
UNIVERSITÄT HEIDELBERG

DOCTORAL THESIS

Metrics of Graph-Based Meaning
Representations with Applications from
Parsing Evaluation to Explainable NLG

Evaluation and Semantic Search

Juri Opitz

This thesis is submitted for the degree of Doctor of Philosophy



ii

First examiner: Prof. Dr. Anette Frank
Second examiner: Prof. Dr. Sebastian Padó
Date of final version: January 18, 2024.



iii

Acknowledgements
First and foremost I would like to thank Anette Frank for her invaluable guidance

during the last years. Working together has greatly helped me grow, as a researcher, and
as a person.

I am also grateful to Sebastian Padó for agreeing to be the second reviewer of this
thesis, and to a few persons at the computational linguistics department for their great
and uplifting company that I gladly enjoyed over the last years: Maria Becker, Esther van
den Berg, Angel Daza, Xyian Fu, Éva Mújdricza-Maydt, Todor Mihaylov, Debjit Paul,
Letitia Parcalabescu, Moritz Plenz, Julius Steen, and Philipp Wiesenbach (special thanks
to Julius and Moritz for their feedback on a draft of this thesis).





v

Abstract

“Who does what to whom?” The goal of a graph-based meaning representation (in
short: MR) is to represent the meaning of a text in a structured format. With an MR, we
can explicate the meaning of a text, describe occurring events and entities, and their se-
mantic relations. Thus, a metric of MRs would measure a distance (or similarity) between
MRs. We believe that such a meaning-focused similarity measurement can be useful
for several important AI tasks, for instance, testing the capability of systems to produce
meaningful output (system evaluation), or when searching for similar texts (information
retrieval). Moreover, due to the natural explicitness of MRs, we hypothesize that MR
metrics could provide us with valuable explainability of their similarity measurement. In-
deed, if texts reside in a space where their meaning has been isolated and structured, we
might directly see in which aspects two texts are actually similar (or dissimilar).

However, we find that there is not much previous work on MR metrics, and thus we
lack fundamental knowledge about them and their potential applications. Therefore, we
make first steps to explore MR metrics and MR spaces, focusing on two key goals: 1.
Develop novel and generally applicable methods for conducting similarity measurements
in the space of MRs; 2. Explore potential applications that can profit from similarity
assessments in MR spaces, including, but (by far) not limited to, their ‘classic’ purpose of
evaluating the quality of a text-to-MR system against a reference (aka parsing evaluation).

We start by analyzing contributions from previous works that have proposed MR met-
rics for parsing evaluation. Then, we move beyond this restricted setup and start to de-
velop novel and more general MR metrics based on i) insights from our analysis of the
previous parsing evaluation metrics and ii) our motivation to extend MR metrics to sim-
ilarity assessment of natural language texts. To empirically evaluate and assess our gen-
eralized MR metrics, and to open the door for future improvements, we propose the first
benchmark of MR metrics. With our benchmark, we can study MR metrics through the
lens of multiple metric-objectives such as sentence similarity and robustness.

Then, we investigate novel applications of MR metrics. First, we explore new ways
of applying MR metrics to evaluate systems that produce i) text from MRs (MR-to-text
evaluation) and ii) MRs from text (MR parsing). We call our new setting MR projection-
based, since we presume that one MR (at least) is unobserved and needs to be approxi-
mated. An advantage of such projection-based MR metric methods is that we can ablate
a costly human reference. Notably, when visiting the MR-to-text scenario, we touch on a
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much broader application scenario for MR metrics: explainable MR-grounded evaluation
of text generation systems.

Moving steadily towards the application of MR metrics to general text similarity, we
study MR metrics for measuring the meaning similarity of natural language arguments,
which is an important task in argument mining, a new and surging area of natural lan-
guage processing (NLP). In particular, we show that MRs and MR metrics can support
an explainable and unsupervised argument similarity analysis and inform us about the
quality of argumentative conclusions.

Ultimately, we seek even more generality and are also interested in practical aspects
such as efficiency. To this aim, we distill our insights from our hitherto explorations into
MR metric spaces into an explainable state-of-the-art machine learning model for seman-
tic search, a task for which we would like to achieve high accuracy and great efficiency.
To this aim, we develop a controllable metric distillation approach that can explain how
the similarity decisions in the neural text embedding space are modulated through inter-
pretable features, while maintaining all efficiency and accuracy (sometimes improving
it) of a high-performance neural semantic search method. This is an important contribu-
tion, since it shows i) that we can alleviate the efficiency bottleneck of computationally
costly MR graph metrics and, vice versa, ii) that MR metrics can help mitigate a crucial
limitation of large ‘black box’ neural methods by eliciting explanations for decisions.
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Chapter 1

Introduction

After discussing the main motivation that underlies this thesis 1.1), we outline its key
research questions (Section 1.2) and summarize its contributions (Section 1.3). Finally,
we give an overview of the thesis’ structure (Section 1.4) and point to the papers and
resources that have provided a main proportion of the fabric from which this thesis is
woven (Section 1.5).

1.1 Motivation

“Who does what to whom?” The main goal of Meaning Representations (MRs) is to
crystallize the meaning of a text in a structured and explicit format. Therefore, MRs lie
at the heart of semantics (from Ancient Greek: sēmantikós, “significant”), which is the
study of reference, meaning, or truth. Interestingly, graphs provide us with a powerful and
intuitive means for describing MRs: We simply represent occurring events and entities as
nodes and connect them with labeled semantic edges to express their relationships, e.g.,
to represent an event (“what?”) that involves an agent (“who?”), a patient (“whom?”) and
possibly other items such as location (“where?”), time (“when?”), or cause (“why?”).

In this thesis, we focus on metrics for measuring distances between MRs. Given some
objects in some space, the space becomes a metric space, when we have a measure that
shows us a distance (or equivalently: a similarity) between any two objects, informing us
about how close (distant) the two objects are. So we want to measure distance in a explicit

semantic space, where meaning is captured in a more isolated and understood form.
What could we gain from a metric that measures distance (or similarity) in an explicit

semantic space? To better understand our general motivation, let us first discuss the im-
portance of assessing text similarity for natural language processing (NLP). In fact, the
task of assessing textual similarity bridges all kinds of different NLP areas. For instance,
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similarity metrics are found at the heart of search engines for text and image retrieval
(e.g., ‘Google’), where we need to calculate similarities between a query document and
a other documents of a corpus to select the documents that will be returned to a user. As
an integral part of evaluation and benchmarking, metrics inform us about the selection
of NLP systems and drive NLP system developments. Furthermore, texts can be clus-
tered and classified using metrics, both being very general problems that have countless
applications.

Of course, also depending on the concrete application, we could adopt all kinds of
different views to measure the similarity of texts.1 However, generally, it is desirable that
a metric is a semantic metric, i.e., a metric that considers meaning before form. Let us
think about a popular text metric that, up until today, constitutes the backbone of many
text search engines (Beel et al., 2016): computing the amount of overlapping tokens from
two text documents. For instance, consider an image retrieval system, where we would
like to detect which two of the four images/captions are most likely to describe the same
scene:

1. The dog runs after the cat.

2. The cat runs after the dog.

3. A kitten is chased by a pupper.

4. The ketchup runs from the hot dog after I took a bite.

The examples 1. and 2. are considered equivalent by a metric that computes the token
overlap between two texts. But they are not equivalent at all, despite their perfect token
overlap. This is because the semantic roles of the event’s participants are reversed and thus
our hypothetical user would be provided with pictures that depict significantly different
event dynamics. On the other hand, the text that is semantically most similar to 1. is 3.
In fact, it is true that all images that show 3. are fully contained in the set of images that
show 1., since kitten and pupper are hyponyms of cat and dog. Therefore, a user would
be happy with high probability, if they are provided with any image that shows 3., given
that they searched with 1. However, 1. and 3. have zero token overlap whatsoever, which
makes these images highly unlikely to ever be returned to them. Instead, due to significant
token overlap, it is more likely that images are returned that depict 4., an event that has

1For instance, to evaluate a machine translation systems, we would want to measure adequacy of gener-
ations, where a polarity error is strongly penalized, while for document search without any further specifi-
cations, we would be less interested in strict adequacy, but more in a general form of relatedness.
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nothing to do with the query, at all. In sum, the ranking that simple token-overlap metrics
would provide us with is 2., 4., 3.; while actually we would be more happy when provided
with the ranking 3., 2., 4.

So let us confidently conclude from our considerations that

We need a semantic similarity metric.

A semantic metric should compare the meaning of two texts. It should be able to,
e.g., filter out ‘noise’ from different surface realization choices such as lexical similarity
(kitten, cat) and/or active vs. passive voice (see above, 1. vs. 3.), and assess that different
words or phrases can be more or less similar (e.g., dog, pet, ketchup).2 But the insight
that we need a semantic metric is not new and probably has been made countless times.
It led to the emergence of text metrics that do not directly compare whether tokens are
the same, but instead consider the degree of difference using word embeddings (Padó
and Lapata, 2007; Pennington et al., 2014b; Mikolov et al., 2013), sometimes also taking
their context into account to be able to provide different vectors to the same word to
sensibly model phenomena such as polysemy (Erk and Padó, 2008; Peters et al., 2018;
Devlin et al., 2019).3 But it remains unclear how these methods differentiate (superficial)
textual structure from meaning and how they modulate these two aspects. Indeed, this is
a long-standing problem in natural language processing (NLP) that has not decreased in
its significance (Bender and Koller, 2020).

Therefore, we want to explore whether we can take this idea (to measure semantic

similarity) a whole step further and conduct the similarity measurement directly in the
space of meaning, based on a key hypothesis that is underlying this work:

There should exist an MR metric for effective semantic similarity.

Based on the fact that an MR makes the meaning of a text explicit, looking at the MRs
of two texts should give us valuable information on how and why two texts are, or are not,
similar. The space of explicit meaning also differentiates it from other semantic metrics
that perform the comparison in a less-defined and/or hardly-comprehensible space (such

2There are also more abstract form variations that may – or may not – be considered a part of the
meaning. E.g., it is known that different social groups choose to express the same or similar meaning with
different structure (Kroch, 1978). Thus, there may be cases where a semantic metric should allow document
retrieval that is invariant to different structures that arise from social classification.

3When inspecting meaning similarity of single words without context, dog in 4. will be considered same
as dog in 1. and 2., resulting in too high overall similarity. Word embeddings that take context into account
promise to mitigate such issues.
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as the space of texts, or a basic high-dimensional vector space). Indeed, we want to have
a representation that explicitly shows what happens in a text: E.g., going back to the
example above, in 1., we would like to explicate that there is an event (run) in the sense
of running behind something, with two actors (dog, cat) that exhibit different roles (the
runner that follows something and the thing that is followed).

Not only can we use a metric between MRs to focus more on explicit semantics, but
it can potentially directly explain to us the semantic aspects in which two texts bear sim-
ilarities or dissimilarities (due to the explicitness of (graph-based) MRs). For instance,
considering the example above, an explanation could look as follows: ‘Yes, 1. and 2.

are quite similar, but the roles of the two event participants are switched’. Indeed, since
MRs explicitly capture different semantic and linguistic phenomena – negation, semantic
roles, and so on – aspect-targeted measurements between two MRs can show us in which
‘dimensions’ two texts actually are similar, or dissimilar. By contrast, when relying on
a metric that is not grounded in explicit meaning representations (where we could draw
from a myriad of already existing methods) we would not be able to explicitly differ-
entiate between structure and meaning, and even less so between other and more finer
‘dimensions’ or aspects of meaning. They also often calculate a dot-product similarity
on high dimensional real-valued vectors, so with this it can be hard to trace the influence
of different features on final metric judgments, a problem that is further aggravated by
the seemingly ever-increasing number of parameters of recent models. Therefore, trans-

parency of similarity assessment is another reason that makes the exploration of distance
analysis in the explicit MR space attractive. For instance, extracting subgraphs that relate
to polarity would allow us to conduct controlled distance measurements with regard to the
polarity aspect. More generally, testing whether a meaning representation is a subgraph
of another, could inform us about semantic entailment, that is the question of whether a
specific hypothesis can be derived from a premise. So, while MR metrics may be useful
for any system applications that are meaning-focused, they may also help safety-critical
applications, since their way of measurement is transparent.

Finally, MR-based graph metrics might also extend to more machine learning tasks,
since the problem of measuring the similarity of graphs is far-reaching is “core to learning
on graphs” (Shervashidze et al., 2011). In that aspect, we hope that research into MR
metrics may open new views, or offer new and useful tools, to build meaning-focused
machine-learning systems on top of MR metrics. Of course, working towards this goal,
we may have to go beyond basic graph metrics and develop generalizable MR metrics
that respect their specific topology and design.
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In conclusion, motivated by the generality and explicitness of MRs, the main goal of
our thesis is to learn about MR metric spaces, develop novel MR metrics, and explore
potential application cases by touching on an exemplary selection of topics and tasks
where we believe that MRs and corresponding metrics can be useful. For instance, we
would like to explore the potential of MR metrics to provide us with explanations for why
an automatically generated text deviates from a reference, and we would like to figure
out ways to enhance semantic search with MR metrics, to increase its explainability and
semantic accuracy.

1.2 Research questions

For better overview, we group our main research questions into four research question
sets (RQS1-4):

• RQS1: Theoretical assessment of MR metrics and development of enhanced
MR metrics: Although there are MR metrics that have been previously proposed
(for parser evaluation), we know only little about their properties and use-cases.
Therefore, we will first investigate whether we can design and apply intuitive the-
oretical criteria to distinguish previous MR metrics and detect their strengths and
weaknesses. Based on our insights from this assessment, we ask ourselves: Can we
design enhanced and generalizable MR metrics that mitigate weaknesses in previ-
ous metrics and extend the MR metric applicability to different tasks beyond parsing
evaluation?

• RQS2: Empirical assessment of MR metrics: How can we empirically evaluate
MR metrics? Can we define measurable objectives that we would like an MR metric
to fulfill? And if we could define such criteria and build an MR metric benchmark
thereupon, what conclusions can we make regarding previous and our novel MR
metrics? These and similar empirical questions will be targeted throughout our
thesis.

• RQS3: Novel MR-task related applications: System evaluation with partially
available MR: An MR metric usually receives two MR inputs. But sometimes, one
MR may be hidden. We find such a situation in two MR-related generation eval-
uation tasks: i) Evaluation of text generation from MR, and ii) evaluation of MR
generation from text (parsing evaluation), without a costly reference. In both cases,
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we would like to determine the quality of the generation in the MR space. There-
fore, we want to assess whether we can develop strategies to cope with situations
where we are missing input pieces.

• RQS4: Novel and extended MR metric applications: Based on our insights
from our previous explorations into MR metrics, we want to know whether we
can demonstrate their usefulness in extended application cases that are of broader
interest to the NLP community, such as sentence and argument similarity. Besides
accuracy, in practice, these tasks impose – or increase the importance of – an addi-
tional desideratum: efficiency. This is because in key applications such as document
search, similarity metrics tend to be executed a lot of times. Since efficiency is a
notorious problem in graph metrics, we would also like to know whether we can
successfully mitigate an efficiency bottleneck.

1.3 Contributions of this thesis

In sum, our main contributions are:

• Addressing RQS1: We introduce criteria for MR metric analysis and demonstrate

that they can reveal strengths and drawbacks of previous MR metrics, helping re-
searchers to make more informed decisions when selecting MR metrics and show-
ing us perspectives for improvement. Based on our insights from the MR metric
analysis, we contribute novel MR metrics that combine strengths of previous met-
rics while alleviating their weaknesses. Our metrics are prepared for general appli-
cation cases by providing many-to-many node alignments for subgraph similarity
and assessment of meaning composition.

• Addressing RQS2: We propose the first benchmark for empirical assessment of MR

metrics, containing different objectives such as sentence similarity and robustness
checks. We evaluate MR metrics on our benchmark, investigate their empirical
trade-offs, and gather information for hyper-parameter recommendation. Similar
evaluations will be conducted as part of RQS4.

• Addressing RQS3: We propose the first systems for addressing novel MR metric

application tasks where one MR input is hidden. To the best of our knowledge, we
propose the first metric for NLG evaluation grounded in MR, and the first system
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for MR quality evaluation in the absence of a costly reference. We show that for
NLG evaluation, we can use a reliable parser to infer the hidden MR from the
generated sentence, which facilitates execution of an MR metric in the MR space.
For evaluating MR parses in the absence of a reference, we show that we can predict
a MR metric, treating the reference MR as a latent variable. In our experiments, we
show that both approaches can provide a multi-aspect assessment of system quality.
In particular, we find that MR-based NLG evaluation metrics can help us to explain
errors and provide fine-grained system diagnostics, as well as more meaningful and
discriminative scores, due to their capability to detach meaning from form.

• Addressing RQS4: We show how to use MR for exploring relations between nat-

ural language arguments, enhancing the accuracy and explainability in automatic
argument similarity rating. We further show that the efficiency bottleneck can be
mitigated, by proving that NP-complete graph alignment can be efficiently approx-

imated with neural networks, opening the door to large-scale use-cases of MR met-
rics, e.g., for pattern-based search or MR clustering. Finally, we show that MR

metrics can enhance a state-of-the-art semantic search engine by inducing an MR-
metric based feature-structuring that helps explain similarity prediction. This is a
contribution with broad application, since semantic search is an important problem
in industry and research, with state-of-the-art methods lacking transparency and
interpretability. Our proposed method retains (or sometimes improves) on the ac-
curacy of the state-of-the-art method while keeping its full efficiency, allowing for
very fast, aspectual and semantically targeted text clustering.

1.4 Thesis overview

The main content of this thesis follows after discussing background and related work in
the next two chapters. It is distributed over three parts. In Part I (Chapter 4 and 5), we
study, develop and test MR metrics. In Part II (Chapter 6 and 7), we study novel tasks for
MR metrics where (at least) one MR is hidden and needs to be projected: cost-efficient
MR quality evaluation and multi-dimensional evaluation of text generated from systems.
In Part III (Chapter 8 and 9) we assess the general problem of studying text similarity
with MR metrics, to address broader NLP tasks such as semantic search.
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Preliminaries: background and related work

In Chapter 2 we will discuss necessary background information that will enable us to
better understand the main content of this thesis. In particular, we start by introducing
some basic concepts: In Section 2.1, we introduce our definition of graph-based MRs
and discuss translations between different graph formats. Then, in Section 2.2 we will
introduce pillars of Abstract MR (AMR, (Banarescu et al., 2013)). Due to its popularity
in the current NLP landscape and the fact that other MRs are often closely related to
(and sometimes inspired from) AMR, the space of AMRs is the space where we will
mostly work in. We will then touch on graph metrics, discuss their general desiderata
(Section 2.3), and a coarse practical categorization of graph metrics into supervised and
unsupervised metrics (Section 2.6).

In Chapter 3 we visit work that is related to the subject of this thesis. In Section 3.1
we discuss related work on MR metrics. Then, we discuss related works on evaluat-
ing systems that target the generation of natural language text (Section 3.2) and systems
for estimating the quality of predicted structures without relying on a costly reference
(Section 3.3). In Section 3.4 we discuss work on data sets that contain measurements of
human text similarity assessments and automatic methods that have been developed to
approximate such assessments. Finally, in Section 3.4.3, we discuss explainability in text
similarity.

Part I: MR metric analysis and development

In Chapter 4 we develop analysis tools for MR metric analysis. Based on insights from
the analyses, we begin to develop novel MR metrics. In particular, in Section 4.2 we con-
struct a toolbox for metric analysis that views metrics through the lens of 8 principles that
express different desiderata. In Section 4.3, we use these principles to analyze two previ-
ously proposed metrics, finding out that both share a common weakness. This instigates
us to build our first novel metric. After an intermediate summary of our analyses (Section
4.4), we discuss learnt lessons and steps to go next (Section 4.5). Based on these lessons,
we build novel and generalizable MR metrics from Weisfeiler-Leman graph kernel in Sec-
tion 4.6, and show how we can optimize our metrics from direct human feedback (Section
4.7). Finally, we conclude this chapter with a discussion (Section 4.9).
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In Chapter 5 we perform empirical studies on MR metrics. In Section 5.2, we propose
BAMBOO (Benchmark for A)MR Metrics Based on Overt Objectives), the first bench-
mark for empirically assessing MR metrics, consisting of human similarity objectives and
robustness challenges. In Section 5.3, we employ BAMBOO to assess the empirical per-
formance and behavior of an array of different MR metrics. In the second part of this
chapter, beginning in Section 5.4 we study a classical use-case of MR metrics and gain
new insights about strong MR parsers across different domains through automatic MR
metric assessment and human assessment, resulting in several recommendations (Section
5.5). Again, we conclude this chapter with a discussion (Section 5.6).

Part II: MR metric projection for system evaluation

In Chapter 6 we study an important problem of natural language processing through
the lens of MRs: evaluation of automatically generated text. Here, we focus on a partic-
ular setup: evaluation of text that is automatically generated from MRs, by matching the
MR of the generated text against its input. After discussing our motivation in more detail
(Section 6.2), we formalize the problem and build a composite metric that assesses gen-
erated text from two crucial perspectives: its form, and its meaning (Section 6.3). Then
we conduct two pilot studies: In Section 6.4, we re-rank NLG systems using our novel
metric, assessing its discriminatory power and potential for providing us with coarse and
fine-grained explanations for system quality.4 Then, in our second pilot study (Section
6.5), we probe weaknesses of our metric, such as its dependence on an automatic MR
parser or language model. Finally, we conclude the chapter with a discussion (Section
6.6).

In Chapter 7 we study a novel application of quickly assessing the performance of
MR parsers, in the absence of a costly human reference. We provide a more detailed
motivation in Section 7.2 and provide formal definition of the problem in Section 7.3. We
propose two neural graph encoding strategies that can be trained to solve the problem: A
structure-enriched LSTM that processes the graph as a serialized string with alignment
information (Section 7.4); And a CNN that is inspired by simplicity and human annotator
view, by exploiting a structured and concise multi-line graph string serialization (Section
7.5). We set up the experiment by defining MR quality dimensions of interest (Section

4Coarse explanation, e.g.: is a system better at preserving meaning, or generating well-formed and
grammatical sentences? Fine-grained explanation, e.g.: what specific linguistic error types does a system
tend to produce?
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7.6), and construct training and testing data (Section 7.7). We test our proposed systems
against baselines in Section 7.8 and ablate various system parts. We conclude the chapter
again with a discussion (Section 7.9).

Part III: MR metrics for effective semantic similarity

In Chapter 8 we investigate MRs and MR metrics for measuring the similarity of nat-
ural language arguments, and assessing argument quality. After providing more back-
ground (Section 8.2), we introduce two MR-argument similarity hypotheses (Section 8.3).
Then we describe the implementation of our MR-metric based approach in Section 8.4
and conduct experiments on argument similarity through the lens of MR and MR metrics
(Section 8.5). Finally, we conduct extensive analysis in Section 8.6, investigating poten-
tial explainability advantages of our approach and the usefulness of MR metrics for rating
the quality of automatically generated conclusions, which is an upcoming topic in the
argument mining community. We conclude the Chapter with a discussion (Section 8.7).

In our last (main) Chapter 9 we test whether we can leverage insights from our studies
on MR metric spaces to empower methods for semantic search, which is of very broad
interest for NLP research and industry: semantic search. For this, a crucial bottleneck
of MR metrics has to be addressed, namely their costly graph-similarity computation and
graph generation. More precisely, when we execute MR metrics, we normally need at
least a parser, and possibly a metric that calculates a costly graph alignment. First, in
a pilot study (Section 9.2), we show that we can mitigate the second issue, and develop
strategies for approximating an NP-complete graph alignment problem, finding that we
can efficiently and accurately approximate it with neural networks. However, we also
note that accurate graph alignment doesn’t imply a similarity rating that resembles that

of a human, the latter being crucial for semantic search. So, finally, to alleviate these
MR-metric related issues, we show how MR metrics can be used to improve a state-of-
the-art neural sentence embedding model, by providing MR explanation while preserving,
or improving its performance. After discussing some background (Section 9.3), we de-
scribe our model and the training data setup (Sections 9.4 and 9.5). Then we conduct
extensive intrinsic and extrinsic evaluation starting in Section 9.6. In Section 9.7, we
assess explainability performance, and in Section 9.8 we examine performance on three
diverse downstream similarity rating tasks. We conclude with data explainability analysis
(Section 9.9) and a discussion (Section 9.10).
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Finally, we conclude the thesis in Chapter 10, where we summarize the thesis’ main
results (Section 10.1), give a short guide for selecting MR metrics for applications (Sec-
tion 10.2), and elaborate on perspectives for future work (Section 10.3).

1.5 Generated papers and resources

The following list contains works that provide the main fabric of this thesis.

• “AMR metrics from principles” (Opitz et al., 2020). In: Transactions of the Asso-
ciation for Computational Linguistics. Code: https://github.com/Heide
lberg-NLP/amr-metric-suite. C.f.: Chapters 4 and 5.

• “Weisfeiler-Leman in the BAMBOO: Novel AMR metrics and a benchmark for
AMR graph similarity” (Opitz et al., 2021a). In: Transactions of the Association
for Computational Linguistics. Code: https://github.com/Heidelber
g-NLP/weisfeiler-leman-bamboo. C.f.: Chapters 4 and 5.

• “Better Smatch = Better Parser? AMR evaluation is not so simple anymoe” (Opitz
and Frank, 2022a). In: Proceedings of the 3rd Workshop on Evaluation and Com-
parison of NLP Systems. Code: https://github.com/Heidelberg-NL
P/AMRParseEval. C.f.: Section 5.4.

• “Towards a decomposable metric for explainable evaluation of text generation from
AMR” (Opitz and Frank, 2021). In: Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics. Code: http
s://github.com/Heidelberg-NLP/MFscore. C.f.: Chapter 6.

• “Automatic accuracy prediction for AMR parsing” (Opitz and Frank, 2019b). In:
Proceedings of the Eighth Joint Conference on Lexical and Computational Seman-
tics. Code: https://gitlab.cl.uni-heidelberg.de/opitz/quamr.
C.f.: Chapter 7

• “AMR quality rating with a light-weight CNN” (Opitz, 2020). In: Proceedings of
the 1st Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics. Code: https://github.com/Heidelberg-NLP/amr-qual
ity-rater. C.f.: Chapter 7.

https://github.com/Heidelberg-NLP/amr-metric-suite
https://github.com/Heidelberg-NLP/amr-metric-suite
https://github.com/Heidelberg-NLP/weisfeiler-leman-bamboo
https://github.com/Heidelberg-NLP/weisfeiler-leman-bamboo
https://github.com/Heidelberg-NLP/AMRParseEval
https://github.com/Heidelberg-NLP/AMRParseEval
https://github.com/Heidelberg-NLP/MFscore
https://github.com/Heidelberg-NLP/MFscore
https://gitlab.cl.uni-heidelberg.de/opitz/quamr
https://github.com/Heidelberg-NLP/amr-quality-rater
https://github.com/Heidelberg-NLP/amr-quality-rater
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• “Explainable Unsupervised Argument Similarity Rating with Abstract Meaning
Representation and Conclusion Generation” (Opitz et al., 2021b). In: Proceed-
ings of the 8th Workshop on Argument Mining. Code: https://github.com
/Heidelberg-NLP/amr-argument-sim. C.f.: Chapter 8.

• “SBERT studies meaning representations: Decomposing Sentence Embeddings into
Explainable Semantic Features.” (Opitz and Frank, 2022b) In: Proceedings of the
2nd Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics. C.f.: Chapter 9.

• “SMARAGD: Synthesized sMatch for Accurate and Rapid AMR Graph Distance”
(Opitz et al., 2023a). In: Proceedings of the 15th International Conference for
Computational Semantics (IWCS 2023). URL: https://arxiv.org/abs/
2203.13226. C.f.: Chapter 9.

Other related works where the author of this thesis participated in and on which we
will touch in this thesis:

• “A Dynamic, Interpreted CheckList for Meaning-oriented NLG Metric Evaluation
— through the Lens of Semantic Similarity Rating” (Zeidler et al., 2022). In: Pro-
ceedings of the 11th Joint Conference on Lexical and Computational Semantics.
Code: https://github.com/Heidelberg-NLP/NLG-CHECKLIST.

• “Translate, then parse! A strong baseline for cross-lingual AMR parsing” (Uhrig
et al., 2021). In: Proceedings of the 17th International Conference on Parsing Tech-
nologies. Code: https://github.com/Heidelberg-NLP/simple-xam
r.

https://github.com/Heidelberg-NLP/amr-argument-sim
https://github.com/Heidelberg-NLP/amr-argument-sim
https://arxiv.org/abs/2203.13226
https://arxiv.org/abs/2203.13226
https://github.com/Heidelberg-NLP/NLG-CHECKLIST
https://github.com/Heidelberg-NLP/simple-xamr
https://github.com/Heidelberg-NLP/simple-xamr
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Chapter 2

Background

In this chapter, we introduce basic concepts that will help us better understand the topics
and methods later developed in this thesis. We make one exception, and assume that the
reader already has some knowledge about neural networks such as LSTMs (Hochreiter
and Schmidhuber, 1997) or transformers (Vaswani et al., 2017) and their associated ma-
chine learning tasks ranging from classification to regression and sequence-to-sequence
modeling.1

2.1 Graphs and graph-based MRs

2.1.1 Meaning representations as graphs

A graph is a powerful means for representing all sorts of things. Formally, a graph G =

(V,E) consists of a node set V and an edge set E =V ×V . MR graphs typically have (at
least) three special properties: They have a root, and their edges are directed and labeled,
i.e., there exists a (surjective) function function el : V ×V → P(ΣE), where P(ΣE) denotes
a powerset of a set of edge labels ΣE . This essentially means that the graph allows multiple
(distinctly labeled) edges between nodes.

With the type of graph described above, we can express several powerful meaning
representations, e.g., Discourse Representation Structures (DRS, (Kamp, 1981)) or Ab-
stract Meaning Representation (AMR, (Banarescu et al., 2013)). Likewise, other lin-
guistic structures such as syntactic structures (dependency trees, constituency trees) and
rhetorical discourse structure (Mann and Thompson, 1988) can also be captured with such

1Several parts of this thesis can be understood without knowledge on neural networks. Also there
exist abundant material of introductions, online lectures, papers, blogs, etc., where the reader may educate
themselves about neural networks in a way that best suits their individual learning style. For instance, a
useful online course on neural networks can be found here: https://cs230.stanford.edu/.

https://cs230.stanford.edu/
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graphs. Typically, the vocabulary of semantic edge-labels is rather small and similar for
different MR types; within it we tend to find ‘meaning-heavy’ labels such as cause,
instrument, or location. Also common to many MR types is a specific termi-
nology of variable. Essentially a variable has the same function as a node index v, and
therefore each variable can be used to identify a node (more background on variables will
follow below in Section 2.2).

Graph formats. Graphs are powerful but also complex objects. Graph libraries such as
networkx2 define specific data structures that enable us to access the graph efficiently
in computer RAM, e.g., to apply general graph algorithms for traversing, searching, re-
structuring, and other objectives. However, it is also important to think of graph formats
for other purposes, such as disk-storage of a graph in a string format (also sometimes
called serialization) or visualization for visual inspection.

To this aim, one option is to store MR graphs as a set of (‘rdf’) subject–predicate–object
triples, where a triple has the form 〈u, edgeLabel ∈ ΣE , v〉 with u,v ∈ V two nodes (or
variables) and edgeLabel is the label of the edge that starts from source u and ends at
target v. An example of an ‘rdf-MR’ of the sentence A person works on their laptop is
displayed in the top right of Figure 2.1 (RDF))

Obviously, while a set of triples allows easy disk-storage, it is not very appealing
for visual inspection: the visual graph structure is almost completely lost and we will
struggle to comprehend non-atomic structures such as node neighborhoods. One option
would be to simply use a library for graph plotting. But interestingly, for our targeted
type of graph there is a format that can combine the best of the two worlds: The Penman
notation (Mann, 1983).

The Penman format allows us to represent any directed graph as a string that is also
accessible for visual inspection. An example of such a string structure is provided in
Figure 2.1 (e.g., top, middle, Penman format). After specifying one node as root (a root
is presupposed by many MR-types) we can traverse the graph with a depth-first traversal
using / to indicate node labels, and brackets or indention for broader graph structure.
Note that inverting edges, such as 〈x, :edgeLabel-of, y〉 (≡ 〈y, :edgeLabel, x〉) allow us to
preserve the full graph, even though the string de-facto represents a tree-structure. In sum,
we can say that the Penman notation allows easy disk-storage – but additionally enhances
visual presentation by exploiting a compact multi-line indent-structured format. On a

2https://networkx.org/

https://networkx.org/


2.1. Graphs and graph-based MRs 15

theoretical side note, observe that for representing the graph structure, either brackets or
indention would be sufficient (however, both tend to be used simultaneously).

2.1.2 Same meaning, different structure: graph translations

Meaning preserving translations. As we have already seen above, graphs can be ex-
pressed in different ways. Besides representing them in different formats, we can also
apply controlled structural changes that do not change the meaning of a graph, but change
its structure. Graph translations can aid us with tailoring graphs to different applications
and requirements. Since we will access such translations at some points in this thesis, and
to warm up a bit more to MR graphs in general, we visit an exemplary selection of graph
translations below (we use f (−1) to denote the option of inverting translation f ):

• string(−1), as described above (Section 2.1.1), we can use this function to translate
a string into a graph (and vice versa).

• attr(−1) takes as input a graph in which some edges carry instance-labels, where
we can view the targets as labels of source nodes. We remove each instance edge,
gather the target node that explicitly captures the concept in its index, and then add
this concept/index as a label/attribute to the (former) source node. On top of the
edge label projection, we then assume a node label projection: nl : V → ΣV , that
projects a v ∈ V onto a label from an (open) vocabulary of node labels ΣV , often
coined ‘concepts’ in the world of MRs. Note that this translation converts a graph
with unlabeled nodes to a graph with node labels and a reduced number of nodes.
An example is shown in Figure 2.1 (top, right).

• reify(−1) requires specific rules tailored to a certain graph-type. Depending on the
vocabulary of edge labels, we define a subset of labels where we say that they are
canonical. E.g., for Abstract MR graphs that are used in the example, canonical
edge labels include argn and opn; n = 1...,N. Since any edge can be viewed as
a predicate with two arguments, e.g., poss(x,y)≡〈x, :poss, y〉 indicating that x is
possessed by y, we can map via a manual rule to an equivalent structure arg1(p,x) ∧
arg2(p,y) ∧ label(p, possession), where the relation is now expressed by a new node
p labeled with poss, connected to its arguments via the canonical edges (an example
is shown in Figure 2.1, middle). In our rule-book, we would see that the arg1 of a
node labeled with possession is the thing that is owned by the owner indicated with
arg2.
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Essentially, after reification, a graph expresses the same content but it has changed
its structure and only contains edges that have canonical labels. A possible advan-
tage of reification is that we can represent more information about the non-canonical
relations, treating them as events/nodes. For instance, in addition to who possesses
what, we could model the time when the possession-state occurred, attaching a
time-edge to the possession node.

• e2n(−1): More generally, an edge-labeled graph can be translated to a graph with
unlabeled edges, sometimes also called Levi Graph (Levi, 1942). As indicated in
Figure 2.1 (right), this graph is bi-partite, containing ‘original’ nodes on the left,
and relation labeled nodes on the right. A potential advantage of such a graph is
that the relation can be treated in the same way as nodes, removing the requirement
to define potential extra-steps for edge-label processing.3

Touching on linguistics: almost meaning preserving and meaning breaking trans-
formations. MR graphs aim at capturing the meaning of text. Therefore, we could also
map between graphs using linguistic rules. This is indicated in Figure 2.1 on the left
side with green arrows. Using a near-meaning preserving transformation, we could map a
node labeled laptop onto its (near-)synonym notebook, which preserves (almost) all of the
meaning that the original graph expresses. We can also think of larger structural changes
in a similar way: For instance, a node labeled laptop can be mapped onto two nodes com-

puter and portable, that are connected with a modifier relation. By contrast, the meaning
of the original graph might break if other manipulations are performed, e.g., changing
the node notebook to the node car, now indicating that a person is working on their car

instead on their computer, which would induce a significantly different meaning.
Note that any linguistic transformation, be it largely meaning preserving or not, is

under-specified and we require linguistic knowledge for full specification (as opposed to
the fully meaning preserving structural translations detailed above).

3Note that such a ‘Levi’-graph is a by-product of building a line graph (Whitney, 1932; Krausz, 1943;
Harary and Norman, 1960) that shows neighborhood-relations of relations.
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2.2 Abstract Meaning Representation (AMR)

Most of our experiments will be based on a particular type of a Meaning Representation:
Abstract Meaning Representation (AMR), proposed by Banarescu et al. (2013). To rep-
resent meaning, AMR uses a rooted, directed, acyclic graph format with labels on edges
(relations). Together with the theory of AMR (that we will describe next in more detail),
a large dataset of several thousand manually crafted AMRs was released. Therefore, we
can count on the availability of strong parsers that allow us to robustly project meaning
representations for new sentences.

The large size of manually created data and its effects such as robust parsers are not
the only reason why we prefer AMR as a basis for our studies. Additionally, it bears sig-
nificant similarities to many other meaning representations, such as DRS (Kamp, 1981),
Universal Meaning Representation (Stengel-Eskin et al., 2020), Uniform Meaning Rep-
resentation (Van Gysel et al., 2021) and BabelNet Representation (Lorenzo et al., 2022).
Some MRs are extensions or/and strongly inspired from AMR, e.g., to better address
challenges like cross-linguality (Lorenzo et al., 2022), and most of them can be expressed
in an AMR-like rooted DAG graph format as defined above, like the compositional and
logics-flavored DRS representation or Universal Meaning Representation that practically
stacks, in one MR, individual meaning structures that are deemed complementary.4 So
with the knowledge that MRs tend to bear strong similarities, specifically with regard
to their structure, and MR metrics promise to generalize well over different MR types
due to their shared graph format (DAG), we can confidently proceed with using AMR
as the main testing substrate for our MR metrics. Of course, this does not preclude that
future research may find a need to further tailor our metrics to non-AMR MRs, or build
new MR metrics, to best take any of their possible specifics into account (e.g., logics and
compositionality of DRS).

2.2.1 Pillars of AMR

From Neo-Davidsonian event semantics to graph (triples). MRs such as AMR have
roots in Neo-Davidsonian semantics (Davidson and Rescher, 1967; Lasersohn, 2016;
Wang et al., 2020d) that seek to flexibly and comprehensively model complex events and
states. These semantics model the relation between events and their arguments (entities)
by specified semantic roles (e.g., the agent [usually arg0] of an event, the patient [usually

4I.a., universal dependency structures (Nivre et al., 2016) and semantic proto-roles (Dowty, 1991;
Reisinger et al., 2015; Teichert et al., 2017; Opitz and Frank, 2019a; Spaulding et al., 2023).
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arg1] of an event, and other key semantic relations such as location, etc.). This can be
formalized as a conjunction of two-place (binary) predicates:

{pred(x,y) | pred ∈ PRED; x,y ∈ ENT} (2.1)

where we use PRED to denote a set of descriptive binary predicates and ENT a set
of semantic entities in a text (referring to objects, events, states,...) typically denoted by
variables such as x,y that can only be understood through their context. For instance, A

person is working on a laptop would trigger a structure similar to:

∃p, l,w : person(p)∧work(w)∧ laptop(l)∧agens(w, p)∧ instrument(w, l), (2.2)

which shows that there are three semantic entities (p, l,w), that they are of a certain type
(person, laptop, work), and that the entities fulfill different roles (p is the agent in the
event w, and l the instrument). Note that ‘unary’ predicates such as work(w) are equiva-
lent to using a binary predicate and including ∅ in ENT : work(w,∅) or using declarative
variable names such as work ∈ ENT , and instance(w, work) relations.

Importantly, with such a Neo-Davidson structure, we can attach further information
about the event at our will, up to arbitrary complexity. For example, the time where the
working happened, if the ventilator of the laptop is loud and running, or not, etc, with the
variables referred to in different predicates.

Moreover, viewing each part in such a logical conjunction as a labeled graph edge
(pred(x,y)≡ 〈x, :pred, y〉), a graph such as in Figure 2.1 can be immediately created.

Predicate frames boost the descriptiveness of AMR. Such frames enable us to explic-
itly describe events and the roles of event participants. The frames are created by linguistic
expert annotators and are freely available in PropBank (Palmer et al., 2005). In partic-
ular, PropBank contains several thousand English (sense-disambiguated) predicates and
enumerates their core role arguments Ai-An, where i,n depend on the predicate (and its
sense), but typically i = 0 and n ranges between one and five. These core roles are spec-
ified individually for every frame in PropBank, and each role has a specific description.
E.g., in

S: A person works on their new laptop.
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we would like a system to distinguish the correct sense for work. In this case, this
would be work-01, which has a general sense of work, being employed, acts, deeds.
Now we can inspect the following semantic role meaning structure:

0. A0(=A person) as the worker (the agent).

1. A1(∅) as the job or project (the theme).

2. A2(∅) as employer/benefactive.

3. A3(∅) a co-worker.

4. A4(=their new laptop) as the instrument.

Core vs. non-core roles. Above, A0-A4 are frame-specific core roles. Additionally, we
can attach to any predicate so called non-core roles, which are less-abstract roles of which
we presume that they generalize over many different predicates, for instance, location,
time or instrument. E.g., if work (in S) happens on a particular day, e.g., Tuesday, we can
use a relation time(work, tuesday). However, if non-core roles are empirically frequently
realized in a predicate, they are often assigned a core-role (see above, instrument = A4).
Even though there sometimes may be ambiguity in assigning roles to participants, for
most cases we can resolve this by aiming at the most normative interpretation of the
sentence. For instance, Work on something might also trigger the interpretation that laptop

is a project (A1), as in someone repairs, or builds a laptop. However, in the absence of
any further context, we consider laptop as the instrument, A4, since the interpretation
that somebody uses a computer as an instrument to accomplish something seems more
normative, especially in the absence of further context.

‘Format-wise’, AMR customary uses upper-case ‘ARGn’ edge labels to represent
PropBank’s ‘An’ roles, lower-case for non-core roles, and sometimes also prepends a
‘:’ to edge labels, particularly when graphs are serialized as string. Such different nota-
tional choices can slightly vary among MRs and they do not imply a semantic difference.
Therefore, in this thesis we will allow ourselves to generalize over particular edge label
naming conventions, i.e., we let An≡ :ARGn≡ ARGn≡ argn≡ argn (e.g., A0≡ :ARG0
≡ ARG0 ≡ arg0 ≡ arg0).
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2.2.2 A deeper look into the AMR toolbox

Expressing a text with predicate frames such as they are contained in PropBank can al-
ready constitute a useful MR representation, and is targeted by a well-known NLP task
called Semantic Role Labeling. However, through AMR we can model meaning more
precisely and extensively. This is mainly because AMR provides us with tools to further
decompose meaning. For instance, consider that in S, their new laptop is the instrument
in the semantic role structure. AMR does not treat their new laptop as a single entity
but instead would connect new with a modifier-edge to laptop (since the role of new is to
modify the laptop, see also again Figure 2.1, top).5

Coreference modeling is also a powerful feature of AMR. Using variable nodes, we
can refer to particular events, states, and persons multiple times, or distinguish among
two or more instances of the same concept. For instance, decomposing their new laptop

further, so that we know whom their actually refers to:

∃p, l,w : person(p)∧work(w)∧ laptop(l)∧arg0(w, p)∧arg4(w, l)∧ poss(p, l) (2.3)

I.e., the difference to Eq. 2.2 is that we have added a part where p, l re-occurs in a pos-

session relation. Similarly, in AMR, coreference is sometimes referred to as re-entrancy,
referring to the re-entrant edges that occur in graphs as coreferences (see AMR graph in
Figure 2.1, top: the person node has two incoming edges, among them one possession

edge from laptop, explicating the meaning of their).

Negation modeling. AMR captures negation using polarity edge and reflects modality
with possible edges. For instance, to alter the AMR of S to express the meaning (...)

cannot work (...), we introduce an abstract possible(p), introduce a arg1(p, r) and a polar-

ity(p, NEG). By contrast, when reflecting (...) doesn’t work (...) we only insert polarity(w,

5Note that if such a modifier item is contained in PropBank as a one-place predicate with designated
arguments, the AMR annotator should prefer selecting the pre-defined frame. In these cases, AMR trades
some generality for more precise defintion. Indeed, this is the case with new, which can be found as new-01
(be newly created; recently come into being) in PropBank (c.f., https://verbs.colorado.edu/p
ropbank/framesets-english-aliases/new.html). Therefore, in this case, we may select
∃l,n : new1(n)∧ laptop(l)∧arg1(n, l) over ∃l,n : new(n)∧ laptop(l)∧mod(n, l).

https://verbs.colorado.edu/propbank/framesets-english-aliases/new.html
https://verbs.colorado.edu/propbank/framesets-english-aliases/new.html
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NEG).6:

∃p, l,w : person(p)∧work(w)∧ laptop(l)∧arg0(w, p)∧arg4(w, l)∧ polarity(w,−).
(2.4)

Negation can be attached to any node, which is useful to model phrases such as the

laptop that is not new:

∃l,n : laptop(l)∧new(n)∧ polarity(n,−), (2.5)

or meaningfully split composed adjectives, e.g., unjust: ∃ j just( j)∧ polarity(h,−).

Focus modeling. AMRs are rooted graphs. The root concept shows the focus of the
sentence. For instance, when expressed as AMRs, the sentences

S’: The cat drinks milk.
S”: The milk is drunk by the cat.

differ only in their focus but otherwise express the same meaning: In AMR, we have
〈ROOT , :root, cat〉 in S’ and 〈ROOT , :root, milk〉 in S”, all other triples being equal.

Some limitations of AMR. While AMR is a powerful tool for capturing the meaning
of text, it is not (yet) fully complete. For instance, it lacks a complete first-order logic
model because it currently cannot represent scope of phenomena such as quantification
and negation, and it also lacks representation power for tense and aspect. However, there
is active research on developing mitigating these concerns, by developing corresponding
AMR modeling schemes (Donatelli et al., 2018; Pustejovsky et al., 2019) or translation
mechanisms that can be applied to project AMR on first-order logics (Bos, 2016, 2019).

Second, AMRs are not created with compositional construction from the text, there
are no explicit alignments between parts of a text and parts of its AMR structure. On one
hand, this has the advantage of facilitating easier and more meaning-focused annotation.
On the other hand, we cannot explicitly trace what parts in the sentence trigger particular
meaning structures, which may be an issue in some applications.7

6In AMR, typically we use - as NEG
7A possible mitigation strategy is to build a ‘post-hoc’ alignment, where an automatic tool is used to

build relations between the tokens in a sentence, and corresponding AMR structure.
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2.2.3 From text to AMR and from AMR to text

Text2AMR. AMRs tend not to ‘appear out of nowhere’, and the human AMR building
process is quite costly. Even after some targeted training, a human would need, on aver-
age, 10 minutes per sentence to invoke its AMR (Banarescu et al., 2013). Thus, AMRs
often need to be inferred automatically based on a text.8 Therefore, researchers develop
systems that generate AMR structures from text, called parsers. These parsers are typi-
cally trained and tested on large semantic graph banks (Knight et al., 2014, 2021), that
cover a broad spectrum of text types and nowadays contain several thousands of human-
crafted AMR graphs.

How to tell whether a parser is better than another? To automatically assess the quality
of a parser, we usually preserve a test set with human-crafted AMRs (the reference) and
then compare the parser’s outputted candidate graphs against the reference with a graph
metric. While parsers tended to make lots of errors in times when they would be trained
from scratch, recent AMR parsers are quite accurate and produce much fewer errors.
This is mainly due to the paradigm of fine-tuning large pre-trained language models such
as T5 or BART (Raffel et al., 2020; Lewis et al., 2020; Bevilacqua et al., 2021) that
can boost model performance in many areas of NLP. To apply these powerful models to
the task of creating AMR graphs, we need to express input (text) and output (graph) as
text sequences. Parsing in such a sequence-to-sequence fashion is possible due to string
linearization as described above, using DFS traversal from the root and brackets for one-
line graph structure (see details in Section 2.1.1).

AMR2text. On the other hand, AMR2text generation systems aim at generating natural
language text from an AMR. Therefore, these systems fall into the broad area of Natural
Language Generation (NLG). Naturally, this process can be viewed as the inverse task to
parsing/text2AMR, and thus usually the same data sets used for training and evaluating
parsers are also used to train and evaluate AMR2text generation systems. Also very simi-
lar to text2AMR, against the backdrop of the emergence of pre-trained models, AMR2text
systems that encode the graph as a lineraized string have recently seen significant perfor-
mance boosts (Bevilacqua et al., 2021). Different from text2AMR, but similar to other
NLG systems, AMR2text systems are usually evaluated using automatic token-overlap
matching metrics such as BLEU (Papineni et al., 2002) that compare the generated texts
to reference texts from which the input meaning representations were constructed.

8We use ‘often’ here as to not preclude cases where AMRs may not need to be inferred. Such a case,
for instance, could be a hypothetical communication of robots who communicate using AMR language.
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2.3 Graph metrics and metric space

Our focus in this thesis lies on measuring similarities between MRs. After discussing the
general concept of graph-based MRs above, we are now well prepared to touch on metrics
between MRs. We start with a general metric between graph objects:

metric : G×G→ R. (2.6)

A metric space arises then as a tuple (metric,G) where the distance of any pair g,g′ ∈
G×G is determined with our metric. Purely for convenience, we say that this metric
measures similarity (the inverse of distance) by saying a higher score means greater
similarity.

Note that a canonical metric space strictly requires satisfaction of certain axioms, such
as non-negativity, triangle inequality, symmetry, or identity of indiscernibles. However,
in practical cases, not all axioms can always be satisfied and furthermore their impor-
tance can be unclear and may vary among applications. Therefore, relaxed notions of
metric spaces have been introduced, e.g., pseudo-metrics, quasi-metrics, or meta-metrics

(Burago et al., 2022). In our work, we will allow ourselves to be a bit lenient in this matter
of precise formal definition and only mention exact mathematical types of metrics where
such a distinction is immediately helpful, e.g., for better understanding a metric’s goals
or its behavior. So in general, similar to how the term ‘metric’ is broadly used in NLP, we
say that a metric is a model/system/function that takes two objects as input and returns
some number that can be understood as a distance, or similarity, of the input objects.

2.3.1 Graph similarity measures

General deliberations. As Shervashidze et al. (2011) put it, one can think of many dif-
ferent ways to calculate a similarity measure between graphs. Perhaps the most natural
natural measure of graph similarity would be to check whether the graphs are structurally
identical, i.e., isomorphic. This would provide us with a binary score that equals 1, if
the graphs are isomorphic, and 0 otherwise. However, despite the popularity of the prob-
lem, no efficient algorithm is known, and it is presumed to be NP-complete (Garey and
Johnson, 1979). When the two graphs are of different size, which is most regularly the
case in applications, we can check for subgraph isomorphism. Subgraph isomorphism
has actually been proven to be NP-complete (Garey and Johnson, 1979), suggesting that
the isomorphism problem of same-size graphs is NP-complete, too.
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Of course, for most purposes, we would like to move beyond a binary measure and ob-
tain a more graded measure of similarity that puts the similarity of graphs on a spectrum.
Again, one can think of many measures that are more fine-grained. A very simple mea-
sure that may come to mind is to create a simple statistics by counting matches of atomic
graph parts such as node labels are edge labels, if available. However, while non-binary,
efficient and perhaps in some cases effective, it clearly disrespects the graphs’ structures.
A less naïve approach would be to determine the size of the largest common subgraph
in two graphs. But unfortunately, the problem of finding the largest common subgraph
of two graphs is, again, NP-complete (Garey and Johnson, 1979). As we will see later,
this kind of measurement has been proposed before for comparison of MR graphs (we
will describe the measure in detail in the first part of our related work 3.1). Many other
graph similarity measures have been proposed: graph edit distances calculate the effort
of editing one graph such that it yields the other (Bunke and Allermann, 1983; Neuhaus
et al., 2006; Gao et al., 2010) thus respecting the topology, as well as node and edge labels
of graphs, but they are hard to parameterize and need to approximate NP-complete prob-
lems as intermediate steps. On the other hand, optimal assignment kernels (Kriege et al.,
2016a,b), try to match substructures of graphs. Other approaches are based on creating
invariant representations – but these tend to suffer from other problems, e.g., they restrict
the type of graphs to unlabeled graphs, such as measures based on the skew-spektrum
(Kondor and Borgwardt, 2008), or they may be difficult to adapt for labeled graphs, such
as measures based on the graphlet spektrum (Kondor et al., 2009). The skew-spectrum
projects the adjacency matrix of a graph onto a invariant matrix, while the graphlet spek-
trum captures statistics about nodes and node positions

2.3.2 Discussion

We’d like to have (MR) graph measures that are fully assess represented meaning: they
should be graded, interpretable, efficient, and respect the graph topology. So it seems
probable, that at the end of the day, we may have to carefully weigh some trade-offs
with regard to these objectives and won’t be able to get our free lunch. Indeed, even if
some efficient measures may be incapable of judging true (structural) graph-isomorphism,
they may nevertheless provide us with an effective distance measurement that can mean-
ingfully discriminate (to the best extent) our graphs, perhaps even better capturing true
semantic MR/text isomorphism which could, in a sense, even stand in conflict with struc-
tural isomorphism (two structurally isomorphic MRs clearly have the same meaning, but
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we will see that two structurally very different graphs can have the same meaning, too).
Among the most interesting techniques for finding a good trade-off, and measure

graph distance efficiently and meaningfully, we find measures that have sprout from the
famous Weisfeiler-Leman (WL) algorithm by Weisfeiler and Leman (1968). The iterative
WL algorithm was originally intended for the efficient assessment of graph-isomorphism.
In each iteration, a node collects its labels from its neighbors, and ii) compresses them
into a new label. Finally, the two graphs can be projected onto two count vectors, where
a particular index stands for a particular node-label and the vector of a graph contains the
node label’s count in a graph. Importantly, if the two vectors are different – we know
that the two graphs are not (structurally) isomporphic. However, on the other hand, if
the count vectors are the same, we cannot conclude that the graphs are isomorphic. But
still, a very useful feature is that we can finally use fast and simple vector algebra on the
two vectors (distilled from the graphs) to compute a fine graph similarity, e.g., using the
dot-product. Inspired by this concept, recent WL-based graph measures (Shervashidze
et al., 2011; Togninalli et al., 2019) are efficient and promise to respect and exploit graph
topology, by restricting themselves to comparing graph substructures (up to an arbitrary
size) in polynomial time.

2.4 Measuring MR similarity: can we use a graph mea-
sure off the shelf?

As the previous section suggests, there exists a myriad of ways to compare graphs. Let us
think more about our application case: comparison of graphs that are MRs.

