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Abstract 
Cancer persists as one of the prevailing causes of death in children and adolescents aged 
0 to 19 years. There remains to be an unmet need for identification of therapeutic 
biomarkers and better treatment interventions for these patients.  

Advancements in state-of-the-art molecular profiling techniques have resulted in better 
understanding of pediatric cancers and their driver events. It has become apparent that 
pediatric malignancies are significantly more heterogeneous than previously thought as 
evidenced by the number of novel entities and subtypes that have been identified with 
distinct molecular and clinical characteristics. For most of these newly recognized 
entities there are currently extremely limited treatment options available. Unfortunately, 
there is also a lack of compiled and consistently analysed molecular data available, 
along with limited data of characterization and documentation of patient-derived 
models and/or genetic mouse models from high-risk pediatric tumors. 

Both my studies fall under the “Innovative Therapies for Children with Cancer Pediatric 
Preclinical Proof-of-concept Platform” (ITCC-P4) consortium which is an international 
collaboration between different European academic institutes, several partnering 
pharmaceutical companies and three contract research organizations. The two studies 
aim to shed light on identification of potential promising treatment options that 
specifically match the patient’s specific molecular tumour characteristics and the 
patient’s genetic data. Genetic information at the molecular level from pediatric tumors 
in relapsed patients has contributed to advancing our understanding of disease 
progression and treatment resistance. 

The first study overall aims to establish a sustainable platform of >400 molecularly well-
characterized PDX models of high-risk pediatric cancers, including the analysis of their 
original tumors and matching controls. This will enable the selection of PDX models for 
in vivo testing of novel mechanism-of-action based treatments. Hence, facilitating the 
prioritization of pediatric drug development and clinical stratification of patients across 
entities.  

In a first batch, 251 models were fully characterized, including 180 brain and 71 non-
brain PDX models, representing 112 primary models, 93 relapse, 42 metastasis and 4 
progressions under treatment models. Using low-coverage whole-genome and deep 
whole exome sequencing, complemented with total RNA sequencing and methylation 
analysis, the aim was to define genetic features in the ITCC-P4 PDX cohort and assess 
the molecular fidelity of PDX models compared to the original tumor. Based on DNA 
methylation profiling 43 different tumor subgroups within 18 cancer entities were 
included.  

Mutational landscape analysis identified key somatic and germline oncogenic drivers 
where Ependymoma PDX models displayed the C11orf95-RELA fusion event, YAP1, 
C11orf95 and RELA structural variants. Medulloblastoma models were driven by MYCN, 
TP53, GLI2, SUFU and PTEN. High-grade glioma samples showed TP53, ATRX, MYCN 
and PIK3CA somatic SNVs, along with focal deletions in CDKN2A in chromosome 9. 

https://www.itccp4.eu/
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Neuroblastoma models were enriched for ALK SNVs and/or MYCN focal amplification, 
ATRX SNVs and CDKN2A/B deletions. Sarcoma models displayed characteristic 
alterations with PAX3-FOXO1 fusions detected in embryonal rhabdomyosarcoma, along 
with TP53, CDKN2A, NRAS SNVs, NCOA1 gains, NF1 and CDK4 SVs. Ewing sarcoma 
PDX models displayed the defining EWSR1-FLI1 gene fusion in most cases, along with 
two rarer cases of EWSR1-ERG and EWSR1-FEV observed in the cohort. Osteosarcomas 
were defined by highly unstable genomes with large chromosomal alterations, TP53 and 
RB1 tumor suppressor genes were frequently altered and ATRX loss and MYC gains were 
observed. Additional sarcomas such as clear cell sarcoma of the kidney showed 
CDKN2A loss, MYC gain, NF1 loss, TP53 mutations, while Synovial sarcoma models 
were driven by SSX gene fusions and alterations. Large chromosomal aberrations 
(deletions, duplications) detected in the PDX models were concurrent with molecular 
alterations frequently observed in each tumor type –isochromosome 17 was detected in 
five medulloblastoma models, while deletion of chromosome arm 1p or gain of parts of 
17q in neuroblastomas which correlate with tumor progression.  

Tumor mutational burden across entities and copy number analysis was performed to 
identify allele-specific copy number events in tumor-normal pairs. Clonal evolution of 
somatic variants was not only found in certain PDX-tumor pairs but also between disease 
states. Across the 16 serial model cases, discordance in targetable SNV, SV and CNV, 
alterations were observed in later disease progressed states compared to the primary 
models. The multi-omics approach in this study provides insight into the mutational 
landscape and patterns of the PDX models thus providing an overview of molecular 
mechanisms facilitating the identification and prioritization of oncogenic drivers and 
potential biomarkers for optimal treatment. 

The second study was a Target Actionability Review on replication stress. Detrimental 
long-term side effects due to chemotherapy drastically affect the lives of patients under 
treatment, hence there is an urgent need to identify novel target driven therapies. 
Decades of published data provide evidence for targeting replication stress 
therapeutically. Hence, in this study, we evaluated specific targets within the replication 
stress response (RSR) pathway. A comprehensive, well-structured, and critically 
evaluated overview of literature related to replication stress across 16 pediatric solid 
malignancies was generated. The methodology focuses on the systemic extraction and 
structured evaluation of replication stress as a target. This aims to align targeted anti-
cancer therapeutic interventions with specific cancer subtypes based on clinical studies. 
ATR, ATM, PARP, WEEI were observed to represent the most promising targets either 
using single agents or in combination with chemotherapy or radiotherapy. Evidence on 
CHK1 and DNA-PK although limited, showed potential to further investigate these 
promising targets over broader tumor types. 

The collective data and results from both studies, the “ITCC-P4: Molecular 
characterization and multi-omics analysis of Patient-Derived Xenograft (PDX) models 
from high-risk pediatric cancer” and the “Target actionability review on replication 
stress”, can be explored further on the interactively designed R2 platform, once users 
create an account to gain access to the cohort data. (https://r2-itcc-p4.amc.nl/). 

https://r2-itcc-p4.amc.nl/
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Zusammenfassung 
Krebs ist nach wie vor eine der häufigsten Todesursachen bei Kindern im Alter von 0 bis 
19 Jahren. Es besteht jedoch nach wie vor ein ungedeckter Bedarf an der Identifizierung 
von therapeutischen Biomarkern und besseren Behandlungsmöglichkeiten für diese 
Patienten.  

Die Fortschritte bei den modernen molekularen Analysemethoden haben zu einem 
besseren Verständnis der pädiatrischen Krebserkrankungen und der auslösenden 
Faktoren geführt. Es hat sich gezeigt, dass pädiatrische Krebserkrankungen wesentlich 
heterogener sind als bisher angenommen, was durch die Anzahl neuer Entitäten und 
Subtypen mit unterschiedlichen molekularen und klinischen Merkmalen belegt wird. 
Für die meisten dieser neu erkannten Entitäten gibt es nur äußerst begrenzte 
Behandlungsmöglichkeiten. 

Meine beiden Studien sind Teil des Konsortiums ,,Innovative Therapies for Children with 
Cancer - Pediatric Preclinical Proof-of-Concept Platform (ITCC-P4)“, einer 
internationalen Zusammenarbeit zwischen verschiedenen europäischen akademischen 
Instituten, mehreren Partner-Pharmaunternehmen und drei Auftragsforschungsinstituten. 
Die beiden Studien sollen Aufschluss über die Identifizierung potenziell 
vielversprechender Behandlungsoptionen geben, die speziell auf die spezifischen 
molekularen Tumoreigenschaften und die genetischen Daten des Patienten abgestimmt 
sind. Genetische Informationen auf molekularer Ebene von pädiatrischen Tumoren bei 
Rückfallpatienten haben dazu beigetragen, unser Verständnis des Krankheitsverlaufs 
und der Behandlungsresistenz zu verbessern.  

Die erste Studie im Rahmen des ITCC-P4 hat das übergeordnete Ziel, eine nachhaltige 
Plattform mit mehr als 400 molekular gut charakterisierten PDX-Modellen pädiatrischer 
Hochrisikokrebsarten, ihren Tumoren und entsprechenden Kontrollen zu etablieren. 
Dies würde die Auswahl von PDX-Modellen für In-vivo-Tests neuartiger Behandlungen 
auf der Grundlage von Wirkmechanismen ermöglichen. Es würde zudem die 
Prioritätensetzung bei der Entwicklung von Arzneimitteln sowie die klinische 
Stratifizierung von Patienten über verschiedene Entitäten hinweg erleichtern.  

Derzeit sind 251 Modelle vollständig charakterisiert, darunter 180 Hirn- und 71 Nicht-
Hirn-PDX-Modelle, die 112 Primärmodelle-, 92 Rezidiv-, 42 Metastasen- und 4 unter 
Behandlung stehender Progressionsmodelle repräsentieren. Mit Hilfe der sogenannten 
Whole-Genome und Whole-Exome Sequenzierung, somatischen Mutationsanalyse, und 
der Analyse von DNA Kopienanzahl sowie Methylierungsdaten sollen genetische 
Merkmale in der ITCC-P4 PDX-Kohorte definiert und die molekulare Übereinstimmung 
der PDX-Modelle im Vergleich zu ihrem Patiententumor abgeschätzt werden. Auf der 
Grundlage von DNA-Methylierungsprofilen wurden 43 verschiedene 
Tumoruntergruppen innerhalb von 18 Krebsentitäten identifiziert.  

Die Analyse der Mutationslandschaft identifizierte die wichtigsten somatischen und 
Keimbahn-Alterationen, wobei Ependymom-PDX-Modelle das C11orf95-RELA-
Fusionsereignis, YAP1, C11orf95 und RELA SV aufwiesen. Medulloblastom-Modelle 

https://www.itccp4.eu/
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wurden durch MYCN, TP53, GLI2, SUFU und PTEN angetrieben. Hochgradige Gliom-
Proben wiesen somatische SNVs von TP53, ATRX, MYCN und PIK3CA sowie fokale 
Deletionen von CDKN2A auf Chromosom 9 auf. Neuroblastom-Modelle waren 
angereichert mit ALK-SNVs und/oder fokaler MYCN-Amplifikation, ATRX-SNVs und 
CDKN2A/B-Deletionen. Sarkom-Modelle wiesen charakteristische Alterationen wie 
PAX3-FOXO1-Fusionen auf, die bei embryonalen Rhabdomyosarkomen nachgewiesen 
wurden, zusammen mit TP53, CDKN2A, NRAS SNVs, NCOA1, NF1 und CDK4 SVs. 
Ewing-Sarkom-PDX-Modelle wiesen die bekannte und definierende EWSR1-FLI1-
Genfusion sowie in Einzelfällen EWSR1-Fusionen mit ERG und FEV auf. Osteosarkome 
zeichneten sich durch hochgradig instabile Genome mit großen chromosomalen 
Veränderungen aus. Die Tumorsuppressorgene TP53 und RB1 waren häufig verändert, 
und es wurden ATRX-Verluste und MYC-Amplifikationen beobachtet. Weitere Sarkome 
wie das klarzellige Sarkom der Niere wiesen einen CDKN2A-Verlust, einen MYC-
Zuwachs, einen NF1-Verlust und TP53-Mutationen auf, während Synovialsarkom-
Modelle durch SSX-Genfusionen und -Veränderungen gekennzeichnet waren. Große 
Chromosomenaberrationen (Deletionen, Duplikationen), die in den PDX-Modellen 
nachgewiesen wurden, gingen mit molekularen Veränderungen einher, die bei den 
einzelnen Tumorarten häufig beobachtet wurden: Isochromosom 17 wurde in fünf 
Medulloblastom-Modellen nachgewiesen, während die Deletion des 
Chromosomenarms 1p oder die Zunahme von Teilen von 17q in Neuroblastomen mit 
der Tumorprogression korrelieren. 

Die Tumor-Mutationslast zwischen den Entitäten und die Kopienzahlanalyse wurden 
durchgeführt, um allelspezifische Kopienzahlereignisse in Tumor-Normal-Paaren zu 
identifizieren. Eine klonale Evolution somatischer Varianten wurde nicht nur bei 
bestimmten PDX-Tumor-Paaren festgestellt, sondern auch zwischen verschiedenen 
Krankheitsstadien. Der Multi-omics-Ansatz in dieser Studie bietet einen Einblick in die 
Mutationslandschaft und -muster der PDX-Modelle und liefert so einen Überblick über 
die molekularen Mechanismen, die die Identifizierung und Priorisierung von onkogenen 
Treibern und potenziellen Biomarkern für eine optimale Behandlung erleichtern. 

Die zweite Studie, ebenfalls im Rahmen des ITCC-P4-Konsortiums, umfasst ein „Target 
Actionability Review“ zum Replikationsstress. Zahlreiche veröffentlichte Daten belegen, 
dass der Replikationsstress ein therapeutisches Ziel darstellt. Allerdings beeinträchtigen 
die schädlichen Langzeitnebenwirkungen der Chemotherapie das Leben der 
behandelten Patienten drastisch. In der Studie werden spezifische Zielmoleküle der 
Replikationsstressreaktion bewertet, verglichen und hervorgehoben. Die Methodik zielt 
darauf ab, gezielte therapeutische Maßnahmen zur Krebsbekämpfung auf der Grundlage 
klinischer Studien auf bestimmte Subtypen abzustimmen. Es wurde ein umfassender, gut 
strukturierter und kritisch bewerteter Review über die Literatur zum Thema 
Replikationsstress bei 16 pädiatrischen soliden Malignomen erstellt. Es wurde 
festgestellt, dass ATR, ATM, PARP und WEEI die vielversprechendsten Angriffspunkte 
darstellen, entweder als Einzelwirkstoffe oder in Kombination mit Chemo- oder 
Strahlentherapie. Die Nachweise zu CHK1 und DNA-PK sind zwar begrenzt, zeigen 
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aber das Potenzial, diese vielversprechenden Ziele bei einer größeren Anzahl von 
Tumorarten weiter zu untersuchen. 

Die kollektiven Daten und Ergebnisse beider Studien, der ,‚ITCC-P4: Molecular 
characterization and multi-omics analysis of Patient-Derived Xenograft (PDX) models 
from high-risk pediatric cancers" und der "Target actionability review on replication 
stress", können auf der interaktiv gestalteten R2-Plattform weiter erforscht werden, 
sobald die Nutzer ein Konto erstellt haben, um Zugang zu den Kohortendaten zu 
erhalten (https://r2-itcc-p4.amc.nl/).   

https://r2-itcc-p4.amc.nl/


 

vi 
  

Acknowledgements 
 

Over the past 4 years, the guidance and encouragement I received to keep moving 
forward has been immense. It’s because of this support network that I was able to 
complete my PhD journey successfully at the German Cancer Research Center (DKFZ). 

First and foremost, I would sincerely like to thank my PhD advisor, Prof. Dr. Stefan 
Pfister for giving me the opportunity to pursue my PhD at the Division of Pediatric 
Neurooncology (B062) and Hopp Children’s Cancer Center Heidelberg (KiTZ). Stefan, 
your dedication and passion for science and oncology research is incredibly inspiring. 
As my supervisor and TAC member, your extensive knowledge, and innovative ideas on 
all my projects has been super helpful. Thank you for all the encouragement and the 
opportunity to work on the ITCC-P4 consortium project. I’ve had the chance to network 
and collaborate with some extraordinary scientists in the field of pediatric oncology, not 
only in academia but also the industry. For this, I am extremely grateful. You’ve created 
an amazing work environment at B062 with a diverse group of inspiring scientists who 
I’ve learned so much from over the last few years. 

To my direct supervisor, Dr. Natalie Jäger, thank you for your mentorship and support 
from day one. Natalie, you’ve been such an incredible group leader and I really lucked 
out being able to work under your supervision. You’re such an intelligent, empathetic, 
kind and contagiously humorous human-being and an inspiring woman in science. 
Thank you on all the talks, bioinformatics feedback, constant support, and especially 
your pragmatic thinking on getting things done. I really appreciate all the motivation and 
guidance you’ve given me, not only on my projects but also my personal development. 
You’re truly one of a kind! 

A huge thank you to my other TAC members, Prof. Dr. Benedikt Brors and Dr. Jan 
Korbel for providing excellent inputs, having productive discussions and the all the 
scientific advice throughout my TAC meetings.  

I would also like to thank Prof. Dr. Marcel Kool, for all your valuable insight and 
scientific advice on the ITCC-P4 project. Your support and guidance on various research 
ideas we had throughout the ITCC-P4 consortium projects was extremely helpful. 

Many thanks to my newest supervisor, Dr. Robert Autry. The past 10 months of having 
you as my supervisor have been great. You’ve been super supportive, enthusiastic, easy 
to have scientific discussions with. Your friendly and charming Southern American 
personality is always a joy to be around leading to some hilarious conversations. 

I would like to thank my colleague and ITCC-P4 collaborator Dr. Aniello Federico. 
Working so closely on the consortium project, managing collaborators, having 
brainstorming sessions and several weekly meetings has been a pleasure. Thank you for 
being so patient with all my doubts and discussions. Your continuous support and 
trouble-shooting code errors has been incredibly valuable. From the ITCC-P4 general 
assembly in Zug, Switzerland to the AACR 2023 conference in Florida, you’ve been 



 

vii 
  

great to work with and such an inspiration. We still have a long way to go, but I’m sure 
we can wrap up and publish this paper soon! 

I would also like to thank all my other ITCC-P4 collaborators, specifically, Dr. Jan Koster 
for all your fruitful discussions, brainstorming ideas, R2 assistance, guidance, and overall 
positive energy. It’s been a pleasure collaborating and learning from you. Sonja Krausert 
and Kaylee Keller, working together on the TAR over never-ending Zoom calls during 
the pandemic was an interesting time to push the project forward. Being able to 
successfully complete and publish the review during the strangest time of the world, was 
a truly memorable experience!  

To my Clinical Bioinformatics current and former colleagues and friends, Venu 
Thatikonda, you’ve been such an awesome mentor and most importantly a great friend. 
Thanks for all the fantastic advice, support, tips-and tricks, coding assistance, uplifting, 
motivational chats. Your positive vibes have shown me that there’s so much more in life 
and it only gets better! Pengbo Beck, thanks for spreading your happy positive energy 
and all your support and guidance. You’ve been a wonderful colleague and made our 
ClinBio group so much livelier and more social even through the pandemic. Dr. Gnana 
Prakash Balasubramanian, my desk buddy, thanks for all the motivational talks, the 
random Telugu songs, Indian sweets, Chai and samosas. Your words of wisdom will stay 
with me forever and I will always remember to “Keep my head down, drink the 
Kashayam and keep moving forward”. Dr. Christopher Previti. Thank you for all the 
assistance with CNVkit and pre-processing samples and for being flexible with all my 
“final samples” E-mails and requests. Dina El Harouni, continue being a brilliant scientist 
and spread your joy all over Boston. I will forever be cheering you on, for shooting your 
shot again at the Olympics! Thanks for all the support and advice! Rolf, thank you for 
teaching me that "The Only Stupid Question is the One You Don’t Ask". You’ve been so 
patient and kind with all the technical and IT assistance, thanks for helping debug code, 
solving cluster issues, installing all my various R-packages. Dr. Matrin Sill and Dr. 
Konstantin Okonechnikov I much appreciate all the advice and guidance on various 
bioinformatics analysis. Thanks Lukas Madenach and Enrique Blanco for the 
entertaining chats, coffee breaks and social gatherings! Maximilian Deng, thanks for the 
spontaneous coffee catchups, laughter, and lunch sessions! 

Most importantly, my forever friends, Felix Schmitt-Hoffner and Jasper van der Horst, 
one of the best parts of this PhD was our friendship and for that I am eternally grateful. 
Thank you barely covers what I need to say. You’ve both made the last 4 years so much 
more enjoyable and happier! Through all the ups and downs and mental stress, you’ve 
added so much laughter, joy, support with all our “DKFZ Coffee Social Club”, BBQ 
evenings, cocktail nights, drinks at Café Regie, swimming in the lake evenings and 
countless core memories. I will always be grateful to have made two lifelong friends on 
this PhD adventure, no matter where we are or where we end up, someday that Faroe 
Island trip together is happening! I’m so glad I started talking to you guys in the climbing 
gym at the PhD initial course! Looking forward new memories we will continue to make 
in the future. #KamchatkaGirls.  



 

viii 
  

Michael Persicke, my DKFZ Dossenheim neighbour and Fika partner, thank you for all 
the dinners, tears of laughter and conversations reminding me that there’s so much more 
to life. From biking back to Dossenheim post DKFZ PhD parties and Schriesheim 
vineyard walks, to now, ice-cream and walks around Weststadt. Your everlasting smile 
and kind heart makes you one of the best people I know. 

I also owe a huge thanks to my friends over the world. Sindhu Vangeti, thanks for being 
a massive inspiration. The day you bought me that “København” magnet and said you 
were starting your PhD at Karolinska Institutet, Sweden, changed my life. You inspire 
me with all your hard-work and never-endingly wild social battery! The sisterly advice, 
pep-talks, PhD guidance, being so understanding on professional challenges and 
relatable on similar struggles of life, made this journey so much easier.  

To some of my longest standing supporters, having been through the chapters that aren’t 
in this thesis, Kunal, thanks for always listening and being there no matter the time 
difference. From wake-up calls early in the morning, Office memes, metal health check-
ins, motivation, and hype sessions, you’ve been through it all. Thank you for all the love 
and support! Mitali, one of my oldest friends and we’ve grown up together seeing and 
supporting each other through difference seasons of life, thanks for always making me 
laugh, the amazing Harry Styles conversations and the never-ending motivation and 
check-in calls! Miss you! Srishti, thanks for being my go-to person for all the ranting 
sessions, laughter, giggles, and support. Nina, I’m so glad we started chatting at the 
doctor’s office that day. Thanks for all the coffee chats, mentorship, summer swimming 
sessions when I needed a writing break. Nathalie, my first friend in Heidelberg, thank 
you for all your positive energy and brunch/coffee chats and laughter since 2019! To all 
my other friends who I haven’t mentioned explicitly, you know who you are. Thank you 
for coming into my life for a reason, season, or a lifetime. You’re all appreciated! 

Last but not the least, my family, Amma and Dada, thank you for teaching me to chase 
my dreams and doing what makes me happy. Without your unconditional love, 
encouragement, and never-ending support since the very beginning, I would never be 
where I am today. Your continuous cheerleading and motivating pep-talks through all 
the challenging times, made it possible to reach the end of this adventure and for that I 
am forever grateful. My brother, Akash, thank you for being my biggest inspiration and 
supporter since 1994. We might not always see eye-to-eye but without your infinite 
advice, calm and rational mindset, and endless love, this would not have been possible. 
I will always remember you saying, “Keep your wits about you”. Thank you for all the 
vacations planned and long road trips, it’s my turn to finally take some load off your 
plate. Brace yourself! 

Finally, to my grandparents. My grandmother, Ammamma and in the loving memory of 
my grandfather, Thathayya. Your unconditional love, kindness, and wisdom has made 
me what I am today. You’ve always believed in me since day one. Thank you for being 
an incredible source of inspiration in my life and for showing me what true love and 
happiness is.  

  



 

ix 
  

List of abbreviations 
 
450k arrays   Illumina Infinium 450k Methylation BeadChip Arrays 

AT/RT Atypical teratoid/rhabdoid tumors 

bp Base pairs 

CBTRUS Central Brain Tumor Registry of the United States 

CCSK Clear cell sarcoma of the kidney 

CNA/CNV Copy number alteration/Copy number variation 

CNS Central nervous system 

DKFZ Deutsches Krebsforschungszentrum 

DNA Deoxyribonucleic acid 

EPN Ependymoma 

ETMR Embryonal tumour with multilayered rosettes 

EWS Ewing sarcoma 

FFPE Formalin-Fixed Paraffin-Embedded 

GEMM Genetically engineered mouse models 

HB Hepatoblastoma 

HGG High-grade glioma 

HGNET High Grade Neuroepithelial Tumor 

IGV Integrative Genomics Viewer 

IMI Innovative Medicines Initiative 

indels Insertions and Deletions 

ITCC-P4 
Innovative Therapies for Children with Cancer Pediatric 
Preclinical Proof-of-concept Platform 

KiTZ Hopp Children’s Cancer Center 

lcWGS Low-coverage Whole exome sequencing 

LL Large-cell lymphoma 

MB Medulloblastoma 

MPNST Malignant Peripheral Nerve Sheath Tumor 



 

x 
  

NB Neuroblastoma 

NGS Next-generation sequencing 

NSG NOD-SCID Gamma mice 

OS Osteosarcoma 

PDX Patient-Derived Xenograft (s) 

PLEX Plexus tumor 

PLGG Pediatric low-grade glioma 

PoC Proof-of-concept 

RNA Ribonucleic acid 

RNA-seq RNA Sequencing 

RMS_ALV Alveolar rhabdomyosarcoma 

RMS_EMB Embryonal rhabdomyosarcoma 

RSR Replication stress response 

RT Rhabdoid tumors 

SARC Sarcoma 

SNVs Single nucleotide variants 

SS Synovial sarcoma 

SV Structural variants 

TAR Target actionability review 

TCF Tumor cell fraction 

t-SNE t-distributed stochastic neighbor embedding 

VAF Variant allele frequency 

WES Whole exome sequencing 

WGS Whole genome sequencing 

WHO World Health Organisation 

 

  



 

xi 
  

Contents 
 

DECLARATION ............................................................................................................ 5 
ABSTRACT ................................................................................................................... I 
ZUSAMMENFASSUNG ................................................................................................... III 
ACKNOWLEDGEMENTS ................................................................................................. VI 
LIST OF ABBREVIATIONS ............................................................................................... IX 
CONTENTS ................................................................................................................. XI 
LIST OF FIGURES ........................................................................................................ XV 
LIST OF TABLES ........................................................................................................ XVII 

 
1 INTRODUCTION ............................................................................................. 1 

1.1 An introduction to Cancer ............................................................................. 1 
1.1.1 Cancer – a worldwide health crisis .......................................................... 1 
1.1.2 Hallmarks of cancer ................................................................................. 2 
1.1.3 Cancer genome and epigenome .............................................................. 3 
1.1.4 Replication stress response (RSR) ............................................................. 5 
1.1.5 Current treatment strategies & personalized oncology .............................. 6 

1.2 Omics revolution in cancer ............................................................................ 6 
1.2.1 Next-generation sequencing methods ...................................................... 6 
1.2.2 DNA Methylation  ................................................................................... 7 
1.2.3 Gene expression arrays ............................................................................ 7 
1.2.4 Multi-omics integration for genomic profiling .......................................... 8 

1.3 Pediatric cancers ............................................................................................ 8 
1.3.1 Childhood vs adult cancers ...................................................................... 8 
1.3.2 Pediatric Brain and Central Nervous System tumors ............................... 11 
1.3.3 Neuroblastoma ...................................................................................... 20 
1.3.4 Sarcomas ............................................................................................... 20 
1.3.5 Other tumors ......................................................................................... 24 

1.4 Patient derived xenograft models for preclinical modeling of cancer ........ 25 
1.5 Precision medicine for pediatric tumors ..................................................... 28 
1.6 AIMS ............................................................................................................. 29 

1.6.1 ITCC-P4: Molecular characterization and multi-omic analysis of Patient-
Derived Xenograft (PDX) models from high-risk pediatric cancer ..................... 29 
1.6.2 Target Actionability Review (TAR): a systematic evaluation of replication 
stress as a therapeutic target for pediatric solid malignancies ........................... 30 

 
 



 

xii 
  

 
2 MATERIALS AND METHODS .......................................................................... 31 

2.1 Materials based on ITCC-P4 Genomic profiling .......................................... 31 
2.1.1 Human tumor samples ........................................................................... 31 
2.1.2 PDX model establishment ...................................................................... 33 
2.1.3 ITCC-P4 Cohort ...................................................................................... 34 

2.2 Methods based on ITCC-P4 Genomic profiling ........................................... 37 
2.2.1 Whole Exome Sequencing and Whole Genome sequencing workflow ... 37 
2.2.2 "No-control workflow": Analysis of samples without patient-matched 
germline data ................................................................................................... 38 
2.2.3 DNA-Methylation profiling and subgroup classification ......................... 39 
2.2.4 Copy number variant (CNV) workflow ................................................... 39 
2.2.5 RNA sequencing workflow and gene fusion calling ................................ 40 
2.2.6 Driver gene annotation of somatic and germline mutations .................... 41 
2.2.7 Tumor mutational burden (TMB) analysis ............................................... 41 
2.2.8 Variant allele frequency (VAF) calculation ............................................. 41 
2.2.9 Tumor cell fraction (TCF) – ESTIMATE, Sequenza and CNVkit ............... 42 
2.2.10 Variant allele frequency using estimated tumor cell fraction ................. 42 
2.2.11 PDX-Tumor correlation: Pearson scores, delta-VAF and VAF-ratio ........ 42 

2.3 Methods based on the ITCC-P4 Target Actionability Review - Replication 
Stress ……………………………………………………………………………………………………………………..43 

2.3.1 Step 1: Literature search ......................................................................... 44 
2.3.2 Step 2: Critical review and scoring ......................................................... 45 
2.3.3 Step 3: Adjudication by reviewer ........................................................... 51 
2.3.4 Step 4: Data visualisation ....................................................................... 51 

 
3 RESULTS .......................................................................................................... 52 

3.1 Results based on the molecular characterization and multi-omic analysis of 
Patient-Derived Xenograft (PDX) models from high-risk pediatric cancer ........... 52 

3.1.1 ITCC-P4 PDX model cohort generation and characterization ................. 52 
3.1.2 Molecular subgrouping of pediatric solid tumors based on DNA 
methylation and transcriptomic analysis .......................................................... 56 
3.1.3 Genomic landscape of pediatric solid tumors ......................................... 61 
3.1.4 Copy number landscape of ITCC-P4 PDX models .................................. 73 
3.1.5 PDX model fidelity compared to matching patient tumor ....................... 75 
3.1.6 Modeling of tumor progression: “Serial” PDX comparisons .................... 88 
3.1.7 ITCC-P4 data scope portal: R2 platform ................................................. 92 

 



 

xiii 
  

3.2 Results from the ITCC-P4 Target Actionability Review (TAR): Replication 
stress.. ...................................................................................................................... 93 

3.2.1 Systematic evaluation of replication stress literature ............................... 93 
3.2.2 Druggable targets of replication stress and biomarker scoring ................ 94 

 
4 DISCUSSION .................................................................................................. 99 

4.1 Discussion based on ITCC-P4 genomic profiling ...................................... 100 
4.1.1 PDX models in pediatric cancer ........................................................... 100 
4.1.2 PDX models compared to their corresponding patient tumor ............... 102 
4.1.3 PDX models as a tool for preclinical drug testing ................................. 104 

4.2 Discussion based on TAR Replication stress .............................................. 105 
4.2.1 Targeting Replication stress as a therapeutic approach ......................... 105 

4.3 Limitations .................................................................................................. 107 
4.4 Future directions ........................................................................................ 109 

 
5 BIBLIOGRAPHY ............................................................................................ 110 
 



 

xiv 
  

  



 

xv 
  

List of Figures 

 
Figure 1: The hallmarks of cancer ....................................................................... 2 
Figure 2: Genomic alterations in cancer ............................................................. 4 
Figure 3: Replication stress response targets ........................................................ 5 
Figure 4: Global cancer incidence and mortality ................................................. 9 
Figure 5: European centric cancer incidence and mortality .................................. 9 
Figure 6: Molecular classification of Medulloblastoma subgroups ...................... 15 
Figure 7: PDX models for preclinical drug testing is the new era of cancer research

 ................................................................................................................. 26 
Figure 8: Established Pediatric precision oncology programs ............................. 28 
Figure 9: PDX model establishment process ...................................................... 34 
Figure 10: Overview of Replication Stress TAR methodology ............................. 43 
Figure 11: Schematic illustration of ITCC-P4 PDX model establishment ............. 52 
Figure 12: ITCC-P4 PDX model generation and subgroup classification ............. 53 
Figure 13: ITCC-P4 PDX model characterization ............................................... 55 
Figure 14: DNA Methylation analysis ............................................................... 57 
Figure 15: Epigenomic correlation assessment of each subgroup ....................... 59 
Figure 16: Analysis of PDX cohort transcriptomic profile ................................... 60 
Figure 17: Tumor mutational burden across PDX and tumor .............................. 62 
Figure 18: Tumor mutational burden across cancer types and subypes ............... 63 
Figure 19: Mutational landscape of Ependymoma and Medulloblastoma ............ 65 
Figure 20: Mutational landscape of High-grade glioma, HGNET-PLEX and AT/RT

 ................................................................................................................. 66 
Figure 21: Mutational landscape of Neuroblastoma ........................................... 68 
Figure 22: Mutational landscape of Rhabdomyosarcoma ................................... 70 
Figure 23: Mutational landscape of Ewing sarcoma ........................................... 70 
Figure 24: Mutational landscape of Osteosarcoma ............................................ 71 
Figure 25: Mutational landscape of additional SARC tumors .............................. 72 
Figure 26: Mutational landscape of other tumors .............................................. 72 
Figure 27: Copy number landscape of ITCC-P4 PDX cohort .............................. 74 
Figure 28: Tumor cell purity between PDX and tumors ...................................... 75 
Figure 29: Tumor cell fraction comparisons ...................................................... 76 
Figure 30: Change in PDX and tumor variant allele frequency (delta-VAF) ......... 79 
Figure 31: VAF plot for high-grade glioma samples ........................................... 81 
Figure 32: VAF plot for Ewing sarcoma samples ................................................ 81 
Figure 33: VAF plot for Neuroblastoma samples ................................................ 82 
Figure 34: VAF plot for Rhabdomyosarcoma samples ........................................ 83 
Figure 35: VAF plot for Osteosarcoma samples ................................................. 84 
Figure 36: Chromosomal landscape and VAF plot concordance in PDX tumor 

pairs ......................................................................................................... 85 
Figure 37: ichorCNA CNV profiles and Circos plots for SV comparison ............. 86 
Figure 38: Serial cases comparisons ................................................................. 88 



 

xvi 
  

Figure 39: DNA methylation based tSNE for Serial cases ................................... 89 
Figure 40: Serial cases - VAF and copy number profile comparison ................... 90 
Figure 41: Coverage plots of Serial cases highlighting driver gene events ........... 91 
Figure 42: ITCC-P4 data scope on the R2 platform ............................................ 92 
Figure 43: The TAR workflow process .............................................................. 93 
Figure 44: Overview of replication stress targets ............................................... 94 
Figure 45: Evidence and therapeutic combination reported for TAR ................... 95 
Figure 46: Summary of TAR appraisal scores ..................................................... 97 
Figure 47: Overview of specific therapeutic targets ........................................... 98 
 
 
  



 

xvii 
  

List of Tables 
 
Table 1: ITCC-P4 European partnering institutes and their ITCC-P4 barcodes ..... 32 
Table 2: ITCC-P4 standardised barcode system ................................................. 36 
Table 3: WES library prep kits and sequencing platforms used in ITCC-P4 ......... 37 
Table 4: lcWGS sequencing platforms used in the ITCC-P4 ............................... 37 
Table 5: Replication stress keywords and cancer entities for PubMed queries ..... 44 
Table 6: Proof of concept (PoC) modules for the TAR ........................................ 47 
Table 7: Experimental quality scoring ............................................................... 49 
Table 8: Experimental outcome scoring ............................................................ 50 
 
 
  



 

xviii 
  

 



 

1 
  

1 INTRODUCTION 
 
1.1 An introduction to Cancer 
 
1.1.1 Cancer – a worldwide health crisis 
Cancer is a disease characterized by the unrestrained proliferation of cells originating 
from different cell types and organs of the body. These cells can invade normal tissue 
boundaries and can metastasize in different organ sites. The tumors that stay in the 
primary origin site are known as benign tumors and have a slower growth. Those cells 
that grow uncontrollably and spread to distant sites via the bloodstream or lymphatic 
system are known as metastatic tumors. This extensive growth of metastatic cancer cells 
can inevitably lead to death. Cancer comprises of over hundred distinct diseases with 
complex genetic and epigenetic alterations, accounting for 18% of deaths, making it the 
second leading cause of death by disease in the world. Globally 10 million cancer deaths 
have been reported according to the 2020 GLOBOCAN from The International Agency 
for Research on Cancer (IARC) with a prediction of 28 million new cancers cases by 
2040 [1], [2].   

