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Abstract

A real number is left-c.e. if it has a left-c.e. approximation, i.e., a computable nondecreas-
ing sequence a0, a1, ... of rationals that converges to the real number. Furthermore, a real
number α is Solovay reducible to a real number β if there exists a partially computable
function g that maps every rational number q < β to some rational number g(q) < α
such that, for some real constant c and all q < β, it holds that

α− g(q) < c(β − q).

Solovay reducibility can be used to compare the speed at which left-c.e. numbers can
be approximated: if a real number α is Solovay reducible to a left-c.e. real number β,
then also α is left-c.e. and, for every left-c.e. approximation of β, there is a left-c.e.
approximation of α that converges at least as fast up to a constant factor.

Among the left-c.e. reals, the Martin-Löf random ones have been intensively studied,
and it is known that they have several natural equivalent characterizations. For exam-
ple, by results of Solovay [17] and of Calude, Hertling, Khoussainov and Wang [2], the
Martin-Löf random left-c.e. reals are exactly the halting probabilities of universal Turing
machines. Furthermore, Kučera and Slaman [8] demonstrated that, within the left-c.e.
reals, the Martin-Löf random ones form a highest degree of Solovay reducibility, i.e., a
left-c.e. real β is Martin-Löf random if and only if every left-c.e. real α is reducible to β.
In fact, they showed that the latter holds via arbitrary left-c.e. approximations of α
and β. As a consequence, given any Martin-Löf random left-c.e. reals α and β, they are
mutually Solovay reducible to each other via arbitrary left-c.e. approximations a0, a1, . . .
and b0, b1, . . . of α and β, respectively, hence, there are reals c > 0 and d such that, for
all n, it holds that

c <
α− an
β − bn

< d. (1)

Actually more is known: the considered ratios are not only restricted to the interval (c, d)
but, by a celebrated theorem of Barmpalias and Lewis-Pye [1], they converge, i.e., the
limit

lim
n→∞

α− an
β − bn

,

exists and does not depend on the choice of the left-c.e. approximations of α and β.

A left-c.e. real α is ρ-speedable if it has a left-c.e. approximation a0, a1, . . . such that,
for some computable function f , it holds that

lim inf
n→∞

α− af(n)

α− an
= ρ,



and a left-c.e. real is speedable if it is ρ-speedable for some ρ < 1. Merkle and Titov [10]
introduced these notions and observed that, by the theorem of Barmpalias and Lewis-
Pye, it is immediate that Martin-Löf random left-c.e. reals cannot be speedable, further-
more, they gave a short direct proof of the latter fact.

Solovay reducibility is a standard tool for investigating the class of left-c.e. reals. How-
ever, though defined as a binary relation on the set of all reals, Solovay reducibility is
only rarely used outside the realm of left-c.e. reals, in fact, is viewed as “badly behaved”
there in general [5, Section 9.1]. The main theme of this thesis is that, when investigat-
ing all reals, Solovay reducibility should be replaced by monotone Solovay reducibility.
The latter reducibility is defined literally the same as Solovay reducibility except that, in
addition, it is required that the function g in (1) is nondecreasing, i.e., that g(q) ≤ g(q′)
holds for all q and q′ in the domain of g, where q < q′. Essentially all results that are
shown in what follows suggest that monotone Solovay reducibility should be used when
investigating all and not just left-c.e. reals.

First, monotone Solovay reducibility can indeed be considered as an extension of Solovay
reducibility since both relations coincide on the set of left-c.e. reals. Monotone Solovay
reducibility is a reflexive and transitive relation, hence, induces a degree structure in
the usual way. Furthermore, the classes of computable, of left-c.e., of right-c.e., of d.c.e.
and of computably approximable, or ∆0

2, reals are all closed downwards under monotone
Solovay reducibility.

Second, when extending the notion of speedability from the left-c.e. to all reals, this is
done in terms of monotone Solovay reducibility of a real to itself. The resulting notion of
speedability coincides on the set of left-c.e. reals with the notion of speedability for left-
c.e. reals that has been previously defined in terms of left-c.e. approximations, whereas
a definition in terms of Solovay reducibility would be trivial in so far as it renders all
left-c.e. reals speedable.

For the speedability notion defined for left-c.e. reals in terms of left-c.e. approximations,
the following is shown. The notion is robust in so far as a real that is ρ-speedable for
some ρ < 1 is actually ρ-speedable for all ρ > 0 via any left-c.e. approximation of the real.
Also speedability is a degree property, i.e., in a Solovay degree, either every or no real
is speedable. Furthermore, Martin-Löf random left-c.e. reals are never speedable, while
all nonhigh left-c.e. reals are speedable. For speedability defined in terms of monotone
Solovay reducibility, some of these results extend to all reals, in particular, robustness
with respect to the choice of nonzero ρ and the nonspeedability of Martin-Löf random
reals. Being Martin-Löf random is not equivalent to being nonspeedable, neither for all
reals nor when restricting attention to the left-c.e. reals. The former result is shown
below by constructing a right-c.e. counterexample, i.e., a right-c.e. real that is neither
Martin-Löf random nor speedable. The latter, more interesting and more difficult result
is due to Hölzl and Janicki [7], who constructed a left-c.e. counterexample.

Third, the theorem of Barmpalias and Lewis-Pye allows an equivalent reformulation
in terms of monotone Solovay reducibility, which can be extended to all reals. This
extension is one of the main results of this thesis. A corresponding reformulation in
terms of Solovay reducibility is false in general and is actually false for all left-c.e. reals.



Zusammenfassung

Eine reelle Zahl ist linksberechenbar, wenn sie eine linksberechenbare Approximation
besitzt, dass heißt, es gibt eine berechenbare nichtfallende Folge a0, a1, . . . von rationalen
Zahlen, die gegen die reelle Zahl konvergiert. Weiter ist eine reelle Zahl α auf eine reelle
Zahl β Solovay-reduzierbar, wenn es eine partiell berechenbare Funktion g gibt, die jede
rationale Zahl q < β auf eine rationale Zahl g(q) < α abbildet, so dass für eine reelle
Konstante c und alle q < β gilt

α− g(q) < c(β − q).

Mittels der Solovay-Reduzierbarkeit kann die Geschwindigkeit verglichen werden, mit
der linksberechenbare Zahlen approximiert werden können. Falls eine reelle Zahl α
Solovay-reduzierbar auf eine linksberechenbare reelle Zahl β ist, dann ist α ebenfalls
linksberechenbar und gibt es für jede linksberechenbare Approximation von β eine links-
berechenbare Approximation von α, die bis auf einen konstanten Faktor mindestens
genauso schnell konvergiert.

Unter den linksberechenbaren reellen Zahlen wurden die Martin-Löf-zufälligen intensiv
erforscht und es ist bekannt, dass diese verschiedene natürliche äquivalente Charakteris-
ierungen erlauben. Zum Beispiel sind nach Ergebnissen von Solovay [17] und von Calude,
Hertling, Khoussainov und Wang [2] die Martin-Löf-zufälligen linksberechenbaren reellen
Zahlen genau die Haltewahrscheinlichkeiten universeller Turingmaschinen. Kučera und
Slaman [8] konnten zeigen, dass innerhalb der linksberechenbaren reellen Zahlen die
Martin-Löf-zufälligen Zahlen einen höchsten Grad der Solovay-Reduzierbarkeit bilden,
das heißt, eine linksberechenbare reelle Zahl β ist genau dann Martin-Löf-zufällig, wenn
jede linksberechenbare reelle Zahl α auf β reduzierbar ist, und dass letztere Aussage
sogar bezüglich beliebiger linksberechenbarer Approximationen von α und β gilt.

Folglich sind beliebige Martin-Löf-zufällige linksberechenbare reelle Zahlen α und β
bezüglich beliebiger linksberechenbarer Approximationen a0, a1, . . . und b0, b1, . . . von α
beziehungsweise β gegenseitig Solovay-reduzierbar, das heißt, es gibt reelle Zahlen c > 0
und d, so dass für alle n gilt

c <
α− an
β − bn

< d. (2)

Tatsächlich ist weit mehr bekannt, als dass die Werte der hier betrachteten Brüche in
einem Intervall (c, d) liegen: nach einem bekannten Satz von Barmpalias und Lewis-
Pye [1] konvergieren die Werte sogar: der Grenzwert

lim
n→∞

α− an
β − bn

existiert und hängt nicht von der Wahl der Linksapproximationen von α und β ab.



Eine linksberechenbare reelle Zahl α ist ρ-beschleunigbar, falls sie eine Linksapproxima-
tion a0, a1, . . . besitzt, so dass für eine berechenbare Funktion f gilt

lim inf
n→∞

α− af(n)

α− an
≤ ρ,

und sie ist beschleunigbar, falls sie ρ-beschleunigbar für ein ρ < 1 ist. Merkle and
Titov [10] führten diese Begriffe ein und beobachteten, dass aus dem Satz von Barmpalias
and Lewis-Pye sofort folgt, dass Martin-Löf-zufällige linksberechenbare reelle Zahlen
nicht beschleunigbar sein können, zusätzlich gaben sie einen kurzen direkten Beweis
dieser Tatsache an.

Die Solovay-Reduzierbarkeit ist ein Standardwerkzeug zur Untersuchung der Klasse der
linksberechenbaren reellen Zahlen. Obwohl die Solovay-Reduzierbarkeit als binäre Re-
lation auf der Menge aller reellen Zahlen definiert ist, wird sie nur selten außerhalb des
Bereichs der reellen Zahlen verwendet und wird dort sogar als im Allgemeinen ”badly
behaved” angesehen [5, Abschnitt 9.1]. Die zentrale These dieser Arbeit ist, dass bei
der Untersuchung aller reellen Zahlen die Solovay-Reduzierbarkeit durch die monotone
Solovay-Reduzierbarkeit ersetzt werden sollte. Letztere Reduzierbarkeit ist wörtlich
genauso definiert wie die Solovay-Reduzierbarkeit, außer dass zusätzlich verlangt wird,
dass die Funktion g in (2) monoton steigend ist, das heißt, es gilt g(q) ≤ g(q′) für alle q
und q′ im Definitionsbereich von g mit q < q′. Im Wesentlichen alle im Folgenden
gezeigten Ergebnisse legen nahe, dass die monotone Solovay-Reduzierbarkeit verwendet
werden sollte, wenn alle und nicht nur die linksberechenbaren reelle Zahlen untersucht
werden.

Erstens kann die monotone Solovay-Reduzierbarkeit als eine Erweiterung der Solovay-
Reduzierbarkeit betrachtet werden, da beide Relationen auf der Menge der linksberechen-
baren reellen Zahlen übereinstimmen. Die monotone Solovay-Reduzierbarkeit ist eine re-
flexive und transitive Relation und induziert daher in der üblichen Weise eine Gradstruk-
tur. Darüber hinaus sind die Klassen der berechenbaren, der linksberechenbaren, der
rechtsberechenbaren, der d.c.e. und der berechenbar approximierbaren, oder ∆0

2, reellen
Zahlen alle unter der monotonen Solovay-Reduzierbarkeit nach unten abgeschlossen.

Zweitens wird die Erweiterung des Begriffs der Beschleunigbarkeit von den linksberechen-
baren auf alle reellen Zahlen mittels der monotonen Solovay-Reduzierbarkeit als geeignete
Reduktion einer reellen Zahl auf sich selbst definiert. Der resultierende Begriff der
Beschleunigbarkeit stimmt auf der Menge der linksberechenbaren reellen Zahlen mit
dem Begriff der Beschleunigbarkeit für linksberechenbare reelle Zahlen überein, der zuvor
mittels linksberechenbarer Approximationen definiert wurde, wohingegen eine Definition
mittels Solovay-Reduzierbarkeit insofern trivial wäre, als für letztere alle linksberechen-
baren reellen Zahlen beschleunigbar sind.

Für den Begriff der Beschleunigbarkeit, der unter Verwendung von linksberechenbaren
Approximationen für linksberechenbare reelle Zahlen definiert ist, wird Folgendes gezeigt.
Der Begriff ist robust, insofern als eine reelle Zahl, die ρ-beschleunigbar für ein ρ < 1 ist,
tatsächlich ρ-beschleunigbar für alle ρ > 0 bezüglich beliebiger linksberechenbarer Ap-
proximationen der reellen Zahl ist. Außerdem ist die Beschleunigbarkeit eine Gradeigen-



schaft, das heißt, in einem Solovay-Grad ist entweder jede oder keine reelle Zahl beschleu-
nigbar. Darüber hinaus sind Martin-Löf-zufällige linksberechenbare reelle Zahlen niemals
beschleunigbar, während alle linksberechenbaren reellen Zahlen beschleunigbar sind, die
nicht hoch im Sinne der Berechenbarkeitstheorie sind. Einige dieser Ergebnisse lassen
sich für die monotone Solovay-Reduzierbarkeit auf alle reellen Zahlen erweitern, ins-
besondere die Robustheit in Bezug auf die Wahl eines Werts ρ > 0 und die Unbeschleu-
nigbarkeit von Martin-Löf-zufälligen reellen Zahlen. Martin-Löf-zufällig zu sein ist weder
für alle noch nur für die linksberechenbaren reellen Zahlen äquivalent zur Unbeschleu-
nigbarkeit. Das erste Ergebnis wird im Folgenden durch die Konstruktion eines rechts-
berechenbaren Gegenbeispiels gezeigt, das heißt, durch eine rechtsberechenbare reelle
Zahl, die weder Martin-Löf-zufällig noch beschleunigbar ist. Das zweite, interessan-
tere und schwierigere, Ergebnis ist von Hölzl und Janicki [7], die ein linksberechenbares
Gegenbeispiel konstruierten.

Drittens kann der Satz von Barmpalias und Lewis-Pye unter Verwendung der mono-
tonen Solovay-Reduzierbarkeit äquivalent umformuliert werden, so dass sich die Um-
formulierung auf alle reellen Zahlen erweitern lässt. Diese Erweiterung ist eines der
Hauptergebnisse dieser Arbeit. Eine entsprechende Umformulierung mittels Solovay-
Reduzierbarkeit ist im Allgemeinen falsch und gilt tatsächlich für keine linksberechenbare
reelle Zahl.
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1 Introduction

Background Research in algorithmic randomness focuses on various notions of random-
ness for individual sequences, i.e., infinite binary sequences. The three main approaches
for formalizing the randomness of a sequence are the following. Compressibility: a se-
quence is random if its initial segments cannot be effectively compressed. Predictability:
a sequence is random if effective betting on the bits of a sequence with fair pay-off yields
only a bounded gain. Typicalness: a sequence is random if it is not contained in an
effective null cover. The central notion of Martin-Löf randomness can be equivalently
characterized via all three approaches, e.g., a sequence is Martin-Löf random if and only
if, for almost all n, the initial segment of length n of the segment has prefix-free Kol-
mogorov complexity of at least n, that is, requires a code of length at least n under any
fixed effective and prefix-free coding scheme [5].

Beyond simply classifying sequences as random or nonrandom with respect to a specific
notion of randomness, it may be informative to compare the degree of randomness of two
sequences, and corresponding notions of relative randomness are a central object of study
in algorithmic randomness. According to Downey and Hirschfeldt [5], here the aim is to
understand whether a given real number is “more random” than another. For example,
the following notion of relative randomness can be derived from the compressibility
approach to define randomness. For given n, the prefix-free Kolmogorov complexity
of the initial segments of length n of two sequences are compared and, in case the
complexity of the segments of the first sequence is for almost all n less than or equal
to that of the segments of the second sequence, the first sequence is considered to be at
most as random as the second one. The latter notion of relative randomness is rather
natural but exhibits some defects: not all sequences are at most as random as every
given Martin-Löf random sequences and not even for all pairs of Martin-Löf random
both sequences are mutually at most as random as the other one.

A notion of relative randomness that behaves better with respect to Martin-Löf ran-
domness is obtained by an approach, where a first sequence is considered to be at most
as random as a second sequence in case, given a point close to the second sequence, one
can effectively find some point close to the first sequence. In order to be able to define
the corresponding formal notion, which is called Solovay reducibility, we review further
notation.

As usual, a sequence A(0)A(1) . . . is viewed as representation of the real with binary
expansion 0.A(0)A(1) . . .. This way, we basically obtain an identification of sequences
and reals in the unit interval, except that the representations of dyadic rationals are
not unique, e.g., the real 0.1 has two distinct representations 0.1000 . . . and 0.0111 . . ..

3



In what follows, we will no longer speak of sequences but of reals, where such reals are
meant to be in the unit interval.

A real α is Solovay reducible to a real β if there is a constant c and partial computable
function g from rationals to rationals such that, for every rational q < β, the value g(q)
is defined and satisfies g(q) < α and

α− g(q) < c(β − q). (3)

In the latter situation, we refer to g as translation function and to c as Solovay
constant.

Research on Solovay reducibility is usually restricted to the realm of left-c.e. reals. Recall
that a real α is left-c.e. in case α has a left-c.e. approximation, i.e., a nondecreas-
ing sequence q0, q1, . . . of rationals that is computable and converges to α; as usual, the
acronym c.e. stands for computably enumerable. According to Calude et Al. [2], for left-
c.e. reals α and β, the fact that α is Solovay reducible to β can be equivalently defined by
requiring that there is a constant c such that, for every left-c.e. approximation b0, b1, . . .
of β, there is a left-c.e. approximation a0, a1, . . . of α such that we have for all n the
inequality

α− an < c(β − bn). (4)

Solovay reducibility is obviously reflexive and transitive, hence, as usual, it partitions the
set of all reals into Solovay degrees, i.e., maximum subsets of reals that are mutually
Solovay reducible to each other, where then a partial order on these degrees is induced
canonically.

As already said, we would like to argue that Solovay reducibility is a notion of relative
randomness in the sense that, if α is Solovay reducible to β, then α can be considered
to be at most as random as β. Accordingly, one would require as a necessary condition
that there is a greatest Solovay degree, which is formed by the reals that fall under some
notion of randomness. When restricting attention to left-c.e. reals, such an assertion
holds for the notion of Martin-Löf randomness.

Left c.e. Martin-Löf random reals, which are also called Ω-numbers, have already been
investigated by Solovay [17] when introducing the reducibility that now goes under his
name. Such reals have several interesting characterizations, for example, they coincide
with the measures of domains of universal prefix-free Turing machines. A celebrated
result of Kučera and Slaman [8] dating back to 2001 provides another characterization:
the left-c.e. Martin-Löf random reals form a Solovay degree that is above all other Solo-
vay degrees of left-c.e. reals. From the proof of the latter result, it follows that not
only all left-c.e. Martin-Löf random reals are mutually Solovay reducible to each other
but that, in fact, this works via arbitrary left-c.e. approximations. That is, given any
left-c.e. approximations a0, a1, . . . and b0, b1, . . . of Martin-Löf random reals α and β,
respectively, the inequality (4) holds for some Solovay constant, hence, by symmetry, for
some appropriate constant c and all n, it holds that

1

c
<

α− an
β − bn

< c. (5)
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So, any two left-c.e. approximations that both converge to some Martin-Löf random
reals converge to their respective limits, intuitively speaking, at the same speed up to
constant factors. This already surprising result was considerably strengthened by a
result of Barmpalias and Lewis-Pye [1, 11], who demonstrated that, for any such left-
approximations to Martin-Löf random reals α and β, the limit

lim
n→∞

α− an
β − bn

(6)

exists and depends only on α and β but is independent of the considered left-c.e. ap-
proximations of α and β.

Monotone Solovay reducibility Solovay reducibility, though defined as a binary re-
lation on the set of all reals, is usually only investigated in a setting of left-c.e. reals
and, in fact, is viewed as “badly behaved” in general on arbitrary reals [5, Section 9.1].
There are a few exceptions to the latter statement, though. For example, the Martin-Löf
random reals are close upwards under Solovay reducibility, i.e., if a Martin-Löf random
real α is Solovay reducible to a real β then also β must be Martin-Löf random. This
is shown by arguing that any Martin-Löf test that fails on β could be transformed into
one that fails on α by using the translation function witnessing the Solovay reducibility
from α to β.

Let monotone Solovay reducibility be introduced by literally the same definition as Solo-
vay reducibility except that, in addition, the translation function g in (3) is required to
be nondecreasing, i.e., whenever g is defined on two rationals q1 and q2, where q1 < q2,
then it holds that g(q1) ≤ g(q2). The central theme of this thesis is that, when extending
the realm of investigation from the left-c.e. to all reals, instead of Solovay reducibility,
its monotone variant should be used.

Arguments in favour of using monotone Solovay reducibility include the following. On
the left-c.e. reals, Solovay reducibility and its monotone variant coincide, hence all re-
sults obtained for left-c.e. reals remain valid. Monotone Solovay reducibility exhibits
several closure properties: the classes of computable, of left-c.e., of right-c.e., of d.c.e.,
and of computably approximable, or ∆0

2, reals are all closed downwards under monotone
Solovay reducibility. That is, if, for one of these classes, some real is monotone Solovay
reducibility to some real in the class, then the former real is in this class as well. Fur-
thermore, several results about speedability of left-c.e. reals can be extended to arbitrary
reals when considering a notion of speedability that corresponds to monotone Solovay
reducibility, see the next paragraph for details. Finally and most important, as the main
result of this thesis, it will be demonstrated that the mentioned result of Barmpalias
and Lewis-Pye [1, 11] extends to arbitrary Martin-Löf random reals when considering
monotone Solovay reducibility. While some of the mentioned results on monotone Solo-
vay reducibility, e.g., the downwards closure of the left-c.e. reals, are simply inherited
from Solovay reducibility, for several others, it can be demonstrated that they only hold
for the monotone variant.
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Speedability Given a left-c.e. approximation, we may ask whether we can effectively
go to a subsequence of the approximation such that the rationals in the subsequence are
significantly closer to their limit than the approximation we have started with. Formally,
define a speed-up function to be a nondecreasing function f from the set of natural
numbers to itself that satisfies n ≤ f(n). Then call a left-c.e. approximation a0, a1, . . .
ρ-speedable if there is a speed-up function f such that we have

lim inf
n→∞

α− af(n)

α− an
≤ ρ, (7)

and call a real α speedable if it has some left-c.e. approximation that is ρ-speedable for
some ρ < 1. Note that in case we require instead that the fraction in (7) is less than
or equal to some ρ < 1 for all n, this condition would only be satisfied by computable
reals. By the mentioned result of Barmpalias and Lewis-Pye, a left-c.e. Martin-Löf
random α cannot be speedable as follows by applying their result to any left-c.e. approx-
imation a0, a1, . . . of α and with β equal to α: if we let bn be equal to an, the limit (6)
will be equal to 1, hence it must also be equal to 1 in case we let bn be equal to af(n)
for any computable speed-up function f .

Results obtained about the speedability of left-c.e. reals include a short direct proof for
the nonspeedability of left-c.e. Martin-Löf random reals and that all nonhigh left-c.e.
reals are speedable. Furthermore, the notion of speedability exhibits several robustness
properties: a left-c.e. real is speedable if and only if it is ρ-speedable for every ρ > 0 and
with respect to any of its left-c.e. approximations. Also speedability is a degree property
in the sense that either all or none of the left-c.e. reals in a Solovay degree are speedable.

By the same pattern, a notion of speedability can be extended on R by deriving it from
monotone Solovay reducibility. In what follows, it is demonstrated that basic results
about the speedability of left-c.e. reals extend on R, which provides further indication
that Solovay reducibility should be replaced by its monotone variant when considering
arbitrary and not just left-c.e. reals. More precisely, Martin-Löf random reals are again
nonspeedable, and the notion of speedability on R is robust in so far as every speedable
real is ρ-speedable for every ρ > 0.

A defect of monotone Solovay reducibility When considering arbitrary, not necessary
left-c.e. reals, Solovay reducibility and monotone Solovay reducibility share the defect
that the computable reals are not reducible to all other reals. Indeed, one can construct
a right-c.e. real to which no left-c.e., and consequently, no computable real is Solovay
reducible [5, Proposition 9.6.1]. Rettinger and Zheng [19] have introduced several, par-
tially somewhat technical variants of Solovay reducibility that are designed in order to
overcome this defect. We will conclude the thesis by comparing these variants with
monotone Solovay reducibility.