Let us first recall the general structural type of MR graphs: They possess a root, are
directed, and carry node and edge labels. While the first two properties seem potentially
neglectable and may not (much) restrict the set of meaningful graph similarity measures,
it appears that the latter two properties (edge labels and node labels) may affect the nature
of a suitable set of similarity measures much more, since these labels carry rich semantic
information, for instance, they express semantic roles or events and states. So as MRs
are actually designed to capture a text’s meaning, it seems intuitive that the similarity of
a pair of MRs should be expected to correspond to the similarity of a pair of texts, which
they represent.



2.4. Measuring MR similarity: can we use a graph measure off the shelf? 27

Therefore, the interaction between structure and expressed meaning seems more com-
plex than for other types of graphs, and may sometimes even stand in conflict. In fact, we
have to be aware of a possibly very crucial

Conjecture: A monotonic relation between topological graph structure
distance and MR graph distance may not be what we wish for.

That means we anticipate cases of paired MRs where we would like to have

∃a,b,c : structSim(a,b)> structSim(a,c)∧ realSim(a,b)< realSim(a,c), (2.7)

where a,b,c are some MR graphs, structSim a perfect measure of structural graph sim-
ilarity and realSim a desired measure of MR meaning similarity. In other words, we
conjecture that structural MR similarity may not be monotonically related to semantic
MR similarity. Indeed, while for many types of graphs a very small change in struc-
ture may not lead to a very different overall meaning of the graph, it seems that an MR’s
overall meaning could quickly and drastically change, also due to how semantics are com-
positionally built.9 In particular, when speaking of MRs, phenomena of meaning com-
positionality might lead to the outcome that a small structural change (e.g., addition or
removal of a single weakly connected node in a large MR graph), can drastically change
the meaning that is captured in the MR (e.g., if we remove/add a negation node to an
event node). On the other hand, broader structural differences may not necessarily imply
a much different overall meaning. For example, if a pair of graphs represents texts that are
(near-)paraphrases (e.g., kitten–young cat) the graphs can exhibit a significantly different
structure (e.g., kitten(k) vs. cat(c)∧ young(c)∧mod(c,y)), which would lead to yield a
topological/structural similarity that is too low, in the sense that it does not at all reflect
the (near-)equivalency of the two MRs’ meaning.

In sum, to make an attempt to answer the question in the title of this section: No, we
probably cannot get a metric off-the-shelf in the hopes of measuring meaningful distances
between MR graphs. Indeed, we will corroborate this insight in multiple places in this
thesis.

9According to the principle of compositionality, which is conjectured by many scholars, the meaning of
a text is composed from its parts (Boole, 1854; Montague, 1973; Pelletier, 1994).
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2.5 Metric performance evaluation

Ultimately, a graph metric provides us with a scalar s ∈R and thus performs a regression
on pair-wise inputs. Metric performance evaluation wants to study the accuracy of the
scores that a metric can provide us with.

Evaluation modes: intrinsic vs. extrinsic. Broadly speaking, there are two major
modes of evaluation. Intrinsic evaluation would assess our regression model (metric)
with an eye to whether it seems to do what we want it to do. For example, if we wanted
to create an efficient graph metric, we could measure its efficiency, e.g., by theoretical
complexity analysis, or empirical runtime analysis in average and non-average cases. Ex-
trinsic evaluation, on the other hand, would assess the more general usefulness of our
regression model for downstream tasks. For instance, we could visit a sentence classifica-
tion problem (e.g., negative vs. positive sentiment): We could 1. MR-parse the sentences,
and 2. construct a pair-wise similarity matrix using our metric. We could 3. feed this ma-
trix into a kernel machine such as an SVM and evaluate the performance in this task using
standard classification metrics such as Accuracy or F1 score. This way, we could get an
insight of how well our regression model works for the downstream task of sentiment
classification.

However, extrinsic evaluation and intrinsic evaluation are often not mutually exclu-
sive. A middle-ground is found when inspecting the quality of our regression in imme-
diate downstream tasks that are also indicative for the model’s intrinsic behavior. For
instance, we can perform sentence similarity rating through MRs and MR metrics. In
this setup, we can directly compare our regression against a human reference regression
with standard regression metrics, studying our model’s intrinsic behavior and retrieving
knowledge of how well our model performs in rating sentence similarity, an important
task for semantic search.

Choosing regression evaluation metrics. Assume a data set {(xi,yi)}n
i=1 of pairs. We

generate scores S = {Si}n
i=1 = {metric(xi,yi)}n

i=1 using our regression and obtain refer-
ence scores S? = {metric?(xi,yi)}n

i=1 with a reference regression metric?.
The most simple measure of quality might be the mean absolute error of our scores

against reference scores:

MAE(S,S?) =
1
n ∑

i
error(i) =

1
n ∑

i
|deviate(i)|= 1

n ∑
i
|Si−S?i |, (2.8)
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or its frequently found ‘cousins’ MSE (mean squared error) and RMSE (root of mean
squared error). However, evaluation with such a metric is often problematic, since we’d
ideally want to generalize over different scales and perhaps also distributions that our
scores and reference scores may exhibit. We do not want to penalize equivalent metrics.
Indeed, we can easily think of cases where equivalent metrics can exhibit an unwanted
high MAE (MSE, RMSE). E.g., consider two same Gaussian distributions – the more we
shift the mean of one, the higher the MAE.

Instead, we are more interested in the relation of predicted scores to reference scores,
and an ideal relation that we would like to have is that they can predict each other. This
property is assessed with correlation measures, such as the Pearson’s ρ:

ρPearson(S,S?) =
∑

n
i=1(Si− S̄)(S?i − S̄?)√

∑
n
i=1(Si− S̄)2

√
∑

n
i=1(S

?
i − S̄?)2

. (2.9)

Here, x̄ denotes the arithmetic mean of x. This formula precisely measures the linear
relationship between two data sets (here: our scores and reference scores). Interestingly,
from Pearson’s ρ , we can directly derive the Spearman’s ρ , since it arises by calculating
Pearson’s ρ on the ranks of the data sets:

ρSpearman(S,S?) = ρPearson(ranks(S),ranks(S?)). (2.10)

Therefore, it tells us about how similar two measures are with respect to the ranks that
they assign to data examples. In theory, the two ρ-measures can somewhat diverge, but
practically, both ρ-correlation statistics often yield a similar outcome (Spearman’s ρ can
be considered slightly more robust, while Pearson’s ρ has slightly more statistical power).
Because either of these statistics is more meaningful for our purposes than absolute error
statistics, in our thesis, as is also standard in the community (Reimers and Gurevych,
2019) we will focus on correlation measures for evaluation.

2.6 Unsupervised versus supervised metrics

It is interesting to assess metrics from a viewpoint that is concerned with the amount of su-
pervision that is required by a metric to function well. For simplicity, we will do a binary
categorization: i) general unsupervised or zero-shot metrics that are either constructed
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using human intuition or are learnt without direct task-specific labels, and ii) supervised
metrics that are learned for a specific target task.

In our thesis, we will first and foremost consider unsupervised or zero-shot metrics and
control learning where possible. In fact, such metrics seem most appealing to us because
they promise better generalization to different tasks. A supervised metric, by contrast, is
learned using task-specific training data and thus may not transfer well to related tasks
and different domains or applications, especially if it relies on a complex function for
embedding our objects in the metric space, such as a neural network. Then, in many
cases, without much deeper analysis, we cannot be assured that such a supervised metric
has learnt anything generally useful, even though performance scores on a benchmark
may seem high. Instead, the metric may have learned to exploit spurious cues and short
cuts that indeed do predict labels in one type of data – but fail in other tasks where spurious
knowledge is either not available or of a different nature. Such a ‘Clever Hans Effect’10

is a well known and long-standing problem in machine-learning known as overfitting

(Dietterich, 1995). The issue becomes more severe with growing complexity of models
(Niven and Kao, 2019). This is also evidenced by the fact that deeper, more complex text
metrics that are trained with task-specific gold labels perform well for supervised tasks,
but for unsupervised tasks such as semantic relatedness of sentences, simpler models
perform better (Hill et al., 2016), or models that have not been trained using target-task
specific gold information and are thus more robust (Reimers and Gurevych, 2019).

Nowadays, another related issue is the risk of catastrophic forgetting: when training
a pre-trained model in a supervised manner for a particular task of interest, we can lose
a lot of general information by teaching a model a specific task (Kemker et al., 2018).
In sum, metrics that are not learnt but are created with human knowledge, or learnt with
less supervision, or learnt in a very controlled way, provide us with a more general basis
for meaningful distance measurements. Finally – if wished so – we can even build a
supervised machine learning system on top of them, for downstream classification tasks,
e.g., by employing a similarity-metric based kernel machine (Hofmann et al., 2008).

10Clever Hans was a horse that seemed capable of intellectual tasks, such as simple arithmetics. But in
1907, psychologist Oskar Pfungst demonstrated that the horse was not actually solving the mental tasks,
but it was acting based on observed reactions of his trainer.



31

Chapter 3

Related work

3.1 MR metrics

We will see that metrics for other types of MRs are often taken over, are derived, or are
inspired from AMR metrics. Therefore, we will dive straight into them.

3.1.1 AMR metrics

As of now, only few methods have been devised for measuring AMR similarity, and all
of them are structural. They can be divided into two categories: i) approximating the
solution to an NP-hard edge/triple-match maximizing node alignment (Cai and Knight,
2013), or ii) calculating the overlap of bags of graph parts that are extracted by traversing
over the graphs (Song and Gildea, 2019; Anchiêta et al., 2019).

The ‘classical’ AMR metric: SMATCH The widely adopted SMATCH (Semantic match,
SMATCH) metric (Cai and Knight, 2013) seeks to approximate an NP-hard graph align-
ment problem with a hill-climber, finally scoring matching triples. Formally, let fmap(a,b)

be the count of matching triples of two graphs a,b under any mapping function map that
maps nodes from graph a to nodes from graph b (every node can have at maximum one
correspondence in the other graph). For instance, given a triple from a: 〈x, :relation, y〉,
and a triple from b: 〈w, :relation, z〉, then these triples match iff map(x) =w∧map(y) = z.
So we would like to have a best

map? = argmax
map

fmap(a,b), (3.1)
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W: new

Z: notebook

X: work-01

Y: person

arg0 arg4

poss

mod

D: new

C: computer

A: work-01

B: person

arg0 arg4

poss
mod

E: portable

mod

node index (variable)

node label (concept)

SMATCH:

1. align indexes for max triple match: A=X→1 | B=Y→ 2 | C=Z→ 3 | D=W→ 4 | E=ᴓ → 5

aligned triples:
a:  { <1, instance, work-01> | <2, instance, person> |

    <3, instance, computer> | <4, instance, new> | <5, instance, portable> | 
    <1, arg0, 2> | <1, arg4, 3> | <3, mod, 4> | <3, mod, 5> | <3, poss, 2> }, 

b:  { <1, instance, work-01> | <2, instance, person> | 
   <3, instance, notebook> | <4, instance, new> | 
   <1, arg0, 2> | <1, arg4, 3> | <3, mod, 4> | <3, poss, 2> }

2. return F1 score = 2PR/(P + R) via P = Match/|triples(a)| = 7/10 and R = Match/|triples(b)| = 7/8

Match: 7

SEMBLEU:

1. BFS extract k-hops collecting edge and node labels:

1-grams a:  { <work-01> | <person> | <computer> | <new> | <portable> }
       1-grams b:  { <work-01> | <person> | <notebook> | <new> }

2-grams a:  { <work-01, arg0, person> | ... | <computer, mod, portable> }
2-grams b:  { <work-01, arg0, person> | ... | <computer, mod, new> }
3-grams a:  { <work-01, arg4, computer, mod, new> |

<work-01, arg4, computer, mod, portable> |
<work-01, arg4, computer, poss, person> }

3-grams b:  { <work-01, arg4, notebook, mod, new> }

2. Calculate BP = BP(|1-grams(a)|, |1-grams(b)|) = BP(5,4) and return BP x GeometricMean(p
1, 

p
2, 

p
3
)

p
1
: 3/5

p
2
: 1/6

p
3
: 0/3

Fine-grained SMATCH (SRL example):

1. Extract sub-graphs:

2. see SMATCH
C: computer

A: work-01

B: person

arg0 arg4

Z: notebook

X: work-01

Y: person

arg0 arg4

Graph a Graph b

Figure 3.1: Inspection of three different AMR metric procedures. Clouds indicate the ratio of
matching triples. Minor details are omitted for readability (special root node, smooth-
ing in SEMBLEU, k = 3 in SEMBLEU and wk =

1
3∀k, which results in an unweighted

geometric mean).
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that aligns the nodes such that the amount of matching triples is maximal. From there, we
can compute a symmetric similarity score, e.g., based on F1:

F1 =
2PR

P+R
; P =

fmap?(a,b)
|triples(a)|

; R =
fmap?(a,b)
|triples(b)|

. (3.2)

An example of SMATCH application is displayed in Figure 3.1: We 1. align the variables
of two input graphs for a maximum triple overlap score, and then 2. return an F1 score
based on the graphs’ matching triples.

SMATCH has been adapted by Cai and Lam (2019) to weight triple matches relative
to their distance to the root, motivated by the hypothesis that “core semantics” tend to be
located near a graph’s root and should be considered as more important.

BFS-based and alignment-free: SEMBLEU The problem in Eq. 3.1 is NP-complete
and does not explicitly consider extended node neighborhoods. To mitigate these issues,
SEMBLEU by Song and Gildea (2019) is aimed at efficiency and matching broader struc-
tures. To this aim, SEMBLEU extracts a bag of k-hop paths (per default: k = 3) from each
AMR graph, starting from the root. During the traversal, AMR variables are replaced with
their attached concepts, which alleviates the need for a costly alignment. Finally, inspired
from practices in the popular NLP area of machine translation, SEMBLEU leverages the
BLEU metric (Papineni et al., 2002) to compute a final score based on the extracted paths,
calculating a (weighted) geometric mean over the k-gram precision scores. With weights
adding up to 1, we have:

SEMBLEU = BP · exp

(
n

∑
k=1

wk log pk

)
(3.3)

BP = emin
{

1− |b||a| ,0
}
, (3.4)

where pk is BLEU’s modified k-gram precision that measures k-gram overlap of a can-
didate against a reference: pk = |kgram(a)∩kgram(b)|

|kgram(a)| . On the other hand, wk is the (typi-
cally uniform) weight over chosen k-gram sizes. To counter cases where pk = 0, SEM-
BLEU uses NIST geometric probability smoothing (Chen and Cherry, 2014).1 The recall-
focused ‘brevity penalty’ BP returns a value smaller than 1 when the candidate length a

1NIST smoothing assigns a geometric sequence starting from 1
2 to the k-grams with 0 matches: pk =

1
2k

if |kgram(a)∩ kgram(b)|= 0.
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is smaller than the reference length b (length is defined by SEMBLEU as the amount of
nodes in a graph |V |).

An example for the SEMBLEU method is shown in Figure 3.1: We first crawl struc-
tures from the two graphs using a BFS traversal (tracing node and edge labels, to circum-
vent the alignment). Then 2. we calculate k-gram precision scores and return the BLEU

score that is their geometric mean times the brevity penalty (which there is none in this
case, since a does not contain fewer nodes than b, i.e., BP = 1).

At this point, we want to note that i) the omitted alignment greatly improves execution
speed, but ii) we do not know whether we have to pay a price for this and how high a
potential price might be. We will investigate these important questions in the next chapter
of our thesis (Chapter 4). Also, we are unaware if better hyper-parameter configurations
exist (e.g., regarding the k and the k-gram weights).

Fine-grained MR metrics MRs are explicit representations that capture various differ-

ent types of semantic phenomena. Importantly, this means that we can measure similarity
on subgraphs that capture the different semantic phenomena. With this in mind, Damonte
et al. (2017) propose an AMR metric suite for such fine-grained aspectual assessments.
In the end, it uses SMATCH for scoring the subgraph, but we could apply any other graph
metric, too. An example for Semantic Role Label (SRL)-aspect assessment is shown
in the bottom of Figure 3.1. We will leverage such metrics based on MR subgraphs in
multiple places in our thesis and describe them in more detail where necessary.

Often inspired by AMR metrics: Metrics for Discourse Representation Structures
and Metrics for Uniform Meaning Representation As discussed in our Background
2.2, other meaning representations such as DRS, Universal/Uniform MR, BabelNet MR,
etc., bear great similarities to AMR. This is because these MRs are either derived from
AMR (e.g., BabelNet, UMR) or can be expressed in an AMR-like graph format (e.g.,
DRS). Therefore, all metrics and applications that we will propose in this thesis allow
straightforward extensions to other types of MRs. This is also reflected by the fact that,
e.g., metrics for matching DRS, like the COUNTER metric (Abzianidze et al., 2019), or
finding the largest common subgraph (Das et al., 2014), are, in principle, equivalent to
SMATCH. Indicating more inspiration from AMR metrics, Liu et al. (2020) propose a
faster metric for DRS evaluation that bears some similarities to SEMBLEU. Similarly,
SMATCH has been adapted to compare Uniform Meaning Representations (Stengel-Eskin
et al., 2020) and BabelNet Meaning Representation (Lorenzo et al., 2022).
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3.1.2 Discussion

Clearly, previous strategies for computing MR similarity are rather coarse and thus likely
do not meet our full demands for a finer similarity assessment (see also our discussion
in Background section 2.4). In particular, this is because these metrics have been de-
signed for a restricted use-case: mono-lingual evaluation of semantic parsers, where they
determine a score for structure overlap. Determining structural overlap seems mostly
legitimate in this scenario, since we are usually confronted with a reference MR and a
parsed candidate MR from the same sentence. Therefore when evaluating a parser, we
are less likely to encounter (near-)paraphrasal structures in the MRs or synonyms in MRs
compared to the case where two MRs are grounded in different sentences. However, with
extended use cases for MR metrics arising, there is increased awareness that structural
matching of MRs is not sufficient for assessing the meaning similarity expressed by two
MRs (Kapanipathi et al., 2021). This insufficiency has also been observed in cross-lingual
AMR parsing evaluation (Blloshmi et al., 2020; Sheth et al., 2021; Uhrig et al., 2021),
but is most prominent when attempting to compare the meaning of AMRs that represent
different sentences.

That said, even in the case of mono-lingual parsing, proper MR evaluation may need
to go beyond mere structural comparison, especially if abstract nodes can be projected, as
is the case for a lot of MRs, including AMR.2 Indeed, this issue can affect parser selection,
where it gets increasingly harder to coarsely discriminate parsers. Against the backdrop of
astonishing recent advances in AMR parsing, powered by the language modeling and fine-

tuning paradigm (Bevilacqua et al., 2021), we find that parsers now achieve benchmark
scores that surpass inter annotator agreement (IAA) estimates (according to structural
measurement with SMATCH).3 One possible explanation for this is that structural metrics
may not adequately assess (finer) differences in MRs anymore and thus fail to determine
whether certain score differences are i) to be attributed to minor but valid differences in
meaning interpretation or AMR structure, as they may also occur in human assessments,
or whether the score differences are due to ii) significant meaning distorting errors. An
example for i) are MR structures that would express paraphrastic sentences (in this case,

2Consider the sentence I’d like to move to Berlin. In AMR, Berlin triggers an abstract named entity
structure. Whether Berlin triggers a location-node or a city-node should not influence the evaluation score
(much), since both views are correct.

3Banarescu et al. (2013) find that an (optimistic) average annotator vs. consensus IAA (SMATCH) was
0.83 for newswire and 0.79 for web text. When newly trained annotators doubly annotated web text sen-
tences, their annotator vs. annotator IAA was 0.71. Recent BART and T5 based models range between 0.82
and 0.84 SMATCH F1 scores.
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purely structural assessment is bound to result in a similarity score that is too low), or
different structures that represent valid interpretations of a sentence (e.g., The man sees

the woman with a telescope – without further context, in an MR the telescope can be
resolved to woman, or man). On the other hand, an example for ii) would be attaching
a negation node to a predicate node in an MR (structural similarity between unaltered
and altered MR may be high, but the MRs would semantically express a very different
meaning).

MR metric evaluation: Benchmarking Metrics Metric evaluation is an active topic in
NLP research and led to the emergence of benchmarks in various areas, most prominently,
MT and NLG (Gardent et al., 2017; Zhu et al., 2018; Ma et al., 2019a). These bench-
marks are useful since they help to assess and select metrics, and encourage their further
development (Gehrmann et al., 2021). However, there is currently no established bench-
mark that defines a ground truth of graded semantic similarity between pairs of MRs, and
how to measure similarity through these structural representations. Also, we do not have
an established ground truth to assess what alternative AMR metrics such as SMATCH or
SEMBLEU actually measure, and how their scores correlate with human judgments of
the semantic similarity of sentences represented by AMRs. Later, in Chapter 5, we are
going to address this lack of data and knowledge by building benchmark data sets for
meaningful empirical evaluation of MR metrics and using them for investigation.

Metric evaluation for MT evaluation Metric evaluation for machine translation (MT)
has received much attention over the recent years (Ma et al., 2019b; Mathur et al., 2020b;
Freitag et al., 2021). When evaluating metrics for MT evaluation, it seems generally
agreed upon that the main goal of a MT metric is high correlation to human ratings, mainly
with respect to rating adequacy of a candidate against one (or a set of) gold reference(s).
A recent shared task (Freitag et al., 2021) meta-evaluates popular metrics such as BLEU
(Papineni et al., 2002) or BLEURT (Sellam et al., 2020), by comparing the metrics’ scores
to human scores for systems and individual segments. They find that the performance
of each metric varies depending on the underlying domain (e.g., TED talks or news),
and that most metrics struggle to penalize translations with errors in reversing negation
or sentiment polarity, and show lower correlations for semantic phenomena including
subordination, named entities and terminology. This indicates that there is potential for
cross-pollination: clearly, AMR metric evaluation may profit from the vast amount of
experience of metric evaluation for other tasks. On the other hand, MT evaluation may
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profit from relating semantic representations, to better differentiate semantic errors with
respect to their type and severity.

3.2 Meaning focused evaluation of natural language gen-
eration

Traditionally, the performance of NLG systems has been evaluated with word n-gram
matching metrics such as the popular BLEU metric in MT (Papineni et al., 2002), or
ROUGE (Lin, 2004) in document summarization. Yet, such metrics suffer from several
well-known issues (Novikova et al., 2017; Nema and Khapra, 2018; Sai et al., 2020), e.g.,
due to their symbolic matching strategy they cannot account for paraphrases. Recently, to
mitigate these issues, unsupervised (Zhang et al., 2020) or learned metrics (Sellam et al.,
2020; Zhou and Xu, 2020) based on contextual language models have been proposed.
For example, BERTscore (Zhang et al., 2020) uses BERT (Devlin et al., 2019) to encode
tokens in candidate and reference, and then computes a score based on a cross-sentence
word-similarity alignment. Compared with BLEU, these newer metrics are computation-
ally more expensive but tend to show significantly higher agreement with human ratings.
However, all of the aforementioned metrics (same as many others) tend to return scores
that are hardly interpretable and therefore we often cannot tell what exactly they have
measured.

These problems carry over to the evaluation of AMR2text generation, where systems
aim at producing a sentence from an AMR structure: May and Priyadarshi (2017) find
that BLEU does not well correspond to human ratings of generations from AMR, and
Manning et al. (2020) show through human analysis that none of the existing automatic
metrics can provide nuanced views on generation quality. Hence, we want to take a first
step to address these issues by aiming at a clear separation of form and meaning, as called
for by Bender and Koller (2020), through an MR-based metric.

First attempts of assessing semantic generation quality with MR related structures
have been examined in MT using semantic role labeling (Lo, 2017) or word sense dis-
ambiguation (WSD) and natural language inference (NLI) (Carpuat, 2013; Poliak et al.,
2018). Then there is SPICE that evaluates caption generation via inferred semantic propo-
sitions (Anderson et al., 2016). Just like the metric we are going to propose in Chapter 6,
SPICE relies on automatic parses (a dependency parse of the caption and a scene graph
predicted for the image) to evaluate content overlap of image and caption. Thus, SPICE is
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a direct precursor of an NLG metric in V&L that relies on automatically produced struc-
tured representations. This thesis will also extend the previous work by showing ways of
probing potentially harmful effects of incorporating automatic parsing components.

3.3 Metric extrapolation: Quality estimation of predicted
structures

One of our research questions is motivated by the mere cost of creating human MRs,
which is an arduous task. Thus, we pose the question: can we efficiently estimate the
quality of a candidate MR (e.g., a parser’s output) by inferring a score that correctly
predicts the similarity between the given candidate MR and a correct MR for the given
sentence, where the latter remains implicit/latent? This way, we wouldn’t need to rely
on a costly human reference, and could quickly assess how a parser generalizes to new
data. While such quality estimation systems have not been built for MRs yet, we observe
activity in related areas where complex linguistic structures are predicted and design of
human gold annotations is costly.

Quality estimation for syntactic parsing and in MT. In syntactic parsing, the task of
quality estimation has also been coined accuracy prediction. Same as in our presumed
setup, the goal of this task is to predict parse accuracy metrics given only a sentence and its
candidate parse. For instance, Ravi et al. (2008) propose a feature-based SVM regression
model that predicts syntactic parser performance on different domains. An MR graph,
however, differs in important ways from a syntactic tree. E.g., nodes in AMR do not
explicitly correspond to words (as in dependency trees) or phrases (as in constituency
trees). This makes any quality assessment harder, due to the absence of easy-gatherable
textual evidence.

To estimate the quality of MT outputs, for example, Soricut and Narsale (2012) pre-
dict BLEU scores for machine-produced translations. Other researchers try to predict,
i.a., the post-editing time or the missing words in an automatic translation (Joshi et al.,
2016; Chatterjee et al., 2018; Kim et al., 2017; Specia et al., 2013). The fact that man-
ually creating MR graphs is significantly more costly than a translation (due to requiring
more time and trained linguists) provides another compelling argument for investigating
automatic MR quality estimation techniques. To our knowledge, this thesis’ Chapter 7 is
the first work to propose a quality estimation model for MR parsing.
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3.4 Semantic textual similarity

As we’ve discussed before, measuring the similarity of two texts is a task that bridges
many areas of NLP. To test whether we have created a metric that can adequately rate
sentence similarity, it is common practice to leverage benchmark data sets that have been
annotated by human annotators, using various scales or categories.

3.4.1 Data sets of human text similarity

In this section, we give an overview of some popular data sets that elicit textual semantic
similarity ratings from humans.

5

The two sentences are completely equivalent, as they mean the same thing.

The bird is bathing in the sink.
Birdie is washing itself in the water basin.

4

The two sentences are mostly equivalent, but some unimportant details differ.

Two boys on a couch are playing video games.
Two boys are playing a video game.

3

The two sentences are roughly equivalent, but some important information differ-
s/missing.

John said he is considered a witness but not a suspect.
“He is not a suspect anymore.” John said.

2

The two sentences are not equivalent, but share some details.

They flew out of the nest in groups.
They flew into the nest together.

1

The two sentences are not equivalent, but are on the same topic.

The woman is playing the violin.
The young lady enjoys listening to the guitar.

0

The two sentences are completely dissimilar.

The black dog is running through the snow.
A race car driver is driving his car through the mud.

Table 3.1: STS label explanation and examples, taken from Agirre et al. (2013).

Sentence similarity and relatedness. Popular benchmarks are STS (Agirre et al., 2013;
Baudiš et al., 2016b; Cer et al., 2017) and SICK (Marelli et al., 2014). Both elicit human
ratings of sentence similarity on a 5-point Likert scale. While STS aims at capturing
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Figure 3.2: STS annotator instructions from Agirre et al. (2016).

semantic similarity, SICK tests for semantic relatedness. These two aspects are highly re-
lated, but not the exact same (Budanitsky and Hirst, 2006; Kolb, 2009), but, still, the tasks
often get subsumed under an umbrella term of textual similarity. In particular, the goal of
the textual similarity datasets is to provide a standard setup for training, development and
testing on different genres (news, captions, forums, etc.).

Let us inspect some concrete annotation instructions, to better understand the emer-
gence of such data sets. The STS annotation instructions developed by Agirre et al. (2016)
are shown in Figure 3.2. Finally, the collected annotations are post-processed, to increase
data quality: To reduce label noise, annotator gold labels of amazon mechanical turk
works are averaged over 5 different annotations, per sentence pair. To increase robust-
ness, labels are averaged via median, and to increase and control for quality, annotators
are filtered out who provide annotations that are found to deviate too much from the av-
erage annotator.4

The SICK creation bears strong similarities, but also strong differences. Similarly, to
STS, every pair in SICK has been annotated with the degree to which two sentence mean-
ings are related (on a 5-point scale). Human ratings were collected through a large crowd
sourcing study with the CrowdFlower platform. The final gold relatedness labels were
averaged over ten ratings from different annotators. The disagreement, measured in aver-
age standard deviation was 0.76. Much in contrast to STS creation, the annotators were
not presented concrete instructions, rather, “to clarify the task to non-expert participants,

4A gold annotation from k-1 annotators is simulated. The remaining annotator’s agreement (measured
in Pearson’s ρ) is calculated against the simulated gold annotation. If the correlation is below a certain
threshold (here: < 80ρ), the annotator gets removed from the annotator pool.
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while avoiding biasing their judgments with strict definitions, the instructions described
the task only through examples of relatedness” (Marelli et al., 2014), e.g.:

• A and B are completely unrelated:

– Two girls are playing outdoors near a woman

– The elephant is being ridden by the man

• Very related sentences:

– A man is cooking pancakes

– The man is cooking pancakes

Discussion: Similarities and differences in relatedness and similarity annotation. A
hidden difference in what is captured by either relatedness and similarity may be induced
by data selection biases and biases through human annotator instructions, besides po-
tential a-priori biases in different humans’ perception of similarity and relatedness. To
elaborate on such a potential bias, we observe that in SICK, humans rated pairs based on
examples that they were shown previously where two sentences are more or less related,
while in STS the annotators received more precise instructions enhancing the clarity of the
annotation task. Therefore, while probably being more precise, STS annotation instruc-
tions could bear the risk of biasing human judgments. Later in this thesis Section 9.9, we
will examine if we can leverage MR metrics to shed more light on different such potential
deviating similarity conceptualizations. Finally, there is a point where both data and sim-
ilarity notions completely agree: the highest point on both STS and SICK scales means
that two sentences are equivalent in meaning. Thus, if reduced to a binary paraphrase-
classification task, the differences in relatedness and similarity may disappear, or, at least,
reduce greatly. Some data sets have explicitly targeted such a binary classification setting,
e.g., the Microsoft paraphrase corpus (Dolan and Brockett, 2005).

Similarity of natural language arguments. There also exist specific notions of sen-
tence similarity that are of interest to larger NLP sub-communities. In particular, assess-
ing the similarity of natural language arguments has received a lot of attention. It is a key
task in argument mining (Reimers et al., 2019; Lenz et al., 2019) and a vital part of argu-
ment search (Maturana, 1988; Rissland et al., 1993; Wachsmuth et al., 2017; Ajjour et al.,
2019; Chesnevar and Maguitman, 2004). Argument similarity ratings are also needed
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for (case-based) argument retrieval (Rissland et al., 1993; Chesnevar and Maguitman,
2004), and even automated debaters (Slonim et al., 2021): to counter an opponent’s argu-
ment, one may retrieve an argument similar to theirs, but of opposite stance to the topic
(Wachsmuth et al., 2018).5

Annotated datasets were introduced by Misra et al. (2016) who use a 6-point Lik-
ert scale (unrelated–equivalent) and Reimers et al. (2019) who introduce a newer data
set with a larger number of different topics and improved annotator label averaging via
MACE (Hovy et al., 2013). MACE calculates inter-rater agreement and uses this statistic
to assign more trustworthy annotators higher weight (trustworthiness essentially means
higher agreement to their average annotator colleague). Let us study an example for an
argument pair that is judged highly similar, and an argument pair that is judged as not
similar (both are from the topic wind energy).

• A and B are highly similar:

– Electricity is produced without burning fossil fuels and releasing harmful pol-

lutants into the air.

– Electricity generated by the wind, however, is clean-it does not emit either

greenhouse gases like carbon dioxide or other harmful pollutants.

• C and D are not similar:

– And every wind turbine slows the wind, thus reducing the wind energy avail-

able to any downwind turbines.

– The wind turbine 100 may be installed on any terrain providing access to

areas having desirable wind conditions.

The similar arguments are indeed clearly similar, since they both highlight the positive
environmental impact of wind energy, by reducing pollution.

Even though the dissimilar pair C, D shows some superficial similarity (induced by
the shared topic), they highlight positive/negative aspects of wind turbines and thus have
different stances to the topic, moreover, the second sentence is about a particular type of

5The stance can be determined using methods for argumentative relation classification (Kobbe et al.,
2019; Opitz, 2019; Paul et al., 2020).
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wind turbine, which may have further convinced the annotators in assigning a dissimilar-

ity rating.6

Yet, a crucial issue is inherited from general sentence similarity: most methods are in-
capable of providing us with any deeper rationale for their predictions and it is unclear in
which aspects two arguments are similar, or not, and why. It is thus also not clear whether
and to what extent spurious clues or other artifacts may influence the similarity decision
(Opitz and Frank, 2019c; Niven and Kao, 2019). Later, in Chapter 8, we aim at alle-
viating these issues by i) representing arguments with Abstract Meaning Representation
(Banarescu et al., 2013) and conducting similarity assessment using well-defined graph
metrics that provide explanatory AMR structure alignments; and ii) by investigating to
what extent argument similarity can be projected from inferred AMR conclusions.

3.4.2 Automatic methods for rating text similarity

From bag-of words to sentence embeddings. Perhaps influenced by the fact that cur-
rently little is known about the different notions of humans about ‘relatedness‘ and ‘simi-
larity’ in general, and ‘argument similarity’, in particular, researchers address these tasks
with similar methods. Up until today, a strong and generalizable baseline turns out to
be treating a document as a ‘bag-of-words’ and measuring a simple overlap of two such
‘bags’.7 Sometimes such a simple metric is boosted with special term weighting strate-
gies. Such term-weighting strategies can be traced back, at least, to Luhn (1957), who sets
the weight of a term that occurs in a document proportional to the term frequency. Then
there is the ‘dueling’ view of Jones (1972), who consider the inverse term frequency,
which is based on the assumption that ‘less important’ terms occur more frequently in
many texts (‘the’, ‘it’, ...), and thus should be down weighted since they presumably do
not strongly mark content. In fact, this simple inverse term weighting strategy has turned
out to be quite effective, and, as of 2015, is a component in more than 83% of text-based
recommendation systems in digital libraries (Beel et al., 2016).

6It is interesting that in the dissimilar arguments, C can be seen as a suitable counter argument against
D, defeating its premise that suggests that there is sufficient wind after building wind turbines, if there is
sufficient wind before. Such an insight underpins the need for more fine-grained and explainable automatic
similarity assessments.

7E.g., see (Opitz, 2023a).
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Recent approaches employ pre-trained language models and infer distributed repre-
sentations with language models such as BERT (Devlin et al., 2019) or InferSent (Con-
neau et al., 2017) and SBERT (Reimers et al., 2019) which can process sentences individ-
ually and thus alleviate the need for end-to-end similarity inference on each sentence pair.
Instead, it infers the embedding of each sentence individually, and calculates similarity
with simple vector algebra, which greatly reduces the number of costly model inferences
for clustering and search (clustering: O(n2)→ O(n)).

In sum, simple overlap statistics are efficient, somewhat effective, and the score cal-
culation is transparent. Distributed vector representations can lead to enhanced effective-
ness, but the similarity score calculation is intransparent. Both approaches lack high-
level explainability that can sensibly explain their final rating. Therefore, we want to test
whether we can measure the similarity in the space of MRs, to see how different meaning
structures influence a final similarity score. We also want to test means of making the
MR metrics more efficient – assessing text similarity through MRs with graph metrics
can lead to limiting bottlenecks, since they tend to be slow, are often NP-hard (Cai and
Knight, 2013) and the measurement relies on a parser for inferring MRs. Interestingly,
concurrently to writing this thesis, we observe emerging interest in using AMR metrics
for semantic search. For instance, Bonial et al. (2020) adapt SMATCH for a medically
oriented search engine, and Müller and Kuwertz (2022) test SMATCH and SEMBLEU

metrics for image retrieval via their captions. However, so-far, these approaches based on
AMR metrics are still too ineffective and they appear barred from wide-spread adoption,
mostly due to a substantial gap in accuracy and efficiency compared to state-of-the-art
neural sentence embedding systems. In Chapter 9 of this thesis, we show that this lack of
accuracy and efficiency can be mitigated by distilling MR metrics into a state-of-the-art
search engine.

3.4.3 Explainability of decisions

Explainability of language models. While different linguistic indicators have been
identified for or within BERT (Jawahar et al., 2019; Lepori and McCoy, 2020; Warstadt
et al., 2019; Puccetti et al., 2021), this insight by itself does not provide us with any
rationale for high (or low) sentence similarity in specific cases. And so, to achieve lo-

cal explainability (Danilevsky et al., 2020), we would have to, at least, analyze attention
weights (Clark et al., 2019; Wiegreffe and Pinter, 2019) or gradients (Selvaraju et al.,
2017; Sanyal and Ren, 2021; Bastings and Filippova, 2020) of regions associated with
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linguistic properties. But even then, it can be unclear how exactly to interpret the results
(Jain and Wallace, 2019; Wiegreffe and Pinter, 2019; Wang et al., 2020a; Ferrando and
Costa-jussà, 2021). In a different direction, Kaster et al. (2021) aim to explain BERTscore
(Zhang et al., 2020) predictions with a regressor. Very recent metrics focus on explain-
ability with prompts (Leiter et al., 2023). But unlike other explanation methods, these
approaches are detached from the underlying models and may suffer from indirection ef-
fects. Token highlighting or saliency methods, on the other hand, due not provide us with
a higher rationale of similarity. Instead, we would, e.g., like to have local and faithful
higher-level self-explainability (Danilevsky et al., 2020) and structure a sentence embed-
ding space into subspaces of meaning, informed by aspectual distances in MR meaning
spaces. We will show that this can be achieved through MR metrics in Chapter 9.

Explanations in argumentation. Until recently, the quest for explanations in argumen-
tation was mainly focused on theory development. The Toulmin model (Toulmin, 2003),
for instance, offers a theory of what is needed to make an argument complete. Argumen-

tation schemes, which develop taxonomies of argument types and argumentation fallacies
(Walton, 2005; Walton et al., 2008) can be viewed as mechanisms for explaining func-
tions, strengths and weaknesses of arguments. Other research aims at studying the com-
putational and formal aspects of argumentation, e.g. abstract argumentation (Dung, 1995)
and Bayesian argumentation (Zenker, 2013). Research in empirical argument mining led
researchers to investigate practical methods for explanations (Lawrence, 2021; Becker
et al., 2021; Gunning et al., 2019; Rago et al., 2021; Vassiliades et al., 2021). While
most approaches focus on the analysis of linguistic aspects (Lauscher et al., 2021), e.g.,
by extracting selected features (Aker et al., 2017; Lugini and Litman, 2018) or leveraging
discourse knowledge in language models (Opitz, 2019), others exploit large background
knowledge graphs (Kobbe et al., 2019; Paul et al., 2020; Yuan et al., 2021) such as Con-
ceptNet (Liu and Singh, 2004; Speer et al., 2017) or DBpedia (Mendes et al., 2012). An
advantage of the approach that we will develop in Chapter 8 is the explicit graph align-
ment between two arguments’ meaning graphs that better marks related structures, and
that can help explain argument similarity judgments.

In sum, while much research has been devoted to improving the accuracy of similar-
ity rating systems, little attention has been paid to i) leveraging MR metrics for deeper
meaning-focused similarity assessments and also ii) uncovering the features that (in the
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eyes of a human) make two sentences similar or dissimilar (Zeidler et al., 2022). To ad-
dress both points, we provide novel generalizable MR metrics (c.f. e.g., Chapter 4) and
find that MR-metrics that can potentially help uncover such features, while preserving
strong rating accuracy (c.f. Chapters 8 and 9).
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Part I

MR metric analysis and
development
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Chapter 4

MR metrics: assessment and
development

4.1 Chapter outline

In this chapter, we first assess previously proposed MR metrics in a principled way, to
better understand their nature and behavior, and detect perspectives for improvement. To
address the detected improvement perspectives, we construct novel metrics. Overview:

1. We determine useful properties (‘principles’) for MR metrics in Section 4.2.

2. We employ our principles in Section 4.3 to analyze two previously proposed MR
metrics that vastly differ in their approach (SMATCH, SEMBLEU). This way, we
can categorize them and find out more about their strengths and drawbacks.

3. Based on our insights from 1. and 2., we develop novel and generalized MR metrics.
Still within our analysis, we start in Section 4.3.2 with a straightforward extension
of SMATCH to empower it for assessing graded lexical similarity of graph nodes
(e.g., cat vs. kitten), which is crucial in generalized matching. Or metric analyses
end with a summary (Section 4.4) and a reflection (Section 4.5). Finally, to further
address the detected improvement perspectives, we construct novel MR metrics
based on the Weisfeiler-Leman algorithm (Sections 4.6, 4.7) that allow contextual-
ized matching of broader MR subgraphs (e.g., kitten vs. cat mod−−→young).

4. We conclude the chapter with a discussion in Section 4.9.

Underlying work. The content of this chapter is mainly based on works by Opitz et al.
(2020) and Opitz et al. (2021a).
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4.2 Assessment of MR metrics through eight principles

In the last chapter, we introduced the SMATCH and SEMBLEU MR metrics (Section 3.1).
Already there, we could notice that they differ a lot in their approach: SEMBLEU targets
efficiency and extracts structures with a BFS traversal, while SMATCH computes a costly
alignment and matches graph triples. However, so far, we cannot yet answer deeper ques-
tions on a metric’s properties and behavior, such as, e.g., are there biases in a metric? Are

there drawbacks that we incur when we ablate an alignment? Do both metrics have com-

mon drawbacks that we can improve upon? If we could answer such questions, we could
make more informed choices on metric selection, and become more aware of a metric’s
drawbacks and how they could be alleviated. Therefore, to facilitate better understanding
of MR metrics’ properties, and with an eye to perspectives for improvement, we establish
eight principles for MR metric analysis.

Through the most neutral lens, we can view the principles as dimensions or properties
which we can use to distinguish and classify MR metrics. However, we use the positively
connotated term ‘principles’ because in the absence of further context we would tend
to view these properties as desirable features of an MR metric. For instance, we would
assume that a specific property could make a metric either more suitable for broader
application, increase the meaningfulness of measurement, or offer some other advantage.

The first four principles are mathematically motivated and are mostly based on a
mathematical notion of the term ‘metric’. These mathematically inspired principles give
us some assurances about the behavior of a metric and ensure it is applicable to some
particular applications such as clustering.

I Continuity, and upper-bound A similarity function should be continuous, with a
natural edge case: a,b are equivalent (maximum similarity), often also presuming
a lower-bound to indicate maximal distance. By choosing 1 as upper bound, and 0
as lower-bound, we obtain the following constraint on

metric : G×G→ [0,1]. (4.1)

At some places in this thesis, due to convention, we project this score onto [0,100]
and speak of points. Note that, speaking in terms of semantic similarity, the notion
of ‘upper-bound’ is more natural than the ‘lower bound’. I.e., while the upper-
bound would naturally lends itself to the interpretation that two inputs are the same

or (perhaps) paraphrases, one could have adopt different notions of a lower-bound:
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e.g., unrelatedness, or contradiction. Alternatively, we might not want to employ
a lower-bound at all. Indeed, by setting the range of the metric to (−∞,1], we can
forgo a potentially arising need to build a conceptual definition of lower-bound.

II identity of indiscernibles This key principle is formalized by metric(a,b) = 1⇔
a ≡ b. It is violated if a metric assigns a value indicating equivalence to inputs
that are not equivalent or if it considers equivalent inputs as different. Clearly, it
increases the safety and interpretability of a metric.

III symmetry In many cases, we want a metric to be symmetric:

metric(a,b) = metric(b,a) (4.2)

A metric would violate this principle if it assigns a different score after we reversed
the argument order. Together with principles I and II, it extends the scope of the
metric to usages beyond parser evaluation, as it also enables sound IAA calculation,

clustering and classification of AMR graphs when we use the metric as a kernel in
a classification system. In parser evaluation, one may dispense with any (strong)
requirements for symmetry—however, the metric must then be applied in a stan-
dardized way, with a fixed order of arguments.

In cases where there is no defined reference, the asymmetry could be handled by
aggregating metric(a,b) and metric(b,a), e.g., using the mean. However, it may
be difficult to determine which aggregation technique we should pick, and how to
interpret results. E.g. for metric(a,b) = 0.1 and metric(b,a) = 0.9, the arithmetic
mean yields a score of 0.5 and the harmonic mean would yield a score much lower
(0.18). In the example, the question on which score is more meaningful cannot be
answered without further context. With a symmetric metric, we can forgo such and
similar issues.

IV determinacy Repeated calculation over the same inputs should yield the same score.
This principle is clearly desirable as it ensures reproducibility. A very small devi-
ation may be tolerable, though it should be exactly quantifiable). Such Non-fully
strictly deterministic metrics lead to rankings that are very unlikely to change under
renewed metric calculation, while fully deterministic metrics guarantee that rank-
ings do not change when we repeat calculation.
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Now, we add a single principle to our original set of seven principles proposed in
Opitz et al. (2020), with an eye to large-scale application of a metric:

V efficiency focuses on practical usefulness, particularly for compute-intensive tasks
such as MR-clustering or MR-search. Note that in contrast to most other principles,
efficiency is not a binary feature and therefore it is more difficult to assess. Com-
mon ways of assessing efficiency may be empirical run-time tests or complexity
analysis.

The next three principles we believe to be desirable specifically when comparing MR
graphs. The first two of the following principles are motivated by computer science
and linguistics, whereas the last one is motivated from a linguistic and application-
oriented perspective.

VI no (unjustified or intransparent) bias: Meaning representations consist of nodes
and edges encoding specific information types. Unless explicitly justified and docu-
mented, a metric should not in unintended ways favor correctness or penalize diver-
gence for specific types of substructures (e.g., leaf nodes). In case a metric favors
or penalizes certain substructures more than others, in the interest of transparency,
this should be made clear and explicit, and should be documented, verifiable and
consistent. E.g., if we wish to give negation of the main predicate of a sentence a
two times higher weight compared to negation in an embedded sentence, we want
this to be made transparent. A concrete example for a transparent bias is found
in Cai and Lam (2019). They analyze the impact of their top-down AMR parsing
strategy by integrating a root-distance bias into SMATCH to focus on structures sit-
uated at the top of a graph. A justified bias can be transparent but doesn’t have
to be: a rather intransparent but nevertheless justified bias could be realized if it
proves to be empirically indicative about human notion of similarity. This could be
accomplished, e.g., by penalizing structural deviations more when they indicate an
opposing meaning (in contrast to, e.g., if a structural deviation of the same degree
represents a (near-)paraphrase in meaning).1

1After all, MRs represent meaning of texts, and text meaning similarity in the human mind clearly
emerges in a non-linear fashion. E.g., we could be confronted with parsing errors of similar structural
degree – but the structural deviations can express same, or even conflicting meanings. Emulating such a
human similarity assessment in the MR space is promising for various reasons (e.g., explainability, deeper
parsing evaluation), but seems non-trivial and thus it will be subject to repeated visits throughout some
remaining parts of this thesis.
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A metric does not have principles VI, if it has an intransparent and unjustified bias.
In this case, application of the metric may potentially be hazardous since it could
be unclear what is actually measured and to what degree the biases may affect the
result.

VII matching (graph-based) meaning representations – symbolic match A goal of
meaning representations is to show atomic conditions that determine the circum-
stances under which a sentence is true. Hence, our metric score should generally
increase with increasing overlap of a and b, which we denote f (a,b), the number of
matching conditions. This overlap can be viewed from a symbolic or/and a graded
perspective (cf., e.g., Schenker et al. (2005) who denote these perspectives as ‘syn-
tactic’ vs. ‘semantic’). From the symbolic perspective, we can compare the nodes
and edges of two graphs on a symbolic level, while from the graded perspective, we
take into account the degree to which nodes and edges differ. Both types of match-
ing involve a precondition: If a and b contain variables, we need a variable-mapping
in order to match conditions from a and b.2

To test this principle, it may help to specify strict requirements and a measurement-
objective of a metric. A straightforward and sensible choice could be achieved by
letting the graph triples be the meaning conditions that we can match, and define the
measurement-objective as the normalized size of the overlap of triples (aka Jaccard
index J (Jaccard, 1912)). Let t(x) be the set of triples of graph x, t(y) be the set of
triples of graph y, then

f (x,y) = |t(x)∩ t(y)|; z(x,y) = |t(x)∪ t(y)|; J(x,y) = f (x,y)/z(x,y), (4.3)

which calculates the Jaccard index of two MR graphs. We can then say that a and b

are considered more similar to each other than a and c iff a and b exhibit a greater
relative agreement in their (symbolic) conditions:

metric(a,b)> metric(a,c)⇔ f (a,b)
z(a,b)

= J(a,b)>
f (a,c)
z(a,c)

= J(a,c). (4.4)

2E.g., consider a graph a and its set of triples t(a): {〈x1, instance, drink-1〉 〈x2, instance, cat〉, 〈x1, arg0,
x2〉, 〈x1, arg1, x3〉, 〈x3, instance, water〉}. When comparing a against an arbitrary graph b we need to judge
whether a triple t ∈ t(a) is also contained in b: t ∈ t(b). For this, we need a mapping map: vars(a) →
vars(b) where vars(a) = {x1, ..,xn}, vars(b) = {y1, ..,ym} s.t. f is maximized.
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With the above conditions, we have exactly and transparently specified a notion of
similarity of MR graphs.

Discussion. While principle VII seems useful and enhances the transparency of
a metric, we may have to forgo this principle in specific cases, e.g., if we want to
take into account a graded semantic match of atomic graph elements or subgraphs,
which is needed particularly when aiming to match MRs from different sentences.
In such a case, we might have to, e.g., weight triples differently, or somehow learn
to assess subgraph differences of Meaning Representations. This could potentially
lead to a conflict in Eq. 4.4, trading in transparency for metric power. Indeed, a way
to solve this conflict in favor of more metric power will be established in the next
Principle VIII.

VIII Graded similarity To best get an intuition of the goal of this principle, consider two
AMR graphs that match almost perfectly – except for two small divergent compo-
nents. The extent of divergence can be measured by the degree of similarity of the
two divergent components. In our case, we need linguistic knowledge to judge what
degree of divergence we are dealing with and whether it is tolerable.

For example, consider that graph A contains a triple 〈x, instance,conceptA〉 and
graph B a triple 〈y, instance,conceptB〉, while otherwise the graphs are equivalent,
and the alignment has set x=y. Then, naturally we would like to have f (A,B)

higher when conceptA is similar to conceptB compared to the case where conceptA

is dissimilar to conceptB. In AMR, concepts are often abstract, so near-synonyms
may even be fully admissible (enemy–foe, location–place, etc.).

While such (near-)synonyms are bound to occur frequently when we compare MR
graphs of different sentences that may contain paraphrases, they can also occur in
parser evaluation, where two different graphs represent the same sentence. For
instance, whether Berlin in I’d like to move to Berlin gets projected on a location,
or a city, can be a tolerable deviation.

Going beyond this, and to fully address this principle, we here also desire that
graded similarity can extend from atomic concepts to subgraphs of arbitrary size,
e.g., to reflect that kitten(x) is very similar to cat(x)∧mod(x,y)∧ young(y).

Intermediate discussion. Principles I–III and VI–VII can be viewed as binary metric
attributes/features that increase the transparency of an MR metric in the sense that when
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we calculate a metric that exhibits a principle, we have exact guarantees about its behav-
ior. Principle IV (determinacy), that we would specifically like to have for meaningful
and reproducible parser evaluation: it can be strictly viewed as a binary feature, or it can
be roughly projected on a binary feature, by saying that a small deviation in determinacy
may perhaps be tolerable, if it is quantifiable. Principle V (efficiency), on the other hand,
is focused on solving compute-intensive tasks that would require millions of metric cal-
culations (e.g., clustering a large corpus containing n MRs would require O(n2) metric
executions). Then, importantly, principle VIII is necessary not only for finer assessment
of MR differences, but also to build applications where meaning representations of differ-
ent sentences need to be studied.

4.3 Using our principles to assess AMR metrics

Recall that SEMBLEU differs significantly from SMATCH. A key difference is that SEM-
BLEU operates on reduced variable-free AMR graphs (which we here denote as gv f ) –
instead of full-fledged AMR graphs. By eliminating variables, SEMBLEU can bypass an
alignment search. This makes the calculation faster and alleviates a weakness of SMATCH:
the hill-climbing search is slightly imprecise. However, SEMBLEU is not guided by
aligned variables as anchors. Instead, SEMBLEU uses an n-gram statistic (BLEU) to
compute an overlap score for graphs, based on k-hop paths extracted from gv f , using
the root node as the start for the extraction process. SMATCH, by contrast, acts directly
on variable-bound graphs matching triples based on a selected alignment. Additionally,
SEMBLEU can increase its k-parameter and SMATCH may match conjunctions of (inter-
connected) triples. In the following analysis, however, we will adhere to their default
configurations since this is how they are used in most applications.

Going over each principle, we will ask ourselves: Why does a metric satisfy or violate

a given principle? and What does this imply? We start with principles from mathematics.

4.3.1 AMR metric principle analysis I–VII

We start with

I. Continuity, and upper-bound. This principle is fulfilled by both metrics as they are
functions of the form metric : G×G→ [0,1].
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----------A------------Input-------------B----------

( p / predicate-01 ( p / predicate-01
:arg0 ( x1 / man ) :arg0 ( x1 / man )

:arg1 ( x2 / man ) :arg1 x1

:arg2 x2 ) :arg2 ( x2 / man ))

-----------------------Scores-----------------------

SMATCH -> 0.667
SEMBLEU -> 1.0

----------------------------------------------------

Figure 4.1: Two AMRs with semantic roles filled differently, SEMBLEU considers them as equiv-
alent.

II. Identity of indiscernibles This principle is both intuitive and important: An AMR
metric must return the maximum score if and only if the graphs are equivalent in meaning.
SMATCH conceptually satisfies this principle, since it determines whether the two graphs
are structurally isomorphic. It must be said, however, that this only holds in practice when
using an optimal search strategy (Opitz, 2023c). When using a hill-climbing search, as is
very common, Vanroy (2023) prove that SMATCH can get stuck in a local optimum, and
return a score lower than one for exactly identical graphs.

SEMBLEU, on the other hand, conceptually cannot comply with this principle. Figure
4.1 shows an example of principle violation. Here, SEMBLEU yields a perfect score for
two AMRs that differ in a single but crucial aspect: two of its ARGx roles are filled with
arguments that are meant to refer to distinct individuals that share the same concept. The
graph on the left is an abstraction of, e.g. The man1 sees the other man2 in the other

man2, while the graph on the right is an abstraction of The man1 sees himself1 in the other

man2. SEMBLEU does not recognize the difference in meaning between a reflexive and
a non-reflexive relation, assigning maximum similarity score, whereas SMATCH reflects
such differences appropriately since it accounts for variables.

