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1. Phase II Trials in Oncology

1.1. Early clinical trials in oncology
The approval of a new drug is a difficult and lengthy endeavour. Clinical drug devel-
opment programs in humans are usually divided in four phases (I to IV), each with
its specific aims and scopes (U.S. Food and Drug Administration, 1997). In phase I,
the focus lies on dose finding and obtaining a better understanding of the pharma-
cokinetics and the pharmacodynamics of a new compound. Phase II serves as an
exploratory stage where different treatment regimes may be compared, dose-finding
may be refined, and first evidence of therapeutic efficacy is established in comparably
small clinical trials. Phase II trials play an important role in the drug development
process. They serve as ‘gatekeepers’ intended to filter inactive substances before pro-
ceeding to phase III. This is crucial since the subsequent pivotal phase III trials are
typically conducted as randomised controlled trials to establish definitive proof of
efficacy. Consequently, phase III trials require substantially larger sample sizes and
are thus more expensive and take longer to complete than any preceding studies. Fi-
nally, phase IV subsumes any post-approval long-term investigation of drug-use in
practice and serves as a tool to collect sufficiently large amounts of safety data. This
classification is in no way definitive and individual trials can be designed to fulfil a
combination of objectives from different phases.

In early clinical oncology, phase II trials are often conducted as single-arm trials
with the binary endpoint ‘tumour response’ (Ivanova et al., 2016) as defined in the
RECIST criterion (Therasse et al., 2000). The primary reason for targeting the response
rate rather than the gold standard of overall survival is trial duration and sample size:
depending on the tumour type, it might be outright impossible to collect a sufficient
number of events for a proper survival analysis in an early development phase. An
alternative approach to this problem is the closer integration of a phase II trial within a
larger phase III trial. One way of implementing such a tighter integration are seamless
phase II/III trials that are conducted in two stages and allow an interim decision to
proceed to stage two based on both observed tumour response rates and early survival
data (Rufibach et al., 2020). Yet, by far the most common approach in oncology is still
the conduct of a dedicated phase II trial using tumour response as endpoint (Ivanova
et al., 2016). Here, the objective is to filter-out substances which fail to show sufficient
tumour response before attempting to confirm efficacy with respect to overall survival
in a subsequent larger phase III trial.

The rationale for using single-arm designs instead of the theoretically preferable
randomised two- or multi-arm designs is at least two-fold. Firstly, a single-arm trial
requires much smaller sample sizes which also leads to a speedier completion of the
trial. The issue of small recruitment pools becomes more pressing as tumour dia-
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1. Phase II Trials in Oncology

gnostics progress and the question of efficacy has to be answered in ever smaller
patient sub-populations. For instance, drugs targeting specific genetic variations or
pathways might also be beneficial to patients with genetically similar tumours in in-
dications which were not included in the initial approval of a drug. An example for
such a drug is vemurafenib which orally inhibits BRAF (proto-oncogene B-Raf en-
coding gene) and works particularly well in tumours showing a specific mutation
(BRAF V600 +) (Hyman et al., 2015). Here, vemurafenib was initially approved for
use in metastatic melanoma but its efficacy was subsequently investigated in dif-
ferent indications in a so-called ‘basket trial’ (Hyman et al., 2015). This increase in
potential applications of a single drug, which are often not foreseen when a first ap-
proval is sought, renders small but effective trial designs more important than ever.
These designs may then either be implemented as stand-alone studies for extending
approval of an existing drug or as part of a larger trial. Secondly, there are situ-
ations in which single-arm trials might be the only ethical option to proceed. For
instance, when the biological mechanism of a new drug is such that a large improve-
ment over the current gold standard can be expected or no such gold standard exists
at all. In these situations, a randomised trial might be considered unethical due to the
high a priori chance of treating a large group of individuals (the control arm) with
an inferior compound or none at all. Still, there is evidence that the proportion of
randomised trials in oncological phase II studies is increasing from about one third in
2005 to half in 2014 (Ivanova et al., 2016). This trend might in part be due to the fact
that phase II trials in oncology are increasingly used to obtain accelerated approval
after phase II by the FDA which typically requires evidence obtained from at least one
randomised trial:

‘Using surrogate or intermediate clinical endpoints can save valuable time
in the drug approval process. For example, instead of having to wait to
learn if a drug actually extends survival for cancer patients, the FDA may
approve a drug based on evidence that the drug shrinks tumours, because
tumour shrinkage is considered reasonably likely to predict a real clinical
benefit. In this example, an approval based upon tumour shrinkage can oc-
cur far sooner than waiting to learn whether patients actually lived longer.
The drug company will still need to conduct studies to confirm that tumour
shrinkage actually predicts that patients will live longer. […] Where con-
firmatory trials verify clinical benefit, FDA will generally terminate the re-
quirement. Approval of a drug may be withdrawn or the labelled indication
of the drug changed if trials fail to verify clinical benefit or do not demon-
strate sufficient clinical benefit to justify the risks associated with the drug
(e.g., show a significantly smaller magnitude or duration of benefit than was
anticipated based on the observed effect on the surrogate).’ (U.S. Food and
Drug Administration, 2018).

In phase II oncological studies, typical per-arm patient numbers are relatively low
with median sample size increasing only slowly from 39 (2005) to 45 (2014) (Ivan-
ova et al., 2016). This has important statistical consequences as typical asymptotic
arguments are not reliable and the finite-sample properties of designs become more
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important. Therefore, instead of invoking the central limit theorem for the observed
response rate and assuming asymptotic normality, exact methods using the fact that
the number of observed responses is binomially distributed are more adequate. In
case of a one-stage design, this implies that testing the response rate of a new drug
for superiority over a historical control reduces to an exact binomial test.

1.2. The inadequacy of the standard binomial test
Let X be the (random) number of responses out of n patients. Assume that all in-
dividuals share a common response probability, p. Then X is binomially distributed
with parameters n and p. Let α be the maximal acceptable type one error rate for
the null hypothesis H0 : p ≤ p0 where p0 is often set to the typically well-known re-
sponse rate under treatment as usual (TAU). This means that the objective of the trial
is to demonstrate superiority in terms of the response rate under treatment over the
currently established gold standard (TAU). The critical value c for the test decision to
reject H0 in case X > c is then chosen to be the smallest integer such that the prob-
ability to reject H0 is less than α under p0, i.e. Prp0 [X > c ] ≤ α. Ideally, n is fixed at
a large enough number to ensure a sufficient power of 1 − β at a point alternative
palt > p0, i.e. the sample size should be large enough to ensure Prpalt [X > c ] ≥ 1− β.
In early phase II trials, a relatively large maximal type one error rate is sometimes
accepted (up to 10%) to allow sufficient power without increasing required sample
size disproportionately (Simon, 1989). In the remainder of this thesis a more conser-
vative combination of α = 5% and β = 80% will be used as default if not otherwise
indicated.

Two arguments render the standard binomial test unattractive for use in phase II
trials. Firstly, the binomial test is ineffective whenever fixed error rates need to be
satisfied. This is due to the discreteness of the underlying test statistic (the number of
responses) (Simon, 1989). The discreteness implies that for any particular choice of p0

and palt, the corresponding test with minimal sample size does not fully exhaust either
of the acceptable error rates α and β. A standard statistical procedure for overcoming
this inefficiency are ‘randomised tests’ where the final test decision is randomised
such that the desired error rate constraints are met exactly (Lancaster, 1961). For
any level-α binomial test, a randomised test can be constructed that fully exploits
the permissible maximal type one error rate by randomising the test decision on the
boundary such that the overall maximal type one error rate is exactly α. This means
that the randomised test rejects the null when X > c or X = c and U > crand., where
U is an auxiliary random variable that follows a uniform distribution on [ 0, 1 ] and
that is independent of the trial data. The quantity crand. is an additional free parameter
of the randomised test procedure. The random variable 1U>crand.

determining the
final outcome of the trial if X = c can thus be thought of as a biased coin toss. The
required randomisation probability to fit the maximal type one error rate constraint
exactly and thus maximising power is

c∗rand. :=
α− Prp0 [X > c ]

Prp0 [X = c ]
. (1.1)
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Figure 1.1.: Power at p = 0.4 and maximal type one error rate of binomial tests with H0 : p ≤ 0.2
versus sample size of the tests; power of the corresponding optimal randomised test is also given (its
maximal type one error rate is equal to α = 0.05 by definition); sample size varies around the optimal
value of 35 for a minimal power of 80%.

Here

Prp[X = x ] =

(︃
n

x

)︃
px (1− p)n−x (1.2)

is the binomial probability for x out of n responses with response probability p.
A comparison between the randomised and non-randomised binomial test in terms
of power and type one error rate is given in Figure 1.1 for p0 = 0.2 and palt = 0.4. The
binomial test with minimal overall sample size has substantially lower maximal type
one error rate and slightly larger power than required. Lower-than-required error
rates are, per se, no problem but the flip side is a needlessly large sample size. The ran-
domised test exhausting the full permissible type one error rate for n = 35 achieves
substantially larger power. Alternatively, the sample size can be reduced from 35 to
32 when using a randomised test. Although randomised tests nominally resolve the
efficiency problem, the idea of resting the primary result of a multi-million-dollar trial
on the equivalent of a biased coin toss is not acceptable in practice.

The second argument against a single-stage binomial test is that an upfront com-
mitment to a relatively large sample size in a confirmatory setting is not always justi-
fied in phase II since there is typically large uncertainty about the assumed response
probability palt. A design which allows early stopping for either futility (observed
response rate is much lower than anticipated) or efficacy (observed response rate is
much larger than anticipated) during the course of the trial is therefore an attractive
option. To avoid error rate inflation due to optional stopping, such a design must con-
sider the option of early stopping adequately when determining the bounds (Simon,
1989).
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1.3. Simon’s optimal two-stage designs
To overcome the ineffectiveness of the classical binomial test and its inability to reflect
the large uncertainties about the anticipated response rate, phase II trials in oncology
are often conducted using two-stage designs (Ivanova et al., 2016). The aim of an in-
terim analysis after n1 < n patients’ responses have have been observed is to allow
an early assessment of the response rate. In case of very few responses, the trial can
be stopped early for futility and fewer patients are exposed to ineffective treatment
within the study than in a classical binomial test. Should the observed response rate
among the first n1 patients be unexpectedly large, it is also possible to stop early for
efficacy as long as the specified maximal type one error rate can be guaranteed. Two-
stage designs are inherently more complex than the one-stage classical binomial test
since they require the specification of more design parameters. Instead of just sample
size and critical value, a two-stage design depends on the stage-one sample size n1,
potential early stopping boundaries, the stage-two sample size n2, and the final re-
jection boundary after completing stage two. Even a two-stage design without early
efficacy stopping has a minimum of four parameters and, consequentially, power and
maximal type one error rate constraints alone are insufficient to determine all design
parameters. For a one-stage design, the choice of objective criterion is unique since
the test minimising the unique sample size n can unequivocally be considered op-
timal. The final sample size of a two-stage design, however, depends on the interim
decision and the choice of objective criterion is thus no longer unique.

Simon’s designs (Simon, 1989) are still among the most popular designs for single-
arm binary two-stage trials in oncology (Ivanova et al., 2016). Simon studied two-
stage group-sequential designs for single-arm trials with binary endpoint minimising
either the expected sample size on the boundary of the null hypothesis, p0, or the
maximal overall sample size, i.e., n2. The idea of minimising the expected sample size
under the null hypothesis is particularly attractive in oncological phase II trials to
prevent the treatment of unnecessarily many individuals with if the new compound
is indeed ineffective. Simon argued that

‘[. . . t]he optimization criterion chosen here is not unique. One could min-
imize the expected sample size averaged with regard to a prior distribution
for the true response probability p. Historically, however, most new regimens
are not successful and, more importantly, optimizing the design for perform-
ance under the null hypothesis seems ethically appropriate.’ (Simon, 1989)

His idea of optimisation under a prior distribution will be revisited in Chapter 3.
Simon also argued against allowing early stopping for efficacy:

‘The ethical imperative for early termination occurs when the drug has low
activity. When the drug has substantial activity [. . . ] there is often interest
in studying additional patients in order to estimate the proportion, extent,
and durability of response.’ (Simon, 1989)

This stance, however, is no longer shared unequivocally as speedy progression to the
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next phase of a drug’s clinical development program is often of great importance to
stakeholders. For instance, Mander et al. (2010) stated that

‘[…] [early] stopping for efficacy may save drug development time, bring
useful treatments into clinical practice quicker, and should reduce costs.’

Still, the classical Simon’s design does not allow stopping for efficacy and the re-
striction to early stopping for futility renders the optimisation procedure particularly
simple as any such design can be characterised by only four parameters. In Simon’s
original notation these are n1, the sample size of the first stage, r1, the boundary for
rejecting the new drug after stage one (reject new drug, i.e. accept H0 if and only
if X1 ≤ r1), the final sample size if the trial does not stop early, n, and r, the final
boundary for rejecting the new drug after completion of stage two. This means that
Simon’s design rejects H0 if and only if X1 +X2 > r where Xi is the number of ob-
served responses in stage i. This means that r = c in the previous single-stage design
notation. Note that Simon’s notion of ‘rejection’ is in terms of the drug and therefore
exactly opposite to the usual notion of rejection of the null hypothesis. For any given
p0, palt, α, and β Simon’s optimal design (n1, r1, n, r) is the solution of

argmin
n1,r1,n,r

: n1 Prp0 [X1 ≤ r1 ] + n Prp0 [X1 > r1 ] (1.3)

subject to :

n1∑︂
x1=r1+1

Prp0 [X1 = x1 ] Prp0 [X2 > r − x1 ] ≤ α (1.4)

n1∑︂
x1=r1+1

Prpalt [X1 = x1 ] Prpalt [X2 > r − x1 ] ≥ 1− β . (1.5)

Due to the discreteness of the problem and the small number of free parameters, the
solution is easily obtained by an exhaustive brute force search over a grid defined
by a minimal stage-one sample size and a maximal overall sample size. The maximal
sample size for the grid search can be chosen as a multiple of the approximate sample
size formula for the one-stage design

n ≈

⌈︄
palt (1− palt)

(︃
z1−α + z1−β

palt − p0

)︃2
⌉︄
. (1.6)

Simon himself suggested a value of 1.5n (Simon, 1989).

1.3.1. Example: binomial test and Simon’s design
To illustrate the characteristic differences between a one-stage binomial test and Si-
mon’s optimal design, consider the following situation. Assume that a new break-
through therapy is to be assessed in a phase II trial and there is biological rationale to
expect a substantial increase in the response rate over TAU. The response rate under
TAU is well-established at p0 = 0.2 and the anticipated response rate under treatment
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1.3. Simon’s optimal two-stage designs

is palt = 0.4. In this situation, a single-arm design is a suitable choice to establish ini-
tial evidence of drug activity in terms of an elevated response probability over TAU.
Thus, a single-arm design with 80% power at a point alternative of palt = 0.4 and a
maximal type one error rate of 5% is to be planned.

Both the one-stage binomial test and Simon’s design for this situation (Simon, 1989)
are compared in Figure 1.2. The custom plot in Figure 1.2 is specifically designed to
compactly visualise all relevant information about a design and will be used through-
out the reminder of this thesis to compare various designs. The first row of the panel
depicts the two designs in the x1/n plane. Each vertical bar gives the overall sample
size depending on the observed number of stage-one responses x1. The rejection re-
gion of the design corresponds to the black parts of the bars, the non-rejection region
to the grey parts. The stage-one sample sizes are given behind the design names
and are indicated as horizontal dotted lines directly in the plot. The numbers below
each bar give the exact values of the stage-two critical value c2 (top row) and the
stage-two sample size n2 (bottom row) for each x1. Here, n2(x1) := n(x1) − n1 and
c2(x1) := c − x1. The configuration c2(x1) = ∞ and n2(x1) = 0 thus corresponds
to early stopping for futility while c2(x1) = −∞ and n2(x1) = 0 would correspond
to early stopping for efficacy (not allowed in Simon’s design). The second row of the
panel shows plots for power and expected sample size of the designs as functions of
all possible response probabilities in [ 0, 1 ].

Note that a one-stage design can always be interpreted as a two-stage design with
no continuation region. In the example situation, the binomial test enrols n = 35
subjects and rejects the null hypothesis whenever the observed number of responses
is greater than c = 11. Simon’s design requires a stage-one sample size of n1 = 13.
If r1 = 3 or less responses are observed within the first n1 subjects, the trial is stopped
early for futility. Otherwise, the trial continues to a second stage until a total number
of n = 43 subjects are enrolled. The null hypothesis is rejected after the final stage if
the total number of responses in both stages is strictly greater than c = r = 12. The
example shows that the omission of early efficacy stopping in Simon’s designs leads
to inefficiencies. In the unlikely case of 13 out of 13 responses in stage one, Simon’s
design still enrols 30 further patients for stage two although their response status has
no effect on the final decision (reject H0).

The binomial test clearly suffers from the inefficiencies outlined in Section 1.2. It
undershoots the target maximal type one error rate and exceeds the desired power.
Simon’s design, on the other hand, exploits the allowable error rates almost perfectly
due to the larger number of free parameters. Another way of looking at this phe-
nomenon is through the lens of randomised tests. In essence, Simon’s design is a
randomised test since its final decision depends on the (random) interim outcome.
However, in contrast to the usual notion of a randomised test (Lancaster, 1961), the
source of randomness is not external (a biased coin toss) but the trial-internal random
outcome of stage one. Since the number of potential interim outcomes is small and
the design’s flexibility thus limited, the desired unconditional error levels cannot be
matched perfectly but the advantage over an externally randomised test is that the
final test decision is deterministic given the interim result X1 = x1.

In terms of sample size, the better exploitation of the permissible error rates and
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Figure 1.2.: Comparison of the classical binomial test and Simon’s optimal design. The top panel
shows the sample size and critical values for each design as functions of the observed number of
interim responses x1. The figuews under each vertical bar correspond to the stage-two critical values
c2(x1) (top row) and the stage-two sample sizes n2(x1) (bottom row). The two bottom panels depict
both designs’ power and expected sample size (ESS) curves with exact values at the relevant points p0

and palt. For a detailed explanation of the plot structure see Section 1.3.1.
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the option to stop early for futility lead to a substantial reduction in expected sample
size under p0 for Simon’s design. However, the expected sample size for true response
rates close to and larger to palt is increased as compared to the binomial test. This is due
to the maximal sample size of Simon’s design being larger and the lack of an option for
early efficacy-stopping. This comparison demonstrates that a two-stage design cannot
be considered per se better than a one-stage test. Rather, its superiority is bound to the
objective criterion of expected sample size on the boundary of the null hypothesis.
An optimal two-stage design like Simon’s greedily fits its free parameters to minimise
the given objective. With respect to its specific objective, a two-stage design is always
at least as good as the corresponding one-stage design because the feasible space of
the optimisation problem is larger, i.e. because it has more free parameters. On the
downside, this implies that the more flexible two-stage design ‘overfits’ the situation
defined in the objective at the cost of performance under different assumptions on
the true response rate.

1.4. Adaptive interim analyses

Although two-stage designs are able to react more flexibly to deviations from the
original planning assumptions than the simple binomial test, their incorporation of
interim results is fairly crude. Only a binary decision on early stopping is informed
by the observed interim response rate. Instead, it could be desirable to adapt the
entire second-stage, i.e. n2(x1) and c2(x1) during the interim analysis. In fact, the
concept of two-stage designs was put forward by Simon (1989) for oncology in the
same year that a more general methodology for adaptive interim analyses was pro-
posed by Bauer (1989). Both approaches lead to designs where the final sample size
depends on the observed interim outcome. However, their core principles are quite
different. Simon considers his designs as the solution of an optimisation problem
where the type one error rate restriction is simply incorporated as a constraint. The
modification of the sample size is pre-specified before the start of recruitment. In
contrast, Bauer transferred ideas from evidence synthesis to allow almost arbitrary
unplanned adaptations of an ongoing trial without compromising strict type one er-
ror rate control. Over the years, the initial ideas of Bauer (1989) were substantially
expanded beyond mere sample size adjustment (Bauer et al., 2016) .

One way of formulating the approach to unplanned design adaptations dates back
to ideas of R.A. Fisher who proposed to fuse two independent p values by means
of a ‘combination function’ (Fisher, 1925). The idea can be mapped to the case of
combining p values obtained from two consecutive stages of a trial as long as the
second-stage p value, ρ2, is conditionally independent of the one derived from the
first stage, ρ1. Instead of Fisher’s originally proposed combination function

fFisher(ρ1, ρ2) = ρ1 · ρ2 (1.7)

(Fisher, 1925; Bauer et al., 1994), many clinical trials use the inverse normal combin-
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ation function

f IN(ρ1, ρ2) = 1− Φ

(︄√︃
n1

n1 + n2

Φ−1(1− ρ1) +

√︃
n2

n1 + n2

Φ−1(1− ρ2)

)︄
(1.8)

proposed by Lehmacher et al. (1999). Defining a futility boundary bf and an efficacy
boundary be < bf for ρ1 and an overall critical value b for the combined p values, the
type one error rate under the null hypothesis is given by

Prp0 [P1 < be ] + Prp0

[︁
f IN
(︁
P1, P2

)︁
≤ b , P1 ∈ [ be, bf ]

]︁
(1.9)

where Pi is the (random) stage-i p value. Here, the trial stops early for futility if
P1 > bf and for efficacy if P1 < be. As long as the conditional distribution of P2 |P1

under the null is stochastically at least as large as a uniform distribution on [ 0, 1 ],
the type one error rate is bounded from above by

be +

∫︂ bf

be

1f IN(ρ1,ρ2)≤ b dρ1 dρ2 . (1.10)

Quantities such as the stage-two sample size can then be adapted freely as long as the
decision boundaries in the space of stage-wise p values and the pre-specified combin-
ation function are maintained (Bauer et al., 1999).

Alternatively, a ‘conditional error function’ can be used to express invariant re-
jection boundaries in the stage-wise p value space (Proschan et al., 1995). Here, a
conditional error function CE : [ 0, 1 ] ↦→ [ 0, 1 ] is a function satisfying the defining
constraint ∫︂ 1

0

CE(ρ1) dρ1 ≤ α . (1.11)

Upon observing P1 = ρ1, the second stage p value ρ2 can then be tested against the
conditional error levelCE(ρ1) and by similar arguments as above the procedure again
maintains type one error rate control irrespective of unplanned interim modification
to the trial. In fact, both approaches are equivalent as they merely define a rejection
region in the (ρ1, ρ2)-space and rely on the conditional independence as well as uni-
formity under p0 of the stage-wise p values (Vandemeulebroecke, 2006). Any initial
design D, implicitly defines a conditional error function

CED(x1) := Prp0

[︁
reject H0 |X1 = x1,D

]︁
. (1.12)

The definition is given in terms of the observed test statistic x1 but can easily be
mapped to [ 0, 1 ] by computing the stage-one p values. Also, for discrete test statistics,
this implicit conditional error function is only partially defined since only a finite set
p values in [ 0, 1 ] can be observed.

To conduct an unplanned recalculation after observing X1 = x1 while maintaining
strict type one error rate control, a new design D′ simply needs to fulfil

CED′(x1) ≤ CED(x1) . (1.13)
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A further generalisation of the conditional error function approach was put for-
ward by Müller and Schäfer (Müller et al., 2004). Their ‘conditional error principle’
states that, for overall type one error control, it is sufficient if the conditional error
of a modified design is smaller or equal to the conditional error of the original design
given the data observed so far. This principle is slightly more general than the con-
ditional error function approach in that the conditional error of the old design varies
depending on the time point of the unplanned interim analysis. A formal probabilistic
proof that this principle indeed holds under mild technical assumptions was provided
by Brannath et al. (2012). Due to its generality, the conditional error principle will be
used throughout this thesis whenever unplanned interim analyses are considered.

1.4.1. Example: sample size recalculation
A comparison of Simon’s optimal design and an adaptive recalculation design with
the one-stage binomial test for the example situation discussed in Section 1.3.1 illus-
trates the key differences. For ease of comparison, the unplanned interim analysis is
conducted at the same time as in Simon’s design, i.e. when the outcome of 13 indi-
viduals are observed.

A popular method for sample size adaptation is based on conditional power at the
originally assumed palt (Proschan et al., 1995). During the interim analysis, the condi-
tional power of the design given the data collected before the interim analysis is com-
puted. Just as unconditional power, conditional power for any particular X1 = x1 is
a function of the response probability p

CP(x1, p) := Prp
[︁
X2 > c2(x1) |X1 = x1

]︁
. (1.14)

For any x1, the conditional error is simply another point on the conditional power
curve evaluated at p0, i.e., CE(x1) = CP(x1, p0). Whenever conditional power drops
below 80% during the interim analysis, the sample size is increased until the target
power is met again. The rationale for this procedure is that even under p = palt a trial
might, by chance, start with disproportionately many non-responders, i.e. x1/n1 < palt.
As a consequence, the conditional power for the second stage could drop below the
originally planned 80% without adjusting the sample size accordingly. Invoking the
conditional error principle for the single-stage binomial test in this particular situ-
ation (n = 35, c = 11) after the same number of responses as in Simon’s design
(n1 = 13) implies that the modified stage-two sample size and critical bounds n′

2(x1)
and c′2(x1) for each x1 are obtained as solution of

argmin
n′
2(x1), c′2(x1)

: n′
2 (1.15)

subject to : Prp0 [X
′
2 > c′2 ] ≤ Prp0 [X2 > 11− x1 ] (1.16)

Prpalt [X
′
2 > c′2 ] ≥ 0.8 (1.17)

22 ≤ n′
2 ≤ 70− 13 = 57, (1.18)

where X2 ∼ Binomial( 25, p) and X ′
2 ∼ Binomial(n′

2(x1), p). The maximal sample
size limit is arbitrarily set to twice the sample size of the original single-stage test (70)
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Figure 1.3.:Comparison of adaptive recalculation based on conditional power of the standard binomial
test after 13 individuals with the original test and Simon’s design (see also example in Section 1.3.1).

to prevent impractically large increases for very low response rates. The lower limit
of 22 for n2(x1) encodes the fact that that the sample size should only be increased.
During the recalculation, implied early stopping for futility can be incorporated to
reduce the sample size for x1 = 12 and x1 = 13.

Even though the described adaptation procedure is unplanned, the design resulting
from its binding application for all x1 can be studied. The design is obtained by pre-
calculating all potential adaptations and is compared with the original binomial test
and Simon’s design in Figure 1.3. To facilitate comparison, the one-stage binomial
test is re-interpreted as a two-stage design with n1 = 13.

Clearly, the recalculated binomial test shows very different characteristics than Si-
mon’s design. The sample size is increased for small observed response rates whereas
Simon’s design favours aggressive early stopping for futility to reduce the expected
sample size under the null hypothesis. Consequentially, the expected sample size
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Figure 1.4.: Conditional power of the unmodified binomial test, the recalculated binomial test, and
Simon’s design at the interim analysis after n1 = 13 individuals.

profile is almost the exact opposite of Simon’s design with large increases over the
fixed binomial test for low response rates and a reduction towards very high response
rates due to early efficacy stopping. Since the conditional power is only ever increased
under the recalculation, the overall power is also increased substantially over the tar-
geted 80%. Due to the application of the conditional error principle, the maximal
unconditional type one error rate of the recalculated design is even lower than the
one of the one-stage binomial test.