Overview In Chapter 2, basic notation and standard results about Solovay reducibility
are reviewed. In Chapter 3, the monotone variant of Solovay reducibility is introduced
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and some of its basic properties are shown, including the downwards closure of several
standard classes of reals. Chapters 4 and 5 deal with the notion of speedability for left-
c.e. and for arbitrary reals, respectively. The main result of this thesis, the extension
of the theorem of Barmpalias and Lewis-Pye [1, 11] from left-c.e. to arbitrary reals
with respect to monotone Solovay reducibility is the content of Chapter 6. Finally, in
Chapter 7, several variants of Solovay reducibility introduced by Rettinger and Zheng [19]
are reviewed and compared to monotone Solovay reducibility.

Notation As usual, we identify a subset A of the set N = {0, 1, . . .} of natural number
with its characteristic sequence A(0)A(1) . . . , where A(n) is 0 in case n is in A and
is 1, otherwise. Infinite binary sequences are identified in turn with the real numbers
on the unit interval, where a sequence A is identified with the real that has binary
expansion 0.A(0)A(1) . . . . This way, for example, the sequences 1000 . . . and 0111 . . .
are formally identified with each other but, in what follows, this will not be relevant.

The classes of natural, rational, dyadic rational and real numbers are denoted by ω, Q,
Q2 and R, respectively. Recall that a rationals number q is dyadic if it can be written in
the form z

2t for an integer z and a natural number t. The denominator t is the length of
the binary representation of q and will be denoted as l(q). As usual, for real numbers a
and b, where a ≤ b, we write (a, b) and [a, b] for the open and the closed, respectively,
intervals with left endpoint a and right endpoint b and similarly for half-open intervals,
e.g., [0, 1) denotes the half-open unit interval of all reals r that fulfill 0 ≤ r < 1. In
case b < a, all such intervals are equal to the empty set.

We assume that the reader is familiar with standard concepts and basic results of recur-
sion theory such as decidable or recursively enumerable sets, computable sequences of
rationals or padding lemma. Note that the term ”computable set” refers to a computable
subset of natural numbers, which is in the literature often denoted as decidable set. For
unexplained concepts and notation, see, for example, the monographs by Downey and
Hirschfeldt [5] and by Soare [16].
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2 Solovay reducibility on left-c.e. reals

2.1 Computable and left-c.e. reals

We review some characterizations of computable and left-c.e. reals. As usual, we restrict
attention to reals in the unit interval in order to facilitate the identification of a set A
with the real that has binary expansion 0.A(0)A(1) . . .. Accordingly, in what follows,
real means real in the unit interval [0, 1] unless explicitly specified otherwise.

Definition 1. A real α is computable if α = 0.A(0)A(1) . . . for some decidable set A.
The set of all computable reals will be denoted by COMP.

The next proposition reviews some well-known equivalent characterizations of com-
putable reals using the notions of left cut, where the third characterization is implicit
already in Turing [18], see Section 5.1 in Downey and Hirschfeldt [5]. Recall that the
left cut of a real α is the set {q ∈ Q| : q < α}.

Proposition 2. For a real α, the following statements are equivalent:

(a) The real α is computable.

(b) The left cut of α is computable.

(c) There exists a computable sequence a0, a1, . . . of rationals such that, for all naturals
numbers n, it holds that

α− an < 2−n. (8)

For given α, a sequence a0, a1, . . . that satisfies Condition (c) in Proposition 2 is said to
witness that α is computable.

Remark 3. For further use, observe that, for every computable real α > 0, there is a se-
quence a0, a1, . . . of rationals that witnesses that α is computable such that a0 < a1 < . . .,
hence, in particular, all ai are strictly less than α.

In order to obtain such a sequence for a given computable real α, let a0, a1, . . . be a
sequence of rationals that witnesses that α is computable. If we let a′n be equal to the
maximum of 0 and an+2− 2−(n+2), then we have a′n < α and α−a′n < 2−(n+1). The two
latter properties then also hold for a′′n in place of a′n, where a′′n is equal to the maximum
of a′0, . . . , a

′
n. The latter sequence is nondecreasing but not necessarily strictly increasing;

in order to obtain a sequence as required, fix k > 1 in ω such that 2−k < a′′0 and
consider the sequence of the values a′′n − 2−(k+n) for n = 0, 1, . . .. Observe that the
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sequence a′′0, a
′′
1, . . . converges to α > 0 and that thus we can assume a′′0 > 0 because,

otherwise, we can simply shift the start of the sequence to a nonzero element.

We proceed with reviewing standard notation. As usual, the acronyms c.e. and d.c.e.
stand for “computably enumerable” and “difference computably enumerable”, respec-
tively.

Definition 4. A computable approximation of a real α is a computable sequence of
rationals a0, a1, . . . that converges to α. Such a sequence is a left-c.e. approximation
of α if the sequence is nondecreasing, a right-c.e. approximation of α if the sequence
is nonincreasing and d.c.e. if the sum of |ai+1 − ai| for all i is bounded from above.

A real α is computably approximable, sometimes also called ∆0
2, if there is a com-

putable approximation of α. A real α is left-c.e if there is a left-c.e. approximation
of α. Similarly, a real α is right-c.e. and d.c.e. if there is a right-c.e. approximation
and d.c.e. approximation of α, respectively.

The sets of all left-c.e., all right-c.e. and all d.c.e. reals are denoted by LEFT−CE,
RIGHT−CE and DCE, respectively.

We will occasionally use the notation

an ↗ α or an ↘ α

if a sequence a0, a1, . . . tends to α and is nondecreasing or nonincreasing, respectively.

Remark 5. From time to time, we will tacitly assume that a given left-c.e. approxi-
mation a0, a1, . . . of a nonzero real is strictly increasing. Indeed, in case the approx-
imation becomes stable, i.e., if an = an+1 = . . . for some n, we can switch to the
sequence an − 2−k, an+1 − 2−k+1, . . . for some k such that 2−k < an, while, otherwise,
we can switch to an effectively obtained strictly increasing subsequence.

Standard results about left- and right-c.e reals include that left-c.e. reals can be charac-
terized via left cuts [15] and that a real is computable if and only if it is both, left- and
right-c.e. Motivated by the latter fact, in the literature, left-c.e. and right-c.e. reals are
sometimes called lower and upper, respectively, semi-computable reals.

Proposition 6. A real α is left-c.e. if and only if the left cut of α is computably enu-
merable.

Proof. Given a left-c.e. approximation a0, a1, . . ., an effective enumeration of the left cut
of α is obtained by enumerating all rationals that are strictly smaller than any of the
values an.

Conversely, given an effective enumeration q0, q1, . . . of the left cut of α, the nondecreas-
ing sequence a0, a1, . . ., where an is the maximum value among q0, . . . , qn, is a left-c.e.
approximation of α.
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Proposition 7 (Folklore). A real α is left-c.e. if and only if −α is right-c.e. Further,
α is computable if and only if α is left-c.e and right-c.e.

Proof. Let α be a real. If there exists a left-c.e. approximation a0, a1, . . . of α, then the
sequence −a0,−a1, . . . is a right-c.e. approximation of −α and vise versa.

In case α is computable, the construction in Remark 3 yields a left-c.e. approximation
of α, hence α is left-c.e. A right-c.e. approximation of α can be obtained by a very
similar symmetric construction.

Conversely, if b0, b1, . . . and c0, c1, . . . are left-c.e. and right-c.e. approximations of α,
respectively, then we obtain a sequence a0, a1, . . . that witnesses that α is computable
by letting an be equal to bi for the least i such that ci − bi < 2−n.

The following easy lemma is stated for further use.

Lemma 8. Let α be a real number, and let a0, a1, . . . be a computable sequence of ratio-
nals such that α = lim inf

n→∞
an and an < α for all n. Then α is left-c.e.

Proof. By an < α, it follows that lim sup an ≤ α = lim inf an, hence the sequence a0, a1, . . .
converges to α. Consequently, the sequence b0, b1, . . ., where bn = maxi≤n ai, is a left-c.e.
approximation of α, hence α is left-c.e.

2.2 Solovay reducibility via translation functions

Solovay reducibility is a standard tool for comparing how fast left-c.e. approximations
to two given reals converge.

Definition 9. A translation function for the pair (α, β), or, less formal, for the
reals α and β, is a partially computable function g from the set Q ∩ [0, 1] to itself such
that g is defined for all rationals q < β and, for all such q, it holds that q(q) < α.

A real α is Solovay reducible to a real β, also written as α≤Sβ, if there is a constant c
and a translation function for α and β such that, for all q < β, it holds that

α− g(q) < c(β − q). (9)

We refer to the fact that the latter inequality is true for all such q as Solovay property
and denote the real c as Solovay constant.

Research on Solovay reducibility usually restricts attention to the class of left-c.e. re-
als. We will argue in Chapter 3 that, in order to extend some results about Solovay
reducibility to all reals, it makes sense to require that translation functions are nonde-
creasing, i.e., whenever such a function g is defined on q1 and q2, where q1 < q2, it holds
that g(q1) ≤ g(q2). By the next Proposition, this additional requirement does not make
a difference when Solovay reducibility is considered only for left-c.e. reals.

11



Proposition 10. Let α and β be reals, where β is left-c.e. and α is Solovay reducible
to β with Solovay constant c. Then α is Solovay reducible to β with Solovay constant c
via some nondecreasing translation function.

Proof. Assume that α is Solovay reducible to β with Solovay constant c via some transla-
tion function g0. Fix some left-c.e. approximation b0, b1, . . . of β and define a translation
function g as follows. For a given argument q of g, let k(q) be the least index such
that q ≤ bk(q). If the latter index is undefined, the function g is undefined on q, while,
otherwise, let g(q) be equal to the maximum value among g0(b0), . . . , g0(bk(q)). Note
that g is a nondecreasing translation function that is defined exactly on all q < β.
Furthermore, the function g witnesses that α is Solovay reducible to β with Solovay
constant c because, for all q < β, we have

α− g(q) ≤ α− g0(bk(q)) < c(β − bk(q)) ≤ c(β − q).

For further use, we state the following observation on translation functions.

Proposition 11. Let the real α be Solovay reducible to some real β via some translation
function g. Then it holds for every sequence q0, q1, . . . of rationals that converges to β
and fulfills qn < β for all n that

lim
n→∞

g(qn) = α. (10)

Proof. By assumption on g, for all n, the value α − g(qn) is defined, nonnegative and
bounded from above by c(β−qn), where c is the corresponding Solovay constant. When n
goes to infinity, the latter values tend to 0, hence the values g(qn) tend to α.

Proposition 12 (Folklore). The classes of computable reals and of left-c.e. reals are
both closed downwards under Solovay reducibility.

Proof. Let the real α be Solovay reducible to some real β via some translation function g
and a Solovay constant c that is a natural number.

First, let β be computable. Let b0, b1, . . . be a left-c.e. approximation of β according to
Remark 3, i.e., in particular, it holds that bk < β and β − bk < 2−k for all k. Let an be
equal to g(bn+c). Then the sequence a0, a1, . . . witnesses that the real α is computable
because the sequence is computable and, by assumption on g, we have for all n

α− an = α− g(bn+c) ≤ c(β − bn+c) < 2c · 2−(n+c) = 2−n.

Next, assume that β is left-c.e. and fix some left-c.e. approximation b0, b2, . . . of β.
Then g(bn) < α for all n and the computable sequence g(b0), g(b1), . . . converges to α by
Proposition 11. Therefore, the real α is left-c.e. by Lemma 8.
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2.3 Solovay reducibility via index functions

That some real is Solovay reducible to a left-c.e. real can be equivalently expressed in
terms of left-c.e. approximations.

Proposition 13. Let α and β be left-c.e. reals, let b0, b1, . . . be a left-c.e. approximation
of β, and let c be a constant. Then α is Solovay reducible to β with Solovay constant c if
and only if there is a left-c.e. approximation a0, a1, . . . of α such that, for all n, we have

α− an < c(β − bn). (11)

We refer to the fact that the latter inequality is true for all n as index form of the
Solovay property.

Proof. First, let α be Solovay reducible to β with Solovay constant c and let g be some
translation function that witnesses the latter fact. Now, it suffices to let an be the
maximum value among g(b0), . . . , g(bn) and to observe that (11) follows by the same
argument as in proof of Proposition 10.

Conversely, assume that there is a left-c.e. approximations a0, a1, . . . of α that satis-
fies (11). For a given rational q, let k(q) be the least index such that q ≤ bk(q) and,
if the latter index is defined, let g(q) be equal to ak(q). Then the function g witnesses
that α is Solovay reducible to β with Solovay constant c because, by construction, g is
a translation function that is defined on all q < β and satisfies for all such q

α− g(q) = α− ak(q) < c(β − bk(q)) ≤ c(β − q).

Next, we list some well-known equivalent variants of the index form of Solovay reducibil-
ity.

Definition 14. An index function is a nondecreasing function f : ω → ω.

Proposition 15 (partly by Calude, Hertling, Khoussainov and Wang, [2]). Let α and β
be left-c.e. reals and let c be a positive constant. Then the following statements are
equivalent.

(a) The real α is Solovay reducible to β with Solovay constant c.

(b) For every pair of left-c.e. approximations a0, a1, . . . of α and b0, b1, . . . of β, there
is a computable index function f such that, for all n, it holds that

α− af(n) < c(β − bn). (12)

(c) For every pair of left-c.e. approximations a0, a1, . . . of α and b0, b1, . . . of β, there
is a strictly increasing computable index function f such that (12) holds for all n.
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Proof. We show the chain of implications (a) ⇒ (b) ⇒ (c) ⇒ (a).

(a) ⇒ (b). Let left-c.e. approximations a0, a1, . . . and b0, b1, . . . of α and β, respectively,
be given. By (a) and Proposition 13, we can fix a left-c.e. approximation a′0, a

′
1, . . . of α

that satisfies (11) with an replaced by a′n. Let f(n) be equal to the least index ℓ such
that a′n < aℓ. We then have

α− af(n) ≤ α− a′n < c(β − bn).

(b) ⇒ (c). It suffices to observe that (12) remains valid when f(n) is replaced by any
larger value. So, given an index function f as in (b), the index function n 7→ f(0)+. . .+f(n)
is as required in (c).

(c) ⇒ (a). Let left-c.e. reals α and β be given. If we fix arbitrary left-c.e. approximations
of α and β, we obtain by (c) an index function that witnesses that α is Solovay reducible
to β with Solovay constant c.

In Chapter 4, we will argue that the notion of speedability introduced there should
not be defined in terms of partial index functions. However, for left-c.e. reals, Solovay
reducibility itself can be equivalently characterized by partial index functions.

Remark 16. Let a0, a1, . . . and b0, b1, . . . be left-c.e. approximations of reals α and β,
respectively. Let f be a nondecreasing partial computable function that is defined on
infinitely many n such that (12) holds for every such n. By dovetailing the computations
of f(0), f(1), . . ., we obtain an effective sequence n0 < n1 < . . . of natural numbers
in the domain of f . For all n, let k(n) be the least index k such that n ≤ nk and
let f ′(n) = maxi≤k(n) f(ni). By construction, f ′ is a nondecreasing computable index
function that witnesses that α is Solovay reducible to β because, for all n, we have

a− af ′(n) = a− amaxi≤k(n) f(ni) ≤ a− af(nk(n)) < c(β − bnk(n)
) ≤ c(β − bn).

2.4 Solovay degrees

Solovay reducibility is a reflexive and transitive relation, hence the Solovay degree of a
real α can be defined in the usual way as

deg(α) = {β ∈ [0, 1] : α≤Sβ and β≤Sα},

while Solovay reducibility induces canonically a partial order on the Solovay degrees.
Propositions 17 and 19 together with Theorem 23 summarize some well-known structural
properties of the left-c.e. reals under Solovay reducibility. By the downwards closure of
the left-c.e. reals under Solovay reducibility, either all or none of the reals in a Solovay
real are left-c.e., so, we call a Solovay degree left-c.e. in case all reals in the degree are
left-c.e.
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Proposition 17 (Solovay [17], Calude, Hertling, Khoussainov and Wang [2], Downey,
Hirschfeldt and Nies [6]). The left-c.e. Solovay degrees under the partial order induced
by Solovay reducibility form an upper semilattice, where addition is a join operation.

Lemma 18. Every computable real is Solovay reducible to every left-c.e. real.

Proof. Let α be a computable real, and let β be a left-c.e. real. Let a0, a1, . . . be a left-c.e.
approximation of α according to Remark 3, i.e., in particular, it holds that α−ak < 2−k

for all k. Let b0, b1, . . . be a left-c.e. approximation of β that is strictly increasing. For a
given index n, let g(n) be equal to the least natural number k such that 2−k < bn+1− bn
and let g′(n) be equal to the maximum number in range g(0), . . . , g(n). Then g is
computable and nondecreasing and we have for all n

α− ag′(n) ≤ α− ag(n) < 2−g(n) < bn+1 − bn < β − bn,

thus, the index function g′ witnesses that α is Solovay reducible to β.

Proposition 19 (Folklore). The computable reals form a Solovay degree that is the least
among all left-c.e. Solovay degrees.

Proof. By Lemma 18, there is a least degree among left-c.e. degrees that contains all
computable reals. Since the class of computable reals is closed downwards under Solovay
reducibility by Proposition 12, the least degree cannot contain any noncomputable reals.

2.5 Solovay reducibility and Martin-Löf random left-c.e. reals

The notion of a Martin-Löf random real can be defined via several natural characteri-
zations in terms of Martin-Löf test, martingales and Kolmogorov complexity. In what
follows, we will use the following characterization via Solovay tests that contain closed
subintervals of the unit interval. This characterization is well-suited for our purposes
and is easily seen to yield an equivalent definition of Martin-Löf randomness.

Definition 20. A Solovay test is a sequence U0, U1, . . . of closed subintervals Ui = [pi, qi]
on [0, 1], where p0, p1, . . . and q0, q1, . . . are both computable sequences of rationals that
fulfill pi ≤ qi for every i, such that the sum of the uniform measures of the intervals in
this sequence is finite, i.e., such that

∞∑
i=0

|Ui| =
∞∑
i=0

(qi − pi) < ∞.

A real α is Martin-Löf random, or, for short, ML-random, if there is no Solovay
test U0, U1, . . . such that α is contained in Ui for infinitely many i.
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Solovay [17] demonstrated that the Martin-Löf random left-c.e. reals are closed upwards
under Solovay reducibility. In the following theorem, we will show this closure property
for all reals.

Theorem 21 (Solovay). Let the Martin-Löf random real α be Solovay reducible to some
real β. Then β is Martin-Löf random.

Corollary 22. The class of Martin-Löf random reals is closed upwards under Solovay
reducibility.

Proof of Theorem 21. Let the Martin-Löf random real α be Solovay reducible to some
real β via some translation function g and Solovay constant c. For a proof by con-
tradiction, we assume that β is not Martin-Löf random. So we can fix a Solovay
test [p0, q0], [p1, q1], . . . that fails on β in the sense that β is in [pn, qn] for infinitely
many indices n. For every such n, the choice of g and c implies that g(pn) < α and
α− g(pn) < c(β − pn) < c(qn − pn), hence we have

α ∈ [g(pn), g(pn) + c(qn − pn)]. (13)

So, the Martin-Löf random real α is contained in infinitely many such intervals, and
therefore, in order to obtain the desired contradiction, it suffices to show that the inter-
vals as in (13) for n = 0, 1, . . . form a Solovay test. The latter holds true because, for
given n, the rationals g(pn) and g(qn) can be computed and the sum of the Lebesgue
measures of the intervals in the test is finite since we have∑

n∈ω
|[g(pn), g(pn) + c(qn − pn)]| = c

∑
n∈ω

(qn − pn) = c
∑
n∈ω

|[pn, qn]| ,

where |[a, b]| = b − a denotes the Lebesgue measure of an interval [a, b]. The last value
in this chain is finite since it is just the sum of the Lebesgue measures of the intervals
in the given Solovay test.

Assuming that there is a largest degree among the left-c.e. Solovay degrees, every left-c.e.
real is Solovay reducible to every real in this degree. Since there are Martin-Löf random
left-c.e. reals, by Corollary 22, all reals in such a largest degree must be Martin-Löf
random.

By a celebrated result, which is the culmination of work by several groups of authors, the
left-c.e. Solovay degrees possess a largest degree, which contains exactly the Martin-Löf
random left-c.e. reals.

Theorem 23 (Solovay [17], Calude, Hertling, Khoussainov and Wang [2], Kučera and
Slaman [8]). The left-c.e. Solovay degrees possess a largest degree, which coincides with
the class of Martin-Löf random left-c.e. reals.
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3 Monotone Solovay reducibility

In what follows, we want to come up with a notion of Solovay reducibility that is suit-
able to be applied to arbitrary, not necessarily left-c.e. reals. The definition of Solovay
reducibility in terms of translation functions indeed applies to arbitrary reals, albeit
we will argue that it is advantageous to use the following monotone variant of Solovay
reducibility instead. Recall that a partial function g : Q → Q is nondecreasing if we
have g(q1) ≤ g(q2) for all q1 < q2 in the domain of g.

Definition 24. A real α is monotone Solovay reducible to some real β, written
α≤m

S β, if α is Solovay reducible to β via a translation function g that is monotonically
nondecreasing.

By the following proposition, monotone Solovay reducibility can indeed be considered as
a natural extension of Solovay reducibility on LEFT−CE to arbitrary reals.

Proposition 25. Solovay reducibility and monotone Solovay reducibility coincide on the
set of left-c.e. reals.

Proof. By definition, monotone Solovay reducibility implies Solovay reducibility. The
nontrivial implication in Proposition 25 is immediate by Proposition 10, where it was
shown that even the same Solovay constants can be achieved for both reducibilities.

We can easily see that this extension is proper since, for every (not necessarily left-c.e.)
real α and every rational d > 0, it holds that dα≤m

S α via the nondecreasing translation
function g(q) = dq and a constant 1

d . A nontrivial example of a further real α′ such that
α′≤m

S α can be constructed using the merging operator ⊕ for binary representations that
we define as follows.

For two infinite binary sequences A = A(0)A(1) . . . and B = B(0)B(1) . . ., we write A⊕B
for the infinite binary sequence with elements of A on even places and elements of B on
the odd places:

(A⊕B)(2n) = A(n),

(A⊕B)(2n+ 1) = B(n).

For two reals α = 0, A and β = 0, B, the real 0, A⊕B will also be denoted as α⊕ β:

α⊕ β = 0, (A⊕B).
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Finally, we identify every nondyadic rational with its unique binary representation as
an infinite periodic fracture and every dyadic rational m

2n = 0, k1 . . . , kn with its infinite
binary representation 0, k1 . . . , kn000 . . . .

Proposition 26. Let 0 be the infinite sequence of zeroes. Then, for every real α, it
holds that α⊕ 0≤m

S α.

Proof. The function g(q) = q ⊕ 0 is computable, nondecreasing, maps every q ∈ [0, α)
in q ⊕ 0 ∈ [0, α⊕ 0), and, for every q < α, we can easily see that

α⊕ 0− q ⊕ 0 < α− q,

hence α≤Sβ via d and Solovay constant c = 1.

Monotone Solovay reducibility is reflexive and transitive, hence, it introduces a degree
structure in the usual way.

Proposition 27. Monotone Solovay reducibility is a reflexive and transitive relation.

Proof. Every real α is monotone Solovay reducible to itself by choosing the identity
function as a translation function. Next, let α be monotone Solovay reducible to β via
the translation function gα for α and β, let β be monotone Solovay reducible to γ via the
translation function gβ for β and γ and let cα and cβ be corresponding Solovay constants.
Then the composition gβ ◦ gα is a computable translation function that is nondecreasing
and witnesses that α is monotone Solovay reducible to γ with Solovay constant cα · cβ,
details are left to the reader.

Corollary 28. Monotone Solovay reducibility induces a degree structure on the set of
real numbers.

3.1 Closure properties of monotone Solovay reducibility

Since monotone Solovay reducibility implies Solovay reducibility, every downwards and
upwards closure that holds for the latter reducibility also holds for the former one. In
particular, by Proposition 12 and Corollary 22, we obtain the following.

Proposition 29. The classes of computable reals and of left-c.e. reals are both closed
downwards under monotone Solovay reducibility.

The class of Martin-Löf random reals is closed upwards under monotone Solovay re-
ducibility.

We start the investigation of further closer properties and, in general, the degree struc-
ture induced by the monotone Solovay reducibility by technical lemmas describing the
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behavior of a translation function witnessing the monotone Solovay reducibility to some
real when applied to arguments below and above this real.

