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Zusammenfassung:

Diese Doktorarbeit analysiert die dynamis
he Evolution der Satelliten-Galaxien

in einer, von einer massiven dunklen Korona (dunkle Materie) umgebenen Spiral-

Galaxie. Die Hauptziele sind: (i) die Dur
hf�uhrung einer detaillierten theoretis
hen

Analyse der dynamis
hen Reibung, d.h. des Prozesses, der die Vers
hmelzung der

Satelliten verursa
ht und (ii) der Ein
uss der Abplattung der dunken Korona auf

diesen Prozess sowie deren Konsequenzen f�ur die Beoba
htungssatellitdistribution.

Abstra
t

This study analyses the dynami
al evolution of satellite galaxies in spirals em-

bedded in a Dark Matter halo. The main goals of this Thesis have been: (i) The

performan
e of a detailed theoreti
al analysis of dynami
al fri
tion, the main pro-


ess that leads to satellite merges into the more massive parent galaxies and (ii)

the in
uen
e that the aspheri
ity of haloes indu
es on this pro
ess and the possible


onsequen
es on the observational satellite distribution.
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Chapter 1

General introdu
tion

1.1 Prefa
e

In 1933, the Swiss astronomer Fritz Zwi
ky suggested the presen
e of a non-dete
ted large amount

of mass in galaxy-
lusters in order to explain the dis
repan
y between the observed velo
ity dis-

persion of the galaxies belonging to the Coma 
luster and that expe
ted from the virial theorem,

where the total mass was estimated from the luminous 
omponent. In the past de
ades, as-

tronomers observe that the 
ontent of luminous matter, also 
alled baryoni
 mass 
omponent, is

too low to a

ount for the gravity of not only galaxy 
lusters but also of single galaxies and large

s
ale stru
tures in the Universe.

The \missing mass problem" �nds a remedy if one assumes that there is a large fra
tion of

mass, whose existen
e 
an solely be inferred from its gravitational e�e
ts, the so-
alled Dark

Matter.

From that year on, a huge number of arti
les, books, 
onferen
es, proje
ts et
., have tried to

put light on the nature and properties of the Dark Matter. However, this problem has been around

for de
ades, and there is now 
onsensus that we do not know what the most 
ommon material in

the Universe is. It is dete
ted only gravitationally, and does not seem to emit or absorb substantial

ele
tromagneti
 radiation at any known wavelength. The universal average density of Dark Matter

determines the ultimate fate of the Universe, and it is 
lear that the amount and nature of Dark

Matter stands as one of the major unsolved puzzles in s
ien
e.

The aim of this thesis is to make a little step further.

1.2 Standard Big Bang theory and Dark Matter

The most favoured pi
ture of the Universe is based on the Big Bang s
enario. So far, this theory

has been able to give an expli
it explanation for the Cosmi
 Ba
kground Radiation (CBR) and

the observations of large s
ale stru
tures formed by galaxies and 
lusters of galaxies.

1.2.1 In
ation

The Big Bang theory postulates that the Universe orginally had a point-extension with singular

energy density followed by an exponential expansion (in
ationary pro
ess) that gave rise to a


at isotropi
 Universe (null 
urvature) nearly homogeneous. In
ation 
onsists of a short period

of a

elerated superluminal expansion of the early Universe, at the end of whi
h the \standard"

des
ription of the Big Bang model is applied.

In general relativity, a spatially homogeneous and isotropi
 Universe is des
ribed by the

Friedmann-Lemaitre-Robertson-Walker metri
 (e.g., Landau & Lifs
hitz 1989),

ds

2

= �dt

2

+ a(t)

2

�

dr

2

1�Kr

2

+ r

2

(d�

2

+ sin

2

�d'

2

)

�

1



2 CHAPTER 1. GENERAL INTRODUCTION

where (t; r; �; ') are 
o-moving 
oordinates, K is the 
urvature (K = 0, K > 0 and K < 0 imply

a 
at, 
lose and open Universe, respe
tively) and a(t) is the s
ale-fa
tor of the Universe that

a

ounts for its expansion. With this metri
, Einstein's equations of general relativity redu
e to,

�a

a

= �

4�g

3

(�

m

+ 3P

m

) +

�

3

;

H

2

�

�

_a

a

�

2

=

8�G

3

�

m

�

K

a

2

+

�

3

;

where 
 = 1, �

m

and P

m

are, respe
tively, the energy density and pressure of the matter 
ontent

of the Universe, whi
h is assumed to be a perfe
t 
uid. H and � are the Hubble parameter and

the 
osmologi
al 
onstant, respe
tively.

For simpli
ity, we 
onsider solely the 
ase K = 0. Interpreting the presen
e of � as a 
uid

with energy and pressure �

�

= �=(8�G), P

�

= ��=(8�G) (note that negative pressure implies a

repulsive for
e) so that,

�a

a

= �

4�G

3

(�+ 3P );

�

_a

a

�

2

=

8�G

3

�;

where � � �

m

+ �

�

and P � P

m

+ P

�

.

In
ation is de�ned as the epo
h in the history of the Universe (t � 10

�34

s) when �a > 0, i.e

P < ��=3.

There are several proposal for in
ation. Histori
ally, the prototype has been the exponential

expansion 
orresponding to de Sitter's solution of Einstein's equations (�

m

= P

m

= 0),

a(t) = a

0

e

Ht

;

H =

�

�

3

�

1=2

:

More re
ently, in
ation is obtained by assuming that an early time the energy density of the


osmologi
al 
uid was dominated by a s
alar �eld 
alled in
aton (�), where � =

_

�

2

=2+V (�), V (�)

and

_

�

2

=2 being the potential and kineti
 energy of the s
alar �eld. In the regime V (�) �

_

�

2

=2,

one 
an show that the solution of Einstein's equations 
an be wiritten as,

a(t) = a

0

exp

�

Z

H(t)dt

�

;

where H

2

(t) ' 8�GV (�)=3. The geometri
al de Sitter solution is therefore asso
iated to a quan-

tum �eld des
ription where � = �

0

with the potential V = V

0

= 
onst:

The exponential growth of the s
ale fa
tor means that, during the in
ation epo
h, the pertur-

bation wavelengths inherent to the 
osmologi
al 
uid soon ex
eeded the Hubble radius 
H

�1

'


onst:, thus the 
u
tuation amplitudes were \frozen".

On
e the in
ation has ended, the Hubble radius in
reases faster than the s
ale fa
tor, so

that the 
u
tuations reenter the Hubble radius and stru
tures in the matter and in the radiation

ba
kground start to grow. The major su

ess of in
ation is that it provides the spe
trum of

perturbations, whi
h 
an be 
ompared to that the Cosmi
 Ba
kground Radiation.

1.2.2 Dark Matter 
ontent in the Universe

In
ation postulates that the Universe is 
at and isotropi
. From Einstein's equations this requires

the density of matter to be � = �


rit

= 3H

2

=(8�G), i.e 
 � 8�G�=(3H

2

) = 1, whi
h is assumed

by the standard 
osmology. If the 
osmologi
al 
onstant is not zero one has that null 
urvature

implies 
 + 


�

= 1, where 


�

= �=(3H

2

).



1.2. STANDARD BIG BANG THEORY AND DARK MATTER 3

Observations at the present day, however, provide a \luminous" (i.e, matter that 
an be dete
ted

from ele
tromagneti
 emissions, also 
alled baryoni
 matter) density around 


b

' 0:0024 (Fukugita

et al. 1998). Therefore, \luminous" matter alone 
annot a

ount for the Universe 
atness. This

problem has found solution by assuming that the \missing mass" is formed by Dark Matter. In

the standard 
osmology frame 
 = 


b

+


m

= 1.

In order to 
he
k this hypothesis, resear
hers usually have followed three independent lines of

investigation: (i) 
al
ulus of the primordial baryoni
 abundan
e at the Universe (assuming that

the total amount of matter is 
onstant), (ii) analysis of the CBR 
u
tuations and (iii) formation

of large stru
tures in the Universe.

Big Bang Nu
leosynthesis

After the initial adiabati
 in
ationary pro
ess, the Universe starts to 
ool down. At t � 10

�4

s

(T ' 1:2�10

12

K), the formation of parti
les is in equilibrium, with nu
leons n ! p and leptons


  ! e

�

, 
  ! �

�

. These parti
les intera
t through ele
tro-weak and gravitational for
es.

The standard pi
ture of the matter re
ombination after this evolutionary phase of the Universe

is given by the Big Bang Nu
leosynthesis (BBN, see e.g. Carr 1994 for a review). BBN assumes

that the primordial abundan
e of nu
leons 
an be determined by their present observational value

and two free-parameters,

� �

n

b

n




' 2:72� 10

�8

�

T

2:73K

�

�3




b

h

2

;

� being the fra
tion between the number of photons and baryons (stri
tly speaking nu
leons) at

a given time and h = H

0

=100 km s

�1

kp
, the present Hubble parameter. The se
ond parameter

is N

�

, the number of relativisti
 spe
ies.

The proton to neutron ratio at that time plays a very important role in order to 
ompare the

primordial with the a
tual abundan
e of baryoni
 elements. It is estimated as n=p = exp(�Q=T

fr

),

where Q is the neutron-proton mass di�eren
e, Q = 1:293 MeV and T

fr

� (N

�

G=G

4

f

)

1=6

' 1 MeV

is the \freeze-out" temperature, resulting from the break of the 
hemi
al equilibrium n  ! p

as the temperature dropped. The abundan
e of free neutrons is, thus, dire
tly dependent of N

�

through the value of T

fr

. In the standard 
osmology N

�

= 3 and therefore n=p ' 1=6 at T ' 1

MeV.

The nu
leosynthesis 
hain begins with the formation of deuterium in the pro
ess p(n; 
)D. The

rate of the pro
ess is very low until the number of photons with energy higher than the deuterium

photo-disso
iation falls, whi
h o

urs at T ' 0:1 MeV. Due to the low density of the Universe at

that time, only 2-body rea
tions su
h as D(p; 
)

3

He,

3

He(D,p)

4

He are important.

Nearly all the surviving neutrons at the beginning of nu
leosynthesis end up bound in the most

stable isotope of Helium,

4

He. Heavier nu
lei su
h as T and

7

Be 
annot be 
reated due to the

strong repulsion between nu
lei. The Helium abundan
e 
an be obtained from the ratio between

neutrons and protons n=p as,

4

He/H= 2(n=p)=(1 + n=p) ' 0:25, whereas the abundan
e of other

elements su
h as Deuterium and Tritium depends on the value of �.

On
e given � and N

�

, BBN theory predi
ts the universal abundan
es of D,

3

He,

4

He and

7

Li,

whi
h are essentially determined at t � 180 s. However, their observations 
an be solely 
arried

out at mu
h later epo
hs. The main problem in the 
omparison results as a 
onsequen
e of the

stellar nu
leosynthesis and other galaxy 
hemi
al pro
esses, whi
h alters the primordial values.

The value of � (and therefore the baryon density 


b

) is determined from the Cosmi
 Ba
kground

Radiation and the measurements of the primordial elements abundan
es as a fun
tion of time

(redshift), subsequently extrapolated to null metali
ity. Whereas the former provides the value

of n




�xed by the present CBR temperature, the observed abundan
es of D,

3

He,

4

He and

7

Li


onstrain the possible value of �. Sin
e 


b

= 2:65� 10

�13

h

�2

�, one has that,

0:0095 � 


b

h

2

� 0:023:

First one must note that 


b

� 1, i.e., baryons 
annot 
lose the Universe. Furthermore,

the observed luminous matter is 


lum

' 0:0024h

�1

, so that 


b

� 


lum

, whi
h indi
ates that



4 CHAPTER 1. GENERAL INTRODUCTION

most baryons are opti
ally dark. This is 
onsistent with the abundan
e of baryoni
 Dark Matter

(i.e, bodies, su
h as Massive Massive Compa
t Obje
ts \MACHOs" that are formed by baryoni


matter but 
annot be dire
tly observed, see below), whi
h has been estimated in galaxies as




h

' 0:011h

�1

(R

h

=35kp
) (Fi
h & Tremaine 1991), where R

h

is the halo radius.

Finally, either if the 
osmologi
al parameters are 
 = 


m

= 1, 


�

= 0 (standard pi
ture CDM),

or 


m

' 0:313, 


�

' 0:687 (�CDM), as re
ent observations of the CMB and the large redshift

survey (2dFGRS) suggest (Per
ival et al. 2002), we infer that most matter in the universe takes

a non-baryoni
 form. This result is a key point for the Dark Matter 
osmology.

Formation of large stru
tures

The Big Bang theory postulates the formation of galaxies, 
luster of galaxies and large stru
tures

as a 
onsequen
e of perturbations in the initial matter density, whose reli
s 
an be nowadays

observed as 
u
tuations in the Cosmi
 Ba
kground Radiation.

In this s
heme, the growth rate and evolution of perturbations are highly dependent on the

matter nature. Sin
e the Universe is more homogeneous on large s
ales, one expe
ts that these


u
tuations follow a power spe
trum for whi
h the Fourier amplitude 
an be des
ribed as jÆ(k)j

2

/

k, where k is the wave number. Further, in standard 
osmology, it is assumed that the spe
trum

phases are independent, whereas the amplitudes have a Gaussian distribution about the mean.

At the epo
h of radiation domination, perturbations with wavelengths smaller than the horizon

grew very slowly. At that time, the Universe was highly homogeneous (and isotropi
) as expe
ted

from the in
ation s
enario. As the temperature dropped, the mass density (by hypothesis \
old",

i.e., non-relativisti
) starts dominating over that of massless parti
les. The power spe
trum P (k)

remains proportional to the wave number for wavelengths larger than the horizon radius. However,

on s
ales smaller than the horizon the growth is slower, with a power spe
trum asymptoti
ally

P (k) / k

�3

as k !1 (see Ostriker 1993 for a review).

The main di�erentiation between baryoni
 and Dark Matter evolution o

urs at this time.

Whereas Dark Matter density evolve around the initial over-density points, the baryoni
 pertur-

bation growth was kept small due to the repulsive ele
tro-magneti
 for
e between the ionized

atoms until matter re
ombines at about z � 10

3

(t � 180 s). At this moment, baryons fall into the

Dark Matter potential wells that were already formed, evolving to the present \visible" stru
tures.

Due to the delay in the perturbation growth, any model based purely on baryoni
 matter

(i.e., 


m

= 0 and 


b

= 1) would need of large amplitudes in the 
u
tuation spe
trum at the

re
ombination time, whi
h is not 
onsistent with the 
u
tuations observed in the CBR.

The Dark Matter s
enario is very su

essful in order to reprodu
e the large s
ale stru
tures

(larger than 1 Mp
) in the Universe (Bah
all et al. 1999). However, during last years some obser-

vations of matter stru
ture on small s
ales (few kiloparse
s) may be in 
on
i
t with predi
tions

of Dark Matter, whi
h 
onstitutes a topi
 of dis
ussion nowadays:

(i) The density pro�le of galaxies in the inner few kiloparse
s appear to be mu
h shallower than

predi
ted by N-body simulations of Dark Matter (Navarro, Frenk & White 1997).

(ii) The 
entral density of Dark Matter haloes is observed to be �




' 0:02M

�

p


�3

, roughly in-

dependent of the halo mass (Firmani et al 2000b), meanwhile CDM (Cold Dark Matter) predi
ts

�




' 1M

�

p


�3

in dwarf galaxies, in
reasing to larger masses (Moore et al. 1999b).

(iii) The number of dwarf galaxies in the Lo
al Group is signi�
antly fewer than predi
ted by

CDM, with the dis
repan
y growing the higher the numeri
al resolution is (Moore et al. 1999a,

Klypin et al. 1999).

(iv) Observational distribution of satellites around isolated spiral galaxies show that most of them

follow polar orbits with respe
t to the dis
 plane (Zaritsky & Gonz�alez 1999), whereas the CDM

numeri
al 
al
ulations show that the satellite distribution mimi
s the mass distribution of the DM

halo.

The observed dis
repan
ies (i)-(iii) may have a single 
ause: CDM produ
es systems with an

over-
on
entration of Dark Matter in the most inner regions. In order to solve the apparent dis
rep-

an
ies between CDM predi
tions and observations on small s
ales, a plethora of new alternatives

have been suggested. Some of su
h theories are motivated from parti
les physi
s 
onsiderations,
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S
ale/Obje
t �=�

�

Solar neighbourhood 5

Ellipti
al galaxy 
ores 12h

Satellite galaxies 30

Lo
al Group 100

Group of galaxies 260h

Cluster of galaxies 400h

Table 1.1: Mass-to-light ratio for di�erent s
ales and systems. h denotes the normalised Hubble


onstant (between 0.4 and 1) and �

�

the mass-to-light ratio of the Sun.

though all of them retain the desirable properties of CDM on large s
ales. For instan
e, it has

been proposed that DM is warm (e.g Colin et al 2000), repulsive (Goodman 2000), 
uid (Peebles

2000), self-intera
ting (Spergel & Steinhardt 2000) among others whi
h, with di�erent degrees of

a

ura
y, solve the problem.

However, the point (iv) remains without explanation. One of the aims of this Thesis is to give

an insight on the physi
al pro
esses that may 
ontribute to the observed anisotropy of the satellite

distribution.

1.3 Eviden
es for Dark Matter

Histori
ally, the most robust eviden
e for Dark Matter 
ame from the rotation 
urves of spiral

galaxies. Using 21 
m emission, the velo
ities of 
louds of neutral hydrogen 
an be measured as

a fun
tion of r, the distan
e from the 
entre of the galaxy. In almost all 
ases, after a rise near

r = 0, the velo
ities remain nearly 
onstant out as far as 
an be measured. By Newton's law for


ir
ular motion GM(r)=r

2

= v

2

=r, this implies that the density drops like r

�2

at large radius and

that the mass at large radii. On
e r be
omes greater than the extent of the mass, one expe
ts the

velo
ities to drop as r

�1=2

but, usually, this is not seen, suggesting that the Dark Matter extension

around spirals is far beyond the baryoni
 extension as it is found in 
lusters of galaxies.

In 1974, Ostriker et al. and Einasto et al. proposed the presen
e of large amounts of Dark

Matter around even isolated galaxies whi
h would reprodu
e the observed 
at rotational 
urves

of galaxies at large distan
es. The Dark Matter would be lo
ated in giant \haloes" extending out

to several times the radius of the luminous matter and 
ontaining most of the galaxy mass. These

haloes also extend around 
luster of galaxies, with masses of around 10

14

� 10

15

M

�

.

There is a great deal of new eviden
e on Dark Matter in 
lusters of galaxies, 
oming from

gravitational lensing, from X-ray gas temperatures, and from the motions of 
luster member

galaxies.

To measure the amount of Dark Matter in a given s
ale, authors usually determine the value

of the mass-to-light ratio �, de�ned as the fra
tion between the mass and luminosity density,

providing therefore, the amount of mass that produ
es the observed luminosity. Evidently, bodies


omposed mostly by Dark Matter will lead to large values of �. In Table 1.1 the values of the

mass-to-light ratios are given for di�erent s
ales and systems (Binney & Tremaine 1987, hereinafter

BT). From this Table appears 
learly that the more distant the obje
ts are (equivalently to larger

s
ales), the more dominates the Dark Matter over the baryoni
 
omponent. As we see below, this

fa
t has given o

asion for the development of alternative theories that question the Newton's

gravity at large s
ales going, therefore, against the Dark Matter solution for the \missing mass

problem".

1.4 Dark Matter 
andidates

In the standard pi
ture, CDM provides the observed mass distribution on large s
ales under, solely,

two assumptions: (i) Dark Matter parti
les move on non-relativisti
 velo
ities at early ages and
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(ii) it intera
ts only through the gravitational for
e. There is no shortage of ideas as to what kind

of parti
les have su
h properties. In fa
t, the problem is the opposite. Serious 
andidates have

been proposed with masses ranging from 10

�5

eV = 1:8 10

�41

kg= 9 10

�72

M

�

(axions) up to

10

4

M

�

(bla
k holes). That's a range of masses of over 75 orders of magnitude! It should be 
lear

that no one sear
h te
hnique 
ould be used for all Dark Matter 
andidates.

Even �nding a 
onsistent 
ategorisation s
heme is diÆ
ult, so that here we merely in
lude the

most important suggestions for the Dark Matter 
omponents.

1.4.1 Baryoni
 Dark Matter

The main baryoni
 
andidates are the Massive Compa
t Halo Obje
t (Ma
ho) 
lass of 
andidates.

These in
lude brown dwarf stars, Jupiters, and 100M

�

bla
k holes. Brown dwarfs are spheres of

H and He with masses below 0:08M

�

, so they never begin nu
lear fusion of hydrogen. Jupiters

are similar but with masses near 0:001M

�

. Bla
k holes with masses near 100M

�


ould be the

remnants of an early generation of stars whi
h were massive enough so that not many heavy

elements were dispersed when they underwent their supernova explosions. Other, less popular,

baryoni
 possibilities in
lude fra
tal or spe
ially pla
ed 
louds of mole
ular hydrogen. The non-

baryoni
 
andidates are basi
ally elementary parti
les whi
h are either not yet dis
overed or have

non-standard properties.

1.4.2 Non-baryoni
 Dark Matter

Among the non-baryoni
 
andidates there are several 
lasses of parti
les whi
h are distinguished

by how they 
ame to exist in large quantity during the Early Universe, and also how they are

most easily dete
ted.

Among the parti
le Dark Matter 
andidates an important distin
tion is whether the parti
les

were 
reated thermally in the Early Universe, or whether they were 
reated non-thermally in

a phase transition. Thermal and non-thermal reli
s have a di�erent relationship between their

reli
 abundan
e and their properties su
h as mass and 
ouplings, so the distin
tion is espe
ially

important for Dark Matter dete
tion e�orts. For example, the Wimp 
lass of parti
les 
an be

de�ned as those parti
les whi
h are 
reated thermally, while Dark Matter axions 
ome mostly

from non-thermal pro
esses.

The largest 
lass is the Weakly Intera
ting Massive Parti
le (Wimp) 
lass, whi
h 
onsists of

literally hundreds of suggested parti
les and forms through thermal pro
esses at early stages of

the Universe. The most popular of these Wimps is the neutralino from super-symmetry (see Carr

1994 for a review).

Thermal 
reation o

urs early, when the Universe was at very high temperature, thermal

equilibrium obtained, and the number density of Wimps (or any other parti
le spe
ies) was roughly

equal to the number density of photons. As the Universe 
ooled the number of Wimps and

photons would de
rease together as long as the temperature remained higher than the Wimp

mass, intera
ting solely through gravitational for
e.

The density required by the Cold Dark Matter 
osmology (CDM) is 


matter

= 1. Wimp parti
les

would a

ount for this density if the annihilate into ordinary parti
les through ele
troweak for
es.

Therefore, one hypothesis is that any stable parti
le whi
h annihilates with an ele
troweak s
ale


ross se
tion is bound to 
ontribute to the Dark Matter of the Universe. It is interesting that

theories su
h as super-symmetry, invented for entirely di�erent reasons, typi
ally predi
t just su
h

a parti
le.

Non-thermal reli
s are also thought to provide the mass density obtained from the CDM model.

The best example of a non-thermal parti
le Dark Matter 
andidate is the axion. This parti
le

would have null mass at the earliest stage of the Universe. However, when the temperature of

the Universe 
ooled below a few hundred MeV (QCD energy s
ale), the solution of the QCD

Lagrangian predi
ts a new equilibrium state where the parti
le has non-null mass. These parti
les

would be observed as a 
oherent axion �eld 
ondensate �lling the Universe whi
h 
onstitutes the

Dark Matter. The reli
 energy density is thus related to the QCD potential, whi
h in turn is
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related to the axion mass, a free parameter of the model. If the axion mass is m

a

' 10

�5

ev, the

we obtain 


matter

' 1. Axions 
ould then a

ount for the mass density in the Universe, even if

they are so light.

Finally, if the tau and/or muon neutrinos had a mass in the 2 eV to 100 eV range, they 
ould

make up all or a portion of the Dark Matter.

1.4.3 Distin
tion between \
old" and \hot" Dark Matter

A Dark Matter 
andidate is 
alled \hot" if it was moving at relativisti
 speeds at the time when

galaxies 
ould just start to form (when the horizon �rst 
ontained about 10

12

M

�

). It is 
alled

\
old" if it was moving non-relativisti
ally at that time. This 
ategorisation has important ram-

i�
ations for stru
ture formation, and there is a 
han
e of determining whether the Dark Matter

is hot or 
old from studies of galaxy formation. Hot Dark Matter 
annot 
luster on galaxy s
ales

until it has 
ooled to non-relativisti
 speeds, and so gives rise to a 
onsiderably di�erent primor-

dial 
u
tuation spe
trum. Of the above 
andidates only the light neutrinos would be hot, all the

others would be 
old.

1.5 Non-Newtonian gravity

The Modi�ed Newtonian Dynami
s (MOND) has been found as an alternative to solve the \missing

mass problem". The basis of this explanation is the suggestion that, although the Newtonian

gravity has been su

essfully 
he
ked on the Solar System s
ale, it breaks down on the s
ale of

galaxies. In parti
ular, the proposal by Milgrom (1983) that the e�e
tive law of attra
tion be
omes

more like 1=r in the limit of low a

elerations has been able to reprodu
e some systemati
 aspe
ts

of this dis
repan
y between galaxy and groups of galaxies (reviewed by Sanders 1990).

The MOND alternative predi
ts the pre
ise form of the rotation 
urve of a spiral galaxy if the

observed mass distribution is given and the value of a single universal parameter a

0

. Usually, the

mass-to-light ratio of the visible dis
 is used as a free parameter in order to �t rotation 
urves

obtained from the 21-
m emission of the neutral hydrogen.

The simple MOND formula for the gravitational for
e 
an be written as

�(g=a

0

)g = g

n

; (1.1)

where g

n

is the Newtonian a

eleration and

�(x) = 1; x� 1 �(x) = x; x� 1; (1.2)

that 
an be approa
hed by the analyti
 fun
tion

�(x) = x(1 + x

2

)

�1=2

; (1.3)

It is straightforward to show that rotation 
urves are asymptoti
ally 
at in the low a

eleration

limit if the mass bounded is �nite so that

V

4




= GMa

0

: (1.4)

Although Non-Newtonian gravity su

essfully des
ribes the 
at rotation 
urves of spiral galaxies,

there is a large list of physi
al pro
esses that �nd no explanation fromMOND, su
h as gravitational

lensing, formation of large s
ale stru
tures in the Universe, tidal disruption of satellites...et
, whi
h

makes the Dark Matter s
enario the most favoured solution for the \missing mass" problem.

1.6 From satellite dynami
s to Dark Matter 
osmology

The study of the satellite galaxy dynami
s in spiral galaxies may help to determine the Dark

Matter nature.
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Rotational 
urves of spiral galaxies show that for r > 30 kp
 the halo potential dominates

over that of the baryoni
 
omponents (bulge and dis
), whereas satellite galaxies 
an be found

at distan
es as large as 500 kp
 from the parent galaxy 
entre (Zaritsky et al. 1993). Other

systems like globular 
luster and halo stars are very hard to dete
t for r > 50 kp
. Satellite

galaxies, therefore, represent in galaxies the most important indi
ator in order to investigate the

halo potential and also, indire
tly, its shape.

Measuring the mass distribution around galaxies provides a 
riti
al test for 
osmologi
al mod-

els. The Dark Matter s
enario predi
ts density pro�les s
aling as r

�2

at intermediate s
ales, whi
h

give rise to the observed 
at rotation 
urves, whereas at large distan
es the mass distribution is

steeper � / r

�3

(Navarro, Frenk & White 1997). The 
hallenge in 
omparing theory with obser-

vations arises from the diÆ
ulty of �nding a visible tra
er to measure the mass. One of the most


ommonly used is the neutral hydrogen emission (HI), whi
h is dete
ted well beyond the opti
al

boundary, providing density pro�les that go as r

�2

(e.g Sofue & Rubin 2001). However, HI lines

are only dete
ted within 30� 50 kp
. X-rays emissions, observed in ellipti
al galaxies and 
luster

of galaxies, su�er from a similar limitation in order to give insight of the mass distribution at large

distan
es.

Gravitational lensing provides a more promising method to study the outer parts of galaxies (e.g,

Smith et al. 2001 and referen
es therein). Unfortunately, the existing data 
annot distinguish

between the r

�2

and r

�3

pro�les in the outer most regions, where the errors are large. Moreover,

at su
h distan
es, neighbour galaxies 
an a�e
t the data.

Satellite galaxies represent the most helpful indi
ator for the mass distribution at large dis-

tan
es. The main disadvantage of this method 
onsist in the large number of satellites ne
essary

to perform good statisti
s. As a result, observational e�orts in this �eld are somewhat limited

(Zaritsky et al. 1993, Zaritsky et al. 1997, M
Kay et al. 2002). This method 
onstraints the mass

distribution in two manners:

First, the velo
ity distribution of satellites 
an determine whether the density pro�le drops

at large radii, as the 
osmologi
al models predi
t. Although the singular isothermal sphere is

usually employed at large distan
es as an extrapolation of 
at rotation 
urves, none of the Dark

Matter models give rise to su
h a mass distribution, but all of them predi
t that � / r

�3

in the

outer most region of DM systems. This slope does not depend on the mass density, sin
e CDM

with 


matter

= 1 as well as �CDM with 


m

= 0:3, 


�

= 0:7, have the same slope (Klypin et

al. 2001), neither depends it on the Dark Matter nature sin
e hot, 
old and self-intera
ting Dark

Matter models make the same predi
tion (e.g. Spergel & Steinhardt 2000), nor on the halo mass:

haloes ranging from galaxy 
luster masses to dwarf masses all present � / r

�3

for large distan
es

(Navarro, Frenk & White 1997). Only the Modi�ed Newtonian Dynami
s (MOND) give rise to a

singular isothermal density pro�le, therefore, with 
onstant velo
ity dispersion (�). The studies


arried out so far lead to 
ontradi
tory results. Whereas Zaritsky et al. (1993) and Zaritsky

et al. (1997) �nd that � does not de
line with distan
e and that it does not 
orrelate with the

luminosity of the parent galaxy, M
Kay et al. (2002) (using a mu
h larger sample of satellites)

agree that � ' 
onst:, though they observe that � / L

0:5

, where L is the luminosity of the parent

galaxy. Lastly, in a very re
ent paper, Prada et al. (2003) use the observational data of M
Kay et

al. (2002) and show that � de
reases with distan
e (obtaining the r

�3

dependen
e in the density

pro�le), and that � / L

0:3�0:5

. In this 
ase, a new sele
tion 
riterion gives rise to di�erent results.

The results of Prada et al. (2003) go dire
tly against the MOND postulates.

The study of satellite galaxies may also indu
e 
onstraints on the Dark Matter nature through

their distribution with respe
t to the dis
 plane. Zaritsky et al. (1993) and Zaritsky & Gonz�alez

(1999) show that most of the satellites are found in polar orbits, this anisotropy being stronger

the more distant the satellite are from the parent galaxy. There are two possible reasons that

explain su
h a distribution: (i) The phase-spa
e of satellite formation may be limited to volumes

where the predominating orbits are polar. (ii) Evolutionary pro
esses may remove those satellites

with low and intermediate orbital in
linations, so that nowadays most of satellites are observed

following polar orbits.

The 
urrently favoured CDM theory of galaxy formation postulates that the formation of a

massive spiral galaxy like our own is a 
onsequen
e of the hierar
hi
al assembly of sub-gala
ti
 dark
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haloes, and the subsequent a

retion of 
ooled baryoni
 gas in a virialized, galaxy-s
ale dark halo

(e.g Pea
o
k 1999). On
e galaxies form due to the 
ollapse of matter around over-density peaks

in the strongly homogeneous ba
kground at the early stages of the Universe, they subsequently

intera
t with ea
h other, forming more massive systems or being destroyed in the assemble pro
ess.

This is 
alled hierar
hi
al galaxy evolution. In this frame, less massive galaxies, su
h as satellite

galaxies, usually merge into the neighbour, more massive, ones (parent galaxies), following a

pro
ess 
alled satellite de
ay. The main driving me
hanism that 
ontrols the satellite de
ay is

dynami
al fri
tion whi
h, as the name indi
ates, indu
es the progressive angular momentum loss

that leads to the �nal merge of both galaxies.

On the another hand, CDM 
osmology predi
ts the formation of highly 
attened triaxial haloes,

that be
ome nearly oblate due to the dis
 formation (Dubinsky 1994). From CDM, haloes would

follow a Gaussian distribution of aspe
t ratios, q

h

� 
=a > 0, where 
 and a are the minor and

major axes of an oblate spheroid, of mean < q

h

>= 1=2 and dispersion equal to 0.15.

These theoreti
al results have been supported by several observational eviden
es of halo 
attening.

Observations of gravitational lensing (Maller et al. 2000; Gonz�alez et al. 1999; Maller et al. 1997;

Keeton & Ko
hanek 1998), gala
ti
 dis
 warps (Binney 1992), X-ray dete
tions (Buote et al. 2002),

stellar kinemati
s (Olling & Merri�eld 2000), HI emissions (Olling 1996, Be
quaert, Combes &

Viallefond 1997), polar ring galaxies (Arnaboldi et al. 1993, Sa
kett et al. 1994) and pre
essing

dusty dis
s (Steinman-Cameron, Kormendy & Durisen 1992), give eviden
es that Dark Matter

haloes are 
attened, with minor to major axis-ratios ranging from 0.2 to 0.9. None of these

measures 
on
iliate with spheri
al haloes.

However, the data outlined above su�er from a strong limitation: they are available for r < 50

kp
.

The aim of this do
ument is to give insights on the halo shape from the satellite dynami
s

investigation. Sin
e satellites are observed as far as 500 kp
 from the parent galaxy, this study

may also 
onstrain the halo density pro�le at large radii. Both investigations will provide a hint

on the Dark Matter nature.

1.7 S
heme of the investigation

In Fig. 1.1 we show the s
heme of our analysis.

From the observational data we 
onstru
t a galaxy model that des
ribes a spiral galaxy like the

Milky Way (Chapter 3). We follow subsequently two lines of investigation:

� N-body 
al
ulations.On
e the galaxy and satellite models are given, we build up the initial

systems in equilibrium (Se
tion 2.2) in order to perform N-body 
al
ulations to determine

the di�eren
es that the halo shape (Chapter 7) and the dis
 and bulge presen
e (Se
tion 9.3)

indu
e on the satellite dynami
s.

� Semi-analyti
 
al
ulations. Observations of satellite galaxies provide a statisti
al view

of the satellite evolution in spiral galaxies. The number of satellites per host galaxy ranges

usually from 0 to 5, with the probability p of �nding a system with n satellites going as

p = 0:43

n

(Zaritsky et al. 1993). This implies that host galaxies with small number of

satellites are more likely to be observed than those with a large n. In order to produ
e

theoreti
al data to 
ompare with, one needs to 
arry out a large number of 
al
ulations

to 
over as mu
h orbital parameter spa
e as possible. Unfortunately, this kind of study

is not possible with the present 
omputational 
apabilities due to the prohibitive CPU-

expense. For that reason, we build a semi-analyti
 
ode (Chapter 4) that, in a self-
onsistent

way, reprodu
es the N-body satellite evolution after �xing a free parameter (the Coulomb

logarithm), denoted in the s
heme as the \
omparison" between the semi-analyti
 and N-

body data. The galaxy and satellite models are those employed for the N-body simulations.

The semi-analyti
 
ode is very simple: it solves the equations of motion of the point-mass

satellite within the galaxy potential. Dynami
al fri
tion (the for
e that every body su�ers

when moving through a ba
kground of mu
h lighter parti
les) is implemented as an external
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for
e. This 
ode also 
al
ulates the mass loss indu
ed by tidal for
es and rapid en
ounters

with the dis
 and bulge (sho
ks) whi
h a

ounts for M

s

(t) along the satellite evolution.

The main driving me
hanism that 
ontrols the progressive satellite de
ay in spiral galaxies

embedded in a more massive Dark Matter halo is dynami
al fri
tion. Due to its 
apital

importan
e, we 
arry out an exhaustive analysis in Chapter 5 and 6. The key point of this

study is based on the di�eren
es that the halo shape (more 
on
retely, the halo 
attening)

may indu
e on the satellite dynami
s through the a
tion of dynami
al fri
tion (Chapters 7

and 8). If these di�eren
es are strong, one should be able to appre
iate them in the obser-

vational distribution of satellites (Chapter 10). The question mark in the s
heme represents

the following question: \do the hierar
hi
al s
enario with the present 
osmologi
al models,

where Dark Matter haloes around spiral galaxies are predi
ted to be 
attened, reprodu
e the

observed satellite distribution?". If yes, this would favour the widely a

epted Dark Matter


osmology, otherwise, one should re-examine our a
tual view of the satellite formation and

evolution and, perhaps, even the \missing mass" problem.

THEORETICAL MODELS

Initial conditions

N−body calculations Dynamical Friction

Mass Loss

COMPARISON

SEMI−ANALYTIC

SCHEME

OBSERVATIONS

?

Figure 1.1: S
heme of the investigation 
arried out.

1.8 The astrophysi
ists' tool: Numeri
al 
odes

Astrophysi
s has a 
ru
ial disadvantage in front of other bran
hes of physi
s, one 
annot play

around with several galaxies in a lab in order to investigate pro
esses su
h 
ollisions, mergers...et
.

To solve this problem, resear
hers 
onstru
t numeri
al models that are thought to reprodu
e what

is observed. Subsequently, numeri
al algorithms based on Newton's laws are used in order to


al
ulate the dynami
al evolution of these 
elestial obje
ts (the use of N-body 
odes is the most

extended, in whi
h systems are formed by a large number of parti
les solely intera
ting through

the gravitational for
e). More sophisti
ated numeri
al algorithms 
an also implement gaseous


omponents and stellar evolution.
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This is the �rst approximation. Even if one assumes that these models are reasonably a

urate,

galaxies are so 
omplex that additional simpli�
ations must be adopted. Here we 
omment those

that our N-body 
al
ulations impli
itly assume:

� Collisionless 
ode. Galaxies are huge, in mass as well as in extension and number of

stars (for example, the Milky Way is 
omposed of about 10

11

stars, with a diameter of

about 20 kp
= 4:3 � 10

9

AU= 6:2 � 10

20

m). So far, there is not a numeri
al algorithm


apable to evolve su
h a number of parti
les. For example, the galaxy model employed in

our numeri
al 
al
ulations is 
omposed of 1:6� 10

6

N-body parti
les. This means that ea
h

parti
le has a mass of around 10

5

M

�

. However, if one 
omputes the probability of a 
ollision

between two \stars", one will �nd that the time-s
ale is longer than one Hubble time. For

su
h a 
ase, the general des
ription of a galaxy 
an be given by its distribution fun
tion,

whereas the evolution is 
al
ulated by solving the 
ollisionless Boltzman equation (e.g BT).

In this 
ase, the galaxy potential is not sensitive to the N-body parti
le mass. Whereas this

equation provides the evolution of the general galaxy properties, it would be non-sense to

use a 
ollisionless 
ode to determine the Solar System evolution, sin
e on su
h small s
ales,

two-body e�e
ts are important.

� Mass of N-body parti
les. Galaxies are 
omposed of bodies with masses ranging from

0:1M

�

(brown dwarfs) to 100M

�

(bla
k holes) or even larger. N-body algorithms, however,

usually evolve systems formed by equal-mass parti
les (see, as an example, superbox in

Se
tion 2.1), with masses typi
ally m = 10

5

; 10

6

M

�

. Although at �rst look to assume that

all parti
les have the same mass seems a very rough approximation, a
tually, it is not. The

self-potential of a galaxy (whi
h mostly determines the satellite dynami
s) is not dependent

on the parti
les masses in a kiloparse
 s
ale. Even bla
k holes with thousands of solar masses

in the 
entre of galaxies 
hange the velo
ity 
urve only within one kp
. Again, for su
h a

system the most appropriate is to use a 
ollisionless 
ode, whi
h are not sensitive to the

mass spe
trum of the N-body galaxy parti
les.

Although the galaxy evolution 
an be a

urately des
ribed by 
ollisionless algorithms, the

satellite-galaxy intera
tion is a two-body en
ounter pro
ess. In this 
ase, the number of

parti
les, as well as the resolution of the 
ode, shall in
uen
e the satellite evolution. This is


learly shown in Se
tion 8.6, where the number of galaxy parti
les (N) is in
reased 8 times.

We observed that, whereas the overall evolution of the satellite is nearly independent of N ,

the survival time of the satellite is, however, approximately a 15% redu
ed. It is important

to remark that, despite this result indi
ates that the time-dependen
e of pro
esses su
h

satellite de
ay, mass loss, nutation and pre
ession are sensitive to N , the des
ription of the

pro
esses themselves is not.

� Absen
e of gas. Pure N-body algorithms do not in
lude a gaseous 
omponent. Although

this 
omponent plays an important role in models that des
ribe the dis
 stru
ture (bar

formation, spiral arms and dissipation pro
esses), it 
an be negle
ted in order to analyse the

dynami
s of satellite galaxies. The reason is found in the low abundan
e of gas if 
ompared

to the stelar population. The total masses of HI and HII have been derived for hundreds

of spiral galaxies, observing that M

gas

=M

dyn

is around 3 � 10

�3

(Sa galaxies) up to 0.1

(S
 galaxies), where M

gas

=M

HI

+M

HII

and M

dyn

is the estimation of the galaxy mass

(Binney & Merri�eld 1998). Sin
e the gas 
omponent follows roughly the mass distribution

of the stellar dis
, the 
ontribution to the satellite dynami
s 
an be negle
ted for distan
es

larger than a few dis
 s
ale-lengths, where the Dark Matter dominates the galaxy potential

(as it is observed from the galaxy rotation 
urves).

� Stellar evolution. The properties of stars, su
h as mass, luminosity and extension 
hange

along their evolution, mostly depending on their initial mass and metali
ity. Despite of their

importan
e in systems with small number of parti
les (su
h as globular and open 
lusters),

stellar evolution pro
esses are usually negle
ted in galaxy dynami
s. As we 
ommented

above, the individual properties of stars are not determinant in order to study the galaxy
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dynami
s, as long as the number of parti
les in the system leads to a typi
al time-s
ale of

two-body en
ounters longer than the Hubble time. In this 
ase, the total mass of the system

as well as its mass distribution fully determines the potential of the galaxy. The main

advantage of using numeri
al 
odes that reprodu
e the stellar evolution is the possibility to


ompare the resulting 
al
ulations with spe
tro
opi
 observations.

1.9 Overview of this Thesis

In this Se
tion we show a brief summary of the 
ontents of ea
h Chapter.

The goal of Chapter 2 is to des
ribe the basis of the 
ollisionless N-body treatment employed to

des
ribe the satellite evolution in spiral galaxies. We use a parti
le-mesh algorithm 
alled super-

box, whi
h provides a high 
omputational velo
ity even with a large number of parti
les. Another

advantage of this 
ode is that relaxation pro
esses are nearly negligible along the 
al
ulations. In

the se
ond Se
tion we outline the s
heme employed ir order to build up the initial galaxy with

N-body parti
les. This method (Boily, Kroupa & Pe~narrubia 2001) was 
reated to 
onstru
t spiral

galaxies in nearly equilibrium with the possibility of implementing the halo 
attening as an input

parameter. The CPU-time required for the operation is the same as for a galaxy with spheri
al

halo, therefore, improving the eÆ
ien
y in front of other algorithms, e.g. Hernquist (1991), for

whi
h the CPU-expense s
ales as the square of the parti
le number.

In Chapter 3 we present the galaxy and satellite models employed in our investigation. The

galaxy is formed by the dis
, the bulge and a Dark Matter halo. Whereas the former are determined

by observations of the baryoni
 stru
ture in the Milky Way, the later is inferred from the rotational


urve and X-rays measurements. The satellite model is based on observations of dwarf spheroidal

galaxies. The density pro�les of ea
h system, the for
e and the velo
ity dispersion expressions are

outlined in this Chapter, together with the parameters that determine their properties. We also

provide here the parameters of superbox, su
h as the resolution, grid sizes and time-step sin
e

they depend on the galaxy and satellite parameters.

Although superbox is a high eÆ
ient N-body 
ode, an investigation of the satellite distribution

in spiral galaxies would require thousands of simulations in order to explore the orbital parameter

spa
e of the satellite galaxy, its mass range and the in
uen
e of di�erent Dark Matter models on its

evolution. We have found a remedy by developing a self-
onsistent semi-analyti
 algorithm

that solves the satellite's equations of motion and mass evolution (Chapter 4). This 
ode 
onsumes

10

4

times less CPU time that superbox 
al
ulations. The basis of the 
ode is simple: assuming

that the galaxy does not evolve as a response to the satellite presen
e, the for
e a
ting on the

satellite is the sum of the galaxy �eld (
al
ulated from the density pro�le) plus two-body en
ounters

with the ba
kground parti
les, the so-
alled dynami
al fri
tion. The internal properties of the

satellite are then determined by its total amount of mass and mass pro�le along the orbit. Due

to the dependen
e of the two-body pro
esses on the N-body parameters, su
h as resolution and

number of parti
les, the semi-analyti
 algorithm implements two free quantities to be �tted to the

N-body data: the dis
 and halo Coulomb logarithms.

The main driving me
hanism that 
ontrols the dynami
al evolution of our satellite galaxy is

dynami
al fri
tion. Due to its importan
e, we analyse in detail the theoreti
al treatment of

this pro
ess in Chapter 5 and generalise the expressions for 
attened systems. We also study the


ontribution of the �rst order fri
tion indu
ed by the system inhomogeneity and the dependen
e

of the Coulomb logarithm on the gala
to-
entre distan
e.

In Chapter 6 we 
he
k the analyti
 expressions of Chapter 5 by implementing them into our

semi-analyti
 
ode. The results are 
ompared to the N-body 
al
ulations from superbox. For

simpli
ity, the galaxy model is formed by a spheri
al Dark Matter halo without dis
 and bulge.

One of the main topi
 of investigation of this Thesis is the e�e
ts that the halo aspheri
ity

may indu
e on the satellite dynami
s and evolution. The analysis follows two approa
hes:

� First, in Chapter 7 we 
arry out numeri
al N-body 
al
ulations 
overing a wide range of

orbital parameters and satellite masses. These simulations in
lude a baryoni
 
omponent in
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the form of a dis
 and a bulge embedded within a spheri
al and a 
attened Dark Matter

halo with the same 
hara
teristi
s, so that a dire
t 
omparison 
an be performed.

� Se
ond, we attempt to reprodu
e the numeri
al data with our analyti
 treatment. In order

to separate the dis
 and bulge e�e
ts to those indu
ed by the halo 
attening, in Chapter 8

we 
arry out N-body 
al
ulations removing dis
 and bulge, so that the parent galaxy is

formed by a 
attened halo. Subsequently, we 
ompare our analyti
 treatment of anisotropi


dynami
al fri
tion (implemented in the semi-analyti
 algorithm) with the resulting N-body


al
ulations. The satellite mass evolution M

s

(t) is obtained from the N-body data.

In Chapter 9, we 
ompare those simulations of Chapter 7 (the galaxy in
ludes the baryoni



omponents) with the self-
onsistent semi-analyti
 analysis, whi
h in
ludes the mass loss

s
heme outlined in Chapter 4. The goal is to 
he
k the a

ura
y of this algorithm in order

to des
ribe the satellite dynami
s and mass evolution in spiral galaxies for di�erent values

of the halo axis-ratio.

The self-
onsistent semi-analyti
 
ode be
omes an extremely important tool in order to analyse

the evolution of the satellite distribution indu
ed by dynami
al pro
esses, su
h as dynami
al

fri
tion, mass segregation and mass loss, and their dependen
e on the halo shape and extension.

