ms underestimated. In the range 2100 – 6000 ms, estimated
times follow Vierordt’s law with an indifference point around 4500 ms. The standard
deviations from the estimated times over 50 trials, depicted in Fig. 5.2C, show a smaller
error to the square-root fit (green line, RMSEs = 60.6 ms, y =

√
8.6x + 319.8) than to the

linear fit (red line, RMSEl = 65.2 ms, y = 0.03x + 395.2). The Weber fraction decreases
with increasing interval duration from 1.25 to a constant value 0.13 ± 0.03 for intervals
above 2200 ms.

Readout weights and firing rate within interval-encoding pools

As a next step, I tested whether the key mechanism used by the training of the readout
units is based on calcium-triggered ramping activity by analyzing neurons with high
positive weight to a readout unit. Just as for the state-dependent PFC model, all neurons
were assigned according to their strongest positive weight to a readout unit and sorted
within the interval-encoding pools (IEPs), see Fig. 5.3A. I then normalized both the
readout weights with the maximum weight within the corresponding pool and the
trained intervals with their corresponding readout times. With this, most tuning curves
peak at 100 % of the elapsed time while being close to zero otherwise, see Fig. 5.3B. Only
weights for short durations are negative shortly after peaking at 100 % of the elapsed time.
This is different from the state-dependent PFC model, where an asymmetric suppression
was observed for all pools around their respective encoded interval (see Fig. 4.7).
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Figure 5.3: Analysis of readout weights
A All neurons are associated with an IEP based on their strongest positive weight
to a readout unit. Then within each IEP, weights are sorted in ascending order.
The positive weights are depicted in red and the negative weights in blue. B The
normalized pool-averaged weight for each readout unit (color-coded) plotted as a
function of the normalized time elapsed per pool.

To test whether the readout method makes use of the ramping activity property,
firing rates of neurons associated to IEPs were determined and their relation to the
encoded times was analyzed. Specifically, normalized firing rates of IEP neurons were
computed by convolving the spike trains with a causal kernel (σ = 50 ms) and dividing
by the per neuron maximum firing rate. Assuming the readout layer method makes
use of the ramping property, the saturation point of a neuron’s normalized firing rate
would be expected to strongly correlate with the time of the associated IEP. To test this
hypothesis, the time point at which 90% of fmax is reached for the first time was taken as
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the saturation point per neuron and the saturation points of each IEP were compared
against the encoded time, cf. Fig. 5.4 for a visualization of a single trial and Fig. 5.5 for
the correlation over all trials. Within the panels in Fig. 5.4 at least two different types
of firing behaviors can be distinguished: (1) firing rate peak shortly after the stimulus
(1 – 100 ms) and decrease thereafter, e.g., the first panel for the interval of 200 ms, and (2)
ramping activity. While neurons with ramping activity are present, especially for long
intervals, the saturation points do not match the time of the corresponding pool and a
linear regression (y = 0.02x + 663.2, R2 = 0.02, p < .42) shows that the predictive power
of saturation points for the objective time is very limited Fig. 5.5. Therefore, ramping
activity is unlikely to be the main underlying mechanism used for time estimation in this
method. Hence, two alternative methods for time estimation were tested, as discussed in
subsequent sections.
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Figure 5.4: Normalized neuron firing rates and saturation points per interval-encoding pool
for a single trial
Panels (left to right, top to bottom) show normalized neuron firing rates for a single
trial of neurons from the respective IEPs. The pool interval of a panel is indicated by
a dashed blue line. Firing rates were computed via a causal kernel (σ = 50 ms) and
normalized on a per neuron basis. The time of saturation, at which a neuron reaches
90% of its maximum activity, is marked by a red dot. While for short intervals the
pool interval mostly matches the saturation points, for later intervals, saturation
points within a pool are more heterogeneous, indicating that the ramping activity
property is not leveraged for time estimation in this method.
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Figure 5.5: Relation of the encoded intervals to the saturation points of the ramping neurons
The averaged saturation points over all 150 training and test trials of the neurons
encoding an interval are plotted with the standard error (error bar) for each interval.
The curve is using with linear regression (blue line).

5.3 activity threshold

The key mechanism to estimate interval durations within the ramping PFC model as
proposed by Durstewitz (2003) relies on variability in firing rate saturation points of
neurons. While different saturation points for the ramping activity in the single neuron
model required a variation of gADP,max values, see section 3.2.4, here, the same constant
value gADP,max = 3.0 nS for every neuron together with overall heterogeneity in neuronal
and synaptic parameters was sufficient to yield heterogeneous saturation points as shown
in Fig. 5.6. These different saturation points can be used to estimate the target time.

Figure 5.6: Variability in firing rate saturation points
The average firing rates of three neurons (colored) and corresponding firing rates for
20 individual trials (transparent) are plotted against time. The per trial saturation
point at 90 % maximum firing rate is indicated with colored dots and for the average
firing rates with an x.
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To estimate time based on the different saturation points of the neurons, a firing rate
threshold fTh = 0.9 · fmax was determined per neuron and associated to the times Test,Th

at which the neurons reach their respective thresholds, see section 3.3.5. The averaged
fTh and Test,Th were computed for each neuron over 100 trials. Then, the largest Test,Th

among the set of neurons that are beyond their thresholds served as time estimates.
Evaluation of this approach using 50 test trials shows an overestimation of intervals up to
4100 ms, while longer intervals are underestimated, cf. Fig. 5.7A. The corresponding time
estimation error is RMSET = 958.2 ± 107.1 ms. Standard deviations show a high error
with RMSEl = 109.6 ms with a decreasing slope (a = −0.01) over the objective time, cf.
Fig. 5.7B. Weber fractions have a large negative slope from 7.0 to 0.07 below 500 ms and a
much smaller negative slope above 500 ms, see Fig. 5.7C.

A B CRMSET = 958.2 ± 107.1 ms RMSEl = 109.6 ms
Psychophysical law

Figure 5.7: Estimating times based on activity thresholds
A The estimated times were calculated by determining the times of the neurons
above the threshold at the current point in time and taking the maximum of these
times. B The standard deviations were shown for the objective time with a linear fit
of the data (in red). C The Weber fraction shows a fast decrease from 7 and then a
slower decline beyond 500 ms.

Although the above-described approach makes use of the key aspect of ramping
activity, the resulting time estimation only works poorly and, therefore, cannot be used
for further analysis. Since the PFC model is in the chaotic regime, even a small amount
of noise (fpoisson = 1 Hz, wpoisson = 0.5 nS) results in high variability, as shown by the trial-
by-trial variations across 20 trials in Fig. 5.6. As the proposed time estimation mechanism
does not integrate time estimates over multiple active neurons, it is not robust against
noise-induced variability and produces immense timing errors.

5.4 number of active neurons above threshold

In an attempt to overcome the caveats of the activity threshold method, another method
was evaluated that is based on the total number of active neurons that were at least once
above their respective threshold. To relate the number of active neurons as described in
section 3.3.5 at any point in time to the corresponding time estimates, the inverse function
of the relation between time and the number of active neurons was computed using
linear interpolation and extrapolation. The method was evaluated based on 50 test trials
by determining Nactive in 10 ms steps and, based on this, the corresponding estimated
times with the interpolated inverse function shown in Fig. 3.10B were computed.
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A B CRMSET = 1454.5 ± 1093.4 ms
RMSEl,short = 11.2 ms; RMSEs,short = 18.6 ms
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Figure 5.8: Estimated times based on number of active neurons method A The estimated
times, B the standard deviations and the C Weber fractions are shown for the
number of active neurons method for the range 0 – 6000 ms. The standard deviations
for the shorter range 0 – 1500 ms and for the longer range 1500 – 6000 ms were
separately fitted with a linear function (red) and with a square-root function
(green).

The estimated times for the test set using this method, the corresponding standard
deviations, and Weber fractions over the entire range are shown in Fig. 5.8A-C. Both the
estimated times and their standard deviations increase linearly with objective time. There
is a sharp increase in the standard deviations and an overestimation of the estimated
times above 1500 ms. The root-mean-square error (RMSE) of the estimated times to
the objective time was RMSET = 1454.5 ± 1093.4 ms over the full range. The standard
deviations were fitted separately for the shorter and longer intervals using a linear and a
square root function and showed a better linear fit for the shorter intervals (0 – 1500 ms),
and a better square root fit for the longer intervals 1500 – 6000 ms, cf. Fig. 5.8B. The
calculated Weber fractions, cf. Fig. 5.8C, plateau around 0.1 and 0.4, reflecting the linear
increase in the two regimes.

To understand the sharp increase in the estimated times and standard deviations
above 1500 ms, see Fig. 5.8A and B, and to check whether the underlying mechanism
is indeed the ramping activity, the normalized firing rates were plotted in Fig. 5.9. In
particular, for a single training trial, the neurons turning active, i.e., neurons exceeding
their respective training trial averaged 90 % activity threshold, between two training
times were associated to the corresponding time bin and the respective firing rates were
plotted in different panels. In Fig. 5.9 each panel represents a training interval, starting
from 100 ms up to 5900 ms as indicated by the shaded blue regions. For each neuron, the
time at which 90 % of the maximum firing rate in this specific trial is reached, is indicated
by a red dot in Fig. 5.9. If ramping activity is stable over trials and the trial averaged 90 %
activity thresholds are representative of a given neuron, the times of the trial-specific
90 % activity level (red dots) should match the time bin of the training intervals. Indeed,
with few exceptions a clear ramping of firing rates can be found and the times at which
firing rates exceed single trial 90 % activity levels (red dots) are close to one another
and additionally match with the training intervals (shaded blue regions). However, for
intervals below 500 ms and for intervals above 2900 ms no or only a few neurons turn
active, which is also evident from Fig. 3.10A.
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For Fig. 5.10 the mean and standard deviation of the saturation times for newly active
neurons per training interval and trial (red dots from Fig. 5.9) were determined over
N = 100 training trials and plotted against the training intervals (upper bounds of shaded
blue regions in Fig. 5.9). The training intervals and averaged per-trial saturation times
follow a linear trend (y = 0.89x + 157.7, R2 = 0.99, p < .001) suggesting that ramping
activity is indeed the key mechanism underlying this readout method. Note that this
variant of the method cannot be used for time estimation, since the trial-specific 90 %
of the maximum firing rate (red dots in Fig. 5.9) can only be determined post hoc, i.e.,
when the maximum firing rate is known, and does not allow for time estimation during
the experiment. Up to an interval of 1700 ms, on average ⩾16 neurons are assigned to a
training interval per trial providing a good basis for time estimation, while for intervals
⩾1900 ms only between 1 and 7 neurons are assigned to a training interval making time
estimation less reliable for long intervals. This is in line with the time estimates plotted
in Fig. 5.8A, since overestimation and increased standard deviation are observed for
intervals ⩾1500 ms. In contrast to the previous method, here the number of active neurons
is evaluated irrespective of the specific assignment of a neuron to a group. Instead, the
saturation points of neurons can vary over trials as long as the number of active neurons
at a point in time remains stable.
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Figure 5.9: Normalized neuron firing rates and saturation points per interval.
Panels (left to right, top to bottom) show normalized neuron firing rates for a single
trial of neurons that, based on the set of training trials, become active, i.e., reach
90% firing rate maximum, within the interval indicated by the shaded blue region.
Normalized firing rates fnorm were calculated using a causal kernel (σ = 50 ms). The
red dots indicate the time at which 90 % of the maximum firing rate is reached in
this specific trial.
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< .001

Figure 5.10: Relation between time of firing rate threshold and objective time
The averaged times at which the firing rate threshold of 90 % of the maximum
firing rate is reached approximately obey a linear relationship. The red dots in Fig.
5.9 are plotted against the objective time (upper limit of shaded blue regions in
Fig. 5.9)) with the standard error over the number of neurons newly added (error
bar). The relation is fitted with linear regression (blue). Note that this method
can generally not be used for time estimation, since the trial-specific 90 % of the
maximum firing rate (red dots in Fig. 5.9) can only be determined post hoc and
not during the experiment.

