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Abstract

Quantum simulation enables the experimental investigation of simplified physical

models that capture the fundamental aspects of complex quantum many-body sys-

tems. In order to understand how interaction parameters impact the macroscopic

properties of the system, it is essential to modify the Hamiltonian in a controlled fash-

ion. This thesis presents novel approaches to perform tunable quantum simulations

in an isolated many-body spin-1/2 system represented by dipolar interacting Ryd-

berg atoms. These approaches are employed to study out-of-equilibrium dynamics in

different regimes. The four major achievements are as follows: (i) Using various spin-

encoding states within the Rydberg manifold, we realize XX, XXZ, and Ising models

with spatial disorder and study magnetization relaxation dynamics. We identify a uni-

versal behavior that is independent of the microscopic properties and explained by the

emergence of effective spin pairs. (ii) To introduce new effective interactions into the

system, we employ a time-periodic drive to transform the natural dipolar interaction

Hamiltonian into a desired target form. This method, known as Floquet engineering,

is validated using both a gas of Rydberg atoms and individually trapped Rydberg

atoms. We demonstrate its potential for tunable quantum simulation of Heisenberg

spin models by altering symmetry and transport properties. (iii) Combining the meth-

ods developed in (i) and (ii), we devise and implement a time reversal protocol. The

versatility of the approach is demonstrated by reversing quantum dynamics for a va-

riety of many-body Hamiltonian with tunable symmetry, which we realize through

Floquet engineering. (iv) Beyond experimental demonstration, we propose alterna-

tive approaches to engineer many-body systems, including a new approach to realize

time-reversal operations, and an approach for introducing mobile dopants into Ry-

derg spin systems. The Hamiltonian engineering methods can be directly applied to

further study the extend to which the emergence of effective spin pairs is the common

feature of disordered quantum spin systems. In general, engineering a wide range of

Hamiltonians opens up several new opportunities for investigating fields that range

from spin transport and spin glasses to quantum thermalization.





Zusammenfassung

Die Quantensimulation ermöglicht die experimentelle Untersuchung vereinfachter

physikalischer Modelle, die die grundlegenden Aspekte komplexer Quanten-

Vielteilchensysteme erfassen. Um zu verstehen, wie sich die Wechselwirkungspa-

rameter auf die makroskopischen Eigenschaften des Systems auswirken, ist eine

kontrollierte Manipulation des Hamiltonians unerlässlich. In dieser Arbeit werden

neue Ansätze zur Durchführung von einstellbaren Quantensimulationen in einem

isolierten Vielteilchen-Spin-1/2-System vorgestellt, das durch dipolar wechselwirk-

ende Rydberg-Atome dargestellt wird. Diese Ansätze werden eingesetzt, um die Dy-

namik außerhalb des Gleichgewichts in verschiedenen Regimen zu untersuchen. Die

vier wichtigsten Ergebnisse sind die folgenden: (i) Unter Verwendung verschiedener

Spin-Kodierungszustände innerhalb der Rydberg-Mannigfaltigkeit realisieren wir XX-

, XXZ- und Ising-Modelle mit räumlicher Unordnung und untersuchen die Dynamik

der Magnetisierungsrelaxation. Wir identifizieren ein universelles Verhalten, das un-

abhängig von den mikroskopischen Eigenschaften ist und durch das Auftreten von

effektiven Spinpaaren erklärt wird. (ii) Um neue effektive Wechselwirkungen in das

System einzuführen, wenden wir ein zeitperiodischen Treiben an, um den natürlichen

Hamiltonian der dipolaren Wechselwirkung in eine gewünschte Zielform umzuwan-

deln. Diese als Floquet-Engineering bekannte Methode wird sowohl mit einem Gas aus

Rydberg-Atomen als auch mit einzelnen gefangenen Rydberg-Atomen validiert. Wir

demonstrieren ihr Potenzial für die einstellbare Quantensimulation von Heisenberg-

Spinmodellen durch Veränderung der Symmetrie und der Transporteigenschaften. (iii)

Indem wir die in (i) und (ii) entwickelten Methoden kombinieren, entwickeln und im-

plementieren wir ein Zeitumkehrprotokoll. Die Vielseitigkeit des Ansatzes wird durch

die Umkehrung der Quantendynamik für eine Vielzahl von Vielteilchen-Hamiltonians

mit einstellbarer Symmetrie demonstriert, die wir durch Floquet Engineering erre-

ichen. (iv) Über die experimentelle Demonstration hinaus schlagen wir alternative

Ansätze zum Engineering von Vielteilchensystemen vor, einschließlich eines neuen

Ansatzes zur Realisierung von Zeitumkehroperationen und eines Ansatzes zur Ein-

führung mobiler Defekte in Ryderg-Spinsysteme. Diese Hamiltonian Engineering-

Methoden können direkt angewandt werden, um weiter zu untersuchen, inwieweit

die Entstehung effektiver Spinpaare ein gemeinsames Merkmal ungeordneter Quan-

tenspinsysteme ist. Generell eröffnet das Engineering eines breiten Spektrums von

Hamiltonians zahlreiche neue Möglichkeiten für die Untersuchung von Bereichen, die

von Spintransport und Spin-Gläsern bis zur Quanten-Thermalisierung reichen.
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CHAPTER 1
Introduction

1.1 Quantum systems and Quantum simulators

Quantum physics, often regarded as one of the most fascinating fields of science, has

fundamentally changed our understanding of nature. It predicts behaviors that often

defy intuition and contradict our everyday experiences. In quantum mechanics, a

single object in its simplest form can be characterized by two discrete basis states,

denoted |↓⟩ and |↑⟩, which pertains, for instance, to the intrinsic angular momentum

states of a particle known as spin. Despite being in either |↓⟩ or |↑⟩, the most

general spin state can be expressed as |ψ⟩ = c↓ |↓⟩ + c↑ |↑⟩. Here, c↓ and c↑ are

complex numbers denoted as amplitudes. This is the principle of superposition,

which allows for the unexpected possibility of a particle existing in a state with

contradictory properties simultaneously. When subjected to a measurement, the

particle ”collapses” into one of the spin states |↓⟩ or |↑⟩ with probability |c↓|2 and

|c↑|2, respectively. Similarly, in the case of two such particles, the most general state

reads |ψ⟩ = c↓↓ |↓↓⟩+ c↑↓ |↑↓⟩+ c↓↑ |↓↑⟩+ c↑↑ |↑↑⟩, where the first/second instance in

the |.⟩ represents the first/second particle. From this structure arises the possibility

for a state |ψ+⟩ = |↓↓⟩+|↑↑⟩√
2

, known as a Bell state, which serves as a fundamental

example of quantum entanglement. Two particles with entangled spin, will remain

connected and correlated, regardless of their physical distance [1]. Remarkably,

1



2 Chapter 1. Introduction

measuring one particle’s spin state, instantaneously determines the spin state of the

other particle. Such a phenomenon appears unsatisfying, and even Albert Einstein

struggled with its acceptance, referring to it as ”spooky action at a distance”.

Over the decades, our understanding of quantum physics has evolved, and seem-

ingly unsatisfying concepts have been confirmed. Early pioneering experiments were

conducted by Otto Stern and Walther Gerlach in 1922, where they demonstrated

that particles indeed possess an intrinsic angular momentum that only takes a cer-

tain quantized value i.e. being |↑⟩ or |↓⟩ [2]. Similarly, groundbreaking experiments

conducted by Alain Aspect, John F. Clauser, and Anton Zeilinger significantly con-

tributed to our understanding of entangled systems, earning them the Nobel Prize

in 2022 [3–5]. These and similar other achievements laid the foundation for our

current understanding of quantum physics and settled many concepts.

When dealing with many interacting quantum particles, the situation changes.

For systems with thousands of interacting particles, it remains an open question

how complex macroscopic behaviors emerge from simple microscopic rules. This is

particularly relevant for a broad range of fields, including condensed matter systems,

in which quantum systems of spins reveal unconventional magnetic properties, such

as spin glasses [6]. Simulating these so-called quantum many-body systems on a

classical device is extremely challenging due to the large amount of entanglement

these systems feature. As previously seen, the most general state for two spins is

described by superposition of all possible configuration. Therefore, for a system with

N particles, an extensive amount of information, corresponding to 2N numbers, is

required to represent the state. This exponential scaling makes it impossible to

calculate the behavior of strongly-correlated quantum systems using even the most

advanced classical computers currently available.

In 1982, Richard Feynman came up with an intriguing idea to overcome this

bottleneck. He proposed building synthetic quantum systems in the laboratory

that could be arbitrarily controlled to mimic the behavior of the quantum many-

body system of interest [7]. In these so-called quantum simulators, the implemented
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model is a simplified version of the real, complex quantum system, yet it retains

the fundamental features. In order to study phenomena which are driven by the

underlying quantum mechanical interactions, these synthetic quantum systems need

to be well isolated from the environment. Quantum simulators further need to

provide the capability to ”program” the models of interest to access various regimes.

Establishing such an universal platform has the potential to uncover new insights

and provides the means to investigate fundamental questions in quantum physics

ranging from quantum magnetism [8] to quantum thermalization [9,10] and beyond.

Over the past decades there have been enormous effort to isolate and manipulate

individual quantum objects ranging from charge particles trapped in an electric

field [11,12], neutral atoms that are cooled with laser light [13–15], and single photons

in optical cavities [16], which has provided a starting point to the development of

quantum simulation platforms [17,18]. For instance, neutral atom in optical lattices

can be used to study Hubbard models [19, 20], which serve as prototypical scenario

for mimicking interacting electrons in a solid-state materials [21–24].

A paradigmatic example of a quantum many-body system, describing the mutual

interactions between quantum spins, is the Heisenberg model [25, 26]. Formulated

by Werner Heisenberg in the early 20th century, this model serves as a template for

studying quantum magnetism [8]. Furthermore, spin models offer broad versatility,

as general quantum mechanical two-level systems can be mapped on a spin-1/2

system. Various experimental platforms have started to implemented versions of

the Heisenberg model, including trapped ions [27–30], ultracold molecules [31–35]

and superconducting circuits [36–38].

In recent years, quantum simulators based on neutral atoms in highly excited

electronic states, known as Rydberg states, experienced significant interest because

they offer extraordinary properties for implementing quantum spin models [39–43].

In Rydberg atoms, one can easily induce large dipole moments. As a consequence,

they exhibit strong dipolar interactions, exceeding the typical strength of external

magnetic and electric noise. In addition, those interactions are large compared to
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the lifetime associated with the spontaneous and black body decay rates [44]. These

properties are the primary resources for studying the dynamics of Rydberg atoms,

which are purely driven by the interaction Hamiltonian in an isolated environment.

The Rydberg atom platform is extremely versatile. Experiments have begun to

implement building blocks, enabling the control of certain Hamiltonian parameters of

quantum spin models. By encoding the spin-1/2 degree of freedom to two internal

atomic states, first implementations of XX [45–49], XXZ [50], and Ising models

[51–57] have been realized and started studies on exciting phenomena ranging from

quantum phase transitions [55] and topological phases [46] to magnetic ordering [51].

In addition to these abilities, approaches based on neutral atoms trapped in optical

tweezer arrays allow for arbitrarily controlling the position degree of freedom of

particles in the Hamiltonian in one, two, and three dimensions [58–60].

These achievements present a first step towards tunable quantum simulation

and have facilitated initial explorations of quantum many-body systems with a few

adjustable Hamiltonian parameters. Nevertheless, the field of quantum simulation is

still in its early stages, lacking complete control over every implemented Hamiltonian

parameter. A collective effort is focused on developing systems capable of realizing

arbitrary interaction Hamiltonians in a programmable fashion and employing them

to explore new regimes.

1.2 Thesis outline

This thesis is dedicated to advancing the Rydberg atom platform into a quantum

simulator with tunable interaction parameters. We develop various novel techniques

to shape the many-body interaction Hamiltonian of isolated quantum spin systems

in a desired manner and we exploit these capabilities to study out-of-equilibrium

dynamics of general XYZ quantum spin models. To our knowledge, many of the

realized spin models had not been studied on Rydberg platforms before.

We begin with a didactic introduction about how atomic interactions naturally

encode quantum spin-1/2 models in chapter 2. In this chapter, we also demon-



1.2. Thesis outline 5

strate the implementation of three distinct Heisenberg models through the proper

selection of the principal quantum number. We employ this method to study out-of-

equilibrium magnetization dynamics under different spatially disordered XX, XXZ,

and Ising models in a single experimental setup. Our investigations reveal that the

magnetization dynamics in these systems are universal in the sense that they col-

lapse onto a single curve when rescaling time. We explain this behavior using an

effective model that only considers pairs of spins. In chapter 3, we present how pe-

riodically applied drives can introduce new effective XYZ dipolar interactions that

go beyond those naturally accessible. We extensively benchmark this technique in

two scenarios: one involving an ordered atom array and another featuring a disor-

dered atomic gas. We realize this by engineering coherent two-particle oscillations

and freezing many-body dynamics. This method is employed to explore out-of-

equilibrium relaxation dynamics in different regimes, consecutively breaking SU(2)

and U(1) symmetries in the XYZ model. We further investigate the melting of do-

main wall states under XXZ Hamiltonians with tunable anisotropy. In chapter 4, we

introduce a protocol that enables the realization of time-reversal in isolated quan-

tum spin systems. This is realized by carefully selecting the spin-encoding states in

the Rydberg manifold, effectively changing the sign of the interaction Hamiltonian.

We employ this protocol and demonstrate how an initially magnetized state that

has relaxed into a demagnetized state evolves back-in-time into a magnetized state.

Combining this technique with the periodic driving of chapter 3, we realize the re-

versal for a wide range of spin models with tunable symmetry. Finally, in chapter 5,

before concluding in chapter 6, we proposes two alternative methods for engineering

many-body systems on the Rydberg platform. These include an approach to engi-

neer a Hamiltonian that naturally occurs in nuclear magnetic resonance, enabling

the application of sophisticated multi-pulse sequences. Finally, we propose a proto-

col that introduces mobile dopants into the Rydberg spin system by encoding the

spin and hole degree of freedoms into three Rydberg states, enabling the study of

doped quantum magnets.





CHAPTER 2
Universal relaxation behavior of tunable

quantum spin systems

Parts of this chapter is based on the following manuscript, from which parts of the

text have been taken verbatim:

Observation of universal relaxation dynamics in disordered quantum

spin systems a

T. Franz∗, S. Geier∗, C. Hainaut, A. Braemer, N. Thaicharoen, M. Hor-

nung, E. Braun, M. Gärttner, G. Zürn, M. Weidemüller

arXiv:2209.08080

aParts from the earlier version of this manuscript also appear in the dissertation

of Titus Franz [61]. While Titus Franz focuses on the aspect of the observed uni-

versality and its relation to prethermalization, this chapter explicitly focuses on the

experimental implementation of the three quantum spin models. We further discuss

an extended version of the pair model and introduce a new rescaling.

Quantum simulation, utilizing highly tunable synthetic systems, has emerged as a

powerful tool for addressing unresolved problems in modern physics. Many plat-

forms, such as neutral atoms [62–64], ultracold molecules [32, 33, 65, 66], trapped

7
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ions [28,29,67], and superconducting circuits [36,68,69], have reached a level of so-

phistication that allows for the exploration of prototypical quantum systems relevant

to condensed matter physics. These models encompass Bose- and Fermi-Hubbard

models, as well as Heisenberg spin-1/2 models. The strength of quantum simulation

platforms lies in their ability to finely tune interactions as well as the geometric

arrangement of particles with high precision.

Rydberg atoms have emerged as an exceptional platform for studying quantum

spin-1/2 systems under precisely controlled conditions, enabling the fine-tuning of a

wide range of experimental parameters [39–43]. The most important properties of

Rydberg atoms are outlined in Appendix A. As described in Chap. 1, the Rydberg

platform is capable of implementing XX [45–49], XXZ [50], and Ising models [51–

57] by encoding the spin into two internal atomic states. Furthermore, ongoing

technological advancements enable the manipulation of individual atoms and the

arrangement of multiple atoms into desired spatial configurations, effectively control

the positional degree of freedom in the Hamiltonian [43,65]. These capabilities have

been effectively employed to explore scientific and technological questions in the

field of quantum simulation [43,50,55–57,70,71], quantum sensing [72–74] as well as

quantum computing [40,75–77].

In this context, our team on the Heidelberg Rydberg experiment has conducted

quantum simulation experiments on quantum spin-1/2 systems represented by Ryd-

berg atoms over the past years. Specifically, we explored the impact of spatial

disorder on many-body out-of-equilibrium dynamics. In the course of these investi-

gations, the group studied Rabi oscillations in a dipolar interacting XX model [70].

It was demonstrated that the relaxation of these oscillations was primary driven

by interactions and was consistent with numerical simulations. Additionally, we

discovered that the magnetization relaxation dynamics in a spatially disordered sys-

tem with hundreds of quantum spins can be described by a stretched exponential

function [78]. The observation that a complex system follows a simple stretched

exponential law is a phenomenon often associated with the physics of spin glasses.
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What is even more remarkable is that the stretching exponent, which characterizes

the observed relaxation, remained independent of the degree of disorder, at least up

to a certain degree.

This raised questions about the generality of this relaxation behavior and its

relationship to the specific interaction Hamiltonian. This chapter addresses the

above questions and is divided into two parts, organized as follows:

• Section 2.1: This first section serves as an instructive introduction to quantum

spin systems involving Rydberg atoms. We begin by explaining the approach

used to describe atomic interactions among Rydberg atoms. We discuss ap-

proximations that justify addressing these interactions using a multipole ex-

pansion. By considering states possessing opposite parity, we discuss how to

isolate an atomic two-level system, which is crucial to represent spin-1/2 sys-

tems. We then introduce second-order van der Waals interactions and elab-

orate how to realize a two-level system with different types of interactions.

Finally, we show how these atomic interactions mimic Heisenberg quantum

spin models and introduce the tunability of the spin Hamiltonian with respect

to the principal quantum number.

• Section 2.2: The second section expands upon the concepts introduced previ-

ously and experimentally explores the magnetization relaxation behavior for

three different Hamiltonians, each tuned by the principal quantum number.

We perform a comparative analysis of the relaxation curves for the XX, XXZ,

and Ising models, revealing a universal behavior among them. Finally, we in-

troduce an effective model that reproduces the experimental data and offers

insight into the motivation behind the rescaling.

2.1 From atomic interactions to quantum spin models

In this first section, we provide a didactic introduction to the most important aspect

of Rydberg atoms: strong Rydberg-Rydberg interactions and how these interactions
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are employed to implement quantum spin systems. An overview of other relevant

properties of Rydberg atoms is provided in Appendix A. The first experimental ev-

idence of Rydberg-Rydberg interactions dates back the observation of a line broad-

ening in the Rydberg transitions in the early 19th [79, 80]. Since then, the field

of Rydberg atoms has rapidly developed, with the exceedingly strong interactions

becoming one of the key tools in quantum science [39,43].

For a single atom in a given Rydberg state, the dipole moment is zero due to

the dipole selection rules. However, the separation between the electron and the

atomic core is, on average, up to four orders of magnitude larger for Rydberg states

compared to ground states. Therefore, the electron is weakly bound, and significant

dipole moments can be induced by mixing nearby Rydberg states. Moreover, the

large polarizability enables the generation of a dipole moment even with minor

disturbances, such as the presence of another Rydberg atom positioned at an average

separation of a few micrometers. In general, Rydberg-Rydberg interactions can be

extremely complicated and challenging to calculate. However, in certain regimes,

these interactions can be represented by a comparatively simple Hamiltonian. Most

experiments operate in a regime where the distance between the atoms is so large

that the electron clouds do not overlap. For two atoms, the critical distance is

typically characterized by the Le Roy radius [81,82]:

RLR = 2
(√
⟨n1l1j1|r̂2|n1l1j1⟩+

√
⟨n2l2j2|r̂2|n2l2j2⟩

)
, (2.1)

with |n1,2l1,2j1,2⟩ being the specific Rydberg state under consideration. This value

needs to be compared to the typical separation between Rydberg atoms in exper-

iments. The distance between Rydberg atoms has a lower bound, denoted as rb,

which is determined by the Rydberg blockade induced by the laser excitation pro-

cess (see Appendix A). This Rydberg blockade radius is approximately an order

of magnitude larger than the Le Roy radius for the experiments presented in this

manuscript: RLR ≪ rb. For instance, in the case of two atoms in the |48S⟩ Rydberg

state RLR ≈ 674 nm, while the typical blockade radius is rb ≈ 5 µm.

Working in this regime simplifies the calculation of Rydberg-Rydberg interac-
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tions significantly. One can think of the two Rydberg atoms as classical charge

distributions, with their electrostatic interaction energy given by:

Ĥint =
e2

4πϵ0

(
1

|r + r2e − r1e |
+

1

|r|
− 1

|r − r1e |
− 1

|r + r2e |

)
. (2.2)

Here, r denotes the distance between two atoms and r1,2e distance of the electrons

with respective atom body:

atom 2atom 1

This energy can further be expanded in a multipole expansion [83–85]. For

neutral atoms with no net charge, the leading-order term in this expansion is given

by the dipole-dipole interaction Hamiltonian, which is introduced next.

2.1.1 Dipolar exchange interaction between Rydberg atoms

We consider a scenario in which neutral atoms are positioned at a distance r, orders

of magnitude greater than the Le Roy radius. In leading order, this scenario can be

described by dipole-dipole interactions. For ease of analysis, we focus on a scenario

involving just two atoms. However, the result can directly be extended to systems

with multiple atoms. In this setting, the dipole-dipole Hamiltonian is given by

ĤDDI =
1

4πϵ0

d̂1 · d̂2 − 3
(
d̂1 · er

)(
d̂2 · er

)
r3

. (2.3)

Here, d̂i = er̂i = (d̂xi , d̂
y
i , d̂

z
i ) is the dipole operator of atom i, er is the unit vec-

tor connecting two atoms, and r is their distance. This scenario is illustrated in

Fig. 2.1 a) on the left panel. For convenience, we now change to a spherical basis

and rewrite the expression for the dipole operator as well as for the unit vector. In

doing so, the unit vector reads

er = (cosϕ sin θ, sinϕ sin θ, cos θ) (2.4)



12 Chapter 2. Universal relaxation behavior of tunable quantum spin systems

while the dipole operators read

d̂ 0
i = d̂zi (2.5)

d̂+i = −1/
√
2(d̂xi + id̂yi ) (2.6)

d̂−i = 1/
√
2(d̂xi − id̂

y
i ) . (2.7)

Here, we have chosen z as the direction of the magnetic field. Therefore, d̂ 0
i

conserves the total magnetic quantum number M = m
(1)
j +m

(2)
j , while d̂±i changes

its value by ∆M = ±1. We also denote θ as the angle between the atoms and the

quantization. The dipole-dipole interaction Hamiltonian in the new basis is given

by

ĤDDI =
1

4πϵ0

[
1− 3 cos2 θ

2r3

(
2d̂ 0

1 d̂
0
2 + d̂+1 d̂

−
2 + d̂−1 d̂

+
2

)
(2.8)

− 3 sin θ cos θ√
2r3

(
(d̂+1 d̂

0
2 + d̂ 0

1 d̂
+
2 )e

−iϕ − (d̂ 0
1 d̂

−
2 + d̂−1 d̂

0
2 )e

iϕ
)

(2.9)

− 3 sin2 θ

2r3

(
d̂+1 d̂

+
2 e

−2iϕ + d̂−1 d̂
−
2 e

2iϕ
)]

. (2.10)

The resulting Hamiltonian possess three different terms. Each of these terms

change the total magnetic quantum number M by ∆M = 0 (2.8), ∆M = ±1

(2.9) and ∆M = ±2 (2.10), respectively. Phase factor e±iϕ and e±2iϕ emerges as a

consequence of the conservation of the total angular momentum.

Isolating an atomic two-level system We now consider the two-atom system in

the pair state |r1r2⟩ ≡ |r1⟩ ⊗ |r2⟩ within the Rydberg manifold. In the most gen-

eral case, ĤDDI couples this system to other pair states involving various Rydberg

states |rirj⟩. Here, we illustrate how one can reduce the interaction to resonant

dipole-dipole interactions confined to a subspace spanned by |r1⟩ and |r2⟩, where

{|r1r1⟩ , |r1r2⟩ , |r2r1⟩ , |r2r2⟩} are the relevant basis states. We will demonstrate this

procedure using an example of two Rydberg states, |r1⟩ = |nS1/2,mj = 1/2⟩ and

|r2⟩ = |nP3/2,mj = 1/2⟩, which are particularly relevant for the experiments in this

thesis. The most important contribution for the interactions arises from coupling

the initial pair state |r1r2⟩ with energy Er1r2 to pair states |rirj⟩ with energy Erirj .
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Rydberg 
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Energy
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c)

Figure 2.1: Dipole-dipole interactions induced processes. a) Left: Illustration of

the system under consideration, consisting of two Rydberg atoms at distance r. Right:

Atoms are initialized in states: atom 1 (A1) |r1⟩ = |nP3/2,mj = 1/2⟩ and atom 2

(A2) |r2⟩ = |nS1/2,mj = 1/2⟩. b) Illustration of the different processes induced by

the dipole-dipole interactions. (i) Processes that do not change the total magnetic

quantum number ∆M = 0. (ii) Processes characterized by ∆M = ± 1. (iii) Processes

characterized by ∆M = ± 2. Lower panels: angle dependencies of the various terms.

c) Illustration of resonant dipole-dipole interactions with one remaining term.

The various possible processes induced by ĤDDI on this two-atom pair state |r1r2⟩

are sketched in Fig. 2.1 b) (i) - (iii).

(i) The first term (2.8) contains three distinct contributions. Each of these con-

tributions involves coupling to pair states |rirj⟩ while conserving the total

magnetic quantum number, such that ∆M = 0. Typically, experiments ap-

ply a magnetic field to remove the degeneracy within the Zeeman sub-states.

Consequently, only the interaction term d̂ 0
1 d̂

0
2 is resonant as Er1r2 = Er2r1 (see

left panel in Fig. 2.1 b)). Other processes involve pair states that are detuned
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by ∆E = Er1r2 − Erirj . The resonant term results in an exchange between

the Rydberg atomic states, featuring the characteristic angular dependence of

∝ 1− 3 cos2 θ.

(ii) The second term (2.9) contains four distinct contributions, each coupling pair

states that change the total magnetic quantum number by ∆M = ±1. In the

presence of a magnetic field, these processes become off-resonant and exhibit

a detuning ∆E = Er1r2 −Erirj , which is tunable with the magnetic field. The

angle dependence is characterized by ∝ sin θ cos θ.

(iii) The third term (2.10) contains two distinct contributions, each coupling pair

states that change the total magnetic quantum number by ∆M = ±2. Similar

to the scenario in (ii), these processes can be tuned out of resonance with a

magnetic field. The angle dependence is characterized by ∝ sin2 θ.

To implement a two-level system, we require that pair states outside the |r1⟩ and

|r2⟩ subspace are detuned by an energy ∆E much larger than the typical interaction

energies Eint that couple those pair states:

∆E ≫ Eint . (2.11)

This is achieved by applying a magnetic field with a strength exceeding 30 G,

resulting in a significant energy splitting of the different Zeeman sub-levels, which

tunes undesired pair states out of resonance. With our magnetic field control, we

are able to shift Zeeman sub-states by more than 100 MHz (see Appendix B), an

order of magnitude larger than typical interaction strength.

So far, the discussion has been based on the particular example of |r1r2⟩. How-

ever, with the same reasoning, also the other pair states |r1r1⟩ and |r2r2⟩, in the

two-level basis are energetically well isolated by this procedure. As a result, they

are not significantly coupled to other pair states. In particular, |r1r1⟩ is typically

detuned by several GHz from |r2r2⟩, even though it would have remained in the

two-level system. Furthermore, the coupling of each pair state to itself is dipole
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forbidden. This situation allows us to treat the system as an isolated two-level

system within the |r1⟩ and |r2⟩ subspace. Therefore, as illustrated in Fig. 2.1 c),

we approximate systems of atoms including Rydberg |r1⟩ = |nS1/2,mj = 1/2⟩ and

|r2⟩ = |nP3/2,mj = 1/2⟩ states by the resonant dipole-dipole interaction Hamilto-

nian ĤDDI =
1

4πϵ0
1−3 cos2 θ

r3
d̂ 0
1 d̂

0
2 .

The previous derivation is based on a specific choice of the magnetic quantum

numbers: |r1⟩ ∝ mj = 1/2 and |r2⟩ ∝ mj = 1/2. For state combinations involving

different mj’s, such as |r1⟩ ∝ mj = 1/2 and |r2⟩ ∝ mj = −1/2 (|r1⟩ ∝ mj = 1/2 and

|r2⟩ ∝ mj = 3/2), the d̂+1 d̂
−
2 (d̂−1 d̂

+
2 ) terms provide a resonant interaction, considering

the pair state energies. Therefore, for general Rydberg state combinations in the

|r1⟩ = |nS1/2⟩ and |r2⟩ = |nP3/2⟩ manifold, the Hamiltonian reads:

ĤDDI =
1

4πϵ0

1− 3 cos2 θ

r3

(
d̂ 0
1 d̂

0
2 + 1/2(d̂+1 d̂

−
2 + d̂−1 d̂

+
2 )
)

(2.12)

=


0 0 0 0

0 0 J
2

0

0 J
2

0 0

0 0 0 0

 . (2.13)

The second line expresses the Hamiltonian in the basis {|r1r1⟩ , |r1r2⟩ , |r2r1⟩ , |r2r2⟩}

with J = 2C3 (1−3 cos2 θ)
r3

. The interaction coefficient reads

C3 = ⟨r1r2|d̂ 0
1 d̂

0
2 + 1/2(d̂+1 d̂

−
2 + d̂−1 d̂

+
2 )|r2r1⟩ /4πϵ0 . (2.14)

We emphasize once again that only one of the above three terms is non-zero for a

specific state combination.

Later in this chapter, we derive how Rydberg atoms in this interaction regime

naturally implement Heisenberg XX spin models. The off-resonant terms become

especially relevant when Rydberg atoms are prepared in states with the same parity.

This scenario will be discussed in the next section.
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2.1.2 van der Waals interaction between Rydberg atoms

In the previous section, we have seen how two atoms in opposite parity states, such

as |nS1/2,mj⟩ and |nP3/2,mj⟩, realize specific regimes where pair states outside the

two-level subspace are not significantly coupled, and the interactions are described

by the resonant dipole-dipole Hamiltonian.

We now consider state combinations with the same parity, such as |r1⟩ = |nS1/2,mj⟩

and |r2⟩ = |n′S1/2,m
′
j⟩. As before, a magnetic field is employed to select a regime

in which the pair states {|r1r1⟩ , |r1r2⟩ , |r2r1⟩ , |r2r2⟩} are energetically well isolated

from pair states outside this subsystem. Therefore, we approximate this scenario

once again as a two-level system. In this situation, direct dipole-dipole coupling

between different pair states is forbidden by the selection rules. Instead, the leading-

order process is of second order and proceeds through virtually excited intermediate

pair states {|rirj⟩} that are dipole-dipole coupled. These pair states are detuned by

the so-called Förster defect ∆ij
F = Erα,rβ − Eri,rj , with α, β ∈ {1, 2}, and are not

physically populated.

In this regime, the Hamiltonian reads [86–88]:

ĤvdW = −
∑
ij

ĤDDI |rirj⟩ ⟨rirj| ĤDDI

∆ij
F

∼ 1

r6
. (2.15)

We now consider how this Hamiltonian couples the pair states within ∈ {|r1r1⟩ ,

|r1r2⟩ , |r2r1⟩ , |r2r2⟩}, which belong to the two-level system.

Exchange and van der Waals processes The van der Waals Hamiltonian in Eq. 2.15

induces two types of interactions, which we discuss using a specific example of

|r1⟩ = |nS1/2,mj = 1/2⟩ = |nS⟩ and |r2⟩ = |(n+ 1)S1/2,mj = 1/2⟩ = |n+ 1S⟩.

In general, many intermediate pair states |rirj⟩ contribute to the sum in Eq. 2.15.

However, there are typically a few states with small Förster defects, dominating

the interactions. The leading-order contribution of these processes is illustrated in

Fig. 2.2.

(i) Exchange process: The first type of interaction is a coupling between different
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pair states (see (i) in Fig. 2.2). The most relevant coupling occurs between

pair states |nS, n+ 1S⟩ and |n+ 1S, nS⟩, for which the main contributions

come from virtually populated intermediate pair states in the nP manifold.