The effect of the recalculation on conditional power is shown in Figure 1.4. The
objective of stabilising the chances of a successful rejection in stage two is met for
the recalculated design unless the sample size limit is hit (x1 = 0, 1). Simon’s design
avoids situations with low conditional power since the objective criterion favours
early stopping for futility in these cases.

This example demonstrates how different objectives in the planning of a clinical
trial can lead to quite different characteristics. The discrepancy is mostly driven by
the fact that Simon’s objective minimises sample size exactly for those interim res-
ults where the recalculation heuristic based on conditional power needs to increase
sample size. From the perspective of an unplanned adaptation it makes sense that the
recalculated design considers each interim result X1 = x1 completely independently
of other possible interim outcomes. However, since it is optimised unconditionally,
Simon’s design eliminates the need to recalculate based on conditional power by more
aggressive early stopping while still maintaining the desired overall power and nat-
urally avoiding situations in which the conditional power drops too low during the
interim analysis.
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1.5. Aim and scope of this thesis
The aim of this thesis is to develop a rigorous and consistent framework for all stat-
istical aspects of planning and evaluating a single-arm phase II trial with binary en-
dpoint ‘tumour response to treatment’. This includes guidance on the definition of
a situation-specific objective criterion under planning uncertainty, methods to react
flexibly to new trial-external evidence that might arise during the course of the trial,
and inference after concluding the trial.

To this end, a novel numerical approach is presented which makes the global op-
timisation of such design feasible in practice and improves existing approaches in
terms of both flexibility and speed. The problem of incorporating a priori uncer-
tainty about the true effect size in the planning process is discussed in detail tak-
ing a Bayesian perspective on quantifying uncertainty about the unknown response
probability p is taken. Subsequently, the close interplay between point estimation,
p values, confidence intervals, and the final test decision is illustrated and a frame-
work is developed which allows consistent and efficient inference in binary single-
arm two-stage designs. Finally, issues are addressed that may arise during the im-
plementation of the proposed methods in practice. In particular, the problem of un-
planned design modifications is revisited and the distinction between pre-specified
adaptations within optimal two-stage designs and unplanned adaptations of ongoing
designs discussed in more depth.
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2. Optimal Two-Stage Designs
In recent years, the approach of Simon to optimise group-sequential two-stage designs
for binary endpoints with respect to a suitable criterion was extended by several au-
thors to more flexible classes of designs (Banerjee et al., 2006; Englert et al., 2013; Shan
et al., 2016; Kunzmann et al., 2016). This chapter discusses the practical difficulties that
arise from this class of optimisation problems. A novel solution method is presented
which improves over existing approaches both in terms of speed and flexibility.

2.1. Notation
In the following, notation encompassing all binary single-arm one- and two-stage
designs is introduced. Some of the definitions were already discusses in the preced-
ing chapter but, in the interest of clarity, all relevant terms are introduced again in
context. The notation has evolved over a series of publications related to the topic
and is loosely based on (Kunzmann et al., 2016, 2017a,b, 2020a).

Letn1 be the stage-one sample size of a two-stage design andX1 ∼ Binomial(n1, p)
a random variable representing the number of observed responses (successes) in stage
one under a new treatment of interest. Here, p ∈ [ 0, 1 ] denotes the unknown true re-
sponse probability under the new treatment. The simple binomial model assumes that
the response probability is constant within the population of interest. This assump-
tion is only plausible within a sufficiently narrow target population. For larger target
populations, regression models might be more appropriate to take heterogeneity of
treatment effect via subject-specific covariates into account. For many situations in
early oncological phase II trials, the assumptions of a shared response probability p is
plausible since the biological mechanism through which a new compound affects tu-
mour response is often well-understood. The target population can then be expected
to be fairly homogeneous in terms of their response to treatment. In fact, one of the
reasons that makes small, effective trials so important in this setting is the explosion
of diagnostic information leading to ever smaller target populations (see Section 1.1).

Let 1 ≤ nmax < ∞ be the maximal feasible sample size for the trial. In practice, nmax

will be much lower than 150 for early phase II trials in oncology since treatment and
thus trials are expensive. Only in a subsequent phase III study, larger sample sizes are
realised (Ivanova et al., 2016). Let

n2 : {0, . . . , n1} → {0, 1, . . . , nmax − n1} (2.1)

be a discrete function mapping from the observed number of stage-one responses
X1 = x1 to the stage two sample size n2(x1). Here, n2(x1) = 0 corresponds to the
case of stopping the trial after the first stage. Let X2 denote the stage-two number of
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responses. The random variable X2 also follows a binomial distribution conditional
on continuation to stage two, i.e., X2 |X1 = x1, n2(x1) > 0 ∼ Binomial(n2(x1), p).
Conditional on n2(X1) = 0, the distribution reduces to a point mass on 0. The final
test decision is governed by another discrete function

c2 : {0, . . . , n1} → {−∞, 0, 1, . . . , nmax − n1 − 1,∞} (2.2)

mapping x1 to the stage-two critical value c2(x1). After observing the response status
of n(X1) := n2(X1) + n1 individuals, the null hypothesis H0 : p ≤ p0 is rejected if
and only if X2 > c2(X1). In the case of early stopping, c2 is ill-defined but can be
made uniquely identifiable by restricting its values to {−∞,∞} and requiring that

|c2(x1)| = ∞ ⇔ n2(x1) = 0 . (2.3)

It follows that c2(x1) = ∞ corresponds to early stopping for futility and similarly
that c2(x1) = −∞ encodes early stopping for efficacy. For the sake of completeness,
c(x1) := c2(x1)+x1 can be defined. Let also X := X1+X2. An equivalent definition
of the rejection region in terms of the overall number of responses is then given
by X > c(X1).

Any single-arm two-stage binary design for testing H0 can thus be seen as a three-
tuple

D :=
(︁
n1, n2(·), c2(·)

)︁
(2.4)

where n1 can be omitted since it is implicit in the domain of definition of both n(·)
and c(·).

Within this framework, group-sequential designs are a special case with constant
stage-two sample size upon continuation. One-stage designs are also encompassed al-
though there is no unique way of representing them. The conceptually most straight-
forward way is to formalise them as two-stage designs with n2(x1) = 0 (see Fig-
ure 1.2) but the same design can also be seen as a two-stage design (see Figure 1.3).

Early stopping is entirely optional and can be disallowed by restricting the co-
domain of c2 to exclude either −∞ (no early stopping for efficacy), ∞ (no early stop-
ping for futility), or both.

2.1.1. Notation example
To make things more tangible, consider again Simon’s optimal design for testing
H0 : p ≤ 0.2 against the point alternative palt = 0.4 with maximal type one error
rate of 5% and a power of 80% discussed in Section 1.3.1. The design has a stage-one
sample size of 13, a maximal sample size of 43, rejects the null hypothesis if more than
12 responses are observed in stage one, and stops early for futility when 3 or less
responses are observed in stage one (Simon, 1989). This design can be represented
in the notation introduced above as DSimon :=

(︁
13, n2(·), c2(·)

)︁
with the stage-two

sample size function n2(x1) = 30 ·1x1>3(x1) and the stage-two critical value function
c2(x1) = 12− x1 +∞ · 1x1≤3(x1). Here the convention 0 · ∞ := 0 is adopted.

Simon’s criterion is expected sample size on the boundary of the null hypothesis.
Early stopping for efficacy is not allowed in Simon’s original optimal design and the
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solution is restricted to group-sequential designs, i.e., the stage-two sample size on
the continuation region must be constant. The design DSimon is thus the solution of
the following discrete optimisation problem

argmin
n1, n2(·), c2(·)

:

n1∑︂
x1=0

Prp0 [X1 = x1 ]n(x1) (2.5)

subject to : Prp0 [X2 > c2(X1) ] ≤ α (2.6)

Prpalt [X2 > c2(X1) ] ≥ 1− β (2.7)

n2(x1) = 0 ⇔ |c2(x1)| = ∞

∀x1 = 0, . . . , n1 (2.8)

c2(x1) = ∞ ⇒ c2(x1 − 1) = ∞

∀x1 = 1, . . . , n1 (2.9)

c2(x1) ̸= −∞

∀x1 = 0, . . . , n1 (2.10)

n2(x1) > 0 ⇒ c2(x1 + 1) = c2(x1) + 1

∀x1 = 0, . . . , n1 − 1 (2.11)

n2(x1) > 0 ⇒ n(x1 + 1) = n(x1)

∀x1 = 0, . . . , n1 − 1. (2.12)

Here, constraints (2.6) and (2.7) ensure the type one and type two error rate con-
straints1. Constraint (2.8) enforces consistency between n2(·) and c2(·) in terms of
early stopping. Constraint (2.9) ensures that the stopping-for-futility region is con-
tiguous and, if present, starts a x1 = 0. Constraint (2.10) excludes the possibility of
early stopping for efficacy. Constraint (2.12) forces n2(·) to be locally constant on the
continuation region restricting the feasible space to group-sequential designs. Simil-
arly, constraint (2.11) makes sure that c(·) is locally constant, an additional constraint
used by Simon to make the search space small enough for an exhaustive grid search.

The above given formulation of Simon’s optimisation problem might be seen as
needlessly complex since any Simon’s design can alternatively be described by merely
four numbers (n1, r1, r, and n, see Section 1.3). Instead, the proposed notation in-
creases the complexity to an almost arbitrary number of parameters by considering
the discrete functions n2(·) and c2(·). Generic discrete functions are fully charac-
terised by the function values on their (here) finite domain. The number of overall
parameters is thus only limited by the fact that n1 ≤ nmax. For, e.g., nmax = 100, this is

1There is no formal proof that the constraint on the boundary of the null hypothesis is sufficient to
ensure strict type one error rate control but this can be easily checked for any solution by inspecting
the power function for monotonicity.
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implies 2 · (nmax + 1) + 1 = 201 parameters - a roughly 50-fold increase over the four
parameters in a classical Simon’s design. This increased flexibility is then controlled
via a set of constraints in the above stated optimisation problem. For instance, the
omission of constraint (2.9) would allow designs with non-contiguous stopping for
futility regions - due to the discreteness of the underlying binomial distribution such
implausible solutions can not be ruled out entirely (Kunzmann et al., 2016). However,
the generic formulation also makes transparent that Simon’s optimisation problem is
needlessly restrictive. Constraint (2.11) is merely required to reduce c2(·) to a single
global critical value for the overall number of responses and could be dropped even
if a group-sequential solution was required. This and constraint (2.12) make the con-
nection to optimal generic two-stage designs with response-adaptive n2(·) and c2(·)
on the continuation region evident. Dropping these two constraints from the problem
formulation will result in an optimal generic two-stage design where the stage-two
sample size and critical value functions are allowed to adapt to the individual interim
outcomesX1 = x1 instead of the mere decision to continue to the second stage or not.
Fewer constraints imply a larger feasible space for solutions and thus the perform-
ance (expected sample size under p0) of the resulting design must be at least as good
as the corresponding group-sequential one. However, dropping these two constraints
also expands the feasible space through combinatorial explosion beyond what could
realistically be explored via a brute-force search and thus requires more sophisticated
solution methods.

2.2. Previous work
The core issues with problems of the class (2.5)-(2.12) are the discreteness of the un-
derlying parameters, the complexity of the additional constraints (consistent early
stopping etc.), and the fact that the dimensionality of the discrete functions n2(·) and
c2(·) depends on n1 and thus also the number of parameters.

Up to now, authors approached these issues by obtaining solutions conditional
on n1 and then implementing a grid search over a plausible (small) range of n1 val-
ues. Banerjee et al. (2006) overcame the discreteness issue by solving a relaxation
wheren2(·) and c2(·)where allowed to take real values. The resulting smooth problem
was addressed via backward induction before discretising the real valued-solutions
by rounding to the nearest integer. Consequently, their solutions are only approxim-
ate and it is not clear how additional discrete constraints would be handled within
this framework. Since sample sizes tend to be small in early phase II trials, the relaxed
solutions may be ineffective or even violate the required error rate constraints.

Englert et al. (2013) implemented an exhaustive search of the space of designs via a
custom Branch & Bound algorithm (Nemhauser et al., 1988). Their solution strategy,
however, is still limited to relatively small designs. They needed to impose an addi-
tional technical constraint which, together with relatively strict limits on nmax (+10%
as compared to the corresponding maximal sample size of Simon’s optimal design),
reduced the size of the solution space and makes a naı̈ve Branch & Bound search
feasible. In particular, they restricted the search space to designs for which the con-
ditional type one error rate on the boundary of the null hypothesis is monotonically
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increasing, i.e.,

CE[x1 | D ] ≥ CE[x1 − 1 | D ] ∀x1 = 1, 2, . . . , n1. (2.13)

Although this constraint may be intuitively sensible, it is by no means a necessary
one.

2.3. A novel solution via integer linear programming
Consider the following slightly more general version of the problem leading to Si-
mon’s optimal (group-sequential) design

argmin
n1, n2(·), c2(·)

:

n1∑︂
x1=0

Prp0 [X1 = x1 ]n(x1) (2.14)

subject to : Prp0 [X2 > c2(X1) ] ≤ α (2.15)

Prpalt [X2 > c2(X1) ] ≥ 1− β (2.16)

n2(x1) = 0 ⇔ |c2(x1)| = ∞,∀x1 = 0, . . . , n1 (2.17)

c2(x1) = ∞ ⇒ c2(x1 − 1) = ∞,∀x1 = 1, . . . , n1 (2.18)

c2(x1) = −∞ ⇒ c2(x1 + 1) = ∞, ∀x1 = 0, . . . , n1 − 1 . (2.19)

Here, merely the restriction to a group-sequential design is dropped and early stop-
ping for efficacy is allowed. The only non-essential constraints are those for con-
tiguous early stopping. Kunzmann et al. (2016) studied the effects of dropping these
‘nicety constraints’ in detail. Due to the discreteness of the problem, in some rare
cases a configuration with non-contiguous early stopping may actually be slightly
more effective but the performance differences are negligible. In practice, a design
with non-contiguous early stopping rules would hardly be accepted. The following
discussion is thus restricted to designs with contiguous stopping.

For any given n1 the objective function is a linear function in the stage-two sample
size but the power function is not since n2(x1) and c2(x1) are mapped through the
non-linear binomial distribution function. The problem is thus an integer non-linear
program (INLP) (Lee et al., 2011). Generic large-scale non-linear integer solvers to
address this class of problems are mostly available under commercial or otherwise re-
strictive licenses (see, for instance, Artelys Knitro (Byrd et al., 2006) or SCIP (Gleixner
et al., 2018)). Only recently, efforts to promote more open solutions are becoming
available but have not yet reached production level stability (e.g. the Juniper solver
(Kröger et al., 2018)). Another disadvantage of generic INLP solvers is that they only
produce local solutions since they guide their search using the gradients of the relaxed
objective function and constraints. In the above given formulation, it remains unclear
whether the problem is globally unimodular and thus amenable to such gradient-
based optimisation approaches.
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An alternative approach is to transform the problem to make it suitable for (mixed)
integer linear programming (MILP) solvers. The advantage lies in the fact that tried
and tested open MILP solvers are readily available (e.g., GLPK (GNU Project, 2020) or
Cbc (COIN-OR initiative, 2020)). Furthermore, MILP problems can be solved to global
optimality although the underlying integer optimisation problem is still NP-hard (Lee
et al., 2011). In principle, modern MI(N)LP solvers still rely on a Branch & Bound
strategy. The difference to the custom implementation of Englert et al. (2013) is the
fact that the search is guided by heuristics based on the relaxed problem where all
variables are allowed to take real values. For linear objectives and constraints, this
relaxed problem can be solved globally via the simplex algorithm (Wolsey et al., 1999;
Lee et al., 2011). A formulation in terms of an integer linear program thus allows
the use of more widely available solvers, exploits more effective implementations of
the crucial Branch & Bound method, and guarantees a globally optimal and exact
solution.

The challenge of formulating an effective exact and flexible solution method for
problem (2.14)-(2.19) lies in its transformation to an integer linear program. The basic
idea is similar to the concept of spline functions in regression. A spline function is
given as a linear combination over a set of (potentially non-linear) basis functions.
This can be exploited to implement non-linear regression via a spline basis using
conventional effective methods for linear regression (Eubank, 1988). Note that the
use of a sufficiently expressive set of basis functions may increase the dimensionality
of the problem substantially. This means that a non-linear low dimensional problem
can be transformed to a linear but high-dimensional problem.

In the following, a detailed approach to formulating problem 2.14)-(2.19) as mixed
integer linear problem using auxiliary variables is described. The method is based on
ideas developed in (Kunzmann et al., 2016). Let

Y =
(︁
y[n1, x1, n2, c2 ]

)︁
n1=nmin

1 ,...,nmax
1

x1=0,...,n1
n2=0,...,nmax−n1

c2=−∞,0,...,n2−1,∞

y[n1, x1, n2, c2 ] ∈ {0, 1} (2.20)

be a sparse array of binary auxiliary variables indexed by the possible values of the
respective parameters of the co-domains of the functions n2 and c2. The goal is to
impose constraints on Y such that y[n∗

1, x1, n
∗
2, c

∗
2 ] = 1 if and only if n1 = n∗

1,
n2(x1) = n∗

2 and c2(x1) = c∗2. I.e., the y[n∗
1, x1, n

∗
2, c

∗
2 ] will act as ‘selector’ vari-

ables selecting for given n∗
1 and x1 the corresponding values n∗

2 and c∗2. First, one
needs to make sure that only a single n∗

1 is selected. This can be achieved by introdu-
cing additional binary auxiliary variables zn1 ∈ {0, 1}, n1 = nmin

1 , . . . , nmax
1 and the

following constraints

1 =
∑︂
n1

zn1 (2.21)

2nmax zn1 ≥
∑︂

x1,n2,c2

y[n1, x1, n2, c2 ] ∀ n1 = nmin
1 , . . . , nmax

1 (2.22)

∑︂
n2,c2

y[n1, x1, n2, c2 ] =
∑︂
n2,c2

y[n1, x1 − 1, n2, c2 ] ∀ n1=nmin
1 ...,nmax

1
x1=1,...,n1

. (2.23)
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Here, the summation is over the entire range of the indices indicated under the sum-
mation symbol if not otherwise indicated. Constraint (2.21) implies that only one
of the indicator variables zn1 can be 1 giving it its meaning as a logical XOR. Con-
straint (2.22) guarantees that zn1 = 1 if at least one configuration n1, n2(x1), c2(x1)
is selected. Finally, constraint (2.23) ensures that n1 is constant as a function of x1.
Jointly, these constraints give the variables zn1 their meaning as selection variables
for the stage-one sample size.

Next, it needs to be made sure that for any n1 and any x1 = 0, . . . , n1, both n2(x1)
and c2(x1) are unique. This can be achieved by imposing

zn1 =
∑︂

x1,n2,c2

y[n1, x1, n2, c2 ] ∀ n1 = nmin
1 , . . . , nmax

1 (2.24)

since zn1 is 1 if and only if the stage one sample size is n1.
Let f(n1, x1, n2, c2) be any real-valued function. Its expected value with respect

to X1 given n∗
1, n

∗
2(·), and c∗2(·) as encoded in a configuration of Y can then be written

as

Ep

[︁
f(n∗

1, X1, n
∗
2(X1), c

∗
2(X1)

]︁
=

∑︂
n1,x1,n2,c2

Prp[X1 = x1 ] · f(n1, x1, n2, c2) · y[n1, x1, n2, c2 ] . (2.25)

For instance, the expected sample size of a design D represented as an array Y is
given by

Ep[n
∗(X1) ] =

∑︂
n1,x1,n2,c2

Prp[X1 = x1 ] (n1 + n2) y[n1, x1, n2, c2 ] . (2.26)

Similarly, the power at response probability p is

Prp[X2 > c∗2(X1) ]

=
∑︂

n1,x1,n2,c2

Prp[X1 = x1 ] Prp[X2 > c2(x1) ] y[n1, x1, n2, c2 ] . (2.27)

Since both expressions are linear in Y , as are all constraints on Y , problem (2.14)-
(2.19) is indeed an integer linear program in Y and {zn1 |n1 = nmin

1 , . . . , nmax
1 } and

a global exact solution can be found using standard ILP solvers.

2.3.1. Choice of maximal sample size and additional constraints
Section 2.3 describes a general approach to formulating optimisation problems for
generic single-arm two-stage designs with binary endpoint as integer linear pro-
grams. A naı̈ve implementation would still be ineffective (although not impossible)
due to the large number of possible configurations. To give an impression of the
scale of the problems, consider nmax = 100, nmin

1 = 1 and nmax
1 = nmax. In this case,

the number of weights is |Y | = 4426 525. In practice, this number can be substan-
tially reduced by imposing additional restrictions on the feasible space. This approach
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is similar to the idea of considering only solutions with monotone conditional error
function put forward by Englert et al. (2013) but entirely optional. Even without fur-
ther constraints, a solution for typical problem sizes (nmax < 100) is still possible
despite a needlessly long runtime.

The maximal overall sample size for the search space, nmax, can be chosen as a fixed
multiple of the sample size of the standard binomial test. Throughout this thesis, a
fixed multiple of 2 is used which is substantially larger than the maximal sample size
considered by Englert et al. (2013) (+10% as compared to the maximal sample size in
Simon’s optimal design). The approximate sample size formula for the single-stage
binomial test in Equation (1.6) is used to derive this upper bound.

There are two main reasons to restrict the feasible space. First and foremost speed.
Due to the large number of variables and the need to pre-compute the coefficients for
the problem can become a computational bottleneck and require more time than the
actual solution of the problem. Luckily, some configurations can be ruled out a priori
and the size of the feasible space can be reduced substantially. For many problems, e.g,
searching over 0.2nmax ≤ n1 ≤ 0.51nmax is sufficient to find the global optimum. Note
that since nmax is chosen as twice the required sample size of a one-stage test 0.51nmax

is still larger than the sample size derived from Equation (1.6) and the one-stage is
binomial test is thus contained within the feasible space.

Secondly, an a priori reduction of the feasible space is also a means to impose ad-
ditional regularity conditions on the optimal solution. For instance, the operational
effort of conducting a very small second stage as compared to n1 is rarely justifiable
in practice. This can be prevented by imposing the restriction

|c2(x1)| < ∞ ⇒ n2(x1) ≥ max(5, 0.1 · n1) (2.28)

which sets the minimum size for stage two to the maximum of 5 or 10% of the stage-
one sample size. Similarly, a very large second stage as compared to the first stage
is rarely acceptable since it makes the overall duration and cost of a trial hard to
calculate. E.g., imposing

|c2(x1)| < ∞ ⇒ n2(x1) ≤ 3 · n1 (2.29)

restricts the relative increase to three times the stage-one sample size.
A specific challenge of optimal two-stage designs for single-arm trials with bin-

ary endpoint is the discreteness of the underlying test statistic. In some situations,
this can lead to optimal solutions with non unimodal sample size functions (Englert
et al., 2013; Kunzmann et al., 2016). Shan et al. (2016) addressed this implicitly by
imposing a constraint that forced n2(·) to be monotonically decreasing on the con-
tinuation region of the design. However, a monotonicity constraint is restrictive and
it is not a priori clear whether optimal sample size functions tend to be increasing
or decreasing in x1 (see also Section 8.1). A less restrictive shape constraint is to
only require unimodality of n2 (Kunzmann et al., 2016). In the majority of situations,
optimal designs exhibit a unimodal sample size function. Global unimodality of the
sample size function can be implemented by introducing further binary auxiliary in-
dicator variables ux1 ∈ {0, 1}, x1 = 0, . . . , n1 and constraint sets for all n1 and all
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x1 = 0, . . . , n1 (Kunzmann et al., 2016)

∑︂
n′
2,c

′
2

n′
2 y[n1, x

′
1, n

′
2, c

′
2 ]−

∑︂
n′′
2 ,c

′′
2

n′′
2 y[n1, x

′
1 − 1, n′′

2, c
′′
2 ] ≥ nmax (ux1 − 1)

∀ x′
1 < x1 (2.30)∑︂

n′
2,c

′
2

n′
2 y[n1, x

′
1, n

′
2, c

′
2 ]−

∑︂
n′′
2 ,c

′′
2

n′′
2 y[n1, x

′
1 − 1, n′′

2, c
′′
2 ] ≤ nmax (1− ux1)

∀ x′
1 > x1 . (2.31)

These constraints are constructed such that they are only binding at a particular x1

if ux1 = 1. In that case, the constraints (2.30) ensure that all increments before x1 are
non-negative and the constraints of type (2.31) guarantee non-positive increments
after x1 thus making sure that x1 is a global mode of the sample size function if
ux1 = 1. Finally, one needs to impose a constraint on the the minimum number
of global modes (multiple global modes correspond to a locally constant sample size
function) via

n1∑︂
x1=0

ux1 ≥ 1 . (2.32)

Note that multiple modes correspond to a locally constant sample size function, i.e.,
the maximal sample size is attained at neighbouring x1. Jointly, these auxiliary vari-
ables and constraints ensure that the optimal solution has a (potentially non-unique)
global mode. Since the addition of the global unimodality constraint is costly in terms
of problem generation time and ILP solution time, it is only required as a backup op-
tion in case the initial solution without explicit unimodality constraints is not unim-
odal.

Further problem-specific considerations may be incorporated in the optimisation
problem. Continuing a trial to stage-two with a low conditional power is rarely at-
tractive for the sponsor of a clinical trial. The need for an adaptive recalculation due
to low conditional power as described in Section 1.4.1 can be avoided by excluding
all configurations that lead to low conditional power in the first place. Besides fur-
ther reducing the feasible space, implementing a minimal conditional power already
at the optimisation stage is evidently more effective than a heuristic post hoc recal-
culation. Similarly, most sponsors would probably prefer stopping for early efficacy
over continuing to a second stage with more than 99% conditional power. A fairly
conservative restriction would be to only allow a design to continue to stage-two if
the conditional power given the interim result X1 = x1 lies between 50% and 99%.
An in-depth example of how this methodology can be applied in practice is given in
Section 8.1.
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2.4. Other objective functions
Although the minimisation of expected sample size on the boundary of the null hypo-
thesis is appealing in early clinical oncology due to the severe consequences of treat-
ing individuals with an ineffective new compound, this choice of objective function
is by no means unequivocally accepted. The example discussed in Section 8.1 demon-
strates that the choice of objective is even more important when considering generic
two-stage designs than with less flexible group-sequential ones. For instance, the
fact that the optimal generic two-stage design in the example situation has a slightly
larger value of n1 than Simon’s group-sequential design indicates that the decision
to consider expected sample size solely on the boundary of the null hypothesis may
be inappropriate. One could argue, that the sample size on the interior of the null
hypothesis is even more important in practice. Mander et al. (2010) argued that it
might be more ethical to minimise sample size under the alternative hypothesis in
situations with strong a priori evidence for the new treatments efficacy. Minimising
expected sample size under the null hypothesis would lead to substantially prolonged
trial duration in such cases. This, in turn, would prevent a larger patient collective
from accessing a new treatment that is likely to be effective while the trial is still on-
going. These considerations give rise to the issue of how to incorporate performance
over a range of response probabilities in the objective criterion and are discussed in
more detail in Chapter 9.1.