The diverse rates of cancer incidence, progression and mortality can be accounted for 
by the difference in biological sex, race, age, geographical locations, and also socio-
economic backgrounds. The most common causes of cancer deaths in men aged 60–79 
years were reported to be prostate, lung and bronchus and colorectal cancer, while 
women aged 40–79 years were affected by lung and bronchus, breast, and colon cancer. 
Tumors affecting the brain and central nervous system are the primary cause of cancer 
related deaths among children and adolescents younger than 20 years [3]. The largest 
incidence and mortality difference based on geography were reported for lung, cervical 
cancer and melanoma of the skin. This could be due to variations in lifestyles and risk 
factors such as smoking, obesity, alcohol, exposure to UV rays[1]. Predominance of 
cancer was also reported where more developing countries displayed infection-based 
cancer deaths potentially caused due to lower access to preventative care, screening 
and early detection practices, while more developed socio-economically progressive 
regions displayed higher cancer mortality due to lifestyle [2], [3]. 

The development of modern medicine and advances in prevention and early detection 
of cancer have led to a significant decline in cancer mortality by 33% since 1991[3]. 
There has been an increased 5-year survival rate for all cancers from 49% for diagnoses 
(mid-1970s) to 68% for diagnoses (between 2012 – 2018)[3]. Although there have been 
revolutionary therapeutic advances over the past decade, there is still a crucial need to 
further understand the molecular characterization and biological functioning of cancer 
based on modern next generation sequencing methods. 
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1.1.2 Hallmarks of cancer 
Tumorigenesis is a multi-step process involving distinct characteristics, initially proposed 
by Douglas Hanahan and Robert Weinberg in 2000 [4] as requirements needed to be 
fulfilled for cancer cells to form and survive. This seminal paper described six acquired 
capabilities of cancer cells: evasion of growth suppressors, acquiring resistance to 
programmed cell death (apoptosis), sustaining proliferating growth signals, enabling 
replicative immortality, the induction of angiogenesis and activating invasion and 
metastasis. These core hallmarks provide a framework for distinguishing cancer cells 
from normal healthy cells. They were further expanded upon in 2011 to include 
emerging biological hallmarks: ability to avoid immune destruction and deregulation or 
reprogramming of energy metabolism[5]. Additionally, two consequential enabling 
characteristics were later highlighted namely: genome instability and mutation, causing 
genetic variability and tumor promoted inflammation. As cancer is a heavily researched 
area, new observations shed light on the complexities of a tumor. A tumor is not merely 
a uniform cluster of dividing cells, but a complex heterogenous “organ” comprising of 
fibroblasts, immune cells, endothelial cells and mesenchymal cells among others. The 
heterotypic interactions of these constitutions with the surrounding stromal cells and 
tumor microenvironment were better understood by the advent of powerful 
experimental tools and advances in computational technologies over the last decade. 
This led to the expansion of the hallmarks of cancer in 2022 (Figure 1), to encompass 
additionally proposed emerging hallmarks: unlocking phenotypic cellular plasticity, 
cellular senescence and enabling characteristics, non-mutational epigenetic 
programming, and polymorphic microbiomes[6]. These hallmarks of cancer are 
necessary for normal cells to transform into cancerous cells.  

 
Figure 1: The hallmarks of cancer 

The eight core hallmarks of cancer defining the characteristics acquired during tumor growth. It 
provides a solid foundation for the understanding of cancer biology and development of targeted 
therapies. (Adapted from Hanahan, 2022[6]) 

Date of Download:  9/12/2023 Copyright © 2023 American Association for Cancer Research. All rights reserved.

From: Hallmarks of Cancer: New Dimensions 

Cancer Discov. 2022;12(1):31-46. doi:10.1158/2159-8290.CD-21-1059
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1.1.3 Cancer genome and epigenome 
Across billions of mitotic cycles in cell division, throughout the lifespan of a human 
embryo, the normal physiology, structural integrity, and functions of the DNA need to 
be preserved. Although the process of copying genetic information from one mitotic 
cycle to new cells is highly efficient and accurate, sporadic errors and lesions in DNA 
replication and the repair mechanisms can lead to subtle changes in the DNA sequence. 
Defects in the normal DNA replication pathways that govern genetic stability, amplifies 
tumorigenesis, by mutations, clonal selection and evolution and ultimately drive cancer 
formation [7]–[9].  

Mutations that occur within the human genome are either germline or somatic. Germline 
mutations are inherited from the parent and occur in the gamete (egg or sperm) or cells 
that produce the gamete, progenitor cells[10], [11]. The resulting embryo and baby will 
carry this variation in every cell of the body that contains a copy of the gene. The most 
common example of a pathogenic germline variant is BRCA1 or BRCA2, carried by 1-
5% of breast cancer patients. BRCA1 and BRCA2 genes play a significant role in DNA 
homologous recombination repair during stalling of replication fork or DNA strand 
breaks during replication. The biallelic loss of germline BRCA1 and BRCA2 causes less 
effective or inability to perform homologous repair of double stranded break, leading to 
a higher rate of DNA mutations and high likelihood of breast and ovarian cancer[12]. 
Somatic mutations are those that occur in other cells of the body and are not present in 
every cell of the body, hence are not inherited or passed on from one generation to the 
other[11], [13]. 

With technological advances in next-generation sequencing there are two main 
categories of genomic alterations in cancer [14], [15]. First are small variations that 
include single nucleotide variants (SNVs) and small insertions and deletions (INDELS). 
These alterations are caused by substitution of one of more nucleotide bases with 
different nucleotides. SNVs occur due to a single base change of <1 base pair, while 
INDELs are <50 base pair regions of the DNA that are inserted or deleted. Second, are 
large variations also known as structural variants (SVs) or chromosomal rearrangements. 
SVs span >50 base pairs and are rearrangements of the DNA segment occurring due to 
deletions, inversions (orientational), tandem duplications(quantitative), insertions 
(positional), translocation (positional) and copy number changes (quantitative)  [14]–
[20] (Figure 2). These copy-number alterations (CNAs) occur due to increased (gains) or 
decreased (losses) number of copies of the chromosomal region of the DNA segment, 
compared to their corresponding reference or control [18], [21], [22]. Gene fusions or 
chromosomal rearrangements are an important type of genomic alterations that play a 
significant role in tumorigenesis. In 1960 the first cancer associated translocation of 
chromosome 9 and 22, termed as Philadelphia chromosome was identified in patients 
with chronic myeloid leukemia (CML). This translocation resulted in the formation of 
fusion proteins as a result of the BCR and ABL gene fusion[23]–[27].  

Most mutations in cancer are assumed to be neutral, termed as “passenger mutations”, 
that do not stimulate carcinogenesis. Mutations that enhance the progression of tumor 
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cells are termed as “driver mutations”. These oncogenic mutations drive abnormal 
proliferation of cancer cells and represent single-nucleotide substitutions or point 
mutations [28], [29].  

 

 
Figure 2: Genomic alterations in cancer 

Advancements in next-generation sequencing enabled further understanding of genomic 
variations that can result in tumorigenesis. (Adapted from Logsdon GA et al. 2020 [15] PacBio 
review[30]) 

 

Three main types of genes that play a major role in cancer development, can be affected 
by somatic mutations. Oncogenes, resulting from “gain-of-function”, in their proto-
oncogenic state drive cell cycle forward resulting in the uncontrolled growth of cancer 
cells. On the other hand, tumor suppressor genes are affected by “loss-of-function” 
mutations and restrict cell cycle progression. A well-known example of this is the protein 
product of tumor suppressor gene CDKN2A and interacts directly to inhibit the protein 
product of the CDK4 oncogene[31], [32]. In many tumors, these genes are lost or 
inactivated, hence removing the negative feedback of cell proliferation, thus causing 
rapid cell proliferation and cancer growth[33]–[38]. Furthermore, DNA repair genes are 
involved in recognition and removal of errors made during DNA replication, nucleotide 
excision repair, mis-match repair, non-homologous end joining and homologous 
repair[39]–[42]. Additionally, these genes, affect DNA repair by cell cycle regulation 
and maintaining genomic stability. Dysregulation (loss or gain) of these DNA repair 
genes leads to the accumulation of genomic errors, genomic instability, and replication 
stress, ultimately leading to cancer formation[39], [42]. 
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1.1.4 Replication stress response (RSR) 
DNA replication stress is a broad term that includes obstruction of DNA replication by 
stalling or collapse of the DNA replication fork. Stalling causes the overall ribosomal 
structure to remain intact, but the mechanism of DNA replication is hindered until the 
issue is fixed. The exhaustion of nucleotides could be a factor causing stalling of the 
DNA fork. However, disruption of the replisome integrity causes collapse of the DNA 
fork, due to dissociation of some or all proteins from the DNA template, or the template 
itself may be processed to generate abnormal DNA structures[31]. The delay in DNA 
repair can result in the accumulation of further DNA damage. This in turn causes 
genomic instability and cell death. The replication stress response (RSR) pathway is a 
multi-faceted signalling pathway that is activated to maintain genomic stability and 
ensure survival, but in cases of irreparable DNA damage, apoptosis or programmed cell 
death is then initiated[43], [44]. Molecular errors can occur in two main components of 
replication stress response pathways – DNA damage repair pathways and cell cycle 
repair pathways can lead to DNA damage, genomic instability and finally cell death 
(Figure 3). Hence targeting proteins involved in replication stress as a vulnerability is an 
attractive therapeutic approach in cancer [43], [44]. 

 

 

 
Figure 3: Replication stress response targets 

Dissociation of proteins involved in replication stress leads to genomic instability and cell death. 
Targeted treatment to focus on two main pathways DNA damage repair genes and cell cycle 
repair genes is widely being used in precision oncology.  
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1.1.5 Current treatment strategies & personalized oncology 
Cancer is a complex, highly adaptable sequence of disease conditions progressing 
gradually and leading to the loss of cell growth control. Conventional therapeutic 
approaches such as surgery, chemotherapy, radiotherapy, and hormonal therapy have 
fallen short as there is no “one-size” fits all in cancer treatment. Each cancer patient is 
different from every other patient in clinical presentation, prognosis, tumor response to 
treatment and tolerance to treatment in addition to variations in risk of occurrence, 
secondary malignancies, and treatment tolerance[45]. Classical treatments are being 
administered along with combination treatments and by better molecularly tailored 
approaches for individual patients [46], [47]. Over the past few decades, two major 
revolutions in therapeutic strategies have changed cancer treatment: targeting actionable 
oncogenic drivers and immuno-oncology[46]. Hence, conventional interventions such 
as chemotherapy and now targeted therapy have significantly improved patient survival 
and quality of life for patients, with higher rates in complete tumor remission[48], [49]. 

Personalized oncology or precision medicine is the approach of tailoring medical 
treatment to personal characteristics of the patient’s tumor and the host. By using 
evidence based statistical approaches to evaluate relationships between patient profile 
(e.g., genomic, proteomic, or transcriptomic) and the clinical output (e.g, degree of 
response to treatment)[50], [51]. The main essence of personalized cancer treatment 
relies on biomarkers, which can be diagnostic, prognostic, predictive and 
pharmacogenomic[45], [48], [51], [52]. The advances of molecular profiling beyond 
genomics such as transcriptomics, epigenomics, immunophenotyping and evaluation of 
combination drug treatments beyond monotherapy approaches has rapidly increased 
the scope of precision medicine in cancer research.  

 

1.2 Omics revolution in cancer 
 
1.2.1 Next-generation sequencing methods 
DNA sequencing formerly suggested by Sanger et al. was based on the interpolation of 
changed nucleotides for chain elongation by DNA polymerase. However, this method 
was highly laborious, error-prone and time consuming. In 2005 “next-generation 
sequencing” (NGS) revolutionized the original “first-generation” Sanger sequencing, by 
employing synthetic DNA fragments (adapters) specifically designed for every 
sequencing platform to amplify the DNA library followed by cyclic sequencing. A 
distinct advantage of NGS over classical sequencing was the ability to implement the 
multiple stages of sequence and trace the signal concurrently, known as parallel 
sequencing. Initial NGS methodologies used single-end sequencing to cause difficulties  
with short-read which affects the quality of genome alignment Now, paired-end 
sequencing procedures can significantly identify not only point mutations, but also 
detect genomic rearrangements such as deletions, amplifications, translocations, 
inversions, and gene-fusions[53], [54]. NGS can now be separated into “second-
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generation sequencing” and “third-generation sequencing”. The former refers to 
strategies involved in short-read alignment, while the latter entails single DNA molecule-
based sequencing, that accounts for the emerging, highly researched single-cell 
sequencing[55]. Whole-exome sequencing (WES) refers to the targeted sequencing of a 
subset of the human genome, that is protein-coded. This has become the most utilized 
sequencing technique in translational research to interpret parts of the human genome 
at relatively low costs [56], [57]. Whole-genome sequencing accounts for the entire 
genome sequencing including promotor and regulatory areas. Although oncology 
research is relying more on WGS characterization for identifying clinically relevant 
biomarkers, the substantially high cost makes it less favourable than WES. However, 
with the onset, advancement, and improvement of next generation sequencing (NGS) 
technologies and bioinformatics, a new era of cancer genomics research has been 
expanded to fill the gaps in cancer biology[58]. NGS has many advantages in 
identification of targetable biomarkers by fully sequencing the patient genome and the 
tumor to identify all types of mutations for hundreds to thousands of genes with increased 
sensitivity, speed, high-throughput and low-cost [59], [60]. 

1.2.2 DNA Methylation  
DNA-methylation is an epigenetic mechanism involving the transfer of a methyl-group 
to the C5-position of cytosine to form 5-methylcytosine. Most DNA methylation 
primarily takes place on cytosines located before a guanine nucleotide, commonly 
known as CpG sites. It is responsible for regulation of gene expression by recruiting gene 
repression proteins or by inhibiting transcription factor binding to the DNA[61]. During 
tumorigenesis, the pattern of DNA methylation constantly changes due to de novo 
methylation and demethylation. This leads to differentiated cells to develop a unique 
DNA methylation pattern that regulates tissue-specific gene transcription [61], [62]. 
Microarrays are used to read fractions of DNA that are enriched using a series of 
treatments with methylation sensitive restriction enzymes [63], [64]. Research has 
demonstrated that tumor methylation patterns remain consistent and faithfully represent 
the cell of origin, maintaining their stability throughout the disease's progression. 
Consequently, this makes it a reliable biomarker for categorizing tumors. DNA 
methylation has effectively been utilized to further classify significant tumor types, such 
as medulloblastomas, ependymomas, and supratentorial PNETs, which cannot be 
differentiated by histological analysis alone [61], [65]. This makes DNA methylation 
cancer biomarkers well suited for early detection and treatment of cancer. 

1.2.3 Gene expression arrays 
Advancements in microarray technologies enables the further investigation of large 
numbers of DNA/RNA fragments in parallel to expand genomic research. Reverse 
transcribed messenger RNA, which has been labelled with a fluorescent dye, originating 
from an experimental sample is co-hybridized onto the microarray platform[66]. After 
the exclusion of non-selectively adhered fluorescent dye, the microarray is scanned 
under high-resolution to precisely determine the florescence intensity on the surface. 
Given the predetermined positions of the gene probes, it is possible to compute the 
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relative or absolute quantities of RNA associated with each gene featured on the array. 
Due to its capacity to include thousands of gene fragments, a microarray offers a 
comprehensive, genome wide perspective of gene expression aiding the field of cancer 
research[66], [67].  

1.2.4 Multi-omics integration for genomic profiling 
A multi-omics investigation is a data-driven scientific analysis that utilizes diverse sets 
of high-dimensional data encompassing multiple omics levels, that can include the 
genome, proteome, transcriptome, epigenome, and metabolome. The main objective is 
to unveil the intricacies inherent to cells and their surrounding environments [68]. An 
extensive range of emerging omics techniques and multi-view clustering algorithms 
currently provide unparalleled prospects for further classification of cancer into their 
different subtypes. This enables the possibility to refine survival prediction and 
therapeutic efficacy within various subtypes and allows deeper understanding into key 
pathophysiological processes across different molecular layers in each patient[68], [69].  

Genomic profiling of cancer allows refinement of tumor type and subtype classification, 
identifies which patient is more likely to benefit from systemic therapies and facilitates 
the recognition of germline variants that influence the predisposing risk to cancer. 
Integration of multi-omics characterization using large-scale research collaborations and 
computational advances creates a paradigm shift by identification of novel and 
targetable biomarkers and improving clinical assessment in cancer research[70]–[72]. 

 

1.3 Pediatric cancers 
 
1.3.1 Childhood vs adult cancers 
Pediatric cancer is the leading cause of death by disease- approximately 5% of children 
below the age of 14 years across the world are affected by cancer and about 1% of these 
cases lead to death in children[73]. Childhood cancer (0-14 years) and adolescent 
cancer (age 15-19) diagnoses account for 1% of overall global cancer diagnoses[74], 
indicating that pediatric cancers are far more rare than adult cancers[75], [76]. Reports 
by the World Health Organization (WHO) showed the leading cause of childhood 
deaths in 2020 were leukemia, central nervous system, non-Hodgkin lymphoma, kidney 
tumors, Hodgkin lymphoma, ovary, testis, liver, thyroid and nasopharynx 
tumors[1](Figure 4). Based on the European Commission, European Cancer Information 
System (ECIS) reports, the top four estimated cancer types in patients aged 1-19 are 
leukemia (26.1%), CNS tumors (13.9%), Hodgkin lymphoma (8.5%) and non-Hodgkin 
lymphoma (6.2%). On the other hand, CNS (29.6%), leukemia (27.9%), non-Hodgkin’s 
lymphoma (5.0%) and kidney tumors (2%) (Figure 5) were the leading causes of 
childhood cancer death[77]. From a 2019 report, it has been observed that 43% of all 
pediatric cases [78] end up being insufficiently diagnosed across the world due to lack 
of early screening and diagnostic tools and insufficient healthcare access across the 
globe. This under-representation of data causes a significant bias in global health reports 
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and emphasizes the need for better and more accessible diagnostic tools and treatment 
options worldwide. 

 
Figure 4: Global cancer incidence and mortality 

According to WHO statistic, leukemia and Brain CNS tumors are the highest detected and death 
causing pediatric cancers in the world in 2020. (Figure adapted from GLOBCAN statistics, 
2020.[1]) 

 

 

 

Figure 5: European centric cancer incidence and mortality 

According to WHO statistic pediatric and adolescent cancer incidence (left) and mortality (right) 
cause in European childhood population (age 0-19) in 2020. (Adapted from European 
Commission, ECIS - European Cancer Information System reports [77]) 
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However, due to progress in cancer research, the rapid development of precision 
medicine, and a rise in involvement in clinical trials, the survival rates for childhood 
cancer have significantly risen over the last half-century. More than 85% of children 
diagnosed with cancer now achieve a 5-year survival milestone in the first world. This 
marks a substantial improvement from the mid-1970s when the 5-year survival rate 
stood at approximately 58%[74], [79]. Nonetheless, around 60% of these patients who 
have survived childhood cancer experience long-term (at least 1-year long) 
complications resulting from the disease itself or the various treatments employed such 
as surgery, radiotherapy, cytotoxic chemotherapy that substantially impact patient 
quality of life and increases the risk of succumbing to secondary malignancies[80]–[82]. 

Pediatric malignancies in contrast to adult cancers, exhibit fundamental distinctions in 
cancer types and subtypes, their driver genes, driver mutation rates. Overall lower tumor 
mutational burden, cells-of-origins, molecular characteristics, genetic complexity, and 
differences in underlying mutational processes [83]. Consistent with findings from earlier 
research, it's been observed that the overall somatic mutational burden tends to increase 
with patient age. In contrast to adult cancers, pediatric cancers exhibit markedly lower 
genomic mutation rates, approximately 14 times lower on average, as previously 
reported[84], [85]. Moreover, it's worth noting that the mutational load in relapsed 
pediatric tumors surpasses that of primary pediatric tumors, which is likely linked to 
mutations induced by radiotherapy or chemotherapy[84], [86], [87].  

Germline predisposition is the only known etiological factor for pediatric cancer, due to 
the high risk and likelihood of cancer inheritance[86]–[90]. Hereditary cancers account 
for about 10% of all cancers diagnosed [89]. Inherited mutations can operate through 
dominant or recessive mechanisms, can convey varying levels of penetrance, and can 
result in cancer manifesting at an early or later stage. This contributes to marked 
variations in the disease within the population of cancer patients[89][91].However, 
tumor suppressor and DNA repair genes undergoing mutations that are predisposed 
towards gain-of-function mutations manifest in families more often than would be 
expected by chance, usually as an exceedingly young age. These serve as indicators of 
the presence of a genetic mutation that increases the risk of cancer[89]. The most 
common and well researched example of predisposition in children is that of 
heterozygous germline mutations in the TP53 tumor suppressor gene causing autosomal 
dominant Li-Fraumeni syndrome[89], [92]. Another prominent instance of germline 
mutation contributing to cancer is a single allele of the germline retinoblastoma protein 
(RB1), which, when coupled with the somatic inactivation of the second allele, leads to 
the development of retinoblastoma [92].  The presence of a germline mutation in RB1 
also predisposes children to additional malignancies such as sarcomas and melanomas 
[92], [93]. Germline mutations in genes like ATM and SH2D1A heighten the 
susceptibility to lymphomas and leukemias, while mutations in PTCH1 and SUFU 
amplify the risk of SHH medulloblastoma, as seen in notable instances within pediatric 
cancer predisposition[89], [92], [94].  
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1.3.2 Pediatric Brain and Central Nervous System tumors  
Pediatric brain tumors are the most common type of solid childhood cancer and only 
second to leukemia as a cause of pediatric malignancies[95]. The 5-year survival rate 
for individuals with brain tumors exhibits significant variability depending on the 
specific regions of the brain affected [96]. Advances in the treatment of pediatric brain 
tumors have come in the form of imaging, biopsy, surgical techniques, and molecular 
profiling. A statistical report published in 2019, by the Central Brain Tumor Registry of 
the United States (CBTRUS) statistical report a survey in the United States (between 
2012-2016) using population-based data on available primary brain tumors. All rates 
were age-adjusted using the 2000 US standard population and were presented per 
100,000 population. In children and adolescents aged 0-19 years, low-grade gliomas 
were reported as the most common of all malignant CNS tumors: mainly pilocytic 
astrocytoma (15.0%), followed by high-grade glioma (11.6%), embryonal tumors 
(10.5%) that encompassed Medulloblastoma (64%), AT/RT (14%), PNET(10.8%), all 
other (9.6%), followed by other astrocytoma (7.6%), nerve-sheath tumors (5.3%) and 
ependymomal tumors (4.7%) [97]. 

According to the 2021 WHO classification of central nervous tumors[98], pediatric 
gliomas are a heterogeneous group of tumors that can be classified into 6 different 
families namely: (1) Adult-type diffuse gliomas (the majority of primary brain tumors in 
neuro-oncology practice of adults, e.g., glioblastoma, IDH-wildtype); (2) Pediatric-type 
diffuse low-grade gliomas (expected to have good prognoses); (3) Pediatric-type diffuse 
high-grade gliomas (expected to behave aggressively); (4) Circumscribed astrocytic 
gliomas; (5) Glioneuronal and neuronal tumors; (6) Ependymoma[98]. 

 

Adult-type diffuse gliomas  

These represent a category of central nervous system tumors characterized by extensive 
infiltration, and the prognosis that significantly varies depending on the specific subtype 
and histological grade[99], [100] and have 5-year survival rate under 5%. However, are 
not predominantly found in childhood cancer cases. 

 

Pediatric type diffuse low-grade gliomas (pLGGs) 

Low-grade gliomas together with glioneuronal tumors (classified as WHO grade I or II) 
represent approximately 25% to 30% of all CNS tumors diagnosed in children. There 
are four distinct subtypes (1) diffuse astrocytoma, MYB- or MYBL1-altered; (2) 
angiocentric glioma; (3) polymorphous low-grade neuroepithelial tumor of the young 
and (4) diffuse low-grade glioma with MAPK pathway alterations, often diagnosed as an 
exclusionary measure[98], [100]. For instance, a morphological diagnosis like diffuse 
astrocytoma can be combined with a specific genetic alteration such as FGFR1 mutation, 
illustrating a versatile approach of mixing and matching. Accurate classification requires 
the molecular characterization and the incorporation of both histopathological and 
molecular data, structured within a tiered diagnostic framework for these tumors and for 
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most other gliomas. In contrast to adult patients with low-grade gliomas, children with 
LGGs rarely exhibit IDH mutations, instead being mainly MAPK-driven. Within this 
group, several novel entities, largely characterized by molecular factors, have been 
introduced.  The occurrence of malignant progression in pediatric LGGs is exceedingly 
rare. Typically, patients experience favourable outcomes, with an estimated 5-year 
overall survival rate of approximately 95% [101]. While certain prognostic markers have 
been reported, current understanding of the mechanisms underlying the recurrence or 
advancement of these tumors remains limited [98].  

Astrocytic tumors originate from astrocytes and represent the most prevalent group of 
glial-origin tumors. Among these, pilocytic astrocytoma (PA) stands out as the most 
commonly occurring brain tumor in childhood with good prognosis and an incidence 
rate of 0.8 cases per 100,000 individuals. PA constitutes 15% of all brain tumors 
diagnosed in children and constitutes a substantial portion, ranging from 27% to 40% 
of pediatric posterior fossa tumors. The most frequently observed genetic anomaly, 
occurring in approximately 70% to 75% of pilocytic astrocytoma’s (PCAs), involves 
alterations in the BRAF gene. Additionally, more than 80% of PCA cases display 
modifications in the MAPK signalling pathway. Furthermore, a notable correlation has 
been established between NF1 and the occurrence of PA [98], [102]. 

Low-grade gangliogliomas/gangliocytomas (GG) is a rare brain tumor with greater than 
90% five-year survival rate. Typically, these tumors are characterized by being well-
differentiated and slow-growing, thus complete surgical resection has the potential to 
provide a curative outcome for the majority of these patients. These tumors are often 
driven by BRAF V600E mutations [98], [103]. 

 

Pediatric type diffuse high-grade gliomas (pHGGs) 

The updated 2021 WHO brain tumor classification made a clear distinction to four 
different subtypes of pediatric diffuse high-grade gliomas namely, (1) diffuse midline 
glioma; H3 K27-altered, (2) diffuse hemispheric glioma, H3 G34-mutant; (3) diffuse 
pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype and (4) infant-type 
hemispheric glioma[98]. It is necessary to acknowledge that HGGs also occur in adults, 
but at a molecular level, childhood and adult HGGs are very different. A significant 
revelation underscoring the distinctiveness of pediatric high-grade gliomas lies in the 
identification of specific histone mutations. These exclusive mutations occur in the 
histone genes H3.3 (H3F3A) and H3.1 (HIST1H3B, HIST1H3C).  

