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In this work, we explore the 3D shape of cells and organoids in structured en-
vironments. Understanding the physical determinants of cell shape regulation in
structured environments is vital as it plays a crucial role in essential biological
processes, including migration, division and tissue development. The cellular Potts
model (CPM) has emerged as a powerful computational framework for simulating
cell behavior and morphodynamics in complex biological systems. Our research
focuses on utilizing the CPM to model 3D single cells on 2D micropatterns and in
3D structured environments. We explicitly consider intracellular structures such
as the nucleus and stress fibers and model their impact on cell shape. This allows
us to predict morphology and trajectories during the single cell spreading process
on micropatterns and demonstrates the effect of nucleus and stress fibers on these
processes. Through systematic simulations and comparison with surface minimiza-
tion approaches and experimental data, we demonstrate the ability of our model to
accurately predict cell shapes under different spatial constraints. Additionally, we
model the optic cup evagination in fish retina organoids with explicit representation
of Matrigel at the surface of the organoid. The findings shed light on the mechanistic
basis underlying the shape changes observed in multicellular systems.

In dieser Arbeit untersuchen wir die 3D-Form von Zellen und Organoiden in
strukturierten Umgebungen. Das Verständnis der physikalischen Faktoren für die
Regulierung der Zellform in strukturierten Umgebungen ist von grundlegender Be-
deutung, da diese eine entscheidende Rolle bei wesentlichen biologischen Prozessen
wie Migration, Teilung und Gewebeentwicklung spielt. Das CPM hat sich als leis-
tungsfähiges Modell für die Simulation von Zellverhalten und Morphodynamik in
komplexen biologischen Systemen erwiesen. Unsere Forschung konzentriert sich auf
die Nutzung des CPM zur 3D Modellierung einzelner Zellen auf 2D-Mikropattern
und in strukturierten 3D-Umgebungen. Wir berücksichtigen explizit intrazelluläre
Strukturen wie den Zellkern und Stressfasern und modellieren deren Einfluss auf die
Zellform. Auf diese Weise können wir die Morphologie und die Trajektorien während
des Ausbreitungsprozesses einzelner Zellen auf Mikropattern vorhersagen und den
Einfluss von Zellkern und Stressfasern auf diese Prozesse nachweisen. Durch systema-
tische Simulationen und Vergleiche mit Modellen, die Oberflächenminimierung nutzen,
zeigen wir im Vergleich mit experimentellen Daten, dass unser Modell in der Lage
ist, Zellformen unter verschiedenen räumlichen Bedingungen genau vorherzusagen.
Zusätzlich modellieren wir die Evagination von Retinazellen in Fischorganoiden mit
expliziter Darstellung von Matrigel an der Oberfläche des Organoids. Die Ergebnisse
bieten eine Erklärung auf Grundlage von Interaktionsenergien für die beobachtete
Formveränderung des multizellulären Systems.
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1 Introduction

Over the past two decades, the important role of mechanobiology in determining
cell fate and behavior has been increasingly recognized [1–3]. The realization that
not only biochemical cues, but also the local microenvironment and mechanical
forces exerted on cells impact cell shape, function, decision making and even gene
expression has revolutionized our understanding of cellular processes. Cell shape in
particular is intricately regulated by the cell through a combination of extracellular
and intracellular processes and can be easily observed, making it a subject of great
interest and investigation [4].

Cell shape diversity is a remarkable characteristic observed across different cell
types, and is often optimized for a specific function. Examples are neurons with
extending dendrites and axons optimized for fast transfer of electrical impulses or red
blood cells optimized to deliver oxygen when squeezing through thin blood vessels.
Even within a single cell type, a wide array of shapes can be found [5]. Variations
in cell morphology can have significant implications for division [6], differentiation
[7], and tissue morphogenesis [8, 9]. Understanding the underlying mechanisms that
govern cell shape is vital for unraveling the complexities of cellular functions and
tissue organization.

To gain deeper insights into the intricate interplay of the molecular and biophysical
processes responsible for force sensing and exertion and the consequential cell shape
changes, numerous experiments have designed and conducted [10]. These experiments
have led to valuable data on the cytoskeletal dynamics [11, 12], in particular actin
force generation [13], and adhesion molecules [14, 15] that contribute to shaping
cells. However, the sheer complexity of cellular systems often calls for the integration
of experimental findings with computational modeling approaches to comprehend
emergent properties arising from local interactions.

One such powerful modeling tool for the study of cell shape is the cellular Potts
model (CPM) [16]. The CPM is a versatile computational framework that employs
pseudo-energies and a modified Metropolis algorithm to simulate the evolution of a
system towards a local minimum. It has proven to be particularly useful in capturing
the collective behavior of cells [17, 18] and their interactions in tissues [19, 20].
By considering the influence of cell adhesion and mechanical forces, the CPM can
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CHAPTER 1. INTRODUCTION

effectively recapitulate the dynamics and morphological changes observed in various
cellular systems [21–24].
Modeling and predicting cell shape dynamics and comparison with experimental

data deepens our understanding of the intricate processes governing cell shape. In this
study, we explore the complexities of cell shape dynamics with the CPM. Through
this approach, we uncover new insights into the adaptive and context-dependent
nature of cell shape and its impact on cellular behavior, ultimately contributing to a
deeper understanding of mechanobiology.

Outline

In Chapter 2, we describe the mechanobiology of cells, and focus on the intracellular
structures that are important for cell morphology. We introduce the cytoskeleton, and
focus specifically on the actin cortex and stress fibers. Additionally, we describe the
effect of the nucleus and focal adhesions on cell shape. Then, we describe biological
processes for which the cell shape is relevant, such as migration, differentiation and
division.
In Chapter 3, we give an overview of experiments with cells in structured

environments. We focus on structured environments in two and three dimensions and
describe their effect on cell shape and behavior. We differentiate between single cell
experiments and experiments with cell collectives, where we highlight the emerging
properties due to cell-cell interactions. Lastly, we give an overview of organoid
development in structured environment experiments, which is an exciting new research
direction that enables investigations of mechanical input during morphogenesis in a
controlled environment.
In Chapter 4, we outline how models have been used to describe and predict

the previously described experimental results. We given an overview of the most
successful 2D and 3D single cell models that predict cell shape and describe how
these models can be modified for cell collectives and organoids. Then, we focus on the
CPM, a lattice based modeling framework used to describe single cells and collectives.
We describe the origin and mechanism of the CPM, as well as how to implement the
intracellular structures in the Hamiltonian used to describe the biological system.
Finally, we explain the CompuCell3D (CC3D) software architecture and custom
plugins used in this work.
In Chapter 5, we detail our approach to model 3D cell shape on 2D micropat-

terned surfaces with the CPM. We discuss the influence of the nucleus on cell
shape, predict trajectories of cells spreading on micropatterns and compare predicted

2



CHAPTER 1. INTRODUCTION

cell shapes during spreading to experimental results. Finally, we discuss advan-
tages and challenges when including stress fibers in single cell CPM simulations by
compartmentalizing the cell.
In Chapter 6, we model cell shape in 3D structured environments and compare

the shapes we obtain experimentally, from surface minimization and with the CPM.
To quantitatively compare shapes, we employ a spherical harmonics analysis and use
this method to test a large parameter range in the CPM simulations as well as to
quantify the influence of the nucleus on the cell shapes.
In Chapter 7, we model organoids in an extracellular matrix (ECM) protein

environment with the CPM. We predict the influence of ECM proteins on the mor-
phogenesis of retina organoids and reproduce the experimentally observed organoid
shapes with optic vesicle regions on their surface for small organoids and a neuroep-
ithelial layer at the surface for large organoids.

In Chapter 8, we summarize and discuss the main findings of this work and give
an outlook to possible future directions.
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2 Intracellular structures governing cell
shape

The shape of animal cells is the result of active and passive intracellular and ex-
tracellular forces arising from actin polymerization, actomyosin contraction, cell
adhesion, and material properties of the cell and its mechanical environment [4]. In
this chapter, we give an overview of intracellular structures that are relevant for cell
shape, which are depicted schematically in Fig. 2.1.

2.1 Introduction to cell mechanics

The cell membrane, a lipid bilayer with fluid-like properties, acts as the physical
boundary of the cell, but does not contribute much to the mechanics of cells for most
cell types [25].

Instead, the cytoskeleton, a remarkable and intricate network of protein filaments, is
responsible for the structural integrity, shape and mechanical properties of eukaryotic
cells. Acting as a dynamic scaffold, the cytoskeleton plays a crucial role in diverse
cellular processes, including cell division, intracellular transport, cell signaling, and
cell migration. Composed of three major types of filaments - actin microfilaments,
intermediate filaments, and microtubules - the cytoskeleton provides the necessary
framework for the organization and movement of cellular components, contributing
to the overall functionality of the cell [11].

2.1.1 Actin microfilaments

Action microfilaments are the thinnest components of the cytoskeleton, consisting
of two intertwined strands of actin protein subunits. These filaments are highly
versatile and dynamic, actively participating in numerous cellular activities. They
form the basis of contractile structures in muscle cells as well as in all other cell
types. Additionally, actin plays a pivotal role in cell shape maintenance and support,
facilitating cell movement and membrane protrusions like filopodia and lamellipodia
during cell migration [13].
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2.1 Introduction to cell mechanics

Figure 2.1: Schematics of a single cell on an adhesive substrate, not to scale.
The substrate is coated with the ECM protein fibronectin (gray), which
enables a connection between the cell and the substrate through focal
adhesions (yellow). On the inner face of the cell plasma membrane (black)
is the actin cortex (red), a 100-1000 nm thick layer of F-actin filaments,
motor proteins and other actin binding proteins that give mechanical
rigidity to the cell surface. Stress fibers (red, thick) are bundles of 10-30
actin filaments that can form at focal adhesions that are used by cells to
sense forces in their local microenvironment. The nucleus (green) is a
spherical or ovoid organelle that influences the shape of cells adhered to
a substrate due to its high stiffness.

Most cell types have a thin layer of actin filaments located beneath the cell plasma
membrane, see Fig. 2.1. This network is called actin cortex and serves as a critical
determinant of cell shape [26]. It consists of filamentous actin and regulating proteins
such as Arp2/3 as a nucleator and α-actinin and filamin as crosslinkers. Myosin-
II motors assemble to minifilaments and contract the actin network. It provides
mechanical support and helps maintain cell integrity by generating contractile forces
and resisting external mechanical stresses [27, 28]. The actin cortex is mechanically
rigid and at the same time plastic, due to the high turnover in the network. Research
on the actin cortex has demonstrated its dynamic nature, with continuous remodeling
on timescales of 10s of seconds. Rounded cells have an isotropic filament network,
while the actin fibers in spread-out cells form anisotropic bundles. High network
tensions lead to a local reduction of surface area. Tension gradients are an important
mechanism for cell deformations and migration [29–31].

The mechanical properties of the cortex depend on both the myosin motor activity
and the architecture of the actin network. The cortex is present in most cell types,
but not necessarily isotropic. An isotropic actin cortex is assumed in the 2D contour
model for single cells on micropatterned structures, see Chapter 3.1.2, where it is
modeled as a constant surface tension in the cell. In the context of the CPM, the
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2.1 Introduction to cell mechanics

effect of the actin cortex is modeled via area constraints and interaction energies
of neighboring voxels, reducing the energy of the system if the cell becomes more
spherical . Wortel and colleagues [32] model the effect of the contracting actin cortex
during migration with a negative energy contribution, which favors voxel copying
attempts in regions where voxels were added recently.

In addition to the cortex network, stress fibers, which are aligned bundles of 10-30
actin filaments, are assembled by cells in areas of high stresses, see Fig. 2.1. They
are crosslinked with proteins such as α-actinin, fascin and filamin. Myosin-II-motor
proteins are present in most stress fibers, making them contractile. Stress fibers
can couple directly to the ECM via focal adhesions, that contain proteins that are
binding to actin filaments. Stress fibers are under isometric tension and are relevant
for cell adhesion, migration and mechanosensing on the mesoscale, as they sense and
mediate forces in their local microenvironment. Stress fibers are typically classified in
three types, that differ in both function and composition. Dorsal stress fibers do not
contain myosin and originate from a focal adhesion at the leading edge of migrating
cells. Often, they couple to transverse arcs, which are contractile (myosin-containing)
stress fibers that form parallel to the leading edge of the cell. Ventral stress fibers are
contractile as well, but they are attached to focal adhesions on both ends [33, 34].

In structured environments, stress fibers typically form between points of adhesion
in regions with high stress [34]. The stress fiber distribution after cell spreading
can be described independently of the spreading mechanism by adding straight lines
between points of adhesion when the line is completely within the cell body [35].

2.1.2 Other cytoskeletal proteins

Microtubules are the largest and most rigid components of the cytoskeleton. They
are composed of tubulin protein subunits arranged in a hollow tube-like structure.
Microtubules serve as crucial tracks for intracellular transport, guiding motor proteins
that carry vesicles, organelles, and other cellular cargo. They also play an important
role during cell division by forming the mitotic spindle, which ensures the accurate
segregation of chromosomes into daughter cells. Additionally, microtubules are
involved in maintaining cell shape, supporting cilia and flagella, and influencing cell
polarity and intracellular signaling [36, 37].

Intermediate filaments are a diverse group of cytoskeletal components that provide
mechanical strength and stability to cells. Unlike microfilaments and microtubules,
intermediate filaments do not exhibit dynamic polymerization and depolymerization.
Instead, they form stable networks that reinforce the structural integrity of cells,
especially in tissues subjected to mechanical stress. Different types of intermediate
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2.1 Introduction to cell mechanics

filaments are found in various cell types, such as keratins in epithelial cells, vimentin
in mesenchymal cells, and neurofilaments in nerve cells [36, 38].

One of the most fascinating aspects of the cytoskeleton is its dynamic nature. All
three types of cytoskeletal filaments are subject to constant assembly and disassembly,
a process essential for cellular responses to changing conditions. This dynamic
regulation is achieved through a range of proteins, such as actin-binding proteins,
microtubule-associated proteins, and intermediate filament-associated proteins, which
modulate the polymerization, stability, and interactions of cytoskeletal filaments [12].

2.1.3 Nucleus

The nucleus harbors the genomic material and additionally contributes to cellular
mechanics. As the largest organelle in most eukaryotic cells, with diameters of up
to 20 µm, it influences the shape of cells due to its size and stiffness, see Fig. 2.1.
In relaxed cells, the nucleus is spherical or ovoid, and has an elastic modulus of
1-10 kPa, which is 5-10 times stiffer than the cytoplasm in differentiated cells [39].
Even though the nucleus is much stiffer than the cytoplasm, it can be deformed
by cells, for example when they migrate through constrictions [39]. For stationary
cells on 2D micropatterns, the nucleus is typically positioned at the center of the
inner area, and extends to the third dimension, while the cytoplasm is relatively flat
(fried-egg shape) [36]. At the same time, there has been evidence of a direct coupling
between the nucleus and the cytoskeleton since 1997, leading to the speculation
that the nucleus is actively involved in cell mechanical processes [40]. Much later,
the LINC complexes (Linker of Nucleoskeleton and Cytoskeleton) were identified as
modulators of the mechanical signal transmission between the cytoskeleton and the
nuclear envelope proteins [41]. Additionally, mechanosensitive transcription factors,
the most investigated being yes-associated protein 1 (YAP), were found to localize in
the nucleus in cells under tension due to changes in the nuclear pore complexes [42].
The position of the nucleus during cell migration is typically at the rear of the

cell, and for cells on micropatterned surfaces the nucleus takes a position close to
the center of mass of the cell [43].

2.1.4 Focal adhesions

Focal adhesions connect the cell to the ECM, a fibrous network of collagen, fibronectin,
and other proteins, thus they are important for cell migration and environmental
sensing, see Fig. 2.1. Focal adhesions are protein complexes which are 1-5 µm long and
300-500 nm wide, depending on the intra- and extracellular local microenvironment.
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2.2 The importance of cell shape for biological processes

The binding to the ECM is realized through integrin transmembrane receptors. On
the inside of the cell, a nanostructure consisting of an integrin signalling layer, a
force transduction layer and the actin-regolatory layer binds the focal adhesion to
actin stress fibers [36]. The composition of focal adhesion depends on many factors,
such as the stiffness and composition of the ECM. Focal adhesions on stiff glass
substrates are larger and more numerous as compared to substrates with stiffnesses
similar to the human body (1-100kPa). The average lifetime of focal adhesions is
about one hour, depending on intra-and extracellular factors [15, 36, 44].

2.2 The importance of cell shape for biological

processes

Cell shape is not just a mere structural aspect but is intimately tied to the cellular
functions and behaviors that dictate the overall health and functionality of organisms
[45]. Understanding the factors that regulate cell shape is crucial for advancing our
knowledge of developmental processes, tissue homeostasis, and disease mechanisms.
Cell shape is intimately tied to the specific functions and roles individual cells

perform within the complex web of life. Different cell types have evolved distinct
shapes that are uniquely suited to their specialized tasks. For instance, neurons,
with their long, branching extensions (dendrites and axons), enable the transmission
of electrical signals over considerable distances, facilitating communication within
the nervous system [46]. Conversely, red blood cells have a biconcave disc shape,
which optimizes their surface area, allowing for efficient exchange as they transport
oxygen throughout the body [47]. Furthermore, the tightly packed, cobblestone-
like arrangement of epithelial cells forms protective barriers and linings in various
tissues and organs, acting as a front-line defense against external threats [48]. This
remarkable correlation between cell shape and function highlights the precision of
cellular design and the adaptation of cells to perform their crucial roles in sustaining
life.
Cell shape’s dynamic nature is intimately connected to cell movement, a funda-

mental process with broad implications in biology. The cytoskeleton, a complex
network of protein filaments, serves as the structural framework for maintaining cell
shape and also plays a pivotal role in facilitating cellular motility. As cells migrate,
they undergo coordinated changes in shape, driven by the dynamic rearrangement of
actin filaments, microtubules, and intermediate filaments [49]. These rearrangements
allow cells to change their morphology, extend protrusions like lamellipodia and
filopodia, and form adhesions with the substrate for traction. Cell movement is
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2.2 The importance of cell shape for biological processes

central to critical physiological processes, such as embryonic development, immune
responses, and wound healing. Moreover, aberrant cell migration is associated with
pathological conditions, including metastatic cancer cell invasion and tissue fibrosis
[36]. Understanding the intricate interplay between cell shape and motility is vital
in deciphering the complexities of cellular behavior and holds promise for potential
therapeutic interventions targeting cell migration-related diseases.

Accurate cell shape is essential during cell division, ensuring the faithful trans-
mission of genetic material to daughter cells. The process of cell division, also
known as mitosis, relies heavily on the cytoskeleton’s coordination and organization.
Microtubules, a major component of the cytoskeleton, form the mitotic spindle, a
specialized structure that segregates duplicated chromosomes during cell division.
The spindle fibers exert forces that precisely separate the genetic material into two
daughter cells [36]. Any disruptions or abnormalities in cell shape can lead to errors
in chromosome distribution, resulting in genetic instability and potential cell death.
Proper cell shape and cytoskeletal function are crucial for maintaining genomic
integrity and ensuring the accurate transmission of genetic information, which is
vital for tissue growth, repair, and development in multicellular organisms [45].

Cell shape not only influences cellular behavior but also determines how cells
respond to their external environment [10, 45]. The interactions between cells and
their surroundings play a crucial role in various physiological processes. Cell shape
can dictate how efficiently cells interact with neighboring cells, ECM, or foreign
particles.

Additionally, cell shape can be influenced by the mechanical properties of the
extracellular environment, such as its stiffness. Numerous studies have shown that
changes in the mechanical properties of the extracellular microenvironment can impact
cell shape [50–52], migration [53–55], and differentiation [8, 56]. Understanding the
complex relationship between cell shape and the extracellular environment is essential
for unraveling the intricate mechanisms underlying tissue development, wound healing,
and immune responses.

Moreover, the extracellular environment’s mechanical properties, such as its stiff-
ness or rigidity, can have profound effects on cell shape and behavior. Cells can sense
and respond to the physical characteristics of their surroundings through mechan-
otransduction mechanisms [2, 57, 58]. For example, when cells encounter a stiff
ECM, they tend to adopt a more spread-out and flattened shape, whereas in a softer
environment, cells may take on a more rounded and compact shape. This mechanical
sensing can influence various aspects of cell behavior, including cell proliferation [59,
60], migration [59, 61], and differentiation [62, 63].
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2.2 The importance of cell shape for biological processes

The ability of cells to respond to their environment through shape changes is critical
for tissue homeostasis, development, and wound healing. It also has implications
in disease contexts, such as cancer metastasis, where cancer cells can alter their
shape in response to cues from the surrounding microenvironment, allowing them to
invade and migrate to distant tissues. Understanding the intricate interplay between
cell shape and the extracellular environment provides valuable insights into cellular
behavior and tissue dynamics.
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3 Cells in structured environments∗

During the last two decades, cell mechanics, forces and shape have emerged as
important elements of the way biological cells interact with their environment
[2]. While the importance of controlling cells through biochemical ligands such as
growth factors, hormones and cytokines has been appreciated from the very start
of cell culture experiments, the insight that spatial control of cell adhesion, the
physical properties of the ECM, as well as the mechanics of the cytoskeleton and the
nucleus might be equally important for cellular decision making are rather recent
insights. Not surprisingly, it was tied to the development of new tools that allowed
researchers to better control the extracellular environment. This development started
by transferring tools from the microfabrication of electronic devices into the life
sciences, most notably microcontact printing to generate adhesive islands to control
cell adhesion to planar substrates [64]. This lead to pioneering work that showed that
cell fate can be controlled by the size of the adhesive islands: cells only survived on
large islands and triggered apoptosis on small ones [50]. Later it was discovered that
this switch is related to the translation of the transcription factor YAP/transcription
regulator 1 (TAZ) into the nucleus in mechanically stressed cells [65].
Apart from geometry, extracellular stiffness has also been found to be a major

regulator of cell behavior, and again this insight was tied to advances in materials
preparation. Soft elastic substrates were introduced into cell culture with the main
aim of measuring cell forces from the substrate deformations [66, 67]. However,
through their use it was realized that substrate stiffness has a profound influence on
single cell organization and migration [68] as well as on differentiation [69, 70]. For
example on large islands, cells on stiffer substrates spread better and YAP/TAZ is
translocated into the nucleus [65, 71]. It was also shown that extracellular stiffness
affects the migration of cell collectives, which often behave as an effective supracell
that can sense more shallow stiffness gradients than single cells [72]. Together, these
historical developments prove that tools from materials science can be instrumental

∗This chapter is based on the review Link, R., Weißenbruch, K., Tanaka, M., Bast-
meyer, M., & Schwarz, U. S. (2023). Cell Shape and Forces in Elastic and Structured
Environments: From Single Cells to Organoids. Advanced Functional Materials, 2302145.
https://doi.org/10.1002/ADFM.202302145 [10].
In detail, we use Section 1, Section 2, specifically 2.1, 2.2, and 2.4, Section 3, specifically 3.1, 3.2,
and 3.3, Section 4, and Section 5, all with small changes.
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3.1 Single cells

for promoting progress in the life sciences. In particular, they open the door for
novel biomedical applications and therapies, like analysis of patient samples and
tissue regeneration in the test tube.

Since its inception around three decades ago, the field of mechanobiology has
seen dramatic growth, with many new tools and model systems entering the field.
Most importantly, we have seen a shift from single cell studies to work with cell
collectives, cell monolayers, 3D model tissues and organoids [73, 74]. As the field
moved from 2D to 3D, imaging and force measurements became more challenging,
but were met by new technologies. To image 3D cell assemblies, light sheet and
two-photon microscopies have been helpful [75–77]. Today, forces can be measured in
situ by inserting oil droplets [78] or elastic microbeads [79] into tissue. Optogenetics
can be used to control cell forces in space and time [80]. Direct laser writing of
3D scaffolds has been adapted to cell culture conditions and used to control cell
shape and forces in 3D [81, 82]. More recently, microfabrication has been used to
control the organization of organotypic systems [83] and organoids in 3D [84]. In
this chapter, we will review these recent advances.

3.1 Single cells

Single cells are the fundamental building blocks of life. While there is an enormous
diversity in animal species and their cell types, the cytoskeleton, which determines
the cell’s mechanics and shape, is strikingly universal. It is primarily made up of
three different filament systems: actin filaments, which together with the molecular
motor myosin II are responsible for contractility and motility; microtubules, which
are important for the positioning of organelles and directed transport processes
within the cell; and intermediate filaments, which reinforce and complement the
mechanics provided by actin and microtubules, especially in epithelial monolayers,
which have to perform under very large strains [36]. While each filament system is
well-investigated independently, the interplay between them is the topic of much on-
going research [12]. Very importantly, cell mechanics are also strongly determined by
the mechanics of the nucleus, which is typically ten times stiffer than the cytoplasm
and tightly integrated with the cytoskeleton through the LINC-complexes [85]. For
a long time, it was argued that cells have to use their cytoskeleton to sense and
calibrate mechanical cues from their environment [86], and today the nucleus should
be added as an additional measurement devise [87, 88].

With the help of rationally designed cell environments, the exact impact of physical
cues, such as substrate geometry and stiffness, on cell organization, mechanics,
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behavior, and fate can be investigated. The best understood subsystem is cell
adhesion to the ECM [14]. Transmembrane proteins from the integrin-family located
on the cell surface enable cells to adhere to ECM proteins such as fibronectin or
collagen. Through a large number of adaptor proteins, the integrins are mechanically
connected to the actin cytoskeleton [89]. Using the myosin II molecular motors, the
actin cytoskeleton of the adhered cell contracts, therefore pulling on its environment
to test substrate stiffness [55, 90], adhesive areas [50], geometry [91] and curvature
[92]. The signaling pathway from local force sensing to global cell changes is not yet
fully understood, but it is clear that large-scale structures such as stress fibers and
the nucleus play an important role as integrative elements. Cell-level effects have
been observed for different cell types and on different length and time scales: the
mechanical microenvironment can lead to polarization via symmetry breaking [93],
remodeling of the cytoskeleton[94–96], traction force distribution [97], and durotaxis
[90, 98].

3.1.1 Effect of extracellular stiffness on single cells

While traditional cell culture works with stiff glass or polystyrene substrates, in
recent times soft elastic substrates have been established to expose single cells to
physiological stiffness values or even to stiffness gradients [99]. A popular choice
are hydrogels, which are hydrophilic polymer networks that are able to absorb large
amounts of water, which gives them mechanical and chemical properties similar to
the natural cell environment. Hydrogels can be manufactured to have elasticities
similar to physiological tissue [100]. Due to their high-water content, nutrients
and other soluble factors can be transported to and away from the cell [101]. The
large amount of water in hydrogels leads to optical clarity, which thus allows for
microscopy through the hydrogel. Hydrogels are often produced from synthetic
polymers because naturally derived hydrogels have high variability in their physical
and chemical parameters. However, while the global properties of synthetic hydrogels
can be measured and engineered with high precision, the local microenvironment of
the single cell inside both naturally derived and synthetic hydrogels is not necessarily
reproducible [102, 103]. Hydrogels also lead to water flow under cell traction, which
makes quantitative analysis challenging in certain situations [104]. Because cells
locally exert nN-forces onto their environment through µm-sized focal adhesions, one
needs elastic substrates with a Young modulus around nN µm−2 = kPa to measure
these forces [105]. For the widely used polyacrylamide (PAA) system, different
combinations of monomer and crosslinker concentrations can achieve such values
[106, 107]. In order to avoid water flow through hydrogels and also to achieve more
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optical contrast at the substrate-medium interface, for example to perform reflection
interference contrast microscopy [108], one can use elastic substrates made from the
rubber material polydimethylsiloxane (PDMS). However, it is notoriously difficult to
achieve stiffness in the sub-kPa for PDMS, because the material becomes very sticky
and viscous. Therefore, different formulations with longer polymer chains have been
developed [109].
Early work in this field used mainly PAA and revealed that focal adhesions and

stress fibers develop well only on stiffer substrates, with the crossover typically at a
few kPa [68]. It was then found that substrate stiffness also affects cell differentiation
[69, 110]. Later, nuclear translocation of YAP/TAZ was revealed as the underlying
molecular mechanism [65, 71]. When working with elastic substrates, it is important
to keep in mind that different bulk elasticities typically correspond to different surface
properties, such as roughness and porosity, thus potentially convoluting global and
local properties. However, it has been shown experimentally that cells respond
mainly to the bulk properties of the elastic substrates [111], validating the notion
that they gain information by performing an elastic test on their environment.

3.1.2 Single cells in 2D structured environments

While the advent of mechanobiology was strongly fostered by the insight that soft
elastic substrates can have a dramatic effect on cell behavior and fate, the same holds
true for geometrical and topographical cues. The effect of structured environments
on single cell behavior was first studied in 2D culture for single cells using adhesive
micropatterning [50]. The main advantage of this method is that it produces precisely
reproducible mechanical environments and therefore allows for experiments that lead
to statistically relevant results. Adhesive micropatterns were initially produced by
microcontact printing, but are often generated with photolithography or laser-based
methods today [112]. The biggest challenge of these approaches is not necessarily to
functionalize the materials with adhesion molecules, but rather to find materials with
anti-fouling properties that reliably passivate the non-adhesive regions. Frequently
used repulsive molecules comprise BSA, Pluronic and PLL-PEG. Moreover, gold-thiol
based chemistry can be used to fabricate patterned self-assembled monolayers with
distinct hydrophilic and hydrophobic areas on gold-coated coverslips [113]. However,
the necessary gold coating restricts these methods to glass coverslips.