Since the sharp increase in estimated time occurs around 1500 ms, and ramping activity
starts beyond 500 ms (cf. Fig. Fig. 5.9) the range 500 – 1500 ms is considered separately.
For this range, a linear trend of estimated times to objective times is found with a
slope of a = 1.04 and RMSET = 88.3 ± 59.2 ms. Standard deviations show a slightly
better linear fit (y = 0.1x − 31.0) with RMSEl = 4.3 ms than with a square root function
(y =

√
57.8x − 145.8) with RMSEs = 4.4 ms as shown in Fig. 5.11A and B.

A BRMSET = 88.3 ± 59.2 ms RMSEl = 4.3 ms;
RMSEs = 4.4 ms 

Psychophysical law

- 145.8

0.1x- 31.0

Figure 5.11: Time estimates for 500 – 1500 ms using the number of active neurons method A
The time estimate and B standard deviations are shown for the number of active
neurons’ method for the range of 500 ms - 1500 ms. The standard deviations were
fitted with a linear function (red) and with a square root function (green).

To test the stability of these results, the same simulations and analyzes were performed
for separate randomly drawn parameter sets (n = 5). The corresponding estimated times
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and standard deviations are shown in Fig. 5.12A and B for the full range and in Fig.
5.12C and D for 500 – 1500 ms. Averaged over 5 parameter sets, the estimated times match
the objective time on the range 500 – 1500 ms, albeit with a slightly larger error than
based on a single set of parameters (RMSET = 114.4 ± 20.1 ms). Similarly, the fit errors of
the standard deviations increase compared to a single set of parameters and a slightly
better error is observed compared to the square root function RMSEl = 12.5 ± 7.8 ms,
RMSEs = 10.6 ± 7.1 ms.

C D

BA 1941.5 ± 505.5 ms

114.4 ± 20.1 ms

289.7 ± 69.2 ms
455.3 ± 99.0 ms

12.5 ± 7.8 ms
10.6 ± 7.1 ms

Psychophysical law

Psychophysical law

-

Figure 5.12: Estimated times and standard deviations over n = 5 parameter sets
A Mean (black line) and standard deviation (gray shaded region) of estimated
times for the full range A and for the range 500 – 1500 ms C. The distribution of
time estimation standard deviations from A and C over the 5 parameter sets is
plotted again in terms of the mean and standard deviation for the full range B and
for the range 500 – 1500 ms D. Standard deviations are fitted with a linear function
(red) and with a square root function (green).

5.4.1 Dopaminergic modulation

Next, the ramping PFC model with the readout method based on the number of active
neurons was tested for dopaminergic modulation. To this end, as in the state-dependent
PFC model, synaptic and neuronal parameters were changed according to the values and
methods described in section 3.2.2. Time estimates evaluated for dopamine levels between
−100 % and 100 % showed strong degradation. Therefore, only the range −10 % to 10 %
was considered further, see Fig. 5.13A, B and C for objective times in the range 0 – 6000 ms,
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and Fig. 5.13D, E and F for the range 500 – 1500 ms. In general, an underestimation of the
time for antagonistic modulation and an overestimation for agonistic modulation was
observed, which matches reports in the literature (Rammsayer et al., 1993; Buhusi & Meck,
2005; Thönes & Oberfeld, 2015). To see how different levels of dopamine affect the number
of active neurons, this is plotted for the last training interval for dopamine levels between
−100 % and 100 % within the range 0 – 6000 ms and 500 – 1500 ms in Fig. 5.13B and E
respectively. The slopes for different levels of dopaminergic modulation were significantly
different as determined by a one-way ANOVA over 50 trials (F(20, 1029) = 927.7, p < .001).
The average slopes (linear regression: a = 7.8, p < .001, R2 = 0.96) and the average
intercepts (linear regression: a = −2973.3, p < .001, R2 = 0.93) of the estimated times for
dopaminergic modulation are well described by linear models.
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Figure 5.13: Antagonistic and agonistic modulation of dopamine for time estimation based
on the number of active neurons.
Estimated times were calculated with the relation in Fig. 3.10B for dopaminergic
modulation from −10 % to 10 % in steps of 1 % for the full range 0 – 6000 ms A and
for the shorter range 500 – 1500 ms D. The number of active neurons with standard
errors at the last time point of the full range, that is, at 6000 ms B, and of the shorter
range at 1500 ms E were calculated for various levels of dopaminergic modulation.
The insets in B and E show a zoom onto the −10 % to 10 % modulation range also
plotted in A and D respectively. The standard deviations of the estimated times are
shown for the full range 0 – 6000 ms in C and for the shorter range 500 – 1500 ms
in F.

Comparing Nactive on the last training interval (6000 ms in Fig. 5.13B and 1500 ms in
Fig. 5.13E) across levels of dopaminergic modulation, an agonistic modulation leads to
a slight increase in Nactive that results in Nactive = 975 of 1000 neurons being active. In
contrast, for the antagonistic modulation Nactive decreases drastically, e.g., at t = 1500 ms
to Nactive = 290 neurons.

The standard deviations of the agonistic modulation are plotted in blue, and the
standard deviations of the antagonistic modulation in red (see Fig. 5.13C and F). Linear
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regression of standard deviations and times in the range of 500 – 1500 ms for levels of
dopaminergic modulation between −10 % and 10 % yields significantly increasing slopes
(a = 0.53, p < .001, R2 = 0.72) and decreasing intercepts (a = −253.7, p < .001, R2 = 0.62).

5.4.2 Late stimulation of ramping PFC model

The network results presented above use a stimulation at time t = 1 ms not allowing the
network to reach its steady state prior to stimulation. In the ramping PFC model using
the network parameters proposed above, ramping activity was observed even without
stimulation. Therefore, to reach steady state prior to stimulus-induced ramping activity,
the network parameters were adapted. Specifically, the removal of the background current
Iback = 0 pA allowed for the network to reach a steady-state with ramping only upon
stimulation. To trigger ramping, the excitatory neurons of layer 2/3 were stimulated with
a step current of Is = 1000 pA at t = 1000 ms for a duration of ∆ts = 100 ms, gADP,max was
fixed at gADP,max = 10.0, and γADP was not adapted using the learning rule, but rather set
to γADP = 5.0 for all neurons.

Since for many parameter configurations the network was either persistently active even
without stimulation or did not ramp at all, parameters with ramping upon stimulation
were hard to determine. However, the proposed parameters do allow for a low firing
rate before stimulation and ramping activity after stimulation. For a stimulation at
t = 1000 ms, Fig. 5.14B shows the drastic increase in spiking compared to a stimulation
at t = 1 ms, see Fig. 5.14A.

Figure 5.14: Rasterplots of the ramping PFC model with early and late stimulation.
Rasterplot of the ramping PFC model for an early stimulation at tstim = 1 ms in A
and a late stimulation tstim = 1000 ms in B, where the latter allows for steady state
to be reached prior to stimulus induced ramping.

To test whether this variant of the model is capable of reproducing timing properties as
before, the times were estimated using the number of active neurons method. Here, Nactive

increases to 880 neurons around 1500 ms, while for longer intervals Nactive saturates, see
Fig. 5.15A. Accordingly, time estimation only works well up to 1500 ms, see Fig. 5.15B,
where a better RMSET = 64.1 ± 28.4 ms is observed compared to the stimulation at
simulation onset. The standard deviation of the estimated times over 50 test trials is
highly fluctuating such that neither a linear (RMSEl = 17.1) nor a square root function
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(RMSEs = 17.2) fits the data well. Comparing the standard deviation with the linear and
with the square-root fit results in similar RMSE with 17.1 ms and 17.2 ms. Around 300 ms,
the standard deviation drops for 100 ms and around 1500 ms a strong increase of the
standard deviation and an overestimation of the estimated times is observed, see Fig.
5.15B, C.
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Figure 5.15: Timing properties of the ramping PFC model with late stimulation
A Mean and standard deviation of Nactive as a function of time estimated over
100 trials in 200 ms steps starting from 100 ms. B Mean and C standard deviation
of time estimates from 50 test trials. Neither a linear function (red) nor a square
root function (green) model the standard deviations well. D Estimated times as in
A in case of dopaminergic modulation between −10 % to 10 % in steps of 2 %. E
The effect of dopaminergic modulation on Nactive for t = 1500 ms is depicted with
standard errors as red bars. F The standard deviations of the estimated times are
plotted for the agonistic modulation in blue and for the antagonistic modulation
in red.

When applying dopaminergic modulation to this model, the time estimation slopes
for agonistic modulation rates from 2 % to 10 % remain mostly unchanged, cf. Fig. 5.15D.
Only above 1400 ms, a strong increase yields estimated times ⩾3000 ms. Fitting of the
estimated times for the range 0 – 1400 ms for increasing agonistic modulation via linear
regression still yields significantly increasing slopes (slope = 0.98, p = .02, R2 = 0.78) but
not significantly decreasing intercepts (slope = -110.5, p = 0.6, R2 = 0.08). In contrast,
antagonistic modulation from −10 % to 0 % leads to a drastic underestimation between
500 ms and 1500 ms. The number of active neurons and the corresponding standard errors
for 1500 ms were determined for various levels of dopaminergic modulation, see Fig.
5.15E. Similar to the PFC model with early stimulation, an increase of Nactive is observed
for agonistic modulation and a drastic decrease of Nactive for antagonistic modulation.

The standard deviations of the estimated times are shown in Fig. 5.15F. Ignoring
boundary effects below 100 ms and above 1300 ms, the standard deviation for the agonistic
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modulation is generally close to zero. In contrast, for antagonistic modulation, the range
of close to zero standard deviation increases at higher levels of dopaminergic modulation.

The above results show that stimulus-induced ramping activity from steady state is
possible in the ramping PFC model. In fact, time estimation works well up to 1500 ms,
while showing a strong increase in time estimation errors around 1500 ms, as previously
observed in the case of the network parameters used for the early stimulation experiments.
However, generally, observed time estimation errors and dopaminergic modulation are
quite different from the ramping PFC model with the previous network parameters and
early stimulation. Furthermore, since ramping activity is inherently non-stationary, many
network parameters do not allow for a steady state with stimulus-induced ramping.