One can also note that the monotonicity of the translation function g from the definition
of ≤m

S on its domain implies that, for every q > β lying in dom(g), it holds that g(q) ≥ α.
We will examine the possible behavior of g more precisely in the Proposition 31.

Lemma 30. Let the real α be monotone Solovay reducible to a real β via translation
function g and Solovay constant c. Then, for every q > β in the domain of g, it holds
that g(q) ≥ α.

Proof. Assuming that, for some rational q > β, it holds that g(q) < α, fix some ratio-

nal q′ < β that differs from β by strictly less than α−g(q)
c . By the Solovay property, we

obtain

α− g(q′) < c(β − q′) < c

(
α− g(q)

c

)
= α− g(q),

which implies g(q′) > g(q), and therefore, by q′ < q, contradicts to the assumption that g
is nondecreasing.

Lemma 31. Let the translation function g witness that some real α is Solovay reducible
to a real β. Let q0, q1, . . . be a sequence of rationals in the domain of g that converges
to β.

Then β is right-c.e. or the sequence g(q0), g(q1), . . . converges to α.

If, in addition, the translation function g is nondecreasing, i.e., witnesses that α is
monotone Solovay reducible to β, then β is computable or the sequence g(q0), g(q1), . . .
converges to α.

Proof. In case β is a rational, there is nothing to prove, hence we can assume that all qi
differ from β. The Solovay condition for g implies that the subsequence of g(q0), g(q1), . . .
of all g(qi), where qi < β, converges to α. Therefore, in case the sequence g(q0), g(q1), . . .
does not converge to α, at least one of the two following cases applies.

I There is a rational p > α and infinitely many indices i such that qi > β and g(qi) > p.

II There is a rational p < α and infinitely many indices i such that qi > β and g(qi) < p.

In Case I, let L be the set of indices i, where g(qi) > p. Then the set L can be effectively
enumerated, contains only indices i, where qi > β, and contains indices i, where qi is
arbitrarily close to β. The latter follows since L is infinite and the sequence q0, q1, . . .
converges to β. So, given an effective enumeration i0, i1, . . . of the set L, in case we let
for all n

bn = min{qi0 , . . . , qin},

the sequence b0, b1, . . . is a right-c.e. approximation of β, hence β is right-c.e.

In Case II, by the Solovay condition for g, we can fix a rational p0 < β such that, for
all q fulfilling p0 ≤ q < β, it holds that g(q) > p. Let S be the set of all indices i such
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that qi > p0 and g(qi) < p. Then the set L can be effectively enumerated, contains only
indices i such that qi > β and contains indices i such that qi is arbitrarily close to β,
hence it follows by essentially the same argument as in Case I that β is right-c.e.

Next, assume that g is in addition nondecreasing. If the sequence g(q0), g(q1), . . . con-
verges to α, we are done, so, we can assume the opposite. Then the argument that β is
right-c.e. is still valid. We conclude the proof of the lemma by showing that β is also
left-c.e., and thus, it is computable by Proposition 7. By Lemma 30, Case II is ruled
out, hence we can fix a rational as in Case I. Again, we can argue that there are qi > β
arbitrarily close to β that fulfill g(qi) > p. By monotonicity of g, this implies g(q) > p
for all q > β in the domain of g, hence β is left-c.e. since its left-cut is equal to the set
of all q < p in the domain of g, which can be effectively enumerable.

Proposition 32. Let the real α be monotone Solovay reducible to some right-c.e. real β.
Then α is right-c.e.

Proof. Let the translation function g witness that α is monotone Solovay reducible
to β, and let b0, b1, . . . be a right-c.e. approximation of β. By Lemma 31, the real β
is computable or the computable sequence g(b0), g(b1), . . . converges to α. In the latter
case, since the sequence b0, b1, · · · is nonincreasing and by monotonicity of g, also the
sequence g(b0), g(b1), · · · is nonincreasing, hence it is a right-c.e. approximation of α,
thus, α is right-c.e. In case β is computable, by Proposition 12, also α is computable,
hence α is right-c.e.

Proposition 33. In case the real α is Solovay reducible to the computably approximable
real β, then α is computably approximable or β is right-c.e. In case α is monotone
Solovay reducible to β, the real α is computably approximable.

Proof. Let the translation function g witness that α is Solovay reducible to β, and
let b0, b1, . . . be a computable approximation of β. We show the first assertion of the
proposition. In case β is right-c.e., we are done. So we can assume the opposite, hence,
in particular, all bi differ from β and there are infinitely many i such that bi < β.
Observe further that we can assume that g is defined on all bi because, otherwise,
by dovetailing the computations of the values g(b0), g(b1), . . ., we obtain a computable
infinite subsequence of b0, b1, . . . that contains only numbers in the domain of g, which
we could use instead.

By Lemma 31, the computable sequence g(b0), g(b1), . . . converges to α, hence α is com-
putably approximable or the real β is right-c.e. In the latter case, if α is actually
monotone Solovay reducible to β, then, by the downwards closure of the right-c.e. reals
under monotone Solovay reducibility according to Proposition 12, the real α is right-c.e.,
and therefore, it is computably approximable.

Proposition 34. Let the real α be monotone Solovay reducible to some d.c.e. real β.
Then α is d.c.e.
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Proof. Let the translation function g witness that α is Solovay reducible to β, and
let b0, b1, . . . be a computable approximation of β. If β is left-c.e. or right-c.e., then so
is α by the closure properties of monotone Solovay reducibility and we are done. So
we can assume the opposite. Thus, in particular, all bi differ from β and there are
infinitely many i fulfilling bi < β and infinitely many i fulfilling bi > β. Observe further
that we can assume that g is defined on all bi because, otherwise, by dovetailing the
computations of the values g(b0), g(b1), . . ., we obtain a computable infinite subsequence
of b0, b1, . . . that contains only numbers in the domain of g, which we could use instead.
Let an = g(bn). Then a0, a1, . . . is a computable approximation of α by Lemma 31 and
since β is assumed not to be computable.

Next, we define inductively and effectively an infinite strictly increasing sequence i0, i1, . . .
of indices. Then the sequence ai0 , ai1 , . . . is a computable approximation of α and, in
order to show that α is d.c.e., it suffices to show that

d =

∞∑
k=0

|aik+1
− aik | =

∞∑
k=0

|g(bik+1
)− g(bik)| < ∞. (14)

The sum over the values aik+1
−aik for k = 0, . . . , t is telescopic and evaluates to at+1−a0,

hence the infinite sum over all such values is equal to α − a0. Accordingly, in order to
show (14), it suffices to show that the sum over all positive values aik+1

− aik is finite.

Let i0 be equal to 0. Assuming that ik has already been defined, let ik+1 be equal to the
least index i > ik such that either bi < bik or

bi > bik and g(bi)− g(bik) < 2c(bi − bik). (15)

Such an index i always exists. Indeed, in case bik > β, there is some i fulfilling bi < bik
because the sequence b0, b1, . . . converges to β. In case bik < β, there is an index i that
satisfies (15) because, by choice of g, we have

α− g(bik) < c(β − bik),

hence, for every i such that bi < β and β − bi < bi − bik , it holds that

g(bi)− g(bik) < α− g(bik) < c(β − bik) < c(β − bi + bi − bik) < 2c(bi − bik).

Finally, observe that, by monotonicity of g, the difference δk = aik+1
− aik can only be

positive in case bik+1
> bik , which implies by (15) that

δk = g(bik+1
)− g(bik) < 2c(bik+1

− bik) < 2c

ik−1∑
j=ik

|g(bj+1 − g(bj))|,

hence the infinite sum over all positive values δk is finite by (14).

Rettinger and Zheng [19] introduced a reducibility ≤2a
S and demonstrated that the set of

d.c.e. reals is closed downwards under this reducibility. This yields an alternative proof
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of Proposition 34 since, for d.c.e. reals, the latter reducibility is implied by monotone
Solovay reducibility, see Chapter 7 for details.

We summarize the results on downwards closure under monotone Solovay reducibility
obtained so far.

Theorem 35. The classes of computable, of left-c.e., of right-c.e., of d.c.e. and of
computably approximable, or ∆0

2, reals are all closed downwards under monotone Solovay
reducibility.

Proof. Since Solovay reducibility is implied by its monotone variant, the downwards clo-
sure of the classes of computable and of left-c.e. reals under monotone Solovay reducibil-
ity follows from the corresponding result for Solovay reducibility in Proposition 12. The
closure of the classes of right-c.e., of d.c.e and of computably approximable reals follows
by Propositions 32, 33 and 34, respectively.

3.2 An equivalent characterization of monotone Solovay
reducibility on the computably approximable reals

Recall from Proposition 13 the equivalent characterization of Solovay reducibility on the
set of left-c.e. reals via its index form, which amounts to requiring a condition of the
form α − an < c(β − bn). For monotone Solovay reducibility, a similar characterization
can be given for the larger set of computably approximable reals.

Proposition 36. Let α and β be computably approximable reals such that α is monotone
Solovay reducible to β with Solovay constant c. Then, for every computable approxima-
tion b0, b1, . . . of β, there is a computable approximation a0, a1, . . . of α such that, for
every n fulfilling bn < β, it holds that

0 < α− an < c(β − bn). (16)

Proof. First, assume that β is computable. Then α is computable as well by the down-
wards closure of the set of computable reals under Solovay reducibility. So we are done
by defining a computable approximation a0, a1, . . . of α such that every an is strictly less
than α and differs from α by strictly less than c(β − bn) in case bn < β and by strictly
less than 2−n otherwise. In case β is not computable, let g be a translation function
that witnesses that α is monotone Solovay reducible to β with Solovay constant c and
let an be equal to g(bn). Then the sequence a0, a1, . . . is a computable approximation
of α by Lemma 31 that, by choice of g, satisfies (16) for all n such that bn < β.
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4 Speedability of left-c.e. reals

4.1 Speedability and speed-up functions

Speed-up functions In this paragraph, we investigate into whether a given left-c.e.
real numbers α has left-c.e. approximations a0, a1, . . . that can be effectively sped up
in the sense that, for some computable function f , there are infinitely many indices n
such that af(n) is significantly closer to α than an. The following definition introduces
corresponding notions of speedability.

Definition 37. A function f : ω → ω is a speed-up function if it is nondecreasing
and we have n ≤ f(n) for all n.

A left-c.e. approximation a0, a1, . . . of a real α is ρ-speedable for some real number ρ
if there is a computable speed-up function f such that

lim inf
n→∞

α− af(n)

α− an
≤ ρ, (17)

and the left-c.e. approximation is speedable if it is ρ-speedable for some ρ < 1.

A real number α is ρ-speedable with respect to a given left-c.e. approxi-
mation if the approximation converges to α and is ρ-speedable. A real number is ρ-
speedable if it is ρ-speedable with respect to some of its left-c.e. approximations. A
real number is speedable if it is ρ-speedable for some ρ < 1, and the notion of speed-
ability with respect to a given left-c.e. approximation is defined in the same
manner. A left-c.e. approximation is nonspeedable if it is not speedable, and non-
speedable real numbers are defined likewise.

Note that, by definition of speed-up function f , the value of the fraction in (17) is
nonnegative and at most 1 for all n, hence every left-c.e. approximation and thus also
every left-c.e. real cannot be ρ-speedable for ρ < 0 but is ρ-speedable for all ρ ≥ 1. Note
further that, for a speed-up function f that satisfies (17), we can assume in addition
that f is strictly increasing because, otherwise, it suffices to replace f by a computable
speed-up function that is strictly increasing and at least as large as f .

The notion of a speedable left-c.e. number has been introduced by Merkle and Titov [10]
by a slightly different but obviously equivalent formulation. Introducing the notion of
speedability is partially motivated by the fact that Barmpalias and Lewis-Pye [1, Theo-
rem 1.7] have shown implicitly that Martin-Löf left-c.e. random reals are nonspeedable.
In what follows, we give a straightforward direct proof of the latter fact and investigate
into questions related to the speedability of left-c.e. real numbers.
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Speedability and Solovay autoreducibility By Proposition 15, a left-c.e. real α is
Solovay reducible to itself with Solovay constant ρ if there is a left-c.e. approxima-
tion a0, a1, . . . of α and a computable function f such that it holds for all n that

α− af(n) ≤ ρ(α− an). (18)

Here, we can assume that f is an index function because, otherwise, it suffices to replace f
by the function n 7→ max{n, f(0), . . . , f(n)}. So, for every ρ > 0, any left-c.e. real α
that is Solovay autoreducible, i.e., is Solovay reducible to itself, with Solovay constant ρ
is ρ-speedable. The reverse implication is not true. Intuitively speaking, the reason is
that the upper bound ρ is required for the limit inferior of a sequence of values in the
case of ρ-speedability, e.g., it suffices to satisfy the upper bound infinitely often, whereas
the upper bound ρ must be satisfied for all values in the case of Solovay autoreducibility.
Accordingly, it does not come as a surprise that, in Proposition 49, ρ-speedability will be
characterized as infinitely-often Solovay autoreducibility with Solovay constant ρ. For
the technical reason that only one of these notions is defined in terms of a limit superior,
the equivalence proof does not work directly for identical values of ρ, and therefore, we
have to postpone these considerations until we have shown that every speedable left-c.e.
real is ρ-speedable for arbitrary ρ > 0.

Computable reals are speedable We argue next that, among the left-c.e. reals, exactly
the computable reals are Solovay autoreducible with arbitrary Solovay constant ρ > 0.
By the discussion in the last paragraph, the latter implies that all computable reals are
speedable.

Proposition 38. Every computable real is speedable.

Proposition 39. Let α be a left-c.e. real, and let ρ be a real fulfilling 0 < ρ < 1. Then α
is Solovay reducible to itself with Solovay constant ρ if and only if α is computable.

Proof of Proposition 39. First, assume that α is computable. By Remark 3, we can fix a
left-c.e. approximation a0, a1, . . . of α that is strictly increasing and fulfills α− ak < 2−k

for all k. Let f(n) be equal to the least k > n such that 2−k < ρ(an+1 − an). Hence, for
every n, it holds that

α− af(n) < 2−n < ρ(an+1 − an). (19)

Then f is a computable index function that witnesses that α is Solovay reducible to
itself with constant ρ because we have for all n

α− af(n)

α− an
<

ρ(an+1 − an)

α− an
<

ρ(an+1 − an)

an+1 − an
= ρ,

where the first inequality is implied by (19) and the second one by an+1 < α.

Conversely, assume that α is Solovay reducible to itself via a computable index function f
and Solovay constant ρ < 1 with respect to some left-approximation a0, a1, . . . of α,
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i.e., we have (18) for all n. Let f (k) be the k-fold composition of f with itself, e.g.,
f (2)(n) = f(f(n)). Then we have

α− af (k)(n)

α− an
=

α− af (1)(n)

α− an
·
α− af (2)(n)

α− af (1)(n)

· · · · ·
α− af (k−1](n)

α− af (k−2)(n)

·
α− af (k](n)

α− af (k−1)(n)

≤ ρk.

Here, α − an is at most 1, hence, for given ε > 0, if we choose k so large that ρk < ε,
then α− af (k)(n) differs at most by ε from α, hence α is computable.

4.2 Independence of the constant and of the left-c.e.
approximation

For the notion of speedability of left-c.e. reals numbers, we obtain the following di-
chotomy. Let α be any left-c.e. real number. In case α is nonspeedable, by definition,
all left-c.e. approximation s of α are nonspeedable. On the other hand, in case α is
speedable, all left-c.e. approximations of α are ρ-speedable for all ρ > 0, as is stated in
the next theorem.

Theorem 40. Every speedable left-c.e. real is ρ-speedable for any real number ρ > 0
with respect to any of its left-c.e. approximations.

Theorem 40 is immediate from Lemmas 41 and 42.

Lemma 41. Let a0, a1, . . . be a left-c.e. approximation that is ρ-speedable for some ρ > 0.
Then all left-c.e. approximations with the same limit are also ρ-speedable.

Proof. Let α be the limit of a0, a1, . . ., and let b0, b1, . . . another left-c.e. approximation
with limit α. Fixing a speed-up function f such that a0, a1, . . . is ρ-speedable via f , we
will construct a speed-up function g such that b0, b1, . . . is ρ-speedable via g.

We define g and two other functions j and m by setting for every natural i the values
j(i), m(i) and g(i) as follows:

j(i) = max{0,max{j : bj ≤ ai}}, (20)

m(i) = max{0,max{j : aj < bi+1}}, (21)

g(i) = min{j : bj ≥ af(m(i))}. (22)

All these functions are obviously total and computable and fulfill for every i the inequal-
ities

bj(i) ≤ ai ≤ am(j(i)) and af(i) ≤ af(m(j(i))) ≤ bg(j(i)), (23)

where, on the left side of (23), the first inequality holds by definition of j and the second
one by the inequality m(j(i)) ≥ i that follows from ai < bj(i)+1. The first inequality on
the right side of (23) is implied from the second inequality on the left side by monotonicity
of f . Finally, the second inequality on the right side holds by definition of g.
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The inequalities in (23) imply together that

α− bg(j(i))

α− bj(i)
≤

α− af(n)

α− an
.

The limit inferior of the terms on the right-hand side is at most ρ, hence the same holds
for the terms on the left-hand side. Consequently, the left-c.e. approximation b0, b1, . . .
is ρ-speedable via g.

Lemma 42. Let α be a speedable left-c.e. real number and let ρ > 0 be a real number.
Then α is ρ-speedable.

Proof. We can assume ρ < 1, since, otherwise, there is nothing to prove. For a proof
by contradiction, assume that the conclusion of the lemma is false. We consider the
set S of all real numbers ρ′ such that α is ρ′-speedable. Let ρinf be the infimum of S.
By definition, the set S is closed upwards, i.e., contains with some ρ′ also all ρ′′ > ρ′,
hence S contains all ρ′ > ρinf but no ρ′ < ρinf . By assumption on α and ρ, we then
have ρ < ρinf < 1.

So we can fix rational numbers ρ1, ρ2 and ρ′2 that satisfy

0 < ρ1 < ρinf < ρ′2 < ρ2 < 1 and
ρ2

1− ρ2
− ρ1

1− ρ1
<

ρ

1− ρ
(24)

by choosing ρ1 and ρ2 distinct from but close enough to ρinf . Then α is ρ′2-speedable,
so we can fix a left-c.e. approximation a0, a1, . . . of α that is ρ′2-speedable via some
computable speed-up function f . Note that, for any real number x in [0, 1), we have

α− af(n)

α− an
< x ⇐⇒ α− af(n) <

x

1− x
(af(n) − an), (25)

which follows by, first, rewriting α−an as the sum of α−af(n) and af(n)−an and, further,
rearranging terms. Observe that the equivalence (25) remains valid if we replace both
occurrences of ” < ” by ” > ” and that both versions of (25) hold for any other speed-up
function in place of f . We then have

ρ1 <
α− af(n)

α− an
< ρ2 ⇐⇒

ρ1(af(n) − an)

1− ρ1
< α− af(n) <

ρ2(af(n) − an)

1− ρ2
. (26)

By choice of ρ1, ρ2, ρ′2 and f , the first and thus also the third inequalities in (26),
from left to right, hold for almost all n, while the second and the fourth ones hold for
infinitely many n. Fix n0 such that the third strict inequality in (26) holds for all n ≥ n0.
Let f ′(n) = f(n) for all n < n0 and, for all other n, choose f ′(n) to be minimum such
that we have n ≤ f ′(n) and

af ′(n) > af(n) +
ρ1

1− ρ1

(
af(n) − an

)
.

26



Then f ′ is total by choice of n0 and, for the infinitely many n that satisfy the fourth
inequality in (26), we have

α− af ′(n) < α− af(n) −
ρ1

1− ρ1

(
af(n) − an

)
<

ρ2
1− ρ2

(
af(n) − an

)
− ρ1

1− ρ1

(
af(n) − an

)
<

ρ

1− ρ

(
af(n) − an

)
<

ρ

1− ρ

(
af ′(n) − an

)
.

The relations hold for these n, from top to bottom and from left to right, by definition
of f ′, by (26), by choice of ρ1 and ρ2, and finally by f(n) ≤ f ′(n).

Thus, by (25), we obtain for all such n that

α− af ′(n)

α− an
< ρ,

i.e., the speed-up function f ′ witnesses that α is ρ-speedable, contradiction.

Incrementation as a speed-up function We will demonstrate in Theorem 44 of Sec-
tion 4.3 that Martin-Löf random left-c.e. reals are nonspeedable. The proof of this
theorem relies on the following lemma.

Lemma 43. Let the left-c.e. real number α be ρ-speedable for some ρ > 0. Then α is
ρ-speedable with respect to some left-c.e. approximation via the function n 7→ n+ 1.

Proof. Let α be ρ-speedable with respect to a left-c.e. approximation a0, a1, . . . via some
computable speed-up function f . Let g(0) = 0 and, inductively, let g(i + 1) be equal
to f(g(i)), which can also be written as g(i) = f (i)(0). Let i(n) be the maximum index i
such that g(i) ≤ n. By choice of f and by definition of the functions g and i, we then
have for all n and for i = i(n) that

g(i) ≤ n < g(i+ 1) = f(g(i)) ≤ f(n) < f(g(i+ 1)) = g(i+ 2).

Thus, for every n, the interval [n, f(n)] is contained in [g(i(n)), g(i(n) + 2)], hence

α− ag(i(n)+2)

α− ag(i(n))
≤

α− af(n)

α− an
.

This inequality remains valid if we apply the lim inf operator on both sides, hence the
limes inferior of the terms on the left-hand side is strictly smaller than ρ. As a con-
sequence, at least one of the left-c.e. approximations ag(0), ag(2), . . . and ag(1), ag(3), . . .
witnesses the lemma assertion.
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4.3 Martin-Löf random and nonhigh left-c.e. real numbers

Martin-Löf random left-c.e. reals are nonspeedable By Theorem 23, the Martin-Löf
random reals form the largest degree in the upper semilattice of the Solovay degrees
of left-c.e. reals. In what follows, we show the nonspeedability of all such reals. The
latter theorem has been implicitly proven by Barmpalias and Lewis-Pye [1] since it is an
immediate corollary to their main result.

Theorem 44. Martin-Löf random left-c.e. real numbers are nonspeedable.

Proof. For a proof by contradiction, assume that there is a left-c.e. real α that is Martin-
Löf random and speedable. By Theorem 42 and Lemma 43, there is a left-c.e approxima-
tion a0, a1, . . . of α that is 1

3 -speedable via the speed-up function n 7→ n+1. Consequently,
by the definitions of the latter property and of limit inferior, there are then infinitely
many n such that

α− an+1

α− an
<

1

2
. (27)

For every such n, we have

2(α− an+1) < α− an = α− an+1 + an+1 − an,

that is, we have α− an+1 < an+1 − an. Thus, α is contained in the interval

In = [an+1, an+1 + (an+1 − an)]

for each of the infinitely many n that satisfy (27). So, in order to obtain the desired
contradiction, it suffices to show that the intervals I0, I1, . . . form a Solovay test. The
latter holds because, for given n, we can compute the rational endpoints of the interval In,
where the sum of the lengths of these intervals is finite because we have

∞∑
n=0

|In| =
∞∑
n=0

|an+1 − an| = α− a0.

Nonhigh left-c.e. reals are speedable Recall that, for a real α, the notion of being
high is defined in terms of the jump of α but can equivalently be characterized by the
following domination property: a real α is nonhigh if, for every function f that is
computable with oracle α, there is a computable function g that is not dominated by f ,
i.e., where f(n) < g(n) holds for infinitely many n.

Theorem 45. All nonhigh left-c.e. real number are speedable.

Proof. Let ρ > 0 be a real number. Let α be a nonhigh left-c.e. real number, and
let a0, a1, . . . be a left-c.e. approximation of α. Similar to the case of computable α,
there is a function f computable in α such that

α− af(n)

α− an
< ρ for all n. (28)

28



Since α is nonhigh, there is a computable function g that is not dominated by f ,
wherein we can assume that g is strictly increasing, and thus, is a speed-up function.
Then af(n) < ag(n) holds for infinitely many n, and therefore, by (28), the left-c.e.
approximation a0, a1, . . ., and hence also the real α, is ρ-speedable via g.