Diffuse midline glioma (DMGs) occurs in midline regions and encompass those tumors 
formerly known as diffuse intrinsic pontine gliomas (DIPG)[98]. This classification was 
based on the presence of the K27M mutation identified in the histone H3 gene (H3F3A), 
as well as in the associated HIST1H3B or HIST1H3C genes. The incidence of the H3 
K27M mutation is approximately 80% in pediatric patients and 15–60% in adult patients 
[104]. The defining trait of DMGs is the H3 K27M mutation, specifically situated within 
the coding gene H3F3A. H3F3A is responsible for encoding the H3.3 histone variant, 
accounting for mutations in approximately 70% of H3 K27-mutant DMGs. The 
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remaining 30% of cases are attributed to mutations in HIST1H3B and HIST1H3C. The 
H3 K27M mutation involves a substitution of lysine with methionine at codon 27 [105]. 
Those DMGs harbouring wild-type H3 can be seen in up to 15% of cases and can be 
distinguished by the overexpression of “Enhancer of Zest Homologs Inhibitory Protein” 
(EZHIP) [106], [107]. TP53 loss, among the most commonly occurring genetic 
alterations, triggers neural stem cell self-renewal, confers tumor immortality via 
epigenetic mis-regulation, and has been associated with increased resistance to 
radiotherapy[108]–[110]. Dysregulation of PDGFRA also serves as a driver mutation, 
exerting influence on cell migration, proliferation, and survival, thus reducing tumor 
growth, and enhancing cell invasion[110], [111]. Mutations in the ACVR1 gene, which 
encodes the activin A receptor type 1 transmembrane protein, lead to the constitutive 
activation of the BMP-TGF-β signaling pathway, fostering tumor initiation and 
gliomagenesis while hindering differentiation[109], [110]. The presence of somatic 
alterations in the RTK-PI3K-mTOR pathway also acts as a driving force in gliomagenesis. 
Conversely, the occurrence of RAS-MAPK pathway alterations, such as FGFR1, has been 
associated with a more favorable prognosis among gliomas featuring H3 mutations[112]. 
ATRX mutations, which typically code for a regulator of chromatin remodeling and 
transcription, directly interact with the histone H3.3 variant and have also been 
identified as driver mutations closely linked to H3 mutations[105], [113]. Additionally, 
other noteworthy genomic alterations include the well-known MYC proto-oncogene 
transcription factor family, CCND2, and PPM1D [104], [105], [109], [110].  

Diffuse hemispheric glioma, H3 G34-mutant is a recently acknowledged, distinct form 
of high-grade glioma characterized by a bleak prognosis. Alongside the H3 G34 
missense mutation, numerous genetic drivers have been detected in these aggressive 
tumors, including alterations in ATRX, TP53, and BRAF genes[114]. H3 G34-mutant 
gliomas typically manifest as sizable lesions, accompanied by relatively mild 
peritumoral edema and variable, often subtle enhancement. These tumors may exhibit 
calcification, potentially resembling IDH-mutant, chromosome 1p/19q-codeleted 
oligodendrogliomas [115]. 

Diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype (pHGG) is a 
rare and aggressive brain tumor distinguished by its distinct DNA methylation 
profile[116]. This malignancy falls under the category of highly malignant brain tumors 
(WHO grade 4) and is predominantly found in children and adolescents. Histologically, 
it presents as a diffusely infiltrating glioma with heightened mitotic activity. Notably, it 
does not exhibit mutations in IDH1, IDH2, or H3 genes. Additionally, the tumor can be 
further characterized by its DNA methylation profile, aligning with subgroups pHGG 
RTK1, pHGG RTK2, or pHGG MYCN, or by displaying molecular features such as 
PDGFRA alteration, EGFR alteration, or MYCN amplification[98], [116], [117]. 

Finally, infant-type hemispheric glioma, previously referred to as glioblastoma (GBM), 
is a rare and rapidly proliferating congenital tumor. Studies have reported the 
involvement of NTRK family genes, namely NTRK1, NTRK2, and NTRK3, in infant-type 
hemispheric gliomas, which tend to exhibit high-grade histology[118], [119]. 
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Additionally, these tumors frequently display other genetic alterations in receptor 
tyrosine kinases such as ALK, ROS1, and MET [120][98]. 

 

Ependymoma (EPN) 

Ependymomas (EPN) represent a highly diverse group of CNS tumors that can originate 
in various regions, including the supratentorial brain (ST-EPN), hindbrain or posterior 
fossa (PF-EPN), and throughout the spinal cord (SP-EPN), affecting both children and 
adults. These tumors are known for their aggressive nature and often carry a grim 
prognosis, especially in pediatric cases, with an overall 10-year survival rate of 63.8% 
for children[121]. Recent advancements in the identification of biological markers and 
classification systems, particularly through global DNA methylation profiling, have led 
to the delineation of ten distinct types of ependymal tumors[98], [122], [123]. This 
classification system has enhanced the ability to predict patient outcomes more accurate 
and only four out of the ten were relevant for pediatric patients: YAP1 (ST), RELA (ST), 
PF A (PFA), and PF B (PFB)[122]. Supratentorial ependymomas are comprised of two 
subgroups -one with ZFTA (the new designation for C11orf95, which is considered more 
representative of the tumor type than RELA because it may be fused with partners more 
than RELA) fusion and another with YAP1 fusion. These tumors can harbor YAP1-
MAMLD1 fusions, but YAP1-FAM118B fusions have also been observed[124]. Clinical 
characteristics of ZFTA- and YAP1- altered EPN exhibit variations in terms of the age of 
onset and prognosis[122].  

The posterior fossa ependymomas are comprised of two subgroups- A (PFA) and 
subgroup B (PFB)[98]. Additionally, a fraction of infratentorial ependymal tumors has 
been found to harbor mutations in H3, EZHIP, or TERT. Furthermore, MYCN 
amplifications have recently been identified in spinal ependymomas, alongside the 
previously recognized mutations in NF2[98]. For PFA, the most frequently observed 
copy number aberration is gain of chromosome 1q (60 of 240; 25%) and was also 
observed in PFB (9 of 51; 18%), and ST-RELA tumors (21 of 88; 24%)[122]. The presence 
of a chromosome 1q gain has been demonstrated as an independent marker of an 
unfavourable prognosis of PFA[125]. PFA is predominantly observed in young children, 
with a median age of 3 years, and shows a slightly higher incidence among males. These 
tumors are associated with extremely poor prognosis, characterized by a 10-year overall 
survival (OS) rate of 56% and a progression free survival (PFS) rate of 24%[122]. 

  



 

15 
  

Medulloblastoma (MB) 

Medulloblastoma is one of the most common malignant CNS tumors in children, that 
arises from the cerebellum and has a median age of diagnosis of 6 years[126], [127].  

The genomic, epigenomic, transcriptomic, and proteomic landscapes have now been 
characterized for several bulk medulloblastoma patient samples, and more recently, also 
for single medulloblastoma cells - allowing deeper understanding of the molecular 
mechanisms involved in tumor initiation, progression, and recurrence of various MB 
subgroups [126]. Initially, a consensus was reached to categorize MB tumors into four 
primary molecular groups: WNT-activated, sonic hedgehog (SHH)-activated, MB Group 
3, and MB Group 4 - each category by distinct omics, clinical and biological features 
[128].  

 
Figure 6: Molecular classification of Medulloblastoma subgroups 

Overview of the demographics, clinical feature, genetic alterations and RNA expression of the 
different subgroups of Medulloblastoma (taken from Hovestadt et. al. 2020 [126]). 
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However, with extensive and more advanced methylation and transcriptomic analysis 
of data, the 2021 WHO brain tumor classification elaborates on subgroups that have 
become evident beyond the original four principal groups. These include four subgroups 
within the SHH category and eight subgroups within non-WNT/non-SHH 
medulloblastomas (Figure 6). 

WNT Medulloblastoma (WNT-MB), although accounting for only approximately 10% 
of MB diagnoses, is observed to have the best prognosis, with over 95% of children 
surviving this disease after 5 years[129]. WNT-MB primarily occurs in children after 4 
years of age to early adulthood (median age ~11 years)[126]. The defining genetic event 
in this subgroup, affecting approximately 85% of patients, is the presence of somatic 
mutations in CTNNB1. These mutations serve to stabilize the product of the CTNNB1 
gene, β-catenin, preventing its degradation by a cytoplasmic destruction complex 
(which includes APC) and allowing it to freely relocate to the nucleus, where it functions 
as a transcriptional co-activator for transcription factors. In cases where tumors lack 
somatic CTTNB1 mutations, most patients carry pathogenic germline APC variants[130]. 

Other frequently observed driver genes include DDX3X, SMARCA4, TP53, CSNK2B, 
PIK3CA, and EPHA7. Notably, SMARCA4, PIK3CA, and TP53 are genes that are 
commonly mutated in various types of human cancers. DDX3X encodes an RNA 
helicase that contributes to the development of WNT tumors. In WNT tumors, 
SMARCA4 and other members of the SWI-SNF chromatin remodelling complexes 
represent specific dependencies that are associated with this subgroup[98], [129], [131], 
[132].In terms of tumor genomes, MB-WNT mostly devoid of somatic copy-number 
alterations, except for the common occurrence of chromosome 6 loss (monosomy 6) in 
most patients[126]. 

SHH Medulloblastoma (SHH-MB) displays an interesting age distribution pattern, being 
the predominant molecular subgroup among infants (<3 years of age) and adults (>17 
years of age), while fewer cases are diagnosed during childhood and adolescence. In 
terms of demographics, SHH-MB is more frequently observed in males than in females, 
with a male-to-female ratio of approximately 2:1. 

In contrast to the relatively uniform characteristics of WNT-MBs, SHH-MBs are 
characterized by significant biological, pathological, and clinical diversity[127]. Age-
related molecular distinctions between infant and adult SHH-MB have been identified 
through gene expression and DNA methylation array profiling[126], [128]. The most 
frequently observed alterations include the loss-of-function mutations or deletions 
affecting PTCH1 and SUFU, as well as activating mutations in SMO and amplifications 
involving GLI1, GLI2, and/or MYCN[133]. In the canonical SHH signalling pathway, the 
soluble SHH ligand binds to PTCH1 on the cell surface, releasing the repression of SMO. 
Once activated, SMO transmits the SHH signal intracellularly by releasing SUFU-
mediated inhibition of GLI1/2. This enables these transcription factors to move into the 
nucleus and trigger the expression of target genes, including proto-oncogenes from the 
MYC family, cell cycle-promoting cyclins, and PTCH1 itself, which serves as a part of 
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pathway feedback inhibition [134], [135]. Furthermore, the occurrence of loss-of-
function mutations, germline or somatic/mosaic, in TP53 can lead to deficiencies in 
DNA repair and potentially contribute to clustered chromosomal rearrangements, 
known as chromothripsis, observed in tumors featuring coincident oncogene 
amplifications[136]. The age-dependent distribution of genetic abnormalities is also 
evident, as seen in the prevalence of somatic TERT promoter mutations in nearly all 
adults with SHH MBs, while only 10%–20% of tumors in pediatric patients exhibit such 
mutations[137]. Alterations in PTEN, which functions as a suppressor of the pro-
proliferative PI3K/AKT pathway, are observed in approximately 7% of SHH-MB cases. 
These mutations could potentially result in inherent or acquired resistance to targeted 
therapies aimed at inhibiting the SHH pathway[138]. The most frequent chromosomal 
alterations include loss of chromosomes 9q, 10q, 14q, and 17p, and gains of 
chromosomes 2 and 9p[128], [129], [139], [140]. Four distinct subtypes, termed α, β, γ 
and δ, with various demographic compositions and molecular landscapes have been 
identified with 5-year progression-free survivals[127], [128]. Although the precise 
molecular mechanisms of the epigenetic or signalling cascades remain unclear, it is 
apparent that the consecutive activation of SHH collaborates with the disruption of 
chromatin and canonical signal transduction pathways to drive tumorigenesis[98], 
[129], [141], [142]. 

Group 3 Medulloblastoma (MB G3), occurs in infancy and childhood and is rarely 
observed in patients over 18 years old. This subgroup displays distinctive genomic 
characteristics, including MYC amplification, which is indicative of extremely high-risk 
disease and is identified in nearly 20% of Group 3 MBs tumors[133], [143]. Additionally, 
gene amplifications involving MYCN and OTX2 are noteworthy and may collaborate in 
promoting Group 3 tumorigenesis through mutual transcriptional regulation. MYCN 
plays a well-recognized role in the fundamental biology of MB tumors, contributing to 
tumor initiation, maintenance, and progression[129], [144], [145]. Another significant 
observation is that GFI1 and GFI1B are upregulated in approximately 15% of Group 3 
MBs, and these alterations tend to be mutually exclusive[133]. Regarding somatic 
genetic events, Group 3 MBs exhibit relatively limited alterations. Only a few genes, 
including SMARCA4, KBTBD4, CTDNEP1, and KMT2D, are recurrently mutated in more 
than 5% of these tumors[133], [146]. Group 3 MBs display somatic in-frame insertions 
in KBTBD4 can potentially disrupt substrate recognition[133]. The molecular 
mechanisms underlying CTDNEP1 mutations, often occurring as hotspot frameshifts in 
the phosphatase domain, remain poorly understood[146][147]. The roles of SMARCA4 
and KMT2D mutations in Group 3 MB tumors are distinct from their roles in WNT and 
SHH MBs, respectively, and require further investigation[129]. Aneuploidy, involving 
isochromosome 17q, gains of chromosomes 1q and 7, as well as losses of chromosomes 
8, 10q, and 16q, are all common chromosomal alteration displayed in Group 3 MB 
tumors [147].  

Group 4 Medulloblastoma (MB G4) are the most prevalent molecular subgroup of MB 
and make up approximately 40% of all MB cases and are typically diagnosed in older 
children[128]. Roughly 33% of cancer patients progress to metastatic cancer, and Group 
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4 MB tumors exhibit a longer time to relapse compared to other MB subtypes[127], 
[148]. KDM6A, ZMYM3, and KMT2C are observed to represent the most commonly 
mutated genes in Group 4 MB[126]. The most prevalent putative driver event in Group 
4 MBs involves the overexpression of PRDM6, achieved through enhancer hijacking. 
PRDM6 is described as a chromatin modifier and transcriptional regulator in the 
developing cardiovascular system, although its specific role in MB remains unvalidated. 
CDK6, exclusively amplified in Group 4 tumors, encodes a critical cell cycle regulator 
involved in the G1-S transition. Like their Group 3 counterparts, Group 4 MBs exhibit 
gene-level amplifications of MYCN and somatic mutations in KBTBD4 [133], [147], 
[149]. The presence of OTX2 amplifications in Group 4 MB tumors suggests an 
overlapping spectrum of altered genes between Group 3 MB and Group 4 MBs, hinting 
at similar and continuing in terms of tumor biology[127], [128]. Group 4 MB tumors are 
characterized by high rates of isochromosome 17q, along with losses of chromosomes 
8 and 11, and gains of chromosome 7[133], [147]. Notably, specific cytogenetic events 
such as chromosome 11 loss and chromosome 17 gain have been associated with a 
more favorable prognosis in Group 4 MB patients [126], [129], [139]. 

Medulloblastoma can be linked to rare hereditary tumor predisposition syndrome genes 
such as APC, BRCA2, PALB2, PTCH1, SUFU and TP53, accounting for 6% of MBs. 
SUFU or PTCH1, has been associated with increased risk of MB[137]. Studies also show 
APC germline mutations predisposes to WNT MB[150]. Elevated risk of 
medulloblastoma can be linked to germline abnormalities in DNA damage response and 
repair mechanisms. Examples include Li–Fraumeni syndrome (involving TP53 
mutations) and constitutional mismatch repair syndrome (involving mutations in MLH1, 
MSH2, MSH6, or PMS2)[150]–[152]. 

  

Embryonal tumor with multilayered rosettes (ETMR) 

Embryonal tumor with Multilayered Rosettes (ETMR) is a rare but typically aggressive 
brain tumor that affects mainly infants with a dismal prognosis [153]. The defining 
molecular characteristic of ETMRs, involves the amplification of the microRNA cluster 
(C19MC) on chromosome 19 (19q13.42) region, which is detected in approximately 
90% of ETMR cases. [154], [155]. In cases where the C19MC amplification is absent, it 
is common to find tumors that carry bi-allelic DICER1 mutations, which is an inherited 
germline alteration[155]. According to the 2016 WHO brain tumor classification, a 
tumor with the absence of C19MC amplification is classified as ETANTR/ETMR and 
should be diagnosed as embryonal tumor with multilayered rosettes, NOS. Despite their 
histological diversity, all ETMRs are characterized by the upregulation of RNA binding 
protein LIN28A, which is therefore frequently used as a diagnostic marker[154]. Despite 
their histological diversity, all ETMRs share a common feature: they exhibit significant 
upregulation of the RNA-binding protein LIN28A. As a result, LIN28A is frequently 
employed as a diagnostic indicator for these tumors. Research of the downstream 
pathways influenced by the disrupted miRNA machinery has given rise to numerous 
potential therapeutic vulnerabilities such as targeting the WNT, SHH, or mTOR 
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pathways, MYCN or targeting chromosomal instability [154]. A significant number of 
patients do not surpass a year following their diagnosis, and the overall 5-year survival 
rate remains below 30%.  

 

Atypical teratoid/rhabdoid tumor (AT/RT) 

Atypical teratoid/rhabdoid tumors (ATRTs) represent a rare, but aggressive pediatric 
brain tumor that account for approximately 2% of all brain tumors in pediatric cases. 
But their prevalence increases to 10-20% of all brain tumors specifically in children 
under the age of three[156]. AT/RTs are characterized by their rapid growth, and large 
size upon presentation, leading to brain compression and intracranial hypertension 
requiring urgent intervention. Across the four AT/RT classified subgroups, the mutations 
and epigenetic differences across subgroups have been shown to be striking, including 
different gene expression, methylation profiles and enhancer activities. In the MYC group 
of AT/RT, MYC is prominently expressed. Conversely, the sonic hedgehog (SHH) group 
is identified by active SHH signalling, and the term "TYR" in the TYR group originates 
from "tyrosinase," one of several highly expressed melanosomal markers within this 
subgroup[157]. The three major subgroups (AT/RT-SHH, AT/RT-TYR, and AT/RT-MYC) 
all carry mutations in SMARCB1. The distinctive genetic alteration is the presence of bi-
allelic mutations in the SWI/SNF chromatin remodelling complex member SMARCB1 
(also recognized as hSNF5/INI1), which results in the loss of nuclear SMARCB1 protein 
expression[157], [158]. The fourth subtype (AT/RT-SMARCA4) is a quantitatively smaller 
group often characterized by SMARCA4 mutations [159]. In this subtype, studies have 
also showed, the reduction in mRNA expression levels of three essential SHH signature 
genes- GLI1, PTCH1, and—whose gene products are primarily found in the primary 
cilium[157]. Genome-wide copy number analysis studies show AT/RTs displaying novel 
gains on chromosome 1q or losses of chromosome 10 as more frequently recurring 
alterations[159]. 

Other embryonal tumors such as “CNS tumor with BCOR internal tandem duplication 
(ITD)” are also classified in the 2021 WHO brain classification[98]. This is a recently 
identified rare tumor type which is still being researched. The morphological 
characteristics, genetic alteration, classification, clinical outcomes, and optimal 
treatment for this tumor entity have not been fully distinctly clarified. Histologically this 
tumor predominantly displays a solid growth pattern with consistently oval or spindle-
shaped cells, a dense network of capillaries and an internal tandem duplication (ITD) 
occurring in exon 15 of the BCOR gene. Exon 15 BCOR ITDs have been reported in 
several morphologically similar sarcomas[98], [160]. 
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1.3.3 Neuroblastoma 
Neuroblastoma (NB) is a pediatric malignancy of the peripheral sympathetic nervous 
system (PSNS) that originates from neuroblasts of the migratory neural crest. A unique 
feature of NB tumors is the combination of early age of onset, high frequency of 
metastatic disease at diagnosis and the tendency for spontaneous regression of tumors 
in infancy, hence, leading to heterogeneous clinical outcomes. In 40% of pediatric 
cases, it manifests as a high-risk disease, and among these patients, half do not attain a 
sustained response to currently available treatments[161]. Over the past decade the 5-
year survival rates of patients with metastatic neuroblastoma have increased from less 
than 20% to over 50%. This is the result of clinical trials that incorporate high-dose 
chemotherapy along with autologous stem cell transplantation, differentiation-inducing 
agents, and immunotherapy with anti-GD2 monoclonal antibodies. [162]. In 40% of the 
patients, there is the presence of at least one recurrent driver gene alteration. The most 
frequent aberrations presented include, MYCN, ATRX, and TERT alterations, varying 
based on the age group. Specifically, MYCN alterations typically occur at a median age 
of 2.3 years, TERT alterations at 3.8 years, and ATRX alterations at 5.6 years. [163]. 
Driver point mutations of ALK is the most significantly occurring mutation in NB. ALK is 
a receptor tyrosine kinase expressed in tissues of a neural lineage, and its activation 
results in mitogenic signalling via the RAS–MAPK and PI3K–AKT pathways. These ALK 
mutations can exist as clonal or subclonal alterations, although the interpretation of 
mutant allele frequency (MAF) may be influenced by the tumor cell content of the 
sample. It is worth noting that both ALK mutations and amplifications frequently co-
occur with MYCN amplifications [164]. Amplifications of MYCN, located on 
chromosome 2p24, is a transcriptional regulator of growth, metabolism, and cellular 
differentiation. MYCN is also a well-established driver of high-risk neuroblastoma and a 
significant determinant of prognosis. Overexpression of proto-oncogenes, such as CDK4 
and MDM2, due to genomic amplifications of other segmental regions are associated 
with extremely poor outcomes [165]. High risk neuroblastoma exhibits chromosomal 
alterations – deletion of chromosome 1p, gain of parts of chromosomes17q, 
chromosome 2p-gain and chromosome 11q-deletion [166], [167]. Recent studies also 
show distal loss of chromosome 6q along with MYCN amplifications could serve as a 
novel marker for high-risk neuroblastoma[165][98]. 

 

1.3.4 Sarcomas 
Sarcomas are an extremely heterogeneous group of genetically distinct tumors that 
represent 12–15% of all pediatric tumors, although rare among adult cancers[168]. With 
recent advancements in molecular profiling, more than 100 different histological 
subtypes have been characterized and many more are being discovered. Sarcomas are 
often prone to metastasis and relapse, typically accompanied by dismal prognosis. 
Sarcomas have been classified in two large subgroups, according to the anatomical site 
of occurrence—sarcomas of the skeleton and sarcomas of the soft tissues, referred to as 
“bone sarcomas” or “soft tissue sarcomas” respectively [168]–[170]. 
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Rhabdomyosarcoma 

Rhabdomyosarcomas (RMS) are the most common soft tissue sarcoma in children that 
arise from a variety of anatomical sites, not limited to skeletal muscle, and show 
correspondingly diverse clinical presentations. Presence of metastasis, site of origin, age 
of the patients and histological and genetic properties of the tumor serves to stratify 
rhabdomyosarcomas into low, intermediate, and high-risk groups. The variable 
prognosis and tumor presentation makes the prediction of rhabdomyosarcoma outcome 
more complicated. According to the 2020 WHO Soft Tissue Tumor classification[169], 
these tumors can be classified into four major subgroups – embryonal 
rhabdomyosarcoma and alveolar rhabdomyosarcoma of which 60–70% of sarcoma 
RMS are embryonal and 20–30% are alveolar; pleomorphic rhabdomyosarcoma (PRMS) 
and Spindle cell / sclerosing rhabdomyosarcoma, two other less common subtypes[171], 
[172]. 

In the Embryonal rhabdomyosarcoma (RMS_EMB) subgroup, the commonly observed 
genetic alterations include SMO, PTCH1, FGFR4, PIK3CA, CTNNB1, KRAS, HRAS, 
BRAF and PTPN11. Point mutations appear to be significantly more frequent in 
embryonal RMS than in alveolar RMS tumors[173]. SUFU mutations causes the 
inhibition of GLI1, and effectively promote sarcomagenesis. Inactivation of CDKN2A 
and RB1 especially in the presence of a TP53 mutation is observed in RMS_EMB. Tumors 
exhibit MDM2 and P53 amplification with cancer associated P53 missense mutations. 
KRAS and TP53 inactivation also cause chromosomal gains affecting YAP1 and MET. It 
is also observed that RMS driven by YAP1 emerges in cases where both TP53 and RB1 
are inactivated. Common gene fusions such as MDM2-ALT1 and EWSR1-DUX4 have 
been identified in RMS_EMB. Additionally, rearrangements involving the NCOA2 gene 
on the chr 8q11–13 region have been observed in these tumors [171], [172], [174]. 

Alveolar rhabdomyosarcoma (RMS_ALV), constitute the second most common RMS 
subtype in children and adolescent patients. A specific molecular alteration either a 
PAX3-FOXO1 or a PAX7-FOXO1 gene fusion are detected in most RMS_ALV cases. The 
genes on chromosome 2 and chromosome 1 are PAX3 and PAX7, respectively, which 
encode highly related members of the paired box family of transcription factors. The 
fusion partner on chromosome 13 is FOXO1 (FKHR), which encodes for transcription 
factors. Translocations give rise to fusion genes, which are subsequently transcribed into 
fusion transcripts and translated into fusion proteins and can generate reciprocal fusions, 
PAX3-FOXO1 and FOXO1-PAX3 (or PAX7-FOXO1 and FOXO1-PAX7), the PAX3-FOXO1 
and PAX7-FOXO1 genes. Notably, fusions of FOXO1-FGFR1and PAX3 to NCOA1 or 
NCOA2 genes, that encode two similar transcription factors are also observed. While 
these other variant fusions may account for the absence of a PAX3-FOXO1 or PAX7-
FOXO1 fusion in a few instances, the vast majority of "fusion-negative" cases lack any 
rearrangements involving PAX3, PAX7, or FOXO1. Therefore, these cases seem to lack 
fusions related to these loci[174], [175]. Spindle cell/sclerosing rhabdomyosarcoma 
(ssRMS) is a rare variant of rhabdomyosarcoma. These tumors are commonly associated 
with recurring fusions involving VGLL2 or NCOA2 and have a favourable prognosis are 
observed. MYOD1 mutations are also commonly observed[174], [175]. 
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Ewing sarcoma 

Ewing sarcoma (EWS) is a rare, aggressive, small round cell sarcoma most commonly 
arising in the bone of adolescents and young adults. With better treatment advancements 
the 5-year survival rate for patients with localized Ewing sarcoma has improved to 78%. 
However, approximately 25% of patients with localized tumors and 60-80% of those 
with metastatic tumors experience disease relapse and do not survive. These tumors are 
identified by balanced chromosomal translocations where one of the FET gene family 
members combines with an ETS transcription factor. The tumor's defining molecular 
feature is the distinctive FET-ETS fusion, with the most common being EWSR1-FLI1 (70–
80%), followed by EWSR1/FUS-ERG fusions (15%), EWSR1/FUS-FEV (5%), and EWSR1-
ETV1/4 (1%)[176]. The Ewing sarcoma breakpoint region 1 protein (EWSR1)–Friend 
leukemia integration 1 transcription factor (FLI1) is a tumor-specific chimeric 
transcription factor (EWSR1–FLI1) with neomorphic effects that extensively alters the 
transcriptome[177]. The expression of developmental EWSR1-FLI1 results in embryonic 
lethality, whereas conditional expression during later stages can cause developmental 
defects, including muscle degeneration[174]. Studies have also observed rare cases of 
EWSR1/FUS-FEV fusions showing a prevalence in extra-skeletal sites and aggressive 
behaviour [178]. Additionally, mutations detected at the time of diagnosis that are 
infrequent, primarily include STAG2, TP53, and CDKN2A deletions. Frequently 
recurring chromosomal aberrations observed are chromosome 8 gains (50%), 
chromosome 2 gains (25%), chromosome 1q gains (25%), and chromosome 20 gains 
(10–20%). The most common is CDKN2A deletion and affects chromosome 9p. Due to 
imbalanced rearrangement chromosome 1q gains are often linked to 16q losses. Some 
studies have proposed prognostic implications for chromosome 8 gains, encompassing 
both whole chromosomes and segment 8q, as well as MYC (8q24) and RAD2 which 
may be more prevalent in relapsed tumors[176], [177]. 

Osteosarcoma 

Osteosarcoma (OS), also known as osteogenic sarcoma, represents the most common 
form of bone neoplasia, accounting for 20% of all benign and malignant bone tumors 
and around 2% of pediatric cancers. OS is a bone sarcoma characterized by a complex 
karyotype with highly unstable genomes, and these tumors often harbor far more point 
mutations than other pediatric solid tumors and leukemias. The majority of OS cases 
involve mutations or deletions in tumor suppressor genes TP53 and/or RB1 genes. Hence 
the development of OS is higher in patients with genetic predisposition, notably Li-
Fraumeni and hereditary retinoblastoma syndromes[174]. Genetic alterations and 
expression of TERT and ATRX have also been observed. The main driver genes TP53, 
RB1, BRCA2, CDK4, BAP1, RET, MDM2, ATM, PTEN, WRN, RECQL4, ATRX, FANCA, 
NUMA1, MDC1, NOTCH1, MYC, FOS, NF2, APC and PTCH1 have been reported 
[179]. Most of the driver genes are components of the ERBB, PI3K-AKT-mTOR and 
MAPK signaling pathways. However, the main hallmark of OS is the tumoral 
heterogeneity, aneuploidy and genome instability caused due to loss of G1/S cell cycle 
control[179], [180].  
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“Chromothripsis” is the process by which massive genomic rearrangements and 
localization of hypermutations (kataegis) are acquired by a single catastrophic event. In 
contrast to the to the gradual, stepwise acquisition of driver gene mutations seen in most 
tumor cells, in chromothripsis, driver genes can emerge through various mechanisms. 
These include decrease in copy number (resulting to the deletion of tumor suppressor 
genes), increase in copy number (resulting in the amplification of oncogenes), the fusion 
of coding sequences from two genes (resulting in the creation of a fusion onco-protein), 
or the joining of an intact gene with the promoter of a different gene (leading to the 
dysregulation of its gene expression) [179]–[181]. Kataegis, a phenomenon often 
accompanying chromothripsis, causes dysregulation of apolipoprotein B mRNA-editing 
enzyme catalytic polypeptide-like (APOBEC) protein families[179], [180], [182], [183]. 
The extent of somatic vulnerabilities and complexity of the osteosarcoma genome are 
observed to be similar to that of common forms of adult cancer[179]. 

 

Synovial sarcoma 

Synovial sarcoma (SS) accounts for 7%–10% of all soft-tissue sarcomas affecting 
adolescents and young adults. Metastasis is frequently observed and usually targeted to 
lungs, lymph nodes, and bone marrow. Synovial sarcoma is defined by a signature 
genetic event, the t(X;18) translocation-mediated fusion of the SYT gene on chromosome 
18q11 to either SSX1, SSX2, or, very rarely, the SSX4 gene located on chromosome Xp11. 
Another distinctive gene fusion is the pathognomonic chromosomal translocation t(X,18; 
p11, q11) that creates an in-frame fusion of SS18 to SSX1, SSX2, or SSX4 and is linked to 
the development of primary synovial sarcoma. Studies report multiple missense 
mutations of ADAM17, have been identified solely in metastatic SS [174], [184]–[186]. 

 

Malignant peripheral nerve sheath tumor (MPNST) 

Malignant peripheral nerve sheath tumor (MPNST) is rare but is one of the most frequent 
non-rhabdomyosarcoma soft-tissue sarcomas in the pediatric population. Mutations 
inactivating or causing a deletion of the tumor suppressor NF1, acting inhibitory to RAS-
signalling are among the most frequent driver genes in MPNST. Additionally genetic 
alterations in TP53 and CDKN2A inactivation, leads to malignant progression of 
neurofibromas[174]. 

 

Clear Cell Sarcoma of Soft Tissue 

Clear Cell Sarcoma of Soft Tissue (CCS) is an aggressive cancer that usually arises in the 
deep soft tissue of young adults, it is characterized with very low incidence and poor 
prognosis. The genetic hallmark of CCS is t(12;22)(q13;q12) that leads to a EWSR1-ATF1 
gene fusion[174]. 
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1.3.5 Other tumors 
Malignant Rhabdoid tumors (RT) are poorly differentiated pediatric tumors that can arise 
in the soft-tissue or in the kidney and less commonly in the central nervous system 
(referred to as atypical teratoid rhabdoid tumor; AT/RT). Malignant rhabdoid tumors are 
characterized by the presence of germline or somatic biallelic inactivating mutations or 
SMARCB1 deletions and homozygous or heterozygous deletion of TP53 [174]. 

Hepatoblastoma (HB) is the most common primary liver tumor in children that is 
diagnosed during the first 3 years of life. Studies have reported hypermethylation of the 
HNF4A/CEBPA -binding regions, upregulation of the cell cycle pathway, and 
overexpression of NQO1 and ODC1 genes[187]. 