6
D I S C U S S I O N

The aim of this thesis is to understand the underlying mechanisms of interval timing
of existing computational timing models reimplemented within a biologically plausible
computational prefrontal cortex (PFC) model, and to test whether these models exhibit
experimentally established time estimation properties. To this end, I first incorporated
the state-space model of subsecond timing (Buonomano, 2000) and the ramping activity
model (Durstewitz, 2003) into a data-driven heterogeneous PFC model (Hass et al., 2016),
which can reproduce key firing properties of cortical PFC neurons. I then tested whether
each of the resulting models is capable of reproducing the experimentally observed
properties of time perception, namely the linear psychophysical law of timing (Eisler,
1975), the scalar property (Gibbon, 1977), and the agonistic and antagonistic modulation
of timing via dopamine (Buhusi & Meck, 2005). In the following, I first review the
two timing models separately in terms of their underlying timing mechanisms and the
ability and limitations of the models to reproduce timing properties. Then, the potential
advantages and caveats of combining the two proposed models in various ways are
contemplated. Finally, open questions left for future studies are outlined.

6.1 state-dependent pfc model

For the state-dependent PFC model, the network was stimulated at the beginning and
at the end of an inter-stimulus interval and the states of the network after the second
stimulus were passed to a separate readout layer to estimate the duration of inter-stimulus
intervals. The weights to the readout layer were trained on intervals in 50 ms steps
using linear least square regression. As shown in this work, the model can successfully
reproduce the psychophysical law and Weber’s law when evaluated on intervals in the
range of 50 – 750 ms with a 25 ms step size. Regarding dopaminergic modulation, which
was simulated via experimentally validated modifications of neuronal and synaptic
parameters (cf. Table 3.2; Zheng et al., 1999; Seamans et al., 2001; Kotecha et al., 2002;
Seamans and Yang, 2004), a speeding up of the internal clock for agonistic modulation
(up to 20 %) and a slowing down for antagonistic modulation (up to 50 %) was observed
within the range of 200 – 600 ms.

6.1.1 Mechanisms and limitations of subsecond timing within the state-dependent PFC model

To understand the underlying mechanisms, interval-encoding pools (IEPs) were analyzed,
where association to a pool was determined via the highest readout weights across
readout units per PFC neuron. The corresponding per pool normalized and averaged
weight distributions over interval durations reflect the assignment, as for each readout
unit a stereotypic distribution over interval durations, i.e., a temporal receptive field, was
observed. Similarly, stereotypic cumulative normal distribution-shaped pool-averaged
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firing rates were observed. Specifically, the firing rates, which gradually increase for longer
intervals, saturate around the time of the encoded interval and stay saturated for longer
intervals (Fig. 4.7D). Hence, this matches the shape of psychometric density functions
often used to model discrimination tasks in time perception and other modalities, e.g.,
(Leon & Shadlen, 2003).

To explain the linear timing and scalar property, a minimal model has been proposed
by Hass in Ravichandran-Schmidt and Hass (2022). In this minimal model, Hass demon-
strates that the stereotypic response of the firing rates can also be achieved by a single
neuron, which is activated by a random synaptic input and slow inhibition through
a metabotropic GABA receptor (GABAB). In this model, a systematically increasing
synaptic input results in a cumulative normal distribution-shaped firing rate (Fig. 4.13).
The distance of the mean input current to the rheobase of the neuron relative to the
standard deviation determines the shape of the firing rate. In summary, with this model,
Hass shows that two ingredients are sufficient to encode interval durations: A variety
of neuronal and synaptic parameters together with neurons receiving a systematically
increasing input yields the observed cumulative normal distribution shaped firing rates
with a variety of saturation points and therefore the possibility to encode different interval
durations (Ravichandran-Schmidt & Hass, 2022).

Similar to the minimal model, the variability of neuronal and synaptic parameters and
the increasing synaptic current were shown to play an important role in achieving the
linear timing and the scalar property in the state-dependent PFC model. To check which
neuronal and synaptic parameters are essential to generate IEPs, pool-averaged values of
synaptic properties likely critical for discrimination were plotted and visually analyzed
for linear trends, cf Fig. 4.10. Then, a linear discriminant analysis was performed (Table
4.5) to validate the visual inspection and quantify the importance of synaptic properties.
Thereby, the synaptic weights were found to be the most important determinants, as these
significantly increase for longer intervals (Fig. 4.10D) leading to the systematic increase
in synaptic currents. The linear discriminant analysis further revealed the importance of
inhibitory connection probability, while excitatory connection probability was not signifi-
cant according to the analysis. The significance of inhibition in the linear discriminant
analysis correlates with the importance of GABAB to encode time as supported by the
ablation experiments.

Similarly, among the synaptic parameters, inhibitory time constants of short-term
plasticity (STP) were revealed as important by the linear discriminant analysis. In addition,
short-term facilitation (STF) was found to be stronger toward longer intervals, whereas
short-term depression (STD) was weaker (Fig. 4.10B and C). For both membrane time
constants and the synaptic delays of the excitatory neurons, an increase for longer
intervals was observed. However, as can be seen in the plots for averaged values of
neuronal and synaptic properties in Fig. 4.10, most of the important parameters described
above only show a linear relation with the duration of the IEPs up to 400 ms.

Ablation experiments highlighted the importance of GABAB for achieving linear
timing. Specifically, the removal of GABAB shifts the linear timing to a more pronounced
Vierordt’s law, decreasing the one-to-one relation between the subjective and objective
time and to a higher variability between the trials. In contrast, the removal of N-Methyl-
D-aspartic acid (NMDA) currents, which also has long time constants, did not have
an effect on the estimated times and the standard deviation compared to the original
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state-dependent PFC model. However, removing STP did not allow for unchanged
spike statistics and yielded worse time estimations. Ablating GABAB, NMDA, and STP
altogether, the short time scales of α−amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) and ionotropic GABA receptor (GABAA) limit the ability to estimate time,
leading to a more pronounced Vierordt’s law. From this follows that GABAB and STP are
required to maintain the accuracy of time estimates.

Since the parameter heterogeneity between the neurons and synapses, especially
in the synaptic weights and time constants of STP, was shown to be important for
time estimation, an impairment in time estimation was expected when removing the
neuronal and synaptic heterogeneity. Contrary to this expectation, the removal of either
the neuronal or the synaptic heterogeneity or both did not impair time estimation
(Fig. 4.6B) or Weber’s law (Fig. 4.6C). However, note that heterogeneity of parameters
characterizing the neuron types was kept, including neuron and synapse parameters,
connection probabilities, and STP types. Additionally reducing the heterogeneity between
pairs of neuron types, which include facilitation, depression, and a combination of both, to
a single type (Fig. 4.6B and D, cyan curve), yields even worse time estimation highlighting
the importance of STP.

Next, limitations of the state-dependent PFC model were evaluated by testing time
estimation with increasing levels of noise and for longer intervals. Increasing the firing
rates of Poisson neurons from 1 Hz to 1000 Hz and varying the synaptic output weights
of Poisson neurons to achieve higher noise levels, gradually impairs time estimation (Fig.
4.5C) and causes deviation from the scalar property (Fig. 4.5D). For increasing noise
levels, trial-to-trial variability increases, such that training the network with this higher
variability becomes less effective and yields broader tuning curves of output neurons
and with that worse time estimation. Similar to increased noise levels, time estimation
is also impaired when training for longer intervals. Specifically, when the network was
trained for longer intervals up to 2000 ms, time estimation only works well up to 500 ms.
For intervals above 500 ms, time estimates increase linearly but with a more pronounced
Vierordt’s law, i.e., a decreased slope. The tuning curves of the readout neurons show
clear peaks only up to 300 ms and gradually broaden for longer intervals, similar to the
original state-dependent PFC model (Fig. 4.1A). Notably, GABAB has among the longest
time constants of the model with summed rise and decay time of 300 ms, therefore
providing an explanation for the observed broadening of tuning curves beyond 300 ms.
Since time perception within our model works reasonably well up to 750 ms, the even
longer time constants of STP as compared to GABAB can be associated with this Fig.
4.10B, C.

6.1.2 Relation to the state-space model

The state-dependent model proposed by Buonomano (2000) was modeled with 500

neurons and included synaptic properties such as slow inhibition and STP. For GABAB,
the state-dependent model and the state-dependent PFC model have the same rise time
with τrise = 100 ms, but different decay time constant of τdecay = 200 ms for the state-
dependent PFC model and τdecay = 166 ms in Buonomano (2000). Time estimation was
tested up to 250 ms and 400 ms when trained with 50 ms steps and 100 ms respectively.



104 discussion

Comparing the normalized output unit activities within the 50 – 250 ms range, they were
similar in shape to the output units in the state-dependent PFC model (see Fig. 4.1A).
However, for intervals longer than 300 ms, the widths of output peaks increase in the
state-dependent PFC model, only allowing for time estimation up to 750 ms. The narrow
peaks up to 250 – 300 ms for both models mostly rely on the time constants of GABAB,
which is one of the most important components to estimate time within these proposed
models, as already noted by Buonomano (2000).

In the state-space model, Buonomano (2000) has shown a reduced timing performance
when the two important synapse types, namely GABAB and STP, are removed. This was
reproducible in the state-dependent PFC model. In addition, here, the time estimation is
even more disrupted, when the heterogeneity of STP is reduced to the type of STP with
highest probability instead of three different types (see Table 4.2). This impairment is
likely driven by the fact that the E-to-E connection type with highest probability (p = 0.45,
see Fig. 3.2B) employs STF, while the I-to-I connection type (p = 0.58) employs STD. When
only the highest probability is chosen while removing the heterogeneity, the facilitated
excitation and the depressed inhibition lead the network to an overexcited state, likely
resulting in less stereotyped IEPs. This overexcitability effect is further supported by a
recent finding from Hass et al. (2022), in which the authors analyzed persistent activities
within the PFC model (Hass et al., 2016). The authors find stabilization of the persistent
activity when STP was homogeneously distributed, while heterogeneous STP completely
prevented persistent activity.

Buonomano (2000) reports that within the state-space model, the variability of the
synaptic weights is important to differentiate intervals. In contrast, the ablation exper-
iments performed in this work revealed that the removal of neuronal and synaptic
heterogeneity within neuron types does not affect time estimation. Rather than the synap-
tic weights, the connectivity might play a more central role in time estimation, see Fig.
4.10B. Both the negative inputs from inhibitory neurons and the positive inputs from
excitatory neurons increase with increasing durations of IEPs. Only those neurons that
receive less inhibition can be activated through subsequent stimulation shortly after the
first stimulation.

In summary, both the long time constants of GABAB and STP and the synaptic and
neuronal parameters are key for encoding time within this model. Specifically, hetero-
geneous parameters, such as membrane thresholds, time constants, synaptic weights,
connectivities, and synaptic delays result in a diversity of neuronal responses required to
allow for IEPs with temporal receptive fields. Even if the heterogeneity of one or a few of
these parameters is removed, the heterogeneity of at least one parameter can be sufficient
for accurate time estimation.

One surprising result within the proposed model was the observed scalar property.
While Karmarkar and Buonomano (2007) showed a sublinear increase in Weber’s law for
the state-dependent model, for the state-dependent PFC model analyzed in this work,
the timing error is best fitted with a piecewise linear fit that is constant above 500 ms (see
Fig. 4.2).
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6.2 ramping pfc model

The ramping activity model proposed by Durstewitz (2003) was integrated into the PFC
model to test whether it can be used as a computational timing model. To this end,
a calcium-dependent after-depolarizing current was added to the PFC model. Upon
stimulation, either at simulation onset tstim = 1 ms or at tstim = 1000 ms, the neurons
show ramping firing rates with a temporal diversity of saturation points. Here, I tested
three readout methods for their ability to estimate time, based on the temporal variation
of saturation points. Among the proposed methods, the number of neurons above a
neuron-specific threshold, Nactive, was shown to work well for the estimation of time based
on ramping activity. With this readout mechanism, the model successfully reproduced
the psychophysical law up to 1500 ms. The standard deviations of estimated times for
stimulating at simulation onset over five parameter sets are better fitted by a square root
than a linear function. For activated dopaminergic modulation, a speeding up of the
internal clock in case of agonistic modulation and a slowing down in case of antagonistic
modulation is observed as expected.