On the other side, there exists high left-c.e. reals that are speedable. An example of
such a real is encoded by the halting problem, as we can see below.

Remind that, according to [5], a real α is called strongly c.e. if α = 0, A for a c.e. set
A, see

Proposition 46. Every strongly c.e. real is speedable.

Proof. For a c.e. set A, let a0, a1, . . . be a computable enumeration of A. First, we note
that this enumeration contains infinitely many final stages, i.e., elements ai that fulfill

ai = min{ak : k ≥ i}. (29)

So, fixing by i0 < i1 < . . . the sequence of all indices that fulfills (29), it holds for every
in that

2−ain ≥
∞∑

k=ain+1

2−ak . (30)

Then, the left-c.e. approximation (αn)n∈ω defined as

αn =
n∑

i=0

2−ai

is 1
2 -speedable in the sense of Proposition 49(d) because we have for every n ∈ ω the

inequality

α− αin =

∞∑
k=ain+1

2−ak ≤
by (30)

1

2

∞∑
k=ain

2−ak =
1

2
(α− αin−1).

Since the halting problem obviously encodes a strongly left-c.e. real, the following propo-
sition an immediate consequence from the latter one.

Proposition 47. The left-c.e. real 0, ∅′, where ∅′ denotes the halting problem, is speed-
able.
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4.4 Speedability of left-c.e. reals is a degree property

We have already seen that the Martin-Löf random left-c.e. real numbers form a Solovay
degree, where all reals in this degree are nonspeedable by Theorem 44. By definition,
the class of nonhigh left-c.e. real numbers is equal to a union of Turing degrees and thus
also of Solovay degrees since Solovay reducibility implies Turing reducibility. Every such
Solovay degree contains only speedable reals by Theorem 45. By the next theorem, the
two latter facts are not a coincidence.

Theorem 48. Speedability is a degree property with respect to Solovay reducibility in the
sense that either all or none of left-c.e. real numbers in a Solovay degree are speedable.

Proof. Let a0, a1, . . . and b0, b1, . . . be left-c.e. approximations of reals α and β, respec-
tively, where α and β are in the same Solovay degree and β is speedable. Then there are
computable functions g1 and g2 and constants c1 and c2 such that α is Solovay reducible
to β via g1 and constant c1 and β is Solovay reducible to α via g2 and constant c2, where
we can assume that the functions g1 and g2 are strictly increasing. We then have for
all n that

α− ag1(n) < c1(β − bn) and β − bg2(n) < c2(α− an).

Next, we argue that, due to the speedability of β, there is a computable speed-up
function f such that, for infinitely many n, it holds that

β − bf(g2(n))

β − bg2(n)
<

1

2c1c2
, (31)

that is, the speed-up function f is guaranteed to obtain a certain speed-up on values
of the form bg2(n). By assumption on g2, the sequence bg2(0), bg2(0), . . . is a left-c.e.
approximation of β, which is ρ-speedable for every ρ > 0 by Theorem 40 and speedability
of β. Accordingly, we can fix a computable speed-up function f0 that witnesses (3c1c2)

−1-
speedability of this approximation. Note that f0 works with indices with respect to the
approximation bg2(0), bg2(1), . . . in the sense that it maps the index k for bg2(k) to the
index f0(k) for bg2(f0(k)). In order to obtain a speed-up function f that works with
indices with respect to b0, b1, . . ., we define for all n

m(n) = min{k ∈ ω : n ≤ g2(k)} and f(n) = g2(f0(m(n))).

Observe that f maps any index n of the form g2(k) to g2(f0(k)) and that, by choice of f0
and f , the inequality (31) holds for infinitely many n. For every such n, we then have

α− ag1(f(g2(n)))

α− an
≤

α− ag1(f(g2(n)))

β − bf(g2(n))
·
β − bf(g2(n))

β − bg2(n)
·
β − bg2(n)

α− an
< c1 ·

1

2c1c2
· c2 =

1

2
,

and consequently, the left-c.e. approximation a0, a1, . . ., and thus also the real α, is 1
2 -

speedable via the composition g1 ◦ f ◦ g2. The latter function is indeed a computable
speed-up function by choice of the functions g1, f and g2.
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4.5 Alternative characterizations of speedability of left-c.e.
reals

For any left-c.e. real α and any of its left-c.e. approximation a0, a1, . . ., any speed-up
function f witnesses that α is Solovay autoreducible, i.e.., Solovay reducible to itself
with Solovay constant 1 with respect to a0, a1, . . . of α because, by n ≤ f(n), we
have α− af(n) ≤ α− an for all n. In case we require in addition that for some speed-up
function f and ρ < 1 infinitely often actually the Solovay constant ρ is attaine by f ,
this is equivalent to α being ρ-speedable. The following Proposition states this charac-
terization of speedability of left-c.e. reals in terms of Solovay autoreducibility together
with some of its variants that ressemble characterizations of Solovay reducibility and of
speedability as stated in Proposition 15 and Lemma 43, respectively.

Proposition 49. Let α be a left-c.e. real α, and let ρ be a real in the open interval (0, 1).
Then the following statements are equivalent.

(a) The real α is ρ-speedable.

(b) For every left-c.e. approximation a0, a1, . . . of α, there is a computable speed-up
function f such that, for infinitely many n, it holds that

α− af(n) ≤ ρ(α− an). (32)

(c) There exists a left-c.e. approximation a0, a1, . . . of α and a computable speed-up
function f such that (32) holds for infinitely many n.

(d) There exists a left-c.e. approximation a0, a1, . . . of α such that, for infinitely many n,
it holds that

α− an+1 ≤ ρ(α− an). (33)

Proof. By definition of speedability, each of (b), (c) and (d) implies (a). Furthermore,
the implication from (b) to (c) is immediate.

In order to show the implication from (a) to (b), assume that α is speedable. Fix any
left-c.e. approximation a0, a1, . . . of α. By Theorem 40, we can fix a speed-up function f
that witnesses that this approximation is ρ

2 -speedable, i.e., we have

lim inf
n→∞

α− af(n)

α− an
≤ ρ

2
. (34)

Then, by definition of limes inferior, (32) holds for infinitely many n.

In order to show the implication from (a) to (d), it suffices to observe that α is ρ
2 -

speedable by Theorem 40, hence it satisfies (34) with n+1 in place of f(n) by Lemma 43.
Then (d) follows again by definition of limes inferior.
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Speed-up functions need to be total The next proposition shows that the notion of
speedability of left-c.e. reals is changed when replacing in its definition computable speed-
up functions, i.e., functions that are, in particular, total and nondecreasing by partial
computable functions that satisfy n ≤ f(n) but are required neither to be total nor to be
nondecreasing. Recall in this connection from Remark 16 that for left-c.e. reals Solovay
reducibility has an equivalent characterization via partial computable index functions.

Proposition 50. Let a0, a1, . . . be a strictly increasing left-c.e. approximation of a real α
and let ρ be a real in the open interval (0, 1). Then there is a partial computable function
f : ω → ω such that n ≤ f(n) holds for all n in the domain of f and there are infinitely
many n in the domain of f that satisfy (32).

Proof. Let σ0, σ1, . . . be the enumeration of all binary words in length-lexicographical
order. For given n, let f(n) be the least index i ≥ n such that ai > 0.σn. Note that f is
partial computable and satisfies n ≤ f(n) for all n in its domain.

For all ℓ, let iℓ be the index with respect to σ0, σ1, . . . of the length ℓ prefix of the fractional
part of the binary expansion of α, e.g., in case α = 0.01 . . ., the binary word σi2 is equal
to 01. Then we have io < i1 < . . . and, for all ℓ, we have iℓ < 2ℓ+1 and the value f(iℓ)
is defined and satisfies α− af(iℓ) ≤ 2−ℓ.

In case if there are infinitely many n in the domain of f that satisfy (32), we are done. So
we can assume the opposite, i.e., in particular, there is some N such that, for all ℓ ≥ N ,
it holds that ρ(α − aiℓ) ≤ α − af(iℓ). Fixing some natural number k such that 2k < ρ,

we obtain for all ℓ ≥ N by iℓ < 2ℓ+1 that

2−k(α− a2ℓ+1) ≤ 2−k(α− aiℓ) ≤ ρ(α− aiℓ) ≤ α− af(iℓ) < 2−ℓ. (35)

Consequently, we have α − a2ℓ+1 < 2−ℓ+k for all ℓ ≥ N , hence the computable se-
quence a2N+k+1 , a2N+k+2 , . . . witnesses by Proposition 2(2) that the real α is computable,
and thus, also ρ-speedable.

Speedability and slow-down functions By the next proposition, the notion of speed-
ability for left-c.e. reals can also be equivalently characterized via slow-down functions.
Here, a slow-down function is a function g : ω → ω that is nondecreasing and un-
bounded and satisfies g(n) ≤ n for all n.

Proposition 51. For every left-c.e. real α and every real ρ ∈ (0, 1), the following
statements are equivalent.

(a) The real α is ρ-speedable.

(b) For every left-c.e. approximation a0, a1, . . . of α, there is a slow-down function g
such that, for infinitely many n, it holds that

α− an ≤ ρ(α− ag(n)). (36)
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(c) There is a left-c.e. approximation a0, a1, . . . of α and a slow-down function g such
that (36) holds for infinitely many n.

Proof. The implication from (b) to (c) is immediate.

In order to show that (a) implies (b), assume that the real α is ρ-speedable and fix any
left-c.e. approximation a0, a1, . . . of α. By the characterization of speedability stated as
Item (b) in Proposition 49, there exists a computable speed-up function f such that, for
infinitely many n, it holds that

α− af(n) ≤ ρ(a− an), (37)

where, as usual, we can assume that f is strictly increasing. The function g defined by

g(n) = max({0} ∪ {m : f(m) ≤ n}) (38)

is a slow-down function by definition and satisfies for all n

g(f(n)) = max({0} ∪ {m : f(m) ≤ f(n)}) ≤ n. (39)

Now, (b) holds true because f is strictly increasing and, for each of the infinitely many n
that satisfy (37), it holds that

α− af(n) ≤ ρ(α− an) ≤ ρ(α− ag(f(n))).

It remains to show that (c) implies (a). Fix any left-c.e. approximation a0, a1, . . . of α
and any slow-down function g such that (36) is satisfied for infinitely many n. The
function f defined by

f(n) = min{m : g(m) > n} (40)

is a computable speed-up function since it is by definition nondecreasing and, by g(n) ≤ n,
it holds for all n that

f(n) ≥ f(g(n)) = min{m : g(m) > g(n)} > n. (41)

Furthermore, for the infinitely many n that satisfy (36), it holds that

α− af(g(n)) < α− an ≤ ρ(α− ag(n)),

where the set {g(n) : n satisfies (36)} is infinite since the slow-down function g is non-
decreasing and unbounded. As a consequence, the real α is ρ-speedable by the charac-
terization of speedability stated as Item (c) in Proposition 49.
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5 Speedability of arbitrary real numbers

5.1 Extending speedability to all reals

Speedability as autoreducibility via nondecreasing translation functions In Chap-
ter 4, we have considered a notion of speedability for left-c.e. reals introduced by Merkle
and Titov [10], which is equivalent by Proposition 49 to a special form of Solovay au-
toreducibility, where some Solovay constant ρ < 1 is attained infinitely often.

In this chapter, we extend the concept of speedability to arbitrary reals. Speedability
will again be defined in terms of a special form of Solovay autoreducibility. However, we
consider now Solovay autoreducibility via translation functions and not, as in the case of
speedability for left-c.e. reals, via speed-up functions, i.e., in index form. Furthermore,
and more important, we will use monotone Solovay reducibility.

Then speedability of a real α is defined as α being monotone Solovay autoreducible –
where the latter again means that α is monotone Solovay reducible to itself – via some
translation function g with Solovay constant 1 such that the infimum over all Solovay
constants that are achieved on rationals q < α is some ρ < 1. For technical reasons that
will become clear later, we require in addition that q < g(q) holds for all q < α.

Definition 52. Let g be a partial function from the set of real numbers into itself, and
let the real α be a left-sided accumulation point of the domain of α, i.e., for every δ > 0,
the domain of g intersects the open interval (α − δ, α).1 By limq↗α f(q), we refer to
the left-sided limit of the function f at α, i.e., the value limq↗α f(q) is equal to
some real γ if and only if, for every ϵ > 0, there exists some δ > 0 such that the
inequality |f(q)− γ| < ϵ holds for every q ∈ dom(f)∩ (d− δ, d). The left-sided limit
inferior lim infq↗α g(q) is defined by

lim inf
q↗α

= lim
δ→0

inf{g(p) : p ∈ dom(f) ∩ (q − δ, q)}.

The left-sided limes superior lim supq↗α f(q) is introduced in the same way where
in the defining formula inf is replaced by sup.

In accordance with the concept of a translation function for two reals in Definition 9,
for a given real α, let a translation function for α be a partial function g from the

1A right-sided accumulation point can be defined in the obvious way by a symmetric definition, where
it is required that all intervals of the form (α, α+δ) intersect the set under consideration. Apparently,
in the literature, the notions of left-sided and right-sided accumulation point are not used uniformly,
in particular, there are sources, where the meaning of both terms as defined here is interchanged.
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set Q ∩ [0, 1] to itself such that g is defined on all rationals q < α and for all such q it
holds that q(q) < α.

Proposition 53. Let α be a left-c.e. real, and let ρ be a real in [0, 1). The real α is
ρ-speedable if and only if there exists a nondecreasing translation function g for α such
that q < g(q) for all rationals q < α and it holds that

lim inf
q↗α

α− g(q)

α− q
≤ ρ. (42)

Proof. Fix a left-c.e. approximation a0, a1, . . . of α that is ρ-speedable via a speed-up
function f . We construct a translation function g as required by letting

m(q) = min{n : an > q} and

g(q) = af(m(q)).

Conversely, given a nondecreasing translation function g that satisfies (42) and the in-
equality q < g(q) for all q < α, we fix a speedable left-c.e. approximation a0, a1, . . . of α
and define a computable speed-up function f by letting

f(n) = min{m : am ≥ g(an)}.

Then the left-c.e. approximation a0, a1, . . . , and thus also α, is ρ-speedable via f .

According to the latter proposition, the already defined notion of speedability for left-c.e.
reals agrees on the set of left-c.e. reals with the notion of speedability for arbitrary reals
defined next in terms of nondecreasing translation functions.

Definition 54. A real α is ρ-speedable for some nonnegative real ρ if there exist a
nondecreasing translation function g for α such that q < g(q) for all rationals q < α and
it holds that

lim inf
q↗α

α− g(q)

α− q
≤ ρ. (43)

A real is speedable if it is ρ-speedable for some ρ < 1 and nonspeedable, otherwise.

Remark 55. Suppose that g is a nondecreasing translation function for some real α.
By definition of translation function, this implies that, for every rational q < α, the
value g(q) is defined and satisfies q ≤ g(q) < α, hence the real α is monotone Solovay
autoreducible to itself via g with Solovay constant 1. Note that α is ρ-speedable for
some given ρ if and only if the latter condition holds and, in addition, (43) is satisfied
and q < g(q) holds for all rationals q < α.

The choice of defining speedability in terms of nondecreasing translation functions,
which, by Remark 55, corresponds to using monotone Solovay autoreducibility, is cru-
cial. If speedability were defined in terms of arbitrary, not necessarily nondecreasing
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translation functions, i.e., using Solovay instead of monotone Solovay autoreducibility,
by the following proposition the resulting notion would be trivial on the set of left-c.e.
reals, hence, in particular, would not coincide with the notion of speedability that we
had previously defined for left-c.e. reals in terms of index functions.

Proposition 56. For every left-c.e. real α and every ρ ∈ [0, 1), there exists a (not
necessarily monotonically nondecreasing) translation function g for α such that q < g(q)
for all rationals q < α and it holds that

lim inf
q↗α

α− g(q)

α− q
= 0. (44)

Proof. Let a0, a1, . . . be a left-c.e. approximation of α. Fix some effective enumera-
tion q0, q1, . . . of the set of rational numbers in the unit interval, and, for every rational q,
let t(q) be the minimum index that fulfills qt(q) = q. We define the function g as follows.
For argument q, let n be minimum such that q < an. In case no such n can be found,
the value g(q) is undefined, otherwise, let g(q) be equal to an+t(q). Then g is a partial
computable function that is defined on all rationals q < α and, for each such q and the
corresponding index n, we have q < an ≤ an+t(q) = g(q).

We conclude the proof by arguing that (44) holds. For given n and k, let j(n, k) be the
least index that fulfills

α− aj(n,k)

α− an
≤ 1

k
. (45)

Fix n > 0, and consider the interval (an−1, an]. By construction, for every q in this
interval, we have g(q) = an+t(q), while the interval contains reals q with arbitrarily large
values of t(q). Thus, for every k, the interval contains some q that fulfills

aj(n,k) < an+t(q) = g(q),

and, for such q, inequality (45) holds with aj(n,k) replaced by ag(q). But the ai converge
to α and n > 0 was chosen arbitrarily, hence such q can be found arbitrarily close to α,
thus, (44) holds true.

5.2 Independence of the constant

Like in the case of left-c.e. reals, also speedability on arbitrary reals does not depend on
the choice of the speeding constant ρ.

Theorem 57. If a real α is ρ-speedable for some ρ ∈ (0, 1), then it is ρ′-speedable for
every other ρ′ < 1.

Proof. During the whole proof of the theorem, the symbol q will denote some rational
number on the interval [0, 1).
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First, we mention the equivalence

α− g(q)

α− q
= x ⇐⇒ α = g(q) +

x

1− x
(g(q)− q),

wherein the function x 7→ x
1−x is continuous and monotone increasing on [0, 1).

Assume that this statement does not hold true for some real α, so, there exists a real
ρinf < 1 such that α is ρ-speedable for every ρ > ρinf , but not ρ-speedable for every
ρ < ρinf .

Let ρ1, ρ2 and ρ3 be three reals fulfilling 0 < ρ1 < ρinf < ρ3 < ρ2 < 1, and let c1 =
ρ1

1−ρ1
and c2 =

ρ2
1−ρ2

be two rationals fulfilling

c2 > c1 > c2 −
1

4
min{c1, 1}. (46)

Such triple (ρ1, ρ2, ρ3) exists since the function x 7→ 1−x
x is continuous and the set Q is

dense on the interval (0, 1).

The ρ3-speedability of α implies that there exists a nondecreasing partially computable
translation function g such that q < g(q) ↓< α for every q < α and a subsequence
qi0 , qi1 , qi2 , · · · ↗ α of the sequence q0, q1, q2, . . . that fulfills for every k the inequality

α < g(qik) + c2(g(qik)− qik). (47)

Without loss of generality, assume that g(q) ≤ q holds for all q ∈ dom(g); otherwise,
for every q ∈ dom(g) such that g(q) < q, we would know that q ≥ α, and therefore,
replacing of all such values g(q) by q will not injure the monotonicity of g and the
inequality q < g(q) < α for all q < α nor the inequality (47) for all k.

The ρ1-nonspeedability of α means that, in particular, α is not ρ1-speedable via g, hence
there exists some rational qg < α such that, for every q > qg, one holds that

α ≥ g(q) + c1(g(q)− q). (48)

Without loss of generality, assume qg = 0; otherwise, modify the translation function g
without injuring its monotonicity by claiming g(q) = qg for every rational q < qg.

The ρ1-nonspeedability of α means further that, for every nondecreasing partially com-
putable function f from Q|[0,1] to itself that fulfills q < f(q) ↓< α for every q < α, α is
not ρ1-speedable via f , which implies that there exists some rational qf < α such that,
for every q > qf , one holds that

α ≥ f(q) + c1(f(q)− q). (49)

The idea of the proof is, to use the information from (47) and (48) for construction of a
translation function that will contradict to (49).
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Let q0, q1, . . . be en effective enumeration without repetition of dom(g) that contains inter
alia all rationals on [0, α). First, for every two rationals qi and qj in this enumeration
that fulfill 0 < qi < qj , we define a computable function N(qi, qj) that returns the
least index N such that, if we partition [0, qi) in disjoint set of semi-open intervals of
length d =

qj−qi
2 (except the left one which should have length at most d), then, for

every such interval I, there exists an index k ≤ N such that qk ∈ I.

Formally, N(qi, qj) can be defined as follows:

N(qi, qj) = min
{
K : ∀m ∈ {1, . . . , n}∃k ≤ K

(
qk ∈ [qi −md, qi − (m− 1)d)

)}
(50)

for d =
qj−qi

2 and n = ⌈ qi
qj−qi

⌉, where ⌈x⌉ = max{k ∈ ω : k ≥ x} denotes the standard

ceiling function of a positive real.

Next, we define for every rational qi in [0, α) the index sets

Xi = {n : qn < qi ∧ n < i},
Yi = {n : qi < qn ∧ n < i} and

Zi = {n : qn < qi ∧ n ≤ N(qi, g(qi))}}

and introduce three modifications of the translation function g:

g0(qi) = min{g(qi) + c1(g(qi)− qi), 1},
g1(qi) = max{g0(qi),max

n∈Zi

{g0(qn)},max
n∈Xi

{g1(qn)}},

g̃(qi) = min{g1(qi), min
n∈Yi

qn≤g1(qi)

{g̃(qn)}},

where, for any partial function f and any set S, the minimum

min
s∈S

{f(s)}

is defined if and only if f(s) is defined for every s ∈ S.

We can straightforwardly obtain from construction of functions g, g0, g1 and g̃ that the
inequalities

q ≤ g(q) ≤ g0(q), g0(q) ≤ g1(q) and g̃(q) ≤ g1(q) (51)

hold true for all q lying in domains of corresponding functions.

In the next claim, we will see that g̃ dominates g on its whole domain.

Claim 1. If g̃(qi) is defined for some i, then it fulfills the inequality

g(qi) ≤ g̃(qi). (52)
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Proof. For a rational qi < α, we fix k = |Yi| and argue the claim assertion inductively
on k.

If k = 0, then we have g̃(qi) = g1(qi) ↓≥ g(qi) by (51).

If k > 0, then, supposing g(qn) ≤ g̃(qn) holds true for all qn that such that g̃ is defined
and |Yn| < k, we make for qi the following considerations:

• g1(qi) ↓≥ g(qi) by (51);

• for every n ∈ Yi such that qn ≤ g1(qi), it holds that g̃(qn) ↓ and Yn ⊆ Yi \ {n},
hence |Yn| < k. This implies by induction hypothesis for qn that g(qn) ≤ g̃(qn).
On the other hand, the inequality qi < qn and the monotonicity of g imply that
g(qi) ≤ g(qn).

Thus, the computation of g̃(qi) returns minimum of two values not smaller that g(qi),
hence g(qi) ≤ g̃(qi).

Further, all constructed function are defined in all rationals [0, α), and thus, the inequal-
ities (51) and (52) can be unified.

Claim 2. For every rational q ∈ [0, α), the functions g0, g1 and g̃ are defined in q and
fulfill the inequalities

q < g(q) ≤ g0(q) ≤ g1(q) < α and q < g(q) ≤ g̃(q) ≤ g1(q) < α. (53)

Proof. The real α is ρ3-speedable via g, hence the function g fulfills q < g(q) ↓< α for
every q < α.

The function g0 fulfills for every q < α the inequality g0(q) < α by (48).

For a rational qi < α, we fix k = |Xi| and argue inductively on k that

g0(qi) ≤ g1(qi) ↓< α.

If k = 0, then we have g1(qi) = g0(qi) < α already proved.

If k > 0, then, supposing g1(qn) ↓< α holds true for all qn < α that fulfill |Xn| < k, we
make for qi the following considerations:

• g0(qi) < α as we have already proved;

• for every n ∈ Zi, it holds that qn < qi < α, hence g0(qn) < α. Therefore, we obtain
that max

n∈Zi

{g0(qn)} < α;

• for every n ∈ Xi, it holds that Xn ⊆ Xi \ {n}, hence |Xn| < k. This implies
by induction hypothesis for qn < α that g1(qn) ↓< α. Therefore, we obtain
that max

n∈Xi

{g1(qn)} < α.

Thus, the computation of g1(qi) terminates and returns maximum of three values smaller
than α, hence g0(qi) ≤ g1(qi) ↓< α.
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Next, for a rational qi < α, we fix k = |Yi| and argue inductively on k that

g(qi) ≤ g̃(qi) ↓< α.