Childhood and early adolescent melanoma (ML) are rare. However, pediatric melanoma 
cases are sporadic and related to ultraviolet (UV) DNA damage and reported to be more 
pronounced in older children (15-19 years). Inactivating germline mutations of the gene 
CDKN2A and CDK4 are associated with early-onset melanoma[188]. 
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1.4 Patient derived xenograft models for preclinical modeling of 
cancer 

 

Currently adult cancer is far more heavily researched and investigated for therapeutic 
and diagnostic options, such as targeted treatments, as compared to childhood cancer. 
The primary obstacles in the development of effective treatments for pediatric cancer 
can be associated with the market for pediatric drugs is typically smaller than that for 
adults drug development hence making large investments in pediatric drug is less of a 
financially appealing business model. Pharmaceutical companies often prioritize large 
randomized controlled trials, involving hundreds of patients, as mandated by the 
licensing process to approve new drugs. However, certain drugs, while clinically 
significant for specific patient groups, may have a very limited market. A change in the 
approach to such drugs and patient populations is likely necessary. This could involve 
making regulatory requirements more adaptable, offering financial incentives to 
pharmaceutical companies to support essential research, and centralizing such studies 
in specialized pediatric drug research centers. Important clinical questions regarding 
efficacy and safety can still be addressed through clinical trials that involve smaller 
patient cohorts [189]. 

In 2017, the Research to Accelerate Cures and Equity (RACE) for Children Act came into 
effect, granting the US Food and Drug Administration (FDA) the authority to mandate 
pediatric drug testing in children and preclinical models for new cancer drugs that target 
molecular factors relevant to the development or advancement of pediatric cancers 
[190]. The act also notably extends pediatric study requirements to drugs intended for 
the treatment of rare cancers. Before this legislation, pharmaceutical companies were 
not obligated to conduct clinical trials involving pediatric populations if their product 
was designed for adult cancer treatment. If sponsors fail to adhere to the stipulated 
requirements, the FDA has the authority to classify a drug as "misbranded” [191]. 

Therefore, the current limited availability of preclinical models that can precisely 
validate therapeutic response and guide pediatric clinical trials needs to be overcome. 
The requirement to molecularly classify multiple distinct tumors and their subgroups to 
stratify and identify novel therapeutic biomarkers is extremely necessary. In this era of 
big data, booming technological advancements and precision oncology, preclinical data 
classification is exceedingly imperative to explore and determine new therapeutic targets 
and biomarkers, and to validate known targets across various cancer types and subtypes. 

The first Patient derived xenograft (PDX) models to be defined and generated can be 
dated back to the 1960’s when Rygaard and Povlsen extracted colon adenocarcinoma 
from a patient to implant the tumor fragments into nude mice[192]. However, the 
unsatisfying transplantation rate of PDX models limited their application back then. 
Hence more cancer types had in vitro cultured human cancer cell line derived 
xenografts, which also accounted for better consistency, cost-effectiveness, and 
accessibility. Over the last decade, with optimization of PDX engraftment procedures 
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and the improvement in deep-learning technologies and the popularization of 
sequencing technologies have boosted the resurgence of PDX models (Figure 7). 

 
Figure 7: PDX models for preclinical drug testing is the new era of cancer research 

PDX models are used to study tumor biology and capture the mutational landscape including 
driver genes and various genomic alterations observed in the initiation and development of 
patient tumor. (Figure taken from Liu. et. al., 2023[193]) 

PDX models involve the implantation of fresh surgically resected patient tumor tissues 
into immunocompromised or humanized mice. The conventional establishment of a 
PDX model involves the subcutaneous transplantation of the intact tissue into the dorsal 
region of immune deficient mice. Following tumor growth within the mouse model, it is 
re-transplanted into the next generation of mice, this process being often known as serial 
transplantation [194]. Apart from the conventional subcutaneous transplantation, 
orthotopic transplantation is the process of transplantation of tumor material into the 
same organ of the mouse as the original patient tumor. Orthotopic transplantation is 
more technically challenging and requires extensively skilled personnel and expensive 
imaging techniques to monitor responses to preclinical establishment and experiments 
[194]–[196]. Studies have shown that orthotopically generated models offer advantages 
over conventional subcutaneously transplanted models. Such models are observed to be 
better for tumor metastasis, tumor location and microenvironment can influence therapy 
response and lastly, orthotopic models are also observed to increase tumor engraftment 
or take rate [195], [197]. 
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Single-mouse trials entails each mouse models have a tumor originating from a distinct 
patient and is closely monitored to observe tumor progression or regression during the 
course of therapy. This approach enables the evaluation of 30 or more tumors of the 
same type, such as melanoma, potentially yielding response rates that more accurately 
mirror clinical response rates. Leveraging the simplicity of generating new PDX models, 
the strategy of using one mouse to represent a tumor significantly expands the capacity 
to assess numerous tumor lines. This, in turn, may provide a more comprehensive 
understanding of potential response rates in human patients or facilitate the 
identification of subsets of tumors within a specific histotype that exhibit heightened or 
reduced sensitivity to drugs[198]. 

PDX models have demonstrated their effectiveness in replicating tumor characteristics 
such as intratumor heterogeneity, the special structure of the tumor and the clinical 
outcome, making them a more reliable and powerful preclinical model[193], [195], 
[196]. To assess whether the tumor biology is fully preserved, various techniques can be 
implemented to compare the initial tumor to the PDX. It has been studied that the 
histopathological and sub-cellular landscape can be evaluated using electron 
microscopy, nevertheless, it should be considered that human stroma can be quickly 
infiltrated by mouse stroma [194], [195], [199]. Therefore, to avoid any mouse 
contamination in the next-generation sequencing of PDX models, the mouse reads need 
to be excluded to avoid any false-positive results. This can be performed by aligning the 
sequencing reads of the mouse genome against the human genome [200]. 

Studies have shown that the clonal heterogeneity of a PDX model is often maintained 
while continuously evolving. However, in certain instances, more significant clonal 
expansion events are observed, including instances where minor clones dominate in the 
PDX or where clonal populations are lost in the PDX[201]–[205]. The question of 
whether such ongoing evolution also transpires in human patients remains to be fully 
researched and understood. A study in sarcoma PDX models indicating parallel 
evolution in PDX models as in human patients, showed that newly acquired focal 
amplifications were typically observed in both PDX and human tumors[206]. Another 
means of assessing the fidelity of PDX models is by correlating the outcomes of 
preclinical testing in PDX models with actual clinical results. This can be accomplished 
in two ways: firstly, by comparing preclinical trials in PDX models to concurrent clinical 
trials, and secondly, by creating PDX models from individual patients and drawing direct 
comparisons between the treatment outcomes of the patient and the PDX model's 
response to therapy[205]. However, it's important to note that direct comparisons of 
preclinical and clinical data can be challenging due to utilization of different response 
criteria [205]. Successful observations have been made regarding the utilization of PDX 
models in preclinical drug testing, which have positive clinical response outcomes to 
BRAF inhibitors (vemurafenib) in melanoma[205], [207]. Additionally, these models 
have demonstrated the potential to overcome resistance to BRAF inhibition by 
combining BRAF inhibitors with MEK inhibitors, a phenomenon that has been replicated 
in PDX models [207].  
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1.5 Precision medicine for pediatric tumors 
Childhood cancer remains to be the leading cause of death by disease in children aged 
1-19. Over the last two decades, however the 5-year relative survival rate has increase 
from 61.7% to 81.4%, with over 90% in some entities in the first world [208]. While 
several large-scale national precision oncology programs have been launched to 
dedicate substantial efforts and produced valuable outcomes, the identification of 
druggable targets across different pediatric tumor types and subtypes still remains a 
challenge (Figure 8). 

 
Figure 8: Established Pediatric precision oncology programs 

Over the last decade various pediatric precision oncology research programs have been 
established. The overview showing the timeframes of studies and the number of patients 
included in the programs. (Figure taken from [209] ) 

To improve the annotation and characterization of PDX models from various tumors, 
and make this information usable to researchers, the ITCC-P4 consortium (Innovative 
Therapies for Children with Cancer Pediatric Preclinical Proof-of-concept Platform) 
supported by the European consortium ‘Innovative Medicines Initiative’ (IMI) has been 
established. This international consortium between 30 collaborating partners from 
different European academic institutions and European Federation of Pharmaceutical 
Industries and Associations (EFPIA), across 10 European countries, enables the 
establishment of a large PDX cohort across different high-risk pediatric tumors. This 
consolidation of numerous PDX cohorts and characterizing omics information into a 
single database, transforms this collaborative resource into a powerful tool for 
oncologists, clinicians and enables successful pediatric cancer research [210]. 
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1.6 AIMS 
 
1.6.1 ITCC-P4: Molecular characterization and multi-omic analysis of 

Patient-Derived Xenograft (PDX) models from high-risk pediatric 
cancer 

 

Pediatric cancer is a life-threatening disease that often leads to secondary malignancies 
with many patients having to endure adverse effects and toxicity due to conventional 
treatments. Over the past two decades, genomic profiling of pediatric solid tumors has 
enabled tumor classification into well-defined subgroups and has also facilitated the 
identification of novel genetic alterations and biomarkers for mechanism-of-action based 
therapy development. The progress of preclinical drug testing to enhance the discovery 
of effective treatments tailored to the tumor's molecular profile faces two main 
challenges: (1) a lack of molecular genetic data on relapsed pediatric tumor patients and 
longitudinal comparisons between primary tumors and matching relapses, limiting our 
grasp of tumor evolution and treatment resistance, and (2) the absence of suitable, well-
characterized patient-derived models and genetically engineered mouse models for 
several high-risk pediatric cancer types. 

The main goals of this study under the ITCC-P4 entailed: (1) collection and establishment 
of a sustainable platform of >400 fully characterized PDX models from high-risk 
pediatric cancers. This currently included 251 PDX models as well as their matching 
human tumors and germline samples (controls available for 161/251 PDX models, 
64.1%) (2) Performing a comprehensive multi-omics molecular characterization (DNA 
methylation profiling; whole-exome and low-coverage whole-genome sequencing, RNA 
sequencing, and gene expression profiling) of the entire ITCC-P4 PDX cohort and 
original tumors (3) This project aimed to assess how accurately the models reflect the 
molecular features of the corresponding patient tumors. (4) This large repertoire of PDX 
models also included a few established models originating from tumor samples serially 
collected from the same patients (“serial PDX models”) which represented valid modes 
to investigate tumor plasticity during disease progression. Overall, the in-depth 
characterization aims to assist in the selection of PDX models for in vivo testing of novel 
mechanism-of-action based treatments.  

Applying a multi-omics approach when characterizing the models in our cohort enables 
us to define the biology of each pediatric PDX model in a high-throughput and 
systematic fashion, reflecting either known molecular subtypes or driver alterations. 
Here we provide insight into the mutational landscape, clonal evolution and molecular 
patterns of the PDX models thus providing an overview of molecular mechanisms, 
facilitating the identification and prioritization of oncogenic drivers and potential 
biomarkers for proof-of-concept in vivo drug testing in all PDX models. 

The ITCC-P4 PDX data will be made publicly available in the freely accessible data 
repository (https://r2.amc.nl/), allowing further data downstream analysis, visualization 
and interpretation by clinicians and researchers. Taken together, the ITCC-P4 sustainable 

https://r2.amc.nl/
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platform represents a validated and powerful tool to investigate the biology of pediatric 
cancer based on the establishment and characterization of pediatric cancer PDX models 
ultimately envisaged to contribute to the development of innovative therapeutic options 
for childhood cancer patients. 

 

1.6.2 Target Actionability Review (TAR): a systematic evaluation of 
replication stress as a therapeutic target for pediatric solid malignancies 

 

To assist the prioritization of mechanism-of-action-driven drugs for pediatric cancer 
clinical trials, this Target Actionability systematic literature review strategy was 
developed, with the aim of summarizing current knowledge to serve as proof-of-concept 
modules as part of the ITCC-P4 consortium. 

In the TAR on Replication stress, our goal was to assess specific targets of the replication 
stress response (RSR). Replication stress represents a significant contributor to genomic 
instability and stands as a critical vulnerability in cancer cells. This susceptibility can be 
exploited for therapeutic purposes identifying and stratifying target proteins responsible 
for orchestrating the DNA damage response in conjunction with cell cycle regulation. 

The TAR methodology focused on matching targeted anti-cancer drugs with distinct 
cancer subtypes, guided by published preclinical studies. Our objective was to compile 
a comprehensive, well-structured, evidence based and thoroughly reviewed literature 
source regarding targeting of replication stress in both intracranial and extracranial solid 
pediatric malignancies. We also aimed to highlight emerging targets and address gaps 
in published literature addressing replication stress. 

Ultimately, the main aim was to create an extensive pediatric resource that can be 
accessed on the R2 platform. The target actionability review on replication stress, along 
with molecular characterized data from the ITCC-P4 PDX project could be used in 
supporting further preclinical research, designing pre-clinical trials and assist in the 
development of innovative treatments in pediatric cancer patients. 
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2 MATERIALS AND METHODS 
 

This chapter provides a comprehensive overview of the experimental design, collection 
of raw data, and analysis methodologies employed in both studies: the ITCC-P4 Omics 
data analyses and the Target Actionability Review on replication stress. This chapter is 
crucial as it outlines the systematic approach, methodology, materials used in data 
collection, analysis, and interpretation. It ensures the reliability and reproducibility of 
the findings while addressing the study aims of this thesis. Hence facilitating a thorough 
understanding of the research process. 

 

2.1 Materials based on ITCC-P4 Genomic profiling 
 
2.1.1 Human tumor samples  
Patient consent was obtained in accordance with the approved protocol from the Ethics 
Board of the Medical Faculty at the University of Heidelberg. For this ITCC-P4 
consortium project, patient tumor and germline samples were included. Fresh tumor 
samples were biopsied at the time of diagnosis, while patient blood samples served as 
germline controls, whenever available. Surgically resected fresh-frozen patient tumor 
material was extracted and stored for PDX transplantation. If available, clinical 
information including pathological and molecular diagnosis reports, tumor events (such 
as primary/diagnostic, relapse, metastasis), tumor stage, tumor location, treatment 
history, basic follow-up information, patient's age at diagnosis, and patient's gender 
have been collected. The collection of patient tumors was conducted in collaboration 
with 30 European partnering institutions, representing various tumor entities (Table 1). 

 

INSTITUTION 
BARCODE 

INSTITUTION 

s01 Deutsches Krebsforschungszentrum (DKFZ), Germany 

s02 Institute for Cancer Research (ICR), United Kingdom 

s03 Innovative Therapies for Children with Cancer (ITCC), France 

s04 Institute Gustave Roussy (IGR), France 

s05 Alleanza Contro il Cancro (ACC), Italy 

s06 Zürich University (UZH), Switzerland 

s07 Medizinische Universitaät Wien (MUW), Austria 

s08 Fundació Sant Joan de Déu Barcelona (FSJD), Spain 
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s09 EPO-Berlin-Buch GmbH (EPO), Germany 

s10 Academic Medical Center (AMC), Netherlands 

s11 XenTech (XT), France 

s12 Children ́s Cancer Research Institute (CCRI), Austria 

s13 Institut Curie (IC), France 

s14 Charité Berlin (Charite), Germany 

s15 Prinses Maxima Center Utrecht (PMC), Netherlands 

s16 Eli Lilly and Co (Eli Lilly), United Kingdom 

s17 Roche (ROCHE), Switzerland 

s18 Pfizer (PFZ), United Kingdom 

s19 Bayer AG (BAY), Germany 

s20 PharmaMar (PHARMAMAR), Spain 

s21 Charles River Discovery Research Services GmbH (CR), Germany 

s22 Janssen Pharmaceutica (Janssen), Belgium 

s23 Martin-Luther-Universität, Halle-Wittenberg (MLU), Germany 

s24 University of Newcastle Upon Tyne (UNEW), United Kingdom 

s25 AstraZeneca (AZ), Sweden 

s26 Universität Ulm (UULM), Germany 

s27 AMGEN (AMGEN), Belgium 

s28 Institut de Recherche Servier (Servier), France 

s29 Sanofi-Aventis Recherche & Development (Sanofi), France 

s30 St. Anna Kinderkrebsforschung GmbH (CCRI), Austria 

Table 1: ITCC-P4 European partnering institutes and their ITCC-P4 barcodes 

 

  



 

33 
  

2.1.2 PDX model establishment 
Majority of the ITCC-P4 brain tumor samples were established at the DKFZ, by 
technicians Norman Mack and Benjamin Schwalm, in the group of Prof. Dr. Marcel Kool 
(Department of Prof. Dr. med. Stefan Pfister, Hopp Children’s Cancer Center, KiTZ 
Heidelberg). However, all institutions followed the standard protocol for PDX 
establishment. 

Freshly obtained tumor samples were immersed in a cell culture medium (Neurobasal, 
NeuroCult NS, or RPMI 1640) without FCS or other growth factors. Subsequently, the 
fresh or FFPE tumors were promptly transplanted into immunodeficient NOD-SCID 
gamma mice (NSG). The successful establishment of the PDX model was determined by 
the growth of a tumor in the P2 mice and the ability of a revived serum/ Dimethyl 
sulfoxide (DMSO) frozen tumor fragment to regenerate the PDX model.  

The fresh brain tumor tissues were processed to obtain a single cell suspension either 
through gentle pipetting or by treating them with accutase (Accumax, eBioscience) and 
incubating at 37 °C for 15 minutes. The resulting cell suspension was centrifuged at 
1200 rpm, the supernatant was carefully removed, and 1 ml of cell culture medium was 
added. The cells were then passed through a cell strainer (Neolab) to obtain a single-cell 
suspension. Subsequently, the cells were counted and evaluated for viability. ~ 2x106 
cells were stored for molecular characterization, while an additional ~1x106 cells were 
intracranially injected into 2-6 NSG mice. The growth of brain tumors was monitored 
using MRI (Magnetic Resonance Imaging). Fresh non-brain tumors were dissected into 
multiple small fragments and transplanted into either the flank or under the intrascapular 
fat pad of 2-6 NSG mice. The mice were monitored regularly for tumor growth, and the 
tumors were measured at consistent intervals during their growth. For subsequent 
passages, the tumors were extracted from euthanized mice and dissected into several 
small fragments in a sterile cell culture dish. FFPE-transplanted tumors when first 
implanted into mice are called P0.  Once the brain tumor reached its maximum volume, 
further passages (P1-2) were initiated. At least two additional mouse-to-mouse passages 
(P1, P2) had to be performed before establishment. A PDX model was considered 
established if the tumor has grown in the P2 mice and if the stored frozen tumor fragment 
was able, upon re-injection, to regenerate the PDX model (Figure 9). 

Established PDX tumors were isolated and processed for molecular characterization. 
DNA and RNA were extracted from tissue samples using the automated Maxwell nucleic 
acid purification system and specific kits for blood or tissue samples. The quantity and 
quality of DNA were assessed using the Qubit system and high-resolution 
electrophoresis. Similarly, the quantity and quality of RNA, when available, was 
determined using the Agilent Bioanalyzer system. A threshold of RNA Integrity Number 
(RIN) values ≥ 7 was set to ensure the integrity of the RNA samples. Information 
regarding the PDX models was collected and included data on the mouse strain utilized, 
the transplantation site of the tumor, the passage number, and the growth latency. 
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Figure 9: PDX model establishment process 

Tumor biopsy extracted surgically resected tumor represents the primary tumor. Once engrafted 
into the first NOD-SCID gamma (NSG) immunodeficient mouse, this represents the P0 mouse 
model. On reaching maximum volume further passages are initiated (P1-P2) to establish the PDX 
model. 

 

2.1.3 ITCC-P4 Cohort 
For this thesis, I focused on the analyses of the first 251 fully molecularly characterized 
PDX models out of the 400 PDX models being established within the ITCC-P4 
consortium project. All PDX models and patient tumor samples, as well as their relative 
molecular data, has been registered on the R2 portal (https://r2-itcc-p4.amc.nl/) with 
standardized barcodes reflecting essential details: institution ID, entity ID, sample type 
material ID and data type (Table 2). 

 

ENTITY ID DESCRIPTION 

CK Clear cell sarcoma of kidney  

EP Ependymoma  

ES Ewing sarcoma   

HB Hepatoblastoma  

HG High grade glioma  

HGNET High-grade neuroepithelial tumor  

LL Large-cell Lymphoma  

NS Malignant nerve sheath tumor  

https://r2-itcc-p4.amc.nl/
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MB Medulloblastoma  

ML Melanoma  

NB Neuroblastoma  

OS Osteosarcoma  

PLEX Plexus tumor  

RB Retinoblastoma  

RT Rhabdoid Tumor  

RS Rhabdomyosarcoma  

S Sarcoma  

NP Wilms´ Tumors-Nephroblastoma  

 

SOURCE ID DESCRIPTION 

T Tumor 

P PDX 
 

SAMPLE ID DESCRIPTION 

NB Normal Blood 

TP Tumor Primary 

TR Tumor Relapse 

TM Tumor Metastasis 

TT Tumor progression under current treatment 

PP PDX Primary 

PR PDX Relapse 

PM PDX Metastasis 

PT PDX of tumor progressed under current treatment 

PU PDX model of unknown event 
 

MATERIAL ID DESCRIPTION 

F Fresh frozen 

E FFPE-embedded tissue 
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ISOLATE ID DESCRIPTION 

D DNA 

R RNA 

P Protein 

 

ANALYSIS ID DESCRIPTION 

01 lcWGS 

02 hcWES 

03 RNA-seq 

04 Affymetrix 

05 850k 

Table 2: ITCC-P4 standardised barcode system 

A sample barcoding system was established for entity, model, sample, material, isolate and 
analysis. 
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2.2 Methods based on ITCC-P4 Genomic profiling 
 
2.2.1 Whole Exome Sequencing and Whole Genome sequencing workflow 
PDX models and patient tumor samples sequenced at DKFZ used the Agilent 
SureSelectXT HS Reagent enrichment kits for Illumina Paired-End Sequencing platform 
(Illumina NovaSeq 6000 S1). In addition to the DKFZ sequenced data, we received raw 
NGS data (fastq files), from the partnering institutes, that profiled tumor samples 
independently. This data included merged low-coverage whole genome sequencing 
(lcWGS), whole exome sequencing data (WES) and RNA sequencing data. 
Consequently, for this data the WES and WGS library preparation kits and sequencing 
platform varied accordingly (Table 3 & Table 4). 

INSTITUTION LIBRARY PREPARATION KIT WES SEQUENCING 
PLATFORM 

DKFZ Agilent SureSelectXT HS Illumina HiSeq 2000 

CCIA TruSeq Nano DNA HT Illumina HiSeq X Ten 

CURIE 
Agilent SureSelect Clinical 
Research Exome V2 

Illumina NovaSeq 6000 

IGR 
Agilent SureSelect Clinical 
Research Exome V2 

Illumina NextSeq 500 

ICR 
Agilent SureSelect Clinical 
Research Exome V7 

Illumina NovaSeq 6000 S2 

Table 3: WES library prep kits and sequencing platforms used in ITCC-P4 

Various PDX models established at different ITCC-P4 partnering sites used different WES kits.  

 

INSTITUTION WGS SEQUENCING PLATFORM 

DKFZ Illumina NovaSeq 6000 S1 

CCIA Illumina HiSeq X Ten 

CURIE Illumina NovaSeq 6000 

Xentech Illumina HiSeq 2500 

Table 4: lcWGS sequencing platforms used in the ITCC-P4 
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The sequencing reads obtained from the patient tumor, PDX sample, and corresponding 
germline controls were aligned to a merged reference genome that combined the human 
reference genome (hs37d5) and the murine reference genome (GRChm38mm10). This 
alignment process was performed using the BWA alignment tool [211] to capture and 
identify any reads that might have originated from mouse tissue, thereby detecting 
potential contamination. The samples were aligned and processed through the in-house 
DKFZ One Touch Pipeline (OTP) of the DKFZ ODCF. Single-nucleotide variants (SNVs) 
were identified using our in-house workflow (https://github.com/DKFZ-
ODCF/SNVCallingWorkflow) (version 2.2.0), which involved the utilization of samtools 
[212] mpileup and bcftools [213]. For the detection of small insertion/deletions (INDELs) 
the IndelCallingWorkflow (version 3.1.1) that uses Platypus (https://github.com/DKFZ-
ODCF/IndelCallingWorkflow) was utilized. The confidence of INDEL variant calls is 
assessed with the Platypus scoring system. The standard ODCF pipeline for processing 
structural variants (SVs) involved the utilization of the Sophia workflow 
(https://github.com/DKFZ-ODCF/SophiaWorkflow) (version 2.2.3). 

 

2.2.2 "No-control workflow": Analysis of samples without patient-
matched germline data  

Among the PDXs in our cohort, 90 out of 251 (35.8%) lacked a corresponding germline 
control. For these cases, we employed a well-established in-house pipeline developed 
by Dr. Jeongbin Park from the Division of Theoretical Bioinformatics at the German 
Cancer Research Center (DKFZ) in Heidelberg, Germany. Specifically, the "No-Control 
workflow" was utilized to process the PDX and tumor data samples and utilized mpileup 
for SNV calling, Platypus for indel calling, and Sophia for SV processing. The aligned 
tumor BAM files were soft linked, and pseudo-control BAM files were generated. To call 
Single-Nucleotide Variants (SNVs), insertions/deletions (indels), and Structural Variants 
(SVs), I utilized the DKFZ Roddy framework (https://github.com/TheRoddyWMS/Roddy) 
(version 3.5.8). To filter out germline variants, I excluded variants that had exact matches 
in dbSNP and 1K genomes databases. For variant interpretation and prioritization in 
coding and non-coding regions, we utilized the Ensembl Variant Effect Predictor (VEP)  
[214] To prioritize and include relevant variants, I utilized gnomAD (version 2.1) [215], 
a widely used database that provides information on minor allele frequencies (MAF) in 
various populations. After variant calling and filtering, we integrated gnomAD data into 
our analysis pipeline Variants with a maximum population allele frequency above a 
specified threshold of 0.001 were excluded from further consideration, as they were 
considered more likely to represent common polymorphisms. This filtering step allowed 
us to focus on variants that were less prevalent in the general population and, therefore, 
include variants that showed higher rarity or specific enrichment patterns within our 
cohort, thus enhancing the identification of potentially pathogenic or functionally 
significant variants. 

  

https://github.com/DKFZ-ODCF/SNVCallingWorkflow
https://github.com/DKFZ-ODCF/SNVCallingWorkflow
https://github.com/DKFZ-ODCF/IndelCallingWorkflow
https://github.com/DKFZ-ODCF/IndelCallingWorkflow
https://github.com/DKFZ-ODCF/SophiaWorkflow
https://github.com/TheRoddyWMS/Roddy
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2.2.3 DNA-Methylation profiling and subgroup classification 
To better characterize the models regarding tumor subgroup diagnosis, DNA-
methylation-based array profiling was performed by Dr.Aniello Federico (from the group 
of Prof. Dr. Marcel Kool, Division of Pediatric Neuroonclogy (KiTZ). Genomic DNA was 
extracted from PDX and patient tumor samples (fresh frozen materials). The methylation 
profiling process was carried out at: the DKFZ Genomics and Proteomics Core Facility 
and Institute Curie, using the Illumina Methylation450K [216] and MethylationEPIC 
BeadChip arrays [217]. The methylation data preprocessing and downstream analyses 
were conducted within the R environment (version 4.0.1) utilizing the minfi package 
(version 1.34). To outline the process briefly, the raw data was normalized, probes that 
overlapped with the X/Y chromosomes were filtered out, as well as those containing 
SNPs and not uniquely mapping to the human reference genome (hg19). Finally, probe 
signal intensities (beta-values) per each analyzed sample. Tumor class annotation was 
performed using the CNS [218]  and sarcoma [170] DNA methylation-based tumor 
classifiers, using unsupervised clustering analyses implementing the t-distributed 
stochastic neighbor embedding (t-SNE) method. These classifiers and machine learning 
techniques allowed us to classify the tumor and PDX models into their respective tumor 
entities and molecular subgroups, leveraging tumor reference datasets for improved 
accuracy and classification. 

 

2.2.4 Copy number variant (CNV) workflow 
Different CNV tools utilize diverse algorithmic approaches to detect and characterize 
copy number alterations. CNVs, which refer to gains or losses of genomic DNA 
segments, play a significant role in tumorigenesis and can provide valuable insights into 
the genomic landscape of cancer. In order to accurately detect and characterize CNVs, 
we ran a variety of different analysis tools, to account for their specificity, sensitivity and 
confidence scores.  

 

2.2.4.1 ichorCNA 
ichorCNA [219], is a tool that uses a probabilistic Hidden Markov Model (HMM) to 
segment the genome and predict large-scale copy number alterations from ultra-low-
pass whole genome and whole exome data. One notable feature of ichorCNA is its 
ability to handle samples with low tumor purity or contaminated by normal cells. It 
employs a deconvolution algorithm to estimate the tumor purity and ploidy, which are 
critical factors for accurate copy number inference. This enables the tool to effectively 
analyze samples with complex genomic profiles and heterogeneous tumor populations. 
For samples without controls, a panel of normal was generated using existing controls 
to reduce noise and improve the accuracy of CNV calling. The output ploidy, tumor 
purity and copy number alterations were interpreted for further analysis.  
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2.2.4.2 Sequenza 
Sequenza [220] is computational tool for the analysis of cancer genomic data. It utilizes 
a probabilistic model that runs on only paired tumor-normal DNA sequencing data to 
calculate copy-number profiles, estimate tumor cell fraction and tumor ploidy from 
whole exome and genome data. Input parameters take in the aligned BAM files, human-
mouse hybrid genome (hs37d5-GRCm38mm10) and the human reference genome 
(hs37d5), while using a bin size of 100 bases for WES data.  This method also allowed 
for estimation and comparison of tumor purity of patient tumor and PDX samples. These 
results were used for comparing tumor cell purity and copy number calls. 

 
2.2.4.3 CNVkit  

CNVkit [221] (version 0.9.3), is a tool specifically designed to detect and quantify 
genomic amplifications and deletions in tumor samples. It utilizes a target capture-based 
sequencing approach to analyze read depths and calculate copy number profiles across 
the genome. By comparing the read depth of the tumor sample to a reference normal 
sample, CNVkit identifies genomic regions with copy number alterations, providing 
insights into the structural changes in the cancer genome. CNVkit analysis was 
performed by the INFORM Bioinformatics team (Dr. Christopher Previti), Clinical 
Bioinformatics, Hopp Children’s Cancer Center (KiTZ), using the “in-house” standard 
pipeline with default parameter settings on whole exome sequencing data of PDX and 
tumor samples. Only samples with germline controls could be analysed using this tool. 
I extracted and concatenated the log2 ratio values from the processed CNVkit output for 
each fragment and for all the ITCC-P4 samples; further comparative analysis and variant 
calling was also performed. The results of these analyses were used for tumor cell purity 
comparative analysis and to annotate the driver gene copy number alterations reported 
in the genomic landscape analysis of the PDX models and pediatric tumors. 

 

2.2.5 RNA sequencing workflow and gene fusion calling 
The RNA sequencing data was processed using the DKFZ OTP in-house pipeline 
(version 3.0.0) available at https://github.com/DKFZ-ODCF/RNAseqWorkflow, which is 
based on the established Roddy workflow (https://github.com/TheRoddyWMS/Roddy). 
In summary, the reads from the samples were aligned to the human reference genome 
(hg37d5) using the STAR aligner[222]. The mapped BAM files were then subjected to 
FeatureCounts to quantify the gene expression using the GENCODE v19 reference 
annotation. For the identification of gene fusions, the RNA-sequencing input data was 
analyzed using Arriba (version) [223]. Gene fusions reported by Arriba with high or 
medium confidence levels were extracted and considered for further analysis. 