Each sub-state in this manifold has a different Förster defect ∆F (J,mj), which

can also be tuned by the applied magnetic field. Furthermore, the coupling

through the intermediate state via dipole-dipole interactions involves different

magnetic quantum numbers. Therefore, the various intermediate pair states

in the sum of Eq. 2.15 contribute with different angle dependencies, as given

by the dipole-dipole Hamiltonian in Eq. 2.8 - 2.10.

(ii) van der Waals process: The second type of interaction induced by ĤvdW

includes coupling of each pair state to itself, as illustrated in Fig. 2.2 (ii). For

each pair state, a different intermediate pair state provides the largest contri-

bution. For example, |nS, n+ 1S⟩ is coupled to itself through the intermediate

nP manifold.

The above processes occur within the two-level system spanned by |r1⟩ and |r2⟩.

Therefore, we express the interaction Hamiltonian for the two atoms in a matrix

form using the pair state basis {|r1r1⟩ , |r1r2⟩ , |r2r1⟩ , |r2r2⟩}:

ĤvdW =


Er1r1 0 0 0

0 Er1r2
J
2

0

0 J
2

Er1r2 0

0 0 0 Er2r2

 , (2.16)

with the matrix elements Erαrβ =
C

∥,αβ
6 (θ)

r6
= ⟨rαrβ|ĤvdW|rαrβ⟩ and J =

C⊥,12
6 (θ)

r6
=

⟨r1r2|ĤvdW|r2r1⟩. C∥,αβ
6 and C⊥,12

6 are the interaction coefficients.

In general, these coefficients are strongly influenced by the coupled intermedi-

ate state and might have different strengths, angle dependencies, and even signs.

However, in many cases, there exist a few intermediate pair states with the smallest

Förster defects that dominate the interactions, as previously seen. For state combi-

nations where |r1⟩ and |r2⟩ are composed of nS and (n+1)S states, the second-order
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processes are driven by the intermediate nP , (n + 1)P and (n − 1)P states. For

Förster defects larger than the fine structure splitting, an evaluation of the sum

in Eq. 2.15, results in isotropic interaction with only little angle dependence [89].

However, Förster defects of the individual fine structure states can be tuned with

the magnetic field, resulting in a rich interaction Hamiltonian. This property and

regime will be explicitly used in Chap. 5 to tune spin-1/2 Hamiltonian with mobile

dopants.

Energy

Energy

Rydberg atom 2

Rydberg atom 1

r

(i) Exchange process:

(ii) van der Waals process:

Energy Energy Energy

Figure 2.2: Van der Waals interactions induced processes. Left upper panel: Il-

lustration of the two Rydberg atoms within the |r1⟩ = |(n+ 1)S⟩ and |r2⟩ = |nS⟩

subspace. (i) Second order exchange process through the intermediate |nP ⟩ state man-

ifold, detuned by the Förster defect ∆F (J,mj). (ii) Van der Waals processes inducing

an energy shift, by coupling each pair state to itself.

Limitations and Förster resonances The above description is valid as long as the

virtually populated intermediate pair states are not resonantly coupled. However, for

short distances, interactions are so strong that the intermediate pair states might be

significantly coupled and populated. In this regime, the interactions transition from

a 1/r6 scaling to resonant dipole-dipole interactions scaling as 1/r3. Furthermore,

in some configurations, the Förster defect to the intermediate pair state approaches
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zero and the interactions scale as 1/r3, already for larger Rydberg atom separations.

This configuration is called a Förster resonance [90]. These Förster resonances can

also be tuned and realized using an external field [91]. However, as mentioned before,

working at short distances or at small Förster defects significantly populates pair

states outside a desired two-level system. Therefore, we avoid such a situation for

the experiments presented in this thesis

2.1.3 Higher-order multipole terms

In the previous sections, we derived the interactions between Rydberg atoms based

on the leading-order in the multipole expansion: the dipole-dipole interactions. To

justify this treatment, we estimate the contribution of the next-order term of the

multipole expansion, which is the quadrupole-quadrupole interaction.

The quadrupole-quadrupole interaction Hamiltonian scales as ĤQQI ∝ e2⟨r̂2⟩2

r5

[92]. Comparing this to the scaling behaviors of dipole-dipole interactions (ĤDDI ∝
e2⟨r̂⟩2
r3

) and van der Waals interactions (ĤvdW ∝ e4⟨r̂⟩4
∆F r6

) as seen in Eq. 2.3 and 2.15,

respectively, we can identify certain distances where ĤQQI dominates over both ĤDDI

and ĤvdW. For ĤDDI, this occurs at a distance rDDI below which ĤQQI dominates.

This is the case for

e2 ⟨r̂2⟩2

r5DDI

=
e2 ⟨r̂⟩2

r3DDI

. (2.17)

Here, the matrix elements are roughly equal, and ⟨r̂2⟩ ≈ ⟨r̂⟩2. For the states con-

sidered in this thesis, quadrupole-quadrupole interactions typically dominate at dis-

tances rDDI < 300 nm, which is more than an order of magnitude smaller than the

minimum distance imposed by the blockade radius in our setting. Thus, quadrupole-

quadrupole interactions are negligible.

In the case of ĤvdW, we expect a distance rvdW above which ĤQQI dominates.

This is the case for

e2 ⟨r̂2⟩2

r5vdW
=

e4 ⟨r̂⟩4

∆F r6vdW
. (2.18)
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Therefore, ĤQQI dominates at distances rvdW > e2

∆F
∼ 350 µm for usual Förster

defects of 1 GHz. At those distances, interactions are already negligible small, and

typical distances between atoms are on the order of tenths of µm. These estima-

tions justify the treatment of Rydberg-Rydberg interaction using the leading-order

multipole expansion.

2.1.4 Mapping Rydberg interactions to quantum spin models

In the previous two sections, we have introduced how the interactions between two

Rydberg atoms can be described by a dipole-dipole and van der Waals Hamilto-

nian. By applying a properly selected magnetic field, we lift the degeneracy of

the Zeeman sub-states and isolate an effective two-level system spanned by two

Rydberg states: |r1⟩ = |nLJ ,mj⟩ and |r2⟩ = |n′L′
J ′ ,m′

j⟩ within the Rydberg man-

ifold. The Hamiltonian of this system has been expressed in the pair state basis:

{|r1r1⟩ , |r1r2⟩ , |r2r1⟩ , |r2r2⟩}.

These types of interactions can be mapped on a quantum XXZ Heisenberg spin-

1/2 model with two spin states |↓⟩ and |↑⟩. The Hamiltonian is given by:

Ĥ1,2
XXZ = J⊥(Ŝ1

xŜ
2
x + Ŝ1

y Ŝ
2
y) + J∥Ŝ1

z Ŝ
2
z + hz(Ŝ

1
z + Ŝ2

z ) + V , (2.19)

with Ŝi
α(α ∈ x, y, z) are the spin-1/2 operator of spin i. J⊥,∥ is the interaction energy

between spin 1 and 2 and hz a longitudinal field. The two terms, J⊥
ij and J

∥
ij represent

exchange and Ising interactions, respectively. Depending on their ratio, Heisenberg

spin models exhibit distinct dynamics and have various properties. In a many-

body system, the Ising case, where J⊥ = 0, features additional symmetries under

local spin rotations Ŝi
z that commute with the Hamiltonian, making the Ising model

integrable. However, for J⊥ ̸= 0, Ŝi
z are no longer conserved and the Hamiltonian is

non-integrable.
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We now express the Hamiltonian in the pair state basis {|↓↓⟩ , |↓↑⟩ , |↑↓⟩ , |↑↑⟩}:

Ĥ1,2
XXZ =


J∥

4
+ hz + V 0 0 0

0 −J∥

4
+ V J⊥

2
0

0 J⊥

2
−J∥

4
+ V 0

0 0 0 J∥

4
− hz + V

 . (2.20)

The Hamiltonian has exactly the same form as dipole-dipole and van der Waals

interaction between two Rydberg atoms. We identify how the different terms map

on the Rydberg properties by comparing the XXZ Hamiltonian in Eq. 2.20 with

the dipole-dipole Hamiltonian in Eq. 2.13 and the van der Waals Hamiltonian in

Eq. 2.16. By identifying the Rydberg state as the spin-1/2 degrees of freedom,

|r1⟩ = |↓⟩ and |r2⟩ = |↑⟩, we obtain

J∥ = E↓↓ + E↑↑ − 2E↓↑

J⊥ = 2 · J

hz =
E↑↑ − E↓↓

2

V =
E↓↓ + E↑↑ + 2E↓↑

4

(2.21)

XX model Considering two Rydberg states with opposite parity, such as |nS⟩

and |nP ⟩, the interactions are described by the dipole-dipole Hamiltonian, and we

identified the exchange term as:

J⊥ =
C⊥

3 (1− 3 cos2 θ)

r3
. (2.22)

Furthermore, energy shifts are dipole forbidden, resulting in a vanishing Ising term

J∥ = 0. Dynamics under these so-called XX Hamiltonians have been extensively

studied under various conditions and geometrical arrangements [45–48, 71, 93, 94],

and they will also play a major role in experiments presented in this manuscript.

XXZ model For states with the same parity, such as |nS⟩ and |n′S⟩, direct dipole

interactions are forbidden and the leading-order is of the second order. As derived
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previously, these van der Waals interactions induce exchange and Ising terms of the

form:

J⊥,∥ = C
⊥,∥
6 /r6ij . (2.23)

Hamiltonians with exchange and Ising terms are referred to as XXZ Heisenberg

models. By carefully selecting the spin states, one suppresses either exchange or Ising

and tune the spin model of interest, which has been employed to study relaxation

dynamics in these systems [50].

Besides the above-mentioned spin models within the Rydberg manifold, Rydberg

atoms coupled by van der Waals interactions are also capable of implementing Ising

model by encoding the spin in a ground and a Rydberg state. While this approach

is not employed in the present thesis, it has generally enabled, for example, the

investigation of exotic phases and phase transitions [54,55], and spin liquids [56].

2.1.5 Tuning Heisenberg Hamiltonians with the principal quantum

number

In general, there are many parameters that shape the character of atomic interac-

tions and, consequently, the implemented Heisenberg spin model. These parameters

include electric and magnetic fields, as well as the spatial orientation of the atoms.

Throughout this thesis, we will subsequently introduce how these parameters are

used to engineer a desired Hamiltonian.

In this section, we introduce how the selected principal quantum number n affects

the form of the Hamiltonian. An important aspect comes from the scaling of different

Rydberg properties with n, which is summarized in Appendix A. The dipole-dipole

interactions are expected to scale as n4. Therefore, Rydberg atoms interact more

strongly for larger principal quantum numbers. Despite the enhanced interaction

strength, this system always maps onto an XX model with exchange interactions.

Later in Chap. 4, we will introduce how static electric fields and properly selected

Zeeman sub-states lead to richer dipolar interacting spin models.
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The situation is different for van der Waals interactions. Typically, these inter-

actions exhibit a scaling behavior of n11, which becomes evident when considering

the n4 scaling of dipolar interactions along with the n−3 scaling of the Förster de-

fect. However, the situation becomes more complicated due to the possibility of the

Förster defect attaining a value of zero, which can lead to Förster resonances induc-

ing direct dipolar exchange processes instead of pure second-order van der Waals

interactions [78,95].

Fig. 2.3 a) display the exchange interaction J⊥, the Ising interaction J∥, and the

onside field hz as a function of the principal quantum number for a spin encoding

|↓⟩ = |nS⟩ and |↑⟩ = |(n+ 1)S⟩. Exchange and Ising interactions have roughly the

same strength, while the onside field hz is negligibly small. The lower panel shows the

ratio between J∥/J⊥, denoted as anisotropy, ranging from ∼ −2 to 0 in the selected

range. This is due to the rather small Förster defect of the intermediate |nP ⟩ pair

states, which mainly drives the exchange process (see Fig. 2.2). Around n = 37,

the intermediate |nP ⟩ pair states become resonant, leading to divergent interactions

and a breakdown of the applied perturbation theory. In this regime, the system

cannot be considered as isolated spin-1/2 system. Furthermore, we observe that the

interactions change their sign around this Förster resonance.

The freedom to select the specific Rydberg state combination allows encoding

the spin in two states where the principal quantum number differs by more than one,

such as |↓⟩ = |nS⟩ and |↑⟩ = |(n+ 3)S⟩ Rydberg states. The scaling of the interac-

tions with n is depicted in Fig. 2.3 b). In this situation, the Ising interaction term

J∥ is orders of magnitude larger than the exchange interaction J⊥ term, as well as

the onside field hz. This difference can be understood by considering that the inter-

mediate |(n+ 1)P ⟩ manifold contributes most to the exchange interaction process.

However, these states exhibit Förster defects that are an order of magnitude larger

compared to the |↓⟩ = |nS⟩ and |↑⟩ = |(n+ 1)S⟩ spin-1/2 encoding, resulting in the

suppression of exchange processes. As illustrated in the lower panel of Fig. 2.3 b),

J∥/J⊥ takes a value between ∼ −300 and −1000 in the selected range. Therefore,
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a) b)

Figure 2.3: Scaling of XXZ interactions with the principal quantum number. a)

Upper panel: J∥,J⊥ and hz as a function of the principal quantum number for state

combinations |↓⟩ = |nS⟩ and |↑⟩ = |(n+ 1)S⟩. Lower panel: Anisotropy J∥/J⊥ for

the given states as a function of the principal quantum number. b) Same as a) but for

state combinations |↓⟩ = |nS⟩ and |↑⟩ = |(n+ 3)S⟩.

this scenario can be approximated by an Ising model. In general, these types of

spin models can also be implemented with |P ⟩ and |D⟩ state combinations, leading

to even richer spin models with possible angle dependence on the C
⊥,∥
6 interaction

coefficients.
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2.2 Observation of universal relaxation behavior for tun-

able spin models

In this section of the chapter, we apply the previously discussed freedom of imple-

menting tunable Heisenberg spin-1/2 systems within the Rydberg manifold to study

the relaxation behavior of different Hamiltonians. Understanding how microscopic

details, such as Hamiltonian parameters or possible disorders, affect the dynamics

of quantum many-body systems is an active field of research in modern physics and

has been a focus of our experiments over the past years. In the following paragraph,

we will explain the specific problem being addressed and how it relates to previous

work performed within our group.

Motivation In general settings, the dynamics of isolated quantum systems far from

equilibrium following a sudden change (referred to as a quench) exhibit diverse emer-

gent phenomena. These phenomena include dynamical phase transitions [96, 97],

quantum many-body scars [52,77,98] and many-body localization [99–103]. The be-

havior of these systems following a quench is heavily influenced by the nature of their

interactions and the distribution of interaction strengths among the constituent par-

ticles [104]. A remarkable exception exists in systems with (metastable) prethermal

phases, where relaxation dynamics exhibit universal character, decoupling from the

specifics of the microscopic configuration [9, 105–109]. When exploring the impact

of disorder on the dynamics of quantum many-body systems, a notable aspect is the

potential for non-ergodic behavior [110]. This phenomenon is evident in scenarios

like spin glasses, where relaxation becomes exceptionally slow [111], or in systems

with many-body localization, causing dynamics to freeze entirely [112].

Our experiment naturally implements a quantum spin system with spatial disor-

der [50]. Previous investigations on our experimental setup have revealed interesting

features, such as disorder-induced anomalously slow relaxation behavior of the sys-

tem’s magnetization following sub-exponential dynamics [78]. Interestingly, despite
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the non-integrability of the system and its many-body character, the sub-exponential

dynamics follow a simple function: the stretched exponential law e−(t/τ)β , where 1/τ

is the decay rate. Notably, the specific stretching exponent β characterizing this

relaxation was found to be relatively independent of the details of the disorder dis-

tribution, up to a certain degree. Similar relaxation behavior has been found in other

systems [113–116]. In summary, a wide range of classical and quantum systems,

in the strong disorder regime, exhibit sub-exponential dynamics following the same

functional pattern: the stretched exponential law.

Those observations raise the following question:

What is the origin of this shared behavior and how sensitive is it to modifications

in the Hamiltonian’s interaction parameters?

Previous work allowed us to obtain an analytic expression for stretched exponen-

tial relaxation in the quantum Ising model [117]. The availability of an analytic so-

lution is due to the model’s integrability, owing to its extensive number of conserved

quantities. However, for non-integrable models, no analytic solutions exist. Numer-

ically addressing this question is challenging due to the exponential expansion of the

Hilbert space with system size in quantum many-body systems. To tackle this issue,

we performed semiclassical simulations that disregard quantum effects beyond initial

quantum fluctuations. These simulations indicated that non-integrable Heisenberg

XYZ Hamiltonians exhibit out-of-equilibrium dynamics following a stretched expo-

nential law, similar to the Ising model, independent of their symmetry [118].

In this part of the chapter, we address this question through analog quantum

simulations using our Rydberg atom platform 1 . The platform is ideally suited

for studying unitary dynamics because the time scales of the interacting dynamics

vastly exceed those of the typical decoherence mechanisms. We experimentally im-

plement Heisenberg XX, XXZ, and Ising models by carefully selecting states within

1To enhance the reader’s understanding, our focus in this part is placed on the experimental

results. A comprehensive introduction to the experimental setup, system preparation, readout,

and strategies for controlling Rydberg spin is provided in Appendix B.
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the Rydberg manifold and measure their magnetization relaxation dynamics from

an initially fully magnetized state. Sec. 2.2.1 briefly outlines the experimental pa-

rameters used to implement the desired spin model and the relevant frequencies in

the system. The measured relaxation behavior of the different Heisenberg models is

presented in Sec. 2.2.2. Sec. 2.2.3 demonstrates the collapse of the various relax-

ation curves through rescaling time. We further analyze the observations by means

of a simplified pair model in Sec. 2.2.4.

2.2.1 Experimental implementation of tunable quantum spin mod-

els

In Sec. 2.1, we introduced how interacting Rydberg atoms realize Heisenberg spin

models. To recap, the Hamiltonian of interest, in its most general form, reads:

ĤXXZ =
∑
i<j

(
J⊥
ij (Ŝ

i
xŜ

j
x + Ŝi

y Ŝ
j
y) + J

∥
ijŜ

i
zŜ

j
z

)
, (2.24)

with the interaction coefficients given by J
∥
ij and J⊥

ij given by Eq. 2.21. By encod-

ing the spin into two Rydberg states |nS⟩ and |n′P ⟩, we naturally implement the

Heisenberg XX model as introduced in Sec. 2.1.4. In contrast, when encoding the

spin in Rydberg states |nS⟩ and |n′S⟩, the second-order van der Waals interactions

ĤvdW map to a Heisenberg XXZ model.

To explore the relaxation of the magnetization under various Hamiltonian, we

exploit the dependence of the interactions on the principal quantum number n and

select specific state combinations that map to XX, XXZ, and Ising Hamiltonian. In

the following, we provide a brief introduction to how these state combinations are

experimentally implemented and discuss the relevant frequencies in the system.

The XX Hamiltonian

Rydberg spin systems encoded in |nS⟩ and |n′P ⟩ states realize the XX Hamiltonian

with the exchange coefficient given by J⊥
ij =

C⊥
3 (1−3cos2θij)

r3ij
(see Fig. 2.4 a)). In this
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system, each pair state cannot be coupled to itself, resulting in a vanishing Ising

term J
∥
ij = 0.

To experimentally realize this model, we have chosen the spin states |↓⟩ =

|61S1/2,mj = 1/2⟩ and |↑⟩ = |61P3/2,mj = 1/2⟩. The transition frequency between

these two states is ν/2π = 16 GHz. To manipulate and read out the spin states

in this two-level subsystem, we couple |↓⟩ ↔ |↑⟩ with a resonant microwave field,

effectively introducing an external field. Details on this driving can be found in Ap-

pendix B. The interaction coefficient for this spin system is given by C⊥
3 /2π = 3.14

GHzµm3.

a)

{

XX-model

{

XXZ-model Ising-model
b) c)

Figure 2.4: Illustration of Heisenberg spin models in the Rydberg manifold. a)

Spin systems represented by Rydberg |nS⟩ and |nP ⟩ states map onto an XX model with

interaction that fall off as 1/r3. For Rydberg state combinations |nS⟩ and |(n+ 1)S⟩,

the system maps onto an XXZ model (b), while Rydberg states |nS⟩ and |(n+ 3)S⟩

map onto an Ising Hamiltonian (c). For the latter two, the interactions are of van der

Waals nature, falling off as 1/r6.

The XXZ Hamiltonian

To implement Heisenberg XXZ models, we encode the spin in two Rydberg states

|nS⟩ and |(n+ 1)S⟩, whose principal quantum numbers differ by one, as illustrated
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in Fig. 2.4 b). In this configuration, the second-order interaction is described by the

van der Waals interaction Hamiltonian, ĤvdW, and the scaling of J
∥
ij = C

∥
6/r

6
ij and

J⊥
ij = C⊥

6 /r
6
ij is illustrated in Fig. 2.3 a). We obtain a significant exchange term

because the Förster defect to the intermediate ∼ |nP, nP ⟩ pair states is small.

Our experimental implementation of an XXZ Hamiltonian selects the spin states

|↓⟩ = |61S1/2,mj = 1/2⟩ and |↑⟩ = |62S1/2,mj = 1/2⟩ in the Rydberg manifold. The

Förster defects with the intermediate |61P, 61P ⟩ pair states are on the order of ∆F ∼

300 MHz. In the case of n = 61, both the Ising and exchange interactions terms

are similar, resulting in an anisotropy given by J∥/J⊥ = −0.7. With ν/2π = 32

GHz, the transition frequency is approximately twice the frequency of the previous

implementation of the XX model. The microwave manipulations in this spin system

require two photons, as the transition is dipole forbidden. We drive the system

with two identical microwave photons of frequency ω/2π = 16 GHz, detuned by

∆ν/2π ∼ 150 MHz from the intermediate state |nP ⟩ state.

The Ising Hamiltonian

So far, experiments with cold Rydberg atoms have only implemented XX and

XXZ Heisenberg model within the Rydberg manifold [45, 47, 48, 50, 71]. Ising mod-

els have been implemented and studied using ground-to-Rydberg state combina-

tions [52, 55, 77]. As discussed in Sec. 2.1.5, by carefully selecting the principal

quantum number, the exchange term in the XXZ Heisenberg model can be drasti-

cally suppressed, enabling the implementation of an effective Ising model within the

Rydberg manifold. To achieve this, we select Rydberg states that differ by a factor

of three in principal quantum number: |nS⟩ and |(n+ 3)S⟩. The exchange term

is mainly driven by the intermediate |(n+ 1)P ⟩ states, which possess large Förster

defects ∆ν , and therefore, exchange interactions are suppressed by 1/∆ν , according

to Eq. 2.15 (see Fig. 2.4 c)).

To experimentally realize the Ising model, we select |↓⟩ = |61S1/2,mj = 1/2⟩ and

|↑⟩ = |64S1/2,mj = 1/2⟩ as the spin states. Förster defects with the intermediate
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|62P, 62P ⟩ pair states are on the order of ∆F ∼ 3000 MHz, which is much larger

than for the XXZ model implementation and suppresses the exchange term. In this

case of n = 61, the exchange interaction term is orders of magnitude smaller than

the Ising term, resulting in an anisotropy given by J∥/J⊥ = −400 (see Fig. 2.3

b)). The transition frequency is ν/2π = 94 GHz, and the two spin states are again

coupled with two microwave photons.

We note that in our implementation of the different Heisenberg models, the

|↓⟩ spin state is always represented by the |61S1/2,mj = 1/2⟩ Rydberg state. The

desired spin model is then simply realized by coupling to |↑⟩ = |61P3/2,mj = 1/2⟩

(XX model), |↑⟩ = |62S1/2,mj = 1/2⟩ (XXZ model), or |↑⟩ = |64S1/2,mj = 1/2⟩

with a microwave field.

2.2.2 Relaxation dynamics for different spin models

In this section, we explore the magnetization dynamics under the previously in-

troduced XX, XXZ, and Ising Hamiltonian. The experimental setup and tools

are elaborated in Appendix B. All experiments start with the excitation of the

|↓⟩ = |61S1/2,mj = 1/2⟩ Rydberg state. The three different spin Hamiltonians are

implemented by simply changing the microwave frequency and, therefore the ad-

dressed |↑⟩ Rydberg state. For all realizations, we fix the size of the ground state

cloud (waists: σx ≈ 64µm, σy,z ≈ 45µm) and the size of the blue and red excita-

tion lasers2 (waists: σblue
x,y ≈ 55µm, σred

x,y ≈ 1.5 mm), and therefore, the geometrical

setting. The excitation process in our cold gas results in a three-dimensional cloud

of approximately N ≈ 80− 250 randomly distributed Rydberg atoms. Furthermore,

the Rydberg blockade mechanism (see Appendix A) imposes a minimal distance of

rb ≈ 10 µm between the spins. To study the magnetization relaxation behavior, we

implement a Ramsey protocol as sketched in Fig. 2.5 a). We use our microwave drive

to apply a π/2 pulse. After this initialization, the system is polarized along the x-

direction in a Bloch sphere picture, and the state reads |→⟩⊗N = 1/
√
2(|↑⟩+ |↓⟩)⊗N.

2Used for the two-photon excitation of Rydberg atoms described in Appendix B.
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After an evolution time of up to 30 µs, we use a second π/2 pulse, combined with

optical de-excitation and field ionization, to tomographically read out the x magne-

tization ⟨Ŝx⟩ (see Appendix B).

22

Initial state of each atom

interaction time

a) b)

d)c)

Figure 2.5: Magnetization relaxation dynamics under three distinct Hamiltonian.

a) Sketch of the experimental Ramsey protocol to probe far-from-equilibrium dynamics.

Magnetization dynamics as a function of time for the Ising model (b)), the XX-model

(c)) and the XXZ-model (d)). The median interaction strength is 2π · J∥
median = 2.3

MHz (Ising-model), 2π · J⊥
median = 21 MHz (XX-model) and 2π · J⊥

median = 4.6 MHz

(XXZ-model with J∥/J⊥ = −0.7). Dashed lines are DTWA simulations. Subfigures

(b) - d)) and caption taken and adapted from [119].

The resulting magnetization relaxation dynamics are shown in Fig. 2.5 b) - d).

For all spin models, we observe an initial plateau magnetization of ⟨Ŝx⟩ = 0.5 at early

times. This is attributed to the Rydberg blockade, which enforces a minimal distance

and thus a maximum interaction strength in the system. After the initial plateau,

the magnetization starts to relax, with a common feature being relaxation towards

zero magnetization at long times. For each model, the timescales of the relaxation

are different, determined by the respective interaction strengths. The relaxation
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process takes more than an order of magnitude in time for all spin models.

To compare the relaxation curves to numerical predictions, we need the positions

of the Rydberg spins. We use a hard-sphere model where each Rydberg excitation

is described by a superatom [120] with a given blockade radius and effective Rabi

frequency [50]. The time-evolution of the experiment is simulated using the Discrete

Truncated Wigner Approximation (DTWA) [121] and shown by the dashed lines in

Fig. 2.5 b) - d). The minor difference observed between simulations and experiments

can primarily be attributed to inaccuracies in the atom distribution derived from

the simplified excitation model.

In summary, we employ Rydberg atoms to implement three different quantum

spin models with spatial disorder and measure the relaxation behavior in a single

experimental setting by varying the microwave frequency to address different states.

In the next section, we continue with a closer comparison of the dynamics.

2.2.3 Observation of a scaling behavior

The magnetization relaxation dynamics measured in Fig. 2.5 are driven by three

distinct Hamiltonian and exhibit different timescales. Despite these differences, the

dynamics look similar in the log-linear plot.

Even more remarkably, by rescaling the time-axis, we find a collapse of the three

respective curves which is within their experimental error bars, as shown in Fig. 2.6.

The rescaling factor corresponds to the typical timescale of each system

|J⊥
median − J

∥
median| . (2.25)

Here, J
⊥,∥
median = medianj maxi |J⊥,∥

ij | is the median of the nearest neighbor interaction

strengths. The explicit motivation for selecting this rescaling is discussed in the

following section. It arises from the typical oscillation frequency between a pair of

spins under an XXZ Hamiltonian. Therefore, irrespective of the specific nature of

the Hamiltonian involved in the dynamics, the scaling behavior exhibits universal

relaxation. The collapse of the curves allows us to deduce the functional structure
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Figure 2.6: Scaling behavior. Magnetization dynamics as a function of the time,

rescaled by the typical interaction strength |J⊥
median − J

∥
median|. The inset display the

same data on a double logarithmic scale. The dashed line is guide for the eye with slope

m = 0.5. Figure and caption taken and adapted from [119].

governing the relaxation dynamics in the non-integrable models. In the case of the

Ising model, it is known that the relaxation follows a stretched exponential law

e−(t/τ)β [117] with stretching exponent β and timescale τ . The logarithm of the

stretched exponential law is a power-law. When plotted on a double logarithmic

scale, this power-law becomes a linear function (dashed line in the inset of Fig. 2.6).

In this representation, the rescaled experimental data also exhibits a linear behavior.

This confirms the hypothesis that the stretched exponential law provides a unifying

description of the relaxation for both the integrable quantum Ising model and the

non-integrable XX and XXZ Hamiltonians in the strongly disordered regime. We

note that the dynamics are only universal concerning the microscopic details of
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the system, such as the value of J∥/J⊥, whereas the macroscopic geometry and

dimension of the cloud may lead to different dynamics [119].

2.2.4 Effective pair model description

To understand the origin of the apparent universality observed in the previous sec-

tion, our aim is to construct a simplified model that accounts for the most relevant

time scales of the system. To identify these time scales, we adopt an approach in

the spirit of the strong disorder renormalization group (SDRG), where the strongest

coupling is iteratively integrated out [122–125]. This approach is motivated by the

distribution of interaction strength and therefore timescales in our spatially disor-

dered spin system.

In our implementation, the strongest coupling occurs between two nearby spins,

defining a pair. Afterward, the coupling between this pair and the rest of the sys-

tem is treated perturbatively. To zeroth order, this pair of spins decouples from

the system and evolves independently. This process of removing the most dominant

coupling can be iteratively applied throughout the remaining part of the system.

Considering our initial state along the x-direction, each individual pair coherently os-

cillates between the fully polarized state in plus and minus x-direction (see Fig. 2.7 a)

left). The resulting magnetization oscillation, shown on the right, is independent

of the specific XXZ Hamiltonian. The only difference is the frequency of this oscil-

lation, which is determined by |J⊥
ij − J

∥
ij| and depends on the Ising and exchange

interaction strengths. For two single spins, this oscillation is directly observed in

Chap. 3. Therefore, this independence is at the origin of the observed universality

of the relaxation dynamics.

To compare the zeroth-order approximation of independent pairs to the exper-

imental setting, we compute the magnetization of each spin under the assumption

that they only interact with one neighbor. The global magnetization is then the
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average over all of these pairs, which is explicitly written like:

⟨Ŝindep. pairs
x ⟩ (t) = 1

N

∑
⟨i,j⟩

cos(
1

2
(J⊥

ij − J
∥
ij)t). (2.26)

Here, ⟨i, j⟩ denotes the summation over paired spins i and j. The results are shown

as dashed-dotted lines in Fig. 2.7 b - d). Given the simplicity of this model, the

agreement with the experimental data is remarkable for all three Hamiltonians.

However, especially when applied to the Ising and XXZ models, this framework tends

to underestimate the timescale of the dynamics. We can understand this behavior

because the pair couplings obtained through iterative elimination generally turn out

to be smaller on average than the nearest neighbor couplings.

The next order in this perturbative treatment includes effective Ising interactions

between spin pairs and has been derived by Adrian Braemer [126]. The effective

Hamiltonian of this process reads

Ĥeff ≈
∑
⟨i,j⟩

(
J⊥
ij (Ŝ

i
xŜ

j
x + Ŝi

yŜ
j
y) + J

∥
ijŜ

i
zŜ

j
z

)
.

+
∑

⟨i,j⟩,⟨k,l⟩

Jeff
ijkl Ŝ

(i)(j)
z Ŝ(k)(l)

z (2.27)

Jeff
ijkl =

J
∥
ik + J

∥
il + J

∥
jk + J

∥
jl

2
(2.28)

where ⟨i, j⟩ denotes the summation over paired spins i and j and 2Ŝ
(i)(j)
z = Ŝ

(i)
z +Ŝ

(j)
z .