The results have a 
lear 
onne
tion to Dark Matter 
osmology, sin
e the 
omparison with observa-

tional measurements of satellites will give insights on: (i) the initial satellite distribution, (ii) the

halo morphology and (iii) the halo extension, between others. This study is too ambitious to be

performed in one Chapter of this Thesis, so that in Chapter 10 we present the preliminary results

of this investigation, as well as the most re
ent observations of the satellite galaxy distribution in

spiral galaxies.
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Chapter 2

The N-Body Code

2.1 Brief introdu
tion to Superbox

superbox is a parti
le mesh 
ode with high resolution sub-grids. The program 
al
ulates the

a

elerations using a high order NGP (`nearest grid point') for
e 
al
ulation s
heme based on the

se
ond derivatives of the potential. A self-
onsistent system of several galaxies 
an be treated by

forming sub-grids whi
h follow the motion of ea
h galaxy. The relaxation pro
esses are negligible,

even in time s
ales of a Hubble time.

The main advantage of Superbox is its 
omputational velo
ity even with a big number of

parti
les (several millions), however the 
ode is highly dependent on the geometry of the system.

Whereas the hierar
hi
al tree and dire
t N-body methods do not su�er from this problem, the

parti
le number has a big limitation and they need a softening to avoid the two-body relaxation

e�e
ts and meanwhile the dire
t N-body methods have a dependen
e of the CPU-time on the

number of parti
les s
aling as N

2

p

, the mesh-
odes have a linear dependen
e. However, Superbox

depends on the number of grid 
ells (N

g


), with the CPU-time going as N

g


logN

g


. Our 
al
u-

lations are limited to N

g


= 64

3

, whi
h gives the best number for resolution/CPU-time with the

present 
omputer resour
es at the institute.

We shall introdu
e the theoreti
al des
ription of the 
ode. For a detailed study on its 
apabil-

ities and limitations see Fellhauer et al. (2000) and Klessen and Kroupa (1998).

2.1.1 Method

The 
ode develops three 
al
ulations at ea
h time-step that 
an be s
hemed as follows,

(i) The density at ea
h grid-
ell is 
al
ulated from the distribution of N-body parti
les.

(ii) Using the Poisson equation, the potential is found by developing a Fast Fourier Transform

(FFT).

(iii) On
e the potential at ea
h point is known, a leap-frog s
heme is applied to 
al
ulate the


hanges over velo
ity and position.

Density array

The �rst step of the 
ode is to 
al
ulate from an input �le with the position and velo
ity of ea
h

parti
le the array of mass densities, denoted as �

i;j;k

, where (i; j; k) are the Cartesian 
oordinates

of one grid 
ell. This is done by using a `parti
le-in-
ell' method, the simplest one being the NGP

(Nearest Grid Point) algorithm. Another alternative would be to use a `Cloud-in-Cell' method. If

the number of N-body parti
les is large this is not ne
essary, sin
e the spatial density is smoothed

enough. Taking all the parti
les in the same galaxy with the same mass, m = M

gal

=N

p;gal

, the

density in one grid 
ell is 
al
ulated simply by 
ounting the number of parti
les in that 
ell.

15
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Our parti
le 3D-distribution, n(~x), is taken as

n(~x) =

X

�

Æ

3

(~x� ~x

�

); (2.1)

where ea
h parti
le is 
onsidered as a point of position ~x

�

= (x

�

; y

�

; z

�

).

As we explained in the introdu
tion, the NGP ('nearest grid point') is used to 
al
ulate the for
e,

so our smoothing kernel, W (~x;�~x), is simply the 3D top-hat fun
tion, �(�)

W (~x;�~x) = �(

x

�x

)�(

y

�y

)�(

z

�z

); (2.2)

being �~x = (�x

�

;�y

�

;�z

�

) the ve
tor of smoothing lengths whi
h is given by the resolution

sele
ted for our 
ode, and the fun
tion �(�) de�ned as

�(�) =

8

<

:

0 j � j>

1

2

1

2

j � j=

1

2

1 j � j<

1

2

Therefore the mass density in the grid is

�(~x) = mW Æ n = m

Z

W (~x� ~x

0

;�~x)n(~x

0

)d

3

~x

0

; (2.3)

where m is the parti
le mass and Æ denotes the 
onvolution operator. Be
ause of the �nite

resolution, the density is smoothed so that ea
h grid 
ell has a 
onstant density. Mathemati
ally

this 
an be represented by de�ning a `mesh sampled fun
tional' �

y

(~x) in the three dimensional

mesh

�

y

(~x) =

a

(~x) Æ �(~x); (2.4)

the 3D operator

`

(~x) being the `sampling fun
tion'

a

(~x) =

N

X

i;j;k=0

Æ(x� x

i;j;k

)Æ(y � y

i;j;k

)Æ(z � z

i;j;k

); (2.5)

where i; j; k are the indi
es of grid-
ells of 
entre ~x

i;j;k

= (x

i;j;k

; y

i;j;k

; z

i;j;k

).

Potential 
al
ulation

On
e we know the density array, the potential in ea
h grid 
ell, �

i;j;k

, is the addition of the

potentials at ea
h grid,

�

i;j;k

= G

N�1

X

a;b;
=0

�

a;b;


H

a�i;b�j;
�k

; (2.6)

with i; j; k = 0; 1; : : : ; N � 1, where N denotes the number of 
ells for dimension, so N

3

= N

g


,

and H

i;j;k

is a Green's fun
tion.

The Poisson equation is mu
h easier to solve in the Fourier spa
e, so making the transforma-

tions,

�̂

a;b;


=

N�1

X

i;j;k=0

�

i;j;k

exp

�

�

p

�1

2�

N

(ai + bj + 
k)

�

(2.7)

^

H

a;b;


=

N�1

X

i;j;k=0

H

i;j;k

exp

�

�

p

�1

2�

N

(ai + bj + 
k)

�

;
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where the symmetry is taken by doing N = 2

K

, being K > 0 an integer. Then this two values are

multiplied 
ell by 
ell, to know the potential we make the inverse Fourier's transformation

�

i;j;k

=

G

N

3

N�1

X

a;b;
=0

�̂

a;b;


^

H

a;b;


exp

�

p

�1

2�

N

(ai + bj + 
k)

�

: (2.8)

This is 
alled the Fast Fourier Transform (FFT) method. The sele
tion of the Green's fun
tion is

in this formulation

H

i;j;k

=

1

p

i

2

+ j

2

+ k

2

(2.9)

H

000

=

4

3

;

with i; j; k = 1; 2; : : : ; N . The value of H

000

is arbitrary, sin
e it a

ounts for the weighting of the

parti
le self-gravity inside a grid-
ell. Numeri
al test show that the best one for low number of

parti
les per 
ell is H

000

= 1, while for a big number H

000

= 4=3 is sele
ted. The reason is that the

�rst value ex
ludes the e�e
t of the `self-gravity' of the parti
les whi
h 
an leads to non-physi
al

results (if the parti
le is not in the 
entre of the 
ell, it 
an feel the a

eleration of its own gravity,

proportional to the distan
e to the 
entre). This problem disappears with the se
ond value of

H

000

, but the energy 
onservation with time is not so a

urate.

Lastly, for the exa
t solution employing the FFT-algorithm we have to double the number of

grids (2N) and suppose grids with zero density at the edge of the system, by this we have the

next symmetry relationships

H

2n�i;j;k

= H

2n�i;2n�j;k

= H

2n�i;j;2n�k

= H

2n�i;2n�j;2n�k

= (2.10)

= H

i;2n�j;2n�k

= H

i;j;2n�k

= H

i;j;k

;

This gives the 3D-potential of our isolated system in the area i; j; k = 0; 1; : : : ; (N-1). The low-

storage algorithm for the FFT in 3D is taken from Hohl (1970).

In ea
h grid 
ell we have a value of the mass density, whi
h 
an be obtained from the fun
-

tional �

y

(~x) integrating it spatially (by de�nition of delta fun
tion). These values 
an be rep-

resented as �

y

m

= f�

i;j;k

; i; j; k = 0; 1; : : : ; Ng. On
e we know �

y

m

, the grid potentials �

y

m

=

f�

i;j;k

; i; j; k = 0; 1; : : : ; Ng are 
al
ulated by doing a FFT, and dire
tly the mesh sampled fun
-

tional �

y

(~x) =

`

(~x)�(~x) again by integrating in an arbitrary volume. The fun
tion �(~x) is the

smoothed gravitational potential.

The leap-frog s
heme

On
e the potential is known, one 
an determine the a

eleration at ea
h point of the grid-
ell, the

orbit integration being easily 
al
ulated employing the leap-frog s
heme.

In order to �nd the a

eleration of ea
h parti
le, we have to de�ne the one-dimensional di�er-

en
e operator. It gives the spatial gradients in ea
h Cartesian dire
tion, for the x-dire
tion

D

x

(x; y; z;�x) =

1

2�x

n

Æ(x +�x)� Æ(x��x)

o

Æ(y)Æ(z): (2.11)

To keep 
learer the notation,we keep the analysis in one dimension. The x-
omponent a

eleration

at �rst order is

a

(1)

x

(x; y; z;�x) = D

x

Æ�(~x) =

�(x+�x; y; z)� �(x ��x; y; z)

2�x

: (2.12)

The mesh sampled a

eleration is known by the a
tion of the sample fun
tional, so a

y(1)

x

(x; y; z;�x) =

`

(~x)a

(1)

x

(x; y; z;�x). Again, integrating over an arbitrary volume we 
an determine the a

eler-

ations in ea
h 
ell 
entre, obtaining the set a

y(1)

m;x

= fa

(1)

x;i;j;k

; i; j; k = 0; 1; : : : ; Ng de�ned as,

a

(1)

x;i;j;k

=

�

i+1;j;k

� �

i�1;j;k

2�x

; (2.13)
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where the mesh is 
onstru
ted so that 2�x = x

i+1;j;k

�x

i�1;j;k

. The 
al
ulus in x and y dire
tions

is analogous.

The resolution (and therefore the energy and angular momentum 
onservation) is improved

by the 
al
ulus of the se
ond order a

elerations (for instan
e in the x-dire
tion) from the grid


entral points (x

i;j;k

; y

i;j;k

; z

i;j;k

) � (x; y; z),

a

(2)

x

(x+ dx; y + dy; z + dz) = a

(2)

x

(x; y; z) + (2.14)

�a

x

�x

(x; y; z)dx+

�a

x

�y

(x; y; z)dy +

�a

x

�z

(x; y; z)dz +O(d~x

2

);

where we have de�ned the o�set to the 
entre of the grid

dx = x� x

i;j;k

<

�x

2

(2.15)

dy = y � y

i;j;k

<

�y

2

dz = z � z

i;j;k

<

�z

2

:

At this point, one has to remain in mind the di�eren
e between the mesh spa
ing �~x and the

quantities d~x, the �rst are given by the resolution of the 
ode, meanwhile the se
ond are de�ned

in ea
h grid 
ell in order to a better 
omputation of the a

eleration. In fa
t, this freedom on

the 
hoi
e of the values of d~x will be used to 
al
ulate the a

eleration inside the grid 
ell. This

s
heme avoids the dis
ontinuities present on the for
e 
al
ulation.

In the new s
heme the resolution is not as important as the one de�ned before be
ause the

goodness of the for
e 
al
ulation depends dire
tly on d~x (whi
h is related to the mesh spa
ing �~x

in the sense that larger mesh spa
ing implies larger interpolation ranges and, therefore, poorer


al
ulation). If we take d~x as the distan
es of the parti
les to the 
entre of the grid 
ell, then the

error of the a

eleration is approximately < dx

2

+ dy

2

+ dz

2

>, i.e the squared averaged distan
e

of all the 
ell parti
les to the 
ell 
entre, whereas in the old s
heme the error is the mesh spa
ing

�~x.

Following the development of our s
heme, the next step is to 
al
ulate the a

elerations in

terms of the grid potential. For that we 
an approa
h the divergen
es as di�eren
es at �rst order

a

(2)

x

(x; y; z;�x) =

��

�x

(x; y; z;�x) � D

x

� (2.16)

�a

x

�x

(~x;�~x) =

�

2

�

�x

2

(~x;�~x) � D

xx

�

�a

x

�y

(~x;�~x) =

�

2

�

�x�y

(~x;�~x) � D

xy

�

�a

x

�z

(~x;�~x) =

�

2

�

�x�z

(~x;�~x) � D

xz

�:

The values of the a

eleration in ea
h grid 
ell, for that we only have to use the mesh sampled

operator to know the sampled a

eleration a

y(2)

x

=

`

(~x)a

(2)

x

, and then integrate this fun
tion over

an arbitrary volume to obtain a set of a

eleration values a

y(2)

m;x

= fa

(2)

x;i;j;k

; i; j; k = 0; 1; : : : ; Ng

de�ned as

a

(2)

i;j;k;x

(d~x) =

�

i+1;j;k

� �

i�1;j;k

2�

+

�

i+1;j;k

+�

i�1;j;k

� 2�

i;j;k

(�x)

2

dx (2.17)

+

�

i+1;j+1;k

� �

i�1;j+1;k

+�

i�1;j�1;k

� �

i+1;j�1;k

4�x�y

dy

+

�

i+1;j;k+1

� �

i�1;j;k+1

+�

i�1;j;k�1

� �

i+1;j;k�1

4�x�z

dz:

The treatment in y and z dire
tions is analogous.

On
e we know the a

eleration for ea
h parti
le one has to integrate the motion equation in time.
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Figure 2.1: The �ve grids in superbox. Solid lines denote the parti
ular grid. The parti
les are


ounted in the shaded areas. In the grid 4 we plot an hypotheti
al grid for a se
ond galaxy

This is done in the simplest way, following the so 
alled `leap-frog s
heme'. To give an example,

we 
an imagine the l-parti
le in the position x with velo
ity in the x-dire
tion whi
h feels an

a

eleration the x-
omponent, then the integration of its orbit in the time step n+ 1 is

v

n+1=2

x;l

= v

n�1=2

x;l

+ a

n

x;l

�t (2.18)

x

n+1

l

= x

n

l

+ v

n+1=2

x;l

�t; (2.19)

where �t is the time step. As we 
an see, in the leap-frog s
heme the position and a

elerations

are 
al
ulated in ea
h n time step , while the velo
ities are interpolated between two time steps.

This kind of time integration is very sensible in the 
hoi
e of �t so we have to be 
areful in taking

this value small enough to get a good 
onservation of energy and momentum. Generally the time

step is 
ompared with the `
rossing time' of the system (t


ross

), taking �t � 0:02t


ross

.

2.1.2 The grids

superbox is stru
tured in the following way: For ea
h galaxy there are 5 grids with 3 di�erent

resolution, so that the potential felt by one parti
le is the sum of the potentials 
al
ulated in ea
h

grid. The grid stru
ture is plotted in Fig. 2.1. These s
heme allows us to resolve zones where a

big 
on
entration of parti
les is present, for instan
e the 
ore of a galaxy or globular 
luster, by

using poorer resolution where we don not need it.

The grids are as follows:

� Grid 1 gives the highest resolution. In our simulations this grid 
overs 3 s
ale lengths of

our exponential dis
. As we 
an see i the �gure, its length is 2R


ore

. All the parti
les with

r � R


ore

produ
e the potential of this most inner grid.

� Grid 2 has an intermediate resolution. Its length is 2R

out

, but the parti
les whi
h are used

to 
ompute the density, and therefore the potential, are also the parti
les stored in grid 1.
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� Grid 3 has just the same size and resolution as grid 2, but here we store the parti
les with

R


ore

� r � R

out

.

� Grid 4. 
ontains the whole system. All the parti
les with r � R

out

are in
luded. This grid

has the lowest resolution.

� Grid 5 stores the parti
les that s
ape from the system ,i.e r � R

out

. This grid has the same

resolution and size as the grid 4.

All the grids have the same number of 
ells per dimension, N . However we need four grids to

give the boundary 
ondition � = 0 ne
essary for the Fourier transformations, so in fa
t there are

N � 4 a
tive 
ells per dimension in ea
h grid.

Sin
e the potential is additive, we 
an 
ombine the di�erent grid potentials for ea
h parti
le

depending on its position:

�(r) = [�(R


ore

� r)�

1

+ �(r �R


ore

)�

2

+�

3

℄�(R

out

� r) + �(r �R

out

)�

4

+�

5

; (2.20)

where �(�) = 1 for � > 0 and �(�) = 0 otherwise. The suÆx of �

i

; i = 1; : : : ; 5 denotes the grid in

whi
h the potential is 
al
ulated. In this 
ontext this means that

� Parti
les with r � R


ore

feel the potentials form the grids 1,3 and 5 in order to 
al
ulate the

a

eleration.

� Parti
les in the range R


ore

� r � R

out

feel the potential from grids 2,3 and 5.

� Finally, the a

eleration of the parti
les with r > R

out

is 
al
ulated from the potential of

the grids 4 and 5.

� Parti
les with r > R

system

are removed.

We should note that, the gain of resolution in zones with high density also entails the presen
e

of the dis
ontinuities at the grid boundaries. This problem is usually avoided by sele
ting the grid

sizes 
orresponding to points of low density gradient.

2.2 Building up the initial 
onditions

1

The s
heme used to 
onstru
t the initial galaxy model follows that proposed by Hernquist (1993).

This method builds up the di�erent subsystems whi
h form the galaxy (namely, the dis
 bulge and

halo) so that the out-
oming galaxy is formed in nearly dynami
al equilibrium. Obviously, this

approa
h have the advantage over the Barnes' (1988) of a resulting system 
loser to the sought

equilibrium.

In pra
ti
e, the Hernquist's s
heme has been shown to be a powerful method when embedding

the dis
 in a galaxy where the 
omponents have spheri
al morphology. However, if the purpose

is to 
onstru
t a spiral galaxy with axi-symmetri
 haloes (or bulges), the CPU-time required for

the operation in
reases up to prohibitive times, s
aling as N

2

, where N is the number of N-body

parti
les, mainly due to the 
omputation of the velo
ity dispersions in the three-dire
tions.

A possible solution has been found by Boily, Kroupa & Pe~narrubia (2001). This method ap-

proximates the equilibrium state, whi
h one would obtain from the integration of the Boltzmann

equations in axi-symmetri
 systems, by transforming the spheri
al solution into two dimensions.

For su
h a purpose, we use the potential iso-
ontours, the multi-
omponent galaxy being 
on-

stru
ted by perturbing the velo
ity �eld of the individual 
omponent, with its subsequent adap-

tation to the ba
kground potential (axi-symmetri
). The time required is, therefore, as for the

spheri
al system.

In this Se
tion, we present brie
y the basis of this s
heme (for a detailed dis
ussion together

with the analysis of the stability of the resulting systems see Boily,Kroupa & Pe~narrubia 2001).

1

Se
tion based on: Boily, Kroupa & Pe~narrubia (2001)
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2.2.1 Method

The basi
 steps of the method 
onsists in building an oblate system from a transformations of the

spheri
al symmetri
 equilibria. The key point is that, if we 
onsider as given the mass pro�le of

the galaxy, it is then suÆ
ient to 
onstru
t the velo
ity �eld to mat
h the gravity. So that, we

perform the following steps:

(i) Given the desired spatial anisotropy e

2

= 1� 


2

=a

2

, where a; 
 are the major and minor axis

lengths, respe
tively, we 
arry out the homologous transformation (R; z) ! (R

0

; z

0

) = (R; z �

p

1� e

2

).

(ii) The velo
ity anisotropy e

v

is 
al
ulated from e and the galaxy potential. As in (i) a homologous

transformation is performed, additionally we impose the virial 
ondition so that the transformed

system is nearly in equilibrium.

The velo
ity anisotropy. Homogeneous system

Let's 
onsider a homogeneous ellipsoid with ellipti
ity. The potential of the homogeneous and

oblate system 
an be 
al
ulated as sum of similar shells (BT), giving for the axisymmetri
 
ase

�(~x

int

) = ��G�[I(e)a

2

�A

R

(e)R

2

�A

z

(e)z

2

℄; (2.21)

where

I(e) = 2

p

1� e

2

e

ar
sin(e) (2.22)

A

R

(e) =

p

1� e

2

e

2

"

ar
sin(e)

e

�

p

1� e

2

#

A

z

(e) = 2

p

1� e

2

e

2

"

1

p

1� e

2

�

ar
sin(e)

e

#

:

These values remain 
onstant in the inner part of the homogeneous oblate and a

omplish that

A

z

� A

R

.

The equations of motion of a single star within a given potential are

�x

i

= r

i

�: (2.23)

The velo
ity anisotropy of the star, e

v

, 
an be 
onne
ted to the galaxy potential by averaging

the squared velo
ity 
omponents in the verti
al and planar dire
tions (de�ned from the potential

axi-symmetry plane) over one orbit so that

< v

2

z

>

< v

2

R

>

=

A

z

< z

2

>

A

R

< R

2

>

=

A

z

A

R

(1� e

2

) � 1� e

2

v

; (2.24)

whereas for homogeneous systems the potential anisotropy e

�


an be 
al
ulated analyti
ally

from the iso-
ontour lines

e

2

�

= 1�

�

z

2

R

2

�

2

�

= 1�

A

R

A

z

: (2.25)

Combining these last two equations, one �nds that the anisotropy of the velo
ity ellipsoid is

e

v

=

�

e

2

� e

2

�

1� e

2

�

�

1=2

: (2.26)

Therefore, sin
e the three ellipti
ities satisfy e

�

< e

v

< e, the velo
ity ellipsoid is never as 
at as

the mass distribution that gives rise to it.
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The velo
ity anisotropy. Inhomogeneous system

The appli
ations of this equation is a
tually limited sin
e the galaxies are formed by peak density

pro�les. In this 
ase, the potential does not usually have an analyti
 form. However, if we assume

that most of the mass for su
h systems is 
on
entrated in the inner regions, one 
an expand the

resulting potential in harmoni
 series, this approximation being valid when the orbit avoids the

inner part of the galaxy. This expansion 
an be written as (Goldstein 1980)

�(r; �) = �

GM

0

r

+

GM

0

2r

3

(I

z

� I

R

)P

2

(
os �) +O

�

a

r

�

4

; (2.27)

where tan � = z=R, P

n

(x) is a Legendre polynomial and M

0

the mass within r. The value a

denotes the major axis of the ellipsoid. The quantities I

i

denote the eigen-
omponents of the

inertia tensor per unit mass, de�ned as

I

i

�

Z

�(r)(r

2

� x

2

i

)d

3

r:

Supposing that e = 
onst, the moments of inertia are 
onstant. Thus for r >> a > 
 the

quadrupole, and therefore e

�

, tends to zero as a=r

3

, the velo
ity anisotropy approa
hes to e

v

= e.

A realisti
 mass distribution in equilibria will have a value of e

v

between a homogeneous and

point mass distributions. From the potential expansion, the interpolated value between these two

possibilities is 
hosen as

e

2

v

= e

2

�

+ (e

2

� e

2

�

)

s

1�

< r

2

>

r

2

g

; (2.28)

where e

�

is numeri
ally 
al
ulated from the potential iso-
ontours. This approximation has been

shown by Boily, Kroupa & Pe~narrubia (2001) to yield to adequate equilibria. This 
ondition

assuran
es that the velo
ity ellipti
ity is the same for all the parti
les with equal binding energy,

so that if the \star" is lo
ated at some radius r (in spheri
al 
oordinates), the value < r

2

> denotes

the averaged squared radius inside the volume 4�r

3

g

=3, where r

g

is de�ned,

r

g

=

GM

�W

;

M being the mass en
losed within r and,

W = 2�

Z

r

0

�(x)�(x)x

2

dx;

is the binding energy at r.

We should note that the interpolated fun
tion of e

v

yields to velo
ity ellipsoids that a

omplish,

e

v

' e;

for a large set of density pro�les.

The spheri
al symmetri
 velo
ity distribution

If the velo
ity distribution is isotropi
, the velo
ity ellipsoid a

omplishes that v

2

r

= v

2

�

= v

2

�

.

From the Jeans equations in spheri
al 
oordinates (BT, eq. 4-27)

v

2

r

=

1

�(r)

Z

1

r

�(r)

d�

dr

dr =

1

�(r)

Z

1

r

�(r)

GM(r)

r

2

dr; (2.29)

� being the potential and M(r) the total mass inside r. Assuming isotropy, the velo
ity 
ompo-

nents are subsequently 
onverted to Cartesian 
oordinates.
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We assume that the velo
ity distribution 
an be lo
ally des
ribed by a Maxwellian form

F (v) =

�

1

2�v

2

r

�

3=2

exp

�

�v

2

2v

2

r

�

exp

�

v

2

es


2v

2

r

�

; (2.30)

where v is the velo
ity of one halo parti
le and v

2

r

is the one-dimensional velo
ity dispersion in the

radial dire
tion (using the same notation as BT). In pra
ti
e all bound parti
les have velo
ities

below the lo
al es
ape velo
ity v

es


�

p

�2�(r), whi
h e�e
tively sets an upper limit for v in

eq. (2.30). This 
ondition needs from a proper renormalisation, whi
h is done by imposing,

v

2

= 3�(r)

2

;

where � is the one-dimensional velo
ity dispersion at r and �

2

= v

2

r

for non-rotating systems.

From spheres to axi-symmetry

Given the spheri
al morphologies of the mass distribution and the potential, one 
an perform an

homologous transformation

(R; z)! (R

0

; z

0

) where R

0

= R; z

0

= z

p

1� e

2

: (2.31)

On
e the spheri
al system is transformed into a axi-symmetri
 one, we make use of the virial

theorem to �nd the modi�
ation of the velo
ity �eld, whi
h tellx us that the potential energy of

the star after the 
oordinate transformation should be invested in kineti
 energy, thus, for ea
h

parti
le

T

i

= E

i

� �(r

i

)! T

0

i

= T

i

+

�(r

i

)� �

obl

(R

i

; z

i

)

2

; (2.32)

where the sub�x \obl" denotes the potential of the ellipsoidal system.

The velo
ity transformation of the parti
le i that satis�es the virial 
ondition and follows

eq. (2.28) is

v

0

i

=

�

2T

0

i

2T

i

� v

2

z

e

2

v

�

1=2

� (v

x

; v

y

; v

z

p

1� e

2

v

); (2.33)

the quantities < r

2

> and r

g


al
ulated prior the transformation (2.31).

It is evident that this transformation s
ales linearly with the number of parti
les, whereas the

Hernquist s
hemed has a CPU dependen
e s
aling as N

2

. The resulting systems were found to

yield to adequate equilibria for a large set of models and parameters even for highly 
attened

systems.

This new method allows us to 
onstru
t galaxy models with number of parti
les as high as

N = 1:4 10

6

; 1:2 10

7

for the high resolution investigation of satellite de
ay in 
attened haloes.

2.2.2 Setting the galaxy in equilibrium

The galaxy system is 
onstru
ted near the equilibrium state. However, due to the di�erent for
e

resolutions existing between the build-in 
ode and superbox, before inje
ting the satellite the

system shall be evolved for a few dynami
al times until it settles in equilibrium. If the resolution

is not too poor, the resulting density pro�le must nearly tra
e the initial one.

In Fig. 2.2 we plot the 
omparison of the analyti
 density pro�le of the model H1 (see Chapter 6)

and the numeri
al outputs from our 
ode before and after integrating the galaxy one dynami
al

time

2

. The results show a 
ontra
tion of the inner shells and the respe
tive expansion of the outer

2

The system is 
onsidered in equilibrium when the Lagrange radii (de�ned as the radius at whi
h the spheri
ally

en
losed mass amounts to 10, 20..90 % of the total mass) show small evolution.
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Figure 2.2: Comparison between the density pro�le after and before integrating it one dynami
al

time. The solid 
urve represent the analyti
 pro�le. We use the galaxy model H1 (see Chapter 6).

ones whi
h, in any 
ase, is not higher than 5%. More worrying is the la
k of resolution at the most

inner part of the galaxy (r < 5 kp
), whi
h may indu
e an underestimation of dynami
al fri
tion

at late-times of the satellite orbit.

On
e that the galaxy and satellite systems are virialized, the satellite is inje
ted with an initial

velo
ity and position whi
h determines the orbital parameters.

2.3 Satellite mass loss

The a
tion of tidal for
es indu
e a satellite mass loss along its evolution. The satellite mass plays

an important role in order to determine the ultimate fa
e of its evolution and survival. The

s
heme employed is widely used by several authors to des
ribe the satellite mass evolution (see

e.g., Vel�azquez & White (1999), hereinafter VW, Klessen & Kroupa 1998).

The mass remaining bound to the satellite,M

s

(t), is known by 
omputing the potential energy

�

i

< 0 of ea
h satellite parti
le presumed bound to the satellite, and its kineti
 energy (T

i

) in

the satellite frame. Following PKB, parti
les with E

i

= m

s

T

i

+m

s

(�

i

+ �

ext

) > 0 are labelled

unbound, where m

s

is the mass of one satellite parti
le and the potentials

�

i

= �

X

i 6=j

Gm

s

p

jr

i

� r

j

j

2

+ �

2

(2.34)

�

ext

= j�

g

(r

s

)j;

the softening being � = 0:1 = 0:35 kp
, whi
h is the resolution of the inner grid fo
used on the

satellite 
entre-of-density r

s

, and �

g

the galaxy potential at this point, where the tidal 
ontribution

is negle
ted. All the parti
les of the satellite are thus assumed to feel the same external potential,

whi
h is an useful and suÆ
iently a

urate approximation, taking into a

ount that most of the

bound parti
les are lo
ated very 
lose to this point.

Parti
les with E

i

> 0 are removed and the pro
edure repeated until only negative energy

parti
les are left.
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The mass is 
al
ulated ea
h �t = 0:312 Gyr, so that the semi-analyti
 
ode interpolates the

value for intermediate points at ea
h time-step. The error is of the order of �M(t)=�t, going

linearly with the mass loss. This means that the interpolation might introdu
e not negligible

di�eren
es at times where the mass loss is signi�
ant (i.e late times of the satellite evolution).
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Chapter 3

Galaxy and satellite models.

superbox parameters

Along our studies we 
ompare the results from the semi-analyti
 
ode to those found from the N-

body 
omputations of Pe~narrubia, Kroupa & Boily (2001), hereinafter PKB. The models employed

to des
ribe the galaxy mass distribution are, therefore, the same. A subset of our spheri
al models

are similar to the models of VW, whi
h fa
ilitates an inter-
omparison of di�erent numeri
al

treatments.

In this Chapter we provide the density pro�le of the galaxy and satellite models employed in our

investigation as well as the analyti
 expressions of gravitational for
e and velo
ity dispersion that


orrespond to ea
h mass pro�le.

The N-body parameters are summarised in last Se
tion. Due to the strong dependen
e of

these parameters on the galaxy and satellite models, we de
ide to outline them here and not in

Chapter 2.

3.1 Parent galaxy model

The galaxy is 
omposed by dis
, bulge and a Dark Matter halo. The total 
ontribution of the

galaxy �eld to the for
e experien
ed by the satellite is

F

g

= F

d

+ F

b

+ F

h

:

3.1.1 Dark Matter Halo (DMH)

We use a 
attened non-singular isothermal pro�le to des
ribe the Dark Matter Halo. Although,

in prin
iple, the exa
t pro�le of the DMH remains unknown, the observational rotational 
urves

imply that the haloes 
an be des
ribed by isothermal systems. For simpli
ity, following the s
heme

developed by Hernquist (1993), the mass pro�le of the halo is taken as

�

h

(R; z) =

M

h

�

2�

3=2

r


ut

exp

�

�

1

r

2


ut

�

R

2

+

z

2

1� e

2

�

�

(3.1)

�

1

R

2

+ z

2

=(1� e

2

) + 


2

�

M

h

�

2�

3=2

r


ut

exp

�

�

m

2

0

r

2


ut

�

1

m

2

0

+ 


2

;

where

m

2

0

= R

2

+

z

2

1� e

2

; (3.2)

27
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Figure 3.1: Mass distribution of the halo model H1. The dotted line represents the 
orresponding

pro�le of a singular isothermal sphere with the same mass at r


ut

.

and M

h

being the DMH mass, r


ut

the 
ut-o� radius, e

2

= 1 � q

2

h

the e

entri
ity, q

h

the halo

axis-ratio and 
 its 
ore-radius. The normalisation 
onstant � 
an be simpli�ed,

� � f1�

p

��exp(�

2

)[1� erf(�)℄g

�1

= 1 +

p

�� + (� � 2)�

2

+O(�

3

); (3.3)

where � = 
=r


ut

' 1=24 in our 
al
ulations. For � = 1=24 we �nd � ' 1:076 ! 1 already and

hen
e thereafter we set � = 1 in our analysis.

This density pro�le leads to the mass distribution plotted in Fig. 3.1, where we make use of

the halo parameters of the model H1 (see Table 3.1).

The for
e from this density distribution is derived following Chandrasekhar (1960)

F

h;i

= �2�M

s

Gx

i

Z

1

0

du

(1 + u)

2

(1 + e

2

+ u)

1=2

�

h

[m

2

(u)℄ (3.4)

F

h;z

= �2�M

s

Gz

Z

1

0

du

(1 + u)(1 + e

2

+ u)

3=2

�

h

[m

2

(u)℄;

where x

i

= x; y and,

m

2

(u) =

R

2

1 + u

+

z

2

1� e

2

+ u

: (3.5)

The velo
ity distribution of this system 
an be des
ribed by a Gaussian with velo
ity dispersions


al
ulated from the Jeans equations (see e.g BT) and the mass distribution (3.1). In a system

with axi-symmetry, the velo
ity dispersion ellipsoid has two 
omponents (�

R

; �

z

), i.e the parallel

and perpendi
ular velo
ity dispersions with respe
t to the plane of axi-symmetry, respe
tively.

The solutions of the Jeans equations with spheri
al symmetry are obtained by means of the

method proposed by Boily, Kroupa & Pe~narrubia (2001). The 1D velo
ity dispersion is 
al
ulated
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Figure 3.2: Cir
ular velo
ity and velo
ity dispersion 
urves of our halo H1. It is also plotted the

velo
ity dispersion for a singular isothermal sphere of the same en
losed mass at r


ut

.

for a spheri
al system as

�

2

= �

1

�

h

Z

�

h

(r

0

)

d�

h

(r

0

)

dr

0

dr

0

(3.6)

=

r

2

+ 


2

exp(�r

2

=r

2


ut

)

Z

1

r

exp(�r

02

=r

2


ut

)

r

02

+ 


2

GM

h

(r

0

)

r

02

dr

0

;

The pro�le of su
h a fun
tion is plotted in Fig. 3.2 for the parameters 
orresponding to the halo

model H1, together with the 
ir
ular velo
ity 
urve. We also in
lude the velo
ity dispersion for a

singular isothermal sphere with the same mass at the 
ut-o� radius.

The perpendi
ular and parallel 
omponents are, respe
tively

�

R

= � (3.7)

�

z

= �

p

1� e

2

v

;

the velo
ity anisotropy e

2

v

= 1� q

2

v

being 
al
ulated as

e

2

v

(r) = e

2

�

+ (e

2

� e

2

�

)

r

1�

< r

2

>

r

2

; (3.8)

where e

�

, e are the potential and mass e

entri
ity at r, respe
tively, and < r

2

> is the mass-

weighted average of r

2

inside the volume 4�r

3

=3. This method was found to yield systems with

adequate numeri
al equilibria (see Boily, Kroupa & Pe~narrubia 2001 for a detailed explanation).

We note that for a singular isothermal system formed by ellipsoids of 
onstant e

entri
ity, one


an readily 
he
k that < r

2

>= r

2

, therefore, having that e

v

= e

�

= e. In our 
ase, the density

pro�le is not singular but 
=r


ut

= 1=24, so that < r

2

>' r

2

, as it is shown in Boily, Kroupa &

Pe~narrubia (2001).
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3.1.2 Dis


Observations of the Milky Way and other spiral galaxies suggest that the dis
 
an be reprodu
ed

by a exponential density pro�le in the axi-symmetry dire
tion (Freeman 1970) and isothermal

sheets in the verti
al dire
tion (Bah
all & Soneira 1980, Spitzer 1942), therefore, the dis
 mass

distribution being

�

d

(R; z) =

M

d

4�R

2

d

z

0

exp(�R=R

d

)se
h

2

(z=z

0

); (3.9)

M

d

being the dis
 mass, z

0

the verti
al thi
kness and R

d

the exponential s
ale length in the

radial dire
tion. The mass pro�le de
ays exponentially with R and is 
omposed of isothermal

sheets along the verti
al dire
tion. Velo
ities are assumed to have a Gau�ian distribution. The

square of the radial velo
ity dispersion is taken to be proportional to the surfa
e density (see

Lewis & Freeman 1989), v

2

R

/ �(R) = �(0)exp(�R=R

d

), where the 
onstant of proportionality

is determined by �xing Toomre's Q-parameter at the Solar radius. Following VW, we sele
t

Q

�

= Q(R

�

) = 1:5. The verti
al 
omponent of the velo
ity ellipsoid is v

2

z

= �G�(R)z

0

in

agreement with an isothermal sheet (Spitzer 1942). The azimuthal 
omponent is obtained from

the epi
y
li
 approximation �

2

�

= v

2

R

�

2

=(4


2

) (e.g. BT).

Sin
e, (i) the mass of the dis
 is � 7% of the halo and (ii) the anisotropy of the dis
 potential


an be negle
ted at distan
es where the satellite orbits, we 
al
ulate it simply as

F

d

= �

GM

d

(r

0

< r)r

r

3

: (3.10)

Note that this equation negle
ts the potential quadrupole, whi
h is an a

urate approximation

in the range of distan
es where the satellite moves, sin
e eq. (2.27) shows that this term goes as

1=r

3

. In pra
ti
e, the potential quadrupole 
an indu
e signi�
ant e�e
ts if the satellite is lo
ated

at r � R

d

. However, we stop our 
al
ulations at that point.

To 
ompute the dis
 velo
ities, we have made use of the epi
y
le approximation (BT) where

V

2


;d

= R

2




2

(R) = R

�

��

g

�R

�

z=0

; (3.11)


(R) being the 
ir
ular frequen
y and �

g

= �

d

+�

h

+�

b

the galaxy potential. The dis
 potential

is

�

d

= �

GM

d

(r

0

< r)

r

; (3.12)

and the velo
ity dispersions for our dis
 model

�

2

d;R

(R) = �

2

d;R

(0)exp(�R=R

d

) (3.13)

�

2

d;z

(R) = �G�(R)z

0

�

2

d;�

(R) = �

2

d;R

�

2

=(4


2

);

where �

2

= �

2

�

d

=�R

2

� 3


2

is the epi
y
le frequen
y. Along our 
al
uli, we approximate �

d

�

�

d;�

, with �

R

(0) = 100 km/s (Lewis & Freeman 1989).

We have to note that, di�erently to TB, we have 
hosen to �x our dis
 parameters as those at

t = 0, i.e, without evolution. In this way, we avoid a parameter dependen
e on the dis
 evolution

whi
h, in fa
t, is extremely 
ompli
ated and goes further our study.

3.1.3 Bulge

For the bulge we adopt the spheri
al Hernquist pro�le (Hernquist 1990)

�

b

=

M

b

2�

a

r(r + a)

3

; (3.14)
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where M

b

is the bulge mass and a the spheri
al s
ale length. This analyti
al pro�le �ts the de

Vau
ouleurs law (de Vau
ouleurs 1948).

The for
e indu
ed by the bulge being

F

b

= �

GM

b

(r + a)

2

e

r

; (3.15)

where e

r

is the unity ve
tor in the radial dire
tion.

The velo
ity dispersion, as obtained from the Jeans equations, follows the expression (Hernquist

1990)

�

2

b

�

�

v

2

r

=

GM

b

12a

�

12r(r + a)

3

a

4

ln

�

r + a

r

�

� (3.16)

r

r + a

�

25 + 52

r

a

+ 42

�

r

a

�

2

+ 12

�

r

a

�

3

��

:

3.1.4 Galaxy parameters

Our system of units is su
h that M

d

= R

d

= 1 and G = 1. A

ording to Bah
all, Smith &

Soneira (1982), M

d

= 5:6 � 10

10

M

�

and R

d

= 3:5 kp
 for the Milky Way whi
h we adopt as a

typi
al primary galaxy model, so that time and velo
ity units are, respe
tively, 1:3� 10

7

yr and

262 kms

�1

. The half-mass radius of the dis
 is lo
ated at R

0:5

� 1:7R

d

= 5:95 kp
, with a rotation

period of 13 time units.

For our N-body investigations we make use of 6 di�erent galaxy models, whi
h 
an be separated

in two groups: Models G (from \galaxy") and models H (from \halo"). Whereas the former in
lude

dis
, bulge and halo as outlined above, in the later we 
onsider the galaxy as a pure halo by

removing the dis
 and bulge 
omponents. Therefore our notation implies Gn = dis
+bulge+Hn,

where n = 1; :::; 5.

In Table 3.1 we present the galaxy parameters used in the N-body and semi-analyti
 
al
ula-

tions (note that the \number of parti
les" is only useful for N-body simulations).

3.1.5 Remarks

As VW point out, there are some 
aveats to keep in mind 
on
erning the above models: (i) The

DMHs are possibly too small in mass and extension. Zaritsky & White (1994) show, by studying

satellite orbits in the Lo
al Group and external galaxies, that DMH limits may extend beyond 200

kp
 with masses over 2� 10

12

M

�

. However, as VW 
omment, the velo
ity 
urves of our DMHs

G1 and G2 are 
onsistent with the largest velo
ities observed for stars in the solar neighbourhood

(Carney & Lathman 1987), and they are possibly massive enough to give realisti
 velo
ities of

satellites on e

entri
 orbits. (ii) The DMHs may be too 
on
entrated. Persi
, Salu

i & Stel

(1996) argue for a DMH 
ore radius of 
 = (1 ! 2)� R

opt

, R

opt

= 3:2R

d

, where R

d

is the dis


s
ale-length. However the DMH parameters were sele
ted to avoid bar formation in the dis
. We

observed that a less 
on
entrated DMH or bulge allows a stable dis
 to form a bar after few satellite

passages. With our 
, the presen
e of a bar is avoided at least until the destru
tion of the satellite.

3.2 Satellite model

Following PKB and VW, we sele
t King models (King 1966) with 
on
entration 
 = log(rt=r
) =

0:8, where r




and r

t

are the 
ore and \tidal" radii, respe
tively. Central potential and 
on
entration

are related, any of them parametrising the model, so that 
 = 0:8 ! 	(0) = 5�

2

, where � is the

one-dimensional velo
ity dispersion.

For 
omparison between our semi-analyti
al 
ode and N-body simulations it is ne
essary to

in
lude the satellite mass loss whi
h, of 
ourse, depends on the satellite pro�le. The King pro�les
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Symbol Value(ph.u) Value (m.u)

Dis
 N

d

100000

M

d

5:60� 10

10

M

�

1.00

R

d

3.50 kp
 1.00

z

0

1.40 kp
 0.40

Q

�

1.50 1.50

R

�

8.50 kp
 2.43

Bulge N

b

33328

M

b

1:87� 10

10

M

�

1/3

a 0.53 kp
 0.15

DMH (H1) N

h

1400000

(spheri
al)

M

h

7:84� 10

11

M

�

14.00


 3.50 kp
 1.00

q

h

1.00 1.00

r


ut

84.00 kp
 24.00

DMH (H2) N

h

1400000

(oblate)

M

h

7:84� 10

11

M

�

14.00

q

h

0.60 0.60




a

3.80 kp
 1.10







2.28 kp
 0.65

r


ut

84.00 kp
 24.00

DMH (H3) N

h

1400000

(spheri
al)

M

h

7:84� 10

11

M

�

14.00


 3.50 kp
 1.00

q

h

1.00 1.00

r


ut

133.00 kp
 38.00

DMH (H4) N

h

1400000

(oblate)

M

h

7:84� 10

11

M

�

14.00

q

h

0.60 0.60




a

3.80 kp
 1.10







2.28 kp
 0.65

r


ut

133.00 kp
 38.00

DMH (H5) N

h

11200000

(oblate)

M

h

7:84� 10

11

M

�

14.00

q

h

0.60 0.60




a

3.80 kp
 1.10







2.28 kp
 0.65

r


ut

84.00 kp
 24.00

Table 3.1: Primary galaxy models. Oblate models have an aspe
t ratio q

h

= 0:6. The units are

su
h that Ph.u. means 'physi
al units', and m.u. 'model units'.
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are obtained by solving numeri
ally the Poisson's equations with spheri
al symmetry in the satellite

frame (BT)

�

s

(	) = �

1

�

e

	=�

2

erf

�

p

	

�

�

�

r

4	

��

2

�

1 +

2	

3�

2

��

; (3.17)

d

dr

�

r

2

d	

dr

�

= �4�G�

s

(	)r

2

;

from whi
h M

s

(r) is 
al
ulated.

In the lower panel of Fig. 4.3 we plot the mass pro�le of a King satellite of 
on
entration


 = 0:8 used along the numeri
al and semi-analyti
 
al
ulations. Note that most of the mass is

within r < 4r




.

In our semi-analyti
 
al
ulations, the satellite is 
onsidered a point-mass, so that its motion

within the galaxy potential does not depend on the satellite pro�le. This approximation is a

urate

enough whenever the satellite 
ore radius is larger than its distan
e to the galaxy 
entre. If this


ondition is not a

omplished, we 
onsider that it has merged into the parent galaxy.

We suppose that the satellite remains spheri
al, with its internal properties 
hanging over time.

The satellite stru
ture is fully spe
i�ed ea
h time step by its pro�le, tidal and 
ore radius, mass,

and the amount of heating it has experien
ed. The satellite is 
onsidered as disrupted if the mass

is smaller than 10% of its initial mass.

3.2.1 Satellite parameters

The satellite 
on
entration and \tidal radius" are sele
ted originally from N-body 
riteria: it must

be a

omplished that all satellite parti
les are bound at t = 0. This 
ondition is provided by the

density 
ontrast, �

s

(r

t

)=�

g

(r

a

) � 3, at the minimum apo-
entri
 distan
e where we initially lo
ate

the satellites (r

a

= 55 kp
), �

g

(r) being the averaged density of the galaxy (same pro
edure as

VW). Tables for the numeri
al rendition of the 
orresponding King pro�les 
an found in BT or

in the original paper of King (1966). Table 3.2 summarises the parameters, while Fig. 3.3 plots

rotational 
urves. Note that we use the same M

s

, r




and \r

t

" despite pla
ing the satellites at

di�erent apo-gala
ti
a r

a

� 55 kp
, whi
h in
reases the true tidal radius of the satellite, though

the stability 
ondition at t = 0 is still well-a

omplished. We do this rather than using di�erent

r




or r

t

in order to study the same satellites on di�erent orbits.

We note that our satellites are mu
h more massive than the Milky Way dSph satellites whi
h

haveM

s

� 10

8

M

�

, but our adopted values are typi
al for the satellites that enter distant samples

su
h as used by Holmberg (1969) and Zaritsky & Gonz�alez (1999).

3.3 superbox parameters

The sele
tion of the numeri
al parameters depends on the galaxy and satellite models. The 
riteria

are 
hosen in order to maximise the N-body 
ode eÆ
ien
y, i.e, redu
ing numeri
al errors and the

CPU-expense.

We use Superbox (Fellhauer et al. 2000) to evolve the galaxy-satellite system. Superbox is a

highly eÆ
ient parti
le mesh-
ode based on a leap-frog s
heme, and has been already implemented

in an extensive study of satellite disruption by Kroupa (1997) and Klessen & Kroupa (1998). For

more details see Chapter 2.

The N-body simulations 
arried out implement the following parameters:

Our integration time step is 0:39 Myr whi
h is about 1=25th the dynami
al time of satellite S2.