 

https://github.com/DKFZ-ODCF/RNAseqWorkflow
https://github.com/TheRoddyWMS/Roddy
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2.2.6 Driver gene annotation of somatic and germline mutations 
To identify and annotate important driver genes for the mutational landscape analysis in 
our study, we utilized the 2022 World Health Organization (WHO) Classification of 
Pediatric Tumors [224] and a published review by Jones et al. on pediatric solid 
cancers[225] as references. These references were used to curate a comprehensive list 
of known somatic and germline driver mutations. Within the ITCC-P4 PDX and tumor 
cohort, we performed an analysis to identify significant genomic events, chromosomal 
alterations, fusion events, and copy number alterations specific to each cancer entity 
and their relative molecular subgroups. The driver alterations identified from the 
processed variant calling data for all samples, including those without germline controls, 
were highlighted. These specific alterations served as the focal point for downstream 
analysis and interpretation of the mutational landscape within the ITCC-P4 cohort.  

 
2.2.7 Tumor mutational burden (TMB) analysis 
Tumor mutational burden (TMB) is a measure used to assess the overall number of 
genetic mutations present in a tumor sample. It quantifies the total number of somatic 
mutations, including single nucleotide variants (SNVs), small insertions/deletions 
(indels), and structural variations, within the tumor genome. TMB serves as an important 
clinical metric that allows predicting response to immunotherapy [226][227]. The 
estimation of TMB was performed by Dr. Christopher Previti (INFORM Bioinformatics, 
KiTZ) using the standard INFORM pipeline. The TMB was calculated on whole-exome 
sequencing data only over those coding regions targeted by the respective WES library 
prep kits using only high-confidence somatic and functional exonic SNVs and INDELs. 
The TMB values were compiled and used to compare mutational load across cancer 
subgroups, disease states and model types to assess high burden of genetic alterations. 

 

2.2.8 Variant allele frequency (VAF) calculation 
To understand the intra-tumor heterogeneity, clonal selection, distinguishing somatic 
and germline variants and evolution within the PDX samples, the variant allele 
frequency (VAF) of somatic functional SNVs was calculated. From the aligned and 
processed somatic functional SNV files, the so-called DP4 values were extracted. This 
DP4 value provides information about the depth of sequencing coverage for each allele 
(reference and alternate) in each sample. It is typically used to indicate the number of 
reads supporting each allele. It contains four subfields that represent the sequencing 
reads covering a variant. These subfields specifically indicate the coverage of the 
reference allele by forward reads, the coverage of the reference allele by reverse reads, 
the coverage of the alternate allele by forward reads, and the coverage of the alternate 
allele by reverse reads. VAF scores were then calculated using this formula: 

 

𝑉𝐴𝐹 =
𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑛𝑜𝑛 − 𝑟𝑒𝑓𝑎𝑙𝑙𝑒𝑙𝑒 + 𝑅𝑒𝑣𝑒𝑟𝑠𝑒𝑛𝑜𝑛 − 𝑟𝑒𝑓𝑎𝑙𝑙𝑒𝑙𝑒

𝐹𝑜𝑟𝑤𝑎𝑟𝑑	𝑟𝑒𝑓 + 𝑅𝑒𝑣𝑒𝑟𝑠𝑒	𝑟𝑒𝑓 + 𝐹𝑜𝑟𝑤𝑎𝑟𝑑	𝑛𝑜𝑛 − 𝑟𝑒𝑓 + 𝑅𝑒𝑣𝑒𝑟𝑠𝑒	𝑛𝑜𝑛 − 𝑟𝑒𝑓 
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2.2.9 Tumor cell fraction (TCF) – ESTIMATE, Sequenza and CNVkit 
Tumor cell fraction refers to the proportion of tumor cells within the overall cell 
population[228]. In cancer samples, the presence of normal cells can dilute the 
frequency of somatic mutations, leading to inaccurate VAF scores. To exclude any biases 
of sample purity affecting analysis, the tumor cell fraction of each PDX and tumor sample 
were calculated.  To obtain a comparative assessment of tumor purity, three different 
computational tools were utilized on the ITCC-P4 cohort: Sequenza, CNVkit, and 
ESTIMATE.  ESTIMATE [229], a deconvolution tool that leverages RNA sequencing gene 
expression data (TPM values), was applied to all available RNA sequencing samples. to 
infer the fraction of infiltrating stromal and immune cells within a sample. However, a 
subset of 41/251 PDX models lacked matching RNAseq data due absence of sequencing 
data. ESTIMATE provides three scores: (1) amount of stroma (non-immune) cells in the 
tumor tissue, (2) the infiltration of immune cells in tumor tissue and (3) the tumor purity. 
These scores offer valuable insights into the composition of the tumor microenvironment 
and allow for a more comprehensive evaluation of tumor purity.  

 

2.2.10 Variant allele frequency using estimated tumor cell fraction 
Using the CNVkit tumor purity scores, the variant allele frequencies were corrected for 
all samples to consider the purity of the sample. VAF scores for somatic SNVs were 
divided by the purity of the tumor or PDX sample respectively and then normalized 
within each sample to obtain the corrected VAF scores for tumor and PDX models. 
Normalizing tumor cell fraction-corrected variant allele frequency (VAF) scores is 
important to account for the differences in tumor purity and accurately compare VAF 
values across samples. 

𝑇𝐶𝐹	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑	𝑉𝐴𝐹	𝑠𝑐𝑜𝑟𝑒 =
𝑉𝐴𝐹	𝑠𝑐𝑜𝑟𝑒

𝑇𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

 

2.2.11 PDX-Tumor correlation: Pearson scores, delta-VAF and VAF-ratio 
To compare and infer and correlate clonal discordance between the variant allele 
frequencies of tumors and PDX models, we introduced a metric known as delta-VAF. 
This metric was calculated by subtracting the PDX VAF from the difference in tumor 
VAF[199]. The identification of PDX-specific variants within a sample played a 
significant role in investigating crucial subclones. To analyze overlapping or exclusive 
variants between PDX and tumor, we introduced another metric called "VAFratio." The 
VAFratio scores were computed by summing the PDX VAF and dividing it by the sum of 
the tumor VAF for each individual patient sample. 
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2.3 Methods based on the ITCC-P4 Target Actionability Review 
- Replication Stress 

 

As a result of significant number of pediatric cancer-related fatalities in the past decade, 
the exploration of therapeutic advancements in childhood cancer has become a highly 
investigated area. Although classical chemotherapy provides some therapeutic benefits, 
it often leads to long-term persisting complications among survivors. Therefore, there is 
an urgent need to identify new targeted therapies.  

Replication stress, a prominent contributor to genomic instability in cancer, causes the 
stalling of replication forks. The inability of DNA damage checkpoints, DNA repair 
mechanisms, and replication fork restart to effectively respond to this stress can 
exacerbate the condition and activate cell death pathways, making it an attractive target 
for novel therapeutic interventions. To bridge the gap between preclinical evidence and 
clinical application, a literature-driven systematic review methodology was employed 
to assess the actionability of targets based on published proof-of-concept (PoC) data 
related to replication stress. 

The Target Actionability Review methodology consisted of four major steps (Figure 10), 
with minor deviations from the originally established appraisal approach by Schubert et 
al. [230]. 

 

 
Figure 10: Overview of Replication Stress TAR methodology 

The overview shows the four main steps modified from the established workflow and 
implemented in this TAR. (taken from the 2022 published review in the European Journal of 
Cancer [231]) 
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2.3.1 Step 1: Literature search 
Literature search across 16 different pediatric solid tumors, using specific and general 
keywords (Table 5) related to replication stress, was conducted via PubMed using the R 
package RISmed version2.2. Multiple search query terms were used with the tumor type 
of interest’ ([‘pediatric tumor’ AND ‘replication stress keyword’]. Literature published 
between 2014 and 2021 (last literature search was performed on date: 27-01-2021) that 
contained the search term from the query in the title or abstract and had addressed 
relevant Proof of Concept modules (PoC) (Table 6) was considered. Only publications 
that fulfilled the above-mentioned criteria qualified to be included for further review.  

The final list of PubMed IDs (PMIDs) was uploaded to the TAR portal on R2 for further 
scoring by two different reviewers and a third independent reviewer as explained below. 
The interactive R2 platform [r2.amc.nl] is a data mining and data discovery platform 
created by Dr. Jan Koster from the Amsterdam Medical Center (AMC, Netherlands) that 
includes all the resulting visualizations. [https://hgserver1.amc.nl/cgi-bin/r2/main.cgi? 
optionZimi2_targetmap_v1]. 

Table 5: Replication stress keywords and cancer entities for PubMed queries 

  

                                      Replication stress keywords Tumor entities 

General keywords: replication stress Neuroblastoma (NBL) 

 genomic instability Rhabdomyosarcoma (RMS) 

 chromothripsis Synovial sarcoma (SS) 

 BRCA Malignant peripheral nerve sheath tumor (MPNST) 

 R-loops Ewing’s sarcoma (ES) 

 mutational signature Osteosarcoma (OS) 

 
MYC amplification 

Atypical teratoid/rhabdoid tumor (AT/RT) &  
Malignant rhabdoid tumor (MRT) 

 MYCN amplification Wilms tumors/nephroblastoma (WT) 

 high MYC expression Hepatoblastoma (HB) 

 high MYCN expression Inflammatory myofibroblastic tumor (IMT) 

 mitotic catastrophe Retinoblastoma (RB) 

 reactive oxygen species Extracranial germ cell tumor (extracranial GCT) 

 synthetic lethal treatment Low-grade glioma (WHO grades I & II; LGG) 

 
 

High-grade glioma (WHO grades III & IV, incl. 
glioblastoma; HGG) 

Specific keywords: ATM Ependymoma (EPN) 

 ATR Medulloblastoma (MB) 

 DNA-PK/DNA-PKcs/PRKDC  

 CHK1/CHEK1  

 WEE1  

 PARP  

file:///C:/Users/agopisetty/MyData/PhD_2019/THESIS/AG_Dissertation/Chapter_2_Materials_Methods/r2.amc.nl
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi?%20optionZimi2_targetmap_v1
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi?%20optionZimi2_targetmap_v1
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2.3.2 Step 2: Critical review and scoring 
Each article was evaluated by two separate reviewers, using the established PoC 
modules (Table 6) and all relevant data was entered as separate evidence into the R2 
TAR platform. Key findings for each publication were summarized individually by 
reviewers 1 and 2. We excluded studies evaluating micro- or long non-coding RNA, 
natural compounds, or monotherapy with classical chemotherapy or radiotherapy due 
to the potential variation in sensitivity of pediatric tumors to these agents. This variation 
can arise from the distinct molecular pathways and cellular processes involved in 
pediatric oncogenesis. Additionally, the use of monotherapy with classical 
chemotherapy or radiotherapy in pediatric cancer may necessitate customized dosing 
and treatment strategies to achieve optimal efficacy.  

Using the established scoring criteria previously defined by Schubert et al. [230], each 
module for each different tumor type was assessed while assigning quality and outcome 
scores (Table 7 & 8). Experimental quality scores ranged from +1 to +3, indicating the 
robustness of the study, while experimental outcome scores ranged from -3 to +3, 
indicating whether the study results warrant the targeting of a specific protein/pathway 
for the treatment of a pediatric solid or brain tumor. 

 

Proof of concept 
module (PoC) 

Critical appraisal questions 
Information to include in 

summary of experimental findings 

PoC 1: 
target/pathway 
activation in 
pediatric clinical 
series 

Is the target pathway active in the tumor of interest? 

Target/pathway evaluation in clinical series: DNA 
aberrations, (over)expression, methylation changes? 

Target DNA aberrations: mutation, translocation, 
amplification, in/del, CNV 

Percent of samples with aberrant target/pathway in 
clinical series 

Correlation to clinical outcome 

Correlation to other tumor biology 

Target expression/pathway activity compared to normal 
tissue, other cancers and/or other reference tissue 

Total size of cohort (only consider 
the number of patient samples, not 
cell lines) 
 

Methodology used 
 

Percent of samples expression the 
target (and associated alterations 
or mutation) or with activated 
target pathway 

Tumor target 
dependence 

 

PoC 2:  in vitro 
 
 

 

 

 

 

Is the tumor of interest dependent on the 
target/pathway for survival? 

In vitro 

Molecular target gene silencing in cells (RNAi, AOs, 
CRISPR etc.);ectopic expression; preferably ≥ 3 cell lines 

Phenotype analysis (apoptosis, cell viability, etc.) 

Biological effect of molecular silencing or ectopic 
expression of target 

Appropriate controls (use of use of multiple silencing 
tools, rescue experiments, control cell lines, etc.) 

In vitro/ in vivo 

Model system(s) 
 

Methodology used 

Results of initial experiment (cell 
viability or tumor growth) 

Rescue experiment used 
                                              
Validation (effects on apoptosis, 
proliferation, cell cycle, migration, 
gene or protein expression, etc.) 
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PoC 3: in vivo 

Additional functional assays showing target or pathway 
dependence for mutated/translocated/amplified target 
genes 

In vivo 

Molecular silencing or overexpression of target gene in 
xenografts (inducible shRNA or expression vectors) 

Transgenic models (mice, zebrafish, etc.) for 
mutated/translocated/amplified target genes or for 
activated pathways 

Sensitivity to 
compound/drug 

PoC 4: in vitro 

 

 

 

 

 

 

 

 

PoC 5: in vivo 

Does the targeted compound reduce survival of the 
tumor of interest in preclinical models?  

In vitro 

Preferably ≥ 4 cell lines with target dependence 
(preferably with ≥ 1 control cell line without target 
dependence) 
                                                                                        
Cell viability: IC50, GI50, LC50, dose-response curves 

Biological efficacy: preferably measured with 
pharmacodynamic (PD) assays intended for 
extrapolation to clinical studies 

Correlation of efficacy with tumor biology 

 

In vivo 

Xenografts/PDX/GEMM (both with dependency on 
evaluated target) 

Preferably measured with predictive biomarker to be 
used in clinical trial for patient selection 

Pharmacokinetics (PK; plasma and intra-tumoral) 

Pharmacodynamics in tumor: (1) target binding, (2) 
target inhibition, (3) pathway modulation, (4) biological 
effect 

PK-PD relationships: preferably use assays intended for 
extrapolation to clinical studies 

Response rates and survival measures (use established, 
measurable tumors) 

Efficacy-PD-PK relationships 

In vitro 

Type (establish cell line or patient-
derived [i.e., ex vivo] and number 
of cell lines used [including 
controls]) 

Drug(s) used and concentration 
range tested; time point(s) used to 
assess cell viability 

Percent of sensitive lines (IC50 ≤ 
500 nM of clinically relevant [if 
known/applicable])  

Validation (effects on apoptosis, 
proliferation, cell cycle, migration, 
gene or protein expression, etc.) 

In vivo 

Model(s) (cell line or patient-
derived xenografts, transgenic 
mice, orthotopic vs. subcutaneous, 
etc.) and n/arm 

Dosing schedule used 

Tumor growth inhibition and/or 
overall response extrapolation for 
each experiment 

Validation (effects on apoptosis, 
proliferation, cell cycle, migration, 
gene or protein expression, etc.)  

PoC 6: predictive 
biomarkers 

Can biological compound efficacy be determined by a 
specific marker in preclinical models? 

Evaluation of existing, validated biomarkers in PoC 4 
and PoC 5 

Predictive biomarker (intended for extrapolation to 
clinical studies and patient selection) 

Efficacy biomarkers (PD markers) 

 

 

Biomarker(s) reported 

In vitro/in vivo correlation (include 
statistical values if available) 

Patient correlation (include 
statistical values if available) 
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PoC 7: resistance Are the mechanisms of resistance understood? 
(Analyzed in preclinical models, use knowledge from 
adult studies, added observations in patient samples 
from trials) 

Target mutations 

Upregulation of alternative pathways 

Increased drug transporters 

Other mechanisms 

Model(s) (in vitro/in vivo) 

 

Methodology 

Resistance reported and drug 
concentration/validation  

(if applicable) 

PoC 8: 
combinations 

Are synergistic combinations with other 
drugs/compounds established? 

Rational combinations: based on pathway knowledge 
and/or resistance observations from PoC 7 

Compound/drug + cytotoxic drug 

Compound/drug + targeted compound 

 

Model(s) (in vitro/in vivo) 

Methodology for combination 

Drug(s) used and concentration 
range tested; time point(s) 

Results (combination index 
[CI]/method of determining 
combination effect, percent of 
models showing synergism) 

Validation (effects on apoptosis, 
proliferation, cell cycle, migration, 
gene or protein expression, etc.)  

PoC 9: clinical 
evaluation 

Can the targeted compound safely be administered to 
children with cancer? (Phase I) 

Has a formal phase I trial been conducted with a 
targeted compound in children with cancer? 

Has a recommended dose been established for single 
drug use? 

Has a recommended dose been established for use in 
combination in standard of care (SOC)? 

Does the targeted compound show efficacy (clinical or 
biological) in relapsed/refractory disease (Phase II) 

Has a formal phase II trial been performed with a 
targeted compound in children with cancer?  

In which diseases has efficacy been investigated? 

In which stage of disease (relapsed/refractor? Treatment-
naïve?)  

Were trials done with single drug or in combination? 

Has ‘biological efficacy’ (PD biomarkers) been shown? 

Does the targeted compound add benefit to the 
standard-of-care treatment? (Phase III) 

Number of patients included in the 
trial and tumor types considered  

Study design (phase, type of design 
[open label, randomized, 
controlled, other]) 

Toxicity profile 

Recommended phase II dose 
(RP2D); if applicable 

Efficacy observed (ORR, CR, PR, 
SD or PD); if applicable  

Table 6: Proof of concept (PoC) modules for the TAR 

The PoC modules highlight the nine different modules that were essential to score and review 
each selected publication on replication stress. This was performed independently by two 
reviewers. 
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Proof of Concept (PoC) 
Module Description Scoring and Criteria 

PoC 1: target/pathway 
activation in pediatric 
clinical series 

Number of pediatric 
samples 

Type of analysis 

3 

   
2 

   
1 

n ≥ 20 pediatric patient samples; ≥ 2 different methods 
OR next-generation sequencing 

20 > n > 10 pediatric patient samples; ≥ 1 reliable 
method 

n ≤ 10 pediatric patient samples; 1 method 

PoC 2: tumor target 
dependence in vitro 

Methodology  

Tumor cell viability 

Biological pathway 
readout 

3 

  
2 

  
1 

Different methods to alter target expression in ≥ 3 cell 
lines; phenotypic analysis of knockdown 

Single method to alter target expression in < 3 cell 
lines 

Questionable alteration of gene expression 

PoC 3: tumor target 
dependence in vivo 

Model(s) used 

Tumor formation/growth 

Biological pathway 
readout 

3 

 
2 

1 

Transgenic mouse model or ≥ 2 different xenografts 
with appropriate controls and/or different methods of 
genetic modification in vivo (shRNA/CRISPR) 

≥ 2 different xenografts without appropriate control       

1 xenograft model without appropriate control 

PoC 4: in vitro sensitivity 
to compound/drug 

Number of cell lines 

Measurement of PD 
markers 

Phenotypic response 

3 

2 

1 

5+ cell lines and ≥ 2 appropriate controls; validation 

2-5 cell lines and ≥ 1 appropriate control; validation 

1 cell line and/or lack of control and/or validation 

PoC 5: in vivo activity of 
compound/drug 

Number and type of 
model(s) 

Measurement of PD 
markers 

Phenotypic response 

3 

         

  
2 

  
1 

≥ 2 xenograft models or 1 transgenic mouse model 
with appropriate controls; treatment with clinically 
relevant dose; validation 

1 xenograft model with appropriate control; treatment 
with clinically relevant dose; validation 

1 xenograft model OR use of supra-clinical dose 
levels; no appropriate control or validation  

PoC 6: predictive 
biomarkers 

Confirmation of 
correlation  

Patient selection 

3 

  
2 

1 

Correlation molecularly confirmed in ≥ 2 models (eg: 
silencing, overexpression, etc.); patient selection 

Correlation confirmed in 1 model 

Correlation not confirmed 

PoC 7: resistance Mechanism of resistance 

Molecular analysis 

Method to overcome 
resistance 

3 

  
2 

  
1 

Reported resistance and comprehensive analysis and 
reversing/overcoming resistance 

Reported resistance and analysis of molecular changes 
underlying/due to resistance 

Only reporting resistance 

PoC 8: combinations Concentrations tested 

In vitro combination 
index values 

In vivo combination 

3 

 

  
2 

 
1 

> 4 concentrations of each compound are tested and 
combination index values calculated; combination 
evaluated in vivo 

1-4 concentrations of each compound are tested and 
combination index values calculated; with or without 
evaluation of combination in vivo 

1 concentration of each compound tested; no 
evaluation of combination in vivo 
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PoC 9: clinical 
evaluation 

Pediatric patient 
selection 

Toxicity, Efficacy 

1  number of patients; tumor types included in study; 
study design 

 

Table 7: Experimental quality scoring 

The table highlights the experimental “quality score” for all the PoC modules. The first and 
second reviewer score each selected publication based on the different description and criteria. 

 

Proof of Concept 
(PoC) Module 

Description Scoring and Criteria 

PoC 1: 
target/pathway 
activation in pediatric 
clinical series 

Prevalence of 
target/pathway in cohort 

 3 

 1 

-3 

>10% of cohort 

Between 2% and 10% 

≤ 2% of cohort 

PoC 2: tumor target 
dependence in vitro 

Level of dependency and 
phenotypic recapitulation 

 3 

         
1 

     
-3 

Full dependency (> 75% cell death or 
transformation) 

Partial dependency (< 75% cell death or altered 
growth) 

No dependency 

PoC 3: tumor target 
dependence in vivo 

Level of dependency and 
phenotypic recapitulation 

 3 

     
1 

-3 

Full dependency (CR) after knockdown/knockout or 
transformation in GEMM 

Partial dependency (< 75% response) 

No dependency 

PoC 4: in vitro 
sensitivity to 
compound/drug 

IC50 observed after 72-
hour exposure 

 3 

 1 

-1 

-3 

IC50 < 500 nM or ≤ clinically relevant concentratn 

IC50 = 500- 1000 nM 

IC50 > 1500 nM 

No activity (IC50 > 10 µM) 

PoC 5: in vivo activity 
of compound/drug 

In vivo tumor response  3 

 1 

-1 

      
-3 

Response comparable to PR/CR 

Response comparable to SD 

Very minor response (between SD and PD, slight 
TGI) 

No activity or clear PD; growth comparable to 
control 

PoC 6: predictive 
biomarkers 

Correlation of biomarker 
status with anti-cancer 
activity of a targeted drug 
in vitro/in vivo 

 3 

 

 1 

     
-3 

Strong correlation (presence of biomarker results in 
significantly different drug response) 

Moderate correlation (presence of biomarker results 
in different drug response; not significant) 

No correlation (presence of biomarker does not 
correlate with drug response) 

PoC 7: resistance Reported resistance with 
drug exposure 

 3 

           

Resistance reported at clinically relevant 
concentrations/dose and identification/description 
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1 of mechanism                                                  
Resistance reported with no mechanism 

PoC 8: combinations Synergy in combination 
testing at clinically 
relevant dosages in 
relevant in vitro and/or in 
vivo models 

 3 

 1 

       
-1 

      
-3 

Strong synergy reported— CI < 0.5 

Moderate synergy/additive effect observed— CI 0.5 
- 0.9 

Very minor synergy/additive effect observed— CI 
0.9 - 1.1 

No combination benefit 

PoC 9: clinical 
evaluation 

Phase I 

 

 

 

 

 

Phase II 

 

 

 

 

 

Phase III 

 3 

     
1 

      
-3 

 3 

      
1 

      
-3 

 3 

  

       
1 

 

-3 

Toxicity profile acceptable, RP2D identified and 
early efficacy observed 

DLT observed with still acceptable safety and no 
efficacy reported 

Toxicity profile not acceptable 

Efficacy observed greater than historical ORR, DoR 
and/or PFS and acceptable toxicity 

Limited efficacy observed above the historical 
ORR, DoR and/or PFS and acceptable toxicity 

No efficacy observed and/or unacceptable toxicity 

Added efficacy over SOC in appropriate pivotal 
trial with acceptable benefit/risk profile; new drug 
now part of SOC 

Added efficacy over SOC but new agent not part of 
SOC due to trial design issues and/or benefit/risk 
assessment  

Insufficient efficacy in pivotal trial 

 

Table 8: Experimental outcome scoring 

The table highlights the experimental “outcome” score for all the PoC modules. The first and 
second reviewer score each selected publication based on the different description and criteria. 
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2.3.3 Step 3: Adjudication by reviewer 
Once articles received a score, any discordant scored paper was further assessed and 
discussed. In the adjudication process, both reviewer 1 and 2 re-evaluated the collected 
evidence for each article. The main replication stress target was identified, and the 
assigned quality and outcome scores were reassessed. Each discrepant module or score 
was briefly discussed by the two reviewers and adjusted if necessary. Articles with further 
discordant scores were then sent to an independent third reviewer, who then scored the 
article without knowing the modules or scores given by reviewer 1 and 2. If the score 
assigned by reviewer 3 was discordant with scores given by the first two reviewers, the 
article entered a second adjudication phase, where reviewers 1, 2 and 3 evaluated the 
article and reassessed the discrepant score until a final consensus score was assigned to 
the article. 

 

2.3.4 Step 4: Data visualisation 
The final experimental outcome and quality scores for each article were entered into the 
R2 TAR platform and a single appraisal score was calculated by multiplying the 
discussed experimental outcome and the quality scores. The final scores ranged from -9 
to +9 creating a gradient indicative of the importance of each study. POC scores across 
each of the 16 entities were averaged and interactive heatmaps were created to visualize 
the data were made on the TAR portal of the R2 platform. This allows users to view and 
read the curated articles, the number of articles, average appraisal score for each module 
in each malignancy for overall replication stress as well as specific targets included in 
the study. All the summarised evidence, scores and PubMed links can be found by 
clicking each individual tile within the heatmap on the R2 portal.  

[ https://hgserver1.amc.nl/cgi-bin/r2/main.cgi?option=imi2_targetmap_v1 ] 

 

This chapter provided a comprehensive overview of the experimental procedures and 
the analysis performed in both the studies. By providing this overview, we have ensured 
the reproducibility and reliability of our research. These details of the methodology can 
serve as a foundation for subsequent analysis and interpretation of the results obtained 
in both these studies. 

 

  

https://hgserver1.amc.nl/cgi-bin/r2/main.cgi?option=imi2_targetmap_v1
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3 RESULTS 
 
3.1 Results based on the molecular characterization and multi-

omic analysis of Patient-Derived Xenograft (PDX) models 
from high-risk pediatric cancer 

 

In this chapter, I focus on the key findings and outcomes of the ITCC-P4 PDX molecular 
profiling. The resulting manuscript draft will be submitted for peer review this year. Data 
collection, processing and analysis were a joint effort between me and a postdoctoral 
researcher Dr. Aniello Federico working in Prof. Dr. Marcel Kool’s group at the KiTZ, 
Heidelberg, Germany. The contributions of the co-authors and collaborators involved 
are indicated in the Material and Methods chapter of this thesis. The results showed that 
this cohort (n=251 PDX models) was able to fully recapitulate a diverse range of tumor 
types and molecular lesions important to pediatric cancer research. 

 

3.1.1 ITCC-P4 PDX model cohort generation and characterization 
The ITCC-P4 pediatric cohort consists of 401 total PDX models established from 2017-
2022. In this study we focused on 251 / 401 (62.5%) PDX models that have been 
comprehensively characterized during this period (Figure 11). Patient ages in the study 
cohort range from 1.2 months to 20 years, with a median age of 9.1 years. Fresh patient 
samples were obtained after surgery, and brain tumors were injected directly into the 
brain (orthotopically), while non-brain tumors were transplanted into the subcutaneous 
tissue (either the flank or the fat pad) of immunodeficient mice (NSG). The pipeline of 
PDX collection, transplantation and establishment is described in the Methods section 
(Chapter 2.1.2, Figure 9).  

 
 

Figure 11: Schematic illustration of ITCC-P4 PDX model establishment 
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Schematic illustration of the establishment and characterization workflow of the ITCC-P4 PDX 
models. The normal blood from the patient was sequenced along with the primary patient tumor 
and the established PDX model (P2). Multi-omics profiling was performed on these sample types. 

 

  
 

 

Figure 12: ITCC-P4 PDX model generation and subgroup classification 

A.) ITCC-P4 PDX cohort overview representing main pediatric solid tumor categories, disease 
states, tumor site, germline availability and tumor entitles. B). DNA-methylation based subgroup 
annotation of the ITCC-P4 entities highlighting number of entities tumor subgroups identified 
across per main tumor category (CNS, Brain, other). 

 

B. 

A. 
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The cohort contained balanced representation of models derived from relapsed tumors 
(119/251; 47.4%), primary/diagnostic tumors (115/251: 45.41 %) or tumor progression 
(17/251; 6.8%). These PDXs have been generated from different sites, primary (141/251; 
56.5%), metastatic site (76/251; 6.8%) or site undefined/unknown (34/251, 13.5%). 
Additionally, we established PDX models (36/251) originating from serially collected 
samples of the same 16 patients referred to as “Serial PDX models”. This sub-cohort is 
comprised of models derived from matching diagnostic samples and samples generated 
from one or multiple relapses (n=6); primary and one or multiple metastasis (n=3); a 
collection of models from multiple recurrences (n=2) or metastatic events (n=1). Patients 
could be grouped by age ranging from: 5-15 years (79/251; 31.4%), 0-5 years (54/251; 
21.5%), greater than 15 years (48/251; 19.1%) and a group with age data unavailable 
(70/251; 27.8%). Classifying the gender of the patients, we saw a predominance of males 
(139/251; 55.3%) over females (104/251; 41.4%) (Figure 13A). 

The PDX cohort represented a diverse range of pediatric tumor models encompassing 
both CNS (71/251; 28.3%) and non-CNS (180/251: 71.7%) models (Figure 12B). CNS 
tumors represented several different entities - high-grade gliomas (HGG; n=28), 
medulloblastomas (MB; n=24), ependymomas (EPN; n=10), atypical teratoid rhabdoid 
tumors (ATRT; n=6), high-grade neuroepithelial tumors (HGNET; n=2) and a plexus 
tumor (PLEX; n=1). It also contains models of malignant extracranial solid tumors 
comprised of sarcomas (including osteosarcomas (OS; n=43); rhabdomyosarcomas 
(RMS; n=41); Ewing sarcomas (EWS; n=34); malignant peripheral nerve sheath tumors 
(MPNST; n=3); small blue round cell tumors with CIC alteration (SBRCT_CIC; n=5)) and 
neuroblastomas (NB; n= 28). Additionally, models generated from pediatric solid 
malignancies such as hepatoblastomas (HB; n=10); Wilms tumors (NP; n=2); 
retinoblastoma (RB; n=1) and melanoma (ML; n=1)) and liquid tumors, large cell 
lymphoma (LL; n=1) were included (Figure 12 C & 13A). 

The criteria needed to be considered “established” in our cohort was that PDX tumors 
had to be effectively grown by passing them through an initial human-to-mouse (P0) 
transplantation and subsequently into at least 2 mouse-to-mouse (P1-P2) transplantation 
passages. Established models in some cases exhibited distinct growth pattern when they 
were assessed for tumor latency and penetrance, indicating variation depending on 
tumor type. 

To have the most comprehensive understanding of the molecular characteristics in these 
models, tumor fragments obtained from these established PDX models with 
corresponding healthy patient tissue were gathered whenever available and analyzed. 
The cohort consisted of PDXs with matching human tumor characterization data 
(219/251, 87.3%) and number of PDXs with matching germline control data (161/251; 
64.1%) This thesis included molecular characterization of PDX models using DNA 
methylation profiling (234/251; 93.2%), low-coverage whole genome sequencing 
(lcWGS; n=185/251; 73.7%), high-coverage whole exome sequencing (WES 236/251; 
94%), RNA sequencing (RNAseq; 210/251; 83.7%) and Affymetrix gene expression 
profiling (45/251; 17.9%) (Figure 13B). 
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Figure 13: ITCC-P4 PDX model characterization 

A.Row 1) Clinical characterization of the PDX models based on the main cancer category, 
disease stage, patient age, and biological sex.  (A.Row 2-3) Number of PDX models generated 
for each tumor and methylation classified subgroup.  