6.2.1 Comparison of time estimation methods

For the ramping PFC model, the timing mechanism was supposed to make use of the
ramping property. To this end, three different time estimation methods were considered:
(1) the readout layer as previously used for the state-dependent PFC model, (2) the
activity threshold method, and (3) the active neuron count method. The readout layer (1)
resulted in a linear increase of estimated times up to 2500 ms. However, when analyzing
the IEPs identified via the highest respective readout weights, the saturation points of
firing rates of neurons from the same pool did not correlate with the trained interval
times. While longer intervals can be estimated using the readout method (1) as compared
to (2) or (3), a mechanistic link to ramping activity could not be found, and therefore
alternative readout methods were favored.

For the activity threshold method (2), a per training trial threshold firing rate at 90%
of the respective peak firing rate and corresponding time is determined, then both
thresholds and times are averaged over training trials and stored as a lookup table. On
test trials, the time estimate corresponds to the largest time within those rows of the
lookup table associated with the set of neurons currently above their respective firing
thresholds. This method leads to worse estimates as compared to methods (1) and (3),
likely due to being based on just a single entry from the lookup table. As apparent
from Fig. 5.6 for some neurons the variability between the trials is small (blue dots),
whereas other neurons have high variability along the time axis (red and green dots).
This high variability over trials causes dramatic overestimation of intermediate intervals
and underestimation of long intervals to the point of nearly constant time estimates
above ∼4000 ms.

To alleviate the high variability, method (3) was based on the number of active neurons
that exceeded the threshold at least once, allowing for more reliable time estimates. For
this to work, a neuron is declared active upon first crossing the respective threshold
(as determined by method (2)). Hence, once a neuron becomes active it cannot become
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inactive by definition. This yields a strictly increasing number of active neurons Nactive,
in turn allowing to interpolate and invert the relationship between time and Nactive

based on training trials. Applying this method to the firing rates results in much better
time estimation as compared to the other two methods discussed above. In addition,
the estimated times are based on the times at which the ramping neurons cross their
respective threshold prior to saturation, and are therefore necessarily based on the
ramping property. While other methods for determining the saturation points of ramping
neurons are conceivable, I found the active neuron count method (3) to work well in
practice and therefore based further analyses on this method.

6.2.2 Mechanisms and limitations

Before testing the ramping activity within the full network of the PFC model, the
underlying mechanism was first applied to a single neuron. For the individual neuron, a
variation of gADP, max allowed for a diversity of ramping slopes and maximum firing rates
and with that also a temporal diversity of the saturation points. Although the ramping
activity mechanism within a single neuron could be reproduced, the implementation
within the PFC model required additional considerations. When the neurons were
stimulated at the beginning of the simulation at time tstim = 1 ms, this triggered slow
ramping activity in most of the neurons. However, ramping could also be observed
without any stimulation in some neurons, as their default input current in the absence
of the stimulus was already above their rheobase due to background current and noise
input from Poisson neurons. To avoid ramping activity due to background current and
Poisson noise, while still allowing for ramping activity to be triggered by stimulation, a
number of changes were tested.

To achieve a non-ramping steady state within the network prior to stimulation, the
background current was set to zero for all neurons. However, even when setting the
background current to zero, upon stimulating the network at a later time after it reaches
the steady steady, the strong excitation activates the calcium currents and drives the
network directly into bursting-like activity, in which case ramping reaches its saturation
point within the first second after stimulation. This strong upswing of the firing activity
could not be alleviated by modifications in inhibition, excitation, or background current.

Hass et al. (2022) have tested whether the data-driven PFC model (Hass et al., 2016)
can reproduce persistent activity upon stimulation and could not find persistent activity
within the heterogeneous model. However, by selecting homogeneous parameters for
inhibitory neurons, selecting the same STP type between the same pairs of neurons, and
fixing the connection probability at 10 % between all neuron types with the same synaptic
weight, as suggested by Hass et al. (2022), generation of persistent activity within the PFC
model was possible. Here, within the ramping PFC model, persistent activity was also
observed in case of heterogeneous parameters. The observed difference is likely related
to the effects of the calcium currents, which drive the network into an over-excitable
state. While parameters could not be adapted to eliminate persistent activity within the
ramping PFC model, setting the background current to zero at least allowed for the
network activity to reach a steady state prior to stimulation at time t = 1000 ms, and this
setting was therefore used to test for time estimation properties.
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Despite a higher firing rate for modified parameters and late stimulation at t = 1000 ms,
cf. Figs. 5.14 and 3.9B, both model variants are able to estimate intervals up to 1500 ms.
Additionally, it should be noted that the persistent activity when stimulating at 1000 ms
abruptly stops at various times for different neurons, cf. Fig. 5.14. This is especially true
for layer 2/3 excitatory neurons and inconsistent with the ramping model proposed by
Durstewitz (2003). Also, when stimulating at simulation onset, the firing activity of the
ramping neurons is decreased after reaching the threshold. The reason for this could
be the excitation/inhibition (E/I) balance. Since the excitatory neurons were connected
to inhibitory neurons, overexcitation of the excitatory neurons via the calcium loop,
automatically increases the inhibition and this could prevent neurons from sustained
firing. This mechanism was already reported in experiments (Shu et al., 2003; Okun &
Lampl, 2008; Zhou & Yu, 2018).

Durstewitz (2003) proposed a method to generate slowly increasing (climbing) activity,
by making use of a line attractor emerging from overlapping firing rate and gADP

nullclines. For different values of γADP, the optimal γADP value associated with the
line attractor state yields maximum variance of firing rates, see Fig. 5.1B. In contrast
to the original publication, in which the optimal value for γADP was found by using a
gradient ascent method, here, to save simulation and implementation time, a grid search
was performed varying γADP for all neurons for each simulation. The best values for
γADP were found separately for each neuron. Although this procedure resulted in many
optimal γADP values, especially for stimulating at simulation onset, this method has a
disadvantage as compared to the gradient ascent method: since the neurons are connected
with each other, every change in firing activity within a neuron due to a different γADP

value has side effects on the input to other neurons in the PFC network, which is currently
not considered. Besides, application of the learning rule leads to a slower increase of
the firing rate, resulting in time estimation to work for longer intervals than with a
constant γADP = 4.0. The application of the learning rule should ideally result in slowly
increasing firing rates, such that longer intervals could also be estimated. However,
empirically, optimization of γADP values via a grid search did not have the intended
effect of prolonged ramping of firing rates in case of stimulation at time t = 1000 ms,
in which case there was neither a reduction in persistent activity nor better estimations
of longer intervals. Therefore, a constant value of γADP = 5.0 was used for all neurons
without an application of the learning rule in case of stimulation at time t = 1000 ms.
However, implementation of the actual learning rule as proposed by Durstewitz (2003)
might yield better γADP values.

6.2.3 Relation to the original ramping activity model

For the climbing activity model, Durstewitz (2003) showed that climbing activity might
be generated by the interaction of the firing rate and the calcium influx. More specifically,
the point at which the gADP nullclines coincide, thereby forming a line attractor, results
in the slowest climbing activity. In addition, Durstewitz (2003) provided a learning rule
allowing for self-organized optimization of γADP yielding a line attractor. I was able to
reproduce the climbing activity results in a single neuron using the simplified adaptive
exponential (simpAdEx) neuron model. It should be noted that it was not necessary for
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the single neuron case to implement the learning rule for γADP. Instead, performing a
grid search over γADP values for the neuron and selecting the γADP value leading to the
highest variance of firing rates over time was found to be a well-working alternative
to approach the line attractor. Specifically, for the single neuron case, the γADP value
γADP = 3.9 determined using the grid search, cf. Fig. 5.1B, is close to γADP = 4.0 as found
by Durstewitz (2003) using the self-organized learning rule.

6.3 implications for experimental results on interval timing

6.3.1 The role of the prefrontal cortex

It is currently still unclear whether there is a single, well-defined brain region responsible
for interval timing (Lewis et al., 2003; Buhusi & Meck, 2005; Lewis & Miall, 2006; Fontes
et al., 2016). There are several studies that propose the cerebellum to be key for interval
timing due to its involvement in movement coordination (Ivry & Keele, 1989; Coull et al.,
2011). However, some of these studies relate to motor timing tasks rather than perceptual
tasks (Ivry & Keele, 1989; Coull et al., 2011). Others refer to the prefrontal cortex as
the most important region for interval timing because of its role in working memory
(Coull et al., 2011; Fontes et al., 2016) and still others claim that the PFC might only play
an important role for suprasecond timing, since these tasks require cognitive control
(Rammsayer, 1999; Jones et al., 2004), which in turn involves working memory.

Since the prefrontal cortex is a promising candidate for interval timing (Lewis & Miall,
2006; Coull et al., 2011), this work tested whether the ramping activity model (Durstewitz,
2003) and the state-dependent model (Buonomano, 2000) can be incorporated into a
strongly data-driven PFC model (Hass et al., 2016). The key property of the PFC model
is the ability to reproduce experimental findings at the single cortical neuron level,
namely f-I curves and membrane potentials. Furthermore, on a network level, the model
is capable of reproducing a number of spike characteristics. Specifically, on the single
neuron level, interspike interval (ISI) mean and coefficient of variation (CV) statistics, as
well as the standard deviation of subthreshold membrane potentials, match experimental
results. Similarly, on the neuronal interaction level, zero-lag cross-correlation statistics
between pairs of neurons, as well as firing rate statistics within each layer and neuron type
correspond to experimental data. The model is robust to changes in synaptic parameters,
such that working memory-related learning rules can be applied without changing the
overall activity of the model (Hass & Durstewitz, 2016).