The analytical solution for the evolution of the magnetization in this integrable

effective model is given by:

⟨Ŝinteract.pairs
x ⟩ (t) = 1

N

∑
⟨i,j⟩

cos(
1

2
(J⊥

ij − J
∥
ij)t)

∏
⟨k,l⟩

cos2(
1

4
Jeff
ijkl t) . (2.29)

This effective Ising model of pairs captures the overall demagnetization dynamics

for all observed times, yielding very similar results compared to dTWA, as can be

seen in Fig. 2.7. From the analytical form of the time evolution, Eq. 2.29, we find

that many different oscillation frequencies contribute to each spin’s magnetization

dynamics. However, most of these frequencies are very small and do not significantly

contribute to the early-time dynamics. Consequently, a rational approach to achieve



36 Chapter 2. Universal relaxation behavior of tunable quantum spin systems

a) b)

c) d)

Figure 2.7: Effective pair model. a) Illustration of the oscillations of a single pair

under XXZ Hamiltonian. Left: A fully polarized state, |→→⟩ (left), evolves via the

maximally entangled Bell state 1/
√
2 (|→→⟩+ |←←⟩) (top) to the state |←←⟩ (right).

Then, it returns to the origin via the other Bell state 1/
√
2 (|→→⟩ − |←←⟩) (bottom).

Right: Oscillation of the magnetization for a single pair. b) - d) Comparison of the

relaxation dynamics obtained by the pair approximation with/without effective Ising

terms (solid black line/grey dash-dotted line) and with dTWA (dotted line) and the

experimental data of Fig. 2.5 for Ising b), XX c) and XXZ model d). Figure and caption

taken and adapted from [119].

a collapsed representation of the dynamics involves considering solely the fastest

frequency for each spin. Given the highly disordered nature of our system, this

dominant coupling will essentially always correspond to the closest neighboring spin.

This accounts for the rescaling of experimental data with mediani maxj |J⊥
ij − J

∥
ij|.

The above scenario resembles a case of prethermalization, where a non-integrable

many-body system can be effectively approximated by an integrable Hamiltonian for

an extended duration before eventually reaching thermal equilibrium under the influ-

ence of the complete Hamiltonian. In our case, the integrable aspect is characterized
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by the pair Hamiltonian, which continues to govern the relaxation process for an ex-

tended period, even up to the point when the system becomes demagnetized. Our

group, together with the theory collaborators Adrian Braemer and Martin Gärttner,

is currently working on gaining a deeper understanding of this phenomenon and ex-

ploring the limitations of the pair model. However, it is important to note that

this topic falls beyond the scope of the current thesis. First steps to investigate the

applicability of the pair model were performed by Adrian Braemer and discussed

in [119].

2.3 Summary and discussion

Summary

In this chapter, we have explored how Rydberg atoms model quantum Heisenberg

spin systems in an analog fashion. We have introduced the principal quantum num-

ber as a parameter to shape the interaction Hamiltonian, enabling the experimental

implementation of diverse Heisenberg models through this approach.

Part 1 In the first section, we elaborated on how interacting neutral atoms in two

Rydberg states can be represented as a Heisenberg spin system. We started by

considering two atoms placed at a distance such that the electronic clouds do not

overlap. This justifies the application of a multipole expansion, with the first non-

vanishing order being dipole-dipole interactions. In order to construct Heisenberg

spin-1/2 models, it is essential to have a two-level system within the Rydberg man-

ifold. The two-level system contains two Rydberg states that can be mapped to the

two spin states, |↓⟩ and |↑⟩. We presented how a magnetic field isolates two Ryd-

berg states and how dipole-dipole interactions effectively implement an XX model

in this regime. Additionally, we considered two Rydberg states that are not coupled

by direct dipole-dipole interactions. In this regime, second-order van der Waals in-

teractions naturally establish XXZ models under specific circumstances, where pair
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states within the two-level system are energetically isolated. Finally, we introduced

the principal quantum number as a parameter to shape the spin Hamiltonian and

tune exchange and Ising interaction parameter.

Part 2 In the second section, we utilized the introduced tunability of the spin

model to address unresolved problems that had arisen from earlier investigations

on disordered spin systems conducted by our group. By implementing XX, XXZ,

and Ising Hamiltonian, we explored how magnetization relaxation dynamics depend

on these distinct types of Hamiltonian. Depending on the Hamiltonian used, the

experimentally observed relaxation dynamics occurred on various timescales, which

are well-described by a stretched exponential function. Despite the distinct nature

of the three Hamiltonians, all relaxation curves collapsed when we rescale time using

the typical timescale of the system. As rescaling factor, we selected the difference

between the exchange and Ising term, motivated by the oscillation frequency of a

pair of spins. We further motivated this choice by comparing the experimental data

to an effective pair model, which accounts for the most relevant time scales in the

system. At lowest order, this model leads to the formation of a non-interacting spin

pair that reasonably describe the observed relaxation curves. When considering the

first order, which includes interacting pairs, it matches both the experimental data

and dTWA simulations for all times.

Discussion

The studies presented in this chapter demonstrate the capability of Rydberg-atom

quantum simulators to synthesize a variety of many-body Hamiltonians on a single

experimental setting. While XX and XXZ Heisenberg models have been previously

realized through appropriate choices of Rydberg states, the realization of a pure

Ising model within the Rydberg manifold has not been demonstrated before to our

knowledge. Our implementation does not require any fine-tuning. It relies solely

on altering microwave frequencies to address different Rydberg states for the spin

encoding. In addition to the tunability of the interaction parameters, the interaction
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strength exhibits different scalings ∼ 1/r3 and ∼ 1/r6. This enables investigations

on how different exponents α of the power-law interactions affect the dynamics in d

dimensional systems.

Given its simplicity, the effective pair model reproduces the experimental relax-

ation curves remarkably well, suggesting that the emergence of spin pairs constitutes

a unifying feature of disordered quantum spin systems. Therefore, further testing

the validity of the pair model is subject to further studies. As our analysis is based

on an investigation of the magnetization dynamics, future approaches would include

measuring pair correlation functions. This requires access to local observable, a ca-

pability currently not available at our setup but in planning. Interestingly, recent

studies in an disordered ultracold molecule experiment have measured correlations

that align with a pair-based description [33]. Additionally, transport measurements

including the melting of a domain wall state, as will be discussed in Chap. 3, could

provide further information about the validity of the pair model. For excitations

that are localized in spin pairs, the melting of such a domain wall state is expected

to be suppressed. Furthermore, as the magnetization relaxation dynamics can be

fully described by the effectively integrable pair model for times when the magne-

tization is already zero, it will be interesting to explore the question of a possible

prethermal description [9,105–109].
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aParts of the this publication also appear in the dissertation of Pascal Scholl [127].

Pascal Scholl focuses on the aspect of the experimental implementation in the optical

tweezer setup and provides a detailed discussion on the 1D domain-wall measure-

ments. This chapter explicitly discusses the aspect of how to understand the effect

of multi-pulse sequences on a spin system from few to many particles, contrasting

the implementation in this ordered tweezer array scenario with the disordered atom

gas scenario of the first publication [71].

Controlling the dynamics of strongly interacting closed many-body systems plays

a crucial role in quantum science and technology applications, including the utiliza-

tion of synthetic systems for the quantum simulation of complex many-body physics.

As described in the previous chapter, experimental platforms based on Rydberg

atoms can implement Heisenberg quantum spin models by encoding the spin-1/2

degree of freedom into two Rydberg states. In this approach, interaction parameters

of the implemented Hamiltonian, arising from the natural Rydberg-Rydberg inter-

actions between the atoms, are tunable by carefully selecting the principal quantum

number.

Over the past decades, many experimental platforms, including trapped ions

[28, 29, 67], neutral atoms [62–64], and cold molecules [32, 33, 65, 66], have demon-

strated similar abilities to naturally implement prototypical many-body Hamilto-

nian in an analog fashion. Most notably, all these platforms have the ability to tune

certain parameters of the implemented Hamiltonian, enabling the exploration of dif-

ferent regimes. However, in the pursuit of realizing fully programmable quantum

simulators, the goal is to expand their capabilities to simulate arbitrary Hamiltoni-

https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.3.020303
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ans, where additional parameters can be modified at will.

In this spirit, using time-periodic driving, a naturally given many-body Hamilto-

nian of a closed quantum system can be transformed into an effective target Hamil-

tonian that exhibits vastly different dynamics [128–130]. This so-called Floquet

Hamiltonian Engineering was introduced in the context of nuclear magnetic reso-

nance (NMR) and has become a powerful tool in quantum physics, enabling the ex-

ploration of dynamical phase transitions [131], Floquet Prethermalization [105,106],

unconventional phases of matter [132–135] and topological configurations [136–140].

The application of such Floquet engineering approaches, as introduced in works

like [141,142], to quantum systems that are well isolated from the environment and

have the ability to control atoms on a single atom level, facilitates the quantum

engineering of many-body spin systems. As discussed in Chap. 2 and in many other

works [43,50,55–57,70,71], Rydberg atoms are well decoupled from the environment,

enabling the exploration unitary quantum dynamics in various settings.

In this chapter, we develop methods to realize tunable quantum spin models

through the application of Floquet Hamiltonian Engineering in Rydberg-atom ex-

periments. We demonstrate the ability to implement new classes of XYZ models

that go beyond those naturally realized by simply encoding the spin into two Ryd-

berg states. This ability is combined with the single-atom control provided by an

optical tweezer setup, demonstrating control over both the spatial positions of the

atoms and the implemented model.

The Chapter is organized as follows:

• Section 3.1: This section introduces the general concept of Floquet Hamilto-

nian Engineering and the mathematical framework. Furthermore, we discuss

how a periodic drive consisting of four global microwave pulses, realizes arbi-

trary XYZ Heisenberg Hamiltonians.

• Section 3.2: Here, we present experiments that demonstrate the experimental

realization of Floquet Hamiltonian Engineering in a system consisting of a few

atoms. By adjusting the delay between global microwave pulses, we directly
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observe the engineering of coherent oscillations for two particles. Furthermore,

we study the freezing of magnetization relaxation dynamics in an ordered 2D

configuration with 32 atoms.

• Section 3.3: In this section, we change the setting and investigate Floquet

Hamiltonian Engineering in a 3D spatial disordered gas of Rydberg atoms.

We perform similar experiments as those presented in the previous section and

demonstrate the freezing of many-body relaxation dynamics. Furthermore, we

characterize the current limitations of our engineering approach.

• Section 3.4: In the last section, we demonstrate the usage of Floquet Hamil-

tonian Engineering for quantum simulation experiments by consecutively re-

ducing the symmetry of the XYZ Hamiltonian and exploring its effects on

conservation laws. In addition, we demonstrate that engineered 1D chains can

distinguish various regimes of spin transport in a domain-wall state.

3.1 Floquet engineering on quantum many-body sys-

tems of Rydberg atoms

This section introduces the conceptual and mathematical framework necessary to

understand how a periodically driven system realizes new types of Hamiltonians with

tunable parameters. Additionally, we introduce the specific multi-pulse sequence

used to engineer the interactions.

3.1.1 Introduction to the general concept

To realize new types of Hamiltonians, we employ an idea dating back to 1883. Flo-

quet’s theorem [128] allows us to describe the stroboscopic dynamics of periodically

driven quantum systems using an effective time-independent Hamiltonian. The pa-

rameters of this so-called Floquet Hamiltonian can be engineered by controlling the

properties of the drive [129,130].
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Originally, this technique was used to dynamically decouple spins in nuclear mag-

netic resonance systems from certain terms in the Hamiltonian by effectively can-

celing them. A paradigmatic example of Floquet Hamiltonian Engineering involves

a series of spin echo sequences [143, 144] applied to a system of spins embedded

in an inhomogeneous environment, as encountered, for example, in nuclear mag-

netic resonance. The pulse sequence inverts the spins multiple times so that they

finally return to their initial states, appearing to be effectively decoupled from the

environment. In a Hamiltonian description, this corresponds to the emergence of

a vanishing Hamiltonian, that is, the effective time-independent Hamiltonian over

the spin echo sequence becomes zero. Although this type of sequence is suitable to

decouple the dynamics of single spins, more sophisticated sequences have been used

to decouple two-body interactions [145]. Employing these sequences allows for the

elimination of interaction-induced line broadening in spectroscopy, facilitating the

detection of minor shifts in transition lines caused by other chemical components

within the sample.

Since those early applications, the field has rapidly developed, and periodic driv-

ing is now employed to not only cancel certain terms in a Hamiltonian but also to

actively shape them in a desired way in various experimental platforms. This has, for

example, been employed to investigate localization of mixed quantum states [146],

dynamical phase transitions [131], Floquet Prethermalization [105, 106], unconven-

tional phases of matter [132–135] and topological configurations [136–140].

The general procedure is illustrated in Fig. 3.1. A system with dynamics de-

scribed some naturally given Hamiltonian ĤNat is exposed to a periodic drive Ĥdrive(t),

such that the system’s evolution is governed by the Hamiltonian Ĥ(t) = ĤNat +

Ĥdrive(t). In general, ĤNat may contain multiple components, such as single-particle

terms, two-body, or even few-body interaction terms. In our implementation, we

consider quantum spin-1/2 models as described in the previous chapter. The drive

is applied with an external field coupling the two spin states, and the system ex-

hibits the property that Ĥ(t) = Ĥ(t+ T ), with T being the period of the drive. In
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this scenario, the system’s evolution over one driving period can be approximated

by a new time-independent so-called Floquet Hamiltonian ĤFloq. The mathematical

framework used to obtain an explicit expression for the Floquet Hamiltonian ĤFloq

will be introduced in the next section. We want to emphasize that the Floquet

Hamiltonian provides an effective description of the system, allowing for the intro-

duction of new interaction terms into the system by carefully selecting the applied

drive. These interactions can sometimes be of a mathematical nature and may not

even occur in natural systems.

HFloqHNat

Hdrive(t)

Figure 3.1: Concept of Floquet engineering. A system that naturally interacts

with ĤNat (illustrated by the red connection lines between the spins) is exposed to a

periodically applied drive that follows Ĥdrive(t). Over one driving periodic, the system

can be described by an effective time-independent Floquet Hamiltonian with tunable

interactions, as illustrated by the blue connections line between the spins. Figure and

caption taken and adapted from [71].

3.1.2 Average Hamiltonian Theory1

In order to obtain an expression for the time-independent target Floquet Hamil-

tonian, we employ the framework of Average Hamiltonian Theory (AHT) [147].

AHT is a powerful tool in quantum physics that provides a systemic approach to

simplify and understand the dynamics of quantum systems under the influence of

time-dependent driving. It is particularly valuable for periodically applied drives and

helps to analyze and design multi-pulse sequences. In the subsequent paragraph, we

will introduce this procedure and explain how to approximate the time-evolution

1Partially taken from [71] (Supplemental Material) and adapted for better readability
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operator.

The dynamics of the density matrix for driven spin systems are described by

the equation ρ̇ = −i[Ĥ(t), ρ]. To analyze these dynamics in the interaction picture,

we introduce the evolution operator Ûdrive(t) = T exp[−i
∫ t

0
Ĥdrive(t

′)dt′], where T

is the time ordering operator. This operator transforms the system into a rotated

frame, characterized by the transformed density matrix ρ̃ = Û †
drive(t)ρÛdrive(t), and

the corresponding rotated-frame Hamiltonian H̃(t) = Û †
drive(t)ĤNatÛdrive(t). In the

case of periodically applied pulse sequences, the evolution operator Ûdrive(t) and,

consequently,
˜̂
H(t) exhibit periodic behavior with a time period of tc. To ensure

that the system’s dynamics in both frames (ρ and ρ̃) are identical during strobo-

scopic observations at integer multiples of the cycle time t = ntc, we choose the

evolution operator over one cycle to be the identity, i.e., Ûdrive(tc) = 1. Applying the

Average Hamiltonian Theory, the system’s evolution operator over a single cycle can

be expressed as Û(tc) = exp [−iĤFloqtc], where ĤFloq represents the Floquet Hamil-

tonian (also known as Average Hamiltonian), and therefore, the systems seems to

evolve under a time-independent Hamiltonian. To obtain ĤFloq, we employ a series

expansion known as the Magnus expansion [148]. This expansion is represented as

ĤFloq = Ĥ(0) + Ĥ(1) + ..., where Ĥ(n) characterizes the Floquet Hamiltonian of the

nth order. The first two orders are given by:

Ĥ(0) =
1

tc

∫ tc

0

˜̂
H(t′)dt′

Ĥ(1) =
−i
2tc

∫ tc

0

dt′
∫ t′

0

dt[
˜̂
H(t′),

˜̂
H(t)].

(3.1)

The accuracy of the Floquet Hamiltonian depends on the chosen truncation or-

der during the expansion. The elegance of this method arises from the inherent

Hermitian nature of the Hamiltonian at every truncation level, providing a deeper

understanding of the fundamental dynamics. For cycling times tc that are signifi-

cantly faster than the typical time scales of the system’s Hamiltonian ĤNat (given

by the interactions), the zeroth-order provides a reliable approximation for ĤFloq.
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In other words, for any time t during the cycling interval [0, tc]:

||Ĥ(t)|| · tc ≪ 1 , (3.2)

where || · || denotes the matrix norm. Additionally, in the case of a symmetric pulse

sequence, all odd orders of the expansion (including Ĥ(1)) become zero (this is also

the case for the pulse sequence introduced in the next section), and therefore, we

focus on the zeroth-order contribution of the Floquet Hamiltonian.

3.1.3 Implementing Floquet engineering with Rydberg atoms

We now proceed with establishing the setting for the experiments presented in this

chapter. Specifically, we will deduce the effective Floquet Hamiltonian for a Rydberg

spin system subjected to periodic driving via a chosen multi-pulse sequence.

The system under consideration consists of quantum spin systems, represented

by Rydberg: |↓⟩ = |nS⟩ and |↑⟩ = |nP ⟩ states, as introduced in the previous chapter

2. This configuration allows us to realize a Heisenberg XX Hamiltonian, given by:

ĤXX =
∑
i,j

Jij

(
Ŝi
xŜ

j
x + Ŝi

yŜ
j
y

)
. (3.3)

Here, Ŝi
α (α ∈ x, y, z) are spin-1/2 operators and Jij = 2C3(θij)/r

3
ij the interaction

parameter, with the angle-dependent dipolar coupling parameter 2C3(θij) and rij the

spatial separation between atom i and j. This Hamiltonian represents the natural

interactions ĤNat = ĤXX.

Furthermore, the drive is implemented using a microwave field that couples the

two |nS⟩ and |nP ⟩ spin states. We realize this by utilizing arbitrary waveform gen-

eration in combination with controlled radiation patterns and polarization, allowing

us to apply any desired drive to the system. The microwave setup used in our

experiment has been implemented during my master’s studies and is summarized

in my master thesis [149]. In addition, Appendix B provides an overview of the

most important aspects and minor modifications implemented during the time of

my PhD. The Hamiltonian describing the microwave drive between the |↓⟩ and |↑⟩
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states reads:

Ĥdrive(t) =
∑
i

Ω(t)
[
cosϕ(t)Ŝi

x + sinϕ(t)Ŝi
y

]
, (3.4)

with Ω(t) the time-dependent Rabi frequency and ϕ(t) the phase. As illustrated

in Fig. 3.2 a), we utilize Ĥdrive(t) to apply the drive, which is composed of a pe-

riodic sequence of four global π/2 pulses, each realizing distinct spin operators

(Ŝx,−Ŝy, Ŝy,−Ŝx). The pulses are separated by delay times τ1 = τ(1 − 2v + 2w)

, τ2 = τ(1 + 2u − 2w) and 2τ3 = 2τ(1 − 2u + 2v), where u, v, w are dimensionless

parameters. Importantly, these parameters do not change the total cycling time tc.

Therefore, the exact system’s evolution follows the Hamiltonian:

Ĥ(t) = ĤXX + Ĥdrive(t) . (3.5)

Spin
excitation

Initialization Readout

x -xy-y

tc

| N | 0

1 2 2 3 122

(t)| | (t)

| (t) = eiH t| 0
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Figure 3.2: Experimental protocol and driving sequence. a) The periodic drive

consists of n repetitions of four π/2 pulses in different directions (x, -y, y, -x) with

adjustable delay time. The spheres indicate the spin-frame transformations, resulting

in piece-wise constant rotated-frame Hamiltonians H̃αβ =
∑

i,j Jij/ℏ
(
S̃i
αS̃

j
α + S̃i

βS̃
j
β

)
below. b) Experimental protocol for measuring the system’s magnetization. Figure and

caption taken and adapted from [71].
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This is the exact setting introduced in the previous section, and therefore, the

associated Floquet Hamiltonian can be obtained by AHT. The effect of the ith pulse

can be understood as a rotation of the spin frame. After the pulse, the system’s

evolution is governed by a rotated-frame Hamiltonian H̃, which acts for a duration

of τi, as illustrated in Fig. 3.2 a). Our implementation includes discrete microwave

pulses with delay times in between, and the integral in the zeroth-order Floquet

Hamiltonian of Eq. 3.1 reduces to a sum. Therefore, over one period tc of the drive,

the resulting zeroth-order Floquet Hamiltonian is the average of the rotated-frame

Hamiltonians, weighted by the respective delay times: ĤFloq = 1
tc

∑5
i=1 H̃iτi. We

note that an explicit calculation of the Floquet Hamiltonian is included at the end

of this section. This calculation especially provides intuition on the effect of the π/2

pulses on the Hamiltonian. The zeroth-order Floquet Hamiltonian originating from

this drive can be expressed as:

ĤXYZ =
∑
i,j

Jx
ijŜ

i
xŜ

j
x + Jy

ijŜ
i
yŜ

j
y + Jz

ijŜ
i
zŜ

j
z , (3.6)

with

Jx
ij =

2Jij
3
δx (3.7)

Jy
ij =

2Jij
3
δy (3.8)

Jz
ij =

2Jij
3
δz (3.9)

The parameters δx = 1 − v + u, δy = 1 + w − u, and δz = 1 − w + v can be

easily controlled by adjusting the time separation between the pulses. Therefore,

the natural XX interactions of the Rydberg system have been transformed into an

effective XYZ form, which is tunable without changing the experimental setup.

The effective description using the zeroth-order Floquet Hamiltonian is valid as

long the drive, characterized by the cycling time tc, is much faster than the typical

energy scales of the system, which, in our case, are determined by the interaction

strengths Jij. According to AHT, this condition can be expressed as:

Jij · tc ≪ 2π . (3.10)
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Fig. 3.2 b) illustrates the experimental protocol employed in this chapter. Follow-

ing the Rydberg excitation, the atoms are prepared in the desired spin configura-

tions. The subsequent system’s evolution can be described by either the natural XX

Hamiltonian or the specifically engineered XYZ Hamiltonian. After the evolution,

we proceed to measure an observable O.

We note that while we introduced this driving technique in the context of Ryd-

berg atoms, the protocol is applicable to any two-level system that has the capability

of applying π/2 pulses.

Explicit derivation of the Floquet XYZ Hamiltonian2

In the following paragraph, we conduct a thorough analysis of our pulse sequence,

providing a clear understanding of the process behind constructing the Floquet

Hamiltonian. With this understanding, one can gain valuable insights into the

impact of the π/2 pulses, which, in turn, aids in the development of customized en-

gineering sequences. As previously described, our pulse sequence includes four π/2

pulses with different phases ϕ (0, 3π/2, π/2, π), corresponding to rotations around

different axes (Ŝx,−Ŝy, Ŝy,−Ŝx), and respective delay times τ1, τ2 and 2τ3. The

zeroth-order Floquet Hamiltonian is the average of the rotated-frame Hamiltonians,

weighted by the respective delay times: ĤFloq =
1
tc

∑5
i=1 H̃iτi.

For simplicity, we now consider a specific scenario involving two spins interact-

ing with an XX Hamiltonian, given by ĤXX = J
(
Ŝ1
xŜ

2
x + Ŝ1

y Ŝ
2
y

)
. Before the first

π/2 pulse, when both the rotated-frame and lab-frame coincide, we obtain a com-

ponent
˜̂
H1τ1/tc = J(

˜̂
S1
x
˜̂
S2
x +

˜̂
S1
y
˜̂
S2
y)τ1/tc. The first π/2 pulse, applied in x-direction,

transforms the spin frame (as depicted by the spheres in Fig. 3.2 a)), rotating

Ŝy → U †
π/2x

ŜyUπ/2x =
˜̂
Sz, while leaving Ŝx unaffected. Consequently, we acquire

a second component
˜̂
H2τ2/tc = J(

˜̂
S1
x
˜̂
S2
x +

˜̂
S1
z
˜̂
S2
z )τ2/tc during the second evolution

interval τ2. Repetition of this transformation throughout the sequence enables us to

compute the contributions summarized in Table 3.1, yielding the Floquet Hamilto-

2Taken from [71] and slightly adapted for better readability.
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nian for two-particle systems:

ĤFloq =
1

2(τ1 + τ2 + τ3)
J
[
2(τ1 + τ2)

˜̂
S1
x
˜̂
S2
x + 2(τ1 + τ3)

˜̂
S1
y
˜̂
S2
y + 2(τ2 + τ3)

˜̂
S1
z
˜̂
S2
z

]
.

(3.11)

ĤXX/J τ1 π/2x τ2 π/2−y 2τ3 π/2y τ2 π/2x τ1

Ŝ1
xŜ

2
x

˜̂
S1
x
˜̂
S2
x → ˜̂

S1
x
˜̂
S2
x → ˜̂

S1
y
˜̂
S2
y → ˜̂

S1
x
˜̂
S2
x → ˜̂

S1
x
˜̂
S2
x

+

Ŝ1
y Ŝ

2
y

˜̂
S1
y
˜̂
S2
y → ˜̂

S1
z
˜̂
S2
z → ˜̂

S1
z
˜̂
S2
z → ˜̂

S1
z
˜̂
S2
z → ˜̂

S1
y
˜̂
S2
y

Table 3.1: Effect of the π/2 pulses on a two-particle Hamiltonian. The first column

displays the natural XX Hamiltonian with its two components. The following columns

(two lower lines) display how these components get rotated under the spin frame trans-

formation by the four π/2 pulses.

As the Floquet Hamiltonian only captures the stroboscopic dynamics of the

system after each period of the drive, where the lab- and the rotated-frame are the

same, we can omit the ·̃ symbol.

The above calculation can directly be extended to more particles, and therefore,

the original XX Hamiltonian of our Rydberg system gets transformed into a Floquet

Hamiltonian given by:

ĤFloq =
1

2(τ1 + τ2 + τ3)

∑
i,j

Jij

[
2(τ1 + τ2)Ŝ

i
xŜ

j
x + 2(τ1 + τ3)Ŝ

i
yŜ

j
y + 2(τ2 + τ3)Ŝ

i
zŜ

j
z

]
.

(3.12)

Our choice of τ1 = τ(1− 2v+2w) , τ2 = τ(1+2u− 2w), and τ3 = τ(1− 2u+2v)

allows us to tune u, v and w without changing the cycling time tc = 2·(τ1+τ2+τ3) =

6τ . Furthermore, this results in the XYZ Hamiltonian (Eq. 3.6) from above.
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3.2 Floquet Hamiltonian Engineering in an array of a

few atoms

The proposed protocol offers the capability to manipulate the interaction Hamil-

tonian of a many-body quantum spin system, introducing new terms that were

originally not present. In the subsequent sections of this chapter, we explore the

experimental implementation of this engineering protocol. The first step involves

validating the engineering process, ensuring the faithful implementation of the tar-

get Hamiltonian, and assessing its performance. To achieve this, we employ various

methods to confirm that the system indeed follows the dynamics expected from the

Floquet Hamiltonian, and subsequently introduce them. As discussed previously,

periodically driven systems can be effectively characterized using the concept of an

effective Floquet Hamiltonian. Therefore, the manipulation of the system becomes

directly observable through the coherent interactions among the constituent atoms.

We start our investigations in systems consisting of a few atoms, allowing us

to directly witness these coherent dynamics. To establish an initial benchmark for

the protocol, we commence by demonstrating its application for the iconic scenario

involving two atoms. Subsequently, we extend our exploration to a larger ensemble

with 32 atoms, as we investigate the influence of the engineering process on the

dynamics within a 2D array of Rydberg atoms.

The work outlined in this section represents a collaborative effort between our

team at Heidelberg and Prof. Antoine Browaeys’ group at the Institut d’Optique

in Palaiseau, France. The experiments were conducted by Prof. Browaeys’ team

using their experimental platform consisting of atoms trapped in optical tweezers.

The conceptual ideas for the experiments involved extensive discussion with our

team at Heidelberg, as well as the discussion of the results. Many of these ideas are

motivated by our previous work on Floquet engineering, which will be discussed in

the next section. We also performed additional analysis related to the engineering

protocol, which is not covered in the primary reference for this section [48].
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A comprehensive overview of the experimental setup at the group of Antoine

Browaeys can be found in [127]. Their approach is based on tightly focusing laser

beams to a size on the order of a micrometer. These so-called optical tweezers

have the capability to capture individual atoms and arrange them in diverse spatial

patterns. The concept of tweezer arrays, originally pioneered by Philippe Grangier

[150], has evolved into one of the most powerful platforms for conducting quantum

simulations and computations today [43,55,75–77]. To understand the experiments

presented in this chapter, we briefly introduce the most relevant aspects of the

experimental procedure: Initially, the atoms are loaded into optical tweezers and

brought to their ground state. Subsequently, the optical tweezer traps are turned

off, and a stimulated Raman adiabatic passage (STIRAP) is employed to prepare

the Rydberg state |nS⟩ = |↓⟩. A magnetic field is utilized to split the Zeeman states,

while a microwave field couples to an |nP ⟩ = |↑⟩ state, realizing an XX model. The

ability to locally address selected atoms with a strong 1013 nm laser allows for locally

shifting their resonance such that they are not resonant with the global microwave

field anymore. This procedure allows for the initialization of chosen product spin

states. The readout is performed state-selectively by transferring the |↓⟩ atoms

back to the ground state, where they are recaptured and optically detected through

fluorescence imaging. To compare the experiments to numerical simulations, state-

preparation-and-measurement (SPAM) errors are included. A detailed analysis of

the different error sources in the experiment can be found in the dissertation of

Pascal Scholl [127].

This section focuses on the engineering of an XXZ Hamiltonian. For convenience,

we explicitly rewrite the previously derived XYZ Hamiltonian of Eq. 3.6 by choosing

Jx
ij = Jy

ij ̸= Jz
ij:

ĤXXZ =
∑
i,j

Jx
ij

(
Ŝi
xŜ

j
x + Ŝi

yŜ
j
y

)
+ Jz

ijŜ
i
zŜ

j
z , (3.13)

The anisotropy is given by Jz
ij/J

x
ij = δz/δx. The nearest-neighbor interaction ener-

gies of the Floquet XXZ Hamiltonian, Jx and Jz, are related to nearest-neighbor

interaction energy J of the natural XX Hamiltonian as follows: Jx(δz/δx) =
2J

2+δz/δx
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and Jz(δz/δx) =
2Jδz/δx
2+δz/δx

.

3.2.1 Tuning coherent oscillations between two atoms

Floquet Hamiltonian Engineering is shaping the underlying interaction Hamilto-

nian of quantum spin systems. To benchmark the engineering of the tunable XXZ

Hamiltonian, we first explore the iconic case of two atoms. The spin-1/2 system is

represented by the |↓⟩ = |90S1/2,mj = 1/2⟩ and |↑⟩ = |90P3/2,mj = 3/2⟩ Rydberg

states. We drive the system with a Rabi frequency of Ω/2π = 7.2 MHz, and the

atoms are separated by 30 µm, resulting in an interaction strength of J/2π = 930

kHz within the natural XX Hamiltonian.

In the case of two spins, the eigenstates and corresponding energies of ĤXXZ can

be explicitly determined and are presented in the following table:

Eigenstates of ĤXXZ Energy

|↓↓⟩ Jz

|↑↑⟩ Jz

|+⟩ = (|↑↓⟩+ |↓↑⟩)/
√
2 −Jz + 2Jx

|−⟩ = (|↑↓⟩ − |↓↑⟩)/
√
2 −Jz − 2Jx

Table 3.2: Eigenstates and energies of a two atoms interacting under an XXZ Hamil-

tonian.