In sum, SEMBLEU does not satisfy principle II because it operates on a variable-free
reduction of AMRs (gv f ). One could address this problem by reverting to canonical AMR
graphs and adopting variable alignment in SEMBLEU. But this would adversely affect
the advertised efficiency advantages over SMATCH. Re-integrating the alignment step
would make SEMBLEU less efficient than SMATCH since it would add the complexity of
breadth-first traversal, yielding a total complexity of O(SMATCH) plus O(|V |+ |E|).

III. Symmetry. This principle is fulfilled if ∀a,b ∈G : metric(a,b) = metric(b,a). Fig-
ure 4.2 shows an example where SEMBLEU does not comply with this principle, to a
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------------------A--------------------Input---------------------B------------------

(a / and (k7 / know-01
:op1 (h / heat-01 :arg0 (i / i

:arg1 (t / thing) :arg0-of (d9 / do-02
:loc (b / between :arg1 t8

:op1 (w / we)) :arg1 (t0 / thing
:degree (s / so)) :arg1-of (h2 / heat-01

:op2 (k / know-01 :degree (s1 / so)
:polarity - :loc (b3 / between
:arg0 (i / i) :op1 (w4 / we))))))
:arg1 (t2 / thing :arg1 (t8 / thing)

:arg1-of (d / do-02)))) :polarity -)

---------------------------------------Scores----------------------------------------

SEMBLEU (a,b) = 0.422 << SEMBLEU (b,a) = 0.803)

SMATCH (a,b) = 0.829 == SMATCH (b,a) = 0.829)

-------------------------------------------------------------------------------------

Figure 4.2: Large symmetry deviation of SEMBLEU for two parses of Things are so heated be-
tween us, I don’t know what to do.

significant extent: when comparing AMR graph a against b, it yields a score greater than
0.8, yet, when comparing b to a the score is smaller than 0.5.

We perform an experiment that quantifies this effect on a larger scale by assessing the
frequency and the extent of such divergences. To this end, we parse 1368 development
sentences from an AMR corpus (LDC2017T10) with an AMR parser (obtaining graph
bank A ) and evaluate it against another graph bank B (gold graphs or another parser-
output). We quantify the symmetry violation by the symmetry violation ratio (Eq. 4.5)
and the mean symmetry violation (Eq. 4.6) given some metric m:

svr =
∑
|A |
i=1 I[m(Ai,Bi) 6= m(Bi,Ai)]

|A |
(4.5)

msv =
∑
|A |
i=1 |m(Ai,Bi)−m(Bi,Ai)|

|A |
(4.6)

We conduct the experiment with three AMR systems, CAMR (Wang et al., 2016),
GPLA (Lyu and Titov, 2018) and JAMR (Flanigan et al., 2014), and the gold graphs.
Moreover, to provide a baseline that allows us to better put the results into perspective,
we also estimate the symmetry violation of BLEU (SEMBLEU’s MT ancestor) in an MT
setting. Specifically, we fetch 16 system outputs of the WMT 2018 EN-DE metrics task
(Ma et al., 2018) and calculate BLEU(a,b) and BLEU(b,a) of each sentence-pair (a,b)
from the MT system’s output and the reference (using the same smoothing method as
SEMBLEU). As worst-case/avg.-case, we use the outputs from the team where BLEU
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(c) newstest2018, BLEU, avg. case

0.0 0.2 0.4 0.6 0.8 1.0
SEMbleu ( A , B )

0.00

0.25

0.50

0.75

1.00

SE
M

bl
eu

 ( 
B 

, A
 ) 

(d) CAMR, Gold
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(e) CAMR, Gold
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Figure 4.3: Symmetry evaluations of metrics. SEMBLEU (left column) and SMATCH (middle col-
umn) and BLEU as a ‘baseline’ in an MT task setting on newstest2018. SEMBLEU:
large divergence, strong outliers. SMATCH: few divergences, few outliers; BLEU:
many small divergences, zero outliers. (a) marks the case in Figure 4.2.

exhibits maximum/median msv.3

Table 4.1 shows that more than 80% of the evaluated AMR graph pairs lead to a
symmetry violation with SEMBLEU (as opposed to less than 10% for SMATCH). The
msv of SMATCH is considerably smaller compared to SEMBLEU: 0.1 vs. 3.2 points F1
score. Even though the BLEU metric is inherently asymmetric, most of the symmetry
violations are negligible when applied in MT (high svr, low msv, Table 4.2). However,
when applied to AMR graphs ‘via’ SEMBLEU the asymmetry is amplified by a factor of
approximately 16 (0.2 vs. 3.2 points). Figure 4.3 visualizes the symmetry violations of
SEMBLEU (left), SMATCH (middle) and BLEU (right). The SEMBLEU-plots show that
the effect is widespread, some cases are extreme, many others are less extreme but still
considerable. This stands in contrast to SMATCH but also to BLEU, which itself appears
well calibrated and does not suffer from any major asymmetry.

In sum, symmetry violations with SMATCH are much fewer and less pronounced than
those observed with SEMBLEU. In theory, SMATCH is fully symmetric, however, viola-
tions can occur due to alignment errors if we use the greedy variable-alignment search
(future research can use the optimal solver from (Opitz, 2023c) to reduce the symme-
try error to zero). By contrast, the symmetry violation of SEMBLEU is intrinsic to the

3worst: LMU uns.; avg.: LMU NMT (Huck et al., 2017).



4.3. Using our principles to assess AMR metrics 59

symmetry violation

svr (%, ∆>0.0001) msv (in points)
Graph banks SMATCH SEMBLEU SMATCH SEMBLEU

Gold↔ GPLA 2.7 81.8 0.1 3.2
Gold↔ CAMR 7.8 92.8 0.2 3.1
Gold↔ JAMR 5.0 87.0 0.1 3.2
JAMR↔ GPLA 4.2 86.0 0.1 3.0
CAMR↔ GPLA 7.4 93.4 0.1 3.4
CAMR↔ JAMR 7.9 91.6 0.2 3.3

avg. 5.8 88.8 0.1 3.2

Table 4.1: svr (Eq. 4.5), msv (Eq. 4.6) of AMR metrics.

BLEU symmetry violation, MT

data: newstest2018↔ (·) svr (%, ∆>0.0001) msv (in points)

worst-case 81.3 0.2
avg-case 72.7 0.2

Table 4.2: svr (Eq. 4.5), msv (Eq. 4.6) of BLEU, MT setting.

# restarts
1 2 3 5 7

corpus vs. corpus 2.6e−4 1.7e−4 8.1e−5 5.7e−5 5.6e−5

graph vs. graph 1.3e−3 1.0e−3 8.5e−4 5.3e−4 4.0e−4

Table 4.3: Expected determinacy error ε in SMATCH F1.

method since the underlying overlap measure BLEU is inherently asymmetric, however,
this asymmetry is amplified in SEMBLEU compared to BLEU.4

IV. Determinacy. This principle states that repeated calculations of a metric should
yield identical results, a feature that is particularly desirable in applications such as parser
evaluation. Since there is no randomness in SEMBLEU, it fully complies with this princi-
ple. The most commonly used implementation of SMATCH, however, does not guarantee
deterministic variable alignment results, since it aligns the variables by means of greedy
hill-climbing. However, multiple random initializations together with the small set of

4As we show below (principle V), this is due to the way in which k-grams are extracted from variable-
free AMR graphs.
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AMR variables imply that the deviation will be ≤ ε (a small number close to 0). Ad-
ditionally, ε = 0 is guaranteed when resorting to a (costly) ILP calculation. In a recent
work (Opitz, 2023c) we revisit this issue and find that ILP optimal search is feasible in
the standard evaluation case and offers us valuable upper-bounds and optimal solutions,
resulting in slightly higher and fully deterministic SMATCH evaluation scores.

To see what happens if we use the common hill-climber, let us inspect Table 4.3 where
we measure the expected ε: it displays the SMATCH F1 standard deviation with respect to
10 independent runs, on a corpus level and on a graph-pair level (arithmetic mean).5 We
see that ε is small, even when only one random start is performed (corpus level: ε=0.0003,
graph level: ε=0.0013).

We conclude that the hill-climbing seed in SMATCH is unlikely to have any signifi-
cant effects on the final score, and multiple restarts provide an acceptable stability level.
However, to secure transparency and true SMATCH scores in sensible applications such as
parser evaluation and ranking, we may consider using optimal SMATCH (Opitz, 2023c).
Indeed, if taking the feature of determinacy strictly, only SEMBLEU and SMATCH-ILP
(Opitz, 2023c) are deterministic, if allowing a small tolerance, then SMATCH with hill-
climber can be viewed to be deterministic, too. Recall that non-fully strictly deterministic
metrics lead to parser rankings that are very unlikely to change under repeated metric cal-
culation, while (fully) deterministic metrics guarantee that parser rankings do not change
when we repeat calculation.

V. efficiency. While for most parsing evaluation applications, due to limited data size,
it does not seem to matter much whether a metric is fast, or slow, the efficiency of a
metric can have a great impact on – or even restrict access to – extended use-cases such
as AMR clustering or AMR search on large-scale data, where we would need to calculate
many comparisons of pairs. Clearly, SEMBLEU has the edge over SMATCH, since it does
not calculate a costly alignment. Therefore, SEMBLEU needs only a few milliseconds to
process 1,000 pairs, while SMATCH can require up to 60 seconds (Song and Gildea, 2019).
On the other hand, at the cost of some of SMATCH’s power and risking the violation of
other principles (e.g., identity of indescernibles), it would be relatively straightforward
to make it similarly fast as SEMBLEU. Indeed, we could replace all variables in triples
with their concepts and match triples without an alignment. However, for simplicity, we
summarize that SEMBLEU fulfills this principle, while SMATCH doesn’t.

5Data: dev set of LDC2017T10, parses by GPLA.
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-----------------------Scores-----------------------

metric (leftA,leftB) metric (leftA,right)
--------------- ---------------
SEMBLEU -> 0.38 < SEMBLEU -> 0.46
SMATCH -> 0.87 > SMATCH -> 0.73

-----------------------------------------------------

Figure 4.4: Left: In April, a woman rides a car from Rome to Pisa. root nodes A: travel-01 vs. B:
drive-01. Right: In Apr., a sailor travels with a ship from P. to N.

Figure 4.5: # of k-grams entered by a node in SEMBLEU.

VI. No unintentional bias. A similarity metric of MRs should not unjustifiably or un-
intentionally favor the correctness or penalize errors pertaining to any (sub-)structures of
the graphs. However, we find that SEMBLEU is affected by a hidden bias that can affect
certain types of structures differently, in particular structures that relate to high-degree
nodes. The bias arises from two related factors: (i) when translating g to gv f , SEMBLEU

replaces variable nodes with concept nodes. Thus, nodes which were leaf nodes in g can
be raised to highly connected nodes in gv f . (ii) the graph traversal starts and the root node
and is conducted in a breadth-first manner. These two factors have the effect that con-
cept leaves – now occupying the position of (former) variable nodes with a high number
of outgoing (and incoming) edges – will be visited and extracted more frequently than
others.
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√√√

SEMBLEU O(3d) O(d2 +d) O(d2 +2d)
SMATCH O(d) O(d) O(d)

Table 4.4: Error impact depending on error location in a tree with node degree d.

The two factors in combination make SEMBLEU penalize a wrong concept node
harshly when it is attached to a high-degree variable node (the leaf is raised to high-
degree when transforming g to gv f ). Conversely, correctly or wrongly assigned concepts
attached to nodes with low degree are only weakly considered. This may have severe
consequences, e.g., for negation, since negation always occurs as a leaf in g and gv f .
Therefore, SEMBLEU is benevolent to polarity errors. As a full example, consider Figure
4.4. SEMBLEU considers two graphs that express quite distinct meanings (left and right)
as more similar than graphs that are almost equivalent in meaning (left, variant a vs. b).
This is because the leaf that is attached to the root is raised to a highly connected node
in gv f and thus is over-frequently contained in the extracted k-grams, whereas the other
leaves will remain leaves in gv f .

Analyzing and quantifying SEMBLEU’s bias. To better understand the bias, we study
three limiting cases: (i) the root is wrong (

√√√
) (ii) d leaf nodes are wrong ( ) and (iii)

one branching node is wrong ( ). Depending on a specific node and its position in the
graph, we would like to know onto how many k-grams (SEMBLEU) or triples (SMATCH)
the errors are projected. For the sake of simplicity, we assume that the graph always
comes in its simplified form gv f , that it is a tree, and that every non-leaf node has the
same out-degree d.

The result of our analysis is given in Table 4.46 and exemplified in Figure 4.5. Both
show that the number of times k-gram extraction visits a node heavily depends on its
position and that with growing d, the bias gets amplified (Table 4.4).7 E.g., when d=3, 3
wrong leaves yield 9 wrong k-grams, and 1 wrong branching node can already yield 18
wrong k-grams. By contrast, in SMATCH the weight of d leaves always approximates the
weight of 1 branching node of degree d.

6Proof sketch, SMATCH, d leaves: d triples, a root: d triples, a branching node: d+1 triples. SEM-
BLEU

wk=1/3
k=3 , d leaves: 3d k-grams (d tri, d bi, d uni). A root: d2 tri, d bi, 1 uni. A branching node: d2+d+1

tri, d+1 bi, 1 uni.
7Consider that in AMR, d can be quite high, e.g., a predicate with multiple arguments and additional

modifiers.
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In sum, in SMATCH the impact of a wrong node is constant for all node types and rises
linearly with d. In SEMBLEU the impact of a node rises approximately quadratically with
d and it also depends on the node type, since it raises some (but not all) leaves in g to
connected nodes in gv f .

Eliminating biases. A possible approach to reduce SEMBLEU’s biases could be to
weigh the extracted k-gram matches according to the degree of the contained nodes.
However, this would imply that we assume some k-grams (and thus also some nodes
and edges) to be of greater importance than others – in other words, we would eliminate
one bias by introducing another. Since the breadth-first traversal is the metric’s backbone,
this issue may be hard to address well. When BLEU is used for MT evaluation, there is
no such bias because the k-grams in a sentence appear linearly.

VII. Graph matching: symbolic perspective. This principle requires that a metric’s
score grows with increasing overlap of the conditions that are simultaneously contained
in a and b. SMATCH fulfills this principle since it matches two AMR graphs s.t. that
the triple matches are maximized.8 Hence, SMATCH can be seen as a graph matching
algorithm that works on any pair of graphs, including graphs with nodes that are variables.
It fulfills the Jaccard-based overlap objective which symmetrically measures the amount
of triples on which two graphs agree, normalized by their respective sizes (since SMATCH

F1 = 2J/(1+ J) is a monotonic relation).
Since SEMBLEU does not satisfy principles II and III (id. of indescernibles and sym-

metry), it is a corollary that it cannot fulfill the overlap objective.9 Generally, SEMBLEU

matches the results of a graph-to-bag-of-paths reduction function and the input may not be
guaranteed to be recoverable from the output. Thus, matching the outputs of this function
cannot be equated to matching the inputs on a graph-level.

8Again, same as in our analysis of Principle II (§4.3.1), if we are strict, this is only true conceptually for
SMATCH if we use an optimal solver (Opitz, 2023c), while with hill-climbing we can find examples where
this concept can be violated, e.g., c.f., (Vanroy, 2023).

9Proof by symmetry violation: ∃a,b: metric(a,b) > metric(b,a) ⇒ f (a,b) > f (b,a) → � , since
f (a,b) = |t(a)∩ t(b)| = |t(b)∩ t(a)| = f (b,a) . Another proof by identity of indiscernibles: ∃ a,b,c :
metric(a,b) = metric(a,c) = 1 ∧ f (a,b)/z(a,b) = 1 > f (a,c)/z(a,c)→ �
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-----------------------Scores------------------------
metric (a,b) metric (b,c) metric (a,c)

--------------- --------------- ---------------
SEMBLEU -> 0.00 SEMBLEU -> 0.00 SEMBLEU -> 0.00
SMATCH -> 0.25 SMATCH -> 0.25 SMATCH -> 0.25
S2MATCH -> 0.39 S2MATCH -> 0.25 S2MATCH -> 0.25
-----------------------------------------------------

Figure 4.6: Three different MR graphs representing The cat sprints; The kitten runs; The giraffe
sleeps and pairwise similarity scores from SEMBLEU, SMATCH and our new metric
S2MATCH.

4.3.2 Towards enabling principle VIII with a novel metric: S2MATCH

This section focuses on principle VIII, semantically graded graph matching, a principle
that none of the AMR metrics considered so-far satisfies. A fulfillment of this princi-
ple also increases the capacity of a metric to assess the semantic similarity of two AMR
graphs from different sentences. E.g., when clustering AMR graphs or detecting para-
phrases in AMR-parsed texts, the ability to abstract away from concrete lexicalizations
is clearly desirable. Consider Figure 4.6 with three different graphs. Two of them (a,b)

are similar in meaning and differ significantly from c. However, both SMATCH and SEM-
BLEU yield the same result in the sense that metric(a,b) = metric(a,c). Put differently,
neither metric takes into account that giraffe and kitten are two quite different concepts,
while cat and kitten are more similar. However, we would like this to be reflected by our
metric and obtain metric(a,b)> metric(a,c) in such a case.

S2MATCH means (Soft Semantic match, pronounced: [estu:mætS]) and builds on SMATCH

but differs from it in one important aspect: instead of maximizing the number of (hard)
triple matches between two graphs during alignment search, we maximize the (soft) triple
matches by taking into account the semantic similarity of concepts. Recall that an AMR
graph contains two types of triples: instance and relation triples (e.g., Figure 4.6, left: 〈u,
instance, cat〉 and 〈v, arg0, u〉). In SMATCH, two triples can only be matched if they are
identical. In S2MATCH, we relax this constraint, which has also the potential to yield a
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determinacy error
avg. msv (Eq. 4.6) 1 restart 2 restarts 4 restarts

SMATCH 0.0011 1.3e−3 1.0e−3 5.3e−4

S2MATCH 0.0005 9.0e−4 6.1e−4 2.1e−4

relative change -54.6% -30.7% -39.0% -60.3%

Table 4.5: S2MATCH improves upon SMATCH by reducing the extent of its non-determinacy.

different, and possibly, a better variable alignment. More precisely, in SMATCH we match
two instance triples 〈u, instance, x〉 ∈ a and 〈map(u), instance, y〉 ∈ b as follows:

hardMatch = I[x = y] (4.7)

where I(c) equals 1 if c is true and 0 otherwise. S2MATCH relaxes this condition:

so f tMatch = 1−d(x,y), (4.8)

where d is an arbitrary distance function d : X×X → [0,1]. E.g., in practice, if we repre-
sent the concepts as vectors x,y ∈ Rn, we can use

d(x,y) = min
{

1,1− yT x
‖x‖2 ‖y‖2

}
. (4.9)

When plugged into Eq. 4.8, this results in the cosine similarity ∈ [0,1]. It may be
suitable to set a threshold τ (e.g., τ = 0.5), to only consider the similarity between two
concepts if it is above τ (so f tMatch = 0 if 1−d(x,y)< τ).

To summarize, S2MATCH is designed to either yield the same score as SMATCH–
or a slightly increased score when it aligns concepts that are symbolically distinct but
semantically similar. In the following pilot experiments, we use cosine (Eq. 4.9) and
τ = 0.5 over 100 dimensional GloVe vectors (Pennington et al., 2014a).

An example, from parser evaluation, is shown in Figure 4.7. Here, S2MATCH increases
the score to 63 F1 (+10 points) by detecting a more adequate alignment that accounts for
the graded similarity of two related AMR concepts pairs. We believe that this is justified:
The two graphs are very similar and an F1 of 53 is too low, doing the parser injustice.

On a technical note, the changes in alignments also have the outcome that S2MATCH

mends some of SMATCH’s practical flaws, by reducing the hill-climbers imprecision: it
better addresses principles III and IV, reducing the symmetry violation and determinacy
error (Table 4.5).
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Figure 4.7: ‘6 Abu Sayyaf suspects were captured last week in a raid in Metro Manila.’ gold
(top) vs. parsed AMR (bottom). SMATCH aligns criminal-organization to city (red);
S2MATCH aligns criminal-organization to suspect-01, city to country-region (blue).

4.4 Summary of our metric analyses

Table 4.6 summarizes our analysis results. Principle I is fulfilled by all metrics as they ex-
hibit continuity, and an upper bound. Principle II, however, is not satisfied by SEMBLEU

since it can mistake two graphs of different meaning as equivalent. This is because it
ablates a variable-alignment and thus cannot capture all coreferences. Yet, a positive out-
come of this is that it is fast to compute (principle V), which is appealing for practical and
large-scale applications where rapid metric computation is required. It also marks a point
by fully satisfying principle IV, yielding fully deterministic results. SMATCH, by contrast,
either needs to resort to a costly ILP solution or (in practice) often uses hill-climbing with
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principle SMATCH +ILP (Opitz, 2023c) SEMBLEU S2MATCH +ILP (Opitz, 2023c)

I. Cont., upper-bound 3 3 3 3 3

II. id. of indescernibles 3ε 3 7 3δ<ε 3

III. symmetry 3ε 3 7 3δ<ε 3

IV. determinacy 3ε 3 3 3δ<ε 3

V. efficiency 7 7 3 7 7

VI. low bias 3 3 7 3 3

VII. symb. graph matching 3 3 7 3 3

VIII. graded graph matching 7 7 7 3LEX 3LEX

Table 4.6: Evaluation of three AMR metrics using our eight principles. 3ε : fulfilled with a very
small ε-error. +ILP column indicates a variant of the metric in the left neighbor column
that uses optimal solution instead of hill-climbing.

multiple restarts to reduce divergence.10

A central insight brought out by our analysis is that SEMBLEU exhibits biases that are
hard to control, conflicting with principle VI. This is caused by two (interacting) factors:
(i) The extraction of k-grams is applied on the graph top to bottom and visits some nodes
more frequently than others. (ii) It raises some (but not all) leaf nodes to connected nodes,
and these nodes will be overly frequently contained in extracted k-grams. We have shown
that these two factors in combination lead to large biases that researchers should be aware
of when using SEMBLEU (Section 4.3.1). Its ‘ancestor’ BLEU does not suffer from such
biases since it extracts k-grams linearly from a sentence.

Given that SEMBLEU is built on BLEU, it is inherently asymmetric. However, we
have shown that the asymmetry (principle III) measured for BLEU in MT is amplified
by SEMBLEU in AMR, mainly due to the biases it incurs (principle VI). While asym-
metry can be tolerated in parser evaluation if outputs are compared against gold graphs
in a standardized manner, it is difficult to apply an asymmetric metric to measure IAA
or to compare parses for detecting paraphrases, or in tri-parsing, where no reference is
available. If the asymmetry is amplified by a bias, it becomes harder to judge the scores.
Finally, considering that SEMBLEU does not match AMR graphs on the graph-level but
matches extracted bags-of-k-grams, it turns out that it cannot be categorized as a graph
matching algorithm as defined in principle VI.

10Again, it is important to note that even in the case of multiple restarts, this can still be critical for some
evaluation cases (Vanroy, 2023). In a very recent work (Opitz, 2023c), we re-examine the implementation of
the standard evaluation protocol with SMATCH and show that using ILP is feasible in the average evaluation
case and provides optimal scores that yield slightly higher evaluation scores. The ILP can be applied to even
larger graphs by means of lossless compression of search space. We release all the code in the SMATCH++,
a package for standardized AMR evaluation with SMATCH: https://github.com/flipz357/sm
atchpp.

https://github.com/flipz357/smatchpp
https://github.com/flipz357/smatchpp
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Principle VII (symbolic graph matching) is clearly fulfilled by SMATCH. It searches
for an optimal variable alignment and counts matching triples, therefore also being able
to assess (structural) graph isomorphism. As a corollary, it fulfills principles I, II, III and
VI.

Our principles also have helped us detect a weakness of all present AMR metrics:
they operate on a discrete level and cannot assess graded meaning differences, an is-
sue that is pointed out by our principle VIII. As a first step, we proposed S2MATCH: it
preserves beneficial principles of SMATCH but is benevolent to slight lexical meaning de-
viations. Besides parser evaluation, this principle makes the metric also more suitable for
other tasks, e.g., it can be used as a kernel in an SVM that classifies AMRs to determine
whether two sentences are equivalent in meaning. In such a case, S2MATCH is bound to
detect meaning-similarities that cannot be captured by SMATCH or SEMBLEU, e.g., due
to paraphrases being projected into the parses.

4.5 Discussion: Limits of principle-based metric analysis
and outlook

4.5.1 On dueling principles

On one hand, our analyses show that SMATCH is a solid metric for comparing MRs.
Importantly, in contrast to more efficient alignment-free metrics, it can actually verify if
two graphs are structurally isomorphic, or not.11 But an MR graph is not just ‘some’
graph — it is a meaning representation. So at the end of the day, we may not be so much
interested in designing a metric that merely assesses symbolic structural graph similarity,
but instead we would like to have a graph metric that assesses meaning graph similarity.
To achieve this goal, we attempted to make a first step with Principle VIII and S2MATCH.
However, this step may not be enough: how meaning arises from subgraphs of the MR is
highly non-trivial and it seems clear that different graph parts impact its overall meaning
quite differently. Indeed, quite obviously, the overall meaning of an MR does not seem
to monotonously depend on structural changes: A small structural change in meaning
structure could change the expressed meaning to a larger degree than a larger structural
change. As a simple example, imagine a meaning structure of a sentence in which we
now artificially attach a negation label to the root vs. the meaning structure of an arbitrary

11If used with an optimal solver (Opitz, 2023c).
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paraphrase of the sentence. The former action (attaching a single negation node) will
likely change the graph’s structure only to a marginal degree (the relative degree depends
on the overall size of the MR), but it probably has a large impact on the meaning that is
conveyed by the graph (due to negating the main predicate). With structural similarity
assessment, this might result in a similarity score that is misleadingly high. By contrast,
the MR of the paraphrastic sentence could easily result in a much different graph structure,
but the captured meaning will be almost the same, leading to a misleadingly low structural
similarity score.

So, similar to how humans would construct an assessment of the similarity of two
texts, we would like to have MR metrics that can more deeply assess the meaning simi-
larity of two MRs. Indeed, to best accomplish that what is aimed at by Principle VIII, we
want to work towards building a metric that can approximate similarity as perceived by

humans through MR graphs. To achieve this, however, we might have to trade in some
other principles, the result of which could affect potentially desirable features such as in-
terpretability/transparency of measurement. E.g., we might have to increase some biases
by differently weighting divergences of particular types of structures, to increase align-
ment of our metric with a human’s view. Similarly, Principle VII that ensures a transpar-
ent and statistically clearly interpretable measurement (more equal triples→ higher score)
may also be traded against Principle VIII. Other principles, however, could be expected to
remain untouched. For instance, we see no obvious reason why we should generally forgo
symmetry, since presumably a human similarity rating would also be (mostly) symmetric.

4.5.2 Parallels from machine translation evaluation research

There is an interesting parallel when viewing metrics for machine translation: There is
the popular BLEU metric (Papineni et al., 2002) that has been recently criticized a lot for
failing to measure more fine-grained meaning differences, leading to the development of
other metrics such as BLEURT (Sellam et al., 2020) or BERTscore (Zhang et al., 2020)
that achieve higher correlation with human raters. However, metrics like BERTscore or
BLEURT are very complex and based on large black-box language models, so we cannot
be sure how/what exactly they measure. On the other hand, we know exactly how/what
BLEU measures, since it is expressed by a formula that humans (with a bit of prior math
knowledge) can understand. In that sense, BLEU is a principled measurement. (Mod-
ulo brevity penalty,) BLEU calculates a geometric mean over k-gram precision scores. A
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Figure 4.8: Similar MRs, with sketched alignments.

k-gram precision score tells us the probability that a predicted k-gram is also in the ref-
erence. A geometric mean performs a normalized multiplication. Therefore, BLEU tells
us about: Given we predict any k-gram, how likely is it that it is found in the reference?
The geometric mean then returns a normalized joint probability: Given we predict one
1gram,..., and one kgram, how likely is it that we can find them all in the reference?
But, as is evident from recent developments, the MT community seems ready to forgo
such transparency and probabilistic meaningful measure in favor of more semantically
powerful metrics that assess the semantic adequacy of a candidate against a reference.

In sum, this i) underlines that often principles can be dueling, with some that are
assigned higher importance winning over others ii) and it shows the importance to under-
stand deeper meaning similarities also in the MR space, for MR-based tasks and evalu-
ation. Thus we can say that there is a clear need to develop more powerful MR metrics
that better capture subgraph similarities to better reflect the human view.

4.5.3 We need better MR metrics: Making the case with an example

To work more in the direction of MR metrics that can assess graded meaning similar-
ity, we proposed S2MATCH. But S2MATCH is only a first step towards assessing graded
MR differences. While it can consider graded meaning differences on atomic parts of a

meaning structure, by construction, it cannot compare subgraphs of different sizes.
As an example, consider Figure 4.8, which shows two MRs that convey very sim-

ilar meanings. All aforementioned metrics assign this pair a low similarity score, and
– if alignment-based, as is SMATCH– find only subpar alignments. In particular, both
SMATCH and S2MATCH align drink-01 to slurp-01 and kitten to cat, which results in a
single matching triple 〈x, arg0, y〉 and a very low similarity score (0.14) for SMATCH,
and three additional partially matching triples for S2MATCH (kitten–cat, slurp–drink,
pond–water) with an increased similarity score (0.52) for S2MATCH. But importantly,
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the example also shows two meaning sub-structures of different size, that express a near-
equivalence in meaning (young cat–kitten). Therefore, we would like to have a metric
that can account for such differences by providing us with a higher similarity score and,
ideally, an explanatory graph alignment, similarly to what we have sketched in the Figure.
Such an alignment must go beyond a structural 1:1 node mapping and allow us to map
subgraphs of arbitrary size, i.e., sets of nodes, including their relations.

4.6 Building novel MR metrics from Weisfeiler-Leman

Previous MR metrics have complementary strengths and weaknesses. As discussed above,
their shared weakness is that they cannot capture graded similarity of sub-structures.
Other weaknesses are exhibited by some particular metrics (e.g., SEMBLEU’s unclear
biases, or SMATCH’s slow execution efficiency). Therefore, we aim to propose new AMR
metrics that are able to mitigate the weaknesses of different MR metrics, while unifying
their strengths, aiming at the best of all worlds. Ideally, we would want want:

i) an interpretable alignment and many principles (SMATCH);

ii) a fast metric (SEMBLEU);

iii) matching larger substructures (SEMBLEU)

iv) and assessment of graded similarity of AMR subgraphs (extending S2MATCH).

This section proposes to make use of the Weisfeiler-Leman graph kernel (WLK) (We-
isfeiler and Leman, 1968; Shervashidze et al., 2011) to assess AMR similarity. The idea
is that WLK provides us with SEMBLEU-like matches of larger sub-structures, while by-
passing potential biases induced by the BFS-traversal (see above, Section 4.3.1). We then
describe the Wasserstein Weisfeiler Leman kernel (WWLK) (Togninalli et al., 2019) that is
similar to WLK but provides i) an alignment of atomic and non-atomic substructures (go-
ing beyond SMATCH) and ii) a graded match of substructures (going beyond S2MATCH).
Finally, we further adapt WWLK to WWLKΘ, a variant that we tailor to learn seman-
tic edge parameters to achieve more control over MR graph similarity and build a more
human-aligned MR similarity rating strategy.

4.6.1 Basic Weisfeiler-Leman Kernel (WLK)

The Weisfeiler-Leman kernel (WLK) method (Shervashidze et al., 2011) derives sub-
graph features from two input graphs. WLK has shown its power in many tasks, ranging
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Figure 4.9: WLK example based on one iteration.
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from protein classification to movie recommendation (Yanardag and Vishwanathan, 2015;
Togninalli et al., 2019). However, so far, it has not been applied to (A)MR graphs. In the
following, we will describe the WLK method.

Generally, a kernel can be viewed as a similarity measurement between two objects
(Hofmann et al., 2008), in our case, two AMR graphs a,b. It is stated as k(a,b) =
〈Φ(a),Φ(b)〉 where 〈·, ·〉 : Rd ×Rd → R+ is an inner product and Φ maps an input to
a feature vector that is built incrementally over K iterations. For our AMR graphs, one
such iteration k works as follows: a) every node receives the labels of its neighbors and
the labels of the edges connecting it to their neighbors, and stores them in a list (cf.
Contextualize in Figure 4.9). b) The lists are alphabetically sorted and the string elements
of the lists are concatenated to form new aggregate labels (cf. Compress in Figure 4.9).
c) Two count vectors xk

a and xk
b are created where each dimension corresponds to a node

label that is found in any of the two graphs and contains its count (cf. Features in Figure
4.9). Since every iteration yields two vectors (one for each input), we can concatenate the
vectors over iterations and calculate the kernel (cf. Similarity in Figure 4.9):

k(·, ·) = 〈ΦWL(a),ΦWL(b)〉

= 〈concat(x0
a, ...,x

K
a ),concat(x0

b, ...,x
K
b 〉

(4.10)

Specifically, we use the cosine similarity kernel and two iterations (K=2), which im-
plies that every node receives information from its neighbors and their immediate neigh-
bors. For simplicity we will first treat edges as undirected, but later will experiment with
various directionality parameterizations.

4.6.2 Wasserstein Weisfeiler-Leman (WWLK)

S2MATCH differs from all other AMR metrics in that it accepts close concept synonyms
for alignment (up to a similarity threshold). But it comes with a restriction and a down-
side: i) it cannot assess graded similarity of (non-atomic) AMR subgraphs, which is cru-
cial for assessing partial meaning agreement between AMRs (as illustrated in Figure 4.8),
and ii) the alignment is costly to compute.

We hence propose to adopt a variant of WLK: the Wasserstein-Weisfeiler Leman ker-
nel (WWLK) (Togninalli et al., 2019) for the following two reasons: i) WWLK can assess
non-atomic subgraphs on a finer level, and ii) it provides graph alignments that are faster
to compute than can be achieved by SMATCH.
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Figure 4.10: Wasserstein WLK example w/o learned edge parameters (top, c.f. Section 4.6.2) and
w/ learnt edge parameters (bottom, c.f. Section 4.7). Learning these parameters al-
lows us to adjust the embedded graphs such that they better take the (impact of)
MR edges into account. Red: the distance increases because of a negation contrast
between the two MRs that otherwise convey similar meaning.
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WWLK works in two steps: 1. Given its initial node embeddings, we use WL to
project the graph into a latent space, in which the final node embeddings describe varying

degrees of contextualization. 2. Given a pair of such (WL) embedded graphs, a trans-
portation plan is found that describes the minimum cost of translating one graph into the
other. In the top graph of Figure 4.10, f indicates the first step, while Wasserstein distance

indicates the second. Now, we describe the steps in closer detail.

Step 1: WL graph projection into latent space. Let v = 1...n be the nodes of AMR g.
This graph is projected onto a matrix Rn×R(K+1)d with

f (G) = hStack(X0
g , ...,X

K
g ),where (4.11)

Xk
g = [xk(1), ...,xk(n)]T ∈ Rn×Rd. (4.12)

The function hstack concatenates matrices s.t. (
[

a b
c d

]
,
[ x y

w z
]
)→

[a b x y
c d w z

]
. This means

that, in the output space, every node is associated with a vector that is itself a concatena-
tion of K +1 vectors with d dimensions each, where k indicates the degree of contextual-
ization ( in Figure 4.10). The embedding x(v)k ∈Rd for a node v in a certain iteration k

is computed as follows:

x(v)k+1 =
1
2

(
x(v)k +

1
d(v) ∑

u∈Nv

w(u,v) · x(u)k
)
. (4.13)

d(v) is the degree of a node, N returns the neighbors for a node, w(u,v) can assign a
weight to a node pair. The initial node embeddings, i.e., x(·)0, can be set up by looking up
the node labels in a set of pre-trained word embeddings, or using random initialization.
To distinguish between the discrete edge labels, we sample random weights.

Step 2: Computing the Wasserstein distance between two WL-embedded graphs.
The Wasserstein distance describes the minimum amount of work that is necessary to
translate the (contextualized) nodes of one graph into the (contextualized) nodes of the
other. It is computed based on pairwise euclidean distances from f (a) with n nodes, and
f (b) with m nodes:

distance =
n

∑
i=1

m

∑
j=1

Ti, jDi, j (4.14)

Here, the ‘cost matrix’ D ∈ Rn×m contains the euclidean distances between the n WL-
embedded nodes from a and m WL-embedded nodes from b. I.e., Di, j = || f (a)i− f (b) j||2.



76 Chapter 4. MR metrics: assessment and development

The flow matrix T describes a transportation plan between the two graphs, i.e, Ti, j ≥ 0
states how much of node i from a flows to node j from b, the corresponding ‘local work’
can be stated as f low(i, j) ·cost(i, j) :=Ti, j ·Di, j. To find the best T, i.e., the transportation
plan that minimizes the cumulative work needed (Eq. 4.14), we solve a constraint linear
problem:12

min
n

∑
i=1

m

∑
j=1

Ti, jDi, j (4.15)

s.t. : Ti, j ≥ 0,1≤ i≤ n,1≤ j ≤ m (4.16)
m

∑
j=1

Ti, j =
1
m
,1≤ i≤ n (4.17)

n

∑
i=1

Ti, j =
1
n
,1≤ j ≤ m (4.18)

Note that i) the transportation plan T describes an n:m alignment between the nodes of
the two graphs, and that ii) solving Eq. 4.15 has polynomial time complexity, while the
(W)S(2)MATCH problem is NP-complete.

4.7 WWLKθ with 0th-order optimization

Motivation: MR edge labels carry complex meaning. The embedding method of
WWLK (Eq. 4.13) associates a weight w(u,v) ∈ R with each edge. For unlabeled graphs,
w(u,v) is simply set to one. To distinguish between the discrete AMR edge labels, in
WWLK we have used random weights. However, AMR edge labels encode complex rela-
tions between nodes, and simply choosing random weights may not be enough. In fact,
we hypothesize that different edge labels may impact the meaning similarity of AMR
graphs in different ways. Whereas a modifier relation in an AMR graph configuration
may or may not have a significant influence on the overall AMR graph similarity, an edge
representing negation is bound to have a significant influence on the similarity of different
AMR graphs. Consider the example in Figure 4.10: in the top figure, we embed AMRs
for The pretty warbler sings and The bird sings gently, which have similar meanings. In
the bottom figure, the second AMR has been changed to express the meaning of The bird

doesn’t sing, which clearly reduces the meaning similarity of the two AMRs. Hence, we
hypothesize that learning edge parameters for different AMR relation types may help to

12We use https://pypi.org/project/pyemd

https://pypi.org/project/pyemd
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better adjust the graph embeddings, such that the Wasserstein distance may increase or
decrease, depending on the specific meaning of AMR relation labels, and thus to better
capture global meaning differences between AMRs (as outlined in Figure 4.10: fθ ).

Formally, to make the Wasserstein Weisfeiler-Leman kernel better account for edge-

labeled AMR graphs, we learn a parameter set Θ that consists of parameters θ edgeLabel ,
where edgeLabel indicates the semantic relation, that is

edgeLabel ∈ L = {arg0,arg1, ...,polarity, ...}

Hence, in Eq. 4.13, we can set w(u,v) = θ label(u,v) and apply multiplication θ label(u,v) ·
x(u)k. To facilitate the multiplication, we either may learn a matrix Θ ∈ R|L|×d or a
parameter vector Θ ∈ R|L|. In our thesis, we constrain ourselves to the latter setting, i.e.,
our goal is to learn a parameter vector Θ ∈ R|L|.

Learning edge labels with direct human feedback. To find suitable edge parameters
Θ, we propose a zeroth order (gradient-free (Conn et al., 2009)) optimization setup, which
has the advantage that we can explicitly teach our metric to better correlate with human
ratings, optimizing the desired correlation objective without detours. In our case, we
apply a simultaneous perturbation stochastic approximation (SPSA) procedure to estimate
gradients (Spall, 1987, 1998; Wang, 2020).13

Let sim(B,Θ) = −WWLKΘ(B) be the similarity scores obtained from a (mini-)batch
of graph pairs (B = [(G j,G′j), ...]) as provided by (parametrized) WWLK. Now, let Y

be the human reference scores. Then we design the loss function as J(Y,Θ) := 1−
correlation(sim(B,Θ),Y ). Further, let µ be coefficients that are sampled from a Bernoulli
distribution. Then the gradient is estimated as follows:

∇̂Θ =
J(Y,Θ+ cµ)− J(Y,Θ− cµ)

2cµ
. (4.19)

Finally, we can apply the common SGD learning rule: Θt+1 = Θt − γ∇̂Θ. The learning
rate γ and c decrease proportionally to t.

13It improves upon a classic Kiefer-Wolfowitz approximation (Kiefer, Wolfowitz, et al., 1952) by requir-
ing, per gradient estimate, only 2 objective function evaluations instead of 2n.
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Principle SMATCH SEMBLEU S2MATCH WLK WWLK WWLKθ

PR
IN

C
IP

L
E

I. Con., n-neg. bound 3 3 3 3 3 3

II. id. of indesc. 3 7 3 73 73 73

III. symmetry 3 7 3 3 3 3

IV. determinacy 3 3 3 3 7 7

V. efficiency 7 HHH 7 HHH HH HH

VI. low bias 3 7 3 3 3 3

VII. symb. matching 3 7 3 3 3 3

VIII. graded matching 7 7 3LEX 7 3 3

Table 4.7: Principle analysis update. On efficiency, in contrast to Table 4.6, we adopt a graded
view, to indicate that WWLK is more efficient than SMATCH, but less efficient than
SEMBLEU, which is in turn equally fast as WLK.

4.8 Taking a step back: principle analysis of WLK and
WWLK

With WLK and WWLK we aimed at the combination of their strengths (e.g., broader
match and efficiency as in SEMBLEU, alignment as in SMATCH, lexical matching as in
S2MATCH), while mitigating their joint weaknesses. On one hand, we have learnt that
theoretical principles are not everything we’d want in an MR metric, mainly because they
are too focused on structural/symbolic matching (Section 4.5). On the other hand, never-
theless, it might be interesting to try updating the respective analysis result table (Table
4.6) with our novel metrics.

In particular, here we will focus on id. of indiscernibles, determinacy, bias, and graded

matching.

Identity of indiscernible. We put 73for WWLK in the category identity of indescernibles

(two graphs have maximum similarity score, if, and only if they are equivalent). This is
because, on one hand, we know from the Weisfeiler-Leman test that we can only view
graph isomorphism from one angle: if a similarity score doesn’t equal one, then we know
two graphs are not isomorphic. So there could be cases where two MRs are not equivalent
but WWLK returns a score equal to one. Thus, when viewed harshly, it does not comply
with the principle. However, while finding a counterexample for SEMBLEU was rather
easy, we did not find such a case for (directional) WWLK.

Determinacy seems reduced in WWLK variants, since we initialize unknown nodes with
random vectors. However, there are ways to mitigate this, without losing discriminatory
power by naïvely using zero embeddings for unknows. E.g.: i) we can solve the problem
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by using a node embedding model that returns deterministic embeddings for any given
node or edge label (e.g., using a character or sub-word based embedding model such
as BERT (Devlin et al., 2019)); ii) and we can mitigate the problem by computing an
expected distance over different initializations. The second method we will use to achieve
stable results in the application case of parsing evaluation that will follow later in the next
chapter (see Section 5.4).

Unintentional bias. Most metrics exhibit low bias. However, we are confronted with a
new type of bias in WWLKθ : bias to human similarity. This bias is motivated and desirable
(i.e., intentional), which is why we add a 3.

Graded matching. To propose a first metric that addresses this principle partially, we
proposed S2MATCH, that calculates SMATCH by considering lexical graded similarity of
concept nodes. Moving beyond the lexical level, we now have WWLK that is the only MR
metric that can calculate graded MR subgraph similarity from broader subgraph struc-
tures, and provides explanatory many-to-many alignment.

4.9 Discussion

Based on our insights from our studies on previous MR metrics, we proposed novel MR
metrics that target i) the unification of strengths of previous metrics and ii) the incorpo-
ration of new features that aim at modeling more graded similarity between MR graphs,
to generalize MR metric distances to new use-cases that go beyond mono-lingual parsing
evaluation, which is a strictly limited scenario, because in that setup graphs are based on
the same sentence. However, yet we don’t know much about the empirical behavior of
MR metrics. In particular we would like to know how well they might align with the
human view on similarity. Therefore, next, we will develop and explore a meaningful
evaluation measure that might help us answer this question.
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Chapter 5

Extended empirical studies on
MR metrics

5.1 Chapter outline

As of now, we know too little about the empirical behavior of MR metrics in different
tasks, and how their performance could be measured. We are going to address these
questions in this chapter. In particular:

1. We will construct the first benchmark to evaluate metrics of meaning representa-
tions using transparent objectives such as human sentence similarity and robustness
stress tests (Section 5.2).

2. Through this benchmark, we evaluate MR metrics, outlining their strengths on dif-
ferent tasks and potential for further improvement (Section 5.3).

3. In Section 5.4 we will investigate MR metrics in an interesting practical evalua-
tion setting: monolingual evaluation of high-performance MR parsers. We find that
application of MR metrics provides us with new insights not only about the met-
rics, but also about high-performance MR parsing systems in general, which we
summarize in Section 5.5.

4. We conclude this chapter with a discussion in Section 5.6.

Underlying work. The content of this chapter is mainly based on publications by Opitz
et al. (2021a) and Opitz and Frank (2022a).
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5.2 BAMBOO : A first benchmark for MR metrics

We will now construct BAMBOO , the first empirical benchmark for meaning representa-
tion metrics. BAMBOO is an acronym for a Benchmark for AMR Metrics based on Overt
Objectives: it is aimed at maximizing the interpretability of results by defining multiple
overt objectives that range from sentence similarity objectives to stress tests that probe a
metric’s robustness against meaning-altering and meaning-preserving graph transforma-
tions. Later we will show the benefits of BAMBOO by using it to investigate MR metrics
empirically, complementing our theoretical assessments from the chapter before.

Grounding MR similarity metrics in human ratings of semantic sentence similarity.
A natural and intuitive wish is that we would like to have MR metrics that reflect human

similarity between the texts that the MRs represent. Therefore, as the main criterion for
assessing MR similarity metrics, we use human judgments of the meaning similarity of
sentences underlying pairs of MRs. Our primary assumption is: a metric of pairs of
MR graphs a and b that represent sentences s and s′ should reflect human judgments of
semantic sentence similarity and relatedness:

mrMetric(a,b) ∝ humanScore(s,s′) (5.1)

where ∝ means proportional to1.

5.2.1 Human similarity objectives

Similarity objectives. We select three notions of sentence similarity as evaluation tar-
gets for MR metrics. The three notions have been elicited by three human-rated evaluation
datasets: i) the semantic textual similarity (STS) objective from Baudiš et al. (2016a,b);
ii) the sentence relatedness objective (SICK) from Marelli et al. (2014); iii) the paraphrase
detection objective (PARA) by Dolan and Brockett (2005).2

Each of these three evaluation data sets can be seen as a set of pairs of sentences (si,s′i)

with an associated score humanScore(·) that provides the human sentence relation assess-
ment score reflecting semantic similarity (STS), semantic relatedness (SICK) and whether

sentences are paraphrastic (PARA). Hence, each of these data sets can be described as

1In Opitz et al. (2021a) we used a approximately sign ≈ instead of ∝, which would technically describe
the most ideal situation. However, in the end our main goal would be to have strong correlation, which does
not necessarily require a low absolute deviation from the human score, so ∝ perhaps seems more apt.

2For more information about the construction process of the data sets, see our Related Work 3.4.
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graph statistics
data instances (s. length) # nodes density

source train/dev/test avg. 50th avg. 50th avg. 50th

STS 5749/1500/1379 9.9 8 14.1 12 0.10 0.08
SICK 4500/500/4927 9.6 9 10.7 10 0.11 0.1
PARA 3576/500/1275 18.9 19 30.6 30 0.04 0.04

Table 5.1: BAMBOO data set statistics of the Main partition. Sentence length (s. length, dis-
played for reference only) and graph statistics (average and median) are calculated on
the training sets.

{(si,s′i,humanScore(si,s′i) = yi)}n
i=1. Both STS and SICK offer scores on Likert scales,

ranging from equivalence (max) to unrelated (min), while PARA scores are binary, judg-
ing sentence pairs as being paraphrases (1), or not (0). We min-max normalize the Likert
scale scores to the range [0,1] to facilitate standardized evaluation.

For BAMBOO , we replace each pair (si,s′i) with their AMR parses: (pi = parse(si), p′i
= parse(s′i)), transforming the data into {(pi, p′i,yi)}n

i=1. This provides the main partition
of the benchmarking data for BAMBOO , henceforth denoted as Main3. Statistics of
Main are shown in Table 5.1). The sentences in PARA are longer compared to STS and
SICK. The corresponding AMR graphs are, on average, much larger in number of nodes,
but less complex with respect to the average density.4

AMR construction. We choose a strong parser that achieves high scores in the range of
human-human inter-annotator agreement estimates in AMR banking: The parser yields
0.80-0.83 Smatch F1 on AMR2 and AMR3. The parser, henceforth denoted as T5S2S,
is based on an AMR fine-tuned T5 language model (Raffel et al., 2020) and produces
AMRs in a sequence-to-sequence fashion.5 It is on par with the current state-of-the-art
that similarly relies on seq-to-seq (Xu et al., 2020), but the T5 backbone alleviates the
need for massive MT pre-training.

Manual data quality assessment: three-way graph quality ratings. To obtain a bet-
ter picture of the graph quality in BAMBOO we perform manual quality inspections.
From each data set (SICK, STS, PARA) we randomly select 100 sentences and create

3The other partitions, which are largely based on this data, will be introduced in Section 5.2.2.
4The lower average density could be caused, e.g., by the fact that the PARA data is sampled from news

sources, which means that the AMRs contain more named entity structures that usually have more terminal
nodes.

5https://github.com/bjascob/amrlib

https://github.com/bjascob/amrlib
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Parser %gold↑ %silver %flawed↓

STS GPLA 43[33,53] 37[28,46] 20[12,27]
T5S2S 54[44,64]†‡ 41[31,50] 5[0,9]†‡

SICK GPLA 38[28,47] 49[39,59] 13[6,19]
T5S2S 48[38,58]† 47[37,57] 5[0,9]†‡

PARA GPLA 9[3,14] 52[43,62] 39[29,48]
T5S2S 21[13,29]†‡ 63[54, 73]†‡ 16[8,23]†‡

ALL GPLA 30[25,35] 46[40,52] 24[19,29]
T5S2S 41[35,46]†‡ 50[45,56] 9[5,12]†‡

Table 5.2: Three-way graph assessment. [x,y]: 95-confidence intervals estimated with bootstrap.
† (‡) significant improvement of T5S2S over GPLA with p < 0.05 (p < 0.005).

their parses with T5S2S. Additionally, to establish a baseline, we also parse the same sen-
tences with the GPLA parser of Lyu and Titov (2018), a neural graph prediction system
that uses latent alignments (with 74.4 Smatch score on AMR2). This results in 300 GPLA
parses and 300 T5S2S parses. A human annotator6 inspects the (shuffled) sample and as-
signs three-way labels: flawed – an AMR contains critical errors that distort the meaning
significantly; silver – an AMR contains small errors that can potentially be neglected;
gold – an AMR is acceptable.

Results in Table 5.2 show that the quality of T5S2S parses is substantially better than
the baseline in all three data sets. The percentage of excellent parses increases consider-
ably (STS: +11pp, SICK: +10pp, PARA: +11pp) while the percentage of flawed parses
drops notably (STS: -15pp, SICK: -8pp, PARA: -23pp). The increases in gold parses
and decreases in flawed parses are significant in all data sets (p < 0.05, 10,000 bootstrap
samples of the sample means).7

5.2.2 Robustness challenges

Besides benchmarking MR metric scores against human ratings, we are also interested
in assessing a metric’s robustness under meaning-preserving and -altering graph trans-
formations. Assume we are given any pair of AMRs from paraphrases. A small change

6The human annotator is a proficient English speaker and has worked several years with AMR.
7H0(gold): amount of gold graphs T5S2S≤ amount of gold graphs GPLA; H0(silver): amount of silver

graphs T5S2S ≤ amount of gold graphs GPLA; H0(flawed): amount of gold graphs T5S2S ≥ amount of
gold graphs GPLA.
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in structure or node content can lead to two outcomes: the graphs still represent para-
phrases, or they do not. We consider a metric to be robust if its ratings correctly reflect
such changes.

Specifically, we apply three graph transformation strategies. i) Reification (Reify�),
which changes the graph’s surface structure, but not its meaning; ii) Concept synonym
replacement (Syno�), which also preserves meaning and may or may not change the
graph surface structure; iii) Role confusion (Arg�), which applies small changes to the
graph structure that do not preserve its meaning.

Meaning-preserving translations

Generally, given a meaning-preserving function f of a graph, i.e.,

g≡ f (g), (5.2)

it is natural to expect that a semantic similarity function over the pair of transformed
AMRs nevertheless stays stable, and thus satisfies:

metric(a,b)≈ metric( f (a), f (b)). (5.3)

Reiification translation (Reify�), which we already visited in our Background Figure
on graph translations (Figure 2.1), is an established way to rephrase AMRs. Formally, a
reification is induced by a rule

edge(x,y)
reify−−→ instance(z,h(edge)0) (5.4)

∧h(edge)1(z,x) (5.5)

∧h(edge)2(z,y), (5.6)

where h returns, for a given edge, a new concept and corresponding edges from a dic-
tionary, where the edges are either :argi or :opi. An example is displayed in Figure
5.1 (top, left, see also overview Figure 2.1 in the Background of this thesis.). Besides
reification for location, other known types are polarity-, modifier-, or time-reification.8

Processing statistics of the applied reification operations are shown in Table 5.3.

8A complete list of reifications are given in the official AMR guidelines: https://github.com/a
mrisi/amr-guidelines/blob/master/amr.md

https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://github.com/amrisi/amr-guidelines/blob/master/amr.md
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STS SICK PARA

mean th mean th mean th
Reify�-OPS 2.74 [1, 2, 4] 1.17 [0, 1, 2] 5.14 [3, 5, 7]
Syno�-OPS 0.80 [0, 1, 2] 1.31 [0, 1, 2] 1.30 [0, 1, 2]
Arg�-OPS 1.33 [1, 1, 2] 1.11 [1, 1, 1] 1.80 [1, 2, 2]

Table 5.3: Statistics about the amount of transform operations that were conducted, on average, on
one graph. [x,y,z]: 25th, 50th (median) and 75th percentile of the amount of operations.

Synonym concept node transform (Syno�). Here, we iterate over MR node labels.
For any label that shows a predicate from PropBank, we consult a manually created
database of (near-)synonyms that are also contained in PropBank, and sample one for
replacement. E.g., some sense of fall is near-equivalent to a sense of decrease (car prices

fell/decreased). For concepts that are not predicates we run an ensemble of four WSD
solvers9 (based on the concept and the sentence underlying the AMR) to identify its
WordNet synset. From this synset we sample an alternative lemma.10 If an alternative
lemma consists of multiple tokens where modifiers precede the noun, we replace the node
with a graph-substructure. So, if the concept is man and we sample adult_male, we ex-
pand ’instance(x,man)’ with ’mod(x,y)∧ instance(y,adult)∧ instance(x,male)’. Data
processing statistics are shown in Table 5.3.