B.) Overview of PDX sequencing data collected for the ITCC-P4 cohort including Affymetrix 
RNAseq, DNA methylation, WES and lcWGS. 

A. 

B. 
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3.1.2 Molecular subgrouping of pediatric solid tumors based on DNA 
methylation and transcriptomic analysis 

To enable uniform molecular classification of our PDX cohort, we performed DNA 
based methylation profiling. DNA methylation has emerged as a robust tool for 
classification of tumor samples, particularly CNS tumors [218] and sarcomas [232],  into 
their respective types and molecular subtypes based on the clustering of their unique 
methylation patterns.  

We assigned a predicted tumor class to each PDX and tumor case using the brain 
classifier v12.5 for Brain/CNS tumors, neuroblastomas, and retinoblastoma models. For 
sarcomas, extracranial malignant rhabdoid tumors and melanomas classification using 
the sarcoma classifier v12.2 (https://www.molecularneuropathology.org/mnp/) was 
performed. Among the tumor categories described, we observed 60/91 models that 
belonged to the predicted classed by the MNP classifier and displayed a calibrated 
classification score of ≥ 0.9 (set as the optimal cut off reference). Additionally, we 
observed 80/122 PDX methylation samples that were predicted using the sarcoma 
classifier. Hence, a total of 140/214 (65.7%) PDX methylation datasets resulted in an 
optimal classification score. To enhance the classification of our ITCC-P4 PDX cohort 
based on their methylome profiles, we employed the t-distributed stochastic neighbour 
embedding (t-SNE) approach. This analysis aimed to include tumor cases such as 
hepatoblastomas, nephroblastoma and large-cell lymphomas, which were not included 
in the current MNP methylation classifier reference cohort. Additionally, data points 
with a calibrated score lower than the cut-offs were analyzed to determine their cluster 
behavior (Figure 14A). To achieve this, we analyzed the ITCC-P4 PDX models and 
corresponding human tumor DNA methylation data collectively with external 
methylation datasets. These datasets encompassed the same tumor types within our PDX 
cohort and additional pediatric tumors (n=1214; references) classified by the World 
Health Organization (WHO) in our analysis. Using t-SNE visualization, we examined 
the top 5000 probes with the highest variability in standard deviation.  

 

A. 

https://www.molecularneuropathology.org/mnp/
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Figure 14: DNA Methylation analysis 

A.) Global methylation-based t-SNE clustering identified using the brain and sarcoma classifier. 
Highlights the distinct PDX models, human tumors and the WHO classified references cases. 
B.) Brain and CNS tumors mainly MB, EPN, HGG and AT/RT clustering into defining subgroups.                               
C.) Classification of NB, RS, EWS into their respective subgroups. Sub-clustering analysis 
confirmed positive overlap of PDX models to their corresponding patient tumor samples.  

 

B. 

C. 
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The results indicated that our ITCC-P4 cohort samples and reference samples overall 
exhibited similar methylation patterns, forming clusters and sub-clusters that 
corresponded to known molecular subtypes. Overall, the PDX samples clustered 
together with the reference samples, accurately reflecting their respective tumor types. 
Additionally, the primary patient tumors showed close proximity to their corresponding 
tumor within their specific clusters, further validating the fidelity of the PDX models 
(Figure 14A). In highly heterogenous and most abundant tumor types within our cohort, 
we performed a sub- clustering analysis including the reference tumor cases. This 
included brain tumors: medulloblastomas, ependymomas, high-grade gliomas and 
atypical-teratoid-rhabdoid tumors, where the PDX models demonstrated distinct 
aggregation patterns within stable subclusters effectively defining the respective tumor 
subtypes for each main tumor entity (Figure 14B-C). For example, the PDX models 
accurately clustered into all major molecular subgroups of medulloblastoma (Figure 
14B); wingless (MB WNT), sonic hedgehog (MB SHH), group 3 (MB G3), and group 4 
(MB G4) as described previously[233] [234]. For the ependymomas (EPN), we observed 
representation of the most aggressive subtypes: EPN-PFA, EPN-ZFTA, however, none of 
our models co-clustered within the EPN PFB and EPN YAP1 subclusters seen in the 
reference cohort. High grade glioma (HGG) models exhibited substantial heterogeneity, 
with observed classification with the DMG H3-K27 altered, DMG EGFR-altered, PXA, 
glioblastoma, GMB_MID, DHG_G34 and HGG_MYCN subgroups. For the Atypical 
teratoid/rhabdoid tumors (ATRTs), our analysis reported ATRT-MYC and ATRT-SHH 
models, but not for the ATRT-TYR subtype.  

Within the Neuroblastoma clusters, PDX models and matching tumors characterized by 
the presence or absence of MYCN amplifications tended to form two distinct subclusters 
(Figure 14B). The rhabdomyosarcoma (RMS) cluster demonstrated clear separation 
between the alveolar (RMS-ALV) and embryonal (RMS-EMB) subtypes, both of which 
were well-represented in our PDX cohort (Figure 14B). The Ewing sarcoma models were 
mainly characterized by the EWSR1-FLI fusion and co-clustered with the consensus EWS 
tumors, while those models presenting alternative EWSR1 fusions (EWSR1-FLI, EWSR1-
FEV) were scattered throughout (Figure 14B). The methylation-based subtype 
classification of these models supported the model stratification based on genomic 
alterations [224]. Although most of the matched tumor samples co-clustered with their 
respective PDX models, overall, 17 /214 (0.07%) exceptions of divergent samples could 
be observed within the neuroblastoma, rhabdomyosarcoma, and Ewing sarcoma 
subclusters (Figure 14C). In the cases of entities such as hepatoblastoma (HB), melanoma 
(ML) and large cell lymphoma (LL), a distinct separation between PDX and reference 
samples were observed. This distinct clustering behaviour could potentially be attributed 
to the presence of samples with unique molecular characteristics, variations in tumor 
cell purity or the absence of reference cases that fully capture the heterogeneity present 
within these tumor types. As a result, all the PDX models have been thoroughly 
annotated and classified based on both, their genomic landscapes and methylome 
profiles.   
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Figure 15: Epigenomic correlation assessment of each subgroup 

A.) Manhattan distance score between PDX model and refence samples based on methylation 
profiling demonstrating consistent levels of similarity between the PDX and tumor epigenetic 
profiles across cancer entities. B.) Manhattan distance scores across the various cancer 
subgroups. The scores showed high similarity overall for the PDX and corresponding tumor pairs. 

 

To assess the epigenomic correlation between the PDX models and the corresponding 
patient tumor from which they were derived, the similarity index for these pairs (n=136) 
was calculated by an industry project collaborator at the oncology department at Bayer 
(Berlin, Germany) Dr. Justyna Wierzbinska. The Manhattan distance was calculated for 
each PDX-tumor pair (Figure 15A and 15B), revealing a consistently high level of 
similarity overall (98% of PDX models having a distance of <0.1 to the corresponding 
tumor sample). This indicated that the PDX models possess the capability to accurately 
replicate the epigenetic profiles observed in the human tumors. However, certain entities 
and molecular subgroups such as RT, NB, ES, OS, sarcoma_MPNST_like, exhibited 
greater variability in the similarity values. 
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Figure 16: Analysis of PDX cohort transcriptomic profile 

Unsupervised hierarchical clustering heatmap, based on gene expression profiles derived from 
the RNA-sequencing data. ITCC-P4 PDX cohort displayed clustering of PDX models (columns) 
into their respective tumor class and subgroup entities of high-risk pediatric cancers. Samples are 
colored based on their defined molecular subgroup. The relative intensity of gene expression 
regulation is depicted in the heatmap. The listed genes, MYC, IGF2, CDK6, MYCN, PDGFRA, 
MYOD1, ALK, PAX3, OTX2 were observed to be upregulated in different subgroup types. 
(Analysis performed by Dr. Aniello Federico) 

 
Subsequently, the analysis of PDX and tumor transcriptome data was performed, with a 
specific emphasis on grouping samples according to their similarity in gene expression 
patterns. By performing unsupervised hierarchical clustering of PDX models based on 
their gene expression data (utilizing the top 1000 variable genes), we observed a 
tendency for the models to cluster together based on their respective tumor types. 
Notable the co-clustering of PDX models was predominantly influenced by the 
expression levels of tumor biomarkers such as MYCN, ALK (upregulated in 
neuroblastoma); MYOD1, FGFR1 (expressed in RS) that are known to be differentially 
deregulated in pediatric solid tumors (Figure 16). When comparing human tumor 
samples to PDX tumor samples based on differentially expressed genes we observed a 
consistent preservation of the tumor-core signature. As expected, PDXs derived from 
brain/CNS or sarcoma/other tumors indicated a significantly lower expression of gene 
signatures indicative of the lack of tumor microenvironment (immune and stromal cells). 
We observed a common set of downregulated genes in both brain and extracranial PDXs 
(“PDX_DOWN”), which exhibited enrichment in the tumor samples of our cohort. The 
enrichment levels were higher in Osteosarcoma (OS) and high-grade glioma (HGG) 
tumors, while medulloblastoma (MB) tumors showed a lower level of enrichment score. 
These findings align with previous reports [195], [235]and are consistent with tumor 

Entity
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purity scores calculated using DNA methylation and RNA-sequencing data for both PDX 
and tumor samples. 

Collectively, our findings derived from epigenetic and transcriptomic data indicate that 
the ITCC-P4 PDX models effectively represent the primary molecular features of 
pediatric malignant tumors. This includes the accurate representation of well-defined 
and clinically significant molecular subtypes, with a high degree of similarity observed 
between PDX models and corresponding human tumors. The molecular disparity 
observed between tumors and PDXs can be attributed in many cases to variations in 
cellular composition, primarily resulting from absence of human stromal and immune 
components in the PDX models. 

 

3.1.3 Genomic landscape of pediatric solid tumors 
To identify the most suitable PDX models for preclinical studies, it is crucial to have a 
comprehensive understanding of the mutation patterns associated with disease relevant 
oncogenes and tumor suppressor genes. This consideration also remains significant 
especially when considering the molecular subgroups of the patient tumors. Therefore, 
we performed a comprehensive genomic analysis of the ITCC-P4 PDX mutational 
landscape. Models were examined using whole exome (WES) (n=236), low coverage 
whole genome (WGS) (n=186), RNA sequencing data (RNA) (n=210) and if available, 
also the matching patient tumor (n=219). As matching germline controls were not 
available for 90 of the 251 PDX models for sequencing, the comprehensive calling of 
somatic variants was performed using the ‘No-control workflow” (Methods chapter, 
2.2.2) and the copy number alterations were inferred based on the methylation arrays. 
Variants with a variant allele frequency of lower than 0.1% in the population were 
excluded and cancer genes that exhibited recurrent mutations in the specific tumor types 
based on previous sequencing studies, were highlighted as potential driver genes. To 
mitigate the risk of false positive mutation calls caused by mouse DNA contamination, 
we performed sequencing read alignment against a merged human and mouse reference 
genome. Any reads which mapped to the mouse genome were subsequently excluded 
from further analysis. To prioritize a set of functional and clinically relevant driver genes 
per entity and subgroup we referred to an annotated list from the 2022 WHO 
classification [224] and a previously published precision medicine review [225]. 
Overall, we investigated the single nucleotide variants (SNVs), small insertions/deletions 
(indels), structural variations (SV), copy number variations (CNVs) and gene fusion 
events. The comprehensive report detailing annotated variants for each model is 
available on our public platform ITCC-P4 data scope in R2 (r2-itccp4. amc.nl). 

The total number of somatic mutations, known as the tumor mutational burden (TMB) 
[236] was measured in the PDX models and the patient tumor samples. We did not 
observe a significant difference between PDXs and human tumors. However, comparing 
TMB across disease states, a slight increase in mutations per mega base (Mb) was 
detected in human distal metastasis compared to the primary tumors, relapse tumors and 
those tumors under treatment (Figure 17A-B). 
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Figure 17: Tumor mutational burden across PDX and tumor 

A.) Tumor mutational burden (TMB) across PDX and tumor models showing comparable coding 
mutations in both the sample types. B.) TMB comparison across disease states showing 
metastasis tumors having a slightly higher mutation load as compared to primary, relapse or 
models under treatment. 

 

When comparing the various subgroups, we observed that majority of the cancer entities 
displayed a comparable tumor mutational burden between PDXs and tumors. However, 
Osteosarcomas known for their highly unstable genome, displayed a higher difference 
in the TMB between the tumor and PDX pairs. This was followed by Neuroblastoma, 
rhabdomyosarcoma and high-grade glioma models (Figure 18A). The neuroblastoma 
MYCN amplified tumors had higher TMB coding mutations per mega base. On further 
looking into the TMB of different subgroups of the entities, we observed that the high-
grade glioma subgroups DMG_EGFR, DMG_K27 and pedHGG_A showed a higher 
variance in TMB between PDX and tumor (Figure 18B).  

To prioritize clinically relevant and functionally targetable variants, I curated a shorter 
list of entity-specific driver genes, based on their involvement in tumorigenesis from the 
2022 WHO classification[224] and a review by Jones et al.[237]. The following 
observations are based on these results and a full report of the annotated variants for 
each model is available on our public platform ITCC-P4 data scope in R2.  

(https://hgserver3.amc.nl/cgi-bin/r2/main.cgi?dscope=ITCCP4&option=about_dscope) 
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Figure 18: Tumor mutational burden across cancer types and subypes 

A.) log2 scaled TMB (mutations per megabase) in the Y-axis across the cancer entities (X-axis). 
Although the TMB was comparable between tumor and their subgroups, the highest mean PDX 
TMB was identified in neuroblastoma and rhabdomyosarcoma. B.)log2 scaled TMB (mutations 
per megabase) in the Y-axis across the cancer subgroups. The brain tumor subgroups DMG_K27 
and pedHGG_A showed highest TMB across the subgroups. 
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Central nervous system (CNS) tumor and rhabdoid tumor PDX models  

 

The mutational landscape of the PDX model cohort along with the patient tumor samples 
were analysed and key oncogenic drivers were detected across the different cancer 
entities. The PDX models derived from pediatric brain and central nervous system 
malignancies exhibited frequent recurrent mutations that corresponded to their specific 
tumor type and the predicted molecular subtypes as determined by DNA methylation 
profiling.  

Among the ependymoma (EPN) PDXs (n=10), we observed frequent structural alterations 
and/or fusion events in the following genes: RELA (2/10 models), C11orf95/ZFTA (5/10 
models)[238], CXorf67/EHZIP (3/10 models), CDKN2A/B (2/10 models) and YAP1 (3/10 
models). All models with these mutations were classified as supratentorial ependymoma 
with ZFTA-RELA fusions. PDX models BCOR indel and focal loss (3/10 models) were 
detected in addition to models with MAMLD1 focal loss (3/10 models) in two 
ependymoma subtypes present in our cohort, the supratentorial ZFTA-RELA fused and 
posterior fossa A (PFA)[239]. Copy number variations analysis revealed several cases 
with characteristic CNVs associated with high-risk ependymomas such as chromosome 
1q gain (5/10 models), chr6p loss (5/10 models, exclusive for PFA ependymomas[240]), 
chr18p loss (4/10 models) and chr22q loss (4/10 models)[241] (Figure 19A) 
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Figure 19: Mutational landscape of Ependymoma and Medulloblastoma 

A.) Mutational landscape of Ependymomas showed classical ZFTA-RELA fusions, RELA CNV 
alterations and ZFTA mutations in the EPN_ZFTA subgroup. Copy number loss in chr22a, 6q 
and 9q were observed mostly in the EPN_PFA subgroup and gains in chr1q, chr 12 and chr 14. 
B.) Mutational landscape of MB across various subgroups. MB-SHH samples showed somatic 
TP53 alterations as SNV, indel or copy number losses. One sample displayed a germline TP53 
in the PDX and tumor. Two samples showed isochromosome17. The MB-WNT samples all had 
CTNNB1 SNVs, some samples showed losses in TP53, KDM6A, PPMD1, chr16q, chr6, chr9. 
MB-G3 samples displayed alterations in MYC, TERT, SMARCD2, isochromosome17, gains in chr 
7 and losses in chr11 and chr16. MB-G4 samples displayed alterations in MYC, SUFU, PTEN, 
TP53, DDX3X. Loss of chr7 and gains of chr 11, chr 10q, chr 16q and chr10 were observed. 

 

The mutational landscape observed in the 24 medulloblastoma (MB) models (Figure 
19B) exhibited a high degree of heterogeneity, revealing subgroup specific variants. MYC 
amplification was predominantly observed in MB group 3 (MB G3) models, with 5 out 
of 7 MB models carrying this amplification. Conversely, 5 out of 7 MB SHH subgroup 
models displayed the prototypic TP53 mutations, including one germline TP53 mutation 
for the sample with available germline control. Other gene variants specific to MB SHH 
subgroup included GLI2 (3/24 models), PTCH1 (1/24) and SMO (1/24 models). KDM6A 
loss was only detected in MB group 3/4 which aligns with previous findings[242], [243]. 
Several recurrent copy number variations associated with medulloblastoma were also 
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identified, such as isochromosome 17 (9/24 models), chromosome 7 gain (6/24 models) 
and chr 8 gain (4/24 models) exclusively in MB G3/4 models as well as chromosome 6 
loss (2/24 models) in MB WNT cases and losses in chromosome 11 (5/24 models), 10q 
(5/24 models) and 16q (4/24 models).  

 

  
Figure 20: Mutational landscape of High-grade glioma, HGNET-PLEX and AT/RT 

A.) HGG samples displayed characteristic somatic SNV alterations in TP53, ATRX, MYCN, 
PIK3CA, MYB, CDKN2A. The most prominent chromosomal gains were chr7, chr 1q and chr2. 
Losses of chr 10q, chr 6q, chr10, chr 14q, chr 17p, chr 6 were observed.  
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B.) HGNET tumors showed mutations in TP53, APC and BCOR. Along with loss of chr 10, chr 
11, chr 18, chr 9 and gain of chr 7. The PLEX sample had a TP53 mutation in the PDX model 
and not in the patient tumor and concurrent chromosomal losses in chr 22q, chr16q and gain of 
chr 12, chr 1 and chr 2 was observed.     

C.) AT/RT subgroups all showed defining SMARCB1 mutations and loss in chr 16 and chr22. 

 

In our cohort, pediatric high-grade glioma (HGG) encompassed a heterogenous 
assortment of tumors including diffuse midline gliomas (n=10), H3-/IDH- wildtype 
gliomas (n=8), IDH-wild type glioblastoma (n=5), pleomorphic xanthoastrocytoma (n=2) 
and G34-mutant hemispheric glioma (n=1). The most frequently mutated gene within 
the HGG models was TP53 (16/28), predominantly found in DMG H3 K27-altered 
models.  Additionally, mutations were identified in ATRX (8/28 models), H3F3A (7/28 
models, commonly observed in DMG H3 K27-altered PDX models), MYC (7/28 models, 
exclusive to H3-/IDH-wildtype gliomas) and CDKN2A (6/28 models). Recurrent 
mutations affecting signalling pathway effectors such as BRAF, NRAS, PIK3CA, PTEN, 
EGFR and MYB, as well as structural variations involving (CNV) level, the majority of 
DMG models exhibited whole chromosome 7 gain (10/28 models) and chromosome 1q 
gain (8/28 models), while losses of chromosome 6q (7/28 models) and 10q (7/28 models) 
were also observed in other glioma subgroups[116], [244], [245] Figure 20A). 

The brain tumor cohort included two CNS embryonal tumors known as high-grade 
neuroepithelial tumors (HGNETs) Based on their DNA methylation classification, one of 
these tumors (EP0077) was annotated as HGNET with BCOR exon 15 internal tandem 
duplication, which was confirmed by the identification of BCOR structural variation. 
Additionally, an APC germline variant was identified in this PDX model and in the 
matching patient tumor. The second tumor (HG0080) was classified as HGNET PLAG1-
fused based on methylation data, although no fusion events involving the PLAG1 gene 
were observed possibly due to low tumor purity. Instead, PDX HG0080 and matching 
tumor exhibited structural rearrangements affecting NTRK3 and PIK3R1, along with a 
TP53 mutation. The XT0556 PDX model originated from a patient diagnosed with 
choroid plexus carcinoma (CPC) associated with Li-Fraumeni syndrome. The molecular 
characterization of this PDX model confirmed its classification as CPC based on the 
methylation profile analysis and the detection of TP53 mutation. Typical chromosomal 
alterations, including chromosome 1 gain and multiple chromosomal imbalances were 
also observed in this model (Figure 20B).  

PDX models derived from CNS atypical teratoid/rhabdoid tumors (AT/RTs, n=6) and 
extracranial malignant rhabdoid tumors (eMRTs, n=3) showed few genetic alterations, 
primarily involving the SMARCB1 gene, SNV alterations in 2/9 models, indel mutations 
in 2/9 models, along with copy number losses in 2/9 models. Additionally, we also 
observed chromosome 22q deletions in a subset of cases 2/9, which aligns with the 
expected genetic profiles of these tumor types (Figure 20C). 
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Neuroblastoma PDX models 

Neuroblastoma (NB), one of the most common solid tumors in children [246], was well 
represented in this ITCC-P4 study, featuring a diverse group of PDX models consisting 
of 28 genetically heterogenous samples[247]. The majority of the analyzed PDXs (17/28 
models) exhibited MYCN alterations, most commonly observed as a focal gene 
amplification. Furthermore, frequent neuroblastoma-associated driver mutations 
affecting ALK, ATRX, CDKN2A/B and DDX1 [248][249] were also identified with 11, 
10, 9 and 6 out of the 28 models respectively. Notably, BRAF, TP53 and NF1 mutations 
were present in certain NB PDXs. The copy number variation analysis revealed a 
significant number of cytogenic aberrations. Particularly in MYCN-amplified NB models, 
the most prevalent CNVs included chromosome 17q gain (15/28 models), chromosome 
1p loss (14/28 models)[250] and chromosome 3p loss (8/28 models). Additionally, CNVs 
associated with aggressive disease and poor prognosis[166], [167], such as chromosome 
1q gain (7/28 models) and 11q gain (9/28 models) were also observed (Figure 21). 

 

 
Figure 21: Mutational landscape of Neuroblastoma 

Neuroblastoma samples represented mainly MYCN driven alterations followed by ALK, ATRX 
and loss of CDKN2A, CKDN2B in most samples. Mutations in BRAF, DDX1, MYC, NF1 TP53 
were also observed. Chromosomal gain of chr1q was most predominant followed by gain of 
chr7, chr 14q loss, 10q gains, chr18 gains. 
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STS/Bone sarcoma PDX models 

Pediatric sarcomas exhibit a diverse and intricate mutational landscape that varies across 
different sarcoma types. Our cohort of patient-derived xenograft (PDX) models 
accurately recapitulates the specific mutations including structural variations and gene 
fusions that are known to drive tumorigenesis in various sarcoma types and subtypes. 

Among the large group of rhabdomyosarcomas (RS) PDX models (n=41), a clear 
distinction was observed. In cases with available RNA-seq data, 19/41 models exhibited 
the classical PAX3-FOXO1 fusion, a key alteration associated with the alveolar subgroup. 
This subgroup classification was also confirmed by the DNA-methylation classification. 
17/41 PDX models harboured mutations in TP53, 10/41 models showed a CDKN2A 
deletion and 4/41 showed an NRAS mutation, which were more commonly linked to 
embryonal rhabdomyosarcoma. 5/41 models showed an MYOD1 fusion and an indel 
alteration in one model. Our findings also revealed a high recurrence of BCOR mutations 
in 8/41 models, NCOA2 gain in 9/41 models CDK4 gain and SV alterations in 10/41 
models and NF1 structural rearrangements (Figure 22). The CNV profiles of these models 
showed a high prevalence of unbalanced CNVs, with numerous gains and losses 
affecting entire chromosome arms. Chromosome 8 gain, associated with embryonal 
rhabdomyosarcoma was detected in 16 models, 14 of which had confirmed embryonal 
subtype identity based on DNA-methylation classification. Among the most recurrent 
CNVs, the gain of whole chromosome 2 (17/41 models), chromosome 12 gain (18/41 
models) and gain in chromosome 20 (18/41 models), as well as gain of 1q arm (10/41 
models) and loss of entire chromosome 16 (8/41 models) was observed but did not show 
sub-type specific association. 
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Figure 22: Mutational landscape of Rhabdomyosarcoma 

The Rhabdomyosarcoma samples showed distinct classical alterations based on their subgroups 
RMS alveolar subgroup, contained the PAX3-FOXO1 signature gene fusion, for all the samples 
that had RNA-sequencing information. For samples that didn’t have this RNA-seq performed is 
marked as “no data”. Mutations in TP53, NCOA2, CDK4 along with chromosomal gain of chr 
20, chr 2 and chr 1q was observed. In the RMS embryonal subgroup, the main drivers were 
TP53, NCOA2, BCOR, CDKN2A, NF1, FGFR4, VGLL2, MYOD1, NRAS and NCOA1. RMS_EMB 
also displayed chromosomal gains in chr 20, chr2, chr 8m chr 12 and chr1q and loss in chr16. 

 

Ewing sarcoma (EWS) PDX models (n=34) revealed the characteristic, disease defining 
fusion of the EWSR1- and FLI1 genes observed in 67.7% (23 of 34 PDX) of the models. 
Additionally, rarer fusions involving EWSR1 with genes such as ERG (4/34 models) and 
FEV (1/34 models) were observed. Mutations affecting genes associated with chromatin 
remodeling and DNA repair, such as STAG2, ETS1, and TP53, have been detected in a 
subset of EWS models. Consistent with findings in other pediatric tumor types, CDKN2A 
loss was identified in 12 EWS PDXs. Over 60% of the established EWS models exhibited 
the characteristic gain of the entire chromosome 8, while other known copy number 
variations (CNVs) associated with EWS, such as gain of chromosome 1q, gain of 
chromosome 12, and loss of chromosome 16q, were frequently observed within our 
cohort (Figure 23). 

 
Figure 23: Mutational landscape of Ewing sarcoma 

Ewing sarcoma PDX and tumor models were highly concurrent in their genomic profiles as they 
showed the classic translocation resulting fusion EWSR1-FLI1 fusion in 67.7% of the samples. 
Samples that did not have this fusion either displayed EWSR1-ERG or EWSRI-FEV fusions. Other 
commonly occurring alterations were observed in STAG2, TP53, CDKN2A, NF2, ETS1 and gain 
of chr8, chr 1q, chr 7 and loss of chr 10. 
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The osteosarcoma (OS) models (n=43) demonstrated a comprehensive representation of 
the genetic complexity observed in human tumors, specifically characterized by the 
detection of numerous somatic variants, mainly CNVs, due their highly unstable 
genomes. Among the analyzed OS PDX subcohort (n=30/43), mutations in the tumor 
suppressor genes TP53 and RB1 were frequently observed, with TP53 mutations 
detected in 30/43 models and RB1 mutations detected in 25/43 models. Additionally, 
ATRX loss (10/43 models), MYC gain (11/43 models), IGF1R structural variations/copy 
number variations (11/43 models), NF1 loss/structural variations (8/43 models), and 
CDKN2A loss/structural variations (10/43 models) were also observed in varying 
frequencies within the OS PDX models. The copy number variation (CNV) landscape of 
these models displayed a high degree of complexity, with each case exhibiting a unique 
pattern of CNV alterations. Notably, the most recurrent aberrations included gain of 
chromosome 8q and loss of chromosome 10 either full arm or single arm observed in 
multiple models (19/43 models) (Figure 24). 

 

 
Figure 24: Mutational landscape of Osteosarcoma 

Osteosarcoma is known for its highly unstable genome. Genomic alterations in TP53, RB1 were 
commonly seen in majority of the samples, followed by MYC gains and ATRX losses. Mutations 
in IGF1R, NF1, FGFR1, CDKN2A losses, FOS gains and fusions. One sample also had a germline 
BRCA2 mutation. Although the copy number profiles showed high chromosomal instability, with 
loss of chr10 and chrX commonly observed. 
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Additionally, PDX models were generated that represent rare sarcoma entities, including 
malignant peripheral nerve sheath tumors (MPNSTs), clear cell sarcoma of the kidney 
(CCSK), synovial sarcomas (SS), small-blue round-cell tumors (SBRTs), and 
undifferentiated sarcomas. These models exhibited similar alterations commonly 
observed in other sarcomas, such as CKDN2A loss, MYC gain, NF1 loss, TP53 mutations, 
and BCOR fusion events. Furthermore, we observed an enrichment of CIC 
rearrangements in SBRT models, while SS cases exhibited mutations affecting SSX family 
member genes. The most recurrent chromosome aberrations in MPNST PDXs included 
chr7 and chr8 gain, as well as losses in chr9p and 17p (Figure 25). 

 
Figure 25: Mutational landscape of additional SARC tumors 

A smaller group of SARC tumors consisted of malignant peripheral nerve sheath tumor, synovial 
sarcoma, small-blue round-cell tumors and undifferentiated sarcoma. They harbored mutations 
in CDKN2A losses, CIC rearrangements, NF1 mutations, SUZ12 and SSX2 mutations. 

 
Figure 26: Mutational landscape of other tumors 

Other tumors including Hepatoblastoma, melanoma, large cell lymphoma displayed TP53, APC, 
CTNNB1, NRAS mutations and gains in chr20, chr2, chr18, chr1q, chr17 and loss in chr18. 
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Other PDX models 

Finally, we also established PDX models encompassing a diverse range of extracranial 
and rare pediatric tumors. The hepatoblastoma (HB) PDXs (n=10) did not exhibit any 
recurrent driver gene alterations, but frequently displayed chromosome 1q and whole 
chromosome 20 gain, as well as chromosome 18 loss. The XT0676 model, derived from 
a pediatric melanoma (MEL) tumor, harbored TP53 and NRAS mutations and exhibited 
chromosome 1q gain. Notably, chromosome 1q amplification was also observed in the 
RB0665 model (retinoblastoma, RB) and two out of three nephroblastoma (NP) PDX 
models, highlighting its recurrence among our PDX cohort. Additionally, the NP models 
displayed chromosome 5 and 7 gains in multiple cases. Lastly, the XT0681 model 
represented a large cell lymphoma (LL) case, characterized by TP53 mutation, ALK 
fusion, chromosome 17q gain, and chromosome 11q loss (Figure 26). 

 

 

 

3.1.4 Copy number landscape of ITCC-P4 PDX models 
 

We utilized the tool Sequenza [220], to investigate the overall copy number landscape 
of the study cohort (Figure 27), aiming to identify significant chromosomal abnormalities 
across various cancer entities. Within the ependymoma models, classical alterations 
were observed, including gains of chromosome 1q and losses of chromosome 22q, 
chromosome 6q, and chromosome 16q.  Medulloblastoma models exhibited varying 
alterations, with a notable presence of the defining isodicentric chromosome 17q [251], 
[252]. Additionally, losses in chromosomes 10 and 11 were also observed. High-grade 
glioma models displayed gains and amplifications in chromosome 7 and 19q, while 
experiencing losses in chromosome 6q and chromosome 10q [253]. Neuroblastoma 
models were characterized by gains in 1q, 7, and 17q. Rhabdomyosarcomas frequently 
demonstrated chromosomal gains in chromosome 2, chromosome 8, and chromosome 
12. The majority of Ewing sarcomas exhibited the common translocation resulting in the 
fusion of EWSR1 with FLI1, while less frequent translocations involved other partner 
genes such as FEV, ERG and ETV1. Chromosomal instability is a distinctive characteristic 
of osteosarcoma[182] with multiple gains and losses leading to unstable genomes, this 
was observed within our models. Notably, there were losses of chromosome 10 and 13, 
along with defined gains in chromosome 8q and chromosome 17q [180], [183]. Finally, 
hepatoblastoma models displayed gains in chromosome 2 and chromosome 8, 
alongside losses in chromosome 4 and 16.  