Static implementation: Generally, the engineering sequence can be applied over

the full evolution time (static) or over a selected time window (dynamically). We

investigate the static implementation by preparing the atoms in the equatorial plane

of a Bloch sphere representation by applying a π/2 pulse. The resulting state

reads |→→⟩y = 1/2
(
|↑↑⟩ − |↓↓⟩+ i

√
2 |+⟩

)
(illustrated by the Bloch spheres in

Fig. 3.3 a)). Taking into account the relevant eigenstates, the time evolution under
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an XXZ Hamiltonian is governed by:

|→→⟩y (t) = 1/2(|↑↑⟩ − |↓↓⟩+ e−i(2Jx−2Jz)t · i
√
2 |+⟩) . (3.14)

The total magnetization of this state is predicted to undergo oscillations, transition-

ing from the +y to the −y-direction, with frequency 2|Jx − Jz|. In the experiment,

we apply the engineering sequence with a single cycle (n = 1) for different cycle dura-

tions tc, aiming to realize XXZ Hamiltonians with anisotropy ratios of δz/δx = 1.33

and δz/δx = 1.8. Fig. 3.3 a) displays the system’s total magnetization, where we di-

rectly observe the coherent magnetization oscillations. Notably, the red data points,

corresponding to an anisotropy of δz/δx = 1.33, exhibit slower oscillations compared

to the green data points, which represent δz/δx = 1.8. This is expected since the

strengths of exchange and Ising interactions are more balanced for δz/δx = 1.33, as

indicated by Eq. 3.14.

Dynamical implementation: Two-atom oscillations can also be dynamically engi-

neered for more general initial states. To demonstrate this in the case of two atoms,

the ability of locally addressing the spins is used to initialize them in the |↑↓⟩ state

(illustrated by the Bloch spheres in Fig. 3.3 b)). We subsequently allow the system to

undergo natural evolution governed by the XX Hamiltonian for a duration of 0.8 µs

and measure the probability P↑↓ associated with finding the atoms in the |↑↓⟩ state.

As anticipated based on the XX Hamiltonian, the two atoms exhibit oscillations be-

tween the states |↑↓⟩ and |↓↑⟩, with a frequency of 2J (see Fig. 3.3 b)). Following the

0.8 µs of natural evolution, the pulse sequence is activated for a duration of 0.9 µs

with an XXX Hamiltonian (Jx = Jz in Eq. 3.13) as the target. The signature is a

reduction of the oscillation frequency by a factor 0.65(2), which is in agreement with

the expected factor of 2/3. After switching off the drive, the atoms continue with

the 2J oscillation. Remarkably, the engineering of the system does not cause any

significant decoherence beyond what occurs naturally during free evolution. Exact

simulations3 of ĤXXZ are shown as a green line in Fig. 3.3 include preparation and

3These simulations were performed by the team of A. Browaeys
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a)

b)

atom 2

atom 1

atom 2

atom 1

Figure 3.3: Floquet Hamiltonian Engineering with two atoms. a) Evolution of the

y magnetization as a function of tc for drives targeting XXZ Hamiltonian with anisotropy

δz/δx = 1.33 (red points) and 1.8 (green points). The initial state is |→→⟩y, and the

solid line displays a sinusoidal fit. b) Evolution of the probability P↑↓ as a function of

time. During the white area under the natural ĤXX and during the green shaded area

under Ĥ(t) targeting ĤXXX. The solid line is a simulation using the exact Hamiltonians.

The Bloch spheres illustrate the initial state for atom 1 (blue) and atom 2 (red) for the

respective experiments. Figure and caption taken and adapted from [48].

detection errors as well as fluctuations in the interatomic distance [48].

In summary, the use of Floquet Hamiltonian engineering provides an efficient tool

for shaping the coherent oscillation dynamics in a system consisting of two atoms.

The engineering protocol in the lab-frame

We note that the effect of the engineering sequence on two atoms can also be un-

derstood by considering the transformation of the state in the lab-frame instead of

the Hamiltonian in the rotating frame. In this paragraph, we derive the effect of

the four π/2 pulses on the two-atom state, which provides some intuition about
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how the dynamics of Hamiltonians are mimicked by periodic driving [31, 71]. We

consider our two atoms prepared in |→→⟩ = 1/2
(
|↑↑⟩+ |↓↓⟩+

√
2 |+⟩

)
. Under the

natural XX interaction (Jz = 0), the energies in Table 3.2 are zero for |↑↑⟩ and |↓↓⟩

and ±2Jx for |±⟩. To simplify the following calculations, we furthermore define the

states |α±⟩ = |↑↑⟩ ± |↓↓⟩ such that the initial state can be expressed as:

|→→⟩ = 1/2
(
|α+⟩+

√
2 |+⟩

)
. (3.15)

In the following, we present the effect of the four-pulse sequence on this state.

• During τ1: In the first evolution stage, |+⟩ picks up a phase of 2Jxτ1, while

|α+⟩ does not, according to the energies. After this stage, the state reads

|ψ⟩ = 1/2
(
|α+⟩+ e−i2Jxτ1 ·

√
2 |+⟩

)
.

• π/2x pulse and evolution during τ2: A π/2 pulse along the x-direction results

in swap of the states, such that |α+⟩ →
√
2 |+⟩ and

√
2 |+⟩ → |α+⟩. The state

before the second free evolution stage reads |ψ⟩ = 1/2
(√

2 |+⟩+ e−i2Jxτ1 · |α+⟩
)
.

Because of the swap, |α+⟩ effectively acquires a phase which is not present un-

der XX interactions. During the following free evolution time τ2, |+⟩ again

accumulates a phase such that |ψ⟩ = 1/2
(
e−i2Jxτ2 ·

√
2 |+⟩+ e−i2Jxτ1 · |α+⟩

)
at

the end of this stage.

• π/2−y pulse and evolution during τ3: A π/2 pulse along the −y-direction

does not change |α+⟩ but transforms
√
2 |+⟩ → |α−⟩. Therefore, the state

reads |ψ⟩ = 1/2
(
e−i2Jxτ2 · |α−⟩+ e−i2Jxτ1 · |α+⟩

)
, which does not accumulate a

phase during τ3.

• π/2y pulse and evolution during τ2: Now we rotate back around the +y-

direction and undo the transfer. Therefore, after the evolution time τ2, the

state reads |ψ⟩ = 1/2
(
e−i4Jxτ2 ·

√
2 |+⟩+ e−i2Jxτ1 · |α+⟩

)
• π/2−x pulse and evolution during τ1: The π/2 pulse around the −x-direction

swaps the states again back and after the final evolution time τ2, the state at

the end of the sequence reads:
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|ψ⟩final sequence = 1/2
(
e−i4Jxτ2 · |α+⟩+ e−i4Jxτ1 ·

√
2 |+⟩

)
. (3.16)

We compare this result to the evolution of the two-atom states under an XXZ

Hamiltonian

|ψ⟩direct XXZ = 1/2
(
e−i(−Jz)t · |α+⟩+ e−i(−Jz+2Jx)t ·

√
2 |+⟩

)
. (3.17)

Therefore, by properly choosing τ1 and τ2, one can imprint phases that an XXZ

Hamiltonian would have imprinted. We note that the case for two spins is extremely

simplified and does not directly translate into a many-body state with different

eigenstates.

3.2.2 Freezing many-body dynamics in a 2D atom array

The previous paragraph demonstrated engineering for the case of two atoms. Now,

we consider a scenario with an increased system size of 32 atoms arranged in a 2D

spatial configuration, as illustrated in the inset of Fig. 3.4. The first question that

arises is how to verify whether our drive implements the Floquet Hamiltonian of Eq.

3.13 in this many-body regime where coherent oscillations are no longer observable

due to the beating of many frequencies? One of the most drastic effects is a potential

freezing of dynamics, considering the strongly interacting nature of the many-body

system.

To demonstrate this, in a first series of experiments we have chosen the control

parameters u = v = w such that the timing of the delay times is equal τ1 = τ2 = τ3.

This choice is equivalent to the famous Waugh-Huber-Haeberlen (WAHUHA) se-

quence [145], which is used to archive dynamical decoupling and suppress spin-spin

interactions in NMR by engineering a zeroth-order Floquet Hamiltonian (ĤFloq = 0).

Considering our implementation in an isolated system of Rydberg spins, this se-

quence implies δx = δy = δz in Eq. 3.6. Therefore, this particular sequence engi-

neers a symmetric Floquet Hamiltonian ĤFloq = ĤXXX. In the previous section, we

implemented this Hamiltonian to demonstrate a change in the oscillation frequency

of the |↑↓⟩ state (see Fig. 3.3). Despite the change in the oscillation frequency, the
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Figure 3.4: Freezing of magnetization in a 2D array. The time evolution of the y

magnetization under Ĥ(t) targeting ĤXXX (shaded green area for 3 µs) and the natural

ĤXX (white area) after initialization in |→ · · · →⟩y. Circles represent the experimental

data points, while solid lines show MACE simulations that include SPAM errors: blue,

Ĥ(t) with microwave imperfections; green, without microwave imperfections; orange, no

microwave imperfections and an increased Rabi frequency of Ω/2π = 28 MHz; dashed

red line, exact ĤXXX followed by ĤXX. Inset: Fluorescence image of the 32-atom array.

The atom distance is a = 27 µm, resulting in a nearest-neighbor energy of J/2π ≈ 133

kHz and a mean interaction energy of Jm/2π ≈ 720 kHz. Figure and caption taken and

adapted from [48].

XXX Hamiltonian is fundamentally different due to a SU(2) symmetry under which

the total magnetization constitutes a conserved quantity.

To experimentally probe this conservation law, we target the XXX Hamilto-

nian and measure the system’s magnetization in the ordered many-body scenario

of 32 atoms. The spin system for these experiments are represented by the |↓⟩ =

|75S1/2,mj = 1/2⟩ and |↑⟩ = |75P3/2,mj = −1/2⟩ Rydberg state. The averaged in-

teraction energy is defined as Jm = 1/N
∑

i ̸=j Jij, with N the number of atoms.

Using a π/2 pulse, the system is again initialized in the equatorial plane and the

state reads |→⟩⊗N
y . The XXX Hamiltonian is engineered by subjecting the system

to multiple cycles of periodic driving, each with a cycling time tc = 300 ns. We
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observe an approximately constant magnetization for a time of 3 µs while the se-

quence is active, as expected for the target XXX Hamiltonian (see Fig. 3.4). After

3 µs, the driving is switched off, and the magnetization decays towards zero due

to the natural XX Hamiltonian. In the next section, we explore this stalling of the

dynamcis in a different regime.

Understanding experimental imperfections

To compare the dynamics of the system with simulations, we apply a moving-average

cluster-expansion (MACE) method [151]. Here, we perform exact diagonalization

of clusters of 12 atoms and average over all possible clusters with 32 atoms. SPAM

errors and imperfect microwave rotations due to possible phase and power fluctua-

tions are also included in the simulations (see [48, 127] for details). The blue solid

line in Fig. 3.4 represents simulations without adjustable parameters, revealing good

agreement with the experimental observations. However, when comparing the evo-

lution to the pure target XXX Hamiltonian (red dashed line), small discrepancies

become apparent.

We use our simulations as a tool to investigate the source of these differences.

When removing the error occurring due to the imperfect microwave drive, we observe

a significant increase in the stalled magnetization over the period of 3 µs (green solid

line). Consequently, the primary cause of the decay is attributed to imperfections in

the microwave system. Despite nearly complete conservation of magnetization, there

are still small discrepancies in the natural evolution following the driving process

(green solid line vs dashed red line). These discrepancies originate from interactions

occurring during the finite pulse duration in the driving process, which are not

considered in the AHT approach. These interactions cause the system to deviate

from the precise product state expected from ĤXXX after the application of Ĥdriven.

Increasing the Rabi frequency by a factor of four compared to the experimental

value leads to nearly perfect engineering in the simulations (orange line). This

indicates that the condition Jmtc ≪ 2π · 0.2 already satisfies the requirement for
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nearly perfect engineering in the setting (see Eq. 3.10). A more detailed investigation

of the performance of the engineering protocol as a function of different driving

parameter is part of the following section.

3.3 Floquet Hamiltonian Engineering in a gas of atoms

In the previous section, we explored Floquet Hamiltonian Engineering in an ordered

array of a few Rydberg atoms, with clear signatures that the dynamics are driven

by the target Floquet Hamiltonian. In this section, we continue to investigate the

engineering in a different regime: The introduced driving protocol is applied to an ul-

tracold gas with hundreds of Rydberg atoms, representing a 3D spatially disordered

many-body spin system.

The goal is to validate the engineering process, ensuring the faithful implemen-

tation of the target Hamiltonian in this many-body regime. To achieve this, we first

conduct similar experiments as those described in the preceding section. As coherent

oscillations are not resolved in disordered quantum systems with hundreds of atoms,

we employ the magnetization freezing protocol. We focus on the implementation

of the SU(2) symmetric XXX Hamiltonian and provide a detailed analysis of the

associated conservation law of the total magnetization. Here, we particularly ana-

lyze the performance of the engineering efficiency of our driving protocol concerning

various driving parameters, including the cycling time.

In order to understand the experiments presented in this section, we briefly

introduce the most relevant aspects of the experimental procedure 4 : For all mea-

surements, the spin is encoded in the two Rydberg states |48S1/2,mj = 1/2⟩ = |↓⟩

and |48P3/2,mj = 1/2⟩ = |↑⟩. The interaction parameter in Eq. 3.3 is given by

C3(θij)/2π = (1−3 cos2θij) ·1.14 GHz ·µm3. Due to our Rydberg excitation scheme,

described in Appendix B, the positions of your few hundred Rydberg atoms in the

4To enhance the reader’s understanding, our focus in this part is placed on the experimental

results. A comprehensive introduction to the experimental setup, system preparation, readout,

and strategies for controlling Rydberg spin is provided in Appendix B.
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cloud are random, resulting in a disordered many-body system of N spins. To

quantify the interaction strengths of our system, we take the mean over the sample

Jm = 1/N
∑

i |
∑

j Jij|. Additionally, a magnetic field of 30 G is applied to induce

Zeeman-level splitting, ensuring a two-level description of the system.

Before investigating the full potential of Floquet Hamiltonian Engineering in the

final section of this chapter, this section focuses solely on the implementation of the

SU(2) symmetric XXX Hamiltonian

ĤXXX =
∑
i,j

Jx
ijŜ

i
xŜ

j
x + Jx

ijŜ
i
yŜ

j
y + Jx

ijŜ
i
zŜ

j
z . (3.18)

3.3.1 Freezing many-body dynamics in a gas of atoms

The first question that arises is how can one verify that our drive implements the

Hamiltonian of Eq. 3.6 in a many-body regime where no exact numerical simula-

tions are available? Additionally, our experimental system does not provide local

resolution, making the system’s magnetization the only observable. One of the most

drastic effects consists of a potential freezing of this quantity, given the strong inter-

actions in the many-body system, a phenomenon previously explored in the context

of an ordered few-body system (see Sec. 3.2.2)

To experimentally probe this conservation law, we apply the protocol illustrated

in Fig. 3.2 b), with a periodic drive targeting an XXX Hamiltonian. The protocol

starts with exciting the atoms to the |↓⟩⊗N Rydberg state. After applying a π/2

pulse, the spins are initialized in a product state denoted as |→⟩⊗N
x = 1√

2
(|↓⟩ +

|↑⟩)⊗N . This state implies that all spins are aligned along the x-direction in a Bloch

sphere representation. The subsequent evolution of this state is governed by the

Hamiltonian Ĥ(t), as defined in Eq. 3.5. Here, we have the flexibility to choose

whether or not to apply the pulse sequence. At the end of this evolution which lasts

for time t, the total magnetization is measured (see Appendix B).

We observe the system’s magnetization dynamics without applying the periodic

sequence. The evolution is described by ĤXX and results in a fast relaxation towards
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Figure 3.5: Engineering the Hamiltonian of an isolated spin system. a) Mag-

netization dynamics of a state polarized along the x-direction. Red points display the

dynamics under the natural XX Hamiltonian and the blue points dynamics due to Ĥ(t),

targeting an XXX Hamiltonian with tc = 500 ns and Jm/2π = 0.2 MHz. b) Evolution

of magnetization after letting the system evolve under the natural interactions for 2 µs

before switching on the drive (tc = 1 µs). Lines are dTWA simulations of the respective

dynamics under ĤXX (solid) and Ĥ(t) (dashed), including uncertainties of the Rydberg

density (shaded areas). Figure and caption taken and adapted from [71].

a demagnetized state over a time of 10 µs, as shown by the red points in Fig. 3.5 a).

The dynamics originate from the fact that the x-polarized state is not an eigenstate of

the natural XX Hamiltonian and is far from equilibrium (similar as the experiments

in Chap. 2). Furthermore, the system possesses no symmetry that conserves the

system’s magnetization. Next, we initialize the same state along the x-direction

but this time apply the WAHUHA sequence, targeting a ĤXXX during the evolution

time. The relaxation of the magnetization is significantly slowed down for this

setting, as shown by the blue points in Fig 3.5 a). This effect is associated with

the SU(2) symmetric nature of our target Hamiltonian and the fact that the initial
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state constitutes an eigenstate of an XXX Hamiltonian. To verify that the dynamics

stalling is independent of the initial state and can be applied dynamically, we perform

an experiment where we split the evolution in two parts. First, we let the system

evolve for 2 µs, creating an entangled state (which is not an eigenstate of ĤXXX).

Then, we suddenly switch on the WAHUHA sequence. The result is shown in

Fig. 3.5 b). Within the first 2 µs, the magnetization relaxes to roughly half of its

initial value. After switching on the periodic driving, we observe a complete freezing

of the dynamics, as expected from ĤXXX. This further demonstrates the dynamical

realization of the desired engineered Hamiltonian on demand.

Contrary to what one might expect from a pure XXX Hamiltonian, the evolu-

tion depicted in Fig 3.5 a) is not entirely frozen. The disordered nature of our spin

systems can provide an understanding of this observation (this contrasts the sce-

nario of the ordered sample presented in the previous section). In general, Rydberg

atoms in our sample have random distances between them. However, the Rydberg

blockade effect (see Appendix A) imposes a lower bound for the minimal distance rb

between two adjacent atoms. In our scenario, the minimal distance translates into a

maximum interaction strength of Jmax/2π = 2C3/(2πr
3
b) = 18 MHz. At this partic-

ular distance, spin pairs significantly violate the condition of Eq. 3.10 required for

a valid zeroth-order effective time-independent description, as the cycling frequency

1/tc = 2 MHz is much slower. Higher-order terms in the Floquet Hamiltonian are

no longer SU(2) symmetric and lead to the observed slow remnant relaxation of the

total magnetization. In contrast, the second scenario with the dynamically applied

engineering sequence shown in Fig 3.5 b) shows a full freeze out of the dynamics.

Here, strongly interacting spins are already demagnetized over the first 2 µs and do

not contribute to the system’s magnetization. Therefore, the periodically applied

drives stall mainly the dynamic of the remaining magnetized spins. We note that

this interpretation is qualitative, and the engineering performance will be studied in

more detail in the following section. However, we modeled the full driving protocol

represented by the Hamiltonian of Eq. 3.5 using semi-classical discrete truncated
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Wigner approximation method (dTWA) [121] and found that it reproduces all es-

sential features quantitatively.

3.3.2 Characterization of the engineering efficiency

As observed in Fig. 3.5 a) and discussed in the previous section, our periodic pulse

sequence effectively manipulates dynamics that align with the expectations derived

from the XXX Hamiltonian. In this section, we quantify the experimental deviation

from the zeroth-order Floquet Hamiltonian and understand their origins. To achieve

this, we define an efficiency metric for engineering the target Hamiltonian ĤXXX as

EXXX(t) = M(t)
1/2

, where M(t) represents the observed magnetization at time t. As

the system’s total magnetization is 1/2, an efficiency EXXX(t) = 1 represents ideal

engineering of ĤXXX. For the subsequent investigations, we measure EXXX(t) at

t = 10 µs. We fix the mean interaction strength Jm of the sample and vary the

cycling time tc to adjust 1/(Jmtc). Fig. 3.6 a) shows the time traces of the evolution

for two cycling times tc = 1 µs and 5 µs, from which we take the value at t = 10 µs.

The resulting efficiency curve for various tc is shown in Fig. 3.6 b). In the

absence of the applied pulse sequence, where tc approaches infinity, the efficiency

becomes almost zero due to the relaxation of magnetization caused by ĤXX (similar

to pure relaxation in Fig. 3.5 a). Decreasing tc, and therefore driving the spin

system faster, results in an increase in the observed efficiency. This increase can be

attributed to the fact that an increasing number of spin pairs fulfill the fast driving

condition of Eq. 3.10. In the theoretical framework, which assumes infinitely fast

π/2 spin rotations, EXXX(t) is anticipated to continuously rise with 1/(Jmtc) as the

driving approximates the zeroth-order Floquet Hamiltonian with higher precision.

In contrast, we observe a convergence of the efficiency towards a finite value for the

shortest achievable cycling times, which is also reproduced by dTWA simulations.

To understand this phenomenon, we take into account that interactions persist

during the finite-time pulses of length tπ/2, making the delta-pulse approximation

inadequate. For shorter cycling times tc, an increasing number of pulses need to
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Figure 3.6: Efficiency of engineering the target Hamiltonian. a) Time traces of

the magnetizations for cycling times tc = 1 µs and 5 µs for a pulse width tπ/2 = 12.5

ns. b) Efficiency at t = 10 µs as a function of 1/(Jmtc) for tπ/2 = 12.5 ns. Dashed

lines are dTWA simulations of Ĥ(t) with the respective sequence parameters and density

uncertainties (shaded area). c) Numerical dTWA simulations of the efficiency at t =

10 µs with pulse widths ranging from tπ/2 = 12.5 ns to 0.25 ns for tc = 50 ns at

1/(Jmtc) = 16. Jm/2π = 0.2 MHz is the mean interaction strength for the experiment

and theory. Subfigures (b,c)) and caption taken and adapted from [71].

be applied in order to measure the efficiency at the same time t = 10 µs. Conse-

quently, the effect of finite pulse length and the fast driving condition of Eq. 3.10

start to compete for a given parameter setting. To achieve higher efficiency, it be-

comes necessary to further reduce the finite pulse length tπ/2, beyond the current

shortest value determined by the bandwidth of our arbitrary waveform generator.

To estimate the required pulse length for the nearly perfect engineering efficiency,

we numerically simulate pulse lengths down to tπ/2 = 0.25 ns at fixed 1/(Jmtc) = 16.

The results are shown in Fig. 3.6 c), and the efficiency approaches unity for tπ/2 on

the order of 0.25 ns. We note that those conditions are within reach with today’s

cutting-edge microwave technology.
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We note that unlike the prior investigations, our simulations do not incorporate

microwave errors. Based on our observations, we conclude that the primary limita-

tion in our experiments primarily arises from the finite pulse duration, as evidenced

by the comparison to dTWA simulations.

3.4 Quantum simulation experiments with engineered

Rydberg atoms

In the preceding two sections, we validated Floquet Hamiltonian Engineering and

demonstrated its ability to manipulate the dynamics of quantum spin systems. This

manipulation allowed us to finely tune coherent oscillations and effectively freeze

many-body quantum dynamics, whether with a small number of atoms in an ordered

scenario or in disordered scenarios involving a larger number of atoms.

In order to demonstrate that Floquet Hamiltonian Engineering is suitable for

quantum simulations with tunable interactions, this section presents experiments

making use of the ability to arbitrarily tune the delay times and therefore the target

XYZ Hamiltonian in Eq. 3.6. We first investigate how symmetries in the spin Hamil-

tonian affect far-from-equilibrium dynamics in the disordered three-dimensional sce-

nario. Finally, we briefly illustrate that engineering a 1D chain in a domain-wall state

can distinguish the transport properties of the XXZ Hamiltonian.

3.4.1 Out-of-equilibrium dynamics and symmetry breaking

In this paragraph, we investigate symmetries in the XYZ Hamiltonian and their

effect on magnetization dynamics. The observed magnetization freezing in the pre-

vious set of measurements (see Fig. 3.5) directly results from a SU(2) symmetry in

the system originating from the engineered XXX Hamiltonian. This symmetry can

broken by choosing the driving control parameters in a way that δx = δy ̸= δz, trans-

forming the effective description from an XXX Hamiltonian to an XXZ Hamiltonian.

Typical sequences archiving this transformation are illustrated in Fig. 3.7 a). In the
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Figure 3.7: Engineered out-of-equilibrium dynamics. a) Illustration of pulse se-

quences designed to engineer XXZ Hamiltonian with anisotropy δz/δx = 0.1 and 1.6.

Control parameters u and v are chosen such that u = (w + v)/2 and v = 1. b) Bot-

tom: Magnetization dynamics for drives targeting the XXZ Hamiltonian with different

anisotropies, with tc = 1 µs, tπ/2 = 12.5 ns, Jm/2π = 0.2 MHz. The shaded area

corresponds to the density uncertainty in dTWA simulations of Ĥ(t). The red arrow on

the Bloch sphere (top left) indicates the initial state. Magnetization at t = 10 µs as

a function of the anisotropy parameter δz/δx is shown in the top right. c) Numerical

dTWA simulations of the driven time-dependent Hamiltonian Ĥ(t) (dashed lines) and

the exact XXZ Hamiltonian for various ratio δz/δx (solid lines) with improved engineer-

ing conditions: tc = 55 ns, tπ/2 = 1.25 ns, Jm/2π = 0.2 MHz. Figures and caption

taken and adapted from [71].
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absence of SU(2) symmetry, the magnetization of our initial state is expected to

exhibit relaxation rather than being conserved.

We measure the magnetization dynamics as a function of the evolution time

for anisotropy parameters δz/δx ranging from 0.1 to 1.6. As shown in Fig. 3.7 b)

(bottom), the magnetization relaxes on vastly different time scales and follows a

non-exponential fashion (this behavior is characteristic for disordered systems and

has been previously observed in Chap. 2). Notably, the relaxation process ex-

hibits a non-monotonic behavior, as depicted on the top right of Fig. 3.7 b), where

we display the final magnetization values at a fixed time of 10 µs. As δz/δx in-

creases, the relaxation slows down until it reaches the SU(2) symmetric Heisenberg

point at δz/δx = 1. Beyond this point, the relaxation accelerates again, which is

consistent with expectation from the XXZ Hamiltonian and is also reproduced by

time-dependent dTWA simulations targeting the XXZ Hamiltonian. Therefore, the

observed dynamics are features of the broken SU(2) symmetry in the system. As ex-

plained earlier, the dynamics of the driven system slightly differ from those expected

from the XXZ Hamiltonian due to finite pulse width and the failure to fulfilling the

fast driving condition in Eq. 3.10. We propose to explore numerically a scenario

that currently exceeds the capabilities of our experimental setup, where both pulse

length and cycling time can be significantly reduced (tπ/2 = 1.25 ns and tc = 50 ns).

For this setting, Fig. 3.7 c) shows a comparison of the driven system with an XXZ

Hamiltonian from the anisotropy parameters of the experiment. Firstly, we high-

light that the non-monotonous dynamics observed in the experiment is accurately

reproduced by both numerical simulations. Secondly, both numerical simulations

agree well with each other. This finding indicates that in this specific regime, the

Hamiltonian ĤXXZ provides a reliable representation of Ĥ(t).

The XXZ Hamiltonian still features a U(1) symmetry, independent of the anisotropy

δz/δx. The conservation law associated with this symmetry consists of the system’s

magnetization along the z-direction. To demonstrate this conservation, we initial-

ize the system in a state possessing magnetization components along the y- and
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z-direction (see Fig. 3.8 a)). Experimentally, this is achieved by the application of

a π/4 pulse. Fig. 3.8 b) shows the time evolution of the three different magnetiza-

tion components Mx, My, and Mz for a U(1) symmetric XXZ Hamiltonian. While

the y magnetization relaxes towards zero, the magnetization along the z-direction

shows no relevant relaxation, which is consistent with an XXZ Hamiltonian. Due to

the effectiveness of the Floquet Hamiltonian description, periodic driving allows us

to even break the remaining U(1) symmetry by targeting a fully anisotropic XYZ

Hamiltonian (therefore we select δx ̸= δy ̸= δz). As a consequence, we observe an

additional relaxation of the z magnetization as shown in Fig. 3.8 c). The relax-

ation of the z magnetization occurs faster than that of the y magnetization due to

their respective scaling factors. The dynamics of the z magnetization scale with

δx − δy = 0.9, while the dynamics of the y magnetization scale with δx − δz = 0.45

(see Appendix C).
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Figure 3.8: Consecutive symmetry breaking for a dual component initial state.

a) Representation of the state initialized with a π/4 pulse on the Bloch sphere. b)

Dynamics of the magnetization components for an XXZ Hamiltonian. c) Dynamics of

the magnetization component for a fully anisotropic XYZ Hamiltonian. Parameters are

tc = 0.5 µs, tπ/2 = 10.7 ns, Jm/2π = 0.4 MHz and the shaded areas correspond to the

density uncertainty of dTWA simulations of Ĥ(t) (dashed lines). Figure and caption

taken and adapted from [71].
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3.4.2 Domain wall dynamics in a 1D atom chain

We finally demonstrate that Floquet engineering can be employed to explore the

transport properties of many-body spin systems. To achieve this, we prepare the

system in a 1D domain wall state where a boundary separates atoms in the |↓⟩ from

atoms in |↑⟩ state. The arrangement of the atoms is illustrated in Fig. 3.9 a). The

dynamics of this domain wall state strongly depend on the anisotropy of the XXZ

Hamiltonian in Eq. 3.13, due to two competing effects. Spin flips occur at a rate of

Jx, resulting in a melting of the domain wall, countered by an accompanying energy

cost of 2Jz that preserves the domain wall. Theoretical studies of this scenario

predict melting of the domain wall for δz/δx < 1 [152, 153] ballistic in time, a

diffusive behavior for δz/δx = 1 [154], and freezing of the domain wall for a long

time if δ > 1 [153].

For our investigations, the spin is encoded in the |↓⟩ = |75S1/2,mj = 1/2⟩ and

|↑⟩ = |75P3/2,mj = −1/2⟩ Rydberg states. At a distance of a = 19 µm, the nearest

neighbor interaction is J/2π = 270 kHz and Jm/2π = 600 kHz, fulfilling the fast

cycling condition in Eq. 3.10. By utilizing the ability to locally address the spins,

we initialize five in the |↓⟩ and five in the |↑⟩ state, thus implementing the domain

wall state. The evolution of this state is explored under the XXZ Hamiltonian with

anisotropy δz/δx = 0, 1, 2. Fig. 3.9 b) display the single spin magnetization ⟨σz
i ⟩

as a function of the normalized time t′ = tJx(δz/δx)/(J · 1µs). For δz/δx = 0, 1,

we observe the melting of the domain wall, resulting in an approximately uniform

magnetization profile for t′ ≥ 3. The domain wall melts more slowly for δz/δx = 1,

as expected from the XXZ Hamiltonian. In the case of larger anisotropy δz/δx = 2,

the domain wall is conserved, and the magnetization profile shows little dynamics

for t′ ≥ 1, indicating freezing of the dynamics. A detailed analysis of the transport

properties in this few body system is beyond the scope of this thesis but discussed in

dissertation of Pascal Scholl [127]. Therefore, our Hamiltonian manipulation allows

us to differentiate between diverse spin-transport behaviors corresponding to varying

values of the anisotropy δz/δx.
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a) b)

Figure 3.9: Dynamics of a 1D domain-wall state under an XXZ Hamiltonian.

a) Fluorescence image of the 10 atoms used to realize 1D domain-wall state with open

boundary conditions. b) Density maps of the temporal evolution of the z magnetization

of each spin as a function of t′ after preparation of a domain wall state with five atoms

in |↑⟩ and five atoms in |↓⟩ for anisotropies δz/δx = 0, 1, 2. Figures and caption taken

and adapted from [48].

3.5 Summary and discussion

Summary

In this chapter, we explored how periodic driving can be employed to realize tunable

interaction Hamiltonians in many-body quantum spin systems of Rydberg atoms.

First, we have introduced the general concept and mathematical framework nec-

essary to understand our driving protocol, which consists of four π/2 pulses with

adjustable delay times. Our engineering approach transforms an XX Hamiltonian

into an effective XYZ form, where the explicit interaction parameter can be tuned

by varying the delay time between the pulses.

Afterward, we presented the experimental implementation of the protocol in an

ordered array of a few Rydberg atoms, realized with optical tweezers. Employing this

setup allowed us to benchmark the engineering by observing the coherent oscillation

dynamics of two atoms. In this configuration, we observed no significant difference

between the engineered dynamics and the expected dynamics from the target Hamil-

tonian. Following this demonstration, we proceeded to increase the system size to
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an array of 32 atoms. In this ordered scenario, we measured and characterized the

dynamical freezing of magnetization relaxation dynamics. We identified interactions

during the pulses as a primary source of imperfections in this array setup, along with

minor imperfections in the microwave.

We continued with the validation of Floquet engineering in a completely different

regime: a 3D spatially disordered gas of Rydberg atoms. Similar to the implemen-

tation in the Rydberg array, we observed the freezing of magnetization dynamics.