We have three resolution zones, ea
h with 64

3

grid-
ells: (i) The inner grid 
overs out to 3 radial

dis
 s
ale-lengths, whi
h 
ontains � 90 % of the dis
 mass, providing a resolution of 350 p
 per

grid-
ell. (ii) The middle grid 
overs the whole galaxy, with an extension of 24 dis
 s
ale-lengths

(84 kp
) for the models G1 and G2, giving a resolution of 2.8 kp
 per grid-
ell. The satellite

always orbits within this grid ex
ept when it rea
hes the dis
, avoiding 
ross-border e�e
ts (see
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S1

S2

Figure 3.3: Rotational 
urve of the satellite models S1 and S2 (see Table 3.2 for the 
hara
teristi
s

of ea
h one).

Fellhauer et al. 2000). For the models G3 and G4, the middle grid extends to 141 kp
 and has a

resolution of 4.7 kp
 per grid-
ell. The orbits of the satellites are lo
ated within this zone. (iii)

The outermost grid extends to 348 kp
 and 
ontains the lo
al universe, at a resolution of 11.6

Kp
.

As for the satellite grid-stru
ture, the resolutions are 816 p
 per grid-
ell for the inner grid

that extends to 24.48 kp
, 1.2 kp
 per grid-
ell for the middle grid whi
h extends to 36 kp
,

and 11.6 kp
 per grid-
ell for the outermost grid that 
overs the lo
al universe. Only the inner

and middle grids move along with the satellites, remaining positioned on their 
entre-of-density

lo
ations. The outer grid is identi
al for primary galaxy and satellite.

Klessen & Kroupa (1998) 
ompared 
al
ulations performed with SUPERBOX with dire
t-

integration N-body 
al
ulations and found good agreement. Spe
i�
ally, they veri�ed that varying

the grid resolution by fa
tors of a few did not lead to unstable satellite models. The stability of the

satellite models does not depend strongly on the values adopted here. Furthermore, based on the


omparison with the dire
t-integration method, the heating introdu
ed by two-body e�e
ts prove

entirely negligible for the model satellites we 
onsider. The sele
tion of grid parameters ensures

the 
onservation of energy and angular momentum for satellites in isolation over times as long as

our 
al
ulations to a high degree. Conservation of total energy and angular momentum is better

than 1% for all the models.

The dis
 is poorly resolved in the z{dire
tion and we do not study its evolution in any detail.

We veri�ed that the dis
 parameters do not evolve for galaxies in isolation (no satellites). Sin
e

Superbox is a mesh 
ode, a poor z-resolution for the dis
 is expe
ted due to the limited number

of grids. This provokes the dis
 modelled here to be unrealisti
ally thi
k, however it does provide

a quadrupolar (non-spheri
al) potential of the appropriate magnitude. A mesh 
ode has the

advantage that it does not introdu
e self-heating sin
e it does not 
al
ulate two-body intera
tions,

whi
h would have been signi�
ant in the dis
 given the �nite number of parti
les used (see the

dis
ussion in VW).

One of the main advantages of superbox, however, is that the e�e
ts on the satellite dynami
s

due to two-body intera
tions are drasti
ally redu
ed by the low mass of the halo parti
les (see

Steinmetz & White 1997). Furthermore the dis
 heating by halo parti
les is minimised sin
e ea
h


omponent parti
le masses are in a one-to-one ratio.
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Symbol Value(ph.u) Value (m.u)

S1 N

s

40000

M

s

5:60� 10

9

M

�

0.10

	(0)=�

2

0

5.00 5.00

r




1.00 kp
 0.29

r

t

6.31 kp
 1.80


 0.80 0.80

< r > 1.64 kp
 0.47

�

0

52:00kms

�1

0.20

S2 N

s

40000

M

s

1:12� 10

10

M

�

0.20

	(0)=�

2

0

5.00 5.00

r




1.00 kp
 0.29

r

t

6.31 kp
 1.80


 0.80 0.80

< r > 1.64 kp
 0.47

�

0

74:00kms

�1

0.28

Table 3.2: Satellite models. 	(0) = �(r

t

)� �(0), �(0) being the 
entral potential and �(r

t

) the

potential at the tidal radius (following BT notation); �

0

is the velo
ity dispersion at the 
entre,

and < r > the average radius of the satellite.

Lastly, we note that the N-body parameters outlined in this Se
tion remain un
hanged in all

our investigations.
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Chapter 4

The semi-analyti
 
ode

In this Chapter we brie
y present the 
ode used to solve the satellite dynami
s within di�erent

physi
al systems. Our algorithm simpli�es the pro
esses that in
uen
e the satellite dynami
s

along the orbit, by separating them into di�erent analyti
al approa
hes: (i) The parent galaxy

for
e given in Chapter 3, (ii) dynami
al fri
tion and (iii) satellite mass loss. This s
heme is similar

to that employed by Taylor & Babul (2001) (hereinafter TB) and it is shown to give a

urate

results.

Data from high resolution 
odes give important insights on the physi
al pro
esses o

urring

along the satellite orbit. However, due to the 
omplexity of the satellite-galaxy intera
tion it is hard

to quantify, sometimes even distinguish, the me
hanisms that determine the satellite properties.

To solve this limitation a huge parameter spa
e must be explored, the parameters being 
arefully

sele
ted so that some pro
ess is thought to dominate ever the others in order to de
ouple them.

Unfortunately, the main disadvantage of the numeri
al 
odes is that they are extremely expensive


omputationally, for
ing a redu
tion of the parameter range. Moreover, the satellite dynami
s and

evolution may be in
uen
ed by numeri
al quantities, su
h as number of parti
les and resolution.

A 
omplementary approa
h to the study of the satellite evolution has been found in the semi-

analyti
 methods. These 
odes are extremely fast (for example, the 
al
ulations 
arried out by

Pe~narrubia, Kroupa & Boily 2001, hereinafter PKB summarised in Chapter 7, take over 10

4

longer than those with the semi-analyti
 approa
h outlined in this Chapter), and the 
ontrol over

the pro
esses to study is total, so that they are useful to determine the relative importan
e of

ea
h galaxy 
omponent on the satellite evolution. The semi-analyti
 s
hemes also su�er from

strong limitations, (i) not all physi
al pro
esses 
an be in
luded and (ii) of 
ourse, they are high

dependent on the theories employed, although, this also gives o

asion for 
he
king the a

ura
y

of the theoreti
al approa
hes on reprodu
ing the numeri
al data (e.g the theoreti
al investigation

of dynami
al fri
tion in spheri
al and 
attened systems, Chapters 6 and 8, respe
tively).

The semi-analyti
 s
heme is similar to the one of TB. However, we must note that, whereas

they 
al
ulate the mass loss from gravitational sho
ks by 
omputing the tidal for
es a
ting on

the satellite galaxy, we introdu
e the analyti
 estimations of Gnedin & Ostriker (1999) based on

their N-body simulations to a

ount for the dis
 sho
ks and those of Gnedin & Ostriker (1997) for

the bulge sho
ks. The formul� given by these authors avoid the overestimation of tidal heating

observed by TB in low e

entri
 satellites by analysing in detail the re-distribution of energy after

the sho
k as a fun
tion of the time-s
ale of the en
ounter (see for more details Se
tion 4.3).

The semi-analyti
 
ode that we present in this Chapter has two free parameters to be 
alibrated

from the numeri
al data: The dis
 and halo Coulomb logarithms.

37
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4.1 The integration of the equations of motion

The algorithm employed to solve the di�erential equations

a =

d

2

x

dt

2

= F

g

+ F

df

;

where F

g

is the for
e from the galaxy system (see Chapter 3), and F

df

that due to the dynami
al

fri
tion (see Chapter 5), is based on the Bulirs
h-Stoer method (for a 
omplete des
ription see

Press et al. 1986).

This method gives high-a

urate solutions with minimal 
omputational e�ort. It is based on an

adaptative step-size s
heme, being ideal therefore for systems with non-smooth potentials, as may

be the 
ase for satellites following high e

entri
 orbits.

The for
es made by ea
h galaxy 
omponent, namely the dis
, bulge and halo, on the satellite

are outlined in Chapter 3 for 
onvenien
e.

This subroutine uses two free parameters: (i) The desired pre
ision for the solutions x(t), whi
h

is 
alled EPS. This number 
ontrols the error of the integration at ea
h time step. Subsequent

errors are slightly 
umulative, thus the numeri
al solution slowly deviates from the theoreti
al one

as the number of time steps in
reases. (ii) The initial value of the time step, denoted as h

try

.

Contrary to non-adaptative 
odes, for instan
e a Runge-Kutta algorithm, in the Bulirs
h-Stoer

s
heme numeri
al errors are nearly independent of the initial time step sele
tion.

However, the CPU time of the integration does depend on it. If one sele
ts an extremely large

h

try

, the algorithm must make more iterations in order to a
hieve the desired pre
ision, whenever

a extremely small h

try

mishandles the power of the interpolation s
heme, leading to a total number

of time steps unne
essarily large. A h

try

� 1=r(t = 0) (in model units) takes a good advantage of

the 
ode 
apability.

In ea
h step [t; t + h

try

℄, the Burlirs
h-Stoer algorithm interpolates the solution using a pre�xed

analyti
al fun
tion, dividing the interval h

try

in smaller steps until the di�eren
e x

i

(t + h

try

) �

x

i

(t) < EPSh

try

dx

i

=dt, therefore the smoother the potential is the lower the number of subdivisions

should be.

To 
he
k the pre
ision of our algorithm, we test it with the well known Keplerian potential,

� = GM=r, 
omparing the results to the analyti
al solutions for EPS=10

�5

(full line),10

�6

(dotted

line). In the upper-left panel of Fig. 4.1, we plot the evolution of the distan
e r(t) from the

numeri
al integration to the Kepler solution r

t

(t), the time given in dynami
al time units. If we

give the same physi
al values toM and r as in the following se
tions, we obtain a time-s
ale range

of the order of one Hubble time. The di�eren
e between both is about 10

�4

, being 
onstant along

the integration as expe
ted. Analogously, the di�eren
e of e

entri
ities shown in the upper-right

panel (e[t = 0℄ = 0:75) is also of the same order, both with slight sensitivity on the value of EPS.

In the lower left and right panels, we plot the angular momentum and energy 
onservation, being

respe
tively of the order of 10

�8

and 10

�7

.

In Fig. 4.2 equivalent 
omparisons are done for more 
ir
ular orbits (e[t = 0℄ = 0:64). A notable

improvement is found in the e

entri
ity evolution as well as in the energy-angular momentum


onservation, noting the error in r(t) remains fairly the same. From these results, we dedu
e that

the a

ura
y of the 
ode is sensitive, although within tolerable limits, to the potential gradients,

being higher the smaller the initial e

entri
ity is.

On
e being proved the high a

ura
y of the solutions, we �x the free parameters as, h

try

= 0:1

and EPS= 10

�5

along our 
al
ulations.

4.2 Dynami
al fri
tion for
e

As Chandrasekhar (1943) showed, a body travelling within a ba
kground of mu
h lighter parti
les

will experien
e a for
e opposed to its sense of motion due to the formation of a density wake.

This \drag-for
e" 
auses the angular momentum and energy loss of the satellite, the so-
alled
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Figure 4.1: Comparison between the numeri
al and analyti
al solutions of an orbit in the Kepler

potential for the distan
e (upper-left) and the orbital e

entri
ity (upper-right), together with the

energy (lower-right) and angular momentum (lower-left) 
onservation. EPS is �xed to 10

�5

(full

lines) and 10

�6

(dotted lines). The time is given in dynami
al times and the initial e

entri
ity is

e(t = 0) = 0:75.
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Figure 4.2: As Fig. 4.1 for e(t = 0) = 0:64.
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dynami
al fri
tion. If this body is a satellite orbiting around a spiral galaxy, the de
reasing energy

and angular momentum 
auses the satellite sinking into inner zones of the galaxy potential.

Re
ent studies of Hashimoto, Funato & Makino (2002) have shown that a varying Coulomb

logarithm may �t better in the inner part of the galaxy, where Chandrasekhar's expressions 
rash

due to the steep potential gradient. We have investigated this possibility in Chapter 6 and 
om-

pared to the usual dynami
al fri
tion (i.e, that with 
onstant Coulomb fa
tor). For simpli
ity, we

outline the fri
tion equations in this Chapter, whereas here we merely des
ribe the 
ase in whi
h

the Coulomb logarithm does not depend on the satellite position.

Our galaxy model is divided into three subsystems: halo, dis
 and bulge, ea
h of them exerting

a drag for
e over the satellite. Along our study, we have 
hosen to negle
t the bulge dynami
al

fri
tion. The analyti
 expressions that des
ribe the density pro�le and velo
ity dispersion of ea
h

galaxy 
omponent are outlined in Chapter 3 for 
onvenien
e.

4.2.1 Halo dynami
al fri
tion

As 
ommented above, the Chandrasekhar's expressions for dynami
al fri
tion 
annot explain some

e�e
ts observed in N-body 
al
ulations of satellite de
ay within 
attened haloes (PKB). We 
arry

out a detailed study on the dynami
al fri
tion s
heme in Chapter 5, whereas here we give the

expressions implemented in the semi-analyti
 
ode.

We use Binney's formul� for dynami
al fri
tion whi
h des
ribe the satellite de
ay in systems

with an anisotropi
 velo
ity distribution, re
overing Chandrasekhar's expression if the velo
ity

distribution is isotropi
. In Cartesian 
oordinates Binney's equations be
ome

F

df;h;i

= �

p

2��

h

(r)G

2

M

2

s

p

1� e

2

v

ln�

h

�

2

R

�

z

B

R

v

i

(4.1)

F

df;h;z

= �

p

2��

h

(r)G

2

M

2

s

p

1� e

2

v

ln�

h

�

2

R

�

z

B

z

v

z

;

where i = x; y and (�

R

; �

z

) is the velo
ity dispersion ellipsoid in 
ylindri
al 
oordinates with lo
al

e

entri
ity e

2

v

= 1� (�

z

=�

R

)

2

. We denote ln�

h

as the Coulomb logarithm of the halo and

B

R

=

Z

1

0

dq

exp(�

v

2

R

=2�

2

R

1+q

�

v

2

z

=2�

2

R

1�e

2

v

+q

)

(1 + q)

2

(1� e

2

v

+ q)

1=2

B

z

=

Z

1

0

dq

exp(�

v

2

R

=2�

2

R

1+q

�

v

2

z

=2�

2

R

1�e

2

v

+q

)

(1 + q)(1� e

2

v

+ q)

3=2

:

As Binney shows, the mass M

s

will su�er a de
rease of its orbital plane in
lination whenever

B

z

> B

R

(oblate halo). If the orbit is either 
oplanar or polar, the in
lination remains 
onstant

sin
e, respe
tively, either the perpendi
ular or the planar 
omponent of v is zero. One 
an easily


he
k that this expression reprodu
es Chandrasekhar's when e

v

= 0.

F


h

= �4�GM

2

s

�

h

(R; z)ln�

�

erf(X)�

2X

p

�

e

�X

2

�

v

s

v

3

s

; (4.2)

where X = jv

s

j=

p

2�.

The derivation of Binney assumes that a massive point parti
le moves through an in�nite

medium of mu
h lighter parti
les with anisotropi
 Maxwellian velo
ity distribution (in our 
ase

�

z

=�

R

< 1). The in
lusion of the Coulomb logarithm is made to avoid the divergen
e of the


al
ulus when one integrates over the impa
t parameter in an in�nite medium (Chandrasekhar

1943). In prin
iple, this parameter 
an be expressed as � = b

max

=b

min

, where b

max

and b

min

are

the maximum and minimum impa
t parameters respe
tively. As Binney points out, the value of
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� depends on the velo
ity of the satellite, though this dependen
e may be 
onsidered as negligible

for most of the values of the orbital parameters (for more details see Chapters 5 and 6).

Several studies of satellite de
ay have shown that Chandrasekhar's dynami
al fri
tion is a
-


urate enough if the Coulomb logarithm remains as a free parameter to �t to the N-body data

(e.g. van den Bos
h et al. 1999, Colpi et al. 1999, VW) sin
e it also depends on the 
ode and

the number of parti
les employed. For instan
e, Prugniel & Combes (1992) and Whade & Donner

(1996) �nd that dynami
al fri
tion is arti�
ially in
reased due to numeri
al noise if the parti
le

number is small. Similar di�eren
es were also noted in the 
omputations by Klessen & Kroupa

(1998) of satellite harassment using di�erent 
odes.

The Coulomb logarithm is also sensitive to the satellite extension. BT suggest that the formula

derived for the 
ase where the satellite is a point-mass will only slightly overestimate the drag

experien
ed by an extended body, therefore we do not in
lude the 
orre
tion sin
e it has to be

�xed from numeri
al 
al
ulations.

4.2.2 Dis
 dynami
al fri
tion

Following TB, we use Chadrasekhar's formula to reprodu
e the dynami
al fri
tion exerted by the

dis


F

df;d

= �4�GM

2

s

�

d

(< v

rel

)ln�

d

v

rel

jv

rel

j

3

; (4.3)

v

rel

= v �V


;d

being the relative velo
ity between the satellite and the dis
 rotation, where we

have negle
ted the velo
ity dispersion 
ontribution, ln�

d

is the Coulomb logarithm of the dis
 and

�

d

(< v

rel

) = �

d

(r)

�

erf(X

d

)�

2X

d

p

�

e

�X

2

d

�

;

where X

d

= jv

rel

j=

p

2�

d

.

The presen
e of the fa
tor 1=v

2

rel

in the eq.(4.3) implies that the dis
 dynami
al fri
tion shall

not be negligible 
ompared to the one of the halo when the satellite orbit is nearly 
oplanar (low

orbital in
lination) and prograde. In this 
ase, for a 
ir
ular orbit v

rel

� �

d;�

.

As TB, we smooth the dis
 density in the verti
al dire
tion by doubling the value of z

0

to

avoid errors in 
al
ulating dynami
al fri
tion for 
oplanar satellites, where the z-
omponent of the

potential has steep 
hanges over small s
ales.

4.3 Analyti
 treatment of satellite mass loss

The satellite dynami
s is highly dependent on the ratio of the satellite to the galaxy mass, mostly

through dynami
al fri
tion, therefore, it is ne
essary to implement some analyti
al s
heme able

to reprodu
e the satellite mass evolution along the orbit. In this Se
tion, we introdu
e the two

methods employed along our 
al
ulations.

Satellites experien
e mass loss whenever the external potential is stronger than the binding

energy of its 
omponents. This material be
omes unbound and 
an subsequently es
ape from the

satellite. Depending on the variation rate of the external potential, we 
an distinguish between

two regimes: (i) Tidal mass loss, when the potential 
hanges slowly and (ii) tidal heating, for rapid

variations.

Tidal mass stripping

In the �rst regime, the amount of bound mass is determined by the tidal radius (King 1962),

whi
h is de�ned for a spheri
ally symmetri
 satellite as the distan
e to the satellite 
entre where

the satellite and the galaxy for
e 
an
el out. If the satellite follows a 
ir
ular orbit the system 
an
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be 
onsidered as stati
 in a rotational frame, and one 
an estimate the tidal radius as (King 1962,

BT)

R

t

�

�

GM

s

!

2

� d

2

�=dr

2

�

1=3

; (4.4)

where ! is the angular velo
ity of the satellite and � the potential of the main system.

This estimate is valid when: (i) The satellite mass is mu
h smaller than the one of the parent

galaxy and (ii) R

t

is small 
ompared to the satellite distan
e to the galaxy 
entre. Even under

these 
onditions, the mass within R

t

is not exa
tly equal to the bound mass, sin
e there may be

parti
les that have (small) positive energy and stay in transient orbits within the satellite (e.g.

BT).

If the satellite follows a non-
ir
ular orbit one 
an still use eq. (4.4) to 
al
ulate the instan-

taneous tidal radius, now ! being the instantaneous angular velo
ity. For these kind of orbits,

the mass loss o

urs nearby the peri-gala
ti
on where the for
e gradient is maximum (e.g, PKB,

Piatek & Pryor 1995). In our 
al
uli, the transient orbits are assumed as of se
ond order 
ompared

to the total amount of mass stripped out by the peri-gala
ti
on passages, so that the time these

parti
les need to es
ape is 
onsidered mu
h shorter than the orbital period.

Whereas eq. (4.4) is quite a

urate in a

ounting for the mass loss of satellites in 
oplanar

orbits, tidal sho
ks will dominate the mass loss pro
ess of satellites following orbits in
lined with

respe
t to the dis
 plane.

Tidal heating

Satellites travelling through regions where the external potential 
hanges rapidly su�er tidal

sho
ks. This pro
ess 
an be des
ribed as perturbations with a given frequen
y that add en-

ergy to the satellite parti
les. The sho
ks will o

ur near the galaxy 
entre, where the dis
 and

bulge indu
e a steep for
e gradient.

As a result of the sho
k, Gnedin & Ostriker (1999) (herinafter GO) show that the satellite is


ontra
ted, with following expansions and re-
ontra
tions until it rea
hes a �nal state of equilib-

rium, in whi
h the binding energy is smaller than originally and the satellite has expanded. This

non-equilibrium phase lasts for their models around 20 satellite dynami
al times.

The study of tidal sho
ks is far beyond our purpose. We mainly follow the method of GO in

order to 
al
ulate the energy gained from dis
 sho
ks, whereas for the bulge we use the analyti
al

expressions of Gnedin & Ostriker (1997).

1) Dis
 sho
ks.

Using the harmoni
 approximation, the �rst and se
ond order terms of the averaged energy


hange per unit mass of stars with positions r = (x; y; z) and velo
ities v with respe
t to the

satellite 
entre due to dis
 sho
ks are given by Spitzer (1987) and Kundi�
 & Ostriker (1995),

respe
tively

h�Ei

d

�

1

2

h(�v)

2

i =

2g

2

m

r

2

3V

2

z

A

1

(x) (4.5)

h�E

2

i

d

� h(v�v)

2

i =

4g

2

m

r

2

v

2

(r)(1 + �

d

)

9V

2

z

A

2

(x);

where g

m

is the maximum verti
al a

eleration produ
ed by the dis
, V

z

is the verti
al 
omponent

of the satellite velo
ity and v is the root mean squared velo
ity of the satellite. The fa
tor �

d

denotes the dis
 two-point 
orrelation fun
tion, whi
h depends on (r; v) and takes a value of -0.3

from the GO 
al
ulus.

The energy inje
tion of the sho
k is distributed to ea
h satellite star depending on its orbital

parameters. The fun
tions A

1

(x) and A

2

(x) are 
alled adiabati
 
orre
tions and a

ount for the
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energy distribution within the satellite after the sho
k. There are several approximations to the

adiabati
 
orre
tions: (i) Spitzer (1987) simpli�es the satellite as a set of 1D harmoni
 os
illators

whi
h absorb energy resonantly to the verti
al orbital frequen
y of the satellite. (ii) The Linear

theory of Weinberg (1994) assumes the stars as a 3D non-linear os
illators. This allows a wider

set of frequen
ies that may enter in resonan
e with the satellite motion. As a result, Weinberg

shows that the Spitzer's 
al
ulation underestimates the energy absorption in the inner part of

the satellite. (iii) Along our study, we use the results of GO who, 
omparing the Weinberg's

expressions with N-body simulations, �nd the following adiabati
 
orre
tions

A

1

(x) = (1 + x

2

)

�


1

(4.6)

A

2

(x) = (1 + x

2

)

�


2

;

where x � t

d;sh

=t

orb

(r), i.e, the ratio between the sho
k duration and the satellite orbital period

at a given radius

t

d;sh

=

Z

V

z

t

orb

(r) = 2�

r

v(r)

:

As it is dedu
ed from the last de�nitions, the value of A tends to zero as x tends to in�nity,

whereas it approa
hes asymptoti
ally to one for x ! 0. The adiabati
 
orre
tions therefore have

small values in the inner part of the satellite, where the frequen
ies of the stars are mu
h higher

than the satellite frequen
y, this is the so-
alled adiabati
 zone, tending to one in the outer most

region of the satellite.

Whereas Weinberg (1994) predi
ts 


1

= 


2

= 3=2, independently of t

sh

, GO show that these

exponents do depend on the sho
k duration, i.e, on the satellite orbital parameters. They 
al
ulate

the value of the exponents from the best �t to N-body 
al
ulations. The results are shown in their

Table 2, obtaining that (


1

; 


2

) take values from (2.5,3) for rapid sho
ks (t

d;sh

� t

orb

(r

h

), r




being

the satellite half mass radius) to (1.5,1.75) for slow sho
ks (t

d;sh

� 4t

orb

(r

h

)).

2) Bulge sho
ks.

The energy gain from a bulge sho
k is dedu
ed by Gnedin & Ostriker (1997) by 
al
ulating

the tidal �eld of a extended system at the peri-
entre

h�Ei

b

=

4

3

�

GM

b

V

p

R

2

p

�

2

r

2

�(R

p

)A

1

(x

b

) (4.7)

h�E

2

i

b

=

8

9

�

GM

b

V

p

R

2

p

�

2

r

2

v

2

(1 + �

b

)�(R

p

)A

2

(x

b

);

where R

p

; V

p

are the distan
e and the velo
ity of the satellite at that point and �(R

p

) de�ned as,

�(R

p

) =

1

2

�

(3J

0

� J

1

� I

0

)

2

+ (2I

0

� I

1

� 3J

0

+ J

1

)

2

+ I

2

0

�

;

where,

I

0

(R

p

) �

Z

1

1

m

b

(R

p

y)

dy

y

2

(y

2

� 1)

1=2

I

1

(R

p

) �

Z

1

1

m

0

b

(R

p

y)
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y

2

(y

2

� 1)

1=2
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J

0

(R

p

) �

Z

1

1

m

b

(R

p

y)

dy

y

4

(y

2

� 1)

1=2

J

1

(R

p

) �

Z

1

1

m

0

b

(R

p

y)

dy

y

4

(y

2

� 1)

1=2

;

m

b

(R) �Mb(R)=M

b

being the normalised mass distribution at radiusR andm

0

b

(R) � dlnm

b

(R)=dlnR.

For a Hernquist bulge we �t �

b

= �0:4.

In the numeri
al 
al
ulations of GO the satellite is des
ribed by a King model of 
on
entration


 = 0:86, very similar to the model we use (
 = 0:8), whi
h allows us to implement their results in

the semi-analyti
 s
heme. Eq. (4.5) and (4.7) 
an be rewritten as

h�Ei = h�Ei

t

sh

=0

�

1 +

t

sh

v(r)

2�r

�

�


1

h�E

2

i =

2

3

r

2

v

2

(r)(1 + �)h�Ei

t

sh

=0

�

1 +

t

sh

v(r)

2�r

�

�


2

;

where < �E >

t

sh

=0

is the energy 
hange during a sho
k of in�nitesimal duration and t

sh

the

sho
k time-s
ale. The exponents of the adiabati
 
orre
tions 


1

; 


2

are those outlined above.

Our treatment of mass loss distinguishes from that of TB in two points: (i) The re-distribution

of energy within the satellite depends on the position of the star through the adiabati
 
orre
tion

term, whi
h redu
es the sho
k e�e
ts in the inner zone of the satellite and (ii) the adiabati


exponent depends on the sho
k regime, whereas TB �x 
 = 2:5, assuming most of the heating

indu
ed by rapid sho
ks.

In Fig. 4.3 we show the radial pro�le of the energy gain (upper panel) and shell expansion (lower

panel, from eq.[ 4.8℄) after a sho
k of one time-step duration. The dis
 is the main 
ontributor to

the sho
k, the energy inje
tion from the bulge being around three orders of magnitude smaller.

As we 
ommented, the adiabati
 
orre
tions prevent from energy enhan
e at the inner part of the

satellite (approximately r < 5r




), tending monotoni
ally to one as we go farther out. The small

gain of energy at the inner part leads to a negligible expansion of the shells, so that the mass

pro�le within this zone 
an be approximated as that of the King model before the sho
k.

One must 
onsider that tidal for
es intera
t with the satellite 
ontinuously along its orbit.

Following GO, we assume a Gaussian-shape evolution for the time evolution of the tidal intera
tion,

whi
h is 
entred at the time (t

0

) when the tidal for
e experien
es a maximum and its dispersion

is equal to the sho
k time-s
ale. As GO we de�ne the fun
tion

I

2

imp

�

1

3�

�

�t

t

sh

�

2

exp

�

�

(t� t

0

)

2

t

2

sh

�

;

whi
h multiplies the energy 
hanges of equations (4.5) and (4.7). The approximation has been

shown to be a

urate in order to reprodu
e the tidal e�e
ts along the satellite orbit. We note

that the expression has been normalised so that it re
overs the same total energy 
hange as the

impulsive sho
k t

sh

! 0.

Our 
ode is 
onstru
ted so that the energy gained after ea
h time-step a

umulates (the energy

inje
ted in the satellite grows monotoni
ally in time, sin
e for ea
h tidal sho
k the averaged

�E > 0) meanwhile the satellite pro�le remains un
hanged. Despite that after the �rst sho
k the

satellite is not a King model any more, from the work of PKB, Piatek & Pryor (1995) and GO, we


an assert that this is fully 
onsistent as long as the satellite energy is not dramati
ally in
reased,

i.e, for early and middle times. As Fig. 4.3 shows, the inner part of the satellite is barely 
hanged

after a sho
k, whereas the outer part re
eives most of the energy. The parti
les of this region

are, either be
ause of the subsequent redu
tion of binding energy or by the tidal radius evolution,

stripped out. If a non-mixing shells is assumed, the inner part of the satellite 
an be 
onsidered

to follow the initial King pro�le for most part of its evolution.
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Figure 4.3: Upper panel: Energy gain (in model units) after a dis
 and bulge sho
k of duration

�t as a fun
tion of the satellite radius. The 
al
ulus 
orresponds to the �rst peri-
entre passage

of the model G1S145 (see Chapter 7). Lower panel: Mass shell expansion. Due to its small value

we multiply the values of �r=r by a fa
tor 10. It is also plotted the mass pro�le for 
omparison.

Fig. 4.4 illustrates the sho
k intera
tions along the orbit G1S145 (see Chapter 8). In the upper

panel we plot the energy addition at ea
h time, whereas the lower panel show the 
umulative energy

along the orbit (we assume that the energy 
hange from tidal sho
ks a

omplishes E[t + �t℄ =

E[t℄+�E, i.e., it a

umulates). The main 
ontribution 
omes from the dis
-satellite intera
tions,

approximately two orders of magnitude higher than those with the bulge. As expe
ted, sho
ks

o

ur at the peri-gala
ti
on passages, where the dis
 and bulge tidal for
es rea
h their respe
tive

maximums.

This �gure also shows that sho
ks are high eÆ
ient when the satellite velo
ity and t

sho
k

de
rease.

Meanwhile the �rst produ
es stronger tides on the satellite parti
les, the se
ond enhan
es the

wideness of the Gaussian, leading to larger intera
tions.

To determine the 
hanges experien
ed by the satellite after the energy inje
tion, we assume

that the ulterior mass distribution does not involve shell 
rossing. Under this 
ondition, a 
hange

of energy E ! E +�E result in an expansion of the satellite

�r =

�Er

2

GM

s

(r)

; (4.8)

so that the mass distribution (3.17) after the tidal sho
k is M

s

(r

0

) =M(r+�r) =M(r). As this

equation suggests, some material will be expanded out of the tidal radius whi
h, therefore, will

enhan
e the satellite mass loss. As we assumed for the energy fun
tion, the shell radii expand

monotoni
ally in time after ea
h tidal sho
k.

As TB 
omment, this te
hnique su�ers from some limitations: (i) The assumption of virial

equilibrium between the satellite sho
ks. Numeri
al 
al
ulations (e.g, PKB, Piatek & Pryor 1995)

show that this approximation is a

urate only in the inner parts of the satellite, where the velo
ity

dispersion results nearly 
onstant after the sho
k, whereas the outer parts are subsequently re-

virialized. (ii) To approximate �Er

2

as a quantity independent of radius (null shell 
rossing) is

stri
tly true only for the outer parts of the satellite. The heating experien
ed by the inner regions
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Figure 4.4: Upper panel: Energy addition (without adiabati
 
orre
tions) along the orbit G1S145.

The values are in model units G = M

d

= Rd = 1, see Chapter 3. Lower panel: Total 
umulative

energy along the orbit.

is over-estimated by a fa
tor that depends on the mass pro�le and is larger the more 
on
entrated

the satellite is. (iii) The mass loss s
heme does not a

ount for the angular momentum of the

es
aping parti
les, whi
h may indu
e 
hanges on the satellite orbit.

The implementation of the satellite mass evolution in our semi-analyti
 
ode give rise to a

self-
onsistent des
ription of the satellite dynami
s in spiral galaxies that will be employed in

Chapters 9 and 10.

The analyti
al expressions of mass loss inevitably introdu
es errors on the value ofM

s

that may

depend on the satellite orbital parameters. One of the main topi
s of this work is the 
omparison

between di�erent analysis of dynami
al fri
tion, for whi
h a high a

ura
y in the value of the

satellite mass is ne
essary. For that reason, in su
h studies we use the numeri
al 
urve of M

s

along the orbit integrated by the semi-analyti
al 
ode (see Se
tion 2.3).

4.4 Cal
ulus of the Energy and angular momentum

Axisymmetri
 systems have three 
onstant of motion: the energy, the 
omponent of the angular

momentum perpendi
ular to the axi-symmetry plane (that we denote as L

z

) and a third value

with no analyti
al representation. The total angular momentum L

2

= L

2

R

+ L

2

z

is, however, not


onstant along the satellite orbit (see e.g BT), but has periodi
 variations that 
orrespond to a

pre
ession of the orbital plane around the z-axis and a nutation of the angular momentum ve
tor.

Sin
e the dynami
al fri
tion for
e is dire
ted 
ontrary to the satellite velo
ity, it a
ts by de-


reasing the angular momentum and energy of the satellite whi
h indu
es a monotoni
 sink into

the inner regions of the halo potential.

We 
al
ulate the energy and angular momentum of the satellite as follows,

E =

1

2

v

2

+�

g

(r) (4.9)

L

z

=

�

r� v

�

z

= xv

x

� yv

z

;
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employing Cartesian 
oordinates along our 
al
uli

(r;v) = (x; y; z); (v

x

; v

y

; v

z

):

Whereas the dis
 and bulge potentials are simply 
al
ulated as,

�

i

=

GM

i

(r

0

< r)

r

the subindex i = d; b andM(r

0

< r) being the mass en
losed within the radius r, the halo potential

needs a more 
ompli
ated 
al
ulus.

The potential of the halo 
onsidered as a heterogeneous ellipsoid with density of the form (3.1).

At an internal point (R; z) it 
an be 
al
ulated from Chandrasekhar (1960) as

�

h

(R; z) = �q

h

GM

h

�

2

p

�r


ut

Z

1

0

	[m

2

(u)℄

(1 + u)(q

2

h

+ u)

1=2

du; (4.10)

where 	(m

2

) is de�ned as

	(m

2

) =

1

a

2

Z

m

2

a

2

�

h

(m

02

)dm

02

; (4.11)

and m

2

(u) as in (3.5) and a 
an be interpreted as the size of the halo in whi
h the satellite is

embedded, whi
h is 
hosen to be a = r


ut

.

The angular momentum is dire
tly 
al
ulated from the position and velo
ity (r;v) at ea
h

time step. We should note that, due to the nature of the semi-analyti
al 
ode, it is not in
luded

the e�e
ts that the mass loss introdu
es on the angular momentum evolution, whi
h may be not

negligible in orbits with strong variations of the galaxy potential, for instan
e, in low e

entri


orbits.

Remark

We also use this s
heme to 
al
ulate the energy and angular momentum evolution from the N-body

data given by superbox.

Whereas the kineti
 energy is dire
tly 
al
ulated from the numeri
al output, the value of the

potential is derived by making use of eq. (4.10). In doing this, we assume that,

(i) N-body haloes follow perfe
tly the distribution fun
tion given in the eq. (3.1) negle
ting, there-

fore, the evolution subsequent to the implementation of the system in superbox. This was proved

by the numeri
al test of Boily, Kroupa & Pe~narrubia (2001) to be an a

urate approximation as far

as the satellite remains in the inner part of the halo (where around the 80 per 
ent of the mass is

in
luded). (ii) We also negle
t the 
hange in the distribution due to the self response of the system

to the satellite presen
e. (iii) We do not take into a

ount the motion of the halo 
entre-of-mass

due to the satellite orbit, whi
h is of the order of M

s

=M

g

, where r is the satellite initial radius.

This approximation 
auses the presen
e of periodi
 os
illations in the angular momentum and in

the energy 
urves as we show in following Chapters.
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Chapter 5

Dynami
al fri
tion theory

5.1 Introdu
tion. Mathemati
al tools

A gravitating body moving through a ba
kground of lighter parti
les su�ers from a drag fore due

to the intera
tion with its own indu
ed wake. For 
ollisionless systems the 
lassi
al Chandrasekhar

expression (Chandrasekhar 1943), based on the perturbation theory, has been shown to be useful

in determining the orbital de
ay of 
lusters and satellites around spheri
al ba
kgrounds, su
h as

ellipti
al galaxies (e.g Lin & Tremaine 1983, Cora, Muzzio & Vergne 1997 and referen
es therein).

Although this formula was inferred for uniform ba
kgrounds, it is often applied to inhomogeneous

systems by making use of the lo
al approximation and negle
ting the �rst and higher orders of

dynami
al fri
tion. There are still open issues, for whi
h the e�e
ts of Chandrasekhar expression

on the satellite dynami
s are not 
lear. For instan
e, several authors 
laim (e.g Colpi, Mayer &

Governato 1999, Cora, Muzzio & Vergne 1997) that this treatment of dynami
al fri
tion leads

to a 
ir
ularisation of the orbit that is not present on the numeri
s, whereas van de Bos
h et al.

(1999), making a statisti
al survey of satellite e

entri
ities, do not observe su
h an e�e
t.

Re
ently, there have been applied other perturbation s
hemes in other to give a des
ription

of the fri
tion from the global intera
tion satellite-galaxy. For example, the Theory of Linear

Response (TLR) has been su

essful in des
ribing the de
ay of satellites in spheri
al systems (Colpi,

Mayer & Governato 1999, Nelson & Tremaine 1999). This method infers analyti
ally the 
olle
tive

response of the ba
kground to the satellite motion (the satellite is 
onsidered as a perturbation)

and 
al
ulates the gravitational for
e of the perturbed parti
les (wake) on the satellite. Despite

the 
ompleteness of the method, it su�ers from di�erent limitations: (i) This s
heme assumes a

spheri
al symmetri
 ba
kground. The develop of the s
heme to other symmetries would be very


ompli
ate, (ii) the dynami
al fri
tion for
e is a result of a time integral that preserves the a
tual

dynami
s of the satellite and the dynami
s of the galaxy bodies. One 
an readily see the numeri
al


ompli
ations that in pra
ti
e this fa
t in
ludes: to 
al
ulate dynami
al fri
tion at a given position

(with a given velo
ity) it is ne
essary to know all the previous positions along whi
h the satellite

moved.

Another s
heme to des
ribe the drag for
e experien
ed by satellites orbiting around spheri
al

systems has been 
arried out by S�an
hez-Sal
edo & Brandenburg (1999, 2001). The investigation

was done for a gaseous ba
kground with an inhomogeneous density pro�le. The results are given

in terms of the lo
al response of the galaxy to the satellite perturbation, �nding that (i) the de
ay

time is independent of the initial e

entri
ity, (ii) the Coulomb fa
tor � = b

max

=b

min

(where, b

max

and b

min

are the maximum and minimum impa
t parameters, respe
tively) varies linearly with the

satellite gala
to-
entre distan
e, (iii) besides the fri
tion for
e dire
ted against the satellite motion

(the so-
alled \drag for
e") it appears a perpendi
ular 
omponent of the order of the parallel one.

It is however un
lear how to interpret the results for a stellar system, although it seems obvious

that the perpendi
ular 
omponent may be not negligible, playing a important role in a

ounting

for the 
hange over the satellite orbital e

entri
ity.

49
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We have based our investigation of dynami
al fri
tion on the perturbation theory, following the

method of Chandrasekhar and, a posteriori Binney (1977). The aim is to develop the �rst order

term of dynami
al fri
tion and infer the e�e
ts that it may indu
e on the satellite dynami
s. We

also 
larify the approximations employed when using Chandrasekhar's and Binney's formul� and

the limits inherent to them. Along our study, we analyse the e�e
ts of the velo
ity dependen
e of

the Coulomb fa
tor and show its importan
e in order to 
al
ulate the �rst order term. Re
ently,

Hashimoto, Funato & Makino (2002) have shown that a linearly dependent Coulomb fa
tor �ts

better to the numeri
al 
al
ulations in pure stellar galaxies (as it has been found in gaseous

systems). In this Chapter we apply the perturbation theory and the lo
al approximation to �nd a

fun
tion �(r) that agrees with the our analyti
al s
heme. In subsequent Chapters we investigate,

�rst, the degree of improvement of this assumption in �tting the numeri
al results and, se
ond,

the di�eren
es that it yields on the satellite dynami
s.

5.1.1 Analyti
al method

In this Se
tion the basis of the method we follow is explained, together with the approximations

employed and the 
onditions under whi
h 
an be applied.

The perturbation theory

A massive body travelling through a medium of mu
h lighter parti
les experien
es en
ounters that


an be treated like two-body 
ollisions; higher order en
ounters like three-, four-body 
ollisions

are negligible.

The perturbation theory assumes that the �nal 
hange over the satellite properties is the sum

of small alterations as a result from individual (independent) two-body en
ounters.

Therefore, the 
ondition under this theory 
an be employed is

m=M

s

<< 1;

where m is the mass of a ba
kground parti
le and M

s

the mass of the heavy body.

Let's assume that the massive body moves through a medium with distribution fun
tion f(r;v).

The perturbation theory assures that, if �v is the 
hange over the velo
ity ofM

s

after a two-body


ollision, the total 
hange at a given time is

Z Z

�vd�f(r;v)d

3

rd

3

v;

where the integration is over a given volume of the impa
t parameter phase-spa
e and � is a

fun
tion that depends on the relative velo
ity between the massive body and the ba
kground

parti
les (as we shall see, this fun
tion is linear if assuming straight line en
ounters).

The straight line approximation

The 
hange over the velo
ities of two parti
les that 
ollide 
an be des
ribed in isolation, as the

motion of a redu
ed parti
le with mass � = mM

s

=(m+M

s

) in a Keplerian potential � = �(m+

M

s

)=r, where r is the relative distan
e between both parti
les (see e.g BT, Se
tion 7.1), whi
h

is equivalent to the absen
e of an external potential during the en
ounter. De�ning t = 0 as the

minimum relative distan
e and (x; z) as the 
oordinates of the parti
le m relative to the bodyM

s

,

we have that the extrapolation to t! 1 results to an evolution of the relative velo
ity V ! V

0

,

and z ! b

0

, where z is 
omponent perpendi
ular to V

0

. The value b

0

is the so-
alled impa
t

parameter.

It is evident that if the medium is inhomogeneous, it appears an external potential during the

two-body en
ounter that varies the dynami
s and, therefore, the �nal 
hange over the massive

body velo
ity. The possible dependen
e of dynami
al fri
tion on the system inhomogeneity is still

un
lear and beyond our study. However, it is ne
essary to 
larify the approximation that one
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usually assumes when applying Chandrasekhar's formula for non-homogeneous systems, whi
h is


alled the straight line approximation.

To determine the a

ura
y of this approximation, one must �rst 
al
ulate the exa
t 
ollision

equations in su
h a medium.

The orbit of two parti
les that move in a medium with a given density pro�le and 
ollide 
an

be inferred from the equations

d

2

R

m

dt

2

= F

g

(R

m

)�

GM

r

2

e

r

(5.1)

d

2

R

M

dt

2

= F

g

(R

M

)�

Gm

r

2

e

r

;

where R denotes the distan
e to the galaxy 
entre, r the relative distan
e between both parti
les,

with unit ve
tor e

r

, and F

g

being the galaxy for
e.

These equations represent a
tually the redu
ed three body problem in a �xed potential, with

no analyti
al solution. To go deeper into the problem, we must simplify our equations by making

some assumptions.

The �rst one is to 
al
ulate the e�e
t of the galaxy potential as a tidal intera
tion, by expanding

the for
e as

F

g

(R

m

) = F

g

(R


m

) +rF

g

�

�


m

r

m

+ :::+O

�

r

m

R


m

�

(5.2)

F

g

(R

M

) = F

g

(R


m

) +rF

g

�

�


m

r

M

+ :::+O

�

r

M

R


m

�

;

where we de�ne the ve
tors

R = R


m

+ r;

and R


m

being the 
entre-of-mass of the pair M;m, i.e,

R


m

�

MR

M

+mR

m

M +m

:

The potential of a spheri
ally-symmetri
 system �

g

is

�

g

= �

GM

g

(R)

R

� 4�G

Z

1

R

�(r

0

)r

0

dr

0

; (5.3)

whi
h produ
es a tidal for
e per unit mass

F

tid

� rF

g

�

�


m

� r = �

�

2

�

g

�R�R

�

�

�

�


m

� r =

GM

0

R

3


m

�

(3�� �

0

)(n � r)n� �r

�

; (5.4)

where M

0

is the total mass of the galaxy, �(R) the normalised mass pro�le and �

0

(R) a fun
tion

de�ned as

� =

M

g

(R)

M

0

(5.5)

�

0

=

d�(R)

dlnR

;

and n is the unitary ve
tor dire
ted to the 
entre-of-mass of the pair n � R


m

=R


m

.

At order (r=R


m

) eq.(5.2) be
omes therefore

d

2

R

m

dt

2

= F

g

(R


m

) +rF

g

�

�


m

r

m

�

GM

r

2

e

r

(5.6)

d

2

R

M

dt

2

= F

g

(R


m

) +rF

g

�

�


m

r

M

�

Gm

r

2

e

r

:
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The relative motion of the two parti
les with respe
t to the 
entre-of-mass is from last equation

and eq.(5.4),

d

2

r

dt

2

=

GM

0

R

3


m

r

�

(3�� �

0

)(n � e

r

)n� �e

r

�

�

G(M +m)

r

2

e

r

; (5.7)

de�ning the relative ve
tor,

r = r

m

� r

M

= re

r

:

Therefore, in the tidal approximation the three-body problem is simpli�ed. Of 
ourse, this

approximation is only valid in the range r=R


m

<< 1. We 
an see that the for
e is not radial but

has a 
omponent parallel to the gala
to-
entre ve
tor n whi
h, as a matter of fa
t, implies that the

tidal for
e makes the angular momentum not to be 
onstant along the intera
tion. Equivalent to

the motion in an axis-symmetri
 system we have that the 
omponent L

z

=
onst, with the z-axis

perpendi
ular to e

r

.

The evolution of the relative distan
e in su
h a potential is given by the equations (BT, Se
tion

3.2),

�r = �

GM

0

R

3


m

r��

G(M +m)

r

2

(5.8)

�z =

GM

0

R

3


m

r(3�� �

0

) 
os �;

where 
os � = n � e

r

.

These equations represent the �rst step in order to exa
tly determine the e�e
ts of the galaxy

potential on the des
ription of the two-body en
ounter. However, due to the 
omplexity of su
h a

subje
t, we de
ided to postpone it for a further work.

The meaning of the \straight line approximation" in inhomogeneous systems is now 
lear, sin
e

this is just to assume that the tidal for
e 
an be negle
ted in front of the two-body for
e along

the whole intera
tion, i.e

G(M +m)

r

2

>>

GM

0

R

3


m

r:

For purposes that we see below, it is 
onvenient to de�ne the s
ale parameter

l

tid

=

�

(M +m)

M

0

jj(3�� �

0

)(n � e

r

)n� �e

r

jj

�

1=3

R


m

; (5.9)

so that the validity of the approximations holds for r << l

tid

, equivalently to the anterior 
ondition.