These copy number alterations identified within the ITCC-P4 pediatric cohort can 
function as prognostic indicators and have the potential to be linked to aggressive tumor 
behaviour, increased chances of metastasis, or resistance to personalized treatments. 
Hence enabling PDX model selection for further clinical studies.  
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Figure 27: Copy number landscape of ITCC-P4 PDX cohort (generated on IGV) 

Sequenza and ichorCNA results were both visualised on IGV. This overview of the copy number 
landscape generated from the Sequenza output, shows the overview of the ITCC-P4 PDX profiles 
grouped per tumor type. The blue colour defined chromosome losses and red colour signified 
amplifications. Ependymoma samples showed losses in chr 8, medulloblastoma samples 
displayed the distinct isodicentric chromosome 17q and amplification in chr 7. High grade 
glioma PDX showed high amplification of chromosome 7, deletions in chromosome 9, 10. 
Neuroblastoma samples exhibited recurrent alterations of chr 1p, chr3p and chr11q deletion. 
Gains in chr1q, chr 2p, chr 7 and chr17q. Rhabdomyosarcoma PDX models displayed gains in 
chr 2, chr8, chr12 and chr20 and losses in chr 9, chr 10. Ewing sarcoma samples displayed the 
classical EWSR1-FLI1 fusion causes by translocation of chr 22 and chr 11. Osteosarcoma samples 
displayed a highly unstable genome with chromothripsis occurring in majority of the samples. 
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3.1.5 PDX model fidelity compared to matching patient tumor 
 

Tumor purity refers to the proportion of cancer cells in a tumor sample compared to 
non-cancerous cells[254], such as stromal or immune cells within the tumor 
microenvironment. As tumor purity decreases, there is a reduction in the proportion of 
reads carrying somatic mutations, resulting in a diminished signal that makes it more 
challenging to differentiate true somatic mutations from sequencing errors[255]. 
Therefore, to eliminate false positives a tool called ESTIMATE [229] was run on the 
available RNA sequencing data.  

The ESTIMATE scores, ranging from -6000 to +6000, inversely correlated with tumor 
purity, where lower scores indicated higher purity[256]. After converting these scores to 
percentage values for more accurate estimation, we observed that PDX models 
consistently exhibited higher tumor purity, as expected (Figure 28A). The growth of the 
PDX tumor in mice leads to the out competition of normal non-cancerous cells, resulting 
in a higher proportion of cancer cells within the PDX sample. Consequently, the tumor 
purity is increased compared to the original patient tumor sample. Upon analysing PDX 
models within their different subgroups, we identified a range of purity percentages, with 
HGNET, melanomas, MB_SHH, and Neuroblastoma displaying the highest median 
purity overall. This indicated lower stromal and immune cell infiltration into the tumor 
tissue (Figure 28B). 

 
Figure 28: Tumor cell purity between PDX and tumors 

A.) Tumor cell purity based on ESTIMATE scores applied to available RNAseq data, showed a 
lower overall ESTIMATE purity score for the PDX models (blue dots) compared to the patient 
tumor (red dots). This signifies higher tumor purity of the PDX models compared to the original 
tumor across main entities.  B.) Overview of ESTIMATE scores across different cancer subgroups. 

 

To account for the absence of RNA sequencing data from some samples, the tumor cell 
fraction (TCF) scores between Sequenza and CNVkit were compared to identify the most 
accurate tool to quantify TCF across PDX models and patient tumors. On comparing the 
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results and using 0.4 purity as a threshold, although both tools calculated a TCF of 1 for 
most PDX models, the Sequenza TCF scores for patient tumors exhibited a lower overall 
score, with a higher number of samples scoring below 0.4 TCF. In contrast, the CNVkit 
scores showed higher overall TCF values and less than 15 samples (30%) displaying 
values below 0.4 TCF. The higher TCF values calculated by CNVkit provided 
confirmation of its greater accuracy, thereby validating its use to correct variant allele 
frequency (VAF) scores for tumor purity (Figure 29A). 

 

 
 

 

Figure 29: Tumor cell fraction comparisons 

A.) TCF values generated from Sequeza and CNVkit to assess accuracy of the tool across patient 
tumor and PDX models. TCF values of the PDX models using both tools were 1, signifying high 
purity of the PDX models as expected. However, using 0.4 as an arbitrary purity cutoff, the tumor 
scores from Sequenza had higher number of sampels below the cut off compared to CNVkit. 
Majority of the tumor TCF values from CNVkit were >0.4 and hence used for analysis. B) TCF 
values CNVkit divided across subgroups showing PDX score (maroon) had a high value of 1, 
while the tumor scores ranged from 0.25-1. C.) Difference in PDX and tumor TCF corrected VAF 
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score was termed as Delta VAF. The main driver and frequently mutated genes per each main 
entity was identified to identity degree of clonal discordance between PDX and tumor. 

To assess the molecular fidelity of the PDX models compared to the patient tumor 
samples, we used TCF values to correct the somatic SNV VAF scores for all the samples 
with controls. The corrected and scaled CNVkit TCF scores were analyzed per subgroup 
and as expected the PDX TCF values for all the major entities were 1 (Figure 29 B). The 
difference in the TCF corrected VAF scores of the PDX models from the TCF corrected 
VAF scores of the patient tumor samples, enabled us to observe various degrees of clonal 
discordance between the pairs. This change in PDX and tumor VAF “delta-VAF” was 
used as a metric to identify models with overall higher mutually exclusive somatic SNVs 
in PDX models compared to patient tumor, across the 16 most frequently mutated driver 
genes and across different subgroups (Figure 29C).  
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Figure 30: Change in PDX and tumor variant allele frequency (delta-VAF) 

(left) DeltaVAF scores representing change in the TCF corrected PDX and tumor VAF scores was 
calculated for the most frequently mutated driver genes across main tumor entity. (right) TCF 
values for each frequently altered gene against PDX-tumor sample pairs, to identity exclusive 
somatic mutations in PDX or patient tumors, identifying high concordance or unique SNVs. 

A.) High-grade glioma showed frequent somatic alterations BRAF, TP53, ATRX, PIK3CA, H3F3A 
and PDGFRA. (right) PDGFRA was observed exclusively in the Tumor sample of one sample 
and not in the PDX, while the other genes showed good concordance in PDX and tumors. 

B.) Neuroblastoma showed frequent somatic alterations BRAF, ATRX, SMARCB1, NTRK3, ALK 
and TP53. (right)BRAF and SMARCB1 were observed exclusively in the Tumor sample of one 
sample and not in the PDX, while the other genes showed good concordance in PDX and tumors.                      

C.) Rhabdomyosarcoma showed frequent somatic alterations BRAF, EWSR1, PIK3CA, MET, ALK, 
CDKN2A, FGFR4, RB1 and TP53. (right) Mutually exclusive SNVs present in the tumor were 
observed in TP53, PIK3CA and CDKN2A for some samples, while the other genes showed good 
concordance in PDX and tumors. 

D.) Osteosarcoma showed frequent somatic alterations BRAF, PIKCR1, PIK3CA, SMARCB4, 
RB1, ATRX and TP53.C(right) SMARCA4 and PIK3CA showed exclusive mutations in the PDX 
models while the other variants had good correlation with the tumor samples. 

 

We then specifically focused on somatic SNV mutations found to be most frequently 
altered in our cohort and reporting any changes in the allele frequencies of these variants 
between tumor and matched PDX samples. The most frequently mutated driver genes 
for those entities with a larger sub-cohort size namely high-grade glioma, 
neuroblastoma, rhabdomyosarcoma, osteosarcoma was analysed. The delta-VAF scores 
for these variants indicated that, in most cases, shared somatic mutations also presented 
low changes in PDX/tumor ratios (delta-VAF scores ranging from -0.2 and 0.2). 
Alternatively, we identified distinct rises in variant allele frequencies within tumors 
(denoted as negative delta-VAF) or in the xenografts (indicated by positive delta-VAFs). 
Within the high-grade gliomas, as expected PDGFRA, H3F3A, PIK3CA, ATRX, TP53 and 
BRAF genes were most recurrent[257]. TP53 and BRAF PDX VAFs showed good 
comparison to their corresponding tumors. Conversely, PDGFRA mutation was solely 
observed within the human tumors, with no presence detected in the PDXs (Figure 30A). 
Neuroblastoma and Rhabdomyosarcoma showed a high overlap in variants between the 
PDX and tumors. However, BRAF and SMARCB1 were observed to be exclusively 
expressed in the tumor models in the NB models (Figure 30B). Exceptions of mutually 
exclusive detections involving TP53, PIK3CA and CDKN2A in the patient tumor (Figure 
30C). Significant changes in mutation frequencies favouring the PDX models were also 
observed in osteosarcoma models involving SMARCA4 and PIK3CA SNVs (Figure 30D). 

To investigate the somatic sub-clonal SNV events between PDX models and patient 
tumor samples, the TCF corrected variant allele frequency for those samples with 
germline controls was analysed further. Within the major entity groups, the VAF scores 
were calculated per sample to identify interesting subclones and to see how well the 
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PDX corelated with the respective tumor. For the brain tumors (Figure 31), the high-
grade glioma models, we observed overlapping SNVs in 5/8 samples signifying good 
overall correlation between PDX models and tumor. As expected, we observed samples 
with TP53, ATRX, BRAF, H3F3A, TERT, PDGFRA and PIK3CA somatic SNV mutations. 
In sample HG0230 the shared PICK3A has a VAF score of 0.9 in the PDX while the 
tumor displays a VAF score of 0.8. Sample HG0349 shows an interesting TP53 
nonsynonymous mutation with a VAF of 1 in the PDX but 0.11 in the tumor sample, the 
shared frameshift-deletion ARTX mutation in the PDX and tumor sample both showed a 
VAF of 0.5. However, the stop-gain ATRX mutation in sample HG0354 although shared 
between the PDX and tumor, had a VAF of 1 in the PDX model, while only 0.2 in the 
tumor sample. Hence, this subclonal selection within the PDX model would be an 
interesting targetable biomarker. HG0355 and HG0356 both showed a shared BRAF 
mutation between both their respective PDX models and tumor. HG0245 seemed to be 
a highly corelating sample with majority shared SNVs including MYCN, HGF3A. Shared 
TP53 and ATRX both displayed high VAF of 1 and 0.9 respectively. However, a 
nonsynonymous PDGFRA with a VAF of 0.6 was seen to be mutually exclusive within 
the tumor sample and was not selected within the PDX model. HG0533 displayed 
several exclusive SNVs only within the PDX and only very few shared SNVs including 
TP53 and H3F3A.  
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Figure 31: VAF plot for high-grade glioma samples 

VAF score of PDX (y-axis) and tumor (x-axis) to show significant driver SNVs and identify novel 
subclones. There was an overall good correlation for the sample with hares SNVs, however some 
samples HG0349 and HG0345 showed higher TP53 and ATRX VAF scores respectively in the 
PDX models than tumor. HG0425 showed TP53 and ATRX somatic SNVs shared with a high 
VAF score in both PDX and tumor samples, however showed a distinct PDGFRA somatic SNV 
only present in the tumor sample, which seems to be lost in the PDX. 

 

Ewing sarcoma samples showed high somatic correlation. Sample ES0202 was a serial 
case containing PDX models from primary patient (PP) and relapsed patient (PR) tumor. 
On comparing the PDX and tumor, we observed a TP53 mutation exclusive to the tumor, 
in both the primary and relapsed model. Interestingly, the relapsed PDX model showed 
a TP53 mutation with VAF of 1.0 in the model, while not being present in the primary 
PDX. This subclone was seemingly selected exclusively within the relapsed patient 
sample. Sample ES0312 showed a nonsynonymous IGF1R mutation with a VAF of 0.2 
only in the tumor sample and not within the PDX model (Figure 32). 

 

 
Figure 32: VAF plot for Ewing sarcoma samples 

Ewing sarcoma samples showed overall highly concordant somatic profile of the PDX and tumor 
models. However, some cases ES0202 and ES0312 showed mutually exclusive SNVs of TP53 
and IGF1R in only the tumor samples respectively. Other shared mutations in TP53 and MSH6 
were also observed. 

TP53

CIC

IGF1R

TP53

MSH6

TP53 TP53

TP53

ES0439_TM01_PM07 ES0624_TR01_PR02

ES0222_TR01_PR08 ES0312_TP01_PP02 ES0316_TP01_PP02 ES0317_TP01_PP02 ES0427_TR01_PR08

ES0014_TP01_PP01 ES0059_TP01_PP01 ES0180_TR01_PR05 ES0202_TP01_PP05 ES0202_TR01_PR06

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tumor

PD
X

Ewingsarcoma



 

82 
  

 
Figure 33: VAF plot for Neuroblastoma samples 

Neuroblastoma samples had a high overall overlap in PDX and tumor with shared mutations 
observed in ALK, MYCN, BRCA2, NTRK3, TP53. Notably there were some interesting cases such 
as NB0179 that had no shared somatic events, that could be accounted for low sequencing 
quality. Tumor exclusive mutations could also be observed in NB0675 with BRAF SNV and 
NB0018 having s SMARCA4 in the tumor sample and not present in the PDX. 

 

Overall, the neuroblastoma samples showed high concordance between the PDX 
models and the patient tumors. With 5/13 models shows shared somatic ALK mutations. 
MYCN, ATRX, NTRK3, BRAC2 somatic SNVs were also commonly shared alterations. 
However, one sample NB0275 displayed a nonsynonymous BRAF mutation with a VAF 
score of 0.2 exclusively in the tumor (Figure 33). 
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Rhabdomyosarcoma samples exhibited a high overall concordance in the somatic SNV 
profiles between the PDX models and tumor. Frequently recurrent genes that were 
observed to be shared were FGFR4 (4/21), TP53 (3/21), ALK (2/21), CDKN2A (1/21) and 
PIK3CA (1/21) cases. RS0147, RS0178, RS0401, RS0633 showed tumor exclusive 
mutations in ALK, MYCN, STAG2, FGFR4 genes respectively. TP53 tumor somatic 
mutations were observed in two patient RS0397 and RS0432. PDX specific TP53 was 
seen in sample RS0238 which interestingly displayed extremely few somatic SNVs 
within the tumor sample (Figure 34). 

 

 
Figure 34: VAF plot for Rhabdomyosarcoma samples 

Rhabdomyosarcoma samples had frequently recurring somatic SNVs in FGFR4, TP53, ALK, 
CDKN2A, PIK3CA. Some models such as RS0147, RS0178, RS0401 and RS0633 displayed 
tumor exclusive mutations in mutations in ALK, MYCN, STAG2, FGFR4 genes respectively. 
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Finally, the Osteosarcoma samples are known to display a highly unstable genome with 
a higher mutational load[180], [258]. The samples had a high overall shared somatic 
variant between the PDX and tumor, but 14/26 models were overrepresented in having 
PDX and tumor mutually exclusive variants. Shared targetable drivers included TP53, 
ATRX, RB1, BRAF and PIK3R1. PTEN and PIK3CA were observed to be exclusively in 
the PDX models for OS0215 and OS0639 cases respectively. OS0444 showed tumor 
exclusive nonsynonymous SNVs of NTRK1, PAX3 and MYOD1 genes (Figure 35). 

 

 
Figure 35: VAF plot for Osteosarcoma samples 

Osteosarcoma samples were observed to have overall high shared somatic mutations in the PDX 
and tumor samples, with main driver genes in TP53, ATRX and RB1, usually showing a high VAF 
score in both PDX and tumor, emphasizing high clonal selection in these genes could be 
interesting for further investigation. 
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Within the cohort, majority of the samples fully recapitulated, the mutational repertoire 
of PDX models, and the key driver alterations that characterized the respective patient 
tumor. A few cases highlighted below show the range of correlation and divergence on 
the genomic and CNV level. Neuroblastoma patient NB0025, showed high convergence 
of SNVs ALK, MYCN and BRCA2, while another rhabdomyosarcoma - case RS0189 - 
showed a TP53 and ALK mutation with a VAF >0.5 highly concurrent in PDX model and 
the tumor sample (Figure 36A). Divergent cases such as RS0397 with a TP53 SNV 
exclusively present in the tumor and HG0354 showing a PDX exclusive TP53, make 
these cases specifically interesting to further investigate for preclinical drug testing.  

On assessing the chromosomal landscape of these cases, NB0025 and RS0189 PDX 
models showed a strong concordance with their respective tumor types, displaying 
amplifications in chromosome 1q, loss of chromosome 3p, isochromosome 17 in the 
neuroblastoma sample. Similarly, amplification of chromosome 1 and loss of 
chromosome 3, 10 and 17 in the rhabdomyosarcoma model. In contrast, model RS0397 
and HG0354 exhibited irregular chromosomal aberrations that were different between 
the PDX and tumor sample (Figure 36B).  

 

 
 

Figure 36: Chromosomal landscape and VAF plot concordance in PDX tumor pairs 

A.) VAF score of interesting cases with NB0025 displaying shared SNVs in ALK, MYNC, BRAF. 
RS0189 showing TP53 shared in PDX and tumor with a high VAF score of 1, while a shared ALK 
mutation VAF >0.5. Divergent cases displaying mutually exclusive TP53 somatic SNV present in 
RS0397 only in the Tumor (VAF=1), while this subclone was not selected in the PDX. However, 
another distinct example is HG0354 having an ATRX mutation (PDX VAF=1; Tumor VAF=0.75). 
B.) This clonal selection and concordance could also be observed on comparison with the 
chromosomal landscape profiles of cases with high and low concordance in PDX models and 
patient tumor sample. 
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Figure 37: ichorCNA CNV profiles and Circos plots for SV comparison 

A.) ichorCNA coverage plots to assess concordance and divergence in specific gene alterations. 
Mb0079 showed overlapping focal amplifications in MYCN and GLI2. OS0186 has focal 
amplifications in CDK4. However, NB0542 had a focal MYCN amplification only in the tumor 
and not the PDX. B) High CNV concordance in NB0277 and XT0677. C.) Circos plots depicting 
structural variant similarities in VGLL2 and SSX2 translocation between PDX and tumor models. 
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Inspecting the ichorCNA copy number plots for further samples, we observed consistent 
focal gene amplifications in MYCN and GLI2 on chromosome 2, in medulloblastoma 
MB0079 PDX and tumor sample.  In PDX-tumor pair of the osteosarcoma sample 
OS0186 a focal CDK4 amplification on chromosome 12 was observed. Sarcoma sample 
XT0677, presented CDNK2A/B and NF1 focal loss on chromosome 9 and 17 
respectively. Similarly, NB0277 showed a focal amplification of MYCN and ALK on 
chromosome 2. On the other hand, a divergent case of neuroblastoma sample NB0542 
with a focal MYCN amplification on chromosome 2 only in the tumor was observed 
(Figure 37A-B). To validate the significant variations between tumor and PDX data 
arising from diverse levels of tumor purity or fractions of malignant cells, we examined 
their transcriptomic profiles. Differentially expressed genes between human tumors and 
PDX define the lack of non-malignant/tumor microenvironment compartments in the 
xenograft models as a major difference. Further, the structural variant profiles were also 
examined to assess PDX-tumor concordance, SV characterizing sarcoma tumors, such 
as VGLL2 rearrangement and SSX2 translocation, were faithfully detected in the 
matching PDX models (Figure 37C). 
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3.1.6 Modeling of tumor progression: “Serial” PDX comparisons 
 

Within the ITCC-P4 PDX repository we also had a few models generated from tumor 
material longitudinally collected from the same patient throughout the course of the 
disease. All throughout tumor progression and in cases of relapse/recurrence/refractory, 
cancerous cells can undergo significant molecular changes from the primary patient 
tumor, leading to possible variations in tumor biology, tumor behaviour and response to 
treatment. Hence, the necessity of having preclinical PDX models obtained from 
different time points of cancer development, becomes essential to examine whether they 
faithfully mirror these transitions. Serial PDX models acquired from the same patient 
provide insights into the underlying mechanisms that driver tumor progression and 
support this study by enabling development of targeted therapeutic approaches tailored 
to specific stages of disease states. 

Within the ITCC-P4 cohort, 36 serial PDX models have been generated from 16 patients. 
The serial cases included pairs of models derived from primary tumors pre- and post-
treatment; pairs of primary and recurrent (or multiple recurrent) PDX; PDX model pairs 
representing progression under treatment and recurrence; several PDX derived from 
multiple recurrences; and PDXs obtained from multiple metastatic tumors (Figure 38). 

 
Figure 38: Serial cases comparisons 

Serial PDX model cases obtained from different disease states of the patient tumor, highlighting 
tumor progression from diagnosis to primary and relapse, along with treatment points. 

 

The multi-omics characterization for these serial cases resulted in the PDX models 
portraying unique molecular characteristics relative to their tumor specific events. A 
detailed summary of the key driver gene alterations and chromosomal events can be 
found in the oncoprints (Figure 19-26). A few interesting cases were observed after 
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analysing the DNA methylome profiles further, which suggested close overlap of 
molecular characteristics between the serial PDX models. However, in a few cases such 
as, ES0202 and OS0156, we could detect strong differences within the PDX models 
resulting in distinct molecular landscapes (Figure 39).  

 
Figure 39: DNA methylation based tSNE for Serial cases 

DNA methylation-based t-SNE analysis of serial PDX cases showing distinct differences in 
progression and disease states. Although most cases had high concordant and clustered together, 
strikingly ES0202 and OS0156 showed a higher distance between serial cases samples. 

For model ES0202, serial cases were generated from the primary and recurrent tumors 
of a patient with Ewing sarcoma (Figure 38). The molecular characterization performed 
on the primary PDX (PP) and recurrent PDX (PR) models along with their respective 
patient tumor samples (TP and TR) indicated that the two sets of PDX and patient tumor 
cases displayed distinct somatic mutational landscapes. Specifically, we observed the 
presence of the TP53 mutant p53-R175H, frequently detected in various tumor types 
and actively promotes tumorigenesis and drug resistance[259] present only within the 
relapse cases of the PDX and tumor models; PR and TR (Figure 40A). Serial case OS0156, 
generated from a diagnostic primary tumor and metastasis developed following 
treatment (tumor =TM, PDX = PM) showed the presence of a shared nonsynonymous 
TP53 mutation across all the primary and relapse disease states, but an ATRX 
nonsynonymous SNV mutation only present in the metastatic samples PM and TM 
(Figure 40B). 

Although the CNV landscape confirmed the overall PDX models truthfully recapitulating 
the patient tumor, within the “serial cases” of the same model the profiles did exhibit 
differences. It was observed that novel relevant CNV alterations were present in models 
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generated from later disease stages. ES0202_PR displayed gain of chromosome 6 and 
loss of chromosome 10, while the model OS0156_PM clearly shows a loss of 
chromosome 6q16-23 frequently observed in osteosarcoma (Figure 40C).  

 
 

 
 

Figure 40: Serial cases - VAF and copy number profile comparison 

A.) VAF plots of sample ESO202 Primary and relapse models highlighting TP53 mutant p53-
R175H presence only in the relapse models of PDX and tumor B.) Sample OS0156 primary and 
metastatic VAF plots displaying a TP53 with a high variant allele frequency score of 1, present 
only in the primary PDX model and not in the metastatic PDX model. C.) CNV landscape of the 
disease states of the two samples, showing overlap, but differences observed in ES0202_PR 
displayed gain of chromosome 6 and loss of chromosome 10 and not in the primary PDX. 
OS0156_PM clearly shows a loss of chromosome 6q16-23 frequently observed in osteosarcoma. 

  

A. 

B. 

C. 
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In addition, CDKN2A/B deletion and FLI1 loss were exclusively detected in ES0202_PR, 
(Figure 41 A) while in OS0156_PP showed a CCND2 gain which could not be detected 
in the matching metastatic PDX model (PM) (Figure 41 B). Another pair of serial PDX 
models generated from the primary tumor RS0252_PP and the subsequent recurrent 
model RS0252_PR, exhibited a CDKN2A/B focal deletion and amplification of MDM2, 
represented mutually exclusive aberrations in the early and late tumor events 
respectively (Figure 41C). 

 

 

 
Figure 41: Coverage plots of Serial cases highlighting driver gene events 

A.) Coverage plots of samples highlighting key driver gene alterations within serial cases PDX. In 
relapse PDX of sample ES0202, the FLI1 loss was present and not seen in the primary PDX. B.) 
OS0156 harboured a CCND2 gain in the primary PDX and not observed in the metastatic PDX. 
C.) RS0252 had a distinct CDKN2A/B loss in the primary while an MDM2 focal amplification 
was observed int eh relapse PDX. 

Therefore, the establishment of serial PDX models from different stages across the course 
of cancer progression in pediatric patients highlights a crucial approach for monitoring 
cancer progression, understanding resistance, assessing drug efficacy according and 
tailoring disease treatment strategies to the molecular and functional events occurring in 
such tumors.   

Furthermore, the necessity of establishing a centralized repository that consolidates 
molecularly characterized data from PDX models, patient tumors and their matching 
germline controls cannot be overstated. Such a resource would play a pivotal role in 
advancing personalized cancer treatments and facilitating future pre-clinical studies. 

  

A. 

B. 

C. 



 

92 
  

3.1.7 ITCC-P4 data scope portal: R2 platform 
 

Finally, we worked in close collaboration with Dr. Jan Koster from the Amsterdam 
Medical Center (AMC, Netherlands) to upload all available patient and PDX molecular 
data to the public ITCC-P4 datascope portal on the R2 platform (r2-itccp4. amc.nl). This 
resource is constantly growing with ongoing sequencing data and further 
characterization, to also include information on genetically engineered mouse models 
(GEMM) and organoids.  

The R2 portal offers an intuitive overview of our multi-omics analysis, allowing users to 
evaluate potential targets for further treatment. Each sample is comprehensively 
represented, hence providing a deep understanding of PDX and tumor data. The ITCC-
P4 data scope encompasses sample barcoding nomenclature, ITCC-P4 target-
actionability reviews, a PDX   explorer for data retrieval based on PDX models and 
enables users to identify samples through collected omics data. The 18 entities are 
classified into subgroups, accompanied by detailed representations of their mutational 
landscapes which can be visualized by curated oncoprints. Individual sample VAF plots 
for SNVs and Circos plots for SVs allows investigation of each individual model. 
Additionally, methylation, gene expression, and CNV analyses can be explored to 
identify potential druggable targets and alterations. The portal also incorporates 
information on available drug treatments information for samples, providing details on 
different treatment arms and facilitating model selection for preclinical studies. This 
platform is constantly growing and updated with information on newly generated PDX 
models and results based on the molecular characterization (Figure 42). 

 
Figure 42: ITCC-P4 data scope on the R2 platform 

Overview of the ITCC-P4 PDX and tumor data available on the R2 platform, further downstream 
analysis can be implemented by users to access the PDX molecular data and assess the cohort. 
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3.2 Results from the ITCC-P4 Target Actionability Review 
(TAR): Replication stress 

 

The following study has been published as “Keller KM*, Krausert S*, Gopisetty A*, et 
al. Target Actionability Review: a systematic evaluation of replication stress as a 
therapeutic target for paediatric solid malignancies, European Journal of Cancer 
(2022)[231]“. Dr. Kaylee M. Keller, Dr. Sonja Krausert, and I were the primary reviewers 
and were equally involved in data collection, analysis, result generation and manuscript 
drafting. Dr. Dan Luedtke was the independent reviewer. Here, I discuss the main results 
of the collaborative analysis performed in this study. Some content including figures, 
tables and text shown in this chapter has been directly adopted and modified from the 
above-mentioned publication. 

 

3.2.1 Systematic evaluation of replication stress literature 
In this study, all literature pertaining to targeting replication stress (published between 
2014- 2021) across 16 different solid pediatric tumor types was systematically evaluated. 
Using the curated search queries elaborated in the methods chapter (Chapter 2.3), 708 
unique articles were collected. The literature was further selected based on the presence 
of at least one PoC module in the title or abstract, as a result, 319 articles (45%) entered 
the critical appraisal stage. At this stage, 174 articles did not fulfil the inclusion criteria 
and were consecutively removed from the study (largely due to the use of micro or long 
non-coding RNA, natural compounds, or monotherapy with classical chemotherapy or 
radiotherapy). Conclusively, 145 articles were scored and summarized into 392 
evidence entries within the R2 data portal. The first adjudication process resulted in 68 
articles (47%) having at least one discrepancy with the scored PoC modules and/or the 
assigned scores for experimental quality or outcome. The articles next went onto the 
independent review process, scored by a third reviewer. 58 discrepancies remained out 
of the 392 evidence entries (18%). A second adjudication step resulted in re-scoring the 
58 publications, involving 37 different drug targets (Figure 43). Ultimately, the final 
appraisal scores were calculated and interactive heatmaps were generated for 
replication stress overall and for the 6 main targets focused on in this study. 

 
Figure 43: The TAR workflow process  
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3.2.2 Druggable targets of replication stress and biomarker scoring 
Previous TAR studies had focused on single targets, for example MDM2[260] hence 
limiting the scope of the literature under review. Conversely, replication stress is an 
extremely broad process which hence proves challenging to conform to the established 
TAR methodology. To tackle this, a two-pronged search strategy was implemented by 
involving both general and specific replication stress related keywords. 

The 6 main targets focused on in this TAR are 1.) ATM, 2.) ATR, 3.) CHK1, 4.) DNA-PK, 
5.) PARP and 6.) WEE1. These proteins are heavily involved in DNA repair pathways 
and cell cycle control (Figure 44), two well-known components of replication stress 
response (RSR). 

 

 

       
Figure 44: Overview of replication stress targets (taken from Keller et.al 2022) 

Overview of replication stress targets involved in cell cycle checkpoint and DNA damage repair. 
Alternative potential replication stress targets identified using general replication stress keywords.  

However, replication stress extends beyond these targets and to obtain literation and 
identify potential targets outside of DNA repair pathways and cell cycle control, further 
general keywords were included in the search strategy. Overall, resulting in 31 
alternative replication stress targets (Figure 45), which accounted for 127 (32%) of the 
total evidence entries across all the PoC modules. Although a detailed systematic 
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evaluation of all these alternative targets was not performed within the scope of this 
study, this general keyword approach aids in creating an extensive overview of 
replication stress targets which can be further explored on the R2 TAR platform, which 
allows users to explore data via interactive heatmaps [https://hgserver1.amc.nl/cgi-
bin/r2/ main.cgi?optionZimi2_targetmap_v1]. 

 
Figure 45: Evidence and therapeutic combination reported for TAR 

A.) Complete evidence reported for each PoC module reported in the TAR. B.) The total number 
of evidence entries per paediatric entity distributed across the different targets of interest. C.) 
Overview of therapeutic combinations reviewed, size of dots represents the number of evidence 
entries, and the colour depicts the average appraisal score for all publications for the specific 
combination. PoC, proof-of-concept; TAR, target actionability review. (taken from Keller et.al 
2022 [231]) 

Assessing replication stress for the specific and alternative identified targets, 
Neuroblastoma (NBL), Ewing sarcoma (ES), Osteosarcoma (OS), Medulloblastoma (MB) 
were most robustly represented malignancies withing our study. These entities also 
showed the highest number of evidence entries (NBL= 79, ES=71, OS=71 and MB=58), 
in addition to all PoC modules being addressed in these malignancy types, creating a 
comprehensive overview for these tumors. Despite all PoC modules being represented 
in NBL, ES, OS, MB, it is worth highlighting that some modules are represented by only 
one publication. For example, PoC module ’target/pathway activation’ in ES received a 
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negative overall appraisal score but was represented by one single publication. Overall, 
these findings are not a negative indication for targeting replication stress in ES (not 
limited to only this one instance), but highlights the paucity of data, indicative of the 
necessity for further preclinical research focused within these specific entities. Within 
this TAR, there was an underrepresentation of data that explores the fundamental biology 
of targeting replication stress, that is PoC modules of modules ‘target/pathway 
activation’, ‘predictive biomarkers’, ‘resistance’, across all tumor types, highlighting the 
direction of future potential studies (Figure 45A). 