Remarkably, this freezing can be dynamically turned on and off by switching the

pulse sequence. Since we also observed small deviations from the expected XXX

Hamiltonian dynamics, we proceeded with a characterization of the engineering effi-

ciency as a function of the sequence time and driving Rabi frequency. This allowed

us to identify interactions during the finite-width π/2 pulses as the primary source

for imperfect engineering in the current experimental setup.

After validation of the protocol, we proceeded to explore the full potential of Flo-

quet engineering by observing the magnetization dynamics under the general XYZ

Hamiltonian. In particular, we implemented drives that consecutively reduce the

symmetries in the system, breaking the SU(2) and U(1) symmetries. As an exper-

imental probe, we employed a measurement of the magnetization components that

are conserved by these symmetries. Finally, we presented experiments demonstrat-

ing the ability to study transport properties of the XXZ Hamiltonian with tunable

anisotropy in a 1D domain-wall state consisting of 10 atoms.

Discussion

In chronological order, the experiments in the disordered atomic gas were conducted

before those in the tweezer array. Consequently, it was initially not possible to

directly observe the engineering of the underlying coherent oscillation behavior in

our experimental setup in Heidelberg. The collaboration with Antoine Browaeys’

group, therefore, represents a significant extension, which has allowed for an in-

depth characterization of the engineering method in a distinct regime and with
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distinct observable.

The Floquet Hamiltonian Engineering techniques open up opportunities to ex-

plore a wide range of spin models. When combined with the flexibility offered by

the Rydberg tweezer-based experiment, one gains nearly complete control over the

Hamiltonian parameters, which are determined by the atom arrangement and the

chosen model. The elegance of this method lies in its implementation, where ar-

bitrary interactions can be realized by simply adjusting the delay times of global

π/2 pulses, a straightforward task with an Arbitrary Waveform Generator. In con-

trast to global control pulses, it would be interesting to investigate the effect of

local pulses, potentially enhancing the landscape of realizable Hamiltonian. In ad-

dition, the approach is not restricted to Rydberg atoms but can be applied on any

isolated quantum system with the capability to apply periodic driving. This has

recently been demonstrated to tune many-body Hamiltonians in cold molecules [33]

and trapped ions [155]. In the context of quantum simulation, the capability of

engineering arbitrary XYZ models can be directly applied to address open question

ranging across different regimes, including the study of quantum thermalization [9],

spin transport [156] or information scrambling [157].

Beyond its applications in quantum simulation, Floquet engineering techniques

have diverse potential uses in various quantum technologies. There exist well defined

procedures to design multi-pulse sequences for specific target applications, such as

optimal sensing, where undesired terms in the Hamiltonian are decoupled [141]. In

the context of quantum-enhanced sensing, our demonstrated ability to dynamically

freeze dynamics in the system has recently been employed to stall spin squeezing

on demand [94]. Another promising route would include investigations in quan-

tum systems consisting of more than two-level which opens the path towards the

investigation of richer spin models [158].





CHAPTER 4
Time-reversal in a quantum many-body

spin system

Parts of this chapter, are based on the following manuscript, from which parts of the

text have been taken verbatim:

Time-reversal in a quantum many-body spin system

S. Geier, A. Braemer, E. Braun, M. Müllenbach, T. Franz, M. Gärttner,

G. Zürn, M. Weidemüller

Submitted

As described in the previous two chapters, dynamics in quantum systems com-

posed of Rydberg atoms can be controlled by carefully selecting the spin encoding

Rydberg states. Furthermore, a periodically applied drive allows for the implemen-

tation of arbitrary spin models by introducing new effective interaction terms. In

the present chapter, we further explore the ability to shape the dynamics of strongly

interacting systems by combining these two approaches.

One of the impressive aspects of unitary dynamics in quantum systems is the

intriguing ability to effectively reverse the arrow of time by altering the sign of the

Hamiltonian. An early example of this technique is found in spin echo experiments,

77
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where the Hamiltonian, and thus the dynamics, are reversed by effectively flipping

the direction of random magnetic fields that individual spins experience [144, 159].

This reversal causes an apparent demagnetized state to evolve back-in-time into

a magnetized state. While spin echo experiments are based on reversing single-

particle dynamics, it is also possible to invert the sign of an interacting many-body

Hamiltonian [160], leading to the reversal of strong correlations and entanglement in

complex states. This not only shows the remarkable behavior associated with time

reversal but also provides an important tool for quantum technologies, ranging from

metrology to quantum simulation.

Experimental approaches that implement and exploit time-reversal protocols in

quantum metrology show phase sensitivity beyond the standard quantum limit, even

with limited detection efficiency in collective systems [161–164]. Furthermore, by

time-reversing the evolution of many-body system, the effect of decoherence on quan-

tum simulation experiments has been characterized in gate-based quantum proces-

sors and nuclear magnetic resonance samples [134,165]. The capability of reversing

time also provides insights into complex phenomena of interacting quantum systems

such as information scrambling by measuring out-of-time-order correlators [157], as

demonstrated in collective spin models with trapped ions [166], nuclear magnetic

resonance samples in mixed states [167], and through a digital approach in super-

conducting qubits [168]. In this context, the realization of time-reversal in a new

class of systems, namely, isolated quantum spin systems featuring power-law inter-

actions holds significant importance, as they occur naturally in various quantum

simulation platforms, including Rydberg atoms [169], solid-state spin defects [170],

and ultracold molecules [33, 65]. Realizing time-reversal in isolated system with

power-law interactions would therefore lay the foundation for various applications.

In this chapter, we demonstrate the reversal of quantum dynamics, governed

by a tunable many-body Hamiltonians in a Rydberg spin system. As discussed in

Chap. 2 and Chap. 3, Rydberg atoms constitute an ideal platform for quantum

science applications as they enable the exploration of pure quantum states in ran-
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dom [49, 171] and controllable spatial geometries [58–60]. Most importantly, their

decoupling from the environment enables studying unitary dynamics of a broad class

prototypical quantum spin models with long-range interactions [47,49,169,171]. Our

approach is based on reversing the sign of a many-body spin Hamiltonian by apply-

ing a state transfer during the evolution, effectively changing the spin encoding in

the Hilbert space. We demonstrate the time reversal by reviving the magnetization

of an initially magnetized state after having fully relaxed and identify experimental

contributions to which the time-reversal is sensitive. Finally, by combining the time

reversal protocol with Floquet engineering techniques as presented in Chap. 3, we

extend the reversal of dynamics to tunable classes of spin Hamiltonians.

This chapter is structured as follows:

• Section 4.1: This section introduces an experimental protocol used to reverse

the sign of a many-body Hamiltonian within the Rydberg manifold. It is

based on transferring the spin state between two Rydberg state combinations,

effectively changing the pseudo-spin encoding.

• Section 4.2: Here, we implement the introduced reversal protocol in the ex-

periment and demonstrate the revival of many-body quantum dynamics. We

explore the reversal of the evolution of a state that demagnetized due to strong

spin interactions, demonstrating how it returns back to a magnetized state over

time.

• Section 4.3: In this section, we further study the performance of our time-

reversal protocol and identify the sources for current perturbations. There-

fore, we numerically study the influence of atomic motion and finite transfer

efficiency on the amount of reversed magnetization.

• Section 4.4: Finally, we combine the reversal protocol with Floquet Hamil-

tonian Engineering as introduced in Chap. 3 and demonstrate the revival of

magnetization dynamics for a tunable XXZ Hamiltonian.
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4.1 Time-reversal protocol

In this first section, we introduce an experimental protocol that allows for the rever-

sal of the dynamics of an isolated quantum spin system. In general, the evolution of

quantum systems is governed by the Schrödinger equation, which leads to unitary

dynamics of the particles. An inherent characteristic of these dynamics is that a

change in sign of Hamiltonian effectively inverses the arrow of time:

e−iHt → e−i(−H)t ≡ e−iH(−t) . (4.1)

This seemingly simple relation has drastic effects. Starting with a basic product

state, the trajectory of a system that might have led to a strongly correlated, entan-

gled state, can be reversed, effectively returning the system to its original uncorre-

lated product state. To realize a sign change in the interaction Hamiltonian, it relies

on changing the spin representation within the Rydberg manifold. In the following,

we will introduce the time-reversal protocol and discuss the methods employed to

engineer this change in sign.

4.1.1 Time-reversal through spin encoding

The general idea of our protocol is sketched in Fig. 4.1. Experimental platforms

used to simulate the dynamics of a spin-1/2 system consists of particles that offer

various internal degrees of freedom to encode the two pseudo-spin states. This

includes, for example, two states in the larger Hilbert space of rotational states in

polar molecules [32, 33] or two states in the larger Hilbert space of highly excited

states in Rydberg systems. For Rydberg atoms, all these states offer different types

of interactions as introduced in Chap. 2. Now, the goal is to identify subspaces in

this large Hilbert space, which effectively encode the same interaction Hamiltonian

but with an opposite sign. In a first set of encoding states, the interactions are

described by a Hamiltonian Hint, as illustrated by the red lines in Fig. 4.1. The

unitary evolution in this system is governed by Û = e−iHintt. Now, the quantum
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state can be coherently transferred into the second subspace of spin-encoding states

by |↓⟩1 → |↓⟩2 and |↑⟩1 → |↑⟩2. This coherent transfer can be realized using two

consecutive π pulses. In this second set of encoding states, the dynamics are governed

by a Hamiltonian −kHint and the unitary evolution reads Û = eikHintt, as illustrated

by the blue lines in Fig. 4.1. Therefore, the sign of Hint is reversed for the same

Hamiltonian, up to a dimensionless scaling factor k.

Implementation with Rydberg atoms

We apply this protocol to dipolar-interacting Rydberg atoms and identify state

combinations that fulfill the requirements of the previous section. The first pseudo-

spin encoding consists of Rydberg states |↓⟩1 = |nS⟩ and |↑⟩1 = |nP ⟩, shown as red

state combinations. The direct dipolar exchange interactions between these two S−

and P−states can be represented using a Heisenberg XX Hamiltonian (see Sec. 2.1)

ĤXX =
∑
i,j

Jij
(
Si
xS

j
x + Si

yS
j
y

)
, (4.2)

where Si
α (α ∈ x, y, z) are spin-1/2 operators and Jij = 2C3(1 − 3 cos2 θij)/r

3
ij.

C3 is the dipolar coupling parameter, θij the angle between atom i and j and the

quantization axis, and rij their spatial separation. Therefore, the evolution in the

first spin-encoding subspace is governed by ĤXX and lasts for a time t. Subsequently,

the spins are coherently transferred into the second set of spin-encoding states:

|↓⟩1 → |↓⟩2 = |n′P ′⟩ and |↑⟩1 → |↑⟩2 = |n′S ′⟩. We decided to perform the transfer

by applying two consecutive π pulses on both states. As these states represent

another set of Rydberg n′P ′ and n′S ′ states, the evolution is also governed by a XX

model, as shown in Eq. 4.2. As will be discussed in the following section, by carefully

selecting the specific states, one can engineer a change in the sign of the coupling

parameter, such that C3 → −kC3 with k = |C1
3/C

2
3 |, representing the ratio between

the coupling parameters in the two spin encoding. Therefore, the time evolution in

the second spin system follows an XX Hamiltonian with a changed sign, effectively

realizing a time-reversal operation with Rydberg atoms.
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Figure 4.1: Time-reversal on a Rydberg quantum many-body system. Sketch of

the time-reversal protocol. The time-reversal is based on transferring the state between

two spin-1/2 encodings in the Rydberg manifold: |↓⟩1 = |nS⟩ , |↑⟩1 = |nP ⟩ and |↓⟩2 =

|n′S′⟩ , |↑⟩2 = |n′P ′⟩. The unitary evolution in the first spin encoding is given by Hint

and illustrated by the red lines between the spins. Coherently transferring the state into

the second spin encoding state leads to unitary evolution under −kHint, with k being

a dimensionless parameter (illustrated by the blue lines between the spins). Figure and

caption taken and adapted from the manuscript Geier et al. [172].

4.1.2 Sign changing Rydberg interactions

Our time-reversal protocol is based on dividing the overall evolution into subsets of

spin-encoding states with opposite signs in the XX Hamiltonian. In this section, we

will briefly discuss how the sign of the resonant dipole-dipole interactions changes

by properly selecting the states. The dipole-dipole interactions were introduced in

Sec. 2.1. Considering the basis {|↓↑⟩ , |↑↓⟩} the Hamiltonian for two atoms can be

expressed as:

ĤDDI =
1− 3 cos2 θ

r3

 0 C3

C3 0

 (4.3)

with the interaction coefficient

C3 =
1

4πϵ0
⟨↑↓ |d̂01d̂02 + 1/2

(
d̂+1 d̂

−
2 + d̂−1 d̂

+
2

)
| ↓↑⟩ , (4.4)

with d̂0i = d̂zi and d̂±i = −1/
√
2(d̂xi ± id̂

y
i ).
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In the matrix element for C3, depending on the involved states |↓⟩ and |↑⟩, only

one of the three terms contributes. Here, it becomes important to consider the

involved mj quantum numbers and particularly their difference q = m↓
j −m

↑
j , which

are affecting the sign of the C3 coefficient.

For q = 0, only the first term contributes, while for q = ±1, the second or

third term contributes. Therefore, for state combinations with q = 0, we obtain

C3 = ⟨↓| d̂01 |↑⟩ ⟨↑| d̂02 |↓⟩ = | ⟨↓| d̂0 |↑⟩ |2. Here, we used the complex conjugate re-

lation (d̂0)† = d̂0. Hence, state combinations with q = 0 always yield a positive

interaction coefficient. In contrast, for state combinations with q = +1, the inter-

acting coefficient reads C3 = ⟨↓| d̂+1 |↑⟩ ⟨↑| d̂−2 |↓⟩ = −| ⟨↓| d̂+ |↑⟩ |2. Here, we used

the complex conjugate relation (d̂+)† = −d̂−. Therefore, interaction coefficients for

these state combinations are always negative. The same reasoning applies for q = −1

transitions. We note that this reasoning is valid for general states in the Rydberg

manifold that are dipole-dipole coupled with q = m↓
j − m↑

j . In the following, we

utilize this property to realize two spin-encoding subspaces with opposite sign in the

interaction Hamiltonian.

4.2 Time-reversal of quantum many-body dynamics1

The previous section introduced a protocol for reversing many-body quantum dy-

namics by dividing the evolution in two spin-encoding subspaces in the Rydberg

manifold. We now apply this scheme to our spin system of Rydberg atoms 2 . In

general, time reversal can be observed in many observable of the system, including

the return fidelity to the initial state or reversal of the variance of observables. Our

approach consists of reversing the relaxation dynamics of a magnetized spin system,

1Taken verbatim from the manuscript Geier et al. [172] with minor adaptions for the ease of

readability.
2To enhance the reader’s understanding, our focus in this part is placed on the experimental

results. A comprehensive introduction to the experimental setup, system preparation, readout,

and strategies for controlling Rydberg spin is provided in Appendix B.
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similar to the relaxation measurements presented in the previous chapters.

Fig. 4.2 a) illustrates the experimental sequence. We perform a global two-photon

excitation to the |↓⟩1 = |61S1/2,mj = 1/2⟩ Rydberg state in our ultracold gas of

rubidium 87 atoms. The system is spatially disordered due to the random positions

of the Rydberg atoms in the cloud. The Rydberg density sets a typical length

scale which leads to a typical energy scale quantified by the median of the nearest

neighbor interaction energy Jm = medianj maxi |Jij|. The explicit parameter of the

experiments presented in this chapter can be found at the end of Sec 4.3. Following

the excitation, a microwave π/2 pulse to |↑⟩1 = |61P1/2,mj = 1/2⟩ initializes the

spins in a magnetized state in the equatorial plane of the Bloch sphere, corresponding

to the first set of spin-encoding states. The subsequent evolution for a time t1 follows

an XX Hamiltonian as described in the previous section, resulting in a complex

many-body state. Our selection of states yield a positive interaction coefficient

C1
3/2π = 3.2 GHzµm3. After this first evolution period, we coherently transfer the

spin state into the system, encoded with a set of |↓⟩1 → |↓⟩2 = |61P1/2,mj = −1/2⟩

and |↑⟩1 → |↑⟩2 = |62S1/2,mj = 1/2⟩ Rydberg states. We perform this transfer by

the application of two consecutive π pulses with Rabi frequencies Ω/2π = 9 MHz

and 11 MHz, respectively. The subsequent evolution in this second spin system lasts

for a time t2 and follows again an XX Hamiltonian. However, due to the selection of

the involved states, we obtain a negative sign for the interaction coefficient C2
3/2π =

−2.8 GHzµm3. The ratio between the coupling parameters is given by k = 1.1. At

the end of this sequence, we readout the magnetization in the equatorial plane Mϕ.

Our detection method is based optically exciting the |↓⟩1 = |61S1/2,mj = 1/2⟩ state

and therefore, we transfer the state back into the first spin system and perform the

readout using a tomographic readout of the phase contrast (see Appendix B).

The time evolution of the magnetization without state transfer is shown as red

circles in Fig. 4.2 b). Starting from a fully magnetized state, the magnetization

relaxes towards a demagnetized state within the first ∼ 0.7 µs. This relaxation is

driven by the XX interactions and has also been observed in Chap. 2 and Chap. 3.
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Figure 4.2: Reversal of magnetization dynamics. a) Experimental protocol to

measure time reversal of the magnetization dynamics. The two spin encoding states

are represented by |↓⟩1 = |61S1/2,mj = 1/2⟩, |↑⟩1 = |61P1/2,mj = 1/2⟩, |↓⟩2 =

|61P1/2,mj = −1/2⟩, |↑⟩2 = |62S1/2,mj = 1/2⟩ and the state transfer is performed by

two consecutive π pulses. b) Magnetization dynamics in the first spin encoding states

without state transfer (red circles) and with state transfer (in the second set of encoding

states), applied after evolving for t1 = 0.4 µs in the first spin system (blue circles). The

dashed line displays the state transfer efficiency: the magnetization after transferring

the state for t1 = t2 = 0. The median interaction strength is Jm/2π = 0.43 MHz.

Figures and caption taken and adapted from the manuscript Geier et al. [172].
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For the same spin initialization, we now apply the transfer pulses after an evolu-

tion time t1 = 0.4 µs, at which point the magnetization relaxed to M ∼ 0.15.

This changes the subsequent evolution in second spin system drastically (blue cir-

cles in Fig. 4.2 b)). Instead of relaxing further into a demagnetized state, the

system evolves back into a magnetized state after a time t2 = 0.41 µs (or total

time t = 0.81 µs). This revival of magnetization is expected for a system that

evolves back in time or -as done here- for which the sign of the Hamiltonian is re-

versed as apparent from the unitary evolution of the magnetization ⟨Mϕ(t1 + t2)⟩ =

⟨ψ0|eiHXX(t1−kt2)Mϕe
−iHXX(t1−kt2)|ψ0⟩ which revives to M0 = ⟨ψ0|Mϕ|ψ0⟩ at t1 = kt2.

We note that the time trev, where the reversal occurs, slightly deviate from theoret-

ical expectation. We expect a ratio between the coupling parameter of k = 1.1 but

measure k = 1.03. We attribute this small difference to interaction times during

the finite width microwave pulses which are not included in the theoretical value.

The light blue dashed line shows the transfer efficiency, defined as the magnetization

obtained after the state transfers with no evolution time i.e. t1 = t2 = 0, and repre-

sents the maximally possible achievable magnetization after the evolution with the

reversed Hamiltonian, accounting for infidelities during the transfer. For longer evo-

lution times, the magnetization starts to relax again and ends up in a demagnetized

state after ∼ 1.6 µs, consistent with expectations for an XX Hamiltonian.

4.3 Time-reversal efficiency3

Time-reversal protocols are generally extremely sensitive to perturbations or deco-

herence, given the complexity of quantum states arising from many-body interac-

tions. To assess the influence of perturbations, such as atomic motion or admixture

of other atomic states, we characterize the long-time behavior (Jm/2π · t > 1) of our

protocol by measuring the amount of reversed magnetization at the reversal time

trev = t1 + k · t1 (as illustrated in Fig. 4.2 b)) with respect to different evolution

3Taken verbatim from the manuscript Geier et al. [172] with minor adaptions for the ease of

readability.
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times t1 ranging from 0.1 µs to 3 µs. Additionally, we increase the initial Rydberg

excitation time, resulting in denser samples with closer atom-to-atom separations

and consequently leading to stronger median interactions Jm.

The median interaction strength Jm is estimated by simulating the spin dis-

tribution from a hard-spheres excitation model, where each Rydberg excitation

is described by a superatom with a given blockade radius and effective Rabi fre-

quency [171]. We note that the excitation model is less accurate for high densities,

where the distance between Rydberg atoms is on the order of the blockade radius

and the hard-sphere approximation breaks down. However, in order to efficiently

perform time-reversal experiments, we prepared rather dense samples with strong

interactions, such that the interaction timescales are short compared to decoherence

times. The obtained spin distribution serves as an estimate of the typical interaction

strengths.

For all interactions, the experimental data shows a decrease in the reversed

magnetization with time (see circles in Fig. 4.3 a)), similar to Loschmidt echos

with imperfections [173]. For the weakest interactions Jm/2π = 0.43 MHz, shown

as blue circles, the magnetization still returns to a value of M ∼ 0.2, even after

trev = 6 µs. To put that into perspective: The magnetization relaxes to zero after

only t1 ∼ 0.7 µs for this setup. We observe similar behavior for stronger interactions

Jm/2π = 0.79 MHz (yellow circles) and Jm/2π = 0.95 MHz (green circles) despite

the enhanced decrease of the overall reversed magnetization as a function of reversal

time.

In an ideal reversal scenario, one would anticipate a complete return to the initial

magnetization at all times. To understand which perturbations influence our time

reversal process, we employ simulations of a simplified model that only considers

two internal states, |↓⟩ and |↑⟩, per spin. The state transfer pulses are mimicked

by a simple 2π rotation about the y-axis at the end of the first evolution time 4 .

4We chose the y-axis since it does not respect symmetries of the Hamiltonian or the initial state,

which the state transfer pulses in the experiment also do not respect.
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a)

b)

Figure 4.3: Reversal efficiency. a) The reversed magnetization measured at the time

of the reversal trev = t1 + k · t1 for various evolution times t1 (circles). The different

colors correspond to increasing median interaction strength Jm/2π blue, yellow, and

green, respectively. Dashed lines correspond to MACE simulation with a cluster size of

16 atoms. b) MACE simulations of the reversed magnetization for Jm(0)/2π = 0.43

MHz including different experimental imperfections: No atom motion but finite state

transfer pulse width (dotted blue line); atom motion but infinitely fast state transfer

(dashed orange line); Atom motion and finite transfer pulse width (solid orange line).

The blue solid line shows the situation for perfect reversal with infinitely fast transfer

and no atom motion. The upper panel displays the change of the median interaction

strength Jm (dotted orange line) and the distance of the interaction matrix norm of

||δJ|| (solid orange line) (see main text for details). Figure and caption taken and

adapted from the manuscript Geier et al. [172].
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The system, comprising hundreds of spins, is too large to solve exactly. Therefore,

we perform moving-average cluster-expansion (MACE) simulations [174]. This ap-

proach involves simulating clusters, each comprising n atoms, and then averaging

the results across all possible cluster configurations present in our sample 5 .

In the experiment, we restrict the experimental time to a maximum of 6 µs,

which is shorter than to the spontaneous lifetime of the involved Rydberg state (527

µs for |61P ⟩ and 243 µs for |61S⟩), as well as shorter compared to the combined

lifetime, including black-body decay (143 µs for |61P ⟩ and 105 µs for |61S⟩). Conse-

quently, experimental timescales are more than an order of magnitude shorter than

the lifetimes of the included Rydberg states, allowing to neglect these perturbations

in our simulations. Instead, we account for two experimental perturbations that

could significantly affect the system. First, the state transfer Rabi frequencies of

Ω/2π ∼ 10 MHz are only one order of magnitude stronger than the median in-

teraction strength in the sample. We note that the maximum interaction strength

for particles at the blockade radius can be much larger than Jm. Therefore, inter-

actions lead to a modification of the state during the transfer pulses. Second, we

account for the thermal motion of the atoms during the two evolution periods, which

slightly changes the Hamiltonian over time, making a simple sign flip insufficient for

perfect dynamics reversal. To model this, we assign each atom a fixed velocity v

drawn from a Boltzmann distribution at the cloud’s temperature T = 11 µK and

recomputing the couplings every 200 ns according to the changing positions over the

course of the simulation, given by rij(t) = (xi + vit)− (xj + vjt). We purely assume

classical thermal motion and neglected motion due to forces between the atoms.

This is justified by estimating both effects: The distance an atom travels due to the

finite cloud temperature is given by ∆x = v · t with v =
√

2kBT
m

. Therefore, over

1 µs the atom moved by roughly ∼ 50 nm. Motion due to atomic forces can be

estimated by ∆x = a · t2 with a = F/m = 1
4πϵ0

3d2

r4
/m. Here, d is the dipole matrix

element. Over 1 µs, the atom moved roughly ∼ 0.5 nm. Simulations of this simpli-

5MACE simulations have been conducted by Adrian Braemer with close discussion.
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fied model are shown as dashed lines in Fig. 4.3 a), and they capture the decrease

in reversed magnetization on a qualitative level. We note, that the cluster sizes of

n = 16 atoms are still not providing fully converged simulations and therefore our

simulation results overestimate the magnetization systematically. A detail analysis

has been performed by Adrian Braemer and is discussed in [172]. However, this slow

convergence in cluster size is attributed to the high sensitivity of Loschmidt echos.

Our simulation allows us to isolate the influence of atomic motion and finite

transfer efficiency so that we can assess the effects individually. When focusing on

temperature, we study the change in couplings Jij induced by thermal motion. On

the one hand, we find the median interaction strength between nearest neighbors Jm

does not vary significantly over the duration of the simulation (dotted orange line in

the upper panel of Fig. 4.3 b)). This means that the overall distribution of couplings

largely remains the same. On the other hand, when we directly compute the distance

of the full interaction matrix J at the beginning and at time t as ∥δJ∥ = ∥J(t)−J(0)∥F
∥J(t)∥F

(where ∥·∥F denotes the Frobenius norm), we observe a noticeable growing deviation,

with approximately 20% difference at 6 interaction cycles (solid orange line in the

upper panel of Fig. 4.3 b)). We denote the change in couplings over one interaction

cycle as δJm = ∥δJ(t = 2π/Jm)∥.

While the global properties of the coupling distribution remain unchanged, the

microscopic configuration does indeed undergo significant changes. The impact on

the magnetization can be directly observed by the dashed orange line in the lower

panel of Fig. 4.3 b), representing the scenario with perfect transfer efficiency Ω/Jm =

∞ and our finite cloud temperature (δJm = 0.04). The reversed magnetization

starts at 0.5 and, after an initial plateau, gradually decreases over time after a few

interaction cycles. This behavior is due to the sensitivity of the Loschmidt echo

to different microscopic configurations. The atomic motion clearly affects the long-

term behavior of our time reversal protocol but cannot explain the drop in reversed

magnetization at short times.

We exclusively investigate the impact of finite state transfer efficiency in a sce-
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nario where the sample is at absolute zero temperature (δJm = 0). In this case,

couplings remain constant in time, but interactions are active during the transfer

process (dotted blue line in Fig. 4.3 b) lower). As expected, this reduces the transfer

efficiency even at t = 0, where no dynamics take place except during the transfer

pulse. Surprisingly, the magnetization quickly reaches a plateau and does not ap-

pear to decay further. Fortunately, this means finite pulse times introduce an almost

constant error in the magnetization that can be calibrated.

By considering both imperfections, we can qualitatively reproduce the results

observed in the experiment (orange solid line). We conclude that for short times

(Jm/2π · trev < 1), finite transfer efficiency is the dominating perturbation, while

the longer-term behavior (Jm/2π · trev > 1) is dominated by the sensitivity to slight

changes in the microscopic configuration, due to atomic motion.

Summary of the experimental parameter

Our investigation of the performance includes tuning the median interaction strength

by increasing the Rydberg excitation time, denoted as texc. A change of the exci-

tation time affects the spin distribution in several ways. Longer excitation times

increase the atom number N within a certain volume and therefore reduce the me-

dian separation between the atoms, denoted as rmed. On the other hand, longer

excitation times result in a smaller fourier width, which in turn increases the block-

ade radius (see Appendix A).

The following table summarizes the parameters obtained from our excitation

model:

Jm/2π [MHz] rmed[µm] rb[µm] texc[ µs] N

0.43 14.3 8.1 0.8 332

0.79 11.7 9 1.55 917

0.95 11.1 9.6 2.55 1333
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4.4 Time-reversal of tunable XXZ models6

For quantum engineering applications, it is important to be able to tune the specific

type of Hamiltonian one is interested in studying. Quantum metrology applications

benefit from a power-law XXZ Hamiltonian [175], which can directly be combined

with time-reversal protocols to enhance phase sensitivity [161, 162]. On the other

hand, investigating out-of-time-order correlators as a measure for quantum infor-

mation scrambling, might reveal distinct behavior for different types of spin mod-

els [157].

To realize the reversal of a wide range of many-body Hamiltonians, we combine

our protocol with Floquet engineering. This technique, introduced in Chap. 3 and

employed in various other quantum simulators to engineer tunable spin Hamilto-

nians [33, 155], utilizes a periodically applied drive to transform a naturally given

Hamiltonian into a desired target form. In our implementation, the specific pulse

sequence illustrated in Fig. 4.4 a) transforms the natural XX Hamiltonian into an

XXZ Hamiltonian

HXXZ =
∑
i,j

J⊥
ij (S

i
xS

j
x + Si

yS
j
y) + J

∥
ijS

i
zS

j
z , (4.5)

with J⊥
ij = Jij

2(τ1+τ)
tc

and J
∥
ij = Jij

2τ
tc
. Here, tc = 2(τ1+2τ) is the total sequence time

and τ2 = τ3 = τ . The anisotropy J
∥
ij/J

⊥
ij is tunable with the delay time between

the pulses. A detailed derivation of this Hamiltonian is performed in Chap. 3.

To demonstrate the reversal, we employ a protocol similar to the one introduced

in Sec. 3.4. We initialize the system in a state in the equatorial plane of the spin

system represented the first spin encoding and let it evolve for tprep = 100 ns. The

resulting state serves as the initial state with M ∼ 0.4 magnetization. We introduce

this step to allow the strongest interacting spins in the disordered sample to demag-

netize since their interaction cannot be efficiently engineered (see Chap. 3). We

6Taken verbatim from the manuscript Geier et al. [172] with minor adaptions for the ease of

readability.
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Figure 4.4: Time-reversal of XXZ models with tunable anisotropy. a) Protocol:

The periodic driving sequence consisting of π/2 pulses with tunable delay times is applied

to the two systems and transforms the natural XX Hamiltonian into an XXZ Hamiltonian

with the respective sign. b) Red circles in the left panel: Magnetization at t1 = 0.5 µs

as a function of the anisotropy J
∥
ij/J

⊥
ij in the engineered XXZ Hamiltonian without state

transfer (for the first spin encoding). Blue points in the right panel: Magnetization at

the reversal time trev (for t1 = 0.5 µs) after evolving with the same pulse sequence and

therefore target Hamiltonian in both spin encoding states, despite the opposite sign.

Figure and caption taken and adapted from the manuscript Geier et al. [172].
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then apply the pulse sequence and engineer an XXZ Hamiltonian with anisotropies

J
∥
ij/J

⊥
ij between 0.14 and 1 and measure the magnetization at late times t1 = 0.5 µs.

For J
∥
ij/J

⊥
ij = 1, the system posses a SU(2) symmetry, and the magnetization consti-

tutes a conserved quantity. However, when J
∥
ij/J

⊥
ij < 1, we expect the magnetization

to decrease due to the breaking of this symmetry. The red circles in the first panel

of Fig. 4.4 b) show the magnetization at t1 = 0.5 µs as a function of the anisotropy

in the system with the first spin encoding. As already observed in Sec. 3.4, the

magnetization increases for increasing J
∥
ij/J

⊥
ij , and we almost completely conserve

the initial magnetization (M ∼ 0.4) when J
∥
ij/J

⊥
ij = 1.

After evolving in the first spin state encoding, we transfer the state to the second

set of encoding states to flip the sign of the natural Hamiltonian. Applying the very

same engineering sequence as in the first half then realizes −kHXXZ without any

other operations necessary. We measure the final magnetization at trev, where we

expect the revival. The result is shown by the blue points in the second panel of

Fig. 4.4 b). For all probed anisotropies, the reversed magnetization reaches the

magnetization expected from the state transfer efficiency, demonstrating the ability

to reverse the dynamics for arbitrary XXZ Hamiltonians.