We note, that l

tid

!1 for systems with 
onstant for
e, su
h as an in�nite homogeneous medium.

The lo
al approximation

Contrary to the analyti
al treatments of dynami
al fri
tion that suppose the satellite as a pertur-

bation of the ba
kground, our s
heme analyses dire
tly the perturbation of the system parti
les

on the satellite motion. In this work frame, the properties of these parti
les are given lo
ally,

whi
h means that, so to say, the satellite \does not remember its orbit", i.e, the dynami
al fri
tion

is independent of the previous intera
tion along its motion. This approximation assumes that

the ba
kground remains un
hanged despite of the satellite presen
e, having therefore a 
onstant

distribution fun
tion.

In pra
ti
e, this allows us to treat the global properties of the systems lo
ally by expanding

the spatial distribution fun
tion n(r) as

n(r) = n(r

M

) +rn

�

�

r

M

(r� r

M

) +O

�

r � r

M

r

�

2

; (5.10)

if the distribution fun
tion takes the form F (r;v) = n(r)f(v), where the spatial dependen
e of

the distribution fun
tion in velo
ity spa
e is negle
ted by means of the lo
al approximation.
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One 
an see that this approximation is only valid if (i) the satellite does not alter dramati
ally

the distribution fun
tion of the system and (ii) the distribution fun
tion a

omplishes that at r

r � r

M

<<

n

rn

�

�

�

�

r

M

0

� l;

where l is density s
ale-length.

For following 
al
ulations, it is useful to de�ne the density gradient ve
tor,

^
n =

rn(r

M

)

jjrn(r

M

)jj

: (5.11)

5.2 Dynami
al fri
tion in inhomogeneous systems

We make use of the perturbation theory in order to determine the 
hange over the satellite velo
ity

due to en
ounters with �eld parti
les. This s
heme is a fair approximation sin
e galaxies have a

huge parti
le number with mu
h lower mass than that of the satellite, whi
h we 
onsider as a rigid

body. Intera
tions satellite-ba
kground parti
le are treated as two-body 
ollisions, negle
ting the


ase of higher number of en
ounters o

urring at on
e due to its s
ar
e probability.

Consider �rst that the mass M travels through a ba
kground of in�nite number of parti
les of

mass m. The system is not homogeneous but has a distribution fun
tion f(x;v

m

). We are inter-

ested in the study of dynami
al fri
tion in systems with an axi-symmetri
 distribution fun
tion,

whi
h is assumed to be Gaussian in the velo
ity spa
e

f(x;v

m

) � n(x)f(v

m

) (5.12)

f(v

m

) �

1

(2�)

3=2

exp[�(v

2

R

=2�

2

R

+ v

2

z

=2�

2

z

)℄

�

2

R

�

z

;

where (�

R

; �

z

) are the 
omponents of the velo
ity distribution spheroid oriented to the axi-

symmetry plane and a

omplishing that �

R

> �

z

. These both quantities are 
onstant, being

related by the de�nition of e

entri
ity e

2

v

� 1��

2

z

=�

2

R

. The results obtained for su
h a distribution


an be extrapolated to spheri
al symmetri
 systems in the limit e

v

= 0.

By means of the straight line approximation, the 
hange of velo
ities experien
ed by a parti
le

of mass M , moving with velo
ity v

M

, due to a en
ounter with a mu
h lighter parti
le of mass m

with velo
ity v

m

is (BT, eqs. 7-10)

j�v

M?

j =

2mbV

3

0

G(M +m)

2

�

1 +

b

2

V

4

0

G

2

(M +m)

2

�

�1

(5.13)

j�v

Mk

j =

2mV

0

M +m

�

1 +

b

2

V

4

0

G

2

(M +m)

2

�

�1

;

where V

0

= V(t = �1), V = v

m

�v

M

being the relative velo
ity between both parti
les,and

b their impa
t parameter. The notation assumes the perpendi
ular and parallel values of �v

M

with respe
t to the ve
tor V

0

. We de�ne

a(V

0

) =

G(M +m)

V

2

0

;

to simplify the notation. We note that this quantity has distan
e dimension and 
orresponds to

the impa
t parameter with 90

Æ

de
e
tion..
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5.2.1 En
ounter rate and mean-�led 
orre
tion

Following Binney's 
al
ulus, we shall de�ne a 
oordinate system su
h the z-axis is parallel to the

relative velo
ity V

0

and the x-axis parallel to the unity ve
tor
^
x � [(V

0

� rn) � V

0

℄=k(V

0

�

rn)�V

0

k. Let � be the angle between V

0

and rn.

In this frame the rate at whi
h M en
ounters \stars" that have velo
ities in the velo
ity-spa
e

element d

3

v

m

and impa
t-parameters between b and b+ db is

d� = bdb � d� � V

0

� f(r;v

m

)d

3

V

0

� dA � V

0

� f(r;v

m

)d

3

V

0

; (5.14)

where dA = bdbd� is the element of area in the plane with normal ve
tor V

0

. The fa
t that

the distribution fun
tion remains 
onstant along the relative velo
ity dire
tion, with the rate of

en
ounters being proportional to V

0

, is a dire
t 
onsequen
e of the straight line approximation.

Had the presen
e of the main �eld produ
ed by the inhomogeneous density pro�le taken into

a

ount, the 
entre-of-mass of the two-body systems would be a

elerated, leading to a time-

dependent en
ounter rate (see Se
tion 5.2). Even if employing the straight line approximation, it

is ne
essary to subtra
t the mean-�eld for
e that appears when integrating along the V

0

dire
tion

due to the inhomogeneity of the spatial distribution fun
tion. Denoting the mean-�eld for
e within

the interval z; z + dz as dF

mf

we have by symmetry that

dF

mf

=

Gmf(r;v

m

)dAdzd

3

V

0

b

2

+ z

2

(b; z) (5.15)

F

mf

= Gmf(r;v

m

)d

3

V

0

dA

Z

1

�1

(b; z)

b

2

+ z

2

dz

= 2Gmf(r;v

m

)dAd

3

V

0

b

b

2

;

the only term that survives is that parallel to the impa
t parameter ve
tor. The main-�eld


ontribution, therefore, shall be removed when integrating over the perpendi
ular 
hange of the

satellite velo
ity.

5.2.2 Integration over impa
t parameters

The 
ontribution to the for
e is due to the parti
le 
ow a
ross the plane (r � V

0

) = 0 in the

element of area dA (see Fig 5.1). The 
oordinates in the plane are x = (x; y; 0).

The integration over b is 
arried out in the interval (b

0

; b

1

), b

0

; b

1

being the minimum and

maximum impa
t parameters, respe
tively. The physi
al meaning of these two quantities is up to

now an open topi
 of dis
ussion.

Usually, if the satellite is a point-mass, b

0

is interpreted as the impa
t parameter for whi
h the

angle de
e
tion is �=2, whereas it is estimated as b

0

' r

h

for an extended body, where r

h

is the

half-mass radius.

The 
on
ept of maximum impa
t parameter is even harder to dis
ern. Initially it was used to

avoid the divergen
e of the spatial integration of eqs. (5.13), relating its 
on
rete value to the

mass extension of the system. Due to the dependen
e of the satellite dynami
s on the parameters

of the numeri
al 
al
ulations (su
h as the parti
le number, resolution ...et
), the value of b

1

is

�tted to the resulting 
urves. Re
ently, Hashimoto, Funato & Makino (2002) have 
laimed the

possibility of a maximum impa
t parameters that linearly depend on the satellite gala
to-
entre

distan
e, observing a quantitative improvement of the �t to the numeri
al results.

For 
ompleteness, the value of b

1

must agree with the diverse approximations employed along

our study.

(i) The lo
al approximation. The integration over b 
annot be extended to distan
es larger than

n(r)=rn(r), for whi
h this approximation loses its validity, thus

b

1

�

n(r)

rn(r)

� l;
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x

F

Fδ

δ

φ

dA

n

b

V

θ

��

Figure 5.1: Coordinate system used along our 
al
uli.

(ii) The straight line approximation and the perturbation theory. These both s
hemes imply that

the 
ollision time (�


ol

� 2b=V

0

) must be shorter than the lo
al dynami
al time (�

dyn

� l=v

M

). In

this 
ase, sin
e the en
ounter o

urs in a short time, the line straight approximation simpli�es the

approa
h of the parti
le m to the parti
le M as a straight line, and the perturbation theory 
an

be employed sin
e the velo
ity 
hange of M is small. This 
ondition 
an be written as

�


ol

=

2b

V

0

<< �

dyn

=

l

v

M

:

Combining (i) and (ii) one �nds that, a

ording with our s
heme, the maximum impa
t pa-

rameter is

b

1

= l �min

�

1;

V

0

2v

M

�

;

whi
h 
an be approximated by the fun
tion

b

2

1

' b

2

0

+Q

2

l

2

V

2

0

4v

2

M

+ V

2

0

; (5.16)

guaranteeing b

1

> b

0

8V

0

. The fa
tor Q is introdu
ed ad ho
 to �t to the numeri
al data.

Integration at order 0

For 
omparison, we in
lude the 
al
ulus of dynami
al fri
tion at order 0 of the spatial distribution

expansion around the satellite position r

M

, whi
h 
orresponds to Chandrasekhar's formula. The

integration over the perpendi
ular velo
ity 
hange is zero by symmetry, so that at this order only

the parallel 
omponent 
ontributes to the fri
tion for
e. From eq. (5.13)

F

(0)

=

Z

d

3

V

0

n(r

M

)f(v

m

)

2Gm

a(V

0

)

V

0

V

2

0

Z

b

1

b

0

db

b

1 + b

2

=a

2

(V

0

)

Z

2�

0

d� (5.17)

= 4�G

2

m(M +m)n(r

M

)

Z

d

3

V

0

V

0

V

2

0

f(v

m

) ln�;
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Figure 5.2: Coulomb logarithm as a fun
tion of V

0

. We use a singular isothermal model for the

galaxy density pro�le and a mass ratio of M=M

g

= 0:01, where M

s

= 0:1.

where

� �

�

1 + b

2

1

=a

2

(V

0

)

1 + b

2

0

=a

2

(V

0

)

�

1=2

(5.18)

is the so-
alled 'Coulomb fa
tor'. In the literature, one usually �nds that � = b

1

=b

0

= 
onst� 1,

negle
ting, therefore, its velo
ity dependen
e (i.e, assuming a(V

0

) = a(V

0

= �). To illustrate

the order of a

ura
y of this assumption, in Fig. 5.2 we plot the resulting Coulomb logarithm of

inserting eq. (5.16) into (5.18), denoted as ln�(v

s

; V

0

), for three di�erent values of the satellite

velo
ity. As we 
an see, it approa
hes asymptoti
ally to a given value as the relative velo
ity

in
reases, whereas it tends to zero for V

0

! 0, whi
h represents a natural 
ut-o� for dynami
al

fri
tion at low relative velo
ities. It interesting to note that, in the regime of high satellite velo
ities,

the variability of ln� in
reases.

The approximation of 
hoosing a 
onstant Coulomb fa
tor, whose value des
ribes the satellite

de
ay in numeri
al 
al
ulations, 
an be interpreted as the average over a 
ertain range of satellite

velo
ities, for whi
h the Coulomb logarithm within v

M

�� is 
onsidered 
onstant (note that, sin
e

the velo
ity distribution is Gaussian, the maximum 
ontribution to the fri
tion for
e 
omes from

those ba
kground parti
les with V

0

= v

M

).

Integration at 1st order

After integrating over d� one 
an readily 
he
k that the only term surviving is that parallel to b,

whi
h 
orresponds to the perpendi
ular 
omponent of the velo
ity 
hange. After 
orre
ting the

mean-�eld e�e
ts of eq. (5.15) one has

�v

M?

d� � F

mf

= �2Gmrn(r)

f(v

m

)

V

0

b

b

2

�

1 +

b

2

a

2

(V

0

)

�

�1

dAd

3

V

0

;
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whi
h, after the integration over the impa
t parameters, leads to the for
e

F

(1)

= �2Gmn(r

M

)

Z

d

3

V

0

f(v

m

)

Z

b

1

b

0

db

b

2

�

1 +

b

2

a

2

(V

0

)

�

�1

(5.19)

�

Z

2�

0

b(
os�; sin �)

rn(r

M

)

n(r

M

)

= �

2�Gmn(r

M

)

l

sin �

Z

d

3

V

0

f(v

m

)a

2

(V

0

) ln� �
^
x;

where
^
x is a ve
tor perpendi
ular to V

0

, ln � the Coulomb logarithm de�ned in eq. (5.18) and �

the angle between rn and

^

V

0

.

5.2.3 Integration over velo
ity spa
e

The equations for the parallel and perpendi
ular terms of dynami
al fri
tion are integrated for

systems with velo
ity distributions presented in eq. (5.12).

Integration at order 0

The integration at order 0 is given in Binney (1977). For 
ompleteness, we reprodu
e the 
al
ulus.

Assuming that the Coulomb logarithm is 
onstant, one has that from eq. (5.17) the integration

over velo
ity is a
tually equivalent to the for
e integration of the \mass distribution" f(v

m

),

1

Z

d

3

v

m

V

0

V

2

0

f(v

m

) ln� = hln �i

d

dv

M

Z

d

3

v

m

f(v

m

)

V

0

; (5.20)

where hln �i is the averaged Coulomb logarithm.

Rewriting the distribution fun
tion (5.12) in ellipti
al 
oordinates one has

f(m

2

) =

1

(2�)

3=2

exp[�m

2

℄

�

2

R

�

z

; (5.21)

where

m

2

=

v

2

R

2�

2

R

+

v

2

z

2�

2

z

:

The velo
ity distribution is therefore formed by equivalent homeomoids with 
onstant axis-ratio,

whi
h allows us to use the s
heme found by Chandrasekhar (1960) to derive the \potential" for

su
h a distribution f(v

m

) = f(m

2

) at the \point" v

M

. The integrals I

i

= r

i

V 
an be written,

I

i

=

Z

d

3

v

m

V

0;i

V

2

0

f(v

m

) =

d

dv

i;M

Z

d

3

v

m

f(m

2

)

V

0

:

Be a shell of \mass" dM = 4��

2

R

�

z

f(m

2

)m

2

dm. Sin
e the \potential" V inside a shell is


onstant one has that V (v

M

) = V (0), therefore

dV =

GdM

4��

2

R

�

z

Z

d

3

v

m

V

0

=

GdM

4��

2

R

�

z

Z

d

3

v

m

v

m

=

GdM

8��

2

R

�

z

Z

S

v

2

m

dw;

where w is the solid angle integrated over the surfa
e S.

In spheri
al 
oordinates (v

m

; �; �) the modulus 
an be written as

1

v

2

m

=


os

2

�

�

2

z

+

sin

2

�

�

2

R

;

1

Sin
e by de�nition V

0

= v

m

� v

M

, the integration over the velo
ity spa
e is independent of the in�nitesimal

we sele
t, this means, the 
al
ulus is equivalent either integrating over d

3

v

m

or over d

3

V

0

.
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inserting this equation and integrating over �

dV =

dM

2

�

z

Z

�=2

0

se


2

� sin �d�

(�

2

R

+ �

2

z
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�)
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= �dM

Z

1

0

du

(�

2

R

+ u)(�

2

z

+ u)

1=2

;

where u = �

2

z

tan

2

�. Integrating over dm from m = 1 to m(u) one has that

I

i

=

d

dv

i;M

Z

d

3

V

0

f(m

2

)

V

0

(5.22)

= 2��
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�
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d
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2
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;

where the subindex i = (R; z) and

�(q; e

v

) = (1 + q)

p

1� e

2

v

+ q; q =

u

2�

2
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m

2

(u) =

v

2

R
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2
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v

2

z

2�

2
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+ u

:

Inserting the value of I

i

into eq. (5.17) one �nds

F

(0)

i

= �

p

2��

h

(r)G
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M

2

s

p

1� e

2

v

hln �i
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�

z

B

i
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i

: (5.23)

The values of B

i

are in 
ylindri
al 
oordinates,

B

R

=

Z

1

0

dq

(1 + q)

2

(1� e

2

v

+ q)

1=2

exp

�

�

v

2

R

=2�

2

R

1 + q

�

v

2

z

=2�

2

R

1� e

2

v

+ q

�

B

z

=

Z

1

0

dq

(1 + q)(1� e

2

v

+ q)

3=2

exp

�

�

v

2

R

=2�

2

R

1 + q

�

v

2

z

=2�

2

R

1� e

2

v

+ q

�

:

As Binney shows, the mass M

s

will su�er a de
rease of its orbital plane in
lination whenever

B

z

> B

R

(oblate halo). If the orbit is either 
oplanar or polar, the in
lination remains 
onstant

sin
e, respe
tively, either the perpendi
ular or the planar 
omponent of v is zero. One 
an easily


he
k that this expression reprodu
es Chandrasekhar's when e

v

= 0.

The redu
tion of the velo
ity integration into the potential s
heme is, unfortunately, not pos-

sible for non-
onstant Coulomb fa
tors, due to the dependen
e on V

0

rather that on v

m

. In this


ase, the \density" f(v

m

) ln[�(V

0

)℄ 
an not be expressed as a fun
tion of m

2

, whi
h makes the

potential not to be 
onstant in the inner part of a shell, the integrations being more 
ompli
ate.

The simplest 
al
ulation is for a 
oordinate system oriented in the velo
ity spa
e, where the

z-axis is parallel to the velo
ity v

M

. De�ning the ve
tor (n

x

; n

y

; n

z

) as parallel to the velo
ity

dispersion ellipsoid, we have that �

0

= 
os �

0

= n

z

� v̂

m

, � =
^
v

M

�

^

V

0

and �

M

= n

z

� v̂

M

, whi
h

a

omplishes v̂

m

� n

z

= 
os �

0

= 
os(� + �

M

)

v

2

m

= V

2

0

+ v

2

M

+ 2v

m

v

M


os � (5.24)

f(v

m

) =

1

(2�)

3=2

�

2

R

�

z

exp

�

�

v

2

m

2�

2

R

�

1� 
os

2

�

0

+


os

2

�

0

1� e

2

v

��

=

1

(2�)

3=2

�

2

R

�

z

exp

�

�

v

2

m

2�

2

R

�

exp

�

� �

v

v

2

m

2�

2

R


os

2

�

0

�

;
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where �

v

= 1=(1 � e

2

v

) � 1 and, therefore, with null value if the system has isotropi
 velo
ity

distribution.

Substituting the de�nition of v

m

and �

0

one �nds the \simple" form of the distribution fun
tion

in this 
oordinate system

f(V

0

; �; v

M

; �

M

) =

1

(2�)

3=2

�

2

R

�

z

exp(�X

2

�W

2

) exp(�u 
os �) (5.25)

exp[��

v

(X

2

+W

2

) 
os

2

(� + �

M

)℄ exp[��

v

u 
os � 
os

2

(� + �

M

)℄;

where W = V

0

=

p

2�, X = v

M

=

p

2� and u = 2WX .

The integrals are,

I =

Z

d

3

V

0

V

0

V

2

0

f(v

m

) ln�(V

0

)

=

Z

dV

0

sin �d�d�V

0

f(V

0

; �; v

M

; �

M

) ln�(V

0

);

where it has been used that d

3

V

0

= V

2

0

dV

0

sin �d�d�. The integration over � is trivial, leading to,

I = 2�v

M

Z

1

0

dV

0

V

0

ln �(V

0

)

Z

�=2

��=2

d� sin �f(V

0

; �; v

M

; �

M

): (5.26)

The presen
e of �

M

in the integral a

ounts for the result of Binney, who obtains an anisotropi


fri
tion due to the inequality B

z

> B

R

in eq. (5.23). This e�e
t vanishes if neither the Coulomb

logarithm nor the distribution fun
tion depend on � as it is the 
ase of systems with spheri
al

symmetry. The integration over � is not analyti
al if the distribution fun
tion is that of eq. (5.25).

In Appendix B we develop the integrals for the isotropi
 
ase, showing that the solution re
overs

Chandrasekhar's equations if the Coulomb logarithm is 
onstant. If ln� is written in the form of

eqs. (5.16) and (5.18), the integration of eq. (5.26) with e

v

= 0 leads to

F

(0)

=

2�G

2

mn(r

M

)(M +m)

2

�

2

Z

1

0

dW ln �g(W ) (5.27)

� K


h

Z

1

0

dW ln �g(W );

where

g(W ) =

2

p

�

exp(�W

2

�X

2

)

WX

�


osh(2WX)�

sinh(2WX)

2WX

�

(5.28)

�

2

= 1 +

Q

2

l

2

a

2

(X) + b

2

0

X

2

4X

2

+W

2

: (5.29)

In Fig. 5.3 we plot the dependen
e of the zero order dynami
al fri
tion on the satellite velo
-

ity. We use an isothermal halo to 
al
ulate the galaxy parameters due to its simpli
ity, whi
h

a

omplishes that M=M

g

is inversely proportional to the gala
tro-
entre distan
e. We note that

the variation of ln � is independent of the model by means of the lo
al approximation. The �tting

fa
tor Q = 1. The Chandrasekhar formula is plotted for the 
ase hln �i = 1:5 (dashed line).

The for
e tends to zero for small and large velo
ities whereas the maximum is lo
ated around

the 
ir
ular velo
ity v

M

=

p

2� (X = 1). The �gure shows a de
rease of the fri
tion at small

distan
es due to the presen
e of the fa
tor l in the Coulomb logarithm. This distan
e dependen
e

is not present in Chandrasekhar's formula, so that we expe
t strong di�eren
es in the de
ay 
urves

depending on whi
h formula we use. In the 
ase of �xing l to some value, a proper sele
tion of

Q (or equivalently ln�) will produ
e similar results in the orbital evolution, 
on
luding that, the

dependen
e of � on the relative velo
ity introdu
es small variations on the resulting for
e.
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Figure 5.3: Zeroth order dynami
al fri
tion as a fun
tion of the satellite velo
ity and the satellite

mass ratio. The Chandrasekhar fri
tion is plotted for hln �i = 1:5 (dashed line).

Integration at �rst order

The integration over velo
ities of the �rst order fri
tion is done in a similar manner. We note that

the unit ve
tor perpendi
ular to the relative velo
ity was de�ned as

^
x =

^
n� (

^
n �

^

V

0

) �

^

V

0

jj
^
n� (

^
n �

^

V

0

) �

^

V

0

jj

;

where the have made use of the freedom in the sele
tion of �.

Sele
ting the same 
oordinate system as that of the integration at order zero, we have that

Z

2�

0

xd� = �(1 + 
os

2

�)
^
e

?

+ 2� sin

2

�
^
v

M

;

where

^
e

?

=

^
n� (

^
n �

^
v

M

) �
^
v

M

jj
^
n� (

^
n �

^
v

M

) �
^
v

M

jj

is an unit ve
tor perpendi
ular to the satellite velo
ity. We denote hereinafter \parallel" and

\perpendi
ular" as referring to the satellite velo
ity ve
tor. From eq. (5.20) the integrals are

I

k

= 2�

Z

1

0

dV

0

ln(V

0

)

Z

�=2

��=2

d� sin

3

�

f(V

0

; �; v

M

; �

M

)

V

2

0

(5.30)

I

?

= �

Z

1

0

dV

0

ln(V

0

)

Z

�=2

��=2

d� sin �(1 + 
os

2

�)

f(V

0

; �; v

M

; �

M

)

V

2

0

:

The integration over � is only analyti
 for systems with isotropi
 distribution. The result is

given, as for the zero order integration, in Appendix B being

F

(1)

k

= �

1

2

G(M +m)

4�

2

l


os	K


h

Z

1

0
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^
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Figure 5.4: Evolution of 	 along the orbit H1S130a.

where 	 is de�ned as 
os	 =
^
n �

^
v

M

and the fun
tion

h(W ) =

2

p

�

exp(�W

2

�X

2

)sinh(2WX): (5.32)

As Binney found, the �rst order dynami
al fri
tion diverges as the relative velo
ity tends to zero

if the Coulomb logarithm is 
onstant. However, taking into a

ount the velo
ity dependen
e this

divergen
e disappears, what avoids implementing a lower 
ut-o� on V

0

.

The �rst order term has been divided into two ve
torial 
omponents with respe
t to the satellite

velo
ity, where the magnitude of of them depends on the orientation of the orbit. Going to

the extreme 
ases one has that, (i) 
ir
ular orbits lead to the banishment of the parallel term

(
os	 = 0) whereas the perpendi
ular term 
an be 
onsidered a small 
orre
tion to the main �eld

of the galaxy expe
ting, therefore, no substantial e�e
ts on the orbital shape, (ii) for radial orbits

the term surviving is the parallel one. In this 
ase, the �rst order fri
tion a
ts as a 
orre
tion to

the zeroth order. In Fig. 5.4we plot the typi
al evolution of 	 for a satellite following an orbit

with e = (r

a

� r

p

)(r

p

+ r

a

)

�1

= 0:5, where r

a

; r

p

are apo and peri-
entre, respe
tively (this orbit


orresponds to the model H1S130a, see Chapter 6). The dire
tion between F

(0)

and F

(1)

varies

within a range of 40

o

, whereas 	 = �=2 
orresponds to the apo and peri-
entre passages.

In Fig. 5.5 we show the amplitude of the �rst order fri
tion 
ompared to the zeroth order.

The main di�eren
e between is that, whereas F

(0)

tends to zero for small satellite velo
ities, the

�rst order has a non-zero value for X = 0, whi
h 
auses the radio to diverge in this limit. The

ratio de
ays qui
kly with in
reasing velo
ities sin
e this term is proportional to 1=v

4

M

(meanwhile

F

(0)

/ 1=v

2

M

). We also observe no strong di�eren
es between the amplitude of the �rst order


omponents.

It is interesting to remark the smaller dependen
e of F

(1)

on the mass ratio (i.e gala
to-
entre

distan
e) as 
ompared to the zeroth order term. This is due to the presen
e of the fa
tor l = r

M

=2

in the denominator. This fa
t a

ounts for the in
rease of the �rst order fri
tion as the satellite

goes to inner regions of the system and vi
eversa when it moves outwards. However, the Coulomb

logarithm has the opposite dependen
e on the satellite distan
e, whi
h redu
es the �nal de
rease

of F

(1)

for in
reasing radii.
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Figure 5.5: Ratio of the 
omponents of the �rst order dynami
al fri
tion and the zeroth order for

di�erent velo
ities and mass ratios.

After analysing the amplitude and dire
tion of the �rst order for
e, we expe
t small 
hanges

over the satellite orbit if this term is in
luded, whi
h will be studied in detail in Chapter 6 by


omparison with numeri
al 
al
ulations. If this is the 
ase, and the new term 
an be negle
ted we


onsider not ne
essary a further study in systems with anisotropi
 velo
ity distribution.



Chapter 6

Dynami
al fri
tion in spheri
al

systems

6.1 Introdu
tion

In Chapter 5 we have presented the di�erent approa
hes to dynami
al fri
tion obtained by means

of the perturbation theory. Here, we attempt to determine the degree of a

ura
y of ea
h of

them in order to reprodu
e the dynami
al fri
tion e�e
ts in systems with spheri
al symmetry and

density pro�le �(r).

The additional use of the lo
al approximation allows the separation between the e�e
ts of the

parallel and perpendi
ular 
omponents of the velo
ity 
hange, with respe
t to the relative velo
ity

of the en
ounter whi
h, after integrating over the impa
t parameters, 
orrespond to the zeroth

(F

[0℄

) and �rst (F

[1℄

) order of dynami
al fri
tion, respe
tively. The integration over the spatial

part of the impa
t parameter spa
e introdu
es in both orders a new fun
tion ln�, the so-
alled

Coulomb logarithm. Following the lo
al approximation, we have shown in Se
tion 5.2 that it

depends on V

0

; v

s

; l, the relative velo
ity, the satellite velo
ity and the s
ale length l =

�

�

�=r�

�

�

,

respe
tively. After integrating over the velo
ity part of the impa
t parameter spa
e d

3

V

0

, the

Coulomb logarithm a

omplishes that � = �(v

s

; l).

Our investigation 
overs the following studies,

� Case 1: Standard dynami
al fri
tion: 
al
ulus at zeroth order with 
onstant

Coulomb logarithm.

Authors have usually employed this approximation to 
alibrate the semi-analyti
 
odes by

�tting the data to the numeri
al results. Following this s
heme, the Coulomb logarithm is


onsidered as a free parameter, where the dependen
e on the density pro�le, the satellite

velo
ity and the relative velo
ity are negle
ted, by the fa
t that the logarithm varies slowly in

the range of l; v

s

along a typi
al orbit and that the integration over dV

0

is mainly weighted by

values of V

0

where the Coulomb logarithm is pra
ti
ally independent of the relative velo
ity.

Along the orbit, the approximation of � independent of l and v

s

is equivalent to 
onsider

the average over these two fa
tors. From eq. (5.17)

hln �i =

1

T

Z

C

dt

R

d

3

V

0

V

0

=V

2

0

f(v

m

)ln�(l; v

s

; V

0

)

R

d

3

V

0

V

0

=V

2

0

f(v

m

)

; (6.1)

where C denotes the satellite orbit and T the period. The distribution fun
tion in the

velo
ity spa
e is f(v

m

) and V

0

the relative velo
ity of the two-body en
ounter. If the

Coulomb logarithm is �tted to a set of orbits, this average extends to a sum over these

orbits.

� Case 2a: Dynami
al fri
tion at zeroth order with � = �(v

s

; V

0

).

Instead of using a 
onstant parameter hln �i, in Chapter 5 is presented a Coulomb fa
tor that

63
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expli
itely gives the fun
tion � = �(v

s

; V

0

; l) (see eq. 5.28), whi
h is developed in order to

introdu
e the diverse limits that the perturbation theory and the lo
al approximation indu
e

when integrating over the impa
t parameter spa
e. Despite that this expression depends on

the gala
to-
entre distan
e through the typi
al distan
e l, we also 
arry out 
al
ulations

where l is �xed to the initial value

�

�

�=r�

�

�

r

0

, where r

0

is the initial distan
e, in order to


ompare expli
itely the e�e
ts of the velo
ity dependen
e (v

s

) in the Coulomb logarithm.

The �tting pro
edure that we present below leads to the value of � that better �ts to the

numeri
al data, whi
h is equivalent to the average over l. One expe
ts this average to be

more a

urate the more 
ir
ular the orbit is, sin
e the range of variation of v

s

is smaller.

� 
ase 3a: Dynami
al fri
tion at zero order with � = �(v

s

; V

0

; l).

The value of l is 
al
ulated at ea
h point and introdu
ed in the Coulomb logarithm in order

to integrate over d

3

V

0

. In a re
ent paper Hashimoto, Funato & Makino (2002) 
arry out

N-body simulations in order to analyse the e�e
ts of the linear dependen
e of the Coulomb

fa
tor on the gala
to-
entre distan
e, �nding that the semi-analyti
al orbit �ts better to

the numeri
al one if � = r

s

=1:4�, where � is the softening s
ale-length of the N-body 
ode,

interpreted as the minimum impa
t parameter. Moreover, sin
e dynami
al fri
tion is redu
ed

at the peri-gala
ti
on passages, the ex
essive orbit 
ir
ularisation su�ered by the satellite

if using Chandrasekhar's formula with 
onstant hln �i is redu
ed. Unfortunately, they only

use one orbital model, so that it is un
lear whether this approa
h of dynami
al fri
tion

also produ
es a

urate �ts for a set of orbits with di�erent e

entri
ities. It is important

to remark that they treat the satellite as a point-mass, whi
h 
an be approximated as a

Plummer sphere with 
ore radius equal to the smoothing-length of the numeri
al 
ode. The

role played by the satellite mass loss in determining the orbital dynami
s is ambiguous

if a 
omparison between our results and those of Hashimoto, Funato & Makino (2002) is

performed sin
e, as we show below, the general behaviour of the radial evolution 
learly

shows strong di�eren
es.

� Case 4b and 5b: Dynami
al fri
tion at �rst order.

We in
lude the �rst order terms of dynami
al fri
tion, whi
h arise from the system inho-

mogeneity, in order to investigate the e�e
ts on the satellite orbit. We do not in
lude the

analysis for ln� =
onst sin
e this approa
h leads to a divergent solution of F

(1)

when in-

tegrating over dV

0

. Binney (1977) found a possible solution by in
luding ad ho
 a lower


ut-o� for small relative velo
ities, whi
h should be treated as a free-parameter. To avoid

the presen
e of this term, this study is 
arried out using a the Coulomb logarithm de�ned

in the eq. (5.28) for the two averages of � 
orresponding to the 
ases 2 and 3.

We employ the galaxy model presented in Chapter 3 for this analysis. We 
arry out a set

of numeri
al 
al
ulations, where the initial system is builded following the s
heme presented in

Se
tion 2.2. and evolved by superbox. Subsequently, the semi-analyti
 
ode of Chapter 4 is used

to �t this data with the di�erent theoreti
al analysis. The satellite mass evolution is 
al
ulated

from the numeri
al data (see Se
tion 4.3) and introdu
ed as an external input in the semi-analyti



ode to avoid the possible dis
repan
ies indu
ed by the theoreti
al mass loss s
heme. Even though,

the treatment of the satellite as a point-mass negle
ts e�e
ts su
h the 
hange of angular momentum

due to an anisotropi
 mass loss and those arising from the galaxy potential a
ting on the tidal

arms, whi
h may alter the satellite orbit whenever the mass 
hange be
omes important.

6.2 Numeri
al 
al
ulations

6.2.1 Galaxy and satellite parameters

The sele
tion of the satellite and galaxy parameters used along our study is outline in Chapter 3.

We analyse dynami
al fri
tion in the spheri
al halo H1. This will permit the analyse of the

dis
 and bulge e�e
ts on the satellite dynami
s in a following Chapter.
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The values of the galaxy and satellite (S1 model) parameters 
an be found in the Tables 3.1

and 3.2, respe
tively.

6.2.2 N-body parameters

The numeri
al simulations were 
arried out by using the parti
le mesh-
ode Superbox (see Chap-

ter 2) to evolve the galaxy-satellite system.

The system used was exa
tly that of PKB, with the di�eren
e that we remove the dis
 and

bulge 
omponents. In this paper a detailed des
ription of the system and the grid stru
ture is

presented, whereas here we merely summarise the most important orbital parameters.

Our integration time step is 0:39 Myr whi
h is about 1=25th the dynami
al time of the satellite.

We have three resolution zones, ea
h with 64

3

grid-
ells: (i) The inner grid 
overs out to 3 radial

dis
 s
ale-lengths, providing a resolution of 350 p
 per grid-
ell. (ii) The middle grid 
overs the

whole galaxy, with an extension of 24 dis
 s
ale-lengths (84 kp
), giving a resolution of 2.8 kp


per grid-
ell. The satellite always orbits within this grid ex
ept when it rea
hes the dis
, avoiding


ross-border e�e
ts (see Fellhauer et al. 2000). (iii) The outermost grid extends to 348 kp
 and


ontains the lo
al universe, at a resolution of 11.6 Kp
.

As for the satellite grid-stru
ture, the resolutions are 816 p
 per grid-
ell for the inner grid

that extends to 24.48 kp
, and 1.2 kp
 per grid-
ell for the middle grid whi
h extends to 36 kp
.

Only the inner and middle grids move along with the satellites, remaining positioned on their


entre-of-density lo
ations. The outer grid is identi
al for primary galaxy and satellite.

6.2.3 Orbital parameters

We 
arry out a set of 
al
ulations varying the parameters of the satellite that remark the di�eren
es

between the di�erent analyti
al treatments, when applying both of them to the de
ay of a satellite

within a spheri
al halo. By symmetry, the initial orbital in
lination is irrelevant to the satellite

dynami
s. For the analysis of Chandrasekhar's expression using diverse Coulomb logarithms we


on
entrate our study on the satellite's initial orbital e

entri
ity, de�ned as e = (r

a

� r

p

)=(r

a

+

r

p

), where r

a

; r

p

are the apo and peri-gala
ti
on, respe
tively, sin
e other orbital and satellite

parameters are not 
hanged. With this de�nition, e = 0 implies 
ir
ular orbits and e = 1 radial

orbits.

The e

entri
ity evolution may be an indi
ator of the a

ura
y of the analyti
al expressions

and may also determine whether it is ne
essary to in
lude additionally the perpendi
ular term of

dynami
al fri
tion. The study of the e�e
ts of this term should 
over a wider range of satellite

masses, sin
e the spe
i�
 fri
tion at �rst order goes as F

(1)

/ M

2

s

whereas F

(0)

/M

s

. However,

this goes beyond our aim, sin
e the purpose of this study is merely the qualitative analysis of the

�rst term e�e
ts and not a detailed parameter survey.

The system galaxy-satellite is 
onstru
ted as follows: Before inje
ting the satellite into the

primary galaxy we allow the galaxy and satellite to settle into a stationary state by integrating

the isolated systems for a few dynami
al times with Superbox (as in Kroupa 1997). Examples

of the stationarity of multi-
omponent galaxies are given in Boily, Kroupa & Pe~narrubia (2001).

The satellite is then pla
ed at apo-gala
ti
on with a velo
ity determined by the 
ir
ular velo
ity

at the initial distan
e and the desired e

entri
ity.

The parameters of the numeri
al experiments are listed in Table 6.1. We denote our numer-

i
al experiments as H1+S1+
hara
ter, whi
h means that the parent galaxy and the satellite are

des
ribed by the models H1 and S1, respe
tively, whereas the 
hara
ter de�nes the initial orbital

e

entri
ity.

6.3 The �tting pro
edure

The analyti
al expressions presented in Chapter 5 have two free parameters on
e the orbit and the

satellite model are �xed, namely, the averaged Coulomb logarithm hln �i and the �tting fa
tor Q.
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Name Gal. Sat. e r

p

r

a

model model [kp
℄ [kp
℄

H1S1a H1 S1 0.5 18.0 55.0

H1S1
 H1 S1 0.0 55.0 55.0

H1S1d H1 S1 0.7 8.5 55.0

H1S1e H1 S1 0.3 27.5 55.0

H1S1f H1 S1 0.6 12.3 55.0

H1S1g H1 S1 0.8 5.3 55.0

Table 6.1: The numeri
al experiments. The peri- and apo-gala
ti
a are r

p

and r

a

, respe
tively,

and e = (r

a

� r

p

)=(r

a

+ r

p

) is the orbital ellipti
ity .

Authors usually �t by eye these two values to numeri
al data, the semi-analyti
 orbit approa
h-

ing as mu
h as possible to the numeri
al one, so that the overall orbital evolution is reprodu
ed.

This pro
edure 
an a
tually be 
onsidered as the \
alibration" of the semi-analyti
 
ode, whi
h

must be done 
arefully if a detailed inter-
omparison between di�erent s
hemes of dynami
al fri
-

tion is desired. For that reason we present in what follows a method to des
ribe the a

ura
y of

the semi-analyti
 s
heme.

We propose the parameter � to measure the degree of exa
titude of the �t, where

�

2

=

1

k

k

X

i=1

�

(x

i

� x

i;n

)

2

+ (y

i

� y

i;n

)

2

+ (z

i

� z

i;n

)

2

+ �

2

(r

0

)(t

i

� t

i;n

)

2

�

; ; (6.2)

(x; y; z) being the Cartesian 
omponents of the position at the peri and apo-gala
ti
a and t the

time at whi
h the satellite passes by these points. The subindex n denotes the numeri
al values

and �(r

0

) the velo
ity dispersion at the initial gala
to-
entre distan
e. The sum is over a given

number of orbits k.

We note that this sele
tion of the �t a

ura
y may be weighted by the �t at the apo-gala
ti
on

points �r

i

=jr

i

j and �t=t instead of the absolute values. However, this has been proved to smooth

the dependen
e of � on the Coulomb logarithm and Q, making harder the sele
tion of these free

parameters.

The de�nition of the �tting fa
tor a

ounts for the divergen
e of the numeri
al and semi-

analyti
al satellite position ve
tor and also the possibility that the 
urves of both radial evolu-

tions be
ome out-of-phase in time. By de�nition, � is equivalent to the dis
repan
y between the

numeri
al and semi-analyti
al position evolution per unit orbit. The sele
tion of the maximum

and minimum gala
to-
entre distan
es for 
omparison permits a dire
t 
ontrol over the orbital

e

entri
ity evolution, although the measure of � 
an be extended to the other points without loss

of generality.

The value of k depends on the obje
tives of the study. For instan
e, if the aim is to �nd the

best 
alibration for long times, as it may be to reprodu
e the satellite de
ay in spiral galaxies, the

number of orbits should 
over most of the orbit evolution. In this Chapter, however, we pretend

to 
larify the e�e
ts of the �rst order of dynami
al fri
tion. Due to its small magnitude, these

e�e
ts are expe
ted to be at least 
omparable to those indu
ed by the mass loss and other physi
al

pro
esses, su
h the galaxy feed-ba
k. For that reason, we limit our �t to the �rst satellite orbits,

namely, k = 2; 3, for whi
h we expe
t the �rst order of dynami
al fri
tion to dominate over the

other se
ondary pro
esses (we note that for k = 2; 3 the mass loss is always smaller than 10% even

for radial orbits). In some 
ases, however, the di�eren
es that the analyti
al models generate are

too small to di�erentiate the orbits, being for
ed to enhan
e the value of k.

6.4 Dynami
al fri
tion analysis

The aim of this Se
tion is to answer two questions: (i) whi
h of the �ve approa
hes presented above

produ
e the best �t to the numeri
al data and, therefore, 
omes 
loser to the best des
ription of
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case 1 case 2a case 3a

Figure 6.1: � values as a fun
tion of the free parameters ln� and Q for the satellite orbit H1S130a.

We plot the result of the approa
hes denoted as 
ase 1, 2 and 3 presented above. The measure

of � is done for two number of orbits, k = 3; 4 (solid and dotted lines respe
tively). The x-axis

measures the ln� for the 
ase of 
onstant Coulomb logarithm, whereas for the other 
ases the

fun
tional parameter is Q.

dynami
al fri
tion in spheri
al systems, and (ii) whi
h are the di�eren
es that ea
h approa
h

introdu
e on the satellite orbit evolution, putting espe
ial emphasis on the problem of the orbit


ir
ularisation.

6.4.1 Comparison between the di�erent approa
hes

We make use of the �tting fa
tor � to �x the free parameters hln �i and Q. Asso
iated with

ea
h �t is the error per unit orbit, de�ned as the �tting fa
tor of the best �t, whi
h allows the

determination of the quality of ea
h dynami
al fri
tion approa
h in order to des
ribe the numeri
al

data.

Fitting a given simulation

First, we develop the �tting analysis for a given numeri
al 
al
ulation. In Fig. 6.1, we plot

the fun
tion � = �(hln �i) and � = �(Q) for the model H1S130a, whi
h we suppose to be a

representative 
ase. Evidently, the best �t 
orresponds to the minimum of ea
h 
urve. The


al
ulus was done for k = 3; 4 sin
e k = 2 produ
e barely di�eren
es between the di�erent

analyti
al approa
hes.

Contrary to the results of Taylor & Babul (2001), the �t a

ura
y is very sensitive to the

sele
tion of the Coulomb logarithm, sin
e the �tting parameter � shows strong dis
repan
ies for

small variations of hln �i. This behaviour 
hanges if the free parameter is inside the Coulomb

logarithm and not the Coulomb logarithm itself. In this 
ase, the shallower dependen
e of ln� on

Q makes harder the sele
tion of the best �t (note that dln� = 1=� � d�=dQ � dQ � dQ).

The results s
hemed in Table 6.2 shows a similar degree of a

ura
y independently of how the

Coulomb logarithm is averaged. This is a
tually not surprising sin
e:
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Case Order k hln �i Q

min

�

min

(kp
)

1 ln�=
onst zero 3 2.1 0.7

zero 4 2.1 1.0

2a � = �(v

s

; V

0

) zero 3 1.3 0.8

zero 4 1.3 1.0

3a � = �(v

s

; V

0

; l) zero 3 2.3 0.6

zero 4 2.3 0.8

Table 6.2: Results of the �tting pro
edure applied to the numeri
al 
al
ulation H2S130a for ea
h

of the �ve approa
hes of dynami
al fri
tion. The se
ond 
olumn, denoted as \order" represent the

order of the for
e expansion, so that \zero" means dynami
al fri
tion treated at zero order and

\�rst" at �rst order.

(i) As several authors have shown, a 
onstant Coulomb logarithm has shown to be a good approx-

imation in order to reprodu
e dynami
al fri
tion in spheri
al systems. The reason 
an be found in

the shallow dependen
e of a logarithmi
 fun
tion on its variable (for the model H1S130a, the value

of v

2

s

=2�

2

lies within the range [0:7; 1:5℄). Taking into a

ount that the largest 
ontribution of the

ba
kground parti
les to dynami
al fri
tion is from those with V

0

' v

s

, one 
an readily 
he
k in

Fig. 5.2 shows that the value of the Coulomb logarithm is approximately 2.1, whi
h 
orresponds

to the averaged value along the orbit.

(ii) The dependen
e of the Coulomb logarithm on the relative velo
ity V

0

leads to small di�eren
es.

This 
an be explained by the main weight of the velo
ities V

0

=

p

2� � 1 in the integral over dV

0

where, for this range of satellite velo
ities, the Coulomb logarithm 
an be 
onsidered 
onstant.

(iii) Lastly, the in
lusion of the typi
al distan
e l � �=r� improves the a

ura
y of the �t in

around 40%. This will be dis
ussed in detail in following se
tions.

We note that the value of Q

min

is larger than in the 
ase 2a, so that dynami
al fri
tion at the

peri-gala
ti
a is of similar magnitude in both approximations.

The di�erent analysis of dynami
al fri
tion produ
e dis
repan
ies to the numeri
al data that

barely in
rease if the average is done for an additional orbit (k = 4), whi
h indi
ates that the

value of free parameters that lead to �

min

may also produ
e the best for the rest of the orbit. This

is analysed in following se
tions.

The best �t produ
es dis
repan
ies of around �

min

= 1 kp
 per unit orbit whi
h, for the model

H1S130a, represents di�eren
es in the orbital e

entri
ity of de=e ' 3% and of the order of 4 per


ent in the radial amplitude. It is un
lear whether these small dis
repan
ies are purely due to our

treatment of dynami
al fri
tion or, however, are produ
ed by other physi
al pro
esses su
h the

system feedba
k and mass loss or, however, by numeri
al reasons, su
h the 
ode resolution, the

time-step sele
tion...et
. Nevertheless, new implementations of the semi-analyti
 
ode in order to

de
rease � is beyond our purposes.

Fitting a set of simulations

We expe
t higher dis
repan
ies between the numeri
al data and the di�erent semi-analyti
al ap-

proa
hes sin
e the range of variation of the orbital parameters enhan
es the larger the number

of simulations to �t. For instan
e, nearly 
ir
ular orbits a

omplish that l; v

s

'
onst along their

evolution, whi
h makes � = �(v

s

; V

0

) and � = �(v

s

; V

0

; l) to be similar to the averaged Coulomb

logarithm hln �i, 
ontrary to high e

entri
 orbits, whi
h su�er dramati
 
hanges of both l and v

s

.

The dependen
e of the �t on the initial e

entri
ity is plotted in Fig. 6.2 for the models H2s130a,

H2s130g and H2S130


1

. For the three treatments of the Coulomb logarithm, the free parameters

that produ
e the best �t vary as a fun
tion of the initial e

entri
ity. In the range of e

entri
ities

[0; 0:8℄ this variation is hln �i 2 (1:9; 2:2) and Q 2 (1:5; 2:2), Q 2 (3:2; 4:3) for the 
ases 2a and 3a

1

The 
omparison between numeri
al and semi-analyti
 data is usually done at the peri and apo-
entres in order

to 
al
ulate �. In the 
ase of 
ir
ular orbits this 
al
ulus is 
arried out ea
h 0.5 Gyr, approximately the period of

the H1S1a orbit.
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Figure 6.2: Fit of the models H2S130
, H2s130a, H2s130g. Solid and dotted lines denote 
al
uli

of � for k = 3; 4, respe
tively.

whi
h represents approximately a 15, 35 and 30 per 
ent of variation, respe
tively.