Simon (1989) suggested to minimise the maximal sample size (and thus trial length)
as an alternative objective criterion. This criterion is particularly attractive since it is
independent of the response probability p. Minimax objectives are notoriously hard to
optimise. Even in situations where all variables are continuous these problems suffer
from the non-differentiability of the maximum function. In an ILP setting this issue
can be overcome by the introduction of an additional continuous auxiliary variable
at the cost of a substantially increased number of constraints. Let δ ∈ R be that
auxiliary variable with

δ ≥
∑︂
n2,c2

(︁
n1 + n2

)︁
y[n1, x1, n2, c2 ] ∀ n1=nmin

1 ,...,nmax
1

x1=0,...,n1
. (2.33)

Then, minimising δ corresponds to minimising the maximal sample size of the design.
Intuitively, it should be clear that a minimax objective favours less variable sample

size functions. In fact, if the problem was smooth in all variables, the optimal solution
would be a constant sample size. Only due to the discreteness of the underlying test
statistic the optimal solution is not constant (Simon, 1989). Note that for generic two-
stage designs for binary endpoints the minimiser under a minimax objective for the
sample size function need not be not unique since there might be multiple designs
fulfilling the error rate constraints and attaining the same minimal maximal sample
size. This can only be overcome by combining the minimax criterion with another
objective. As a practical solution one could minimise (1 − λ) δ + λ Ep[n(X1) ] for
λ ∈ [ 0, 1 ]. The smallest possible maximal sample size is then found by identifying
a non-unique solution to the problem for λ = 0 before iterative increasing λ to the
largest λ > 0 under which the maximal sample size is still the same as for the solution
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under λ = 0. For a comparison of different objective functions by means of a practical
example, see Section 8.2.
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3. Optimisation Under Uncertainty
This chapter is based on ideas previously discussed in Kunzmann et al. (2020a).

3.1. Assessing performance under uncertainty
The notion of ‘optimality’ crucially depends on the choice of objective criterion and
different choices can lead to distinctly different ‘optimal’ designs (see Section 8.2). In
particular, it the example discussed in Section 8.2 demonstrates that the characterist-
ics of a design optimised for expected sample size under a single response probability
p crucially depend on the choice of p. From a decision-theoretic perspective, min-
imising expected sample size is a rational choice since it corresponds closely with
minimising trial-duration and the flexible costs of a trial. Bearing this in mind, a
framework for incorporating uncertainty about the true value of p during planning is
crucial. In this section, a general framework for scoring the performance of a design
is introduced before going into the particulars of modelling uncertainty about the
response probability p.

Let D be the space of feasible designs as defined in Sections 2.3 and 2.3.1. For any
design D ∈ D, XD :=

{︁
(x1, x2) ∈ Z2

≥0 |x1 = 0, 1, . . . , n1, x2 = 0, 1, . . . , n2(x1)
}︁

is
the corresponding sample space. A score function s : D×Z2

≥0× [ 0, 1 ] → R is a func-
tion mapping a design D, a final trial outcome (x1, x2) and a response probability p to
a numeric score value s(D, x1, x2, p). Without loss of generality, assume that lower
scores are preferable and that (x1, x2) ̸∈ XD ⇒ s(D, x1, x2, p) = ∞ for all p ∈ [ 0, 1 ].
A score function can thus be used to assign a quantitative value to each possible trial
outcome under a given design and a given response probability. During the planning
stage only the expected score

s(D, p) := Ep[ s(D, X1, X2, p) ] (3.1)

is relevant as the final outcome (X1, X2) is yet unknown1. Since s(D, p) depends
on the unknown response probability p through the distribution of X1 and X2, as-
sumptions about p need to be made in order to optimise the design. A consistent and
principled way of doing so is by adopting a Bayesian perspective assuming that p it-
self is a random variable and follows a prior distribution. Without loss of generality,
assume that the prior distribution of the response probability permits a density φ(p)
with respect to the Lebesgue measure on [ 0, 1 ]. Any valid functional with respect to
φ of s(D, p) can then be used to assign an unconditional (on p) score value s(D) to

1An extension to functional other than the expected value is possible but beyond the scope of this
thesis.
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a specific design. A natural choice is again taking the expected value with respect to
the prior density, i.e.

s(D) := Eφ(·)[ s(D, p) ] =

∫︂ 1

0

s(D, p)φ(p) dp. (3.2)

To make things more tangible, consider the example of the scoring a design by its
final sample size, i.e.

sn(D, x1, x2, p) := n(x1) . (3.3)

From this perspective, Simon’s objective criterion of expected sample size on the
boundary of the null hypothesis can be interpreted in two ways. The first corres-
ponds to the prior being chosen as a point mass distribution on p0, i.e., φ(p) = δp0(p)
(the Dirac-Delta distribution at p0) and using the definition of equation (3.2). This in-
terpretation raises the question why one would conduct a trial in the first place if one
was already convinced that the true response rate is equal to p0. The alternative inter-
pretation is that the prior is unspecified with φ(p0) > 0 and the unconditional score is
defined in terms of the conditional expected value Eφ(·)[ sn(D, p) | p = p0 ]. The latter
view is consistent although it again highlights the fact that optimising a score under
conditioning on a single response probability completely neglects the performance
on a wide range of important response probabilities - in particular the interior of the
null hypothesis p < p0. A slight modification of Simon’s objective criterion to

sn | p ≤ p0
(D) := Eφ(·)[ sn(D, p) | p ≤ p0 ] (3.4)

would already address this issue by weighting the expected sample size for all re-
sponse probabilities withing the null hypothesis proportional to the prior density
conditional on p ≤ p0. One reason for the fact that this modified criterion has not
been discussed previously in the clinical trials literature is that sn | p ≤ p0

(D) depends on
the particular choice of φ instead of just the assumption that φ(p0) > 0. This would
require investigators to make their a priori assumptions explicit in a quantitative way
by specifying φ. The general scepticism towards Bayesian methods in the clinical trial
community might explain the past reluctance to accept such methodologies. Note,
however, that the frequentist properties of the optimal design solely depend on the
imposed constraints for its error rates (α and β) and are thus completely independent
of the choice of objective criterion. Furthermore, there is no need to interpret φ in
terms of a Bayesian prior density. The construction of the unconditional score func-
tion s(D) as expected value with respect to p ∼ φ(·) (see Equation (3.2)) can also be
justified by interpreting φ as merely a normalised weight function on [ 0, 1 ] since the
Bayes theorem is not invoked at any point.

Informally, Chang et al. (1987) already introduced a similar concept by proposing
to minimise the weighted sum of the expected value under the null and alternative
hypothesis. Simon (1989) also considered Bayesian objective criteria as a potential
future line of work. Recently, Jennison et al. (2015) and Pilz et al. (2019) discussed the
minimisation of expected sample size averaged over a continuous prior in the setting
of normally distributed endpoints.
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More heuristically motivated score functions were proposed in the past. For in-
stance, Liu et al. (2008) suggested a score that was used previously to compare two-
stage designs (Kieser et al., 2015). It evaluates a design at each p in relation to the
corresponding single-stage design. Liu et al. (2008) also proposed to consider local
averages to reflect uncertainty about the effect size. The score, however, is severely
flawed in that it is not well-defined on the entire interval [0, 1] and requires the spe-
cification of weight parameters that are hard to interpret in practice (Kunzmann et al.,
2020a).

In the following, the focus lies on the simpler to interpret expected sample size
under the prior φ, i.e.

sn(D) =

∫︂ 1

0

sn(D, p) φ(p) dp . (3.5)

This score compromises between expected sample size under different response rates
weighing them with their a priori relative likelihood under the chosen prior φ and
can be seen as a direct extension of the minimisation of expected sample size under
a single response probability p (e.g. Simon’s objective criterion).

3.2. Prior choice
Any score taking into account the relative a priori likelihood of different response
rates requires the choice of a prior density φ .

In the absence of any reliable a priori information, a non-informative prior seems to
be a natural choice. Unfortunately, the notion of ‘non-informativeness’ is not unique.
A first candidate could be the Jeffreys prior for a binomial experiment (Jeffreys, 1946).
In one dimension, the Jeffreys prior coincides with the reference prior and is thus
not only invariant under reparametrisation of the parameter space but also maxim-
ises, for any potential observation, the average Kullback-Leibler divergence between
prior and posterior (Berger et al., 2009). The latter property can be seen as a formal-
isation of the heuristic that a non-informative prior should give maximal weight to
observed data. A disadvantage of the Jeffreys prior is its dependence on the sampling
model, i.e. the design D. Since the prior is supposed to be used in the definition
of an objective criterion that can be used to elicit an optimal design, the prior it-
self cannot depend on the design. An alternative notion of non-informativeness is
based on the idea of maximising the entropy of the prior on the parameter space. For
the unit interval [ 0, 1 ] this maximum entropy prior is the continuous uniform dis-
tribution (Park et al., 2009). However, in many practical situations, a uniform prior
on [ 0, 1 ] cannot be seen as an adequate representation of a priori information despite
its formal non-informativeness. Consider, for instance, the setting discussed in Sec-
tion 1.3.1. With p0 = 0.2 and palt = 0.4, the a priori chances of a very large response
rate (p ≥ 0.5 > palt) would be 50% under a uniform prior. In a situation where the
trial is only powered for an alternative response rate of 0.4 this is clearly unrealistic
bearing in mind that excessively large improvements over p0 are rare in early clinical
oncology (Ivanova et al., 2016).
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As a consequence, an informative or ‘subjective’ prior is often more adequate. It
is important to stress that even under a subjective prior the frequentist properties of
an optimal design only depend on the constraints on the maximal type one error rate
and the type two error rate. A natural choice for the prior class are Beta distributions
since they are conjugate to the binomial distribution. This means that the posterior
after observing X1 = x1 or X = x under a Beta prior is again a Beta distribution and
available in closed form 2. Let φa,b(·) be the density of a Beta(a, b) distribution. In a
situation without any valid response data under the new treatment, the parameters a
and b must be chosen based on a subjective assessment of the situation and potential
prior biological evidence. To facilitate this, it might be easier to reparametrise the
Beta distribution in terms of its mean µ and standard deviation σ. Both are rational
expressions in a and b and solving the following system of equations algebraically

µ =
a

a+ b
(3.6)

σ =

√︄
a b

(a+ b)2(a+ b+ 1)
(3.7)

results in

a =
−µ3 + µ2 − µσ2

σ2
(3.8)

b =
(µ− 1) (µ2 − µ+ σ2)

σ2
. (3.9)

Here it is assumed that 0 < µ < 1 and 0 < σ < 0.5 since the standard deviation of a
Beta distribution can never exceed 0.5.

Clinical oncology differs from most other drug development fields since phase I
dose finding trials are mostly conducted in patients as well. This is due to the typically
high toxicity of the tested compounds making trials in healthy subject difficult to
justify. Consequently, there is often initial response data available from an earlier
phase I during the planning stage of a phase II trial. Assume that x0 responses out
of n0 subjects were recorded in phase I. The phase I data can then be incorporated
in a subjective prior or a non-informative prior by Bayesian updating. This means
that the phase I posterior becomes the prior for phase II. Conveniently, Beta(1, 1) =
Uniform( [ 0, 1 ] ) holds which means that the phase I posterior is Beta(a + x0, b +
n0 − x0) if a Beta(a, b) prior (informative or not) was used to begin with.

The so-constructed prior might be further refined. Simply updating the prior for
phase II with data from another, early phase trial implicitly assumes that the data
between both trials is exchangeable. Differences in treatment regimes etc. often make
this assumption implausible. Several suggestions of how to combine trial data with
‘historic’ data are put forward in the literature (Viele et al., 2014). Due to the small
sample sizes in phase I/II, only the simplest of methods for adjusting the impact of

2This holds despite X not being marginally distributed according to a binomial distribution. It is
sufficient that that X2 |X1 = x1, n2(x1) > 0 does follow a binomial distribution.
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historical data on the prior are feasible. An attractive and hands-on approach that is
applicable both in cases where the phase I data cannot be assumed to be exchangeable
is robustification. The core insight is that priors with heavy tails react much more
sensitively to situations where the data is not well explained by the prior. In such a
situation, the posterior of a robust prior fits the observed data much closer than under
a non-heavy tailed prior. Heavy tails can be achieved by defining a mixture prior
with the original prior and a uniform component (Schmidli et al., 2014). Since the
informative prior is a Beta distribution and the uniform distribution on [ 0, 1 ] is also
a Beta distribution, the resulting two-component mixture is a mixture of conjugate
priors and the posterior can be computed analytically per component. I.e., the density
of the robust informative prior is defined as

φa,b,ϵ(p) := (1− ϵ)φa,b(p) + ϵ φ1,1(p). (3.10)

The value of ϵ represents a confidence for the overall credibility of the informative
prior for the new phase II trial. Technically, the effect of a robustification with a
uniform density on the resulting unconditional score can be explained by studying
the functional derivative of an unconditional score with respect to local changes at a
response probability p. The functional derivative of a functional F at f is defined as

∂F

∂f
:= lim

ϵ→0

F [ f + ϵ ϕ ]− F [ f ]

ϵ
(3.11)

(Giaquinta et al., 1996) and captures the change in the functional F due to local vari-
ations analogously to the derivative of a function. The explicit form for the functional
derivative of functionals of the form

F [ f ] :=

∫︂ b

a

L(x, f(x), f ′(x)) dx (3.12)

with a twice differentiable function L evaluated at x is

L2

(︁
x, f(x), f ′(x)

)︁
− ∂

∂x
L3

(︁
x, f(x), f ′(x)

)︁
(3.13)

where L2(x, f(x), f
′(x)) is the partial derivative of L with respect to its second ar-

gument and L3((x, f(x), f
′(x))) the partial derivative of L with respect to its third

argument (Giaquinta et al., 1996). A score s(D) with prior φa,b,ϵ can be expressed
as a functional of this particular form when setting L(p, s(D, p), ∂s(D, p)/∂p) =
φa,b,ϵ(p) s(D, p) (see equation (3.2)). Since this particular inner function L does not
depend on the first derivative of the score function, the second term in (3.13) vanishes
and the functional derivative with respect to score changes at a response probability
p simplifies to

∂s(D)

∂s(D, ·)
(p) = φa,b,ϵ(p) ≥ ϵ . (3.14)

This means that under a robust prior the contribution of the conditional (on p) score
s(D, p) to the unconditional score s(D) is bounded from below to ϵ. Without the
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robustification φa,b,(p) can go to zero quickly in the tails implying that changes in
the conditional score in the tail regions of the prior do not affect the overall score.

In a last step, it might be necessary to make sure that the robust prior does not put
too much weight on completely implausibly large response rates. This is particularly
important when the anticipated response rates are low and most of the informative
prior’s mass is concentrated on low values of p. The simplest solution is to condition
the robust prior on p ≤ p where p is the maximal plausible response rate under the
new treatment:

φa,b,ϵ|≤p(p) :=
1p≤p(p)φa,b,ϵ(p)∫︁ p

0
φa,b,ϵ(q) dq

. (3.15)

Since the order of conditioning is commutative, the posterior under such a restric-
ted Beta mixture can still be computed analytically by first updating the individual
components before conditioning on p ≤ p again. The process of constructing a prior
density along the lines described above is illustrated in Section 9.1.

3.3. Power constraints under uncertainty
So far, only the consequences of incorporating uncertainty in the objective func-
tion (expected sample size) were discussed. The error rate constraints remained un-
changed. This is sensible for strict type one error rate control on the null hypothesis
since the constraint is independent of any prior assumptions. To control the maximal
type one error rate on the null hypothesis, it is sufficient to impose a constraint on
the maximal ‘power’ at the boundary of H0 if the designs power function is monotone
in p. Monotonicity of the power function is not explicitly implemented in the optim-
isation problem. In practice, however, monotonicity of the power function can easily
be verified after the optimisation problem was solved. Consequently, the constraint
on the maximal power at the boundary of the null hypothesis remains unaffected by
considerations about the a priori relative likelihood of different response rates that
is encoded in the prior density. However, this is not the case for the classical power
constraint

Prpalt [X2 > c2(X1) ] ≥ 1− β . (3.16)

The validity of this constraint critically depends on the justification of the altern-
ative response rate palt. Ideally, palt would be chosen as the smallest still clinically rel-
evant response rate. Early oncological trials are often powered for a point alternative
with an absolute rate difference of 0.2 over p0 (Ivanova et al., 2016). This is partly due
to the fact that a sufficiently large benefit in terms of the surrogate endpoint response
rate is generally deemed necessary to show efficacy in terms of overall survival in a
subsequent phase III trial (Simon, 1989; Ivanova et al., 2016). Often, however, it must
be assumed that the relatively optimistic choice of palt = p0+0.2 is more driven by the
desire to obtain a feasible sample size. In some cases, response probabilities as low as
p0 + 0.1 may still be considered clinically relevant. The sample size required to reli-
ably detect such small differences, however, is too large for early phase II studies. For

36



3.3. Power constraints under uncertainty

instance, to detect a rate difference of 0.1 for p0 = 0.2 with α = 5% and 80% power
the required sample size of n = 130 (see Equation (1.6)) is more than twice as large
as the typical sample sizes reported (Ivanova et al., 2016). In situations like these, the
rationale for the value of palt is more driven by a priori likelihood arguments: If the
true effect can be assumed to be greater than the minimal clinically relevant one, it is
reasonable to power for a larger, likely effect and risk a failed trial for smaller but still
relevant response rates. Let pMCR be the minimal clinically relevant response rate under
the new treatment. The problem is then to pick palt > pMCR such that prior evidence for
p > pMCR can be exploited in a principled way without risking an underpowered study.
To this end it is again assumed that a prior density p ∼ φ(·) is available.

Taking a Bayesian perspective, it is sensible to choose palt such that the a priori
probability of exceeding the target power of 1 − β is larger than or equal to a con-
fidence level γ. Let power(p) := Prp[X2 > c2(X1) ] be the power function of the
yet unspecified design. Since p is modelled as a random variable under the Bayesian
paradigm, power(p) is a random variable. A high power is only desirable for relevant
effect sizes. It is thus sensible to determine the size of a trial such that the probability
of exceeding a power of 1−β exceeds a defined threshold γ given that there is indeed
a relevant effect. Assuming that the power function is monotone

Prφ(·)[ power(p) ≥ 1− β | p ≥ pMCR ] = γ (3.17)

⇔ power(q1−γ) ≥ 1− β (3.18)

holds, where q1−γ is the (1−γ)-quantile of the priorφ(·) conditional on p > pMCR (Kun-
zmann et al., 2020a). Conditioning on p ≥ pMCR ensures that only the power to reject
H0 under actually relevant response rates is taken into account. The advantage of this
construction lies in the fact that the power constraint technically remains a constraint
on a single point of the power curve - only a novel justification of palt = q1−γ ≥ pMCR

is given. Under this prior quantile approach the response probability at which the
power constraint is imposed now depends on φ through the quantile function of the
conditional prior. A disadvantage of the approach is that it requires yet another para-
meter, γ, whose role can easily be confused with that of 1− β.

Alternatively, and similar to the definition of sn(D) in Section 3.1, expected power

spower(D) := Eφ(·)
[︁
Prp[X2 > c2(X1) ] | p ≥ pMCR

]︁
(3.19)

=

∫︂ 1

pMCR

Prp[X2 > c2(X1) ]
φ(p)

Prφ(·)[ p ≥ pMCR ]
dp (3.20)

can be used as a functional of the power curve. This expected score is generated by

spower(D, x1, x2, p) :=
1x2>c2(x1)∧p≥pMCR

(x1, x2)

Prφ(·)[ p ≥ pMCR ]
. (3.21)

For pMCR = p0 this definition coincides with the definition of expected power given
by Brown et al. (1987) in the context of normally distributed test statistics. Since
not all p > p0 might be considered relevant enough to warrant further investigation
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3. Optimisation Under Uncertainty

of a new therapy in phase III, the distinction between pMCR and the boundary of the
null hypothesis is particularly important in the planning of phase II trials for onco-
logy. The advantage of using expected power over the prior quantile approach is that
no further parameters besides the already chosen prior and pMCR need to be specified.
Furthermore, there is a direct connection between expected power and the success
probability of a trial that is explored in more detail in Section 3.4.

A constraint on expected power is qualitatively different from constraining the
power on a single response probability palt - no matter how palt is chosen. To see this,
the relative contribution of power at different response rates on the function of the
power curve can be studied. In the case of putting a constraint on power at palt, by
definition, the power at p ̸= palt is irrelevant to the fulfilment of the constraint. This
can be formalised by the fact that the total differential of power at palt with respect to
changes in the power curve at palt and p′ ̸= palt only depends on changes of power at
palt, i.e.

d power(palt) =
∂ power(palt)

∂ power(palt)
d power(palt) +

∂ power(palt)

∂ power(p′)
d power(p′) (3.22)

= dpower(palt) . (3.23)

Consequently, during optimisation only changes to the design that affect power at
palt can help fulfilling the power constraint. The power curve at p ̸= palt is com-
pletely irrelevant to the optimal solution. For expected power, however, the total
differential with respect to changes in the power curve at two response probabilities
p0 ≤ p1 ≤ p2 ≤ p is given by

d spower(D) =
∂spower(D)

∂spower(D, p1)
d spower(D, p1) +

∂spower(D)

∂spower(D, p2)
d spower(D, p2) . (3.24)

To asses the relative contribution of the values of the power curve at p1 as compared
to p2, it is insightful to ask how much power at p1 would have to change in order to
offset a change of power at p2. Thus setting the total differential to zero and solving
for d spower(D, p2) yields

d spower(D, p2) = −

∂spower(D)

∂spower(D, p1)

∂spower(D)

∂spower(D, p2)

d spower(D, p1) (3.25)

= −φ(p1)

φ(p2)
d spower(D, p1). (3.26)

The relative importance thus directly corresponds to the relative likelihood of the
response rates p1 and p2 under the prior density. To keep overall expected power
constant, a decrease of 0.01 = 1% in power at p1 (d spower(D, p1) = −0.01)) can be
offset by increasing power at p2 by d spower(D, p2) = 0.01φ(p1)/φ(p2). Firstly, this
argument demonstrates formally, that indeed the entire power curve for pMCR ≤ p ≤ p
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contributes towards the fulfilment of a constraint on expected power during optim-
isation. Secondly, it illustrates the implicit trade-off between power at different re-
sponse probabilities when constraining expected power instead of power at a single
point-alternative. For a worked example of how Bayesian power constraints affect
the optimal solution see Section 9.2.

3.4. A utility-based approach

From the perspective of a pharmaceutical company’s shareholders, the utility of a
trial is mainly given by the expected future financial payout. In phase II, the future
payout is notoriously hard to judge since a new compound still needs to successfully
complete phase III before being filed for approval with regulatory agencies. Any rev-
enues can only be generated after an approval has been issued. Here, two relevant
cases need to be distinguished. Firstly, if the phase II trial rejects the null hypothesis
and the response rate is indeed relevant, the expected payout depends on the chances
of the new compound making it all the way through phase III and to market. The
expected payout in this case thus needs to make assumptions about the market po-
tential and the chances of the compound to complete a phase III programme given
that p ≥ pMCR. Secondly, if the trial rejects the null hypothesis but the true response
rate is not relevant, the compound will still continue to phase III. Eventually, however,
the new drug will fail to demonstrate efficacy and will not make it to market3. The
expected payout in this case is thus generally negative since phase III studies are still
conducted but there is never any revenue generated from the drug. These considera-
tions can be formalised within the score-framework discussed in Section 3.1.

Let λ+|+ be the future payout for a true positive phase II finding and λ+|− the future
cost for a false positive finding. For sake of simplicity, assume that both λ+|− and
λ+|+ are defined on the scale of the average marginal4 per-patient cost within the
planned phase II trial. I.e., if the average marginal per-patient cost was 50 000 US$
and λ+|+ = 200, then the future payout upon successful rejection of the null and a
truly relevant response probability was 10 million US$. Let

su(D, x1, x2, p) := λ+|+ 1x2>c2(x1)∧p≥pMCR
(x1, x2, p)

+ λ+|− 1x2>c2(x1)∧p<pMCR
(x1, x2, p)

− n(x1) (3.27)

to formalise the above line of arguments. Following the same pattern as in Section 3.1

3Here it is tacitly assumed that the joint probability of a type one error in phase II and phase III is
negligible to keep things simple. The general line of argument is unaffected by a more complex
future-payout model though.

4The marginal costs ignore any fixed costs of the trial.
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the expected score for given response probability p is

su(D, p) := λ+|+ Prp[X2 > c2(X1) ] 1p≥pMCR

− λ+|− Prp[X2 > c2(X1) ] 1p<pMCR

− Ep[n(X1) ] (3.28)

and the unconditional expected utility score with respect to the prior φ is

su(D) :=λ+|+ Prφ(·)[X2 > c2(X1), p ≥ pMCR ]

−λ+|− Prφ(·)[X2 > c2(X1), p < pMCR ]

− Eφ(·)[n(X1) ] . (3.29)

The unconditional probability

Prφ(·)[X2 > c2(X1), p ≥ pMCR ]

= Prφ(·)[X2 > c2(X1) | p ≥ pMCR ] Prφ(·)[ p ≥ pMCR ] (3.30)

closely resembles the definition of ‘probability of success’ proposed by Spiegelhalter
et al. (1986). The only difference is that Spiegelhalter implicitly assumed that pMCR = p0.
Allowing the probability of success to depend on a minimally clinically relevant re-
sponse rate is thus a slightly more flexible definition and will be used throughout the
remainder of this thesis. Also, Prφ(·)[X2 > c2(X1) | p ≥ pMCR ] is exactly the definition
of expected power (cf. 3.19). Similarly, Prφ(·)[X2 > c2(X1), p < pMCR ] corresponds
to the marginal probability of a type one error. Finally, Eφ(·)[n(X1) ] is the overall
expected sample size of the phase II trial.

Note that su does not incorporate the fixed costs of the phase II trial. Yet, adding
a constant to su does affect the solution obtained from minimising the score and can
therefore be omitted for sake of simplicity. The fixed costs are only relevant when a
decision has to be reached as to whether a planned trial should actually be conducted.
Whenever the expected utility su is less than the fixed costs, it would be rational to
not conduct the trial.

Jennison et al. (2000, 2015) applied utility maximisation to the planning of clinical
trial designs and proposed optimisation of a similar score in the setting of (asymptot-
ically) normally distributed test statistics. Due to the typically larger sample sizes in
such settings, they analysed a relaxed version of the problem ignoring the integer re-
striction on sample sizes via gradient-based methods. The implicit definition of their
expected utility score ∫︂ ∞

−∞
φ(θ)

(︁
power(θ)− λ Eθ[n(θ) ]

)︁
dθ, (3.31)

where θ is the location parameter of interest and φ(θ) is the corresponding prior
(equation (10), Section 6.1, Jennison et al. (2015)), however, differs in two crucial as-
pects. Firstly, by integrating power over all possible values without distinction of the
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respective relevance they implicitly count false positives as successes. Consequen-
tially a larger probability to reject the null is always favourable (strangely also under
p < p0). Secondly, as a direct consequence of this lack of differentiation between
power on the null hypothesis and on the alternative, their score cannot be maximised
directly since n = 0 and always rejecting the null hypothesis would be optimal. In-
stead, they need to explicitly incorporate a constraint on the maximal type one error
rate to obtain sensible results.