If k = 0, then we have g(qi) ≤ g̃(qi) = g1(qi) < α as we have already proved.

If k > 0, then, supposing g̃(qn) ↓< α holds true for all qn < α that fulfill |Yn| < k, we
make for qi the following considerations:

• g(qi) ≤ g1(qi) < α as we have already proved;

• for every n ∈ Yi such that qn ≤ g1(qi), it holds that qn < α and Yn ⊆ Yi\{n}, hence
|Yn| < k. This implies by induction hypothesis for qn < α that g(qn) ≤ g̃(qn) ↓< α.
On the other hand, the inequality qi < qn and the monotonicity of g imply that
g(qi) ≤ g(qn).

Thus, the computation of g̃(qi) terminates and returns minimum of two values smaller
than α and not smaller that g(qi), hence g(qi) ≤ g̃(qi) ↓< α.

Inter alia, the latter claim implies for g0 that

∀q < α : g0(q) = g(q) + c1(g(q)− q). (54)

as well as
∀k ∈ ω (g0(qik) ↓ ∧ g1(qik) ↓ ∧ g̃(qik) ↓) (55)

because qik ∈ [0, α) for every k.

Unfortunately, g0 and g1 cannot be considered as possible speed-up functions that con-
tradict to (49) because, in general, they are not nondecreasing — in contrast to g̃, as we
will see in what follows.

Claim 3. The function g̃ is monotonically nondecreasing.

Proof. Given to rationals qi, qj ∈ dom(g̃) such that 0 ≤ qi < qj ≤ 1, we will prove
that g̃(qi) ≤ g̃(qj) for the cases i > j and i < j separately.

Case 1: i > j.

In this case, one holds either g1(qi) < qj , which immediately implies that

g̃(qi) ≤ g1(qi) < qj ≤ g̃(qj),

where the third inequality holds by Claim 1, or g1(qi) ≥ qj , which implies that

g̃(qi) ≤ min
qn∈(qi,g1(qi)]

n<i

{g̃(qn)} ≤ g̃(qj),

where the left inequality follows from qj ∈ (qi, g1(qi)] and j < i and the right one holds
by definition of g̃(q1).
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Case 2: i < j.

In this case, we straightforwardly obtain the inequality for the function g1

g1(qi) ≤ max
qn<qj
n<j

{g1(qn)} ≤ g1(qj), (56)

where the left inequality is implied qi < qj and i < j and the left one holds by definition
of g1(qj).

We prove the property

qi < qj ∧ i < j =⇒ g̃(qi) ≤ g̃(qj) (57)

by induction on the amount of such n that we need to compute g̃(qn) during the whole
computation of g̃(qj).

• Induction base: if there is no n < j such that qn ∈ (qj , g1(qj)], then one holds that

g̃(qi) ≤ g1(qi) ≤
by (56)

g1(qj) = g̃(qj). (58)

• Induction step: for every n < j such that qn ∈ (qj , g1(qj)], we obtain either that
qi < qn and i > n, which implies that

g̃(qi) ≤ g̃(qn) (59)

by Case 1, or that qi < qn and l(qi) < l(qn), which implies (59) by induction
hypothesis since all computations of g̃ we need to do for computing g̃(qn) we still
need to do for computing g̃(qj).

Regarding the inequality (59) for all qn ∈ (qj , g1(qj)], we obtain that

g̃(qi) ≤ min
qn∈(qj ,g1(qj)]

n<j

{g̃(qn)},

which implies together with (56) the inequality

g̃(qi) ≤ min{g1(qj), min
qn∈(qj ,g1(qj)]

n<j

{g̃(qn)}} = g̃(qj),

that concludes the induction step.

Thus, the function g̃ is a well-defined nondecreasing translation function for a real α,
therefore, there exists a rational qg̃ < α such that the function g̃ fulfills (49) for every
q > qg̃.
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To conclude the proof, it remains to argue that α is ρ1-speedable via g̃ by proving for
every element qik of the sequence qi0 , qi1 , qi2 , · · · ↗ α the inequality

α < g̃(qik) + c1(g̃(qik)− qik), (60)

that would contradict to the existence of qg̃. Remind that, by (55), g̃(qik) if defined for
every k ∈ ω.

For every such qik , we can argue that

g̃(qik) ≥ g(qik) +
1

4
min{c1, 1}(g(qik)− qik) (61)

by showing the inequality

g1(qn) ≥ g(qik) +
1

4
min{c1, 1}(g(qik)− qik) (62)

for every n ≤ ik such that qn ∈ [qik , α) (inter alia, for n = ik).

In order to prove (62), we consider 3 cases of location of qn and g(qn) relative to two
fixed thresholds

m = g(qik)−
1

4
(g(qik)− qik) and M = g(qik) +

1

4
min{c1, 1}(g(qik)− qik).

Case 1: qn ∈ [qik ,m].

Then we obtain (62) by

g1(qn) ≥ g0(qn) =
by (54)

g(qn) + c1(g(qn)− qn) ≥
g is nondecreasing

g(qik) + c1(g(qik)−m)

= g(qik) + c1(g(qik)− (g(qik)−
1

4
(g(qik)− qik))) = g(qik) +

1

4
c1(g(qik)− qik).

Case 2: g(qn) ≥ M .

In this case, the inequality g1(qn) ≥ g(qn) ≥ M holds by Claim 2 and directly implies
(62).

Case 3: m < qn ≤ g(qn) < M .

In this case, one holds that

g(qn)− qn < M −m =
1

4
min{c1, 1}(g(qik)− qik) +

1

4
(g(qik)− qik) ≤

1

2
(g(qik)− qik),

m− qik = g(qik)− qik −
1

4
(g(qik)− qik) =

3

4
(g(qik)− qik).

We now from q < α that g(qn) > qn, thus, for the length d = g(qn)−qn
2 of intervals used

to define of N(qn, g(qn)), it holds that m− qik ≥ 3d, and therefore, by definition of the
function N(·, ·), there exists an index l ≤ N(qn, g(qn)) such that qik ≤ l ≤ m. The latter
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inequality implies in particular that ql < qn, and therefore, that l ∈ Zn, hence we obtain
by definition of g1 that g1(qn) ≥ g0(ql), wherein it holds by the same argument as in
Case 1 that

g0(ql) ≥ g(qik) +
1

4
c1(g(qik)− qik)

in the same way as in Case 1.

So the inequality (61) holds true for every qik , hence we can obtain the inequality (60)
by

g̃(qik) + c1(g̃(qik)− qik) ≥
by (52)

g̃(qik) + c1(g(qik)− qik)

≥
by (61)

g(qik) +
1

4
min{c1, 1}(g(qik)− qik) + c1(g(qik)− qik)

>
by (46)

g(qik) + c2(g(qik)− qik) ≥
by (47)

α,

that contradicts to the existence of qg̃.

Similar to the left-c.e. case, Theorem 57 straightforwardly yields an equivalent charac-
terization of ρ-speedability for any given nonzero ρ < 1 in terms of a Solovay condition
instead of an inequality for lim sup.

Proposition 58. For a real α and a real ρ ∈ (0, 1), the following statements are equiv-
alent.

(a) The real α is ρ-speedable.

(b) There exists a nondecreasing translation function g such that q < g(q) < α for
all q < α and a nondecreasing sequence qn ↗ α that fulfills for every n the inequal-
ity

α− g(qn) ≤ ρ(α− qn). (63)

5.3 Speedability and Martin-Löf randomness

Recall from Theorem 44 that all left-c.e. Martin-Löf random reals are nonspeedable. In
particular, all reals in the largest degree of the upper semilattice of the Solovay degrees
of left-c.e. reals are nonspeedable, since this degree coincides with the set of left-c.e.
Martin-Löf random reals by Theorem 23.

The nonspeedability of the left-c.e. Martin-Löf random reals is extended to all reals by the
next theorem. Then given a monotone Solovay degree that contains a Martin-Löf random
real, every monotone Solovay degree above the former degree contains only Martin-Löf
random and thus nonspeedable reals, since by Theorem 21 the Martin-Löf random reals
are closed upwards under monotone Solovay reducibility, which is a transitive relation.

44



Theorem 59 (Merkle and Titov [9]). Martin-Löf random real numbers are nonspeedable.

Proof. In Chapter 6, the theorem is obtained as a corollary to Theorem 66. A direct
proof was given by Merkle and Titov [9].

Hölzl and Janicki [7] demonstrated that the implication asserted in Theorem 59 cannot
be reversed, even when restricting attention to the class of left-c.e. reals, by constructing
a nonspeedable Martin-Löf nonrandom left-c.e. real. The following theorem asserts a
similar statement for the easier and somewhat less interesting case of right-c.e. reals,
i.e., the implication can neither be reversed on the right-c.e. reals.

Theorem 60. There exists a right-c.e. real that is Martin-Löf nonrandom and non-
speedable.

Proof. We construct a right-c.e. approximation a0, a1, . . . that converges to a real α
such that α is neither Martin-Löf random nor speedable. Fix computable enumera-
tions q0, q1, . . . and ϕ0, ϕ1, . . . of all rationals in the unit interval and of all partial com-
putable functions from the set of such rationals to itself, respectively. For latter use, we
assume that the enumeration of rationals does not have repetitions. Furthermore, fix a
computable enumeration (e0, j0), (e1, j1), . . . of all pairs of the form (e, j) such that the
partial computable function ϕe is defined on argument qj . Such an enumeration can be
obtained by dovetailing the computations of the form ϕe(qj) for all e and j.

In case the constructed real α is speedable via some partial computable function g, by
definition of speedability, there must be rationals q that are arbitrarily close to α and
satisfy q < g(q) < α. Accordingly, in case α is speedable, for some index e and all
rationals m < α,

there are infinitely many q such that m < q < ϕe(q) < α. (64)

On the other hand, in case, for an index e, there is some rational q such that

q < α < ϕe(q), (65)

then ϕe is not a translation function for α, and thus, in particular, the real α is not
speedable via ϕe. By Requirement e, we refer to the condition that there is a rational q
that satisfies (65). Then, in order to ensure that α is nonspeedable, it suffices to arrange
for all indices e that the following implication holds: if (64) holds for all m < α, then
Requirement e is satisfied. This will be achieved by constructing the real α by means of
a standard finite injury priority construction.

At stage 0 of the construction, set a0 = 0.5 and, for all natural numbers e, declare
Requirement e to be unsatisfied and set me equal to 0. At stage s > 0, say that
Requirement e requires attention in case e < s, Requirement e is currently declared
unsatisfied and there is an index j < s such that ej = e and, for q = qj , we have

max
i<e

mi < q < ϕe(q) < as−1. (66)
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In case no index e requires attention at stage s, let as = as−1 and end stage s. Otherwise,
let e be minimum such that Requirement e requires attention, and say that index e
receives attention at stage s. Let j be minimum such that e = ej and (66) is
satisfied for q = qj . Assign rationals to me and as such that we have

q < me < as < ϕe(q) and as −me < 2−(s+1), (67)

and declare Requirement e to be satisfied. Furthermore, for all i > e, declare
Requirement i to be unsatisfied and let mi = 0, which concludes stage s. In case an
index i > e was declared satisfied before, we say that Requirement e injures Require-
ment i at stage s. Occasionally, we will write mj,s for the value of mj at the end of
stage s.

We say a requirement is satisfied at stage s, if it has been declared satisfied at some
stage s′ < s and has not been declared unsatisfied at any stage s′′ where s′ < s′′ < s, and
the notion of a requirement being unsatisfied at stage s is defined similarly with the
roles of satisfied and unsatisfied interchanged. In particular, a requirement that is de-
clared satisfied remains satisfied until it is injured at some later stage. We say a require-
ment is permanently satisfied after stage s if it is satisfied at all stages s+1, s+2, . . .,
which is the case if and only if the requirement is satisfied at stage s+1 and not injured
later.

So, an index e < s requires attention at stage s in case Requirement e is currently unsat-
isfied but may now become satisfied because we have found a rational q that satisfies (66),
hence can be used in an attempt to ensure that (65) holds via fixing as and me such
that (67) holds. Here, me > q is meant as strict lower bound for the values as, as+1, . . .,
and, in case this bound is obeyed, we have q < me ≤ α, which implies (65). By definition
of stage, the lower bound me can only be disobeyed or injured in case later some Re-
quirement i < e receives attention. Accordingly, we say that Requirement i has higher
priority than Requirement e in case i < e .

The theorem now follows by the usual verification of a finite injury priority argument.
First, we argue by induction over e that every requirement requires attention at most at
finitely many stages. The induction base holds true because Requirement 0 has highest
priority, and therefore, cannot be injured. Consequently, in case Requirement 0 requires
attention at some stage, it receives attention and is then permanently satisfied after
this stage, hence cannot require attention again. At the induction step, we consider
an index e > 0 and, by the induction hypothesis, we can fix a stage s0 such that no
requirement i < e requires attention after stage s0. Similar to the base case, we can
then argue that, in case requirement e receives attention at some stage s > s0, it is
permanently satisfied after stage s, hence does not require attention again.

Next, we fix an index e that satisfies (64) for all m < α and show that Requirement e
eventually becomes permanently satisfied. Fix a stage s0 such that none of the Re-
quirements i, where i < e, requires attention at any stage s > s0, hence, after stage s0,
Requirement e is never injured and none of the values m0, . . . ,me−1 changes. Let m be
equal to the maximum of the values m0,s, . . . ,me−1,s. By assumption on e, there are
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infinitely many rationals q that satisfy (64). For all such q and all stages s > s0, the
inequality (66) holds by choice of m and α < as and, in particular, the value ϕe(q) is
defined. Consequently, we can fix an index j > s0 such that qj is such a rational and ej is
equal to e. Then Requirement e is satisfied at the end of stage j. The latter is immediate
in case Requirement e is already satisfied at the beginning of stage j, while, otherwise,
at stage j, it holds that (66), hence Requirement e requires and receives attention and is
declared satisfied. Since Requirement e is never injured after stage s0, it is permanently
satisfied after stage j.

It remains to demonstrate that α is Martin-Löf nonrandom. For every s, let Is be equal
to the empty set in case no index requires attention at stage s, while, otherwise, let e
be the index that receives attention at stage s and set

Is = [me,s − 2−s,me,s + 2−s].

The intervals I0, I1, . . . form a Solovay test since they can be effectively enumerated and
the sum of their lengths is finite. The value me,s and, by (67), also the rational as are
in Is. In case Requirement e is permanently satisfied after stage s, we haveme,s ≤ α < as,
and α is in Is too. Consequently, in order to show that the real α is Martin-Löf nonran-
dom, it suffices to show that there are infinitely many indices e such that Requirement e
eventually becomes permanently satisfied. Since we have already demonstrated that the
latter holds for every index e such that (64) holds for all m < α, in turn, it suffices to
show that there are infinitely many such e. Recall that q0, q1, . . . is a computable enumer-
ation of the rationals in the unit interval without repetition. Consider the computable
function g defined by

g(qn) = min({qj : j < n and qn < qj} ∪ {1}).

For given m < α, fix an index t, where m < qt < α, and observe that, for the infinitely
many n > t, where m < qn < qt, we have

m < qn < g(qn) < qt < α.

Consequently, for every index e such that g is equal to ϕe and for all m < α, it holds
that (64). By the usual padding argument, we can assume that there are infinitely many
such e. Alternatively, we can consider the infinitely partial computable variants of g
that are defined only on the arguments in some interval of the form [0, p] and agree there
with g.
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6 A generalization of the theorem of
Barmpalias and Lewis-Pye

6.1 The rational and the index form of the theorem of
Barmpalias and Lewis-Pye

Let a0, a1, . . . and b0, b1, . . . be left-c.e. approximations of Martin-Löf random reals α
and β, respectively. Since the left-c.e. Martin-Löf random reals are Solovay complete
for the class of left-c.e. reals, the reals α and β are mutually Solovay reducible to each
other, i.e., there are two positive constants c and d such that it holds for all n that

c <
α− an
β − bn

< d. (68)

Intuitively speaking, the two left-c.e. approximations to α and β proceed at similar
speed in the sense that at each step the respective distances to their limit are within a
constant multiplicative factors of each other. The latter result was largely improved by
Barmpalias and Lewis-Pye, who demonstrated that the ratios of these distances actually
converge.

Theorem 61 (Barmpalias and Lewis-Pye [1], index form). Let α and β be left-c.e. reals,
where β is Martin-Löf random. Then there exists a constant d ≥ 0 such that, for every
two left-c.e. approximations an ↗ α and bn ↗ β, it holds that

lim
n→∞

α− an
β − bn

= d. (69)

In what follows, we extend Theorem 61 to arbitrary in place of left-c.e. reals. Such an
extension cannot be formulated in terms of left-c.e. approximation, thus we argue in
Remark 64 that the following theorem can be viewed as a reformulation of Theorem 61
in terms of translation functions, where we refer to this reformulation as the rational
form of the theorem. The extension will then be literally the same as Theorem 62 except
that the assumption that α and β are left-c.e. is dropped.

Theorem 62 (Barmpalias and Lewis-Pye, rational form). Let α and β be left-c.e. reals,
where β is Martin-Löf random and α is monotone Solovay reducible to β. Then there
exists a constant d ≥ 0 such that for every function g that witnesses that α is monotone
Solovay reducible to β, it holds that

lim
q↗β

α− g(q)

β − q
= d. (70)
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The rational form of the theorem of Barmpalias and Lewis-Pye is formulated in terms
of monotone Solovay reducibility, hence the considered translation functions g are non-
decreasing. As shown in the following remark, this is necessary in so far, as a similar
statement with Solovay reducibility in place of its monotone variant would no longer be
equivalent to the index form of the theorem of Barmpalias and Lewis-Pye.

Remark 63. In the formulation of Theorem 62, the monotonicity of the translation
function g is crucial because, with Solovay reducibility in place of its monotone variant,
the assertion of the theorem does not hold in general. For a proof, recall that, by Propo-
sition 56, for any left-c.e. real α ̸= 0 there exists a translation function g such that α is
Solovay reducible to itself via g and

lim inf
q↗α

α− g(q)

α− q
= 0.

The function g as well as the identity function id : q 7→ q both witness that the real α
is Solovay reducible to itself, hence both functions satisfy the assumption of the variant
of Theorem 62 with Solovay reducibility in place of its monotone variant. Consequently,
the latter variant of the theorem is false because it holds that

lim inf
n→∞

α− g(qn)

β − qn
= 0 < 1 = lim

n→∞

α− id(qn)

α− qn
.

Remark 64. The index form and the rational form of the theorem of Barmpalias and
Lewis-Pye follow easily from each other, hence, can be viewed as reformulations of each
other.

First, we prove that Theorem 61 implies Theorem 62. Let d be as in (69) and qn ↗ β be
some, not necessary computable, sequence of rationals. Fix some left-c.e. approximation
b0, b1, . . . of β, and let f be the nondecreasing function that maps every n to the largest
index i such bi ≤ qn. Then f is nondecreasing and, for all n, we have

bf(n) ≤ qn < bf(n)+1, hence g
(
bf(n)

)
≤ g (qn) ≤ g

(
bf(n)+1

)
because g is nondecreasing. Consequently, it holds for all n that

α− g(bf(n))

β − bf(n)+1
≤ α− g(qn)

β − qn
≤

α− g(bf(n)+1)

β − bf(n)
. (71)

Now, b0, b1, . . . and b1, b2, . . . are left-c.e. approximations of β, while g(b0), g(b1), . . . and
g(b1), g(b2), . . . are left-c.e. approximations of α; thus, by applying Theorem 62, we obtain

d = lim
n→∞

α− g(bn)

β − bn+1
= lim

n→∞

α− g(bn+1)

β − bn
= lim

n→∞

α− g(qn)

β − qn
.

Here, the first two equations hold by choice of d, while the third equation is immediate
by the first two equations and (71). This implies Theorem 61 since the sequence qn ↗ β
has been chosen arbitrarily.
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In order to prove the other direction, we fix for left-c.e. real α and Martin-Löf random
left-c.e. β some left-c.e. approximations bn ↗ β and an ↗ α.

Since α≤Sβ by Theorem 23, there exists by Proposition 10 some nondecreasing function
g such that α≤Sβ via g, wherein, from the monotonicity of g, we automatically obtain
that α≤m

S β via g.

We know by rational form of theorem of Barmpalias and Lewis-Pye that the function g
and the left-c.e. approximation bn ↗ β fulfill (70) for some constant d.

For showing that

∃ lim
n→∞

α− an
β − bn

= d.

it suffices to show that

lim inf
n→∞

α− an
β − bn

≥ d and lim sup
n→∞

α− an
β − bn

≤ d. (72)

Since β is left-c.e. and Martin-Löf random, we know by Theorem 44 that β is nonspeed-
able, hence, by criterion of speedability given in Proposition 49(c), for every computable
nondecreasing index function h, we have

lim
n→∞

β − bh(n)

β − bn
= 1. (73)

To prove the left part of (72), we define

h(n) = max{n,min{k : g(bk) ≥ an}}. (74)

The function h is obviously computable and nondecreasing, hence, fulfills (73).

Therefore, it holds that

lim inf
n→∞

α− an
β − bn

= lim inf
n→∞

(
β − bh(n)

β − bn
· α− an
β − bh(n)

)
=

by Lemma 65(1)

lim
n→∞

β − bh(n)

β − bn
· lim inf

n→∞

α− an
β − bh(n)

=
by (73) for h

lim inf
n→∞

α− an
β − bh(n)

≥
by (74)

lim inf
n→∞

α− g(bh(n))

β − bh(n)
= d,

where the last equality holds true since the limit of a subsequence of some converging
sequence coincides with the limit of sequence.

The real β is nonspeedable, hence, by criterion of speedability given in Proposition 51(c),
for every computable nondecreasing unbounded index function h fulfilling h(n) ≤ n for
every n ∈ ω, we have

lim
n→∞

β − bh(n)

β − bn
= 1. (75)
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To prove the right part of (72), we define

h̃(n) = min{n,max : g(bk) ≤ an}. (76)

The function h̃ is obviously computable, nondecreasing, unbounded and fulfills h̃(n) ≤ n
for every n, hence, fulfills (75).

Therefore, it holds that

lim sup
n→∞

α− an
β − bn

= lim sup
n→∞

(β − bh̃(n)

β − bn
· α− an
β − bh̃(n)

)
=

by Lemma 65(2)

lim
n→∞

β − bh̃(n)

β − bn
· lim sup

n→∞

α− an
β − bh̃(n)

=
by (75) for h̃

lim sup
n→∞

α− an
β − bh̃(n)

≤
by (76)

lim sup
n→∞

α− g(bh̃(n))

β − bh̃(n)
= d,

where the last equality holds true by the same argument as in the previous case.

It remains to proof the following lemma, which we have used in the explanation of
Remark 64.

Lemma 65. For a sequence (xn)n∈ω of positive reals that converges to some positive
limit and a bounded sequence (yn)n∈ω of positive reals, the following equalities hold true:

1. lim inf
n→∞

(xnyn) = lim
n→∞

(xn) lim inf
n→∞

(yn);

2. lim sup
n→∞

(xnyn) = lim
n→∞

(xn) lim sup
n→∞

(yn).

Proof. We fix X = lim
n→∞

xn > 0 and Y = lim sup
n→∞

yn.

1. For proving that XY = lim inf
n→∞

(xnyn), we note firstly that XY is an accumulation

point of (xnyn)n∈ω since, for a index sequence (nk)k∈ω such that Y = lim
k→∞

ynk
, we

have
lim
n→∞

xnk
ynk

= XY.

If, for some ϵ > 0, the real XY − ϵ is an accumulation point of (xnyn)n∈ω, then,
for a index sequence (nk)k∈ω such that XY − ϵ = lim

k→∞
xnk

ynk
, we have

lim
k→∞

ynk
=

lim
k→∞

(xnk
ynk

)

lim
k→∞

xnk

=
XY − ϵ

X
< Y,

that contradicts to the choice of Y .

2. similar to the previous assertion with XY − ϵ replaced by XY + ϵ.
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6.2 The theorem

The following theorem extends a result of Barmpalias and Lewis [1, 11] from left-c.e.
reals to all reals. In what follows, existence of a limit is used in the sense of converging
to a real number, i.e., the case that the considered values tend to infinity is excluded.

Theorem 66. Let α and β be reals, where β is Martin-Löf and α is monotone Solovay
reducible to β. Then there exists a constant d ≥ 0 such that for every function g that
witnesses that α is monotone Solovay reducible to β, it holds that

lim
q↗β

α− g(q)

β − q
= d.