In Fig. 6.3 we plot the �tting parameters after averaging eq. (6.2) over the numeri
al 
al-


ulations presented in Table 6.1. As expe
ted, the di�erent averages of the Coulomb logarithm

produ
e di�erent degrees of a

ura
y if the range of orbital parameters su�er strong variations.

From this plot we dedu
e that,

(i) the approximation of 
onstant Coulomb logarithm leads to dis
repan
ies of around 1.8 kp
 for

k = 3 to 2.9 kp
 for k = 4 indi
ating a poorer a

ura
y whenever the number of orbits in
reases.

It is remarkable that the best �t 
orresponds to hln �i = 2:1 as for the simulation H2S130a, whi
h

implies that this average does not strongly depend on the orbital e

entri
ity as shown in Fig. 6.2.

(ii) the assumption � = �(v

s

; V

0

) produ
es a similar a

ura
y also with similar dependen
e on

the number of orbits. All seems to indi
ate that the addition of the relative velo
ity dependen
e

to the Coulomb logarithm s
ar
ely 
hanges the for
e obtained if � is 
onstant.

(iii) a inter-
omparison between the di�erent approa
hes to the Coulomb logarithm shows that

the �tting fa
tor of eq. (6.2) produ
es the smallest dis
repan
y when the variable l is not averaged

but has the form l = �=r�. In this 
ase, �

min

is minimum for the �rst 3,4 orbits. The small

dependen
e on k may indi
ate that it is also the best analyti
 approa
h for the rest of the orbit,

although this will be analysed in a following Se
tion.

The 
al
ulus of �

min

when dynami
al fri
tion is 
al
ulated at �rst order leads to negligible

di�eren
es for the 
ase 2b as well as for 3b, suggesting a poor 
ontribution of this term in order

to alter the satellite orbit.

These results fully agree to those of Hashimoto, Funato & Makino (2002). They �nd that the

best �t to the satellite de
ay of a point-mass satellite within a singular isothermal halo is a
hieved

if the Coulomb fa
tor takes the form � = r

s

=1:4�

s

, where �

s

is the softening length of the satellite

parti
le, rather than if it is 
onsidered 
onstant. Inserting the orbital and galaxy parameters into

eq. (5.28), and assuming that the biggest 
ontribution to dynami
al fri
tion is from those parti
les

with V

0

= X one has

�

2

= 1 +

Q

2

l

2

a

2

(V

0

) + b

2

0

X

2

4X

2

+W

2

'

Q

2

l

2

5b

2

0

:
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case 1 case 2a case 3a

Figure 6.3: Same as Fig. 6.1 but the parameter � as result of the average over the numeri
al


al
ulations of Table 6.1.

The approximation holds for most of the two-body en
ounters along the orbit, whi
h is equivalent

to the assumption that one usually �nds in the literature � = b

max

=b

min

where the velo
ity

dependen
e of b

max

, X

2

=(4W

2

+X

2

), is removed. Taking into a

ount that, as last �gures show,

dynami
al fri
tion is maximum at X = v

s

=

p

2� = 1, then � ' Qr

s

=(2b

0

p

5) ' r

s

=(1:35b

0

), whi
h

nearly reprodu
es the value of Hashimoto, Funato & Makino (2002).

6.4.2 Orbital evolution. The Coulomb logarithm.

We employ the model H2S130a to 
ompare the orbit evolution of the di�erent theoreti
al ap-

proa
hes to the Coulomb logarithm. The 
omparison is done for the zeroth order of dynami
al

fri
tion, whereas the �rst order is studied below. The free parameters hln �i and Q are those of

Table 6.2.

The di�eren
es that the three approa
hes (
ases 1, 2a and 3a) produ
e on the integration

over relative velo
ities are plotted in Fig. 6.4. We have employed a singular isothermal sphere

to reprodu
e our halo. As a result of applying the lo
al approximation, the sele
tion of � only

a

ounts for the value of K


h

. The use of the singular isothermal sphere simpli�es the sele
tion

of the satellite distan
e and the galaxy velo
ity dispersion, so that on
e the satellite and galaxy

mass are known at a give point the fra
tion M=M

g

/ 1=r

s

and � = M

g

=(4�=3r

3

s

) = 
onst are

easily 
al
ulated for the rest of distan
es.

If the dependen
e of the Coulomb fa
tor on the radial distan
e is in
luded, a strong varia-

tions of the integral between the apo-
entre (approximately M=M

g

= 0:01) and the peri-
entre

(M=M

g

= 0:03) is observed, this last being smaller. If the Coulomb logarithm is 
onsidered 
on-

stant, the integration has values similar to the 
ase of � = �(V

0

; v

s

), proving that the dependen
e

of the Coulomb fa
tor on the relative velo
ity leads to small 
hanges on the fri
tion for
e. Sin
e

these resulting 
urves lie within the apo-
entre and peri-
entre for
es, the 
ase 1 and 2 
an be


ontemplate as an average of the 
ase 3a over the radial distan
e along this orbit.
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Figure 6.4: Dynami
al fri
tion normalised to quantity K


h

= 2�G

2

M

s

�

h

(r

s

)=�

2

, using the three

di�erent analyti
al approa
hes to the Coulomb fa
tor. The halo is modelled by a singular isother-

mal sphere, so that the mass ratio is inversely proportional to the gala
to-
entre distan
e. We

note that the satellite velo
ity varies for the model H2s130a within the range X 2 [0:7; 1:5℄:

The distan
e evolution

For a better understanding of the �tting results, we must analyse the e�e
ts that ea
h analyti


treatment of the Coulomb logarithm introdu
es in the satellite orbit evolution. Due to the small

di�eren
es between the 
ase 1 and 2, for simpli
ity, we de
ide to 
on
entrate the study on the


ases 1 and 3.

In Fig. 6.5 is plotted the satellite de
ay of the numeri
al 
al
ulation (dotted line), and that

reprodu
ed by the semi-analyti
al 
ode supposing � =
onst (full line, 
ase 1) and � = �(v

s

; V

0

; l)

(dashed line, 
ase 3a). The values of hln �i and Q are those s
hemed in Table 6.2.

One 
an distinguish between two epo
hs in the radius evolution, for whi
h the dynami
al fri
tion

s
hemes reprodu
e with di�erent degree of a

ura
y the numeri
al data.

Along the �rst orbits, the 
ase 1 and 3 produ
e similar �t to the numeri
al result, re
e
ted in

Fig. 6.1, where �

min

for the 
ase 3a is smaller than for the 
ase 1.

This behaviour su�ers a radi
al 
hange at late times of the orbit. The numeri
al evolution of the

gala
to-
entre distan
e shows a strong de
rease of the apo and peri-gala
ti
on distan
es for k > 7,

whi
h 
an not be reprodu
ed by none of the Coulomb fa
tors that we employ. The approximation

of 
onstant Coulomb logarithm 
omes 
loser to the time-s
ale of the de
ay, however, the small

rate of peri-gala
ti
on redu
tion leads to the so-
alled \orbital 
ir
ularisation", a strong de
rease

of the orbital e

entri
ity. The pro
ess of 
ir
ularisation will be 
ommented expli
itely below.

We must note that these results do not 
ome into 
ontradi
tion to those found by Hashimoto,

Funato & Makino (2002). They 
arry out a numeri
al 
al
ulation in order to study the e�e
ts

of having � / r

s

in 
omparison with hln �i=
onst, whi
h 
orresponds to our 
ase 3a and 1,

respe
tively. Di�erently to our study, the numeri
al 
al
ulations were 
arried out using a point-

mass satellite, whi
h avoids the mass loss e�e
ts, meanwhile the satellite extension 
an be assumed

as the smoothing length of the numeri
al 
ode. They �nd that � / r

s

produ
es better �ts along

most of the orbit than the typi
al approximation of 
onstant Coulomb logarithm. However, in
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Figure 6.5: Gala
to-
entre distan
e evolution for the analyti
al treatments 1 (solid line) and 3

(dashed line) 
ompared to the numeri
al one (dotted line, 
orresponding to the model H2S130a).

their numeri
al experiments the strong de
rease of radial distan
e is not visible at late orbital

times so that the de
ay time-s
ale is also well reprodu
ed.

The main di�eren
e between the system employed along this study and that of Hashimoto,

Funato & Makino (2002) is the satellite model. Although the 
auses of the rapid de
ay at late-

times are un
lear, it may be likely 
aused by some physi
al pro
ess related to the satellite mass

loss, sin
e it is at these times when most of the mass is stripped away due to the galaxy tidal

for
es. This should be studied in detail although, due to its 
omplexity, it goes further our work.

The energy and angular momentum evolution

In spheri
al potentials the orbit of the satellite is fully determined by two 
onstant of motion, the

energy and the angular momentum ve
tor. Dynami
al fri
tion 
auses a progressive de
rease of

this last, whi
h leads to the satellite sink into the inner regions of the galaxy, this pro
ess is 
alled

\satellite de
ay". As a 
onsequen
e, the absolute value of the energy in
reases. It is interesting

to analyse the evolution of the 
onstant of motion along the orbit to analyse the di�eren
es that

the di�erent approa
hes of dynami
al fri
tion indu
es on the de
ay pro
ess. In Fig. 6.6 we plot

in the upper and middle panels the energy and angular evolution for the 
ase 1 (solid line) and

3a (dashed line) for the orbit H1S130a. Both variables are normalised to the initial value. The

energy evolution 
learly shows that dynami
al fri
tion alters the orbit mainly at the peri-
entres

passages. The enhan
ement of jEj at those points is equivalent to the subsequent de
rease of

the apo-gala
ti
on distan
es, i.e the satellite de
ay. The stronger in
rease of energy by the peri-

gala
ti
on passages 
an be understood by a simple 
al
ulus. With

_

E = v

M

_v

df

, where _v

df

is the

velo
ity 
hange due to the drag for
e and

_

L = L _v

df

=v

M

one has that

_

E

_

L

=

v

2

M

L

; (6.3)

whi
h holds along the whole orbit, independently of the e

entri
ity. The smooth de
rease of

angular momentum implies a large enhan
ement of

_

E at the peri-gala
ti
a, sin
e the satellite

velo
ity is maximum at those points (see Fig. 6.7, dashed line).
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Figure 6.6: Se
ular evolution of spe
i�
 energy, angular momentum and orbital e

entri
ity. We

plot the analyti
al treatments 1 (solid line) and 3a (dashed line) 
ompared to the numeri
al


urve (dotted line, 
orresponding to the model H2S130a). The e

entri
ity is de�ned as e =

(r

a

� r

p

)=(r

a

+ r

p

), where r

a

; r

p

are the apo and peri-gala
ti
on distan
es, respe
tively. Triangles


orrespond to 
onstant Coulomb logarithm whereas we use squares for the 
ase � = �(l), 
ase 3a.

The 
omparison between the analyti
 approa
hes leads to the same results as those obtained

from the radius evolution shown in Fig. 6.5.

The e

entri
ity evolution

It is well known that dynami
al fri
tion with 
onstant Coulomb logarithm leads to rates of orbit


ir
ularisations not present in the numeri
al 
al
ulations. As Fig. 6.5 shows, the large 
ir
ular-

isation, i.e e

entri
ity de
rease, is equivalent to a progressive apo-gala
ti
on de
line and nearly


onstant peri-gala
ti
on distan
es.

In Fig. 6.6 we 
ompare the evolution of the orbital e

entri
ity 
al
ulated for the 
ases 1 and 3

to that of the numeri
al experiment H2s130a. The results show, as expe
ted, that the assumption

of hln �i =
onst indu
es a de
line of e from early times on, su�ering high rate of e

entri
ity

de
rease for k > 6 similar to that of the numeri
al 
al
ulus. This 
ir
ularisation is remarkably

redu
ed if � = �(l).

One 
an readily 
he
k that, with our de�nition of e

entri
ity

_e =

_r

a

(1� e)� _r

p

(1 + e)

r

a

+ r

p

; (6.4)

therefore, the 
ondition of 
onstant e

entri
ity along the orbit evolution is _e = 0,

_r

a

= _r

p

1 + e

1� e

; (6.5)

where (1 + e)=(1 � e) � 1, i.e, if the e

entri
ity is 
onstant, the apo-gala
ti
on distan
e de-


reases faster than the peri-gala
ti
on one. The 
ir
ularisation implies that the redu
tion of r

a

is

a

elerated, as one 
an see in Fig. 6.5 for the standard 
ase (solid line).
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We 
on
lude that none of the analyti
al approa
hes �t a

urately the numeri
al e

entri
ity

evolution, although the overall de
rease is well reprodu
ed if � = �(l). The numeri
al e

entri
ity

is nearly 
onstant for k < 6 su�ering a strong de
line until the satellite sinks to the gala
to-
entre.

This behaviour 
ontrast to that of point-mass satellites (whi
h su�er barely 
ir
ularisation) and

may be due to the mass loss, sin
e the redu
tion of the mass is maximum at the late times of the

evolution.

6.4.3 Dynami
al fri
tion at �rst order

The �tting pro
edure 
arried out to �x the free parameters has shown that the �rst order dynami
al

fri
tion barely alters the results. To understand the reasons, we analyse the di�eren
es that this

term introdu
es on the satellite orbit evolution. We use Q = 2:8, that 
orresponds to the best

over the set of numeri
al 
al
ulations.

Figure 6.7: Ratio evolution of the �rst to zeroth order term of dynami
al fri
tion for the model

H2S130a (solid line). We also plot the normalised distan
e (dotted line) and velo
ity of the satellite

(dashed line) along the orbit evolution. It is assumed � = �(l).

In Fig. 6.7 we plot the ratio F

(1)

=F

(0)

along the satellite orbit H2S130a assuming that � = �(l).

For a better analysis, it is also plotted the evolution of the normalised gala
to-
entre distan
e and

satellite velo
ity.

As expe
ted, the �rst order 
ontribution is maximum at the apo-gala
ti
a and minium at the

peri-gala
ti
a. The relative maximums are due to the 
hange of sign of 
os	 (see Chapter 5).

The ratio diverges as the satellite sinks to the gala
to-
entre due to the 1=l proportionality in the

�rst order fri
tion.

The di�eren
es on the radius and position evolution that the �rst order adds are plotted in

Fig. 6.8. The plot indi
ates that the �rst order for
e barely introdu
es 
hanges over the satellite

orbit, the main e�e
t being a slight shift of the orbit to larger radii whi
h leads to a se
ular

prolongation of the orbital period over large times.

The small 
ontribution of this term 
an be understood by analysing its dire
tion and magnitude

along the orbit evolution. The �rst order fri
tion at the peri-ga
ti
on is parallel to the mean �eld

for
e, this means that this term a
ts like a 
orre
tion to F

g

, the galaxy for
e, whi
h a

omplishes
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F

(1)

=F

g

� F

(1)

=F

(0)

expe
ting, therefore, small e�e
ts where the orbit is supposed to experien
e

most of the variation (Piatek & Pryor 1995). Between the peri and apo-gala
ti
a, the dire
tion

of F

(1)

with respe
t to the zeroth order forms an angle  2 (�=4; �=2) for the model H2s130a,

therefore, the 
orre
tion parallel being of the order of 10% along the major part of the orbit whi
h,

as Fig. 6.8 shows, leads to small e�e
ts.

Figure 6.8: E�e
ts of the addition of the �rst order fri
tion term on the radius evolution. Sin
e

the e�e
ts are small we show the radial distan
e di�eren
e �r

M

(solid line) and the di�eren
e

in the position jr

M;hom

� r

M;inh

j (dashed line), both measured in kp
. We also plot the satellite

distan
e evolution normalised to its initial value r

M

=r

0

(dotted line).

The expli
it evolution of the ve
torial 
omponent of F

(1)

is plotted in Fig. 6.9. Meanwhile the

perpendi
ular 
omponent (with respe
t to v

s

) is dire
ted to the inner part of the galaxy along the

whole orbit (the unit ve
tor is de�ned as e

?

= f
^
n� [

^
v

s

Æ
^
n℄Æ

^
v

s

g=jj
^
n� [

^
v

s

Æ
^
n℄Æ

^
v

s

jj, where
^
n is the

density gradient ve
tor), the parallel one 
an be dire
t (	 > �=2) or opposite (	 < �=2) aligned

to the velo
ity ve
tor. In the �rst 
ase, 	 > �=2, the zeroth order fri
tion be
omes lower by the

a
tion of the parallel 
omponent of F

(1)

whereas, if 	 < �=2, the zeroth order in
reases, leading

to positive values of �E. The perpendi
ular 
omponent of F

(1)

barely 
ontributes to the satellite

torque torque sin
e, despite this term is maximum by the peri-gala
ti
on passages, the dire
tion

is nearly parallel to the position ve
tor and, therefore, perpendi
ular to the velo
ity ve
tor whi
h

leads to negligible drag for
es.

6.5 Con
lusions

We have found that the best �t to the numeri
al data for the �rst orbits of the satellite evolution

is a
hieved if � / r

s

, in 
lear agreement with the results of Hashimoto, Funato & Makino (2002).

However, if the satellite is modelled as a system 
ompound by several thousand of N-body parti
les,

this treatment of the Coulomb logarithm leads to an underestimation of dynami
al fri
tion at late

times of the satellite orbit, 
ontrary to what is observed for point-mass satellites. We think that

this di�eren
e in the de
ay pro
ess may be 
onne
ted to the redu
tion of angular momentum and

energy due to an anisotropi
 mass loss, sin
e it o

urs at times similar to the beginning of the



76 CHAPTER 6. DYNAMICAL FRICTION IN SPHERICAL SYSTEMS
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0.004

0.006

0.008

t (Gyr)

Figure 6.9: Dynami
al fri
tion 
omponents. The zeroth order is normalised to the satellite ve-

lo
ity as well as the parallel 
omponent of the �rst order term, whereas the perpendi
ular one is

normalised to the gala
tro-
entre distan
e. The values are in model units.

rapid sink. This hypothesis should be studied in detail, whi
h goes further our purposes.

The assumption of 
onstant Coulomb logarithm, widely used by several authors, produ
es a

good agreement with the numeri
al experiments in order to des
ribe the time-s
ales of the de
ay,

but not in tra
ing a

urately the orbit itself.

The di�eren
es introdu
ed on the satellite dynami
s by the dependen
e of � on the relative

velo
ity 
an be negle
ted.

The �rst order fri
tion also leads to a negligible in
uen
e on the satellite dynami
s due to its

low magnitude. Moreover, the dire
tion the peri-gala
ti
on, parallel to mean for
e, also 
ontributes

to the low eÆ
ien
y of this term in order to 
hange the satellite orbit.



Chapter 7

Satellite de
ay in 
attened haloes

7.1 Abstra
t

1

We 
arry out a set of self-
onsistent N -body 
al
ulations to 
ompare the de
ay rates of satellite

dwarf galaxies orbiting a dis
 galaxy embedded in a Dark Matter halo (DMH). We 
onsider both

spheri
al and oblate axisymmetri
 DMHs of aspe
t ratio q

h

= 0:6. The satellites are given di�erent

initial orbital in
linations, orbital periods and mass. The live 
attened DMHs with embedded dis
s

and bulges are set-up using a new fast algorithm, MaGalie (Boily, Kroupa & Pe~narrubia 2001).

We �nd that the range of survival times of satellites within a 
attened DMH be
omes � 100%

larger than the same satellites within a spheri
al DMH. In the oblate DMH, satellites on polar

orbits have the longest survival time, whereas satellites on 
oplanar prograde orbits are destroyed

most rapidly. The orbital plane of a satellite tilts as a result of anisotropi
 dynami
al fri
tion,


ausing the satellite's orbit to align with the plane of symmetry of the DMH. Polar orbits are not

subje
ted to alignment. Therefore the de
ay of a satellites in an axisymmetri
 DMH may provide

a natural explanation for the observed la
k of satellites within 0� 30

Æ

of their host galaxy's dis


(Holmberg 1969; Zaritsky & Gonz�alez 1999).

The 
omputations furthermore indi
ate that the evolution of the orbital e

entri
ity e is highly

dependent of its initial value e(t = 0) and the DMH's shape.

7.2 Galaxy and satellite models. Orbital parameters

The host and satellite galaxy models used for our 
al
ulations are outlined in Chapter 3. In Fig. 7.1

we plot plot the rotational 
urves for the model G1.

We 
arry out a set of 
al
ulations varying the parameters of the satellite and the primary

galaxy that in
uen
e the satellite{primary galaxy intera
tion. These parameters are: (i) the

initial orbital in
lination (i), de�ned as the angle between the initial angular momentum ve
tor

of the satellite and the initial angular momentum of the dis
, (ii) the satellite's mass, (iii) the

satellite's apo-gala
ti
 distan
e, (iv) its orbital e

entri
ity, and (v) the DMHs ellipti
ity, 1� q

h

.

Before inje
ting the satellite into the primary galaxy we allow the galaxy and satellite to

settle into a stationary state by integrating the isolated systems for a few dynami
al times with

Superbox (as in Kroupa 1997). Examples of the stationarity of multi-
omponent galaxies are

given in BKP. The satellite is then pla
ed at apo-gala
ti
on with a velo
ity that determines the

value of the orbital e

entri
ity by multiplying the 
ir
ular velo
ity by 0 � � � 1. We note that

the orbit of the satellites are rosettes. The parameters of the numeri
al experiments are listed in

Table 7.1.

1

Chapter based on: Pe~narrubia J., Kroupa P. & Boily C.M., 2001, MNRAS, 333, 779

77
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Name Gal. Sat. i

i

e r

p

r

a

model model [kp
℄ [kp
℄

G1S100 G1 S1 0

Æ

0.5 18 55

G1S1180 G1 S1 180

Æ

0.5 18 55

G1S145 G1 S1 45

Æ

0.5 18 55

G1S1135 G1 S1 135

Æ

0.5 18 55

G1S190 G1 S1 90

Æ

0.5 18 55

G2S100 G2 S1 0

Æ

0.5 18 55

G2S115 G2 S1 15

Æ

0.5 18 55

G2S130 G2 S1 30

Æ

0.5 18 55

G2S145 G2 S1 45

Æ

0.5 18 55

G2S160 G2 S1 60

Æ

0.5 18 55

G2S190 G2 S1 90

Æ

0.5 18 55

G2S1135 G2 S1 135

Æ

0.5 18 55

G1S100e G1 S1 0

Æ

0.3 30 55

G1S190e G1 S1 90

Æ

0.3 30 55

G2S100e G2 S1 0

Æ

0.3 30 55

G2S190e G2 S1 90

Æ

0.3 30 55

G1S100
 G1 S1 0

Æ

0 55 55

G1S145
 G1 S1 45

Æ

0 55 55

G1S190
 G1 S1 90

Æ

0 55 55

G2S100
 G2 S1 0

Æ

0 55 55

G2S190
 G2 S1 90

Æ

0 55 55

G1S200 G1 S2 0

Æ

0.5 18 55

G1S245 G1 S2 45

Æ

0.5 18 55

G1S290 G1 S2 90

Æ

0.5 18 55

G2S200 G2 S2 0

Æ

0.5 18 55

G2S245 G2 S2 45

Æ

0.5 18 55

G2S290 G2 S2 90

Æ

0.5 18 55

G3S200 G3 S2 0

Æ

0.7 20 110

G3S245 G3 S2 45

Æ

0.7 20 110

G3S290 G3 S2 90

Æ

0.7 20 110

G4S200 G4 S2 0

Æ

0.7 20 110

G4S245 G4 S2 45

Æ

0.7 20 110

G4S290 G4 S2 90

Æ

0.7 20 110

Table 7.1: The numeri
al experiments. The peri- and apo-gala
ti
a are r

p

and r

a

, respe
tively,

and e = (r

a

� r

p

)=(r

a

+ r

p

) is the orbital e

entri
ity.
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Vc,full

Vc,d

Vc,b

Vc,h

Figure 7.1: Total 
ontribution from the three G1 galaxy 
omponents (dis
, bulge and halo, see

Table 3.1) to the 
ir
ular velo
ity (solid line). We also plot the 
ir
ular velo
ity for ea
h galaxy


omponent. On very small s
ales (r < 1 kp
) the bulge a

ounts for the bulk of V




. Further out,

the dynami
s is dominated by the halo. The solar radius is at R

�

= 8:5 kp
.

7.3 Satellite De
ay

We dis
uss our results in general terms below before going into detailed 
onsideration of the mass

loss and survival of satellites (Se
tion 7.3.2), and the orbital evolution of the in
lination angle,

e

entri
ity and pre
ession, respe
tively (Se
tions 7.3.3 to 7.3.5).

7.3.1 Introdu
tory 
omments

We denote by `G1S145' the 
ompound primary galaxy made, in this 
ase, of a spheri
al DMH plus

embedded dis
 and bulge, G1, and satellite S1, in an orbital plane initially set at an in
lination

angle i = 45

Æ

with respe
t to the plane of symmetry of the system. In what follows we take this

model as referen
e, but all models followed a similar evolution.

There are two main physi
al me
hanisms that regulate the satellite's orbital de
ay: (i) dynam-

i
al fri
tion from the dis
, bulge and DMH, and (ii) tidal intera
tions, 
ausing internal heating

and mass loss. The evolution of the satellite's orbital radius and mass pro�le highlight the basi



hara
teristi
s of these two pro
esses. Dynami
al fri
tion 
auses a steady de
rease of the satel-

lite's apo- and peri-
entres in time as shown on Fig. 7.2 (dotted line). From t = 0 and until t < 3

Gyr, both quantities, apo- and peri-
entres, de
rease monotoni
ally. When t > 3 Gyr, the orbital

radius r � 5 or smaller, and the orbital de
ay is not monotoni
 anymore. The proximity to the

dis
 means that non-radial for
es a�e
t strongly the remaining evolution, along with the stru
ture

of the satellite.

To measure 
hanges in the stru
ture of the satellite, we plotted the ten-per
entile Lagrange

radii 
entred on the density maximum of the satellite (Fig. 7.2, solid lines). At t � 4 Gyr, the

gala
ti
 tidal �eld has in
ated the satellite to the extent that half of its initial mass is spread
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throughout the volume 
ir
ums
ribed by its orbit. We note that the inner 10 per 
ent Lagrange

radius is largely una�e
ted until the very late stages of integration. Our strategy for determining

the orbital parameters of the satellite therefore 
onsisted in lo
ating the position of the density

maximum of the inner-most Lagrange radius, whi
h then de�nes a referen
e 
oordinate.

0 1 2 3 4 5
0

20

40

60

time (Gyr)

Figure 7.2: Evolution of the satellite's Lagrange radii (solid 
urves, de�ned as the radius at whi
h

the spheri
ally en
losed mass amounts to 10%, 20%....,90%) for the model G1S145. The dotted

line represents the distan
e of the satellite's 
entre of density to 
entre of the primary galaxy.

Distan
es are in kp
. The overall evolution is similar in all other models (Table 7.1).

7.3.2 Mass loss and disruption times

To 
al
ulate the mass remaining bound to the satellite, M

s

(t), we 
ompute the potential energy

�

i

< 0 of ea
h satellite parti
le presumed bound to the satellite, and its kineti
 energy (T

i

) in the

satellite frame. Following VW, parti
les with E

i

= T

i

+m

s

(�

i

+�

ext

) > 0 are labelled unbound,

wherem

s

is the mass of one satellite parti
le. Parti
les with E

i

> 0 are removed and the pro
edure

repeated until only negative energy parti
les are left. �

ext

= GM

g

(r < r

s

)=r

s

> 0 is the external

potential from the primary galaxy at the satellite's 
entre-of-density (r

s

). All the parti
les of the

satellite are thus assumed to feel the same external potential, whi
h is a useful and suÆ
iently

a

urate approximation, taking into a

ount that most of the bound parti
les are lo
ated very


lose to this point. For example, in Fig. 7.2 most of the satellite's mass lies at a distan
e less than

4 kp
 from the position of the 
entre-of-density until the satellite's disruption. This approximation

fails whenever the satellite's size is 
omparable to its distan
e to the galaxy 
entre.

Satellites lose mass due to the galaxy's tidal for
es. The mass loss happens mostly at peri-

gala
ti
on, sin
e the gradient of the galaxy's gravitational for
e rea
hes a maximum at that point

(see Fig. 7.2). This is seen indire
tly in the os
illations of Lagrange radii, always in phase with the

orbit of the satellite: the satellite �lls its Ro
he lobe and 
onsequently responds strongly to the


hanging tidal �eld. Thus a de
rease of the apo-gala
ti
on distan
e implies an enhan
ed mass loss.

The evolution of satellites exposed to strongly varying tidal �elds is dis
ussed at length by Piatek
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G1S100

G1S1180

G1S145

G1S190

G1S1135

G2S130

G2S160

G2S190

G2S115

G2S100

G2S145

G2S1135

Figure 7.3: Evolution of the satellite mass for M

s

= 0:1M

d

and e

entri
ity e ' 0:5.

Figure 7.4: As Fig. 7.3 for satellites with M

s

= 0:1M

d

and initial e

entri
ity e ' 0:3 and e = 0.

(Note that the time-axis has 
hanged s
ale.)

& Pryor (1995) for one peri-gala
ti
 passage, whereas long-term satellite harassment is addressed

by Kroupa (1997) and Klessen & Kroupa (1998). Consequently, we will not study the internal

evolution of the satellites apart from the bound mass fra
tion.

Satellites with M

s

= 0:1M

d

Fig. 7.3 shows the evolution of the satellite mass for di�erent initial orbital in
linations for satellites

with M

s

�M

s

(0) = 0:1M

d

and e

entri
ity e ' 0:5. From this �gure we 
an assert that: (i) The

satellites are disrupted 
ompletely at about the same time they rea
h the gala
ti
 dis
 (Fig. 7.2).

(ii) For all the models, the survival time is, at least, 1 Gyr (25%) longer than the equivalent

simulations of VW (upper panel of Fig. 7.3). We 
onsider this di�eren
e to be indi
ative of the

un
ertainty intrinsi
 to methods that approximate 
ollisionless dynami
s. The di�eren
e 
omes

about, in part, due to di�erent numbers of parti
les, but also due to the spatial resolution of the

method. Prugniel & Combes (1992) and Whade & Donner (1996) �nd that dynami
al fri
tion is

arti�
ially in
reased due to numeri
al noise if the parti
le number is small. Similar di�eren
es were
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G1S200

G1S245

G1S290

G3S200

G3S245

G3S290

G2S245

G2S290

G2S200

G4S200

G4S245

G4S290

Figure 7.5: As Fig. 7.3 for satellites with M

s

= 0:2M

d

. (Note that the time-axis has 
hanged

s
ale.)

also noted in the 
omputations by Klessen & Kroupa (1998) of satellite harassment using di�erent


odes. However, we observe that the range of disruption times for our models G1S1 (as used by

VW) is approximately the same, indi
ating that dis
 e�e
ts are well reprodu
ed by our 
ode and

giving 
on�den
e to the following results we obtain using 
attened DMHs. (iii) Flattened DMHs

spread the range of disruption times. In Fig. 7.3 we 
an see that, for satellites with M

s

= 0:1M

d

embedded within spheri
al DMHs this range is � 1:2 Gyr (upper panel), polar satellites having

the longest survival time. For satellites with the same mass but within 
attened DMHs the range

grows to � 2:7 Gyr (lower panel). (iv) Satellites with a high orbital in
lination within 
attened

DMHs have longer survival times than satellites within spheri
al DMHs with the same initial orbit.

For instan
e, taking the polar satellite as the extreme 
ase, G2S190 survives � 1 Gyr longer than

G1S190. (v) Satellites with low orbital in
lination su�er the 
ontrary e�e
t: those within spheri
al

DMHs survive longer than those within 
attened DMHs. Taking the prograde and 
oplanar orbit

as the extreme 
ase, G1S100 survives � 0:6 Gyr longer than G2S100.

In Fig. 7.4 we 
ompare polar and 
oplanar satellites within 
attened and spheri
al DMHs with

orbital e

entri
ity e � 0:3 and 0 to obtain an indi
ation of the dependen
y of the life-time on e

(orbits with intermediate in
lination also have intermediate survival times, Fig. 7.3). As expe
ted,

less e

entri
 orbits lead to longer survival times, sin
e the peri-gala
ti
 distan
e is larger and,

moreover, tidal for
es are weaker. Furthermore, the survival times show a larger spread. Less

e

entri
 orbits survive longer, so that anisotropi
 dynami
al fri
tion has a longer time to a
t. We


an see that 
oplanar satellites within a spheri
al DMH (model G1S100e) de
ay � 0:3 Gyr later

than a 
oplanar satellite within a 
attened DMH (model G2S100e), while the de
ay time of a polar

satellite within a spheri
al DMH (model G1S190e) is � 0:5 Gyr shorter than the 
orresponding

satellite in the 
attened DMH (model G2S190e). Thus, the range of survival times in
reases from

about 2.1 Gyr to 4.2 Gyr. This range be
omes even larger for 
ir
ular orbits.

This state of a�airs is summarised in Fig. 7.6 for all satellite models, whereas Table 7.2 
ompares

the de
ay times for S1 satellites in dependen
e of the orbital e

entri
ity and in
lination. The

table ni
ely shows that the survival time in
reases signi�
antly with de
reasing e

entri
ity. It

also shows that oblate DMHs lead to 
onsistently larger di�eren
es, �� , between the de
ay times
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mods.G1S1 (e=0.70)

mods.G2S1 (e=0.70)

mods.G1S1e (e=0.45)

mods.G2S1e (e=0.45)

mods.G1S1c (e=0)
mods.G2S1c (e=0)

mods.G1S2 (e=0.70)
mods.G2S2 (e=0.70)

mods.G3S2 (e=0.80)

mods.G4S2 (e=0.80)

Figure 7.6: The time � when the satellite mass rea
hes 10 per 
ent of its initial value, M

s

(�) =

0:1M

s

, or the satellite has sinked to the galaxy 
entre is plotted vs the initial orbital in
lination.

Upper panel is for satellite models S1 in primary galaxies G1 and G2, whereas the lower panel

shows the results for satellites S2. Note that in all 
ases � in
reases with in
reasing i < 90

o

for

galaxies embedded in a spheri
al and a 
attened DMH, due to dynami
al fri
tion on the dis
. The

e�e
t of this is parti
ularly ni
ely seen from the di�erent slopes, d�=di, for prograde (i = 0� 90

Æ

)

and retrograde (i = 90� 180

Æ

) orbits. The in
rease is signi�
antly larger for satellites orbiting in


attened DMHs, and be
omes larger for de
reasing orbital e

entri
ity (Table 7.2) and de
reasing

satellite mass, whi
h allows longer 
oupling of the satellite to the anisotropi
 velo
ity �eld in the

DMH.

for polar and 
oplanar orbits, �� 
onsistently being approximately 100 per 
ent larger in 
attened

DMHs than in spheri
al DMHs (��

obl

� 2��

sph

). This is the key result of this study.

Satellites with M

s

= 0:2M

d

The temporal evolution of satellite masses with M

s

= 0:2M

d

is shown in Fig. 7.5. There are no

signi�
ant di�eren
es in survival times for satellites in spheri
al and 
attened DMHs if r

a

= 55 kp
.

At the same time, the dependen
y on the in
lination de
reases, 
ausing the range to be narrower

in both 
ases. The 
ause is the fast de
ay of the satellites, so that the anisotropy of the DMH's

velo
ity dispersion does not have enough time to a
t. To better assess this, we introdu
e a set

of 
omputations sele
ting larger initial apo-gala
ti
 distan
es (models G3 and G4). The 
ut-o�

radius of the Galaxy is in
reased, whi
h 
hanges the rotational 
urve (see Fig. 7.1). The results

are also plotted in Fig. 7.5. A similar spread of survival times as for models with M

s

= 0:1M

d

and 'G2' 
attened DMHs be
omes evident; the range of disruption times for spheri
al (G3) and


attened DMHs (G4) are, respe
tively, � 1 and � 2 Gyr.

The results 
on
erning the disruption times seen on Fig. 4
 between small and large DMHs
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model e(t = 0) �

0

� �

90

� �� �

�(i = 0) �(i = 90) �

90

� �

0

[Gyr℄ [Gyr℄ [Gyr℄

G2S1
(obl) 0 10.1 12.9 2.8

G1S1
(sph) 0 11.3 12.0 0.7

G2S1e(obl) 0.3 6.1 10.3 4.2

G1S1e(sph) 0.3 6.8 9.2 2.4

G2S1(obl) 0.5 3.8 6.5 2.7

G1S1(sph) 0.5 4.4 5.6 1.2

Table 7.2: Summary of de
ay times for satellite models S1 (M

s

= 0:1M

d

) in oblate (obl) and

spheri
al (sph) DMHs with di�erent initial orbital e

entri
ity e and orbital in
lination i. �

0

is the

de
ay time when the satellite that is initially on an orbit with in
lination i = 0

o

has lost 90 per


ent of its mass or has sinked to the galaxy 
entre, whereas �

90

is the de
ay time for polar orbits

(i = 90

o

).

(G1/G3 and G2/G4 pairs displayed on Fig.4
, bottom panel) are related to one another as

follows. DMHs G3 and G4 have the same mass as G1 and G2, but are more extended by

a fa
tor � = 133 kp
=84 kp
 = 1:58 (Table 3.1). This implies that the dynami
al time-s
ale

(/ 1=

p

G�), i.e. the periods of satellites on equivalent orbits, are longer in haloes G3 and G4

by a fa
tor

p

�(G2)=�(G1) = 1:58

3=2

= 2. Orbits in G3 and G4 equivalent to those in G1 and

G2, respe
tively, are orbits with semi-major axes extended by � in a homologous mapping of

the systems. Our satellite orbits, however, have apo-gala
ti
 distan
es in G3 and G4 twi
e as

large as in DMHs G1 and G2. The orbital times of models G3S2nn and G4S2nn are in total

1:58

3=2

� 2=1:58 = 2 � 2=1:58 � 2:5 times longer than models of satellites in DMHs G1 and G2.

This is approximately what we observe from 
omparing the 
urves on Fig. 4
 with DMHs G1/G3

or G2/G4.

On the top panel of Fig. 7.5, the time when M(t)=M(0) � 0:10 is t � 2:5 Gyr for all G1

models. If the homologous transformation applied stri
tly, the 
urves for the G2 halo models

should approa
h 7 Gyr when M(t)=M(0) = 1=10. The fa
t that they are spread between 6 and 7

Gyr, and thus deviate from the homologous map, indi
ates that the dis
 and bulge, whi
h were

left un
hanged, play an important role in the mass de
ay rate of the satellites. Furthermore, this

estimation suggests that the time-s
ales for orbital de
ay are 
ontrolled by the DMH, while the


ombined tidal �eld of the dis
 and bulge 
ontributes mainly to mass stripping. Similar 
on
lusions

would apply for the G2/G4 models shown on the bottom panel of the �gure.

Prograde versus retrograde orbits

Results for models with spheri
al DMHs may be divided into two a

ording to whether the orbit

of the satellite is aligned with the dis
's angular momentum ve
tor (prograde) or anti-aligned

(retrograde). Keeping the initial satellite velo
ity ve
tor un
hanged, a prograde orbit is found for

an initial orbital in
lination angle 0

Æ

< i < 90

Æ

, and retrograde orbits in the 
one 90

Æ

< i < 180

Æ

.

Table 3 lists four models with spheri
al G1 DMHs and e

entri
ity e = 0:5 (top segment in the

Table). Models G1S100 and G1S1180 are respe
tively prograde and retrograde with respe
t to

the dis
, but are otherwise identi
al. From Fig. 7.3 (top panel) we �nd for these two simulations

a 90% mass-loss after � 4 Gyr and 5:3 Gyr, respe
tively, an in
rease of nearly 25% ; a similar


on
lusion applies for models G1S145 and G1S1135. These �ndings are qualitatively similar with

those of VW: (i) Satellites on prograde orbits lose angular momentum faster than their retrograde


ounterparts, leading to more rapid de
ay. (ii) Polar orbits have a similar de
ay rate as retrograde

orbits, as found from 
omparing model G1S190 and G1S1135, Fig 7.3. This implies that our

treatment of the live dis
 
aptures the essential physi
s relevant for this work.
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Figure 7.6 summaries the �ndings for de
ay rates for the simulations performed. Point (i)

above also applies to 
attened DMHs. However, Fig. 7.6 suggests in this 
ase that the di�eren
e

in de
ay rates between prograde and retrograde orbits is redu
ed by about 80 % for 
attened

DMHs.

For spheri
al DMHs the above results 
an be understood partially by 
onsidering Chan-

drasekhar's expression (Chandrasekhar 1960) for dynami
al fri
tion,

F

df

= �

4�G

2

M

2

s

(t)�(< v

s

)ln�

�v

3

v

s

; (7.1)

�v = j~v

s

� ~v

m

j being the relative velo
ity between the satellite and the dis
 parti
le ba
kground,

v

m

is the dis
 parti
le velo
ity and �(< v

s

) the density 
al
ulated only for those parti
les with

velo
ity less than the satellite's velo
ity v

s

, and ln� the Coulomb logarithm, 
an be estimated

as � = p

max

=p

min

. In this expression, p

max

is the maximum impa
t parameter, and p

min

the

minimum impa
t parameter (
onventionally taken as the half-mass radius of the system). Sin
e

these quantities are not well de�ned, the Coulomb logarithm remains, to a 
ertain degree, an

adjustable parameter. The �ttings 
arried out in Chapter 6 show that ln� ' 2.

The di�erent de
ay rate between prograde orbits and their retrograde 
ounterparts is 
aused,

in part, by the dis
's dynami
al fri
tion when the satellite is near perigala
ti
on. Retrograde orbits

have a mu
h higher relative velo
ity �v due to the dis
's rotation and, therefore, they su�er a

smaller drag for
e. The bulge or the DMH's dynami
al fri
tion make no di�eren
es sin
e both are

non-rotational and spheri
al, whi
h also explains the small di�eren
es of de
ay rates between the

polar and the retrograde 
ase (in both 
ases dynami
al fri
tion through the dis
 
an be negle
ted


ompared to the DMH's dynami
al fri
tion). In addition to dynami
al fri
tion, resonan
es between

the satellite and the dis
 in
uen
e the orbital de
ay, but a detailed analysis goes beyond the aim of

this work. As for the di�erent de
ay rates depending on the satellite's mass, the spe
i�
 dynami
al

fri
tion for
e varies with M

s

, so that satellites with M

s

= 0:2M

d

su�er a two times larger fri
tion

than those with M

s

= 0:1M

d

.

7.3.3 Orbital in
lination i

Binney (1977) extended the dynami
al fri
tion for
e (eq. 7.1) to non-isotropi
 velo
ity �elds. He

showed how anisotropi
 fri
tion leads to orbit alignment with the velo
ity ellipsoid plane of sym-

metry of the host galaxy. Here dis
 and DMH spheroids de�ne a unique z = 0 plane of symmetry,


ommon to both mass distribution and velo
ity ellipsoid. We may, therefore, anti
ipate enhan
ed

satellite orbit alignment relatively to Binney's analysis, due to the non-uniform, aspheri
al mass

pro�le.

In Fig. 7.7 we graph the time-evolution of the dire
tion angle i for a set of simulations with

oblate G2 DMHs (q

h

= 0:6) and S1 satellites (solid lines on the �gure) as well as two referen
e

runs with spheri
al G1 DMHs (dotted lines on the �gure).

The average of the orbital in
lination i(t) de
reases monotoni
ally in time for satellites orbiting

in 
attened DMHs whi
h have initially i 6= 0

Æ

or 90

Æ

. The de
rease in i(t) is more appre
iable for

smaller values of i(0). This is seen for instan
e by 
omparing the 
urves with i(0) = 15

Æ

and 30

Æ

to the solutions with i(0) = 60

Æ

and 90

Æ

. For the latter, polar orbit, no de
ay of i(t) is observed

for the duration of the integration, whereas for the i(0) = 15

Æ


ase the orbit aligns fully with the

plane of symmetry of the system (
oin
ident with the dis
 of the host galaxy).

By 
ontrast, satellites orbiting in spheri
al DMHs show little or no de
ay of i(t), for all initial

values of i (dotted lines, Fig. 7.7). This 
learly indi
ates that the anisotropi
 DMH, and not the

dis
, drives most of the orbital evolution and alignment, sin
e in all 
ases a gala
ti
 dis
 is present.

The �gure also reveals periodi
 os
illations of i(t) for satellites on in
lined orbits, of frequen
y

approximately in tune with the satellites' orbital motion. Inspe
tion of the �gure shows this to be

the 
ase for systems with either spheri
al or 
attened DMHs. Note that no su
h os
illations in i(t)

is observed for polar or 
o-planar orbits. These os
illations 
orrespond to the so-
alled nutation

e�e
t, whi
h is present in the motion of bodies in anisotropi
 potential (see Appendix A).
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Figure 7.7: Evolution of the orbital in
lination for models G2S100, G2S115, G2S130, G2S190 (full

lines, satellites within the 
attened DMH) and G1S145, G1S190 (dotted lines, satellites within

the spheri
al DMH), until they retain 10% of their initial mass.

Nutation 
an examined in two phases, (i) when the satellite orbit is motion is dominated by

the halo potential and (ii) where the dis
 potential dominates.

For 0 < t < 3 Gyr the satellites orbital radius r

s

� R

d

. Over this interval of time, the orbits

are su
h that those obtained for 
attened DMHs lead to mu
h larger os
illations in i(t) 
ompared

with the solutions with spheri
al DMHs. We therefore attribute these os
illations to torques from

the DMH a
ting on the satellites

� = r�r� = R

�

��

�z

� z

��

�R

�

e

�

whi
h by symmetry arguments must lie in the plane of the axi-symmetri
 galaxy. The torque

� is positive or negative a

ording to the phase of the orbit. This 
orresponds to the nutation

formulation.

For t > 3 Gyr the situation is similar for all 
al
ulations, independently of the morphology of

the DMH. Thus the os
illations we observe 
learly for 
attened-DMH orbits are now noti
eable

for the solutions with spheri
al DMHs, too. In this phase of evolution, r

s

� R

d

or less so that the

dis
 potential 
ontributes most of the for
e felt by the satellite and hen
e the torque � a
ting on

it. At this stage, a 
oupling between the dis
 response and the satellite motion is expe
ted: we

observed that these os
illations are highly softened in 
al
ulations with a stati
 dis
 and bulge.

Sin
e the orbital angular momentum L � r

s

v

s

m

s

and �L = �dt � r

s

G�(r

s

=v

s

), where � is the

dis
's surfa
e density, both L and the angular momentum a

rued �L over one revolution will be

of 
omparable magnitude if v

2

s

� GM

d

=r

s

, i.e. when the dis
 potential is the predominant 
ontrib-

utor to the for
e a
ting on the satellite. The dire
tion angle i(t) varies therefore wildly towards

the end of the simulations in all 
ases save the 
oplanar i(0) = 0

Æ

one, for whi
h � = 0 at all times.

The os
illations or periodi
 
u
tuations we have dis
ussed are subje
t to enhan
ements owing

to our 
hoi
e of a grid numeri
al method of integration. The Cartesian grid 
ode limits the

verti
al resolution of a thin dis
. Consequently the response of the dis
 to heating by the satellite
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is not 
orre
tly quanti�ed. Furthermore, on
e the remnant satellite has merged with the disk,

the position of it's 
entre of density be
omes ill-de�ned by virtue of the satellite 
easing to exist

as a bound entity; i(t) will re
e
t this un
ertainty for t > 3 Gyr. With 32 mesh points spread

over a length of 3R

d

, the position of the 
entre-of-density and the dis
 stru
ture are resolved to

l ' 3R

d

=32 � r

s

=10 when r

s

� R

d

. Hen
e the error on the angle i may be estimated to be

sin i � i = l=r

s

� 1=10 or 5

Æ

approximately. This puts into perspe
tive the magnitude of the

os
illations seen on Fig. 6 for t > 3 Gyr, though without a

ounting for them fully. This leads

us to 
on
lude that the physi
al e�e
t of the torque � by the dis
 on the satellite is qualitatively


orre
t, although the quantities somewhat un
ertain.