Meaning-altering graph transforms

Role confusion (Arg�). A naïve MR metric could be one that treats an MR as a bag-
of-nodes, omitting structural information, such as edges and edge-labels. Such metrics
could exhibit misleadingly high correlation scores with human ratings, solely due to a
high overlap in concept content.

Hence, we design adversarial instances that can probe an MR metric when confronted
with cases of opposing factuality (e.g., polarity, modality or relation inverses), while con-
cept overlap is largely preserved. We design a function

g 6= h(g), (5.7)

9‘Adapted lesk’, ‘Simple Lesk’, ‘Cosine Lesk’, ‘max sim’ (Banerjee and Pedersen, 2002; Lesk, 1986;
Pedersen, 2007): https://github.com/alvations/pywsd.

10To increase precision, we only perform this step if all solvers agree on the predicted synset.

https://github.com/alvations/pywsd


5.2. BAMBOO : A first benchmark for MR metrics 87

sleep-01

rockkitten

arg0 location
sleep-01

rockkitten

arg0

beLocatedAt

arg1 arg2

doze-01

rockkitten

arg0 location

sleep-01

rockkitten

location arg0

sleep-01

rockkitten

arg0 location

sleep-01

rockkitten

arg0 location

sleep-01

rockcat

arg0 locationsleep-01

rockkitten

arg0 location

youngmod
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that confuses role labels (see Arg� in Figure 5.1). We make use of this function to turn
two paraphrastic AMRs (a, b) into non-paraphrastic AMRs, by applying h to either a, or
b, but not both.

In some cases h may create a meaning that still makes sense (The tiger bites the snake.

→ The snake bites the tiger.), while in others, h may induce a nonsensical meaning (The

tiger jumps on the rock. → The rock jumps on the tiger.). However, this is not our primary
concern, since in all cases, applying h achieves our main goal: it returns a different
meaning that turns a paraphrase-relation between two AMRs into a non-paraphrastic one
that is structurally not much different.

To implement Arg�, for each data set (PARA, STS, SICK) we create one new data
subset. First, i) we collect all paraphrases from the initial data (in SICK and STS these
are pairs with maximum human score).11 ii) We iterate over the AMR pairs (a,b) and
randomly select the first or second AMR from the tuple. We then collect all n nodes
with more than one outgoing edge. If n = 0, we skip this AMR pair (the pair will not be
contained in the data). If n > 0, we apply the meaning altering function h and randomly
flip edge labels. Finally, we add the original (a,b) to our data with the label paraphrase,
and the altered pair (a,g(b)) with the label non-paraphrase (cf. Figure 5.2). Per graph, we
allow a maximum of 3 role confusion operations (see Table 5.3 for processing statistics).

Discussion

Safety of robustness objectives. We have proposed three challenging robustness objec-
tives, based on meaning-preserving and meaning altering graph transformations. Reify�
changes the graph structure, but preserves the meaning. Arg� keeps the graph structure
(modulo edge labels) while changing the meaning. Syno� changes node labels and pos-
sibly the graph structure and aims at preserving the meaning.

Reify� and Arg� are fully safe: they are well defined and are guaranteed to fulfill
our goal (Eq. 5.2 and 5.7): meaning-preserving or -altering graph transforms. Syno� is
more experimental and has (at least) three failure modes. In the first mode, depending
on context, human similarity judgments could change when near-synonyms are chosen
(sleep→ doze, a young cat→ kitten, etc.). The second mode occurs when WSD commits
an error (e.g., minister (political sense)→ priest). A third mode are societal biases found
in WordNet (e.g., the node girl may be mapped onto its ‘synonym’ missy). The third mode

11This shrinks the train/dev/test size of STS (now: 474/106/158) and SICK (now: 246/50/238).
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may not really be a failure, since it may not change the human rating, but, nevertheless, it
may be undesirable.

In conclusion, Reify� and Arg� confusion constitute safe robustness challenges, while
results on Syno� may have to be taken with a grain of salt.

Status of the challenges in BAMBOO and outlook. We believe that a key benefit of
the robustness challenges lies in their potential to provide complementary performance
indicators, in addition to evaluation on the Main partition of BAMBOO (cf. Section 5.2).
In particular, the challenges may serve to assess metrics more deeply, uncover potential
weak spots, and help select among metrics, e.g., when performance differences on Main
are small. In this work, however, the complementary nature of Reify�, Syno� or Arg�
versus Main is only reflected in the name of the partitions, and in our experiments, we
consider all partitions equally. Future work may deviate from this setup.

Our proposed robustness challenges are also by no means exhaustive, and we believe
that there is ample room for developing more challenges (extending BAMBOO ) or ex-
perimenting with different setups of our challenges (varying BAMBOO 12). For these
reasons, it is possible that future work may implement alternative or enhanced setups,
extensions and variations of BAMBOO .

5.3 Experimental insights from BAMBOO

Questions posed to BAMBOO . BAMBOO allows us to address several open ques-
tions: The first set of questions aims to gain more knowledge about previously released
metrics. For example, we would like to know: What semantic aspects of AMR does a met-

ric measure? If a metric has hyper-parameters (e.g., SEMBLEU), which hyper-parameters

are suitable (for a specific objective)? Does the costly alignment of SMATCH pay off, by

yielding better predictions, or do the faster alignment-free metrics offer a ‘free-lunch’? A
second set of questions aims to evaluate our proposed novel AMR similarity metrics, and
to assess their potential advantages.

Experimental setup. We evaluate all metrics on the test set of BAMBOO . The two
hyper-parameters of S2MATCH, that determine when concepts are similar, are set with
a small search on the development set (by contrast, S2MATCHde f ault denotes the default

12E.g., we may rectify only selected relations, or create more data, setting Eq. 5.3 to metric(a,b) ≈
metric(a, f (b)), only applying f to one graph.
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setup). WWLKθ is trained with batch size 16 on the training data. S2MATCH, WWLK
and WWLKθ all make use of GloVe embeddings (Pennington et al., 2014a).

Our main evaluation metric is Pearson’s ρ between a metric’s output and the human
ratings. Additionally, we consider two global performance measures to better rank AMR
metrics: the arithmetic mean (amean) and the harmonic mean (hmean) over a metric’s
results achieved in all tasks. Hmean is always ≤ amean and is driven by low outliers.
Hence, a large difference between amean and hmean serves as a warning light for a metric
that is extremely vulnerable in a specific task.

5.3.1 BAMBOO studies previous metrics

Table 5.4 shows AMR metric results on BAMBOO across all three human similarity
rating types (STS, SICK, PARA) and our four challenges: Main represents the standard
setup (cf. Section 5.2.1), whereas Reify�, Syno� and Arg� test the metric robustness (cf.
Section 5.2.2). So far not introduced, we also include the SEMA metric (Anchiêta et al.,
2019) in these experiments. SEMA is similar to Smatch (matching triplets) but does not
compute an alignment.

SMATCH and S2MATCH rank 1st and 2nd of previous metrics. SMATCH, our baseline
metric, provides strong results across all tasks (Table 5.4, amean: 51.28). With default
parameters, S2MATCHde f ault performs slightly worse on the main data for STS and SICK,
but improves upon SMATCH on PARA, achieving a slight overall improvement with re-
spect to hmean (+0.30), but not amean (-0.37). S2MATCH is more robust against Syno�
(e.g., +4.6 on Syno� STS vs. SMATCH), and when confronted with reified graphs (Reify�
STS +3.3 vs. SMATCH).

S2MATCH, after setting its two hyper-parameters with a small search on the develop-
ment data13, consistently improves upon SMATCH over all tasks (amean: +0.94, hmean:
+1.57).

WSMATCH: Are nodes near the root more important? The hypothesis underlying
WSMATCH is that concepts that are located near the top of an AMR have a higher impact
on AMR similarity ratings. Interestingly, WSMATCH mostly falls short of SMATCH, offer-
ing substantially lower performance on all main tasks and all robustness checks, resulting
in reduced overall amean and hmean scores (e.g., main STS: -5.39 vs. SMATCH, amean:

13STS/SICK: τ=0.90, τ ′=0.95; PARA: τ=0.0,τ ′=0.95
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-2.8 vs. SMATCH, hmean: -2.9 vs. SMATCH). This contradicts the ‘core-semantics’ hy-
pothesis and provides novel evidence that semantic concepts that influence human simi-
larity ratings are not necessarily located close to AMR roots.14

BFS-based metrics I: SEMA increases speed but pays a price. Next, we find that
SEMA achieves lower scores in almost all categories, when compared with SMATCH

(amean: -4.99, hmean -5.65), ending up at rank 7 (according to hmean and amean) among
prior metrics. It is similar to SMATCH in that it extracts triples from graphs, but differs by
not providing an alignment. Therefore, it can only loosely model some phenomena, and
we conclude that the increase in speed comes at the cost of a substantial drop in modeling
capacity.

BFS-based metrics II: SEMBLEU is fast, but is sensitive to k. Results for SEMBLEU

show that it is very sensible to parameterizations of k. Notably, k=1, which means that the
method only extracts bags of nodes, achieves strong results on SICK and STS. On PARA,
however, SEMBLEU is outperformed by S2MATCH, for all settings of k (best k (k=2): -2.8
amean, -4.7 hmean). Moreover, all variants of SEMBLEU are vulnerable to robustness
checks. E.g., k=2, and, naturally, k=1 are easily fooled by Arg�, where performance
drops massively. k=4, on the other hand, is most robust against Arg�, but overall it falls
behind k=2.

Since SEMBLEU is asymmetric, we also re-compute the metric in a ‘symmetric’ way
by averaging the metric result over different argument orders. We find that this can slightly
increase its performance ([k, amean, hmean]: [1, +0.8, +0.6]; [2, +0.5, +0.4]; [3, +0.2,
+0.2]; [4, +0.1, +0.0]).

In sum, our conclusions concerning SEMBLEU are: i) SEMBLEUk=1 (but not SEM-
BLEUk=3) performs well when measuring similarity and relatedness. However, SEM-
BLEUk=1 is naïve and easily fooled (Arg�). ii) Hence, we recommend k=2 as a good
tradeoff between robustness and performance, with overall rank 4 (amean) and 6 (hmean).15

14Manual inspection of examples shows that low similarity can frequently be explained with differences
in concrete concepts that tend to be distant to the root. E.g., the low similarity (0.16) of Morsi supporters
clash with riot police in Cairo vs. Protesters clash with riot police in Kiev arises mostly from Kiev and
Cairo and Morsi, however, these names (as are names in general in AMR) are distant to the root region,
which is similar in both graphs (clash, riot, protesters, supporters).

15Setting k=2 stands in contrast to the original paper that recommended k=3, the common setting in
MT. However, lower k in SEMBLEU reduces biases (as we have found out before via empirical analysis on
BAMBOO , c.f., Section 5.3), which may explain the better result on BAMBOO .
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5.3.2 BAMBOO assesses MR metrics

We now discuss results of our proposed metrics based on the Weisfeiler-Leman Kernel
that we constructed in the previous Chapter (4).

Standard Weisfeiler-Leman (WLK) is fast and a strong baseline for AMR similarity.
First, we visit the symbolic Weisfeiler-Leman kernel (WLK). Like SEMBLEU and SEMA,
it is alignment-free, and therefore very fast. However, it outperforms SEMBLEU and
SEMA in almost all tasks (score difference against second best alignment-free metric:
([a|h]mean: +1.6, +1.5) but falls behind alignment-based SMATCH ([a|h]mean: -0.8, -
3.2). Specifically, WLK proves robust against Reify� but appears more vulnerable against
Syno� (-5 points on STS and SICK) and Arg� (notably PARA, with -10 points).16

The better performance, compared to SEMBLEU and SEMA, may be due to the fact
that WLK (unlike SEMBLEU and SEMA) does not perform BFS traversal from the root,
which may reduce biases.

WWLK and WWLKθ obtain first ranks. Basic WWLK exhibits strong performance on
SICK (ranking second on main and first on Reify�). However, it has large vulnerabilities,
as exposed by Arg�, where only SEMBLEUk=1 ranks lower. This can be explained by
the fact that WWLK (7.2 Pearson’s ρ on PARA Arg�) only weakly considers the semantic
relations (whereas SEMBLEUk=1 does not consider semantic relations at all).

WWLKΘ, our proposed algorithm for edge label learning, mitigates this vulnerability
(29.6 Pearson’s ρ on PARA Arg�, 1st rank). Learning edge labels also helps assessing
similarity (STS) and relatedness (SICK), with substantial improvements over standard
WWLK and SMATCH (STS: 66.94, +3.9 vs. WWLK and +10.6 vs. SMATCH; SICK +2.1
vs. WWLK and +8.4 vs. SMATCH).

In sum, WWLKθ occupies rank 1 of all considered metrics (amean and hmean),
outperforming all non-alignment based metrics by large margins (amean +4.5 vs. WLK
and +6.0 vs. SEMBLEUk=2; hmean +5.9 vs. WLK and +8.1 vs. SEMBLEUk=2), but also
the alignment-based ones, albeit by lower margins (amean +2.7 vs. S2MATCH; hmean +
1.2 vs. S2MATCH).
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K (#WL iters)
basic (K=2) K=1 K=3 K=4

amean hmean amean hmean amean hmean amean hmean

WLK 50.4 44.4 49.8 44.2 47.6 42.4 46.4 41.5
WWLK 45.3 28.8 43.4 15.3 45.7 31.4 42.3 24.0
WWLKθ 54.9 50.3 52.2 35.4 55.2 51.1 50.8 47.3

Table 5.5: WLK variants with different K.

undirected TOP-DOWN BOTTOM-UP 2WAYS
amean hmean amean hmean amean hmean amean hmean

WLK 50.4 44.4 50.3 44.3 50.2 43.8 49.5 41.8
WWLK 45.3 28.8 43.7 22.0 41.6 9.9 44.8 24.1
WWLKθ 54.9 50.3 53.8 46.1 50.2 18.7 55.3 51.0

Table 5.6: (W)WLK: message passing directions.

5.3.3 Analyzing hyper-parameters of our novel metrics WLK and WWLK

Setting K in (W)WLK. How does setting the number of iterations in Weisfeiler-Leman
affect predictions? Table 5.5 shows K=2 is a good choice for all WLK variants. K=3
slightly increases performance in the latent variants (WWLK: +0.4 amean; WWLKθ : +0.3
amean), but lowers performance for the fast symbolic matching WLK (-2.8 amean). This
drop is somewhat expected: K>2 introduces much sparsity in the symbolic WLK feature
space.

WL message passing direction. Even though AMR defines directional edges, for op-
timal similarity ratings, it was not a-priori clear in which directions the node contextu-
alization should be restricted when attempting to model human similarity. Therefore,
so far, our WLK variants have treated AMR graphs as undirected graphs (↔). In this
experiment, we study three alternate scenarios: ‘TOP-DOWN’ (forward, →), where in-
formation is only passed in the direction that AMR edges point at and ‘BOTTOM-UP’
(backwards, ←), where information is exclusively passed in the opposite direction, and
2WAY (�), where information is passed forwards, but for every edge edge(x,y) we in-
sert an edge−1(y,x). 2WAY facilitates more node interactions than either TOP-DOWN or
BOTTOM-UP, while preserving directional information.

16Similar to SEMBLEU, we can mitigate this performance drop on Arg� PARA by increasing the amount
of passes K in WLK, however, this decreases overall amean and hmean.
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STS SICK PARA AVERAGE
MHA IMA MHA IMA MHA IMA MHA IMA

SM [71, 73] 97.9 [66, 66] 99.9 [44, 44] 97.9 [60, 61] 98.6
WSM [64, 65] 99.2 [67, 67] 99.8 [47, 49] 98.7 [59, 60] 99.2
S2Mde f [69, 70] 97.7 [62, 63] 99.3 [44, 47] 97.7 [58, 60] 98.2
S2M [71, 73] 97.8 [69, 70] 98.6 [41, 46] 98.0 [60, 63] 98.1
SE [66, 66] 97.7 [55, 55] 100 [42, 46] 99.0 [55, 56] 98.9
SB2 [68, 68] 97.2 [62, 62] 99.8 [41, 42] 98.8 [57, 58] 98.6
SB3 [66, 66] 98.4 [63, 63] 99.7 [33, 34] 99.3 [54, 54] 99.1
WLK [72, 72] 98.2 [65, 65] 99.8 [43, 46] 97.9 [60, 61] 98.6
WWLK [77, 78] 97.8 [65, 67] 98.1 [42, 46] 97.8 [61, 63] 97.9
WWLKθ [78, 78] 96.8 [67, 68] 98.1 [48, 48] 96.7 [64, 65] 97.2

Table 5.7: Retrospective sub-sample quality analysis of BAMBOO graph quality and sensitivity
of metrics. All values are Pearson’s ρ×100. Metric Human Agreement (MHA): [x,y],
where x is the correlation (to human ratings) when the metric is executed on the uncor-
rected sample and y is the same assessment on the manually post-processed sample.

Our findings in Table 5.6 show a clear trend: treating AMR graphs as graphs with
undirected edges offers better results than TOP-DOWN (e.g., WWLK-1.6 amean; -6.6
hmean) and considerably better results when compared to WLK in BOTTOM-UP mode
(e.g., WWLK-3.7 amean; -18.9 hmean). Overall, 2WAY behaves similarly to the standard
setup, with a slight improvement for WWLKθ . Notably, the symbolic WLK variant, that
does not use word embeddings, appears more robust in this experiment and differences
between the three directional setups are small.

5.3.4 Revisiting the data quality in BAMBOO .

Initial quality analyses (Section 5.2.1) suggested that the quality of BAMBOO is high,
with a large proportion of AMR graphs that are of gold or silver quality. In this experi-
ment, we study how metric rankings and predictions could change when confronted with
AMRs corrected by humans. From every data set, we randomly sample 50 AMR graph
pairs (300 AMRs in total). In each AMR, the human annotator searched for mistakes, and
corrected them.17

We study two settings. i) Intra metric agreement (IMA): For every metric, we calculate
the correlation of its predictions for the initial graph pairs versus the predictions for the

17Overall, few corrections were necessary, as reflected in a high SMATCH between corrected and uncor-
rected graphs: 95.1 (STS), 96.8 (SICK), 97.9 (PARA).
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graph pairs that are ensured to be correct. Note that, on one hand, a high IMA for all

metrics would further corroborate the trustworthiness of BAMBOO results. However,
on the other hand, a high IMA for a single metric cannot be interpreted as a marker
for this metric’s quality. I.e., a maximum IMA (1.0) could also indicate that a metric
is completely insensitive to human corrections. Furthermore, we study ii) Metric human
agreement (MHA): Here, we correlate the metric scores against human ratings, once when
fed the fully gold-ensured graph pairs and once when fed the standard graph pairs. Both
measures, IMA, and IAA, can provide us with an indicator of how much metric ratings
would change if BAMBOO would be fully human corrected.

Results are shown in Table 5.7. All metrics exhibit high IMA, suggesting that po-
tential changes in their ratings, when fed gold-ensured graphs, are quite small. Further-
more, on average, all metrics tend to exhibit slightly better correlation with the human
when computed on the gold-ensured graph pairs. However, supporting the assessment
of IMA, the increments in MHA appear small, ranging from a minimum increment of
+0.3 (SEMBLEU) to a maximum increment of +2.8 (S2MATCH), whereas WWLK yields
an increment of +1.8. Generally, while this assessment has to be taken with a grain of salt
due to the small sample size, it overall supports the validity of BAMBOO results, and
indicates that all metrics may profit from accurate parsing.

5.3.5 Alignment discussion

Align or not align? We can group metrics for graph-based meaning representations into
whether they compute an alignment between AMRs or not (Liu et al., 2020). A computed
alignment, as in SMATCH, has the advantage that it lets us assess finer-grained AMR
graph similarities and divergences, by creating and exploiting a mapping that shows which
specific substructures of two graphs are more or less similar to each other. On the other
hand, it was still an open question whether such an alignment is worth its computational
cost and enhances similarity judgments.

Experiments on BAMBOO provide novel evidence on this matter: alignment-based
metrics may be preferred for better accuracy. Non-alignment based metrics may be
preferred if speed matters most. The latter situation may occur, e.g., when AMR metrics
must be executed over a large cross-product of parses (for instance, to semantically cluster
sentences from a corpus). For a balanced approach, WWLKΘ offers a good trade-off:
polynomial-time alignment and high accuracy.
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Figure 5.3: WWLK alignments and metric scores for dissimilar (top, STS) and similar (bottom,
SICK) AMRs. Excavators indicate heavy Wasserstein work f low · cost.

Example discussion I: Wasserstein transportation analysis explains disagreement.
Figure 5.3 (top) shows an example where the human-assigned similarity score is relatively
low (rank 1164 of 1379). Due to the graphs having the same structure (x arg0 y; x arg1 z),
the previous metrics (except SEMA) tend to assign similarities that are relatively too high.
In particular, S2MATCH finds the exact same alignments in this case, but cannot assess
the concept-relations more deeply. WWLK yields more informative alignments since they
explain its decision to assign a more appropriate lower rank (1253 of 1379): substantial
work is needed to transport, e.g., carry-01 to slice-01.

Example discussion II: the value of n:m alignments. Figure 5.3 (bottom) shows that
WWLK produces valuable n:m alignments (play-11 vs. make-01 and music), which are
needed to properly reflect similarity (note that SMATCH, WSMATCH and S2MATCH only
provide 1-1 alignments). Yet, the example also shows that there is still a way to go. While
humans assess this near-equivalence easily, providing a relatively high score (rank 331
of 4972), all metrics considered in this section, including ours, assign relative ranks that
are too low (WWLK: 2624). Future work may incorporate external PropBank (Palmer
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et al., 2005) knowledge into AMR metrics. In PropBank, sense 11 of play is defined as
equivalent to making music.

5.3.6 Conclusions from BAMBOO results

BAMBOO is the first benchmark that allows researchers to assess AMR metrics empir-
ically, setting the stage for future work on graph-based meaning representation metrics.
We showcase the utility of BAMBOO , by applying it to profile MR metrics, uncover-
ing hitherto unknown strengths or weaknesses. We also saw that through BAMBOO

we are able to gain novel insight regarding suitable hyperparameters of different metric
types, and to gain novel perspectives on how to further improve AMR similarity metrics
to achieve better correlation with the degree of meaning similarity of paired sentences, as
perceived by humans.
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P1
P2P3

P4
r = 1-IAA

Figure 5.4: Sketch of MR IAA ball. The center (P1) is a reference MR, while P2, P3, P4 are
candidates. Any MR x from the ball has high structural SMATCH agreement with
P1, i.e., SMATCH(x,P1) ≥ estimated human IAA. However, they may fall in different
categories: H (green cloud) contains correct MR alternatives. Its superset A (light
cloud) contains acceptable MRs that may misrepresent the sentence meaning up to
a minor degree. Other parses from the ball, e.g., P2, mis-represent the sentence’s
meaning – despite possibly having higher SMATCH agreement with the reference than
all other candidates.

5.4 Evaluating strong parsers with automatic and human
AMR metrics

Now we’d like to test all the metrics that we have visited in a very classical applica-
tion: evaluation of a mono-lingual parser against a gold reference corpus. Nowadays,
this is particularly interesting, since thanks to astonishing recent advances in AMR pars-
ing (mainly powered by the language modeling and fine-tuning paradigm (Bevilacqua
et al., 2021)) we have parsers that now achieve benchmark scores that surpass IAA esti-
mates, according to SMATCH.18 Therefore, we lack clarity on whether (fine) differences
in SMATCH scores i) can be attributed to minor but valid divergences in interpretation
or MR structure, as they may also occur in human assessments, or ii) if they constitute
significant meaning distorting errors.

This fundamental issue is outlined in Figure 5.4. Four parses are located in the ball
B(P1,SMATCH) of estimated IAA, (gold) parse P1 being the center. However, the true set
of possible human candidates H is very likely much smaller than the ball and its shape

18Banarescu et al. (2013) find that an (optimistic) average annotator vs. consensus IAA, as measured in
SMATCH, was 0.83 for newswire and 0.79 for web text. When newly trained annotators doubly annotated
web text sentences, their annotator vs. annotator IAA was 0.71. Recent BART and T5 based models range
between 0.82 and 0.84 SMATCH F1 scores.
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is unknown.19 Besides, a superset of H is a set of acceptable parses A , i.e., parses that
may have a small flaw which does not significantly distort the sentence meaning. Now,
it can indeed happen that parse P2, as opposed to P3, has a lower distance to reference
P1, i.e., to the center of B(SMATCH) – but is not found in A ⊇H , which marks it as
an inaccurate candidate. On the other hand, P4 is contained in A , but not in H , which
would make it acceptable, but less preferable than P3.

Research questions. Triggered by these considerations, we now tackle these key ques-
tions: Do high-performance MR parsers indeed deliver accurate semantic graphs, as

suggested by high benchmark scores that surpass human IAA estimates? Does a higher

SMATCH against a single reference necessarily indicate better overall parse quality? And
what steps can we take to mitigate potential issues when assessing the true performance

of high-performance parsers?

5.4.1 Study Setup: Data creation and MR metric setup

In this Section, we apply two popular high-performance parsers for creating candidate
AMRs. Then we describe the human quality annotation, and give an overview of auto-
matic AMR metrics that we consider in our subsequent studies.

Parsers and corpora. We choose the AMR3 benchmark20 and the literary texts from
the freely available Little Prince corpus.21 As parsers we choose T5- and BART-based
systems, both on par with human IAA estimates, where BART achieves higher (SMATCH)
scores on AMR3.22 We proceed as follows: we 1. parse the corpora with T5 and BART
parsers and use SMATCH to select structurally diverging parse candidate pairs, and 2.
sample 200 of those pairs, both for AMR3, and for Little Prince (i.e., 800 AMR candidates
in total).

Annotation dimensions

Annotation dimension I: pairwise ranking. A human annotator is presented the sen-
tence and two candidate graphs, assigning one of three labels and a free-text rationale.

19Under the unrealistic assumptions of an omniscient annotator and AMR being the ideal way of meaning
representation, one might require that H always has exactly one element.

20LDC corpus LDC2020T02
21From https://amr.isi.edu/download.html
22See https://github.com/bjascob/amrlib-models for more benchmarking statistics.

LDC2020T02
https://amr.isi.edu/download.html
https://github.com/bjascob/amrlib-models
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-----------------Reference AMR and Sentence------------------
(l / look-over-06 ‘‘Looking over to the flag’’

:arg1 (f / flag))
---------------------Candidate parses------------------------
(l / look-01 (z0 / look-01

:direction (o / over) :arg2 (z1 / flag)
:destination (f / flag)) :direction (z2 / over))

---------------------------Eval------------------------------
Smatch (ref, cand): both score 0.2 (indicates low quality)

Human (sent, cand): both are acceptable

Human (cand, cand): no preference
-------------------------------------------------------------

Figure 5.5: Data example: acceptable, low SMATCH. That is, P ∈H but P /∈ B(SMATCH,re f ).

----------------Reference AMR (excerpt)--------------------
(i2 / imagine-01

:arg0 (y / you)
:arg1 (a / amaze-01

:arg1 (i / i)))
:time-of (w / wake-01

:arg0 (v / voice
:mod (o / odd)
:mod (l / little))

:arg1 i))))))
----------------Candidate parse (excerpt)--------------------
(ii / imagine-01

:arg0 (y / you)
:arg1 (a / amaze-01

:arg0 (v / voice
:mod (l / little)
:mod (o / odd))

:arg1 (ii2 / i)))

Means: (..) imagine my amazement (..) by an odd little voice
Should mean: (..) imagine my amazement (..) when I was

awakened by an odd little voice
---------------------------Eval------------------------------

Smatch (ref, cand): scores 0.88 (indicates high quality)

Human (sent, cand): not acceptable
-------------------------------------------------------------

Figure 5.6: Data example excerpt that shows an unaccaptable parse with high SMATCH. That is,
P 6∈A ⊇H but P ∈ B(SMATCH,re f )

The labels are either +1 (prefer first graph), −1 (prefer second graph), or 0 (both are of
same or very similar quality).

Annotation dimension II: parse acceptability. In addition, each graph is indepen-
dently assigned a single label, considering only the sentence that it is supposed to rep-
resent. Here, the annotator makes a binary decision: +1, if the parse is acceptable, or 0,
if the graph is not acceptable. A graph that is acceptable is fully valid, or may allow a
very minor meaning deviation from the sentence, or a slightly weird but allowed interpre-
tation that may differ from a normative interpretation. All other graphs are deemed not
acceptable (0).

Example: Acceptable candidates, low SMATCH. Figure 5.5 shows an example of two
graphs that have very low structural overlap with the reference (SMATCH = 0.2), but are
acceptable. Here, the candidate graphs both differ from the reference because they tend
to a more conservative interpretation, using the more general look-01 predicate instead of



102 Chapter 5. Extended empirical studies on MR metrics

the look-over-06 predicate in the human reference. In fact, the meaning of the reference
can be considered, albeit valid, slightly weird, since look-over-06 is defined in PropBank
as examining something idly, which is a more ‘specific’ interpretation of the sentence in
question. On the other hand, the candidate graphs differ from each other in the semantic
role assigned to flag. In the first, flag is the destination of the looking action (which
can be accepted), while in the second, we find a more questionable but still acceptable
interpretation that flag is an attribute of the thing that is looked at.

Example: Candidate not acceptable, high SMATCH. An example that is inverse (high
SMATCH, unacceptable) is shown in Figure 5.6, where the parse omits awaken. Albeit
the factuality of the sentence is not (much) changed, and the structural deviation may
legitimately imply that the odd voice is the cause of amazement, it misses a relevant piece
of meaning and is therefore rated unacceptable.

Label statistics will be discussed in Section 5.4.2, where the human annotations are
also contrasted against parser rankings of automatic metrics.

Metric selection

We distinguish metrics that aim specifically at monolingual AMR parsing evaluation from
multi-purpose MR metrics that aim at generalized use-cases. Recall that MR metrics that
are more targeted to evaluation of monolingual parsers typically have two features in
common. First, they compare a candidate against a reference parse that both (try to) rep-
resent the same sentence. Second, they measure the amount of successfully reconstructed
reference structure.23

We also consider our novel multi-purpose MR metrics that aim to extend to use cases
where MRs represent different sentences, such as evaluation of cross-lingual MR parsing,
natural language generation (NLG) or rating semantic sentence similarity.

Monolingual AMR parsing metrics. We consider SMATCH, SEMA and SEMBLEU, as
previously introduced. Recall that, per default, SEMBLEU uses k=3. But we additionally
use k=2, following our insights from evaluation on BAMBOO (cf. Section 5.2), where
we found that k=2 better relates to human notions of sentence similarity.

23The notion of success is mostly focused on structural matches, and can vary among metrics, usually
depending on theoretical arguments of the developers of the metric.
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Multi-purpose metrics: S2MATCH and WLK/WWLK. Targeting AMR metric applica-
tion cases beyond monolingual parsing evaluation, such as measuring AMR similarity of
different sentences, we introduced three metrics: i) S2MATCH that computes graded con-
cept similarity (reflecting that, e.g., cat is more similar to kitten than to plant). ii) WLK

applies the Weisfeiler-Leman kernel (Shervashidze et al., 2011) to compute a similarity
score over feature vectors that describe graph statistics in different iterations of node con-
textualization. iii) WWLK (Wasserstein WLK, Togninalli et al. (2019)) projects the nodes
of the graphs to a latent space partitioned into different degrees of node contextualization.
Wasserstein distance is then used to match the graphs, based on a pair-wise node distance
matrix.

Setup of multi-purpose metrics. For S2MATCH, WLK and WWLK we use the default
setup, which consists of GloVe (Pennington et al., 2014a) embeddings and k=2 in WLK

and WWLK, where k indicates the depth of node contextualizations.
Default WWLK initializes parameters randomly, if tokens are out of vocabulary (a

random embedding for each OOV token type). To achieve deterministic results, without
fixing a random seed, we could initialize the OOV parameters to 0. However, with this
we’d lose valuable discriminative information on graph similarity. We therefore adopt a
slight adaptation for WWLK and calculate the expected distance matrix before Wasserstein
metric calculation, making results more reproducible while keeping discriminative power.

We also introduce WWLK-k3e2n, a WWLK variant with edge2node (e2n) transforms,
more tailored to monolingual AMR parsing evaluation, which is the focus of this section.
It increases the score impact of edge labels, motivated by the insight that edge labels are
of particular importance in AMR parsing evaluation. It transforms an edge-labeled graph
into an equivalent graph without edge-labels.24 This is also known as ‘Levi transform’
(Levi, 1942), and has been previously advocated for AMR representation by Beck et al.
(2018) and Ribeiro et al. (2019). Since due to the transform the distances in the graph
will grow, we increase k by one (k=3). With this, we can set all edge weights to 1.

Simple baseline

To put the results into perspective, we introduce a very SIMPLE baseline: SIMPLE extracts
bag-of-words (relation and concept labels) from two AMR graphs and computes the size
of their intersection vs. the size of their union (aka Jaccard Coefficient).

24E.g., (x,arg0,z)→ (x,y)∧ (y,z)∧ (y,arg0).
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5.4.2 Study I: System-level scoring

Research questions. We focus on two questions:

1. How are the two parsers rated by humans?

2. How do metrics score our two parsers?

With 1. we aim to assess whether there is still room for AMR parser improvement,
even though their SMATCH scores pass estimated human IAA. And for 2. we aim to know
whether the metric rankings (still) appropriately reflect parser quality.

System scoring

Aggregation strategies: Micro vs. Macro. We have defined a metric between two
AMRs. For ranking systems, we need to aggregate the individual pair-wise assessments
into a single score. At this point, it is important to note that most papers use (only) micro
SMATCH for ranking parsers, i.e., counting triple matches of aligned AMR pairs over all
AMR pairs (before a final F1 score calculation).

Naturally, such micro corpus statistics are unbiased w.r.t. to whatever is defined as a
single evaluation instance (in SMATCH: triples), but the trade-off is that they are biased
towards instance type frequency and sentence length, since longer sentences tend to yield
substantially more triples. Hence, the influence of a longer sentence may marginalize
the influence of a shorter sentence. This issue may be further aggravated by the fact that
longer sentences tend to contain more named entity phrases, and entity phrases typically
trigger large simple structures, that are mostly easy to project.25 Therefore, micro corpus
statistics alone could potentially yield an incomplete assessment of parser performance.
To shed more light on this issue, we provide additional evaluation via macro aggregation.

Statistics for micro and macro system scoring. We calculate two statistics. The first
statistic shows the (micro/macro)-aggregated corpus score for a metric m, parsed corpus
X and gold corpus G:

S(m,X ,G)

= AGGR({m(X1,G1), ...,m(Xn,Gn)}),
25As a small example, consider The bird sings vs. Jon Bon Jovi sings. The first sentence yields 3 triples,

while the second sentence yields 8 triples, where the John Bon Jovi named entitiy structure has added 6
triples, outweighing the key semantic event x sings. Micro score would assign 2.6 times more importance
to the second sentence/AMR.
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Little Prince AMR3
P S P S

BART T5 ∆ BART T5 ∆ BART T5 ∆ BART T5 ∆

M
ac

ro

HUM 87 113 -26 0.58 0.69 -0.11 100 100 0.0 0.62 0.62 0.00

SIMPLE 87 113 -26 0.69 0.7 -0.01 82 118 -36 0.75 0.75 0.00

SEMA 84 116 -32 0.6 0.63 -0.03 89 111 -22 0.68 0.68 0.00
SEMBLEU-k2 90 110 -20 0.61 0.63 -0.02 98 102 -4 0.70 0.69 0.01
SEMBLEU-k3 90 110 -20 0.51 0.53 -0.02 103 97 6 0.58 0.58 0.00
SMATCH 94 106 -12 0.73 0.74 -0.01 95 105 -10 0.77 0.77 0.00
S2MATCH 93 107 -14 0.75 0.76 -0.01 95 105 -10 0.79 0.79 0.00
WLK-k2 92 108 -16 0.63 0.65 -0.02 96 104 -8 0.69 0.69 0.00
WWLK-k2 91 109 -18 0.79 0.8 -0.01 102 98 4 0.84 0.84 0.00
WWLK-k3e2n 97 103 -6 0.72 0.73 -0.01 94 106 -12 0.78 0.78 0.00

M
ic

ro

SEMA - - - 0.62 0.64 -0.02 - - - 0.69 0.68 0.01
SEMBLEU - - - 0.53 0.54 -0.01 - - - 0.60 0.57 0.03
SMATCH - - - 0.74 0.74 -0.01 - - - 0.77 0.75 0.02
S2MATCH - - - 0.76 0.76 0.00 - - - 0.80 0.77 0.03

Table 5.8: Corpus level scoring results. Negative ∆ shows preference for T5, positive ∆ shows
preference for BART.

For macro metrics, AGGR is the mean of pair-wise scores over all instances in a corpus
X . In the case of the human metric, this is the ratio of acceptable parses in X . For micro
metrics, AGGR computes overall matching triple F1 (SMATCH, SEMA) or overall k-gram
BLEU (SEMBLEU). For WLK and WWLK, a micro variant is not implemented, hence we
only show their macro scores.

The second statistic shows how often m prefers the parses in a parse corpus X over the
these in Y :

P(m,X ,Y,G) =
n

∑
i=1

I[m(Xi,Gi)> m(Yi,Gi)].

Here, I[c] denotes a function that returns 1 if the condition c is true, and zero in all
other cases. For better comparability of numbers, we distribute cases where m(Xi,Gi) =

m(Yi,Gi), which occur in the human annotation, evenly over P(m,X ,Y,G) and P(m,Y,X ,G).

Results

Results are shown in Table 5.8. In view of our research questions, we make interesting
observations.
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AMR parsing is far from solved. Considering the ratio of parses that were rated ac-
ceptable by the human (HUM, S), they are surprisingly low, at only 0.58 (BART, Little
Prince, Table 5.8); 0.69 (T5, Little Prince). Other parses have errors that substantially
distort sentence meaning, even though major parts of the AMRs may structurally overlap.

Better SMATCH on AMR benchmark may not (always) imply a better parser. On
AMR3, when inspecting corpus-SMATCH (micro SMATCH, Table 5.8), BART is consid-
ered the better parser, in comparison to T5 (+2 points). However, when consulting macro
statistics, a different picture emerges. Here, BART and T5 obtain the same scores: AMR3,
0.62 vs. 0.62, Table 5.8. On the literary texts (Little Prince), where the domain is differ-
ent and sentences tend to be shorter, T5 significantly (binomial test, p<0.05) outperforms
BART, both in the ratio of acceptable sentences (BART: 0.58, T5: 0.69), and in number
of preferred candidates (BART: 87, T5: 113). Note that this insight is independent from
our human annotations.

Figure 5.7: Sentence length vs. human acceptability on all annotated data. 55 includes all sen-
tences longer than 55 tokens. See Figure 5.9 for occurences of different sentence
lengths.

All in all, this may suggest that BART tends to provide better performance for longer
sentences, while T5 tends to provide better performance especially for shorter and medium-
length sentences. Further analysis provides more evidence for this: In Figure 5.7 and
Figure 5.8) we see that the longer the sentences the better seems the prediction by BART.
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Figure 5.8: Sentence length vs. Smatch on all annotated data. 55 includes all sentences longer
than 55 tokens. See Figure 5.9 for occurences of different sentence lengths. Other
metrics look similar.

While, the inverse picture emerges for T5. This could point at simple improvement po-
tential by T5, when the longer sentences can be reasonably split before parsing and well
fused together after parsing. For total sentence length distribution see Figure 5.9.

Metrics for system ranking. Regarding our tested metrics, especially the macro met-
rics, a clear pattern is that they mostly agree with the human ranking. However, our cur-
rent results for the different metrics do not tell much, yet, about their suitability for AMR
assessment and ranking. Even if a metric ranks a parser more similarly to the human, this
may be for the wrong reasons, since this statistic filters out pair-wise correspondences
to the human. This is also indicated by results of the simplistic bag-of-structure metric
SIMPLE, which achieves the same results as human (HUM) on Little Prince, with respect
to the number of preferred parses (P, Little Prince, Table 5.8, HUM vs. SIMPLE). In that
respect, it is more important to assess the pair-wise metric accuracy and metric specificity,
which we will visit next in Sections 5.4.3 and 5.4.4.

5.4.3 Study II: Metric accuracy on parse level

Research questions. Now, we are interested in the metric accuracy, that is, agreement
of AMR metrics with the human ratings. In particular, we would like to know, regarding:
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Figure 5.9: Sentence length occurrences. 55 includes all sentences longer than 55 tokens.

• Pair-wise parse accuracy: How do metrics agree with human preferences when
ranking two candidates?

• Individual parse accuracy: Can metrics tell apart acceptable from unacceptable
parses?

Note that these are hard tasks for metrics, since both T5 and BART show performance
levels on par or above estimated measurements for human IAA. Therefore, smaller struc-
tural divergences from the reference can potentially have a bigger impact on parse accept-
ability (or preference) than larger structural deviations, that could express different (but
valid) interpretations or (near-)paraphrases.

Evaluation metrics

Pairwise accuracy. Recall that the human assigned one of three ratings: 1, if AMR
x is better, −1, if AMR y is better, and 0 if there is no considerable quality difference
between two candidate graphs x and y. A metric assigns two real values, m(x,g) and
m(y,g), where g is the reference graph. Mapping the score to −1 or 1 is simple and intu-
itive, prompting us to introduce pair-wise accuracy. Consider a data set SD that contains
all graph triplets (x,y,g) with a human preference sign (label −1 or +1). Further, let
δ m(x,y,g) = m(x,g)−m(y,g) the (signed) quality difference between x and y when using
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m. Analogously δ h(x,y) is the human preference. Then, the pairwise accuracy is

PA =
1
|D| ∑

(x,y,g)∈D
I[δ m(x,y,g) ·δ h(x,y)> 0]. (5.8)

It measures the ratio of candidate pairs where the metric has made the same signed deci-
sion as the human, in preferring one parse over the other.

Acceptability score. When rating acceptability, the human rates a single parse (given
its sentence), assigning 1 (acceptable) or 0 (no acceptable). The metrics make use of
the reference graph to compute a score. Aiming at an evaluation metric that makes as
few assumptions as possible, we formulate the following expectation for an AMR graph
metric to fulfill: the average rank of the scores for parses that have been labeled acceptable
by the human should surpass the average rank of the scores for parses labeled as being
not acceptable. Let I + (I −) be the set of indices for which the human has assigned a
label that indicates (un-)acceptability. Let S = {m(X1,G1)...m(Xn,Gn)} be the metric m’s
scores over all (x,g) parse/reference pairs, and R be the ranks of D. Let R+ (and R−) be
the set of ranks indexed by I + (and I −). Then

A∆ = avg(R+)−avg(R−) (5.9)

To increase robustness, we use avg := median.

Results

The results are shown in Table 5.9. We conclude:

All metrics are suitable for pairwise-ranking of parses from high-performance parsers.
All metrics significantly outperform the random baseline with regard to the pair-wise
ranking accuracy (PA). For Little Prince, SMATCH and S2MATCH yield the best perfor-
mance, while for AMR3, WWLK-k3e2n has the best performance (closely followed by
SEMBLEU-k2). Among different metrics, however, the differences are not large enough
to confidently recommend one metric over the other.

Parse acceptability rating is hard. When tasked to rate parse acceptability (A∆), all
metrics show issues. For Little Prince, only SMATCH and WWLK-k3e2n significantly out-
perform the chance baseline, while for AMR3 all metrics are significantly above chance



110 Chapter 5. Extended empirical studies on MR metrics

Little Prince AMR3
PA A∆ PA A∆

HUM 1.0 233 1.0 234

RAND 0.5 0.0 0.5 0.0

SIMPLE 0.66† 11.0 0.68† 39.5†

SEMA 0.66† 24.3 0.7† 35.3†

SEMBLEU-k2 0.67† 25.0 0.74† 28.0
SEMBLEU-k3 0.63† 32.0 0.68† 29.0
SMATCH 0.72† 42.0† 0.7† 35.0†

S2MATCH 0.72† 35.3 0.7† 42.3†

WLK 0.66† 28.0 0.68† 41.5†

WWLK-k2 0.63† 20.5 0.73† 51.0†

WWLK-k3e2n 0.66† 48.0† 0.76† 57.0†

Table 5.9: Metric agreement with human. †: random baseline (RAND) not contained in 95%
confidence interval.

level, except SEMBLEU. Overall, however, the differences are not large enough to confi-
dently recommend one metric over the other. On both corpora, best results are achieved
with WWLK-k3e2n (Little Prince: 48.0, AMR3: 57.0).

Control experiment of metrics. We additionally parse a subset of 50 sentences with
an older parser (Flanigan et al., 2014) that scores more than 20 points lower SMATCH,
when compared with IAA as estimated in Banarescu et al. (2013). All metrics (with
the exception of SIMPLE for one pair) correctly figure out all rankings and acceptability
(according to the human, BART and T5 are preferred in all cases, except two cases where
all three systems deliver equally valid graphs). This indicates that metrics indeed can
accurately tell apart quality differences, if they are large enough and do not lie beyond
human IAA.

5.4.4 Metric specificity

We found little evidence that could help us give recommendations on which metrics to
prefer over others for monolingual parser evaluation in the high-performance regime. On
the contrary, we found evidence that no metric can sufficiently assess parse acceptability.
Therefore, it is interesting to see whether the metrics can provide specific views on parse
quality and behaves differently from other metrics.
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Figure 5.10: Inter-metric correlation on Little Prince.

Statistics. We compute Spearman’s ρ over metric pairs. Spearman’s ρ calculates Pear-
son’s ρ on the ranked predictions, which increases robustness.

Results are plotted in Figures 5.10 and 5.11. For both datasets, we see that the Wasser-
stein metrics provide rankings that differ more from the rankings assigned by other met-
rics, suggesting that they have unique features. On the other hand, the SEMBLEU met-
rics tend to agree the most with the rankings of the other metrics, suggesting that they
share more features with other metrics. On a pair-wise level, the most similar metrics are
SMATCH and S2MATCH, which is intuitive, since S2MATCH is an adaptation of SMATCH

that also targets the comparison of AMRs from different sentences. Indeed, synonyms and
similar concepts are unlikely to often occur in monolingual parsing, where parses contain
exactly matching concepts. Further, WLK very much agrees with SEMBLEU, which seems
intuitive, since both aim at comparing larger AMR subgraphs. Lowest agreement is exhib-
ited between SEMA and WWLK, perhaps because these metrics are of different complexity
and share different goals: simple and fast match of structures vs. graded assessment for
general AMR similarity.
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Figure 5.11: Inter-metric correlation on AMR3.

5.5 Discussion of limitations and recommendations for
evaluating strong AMR parsers

5.5.1 Limitations

There are limitations of our study:

Limitation I: Single vs. Double annotation. While our quality annotations stem from
an experienced human annotator, we would have liked to obtain annotations from a second
annotator to measure IAA for AMR quality rating. This was partly precluded by the high
costs of AMR annotation, which requires much time and experience. This is also reflected
in the AMR benchmark corpora: the majority of graphs were created by a single annotator.
Note, however, that some findings are independent of annotation (e.g., macro vs. micro
metric corpus scoring, metric specificity).

Limitation II: Assessing individual suitability of metrics for rating high-performance
parsers. Our study reports relevant findings on (monolingual) AMR parsing evaluation
in high-performance regimes, and on upper bounds of AMR parsing. But an important
question we had to leave open is the individual suitability of the metrics for comparing
high-performance parsers.
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Limitation III: Single-reference parses and ambiguity. Elaborating on Limitation II

and recalling that AMR benchmarks have only single references, another caveat is that
potentially correct metric behavior may be misinterpreted in our study. E.g., if a sentence
allows two different interpretations, a metric might (correctly) yield a low score for the
reference (different meaning), while the (reference-less) human rating may find the parse
acceptable. This issue may also be mitigated by providing (costly) double annotation of
AMR benchmark sentences.

To facilitate follow-up research, we release the annotated data. Our Little Prince an-
notations can be freely released, while AMR3 annotations require proof of LDC license.

5.5.2 Recommendations for parser selection and metric improvement
perspectives

Main recommendations based on our study:

Recommendation I Besides micro aggregate scores we recommend using a macro ag-
gregate score for parse evaluation (e.g., macro SMATCH, computed as an average
over sentence scores): Commonly, only micro corpus statistics are used to com-
pare and rank parsers. Yet, we found that macro (sentence-average) metrics can
provide a valuable complementary assessment that can highlight important addi-

tional strengths of high-performance parsers.

Recommendation II We recommend conducting more human evaluation of AMR parses.
With the available high-performance AMR parsers, it becomes more important to
conduct manual analyses of parse quality. Our study provides evidence that AMR
parsing still has large room for improvement, due to small but significant errors.
Since this may not be noticeable for (current) metrics when given a single human
reference, future work on parsing may profit from careful human acceptability
assessments.

T5 vs. BART: which parser to prefer? Next to AMR parser developers, this question
mainly concerns potential users of AMR parsers. Fine-tuned T5 and BART are both pow-
erful AMR parsers. We observe a slight tendency that researchers prefer BART, possibly
since it achieves slightly better SMATCH scores than T5 on the AMR3 benchmark. But
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our work shows that differences between the systems are often finer than what can be as-
sessed with structural overlap metrics (SMATCH), and both systems are generally strong
but struggle with small but significant meaning errors.

In our study we found that when choosing between T5 and BART based AMR sys-
tems, the choice might depend on the target domain. Indeed, our results on Little
Prince and AMR3 (mainly news) could indicate that T5 may have an edge over BART
when parsing literary texts, and shorter sentences in general, while BART has an edge
over T5 when parsing longer sentences, and sentences from news sources, especially
if they are longer. However, it must be clearly noted that we do not know (yet) whether
this insight carries over to other types of literary texts.

Perhaps, if we presume that performance is carried over to other types of literary texts,
a possible explanation can be found in the data these two large models were trained on.
BART uses the same training data as RoBERTa (Liu et al., 2019a), e.g., Wikipedia, book
corpora and news. T5 leverages the colossal common crawl corpus (C4), that contains all
kinds of texts scraped from the web. This could make T5 more robust to AMR domain
changes, but less suitable for analysing longer sentences, since these may occur more
frequently in BART’s corpora that seem more normative.

Which AMR metric to use? Our findings do not provide conclusive evidence on
this question, partly due to insufficient data size, partly due to the general difficulty of
the task. WWLK-k3e2n seems slightly more useful for detecting parse acceptability and
pairwise ranking on news, while SMATCH yields best ranking on Little Prince.

However, our work shows that it can be useful to calculate more than one met-
ric to compare parsers. In particular, we saw that predictions of structural matching
metrics differ considerably from graded semantic similarity-based metrics, such as the
WWLK metric variants. This suggests that these two types can provide complementary
perspectives on parsing accuracy. Metric selection may, of course, also be driven by users’
specific desiderata, such as speed (SEMA, SEMBLEU, WLK), 1-1 alignment (SMATCH),
n:m alignment (WWLK), or graded matching (SMATCH, WWLK).

5.6 Discussion

In this chapter, we empirically investigated MR metrics. Through our BAMBOO bench-
mark, we can investigate MR metrics with regard to two main objectives: sentence simi-
larity and robustness to meaning-preserving and meaning-changing graph translation (for
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Figure 5.12: Snippet from BAMBOO versioning on GitHub: https://github.com/fli
pz357/bamboo-amr-benchmark.

an overview of some translations, recall Figure 2.1.2). We find that our WWLK metrics
provide a valuable balance of efficiency and accuracy across the different objectives. For
MR parsing evaluation, we investigated the capacity of metrics to discriminate MR parsers
– based on a single gold reference. We find that if the parsers are of very different quality,
discrimination is possible using any of the examined metrics. However, if both parsers
are strong, all metrics struggle to provide us with a meaningfully differentiating picture.
As of now, it remains an open question whether this is mainly due to issues in metrics
or the fact that a single gold reference does not offer multiple interpretations, which can
easily arise if there is not sufficient semantic context, as is generally the case in many
sentences. To investigate this we require the design of more tests (possibly integrated into
BAMBOO ) and need to develop metrics that can ideally take into account different inter-
pretations without over-focusing on a single-reference. As a seemingly simple but very
costly alternative or complement, we can consider to establish double annotation of MR
reference. Importantly, a conjecture of our study is that AMR parsing is far from solved.26

5.7 Creating a live benchmark with metric versioning

Benchmark results that are displayed in a static table ‘on paper’ have disadvantages,
mainly due to being hard to update and extend. Indeed, concrete metric implementa-
tions are software, and software is bound to undergo changes, e.g., due to fixing bugs or
implementing incremental improvements. These modifications might not change much
the nature of a metric, but the practical reality is that they could lead to slight changes

26An insight that now also has been corroborated by Groschwitz et al. (2023) who propose to address the
issue with challenge sets.

https://github.com/flipz357/bamboo-amr-benchmark
https://github.com/flipz357/bamboo-amr-benchmark
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in results. Similarly, the BAMBOO evaluation itself may also be subject to updates, for
instance, evaluation metrics could be improved, or sensible tasks be added. To better
trace such developments, it makes sense to treat a benchmark like a piece of software
and subject it to versioning. Therefore, we keep a official BAMBOO github repository
that invites researchers not only to post their metric results and compare against other
metrics, but also to improve or extend the benchmarking27 and allow us to keep metrics
and results updated, under full transparency by exactly showing which version (com-
mit uri) of a metric is used (Figure 5.12). The webpage of for our live benchmark is:
https://github.com/flipz357/bamboo-amr-benchmark.

27A constraint is that all data should be under public license. We have also considered to add the AMR
parser evaluation challenge to BAMBOO . However, then BAMBOO could not be freely distributed any-
more, due to parts of the parser evaluation challenge being under non-public license. Therefore, as long as
the license situation doesn’t change, we decide to abstain from including the parser evaluation challenge in
BAMBOO .

https://github.com/flipz357/bamboo-amr-benchmark
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Chapter 6

MRs in NLG evaluation

6.1 Chapter outline

In this chapter, we investigate MR metrics for an important NLP use-case where we have
to cope with the absence of (at least) one of two MRs: The evaluation of generated text.
While at first glance, this scenario seems to prevent us from directly applying MR metrics
(since at maximum only the input MR is at our hands), we show that we can project the
MRs with a strong parser and then execute our MR metrics, a very general method that
we call REMATCH (Reconstruction Match). Besides making feasible a meaning-focused
measurement, an additional advantage of such a projection is that in the setup of MR2text
generation, we can perform the evaluation without a costly human reference. Moreover,
the MR projection allows us to extend MR metric evaluation to all kinds of other gen-
eration evaluation tasks, such as machine translation or summarization, opening ways to
profit from the metrics’ controllable and interpretable way of taking measurements.