4.5 Summary and discussion

Summary

In this chapter, we introduced and experimentally validated a protocol for revers-

ing the dynamics of strongly interacting spin systems. The approach is based on

identifying two subspaces in the Hilbert space, which is spanned by a larger number

of Rydberg states, encoding the same spin Hamiltonian but with an opposite sign.

These subspaces, denoted as one and two, naturally interact through a dipolar XX

model with the respective coupling parameters bearing opposite signs. A coherent

state transfer between the spin encodings is realized by employing two consecutive

global microwave π pulses.
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In the first experimental demonstration, the system was initialized in a fully

magnetized state. We then observed the relaxation of magnetization in the first spin-

encoding subspace, driven by unitary dynamics governed by the XX Hamiltonian. As

the initial state partially demagnetized, we implemented the transfer into the second

spin-encoding subspace, resulting in an almost complete revival of magnetization

attributed to the opposite interaction sign. For longer times, the magnetization

started to relax again, and the system ended up in a fully demagnetized state.

To investigate the sensitivity of our protocol, we examined the performance of

our current implementation. We realized this by adjusting the density of the Ryd-

berg sample, thereby varying the spacing between atoms and the strength of their

interactions. We introduced a simplified model that allows us to identify two main

perturbations: (i) Imperfect transfer pulses, stemming from strong interactions,

leading to an offset in the magnetization, affecting the early times, and (ii) motion

of the atoms due a finite cloud temperature, which changes the micro configuration

of the sample over time, affecting the long-term behavior.

We finally combined our approach to reverse the time evolution of many-body

quantum systems with the ability to realize tunable spin Hamiltonian through Flo-

quet engineering, as discussed in the previous Chap. 3. By periodically driving sub-

space one, we observed the evolution of the magnetization at long times for different

anisotropies of an XXZ Hamiltonian. Subsequently, we transferred the state into

the second spin-encoding subspace and applied the same periodic driving, targeting

the XXZ Hamiltonian with same anisotropies but opposite sign. Notably, at the

revival time, the magnetization remained constant, independent of the anisotropy,

illustrating the time-reversal property for tunable spin Hamiltonians.

Discussion

While it is mathematically straightforward to comprehend that altering the sign of

an interaction Hamiltonian effectively inverts the arrow of time, the consequences on

the dynamics are profound. The fact that a demagnetized states essentially ”decays”
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back into a magnetized state under natural interactions showcase the remarkable

characteristics inherent in the unitary evolution of quantum systems.

Time-reversal has previously been implemented on platforms which mostly real-

ize collective models [161–163, 166]. Nuclear magnetic resonance experiments have

demonstrates the reversal of dynamics for power-law interactions with mixed quan-

tum states by Floquet engineering the natural Hamiltonian [160, 165, 167], any ap-

proach which will be further discussed in the Chap. 5. The application to sys-

tems featuring power-law interactions in an isolated environment with pure quantum

states has, to our knowledge not been realized before. The protocol simply requires

the application of a state transfer, making the experimental implementation quite

simple and robust. Both effects that are currently affecting the performance of the

protocol, being the finite transfer efficiency and atomic motion, are not fundamen-

tal and can be reduced by increasing the Rabi frequency and lowering the cloud

temperature. We also note that the approach is applicable to general experimen-

tal platforms featuring two subspaces for the pseudo-spin encoding with interaction

coefficient of opposite sign.

Our implementation in isolated systems with power-law interactions lays the

foundation for several directions of application in quantum technologies. It facilitates

the investigation of out-of-time-order correlators [166–168] for various Hamiltonians

and it might be applied in quantum-enhanced metrology to achieve phase sensitivity

close to the Heisenberg limit [162,164]. Time reversal operations further constitute

an important tool to validate the quality of general platforms that are exploiting

quantum effects as a resource, by identifying perturbations resulting in an imperfect

revival of observables [134,165].



CHAPTER 5
Two proposals for alternative approaches

to engineer quantum spin systems

In the previous chapters 1 to 4 of this thesis, we conducted experimental investi-

gations to explore how Rydberg atoms serve as a versatile platform for studying

quantum many-body systems. We employed several approaches, including carefully

selected principle quantum numbers, various state combinations, or periodic driving

sequences, to shape the interaction Hamiltonian. In this final chapter, we propose

two alternative approaches to engineer the Hamiltonian, laying the foundation to

study a wide variety of quantum spin models with additional features.

This chapter is divided into two independent parts, each proposing an own ex-

periment and structured as follows:

• Section 5.1: The first part investigates an alternative approach to reversing

the time evolution of a quantum spin system. We employ well-established

nuclear magnetic resonance techniques and integrate them into the Rydberg

platform. In order to achieve this, we propose the tuning of dipolar XXZ

models with a static electric field as an experimental method, which makes

up a major part of this section.

97
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• Section 5.2: In the second part of this chapter, we propose a scheme for

tweezer array experiments, allowing the combination of spin-1/2 systems

with mobile dopants. The system can be mapped on a so-called bosonic

t − J model, and our proposed implementation includes a third Rydberg

level, effectively realizing a hole degree of freedom. In this model, various

parameters are tunable with a new set of experimental knobs: the applied

magnetic field and the angle between the atoms and the quantization axis.

5.1 Time-reversal through Floquet engineering in a static

electric field

In Chap. 4, we introduced and experimentally demonstrated a protocol for revers-

ing the dynamics of many-body spin systems featuring strong interactions. This

approach was based on the identification of two subspaces within the large Hilbert

space of the Rydberg manifold. These subspaces encode the same spin Hamiltonian

but with opposite signs.

In this section, we propose a novel protocol to reverse the sign of a many-body

Hamiltonian on the Rydberg platform. It is purely based on Floquet engineering

and works without transferring the state. The approach is based on the periodic

driving techniques introduced in Chap. 3. However, instead of engineering arbitrary

spin models, we employ multi-pulse sequences to specifically target a negative sign

in the interaction Hamiltonian. Reversing time through Floquet engineering has

found applications in nuclear magnetic resonance (NMR), and established protocols

with applications in quantum simulation already exist. An example is illustrated

in Wei et al. [167]: By simply adjusting the delay times of pulses, this approach

has enabled the engineering of disorder and interactions in NMR samples, offering

access to a wide range of regimes, ranging from integrable and single-particle-models

to models that show signatures of localization. Applying these established NMR

techniques to the Rydberg platform, enabling control in an isolated environment,
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facilitates the quantum simulation of many-body spin systems. However, the existing

pulse sequences are tailored for a specific dipolar Hamiltonian naturally occurring in

NMR samples. In the following sections, we propose an approach for implementing

this Hamiltonian with Rydberg atoms and numerically study the reversal through

Floquet engineering in an experimentally realistic scenario.

The central part of our proposal lies in the engineering of dipole-dipole inter-

actions with a static electric field. This allows for the realization of an Ising term

in the Hamiltonian, which is necessary to perform our driving protocol, as will be

discussed throughout this section.

In Sec. 5.1.1, we outline the requirements for manipulating the sign of the inter-

action Hamiltonian using Floquet engineering. We then discuss how a static electric

field changes the interaction Hamiltonian of Rydberg spin systems and propose an

explicit experimental implementation in Sec. 5.1.2. To validate our proposal, we

conduct numerical simulation on a 1D chain in Sec. 5.1.3, before discussing experi-

mental challenges in Sec. 5.1.4.

5.1.1 Time-reversal through Floquet engineering

In this section, we introduce the concept of using periodic driving to invert the sign

of a many-body Hamiltonian and examine the necessary conditions for its applica-

tion. The calculations rely on average Hamiltonian theory, which was introduced in

Sec. 3.1. It is important to note that we only consider global spin manipulations,

which impose certain constraints on the realizable Hamiltonians. To understand the

constraints, it is convenient to translate global microwave rotations, as presented

in Chap. 3, into rotations on the interaction matrix. For a system comprising two

spins, the most general XYZ Hamiltonian can be expressed as

Ĥ = JxŜ
1
xŜ

2
x + JyŜ

1
y Ŝ

2
y + JzŜ

1
z Ŝ

2
z = Ŝ1JŜ

T
2 . (5.1)

Here, J = diag(Jx, Jy, Jz) is the interaction matrix and Ŝ1,2 = (Ŝ1,2
x , Ŝ1,2

y , Ŝ1,2
z ).

When we apply π/2 rotations to this matrix, we essentially permute the entries. For
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instance, a π/2 pulse along the x-direction swaps the Jy and Jz components, resulting

in a modified interaction matrix denoted as J′ = diag(Jx, Jz, Jy). It is important

to note that global rotations, as employed in this context, do not affect the trace

of the interaction matrix. Therefore, time reversal through Floquet engineering

is only achievable with Hamiltonians that possess traceless interaction matrices,

i.e., Tr(J) = 0, allowing the transformation J → −J. Systems described by an

XX Hamiltonian have J ∝ diag(1, 1, 0) and it is therefore not possible to reverse

the sign of J using Floquet engineering. To realize time reversal, one must select

an interaction matrix like J ∝ diag(−1,−1, 2). Under the application of global

rotations, it possible to permute the entries such that we end up with a interaction

matrix denoted as J′ ∝ diag(1, 1,−2). This reversed matrix has the same trace as

J. Consequently, the experimental objective is to realize an XXZ Hamiltonian with

specific interaction parameter: Jx = Jy = −1 and Jz = 2. The subsequent section

proposes a scheme to achieve this using dipolar interacting spins in a static electric

field. Detailed discussions regarding the periodic driving sequences employed to

realize the reversal are presented in Sec. 5.1.3

5.1.2 Tuning of the interaction Hamiltonian with an electric field

In this section, we present a robust experimental protocol for engineering an XXZ

Hamiltonian, utilizing a static electric field. We specifically employ this method to

determine parameters that yield an XXZ Hamiltonian characterized by a traceless

interaction matrix, suitable to implement time reversal through Floquet engineering.

We consider the case of two interacting Rydberg atoms for the rest of this chapter.

The result can readily be extended to a many-body system consisting of individual

Rydberg atoms. As introduced in Sec. 2.1, two Rydberg states, |↓⟩ = |nS⟩ and

|↑⟩ = |nP ⟩, can be mapped on the Heisenberg XX Hamiltonian:

Ĥ = J⊥(Ŝ1
xŜ

2
x + Ŝ1

y Ŝ
2
y) (5.2)

The coupling term is calculated using the dipolar interaction Hamiltonian ĤDDI
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(2.13) of the atomic system and is given by

J⊥ = ⟨↓1↑2 |ĤDDI| ↑1↓2⟩ . (5.3)

Most importantly, this Hamiltonian does not feature Ising-like interactions∝ J∥Ŝ1
z Ŝ

2
z .

This can be seen from the form of the Ising term, which is given by (see Sec. 2.1):

J∥ = (E↑1↑2 + E↓1↓2)− (E↓1↑2 + E↑1↓2) (5.4)

with Eα1β2 = ⟨α1β2|ĤDDI|α1β2⟩. For state configurations |↓⟩ = |nS⟩ and |↑⟩ = |nP ⟩

energy shifts Eα1β2 are dipole-forbidden and J∥ vanishes.

The situation changes in the presence of a static electric field, which modifies

the eigenstate structure of the system. An additional Hamiltonian accounts for the

interaction with this electric field and is expressed as Ĥ = −d̂ · E. In the case of

weak fields, this term can be treated perturbatively, leading to energy shifts in the

bare atomic states. However, for strong fields, the electric field significantly couples

surrounding Rydberg states, such that perturbation theory breaks down, and one

must diagonalize the entire Hamiltonian to accurately describe the system.

The diagonalization of the Hamiltonian leads to the emergence of new eigen-

states, which depend on the specific strength of the applied field. These novel

eigenstates can be represented as combinations or superpositions of the bare atomic

states in the absence of the field:

|ψ(E)⟩ =
barestates∑
n,L,J,mj

cn,L,J,mj
(E) |nLJ ,mj⟩ . (5.5)

Here, cn,L,J,mj
(E) is the electric field dependent probability amplitude of the

bare state with quantum numbers n, L, J,mj in the new eigenstate |ψ(E)⟩.

We now consider two eigenstates within a constant electric field: |↓⟩ = |ψ(E)⟩1
and |↑⟩ = |ψ(E)⟩2. Here, we immediately notice that the energy shifts for J∥ in

Eq. 5.4 are no longer zero, as |ψ(E)⟩1/2 contain different angular momentum states,

and not all matrix elements are dipolar-forbidden (once again, we consider direct

dipolar interactions ĤDDI (2.3)). Consequently, the application of a static electric
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Rydberg atom 1 Rydberg atom 2

Figure 5.1: Rydberg interactions in an static electric field. The spin states are

encoded in two eigenstates in the electric field |↓⟩ = |ψ(E)⟩1 and |↑⟩ = |ψ(E)⟩2. With

this encoding, two atoms (represented by the blue circles) interact via exchange but also

Ising interactions that are tunable with electric field value.

field permits the engineering of Ising interaction terms J∥ within dipolar Rydberg

systems.

We proceed to derive the explicit form of the resulting interaction Hamiltonian.

In the following analysis, we exclusively consider electric fields aligned along the

quantization axis. With this restriction, the electric field couples states with ∆mj =

0. Consequently, the new eigenstates presented in Eq. 5.5 are superpositions of bare

states that share the same mj. Fig. 5.1 illustrates this scenario. As the interactions

are not changing the total magnetic quantum number, the angle dependence in the

dipolar coupling coefficients for exchange and Ising term is given by 1− 3 cos2 θ, as

derived in Sec. 2.1. The full XXZ Hamiltonian reads:

ĤXXZ = J⊥(E)
(
S1
xS

2
x + S1

yS
2
y

)
+ J∥(E)S1

zS
2
z , (5.6)

with interaction parameter J⊥,∥(E) =
C

⊥,∥
3 (E)

r3
(1− 3 cos2 θ) which are now explicitly

electric field dependent (see Eq. 5.4). Many experiments with exceptional electric

field control could directly implement this protocol and engineer desired spin Hamil-

tonian [91].

In the following, this approach is applied to find Rydberg state combinations

that realize an XXZ Hamiltonian with a traceless interaction matrix and, therefore,

an anisotropy of J∥/J⊥ = −2.
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Starkmap calculations

Generally, numerous state combinations can realize XXZ Hamiltonians with a trace-

less interaction matrix. However, in order to efficiently perform experiments, we

demand the combination to satisfy the following criteria:

• The state |↓⟩ = |ψ(E)⟩1 should mainly consist of |nS⟩ Rydberg states to enable

its coupling and selective addressing through a two-photon excitation from the

|5S⟩ ground state.

• The state |↑⟩ = |ψ(E)⟩2 should primarily contain |nP ⟩ Rydberg states to

facilitate its coupling and manipulation via a microwave field. Additionally,

states without significant |nP ⟩ contributions would result in relatively weak

interaction parameters J⊥,∥.

To identify states that meet these criteria, we conducted Starkmap calculations

using the Alkali Rydberg Calculator (ARC) [176]. This involves the exact diag-

onalization of the Hamiltonian within a restricted Hilbert space, considering the

conservation of the mj quantum number. Specifically, we focused on eigenstates

in the electric field that predominantly consist of |48S1/2,mj = 1/2⟩ for |↓⟩ and

|48P1/2,mj = −1/2⟩ for |↑⟩. Stark map near each of these states is presented in

Fig. 5.2 a) and b), respectively. These eigenstates undergo changes due to the pres-

ence of the electric field, and the color coding in panels a) and b) corresponds to the

overlap with the original |48S1/2,mj = 1/2⟩ and |48P1/2,mj = −1/2⟩ states in the

absence of the field. The two lower panels are a zoom into the stark map close to an

electric field around 8 V/cm, a value chosen to realize a traceless XXZ Hamiltonian.

Parameter regime for a traceless interaction matrix

In the Starkmap displayed in Fig. 5.2, we consider an electric field range from

8.278 to 8.288 V/cm and extract the eigenstates with largest |48S1/2,mj = 1/2⟩ and

|48P1/2,mj = −1/2⟩ components for |↓⟩ and |↑⟩, respectively. With these states, the
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a) b)

Figure 5.2: Starkmap calculations. a) Upper panel: Coarse Starkmap of rubidium

87. The lines display the ionization energy of the eigenstates in the electric field.

Blue color bar display the overlap of |48S1/2,mj = 1/2⟩ with the eigenstates. Lower

panel: Detailed view in the range around 8 V/cm, used to calculate the experimental

parameters. b) Upper panel: Coarse Starkmap with green color bar display the overlap of

|48P1/2,mj = −1/2⟩ with the eigenstates. Stark map calculations have been performed

using the ARC package for Python [176].
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matrix elements J∥ (Eq. 5.4) and J⊥ (Eq. 5.3) are calculated. Fig. 5.3 a) displays

the resulting anisotropy J∥/J⊥ as a function of the electric field. At an electric field

of E = 8.283 V/cm, the anisotropy reaches a value of −2, making the interaction

matrix of the Hamiltonian traceless. Furthermore, due to our selection of states and

their large overlap with the states in the absence of an electric field, we achieve a

significant coupling between the two spin states, which is at the order of the bare

state coupling (see Fig. 5.3 b)).

Hence, within the proposed parameter regime, it becomes feasible to implement

an XXZ Hamiltonian that allows for changing the sign of the Hamiltonian through

Floquet engineering. In the subsequent section, we briefly introduce an example of

pulse sequences that realize the time reversal operations.

a) b)

Figure 5.3: Interaction parameter in an electric field. a) Anisotropy J∥/J⊥ as a

function of the electric field. See main text for the involved states. Time-reversal pulse

sequences require an anisotropy value of -2. b) Interaction strength J∥/2π as function

of the electric field for the anistropies of a).

5.1.3 Numerically testing Floquet time-reversal on a few atom sys-

tem

In the previous section, we proposed a scheme to realize an XXZ Hamiltonian with

Rydberg atoms for performing time reversal through Floquet engineering. The idea
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originates from NMR experiments, where XXZ Hamiltonian with traceless inter-

action matrix occur naturally. Moreover, it has been demonstrated that periodic

driving can invert dynamics in these NMR systems [160,167]. In general, there exist

numerous multi-pulse sequences capable of achieving this with various applications.

For instance, in reference Wei et al. [167], a 16-pulse sequence was employed to

intentionally introduce controllable disorder (using random on-site fields) and spe-

cific interactions into the system. This allowed for the exploration of integrable,

single-particle, and localized regimes. With our proposed scheme, a similar experi-

ment could be implemented with isolated quantum many-body systems of Rydberg

atoms in tweezer arrays [43] with the additional capability of locally manipulating

and reading out of the atoms.

While it would be interesting to study how these sophisticated pulse sequences

perform on the Rydberg platform, our following investigations explore a first im-

plementation of two basic sequences that are reversing the interaction term. The

experimental configuration is sketched in Fig. 5.4 a). We consider 10 atoms in a

1D chain, separated by a lattice spacing of a = 18 µm. The Hamiltonian is given

by ĤXXZ =
∑

i,j J
(
−1Si

xS
j
x − 1Si

yS
j
y

)
+ 2Si

zS
j
z , with J/2π = 0.6 GHzµm3/r3, taken

from the previous parameter regime calculations. For a state polarized along the

x-direction, Fig. 5.4 b) shows the simulated relaxation of the magnetization within

2 µs in the absence of driving using exact diagonalization. In order to reverse this

relaxation dynamics, we focus on two sequences:

(i) The WAHUHA sequence (whh4), as introduced in Sec. 3.1, choosing the du-

rations τ1/2 = τ2 = τ3. This pulse sequences transform ĤXXZ → −1/5ĤXXZ.

(ii) The trev4 sequence [177] comprises two π pulses enclosed by two π/2 pulses.

This sequence transforms ĤXXZ → −1/2ĤXXZ.

Both pulse sequences are illustrated in Fig. 5.4 c). To assess the experimental

feasibility of reversing the dynamics using these sequences, we apply the driving

after the 2 µs of natural relaxation and measure the return fidelity, which quantifies

the overlap of the reversed state with the initial state, after 4 µs (trev4) and 10
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µs (whh4). In Chap. 3, we identified interactions during the pulses, as well as the

fulfillment of the fast driving condition J · tc ≪ 2π (Eq. 3.10), as the main sources

for imperfect engineering. Therefore, our simulation takes into account the finite

pulse width and investigates the effect of a finite Rabi frequency. Additionally,

we probed the fidelity as a function of the number of cycles n. The fidelity as

a function of these two parameters is shown in Fig. 5.4 d),e). Under the whh4

sequence (Fig. 5.4 d)) the fidelity increases with the number of cycles for all Rabi

frequencies of the π/2 pulse. We achieve return fidelities of approximately 0.9 for

n = 30 cycles and Ω/2π ≈ 100 MHz Rabi frequencies. On the other hand, the

fidelity for the trev4 sequence (Fig. 5.4 e)) exhibits a similar behavior but increases

significantly faster than for whh4. Already at n = 15 cycles and Ω/2π ≈ 100 MHz,

the fidelity surpasses 0.9. This behavior can be explained by the scaling of −1/2

for the reversed Hamiltonian, in comparison to −1/5, which requires longer cycling

times tc, thereby violating the fast driving condition. Consequently, for simply

reversing the interaction Hamiltonian, the trev4 pulse sequence is preferable and

effectively reverses the time evolution of a spin system in a realistic experimental

scenario with high fidelity.

5.1.4 Experimental challenges

We have presented a scheme for realizing an XXZ Hamiltonian with tunable in-

teraction parameter. While our focus has been on obtaining a traceless interac-

tion matrix in our implementation, this protocol can be readily adapted for various

quantum applications involving Rydberg atoms where tunable spin models are re-

quired [157,167,175].

However, it is important to note that several considerations must be taken into

account for experimental implementation. Some of these considerations are discussed

below:
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a)

x -xy-y

1 2 2 32 2 2 22 1

trev4

whh4

x -x
y-y

2 2

whh4 trev4

b) c)

d) e)

atoms

Figure 5.4: Floquet time-reversal on a few atoms system. a) System under con-

sideration, consisting of 10 atoms in a 1D configuration with interactions governed by

ĤXXZ. b) Magnetization relaxation dynamics of the system initialized in a x polarized

state |ψ0⟩, with J/2π = 0.6 GHzµm3/r3. c) Multi-pulse sequences used to trans-

form ĤXXZ → −1/5ĤXXZ (whh4) and ĤXXZ → −1/2ĤXXZ (trev4). Return fidelity

| ⟨ψ0|ψrev⟩ |2 (z axis) as function as the number of cycles n and the drive Rabi frequen-

cies Ω/2π for the whh4 (d)) and the trev4 (e)) sequence.
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Stable electric field control In order to realize the desired XXZ Hamiltonian, the

electric field needs to remain stable at approximately 1 mV/cm. Fluctuations ex-

ceeding this value can result in significant variations in the Hamiltonian. Commer-

cially available amplifiers and sources can provide the required level of accuracy.

Microwave control The time-reversal protocol introduced in this section relies on

the applications of global microwave pulses. To realize high fidelity microwave pulses,

it is crucial to consider surrounding states that may also be coupled by the drive. In

principle, these states can be tuned with the applied magnetic field and should be

optimized accordingly. Additionally, the coupling to these states strongly depends

on the specific bare states involved.

Rydberg state lifetime To efficiently perform experiments within the Rydberg

manifold, the interactions must be much faster than the typical lifetime of the atoms.

We have chosen eigenstates within the electric field that retain a significant portion

of the original bare state while also including states with higher angular quantum

numbers. The exact value needs to be calculated for each configuration.

5.1.5 Summary and discussion

Summary

In this section, we proposed a scheme to realize time-reversal operations through

Floquet engineering. Due to symmetry considerations, the sign of an interaction

Hamiltonian can only be changed by the use of only global pulses if the interac-

tion matrix J = diag(Jx, Jy, Jz) is traceless. To realize such a Hamiltonian, we

outlined a method involving the application of a static electric field. The electric

field modifies the eigenstates, adding an additional Ising interaction to the exchange

term, which is already present in the absence of an electric field due to dipole-dipole

interactions. Through Starkmap calculations, we identified experimental parame-

ters and state combinations that yield an XXZ Hamiltonian with interaction matrix
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J ∝ diag(−1,−1, 2). Implementing this Hamiltonian is crucial for applying time-

reversal pulse sequences. Additionally, we explored NMR pulse sequences designed

to invert the sign of the interaction Hamiltonian and assessed their performance us-

ing a realistic 1D atom chain, which can be realized using Rydberg tweezer arrays.

Finally, we discussed challenges associated with the experimental implementation of

the proposed schemes.

Discussion

With the proposal presented in this section, Rydberg atoms can implement the

dipolar spin Hamiltonian that naturally occurs in the secular approximation in NMR

systems. This facilitates the application of well-established Floquet engineering tech-

niques. While this section focused on sequences designed to reverse the dynamics of

an interaction Hamiltonian, the next step would involve the investigation of more

sophisticated sequences that also engineer other Hamiltonian terms, such as on-side

disorder fields [167]. Spin models featuring disordered on-site fields are of particular

interest as they serve as prototypical systems to study ergodicity breaking phenom-

ena like many-body localization [99]. This represents an advantage compared to the

approach presented in Chap. 4, which currently lacks the capability to reverse addi-

tional terms in the Hamiltonian, such as on-site fields (although it may be possible

to design pulse sequences to achieve this).

While the primary focus has been on time-reversal operations, the ability to tune

a dipolar XX model into arbitrary XXZ models through the application of a static

electric field opens up various other possibilities. This is particularly significant

considering the high level of control over electric fields realizable in Rydberg exper-

iments [91] (see also Appendix B). In contrast to the XXZ model implementation

discussed in Chap. 2, which exhibits a 1/r6 scaling of interactions, the approach

presented in this chapter enables the realization of XXZ models with a common

1/r3 scaling.
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5.2 Analog quantum simulation of doped XXZ models

So far, we presented how Rydberg atoms provide a versatile platform to study a wide

range of tunable quantum spin-1/2 models by selecting the appropriate pseudo-spin-

1/2 encoding in the Rydberg manifold and employing periodic driving. However,

the Rydberg manifold inherently contains a vast number of states, enabling the

realization of more general spin models, including three or more Rydberg states.

In this final section, we propose an experimental protocol for introducing mobile

dopants into spin models composed of Rydberg atoms, effectively realizing doped

quantum magnets.

Generally, doped quantummagnets are a paradigmatic class of models believed to

capture the phenomenology of strongly correlated electrons, such as high-Tc cuprate

compounds. In these materials, superconductivity arises upon doping an antiferro-

magnetic Mott insulator [178] characterized by a competition between hole motion

and magnetic ordering of spins [179]. Systems similar to strongly correlated electrons

have been simulated using ultracold fermionic atoms in optical lattices, implement-

ing the so-called Fermi-Hubbard model [23, 180–185]. These systems are highly

isolated and, due to the development of quantum gas microscopy, allow for single

particle readout using fluorescence imaging. Due to the superexchange mechanism

in Hubbard models on a lattice at strong coupling, i.e. U ≫ t, the underlying in-

teractions are of antiferromagnetic nature in fermionic systems, while systems with

bosonic atoms show ferromagnetic interactions [186].

This raises the question of how bosonic dopants behave in systems with antiferro-

magnetic interactions and whether they exhibit fundamental characteristics similar

to their fermionic counterparts. Open questions in this field include the pairing

mechanism or the phase diagram at low doping. The experimental studies in this

area have remained elusive due to ferromagnetic interactions in Bose-Hubbard mod-

els, with only a few experiments implementing such a model [187, 188]. Given the

numerous intriguing theoretical questions concerning the behavior of this model, we
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propose a feasible experimental realization of a doped XXZ quantum magnet using

a Rydberg tweezer array. This approach will allow us to shed new light onto these

questions. Specifically, we propose an experimental realization of the (hard-core)

bosonic t−J model [189]. The crucial aspect of our proposed implementation lies in

its extensive range of tunable parameters, allowing access to various regimes. The

key ingredient is to encode the hole degree of freedom in a third Rydberg state

instead of actively removing an atom.

The ideas presented in this chapter emerged during a doctorate exchange with the

group of Prof. Mikhail Lukin at the Department of Physics, Harvard University in

the United States. The entire work constitutes a collaborative effort with discussions

and important contributions from Lukas Homeier, Simon Hollerith and Neng-Chun

Chiu. I performed the calculations presented in this section and contributed to the

ideas on the implementation with Rydberg atoms. While this chapter exclusively

focuses on how bosonic t− J models can be mapped to three states in the Rydberg

manifold, experimental details, such as potential ground state preparation schemes,

are currently under investigations.

In section 5.2.1, we introduce the general concept of how bosonic t − J models

are implemented in Rydberg systems, with a particular emphasis on tweezer ar-

rays. Section 5.2.2 details the implementation of the spin-spin interaction J , while

section 5.2.3 focuses on the implementation of the spin-hole interactions t in our

proposal. The calculations are performed for rubidium 87 atoms. Additionally,

we explore how various parameters, such as magnetic field strength, the angle be-

tween atoms and the quantization axis, and the separation between atoms, can be

employed to finely adjust a range of properties.

5.2.1 Brief introduction to bosonic t − J models with Rydberg

atoms

In this section, we provide a brief introduction to the Hamiltonian under consider-

ation and the general idea of this proposal. The bosonic t − J model consists of
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spin-1/2 models with preferably antiferromagnetic (AFM) interactions, and mobile

bosonic holes. Recent investigations have introduced schemes to map the bosonic

t − J model onto pure spin systems of three Schwinger bosons [190], forming the

basis of our proposed implementation. The Hilbert space is spanned by three states:

|h⟩ (hole state), |↓⟩ and |↑⟩ (the spin states), and the Hamiltonian reads:

Ĥt−J =−
∑
i,j,σ

tij

(
â†i,σâj,σ + âi,σâ

†
j,σ

)
+
∑
i,j

J⊥
ij

(
Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j

)
+ Jz

ijŜ
z
i Ŝ

z
j .

(5.7)

Here, â†i,σ(âi,σ) is the creation (annihilation) operator of a particle with spin σ =↑, ↓

at site i. The first term describes the tunneling of particles∝ t, while the second term

∝ J⊥, Jz describes magnetic XXZ interactions. Fig. 5.5 a) illustrates an example

for a 1D chain in an AFM configuration with a single hole positioned on the central

side. This scenario directly demonstrates how the mobility of holes, as they hop

between sites, can frustrate magnetic order. It highlights the competitive nature

of these processes, which has the potential to give rise to broad range of physical

phenomena. In our proposal, a single atom is prepared in Rydberg states, with |h⟩

corresponding to the hole in the t − J model. It is therefore not a physical hole.

The other atoms are prepared in the spin states |↑⟩ and |↓⟩. We emphasize that

interactions in Rydberg systems have long-range character, enabling hopping and

magnetic interactions beyond nearest neighbors.

The mapping to Rydberg atoms is illustrated in Fig. 5.5 b). As discussed in

Chap. 2, spin-1/2 models with XXZ interactions can be implemented by encoding

the spin in two Rydberg states possessing the same parity, such as |nS⟩ = |↓⟩ and

|(n+ 1)S⟩ = |↑⟩. Interactions in this models are of second order, scaling with the

distance as 1/r6, and are highly tunable by the principle quantum number n. This

type of interactions implement the second term, ∝ J , in the t − J Hamiltonian of

Eq. 5.7.

Moreover, we derived and experimentally observed in Chap. 3 that two atoms

prepared in Rydberg |nS⟩ and |nP ⟩ states exchange their states due to resonant
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dipole dipole interactions, which can be mapped on an XX model. We employ this

type of flip− flop interaction to implement the hole hopping t and, consequently,

the first term in the t − J Hamiltonian of Eq. 5.7. Those hopping interactions are

direct dipolar exchange interactions and fall off as ∼ 1/r3.

In the next section, we outline the procedure for selecting the necessary param-

eters to experimentally construct the bosonic t − J model for geometries in one

and two dimensions. We begin by addressing the implementation of magnetic XXZ

interactions with highly adjustable parameters, realized through the precise manip-

ulation of magnetic fields and the angles between atoms and the quantization axis.