The results from the employed data-driven PFC model are in accordance with the PFC
being a possible candidate for a representation of subsecond timing that is in line with
time perception properties observed experimentally. However, any other brain region
with similar firing patterns and connection probabilities could implement the very same
time perception mechanisms as proposed in this work. In addition, the analyzed time
perception mechanisms, as well as other models proposed for subsecond timing, such
as the synfire chain model (Hass et al., 2008) and the striatal beat model (Matell &
Meck, 2004), might (also) be operative with potentially very different spike statistics and
connection probabilities. Hence, the results from this work do not rule out other brain
regions for subsecond timing.
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6.3.2 Linear psychophysical law

The relationship between subjective time and objective time has already been studied
several decades ago by Stevens (1975), who proposed a general formula to find the
relation for any sensory process. A one-to-one relation was assumed for time estimation
with an exponent of N = 1 and with a slope of k ≈ 1. Several experiments were performed
to test this formula revealing deviations from k ≈ 1, specifically observing k’s between
0.5 and 1.1, with an overestimation of short intervals and an underestimation of long
intervals, as reported by Vierordt (1868). Although there are variations from a direct
one-to-one relation, the psychophysical law is considered the most robust finding in time
perception (Eisler, 1975), making it an important property against which computational
models of time perception should be validated. Consequently, the psychophysical law is
tested for the two computational models studied in this work.

state-dependent pfc model For the state-dependent PFC model, times are esti-
mated by performing a weighted summation of the readout times, where weights are the
readout unit activities as trained on states generated from the spike trains around the
second stimuli. The resulting estimated times were tested for their agreement with the
psychophysical law. Ideally, if each readout unit peaks at 1.0 for its criterion time and
stays at 0 for the remaining training intervals, the weighted summation would yield a per-
fect time estimation on the training intervals. If, in addition, each readout unit’s activity
falls off to 0 toward neighboring intervals of the criterion time, even intervals in between
the trained intervals might be estimated correctly. In practice, however, the variability
across trials yields a variability in readout unit activities, which in turn limits the time
estimation accuracy such that time estimation errors roughly increase linearly with the
objective time in agreement with the psychophysical law. For the state-dependent PFC
model, a deviation from the psychophysical law for estimated times was observed that
matches the predictions from Vierordt’s law, i.e., an overestimation of shorter intervals
and an underestimation of longer intervals (Vierordt, 1868; Glasauer & Shi, 2021) with a
slope of k ≈ 0.83. Hass showed based on analytical derivations for the state-dependent
PFC model that Vierordt’s law follows from an increase in width of the readout unit
tuning curves for longer intervals (Ravichandran-Schmidt & Hass, 2022). If the width
over all tuning curves of the readout units was constant, a one-to-one relation between
estimated and objective time would be observed, while increasing widths over readout
units encoding longer intervals results in Vierordt’s law. For the state-dependent PFC
model, the increase in tuning curve widths for longer intervals can be explained by the
comparatively short rise and decay time constants of GABAB and STP.

In the literature, several attempts to explain Vierordt’s law by fitting the results of the
timing tasks to statistical models can be found. Among various statistical models that
have been applied, e.g., the maximum-likelihood estimation and maximum a posteriori,
the Bayesian framework has proven to be the best fit for reproducing the production
results of timing tasks. In particular, the Bayesian framework provides an explanation for
why subjects overcome their uncertainty during the production tasks by optimizing their
response to the statistics of the previously performed trials rendering the experimental
protocol for the order of intervals crucial (Jazayeri & Shadlen, 2010; Petzschner et al.,
2015; Sohn et al., 2019; Glasauer & Shi, 2021). In reevaluating Vierordt’s results (Vierordt,
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1868) within the Bayesian framework, Glasauer and Shi (2021) showed that much of
the deviation from the psychophysical law indeed depends on the order of presented
intervals. Specifically, the use of completely randomized interval durations between
trials leads to Vierordt’s law, whereas the use of a naturalistic, gradual alternation of
durations within the Bayesian framework, e.g., a random walk, removes a large part of the
distortions found by Vierordt. However, Glasauer and Shi also found a residual distortion
even for the random walk condition. Hence, Vierordt’s law stems from a combination
of the network’s intrinsic distortions as observed for a completely randomized order of
intervals presented, and a residual distortion from the otherwise counteracting Bayesian
integration within the random walk setup. Using the random walk Bayesian framework
on experimental data, Glasauer and Shi computed a slope of the psychophysical law of
0.86, which is close to the value found in this work for the state-dependent PFC model:
0.83, cf. Table 4.2.

For the state-dependent PFC model, the indifference point for Vierordt’s law, which
refers to the point at which the objective and estimated time intersect for slopes smaller
than 1, is at ∼500 ms when training the network on intervals in the range 50 – 750 ms
across 10 parameter sets. While in the literature, several studies report the indifference
point to be around the arithmetic mean (Bobko et al., 1977; Franssen et al., 2006; Leje-
une & Wearden, 2009), which here would be 400 ms, the value reported in this work
differs significantly from the arithmetic mean. This is consistent with other experimental
observations (Woodrow, 1934; Yarmey, 2000; Lejeune & Wearden, 2009). However, it is
important to note that the indifference point indeed shifts from 500 ms to 853 ms when
training on longer intervals of up to 2000 ms.

ramping pfc model To determine the estimated times of the ramping PFC model,
the number of active neurons method was employed instead of a trained readout layer
as for the state-dependent PFC model, since the former yields results directly relying
on ramping activity, while the latter does not. To estimate time using this method, first,
the activity thresholds at which 90% of the maximal firing rate has been reached and
associated times are determined per neuron for training trials. Then, the training trial
averaged thresholds and times are associated, the number of neurons above the threshold
on the training trials per time is computed, and the inversion of this relation is used to
estimate times on test trials.

As for the state-dependent PFC model, stimulation was initially given after the ramping
PFC model reached a steady state at 1000 ms after simulation onset and yielded an
approximately linear increase in estimated times up to 1500 ms. However, qualitative
assessment of the raster plot (see Fig. 5.14B) revealed burst-like activity for layer 5

pyramidal cells immediately after stimulation instead of slowly increasing firing rates.
In contrast, the raster plot for stimulation at 1 ms shows slowly increasing firing rates
as required for time estimation from ramping activity, cf. Fig. 5.14A. Furthermore, for
the stimulation at 1000 ms, the standard deviation of estimated times did not follow the
scalar property, cf. Fig. 5.15C, while for the stimulation at 1 ms the scalar property holds,
cf. Figs. 5.8B and 5.11B. Hence, for time estimation analyses within the ramping PFC
model, the 1 ms stimulation was used.

Using the number of active neurons method for time estimation within the ramping
PFC model, a strong difference in mean and standard deviations of subjective times was
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found for different intervals, cf. Fig. 5.8. While overall, an approximately linear increase
of the subjective time with increasing objective time was observed for intervals up to
6000 ms, for intervals between 500 ms and 1500 ms the increase of the subjective time was
almost perfectly linear with very low standard deviation as compared to longer intervals.
This difference is explained by the time estimation method, relying on neurons to surpass
their training trial averaged thresholds at different times. Specifically, intervals during
which many neurons turn active, i.e., surpass their threshold, can be estimated reliably
(500 – 1500 ms), while time estimation works worse for intervals, in which only a few
neurons turn active (0 – 500 ms and 1500 – 6000 ms), cf. Fig. 3.10.

Notably, the absolute trial variability for the number of active neurons is roughly
constant over time, cf. Fig. 3.10. However, relative to the increase in the number of active
neurons, which is used for time estimation, the variability is high for intervals, in which
only few neurons turn active (>1500 ms). A low, but nonzero number of neurons shows
very slow ramping, surpassing their respective thresholds as late as 5000 – 6000 ms and
therefore in principle allowing to encode such long intervals, cf. Fig. 5.10. Hence, it
is conceivable that the synaptic and neuronal properties behind these slowly ramping
neurons could be identified and replicated explicitly or, e.g., by synaptic plasticity
mechanisms to increase the number of those neurons and thereby make time estimation
for these long durations robust against trial variability. The same arguments apply to fast
ramping neurons, allowing to encode short intervals 300 – 500 ms.

For the range 500 – 1500 ms, in which most neurons exceed their respective thresholds,
cf. Fig. 3.10, a nearly perfect linear trend with a slope of a = 1.04 and low standard
deviation is observed, see Figs. 5.11A and 5.12C. This is in line with various experimental
studies reporting slopes for the psychophysical law of k ≈ 0.5 − 0.7 (Kanai et al., 2006;
Murai & Yotsumoto, 2016) for visual stimuli and k ≈ 0.9 − 1.1 for auditory stimuli
(Franssen et al., 2006; Murai & Yotsumoto, 2016).

6.3.3 The scalar property

The linear increase of the timing error for increasing time intervals is referred to as
Weber’s law or scalar property. This property is one of the most important hallmarks of
time perception, which needs to be reproduced within a computational timing model at
least in a limited range of intervals to consider the model valid for time perception in
that range (Gibbon, 1977). Here, I discuss the results regarding scalar property for the
state-dependent PFC and the ramping PFC model.

state-dependent pfc model For the state-dependent PFC model, a sublinear
increase of the standard deviation for increasing intervals was expected, since for the
state-space model (Buonomano, 2000), Karmarkar and Buonomano (2007) have shown this
sublinear increase in a follow-up study. However, when integrating the state-space model
into the PFC model, the scalar property with linearly increasing standard deviations for
time estimates emerged (Fig. 4.2) for durations up to 500 ms corresponding to the time
constants of the synaptic processes, such as GABAB and STP. Indeed, the removal of the
GABAB current has a high impact on time estimation and the scalar property, since this
results in much worse time estimation with increased timing errors (see Fig. 4.6D).
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The mathematical derivation proposed by Ravichandran-Schmidt and Hass (2022)
provides a plausible explanation of the origin of Weber’s law, see Fig. 4.11. The stereotypic
single-spike firing probabilities over the IEPs saturate close to one at the corresponding
encoded time. The resulting firing rates can be translated into Gaussian-shaped tuning
curves with shifted means and constant standard deviations by multiplication with the
regression weights, leading to temporal receptive fields. Since the standard deviations
are roughly constant over time in this model, the linearity of Weber’s law follows solely
from the multiplication of tuning curves with corresponding increasing intervals. Within
this mathematical framework, deviations from the assumptions can be used to explain
Vierordt’s law and deviations from the scalar property. Key assumptions were similar
shapes across all intervals for the firing rates, temporal receptive fields of the readout
weights, and the tuning curves of the output units. While the first two assumptions match
the state-dependent PFC model simulations, the tuning curves of output units increase in
width for intervals above 350 ms, see Fig. 4.1A, resulting in a more pronounced Vierordt’s
law in simulation. Within the mathematical framework, this can be understood as follows:
Increasingly broader tuning curves for longer intervals lead to shifts away from the linear
relations of both the mean and the standard deviations, since in the most extreme case of
flat tuning curves, estimated times and standard deviations would be constant.

The above-described mathematical framework for generating Weber’s law can be
compared to the spectral timing theory (Grossberg & Schmajuk, 1989) and the synfire
chain model for time estimation proposed by Hass et al. (2008). In both models, groups
of neurons were explicitly connected in a feed-forward manner and timing errors were
found to increase approximately linearly with the durations. In contrast, within the
state-dependent PFC model, neurons were not explicitly grouped into pools by the choice
of synaptic connections but instead emerged spontaneously from heterogeneous neuronal
and synaptic parameters. In this work, training of readout weights via least squares
allowed for discovering and describing the pools of neurons coding for different intervals.

Using an information-theoretical framework based on time estimation from a Gaussian
process with non-stationary parameters, Hass and Herrmann (2012) derive lower bounds
on time estimation errors based on systematic (mean), random (variance), and correlation-
based changes over time of the stochastic process. For mean-based time estimation, e.g.,
based on the firing rate of a neuron, or spike of a specific neuron at a given time, standard
deviations of time estimates grow sublinearly with time given an optimal estimator in
the information-theoretic sense. Similarly, for variance-based time estimates, e.g., from
stochastic transitions between neural states (Escola et al., 2009; Almeida & Ledberg,
2010; Simen et al., 2011), optimal time estimates grow linearly corresponding to the
experimentally established scalar property.