The remainder of this chapter is structured as follows:

1. After discussing our motivation in more detail (Section 6.2),

2. we formalize the problem of MR2text evaluation, and build a new metric that views
text quality as composed of Form and M eaning quality (MF score, Section 6.3).

3. We conduct two pilot studies: In Section 6.4, we re-rank NLG systems using our
novel metric, assessing its discriminatory power and potential for providing us with
coarse and fine-grained explanations for system quality scores. In our second pilot
study (Section 6.5), we probe drawbacks of our metric, such as its dependence on a
reliable MR parser or language model.

4. We conclude the chapter with a discussion (Section 6.6).
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Figure 6.1: The Canonical evaluation matches n-grams from the sentences and assigns inappropri-
ate ranks. Our metric MFβ fuses Meaning and Form assessment and better reflects
the ranking of the generations.

Underlying work. The content of this chapter is mainly based on work from Opitz and
Frank (2021).

6.2 Motivation: Why standard metrics are insufficient
for MR2text evaluation

Systems that generate texts from MR are evaluated by comparing the outputted text
against a reference. However, the usually applied text matching metrics are known to
suffer from issues such as high sensitivity to outliers (Mathur et al., 2020a), and lack of
interpretability (Sai et al., 2020). In fact, some of these issues get compounded when
evaluating MR2text. The core of the problem is that there are many ways to realize a
sentence from a meaning representation. Figure 6.1 shows four candidate sentences (i-iv)
for a given AMR (left).

One system generates (i): Maybe the cat is playing. while another generates (iii):
Perhaps, the cat plays the flute. Clearly, (i) captures the meaning of the gold graph better
than (iii), which contains ‘hallucinated’ content – a well-known issue in neural generation
(Logan et al., 2019; Wang and Sennrich, 2020).

Yet, when using a canonical metric such as BLEU to evaluate sentences (i) and (iii)
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against the reference, the system that produces hallucinations (iii) is greatly rewarded (54
BLEU points) to the disadvantage of systems that yield meaning preserving sentences (i)
(18 points) and (ii) (5 points).

Therefore, we now want to aim at a (better) metric that measures meaning preser-
vation of the generated output towards the MR given as input, by (re-)constructing an
AMR from the generated sentence and comparing it to the input AMR. In Figure 6.1,
Reconstruction is the result of parsing (iii). The reconstructed AMR exposes several
meaning deviations (marked in red): it contains an alternate sense of play and contains an
additional semantic role arg2 with filler flute. By contrast, when converting sentences (i),
(ii), or (iv) to AMRs, we obtain flawless reconstructions. We will measure preservation
of Meaning using our MR graph matching metrics.

Figure 6.1 also illustrates that assessing meaning preservation is not sufficient to rate
the quality of generations: (iv) captures the meaning of the AMR well – but its form
is flawed: it suffers from wrong verb inflection, a common issue in low-resource text
generation settings (Koponen et al., 2019).

In order to rate both meaning and form of a generated sentence, we combine the
score for meaning reconstruction with a score called Form that judges the sentence’s
grammaticality and fluency.

By these moves, we obtain a more suitable and explainable ranking with a combined
MF score.1 By clearly distinguishing between Meaning and Form, our MF score (hence-
forth denoted by MFβ ) also aligns well with recent calls to achieve a clearer separation
of these aspects in NLU (Bender and Koller, 2020).

Generally, next we’ll proceed as follows:

(1) We propose two linguistically motivated principles that aim at a sound evaluation
of MR2text systems, but may also extend to other generation tasks: the principle of
meaning preservation and the principle of (grammatical) form.

(2) From these principles we derive and implement a (novel) MFβ score for lan-
guage generation evaluatuon2 which is composed of individual metrics for transpar-
ently measuring and distinguishing meaning and form aspects. With a single parameter
(β ), MFβ allows users to modulate these two views on generation quality to vary their
impact on the final metric score.

1See Figure 6.1: 1st /2nd rank: i; 3rd rank: iv; 4th rank: iii.
2We make code available at https://github.com/Heidelberg-NLP/MFscore.

https://github.com/Heidelberg-NLP/MFscore
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(3) We conduct two major pilot studies involving (English) text generations from a range
of competitive MR2text systems and human annotations. First we study the potential
practical benefits of MFβ when evaluating systems, such as its prospects to offer inter-
pretability of scores and finer-grained system analyses. The second study probes potential
weak spots of MFβ , e.g., its dependence on a strong MR parser.

6.3 Casting meaning and form into a metric: MFβ

While current NLG metrics lack interpretability and mainly focus on the form of gen-
erated text (Sai et al., 2020), in this work we emphasize the meaning aspect in NLG
evaluation, which is most clearly dissociated from form when generating text from struc-
tured inputs such as MRs. At the same time, form and wording of the generated text
cannot be ignored, as we want such systems to produce natural and well-formed sen-

tences. Equipped with this two-fold objective, we start building our MFβ score which
aims at a balanced combination of both quality aspects: meaning and form.

6.3.1 From principles to MFβ

In a first step we introduce our

Principle of meaning M . Generated sentences should allow loss-less MR reconstruc-

tion.

This principle expresses a key expectation for a system that generates NL sentences
from abstract meaning representations. Namely, the generated sentence should reflect the
meaning of the MR. So, in order to assess whether a generated sentence s′ = f−1(m) is a
valid generation for the input MR m, rather than matching s′ against a reference sentence
s, we perform this assessment in the abstract MR domain, by applying an inverse system
f that parses the generated text back to an MR m′ = f (s′) = f ( f−1(m)). I.e., we desire a
metric: D×D → [0,1] that satisfies: s≡ s′⇐⇒metric(s,s′) = 1⇐⇒m = m′. Two texts
are equivalent iff their meaning abstractions denote the same meaning.

In case f (s′) yields an MR m′ 6= m, we can still determine the degree to which s′

preserves the meaning of MR m by measuring the distance between m and m′ with MR
metrics, e.g., MRmetric(m,m′), such as SMATCH, S2MATCH or WWLK.

Note that computing MRmetric(m,m′) does not depend on a reference sentence, be-
cause the comparison is conducted purely in the abstract domain. This is mathematically
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Figure 6.2: “Perhaps, the parrot is telling itself a story”.

more appealing for the evaluation of MR2text, since it solves the problem that one ab-
stract representation may result in various (valid) surface realizations (cf. Appendix A.1).
Finally, we also do not necessarily need to rely on a gold graph m, but can instead set
m = f (s), i.e., the parse of the reference sentence. This means that future application of
M to other kinds of text generation tasks is straightforward.

However, the principle M alone is not sufficient: we also expect the system to gen-
erate grammatically well-formed and fluent text. For example, s′: Possibly, it(self) tells

parrot a story. contains relevant content expressed in the AMR of Figure 6.2, but it is
neither grammatically well-formed, nor a natural and fluent sentence. This leads us to our

Principle of form F . Generated sentences should be syntactically well-formed, natural

and fluent.

In the style of the well-established Fβ score (Rijsbergen, 1979), we fuse these two
principles into the MFβ score:

MFβ = (1+β
2)

Meaning×Form
(β 2×Meaning)+Form

(6.1)

Here, Form and Meaning are expressed as ratios that will be more closely described in
the following section. β allows users to gauge the evaluation towards Form or Meaning,
depending on specific application scenarios. Users may prefer the harmonic mean (β =
1) or may give Meaning double weight compared to Form (e.g., β = .5).3

In our experiments we consider extreme decompositions into Meaning-only (β → 0)
or Form-only (β → ∞).

3Generally, Form receives β times as much importance compared with Meaning.
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6.3.2 REMATCH: Measuring meaning with MR and MR metrics

We measure M or Meaning (Meaning Preservation) with a score range in [0,1] by recon-
structing/projecting the MR with an accurate AMR parser and computing an MR graph
metric. We call this REMATCH (Reconstruction Match).

Given a generated sentence s′ and source AMR m, we match parse(s′) against m by
setting REMATCH(s′,m) := MRmetric(parse(s′),m). This means that we have to decide
upon parse and MRmetric. We propose two potential settings.

MR reconstruction. To reconstruct the MR with parse, we employ the parser of Cai
and Lam (2020a) that achieves high SMATCH scores around 80 points on AMR bench-
marks. We henceforth call it GSII. In our experiments we will also compare this parser
against less recent parsers, indicating that selecting a strong parser has positive effects on
the evaluation quality with MFβ score, and so the accuracy of MFβ may scale well
with further future parsing improvements.4

Assessing M with MR metrics. Besides having to select a parser for MR reconstruc-
tion, we have to select an MR metric. Now, having already studied and proposed MR
metrics, we can deliberately pick a suitable metric: Since the scenario of MR-based text
evaluation is still restricted in the sense that any two inputted structures strongly relate
to the same/similar sentence/grounding, a structural metric like SMATCH seems sufficient
and also provides very interpretable results, due to conforming to many of our principles,
particularly PVII that ensures that the score is proportional to the amount of shared sym-
bolic MR triples. However, due to potential noise in system outputs and different options
to project similar abstract concepts (e.g., location, place, ...), we would also like to have a
graded concept match, to help compensate for noise of minor lexical deviations from the
original sentence all while keeping the score calculation most transparent. This parame-
terization can be achieved with S2MATCH (see Section 4.3.2), which we henceforth set as
the default for our experiments on NLG evaluation with MR metrics. However, we will
later also inspect how/if system rankings can be affected by usage of other MR metrics.

4Recall, however, that as we found out in Section 5.4, benchmarking of strong parsers is an open prob-
lem. But since the scores of the default parser in MFβ are on par with human measured IAA (in SMATCH),
we can confidently assume that a large proportion of projected meaning triples will be correct. Still, fu-
ture work should strongly consider using the best parser available and determine this best parser through
improved evaluation.
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Discussion. Comparing to references by matching their meaning graphs has the prospect
of offering interpretability and explanations, by detecting redundant or missing meaning
components in the generations. In our studies, we will see that this assessment can be
conducted by computing a single graph overlap score (e.g., S2MATCH F1), or along mul-

tiple dimensions of meaning, such as SRL, coreference or WSD). Generally, MFβ gives
researchers the flexibility of choosing a parser or mrMetric to their liking. We chose
a strong parser that achieves high IAA with humans, and an interpretable MR metric.
Later, we will assess different parameterizations of MFβ to assess potential weakspots
of parsers and robustness to variation of MR metrics. Due to the explorative nature of
this evaluation approach, we abstain from further parameter search for measuring M

while admitting that future work can probably find and determine more suitable parame-
terizations (e.g., also through development of stronger parsers or tailored MR similarity
measurements).

6.3.3 Parameterizing form with LMs

Assessing sentence grammaticality and fluency is not an easy task (Heilman et al., 2014;
Katinskaia and Ivanova, 2019). Recently, Lau et al. (2020) and Zhu and Bhat (2020)
show that probability estimates based on language models can be used as an indicator for
measuring complex notions of form and for measuring acceptability in context. For our
MFβ score we desire an interpretable ratio as input, which we base on LM predictions
as follows.

Binary form assessment. Given a specific candidate generation s′, we use a binary
variable to assess whether s′ is of satisfactory form. For this, we first calculate the mean
token probability:5

mt p(·) = 1
n

n

∑
j=1

P(tok j|ctx j), (6.2)

where ctx j is different for uni-directional LMs (ctx j = tok1... j−1) and bi-directional LMs
(ctx j = tok1... j−1, j+1...n). We compute mt p for the generated sentence s′ and the reference
s and calculate a preference score pre f Score = mt p(s′)

mt p(s′)+mt p(s) . The decision of whether
the Form of a generated sentence s′ is acceptable is then calculated as

5We use the mean (instead of the product) because Bryant and Briscoe (2018) find that basing decisions
on the mean works well in practice when assessing possible corrections of grammatical errors.
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accept =

1, if pre f Score≥ 0.5− tol

0, otherwise,

where tol is a tolerance parameter. Less formally, a sentence is considered to have an
acceptable surface form in relation to its reference if its form is estimated to be at least as
good as the reference minus a tolerance, which we fix at 0.05. I.e., the corpus-level Form

score reflects the ratio of generated sentences that are of acceptable form.6

Predictor selection. We consider GPT-2 (Radford et al., 2019), distil GPT-2 (Sanh et
al., 2019), BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019b) as a basis for
assessing Form. We conduct experiments on WebNLG (Gardent et al., 2017; Shimorina
et al., 2017), which contains human fluency and grammaticality judgements for machine-
generated sentences. We find that GPT-2 performs best: it discriminates sentences of
poor and perfect fluency and grammaticality with an F1 score of approximately 0.8, and
shows marginally better performance compared to the other LMs (see Appendix A.2 for
the experiment details). We thus select GPT-2 as our LM for Form assessment.

Discussion. While the reconstruction of meaning does not depend on the reference sen-
tence, we do make use of it, in pre f Score, for better assessment of Form. One reason is
that when assessing the form of a sentence s′ that contains rare words, the ‘raw’ mt p(s′)

may be too pessimistic and may not relate well to the quality of the form. Generally, the
mt p (or any LM probability) itself is not well interpretable and hardly allows comparison
to the mt p of other sentences (e.g., if they are about a different topic).

However, by relating the mt p of the generated sentence to the mt p of a (same-topic)
reference, we gain three advantages: first, we do not, a-priori, penalize generations that
contain rare words. Second, we obtain an interpretable corpus-level ratio (rate of sen-
tences that are of acceptable form). This is important, since sound MFβ calculation
ideally requires two interpretable ratios as input. Third, by avoiding any string matching,
we still keep form and meaning aspects clearly distinct.

6I.e., the Form score for a single sentence with accept ≥ 0.5− tol equals 1.0. If a precise assessment
for a single sentence is needed, we can fall back on pre f Score (+/- tol).
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6.3.4 Goals of our pilot studies

Our main aim is to establish, with the proposed MFβ score for text generation, i) a
balanced and interpretable assessment of generated text according to Meaning and
Form. Yet, as detailed in Section 6.3.2 and Section 6.3.3, both components depend on a
number of ii) hyperparameters, such as the parser applied for Meaning reconstruction,
or the LM used for Form assessment. These parameters may also be subject to change
over time. It is thus important to assess the effects of such factors on metric scores and
system rankings. We investigate both aspects of MFβ in two pilot studies.

In the first study, in Section 6.4, we aim to assess the prospects of MFβ when rank-
ing SOTA systems. We will see that MFβ can explain system performance differences
by disentangling Form and Meaning, an asset that no other metric can offer.

The second study, in Section 6.5, investigates the impact of MFβ ’s dependence on
a parser and a LM. We i) investigate the effects of using different parsers, ii) assess the
potential suitability of MFβ for other text generation tasks, by ablating the human gold
graph from the evaluation and using MFβ to evaluate generated text vs. reference text,
and iii) validate the LM’s binary predictions for Form in a manual annotation study.

6.4 Study I: Assessing potential for enhanced evaluation
interpretability

Setup: data & metrics for system ranking. We obtain test predictions of several state-
of-the-art AMR2text generation systems on LDC2017T10, the main benchmark for this
task: (i) densely connected graph convolutional networks (Guo et al., 2019); (ii) Ribeiro
et al. (2019)’s system that uses a dual graph representation; two concurrently published
models (iii) based on graph transformers (Cai and Lam, 2020b; Wang et al., 2020b) and
(iv) a model based on graph transformers that uses reconstruction information (Wang et
al., 2020c) in a multi-task loss; finally, we obtain predictions of two system variants of
Mager et al. (2020a) that fine-tune LMs and encode linearized graphs using (v) a large
and (vi) a medium-sized LM. We true-case all sentences and parse them with GSII.

To put the results of MFβ into perspective, we display the scores of several metrics
that have been previously used for AMR2text: BLEU, METEOR, CHRF++. We also cal-
culate BERTscore (Zhang et al., 2020) with RoBERTa-large (Liu et al., 2019b).7 Results

7BERTscore computes an F1-score over a cosim-based alignment of the contextual embeddings of paired
sentences.



128 Chapter 6. MRs in NLG evaluation

popularN
L

G
m

etrics
M

eaning
(M

R
m

etrics)
Form

M
F

1
M

F
0
.5

S
2M

A
T

C
H

-
-

-
B

L
E

U
M

E
T

E
O

R
chrF++

B
E

R
T

sc.
S

M
A

T
C

H
W

L
K

W
W

L
K

P
R

F1
%

acc.
E

q.6.1
E

q.6.1

apprU
B

na
na

na
na

79.9
73.8

85.8
83.1

80.1
81.5

100
89.8

84.6

R
ibeiro

etal.(2019)
R

’19
27.9

(5)
33.2

(7
)

58.7
(6
)

92.7
(4)

70.1
(6)

66.2
(6)

77.7
(6)

76.5
67.7

71.9
(6)

51.6
(5)

60.1
(5
)

66.6
(5
)

G
uo

etal.(2019)
G

’19
27.6

(6)
33.7

(6
)

57.3
(7
)

92.4
(7)

72.3
(3)

66.5
(5)

78.2
(5)

78.2
70.0

73.9
(3)

47.1
(7)

57.5
(7
)

66.3
(6
)

W
ang

etal.(2020b)
W

b’20
27.3

(7)
34.1

(5
)

59.3
(5
)

92.6
(6)

70.0
(7)

65.5
(7)

74.8
(7)

79.6
65.0

71.5
(7)

49.5
(6)

58.5
(6
)

65.7
(7
)

C
aiand

L
am

(2020b)
C

’20
29.8

(4)
35.1

(4
)

59.4
(4
)

92.7
(4)

71.7
(5)

67.8
(4)

79.4
(4)

78.1
69.2

73.4
(5)

51.9
(4)

60.3
(4
)

67.0
(4
)

M
ageretal.(2020a)-M

M
b’20

33.0
(2)

37.3
(2
)

63.1
(3
)

93.9
(2)

72.1
(4)

68.3
(3)

79.6
(3)

79.5
68.7

73.7
(4)

74.0
(1)

73.9
(1
)

73.8
(1
)

M
ageretal.(2020a)-L

M
’20

33.0
(2)

37.7
(1
)

63.9
(2
)

94.0
(1)

73.0
(2)

69.1
(2)

80.0
(2)

80.8
69.2

74.5
(2)

69.8
(2)

72.1
(2
)

73.5
(2
)

W
ang

etal.(2020c)
W

’20
33.9

(1)
37.1

(3
)

65.8
(1
)

93.7
(3)

73.8
(1)

70.0
(1)

81.0
(1)

80.3
70.9

75.3
(1)

55.7
(3)

64.0
(3
)

70.3
(3
)

Table
6.1:M

ain
m

etric
results.na

as
upper-bound

m
eans

thatthe
upper-bound

is
notknow

n
and

cannotbe
estim

ated.
M

F
β

is
calculated

from
Form

and
S

2M
A

T
C

H
F1.



6.4. Study I: Assessing potential for enhanced evaluation interpretability 129

are displayed in Table 6.1, col. 3-6. MFβ scores (col. 7-12) are divided into Meaning

(REMATCH using GSII) and Form scores (based on GPT-2), and composite MFβ scores
with β = 1 (harmonic) and β = 0.5 (double weight on M ).

As an upper-bound approximation for REMATCH we propose parsing a gold sentence
s and comparing the result against the gold MR m: apprUB = metric(parse(s),m).8

6.4.1 Interpretability of system rankings

Surface matching metrics lack differentiation and interpretability. Table 6.1 shows
that the baseline metrics tend to agree with each other on the ranking of systems, but
there are also differences, for example, BERTscore and METEOR select M’20 as the best
performing system while BLEU and CHRF++ select W’20. While certain differences may
be due to individual metric properties, e.g., METEOR allowing inexact word matching
of synonyms, the underlying factors are difficult to assess, since the score differences
between systems with switched ranks are small, and none of these metrics can provide us
with a meaningful interpretation of their score that would extend beyond shallow surface
statistics. Hence, these metrics cannot give us much intuition about why and when one
system may be preferable over another.

Meaning vs. Form: How MFβ explains system performance. We have seen that cur-
rent metrics cannot provide us with convincing explanations as to why, e.g., W’20 should
be preferred over M’20 (BLEU), or M’20 over W’20 (BERTscore). REMATCH metrics
and MFβ score, however, tell a story about how these systems differ, highlighting their
complementary strengths by disentangling Meaning and Form (Bender and Koller, 2020):
W’20 displays the highest REMATCH score, i.e., MRs constructed from its generations
recover a maximum of the meaning contained in the input MR. M’20, by contrast, out-
performs all systems in Form score. Looking at MF1, the harmonic mean of both, both
systems still occupy leading ranks, but W’20 falls back to 3rd rank, due to its weaker
Form score.

Hence, given our metric principles, a user who cares about faithfulness to meaning,
but less about fluency, should select W’20 (with consistently higher REMATCH over all

8This is the score of canonical parser evaluation. I.e., we would not expect the reconstruction m′ of s′

to score higher than had we applied parse to the original sentence: metric(m′,m) ≤ metric(parse(s),m) =
apprUB. This is an idealization, as we can imagine cases where the original sentence s is more complex
and thus more difficult to parse to an MR than a simpler generated paraphrase s′. Since we are interested in
a very rough upper bound estimation, we abstract from such cases in our present work.
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our MR metrics compared to M’20 by about ∆=1 point) – a user who desires a system
that preserves meaning well but also produces sentences of decent form, should select
M(b)’20 (with MF0.5 and MF1 score differences against W’20 of ∆=3.5 points and
∆=8 points). Overall, MFβ mostly agrees with BERTscore in the rankings of the teams,
probably due to the additional regulation through Form, suggesting that BERTscore is
quite Form-oriented. Indeed, MFβ ’s larger score differences between the systems, due
to Form, are striking, prompting us to investigate the Form predictions in closer detail
(Section 6.5.2). We will see that using a different Form predictor as well as a manual
native speaker annotation support our assessment of Form.

6.4.2 MR distance via REMATCH explains (re-)rankings

----------------------original sent--------------------------

Costa added that insurgents have been holding significant
amounts of opium .

-----------------------original AMR--------------------------

(a / add- 01
:arg0 (p / person

:name (n / name
:op1 "Costa"))

:arg1 (h / hold-01

:arg0 (i / insurgent)
:arg1 (o / opium

:quant (a2 / amount
:arg1-of (s / significant-02)))))

----------Candidate A---------------Candidate B--------------

Costa added the insurgents Costa added that

to hold a significant the insurgents have

amounts of opium . held a significant
amount of opium .

------------------------BLEU score---------------------------

37.7 >> 22.6

---------------------Reconstructions------------------------

(c0 / add- 02 (c0 / add- 01
:arg0 (c2 / person :arg0 (c2 / person

:name (c4 / name :name (c5 / name
:op1 "Costa") :op1 "Costa"))

:arg1 (c1 / insurgent) :arg1 (c1 / hold-01

:arg2 (c3 / hold-01 :arg0 (c4 / insurgent)
:arg0 c1 :arg1 (c3 / opium
:arg1 (c5 / opium :quant (c6 / amount

:quant (c6 / amount :arg1-of (s / sign.-02
:arg1-of (s / sign.-02 )))))

)))))

-----------------------REMATCH scores------------------------

S2match: 82.9 << 100.00

Smatch: 81.1 << 100.00

WLK: 77.2 << 100.00

WWLK: 97.9 << 100.00

-------------------------------------------------------------

Figure 6.3: Explainable Meaning score (re-)ranking.
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An example for how REMATCH explains a re-ranking (different from BLEU) is shown
in Figure 6.3. Here, the gold reference (both sentence and AMR) indicates that a person
named Costa adds (as a communicative act9 that some insurgents have been holding large
amounts of opium. However, system generation A (which is higher ranked by BLEU)
chooses a different sense of add, add-02, which represents the action as an operation10,
which results in an incoherent or nonsensical meaning representation where the person
Costa adds (in the operational sense) the insurgent (as thing being added) to a circum-
stance to the effect that the insurgents hold a significant amount of opium. By contrast,
system generation B preserves more of the gold MR’s meaning and clearly expresses that
Costa performs an act of communication when he adds something. REMATCH (MFβ→0)
is able to detect the meaning differences and assigns candidate B a significantly higher
score than A, in fact, an S2MATCH score of 1.00 (since the graphs are structurally identi-
cal, the same score is achieved for other MR metrics).

6.4.3 MR distance via REMATCH explains negation error

----------------------original sent------------------------
Since there is responsibility, we are not afraid.

-----------------------original AMR------------------------
(c / cause-01

:arg0 (r / responsible-02)

:arg1 (f / fear-01

:polarity -

:arg0 (w / we)))
------------Candidate 1-------------Candidate 2------------
We are not responsible We are not afraid

because we fear . for responsibility .
-------pA=f(A)------Reconstructions--------pB=f(B)---------

(c1 / cause-01 (c1 / fear-01
:arg0 (c5 / fear-01) :arg0 (c5 / we)

:arg1 (c4 / responsible-01 :arg1 (c4 / responsible-03

:arg0 (c10 / we) :arg0 c5)

:polarity - )) :polarity - )

-------------ReMatch Negation Subgraph Scores--------------
S2match: 0.00 << 100.00

Smatch: 0.00 << 100.00

WLK: 26.9 << 100.00

WWLK: 42.0 << 100.00
-----------------------------------------------------------

Figure 6.4: Explained negation confusion.

In Figure 6.4, both systems struggle to fully capture the meaning of the original MR
f (s). However, the system based on GPT medium (Mb’20) erroneously assesses that we

are not responsible and we fear. However, quite the opposite is true: the gold graph and
gold sentence states that there is responsibility and there is no fear. This important facet

9Sense add-01 w/ roles: Arg0: Speaker; Arg1: Utterance.
10Sense add-02 w/role set: Arg0: adder; Arg1: thing being added; Arg2: thing being added to; Arg3:

resulting sum.
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of meaning is better captured by C’20. The reconstruction shows that it reflects the gold
negated concepts much better and does not distort facts that are core to the meaning. In
consequence, the REMATCH scores are low for the left sentence with the distorted facts
and maximum (for all MR metrics) for the sentence that sticks true to the facts.

6.4.4 MR distance via REMATCH explains SRL error

Figure 6.5 shows an example where REMATCH ranks two generated candidate sentences
differently compared to BLEU. In this case, the gold sentence and the gold AMR both
express that there is some soldier who tried to defuse a bomb and got injured in the
process. Clearly, candidate generation A captures the meaning better, in fact, it captures it
almost perfectly. However, since the surface text deviates from the gold sentence, BLEU

overly penalizes this generation and assigns a very low score of 10.6 points. In contrast,
candidate B matches the surface slightly better (12.2 points), but distorts the meaning: it
does not contain any information about the soldier and states that Disarming was injured,
which is grammatically correct, but semantically wrong, or even non-sense.

We see that the surface matching metric cannot explain its scores (beyond superficial
statistics) and delivers a ranking that does not appropriately reflect the performance of
the generation systems. However, REMATCH shows that the gold parse and the parse of
candidate A agree with each other in the central ARG1-role of the main predicate injure-

01: it is the soldier who got injured. On the other hand, in the reconstruction of the AMR
of candidate B, the ARG1 argument is filled differently: it is the disarmament that gets

injured.
This assessment allows REMATCH to increment the score for generation A by a large

margin, from 10.6 (BLEU) to 93.3 points (REMATCH, S2MATCH), expressing substantial
agreement in meaning with the gold. The score for the candidate generation B also gets
incremented – but it gets incremented much less, only to 70.2 points, expressing good to
mediocre agreement. Interestingly, the difference is further dilated by WWLK (98 vs. 50
points), underlining the semantic problems in the right sentence/MR. Thus, by detecting
the SRL confusion, REMATCH re-ranks the candidate generation such that the resulting
ranking is more appropriate.

6.4.5 Assessing aspectual text quality using fine-grained MR distances

We apply SMATCH on aspectual subgraphs, as outlined in the bottom of Figure 3.1 in
Chapter 3 by running aspectual subgraph-based evaluation with the goal to gain deeper
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----------------------original sent------------------------

Soldier injured during bomb defusion in Kathmandu after

state of emergency expires .
-----------------------original AMR------------------------

(i / injure-01
:arg0 (d / defuse-01

:arg1 (b / bomb)
:location "Kathmandu")

:arg1 (s / soldier)

:time (a / after
:op1 (e / expire-01

:arg1 (s2 / state
:mod (e2 / emergency

)))))
----------Candidate 1-------------Candidate 2--------------
The Soldier was injured Disarming the bomb in

in the defuse of the bomb Kathmandu was injured

in Kathmandu after the in Kathmandu after state
emergency state expired . of emergency expires .
-----------------------BLEU score--------------------------

score(A,s) = 10.6 << score (B,s) = 12.2
---------------------Reconstructions-----------------------
(c0 / injure-01 (c0 / injure-01

:arg1 (c1 / soldier) :arg1 (c1 / disarm-01

:arg2 (c2 / defuse-01 :arg1 (c4 / bomb))
:arg1 (c4 / bomb) :location "Kathmandu"
:location "Kathmandu" :time (c2 / after
) :op1 (c5 / decline-02

:time (c3 / after :arg1 (c7 / state-01
:op1 (c6 / expire-01 :location c3

:arg1 (c8 / state :mod (c8 / emergency
:mod (c9 / emergency ))))))
)))))

-------------ReMatch SRL Subgraph Scores--------------
S2match: 93.3 >> 70.2

Smatch: 91.7 >> 66.7

WLK: 84.4 >> 34.4

WWLK: 98.9 >> 50.5
-----------------------------------------------------------

Figure 6.5: Explained SRL confusion.

insight into how well system generations reflect or violate specific meaning aspects.
With this, we can investigate a system’s capacity to properly reflect negation (NEG); to
generate correct surface forms for NEs (NER); assess how well a system captures coref-
erence between entities (Coref); and whether or not the predicate-argument structures
(SRL) of generated sentences appropriately reflect the source meaning. The results are
shown in Table 6.2.

In sum, the system of W’20 appears to be the clear winner in most aspects of meaning.
This is intuitive, since the system has been trained with an auxiliary signal that provides
information on how well an AMR can be reconstructed from the generated sentence.

Furthermore, we observe, e.g., that R’19, which ranks last in the overall ranking, im-
proves upon the best overall system by 3.4 points in NER recall and 1.9 points in F1.
The analysis also corroborates that W’20 excels among competitors with best scores for
coreference, SRL and negation, i.e., the more global aspects of sentence meaning. Such
information can be valuable for researchers for deeper system analysis and for practition-
ers aiming for specific use cases.
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Reentrancies SRL negation NER

P R F1 P R F1 P R F1 P R F1

apprUB 72.1 60.7 65.9 77.7 73.5 75.5 88.6 70.5 78.5 82.2 80.1 81.1

R’19 63.7 50.3 56.2 71.1 62.4 66.4 72.1 50.6 59.5 82.2 70.7 76.0
G’19 66.9 52.9 59.1 73.7 64.9 69.0 75.0 51.5 61.1 78.6 68.9 73.5
Wb’20 67.6 51.5 58.4 75.1 63.6 68.9 74.3 49.7 59.6 86.5 60.3 71.0
C’20 66.1 52.4 58.4 73.4 64.8 68.8 78.3 54.2 64.1 80.8 67.2 73.4
Mb’20 65.9 53.2 58.9 74.3 65.7 69.8 70.6 45.5 55.3 82.6 69.4 75.4
M’20 67.9 53.3 59.7 76.4 66.5 71.1 73.7 53.9 62.3 82.8 68.3 74.9
W’20 68.8 55.7 61.6 76.1 68.1 71.9 79.2 55.1 65.0 82.4 67.3 74.1

Table 6.2: Fine-grained corpus results using MF0 (i.e., S2MATCH) parameterized based on as-
pectual subgraphs.

6.5 Study II: Probing vulnerabilities of our approach

MFβ has two apparent vulnerabilities: first, it depends on a parser for reconstruction.
We have used a SOTA parser that is on par with human IAA. Yet, we cannot exclude the
possibility that it introduces unwanted errors in computing MFβ scores.

Second, the Form component is based on a LM and we have seen that it can change
system rankings, even when it is discounted.11 On the one hand, our LM was carefully
selected, and other metrics such as BERTscore also heavily depend on LMs. On the other
hand, we cannot exclude the possibility that the changed rankings are unjustified.

Our next studies investigate these weak spots more closely. First, in Section 6.5.1, we
assess the outcome of MFβ when using another parser and assess its potential portability
to other text generation tasks by ablating the human gold graph and evaluate generated
text against reference text. In Section 6.5.2 we conduct a human annotation study to assess
whether the provided Form rankings are justified.

6.5.1 The parser: Achilles’ heel of MFβ ?

Using another parser. In this experiment we assess the robustness of REMATCH against
using different parsers. This is important, since the metric and rankings could change with
the parser. Here, we would hope that the difference of using one competitive parser over
another will not be too extreme, especially with regard to system rankings. To investigate
this issue, we apply two alternative parsers: i) GPLA (Lyu and Titov, 2018), a neural

11In Table 6.1, both MFβ with β = 0.5 and β = 1.0 slightly disagree with the ranks assigned by
Meaning only.
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REMATCH F1 ranks REMATCH ranks MF0.5
TTSA GPLA GSII GSII♦ TTSA GPLA GSII GSII♦ TTSA GPLA GSII GSII♦

apprUB 73.7 76.2 81.5 86.4 0 0 0 0 0 0 0 0
R’19 66.9 70.1 71.9 72.3 7 7 6 6 5 5 5 5
G’19 69.7 72.2 73.9 73.7 3 3 3 4 6 6 6 6
Wb’20 67.3 70.2 71.5 71.6 6 6 7 7 7 7 7 7
C’20 69.1 70.4 72.2 73.4 4 5 5 5 4 4 4 4
Mb’20 68.9 70.5 73.7 74.2 5 4 4 3 1 2 1 1
M’20 69.8 72.5 74.5 75.1 2 2 2 2 2 1 2 2
W’20 70.5 73.1 75.3 75.4 1 1 1 1 3 3 3 3

Table 6.3: Analysis of our metric using different parsers (GPLA, TTSA GSII) or ablating the gold
parse by comparing the parsed generation against the parse (distant) source sentence
(GSII♦).

graph-prediction system that jointly predicts latent alignments, concepts and relations,
and ii) TTSA (Groschwitz et al., 2018), a neural transition-based parser that converts de-
pendency trees to AMR graphs using a typed semantic algebra. We select GPLA and
TTSA since they constitute technically quite distinct approaches compared to GSII.

The results are shown in Table 6.3 (columns labelled GPLA, TTSA and GSII). All
variants tend to agree in the majority of their rankings12 (e.g., REMATCHGPLA vs. RE-
MATCHGSII F1: Spearman’s ρ = 0.95, Pearson’s ρ = 0.96, p<0.001). When considering
MFβ=0.5, the agreement further increases (e.g., MF GPLA

0.5 vs. MF GSII
0.5 : Spearman’s ρ

= 0.95, Pearson’s ρ = 0.99, p<0.001).
However, while using TTSA or GPLA instead of GSII has little effect on the ranks,

the absolute scores can differ (e.g., W’20 70.5 F1 w/ TTSA, 73.1 F1 w/ GPLA and 75.3
F1 w/ GSII). Yet, we find that none of the generation systems are unfairly treated by our
main parser GSII since we observe (mostly uniform) increments from TTSA to GPLA
and from GPLA to GSII. An unfair treatment could arise, e.g., if GSII generates bad
AMR reconstructions for specific NLG systems but not so for others. However, we do not
observe such tendencies. Hence we can conclude that GSII’s score increments stem from
the fact that GSII yields better reconstructions for all systems.

12We observe one switch of ranks for TTSA-GPLA and GPLA-GSII and 2 rank switches for TTSA–GSII
in REMATCH, and no rank switch for TTSA-GSII and one switch for TTSA-GPLA and GPLA-GSII, for
MF 0.5.
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MR metric result ranks MF1 ranks MF0.5
SM WLK WWLK S2M SM WLK WWLK S2M SM WLK WWLK S2M

apprUB 79.9 73.8 85.8 81.5 0 0 0 0 0 0 0 0
R’19 70.1(6) 66.2(6) 77.7(6) 71.9(6) 5 5 5 5 5 5 5 5
G’19 72.3(3) 66.5(5) 78.2(5) 73.9(3) 7 7 7 7 6 7 6 6
Wb’20 70.0(7) 65.5(7) 74.8(7) 71.5(7) 6 6 6 6 7 6 7 7
C’20 71.7(5) 67.8(4) 79.4(4) 73.4(5) 4 4 4 4 4 4 4 4
Mb’20 72.1(4) 68.3(3) 79.6(3) 73.7(4) 1 1 1 1 1 1 1 1
M’20 73.0(2) 69.1(2) 80.0(2) 74.5(2) 2 2 2 2 2 2 2 2
W’20 73.8(1) 70.0(1) 81.0(1) 75.3(1) 3 3 3 3 3 3 3 3

Table 6.4: Studying MFβ ranking under variation of MR metric (parser: GSII).

MFβ rankings under different MR metrics are displayed in Table 6.4. We see that,
with one exception13, using different MR metrics does not lead to different MFβ rank-
ings of the examined systems, both for β = 0.5 (meaning-focused) and β = 1 (meaning-
form balance).

Ablating the gold graph? Yes, we can. In lack of a gold standard for the automatic
reconstructions, we elicit some indirect answers and insight about the parser’s quality,
by considering the following question: What is the effect on system rankings when we

replace the input gold graphs with automatic parses of the distant source sentence? If
this effect is large, this will give us reasons to worry, as it would indicate that the parser is
less reliable than expected given its high IAA with humans. On the other hand, if we only
see a minor effect, this may increase the trust in our parser and indicate that MFβ could
be confidently applied for explainable evaluation in other generation tasks (such as
MT or summarization), where we do not have gold AMRs, and would have to parse both
generated and reference sentences.

The results of this experiment are displayed in Table 6.3: our standard setup is dis-
played in columns labeled GSII and the results of the setup where we replace the gold
input graph with an automatic parse is indicated by GSII♦. When considering REMATCH

scores, we see only one switched rank between Mb’20 and G’20 (3–4). However, note
that the absolute F1 score ∆ between these two systems is overall very small (GSII: 0.2;
GSII♦: 0.5). Overall, the scores do not tend to differ much when the gold graph is ablated,
we observe rather small (mostly positive) changes in system scores (GSII→ GSII♦): 0.1
/ 1.2 / 0.4 (min/max/avg). In sum, we conclude from this experiment that ablating the gold
graph does not have a major effect on the scores and rankings. And when considering the
MFβ=0.5 score, the ranking stays fully stable (the same holds true for MFβ=1.

13There is one case where ranks 7 and 6 are switched (WLK and β = 0.5).
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Discussion. We have shown that metric rankings are fairly robust to using different
parsers and that we do not necessarily depend on gold AMR graphs to compute the mea-
sure. This offers prospects for using MFβ for an explainable assessment of systems
that perform other kinds of text generation. In order to measure M , a parser could
be applied to both the generated and the reference text, to measure their agreement in
the domain of abstract meaning representation. This would in turn offer means for con-
ducting fine-grained meaning analysis of generation tasks where the reference is a natural
language sentence (e.g., in MT).

Recall, however, that AMR, as of now, does not capture some facets of meaning that
may be of interest in some generation tasks. For instance, it does not capture tense or
aspect. However, what we have investigated as a potential weakness of MFβ , namely
the necessity to select a meaning parser, can also be viewed as a potential strength. E.g.,
Donatelli et al. (2018) show how tense and aspect can be captured with AMR. This indi-
cates that MFβ can indeed be used for a tense and aspect analysis of generated text – if
we parameterize it with a dedicated parser. Finally, if output and reference do not consist
of single sentences, it may be apt to use a parser that constructs MRs for discourse (e.g.,
DRS (Kamp, 1981)).

In summary, we conclude that MFβ , our proposed metric that aims to assess text
generation quality by decomposing it into form and meaning aspects, is broadly applica-
ble. However, different parser parametrizations may have to be considered in light of the
specific nature of a generation task.

6.5.2 The Form component of MFβ

In Section 6.4.1, we have seen that the Form aspect of MFβ can change system ranks.
Notably, it has promoted M’20 as the best generation system, outranking W’20 (in agree-
ment with BERTscore), whereas W’20 is selected by BLEU or REMATCH. Now, we aim
to investigate whether these impactful decisions of the Form component were justified.

Human annotation. We ask a native speaker of English to rate 50 paired generations
of M’20 and W’20, considering only grammaticality and fluency.14

Annotator and annotation. The English native speaker (UK) annotated 50 paired sen-
tences of M’20 and W’20. They were presented in shuffled order and the annotator was

14The annotator was explicitly instructed not to consider whether a sentence ‘makes sense’, by presenting
the Green ideas sleep furiously example as free from structural error.
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Sys (W’20): He also said that our athletes do n’t very use
of competition under strong sunlight .

Corr (human): He also said that our athletes are not very used
to competition under strong sunlight .

----> not acceptable

Sys (W’20): Sheng Chen , the 6 th position of Hubei province , who
was totally scored 342.60 at 342.60 points this year ,
is a temporary position .

Corr (human): Sheng Chen , the 6 th position of Hubei province , who
has totally scored 342.60 points this year ,
is in a temporary position .

----> not acceptable

Sys (W’20): The Chinese competitors are Lan Wei and Sheng Chen ,
qualify semi - final .

Corr (human): The Chinese competitor Lan Wei and Sheng Chen qualify
for the semi - final .

----> acceptable

Sys (M’20): Fengzhu Xu won many championships in international
competition before .

Corr (human): Fengzhu Xu won many championships in international
competitions before .

----> acceptable

Figure 6.6: Sentences of flawed form. --> refers to the binary acceptability judgment (Eq. 6.3.3).

tasked with assigning a nominal number, starting from zero, that indicates the amount of
grammatical or fluency issues as assessed by the native speaker. Additionally, the human
was asked to provide a correction. Examples of sentences of flawed form are shown in
Figure 6.6.

Results of human evaluation. The annotator agreed in 42 of 50 pairs with the prefer-
ence predicted by GPT-2 (a significant result: binomial test p<0.000001). We find that
the M’20 and Mb’20 generations are considerably better on the surface level, compared
to generations of all other systems. For instance, the best system according to Meaning,
W’20, frequently produces inflection mishaps: Their hopes for entering the heat is al-

ready in-sight, while we find few such violations with M’20 (here: Their hopes for enter-

ing the heat are already in sight). We also find errors with adverbials, e.g., W’20 writes
They are the most indoor training at home, while M’20 writes They are most trained in-

doors at home. Arguably both sentences are not perfect but the second is substantially
more well-formed.
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R’19 G’20 Wb’20 C’20 Mb’20 M’20 W’20

GPT-2 51.6(4) 47.1(6) 49.5(5) 51.9(4) 74.0(1) 69.8(2) 55.7(3)
BERT 43.4(6) 40.6(7) 50.4(4) 44.7(5) 71.4(1) 71.0(2) 55.9(3)

Table 6.5: Form scores when using a different LM.

Using a different LM. The human study indicates that GPT-2 is accurate to 84% when
favoring one sentence over the other, with respect to fluency and grammaticality. How-
ever, when considering that there is a trend to building systems based on fine-tuned LMs,
we need to assess whether they may be favored (too) much if Form is parameterized with
a same or a highly similar LM to the one used by the NLG model. We find such a case
in M’20: while it was not fine-tuned with the same GPT-2 that we used for Form assess-
ment, they fine-tuned their model with its siblings GPT-2-medium and GPT-large, which
may share structural similarities. Therefore, we also use BERT for Form assessment. The
results in Table 6.5 support the conclusion from the human annotation: by large margins,
both M’20 and Mb’20 deliver generations that are of significantly improved form and both
agree on the group of the three best systems. Note that this insight can be provided by
MF∞, but it cannot be carved out by conventional metrics, since these do not disentangle
Form and Meaning.

6.6 Discussion

To showcase the usefulness and assess perspectives of MR metrics for NLG evaluation,
we introduced and explored the MFβ score, a new metric tailored to evaluation of text
generation from MRs, but also extensible to other generation tasks. MFβ measures
two natural objectives of text generation: Form measures fluency of the produced sen-
tences and Meaning assesses to what extent the meaning of the input MR is reflected
in the produced sentence. We show that MFβ has the potential to yield a fine-grained
performance assessment that go beyond what conventional metrics can provide. Using
its β -parameter, MFβ can be decomposed into complementary views – Meaning and
Form – paving the way for custom gauging and selection of NLG systems. We have
seen that MFβ corresponds well to BERTscore when rankings systems, but overcomes
its opaqueness by disentangling Meaning- and Form-related quality aspects. In sharp
contrast to BERTscore, the Form component of MFβ dispenses with string matching
against reference sentences, offering an assessment independent of lexical alignment.
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An important hyperparameter of our metric is the required MR parsing component for
meaning reconstruction. We investigate the impact of its choice by choosing alternative
high-performing parsers. Our study shows that absolute metric scores tend to increment
when using a better parser, while system rankings are quite stable. Furthermore, we
outline the potential of MFβ to extend to further text generation tasks, by ablating the
human gold graph from the evaluation, such that the metric score can be computed from
candidate and reference text alone. Since benchmarking of systems needs deeper explo-
ration, we recommend MFβ score to obtain better diagnostics and explainability of text
generation systems, including, but not limited to (A)MR2text.

Another interesting aspect that we have not explored in our pilot studies is the agree-
ment to human ratings of system quality. Interestingly, recent work (Manning and Schnei-
der, 2021) suggests that – with accurate (gold) parses available – a simple MR metric
based measurement can provide better agreement to human ratings than highly parame-
terized black-box models such as BERTscore. Here, MFβ offers a chance to investigate
this direction further by studying more parameterizations that optimize for human agree-
ment in NLG evaluation: How to best weight Form and Meaning? What MR metric (if
available also: its hyper-parameters) to choose for measuring Meaning? Are there better
ways for scoring Form?
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Chapter 7

AMR quality estimation

7.1 Chapter outline

In the chapter before, we observed: for NLG evaluation of MR-to-text systems, at least
one MR is hidden and needs to be projected. In this chapter, we investigate MR metric
projection from an inverse, but also complementary viewpoint: the efficient evaluation of
automatically generated MRs from text (i.e., MR parsing). Here, we are given a natural
language sentence and an MR candidate parse that has been constructed by a system. In
such a scenario, we want to apply a quality estimation system that informs us how well
the candidate parse fits to the input sentence, without using the costly reference parse
that is available in standard parsing evaluation. With such a quality estimation system
that predicts/extrapolates parse(r) quality, we could quickly assess the performance of
MR parsers on new data, or efficiently filter among different candidate MRs provided by
multiple sources.

For simplicity, and because the parsing evaluation scenario is restricted (same sen-
tences are underlying the candidate and reference), and because now not the metric is in
direct focus but its extrapolation through machine learning, we will constrain ourselves in
this chapter to the extrapolation of the maximally transparent structural SMATCH metric.
The remainder of this chapter is structured as follows:

1. We provide a more detailed motivation in Section 7.2 and provide formal definition
of the problem in Section 7.3.

2. We propose two neural graph encoding strategies that can be trained for cheaply
projecting an MR metric: A structure-enriched LSTM that processes the graph
as a serialized string with alignment information (Section 7.4); And a CNN that
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(p4 / possible-01
:arg1 (d5 / destabilize-01

        :arg0 [:arg1] (c3 / country
                  :quant (w2 / whole)))
    :condition (e1 / economy

  [:poss c3] 
        :arg0-of (f0 / function-01

  [:pol -] )))

Figure 7.1: Parse of Without a functioning economy, the whole country may destabilize with errors
outlined.

is inspired by simplicity and human annotator view, exploiting the structured and
concise multi-line ‘Penman’ graph string serialization (Section 7.5).

3. We show how both graph encoding strategies can be used to predict MR quality
along several semantic axes (Section 7.6). For evaluation, we construct training
and testing data (Section 7.7) and test our proposed systems against baselines in
Section 7.8, ablating various system parts.

4. We conclude the chapter with a discussion (Section 7.9).

Underlying work. The content of this chapter is mainly based on works from Opitz and
Frank (2019b) and Opitz (2020).

7.2 Motivation: rating MR quality in the absence of hu-
man reference

While automatically generated MRs are leveraged to enhance a variety of natural language
understanding tasks, there is a critical issue with automatically generated MRs (parses):
they are often deficient. These deficiencies can be quite severe, even when newer parsers
are used. For example, in Figure 7.1, a neural parser (Lyu and Titov, 2018) makes several
errors when parsing Without a functioning economy the whole country may destabilize.
E.g., it misses a negative polarity and classifies a patient argument as the agent by failing
to see that destabilize here functions as an ergative verb (parser: the country is the causer
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of destabilize; correct: the country is the object that is destabilized). In sum, the parse has
misrepresented the sentence’s meaning.1

However, assessing such deficiencies via comparison against a gold reference (as in
classical parser evaluation) is often infeasible in practice: it takes a trained annotator and
appr. 10 minutes to manually create one AMR (Banarescu et al., 2013). To mitigate this
issue, we would like to be able to automatically rate the quality of MRs without the costly
gold graphs. This would allow us to signal downstream task systems the incorporated
graphs’ trustworthiness or select among different candidate graphs from different parsing
systems.

Generally, as outlined in the related work (Chapter 3), the problem of measuring the
quality of structured predictions in the absence of a costly gold reference is not unknown
to the NLP community. In fact, it is a highly relevant task in several sub-communities,
including machine translation. So by exploring strategies to predict an MR metric mea-
surement in the absence of a gold reference and only a candidate input MR available, we
make first steps to assess and address the quality estimation problem for semantic parsers.

7.3 Task formalization

We aim at rating the quality of MR graphs (‘parses’) in the absence of gold graphs. This
problem boils down to answering the following question: how well does a candidate MR

graph capture a given natural language sentence? Therefore, the exact goal in this task
is to infer a mapping

f : X = S×G→ Rd, (7.1)

that maps a sentence s ∈ S together with a candidate MR graph g ∈ G onto d scores,
which describe the MR with regard to d quality dimensions of interest. A successful
mapping function should strongly correlate with the gold scores as they would emerge
from evaluation against gold graphs.

7.4 Model I: LSTM on enriched linearized graphs

We propose a neural hierarchical multi-output regression model (LG-LSTM) for quality
estimation of MR parses. Its architecture is outlined in Figure 7.2.

1?With a functioning economy, the whole country may cause something to destabilize.
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Figure 7.2: Our model I. green: Evaluation metrics computed in a non-hierarchical fashion. or-
ange: Main evaluation metric is computed on top of secondary metrics. FF: basic
feed-forward layer.

Inputs. Our model takes the following inputs: (i) a linearized MR and a linearized de-
pendency graph (implementation details in Section 7.8). The motivation for feeding the
dependency parse instead of the original sentence is due to the moderate similarity of de-
pendency and MR structures. In addition, (ii) we produce alignments between sentence
tokens and tokens in the sequential MR structure, as well as between sentence tokens and
the linearized dependency structure, and feed these sequences of pointers to our quality
estimation model. The intuition of using pointers is to provide the model with richer
information via shallow alignment between MR, dependencies and the sequence of sen-
tence tokens (see Section Section 7.8 for implementation details). Finally, (iii) we feed a
sequence of PropBank sense indicators for MR predicates.

Joint encoding of MR and dependency parses for metric prediction. Embedding
layers are shared between MR/dependency pointers and MR/dependency tokens. We
embed the three sequences representing the MR graph (tokens, pointers and senses) in
three matrices and sum them up element-wise (indicated with + in Figure 7.2). The
same procedure is applied to the linearized dependency graph (tokens and pointers). The
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resulting matrices are processed by two two-layered Bi-LSTMs to yield vectorized repre-
sentations for (i) the MR graph and (ii) the dependency tree (i.e., the last states of forward
and backward reads are concatenated). Thereafter, we apply element-wise multiplication,
subtraction and addition to both vector representations and concatenate the resulting vec-
tors (⊗ in Figure 7.2). The joint MR-dependency representation is further processed by a
feed forward layer (FF) with sigmoid activation functions in order to predict, in total, 36
different metrics (green, Figure 7.2).

Hierarchical prediction of multiple metrics. The task naturally lends itself to be for-
mulated in a hierarchical multi-task setup (orange, Figure 7.2). In this strand, we first
compute aspectual subgraph metrics and on their basis we calculate the main scores (pre-
cision, recall, F1) as our primary metrics. In order to accomplish this, we collect the
outputs from the subgraph metric prediction layer in a vector and concatenate it with the
previous layer’s representation (⊕ in Figure 7.2). The resulting vector is fed through a last
FF layer to predict the Precision/Recall/F1 SMATCH. Our intuition is that the estimated
quality of the parse with respect to the aspectual metrics can help refine the prediction of
the overall quality.

Discussion. Generally speaking, the LG-LSTM is a model that relies on graph lineariza-
tion. Such type of model, despite its apparent simplicity, has proven to be an effective
baseline or state-of-the-art method in various works about converting texts into graphs
(Konstas et al., 2017; Noord and Bos, 2017b), or converting graphs into texts (Bastings
et al., 2017; Beck et al., 2018; Song, 2019; Pourdamghani et al., 2016; Song et al., 2018;
Vinyals et al., 2015; Mager et al., 2020b), or performing mathematically complex tasks
modeled as graph-to-graph problems, such as symbolic integration (Lample and Charton,
2020).

7.5 Model II: Novel MR-as-image encoding with CNN

7.5.1 MR as image with latent channels

Now, we first motivate to treat MRs as images with latent channels in order to rate them
efficiently. With this, we can invoke a lightweight CNN that evaluates MR quality in
multiple dimensions of interest, and exploits spatial Penman graph structure. We call this
model PCNN.
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(p4 / possible-01
    :pol -
    :arg1 (d5 / destabilize-01
        :arg1 (c3 / country
           :quant (w2 / whole)))
    :condition (e1 / economy
        :poss c3
        :arg0-of (f0 / function-01)))

possible
p4-   pol

d5

c3
w2

e1

 arg1                    condition

poss       arg1        
   quant              

f0

                   arg0-of      

destabilize-01

country

whole

economy

function-01

Figure 7.3: Recap of different displays for an MR structure of a sentence that has medium length
(left: PENMAN notation, right: graphical visualization). See also the Figure in Back-
ground Section 2.1.

graph representation computer processing human understanding

triples/G 3(e.g., GNN) 7

graph visualization 7 3 (short sentences)
PENMAN, linearized string 3(e.g., LSTM) 7

PENMAN, indents 3(this work) 3

Table 7.1: Equivalent MR representations and their accessibility with respect to human or com-
puter (3: ‘okay’, 7: ‘perhaps possible, but not well defined’).

The PENMAN notation and its (hidden) advantages. As we have already seen in our
Background Chapter (Section 2.1.1), an interesting MR-as-string notation is called PEN-
MAN-notation or Sentence Plan Language (Kasper, 1989; Mann, 1983): based on a depth-
first traversal the graph a directed and rooted graph is serialized into a string. A clear
advantage of this notation is that it allows for secure MR storage in text files. However,
we argue that it has more advantages. For example, due to its clear structure, it allows hu-
mans a fairly quick understanding even of medium-sized to large MR structures (Figure
7.3, left). On the other hand, we argue that a graphical visualization of such medium-sized
to large MRs (Figure 7.3, right) could hamper intuitive understanding, since the abundant
visual signals (circles, arrows, etc.) may more easily overwhelm humans. Moreover, in
every display, one would depend on an algorithm that needs to determine a suitable (and
spacious) arrangement of the nodes, edges and edge labels. It may be for these reasons,
that in the MR annotation tool2, the graph that is under construction is always shown in
PENMAN notation to the human user.