Here, our primary focus lies in the practical realization of antiferromagnetic inter-

actions. Finally, an experimentally realistic scenario is presented. The studies of

this section is particularly interesting for Rydberg tweezer arrays, as they offer the

potential to create arbitrary geometries, such as one-dimensional chains [43].

h

ti
m

e

-3/2 -1/2 1/2 3/2

h

a) b)

"flip-flop" magnetic

h

Figure 5.5: Experimental implementation of the t−J Hamiltonian. a) A 1D spin

chain in an antiferromagnetic configuration. Green and blue arrows illustrate the |↑⟩ and

|↓⟩ states, while the hole is denoted |h⟩. Hopping of the hole ∝ t frustrates magnetic

order ∝ J(J⊥, J∥). The angle between the chain and the quantization axis is denoted

θ. b) Mapping of the |↑⟩, |↓⟩ (magnetic spin) and |h⟩ (hole) degree of freedom to three

states in the Rydberg manifold.
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5.2.2 Tunable antiferromagnetic interactions

This section focuses on the implementation of tunable XXZ models, providing the

magnetic interactions ∝ J⊥, J∥, with a particular emphasis on realizing antiferro-

magnetic interactions (J∥, J⊥ > 0). As discussed in Chap. 2, encoding the spin in

two Rydberg states with the same parity, second-order van der Waals interaction

give rise to XXZ Hamiltonians. To further elaborate on this method, we consider

a spin encoding scheme in which |nS⟩ = |↓⟩ and |(n+ 1)S⟩ = |↑⟩. The interaction

parameters associated with this scheme can be adjusted by varying the principal

quantum number n, as has been illustrated in Fig. 2.3 a). However, we note that

for n exceeding 40, the resulting interactions exhibit ferromagnetic (FM) character-

istics J∥ < 0. Working at lower principal quantum number is undesirable due to the

short Rydberg lifetime and weak interactions associated with such states. There-

fore, additional tuning parameters are necessary to obtain a Hamiltonian with the

desired AFM interactions 1 . To start our investigation, we revisit the van der Waals

Hamiltonian, which enables the realization of magnetic interactions as discussed in

Chap. 2, Eq. 2.15:

ĤvdW = −
∑
ij

ĤDDI(θ) |rirj⟩ ⟨rirj| ĤDDI(θ)

∆ij
F (B)

∝ 1

r6
. (5.8)

It is evident that ĤvdW depends significantly on the Förster defect ∆ij
F (B), which is

related to the intermediate pair state energies. This dependence can be finely ad-

justed by applying a magnetic field B, shifting the pair state energies. Additionally,

the dipole-dipole interaction Hamiltonian ĤDDI(θ) couples pair states with distinct

angular dependencies on θ, representing the angle between two atoms and the quan-

tization axis (see Sec. 2.1 for details). The presence of potential Förster resonances

adds complexity, making it nontrivial to determine a straightforward scaling for the

interaction parameter.

1We note that an encoding |nS⟩ = |↓⟩ and |(n+ 3)S⟩ = |↑⟩ yields AFM interactions (see

Fig. 2.3 b)). However, the intermediate |(n+ 1)P ⟩ only weakly couples to the spin states, which

is unpractical to implement the hole hopping.
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In the following discussion, we outline a procedure to realize the desired XXZ

Hamiltonian within the Rydberg manifold. Specifically, we consider a scenario in-

volving two Rydberg states |68S1/2,mj = −1/2⟩ = |↓⟩ and |69S1/2,mj = −1/2⟩ =

|↑⟩.

Tuning XXZ interactions with a magnetic field in 1D

Our investigation begins with an examination of how the external magnetic field

affects the van der Waals interactions, resulting in the XXZ Hamiltonian:

ĤJ =
∑
i<j

(
J⊥
ij (B, θij)(Ŝ

i
xŜ

j
x + Ŝi

y Ŝ
j
y) + J

∥
ij(B, θij)Ŝ

i
zŜ

j
z

)
. (5.9)

The presence of a magnetic field directly influences the Förster defects ∆ij
F within

the van der Waals Hamiltonian, altering their strengths and potentially their signs.

For relatively low magnetic fields, the Förster defects experience only slight relative

modifications, resulting in minimal changes to ĤvdW. The most significant effects are

expected near Förster resonances, where different pair states within the intermediate

|68P3/2⟩ manifold are individually tuned into and out of resonance. This sensitivity

to specific pair states makes the magnetic field an ideal parameter for realizing

antiferromagnetic interactions.

In the upper panel of Fig. 5.6 a), we illustrate the anisotropy J∥/J⊥ when the

magnetic field is oriented perpendicular to the axis connecting two atoms (θ =

π/2). At low magnetic field strengths, a small negative anisotropy is observed,

consistent with the earlier depiction in Fig. 2.3 a). However, as the magnetic

field becomes larger than 100 G, the pair states undergo significant shifts, resulting

in a substantial change in amplitude and sign of the anisotropy. The red shaded

area corresponds to situations where intermediate pair states come into resonance,

rendering perturbation theory inapplicable and ĤvdW an inadequate description (see

the end of this section for a detailed discussion). Therefore, we can use the magnetic

field as a tool to tune the anisotropy J⊥/J∥ of a XXZ Hamiltonian in a given

spatial configuration with a fixed angle θ. For a specific magnetic field strength of
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B = 158 G, we identify an anisotropy J∥/J⊥ that results in both exchange and Ising

interactions being positive, effectively realizing antiferromagnetic interactions.

Applicability of van der Waals interactions Working close to Förster resonances

can lead to resonant dipole interactions, as briefly discussed in Sec. 2.1. This situ-

ation is undesirable when aiming to implement a pure two-level system. Therefore,

it is essential to carefully analyze the energies of intermediate pair states with the

objective of excluding such cases from the calculations. In our analysis, we assume

the validity of perturbation theory, meaning that the interaction Hamiltonian can

be computed using ĤvdW, under the condition that the dipole-dipole interaction

energies JDDI = C3/2r
3 are significantly smaller than the Förster defect:

JDDI ≪ ∆ij
F . (5.10)

We define this condition as violated if JDDI is less than an order of magnitude smaller

than ∆ij
F , i.e., we require |JDDI

∆ij
F

| ≲ 1/10. This becomes particularly true at short

distances. For our choice of spin states, considering atom separations r < 9 µm, this

condition is violated for magnetic fields within the red shaded area in Fig. 5.6 a).

For a magnetic field strength of B = 158 G, the pair state |68P,mj = −1/2⟩ ⊗

|68P,mj = −1/2⟩ has the smallest Förster defect ∆F = 80 MHz. At a separation

distance of r = 9 µm, the dipole-dipole interaction energy amounts to JDDI = 7

MHz, making it an order of magnitude smaller.

Tuning XXZ interactions with the atom orientation in 1D

The calculation in the upper panel of Fig. 5.6 a) considers a magnetic field which

is perpendicular to the atomic axis (θ = π/2). Subsequently, we explore how the

alignment between a 1D chain of atoms and the quantization axis influences the

Hamiltonian’s characteristics (a scenario as depicted in Fig. 5.5 a)). The lower

left panel of Fig. 5.6 a) displays the anisotropy J⊥/J∥ as function of θ between 0

and π/2. The anisotropy varies between approximately J∥/J⊥ = -0.5 and around

4, depending on the relative orientation of the 1D atomic chain. This provides the
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flexibility to adjust the anisotropy of XXZ models widely, including changing its sign,

by simply rotating the magnetic field or the atoms. The lower right panel display

the interaction coefficient C
∥
6 , resulting in the interaction energy J

∥
ij = C

∥
6/r

6
ij. This

interaction strengths and its sign also vary with θ. Consequently, at θ = π/2, one

can realize an XXZ Hamiltonian featuring antiferromagnetic interactions and an

anisotropy ratio of J∥/J⊥ = 4.

a) spin interactions hole b)

Figure 5.6: Tuning the spin and the hole degree of freedom. a) Tun-

ing the magnetic interactions for a spin encoding |68S1/2,mj = −1/2⟩ = |↓⟩ and

|69S1/2,mj = −1/2⟩ = |↑⟩. Upper panel: Anisotropy J⊥/J∥ as a function of the

magnetic field. Red shaded area corresponds to regions where the system cannot be

approximated with two levels due to Förster resonances. Lower left: Anisotropy as a

function of the angle θ between the 1D chain and the quantization axis. Lower right:

Interaction coefficient C
∥
6 as a function of θ. b) Green line: Ratio between the Ising

interaction strength J∥ and the hole hopping amplitude t as a function of the atom

separation r for a fixed parameter configuration B = 158 G and θ = π/2. Blue line:

Interaction strength J∥ as a function of the atom separation.
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5.2.3 Tunable mobile dopants

The previous section introduced the feasibility of realizing antiferromagnetic XXZ

models in spin systems realized with Rydberg atoms. In this section, we outline the

method for introducing mobile dopants into the magnetic system. Our approach

utilizes resonant dipole interactions between Rydberg |nS⟩ and |nP ⟩ states. As

previously demonstrated in experimental observations (Sec. 3.2.1), two atoms can

exchange their states through these flip − flop interactions (or XX model with

exchange interactions in terms of a spin language). This interaction can be seen as

hopping of an excitation (|↓⟩) from site i to j, allowing us to introduce the concept

of a hole. Consequently, we assign |nS⟩ = |↓⟩ and |nP ⟩ = |h⟩ as depicted in Fig. 5.5

b), effectively enabling hopping of a spin-down excitation between two sides with an

amplitude denoted as t↓. We define the bosonic annihilation and creation operator

as â†↓ |h⟩ = |↓⟩ and â↓ |↓⟩ = |h⟩. Notably, each Rydberg atom can only carry one

excitation, such that (â†)2 = (â)2 = 0. This is called the hard-core boson constraint,

and a similar implementation was realized in [46]. The Hamiltonian reads:

Ĥt↓ =
∑
i,j

t↓
2

(
1− 3 cos2 θij

) (
â†i,↓âj,↓ +H.c.

)
. (5.11)

Here, t↓ =
C3

2r3
is equivalent to the J⊥ dipolar coupling parameter derived in Chap. 2.

By carefully selecting the hole state as an intermediate state between the two spin

states, we ensure that the hopping amplitude t↑ to the |↑⟩ = |(n+ 1)S⟩ spin state

is approximately equal to t↓. This equality results in the absence of a preferred

hopping state, with t↓ ≈ t↑ ≡ t. The proposed setting implements the hopping term

in Eq. 5.7 as

Ĥt =
∑
i,j

(
1− 3 cos2 θij

)(t↓
2
â†i,↓âj,↓ +

t↑
2
â†i,↑âj,↑ +H.c.

)
(5.12)

We note that the dipole interactions between the hole and spin states have a distance

dependence of 1/r3, in contrast to the 1/r6 dependence of the magnetic interactions.

Additionally, the hopping amplitude becomes angle dependent. This offers an ad-

ditional tool to tune the ratio between J⊥, J∥ and t, enabling the exploration of
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various regimes.

In the current and previous section, our focus was primarily on a 1D chain of

atoms, and we proposed specific parameters to realize antiferromagnetic interactions:

|68S1/2,mj = −1/2⟩ = |↓⟩, |69S1/2,mj = −1/2⟩ = |↑⟩, a magnetic field of B = 158

G, and an angle of θ = π/2 between the chain and the quantization axis. In this

scenario, the anisotropy was characterized by J∥/J⊥ = 4. We consider this particular

setup and explicitly calculate the parameters where the hole state is represented by

|68P3/2,mj = −1/2⟩ = |h⟩, finding that t↓/t↑ = 1.05. The green line in Fig. 5.6 b)

illustrates the ratio J∥/t, which scales as r3 with the atom separation r. Depending

on the separation distance, we can encounter scenarios where either the magnetic

interaction or the hole hopping mechanism dominates the system, allowing us to

explore various regimes. In particular, the regime t ≲ J remained experimentally

elusive so far. The blue line represents the interaction strength J∥ as a function of

separation. Notably, at large distances r > 14 µm, the interaction times become

considerably large and almost equal to the lifetimes of the Rydberg atoms, rendering

the implementation inefficient.

Extension to 2D configurations

The previous implementation considered a 1D chain of atoms and demonstrated

tunability of magnetic interactions via the magnetic field and the angle with respect

to quantization axis θ, while the ratio J∥/t is tuned via the atom separation. This

implementation can be directly extended to a 2D configuration as shown below:

h
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In order to keep the interaction between the spins and the hole constant and

equal over the entire array, we fix the magnetic field to be perpendicular to the

atom plane, resulting in θ = π/2 for all atoms. Therefore, the parameter regime

displayed in Fig. 5.6 b) could directly be applied to a 2D configuration.

Selecting a different angle results in spatially anisotropic hopping amplitudes and

spin interactions, which may also contain rich physics.

5.2.4 Summary and discussion

Summary

In this section, we have explored the use of Rydberg atoms in optical tweezer arrays

for studying doped XXZ models. We discussed how these models can be realized by

encoding the spin and hole degrees of freedom into three carefully selected Rydberg

states. In the first part, our focus was on the efficiently implementing magnetic

interactions. To achieve this, we utilized states possessing the same parity such

as |S⟩ and |S ′⟩, naturally realizing XXZ models through a second-order van der

Waals process. We also examined how a magnetic field could be used to shift the

intermediate states close to a Förster resonance, allowing us to tune the system into

a regime that features antiferromagnetic interactions. Subsequently, we explored

how the angle between the atoms and the quantization axis in a 1D chain provides a

parameter that enables highly tunable anisotropies. The following section addressed

the implementation of the hole using direct dipolar exchange interactions between

|S⟩ and |P ⟩ Rydberg states. As these interactions scale as 1/r3 in the distance,

compared to 1/r6 of the magnetic interactions, the distance between the atoms

provides an additional tool to adjust the interaction parameter. This enables us to

realize regimes where the hopping dominates the spin ordering and vice versa. The

magnetic field regime presented for the 1D scenario was chosen to be immediately

applicable for tuning the spin anisotropy in a 2D configuration.
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Discussion

The proposal presented in this section represents a novel approach to investigate tun-

able doped antiferromagnetic quantum magnets, with the exceptional control offered

by state-of-the-art Rydberg tweezer arrays [43]. Our approach relies on an analog

implementation involving three Rydberg states, which can be readily addressed with

microwave photons within the Rydberg manifold, similar to previous investigations

in this thesis. With an experimental realization of bosonic AFM t−J models within

reach, this further motivates theoretical investigations exploring potential connec-

tions to high-Tc superconductivity. Due to the AFM frustration, numerical studies

are challenging, placing the proposed model in a similar complexity class as its

fermionic counterpart. The wide range of tunability offered by our approach pro-

vides opportunities to explore various regimes. Furthermore, our implementation

of the hole is based on a third Rydberg state rather than atom removal, enabling

potential interferometric measurement schemes [191].

In the following, we briefly discuss some prospects for the experimental imple-

mentation. It is important to note that, due to possible Förster resonances, the

tunability of the individual terms in the XXZ Hamiltonian is not a smooth function

of the tuning parameters. Careful parameter selection is necessary for specific target

applications. Therefore, the derivations in this chapter should be viewed as a tuto-

rial for finding specific interaction parameter, such as antiferromagnetic interactions

with a strong Ising term. It is crucial to always verify that the pair states, through

which the XXZ Hamiltonian is implemented, are not resonant with pair states in

the two-level system, ensuring that the van der Waals Hamiltonian remains a good

description. This is especially important as the tunability of the individual terms in

the Hamiltonian requires working near Förster resonances.

In order to perform experiments, it is important to efficiently prepare the de-

sired initial states. Of particular interest are holes doped into the antiferromagnetic

ground state of the XXZ model, which is generally highly entangled. Recent ex-

periments in the Rydberg manifold have demonstrated the ability to realize states
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close to the antiferromagnetic ground state with a dipolar XX model represented

by Rydberg nS and nP states in a tweezer array [47]. The approach requires lo-

cal control of detunings to adiabatically anneal the system into the ground state.

Similar approaches might be applicable to our proposed implementation and are

under investigation. The ground state could also be implemented with a a different

adiabatic ramp involving a transverse magnetic field: In this approach one would

initialize all spins in the x-direction of the Bloch sphere and pin them with a strong

magnetic field. The x-magnetized state would then be the ground states of the

strong magnetic field Hamiltonian. Adiabatically ramping down that field would

ideally result in the ground state of the XXZ model. However, those schemes are

still under development and require careful analysis.

Finally, it is important to emphasize that the introduced building block may not

only be applicable to the implementation of the t−J model but can also find utility

in realizing a broad class of strongly correlated systems, such as, for example, non

Abelian lattice gauge theories [192].





CHAPTER 6
Conclusion and perspectives

6.1 General conclusion and perspectives

The work presented in this thesis represents a significant advancement in the devel-

opment of quantum simulators with highly tunable interaction parameters, opening

up several new routes in quantum science and technology. We have introduced novel

techniques for modifying the Hamiltonian of quantum spin systems and applied them

to explore the out-of-equilibrium dynamics of various XYZ quantum spin models.

Our investigations in chapter 2 have demonstrated the ability to realize ad-

justable XX, XXZ, and Ising models with dipolar and van der Waals interactions in

spatially disordered quantum spin-1/2 systems. The implementation of such quan-

tum spin models with power-law interactions holds significant importance, as they

naturally occur in various quantum simulation platforms, including different Ryd-

berg setups [169], solid-state spin defects [170], and ultracold molecules [33, 65]. A

measurement of the magnetization relaxation dynamics has revealed a remarkable

universal behavior where, by rescaling time, all three relaxation curves collapsed

on each other, independent of the microscopic details of the Hamiltonian. Building

upon previous work presented in the dissertation of Titus Franz [61], we have ad-

vanced the description in which the system segregates into effective spin pairs by

iteratively integrating out the fastest timescales, an approach known from the strong

125
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disorder renormalization group [122–125]. This description reproduces the measure-

ments and suggests that the emergence of these effective pairs is a unifying feature

of disordered quantum spin systems. A natural question that arises is whether this

description holds for more general initial states and observables. Here, local access

could facilitate the direct observation of the microscopic formation of spin pairs and

the identification of pair correlations. Recent experiments with disordered ultra-

cold molecules have begun to investigate such correlations with initial results that

align with the pair description [33]. Furthermore, previous experiments conducted

in our setup, observing the global long-term magnetization in an external field, are

inconsistent with a thermal description but can be aptly described by an effective

pair Hamiltonian over the experimental time scales [193]. In this context, it will be

exciting to explore connections to prethermalization [9, 105–109] and determine if

or when the system begins to depart from a pair-based description. Additionally,

the observed magnetization relaxation dynamics are well-described by a stretched

exponential function, a phenomenology well know from classical spin glasses [6].

This calls for further exploring the connection to spin glasses, which becomes par-

ticularly interesting when studying phenomena such as aging, in which the system’s

time-dependent response to external perturbations reflects its non-equilibrium char-

acteristics [6].

In chapter 3, we have introduced a new building block for programmable quan-

tum simulation. This has involved the introduction of new effective dipolar interac-

tions into isolated quantum spin systems through the application of a periodic drive,

denoted as Floquet Hamiltonian engineering. This technique is based on a simple

adjustment of the delay time of π/2 pulses, transforming the natural XX model into

a XYZ form, thereby opening several avenues for further exploration. Our appli-

cation of this method, using an optical tweezer-based platform, provided access to

nearly every parameter in the Hamiltonian which are determined by the position of

atoms and the quantum spin model governing the dynamics. We have demonstrated

the capability to modify spin transport properties in an ordered configuration of a
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few particles, comprising 10 atoms. Future steps will include scaling the system to

larger number of particle and the exploration of various transport regimes, ranging

from ballistic [152, 153] to diffusive transport [154], within XXZ Hamiltonians with

tunable anisotropies. Furthermore, extending these studies to disordered quantum

spin systems is particularly intriguing as disorder can lead to localization, effectively

fully suppressing spin transport [99]. By tuning the disorder strength through the

Rydberg blockade [50], it may be possible to identify transitions between different

localization regimes and for different Hamiltonian parameters. Our current imple-

mentation has demonstrated the faithful realization of the desired effective Hamilto-

nian, with the primary perturbation arising from interactions during the π/2 pulse

- a perturbation of technical nature that can be addressed in near term by faster

drives.

Floquet Hamiltonian engineering directly provides new prospects for broader ap-

plications in quantum technologies. Multi-pulse sequences can be designed for vari-

ous purposes, ranging from protecting quantum coherence, where certain noise terms

in the Hamiltonian are effectively decoupled, to optimal quantum sensing, where the

signal is enhanced through the decoupling of interactions [141]. Our demonstration

of dynamically engineering the system to freeze magnetization dynamics has recently

be applied to stall squeezed spin states on demand [94], a key feature for quantum-

enhanced sensing applications. Floquet Hamiltonian engineering can also be applied

to qudit systems with more than two levels, introducing a new route for exploring

a richer landscape of realizable Hamiltonians featuring quantum many-body scars

or additional spin exchange channels [158]. It will certainly be exciting to embark

on this novel path of programmable quantum systems. Furthermore, the technique

is not limited to the Rydberg platform. It is applicable to any platform capable of

realizing spin models with an external drive, as demonstrated in recent quantum

simulation experiments involving trapped ions [155] and polar molecules [33].

The two approaches presented at the beginning of this thesis have provided

exceptional control over the microscopic interaction parameters of quantum many-
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body spin systems. In chapter 4, by combining both of these approaches, we have

investigated one of the most intriguing aspects of unitary dynamics in quantum

systems: the ability to effectively reverse the arrow of time by altering the sign of

the Hamiltonian. This reversal of quantum many-body dynamics has been demon-

strated in a dipolar Rydberg spin system featuring power-law interactions, allowing

a demagnetized many-body state to evolve back-in-time into a magnetized state,

which, again, stimulates new possibilities for more general quantum technologies.

By time-reversing the evolution of quantum many-body systems, the effect of de-

coherence, resulting in an imperfect revival, can be characterized [134, 165]. This

constitutes an important tool to validate the quality of general platforms exploiting

quantum effects, such as entanglement, as a resource. In the context of quantum sim-

ulation, time reversal provides a powerful tool, enabling the measurement of out-of-

time-order correlators to investigate quantum information scrambling [157,166–168].

These correlators provide a measure of how quickly information and entanglement

spreads. This is once again interesting in disordered quantum systems, which feature

localization phenomena. Here, our demonstrated capability to reverse tunable quan-

tum spin models with different symmetries is essential for exploring new regimes.

Applications further extend to the field of quantum-enhanced sensing, where time-

reversal protocols enable phase sensitivity beyond the standard quantum limit in

systems with limited detection efficiency [161–163]. To our knowledge, such pro-

tocols have not been applied to dipolar interacting systems, which are particular

interesting as they occur in various other system as previously outlined. Building

up on recent experiments demonstrating scalable spin squeezing with dipolar inter-

actions [94], a combination with time-reversal protocols [164] could enables a new

approach for quantum sensors.

The presented time-reversal protocol essentially involves changing the represen-

tation of the pseudo-spin to realize a flip of the sign in the interaction Hamiltonian.

Importantly, it is not limited to Rydberg atoms and can be readily applied to other

isolated quantum systems where a multitude of internal states is available. It ap-
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pears also feasible to extend its application to other scenarios, such as the t − J

model, where a change of the representation could reverse the sign of the interaction

term and the sign of the tunneling term (see Chap. 5).

In the concluding chapter 5 of this thesis, we have transitioned from experimen-

tal demonstrations to theoretical investigations, suggesting the potential of Rydberg

atoms as a versatile platform for implementing more general quantum spin models.

We have introduced a method in which the dipolar Rydberg interactions are en-

gineered using a static electric field, effectively emulating spin Hamiltonians found

in nuclear magnetic resonance (NMR) systems [167]. The implementation of this

specific model paves the way for the application of sophisticated NMR time-reversal

sequences to study diverse phenomena, such as those used to investigating localiza-

tion in mixed quantum states [167]. The application of these protocols to Rydberg

atoms, which offer the capacity to implement pure quantum states in an isolated

environment with local readout, will enable in-depth studies of localization regimes

and possible transitions [99]. Finally, we have presented a scheme for introducing

mobile dopants into the Rydberg spin system by mapping spin and hole degree of

freedoms to three Rydberg states, effectively realizing doped quantum magnets. The

realized bosonic t − J model has rarely been studied experimentally [187, 188]. It

remains unclear whether such a model captures some of the fundamental features of

strongly-correlated electrons, such as high-Tc cuprate compounds. Given the large

amount of tunable interaction parameters we have introduced in combination with

the previously outlined benefits of the Rydberg platform, we are confident that such

an implementation will provide new insights in strongly-correlated quantum systems.

In summary, the extensive tunability of Rydberg quantum simulators brings us

a step closer to realizing Richard Feynman’s initial vision of fully programmable

quantum simulators [7]. In addition to its significance in quantum simulation, these

studies potentially influence more general quantum technologies. While we are not

there yet, the ability to tune the Hamiltonian as desired could open up avenues for

in-depth exploration of how microscopic interactions impact macroscopic properties.
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This represents a pathway towards customized material design, which may, at some

point in the future, have an impact on our everyday lives.

6.2 Perspectives for the Heidelberg Rydberg experi-

ment

The investigations conducted in this thesis have paved the way for additional studies.

Below, I will briefly overview potential further experimental investigations, some of

which have already begun.

Probing out-of-equilibrium phases of matter Our findings in chapter 2 revealed

that the magnetization relaxation dynamics in our Rydberg spin system can be ef-

fectively described by a pair model. This suggests that the present disorder prevents

it from directly reaching the thermal equilibrium described by the full many-body

Hamiltonian. In addition, chapter 3 demonstrated that our system is well-suited

for applying periodic spin manipulations. These are two ingredients ideal for inves-

tigating the potential emergence of out-of-equilibrium phases of matter within our

isolated Rydberg spin system.

Our focus will be on the investigation of so-called discrete time crystals, which

represent many-body phases of matter characterized by a spontaneously broken dis-

crete time-translation symmetry. Originally proposed by Frank Wilczek in 2012 as

an equilibrium phase of matter with broken continuously time translational sym-

metry [194], it was proven in 2015 that time crystals are not possible in equilib-

rium [195]. However, by relaxing the equilibrium requirement, it has been demon-

strated that time crystals can indeed exist in systems that are not in thermal equi-

librium, such as Floquet systems, where discrete time translational symmetry is

broken [196]. Over the recent years, there has been experimental effort to study

these systems, with the first demonstrations on two platforms in 2017 [132, 133].

Therefore, it will be interesting to address the following questions: (i) Does such
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a phase of matter exist in a disordered spin system with power-law interactions in

3D? (ii) What is the lifetime of such a phase? (iii) What is the roll of spin pairs this

phase?

To address this question, we will employ a sequence as shown in Fig. 6.1 a),

inspired by previous investigations [132, 133]. Starting from a polarized state along

the z-direction, we apply a π pulse, inverting the z-magnetization, and allow for

interactions over a period τ . We have performed preliminary experiments using this

protocol with the results shown in Fig. 6.1 b) - e). We have found that for a perfect

π pulse with short waiting time, the z-magnetization exhibits oscillations over 100

cycles of this sequence with a frequency of ν = 1/2 (Fig. 6.1 b)). With the same

waiting time but with a small error in the π pulses (a small under-rotation which

does not fully invert the z-magnetization), we observe a beating in the magnetization

with different frequency components (Fig. 6.1 c)). For the same error but longer

waiting time, we recover the ν = 1/2 peak (Fig. 6.1 d)). Furthermore, the so-

called crystalline fraction |S(ν=0.5)|∑
|S(ν)| , comparing the amplitude at ν = 1/2 frequency

to the amplitudes in the rest of the Fourier spectrum as a function of the error ϵ, is

enhanced for longer waiting time (Fig. 6.1 e)). Consequently, due to the interactions,

the z-magnetization display a periodicity with frequency ν = 1/2 even at small

perturbations. These are clear signatures of a discrete-time crystalline phase. It

will be exciting to study this phenomenon in further experiments by probing the

full phase diagram, conducting a detailed study of the lifetime, and theoretically

understanding the connection to the pair model.

Towards aging in disordered quantum spin systems and the possible relation to

spin glasses The glassy relaxation dynamics observed in chapter 2 call for further

investigations, particularly because such relaxation dynamics are characteristic of

classical spin glasses [6]. Below a critical spin glass temperature, where thermal

fluctuations are suppressed, these systems relax in a stretched exponential fashion.

This due to the fact that, at low temperature, the system is stuck in local minima

of the energy landscape, resembling a quasi-equilibrium. This is in contrast to the
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a)

b)

States Sequence

n: 1 2 3 4 ...

c)

d)
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(                       )    

Figure 6.1: Preliminary: Discrete-time crystals. a) Experimental sequence to probe

time crystalline behavior: We start with polarized state along the z-direction. The π

pulse flips the z-magnetization every cycle. By varying the time of the π pulse, we can

induce a slight under-rotation ϵ. b) Left: z-magnetization as a function of the number

of cycles n (blue: even, green: odd cycles) for waiting time τ = 5 ns and without pulse

error ϵ = 1. Right: Fourier transform intensity of the left trace. c) as in b) for the same

waiting time τ = 5 ns but with a small under-rotation ϵ = 0.98. d) as c) for the same

pulse error ϵ = 0.98 but with larger waiting time τ = 45 ns. We observe a recovery of

the ν = 1/2 oscillations. d) Crystalline fraction |S(ν=0.5)|∑
|S(ν)| as a function of ϵ.
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quench experiments performed in chapter 2, which involved eigenstates spread across

the entire energy spectrum. Therefore, it would be interesting to explore dynamics

in the low energy spectrum of disordered quantum spin system and identify poten-

tial distinctions or common features to classical spin glasses. A possible phenomena

to expect in the low energy regime is aging, where the system’s response to a per-

turbation exhibits significant time-dependent characteristics, meaning it depends on

how long the system has evolved before the perturbation is applied. In classical spin

glasses, such behavior was observed below the spin glass temperature for extremely

long times, reflecting the non-equilibrium nature of the system [6].

A possible experimental protocol to probe such behavior is shown in Fig 6.2 a).

The procedure involves initializing the spins along the x-direction of a Bloch sphere

and locking them with a strong field pointing along the spins. This state represents

the paramagnetic ground state of the transverse field spin model. Adiabatically

reducing the field strength then provides access to the low energy spectrum of the

Hamiltonian. For an infinitely slow ramp, the true ground state of the Hamiltonian

can be reached, while faster ramps prepare states with increasing energy. Following

a waiting time τ , the external field is applied again, resulting in a magnetization

response along the x-direction. This response may depend on the waiting time τ

between the ramp and the perturbation, which called aging [6]. Furthermore, the

dependence of this response on the ramp speed may reveal signatures of a potential

spin glass phase transition.

Quantum-enhanced sensing with power-law interactions As demonstrated in chap-

ter 4, our Rydberg setup has the capability to reverse the time evolution of a many-

body system. Time reversal constitutes a powerful tool in quantum-enhanced sens-

ing protocols [164], demonstrating phase sensitivity below the standard quantum

limit [161–163]. The advantages of these protocols stem from the ability to reduce

the requirements for the detailed readout of exact complex quantum states. Time

reversal approaches involve the generation of entangled states via a Hamiltonian

process. In this entangled state, the system is subjected to the signal under consid-
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Figure 6.2: Experimental protocols for further studies. Left: Sketch of the initial

state along the x-direction. a) Sequence to study aging phenomena. An external field

that locks the spins is gradually reduced to access the low energy spectrum of the

Hamiltonian. After a waiting time τ , the field is turned on again and the response in

the magnetization measured. b) Sequence to study quantum-enhanced sensing. The

polarized state evolves into an entangled state under HXX. Subsequently, the state is

rotated by an angle ϕ about the y-axis, before −HXX is applied. In this protocol ϕ

translates into a y-magnetization. c) Sequence to study out-of-time-order correlators.

Same as b), with the only difference being a rotation about the x-axis.

eration, which typically consists of a phase ϕ, induced by a rotation. Afterward, the

reversed Hamiltonian is applied and the system evolves backward in time. Conse-

quently, the final state can become displaced relative to the initial state, resulting

in an amplification of the phase signal ϕ [164].

Inspired by previous proposals for collective spin models [164], a possible ex-

perimental sequence consists in a spin initialization long the x-direction in a Bloch

sphere as illustrated in Fig 6.2 b). Then the many-body system evolves under the

XX model into a complex state. One then can apply a phase shift ϕ about the y-

axis, which is realized by the microwave field and results in a finite z-magnetization.

Afterward, the reversed Hamiltonian is applied before measuring the global mag-

netization components. The displacement with respect to the initial state becomes

apparent with a y-magnetization component that increases for longer evolution times

and, consequently, more complex states that sense the phase ϕ.
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As described previously, due to the recent experimental observations of scalable

spin squeezing in dipolar interacting Rydberg systems [94], it will be interesting

to investigate how time-reversal-based sensing protocols combine with dipolar in-

teractions, as the naturally appear in various systems ranging from solid-state spin

defects [170] to ultracold molecules [33,65]. In general such sensing protocols rely on

strongly entangled states, which are extremely sensitive to the perturbation. There-

fore, it will be exciting to see how the disorder in our system, typically slowing down

the build-up of entanglement, affects the amplification of the signal ϕ. Even more

interestingly, we can directly investigate how the amplification depends on disorder

since it can be tuned by changing the Rydberg density (at a fixed Rydberg blockade

radius) [50].