In this context, the membrane potentials in the state-dependent PFC model are gov-
erned by a stochastic process with time-varying mean due to systematic changes in
excitability caused by heterogeneous neuronal and synaptic parameters and by the time
constants of GABAB currents and STP. Hence, following Hass and Herrmann (2012),
one might expect a sublinear increase in Weber’s law. However, as evident from the
idealized mathematical framework of the state-dependent PFC model, time estimates are
not directly drawn from membrane potentials. Instead, time estimates are based on firing
rates, which follow a binomial distribution resulting in a coupling of mean and standard
deviation, see Fig. 4.12D. This explains the observed linear instead of a sublinear increase
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of timing errors up to 500 ms and allows for a characterization of the state-dependent
PFC model as a covert mean-driven model since the systematic change of excitability
providing the basis for time estimation is only indirectly accessible.

While the scalar property could be reproduced within the state-dependent PFC model
up to 500 ms, for longer intervals the time estimation is generally worse, and the timing
error remains roughly constant. In the literature, most of the experiments find a steeper,
superlinear increase of the standard deviation for longer intervals (Gibbon et al., 1997;
Grondin, 2001) instead of a constant (Grondin, 2001). The superlinear increase within the
experiments might emerge from multiple coexisting timing mechanisms with different
time scales within the mammalian brain Hass and Durstewitz, 2016.

ramping pfc model Within the ramping PFC model, the scalar property is observed
both for a stimulation at simulation onset and for a stimulation at t = 1000 ms. Similar to
the linear timing, also for the scalar property two regimes can be differentiated based on
different slopes: short intervals up to 1500 ms and longer intervals between 1500 ms and
6000 ms.

The standard deviation of time estimates for shorter intervals (500 – 1500 ms) yields
slightly better RMSEl for the fit with a linear function as compared to the square root
function evaluated for a single parameter set. However, for the same analysis over five
parameter sets, the standard deviation is slightly better approximated by a square root
function. Given the very small difference between linear and square root fits, the data
does not allow for clear differentiation. Since the linear estimates and standard deviations
are determined from the systematic increase of firing rates, a sublinear increase would
be in line with the information-theoretic framework proposed by Hass and Herrmann
(2012).

The emergence of Weber’s law can be related to the number of neurons surpassing
respective firing rate thresholds, see Fig. 5.9 for a visualization of the first trial. Specifically,
for the pools in the range of 500 – 1500 ms, a large number of neurons turn active, i.e.,
surpassing their respective thresholds, allowing for precise timing within this range. In
contrast, for longer intervals, only a few neurons turn active, limiting the precision of
time estimation due to high trial variability w.r.t the number of newly active neurons.

The firing rates observed in Fig. 5.9 can be classified into different categories, as
previously done for experimentally recorded PFC neurons. Specifically, in visual-stimulus-
based duration-discrimination tasks in macaque with durations in the range 200 – 2000 ms,
Oshio et al. (2008) recorded single-neuron activity in PFC finding three different types of
neuronal activity patterns via cluster analysis, namely phasic, ramping and sustained
activity. Neurons with predominant phasic activity had firing rate curves with a Gaussian-
like shape and a broad peak on average around 800 ms after stimulus onset and mostly
later than 400 ms leading the authors to conclude that these neurons are likely involved
in cognitive processes in the duration-discrimination task. Phasic activity neurons were
differentiated from ramping activity neurons by the criterion of the value from Gaussian-
fitted mean plus half of the peak width to be <1600 ms after stimulus onset. Hence,
ramping activity was characterized by late and/or broadly peaking or saturating neurons.
Neurons in the sustained activity cluster showed high firing rates immediately upon
stimulus onset without a clear peak.
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As apparent from Fig. 5.9, phasic activities with a Gaussian-like shape can also be
observed in the ramping PFC model with broad peaks around 700 ms and slightly
offset for different neurons. Indeed, these phasic activity neurons are most prevalent in
encoding short intervals up to ∼1500 ms, while being absent for longer intervals. Phasic
activity neurons are gradually outnumbered by ramping activity neurons for longer
intervals (starting around 300 ms), for which activity stays saturated until the end of the
simulation. Hence, for intervals between 500 ms and 1500 ms, for which time estimation
works best in the ramping PFC model, a mixture of initially phasic and then ramping
activity neurons are used for encoding time by means of their 90% activity level relative
to their peak activity. In addition, for short intervals up to 1500 ms, the times of reaching
90% activity thresholds in a trial tend to match well with the training trial averaged times
for reaching this threshold. In contrast, for longer intervals, the trial variability yields a
larger spread of threshold times. In parts, this might be related to highly characteristic
peaks for phasic activity neurons encoding short intervals and more variability in peak
times for ramping neurons coding for longer intervals.

For intervals around 1500 ms, the standard deviations grow 6-fold more rapidly, when
comparing slopes of linear fits before and after 1500 ms. In addition, standard deviation
above 1500 ms is better approximated by a square root than a linear function. A possible
explanation for the rapid increase above 1500 ms is the small set of neurons encoding
longer intervals and the variability of neurons over trials (Figs. 5.9 and 5.6). In parts,
both issues could potentially be solved by an overall larger network, which would
automatically devote more neurons to longer intervals. In addition, the analysis of
neuronal and synaptic parameters of slowly ramping neurons coding for long intervals
could allow for replication of these parameters in a subset of ramping neurons coding
for shorter intervals in order to increase the neuron count encoding long intervals.

6.3.4 Dopaminergic modulation

Another experimentally established property of time perception studied in this work
is the modulation of subjective time by dopamine. To this end, the effects of the D2

receptor were modeled by varying synaptic and neuronal parameters based on results
of in vitro experiments and interpolating between −100% and 100 %. For both timing
models proposed in this work, I find an overestimation of the subjective time for agonistic
modulation and an underestimation for antagonistic modulation, matching experimental
data (Rammsayer et al., 1993; Buhusi & Meck, 2005). In the following, the effects of
dopaminergic modulation as found in this work and the relation to published results are
detailed separately for each of the two PFC models proposed in this work.

state-dependent pfc model For intervals between 200 ms and 600 ms and for
modulation from −50 % to 50 %, I find slowing down of the internal clock for antagonistic
modulation and speeding up for agonistic modulation (see Fig. 4.3A). The most important
factors for these changes were the synaptic parameters. When NMDA conductance is
reduced by 20 % and, at the same time, the peak conductance of γ-Aminobutyric acid
(GABA) is decreased by 50 % (see Table 3.2) for 100 % agonistic modulation, the neuron
becomes more excitable as compared to baseline. Given IEPs relying on averaged firing



6.3 implications for experimental results on interval timing 115

rates in response to the second stimulus (Fig. 4.7D), increased excitability leads to earlier
activation of pools, resulting in an overestimation. The opposite is true for the antagonistic
D2 modulation.

Comparing timing errors in the presence of dopaminergic modulations between −50 %
and 20 %, no significant difference was observed compared to baseline, consistent with
experimental findings (Yc et al., 2019). While an acute dosage of dopamine causes
overestimation of time, studies have shown that a chronic application of dopaminergic
drugs, such as methamphetamine, results in compensatory neuroadaptive processes
(Spanagel & Weiss, 1999; Rahman et al., 2004). Within the state-dependent PFC model,
this adaptation was emulated for 30 % agonistic and antagonistic modulation by retraining
the readout weights. Retraining turns out to fully compensate for the overestimation of
time observed in acute dopaminergic modulation (Fig. 4.4). The compensatory effect due
to retraining can be explained as follows: An acute application of agonistic drugs leads
to an earlier activation of pools, whereas chronic application results in the remapping of
neurons within the network to earlier pools. To elaborate on this, a neuron in a pool that
typically encodes 150 ms intervals will become sensitive, e.g., to 100 ms under acute D2

modulation. For a chronic application, the retraining directly assigns that neuron to the
pool, which encodes 100 ms. In summary, if dopaminergic modulations last for a long
time, the overestimation of the subjective times can be compensated by the rewiring of
readout weights to output units.

The results of the dopaminergic modulation match experimental findings only within a
limited range of intervals and rates of dopaminergic modulation. For modulations above
±50 % and intervals < 200 ms and > 600 ms, see Suppl. Fig. A.3, time estimation breaks
down giving almost constant or even inverted time estimates as objective time increases.
The breaking down of the time estimation can be explained by boundary effects. Higher
concentrations of dopamine make the network more excitable to the extent that IEPs for
the longest intervals are activated at short objective time. On the one hand, the output
neurons encoding longer intervals are much broader than for shorter intervals, such that
many readout units will still be activated for longer intervals. On the other hand, given
strong overexcitation, the pools lose their ability to differentiate intervals. Hence, the time
estimates converge to a single value for 100 % agonistic modulation (Suppl. Fig. A.3).
The same holds true for antagonistic modulation, for which the network will become
more inhibited due to a stronger increase in GABAB than NMDA. For high levels of
antagonistic modulation, fewer neurons fire for long intervals within the IEPs, such that
subjective times will be underestimated.

ramping pfc model For the ramping PFC model, underestimation for antagonistic
modulation and overestimation for agonistic modulation was observed for the two
stimulation variants, consistent with the experimental observations in the literature
(Rammsayer et al., 1993; Buhusi & Meck, 2005). However, for stimulation at simulation
onset, even a lower level of agonstic and antagonistic dopaminergic modulation leads to
clear overestimation and underestimation respectively (see Fig. 5.13). When stimulating
at t = 1000 ms, a strong upswing of the subjective time for intervals >1400 ms is visible
(see Fig. 5.15) This effect can be explained by the method employed for time estimation,
which relies on the number of active neurons above the threshold at a given point in time.
As already described for the state-dependent PFC model, agonistic modulation leads to
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overexcitation in the network due to the reduction of GABAB being stronger than the
reduction of NMDA. Since more and more neurons become active earlier during agonistic
modulation and few neurons turn active above ∼920, any additional, previously inactive
neuron yields a strong overestimation (Fig. 5.15A). The drastic increase of estimated times
for intervals >1400 ms objective time, is explained by the extrapolation of the mapping
of Nactive to the encoding times. For stimulation at 1 ms, the agonistic modulation results
in overestimation over the whole range of intervals.

For both stimulation variants, antagonistic modulation of the network yields an under-
estimation of the objective times with a slope that significantly differs from baseline. Since
an antagonistic modulation leads to overall inhibition of the network, fewer neurons
become active, shifting the mapping Nactive with strong variations over time. Ultimately,
the time estimates collapse to a constant value of ∼500 ms for higher levels of antagonistic
modulation. This is likely explained by the large number of active neurons ∼700 required
in the estimation method to get estimates beyond 500 ms, which is hardly attainable
under strong inhibition, see Figs. 3.10 and 5.13B,E.

Dopaminergic modulation in the ramping PFC model reproduces the experimentally
observed findings of over- and underestimation of time, however, already levels of
dopaminergic modulation between −10 % and 10 % yield dramatically different time
estimates. Comparing the timing errors for dopaminergic modulation yields signifi-
cantly increasing slopes and intercepts for modulations between −10 % and 10 % for
500 – 1500 ms. While dopaminergic modulations of 10 % seem minor, the neuronal and
synaptic parameter changes were obtained from in vitro experiments, and therefore the
true scale of neuronal and synaptic parameter changes in vivo is yet to be determined.

limitations of modeling dopaminergic modulation Concerning antagonis-
tic modulation for both the state-dependent PFC and ramping PFC model, neuronal and
synaptic parameter changes were extrapolated from the experimentally found parameter
changes on in vitro agonistic modulation due to lack of experimental data for antagonistic
modulation. Hence, the antagonistic modulation in this work relies on the assumption
that antagonists have the exact opposite effects on neuronal and synaptic parameters
as compared to agonists. While extrapolation of parameter changes for antagonistic
modulation seems like a natural assumption, ideally, the validity should be tested in
experiments.