7.3.4 Orbital e

entri
ity

In Fig. 7.8 we plot the e

entri
ity evolution for satellites with massM

s

= 0:1M

d

. The e

entri
ity

is 
al
ulated from the value of r

a

(t) and r

p

(t) until the satellite has 10 % of its initial mass.

G1S100
G1S145
G1S190

G1S100e
G1S190e

G1S100c
G1S190c

G2S100
G2S145
G2S190

G2S100e
G2S190e

G2S100e
G2S190e

Figure 7.8: The e

entri
ity evolution for some of the models.

The orbital e

entri
ity does not remain 
onstant as dynami
al fri
tion shrinks the orbit. The

evolution of e(t) depends on e(t = 0) and i(t = 0), but from Fig. 7.8 we observe that the general

behaviour is for the orbits to remain nearly 
onstant. The only 
learly evident ex
eption is prograde

model G2S100 (e(0) = 0:5), whi
h shows a pronoun
ed de
rease of e(t). In this 
ase, dynami
al

fri
tion from the 
attened DMH plus dis
 is so large that the apo-gala
ti
 distan
e de
reases mu
h

faster than the peri-gala
ti
 distan
e. Close inspe
tion shows that this is merely the extreme of

a general trend. Comparing the 
o-planar prograde orbits (i = 0

o

: GnS100, GnS100e, GnS100
;

n= 1; 2) with the polar orbits (i = 90

o

: GnS190, GnS190e, GnS190
), it is evident that the former

show a stronger sensitivity on initial e

entri
ity than the latter. The e�e
t is su
h that 
ir
ular


o-planar prograde orbits 
ir
ularise. Dis
{satellite 
oupling via dynami
al fri
tion and indu
tion

of spiral modes in the dis
 and asso
iated transfer of angular momentum between satellite and dis


are the likely reason, but we do not dwell longer on this, as dis
-satellite 
oupling is not the main

topi
 of this work, whi
h in any 
ase does not resolve the dis
 verti
al stru
ture. We merely state

here that the data in Fig. 7.8 suggest that orbits tend to remain with nearly 
onstant e

entri
ity,

o

urring that e(t) de
reases when dynami
al fri
tion is strong
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G2S145

G1S145

G2S160

G2S130G2S115

G1S190,G2S190

Figure 7.9: The pre
ession angle P for some of our models.

This behaviour agrees with that found by van den Bos
h et al. (1999). They perform numeri
al


al
ulations using a galaxy models similar to G1, with satellite masses on the order of that of our

models S1. They observe that the e

entri
ity remains remarkably 
onstant. Unfortunately, they

do not in
lude 
al
ulations with e(0) < 0:6. We note in passing that our results disagree with

those found by Prugniel & Combes (1992), who observe that initially 
ir
ular orbits rapidly a
quire

e

entri
ity.

7.3.5 Orbital pre
ession

The orbital plane of a satellite and its unbound parti
les pre
esses in a 
attened potential whi
h

smears out the tidal debris stream. The pre
ession angle, P (t), is 
al
ulated by proje
ting the

orbital angular momentum ve
tor onto the gala
ti
 xy plane and measuring its 
hange with time.

In Fig. 7.9 we plot P for some of our models. The pre
ession, dP=dt, in
reases at later times due

to the anisotropy of the dis
's potential, the satellite having de
ayed to its vi
inity.

As expe
ted, 
attened DMHs lead to larger pre
ession. Comparing models G1S145 (satellite

within a spheri
al DMH) and G2S145 (satellite within a 
attened DMH), we observe that the


hange of P is, respe
tively, ' 50

Æ

and ' 150

Æ

, i.e, approximately three times larger at t = 3

Gyr. Sin
e the DMH is spheri
al for models with G1 the pre
ession of the orbital plane is due

to the dis
 gravitational quadrupole moment. The orbital plane pre
esses faster the smaller its

in
lination is, orbits with i � 45

o

pre
essing by 180

o

in 3 Gyr. Polar orbits do not pre
ess at all.

7.3.6 Tidal streams

The a

retion history of the Milky Way and other major galaxies leaves signatures in the form of

old tidal streams in the DMHs of these galaxies as found in observational surveys su
h as that of

Dohm-Palmer et al. (2001), or Mart

�

inez-Delgado et al. (2001). The dete
tion of the Sagittarius

dwarf tails (Iabata et al. 1994) therefore likely is a generi
 features of large galaxies.

Theoreti
al models of this pro
ess have shown good agreement with observations (Helmi &

White 1999; Zhao et al. 1999; Helmi & de Zeeuw 2000). The 
hanges in orbital in
lination i and
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the orbital pre
ession in 
attened systems imply that the tidal debris emanating from a disrupting

satellite will signi�
antly spread out in i, whi
h will make re
onstru
tion of the a

retion history

of a major galaxy diÆ
ult if its DMH is 
attened.

In Fig. 7.10 we plot the deviation angle of the satellite's parti
les from the initial orbital plane

in three time snaps. This is done for models G1S145 and G2S145 (Fig. 7.10, i(0) = 45

Æ

), and

for G1S190 and G2S190 (Fig. 7.11, i(0) = 90

Æ

). The �rst time-snap shows satellite parti
les after

�rst passage through perigala
ti
on at t = 0:62 Gyr, the se
ond one is at an intermediate time

(t = 1:52 Gyr) while the last frame is at a late stage of the satellite orbit. The debris does not

remain in the initial orbital plane. This e�e
t be
omes more pronoun
ed the 
loser the satellite is

to the galaxy's 
entre, when the mass loss (Fig. 7.3) and the os
illations of the orbital in
lination

(Fig. 7.7) primarily o

ur, and the larger the number of perigala
ti
on passages is. From Fig. 7.10

we also observe that the deviations from the orbital plane are enhan
ed when the DMH is 
attened

sin
e satellite orbits within oblate DMHs align with the symmetry plane (i.e. i(t)! 0). Fig. 7.11

shows that the spread of satellite debris is mu
h smaller for satellites in polar orbits than for those

with intermediate in
linations, sin
e in
lination de
ay and os
illations vanish for polar orbits.
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Figure 7.10: a: Deviation angles for all satellite parti
les from the initial orbital plane (i = 45

Æ

).

The left 
olumn depi
ts model G1S145 (spheri
al DMH), and the right 
olumn shows G2S145

(
attened DMH). Rows show three time snaps (given in Gyr). In the last one, the satellite has

been fully destroyed.

7.4 Con
lusions

In order to assess the importan
e of dynami
al fri
tion in extended oblate DMHs on the distribu-

tion of satellite galaxies around their primary, we perform self-
onsistent N -body 
omputations of

satellite galaxies with masses amounting from 10 to 20 per 
ent of the primary's dis
. The satel-

lites are pla
ed on di�erent orbits in spheri
al and 
attened DMHs that have embedded gala
ti


dis
s and bulges.

The 
al
ulations with spheri
al DMHs lead to results in good agreement with those obtained

by VW. Modest di�eren
es in quantities are attibuted to the in
reased mass resolution of our


al
ulations 
ompared with theirs, as well as di�erent linear resolution (grid size versus smoothing

length of their TREE algorithm).
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Figure 7.11: b: As Fig. 7.10 but for models G1S190 (spheri
al DMH) and G2S190 (
attened

DMH), with initial in
lination i = 90

Æ

.

Satellites evolving in spheri
al DMHs on prograde orbits relatively to the primary galaxy's

dis
 rotation de
ay faster than satellites on retrograde orbits or on polar orbits. This results from

orbital resonan
es between the dis
 and the satellites.

Of parti
ular interest, however, is that our results demonstrate that non-isotropi
 dynami
al

fri
tion in 
attened DMHs works as a removal me
hanism of satellites with low-in
lination orbits,

whereas it enhan
es the survival time of satellites on near polar orbits. Thus, satellites on polar

orbits survive about 70 per 
ent longer than satellites on orbits that have a small in
lination

relative to the primary galaxy's dis
 (Table 7.2), irrespe
tive of the relative orbital sense (Fig. 7.6)

in an oblate DMH with axis ratio q

h

= 0:6. This is the key result of this investigation.

This result helps understand the distribution of dwarfs galaxies in the Milky Way. Sin
e they

are mainly distributed near the gala
ti
 pole (Carney et al. 1987) we may infer a sele
tion of

survivor dwarfs from a primordial population. The a

elerated orbital de
ay and alignment with

the dis
 of dwarfs within a 
attened halo would go some way towards a

ounting for the data.

However if the masses dedu
ed for these satellites ( 10

8

solar, 
ompared with 10

9

for our models)

is a good measure of their mass at the formation time, our 
omputations indi
ate times as long as

a Hubble time for e�e
tive mergers. Dis
repan
ies in times
ale may well be a

ounted for if we

substitute for the isothermal halo the more 
on
entrated NFW (Navarro, Frenk & White 1995)

models or haloes with a steeper 
usp (Moore et al. 1998): when ea
h halo model is s
aled to

the same integrated mass inside the solar radius, the parti
le velo
ity dispersion in these models

drops faster with radius than for isothermal spheres. Be
ause of the strong dependen
e of fri
tion

on velo
ity dispersion, this would redu
e the times
ale for orbital de
ay very mu
h and o�set the

e�e
t of redu
ed satellite masses. We have not, however, performed 
al
ulations with di�erent

halo mass pro�les.

Our 
omputations further show that satellites on orbits with e

entri
ity e � 0:5 and with

masses larger than 10 per 
ent of their primary galaxy's dis
 merge within only a few Gyr with

the primary galaxy. The time it takes to merge in
reases with de
reasing orbital e

entri
ity

(Fig. 7.6). We therefore dedu
e that massive satellites around distant galaxies, su
h as typi
ally

enter the samples that show the Holmberg e�e
t, may be preferentially on near-
ir
ular polar

orbits or on orbits with apo-gala
ti
a further away from their primary galaxy than about 130 kp
.
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The 
al
ulations also suggest that the orbital e

entri
ity remains nearly 
onstant for most of

the orbits. Only 
o-planar satellites within a 
attened halo su�er an evident 
ir
ularisation due

to the strong dynami
al fri
tion.

We also note that the high pre
ession rates of satellite orbits in 
attened DMHs and the

de
rease in orbital in
lination leads to tidal debris streams being 
ompletely smeared apart for

initially in
lined orbits.

We want to 
omment that, despite our use of only two values for the satellite mass in our


al
ulations, this range seems to be representative to reprodu
e the typi
al mass of the satellite

that Holmberg (1969) and Zaritsky & Gonz�alez (1999) �nd in their observations when the initial

apo-gala
ti
 distan
es is sele
ted properly (Ibata et.al 2001). As Tormen (1997) �nds in his

numeri
al 
al
ulations of hierar
hi
al galaxy 
lusters history, more massive satellites (� 10

11

)

are unlikely to survive due to the large drag for
e they su�er. On the other hand, though less

massive satellites (� 10

8

solar) feel a negligible drag for
e, they are qui
kly disrupted after some

peri-gala
ti
on passages due to their low binding energy.

This paper has sought to quantify the e�e
t of aspheri
al DMHs on the orbits of gala
ti


satellites. The analysis suggests enhan
ed Holmberg de
ay, yet what 
an we say of a population of

satellites as a whole? Our model satellites require a few orbits around the host galaxy if dynami
al

fri
tion is to be e�e
tive. Thus within one Hubble time a satellite would require = 5 revolutions

(say) or t = 2 Gyr for a single revolution at most. In the Milky Way the orbital time t = 200 Myr

at r = 10kp
; assuming an isothermal halo with � / r

�2

, the 
riti
al orbital time t = 2 Gyr would

be found at r = 50 kp
 or so. In other words, satellites that are too far from the host galaxy

will not have time to experien
e dynami
al fri
tion and hen
e will not have su�ered Holmberg

de
ay. On the other hand, satellites 
loser to their host galaxy will merge qui
kly through the

pro
ess des
ribed here. Zaritsky et al. (1999) have noted that satellite populations tend to remain

isotropi
ally distributed for satellites with r > 50 Kp
.

A more elaborate study is under way, and ultimately we aim at making a statisti
al study of a

modelled observational sample to infer if the Holmberg e�e
t 
an indeed be produ
ed by 
attened

DMHs.
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Chapter 8

Dynami
al fri
tion in 
attened

systems

8.1 Introdu
tion

The most a

epted galaxy formation theory assumes that large-s
ales stru
tures grew from small

amplitude Gaussian 
u
tuations at the early-stages of the Universe. In hierar
hi
al models, these


u
tuations de
rease with in
reasing s
ales, resulting in the formation of low-mass obje
ts that

may merge, building up even more massive stru
tures. The shape and morphology of these obje
ts

are strongly dependent on the 
osmologi
al models, as one 
an 
on
lude from the N-body 
om-

putations, although none of them predi
t spheri
al stru
tures. The most su

essful hierar
hi
al

theory is the so-
alled Cold Dark Matter model (CDM). In this framework, aspheri
al bound Dark

Matter (DMHs) form as a result of gravitational 
lustering. Dubinsky (1994) �nds in his 
omputer

simulations a Gaussian distribution of DMH aspe
t ratios, q

h

� 
=a > 0, where 
 and a are the

minor and major axes of an oblate spheroid, of mean < q

h

>= 1=2 and dispersion equal to 0.15.

Other theories are the Hot Dark Matter model, that predi
ts haloes as round as q

h

= 0:8 (Peebles

1993), or Dark Matter 
andidates su
h as 
old mole
ular gas (Pfenniger, Combes & Martinet 1994)

and massive de
aying neutrinos (S
iama 1990), that produ
e stru
tures as 
attened as q

h

= 0:2.

Observationally, measures of the galaxy axis-ratio be
omes a hard subje
t open to spe
ulation

due to the large spread of values that result from di�erent models. The most used te
hniques are

usually: (i) Stellar kinemati
s. Olling & Merri�eld 2000 obtain an axis-ratio of q

h

� 0:8 for our

Galaxy. This method has the disadvantage of having a

ess to information of our Galaxy only

at small s
ales. (ii) The 
ying gas layer method (Olling 1996, Be
quaert, Combes & Viallefond

1997) assumes that the HI emission of the Milky Way 
omes from gas in hydrostati
 equilibrium

in the Gala
ti
 potential, it produ
es axis-ratios as low as q

h

� 0:3 for the galaxies NGC 891 and

4244, (iii) Warping gas layer. Hofner & Sparke 1994 obtain axis-ratios of approximately 0.7 for

NGC 2903 and of q

h

� 0:9 for NGC 2841, 3198, 4565 and 4013, (iv) X-ray isophotes. Boute &

Canizares 1998 measure values of q

h

� 0:5 for NGC 3923, 1332 and 720, (v) Polar ring galaxies

(Arnaboldi et al. 1993, Sa
kett et al. 1994) �nd an axis-ratio of q

h

� 0:3 for NGC 4650A, 0.5 for

the galaxy A0136-0801 and 0.7 for AM2020-504, (vi) Pre
essing dusty dis
s (Steinman-Cameron,

Kormendy & Durisen 1992), measure an axis-ratio of 0.9 for the galaxy NGC 4753.

The last method, whi
h we fo
us on, is the analysis of satellite dynami
s. There are two dif-

ferent approa
hes to infer the halo shape from satellites.

First, one may attempt to reprodu
e the observed tidal streams of the Milky Way satellites as

done, for instan
e, by Ibata et al. 2000 who use measures of velo
ity, position and stru
ture of the

Sagittarius dwarf galaxy to 
onstrain the initial parameter spa
e and, subsequently, they 
al
ulate

in detail the satellite mass loss. They �nd that the Milky Way 
annot be more 
attened than

q

h

� 0:9, otherwise tidal streams would be too spread and thi
k 
ompared to the observations.

The se
ond approa
h is a statisti
al study of satellite distribution around spiral galaxies. Holm-

93
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berg (1969) and Zaritsky & Gonz�alez (1999) point out that satellites around dis
 galaxies are

found more often aligned with the poles of the host galaxy, the so-
alled 'Holmberg e�e
t' whereas

Quinn & Goodmann (1986) �nd in their N -body study that the dis
 alone 
annot a

ount for

the original statisti
al distribution of Holmberg's data. A remedy may be sought in the form

of an extended non-spheri
al DMH. An anisotropi
 velo
ity (and mass) distribution will 
ause a

satellite's orbit to align with the axes of the velo
ity ellipsoid of the host galaxy (Binney 1977,

hereinafter B77).

For both s
hemes, a large number of numeri
al 
al
ulations is needed. In the �rst 
ase, one should

integrate several \possible" initial orbital parameters to �nd the best �t to the observed satel-

lite 
hara
teristi
s, whereas in the se
ond 
ase the satellite initial parameters should statisti
ally

reprodu
e the distributions expe
ted from the 
osmologi
al models. So far this is prohibitively

time-expensive using any of the present N-body algorithms. The aim of this Chapter is to im-

plement a simple analyti
 s
heme for tra
king the dynami
al evolution of substru
ture within


attened as well as spheri
al DMH's.

The N-body 
omputations of Pe~narrubia, Kroupa & Boily 2001, (hereinafter PKB), where it

is analysed in detail the e�e
ts of the halo aspheri
ity on the satellite de
ay and disruption, show

that the isotropi
 Chandrasekhar's dynami
al fri
tion is not able to explain the results obtained

(see Chapter 7 for a summary). For that reason, we implement Binney's expression for dynami
al

fri
tion in systems with anisotropi
 velo
ity dispersions (B77) in our 
ode, whi
h also reprodu
es

Chandrasekhar's for null anisotropy.

In Chapter 6 we 
arry out a detailed study of the e�e
ts that the dependen
e of the Coulomb

logarithm ln� on the relative velo
ity of the two-body en
ounters and the gala
to-
entre distan
e

indu
e on the satellite dynami
s. The results indi
ate that the assumption � = �(r

s

) leads to

the best �t for the �rst satellite orbits, in agreement with Hashimoto, Funato & Makino (2002).

However, this dependen
e produ
es orbits that systemati
ally overestimate the satellite de
ay

times (de�ned as the time the satellite needs to sink into the galaxy 
entral region, whi
h we

assume equivalent to the 
ondition r

s

< 3 kp
). If ln�=
onst. the orbit is reprodu
ed less

a

urately but the de
ay times are more pre
ise. This quantity is fundamental for the later study

on the satellite distribution around spiral galaxies, thus we de
ide to analyse in detail only Binney's

expressions for aspheri
al systems.

We have also shown that the e�e
ts of the system inhomogeneity on the satellite orbit (through

the �rst order term of dynami
al fri
tion) are negligible. We de
ide, therefore, not to implement

F

(1)

in our 
al
ulations.

Our goal is to 
he
k whether, as Chandrasekhar's expression for spheri
al haloes, it is reason-

ably a

urate to use the results of B77 to reprodu
e dynami
al fri
tion in aspheri
al systems. We

also 
ompare the results of using Chandrasekhar's formula in axi-symmetri
 systems to determine

the e�e
ts of the velo
ity anisotropy on the satellite de
ay.

The method followed is essentially that presented in Chapter 6.

8.2 Galaxy and satellite parameters

The galaxy and satellite parameters 
an be found in Chapter 3. We limit our study to the set of

halo parameters en
losed in the model H2, whereas the satellite model 
orresponds to S1. The

galaxy model H2 
orresponds to the one of G2, where the dis
 and bulge have been removed, so

that the output data 
an be used to analyse the dis
 and bulge e�e
ts on the satellite motion.

The values of the galaxy parameters 
an be found in Table 3.1. We 
arry a single simulation

with the model H5 in order to infer the dependen
e of our numeri
al experiments with the galaxy

parti
le number.
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Name Gal. Sat. i e r

p

r

a

model model [kp
℄ [kp
℄

H2S100 H2 S1 0

Æ

0.5 18 55

H2S130 H2 S1 30

Æ

0.5 18 55

H2S145 H2 S1 45

Æ

0.5 18 55

H2S160 H2 S1 60

Æ

0.5 18 55

H2S190 H2 S1 90

Æ

0.5 18 55

H2S100
 H2 S1 0

Æ

0.3 30 55

H2S130
 H2 S1 30

Æ

0.3 30 55

H2S145
 H2 S1 45

Æ

0.3 30 55

H2S160
 H2 S1 60

Æ

0.3 30 55

H2S190
 H2 S1 90

Æ

0.3 30 55

H2S100e H2 S1 0

Æ

0.7 10 55

H2S130e H2 S1 30

Æ

0.7 10 55

H2S145e H2 S1 45

Æ

0.7 10 55

H2S160e H2 S1 60

Æ

0.7 10 55

H2S190
 H2 S1 90

Æ

0.7 10 55

H5S145 H5 S1 45

Æ

0.5 18 55

Table 8.1: The numeri
al experiments. The peri- and apo-gala
ti
a are r

p

and r

a

, respe
tively,

and e = (r

a

� r

p

)=(r

a

+ r

p

) is the orbital ellipti
ity .

8.3 Numeri
al 
al
ulations

8.3.1 Code parameters

The numeri
al simulations were 
arried out by using the mesh-
ode Superbox (see Chapter 2)

to evolve the galaxy-satellite system.

The system used was exa
tly that of PKB, with the di�eren
e that we remove the dis
 and bulge


omponents. In this paper a detailed des
ription of the system and the grid stru
ture is presented,

whereas here we merely give a brief des
ription of the most important orbital parameters.

The grid-stru
ture of the halo and satellite 
orresponds to that outlined in Chapter 6 and PKB

. The time-step is also �xed to the same value to make possible a inter-
omparison of the velo
ity

anisotropy e�e
ts, not only by employing the semi-analyti
 
ode, but also through the numeri
al

data.

8.3.2 Orbital parameters

We 
arry out a set of 
al
ulations varying the parameters of the satellite that remark the di�eren
es

between the expressions (4.1) and (4.3), i.e Binney's and Chandrasekhar's formul�, when applying

both of them to the de
ay of a satellite within a 
attened halo. These parameters are:

(i) the initial orbital in
lination (i), de�ned as the angle between the initial angular momentum

ve
tor of the satellite and the initial angular momentum of the dis
. We expe
t the in
lination to

de
rease in time as predi
ted by Binney, whi
h shall not o

ur by using Chandrasekhar's formula.

We note that all the 
al
ulations pro
eed with the same orbital sense, whi
h is irrelevant sin
e the

halo is non-rotating.

(ii) The satellite's initial orbital e

entri
ity, de�ned as e = (r

a

� r

p

)=(r

a

+ r

p

), where r

a

; r

p

are

the apo and perigala
ti
on, respe
tively.

A wider study of the parameter-spa
e (as the satellite mass, initial apo-gala
ti
on distan
e...et
),

is 
arried out by PKB. Sin
e they do not introdu
e di�eren
es between the two equations of dy-

nami
al fri
tion, we �x these values along the set of 
omputations.

The system galaxy-satellite is 
onstru
ted as outlined in Se
tion 6.2.

The parameters of the numeri
al experiments are listed in Table 8.1.
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8.4 Halo Dynami
al Fri
tion

As 
ommented above, Chandrasekhar's expression 
annot explain some e�e
ts observed in N-

body 
al
ulations of satellite de
ay within 
atten haloes (PKB). Our aim is to 
he
k Binney's

approximation (B77) for systems with anisotropi
 velo
ity dispersion (for a detailed study of the

fri
tion for
e see Chapter 5).

For simpli
ity, we reprodu
e here the analyti
 formul� employed along this study. If the

distribution fun
tion in the velo
ity spa
e is axi-symmetri
, the spe
i�
 zeroth order fri
tion for
e

is (B77)

F

i

= �

p

2��

h

(R; z)G

2

M

s

p

1� e

2

v

ln�

h

�

2

R

�

z

B

R

v

i

(8.1)
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z

= �
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2��
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1� e

2

v

ln�

h

�

2

R

�

z

B

z

v

z

;

where i = x; y and (�

R

; �

z

) is the velo
ity dispersion ellipsoid in 
ylindri
al 
oordinates with


onstant e

entri
ity e

2

v

= 1 � (�

z

=�

R

)

2

. We denote ln�

h

as the Coulomb logarithm of the halo

and

B

R

=

Z

1

0

dq

exp(�

v

2

R

=2�

2

R

1+q

�

v

2

z

=2�

2

R

1�e

2

v
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)
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(1� e

2

v
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=
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1
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dq
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As Binney shows, a body with mass M

s

will su�er a de
rease of its orbital plane in
lination

whenever B

z

> B

R

(oblate halo). If the orbit is either 
oplanar or polar, the in
lination remains


onstant sin
e, respe
tively, either the perpendi
ular or the planar 
omponent of v is zero. One


an easily probe that this expression reprodu
es Chadrasekhar's when e

v

= 0, i.e,

F


h

= �4�GM

2

s

�

h

(R; z)ln�

d

�

erf(X)�

2X

p

�

e

�X

2

�

v

s

v

3

s

; (8.2)

where X = jv

s

j=

p

2�.

One important aspe
t to note is that both expressions of dynami
al fri
tion have an anisotropi


halo density in base of the lo
al approximation (whi
h is denoted by �

h

= �

h

[r; �℄, where � is the

azimuthal angle de�ned by the angular momentum ve
tor). In pra
ti
e, this implies that the only

di�eren
e between both expression is that made by the anisotropy of the velo
ity distribution.

8.5 Fixing the Coulomb logarithm

Making use of the �tting pro
edure detailed in Chapter 6, we pro
eed to �x the Coulomb logarithm

by requiring the best �t of the semi-analyti
 to the numeri
al data during the �rst 3 and 4

orbits assuming, therefore, that the mass loss e�e
ts 
an be negle
ted along the early time of the

evolution. In Fig. 8.1 we plot the �ts of some of the experiments, 
on
retely, those with in
linations

30

Æ

, 45

Æ

and 60

Æ

(
olumns), with e

entri
ities 0.3, 0.5 and 0.7 (raws). For ea
h model, the semi-

analyti
 
ode is employed to generate the satellite orbit using Chandrasekhar's (gree lines) and

Binney's (bla
k lines) formula to reprodu
e dynami
al fri
tion. The �tting parameter �, de�ned

as the dis
repan
y of the satellite position between numeri
al and semi-analyti
 data (eq. 6.2) is


al
ulated for the �rst 3 and 4 orbits, denoted with solid and dotted lines respe
tively. This �gure


learly shows that Chandrasekhar's formula poorly des
ribes the dependen
e of the satellite orbit

with the initial in
lination, leading to a wider dispersion of the Coulomb logarithm values (for this

range of in
linations, between 30

Æ

and 60

Æ

, ln� 2 [0:9; 2:8℄). If Binney's expression is used, the

variation of ln� is highly redu
ed (ln� 2 [2:3; 2:5℄), whi
h proves that this s
heme su

essfully



8.5. FIXING THE COULOMB LOGARITHM 97

1 2 3
0

1

2

3

4

H1S130e=0.3

1 2 3

e=0.5

1 2 3

e=0.7

0

1

2

3

4

H1S160

0

1

2

3

4

H1S145

Figure 8.1: Fitting parameter for diverse orbital e

entri
ities and in
linations. Dotted lines

denote �ttings of the �rst 4 orbits, whereas solid lines of the �rst 3 orbits. We use dashed and

dotted-dashed lines to represent the results from Chandrasekhar's expression for k = 4 and 3

orbits, respe
tively.

Fri
tion k ln� �

min

(kp
)

Binney 3 2.4 1.3

4 2.4 2.0

Chandrasekhar 3 2.1-2.2 8.1

4 2.1-2.2 10.6

Table 8.2: Results of the �tting pro
edure applied to the numeri
al 
al
ulation of Table 8.1 for

both formul� of dynami
al fri
tion.

des
ribes the e�e
ts of the anisotropi
 velo
ity dispersion on the satellite de
ay, independently of

the orbital in
lination. These di�eren
es be
ome mu
h larger if the range of in
linations is wider.

We must note that Binney's formula also presents barely dependen
e on the satellite e

en-

tri
ity, 
ontrary to Chandrasekhar's expression.

Even if the e

entri
ity and in
lination are �xed, i.e the �t is over a given model, Binney's fri
tion

improves the a

ura
y of the �t from 50-150% with respe
t to Chandrasekhar's result.

If Chandrasekhar fri
tion is used, the Coulomb logarithm that produ
es the best �t be
omes

lower as the in
lination in
reases. As we will see below, sin
e dynami
al fri
tion is proportional

to ln�, the use of the averaged value implies an overestimation of the for
e for high in
linations

and vi
eversa.

The �nal averaged over the numeri
al experiments of Table 8.1 is plotted in Fig. 8.2. This

�gure shows the high dis
repan
ies produ
ed by Chandrasekhar's expression if the �t is for a

large range of orbital in
linations and e

entri
ities, as expe
ted. The minimum of the 
urves

determines the value of ln� that leads to the best �t for both formul�of dynami
al fri
tion, whi
h

we summarised in Table 8.2. The values of �

min

denote the error per unit 
urve asso
iated with

the �t.
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Chandr. k=3

Binney k=4

Binney k=3

Chandr. k=4

Figure 8.2: Average of the �tting parameters over the 
al
ulations of Table 8.1.

8.6 The velo
ity anisotropy e�e
ts

In this Se
tion, we make a 
omparison of the di�erent e�e
ts that the velo
ity anisotropy indu
es

on the evolution of the satellite orbit.

8.6.1 Satellite de
ay and mass loss

One of the most important e�e
ts of dynami
al fri
tion is the monotoni
 redu
tion of the orbital

angular momentum and energy along the satellite evolution that leads to a progressive de
rease

of the averaged gala
to-
entre distan
e. The numeri
al 
al
ulations 
arried out by PKB show a

strong dependen
e of the de
ay time on the initial in
lination that must be 
ompared to analyti


estimations.

In Fig. 8.3 we plot the radius evolution (left 
olumn) and mass evolution (right 
olumn) for

those models with e = 0:5. The value M

s

(t) being numeri
ally 
al
ulated as explained in Se
-

tion 4.3. From this �gure, we 
on
lude that Binney's expression 
learly produ
es more a

urate

results than Chandrasekhar's one for the whole range of orbital in
linations. This result is not

surprising due to the small dependen
e of the Coulomb logarithm on the in
lination and e

en-

tri
ity as it is shown in Fig. 8.1.

Additionally, the value of ln� that produ
es �

min

�ts not only the �rst two and three orbits, but

also su

ess in reprodu
ing the de
ay time of the satellite.

PKB observe that 
oplanar satellites su�er higher fri
tion than those following polar orbits,

leading to survival times over 70% longer. Due to the presen
e of dis
 in their galaxy model, it

is un
lear the 
ontribution of the dis
 anisotropy on the de
ay di�erentiation as a fun
tion of the

in
lination. Our numeri
al 
al
ulations where the dis
 and bulge are removed show a range of

survival times that goes from 3.7 Gyr up to 6 Gyr, using the same orbital parameters and halo


attening as PKB. This implies a de
ay time di�erentiation of around 60% between polar and


oplanar satellites, whi
h indi
ates that the dis
 
ontribution might be of the order of 10%. The

e�e
ts of the dis
 on the satellite orbit are studied in more detail in Chapter 9.

Depending on the symmetry of the halo distribution, one 
an observe the following e�e
ts:



8.6. THE VELOCITY ANISOTROPY EFFECTS 99

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0 2 4 6
0

0.5

1

t (Gyr)

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0 2 4 6
0

20

40

60

t (Gyr)

Figure 8.3: Radius and mass evolution for the models of Table 8.1 with e = 0:5. Dotted lines

represent the numeri
al evolution, whereas full and dashed lines the data obtained from the semi-

analyti
 
ode using Binney's and Chandrasekhar's expressions to des
ribe the dynami
al fri
tion

pro
ess.
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� Spheri
al mass distribution. Isotropi
 velo
ity distribution Satellites orbiting sys-

tems with spheri
al distribution fun
tion move along orbits that do not depend on their

orientation with respe
t to the symmetry axis (see Chapter 6).

� Flattened mass distribution. Isotropi
 velo
ity distribution The spatial aspheri
ity

provokes a strong di�erentiation of the satellite de
ay as a fun
tion of the orbital in
lination.

Assuming the lo
al approximation as valid, dynami
al fri
tion in su
h a system 
an be

reprodu
ed by Chandrasekhar 's formula. Although this distribution 
annot be found in the

Nature, it is interesting as an exer
ise.

� Flattened mass distribution. Anisotropi
 velo
ity distribution The main in
uen
e

of the velo
ity anisotropy on the satellite orbit is the attenuation of the spatial anisotropy

e�e
ts, whi
h is equivalent to B

R

< B

z

in Binney's formula (eq. 8.1, oblate systems). As

Fig. 8.3 shows, if one assumes an isotropi
 distribution in velo
ity spa
e (B

R

= B

z

) or,

equivalently, we use Chandrasekhar's formula to reprodu
e dynami
al fri
tion, this leads to

an overestimation of dynami
al fri
tion for low in
linations and a underestimation for those

satellites following high in
lined orbits.

For simpli
ity, we do not plot the radial evolution for e = 0:3; 0:7 sin
e these results have been

proved to be independent of the initial e

entri
ity.

Along the orbit, the satellite loses mass due to the a
tion of tidal for
es on the satellite parti
les.

The absen
e of dis
 and bulge makes the time-s
ale of the tidal for
e to be shorter than the motion

of the satellite parti
les around the 
entre-of-mass. In this regime, the mass stripped by the tidal

for
e 
an be properly reprodu
ed by the 
al
ulus of the Lagrange points, i.e those where the

external galaxy potential is equal to the satellite self-potential (see Se
tion 4.3).

The mass evolution represented in Fig. 8.3 is di�erent to that found PKB. They observe in their

numeri
al experiments that all satellites with M

s

= 0:1M

d

and r

0

= 55 kp
 are destroyed before

the remaining bound part of the satellite rea
hes the 
entral region of the galaxy, independently on

the orbital e

entri
ity and in
lination (see Chapter 7). However, if the dis
 and bulge are removed

(implementing the same satellite models and initial orbital parameters), the mass evolution shows

a nearly monotoni
 de
rease whi
h leads to the in
oming of bound satellites in the inner most part

of the galaxy. Due to the importan
e of the dis
 and bulge e�e
ts on the satellite dynami
s and

mass evolution, we 
arry out a detailed study in Chapter 9.

8.6.2 Evolution of the orbital in
lination and e

entri
ity

Orbits around non-spheri
al systems have in
linations (i) that do not remain 
onstant but su�er

periodi
al os
illations due to nutation (see Appendix A). On
e �xed the initial 
onditions, the

amplitude and frequen
y of the nutation remain 
onstant if the fri
tion for
e is removed from the

equations of motion whereas, if it is implemented, pro
esses su
h the nutation and pre
ession vary

a

ordingly to the angular momentum and radial distan
e evolution. Our interest fo
us now on

the e�e
ts indu
ed by the velo
ity anisotropy on the satellite in
lination along the orbit.

In his work, Binney (B77) predi
ts the progressive redu
tion of i due to dynami
al fri
tion

if the velo
ity dispersion ellipsoid is axi-symmetri
 (�

R

; �

z

) and �

R

> �

z

. By symmetry, the

in
lination de
rease will not o

ur if the orbits are either 
oplanar (i = 0

Æ

) or polar (i = 90

Æ

).

The in
lination evolution of models with e = 0:5 is plotted in Fig. 8.4 (left 
olumn), where dotted

lines denote the numeri
al data and solid and dashed lines the semi-analyti
 evolution if dynami
al

fri
tion is reprodu
ed by Binney's and Chandrasekhar's formul�, respe
tively.

This Figure shows the redu
tion of the averaged i predi
ted by Binney and observed by PKB in

their numeri
al 
al
ulations. After the satellite has sinked to the most inner region of the halo, the

in
linations are as low as 10

Æ

barely dependent on their initial value. This large de
rease of i is well

reprodu
ed by Binney's expression, although the nutation pro
ess shows dis
repan
ies with the

numeri
al result, whi
h is 
onne
ted with the poor �t of the orbit, despite the a

urate des
ription

of the overall de
ay pro
ess (this is also observed when applying Chandrasekhar's expression for
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Figure 8.4: In
lination and e

entri
ity evolution for the models of Table 8.1 with e = 0:5. Dotted

lines represent the numeri
al evolution, whereas full and dashed lines the data obtained from

the semi-analyti
 
ode using Binney's and Chandrasekhar's expressions to des
ribe the dynami
al

fri
tion pro
ess.

dynami
al fri
tion in spheri
al systems, see Chapter 6).

As expe
ted, the orbital in
lination of 
oplanar and polar satellites remains 
onstant.

If dynami
al fri
tion is reprodu
ed by Chandrasekhar's formula, i.e the velo
ity distribution is

assumed isotropi
, the averaged value of i does not 
hange along the orbit, whi
h 
learly 
omes

into 
ontradi
tion with the numeri
al results.

In Fig. 8.5 and 8.6 (left 
olumns) we plot the 
omparison for models with e = 0:7; 0:3,

respe
tively. The results show barely dependen
e on the e

entri
ity. It is interesting to note that,

independently of e, orbits that are neither 
oplanar nor polar present high drops of the mean value

of i. After the satellite sinks to the 
entre, the �nal orbital in
lination lies for all the models in

between 10-20

Æ

.

We must remark the importan
e of the a

ura
y of the Binney's formula in order to des
ribe


orre
tly the pro
ess of in
lination de
rease that satellites su�er in axi-symmetri
 systems. This

result is 
ru
ial to simulate properly the satellite motion and to investigate the satellite distribution

around spiral galaxies.

Like the orbital in
lination, the e

entri
ity is one of the orbital parameters that 
an be indi-

re
tly measured from observations to determine the satellite motion around a galaxy. The right


olumn of Fig. 8.4 shows the 
omparison of the numeri
al e

entri
ity evolution with both semi-

analyti
 approa
hes. As it was observed in Chapter 6, if the Coulomb logarithm is assumed


onstant, the analyti
 formul� of dynami
al fri
tion leads to an overestimation of the e

entri
-

ity de
rease, whi
h o

urs mostly at the late-times of the orbit evolution, the so-
alled orbital


ir
ularisation, and be
omes stronger for low in
lined orbits, those that su�er higher dynami
al
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Figure 8.5: As Fig. 8.4 for models with e = 0:7. Note that the time-s
ale has a di�erent value.
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Figure 8.6: As Fig. 8.4 for models with initially e = 0:3. Note that the time-s
ale has a di�erent

value.
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Figure 8.7: Energy and angular momentum evolution along the orbits with e = 0:5. The numer-

i
al evolution is denoted by dotted lines, whereas the semi-analyti
 data is represented by solid

and dashed lines if dynami
al fri
tion is reprodu
ed by Binney's and Chandrasekhar's formul�,

respe
tively. The quantities E and L

z

are normalised to the initial value.

fri
tion. Fig. 8.5 and Fig. 8.6 indi
ate that the 
ir
ularisation in
reases if the initial orbital e
-


entri
ity is higher and de
reases for more 
ir
ular orbits. Both dynami
al fri
tion expressions

reprodu
e a

urately the e

entri
ity evolution for the �rst orbital periods, however at late-times

the e

entri
ity exhibits a redu
tion not present in the numeri
al 
al
ulations that 
an be as high

as 30% for low in
lined satellites following high e

entri
 orbits.

8.6.3 Energy and angular momentum evolution

A 
attened system possesses two analyti
 
onstants of motion, the energy and the 
omponent of

the angular momentum perpendi
ular to the axi-symmetry plane (that we denote as L

z

). The

total angular momentum L

2

= L

2

R

+L

2

z

is, however, not 
onstant along the satellite orbit (see e.g

BT), but has periodi
 variations that 
orrespond to a pre
ession of the orbital plane around the

z-axis.

Sin
e the dynami
al fri
tion for
e has an opposite sense with respe
t to the satellite velo
ity,

it a
ts de
reasing the angular momentum and energy whi
h indu
es a monotoni
 sink into the

inner regions of the halo potential. The redu
tion of angular momentum, therefore, implies an

in
rease of the energy (in absolute value), sin
e the potential enhan
es for de
reasing radius. Due

to the low magnitude of dynami
al fri
tion if 
ompared to the mean �eld for
e, we expe
t an easier


omparison between numeri
al and semi-analyti
 data by the slow variation of L

z

and E along

the orbit. In Fig. 8.7 we plot the 
hanges over E and L

z

due to dynami
al fri
tion for the models

with e = 0:5. The results are equivalent to those of the radial evolution. The Chandrasekhar's
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Figure 8.8: Comparison between the model H2S145 (full line) and H5S145 (dotted lines).

formula overestimates dynami
al fri
tion for low in
lined orbits and underestimate it for high

in
lined orbits. For orbits with i < 45

Æ

, this appears as a stronger redu
tion of the z-
omponent

of angular momentum and, equivalently, a large in
rease of the energy. The e�e
t is 
ontrary for

satellites with i > 45

Æ

.

This �gure illustrates how the kineti
 energy of the satellite is lost via fri
tion, being observed by

the halo parti
les. At the end of the simulation the angular momentum has a null value, i.e the

satellite remains in the inner most part of the galaxy.

It is interesting to note that the energy and angular momentum evolution present small os
il-

lations along their evolution. This behaviour is due to the self-response of the halo to the satellite

motion. Sin
e superbox preserves the total energy and angular momentum, the halo also moves

around the 
entre-of-mass of the system. Due to the 
omplexity of the feedba
k, it 
annot be

reprodu
ed analyti
ally, so that we de
ide to �x the halo 
entre-of-mass as the 
oordinate origin

in the semi-analyti
 
ode (see Chapter 4).

8.6.4 In
reasing the number of parti
les

The sele
tion of the Coulomb logarithm has been shown to be sensitive to numeri
al parameters

like the number of N-body parti
les and the resolution of the 
ode (e.g Klessen & Kroupa 1998,

Fellhauer et al. 2000), through the dependen
e of the satellite-galaxy parti
les en
ounters on these

fa
tors.

In a very re
ent paper Spinnato et al (2003) show that the value of the Coulomb fa
tor � is

inversely proportional to the system size, whi
h 
an be interpreted as the 
ell size for a 
ollision-

less parti
le-mesh 
ode su
h as superbox. They show that, if the number of parti
les is large

enough, the value of ln� approa
hes asymptoti
ally to some quantitative value. In order to infer

whether the Coulomb logarithm that we �nd is sensitive to the parti
le number (N), we 
arry out

a 
al
ulation where N is eight times larger (halo model H5). The 
omparison between the satellite

de
ay is plotted in Fig. 8.8. We observe a de
rease of the de
ay time of around 15% (i.e in
rease

of the fri
tion for
e) for in
reasing N whi
h also 
auses a faster redu
tion of the z-
omponent of

the angular momentum and the orbital in
lination (note that the �nal value of i is for both 
ases
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the same). Fitting the Coulomb logarithm yields to the new value ln�=2.6, i.e 8% larger than for

the model H2.

We think that this relatively small variation of the Coulomb logarithm indi
ates that the asymp-

toti
 value as a fun
tion of N might be 
lose to N � 10

7

. Though the variation of ln� is relatively

small, one 
an appre
iate in Fig. 8.8 that the satellite orbit is signi�
atively altered.

8.7 Con
lusions

To asses the a

ura
y of Binney's equations (B77) in order to reprodu
e the satellite de
ay in


attened Dark Matter haloes, we perform a set of numeri
al 
al
ulations varying the orbital

in
lination as well as the e

entri
ity of the satellite.

The results of the 
omparison are 
ontrasted to the widely used Chandrasekhar's formula.

By means of the lo
al approximation, both equations in
lude the spatial 
attening through the

aspheri
al density pro�le. This means that the di�eren
es on the satellite motion indu
ed by ea
h

treatment of dynami
al fri
tion 
ome from the anisotropy in velo
ity spa
e, whi
h is implemented

in the 
al
ulus of B77.

The a

ura
y of Binney's and Chandrasekhar's formul� in �tting the numeri
al orbits is deter-

mined by the 
al
ulus of the parameter �

2

=

P

(r

num

�r)

2

+�

2

�t

2

at the peri and apo-
entres for

a given number of orbits. If dynami
al fri
tion is reprodu
ed by Binney's equation, this quantity

shows dis
repan
ies of approximately �

min

= 2 kp
 per unit orbit after averaging over the set of

experiments and for the �rst three orbits, meanwhile Chandrasekhar's formula produ
es values of

around � = 10 kp
.

We 
on
lude that Binney's expression faithfully reprodu
es the pro
ess of dynami
al fri
tion in

anisotropi
 systems. The �t is as a

urate as that employing Chandrasekhar's formula in isotropi


systems (see Chapter 6).

The 
omparison of the orbits resulting from Chandrasekhar's and Binney's expression of dy-

nami
al fri
tion give us the possibility of asses the e�e
ts of the velo
ity anisotropy on the satellite

dynami
s. We have proved that,

(i) if the density pro�le is in both equations � = �(r; �), where � = �=2� i is the azimuthal angle,

the orbits generated by Chandrasekhar's formula overestimate the satellite de
ay time for polar

orbits and underestimate it for 
oplanar ones. One e�e
t of the velo
ity anisotropy is then to

redu
e the interval of de
ay times as a fun
tion of the orbital in
lination. The Binney's expression

has proved to reprodu
e a

urately the numeri
al results independently of the initial e

entri
ity.

Comparing the interval obtained by PKB to that where dis
 and the spheri
al bulge are removed,

we 
an assert that the dis
 anisotropy makes it about 10% wider for a dis
 with massM

d

= 0:1M

h

.

(ii) Dynami
al fri
tion in systems with anisotropi
 velo
ity distribution leads to a marked de
rease

of the orbital in
lination (i) whi
h is well reprodu
ed by Binney's expression. After the satellite

sinks to the most inner region of the galaxy, i lies within 10-20

Æ

, independently of the initial value.

(iii) The study of the energy and angular momentum evolution as a fun
tion of the orbital in
li-

nation 
on�rm the results of (i) and (ii).

The semi-analyti
 e

entri
ity evolution, either employing Chandrasekhar's formula or Binney's

one, shows the so-
alled 
ir
ularisation pro
ess, de�ned as the progressive redu
tion of e along

the orbit. This variation is stronger for in
reasing fri
tion (like along 
oplanar orbits or during

the late-times of the evolution) and barely takes pla
e in the numeri
al 
al
ulations. A possible

solution my be sought in the gala
to-distan
e dependen
e of the Coulomb logarithm, as proposed

by Hashimoto, Funato & Makino (2002). Despite we �nd that it improves the des
ription of the

orbit at early-times, this s
heme also overestimates the satellite de
ay time for all the experiments

(see Chapter 6 for more details). The small 
ir
ularisation along the orbit agrees with the results

of van den Bos
h et al. (1999).

Our experiments show the e�e
ts that the presen
e of dis
 and bulge introdu
e on the satellite

mass loss by 
omparing them to those of PKB. This is analysed in detail in Chapter 9 , though

we 
an advan
e that their absen
e leads to the survival of a bound remanent after the satellites


omes to the inner most region of the halo, 
ontrary to the results of PKB. This results 
on�rms
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the importan
e of the dis
 and bulge presen
e in order to reprodu
e realisti
ally the satellite

distribution around spiral galaxies.

The dependen
e of our results on the number of N-body parti
les is small. In
reasing N by a

fa
tor eight yields to di�eren
es of 8% in the value of the Coulomb logarithm.