Measuring information spreading through out-of-time-order correlators The abil-

ity to reverse many-body dynamics is also directly applicable to study quantum in-

formation scrambling through the measurement of out-of-time-order correlator [157].

They provide a measure of how quickly information and correlation spread in the

system by assessing the sensitivity of the revival of a quantum state to small per-

turbations, similar to the sensing experiment.

As a first step, the protocol previously presented in the context of a collective spin

system [166] can be applied to our Rydberg system featuring power-law interactions

(see Fig 6.2 c)). An x-magnetized state evolves for a certain time before a rotation

around the x-axis with an angle ranging from 0 to 2π perturbs the system. Re-

versing the evolution and Fourier transforming the signal reveals information about

the multiple quantum coherence spectrum. It will be particularly interesting to in-

vestigate how out-of-time-order correlators depend on the degree of disorder in the

system, which can, again, be tuned through the Ryderg density [50]. In a localized

system, information spreading is expected to be suppressed, while ordered, non-

localized systems, faster information spreading is expected. Such measurements can

directly be used to further investigate the effective pair description, which predicts

that correlations are not spreading over the system to 0th order.
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APPENDIX A
Alkali Rydberg atoms and their prop-

erties

This appendix summarizes selected properties of Rydberg atoms that are relevant

for understanding the experiments presented in this thesis. A more detailed overview

can be found in [44]. Atoms that have at least one electron excited to a high-lying

atomic state, characterized by a large principal quantum number n, are commonly

referred to as Rydberg atoms. Compared to ground-state atoms, the electron is on

average up to four orders of magnitude further away from the core and thus weakly

bound, making the atoms extremely sensitive to external fields. At first glance,

this sensitivity may seem like a disadvantage, as the atom can be easily perturbed.

However, advances in laser cooling and trapping techniques have enabled the precise

creation and control of these atoms, with their sensitivity being the key resource for

quantum engineering applications over the past few centuries.

While Rydberg atoms can be created with atoms possessing multiple valence

electrons, this thesis uses rubidium 87, an alkali atom with one valence electron.

Considering the valence electron as excited to a high-lying state, the electrons on

the inner shell are effectively shilding the charge of the core. Therefore, the valence

electron experiences a modified hydrogen-like potential with a sole positive charge.

The wavefunctions are hydrogen-like, and the binding energies can be calculated by
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the modified Rydberg formula:

En∗ = −hcRRb

n∗2 = −hcRRb

.
(n− δn,l)2 (A.1)

Here, RRb is the effective Rydberg constant for rubidium and n∗ = n − δn,l the

effective principal quantum number. δn,l is the so called quantum defect and reflects

the shielding of the core by the inner electrons.

Many important properties scale as n∗ to the power of some exponent. A few

selected properties are listed in table A.1.

Property n∗ scaling

Level spacing En∗+1 − En∗ n∗−3

Dipole moment d n∗2

Direct dipolar interaction strength n∗4

van-der-Waals interaction strength n∗11

Polarizability n∗7

Radiative lifetime τ n∗3

Ionizing field E n∗−4

Table A.1: Scaling of selected of Rydberg atoms properties with the effective principal

quantum number n∗.

The energy level spacing between adjacent |n∗S⟩ and |n∗P ⟩ states decreases with

n∗−3. These energy levels usually fall within the microwave regime, corresponding to

frequencies in the range of several tenths of GHz. State-of-the-art microwave genera-

tors have advanced to the point where they can directly create these frequencies with

an exceptionally high degree of coherence that surpasses experimental timescales by

orders of magnitude. Furthermore, arbitrary waveforms can be produced that result

in high control fidelity. The dipole moment d between two adjacent states scales as

n∗2. Thus, Rydberg atoms exhibit extremely strong dipolar (∼ n∗4 ) and van der

Waals interactions (∼ n∗11). The latter of these can be up to ten orders of magnitude

greater than for ground-state atoms and typically falls in the range of several tenths
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of GHz. The lifetime of atoms in Rydberg states scales as n∗3 and is usually on the

order of tenths of microseconds. Thus, the ratio between lifetime and interaction

strength enables long coherence times. Additionally, experiments that are on the

order of a few microseconds are less sensitive to technical noise. Another important

property of Rydberg atoms is the n∗−4 scaling of the electric field required to ionize

the atom. Therefore, the electric field required to ionize Rydberg atoms is orders

of magnitude smaller than for ground-state atoms. For the rest of this thesis, we

define the effective principle quantum number n∗ without ∗ for better readability.

Rydberg blockade mechanism

The Rydberg-Rydberg interactions described in Chap. 2 have a significant impact

on the excitation dynamics of Rydberg atoms. In this thesis, we consider excitation

to a Rydberg |nS⟩ state. For two atoms, Fig. A.1 shows the pair states energies as

a function of their distance R. The energy of both atoms in the ground state |gg⟩

or one being excited to the Rydberg state (|gr⟩ , |rg⟩) does not change as a function

of the distance R. The situation is different for the doubly excited Rydberg state

|rr⟩, where energy shifts as a function of R due to the distance-dependent van der

Waals Rydberg-Rydberg interaction.

As a consequence, a single-frequency excitation laser that can excite |rr⟩ at large

distances is not able to excite |rr⟩ at small distances. The critical distance below

which two atoms can no longer be simultaneously excited is called the blockade radius

Rb. In general, Rb depends on the excitation bandwidth, which is, for example,

affected by the strength of the laser or the excitation pulse length. This Rydberg

blockade effect is one of the key resources for quantum technology applications, such

as fast gate-based quantum computing [120,197–199].
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en
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Figure A.1: The Rydberg blockade. Energies of the two atom pair states as function

of the inter atomic distance R. Atoms in the ground state illustrated by the blue spheres,

while atoms in the Rydberg state are green. For distances below Rb, the double excited

pair state is shifted out of resonance and can not be excited. The width of the shallow

green line displays the Rydberg excitation bandwidth.



APPENDIX B
Experimental preparation and manipu-

lation of Rydberg atoms

B.1 Experimental preparation of Rydberg atoms

Various experimental settings have been used for implementing Heisenberg spin mod-

els with Rydberg atoms. One of these approaches involves neutral atom arrays,

where single atoms are trapped and rearranged using optical tweezers (tightly fo-

cused laser beams) before being excited to the Rydberg state. This method provides

access to local control and readout of a few hundred atoms and turned out to be

a powerful approach [43] and is relevant for the experiments presented in Chap. 3.

In contrast, our experimental approach at the Rydberg experiment in Heidelberg

differs as we prioritize realizing large systems with thousands of Rydberg atoms in

three spatial dimensions and give up local control. The Rydberg excitation is per-

formed in a gas of neutral atoms, rendering the system spatially disordered. Instead

of addressing the spins locally, we use a global microwave field to perform coherent

spin manipulations.

In order to efficiently perform quantum simulation experiments, the experimental

setup has to fulfill certain points:

(i) Preparation of cold atomic samples: While there exist experiments that study
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the effect of atomic motion on quantum dynamics, the experiments presented

in this thesis aim to study interactions between atoms at rest. In this so-called

frozen gas regime, atoms are not moving significantly over the timescales of

the experiments, and the coupling parameters in the Hamiltonian are there-

fore time-independent. To achieve this, we require cloud temperatures where

atomic motion has a negligible effect on quantum dynamics.

(ii) Preparation of a well-defined ground state: For experiments with spin-1/2

systems, it is important to implement two isolated levels in the Rydberg man-

ifold. Therefore, a single hyperfine state in the ground state manifold is pre-

pared, from which Rydberg atoms are excited into one Rydberg state.

(iii) Rydberg excitation: For the quantum simulation experiments presented in

this thesis, we exploit strong Rydberg-Rydberg interactions. Therefore, af-

ter having prepared atoms in the ground state, the energy difference to the

Rydberg manifold has to be overcome. This is achievable with a two-photon

transition, including a red 780 nm and blue 480 nm laser.

(iv) External field control: The main characteristic of alkali Rydberg atoms is the

large separation between the atomic core and the valence electron, rendering

them extremely sensitive to external electric fields. Therefore, we require high-

level electric field control that can be adjusted to cancel stray fields.

In addition to electric fields, the ability to apply a large magnetic field is crucial

to splitting the different Zeeman sub-levels in the Rydberg manifold in order

to separate an isolated two-level spin system.

(v) State-sensitive Rydberg atom detection: Detecting a two-level system in a

state-sensitive manner is important for experiments with spin-1/2 systems.

As our spin-1/2 system will be encoded in the Rydberg manifold, we need to

distinguish two Rydberg states that are nearby in energy. This is realizable

with a combination of de-exciting one Rydberg state while ionizing the other

one. The resulting ions can be detected using a multi-channel plate.
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Figure B.1: Experimental apparatus. After the MOT phase, rubidium atoms are

trapped in an optical dipole trap (grey line). The cloud is imaged with a CCD camera.

The two-photon excitation to the Rydberg state is performed using a red 780 nm and

a blue 480 nm laser (red and blue lines). An antenna emits the microwave radiation

which is then focused in the chamber using a microwave mirror (green line). By using

the upper and lower field plates, an electric field is applied to ionize the atoms and

detect the ions in a multi channel plate (MCP). Figure adapted from [200].

In the subsequent part of this section, we present the most important stages of the

experiment employed for creating cold rubidium atom samples, exciting them into

the Rydberg state, and detecting the Rydberg states. The experimental sequence

is sketched in Fig. B.3 b) and the relevant energy level scheme in Fig. B.3 a). The

microwave control which is used to coherently manipulate the spins, is part of the

next section.

(i) Preparation of cold atomic samples

The experimental apparatus, which is used to perform the main experiments in

this thesis, is sketched in Fig. B.1. A more detailed description of the setup can
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be found in previous thesis [200–203]. It exploits well-developed laser cooling and

trapping techniques, widely applied in the field of ultra-cold atom experiments [13,

204]. Rubidium 87 atoms are initially cooled within a 2D magneto-optical trap

(MOT). Subsequently, they are moved into the primary scientific chamber, where the

atomic cloud undergoes additional cooling through a 3D MOT setup. Afterwards,

the atoms are loaded into a dipole trap, which is used for spatial confinement and

further evaporative cooling, enabling temperatures of tenths of µK. In the following,

the essential elements of these traps and the associated experimental sequence for

generating a cold atomic cloud are outlined.

2D-MOT Our experiments start with a dispenser used to emit rubidium atoms.

Unfortunately, the typical velocities of these emitted atoms are approximately a

few hundred meters per second, which are above the usual trapping velocities of

3D-MOTs, typically around ∼ 10 m/s [205]. While there are several methods for

pre-cooling the atoms, our approach is based on a 2D MOT: The dispenser emits

a rubidium background vapor inside a glass cell that is placed outside the main

science chamber [205]. Here, the atoms are cooled in two spatial dimensions, before

a beam pushes them along the third dimension inside the science chamber through

a differential pumping stage. This ensures that mainly rubidium 87 is present in the

main chamber. Furthermore, for better optical access, the glass cell of the 2D MOT

is connected on a viewport off-axis [206] (see Fig. B.2).

3D-MOT Following pre-cooling, the atoms are loaded into a 3D-MOT positioned

within the central area of the scientific chamber. This 3D-MOT involves the use of

two laser beams that are counter-propagating along each of the three dimensions.

As depicted in the energy level diagram in Fig. B.3 a), the cooling cycle includes

cooler beams operating on the |5S1/2, F = 2⟩ → |5P3/2, F = 3⟩ transitions, which are

detuned by ∆c = 3Γ (where Γ represents the decay rate of the |5P3/2, F = 3⟩ state).

To close the cooling cycle, a second resonant beam is applied to the |5S1/2, F = 1⟩ →

|5P3/2, F = 2⟩ transition, effectively repumping atoms that ended up in the |5S1/2, F = 1⟩
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Figure B.2: 2D- and 3D Magneto optical trap setup. Large water cooled 3D-MOT

coils are placed below and above the science chamber. The 2D-MOT is placed off-axis.

state due to decay. The water-cooled magnetic field coils are placed above and below

the science chamber, connected in an anti-Helmholtz configuration (see Fig. B.2).

Furthermore, smaller, so-called compensation coils are attached to the chamber’s

view port, enabling it to shift the position of the zero magnetic field inside the

chamber. In order to increase the atomic density and lower the temperature in the

MOT, a compressed MOT phase [207] and a dark MOT phase [208] are applied,

which also helps to efficiently load into the dipole trap. The green circles in the

|5S1/2, F = 2⟩ manifold in Fig. B.3 a) illustrate the populated hyperfine states after

this MOT phase. Typical MOT loading times are on the order of 500–1000 ms.

Optical dipole trap After the 3D MOT phase, the atoms are loaded into an optical

dipole trap. These traps utilize a light-induced modification of the ground state

energy of neutral atoms, resulting in a trapping potential that scales proportional

with the intensity of the laser [209]. For red-detuned light, atoms are trapped in

regions of high intensity. In the experiment, the dipole trap is realized using 1064

nm light emitted from a Mephisto MOPA. Instead of using a single focused laser

beam, we ”recycle” the light and built a crossed dipole trap, where the beam is sent

back into the science chamber and crosses the original beam under an angle of ∼ 9

degree. This approach increases the axial confinement in comparison to a single-arm
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Figure B.3: Energy level diagram of 87Rb and the experimental sequence. a)

Energy level diagram of rubidium 87. See the main text for details on the applied

preparation laser. b) Experimental sequence to perform experiments with an ultracold

cloud of Rydberg atoms.
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optical dipole trap. The waists of the 1064 nm laser were selected such that trap

depth and size optimized the loading procedure. An illustration is shown by the

gray beams in Fig. B.1.

The beam for the optical dipole trap is already turned on during the 3D-MOT

phase. We let the atoms thermalize for ∼ 300 ms and decreased the intensity to

allow for a bit of evaporative cooling. With this approach, we can achieve atom

densities on the order of 2 · 1011 cm−3 and temperatures of about tenths of µK.

(ii) Preparation of a well-defined ground state

To efficiently prepare a specific Rydberg state, it is crucial to start the excita-

tion process in a well-defined ground state. As mentioned previously, the rubidium

atoms populate the |5S1/2, F = 1⟩ hyperfine manifold (green circles in Fig. B.3 a)).

Our target ground state is the |5S1/2, F = 2,mF = 2⟩ hyperfine state (blue circle in

Fig. B.3 a)). This state is prepared using optical pumping techniques [210]. We

present an overview of these schemes in the following. More details can be found in

reference [203].

Optical pumping In order to transfer the atoms from the equally populated mF

hyperfine state in the |5S1/2, F = 1⟩ manifold to the target |5S1/2, F = 2,mF = 2⟩

state, we apply an optical pumping scheme. Therefore, a resonant circular polarized

beam addresses the |5S1/2, F = 1⟩ → |5P3/2, F = 2⟩ transition as illustrated by the

yellow arrows in Fig. B.3 a). From |5P3/2, F = 2⟩, the atoms decay either to the

target |5S1/2, F = 2⟩ manifold or back to |5S1/2, F = 1⟩. A second, also circular po-

larized, beam is 7 MHz detuned from the |5S1/2, F = 2⟩ → |5P3/2, F = 2⟩ transition.

After a few ms, the atoms cycled to the target |5S1/2, F = 2,mF = 2⟩ state, which

is a dark state for the applied light and scatters no photons.

Landau-Zener passage Due to inefficiencies in the optical pumping scheme, some

remaining atoms occupy the other mF levels within |5S1/2, F = 2⟩. We remove these

atoms using two Landau-Zener passages [210]: For a simplified two-level system, the
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population of the initial state can be transferred to the second state via a sweep

over the resonance. Exploiting this concept, we sweep a 6.8 GHz microwave field

across the |5S1/2, F = 2,mF = 2⟩ → |5S1/2, F = 1,mF = 1⟩ resonance. Afterwards,

we apply a beam that is resonant with |5S1/2, F = 2⟩ → |5P3/2, F = 2⟩ to depop-

ulate residual atoms. Afterwards, we apply a second Landau-Zener passage from

|5S1/2, F = 1,mF = 1⟩ → |5S1/2, F = 2,mF = 2⟩. With this procedure, typically 95

percent of the atoms populate the desired ground state. Moreover, this method

serves to adjust the density within the target ground state.

(iii) Rydberg excitation

In our investigation of quantum spin systems involving atoms in highly excited

states, we must overcome the energy difference to access the Rydberg manifold.

This can be achieved through either a single-photon transition utilizing a UV laser

or, as employed in the experiments in this thesis, a two-photon transition. To

address the Rydberg state, we use a red 780 nm laser (Toptica DLpro) coupling

|5S1/2, F = 2,mF = 2⟩ → |5P3/2, F = 3,mF = 3⟩, as well as a blue 480 nm laser

(Toptica SHG system) coupling |5P3/2, F = 3,mF = 3⟩ to a Rydberg with typical

principle quantum number n ≈ 48 − 61 (see Fig. B.3 a)). For the excitation, the

laser is tuned to the two-photon resonance, but the intermediate state is detuned

by ∼ 100 MHz. With this, we can adiabatically eliminate the intermediate state

and describe the excitation process as a quasi-two-level system with Rabi frequency

Ω2γ = ΩrΩb

2∆
. In typical settings, this technique allows us to tune the Rydberg atom

number from a few tenths to a few thousands with in 1 to 5 µs. Furthermore, the

blue 480 nm laser is focused on the atoms, and the lense is mounted on a translation

stage, allowing for tuning the size of the beam.

(iv) External field control

Magnetic field control In order to realize controlled two-level systems within the

Rydberg manifold and study the physics of the spin-1/2 system, for a given Rydberg
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state, surrounding Zeeman states need to be shifted away by a magnetic field. This is

particularly important for scenarios that involve microwave driving where Zeeman

shifts need to be larger than typical Rabi frequencies. During the course of this

thesis, a H-bridge was built and connected to the 3D-MOT coils (see Fig. B.2). A

H-bridge allows for switching the direction of current, going from an anit-Helmholtz

configuration to a Helmholtz configuration. The big advantage comes with the water

cooling of these coils, allowing them to apply currents larger than 200 A. At these

magnetic fields, Zeem substates are shifted by more than 100 MHz.

Electric field control Due to their larger polarizability, Rydberg atoms are ex-

tremely sensitive to electric fields. The experimental setup also possesses eight

electric field electrodes, which are 14 cm away from the atom [200]. They allow

us to compensate for electric stray fields in three dimensions. Additionally, we can

apply a field larger than a few hundred V/cm, enough to ionize Rydberg atoms with

the principle quantum number n > 48, employed in this thesis. The electric field

ramps are realized with an arbitrary waveform generator before being amplified to

high voltages using a custom-made amplifier.

Rydberg atom detection

To conduct efficient spin experiments, it is crucial to differentiate between different

spins, and thus Rydberg states. For this purpose, a robust electric field of hundreds

of V/cm is applied to ionize the atoms. The resulting ions are then guided by our field

plates and a deflection ring to the multi channel plate (MCP). A fast oscilloscope is

used to read out the time trace, which allows us to reconstruct the number of ions.

Due to geometrical constraints on the MCP channels, this method provides detection

efficiencies of maximally 40 %. For our experiments, we typically use between 100

and a few thousand Rydberg atoms. To distinguish the two Rydberg states, we can

apply two approaches:
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Optical de-excitation: One approach to differentiate between the two spin states

involves the removal of one of them before applying the ionization field. This is

achieved by optical de-excitation of the |nS⟩ state by means of a strong single photon

on-resonant coupling to the intermediate |5P3/2, F = 3,mF = 3⟩ state using our 480

nm laser (illustrated in Fig. B.4). This state decays back to the 5S ground state

with a rate of Γ/2π = 6 MHz, such that the |nS⟩ state is depopulated within typical

de-excitation pulse times of ∼ µs. Details of this scheme can be found in [211].

After removing this state, the remaining one gets ionized. This detection scheme is

used to perform the experiments presented in the thesis.

F=2

F=3

J=1/2

J=3/2

blue deexc.

ionization
level

Figure B.4: Optical de-excitation. After performing experiments with spin repre-

sented by Rydberg |nS⟩ and |nP ⟩ states, a resonant blue laser at 480 nm couples |nS⟩

to the |nP3/2, F = 3,mF = 3⟩, that decay at a rate of Γ/2π = 6 MHz. After de-

exciting |nS⟩, we apply a strong electric field ionizing the remaining |nP ⟩ atoms which

allows us to distinguish the two states.

State-selective field ionization: The previous method has the disadvantage that

information about one of the spin states is lost. However, it is generally desirable to

detect both spin states in a single experimental realization. This is achieved by the

application of a slow electric field ramp, ionizing first the upper state and afterwards

the lower one. The results are two bunches of ion peaks hitting the MCP, separated in
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time. However, in strongly interacting regimes or for low energy splittings between

the two Rydberg states (mainly for high principal quantum numbers), these two

bunches overlap and are hard to distinguish. In the future, we want to optimize this

procedure in terms of field ramps to access both populations in one shot.

B.2 Rydberg state microwave control

One of the main desired capabilities of quantum simulation platforms is the ability

to perform coherent spin manipulations. Our experiments in the Rydberg manifold

start with atoms in a |nS⟩ state. The level spacing of adjacent states scales with

n−3, resulting in typical transition frequencies lying in the GHz range. How these

frequencies are generated and how the field is applied to the atoms is the subject of

this section.

The main microwave setup was designed and built during the course of my mas-

ter’s thesis [149]. During the time of this thesis, a new fast 64 GSa/s arbitrary

waveform generator was implemented, allowing for spin manipulations on the pi-

cosecond time scale.

Arbitrary waveform generation

The advantage of transition frequencies in the microwave regime lies in their ability

to be directly synthesized using arbitrary waveform generators (AWGs). These

days, AWGs are readily available commercial devices that enable the precise setting

of electric field values with resolutions as fine as a few picoseconds. Consequently,

one can program a predefined waveform and transmit it to the Rydberg atoms once

the AWG is triggered. Depending on the choice of Rydberg state and the AWG, the

transition frequency cannot be directly generated and needs to be up-converted with

a frequency mixer. During this thesis, we worked with n = 48 and 61 corresponding

to transition frequencies of ∼ 35 and 16 GHz between |nS⟩ and |nP ⟩, respectively.
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Frequency up-conversion During this work, two AWGs with sampling rates of 5

GSa/s (Tabor SE5082) and 64 GSa/s (Keysight M8195A) have been used. Nei-

ther is able to directly generate a ∼ 35 GHz waveform needed to drive |nS⟩ and

|nP ⟩ transitions below n = 49. To overcome this limitation, we generate the ar-

bitrary waveform at lower frequencies (intermediate frequency IF) and up-convert

them using a high and constant-frequency local oscillator (LO: Anritsu MG3697,

output frequency up to 67 GHz). The up-conversion is performed using a mixer

(MM1-1467H), and the resulting sideband at frequency νLO + νIF is used to drive

the atomic transition (see [149] for details). During the mixing process, additional

mixing sidebands appear, which might influence the quality of the driving in certain

regimes.

Direct transition driving For n > 49, the waveform is directly synthesized us-

ing our 64 GSa/s AWG. This removes additional mixing sidebands, which are not

affecting the quality of the drive anymore.

Transmitting the microwave field

Following the waveform generation, a horn antenna (SGH-22) is used to emit the ra-

diation towards the atoms. A picture of the microwave setup is shown in Fig. B.5 a).

The radiation pattern immediately after the horn is divergent, and we utilize a

parabolic aluminum mirror to focus the radiation on the atoms. Fig. B.5 b) dis-

plays a COMSOL physics [212] simulation of the intensity pattern and is adapted

from [149]. By employing this configuration, the radiation is directed outward from

the steel chamber, effectively preventing back reflections. Furthermore, the polar-

ization of the field is controlled to be linear using a wire grid polarizer. In our

typical approach, we drive transitions from mj = 0.5 to mj = 0.5 using π polar-

ized microwaves. This setup not only suppresses coupling to other Zeeman levels by

shifting them with a magnetic field but also by exploiting polarization effects, which

are essential to isolating a two-level system in the Rydberg manifold.
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Figure B.5: The microwave setup. a) Picture of the experimental microwave setup.

The horn antenna at the top is used to emit the microwave radiation. Afterwards a

parabolic aluminum mirror focuses the field through the viewport at the atom position.

b) COMSOL physics [212] simulations of the setup displaying the intensity pattern after

the horn antenna. Adapted from [149].

B.2.1 Coherent spin manipulations

The experimental setup provides the capability for the application of arbitrary and

fast spin-1/2 manipulations by controlling the phase, amplitude, and frequency of

the microwave radiation. Assuming no interactions, a single spin evolves according

to the Hamiltonian

Ĥdrive(t) =
∑
i

Ω(t)
[
cosϕ(t)Ŝi

x + sinϕ(t)Ŝi
y

]
+∆(t)

∑
i

Ŝi
z. (B.1)

Here, Ω(t) is the time-dependent Rabi frequency of the drive, ϕ(t) the phase and ∆(t)

the detuning of the field with respect to the transition resonance. We employ the

ability to perform fast time-dependent spin manipulations through out this thesis.

By applying this drive to the two isolated levels within our Rydberg manifold, we

can observe typical Rabi oscillations and atomic spectra, as illustrated in Fig. B.6.
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Figure B.6: Coherent microwave spin manipulations. a) Rabi oscillations between

|48S1/2,mj = 1/2⟩ and |48P3/2,mj = 1/2⟩. Y-axis displays the number of ions in

|48P3/2,mj = 1/2⟩ after de-exciting |48S1/2,mj = 1/2⟩. Solid line is a damped cosine

fit with a Rabi frequency of Ω/2π = 72 MHz. b) Spectrum of the same transition taken

with Ω/2π = 15 MHz at t = 100 ns. Solid line displays a fit with the Rabi formular

A Ω2

Ω2
eff
· sin2(2π · Ωefft) + offset with the effective Rabi frequency Ωeff =

√
Ω2 + ν2. We

subtracted the transition frequency of 35062 MHz.

Achieving such fast Rabi oscillations on the order of up to ∼ 100 MHz allows to

implement these manipulations faster than the typical interaction timescales in our

system, which are on the order of a few MHz.

B.2.2 Tomographic magnetization readout

The experiments in this thesis mainly focus on measuring the magnetization dy-

namics of a many-body state. The following discussion on how the magnetization

is mapped out closely follows the description in [50]. This procedure is based on a

tomographic readout using π/2 microwave pulses. We consider a given state, com-

posed of atoms in |↓⟩ and |↑⟩. The detection is performed by measuring the number

of ions in the |↑⟩ states after de-exciting the |↓⟩ states as described previously.

To reconstruct the full magnetization of a state, we furthermore measured dif-
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a) b)

Figure B.7: Tomographic readout of the magnetization. a) Example of the readout

components of a fully magnetized state in the equatorial plane in a Bloch sphere. Blue

points correspond to the ion number Nϕ
↑ in |↑⟩ after the π/2 readout pulse with phase

ϕ and deexcitation of |↓⟩. The solid line corresponds to a fit A · sin (ϕ+ ϕ0) + c. The

ion numbers Naux, NNoreadout and N↑+↓ are respectively shown by the dashed purple,

green and yellow line and are taken without readout pulse. b) Readout for a state after

magnetization relaxation, where the phase contrast is lost.

ferent quantities in multiple runs of the experiment: the total number of ions N↑+↓,

by ionizing the sample without de-exciting |↓⟩. The number of ions in |↑⟩ after de-

excitation of |↓⟩ (NNoreadout). The number of ions in |↑⟩ after a π/2 readout pulse

with variable phase ϕ (Nϕ
↑ ). In the Rydberg excitation and due to the finite lifetime,

one might slightly populate surrounding auxiliary Rydberg states that can not be

de-excited. These states lead to an offset in the measured ion number which we

denote Naux. Naux is determined by first exciting atoms to |↓⟩, then allowing them

to remain in this state for the duration of the experiment, and finally de-exciting

the atoms back to the ground state and ionizing the auxiliary ions. These quantities

allow us to reconstruct the system’s magnetization in the following way. The z mag-

netization is determined by NNoreadout and N↑+↓, which are corrected by the Naux

offset: Mz =
NNoreadout−Naux

N↑+↓−Naux
− 1

2
, Mϕ =

Nϕ
↑−Naux

N↑+↓−Naux
− 1

2
. Furthermore, the ion number

Nϕ
↑ of the tomographic readout is a sinusoidal function in ϕ with an amplitude of A
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given by the contrast in ion numbers. The magnetization in the equatorial plane is

reconstructed by the contrast in the phase readout as well as Naux and N↑+↓ such

that Mequatorial =
A

N↑+↓−Naux
− 1

2
. Taking the phase into account directly translates

to the x (Mx) and y magnetization (My).

Fig. B.7 illustrates measurements of the quantities for a state initially polarized

in the equatorial plane (by a π/2 pulse) for early times (fully magnetized, full phase

contrast: a)) and late times (after relaxation, no phase contrast: b)).



APPENDIX C
Relaxation of the magnetization under

an XYZ Hamiltonian1

We derive the time evolution of the magnetization using the Heisenberg equation of

motion for the general case of an XYZ Hamiltonian as given by Eq. 3.6 in the main

text. Considering Ŝz =
∑

i Ŝ
i
z, Ŝx =

∑
i Ŝ

i
x, Ŝy =

∑
i Ŝ

i
y we obtain

• dŜx/dt = i/ℏ[Ŝx, ĤXYZ] = (δz − δy)
[
3
∑

i,j,i̸=j Jij

(
Ŝi
zŜ

j
y + Ŝj

z Ŝ
i
y

)
/(2ℏ)

]
• dŜy/dt = i/ℏ[Ŝy, ĤXYZ] = (δx − δz)

[
3
∑

i,j,i̸=j Jij

(
Ŝi
xS

j
z + Ŝj

xŜ
i
z

)
/(2ℏ)

]
• dŜz/dt = i/ℏ[Ŝz, ĤXYZ] = − (δx − δy)

[
3
∑

i,j,i̸=j Jij

(
Ŝi
yŜ

j
x + Ŝj

yŜ
i
x

)
/(2ℏ)

]
In the scenario of the engineering of an XXX Hamiltonian, δy = δx = δz which

implies [Ŝx, ĤXYZ] = 0, [Ŝy, ĤXYZ] = 0 and [Ŝz, ĤXYZ] = 0. All the components

Ŝx, Ŝy, Ŝz are constant of motions of the system associated to the presence of the

SU(2) symmetry. Thus, the total magnetization constitutes a conserved quantity.

For an XXZ Hamiltonian, δy = δx which implies [Ŝz, ĤXYZ] = 0. Sz constitutes

then a constant of motion which is associated to the presence of the U(1) symmetry

in the system. For an XYZ Hamiltonian (δx ̸= δy ̸= δz), there is no constant of

motion due to the fact that all unitary symmetries are broken. More specifically,

1Taken from [71] (Supplemental Material)and slightly adapted.
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the dynamics of a component Ŝx for example scales with the difference between δz

and δy. Qualitatively, the relaxation dynamics of Ŝx will be faster if the value δz−δy
is important. This reasoning can be applied to all the components and explains the

faster relaxation observed for the z−component compared to y−component in Fig.

3.8.
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Quantum simulation of 2d antiferromagnets with hundreds of rydberg atoms.

Nature, 595(7866):233–238, Jul 2021.



BIBLIOGRAPHY 167

[52] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed

Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel En-
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[66] Löıc Anderegg, Lawrence W. Cheuk, Yicheng Bao, Sean Burchesky, Wolfgang

Ketterle, Kang-Kuen Ni, and John M. Doyle. An optical tweezer array of

ultracold molecules. Science, 365(6458):1156–1158, September 2019.

[67] Rainer Blatt and David Wineland. Entangled states of trapped atomic ions.

Nature, 453(7198):1008–1015, June 2008.

[68] M. H. Devoret and R. J. Schoelkopf. Superconducting Circuits for Quantum

Information: An Outlook. Science, 339(6124):1169–1174, March 2013.

[69] Yu Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly,

B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, A. Megrant, J. Y.

Mutus, P. J. J. O’Malley, C. M. Quintana, D. Sank, A. Vainsencher, J. Wenner,

T. C. White, Michael R. Geller, A. N. Cleland, and John M. Martinis. Qubit

architecture with high coherence and fast tunable coupling. Phys. Rev. Lett.,

113:220502, Nov 2014.
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