Today, a zoo of interesting shapes has been established that allows us to investigate
important biological questions with high resolution, like V-shapes for cell spreading,
crossbows for polarized cells and H-patterns for cell doublets. Because cells only have
a limited amount of cytoskeletal and membrane material available, the size of these

16



3.1 Single cells

patterns must be adapted to the cell type under consideration. Once these reservoirs
are exhausted, the cells run into the danger of rupturing their own membranes [114].

A prime example of the power of 2D adhesive substrates is the study of stress fibers,
which are contractile actin bundles formed by many animal cell types. As an example,
Fig. 3.1a,a′) shows a cell on an adhesive cross pattern, where the stress fibers form as
invaginations at the four positions where the cell has to bridge inwards corners. This
experiment reinforces the early insight that micropatterns can be used to control
the exact position of stress fibers [96]. By varying the shape of the adhesive areas,
the authors showed that stress fibers grow predominantly along non-adhesive edges,
and that the strength of stress fibers depends on the distance between adhesive sites
and the number of stress fibers in the cell. Furthermore, they were able to observe
the spreading of a single cell on the micropattern, which revealed an approximately
linear increase of the curvature radius over time. In the absence of stress fibers, cell
shape invagination along non-adhesive edges is increased, showing that actin stress
fibers counteract the contracting cell cortex and tend to pull the boundary straight.

Stress fiber growth, organization and force transmission is still a very active area
of research, but today focuses more on the underlying mechanisms. It has been
known for many years that stress fibers are formed by merging small actin bundles
moving through the cytoplasm [115], which makes the formation of the stress fiber
network in single cells is a complex process and difficult to predict. Micropatterns
were used to provide reproducible environments for cells to spread, which allowed the
prediction of stress fiber networks of cells on micropatterns from the cell spreading
history [35]. To better understand stress fiber self-organization in stationary cells,
Jalal and colleagues plated fibroblasts on circular micropatterns, see Fig. 3.1b,b′).
Using live cell imaging, they observed transitions between circular, radial, and linear
orientations and show that they depend on molecular players such as non-muscle
myosin II and α-actinin [116, 117].

Micropatterns are often used to observe cell polarization and migration under
reproducible conditions. In the “world cell race”, over 50 cell types were placed
on fibronectin-coated tracks, see Fig. 3.1c,c′), and their polarization, speed and
persistence were evaluated, revealing a universal correlation between speed and
persistence [118, 119]. By gradually increasing the density of adhesive sites, see
Fig. 3.1d,d′), Autenrieth and colleagues showed that the well-known process of
haptotaxis, where fibroblast cells move in the direction of the highest ECM protein
concentration, holds true for discrete adhesive sites as well [120]. Brückner and
colleagues used a two-state micropattern, see Fig. 3.1e,e′), to show that the motion
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Figure 3.1: 2D environments for single cell experiments. a,a′) Schematics (a)
of a single cell on a cross pattern with nucleus (blue) and stress fibers
(red), image (a′) stained for actin (green), nucleus (blue), and fibronectin
(magenta). b,b′) Schematics (b) and image (b′) of a single cell on a
circular micropattern with different types of stress fibers (red). c,c′)
Schematics (c) and image (c′) of a human skin fibroblast (top row),
human mesenchymal stem cell (second row), human malignant melanoma
(third row), and murine fibroblast on fibronectin tracks. d,d′) Schematics
(d) and image (d′) of a single fibroblast cell on a substrate with discrete
fibronectin sites of varying density. e,e′) Schematics (e) and image (e′)
of a single cell on a two-state pattern. f,f′) Schematics (f) and image (f′)
of a single cell on micropillars.
b′): Reproduced with permission [116], 2019, The Company of Biologists.
c′): Reproduced with permission [118], 2012, Elsevier. e′): Reproduced
with permission [121], 2019, Nature. f′): Reproduced with permission
[122], 2003, National Academy of Sciences, U.S.A. All other images
reproduced with permission [10], 2023, Wiley.

of a single cell through a constriction has both deterministic and stochastic contribu-
tions [121]. While wildtype cells crossed by stochastic transitions between two stable
states, cancer cells were deterministically driven over the bridges in an oscillatory
manner.

To measure cell forces in micropatterning experiments, one can combine planar soft
elastic substrates with adhesive micropatterning [123, 124]. From the deformations
of the elastic substrate, the cellular forces are calculated using the deformation of the
micropatterns themselves or standard traction force microscopy [125]. In traction
force microscopy (TFM), the displacement field of beads in the elastic substrate is
used to calculate traction forces, usually by solving the inverse problem of elasticity
theory. Length measurements of the deformed micropatterns can be performed in
a high-throughput manner, but the dependence between force and length change
depends on the geometry of the micropattern and must be calibrated with standard
traction force experiments [124]. Micropatterns can also be used to control the actin
cytoskeleton network, specifically the growth of stress fibers, allowing for reproducible
settings and the measurement of traction forces after the photoablation of stress
fibers [126].

Another method to measure cellular forces in well-controlled elastic environments
are micropillar arrays, see Fig. 3.1f,f′). These are uniformly distributed cantilevers
of equal size typically made of polymer material such as PDMS and can be used
as a rationally designed mechanical environment in single cell experiments [112,
127]. Compared to micropatterns, cells subjected to micropillar environments have
larger variations in cell shape. A major disadvantage is that the topography of such
environments leads to cell processes being sent into the space between the pillars.
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This can be avoided by passivating the pillar sides. Traction forces can be calculated
from Euler-Bernoulli beam theory with corrections resulting from substrate warping
[128, 129].
Cellular force generation can also be artificially altered by interfering genetically,

chemically, or optically with the cell cytoskeleton [130]. One of the most exciting
developments in this field is non-neuronal optogenetics. Optogenetics is a method
where cells are genetically modified to make specific proteins light-sensitive. These
cells can then be targeted by light, for example to contract actomyosin with a
high spaciotemporal precision [131]. Optogenetics as a tool to manipulate the cell
cytoskeleton was first used to control cell migration of HeLa-cells by photoactivating
Rac1 [132]. The design of optogenetic switches has proven to be a challenging task
due to the complex feedback loops used by cells to control their cytoskeleton. An
interesting approach is to combine optogenetics with adhesive micropatterning. For
example, de Beco and colleagues investigated the gradient formation of Rac1 and
Cdc42 during cell migration for single cells on circular micropatterns with optogenetic
activation [133]. Recently, optogenetics has been used to revert cell migration in
one-dimensional situations [134, 135]. Optogenetics has also been combined with
traction force microscopy to show that cell forces can be switched on and off by light
[80, 136]. A recent combination with adhesive micropatterning revealed that cell size
and actin architecture determine the dynamical response to such activation [137].
In addition to adhesive cues, cell behavior also depends on the curvature of the

microenvironment, a process called “curvotaxis”. With initial observations that
chicken heart fibroblasts on glass bars align along the minimal curvature line [138], it
was later found by Pieuchot and colleages that both fibroblasts and mesenchymal stem
cells use their nucleus to measure the local curvature and migrate towards concave
valleys [53]. Werner and colleages used stereolithography to manufacture concave
and convex hemispheres for cells to adhere to [139]. Mesenchymal stem cells increase
their migration speed in concave environments, wheras cells in convex environments
experience higher forces on their nucleus, which influences cell differentiation. For a
detailed review on curvotaxis we refer to the work of Callens and colleagues [92].

3.1.3 Single cells in 3D structured environments

In vivo, cells live in a 3D environment, and the difference between a 2D and a
3D environment can be sensed by cells [140, 141]. Traditionally, the majority of
single cell experiments was performed on stiff glass or plastic substrates, and the
shift to include the 3D mechanical environment in the design of cell experiments
only started in the 2000s [142]. The shift from 2D to 3D environments was made
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possible due to advances in materials science and imaging, however, identifying the
relevant mechanical factors in the local cell environment is more challenging than in
2D [143]. Cells in 2D versus 3D environments show differences not only in internal
organization and morphology [140, 144], but also in cell migration [145], adhesion
[146], and mechanotransduction [147]. There are many approaches to investigate cell
fate and behavior in 3D environments, including the use of 3D hydrogels [99, 148] or
3D printed microfluidic devices [149].

Cells in 3D hydrogels, in particular the physiologically most important case of
collagen gels, interact with their surroundings in a more distributed manner than in
2D, see Fig. 3.2a,a′), and this difference influences cellular mechanosensing, migration
and growth [150]. As seen in Fig.3.2a), cell shapes in 3D collagen gels also show
the invaginated arcs found for cells on adhesive micropatterns (compare Fig.3.1a),
because the same competition between cortical surface tension and line tension
in the contour is at play in 3D as in 2D [151, 152]. Similar to 2D traction force
microscopy, beads can be placed in the hydrogel to measure the displacement. The
displacement is then used to calculate the forces exerted by the cell, but the technical
challenges are much larger in 3D than in 2D, due to the required 3D imaging and
the complicated mechanical properties of the 3D gels, which necessarily have to be
porous to allow for nutrient supply [153]. A different approach for using hydrogels to
observe cellular force sensing is to spatiotemporally change the hydrogel stiffness with
light and to observe cellular reactions to stiffness changes [154]. Some 3D hydrogels,
for example alginate, can also be manufactured with 3D printing, allowing for printed
microvascular environments [155, 156]. Micro-and nano-contact printing can also be
used in combination with some hydrogels such as PAA. Tabdanov and colleagues
[157] contact printed nano lines onto PAA hydrogels and showed that both actin and
microtubule network architecture differed between in-groove and on-ridge regions.
Similar scaffolds have been used as a platform to improve T-cell migration in 3D, by
both pharmacologically and genetically manipulating the microtubule-contractility
axis [158].

Cells need space and nutrients to survive in 3D environments, and rather than using
the porosity of the 3D matrix, one can generate compartments for cell culture within
the matrix. Minc et al. placed single sea urchin eggs into PDMS microfabricated
chambers and observed the cell division axis relative to the shape of the chamber,
see Fig. 3.2b,b′) [6]. In general, large eggs from marine organisms are a very useful
model system because they interact little with their environment and are very large,
thus providing good imaging conditions. The cavities with different geometries have
the same volume as the eggs, which are forced into a given cavity
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Figure 3.2: 3D environments for single cell experiments. a,a′) Schematics (a)
of single cells in hydrogel and image (a′) of a single cell in 3D collagen.
b,b′) Schematics (b) and image (b′) of sea urchin eggs in microfabricated
chambers. c,c′) Schematics (c) and image (c′) of a single cell in a nanonet
structure. d,d′) Schematics (d) and image (d′) of a dendritic cell in a
channel with varying pore sizes. e,e′) Schematics (e) and image (e′) of a
single cell in a structure manufactured with direct laser writing (DLW).
f,f′) Schematics (f) and image (f′) of a single cell in a 3D microscaffold
with reversible host-guest system.
b′): Reproduced with permission [6], 2011, Elsevier. c′): Reproduced
with permission [159], 2016, Elsevier. d′): Reproduced with permission
[88], 2019, Nature. All other images reproduced with permission [10],
2023, Wiley.

geometry with a coverslip, see Fig. 3.2b). This study showed that the microtubule
cytoskeleton positions the nucleus at the center and the division axis can be predicted
by minimizing the microtubule force and torque in the cell [6]. Actin polymerization,
the formation of focal adhesions and actomyosin contractility is also affected by
geometrical constraints. Bao and colleagues controlled the size and shape of human
mesenchymal stem cells in different 3D cavity geometries and sizes and showed that
stress fiber density and distribution depend on both cell volume and shape [160].

A versatile method to mimic the mesh-like structure of the 3D ECM is electro-
spinning of polymer/protein nanofibers [161]. To date, nanofibers based on silk
proteins [162, 163], collagen [164, 165], and gelatin [166] have been used for various
applications, including wound healing and tissue engineering [167–169]. Although
naturally occurring protein nanofibers do not need any additional crosslinkers, the
Young’s modulus of polymer/protein nanofibers can be controlled either by adding
bifunctional crosslinkers[170] or by modifying the side chains by photocrosslinkers
[171]. Inspired by biological systems, crosslinker-free nanofiber materials have also
been designed [172, 173]. It is well established that the elasticity of fibrous ECM
is dynamically modulated during diseases and development. To model dynamic
changes in fiber elasticity accompanied with ECM remodeling, Hayashi and col-
leagues developed a gelatin-based nanofiber system that can modulate the Young’s
modulus by using reversible host-guest crosslinkers [174]. Methods to fabricate 2D
meshes can also be used to manufacture 3D structures, for example by combining
electrospinning with 3D printing [175] or by placing the syringe on a freely moveable
platform [176]. 3D scaffolds produced with electrospinning are used to increase cell
growth and viability for tissue engineering applications [161]. Nain and colleagues
used non-electrospinning STEP (spinneret-based tunable engineered parameters), to
enable a precise manufacturing of micro- or nanofiber thickness and position, see
Fig. 3.2c,c′) [177]. Scaffolds produced with the STEP technique are called Nanonets
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and can be used to measure mechanical forces and to test the single cell response
to external forces [159]. When cells are seeded on the fibrous scaffold, they test
their environment by pulling on the fibers. Again, one nicely sees the invaginated
arc morphology resulting from the interplay of the different types of tension. From
the displacement of the fibers one can then calculate the forces exerted by the cell.
With the use of a micropipette puller, one can also pull on a nanofiber that the
cell is attached to and measure the adhesion forces of the cell [159]. By changing
the spacing between fibers within a scaffold, Jana et al. recently showed that the
morphology and migration behavior of single cells strongly depends on fiber density
[178]. Cells on dense networks are elongated and have longer persistence lengths
than on intermediate and wide networks.

3D structured environments can also be used to study cell migration in more
physiological environments. Renkawitz and colleagues engineered a channel system
to guide amoeboid cells, specifically dendritic cells, to a decision point, from which
pores with width between 2 and 5µm pan out [88], see Fig. 3.2d,d′). Amoeboid
cells typically migrate with the microtubule organizing center (MTOC) behind the
nucleus, while mesenchymal cells usually have the MTOC and the Golgi apparatus
in front of the nucleus. They found that the nucleus of dendritic cells in the channel
is drastically deformed and protrudes into several pores before the cell proceeds
into one of them. Decoupling the decision point from the constriction of the pore
leads to a loss of pore-size preference, showing that the cells use their nucleus to
measure the pore sizes. This explains why it is useful for amoeboid cells to migrate
nucleus-first: it allows for a fast probing of the environment and a quick decision
making [88]. Using 3D nanofiber-based matrix with different degrees of crosslinks
and tunable porosities, Huang at al demonstrated that cancer cells invasively migrate
into nanofiber stacks, while non-tumorigenic cells do not [179].

Traditional micropatterning requires the use of masks and is very time-consuming.
This promises to be revolutionized by 3D additive manufacturing methods. The
use of scaffolds manufactured with DLW/3D nanoprinting, see Fig. 3.2e,e′), has the
great advantages of allowing for rationally designed 3D environments as well as a
high reproducibility [180]. In 3D nanoprinting, a femtosecond-pulsed laser beam is
used to excite photopolymerizable resists. Given the pulsed nature of the laser beam,
two-photon polymerization is achieved, allowing to precisely polymerize material
only in the focal voxel of the laser. By moving the laser focus along predefined
trajectories, complex 3D structures with nano-resolution can be fabricated. With
the use of two different polymers, selected parts of the printed structures can be
made adhesive, which gives additional possibilities for the scaffold design [81, 152].
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Similar to nanonets, structures manufactured with 3D nanoprinting can be used
to measure forces of single cells positioned on beam-type structures. Klein and
colleagues used chicken primary cardiomyocytes, which start contracting after 1-2
days after seeding onto the structure [181]. The deformations of the 3D printed beams
were measured and used to calculate the forces exerted by the cells. 3D structures
fabricated with DLW were also used to compare the volume of nuclei and cells in
2D and 3D environments [182]. Fibroblast-like cells have a larger volume and nuclei
in 3D compared to 2D environments, while there was no significant difference for
epithelial-like cells. With the use of different photoresists, structures were deformable
or non-deformable for cells. The soft and stiff 3D environment did not change the
cell volume significantly [182].

3D structured environments fabricated with 3D nanoprinting improved cardiomy-
ocyte derivation from pluripotent stem cells [183]. 3D rectangular and hexagonal
scaffolds were used both to constrain single stem cells geometrically and as contact
points for cell attachment. The rectangular shape led to parallel alignment of my-
ofibrils and an improved Ca2+ reuptake [183]. 3D nanoprinting is also suitable to
manufacture systematically varying sizes and shapes of so-called 2.5D microwells,
which are open on the top side to allow cells to spread inside the chamber. By
changing only a few parameters such as size and shape, the effects of these param-
eters on single cells can be observed in experiments. These structures were used
to investigate the mechanotransduction via YAP in mouse embryonic stem cells
[184]. While the cell division rate increases with increasing adhesive area on 2D
substrates, it decreases with increasing well size in 2.5D [184]. More recently, Hippler
and colleagues introduced a stimuli-responsive host-guest system, see Fig. 3.2f,f′),
to measure cellular forces during cell stretching using structures fabricated with
DLW[185], see Fig. 3.2f). With this host-guest system, cells can be stretched in a
well-defined temporal and spacial manner. An advantage of this technique is that
cells can be chemically fixed at any point during the experiment, allowing for a
comparison of the actin cytoskeleton during and after stretching [185].

3.2 Cell collectives and monolayers

Tissue function requires not only the spatiotemporal regulation of subcellular struc-
tures, but also a coordinated cellular behavior across scales [186]. Tissues are
composite materials comprising of different cell types and the ECM, which in turn
is composed of three classes of macromolecules: collagens, proteoglycans, and non-
collagenous glycoproteins. From a materials perspective, collagens resist tensile
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stress and proteoglycans resist compressive strain, while glycoproteins mainly serve
as a type of glue by presenting binding sites for the cells [187, 188]. Individual
cells in the tissue are mechanically linked together via different classes of cell-cell
adhesions, mediated mainly by the cadherin superfamily [189], or indirect via cell-
ECM adhesions, mediated by the integrin family [190]. Intracellular adaptor proteins
and linker molecules connect these transmembrane anchors with the cytoskeleton,
most notably actin filaments and intermediate filaments [191, 192]. Due to this
network architecture, tissues exhibit far more complex mechanical behaviors than
linearly elastic materials, including viscoelasticity, nonlinear elasticity and mechanical
plasticity [193, 194].

Tissues have to cope with a large range of mechanical challenges. During devel-
opment and regeneration, spatial patterns of cell growth [195, 196] or contraction
of adjacent tissues [197] can generate mechanical stresses that expand, push, bend,
fold, and twist distinct cell populations into specific 3D forms [92, 110]. For example,
one strategy to build an organism in 3D is to first build a 2D cell layer which then
can be folded. The best-known case is the fruit fly, which forms a cell monolayer
through its first 14 divisions that then is folded during gastrulation. In general,
mechanical processes such as folding or buckling lead to complex folded and branched
structures in our organs, such as in the lung, kidney, brain, intestines or in the
circulatory system [198]. The remarkable degree of self-organization, cooperation
and synchronization across individual cells in a multicellular mechanical network has
led to the paradigm that certain cell collectives behave as higher-ordered ‘supracells’
[199–202]. Spatial induction of fate-determinants [203, 204], nonlinear interactions
between individual cells or the ECM [205, 206], and cell-to-cell variability[207, 208]
enable symmetry breaking and pattern formation from a previously unspecified and
homogenous population of cells. Although the induction of pattern formation is to
a certain degree genetically encoded [209–211], full engagement and reinforcement
of heterogenous cell patterning requires implementation of multicellular forces and
compartment boundaries from the ECM [1, 212, 213]. In certain cases, mechanics
might be even equally important. Palmquist and colleagues found that mesenchymal
mechanics are sufficient to spontaneously shape the regular morphological pattern
of feather follicles in the skin of chicken embryos ex vivo and in the absence of
fate-determining molecular programs [214, 215]. Similar, Cohen and colleagues
showed that the development of periodic checkerboard-like pattern of hair cells and
supporting cells in the mammalian hearing organ of Corti is based on mechanical
forces rather than signaling events, as global shear and local repulsion forces on hair
cells were sufficient to drive the transition from disordered to ordered cellular pattern
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[216]. Thus, investigating the bi-directional influence of ECM geometry and tissue
morphology in rationally designed cell culture environments bears the potential to
dissect complex morphogenetic processes during tissue formation in simplified and
controllable in vitro systems.
In contrast to single cells, cell collectives have a stronger power to change their

environment, which then can feed back onto the collectives. To permanently shape
tissues during developmental and regenerative processes, cells have to structurally
reorganize the surrounding ECM by degrading, realigning or secreting new ECM
molecules, processes that typically occur on the time scale of hours to months
[217]. These processes are often triggered or modulated by mechanical stresses
that result from cellular growth and the subsequent increase in surface, volume
and density [110]. The structure of the surrounding ECM vice versa influences the
induction and magnitude of multicellular mechanical stresses. With today’s abilities
in microfabrication, engineered cell culture substrates can address many aspects in
this regard, by tuning the rigidity of the substrate, by patterning or shaping the size
of the adhesive domains, or by including repulsive areas and physical barriers in the
substrate [64].

3.2.1 Cell collectives on elastic substrates

For cell collectives, elastic substrates have revealed many surprising processes that
would have gone unnoticed otherwise. The most studied model system for collective
migration are sheets of epithelial cells migrating into open space after the removal of a
confining barrier. This assay has been developed as a version of the traditional wound
healing assay, but avoids the damage afflicted by the traditional scratching approach
[218]. When combined with elastic substrates, it allows to perform traction force
microscopy and even to reconstruct stresses inside the cell sheets, using an approach
called monolayer stress microscopy [219, 220]. Using TFM and monolayer stress
microscopy on soft elastic substrates, it has been shown that higher substrate stiffness
correlates with increased collective migration speed, persistence, directionality and
coordination of epithelial monolayers. This effect is caused by stiffness sensing at the
edge of the cell colony and force transmission between cell-cell-contacts [59]. Sunyer
and colleagues went one step further and used fibronectin-coated PAA hydrogels
with a stiffness gradient to show that sheets of epithelial cells are able to sense and
collectively migrate towards the higher stiffness (durotaxis) [72]. While durotaxis
has been described before for single cells [98], these experiments revealed that the
collectiveness increased the durotactic sensitivity due to long-range intercellular force
transmission in the colony, highlighting the supracellular aspect [61, 72, 221]. A
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comparable behavior was observed for Xenopus neural crest cells (a multipotent
mesenchymal cell population), which were shown to migrate in distinct clusters
towards higher stiffness on PAA hydrogels [222]. During migration, these clusters
showed a higher-ordered supracellular behavior, with collectively coordinated actin
polymerization at the migratory front and synchronous collective contraction at the
clusters rear end [200]. Strikingly, using in vivo atomic force microscopy, the group
showed that the neural crest cells not only sense the gradient through cell–matrix
adhesions, but also induce the gradient formation via N-cadherin mediated cell-
cell interactions and softening of the underlying placodes, thus self-generating the
stiffness gradient on which they migrate in vivo [222]. Importantly, these results
are not restricted to stiffness gradients. When Clark and colleagues monitored the
collective cell migration of human squamous cell carcinoma or colorectal carcinoma
cell clusters on homogenously elastic PAA gels coated with deformable collagen I
networks, they found that the cells generated asymmetric collagen densities and
alignments underneath the cluster in the absence of any biochemical cue [223]. Thus,
the cells self-steer their migratory persistence by generating a viscoelastic gradient
in the collagen fiber network.

The concept that cell collectives self-generate durotactic/mechanical gradients
opens new research directions that will shape our current understanding of how
mechanoreciprocity between cells and the ECM steers collective cellular behavior
during embryonic development, metastasis spreading, wound healing and more
[224–227]. For example, a long-standing research question with contrary results is
how cancer cells interact with their stroma, which is often stiffer than comparable
healthy tissue [228, 229] while the cancer cells themselves tend to be softer [230], in
order to collectively invade foreign tissue during metastasis formation [60]. As this
process requires detachment from the primary tumor site, intra- and extravasation of
basement membranes, and collective migration through interstitial matrices, tumor
collectives must breach several barriers and perform long-range migration through
tissues with various stiffness. The stiffness of PDMS substrates was shown to
promote epithelial-mesenchymal transition of MDCK cells, a process linked to cancer
dissemination [231]. However, it remains unclear how stiffness-induced malignancy is
maintained over time after cancer cell dissemination in vivo. Self-generated gradients
could allow cell collectives to operate over greater ranges of stiffness, larger distances,
and longer time [232, 233].
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3.2.2 Cell collectives in 2D confining environments

Like for single cells, 2D micropatterns are a very popular method to generate
confining environments for cell collectives, because microscopy is easy with planar
substrates. Microcontact printing, photolithography techniques and spotting-based
molecular printing [234] are among the most frequently used methods to transfer
desired 2D shapes on coverslips or PDMS/PAA hydrogels [64, 235]. Raghavan and
colleagues even developed a double microcontact printing approach to pattern gold-
coated coverslips with self-assembled monolayers that include a region, which can be
electrochemically switched from non-adhesive to adhesive, allowing to temporally
control confinement release [236]. Alternatively, large scale boundaries can be created
via physical obstacles of a desired shape, which can be placed permanently or
transiently via magnetic stencils [72]. Transient application of a growth restricting
obstacle has the advantage that the confinement can be released at a defined time
point, allowing to add the temporal dimension more easily.

As already mentioned above, 2D micropatterns with such confining barriers are very
well suited to investigate different aspects of collective cell migration. As the adhesive
area on which the cells are able to migrate can be rationally designed, it is possible
to guide, restrict or coordinate the movement of the cell collective. These approaches
replaced the classic ‘scratch assay’ and allow to tackle fundamental questions on how
cells generate distinct migration patterns in much more refined assays. Vishwakarma
and colleagues used PAA hydrogels with a removable barrier to investigate how leader
cells are selected for their function in collectively migrating epithelial monolayers,
and found that upon confinement release, leader cell territories emerge in response to
force transmission from the follower cells [237]. By designing stencils with different
shapes, they showed that the distance between leader cells converges to a typical
value of around 170 µm set by the mechanics of the cell monolayer. Vazquez and
colleagues added a removable magnetic physical barrier with triangular cavities to a
PDMS hydrogel in order to spatially control the protrusion formation in the cellular
monolayer [238]. In another approach, pillar stencils have been used to fabricate
micro-gaps of desired shape and size in epithelial monolayers [239]. Since the number,
shape and size of the barrier stencil can be individually shaped as desired, this
approach is scalable and allows gap closure monitoring along several spots, as a
model for wound healing.

In contrast to wound healing assays, where cells move into an open space, mi-
cropatterns that restrict the migratory space can be used to guide the migratory cells
along spatially defined routes, in order to monitor how spatial confinement affects
the speed and directionality of migrating cell collectives. Vedula and colleagues [240]
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as well as Marel and colleagues [241] fabricated adhesive strips of different width
and monitored collective cell migration speed and persistence. Using particle image
velocimetry, they found a negative correlation between the overall migration speed
and the width of the adhesive strips [240]. Other groups used confining patterns to
monitor distinct motion patterns inside the cell colony. Peyret and colleagues showed
that epithelial cells exhibit coherent oscillations when confined on micropatterns
of varying shapes and sizes, with period and amplitude of the oscillations being
dependent on the substrate size [242]. Another advantage of this approach is that
the size of the adhesive pattern can be adjusted in order to tune the number of
cells that are able to adhere to the substrate. Segerer and co-workers monitored the
spontaneous formation of vortices on micropatterned circles, see Fig. 3.3a,a′), and
found that the persistence of coherent angular motion increased with the number of
confined cells [243]. Finally, asymmetries can be incorporated in the pattern, in order
to guide collective cell polarization and migration [244]. For instance, Rausch and
colleagues plated cells on stencil-masks with varying local curvatures, see Fig. 3.3c,c′).
They showed that high curvature areas induce leader cells formation, and moreover
that polarization of the cells and high traction forces are present in areas of high
curvature even before migration [245]. This growth guidance can in principle be
mapped towards any desired 2D shape, from straight lines to branching points up
to complex mazes, monitoring cellular path finding and decision-making branching
morphogenesis.