We demonstrate first that the limit considered in the theorem exists. That this limit
exists follows rather directly from Claims 1 through 3, which we will state in a minute
subsequent to introducing some notation. Claims 1 and 2 follow by arguments that are
similar to the ones used in connection with the case of left-c.e. reals [1, 11], whereas the
proof of Claim 3 is rather involved and has no counterpart in the left-c.e. case.

We assume that the values of the function g are in the unit interval [0, 1] because,
otherwise, we can consider a variant of g that agrees with g except that, on arguments
where the value of g is strictly below 0 or strictly above 1, we change the value to 0 and
let the function be undefined, respectively. Observe that this variant still satisfies the
assumption of the theorem because of 0 < α < 1.

In the remainder of this proof and unless explicitly stated otherwise, the term inter-
val refers to a closed subinterval of the real numbers that is bounded by rationals.
Lebesgue measure is denoted by µ, i.e., the Lebesgue measure, or measure, for short,
of an interval U is µ(U) = maxU − minU . A finite test is an empty set or a tu-
ple A = (U0, . . . , Um) with m ≥ 0 where the Ui are not necessarily distinct nonempty
intervals. For such a finite test A, its covering function is

kA : [0, 1] −→ ω,

x 7−→ #{i ∈ {0, . . . ,m} : x ∈ Ui},

that is, kA(x) is the number of intervals in A that contain the real number x. Further-
more, the measure of A is µ(A) =

∑
i∈{0,...,m} µ(Ui).

It is easy to see that the measure of a given finite test A can be computed by integrating
its covering function on the whole domain [0, 1], i.e., for every finite test A, it holds that

µ(A) =

1∫
0

kA(x)dx, (77)

as follows by induction on the number of intervals contained in the finite test A.
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The induction base holds true because, in case A = ∅, we obviously have

µ(A) = 0 =

1∫
0

0dx =

1∫
0

kA(x)dx

and, in case A = (U) is a singleton, the function kA is just the indicator function of U ,
while the induction step follows from additivity of the integral operator because the
function k(U0,...,Un+1) is the sum of k(U0,...,Un) and k(Un+1).

Observe that by our definition of covering function, the values of the covering functions of
the two tests ([0.2, 0.3], [0.3, 0.7]) and ([0.2, 0.7]) differ on the argument 0.3. Furthermore,
for a given finite test and a rational q, by adding intervals of the form [q, q] the value of
the corresponding covering function at q can be made arbitrarily large without changing
the measure of the test. However, these observations will not be relevant in what follows
since they relate only to the value of covering functions at rationals.

For a given finite subset Q of the domain of g, we will construct a finite test M(Q) by
an extension of a construction used by Miller [11] in the left-c.e. case. The construction
is effective in the sense that it always terminates and yields the test M(Q) in case it is
applied to a finite subset of the domain of g.

For every finite subset Q of the domain of g and every rational p, we let

k̃Q(p) = kM(Q)(p) and KQ(p) = max
H⊆Q

k̃H(p).

We demonstrate Theorem 66 by a proof by contradiction, i.e., we assume that the limit
considered in the theorem does not exist. By this assumption, we obtain a rational e
where 0 < e < 1, which is used in the construction of the test M(Q) for given Q.

The desired contradiction and thus the theorem then follows from the following three
claims.

Claim 1. Let Q0 ⊆ Q1 ⊆ · · · be a sequence of finite sets that converge to the domain
of g. Then it holds that

lim
n→∞

KQn(eβ) = ∞.

Claim 2. For every finite subset Q of the domain of g, it holds that

1∫
0

k̃Q(x)dx = µ(M(Q)) ≤ g(maxQ)− g(minQ). (78)

Claim 3. For every finite subset Q of the domain of g and for every nonrational real p
in [0, e], it holds that

KQ(p) ≤ k̃Q(p) + 1. (79)
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In order to demonstrate Theorem 66, fix some effective enumeration p0, p1, . . . without
repetition of the domain of g and, for n = 0, 1, . . ., let Qn = {p0, . . . , pn}. We consider
a special type of step function with domain [0, 1] that is given by a partition of the
unit interval into finitely many intervals with rational endpoints such that the function
is constant on the corresponding open intervals but may have arbitrary values at the
endpoints. For the scope of this proof, a designated interval of such a step function
is an interval that is the closure of a maximum contiguous open interval on which the
function attains the same value. I.e., the designated intervals form a partition of the
unit interval except that two designated intervals may share an endpoint. Observe that,
for every finite subset H of the domain of g, the corresponding cover function k̃H(·) is
such a step function with values in the natural numbers, and the same holds for the
function KQn since Qn has only finitely many subsets. Furthermore, for given n, the
designated intervals of the function KQn(·) together with the endpoints and function
value of every interval are given uniformly effective in n because g is computable and
the construction of M(Qn) is uniformly effective in n.

For all natural numbers i and n, consider the step function KQn and its designated
intervals. For every such interval, call its intersection with [0, e] its restricted interval.
Let Xn

i be the union of all restricted designated intervals where on the corresponding
designated interval the function KQn attains a value that is strictly larger than 2i+2.
Let Xi be the union of the sets X0

i , X
1
i , . . ..

By our assumption that the values of g are in [0, 1] and by (78), for all n the integral
of k̃Qn(p) from 0 to 1 is at most 1, hence by (79), the integral of KQn(p) from 0 to e is
at most 2. Consequently, each set Xn

i has Lebesgue measure of at most 2−(i+1). The
latter upper bound then also holds for the Lebesgue measure of the set Xi since by the
maximization in the definition of KQn and

Q0 ⊆ Q1 ⊆ · · · , we have KQ0 < KQ1 < · · · , hence X0
i ⊆ X1

i ⊆ · · · .

By construction, for all i and n > 0, the difference Xn
i \ Xn−1

i is equal to the union
of finitely many intervals that are mutually disjoint except possibly for their endpoints,
and a list of these intervals is uniformly computable in i and n since the functions KQn

are uniformly computable in n. Accordingly, the set Xi is equal to the union of a set Ui

of intervals with rational endpoints that is effectively enumerable in i and where the
sum of the measures of these intervals is at most 2−(i+1). By the two latter properties,
the sequence U0, U1, . . . is a Martin-Löf test. By Claim 1, the values KQn(eβ) tend to
infinity where eβ < e, hence for all n the Martin-Löf random real eβ is contained in
some interval in Un, a contradiction. This concludes the proof that Claim 1 through 3
together imply that the limit (80) exists.

It remains to show the Claims 1 through 3 and that the limit claimed to exist by
Theorem 66 does not depend on g. For a start, we give the construction of the tests of
the form M(Q) and gather some facts that will be used subsequently.
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The constants c and d and the sets S and T We aim at showing that the limit

lim
q↗β

α− g(q)

β − q
(80)

exists. For a proof by contradiction, we assume the opposite. By assumption of the
theorem, the partial computable function g is nondecreasing and defined on all q < β,
and we can pick a positive real c0 such that for all such q we have g(q) < α and

α− g(q) ≤ c0(β − q). (81)

Thus, in particular, the fractions occurring in (80) are bounded from above by c0. Con-
sequently, by our assumption that the limit (80) does not exist, we can fix two rational
constants c and d where

c < d, e = d− c < 1 and lim inf
q↗β

α− g(q)

β − q
< c < d < lim sup

q↗β

α− g(q)

β − q
.

In particular, β is an accumulation point of both the sets

S = {q < β :
α− g(q)

β − q
> d} = {q < β : δ(q) < α− dβ},

T = {q < β :
α− g(q)

β − q
< c} = {q < β : γ(q) > α− cβ}.

Here, the partial computional functions γ and δ have the same domain as g and are
defined by

γ(q) = g(q)− cq and δ(q) = g(q)− dq.

By definition of γ and δ and because of c < d, the following claim is immediate.

Claim 4. Whenever g(q) is defined, we have

γ(q)− δ(q) = (d− c)q = ep > 0, hence γ(q) > δ(q).

In particular, the partial function γ − δ is strictly increasing on its domain, hence, for
every sequence q0 < q1 < . . . of rationals on [0, β) that converges to β, the values g(qi) are
defined, and therefore, the values γ(qi)− δ(qi) converge strictly increasingly to (d− c)β.

Claim 5. The sets S and T are disjoint.

Proof. The claim holds because for every q < β, the bounds in the definitions of S and T
are strictly farther apart than the values γ(q) and δ(q), i.e., we have

γ(q)− δ(q) = (d− c)q < (d− c)β = (α− cβ)− (α− dβ).
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The intervals that are used For given rationals p and q, we define the interval

R[p, q] = [γ(p)− δ(p), γ(q)− δ(p)].

From this definition and the definitions of γ and δ, the following claim is immediate. Note
that assertion (iii) in the claim relates to expanding an interval at the right endpoint.

Claim 6. (i) Any interval of the form R[p, q] has the left endpoint ep.

(ii) Consider an interval of the form R[p, q]. In case γ(p) ≤ γ(q), the interval has
length γ(q)− γ(p), otherwise, the interval is empty. In particular, any interval of
the form R[p, p] has length 0.

(iii) Let R[p, q] be a nonempty interval and assume γ(q) ≤ γ(q′). Then the inter-
val R[p, q] is a subset of the interval R[p, q′], both intervals have the same left
endpoint ep and they differ in length by γ(q′)− γ(q).

The following claim, which has already been used in the left-c.e. case [1, 11], will be
crucial in the proof of Claim 1.

Claim 7. Let q be in S and let q′ be in T . Then the interval R[q, q′] contains eβ.

Proof. By definition, the interval R[q, q′] has the left endpoint eq and the right end-
point γ(q′) − δ(q). By definition of the sets S and T , on the one hand, we have q < β,
hence eq < eβ, on the other hand, we have

γ(q′)− δ(q) > (α− cβ)− (α− dβ) = (d− c)β = ep.

Outline of the construction of the test M(Q) Let Q = {q0 < · · · < qn} be a nonempty
finite subset of the domain of g, where the notation used to describe Q has its obvious
meaning, i.e., Q is the set of q0, . . . , qn and qi < qi+1. We describe the construction of
the finite test M(Q), which is an extended version of a construction used by Miller in
connection with left-c.e. reals [11]. Using the notation defined in the previous paragraphs,
for all i in {0, . . . , n} let

δi = δ(qi) = g(qi)− dqi,

γi = γ(qi) = g(qi)− cqi,

I[i, j] = R[qi, qj ] = [γ(qi)− δ(qi), γ(qj)− δ(qi)] = [eqi, γj − δi].

The properties of the intervals of the form R[p, q] extend to the intervals I[i, j], for
example, any two nonempty intervals of the form I[i, j] and I[i, j′] have the same left
endpoint, i.e., min I[i, j] and min I[i, j′] are the same for all i, j, and j′.

The test M(Q) is constructed in successive steps j = 0, 1, . . . , n, where, at each step j,
intervals U j

0 , . . . , U
j
n are defined. Every such interval U j

i has the form

U j
i = I[i, rj(i)] = I[i, k] = R[qi, qk] = [γ(qi)− δ(qi), γ(qk)− δ(qi)]
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for some index k ∈ {0, . . . , n}, where rj(·) is an index-valued function that maps every
index i to such index k that I[i, k] = U j

i .

At step 0, for i = 0, . . . , n, we set the values of the function r0(i) by

r0(i) = i (82)

and initialize the intervals U0
i as zero-length intervals

U0
i = I[i, r0(i)] = I[qi, qi] = R[qi, qi] = [eqi, eqi]. (83)

In the subsequent steps, every change to an interval amounts to an expansion at the
right end in the sense that for all indices i, the intervals U0

i , . . . , U
n
i share the same left

endpoint, while their right endpoints are nondecreasing. More precisely, as we will see
later, for i = 0, . . . , n we have

eqi = minU0
i = · · · = minUn

i ,

ep = maxU0
i ≤ · · · ≤ maxUn

i ,

and thus U0
i ⊆ · · · ⊆ Un

i . After concluding step n, we define the finite test

M(Q) = (Un
0 , . . . , U

n
n ).

In case the right endpoints of two intervals of the form U j−1
i and U j

i coincide, we say that
the interval with index i remains unchanged at step j. Similarly, we will speak informally
of the interval with index i, or Ui, for short, in order to refer to the sequence U0

i , . . . , U
n
i

in the sense of one interval that is successively expanded.

Due to technical reasons, for an empty set ∅, we define M(∅) = ∅.

A single step of the construction and the index stair During step j > 0, we proceed
as follows. Let t0 be the largest index among {0, . . . , j − 1} such that γt0 > γj , i.e., let

t0 = argmax{qz : z < j and γz > γj} (84)

and, in case there is no such index, let t0 = −1.

Next, define indices s1, t1, s2, t2, . . . inductively as follows. For h = 1, 2, . . ., assuming
that th−1 is already defined, where th−1 < j − 1, let

sh = max argmin{δx : th−1 < x ≤ j − 1}, (85)

th = max argmax{γy : sh ≤ y ≤ j − 1}. (86)

That is, the operator argmin yields a set of indices x such that δx is minimum among
all considered values, and sh is chosen as the largest index in this set, and similarly
for argmax and the choice of th.
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Since we assume that th−1 < j − 1, the minimization in (85) is over a nonempty set
of indices, hence sh is defined and satisfies sh ≤ j − 1 by definition. Therefore, the
maximization in (86) is over a nonempty index set, hence also th is defined.

The inductive definition terminates as soon as we encounter an index l ≥ 0 such
that tl = j− 1, which will eventually be the case by the previous discussion and because
obviously the values t0, t1, . . . are strictly increasing. For this index l, we refer to the
sequence (t0, s1, t1, . . . , sl, tl) as the index stair of step j. E.g., in case l = 1 the index
stair is (t0, s1, t1), and in case l = 0, the index stair is (t0). Note that l = 0 holds if and
only if even s1 could not be defined, where the latter in turn holds if and only if t0 is
equal to j − 1.

Next, for i = 1, . . . , n, we set the values of rj(i) and define the intervals U j
i . For a start,

in case l ≥ 1, let

rj(s1) = j, (87)

U j
s1 = I[s1, r

j(s1)] = I[s1, j] = [γs1 − δs1 , γj − δs1 ] (88)

and call this a nonterminal expansion of the interval Us1 at step j. In case l ≥ 2,
in addition, let for h = 2, . . . , l

rj(sh) = th−1, (89)

U j
sh

= I[sh, r
j(sh)] = I[sh, th−1] = [γsh − δsh , γth−1

− δsh ] (90)

and call this a terminal expansion of the interval Ush
at step j.

For all remaining indices, the interval with index i remains unchanged at step j, i.e.,
for all i ∈ {0, . . . , n} \ {s1, . . . , sl} let

rj(i) = rj−1(i), (91)

U j
i = U j−1

i . (92)

The choice of the term “terminal expansion” is motivated by the fact that in case a
terminal expansion occurs for the interval with index i at step j, then, at all further
steps j + 1, . . . , n, the interval remains unchanged, as we will see later.

We conclude step j by defining for i = 0, . . . , n the half-open interval

V j
i = U j

i \ U j−1
i . (93)

That is, during step j the interval with index i is expanded by adding at its right end
the half-open interval V j

i , i.e., we have

U j
i = U j−1

i

·
∪ V j

i where |U j
i | = |U j−1

i |+ |V j
i |. (94)

This includes the degenerated case where the interval with index i is not changed,
hence V j

i is empty and has length 0.

In what follows, in connection with the construction of a test of the form M(Q), when
appropriate, we will occasionally write tj0 for the value of t0 chosen during step j and
similarly for other values like sh in order to distinguish the values chosen during different
steps of the construction.
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The proof of Claim 1 Now, as the construction of the tests of the form M(Q) has been
specified, we can already demonstrate Claim 1. Let Q0 ⊆ Q1 ⊆ . . . be a sequence of sets
that converges to the domain of g as in the assumption of the claim. Any finite subset H
of the domain of g will be a subset of Qn for all sufficiently large indices n, where then
for all such n it holds that KH(eβ) ≤ KQn(eβ) by definition of KQ. Consequently, in
order to show Claim 1, i.e., that the values k̃Qn(eβ) tend to infinity, it suffices to show
that the function H 7→ k̃H((d− c)β) is unbounded on the finite subsets H of the domain
of g.

Recall that we have defined subsets S and T of the domain of g, which contain only
rationals q < β. Let r0 < r1 < . . . be a sequence such that for all indices i ≥ 0, it holds
that

r2i ∈ T, r2i+1 ∈ S, γ(r2i+1) < γ(r2i+2) < γ(r2i). (95)

Such a sequence can be obtained by the following nonconstructive inductive definition.
Let r0 be an arbitrary number in T . Assuming that r2i has already been defined,
let r2i+1 be equal to some r in S that is strictly larger than r2i. Note that such r exists
since r2i < β and β is an accumulation point of S. Furthermore, assuming that r2i
and r2i+1 have already been defined, let r2i+2 be equal to some r in T that is strictly
larger than r2i+1 and such that the second inequality in (95) holds. Note that such r
exists because by definition of T , we have γ(r2i) > α−cβ, while β is also an accumulation
point of T and γ(r) converges to α − cβ when r tends nondecreasingly to β. Finally,
observe that the first inequality in (95) holds automatically for r2i+1 in S and r2i+2 in T
because by Claim 5, the set S is disjoint from T , hence, by definition of T , we have

γ(r2i+1) ≤ α− cβ < γ(r2i+2).

Now, let H be equal to {r0, r1, . . . , r2k} and consider the construction of M(H). For
the remainder of this proof, we will use the indices of the rj in the same way as the
indices of the qj are used in the description of the construction above. For example,
for i = 0, . . . , k− 1, during step 2i+ 2 of the construction of M(H), the index t0 is cho-
sen as the maximum index z in the range 0, . . . , 2i+1 such that γ(r2i+2) < γ(rz). By (95),
this means that, in step 2i+2, the index t0 is set equal to 2i and – since 2i+1 is the unique
index strictly between 2i and 2i+2 – the index stair of this step is (2i, 2i+ 1, 2i+ 1). Ac-
cordingly, by construction, the interval U2i+2

2i+1 coincides with the interval R[r2i+1, r2i+2].

By Claim 7, this interval, and thus also, its superset U2k
2i+1 contains eβ. The latter holds

for all k different values of i, hence k̃H(eβ) ≥ k. This concludes the proof of Claim 1
since k can be chosen arbitrarily large.

Some properties of the intervals U i
j We gather some basic properties of the points

and intervals that are used in the construction.

Claim 8. Let Q = {q0 < · · · < qn} be a subset of the domain of g. Consider some step j
of the construction of M(Q) and let (t0, s1, t1, . . . , sl, tl) be the corresponding index stair.
Then we have γj < γt0 in case t0 ̸= −1.
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In case the index s1 could not be defined, i.e., in case l = 0, we have t0 = j − 1.
Otherwise, i.e., in case l > 0, we have

t0 < s1 < t1 < · · · < sl ≤ tl = j − 1 < j, (96)

δs1 < · · · < δsl < γtl < · · · < γt1 ≤ γj . (97)

Proof. The assertion on the relative size of γj and γt0 is immediate by definition of t0.
In case s1 cannot be defined, the range between t0 and j must be empty and t0 = j − 1
follows. Next, we assume l > 0 and demonstrate (96) and (97). By definition of the
values sh and th, it is immediate that we have sh ≤ th < sh+1 for all h ∈ {1, . . . , l − 1}
and have sl ≤ tl = j − 1. In order to complete the proof of (96), assume sh = th for
some h. Then we have

eqsh = γsh − δsh = γth − δsh ≥ γj−1 − δj−1 = eqj−1, (98)

where the inequality holds true because γth ≥ γj−1 and δsh ≤ δj−1 hold for all h. So we
obtain sh = th = j − 1 and thus h = l because, otherwise, in case sh < j − 1, we would
have qsh < qj−1.

By definition of s1 and l, it is immediate that, in case l = 0, we have t0 = j − 1.

It remains to show (97) in case l > 0. The inequality γt1 ≤ γj holds because its negation
would contradict the choice of t0 in the range 0, . . . , j−1 as largest index with maximum
γ-value, as we have t0 < t1 < j by (96). In order to show δsl < γtl , it suffices to observe
that we have δsl ≤ δtl by choice of sl and sl ≤ tl < j and know that δtl < γtl from
Claim 4. In order to show the remaining strict inequalities, fix h in {1, . . . , l − 1}. By
choice of sh, we have δsh < δx for all x that fulfill sh < x ≤ j−1 and, since sh+1 is among
these x, we have δsh < δsh+1

. By a similar argument, it follows that γth+1
< γth .

Claim 9. Let Q = {q0 < · · · < qn} be a subset of the domain of g and consider the
construction of M(Q). Let i be in {0, . . . , n}. Then it holds that

U0
i = · · · = U i

i . (99)

Furthermore, for all steps j ≥ i of the construction, it holds that

U j
i = I[i, x], where x ≤ j. (100)

Proof. The equations in (99) hold because the index stair of every step j ≤ i contains
only indices that are strictly smaller than j and thus also than i, hence, by (92), the
interval with index i remains unchanged at all such stages.

Next, we demonstrate (100) by induction over all steps j ≥ i. The base case j = i follows
from (99) and because, by definition, we have U0

i = I[i, i]. At the step j > i, we consider
its index stair (t0, s1, t1, . . . , sl, tl). Observe that all indices that occur in the index stair
are strictly smaller than j. The induction step now is immediate by distinguishing the
following three cases. In case i = s1, we have U

j
i = I[i, j]. In case i = sh for some h > 1,
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we have U j
i = I[i, th−1]. In case i differs from all indices of the form sh, by (92), the

interval with index i remains unchanged at stage j and we are done by the induction
hypothesis.

Claim 10. Let Q = {q0 < · · · < qn} be a subset of the domain of g, and consider
the construction of M(Q). Let j ≥ 1 be a step of the construction, where at least the
index s1 could be defined, and let (t0, s1, t1, . . . , sl, tl) be the index stair of this step. Then,
for h = 1, . . . , l, we have

U j−1
sh

= I[sh, th] hence, in particular, maxU j−1
sh

= γth − δsh . (101)

Consequently, for i = 0, . . . , n, we have

U0
i ⊆ · · · ⊆ Un

i , wherein maxU0
i ≤ maxU1

i ≤ . . . ≤ maxUn
i . (102)

Proof. In order to prove the claim, fix some h in {1, . . . , l}. In case sh = th, by (96),
we have h = l and sh = th = j − 1, hence (101) holds true because, by construction
and (99), we have

U j−1
sh

= U sh
sh

= U0
sh

= I[sh, sh] = I[sh, th].

So we can assume the opposite, i.e., that sh and th differ. We then obtain

th−1 ≤ tth0 < sh < th < j, (103)

where tth0 , as usual, denotes the first entry in the index stair of step th. Here, the last
two strict inequalities are immediate by Claim 8 since sh differs from th. In case the
first strict inequality was false, again, by Claim 8, we would have sh ≤ tth0 < th < j as
well as γth < γ

t
th
0
, which together contradict the choice of th. Finally, the first inequality

obviously holds in case h = 1 and t0 = −1. Otherwise, we have γth−1
> γth by (97), as

well as th−1 < th, hence, by definition, the value tth0 will not be chosen strictly smaller
than th−1.

By (103), it follows that

{x : tth0 < x < th} ⊆ {x : th−1 < x < j}.

By definition, the index sth1 is chosen as the largest x in the former set that minimizes δx,
while sh is chosen from the latter set by the same condition, i.e., as the largest x that
minimizes δx. Again, by (103), the index sh is also in the former set, hence must be the
largest index minimizing δx there. So we have sth1 = sh, hence U th

sh
= I[sh, th] follows

from construction.

Next, we argue that U th
sh

= U th
sh

by demonstrating that

U th
sh

= U th+1
sh

= · · · = U j−1
sh

,

i.e., that at all steps y = th+1, . . . , j−1, the interval Ush
remains unchanged. For every

such step y, by definition of th, we have γy < γth , hence sh < th ≤ ty0 by choice of ty0.
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Consequently, the index sh does not occur in the index stair of step y and we are done
by (92).