With su, however, this is not necessary since the expected type one error rate is
naturally penalised via λ+|−. This highlights the fact that under su, any additional er-
ror rate constraints are optional. Rather, the error rates (i.e., the power curve) of the
optimal design are determined naturally via the real-world consequences (payout)
of the respective trial outcomes. Both α and β are thus implicitly determined in a
situation-specific manner taking into account both future payout (utility) and a priori
knowledge φ. Consequently, the maximal type one error rate of a utility-maximising
design can be both lower or higher than the standard 5%. In cases where the max-
imal type one error rate is substantially higher than 10% (which is sometimes still
accepted by regulators for early oncology trials (Simon, 1989)), one could simply im-
pose a constraint on the maximal type one error rate as discussed in the preceding
chapter. The main practical benefit of a utility-based approach to trial design is to
identify situations where it is in the sponsors interest to exceed the regulatory min-
imal requirements on type one or type two error rates, i.e. where it is beneficial to
have lower type one error rates or larger power than usual. An in-depth example on
how utility-based methods can be implemented in practice is given in Section 9.3.
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4. Bayesian Inference
In the preceding chapters of this thesis, the exclusive focus was on the derivation
of optimal two-stage designs for single-arm trials with binary endpoint. After the
conclusion of a trial, however, it is not only of interest whether the respective null
hypothesis H0 : p ≤ p0 can be rejected. Beyond this binary result, a quantification of
the post-trial evidence for individual response rates and against the null hypothesis
are required to guide further decision making for a potential phase III. In Chapter 3,
the importance of the correct and transparent specification of a priori assumptions
on the relative plausibility of different values of the true unknown response probab-
ility p was discussed. The Bayesian framework offers a consistent and accessible way
of incorporating these assumptions in a prior density φ. Under correctly specified
constraints on the type one and type two error rates, the frequentist properties of the
final test decision can be controlled exactly - despite the necessarily subjective choice
of the prior (cf. Section 3.1). Since a prior φ should thus be specified during the plan-
ning phase of a trial, a natural framework for post-trial inference is the Bayesian one
(Jeffreys, 1998). Bayesian inference is rarely used to analyse (confirmatory) clinical
trials due to general concerns about biased estimates and frequentist properties of
Bayesian credible intervals. This is particularly the case for pivotal phase III studies
that intended to support approval by a regulatory body. A thorough treatment of
the vast literature on the Bayesian-vs-Frequentist dispute is beyond the scope of this
thesis. For an excellent historical overview of the matter, see Salsburg (2001). Instead,
methods for applying both frameworks to the situation at hand are presented.

The contents of this and the following chapter are partly based on results discussed
in Kunzmann et al. (2017a) and Kunzmann et al. (2017b).

4.1. Inference using the planning prior
Bayesian inference is exclusively based on the posterior distribution of the unknown
parameter p given the observed data (X1, X2) = (x1, x2). Since Bayesian inference is
consistent with the likelihood principle, the sampling scheme (i.e. the designD) under
which the conditionally independent stage-wise observations (x1, x2) were obtained
is irrelevant (Jeffreys, 1998). The posterior only depends on the data likelihood and
the prior φ. Let

φ(p |x1, x2) :=
Prp[X1 = x1, X2 = x2 ]φ(p)∫︂ 1

0

Prp[X1 = x1, X2 = x2 ]φ(p) dp

(4.1)

be the posterior density. For the proposed prior class of truncated mixtures of Beta
distributions (cf. Section 3.2), the posterior can be computed analytically since the
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Beta distribution is the conjugate prior for the binomial data distribution. The pos-
teriors of a mixture distribution is the mixture of the individual component posteri-
ors and therefore also directly available. Finally, the proposed optional truncation to
control the upper tail behaviour of the prior is also a conditioning operation and in-
terchangeable with conditioning on the data. Thus the posterior is available in closed
form for a φa,b,ϵ|p≤p prior (cf. Section 3.2). Let

f(p, a, b) :=
Γ(a+ b)

Γ(a) Γ(b)
pa−1(1− p)b−1 (4.2)

be the probability density function of a Beta distribution with parameters a and b and
F (p, a, b) the corresponding cumulative probability function. Using x = x1 + x2 the
posterior density is

φa,b,ϵ|p≤p(p |x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if p > p

ϵ
f(p, 1 + x, 1 + n(x1)− x)
F (p, 1 + x, 1 + n(x1)− x)

+(1− ϵ)
f(p, a+ x, b+ n(x1)− x)
F (p, a+ x, b+ n(x1)− x)

else .

(4.3)

The posterior encodes rich information about the combined a priori and within-trial
evidence. The entire distribution should be visually inspected before reducing it to
functionals like the posterior-mean, a frequently used Bayesian point estimate, or
the credible interval which is the Bayesian counterpart to the frequentist confidence
interval. Here, the (1-α)-posterior credible interval is given by the closed interval
delimited by the α/2 and 1− α/2 quantiles.

A further advantage of drawing inference mainly from a Bayesian posterior prob-
ability lies in the fact that it can serve as prior for subsequent phase III studies in a
similar way as φ was employed to plan the phase II trial. This is of particular interest
when the phase II study simultaneously collects overall-survival data (the primary
endpoint in phase III) and the surrogacy relationship between the two quantities is
modelled (Rufibach et al., 2020).

4.2. Objective Bayesian inference
One way of addressing the bias introduced by using the informative planning prior
under the Bayesian paradigm is to compute the posterior under a non-informative
prior. The concept of using a different ‘analysis prior’ for inference was put forward
in (O’Hagan et al., 2005). The rationale behind the choice of an ‘analysis prior’ is
primarily guided by the frequentist properties of the resulting point estimator in-
stead of trying to correctly quantify any a priori evidence. For inference, the design
can be considered fixed and the theoretically attractive Jeffreys prior is a feasible
choice. Bayesian analysis of binomial outcomes using Jeffreys priors is known to
show favourable properties in terms of the frequentist coverage probabilities for the
one-stage case (DasGupta et al., 2001). The Jeffreys prior does depend on the sampling
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scheme (i.e. the design) through its dependence on the Fisher information. Thus, for
any particular design, the corresponding Jeffreys prior will typically be different from
the Jeffreys prior of a single-stage binomial test where it is given by a Beta distribu-
tion with parameters a = 0.5 and b = 0.5 (Jeffreys, 1946; Kunzmann et al., 2017a). To
derive the Jeffreys prior for a particular two-stage design, one first needs to compute
the corresponding Fisher information. The likelihood function ℓ(p |x1, x2) under any
two-stage design D is proportional to px1+x2(1 − p)n(x1)−x1−x2 . This expression, in
turn, is also proportional to the likelihood of a single-stage binomial experiment with
x = x1 + x2 out of n = n(x1) responses and response probability p. This greatly
simplifies the computation of the Fisher information

ID(p) = Ep

[︄(︃
∂

∂p
log
(︁
ℓ(p |X1, X2)

)︁)︃2
]︄
. (4.4)

Exploiting the proportionality, the derivative of the log likelihood function is given
by

∂

∂p
log
(︁
ℓ(p |x1, x2)

)︁
(4.5)

=
∂

∂p

(︃
log

(︃(︃
n1

x1

)︃(︃
n2(x1)

x2

)︃)︃
+ x log(p) + (n(x1)− x) log(1− p)

)︃
(4.6)

=
∂

∂p

(︁
x log(p) + (n(x1)− x) log(1− p)

)︁
(4.7)

=
x

p
− n(x1)− x

1− p
. (4.8)

Thus, the Fisher information of D is

ID(p) = Ep

[︄(︃
X1 +X2

p
− n(X1)−X1 −X2

1− p

)︃2
]︄

(4.9)

=
∑︂

(x1, x2)∈XD

(︃
n1

x1

)︃(︃
n(x1)− n1

x2

)︃
px(1− p)n(x1)−x

(︃
x

p
− n(x1)− x

1− p

)︃2

(4.10)

where XD is the sample space corresponding to the design D and the Jeffreys prior
φD

Jeffreys is proportional to the square root of the Fisher information

φD
Jeffreys(p) ∝

√︁
ID(p) . (4.11)

Finally, the normalising constant can be evaluated by numerical integration. A worked
example comparing the impact of the prior choice on inference is given in Chapter 10.
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5. Frequentist Inference
The contents of this chapter are partly based on Kunzmann et al. (2017a) and Kun-
zmann et al. (2017b).

Besides the Bayesian one, frequentist inference is the other major paradigm in stat-
istics. Here, the predominant concept is the avoidance of any form of ‘subjectivity’
or bias introduced by the adoption of a situation-specific prior distribution which
is necessarily subjective. The frequentist paradigm is still dominant in the analysis
of clinical trials and particularly so for confirmatory and pivotal phase III trials. To
complement the Bayesian methods outlined in Chapter 4, this chapter develops an
entirely frequentist approach to inference in single-arm two-stage designs for binary
endpoints and contrasts it with the Bayesian one.

After the conclusion of a trial it is not only of interest whether the respective null
hypothesis can be rejected but also to quantify the evidence against it and to give an
estimate of the true response rate p. Usually, a p value together with a point estimate
of the true response rate is provided together with an interval estimate, typically a
confidence interval (see, e.g., U.S. Food and Drug Administration (1998)).

5.1. The one-stage design situation
First, consider a simple single-stage binomial test, with X out of n responses for
H0 : p ≤ p0. Let the critical value c be chosen such that the one-sided significance
level is α. The p value for H0 is defined as the probability of observing an outcome
at least as extreme seen from the null hypothesis as the actually observed one given
that p0 is true (Fisher, 1925; Wasserstein et al., 2016), i.e.,

ρ(x) := Prp0

[︁
X ⪰ x

]︁
. (5.1)

Here, the relation ‘⪰’ denotes an ordering on the outcome space {0, . . . , n} ⊂ Z
and the p value is denoted ρ(x) to avoid confusion with the response probability p.
Formally, an ordering on {0, . . . , n} is defined as a function

⪰: {0, . . . , n}2 → {0, 1} (5.2)

x ⪰ x′ :=⪰ (x, x′) = 1 ⇔ x is as extreme or more extreme than x′. (5.3)

In the one-stage case, a natural choice for ⪰ is given by the canonical ordering of
the real numbers, i.e., x ⪰ x′ ⇔: x ≥ x′ since it is unequivocal that larger values
of x provide more evidence against H0 than smaller ones. One way of justifying this
intuition more formally is via a likelihood argument since x ⪰ x′ ⇔ ℓ(x, p0) ≤
ℓ(x, p0) where ℓ(x, p) is the binomial likelihood of the observation x given response
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5. Frequentist Inference

rate p. The choice of ordering can also be justified in terms of point estimation. Letˆ︁p : {0, . . . , n} → [ 0, 1 ] be an estimator of the response probability p. In the setting
considered here, it is reasonable to assume that any sensible estimator is monotone
in x, i.e, ˆ︁p (x) ≥ ˆ︁p (x′) ⇔ x ≥ x′. The natural ordering is thus also the same as
the one induced by ordering outcomes by their point estimates. If one were to come
up with any different ordering ⪰′ ̸=≥ on {0, . . . , n} in terms of extremeness from
H0, this would immediately imply the existence of a pair of observations x, x′ with
x ⪰′ x′ but x ̸≥ x′, i.e, x < x′. This would mean that, under ⪰′, there was at least one
situation in which a smaller number of responses, x, was considered more extreme
from H0 than a large number of responses, x′. Consequently, due to the assumed
monotonicity of any sensible estimator, ˆ︁p (x) < ˆ︁p (x′) although x is considered more
extreme from H0 than x′ under ⪰′. Therefore, for a one-stage design, the only sensible
definition of ⪰ is the natural ordering on the real numbers, i.e, ⪰ :=≥.

The choice of estimator is also fairly canonical in the one-stage setting since the
maximum likelihood estimator of the response probability, ˆ︁pMLE(x) := x/n is also
unbiased. There are well-known correspondences between the decision to reject the
null hypothesis (X > c), p values, and the unbiased maximum likelihood estimator,
namely

ˆ︁pMLE(x) > ˆ︁pMLE(c) ⇔ X > c ⇔ ρ ≤ α ⇔ reject H0 . (5.4)

To quantify the uncertainty about the point estimate obtained from ˆ︁pMLE a two-
sided confidence interval can be used. Here, a symmetric 1−2α two-sided confidence
interval is an interval-estimator[︁ˆ︁l, ˆ︁u ]︁ : {0, . . . , n} →

{︁
(p, p′) ∈ [ 0, 1 ] | p ≤ p′

}︁
;
[︁ˆ︁l, ˆ︁u ]︁(x) := [︁ˆ︁l(x), ˆ︁u(x) ]︁ (5.5)

Prp
[︁ˆ︁l(X) > p

]︁
≤ α ∧ Prp

[︁ ˆ︁u(X) < p
]︁
≤ α ∀p ∈ [ 0, 1 ] (5.6)

where the last property encodes the defining coverage property of a symmetric con-
fidence interval. Due to X > c ⇔ ρ ≤ α, a confidence interval can then be defined in
terms of the p values alone. A canonical choice for

[︁ˆ︁l, ˆ︁u ]︁(·) is given by the Clopper-
Pearson confidence interval for binomial proportions (Clopper et al., 1934), the point-
wise solution of

ˆ︁l CP(x) := argminˆ︁l(x) : Prˆ︁l(x) [︁X ≥ x
]︁
> α (5.7)

ˆ︁u CP(x) := argmaxˆ︁u(x) : Pr ˆ︁u(x) [︁X ≤ x
]︁
> α . (5.8)

By definition, for any p ∈ [0, 1],

Prp
[︁
p < ˆ︁l CP(X)

]︁
≤ Prp

[︁
{x = 0, . . . , n | Prp

[︁
X ≥ x

]︁
≤ α}

]︁
≤ α (5.9)

and similarly Prp
[︁
p > ˆ︁u CP(X)

]︁
≤ α. Thus, the Clopper-Pearson interval is indeed

exact as it guarantees a two-sided coverage of at least 1−2α and a one-sided coverage
of 1 − α for both tails. Note that equations (5.7) and (5.8) are exclusively defined in
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5.2. Frequentist inference in two-stage designs

terms of one-sided p values since Prˆ︁l(x) [︁X ≥ x
]︁

is the p value for H0 : p ≤ ˆ︁l(x)
(superiority test) and vice versa Pr ˆ︁u [︁X ≤ x

]︁
is the p value for H0 : p ≥ ˆ︁u(x)

(inferiority test). Thus, it also holds true that

ρ(X) ≤ α ⇔ ˆ︁l CP(X) > p0 . (5.10)

This corresponds to the common assumption that a confidence interval contains the
boundary of the null hypothesis if and only if the p value is lower or equal to α which,
in turn, is equivalent to rejecting the null hypothesis.

For a one-stage binomial test, frequentist inference is thus canonical and the differ-
ent quantities (p value, estimator, and confidence interval) are compatible with each
other and the underlying test decision.

5.2. Frequentist inference in two-stage designs
In two-stage designs, however, the carefully constructed frequentist inference frame-
work easily leads to incompatibilities. To see this, it is important to note that both
the definition of a p value and thus the corresponding Clopper-Pearson confidence
interval crucially depend on the ordering ⪰ of the sample space. For a one-stage ex-
periment binomial experiment this ordering is canonical and there is only one sensible
choice, ⪰=≥.

In a two-stage design, however, final outcomes are two-dimensional (X1, X2) ∈ Z2

and there is no canonical ordering on Z2 that would give rise to a unique definition
of a p value. The analogous definition of a two-stage p value for a two-stage design is

ρ(x1, x2) := Prp0

[︁
(X1, X2) ⪰ (x1, x2)

]︁
, (5.11)

only that the choice of the ordering ‘⪰’ on the outcome spaceXD ⊂ Z2 of the designD
is no longer unique.

The arbitrariness of p values for multi-stage designs is well known in the literature
on group-sequential and adaptive designs (Jennison et al., 2000, pp. 179). Different
approaches for resolving this ambiguity have been proposed. The focus is primarily
on the definition of a valid p value by heuristically justifying an ordering on the
sample space (e.g. likelihood ratio ordering or score test ordering (Cook, 2002)). While
most of these orderings are intuitively sensible, the mere fact that they are no longer
equivalent for all two-stage designs (as it is the case for one-stage designs) implies
that ‘the’ p value is not well-defined for multi-stage designs and depends on the choice
of ordering. Jennison et al. (2000, p. 181) note that

‘[a]lthough it is unfortunate that the definition of a P-value should depend
on a choice of ordering [. . . ], it should be stressed that different orderings
yield very similar P-values for many outcomes.’

It remains the fact, though, that the definition of the p value, which is often seen as the
pivotal frequentist quantity summarising the results of a trial, is not well-defined for
two-stage designs. An exhaustive discussion of all possible orderings or the situations
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in which they lead to diverging post-hoc inference is beyond the scope of this thesis. A
particularly interesting way of defining an ordering, however, is given by estimator-
induced orderings (Jennison et al., 2000; Cook, 2002; Kunzmann et al., 2017a). Recall,
that one of the many equivalent ways to justify the natural ordering on {0, . . . , n} in
the one-stage situation is to define

x ⪰ ˆ︁p x′ : ⇔ ˆ︁p (x) ≥ ˆ︁p (x′) . (5.12)

This definition can be seen as a way to pull back the natural ordering on [ 0, 1 ] ⊂ R to
the sample space XD via an estimator ˆ︁p . The rationale for this ordering is that any ob-
servation with a larger associated point estimate is more extreme from H0 : p ≤ p0.
Analogous to the one-stage case, any alternative ordering ⪰′ ̸=⪰ ˆ︁p necessarily im-
plies the existence of a pair of observations (x1, x2), (x

′
1, x

′
2) for which (x1, x2) is

considered more extreme from the null hypothesis than (x′
1, x

′
2) ,(x1, x2) ⪰ (x′

1, x
′
2),

yet the corresponding point estimates are ordered exactly in the opposite way, i.e.ˆ︁p (x1, x2) < ˆ︁p (x′
1, x

′
2). As a consequence, any ordering on XD that differs from ⪰ ˆ︁p

implies that the evidence against H0 as measured by the p value is incompatible, for
at least one pair of observations, with the interpretation of a larger point-estimate
corresponding to more evidence against H0. Since p value and point estimate are
routinely reported together, compatibility of their interpretation in terms of evidence
against H0 should be a desirable property.

A further complication in the choice of ⪰ arises when simultaneously taking into
account the test decision of the underlying two-stage design. Any one-sided p value
also induces a valid level-α test for the null hypothesis H0 : p ≤ p0 by rejecting
whenever ρ(x1, x2) ≤ α. Depending on D and the choice of ⪰, the decision reached
by the p value induced test need not be the same as the one implied by D, i.e. there
might be an outcome (x1, x2) with ρ(x1, x2) ≤ α but x2 ≤ c2(x1). Although, math-
ematically, this is not a problem per se, these situations tend to be a major practical
nuisance when reporting the trial outcome as the equivalences given in equation (5.4)
tend to be perceived as generally valid although they depend on the uniqueness of the
sample space ordering. Since the construction of a confidence interval also depends
on the ordering, similarly, its boundaries might overlap with the null hypothesis while
the design rejects the null hypothesis or vice versa.

5.3. Unbiased estimation
To illustrate the issues raised above, a point estimator needs to be chosen. Since bias
is often a major concern in the clinical trials community and all previously discussed
Bayesian point estimators fail to completely eliminate it, it seems only natural to
consider an unbiased estimator. It is well-known that the maximum likelihood es-
timator is biased in a two stage design (Bauer et al., 2016). A completely unbiased
estimator can be derived by applying the Rao-Blackwell theorem to improve the un-
biased stage-one maximum likelihood estimator X1/n1. Jung et al. (2004) derived this
unbiased Rao-Blackwell estimator in the group sequential case and the construction
can directly be transferred to the slightly more involved case of generic two-stage
designs (Kunzmann et al., 2017a).
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5.3. Unbiased estimation

The principal idea of Rao-Backwellisation is to start with an unbiased estimator,
X1/n1 and condition it on a sufficient statistic. The resulting estimator is then also
unbiased and its variance is smaller or equal to the variance of the original estim-
ator. Using Neyman’s Factorization Lemma it is clear that (n2(X1), X) is a sufficient
statistic for the true response rate p since

Prp[X1 = x1, X2 = x2 ] (5.13)

= Prp[X2 = x2 |X1 = x1 ] Prp[X1 = x1 ] (5.14)

=

(︃
n2(x1)

x2

)︃
px2(1− p)n2(x1)−x2

(︃
n1

x1

)︃
px1(1− p)n1−x1 (5.15)

=

(︃
n1

x1

)︃(︃
n2(x1)

x2

)︃
⏞ ⏟⏟ ⏞

=:h(x1,x2)

px(1− p)n(x1)−x⏞ ⏟⏟ ⏞
=: gp(n2(x1),x)

(5.16)

where h, gp > 0. Thus the Rao-Blackwellised estimator is given by

ˆ︁pRB := Ep

[︁
X1/n1 | (n2(X1), X) = (n2, x)

′ ]︁ . (5.17)

The probability mass function for the joint distribution of (n2(X1), X) is

Prp
[︁
(n2(X1), X) = (n2, x)

]︁
(5.18)

=

n1∑︂
x′
1=0

n2(x′
1)=n2

Prp
[︁
X2 = x− x1 |X1 = x1

]︁
Prp

[︁
X1 = x1

]︁
(5.19)

=

n1∑︂
x′
1=0

n2(x′
1)=n2

(︃
n1

x1

)︃(︃
n2(x1)

x− x1

)︃
px(1− p)n(x1)−x . (5.20)
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Consequently,

ˆ︁pRB (x1, x2) =

n1∑︂
x′
1=0

n2(x′
1)=n2

x′
1

n1

(︃
n1

x′
1

)︃(︃
n2(x

′
1)

x− x′
1

)︃
ρx(1− ρ)n(x

′
1)−x

n1∑︂
x′′
1=0

n2(x′′
1 )=n2

(︃
n1

x′′
1

)︃(︃
n2(x

′′
1)

x− x′′
1

)︃
ρx(1− ρ)n(x

′′
1 )−x

(5.21)

=

ρx(1− ρ)n(x1)−x

n1∑︂
x′
1=0

n2(x′
1)=n2

x′
1

n1

(︃
n1

x′
1

)︃(︃
n2(x

′
1)

x− x′
1

)︃

ρx(1− ρ)n(x1)−x

n1∑︂
x1=0

n2(x′′
1 )=n2

(︃
n1

x′′
1

)︃(︃
n2(x

′′
1)

x− x′′
1

)︃ (5.22)

=

n1∑︂
x′
1=0

n2(x′
1)=n2

(︃
n1 − 1

x′
1 − 1

)︃(︃
n2(x

′
1)

x− x′
1

)︃
n1∑︂

x′′
1=0

n2(x′′
1 )=n2

(︃
n1

x′′
1

)︃(︃
n2(x

′′
1)

x− x′′
1

)︃ . (5.23)

Here it is assumed that n1 > 0 and the usual conventions on the binomial coefficient(︃
n

x

)︃
:= 0 if n < 0 |x ≤ 0 |x > n (5.24)

apply. For n2 = n2(x1) = 0 (early stopping), ˆ︁pRB (x1, x2) reduces to
n1∑︂

x′
1=0

n2(x′
1)=0

(︃
n1 − 1

x′
1 − 1

)︃(︃
n2(x

′
1)

x− x′
1

)︃
n1∑︂

x′′
1=0

n2(x′′
1 )=0

(︃
n1

x′′
1

)︃(︃
n2(x

′′
1)

x− x′′
1

)︃ =

x1

n1

n1∑︂
x′
1=0

n2(x′
1)=0

(︃
n1

x′
1

)︃
n1∑︂

x′′
1=0

n2(x′′
1 )=0

(︃
n1

x′′
1

)︃ =
x1

n1

(5.25)

i.e. to the stage-one maximum likelihood estimator. Note that this is also the case
whenever the pre-image of n2 under the designs sample size function n2(·) is unique.
To see this, let x∗

1 be the unique pre-image of n2 under D, i.e. n2(x1) = n2 ⇒ x1 = x∗
1,

then
n1∑︂

x′
1=0

n2(x′
1)=n2

(︃
n1 − 1

x′
1 − 1

)︃(︃
n2(x

′
1)

x− x′
1

)︃
n1∑︂

x′′
1=0

n2(x′′
1 )=n2

(︃
n1

x′′
1

)︃(︃
n2(x

′′
1)

x− x′′
1

)︃ =

x1

n1

(︃
n1

x∗
1

)︃(︃
n2(x

∗
1)

x− x∗
1

)︃
(︃
n1

x∗
1

)︃(︃
n2(x

∗
1)

x− x∗
1

)︃ =
x1

n1

. (5.26)
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For any two-stage design where n2(·) is injective on the continuation region, this im-
plies that ˆ︁pRB reduces to the stage-one maximum likelihood estimator and its estimates
are consequently completely independent of any stage-two data. This observation has
two consequences. Firstly, the variance of ˆ︁pRB is relatively large since it makes little or
no use of any stage-two data. Secondly, consider the case of a non-trivial two-stage
design where n2(·) is injective on the continuation region. Here, non-trivial means
that the test decision is not constant over all possible second stages. It is then clear
that there must be outcomes (x1, x2) ̸= (x1, x

′
2) where w.l.o.g. (x1, x2) leads to the

rejection of the null hypothesis and (x1, x
′
2) does not but ˆ︁pRB (x1, x2) = ˆ︁pRB (x1, x

′
2)

since the stage-one outcomes are identical. For any such design, p values based on
the ordering ⪰ˆ︁pRB are thus necessarily incompatible with the design’s test decision in
the above discussed sense. Most generic optimal two-stage designs considered so far
indeed have an injective stage-two sample size function on their respective continu-
ation region. In fact, in cases where this is not the case, a simple group-sequential
design would often be sufficient. This implies that unbiased inference and optimal
response-adaptivity of the sample size function are more or less mutually exclusive.

The trade-offs of the different estimation techniques are compared in Section 11.1.
Section 11.2 takes a closer look at the issue of design incompatible p values by means
of a design proposed in Shan et al. (2016).

5.4. Compatible frequentist inference
The preceding sections raise the question whether a frequentist inferential framework
for two-stage designs that satisfies the previously discussed compatibility properties
between test decision, p value, point estimate, and confidence intervalˆ︁p (X1, X2) > ˆ︁p (X1, c2(X1)) ⇔ X2 > c2(X1) ⇔ ρ(X1, X2) ≤ α (5.27)

as well as the compatibility between the evidential interpretation of point estimate
and p value ˆ︁p (X1, X2) > ˆ︁p (X ′

1, X
′
2) ⇔ ρ(X1, X2) ≤ ρ(X ′

1, X
′
2) (5.28)

can exist. Note that such a framework is by no means necessary when test decision,
p value, point estimate, and confidence interval are seen as unrelated entities. In prac-
tice, however, these compatibility properties are often presumed by the non-statistical
readership of published trial results and ambiguous situation can be avoided by using
a compatible framework.

At the core of the problem lies the definition of a suitable ordering for the sample
space XD. Any ordering implies a definition of the p value function and the cor-
responding confidence interval as outline in Section 5.2. To achieve compatibility
between point estimates and p values, the ordering must be implied by the chosen
point estimator. That is, if the point estimator is chosen such that its induced p values
are compatible with the underlying design’s test decision, all of the above properties
hold. To solve the problem of an overall compatible framework for frequentist infer-
ence in a two-stage design, one thus needs to explore the relation between ˆ︁p and the
decision criterion X2 > c2(X1) of the level-α design D for testing H0 : p ≤ p0.
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Let X+
D ⊂ XD be the rejection region of D and let X−

D = XD − X+
D be the comple-

mentary region of non-rejection. Any estimator ˆ︁p that induces a compatible inferen-
tial framework must lead to a perfect separation of the disjoint subspaces X+

D and X−
D

in the sense that

(x1, x2) ∈ X+
D ⇒

{︁
(x′

1, x
′
2) ∈ XD | ˆ︁p (x′

1, x
′
2) ≥ ˆ︁p (x1, x2)

}︁
⊂ X+

D . (5.29)

This property is both sufficient and necessary for compatibility of the test induced
p values and the design D. Since D was assumed to define a level-α test, compatibility
of ˆ︁p and D trivially implies the weaker

(x1, x2) ∈ X+
D ⇒ Prp0

[︁ ˆ︁p (X1, X2) ≥ ˆ︁p (x1, x2)
]︁
≤ α . (5.30)

This means that any test induced by a compatible estimator is also a level α test for
H0 : p ≤ p0.