2https://www.isi.edu/cgi-bin/div3/mt/amr-editor/login-gen-v1.7.cgi

https://www.isi.edu/cgi-bin/div3/mt/amr-editor/login-gen-v1.7.cgi
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Figure 7.4: We transform the (simplified) PENMAN representation to an image and use Φ to add
latent channels.

In sum, we find that the indented multi-line PENMAN form possesses three key advan-
tages (Table 7.1): (i) it enables fairly easy human understanding, (ii), it is well-defined
and (iii), which is what we will show next, it can be computationally exploited to better
rate AMR quality.

AMR as image to preserve graph structure. Figure 7.4 describes our proposed sen-
tence representation treatment.

After non-degenerate MR graph simplification (more details in Preprocessing, 7.8),
we first project the PENMAN representation onto a small grid (‘image’). Each MR token
(e.g., a node or an edge) is represented as a ‘categorical pixel’. Second, Φ adds latent
‘channels’ to the categorical pixels, which can be learned incrementally in an application.
In other words, every MR token is represented by a fixed-sized vector of real numbers.
These vectors are arranged such that the original graph structure is fully preserved.

7.5.2 A lightweight CNN to rate AMR quality

Again, we want to model f (Eq. 7.1) in order to estimate a suite of quality scores y ∈ Rd

for any automatically generated MR graph, given only the graph and the sentence from
whence it is derived. As with LG-LSTM, we will contrast the MR against the sentence’s
dependency parse, exploiting observed structural similarities between these two types of
information (Wang et al., 2015). The CNN architecture is outlined in Figure 7.5, it works
in the following steps:
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Figure 7.5: Our model II. Architecture for efficient AMR quality assessment.

Symbol embedding. The latent channels of AMR and dependency ‘pixels’ represent
the embeddings of the ‘tokens’ or ‘symbols’ contained in the MR and dependency vocab-
ulary. These symbols represent nodes or edges. We use two special tokens: the <tab>
token, which represents the indentation level, and the <pad> token, which fills the re-
maining empty ‘pixels’. By embedding lookup, we obtain MR and dependency images
with 128 latent channels and 45x15 ‘pixels’ (Φ in Figure 7.5; the amount of pixels is
chosen such that more than 95% of training MRs can be fully captured).

Encoding local graph regions. Given MR and dependency images with 128 latent
channels and 45x15 pixels, we apply to each of the two images 256 filters of size 3x3,
which is a standard type of kernel in CNNs. This converts both graphs to 256 feature maps
each ∈ R45×15 (same-padding), obtaining two three-dimensional tensors L1

amr,L
1
dep ∈

R45×15×256. From here, we construct our first joint representation, which matches lo-
cal dependency regions with local MR regions:

jres = GPF(L1
amr⊗L1

dep), (7.2)

where x⊗ y = [x� y;x	 y] denotes the concatenation of element-wise multiplication and
element-wise subtraction. GPF is an operation that performs global pooling and vec-
torization (‘flattening’) of any input tensor. This means that jres ∈ R512 is a joint repre-
sentation of the locally matched dependency and AMR graph regions. This intermediate
process is outlined in Figure 7.5 by ⊗ (left) and GPF. Finally, we reduce the dimensions
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of the two intermediate three-dimensional representations L1
amr and L1

dep with 3x3 max-
pooling and obtain L2

amr and L2
dep ∈ R15×5×256

Encoding global graph regions. For a moment, we put the joint residual ( jres) aside
and proceed by processing the locally convolved feature maps with larger filters. While
the first convolutions allowed us to obtain abstract local graph regions L2

amr and L2
dep, we

now aim at matching more global regions. More precisely, we use 128 2D filters of shape
10x5, followed by a 5x5 max-pooling operation on L2

amr and L2
dep. Thus, we have obtained

vectorized abstract global graph representations gamr,gdep ∈ R384. Then, we construct a
joint representation (right ⊗, Figure 7.5):

jglob = gamr⊗gdep. (7.3)

At this point, together with the joint residual representation from the local region
matching, we have arrived at two joint vector representations jglob and jres. We concate-
nate them ([·; ·] in Figure 7.5) to form one joint representation j ∈ R1280:

j = [ jres; jglob] (7.4)

Quality prediction. The shared representation j is further processed by a feed-forward
layer with ReLU activation functions (FF+ReLU , Figure 7.5) and a consecutive feed-
forward layer with sigmoid activation functions (FF+sigm, Figure 7.5):

y = sigm(ReLU(jT A)B), (7.5)

where A ∈ R1280×h, B ∈ Rh×dim(out) are parameters of the model and

sigm(x) = (
1

1+ e−x1
, ...,

1
1+ e−xdim(out)

) (7.6)

projects x onto [0,1]dim(out). When estimating the main MR metric scores we instanti-
ate three output neurons (dim(out) = 3) that represent main quality dimensions. In the
case where we are interested in a more fine-grained assessment of AMR quality (e.g.,
knowledge-base linking quality), we can introduce more output neurons representing ex-
pected scores for various semantic aspects involved in MR parsing (as outlined next in
Section 7.6).
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To summarize, the residual joint representation should capture local similarities. On
the other hand, the second joint representation aims to capture the more global and struc-
tural properties of the two graphs. Both types of information inform the final quality
assessment of our model in the last layer.

7.6 Multi-quality dimensions

Main AMR quality dimensions. It is possible to learn to predict all MR metrics from
the previous chapters. However, for simplicity, here we want to stick to the standard
metrics that assess triple overlap. Hence, the main quality dimensions that we desire our
model to predict are estimated SMATCH F1/recall/precision.

AMR sub-task quality dimensions. We also predict other quality dimensions to assess
various MR aspects based on MR subgraphs as outlined in Figure 3.1 from our related
work Section 3.1. A brief overview: (i) Unlabeled: SMATCH F1 when disregarding
edge-labels. (ii) No WSD: SMATCH F1 when ignoring ProbBank senses. (iii) Frames:
PropBank frame identification F1 (iii) Wikification: KB linking F1 score on :wiki rela-
tions. (iv) Negations: negation detection F1. (v) NamedEnt: NER F1. (vi) NS frames:
F1 score for ProbBank frame identification when disregarding the sense. (vii) Concepts
SMATCH F1 score for concept identification (viii) SRL: SMATCH F1 computed on arg-i
roles only. (ix) Reentrancy: SMATCH F1 computed on re-entrant edges only. (x) Ignore-
Vars: F1 when variable nodes are ignored. (xi) Concepts: F1 for concept detection.

7.7 Experimental data construction

Since our goal is to predict the accuracy of an automatic parse, we need a data set con-
taining automatically produced AMR parses and their scores, as they would emerge from
comparison to gold parses. Our data set, LDC2015E86, comprises 19,572 sentences and
comes in a predefined training, development and test split. We parse this data set with
three parsers, JAMR (Flanigan et al., 2014), CAMR (Wang et al., 2016) and GPLA (Lyu
and Titov, 2018). Since the three parsers have been trained on the training data partition,
we naturally obtain more accurate parses for the training partition than for development
and test data.
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training development

parser SMATCH (F1) % def. SMATCH (F1) % def.

JAMR 0.79 86.7 0.69 91.8
CAMR 0.75 93.6 0.66 95.7
GPLA 0.86 83.4 0.76 90.0

Table 7.2: Parser output evaluation on training and development partitions of LDC2015E86.
SMATCH F1: avg. over SMATCH F1 per sentence, % def.: percentage of deficient parses
(i.e., parses with SMATCH F1 < 1).

Table 7.2, however, indicates that we still obtain a considerable amount of deficient
parses for training. Based on the parser outputs we compute evaluations comparing the
automatic parses with the gold parses by using SMATCH and fine-grained SMATCH sub-
graph metrics. This allows us to create full-fledged training, development and test in-
stances for our quality estimation task. Each instance consists of a sentence and an MR
parse as input and a vector of metric scores as target.

Finally, our preliminary data set D = {(Si,Gi,yi)}N
i=1 contains 58,716 tuples (Si,Gi,yi),

where Si is a natural language sentence, Gi is a ‘candidate’ AMR graph and yi ∈ Rd is a
36-dimensional vector containing scores which represent the quality of the AMR graph
in terms of precision, recall and F1 with respect to 12 different tasks captured by AMR
(as outlined in Section 7.6).

Debiasing of the data. We observe three biases in the data. First, the graphs in the
training section of our data are less deficient than in the development and testing data,
because the parsers were trained on (sentence, gold graph) pairs from the training section.
For our task, this means that the training section’s target scores are higher, on average,
than the target scores in the other data partitions. To achieve more balance in this regard,
we re-split the data randomly on the sentence-id level (such that a sentence does not
appear in more than one partition with different parses).

Second, we observe that the data contains some superficial hidden clues that could
give away the parse’s source. This bears the danger that a model does not learn to assess
the parse quality, but to assess the source of the parse. And since some parsers are better
or worse than others, the model could exploit this bias. For example, consider that one
parser prefers to write (r / run-01 :arg1 (c / cat) :polarity - ), while the other parser prefers
to write (r / run-01 :polarity - :arg1 (c / cat) ). These two structures are semantically
equivalent but differ on the surface. Hence, the arrangement of the output may provide
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unwanted clues on the source of the parse. To alleviate this issue, we randomly re-arrange
all parses on the surface, keeping their semantics.34

A third bias stems from a design choice in the metric scripts used to calculate the
target scores. More precisely, the extended SMATCH-metric script, per default, assigns
a parse that does not contain a certain edge-type (e.g., :argn) the score 0 with respect to
the specific quality dimension (in this case, SRL: 0.00 Precision/Recall/F1). However,
if the gold parse also does not contain an edge of this type (i.e., :argn), then we believe
that the correct default score should be 1, since the parse is, in the specific dimension, in
perfect agreement with the gold (i.e., SRL: 1.00 Precision/Recall/F1). Therefore, we set
all sub-task scores, where the predicted graph agrees with the gold graph in the absence
of a feature, from 0 to 1.

7.8 Experiments on MR quality prediction

Preprocessing. Same as prior work, we dependency-parse and tokenize the sentences
with spacy (Honnibal and Montani, 2017) and replace variables with corresponding con-
cepts (e.g., (j / jump-01 :arg0 (g / girl)) is translated to (jump-01 :arg0 (girl)). Re-
entrancies are handled with pointers according to Noord and Bos (2017a), which ensures
non-degenerate AMR simplification.5 Furthermore, we lower-case all tokens, remove
quotation marks and join sub-structures that represent names.6 The vocabulary encom-
passes all tokens of frequency ≥ 5, remaining ones are set to <unk>.

Training. All parameters are initialized randomly. We train for 5 epochs and select the
parameters θ from the epoch where maximum development scores were achieved (with
respect to average Pearson’s ρ over the quality dimensions). In training, we reduce the
squared error with gradient descent (Adam rule (Kingma and Ba, 2019), learning rate =

3Technically, this is achieved by reformatting the parses such that in the depth-first writing-traversal at
node n the out-going edges of n will be traversed in random order.

4Different variable names, e.g., (r / run-01) and (x / run-01 ) are not an issue in this work since the
variables are handled via (Noord and Bos, 2017a). See also Preprocessing, Section 7.8

5For example, consider the sentence The cat scratches itself and its graph (x / scratch-01 :arg0 (y / cat)
:arg1 y)). Replacing the variables with concepts would come at the cost of an information loss w.r.t. to
coreference: (scratch-01 :arg0 cat :arg1 cat) — does the cat scratch itself or another cat? Hence, pointers
are used to translate the graph into (scratch-01 :arg0 *0* cat :arg1 *0*)).

6E.g., :name (name :op1 ‘Barack’ :op2 ‘Obama’) is translated to :name barack obama.
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SMATCH Ridge GNN LG-LSTM PCNN change %

P’
s

ρ

F1 0.428 0.659 0.662±0.00 0.696±0.00 +5.14 †‡
Precision 0.348 0.601 0.600±0.00 0.623±0.01 +3.83 †
Recall 0.463 0.667 0.676±0.00 0.719±0.00 +6.36 †‡

R
M

SE

F1 0.155 0.132 0.130±0.00 0.128±0.00 -1.54
Precision 0.146 0.127 0.126±0.00 0.126±0.00 +-0.0
Recall 0.169 0.141 0.142±0.00 0.136±0.00 -4.23

Table 7.3: Main results. Pearson’s corr. coefficient (row 1-3) is better if higher; root mean square
error (RMSE, row 4-6) is better if lower. The quality dimensions are explained in
Section 7.6. † (‡): p < 0.05 (p < 0.005), significant difference in the correlations with
two-tailed test using Fisher ρ to z transformation (Fisher, 1915).

0.001, mini batch size = 64):

θ
∗ = argmin

θ

|D |

∑
i=1

|M|

∑
j=1

(yi, j− fθ (si,gi) j)
2, (7.7)

where M is the set of target metrics.

Baselines. To better put the main test results into perspective, we also display the results
of two additional baselines: GNN (Song et al., 2018), where we encode the dependency
tree and the AMR with a graph-recurrent encoder and perform regression on the joint aver-

aged node embedding vectors. More precisely,
[

1
|VA|∑v∈VA

emb(v)
]
⊗
[

1
|VD|∑v∈VD emb(v)

]
.

And Ridge, an l2-regularized linear regression that is based on shallow graph statistics.
For the dependency graph (D) and the MR graph (A) we both compute φ(A|D) = [density,
avg. node degree, node count, edge count, (arg0|subj) count, (arg1|obj) count], the final
feature vector then is defined as Φ(x) = [φ (A) - φ (D); φ (D); φ (A); |lemmas(D)∩concepts(A)|

|lemmas(D)∪concepts(A)|]

7.8.1 Results

Main AMR quality dimensions. The main quality of an MR graph is estimated in
expected triple match ratios (SMATCH F1, Precision and Recall).

The results, averaged over 10 runs, are displayed in Table 7.3. With regard to esti-
mated SMATCH F1, PCNN achieves a correlation with the gold scores of 0.695 Pearson’s
ρ . This constitutes a significant improvement of appr. 5% over LG-LSTM. Similarly, re-
call and precision correlations improve by 6.36% and 3.83 % (from 0.676 to 0.719 and
0.600 to 0.623). While the improvement in predicted recall is significant at p<0.05 and
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Quality Dim. LG-LSTM PCNN change %

F1
Pe

ar
so

n’
s

ρ

Concepts 0.508±0.01 0.545±0.01 +7.28 †
Frames 0.420±0.01 0.488±0.01 +16.19 ††
IgnoreVars 0.627±0.01 0.665±0.00 +6.06 ††
NamedEnt. 0.429±0.02 0.460±0.01 +7.23 †
Negations 0.685±0.02 0.746±0.01 +8.91 ††
NoWSD 0.640±0.01 0.680±0.00 +6.25 ††
NS-frames 0.419±0.02 0.505±0.01 +20.53 ††
Reentrancies 0.508±0.01 0.602±0.00 +18.50 ††
SRL 0.519±0.01 0.581±0.01 +11.95 ††
Unlabeled 0.628±0.01 0.663±0.00 +5.57 ††
Wikification 0.901±0.00 0.904±0.00 +0.33

F1
R

M
SE

Concepts 0.117±0.00 0.114±0.00 -2.56
Frames 0.186±0.00 0.182±0.00 -2.15
IgnoreVars 0.195±0.00 0.186±0.00 -4.62
NamedEnt. 0.159±0.00 0.156±0.00 -1.89
Negations 0.197±0.00 0.180±0.00 -8.63
NoWSD 0.132±0.00 0.126±0.00 -4.55
NS-frames 0.157±0.00 0.155±0.00 -1.27
Reentrancies 0.285±0.00 0.265±0.00 -7.02
SRL 0.189±0.00 0.181±0.00 -4.23
Unlabeled 0.124±0.00 0.121±0.00 -2.42
Wikification 0.165±0.00 0.162±0.00 -1.82

Table 7.4: Results for AMR quality rating w.r.t. various sub-tasks. † (‡): significance (c.f. caption
Table 7.3).

p<0.005, the improvement in predicted precision is significant at p<0.05. When we con-
sider the root mean square error (RMSE), we find that PCNN improves over the best
baseline by -1.54% in estimated SMATCH F1 and -4.23% in estimated SMATCH recall.
On the other hand, the RMS error in estimated precision remains unchanged.

AMR subtask quality. PCNN and LG-LSTM can also rate the quality of an AMR
graph in a more fine-grained way.

The results are displayed in Table 7.4. Over almost every dimension we see consider-
able improvements by PCNN. For instance, a considerable improvement in Pearson’s ρ

is achieved for assessment of frame prediction quality (‘NSFrames’ in Table 7.4, +20.5%
ρ) and coreference quality (‘Reentrancies’ in Table 7.4, +18.5%).

A substantial error reduction is achieved in polarity (‘Negations’, Table 7.4), where
PCNN reduces the RMSE of the estimated F1 score by -8.6%. When rating the SRL-
quality of an AMR parse, PCNN reduces the RMSE by appr. 4%. In general, improve-
ments are obtained over almost all tested quality dimensions, both in RMSE reduction
and increased correlation with the gold scores.
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Pearson’s ρ error
data method P R F1 RMSE (F1)
0
2 LG-LSTM 0.72 0.78 0.77 0.138

LG-LSTM+aux 0.74 0.79 0.78 0.137
PCNN 0.75 0.80 0.79 0.133
PCNN+aux 0.76 0.81 0.80 0.132

1
2 LG-LSTM 0.67 0.73 0.72 0.120

PCNN 0.68 0.75 0.74 0.117
2
2 LG-LSTM 0.60 0.68 0.66 0.130

PCNN 0.62 0.72 0.70 0.128

Table 7.5: Performance-effects of data debiasing steps. +aux indicates a model variant that is
trained using auxiliary losses that incorporate hierarchical information about the other
AMR aspects in the training process.

7.8.2 Analysis

Effect of data debiasing. We want to study the effect of the data set cleaning steps
by analyzing the performance of our method and the baseline on three different versions
of the data, with respect to estimated SMATCH scores. The three versions are (i) 0

2 =
AMRQUALITY, which is the original data; (ii) 1

2 , which is the data after the random re-
split and score correction; (iii) 2

2 = AMRQUALITYCLEAN which is our main data after
the final debiasing step (shallow structure debiasing) has been applied.

The results are shown in Table 7.5. We can make three main observations: (i) from
the first to the second debiasing step, both LG-LSTM and PCNN have in common that
Pearson’s ρ and the error decrease. While we cannot exactly explain why ρ decreases,
it is somewhat in line with recent research that observed performance drops when data
was re-split (Gorman and Bedrick, 2019). On the other hand, the error decrease can be
explained by the random re-split that balances the target scores. (ii) The second debiasing
step leads to a decrease in ρ and an increase in error, also for both models. This indicates
that we have successfully removed shallow biases from the data that can give away the
parse’s source. (iii) On all considered versions of the data, the method performs better
than the baseline.

AMRs: telling the good from the bad. In this experiment, we want to see how well the
models can discriminate between good and bad graphs. To this aim, we create a five-way
classification task: graphs are assigned the label ‘very bad’ (SMATCH F1 < 0.25), ‘bad’
(0.25 ≥ SMATCH F1 < 0.5), ‘good’ (0.5 ≥ SMATCH F1 < 0.75), ‘very good’ (0.75 ≥
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majority random LG-LSTM PCNN

avg. F1 0.13 0.20 0.40 0.44†‡

quadr. kappa 0.0 0.03 0.53 0.60†‡

Table 7.6: Graph quality classification task. † (‡) significance with paired t-test at p<0.05
(p<0.005) over 10 random inititalizations.

Quality Dim. LG-LSTM PCNN PCNN (no dep.)

P’
s

ρ

SMATCH F1 0.662±0.00 0.696±0.00 0.682±0.01

SMATCH precision 0.600±0.00 0.623±0.01 0.614±0.01

SMATCH recall 0.676±0.00 0.719±0.00 0.702±0.01

R
M

SE

SMATCH F1 0.130±0.00 0.128±0.00 0.128±0.00

SMATCH precision 0.126±0.00 0.126±0.00 0.129±0.00

SMATCH recall 0.142±0.00 0.136±0.00 0.139±0.00

Table 7.7: Right column: results of our system when we abstain from feeding the dependency tree,
and only show the sentence together with the candidate MR.

SMATCH F1 < 0.95) and ‘excellent’ (SMATCH F1≥ 0.95), i.e., group of excellent graphs
includes the gold graphs and (almost) flawless parses. Here, we do not retrain the models
with a classification objective but convert the estimated SMATCH F1 to the corresponding
label. Since the classes are situated on a nominal scale, and ordinary classification metrics
would not fully reflect the performance, we also use quadratic weighted kappa (Cohen,
1968) for evaluation.

The results are shown in Table 7.6. All baselines, including LG-LSTM, are signifi-
cantly outperformed PCNN, both in terms of macro F17 (+4 points, 10% improvement)
and quadratic kappa (+7 points, 13% improvement).

How important is the dependency information? To investigate this question, instead
of feeding the dependency tree of the sentence, we only feed the sentence itself. To
achieve this, we simply insert the tokens in the first row of the former dependency input
image, and pad all remaining empty ‘pixels’. In this mode, the sentence encoding is
similar to standard convolutional sentence encoders as they are typically used in many
tasks (Kim, 2014).

The results are shown in the right column of Table 7.7. The performance drops are
small but consistent across all analyzed dimensions, both in terms of error (0 to 2.2%
increase) and Pearson’s ρ (1.4 to 2.4% decrease). This indicates that the dependency trees

7We use the arithmetic mean over the classes (Opitz and Burst, 2019).
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GPU type GTX Titan GTX 1080

method LG-LSTM PCNN LG-LSTM PCNN

avg. ep. time 722s 59s 1582s 64s
avg. W 105 166 45 128
kWh per epoch 0.021 0.003 0.020 0.002

Table 7.8: Efficiency analysis of two approaches.

contain information that can be exploited by our model to better judge the MR quality. We
hypothesize that this is due to similarities between relations such as subj/obj (syntactic)
or arg0/arg1 (semantic), etc. Yet, we see that this simpler model, which does not see the
dependency tree, still outperforms the baseline, except in estimated precision, where the
error is increased by 2.4%.

Efficiency analysis. Recently, in many countries, there have been efforts to reduce en-
ergy consumption and carbon emission. Since deep learning typically requires intensive
GPU computing, this aspect is of increasing importance to researchers and applicants
(Strubell et al., 2019). To investigate energy consumption of our methods, we monitor
their GPU usage during training, assessing the following quantities : (i) avg. time per
epoch, (ii) avg. watts GPU usage, (iii) kilowatts per epoch (in kWh).

The results of this analysis are displayed in Table 7.8 and outlined in Figure 7.6.
PCNN consumes approximately 6.6 times less total kWh on a GTX Titan (10 times less
on a GTX 1080). Directly related, it also reduces the training time: prior work requires
appr. 1500s training time per epoch (GTX 1080), while our method requires appr. 60s per
epoch (GTX 1080). The main reason for this is that PCNN does not depend on recurrent
operations and profits more from parallelism.

7.9 Discussion

In this chapter, we tested the feasibility of predicting distances between meaning struc-
tures when one meaning structure is hidden, and we only have its sentence; a problem
that occurs when we want to rate parser output efficiently without constructing costly
gold data. To this aim, we proposed two graph encoders that encode the candidate MR
and the dependency tree of the source sentence, and learning to match them, extrapolating
an MR metric. The best encoder is also the simplest: A novel and efficient CNN graph
encoder that exploits the Penman multi-line spatial and interpretable serialized MR-string
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LG-LSTM
PCNN

Figure 7.6: Training cost diagram of two approaches.

representation, that is also used in the human annotation process of MRs. A caveat is that
we performed supervised training to learn to extrapolate the MR metrics. The training
data set Incorporated parses from a selection of parsing systems, which could signifi-
cantly limit the method’s capability to generalize well to different/stronger parsers and
data from different domains.
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Part III

MR metrics for effective
semantic similarity
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Chapter 8

Exploring argumentation with
MR metrics

8.1 Chapter outline

In the last two chapters, we want to explore extended and generalized use-cases for MR
metrics, measuring semantic text similarity through the lens of MR. To make a first step,
in this chapter we investigate a concrete application, that is measuring the similarity of
natural language arguments. This is a task where the interest into explainable computa-
tional methods is specifically growing (Kobbe et al., 2019; Lawrence, 2021; Becker et al.,
2020; Singh et al., 2021). In particular, we i) generally study the usefulness of MR rep-
resentations and MR metrics for argumentation tasks, and ii) investigate the use of MR
metrics for explaining relations between arguments.

The remainder of this chapter is structured as follows:

1. After discussing more background (Section 8.2) we introduce MR-argument simi-
larity hypotheses (Section 8.3) and describe our concrete approach in Section 8.4.

2. We conduct experiments on argument similarity through the lens of MR and MR
metrics (Section 8.5), obtaining state-of-the-art results.

3. We conduct extensive analysis in Section 8.6 and furthermore assess the useful-
ness of MR metrics for rating the quality of automatically generated argumentative
conclusions.

4. We conclude the Chapter with a discussion (Section 8.7).
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Underlying work. The content of this chapter is mainly based on Opitz et al. (2021b).
The work received the best paper award at the Argument Mining Workshop 2021.

8.2 Research questions

When assessing the similarity of arguments, researchers typically use approaches that do
not provide interpretable evidence or justifications for their ratings. Hence, the features
that determine argument similarity remain elusive.

Indeed, previous methods (Reimers et al., 2019) for rating argument similarity suffer
from a common flaw: beyond shallow statistics (word matches in bag-of-word models,
or word similarities in distributional space), they do not provide any rationale for their
predictions, and the prediction process is in general not transparent. Therefore, we know
only little about the following question:

• Which argument features correlate with human argument similarity decisions?

In this work, we undertake a first attempt at answering this question, by testing two
hypotheses:

i) Representing arguments with Abstract Meaning Representations (AMRs) and using
AMR graph metrics improves argument similarity rating and provides explanatory
information.

ii) Extending arguments with inferred conclusions can improve argument similarity
rating.

8.3 Hypotheses

We base our models for explanatory argument similarity assessment on two hypotheses.

Hypothesis I: Abstract Meaning Representation of arguments supports explainable
argument similarity assessment. There is growing interest in extracting graph struc-
tures from natural language arguments. Lenz et al. (2020), e.g., propose a pipeline for
detecting and linking argumentative discourse units (ADUs). Al-Khatib et al. (2020)
detect textual phrases and link them with POS/NEG relations, where POS indicates a pos-
itive influence and NEG a negative influence (inhibition), e.g., sports NEG health issues.
However, such approaches lack finer semantic assessment: they do not distinguish word
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senses, and the linked entities (phrases or ADUs) are taken as atoms, which hampers
explainability: when linking sports and health issues with a NEG relation, we cannot dif-
ferentiate sports NEG issues and sports NEG health (only the former is correct). We target
a finer analysis of argumentative texts, by representing them with dense AMR graphs.

Recall that AMRs are directed, rooted and acyclic graphs that aim at capturing a sen-
tence’s meaning (c.f. Background 2.2). Edges are labeled with semantic relation types
(e.g., negation, cause, etc.) and vertices denote either variables or concepts (variables are
instances of concepts and allow us to capture coreferences). Hence, AMR can capture
various semantic phenomena that can play a role when assessing argument similarity.
E.g., besides the obviously useful aspect of negation, AMR captures semantic roles and
predicate senses (Kingsbury and Palmer, 2002). While it is clear that similar arguments
tend to involve similar predicates and predicate senses, semantic structure and role as-
signment may also play a role. For instance, the claims: consumption of alcohol leads

to depression vs. depression leads to consumption of alcohol are clearly distinct, while
sharing the same concepts. Other AMR facets may also be useful. E.g., AMR captures
coreferences and resolving them in different ways can induce significant meaning differ-
ences. Finally, AMR includes key semantic relations (location, cause, possession, etc.)
that are often implicit or underspecified in language, hence their explicit representation in
AMR provides a rich basis for assessing arguments.

Arguments represented with AMR can be compared with our AMR graph metrics,
with the option to induce an explicit alignment between two argument graphs.

Hypothesis II: similar arguments lead to similar conclusions. We hypothesize that a
key feature of similar arguments is that they invite for similar conclusions. Analogously,
dissimilar arguments tend to lead to differing conclusions.

Consider the following two arguments:

i) Cannabis can have negative effects on brain development of teens.

ii) Smoking cannabis is harmful for the lungs.

The arguments are dissimilar, even though they share the same (negative) stance and
argue from a similar perspective (health). This dissimilarity is also reflected in the conclu-
sions that can be inferred from them: from i) we can infer that, i.a., Cannabis consump-

tion should be strictly controlled for age or Cannabis can have a negative impact on the

brain—while from ii) we could infer that Cannabis, if consumed, should not be smoked

or Cannabis smokers should get their lungs checked.
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As a complementary example, the similarity of two arguments may be reinforced by
the similarity of their inferred conclusions, as shown below:

i) Fracking can contaminate water and water wells and suck towns dry.

ii) As a water-poor state, fracking and its toxic wastewater presents a serious danger

to our communities and ecosystems.

Arguments i) and ii) are rated as similar, presumably because they point at detrimental
ramifications of fracking related to water issues. This similarity is likely to be reflected in
conclusions drawn from them, such as: i) Fracking can lead to water issues or ii) Fracking

poses dangers for water-poor states.

8.4 Argument Similarity through MR Metrics

According Hyp I, we represent arguments with AMR graphs and rate their similarity with
AMR metrics. To test Hyp II we infer conclusions from arguments with language models
and compute similarity on arguments extended with their conclusion.

8.4.1 Models

We propose three model variants that aim at explaining argument similarity. Given two
arguments a,a′ and their extrapolated conclusions c = conclusion(a), c′ = conclusion(a′),
we compute similarity in the space of abstract meaning representation using a similarity
function f in three alternative ways: i) f (a,a′), between the two arguments, ii) f (c,c′)

between their conclusions, iii) f (a⊕c,a′⊕c′), i.e., between the combinations of argument
a and its derived conclusion c, where we use a simple decomposable weighting:

f (a⊕ c,a′⊕ c′) = λ f (a,a′)+(1−λ ) f (c,c′) (8.1)

If not specified otherwise, λ is set to 0.95.1 The AMR metric f will be described in the
following.

1We choose a high value of λ since, clearly, the premises are bound to host the primary evidence for
similarity, while a conclusion may serve as auxiliary information. In our experiments, we also consider
extreme decompositions (λ ∈ {0,1}).
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Figure 8.1: Standard, concept-focus and structure focus.

8.4.2 Implementation

AMR parser. Same as in BAMBOO , we parse all arguments from the data with the
parser from amrlib2, a strong fine-tuned T5 sequence-to-sequence model.

Conclusion generator. The task of conclusion generation has been recently investi-
gated by Alshomary et al. (2020, 2021), and allows us to infer conclusions from given
premises. Conclusion generation can be seen as the inverse of argument generation (Sato
et al., 2015; Schiller et al., 2020). We generate conclusions from arguments using the T5
model (Raffel et al., 2020) pre-trained on summarization tasks. To encourage the model
to generate informative conclusions (as opposed to summaries), we further fine-tune it on
premise-conclusion samples from Stab and Gurevych (2017), which contain intelligible
and rational conclusions of high linguistic quality.3

2https://github.com/bjascob/amrlib
3For further detail on this fine-tuning step, see Appendix A.3.

https://github.com/bjascob/amrlib
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8.4.3 AMR metric variants for exploring argument similarity

As a basis here, we use S2MATCH and WWLK, since they admit measurement of more
graded similarity. Since, so-far, little is known about the trade-off and interface be-
tween concrete and abstract semantics in human mental representations (Mkrtychian et
al., 2019), we introduce two more variants that assess similarity from complementary
perspectives: concept-focus, and structure-focus.

Two meta-variants: concept vs. structure. To better explore argument similarity, we
devise two variants, the view the graph from complementary angles: 1) concept-focus,

C-focus. The first metric variant focuses on conceptual matches (Figure 8.1, middle),
i.e. the more concrete semantic aspects, by putting more weight on concept matches,
and less on relational graph structure. 2) structure-focus, S-focus puts more weight on
relational graph structure than on node labels (Figure 8.1, bottom). We speculate that
C-focus will obtain a better score since human notion of argument similarity may be less
influenced by an argument’s abstract semantic relational structure than the concepts that
are involved in the arguments. However, both may provide valuable insights to better
understand argument similarity.

Concept vs. Structure with S2MATCH. The first metric variant puts triple weight on
concept matches (all triples that are :instance relations). The second variant puts triple
weight on relation matches (all triples that are not :instance relations).

Concept vs. Structure with WWLK. Similarly, we can adapt WWLK in a straightfor-
ward manner to allow C-focus, and S-focus. For C-focus, we set k = 0, so that the Wasser-
stein distance is calculated on node embeddings only. For S-focus, we set k = 4, which
increases the communication in the graph, and thus the impact of the graph’s structure.

8.5 Argument Similarity Prediction with MR Metrics: Ex-
periments

8.5.1 Setup

Data set and evaluation metric. We use the UKP aspect corpus (Reimers et al., 2019),
which contains 3,596 argument pairs on 28 topics that have been assigned a four-way
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similarity rating: highly similar (HS), somewhat similar (SS), not similar (NS), different
topic/‘can’t decide’ (DTORCD). Following Reimers et al. (2019), we frame the task as a
binary prediction problem: highly similar (HS, SS) and non-similar (NS, DTORCD), and
we conduct evaluation via cross validation with 4 folds. In every iteration, 7 topics serve
as testing data, while the other 21 topics serve to tune a decision threshold of the metric
score.4 As in Reimers et al. (2019), we evaluate the F1 score for each of the two labels
and the arithmetic F1 mean (macro F1) (Opitz and Burst, 2019).

Baselines. We compare to previously established unsupervised baselines (Reimers et
al., 2019): i) Tfidf calculates cosine similarity between Tfidf-weighted bag-of-word vec-
tors; i) InferSent-(FastText|Glove) leverages sentence embeddings produced by the In-
ferSent model (Conneau et al., 2017) based on either FastText (Bojanowski et al., 2016)
or GloVe (Pennington et al., 2014a) vectors, which are compared with cosine similarity;
iii) (GloVe|ELMo|BERT) Embedding uses averaged GloVe embeddings or averaged con-
textualized embeddings from ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019)
language models.

8.5.2 Results

Best system. Table 8.1 shows our main results. The AMR-based approach that is based
on concept-focused WWLK scores, taking both the argument and its inferred conclusion
into account, obtains rank 1 (69.22 macro F1), closely followed by S2MATCH also with
concept focus that obtains rank 3 (68.70 macro F1) – both AMR approaches are outper-
forming all baselines, including the BERT baseline, by up to 4 points macro F1. The
difference is significant (Student t-test). This system is closely followed by other AMR-
based systems, e.g., using concept-focused S2MATCH that sees only the argument (68.17
macro F1), and standard S2MATCH taking both argument and conclusion into account
(66.21 macro F1).

Does incorporating conclusions help? Interestingly, when making similarity judg-
ments based on only conclusions, we still outperform the random baseline (rank 24). The
low performance of this approach, in general, is expected, since clearly, argument simi-
larity must be primarily determined based on the arguments, and hence, methods that rate

4Strictly speaking, this is not a fully unsupervised setup, however, we stick to this framing of the task to
facilitate comparison to the previous work (Reimers et al., 2019).
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F1 score rank
metric model type macro sim not sim

human ? 78.34 74.74 81.94 0

random - 48.01 34.31 61.71 24
Tf-Idf f (a,a′) 61.18 52.30 70.07 17
InfSnt-fText f (a,a′) 66.21 58.66 73.76 7/8
InfSnt-GloVe f (a,a′) 64.94 54.72 75.17 13
GloVe Emb. f (a,a′) 64.68 56.32 73.04 14

B
as

el
in

es

ELMo Emb. f (a,a′) 64.47 53.55 75.38 15
BERT Embe. f (a,a′) 65.39 52.32 78.48 12

AMR f (a,a′) 67.0±0.8 57.5±1.2 76.4±0.5 6†
AMR f (c,c′) 61.5±0.5 51.2±0.4 71.8±0.8 16
AMR f (a⊕ c,a′⊕ c′) 67.4±0.4 58.2±0.7 76.5±0.4 5 †‡

AMR C-focus f (a,a′) 68.72±0.8 60.44±1.4 76.99±0.3 2 †‡
AMR C-focus f (c,c′) 62.03±0.3 52.08±0.4 71.97±0.4 16
AMR C-focus f (a⊕ c,a′⊕ c′) 69.22±0.2 60.55±0.3 77.89±0.4 1 †‡

W
W

L
K

va
ri

an
ts

AMR S-focus f (a,a′) 66.2±0.5 56.98±0.8 75.41±0.2 9
AMR S-focus f (c,c′) 59.93±0.5 48.3±0.7 71.57±0.5 21
AMR S-focus f (a⊕ c,a′⊕ c′) 65.97±0.3 56.47±0.4 75.47±0.2 10

AMR f (a,a′) 65.44±0.5 55.23±0.8 75.66±0.4 11
AMR f (c,c′) 57.31±0.6 45.73±1.2 68.89±0.4 22
AMR f (a⊕ c,a′⊕ c′) 66.21±0.3 56.98±0.6 75.42±0.1 7/8

AMR C-focus f (a,a′) 68.17±0.3 59.2±0.6 77.14±0.2 4 †‡
AMR C-focus f (c,c′) 60.29±0.5 49.33±0.4 71.26±0.8 20
AMR C-focus f (a⊕ c,a′⊕ c′) 68.70±0.5 60.35±1.0 77.04±0.1 3 †/‡

AMR S-focus f (a,a′) 60.74±0.5 49.94±0.8 71.55±0.5 19S2 M
A

T
C

H
va

ri
an

ts

AMR S-focus f (c,c′) 56.48±0.3 44.96±0.6 67.99±0.2 23
AMR S-focus f (a⊕ c,a′⊕ c′) 61.14±0.3 49.74±0.5 72.55±0.5 18

Table 8.1: Main results for argument similarity. †/‡: significant improvement over all baselines
with p<0.05/p<0.005 (Student t-test).
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the similarity of arguments only seeing conclusion have an obvious disadvantage. Hence,
the more interesting question is: Do inferred conclusions provide complementary infor-
mation for the task? Our results show a tendency that this is the case. All AMR-based
models that take both conclusion and argument into account (model type f (a⊕c,a′⊕c′))
outperform models that only see the arguments. At this point, however, we cannot explain
whether this is due to useful summaries or truly novel content that was generated, or a mix
of both. We will investigate this question more deeply in Section 8.6.

Argument similarity: driven by abstract or concrete semantics? The strong perfor-
mance of the concept-focused AMR metric shows that a large overlap in concepts tends
to correlate with human ratings more than an overlap in abstract semantic structure. The
structure-focused AMR methods (last block in Table 8.1), while significantly outperform-
ing the random baseline, lag behind all other baselines. Note, however, that the standard
AMR-based model, which weights concept and structure overlap equally, still provides
strong performance compared to all baselines, with our without additional summaries.5

8.6 Analyses & Explainability

While these model ablations provide a global view of what matters in argument similarity
rating, we now analyze the impact of finer semantic features.

8.6.1 Fine predictors of argument similarity

The previous experiment suggests that human argument similarity ratings can be modeled
through a combination of different meaning facets, with a focus on concepts. We will
now investigate how human argument similarity ratings correlate with specific meaning
aspects represented in AMR graphs.

Setup. For this we leverage fine-grained AMR metrics (i.e., apply SMATCH on aspec-
tual subgraphs, c.f. bottom of Figure 3.1 in Chapter 3), and compute similarity with re-
spect to 6 meaning aspects i) named entities (NER); ii) negation; iii) lexical concepts;
iv) predicate frames; v) coreference and vi) semantic roles (SRL). Instead of merging the

5Motivated by this result, we conduct two extreme ablations: concept-only and structure-only met-
rics. While the structure-only variant shows worse results than AMR S-focus (macro F1 ∆ f (a,a′): -2.7),
concept-only variant and concept-focused are more or less on par (macro F1 ∆ f (a,a′): -0.2).
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Pearson’s ρ vs. human gold similarity
predictor f (a,a) f (c,c) f (ac,a′c′)

Concepts 0.492‡ 0.299‡ 0.492‡

Sem. Role Labels (SRL) 0.400‡ 0.185‡ 0.402‡

Predicate Frames 0.355‡ 0.232‡ 0.357‡

Reentrancies (Coref.) 0.235‡ 0.085‡ 0.235‡

Named Entity (NER) 0.076‡ 0.052‡ 0.077‡

Negations 0.042† -0.011 0.042†

Table 8.2: Semantic predictors of human argument similarity. †/‡: significant with
p<0.05/p<0.005.

labels somewhat similar and similar, we keep them distinct and use a three-point Likert
scale: 0 means not similar or unrelated, 0.5 means somewhat similar, and 1 means highly

similar. To assess the correlation, we use Pearson’s correlation coefficient.

Results of this univariate feature analysis are displayed in Table 8.2. As expected from
the earlier experiment, shared concepts are strong predictors for argument similarity (Con-
cepts, ρ=0.49). Also more abstract semantic features, such as similar semantic roles, have
a solid signaling effect (SRL, ρ=0.40). Similarly, coreferences have predictive capacity,
though at a lower range (ρ=0.23). On the other hand, negation or shared named enti-
ties do exhibit only small (yet still significant) predictive capacity (Negation, ρ=0.04 and
NER, ρ=0.08). The low correlation of NE overlap with human similarity ratings can in
part be explained by the fact that we do not find many arguments where this could poten-
tially matter (in our data, only 1 to 2 out of 1,000 nodes represent person NEs). However,
if humans were to rate argument similarity in a dataset that features many arguments

from expert opinion (Godden and Walton, 2006; Wagemans, 2011), named entity overlap
may have a significant predictive capacity. Also negation might be more important than
what we see in this analysis, since it can be expressed in alternative ways (e.g., through
antonyms) that are not encoded as such in AMR.

8.6.2 Example case with alignment

To illustrate the potential of using AMR for connecting and assessing arguments, we
study an example case in Figure 8.2. It shows the graphs and graph alignments6 that
were found, for the actual arguments and their automatically induced conclusions, for our
running example on fracking.

6The alignments were computed with S2MConcept+Concl.
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Figure 8.2: Full example (edge-labels omitted for simplified display) of explicit alignments be-
tween argument graphs (top) and automatically induced conclusions (bottom). Here,
the conclusions help explaining argument similarity, since the alignment connects
fracking in both graphs, as well as water wells and toxic wastewater, showing how
contaminating of the wells (left graphs) actually happens: wells are polluted with toxic
wastewater (right graphs).

Observations about argument alignment. The top figure shows the alignment of the
two argument graphs, where important substructures have been linked. Contamination of

water and water wells is linked to endangering our communities and ecosystems (orange
nodes and alignment). It is also appropriate that towns that are sucked dry is linked
to water poor state (blue). This link is very valuable since these statements stand in a
semantic EXACERBATE-relation that may be important for the arguments’ similarity (the
water-poverty of states is exacerbated if towns are sucked dry). Ideally, we would like
such alignments to be labeled with a corresponding semantic relation. In future work, we
plan to achieve this by leveraging commonsense knowledge graphs like ConceptNet.

Observations about conclusion alignment. The bottom figure shows the alignment
of the automatically deduced conclusions. For the left argument, the conclusion fails to
produce an abstraction and more or less repeats the argument. For the argument on the
right-hand side, however, the conclusion generator produced a more informative conclu-
sion. From the input argument it concludes that Fracking and its toxic wastewater are
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a threat to the environment—focusing on the negative environmental impact of frack-
ing. This triggers a graph alignment which adds valuable new information (see clouds
with dotted margins). The alignment makes explicit that water wells and toxic wastew-

ater stand in a correspondence in the context of fracking. Specifically, we see how the
contamination of wells (left graphs) happens: wells are polluted with toxic wastewater
(right graphs). Additionally, the left graph helps explain parts of the meaning of the right
graph: Fracking and toxic wastewater are a threat because fracking contaminates water
and water wells.

8.6.3 Investigations of conclusion quality

An inferred conclusion can be more or less abstract or dissimilar from the input argument.
This raises the question of the quality of an inferred conclusion. In fact, we can apply
our AMR similarity metrics to quantify the similarity of an argument and its inferred
conclusion—formally: f (a,c)—which may be indicative of the novelty of a conclusion in
relation to its premise. Hence, we investigate how AMR similarity metrics can be used to
measure the novelty of a conclusion relative to its premise. Another aspect of conclusion
quality is its validity or justification, i.e., to what extent it can be trusted. Clearly, a
conclusion that is very similar to the premise has a high chance of being valid (as long as
the premise is), whereas this is uncertain for parts of its meaning that do not match the
premise.

In current research, not much is known about how to rate the quality of a conclusion
drawn from an argument. We explore this question by performing a manual assessment
of different quality aspects of conclusions, and investigate to what extent these can be
assessed with our MR similarity metrics.

We randomly sample 100 argument-conclusion pairs per topic. The pairs are given to
two annotators whom we ask to assign binary ratings regarding two questions: i) Is the
conclusion valid based on the premise? With this we aim to assess whether the argument
legitimizes the conclusion; and ii) Does the conclusion introduce some novelty relative to
the argument? This should be denied if, e.g., the conclusion repeats the premise, and/or
paraphrases it.

As shown in Figure 8.3, we measure moderate IAA, with slightly higher agreement
for novelty. The results show that T5 often manages to produce either valid (justifica-

tion, ≈65-75% of cases) or novel content (novelty, ≈ 50-60%), but struggles to produce
conclusions that fulfill both criteria (justification & novetly: ≈ 25-35% of cases).
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Figure 8.3: Annotation results of two quality aspects with IAA: K =0.49 (justification) and
K =0.57 (novelty).

8.6.4 Can we predict conclusion quality?

We now extend the use of our metrics to assess conclusion quality by computing the
similarity of argument and conclusion: f (a,c). We calculate six graph similarity statistics
of their AMRs to finally produce an aggregate score assessment: i) |a∩ c|/|a| measures
the relative amount of premise content that is contained in the conclusion (‘precision’);
ii) |a∩c|/|c|measures the relative amount of conclusion content contained in the premise
(‘recall’); iii) the harmonic mean of i) and ii) corresponds to main metric f (a,c); and
features iv-vi) apply a non-linear function to i)-iii), measuring the proximity to the feature
means7, which expresses the idea that a conclusion that is both novel and justified may
be situated at mean similarity of premise and conclusion, measured by f (a,c).

We use a Linear SVM for predicting, in three binary classification tasks, either justifi-

cation; novelty or both, using the feature set i)-vi).8

Results are seen in Table 8.3. Despite the small training data, performance is good for
predicting justified (max. 68.6 F1) or novel (max. 70.0 F1). But predicting a conclusion
to be novel & justified yields substantially lower performance (max. 58.3 F1), while still

7I.e., given the mean µ of a feature x, the new value x′i of datum i is x′i = 1− (µ− xi)
2.

8We average all results over 25 runs of leave-one-out cross validations. When predicting either justifica-
tion, or novelty, we average over the two annotators; when predicting justification and novelty, to increase
the positive class labels slightly, the gold target are cases where one or two annotators annotated both novel
and justified.
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justified novel both

random 0.5 0.5 0.5

i) |a∩ c|/|a| 59.0 ++ 58.7 -- 53.4
ii) |a∩ c|/|c| 68.6 +++ 64.3 --- 52.4
iii) harm. mean i), ii) 61.3 +++ 61.9 --- 52.2
iv) proximity to mean i 49.8 55.1 -- 56.5 +
v) proximity to mean ii 35.9 52.0 58.3 +
vi) proximity to mean iii 30.5 54.4 - 58.1 +

i-vi combination 67.5 70.0 53.8

Table 8.3: Macro F1 scores for predicted conclusion quality using AMR-based models f (a,c),
assessing various aspects. For single features, + show positive correlation; - negative
correlation (levels 0.05, 0.005, 0.0005).

above baseline. Feature correlations show that novel is negatively (-) associated with
f (a,c) (i-iii), while justified is positively (+) correlated with f (a,c) (i-iii). We find much
weaker correlation for novel&justified, tending to mean similarity (iv-vi).

Our analyses support Hyp1 in that AMR metrics are able to rate similarity of argu-
ments, of conclusions and of argument-conclusion pairs, and this also allows us to de-
termine if a conclusion is novel or justified. While many justified conclusions are highly
similar to the premise, deciding their justification is difficult if they involve novelty.
We argue this is because justification cannot be determined from premises alone, but re-
quires external knowledge. We leave this issue for future work.

8.6.5 Conclusion usefulness

Finally, we revisit our Hyp2, that by extending arguments with inferred conclusions, we
can support assessment of argument similarity. This raises the issue of the usefulness

of a conclusion, in terms of achieving good performance and interpretability of an ar-
gument similarity method. The aspect of the usefulness of a conclusion clearly differs
from the question of its quality. For one, it is possible that a good conclusion is not
useful for argument similarity rating, simply because the assessment of the paired argu-
ment premises already provides a confident and precise similarity judgment. On the other
hand, a mediocre conclusion could provide complementary indications that can support
the similarity judgment. In this final section we aim to assess factors that can determine
this usefulness.
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similarity (SIM) features

feat. id i ii iii iv v
f aa′ f cc′ f aa′− f cc′ ( f ac− f a′c′)/2 hum

P. ’s ρ 0.83 -22.81 26.6 -9.37 -14.72
p-value > 0.05 1.2e−43 2.8e−59 1.8e−8 7.3e−19

Table 8.4: Predictors of conclusion usefulness.

Operationalizing conclusion usefulness. We define a score U for the usefulness of a
conclusion, based on a human rating y, the conclusion similarity f (c,c′) and argument
similarity f (a,a′), as

U =
1

1+(y− f (c,c′))2 +(y− f (a,a′))2, (8.2)

where U is maximized iff the automatic similarity rating of the conclusions does not
differ from the human rating, while the automatic similarity rating of the premises dif-
fers maximally from the human rating. It is in exactly these situations that a conclusion
assessment will prove most useful.

Features for assessing conclusion usefulness U . We assume the following features for
modeling the usefulness of a conclusion, which we compute with our similarity function
f : i) the similarity of the arguments f (a,a′); ii) the similarity of the conclusions f (c,c′);
iii) the (signed) difference between the argument and the conclusion similarities f (a,a′)−
f (c,c′); iv) we compute the (signed) difference between the similarity of (a,c) and (a′,c′):
f (a,c)− f (a′,c′)

2 ; finally, v) y is the human rating.

Results. Table 8.4 shows that the highest predictive power for conclusion usefulness is
feature iii): the similarity of the two arguments minus the similarity of the two conclu-
sions. It exhibits a highly significant positive correlation with conclusion usefulness, and
relates to the following scenario: If two arguments are considered to be similar, but the
conclusions as dissimilar, this may signal that the arguments are rated dissimilar by the
human, and the high initial rating may be reconsidered.

Table 8.5 shows a data sample where the conclusions help to correct an initial, over-
optimistic similarity rating of the premises. The premises are rated dissimilar by the hu-
man, but since they contain similar concepts, such as saving lives, the AMR metric assigns
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a) Because you may save up to eight lives through organ
donation and enhance many others through tissue do-
nation.

c) organ donation is a great way to save up to eight lives.

a’) This medical research is important to understanding
diseases in humans so that lives may be saved and
improved.

c’) medical research is important to understand diseases
in humans

Table 8.5: AMR metrics detecting dissimilar arguments.

a high similarity rating (0.7) to the pair (a,a′). However, the automatically generated con-
clusions (c,c′) are assigned low(er) similarity (0.2). The low rating can be explained by
the fact that the conclusion generator has distilled different conclusions from the premises
that reflect the different foci of the arguments: the first proposes that organ donations are
good for saving lives, while the second argument proposes that generally more medical
research should be conducted.

8.7 Discussion

Explanation dimensions. Our argument similarity rating approach may provide expla-
nations in various dimensions. i) First and foremost, the explicit alignment and similarity
computation based on MR and MR graph metrics, by relating similar concepts between
arguments and their conclusions, provides insight into which components of two argu-
ment MRs relate to each other, with individual alignment scores, and to what extent they
congtribute to the overall score. Especially in light of recent observations showing super-
vised models to be prone to superficial cues in data sets (Opitz and Frank, 2019c; Niven
and Kao, 2019; Heinzerling, 2020; Jo et al., 2021), this property is desirable. ii) We ap-
ply the fine-grained MR metrics according to the subgraph principle (c.f. 3.1, bottom) to
assess semantic phenomena, such as negation or semantic roles. This can further illumi-
nate in which ways an argument pair is similar/dissimilar. iii) By taking into account
the similarity of automatically inferred conclusions, the similarity computed for premises
may be re-adjusted in case the similarity of the inferred conclusions strongly differs.

The MR similarity statistics also enabled us to gain some first indications of what
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could be considered a good conclusion (without a reference): e.g., our qualitative evalu-
ations indicate that good conclusions tend to be neither very similar, nor very dissimilar
to the premise. This seems plausible, since (too) high similarity may indicate a mere
summary (reducing novelty), while (too) low similarity may indicate a lack of coherence
(reducing validity).

Our approach also hinges on the quality of the inferred conclusions. The conclusions
we obtained are often either justified or novel, but less often satisfy both conditions. In
addition, we find that the degree of novelty is often rather small, perhaps reflecting that
the T5 generator was pre-trained on summarization data and hence may tend to produce
inferences that are not novel, since novelty is not a common characteristic of a summary.
On the positive side, our approach can be fueled by an increasing amount of research on
argument conclusion generation (Alshomary et al., 2020, 2021). In general, and particu-
larly for our approach, it will be interesting to work with systems that produce not only a
single, but multiple valid conclusions. Considering relations across and within two con-

clusion sets inferred from two premises using AMR metrics may provide key information
on argument similarity.