We conclude the proof of the claim by showing for i = 1, . . . , n the inequality

maxU j−1
i ≤ maxU j

i ,

which then implies U0
i ⊆ · · · ⊆ Un

i because, by construction, the latter intervals all share
the same left endpoint minU0

i = eqi and j is an arbitrary index in {1, . . . , n}.
For indices i that are not equal to some sh, the interval i remains unchanged at step j and
we are done. So we can assume i = sh for some h in {1, . . . , l}; thus, maxU j−1

i = γth−δsh
follows from (101). The value γth is strictly smaller than both values γj and γth−1

by
choice of t0 and th−1. So we are done because, by construction, in case h = 1, we
have maxU j

i = γj − δsh , while, in case h > 1, we have maxU j
i = γth−1

− δsh .

As a corollary of Claim 10, we obtain that, when constructing a test of the form M(Q),
any terminal expansion of an interval at some step is, in fact, terminal in the sense that
the interval will remain unchanged at all larger steps.

Claim 11. Let Q = {q0 < · · · < qn} be a subset of the domain of g, and consider the
construction of M(Q). Let j ≥ 1 be a step of the construction, where the index s2 could
be defined, and let (t0, s1, t1, . . . , sl, tl) be the index stair of this step. Then, for every
h = 2, . . . , l, it holds that rj(sh) = rn(sh), and therefore, that U j

sh = Un
sh
.

Proof. For a proof by contradiction, we assume that the claim assertion is false, i.e., we
can fix some h ≥ 2 such that the values rj(sh) and rn(sh) differ. Let k be the least index
in {j + 1, . . . , n} such that the values rk−1(sh) and rk(sh) differ, and let (tk0, s

k
1, t

k
1, . . . )

be the index stair of step k. Since the interval with index sh does not remain unchanged
at step k, we must have sh = skx for some x ≥ 1. In order to obtain the desired
contradiction, we distinguish the cases x = 1 and x > 1. In case x = 1, by construction
we have

tk0 < sk1 = sh < j < k and tk0 ≤ t0 < s1 < j < k,

where all relations are immediate by choice of the involved indices except the nonstrict
inequality. The latter inequality holds by choice of tk0 because, by the chain of relations
on the left, we have tk0 < j, and thus, γj ≤ γk, while γi ≤ γj holds for i = t0+1, . . . , j−1
by choice of t0. Now, we obtain as a contradiction that sk1 = sh is chosen in the
range tk0 + 1, . . . , k − 1 as largest index that has minimum δ-value, where this range
includes s1, hence δsk1

≤ δs1 , while δs1 < δsh by h ≥ 2.

In case x > 1, we obtain

th−1 = rj(sh) = rk−1(sh) = tkx, (104)

which contradicts to th−1 < sh = skx ≤ tkx. The equalities in (104) follow, from left
to right, from h ≥ 2, from the minimality condition in the choice of k and, finally,
from sh = skx and Claim 10.
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The explicit description of the intervals of the form U j−1
sh according to Claim 10 now

yields an explicit description of the endpoints of the half-open intervals of the form V j
i ,

from which in turn we obtain that all such intervals occurring at the same step are
mutually disjoint and the sum of their measures is equal to γj − γj−1.

Claim 12. Let Q = {q0 < · · · < qn} be a subset of the domain of g, and consider the
construction of M(Q). Let j > 0 be a step of the construction.

If γj−1 ≤ γj, then it holds for the index stair (t0, s1, t1, . . . , sl, tl) of this step that l > 0,
i.e., s1 can be defined and we have

V j
s1 = (γt1 − δs1 , γj − δs1 ], (105)

V j
sh

= (γth − δsh , γth−1
− δsh ] for h ≥ 2 (if defined), (106)

V j
i = ∅ for i in {0, . . . , n} \ {s1, . . . , sl}. (107)

In particular, the half-open intervals V j
0 , . . . , V

j
n are mutually disjoint and the sum of

their Lebesgue measures can be bounded as follows

n∑
i=0

µ(V j
i ) =

l∑
h=1

µ(V j
sh
) = γj − γj−1. (108)

If γj−1 > γj, then the index stair of this step has a form (j − 1), i.e., t0 = j − 1, l = 0,

all the intervals V j
0 , . . . , V

j
n are empty

V j
i = ∅ for all i (109)

and the sum of their Lebesgue measures is equal to zero

n∑
i=0

µ(V j
i ) = 0. (110)

Proof. If γj−1 ≤ γj , then we have t0 ̸= j − 1, hence the set {x : t0 < x ≤ j − 1} used
in (85) to define s1 contains at least one index, namely j − 1, and therefore, s1 can be
defined.

If γj−1 > γj , then we have t0 = j − 1, hence the set {x : t0 < x ≤ j − 1} is empty and
s0 cannot be defined.

Recall that, by construction, the intervals U0
i , . . . , U

n
i are all nonempty and have all the

same left endpoint γi − δi; thus, we have

V j
i = U j

i \ U j−1
i = (maxU j−1

i ,maxU j
i ].

This implies (107) in case γj−1 ≤ γj and (109) in case γj−1 < γj since, for i not

in {s1, . . . , sl}, the interval with index i remains unchanged at step j, hence V j
i is empty.
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In case γj−1 < γj , we obtain (110) directly from (109) by

n∑
i=0

µ(V j
i ) =

n∑
i=0

µ(∅) = 0,

so, from now on, we assume that γj−1 ≤ γj and, as we have seen before, l > 0.

In order to obtain (105) and (106) in this case, it suffices to observe that maxU j
sh is

equal to γj − δs1 in case h = 1 and is equal to γth−1
− δsh in case h ≥ 2, respectively,

while maxU j−1
sh = γth − δsh for h = 1, . . . , l by Claim 10.

Next, we show that the half-open intervals V j
0 , . . . , V

j
n are mutually disjoint. These

intervals are all empty except for V j
s1 , . . . , V

j
sl . In case the latter list contains at most

one interval, we are done. So we can assume l ≥ 2. Disjointedness of V j
0 , . . . , V

j
n then

follows from
minV j

sl
< maxV j

sl
< · · · < minV j

s1 < maxV j
s1 .

These inequalities hold because, for h = 2, . . . , l, by Claim 8, we have γth−1
> γth

and δsh−1
< δsh , which together with (105) and (106) yield

γth − δsh = minV j
sh

< maxV j
sh

= γth−1
− δsh < γth−1

− δsh−1
= minV j

sh−1
.

Since the intervals V j
0 , . . . , V

j
n are mutually disjoint, the Lebesgue measure of their union

is equal to

n∑
i=0

µ(V j
i ) =

l∑
h=1

µ(V j
sh
) = µ(V j

s1) +
l∑

h=2

µ(V j
sh
)

= γj − γt1 +
l∑

h=2

(γth−1
− γth) = γj − γtl = γj − γj−1,

where the last two equations are implied by evaluating the telescoping sum and because tl
is equal to j − 1 by Claim 8, respectively.

The proof of Claim 2 Using the results on the intervals V j
i in Claim 12, we can now

easily demonstrate Claim 2. We have to show for every subset Q = {q0 < · · · < qn} of
the domain of g that

µ(M(Q)) ≤ g(qn)− g(q0). (111)

This inequality holds true because we have

µ(M(Q)) =
∑

U∈M(Q)

µ(U) =

n∑
i=0

µ(Un
i ) =

n∑
i=0

n∑
j=1

µ(V j
i ) =

n∑
j=1

n∑
i=0

µ(V j
i )

≤
n∑

j=1

(max{γj − γj−1, 0}) ≤
n∑

j=1

(max{g(qj)− g(qj−1), 0}) ≤ g(qn)− g(q0).
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In the first line, the first equality holds by definition of µ(M(Q)) and the second and
the third equalities hold by construction of M(Q) and by (93), respectively.

In the second line, the equality holds because, for every j, we have

n∑
i=0

µ(V j
i ) = max{γj − γj−1, 0}

due to the following argumentation: in case γj−1 ≤ γj , we obtain from Claim 12, (108),

that
∑n

i=0 µ(V
j
i ) = γj−γj−1 ≥ 0 and, in case γj−1 > γj , we obtain from Claim 12, (110),

that
∑n

i=0 µ(V
j
i ) = 0.

Finally, the inequality in the second line holds because the difference g(qn) − g(q0) can
be rewritten as a telescoping sum

g(qn)− g(q0) = (g(qn)− g(qn−1)) + (g(qn−1)− g(qn−2)) + . . .+ (g(q1)− g(q0))

and, for every j from 1 to n, we have

max{γj − γj−1, 0} ≤ g(qj)− q(qj−1)

due to the following argumentation: in case γj−1 ≤ γqj , we have

γj − γj−1 = γ(qj)− γ(qj−1) = g(qj)− cqj − (g(qj−1)− cqj−1) ≤ g(qj)− g(qj−1)

and, in case γj−1 > γqj , we direclty have

0 ≤ g(qj)− g(qj−1),

where, in both cases, the inequalities are implied by motonony of g for arguments
qj−1 < qj .

Preliminaries for the proof of Claim 3 The following claim asserts that, when adding
to a finite subset Q of the domain of g one more rational that is strictly larger than all
members of Q, the cover function of the test corresponding to Q increases at most by
one on all nonrational arguments.

Claim 13. Let Q be a finite subset of the domain of g. Then, for every real p ∈ [0, 1],
it holds that

k̃Q\{maxQ}(p) ≤ k̃Q(p) ≤ k̃Q\{maxQ}(p) + 1. (112)

Proof. Let Q = {q0 < · · · < qn} be a finite subset of the domain of g. We consider the
constructions of the tests M(Q \ {qn}) and M(Q) and denote the intervals constructed
in the latter test by U j

i , as usual. The steps 0 through n of both constructions are
essentially identical up to the fact that, in the latter construction, in addition, the
interval U0

n is initialized as [eqn, eqn] in step 0 and then remains unchanged. Accordingly,
the test M(Q \ {qn}) consists of the intervals Un−1

0 , . . . , Un−1
n−1 , hence, the first inequality
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in (112) holds true because the test M(Q) is then obtained by expanding these intervals.
More precisely, in the one additional step of the construction of M(Q), these intervals
and the interval Un−1

n = U0
n are expanded by letting

Un
i = Un−1

i ∪ V n
i for i = 0, . . . , n.

The intervals V n
0 , . . . , V n

n are mutually disjoint by Claim 12. Consequently, the cover
functions of both tests can differ at most by one, hence also the second inequality in (112)
holds true.

The following somewhat technical claim will be used in the proof of Claim 15.

Claim 14. Let Q = {q0 < · · · < qn} be a subset of the domain of g and let p ∈ (0, 1] be
a real number. Let i, j, k be indices such that q0 ≤ qi < qj < qk < p,

ep < γi − δj and ep < γk − δj . (113)

Let Qi = {q0, . . . , qi} and Qk = {q0, . . . , qk}. Then the following inequality holds true:

k̃Qi(ep) < k̃Qk
(ep). (114)

Proof. Let s = max argmin{δx : i < x < k}, and let

i′ = max argmax{γy : i ≤ y < s} and k′ = max argmax{γy : s < y ≤ k}.

The following inequalities are immediate by definition

δs ≤ δj , γs < γi ≤ γi′ , γs < γk ≤ γk′ , (115)

except the two strict upper bounds for γs. The first of these bounds, i.e., γs < γi, follows
from

γs − δs = eqs < ep < γi − δj ≤ γi − δs,

where the inequalities hold, from left to right, by qs < qk < p, by (113) and by (115).
By an essentially identical argument, this chain of relations remains valid when γi is
replaced by γk, which shows the second bound, i.e., γs < γk.

We denote the intervals that occur in the construction of M(Q) by U j
i , as usual. As in

the proof of Claim 13, we can argue that the construction of the test M(Qi) is essentially
identical to initial parts of the construction of M(Qk) and of M(Qn) and that a similar
remark holds for the tests M(Qk) and M(Q). Accordingly, we have

M(Qi) = (U i
0, . . . , U

i
i ) and M(Qk) = (Uk

0 , . . . , U
k
i , U

k
i+1, . . . , U

k
k ),

For x = 1, . . . , i, the interval U i
x is a subset of Uk

x by i < k and Claim 10. Hence it
suffices to show

ep ∈ Uk
s , (116)

67



because the latter statement implies by i < s < k that

k̃Qi(ep) + 1 ≤ k̃Qk
(ep).

We will show (116) by proving that ep is strictly larger than the left endpoint and is
strictly smaller than the right endpoint of the interval Uk

s . The assertion about the left
endpoint, which is equal to γs − δs = eqs, holds true because the inequalities s < k
and qk < p imply together that qs < p.

In order to demonstrate the assertion about the right endpoint, we distinguish two cases.

Case 1: γi′ > γk′ . In this case, let (t0, s1, t1, . . .) be the index stair of the step k′. Then
we have

i ≤ i′ ≤ t0 < s < k′ ≤ k, (117)

where all inequalities are immediate by choice of i′ and k′ except the second and the
third one. Both inequalities follow from the definition of t0: the second one together
with the case assumption, the third one because, by γs < γk′ and by choice of k′, no
value among γs, . . . , γk′−1 is strictly larger than γk′ .

By (117), it is immediate that the set {t0+1, . . . , k′−1} contains s and is a subset of the
set {i+1, . . . , k− 1}. By definition, the indices s1 and s minimize the value of δj among
the indices j in the former and in the latter set, respectively, hence we have s = s1. By
construction, in step k′, the right endpoint of the interval Uk′

s is then set to γk′ − δs. So
we are done with Case 1 because we have

ep < γk − δj ≤ γk′ − δs = maxUk′
s ≤ maxUk

s ,

where the first inequality holds by assumption of the claim, the second holds by (115),
and the last one holds by k′ ≤ k and Claim 10.

Case 2; γi′ ≤ γk′ . In this case, let

r = min{y : s < y ≤ k ∧ γi′ ≤ γy} (118)

and let (t0, s1, t1, . . . } be the index stair of the step r. By choice of s and by r ≤ k, all
values among δs+1, . . . , δr−1 are strictly larger than δs, hence we have s1 ≤ s by choice
of s1. Accordingly, the index

m = max{h > 0 : sm ≤ s} (119)

is well-defined. Next, we argue that, actually, it holds that sm = s. Otherwise,
i.e., in case sm < s, by choice of sm and since s is chosen as largest index in the
range i+ 1, . . . , k − 1 that has minimum δ-value, we must have sm ≤ i, and thus,

t0 < sm ≤ i ≤ i′ < s < r.

Therefore, the index i′ belongs to the index set used to define tm according to (86),
while the values γi′+1, . . . , γr−1 are all strictly smaller than γi′ . The latter assertion
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follows for the indices in the considered range that are strictly smaller, equal and strictly
larger than s from choice of i′, from (115) and from choice of r, respectively. It follows
that tm ≤ i′, hence sm+1 exists and is equal to s by minimality of δs and by choice
of sm+1 in the range tm +1, . . . , r− 1 which contains s by i′ < s < r. But, by definition
of m, we have s < sm+1, a contradiction. Consequently, we have sm = s.

Observe that we have
ep < γi − δj ≤ γi′ − δs ≤ γr − δs, (120)

where the inequalities hold, from left to right, by assumption of the claim, by (115) and
by choice of r.

In case m = 1, we are done because then we have by construction

γr − δs = maxU r
s ≤ maxUk

s , (121)

hence ep is indeed strictly smaller than the right endpoint of the interval Uk
s .

So, from now one, we can assume m > 1. Then sm−1 and tm−1 are defined, and the
upper bound of the interval U r

s is set equal to γtm−1 − δs by (90). Consequently, in
case γi′ ≤ γtm−1 , both of (120) and (121) hold true with γr replaced by γtm−1 , and we
are done by essentially the same argument as in case m = 1.

We conclude the proof of the claim assertion by demonstrating the inequality γi′ ≤ γtm−1 .
The index s is chosen in the range i+1, . . . , k−1 as largest index with minimum δ-value.
The latter range contains the range i+ 1, . . . , r− 1 because we have i < s < r ≤ k. The
index sm−1 differs from s = sm and is chosen as the largest index with minimum δ-value
among indices that are less than or equal to r − 1, hence sm−1 ≤ i. By i ≤ i′ < s < r,
the index i′ belongs to the range sm−1, . . . , r − 1, from which tm−1 is chosen as largest
index with maximum δ-value according to (86), hence we obtain that γi′ ≤ γtm−1 .

Claim 15. Let Q be a nonempty finite set of rationals and let p be a nonrational real
in [0, 1]. In case p > maxQ, it holds that

k̃Q(ep) = KQ(ep). (122)

Proof. The inequality k̃Q(ep) ≤ KQ(ep) is immediate by definition of KQ(ep). We show
the reverse inequality k̃Q(ep) ≥ KQ(ep) by induction on the size of Q.

In the base case, let Q be empty or a singleton set. The induction claim holds in case Q
is empty, because then Q is its only subset, as well as in case Q is a singleton, because
then KQ is equal to the maximum of k̃Q and k̃∅, where the latter function is identically 0.

In the induction step, let Q be of size at least 2. For a proof by contradiction, assume
that the induction claim does not hold true for Q, i.e., that there exist a subset H of Q
such that

k̃Q(ep) < k̃H(ep). (123)

Then we have the following chain of inequalities

k̃Q(ep) ≥ k̃Q\{maxQ}(ep) ≥ k̃H\{maxQ}(ep) ≥ k̃H(ep)− 1 ≥ k̃Q(ep), (124)
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where the first and the third inequalities hold true by Claim 13, the second one holds by
the induction hypothesis for the set Q \ {maxQ} and the fourth one by (123). The first
and the last values in the chain (124) are identical, thus, the chain remains true when
we replace all inequality symbols by equation symbols, i.e., we obtain

k̃Q(ep) = k̃Q\{maxQ}(ep) = k̃H\{maxQ}(ep) = k̃H(ep)− 1 = k̃Q(ep). (125)

Since k̃H(ep) is strictly larger than k̃H\{maxQ}(ep), the set H must contain maxQ,
hence maxQ and maxH coincide and H has size at least two.

Now, let Q = {q0, . . . , qn}, where q0 < · · · < qn, and let H = {qz(0), . . . , qz(nH)},
where z(0) < . . . < z(nH). Furthermore, let Qi = {q0, . . . , qi} for i = 0, . . . , n and
let Hi = {qz(0), . . . , qz(i)} for i = 0, . . . , nH . So, the set Q has size n+1, its subset H has
size nH + 1 and the function z transforms indices with respect to H into indices with
respect to Q. For example, since the maxima of Q and H coincide, we have z(nH) = n.

In what follows, we consider the construction of M(H). The index stairs that occur
in this construction contain indices with respect to H, i.e., for example, the index t0
refers to qz(t0). A similar remark holds for the intervals that occur in the construction
of M(H), i.e., for such an interval U t

s, we have

maxU t
s = γz(t) − δz(s) = γ(qz(t))− δ(qz(s)).

However, as usual, for a given index i, we write γi for γ(qi) and δi for δ(qi).

For every interval of the form U t
s that occurs in some step of the construction of M(H),

the left endpoint eqz(s) of this interval is strictly smaller than ep by assumption of the
claim, hence, for every such interval, it holds that

ep ∈ U t
s if and only if ep ≤ maxU t

s. (126)

Let (t0, s1, t1, . . . , sl) be the index stair of step nH of the construction of M(H), i.e.,
of the last step, and recall that these indices are chosen with respect to H, e.g., the
index t0 stands for qz(t0). By the third equality in (125), for some index h ∈ {1, . . . , l},
the interval V nH

sh
added during this step contains ep, that is,

ep ∈ V nH
sh

= UnH
sh

\ UnH−1
sh

. (127)

By the explicit descriptions for the left and right endpoint of V nH
sh

according to Claim 12,
we obtain

γz(t1) − δz(s1) < ep ≤ γz(nH) − δz(s1) if h = 1, (128)

γz(th) − δz(sh) < ep ≤ γz(th−1) − δz(sh) ≤ γz(nH) − δz(sh) if h > 1. (129)

So, in the last step of the construction of M(H), the real ep is covered via the expansion
of the interval with index sh. We argue next that, in the construction of M(H), the last
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stage before stage nH , in which ep is covered by the expansion of some interval, must
be strictly smaller than sh, i.e., we show

k̃Hsh
(ep) = k̃H\{maxH}(ep). (130)

For a proof by contradiction, assume that this equation is false. Then there is a stage x
of the construction of M(H) with index stair (t′0, s

′
1, t

′
1, . . . , s

′
l′ , t

′
l′) and some index i

in {1, . . . , l′} such that

sh < x < nH and ep ∈ V x
s′i
= Ux

s′i
\ Ux

s′i
. (131)

Observe that the indices in this index stair are indices with respect to the set Hx but
coincide with indices with respect to the set H because Hx is an initial segment of H
in the sense that Hx contains the least x + 1 members of H. In particular, the index
transformation via the function z works also for the indices in this index stair, for
example, the index t′0 refers to z(t′0).

We have s′i ≤ x because, otherwise, the interval V x
s′i

would be empty by Claim 9. Fur-

thermore, the indices sh and s′i must be distinct because ep is contained in both of
the intervals V nH

sh
and V x

s′i
, while the former interval is disjoint from the interval V x

sh

by V x
sh

⊆ Ux
sh

⊆ UnH−1
sh

and UnH−1
sh

∩ V nH
sh

= ∅.
Next, we argue that

γz(t′i) ≤ γz(x) ≤ γz(th) ≤ γz(nH) < γz(t0) and γz(x) < γz(th−1). (132)

In the chain on the left, the last two inequalities hold by t0 < th < nH and by definition
of t0. The first inequality holds because, otherwise, in stage x, the index t′i > t′0 would
have been chosen in place of t′0. The second inequality holds by choice of th as largest
index in the range sh, . . . , nH − 1 that has maximum γ-value and because this range
contains x. From the latter inequality then follows the single inequality on the right
since γz(th) < γz(th−1) holds by definition of index stair. From (132), we now obtain

th−1 ≤ t′0 and δz(sh) ≤ δz(s′1) ≤ δz(s′i). (133)

Here, the first inequality is implied by the right part of (132) and choice of t′0. The last
inequality holds by definition of index stair. The remaining inequality holds because sh
and s′1 are chosen as largest indices with minimum δ-value in the ranges th−1+1, . . . , nH−1
and t′0 + 1, . . . , x − 1, respectively, where the latter range is a subset of the former one
by the just demonstrated first inequality and since x is in H.

Now, we obtain as a contradiction to (127) that ep is in UnH−1
sh

since we have

ep ≤ maxUx
s′i
≤ γz(x) − δz(s′i) ≤ γz(th) − δz(sh) = maxUnH−1

sh
.

Here, the first inequality holds because ep is in Ux
s′i

by choice of i and x. The second

inequality holds because, by construction, maxUx
s′i

is equal to γz(x) − δz(s′i) in case i = 1
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and is equal to γz(th−1)−δz(s′i) in case h > 1, where γz(th−1) ≤ γz(x). The third inequality
holds by (132) and (133) and the final equality holds by Claim 10. This concludes the
proof of (130).

By (130), during the stages sh + 1, . . . , nH − 1, none of the expansions of any interval
covers ep. Now, let y be the minimum index in the range th−1, . . . , sh such that, during
the stages y + 1, . . . , sh, none of the expansions of any interval covers ep, i.e.,

y = min{k : th−1 ≤ k ≤ sh and k̃Hk
(ep) = k̃Hsh

(ep)}. (134)

Note that y is an index with respect to the set H. We demonstrate that the index y
satisfies

ep ≤ γz(y) − δz(sh). (135)

For further use, note that inequality (135) implies that y and sh are distinct because,
otherwise, since we have maxQ < p, we would obtain the contradiction:

ep ≤ γz(y) − δz(sh) = γz(sh) − δz(sh) = eqz(sh).

Now, we show (135). Assuming y = th−1, the inequality is immediate by (128) and
choice of t0 in case h = 1 and by (129) in case h > 1. So, in the remainder of the proof
of (135), we can assume th−1 < y.