An obvious idea to address the compatibility issue is to impose additional con-
straints on the optimal design that guarantee compatibility with the estimator of
choice. To achieve test compatibility, one would need to make sure that

x2 > c2(x1) ∧ x′
2 ≤ c2(x

′
1) ⇒ ˆ︁p (x1, x2) > ˆ︁p (x′

1, x
′
2)

∀ (x1, x2), (x
′
1, x

′
2) ∈ XD . (5.31)

This set of pairwise implications leads to perfect separation of the rejection region byˆ︁pMLE and thus to compatibility of test decision with ⪰ ˆ︁pMLE . In practice, implementing
these pairwise consistency checks during optimisation of the design is infeasible due
to the large number of possible pairs for all possible design configurations and reverse
dependency of some estimators on the design itself (e.g. the unbiased estimator). In-
stead, compatibility can only be checked post hoc in practice.

However, the concept of compatibility between design D and estimator ˆ︁p (and thus
the induced p value function and confidence interval) is symmetrical. Just as a design
can theoretically be forced to be compatible with any given estimator, a compatible
estimator can also be constructed for a given design. In the case of a binary two-stage
design, an estimator is a function mapping from a finite space XD to the unit interval.
Conveniently, ˆ︁p can thus be understood as a finite set of real numbers

ˆ︁p = ˆ︁p D =
{︁ ˆ︁p (x1, x2) ∈ [ 0, 1 ] | (x1, x2) ∈ XD

}︁
(5.32)

indexed by the respective observation (x1, x2). Since there are infinitely many such
functions, an objective criterion must be chosen to define the | ˆ︁p | = |XD| estim-
ates. For instance, the maximum likelihood estimator maximises the binomial likeli-
hood point-wise leading to ˆ︁pMLE(x1, x2) = (x1 + x2)/n(x1). Constraint (5.31), how-
ever, is global on the set ˆ︁p and thus requires a global objective criterion to balance
between local deviation from the likelihood maximiser and global constraints viola-
tions. To guarantee compatibility, a local deterioration of the likelihood fit for indi-
vidual (x1, x2) must be tolerated to allow the estimator to comply with the compatib-
ility constraints. One possible approach is to minimise the maximal local likelihood
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difference between the compatible estimator and the (locally optimal) standard max-
imum likelihood estimator. Let the compatible maximum likelihood estimator ˆ︁pCMLE

be the solution of

argminˆ︁p (x1,x2)∈ˆ︁p : sup
(x1,x2)∈XD

(︃
ℓ
(︁
x1, x2, ˆ︁p (x1, x2)

)︁
− ℓ
(︁
x1, x2, ˆ︁pMLE(x1, x2

)︁)︃2

(5.33)

subject to : (x1, x2) ∈ X+
D

⇒
{︁
(x′

1, x
′
2) ∈ XD | ˆ︁p (x′

1, x
′
2) ≥ ˆ︁p (x1, x2)

}︁
⊂ X+

D (5.34)

∀ (x1, x2) ∈ X+
D : n2(x1) = n2(x

′
1) ∧ x1 = x′

1

⇒ ˆ︁p (x1, x2) > ˆ︁p (x′
1, x

′
2) (5.35)

∀ (x1, x2) ∈ X+
D : x1 = x′

1 ∧ x2 > x′
2

⇒ ˆ︁p (x1, x2) > ˆ︁p (x′
1, x

′
2) (5.36)

where ℓ(x1, x1, p) is the likelihood of observation (x1, x2) under response probabil-
ity p. In cases where ˆ︁pMLE is already compatible, the constraints are non-binding and
the solution reduces to the standard maximum likelihood estimator. In any other
case, the resulting estimator will be a distorted maximum likelihood estimator where
the degree of distortion depends on the severity of the constraint violations of ˆ︁pMLE.
Since any violation of the compatibility constraint may lead to global distortions ofˆ︁pMLE, constraints (5.35) and (5.36) ensure that the new ordering still satisfies minimal
plausible constraints (analogous to the stage-wise ordering (Jennison et al., 2000)).

Note that the proposed method is more generally applicable. For instance, in (Kun-
zmann et al., 2017a), an optimal compatible estimator minimising a weighted mean-
square criterion was proposed. The weight function can be interpreted as a prior φ
over p. The solution is thus a potentially distorted version of the posterior mean estim-
ator discussed in Chapter 4, since the posterior mean minimises the quadratic Bayes
risk. However, a modification of ˆ︁pMLE seems more appropriate in a frequentist setting
to avoid the necessity of specifying a prior density φ. The only subjective choice in
the proposed approach to derive ˆ︁pCMLE is the exact specification of the objective (5.33).
The local deviation of ˆ︁pCMLE at (x1, x2) from the maximiser ˆ︁pMLE(x1, x2) could also be
measured differently. For instance, instead of the squared difference in the respect-
ive likelihoods, the squared difference of the estimates themselves, ( ˆ︁pCMLE(x1, x2) −ˆ︁pMLE(x1, x2) )

2, or the relative likelihood difference could be used. The advantage of
the above proposed objective is that deviations from the MLE are naturally weighted
by the likelihood of the corresponding observation. Numerically, problems of the
class considered here are challenging. The dimension |XD| of the optimisation is
potentially high dimensional (roughly 50 to 200 for the designs considered so far).
Also, the objective function is non-linear, non-smooth (maximum!), and the number
of constraints is considerable. Yet, the problem only involves continuous variables
and can thus be solved using gradient based local optimisation methods. A natural
starting point for the optimisation is given with ˆ︁pMLE. Incompatibility with the MLE
occurs rarely when considering optimal design obtained from minimising expected
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sample size. An example is given in Section 11.3 and the corresponding compatible
maximum likelihood estimator is compared with the vanilla MLE.
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6. Unplanned Design Adaptations

6.1. Rationale for unplanned design adaptations
In the preceding chapters, it was implicitly assumed that the planning assumptions
encoded in the prior φ remain valid throughout the conduct of a trial. In practice,
however, planning assumptions can change. Even small phase II trials in early on-
cology may run for several years. In a fast-paced research environment, emerging
new evidence or a reassessment of existing evidence may thus invalidate the original
planning assumptions of a trial. Since the optimality of a design generally depends
on the underlying planning prior, an optimal design can thus become obsolete during
the course of its conduct.

It is important to note that no trial-internal data event could ever trigger the need
for a design adaptation when an optimal design is employed. This is a direct con-
sequence of the fact that all possible stage-one outcomes are considered during op-
timal planning. For instance, instead of recalculating the sample size in the event of
undershooting a certain target value (see Section 1.4), a constraint on the minimal
conditional power of the optimal design should be incorporated in the optimisation
problem (see Section 2.3.1). This allows the optimisation process to avoid situations
with low conditional power in an optimal way. By definition, an optimal design in-
corporating such additional constraints must thus always be superior to a post hoc
adjustment of a non-optimal design. Formally, this inefficiency of unplanned adapt-
ation is related to the fact that they need to invoke some form of the conditional
error principle (see Section 1.4) to maintain strict type one error rate control. This im-
poses additional constraint on the (conditional) type one error rate of the recalculated
design. Pre-specified optimal two-stage designs, however, are only restricted by the
unconditional error rate constraints and may thus be more effective since the feasible
space of the optimisation problem is larger. Thus, designs obtained from the bind-
ing application of a recalculation rule are necessarily less effective than a completely
pre-specified design directly optimising the chosen objective criterion. Unplanned
adaptations for optimal two-stage designs are therefore only justified if a deviation
from the pre-specified sampling scheme is required or new trial-external information
becomes available. If this is indeed the case, the original planning prior φ needs to
be updated to a new ‘prior’ φ′ that reflects the change of trial external information.
In this context, the temporal connotation of the term ‘prior’ is somewhat misleading.
A more appropriate interpretation is that the prior serves as a quantification of any
trial-external information - which might naturally change during the course of the
trial.

Since the only reasons to adapt an optimally planned design are trial-external, the
change of design could be assumed to be stochastically independent of any trial-
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internal information. Yet, decision-makers are rarely completely agnostic of already
accrued response data in single-arm trials since blinding is impossible. The assump-
tion that potential adaptation decisions are data-independent and would not affect
error rate control is therefore hard to justify in practice. For instance, the mere de-
cision whether to consider new information as relevant to the particular phase II trial
at hand and update the prior accordingly introduces additional degrees of freedom to
decision makers. Instead, a framework for unplanned adaptations in single-arm tri-
als needs to assume that the entire trial-internal data is available to decision makers
(Englert et al., 2015).

Methods for unplanned adaptations under strict type one error rate control were
already discussed in Section 1.4. The distinction between the methodology for un-
planned design changes (‘sample size recalculation’) and the response adaptivity of
the sample size functions developed in Chapters 2 and 3 is crucial. The latter can,
in effect, be understood as a form of randomised test where the randomisation is
based on assumptions about the distribution of the unobserved interim outcome and
collapses to a deterministic decision given the interim results. In terms of practical
acceptance, this trial-internal randomisation is much easier to justify than one that is
based on a trial-external biased coin toss. The analogy with randomised testing pro-
cedures makes it clear that generic two-stage designs with response adaptive sample
size function are still completely pre-specified testing procedures. As such, the op-
erating characteristics of these designs are well understood and the design can be
tailored to fulfil error rate constraints in an optimal way which is governed by an ob-
jective function. The theoretical justification for an unplanned adaptation, however, is
much more involved (see Section 1.4). The main tool for implementing such changes
in an ongoing trial is the conditional error principle, which specifies a sufficient con-
dition for satisfying a strict error rate constraint under mild technical assumptions
(Brannath et al., 2012). This powerful methodology allows a ‘frightening multitude of
flexibility’ (Bauer et al., 2016) of design adaptations. A multitude of sensible heuristics
like the one introduced in Section 1.4 were put forward (Proschan et al., 1995; Bauer
et al., 2016). Still, the ideal choice of the adaptation criterion for an unplanned adjust-
ment of a pre-planned design remains an open problem. In this Chapter, a suggestion
is put forward as to how a given optimal design can be adjusted in an unplanned
manner while respecting the properties of the original optimisation criterion.

6.2. Notation for unplanned design adaptations

A thorough discussion of unplanned design adaptations requires a slightly more flex-
ible data model. Let, to that end, (Ri )i≥1 be a time-discrete Bernoulli process with
response probability p modelling the (possibly) infinite number of responses (a re-
sponse of the i-th individual is encoded as Ri = 1) observed within a trial. Further,
let D∗ = (n∗

1, n
∗
2(·),∗ c2(·) ) be the original design optimised for a score s under con-

straints on the maximal type one error rate (at p0) and expected power given a plan-
ning prior φ and a minimal clinically relevant response probability of pMCR ≥ p0, i.e.,

58



6.3. Optimal unplanned adaptations in stage two

D∗ is the solution of

argmin
n1, n2(·), c2(·)

: Eφ[ s(D, X1, X2, p) ] (6.1)

subject to : Prp0 [X2 > c2(X1) ] ≤ α (6.2)

Prφ(·)[X2 > c2(X1) | p ≥ pMCR ] ≥ 1− β . (6.3)

The definition of the stage-wise test statisticsX1 andX2 in terms of the data-generating
process (Ri )i≥1 can be recovered as X1 = X(0,n1 ] and X2 = X(n1,n2(X1) ] where

X(a,b ] :=
b∑︂

i=a+1

Ri . (6.4)

Let τ = n(X1) be the (random) stop time for the process (Ri ) under D∗. If the
stop time τ is observed, the trial ended according to the pre-specified design D∗. If
however, the data-generating process (i.e., patient recruitment) is stopped earlier for
some τ ′ < τ , an unplanned interim analysis can be conducted based on the data
accrued so far, (Ri )i=0,...,τ ′ = (r1, r2, . . . , rτ ′). Further assume that the prior might
have changed from φ to φ′ to reflect new trial-external information1. In this situation,
the issue is to determine an design modification conditional on the already observed
data to reflect the change in external information while maintaining strict type one
error rate control.

6.3. Optimal unplanned adaptations in stage two
The simplest case of an unplanned adaptation occurs if the first stage of the original
design was already completed, i.e., τ ′ ≥ n1. The slightly more involved case of an
adaptation in stage-one is discussed in the next Section. Then, n2(x1) is known and
the adaptation problem reduces to finding new n′

2(x1) and c′2(x1).
A natural choice for the objective function of the adaptation problem is the condi-

tional expected score given the data observed up to and including time point τ ′ under
the new prior φ′, i.e.

Eφ′ [ s(D′, X ′
1, X

′
2, p) | (Ri )i=0,...,τ ′ = (r1, r2, . . . , rτ ′) ] , (6.5)

where X ′
1 := X(0,n1 ] and X ′

2 := X(n1,n′
2(X1) ] are the stage-wise test statistics under

the modified design . Here, X ′
1 = X1 holds since stage one was already completed.

Expression (6.5) only depends on the modified design via n′
2(x1) and c′2(x1) since x1 is

observed. I.e., the remainder of the modified designD′ remains unspecified. Similarly,
maximal type one error rate and (expected) power can be evaluated conditional on
(Ri )i=0,...,τ ′ = (r1, r2, . . . , rτ ′). The conditional error principle may then be applied

1All subsequent arguments remain valid if φ′ = φ (no change in prior) but it should be stressed that
there is generally no need to perform an adaptation when the trial external information does not
change.
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to maintain strict maximal type one error rate control by restricting the conditional
error of the modified design to

Prp0 [X
′
2 > c′2(X

′
1) | (Ri )i=0,...,τ ′ = (r1, r2, . . . , rτ ′) ]

≤Prp0 [X2 > c2(X1) | (Ri )i=0,...,τ ′ = (r1, r2, . . . , rτ ′) ] . (6.6)

Since this constraint ensures that the conditional maximal type one error rate of the
new design is less than the old design’s it guarantees overall maximal type one error
rate control at level α (Müller et al., 2004; Brannath et al., 2012).

For conditional power, most authors propose to impose a hard constraint using the
original threshold of 1− β from the planning stage (Bauer et al., 2016) (see also Sec-
tion 1.4). Proschan et al. (1995) kept the choice of the conditional power threshold
open, i.e., they allow a different threshold 1 − β′ for conditional power at the un-
planned interim analysis.

1− Prφ′(·)[X
′
2 > c′2(X

′
1) | (Ri )i=0,...,τ ′ = (r1, r2, . . . , rτ ′) ] ≤ 1− β′ . (6.7)

There are good reasons to modify the threshold on conditional expected power during
the interim analysis. While it is certainly desirable to have a high expected probability
to reject the null hypothesis given an relevant effect in stage two, the naı̈ve application
of the original threshold of 1−β may lead to excessively large sample sizes whenever
the data observed before the interim analysis are supporting the null hypothesis. In
Section 1.4 this was countered by imposing a hard constraint on the maximal allow-
able recalculated sample size. Consequently, for very low x1, the recalculated design
does not achieve a conditional power of 1− β.

A more natural way to obtain a situation specific value of β′ is given via the con-
ditional error principle. Its application in the literature is restricted to controlling the
unconditional type one error rate under recalculation. However, there is no reason
why it should not be employed in the same way to (expected) type two error and
impose the following conditional expected power constraint during recalculation

Prφ′(·)[X
′
2 > c′2(X

′
1) | (Ri )i=0,...,τ ′ = (r1, r2, . . . , rτ ′) ]

≥ Prφ(·)[X2 > c2(X1) | (Ri )i=0,...,τ ′ = (r1, r2, . . . , rτ ′) ] . (6.8)

This is merely an application of the conditional error principle to the (expected) type
two error rate and sets 1−β′ = Prφ(·)[X2 > c2(X1) | (Ri )i=0,...,τ ′ = (r1, r2, . . . , rτ ′) ].
This means that the conditional expected power of the recalculated design (under
the new prior) is to be chosen at least as large as the conditional expected power
of the old design (under the old prior). Since interim data that does not provide
evidence against the null hypothesis would also lead to a low conditional expec-
ted power under the original design and prior, the threshold for the recalculation
is naturally lowered as well. Vice versa, if the original design had a higher condi-
tional expected power for the given interim data than 1 − β, the threshold for the
recalculated design is also increased. A subtle detail of inequality (6.8) is the fact
that the conditional power of the original design, D, is evaluated under the ori-
ginal planning prior φ. Otherwise, if D was severely underpowered under φ′, so
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would the modified second stage. Both conditional error rate constraints (6.6) and
(6.8) together imply that τ ′ < τ . This is due to the fact that, for any p ∈ [ 0, 1 ],
Prp[X2 > c2(X1) | (Ri )i=0,...,τ = (r1, r2, . . . , rτ ) ] = 1x2>c2(x1). That is, after ob-
serving τ = n2(X1) individuals (D completed) the decision under D is deterministic
and the conditional power as function of p is either constantly 0 (D fails to reject)
or constantly 1 (D rejects). To fulfil both conditional error rate constraints, D′ must
therefore lead to the same decision based on (Ri )i=1,...,τ and the collection of any
further data cannot change the outcome.

The problem of finding the modified stage-two sample size n′
2(x1) and the modified

stage-two critical value c′2(x1) using the proposed approach can thus be expressed as
optimisation problem conditional on the data observed before the interim adaptation.
The problem

argmin
n′
2(x1), c′2(x1)

: Eφ′ [ s(D′, X ′
1, X

′
2, p) | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) ] (6.9)

subject to : Prp0 [X
′
2 > c′2(X

′
1) | (Ri )i=1,...,τ ′ ]

≤ Prp0 [X2 > c2(X1) | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) ] (6.10)

Prφ′(·)[X
′
2 > c′2(X

′
1) | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) ]

≥ Prφ(·)[X2 > c2(X1) | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) ] (6.11)

only has two free integer-valued variables, n′
2(x1) and c′2(x1), and can easily be solved

by an exhaustive search over both.
The key to computing both the conditional error rates and the conditional objective

is the conditional distribution of X2 | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′). Since τ ′ ≥ n1,
X2 | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) = X2 |X1 = x1, X(n1,τ ′] = x(n1,τ ′] and

Prp[X2 = x2 |X1 = x1, X(n1,τ ′] = x(n1,τ ′] ]

= Prp[X(τ ′,n2(x1)] = x2 − x(n1,τ ′] ] (6.12)

Here, X(τ ′,n2(x1)] is binomially distributed with size-parameter n2(x1) − τ ′ − n1 and
probability p. This allows computing the conditional error rates and the conditional
expected objective for both the original and the adapted design in the same way. E.g.,
the conditional type one error rate of the original design is

Prp0 [X2 > c2(X1) | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) ]

= 1− Prp0 [X(τ ′,n2(x1)] ≤ c2(x1)− x(n1,τ ′] ] . (6.13)

The process of conducting a sample size adaptation in stage-two is illustrated in
Section 12.2.

6.4. Optimal unplanned adaptations in stage one
The adaptation problem is slightly more involved when τ ′ < n1, i.e., when the ad-
aptation occurs before proceeding to stage two, or if it is decided to prolong the first
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stage beyond the original n1. In both cases, the final sample size and the stage-two
critical value remain to be determined in a future interim analysis. The result of an
unplanned design adaptation must then be a new partial design

D′|x′
1≥x(0,τ ′ ]

= (n′
1, n

′
2|x′

1≥x(0,τ ′ ]
(·), c′2|x′

1≥x(0,τ ′ ]
(·) ) (6.14)

where the co-domain of the functions n′
2 and c′2 is restricted to the still observable

x′
1 ∈ {x(0,τ ′ ], . . . , n

′
1}. Furthermore n′

1 ≥ τ ′ must hold to ensure that the time point
of the new interim analysis lies in the future. The problem is thus structurally similar
to the unconditional optimisation problem (see Section 2.3) only that the co-domain of
the functions c′2 and n′

2 is restricted to numbers of responses that can still be observed
within the modified design. With the same arguments as before, this results in the
following optimisation problem

argmin
n′
1,

n′
2|x′1≥x(0,τ ′ ]

( · ),

c′2|x′1≥x(0,τ ′ ]
( · )

: Eφ′(·)[ s(D′, X ′
1, X

′
2, p) | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) ] (6.15)

subject to : Prp0 [X
′
2 > c′2(X

′
1) | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) ]

≤ Prp0 [X2 > c2(X1) | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) ] (6.16)

Prφ′(·)[X
′
2 > c′2(X

′
1) | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) ]

≥ Prφ(·)[X2 > c2(X1) | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) ] . (6.17)

The same solution strategy via integer linear programming as outlined in Section 2.3
can be applied.

Further considerations might be incorporated in the adaptation procedure. In some
instances it might be desirable to exclude the possibility of a further interim analysis
from the adapted design D′. This might, be the case when the unplanned adaptation
takes place shortly before the initially planned interim analysis. In this case, n′

1 has
to be restricted to the observed number of outcomes during the unplanned interim
analysis (n′

1 = τ ′) to ensure that the interim analysis of the adapted design coincides
with the time point of adaptation. The recalculated partial design can then be directly
applied after the recalculation to determine the stage-two sample size and critical
value.

Note that under τ ′ < n1 no data in the second stage is observed and

Prp[X2 = x2, X1 = x1 | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) ]

= Prp[X2 = x2 |X1 = x1 ] Prp[X1 = x1 | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) ] (6.18)

= Prp[X2 = x2 |X1 = x1 ] Prp[X(τ ′,n1] = x1 − x(0,τ ′] ] , (6.19)

where X(τ ′,n1] is also binomially distributed with size parameter n1 − τ ′ and probab-
ility p. Therefore, the conditional type one error rate under the old design is given
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by

Prp0 [X2 > c2(X1) | (Ri )i=0,...,τ ′ = (r1, . . . , rτ ′) ]

=

n1∑︂
x1=x(0,τ ′]

Prp0 [X(τ ′,n1] = x1 − x(0,τ ′] ]
(︁
1− Prp0 [X2 ≤ c2(x1) ]

)︁
(6.20)

and the expected score and expected power can be evaluated in an analogue way.
Equation (6.20) shows that the conditional error of a design for a recalculation in
stage one is simply the weighted sum of the conditional errors at the initially planned
interim time point weighted with their respective chance of still being realised.

A worked example of this methodology is presented in Section 12.1.

6.5. Previous work
Englert and Kieser already considered unplanned design adaptations based on the
representation of a design as conditional error function (Englert et al., 2015). They
addressed the slightly different problem of obtaining a new valid conditional error
function (see Section 1.4 in the case of over- or underrunning the pre-planned stage
one sample size). Underrunning here refers to a situation where the interim analysis is
to be conducted at an earlier point in time than originally anticipated and overrunning
to the situation where the interim analysis is delayed.

In contrast to just obtaining a conditional error function (i.e. a critical value for
the final test decision) the above introduced framework uses the original optimisa-
tion criterion to produce a conditionally optimal stage-two sample size (adaptation
in stage two) or a partial stage-two sample size function (adaptation in stage one). By
linking the conditional recalculation back to the original planning problem it gives
a natural answer to the question raised by Bauer et al. (2016) as to how the flexible
recalculation methodology can be used in an optimal way. The proposed method can
also be used to address mere over- or underrunning in stage two by simply keeping
the original planning prior φ if no new trial-external information is available.

6.6. Inference after unplanned design adaptations
Frequentist inference generally depends on the entire design. For instance, the defin-
ition of a p value crucially depends on unobserved potential outcomes and the likeli-
hood of these outcomes under the null hypothesis (see Section 5.2). Similarly, a mean-
unbiased point estimator requires knowledge of the entire design up-front. Since no
overall design is available after an unplanned adaptation but merely a partial one,
frequentist inference based on p values and confidence intervals is no longer straight
forward. The problem of obtaining valid p values after an adaptation could be ad-
dressed by pre-specifying a p value combination function with fixed weights during
the design stage of the trial (see Section 1.4 for details on the combination function
method). This allows the computation of valid p values under arbitrary design ad-
aptation at the cost of introducing inefficiencies due to the pre-specified weights of
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the combination function. A drawback of this approach is that compatibility of the
p values (and thus the corresponding confidence intervals) with the final test decision
can no longer be guaranteed.

Another possibility is to consider the above proposed unplanned adaptation rule
as binding and to condition on the new prior φ′ and the time point of the unplanned
adaptation τ ′. One may then compute the adapted design for all possible numbers
of observed responses at the unplanned adaptation time τ ′. This results in a well-
defined sampling space and p values conditional on the adaptation rule, φ′, and τ ′

can be computed based on, e.g., the MLE ordering. Since both τ ′ and φ′ as well as the
adaptation rule itself might be chosen data-dependently in practice, this approach is
unlikely to be unequivocally acceptable though.

Bayesian inference on the other hand is independent of the sampling scheme. The
posterior distribution of the response probability only depends on the final sample
size and the overall number of responses observed over the course of the entire trial.
Any quantity derived from the posterior distribution (point estimate, credible inter-
val) therefore remain valid after unplanned adaptations.
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The focus of this thesis is the rigorous treatment of the case of single-arm trials in on-
cology with binary endpoint. The general principles outlined in the previous chapters
can, however, be applied to trials with other endpoints as well. This might be of in-
terest when the primary endpoint of a trial is not tumour response but a continu-
ous measure like differences in tumour volume. In the following, an outline of the
approach for deriving optimal two-stage design for (approximately) normally dis-
tributed test statistics is presented. This chapter is a brief introduction to the work
previously published in (Pilz et al., 2019).

The general principle can be illustrated by means of a one-sided test for a mean
difference with known variance. For instance, one could be interested in assess-
ing whether the differences in tumour volume between baseline and a pre-specified
follow-up time point differ between an intervention and a control group. Without loss
of generality, assume that the endpoint of interest (within-patient tumour volume
difference) has unit variance in both the intervention and the control group. The
stage-wise test statistics X1 and X2 are then given by the standardised observed
mean difference between intervention and control groups within each stage. Fur-
ther assume that the underlying data generating mechanism is such that the central
limit theorem can be invoked and that X1 ∼ N (

√
n1 θ/

√
2, 1) and the stage-two test

statistic X2 |n2(x1) > 0, X1 = x1 ∼ N (
√︁

n2(x1) θ/
√
2, 1) where θ is the unknown

standardised treatment difference. Let positive values of θ indicate superiority of the
intervention group over the control group (i.e., one considers the difference ‘control’
- ‘intervention’). Here, n1 and n2(·) correspond to the per-group sample sizes. Let cf1
be the boundary for early futility stopping, ce1 be the boundary for early efficacy stop-
ping, and let c2(·) be the stage-two critical value function such that the test rejects
the null hypothesis if and only if X2 > c2(X1). In analogy to the binary case, it is
assumed that c2(x1) = ∞ if x1 < cf1 and c2(x1) = −∞ if x1 > ce1. To test H0 : θ ≤ 0
in a two-stage design, one then needs to derive optimal n1, n2(·), cf1 , ce1, and c2(·).