Besides collective cell migration, 2D micropatterns have proven valuable for ongoing
research on how crowding and confinement affects cellular fate decision. As mentioned
above, distinct patterns of cellular growth lead to different mechanical stresses at
the edges of boundaries and in the center of the mass, respectively. It is an ongoing
debate, how these different stresses affect cellular decision making. Depending on the
cell type, different stresses might lead to the induction of differentiation, proliferation,
or apoptosis, respectively. Nowadays, the flexibility in terms of shape and size of 2D
micropatterns allows to precisely induce, guide, map and monitor these stresses in cell
colonies over time. Thus, micropatterned substrates are frequently used to decipher
how different stresses are transduced on the molecular scale, in order to guide cell
differentiation and cellular fate decision. Gomez and colleagues showed that mouse
mammary epithelial cells are under high mechanical stress along the edges of different
substrate geometries that were printed on glass via microcontact printing, and that
these cells preferentially undergo epithelial-to-mesenchymal transition, while the cells
in the center did not [246]. Strikingly, inhibiting cytoskeletal tension abrogated the
spatial patterning of the epithelial-to-mesenchymal transition. In contrast, Wei
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Figure 3.3: 2D environments for experiments with cell collectives. a,a′)
Schematics (a) and image (a′) of circular micropatterns to study collective
cell migration. b,b′) Schematics (b) and image (b′) of a wound healing
assay with a removable microstencil. c,c′) Schematics (c) and image (c′)
of cell collectives on micropatterns to analyze the influence of geometry-
based cues. d,d′) Schematics (d) and image (d′) of microcontact printed
cell monolayers to investigate cell extrusion. e,e′,e′′) Schematical top
(e) and side (e′) view of adhesive cellular patterns to study monolayer
development into the third dimension. e′′) Image of the confocal ring.
f,f′,f′′) Schematic top (f) and side view (f′) of epithelial cells coated
seeded on soft PDMS substrate with micropatterned nonadhesive areas.
f′′) Image of the side view and measured traction forces.
a′): Reproduced with permission [243], 2015, American Physical Society.
b′): Reproduced with permission [218], 2007, National Academy of
Sciences, U.S.A. c′): Reproduced with permission [245], 2013, American
Institute of Physics. d′): Reproduced with permission [247], 2017, Nature.
e′′): Reproduced with permission [248], 2014, Nature. f′′): Reproduced
with permission [249], 2018, Nature. All other images reproduced with
permission [10], 2023, Wiley.

and colleagues did not observe increased epithelial-to-mesenchymal transition when
they cultivated single MDCK epithelial cells on circular micropatterns [231]. These
results suggest that both multicellular confinement, and the shape of the geometric
boundaries are important for the observed effects. This is in line with findings from
Nelson and colleagues, showing that regions of concentrated growth corresponded
to regions of high traction stress within a cell sheet on micropatterned substrates,
while inhibiting actomyosin-based tension or cadherin-mediated cell-cell connections
disrupted the spatial pattern of proliferation [110]. Similarly, researchers from
the lab of Gregory Underhill fabricated elastic PAA hydrogels for traction force
measurements and spatially deposited collagen in circular shapes onto the hydrogel
via microcontact printing [250]. Using this approach, they found that liver progenitor
cells exhibited patterned differentiation in response to spatially controlled downstream
mechanotransduction. On the boundary, cells expressed high E-Cadherin levels and
exerted higher traction forces, leading to increased biliary differentiation in this
region, whereas cells in the interior differentiated towards the hepatocytic lineage
[250, 251].

These results clearly show that cell differentiation patterns arise from the me-
chanical status of distinct cell populations, which is in turn dependent on the ECM
geometry and the boundaries. A natural path forward is to focus future research
on deciphering the molecular downstream pathways that convert these mechanical
signals into biochemical reactions. In this spirit, Muncie and colleagues cultivated
human embryonic stem cell colonies on patterned hydrogels of soft nature (0.4-2.7
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kPa) that recapitulate the biophysical properties of the early embryo [252]. They
found that specific geometries promoted local areas of high adhesion-mediated ten-
sion that enhanced spatial patterning of morphogens, ultimately inducing mesoderm
specification. Of note, the clever integration of microfluidic devices in the hydrogels
even allows to mechanically stretch the microtissues by controlling the pressure in
the micropatterned compartments, leading to either negative or positive out-of-plane
deformations of the epithelial monolayer [252, 253]. Using this approach, Blonski
and colleagues showed that inward bending of the epithelium led to high tension
in the adjacent cells next to the imposed negative curvature, inducing the spread
of calcium waves, while positive curvature resulted in the opposite and prevented
calcium spread [253]. Thus, these studies demonstrate creative ways to combine soft
elastic substrates, micropatterning, and active mechanical perturbation in order to
investigate the conversion of mechanical cues into biological patterning mechanisms
[252].

Another interesting direction from the biophysical and biomechanical perspective is
the transition from 2D to 3D growth due to confinement and cellular crowding. Given
that cell proliferation in the restricted area leads to a finite population size in 2D
monolayers, cells react to this either by growth arrest or by cell extrusion, ultimately
extending the growth in axial direction and forming multilayered cell sheets. Saw and
colleagues investigated cell extrusion in confined environments, see Fig. 3.3d,d′, and
found that it is not cell density, but topological defects that lead to cell extrusion and
apoptosis [247]. Mechanically, folding or buckling is a sudden out-of-plane collapse
of a material caused by an increasing in-plane compressive load [254]. In order to
monitor tissue folding and buckling in vitro, compression or confinement can be
engineered by restricting the growth area of cells on the substrate [110, 249, 255].
Deforet and colleagues monitored the latter process by confining cellular monolayers
on circular micropatterns, see Fig. 3.3e-e′′), and found that cellular rims formed along
at the periphery of the substrate because of the additional degree of freedom of the
border cells and independent of the substrate size [248]. Saw and colleagues showed
that cells are extruded at topological defects; in analogy to nematic liquid crystals,
these are places of high elastic energy in the sheet [247]. These results demonstrate
that epithelial confinement alone can induce morphogenesis-like processes including
spontaneous collective extrusion and transition from 2D to 3D.

Cell extrusion is not needed when the whole monolayer can escape into the third
dimension to relax its growth stress. This process has recently been controlled
using adhesive micropatterning. Latorre and colleagues cultivated an epithelial
monolayer on adhesive PDMS gels that were interspersed with non-adhesive islands,
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see Fig. 3.3f-f′′). The cells eventually overgrew the islands and formed pressurized
cellular domes above these restrictive areas. The pressure within the domes was
measured with 2.5D TFM. This experiment revealed the unusual elasticity of the cell
monolayer, which showed strain values of up to 1000 percent, which until then has
been known only for the “superelasticity” of metal alloys [249]. Similar to the case of
the metal alloys, these large strain rates are possible due to an underlying bistability
in the system: first the stress is held by the actin network, which then yields and
gives way to a new stable situation provided by the intermediate filaments. Usually,
tissues undergo small-scale deformations and the resulting changes are mainly elastic
[256] with a linear relationship between tensional increase and deformation [257, 258].
This allows cells in tissues to return to their default state after the stress is released,
a process known as tensional or mechanical homeostasis [259, 260]. Above a certain
threshold, however, the bonds between cytoskeletal filaments, cell-cell junctions and
cell-matrix adhesions rupture, leading to irreversible deformations that prevent full
recovery, even if the associated stress is released [194, 261, 262]. However, with the
help of micropatterned elastic substrates, Latorre and colleagues were able to provide
an explanation on how certain epithelial tissues can undergo reversible, large-scale
elastic deformations in 3D without tissue rupture.

3.2.3 Cell collectives in 3D confining environments

As explained above, cell collectives in 2D often extend into 3D by themselves.
However, today one can design assays that include the 3D aspect right from the
start, in order to mimic the 3D physiological environment in vivo and to support and
monitor collective supracellular growth in all three dimensions. Historically, in vitro
pattern formation and higher-ordered supracellular behavior in 3D has been observed
already in the early 1980s, in the context of connective tissue. In a reductionist
approach, Stopak and Harris mixed fibroblasts and collagen to reconstitute connective
tissue [263]. To resist the collagen gel shrinkage induced by the tensile forces from
the fibroblasts, they simply attached fix points in form of polystyrene cylinders in
the culture dish. Given that the free edges along the collagen-culture liquid interface
served as a natural barrier, leaving nothing to attach, the fix points caused the cells
to self-organize into aligned tracks along the margin of the collagen, in order to
resist the centripetal stress, exerted by central cells. Around 25 years later, Bischofs
and colleagues used a similar approach and found that the collective architecture of
fibroblasts in collagen resembled the morphology of single fibroblasts on a macroscopic
scale, if the boundaries, that is, the subcellular adhesion sites of the single fibroblasts
and the anchor points of the hydrogel, are comparable in geometry [264]. In both
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cases, the previously described relation of tension and elasticity leads to the observed
phenotypes, however the structural architecture arises on different scales. While
bundled actin arcs restricted the edges of the single cells, the edges of the collagen
hydrogel were defined by polarized cells that aligned perpendicular to the direction
of the central stress, resembling the structure of individual actin arcs in the single
cells on a supracellular scale. Although being an extreme example, this shows that
cell collectives resemble certain biomechanical aspects of single cell morphogenesis,
given that the geometric boundaries are predefined.

Today, modern microfabrication techniques like 3D nanoprinting enable researchers
to engineer cell culture systems with physical boundaries down to the microscale.
Multicellular force generation in such scaffolds can be monitored by state-of-the-art
light microscopy in space and time, allowing researchers to perform much more
refined assays. To generate 3D microstructures with defined geometry, micro-molding
or stenciling techniques have emerged as valuable tools. In principle, the same elastic
polymers that are regularly used to fabricate plane 2D substrates can be used to cast
desired 3D shapes from a master structure, that is, a positive replica of the desired
form. Thus, the structures can be fabricated with different elasticities, optionally
from synthetic polymers or from biologically-derived materials like collagen, and
can be combined with TFM to estimate the cellular forces [265–267]. Moreover,
micro-molding processes are not restricted to soft materials, as components like
ceramic powder can also be incorporated in polymerizable materials to fabricate stiff
scaffolds to promote for example osteogenic differentiation [268]. However, due to the
nature of the casting process, the incorporation of small topographies or fine details
in the structure is difficult. Nevertheless, micro-molded 3D structures can be used to
monitor tissue growth in a nutshell, and confinement in all three dimensions can be
achieved by adding a ‘lid’ on the micro-molded structure, see Fig. 3.4a,a′) [265].

Mechanobiological research in micro-molded 3D environments is receiving growing
attention as advances in volumetric imaging and optical sectioning allow the capture
of large 3D stacks with increased axial resolution in a reasonable amount of time.
This in turn allows to tackle long-standing basic questions, for example, if and how
the mechanisms of collective cellular force generation differ between 2D and 3D
setups. However, compared to plane 2D substrates, force calculation and mapping of
cellular stresses is much more challenging. Gjorevski and colleagues micro-molded
3D collagen hydrogel structures of different geometries and incorporated fluorescent
microspheres for the calculation of tissue stress within epithelia [266]. To account
for the heterogeneities in the collagen network, they performed confocal reflectance
and atomic force microscopy measurements. Together with computational modelling,
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Figure 3.4: Cell collective experiments in 3D structured environments. a,a′)
Schematics (a) and images (a′) of epithelial cells growing in cavities of
collagen gel. b,b′) Schematics (b) and images (b′) of mammary tumor
breast cancer cells in 3D microtracks of collagen matrices created with two-
photon laser ablation. c,c′) Schematics (c) and images (c′) of intestinal
stem cells in a collagen microchannel generated with laser ablation.
a′): Reproduced with permission [265] 2006, AAAS. b′): Reproduced with
permission [269], 2011, IOP Publishing. c′): Reproduced with permission
[270], 2020, Nature. All other images reproduced with permission [10],
2023, Wiley.

these techniques allowed them to quantify patterns of mechanical stress throughout
the surrounding matrix and to observe unexpected geometry-dependent mechanical
behavior in curved duct-like tissues. The same approach was used to monitor the
stress and pulling forces, exerted during collective cell migration, showing that tensile
forces at the invasive front propel the colony forward and condition the cells and
matrix for further extension [267].

Besides these basic mechanobiological questions, micro-molded 3D structures are
frequently used to monitor biological and cellular output in response to the 3D
environment. Similar to plane 2D micropatterns, studies investigating cell prolifer-
ation, differentiation and collective cell migration are among the most prominent.
Kollmannsberger and colleagues used microscope projection lithography and micro-
molding to fabricate 3D PDMS scaffolds with macroscopic square-shaped clefts for
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the cultivation of microtissues [271]. Using this set-up, they monitored microtissue
formation over several weeks and found that especially at the highly tensed growth
front, cell proliferation was upregulated and fibroblasts transitioned into myofibrob-
lasts. Thus, predicting tension generation in patterned tissues allowed the correlation
of multicellular forces and cell proliferation in 3D, similar to examples described
in the 2D set-ups above. Similarly, Nelson and colleagues fabricated surfaces with
pyramidal arrays and found that cell proliferation was highest in the grooves, sug-
gesting that the tissue form can feed back to regulate patterns of cell proliferation
[110]. Xi and colleagues monitored collective cell migration in 3D microchannels
[272]. Their experiments revealed emergent patterns of collective cell migration under
tubular confinement: In contrast to flat constraint, cell sheets in smaller microtubes
demonstrated slow motion with periodic relaxation, but fast overall movement in
large microtubes.

The flexibility of photolithographic and soft-lithographic approaches allows to
upscale the dimensions and complexity of the 3D structures, in order to steer
multicellular growth on the scale of millimeters. The approach of Xi and colleagues,
where cells were crawling through microchannels, was designed to mimic tubulogenesis
[272]. Moreover, increasing the complexity of the structures can resolve cellular
decision-making processes during tissue growth, for example during vascularization
and branching morphogenesis in glands and lung tissue. This was for instance done
by monitoring the growth of epithelia in microchannels with different curvatures
[273], resembling tissue folding and winding growth processes as they occur in the
brain or in the intestine. Nelson and colleagues harvested this approach to control
the initial 3D structure of mouse mammary epithelial tubules [265]. By quantifying
the extent of branching, they found that the geometry of tubules dictates the position
of branches, as they initiated at sites with a local minimum of autocrine inhibitory
morphogens, revealing that tissue geometry can control organ morphogenesis by
defining the local cellular microenvironment.

Besides these micro-molding approaches, several other creative approaches have
been established to investigate the multicellular behavior in complex 3D environments.
To monitor collective cell invasion of completely encapsulated cancer spheroids in
collagen hydrogels, Ilina and coworkers used an approach that does not rely on the pre-
casting of microstructures, but rather on the generation of micro-tracks via two-photon
laser microsurgery after cell seeding and hydrogel polymerization, see Fig. 3.4b,b′)
[269]. Using two-photon excitation, regions of interest with variable length, widths
and depths can be positioned directly adjacent to the edge of multicellular spheroids.
This gives a striking degree of freedom, allowing not only to monitor invasion in real
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3D confinement, but also to dynamically adjust the micro-tracks to the desired need.
This laser ablation approach was also used to show that E-cadherin dependent cell-cell
adhesion and ECM confinement cooperate to determine unjamming transitions and
stepwise epithelial fluidization during breast cancer invasion [227]. Nikolaev and
colleagues laser-ablated a gut-like 3D structure in a hydrogel, see Fig. 3.4c,c′), and
observed epithelium formation and cell-fate patterning in these environments [270].

Another way to increase the complexity of 3D scaffolds for cell cultivation was
established by adapting 3D printing approaches towards biomedical research. On
the multicellular scale, both bottom-up and top-down approaches are basically
established to engineer cell patterning and microtissue formation. Extrusion-based,
inkjet-based, and laser-assisted bioprinting are among the most common approaches
to spatially deposit cell-laden Bioink in complex 3D forms. Given the extent of
this growing area of research, we refer to more comprehensive reviews for further
reading [274, 275]. Trushko and colleagues recently developed a different interesting
bottom-up approach for mechanobiological applications [276]. Using a 3D printed
microfluidics device [277], they produced hollow alginate spheres with encapsulated
epithelial cells in the center and Matrigel coating on the inner surface of the spheres.
Upon reaching confluency in the monolayer grown on the inner side of the sphere,
confinement leads to the local detachment from the Matrigel and folding of the
sheet towards the sphere center [276]. Considering the apparent pressure required to
buckle together with a continuum theoretical approach, the authors established a
minimal system to monitor stress-induced epithelial folding and conclude from these
experiments that both capsule stiffness and cell stiffness have to be high in order to
relax excess cell proliferation by buckling.

In principle, such approaches can be refined down to the microscale by combining
different techniques and additive manufacturing. As described above, 3D nanoprinting
techniques allow the fabrication of 3D structures in the regime of single microns.
Additionally, an increasing palette of available biocompatible photoresists with
protein-adsorbing or protein-repellent features and tunable stiffness ranges can be
used to fabricate sophisticated scaffolds with complex geometry and topography
landscapes [82, 278]. Published results in recent years show the biocompatibility of
3D printed micro-scaffolds with various cell types and populations under different
conditions. For example, micro-scaffolds have been adapted to monitor and guide
neurite outgrowth [279, 280], microglia cultivation [281], or glioma cell colonization
[282]. Complex woodpile scaffolds were used to monitor cell invasion through narrow
spaces in response to growth factors [283]. The recent and rapid improvements in 3D
nanofabrication, for example the development of faster printing techniques [284, 285],
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will allow the fabrication of large-scale composite scaffolds for studies on microtissues
in the near future.

3.3 Organoids

One of the most exciting developments in modern biology are organoids, which
are 3D cell assemblies that differentiate and grow in the test tube and thereby
develop organ-/tissue-specific features [74, 286]. They are closely related to stem cell
technology, because fate induction is typically achieved in induced pluripotent stem
cells (iPSCs). To date, a wide range of organoid types from different cellular origins
has been developed. This includes not only basic embryonic spheroids resembling
early developmental stages, like blastuloids, gastruloids or epithelial organoids, but
also spheroids derived from adult stem cells that resemble specific organ types
or sub-organ regions, such as intestinal organoids, retinal organoids or cerebral
organoids. These features make organoids an attractive choice for basic biomedical
research, for example for in vitro drug testing on patient derived material or for
the investigation of organ development processes in a simplified system. In the
long-term, organoids might bear the potential to overcome some of the long-standing
problems in regenerative medicine, as they in principle allow the differentiation of
organs-in-a-dish from patient-derived stem cells. However, major weaknesses of the
organoid technology thus far are the lack of reproducibility and their heterogeneity
in terms of ill-defined sizes, morphologies, patterning, cell type composition and
differentiation efficiency, thus limiting their current application in clinical research.

The induction of organoids, that is, the activation of distinct fate programs in
stem cells, requires not only the addition of certain biochemical factors, but also, at
least equally as important, the embedding of the cells in a 3D matrix, typically in
cell-derived matrices like MatrigelTM. Due to the natural origin of these products,
their biomolecular composition often varies significantly between different lot numbers
and charges, leading to the above-mentioned heterogeneities. Moreover, the self-
organizing capacities of the organoids are limited, meaning that autonomous growth,
folding and differentiation processes only occur up to a certain degree, possibly
because certain cues that exist in a physiological context are missing.

To narrow the gap between self-organizing organ development in vivo and organoid
growth in vitro, microfabrication approaches that allow the generation of defined 3D
synthetic cell niches offer exciting possibilities. One of the best-studied and most
suitable examples in this regard are intestinal organoids. In vivo, the architecture of
the small intestine can be subdivided into the functional units of villi and crypts, with
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the latter harboring a reservoir of intestinal stem cells, see Fig. 3.5a-d). Gjorevski and
colleagues recapitulated this architecture in microscaffolds to improve the structure
and reproducibility of intestinal organoids [84]. In contrast to the randomized
spatial induction of crypt domains under conventional culture conditions (Figure
8b), cultivation in 3D microstructures instructed the precise cellular self-organization
into crypt and villus domains, respectively, see Fig. 3.5c-e). Another approach used
a collagen-based scaffold and achieved similar results [57], showing that indeed the
3D architecture of the scaffold is important to drive self-organization of intestinal
organoids/enteroids. Nikolaev and colleagues went one step further and bioengineered
intestinal stem cells via scaffold-guided organoid morphogenesis into tube-shaped
epithelia with an accessible lumen that was connected to a microfluidic system, see
Fig. 3.4c,c′) [270].
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Figure 3.5: Self-organized versus directed growth of organoids. a) Self-
organized intestinal organoids can be derived through biochemical dif-
ferentiation from isolated crypts or intestinal stem cells, but suffer from
heterogeneities in size, morphology, and cellular composition. Crypt
domains harbor the stem cells in intestinal organoids (marked in green)
but form at random positions. b) Immunohistochemical staining of
the in vivo intestinal epithelium, showing the hierarchic architecture of
villus- and crypt domains. c) Recapitulating the in vivo architecture of
intestinal epithelia in biomimetic 3D scaffolds directs patterning of the
different cellular domains. When seeding dispersed intestinal stem cells
onto the scaffolds, they self-organize into villus- and crypt-like domains
in response to the scaffold architecture. d) Scanning electron micrograph
of a biomimetic 3D scaffold, recapitulating villus- and crypt domain
architecture. e) Immunofluorescent staining of the same scaffolds after
cellular colonization. 48 hours after cell seeding, intestinal stem cells
established a confluent monolayer. Induction of differentiation resulted
in stereotyped organoid patterning. Aldolase-B (magenta) marks entero-
cytes and other differentiated intestinal cell types in the villus-domain,
E-Cadherin (green) marks stem cells in the crypt domains.
b): Reproduced with permission [287], 2013, Elsevier. d) and e): Repro-
duced with permission [84], 2022, AAAS. All other images reproduced
with permission [10], 2023, Wiley.

While the scaffold allows guiding organoid morphology towards an in vivo-like
architecture, the perfusion system allows the continuous removal of metabolites and
cellular debris, prolonging the microtissue lifespan to several weeks. This concept
comprises another step towards functional organoids-on-a-chip.

Microfabricated scaffolds were also used to decipher the biomolecular mechanisms
behind these morphogenetic processes. Using micro-molding and photopatterning,
it was shown that the geometry-driven cell patterning in intestinal organoids arises
from local differences in cell crowding that guide the downstream activity of the
mechanosensitive transcriptional co-activator YAP [84]. Regions of high curvature
lead to increased cell crowding and YAP remains inactive in the cytoplasm, leading
to the upregulation of intestinal stem cell markers. In less narrow and flat regions,
YAP is imported into the nucleus and promotes intestinal stem cell differentiation
into absorptive cells of the villus-like domain. In traditional organoid culture, this
process acts stochastically and leads to random crypt formation in regions where
curvature is generated by differential actomyosin contractility and luminal pressure
[288, 289]. Again, soft elastic substrates helped define the force distribution during
these processes, unveiling how patterned forces enable compartmentalization, folding
and collective migration in the intestinal epithelium. Pérez-González and colleagues
mapped 3D force distribution in mouse intestinal organoids, showing that the crypt
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shape relies on cell surface tension and cortical actomyosin density. Cells of the
villus-like domains are subsequently dragged out of the crypt along a gradient of
increasing tension [290].

In addition to investigating morphogenetic features of intestinal organoids on
micropatterned 2D and 3D substrates, a range of different approaches start to control
the formation of various organoid and organotypic tissues by tuning the respective
culture substrates. Numerous developmental processes that lead to the formation of
stratified and layered tissues rely on the reciprocal transduction of mechanical signals
between the cells and the ECM [291] and thus bear the potential to be manipulated or
guided by microengineering approaches. Furthermore, the above-described knowledge
might be included in future research and combined with larger-scale biofabrication and
bioprinting approaches, for example, to guide the vascularization of growing organoids
and to recapitulate complex architectures of vascular beds in biomimetic scaffolds
[292–294]. Current materials and microfabrication approaches steadily increase our
ability to mimic complex shapes and furthermore start to improve scaffolds for long-
term cell cultivation, for example by including dynamic dimensions like perfusion
systems or controlled release of molecules [295]. Blatchley and colleagues recently
provided a comprehensive review of various techniques for spatiotemporal regulation
of organoids, including top-down methods such as extracellular matrices, bottom-up
approaches such as confined environments to position single cells, and middle-out
engineering, which utilizes external stimuli such as optogenetics to modulate both
scaffold properties and cell behavior in time [296].

3.4 Discussion

Cell culture is one of the most important achievements of the life sciences and allows
us to perform systematic and quantitative experiments outside living organisms. The
beginnings of in vitro cell culture were characterized by attempts to specify and
improve cellular culture conditions via the use of chemical compounds, including
growth factors, hormones, and cytokines. Customized culture media formulations
were established that activate biochemical signal cascades promoting proliferation,
differentiation or simply survival of specific cell types. They were complemented by
standardization through cell lines, which usually are transformed cells that can pro-
liferate without limits. Despite these advances in quantification and standardization,
it remained challenging to cultivate distinct cellular populations in the absence of
their natural growth environment.

Three decades ago, this situation changed dramatically with the advent of mechanobi-
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ology, which demonstrated that physical aspects of the extracellular environment (in
particular stiffness, geometry, and topography) play an equally important role for
cellular decision making as biochemical factors do. Maybe the most decisive factor
for this development was the transfer of new methods from materials science into
cell biology and biophysics: starting with PDMS-technology, microcontact printing
and photolithography, it has become customary to prepare mechanically and geomet-
rically defined environments for cell culture. Biologists collaborated with physicists,
chemists, material scientists and engineers in order to develop sophisticated cell
culture platforms by microfabrication, for example by DLW of cell culture scaffolds in
three dimensions. These experimental developments were complemented by advances
in quantitative imaging processing and modeling. First applied to single cells, these
tools are now increasingly applied to cell collectives, from cell monolayers to 3D
spheroids and organoids.

Thanks to these interdisciplinary approaches, we are now in the exciting position
to take the next step. As the field has grown from single cells towards multicellular
systems, future studies should aim to merge the knowledge from biochemistry,
molecular biology, and biophysics to control cellular growth and behavior in vitro.
The emergence of organoid technology is a prime example in this regard. As described
above, fate induction in organoids is first established biochemically, while scaffolds
with tuned elasticity and microtopography later help guide the growing spheroids
into structured tissues with a function. Future studies in this direction are expected
and bear the potential to take another step towards organs-in-a-dish. One interesting
direction is the transition from 2D to 3D culture systems. More refined methods in
microfabrication and molecular biology allow us to tackle the recreation of multi-
layered and stratified tissues in 3D, for example of an artificial retina. Mathematical
models might help to accelerate this process and to suggest interesting designs, thus
avoiding delays or dead ends in experimentation. The contribution of materials
science does not need to be confined to spatial and mechanical aspects, but also
could cover the time domain. Stimuli-responsive materials and optogenetics can
be used to implement temporal protocols to guide cell development or even to
implement feedback loops that automatically adjust the physical properties of the
environment to the current state of the biological system. Bringing together these
different technologies opens up numerous exciting and very promising new avenues
for the control of cells, tissues, and organs.
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4 Modeling cells in structured
environments∗

4.1 Modeling single cells

Cells are complex systems that rely on a large number of molecular pathways and
cellular components to govern their behavior. Capturing all the relevant interactions
and feedback loops in one model is a difficult task. Small-scale models focus on the
interactions of amino acids, which are the building blocks of proteins, in full atomic
detail. These proteins are the fundamental building blocks of cells by forming larger
structures and interacting with each other. Molecular dynamics simulations are used
to predict protein structures and dynamics or model dynamic processes, however the
typical length- and timescale simulated with molecular dynamics is up to the µm

and µs scale [297].
However, cellular processes occur at multiple spatial and temporal scales, ranging

from molecular interactions within cells to cell-cell communication and tissue-level
behaviors. Describing these processes can only be achieved with coarse grained models.
In such cases, cells are can be approximated as isotropic viscoelastic materials, as
contractile networks or by describing their surface.
Cell models can be categorized as static or dynamic. Static models describe the

steady state or average behavior of cells. They do not consider changes over time or
the dynamics of cellular processes. Static single cell models are computationally less
demanding and typically used when temporal changes are minimal in an experiment.
In contrast, dynamic single-cell models capture the temporal dynamics of cellular
processes over time. They consider the changes in cellular behavior and molecular
interactions as the cell responds to stimuli, undergoes differentiation, or transitions
between different states. These models often incorporate differential equations or
stochastic simulations to represent the time-dependent changes in cellular components

∗This chapter is based on the review Link, R., Weißenbruch, K., Tanaka, M., Bast-
meyer, M., & Schwarz, U. S. (2023). Cell Shape and Forces in Elastic and Structured
Environments: From Single Cells to Organoids. Advanced Functional Materials, 2302145.
https://doi.org/10.1002/ADFM.202302145 [10].
In detail, we use Section 2, specifically 2.3, and 2.5, Section 3, specifically 3.4, Section 4, all with
further elaboration.
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Figure 4.1: Models to describe cells in environments in 2D. a,a′) Schematics
of the contour model which predicts the radii of invaginated arcs from
surface tension σ and line tension λ. b,b′) Schematics (b) and image of
a simulation (b′) of a 2D network model. c,c′) Schematics (c) and image
of a simulation (c′) of a 2D phase field model. d,d′) Schematics (d) and
image of a simulation (d′) of a 2D cellular Potts model.
d′): Reproduced with permission [19], 2014, Elsevier. All other images
reproduced with permission [10], 2023, Wiley.

such as ATP cycles. Dynamic single-cell models are well-suited for investigating time-
varying behaviors such as cell shape changes and cellular responses to perturbations.

In the following, we will explore the different approaches to model single cells
in structured environments, with a special emphasis on how the cell-environment
interaction is implemented. In addition, we will discuss how these models can be used
to develop and parametrize mathematical models, which in the future are expected
to become more predictive regarding optimal design [298].