By choice of y, we have k̃Hy−1(p) ̸= k̃Hy(p), that implies k̃Hy−1(p) < k̃Hy(p) by Claim 10.
Consequently, for the index stair (t′′0, s

′′
1, t

′′
1, . . . , s

′′
l′′ , t

′′
l′′) of step y of the construction of

the test M(H), there exists an index j ∈ {1, . . . , l′′} such that ep is in V y
s′′j
. Thus, in

particular, it holds that
ep ≤ maxUy

s′′j
≤ γz(y) − δz(s′′j ) (136)

because, by construction, the value maxUy
s′′j

is equal to γz(y) − δz(s′′j ) in case j = 1 and

is equal to γz(t′′j−1)
− δz(s′′j ) in case h > 1, where γz(t′′j−1)

≤ γz(y). By (136), it is then

immediate that, in order to demonstrate (135), it suffices to show that

δz(sh) ≤ δz(s′′j ). (137)

The latter inequality follows in turn if we can show that

th−1 ≤ t′′0 ≤ t′′j−1 < y ≤ sh < nH , (138)

because the indices sh and s′′j are chosen as largest indices with minimum δ-value in the
ranges th−1 + 1, . . . , nH − 1 and t′′j−1 + 1, . . . , y − 1, respectively, where the latter range
is a subset of the former.

We conclude the proof of (137), and thus also of (135), by showing (138). The sec-
ond to last inequality holds by choice of y, and all other inequalities hold by defini-
tion of index stair, except for the first one. Concerning the latter, by our assump-
tion th−1 < y, by y < nH and by choice of th−1, we obtain that γz(y) < γz(th−1), which
implies that th−1 ≤ t′′0 by choice of t′′0.
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Now, we can conclude the proof of the claim. For the indices z(y) < z(sh) < z(nH) = n
and the set Q, by (128), (129) and (135), all assumptions of Claim 14 are satisfied, hence
the claim yields that

k̃Qz(sh)
(ep) < k̃Q(ep). (139)

Now, we obtain the contradiction

k̃Q(ep) = k̃H\{maxQ}(ep) = k̃Hsh
(ep) ≤ k̃Qz(sh)

(ep) < k̃Q(ep),

where the relations follow, from left to right, by (125), by (130), by the induction hy-
pothesis for the set Qz(sh) and by (139).

Claim 16. Let Q = {q0 < · · · < qn} be a subset of the domain of g and, for z = 0, . . . , n,
let Qz = {q0, . . . , qz}. Let p be a nonrational real such that, for some index x in {1, . . . , n},
it holds that p ∈ [0, qx] and

k̃Qx−1(ep) ̸= k̃Qx(ep). (140)

Then it holds that
k̃Qx(ep) = k̃Qx+1(ep) = · · · = k̃Qn(ep).

Proof. We denote the intervals considered in the construction of the test M(Q) by U j
i ,

as usual. Again, we can argue that the construction of a test of the form M(Qz),
where z ≤ n, is essentially identical to an initial part of the construction of M(Q), and
that accordingly such a test M(Qz) coincides with (U z

0 , . . . , U
z
z ).

Let (t0, s1, t1, . . . , sl, tl) be the index stair of step x in the construction of M(Qn).
By (140), there is an index h in {1, . . . , l} such that ep is in V x

sh
, hence

eqsh = minUx−1
sh

≤ maxUx−1
sh

= γth − δsh < ep ≤ γx − δsh . (141)

Here, the two equalities hold by definition of the interval and by Claim 10, respectively.
The strict inequality holds because ep is assumed not to be in Ux−1

sh
. The last inequality

holds because ep is assumed to be in Ux−1
sh

, while, by construction, the right endpoint of
the latter interval is equal to γx−δsh in case h = 1 and is equal to γth−δsh with γth ≤ γx,
otherwise.

For a proof by contradiction, we assume that the conclusion of the claim is false. So we
can fix an index y ∈ {x+ 1, . . . , n} such that

k̃Qx(ep) = k̃Qy−1(ep) < k̃Qy(ep).

Let (t′0, s
′
1, t

′
1, . . . , s

′
l′ , t

′
l′) be the index stair of step y of the construction of M(Qn). By

essentially the same argument as in the case of (141), we can fix an index i in {1, . . . , l′}
such that

eqs′i = minUy−1
s′i

≤ maxUy−1
s′i

= γt′i − δs′i < ep ≤ γy − δs′i . (142)
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By assumption, the real p is in [0, qx] and, together with (141) and (142), we obtain
qsh < p ≤ qx and qs′i < p ≤ qx. Consequently, we have

sh < x and s′i < x (143)

(where the left inequality also follows from definition of index stair). In particular, we
have t′0 < x, which implies by x < y and choice of t′0 that

γy < γx. (144)

In order to derive the desired contradiction, we distinguish the two cases that are left
open by (143) for the relative sizes of the indices sh, s

′
i and x.

Case 1: sh < s′i < x. Since sh is chosen in the range th−1 + 1, . . . , x− 1 as largest index
with minimum δ-value, we obtain by case assumption that

δsh < δs′i . (145)

Furthermore, it holds that

t0 < sh ≤ t′i−1 < s′i < x < y. (146)

Here, the first and the third inequalities hold by definition of index stair. The two
last inequalities hold by (143) and by choice of y, respectively. The remaining second
inequality holds because, otherwise, in case t′i−1 < sh, the range t′i−1 + 1, . . . , y − 1,
from which s′i is chosen as largest index with minimum δ-value, would contain sh, which
contradicts (145).

Now, we obtain a contradiction, which concludes Case 1. Due to t0 < t′i−1 < x and
definition of t0, we have γt′i−1

≤ γx. The latter inequality contradicts the fact that t′i−1

is chosen in the range s′i−1 +1, . . . , y− 1 as largest index with maximum γ-value, where
the latter range contains x by (146) and s′i−1 < s′i.

Case 2: s′i < sh < x. In this case, we have

δs′i < δsh and γx ≤ γt′i . (147)

Here, the first inequality holds since s′i is chosen as largest index with minimum δ-value
from a range that, by case assumption, contains sh. The second inequality holds since t′i
is chosen in the range s′i + 1, . . . , y − 1 as largest index with maximum γ-value, where
this range contains x by case assumption and x < y.

Now, we obtain a contradiction, which concludes Case 2, since we have

ep < γx − δsh < γt′i − δs′i < ep, (148)

where the inequalities hold, from left to right, by (141), by (147) and by (142).

So we obtain in both cases a contradiction, which concludes the proof of the claim.
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The proof of Claim 3 Let Q = {q0 < · · · < qn} be a subset of the domain of g,
where qn < 1. For z = 0, . . . , n, let Qz = {q0, . . . , qz}, and let p be an arbitrary
nonrational real in [0, 1]. In order to demonstrate Claim 3, it suffices to show

KQ(ep) ≤ k̃Q(ep) + 1. (149)

Since p was chosen as an arbitrary nonrational real in [0, 1], this easily implies the
assertion of Claim 3, i.e., that KQ(p

′) ≤ k̃Q(p
′) + 1 for all nonrational p′ in [0, e].

By construction, for all subsets H of Q, all intervals in the test M(H) have left endpoints
of the form γ(qi) − δ(qi) = eqi. Consequently, in case p < q0, none of such intervals
contains ep, hence KQn(ep) = 0 and we are done.

So, from now on, we can assume q0 < p. Then, among q0, . . . , qn, there is a maximum
value that is smaller than p and we let

j = max{i ∈ {0, . . . , n} : qi < p} (150)

be the corresponding index. It then holds that

KQj (ep) = k̃Qj (ep) ≤ k̃Qj+1(ep) ≤ · · · ≤ k̃Qn−1(ep) ≤ k̃Q(ep), (151)

where the equality is implied by choice of j and Claim 15 and the inequalities hold by
Claim 13.

Fix some subset H of Q that realizes the value KQ(ep) in the sense that

KQ(ep) = k̃H(ep). (152)

Next, we show that, for the set H, we have

k̃H(ep) ≤ k̃H∩Qj (ep) + 1. (153)

In case k̃H(ep) ≤ k̃H∩Qj (ep), we are done. Otherwise, let x be the least index in the

range j + 1, . . . , n such that k̃H∩Qx(ep) differs from k̃H∩Qx−1(ep). Then (152) follows
from

k̃H∩Qj (ep) + 1 = k̃H∩Qx−1(ep) + 1 = k̃H∩Qx(ep) = k̃H∩Q(ep) = k̃H(ep),

where the equalities hold, from left to right, by choice of x, by Claim 13, by Claim 16
and since H is a subset of Q. Now, we have

KQ(ep) = k̃H(ep) ≤ k̃H∩Qj (ep) + 1 ≤ KQj (ep) + 1 ≤ k̃Q(ep) + 1,

where the relations hold, from left to right, by choice of H, by (153), because H ∩Qj is
a subset of Qj and, finally, by (151).

This conclude the proof of (149) and thus also of Claim 3.
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Proof that the limit is unique So, we have demonstrated that the limit asserted in
Theorem 66 exists and is finite. It remains to show that this limit does not depend
on the function that witnesses the monotone Solovay reducibility from α to β. For a
proof by contradiction, assume that the reducibility is not only witnessed by g but also
by some function f , where the limits for g and f differ. By symmetry, without loss of
generality, we can then pick rationals c and d such that

lim
q↗β

α− g(q)

β − q
< c < d < lim

q↗β

α− f(q)

β − q
, (154)

Recall that, by assumption on f and g, both functions are defined on all rationals q < β
and both limits in (154) exist and are finite.

By (154), for every rational q < β that is close enough to β, it holds that

α− g(q)

β − q
< c and d <

α− f(q)

β − q
.

Fix some rational p < β such that the two latter inequalities are both true for all
rationals q in the interval [p, β]. We then have for all such q

d− c <
(α− f(q))− (α− g(q))

β − q
=

g(q)− f(q)

β − q
, (155)

and consequently, letting e = d− c,

eq < eβ < eq + g(q)− f(q) for all rationals q in [p, β], (156)

where the lower bound is immediate by q < β and the upper bound follows by multiplying
the first and the last terms in (155) by β − q and rearranging. Let

D = {q ∈ [0, 1] : f and g are both defined on q and f(q) < g(q)}.

For every q in D, define the intervals

Iq = [f(q), g(q)] and Uq = [eq, eq + g(q)− f(q)].

Fix some effective enumeration q0, q1, . . . of D. We define inductively a subset S of the
natural numbers and let Sn be the intersection of S with {0, , . . . , n}. Let 0 be in S and,
for n > 0, assuming that Sn has already been defined, let

n+ 1 ∈ S if and only if for all i in Sn, the intervals Iqi and Iqn+1 are disjoint.

The intervals Uqn , where n is in S, form a Solovay test. First, these intervals can be
effectively enumerated since S is computable by construction. Second, the sum of the
lengths of these intervals is at most 1 because, for every q in D, the intervals Uq and Iq
have the same length by definition, while the intervals Iqn , where n is in S, are mutually
disjoint by definition of S.
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So in order to obtain the desired contradiction, it suffices to show that the Martin-Löf
random real eβ is covered by the Solovay test just defined, i.e., that there are infinitely
many i in S such that the interval Uqi contains eβ. By definition of these intervals
and (156), here it suffices in turn to show that there are infinitely many i such that i is
in S and qi is in [p, β]. To this end, we fix some arbitrary natural number n and show
that there is such i > n.

Since the values f(q) converge from below to α when q tends from below to β, we can
fix an index i0 > n such that qi0 ∈ [p, β], and in addition, we have

(i) g(p) < f(qi0) and (ii) g(qi) < f(qi0) for all i in Sn where qi < β. (157)

In case i0 is selected, we are done. Otherwise, there must be some i1 < i0 in S such
that Iqi1 has a nonempty intersection with Iqi0 . We fix such an index i1 and conclude the
proof that the proof by showing that we must have n < i1 and qi1 ∈ [p, β]. In order to
prove the latter, we show for q in D that, in case q < p and in case q > β, the intervals Iq
and Iqi0 are disjoint. In the former case, by monotonicity of g, the right endpoint g(q) of
the interval Iq is strictly smaller than the left endpoint f(qi0) > g(p) of Iqi0 . In the latter
case, the left endpoint f(q) of Iq is at least as large as α, and thus, is strictly larger than
the right endpoint of Iqi0 since f maps [0, β) is [0, α) as a translation function. Otherwise,
i.e., in case f(q) < α, since the values f(q′) converge from below to α when q′ tends from
below to β, there would be q′ < β where f(q) < f(q′), contradicting the monotonicity
of f .

It remains to show that n < i1, i.e., that i1 is not in Sn. But, for any index i in Sn, the
intervals Uqi and Uqi0

are disjoint as follows in case β < qi from the discussion in the
preceding paragraph and follows in case qi < β from (ii) in (157).

This concludes the proof of uniqueness of the limit point as well as the proof of Theo-
rem 66.

Corollaries of Theorem 66 The proof of Theorem 66 can be adjusted to yield the
following corollary: it suffices to replace the enumeration of the domain of g by the
sequence b0, b1, . . . .

Corollary 67. Let α be a real and let β be a Martin-Löf random computably approx-
imable real with computable approximation bn → β where bn < β for infinitely many n.
In case α is monotone Solovay reducible to β via some partial function g, the limit

lim
n→∞
bn<β

α− g(bn)

β − bn

exists and does neither depend on the considered computable approximation of β nor on
the choice of the partial function g witnessing that α is monotone Solovay reducible to β.

Finally, we also obtain a proof of Theorem 59. Recall that this theorem asserts that
Martin-Löf random reals are never speedable, and that Merkle and Titov [9] observed
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that the latter fact is a straightforward consequence of Theorem 66 but also gave a short
direct proof.

In order to see that Theorem 66 implies that Martin-Löf random reals are never speed-
able, fix some Martin-Löf random real α. By Theorem 66, there is a real d such that,
for every partial function g that witnesses that the real α is monotone Solovay reducible
to itself, it holds that

lim
q↗α

α− g(q)

α− q
= d. (158)

The identity function q 7→ q is such a function, hence d must be equal to 1. On the other
hand, by Remark 55, also every translation function g that witnesses that α is speedable,
i.e., is ρ-speedable for some ρ < 1, is such a function, where then, by definition of ρ-
speedable, it holds that

lim inf
q↗α

α− g(q)

α− q
≤ ρ, (159)

By d = 1, the latter contradicts to (158), hence α cannot be speedable.
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7 Variants of Solovay reducibility outside of
the left-c.e. reals

7.1 Reducibilities that use absolute distance

Zheng and Rettinger proposed in [19] another way to extend the notion of Solovay
reducibility outside of left-c.e. reals in order to preserve the property of ”not slower
convergence” of a given approximation by considering the absolute distance from the
actual element of it to its limit point.

The following reducibility is defined for computably approximable reals and, according
[19], Theorem 3.2.(2), coincides on LEFT−CE with the standard Solovay reducibility.

Definition 68 (Zheng and Rettinger, [19]). Let α and β be two ∆0
2 reals.

α is S2a-reducible to β, written α≤2a
S β, if there exist two computable approximations

a0, a1, . . . and b0, b1, . . . of α and β, respectively, and a constant c ∈ R that satisfy for
every n ∈ ω the ≤2a

S -Solovay property:

|α− an| ≤ c(|β − bn|+ 2−n). (160)

Note that the mapping bn 7→ an in the latter definition is not required to be monotone.

Rettinger and Zheng have also proved in [13], Theorem 3.7, that d.c.e. reals form a field
on the set of ∆0

2 reals which is closed downwards relative to ≤2a
S with Martin-Löf random

left-c.e. reals as a highest degree.

Theorem 69 (Rettinger and Zheng, [13]). For a Martin-Löf random left-c.e. real Ω and
a ∆0

2 real β, α≤2a
S Ω if and only if α ∈ DCE.

Moreover, the reducibility ≤2a
S can be extended from the set of ∆0

2 reals to all reals using
the idea of translation function that maps, unlike in the standard notion of Solovay
reducibility, dyadic rationals into dyadic rationals.

Definition 70. Let α and β be two reals.

α is S1a-reducible to β, written α≤1a
S β, if there exist a partial computable function

g : Q2 → Q2 and a constant c ∈ R such that β is an accumulation point of dom(g) that
satisfies the ≤1a

S -Solovay property:

∀q ∈ dom(g) : |α− f(q)| ≤ c(|β − q|+ 2−l(q)), (161)
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where l(q) denotes the length of binary representation of q.

According to [19], Theorem 4.2., the reducibilities ≤1a
S and ≤2a

S coincide of the set of ∆0
2

reals.

The closure downwards of d.c.e. reals relative to ≤2a
S -reducibility is one of the main

results of [13].

Proposition 71 (Rettinger and Zheng, [13]). The set DCE is closed downwards relative
to ≤2a

S .

7.2 Relations between the variants of Solovay reducibilities on
real numbers

We already know that both reducibilities ≤1a
S and ≤2a

S introduced in the previous section
coincide on the set of ∆0

2 reals and, moreover, coincide with ≤S of the set of left-c.e.
reals.

In this section, we prove that the ordinary Solovay reducibility ≤S implies ≤1a
S on R,

and therefore, ≤2a
S on the set of ∆0

2 reals.

Proposition 72. Let α, β ∈ [0, 1] be reals fulfilling α≤Sβ via some Solovay constant c.

Then, for every c̃ > c, it holds that α≤1a
S β via c̃ as a Solovay constant.

Proof. Let α, β ∈ [0, 1] be two reals such that α≤Sβ via some translation function g
(defined on all rationals in [0, β)) and a Solovay constant c, and let q0, q1, . . . with q0 = 0
be an effective enumeration of Q2 ∩ dom(g) that contains inter alia all dyadic rationals
on [0, β).

In means in particular that, for every index n such that qn < β, the Solovay condition (11)
holds true for qn:

0 < α− g(qn) < c(β − qn). (162)

First, given a real c̃ > c, we fix some dyadic rationals d and d̃ such that c < d < d̃ < c̃)
and a natural N such that

(1− 2−N )d < d̃ and c̃− d̃ < 2−N . (163)

To prove the proposition for the constant c̃, we construct a partially computable func-
tion g̃ that maps dyadic rationals into dyadic rationals and an index sequence n0, n1, . . .
such that qn0 , qn1 , . . . is an enumeration of dom(g̃), the real β an accumulation point of
qn0 , qn1 , . . . and, for every k ∈ ω, it holds that

|α− g̃(qnk
)| < c̃(|β − qnk

|+ 2−l(qnk
)). (164)
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Then it will mean that α≤1a
S β via the translation function g̃ and the constant c̃.

We set n0 = 0 and, due to the technical reasons, n−1 = −1.

Step k: Assuming n0 < · · · < nk−1 to be defined, we continue the enumeration of dom(g)
from the index nk−1 + 1 on until we meet an index n such that qn is a dyadic rational
and, for every q′ such that

q′ < qn and l(q′) ≤ l(qn) +N, (165)

the following conditions are fulfilled:

g(q′) ↓ , (166)

−d · 2−l(qn) < g(qn)− q(q′) , (167)

g(qn)− q(q′) < d((qn − q′) + 2−l(qn)). (168)

After we find such n, we define

g̃(qn) = 0, (g(qn) ↾ (N + l(qn))), (169)

set nk = n, and go to the step k + 1.

We start the proof that the construction step k terminates from noting for every i ∈ ω
that 0, (β ↾ i) is a dyadic rational on the interval [0, β), hence 0, (β ↾ i) ∈ dom(g). It
allows to define an (in general noncomputable) index sequence m0,m1, . . . such that, for
every i > 0, it holds that

qmi = 0, (β ↾ i). (170)

We fix one (of all but finitely many) number i ∈ ω that fulfills mi ≥ nk−1 + 1. From
(β ↾ i) < β, we obtain the Solovay property (162) for qmi .

Next, fixing an index q′ < qmi that fulfills l(q′) ≤ l(qmi) + N , we can obtain a lower
bound for g(qmi)− q(q′):

g(qmi)− g(q′) >
by q′<β

g(qmi)− α >
by (162)
and d>c

d(qmi − β) = −d(β − 0, (β ↾ i)) > −d · 2−i.

Therefore, the index mi suffices for q′ fulfilling (165) the conditions (166) and (167) since
l(qmi) = l(β ↾ i) = i.

The condition (168) for mi and q′ is implied from the following inequality:

g(qmi)− g(q′) ≤
by (162)

α− g(q′) <
by (162)
and d>c

d(β − q′) = d((qmi − q′) + (β − qmi))

=
by (170)

d((qmi − q′) + (β − (β ↾ i))) ≤ d((qmi − q′) + 2−i) = d((qmi − q′) + 2−l(qmi )).

Therefore, the stage k should be terminated by enumerating the index n = mi or earlier.

Note that the termination proof implies as well that, for every i, the dyadic rational qmi

lies in dom(g̃) since k can be chosen such that nk−1 < mi ≤ nk; in the latter case, we
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obtain that nk = mi since the index mi fulfills all requirements for nk, as we already
know from the termination proof. Hence, the sequence of dyadic rationals (0, (β ↾ i))i∈ω
lies in dom(g) and obviously tends to β.

To conclude the proof of proposition, it remains to argue that every element qnk
of the

constructed sequence fulfills the property (164).

We consider 4 cases of positions of qnk
and g(qnk

) relative to β and α, respectively.

• qnk
< β, g(qnk

) < α.

In this case, the inequality (164) follows directly from Solovay condition (162) for
qnk

due to

|α− g(qnk
)| = α− g(qnk

) < c(β − qnk
) ≤
by c<d̃

d̃(|β − qnk
|+ 2−l(qnk

)).

• qnk
< β, g(qnk

) ≥ α.

This case is impossible since it contradicts to the Solovay condition (162) for qnk
.

• qnk
≥ β, g(qnk

) < α.

In this case, we obtain for the greatest dyadic rational q̃ < β(< qnk
) such that

l(q̃) ≤ l(qnk
) +N the inequality

q̃ < β ≤ q̃ + 2−l(qnk
)−N ≤ qnk

, (171)

and therefore, that

|α− g(qnk
)| = α− g(qnk

) ≤ (α− g(q̃))︸ ︷︷ ︸
<d(β−q̃) by (162)
for qn=q̃ and d>c

+ (g(q̃)− qnk
)︸ ︷︷ ︸

<d·2−l(qnk
)by (167)

< d((β − q̃) + 2−l(qnk
)) ≤

by (171)
d(2−l(qnk

)−N + 2−l(qnk
)) =

= d(1− 2−N )(2−l(qnk
)) <

by (163)
d̃ · 2−l(qnk

) ≤ d̃(|β − qnk
|+ 2−l(qnk

)).

• qnk
≥ β, g(qnk

) ≥ α.

In this case, we obtain for q̃ defined as in the previous case that q̃ fulfills (171),
and therefore, that

|α− g(qnk
)| = g(qnk

)− α < g(qnk
)− g(q̃) <

by (168)
d((qnk

− q̃) + 2−l(qnk
))

= d((qnk
− β) + (β − q̃) + 2−l(qnk

)) ≤
by (171)

d(|β − qnk
|+ 2−l(qnk

) + 2−l(qnk
−N))

= d|β−qnk
|+d(1−2−N )2−l(qnk

) ≤
by (163)

d|β−qnk
|+d̃·2−l(qnk

) ≤
by d<d̃

d̃(|β−qnk
|+2−l(qnk

)).
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Consequently, for every qnk
∈ dom(g̃), it holds that

|α− g(qnk
)| < d̃(|β − qnk

|+ 2−l(qnk
)), (172)

that implies the inequality (164) in the following way:

|α− g̃(qnk
)| ≤ |α− g(qnk

)|︸ ︷︷ ︸
<d̃(|β−qnk

|+2−l(qnk
)) by (172)

+ |g(qnk
)− g̃(qnk

)|︸ ︷︷ ︸
<2−N−l(qnk

) by (169)

< d̃(|β − qnk
|+ 2−l(qnk

)) + 2−N−l(qnk
)

<
by (163)

d̃(|β − qnk
|+ 2−l(qnk

)) + (c̃− d̃)2−l(qnk
) < c̃(|β − qnk

|+ 2−l(qnk
)).

The next corollary is straightforwardly implied from the latter proposition, the coinci-
dence of ≤1a

S and ≤2a
S for computably approximable reals and the closure downwards of

∆0
2 reals relative to Solovay reducibility.

Corollary 73. For a real α and a computably approximable real β, it holds that

α≤m
S β =⇒ α≤Sβ =⇒ α≤2a

S β.
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density. SIAM Journal on Computing, 31:1169–1183 (2002).

[7] Rupert Hölzl and Philip Janicki. Benign approximations and non-speedability. Tech-
nical report, arXiv:2303.11986v2, submitted for further publication (2023).
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