For the sake of simplicity, further assume that the power at a point alternative
θ1 > θ0 is restricted to a minimum of 1−β, the maximal type one error rate is α, and
that the objective criterion is expected sample size under θ1. In analogy to Chapter 2
the optimisation problem is then

argmin
n1, c

f
1 , c

e
1, n2(·), c2(·)

:

∫︂ ∞

−∞
ϕ(x1 −

√
n1/

√
2 θ1)n(x1) dz1 (7.1)

subject to : Prθ0 [X2 > c2(X1) ] ≤ α (7.2)

Prθ1 [X2 > c2(X1) ] ≥ 1− β . (7.3)
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This problem is similar to the one outlined in Section 2.3, only that both n2 and c2
now map from R to the natural numbers (n2) and real values (c2). Strictly speaking,
the problem is still a mixed integer one, since n1 and n2 are integer-valued. For larger
sample sizes, however, the approximation error incurred by assuming that both are
also real-valued and then rounding to the nearest integer is small (Kunzmann et al.,
2020c). This approach was also used by Banerjee et al. (2006); Jennison et al. (2015).

Since n2 and c2 are functions, the problem is a variational one. It can either be ad-
dressed via the indirect Euler-Lagrange methodology by introducing Lagrange mul-
tipliers for the constraints before solving the corresponding Euler-Lagrange equation
for each x1 (Pilz et al., 2019) or by parameterising the functions n2 and c2 on [cf1 , c

e
1]

over a spline basis and solving for the optimal parameters directly (Kunzmann et al.,
2020c). In either case, the resulting problems are smooth in their respective paramet-
ers and standard optimisation methods can be used to obtain (numerical) solutions.

The same methodology can also be extended to asymptotically normally distrib-
uted test statistics to cover a wider range of endpoints. This is, for instance, the case
for the popular logrank test which can be used to compare two survival distributions.
Assuming proportional hazards for the survival curves of intervention arm versus
control arm with unknown hazard ratio of λ, the stage-one logrank test statistic
X1 ∼ N

(︁
− log(λ)

√︁
η1 n1/4, 1

)︁
is asymptotically normally distributed (Schoenfeld,

1981). Here, η1 is the fraction of individuals experiencing an event in stage one. Sim-
ilarly in stage two, X2 |n2(x1) > 0, X1 = x1 ∼ N (− log(λ)

√︁
η2 n2(x1)/4, 1). The

optimal two-stage test can then be derived by solving the analogous optimisation
problem to the one given by (7.1)-(7.3).

All ideas regarding optimisation under uncertainty discussed in Chapter 3 may also
be transferred to the continuous setting. An example application for a single-arm trial
with continuous endpoint is described in Section 13.
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8. Examples: Optimal Two-Stage
Designs

8.1. Generic optimal two-stage design
Consider the example situation described in Section 1.3.1 or a single-arm design for a
response rate under TAU of p0 = 0.2, a point alternative of palt = 0.4, a maximal type
one error rate of 5%, and a target power of 80%. Figure 8.1 compares Simon’s optimal
design with the generic two-stage solution under the additional constraints discussed
in Section 2.3.1 but without unimodality constraint (optimal) and the optimal design
with unimodality constraint (optimal, unimodal).

The increased flexibility of the generic optimal two-stage design highlights features
of the objective function (here expected sample size under p0 = 0.2) that are lost by re-
stricting the solution to group-sequential designs. The sample size function’s shape of
the generic two-stage solution clearly reflects the fact that the objective targets small
expected sample sizes under the null. The stopping-for-futility region is as large as
under Simon’s design since aggressive early stopping for futility is the most effective
way of reducing the expected sample size under the null. On the continuation re-
gion, the sample size is mostly increasing in the number of observed responses. This
phenomenon was previously criticised by Banerjee et al. (2006):

‘[. . .A] counter-intuitive feature of this design is that as [x1] increases, the
second-stage sample size, n2 increases till a certain point and then abruptly
becomes zero [. . . ].’

In fact, it is only counter-intuitive from a conditional (on X1 = x1) view: Since lar-
ger x1 imply more stage-one evidence against the null hypothesis, one might expect
the required sample size for the second stage to be a decreasing function in x1 on the
continuation region as it is the case for the design using an adaptive recalculation
heuristic based on conditional power (cf. Section 1.4.1). From an unconditional per-
spective, however, it makes sense that the design reduces the sample size for x1 values
close to the early-futility boundary and compensates by increasing the sample size
for interim results that are unlikely to occur under p = p0. The phenomenon is thus a
direct consequence of the choice of objective function. A benefit of studying optimal
generic two-stage designs is that they reveal features of the objective function that
cannot be seen in the corresponding group-sequential solution since it is too heavily
regularised (locally constant n2(·) on the continuation region). These considerations
also imply that a global monotonicity constraint as suggested by Shan et al. (2016)
is not justified, especially not one that is always imposing a decreasing sample size
function on the continuation region.
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8. Examples: Optimal Two-Stage Designs
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Figure 8.1.: Simon’s optimal design compared with the generic optimal two-stage design for the situ-
ation described in Section 1.3.1 (optimal), and the corresponding optimal unimodal design (see Sec-
tion 2.3.1).
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8.1. Generic optimal two-stage design

model build time [s] model ILP solution time [s] number of variables
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Figure 8.2.: Problem size, problem generation time, and ILP solution time for p0 = 0.2 and varying
palt with α = 0.05 and β = 0.2. Vertical axis is log-10 transformed but axis labels are given on original
scale.

In this particular situation, the optimal design without unimodality constraint (op-
timal, raw) exhibits a non-unimodal sample size function. The restriction to unim-
odal sample size functions (optimal) has negligible impact on the overall perform-
ance in terms of expected sample size under p0 (increase from 19.90 to 19.94) and is
more flexible than a monotonicity constraint. Again interpreting two-stage designs
as trial-internally randomised tests, it is not surprising that the more flexible generic
two-stage design matches the error rate constraints even better than Simon’s design
(cf. Figure 8.1). Besides the obvious benefits of allowing early stopping for efficacy,
this better exploitation of the permissible error rates explains the reduction in the ob-
jective criterion of expected sample size under the null hypothesis (cf. Figure 8.1). The
optimal design dominates Simon’s design for almost all values of p except for a slight
disadvantage on the interior of the null hypothesis due to a larger stage-one sample
size. This is caused by the fact that the objective criterion exclusively considers ex-
pected sample size on the boundary of the null hypothesis and ignores performance
on the interior.

To illustrate the efficiency of the proposed solution method, Figure 8.2 shows the
total number of binary variables, the time spent on problem generation, and the actual
ILP solution time over a variety of problem sizes given by palt −p0 (smaller differences
require larger models). GLPK v4.64 (GNU Project, 2020) was used as ILP solver on a
MacBook Pro 2019 with 2.3 GHz Intel Core i9 and 16 GB 2400 MHz DDR4. All regular-
ity constraints discussed in Section 2.3.1 were used except global unimodality of the
sample size function. Furthermore, nmax was restricted to 1.5 times the required sample
size of the one-stage test which is still substantially larger than the maximal sample
size considered by Englert et al. (2013). Both the problem size (number of variables)
and the solution time scale exponentially in the difference between p0 and palt. How-
ever, even the smallest difference of palt − p0 = 0.1 is still feasible with nmax = 195 and
an overall solution time of less than 200 seconds. Problem sizes in excess of nmax = 200
are unlikely to occur in an early phase II trial. In terms of absolute solution time, the
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8. Examples: Optimal Two-Stage Designs

novel approach is fast compared to previous implementations. For palt − p0 ≥ 0.2,
the overall solution time (problem generation and solution) is less than 15 seconds.
Note that this is the overall time spent including optimisation over a wide range of n1

values. A comparison with previous methods in term of solution time is difficult since
the code is typically not available. Englert et al. (2013) provide a script for the stat-
istical computing environment R (R Core Team, 2019) that can be used to compute
solutions conditional on individual n1 values. Due to the exhaustive nature of their
custom Branch & Bound algorithm and the implementation as naı̈ve recursion in R,
even the solution for individual n1 values may take several minutes. For instance,
the ILP-based method requires 118 seconds to find the overall optimal solution for
palt = 0.35. For comparable settings, nmax = 95 and the n1 = 19 the implementation
of Englert et al. (2013) could not solve the problem within two hours. Note that this
is only conditional on n1 = 19 and the search space considered by the ILP imple-
mentation is n1 = 19, . . . , 49 in this case. Depending on the number of n1 values
for the necessary grid-search overall solution of problems of comparable size could
take hours or days. For medium to large problems, the ILP approach is thus orders
of magnitude faster and allows to raise nmax to values that are much less likely to be
binding for most practical problems in early clinical oncology.

8.2. Alternative objective functions
To illustrate the importance of the choice of objective function, the generic optimal
two-stage designs minimising either expected sample size under the null hypothesis,
under the alternative, or the maximal sample size are computed for the previously in-
troduced example situation (see Section 1.3.1). The minimax design was made unique
by combining the minimax objective with expected sample size under p0 as outlined
in Section 2.4. The design is thus the minimax design with smallest expected sample
size under p0. All three designs are compared in Figure 8.3. The minimax design
closely resembles a group-sequential one. There is, however, minimal variation in
the stage-two sample size caused by the discreteness of the problem. The generic
two-stage minimax design has a maximal sample size of 32 which is one less than
the optimal group-sequential minimax design reported by Simon (1989) and exactly
the same as the single-stage randomised test (see Figure 1.1). The design minimising
expected sample size under p = palt (alternative-design) is markedly different from
the one minimising expected sample size on the boundary of H0. The shape of the
sample size function is exactly reverse and decreasing on the continuation region. The
null-design has the largest maximal sample size of all three designs. This can be ex-
plained by the fact that the objective criterion favours aggressive early stopping for
futility and small sample sizes for values of x1 that are likely under p0 < p < palt. To
achieve the overall desired power level, the design must compensate by ensuring a
high power and thus large sample size for x1-values that are less likely under palt, i.e.
towards the stopping-for-efficacy boundary.

This example demonstrates that the choice of objective function is absolutely cru-
cial. All three designs can rightfully claim to be ‘optimal’ - only that the respective
underlying assumptions are completely different. Minimising expected sample size
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Figure 8.3.: Optimal designs minimising the maximal sample size (minimax), the expected sample size
on the boundary of the null hypothesis (null), or the expected sample size under the point alternative
(alternative).
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8. Examples: Optimal Two-Stage Designs

under p0 is sensible when there is severe doubt about the improvement in terms of
response probability of a new treatment and trial cost and duration are less import-
ant to the sponsor should the new treatment eventually turn out to be effective. The
increase in expected sample size under the alternative over the other two designs
is, however, substantial. Expected sample size under the alternative is suitable in ex-
actly the opposite situation where the new treatment can be expected to be beneficial.
Both of these approaches trade off a reduction in expected sample size at a particular
response rate with an increase in the variability and the maximum of their sample
sizes. The minimax approach addresses this by directly minimising the worst case
sample size but is less effective than the respective optimal designs for the particu-
lar response probabilities that they are optimised for. Note that the minimax design
is not a one-stage design due to the discreetness of the test statistic. By exploiting
early stopping for efficacy and futility, the permissible error rates can be exhausted
more closely than with a one-stage test. In practice, it is hard to decide which of the
respective assumptions is most valid and an approach for continuously interpolating
between the different objectives on a principled basis could help investigators to pick
designs that more honestly reflect their uncertain prior knowledge about the anticip-
ated response probability. Chapter 3 discusses ways of addressing this problem by
quantifying a priori uncertainty about p directly.
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9. Examples: Optimisation Under
Uncertainty

9.1. Prior choice
Again consider the example first introduced in Section 1.3.1. The response rate un-
der TAU is p0 = 0.2. Assume that the initial assumptions about the true response
rate under the new treatment can be summarised in a Beta prior with mean 0.35 and
standard deviation 0.1. Using equations (3.8) and (3.9) yields a Beta(7.61, 14.14) dis-
tribution. Further assume that data from a previous dose finding study is available
and 4 out of 10 subjects showed a response under similar overall conditions and a
comparable definition of tumour response. The maximum likelihood estimate of the
response rate is 0.4 and consistent with the previously assumed palt = 0.4.

Following the proposed procedure for updating a uniform prior with the phase I
data, the phase I posterior is a Beta(11.61, 20.14) distribution. Due to slight differ-
ences in the treatment procedures between phase I and the planned phase II trial,
a robustification with ϵ = 0.2 is deemed appropriate. Finally, p = 0.7 is imposed
to prevent excessive weight on very large response rates. Without conditioning on
p ≤ 0.7 the a priori probability of a response rate larger than 0.7 would still be more
than 6%. The steps of constructing the final ‘pragmatic’ prior φ = φ7.61,14.14,0.2|≤0.7

are visualised in Figure 9.1 (see Section 3.2). The combined effect of robustification
and conditioning on p ≤ 0.7 is clearly visible by the fact that the lower tail of the
prior is lifted to a minimum of ϵ = 0.2 whereas the upper tail is 0. The impact of a ro-
bustification is more pronounced in situations with a more concentrated prior since
the tails of the Beta distribution are quickly approaching zero even for moderately
large a, b. Overall, the approach to defining a pragmatic prior proposed here is flex-
ible enough to represent a wide range of situations without being overly complicated.
Of course, it can be extended to encompass multiple informative mixture components
from different phase I studies but a practical benefit of adopting a multi-modal prior
is questionable. The key elements are an honest representation in terms of location
and scale of available a priori information and the option to robustify and restrict the
prior to a plausible range.

The resulting optimal designs under the non-informative and the final ‘pragmatic’
prior are compared in Figure 9.2. The non-informative design closely resembles the
minimax design (see Section 8.2, Figure 8.3). The maximal sample size is, however,
slightly larger (36 vs. 32 for the minimax design) and the stage-one sample size is
smaller (9 vs. 17). This is due to the fact that under a uniform prior, the expected
sample size reduces to the average sample size (all x1 are equally likely during the in-
terim analysis) putting more weight on the stage-one sample size while the minimax
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Figure 9.1.: Individual step of prior construction: 1) start with a maximum-entropy non-informative
prior (here: uniform distribution) 2) update with phase I data (informative) 3) make prior robust by
‘mixing in’ a non-informative prior again (robust) 4) restrict prior on maximal plausible range (prag-
matic).

criterion ignores the stage-one sample size entirely. Consequently, group-sequential
designs can be interpreted as being (near) optimal with respect to both maximal as
well as average sample size (under a non-informative prior). Generic response ad-
aptive designs may thus only yield advantages over group-sequential ones under in-
formative planning priors.

Under the pragmatic planning prior the optimal design becomes more flexible but
the sample size remains less variable than that of designs minimising expected sample
size conditional on a single response rate (cf. Figure 8.3). From a non-Bayesian per-
spective, this can be interpreted as regularising the objective criterion of expected
sample size by averaging over a range of values of p where the weight function is
given by the respective prior density. Yet, the Bayesian view offers richer insights into
the validity of different objective criteria and gives a formal framework for eliciting
the weight function (i.e. the prior). Overall, a Bayesian approach is more principled
than simply minimising expected sample size under a single response probability,
easier to adapt to a specific situation, and more practical since a reduced variability
of the stage-two sample size and a smaller maximal sample size (i.e. less ‘overfitting’
of a particular response rate) makes the resulting designs easier to conduct.
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Figure 9.2.: Comparison of optimal designs minimising expected sample size under non-informative
and pragmatic priors as show in Figure 9.1.
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9.2. Bayesian power constraints
Assume that the ‘pragmatic’ prior φ = φ11.61,20.14,0.2|≤0.7 derived in Section 9.1 is
considered appropriate (see Figure 9.1). Let the minimal clinically relevant effect be
p = 0.3 = p0 + 0.1. Furthermore, assume that an a priori probability of γ = 2/3 for
exceeding the power threshold of 1−β is deemed acceptable. The designs minimising
expected sample size under this prior under power constraints on palt = 0.4, palt = 0.36
(1/3 quantile of the conditional prior), and under an expected power constraint are
shown in Figure 9.3.

Evidently, the quantile-approach requires a larger design than the one under p = 0.4
since the conditional quantile is smaller (≈ 0.36 < 0.4). This relation, however, crit-
ically depends on the desired a priori assurance for exceeding the power threshold.
For very large γ, the conditional (1 − γ)-quantile of the prior converges to pMCR. The
quantile approach thus merely shifts the problem from having to specify palt directly
to selecting an a priori assurance level γ. Furthermore, its practical applicability is
limited by the fact that it requires a solid understanding of two conditional probab-
ilities (1− β and γ) with related but different roles in defining the power constraint.
As a theoretical exercise, however, it illustrates a principled way of eliciting palt that
is firmly rooted in Bayesian theory and incorporates a clear distinction between the
minimal clinically relevant response probability pMCR and the a priori relative likelihood
of different response probabilities p.

An expected power constraint is an attractive alternative since it does not require
the specification of an additional assurance parameter γ. Expected power is a func-
tional of the entire power curve for p ≥ pMCR and can be sensitive to the tail behaviour
of the chosen prior. To understand why this is the case, consider the trade-off between
power at p2 = 0.42, the prior mean conditional on p ≥ pMCR, and p1 = 0.7, the upper
boundary of the plausible range for response probabilities. The trade-off between the
two under expected power is governed by

d power(p2) ≈ −8.56 · d power(p1). (9.1)

A decrease in power of one percent point at p1 (a priori likely response probability)
can be thus be compensated for by increasing power at p2 by 8.56 percent points. Dur-
ing optimisation, this trade-off reduces the pressure to increase power at the centre
of mass of the prior since a very high power (close to 100%) for p > 0.6 can already
be achieved with very low sample sizes (rate difference greater than 0.4 from p0). A
prior with heavy upper tails will thus tend to result in smaller-than-expected designs
and great care should be taken to ensure that the upper tails of φ adequately reflect
the available a priori information. If p2 was larger than p, φ(p2) = 0 and a reduction
in power at p1 could no longer be compensated by an increase in power at p1 since
φ(p1)/φ(p2) = ∞. The impact of this ‘unrealistic trade-off’ phenomenon is increas-
ing in the difference p−p0 since this governs the non-zero upper tail area of the prior.
To illustrate how the parameter p affects the resulting design, Figure 9.4 compares
optimal designs under p = 0.5, 0.7 and 1.0.

As the prior cutoff approaches pMCR, the prior mass shifts towards lower response
probabilities and the size of the optimal design increases since high power at very
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Figure 9.3.: Expected power constraint (EP), power constraint on the observed phase I rate (4/10), and
on the 33% quantile of the prior distribution conditional on a relevant effect (quantile).
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Figure 9.4.: Effect of the upper-tail cutoff for the pragmatic prior on the resulting optimal design under
an expected power constraint.
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Figure 9.5.: Surface plot of the power at pMCR = 0.3 for different means and standard deviations of the
initial informative prior component of the pragmatic prior.

large response rates can no longer compensate for a reduction at lower values of p.
Vice versa, liberal upper tails together with prior robustification can lead to smaller-
than-expected designs since the power is almost one in the upper tails of the prior.

This example demonstrates how difficult it is to give a single definition of a power
constraint under uncertainty about p that properly reflects real world objectives and
a priori information. Seemingly simple approaches can be hard to justify rigorously
and might lead to counter-intuitive results. In practice, Bayesian power constraints
are only relevant in situations where the prior reflects an a priori conviction that the
true effect might be substantially larger than the minimal clinically relevant one. It
would then be inefficient to simply power on pMCR. Expected power is particularly ap-
pealing since it requires only the specification of pMCR (which might equal p0) and the
prior density φ. The example, however, also shows that even a design with a sufficient
expected power might have a surprisingly low chance of being sufficiently powered.
Whichever approach is preferred, a clear distinction between the minimal clinically
relevant response probability and arguments based on the relative a priori likelihood
of response probabilities is only possible within the Bayesian framework. Transpar-
ently communicating the power on the entire range of relevant response probabilities
is then key to deciding whether a particular power constraint is compatible with the
trial objectives.

Figure 9.5 shows the effect of different choices of the initial mean and standard
deviation of the informative prior component on the power of the corresponding
optimal design at the minimal clinically relevant response probability. For small prior
standard deviations (high a priori certainty) the power at pMCR depends critically on
the prior mean since the expected power constraint is then most similar to simply
calculating the power on the prior mean. If relevant effects are likely to be small
(small prior standard deviation and small prior mean), the required sample sizes are
large. Vice versa large certainty in large relevant effects leads to low power at pMCR and
consequently smaller trials. As the prior standard deviation increases the dependency
of the power at pMCR on the prior mean is reduced since the prior approaches a uniform
distribution on [ 0, 0.7 ].
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9. Examples: Optimisation Under Uncertainty

9.3. Utility maximisation
A major drawback of utility-based methods as described in Section 3.4 is the need to
define the utility function. The problem reduces to selecting the values of λ+|− and λ+|+

for the utility score defined in equation 3.27. Data on expected future payout tends
to be highly situational and uncertain. However, the utility optimisation approach
can also be employed to reveal implicit utility assumptions of any given design. For
instance, one could strive to find the pair λ+|− and λ+|+ that would make a particular
design D rational (i.e., optimal) under the corresponding su. To this end, assume that
a design D0 is given that has been optimised for expected sample size under a prior φ
and potentially unknown constraints on type one and type two error rates. One can
then try to find the combination of λ+|− and λ+|+ under which the operating character-
istics of D0 (i.e. its power curve) are close to the corresponding optimal design under
su(λ+|−, λ+|+). This approach can serve as a plausibility check of any given design
since it is typically easier to decide whether a particular combination of λ+|− and λ+|+

is plausible than to fix exact values upfront. To formalise this idea, assume that the
‘closeness’ of power curves can be measured by their maximal absolute difference

δ
(︁
powerD1

, powerD2

)︁
:= sup

p

⃓⃓
powerD1

(p)− powerD2
(p)
⃓⃓
. (9.2)

Furthermore, let D∗
su(λ+|−, λ+|+) be the minimiser of su for given λ+|−, and λ+|+. The

implicit utility parameters λ+|−(D0) and λ+|+(D0) are then given as the solution of

argmin
λ+|−, λ+|+

: δ
(︂
powerD0

, powerD∗
su (λ+|−, λ+|+)

)︂
. (9.3)

Due to the discreteness of the problem of finding D∗
su(λ+|−, λ+|+) this objective func-

tion is not differentiable. In practice, an approximate local minimum can be obtained
by heuristically exploring some combinations of λ+|− and λ+|+ to get an initial guess
with roughly the same power curve as under D0 before fine-tuning the paramet-
ers using a derivative free local optimiser like the Nelder-Mead algorithm (Nelder
et al., 1965). This typically requires at least tens if not hundreds of function evalu-
ations of the objective function and thus the global optimisation of an equal number
of utility-maximisation problems. Without the efficient solution strategy developed
in Section 2.3 this would be utterly hopeless.

Consider, for D0, the design minimising expected sample size subject to the expec-
ted power constraint discussed in Section 3.3 and Figure 3.3. The first step to finding a
matching utility-maximising design for the score given in equation (3.27) is an initial
grid search over a range of plausible values for λ+|− and λ+|+. A rectangular grid is
unlikely to be effective since it is the relative size of the two parameters that governs
the ratio of error rates and the average magnitude of both the steepness of the power
curve. An initial grid together with the attained values of δ and the minimiser on
this grid is shown in the left panel of Figure 9.6. Since δ is increasing towards the
boundaries of this search pattern it is reasonable to assume that the grid sufficiently
explores the overall space. The crude initial guess can then be refined by using a
local derivative-free optimiser. Here, the Nelder-Mead algorithm implemented in the
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Figure 9.6.: Initial grid-search evaluation of the δ function 1) and trace plot of the parameter combin-
ations explored during the local Nelder-Mead refinement 2); In both plots, the circle indicates the best
fitting parameter configuration and in 2) the cross indicates the starting point of the local optimisation
(result of grid search in 1).

base R package is employed (Nelder et al., 1965; R Core Team, 2019). The initial guess
(cross), the trace of points visited during the optimisation procedure, and the corres-
ponding optimum found upon convergence with an absolute tolerance of less than
0.0001 (circle) are shown on the right panel of Figure 9.6. The matched utility para-
meters are λ+|+ ≈ 243 and λ+|− ≈ 2221. The utility-maximising design D∗

su(243, 2221)
for the matched utility parameters is compared with the initial designD0 in Figure 9.7.

Per-patient costs in oncological clinical trials are high (Battelle Technology Part-
nership Practice, 2015). A conservative guess is a value in the order of magnitude of
100 000 US$ (overall: treatment, fees, follow-up). This directly translates to an implicit
risk weighted future benefit upon successful rejection of the phase II null hypothesis
of 24.3 million US$ and an implicit cost of 222.1 million US$ upon wrongful rejection
of H0 (costs of conducting futile phase III). Unconditional success rates of substances
(likelihood of approval, LOA) from phase I to approval range from about 9% to 12%
(Thomas et al., 2016). Assuming that substances with promising phase I results (4/10)
and a successful phase II trial tend to be more successful in in phase III, a success rate
of 1 in 3 can be assumed. Since, 24.3 million US$ is the assumed future risk weighted
profit, the overall anticipated profit from a successful approval under these assump-
tions is 72.9 million US$.

The overall matched su score of the original D0 is 84.3 (i.e., 8.43 million US$). This
figure does not yet include the fixed costs of running the phase II trial. Under the
assumed per-patient costs, the expected variable cost of D0 (expected sample size
multiplied with average per-patient costs) is 2.67 million US$. Considering the fact
that fixed costs make up a major part of the overall budget for small trials, these
figures are plausible given reported phase II trial costs of 5 to 12 million US$ (Ser-
tkaya et al., 2014). If expected utility is directly maximised for the matched paramet-
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Figure 9.7.: Comparison of the initial design with its matched utility design (see Section 9.3).
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Figure 9.8.: Designs optimising the same utility function under lower reward for correct rejection (A)
than the matched utility parameters and under lower penalty for wrong rejection (B) compared with
the matched utility design.

ers, it can be increased from 8.43 to 8.72 (under the matched parameters λ+|+ ≈ 243
and λ+|− ≈ 2221).

To explore the sensitivity of the utility-maximising design under changes to the
assumptions, two variations are considered. For case A, the anticipated (non risk
weighted) profit is larger (100 million US$ instead of 72.9 million US$). The corres-
ponding utility parameters are λ+|− ≈ 2221 and λ+|+ ≈ 333 (risk weighted profit of
33 million US$). For case B, the costs of a futile failed phase III program are instead
reduced from 222.1 million US$ to 150 million US$ (λ+|− ≈ 1500 and λ+|+ ≈ 243). Fig-
ure 9.8 explores the sensitivity of the utility-optimising design towards these changes
of the underlying parameters. In case A, the power of the optimal design increases
because the positive incentive upon successful rejection is raised. Note that since
there is no strict error rate constraint, this also leads to an increase in type one error
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9. Examples: Optimisation Under Uncertainty

since the costs of a failed phase III program remain fixed and the trade-off between
the type one and type two error rates is governed by the relative magnitude of both
parameters. In case B the penalty for a wrongful rejection of the null hypothesis is
substantially reduced instead. This also leads to an increased type one error rate but
also a much higher power even at the minimal clinically relevant response probability.
This demonstrates how a more or less arbitrary choice of error rate constraints can be
replaced by situation-specific expected-utility-based rational arguments. In practice,
though, a precise determination of the required utility parameters is unrealistic and
designs with a maximal type-one error rate of more than 10% are rarely realised due
to ethical concerns. Still, the utility-based approach can be used to guide the choice of
α and β within generally accepted ranges. This should especially be of interest when
the optimal error rates are lower than the typical α = 0.05 and β = 0.2.
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10. Examples: Bayesian Inference

10.1. Posterior distribution and posterior mean estimator
To illustrate the impact of prior choice on Bayesian inference as discussed in Chapter 4,
consider the design minimising expected sample size under the ‘pragmatic’ prior de-
rived in Section 3.1 subject to a minimal expected power of 80% (cf. Section 3.3).
Rather than discussing the shape of the posterior distribution for individual outcomes,
a comparison in terms of the corresponding posterior mean estimators is presen-
ted. Their respective bias, mean absolute error (MAE), and root mean squared error
(RMSE) are plotted against the response probability p under the given design in Fig-
ure 10.1. Evidently, the performance difference between the three uninformative prior
choices are small with the correct Jeffreys prior achieving the smallest point-wise ab-
solute bias. The pragmatic prior, however, is strongly biased towards its centre of
mass. This bias allows it to achieve a much better performance in terms of precision
in the area of interest roughly between p0 and p ≈ 0.6.