4.1.1 Modeling single cells in 2D

Modeling single cells in 2D reduces the computational complexity and simplifies
the modeling process. Many cellular processes, such as adhesion, migration, and
signaling occur at the cell surface. These interactions can be studied with a 2D
model. Additionally, experimental data often generates 2D data, which can be
directly compared to 2D model predictions. Shape and forces of single cells have
been modeled in 2D with a variety of different methods, including static contour
models, network models, and continuum models as well as dynamic models such as
phase field models and the CPM [298–300].
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4.1 Modeling single cells

Contour models describe the static boundaries of a sessile cell based on the idea that
non-motile cells on substrates are effectively two-dimensional and span their contours
between focal adhesions, see Fig. 4.1a,a′). They are motivated by experiments
with cells in structured environments, which often show strong geometrical features,
compare Fig. 3.1a). The simplest approach is to assume a constant surface tension σ,
due to the contracting actomyosin cortex, and a constant line tension λ, arising from
actin stress fibers lining the periphery and counteracting the cortical tension. The
surface tension energy is thus given by EA = σ

∫
dA and the energy from the line

tension by EL = λ
∫

dL. Assuming the system is in equilibrium, the energy must be
in a minimum, and thus dE = 0. This leads to the Laplace law for soap bubbles,
which can be used to describe cells boundary on adhesive structures:

σ dA = λ dL

σ d(πR2) = λ d(2πR)

σ2πR dR = λ2π dR

R =
λ

σ
(4.1)

The surface tension acts in normal direction of the cell boundary while the line
tension is parallel to the boundary. R describes the radius of invaginated arcs between
adhesive points [301]. This simple argument suggests a constant invagination radius.
Experimentally, a linear relation between radius and spanning distance of invaginated
arcs was found. This can be explained with the introduction of an additional elastic
line tension [264] or with a dynamical version of the interplay between tension and
elasticity [151]. Recently, elliptical arcs have been described for the case when the
stress fibers do not line the periphery, but pull towards the cell body [302]. Contour
models can often be solved analytically and the dependance of input parameters on
the solution as well as their biological meaning follow directly from the model. For
example, they have been used to predict cell forces from shape [301]. However, they
have been devised mainly to describe cell shape on 2D adhesive micropatterns and
cannot be easily generalized to different situations. Contour models describe the
static shape a cell reaches in equilibrium, but cannot describe dynamics. Moreover,
they use phenomenological effective model parameters such as surface and line
tensions.

Network models describe cells as a 2D network of cables, thereby replacing the
coarse-grained surface tension in contour models with a more detailed model that
is directly motivated by the key physical properties of the actin cytoskeleton, see
Fig.4.1b,b’). The actin filament bundles are approximated as mechanical links joined
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at discrete nodes, which represent cross-linkers. Adhesion to the micropatterns is
modeled by fixing the respective nodes. Actin filaments are semiflexible polymers
which can be stretched but not compressed. In fact actin filaments buckle under
compression [33]. The mechanical force between nodes is therefore described as
an elastic force when the filament is stretched and no force when the filament is
compressed. The spring constant of actin bundles is given by EA/L0, where E
is the Young’s modulus, A the cross section and L0 the rest length of the actin
filament. Due to the motor activity, an additional active force is introduced, which
is proportional to the rest length L0 of the link, and the force density per length T
arising from the molecular motors is assumed to be constant. As this would lead to
a finite active force for length L = 0, a small length scale LC is introduced below
which the force decays linearly, such that the total force disappears for L = 0. Thus
we can describe the force between two nodes i, j:

~Fij =


(TL0 + EAuij)~eij if L0 < Lij

TL0~eij if LC ≤ Lij ≤ L0

TL0
Lij
LC
~eij if Lij < LC ,

(4.2)

where uij = (Lij − L0)/L0 is the strain of the actin fiber and ~eij is the unit vector
along the link.

Actively contractile cable networks under isometric tension reproduce the exper-
imentally observed invaginated arcs, independent of the architecture of the cable
network, revealing a fundamental and unconventional property of the contractile actin
cytoskeleton [303]. Therefore, network models allow for the modeling of experimen-
tally more complex situations, such as cells on micropatterns that are contracting due
to optogenetic activation [80]. Recently, cable networks have been used to describe
the effect of laser cutting stress fibers that are strongly connected to the actomyosin
cortex [126]. Network models are well suited to predict force distributions of single
cells on micropatterns. While the explicit network architecture is not relevant for
the simulations, network models are limited by the fact that the connections cannot
change throughout the simulation, but cytoskeleton remodeling is often observed in
experiment, for example during cell migration.

Following more traditional approaches from continuum mechanics, homogeneous
2D (visco-)elastic sheets under tension can also be used to model cells in 2D [137, 304,
305]. These models describe single cells as thin contractile layers with intracellular
stress σij = σij,p + σij,a, which has a passive contribution σij,p due to the cell
deformation, and an active stress σij,a arising from actomyosin contraction, similar

48



4.1 Modeling single cells

to active gel theory [306]. The passive contribution can be modeled for example with
a Kelvin-Voigt model as a linear viscoelastic solid: σij,p = (1 + τc∂t)(λεkkδij + 2µεij),
where the strain tension is given by εij = (∂iuj + ∂jui)/2 with displacement field ui
and Lamé parameters λ and µ, and the relaxation constant τc = ηc/Ec depends on
effective viscosity ηc and Young’s modulus Ec. The force balance is then given by

∂jσij(x, t) = Y (x)ui(x, t), (4.3)

where Y (x) describes the substrate geometry and stiffness as a spring constant density.
Adhesion to the substrate can also be modeled with a fixed boundary condition
representing sites of adhesion to compliant material. Finite element simulations can
then be used to predict, for example, traction forces and stress distribution inside
the cell [307]. Continuum models are useful to understand how processes at the
boundaries propagate into cells and to predict cell forces on the scale of the whole
cell.

In many situations of interest, a more dynamical description than that provided by
continuum mechanics models is desired, especially in the case of large deformations or
even topology changes. Phase field models [308, 309] use an energy-based description
in contrast to the previous models, which are force-based. Energy-based models
are better suited to describe and predict dynamics but make it difficult to model
forces. In phase field models, an auxiliary field φ(x, y, t) is used to represent the
boundary of a cell, as φ = 1 represents the inside of the cell, and φ = 0 the outside,
see Fig.4.1 c,c′). There is a smooth transition between the interior and exterior
phases and the dynamics of φ are described by an overdamped equation of motion.
Single cell migration can then be modeled through an energy functional with an
additional polarization vector or velocity field to model cell motility [308, 310].

A computationally very efficient alternative to phase field models is the CPM,
which was initially devised to model cell collectives [16, 21, 311–313]. Like phase
field models, the CPM is an energy-based description of cells on a lattice, see
Fig.4.1d,d′). A generalized cell represents a biological cell, a subcellular compartment,
the surrounding medium, or other physical entities and can span over more than
one pixel on the lattice. For 2D systems, the Hamiltonian typically consists of
an elastic area constraint and interaction energies between neighboring pixels that
belong to different generalized cells [314]. In the context of cells on micropatterns,
an alternative approach is the use of energy terms of area and line tension, combined
with an energy gain for the occupation of predefined adhesive sites [19, 313]. In this
case, area is not determined by the area constraint, but by the size of the adhesive
area, reflecting the fact that cells in 2D can generate area by material transfer from
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3D to 2D. In any version of the CPM, a modified Metropolis algorithm is used to find
the energy minimum, making this approach essentially a Monte Carlo simulation.
This is a very versatile approach that can be applied to model complex systems.
However, some parameters used in cellular Potts type simulations do not have a
direct biological interpretation. We will discuss the CPM in detail at the end of this
chapter.

4.1.2 Modeling single cells in 3D

3D computer simulations have increasingly helped to deepen our understanding of
single cell mechanobiology in structured environments. 3D models represent the
spatial context in which cells live more accurately, especially the interaction with
the ECM. Additionally, mechanical forces such as tension, compression, and shear,
as well as cell shape changes can be described in a 3D model.

Many 2D simulation methods can be extended to three dimensions. For example,
the shape of single cells 3D-printed scaffolds was described with a network model of
active cables by Brand and colleagues, see Fig. 4.2a,a′) [152]. The total energy is
minimized numerically for a shape connecting the given adhesion platforms. Brand
and colleagues reported good agreement between the experimentally observed shape
of a NIH 3T3 fibroblast and found the same curvature radius to spanning distance
dependence as in the 2D contour model, although no explicit line tension was included.
This suggests that the stress fibers lining the invaginations in 2D are condensed
versions of the actin cortex which is folding back onto itself in 3D.

Continuum models can be extended to three dimensions as well and often are
implemented with the finite element method (FEM) [315]. Stiffness and viscosity
of single cells or subcellular compartments can be measured and directly used as
parameters in the simulations. Finite element models such as Cytopede [316] have
been used to describe crawling fibroblast and keratocyte motility [317]. In addition
to cell migration, 3D finite element modeling can be used to predict cellular responses
of nanoindentation [289] and to calculate the force distributions within cells [318,
319]. The open-source software Virtual Cell uses finite volume solvers to describe
actin polymerization inside a 3D cell with a predefined geometry [320]. Cytosim is
an open-source software that can describe the mechanics of cytoskeletal networks
using Brownian dynamics of fibers and motors [321]. More coarse-grained models
describe the formation of pseudopodia of a 3D cell on an 2D substrate with a finite
element model [316, 322] or as an active nematic droplet [323].
Winkler and colleagues described single cells in 3D mechanical environments

with an extended phase field model, see Fig. 4.2b,b′) [324]. Both the cell and the
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Figure 4.2: 3D models to describe single cells in environments. a,a′)
Schematics (a) and image from the network model simulation (a′) of a
single cell in a 3D structure. b,b′) Schematics (b) and image (b′) of a
3D phase field simulation. c,c′) Schematics (c) and image (c′) of a single
cell in a 3D CPM simulation.
a’): Reproduced with permission [152], 2017, Elsevier. b’): Reproduced
with permission [324], 2019, Nature. All other images reproduced with
permission [10], 2023, Wiley.

mechanical environment are described with a scalar 3D field, while the actin inside
the cell field is described with a vector field. The actin distribution inside the cell
is modeled via a source term modeling actin polymerization close to the boundary,
a sink term, and a diffusive term. Symmetry-breaking leads to front-read polarity
and cell movement. This method predicts cell shape, velocity, and alignment on
arbitrarily shaped substrates.

Extending the CPM to 3D is straight-forward, see Fig. 4.2c,c′). Typically, the
Hamiltonian includes an area constraint and a volume constraint, in addition to the
interaction energies between neighboring generalized cells. Moreover, the nucleus
can be implemented as a sub-cellular compartment with higher stiffness than the
cytosol. Scianna and colleagues investigated the influence of a fibrous environment
on a single cell with an explicit nucleus representation and compared cell velocity
and persistence length for increasingly aligned fibrous networks and different pore
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sizes [20]. More recently, single cell motion was described with the CPM by explicitly
modeling lamellipodia of mesenchymal cells [325] or by coupling the actin dynamics
inside the cell to its shape and external cues [32].

The aim of many in silico experiments is to better understand cell migration in
3D [326]. Predicting the 3D shape of a single cell in structured environments with
the goal of improving scaffold design for biomedical applications is a novel research
avenue and so far has only been discussed in 2D [298].

4.2 Modeling cell collectives

Cells in collectives exhibit complex behavior such as collective migration and pattern
formation that in principle could result from relatively simple rules being followed by
the single cells. Thus, these are ideal model systems to be studied by mathematical
and especially by computational models. As we have seen in Chapter 3, epithelial
tissue is characterized by cell coordination over large length and time scales, resulting
from mechanosensitive interaction between cells via cadherin-mediated adhesions
[327]. The strong cohesion in these systems means that modelling can proceed either
by individual-based or continuum models. In individual-based models, cells are
described by single or multiple particles, either in a continuous space or on a lattice.
Cell activity resulting in motion can then be introduced by self-propulsion, like for
active Brownian particles. Cell sheets can also be approximated as continuum elastic
or fluid materials. In this case, cell activity resulting in motion is often modeled by
active stresses, which typically arise from actomyosin contractility.

Cell-cell interactions can easily be implemented in the CPM by including interaction
energies between cells in the Hamiltonian. With the introduction of two cell types
and the definition of pair-wise interaction energies, see Fig. 4.3a,a′), the differential
adhesion hypothesis (DAH) [328] was implemented numerically in 2D as the first
application of the cellular Potts model [329]. Soon, it was extended to 3D and
coupled with partial differential equations to describe chemotaxis, which allowed the
modeling of the formation and crawling of Dictyostelium discoideum [21]. This model
has been adapted and extended by Merks and colleagues to describe vasculogenesis,
where cell elongation was described explicitly with an additional energy contribution
[330]. More recent 2D simulations based on the cellular Potts framework focus on
describing both single and collective cell dynamics [298, 331]. Due to its versatility,
the CPM can be extended to 3D and applied to more complex systems, such as
reproducing the morphology of vascular tumors, their growth and angiogenesis [332].
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Figure 4.3: Models to describe cell collectives in structured environments.
a,a′) Schematics (a) and image (a′) of a 3D CPM describes cell sorting,
a process where cell types arrange according to the difference in their
adhesion strength. b,b′) Schematics (b) and image (b′) of a vertex model,
describing tightly packed monolayers. c,c′) Schematics (c) and image
(c′) of a phase field model simulation of interacting cells on a adhesive
micropattern.
c′): Reproduced with permission [333], 2015, Nature. All other images
reproduced with permission [10], 2023, Wiley.

In contrast to the CPM, which uses very variable cell shapes, the 2D vertex model
uses simple polygons to describe epithelial monolayers [334]. The forces acting on
the vertices can result either from phenomenological force descriptions or from an
energy formulation as in the CPM. Using the purely geometrical Voronoi tessellation,
which divides space into cellular compartments based on the neighborhood relations
to their centers, one also can use a formulation for the midpoints of the polygons,
which makes the system similar to individual-based models. Typical terms for the
energy function include elastic constraints on volume and area of the polygons, as
well as an interaction term for neighboring polygons proportional to the length of
the boundary interface [335]. In 3D, one uses polyeders rather than polygons, see
Fig. 4.3b,b′). One of the first applications of the 3D vertex model was a simulation
of the Drosophila wing disk, which showed that the tension in the system was
sufficient for the formation of the dorsal appendages of Drosophila eggshells [336].
The ensemble behaviour of vertex models can be approximated with a continuous
mean field theory. Czajkowski and colleagues developed a hydrodynamic model that
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takes cell shape anisotropy, motility, and polarization into account to model pattern
formation in embryonic development [337].

The phase field model can also be used to describe cell collectives. In one of the
first formulations of multicellular systems with the phase field model, each cell is
modeled by a separate phase field, see Fig. 4.3c,c′), and the phenomenological free
energy of the system includes terms for the individual cell shape, the interaction of
the cell with the substrate and with other cells [338]. Löber and colleagues coupled
the scalar phase field to a vector field describing the orientation of actin fibers inside
the cell to model cell collisions [333]. A different approach is to model a cell sheet as
a single phase field. By adding elastic forces to the phase field equation, Chojowski
and colleagues describe a reversible elastic phase field that captures deformations
due to contractility and finger formation [339].

4.3 Modeling organoids

Organoids are complex and interacting cell systems and combining them with
structured environments is a promising novel approach. Again, mathematical and
computational models can help better understand how emergent properties arise
from cell interactions and to test hypotheses and make predictions. To account
for the complexity of cellular systems, simulations of organoids often include both
biomechanical properties as well as signalling pathways [340]. The optic cup formation
of retina organoids was successfully described with a vertex model that includes
cell growth and division, intercellular signalling and cell shape deformations [341].
These simulations suggest that mechanical feedback is important for formation of
the optic cup [342]. In addition, the vertex model was combined with a Turing
model for activation and inhibition to describe undulation, tubulation and branching
[343]. Cerruti and colleagues used a CPM approach to simulate lumen formation in
epithelial cysts, suggesting that accumulation of multiple lumens correlates with fast
cell division rates [344].

While there are successful models of organoid morphogenesis [342, 345] and
growth [346], these models are typically not yet including interactions with the
extracellular environment. A first approach to include the local microenvironment
in the mathematical model describes Matrigel as a semi-flexible elastic polymer
network which gives rise to a bending rigidity of the organoid surface. The polymer
network can be remodeled by the cells attached to it and the local curvature of the
organoid surface partially regulates cell specification. This model describes intestinal
spatiotemporal organization and growth [347, 348]. A continuum approach was used
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to better understand the oxygen transport and consumption in human midbrain
organoids. Oxygen levels of an organoid in laminar flow were modeled with a reaction-
diffusion model describing the oxygen diffusion in the local microenvironment as well
as diffusion and consumption in the organoid [349].
In summary, theoretical approaches can complement experimental studies and

help to better understand the complex interplay between different aspects of cellular
systems. Once established, they might also guide the design of future experimental
systems and applications.

4.4 Introduction to the cellular Potts model

With different modeling approaches for cells presented in the previous sections, we
now focus on the CPM, which is the model we use throughout this thesis. The CPM
is an energy-based model that inherits its framework from statistical physics. Is is
used to simulate the shape and behavior of biological cells and tissues. In this model,
generalized cells are represented on a lattice, where each lattice site with the same
index belongs to the same cell or non-cellular material. The model also considers
internal cell states for each cell, which are defined as the properties of the cell that
influence its behavior and interactions with other cells.
Many ideas used in CPM type simulations directly come from statistical physics,

specifically the Ising and Potts models [314]. The Ising model is one of the most
important models of statistical physics, and has been invented to explain the second
order phase transition in ferromagnetic materials for dimensions larger than two.
It describes spins on a lattice with orientations up or down (σ = ±1), which obey
Boltzmann statistics and interact with their nearest neighbors. In the absence of
external magnetic field, the Ising Hamiltonian is given by the sum of interactions
between nearest neighbor spins

HIsing = −J
2

∑
(~i,~j) neighbors

σ(~i)σ(~j), (4.4)

where aligned spins lower the total energy by −J , while anti-aligned spins add the
energy J to the system. The factor 1

2
prevents double-counting. The idea of an

energy penalty per unit length of boundary is used in both the Ising model and its
generalization to the CPM.
A direct generalization of the Ising model is the Potts model, where each lattice

site has one of q states [314]. Following the idea of the Ising model, the Hamiltonian
is determined by neighbor interactions, the total energy of the system is obtained by
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summing over neighbors, and if neighbors are not in the same state the energy is
increased by J :

HPotts = J
∑

(~i,~j) neighbors

(
1− δ(σ(~i)σ(~j))

)
, (4.5)

where δ is the Konecker-Delta, which equals one if σ(~i) = σ(~j) and zero otherwise.
The Potts model is also used to study phase transitions as it can model systems with
multiple domains at low temperature.

The CPM is a further generalization and modification of these ideas [314]. It
introduces uniquely labeled domains σ and allows evolution only at the interfaces.
The use of type-dependent boundary energies allows for the modeling of complex
dynamics, such as cell sorting [16, 329]. The CPM can incorporate auxiliary fields,
such as chemical gradients, the ECM or gravity, to represent external forces that
affect the behavior of the cells. An effective energy or Hamiltonian H is defined
to encapsulate the interactions between the model elements, which can include
potential energies, elastic constraints, and other factors. The Hamiltonian can also
include PDEs and boundary conditions for the time evolution of fields. Additional
mechanisms, such as cell division, can also be included in the model to capture
the dynamics of cell growth and proliferation. Typically, sub-cellular processes are
modeled phenomenologically, and the interaction between different mechanisms is
expressed is terms of the Hamiltonian.

The first CPM described cell sorting in 2D. To describe this process, the Hamilto-
nian included interaction energies and volume constraints between cells σ with cell
types τ :

HCPM =
∑

(~i,~j) neighbors

J(τ(σ(~i)), τ(σ(~j))) ·
(

1− δ(σ(~i), σ(~j))
)

+
∑
σ

λV(τ) (v(σ)− VT(τ(σ))2
(4.6)

Here, J depends on the cell types τ of the neighboring domains σ(~i) and σ(~j).
Following the Potts model Hamiltonian, see Eq. 4.5, the interaction energy J is
nonzero only if the neighboring lattice sites belong to different domains. The
additional volume constraints ensures that domain sizes are close to a predetermined
target volume VT, which depends on the cell type τ . The strength of this constraint
λV depends on the cell type τ as well.

A modified metropolis algorithm is used to evolve the system [314, 350]. A voxel at
the boundary between generalized cells is chosen randomly and flipped to a randomly
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Figure 4.4: Schematics of the spin-flip in the CPM. Left: 2D CPM simulation
with three cell indices σ = 1, 2, 3, outside medium σ = 0 and two cell
types τ , represented by green and blue coloring. A voxel at the boundary
of a generalized cell is chosen randomly (marked in orange). Right: The
index of the randomly chosen voxel is changed to one of the neighboring
indices. The energy change due to the changed index ∆H is used to
calculate the probability to accept the new index, see Eq. 4.7.

chosen cell index σ of a neighboring cell as a test, see Fig. 4.4. The energy change
∆H due to this flip is calculated, and the changed cell index is kept with probability p

p =

1 if ∆H < 0

e−∆H/T if ∆H > 0.
(4.7)

This ensures that the system evolves towards the minimum energy configuration
while it allows the crossing of local energy maxima by accepting spin flips into higher
energy states with the Boltzmann probability. Note that the modified Hamiltonian
used in the CPM breaks detailed balance, as cells can disappear when their volume
becomes 0, but new cells cannot appear randomly. At the same time, the metropolis
algorithm allows for the description of dynamics in the simulation. At T = 0,
the metropolis algorithm is no longer statistical and deterministically drives the
configuration towards a local energy minimum. At low temperatures, it introduces
a pseudo-time because it only allows for local changes that tend to lower the total
energy of the system, while the Boltzmann probability (Eq. 4.7) ensures that the
system is able to evolve across local energy minima [314].

To describe the kinetics of the system evolving with a modified metropolis algorithm,
we consider configurations ~S1, ~S2, ... that differ in one spin value, and every spin

57



4.4 Introduction to the cellular Potts model

flip lowers the total energy of the system, such that H1 > H2 > .... If the energy
difference between configurations with one differing spin value are small compared to
the simulation temperature T , we can describe the net transition rate of the system
as

r(~Si → ~Si+1) = p(~Si → ~Si+1)− p(~Si+1 → ~Si) = 1− exp

(
−Hi +Hi+1

T

)
≈ −Hi +Hi+1

T
+O

(
(
−Hi +Hi+1

T
)2

)
.

(4.8)

Thus, the transition rate r is approximately linearly proportional to the energy
change in the system after a spin flip. From this, we can describe the velocity of the
system as

~v(~Si → ~Si+1) =
~∇H(~Si+1 − ~Si)

T
, (4.9)

where we define the unit time step as one spin-copy and the position variable of the
gradient is the length of one pixel (in 2D) or voxel (in 3D). Now we see that the
CPM dynamics obeys an overdamped force-velocity relation

~∇H = ~F = µ~v (4.10)

with effective mobility µ = T . Due to their microscopic internal structures, biological
cells exhibit a high level of dissipation, making them primarily influenced by viscosity
rather than inertia. As a result, the impact of external forces on cells can be most
accurately described within the Aristotelian regime, where the force is proportional
to the velocity, ~F ∼ ~v. In conclusion, if we ensure that ∆H

T
is small, we can describe

the viscous dynamics of a biological system with the modified metropolis algorithm.

When comparing the CPM to the Ising model, we find several noteworthy differ-
ences [314]. One of the main differences between the Ising model and the CPM lies
in their initial conditions. In the Ising model, the initial conditions are typically
chosen randomly, whereas in the CPM, the initial conditions are often biologically
motivated. This means that the initial configuration of the system is based on
real biological observations, rather than being completely arbitrary. In many cases,
the final configuration or the dynamics depend on the initial conditions, therefore
choosing initial conditions that represent biological systems is crucial. Adding to
this is the fact that the CPM incorporates biologically motivated domain properties,
such as the fact that cells remain connected. In contrast, the Ising model assumes
that each spin interacts only with its nearest neighbors and does not incorporate any
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domain-specific knowledge. Furthermore, the Ising model assumes a single contact
energy between spin values, while the CPM can incorporate more complex energy
terms that reflect the physical properties of the system being studied. This allows
the CPM to capture more nuanced interactions and behaviors within the system.
Another significant difference is that the Ising model has no external control over
domain size or shape, they are the outcome of the simulation for given T and J ,
whereas the CPM can be used to model the growth and shape of cells, tissues, and
other biological structures due to additional energy terms describing perimeter, area
or volume energies. Finally, the standard Ising model has no dynamics, whereas the
CPM can be used to model the movement and behavior of cells over time. This
makes the CPM particularly useful for studying dynamic biological processes, such
as cell shape changes, migration and tissue development.

4.4.1 Modeling cell shape with the CPM

We focus on cell shape in this work, and to model cell shape successfully, we implement
the effects of different intracellular structures described in Chapter 2 as energy terms
of the CPM Hamiltonian.

We model the effect of the actin cortex with an area energy constraint of the cell.
This constraint is often chosen to be elastic [351–353],

Hcortex = λA(A− AT )2, (4.11)

where λA is the strength of the constraint, A is the surface area and AT is a predefined
target area. Others have argued that extending the cell surface area always costs
energy [298, 313], thus describing the effect of the contractile actin cortex with a
linear area constraint

Hcortex = λAA, (4.12)

where λA is again the strength of the constraint and A the cell surface area. We will
analyze the resulting differences in cell shape for the two approaches to describe the
contractile nature of the actin cortex in the frame of the CPM in Chapter 6.

Additionally, we implement stress fibers in the 3D CPM in Chapter 5 by com-
partmentalizing the cytoplasm of the cell and introducing line tensions between the
center of mass of neighboring compartments. Stress fibers can then be initiated
by introducing line tensions between points of adhesion on a micropattern. This
approach ensures that the cell shape changes due to varying line tensions. The
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contribution of stress fibers to the cell shape in the form of a line tension is given by

Hstress fibers =
∑
SF

λ``, (4.13)

which is the sum over all stress fibers, λ` is the strength of the stress fiber energy
and ` is the length of the stress fiber segment.

In cellular Potts type simulations, the nucleus has been implemented as a cellular
compartment, and its higher stiffness can be described by increasing the energy
constraint parameters. Preciosi and colleagues used a compartmenalized CPM to
describe cells with nuclei in structured environments in 3D [20, 351].

Following this idea, we implement the nucleus as a compartment with volume and
surface constraints in the simulations of cells in structured environments throughout
this work. This approach allows us to additionally prescribe the interaction energies
between the nucleus and other generalized cell types in the CPM. Additionally, we
impose the position of the nucleus with an elastic energy constraint between the
center of mass of the cell and the nucleus:

Hnucleus position = λC( ~Xcell − ~Xnucleus)
2, (4.14)

where λC is the strength of the constraint, ~Xcell is the center of mass of the cell
cluster, consisting of the generalized cell types nucleus and cytoplasm, and ~Xnucleus

is the center of mass of the nucleus.
In the CPM used throughout this work, we describe the binding of the cell to

adhesive surfaces such as the ECM and fibronectin with a negative interaction energy.
This parameter influences how far cells can spread on adhesive areas, as it counteracts
the energy cost due to the surface area increase.

4.4.2 Simulating cell shape with CompuCell3D†

There are several open source simulation frameworks for 3D cellular Potts type
simulations[355–357]. We chose CompuCell3D (CC3D) [355] for our simulations, as
it is actively maintained and developed, while being modular and fully customizable
at the same time. In the following, we describe the CC3D architecture and the
custom extensions that were needed to model single cells and organoids in structured
environments.

†A step-by-step guide on modeling cell shape can be found in Link, R. & Schwarz, U. S. (2023)
Simulating 3D Cell Shape with the Cellular Potts Model. In: Zaidel-Bar, R. (eds) Mechanobiology.
Methods in Molecular Biology, vol 2600. Humana, New York, NY. https://doi.org/10.1007/978-1-
0716-2851-5_22 [354].
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Figure 4.5: Flow chart of the CC3D algorithm. Reproduced from [358].

The simulation contains a list of objects, which are generalized cells or fields.
Generalized cells represent cells, subcellular compartments or other materials. They
occupy one or more voxels and have a unique cell index σ, as well as a cell type τ .
Each generalized cell has a list of attributes, including the type, volume, surface area
and center of mass.

The simulation dynamics is governed by rules for cell behavior and interactions,
which are specified in plugins and steppables. Plugins are called at every voxel copy
attempt to calculate energy changes due to changed voxel indices or after index
changes to monitor the lattice. Steppables are called before the first Monte Carlo
step (MCS) to load initial conditions or after a predefined number of MCS to change
parameters and to save results. Plugins are typically written in C++ as they are
called for each index copy attempt, while steppables are written in Python to allow
for an easy simulation set-up and flexibility. In Fig. 4.5, the architecture of the
CC3D algorithm is depicted.

To describe single cells with nucleus in structured environments, we use the
following plugins: The CellType plugin is used to define the cell types Medium,
Cytoplasm, Nucleus, Adhesive and NonAdhesive. To implement the elastic volume
constraint, we use the Volume plugin, where we can specify the constraint strength λV
and the target volume VT for each cell type. Similarly, we use the implemented elastic
area constraints Surface and ClusterSurface, for which we specify the constraint
strength λA and target area AT for the nucleus and the cell respectively. Finally, we
prescribe interaction energies with the Contact and ContactInternal plugins.

Clusters add an additional index to each cell. Several cells can have the same
cluster index. While the traditional CPM enables subcellular modeling with partial
differential equations and ordinary differential equations, the use of compartmental-
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ized clusters allows for the explicit modeling of subcellular units such as filopodia,
apical and basal membranes and the nucleus. We use clusters to describe cells
which consist of two compartments, the Nucleus and the Cytoplasm, which are both
generalized cell types. Combining them to a cluster is necessary to properly describe
their cell surface, as opposed to the cytoplasm surface.