Similarly, in this work, only the D2 receptor was considered for contributing to modu-
lations of subjective times, since the experimental study of effects from dopaminergic
modulation on time perception has focused on this receptor type (Meck, 1986; Buhusi &
Meck, 2005). As the effects of D1 receptor activation are more complex than increasing the
excitability (Durstewitz et al., 2000; Lapish et al., 2007), no systematic change in subjective
time is expected. However, by analyzing the effects on inhibitory neurons within the PFC,
Seamans et al. (2001) have shown that D1 and D2 receptors have a biphasic effect, with
a fast D2-receptor mediated decrease and a prolonged D1-receptor mediated increase,
resulting in D2 and D1 agonists canceling each other. In addition, more recent studies
show an effect of D1 receptor modulation on time perception (Narayanan, 2016). Given
experimental data on parameter changes for the D1 receptor type currently not yet avail-
able, future analysis with respect to dopaminergic modulation in the state-dependent
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and ramping PFC models could focus on the modulatory effects mediated by isolated D1

receptors and by the combined effects of D1 and D2.

6.4 conclusion

Computational models provide a possibility to understand the underlying mechanisms
of biological and other processes, which are otherwise difficult to understand. For re-
search questions in the field of psychology strongly dependent on subjective perceptions,
a detailed computational model can help to bridge the gap between these subjective
perceptions and their neurobiological implementation and how they relate to each other.
One such example is the study of time perception, which is of immense interest to psy-
chologists, neurobiologists, and physicians alike. In this work, I tested whether existing
computational timing models, namely the state-dependent model and the ramping activ-
ity model, can be reasonably implemented within a biologically plausible computational
model of the prefrontal cortex and, whether such a model can reproduce key findings
from timing experiments, namely linear timing, scalar property, and the modulation via
dopamine.

The state-dependent PFC model, which encodes different intervals by the current
state of the neurons specifically depending on the GABAB and STP level a given neuron
receives, can reproduce linear timing and the scalar property within a limited range of
intervals relevant for subsecond timing: 50 – 750 ms. Time estimates and timing errors
closely follow the slope of Vierordt’s law, the magnitude of the Weber fraction and in
addition, the indifference points of the time estimates were dependent on the considered
range of the intervals, all of which are characteristics reported in experiments. In addition,
the model is able to reproduce the dopaminergic effects on timing, i.e., overestimation
of time for acute agonistic modulation, underestimation for acute antagonistic modula-
tion, and a compensating adaptation for a chronic application of dopamine. However,
dopaminergic modulations were only reproduced for intervals between 200 ms and
600 ms and for modulations up to ±50 %. Most importantly, getting to those results did
not require any addition of a specific timing mechanism, and no parameters within the
network required tuning other than the synaptic weights of the readout layer.

The ramping PFC model, within which time is encoded by different saturation points
of slowly increasing firing rates driven by calcium-triggered loops, is capable of interval
timing, i.e., estimation of time in the milliseconds to seconds range. While the previously
used readout layer trained via least squares turned out not to make use of ramping
activities of neurons in this model, a dedicated time estimation mechanism based on
the count of neurons above 90% activity level made explicit use of ramping activity and
was able to estimate time reasonably well. Dramatic, biologically implausible gains in
time estimation errors for intervals above 1500 ms could be related to the employed time
estimation mechanism, making it evident that a better mechanism should be conceived
in future work. However, the model was still able to reproduce the psychophysical law
as well as the scalar property within a range of 500 – 1500 ms. Furthermore, the dopamin-
ergic modulation within modulation levels of −10 % to 10 % shows underestimation for
antagonistic modulation and overestimation for agonistic modulation, as expected from
experiments. Beyond intervals of 1500 ms, the proposed model can still estimate times,
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however, since only a few neurons ramp slow enough to usefully encode those long inter-
vals, with the proposed time estimation mechanism, long intervals were overestimated
and time estimation errors increased drastically.

Interestingly, the proposed models complement each other in that they operate well on
different ranges of intervals. While the state-dependent PFC model can encode intervals
up to 500 ms without and up to 750 ms with a pronounced Vierordt’s law and fails for
longer intervals than these, the ramping PFC model fails to estimate short intervals up
to 500 ms, but works well for intervals between 500 ms and 1500 ms. It is conceivable
and indeed experimental evidence seems to support that time estimation in the brain
is performed by a number of different mechanisms in various brain areas for distinct
interval durations (Lewis et al., 2003; Wiener et al., 2010). Hence, the state-dependent
PFC model and ramping activity model could be implemented separately and isolated
from each other within the PFC and their combined ability to estimate time would
cover intervals ranging from 50 ms to 1500 ms. Alternatively, one could also imagine
a combined and interconnected implementation of the two models, allowing for the
integration of information across different time scales. An implementation of a combined
model was beyond the scope of this work and is left for future studies.

In this work, the state-space model proposed by Buonomano (2000) and the ramping
model proposed by Durstewitz (2003) were implemented within a biologically plausible
PFC model by Hass et al. (2016) to form the state-dependent and the ramping PFC models.
To the best of my knowledge, the state-dependent and the ramping PFC models can be
considered the first computational timing models matching the three most important
experimentally established time perception properties.

6.5 future directions

While the state-dependent PFC model was studied in great detail regarding the under-
lying mechanisms, ablation experiments, the synaptic currents and weights as well as
mathematical derivations and a minimal model, a so far open question for both the
state-dependent and the ramping PFC model is, whether antagonistic dopaminergic
modulation is correctly assumed to be exactly opposite in effect for neuronal and synap-
tic parameters. To resolve this question, future experiments should test and compare
the parameter changes in similar conditions as done for the agonistic dopaminergic
modulation.

In contrast to the state-dependent PFC model, the evaluation of the three most promi-
nent timing properties for the ramping PFC model revealed two distinct ranges of
intervals, where time estimation works well for 500 – 1500 ms, while in the range of
1500 – 6000 ms time is overestimated and timing errors increase drastically. The origin
of drastically increased timing errors was found to be the low number of neurons with
a sufficiently slow ramping in conjunction with high variability across trials, causing
the employed time estimation method to yield highly variable predictions of subjective
time. A number of different approaches could be tried to resolve this issue. First, the
learning rule to find optimal γADP yielding slowly ramping firing rates is so far only
approximated via a grid search. An implementation of the gradient ascent based learning
rule proposed by Durstewitz (2003) as part of the simulation might allow for taking
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network effects into account, thereby yielding longer ramping durations and with that
the ability to better encode long intervals. Second, by identifying and replicating the
synaptic and neuronal properties of neurons responsible for slow ramping, the pool of
neurons encoding long intervals could be artificially increased. Third, an alternative time
estimation method could potentially learn to improve time estimates from highly variable
and small sample firing rates of neurons encoding long intervals. Once the described
issues are resolved, similar in-depth analyses of underlying mechanisms, ablation experi-
ments, synaptic weights, and currents as well as a mathematical derivation as employed
for the state-dependent PFC model should also be applied to the ramping PFC model.

Given the distinct intervals of 50 ms to 750 ms for the state-dependent PFC model and
500 ms to 1500 ms for the ramping PFC model, in which the respective models perform
well in terms of time estimation, a combination of the two proposed models would
be interesting and highly relevant as disparate time estimation mechanisms in various
brain areas are discussed in the literature (Lewis et al., 2003; Wiener et al., 2010; Hass &
Durstewitz, 2016). As concrete experimental evidence for the implementation of different
models and their interdependence is lacking, various ways of combining the studied
mechanisms could be tested. For instance, the slow inhibitory currents via GABAB as
used in the state-dependent PFC model can be activated for the ramping PFC model to
yield a tightly integrated combination of both models. In preliminary experiments, this
resulted in a strongly increased inhibition, resetting the activity of ramping neurons to
zero at irregular intervals.

In this work, for simplicity, only a single column from the previously proposed
PFC model (Hass et al., 2016) was used to incorporate either the state-space or the
ramping activity model. Given enough computational resources, the proposed integrated
models could be tested within a multi-column PFC model, allowing for a distributed
representation of time in several columnar modules with cross-columnar integration.
A multi-column PFC model would be another possibility to test combinations of the
state-dependent and the ramping PFC models integrated into and interconnected within
a larger network. In addition, such a model could be tested for the transition and interplay
of time estimation mechanisms operating at different scales.

While this work focused on the integration of two particular computational models
for time perception into the data-driven PFC model, other models could be integrated
and evaluated as well. Specifically, synfire chains (Hass et al., 2008) and the striatal
beat model (Miall, 1989; Matell & Meck, 2004) were previously proposed for the task of
time estimation and have so far not been implemented within a biologically plausible
data-driven network model and not been tested for the three timing properties.

In preliminary experiments on the integration of synfire chains, difficulties arose in
finding a good balance between excitation and inhibition to generate a chain of stable
consecutively active neuron pools within a network of 3000 neurons. This might reflect
findings from Aviel et al. (2003), suggesting a minimal network size of 100 000 neurons
for synfire chains with a constant transmission time. Instead, within the preliminary
experiments, having dedicated pools of inhibitory neurons connected via feedback
inhibition to each excitatory pool that is part of the synfire chain allowed for various
transmission speeds, depending on the chosen time constants of receptor types, and
thereby the encoding of various time scales in the range of hundred milliseconds while
sticking to a network size of 3000 neurons. Note that the above-described preliminary
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experiments should be treated with caution and need further tests and analyses for
accurate predictions.

The striatal beat model (Matell & Meck, 2004), which relies on units presumably
located in the striatum reading out a variety of oscillations within cortical networks,
was abandoned for two reasons based on preliminary analysis. First, the model was
found to be fragile with respect to fluctuations. Specifically, applying a 3% standard
deviation to the frequencies of the individual oscillators was enough to disrupt the ability
to represent durations, which is in accordance with similar published results (Matell &
Meck, 2004; Gu et al., 2015). To determine whether this level of precision in oscillation
frequencies could be achieved, biologically realistic noise was applied for both network
oscillations and spiking single neurons. This yields 10 – 30% variations of the mean of the
oscillation frequencies, and therefore variations are too high to detect beats. To reduce
those variations, Matell and Meck (2000) and Gu et al. (2015) proposed to couple the
oscillators, yielding a global variability over trials. However, the variance was still too
high surpassing the critical 3% level, except for very strong couplings that would lead
to a convergence of oscillator frequencies. Secondly, a mechanistic way to implement
the scalar property within this model could not be found. So far, studies reporting the
reproduction of the scalar property in the striatal beat model (Matell & Meck, 2004;
Oprisan & Buhusi, 2011), relied on the explicit implementation of an artificial scalar noise
source inevitably leading to the scalar property without explaining the origin of the
scalar noise source.