To enhance the current state of targeting replication stress for pediatric cancer treatment, 
this TAR study also compiles existing preclinical data available for. ATM, ATR, CHK1, 
DNA-PK, PARP and WEE1. PARP was the best represented target off the specific target 
proteins, accounting for 127 (32%) of the total number of evidence entries and was also 
the only specific target to include data in all nine PoC modules (in all entities except 
AT/RT & MRT, IMT, GCT, RB and LGG) (Figure 45B). Given the abundance and 
robustness of data available for PARP, this target is perhaps the most promising, 
especially considering the data supporting PARP inhibitor combinations with classical 
chemotherapeutic agents (Figure 45C and Figure 45B). Nevertheless, it should not be 
implied that the remaining specific targets lack potential. Although represented by fewer 
evidence entries overall, ATM (n=7), ATR (n=35), CHK1 (n=50), DNA-PK (n=18), WEE1 
(n=29) remain targets of interest (Figure 45B). This TAR study defines the current 
landscape of research in targeting these proteins in pediatric tumors, with the hope to 
provide direction to future exploratory research on these targets. 

Similar to PARP, inhibitors of all other specific targets were also explored in combination 
with classical chemotherapy. Notably, CHK1 and ATR both received higher average 
appraisal scores in the ‘combinations’ module compared to PARP, suggesting great 
potential in these therapeutic approaches (Figure 45C). Additionally, ATR and CHK1 
both showed higher overall scores in medulloblastoma (Figure 46C-D). MB scored 
positively in all addressed modules for ATR (‘in vitro/in vivo sensitivity to compound’, 
‘resistance’ and ‘combinations’), although based on one article, nevertheless suggesting 
that ATR might be a particularly interesting target for MB[261]. In addition to ATR, MB 
also demonstrated high scores in all modules evaluated targeting CHK1(‘target/pathway 
activation’, ‘tumor target dependence in vitro’, ‘in vitro sensitivity to compound’ and 
‘combinations’). Noticeably, CHK1 showed overall positive scores across all included 
tumor types (Figure 47). It is pertinent to note that ES, which score negatively in modules 
‘tumor target dependence in vitro’ and ‘in vivo sensitivity to compound’, contradicted 
the positive results obtained in module ‘in vitro sensitivity to compound’ and 
‘combinations’ for the entity ES (Figure 46D). Although, these scores are derived from a 
limited number of included publications (2-3 publications for each module addressed 
in ES), additional studies need to be carried out to fairly assess CHK1 as a target in Ewing 
sarcoma.  
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Figure 46: Summary of TAR appraisal scores 

Overview of TAR appraisal scores(a) overall replication stress, (b) PARP, (c) ATR, (d) CHK1, (e) 
WEE1, (f) ATM and (g) DNA- PK. Each box represents the averaged appraisal score in which 
yellow denoting a negative result and blue indicates a positive result. The number within 
indicates the quantity of evidence entries. The interactive heatmaps can be accessed via the R2 
TAR platform [https:// hgserver1.amc.nl/cgi-bin/r2/main.cgi?optionZimi2_targetmap_v1]  
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Another significant target that showed overall high scores is WEE1. Even though the 
literature surrounding WEE1 was limited, the target received overall positive scores in 
all malignancies (Figure 33). The combination therapy involving a WEE1 inhibitor and 
chemotherapeutic agents yielded superior responses compared to WEE1 inhibition by 
itself. Additionally, a Phase I clinical trial utilizing WEE1 inhibition in combination with 
irinotecan scored positively in NBL, HGG, RMS, EPN, ES, OS, and WT [262]. A striking 
observation was the insufficiency of data across the other PoC modules specifically 
‘predictive biomarkers’ and ‘resistance’ (which were not addressed at all) and strongly 
implied that further research needs to be conducted to explore the full potential of WEE1 
as a target in pediatric tumor entities (Figure 46E). 

 
Figure 47: Overview of specific therapeutic targets 

The colour of the dot reflects the overall average appraisal scores derived from all PoC modules 
for that target and malignancy, while the size of the dot represents the volume of evidence 
entries.  

ATM and DNA-PK were the two specific targets that were least encountered in this study 
and were often represented by only one publication across limited number of PoC 
modules and tumor types. ATM was observed to include only seven evidence entries 
overall, addressing only a limited number of PoC modules in NBL, OS and HGG (Figure 
46F). High-grade glioma was observed to score overall positively for ATM, although the 
data was limited. This suggests the efficacy of targeting ATM in HGG and reveals 
direction of future potential research prospects (Figure 33) [263], [264]. 

Conversely, DNA-PK was more diversely represented as it addressed all preclinical PoC 
modules except for ‘in vivo tumor target dependence’ across 5 out of the 16 tumor types 
namely, NBL, RMS, OS, HGG and MB (Figure 46G). Observed results for ‘resistance’ in 
Osteosarcoma[265] and ‘combinations’ in neuroblastoma[266] were modules that 
scored highly for DNA-PK suggesting that combination therapy with DNA-PK inhibitors 
could be an effective strategy to target certain tumors. However, DNA-PK scored 
neutrally across all modules and tumor types, emphasizing the need to evaluate this 
target further (Figure 47). 
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4 DISCUSSION 
 

This study elucidates and provides a deeper insight into one of the most complex 
problems in oncology research and medicine: pediatric cancer. Childhood cancer 
remains one of the leading causes of disease-related death in the world in patients aged 
1-19. There have been remarkable advancements in pediatric cancer treatment over the 
past decade by better understanding tumor biology and developing personalized 
treatment strategies, that enabled an increase in cure rates up to 80% on average.  

However, there is a massive knowledge gap in core aspects such as tumor cell of origin 
and mechanisms of tumor immune evasion as compared to what is known about adult 
cancer. Due to the lack of published molecular and genetic data on pediatric solid 
tumors from relapsed and metastatic patients, significant efforts not only need to be made 
to enhance the quality of life for pediatric cancer survivors, who often suffer from 
enduring effects of treatments like radiotherapy, cytotoxic chemotherapy, and surgical 
intervention but also to find a cure for the remaining ~20% of children affected by 
childhood cancer. Therefore, it is crucial to recognize that pediatric cancers diverge 
significantly from their adult counterparts in terms of foundational mutational 
mechanisms, cellular origin, mutational burden, driver gene mutations, genetic 
complexities, predisposing factors, and epidemiological characteristics. These 
challenges, make it essential to improve clinical studies and trials by developing 
preclinical models to identify predictive biomarkers and for testing innovative 
therapeutic interventions, for children suffering from childhood cancer.  
This thesis includes two separate studies under the Innovative Therapies for Children 
with Cancer Pediatric Preclinical Proof-of-concept Platform (ITCC-P4) projects 
supported by the European consortium ‘Innovative Medicines Initiative’ (IMI). In the first 
study, “ITCC-P4: Genomic Profiling and Analyses of Pediatric Patient Tumor and Patient-
Derived Xenograft (PDX) Models”, I focused primarily on the multi-omics analysis and 
characterization of PDX models by assessing their mutational landscape, tumor cell 
content, methylation profiling and copy number profiling to see how well these PDX 
models recapitulate the original pediatric patient tumor. The second project, "TAR: A 
systematic evaluation of replication stress as a therapeutic target for pediatric solid 
malignancies", provides a comprehensive, structured, and critically evaluated overview 
of literature targeting replication stress in pediatric solid tumors, allowing further 
development of specific inhibitors for targets in pediatric cancer treatment. 
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4.1 Discussion based on ITCC-P4 genomic profiling 
 
4.1.1 PDX models in pediatric cancer 
 

This project aims to establish a robust repository of ~400 PDX models that will serve as 
a powerful resource for pediatric cancer research. This heterogeneous repository of 
established PDX models along with accompanying well characterized molecular and 
clinical data represents one of the few international initiatives developed for pediatric 
cancer modelling. Collectively, the ITCC-P4 PDX repertoire demonstrates a well-
represented variety of 18 different pediatric cancer entities across 43 distinct subgroups 
and different disease/molecular statuses based on single-mouse trials [224]. Previous 
studies such as by Stewart et al. (2017) containing 168 pediatric cancer patients and 67 
orthotopic PDX models, only assesses 12 cancer types. And another study by Yang et al. 
(2020) although gathers 324 PDX models, lacks crucial information about the original 
patient tumor or germline controls [267]. Hence, a key strength of our study is the size 
of 251 PDX models (still expanding to ~400) but also the availability of patient tumor 
samples and germline controls for majority of the pediatric solid tumor types. 

Compared to previous studies[268]–[271], a defining strength of this study lies not only 
in the robust genomic alignment between PDX and patient tumor samples (including 
WES, lcWGS, and RNA-seq data) but also in the thorough integration and examination 
of DNA-methylation data for these models. Recent studies such as Rokita et al. (2019) 
characterize 261 PDX models from 37 cancer types [268]. While this study scrutinized 
the genomics and transcriptomics profiles of PDX models, it lacks the crucial aspect of 
collecting and analysing DNA-methylation data, for precise tumor sub-classification, 
which is the distinguishing feature of our study from previously published data. 

This multi-omics data integration and analysis allowed for a significantly more detailed 
representation of the PDX model’s molecular status. Besides identifying key targetable 
driver genes for each entity, the unsupervised clustering of the RNA-sequencing data for 
the PDX models based on their expression profiles facilitated the precise annotation of 
frequently recurrent and essential fusion events observed in sarcomas and other pediatric 
entities[224][168], [272]–[275]. This multi-omics layered analysis approach served as a 
particularly effective method in defining key oncogenic hits for the 251 analysed PDX 
models, while the cases where only single omics data was available, resulted in a less 
comprehensive molecular characterization of PDXs.  

Overall, key driver events were enriched within the PDX models, exhibiting tumorigenic 
alterations that mirrored specific aggressive tumor types. Although there was an array of 
molecular subtypes within brain tumors in the cohort that were initially catalogued, for 
the Ependymoma samples, we observed only the most aggressive subgroups: EPN-PFA 
and EPN-ZFTA that seem to have been engrafted better in the PDX model generation, 
compared to more benign tumor types[203], [276]. Similar observations were made for 
other entities within the cohort. This finding is in line with previous studies on 
sarcomas[277] and breast cancer[278].  
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We noticed an underrepresentation of rarer and/or least aggressive tumor types and 
molecular subtypes models, such as low-grade gliomas, embryonal tumors with 
multilayered rosettes (ETMR), malignant rhabdoid tumors etc. The establishment of 
tumors from these rarer entity types are significantly challenging as, not only is obtaining 
adequate numbers of patients with these cases to cover a whole spectrum of childhood 
cancer diseases but also optimizing PDX establishment protocol for the growth of these 
tumors needs to be further refined.  

Within these aggressive tumor types we also observed the enrichment of specific genetic 
alterations such as somatic and germline TP53 mutations in MB G3 PDX [279]–[281] 
and tumor models with MYC amplifications and somatic variants[282]. Gain of 
chromosome 7 that we observed in six PDX models has also be linked to poor prognosis 
in various studies[283], [284]. Our finding also aligned with studies in Neuroblastoma 
with recurrent gains in chromosome 17q and 1q loss[166], [167]. We observed the 
classic mutations in sarcoma models such as EWSR1-FLI fusions[285] were common in 
this cohort, but interestingly we also observed only two cases with less common EWSR1-
ERG and EWSR1-FEV fusions in our PDX samples.[286], [287]. Germline TP53 and 
STAG2 somatic mutations[288][289], CDKN2A/B mutations[290] that have been linked 
to poor disease prognosis were also frequently observed in the high-grade gliomas and 
sarcoma models [244], [245], [290]–[292]. Another observation within our cohort is the 
presence of a hallmark chimeric oncogenic transcription factor PAX3-FOXO1 fusion of 
the aggressive alveolar RMS. This fusion was detected in 46% of the 
Rhabdomyosarcoma PDX models. Various studies show PAX gene fusions, in 
conjunction with other genetic alterations, play a crucial role as oncogenic drivers in 
fusion-positive RMS tumors. These fusion transcription factors stimulate the expression 
of several transcriptional targets that support the process of oncogenic transformation, 
including MET, ALK1, MYCN, IGFR1, and FGFR4. It is also noted that, fusion-positive 
RMS tumors exhibit a much lower overall count of somatic mutations, with few, if any, 
recurring mutations when compared to fusion-negative RMS samples, which we also 
observe in our RMS PDX cohort. The expression of PAX3-FOXO1 has the capacity to 
induce oncogenic transformation in both cell culture and animal models and hence 
represents an attractive target for therapeutic strategies[293]. 

Given these observations it is crucial to match PDX cohorts to their respective patient 
subgroup population and not directly to clinical cohorts. That is, PDX models retain and 
recapitulate the characteristics of patient tumors. However, not all tumors within a 
specific type or diagnosis are the same, as we do observe differences in genetic 
alterations, molecular and clinical behaviour. Therefore, it's crucial to ensure that the 
PDX models chosen for a study closely resemble the specific patient subgroups or types 
of tumors under investigation. 

These rare tumors are less frequently encountered in clinical cohorts compared to highly 
prevalent, aggressive, or common tumor types. As a result, if a PDX cohort consists 
mainly of highly aggressive tumors, it might not accurately represent the broader 
spectrum of tumors within the targeted patient population. The lack of availability of 
more rare tumor types compared to highly aggressive tumors can skew the tumor 
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subgrouping leading to further biases in clinical settings. Addressing these key factors, 
would ensure that research findings can more accurately be representative and 
applicable to clinical scenarios. 

 

4.1.2 PDX models compared to their corresponding patient tumor 
 

A fundamental strength of this work is that for the first time, we present a massive cohort 
of fully molecularly characterized pediatric patient tumor PDX models along with the 
generation, interpretation, and comprehensive comparative analysis to their 
corresponding patient tumor data. This multi-layered data approach is essential to assess 
the capacity of the xenograft models to faithfully recapitulate the molecular features of 
the tumor and disease states from which they were generated. The molecular 
comparison in matched PDX and tumor pairs overall show high confidence 
concordance with identified genetic variants, tumor mutational burden, copy number, 
epigenetic and even the transcriptomic profiles.  

In the context of the methylome landscape, we observed high fidelity between PDX 
models and their matched patient tumors as clustering analysis shows PDX clusters 
overlapping with patient tumor clusters and the large reference cohort that defines the 
canonically accepted subtypes. In some rare cases we do see slight shift in the distance 
between the PDX and their tumors. However, these cases did retain the same subgroup 
assignment, but often seemed to cluster more similar to the reference samples of the 
same subgroup than the patient tumor itself.  

Tumor microenvironment plays an important role in caner progression and response to 
treatment. It consists of various cell types, such as immune cells, fibroblasts, blood 
vessels etc. This microenvironment is known to be highly dynamic, and its composition 
can change with time[294], [295]. However, the tumor microenvironment is 
significantly different from the murine microenvironment, which includes different 
immune cell populations, stromal cells, and cytokines. Over time, after transplantation 
into the PDX, the tumor cells may adapt to the mouse microenvironment. This could 
cause changes in gene-expression, epigenetic modifications and as a result, DNA-
methylation patterns of tumor cells in the PDX can shift, making them more similar to 
the reference samples of the same subgroup. Another factor, affecting the dynamic DNA-
methylation process, is tumor calls can undergo continuous demethylation of specific 
genomic regions. This could also be a possible explanation of the clustering patterns in 
DNA methylation of the PDX models [296]. 

On analyzing the genomic data, we also interestingly observed instances where strong 
clonal outgrowths were identified in the PDX models from their tumor samples and vise-
versa. The presence of numerous subclones accounts for the differing rates of response 
to treatment within a single tumor mass itself due to the highly heterogenous 
continuously evolving population of tumor cells. Genetic heterogeneity is an intrinsic 
factor in cancer and the rapid growth of subclones leads to more aggressive tumors, 
which contributes to the rapid development of acquired drug resistance[297], [298]. For 
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instance, a study showed identification of a minor KRAS-mutant clone can predict which 
colorectal cancer patients will eventually become resistant to therapy that targets the 
epidermal growth factor receptor (EGFR) [201], [299].  

To understand the potential origin of these disparities, certain aspects need to be 
considered. Primarily, the difference in the tumor cell fraction, which we and others 
report to be higher in the PDX models, while human tumors are characterized by 
infiltration of additional cellular components that arise from the patient’s immune system 
and the stromal microenvironment. Essentially, the native tumor microenvironment is 
eliminated in the PDX models due to the impaired immune system within the immune-
deficient mice that are used for xenograft establishment and multiple passages[204]. For 
this purpose, we considered the correction of the variant allele frequencies (VAF) 
detected in sample based on the estimated tumor cell purity as a normalization method 
for better comparison of all analyses [300]. A further outcome of the TCF disparity 
between matched PDX tumor pairs is that in some instances oncogenic hits can be 
“masked” i.e remaining undetectable in highly infiltrated tumor sample data, while these 
drivers can emerge in the corresponding tumor-cell enriched PDX data[301]–[304]. 
Furthermore, for somatic mutations that are predominantly enriched in either PDX or 
tumor samples, we speculate that this is a result of subclonal selection during 
establishment of the xenograft or might be attributed to the absence of the immune 
system, permitting a significant growth advantage for a variant in the PDX model[301], 
[305].   

Finally, another major strength of our study is the presence of “serial” PDX models in 
our cohort, generated from the same patient tumors collected at different stages over the 
course of the disease. The characterization and comparative analysis on these “serial” 
cases emphasized the importance of investigating the molecular changes that occur in 
the same patient across disease progression and or upon exposure to treatment. [295], 
[306]–[308]. We hence highlight the importance of comprehensive representation and 
multi-omics analysis of the different disease stages in pediatric cancer. The driver 
mutational landscape changes from primary to metastatic to relapsed stages of cancer 
progression. A study from 2017, by Yates et. al. [309], performed sequencing of 299 
breast cancer samples from 170 patients. It was observed that the enrichment of driver 
mutations in relapse/metastasis samples compared with the cohort of primary breast 
cancers was much higher. These acquired mutations included clinically actionable 
alterations and mutations inactivating SWI-SNF and JAK2-STAT3 pathways, significant 
for breast cancer progression.  

The higher enrichment in metastatic/relapse cases could be accounted due the genomic 
instability observed in the primary cancer tumor, may create a favourable environment 
for the emergence of subpopulations of cancer cells with varying genetic profiles. These 
clonal subpopulations could include cells with greater resistance to therapy, which 
could lead to treatment failure and relapse. Cancer cells that disseminate from the 
primary tumor site may continue to evolve as they encounter different tissue 
environments, immune responses, and response to therapeutic interventions. This 
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ongoing evolution can result in the selection of more aggressive or drug-resistant 
subclones, which could explain the relapse phenomenon observed in some cases[309]. 

Hence the characterization of different disease stages in pediatric cancer is essential for 
tailoring treatments, predicting outcomes, advancing research, improving early 
detection. Our multi-omics study addressing longitudinal cases form the same patient, 
enhances our comprehension of cancer progression and evolution and also validates 
PDX model selection for further preclinical pediatric cancer studies. 

 
4.1.3 PDX models as a tool for preclinical drug testing 
The data generated for this study aims to serve as a strong foundation for further 
investigative research in the field of pediatric cancer. Keeping this goal in mind, the 
ITCC-P4 PDX data scope on the R2 platform was established to allow free access of this 
published data to the entire scientific community. As this study uncovers the full 
molecular characterization of 251 profiled PDX models and available matching patient 
tumors, it is steadily expanding in cohort size to further include ~150 newly established 
PDX models as well as ongoing establishment of GEMM and PDX-derived organoid lines 
as additional preclinical models. Thus, making this a comprehensive and unique 
resource within the field.  

The currently generated molecular data contributed to the stratification of PDX models 
on their clinical and molecular profiles. This PDX repository serves as a resource for the 
identification of emerging molecular vulnerabilities for pre-clinical drug testing on 
various PDX models. This proof-of-concept drug testing will eventually be provided as 
a service in the next stages of the ITCC-P4 sustainability platform. What started off as an 
international consortium project, has now developed into a non-profit company 
(gGmbH: company with limited liability) continuing a close collaboration with three 
contract-research organisations. This platform aims to support the drug testing research 
for pediatric cancers stemming from the large portfolio of fully characterized and 
established PDX model cohort.  

The ITCC-P4 platform represents a powerful tool for investigative biology and in-depth 
multi-omics research of pediatric cancer contributing to the development of novel and 
innovative therapeutic options for pediatric cancer patients. 
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4.2 Discussion based on TAR Replication stress 
 
4.2.1 Targeting Replication stress as a therapeutic approach 
The Target actionability review (TAR) methodology was developed [260] to match the 
mechanism-of-action targeting anti-cancer drugs for cancer specific subtypes in 
preclinical studies. This study implemented the previously established TAR methodology 
taking it one step further to systematically analyze and evaluate the broader ‘targets’ of 
replication stress. Since replication stress is such a vast mechanism encompassing 
multiple targetable proteins, it was essential to narrow down the possible driver genes. 
In order to enhance the level of specification in this study, we focused on six distinct 
drug targets. This approach aimed to provide insight into the prioritization of drug targets 
for further preclinical development. 

As expected, this posed unique challenges to the TAR methodology. As summarized 
previously in the TAR Results chapter (chapter 3.2), each specific target in our study was 
characterized by assessing varying amounts of published literature and assigning an 
average appraisal score which also differed based on the particular malignancy under 
investigation. These factors collectively complicated the determination of which specific 
targets should take precedence in future studies. Furthermore, delving into a 
multifaceted subject such as replication stress necessitated a clearly defined and 
stringent search strategy, which defies the intrinsic complexity of replication stress. 
These aspects collectively exemplify the unique limitations, in addition to the broader 
constraints inherent in the overall TAR methodology. For instance, accommodating the 
unexpected change and occasionally unforeseen patient reactions in clinical trials is 
unattainable, and due to the rarity of certain tumor types, creating a consistent overview 
of evidence becomes unfeasible across all entities of tumors.  

Regardless of these limitations, replication stress continues to be an attractive avenue for 
therapeutic approaches in pediatric cancer. The extensive scope of RSR presents a range 
of innovative therapy options, which we have highlighted in this TAR. We methodically 
investigated and focused on six specific drug targets, ATM, ATR, CHK1, DNA-PK, PARP 
and WEE1. Among these six targets, PARP emerged as the most extensively researched 
and promising therapeutic candidate. Beyond comprehensively addressing all the PoC 
modules and having the highest representation within the literature, PARP also achieved 
positive overall scores across all the 16 investigated tumor entities. Particularly 
noteworthy are the results derived from the “combinations” module, which highlighted 
the synergistic potential of PARP inhibitors when combined with classical 
chemotherapeutics. This two-fold approach in targeting replication stress offers the 
potential of harnessing the efficacy of chemotherapy while mitigating the adverse side 
effects linked with high-dose treatment. The results of our study, lend support to this 
notion, for examples in the “phase I clinical studies” module, where PARP was 
combined with chemotherapy (temozolomide and/or irinotecan) or radiotherapy [310]–
[314]. Nevertheless, the results from the “phase II clinical studies” module, which stands 
out, due to the absence of data across all potential targets of replication stress, does not 
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demonstrate notable clinical effectiveness. Based on limited accessible data, outcomes 
ranged from a lack of clinical improvement for HGG[310] to maintaining disease 
stability for ES[314], [315]. This emphasizes the need for additional explorative research. 

Additionally, this dual strategy approach targeting replication stress was not only limited 
to literature focusing on PARP. The exploration of the “combinations” module was 
extended across all other targets included in the study, and most of these studies 
included targeted inhibitors with conventional chemotherapeutic agents. Considering 
the role of these proteins in DNA damage repair pathways, it is not unexpected that the 
majority of cases demonstrated a slight synergistic effect upon combination with 
chemotherapy and/or radiation. However, particularly noteworthy were the results of 
CHK1 inhibition combined with chemotherapy, which consistently exhibited synergistic 
outcomes across MB, ES, OS, NBL and RMS[316]–[318]. Furthermore, certain studies 
that investigated the combination treatment involving two RSR-targeted inhibitors, such 
as pairing ATR with WEE1 [319] or PARP [320] inhibitors. Dual targeting, without the 
reliance on chemotherapy, presents an alluring therapeutic approach for targeting 
replication stress. This method avoids the use of therapies, known to induce toxicity and 
the potential long-term health ramifications [321]. Moreover, insights from studies 
combining RAF and MEK inhibitors in metastatic melanoma demonstrate the efficacy of 
targeting multiple proteins within a shared signalling pathway, then offering enhanced 
therapeutic outcomes in adults. This prompts the question of whether this is also a valid 
approach in targeting replication stress in pediatric tumors.  

In our TAR, we observed two distinct strategies of targeted intervention: 1.) a ‘vertical 
blockade’, entailing the inhibition of two proteins within the same signalling axis and 
2.) a ‘lateral blockade’, involving the inhibition of two proteins engaged in different 
signalling pathways within the RSR. While these two strategies were sparsely observed 
within the study, noteworthy instances emerged: the ‘lateral blockade’ approach 
involving ATR and PARP inhibitors in NBL[320] and the ‘vertical blockade’ strategy with 
ATR and WEE1 inhibitors in ES[319], both displayed synergistic effects. Given the 
success of the ‘vertical blockade’ strategies in adult malignancies, it is conceivable that 
adopting a similar approach to target replication stress could potentially offer better 
therapeutic efficacy with fewer side effects in pediatric malignancies, in comparison to 
combination strategies involving chemotherapeutics and radiation. However, generating 
more preclinical research spanning all targets and pediatric tumor types is necessary to 
ascertain superior targets and strategy.  

Enhancing treatment effectiveness relies not only on well-designed combination 
strategies, but also on robust preclinical investigations. With deeper understanding of 
the biological mechanisms governing a treatment approach, the selection of models or 
patients possessing the appropriate molecular background is improved, thus ensuring 
fair evaluation of the therapy. A prominent observation throughout our study was the 
evident scarcity of literature dedicated to unravelling the biological foundations of 
targeting replication stress for therapeutic purposes. 'Predictive biomarkers' and 
'resistance' emerged as modules with notably limited representation, accounting for less 
than 10% of all evidence entries across all targets and tumor types. Furthermore, the 
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absence of reported tumor subtypes, and the omission of certain tumor types altogether, 
such as Inflammatory myofibroblastic tumor (IMT) and extracranial germ cell tumors 
(GCT), has been significant. While these gaps can to an extent be attributed to research 
prioritization and the availability of preclinical models, a more comprehensive 
representation across tumor (sub)types could yield valuable insights into treatment 
stratification and warrants attention in future studies. For example, the presence of the 
EWS-FLI1 fusion gene (identified in approximately 85% of ES patients) has been 
associated with deficient DNA repair mechanisms, inefficient DNA transcription, and 
an overall increase in replication stress [322], [323]. In the scope of targeting replication 
stress, this could be a significant fusion event to consider for further studies. 

Understanding the mechanisms of action of treatment therapies and the effects of diverse 
tumor types and subtypes might have on their functioning is pivotal for designing 
effective and successful clinical trials. The limited availability of literature exploring 
these aspects in our targeted actionability review (TAR) highlights a potential knowledge 
gap that needs to be addressed further. 

 

 

4.3 Limitations  
 

Despite the successful characterization of the n=251 ITCC-P4 PDX models and the 
extensive multi-omics analysis explored in the first study in this thesis, enabling the 
creation of a comprehensive resource for further personalized pediatric cancer research, 
some key challenges need to be tackled in the studies to come. The PDX model 
establishment is a technically intricate protocol that relies on high levels of expertise and 
a specific protocol for each tumor entity, hence there needs to be better technology that 
can automate and assist in the model generation. Considerable efforts also still need to 
be developed to improve systematic generation of under-represented tumor types and 
subgroups, enabling the collection of not only the most aggressive tumor subtypes that 
can resist the tumor microenvironment, but also rare and less aggressive subtypes of 
pediatric cancer. We also see a deficit of liquid models in this study, which should be 
included in successive studies, to have a comparative overview of different clinical 
models.  

Finally, since this is a massive collaborative effort with several partner institutions, there 
is a lack of germline control samples from a significant number of patients, hence the 
establishment of a standardized protocol with collection of all required metadata 
information for optimized analysis is highly essential to avoid biases and 
overrepresentation. As this platform is constantly growing with inclusion of several PDX, 
GEMM and organoid models, with advancement in NGS tools and analysis, the 
inclusion of additional ChipSeq, ATACseq, DNA and RNA single-cell sequencing would 
be vital to get the most comprehensive overview of PDX models. These methods can 
further address gene regulation and epigenetic modifications and would be useful to 
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unveils cellular diversity, identifies rare cell types, and elucidates dynamic changes in 
gene expression during development, disease progression, or in response to treatments 
in PDX models compared to the patient tumor. In summary, this marks the first study 
established under the umbrella of the ITCC-P4 PDX model characterization and 
profiling, of it is imperative to optimize subsequent studies to expand and enhance this 
valuable resource for the future. 

My second study highlighted the Target Actionability Review (TAR) methodology as a 
part of the ITCC-P4 sustainable platform. Although we successfully evaluated and 
created a structured overview of recently published literature (from 2015-2020), related 
to targeting replication stress, there are a few challenges that need to be addressed. ATM, 
ATR, CHK1, DNA-PK, PARP and WEE1 were the top proteins for targeting replication 
stress. However, we see different amounts of published literature for each target, creating 
biases towards more well-known targets such as PARP. This makes it difficult to prioritize 
targets for future clinical studies. We also noticed a bias created by the aggressiveness 
of some tumor types, which was associated with more studies and data being published 
on them. The TAR methodology was created for single target identification but needs to 
be further refined for boarder topics such as replication stress to enable promising 
research with the hope of helping the development of safe and effective therapeutics for 
children with cancer.  
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4.4 Future directions 
 

This study provides a comprehensive foundation for PDX model selection, with a strong 
focus on PDX model vs patient tumor comparison for future research focusing on 
pediatric cancer trials. There is an imperative need to establish an extensively curated 
resource of molecular data on pediatric tumors from relapsed and metastatic patients 
and their germline controls, from a wide range of tumor types and subtypes. We observe 
some PDX models showing multiple enriched targetable driver genes which are of 
further interest. A follow up analysis to co-relate co-occurring genomic events within 
tumor subgroups would be an opportunity for personalized anti-cancer therapy, as well 
as the expanding field of precision oncology. 

As this study works in collaboration with 30 different partnering European academic and 
clinical institutions and pharmaceutical companies, it provides a unique setting for 
preclinical testing of novel molecularly targeted compounds. This study functions as the 
precursor to multiple drug treatment pipelines for phase-I clinical trials, for the 
identification of predictive biomarkers to allow for accurate matching of targets and 
drugs.  

Models that have targetable alterations in these biomarkers will undergo thorough drug 
testing within faithful disease models that mimic pharmacokinetics and 
pharmacodynamics. One such example would be evaluation of drug penetration into 
the brain. The drug testing process will also encompass a minimum of three commonly 
used reference drugs across all models, serving as a basis for comparisons. This drug 
testing and chemotherapy arms on pre-selected PDX models has already begun for a few 
tumor types, such as single drug treatments of Copanlisib, Lorlatinib and Idasanutlin for 
neuroblastoma [324], [325]; Methotrexate, Cisplatain, for osteosarcoma [326], but also 
combination treatment options such as liposomal Doxorubicin and Cyclophosphamide 
for Ewing sarcomas[327]. This resource enables clinical stratification and expedites the 
development of improved drug prioritization for diverse pediatric tumor types. 
Establishing this platform through a collaboration between public and private 
partnership creates a cooperative framework that could potentially be expanded to 
various cancer entities and patient groups in the future. 

The inclusion of the target actionability review within the ITCC-P4 framework allows for 
a systematically curated overview approach that facilitates further drug prioritization 
besides the data driven analysis conducted in the genomic profiling study. This study 
narrows down published literature and potential targets such as ATM, ATR, CHK1, DNA-
PK, PARP and WEE1, focused on targeting replication stress. It also highlights the 
importance of exploring emerging targets further (for example: WEE1 and CHK1) and 
the potential of using novel combination strategies for future studies. This combined 
resource would serve to greatly advance further understanding of pediatric solid tumor 
biology and lays a foundation for computational analysis for larger cohorts.  
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