The elastic constraints calculate the resulting change in energy for each voxel copy
attempt. For the cell that gains one voxel due to the proposed copy attempt, the
volume constraint energy changes by

∆E+
V = Eafter − Ebefore

= λV(V + 1− VT)2 − λV(V − VT)2 = λV(1 + 2(V − VT)),
(4.15)

and similar if the cell loses one voxel due the copy attempt:

∆E−V = λV(1− 2(V − VT)). (4.16)

For the elastic area constraint for cells and clusters, the energy change is given by

∆E+
A = Eafter − Ebefore

= λA(A+ 1− AT)2 − λA(A− AT)2 = λA(1 + 2(A− AT)),
(4.17)

if the cell or cluster gains a voxel due to the proposed area change, if it looses a voxel
the energy change is given by

∆E−A = λA(1− 2(A− AT)). (4.18)

Furthermore, the interaction energy change ∆EJ due to the voxel copy attempt
is calculated for all voxels in the neighborhood area, and the total energy change
∆E = ∆EV + ∆EA + ∆EJ is used to calculate the probability p to accept or reject
the voxel copy attempt, see Eq. 4.7.

In Chapter 6, we compare cell shapes in 3D scaffolds simulated with either elastic
or linear area energies. To implement the linear area energy functions in CC3D, we
developed the plugins SurfaceLinear and ClusterSurfaceLinear. In this case, the
energy change when the area is increased due to attempted voxel changes is given by

∆E+
A = Eafter − Ebefore = λA(A+ 1)− λA(A) = λA, (4.19)

and if the cell surface area is reduced due to the proposed voxel change the energy
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change is given by

∆E−A = −λA. (4.20)

In Chapter 7, we compare the influence of matrigel on vesicle formation in organoids
with increased pressure on the cell cluster. In this case, we need an elastic volume
constraint, similar to Eq. 4.15 and Eq. 4.16, on the cluster. The pressure p is then
given by

p = −∂H
∂V

= 2λV(VT − V ), (4.21)

where the volume V , target volume VT and elastic constraint strength λV depend
on the cluster, not on the cell type. We can then increase the pressure on the
system by increasing λV. This was implemented in the CC3D with the custom-build
ClusterVolume plugin.
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5 Modeling cell shape on micropatterned
surfaces

A commonly used approach to manipulate the internal organization of cells and
investigate the influence of mechanical cues on cell behavior is the use of adhesive
micropatterned surfaces. We previously summarized experimental findings from
single cells on micropatterns in Section 3.1.2, and modeling efforts in Section 4.1.1,
demonstrating the feasibility of predicting and describing the shape of cells on these
surfaces in 2D. However, these models were limited to 2D projections rather than
the full 3D shape and did not consider the nucleus in the simulation or enforce a
fixed cell area during the simulation, with the argument that cell area can be added
or removed from the third dimension, which is consequently not described in these
models. To overcome these limitations, we use a 3D CPM to simulate the shape and
spreading dynamics of cells on micropatterned substrates. This allows us not only
to predict the 3D cell shapes over time but also to investigate the influence of the
nucleus on shape and spreading dynamics of the single cell.

5.1 Influence of the nucleus on cell shape and

spreading

CC3D is used to calculate interaction energies between the generalized cell types
Cytoplasm, Nucleus, Adhesive and NonAdhesive, while elastic constraints are employed
to model the volumes of the cytoplasm and the nucleus and the surface area of the
nucleus and the cell. Cells are modeled as clusters, with compartments Cytoplasm
and Nucleus. The generalized cell types Adhesive and NonAdhesive are used to
model the micropattern geometry and are therefore kept fixed during simulations.
Cell adhesion to the micropattern then happens because of the different interaction
energies between the Cytoplasm and the Adhesive/NonAdhesive gerenalized cell
types.
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5.1 Influence of the nucleus on cell shape and spreading

The Hamiltonian used in this section is therefore given by

HCPM =
∑

(~i,~j) neighbors

J int(τ(σ(~i)), τ(σ(~j))) ·
(

1− δ(σ(~i), σ(~j))
)
· δ(α(~i), α(~j))

+
∑

(~i,~j) neighbors

Jext(τ(σ(~i)), τ(σ(~j))) ·
(

1− δ(σ(~i), σ(~j))
)
·
(

1− δ(α(~i), α(~j))
)

+
∑
σ

λV(τ(σ)) (v(σ)− VT(τ(σ))2 +
∑
σ

λA(τ(σ)) (a(σ)− AT(τ(σ))2

+
∑
α

λA(α)(a(α)− AT(α))2 + λC( ~Xcell − ~Xnucleus)
2.

(5.1)

The introduction of clusters enables the use of different interaction energies J int and
Jext depending not only on the cell types but also on the cluster indices of neighboring
voxels. The first two sums in Eq. 5.1 describe internal and external interaction
energies between different cell types. Additionally, we use volume constraints for
the generalized cell types cytosol and nucleus and an area constraint for the nucleus.
The cytosol does not have an area constraint, instead we constrain the cluster area
a(α) as to avoid counting the internal boundary between cytosol and nucleus. The
use of area constraints gives us more flexibility for the interaction energy J , as it
becomes possible to assign negative interaction energies [359]. Finally, we introduce
an elastic centering constraint with strength λC, keeping the center of mass of the
nucleus ~Xnucleus close to the center of mass of the cell ~Xcell.

To investigate the role of the nucleus during cell spreading, we modify our simulation
to exclude the nucleus compartment and compare the cell shapes and the time until
the final position is reached for simulations with and without explicit representation
of the nucleus. This simplifies the Hamiltonian used in our simulations:

HCPM =
∑

(~i,~j) neighbors

J(τ(σ(~i)), τ(σ(~j))) ·
(

1− δ(σ(~i), σ(~j))
)

+
∑
σ

λV(τ(σ)) (v(σ)− VT(τ(σ))2 +
∑
σ

λA(τ(σ)) (a(σ)− AT(τ(σ))2 (5.2)

Here, we describe the cell as homogeneous, and consequently we do not introduce
clusters in this simulation. Then, we only need one type of interaction energies, and
elastic volume and area constraints are used again.
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a b c

d e f

Figure 5.1: Snapshots from the simulation of a single 3D cell with nucleus
on a U-shaped micropattern. The adhesive area is depicted in beige,
the non-adhesive area in gray, and the cell in blue. a) MCS = 0, b) MCS
= 100, c) MCS = 250, d) MCS = 500, e) MCS = 1000, f) MCS = 2000.
All parameters used in the simulation can be found in Table A.1.

5.1.1 Simulated cell shapes on micropatterns

Adhesive micropattern geometries for cell culture are designed to control and manip-
ulate the spatial arrangement of cells on a substrate. These geometries influence cell
behavior, shape, and interactions. Originally, circular adhesive spots of different sizes
were used [50]. Today, there is a wide range of micropattern geometries that are used
for different purposes [5, 51, 124, 305, 360], for example H-shaped micropatterns
are used to immobilize cells [124], crossbow shapes which lead to polarization and
increased force generation [5] or squares which even lead to rotation in adhered cell
doublets [361]. Many micropatterns provide an adhesive surface for cells to adhere
to completely. In contrast, other micropattern geometries such as the tripod or
the arrow provide only adhesive lines for cells to adhere to, forcing them to cross
substrate areas without adhesive sites. This typically leads to invaginated arcs, as
explained in Section 4.1.1.
We are interested in the morphological behavior of cells as they spread across

non-adhesive regions, leading to the formation of invaginated arcs. To investigate this
phenomenon, we specifically selected three distinct micropattern shapes: the U-shape
the V-shape and the crossbow-shape. Cells on U-shaped and V-shaped micropatterns
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Figure 5.2: Snapshots from the simulation of a single 3D cell with nucleus
on a V-shaped micropattern. The adhesive area is depicted in beige,
the non-adhesive area in gray, and the cell in blue. a) MCS = 0, b) MCS
= 100, c) MCS = 250, d) MCS = 500, e) MCS = 1000, f) MCS = 2000.
All parameters used in the simulation can be found in Table A.1.

form one invaginated arc. Notably, cells cultured on U-shaped micropatterns adopt a
more square-shaped configuration, whereas those on V-shaped micropatterns exhibit
triangular shapes, with limited space for the nucleus at the structure’s center due to
the close proximity of adhesive bars. Cells on crossbow-shaped micropatterns become
polarized due to the asymmetric micropattern geometry and form two invaginated
arcs.

We initialize the simulation by placing a compartmentalized cell with Nucleus and
Cytoplasm as a cluster on U-shaped, V-shaped and crossbow-shaped micropatterns,
see Fig. 5.1a), Fig. 5.2a), Fig. 5.3a). The initial position of the compartmentalized
cell is chosen randomly. The Cytoplasm is initialized as a half-sphere and we include
the Nucleus as a sphere at the center of mass of the cell.

For the U-shaped micropattern, we find invaginated arcs between the two parallel
adhesive bars, and find that the simulated cell placed symmetrically on the U-shaped
micropattern spreads evenly along the bars, see Fig. 5.1. The final shape is minimizing
the total energy of the system, where the surface area constraint is rounding up the
cell because the cluster surface area is larger than the cluster target surface area
and thus counteracting the negative interaction energy between cytosol and adhesive
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Figure 5.3: Snapshots from the simulation of a single 3D cell with nucleus
on a crossbow-shaped micropattern. The adhesive area is depicted
in beige, the non-adhesive area in gray, and the cell in blue. a) MCS
= 0, b) MCS = 100, c) MCS = 250, d) MCS = 500, e) MCS = 1000,
f) MCS = 2000. All parameters used in the simulation can be found in
Table A.1.

micropattern. With this parameter choice, the micropattern is not fully covered by
the cell.

The cell on the V-shaped micropattern is initialized in the lower left corner of
the substrate, which leads to an asymmetric spreading on the micropattern, see
Fig. 5.2. The cell adheres fully to the left adhesive bar before it adheres to the right
bar. Even after the Cytoplasm is in adhered to the full area of the micropattern, the
asymmetric spreading is still apparent because the Nucleus moves slower towards
the center of mass of the cell. After 2000 MCS, the final cell morphology is reached
and the asymmetry observed during spreading is no longer visible.

We find a similar result for the cell spreading on the crossbow-micropattern, see
Fig. 5.3. The cell is initialized in the top right corner of the substrate and adheres
first to the right part of the adhesive arc, and then the Cytoplasm adheres further
onto the left side of the adhesive arc and the straight bar. Again, the asymmetric
spreading is visible even after the Cytoplasm is adhered fully to the crossbow. At
this point, the cell shape does not follow the adhesive arc as the nucleus is moving
slowly from the top right corner towards the center of mass of the cell. This leads
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to different radii of the two invaginated arcs. However, the system equilibrates and
after 2000 MCS, the invaginated arcs have the same radius and the cell shape follows
the adhesive arc at the top of the structure.
The final cell shape geometries in Fig. 5.1f), Fig. 5.2f) and Fig. 5.3f) are as

expected: the cell adheres to the adhesive parts and spans across non-adhesive areas,
forming invaginated arcs. We compare our results to the 2D images of cells on
micropatterns, and find qualitative agreement. For the U-shaped micropattern, we
find a pronounced invaginated arc, similar to experimental findings [5, 96]. Similarly,
we find one invaginated arc in cells on V-shaped micropatterns, which is also observed
in experiments, however the simulated arc has a smaller radius compared to the
experiment [96]. The cell shape on the crossbow micropattern closely resembles
the experimental finding, but the elastic nucleus centering constraint leads to a
nucleus positioned at the center of mass of the cell, which is an approximation. The
equilibrium position of the centrosome and the nucleus is not necessarily at the
center of mass of the cell, but at the center of an "inner zone", which is defined by
the absence of actin bundles and the radically organized microtubules [5, 43].

5.1.2 Analysis of landmark points

Available microscopy data of cells on micropatterns is only two dimensional. This is
useful for the comparison with 2D single cell models as described in Section 3.1.2.
The 2D representation of single cells allows for straightforward visualization and
interpretation of the model’s results. Visualization tools and techniques are well-
established for 2D data, aiding in the analysis and understanding of the simulated
cellular behaviors. While modeling single cells in 2D offers several advantages, it is
essential to consider the limitations. Cells in 2D models lack the full spatial context
present in 3D environments, potentially overlooking crucial biological phenomena
related to cell shape, mechanical interactions, and tissue organization. We chose the
3D single cell model for more accurate representation and understanding of 3D cell
shape. However, the lack of experimental 3D data of single cells on micropatterns
stops us from directly comparing experimental cell shapes with our simulation results.
To better characterize the 3D cell morphology we obtain in our simulations, we rely
on the analysis of landmark points [49].
We initialize 100 cells with nucleus with random starting positions on one of

the three different micropatterns and use the Hamiltonian in Eq. 5.1 to evolve the
system. We exclude cells from our analysis which are stationary because they are
too far away from the micropattern to start spreading. As described previously in
Section 5.1.1, asymmetric cell spreading is observed depending on the initial position
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Figure 5.4: Cell shape landmark points. Height (left) and surface area (right) of
the final cell morphology of cells with nucleus on U-shaped (38 simula-
tions), V-shaped (33 simulations) and crossbow-shaped (29 simulations)
micropatterns.

of the cell. However, the final cell shapes appear very similar and independent of
starting position, for the same micropatterned surface.

To confirm that the cell morphology is indeed independent of the starting position
of the cell, we compare landmark points of their shapes, specifically their height and
area in Fig. 5.4. We find that the shape fluctuations of the final cell morphologies are
minor and all cells reach a well-defined final shape that depends on the geometry of
the micropattern they are adhered to. Even though the volume and area constraints
are identical for cells on the different micropatterned structures, we find differences
in their final height and surface area. Cells on U-shaped micropatterns have to
spread out the most, leading to the lowest height and the highest surface area when
compared to the cells on V-shaped and crossbow-shaped micropatterns. On the other
hand, cells on crossbow-shaped micropatterns are more spherical, leading to a more
spherical shape characterized by a lower surface area and an increased height.

Next, we compare the landmark points we obtained for cell shapes with nucleus,
see Fig. 5.4, with landmark points from the simulations without nucleus with the
Hamiltonian in Eq. 5.2. For simulations without expicit nucleus representation, we
increase the target volume of the Cytosol by the target volume of the Nucleus and
initiate the cell as a half sphere at a random position on the substrate. Similar to
the simulations with nucleus, the cell spreads on the micropatterned surface and
evolves to a well-defined equilibrium shape, see Fig. 5.5.

We find a slightly increased height between the simulations with and without
nucleus, and the surface area of the cell is increased in the simulations without
nucleus as well. The increase is observed for all three micropattern geometries,
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Figure 5.5: Cell shape landmark points without nucleus. Height (left) and
surface area (right) of the final cell morphology of cells without ex-
plicit nucleus representation on U-shaped (26 simulations), V-shaped (45
simulations) and crossbow-shaped (27 simulations) micropatterns.

while the relative differences between morphologies in the different micropattern
geometries remain similar. This increase is due to the fact that the explicit nucleus
representation as a compartment inside the cytosol is implemented as a sphere, and
even though the nucleus shape changes during the simulation, the elastic area energy
term of the nucleus and the interaction energy penalty between cytosol and nucleus
lead to a spherical nucleus shape. At the same time, the spherical nucleus imposes a
more spherical shape on the cell, thus reducing the total surface area. In the absence
of the nucleus, the equilibrium cell morphology has therefore a larger surface area.
Thus we conclude that the cell can flatten more in the absence of the nucleus.

We note that even though we cannot compare these results directly to experiments,
we expect experimental cells to show a larger variability in shapes than we observe
in our simulations. Our simulations aim to describe average cell configurations on
micropatterned structures and do not include individual cell surface fluctuations.

5.1.3 Trajectories of cells spreading on micropatterns

Next, we focus on the trajectories of the center of mass of the cells from the previously
described simulations. By tracking the simulated movement of cells as they spread
onto the micropatterns, we can observe speed and directionality. In Fig. 5.6, the
trajectory of the center of mass of the cells starting at random positions on the
substrate are shown. We find that the final cell shape and position is reached
independently of the starting position of the cell, as long as the cell is initialized close
enough to the micropattern. Additionally, we show the number of MCS until the
final position is reached. As we discussed in Section 4.4, we can use the pseudo-time
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Figure 5.6: Trajectories of the cell with nucleus spreading on micropatterns.
Center of mass trajectories of cells with explicit nucleus representation
initialized randomly on the crossbow-shaped, U-shaped and V-shaped
micropatterned scaffold, color coding represents MCS (top). Number of
MCS until the final position is reached by the center of mass.

of the Monte Carlo simulation to describe the dynamical evolution of the system.
Noticeably, the cell center of mass does not follow a straight line towards the final
position, but tends to move more along the adhesive parts of the micropattern.

We further analyzed the trajectories of the cell center of mass for cells both
without an explicit nucleus compartment, as depicted in Fig. 5.7. The trajectories
of the cell center of mass for cells without nucleus compartment are comparable to
the trajectories we found for cells with explicit nucleus compartment, see Fig. 5.6.
However, the key distinction between the simulations lies in the number of MCS
necessary until the final position is reached by the center of mass of the cell. For
simulations without explicit nucleus representation, this is much smaller compared
to the simulations with the nucleus. This observation can be attributed to two main
factors: it is partially due to the fact that the additional interface between Cytoplasm
and Nucleus in simulations with explicit nucleus representation increases the number
of necessary spin flips for the cell to spread on the micropattern and because the
nucleus as a stiff object slows down the migration speed. Due to these influences, it
remains challenging to precisely quantify the extent to which the spreading speed
would be altered in cells lacking a nucleus. Furthermore, given that the nucleus is
not merely a stiff passive structure but actively participates in cell migration, the
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Figure 5.7: Trajectories of the cell without nucleus spreading on micropat-
terns. Center of mass trajectories of cells without explicit nucleus
representation initialized randomly on the crossbow-shaped, U-shaped
and V-shaped micropatterned scaffold, color coding represents MCS (top).
Number of MCS until the final position is reached by the center of mass.

consequences of nucleus removal on cell spreading cannot be predicted from our
model. Unraveling the full impact of nucleus absence on cell spreading necessitates
further investigation beyond the scope of our simulations.

5.1.4 Influence of the neighbor order parameter on cell shape

In CPM simulations, the neighbor order N refers to the range of cell-cell interactions
considered in the simulation, see Eq. 4.6. In other words, it defines the number of
adjacent lattice sites, which are often called neighbors, that influence the behavior of a
particular cell. A higher neighbor order allows for more complex cell-cell interactions
but comes at the cost of increased computational complexity.

The neighbor order N is a very important parameter for simulated cell shape,
see Fig. 5.8. For small neighbor order parameters N < 20, we find an almost
sphere-like shape with extensions along the parallel bars of the U-shape instead
of the expected invaginated arc. Note that for small N , the interaction energy
Jext(cytosol,adhesive) was increased to allow for cell spreading, as the energy gain
due to increasing the interface between the Cytoplasm and the Adhesive cell types
would not be higher than the increase in area constraint energy due to the extension.
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5.2 Spreading dynamics of cells on micropatterns

The cells formed the invaginated arc only after increasing N above 10. Table 5.1
shows the relation between N and the distance "visible" to the cell, meaning that all
voxels up to the distance displayed in Table 5.1 are used for the calculation of the
interaction energy. Note that even for large neighbor order parameters N , the cell
target volume VT = 68000, which corresponds to a sphere with radius 25, is larger
than the neighborhood area used for the interaction energy calculation, where for
N = 100 voxels with a distance of up to 10.86 from the spin flip voxel are included
in the calculation. Increasing the neighbor order incentivizes the cell to spread along
the micropattern and makes the overall shape smoother. This is expected as a larger
neighborhood is taken into account when calculating interaction energy changes.

Additionally, the neighbor order parameter N plays an important role for the
radius of the invaginated arc. As discussed previously, cells in simulations with a
small neighbor order N do not form invaginated arcs as the surface area energy can
be reduced by becoming sphere-like, and at the same time no energy can be gained
from the formation of invaginated arcs. Increasing the neighbor area leads to energy
gains at voxels with a greater distance from the Adhesive substrate, which creates
incentives for a less spherical cell shape.

5.2 Spreading dynamics of cells on micropatterns

Despite the widespread use of micropatterns for single-cell manipulation, experimental
data on cell shapes predominantly exists in 2D. To compare aspects of our simulation
with experimental results, we therefore compare the spreading dynamics and final
cell shapes of our 3D simulation only as a 2D projection. The 2D projection of
the simulated spreading dynamics of cell with nucleus on a V-shaped micropattern
can be seen in Fig. 5.9, next to experimental data of a human Retinal Pigmented

Neighbor Order N Distance
1 1.00
4 2.00
7 2.83
10 3.32
30 5.91
60 8.37
100 10.86

Table 5.1: Correspondence between the neighbor order parameter N and the max-
imal distance from the voxel that is included in the interaction energy
calculation.
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5.2 Spreading dynamics of cells on micropatterns

a b c

d e f

Figure 5.8: Neighbor Order N dependence for cell shapes on micropat-
terned substrates. a) N = 1, b) N = 4, c) N = 10, d) N = 30,
e) N = 60, f) N = 100. All parameters used in the simulations can be
found in Table A.2.

Epithelial cell on a V-shaped micropattern [96]. This comparison allows us to gain
insights into the correspondence between our computational model and experimental
observations.

The experimental images were obtained using reflection interference contract
microscopy, where area with cell-substrate contacts appear black, and areas with
less contact appear white or gray. Our simulated cell spreading on a V-shaped
micropattern is initialized to adhere partially to the micropattern, in order to replicate
the experimental data. Remarkably, our simulations successfully reproduced several
experimentally observed spreading features quantitatively, such as the invaginated
arc across the nonadhesive area and that the cell adheres completely to the right bar
while only partially adhering to the left bar due to the asymmetric starting position
of the cell. However, it is important to acknowledge one notable distinction between
our simulations and experimental setups. In our computational model, we assumed
spreading from the nonadhesive surface to the micropattern, while experimental cells
often adhere to micropatterns from suspension. This dissimilarity does not diminish
the overall similarities between our simulation and experimental results in capturing
the spreading dynamics on the V-shaped micropattern. These findings underscore
the robustness and utility of our computational approach in emulating key aspects
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5.2 Spreading dynamics of cells on micropatterns

a

b

Figure 5.9: Cell spreading on micropatterns. a) Time lapse of a human Retina
Pigmented Epithelial cell spreading on a V-shaped micropattern. b)
Cross section images from the 3D simulation of a cell spreading on a
V-shaped micropattern. Note that in the experiment, the cell spreads
onto the micropattern from the solution while our initial configuration
in the simulation is a half sphere. Parameters for the simulation can be
found in Table A.1.
a) Reproduced with permission [96], 2006, Wiley.

77



5.3 Stress fibers in the 3D cellular Potts model

of real cellular behavior while allowing for important insights into cell-substrate
interactions.

Following the initial phase of cell spreading, subsequent changes to the cell shape
occur at a slower pace and exhibit more subtle alterations, resulting in a reduction in
the curvature of the invaginated arc, a process called reinforcement. In addition to
the surface tension stemming from the actin cortex, the line tension is predominantly
influenced by the presence of actin stress fibers at the cell periphery. The change in
curvature of the invaginated arc is a result of stress fiber reinforcement, which leads
to an increase of line tension at the invaginated arc. In addition to the surface tension
due to the actin cortex, the line tension is the result of actin stress fibers at the cell
periphery. In the following Section 5.3, we present our approach to incorporating line
tension within the Cellular Potts Model (CPM), thereby elucidating the underlying
mechanisms and dynamics governing this phenomenon.

5.3 Stress fibers in the 3D cellular Potts model

Up to this point, we have modeled cells as objects with volume and surface constraints
that obtain their shape due to interaction energies minimized with volume and surface
constraints. We implemented the nucleus as a compartment of the cell, which has an -
albeit relatively modest - effect on effect on the cell shape by making it more spherical.
This model allowed us to qualitatively predict cell spreading on micropatterned
surfaces as discussed in the previous sections of this chapter. However, it is well
known that cells in experiments go through an internal reinforcement process after
the spreading event [96]. An important internal structure are stress fibers, which
were introduced in Section 2 and form in regions of high stress [34].

Several cell models that include stress fibers have already been described in the
literature. Bischofs and colleagues use a contour model to describe the static boundary
of cells on micropatterned surfaces [264]. Stress fibers are included in the 2D model
as a line tension counteracting the surface tension. The biological structures modeled
with the line tension are the actin cortex and stress fibers, which resist the increase of
cell contour. This tension-elasticity model explains invaginated arcs forming between
adhesive sites, where the radius of the invagination depends on the distance between
the adhesive points. Schakenraad and colleagues observed elliptical invaginations in
cells with an anisotropic cytoskeleton and modeled this observation with a contour
model that predicts cell shapes from the orientation of the stress fibers [302]. Here,
the line tension varies along the cellular arc. Recently, Andersen and colleagues
introduced stress fibers as active linear elastic materials in a two-dimensional finite
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5.3 Stress fibers in the 3D cellular Potts model

element model to describe the effect of optogenetic activation of the Rho-pathway
for single cells and doubles in H-shaped micropatterns [137].

Stress fibers have also been implemented in the 2D CPM by Albert and colleagues
[362]. The Hamiltonian contains terms for 2D surface tension, adhesion to the
micropattern as well as linear and elastic terms for the line tension. The linear term
is proportional to the whole perimeter of the cell, thus modeling the effect of the
contracting actin cortex, whereas the elastic line tension models the stress fibers
forming between adhesive sites. It depends on the squared difference between the
length of the cell contour between adhesive sites and their distance, following the
tension-elasticity model.

In 3D models, the cell contour is a two-dimensional surface instead of the one-
dimensional perimeter that describes the cell interface in 2D models. The assumption
that stress fibers form between adhesive sites along the perimeter of the cell cannot
be generalized to the 3D CPM, because singling out voxels on the cell surface and
attributing them with an additional line tension is a local process that could easily
lead to rupture of the simulated cell. To ensure that the line tension effect of the stress
fibers has an effect similar to the experimentally observed reinforcement, we introduce
compartments to the cytoplasm of our simulated cells. These compartments do not
represent any physical intracellular structures of the cell, but serve as anchorage
points for stress fibers growing through the cytoplasm. The introduced line tension
therefore affects the cell shape on a larger scale.

The Hamiltonian for the simulation of stress fibers in a single cell on a micropattern
is therefore given by

HCPM =
∑

(~i,~j) neighbors

J int(τ(σ(~i)), τ(σ(~j))) ·
(

1− δ(σ(~i), σ(~j))
)
· δ(α(~i), α(~j))

+
∑

(~i,~j) neighbors

Jext(τ(σ(~i)), τ(σ(~j))) ·
(

1− δ(σ(~i), σ(~j))
)
·
(

1− δ(α(~i), α(~j))
)

+
∑
σ

λV(τ(σ)) (v(σ)− VT(τ(σ))2 +
∑
σ

λA(τ(σ)) (a(σ)− AT(τ(σ))2

+
∑
α

λA(α)(a(α)− AT(α))2 + λC( ~Xcell − ~Xnucleus)
2

+
∑

SF between σi, σj

λSFli,j,

(5.3)

which differs compared to the Hamiltonian in Eq. 5.1 due to the linear line tension with
strength λSF and distance between the center of mass of the respective compartments
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5.3 Stress fibers in the 3D cellular Potts model

with stress fibers li,j. For simplicity, we assume that stress fibers do not interact
with each other, and new stress fibers can only form between compartments where
no stress fibers are present. Note that the target volume and area of the cytoplasm
change due to the compartmentalization.

5.3.1 Stress fiber reinforcement

As discussed in Section 5.2, cells undergo a process of stress fiber reinforcement at
the invaginated arc once they have achieved complete spreading on the micropattern.
Throughout this phase, the cell actively reduces the curvature at the invaginated
arc gradually, until it reaches its final shape. Notably, the radius of curvature
increases almost linearly during both the initial cell spreading and the subsequent
reinforcement stages, as documented by Théry and colleagues [96].

To model this behavior, we place a compartmentalized cell with an invaginated arc
on a V-shaped micropattern. We implement the stress fiber reinforcement process
in our CPM with a linear line tension energy between the center of mass of the
cytoplasm compartments along the invaginated arc of the cell, see Fig. 5.10.

During the simulation, the line tension exerts forces on the cell boundary, resulting
in an increased radius of the invaginated arc. This process continues until an
equilibrium is achieved between the line tension and the surface tension, closely
resembling the observations made in experimental studies. By implementing this
reinforcement mechanism within our CPM, we successfully capture the dynamic
changes in cell shape.

5.3.2 Stress fiber growth and disaggregation

The prove of concept in the previous section demonstrates that it is possible to
include stress fibers that change cell shape in 3D CPM simulations. However, up
to this point we predefined the position of the stress fiber before the simulation.
Now, we will discuss different approaches to implement stress fiber growth and
disaggregation in the CPM. The difficulty when implementing stress fiber growth in
the CPM is that stress fibers form in regions of increased stress within the cell, but
the stress distribution cannot be calculated in the framework of the CPM as it is
lacking a description of elastic deformation. Therefore, we use different measures to
guide stress fiber growth in the CPM and simulate a combination of transverse arcs
and dorsal stress fibers.