While a detailed account of biologically plausible implementations of synfire chains
and the striatal beat model is left for future work, the promising results for the state-
dependent and ramping PFC models already allow for hypotheses on combinations of
models for time estimation across different scales. Specifically, given the distinct intervals
of operation for the state-dependent and the ramping PFC models, biologically plausible
implementations of synfire chains, the striatal beat model as well as other models for
time perception might allow for encoding a range of different intervals. Their integration
into a mixture of models within the PFC network could shed light on the integration and
interaction of time perception across different mechanisms and time scales.
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a.1 derivation of double exponential function from differential equa-
tions
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The general solution of this coupled system of ordinary differential equations (ODEs)
is

g⃗(t) = a1v⃗1 · eλ1t + a2v⃗2 · eλ2t , (A.2)

with λ
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the eigenvalues of coefficient matrix A:
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(A.3)

where det(M) refers to the determinant of matrix M, and 1 is the identity matrix. Plugging
λ

1/2
into the eigenvalue equation allows to solve for corresponding eigenvectors v⃗

1/2
:
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Hence, the solution g⃗ for coefficient matrix A is of the following form:

g⃗(t) = a1
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· e−

t
τon + a2

(
1

0
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e−

t
τoff , (A.5)

To describe the dynamics of conductance gX of synaptic channels, we generally want
g = 0 for all t in the absence of any spikes. The initial condition of g(t = 0) = 0 can be

achieved by a2 = a1τ̃ ≡ g0. To keep this value for all t in the absence of spikes, g̃ !
= 0

and hence also a1 = 0. Once the first spike occurs, g(t = tsp + τD) = 0 should still hold,
where τD is the synaptic delay. This can be achieved by a2 = a1τ̃ = g0 and a1 ̸= 0 in order
to yield the double exponential. A change of variables with t → t − tsp − τD yields the
double exponential of the following form:

gsingle spike(t ⩾ tsp + τD) = g0

(
e−

t−tsp−τD
τoff − e−

t−tsp−τD
τon

)
,

g̃single spike(t ⩾ tsp + τD) =
g0

τ̃
e−

t−tsp−τD
τon ,

(A.6)

where now g0 refers to g(t = tsp + τD) = g0.
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For a whole spike train {tsp}, a superposition of the equations gsingle spike(t) and
g̃single spike(t) holding for a single spike can be used to write the solution for the whole
spike train:

gspike train(t) =
∑

{tsp|tsp+τD⩽t}

gsingle spike

=
∑

{tsp|tsp+τD⩽t}

g0(tsp)

(
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τoff − e−

t−tsp−τD
τon

)
,

g̃spike train(t) =
∑

{tsp|tsp+τD⩽t}

g̃single spike

=
∑

{tsp|tsp+τD⩽t}

g0(tsp)

τ̃
e−

t−tsp−τD
τon ,

(A.7)

where g0(tsp) can be identified with g0(tsp) = gmax
X a(tsp) to match gspike train(t) to gX(t) in

equation 3.2. Similarly, g0(tsp) = ACa to match gspike train(t) to
[
Ca2+

]
i (t), cf. equation 3.4.

To get above result from equation A.2, in addition to g0 = 0 = g̃0 at time t = 0 in the
absence of spikes, the initial conditions at the time of every spike tsp has to match to
equation A.7, such that the full ODE integrating to above equations reads as follows:

dg
dt

= g̃ −
g
τoff

dg̃
dt

= −
g̃
τon

if a spike occurs at time tsp and t = tsp + τD

then g̃ → g̃ +
g0

τ̃

(A.8)
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a.2 supplementary figures state-dependent pfc model

Figure A.1: Spike trains for exemplary inter-stimulus intervals ∆t
The raster plots of the main simulation as shown in Fig. 4.1 are depicted for the
training intervals ∆t1 = 50 ms in A, ∆t4 = 200 ms in B, ∆t8 = 400 ms in C and ∆t12

= 600 ms in D.
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A B
RMSET = 49.5 ± 10.4 ms RMSEl = 3.6; RMSEs = 4.3ms

Figure A.2: Ridge regression
Estimated times A and standard deviations B, when using ridge regression instead
of the linear least square method to compute readout weights. Results are almost
identical compared to linear least square method, cf. Fig. 4.1.

Antagonistic Agonistic 

Figure A.3: Dopamine modulation and the change of the subjective time for the full range.
The estimated time for antagonistic and agonistic dopaminergic modulation is
presented here. Each color represents one tested interval, across the full range of
modulation. An overestimation and an underestimation of time can only be found
within the range of 200 - 600 ms and for levels of dopaminergic modulation below
±50 %.
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BA

Figure A.4: Outputs of the readout neuron for 400 ms interval with altered DA modulation.
A With increasing antagonistic dopaminergic modulation (from darker to lighter
colors), the activation of the interval encoding unit for 400 ms is activated at later
time points. B With increasing agonistic modulation, the same unit is activated at
earlier intervals. The output values drastically decay with increasing modulation.

A B C

Figure A.5: Standard deviations of the dopaminergic modulations.
The standard deviations with respect to unmodulated Webers law (black) are
shown for antagonistic A and agonistic B dopamine modulations of ±10 to ±
100 % within the full range and C the slopes of the estimated times for each
modulation fitted with a linear regression (red).
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a.3 parameters of ablation experiments

Table A.1: Parameter adjustments for ablation experiments.

ablation parameter changes w.r .t pfc model [%]

State-dependent PFC Iback 140

model (no ablation) gmax,GABAB 30

gmax,GABAA 30

Synaptic mechanisms
no NMDA Iback 140

gmax,GABAB 30

gmax,GABAA 30

gmax,NMDA 0

no GABAB PFC model -
no STP Iback 430

Iback,exc,layer 23
130

wsyn, exc 80

wsyn, inh 40

Iback,exc,layer 5
210

Synapse type staticsynapse (NEST)
no NMDA, no GABAB & Iback 210

no STP Iback,exc,layer 23
130

wsyn, ex 80

wsyn, inh 40

Iback,exc,layer 5
210

Synapse type staticsynapse (NEST)
gmax,GABAB 0

gmax,GABAA 100

gmax,NMDA 0

Heterogeneity
homog. neurons Iback 140

Iback,exc 130

homog. synapses Iback 140

Iback,exc 110

homog. neurons & Iback 140

synapses Iback,exc 120

homog. neurons, syn. & Iback 140

1 type of STP Iback,exc,layer 5
220

Iback,exc,layer 23
180

wsyn, inh 280

wsyn 180

homog. syn. delays τD 0.1 ms
Irregular background activity
no background current Iback 0



A.4 origin of the scalar property for more than one pool and output neuron 127

a.4 origin of the scalar property for more than one pool and output

neuron

The following section was written by Joachim Hass, while plots based on simulation of
the state-dependent prefrontal cortex (PFC) model were generated by myself. This is
published as part of Ravichandran-Schmidt and Hass (2022).

“In the main text, we have shown how the scalar property arises from the stereotypical
firing rate profiles across interval-encoding pools interval-encoding pools (IEPs) and the
fixed relation between the mean and the standard deviation of the firing rates according
to the binomial distribution. We only considered the special case that a) the estimated
interval is one of the intervals that are encoded in one of the pools (t = Ti), and b) there
is only a single pool and output neuron, both of which encode this interval Ti. While this
case is instructive to understand the mechanism of the scalar property, it is necessary
to generalize the considerations of the main text to arbitrary interval durations and
multiple pools and output neurons (although usually, a few pools and output neurons
are sufficient due to the narrow tuning curves). A full mathematical derivation of this
case is beyond the scope of the current paper. Instead, we outline the general rationale
here and aim to verify each of the corresponding assumptions with data from the network
model.

Fig. A.6A shows the relation between the mean and the standard deviation of the
activity of each of the output neurons Oj (cf. lines and shaded areas in Fig. 4.1A). This

relation can be well-fitted to the function σOj =
√

cj⟨Oj⟩ with a relatively constant cj

across output neurons j (0.26 ± 0.04). As the duration estimate Test(t) is formed by
summing over the activities Oj of each output neuron multiplied by the duration Tj

that neuron represents, mean and standard deviation of the estimate are given by
⟨Test(t)⟩ =

∑
j Tj⟨Oj⟩(t) and σTest(t) =

√∑
j T2

j σ
2

Oj
(t), respectively.

A B

Encoded Interval [ms]

Figure A.6: Assessing the origin of the scalar property.
A. Standard deviations of the output neuron activity as a function of their mean
activity. B. Weber fractions (black curve, standard deviation of the duration es-
timated divided by its mean) and square root of the sum of the variances of all
output neurons (red curve) for each of the encoded interval durations.

Assume that we want to compute both quantities at a given time t∗. Under the
assumption that all tuning curves ⟨Oj⟩ have the same shape, namely mean-shifted
Gaussians with constant standard deviations (Fig. A.7A), we can interpret the values
⟨Oj(t∗)⟩ of the different output functions j at this time t∗ as the values of a single function
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⟨O(t)⟩ at different times t that reflect the shift of the mean of each of the different
Gaussians (Fig. A.7B). Given the fact that the output activities are normalized such that∑

j⟨Oj(t)⟩ = 1 for all times t, we can interpret ⟨O(t)⟩ as the probability distribution of the
time t elapsed relative to t∗. Thus, the average of elapsed time with respect to ⟨O(t)⟩ (or
⟨Oj(t∗)⟩, equivalently) is t∗ and we can write

⟨Test(t∗)⟩ =
∑

j

Tj⟨Oj(t∗)⟩ = ⟨t⟩ = t∗ (A.9)

and, using σOj =
√

c⟨Oj⟩ (see above) and Var(t) = ⟨t2⟩− ⟨t⟩2,

σTest(t∗) =

√∑
j

T2

j σ
2

Oj
(t∗) =

√
c
∑

j

T2

j ⟨Oj⟩(t∗) =
√

c
√
⟨t2⟩ (A.10)

√
c
√
⟨t2⟩ =

√
c
√

Var(t) + ⟨t⟩2 =
√

c
√

Var(t) + ⟨t∗⟩2. (A.11)

Var(t) is a constant that reflects the width of the tuning curves (about 25 ms for the
almost constant curves representing interval durations up to 300 ms) while

√
c is the

Weber fraction.
Together, equations A.9, A.10 and A.11 yield the generalized Weber law Bizo et al.,

2006

σTest(t∗) =
√

c
√

Var(t) + ⟨Test(t∗)⟩2 (A.12)

In the generalized Weber law, a constant error dominates the standard deviations of
the timing estimates from short durations, resulting in a decreasing Weber fraction, until
the linear part dominates for longer intervals and the Weber fraction becomes constant.
Indeed, the state-dependent PFC model shows this often-observed behavior of the Weber
fraction (Fig. 4.1D).

O1 O2 O3 O
A B

Time [ms] Time [ms]

Figure A.7: Interpreting the tuning curves of the output neurons as a probability density
function.
A Illustration of multiple tuning curves (mean-shifted Gaussians with constant
standard deviations) evaluated at a given time t∗. B The values of the different
tuning curves Oj can be interpreted as the values of a single Gaussian O (centered
at t∗) at different times that correspond to the shifted means. Note that the area
under this Gaussian is one, so O(t) can be interpreted as a probability distribution
function for the time t elapsed relative to t∗.
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We test the accuracy of the above calculations by computing the Weber fraction
√

c
from the data in two ways: First, as the ratio between the standard deviations σTest(t∗) and
the means ⟨Test(t∗)⟩, which yields

√
c for long enough intervals (see above). And second,

as the square root of the sum of the variances in all output neurons Oj. This second
relation,

√
c =

∑
j σOj follows from the normalization

∑
j⟨Oj(t)⟩ = 1 in combination with

σOj =
√

c⟨Oj⟩. Indeed, the results of the two calculations are in good agreement with
each other (Fig. A.6B), except for the expected deviations for short intervals.”
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