Finally, by measuring the similarity of premises and their conclusions, our approach
could shed light on another important question: how to assess novelty and justification of

a conclusion without reference? This is an important question for research on argument
conclusion generation since it lacks methods that can judge the quality of conclusions in
the absence of (costly) references.9

Summary. We investigated two hypotheses: i) MR meaning representation and graph
metrics help in assessing argument similarity, ii) automatically inferred conclusions can
aid or reinforce the similarity assessment of arguments. We find solid evidence for the
first hypothesis, especially when slightly adapting MR metrics to focus more on concrete
concepts found in arguments. We find weak evidence that supports the second hypoth-
esis, i.e., metrics improve consistently, but by small margins, when they are allowed to
additionally consider the MRs of automatically inferred conclusions. We believe, how-
ever, that more substantial gains may be obtained in future work, by improving conclusion
generation models such that they produce content that is both valid and novel. Finally, we

9Follow-up research on rating conclusion quality with regard to novelty and validity is performed by
(Heinisch et al., 2022b) who propose robust training regimes and (Plenz et al., 2023) who infer com-
monsense knowledge graphs. More insights can be found in systems of the ArgMining 2022 shared task
(Heinisch et al., 2022a) with the best performing systems using either knowledge (Saadat-Yazdi et al., 2022)
or language model prompting (Meer et al., 2022).
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have made first steps towards a reference-less metric for assessing novelty and justifica-
tion of generated conclusions.
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Chapter 9

Building efficient and effective
similarity models from MR
metrics

9.1 Chapter outline

Semantic similarity permeates many areas of NLP. Among others, it is a vital part of doc-
ument search and information retrieval systems. Considering different axes of similarity,
clearly we would like to say that two documents are similar if their meaning is similar.
Thus, it seems very interesting to investigate MR metrics that perform the similarity as-
sessment directly in the space of meaning. However, when using MR metrics simply “off
the shelf”, we might run into two major issues. The first issue is a efficiency bottleneck:
graph metric computation is typically costly, especially when conducted pair-wise over a
larger set of documents, and parsing also tends to be quite slow and can require heavy ad-
ditional machinery. Second, while we observed that MR metrics can outperform baselines
such as bag-of-words and on top of this provide explanatory evidence with an alignment
between meaning structures, MR metrics most probably lag behind in accuracy when one
compares their performance against the performance of neural sentence embeddings that
are derived from large pre-trained language models, since, without further improvements,
they may not have learned to well take into account the importance of different meaning
parts (e.g., consider that SMATCH assigns every meaning triple the same weight), a topic
that we have already touched on in multiple places in this thesis, for instance, Section 2.4
in our Background 2.

To alleviate these anticipated problems of MR metrics (i.e, the efficiency bottleneck
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and lack of state-of-the-art accuracy), in this last part of the thesis we first i) explore
a strategy that allows us to emulate an NP-complete MR metric for extremely efficient
application. Second, as the final part of this thesis, we show how to ii) use MR metrics
as a signal to meaningfully structure neural embedding spaces into explainable features.
This yields the best of two worlds: strong and efficient neural sentence embeddings that
are also explainable. The remainder of this chapter is structured as follows:

1. In a pilot study (Section 9.2), we show that we can mitigate the NP-bottleneck of a
graph metric through approximation strategies based on neural networks and data
augmentation tricks.

2. We note that accurate graph alignment does not necessarily imply a similarity rat-

ing that resembles that of a human, the latter being crucial for semantic search
(Section 9.3). We describe a solution by proposing semantically structured neural
text embedding spaces (‘S3BERT’): Under the guidance of MR metric signals, our
method learns to decompose a document embedding into different semantic fea-
tures, yielding an explainable, efficient and powerful vector space (Sections 9.4 and
9.5). The method is very general and can be adapted/customized for many different
use-cases that require efficiency, accuracy, and explainability.

3. Starting in Section 9.6, we conduct extensive intrinsic and extrinsic evaluation of
our semantic decomposition method. In Section 9.7, we assess explainability per-
formance, and in Section 9.8 we examine performance on three diverse downstream
similarity rating tasks. Lastly, we showcase our method in example studies, explain-
ing similarity decisions for documents, and conducting a structural semantic data
set difference analysis (Section 9.9)

4. As always, we conclude with a discussion (Section 9.10).

Underlying work. The content of this chapter is mainly based on works by Opitz et al.
(2023a) and Opitz and Frank (2022b).

9.2 Pilot study: Fast similarity with learned SMATCH

A well-known bottle-neck of graph metrics that may limit more exploration, testing, and
usage, is their time-complexity: Notably, computation of SMATCH can take more than a
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minute to compare some 1,000 MR pairs (Song and Gildea, 2019). To understand that
this can become problematic in many setups, consider a hypothetical user who desires
exploring a (small) MR-parsed corpus with only n = 1,000 instances via clustering. The
(symmetric) SMATCH needs to be executed over (n2−n)/2 = 499,500 pairs, resulting in
a total time of more than 6 hours. The time complexity also negatively impacts MR eval-
uation time (Song and Gildea, 2019), as well as parsing efficency of approaches involving
re-inforcement learning (Naseem et al., 2019) or graph ensembling (Hoang et al., 2021),
where MR metrics need to be run with high frequency. Furthermore, given recent interest
into extended application settings, such as exploring MR for semantic search Recently,
there is a growing interest for using MR metrics in semantic search (Bonial et al., 2020;
Müller and Kuwertz, 2022), we anticipate that this problem will become more pressing in
the future.

As a first solution to mitigate these issues, we propose a method that learns to effi-
ciently match MR graphs from a teacher SMATCH, thereby reducing MR clustering time
from hours to seconds.

More precisely, we will:

1. Explore three different neural approaches that learn to synthesize SMATCH from
scratch.

2. And show that we can approximate SMATCH up to a small error, by leveraging
novel data augmentation tricks.

9.2.1 Learning NP-hard graph metric: problem definition and mod-
els

Recall that the SMATCH metric measures the structural overlap of two MR graphs (c.f.,
Section 3.1 in the Related Work 3). We i) compute an alignment between variable nodes
of MRs and ii) assess triple matches based on the provided alignment. Formally, we start
with two MR graphs a and b with variable nodes X = (x1, ...xn) and Y = (y1...ym). The
goal is then to find an optimal alignment

map? : X → Y, (9.1)

searching for a map that maximizes the number of triple matches for the two graphs. E.g.,
assume 〈x, arg0, y〉 ∈ a and 〈v, arg0, u〉 ∈ b. Recall that if x = v and y = u, we count one
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triple match. Again, also for the general SMATCH formula, we refer the reader, e.g., to
Eq. 3.1 in the Related Work 3.

Setup

Experimental data creation. We create the data for our experiments as follows: 1. We
parse 59,255 sentences of the LDC2020T02 AMR dataset with a parser (Lyu and Titov,
2018) to obtain graphs that can be aligned to reference graphs; 2. For every parallel
graph pair pair = (a,b), we use SMATCH (ORACLE) to compute an F1 score s and the
alignment map?. We shuffle the data and split it into training, development and test set
(56255-1500-1500).

Objective and approach. The task is to reproduce the teacher ORACLE as precisely
as possible. We design and test three different approaches. The first is indirect, in that it
predicts the alignment, from which we compute the score. The second directly predicts
the scores. The third approach enhances the second, to make it even more efficient.
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Figure 9.2: Implicit CNN-based SMATCH graph metric predictor.
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Synthesis option I: Alignment learning

Here, we aim to learn the alignment itself (Eq. 9.1) with an NMT model, as illustrated in
Figure 9.1. For the input, we linearize the two AMRs and concatenate the linearized token
sequences with a special <SEP> token. The output consists of a sequence x j:yk ... xi:ym

... where in every pair u:v, u is a variable node from the first AMR mapped to a node
v from the second AMR. The SMATCH score is then calculated based on the predicted
alignment.

To predict the node alignments/mapping of variables, we use a transformer based
encoder-decoder NMT model. Details about the network structure and hyperparameters
are stated in Appendix A.2.

Synthesis option II: SMATCH prediction

In this setup, we aim to predict SMATCH F1 scores for pairs of AMRs directly, in a single
step. This means that we directly learn SMATCH F1 with a neural network and our target
is the ORACLE F1 score.

To learn this mapping, we adapt the convolutional neural network from Chapter 7,
as shown in Figure 9.2. The model was originally intended to assess AMR accuracy,
i.e., measuring AMR parse quality without a reference. Taking inspiration from human
annotators, who exploit a spatial ‘Penman’ arrangement of AMR graphs for better under-
standing, it models directed-acyclic and rooted graphs as 2d structures, employing a CNN
for processing, which is highly efficient. To feed a pair of AMRs, we remove the depen-
dency graph encoder of the model and replace it with the AMR graph encoder. Moreover,
we increase the depth of the network by adding one more MLP layer after convolutional
encoding. A basic mean squared error is employed as loss function. More details about
hyperparameters are stated in Appendix A.3.

Synthesis option III: AMR Vector learning

Inspired by Reimers and Gurevych (2019), we aim to make the CNN even more efficient,
by alleviating the need for pair-wise model inferences. Hence, instead of computing a
shared representation of two CNN-encoded AMRs, we process each representation with
an MLP (w/ shared parameters), to obtain two AMR vectors NN(a) and NN(b). These
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vectors are then tuned with a distance loss L against ORACLE score s:

L = ∑
(a,b,s)

([
1−|NN(a)−NN(b)|

]
− s
)2

, (9.2)

where || is returns a vector distance ∈ [0,1]. This approach enables extremely fast
search and clustering. Indeed, the required (clustering-)model inferences are O(n) in-
stead of O(n2), since the model can infer a vector for each graph individually (allowing
application of simple vector algebra for similarity).

Data compression and extension tricks

Vocabulary reduction trick. The SMATCH metric measures the structural overlap of
two graphs. This means that we can greatly reduce our vocabulary, by assigning each
graph pair a local vocabulary (see Figure 9.3, ‘anonymize’).

First, we gather all nodes from two graphs a and b, computing a joint vocabulary over
the concept nodes. We then relabel the concepts with integers starting from 1. E.g., con-
sider AMR a: (r / run-01 :arg0 (d / duck)), and AMR b: (x / run-01 :arg0 (y / duck) :mod

(z / fast)). The gold alignment is map?= {(r,x),(d,y),( /0,z)}. Now, we set the shared con-
cepts and relations to the same index run=run=1 and duck=duck=2 and :arg0=:arg0=3

and distribute the rest of the indices r=4, d=5, x=6, y=7, z=8, fast=9, :mod=10. This
yields equivalent AMRs a′ = (4 / 1 :3 (5 / 2)) and b′ = (6 / 1 :3 (7 / 2) :10 (8 / 9)). The
target alignment then equals map? = {(4,6),(5,7),( /0,8)}. This strategy greatly reduces
the vocabulary size, in our case from 40k tokens to less than 700.

Auxiliary data creation trick. We also find that we can cheaply create auxiliary gold
data. We re-assign different indices to AMR tokens, and correspondingly modify the
ORACLE alignment (Figure 9.3, ‘permute’). In our experiments, we permute the existing
token-index vocabularies 10 times, resulting in a ten-fold increase of the training data.
We expect that, with this strategy, the model will better learn properties of permutation
invariance, which in turn will help it synthesize the algorithm.

9.2.2 Evaluation

Output post-processing. For the score synthesis (Option II) and vector synthesis (Op-
tion III), no further post-processing is required, since we directly obtain the estimated
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Figure 9.3: AMR graph anonymization and permutation.

SMATCH scores as output. In the explicitly synthesized alignment algorithm, however,
we get map, which is the predicted alignment from the sequence-to-sequence model. In
this case, we simply feed map as an argument into the SMATCH Eq. 3.1, to obtain the
scores.

Evaluation. We compare the predicted scores ŷ against the gold scores y with Pearson’s
ρ . However, for the model that predicts the explicit alignment (Option I), we can com-
pute another interesting and meaningful metric. For this, we first calculate the average
SMATCH score over AMR pairs given the gold alignment map?, and then we calculate
the average SMATCH score over AMR pairs given the predicted alignment m̂ap using the
SMATCH Eq. 3.1. Note, that the SMATCH score based on the gold alignment constitutes
an upper bound (max). Therefore, the SMATCH score based on the predicted alignment
shows us how close we are to this upper bound. Our baseline consists of scores that are
computed from a random alignment (random).

Results (Table 9.1). Our best model is the NMT approach using both data augmentation
tricks. Obtaining 98.4 ρ , it very closely approximates the ORACLE, while being about
30 times faster than ORACLE and 76.2 points better then the random baseline. Perhaps
the best tradeoff between speed and approximation performance is gained by the simple
CNN score synthesis (96.8 ρ , 200x faster than ORACLE), also using both data tricks.
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data trick Eq. 3.1 Pearson’s ρ time(secs)

ORACLE na 77.5 100 28680
rand. baseline na 13.5 22.2 0.4

align. synthesis 39.0 52.8 1089
align. synthesis voc 64.5 80.0 1089
align. synthesis voc+aug 76.4 98.4 1089

score synthesis na 87.5 140
score synthesis voc na 82.0 140
score synthesis voc+aug na 96.8 140

vector synthesis na 84.7 0.7
vector synthesis voc na 75.6 0.7
vector synthesis voc+aug na 94.2 0.7

Table 9.1: Results of experiments. time: Approximate time for computing a pair-wise distance
matrix on 1k AMRs on a TI 1080 GPU.

The vector synthesis falls a bit shorter in performance (94.2 ρ), but it is extremely fast
and achieves a 40,000x speed-up compared to ORACLE and about 1500x compared to
the NMT approach.1

Consistently, the data extension (aug) is very useful. However, the vocabulary reduc-
tion (voc) is only useful for the NMT model (+27.2 points), whereas the scores are low-
ered for the CNN-based models (−5.5 for score synthesis, −9.1, vector synthesis). We
conjecture that the CNNs learn SMATCH more indirectly by exploiting token similarities
in the global vocabulary, and therefore struggle more to build a generalizable algorithm,
in contrast to the bigger NMT transformer that learns to assess tokens fully from their
given graph context.

9.2.3 Discussion

We tested methods for learning to solve the hard graph matching problem, exploring dif-
ferent neural architectures, and data augmentation strategies that help models to general-
ize. Our best models increase SMATCH calculation speed by a large factor while incurring
only small losses in accuracy that can be tolerated in many use cases.

A noteworthy limitation of all tested methods, however, remains the alignment of
larger MR graphs with many variables. On one hand, when the alignment candidate

1Note also that all models in Table 9.1 are significantly better (p<0.001) than the random baseline
(one-sided test w/ z-transform).
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∆ vs. ORACLE
data type data size SMATCH F1 Pea’s ρ better

full 1500 -1.1 -1.6 -

< 5 vars 505 -0.6 -1.2 yes
< 10 vars 1041 -0.7 -1.2 yes
< 15 vars 1206 -0.9 -1.2 yes
< 20 vars 1353 -0.9 -1.2 yes
< 25 vars 1449 -0.9 -1.3 yes

> 5 vars 940 -1.5 -2.2 no
> 10 vars 476 -2.1 -3.6 no
> 15 vars 318 -2.3 -5.4 no
> 20 vars 183 -3.0 -10.1 no
> 25 vars 83 -4.7 -19.3 no
> 30 vars 37 -8.0 -25.5 no
> 35 vars 20 -12.5 -41.1 no

single snt AMRs 1421 -1.0 -1.5 yes
multi snt AMRs 79 -2.7 -9.6 no

Table 9.2: Experiments on different test subsets that represent different problem complexities pre-
dicted with our best model (align. synthesis+voc+aug). <> x vars means that one of
two graphs contains <> x variables. better: is the drop in accuracy of the model vs.
ORACLE smaller compared with the model tested on all data?
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space increases, the runtime of SMATCH increases exponentially, while our considered
approaches remain fast. However, in such a scenario, the neural models are bound to
trade in some accuracy. Table 9.2 assesses the effect size for differently sized alignment
candidate spaces: while the model overall copes with different search space sizes, the
accuracy loss is more considerable for large problems. We conclude that the fast and
accurate alignment of larger AMR graphs remains a challenging and unsolved problem.
In this regard, we believe that our proposed data extension trick in combination with long-
sequence transformers (Beltagy et al., 2020; Rae et al., 2020; Choromanski et al., 2021)
may provide valuable means to address this limitation in future work.

9.3 Efficient, explainable and effective similarity metrics

It has become widely known that models based on large-pretrained language models, such
as S(entence)BERT, provide effective and efficient sentence embeddings that show high
correlation to human similarity ratings. However, they lack interpretability. On the other
hand, in our thesis we’ve become aware that graph metrics for MRs are interpretable since
they can make explicit the semantic aspects in which two sentences are similar. However,
we also know that the MR metrics tend to be slow, rely on parsers, and most likely are too
naïve to reach state-of-the-art performance when rating sentence similarity (as opposed
to the former metrics from large langauge models that are learned from very large data).

Therefore, in the last part of this thesis, we aim at the best of both worlds, by learning
to induce Semantically Structured Sentence sentence transformer embeddings (S3BERT).
Our S3BERT embeddings are composed of explainable sub-embeddings that emphasize
various semantic sentence features (e.g., semantic roles, negation, or quantification). We
show how to i) learn a decomposition of the sentence embeddings into semantic features,
through approximation of a suite of interpretable MR graph metrics, and how to ii) pre-
serve the overall power of the neural embeddings by controlling the decomposition learn-
ing process with a second objective that enforces consistency with the similarity ratings
of an SBERT teacher model. In our experimental studies, we show that our approach of-
fers interpretability – while fully preserving the effectiveness and efficiency of the neural
sentence embeddings.
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9.4 Structuring embedding spaces with graph metric guid-
ance

Preliminary I: Neural (e.g., SBERT) sentence embeddings and similarity. Let SB be
a function that maps an input sentence s to a vector e ∈ Rd . Given two sentence vectors
e = SB(s) and e′ = SB(s′), we can compute, e.g., the cosine similarity of sentences:

sim(e,e′) =
eT e′

|e||e′|
. (9.3)

Preliminary II: AMR and AMR metrics. Recall that an MR a ∈ G represents the
meaning of a sentence in a directed acyclic graph. The graph makes key aspects of
meaning explicit, e.g., semantic roles or negation. Hence, given a pair of AMR graphs
〈a,b〉 ∈ A×A, an MR metric can measure overall graph similarity, or similarity with re-
spect to specific aspects, if we execute it on dedicated subgraphs. We denote such a metric
as

mk : G×G→ [0,1], (9.4)

where k indicates a particular semantic aspect, in view of which the graphs’ similarity
is assessed, e.g. negation. The AMR metrics we will apply in this study will be described
in more detail in Section 9.5.

9.4.1 Structured embedding spaces: Formal problem definition and
objective

Problem statement. We aim to shape neural sentence embeddings in such a way that
different sub-embeddings represent specific meaning aspects. This process of sentence

embedding decomposition is illustrated in Figure 9.4 (right): SBERT produces two em-
beddings e and e′ that consist of sub-embeddings F1...FK,R and F ′1...F

′
K,R

′. E.g., Fk may
express negation features, while Fz expresses semantic role features of a sentence. The
residual R offers space to model sentence features not covered by the pre-defined set of
semantic features.

Having established such decompositions, we can compute, e.g., sentence similarity
with respect to semantic roles (k = SRL) by choosing subspaces FSRL ⊂ e = SB(s) and
F ′SRL ⊂ e′ = SB(s′), and calculating sim(FSRL,F ′SRL) on the subspaces. This is indicated as

in Figure 9.4.
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Figure 9.4: Overview of approach. The decomposition objective structures the sentence em-
bedding space into AMR sentence features (F1...FK): The process is guided by AMR
metric approximation, through which S3BERT learns to disentangle and route the fea-
tures. The consistency objective is aimed at preventing catastrophic forgetting: To
preserve the overall effectiveness of the neural sentence embeddings, it controls the
decomposition learning process and helps modeling the residual (R).

Assigning embedding dimensions to features. For convenience, let i : {1...K}→ [0,d]×
[0,d] denote an AMR aspect-embedding assignment function where d is the dimension of
the (full) sentence embedding. This allows us to map any semantic category to a range of
specific sentence embedding indices. E.g., a h-dimensional embedding for SRL sentence
features for a sentence s can be accessed via SB(s)i(SRL), where v(start,end) yields all di-
mensions from start to end of a vector v. Since we aim at a non-overlap decomposition,
we ensure that i(k)∩ i(k′) 6= /0 iff k = k′. We call a model consisting of a tuple (SB, i), a
Semantically Structured Sentence transformer, in short S3BERT.

9.4.2 Learning to partition the semantic space

We presume that a standard pre-trained neural sentence embedding model (e.g., SBERT)
already contains some semantic features in some embedding dimensions. Hence, we
want to achieve an arrangement of the embedding space according to our pre-defined
partitioning, but also give it the chance to instill new knowledge about AMR semantics.

In addition, to preserve the neural model’s high accuracy, we aim to control the de-
composition process in a way that lets us route internal semantic knowledge not captured
by AMR to the residual embedding. To this end, we propose a two-fold objective: Score

decomposition and Score consistency.
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Target scores from AMR metrics. We build an AMR metric target M as shown in
Figure 9.4 (left). Two AMRs, constructed from two sentences, are assessed with AMR
metrics in K semantic aspects (Eq. 9.4) yielding M ∈M = RK . Additionally, let P be
S3BERT’s AMR metric predictions, i.e., P = [sim(F1,F ′1), ...,sim(FK,F ′K)].

For a training instance (s,s′,M), we calculate the following decomposition loss:

L decomp
s,s′ = (9.5)

1
K

K

∑
k=1

[
Mk−β

k sim(SB(s)i(k),SB(s′)i(k))︸ ︷︷ ︸
Pk

]2

,

with β k a learnable scalar for easier projection onto a specific AMR metric’s scale. The
objective is also outlined as P≈M in Figure 9.4.

Note that AMR graphs and metrics are only needed for training, not for inference.

9.4.3 Preventing catastrophic forgetting

When training S3BERT only with the decomposition objective (Eq. 9.5), there is a great
risk it will unlearn important information, since it is unrealistic to expect that sentence
similarity can be fully composed from the K aspects measured by MR metrics. We also
know that MR metrics lag behind pre-trained neural embedding models in similarity rat-
ing accuracy, so forcing the MR metrics as a target could further risk the loss of useful
neural prior information. Hence, we control the decomposition learning process to in-
clude a residual sub-embedding, to rescue important parts of semantic information not
captured by MR and MR metrics. To this end, we propose a consistency objective.

Given a frozen SBERT (SB^), and a training example (s,s′):

L consistency
s,s′ =

(
sim(SB^(s),SB^(s′))

− sim(SB(s),SB(s′))
)2

.

Less formally, this means that the control is established by imposing that S3BERT’s
overall similarity ratings be in accordance with a frozen SBERT’s original ratings, but oth-
erwise leaving freedom for the choice of structure in S3BERT’s embedding space. Given
independence of pairwise-targets, we can compute the loss efficiently on b2 examples in
batches of size b.
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9.4.4 Global objective

We finally combine the consistency objective and the decomposition objective. The cu-
mulative loss for a batch B = {(Si,S′i,Mi)}b

i=1 is

L =
α

b

b

∑
i=1

L decomp
Si,S′i

+
1
b2

b

∑
i=1

b

∑
j=1

L consistency
Si,S′j

, (9.6)

where α weighs the two parts (we use α = 1).

9.5 AMR metrics and data construction

In Section 9.4, Eq. 9.4, we formally described an MR metric. Now we consider the
concrete metric instances we will use for S3BERT decomposition. We here distinguish
general metrics that assess global AMR graph similarity, and aspectual metrics that aim
at assessing AMR similarity with respect to specific semantic categories, e.g., semantic
roles.

9.5.1 Global AMR similarity

SMATCH for assessing the structural overlap of two semantic MR graphs (c.f., 3.1).

WLK and WWLK for more modulated similarity of MR graphs (c.f., 4.6).

9.5.2 Aspectual AMR similarity

FINESMATCH for calculating SMATCH on interpretable MR subgraphs. Here we use
Frames: graph similarity with regard to predicates. Named entity: graph similarity
based on named entity substructures (person, city, ...). Negation: graph similarity based
on expressions of negation. Concepts: graph similarity based on node labels only. Coref-
erence: graph similarity focused on co-referent structures. SRL: graph similarity consid-
ering predicate substructures. Finally, Unlabeled: not considering semantic edge labels.2

Additionally, we observe that AMR contains information about quantifiers and define
quantSim, which measures the (normalized) overlap of quantifier structure of two AMRs.

2We follow our setup from Chapter 7 and set metric values to 1.00 (as opposed to 0.00) in cases where
neither of the graphs contains structures of the given aspect (e.g., named entities are absent from both
graphs), since the graphs can then be considered to (vacuously) agree in the given aspect.
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Although AMR lacks modeling of quantifier scope (Bos, 2016), estimating the overlap of
quantificational structure can give indications of semantic sentence similarity.

Graph statistics. In addition, we introduce graph metrics that target other aspects mod-
eled by AMR: MaxIndegreeSim, maxOutDegreeSim and maxDegreeSim. From each
graph in a pair of AMRs, we extract the node that is best connected (either outdegree,
indegree, or indegree+outdegree). We compare these nodes with cosine similarity using
GloVe embeddings (Pennington et al., 2014a). The motivation for this is that two Mean-
ing Representations that share the same focus are more likely to be similar (Lambrecht,
1996). Similarly, rootSim compares the similarity of MR roots, motivated by Cai and
Lam (2019), who speculate that more important concepts are closer to the root.

9.5.3 Data setup

For the decomposition objective we need training instances of paired sentences with AMR
metric scores attached. We proceed as follows:

1) We collect 1,500,000 sentence pairs from data sets that contain sentences that can
roughly be viewed as similar.3 2) We parse these sentences with a good off-the-shelf
AMR parser.4 3) For each training sentence pair we create a positive (a,a+) and a neg-
ative (a,a−) datum, where the negative pair is formed by replacing AMR a+ with an
AMR sampled from a random pair. Thereby we show S3BERT both AMR metric outputs
computed from similar AMRs, and unrelated AMRs (that may still share some abstract
semantic features). 4) We execute our AMR metrics (c.f. Section9.5.1 & §9.5.2) over all
pairs from step 3). Step 4) took approx. 3 days, since AMR metrics tend to have high
computational complexity.

For experimentation, we cut off a development and testing set with 2,500 positive
pairs each.5

3AllNLI, CoCo, flickr captions, quora duplicate questions.
4https://github.com/bjascob/amrlib The parser is based on a fine-tuned T5 (Raffel et al.,

2020) language model and reports more than 80 Smatch points on AMR3. On a GPU Ti 1080 the parsing
took approx. 3 weeks.

5Using only similar sentence pairs for validation increases the AMR metric prediction difficulty and
provides a useful lower bound for correlation.

https://github.com/bjascob/amrlib
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9.6 Evaluation Study Setup

Our two objectives aim at creating S3BERT embeddings by partitioning a sentence trans-
former’s output space into features that capture different semantic AMR aspects, while
controlling the decomposition process such that we prevent any forgetting of knowledge
and preserve the power of the neural embeddings.

Hence, two key questions need to be addressed:

1.) Will S3BERT partition its sentence embedding space into interpretable semantic
aspects?

2.) If so, what is the price? Does our consistency objective succeed in controlling
the decomposition process such that it retains SBERT’s extraneous knowledge of
sentence semantics?

Basic setup. We use a standard SBERT model6 with 11 layers and allow tuning of
the last two layers. The sentence embedding dimension is d = 384, the sub-embedding
dimension is set to h = 16 for all 15 aspects of AMR, which implies that the dimension
of the residual is 384− (15×16) = 144. More details on the model architecture and the
training hyper-parameters can be found in Appendix A.5. In all result tables, † indicates
statistically significant improvement over the runner-up (Student t-test, p < 0.05, five
random runs)

9.7 Evaluation of S3BERT space partitioning

Our goal is to make SBERT embeddings more interpretable, by partitioning the sentence
embedding space into multiple semantically meaningful sub-embeddings. We now aim
to answer research question 1) whether these sub-embeddings relate to the AMR metric
aspects they were trained to predict.

Data setup. We use the 2,500 testing sentence pairs we had split from our generated
data. For each semantic aspect, we calculate cosine similarities of the corresponding sub-
embeddings. We then calculate the Spearmanr correlation of these predictions vs. the
ground truth AMR metric similarities.

6Pre-trained All-MiniLM-L12-v2 from the sentence transformers library.



9.7. Evaluation of S3BERT space partitioning 195

Baseline setup. We consider three baselines. Same as S3BERT, all baselines are based
on standard SBERT model.6

SB-full (no partitioning): We use the complete embedding, which means that we pre-
dict the same value for all AMR aspects. This baseline is bound to provide strong corre-
lations with most metrics (in our experiments on BAMBOO , Section 5.3, we have shown
that AMR metrics correlate with human sentence similarity, and so does SBERT), but
obviously lacks the interpretability we are aiming for. We therefore instantiate two more
baselines that can be directly compared, since they partition the space according to se-
mantic aspects.

SB-rand (partitioning): We assign 16 embedding dimensions randomly to every se-
mantic aspect.

SB-ILP (partitioning): We use an integer linear program to assign the semantic aspects
to different SBERT dimensions. We create a bi-partite weighted graph with node sets
(VSB,VSEM) with SBERT dimensions (VSB), and the targeted semantic aspects (VSEM).
Then, we introduce weighted edges (i, j) ∈ VSB×VSEM, where a weight ω(i, j) is the
Spearmanr correlation of SBERT values in dimension i vs. the metric scores for aspect j

across all (development) data instances. We solve

max ∑
(i, j)∈VSB×VSEM

ω(i, j) · xi j (9.7)

s.t. ∑
j

xi j ≤ 1 ∀i ∈VSB (9.8)

∑
i

xi j ≥ 1 ∀ j ∈VSEM (9.9)

The binary decision variables xi j ∈ {0,1} indicate whether an SBERT dimension is
part of a specific sub-embedding. The first constraint decomposes SBERT embeddings
into non-overlapping parts, one for each aspect. The second constraint ensures that each
semantic aspect is modeled.

Results are displayed in Table 9.3. First, we see that the global AMR metrics WLK and
WWLK are best modeled with the cosine distance computed on full SBERT embeddings
(unpartitioned, Table 9.3) and we can’t model them as well with a sub-embedding. This
seems intuitive: the power of a low-dimensional sub-embedding is too low to express
the complexity of the two Weisfeiler graph metrics that aim at capturing broader AMR
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partitioning models
aspect SB-full SB-rand SB-ILP S3BERT

SMATCH 64.6 57.1 57.9 68.2†

WLK 76.7† 63.5 64.2 74.6
WWLK 75.1 62.0 63.8 74.4

Frames 46.0 40.8 45.2 66.4†

Unlabeled 58.4 52.3 54.7 65.1†

Named Ent. -14.4 -1.1 -0.3 51.1†

Negation -2.00 -0.0 3.4 33.0†

Concepts 76.7† 64.5 72.3 74.0
Coreference 23.2 10.3 13.6 43.3†

SRL 48.3 40.8 44.9 60.8†

maxIndegreeSim 27.0 23.6 24.0 32.5†

maxOutDegreeSim 22.3 17.5 19.4 42.5†

maxDegreeSim 22.3 18.0 19.7 30.0†

rootSim 25.5 21.7 25.1 43.1†

quantSim 11.5 10.0 11.8 74.6†

Table 9.3: Spearmanr x 100 of AMR aspects. Italics: overall best. bold: best partitioning ap-
proach. underlined: improvement by more than 20 Spearmanr points.

sub-structures. However, the structural SMATCH, which does not match structures be-
yond triples, can be better modeled in a sub-embedding (+3.8 vs. SB-full). Nonetheless,
compared to the best partitioning baseline (SB-ILP), our approach provides substantial
improvements (Spearmanr points, WLK +10.4, WWLK +10.6).

Therefore, it is more interesting to study the fine-grained semantic aspects measured
by our aspectual AMR metrics. We find that there are three AMR features that are very
poorly modeled with global SBERT embeddings: named entities, negation, quantifica-

tion. They also cannot be extracted with the SB-ILP baseline. By contrast, S3BERT
clearly improves over these baselines. E.g., negation modeling improves from a negative
correlation to a significant positive correlation of 33.0 Spearmanr. Quantifier similarity

increases from 11.8 Spearmanr to 74.6.

9.8 Correlation with human judgements

Relating to research question 2) on whether we can effectively prevent SBERT from for-
getting prior knowledge when teaching it to predict AMR metrics, we test how well our
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approach compares to human ratings of sentence similarity in the typical zero shot setting.
As our main goal is to increase the interpretability of SBERT predictions, we consider
S3BERT achieving SBERT’s original performance on this task a satisfying objective.

9.8.1 Sentence semantic similarity

Test data. We use sentence semantic similarity data with human ratings. The STS
(STSb) benchmark (Baudiš et al., 2016b) assesses semantic similarity and SICK (Marelli
et al., 2014) relatedness.7

Evaluation metric. We again use Spearmanr. To assess efficiency, we display the ap-
proximate time for a metric to process 1,000 pairs. We also want to assess the explain-

ability of the methods, which can be complicated (Danilevsky et al., 2020). To keep it as
simple as possible, we assign HH when a metric is fully transparent and the score can be
traced in the meaning space via graph alignment (SMATCH, WWLK), and H if there is a
dedicated mechanism of explanation (e.g., via a linguistically decomposable score, as in
S3BERT).

Baselines. As baselines we use: 1. SBERT and 2. our S3BERT from which we ablate a)
the decomposition objective (S3BERT��dec ) or b) the consistency objective (S3BERT���cons. ).
Assessing S3BERT���cons. is key, since it shows the performance when we only focus on
learning AMR features – a significantly reduced score would prove the importance of
counter-balancing decomposition with our consistency objective. For reference, we also
include results from a simplistic baseline (word overlap) and the AMR metrics computed
from the AMR graphs of sentences.

Results are shown in Table 9.4. Interestingly, while one main goal was to prevent a per-
formance drop, S3BERT tends to outperform all baselines, including SBERT (significant
improvement for STSb).

It is important to note that catastrophic forgetting indeed occurs if learning is not
controlled by the consistency objective. In this case, the performance drops by about
20-30 points (S3BERT���cons. in Table 9.4). We conclude that our consistency objective
effectively prevented any loss of embedding power.

7We min-max normalize the Likert-scale ratings of both datasets to the range between 0 and 1.
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system speed (1k pairs) xplain STSb SICK

bag-of-words 0s - 43.2 53.3
bag-of-nodes 31m (p) + 0.0s (i) - 60.4 61.6
SMATCH 31m (p) + 49s (i) HH 57.2 59.1
WLK 31m (p) + 1s (i) - 63.9 61.4
WWLK 31m (p) + 5s (i) HH 62.5 64.7
SBERT 1s (i) - 83.1 78.9

S3BERT 1s (i) H 83.7† 79.1

S3BERT��dec 1s (i) - 83.0 78.9
S3BERT���cons. 1s (i) H 51.7 58.1

Table 9.4: Results on STSb and SICK using Spearmanr x 100; Speed measurements of parser (p)
and metric inference (i), units are minutes (m) and seconds (s).

3-Likert binary classif. F1 scores
system xplain Spea’s r Macro Sim ¬ Sim.

RE19 - - 65.4 52.3 78.5
BH21 - 34.8 - - -
OP21 HH - 68.6 60.4 77.0
SBERT - 54.2 71.7 63.8 79.6

S3BERT H 56.4† 72.9† 65.7† 80.1†

S3BERT���cons. H 28.2 55.6 53.7 57.4

Table 9.5: Results on argument similarity prediction.
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9.8.2 Argument similarity

Testing data. Besides the STS and SICK benchmarks we use the challenging UKPA(spect)
data (Reimers et al., 2019) with high-quality similarity ratings of natural language argu-
ments from 28 controversial topics such as, e.g., GMO or Fracking.

Evaluation metric. Argument pairs in UKPA have one of four labels: dissimilar, unre-

lated, somewhat similar and highly similar. Originally, the task was evaluated as a binary
classification task (Reimers et al., 2019), by mapping the similar and highly similar la-
bels to 1, and the other two labels to zero. A similarity metric’s scores are then mapped to
binary decisions via a simple threshold-search script. To conform with this work, we also
evaluate using this setup. But to account for the fine-grained labels, we also use a second
metric based on (Spearmanr) correlation, following Behrendt and Harmeling (2021) who
propose a 3-Likert scale that maps dissimilar and unrelated to 0, somewhat similar to 0.5,
highly similar to 1.0.

Baselines. Table 9.5 shows the results of the best systems reported for i) a BERT-based
approach (Reimers et al., 2019) (RE19), ii) the AMR-based SMATCH-variant approach
of our argumentation-focused work before (Chapter 8), and iii) Behrendt and Harmeling
(2021) (BH21), who pre-train BERT on other argumentation datasets for 3-Likert style
rating.

Results. S3BERT significantly outperforms all baselines, including SBERT, in the clas-
sification setting, and in the correlation evaluation setting. When assessing interpretabil-
ity, OP21 offers HH because it is based on SMATCH and the score can be fully traced.
However, it is less efficient, due to the cost of executing AMR metrics and parser, and lags
behind in accuracy. Again, we can conclude that our approach offers a valuable balance
between interpretability and performance. Finally, this experiment further corroborates
that controlling the decomposition learning process is paramount: without consistency
objective, the accuracy is almost halved (S3BERT���cons. in Table 9.5).

9.8.3 Ablation and parametrization experiments

Upper-bounds for MR metric approximation. While not the main objective of our
work, the approximation of computationally expensive AMR metrics can be considered
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an interesting task on its own. We hence explore two AMR metric approximation upper-
bounds: i) S3BERT���cons. : Naturally, the consistency objective is orthogonal to the AMR
metric approximation objective and by ablating the consistency objective, we can obtain
an upper-bound for the prediction of AMR metric scores. ii) S3BERT���cons. +parser: At
the cost of making our approach much less efficient, we train S3BERT���cons. directly on
(linearized) AMR graph strings instead of their underlying sentences, which allows us to
infer metric scores directly from AMR graphs.

The results of these setups are given in Table 9.6. We see that both modifications
can yield, to some extent, better AMR metric approximation accuracy, across all tested
aspects. However, considering our second key goal of preserving the overall power of
sentence embeddings, it is important to note that these improvements come at great cost,
because if we do not control the decomposition process with our consistency objective,
the similarity rating effectivity of the neural embeddings deteriorates (see S3BERT���cons.

in Table 9.4 for sentence similarity and Table 9.5 for argument similarity). On top of this,
S3BERT���cons. +parser will also lose much efficiency.8

9.8.4 AMR metric approximation inspection

How well can we approximate the AMR metrics, in a setup where we only care about
AMR metric prediction performance? The answer is shown in Table 9.6. Best AMR
metric approximation is achieved when we train on AMR graphs instead of sentence
pairs, and switching off the consistency objective that prevents the catastrophic forgetting.
In other words, we could manage to increase AMR approximation accuracy by roughly
up to 15 points by paying the price of additional runtime (for parsing) and forgetting of
SBERT’s strong overall performance.

Effect of parser quality. For creating AMRs, we used a strong parser that yields high
SMATCH scores on AMR benchmarks. To investigate the effect of using another parser,
we re-ran our first experiment (decomposition) with metrics computed from parses of
the older JAMR (Flanigan et al., 2014) parser, that achieves more than 20 points lower
SMATCH on AMR benchmarks. We observe moderately (+1-3 correlation points) better
results across all categories with the more recent parser. This implies that there is potential
room for further improvement of our method by using an even more accurate parser, but
judging from the marginally lower score of JAMR, the gain may be small.

8Due to slow AMR parsing (c.f. Table 9.4).
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aspect S3BERT S3BERT���cons. S3BERT���cons. +parser

SMATCH 68.2 77.0 80.3
WLK 74.6 79.3 78.9
WWLK 74.4 81.5 82.3

Frames 66.4 79.6 80.3
Unlabeled 65.1 75.5 78.0
Named Ent. 51.1 58.0 61.9
Negation 33.0 34.5 35.5
Concepts 74.0 78.5 76.4
Coreference 43.3 57.4 72.1
SRL 60.8 74.3 83.0
maxIndegreeSim 32.5 37.3 37.5
maxOutDegreeSim 42.5 59.9 65.4
maxDegreeSim 30.0 40.6 42.7
rootSim 43.1 57.4 81.2
quantSim 74.6 75.7 76.1

Table 9.6: AMR metric approximation upper-bounds. S3BERT��cons. : S3BERT without consistency
objective (trades sentence similarity rating performance for better AMR approxima-
tion). S3BERT��cons. +parser: S3BERT without consistency objective and inference on
linearized AMR graphs (trades sentence similarity rating performance and efficiency
for better AMR approximation).

Size of training data. We observe that the AMR metric approximation accuracy profits
from growing size of the training data (see Table 9.7).

9.9 Data analyses with S3BERT

9.9.1 Studying S3BERT predictions

We find many interesting cases where S3BERT is able to explain its similarity scores,
some of which are listed in Table 9.8.

For example, both S3BERT and SBERT assign a high similarity score (0.70–0.73)
to two cats are looking at a window vs. a white cat looking out of a window, while the
human similarity rating is just above average (.52). Here, a low similarity rating of -0.15
in S3BERT’s quantifier feature provides a (possible) rationale for the much lower human
score, due to a strong contrast in quantifier meaning (two vs. a).

When confronted with negation, both SBERT and S3BERT assign moderately high
scores to The man likes cheese vs. the man doesn’t like cheese. But S3BERT can explain
this: its high concept similarity score increases the overall rating, while a (very) low sim-
ilarity score for negation (-0.30) regulates the rating downwards. We also see differences
in how negation of a matrix verb affects the S3BERT negation feature – compared with
negation applied to a coordinated sentence. Three boys in karate costumes [aren’t | are]
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amount of training data
aspect rand (0k) 50k 300k 1500k

SMATCH 57.1 59.4 60.2 68.2
WLK 63.5 64.1 70.2 74.6
WWLK 62.0 65.8 67.0 74.4

Frames 40.8 44.2 53.6 66.4
Unlabeled 52.3 53.6 54.1 65.1
Named Ent. -1.1 11.4 31.8 51.1
Negation -0.0 17.8 29.0 33.0
Concepts 76.7 69.6 71.2 74.0
Coreference 23.2 23.9 25.2 43.3
SRL 48.3 49.4 50.0 60.8
maxIndegreeSim 27.0 26.7 26.4 32.5
maxOutDegreeSim 22.3 22.4 23.1 42.5
maxDegreeSim 22.3 22.1 22.5 30.0
rootSim 25.5 26.4 28.9 43.1
quantSim 11.5 47.1 65.4 74.6

Table 9.7: AMR prediction performance w.r.t. different training data sizes.

id sentence pairs humSim SBERT S3BERT notable feature similarities

1 two cats are looking at a window 0.52 0.70 0.72 concepts: 0.87↑↑; quant: -0.15↓↓
a white cat looking out of a window

2 three men posing in a tent 0.24 0.39 0.42 quant:0.99↑↑; Frames: -0.02↓↓, Unlabeled: 0.6 ↑
three men eating in a kitchen

3 rocky and apollo creed are running down the beach 0.6 0.33 0.32 maxDegSim: 0.4↑, NamedEnt: -0.72↓↓
the men are jogging on the beach

4 a man is smoking 0.0 0.06 0.06 rootSim↑↑: 0.4
a baby is sucking on a pacifier

5 a dog prepares to herd three sheep with horns 0.44 0.63 0.65 SRL: 0.56↓; Frames: 0.45↓, Concepts: 0.85↑
a dog and sheep run together

6 The cat scratches itself na 0.81 0.78 Concepts: 0.9 ↓; Negation 0.56↓; Coref: 0.41↓↓
The cat scratches another cat

7 The man likes cheese na 0.80 0.77 Concepts: 0.90 ↑; Negation: -0.3 ↓↓
The man doesn’t like cheese

8 Recruits are talking to an officer 0.68 0.97 0.98 SRL: 0.96 ↓; Negation: 0.90 ↓; Unlabeled: 0.99 ↑
An officer is talking to the recruits

9 A dog is teasing a monkey at the zoo 0.63 0.99 0.99 SRL: 0.96 ↓; Negation: 0.97 ↓; maxDegr: 1.0 ↑
A monkey is teasing a dog at the zoo

10 Three boys in karate costumes aren’t fighting 0.58 0.86 0.86 Concepts: 0.92↑; Negation: -0.31↓↓
Three boys in karate costumes are fighting

11 A child is walking down the street 0.63 0.95 0.92 Concepts: 0.95↑; Negation: -0.22↓↓
and a jeep is pulling up

A child is walking down the street
and a jeep is not pulling up

Table 9.8: Prediction Examples from STSb and SICK, or own construction (human rating: na).

fighting results in lower negation agreement (Negation feature similarity: -0.31) compared
to negation applying to the predicate of a sub-ordinate sentence, as in A child is walking

down the street and a jeep [is not | is] pulling up (Negation feature similarity: -0.22).
Coreference can also explain key differences in meaning: The cat scratches a cat

and The cat scratches itself are highly rated in all aspects (0.78–0.8 overall similarity) –
except for coreference, with similarity of only 0.41, signaling a key difference reflected
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in coreference structures.
Comparing the foci of sentences can also provide explanatory information. E.g., the

human score for a man is smoking and a baby is sucking on a pacifier is zero, indicating
complete dissimilarity. But S3BERT and SBERT assign scores that indicate moderate
similarity. S3BERT’s features may explain this, in that the sentences’ foci (root sim) are
somewhat related (0.4, smoking vs. sucking).

9.9.2 Studying predictors of human scores

What features can predict human similarity scores and how may the assessment of argu-
ment similarity as opposed to sentence similarity differ from each other? In search for
answers to these questions, we perform a quantitative analysis of S3BERT’s fine-grained
features. We proceed as follows: Let SIM be S3BERT’s similarity ratings for a pairwise
data set, and HUM be the corresponding human ratings. Now, let FEASIM be the fine-
grained S3BERT feature similarities for a feature FEA (e.g., SRL aspect). Then we com-
pute, for each FEA, Spearmanr(FEASIM, SIM) and Spearmanr(FEASIM, HUM), both on
STS and argumentation benchmarks. In other words, we analyze predictive capacity of
features for a) system vs. b) human similarity in c) different domains/tasks.

Analysis results are shown in Table 9.9. Interestingly, for human argument similarity,
the residual has much lower predictive power (26.1), suggesting that human argument
similarity notions differ significantly from sentence similarity. Indeed, another key differ-
ence can be found in the importance of quantification similarity, which is marginal (-4.2)
for argumentation, but not for STS (51.6). We speculate that users judging argument
similarity tend to generalize over quantifier differences, being more focused on general
statements and concepts, as opposed to, e.g., numerical precision. Notably, human ar-
gument similarity is markedly well predicted by Frames – this feature alone achieves
state-of-the-art results, indicating a marked importance of predicate frames for argument
similarity.

Of course, although the analysis may give some interesting indications about similar-
ity as perceived by humans (and SBERT), it has to be taken with a grain of salt, one reason
being, e.g., that the shown statistics are influenced by AMR metric prediction accuracy,
which varies across aspects (c.f. Table 9.3). Our study also indicates that neither sen-
tence nor argument similarity can be fully explained by any feature. We hypothesize that
we may need to go beyond what sentence transformers and (current) AMR metrics can
measure, e.g., by incorporating background knowledge. Our method may offer a way to
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inject such background knowledge into sentence embeddings, via distillation of dedicated
metrics.

9.9.3 Evaluation with a CheckList

Mainly focusing on NLG evaluation metric inspection, Zeidler et al. (2022) adopt the
CheckList paradigm (Ribeiro et al., 2020) and annotate a subset of similar sentences from
the SICK corpus with an occuring semantic phenomenon. For instace, one part of the
check list is labeled hyponymy – it comprises sentence pairs that can be related with
a hypernymy relation (e.g., A cat runs, A kitten runs). Therefore, we can inspect the
correlation of a metric in such diverse phenomena. Even though the AMR aspects might
not exactly translate to their aspects, and some phenomena come with a very small data
size, evaluation with such a CheckList could provide additional insights. Table A.4 of
Appendix A.6 shows an extensive evaluation of various metrics, including S3BERT sub.
embeddings on all categories of the CheckList.

In comparison to the competitors, including NLG metrics based on large language
models such as BERTscore, 8 sub-embeddings obtain higher average correlation. At this
point, however, it is important to underline that the performance of a sub-embedding with
respect to a certain CheckList semantic category (even if sufficient examples were avail-
able) does not tell us much about the degree that the respective sub-embedding has man-
aged to capture the semantic category. Instead, this type of CheckList asks a ‘posterior’
question: Given sentence pairs of a certain semantic phenomenon, tell us how similar

the sentences are in the eye of the human annotator. This question is related to what we
are interested in, but it is not the same, since sub-embeddings are more tailored to tell us
if there is a certain semantic divergence/agreement happening between sentences (and in
which aspects), and how overall similarity is changed by it.

9.10 Discussion

We propose a method for decomposing neural sentence embedding spaces into different
sub-spaces, with the goal of obtaining sentence similarity ratings that are accurate, ef-

ficient and explainable. The sub-spaces express facets of meaning as captured by MR
and MR metrics, such as Negation or Semantic Roles. The decomposition objective parti-
tions the semantic space via targeted synthesis ofMR metrics. The effectiveness of neural
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sentence embeddings is preserved by a consistency objective that controls the decomposi-
tion process and routes global semantic information not expressed by MR into a residual

embedding. The S3BERT embeddings are more explainable and are on par, or even out-
perform, the accuracy of a strong standard sentence transformer. The approach allows
straightforward extension to customized metrics of meaning similarity.

Notably, in contrast to other explainability approaches that inspect, e.g., gradients or
attention weights to assess salience of input tokens, our partition-approach targets ex-
plainability in the decision-space. Indeed, semantic partitioning of the ‘last neural layer’
lets us inspect how abstract features are weighted in order to arrive at a certain deci-
sion/output. In our future work (Section 10.3) we discuss cross-pollination of methods
for ‘input-space’ explainability9 and our work targeting ‘decision-space’ explainability.

9E.g., see the work of Moeller et al. (2023) who show a way to apply the ‘gradient integration principle’
(Sanyal and Ren, 2021) to the Siamese text embedding encoders that we have used, understanding the
similarity contributions of individual input tokens.
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Chapter 10

Conclusions and outlook

10.1 Conclusions

Proper analysis of semantic similarity is important for many machine learning tasks, in-
cluding semantic search and evaluation of various system outputs. On the hunt for more

meaningful semantic similarity measures, we studied metrics of meaning representations
(MRs) that capture semantics explicitly. While we certainly have to leave some questions
open1, our answer to the important question of whether MR-based distances are inter-
esting objects of study is generally positive: MR metrics can conduct explainable and
meaning-grounded similarity measurements that support various applications such as (in-

ter alia) NLG diagnostics, semantic clustering and search of graphs and texts, as well as
extended parsing evaluation.2

In Part I of this thesis, we contributed a theoretical and comparative study of pre-
vious MR metrics. Based on insights of our analysis, we developed a metric for graded
similarity of atomic meaning graph constitutes (e.g., matching a kitten vs. a cat node,
using our S2MATCH metric, Chapter 4), and a novel MR metric for graded similar-
ity of subgraphs (e.g., matching kitten against the structure cat mod−−→young, using our
WWLK metric, Chapter 4). To assess MR metrics empirically, we introduced the first
benchmark for MR metrics (BAMBOO , Chapter 5) that tests metrics with respect to
several objectives such as sentence similarity and metric robustness against meaning pre-
serving/altering graph transformations. We showed that our novel metrics achieve good

1We will touch on some of them in Section 10.3.
2Meanwhile, we also find that this thesis’ ideas have started to get picked up, e.g., for parsing evaluation

(Lorenzo et al., 2023; Vasylenko et al., 2023), cross-lingual analysis of MRs (Uhrig et al., 2021; Wein and
Schneider, 2022; Leung et al., 2022; Wein and Schneider, 2023), MR2text evaluation (Hoyle et al., 2021;
Manning and Schneider, 2021; Ribeiro et al., 2021; Li et al., 2022; Montella et al., 2023), or building
advanced neural MR metrics (Shou and Lin, 2023). We study asymmetric versions of our MR metrics for
interpretable NLI (Opitz et al., 2023b), and propose more standardized parsing evaluation (Opitz, 2023c,b).
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results in most tasks. Finally, we tested metrics in a restricted but popular setup: the eval-
uation of high-performance MR parsers. We found that all metrics struggle with rating
finer MR quality and that MR parsing is far from solved, pointing at the need for more
future research on parsing evaluation.

In Part II, we showed that we can use MR metrics to view the evaluation of automat-
ically generated texts through MR-based semantic distances. This way, we could detect
the aspects where the generated hypothesis and reference are actually similar, or dissim-
ilar (e.g., negation, semantic roles, etc.), and diagnose issues in automatic systems. We
also showed that we can ablate costly textual human reference texts by comparing the MR
of the generation against the MR from which the generation stems, resulting in the first
system for referenceless evaluation of MR2text generation, Chapter 6).

On the other hand, we looked at the task of efficiently rating automatic MR construc-
tions, by predicting metric scores when the costly reference graph is absent. Potential
application cases are filtering candidates in ensemble parsing, estimating parser perfor-
mance on unseen and new data sets, or possibly aiding human annotators in an active
learning setup to improve parsing. To address this task, we proposed the first systems
for referenceless semantic parser quality estimation (Section 7).

Finally, in Part III, we explored novel and generalized use-cases of MRs and MR
metrics by aiming to build interpretable text similarity metrics for applications like text
search or text clustering. In a first demonstration, we showed that MR metrics can be
used for rating the similarity of natural language arguments in a transparent, accu-
rate and explainable manner. We also showed that it can be valuable to automatically
extrapolate conclusions of premises and view them through the lens of MR, all based on
our hypothesis that similar arguments lead to similar conclusions. Additionally, we tested
our MR metrics for rating the quality of arguments, which is a difficult but important task
in argument mining. We find that good argumentative conclusions are semantically nei-
ther too close, nor too far, from their premise(s), an assessment that can be automatically
supported with MR metrics.

However, we also observe a critical issue of MR metrics: They tend to be slow and
therefore their application to large-scale use-cases is strictly limited. As a first step to
alleviate this issue, we conducted a pilot experiment where we showed that it is possi-
ble to approximate costly graph matching via SMATCH, proposing a novel approach to
accurately approximate NP-complete MR alignment (Chapter 9). To this aim, we pro-
posed data augmentation with graph permutation and vocabulary reduction. With these
data augmentations, we showed that we can train i) a machine translation model to predict



10.2. Decision guide for MR metric application 211

MR application / task possible setup

1:1 node MR-alignment SMATCH/S2MATCH (max. efficiency: learned SMATCH/S2MATCH)
n:m node MR-alignment WWLK

n:m edge MR-alignment WWLK + edge-to-node translation
MR-parser eval ANY

MR-quality estimation project ANY (e.g., using extrapolated SMATCH, or MR metric + oracle parser)
MR2text eval w/o ref project ANY (e.g., via parser)
NLG eval text vs. text S3BERT or ANY + parser
Semantic search: graph S3BERT + parser or efficient MR metric (e.g., SEMBLEU, learned SMATCH)
Semantic search: text S3BERT or efficient MR metric + parser
Explain-low-level MR metrics with graph alignment (SMATCH, S2MATCH, WWLK)
Explain-high-level ANY on MR subgraphs or S3BERT feature decomposition

Table 10.1: High-level MR-metric method decision guide for a selection of general applications
that we visited in this thesis. ANY means any MR metric that measures distance in
explicit MR metric spaces (SMATCH, S2MATCH, SEMBLEU, SEMA, WLK, WWLK,...)

.

the alignment and score with great accuracy and ii) a very fast but slightly less accurate
convolutional neural network that directly predicts the graph similarity score.