We change the experimental system that we model, and describe a compartmental-
ized cell attached to four adhesive sites inspired by the stimuli-responsive structures in
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5.3 Stress fibers in the 3D cellular Potts model

a

b

c

Figure 5.10: Cell reinforcement on micropatterns. a) Time lapse of cell rein-
forcement on a V-shaped micropattern. Arcs are drawn to guide the
eye. b) Cross section images from the 3D simulation of a cell with stress
fiber (orange) on a V-shaped micropattern. c) Images of the 3D shapes
of simulated cells with line tension on micropatterns. b,c) Snapshots
from the simulation at MCS 0, 100, 1000 (left to right). Parameters for
the simulation can be found in A.3.
a) Reproduced with permission [96], 2006, Wiley.
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a

b b' b'' b'''

a' a'' a'''

Figure 5.11: 3D cell stretching simulation. Top view of the symmetric (a-a′′′)
and asymmetric (b-b′′′) 3D cell stretching simulations. In symmetric
simulations, all adhesive sites are moved. In asymmetric simulations,
only the adhesive site on the right is moved. Cytoplasm compartments
are depicted in blue and adhesive sites in gray. a,b) Initial configuration
of the symmetric (a) and asymmetric (b) cell stretching simulation. a′,
b′) Snapshot of the symmetric (a′) and asymmetric (b′) cell stretch-
ing simulation after 110 MCS. a′′,b′′) Snapshot of the symmetric (a′′)
and asymmetric (b′′) cell stretching simulation after 410 MCS. a′′′,b′′′)
Snapshot of the symmetric (a′′′) and asymmetric (b′′′) cell stretching
simulation after 810 MCS. Parameters for the simulation can be found
in A.4.

[185], compare Fig. 3.2f,f′). This microscaffold was chosen because the cell stretching
due to the expanding host-guest hydrogel exerts stress on the cell and leads to the
formation of stress fibers. Indeed, cytoskeletal reorganisation is observed in U2OS
and NIH 3T3 cells immediately after cell stretching and stress fibers form along the
cell contour and in the cell center. Additionally, Hippler and colleagues observed
that stress fibers form predominantly in stretched regions after asymmetric stretches,
where only one adhesive site is deflected [185].

The initial configuration of the simulation is a single cell modeled as a cluster
with nucleus and compartmentalized cytoplasm attached to four adhesive sites, see
Fig. 5.11a,b). The displacement of the scaffold is modeled effectively by changing
the position of the adhesive sites after a predefined number of MCS. To replicate
the experiment, the adhesive sites move outwards after every 50 MCS after the first
100 MCS and up to 450 MCS. Then, the adhesive sites retract invards every 50 MCS
between MCS 450-800. This leads to significant cell stretching, compare Fig. 5.11.
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5.3 Stress fibers in the 3D cellular Potts model

After the retraction phase, the cell shape reverts to a configuration similar to the
cells initial shape or a shape that closely resembles it. This phenomenon is observed
for cells in the experiment and underscores that the cell can effectively adapt their
force machinery and respond to changes in its microenvironment while maintaining
its overall structural integrity.

In our simulation, stress fibers grow from adhesive sites throughout the cytoplasm
compartments, where each compartment can have no more than one stress fiber
anchored to its center of mass. Stress fibers can grow towards each other and combine
at a cytoplasm compartment. As we cannot explicitly simulate the stress distribution
in the cell, we take either the pressure inside the compartment or the reduced volume
of the compartment as an indirect measure of how much stress the compartment
experiences. Stress fibers disaggregate in our simulation if their length is much
larger than their end-to-end distance. Every 10 MCS, stress fibers are modified.
If a compartment is neighboring the adhesive site and does not have a stress fiber
yet, the probability for a new stress fiber to start is pstart = 0.2. The stress fiber
then grows every 10 MCS to neighboring compartments until it reaches a cytoplasm
compartment neighboring another adhesive site, where the stress fiber is considered
complete and the growth is stopped. After every growth period, the algorithm checks
all stress fibers and deletes them with a probability depending on the ratio between
end-to-end distance d and length ` of the stress fiber. The end-to-end distance is the
Euclidean distance between the center of mass of the first and last compartments of
the stress fiber. We use a Hill-equation with

pdelete =
KH

KH + (d/`)H
, (5.4)

where H = 10 defines the steepness of the curve and K = 0.6 is chosen such that
stress fibers with d

`
= 0.6 are have a probability of pdelete = 0.5 to be deleted. Stress

fibers are always deleted instantly and completely.

As a first strategy, we approximated the stress distribution inside the simulated cell
with the pressure inside the cytoplasm compartment. The pressure is proportional
to the difference between the volume and the target volume of the compartment.
Stress fibers then extend to the neighboring compartment with the highest pressure
which does not yet have a stress fiber. Snapshots of the simulation can be seen in
Fig. 5.12a,b). For the symmetric cell stretching experiment (Fig. 5.12a), we expect
stress fibers forming along the invaginated arcs spanning between adhesive sites.
After only 140 MCS, stress fibers form along two of the four invaginated arcs. They
are not deleted throughout the simulation and remain at the same position during
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5.3 Stress fibers in the 3D cellular Potts model

Figure 5.12: Cross section images of cell stretching simulations. Cytoplasm
compartments are depicted in blue, the nucleus in green, stress fibers in
orange and adhesive and non-adhesive parts of the scaffold in beige and
gray. Stress fibers are projected onto the 2D plane. a) Snapshots of the
symmetric stretching simulation, stress fibers extend to the neighboring
cytoplasm compartment with the highest pressure. b) Snapshots of the
asymmetric stretching simulation, stress fibers extend to the neighboring
cytoplasm compartment with the highest pressure. c) Snapshots of the
symmetric stretching simulation, stress fibers extend to the neighboring
cytoplasm compartment with the lowest reduced volume. d) Snapshots
of the asymmetric stretching simulation, stress fibers extend to the
neighboring cytoplasm compartment with the lowest reduced volume.
e) Stress fiber density after 1000 MCS symmetric stretching simulation.
Stress fiber growth is pressure-dependent. f) Stress fiber density after
1000 MCS asymmetric stretching simulation. Stress fiber growth is
pressure-dependent. g) Stress fiber density after 1000 MCS symmetric
stretching simulation. Stress fiber growth is reduced volume-dependent.
h) Stress fiber density after 1000 MCS asymmetric stretching simulation.
Stress fiber growth is reduced volume-dependent. Parameters for the
simulations can be found in A.4.

cell stretching (0-449 MCS) and relaxation (450-1000 MCS). Additionally, we observe
stress fiber growth throughout the rest of the cell volume, but here stress fibers
are deleted frequently. This can also be seen in the stress fiber density in the
compartments at the end of the simulation. The stress fiber density is the number of
MCS a stress fiber is present in the compartment divided by the total number of
MCS, and the result can be seen in Fig. 5.12e). The density is high in areas with
lasting stress fibers, whereas areas with frequent growth and deletion have lower
stress fiber densities.

We performed a similar simulation, but with asymmetric cell stretching by altering
the position of a single adhesive site, see Fig. 5.11b-b′′′) and Fig. 5.12b). In this
case, we see a notable increase of stress fibers at the stretched regions of the cell.
This observation is further supported by the stress fiber density post simulation in
Fig. 5.12f), which is similar to the experimental findings. Furthermore, we observe
that stress fibers present in the stretched areas have an increased lifetime compared
to those in other regions of the cell.

As we see increased stress fiber density along the invaginated arcs of stretched cells
during asymmetric stretching, but no homogeneous distribution of stress fiber density
in the symmetric stretching, we implemented a second strategy to model stress fiber
growth in our simulation and used the reduced volume of the compartments as a
measure of their deformation and a substitute for stress distribution inside the cell.
The reduced volume v is a measure of deformation of the cytoplasmic compartments,
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5.3 Stress fibers in the 3D cellular Potts model

as it quantifies how much a shape differs from a perfect sphere. It is given by

v =
V

4π
3
R3

0

, (5.5)

where V is the volume of the cell and R0 is computed from the surface area A of the
cell as A = 4πR2

0. A reduced volume of 1 indicates a perfect sphere, while all other
shapes have a lower reduced volume. Stress fiber initialization and deaggregation
assumtions were not changed, the probability to start a new stress fiber is given by
pstart = 0.2 and the probability to delete a stress fiber remains, compare Eq. 5.4.
We again simulated symmetric and asymmetric extension and retraction of the
microstructure, see Fig. 5.12c,d).

For the symmetric cell stretching, we now find a more homogeneous distribution
of stress fibers throughout the cell, see Fig. 5.12c,g). The homogeneity within the
cell is as expected, however, contrary to our expectations, we did not observe an
increase in stress fibers at the invaginated arcs, despite these regions being known
to experience high stress levels in the experiment. This leads us to the conclusion
that the reduced volume of the compartments is not a good substitute for the stress
distribution inside the cell.

For the asymmetric stretching experiment, a discrepancy between our simulation
and the experimental result is evident: there is no increase in stress fiber density at
the stretched area, see Fig. 5.12d,h). This significant difference suggests that our
current model with stress fiber growth in compartments with low reduced volume
might not capture the relevant aspects of stress fiber growth. Additionally, there
could be other factors or mechanisms at play in the experimental setting that are
not adequately accounted for in our simulation.

In conclusion, our model, while providing valuable insights, encountered challenges
in accurately predicting stress fiber density during both symmetric and asymmetric
stretching scenarios. Stress fiber dynamics involve intricate biological processes
influenced by a myriad of factors, such as actin binding proteins and external
mechanical stimuli. Although the introduction of cytoplasm compartments enabled
us to effectively simulate cell shape changes driven by stress fibers, specifically
when initializing stress fibers at the beginning of the simulation, it is important to
acknowledge that our model does not fully capture stress fiber growth and dynamics.
Specifically stress fiber movement in retrograde flow, which is observed during cell
spreading, is difficult to replicate in our model.

Moreover, stress fibers play crucial roles as sensors and transmitters of external
forces acting on the cell. Unfortunately, due to the pseudo-energy terms inherent

86



5.4 Discussion

in the CPM, we were unable to incorporate this important aspect into our model.
However, this limitation highlights the complexity of stress fiber behavior and their
role in cell shape changes and the need for further research to account for these
intricate processes.

For a successful cell-scale CPM with stress fibers, one therefore needs the stress
distribution inside the cell to accurately model stress fiber growth and rearrangement.
This could be achieved by coupling the CPM with a finite element model that
calculates the stress distribution inside the cell from the deformation changes modeled
with the CPM. To account for stress fiber dynamics, for example due to retrograde
flow, one could change the compartmentalization of the cell: instead of equally
sized compartments, the cell could be modeled by a large compartment and several
small compartments that act as anchorage points for stress fibers. Then, the stress
fiber growing between small compartments could move the small compartments
throughout the cytosol. Despite these challenges, our study lays the foundation for
future investigations into stress fiber dynamics and their influence on cell mechanics.
By understanding the complex interplay between stress fibers and various internal
and external factors, we can advance our comprehension of cellular responses to
mechanical cues, potentially leading to new insights into cell behavior and tissue
mechanics.

5.4 Discussion

In this chapter, we overcame the limitations of 2D models for cells on micropatterns
and implemented a 3D CPM for single cells on structured environments. With this
model, we can predict the complete cell shape instead of a 2D projection. We were
able to model cell shapes and dynamics during cell spreading and reinforcement. Here,
the correct choice of neighbor order N was important to obtain the characteristic
invaginated arcs.

Additionally, we investigated the effect of the nucleus and found minimal differ-
ences in the cell shape, where cells with explicit nucleus representation were more
spherical and had a reduced surface area. For the spreading dynamics, we found
similar cell shapes during spreading, such as invaginated arcs between adhesive sites.
Cell trajectories during spreading were similar with and without explicit nucleus
representation, but cells without nucleus reached the steady state faster.

Finally, we added stress fibers to our model by compartmentalizing the cell
cytosplasm in our simulations. When we predefine the position of the stress fibers, we
can reproduce the experimentally observed reinforcement of cells on micropatterns.
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However, modeling stress fiber growth and disaggregation is more challenging as
there is no measure for stress in the CPM.
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6 Modeling cell shape in 3D structured
environments∗

Cell shape plays a fundamental role in many biological processes, including migration,
division and morphogenesis, and thus modeling cell morphology is essential to predict
and control the behavior of cells in complex environments. While there is a variety
of two-dimensional models and experimental data for the shape of cells on flat
substrates, it is less clear which shape model best predicts three-dimensional cell
shape in structured environments. In Chapter 5, we developed models to describe 3D
cell shape on micropatterns. In this chapter, we focus on several modeling approaches
for cell shape in 3D structured environments. Additionally, we use 3D experimental
data of cells in structured environments to test the validity of our models and to
compare the different modeling approaches. In contrast to the philosophy of the
vertex model often used for epithelial sheets and described in Section 4.2, we find that
models based only on cortical tension as a constant geometrical surface tension are
not sufficient to describe the shape of single cells in 3D. Therefore, we employ different
variants of the CPM, where a target area is prescribed by an elastic constraint or the
area energy is described with a linear surface tension. By comparing the simulated
shapes to experimental images of cells in structures manufactured with DLW, we
can identify parameters that accurately model the 3D cell shape.

Modeling cell shape in structured environments plays an important role in increas-
ing and validating our understanding of the underlying mechanisms governing cell
behavior. Analytical 2D cell shape models have been developed to predict cell shape
on micropatterned environments [19, 301] using line and surface tensions as discussed
in Section 4.1.1, and the notion that the contractile actin cortex is responsible
for the 3D cell shape is wide-spread [29, 31]. 3D models have relied on different
approaches, including neural networks [364] and learned probability distributions
[365] to predict cell shapes. Here, we employ energy-based descriptions to model cell
shape in well-defined environments and compare different surface energy descriptions.
Our approach provides a robust framework for modeling complex 3D cell shapes and

∗This chapter is based on Link, R., Jaggy, M., Bastmeyer, M., & Schwarz, U. S. (2023). Modelling
Cell Shape in 3D Structured Environments: A Quantitative Comparison with Experiments. bioRxiv,
2023.08.07.552225. https://doi.org/10.1101/2023.08.07.552225 [363].
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has the potential to improve our understanding of the fundamental principles that
govern cell behavior in structured environments.

6.1 Single cells in 3D laser nanoprinted structures

6.1.1 3D structures for cell adhesion

Structured environments were manufactured using 3D DLW [366], a method we
introduced in Section 3.1.3. In this technique, a photopolymerizable resist is excited
with a femtosecond-pulsed laser. The resist only polymerizes after a two-photon
adsorption, and because the probability for a two-photon polymerization is only in
the focal voxel of the laser high enough, complex structures can be printed with
micrometer precision.

The fabricated structures consisted of L-shaped, rectangular, V-shaped and trian-
gular shaped patterns, see Fig. 6.1a-a′′′,b-b′′′) with 15 µm high anti-adhesive columns
connected by biofunctionalized cross struts of 5 µm width, providing a suitable plat-
form for cell adhesion in 3D. These geometries were selected to resemble the shapes
of 2D micropatterns, which are well characterized in terms of 2D cell shapes [43],
while eliminating the apico-basal polarity observed in cells on substrates.

To functionalize the structures, they were first rinsed with 70% ethanol (Carl
Roth) and then dried for 30 min under UV light. Thereafter, the structures were
overcoated with 200 µg/ml poly-L-lysine (Sigma-Aldrich) dissolved in PBS for 1 h

at room temperature and then washed three times with PBS. This was followed
by incubation with 10 µg/ml fibronectin in PBS for 1 h at room temperature. The
functionalized structures can be seen in Fig. 6.1c-c′′′). After washing again three
times with PBS, the structures were either used directly or stored for a maximum of
two days at 4◦C.

6.1.2 Cell culture

NIH/3T3 embryonic mouse fibroblast cells were cultured at standard conditions
(saturated humidity, 37◦C, 5% CO2) in serum containing medium and passaged three
times per week to avoid contact inhibition. During passaging, cells were first rinsed
twice with pre-warmed PBS and then incubated with 250 µL, 5% trypsin / 10 mM
EDTA (Invitrogen) at 37◦C for 3 min to allow cells to detach from the substrate. The
cell suspension was taken up in 5 ml of pre-warmed DMEM (Invitrogen) containing
10% fetal calf serum (FCS, PAA Laboratories). The serum in the medium provides
saturation of trypsin. The cells were then centrifuged at 1000 rpm for 5 min.
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Figure 6.1: Overview of the structures used in this chapter. a-a′′′) Dimensions
of the 3D structures, top view. Shown in gray is the contact area
("cross struts") for the cells in the L-shaped (a), V-shaped (a′), right
triangle-shaped (a′′) and equilateral triangle-shaped (a′′′) structures. The
width of the struts is 5 µm. The supporting columns (not depicted)
have a height of 15 µm. The angles not shown are 90◦and 45◦. b-
b′′′) Scanning electron microscope images of the 3D structures. c-c′′′)
Fluorescence imaging of the structures after fibronectin coating and
immunohistochemical staining. d-d′′′) NIH/3T3 cells were transferred
into the fibronectin-coated structures using a micromanipulator, fixed
after 3-6 h, and stained immunohistochemically (fibronectin = magenta,
self-fluorescence of columns = blue, DAPI = blue, actin = green). e-e′′′)
3D reconstruction of the cells in 3D structures. The cells adhere to the
cross struts, using the entire strut as the adhesion surface. Scaffold not
depicted in e). Scale bar: 10 µm.

The supernatant was removed and the cell pellet resuspended in 5-10 ml of medium.
Depending on the desired dilution, a certain volume was transferred to new cell
culture flasks with pre-prepared tempered medium. The usual division ratios for
NIH/3T3 cells is between 1:10 and 1:20.

After structure functionalization with fibronectin, NIH/3T3 mouse embryonal
fibroblasts were seeded on the structures using a micromanipulator (aureka, aura optik
GmbH) with an attached hydraulic manual microinjector (CellTram, Eppendorf).
Cells were added to a 4◦C CO2 buffered F12- imaging medium (0.76 g F12 nutrient
mixture (Invitrogen), 50 ml water, 25mM HEPES (Carl Roth), 1% Pen/Strep (Sigma-
Aldrich), 200mM L-glutamine (Life Technologies), 10% FCS). A portion of this cell
suspension was pipetted over the glass plate containing the structures, which was also
coated with a F12 imaging medium (4◦C) and clamped in a magnetic holder. The
unheated medium reduced premature adhesion of the cells to the substrate bottom
and to the glass capillary of the microinjector. The individual cells were then aspirated
to a glass capillary via the microinjector by creating a negative pressure. The capillary
was then conveyed over the desired structure using the micromanipulator and the
cell was transferred. After all structures were occupied, the temperature was raised
to 37◦C to accelerate adhesion of the cells to the structures.

Protein staining was performed immunologically on fixed samples in a humidity
chamber. Cells were fixed at room temperature for 10 min with 37◦C tempered 4%
PFA (Sigma-Aldrich) in PBS. This was followed by permeabilization of the cell
membrane by washing three times with 0.1% TritonX-100 (Carl Roth) in PBS for
5 min, followed by incubation with anti-fibronectin (BD Transduction Laboratories,
1:500) for 1 h at room temperature or at 4◦C. All antibodies and staining substances
were diluted in 1% BSA (Bovine Serum Albumin) in PBS. This was followed by three
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wash steps for 5 min each with PBS. The fluorescent secondary antibodies anti mouse
AF 647 (Life Technologies, 1:400) as well as DAPI (Roth, 1:2000) and fluorescently
coupled phalloidin AF 488 (Life Technologies, 1:200) were then applied for 1 h at
room temperature. After another wash step with PBS, the samples were embedded
in 1% n-propyl gallate (Sigma-Aldrich) in Mowiol (Hoechst) and stored at 4◦C.
3D images of the cells were taken on the LSM 510 Meta (Zeiss) and the Axio

Imager.Z1 with ApoTome (Zeiss) at 37◦C. The 3D shapes were extracted from the
actin, DAPI and fibronectin staining as triangulated meshes using Imaris (Bitplane).
The experiments were executed by Mona Jaggy in the group of Martin Bastmeyer at
KIT.

6.1.3 Characterization of experimentally observed shapes

The shapes of n = 6 cells in L-shaped or square-shaped structures spanning between
two fibronectin coated cross struts were obtained experimentally. An exemplary cell
can be seen in Fig. 6.1d,e). Visual inspection of the extracted cell shapes revealed
remarkable similarity across all cells. Notably, the cells bridged along the free
area between the beams, forming invaginated arcs - a well-established phenomenon
observed for cells on both 2D microstructured surfaces and 3D structures [5, 152]
and found in our simulations in Chapter 5. In some cases, we observe w-shaped
invaginations due to the nucleus. Similarly, the shapes of n = 7 cells in V-shaped
structures were obtained, see Fig. 6.1d′,e′), where we again observe invaginated
arcs. In this case, the nucleus does not interfere the formation of the arc and thus
we do not observe w-shaped arcs. Additionally, we obtained the shapes of n = 3

cells in right triangle structures, see Fig. 6.1d′′,e′′) and of n = 4 cells in equilateral
triangle structures, see Fig. 6.1d′′′,e′′′). In these structures, the cells also adhere to
the additional cross strut as compared to the L-shaped structure or the V-shaped
structure respectively. In these cases, we do not find invaginated arcs as the cells fill
the volume between the cross struts.

6.2 3D spherical harmonics analysis

To analyze and quantitatively compare 3D cell shapes obtained from experiments and
simulations, we employ a 3D spherical harmonics analysis. Spherical harmonics form
a complete set of orthonormal functions and can be used as an orthonormal basis
for describing 3D shapes. This approach enables precise, translation-invariant, scale-
invariant, and rotation-invariant description of 3D shapes and has been previously
used to analyze biological shapes [367–371].
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Following the approach in [370], we first convert the boundary shapes for simulated
and experimentally observed cell shapes from Cartesian coordinates to spherical
coordinates, exploiting the fact that all our shapes are star-shaped and thus can be
mapped bijectively to the unit sphere. We then sample the data on a regular grid
and use the Driscoll and Healy sampling theorem [372] implemented in pyshtools
(version 4.10) [373] to calculate the spherical harmonics:

Y m
l (θ, φ) = kl,mP

m
l (cos θ)eimφ, (6.1)

where l and m are the degree and order respectively. kl,m is the normalization and
Pm
l are the associated Legendre polynomials. The spherical harmonics as defined in

Eq. 6.1 define an orthonormal basis, thus any scalar function f(θ, φ) on a sphere can
be expressed as a sum of the spherical harmonics:

f(θ, φ) =
∞∑
l=0

l∑
m=−l

f̂(l,m)Y m
l (θ, φ). (6.2)

Here, f̂(l,m) are the harmonic coefficients given by

f̂(l,m) = kl,m

∫ π

0

∫ 2π

0

e−imφf(θ, φ)Pm
l (cos θ) sin θ dφ dθ. (6.3)

We normalize the harmonic coefficients f̂(l,m) with respect to the first-order ellipsoid
f̂(0, 0) and use the normalized coefficients f̂n(l,m) to calculate the rotation-invariant
frequency spectrum F (l) as a quantitative shape measure

F (l) =
l∑

m=−l

f̂ 2
n(l,m). (6.4)

Now, we can calculate a measure for the difference ∆lmax between two shapes a and
b from the corresponding frequency spectra:

∆lmax(a, b) =

√√√√lmax∑
l=0

(Fa(l)− Fb(l))2. (6.5)

In the subsequent analysis, we will use the first 30 degrees of the respective frequency
spectra to compare shapes (∆30).
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6.3 Modeling cell shape as CMC surfaces

The actin cortex is a network of actin filaments and myosin motors positioned beneath
the cell membrane, which contracts the cortex and influences cell shape, as discussed
in Section 2. Assuming constant tension throughout the cortex, cell shapes can be
characterized as fixed-volume objects that minimize their surface area, representing
an approach that does not consider mechanobiological systems inside the cell. This
approach is applicable to cells in suspension, which tend to be spherical in shape.
For cells on adhesive stripes, their shapes can be described as a wetting process
governed by surface tensions [374]. However, a quantitative comparison between
experimentally observed cell shapes and shapes obtained from the described minimal
surface model has not yet been conducted to our knowledge.
Surface minimization under volume constraints leads to surfaces with constant

mean curvature (CMC) [375]. To assess the validity of the isotropically contracting
actin cortex imposing the shape of cells in structured environments, we perform a
comparison between experimentally observed cell shapes and minimized surfaces
with the same volume. The discrepancy between the observed and minimized cell
shapes provides a measure of the degree to which factors beyond the actin cortex
contribute to cell shape in such environments.

We employed Imaris to extract the experimentally observed shapes, and combined
surface of cytoplasm and nucleus for the purpose of surface minimization, see
Fig. 6.2a-a′′′). To obtain the minimized surfaces, we fixed vertices of the triangulated
cell shape close to the structures and used SurfaceEvolver (Version 2.70) [376] to
minimize the shapes under a constant volume constraint. Upon visual inspection, we
found significant differences between the experimentally observed cell shapes and the
resulting minimal energy shapes for the L- and V-shaped structures, indicating that
minimizing area under a volume constraint is insufficient for accurately describing
cell shape in these cases. The observed cells in the scaffolds stretch between adhesive
areas and maintain a roughly constant thickness, while the minimal energy surfaces
form more sphere-like shapes with two thinly stretched extensions attached to the
scaffold due to the imposed boundary conditions. This finding is unsurprising since
spheres have the lowest surface-to-volume ratio, thus the surfaces are becoming
sphere-like to minimize their surface area. For cells in the L-shaped and square
scaffolds, this results in a w-type invagination. On the other hand, for cells in
triangular shaped structures adhering to all three cross struts, the difference between
the experimentally obtained and minimized surfaces is smaller. The surfaces are
smoother, but cell-scale surface changes are not found.

Landmark values of the surfaces before and after minimization quantify the shape
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a a' a'' a'''

b b' b'' b'''

c c' c'' c'''

d d' d'' d'''

Figure 6.2: Comparison between experimentally obtained cell shapes and
their minimized surfaces. a-a′′′) The surfaces of the cells in structured
environments. To minimize the cell surface, the cytoplasm and nucleus
surface reconstruction were united to the cell surface. b-b′′′) Minimized
surfaces in the 3D structures. Mesh points attached to the structure
were fixed during minimization. c-c′′′) Area (∆A) and reduced volume
(∆v) differences between the experimentally observed and minimized
surfaces. d-d′′′) Frequency spectrum of the experimentally observed
(blue) and minimized (red) surfaces. d) ∆30 = 0.175. d′) ∆30 = 0.148.
d′′) ∆30 = 0.026. d′′′) ∆30 = 0.031.
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differences. We compare the surface area reduction ∆A and the changes in reduced
volume ∆v. The differences in area and reduced volume are illustrated in Fig. 6.2c-c′′′).
For cells in the L-shaped structures, the surface area was reduced by (10±3)% during
the minimization process on average, for the V-shaped structures the reduction was
(9±3) %. Much smaller reductions were found for cells in triangular structures, cell
area in the right angle triangle was reduced on average by (5±2) % and in equilateral
triangles the difference is (2±1) %.

For the reduced volume v, we find similar differences. After minimization, the
reduced volume of cells in L-shaped structures differed by an average of (14±3) %
when compared to the reduced volume before minimization. For cells in V-shaped
structures, this difference was (11±4) %, whereas for cells in right angle triangles,
the average difference of ∆v was found to be (6±2) % and for cells in equilateral
triangles (4±1) %.

These significant variations for cells that form invaginated arcs underscore the
notion that 3D cell shape in structured environments is more complex than a surface
that has been minimized under a volume constraint.

To quantify these differences further, we subsequently computed the spherical
harmonics coefficients of the obtained experimental and minimized shapes. To ensure
that small surface fluctuations are not included in the analysis, a cutoff was applied
after lmax = 30.

The frequency spectrum of the spherical harmonics for experimentally observed and
minimized shapes can be seen in Fig. 6.2d-d′′′). The dipole moment of the spherical
harmonics, represented by the amplitude of the first degree in the frequency spectrum,
exhibits a low value. This result is anticipated, given the observed cell shape’s lack of
symmetry with respect to a single axis. On the other hand, the second degree of the
frequency spectrum displays the highest amplitude across all observed cell shapes,
corresponding to the quadrupole moment that characterizes a distribution with two
perpendicular axes of symmetry. Additionally, the fourth spherical harmonic also
has a pronounced peak in the frequency spectrum, representing a six-axis symmetric
distribution.

With the spherical harmonics analysis of the minimized structures, we were able to
quantify the difference between experimentally observed shapes and what we would
expect from minimal surfaces. The difference between the average experimentally
observed and minimized amplitude is ∆30 = 0.175 for cells in L-shaped structures.
For cells in V-shaped structures, we find ∆30 = 0.148. In both cases, there is a large
difference in the low degrees of the frequency spectrum. This is expected as we
obtain a more spherical shape after minimization. The amplitude of the first degree
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of the frequency spectrum for the minimized shapes is larger than the experimental
amplitude, while the amplitudes of the second and forth degrees, which are prominent
in the experimental shapes, are lower. This is as expected because of the increased
sphericity of the minimized shapes. When comparing the experimentally observed
cell shapes to the minimized shapes in triangular structures, the difference is much
smaller; for cells in the right angle triangles, we find ∆30 = 0.026, and for cells
in equilateral triangles we find ∆30 = 0.031. Both values are much lower than for
structures with invaginated arcs, highlighting that the quality of cell shape prediction
with constant mean curvature depends on the structured environment.