This study has proved that Binney's expression of dynami
al fri
tion is a

urate in order to

des
ribe the satellite de
ay in 
attened haloes, independently of the initial orbital in
lination

and e

entri
ity. The results, therefore, allow the implementation of the semi-analyti
 
ode of

Binney's equation to 
arry out a statisti
al analysis of the satellite evolution around 
attened

systems, whi
h would be time prohibitive if one utilises a N-body 
ode.



Chapter 9

Dis
 and bulge e�e
ts on the

satellite

9.1 Introdu
tion

The 
urrently favoured 
old Dark Matter theory of galaxy formation postulates that the formation

of a massive spiral galaxy like our own is a 
onsequen
e of the hierar
hi
al assembly of sub-gala
ti


dark haloes, and the subsequent a

retion of 
ooled baryoni
 gas in a virialized, galaxy-s
ale

dark halo (e.g Pea
o
k 1999). Numeri
al 
al
ulations based on this pi
ture are able to, at least

qualitatively, reprodu
e the 
hara
teristi
s of a dis
 galaxy (e.g Navarro & Steinmez 2000), though

some diÆ
ulties still remain, like the overestimation of the dis
 verti
al width and the number of

satellite galaxies.

The study of the repeated 
lose en
ounters and merges of the galaxy substru
tures seems to

be meaningful to investigate the properties and evolution of galaxies a�e
ted by su
h pro
esses.

Several N-body 
al
ulations were performed during the last de
ade in order to analyse the in
uen
e

of minor mergers on gala
ti
 dis
s in greater detail (e.g Quinn et al. 1993, VW). One of the main


on
lusions was that merging satellite within the range of mass ratios M

s

=M

d

' 0:05; 0:2 
an


ause a verti
al thi
kening of the baryoni
 dis
 of a fa
tor between 2 and four, depending on the

gala
to-
entre distan
e, due to the response of the \stars" to the satellite perturbation. However,

the huge parameter spa
e of su
h studies 
ompli
ates the overall inferen
e of the e�e
ts indu
ed

by the merging pro
ess on the dis
 evolution. The quantitate results also depend 
ru
ially on

parameters like the gas 
ontent and behaviour in the dis
, indu
ed by star formation or by the

satellite orbit.

Here in this Chapter, we attempt to study the problem from the opposite point of view, for-

mulating the following question: how does the dis
 (and bulge) presen
e a�e
t the dynami
s, the

merging rate and the mass evolution of satellites? This subje
t of investigation has been widely

analysed by 
arrying out numeri
al experiments (e.g Quinn & Goodman 1983 and VW) and with

semi-analyti
 modelling (T�oth & Ostriker 1992, Taylor & Babul 2001, hereinafter TB) in order

to determine the merging rate as a fun
tion of the orbital and galaxy parameters. These treat-

ments agree, that the main me
hanism that su

essfully des
ribes the satellite orbital evolution

is dynami
al fri
tion (see Chapter 5 for a detailed theoreti
al des
ription . Depending on the

parameters of the orbit, galaxy and satellite, this pro
ess may lead either to the �nal merge of the

satellite into the galaxy or to its previous destru
tion.

Despite of the small mass ratio of the dis
 and bulge if 
ompared to that of the halo, the

baryoni
 
omponent

1

may play an important role in order to a

elerate the mass loss of the

1

Hereinafter, we take the liberty of denoting the dis
 and bulge parti
les as the \baryoni
 
omponent of the

galaxy", regarding that in superbox these parti
les are identi
al to those of the Dark Matter halo, intera
ting to

ea
h other only through gravity. Our de�nition, therefore, goes beyond the N-body s
heme and it is thought to

give insights in a 
osmologi
al ba
kground.

107
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satellite via tidal sho
ks (e.g Sptizer 1987, Kundi�
 & Ostriker 1995, Gnedin & Ostriker 1997,

Gnedin & Ostriker 1999) and the enhan
ement of the de
ay rate when the satellite 
omes some

s
ale-lengths 
lose to these galaxy 
omponents, as 
on
luded from the study of TB. Thus, the mass

loss also 
ontrols through dynami
al fri
tion (regarding that the spe
i�
 fri
tion for
e a

omplishes

F

df

/M

s

[t℄) the de
ay pro
ess.

In Se
tion 9.3 we investigate the e�e
ts that the dis
 and bulge presen
e indu
e on the satellite

orbit and evolution by 
omparing the numeri
al 
al
ulations of Chapters 6 and 8 , where the galaxy

is formed by a pure Dark Matter halo with axis-ratio 1 (spheri
al) and 0.6 (oblate axi-symmetri
),

respe
tively, to those where the dis
 and bulge substru
tures are in
luded in the modelling of the

galaxy (Chapter 7, 
orresponding to the numeri
al experiments of PKB). In both 
ases, we use

spheri
al and axi-symmetri
 haloes, attempting to determine the in
uen
e of the halo shape on

the dis
 and bulge 
ontributions.

In the se
ond part of this Chapter, Se
tion 9.4, we want to determine the a

ura
y of the self-


onsistent semi-analyti
 
ode (Chapter 4) in order to des
ribe the satellite evolution. Whereas

in previous Chapters the satellite mass is implemented as an external output obtained from the

N-body data, so that e�e
ts indu
ed by mass loss 
an be distinguished from those indu
ed by

dynami
al fri
tion, in this Chapter we make use of the mass loss s
heme outlined in Se
tion 4.3.

The results 
an be 
ompared with those obtained by TB using a similar semi-analyti
 
ode. One

must, however, bear in mind that TB uses the numeri
al experiments 
arried out by VW in order

to sele
t the free parameters (dis
 and halo Coulomb logarithms plus the \energy fa
tor", whi
h

multiplies eq. 4.5 and 4.7), whereas we use those of PKB. In both 
ases, galaxy and satellite models

are the same.

We expe
t di�eren
es in the �nal value of the Coulomb logarithms sin
e: (i) the models of PKB

are 
omposed by nine times more N-body parti
les for the halo and double the dis
 parti
les and

(ii) PKB and VW make use of di�erent N-body methods, (mesh and tree 
odes, respe
tively).

If the semi-analyti
 treatment proves to produ
e an a

urate des
ription of the numeri
al data,

we shall use this 
ode to 
arry out a statisti
al survey of the satellite distribution around spiral

galaxies in a following Chapter.

9.2 Numeri
al experiments

In this Se
tion the numeri
al experiments 
arried out along our study are outlined. We attempt

to analyse of the dis
 and bulge e�e
ts on the satellite dynami
s and mass evolution. With that

purpose in mind, we 
olle
t the 
al
ulations 
arried out in previous Chapters, whi
h possess the

same orbital, satellite and superbox parameters, the only di�eren
e being the presen
e of dis


and bulge. These parameters are summarised in Table 8.1.

To analyse of the dis
 and bulge e�e
ts we employ four di�erent galaxy models, denoted as

H1, H2, G1 and G2, where \H" means the galaxy formed by a pure halo, \G" if bulge and dis


are in
luded, \1" if the halo is spheri
al and \2" if it is 
attened with axi-ratio q

h

= 0:6. The


hara
ters \a,e" denote di�erent orbital e

entri
ities.

For more information, we give expli
itely the list of tables in whi
h the properties of the galaxy


omponents and the satellite 
an be found,

(i) Galaxy model H1, H2, G1 and G2: Table 3.1

(ii) Satellite models: S1 and S2: Table 3.2.

9.3 Numeri
al analysis

In this Se
tion we examine the satellite de
ay and mass loss of the models presented in Table 9.1

in order to determine the 
ontribution of the baryoni
 substru
ture on the satellite evolution.
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Halo Name Gal. Sat. i

i

e r

p

r

a

shape model model [kp
℄ [kp
℄

Spher. H1S1a H1 S1 { 0.5 18 55

q

h

= 1 G1S100 G1 S1 0

Æ

0.5 18 55

G1S1180 G1 S1 180

Æ

0.5 18 55

G1S145 G1 S1 45

Æ

0.5 18 55

G1S1135 G1 S1 135

Æ

0.5 18 55

G1S190 G1 S1 90

Æ

0.5 18 55

H1S1e H1 S1 { 0.3 30 55

G1S100e G1 S1 0

Æ

0.3 30 55

G1S190e G1 S1 90

Æ

0.3 30 55

Oblate H2S100 H2 S1 0

Æ

0.5 18 55

q

h

= 0:6 G2S100 G2 S1 0

Æ

0.5 18 55

H2S130 H2 S1 30

Æ

0.5 18 55

G2S130 G2 S1 30

Æ

0.5 18 55

H2S145 H2 S1 45

Æ

0.5 18 55

G2S145 G2 S1 45

Æ

0.5 18 55

G2S1135 G2 S1 135

Æ

0.5 18 55

H2S160 H2 S1 60

Æ

0.5 18 55

G2S160 G2 S1 60

Æ

0.5 18 55

H2S190 H2 S1 90

Æ

0.5 18 55

G2S190 G2 S1 90

Æ

0.5 18 55

H2S100e H2 S1 0

Æ

0.3 30 55

G2S100e G2 S1 0

Æ

0.3 30 55

H2S190e H2 S1 90

Æ

0.3 30 55

G2S190e G2 S1 90

Æ

0.3 30 55

Table 9.1: Numeri
al experiments. The peri- and apo-gala
ti
a are r

p

and r

a

, respe
tively, and

e = (r

a

�r

p

)=(r

a

+r

p

) is the orbital ellipti
ity. Galaxy models \G" in
lude dis
 and bulge, whereas

in the models \H" the galaxy is only formed by the halo of the models \G". The numbers \1,2"

denotes spheri
ity and oblateness, respe
tively. Note that the galaxy models H1 are spheri
al, so

that the orbit is invariant with respe
t to the in
lination. q

h

denotes the minor to major axis-ratio

of the halo.

9.3.1 Spheri
al halo

The progressive loss of angular momentum and energy through the a
tion of dynami
al fri
tion

leads to the monotoni
 de
rease of the satellite gala
to-
entre distan
e. The 
ontribution of ea
h

galaxy subsystem to the drag for
e 
annot be, in prin
iple, de
oupled. However, the 
omparison

between di�erent orbital parameters may help to estimate the 
ontribution of ea
h 
omponent to

the satellite de
ay.

In the left 
olumn of Fig. 9.1 we plot the 
omparison of the radius evolution between the

models H1 and G1 for di�erent in
linations and e

entri
ities. Sin
e the halo of the galaxies H1

and G1 is spheri
al, the only anisotropy of this last model is indu
ed by the dis
 
attening and

rotation (see Chapter 7 for a detailed dis
ussion of the dependen
e of the survival time on the

orbital in
lination).

This �gure shows that, for non-rotating haloes, the presen
e of the dis
 in the inner region of the

galaxy introdu
es a dependen
e of the de
ay time on the orbital sense of motion through dynami
al

fri
tion, so that prograde satellites (those with orbits aligned with the dis
 angular momentum

ve
tor) de
ay about 1 Gyr faster than the retrograde (anti-aligned) ones if i = 0

Æ

and around 0.5

Gyr for orbits with i = 45

Æ

. The numeri
al 
al
ulations also demonstrate that polar orbits survive

longer than those 
oplanar. This dependen
e of the de
ay times on the orbital in
linations 
ome

through the 1=�v

2

in dynami
al fri
tion, where �v is the relative velo
ity between the satellite
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Figure 9.1: Radius and mass evolution for the satellite models within H1 (spheri
al halo) and G1

(H1 plus dis
 and bulge) of Table 9.1.

and the dis
 parti
les. These results are also found by VW.

Comparing the de
ay of satellites within H1 (full lines) and G1 (dotted and dashed lines)

galaxies we observe that, independently of the orbital e

entri
ity, the de
ay times of satellites

within the galaxy model H1 are very similar to those within G1 moving on 
oplanar prograde

orbits. Apparently, one should expe
t longer de
ay times for models without dis
 and bulge,

due to the absen
e of dynami
al fri
tion from these 
omponents. Sin
e the fri
tion for
e goes as

1=�v

2

, intuitively, satellites within H1 galaxies should have similar or larger de
ay times than

those following orbits with i > 90

Æ

, where the relative velo
ity is larger and the dis
 fri
tion 
an

be negle
ted if 
ompared with the halo one

2

, so that one would expe
t the model H1S1a to sink

into the galaxy 
entre in a time 
lose to the models G1S1n, where n � 90. This is, however, not

the 
ase due to the strong mass loss indu
ed by dis
 via tidal for
es and sho
ks along the orbit.

The right 
olumn of Fig. 9.1 shows the mass evolution of the satellite. Satellites within H1

2

The halo is non-rotational, whi
h implies that the di�eren
es on the satellite motion as a fun
tion of the orbital

sense are indu
ed by the dis
 rotational velo
ity. It is evident that prograde orbits, where the satellite moves with

the rotational sense of the dis
, su�er more fri
tion than the retrograde ones
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galaxies lose their angular momentum before they are destroyed by the a
tion of tidal for
es, whi
h

in pra
ti
e means that these satellites rea
h the inner most region of the galaxy like a 
ompa
t

body with some per 
ent of their original mass. This behaviour 
ontrasts with the mass evolution

of the satellites within G1 galaxies, whi
h su�er a strong mass loss at late-times (when the dis


and bulge start to dominate the galaxy potential) that leads to their �nal destru
tion (the satellite

is 
onsidered destroyed if M

s

< 0:1M

s

[0℄). The larger bound mass of satellites orbiting in the H1

galaxy leads to an enhan
ement of dynami
al fri
tion that gives rise to shorter merge times.

This results show that the dis
 presen
e introdu
e two opposite e�e
ts:

(i) It enhan
es dynami
al fri
tion mainly for prograde satellites following low in
lined orbits, whi
h

have a minimum relative velo
ity with respe
t to the dis
 parti
les. The larger value of dynami
al

fri
tion leads to shorter de
ay times.

(ii) It de
reases the satellite mass through tidal heating and tidal for
es (see Se
tion 4.3 for more

details). Satellites do not su�er from dis
 and bulge sho
ks if their orbits are 
oplanar. In this


ase, the dis
 tidal for
e in
reases as the satellite sinks to inner regions, being responsible for the

progressive mass loss. The dis
 and bulge dominates the galaxy potential for r

s

< 7 kp
, whi
h

approximately is equivalent to the last Gyr of the satellite evolution, when most of the mass loss

o

urs (see Fig. 7.1). If the orbit is in
lined with respe
t to the dis
 plane, rapid potential 
hanges

o

ur when satellites 
ross the dis
 whi
h lead to a perturbative response of the satellite parti
les.

As a result, their binding energy de
reases. This pro
ess is 
alled tidal heating or also tidal sho
k.

Tidal heating has been shown to be nearly independent of the orbital sense (Gnedin & Ostriker

1999). However, it depends on the orbital in
lination, so that polar orbits su�er smaller heating

than low in
lined ones due to the shorter duration of the sho
k.

The smaller value ofM

s

due to the dis
 e�e
ts provokes an overall redu
tion of dynami
al fri
tion

and, therefore, larger de
ay times.

Sin
e satellites within H1 galaxies have de
ay times shorter or 
omparable to those within G1

galaxies, we 
on
lude that the overall redu
tion of dynami
al fri
tion due to the enhan
ed mass

loss dominates over the additional dis
 fri
tion.

9.3.2 Flattened halo

In Fig. 9.2 we repeat the 
omparison for the galaxy models G2-H2. As we �nd for the models

G1-H1, the presen
e of the dis
 and bulge leads to a steep de
rease of the satellite mass at the

late-times, whi
h does not o

ur if the baryoni
 galaxy 
omponents are removed. As a result, the

satellite de
ay times in both galaxies are 
omparable.

It is interesting to point out the di�eren
es that the halo 
attening indu
e on the dis
 e�e
ts:

(i) Comparing prograde and retrograde orbits within G1 and G2 galaxies, we �nd that the satellite

de
ay times are very similar, as we observe for the models G2S145 and G2S1135 (prograde and

retrograde orbits, respe
tively).

(ii) The dependen
e of the de
ay time on the orbital in
lination is mainly produ
ed by the halo,

as the 
omparison between polar and 
oplanar orbits within the galaxy models G2 and H2 shows.

(iii) For most part of the orbit, the mass evolution of satellites within G2 galaxies is very 
lose

to that of satellites within H2 galaxies (like for the models G1S1, a rapid mass loss o

urs at

late-times due to tidal stripping). The di�eren
es in the mass evolution are remarkably smaller

than for satellites within galaxies with spheri
al haloes. This may indi
ate a strong redu
tion of

the resonan
e frequen
ies of the satellite parti
les, although this goes further our topi
 of study.

Points (i) and (ii) indi
ate that the satellite de
ay within galaxies with haloes as 
attened as

q

h

= 0:6 may be largely dominated by the halo fri
tion. The point (iii) also points out that the

dis
 
ontribution to the mass loss via sho
ks is partly redu
ed if the satellite moves in galaxies

with 
attened haloes. Like for the models G1S1, tidal for
es made by the dis
 and bulge potentials

lead to the �nal satellite disruption at late-times of the evolution.
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Figure 9.2: Radius and mass evolution for the satellite models within H2 (oblate halo, q

h

= 0:6)

and G2 (H2 plus dis
 and bulge) of Table 9.1 with initial e

entri
ity e ' 0:5.

9.4 Semi-analyti
 analysis

We attempt to reprodu
e the results of the previous se
tion employing the semi-analyti
 
ode

developed in Chapter 4.

This 
ode su

essfully des
ribes the satellite de
ay if the mass loss is 
al
ulated from the

numeri
al data (see Chapters 6 and 8). One 
ru
ial point, therefore, is the theoreti
al des
ription

of the mass evolution for the set of orbital and satellite parameters employed along the numeri
al

study.

In order to 
he
k the semi-analyti
 s
heme, we attempt to reprodu
e the numeri
al data of

PKB, whi
h present a set of orbital e

entri
ities and satellite masses wide enough to 
over the

most important range of parameter spa
e used in the subsequent study of the satellite distribution

around spiral galaxies. Observational data mainly provides the number of satellites as a fun
tion

of the gala
to-
entre distan
e and in
lination, so that we put spe
ial attention on the evolution of

these parameters.
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Figure 9.3: Averaged �tting parameters as a fun
tion of the halo Coulomb logarithm for models

of Table 9.1 with spheri
al and 
attened halo. Ea
h 
urve is obtained �xing the ln�

d

to a given

value. The 
al
ulus of � results from the average over the �rst four orbits (k = 4).

9.4.1 Fitting the Coulomb logarithms

The free parameters of the semi-analyti
 
ode are the Coulomb logarithm of the dis
 and halo.

Due to the spheri
al symmetry of the bulge, the fri
tion introdu
es no di�erentiation on the de
ay

time as a fun
tion of the orbital in
lination. If one also has into a

ount the small extension of the

bulge system, we expe
t negligible e�e
ts on the satellite motion until it rea
hes the inner region

of the galaxy where Chandrasekhar's and Binney's expressions of dynami
al fri
tion lose a

ura
y.

We de
ide, therefore, to negle
t the bulge 
ontribution to the total fri
tion for
e of the galaxy.

We sele
t the free parameters to the set of simulations presented in Table 9.1 using the �t-

ting pro
edure of Se
tion 6.3. Reprodu
ing the numeri
al 
al
ulations will provide a wide range

of satellite and orbital parameters ne
essary to des
ribe the satellite merging in spiral galaxies

depending on the halo axis-ratio.

It is of spe
ial interest to 
he
k whether the 
ode 
an give a

urately the de
ay time and

orbital in
lination if a statisti
al study of the satellite distribution shall be 
arried out in following

Chapters. For that reason, the 
al
ulus of the �tting parameter � is done for k = 4, 
overing as

mu
h time of the orbital evolution as possible. Larger values of k 
orrespond to epo
hs where

the mass loss may alter strongly the satellite motion, leading to e�e
ts that 
an be 
onfused with

those from dynami
al fri
tion.

In Fig. 9.3 we plot the results of the �tting pro
edure. The panels shows the � parameters

averaged over the models of Table 9.1 as a fun
tion of the halo Coulomb logarithm for three

di�erent values of ln�

d

. The 
al
ulations of the left panel a

ount for G1 models, whereas those

of the right one for the G2 models. The values of the respe
tive Coulomb logarithms that produ
e

the best �t to the numeri
al data are summarised in Table 8.2. The values obtained in Chapter 6

and 8 (ln�

h

= 2; 2:4, respe
tively) indi
ate that the dis
 presen
e slightly de
reases the overall


ontribution of the halo fri
tion, the halo Coulomb logarithm being redu
ed over 10% (spheri
al

halo) and 25% (
attened halo). If 
ompared to the value of TB (ln �

h

= 2:4), who 
alibrate the

semi-analyti
 
ode using the numeri
al experiments of VW), the redu
tion is about 25%, despite
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Fri
tion k ln�

h

ln�

d

�

min

(kp
)

G1 models 4 1.9 1.0 3.4

G2 models 4 1.8 1.0 4.1

Table 9.2: Results of the �tting pro
edure applied to the numeri
al 
al
ulation of Table 9.1 for

G1 models (left panel) and G2 models (right panel).

the larger number of N-body parti
les N leads to the in
rease of the Coulomb logarithm (N

h

of

the VW's halo model is 9 times smaller in PKB's work, whereas N

d

is twi
e larger). This result

suggests that, whereas the e�e
ts indu
ed by the galaxy subsystems are reprodu
ed equivalently

in both numeri
al 
odes, the semi-analyti
 
alibration of the Coulomb logarithm is sensitive to

the numeri
al s
heme.

Contrary to the halo Coulomb logarithm, the dis
 fri
tion shows values of ln�

d

that double that

of TB. Again, it is un
lear the reason for su
h an in
rease, (i) one possibility 
an be the low

resolution of superbox in order to resolve the verti
al stru
ture of the dis
, whi
h may lead to an

overestimation of dynami
al fri
tion (see Chapter 4), (ii) the se
ond possibility 
an be found in the

estimation of the dis
 parameters (su
h the verti
al length and 
entral velo
ity dispersion). TB �t

them to the �nal values on
e the satellite has been destroyed, however, we de
ide to use the initial

values, i.e without evolution, so that the 
ode 
an be use in a full 
onsistent way, independently

of the numeri
al results. Due to the dis
 heating both, the dis
 verti
al length and the velo
ity

dispersions, be
ome larger after the satellite sink. This in
rease likely produ
es an enhan
ement

of dynami
al fri
tion due to the smaller values of the satellite velo
ity with respe
t to the dis


parti
les.

Of 
ourse, our treatment also su�ers from the \time dependen
e" of ln�

d

due to the variation of the

galaxy parameters along the satellite orbit. These \feedba
k" e�e
ts partially redu
e the a

ura
y

of the semi-analyti
 
ode. Unfortunately, they 
annot be removed at this level of approximation.

The 
omparison of the �t between G1 and G2 models also provides information. The degree of

a

ura
y �

min

shows a slightly better reprodu
tion of the numeri
al data if the halo is spheri
al.

The lower dependen
e of ln�

h

of the dis
 value agrees with the numeri
al results, whi
h shows

that the e�e
ts due to the anisotropy of the halo distribution fun
tion dominate over those of

the dis
 within this range of orbital and satellite parameters. As a result, the sele
tion of ln�

h

be
omes less sensitive to the magnitude of the dis
 fri
tion.

It is interesting to remark the small dependen
e of ln�

h

on the halo anisotropy, whi
h makes

possible the use of the semi-analyti
 
ode in a wide range of q

h

.

9.4.2 Satellite de
ay and mass loss

In Se
tion 4.3 we present the s
heme implemented in the semi-analyti
 
ode in order to treat

the satellite mass loss pro
ess. Mass stripping is indu
ed by the tidal �eld of the parent galaxy,

whi
h removes those parti
les that be
ome unbound along the satellite evolution. As it is shown

above, this pro
ess is highly enhan
ed through bulge and dis
 tidal sho
ks. Our semi-analyti



ode implements the Gnedin & Ostriker (1999) expressions of tidal heating, whi
h permits the

analysis of the satellite's mass evolution for a wide range of orbits

3

.

Satellites with medium e

entri
ity e ' 0:5

Fig. 9.4 shows the satellite evolution on �ve orbits with di�erent in
linations within the galaxy

model G1. The angle i is that between the angular momentum ve
tor and the dis
 rotation, so

3

The main advantage of this semi-analyti
 treatment is that it provides the expressions of satellite heating in two

regimes, \rapid" and \slow", whi
h a

ounts for a wide range of orbital e

entri
ities. The distin
tion 
omes from

the 
omparison of the sho
k time-s
ale and the dynami
al time of the stars moving around the 
entre-of-mass of the

satellite. Denoting � as the sho
k time-s
ale and t

h

the dynami
al time at the half-mass radius, the \rapid" sho
k

regime a

omplishes � � t

h

(highly e

entri
 orbits) and vi
eversa in the 
ase of \slow" sho
ks (nearly 
ir
ular

orbits).
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Figure 9.4: Satellite de
ay and mass evolution as a fun
tion of the in
lination for the models

G1S1 (spheri
al halo). The dotted lines represent the numeri
al results whereas the solid ones the

semi-analyti
 evolution. The dis
 and halo Coulomb logarithms are those given in Table 9.2.

that i < 90

Æ

and i > 90

Æ

denote prograde and retrograde orbits, respe
tively, meanwhile i = 0

Æ

and i = 90

Æ

are 
oplanar and polar orbits.

The semi-analyti
 s
heme su

essfully des
ribes the satellite de
ay (left 
olumn) independently of

the orbital in
lination. The mass evolution (right 
olumn) also shows that the analyti
 approxima-

tions su

essfully provide the bound mass for di�erent in
linations, the dis
repan
y being less than

20% until the satellite has less than ten per 
ent of its initial mass. The label of a

ura
y is very

similar to that a
hieved by TB using a semi-analyti
 approa
h to the tidal sho
k pro
ess instead

of the analyti
 expressions that are employed in our s
heme. We note that: (i) Chandrasekhar's

expression is used in order to reprodu
e the dis
 fri
tion and (ii) meanwhile the satellite mass is


al
ulated from the N-body ea
h 0.312 Gyr, the semi-analyti
 
odes providesM

s

(t) ea
h time-step

(0.0013 Gyr), whi
h explains the smooth mass evolution present in the numeri
al 
urves and the

high resolution of the semi-analyti
 ones.

Fig. 9.5 shows similar results for satellites within the galaxy G2 (
attened halo). The bound

mass 
urves of in
lined satellites (those with i 6= 0

Æ

; 90

Æ

) present strong \jumps" due to the

e

entri
ity variation along the orbit whi
h enhan
es the energy gain from tidal sho
ks. The

overall evolution, however, 
learly tra
es a

urately the mass loss and the �nal destru
tion of the

satellites.

Our semi-analyti
 s
heme also reprodu
es the dis
 e�e
ts on the de
ay time-s
ales of the

satellite observed in the numeri
al 
al
ulations of VW and PKB. In spheri
al haloes, prograde

orbits de
ay faster than the retrograde ones due to the dis
 dynami
al fri
tion so that, for example,

the 
oplanar (prograde) satellite G1S100 de
ays within a time 30% shorter than the G1S1180

(retrograde). This dis
repan
y is in 0.5 Gyr enhan
ed by the semi-analyti
 
ode, whi
h may

indi
ate an overestimation of dis
 dynami
al fri
tion. The orbital distin
tion depending on the

rotation sense is redu
ed in non-rotating 
attened haloes due to the enhan
ed density, whi
h

in
reases dynami
al fri
tion. One 
an observe that, meanwhile the di�eren
e in the de
ay time
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Figure 9.5: As Fig. 9.4 with the galaxy model being G2 (
attened halo).

between the orbits G1S145 and G1S1135 is around a 10%, in 
attened haloes it 
omes down to

4% approximately, whi
h is a

urately reprodu
ed by the semi-analyti
 
ode. In this 
ase, the

satellite de
ay time is dominated by the Dark Matter 
omponent.

As expe
ted, the minimum and maximum de
ay times o

ur for the 
oplanar and polar orbits,

independently of the halo axis-ratio, whi
h de�ne the \de
ay time range" �t = �

90

� �

0

, where �

90

is the de
ay time of a polar orbit following PKB's notation. As PKB observe, the 
omparison with


attened haloes shows that ��(q

h

= 1) = 0:3��(q

h

= 0:6), so that the halo 
attening enhan
es

the dependen
e of the de
ay time on the orbital in
lination.

Satellites with e ' 0:3 and e = 0

In Fig. 9.6 we plot the 
omparison between the semi-analyti
 and numeri
al gala
to-
entre distan
e

and mass evolution for models with e ' 0:3. The lower mean density along the orbits indu
es a

longer de
ay time due to to the de
rease of dynami
al fri
tion. The semi-analyti
 data reprodu
es

the e�e
ts made by the halo anisotropy as well as the de
ay time ranges, with dis
repan
ies less

than 25%. The orbit is remarkably well tra
ed in all the 
al
ulations.

The mass evolution shows a negligible mass loss pro
ess until the late times of the orbit, when

it su�ers a dramati
 loss. Due to the low e

entri
ity, the tidal radius a

omplishes along most

of the orbit R

t

� r

t

, even taking into a

ount the heating expansion from the sho
ks. However,

the energy gain is 
umulative pro
ess that leads to a strong expansion of the mass shells due to

the large number of dis
(bulge)-satellite en
ounters, taking into a

ount that the satellite starts


rossing the dis
 for r

s

< 15 kp
 (if 
ompared to the e = 0:5 orbits). At some point of the

orbit, as a result of the tidal heating, even the inner most shells of the satellite have extensions


omparable to the tidal radius, whi
h leads to the rapid mass loss. The Fig. 5 of TB shows that, if

the adiabati
 
orre
tion is assumed independent of the radius r (measured in the satellite frame),

the semi-analyti
 s
heme overestimates the mass loss for orbit less e

entri
 than e ' 0:5. Our

proposal, based on the semi-analyti
 work of Gnedin & Ostriker (1999) solves this problem by
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Figure 9.6: Satellite de
ay and mass evolution as a fun
tion of the in
lination for the models with

e ' 0:3.

re-distributing the energy gain after the sho
k as a fun
tion of the satellite star radius, so that

the adiabati
 
orre
tion a

omplishes A(r � r

t

) ' 1 and A(r � r

t

) ' 0, whi
h strongly redu
es

the heating expansion in the inner most shells of the satellite (see for more details Chapter 4).

Fig. 9.7 shows than our s
heme also reprodu
es the mass and radius evolution in the thresh-

old 
ase of quasi-
ir
ular orbits (note that 
ir
ular orbits e = 0 are solely available in spheri
al

systems) for both halo shapes. The small os
illations present in the numeri
al 
al
ulations are

likely produ
ed by the galaxy response to the satellite gravity, whi
h makes the 
entre-of-mass of

this last not to be �xed (we re
all that r

s

is measured from this point). However, the galaxy does

not behave as a rigid body, so that the less massive sub-
omponents, su
h as the dis
 and bulge,

will strongly rea
t to the satellite gravity and vi
eversa. For instan
e, if one assumes that the

halo remains at a �xed position, the dis
-satellite pair will su�er 
hanges in their distan
e with

respe
t to the galaxy 
entre-of-mass of around �r ' r

s

M

s

=M

d

= 6 kp
 as we see in this plot. If

the galaxy potential is axi-symmetri
, only satellites in the symmetry plane 
an move along orbits

with e = 0.

It is interesting to underline that these satellites barely su�er from tidal sho
ks, neither from

the dis
 nor from the bulge, so that the mass loss is purely indu
ed by the galaxy tides (note that

for dis
 sho
ks h�Ei

t

sh

=0

/ g

2

m

, where g

m

is the verti
al a

eleration, see eq. 4.5, therefore going

as g

2

m

� 1=r

4

s

).

In the semi-analyti
 
al
ulations, the absen
e of dis
 and bulge leads to the �nal survival of

a bound remanent after the satellite has sinked into the inner most part of the galaxy. However,

this 
ontrasts with the numeri
al results. The reason may be found in a la
k of resolution in

order to 
al
ulate R

t

� r




kp
. We 
omment this below. An insight in this dire
tion is that the
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Figure 9.7: As Fig. 9.6 for 
ir
ular orbits in G1 and G2 galaxy models.

semi-analyti
 
ode a

urately reprodu
es the disruption of e

entri
 satellites with e = 0:3, see

Fig. 9.6, sin
e for these orbits the tidal heating is stronger and the satellite is more expanded.

Satellites with mass M

s

= 0:2M

d

We test the eÆ
ien
y of the semi-analyti
 
ode in order to des
ribe the satellite de
ay and mass

loss of more massive satellites. We make use of the numeri
al experiments G1S2 and G2S2 (with

di�erent in
linations) of PKB. They also present 
al
ulations with the galaxy models G3 and G4.

However, we shall not 
arry out 
omparisons with these simulations sin
e the grid resolution is

twi
e poorer than in the models G1 and G2, whi
h is expe
ted to 
hange the Coulomb logarithm

than better �ts to the numeri
al data.

In Fig. 9.8 we plot the mass and distan
e evolution for the models with M

s

= 0:2M

d

. The

�gure shows a good agreement between the semi-analyti
 and numeri
al satellite evolution. The

de
ay times are around twi
e redu
ed if we double the satellite mass, as expe
ted from the linear

dependen
e of dynami
al fri
tion on M

s

. As PKB �nd, the range of de
ay times show little

dependen
e on the satellite mass. Whereas for M

s

= 0:1M

d

we have that ��(q

h

= 1)=�

90

' 0:2

and ��(q

h

= 0:6)=�

90

' 0:4, for M

s

= 0:2M

d

we �nd ��(q

h

= 1)=�

90

' 0:3 and ��(q

h

=

0:6)=�

90

' 0:4.

The small redu
tion of the de
ay range when in
reasing M

s

may be found in the fast de
ay

of the satellites if 
ompared to the same orbits and M

s

= 0:1M

d

, so that the e�e
ts indu
ed by

the anisotropy velo
ity distribution do not have time enough to a
t before the satellite loses its

angular momentum.

As a result of the high binding energy of the satellite parti
les, a bound remanent rea
hes the

inner most region of the galaxy, independently of the orbital in
lination and halo 
attening. The
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Figure 9.8: Mass and gala
to-
entre evolution for models with M

s

= 0:2M

d

and initial orbital

e

entri
ity e ' 0:5. The galaxy models are G1 and G2.

polar satellites show a stronger mass loss rates in the late-times of the orbit evolution if 
ompared

to the numeri
al data whi
h, however, lead to small dis
repan
ies in the distan
e evolution.

9.4.3 Orbital in
lination

One of the main e�e
ts of the velo
ity anisotropy on the orbit evolution is the de
rease of the

orbital in
lination through the dynami
al fri
tion a
tion. The Binney's expressions have been

proved to be a

urate in order to reprodu
e su
h a redu
tion (see Chapter 8).

PKB propose the halo 
attening as a removal me
hanism of satellites following low in
lined

orbits, whereas it enhan
es the survival times of satellites on near polar orbits. This result may

help to understand the anisotropi
 satellite distribution observed by Holmberg (1969), Zaritsky &

Gonz�alez (1999) and Carney et al. (1987), who �nd in their observational samples that most of

satellite galaxies are lo
ated on near polar orbits.

Bearing in mind the statisti
al study of the satellite evolution, we attempt to test the semi-

analyti
 
ode in order to des
ribe the in
lination de
rease in 
attened Dark Matter haloes.

Satellites moving within axi-symmetri
 systems experien
e periodi
 variations of the angular

momentum ve
tor known as \pre
ession" and \nutation". For a better understanding of the

in
lination evolution we put spe
ial emphasis on the nutation pro
ess.

The amplitude of the nutation � 
os � = 
os �

1

� 
os �

0

, where � = �=2 � i and �

1

; �

0

are the

maximum and minimum value of the azimuthal angle, 
an be approximated in the regime of low

aspheri
ity as (see Appendix A)
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�
os � = (I

z

� I

R

)

3GM(r)

2a

2

hri

sin

2

�

0


os

2

�

0

; (9.1)

with a period of

T = 2�

hri

2


os

2

�

0

a

; (9.2)

I

i

being the inertia tensors of the galaxy per unit mass with respe
t to the axi-symmetry plane and

a the z-
omponent of the angular momentum ve
tor, whi
h is a 
onstant of motion. The quantity

hri denotes the averaged gala
to-
entre distan
e. Even if our system 
an not be 
onsidered nearly

spheri
al, these expressions reprodu
e the general evolution of the in
lination and its dependen
e

on the orbital parameters. From these equations we expe
t that, (i) the angle � remains 
onstant

if the galaxy is spheri
al (I

z

= I

R

), (ii) 
oplanar and polar orbits (� = 0 and � = �=2, respe
tively)

do not su�er from nutation, (iii) the nutation period de
reases due to the satellite de
ay and (iv)

the amplitude is nearly 
onstant along most part of the orbit, before the dis
 potential dominates

(the halo mass pro�le 
an be approximated as M(r) / r for r > 15 kp
, see Fig. 7.1).

Fig. 9.9 shows the orbital evolution of satellites following in
lined orbits, regarding that the

in
lination of polar as well as 
oplanar satellites remains 
onstant along their evolution. The

periodi
 os
illations of the in
lination represent the nutation of the angular momentum, whi
h is

produ
ed by the aspheri
ity of the mass distribution, whereas the progressive de
ay of the averaged

in
lination is 
aused by the anisotropi
 velo
ity distribution.

The semi-analyti
 
ode reprodu
es the in
lination redu
tion for di�erent initial values and

satellite masses, although with a slight underestimation at late-times of the orbit (the dis
repan
y

is between 5 and 30 per 
ent depending on the initial in
lination).

The numeri
al 
al
ulations also show in
lination redu
tion for satellites moving within the galaxy

model G1 (spheri
al halo), whi
h is likely produ
ed by the anisotropi
 velo
ity distribution of the

dis
. The semi-analyti
 results also show a small de
rease of i. The reason is un
lear, sin
e the

dis
 dynami
al fri
tion is treated by Chandrasekhar's expression (in Chapter we prove that this

theoreti
al approximation to dynami
al fri
tion does not produ
e su
h an e�e
t, even if the mass

distribution is axi-symmetri
), and might be 
aused by the poor resolution at small distan
es (the

variation of i o

urs at r

s

� 2 kp
, where the approximation we use in our s
heme may be not

valid). As expe
ted, massive satellites and those on low in
lined orbits su�er stronger in
lination

de
rease, due to the larger value of dynami
al fri
tion along the evolution.

The results 
an be likely improved if a more a

urate theoreti
al treatment of the dis
 dynami
al

fri
tion is in
luded whi
h, so far, goes beyond our purpose.

9.5 Con
lusions

We 
on�rm the di�erentiation of the de
ay time depending on the orbital sense of motion, whi
h

agrees with the numeri
al 
al
ulations of PKB and VW. As PKB, we also observe in the semi-

analyti
 data that this dependen
e is redu
ed if the galaxy halo is aspheri
al.

Our results agree with those of TB in order to asses the importan
e of the dis
 presen
e in

order to redu
e the satellite mass by means of tidal sho
ks at the peri-gala
ti
on passages. The

semi-analyti
 s
heme developed by Gnedin & Ostriker (1999) has been proved to reprodu
e the

satellite heating after the en
ounters with the dis
 and bulge if the energy gain adds up after ea
h

sho
k, whi
h leads to a progressive expansion of the satellite mass shells. As a result of the tidal

heating, satellites are destroyed before they rea
h the most inner region of the galaxy. Numeri
al


al
ulations where the dis
 and bulge were removed and those with more massive satellites show

that bound remanents of the satellite 
an survive and rea
h distan
es 
omparable to the bulge

s
ale-length.

We have developed an analyti
 treatment of the satellite de
ay in spiral galaxies that reprodu
es

in a self-
onsistent way the numeri
al 
al
ulations after the Coulomb logarithms of the di�erent

galaxy 
omponents are �xed.
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Figure 9.9: In
lination evolution for satellites following in
lined orbits.

This 
ode also reprodu
es the e�e
ts that aspheri
al Dark Matter haloes indu
e on the satellite

evolution, spe
ially the de
ay time range and in
lination de
rease, thanks to the use of Binney's

formul�. The results indi
ate that a better approximation to the dis
 fri
tion might be ne
essary

to des
ribe more pre
isely the satellite dynami
s at late-times of the orbit, where the dis
 potential

dominates. At this range of distan
es, the mass evolution s
heme implemented in the semi-analyti



ode 
an su�er from resolution limitations for satellites with a 
on
entrated mass distribution

or for those with small shell expansion as a result of tidal heating, like for example, satellites

following 
ir
ular or 
oplanar orbits, these last independently of the e

entri
ity. The improvement

of the semi-analyti
 
ode in the inner region of the galaxy is, however, diÆ
ult to 
arry out.

Taking into a

ount that R

t

' [M

s

=M

g

(r

s

)℄

1=3

r

s

, one needs resolutions of the order of r

s

'

[M

g

(r

s

)=M

s

℄

1=3

r




� 2 kp
 to a

ount for the total destru
tion of satellite on orbits with negligible

tidal heating. The analyti
 approa
hes, however, are only valid in the distan
e range r

s

� r




= 1

kp
. We note that, despite the mismat
h at late-times, the in
uen
e on the satellite de
ay is

minimum due to the small gala
to-
entre distan
e.

The remarkable a

ura
y of the semi-analyti
 s
heme in order to reprodu
e the numeri
al data

for a wide range of orbital e

entri
ities, in
linations and satellite masses gives us 
on�den
e to


arry out a statisti
al survey of the satellite distribution around spiral galaxies in a following

Chapter.
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Chapter 10

Satellite distribution in 
attened

haloes

10.1 Introdu
tion

1

In this Chapter we analyse the possible 
onne
tion between satellite dynami
s in 
attened Dark

Matter haloes and the anisotropi
 satellite distribution around spiral galaxies.

Pe~narrubia, Kroupa & Boily (2001), hereinafter PKB, �nd in their numeri
al 
al
ulations

that satellites initially lo
ated at 55 kp
 su�er de
ays that are strongly dependent on the orbital

in
lination, so that polar satellites survive around 70% longer that 
oplanar ones. These results

suggest dynami
al fri
tion as the me
hanism that removes low in
lined satellites, yet 
an this e�e
t

be extrapolated to a population of satellites as a whole? To answer this question, a statisti
al

survey of satellite orbits and masses is 
arried out and 
ompared with the observational data

available nowadays.

We must note that this is a preliminary study, whi
h will be analysed in depth in a following

proje
t. Here, the problem is presented, together with the main e�e
ts of the halo morphology on

the satellite distribution.

10.2 Observations

So far, there are two samples of satellite distributions around spiral galaxies whi
h are large enough

to be statisti
ally treated.

The �rst was 
olle
ted by Holmberg (1969) and a

ounts for satellites within a proje
ted radius

of 50 kp
 from the dis
, 
ounting opti
al 
ompanions on the Palomar Sky Survey plates. In order

to determine the orbital in
lination with respe
t to the axi-symmetry plane, the sele
tion 
riterion

dis
ards galaxies with dis
 in
linations larger than 30 degrees with respe
t to the line-of-sight.

The total number of primaries was 58, with 218 satellites. From these satellites, Holmberg found

45 
ompanions (opti
al and physi
al) within 30

Æ

of the major axis and 173 between 30

Æ

and 90

Æ

.

Had these 
ompanions been observed in a statisti
al isotropi
 distribution (i.e, where the number

of satellites is independent of the in
lination), the expe
ted number in the �rst bin would be

218=3 ' 73 instead of the observed 45.

Following the reasoning of Quinn & Goodman (1987), a possible solution for su
h a remarkable

absen
e of satellites in low in
linations might be the extin
tion by the dust in the orbital plane.

However, sin
e the radial density pro�le of the dis
 is exponential with a typi
al s
ale-length of

3.5 kp
 (Bah
all, Smith & Soneira 1982), satellites at distan
es as large as 50 kp
 must su�er

1

This Chapter presents the preliminary results of the future paper Pe~narrubia, Kroupa & Just, to be submitted

to MNRAS. Although the study is not yet 
omplete, we want to show that the available observational data of the

satellite distribution around spiral galaxies presents a morphology not yet understood.

123
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from negligible light absorption. Quinn & Goodmann attempted to verify this data by s
anning

the Fisher-Tully 
atalogue (1981) and the UGC (Nilson 1973), whi
h provides the magnitudes,

position angles, axis-ratios, red-shifts and the HI lines. After dis
arding those satellites with

velo
ities that di�er by no more than the HI line width and those that may not be bound to the

parent galaxies, they obtained only 7 satellites within 50 kp
.

Contrary to Holmberg's result, the studies on satellite distribution 
arried out by Bus
h (1983)

and Ma
Gillivray et al. (1982) present no eviden
e for polar alignment. At the present, there is

no 
on�rmation of the so-
alled Holmberg e�e
t in the literature.

A new sample of galaxies was presented by Zaritsky et al. (1997), in
luding 69 parent galaxies

with luminosities similar to that of the Milky Way and with distan
es not larger than 100 Mp


(for H

0

= 75kms

�1

Mp


�1

). Around these spiral galaxies 115 satellites were identi�ed as physi
al


ompanions with, unfortunately, only 9 of them lying within 50 kp
. The main result of this

survey is the presen
e of the Holmberg e�e
t at distan
es larger than 250 kp
, whereas for smaller

distan
es the satellite distribution appears to be nearly isotropi
. The apparent anisotropy at

large proje
ted radii is similar to that found by Holmberg for R < 50 kp
.

The observations of Zaritsky et al. (1993) and Zaritsky & Gonz�alez (1999) give a range of apparent

magnitude within �m

v

2 [2; 7℄ 
ompared to the parent galaxies (we note that from the 115

satellites of the sample, 61 have �m

v

� 5 and approximately 35 �m

v

� 3, so that the observations

are mostly ful�lled by massive satellites). The 
onversion of the apparent magnitude into mass


an be estimated as

M

s

M

d

=

�

s

�

d

10

��m=5

; (10.1)

where � is the mass-to-light ratio (using the notation of BT). The range of masses is therefore

M

s

=M

d

2 �

s

=�

d

[0:06; 0:4℄. Sin
e most of the satellites sample are irregular, one expe
ts �

s

=�

d

<

1. However, the type indi
ates that most of them are strongly altered by the a
tion of tidal �elds

of the parent galaxy. This means that they have lost a large fra
tion of the initial mass, this e�e
t

being stronger for the low massive satellites due to their smaller binding energy.

10.3 The galaxy and satellite parameters

In this Se
tion we present the galaxy and satellite models employed in order to reprodu
e the

observed satellite galaxy distribution around spiral galaxies with properties similar to the Milky

Way. The models are illustrated in more detail in Chapter 3, whereas here we merely 
omment

some parameters 
hanged to a

ount for the larger distan
e s
ales used for this study.

10.3.1 The parent galaxy

The galaxy model is 
omposed by dis
, bulge and halo. The halo 
ut-o� radius is expanded out

to r


ut

= 504 kp
 in order to investigate the satellite distribution at distan
es as large as those

presented by Zaritsky et al. (1997). The 
ore-radius of the halo is 
 = 3:5 kp
. Sin
e the halo

is nearly isothermal (r


ut

� 
), the mass has been linearly enhan
ed so that the velo
ity 
urve

reprodu
es that determined by Bah
all, Smith and Soneira (1982). The halo mass 
orresponds

to M

h

(r


ut

) = 84M

d

' 4:7� 10

12

M

�

. The halo axis-ratio q

h

is treated as a free parameter that


an be varied in order to dis
ern the possible 
onne
tion between halo shape and the observed

anisotropi
 satellite distribution.

10.3.2 The satellite

The satellite is a King model with 
on
entration 
 = log

10

(r

t

=r




) = 0:8, where r




and r

t

are the


ore and \tidal" radii, respe
tively. These models �t early-type dwarf galaxies (Binggeli et al.

1984).