Finally, still not satisfied with the efficiency of measurement in meaning space (due to
the dependency on a slow MR construction mechanism) and also aiming at an accuracy
that resembles human similarity ratings, we showed that we can inject interpretability
into a state-of-the-art neural model via guidance from MR metrics (Chapter 9). More
precisely, we employed MR metrics for showing the neural network how to decompose
its sentence embeddings space into various features that express different text semantics.
To control this decomposition process, we enforced that the model’s overall similarities
are consistent with the similarity ratings of a teacher model. We found that the resulting
model preserves full efficiency, since it does neither need a parser nor MR metrics in
inference, and keeps or even extends the state-of-the-art accuracy in different benchmark
data sets and domains – while also offering valuable interpretability.

10.2 Decision guide for MR metric application

We briefly want to gather the visited applications/tasks and associated MR metrics in a
‘decision guide’ (Table 10.1).

An interesting multi-purpose application is the alignment of MRs. For instance, it can
be used to explain scores, or merge graphs. A 1-1 node alignment is provided by SMATCH,



212 Chapter 10. Conclusions and outlook

and improved by S2MATCH. As a fast alternative, we have learned-SMATCH (using align-
ment prediction with NMT) but would have to admit an accuracy loss3. WWLK (so-far)
is the only metric that provides a many-to-many node alignment, which is useful for
aligning MRs from different sentences, where arbitrarily-sized sub-structures have to be
related (e.g., kitten as a node, and cat :mod young as a subgraph). Note that an edge-
to-node graph translation ‘trick’ as outlined in Figure 2.1 (Background Chapter 2) can
empower us to also directly align edges.

When performing MR-parser evaluation against a reference, we can simply take an
MR metric off the shelf. By using multiple metrics, or an ensemble of metrics, where the
selection is possibly informed by human accuracy from BAMBOO , we can obtain a more
comprehensive picture of parsing performance.

Interestingly, we saw that we do not need a costly reference in some evaluation cases,
ranging from the quality assessment of MR candidate parses to MR2text candidate sen-
tences. In particular, for efficient quality estimation of predicted MR graphs, we tested
and proposed different neural graph encoders that learn to project an oracle metric in the
absence of the MR reference. On the other hand, for evaluation of MR2text systems,
we proposed to project a candidate MR by parsing the text output, and comparing this
candidate MR against the input MR in the MR space. Such a strategy is unsupervised and
thus comes with reduced biases, and also allows to ablate a costly reference. The latter
‘principle’ (parser + metric) also may extend to different NLG evaluation tasks, where
reference text is available. The reference text then would also have to be parsed in order
to apply MR metrics. Alternatively, of course, we could employ S3BERT to yield less
transparent but more efficient and (probably) more accurate explainable NLG evaluation.

Then we studied the novel application of MR metrics for semantic search and sim-
ilarity through MR graphs. Such an application may be of particular interest to, e.g.,
linguists that desire to cluster or search particular semantic patterns. Almost all MR
metrics seem suitable for this, but their suitability may be strictly limited by efficiency
bottlenecks such as NP-completeness. Thus, we can resort to WLK and SEMBLEU, or
learned SMATCH, or even S3BERT trained directly on parses.

Finally, we investigated the semantic search on texts based on MR metrics. We cre-
ated S3BERT that decomposes a neural sentence transformer embedding space into mean-
ingful MR subspaces, guided by MR metric distillation. S3BERT yields vectors that are
equally powerful but show how the similarity ratings are composed and explained from

3The accuracy loss can be strongly reduced by our training data augmentation strategies



10.3. Outlook and future work 213

different aspects as measured in the implicit MR space. Since a parser is not required, the
efficiency of a neural sentence transformer is also fully retained.

Lastly, we consider two different levels of explainability application: high-level, or
low-level. Here, we use high-level explainability for providing high-level explanations
for decisions that are human-interpretable, and low-level explainability to highlight that it
may be possible for a human to fully trace and understand score computation. SMATCH,
S2MATCH, and WWLK are explainable on both levels: On the low level, they are ex-
plainable because we can exactly and quickly trace how the final score emerges. On a
high-level, they offer explainability via application of targeted aspectual subgraphs (e.g.,
on SRL-focused subgraphs). Of course, using the same principle (measuring distances
of aspectual subgraphs), we can also explain other graph metrics on a high level, such as
WLK. However, a fine-grained assessment may not be directly accessible in all MR met-
rics. For instance, SEMBLEU is limited to processing connected graphs, and subgraph
extraction risks loss of connectivity. The idea of higher-level explainability by examining
aspectual subgraph distances is also reflected by S3BERT, where we use the principle to
learn a meaningful embedding space decomposition.

10.3 Outlook and future work

Having arrived at the end of this thesis, and taking a step back, we notice ample room for
future work. This includes questions that we had to leave open and new questions that
have arisen during our explorations. We give a brief overview over some of them:

• State-of-the-art similarity metrics in explicit MR space: While we showed that
MR metrics can support interpretable similarity measurements and even help to im-
prove powerful neural text embeddings, we are still lacking graph metrics that more
accurately reflect similarity. We hypothesize that we need to build more informed
graph metrics that better know how to weight different types of meaning graph
similarities/divergences. Consider SMATCH that assigns all graph triples the same
weight: it clearly can’t account for the many cases where we would like to attach
different relevance to different types of meaning components of a text. While our
WWLK metric makes a step forward by including broader matches and adjustable
edge weights, its modeling scheme still seems too naïve to exhibit the power of a
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human (or neural) assessment. Fortunately, the search for better MR graph metrics
may be boosted by the continuous improvement of parsers.4

• Hybrid metrics: Directly connecting to the point above, it may be interesting to
study hybrid metrics of text and MRs for performing a two-way measurement based
on text/MR similarity. In a subsequent work to this thesis, using a simple combi-
nation of MR and text metrics, we find indications that the two domains can be
complementary and together help improve accuracy (Opitz et al., 2023b).

• Comparing large MR graphs: An open question concerns the application of met-
rics between larger meaning representations. Indeed, the MRs that we considered
do not often represent more than one sentence. When graphs grow much larger,
running SMATCH to the optimal solution may be infeasible, and the solutions with
heuristics such as hill-climbing SMATCH and our learned SMATCH will deteriorate.
While the issue can be mitigated by our WLK and WWLK metrics, future work can
explore more ways for comparing large MRs of multiple sentences, paragraphs, or
full documents of unrestricted size.

• Referenceless parser quality estimation: The comparison of MR parsers is a chal-
lenging problem, particularly when a costly reference is absent. While we found
that we can mitigate this issue via referenceless parsing evaluation metrics, our
tested metrics were based on a neural network trained on candidate parses and are
thus subject to biases from learning and data selection. Besides, our approach is
necessarily tailored to a specific metric, and thus it will inherit any of its draw-
backs. To alleviate these issues in a referenceless metric, a different paradigm could
be useful. More specifically, different NLP systems could can inform us about MR
quality. For instance, an MR text generation system could provide us with a set
of possible texts generated from a candidate MR. To our benefit, we could then
exploit a large tool box of NLG evaluation metrics, including strong faithfulness
measures (Steen et al., 2023) that may be particularly attractive to verify the factual
coherence of semantic parses. Alternatively, or in conjunction, we could leverage
NLP systems that solve MR-related tasks. E.g., we could compare the output of a
good coreference resolution system to parts of our candidate MR to verify the MRs

4Recall that for BAMBOO , we found improvements when using human corrected parses for all tested
metrics, and the findings of Manning and Schneider (2021) also suggest that better parsers lead to better
MR metric performance. If gold parses are available, they find that MR metrics can be better than large
neural metrics.
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references. In the end, a sensible referenceless metric could even perform better

than a reference-based metric, since the latter typically hinges on a single reference
and therefore disfavors different but valid human interpretations.

• From End-explainability to End-to-End explainability: We believe that the ex-
plainability of our S3BERT embedding-partition technique can be fruitfully re-
lated to explainability methods that calculate salience of input text structures, e.g.,
through gradient integration (Sanyal and Ren, 2021), or Shapley values (Shapley,
1951). This would allow us to trace back the aspectual sub-embeddings to different
parts of the input, and could elicit how aspectual similarities are affected by struc-
tures in the input. Combining our ‘decision explainability’ with the ‘input structure
explainability’ of conventional saliency methods could provide us with a powerful
tool for deep structured linguistic data analyses and exploration. An anticipated
bottleneck, however, is a greatly increased inference cost due to the conventional
explainability methods, losing efficiency of S3BERT explainability as is.

• Can we inform Meaning Representation Design with MR metrics? In most of
our experiments, we used a particular MR framework (AMR). An interesting meta-
feature that is shared by many MR frameworks is that their design is primarily
driven by human intuition, linguistic education, experience, or even specific user
desiderata (Pavlova et al., 2023) – i.e., all aspects that are not immediately empiri-

cally grounded. So an interesting question is: can we use MR metrics to elicit MR
design improvements, or detect MR design principles that are good/flawed? This
may be possible by carefully examining MRs of paraphrastic sentences, together
with their MR metric scores: If the similarity scores are high, this is a signal that
we did something right in the MR design. On the other hand, low scores may either
point at some issue in the MR metric, or/and it might show us some aspect in which
the two MR structures are too dissimilar, potentially revealing an MR design issue
that could be alleviated by sensible design improvement.

Overall, the field of meaning representations and their metrics leaves plenty of room
for interesting future research.
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Appendix A

Appendix

A.1 On the soundness of comparing MR-generated sen-
tences in the MR domain

First, we provide a simple example for our argument (it is safer to compare texts gen-
erated from AMR in the AMR domain) and then a simple proposition together with its
proof. The example is displayed in Fig. A.1, where, similar to MR2text, we see a (sur-
jective) function that generates concrete objects from abstract objects (e.g., mammal →
{dog,mouse,cow}). Now, imagine we are given mammal and are tasked with generating
a single concrete instance. How can we assess whether our output is correct? We cannot
safely assess this by testing whether the output (e.g., cow) is the same as another instance
of mammal (e.g., dog). Instead, we can re-apply the abstraction f to cow and conduct the
comparison safely in the abstract domain.

Proposition. a) The canoncical MR2text evaluation setup, that matches generated sen-

tence s′ to distant source sentence s, is not well defined. b) This issue can be alleviated by

dog mammal ape

previous evaluation our evaluation

mammal

 concretize was right!concretize was wrong!
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Figure A.1: A critical issue and its alleviation.
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F1 score
grammaticality fluency

LM poor/perfect all poor/perfect all

GPT2 0.80 0.74 0.80 0.71
GPT2-distill 0.79 0.73 0.76 0.70
BERT 0.80 0.72 0.80 0.72
RoBERTa 0.66 0.72 0.69 0.72

Table A.1: Results for assessing the Form score prediction (corpus-level) of different LMs for
NLG-generated sentences against humans judgements (separated by grammaticality
and fluency); all: all 12k generated sentences vs. ’poor/perfect’: the 5k instances of
best/worst generations in both grammaticality and fluency.

grounding the evaluation in the MR domain by re-applying parse, abstaining from direct

use of s (thereby using MR2text generation as a right inverse function).

Proof. Let X be a set of concrete objects (e.g., sentences) and f a (surjective) func-
tion from X to Y (e.g., ‘sent-to-MR’), where Y contains abstract objects (e.g., MRs), s.t.
|Y |< |X |. Then, using f−1 : Y → X (e.g., ‘MR-to-sent’)) as right-inverse is well-defined:
f ◦ f−1 = idY (Proposition b), but using it solely as left-inverse (as done in previous eval-
uation) does not guarantee a well-defined result: f−1 ◦ f 6= idX (Proposition a).

A.2 Form predictor selection experiment

To estimate how well they are able to assess Form, we make use of human-assigned
scores for data from the WebNLG task as provided by Gardent et al. (2017). It contains
grammaticality and fluency judgments by humans for more than 2000 machine-generated
sentences. We report the F1 score, both for grammaticality and fluency, by converting
the human assessment scores to accept predictions, and using them as a gold standard to
evaluate the LM-based accept predictions over (i) all 12k sentence pairs1 and (ii) only the
5k sentence pairs where both grammaticality and fluency where either rated as ‘perfect’
(max. score) or ‘poor’ (min. score) by the human.2

The results are displayed in Table A.1 and show (i) that the LMs lie very close to each
other with respect to their capacity to predict fluency and grammatically, and (ii) that both
fluency and grammaticality can be predicted fairly well.

1This includes all generated sentences from a given input, as provided by Gardent et al. (2017) and
Shimorina et al. (2017)

2The ratings are based on a 3-point Likert scale.
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A.3 Fine-tuning the conclusion generator

To fine-tune the sequence to sequence language model T5 for conclusion generation, we
create training data from the the persuasive essays dataset of Stab and Gurevych (2017)
as follows: From all premise-conclusion-pairs annotated in this dataset, we retrieved all
claims with their annotated premises. In addition, we employ all annotated major claims
with their supportive claims as premise-conclusion-pairs.3 We discarded samples for
which we cannot retrieve any premise. Each resulting premises-conclusion-sample has
3.1 premises on average.

We split the data into 80% instances for training, and 10% for validation and testing,
each. For each sample, we input the concatenated premises by encoding the string tem-
plate summarize:<premises> and train with the conclusion as a target by applying
a cross-entropy loss for each token. We guide the training process with an early stop-
ping mechanism to ensure the best accuracy (ignoring padding tokens) on our validation
dataset. In inference, we apply a 5-beam-search in combination with sampling over the
20 most probable tokens per inference step.

To assess the quality and relatedness of the generated conclusions, we manually com-
pared the predicted conclusions with their premises in our test split. Since we observed
promising and appropriate conclusion generations, we were encouraged to utilize the
learned capabilities of the fine-tuned language model to generate conclusions for the ar-
gumentative sentences in the UKP aspect corpus.

A.4 Hyper-parameter setups

A.4.1 Sequence-to-sequence network parameters

Hyper-parameters for the NMT approach are displayed in Table A.2. The best model is
determined on the development data by calculating BLEU against the reference align-
ments.

A.4.2 CNN network parameters

Hyper-parameters for the CNN approach are displayed in Table A.2. The best model is
determined on the development data by calculating Pearson’s ρ correlation of predicted

3Whenever we encounter multiple premises or supportive claims of a single claim, we concatenate them
in document order.
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parameter value

embedding size 512
encoder 4 transformer layers w/ 4 heads
decoder 4 transformer layers w/ 4 heads
feed forw. dim 2048
loss cross-entropy
weight init xavier
optimizer adam
learning rate 0.0002
batch size 8192 (tokens)

Table A.2: Overview of NMT hyper-parameters.

parameter value

emb. dimension 100
‘pixels’ 60x15
CNN encoder concatenate(

256 3x3 convs, 3x3 max pool
128 5x5 convs, 5x5 max pool)

MLP relu layer followed by lin. regressor
weight init xavier
optimizer adam
learning rate 0.001
batch size 64

Table A.3: Overview of CNN hyper-parameters.
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antonymy article Co-hypo. hypo. negation omission part. syno. passive SRL Sub. clause AVG
# example 157 77 35 11 � 156 155 26 78 8 � 69 -

BERTScore 9.6 9.5 6.3 80.6 5.3 32.5 5.8 -10.4 -45.8 -3.3 9.0
BLEU 12.2 3.2 18.6 38.4 -5.4 11.8 -5.1 -8.0 9.3 -14.2 6.1
chrF++ 15.0 4.2 10.1 6.5 -4.5 21.1 9.0 -12.2 1.2 -12.1 3.8
GraCo 7.1 -11.9 3.2 11.4 -9.4 12.8 22.9 -6.7 34.9 27.7 9.1
GraCo (G) 12.8 17.3 -1.2 34.3 -0.4 -0.8 -36.1 -12.0 -16.7 14.0 1.1
GraCo (r) -1.6 -11.9 -5.2 43.5 -0.3 15.4 9.0 -3.8 21.7 33.0 10.0
Graco (g, R) 0.5 17.3 10.3 20.1 0.4 3.4 -5.2 -10.3 -16.7 11.6 3.0
Meteor 26.9 6.5 26.4 42.4 -4.5 6.3 32.2 -7.9 -24.2 -2.7 10.1
S2MATCH 10.1 -4.6 4.7 48.5 -1.5 18.3 -5.7 2.7 -16.5 13.2 6.9
SMATCH 10.2 -4.6 7.7 48.5 -1.5 18.3 -5.7 2.7 -16.5 13.2 7.2
WLK 20.1 6.7 13.7 41.8 0.5 18.1 -17.0 2.7 -9.3 12.9 9.0
WWLK 10.9 -4.6 -9.9 77.3 -2.6 16.0 -4.0 2.7 -27.7 10.7 6.9

Concept 29.0 11.0 41.8 11.8 7.2 26.8 14.6 0.3 -15.7 11.9 13.9
Frame -4.0 -0.8 46.8 21.1 1.7 19.8 3.8 -6.5 -41.0 11.9 5.3
NE 19.5 -19.1 45.5 21.1 -2.5 24.6 20.2 6.7 -48.2 6.0 7.4
Neg 12.2 -4.5 13.1 12.5 -6.1 10.1 26.1 22.6 -13.3 6.3 7.9
Coref 19.5 -1.4 28.9 13.6 5.3 17.8 26.2 10.8 -4.8 2.7 11.9
SRL 29.5 -2.9 8.1 2.5 0.0 16.2 21.9 15.6 -22.9 7.7 7.6
Idegr 24.8 2.1 51.4 16.5 1.6 18.9 17.9 8.0 -22.9 10.2 12.9
ODegr 9.1 0.7 57.8 18.7 11.9 15.7 28.8 17.6 -34.9 -11.6 11.4
Dgr 15.3 -4.0 -0.6 6.8 -5.3 20.4 4.8 13.6 -12.0 -4.3 3.5
root sim 4.3 0.7 36.1 14.8 1.0 21.3 10.3 18.6 9.6 -3.7 11.3
quant 12.0 7.5 37.0 13.5 -3.6 27.9 17.1 23.1 -59.0 23.7 9.9
Smatch 17.6 -1.3 23.7 16.7 6.6 16.3 11.0 3.7 -38.6 -4.8 5.1
Unl 21.7 -10.6 11.8 17.9 -4.0 9.0 11.7 21.3 -20.5 -4.6 5.4
WLK 30.8 -5.4 34.4 6.5 -3.8 22.3 19.4 9.8 32.5 20.2 16.7
WWLK 28.0 4.4 22.2 17.7 3.7 25.7 17.0 4.3 7.2 4.5 13.5
Residual 29.8 -1.1 52.7 30.5 4.4 30.8 36.1 14.8 -13.3 4.6 18.9

Table A.4: Evaluation on CheckList (Zeidler et al., 2022), Speamanr correlation. Lower part of
the Table show S3BERT sub-embeddings. ‘GraCo’ is a metric by Zeidler et al. (2022),
we refer the reader to this paper.

scores and gold scores.

A.5 S3BERT Hyper-parameters and training

We use distilSBERT model as basis. Batch size is set to 64, the learning rate (after 100
warm-up steps) is set to 0.00001. We train for 8 epochs, evaluating every 1000 steps.
Afterwards we select the model from the evaluation step where we achieve minimum
development loss.

A.6 Results on semantic CheckList

For results on CheckList (Zeidler et al., 2022), see Table A.4.
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Becker, Maria, Ioana Hulpuş, Juri Opitz, Debjit Paul, Jonathan Kobbe, Heiner Stucken-
schmidt, and Anette Frank (2020). “Explaining arguments with background knowl-
edge”. In: Datenbank-Spektrum 20.2, pp. 131–141.

Becker, Maria, Siting Liang, and Anette Frank (2021). “Reconstructing Implicit Knowl-
edge with Language Models”. In: Proceedings of Deep Learning Inside Out (Dee-

LIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep Learn-

ing Architectures. Online: Association for Computational Linguistics, pp. 11–24. DOI:
10.18653/v1/2021.deelio-1.2. URL: https://aclanthology.org/
2021.deelio-1.2.

Beel, Joeran, Bela Gipp, Stefan Langer, and Corinna Breitinger (2016). “Paper recom-
mender systems: a literature survey”. In: International Journal on Digital Libraries

17.4, pp. 305–338.
Behrendt, Maike and Stefan Harmeling (2021). “ArgueBERT: How To Improve BERT

Embeddings for Measuring the Similarity of Arguments”. In: Proceedings of the 17th

https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://aclanthology.org/2020.blackboxnlp-1.14
https://aclanthology.org/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/D17-1209
https://www.aclweb.org/anthology/D17-1209
https://www.aclweb.org/anthology/D17-1209
https://doi.org/10.18653/v1/W16-1602
https://www.aclweb.org/anthology/W16-1602
https://www.aclweb.org/anthology/W16-1602
https://doi.org/10.18653/v1/P18-1026
https://doi.org/10.18653/v1/P18-1026
https://aclanthology.org/P18-1026
https://doi.org/10.18653/v1/2021.deelio-1.2
https://aclanthology.org/2021.deelio-1.2
https://aclanthology.org/2021.deelio-1.2


234 Bibliography

Conference on Natural Language Processing (KONVENS 2021). Düsseldorf, Ger-
many: KONVENS 2021 Organizers, pp. 28–36. URL: https://aclanthology.
org/2021.konvens-1.3.

Beltagy, Iz, Matthew E Peters, and Arman Cohan (2020). “Longformer: The long-document
transformer”. In: arXiv preprint arXiv:2004.05150.

Bender, Emily M. and Alexander Koller (2020). “Climbing towards NLU: On Meaning,
Form, and Understanding in the Age of Data”. In: Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics. Online: Association for
Computational Linguistics, pp. 5185–5198. DOI: 10.18653/v1/2020.acl-
main.463. URL: https://www.aclweb.org/anthology/2020.acl-
main.463.

Bevilacqua, Michele, Rexhina Blloshmi, and Roberto Navigli (2021). “One SPRING to
rule them both: Symmetric AMR semantic parsing and generation without a complex
pipeline”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35.
14, pp. 12564–12573.

Blloshmi, Rexhina, Rocco Tripodi, and Roberto Navigli (2020). “XL-AMR: Enabling
Cross-Lingual AMR Parsing with Transfer Learning Techniques”. In: Proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Online: Association for Computational Linguistics, pp. 2487–2500. DOI: 10.18653/
v1/2020.emnlp-main.195. URL: https://www.aclweb.org/anthology/
2020.emnlp-main.195.

Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov (2016). “Enrich-
ing Word Vectors with Subword Information”. In: arXiv preprint arXiv:1607.04606.

Bonial, Claire, Stephanie M. Lukin, David Doughty, Steven Hill, and Clare Voss (2020).
“InfoForager: Leveraging Semantic Search with AMR for COVID-19 Research”. In:
Proceedings of the Second International Workshop on Designing Meaning Represen-

tations. Barcelona Spain (online): Association for Computational Linguistics, pp. 67–
77. URL: https://www.aclweb.org/anthology/2020.dmr-1.7.

Boole, George (1854). An investigation of the laws of thought: on which are founded the

mathematical theories of logic and probabilities. Dover.
Bos, Johan (2016). “Expressive power of abstract meaning representations”. In: Compu-

tational Linguistics 42.3, pp. 527–535.
Bos, Johan (2019). “Separating Argument Structure from Logical Structure in AMR”. In:

arXiv preprint arXiv:1908.01355.

https://aclanthology.org/2021.konvens-1.3
https://aclanthology.org/2021.konvens-1.3
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://www.aclweb.org/anthology/2020.acl-main.463
https://www.aclweb.org/anthology/2020.acl-main.463
https://doi.org/10.18653/v1/2020.emnlp-main.195
https://doi.org/10.18653/v1/2020.emnlp-main.195
https://www.aclweb.org/anthology/2020.emnlp-main.195
https://www.aclweb.org/anthology/2020.emnlp-main.195
https://www.aclweb.org/anthology/2020.dmr-1.7


Bibliography 235

Bryant, Christopher and Ted Briscoe (2018). “Language Model Based Grammatical Er-
ror Correction without Annotated Training Data”. In: Proceedings of the Thirteenth

Workshop on Innovative Use of NLP for Building Educational Applications. New Or-
leans, Louisiana: Association for Computational Linguistics, pp. 247–253. DOI: 10.
18653/v1/W18-0529. URL: https://www.aclweb.org/anthology/
W18-0529.

Budanitsky, Alexander and Graeme Hirst (2006). “Evaluating wordnet-based measures of
lexical semantic relatedness”. In: Computational linguistics 32.1, pp. 13–47.

Bunke, Horst and Gudrun Allermann (1983). “Inexact graph matching for structural pat-
tern recognition”. In: Pattern Recognition Letters 1.4, pp. 245–253.

Burago, Dmitri, Yuri Burago, and Sergei Ivanov (2022). A course in metric geometry.
Vol. 33. American Mathematical Society.

Cai, Deng and Wai Lam (2019). “Core Semantic First: A Top-down Approach for AMR
Parsing”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Lan-

guage Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Computa-
tional Linguistics, pp. 3799–3809. DOI: 10.18653/v1/D19-1393. URL: https:
//www.aclweb.org/anthology/D19-1393.

Cai, Deng and Wai Lam (2020a). “AMR Parsing via Graph-Sequence Iterative Inference”.
In: Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics. Online: Association for Computational Linguistics, pp. 1290–1301. DOI:
10.18653/v1/2020.acl-main.119. URL: https://www.aclweb.org/
anthology/2020.acl-main.119.

Cai, Deng and Wai Lam (2020b). “Graph Transformer for Graph-to-Sequence Learn-
ing”. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,

The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI

2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,

EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, pp. 7464–7471.
URL: https://aaai.org/ojs/index.php/AAAI/article/view/
6243.

Cai, Shu and Kevin Knight (2013). “Smatch: an Evaluation Metric for Semantic Fea-
ture Structures”. In: Proceedings of the 51st Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers). Sofia, Bulgaria: Association for
Computational Linguistics, pp. 748–752. URL: https://www.aclweb.org/
anthology/P13-2131.

https://doi.org/10.18653/v1/W18-0529
https://doi.org/10.18653/v1/W18-0529
https://www.aclweb.org/anthology/W18-0529
https://www.aclweb.org/anthology/W18-0529
https://doi.org/10.18653/v1/D19-1393
https://www.aclweb.org/anthology/D19-1393
https://www.aclweb.org/anthology/D19-1393
https://doi.org/10.18653/v1/2020.acl-main.119
https://www.aclweb.org/anthology/2020.acl-main.119
https://www.aclweb.org/anthology/2020.acl-main.119
https://aaai.org/ojs/index.php/AAAI/article/view/6243
https://aaai.org/ojs/index.php/AAAI/article/view/6243
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/P13-2131


236 Bibliography

Carpuat, Marine (2013). “A Semantic Evaluation of Machine Translation Lexical Choice”.
In: Proceedings of the Seventh Workshop on Syntax, Semantics and Structure in Statis-

tical Translation. Atlanta, Georgia: Association for Computational Linguistics, pp. 1–
10. URL: https://www.aclweb.org/anthology/W13-0801.

Cer, Daniel, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia (2017).
“SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual
Focused Evaluation”. In: Proceedings of the 11th International Workshop on Seman-

tic Evaluation (SemEval-2017). Vancouver, Canada: Association for Computational
Linguistics, pp. 1–14. DOI: 10.18653/v1/S17-2001. URL: https://www.
aclweb.org/anthology/S17-2001.

Chatterjee, Rajen, Matteo Negri, Marco Turchi, Frédéric Blain, and Lucia Specia (2018).
“Combining Quality Estimation and Automatic Post-editing to Enhance Machine Trans-
lation output”. In: AMTA (1). Association for Machine Translation in the Americas,
pp. 26–38.

Chen, Boxing and Colin Cherry (2014). “A Systematic Comparison of Smoothing Tech-
niques for Sentence-Level BLEU”. In: Proceedings of the Ninth Workshop on Sta-

tistical Machine Translation. Baltimore, Maryland, USA: Association for Computa-
tional Linguistics, pp. 362–367. DOI: 10.3115/v1/W14-3346. URL: https:
//www.aclweb.org/anthology/W14-3346.

Chesnevar, Carlos Iván and Ana G Maguitman (2004). “Arguenet: An argument-based
recommender system for solving web search queries”. In: 2004 2nd International

IEEE Conference on’Intelligent Systems’. Proceedings (IEEE Cat. No. 04EX791).
Vol. 1. IEEE, pp. 282–287.

Choromanski, Krzysztof Marcin et al. (2021). “Rethinking Attention with Performers”.
In: International Conference on Learning Representations.

Clark, Kevin, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning (2019).
“What Does BERT Look at? An Analysis of BERT’s Attention”. In: Proceedings

of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Net-

works for NLP. Florence, Italy: Association for Computational Linguistics, pp. 276–
286. DOI: 10.18653/v1/W19-4828. URL: https://aclanthology.org/
W19-4828.

Cohen, Jacob (1968). “Weighted kappa: nominal scale agreement with provision for scaled
disagreement or partial credit”. In: Psychological bulletin, pp. 213–220.

Conn, Andrew R, Katya Scheinberg, and Luis N Vicente (2009). Introduction to derivative-

free optimization. SIAM.

https://www.aclweb.org/anthology/W13-0801
https://doi.org/10.18653/v1/S17-2001
https://www.aclweb.org/anthology/S17-2001
https://www.aclweb.org/anthology/S17-2001
https://doi.org/10.3115/v1/W14-3346
https://www.aclweb.org/anthology/W14-3346
https://www.aclweb.org/anthology/W14-3346
https://doi.org/10.18653/v1/W19-4828
https://aclanthology.org/W19-4828
https://aclanthology.org/W19-4828


Bibliography 237

Conneau, Alexis, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine Bordes
(2017). “Supervised Learning of Universal Sentence Representations from Natural
Language Inference Data”. In: Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing. Copenhagen, Denmark: Association for
Computational Linguistics, pp. 670–680. DOI: 10.18653/v1/D17-1070. URL:
https://aclanthology.org/D17-1070.

Damonte, Marco, Shay B. Cohen, and Giorgio Satta (2017). “An Incremental Parser for
Abstract Meaning Representation”. In: Proceedings of the 15th Conference of the Eu-

ropean Chapter of the Association for Computational Linguistics: Volume 1, Long Pa-

pers. Valencia, Spain: Association for Computational Linguistics, pp. 536–546. URL:
https://aclanthology.org/E17-1051.

Danilevsky, Marina, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, and Prithviraj
Sen (2020). “A Survey of the State of Explainable AI for Natural Language Process-
ing”. In: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Asso-

ciation for Computational Linguistics and the 10th International Joint Conference on

Natural Language Processing. Suzhou, China: Association for Computational Lin-
guistics, pp. 447–459. URL: https://aclanthology.org/2020.aacl-
main.46.

Das, Nibaran, Swarnendu Ghosh, Teresa Gonçalves, and Paulo Quaresma (2014). “Com-
parison of different graph distance metrics for semantic text based classification”. In:
Polibits 49, pp. 51–58.

Davidson, Donald and Nicholas Rescher (1967). “The logical form of action sentences”.
In: 1967, pp. 105–122.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019). “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding”. In:
Proceedings of the 2019 Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers). Minneapolis, Minnesota: Association for Computational Linguis-
tics, pp. 4171–4186. DOI: 10.18653/v1/N19-1423. URL: https://www.
aclweb.org/anthology/N19-1423.

Dietterich, Tom (1995). “Overfitting and undercomputing in machine learning”. In: ACM

computing surveys (CSUR) 27.3, pp. 326–327.

https://doi.org/10.18653/v1/D17-1070
https://aclanthology.org/D17-1070
https://aclanthology.org/E17-1051
https://aclanthology.org/2020.aacl-main.46
https://aclanthology.org/2020.aacl-main.46
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423


238 Bibliography

Dolan, William B. and Chris Brockett (2005). “Automatically Constructing a Corpus of
Sentential Paraphrases”. In: Proceedings of the Third International Workshop on Para-

phrasing (IWP2005). URL: https://www.aclweb.org/anthology/I05-
5002.

Donatelli, Lucia, Michael Regan, William Croft, and Nathan Schneider (2018). “Annota-
tion of Tense and Aspect Semantics for Sentential AMR”. In: Proceedings of the Joint

Workshop on Linguistic Annotation, Multiword Expressions and Constructions (LAW-

MWE-CxG-2018). Santa Fe, New Mexico, USA: Association for Computational Lin-
guistics, pp. 96–108. URL: https://www.aclweb.org/anthology/W18-
4912.

Dowty, David (1991). “Thematic proto-roles and argument selection”. In: language 67.3,
pp. 547–619.

Dung, Phan Minh (1995). “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games”. In: Artificial

intelligence 77.2, pp. 321–357.
Erk, Katrin and Sebastian Padó (2008). “A Structured Vector Space Model for Word

Meaning in Context”. In: Proceedings of the 2008 Conference on Empirical Methods

in Natural Language Processing. Honolulu, Hawaii: Association for Computational
Linguistics, pp. 897–906. URL: https://aclanthology.org/D08-1094.

Ferrando, Javier and Marta R. Costa-jussà (2021). “Attention Weights in Transformer
NMT Fail Aligning Words Between Sequences but Largely Explain Model Predic-
tions”. In: Findings of the Association for Computational Linguistics: EMNLP 2021.
Punta Cana, Dominican Republic: Association for Computational Linguistics, pp. 434–
443. DOI: 10.18653/v1/2021.findings-emnlp.39. URL: https://
aclanthology.org/2021.findings-emnlp.39.

Fisher, Ronald A (1915). “Frequency distribution of the values of the correlation coeffi-
cient in samples from an indefinitely large population”. In: Biometrika 10.4, pp. 507–
521.

Flanigan, Jeffrey, Sam Thomson, Jaime Carbonell, Chris Dyer, and Noah A. Smith (2014).
“A Discriminative Graph-Based Parser for the Abstract Meaning Representation”. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers). Baltimore, Maryland: Association for Computa-
tional Linguistics, pp. 1426–1436. DOI: 10.3115/v1/P14-1134. URL: https:
//aclanthology.org/P14-1134.

https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/W18-4912
https://www.aclweb.org/anthology/W18-4912
https://aclanthology.org/D08-1094
https://doi.org/10.18653/v1/2021.findings-emnlp.39
https://aclanthology.org/2021.findings-emnlp.39
https://aclanthology.org/2021.findings-emnlp.39
https://doi.org/10.3115/v1/P14-1134
https://aclanthology.org/P14-1134
https://aclanthology.org/P14-1134


Bibliography 239

Freitag, Markus, Ricardo Rei, Nitika Mathur, Chi-kiu Lo, Craig Stewart, George Foster,
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Hoyle, Alexander Miserlis, Ana Marasović, and Noah A. Smith (2021). “Promoting Graph
Awareness in Linearized Graph-to-Text Generation”. In: Findings of the Association

for Computational Linguistics: ACL-IJCNLP 2021. Online: Association for Compu-
tational Linguistics, pp. 944–956. DOI: 10.18653/v1/2021.findings-acl.
82. URL: https://aclanthology.org/2021.findings-acl.82.

Huck, Matthias, Fabienne Braune, and Alexander Fraser (2017). “LMU Munich’s Neural
Machine Translation Systems for News Articles and Health Information Texts”. In:
Proceedings of the Second Conference on Machine Translation. Copenhagen, Den-
mark, pp. 315–322. DOI: 10.18653/v1/W17-4730. URL: https://www.
aclweb.org/anthology/W17-4730.

https://doi.org/10.18653/v1/N16-1162
https://aclanthology.org/N16-1162
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://aclanthology.org/N13-1132
https://doi.org/10.18653/v1/2021.findings-acl.82
https://doi.org/10.18653/v1/2021.findings-acl.82
https://aclanthology.org/2021.findings-acl.82
https://doi.org/10.18653/v1/W17-4730
https://www.aclweb.org/anthology/W17-4730
https://www.aclweb.org/anthology/W17-4730


242 Bibliography

Jaccard, Paul (1912). “The distribution of the flora in the alpine zone”. In: New phytologist

11.2, pp. 37–50.
Jain, Sarthak and Byron C. Wallace (2019). “Attention is not Explanation”. In: Pro-

ceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics,
pp. 3543–3556. DOI: 10.18653/v1/N19-1357. URL: https://aclanthology.
org/N19-1357.

Jawahar, Ganesh, Benoît Sagot, and Djamé Seddah (2019). “What Does BERT Learn
about the Structure of Language?” In: Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics. Florence, Italy: Association for Com-
putational Linguistics, pp. 3651–3657. DOI: 10.18653/v1/P19-1356. URL:
https://aclanthology.org/P19-1356.

Jo, Yohan, Seojin Bang, Chris Reed, and Eduard H. Hovy (2021). “Classifying Argu-
mentative Relations Using Logical Mechanisms and Argumentation Schemes”. In:
CoRR abs/2105.07571. arXiv: 2105.07571. URL: https://arxiv.org/abs/
2105.07571.

Jones, Karen Sparck (1972). “A statistical interpretation of term specificity and its appli-
cation in retrieval”. In: Journal of documentation.

Joshi, Nisheeth, Iti Mathur, Hemant Darbari, and Ajai Kumar (2016). “Quality Estimation
of English-Hindi Machine Translation Systems”. In: Proceedings of the Second Inter-

national Conference on Information and Communication Technology for Competitive

Strategies. ICTCS ’16. Udaipur, India: ACM, 53:1–53:5. ISBN: 978-1-4503-3962-9.
DOI: 10.1145/2905055.2905259. URL: http://doi.acm.org/10.
1145/2905055.2905259.

Kamp, Hans (1981). “A theory of truth and semantic representation”. In: Formal semantics-

the essential readings, pp. 189–222.
Kapanipathi, Pavan, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexander

Gray, Ramon Astudillo, Maria Chang, Cristina Cornelio, Saswati Dana, Achille Fok-
oue, et al. (2021). “Leveraging Abstract Meaning Representation for Knowledge Base
Question Answering”. In: Findings of the Association for Computational Linguistics:

ACL.

https://doi.org/10.18653/v1/N19-1357
https://aclanthology.org/N19-1357
https://aclanthology.org/N19-1357
https://doi.org/10.18653/v1/P19-1356
https://aclanthology.org/P19-1356
https://arxiv.org/abs/2105.07571
https://arxiv.org/abs/2105.07571
https://arxiv.org/abs/2105.07571
https://doi.org/10.1145/2905055.2905259
http://doi.acm.org/10.1145/2905055.2905259
http://doi.acm.org/10.1145/2905055.2905259


Bibliography 243

Kasper, Robert T. (1989). “A Flexible Interface for Linking Applications to Penman’s
Sentence Generator”. In: Proceedings of the Workshop on Speech and Natural Lan-

guage. HLT ’89. Philadelphia, Pennsylvania: Association for Computational Linguis-
tics, pp. 153–158. DOI: 10.3115/100964.100979. URL: https://doi.
org/10.3115/100964.100979.

Kaster, Marvin, Wei Zhao, and Steffen Eger (2021). “Global Explainability of BERT-
Based Evaluation Metrics by Disentangling along Linguistic Factors”. In: Proceed-

ings of the 2021 Conference on Empirical Methods in Natural Language Processing.
Online and Punta Cana, Dominican Republic: Association for Computational Lin-
guistics, pp. 8912–8925. DOI: 10.18653/v1/2021.emnlp-main.701. URL:
https://aclanthology.org/2021.emnlp-main.701.

Katinskaia, Anisia and Sardana Ivanova (2019). “Multiple Admissibility: Judging Gram-
maticality using Unlabeled Data in Language Learning”. In: Proceedings of the 7th

Workshop on Balto-Slavic Natural Language Processing. Florence, Italy: Association
for Computational Linguistics, pp. 12–22. DOI: 10.18653/v1/W19-3702. URL:
https://www.aclweb.org/anthology/W19-3702.

Kemker, Ronald, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan
(2018). “Measuring Catastrophic Forgetting in Neural Networks”. In: Proceedings of

the AAAI Conference on Artificial Intelligence 32.1. DOI: 10.1609/aaai.v32i1.
11651. URL: https://ojs.aaai.org/index.php/AAAI/article/
view/11651.

Kiefer, Jack, Jacob Wolfowitz, et al. (1952). “Stochastic estimation of the maximum of a
regression function”. In: The Annals of Mathematical Statistics 23.3, pp. 462–466.

Kim, Hyun, Hun-Young Jung, Hongseok Kwon, Jong-Hyeok Lee, and Seung-Hoon Na
(2017). “Predictor-Estimator: Neural Quality Estimation Based on Target Word Pre-
diction for Machine Translation”. In: ACM Trans. Asian Low-Resour. Lang. Inf. Pro-

cess. 17.1, 3:1–3:22. ISSN: 2375-4699. DOI: 10.1145/3109480. URL: http:
//doi.acm.org/10.1145/3109480.

Kim, Yoon (2014). “Convolutional Neural Networks for Sentence Classification”. In: Pro-

ceedings of the 2014 Conference on Empirical Methods in Natural Language Process-

ing (EMNLP). Doha, Qatar: Association for Computational Linguistics, pp. 1746–
1751. DOI: 10.3115/v1/D14-1181. URL: https://www.aclweb.org/
anthology/D14-1181.

Kingma, Diederik P and J Adam Ba (2019). “A method for stochastic optimization. arXiv
2014”. In: arXiv preprint arXiv:1412.6980 434.

https://doi.org/10.3115/100964.100979
https://doi.org/10.3115/100964.100979
https://doi.org/10.3115/100964.100979
https://doi.org/10.18653/v1/2021.emnlp-main.701
https://aclanthology.org/2021.emnlp-main.701
https://doi.org/10.18653/v1/W19-3702
https://www.aclweb.org/anthology/W19-3702
https://doi.org/10.1609/aaai.v32i1.11651
https://doi.org/10.1609/aaai.v32i1.11651
https://ojs.aaai.org/index.php/AAAI/article/view/11651
https://ojs.aaai.org/index.php/AAAI/article/view/11651
https://doi.org/10.1145/3109480
http://doi.acm.org/10.1145/3109480
http://doi.acm.org/10.1145/3109480
https://doi.org/10.3115/v1/D14-1181
https://www.aclweb.org/anthology/D14-1181
https://www.aclweb.org/anthology/D14-1181


244 Bibliography

Kingsbury, Paul and Martha Palmer (2002). “From TreeBank to PropBank”. In: Proceed-

ings of the Third International Conference on Language Resources and Evaluation

(LREC’02).
Knight, Kevin, Bianca Badarau, Laura Baranescu, Claire Bonial, Madalina Bardocz, Kira

Griffitt, Ulf Hermjakob, Daniel Marcu, Martha Palmer, Tim O’Gorman, et al. (2021).
“Abstract meaning representation (amr) annotation release 3.0”. In:

Knight, Kevin, Laura Baranescu, Claire Bonial, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Daniel Marcu, Martha Palmer, and Nathan Schneider (2014). “Abstract
meaning representation (AMR) annotation release 1.0 LDC2014T12”. In: Web Down-

load. Philadelphia: Linguistic Data Consortium.
Kobbe, Jonathan, Juri Opitz, Maria Becker, Ioana Hulpus, Heiner Stuckenschmidt, and

Anette Frank (2019). “Exploiting Background Knowledge for Argumentative Relation
Classification”. In: 2nd Conference on Language, Data and Knowledge (LDK 2019).
Ed. by Maria Eskevich, Gerard de Melo, Christian Fäth, John P. McCrae, Paul Buite-
laar, Christian Chiarcos, Bettina Klimek, and Milan Dojchinovski. Vol. 70. OpenAc-
cess Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 8:1–8:14. ISBN: 978-3-95977-105-4. DOI: 10 . 4230 /
OASIcs.LDK.2019.8. URL: http://drops.dagstuhl.de/opus/
volltexte/2019/10372.

Kolb, Peter (2009). “Experiments on the difference between semantic similarity and re-
latedness”. In: Proceedings of the 17th Nordic Conference of Computational Linguis-

tics (NODALIDA 2009). Odense, Denmark: Northern European Association for Lan-
guage Technology (NEALT), pp. 81–88. URL: https://www.aclweb.org/
anthology/W09-4613.

Kondor, Risi and Karsten M Borgwardt (2008). “The skew spectrum of graphs”. In: Pro-

ceedings of the 25th international conference on Machine learning, pp. 496–503.
Kondor, Risi, Nino Shervashidze, and Karsten M Borgwardt (2009). “The graphlet spec-

trum”. In: Proceedings of the 26th Annual International Conference on Machine Learn-

ing, pp. 529–536.
Konstas, Ioannis, Srinivasan Iyer, Mark Yatskar, Yejin Choi, and Luke Zettlemoyer (2017).

“Neural AMR: Sequence-to-Sequence Models for Parsing and Generation”. In: Pro-

ceedings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers). Vancouver, Canada: Association for Computational Lin-
guistics, pp. 146–157. DOI: 10.18653/v1/P17-1014. URL: https://www.
aclweb.org/anthology/P17-1014.

https://doi.org/10.4230/OASIcs.LDK.2019.8
https://doi.org/10.4230/OASIcs.LDK.2019.8
http://drops.dagstuhl.de/opus/volltexte/2019/10372
http://drops.dagstuhl.de/opus/volltexte/2019/10372
https://www.aclweb.org/anthology/W09-4613
https://www.aclweb.org/anthology/W09-4613
https://doi.org/10.18653/v1/P17-1014
https://www.aclweb.org/anthology/P17-1014
https://www.aclweb.org/anthology/P17-1014


Bibliography 245

Koponen, Maarit, Leena Salmi, and Markku Nikulin (2019). “A product and process anal-
ysis of post-editor corrections on neural, statistical and rule-based machine translation
output”. In: Machine Translation 33.1-2, pp. 61–90.

Krausz, József (1943). “Démonstration nouvelle d’une théoreme de Whitney sur les réseaux”.
In: Mat. Fiz. Lapok 50.1, pp. 75–85.

Kriege, Nils M, Pierre-Louis Giscard, and Richard Wilson (2016a). “On valid optimal
assignment kernels and applications to graph classification”. In: Advances in neural

information processing systems 29.
Kriege, Nils M, Pierre-Louis Giscard, and Richard Wilson (2016b). “On valid optimal

assignment kernels and applications to graph classification”. In: Advances in neural

information processing systems 29.
Kroch, Anthony S. (1978). “Toward a theory of social dialect variation”. In: Language in

Society 7.1, 17–36. DOI: 10.1017/S0047404500005315.
Lambrecht, Knud (1996). Information structure and sentence form: Topic, focus, and the

mental representations of discourse referents. Vol. 71. Cambridge university press.
Lample, Guillaume and François Charton (2020). “Deep Learning For Symbolic Mathe-

matics”. In: 8th International Conference on Learning Representations, ICLR 2020,

Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. URL: https://openreview.
net/forum?id=S1eZYeHFDS.

Lasersohn, Peter (2016). A semantics for groups and events. Routledge.
Lau, Jey Han, Carlos S Armendariz, Shalom Lappin, Matthew Purver, and Chang Shu

(2020). “How Furiously Can Colourless Green Ideas Sleep? Sentence Acceptability
in Context”. In: arXiv preprint arXiv:2004.00881.

Lauscher, Anne, Henning Wachsmuth, Iryna Gurevych, and Goran Glavaš (2021). Scien-

tia Potentia Est – On the Role of Knowledge in Computational Argumentation. arXiv:
2107.00281 [cs.CL].

Lawrence, John (2021). “Explainable argument mining”. PhD thesis. University of Dundee.
Leiter, Christoph, Juri Opitz, Daniel Deutsch, Yang Gao, Rotem Dror, and Steffen Eger

(2023). “The Eval4NLP 2023 Shared Task on Prompting Large Language Models as
Explainable Metrics”. In: Proceedings of the 4th Workshop on Evaluation and Com-

parison for NLP systems.
Lenz, Mirko, Stefan Ollinger, Premtim Sahitaj, and Ralph Bergmann (2019). “Semantic

textual similarity measures for case-based retrieval of argument graphs”. In: Interna-

tional Conference on Case-Based Reasoning. Springer, pp. 219–234.

https://doi.org/10.1017/S0047404500005315
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
https://arxiv.org/abs/2107.00281


246 Bibliography

Lenz, Mirko, Premtim Sahitaj, Sean Kallenberg, Christopher Coors, Lorik Dumani, Ralf
Schenkel, and Ralph Bergmann (2020). “Towards an argument mining pipeline trans-
forming texts to argument graphs”. In: Computational Models of Argument: Proceed-

ings of COMMA 2020 326, p. 263.
Lepori, Michael and R. Thomas McCoy (2020). “Picking BERT’s Brain: Probing for Lin-

guistic Dependencies in Contextualized Embeddings Using Representational Similar-
ity Analysis”. In: Proceedings of the 28th International Conference on Computational

Linguistics. Barcelona, Spain (Online): International Committee on Computational
Linguistics, pp. 3637–3651. DOI: 10.18653/v1/2020.coling-main.325.
URL: https://aclanthology.org/2020.coling-main.325.

Lesk, Michael (1986). “Automatic sense disambiguation using machine readable dictio-
naries: how to tell a pine cone from an ice cream cone”. In: Proceedings of the 5th

annual international conference on Systems documentation, pp. 24–26.
Leung, Wai Ching, Shira Wein, and Nathan Schneider (2022). “Semantic Similarity as

a Window into Vector- and Graph-Based Metrics”. In: Proceedings of the 2nd Work-

shop on Natural Language Generation, Evaluation, and Metrics (GEM). Abu Dhabi,
United Arab Emirates (Hybrid): Association for Computational Linguistics, pp. 106–
115. URL: https://aclanthology.org/2022.gem-1.8.

Levi, Friedrich Wilhelm (1942). Finite geometrical systems: six public lectues delivered

in February, 1940, at the University of Calcutta. University of Calcutta.
Lewis, Mike, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,

Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer (2020). “BART: Denoising Sequence-
to-Sequence Pre-training for Natural Language Generation, Translation, and Compre-
hension”. In: Proceedings of the 58th Annual Meeting of the Association for Computa-

tional Linguistics. Online: Association for Computational Linguistics, pp. 7871–7880.
DOI: 10.18653/v1/2020.acl-main.703. URL: https://aclanthology.
org/2020.acl-main.703.

Li, Liang, Ruiying Geng, Bowen Li, Can Ma, Yinliang Yue, Binhua Li, and Yongbin
Li (2022). “Graph-to-Text Generation with Dynamic Structure Pruning”. In: arXiv

preprint arXiv:2209.07258.
Lin, Chin-Yew (2004). “ROUGE: A Package for Automatic Evaluation of Summaries”.

In: Text Summarization Branches Out. Barcelona, Spain: Association for Computa-
tional Linguistics, pp. 74–81. URL: https://www.aclweb.org/anthology/
W04-1013.

https://doi.org/10.18653/v1/2020.coling-main.325
https://aclanthology.org/2020.coling-main.325
https://aclanthology.org/2022.gem-1.8
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013


Bibliography 247

Liu, Hugo and Push Singh (2004). “ConceptNet—a practical commonsense reasoning
tool-kit”. In: BT technology journal 22.4, pp. 211–226.

Liu, Jiangming, Shay B. Cohen, and Mirella Lapata (2020). “Dscorer: A Fast Evaluation
Metric for Discourse Representation Structure Parsing”. In: Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics. Online: Association
for Computational Linguistics, pp. 4547–4554. DOI: 10.18653/v1/2020.acl-
main.416. URL: https://aclanthology.org/2020.acl-main.416.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov (2019a). “Roberta: A robustly
optimized bert pretraining approach”. In: arXiv preprint arXiv:1907.11692.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov (2019b). “RoBERTa: A Ro-
bustly Optimized BERT Pretraining Approach”. In: arXiv preprint arXiv:1907.11692.

Lo, Chi-kiu (2017). “MEANT 2.0: Accurate semantic MT evaluation for any output lan-
guage”. In: Proceedings of the Second Conference on Machine Translation. Copen-
hagen, Denmark: Association for Computational Linguistics, pp. 589–597. DOI: 10.
18653/v1/W17-4767. URL: https://www.aclweb.org/anthology/
W17-4767.

Logan, Robert, Nelson F. Liu, Matthew E. Peters, Matt Gardner, and Sameer Singh (2019).
“Barack’s Wife Hillary: Using Knowledge Graphs for Fact-Aware Language Model-
ing”. In: Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics. Florence, Italy: Association for Computational Linguistics, pp. 5962–
5971. DOI: 10.18653/v1/P19-1598. URL: https://www.aclweb.org/
anthology/P19-1598.

Lorenzo, Martínez, Pere Lluís Huguet Cabot, and Roberto Navigli (2023). “AMRs As-
semble! Learning to Ensemble with Autoregressive Models for AMR Parsing”. In:
Proceedings of the 61st Annual Meeting of the Association for Computational Lin-

guistics (Volume 2: Short Papers). Toronto, Canada: Association for Computational
Linguistics, pp. 1595–1605. URL: https://aclanthology.org/2023.acl-
short.137.

Lorenzo, Martínez, Marco Maru, and Roberto Navigli (2022). “Fully-Semantic Parsing
and Generation: the BabelNet Meaning Representation”. In: Proceedings of the 60th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers). Dublin, Ireland: Association for Computational Linguistics, pp. 1727–1741.

https://doi.org/10.18653/v1/2020.acl-main.416
https://doi.org/10.18653/v1/2020.acl-main.416
https://aclanthology.org/2020.acl-main.416
https://doi.org/10.18653/v1/W17-4767
https://doi.org/10.18653/v1/W17-4767
https://www.aclweb.org/anthology/W17-4767
https://www.aclweb.org/anthology/W17-4767
https://doi.org/10.18653/v1/P19-1598
https://www.aclweb.org/anthology/P19-1598
https://www.aclweb.org/anthology/P19-1598
https://aclanthology.org/2023.acl-short.137
https://aclanthology.org/2023.acl-short.137


248 Bibliography

DOI: 10.18653/v1/2022.acl-long.121. URL: https://aclanthology.
org/2022.acl-long.121.

Lugini, Luca and Diane Litman (2018). “Argument Component Classification for Class-
room Discussions”. In: Proceedings of the 5th Workshop on Argument Mining. Brus-
sels, Belgium: Association for Computational Linguistics, pp. 57–67. DOI: 10.18653/
v1/W18-5208. URL: https://aclanthology.org/W18-5208.

Luhn, Hans Peter (1957). “A statistical approach to mechanized encoding and searching
of literary information”. In: IBM Journal of research and development 1.4, pp. 309–
317.

Lyu, Chunchuan and Ivan Titov (2018). “AMR Parsing as Graph Prediction with Latent
Alignment”. In: Proceedings of the 56th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association
for Computational Linguistics, pp. 397–407. DOI: 10.18653/v1/P18-1037.
URL: https://www.aclweb.org/anthology/P18-1037.

Ma, Qingsong, Ondrej Bojar, and Yvette Graham (2018). “Results of the WMT18 Met-
rics Shared Task: Both characters and embeddings achieve good performance”. In:
Proceedings of the Third Conference on Machine Translation: Shared Task Papers,

WMT 2018, Belgium, Brussels, October 31 - November 1, 2018. Ed. by Ondrej Bojar
et al., pp. 671–688. ISBN: 978-1-948087-81-0. URL: https://www.aclweb.
org/anthology/W18-6450/.
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