The shape of the correct Jeffreys prior itself is interesting. Although the deviation
from the naı̈ve Jeffreys prior for a fixed-size binomial experiment is rather small for
the situation considered here, a slight ‘bulge’ in the area of interest is discernible in
Figure 10.1. The characteristic behaviour of the Jeffreys prior becomes much clearer
when comparing designs minimising expected sample size under different assump-
tions on the response probability. In Figure 10.2, the previously discussed design and
its Jeffreys prior is compared with the design minimising expected sample size under
the point null of p0 = 0.2 and a minimal power of 80% at palt = 0.4. Restricting the
plotting area to [0.05, 0.95] reduces the dominance of the tail behaviour of both Jef-
freys priors towards 0 and 1. The characteristic deviations from Beta(0.5, 0.5) caused
by the biased sampling scheme are then more clearly discernible. The Jeffreys prior
under the pragmatic design prior has a less pronounced ‘bulge’ due to the smaller
overall size of the design but it is located in the actual area of interest between p0 and
p ≈ 0.6. The null design, however, exhibits a more pronounced shift of mass from
Beta(0.5, 0.5) due to the larger overall size of the design. Furthermore, the prior mass
is shifted towards larger response probabilities which might seem counter-intuitive
at first. Since the Jeffreys prior is proportional to the square root of the Fisher in-
formation, it is increased in areas with large expected sample size (i.e., large (Fisher)
information). The pragmatic prior design minimises expected sample size under the
unconditional prior, typically leading to an (at least approximately) monotonically
decreasing sample size on the continuation region and larger expected sample sizes
towards the boundary of the null hypothesis. Consequently, the Jeffreys prior in-
creases the weight in this region as compared to the Beta(0.5, 0.5) distribution. The
situation is entirely reversed when minimising expected sample size under the null.
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Figure 10.1.: Bias and root mean squared error (RMSE) for the posterior mean estimator with the
informative ‘pragmatic’ prior derived in Section 3.3. The design minimises expected sample size under
the same prior and a minimal expected power of 80%. Three uninformative priors (the naı̈ve Jeffreys
prior for a fixed-size binomial experiment, i.e., Beta(0.5, 0.5), the uniform, and the actual design-
specific Jeffreys prior) and the informative ‘pragmatic’ prior are considered.
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Figure 10.2.: Corresponding Jeffreys priors and design characteristics for the design minimising ex-
pected sample size under the pragmatic prior (‘pragmatic’) and the one minimising expected sample
size under the point null of p0 = 0.2, plotting of the prior densities is restricted to [0.05, 0.95] to make
the crucial differences more discernible (otherwise dominated by the prior behaviour towards 0 and 1).
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This objective criterion induces a shift of expected sample size towards large response
probabilities. It follows that the Fisher information is increased for large response
probabilities and that the mass of the Jeffreys priors is shifted towards larger values
of p. The Jeffreys prior thus tends to imply larger a priori probability mass for response
probabilities that are unlikely under the planning prior when expected sample size in
minimised.

These observations demonstrate the dilemma of objective Bayesian inference. Al-
though any uninformative prior choice reduces the bias of the posterior distribution
as measured by the absolute bias of posterior mean estimator, the implied priors are
utterly inconsistent with any realistic phase II situation (see also Section 3.1) due
to the extremely heavy tails. As outlined above, the Jeffreys prior also tends to in-
crease the relative likelihood of response probabilities where the expected sample
size is small. This leads to the slightly paradoxical situation that minimising expected
sample size under the null implies higher belief in large alternatives and vice versa.
Non-informative priors can thus be seen as a valuable tool to reduce bias in the pos-
terior distribution but applied researchers need to be aware of the potentially implied
inconsistencies with their original planning assumptions. Early phase II trials in on-
cology are a situation where, even in the complete absence of compound-specific
a priori information, experience commands a healthy scepticism about the assumed
response rates of a new compound (see Section 3.1).
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11. Examples: Frequentist Inference

11.1. Point estimators, p values, and confidence intervals
Consider the ‘pragmatic’ design minimising expected sample size under the inform-
ative prior derived in Section 9.1 subject to a conditional power constraint. First,
precision (RMSE) and bias of the frequentist maximum likelihood estimator (MLE)
and the unbiased Rao-Blackwellised estimator (RBE) are compared with the posterior
mean estimates under the respective Jeffreys priors (PMEJ) and the pragmatic prior
(PMEP). The design and the results are shown in Figure 11.1. Firstly, the RBE is in-
deed unbiased. In this particular situation, the RBE reduces to the stage one maximum
likelihood estimator since the design has an injective sample size function on its con-
tinuation region. The complete ignorance towards stage-two data means that the RBE
is dominated in terms of precision by all other estimators on the region of most in-
terest. The MLE and the PMEJ show very similar performance with slight advantages
for the PMEJ, both in terms of (absolute) bias and RMSE on the region of interest. The
PMEJ’s superior performance can be explained by noting that the MLEs popularity
is mostly based on its favourable asymptotic properties whereas the PMEJ directly
minimises the quadratic Bayes risk for the exact design used, i.e. it prioritises finite-
sample properties. Ultimately, however, the PMEJ converges towards the MLE for a
single-stage design as the sample size increases. This can easily be seen from the fact
that the ˆ︁p PMEJ(x1, x2) = (x1 + x2 + 0.5)/(n1 + n2(x1) + 0.5) and

∀ (x1, x2) with x1 + x2 = x ≤ n :
x+ 0.5

n+ 0.5
→ x

n
as n → ∞ (11.1)

indicating that the two estimators are not too different. The differences between ‘ob-
jective’ Bayesian inference and the use of the informative planning prior were dis-
cussed in Section 10.1 and the PMEP is only included in the comparison for reference.

Figure 11.2 depicts the density of the resulting p values (top panel) and the cor-
responding cumulative distribution functions of the p values under the null and a
point alternative (p = 0.4). In line with their evidential interpretation, the center of
mass for the distribution of all p values shifts from large p values to small ones as the
response probability increases. Differences are more easily discernible when consid-
ering their cumulative distribution functions (lower panel). Indeed all p values are
valid (stochastically larger than the uniform distribution under the null) since their
cumulative distribution functions (CDF) are smaller than that of the uniform distri-
bution. This reflects the fact that all of the estimator-induced p values induce valid
level-α tests. The inefficiency of the RBE estimator is reflected by the fact that the
distribution of the corresponding p value under the alternative is far less peaked than
for the other estimator-induced p values (flatter CDF). Although the PMEP-induced
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Figure 11.1.: Comparison of frequentist estimators (MLE and RBE) with posterior means for the prag-
matic (PMEP) and Jeffreys prior (PMEJ) in terms of bias and root mean squared error (RMSE) for the
design minimising expected sample size under the pragmatic prior and expected power constraint.
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Figure 11.2.: Density plot of the estimator induced p values for the MLE, RBE, PMEJ, and PMEP
point-estimators (top panel) and their distribution under the null (0.2) and a point alternative (0.4);
under the null, the gray diagonal corresponds to the cumulative distribution function of the uniform
distribution; the dotted line in the density plot panels corresponds to α = 0.05; MLE and PMEJ overlap
almost completely.
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ordering also leads to a valid level-α test, it is clearly different from the MLE and
PMEJ ordering since the corresponding CDF is different (most evidently so under the
null).

Finally, Figure 11.3 compares the exact Clopper-Pearson type confidence intervals
induced by the frequentist estimator (MLE and RBE) with the posterior credible inter-
vals corresponding to the priors used for the Bayesian PMEJ and PMEP point estim-
ators. Besides overall coverage, coverage for the upper and lower boundaries of the
respective intervals are reported separately. Not surprisingly, the Bayesian credible
intervals do not achieve the nominal coverage levels for all response probabilities.
Also, the coverage probabilities for all interval estimators vary substantially due to
the discreteness of the problem. Coverage for the pragmatic prior credible posterior
interval and moderate response probabilities is only slightly undershooting the nom-
inal level but quickly approaches 0 towards more extreme response probabilities since
these are highly unlikely under the prior. Both frequentist intervals have, by defini-
tion, exact coverage. The lower panel of Figure 11.3 shows the corresponding mean
width of the intervals as a function of the response probability. The RBE-induced con-
fidence interval is the widest for most response probabilities of interest since the es-
timator only makes use of stage-one data. Both Bayesian intervals are much narrower
which is the flipside of being allowed to undershoot the nominal coverage level. Inter-
estingly, the pragmatic prior leads to the most uniform average width curve. This is
due to the fact that the low a priori likelihood of extreme probabilities leads to a prior
data conflict and thus higher posterior uncertainty than under the non-informative
Jeffreys prior which puts substantial weight on extreme response probabilities.
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Figure 11.3.: Upper (high), lower (low), and joint coverage for Bayesian and frequentist interval es-
timators (top panel) as well as their mean width (bottom panel). For the Bayesian posterior mean
estimators PMEJ and PMEP, the 90% credible intervals are given and 90% Clopper-Pearson type con-
fidence intervals for the frequentist MLE and RBE.
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11.2. Design incompatible p values
To illustrate the issues around test compatibility, consider a design proposed by Shan
et al. (2016). They proposed to address the fact that sample size functions tend to be
increasing in x1 on the continuation region for designs optimising expected sample
size under p0 (see Section 2.3.1) by imposing a shape constraint on n2(·) that forces
the sample size function to be monotonically decreasing on the continuation region.
Clearly, this approach contradicts the objective criterion and leads to rather pecu-
liar designs that tend to be almost constant on the continuation region (i.e. close to
group-sequential) in most situations. A particularly interesting design is obtained by
applying the approach of Shan et al. to p0 = 0.6, palt = 0.8, α = 0.05 and β = 0.1.
Their resulting optimal design (Shan) and the performance in terms of bias and RMSE
of the MLE, the RBE, and the PMEJ for this design are compared in Figure 11.4. The
characteristics of the estimators are similar to the results shown in Figure 11.1 con-
sidering the shift of the boundary of the null hypothesis from p0 = 0.2 to p0 = 0.6.
For the Shan-design, the RBE does not reduce to the stage-one maximum likelihood
estimator since the stage-two sample size function is not injective on the continuation
region. The differences are, however, negligible.

More interestingly, the Shan-design is not compatible with the ordering induced
by the MLE. To see this, Figure 11.5 shows the sample space of the design in x1-x2 co-
ordinates together with the respective estimator-induced p values. Crosses indicated
rejections under the estimator-induced test where the optimal design does not reject
the null and, vice versa, circles non-rejection based on the induced p values where
the design rejects the null. The degree of non-compatibility (number of potential out-
comes that lead to a different test decision under the design and the estimator-induced
test) is minimal for the MLE. In fact, only a single potential observation would lead
to conflicting inference. By construction, the RBE is highly incompatible with the
given design. Taking into account its sub par precision (see Figure 11.1) the RBE
can thus not be recommended for general use with single-arm two-stage designs for
binary endpoints. Interestingly, the PMEJ is compatible with the Shan-design in this
situation.
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(PMEJ).
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11.3. Compatible maximum likelihood estimator
Incompatibility with the MLE occurs rarely when considering optimal design ob-
tained from minimising expected sample size. For instance, the optimal designs min-
imising expected sample size under the alternative for p0 = 0.1, . . . , 0.7 and palt =
p0 + 0.2 with α = 0.05 and β = 0.2 are all compatible with the MLE. When min-
imising expected sample size under the null instead, for p0 = 0.7 the optimal design
is again incompatible with the MLE for a single observation. Since the number of
outcomes that lead to conflicting inference based on p values and the critical value
function of the design is small even in cases where there are incompatibilities (e.g. the
Shan-design discussed earlier, see Figure 11.5), the chances of actually encountering
a situation where incompatibility might become a problem are thus small.

Coming back to the Shan-design, the compatible maximum likelihood estimator
(CMLE) introduced in Section 5.4 can be computed. A direct comparison with the
standard MLE is given in Figure 11.6. Since the required modification to make the
MLE compatible with the design are extremely small, the overall performance char-
acteristics of the CMLE are the same as those of the MLE (see Figure 11.4).

In terms of practical application, it is important to bear in mind that incompatib-
ilities with the design’s test decision can potentially occur when reporting p values
for two-stage designs. These can be avoided by using a compatible estimator like
the CMLE although the additional complexity of the procedure must be taken into
consideration.
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an increased estimate for the CMLE and red to a decrease as compared to the standard MLE; the white
dot marks the outcome for which the MLE-induced p value is incompatible with the design decision.
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12.1. Unplanned adaptation in stage two

Consider the optimal design obtained as solution of the problem

argmin
n1, n2(·), c2(·)

: Eφ(·)[n(X1) ] (12.1)

subject to : Pr0.2[X2 > c2(X1) ] ≤ 0.05 (12.2)

Prφ(·)[X2 > c2(X1) | p ≥ 0.3 ] ≥ 0.8 (12.3)

for the practical prior φ = φ11.61,20.14,0.2|≤0.7 discussed in Section 9.1. Here α = 0.05,
β = 0.2, p0 = 0.2, and pMCR = 0.3. The resulting design is shown in Figure 12.1. The
stage-one sample size of the design is 19 and n2(6) = 20. Now assume that 6 re-
sponses out of 19 individuals are observed in stage one and another 2 out of 5 in
stage two before a competing dose-finding study with less promising results is pub-
lished. Assume that only 2 out of 10 individuals in the new study had a response. One
way of incorporating this new information is by updating the informative compon-
ent of the original pragmatic prior leading to φ′ = φ13.61,28.14,0.2|≤0.7. To conduct a
sample size re-calculation as suggested above, the maximal conditional type one er-
ror rate and conditional expected power of the original design for this situation need
to be determined. These are 0.164 and 0.698, respectively. Note that the favourable
trial-internal results (8/24 = 1/3 > 0.2) before the recalculation lead to a larger con-
ditional error than the unconditional α = 5% level. Still, the results provide only little
evidence that the effect is indeed relevant (pMCR = 0.3) and the conditional expected
power is thus less than the original threshold of 80%.

Since Eφ(·)[n
′
1+n′

2(X
′
1) |X ′

1 = 6, X(n′
1,n

′
1+5 ] = 2] = n1+n′

2(6), one simply needs to
find the smallestn′

2(6) and the corresponding c′2(6) for which the conditional type one
error rate is lower and the conditional expected power is larger than under the original
design. In the example at hand, an exhaustive search yields n′

2(6) = 24 (instead of
20) and c′2(6) = 7 (instead of 6) resulting in a new conditional type one error rate of
0.163 and a new conditional expected power of 0.727. Had the recalculation instead
used the original 1 − β = 0.8 as threshold for the conditional expected power, the
recalculated stage-two sample size would have been 36 and the stage-two critical
value would have changed to 10. In this case, the new second stage would have had
a conditional error of 0.151 and a conditional expected power of 0.821.
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Figure 12.1.: Optimal two-stage design minimising expected sample size under the pragmatic prior
and expected power constraint derived in Section 3.3.
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straint, see Figure 12.1) and adapted partial sample size function after observing 3 out of 7 responses
in stage one.

12.2. Unplanned adaptation in stage one
Using the same original design as in Section 12.1 one may consider a situation in
which the additional external information is available earlier. Assume again that the
prior is changed to φ′ = φ13.61,28.14,0.2|≤0.7 but that only 3 responses out of the first 7
individuals are observed at the time point of adaptation. This means that the res-
ult of the adaptation must be a partial design with x′

1 = 3, 4, . . . , n′
1 and n′

1 ≥ 7.
Solving problem (6.15)-(6.17) in this situation results in the partial design depicted in
Figure 12.2. Instead of showing the original design and the modified one side-by-side
only the (partial) sample size functions are plotted as line graphs to better capture
the characteristic change. Since n′

1 = 26 ̸= n1 = 19, the x-axis is scaled to the
observed effect x1/n1 and x′

1/n
′
1 respectively. The fact that the modified design is

only defined for x′
1 ≥ 3 is reflected in the sample size function of the adapted partial

design only being defined for response rates greater than 3/26 ≈ 0.12. Since the new
prior is more conservative (proportion of favourable results in pilot data is lower), the
sample size function tends to increase for the modified design to maintain sufficient
power.
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Consider the randomised two-arm case of a superiority test for a difference in tumour
volume after 3 months of intervention. Assume that θ0 = 0 (no difference) and that
the minimal clinically relevant θ is a standardised difference of 0.2. Further assume
that a power of 80% at θ = 0.2 is required, and that the maximal type one error rate
at θ = 0 is 5%.

To illustrate the effect of the choice of objective criterion on the resulting op-
timal designs in the continuous case, three criteria are compared. Firstly, the ex-
pected sample size under the point alternative of θ = 0.2 is minimised (alternative).
Secondly, the design minimising expected sample size under the null (null) is con-
sidered. Thirdly, a design minimising expected sample size under a Gaussian prior
with standard deviation of 0.1 and mean of 0.1 compromising between the null and
alternative designs is constructed (Bayesian). Using the direct spline-based approach
implemented in the R package adoptr (Kunzmann et al., 2020b,c), the optimal two-
stage designs were computed and are visualised in Figure 13.1. For two-stage designs
with continuous test statistic, the sample size function n(x1) and the critical value
function c2(x1) can be depicted as line graphs without falling back to the slightly more
involved representation chose for discrete designs in the remainder of this thesis.

The characteristic increasing shape of the sample size function when minimising
expected sample size under the null hypothesis is the same as in the discrete case
(see also Section 8.2). The shape is decreasing when minimising expected sample
size under the alternative. Minimisation of expected sample size under the null also
leads to an extremely high optimal efficacy boundary (x1 ≈ 3.5) as compared to
the alternative and Bayesian designs. This, and the extremely large maximal sample
size for the null design is due to the fact that the objective criterion is penalising
sample size for large x1 much less than under the other two criteria. Interestingly,
the Bayesian criterion exhibits a unimodular sample size function - just as in the
discrete example considered in Section 9.1 (see Figure 9.2). These differences in the
sample size functions lead to very different expected sample size profiles as functions
of θ (top right panel in Figure 13.1). The null-design only dominates the other two
designs on and close to the null hypothesis at the expense of a massively increased
sample size for large effect sizes. In comparison, the expected sample size profiles of
the Bayesian and the alternative design are fairly similar with the Bayesian design
exhibiting substantially lower sample size for small effect sizes at the cost of only
minimally increased expected sample size for larger values of θ.

The power curves of all three designs are almost identical since the same constraint
on the fixed alternative of θ = 0.2 was used. The differences in sample size are
thus only due to the different choice of objective criteria. Evidently, due to the large
sample sizes, solving the continuous relaxation of the problem before rounding the
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curve of the minimal expected sample size designs corresponding to the three different assumptions
on θ discussed in Chapter 13.
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sample sizes to the next integer values does not affect the power or type one error rate
constraints negatively since both the type one and type two error rate constraints are
met exactly (lower right panel in Figure 13.1).

This example again demonstrates that the choice of objective criterion is import-
ant and that the minimisation of expected sample size under only a single potential
value of θ can lead to very different design characteristics. A design that optimises a
weighted criterion in a Bayesian way is more robust under different values of θ.
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Part IV.

Discussion and Summary
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14. Discussion

14.1. Inadequacy of the single-stage binomial test
The starting point of this thesis was the inadequacy of the simple binomial test for
single-arm clinical trials with binomial endpoint. Binary endpoints such as tumour
response are common in early phase II trials in clinical oncology. Two properties
make a simple binomial test ill-suited as design for a clinical trial with binary end-
point.

The first problem is of rather technical nature. Since the underlying test statistic is
discrete, a binomial test may never fully exhaust a specified maximal type one error
rate (α level). The significance level of a binomial test might thus be substantially
lower than required (see Figure 1.1). If the permissible significance level (often 5%
one-sided in phase II trials, (Simon, 1989; Ivanova et al., 2016)) could be exhausted
more fully, the required sample size for a given configuration could be reduced. From
a purely statistical perspective, randomised tests could address this inefficiency by
basing the final test decision on a biased coin toss if the trial result (number of re-
sponses) lies exactly on the critical value. The probability to still reject the null hypo-
thesis even if the number of responses lies exactly on the decision boundary where a
traditional binomial test could not reject the null hypothesis, can be chosen to match
the specified α-level exactly. In clinical decision making, however, basing the results
of an expensive trial on a (biased) coin toss is hardly acceptable.

The second problem is not specific to the standard binomial test but rather a general
issue with trial designs that do not allow an interim assessment of the data from an
initial stage. Clinical trials, and even more so early phase II trials, are planned under
substantial uncertainty about the true effect size. Before the onset of a trial it is hard
to judge whether planning assumptions hold and an interim assessment based on the
first few data points is thus intuitively attractive. Such two-stage procedures have
become common in clinical trials in general and early oncological phase II trials in
particular (Jennison et al., 2000; Ivanova et al., 2016).

14.2. State of the art
Both shortcoming of the standard binomial test - its lack of efficiency and its lack of
adaptivity to interim results - can be addressed by switching to a two-stage proced-
ure. Early suggestions in the literature are group-sequential two-stage designs (Si-
mon, 1989; Mander et al., 2010). These designs allow the early termination of the
ongoing trial at an interim analysis based on the number of observed responses up
to this point under strict control of the overall type one error rate. Here, it is import-
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ant to stress that the data-dependent interim decision could inflate the overall type
one error rate if not properly accounted for during the planning stage (Bauer et al.,
2016). Group-sequential designs are characterised by a small number of parameters
(four without, five with early stopping for efficacy). Still, these are already too many
degrees of freedom to determine a design (i.e., its parameters) using only constraints
on the desired type one and type two error rates as it is possible with a single-stage
design that is determined by sample size and critical value alone. Instead, a quality
criterion must be optimised subject to constraints on the type one and type two er-
ror rates to obtain a unique design. The choice of criterion is highly situational and
different suggestions were put forward in the literature. Simon (1989) suggested to
minimise the expected sample size on the boundary of the null hypothesis as a par-
ticularly attractive criterion in early oncological phase II trials since this corresponds
to minimising the expected number of patients being treated ineffectively within the
trial should the new treatment turn out to be less effective than treatment as usual.
Mander et al. (2010), however, argued that this leads to unnecessarily long trials in
cases where the new treatment shows a favourable response rate and proposed to
instead minimise expected sample size under a point-alternative hypothesis.

While two-stage designs can also be seen as a form of randomised tests (see Sec-
tion 1.3), the crucial difference to the single-stage biased-coin randomised test lies in
the fact that the source of randomness is trial-internal: Once the interim outcome
is observed, the final test decision is again a deterministic function of the stage two
data. This is important to make such design acceptable to non-statisticians.

A natural extension to the concept of group-sequential designs is to allow the
sample size and critical value to vary with the exact number of observed responses
during the interim analysis instead of just determining whether to continue or to
stop the trial. The corresponding optimisation problem is much harder to solve than
the one for group-sequential designs since the number of parameters is substantially
larger (see Englert et al. (2013) and Section 2.3). Previously, authors either solved
the problem approximately (Banerjee et al., 2006) or via custom implementation of
the Branch & Bound algorithm for integer-value problems (Englert et al., 2013; Shan
et al., 2016).

14.3. An effective solution method
The first problem addressed in this thesis is the reliable and efficient exact solution
of problems arising from optimising generic two-stage single-arm designs for binary
endpoints which allow the sample size and the critical value to depend on the exact
number of observed responses at an interim analysis. The core ideas were put forward
in (Kunzmann et al., 2016) and substantially refined in Section 2.3. The proposed ap-
proach transforms the problem in a standard form for integer linear programs (ILP)
which can then be solved using existing, highly-specialised solver software. While
these solvers are still based on the Branch & Bound algorithm, they guide their trans-
ition of the search space by tried-and-tested heuristics and information about the
problem structure obtained from the relaxation of the problem to real numbers. This
allows much speedier solution and the extension of the search space not previously
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possible with existing methods.
The novel approach also allows to consider additional ‘nicety’ constraints via a

common formalism to ensure certain desirable properties of the solutions obtained.
For instance, global unimodality of the sample size function can be incorporated as
a constraint (see Section 2.3.1). While these constraints are not necessary per se they
make it easier to communicate the resulting designs to practitioners and fix artefacts
caused by the discreetness of the underlying test statistic.

Obtaining solutions relatively fast (global optima within seconds instead of minutes
or hours) is important since it is necessary to evaluate and compare a set of designs
under varying planning assumptions before reaching a final decision (see Section 8.1).

14.4. Optimal group-sequential designs
The marginal benefit of fully generic two-stage designs over group-sequential ones
crucially depends on the scenario. Clearly, the minimax objective favours group-
sequential solutions and for many situation with wide priors, the optimal two-stage
design is not too variable (see Section 2.4). In practice, a group-sequential design will
thus often be sufficiently effective and easier to obtain.

A major advantage of the generic two-stage design methodology rather lies in the
fact that the corresponding optimal generic two-stage designs can reveal properties of
a chosen objective function that would otherwise remain hidden when only consid-
ering group-sequential designs. A good example for this is the fact that the optimal
sample size function when minimising expected sample size under the null hypo-
thesis is generally increasing on the continuation region. This phenomenon was first
noted by Banerjee et al. (2006) and is a direct consequence of the choice of objective
criterion. Instead of criticising the properties of a corresponding optimal generic-two-
stage design, the discussion should rather focus on the justification of the objective
function itself and its properties.

With the effective solution method proposed in this thesis (see Section 2.3) the
main argument in favour of using simpler group-sequential design is mostly refuted.
Particularly in early clinical oncology, where the stakes for study participant are high,
the most effective available solution (optimal generic two-stage design) should be
used.

14.5. Optimisation under uncertainty
Optimal designs vary substantially depending on the assumptions on the unknown
true response probability (see Section 8.2). Since the true response probability is un-
known at the planing stage, a way of incorporating this uncertainty in the optimisa-
tion process is crucial. Instead of selecting a design that is only optimal for a particu-
lar response probability, the final design should rather balance between performance
at different likely values of the response rate. Simon (1989) was already aware of
this issue and proposed to either minimise the maximal sample size (worst case) of a
design or to use a Bayesian objective criterion without going into details as to how
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this should be done. Minimising the maximal sample size is an attractive option if no
assumptions about the anticipated response probability can be justified. Otherwise,
however, the resulting design may be less effective than a design that exploits prior
knowledge about the anticipated response probability. Such prior knowledge can be
integrated quantitatively into the planning process by adopting a Bayesian perspect-
ive. This requires the specification of a prior distribution for the unknown response
probability which encodes the a priori relative likelihood of different response probab-
ilities. Minimising expected sample size under such a prior distribution then reduces
to minimising expected sample size under all possible response probabilities weighted
by their respective a priori likelihood.