Together, these findings show that 3D cell shape in structured environments is not
always adequately described by minimized surfaces, leading to the conclusion that a
constant surface tension due to a contractile actin cortex is not enough to describe
cell shape, especially for cells with invaginated arcs.

6.4 Modeling cell shape with the CPM

Similar to the simulations in Chapter 5, we employ the generalized cell types Cytosol,
Nucleus, Adhesive and Nonadhesive to describe single cells in the 3D structures
described Section 6.1. As we now have 3D experimental data to compare our
simulations with, we use two different approaches to describe the system with the
CPM.

Choosing the appropriate Hamiltonian to describe biological systems has been a
longstanding question in the field. Early formulations of the Hamiltonian included an
elastic volume constraint and interaction energies. In order to more accurately model
cell behavior, an elastic surface constraint was added. Additionally, the nucleus can
be modeled explicitly as a compartmentalized cell with an elastic constraint to ensure
that the nucleus is close to the cell center of mass:

H =
∑
σ

λVτ · (V (σ)− VTτ )2 +
∑

Cell, Nucleus

λAτ (A(σ)− ATτ )2

+
∑

<x,x’>N

Jτ(σ(x)),τ(σ(x’))(1− δ(σ(x), σ(x’))

+ λN(xCell − xNucleus)
2.

(6.6)

Here, the first two terms are the elastic volume and surface energies for the generalized
cell types "cytoplasm" and "nucleus", where the strength of the constraints is given
by λVτ and λAτ respectively and the target volume and area are given by VTτ and
ATτ . These parameters depend on the cell type τ . The inclusion of an elastic

98



6.4 Modeling cell shape with the CPM

volume constraint in the Hamiltonian is motivated by the constant volumes of cell
compartments in biological systems, and the need to model dynamics with some
flexibility to avoid "lattice freezing" while ensuring that the simulated cells do not
disappear, which would reduce the energy of the system but does not align with
biological reality. Conversely, the elastic area constraint is not strictly required for
the simulation, but its inclusion provides an additional constraint that allows more
flexibility in the parameter selection of the interaction energies J [377]. The third
term in the Hamiltonian represents the interaction energy at cell interfaces. It is
computed by summing over all voxels x,x’ within the neighborhood N , which for
N = 1 are the 6 directly adjacent voxels, for N = 2 it includes the 8 diagonally
adjacent voxels and so on. If the voxels x,x’ belong to different generalized cells
σ, their interaction energy J is added to the total energy of the system. The value
of J can be positive or negative, and depends on the cell types of the neighboring
voxels. To ensure that the nucleus remains inside the cell, an elastic constraint with
strength λN is added between the cell center of mass xCell and the center of mass of
the nucleus xNucleus.

Instead of the elastic area constraint that follows from the assumption that the
cell surface is constant throughout the experiment, one can describe the surface with
a linear area term, which follows from the assumption that increasing the cell surface
always costs energy [298, 313]:

H =
∑
σ

λVτ (V (σ)− VTτ )2 + λACellA(Cell) + λANucleus(A(Nucleus)− ATNucleus)
2

+
∑

<x,x’>N

Jτ(σ(x)),τ(σ(x’))(1− δ(σ(x), σ(x’))

+ λN(xCell − xNucleus)
2.

(6.7)

Here, the volume, interaction and nucleus surface and centering energy terms are
similar to Eq. 6.6, but the elastic area energy term of the cell is replaced with a
linear area energy, where the strength is determined by λACell . Note that here, λACell

has different dimensions compared to Eq. 6.6.

The static cell shapes used for further analysis are obtained by averaging over the
last 500 MCS of the 2000 MCS simulation.

The cellular Potts model can be used to simulate the behavior of cells in complex
geometries, such as the scaffolds used in the experiments described above. By tuning
the parameters of the model, it is possible to simulate cell shapes that are similar
to those observed experimentally. Parameters influencing the cell shape are the
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surface energy strength λAτ , which represents the energy required to change the
cell surface area, as well as the interaction energy between the cytoplasm and the
medium Jcytoplasm,medium, which represents the energy required to move a cell in the
surrounding medium. The neighbor order N is a parameter that determines the
extent of the interactions between neighboring voxels. Choosing an appropriate
neighbor order is crucial in cellular Potts model simulations, as it defines how much
of the surrounding affects the cell, while ensuring that the neighborhood remains
smaller than the cell [353], as we discussed in Chapter 5.
Other parameters do not change the cell shape as long as their value is chosen

within a reasonable range. The volume parameters λVτ and VTτ are used to ensure
that the volume of the cytoplasm and the nucleus stay close to the target volume VTτ
throughout the simulation, however changing these parameters within an appropriate
range does not change the cell shape. The interaction parameters between cytoplasm
and scaffold, as well as cytoplasm and nucleus, are chosen to ensure the cytoplasm
adheres to the scaffold and the nucleus stays inside the cytoplasm. The simulation
temperature is fixed at T = 100 throughout the simulations. All parameters used in
the simulation can be found in Table A.5.
In the following, we will discuss the relevant CPM parameters and their effect

on cell shape. We focus on cells in L-shaped structures in an effort to improve the
shape predictions obtained from surface area minimization. We will optimize the
parameters for cells in L-shaped structures and use the parameters to simulate cells
in V-shaped and triangular structures.

6.4.1 Impact of the neighbor order on cell shape

In Fig. 6.3, the measure of shape difference ∆30, as introduced in Eq. 6.5, between
the experimentally observed cell shapes and the cell shapes simulated with the
elastic area Hamiltonian (Eq. 6.6) for varying neighbor order N and interaction
energy Jmedium,cytoplasm can be seen. Remarkably, for a large parameter range of
Jmedium,cytoplasm and intermediate neighbor order N , significantly lower values of ∆30

are found compared to the constant mean curvature shapes discussed in the previous
section.
The neighbor order parameter has the most significant effect on cell shape, see

Fig. 6.3. When only the nearest neighbors are considered in the calculation of the
interaction energy (N = 1), then the cell partially detaches from the scaffold due to
a reduced energy gain from cytoplasm-scaffold interactions. Additionally, both the
cytoplasm and nucleus become more spherical.

For intermediate neighbor orders, 4 ≤ N ≤ 10, the simulated cell shapes resemble
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Figure 6.3: Cell shape difference ∆30 as a function of neighbor order and
interaction energy. The neighbor order N defines the set of neighbor-
ing lattice sites that interact with a given lattice site, and the interaction
energy Jmedium,cytoplasm defines the interaction strength between the cyto-
plasm and the surrounding medium. Simulated cell shapes for exemplary
parameter choices are presented. The minimum cell shape difference
∆30 = 0.097 is found for N = 7 and Jmedium,cytoplasm = 50, the correspond-
ing cell shape is depicted on the bottom right. Parameters used in the
simulation can be found in Table A.5.

the experimentally observed shapes for a large parameter range of the interaction
energy Jmedium,cytoplasm, leading to low values of ∆30, with the minimum being at
∆30 = 0.097, for Jmedium,cytoplasm = 50 and N = 7.

Increasing the neighbor order further to N = 20 results in shapes that deviate
more from the experimentally observed cell shapes. When the interaction energy
Jmedium,cytoplasm is low, the shape becomes w-shaped and resembles that of minimized
surfaces because the energy gain from cytoplasm-scaffold interactions is large due
to the high neighbor order. At the same time, the remaining cytoplasm volume
reduces its energy by becoming spherical, leading to a w-shape. However, when the
interaction energy Jmedium,cytoplasm is sufficiently increased, the cost of a less spherical
shape becomes higher than the gain from the cytoplasm-scaffold interaction, resulting
in more spherical shapes and increasing the value of ∆30 again.

As the minimum of ∆30 is reached for N = 7, we fix the neighbor order to this
value in the following simulations.
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Figure 6.4: Cell shape difference ∆30 with elastic area energy (Eq. 6.6). Dif-
ference between the experimentally observed cell shapes and simulated
cell shapes as a function of surface energy constraint λA and interaction
energy Jmedium,cytoplasm. Simulated cell shapes for exemplary parameter
choices are presented. The minimum cell shape difference ∆30 = 0.090 is
found for Jmedium,cytoplasm = 15 and λA = 0.05, the corresponding simu-
lated cell is depicted on the top left. Parameters used in the simulation
can be found in Table A.5.

6.4.2 Linear vs. elastic surface area energy

One of the longstanding questions in cellular Potts type simulations is the selection
of the appropriate Hamiltonian. Specifically, when it comes to surface area, the two
commonly used Hamiltonians are either based on the assumption that the surface
of a cell is approximately constant, thus describing the area energy with an elastic
constraint, see Eq. 6.6, or that increasing surface area always costs energy for the
cell, leading to a linear area energy, see Eq. 6.7. Comparing simulated cells with
experimentally observed cell shapes allows for the direct comparison between the
two approaches. Cell shapes simulated with either Hamiltonian, shown in Fig.6.4
for elastic area energy and in Fig.6.5 for linear area energy, closely resemble the
experimentally observed cell shapes for a wide range of parameter values, vastly
outperforming the minimized cell shapes.

The cell shapes obtained with the elastic area Hamiltonian (see Eq. 6.6 and Fig. 6.4)
are visually close to the experimentally observed cell shapes for a large parameter
range. The minimum ∆30 = 0.090 is found for Jmedium,cytoplasm = 15 and λA = 0.05.
Similar cell shapes are obtained for a large parameter range. Increasing the interaction
energy Jmedium,cytoplasm reduces the interface between cytoplasm and the medium,
resulting in partially occupied scaffolds. For a low elastic area constraint λA and
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Figure 6.5: Cell shape difference ∆30 with linear area energy (Eq. 6.7). Dif-
ference between the experimentally observed cell shapes and simulated
cell shapes as a function of surface energy constraint λA and interaction
energy Jmedium,cytoplasm. Simulated cell shapes for exemplary parameter
choices are presented. The minimum cell shape difference ∆30 = 0.039 is
found for Jmedium,cytoplasm = 0 and λA = 500, the corresponding simulated
cell is depicted on the top left. Parameters used in the simulation can be
found in Table A.5.

interaction energy Jmedium,cytoplasm = 0, the simulated cell shape visually differs from
the experimentally observed cells and resembles a w-shape again.
The minimum found with the linear area Hamiltonian in Eq. 6.7 is even smaller,

with ∆30 = 0.039 for Jmedium,cytoplasm = 0 and λA = 500, see Fig. 6.5. The simulated
cell shape that resembles the experiments best is triangular shaped and without
invaginated arcs, however the thickness to length ratio of the cell closely resembles
that of the experimentally observed shapes. Surprisingly, the simulated cell shape
resembles the experimentally observed shapes best when the interaction energy
Jmedium,cytoplasm = 0. For a cell that is surrounded by medium only, increasing
Jmedium,cytoplasm has a similar effect to a linear area constraint, as the surface of the
cell corresponds to the interaction area between cell and medium. In the case of
structured environments, the interaction energy only acts on part of the cell surface,
while the whole cell surface is relevant for the area energy. For the linear area
Hamiltonian, the scaffold is always only partially covered as increasing the cytoplasm
surface area always costs energy.
It is surprising that the surface corresponding best to the experiments is found

for the linear area Hamiltonian simulation, as this is the simulation with the fewest
parameters, specifically there are less parameters compared to the elastic area
Hamiltonian, where the target surface area of the cell is predefined according to its

103



6.4 Modeling cell shape with the CPM

Figure 6.6: Cell shape difference ∆30 with elastic area energy (Eq. 6.6) with-
out nucleus. Difference between the experimentally observed cell shapes
and simulated cell shapes without nucleus as a function of surface en-
ergy constraint λA and interaction energy Jmedium,cytoplasm. Simulated cell
shapes for exemplary parameter choices are presented. The minimum
cell shape difference ∆30 = 0.063 is found for Jmedium,cytoplasm = 20 and
λA = 0.04, the corresponding simulated cell is depicted on the top left.
Parameters used in the simulation can be found in Table A.5.

experimental value.

6.4.3 Influence of the nucleus on cell shape

To determine the influence of the nucleus on the cell shape, we compare simulated cell
shapes without a nucleus, which can be seen in Fig. 6.6 and Fig. 6.7, with the previous
simulation results, where we represented the nucleus as a cellular compartment with
an elastic volume and area constraint, interaction energies and a nucleus centering
constraint.
Notably, the simulation without explicit representation of a nucleus results in

simulated shapes that are closer to the experimentally observed shapes for the elastic
area constraint, compare Fig. 6.4 and Fig. 6.6. Visually, a difference can be seen
for low elastic area constraint λa and interaction energy Jmedium,cytoplasm, where the
removal of the nucleus leads to an invaginated arc instead of a w-shaped spanning.
In most other cases, the reduction of ∆30 is due to a thickness increase of the cell
which was prevented previously due to the high interaction energy penalty between
the nucleus and the medium Jmedium,nucleus.
Similarly, ∆30 is below 0.1 for all tested parameters in the simulation without

nucleus and with linear area energy, see Fig. 6.7. The minimum ∆30 = 0.060 is
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Figure 6.7: Cell shape difference ∆30 with linear area energy (Eq. 6.7) with-
out nucleus. Difference between the experimentally observed cell shapes
and simulated cell shapes without nucleus as a function of surface en-
ergy constraint λA and interaction energy Jmedium,cytoplasm. Simulated cell
shapes for exemplary parameter choices are presented. The minimum
cell shape difference ∆30 = 0.060 is found for Jmedium,cytoplasm = 0 and
λA = 200, the corresponding simulated cell is depicted on the bottom
left. Parameters used in the simulation can be found in Table A.5.

found for Jmedium,cytoplasm = 0, and λA = 200. Here, we find an invaginated arc and
full adhesion to the scaffold. In accordance with the simulations with nucleus, we
find that the simulated shape best corresponding to the experiment is found for
Jmedium,cytoplasm = 0. Increasing both the interaction energy and the area constraint
leads to partial uncovering of the scaffold and evaginated arcs.
The small difference between simulated cell shapes with and without nucleus

lead us to the conclusion that for cells in L-shaped structured environments, the
cytoskeleton deforms the spherical nucleus such that it is not a determining factor
for the overall cell shape, even though it is much stiffer than the cytoplasm.

6.4.4 Application to different environment geometries

Cells with nuclei in V-shaped, right angle and equilateral triangle structures were
simulated with the parameter set that performed best for the L-shaped structure
(linear area Hamiltionian Eq. 6.7, λA = 500, Jmedium,cytoplasm = 0), see Fig. 6.8. For the
right angle triangular structure, we find good agreement between the experimentally
observed shapes and the simulation with ∆30 = 0.053. However, for the equilateral
triangle and the V-shaped structure, which differ more from the L-shaped structure
than the isosceles right triangle, we find ∆30 = 0.141 and ∆30 = 0.136.
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c

a

b

a' a'' a'''

b' b'' b'''

c' c'' c'''

Figure 6.8: Experimental and simulated cell shapes in different environ-
ment geometries and corresponding frequency spectra. a-a′′′)
Reconstruction of the experimental data from cells in L-shaped, V-shaped,
right-angle triangular and equilateral triangular shaped structures. b-
b′′′) Simulated cell shapes in structured environments. c-c′′′) Frequency
spectra of the experimental and simulated cell shapes. c) ∆30 = 0.039,
c′) ∆30 = 0.136, c′′) ∆30 = 0.053, c′′′) ∆30 = 0.141. Parameters used in
the simulation can be found in Table A.5.

These differences show that it is difficult to find universal parameters for the CPM
that accurately predict cell shape in different structured environments.

6.5 Discussion

Due to recent technical advances, an increasing number of experimental data is
three-dimensional. This adds to the need for 3D single cell models to explain and
predict cell shape. In this chapter, we compared different approaches to describe
cell shape in 3D. We used surface minimization and the CPM to investigate how
much simulated shape predictions differ from experimentally observed cell shapes in
precisely defined environments. We find that the predicted constant mean curvature
shapes agree well with experimentally observed shapes if the cell does not form
invaginated arcs and stress fibers. Larger differences were found for cell shapes in L-
and V-shaped structures.
Better cell shape prediction was possible with the CPM, independent of the

Hamiltonian choice and specific parameter values. Invaginated arcs form without
explicitly simulating stress fibers and the high quadrupole moment in the spherical
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harmonics is correctly predicted. There are multiple factors that contribute to the
better performance of CPM simulations compared to surface minimization models.
By selecting the neighbor order in the CPM, one can define how local the interaction
energy is. This influences to which extent the surface minimization can occur, or may
even facilitate surface extension between two general cell types, if the interaction
energy is negative. A cell described by a Hamiltonian with volume, area, interaction
and nucleus centering energies leads to more complex shapes that better resemble
experimental results.

Even though CPM simulations better capture experimental cell shapes, it should
be noted that there are some systematic differences between the simulated and
experimental shapes. For instance, cells in experiments have more variability in their
shapes and attach only partially to the structures compared to the smooth shapes
predicted by the CPM. Additionally, the reconstruction of cell shape in experiments
using actin staining is only an approximation, and may introduce some degree of
error in the obtained cell shapes. Actin stress fibers often span between adhesive
sites, however their impact has not been accounted for in the simulations and could
be included in the future using the methods described in Section 5.3.

The best agreement between experimental and simulated cell shape was found with
the linear area Hamiltonian, despite the fact that less parameters are used in this
simulation. The effect of the nucleus on cell shape is negligible in this setting, as the
nucleus is strongly deformed by the cytoskeleton. In the future, these results could
be used for rational scaffold design which can then be implemented with additive
manufacturing methods like the 3D laser nanoprinting used here.
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7 Modeling optic vesicle evagination in
organoids

7.1 Optic cup formation in vivo and in vitro

The development of the vertebrate eye is a remarkable process that involves the precise
orchestration of cellular events leading to the formation of a complex 3D structure,
which is essential for vision. One critical stage in eye development is the formation
of the optic cup, which evaginates from the prospective brain tissue and later gives
rise to the retina, the light-sensitive tissue which is responsible for capturing light
signals and transmitting visual information to the brain [378]. Understanding the
mechanisms underlying optic cup formation is crucial for understanding the process
of eye development.

In vivo, optic cup formation occurs during early embryonic development, at the
same time as the salivary gland and the lung. The successful evagination of the optic
vesicle requires patterning and cell reorganization, processes where many regulatory
networks such as Wnt are important [379]. The optic vesicle invaginates to form a
bilayered structure known as the optic cup, see Fig. 7.1. The outer layer of the optic
cup eventually differentiates into the retina pigmented epithelium (RPE), while the
inner layer gives rise to the neural retina. The mechanical processes that lead to the
optic cup evagination are not yet understood.

To better understand the mechanical processes behind the optic cup formation
and provide a more accessible experimental system, researchers have developed
three-dimensional organoid models of optic cup formation [380]. As discussed in
Section 3.3, organoids are self-organizing structures derived from stem cells and can
mimic the complexity and organization of specific tissues. Eikaru and colleagues
managed to grow organoids that show remarkable self-organization by differentiating
pluripotent stem cells into optic vesicle-like structures that subsequently invaginate
and develop into an optic cup-like structure. The organoids are in 3D suspension
culture with ECM components such as Matrigel [381], which are little external cues
compared to the in vivo system, where much more extrinsic input is given to the
developing eye, compare Fig. 7.1.
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Figure 7.1: Optic cup morphogenesis in vertebrate embryos and organoids.
In vertebrate embryos, Rx cells (blue) form the evaginating vesicle. Then,
the optic vesicle folds due to cell shape changes and external cues and
the surface ectoderm (light green) gives rise to the lens (dark green).
In organoids, the evagination and invagination processes were observed,
where the only extrinsic cue was the mixed ECM (yellow, purple).
Reproduced with permission [378], 2021, Elsevier.

Optic cup organoids offer several advantages for studying eye development. They
provide a controlled and reproducible system to investigate the cellular and molecular
mechanisms underlying optic cup formation. Researchers can manipulate various
signaling pathways, gene expression patterns, and the local microenvironment to
better understand the processes involved in optic cup morphogenesis.

7.2 Optic vesicle morphogenesis in medaka retinal

organoids

To better understand the optic cup formation, Zilova and colleagues were the first
group to derive organoids from medaka and zebrafish primary embryonic pluripotent
cells [382]. Fish organoids allow for high throughput experiments, as optic vesicle
formation and the onset of retina differentiation are observed within 4 days of culture.
Similar to mouse and human retinal organoids, cells were placed in U-shaped low
adhesive wells in suspension with low serum concentration. Laminin-rich Matrigel
was added after 1 day, when the cells had already formed aggregates. Then, starting
on day 2, neuroepithelial structures and lumens inside the aggregate formed. Because
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7.2 Optic vesicle morphogenesis in medaka retinal organoids

of this complex internal structure, the aggregates are then considered to be organoids.

The transcription factor Rx3 is the earliest known retina-specific gene that is
expressed, and in Rx3-null mutants the optic vesicle does not develop. It is therefore
used to visualize the onset of retinal differentiation with a transgenic reporter line,
that leads to the expression of green fluorescent protein (GFP) under the control of
the Rx3 regulatory elements. Compared to the embryo, the onset of Rx3 expression
is 2-3 h later in the organoid, which is the time it takes for the cells to aggregate.
However, when cell aggregation was prevented by gentle rocking, GFP-expressing
clusters were observed after 24 h. Even isolated single primary pluripotent stem
cells expressed GFP, leading to the conclusion that the onset of Rx3 expression is
genetically timed and independent of external cues. Cells express Rx3 even in the
absence of Matrigel, while the neuroepithelial structures only form in the presence of
Matrigel [382].

To investigate the optic vesicle formation, Zilova and colleagues focused on medaka
organoids. In large organoids (aggregates with 1000-2000 cells), a continuous layer of
neuroepithelium forms at the periphery of the organoid, but no optic vesicles form,
see Fig. 7.2a). On the other hand, in small organoids derived from aggregates of less
than 1000 cells, 1-4 optic vesicle-like domains form, compare Fig. 7.2a-c), with a
similar average size but greater variance compared to the optic vesicles in medaka
embryos. In these small organoids, cells differentiated to retinal and RPE lines in
regions of the optic vesicle and a general neuronal marker as well as a forebrain
marker were expressed in non-retinal domain regions of the organoid. With life
imaging, Zilova and colleagues observed cells as freely diffusive particles until 34 h

after aggregation, when Rx3-expressing cells moved from their random position
inside the aggregate with an estimated speed of 0.413-0.479 µm/min towards optic
vesicle-forming regions. Life images of the optic vesicle formation can be seen in
Fig. 7.2d). At the same time, about 49% of cells that are initially located at the cell
periphery move towards the center of the organoid [382].

In the absence of Matrigel, Rx3-expressing cells move towards the aggergate surface
but do not form optic vesicles. The main component of Matrigel is the ECM protein
laminin-1, which has been shown to be important for cell polarization and epithelial
organization in optic vesicle morphology in zebrafish. Indeed, after knockout of
laminin-1 and in laminin mutants, eye field cells have a rounded and unstable cell
shape [383].

Recently, Lucie Zilova and Venera Weinhardt focused on the Rx3-expressing cell
distribution in different sized organoids, see Fig. 7.2e). As discussed in [382], Rx3-
expressing cells are distributed randomly in organoids derived with less than 1000
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Figure 7.2: Experimental results of optic vesicle formation in medaka
organoids. a) Fluorescence image of day 2 organoids from aggrega-
tions with <1000 cells and >1000 cells. Optic vesicles only form for small
organoids (<1000 cells). b) Fluorescence and bright field images and
their overlay of small organoids on day 2 forming 1-3 optic vesicles. c)
Percentage of organoids that form 1-4 individual retinal regions (large
organoids: n=35, small organoids: n=123). d) In vivo time-lapse images
from 24-40 h post aggregation of optic vesicle-like structure formation.
e) Rx3-expressing cell distribution in organoids derived from aggregates
with 500, 1000 and 2000 cells. f) Percentage of Rx3-expressing cells in
organoids derived from aggregates with 500, 1500 and 2000 cells. g)
Organoid volume change between day 1 and day 2 post aggregation
depending on Matrigel amount added at day 1 for organoids derived from
aggregates with 500, 1000 and 2000 cells. Scale bars: 100 µm.
Images a-d) Reproduced with permission [382], 2021, eLife. Images e-g)
courtesy of Venera Weinhardt.
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cells. Surprisingly, in large organoids derived from 2000 cells, Rx3-expressing cells
are predominantly found at the periphery of the organoid, indicating that there is an
external cue suppressing retina differentiation for cells at the center of the organoid.
We speculate that this distribution could be a result of the increased pressure at
the organoid center or due to reduced access to nutrients. At the same time, even
though Rx3-expressing cells are only found at the periphery of the organoid, the
fraction of Rx3-expressing cells is increasing with the organoid size, see Fig. 7.2f).
Additionally, Lucie Zilova and Venera Weinhardt varied the concentration of

Matrigel that is added to the organoids after 1 day, see Fig. 7.2g). While the addition
of Matrigel is necessary for organoid growth independent of their size, in agreement
with [382], the amount of Matrigel added does not seem to affect the growth of the
organoids of different sizes.

7.3 Simulating vesicle formation in organoids

7.3.1 Differential adhesion model with ECM interaction

The CPM was invented to describe cell sorting [16, 329], an important process remi-
niscent of immiscible liquids that occurs for example during epithelial-mesenchymal
transitions in developing embryos. Cells of different types separate similar to immisci-
ble liquids due to different surface and interfacial tensions, which arise from different
expression levels of cell adhesion molecules and the dynamic rearrangement of cell-cell
contacts [384]. The differential adhesion hypothesis states that the self-organization
of tissue is primarily driven by differences in the adhesive properties between cells
rather than specific molecular signaling pathways, which is why the CPM is a great
method to model such processes.
It is currently not known what leads to the retina cell sorting in embryos and

organoids, and processes beyond tension differences might play an important role.
Active migration and cell signaling could be important during retina cell sorting.
However, we know from experiments that the sorting process is successful independent
of Matrigel presence, but vesicle evagination is only observed in organoids suspended
in Matrigel. Additionally, there is experimental evidence that Rx3-expressing cells
interact with the Matrigel protein laminin [383]. Together, this leads us to an extended
differential adhesion model that includes Matrigel as an non-cellular environment
with cell type-specific interaction energies to describe the observed phenomena during
organoid morphogenesis.

The most important parameters for the CPM simulation of the optic cup morpho-
genesis are therefore the interaction energies between the different generalized cell
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Figure 7.3: Simulated optic vesicle evagination in an aggregate with 500
cells. Cross section snapshots at 90 MCS, 110 MCS, 200 MCS, 400 MCS,
900 MCS, 1400 MCS, 1980 MCS. Simulation parameters can be found in
Table A.6.

types Retina, Other and Matrigel. Following differential adhesion simulations [329],
the interaction energy Jother, other is the lowest to ensure condensing of these cells
at the center of the organoid. For the Matrigel-Rx3-cells interaction that leads to
the formation of optic vesicles, their interaction energy Jretina, matrigel is lower than
the interaction energy between other cells and the Matrigel Jother, matrigel, which has
the same value as the interaction energy between Rx3-cells and other organoid cells
Jretina, other. All interaction energy values can be found in Table A.6.

The Hamiltonian used for the optic vesicle morphogenesis has therefore the following
terms:

H =
∑
σ

λVτ · (V (σ)− VTτ )2 +
∑
σ

λAτ · (A(σ)− ATτ )2

+
∑

<x,x’>N

Jτ(σ(x)),τ(σ(x’))(1− δ(σ(x), σ(x’)).
(7.1)

Here, the first two terms are the elastic volume and surface energies, where the
strength of the constraints is given by λVτ and λAτ respectively and the target volume
and area are given by VTτ and ATτ . These parameters depend on the cell type τ .
The last term describes the interaction energies between the generalized cell types
for voxels up to neighbor order N .

The simulation runs for 2000 MCS, and the cells in the aggregate are initialized as
identical cubes of cell type Other within a predefined radius, see Fig. 7.3. During the
first 100 MCS, the system equilibrates and becomes spherical. Then, 15% of the cells
become Retina cells. For small organoids (<1000 cells), the cells are chosen randomly,
but neighboring cells of Retina cells are prevented from changing to Retina cells as
well, leading to the checkerboard initialization that is observed in experiments. For
large organoids, all cells that are at the periphery of the organoid become Retina cells.
At the same time step as the cell type change, Matrigel is added to the simulation
as a layer enclosing the organoid. Matrigel is modeled as a generalized cell type with
target volume and target surface area given by the initial volume and surface area.
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Then, the system evolves for 1900 MCS and the final shape of the organoid can be
analyzed.

7.3.2 Influence of Matrigel on optic vesicle evagination

To simulate the optic vesicle formation, we use the Hamiltonian in Eq. 7.1 and
simulate cell aggregates with 500 and 1000 cells with different amounts of Matrigel.
The results can be seen in Fig. 7.4 as 2D cross sections and 3D images, as well as
histograms with the number of retinal regions found in the simulated organoids from
10 simulations each. We consider more than 10 neighboring Retina cells a retinal
region.