While this concept has been mentioned in the literature previously (Simon, 1989;
Jennison et al., 2015), its implementation for binary two-stage designs is another ori-
ginal contribution of this thesis. Chapter 3 explores the consequences of taking a
Bayesian perspective to optimisation under uncertainty in great detail. The same
Bayesian framework can be used to incorporate a priori uncertainty in the formula-
tion of the power constraint. Concepts such as expected power (Brown et al., 1987) or
probability of success (Spiegelhalter et al., 1986) to do so are discussed in the literat-
ure. Chapter 3 slightly generalises both definitions to better distinguish between the
relevance and the a priori likelihood of response probabilities, explores their math-
ematical properties in detail, and highlights their close connection and their natural
emergence in the context of utility optimisation. From the analysis in Chapter 3, it is
clear that probability of success is ill-suited to be used as a replacement for traditional
power constraints due to its dependence on the a priori probability of a relevant ef-
fect. Instead, expected power is a more direct extension of classical power constraint
when uncertainty about the true response probability is to be reflected in the optim-
isation procedure. The concept of expected power allows a clear distinction between
the minimal clinically relevant response probability and potential evidence in favour
of larger response probabilities. In situations with prior evidence in favour of larger
response probabilities, this approach then allows to formally justify smaller sample
sizes than those required when powering on the minimal clinically relevant response
rate.

The concept of probability of success, however, emerges naturally when consider-
ing utility maximising designs (see Section 3.4). Here, instead of specifying a target
type one and type two error rate directly, a utility function is specified that links the
potential outcomes of a trial (correctly rejecting the null, false positive finding) to cor-
responding rewards. The practical implementation of designs that directly minimise
expected utility is hindered by the difficulty of defining a concrete utility function
and the reward parameters. The utility-based approach can be reversed to uncover
implicit assumptions about utility parameters. Such an approach can then be used to
guide the choice of different standard power levels (80% or 90%?) by relating these
back to implied real-world rewards. This additional information may be used to aid
the decision making process for selecting the target power level of a design.
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14.6. Optimisation versus unplanned recalculation

In the context of response-adaptive designs it is important to distinguish between
(optimal) generic two-stage designs and methods for the unplanned recalculation of
a trial’s sample size. Both concepts are often mixed but quite different. For instance,
Jennison et al. (2015) optimise a trial’s design for continuous outcomes with respect to
a utility score but use a combination function approach to control the type one error.
This is clearly ineffective (Pilz et al., 2019) and a direct optimisation of all design para-
meters - as discussed in the Chapters 2 and 3 - is superior. Even though the sample
size and the critical value are response-adaptive in a generic two-stage design, the
design itself is still completely pre-specified. Unplanned adaptations, on the other
hand, are by definition not pre-specified but the methodology is often used to define
binding adaptation rules a priori or parts of them (Jennison et al., 2015) which is less
effective than a direct optimisation. In fact, adaptations based solely on trial-internal
data are never necessary within an optimal two-stage design (see Chapter 6) since
an optimal design considers all potential stage-one outcomes and the corresponding
ideal decision before the start of the trial. Unplanned adaptations do, however, play
an important role in handling unforeseeable external changes or violations of the
pre-specified sampling protocol. The methodology is still necessary to react to newly
emerging external information that might invalidate the original planning assump-
tions.

A common issue with unplanned design adaptation is the choice of adaptation cri-
terion (Bauer et al., 2016). The approach to unplanned design adaptations for op-
timal designs taken in Chapter 6 resolves this ambiguity by deriving the adaptation
criterion directly from the original objective criterion that was defined during the
planning phase of the trial. The full flexibility of unplanned design adaptations is, of
course, still available. This means that one could, in principle, also use a completely
different objective criterion during the adaptation. Yet it seems natural to maintain
the original objective criterion and just adjust it such that it reflects changes in study-
external evidence more appropriately.

The conditional error methodology used in Chapter 6 to realise these unplanned
adaptations is similar to the approach in (Englert et al., 2015). Other than Englert
et al. (2015), the result of the adaptation is not just a conditional error function that
still needs to be mapped to actual sample sizes and decision boundaries, but an im-
mediately usable sample size (function) and critical value (function) that are optimal
under the original criterion conditional on the data observed at the time point of the
adaptation and taking potentially new trial-external evidence into account.

The availability of optimal flexible adjustment methods is crucial to a more wide-
spread use of effective optimal two-stage methods in clinical trials generally. Invest-
igators will be much more likely to adopt novel, more effective methods if they can
be sure that a trial is able to react to practical necessities or newly emerging evidence.
This is particularly important in a competitive and fast-paced environment such as
oncology. The main contribution of this thesis in this respect is to map existing meth-
ods (conditional error principle) to the particular situation and to develop an optimal
way of conducting the necessary adaptions.
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14.7. Inference

The main focus of this thesis are optimal two-stage designs for binary endpoints,
guidance on the choice of objective functions, and the incorporation of uncertainty
in both the objective and the necessary power constraint.

Still, while the design of a clinical trial is important to reach the study objectives
effectively, so is proper inference after the trial is completed. In the context of two-
stage designs, a complications for traditional frequentist inference is given by the fact
that the test statistic is two-dimensional. This implies that there is no natural ordering
in terms of extremeness from the null hypothesis for two-stage designs. An ordering,
however, is crucial for the definition of a p value, one of the most widely used meas-
ures of evidence in clinical statistics. This problem also affects the Clopper-Pearson
approach to confidence-intervals. Several more or less arbitrary choices for defining
an ordering on the outcome space are discussed in the literature (Jennison et al., 2000;
Wassmer et al., 2016). In Chapter 5 of this thesis, an argument for the estimator-based
ordering is put forward. The main argument is, that it is the ordering that preserves
compatibility properties between p values, test decision, point estimates, and confid-
ence intervals such as the fact that the null hypothesis should only be rejected if the
p value is smaller or equal to the chosen significance level or that the (1− 2α)-two-
sided-confidence interval only intersects with the null hypothesis if the test does not
reject the null hypothesis. To achieve this, the p values induced by an estimator via its
natural ordering must be compatible with the test decision of the underlying design.
This is impossible to achieve for mean-unbiased estimation but mostly the case for
the commonly used maximum likelihood estimator (MLE). In cases where the MLE is
(partially) incompatible with the underlying design, a minimally distorted version of
the MLE is derived that gives rise to a design-compatible ordering. This slight modi-
fication then guarantees that p values are smaller or equal to the chosen significance
level if and only if the design rejects the null hypothesis and that the corresponding
Clopper-Pearson-type confidence interval overlaps with the null hypothesis if and
only if the design rejects the null. These compatibility properties are by no means
statistically necessary but they are often expected by practitioners. Hence, their vi-
olation may lead to confusion about the interpretation a trial’s results. Being able to
avoid such situations entirely is thus a major benefit.

A major problem with frequentist inference after unplanned design adaptations is
the fact that the result of an unplanned adaptation is only a partial design conditional
on the data observed so far. It is thus impossible to tell with certainty what one would
have done, had the data at the time-point of adaptation been different. This is, how-
ever, necessary to derive valid p values that are compatible with the final test decision.
Methods for obtaining valid p values by, e.g., a combination function approach can
still be used but the advantages of a compatible inferential framework for p values,
point estimate, confidence interval, and test decision are lost. The ideal way of con-
ducting compatible frequentist inference after an unplanned design adaptation thus
remains an open problem.

Alternatively, Chapter 4 explores how the Bayesian paradigm (Jeffreys, 1998) can be
used to draw inference after the conclusion of the trial. This is particularly attractive if
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the necessary prior was already specified during the planning phase (see Chapter 3).
Under the Bayesian paradigm, the notion of compatibility is not meaningful since
the full posterior distribution is reported instead of a single p value. The necessarily
subjective planning prior (see Section 9.1) introduces bias in posterior mean point
estimates (see Section 10.1). This can be avoided by using a different prior distribution
for the analysis of the trial than the one used for its planning (O’Hagan et al., 2005).
Objective Bayes theory addresses this issue via ‘non-informative’ priors. In single-
parameter problems such as the one at hand, the Jeffreys prior is often employed as
analysis prior (Jeffreys, 1946). A detailed analysis of the properties of the design-
specific Jeffreys prior in Section 10.1, however, shows that the relative likelihood of
different response probabilities implied by the Jeffreys prior might sometimes be hard
to justify.

A major advantage of the Bayesian paradigm is that inference is unaffected by un-
planned changes to the sampling scheme. This is due to the fact that all Bayesian
inference is solely based on the likelihood and the chosen prior - not the design it-
self. The problems surrounding the definition of an ordering to obtain a valid p value
consequently do not apply when reporting posterior probabilities instead of p values.
Note that the use of posterior probabilities instead of p values does not, in any way,
affect type one error rate control since this is a property of the optimal design itself
and independent from the inference following the trial.

Furthermore, Bayesian posterior-mean point estimates showed favourable prop-
erties in terms of their bias-variance trade-off (see Section 5.2). This is due to the
fact that the posterior mean estimator directly minimises the expected finite-sample
quadratic error, whereas the maximum likelihood estimator is mostly popular due to
its asymptotic properties. For large sample sizes and a non-informative prior choice,
the differences are negligible, though.

14.8. Conclusions
Optimisation of trial designs can lead to more effective studies in terms of length
and costs (both directly related to sample size). In clinical trials, two-stage designs
are certainly preferable. This is particularly the case for binary endpoints often used
in early oncological studies since the one-stage binomial test is ineffective. Optimal
generic two-stage designs are an attractive choice since they fully exploit the inform-
ation available during an interim analysis as compared to group-sequential design
which only use this information to determine whether or not to stop the trial early.
Similarly important, it can be insightful to study the optimising designs for differ-
ent objective criteria to get a better understanding for the properties of the objective
criteria. With the technical challenges around computing optimal two-stage designs
largely resolved, the discussion should shift towards the choice of objective criterion.
Here, it is important to correctly incorporate planning uncertainty. Bayesian meth-
ods can be used to do so and balance between performance under different response
probabilities. This is essential to obtain designs that are robust towards small devi-
ations from planning assumptions while still exploiting available a priori information
as effectively as possible.
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Pre-specified optimal designs are always superior to post hoc adaptations using
methodology for unplanned design adaptations. The latter, however, do play an im-
portant role in incorporating newly emerging trial-external information or to react
to operational necessities.

Standard frequentist inference in two-stage designs is complicated by the choice
of ordering on the outcome space. Whenever possible, a design-compatible point
estimator and its corresponding induced p value and confidence interval should be
used to avoid contradictions between p value and confidence interval on the one side
and the actual test decision on the other side. Mean unbiased point estimation in
generic-two stage designs with binary endpoint is possible but the variance of the
estimator is high rendering it an unattractive choice if precision is of any concern.

Bayesian inference based on the posterior distribution of the planning prior is an
attractive alternative since the planning prior will generally be published together
with the study protocol. Although the prior remains subjective, the fact that it is
pre-specified will increase the credibility of inference drawn from it. The fact that
Bayesian inference is unaffected by unplanned design changes makes this a partic-
ularly attractive choice when there are reasons to expect the necessity of a design
change during the course of the trial. Furthermore, posterior point estimators tend to
exhibit favourable properties in terms of their trade-off between bias and variance.

Software implementations for all methods discussed in this thesis are made avail-
able and are discussed in more detail in Appendix A.1. The source code underlying all
examples discussed in this thesis is available in an online repository and permanently
accessible via a digital object identifier. For details on the reproducibility concept of
this thesis, see Appendix A.2.
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15. Summary
This thesis presents a novel, fast, and exact way of computing optimal two-stage

designs for single-arm trials with binary endpoint. These designs are commonly used
in early oncological trials to asses the tumour response rate under a new therapy.
Here, a ‘response to treatment’ is usually defined in terms of the RECIST guideline.
The new method allows solving problems of any practically relevant size in this field
within seconds or minutes which is a substantial speed-up as compared to previous
implementations. This makes it easier to explore different planning scenarios inter-
actively.

Most clinical trials have to be planned under substantial uncertainty about the true
effect size. This is particularly important in early-stage trials where little prior evid-
ence is available. It is thus important to devise methods that can incorporate uncer-
tainty into the planning process. This thesis develops and presents multiple ways to
do so and thus extends the classical method for sample size calculation which assumes
a fixed point alternative. The principled incorporation of uncertainty is achieved by
using a Bayesian prior probability that weighs plausible response rates by their a pri-
ori likelihood. In general, larger uncertainty about the true response rate then leads
to optimal designs with less variable stage-two sample size functions. This makes
the resulting designs more robust towards mis-specification of the expected response
rate.

A brief outlook as to how these ideas can be extended to continuous outcomes is
given at the end of this thesis. Continuous outcomes in early oncological trials arise,
e.g, when it is more appropriate to consider the actual tumour volume as a continuous
endpoint instead of a binary ‘response criterion’ like RECIST.

The problem of post-trial inference is discussed from both Bayesian and frequent-
ist perspectives. In the frequentist case, a major challenge lies in the definition of
p values that are compatible with the optimal-design’s test decision in the sense that
p ≤ α ⇔ Test rejects the null hypothesis. While it is well-known that p values for
multistage designs are not uniquely defined, in this thesis, it is argued that a defin-
ition in terms of ‘test-compatible’ point estimators has great practical advantages.
Only if p values are based on estimators with such a property, the relations between
point estimators, p values, and confidence intervals known from single-stage designs
are preserved. For most sensible designs, the classical maximum likelihood estimator
is test-compatible but not for all. A simple criterion for checking test-compatibility of
an estimator during the planning phase and a general way of obtaining compatible es-
timators is described. It is further argued that unbiased estimation has unfavourable
properties in the setting of binary two-stage designs and should be avoided.

Finally, this thesis also covers methods to deal with the need to react to unanticip-
ated changes of the planning assumptions. In principle, optimal two-stage designs
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need not be adjusted during the course of a study. A need to modify the design of
an ongoing trial might arise if new trial-external information becomes available or
the planning assumptions change otherwise. Here, it is important to distinguish un-
planned design adaptations from the fact that the sample size itself is adaptive but in
a pre-specified way, i.e. the design itself remains unchanged.

The methods outlined in this thesis therefore cover the entire life-cycle of a single-
arm design with binary endpoint which are commonly used in early oncological trials.
Software implementations of all methods discussed are provided (see Appendix A.1)
and all examples presented in this thesis are available as interactive notebooks online
(see Appendix A.2).

An interactive web app for exploring optimal designs in a few common settings
without requiring any programming skills.
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16. Zusammenfassung

Diese Arbeit stellt eine neuartige, schnelle und exakte Art der Berechnung von opti-
malen zweistufigen Designs für einarmige Studien mit binärem Endpunkt vor. Solche
Designs werden häufig in frühen onkologischen Studien verwendet. In diesen Studi-
en wird üblicherweise die Rate untersucht mit der eine bestimmte Tumorart auf eine
neuartige Therapie in der Zielgruppe anspricht (die sogenannte ‘response rate’ oder
Erfolgsrate). Der Therapieerfolg wird dabei häufig gemäß der RECIST Richtlinien be-
stimmt. Diese neue Methode zur Berechnung solcher optimalen Designs erlaubt die
Lösung von Problemen für jede praktisch relevante Studiengröße innerhalb kürzester
Zeit. Dies bedeutet eine erhebliche Beschleunigung im Vergleich zu früheren Imple-
mentierungen und erleichtert somit die interaktive Untersuchung verschiedener Pla-
nungsszenarien.

Klinischen Studien müssen üblicherweise unter erheblicher Unsicherheit bezüglich
der relevanten Parameter (hier die tatsächliche Erfolgsrate) geplant werden. Dies trifft
insbesondere auf Studien in frühen klinischen Phasen eines Entwicklungsprogramms
zu, da hier in der Regel zum Planungszeitpunkt kaum datenbasierte Evidenz über
die Erfolgsrate vorliegt. Methoden, die diese Planungsunsicherheit berücksichtigen
können, sind daher von besonderem Interesse. Die vorliegende Arbeit entwickelt
und präsentiert verschiedene Möglichkeiten solche Unsicherheiten in die Studien-
planung zu integrieren und erweitert damit die klassische Methode zur Berechnung
der benötigten Fallzahl, die üblicherweise von einer festen Punktalternative ausgeht.
Zu diesem Zweck wurde ein Bayes’scher Ansatz gewählt, der plausible Erfolgsraten
gemäß ihrer Vorabwahrscheinlichkeit gewichtet. Im Allgemeinen führt dabei größere
a priori Unsicherheit zu optimalen Designs mit weniger variablen Fallzahlen für die
zweite Stufe des Designs. Die resultierenden Designs sind also robuster gegenüber
Fehlspezifikationen der erwarteten Erfolgsrate.

Die in dieser Arbeit entwickelten Konzepte lassen sich von der Situation der binären
Endpunkte auf kontinuierliche Endpunkte übertragen. Obgleich dies nicht zentraler
Bestandteil der vorliegenden Arbeit ist, wird die Vorgehensweise kurz anhand eines
Beispiels erläutert. Kontinuierliche Endpunkte können in frühen onkologischen Stu-
dien zum Beispiel dann von Interesse sein, wenn anstelle eines binären Erfolgskri-
teriums gemäß der RECIST Richtlinien das tatsächliche Tumorvolumen (oder dessen
Entwicklung im Zeitverlauf) betrachtet werden soll.

Neben der optimalen Planung einer Studie ist die effektive Auswertung nach Ab-
schluss der Datenerhebung entscheidend für den Studienerfolg. Die finale statistische
Inferenz wird sowohl aus der Bayesianischen als auch aus der frequentistische Per-
spektive betrachtet. Im Fall der frequentistischen Betrachtungsweise besteht eine we-
sentliche Herausforderung in der Definition von p Werten, die mit der Testentschei-
dung des zugrundeliegenden optimalen Designs in dem Sinne kompatibel sind, dass
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p ≤ α ⇔ Test lehnt die Nullhypothese ab. In der vorliegenden Arbeit wird argumen-
tiert, dass eine Definition des p Wertes in Bezug auf ‘Test-kompatible’ Punktschätzer
praktische Vorteile hat. Nur wenn p Werte auf Schätzern mit einer solchen Eigen-
schaft basieren, bleiben die Beziehungen zwischen Punktschätzern, p Werten, und
Konfidenzintervallen erhalten, die aus einstufigen Tests bekannt sind. Für die meisten
praktisch sinnvollen Designs ist der klassische Maximum-Likelihood-Schätzer Test-
kompatibel, allerdings nicht in allen Situationen. Die vorliegende Arbeit zeigt, wie
Test-Kompatibilität eines Schätzers während der Planungsphase überprüft werden
kann und beschreibt einen allgemeinen Weg, um kompatible Schätzer zu erhalten.
Weiterhin wird argumentiert, dass unverzerrte Schätzer in zweistufigen Designs in
der Regel ineffizient sind und nicht zu Test-kompatiblen p Werten führen.

Schließlich betrachtet diese Arbeit auch Methoden, um auf unvorhergesehene Än-
derungen der Planungsannahmen zu reagieren. Prinzipiell sollten optimale zweistufi-
ge Designs zwar nicht während einer laufenden Studie modifiziert werden, da sie die
Fallzahl bereits optimal an die beobachteten Zwischenergebnisse anpassen. Eine Desi-
gnanpassung kann jedoch nötig werden, falls etwa neue Studien-externe Informatio-
nen verfügbar werden, die den Planungsprior obsolet machen. Hierbei ist es wichtig
nicht-vorgeplante Designanpassungen von der vorgeplanten Anpassung der Stich-
probengröße zu unterscheiden. Bei letzterer bleibt das Design selbst unverändert.

Die in der vorliegenden Arbeit beschriebenen Methoden decken also alle aus statis-
tischer Sicht relevanten Projektphasen einer frühen einarmiges Studie mit binärem
Endpunkt ab. Software-Implementierungen aller diskutierten Methoden stehen zur
Verfügung (siehe dazu Anhang A.1). Alle in dieser Arbeit vorgestellten Beispiele sind
als interaktive ‘Notebooks’ online verfügbar (siehe Anhang A.2).

Eine interaktive Web-App erlaubt das Experimentieren mit optimalen Designs, oh-
ne jegliche Programmierkenntnisse.
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Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kel-
ley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C.
(2016). Jupyter Notebooks – a publishing format for reproducible compu-
tational workflows. In F. Loizides, B. Schmidt, editors, Positioning and Power
in Academic Publishing: Players, Agents and Agendas, pp. 87 – 90. IOS Press.
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age: Adaptive Optimal Designs for Clinical Trials in R. J Stat Softw, accepted.

This manuscript describes the R package adoptr which implements the ideas de-
veloped by Maximilian Pilz and myself in collaboration with Prof. Kieser, Prof. Rauch,
and Caroline Herrman. The software was used in Section 13. I lead the development
of the R package itself and provided guidance to Maximilian Pilz who contributed
equally to its completion. I also lead the writing of the manuscript in close collabor-
ation with the other authors.

Kunzmann, K., Kieser, M. (2020). Optimal adaptive single-arm phase II trials un-
der quantified uncertainty. J Biopharm Stat, 30(1):89-103.
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equation, supported the implementation, and the writing of the manuscript. Max-
imilian Pilz took the lead in making the approach work in practice and the writing of
the manuscript in close collaboration with the other authors.
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The manuscripts builds on the idea of test-compatibility and explores some altern-
ative interval estimators. Parts of it have been used as basis for the discussion of
confidence intervals and credible intervals in Section 5.2. I developed the concept,
implemented the methodology, and lead the writing of the manuscript in close col-
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logy, and lead the writing of the manuscript in close collaboration with Prof. Kieser.
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This manuscript was the first to outline a simplified variant of the integer linear pro-
gramming approach described in Section 2.3. I developed the core concept and the
implementation, the manuscript was written jointly with Prof. Kieser who also con-
tributed greatly to the choice of examples, the discussion and the introduction besides
providing general guidance on the structure of the paper.
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A. Appendix

A.1. Software
The overall solution speed of the problems crucially depends on two factors (see
Section 8.1 and Figure 8.2). Firstly, the formulated integer linear problems (see Sec-
tion 2.3) must be solved reliably and quickly. This can be done by any suitable (M)ILP
solver. Commercial solvers like Gurobi (Gurobi, 2018) tend to be more reliable and
faster but suffer from restrictive licensing. Therefore, the open-source GNU Linear
Programming Kit (GLPK) (GNU Project, 2020) is used throughout this thesis.

The second determining factor for overall solution speed is the time required to for-
mulate specific problem instances and pass them to the solver. Even for small prob-
lems the number of variables quickly exceeds several thousand and medium-sized
problems might contain as many as 500 000 individual binary variables. Computing
the coefficients of the various constraints typically requires excessive looping which
is ineffective in scripting languages like R (R Core Team, 2019). Julia (Bezanson et al.,
2017) is a relatively new programming language that is ideally suited for this task. It
achieves similar performance to statically compiled C while providing a high-level
interface comparable to R. Within Julia, the JuMP package for mathematical optim-
isation (Dunning et al., 2017) is a very convenient tool for implementing integer linear
problems of the class discussed in this thesis. JuMP implements a solver-agnostic in-
terface such that different solvers can easily be used with the same problem.

All methods described in this thesis are implemented in the publicly available
Julia package ‘bad’ (Binary Adaptive Designs) (Kunzmann, 2020a).

While Julia is a powerful language it is not yet commonly adopted in the statistical
community. R (R Core Team, 2019) is still much more wide-spread. To overcome this
limitation, a thin wrapper R-package, badr, was implemented (Kunzmann, 2020b).
This package enables users to interact with the Julia package bad through R. The
only prerequisite is a working installation of Julia which is readily available for all
major platforms.

The methodology to optimise designs for continuous endpoints was developed
jointly with Maximilian Pilz and is independently available in the R-package adoptr
(Kunzmann et al., 2020b,c).
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A. Appendix

A.2. Reproducibility of results
Special care was taken to ensure the reproducibility of the results presented in this
thesis. All examples and the code to generate the plots and figures are available at
zenodo.org Kunzmann (2020c). Zenodo.org is a long-term storage system for re-
search data operated by CERN and all records are permanently accessible via their
digital object identifiers. The repository contains a set of interactive ‘Jupyter note-
books’ (Kluyver et al., 2016) that were used to generate all plots.

The notebooks can be explored interactively and without installation of any soft-
ware using a so called ‘Binder-link’. Binder (Ragan-Kelley et al., 2018) is a tool that
turns software dependency specification into Docker containers (for more inform-
ation on Docker containers see https://www.docker.com/) in a reproducible way
and makes them available through web links in the browser via the free web ser-
vice https://mybinder.org. The containerisation approach ensures highest levels
of reproducibility since the software environment in which the scripts to produce
all figures and plots is exactly the same at each execution. It also makes it possible
to explore the examples interactively without having to install any software. At the
time of publication of this thesis, this service was offered free of charge although
the computing power of each instance is severely limited and computations can take
substantially longer than on a more performant machine. In particular,

• Section 1.2, Section 1.3, and Section 1.4 can be explored at:
https://mybinder.org/v2/gh/kkmann/optimal-binary-two-stage-
designs/0.2.2?urlpath=lab/tree/notebooks/introduction.ipynb

• Section 8.1 and Section 8.2 can be explored at:
https://mybinder.org/v2/gh/kkmann/optimal-binary-two-stage-
designs/0.2.2?urlpath=lab/tree/notebooks/optimal- two- stage-
designs.ipynb

• Section 9.1, Section 9.2, and Section 9.3 can be explored at:
https://mybinder.org/v2/gh/kkmann/optimal-binary-two-stage-
designs/0.2.2?urlpath=lab/tree/notebooks/optimisation-under-
uncertainty.ipynb

• Section 10.1 can be explored at:
https : / / mybinder.org / v2 / gh / kkmann / optimal - binary - two -
stage - designs / 0.2.2?urlpath = lab / tree / notebooks / bayesian -
inference.ipynb

• Section 11.1, Section 11.2, and Section 11.3 can be explored at:
https : / / mybinder.org / v2 / gh / kkmann / optimal - binary - two -
stage- designs/0.2.2?urlpath=lab/tree/notebooks/frequentist-
inference.ipynb

• Section 12.1 and Section 12.2 can be explored at:
https : / / mybinder.org / v2 / gh / kkmann / optimal - binary - two -
stage - designs / 0.2.2?urlpath = lab / tree / notebooks / unplanned -
adaptations.ipynb
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A.2. Reproducibility of results

• Section 13 can be explored at:
https://mybinder.org/v2/gh/kkmann/optimal-binary-two-stage-
designs/0.2.2?urlpath=lab/tree/notebooks/continuous-case.ipynb

For more information on how to reproduce the results on a local machine, see the
repository available at https://github.com/kkmann/optimal-binary-two-stage-
designs or Kunzmann (2020c).

Finally, an interactive web application based on the ‘shiny’ framework https:
//shiny.rstudio.com/ is contained in the examples-repository Kunzmann (2020c).
This application is also hosted using Binder and https://mybinder.org and can be
accessed via https://mybinder.org/v2/gh/kkmann/optimal-binary-two-stage-
designs/0.2.2?urlpath=shiny/shiny/.
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sinngemäß aus anderen Werken übernommene Inhalte als solche kenntlich ge-
macht.

3. Die Arbeit oder Teile davon habe ich bislang nicht an einer Hochschule des
In- oder Auslands als Bestandteil einer Prüfungs- oder Qualifikationsleistung
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