We know from experiments, that cell aggregates grown in suspension in absence of
Matrigel do not form optic vesicles, and in our simulation we find similar distributions,
see Fig. 7.4. Most Retina cells in aggregates with 500 and 1000 cells move towards
the aggregate surface, but do not cluster together to form retinal regions. We do not
find complete sorting, as some Retina cells remain close to the aggregate center. The
few retinal regions found in these aggregates are at the center of the aggregate and
not at its periphery. At the end of the simulation, the aggregates are remarkably
spherical and we do not observe the typical shapes of organoids with optic vesicles.

In contrast, we find shapes that resemble those of organoids with optic vesicles if
we simulate the aggregates with a layer of Matrigel with a volume VM of 30% of the
organoid volume VO, compare Fig. 7.4. In simulations with Matrigel, we increase the
interaction energy Jretina, medium to ensure Retina cells adhere to Matrigel. Especially
for small organoids with 500 cells, we find 2-4 retinal regions in the organoids, while
organoids with 1000 cells form up to 5 retinal regions. Not all Retina cells move
to the organoid periphery, but compared to the simulation without Matrigel, the
Retina cells inside the organoid are fewer. Retina cells in the retinal regions become
elongated and polarized, similar to what is observed experimentally. A significant
difference between the simulated organoids and the experiments is the absence of
simulated organoids with one retinal region.
From the experimental results presented in Fig. 7.2g), we know that presence

of Matrigel is relevant for organoid development, however the amount of Matrigel
seems to be irrelevant for organoid growth. It is currently unclear if the amount of
Matrigel present has other effects on organoids, such as the number of retinal regions
per organoid. In our simulations, we implement that the surrounding Matrigel layer
leads to optic vesicle formation because the interaction energy Jretina, matrigel is lower
than Jother, matrigel and J other, retina. We therefore tried reducing the number of retinal
regions by increasing the amount of Matrigel in the simulation.
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Figure 7.4: Simulation results for small organoids with 500 and 1000 cells
with different amounts of Matrigel. Retina cells are depicted in
green, Other cells in blue and Matrigel in red. Each histogram shows the
number of retinal regions, which are defined as clusters of more than 10
Retina cells, for 10 simulations. Simulation parameters can be found in
Table A.6.
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Figure 7.5: 2D cross-section and 3D images of simulations with 500 cells
without Matrigel under increasing pressure. a,a′) Simulation with
no pressure. b,b′) Simulation with low pressure. c,c′) Simulation with
high pressure. All simulation parameters can be found in Table A.7.

For organoids with 500 cells, we find a reduced number of retinal regions when
increasing the Matrigel volume, however for organoids with 1000 cells, the number of
retinal regions increases with the increased Matrigel volume, see Fig. 7.4. However,
the observed organoid shapes are again more spherical, due to the surrounding
Matrigel layer. Here, the Matrigel layer is remains a thick layer and does not
break into smaller parts shielding the retinal regions on the organoid periphery as
observed for organoids with smaller volume. Additionally, the sorting process is
again incomplete, with clusters of Retina cells forming on the inside of the organoid.

7.3.3 Influence of pressure on optic vesicle evagination

To ensure that the observed vesicle evagination is due to the different interaction
energies in the CPM simulation and not due to pressure of the Matrigel layer, we
simulate organoids without the addition of Matrigel for different pressures exerted
on the aggregates with 500 cells. The results can be seen in Fig. 7.5.

For simulations with no pressure, see Fig. 7.5a,a′), we obtain spherical organoids
which are partially sorted, compare also Fig. 7.4. Most Retina cells move towards
the organoid surface but do not form optic vesicles. Retina cells inside the organoid
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Figure 7.6: Simulation results for optic vesicle evagination in organoids ini-
tially 500 cells and with cell division for different Matrigel vol-
ume VM. 2D cross section and 3D view of the simulated organoid shape,
as well as histograms with the number of retinal regions found in 50
simulated organoids each. Parameters for the simulation can be found in
Table A.6.

form small clusters.
When we introduce a low pressure in the simulation, see Fig. 7.5b,b′), the final

organoid shapes are similar to the previous results. We obtain spherical cell aggregates
with most Retina cells at the organoid surface, and again we do not find optic vesicles
at the surface. Due to the increased pressure, the remaining Retina cells on the
inside of the aggregate form less clusters.

Increasing the pressure further leads to mainly single Retina cells on the inside of
the organoid, while the shape of the organoid remains spherical and the Retina cells
on the surface do not form optic vesicles, compare Fig. 7.5c,c′).
Thus we can conclude that the optic vesicle evagination in our simulation is due

to different adhesion energies and not due to pressure on the aggregate.

7.3.4 Influence of cell division on optic vesicle evagination

Cells in the developing organoid divide, and to understand this effect on organoid
shape, Venera Weinhardt estimates that cells divide 2-3 times during the first 24 h
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in suspension. We implement division in our simulation by dividing cells randomly
during the first 800 MCS. Cell divides along a random axis, and the daughter cells
inhibit the cell type of the mother cell and divide again after 800 MCS. Therefore,
the total number of cells changes from 500 at initialization to around 1250 after 2000
MCS.

Results from the simulations with division as well as histograms with the number
of retinal regions found in the simulated organoids are shown in Fig. 7.6. In both
cases, there are no Retina cells inside the organoid. We attribute this increased
mobility to the implemented cell division as it forces regular rearrangements inside
the organoid.
Another difference to previous simulations is that here, increasing the Matrigel

volume leads to fewer retinal regions in the simulated organoid. It is not yet known
if changing the Matrigel amount changes the distribution of observed retinal regions
in organoids, only that a change in Matrigel amount does not affect organoid growth
significantly, compare Fig. 7.2f). For both amounts of Matrigel volume, we find a
larger number of vesicles than what is observed experimentally. When we initialize
the Matrigel with a thicker layer and a higher volume, the simulated organoid
shapes change drastically as there is no symmetry breaking of the layer and the
organoid remains spherical, which is not expected to happen in experiments. As an
improvement to the simulation, one could increase the Matrigel volume over time as
a method to describe Rx3-expressing cells recruiting Matrigel from the suspension.

7.3.5 Neuroepithelial layer in large organoids

In Fig. 7.2a), we can see a distinct difference between retina organoid shapes developed
from aggregates with less than 1000 cells and with more than 1000 cells. Large
organoids do not form optic vesicles, but develop a continuous layer of Rx3-expressing
cells at the organoid periphery. We do not observe this phenotype by increasing the
number of cells in our simulations.

However, we observe an additional difference in the experiments between large and
small organoids: the distribution of Rx3-expressing cells is continuous throughout
small aggregates with less than 1000 cells, while for large aggregates with 2000 cells,
the Rx3-expressing cells are only found at the periphery of the organoid, compare
Fig. 7.2e).
This experimental observation can be implemented in our model by restricting

the cells that can become Retina cells. However, changing the simulation to allow
Retina cell initialization if the distance between the cell center of mass and the
organoid center is larger than 80% of the organoid radius still leads to symmetry
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Figure 7.7: Simulation results for large organoids with 1500 cells with
Retina cells initialized at the periphery. a,a′) 2D and 3D results
of the simulation without cell division. b,b′) 2D and 3D results of the
simulation with cell divison. Parameters for the simulation can be found
in Table A.6.

breaking and subsequent vesicle formation in the simulated organoid. But after
initializing all cells at the periphery of the organoid to become Retina cells, we
observe the neuroepithelial layer throughout the simulation, see Fig. 7.7a,a′). Even
when including cell differentiation to the simulation as described previously, the
spherical shape and neuroepithelial layer is still observed, see Fig. 7.7b,b′). However
in this case, cell volumes decrease due to the pressure from the surrounding Matrigel
layer with constant volume, which we do not expect in experiments.

7.4 Discussion

Organoids offer a powerful and versatile platform for studying development and mor-
phogenesis. Their ability to recapitulate tissue complexity in controlled experimental
systems bridges the gap between in vitro and in vivo approaches and makes them
excellent models to study tissue development and organization. Zilova and colleagues
[382] derived retina organoids from medaka fish and observed different morphologies
depending on the initial number of cells in the aggregates. Small organoids with less
than 1000 cells form between one and four optic vesicle regions, while large aggregates
with more than 1000 cells evolve into a single retina, with a neuroepithelial layer on
the periphery of the organoid.
The CPM is a great simulation framework to describe emergent properties from
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local cell interactions, and by including the cell-Matrigel interaction we were able
to reproduce several experimental observations with our model. In small organoids,
most simulated Retina cells move towards the periphery and form the observed
retinal regions in the presence of Matrigel. In the absence of Matrigel and with a
reduced interaction energy Jretina, medium, the Retina cells move towards the aggregate
surface, but do not form optic vesicle clusters. We confirmed that this morphological
difference is due to the interaction energies and not due the the increased pressure
of the Matrigel. Then, we included cell division, which improves cell sorting due
to cell rearrangements. In this case, increasing the Matrigel volume leads to fewer
retinal regions in the simulated organoid. For large organoids, we can reproduce the
observed neuroepithelial layer when initializing all cells at the surface as Retina cells.
It was shown experimentally that the distribution of retina cells in the organoid
depends on its size.
We expect that our simulations could be improved to predict the experimentally

observed distribution of retinal regions per organoid by increasing the amount of
Matrigel continuously during the simulation. The simulated Matrigel would represent
the Matrigel accumulated by the organoid, not the total Matrigel volume in the
experiment, which is most likely a fibrous network throughout the suspension.
The influence of Matrigel on organoid morphogenesis is complex and poorly

understood [381], and it is unclear whether the adhesive effect is as prominent
as hypothesized in this model. In general, it is difficult to measure adhesion in
experiments, as it depends on many factors such as the amount and lifetime of
cell-cell contacts and interfacial tensions of the cells. However in this specific case,
we would expect an accumulation of Matrigel in the retinal regions, which could be
observed experimentally by visualizing Matrigel.
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8 Conclusion

The aim of this work was to model cell shape in structured environments. We placed
special emphasis on intracellular structures such as the nucleus and stress fibers, and
their effect of cell shape, as well as the geometry of the structured environments.
Additionally, we modeled shape changes in fish retina organoids.

In Chapter 2, we introduced the structures relevant for cell mechanics, specifically
the cytoskeletal proteins actin, microtubules, and intermediate filaments, as well
as the nucleus and focal adhesion complexes. Additionally, we emphasized the
importance of cell shape for various biological processes such as cell function, motility
and division; which can in turn be influenced by the physical microenvironment of
the cell.

In Chapter 3, we described cell experiments in 2D and 3D structured envi-
ronments that highlight the importance of mechanical factors such as the local
microenvironment topography and geometry as well as the substrate stiffness for
cell shape and fate. For single cell experiments, the research focuses on internal cell
organization, cell shape changes, force generation and migration. For cell collectives,
cell-cell adhesion and emerging phenomena such as supracells are investigated. These
larger structures have the ability to change their own shape collectively by folding
and they can even change their local environment. Lastly, we discussed exciting
new possibilities that arise from combining organoid culture with biofabrication or
bioprinting techniques. Organoids mimic complex features of organs or tissue archi-
tecture and functionality, but currently their use is limited due to heterogeneity and
low reproducibility. Combining organoids with well-designed structured environments
can help to control cellular growth and behavior in the future.

Chapter 4 complements the experiments described in the previous chapter with
an overview of models to describe single cells, cell collectives and organoids in 2D and
3D structured environments. Single cell models shed light on cellular decision-making
processes and the impact of microenvironmental cues. Such models enable the
exploration of diverse scenarios and aid in the prediction of cellular responses to
different stimuli. Cell collective models capture the dynamics of cellular interactions
within multicellular systems, revealing emergent properties that arise from cellular
cooperation and coordination. These models are instrumental in deciphering the
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underlying principles such as tissue morphogenesis. Organoid modeling that explicitly
includes the environment is a challenging undertaking. Organoid models, combined
with advanced imaging techniques, can help to uncover the spatial and temporal
dynamics of tissue development. Then, we focused on the CPM and described how
to model 3D cell shape in structured environments. We introduced the cellular
Potts framework and its origins in statistical physics as well as its advantages and
limitations in describing biological systems. Due to the pseudo-energy formalism,
the CPM is a versatile method to model dynamical changes as well as the emergent
behavior due to local interactions with the microenvironment. In particular, it can
bridge the scale from molecular level to tissue level by integrating information from
different scales. Finally, we outlined the code architecture of CompuCell3D, which is
the open source software used throughout this work.

In Chapter 5, we used the CPM to describe cell shape on structured environments.
First, we investigated the role of the nucleus in cell morphology on 2D micropatterned
surfaces. We compared simulations with a stiff nuclear compartment at the center
of the cell with simulations without explicit nucleus representation, but the same
cell volume. We found similar overall morphologies in both cases, with cells with
nucleus being slightly more spherical, thus reducing the surface area of the cell.
During the spreading process, the trajectories of the center of mass are similar for
cells with and without nucleus. However, cells with nucleus reach the steady-state
configuration later than cells without explicit nucleus representation due to the stiff
nucleus at the rear of the cell and an increased number of MCS necessary to reach
the final position. The projected cell morphology during spreading is comparable
to experimental results, however the subsequent shape reinforcement can only be
modeled with explicit stress fiber representation. Initializing the stress fibers at the
beginning of the simulation leads to cell shape changes similar to what is observed
experimentally. Implementing stress fiber growth in the 3D CPM is challenging,
because there is no measure of stress. We approximated stress with compartmental
pressure and reduced volume, and while we did see some stress fiber growth at the
invaginated arcs, similar to what is observed experimentally, many processes such as
stress fiber interactions and dynamics are not included in our current model.

In the future, the 3D CPM for cell spreading on micropatterns could be compared
to 3D experimental data for spreading dynamics and trajectories to confirm or modify
the parameter choices. The stress fiber model could be extended to include an
additional finite element model to describe the stress inside the compartments, which
could be assumed to be linear elastic materials, which are deformed according to
compartment shape changes in the CPM.
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In Chapter 6, we utilized 3D structures manufactured with DLW for precisely
controlled conditions to quantify cellular shapes in structured environments experi-
mentally. First, we compared the shapes of single mesenchymal NIH/3T3 cells in
structured environments with minimized surfaces under a volume constraint. We
found that these shapes differ significantly for cells with invaginated arcs, highlighting
the importance of accurately modeling cell shapes in complex environments. To
address this issue, we employed two different approaches using the CPM with elastic
or linear area energies. Our simulations showed that the Hamiltonian with linear
area energy outperformed the elastic area constraint in accurately modeling the
shapes of cells in structured environments. Surprisingly, we also found that explicitly
modeling the nucleus did not necessarily improve the accuracy of the simulated cell
shapes, leading us to the conclusion that the actin cytoskeleton deforms the nucleus
significantly in these structures. Overall, our study provides insights into effective
methods for modeling cellular shapes in complex environments.
In the future, it would be interesting to place cells in more complex microstruc-

tures, to analyze if there are structures in which the nucleus significantly influences
cell shape. Additionally, our results can be used to design structures for 3D laser
nanoprinting that lead to predefined cell deformations.

In Chapter 7, we model the optic cup evagination in fish retina organoids. It was
observed experimentally, that the final organoid shape depends on the number of
cells in the initial aggregate and on the presence of Matrigel, a secretion product that
contains ECM components. With the assignment of interaction energies between
the different cell types, it is possible to simulate the process of organoid formation.
Similar to the experimental results, we found retinal regions in organoids surrounded
by Matrigel, and no retinal regions in the absence of Matrigel. However, the number
of retinal regions per organoid differs from experimental results. Additionally, it was
observed that large organoids form a single neuroepithelial layer on their surface
instead of distinct retinal regions. This observation can only be modeled by initializing
the layer at the surface. In this case, it did not break into retinal regions but remained
a layer on the surface of the organoid.
In the future, it would be very interesting to visualize the Matrigel in the

organoid experiments. Our model is based on differences in interaction energies,
while many other processes such as signaling could also be involved in optic cup
evagination. Additionally, one could closely monitor organoid morphologies for
different amounts of Matrigel, to test if this influences the number of retinal regions.
Both experiments could elucidate how large the effect of adhesion is for optic cup
formation in organoids.
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A Appendix

A.1 Parameters for simulations

In this section, we present the parameters used for the simulations presented through-
out this thesis.

Parameter Symbol Value
Simulation Temperature T 1000
Monte Carlo Steps MCS 2000
Cytoplasm Target Volume VT(cytoplasm) 60000
Cytoplasm Volume Constraint λV (cytoplasm) 1.0
Nucleus Target Volume VT(nucleus) 8000
Nucleus Volume Constraint λV (nucleus) 1.0
Cell Target Surface AT(cell) 20000
Cell Surface Constraint λA(cell) 0.1
Nucleus Target Surface AT(nucleus) 2500
Nucleus Surface Constraint λA(nucleus) 0.1
Nucleus Centering Constraint λC 2000
External Interaction Energy Medium-Medium Jext(medium,medium) 1.0
External Interaction Energy Medium-Cytoplasm Jext(medium,cytoplasm) 8.0
External Interaction Energy Medium-Nucleus Jext(medium,nucleus) 100.0
External Interaction Energy Medium-Adhesive Jext(medium,adhesive) 1.0
External Interaction Energy Medium-Nonadhesive Jext(medium,nonadhesive) 1.0
External Interaction Energy Cytoplasm-Cytoplasm Jext(cytoplasm,cytoplasm) 10.0
External Interaction Energy Cytoplasm-Nucleus Jext(cytoplasm,nucleus) 100.0
External Interaction Energy Cytoplasm-Adhesive Jext(cytoplasm,adhesive) -40.0
External Interaction Energy Cytoplasm-Nonadhesive Jext(cytoplasm,nonadhesive) -1.0
External Interaction Energy Nucleus-Nucleus Jext(nucleus,nucleus) 100.0
External Interaction Energy Nucleus-Adhesive Jext(nucleus,adhesive) 6.0
External Interaction Energy Nucleus-Nonadhesive Jext(nucleus,nonadhesive) 6.0
Internal Interaction Energy Cytoplasm-Cytoplasm J int(cytoplasm,cytoplasm) 10.0
Internal Interaction Energy Cytoplasm-Nucleus J int(cytoplasm,nucleus) 5.0
Internal Interaction Energy Nucleus-Nucleus J int(nucleus,nucleus) 100.0
Neighbor Order N 60

Table A.1: Parameters used in the simulation for Fig. 5.1, Fig. 5.2, Fig. 5.3 and
Fig. 5.9.
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A.1 Parameters for simulations

Parameter Symbol Value
Simulation Temperature T 1000
Monte Carlo Steps MCS 2000
Cytoplasm Target Volume VT(cytoplasm) 60000
Cytoplasm Volume Constraint λV (cytoplasm) 1.0
Nucleus Target Volume VT(nucleus) 8000
Nucleus Volume Constraint λV (nucleus) 1.0
Cell Target Surface AT(cell) 20000
Cell Surface Constraint λA(cell) 0.1
Nucleus Target Surface AT(nucleus) 2500
Nucleus Surface Constraint λA(nucleus) 0.1
Nucleus Centering Constraint λC 2000
External Interaction Energy Medium-Medium Jext(medium,medium) 1.0
External Interaction Energy Medium-Cytoplasm Jext(medium,cytoplasm) 8.0
External Interaction Energy Medium-Nucleus Jext(medium,nucleus) 100.0
External Interaction Energy Medium-Adhesive Jext(medium,adhesive) 1.0
External Interaction Energy Medium-Nonadhesive Jext(medium,nonadhesive) 1.0
External Interaction Energy Cytoplasm-Cytoplasm Jext(cytoplasm,cytoplasm) 10.0
External Interaction Energy Cytoplasm-Nucleus Jext(cytoplasm,nucleus) 100.0

External Interaction Energy Cytoplasm-Adhesive Jext(cytoplasm,adhesive)

-2000.0 (a)
-300.0 (b)
-80.0 (c)
-40.0 (d)
-40.0 (e)
-40.0 (f)

External Interaction Energy Cytoplasm-Nonadhesive Jext(cytoplasm,nonadhesive) -1.0
External Interaction Energy Nucleus-Nucleus Jext(nucleus,nucleus) 100.0
External Interaction Energy Nucleus-Adhesive Jext(nucleus,adhesive) 6.0
External Interaction Energy Nucleus-Nonadhesive Jext(nucleus,nonadhesive) 6.0
Internal Interaction Energy Cytoplasm-Cytoplasm J int(cytoplasm,cytoplasm) 10.0
Internal Interaction Energy Cytoplasm-Nucleus J int(cytoplasm,nucleus) 6.0
Internal Interaction Energy Nucleus-Nucleus J int(nucleus,nucleus) 100.0

Neighbor Order N

1 (a)
4 (b)
10 (c)
30 (d)
60 (e)
100 (f)

Table A.2: Parameters used in the simulation for Fig. 5.8.

128



A.1 Parameters for simulations

Parameter Symbol Value
Simulation Temperature T 800
Monte Carlo Steps MCS 1000
Cytoplasm Target Volume VT(cytoplasm) 152
Cytoplasm Volume Constraint λV (cytoplasm) 100.0
Nucleus Target Volume VT(nucleus) 8000
Nucleus Volume Constraint λV (nucleus) 1.0
Cell Target Surface AT(cell) 20000
Cell Surface Constraint λA(cell) 0.1
Cytoplasm Target Surface AT(cytoplasm) 200
Cytoplasm Surface Constraint λA(cytoplasm) 3.0
Nucleus Target Surface AT(nucleus) 2500
Nucleus Surface Constraint λA(nucleus) 0.1
Nucleus Centering Constraint λC 2000
Line Tension Strength λSF 5 · 105

External Interaction Energy Medium-Medium Jext(medium,medium) 1.0
External Interaction Energy Medium-Cytoplasm Jext(medium,cytoplasm) 8.0
External Interaction Energy Medium-Nucleus Jext(medium,nucleus) 100.0
External Interaction Energy Medium-Adhesive Jext(medium,adhesive) 1.0
External Interaction Energy Medium-Nonadhesive Jext(medium,nonadhesive) 1.0
External Interaction Energy Cytoplasm-Cytoplasm Jext(cytoplasm,cytoplasm) 10.0
External Interaction Energy Cytoplasm-Nucleus Jext(cytoplasm,nucleus) 100.0
External Interaction Energy Cytoplasm-Adhesive Jext(cytoplasm,adhesive) -60.0
External Interaction Energy Cytoplasm-Nonadhesive Jext(cytoplasm,nonadhesive) -1.0
External Interaction Energy Nucleus-Nucleus Jext(nucleus,nucleus) 100.0
External Interaction Energy Nucleus-Adhesive Jext(nucleus,adhesive) 10.0
External Interaction Energy Nucleus-Nonadhesive Jext(nucleus,nonadhesive) 10.0
Internal Interaction Energy Cytoplasm-Cytoplasm J int(cytoplasm,cytoplasm) 1.0
Internal Interaction Energy Cytoplasm-Nucleus J int(cytoplasm,nucleus) 3.0
Internal Interaction Energy Nucleus-Nucleus J int(nucleus,nucleus) 100.0
Neighbor Order N 60

Table A.3: Parameters used in the simulation for Fig. 5.10.
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A.1 Parameters for simulations

Parameter Symbol Value
Simulation Temperature T 70
Monte Carlo Steps MCS 1000
Cytoplasm Target Volume VT(cytoplasm) 125
Cytoplasm Volume Constraint λV (cytoplasm) 2.0
Nucleus Target Volume VT(nucleus) 4000
Nucleus Volume Constraint λV (nucleus) 20.0
Cell Target Surface AT(cell) 4874
Cell Surface Constraint λA(cell) 0.001
Cytoplasm Target Surface AT(cytoplasm) 25
Cytoplasm Surface Constraint λA(cytoplasm) 0.1
Nucleus Target Surface AT(nucleus) 1219
Nucleus Surface Constraint λA(nucleus) 0.001
Line Tension Strength λSF 5 · 105

External Interaction Energy Medium-Medium Jext(medium,medium) 1.0
External Interaction Energy Medium-Cytoplasm Jext(medium,cytoplasm) 20.0
External Interaction Energy Medium-Nucleus Jext(medium,nucleus) 1000.0
External Interaction Energy Medium-Adhesive Jext(medium,adhesive) 1.0
External Interaction Energy Medium-Nonadhesive Jext(medium,nonadhesive) 1.0
External Interaction Energy Cytoplasm-Cytoplasm Jext(cytoplasm,cytoplasm) 1.0
External Interaction Energy Cytoplasm-Nucleus Jext(cytoplasm,nucleus) 100.0
External Interaction Energy Cytoplasm-Adhesive Jext(cytoplasm,adhesive) -500.0
External Interaction Energy Cytoplasm-Nonadhesive Jext(cytoplasm,nonadhesive) 100.0
External Interaction Energy Nucleus-Nucleus Jext(nucleus,nucleus) 100.0
External Interaction Energy Nucleus-Adhesive Jext(nucleus,adhesive) 10.0
External Interaction Energy Nucleus-Nonadhesive Jext(nucleus,nonadhesive) 100.0
Internal Interaction Energy Cytoplasm-Cytoplasm J int(cytoplasm,cytoplasm) 0.1
Internal Interaction Energy Cytoplasm-Nucleus J int(cytoplasm,nucleus) 0.1
Internal Interaction Energy Nucleus-Nucleus J int(nucleus,nucleus) 100.0
Neighbor Order N 7

Table A.4: Parameters used in the simulation for Fig. 5.11 and Fig. 5.12.

130



A.1 Parameters for simulations

Parameter Symbol Value
Simulation Temperature T 100
Monte Carlo Steps MCS 2000
Cytoplasm Target Volume VT(cytoplasm) 36789
Cytoplasm Volume Constraint λV (cytoplasm) 0.1
Nucleus Target Volume VT(retina) 10890
Nucleus Volume Constraint λV (retina) 1.0
Interaction Energy Medium-Medium Jext(medium,medium) 0.0
Interaction Energy Medium-Nucleus Jext(medium,other) 80.0
Interaction Energy Cytoplasm-Nucleus Jext(cytoplasm,nucleus) 5.0
Interaction Energy Cytoplasm-Adhesive Jext(cytoplasm,adhesive) 4.0
Interaction Energy Nucleus-Adhesive Jext(nucleus,adhesive) 11.0
Neighbor Order N 7
Nucleus Centering Constraint λN 100

Table A.5: Parameters used in the simulation in Chapter 6.

Parameter Symbol Value
Simulation Temperature T 70
Monte Carlo Steps MCS 2000
Other Target Volume VT(other) 350
Other Volume Constraint λV (other) 70
Retina Target Volume VT(retina) 350
Retina Volume Constraint λV (retina) 70
Matrigel Volume Constraint λV (matrigel) 100
Other Target Surface AT(other) 450
Other Surface Constraint λA(other) 20
Retina Target Surface AT(retina) 450
Retina Surface Constraint λA(retina) 20
Matrigel Surface Constraint λA(matrigel) 30
Interaction Energy Medium-Medium Jext(medium,medium) 1.0

Interaction Energy Medium-Retina Jext(medium,retina)
4.0 (w/o matrigel)

32.0 (with matrigel)
Interaction Energy Medium-Other Jext(medium,other) 16.0
Interaction Energy Medium-Matrigel Jext(medium,matrigel) 5.0
Interaction Energy Retina-Retina Jext(retina,retina) 4.0
Interaction Energy Retina-Other Jext(retina,other) 11.0
Interaction Energy Retina-Matrigel Jext(retina,matrigel) 6.0
Interaction Energy Other-Other Jext(other,other) 2.0
Interaction Energy Other-Matrigel Jext(other,matrigel) 11.0
Neighbor Order N 50

Table A.6: Parameters used in the simulation for Fig. 7.3, Fig. 7.4, Fig. 7.6 and
Fig. 7.7.
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A.1 Parameters for simulations

Parameter Symbol Value
Simulation Temperature T 70
Monte Carlo Steps MCS 2000
Other Target Volume VT(other) 350
Other Volume Constraint λV (other) 70
Retina Target Volume VT(retina) 350
Retina Volume Constraint λV (retina) 70
Matrigel Volume Constraint λV (matrigel) 100
Other Target Surface AT(other) 450
Other Surface Constraint λA(other) 20
Retina Target Surface AT(retina) 450
Retina Surface Constraint λA(retina) 20
Matrigel Surface Constraint λA(matrigel) 30

Pressure Constraint λV (organoid)
0.0 (a,a′)
5.0 (b,b′)
20.0 (c,c′)

Interaction Energy Medium-Medium Jext(medium,medium) 1.0
Interaction Energy Medium-Retina Jext(medium,retina) 4.0
Interaction Energy Medium-Other Jext(medium,other) 16.0
Interaction Energy Medium-Matrigel Jext(medium,matrigel) 5.0
Interaction Energy Retina-Retina Jext(retina,retina) 4.0
Interaction Energy Retina-Other Jext(retina,other) 11.0
Interaction Energy Retina-Matrigel Jext(retina,matrigel) 6.0
Interaction Energy Other-Other Jext(other,other) 2.0
Interaction Energy Other-Matrigel Jext(other,matrigel) 11.0
Neighbor Order N 50

Table A.7: Parameters used in the simulation for Fig. 7.5.
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A.2 List of Abbreviations

CC3D CompuCell3D

CMC constant mean curvature

CPM cellular Potts model

DLW direct laser writing

ECM extracellular matrix

FEM finite element method

GFP green fluorescent protein

MCS Monte Carlo step

MTOC microtubule organizing center

PAA polyacrylamide

PDMS polydimethylsiloxane

RPE retina pigmented epithelium

TAZ transcription regulator 1

TFM traction force microscopy

YAP yes-associated protein 1
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