Sin
e the satellite is treated as point-mass, the in
uen
e on the satellite model is through

mass loss, whi
h is negligible for distan
es larger than 200 kp
. Taking into a

ount that the halo
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distan
e distribution has a 
onstant surfa
e density and that, for the range of masses presented

below, satellites with initially R < 60 kp
 and M

s

= 0:1M

d

merge into the parent galaxy (inde-

pendently of the initial orbital e

entri
ity), one has that the fra
tion of satellites sensitive to a

possible 
on
entration distribution is of the order of 30 per 
ent, whi
h is redu
ed for more massive

satellites. This rough estimate is supported by the small 
hanges over the mass distribution after

the sample is evolved (see below).

10.4 Proje
tion e�e
ts

The �nal distribution of satellites with respe
t to the axi-symmetry plane will be di�erent after

proje
ting the positions on the sky. To estimate the e�e
ts that the random proje
tion introdu
es,

we make use of the analyti
al treatment of Quinn & Goodman (1986).

Consider �rst a 
oordinate system aligned to the velo
ity distribution ellipsoid where the

satellite position is given by the radius R and the in
lination i with respe
t the axi-symmetry plane.

De�ning now a Cartesian 
oordinate system on the sky (x; z), z being the axis perpendi
ular to

the dis
, the 
oordinate 
hange is equivalent to the Euler transformation (see Goldstein 1980)

x = R(
os
 
os � sin
 sin 
os i) (10.2)

y = R(sin
 
os + 
os
 sin 
os i)

z = R sin sin i;

where 
 and  , are the as
ending node and mean anomaly, respe
tively.

The distribution fun
tion that one observes on the sky �(x; z) results from the average over the

fun
tion �(R; i) in the galaxy frame. Assuming a uniform distribution of 
ir
ular obits R =
onst,

the average over 
;  is straightforward, leading to the solution

�

s

(r; �) = �

�2

H(R

2

� r

2

)H(R

2

sin

2

i� r

2

sin

2

�)

p

R

2

� r

2

p

R

2

sin

2

i� r

2

sin

2

�

; (10.3)

where the suÆx s denotes that the average is done for a given satellite with 
oordinates in the

galaxy frame (R; i) and the Heavy-side fun
tion is de�ned as H(x) = 1 if x > 0 and H(x) = 0 if

x � 0. If we have a sample of 
ir
ular orbits distributed as �(R; i), the resulting proje
ted surfa
e

density is

�(r; �) = �

�2

Z

1

0

dR

Z

1

�1

d(
os i)�(R; i) (10.4)

�

H(R

2

� r

2

)H(R

2

sin

2

i� r

2

sin

2

�)

p

R

2

� r

2

p

R

2

sin

2

i� r

2

sin

2

�

;

the 
oordinates (r; �) being the proje
ted gala
to-
entre distan
e and the proje
ted in
lination

with respe
t to the dis
 plane, respe
tively.

Observational values of �(R; �) predi
t a larger number of satellites in high in
lined orbits, i.e

� � �=2. Sin
e the proje
tion average redu
es this anisotropy, one may expe
t distributions in

the galaxy 
oordinates that might as extreme as

�(R; i) = �

0

R

2��

H(sin i� sin i

0

); (10.5)


orresponding to a spatial density distribution going as R

��

(� = 2 would a

ount for a homoge-

neous surfa
e density) and to the 
omplete absen
e of satellites with in
linations less than i

0

(or

larger than � � i

0

in the 
ase of retrograde satellites). The radial and angular dependen
e of the

resulting distribution fun
tion 
an be expressed as,

�(r; �) / r

1��

�

0

(�)

The fun
tion �(r; �) normalised to the value at 90

Æ

is shown in Fig. 10.1 for a given distan
e. As

expe
ted, the proje
tion e�e
ts strongly redu
e the anisotropy observed in the galaxy frame. The
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shallower the spatial distribution is (� ! 1) for a �xed i

0

, the weaker is the ex
ess of satellites

in high in
lined orbits. The anisotropy 
an be enhan
ed by 
hoosing i

0

suÆ
iently 
lose to zero,

however, even if all orbits are polar, i

0

= 90

Æ

, the number of satellites with � = 0

Æ

is not zero.

Figure 10.1: Proje
ted surfa
e density as a fun
tion of the in
lination with respe
t to the dis
 plane

for several values of the minimum in
lination (i

0

) and the power-law slope of the spatial density

pro�le (�). Dotted lines represent the 
orresponding distribution fun
tions before proje
tion

(normalised to the 90

Æ

value).

One 
an expe
t the 
urves presented in Fig. 10.1 to be barely dependent on the orbital e

en-

tri
ity. Non 
losed e

entri
 orbits result in a similar proje
ted distribution, sin
e (i) the satellite

spends most time at the apo-gala
ti
on and (ii) the apsides of the orbit form an annuli in the or-

bital plane (assuming the dynami
al time to be short 
ompared to the Hubble time). The resulting

time average is, therefore, similar to a 
ir
ular orbit with R � R

a

, where R

a

is the apo-gala
ti
on.

Holmberg (1969) and Zaritsky et al. (1997) observe anisotropies after averaging over a given

distan
e range of the order of �(0

Æ

)=�(90

Æ

) ' 0:52, whi
h would indi
ate a very signi�
ant absen
e

of low in
lined satellites in the galaxy frame together with a steep spatial distribution.

10.5 Experiments

The strong 
onstraints that observations produ
e indi
ate that there must be a me
hanism that

removes those satellites within some minimum in
lination, whi
h might be as high as 45

Æ

. In order

to assert whether dynami
al fri
tion in 
attened haloes 
an be responsible of su
h an anisotropy,

we 
arry out an statisti
al survey of satellite evolution to 
ompare with the observational data.

We must note that one of the main in
ognita is the initial distribution of orbits and masses.

However, due to the 
omplexity that the initial satellite distribution may present, it is useful

�rst to 
arry out a separate study of the di�erent e�e
ts that the di�erent orbital parameters and

satellite masses indu
e on the �nal distribution, in order to obtain a feeling for the evolution.
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10.5.1 In
lination evolution

The in
lination i of satellites moving within and around 
attened systems does not remain 
onstant

along the orbit. There are two driving me
hanisms that determine the evolution of i: (i) the

nutation e�e
t and (ii) dynami
al fri
tion.

Nutation

Nutation arises due to the potential quadrupole (Q) of the galaxy. Due to the small dis
 exten-

sion (around 95 per 
ent of its mass lies within 3.5 kp
) and taking into a

ount that Q � 1=r

3

(whereas the zeroth order of the potential expansion goes as 1=r) the galaxy quadrupole a
ting

on satellites is mainly produ
ed by the anisotropi
 mass distribution of the halo.

For low halo aspheri
ity, nutation 
an be estimated as a fun
tion of the orbital and galaxy param-

eters (see Appendix A),


os i

1

� 
os i = (I

z

� I

R

)

3GM

2a

2

r

sin

2

i

1


os

2

i

1

(10.6)

�

�

1� 
os

�

a

r

2


os

2

i

1

t

��

;

where I

x

is an eigen-
omponent of the inertia tensor per unit mass (a

omplishing that I

z

> I

R

in oblate systems). We denote asM the mass inside the radius r, a the initial z-
omponent of the

angular momentum ve
tor and i

1

the initial in
lination. It is interesting to note that orbits with

i

1

= 0

Æ

; 90

Æ

remain with 
onstant in
lination, whereas the maximum variation o

urs for those

with i

1

= 45

Æ

. Sin
e a is maximum for 
ir
ular orbits, we expe
t a stronger nutation the more

e

entri
 the orbits are.

Due to the nutation e�e
t, orbits initially at the apo-
entre evolve to in
linations that are equal

or larger than the initial one, sin
e 
os i

1

� 
os i � 0. Assuming an orbital period mu
h shorter

than the Hubble time, the averaged time dependen
e of nutation is simply 1/2. The number

of satellites per unit in
lination is N(i) = �

0

sin i, where �

0

independent of i indi
ates that the

distribution is isotropi
. The 
hange over the in
lination distribution is therefore

�(R; i) = R

2��

�

�

�

�

dN

d 
os i

�

�

�

�

= R

2��

�

�

�

�

dN

d 
os i

1

�

�

�

�

d 
os i

1

d 
os i

� (10.7)

R

2��

�

0

�

1�K sin

2

i

1


os i

1

+K 
os i

1

�

�1

;

where

K = (I

z

� I

R

)

3GM

2a

2

r

:

To 
he
k this estimate, we 
arry out an experiment where dynami
al fri
tion is swit
hed o�

and 
ompare the resulting 
urve with the initial one, Fig. 10.2. We use a sample of 1000 satellites

homogeneously distributed within [39; 66℄ kp
, (in order to obtain a phase-mixing we do not employ

a single value of the initial distan
e) and with orbital e

entri
ity e = (R

a

�R

p

)=(R

a

+R

p

) = 0:3,

where R

a

; R

p

are the apo and peri-gala
ti
a, respe
tively. The points represent the expe
tation

from eq. (10.7), whi
h shows a remarkable agreement with the semi-analyti
 result if �tting K.

Stronger halo 
attening as well as more radial orbits will lead to a stronger anisotropy in the

in
lination distribution only due to nutation.

Dynami
al fri
tion

Satellites moving through a ba
kground of less massive parti
les with an anisotropi
 velo
ity

distribution su�er a monotoni
 de
rease of the averaged in
lination via dynami
al fri
tion (see

Chapter 7). This redu
tion is larger the stronger the fri
tion for
e be
omes and a�e
ts neither

polar nor 
oplanar satellites. The e�e
t on the �nal distribution is, therefore, opposite to that

indu
ed by nutation. However, whereas nutation is nearly independent of r in isothermal haloes,
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Figure 10.2: Distribution in in
lination after the sample is evolved one Hubble time without

dynami
al fri
tion (solid line) 
ompared with the initial one (dashed line). Points represent the

analyti
al estimate from eq. (10.7) arbitrarily normalised with K = 0:8. The bin is 10

Æ

. The set of

1000 satellites are initially homogeneously distributed within [39; 66℄ kp
 with initial e

entri
ity

e = 0:3. The halo axis-ratio is q

h

= 0:5.

dynami
al fri
tion s
ales as �

h

/ 1=r

2

, so that we expe
t the in
lination de
rease at large distan
es

to be
ome negligible.

10.5.2 Single orbital parameters and mass values

By means of dynami
al fri
tion, the satellite su�ers angular momentum loss that leads to the

progressive sink to the galaxy 
entre. The satellite de
ay time (whi
h as a matter of fa
t we


onsider equivalent to the survival time, even if satellites rea
h the inner most region of the

galaxy) is a fun
tion of the initial orbital parameters and mass

t

df

= t

df

(i; R

0

; e;M

s

);

where R

0

is the initial distan
e, i the in
lination and e the orbital e

entri
ity.

In a spheri
al isothermal sphere, the de
ay time of 
ir
ular orbits goes as (e.g BT)

t

df

/

R

2

0

M

s

: (10.8)

If the satellite moves in an e

entri
 orbit (e > 0) with apo-gala
ti
on R

a

= R

0

, one expe
ts

a shorter de
ay time than the same orbit with e = 0 sin
e (i) the initial angular momentum is

lower and (ii) dynami
al fri
tion at the peri-gala
ti
on is roughly of the order of �(R

p

)=�(R

a

) =

(R

a

=R

p

)

2

larger than at apo-gala
ti
on (note that the larger satellite velo
ity redu
es the fri
tion

for
e at R = R

p

, so that this value overestimates the fra
tion).

The 
attening of the halo and the dis
 implies the de
ay time to be dependent on the satellite

in
lination. PKB �nd that polar and 
oplanar orbits posses the maximum and minimum de
ay

time, respe
tively, whi
h agrees with the theoreti
al des
ription of dynami
al fri
tion seen in

Chapter 5. Polar satellites, therefore, survive longer than those in low in
lination orbits.
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Figure 10.3: Distribution of satellites with initial (R

0

; e;M

s

) = (45 kp
; 0; 0:1M

d

) as a fun
tion

of the in
lination. Dotted and solid lines represent the initial (t = 0) and evolved (t = t

H

)

distributions. The dashed line a

ounts for the initial in
lination distribution of surviving satellites.

The sample 
ontains 1000 satellites, from whi
h 277 survive. The bin is 10

Æ

wide and the halo

axis-ratio q

h

= 0:5. Note: 
urves are normalised to the number of satellites in the set.

Consider �rst a set of satellites with �xed parameters (R

0

; e;M

s

) and di�erent in
linations,

i 2 [0

Æ

; 180

Æ

℄, where i > 90

Æ

denotes that the orbital sense is retrograde to the dis
 rotation. We

assume that orbits survive when t

df

> t

H

the Hubble time (t

H

= 12 Gyr) and M

s

(t

H

) > 0:01M

d

(lower mass satellites would be missed by the observational magnitude limit). One has three

possible 
ases,

� t

df

(i = 90

Æ

) < t

H

, whi
h implies that no satellites 
an be observed after one Hubble time,

independently of the initial in
lination.

� t

df

(i = 0

Æ

) � t

H

� t

df

(i = 90

Æ

), therefore, only those satellites with some i � i

0

(or

equivalently i � � � i

0

for the retrograde ones) 
an survive after one Hubble time and be

observed. We de�ne i

0

as the minimum in
lination, whi
h is dependent on the parameters

(R

0

; e;M

s

).

� t

df

(i = 0

Æ

) � t

H

, all the satellites of the sample will survive.

It is evident, that neither the �rst 
ase nor the last one 
an 
ause the observational anisotropy

present in the in
lination distribution. To show that only a distribution of satellites with initial

parameters 
orresponding to the se
ond 
ase will result to a anisotropi
 in
lination distribution, we


arry out a simple experiment. We 
reate a sample of 1000 galaxies isotropi
ally distributed within

a halo of axis-ratio q

h

= 0:5, with (R

0

; e;M

s

) = (45 kp
; 0; 0:1M

d

), i.e., we lo
ate all satellites at

the apo-gala
ti
on with e

entri
ity e ' 0 (regarding that orbits in 
attened haloes do not exist

sin
e L

R

, the planar 
omponent of the angular momentum, is not a 
onstant of motion).

After evolving the system we obtain the distribution plotted in Fig. 10.3, where the minimum

in
lination is i

0

' 30

Æ

. The dashed line shows the initial in
lination distribution of the surviving

satellites. As a result of the in
lination de
rease along the orbit through dynami
al fri
tion, the

�nal distribution 
overs the range [30

Æ

; 150

Æ

℄. Had the orbital in
lination remained 
onstant, the
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(1) (2) (3)

Figure 10.4: Minimum in
lination as a fun
tion of the gala
to-
entre distan
e for four satellite

masses. Satellites follow 
ir
ular (e = 0) and highly e

entri
 orbits (e = 0:8) within a 
attened

halo of axis-ratio q

h

= 0:5 (solid lines) and q

h

= 0:2 (dotted lines). Notation: i

0

= 90

Æ

indi
ates

that no satellite survives, whereas i

0

= 0

Æ

denotes the survival of all satellites. For a given mass,

satellites with initial R

0

; i

0

to the left of the 
urves do not survive independently of the initial

orbital e

entri
ity. The resolution in in
lination is 10

Æ

. Note that two panels are plotted for a

better distin
tion of the 
urves.

resulting distribution 
urve would present a nearly Heaviside fun
tion within the range [60

Æ

; 120

Æ

℄.

Applying eq. (10.5) to the resulting in
lination distribution, we obtain a proje
ted anisotropy of

0.73 for � = 2 and 0.69 for � = 3 whi
h do not reprodu
e the observational value (0.52).

In Fig. 10.4 we plot the minimum in
lination as a fun
tion of the gala
to-
entre distan
e for four

satellite masses and two halo axis-ratios q

h

= 0:2; 0:5. The e

entri
ity is �xed to e = 0 (
ir
ular

orbits) and e = 0:8 (highly e

entri
 orbit) to determine the fun
tion i

0

= i

0

(R

0

;M

s

). This Figure

shows that satellites with M

s

= 0:1M

d

and initial distan
e R

0

= 45 kp
, the minimum in
lination

is i

0

' 60

Æ

for q

h

= 0:5, whi
h means that satellites with initial i < i

0

are all destroyed after one

Hubble time whereas those with i > i

0

survive. Looking at the M

s

= 0:2M

s


urve one sees that

for this initial distan
e (and e

entri
ity) no satellite 
an be observed whereas if M

s

= 0:04M

d

again all survive independently of the initial in
lination. The 
al
ulus for M

s

= 0:6M

d

represents

the extreme 
ase, for whi
h the satellite must be lo
ated large initial distan
es in order to observe

it at t = t

H

. If satellites move along high e

entri
 orbits e = 0:8 the de
ay time is strongly

redu
ed, so that minimum distan
e for survival is approximately 50% larger 
ompared with the


ase e = 0. This plot shows that satellites with M

s

� 0:6M

d

and R

0

of the order or larger than

250 kp
 will survive independently of the initial in
lination and orbital e

entri
ity.

It is also interesting to note that the expe
ted minimum in
lination of the example shown in

Fig. 10.3 is i

0

' 60

Æ

, whi
h agrees with the resulting distribution represented by the dashed line

(no in
lination evolution).

We must remark that the anisotropy of Fig. 10.3 
an be in
reased by sele
ting properly a


ombination of (R

0

; e;M

s

). For instan
e, samples of satellites in haloes q

h

= 0:5 with an initial

isotropi
 distribution and (R

0

; e;M

s

) = (24 kp
; 0; 0:04M

d

); (40 kp
; 0; 0:1M

d

); (60 kp
; 0; 0:2M

d

)

would result after one Hubble time to a Heavy-side distribution with i

0

� 80

Æ

without in
lination
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Figure 10.5: Distan
e distribution of the sample of Fig. 10.5 evolved one Hubble time. Solely

those satellites that survive are in
luded in the 
al
ulus, N

T

= 277.

evolution.

If the halo is more 
attened, the range of initial distan
es in whi
h one expe
ts a resulting

anisotropi
 distribution be
omes wider. The maximum e�e
t o

urs for massive satellites (M

s

=

0:2M

d

) for whi
h �r � r(i = 0

Æ

)� r(i = 90

Æ

) be
omes �r(q

h

= 0:5) ' 0:25�r(q

h

= 0:2), whereas

if M

s

= 0:04 one has �r(q

h

= 0:5) ' 0:7�r(q

h

= 0:2).

The next question is how the distan
e distribution appears after the system is evolved. If

the de
ay rate was independent of the gala
to-
entri
 distan
e, one would expe
t a Heaviside

distribution. However, the numeri
al 
al
ulations of PKB, as well as those of Chapter 8, show

that the rate is a

elerated at distan
es 
lose to the galaxy 
entre, so that the range of distan
es

within the satellite might be found after one Hubble time will be smaller. In Fig. 10.5 we plot the

resulting distan
e distribution of Fig. 10.3. The histogram is not a Heaviside fun
tion though, it

presents a 
ut-o� at large distan
es 
orresponding to satellites with initial in
lination i

1

= 90

Æ

.

Due to the non-linear de
ay rate, the �nal distan
e is very sensitive to the initial in
lination, so

that small variations of i

1

lead to strong di�eren
es on the �nal distan
e, whi
h explains the larger

number of satellite at R(t = t

H

) � 10 kp
. We 
on
lude that, if originally all satellites are lo
ated

at a given distan
e, the �nal distribution will be strongly peaked at R(t = t

H

; i

1

' 90

Æ

).

10.5.3 Distribution of orbital parameters and masses

To assume that satellites formed with a single set of (R

0

; e;M

s

) is strongly unphysi
al sin
e all


osmologi
al theories of galaxy formation predi
t values that follow distribution fun
tions. The

question is, how does a 
ontinuous distribution of orbital parameters and satellite masses alter the

�nal distribution?.

To answer it, we build up a sample of 1000 satellite galaxies with (e;M

s

) = (0; 0:1M

d

) ho-

mogeneously distributed, �(t = 0) = 2, within the range R

0

2 [20; 80℄ kp
, whi
h in
ludes the

three 
ases dis
ussed above: (i) satellites with R < 40 kp
 will de
ay before one Hubble time, (ii)

those with R > 60 kp
 are observed after one Hubble time independently of the initial in
lination

and (iii)the survival of satellites with intermediate initial distan
es depends on the initial orbital
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Figure 10.6: As Fig. 10.3 with the sample 
overing a range of initial distan
es R

0

2 [20; 80℄ kp
.

in
lination. The resulting distribution is plotted in Fig. 10.6. The number of satellites after one

Hubble time is 580, approximately half of them lie within the range 0

Æ

< i

0

< 90

Æ

. The dashed

line (initial in
lination distribution of the surviving satellites) shows still some anisotropy whi
h,

however, is strongly smoothed if 
ompared to that of Fig. 10.3. The distribution be
omes nearly

isotropi
 due to the in
lination de
rease along the evolution (solid line).

This exer
ise has been repeated 
hanging the orbital e

entri
ity and satellite mass, leading

to the same 
on
lusion: only a given fra
tion of satellite masses and orbits, those for whi
h the


ombination of (R

0

; e;M

s

) makes 0

Æ

< i

0

< 90

Æ

, 
an produ
e the observed anisotropi
 in
lination

distribution.

We want to emphasise the small dependen
e of the �nal distribution on the orbital sense. This

result agrees with the numeri
al 
al
ulations of PKB, who �nd that the di�erentiation in the de
ay

time between prograde and retrograde orbits (via dynami
al fri
tion) is strongly smoothed as a

result of the halo 
attening.

10.6 The initial satellite distribution

In this Se
tion we outline the initial set of satellite masses and orbits that out
ome from the

Monte-Carlo s
heme on
e some initial distribution is assumed.

10.6.1 The satellite masses

The appearan
e of large substru
tures in the Universe is usually des
ribed by small 
u
tuations

in the initial ba
kground density that lead to the present mass distribution through the so-
alled

merger tree pro
ess. In this s
enario, dark matter haloes form hierar
hi
ally through the a

retion

and merging of smaller substru
tures that 
ondensed from the 
u
tuations of the initial density

�eld.

Sin
e the 
ollapse and viralization of dark matter haloes is thought to be non-linear, authors

usually resort to N-body 
al
ulations in order to follow the formation and evolution of these
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Figure 10.7: Initial mass distribution for a sample of N

t

= 10000 satellites.

systems. Unfortunately, this s
heme su�ers from strong limitations, like expensive 
omputational

times and low resolution.

The alternative 
an be found in the Press-S
he
hter formalism (Press & S
he
hter 1974). This

s
heme has been found to be in remarkable agreement with the N-body 
omputations, providing

the initial mass distribution from the linear analysis of the 
u
tuation spe
trum, and the 
orre-

sponding evolution through a hierar
hi
al 
lustering (e.g, Efstathiou et al. 1988, La
ey & Cole

1994 and referen
es therein). This theory has also been extended (Bond et al. 1991, La
ey &

Cole 1993) to follow the history of individual parti
les in order to produ
e the merger-trees of

individual haloes.

In our study of the satellite distribution in spiral galaxies, we simply employ the Press-S
he
hter

s
heme to reprodu
e the initial mass spe
trum of satellites within a given halo. This theory predi
ts

that the 
umulative total massM(M) below the mass M as

M(M) /M

1��

; (10.9)

where � has been found to have a value of 1/2 in order produ
e the best �t to numeri
al 
al
ulations

(Press & S
he
hter 1974, La
ey & Cole 1993, Tormen 1997). We note that, though this distribution

diverges for M ! 0, the 
umulative mass is integrable.

Taking into dynami
al 
onstraints, we limit our analysis to a range of massesM

s

2 [0:1; 0:6℄M

d

whi
h re
overs most part of the observational data after the set of satellites has been evolved.

In Fig. 10.7 we plot the initial mass distribution obtained from the Press-S
he
hter formalism

within the range 
ommented above. The �gure is done for a set of 10000 satellites, 90 per 
ent of

them having 0:1M

d

�M

s

� 0:5M

d

.

10.6.2 Spatial distribution

Theoreti
al studies of hierar
hi
al galaxy formation in the CDM frame, where the density peaks

that are site of galaxy 
ollapse in the Gaussian random �eld, predi
t triaxial systems (Bardeen et al.

1986). Using the CDM spe
trum, 
osmologi
al N-body 
al
ulations (Frenk et al. 1988, Dubinsky

& Calberg 1991) result to highly 
attened haloes with prolate triaxial shapes (if 
 � b � a then
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isoth

NFW

Figure 10.8: Upper panel: Initial in
lination distribution for three values of q

h

. The sample

of satellites 
ontains N

t

= 10000. Lower panel: Spatial distribution of satellites when using a

singular isothermal pro�le and that propose by NFW.


=b > b=a ' 0:5 and 
=a ' 0:5). The dissipative infall of gas during the formation of a galaxy

modi�es the halo shape, so that the axial ratio b=a grows to 0:7� 0:8 whereas 
=a barely 
hanges

(Dubinsky 1994).

CDM 
osmology predi
ts the formation within haloes of substru
tures with nearly s
ale free

density pro�le, that one 
an identify as satellite galaxies. Whereas it is not obvious that the

initial spatial distribution of su
h obje
ts should a

ount for the halo mass distribution, in this

preliminary study we assume that satellites follow the density pro�le of the parent galaxy. For


omparison, we also in
lude samples with isotropi
 in
lination distributions at t = 0.

Isothermal model

Consider �rst a 
attened halo with a singular isothermal pro�le, then

�

isoth

(R; i) =

�

0

R

2

�


os

2

(i) + sin

2

(i)=q

2

h

�

�1

; (10.10)

where �

0

is a 
onstant.

The �rst hypothesis in our work is that the satellite distribution follows the mass distribution of

the parent galaxy. We generate a sample of satellites using the Monte Carlo s
heme by 
al
ulating

the probability of ea
h satellite to move along a orbit with initial in
lination i. The normalised


umulative probability as a fun
tion of the in
lination is from eq. (10.10)

^

P(< i) =

1

2

�

1 +

atanh[

p

1� q

2

h


os(i)℄

atanh

p

1� q

2

h

�

: (10.11)

The resulting initial in
lination distribution (number of satellites per unit angle, �

0

), is plotted in

the upper panel Fig. 10.8 for three values of q

h

. We note that smaller halo axis-ratios give rise to

larger number of satellites at small orbital in
linations.

We also generate samples where the initial in
lination distribution is isotropi
, sin
e the results

are more straightforward to interpret.
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NFW model

Navarro, Frenk &White (1996), hereinafter NFW, use high-resolution N-body 
al
ulations in order

to investigate the stru
ture of gala
ti
 haloes and galaxy 
luster haloes. They �nd an \universal"

density pro�le that mat
hes halo masses ranging from dwarf satellites to those of ri
h galaxy


lusters

�

nfw

=

�

1

R(1 +R=R

s


)

2

; (10.12)

where R

s


is the s
ale-radius. This pro�le is nearly isothermal for small radii, produ
ing a \
ore"

for R � R

s


, i.e the 
entral part show a nearly 
onstant density pro�le, whi
h �ts better to

observations than models with a singular density 
urve for R ! 0. The outer region presents a

steeper pro�le, 1=R

3

, that results to a de
rease of the surfa
e density for R > R

s


. Although this

modelling of halo mass distribution solves problems like the un-
orrelation between luminosity and

dynami
s in bright galaxies (see NFW for more details) and mat
h observations of intra-
luster

stru
tures, some un
ertainties still remain, sin
e (i) the abundan
e of galaxies from the N-body

simulations is largely overestimated and (ii) the density pro�le is too steep at small radii to �t to

observations of dwarf galaxies.

The analysis of the satellite abundan
e as a fun
tion of the gala
to-
entre distan
e may give

insights on the halo pro�le. With this aim in mind, we also employ the density pro�le of eq. 10.12 in

order to reprodu
e the satellite distribution. The normalised 
umulative probability as a fun
tion

of R is

^

P(< R) =

R


ut

+R

s


R +R

s


�

ln

�

R+ R

s


R

s


�

(R+R

s


)�R

�

(10.13)

�

�

ln

�

R


ut

+R

s


R

s


�

(R


ut

+R

s


)�R


ut

�

�1

;

where R


ut

is the halo 
ut-o� radius.

The 
omparison of the initial in
lination distribution between the isothermal model and that

proposed by NFW is plotted in the lower panel Fig. 10.8 for a sample of N

t

= 10000 satellites. This

Figure shows that, 
ompared to isothermal distributions, NFW haloes provide a larger number of

satellites for R < R

s


= 250 kp
 whereas in the outer region this number de
reases.

The range of distan
es where we initially lo
ate satellites a

ounts for the observational data

of Zaritsky et al. (1993), so that R 2 [40; 500℄ kp
, approximately. Satellites with R < 40 kp


de
ay to the 
entre independently of the initial orbital e

entri
ity (for the range of masses given

above). We expe
t that satellites with R > 300 kp
 su�er small fri
tion due to the low density at

su
h large distan
es.

10.6.3 E

entri
ity distribution

The number of satellites as a fun
tion of the orbital e

entri
ity that we use is that found by van den

Bos
h et al. (1999). De�ning the initial orbital 
ir
ularity as � = L=L




(E) where L




(E) = R




(E)V




is the initial angular momentum of a 
ir
ular orbit with radius R




(E) = exp[(E � 1=2V

2




)=V

2




℄

and the same energy (note that 0 � � � 1, so that orbits with null 
ir
ularity are radial and with

� = 1 
ir
ular). For an isothermal sphere one has that

1

x

2

+

2

�

2

ln(x) �

1

�

2

= 0; (10.14)

where the peri (R

p

) and apo-
entre (R

a

) are given by the roots of the equality, the e

entri
ity

being e(�) = (R

a

�R

p

)=(R

a

+R

p

) and x = R=R




.

Assuming that (i) orbits have an isotropi
 e

entri
ity distribution and (ii) the energy of the

orbit is independent of the 
i
ulari
ity, van den Bos
h et al. proves that if the galaxy potential
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Figure 10.9: Initial e

entri
ity distribution for a sample of N

t

= 10000 satellites (solid line).

Points represent the initial distribution of � = v=V




.


an be written as � = V

2




log(R), the distributions of 
i
ulari
ity and energy are

P(E) =

R

u

H

V

2




exp

�

�

E

V

2




�

(10.15)

P(�) =

�

p

�

2

max

� �

2

;

where

u

H

=

Z

1

0

du exp(�u)

Z

�

max

0

�d�

p

�

2

max

� �

2

�

max

=

p

2u exp(�u+ 1=2);

denoting u = 2E=V

2




. The Monte-Carlo s
heme employed to produ
e the distribution fun
tion

N = N(e) from this last equation is explained in detail in this paper.

In Fig. 10.9 we plot the e

entri
ity distribution if the initial satellite energy is assumed in-

dependent of e. For te
hni
al reasons, it is useful to de�ne the quantity � � v=V




= R




(E)=R

0

�,

whi
h gives the initial velo
ity that leads to a given value of e. The distribution of � is represented

by dotted points. This �gure shows that most of the satellite move along orbits with intermediate

e

entri
ities, avoiding 
ir
ular as well as radial orbits. The averaged e

entri
ity is �e = 0:55.

If the system is not an isothermal sphere, but it has the density pro�le presents a 
ut-o� radius

, van den Bos
h et al. (1999) �nd for r


ut

=
 = 24 di�eren
es in the distribution shape around

10% for e > 0:7 and negligible for smaller e

entri
ities (see their Fig. 5).

10.6.4 Set of 
al
ulations

In Table 10.1 we present the samples employed for our study. The initial spatial distributions of the

satellite samples are those of eq. (10.10), isothermal, and (10.12) whi
h follows the NFW pro�le.

The initial in
lination distributions are either isotropi
 or mat
hing the axis-ratio of the halo

(q = 0:2; 0:5). In all samples, the initial e

entri
ity distribution is that outlined in Se
tion 10.6.3.
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Set Spatial distrib. In
lin. Distrib. q

h

N

t

N

e

1 Isoth. Isotropi
 0.5 10

4

8442

2 Isoth. Isotropi
 0.2 10

4

7398

3 Isoth. Flat. q = 0:5 0.5 10

4

7420

4 NFW Isotropi
 0.5 10

4

7180

5 NFW Isotropi
 0.2 10

4

7133

6 NFW Flat. q = 0:5 0.5 10

4

7369

Table 10.1: Set of 
al
ulations. N

t

denotes the initial number of satellites in the sample, whereas

N

e

after evolving it one Hubble time. q

h

is the halo axis-ratio of the parent galaxy. The spatial

as well as the in
lination distributions are either isotropi
 or 
attened at t = 0.

We must 
omment that our initial sample of satellites is not in equilibrium, sin
e all orbit

are lo
ated initially at the apo-
entre. We expe
t, for instan
e, the �nal distribution to present

averaged distan
es smaller than the initial one due to non-zero e

entri
ity (besides the de
rease

indu
ed by dynami
al pro
esses su
h dynami
al fri
tion) or the overall in
rease of the orbital

in
lination due to nutation.

10.7 Results

We present the evolved satellite samples presented above, together with the 
omparison with the

observational data of Zaritsky et al. (1997) and Holmberg (1969). The halo axis-ratio is a free

parameter to �t to the observed distributions, regarding that the most favoured 
osmologi
al

model predi
ts a Gaussian aspheri
ity fun
tion 
entred at q

h

= 0:5.

10.7.1 Evolution of distan
e, mass and in
lination

The �nal distributions of our samples are determined by 
omplex pro
esses su
h as dynami
al

fri
tion and mass loss, whi
h highly depend on the initial orbital parameters of the satellites.

In order to illustrate how dynami
al fri
tion in systems with anisotropi
 velo
ity dispersions

alters the initial distributions, we plot in Fig. 10.10 the averaged radius and orbital in
lination of

the evolved samples 1 and 2 as a fun
tion of the initial gala
to-
entre distan
e (R

0

). The upper

panel shows that the �nal satellite radii are of the order of 20 to 80 % of their initial values by

means of dynami
al fri
tion. The de
rease of the mean gala
to-
entre distan
e is 
learly dependent

on the radius where the satellites are initially lo
ated. So that, for orbits lying at R

0

> 200 kp
,

dynami
al fri
tion is mu
h more ineÆ
ient that for orbits with R

0

< 200 kp
. The plateau visible

at large radii indi
ates that a mean de
rease of 15-20 per 
ent 
an be expe
ted even for R

0

� 500

kp
. The redu
tion of the mean R is in this 
ase not 
aused by dynami
al fri
tion but by the

e

entri
ity distribution (we re
all that N(e) does not depend on R

0

). We 
on
lude that dynami
al

fri
tion is negligible for R

0

larger than approximately 250 kp
, independently of the halo shape,

whi
h agrees with the results of Fig. 10.4.

Dynami
al fri
tion strongly redu
es the gala
to-
entre distan
e for R

0

< 200 kp
, thus, a large

fra
tion of satellites initially lo
ated within this interval merge with the parent galaxy after one

Hubble time. Haloes with axis-ratio q

h

= 0:2 are less eÆ
ient than those with q

h

= 0:5 in order

to remove satellites due to the stronger dependen
e of the satellite de
ay time on the orbital

in
lination. This 
orresponds to the results plotted in Fig. 10.4, where it is shown that more


attened haloes in
rease the survival times for those satellites with approximately i

0

> 20

Æ

,

independently of the initial mass and orbital e

entri
ity.

The mass loss fra
tion is plotted in the middle panel. We observe that only those satellites at

R

0

< 150 kp
 su�er mass loss. The satellite mass is stripped away by the 
ombined a
tion of tidal

for
es and sho
ks. Both me
hanisms produ
e non-negligible e�e
ts near the dis
, R < 50 kp
,

whi
h explains the nearly 
at 
urve for distan
es larger than 200 kp
. Satellites with larger radii
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Figure 10.10: Upper panel: Average of the evolved to initial distan
e ratio after the evolution

of the samples 1 (solid lines) and 2 (dotted lines) as a fun
tion of the initial radius R

0

. Middle

panel: Average of the mass variation after the evolution. Lower panel: Average of the in
lination

variation.

have approximately the same mass after one Hubble time. it is interesting to note that satellites

embedded in highly 
attened haloes su�er, in average, lower mass loss. This is 
onne
ted to

the slower de
ay shown in the upper panel, sin
e larger average distan
es imply weaker tidal

intera
tions.

The in
lination evolution also shows a 
lear dependen
e on the initial gala
to-
entre distan
e.

Orbits initially at radii larger than 200 kp
 show enhan
ed in
linations after one Hubble time,

whi
h is probably due to nutation. Three aspe
ts point to this explanation: (i) the average value of

i=i

0

is larger if the galaxy halo is more 
attened, (ii) dynami
al fri
tion is ineÆ
ient for R

0

> 250,

the only for
e a
ting on the satellite at those radii is, therefore, that indu
ed by the aspheri
al

potential of the halo and (iii) in isothermal haloes, the satellite nutation is nearly independent

of the distan
e, whi
h would result to a roughly 
onstant in
rease of the averaged in
lination for

radii where the other for
es a
ting on the satellite are negligible.

If satellites are 
lose to the dis
, R

0

< 100 kp
, dynami
al fri
tion dominates over nutation in

order to alter the orbital in
lination. As PKB show, a strong redu
tion of this quantity is expe
ted

if satellites move within haloes with anisotropi
 velo
ity distributions. The in
lination de
rease is

around 5-10% larger if the halo has an axis-ratio q

h

= 0:2. The maximum redu
tion of the orbital

in
lination is around 20-25% of its initial value.

10.7.2 In
lination distribution

In Fig. 10.11 we plot the in
lination distribution after evolution (t = t

H

= 12 � 10

9

yr). Panels

in the upper row shows the number of satellites per unit in
lination for those satellites lo
ated

with R 2 [9; 500℄ kp
 and R 2 [200; 500℄ kp
 (in the galaxy frame, i.e, radii are not proje
ted).

Comparing both panels we observe that the anisotropy of the distribution is stronger for satellites

at large radii if the initial distribution is isotropi
 (sets 1 and 2). However, if the initial distribution

follows that of the halo parti
les, the �nal in
lination of the satellites is roughly independent of
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the distan
e range. In this 
ase, the number of satellites in low in
linations is remarkably large,

obtaining a �nal distribution similar to that of the halo (oblate).

The 
omparison of the resulting histograms of the samples 1 and 2 (where the halo axis-ratio

is q

h

= 0:5; 0:2, respe
tively) show that (i) for highly 
attened haloes (q

h

= 0:2), the value of �

0

in

the whole range of distan
es is larger for i < 15

Æ

, i > 75

Æ

than in haloes with q

h

= 0:5, whereas for

intermediate in
linations (i � 45

Æ

) we have that �

0

(q

h

= 0:2) < �

0

(q

h

= 0:5). (ii) If the 
al
ulus is


arried out for satellites lo
ated at large radii (upper-right panel), both distributions show small

di�eren
es. The anisotropy is, independently of q

h

, �

0

(0

Æ

) ' 0:6�

0

(90

Æ

).

The strong di�erentiation between the inner and the outer distributions is indu
ed by the

dependen
e of the de
ay time on the gala
to-
entre distan
e. In all of our samples, most of

the satellites orbiting at radii larger than 200 kp
 survive after one Hubble time evolution (see

Fig. 10.4). As Fig. 10.10 indi
ates, satellites initially lo
ated at R

0

< 150 kp
, su�er strong

de
ays, together with a marked de
rease of the orbital in
lination that in
reases the �nal number

of satellites moving along low in
lined orbits. Dynami
al fri
tion also redu
es the main radii of

those satellites within 150 � R

0

� 250, though with barely in
lination de
rease (PKB show that

the redu
tion of i mainly o

urs at late times of the satellite evolution, when satellites are 
lose

to the galaxy 
entre. Within this range of initial distan
es one has that, in average, R 2 [70; 175℄

kp
 after evolution expe
ting, therefore, low de
rease of the orbital in
lination). This satellites

smooth the in
lination distribution at R < 200 kp
.

In the outer regions (R

0

> 250 kp
) the e�e
t is the opposite. Dynami
al fri
tion is negligible and

the dominant e�e
t on the in
lination evolution is nutation, whi
h a�e
ts the �nal distribution as

shown in Fig. 10.2. In the range 150 � R

0

� 250, however, the de
ay of satellites to R < 150 kp


o

urs mainly for those with low i, sin
e dynami
al fri
tion is stronger than for those following

near polar orbits (see PKB). This enhan
es the anisotropy of the in
lination distribution shown

in the upper-right panel of Fig. 10.11.

The upper-left panel shows that, whereas �

0

(90

Æ

) is barely independent on the distan
e s
ale,

the number of satellites with i < 45

Æ

enhan
es for R < 200 kp
 due to the 
ow of satellites from

outer regions, whi
h is stronger the more 
attened the halo is.

In the lower raw panels we plot the distributions after proje
ting them into the sky. The main

e�e
t of the proje
tion is the strong redu
tion of the anisotropy, so that, if for r > 200 kp
 one

has that �

0

(i = 0

Æ

) ' 0:6 �

0

(i = 90

Æ

), after proje
tion �

0

(� = 0

Æ

) ' 0:8 �

0

(� = 90

Æ

), whi
h

means that the proje
ted number of satellites on polar orbits 
ompared to that in 
oplanar is 25%

smaller

2

.

In both intervals, the resulting distributions di�er strongly to that observed by Zaritsky &

Gonz�alez (1999) (long-dashed lines) independently of the halo shape and initial in
lination 
on-

�guration, espe
ially at large radii. The observational data show very large anisotropies whi
h

indi
ate that, in the galaxy frame, a large fra
tion of satellites must move in nearly polar orbits.

Comparing these 
urves with those of Fig. 10.1 (where we assume that all satellite follow 
ir
ular

orbits) one �nds that, in order to observe �

obs

(� = 0

Æ

)=�

obs

(� = 90

Æ

) � 0:04=0:12 ' 0:33 at

r > 200 kp
, the distribution in the galaxy frame requires the total absen
e of satellites within

[0

Æ

; 80

Æ

℄ and spatial distributions s
aling as �(R) / R

�1

.

We must note, however, that the observational surfa
e density is zero for � = 0

Æ

. This indi
ates

that the data available are not 
omplete, sin
e even if all satellite move in (non-radial) polar orbits,

�

0

(0

Æ

) 6= 0 due to the proje
tion e�e
ts (see Se
tion 10.4).

A similar 
al
ulus was 
arried out for the samples 4, 5 and 6, 
orresponding to an initial

spatial distribution that follows the NFW pro�le. The results are very similar to those plotted in

Fig. 10.11, indi
ating that the �nal distribution of orbital in
linations is barely 
orrelated to the

initial satellite distribution in spa
e.

2

note that (i) � denotes the proje
ted satellite in
lination with respe
t to the dis
 plane and (ii) we use proje
ted

distan
es to di�erentiate the satellites that belong to the inner and outer distan
e ranges
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[200,500] kpc[9,500] kpc

Figure 10.11: In
lination distribution at t = t

H

. Upper raw: In
lination histograms for two

distan
e ranges (Samples 1, 2 and 3 of Table 10.1). Lower raw: Proje
ted distribution 
ompared

to the observational data of Zaritsky & Gonz�alez (1999).

10.7.3 Distan
e and mass distributions

In Fig. 10.12 we plot the �nal distribution of the proje
ted distan
es and masses for the samples

1 and 4.

The distan
e distribution of the initially isothermal sample shows a linear de
rease for r > 100 kp
,

i.e �(r) / r

�1

. Sin
e the apparent satellite-parent galaxy separation is redu
ed by the proje
tion,

so that R

2��

! r

1��

(Se
tion 10.4, � = 2 for an isothermal pro�le), the linear behaviour of �(r)

indi
ates that, at large radii, the distan
e distribution su�ers barely 
hanges after the system has

been evolved, whi
h also o

urs when the satellite sample follows initially the NFW pro�le. As we


on
lude in Se
tion 10.7.1, these results suggest that dynami
al fri
tion e�e
ts 
an be negle
ted

for R

0

> 250 kp
.

For r < 100 kp
 we observe a strong de
rease of the satellite number. At this distan
e s
ale,

dynami
al fri
tion proves to be an eÆ
ient me
hanism in order to remove satellites, whi
h leads

to steep de
rease of �(r) for r ! 0 (see also the upper-panel Fig. 10.10).

In this panel, we also 
ompare the evolve distributions to the 
urve obtained from the observations

of Zaritsky et al. (1993). Unfortunately, the number of satellites belonging to the observational

sample is to low to produ
e a

urate statisti
s in order to determine the initial pro�le that best

�t to observations.

The proje
ted samples show a la
k of satellites for r > 300 kp
. To solve this problem one should

initially lo
ate more satellites at radii R

0

> 500 kp
. However, it is not 
lear whether these bodies

are not a�e
ted by the ba
kground stru
tures present in the Dark Matter dominated Universe,

even if galaxies in the observational sample appear as isolated.

In the lower panel we represent the evolved mass distributions. The resulting mass spe
tra do

not di�er strongly to the initial mass sin
e mass removal me
hanisms, like tidal for
es and sho
ks,

are solely e�e
tive near the dis
 (R < 50 kp
). Satellites with initial distan
es larger than 150

kp
 (around 75% of satellites at t = 0) su�er a negligible mass loss along their evolution. As a
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result, the �nal distribution show small di�eren
es depending on the initial density pro�le. These

are only visible for those satellites with initial masses between 0.1 and 0.2 dis
 masses, sin
e more

massive satellites own larger binding energies whi
h redu
e the mass stripping.

The best �t to the observational mass spe
trum o

urs for �

s

=�

d

= 0:5. Satellites that originally

follow the NFW pro�le show stronger mass evolution than those with an isothermal spatial distri-

bution. The reason is that this sample presents a larger number of satellites at r < 50 kp
, whi
h

indi
ates a higher intera
tion with the dis
 (via sho
ks) and the inner galaxy potential (via tidal

mass stripping).

The evolved samples show a reasonable agreement for M

s

< 0:2M

d

. However, more massive

satellites are so far not observed, whi
h represent approximately the 40% of the total number of

satellites in our sample. It is not 
lear whether this 
an signi�
atively alter the in
lination and

distan
e distributions 
ommented above.

Isoth.

NFW

Observ.

Isoth.

NFW

t=0

Observ.

Figure 10.12: Upper panel: Proje
ted distan
e distribution after evolution 
ompared to obser-

vations of Zaritsky et al. (1993). Lower panel: Evolved mass distribution 
ompared to the

observational data of Zaritsky & Gonz�alez (1999). We use eq. (10.1), to 
onvert apparent magni-

tudes into satellite masses, where the best �t is found for �

s

=�

d

= 0:5. We denote N=N

e

as the

number of satellites per mass interval normalised to the number of surviving satellites after one

Hubble time.

10.8 Dis
ussion

We have performed a statisti
al study of the satellite evolution in spiral galaxies based on the

hierar
hi
al s
enario assumed by the CDM 
osmology. This investigation may put light on the,

so far, non-understood highly anisotropi
 distribution of satellites. The idea beyond this analysis

is the possible 
onne
tion between the halo aspheri
ity, predi
ted by CDM, with the lo
ation of

satellites in spiral galaxies.

Observational data show proje
ted distributions that in the galaxy frame would imply the total

absen
e of satellites for orbital in
linations lower that 80

Æ

. If we assume that these samples are


omplete, there must be a strong me
hanism that remove those satellites in low in
lined orbits.
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Dynami
al fri
tion in spiral galaxies with 
attened haloes 
annot explain su
h observations

with the initial satellite distributions employed in this exer
ise. The resulting in
lination distri-

butions that we obtain are by far more isotropi
 than those observed by Zaritsky et al. (1993),

independently whether the initial spatial distribution follows an isothermal pro�le or that pro-

posed by NFW. Even haloes as 
attened as q

h

= 0:2 are not able to in
rease the preferen
e of

satellite to be lo
ated on high in
lined orbits.

It is usually assumed that satellites formed in a spatial distribution that follows the Dark

Matter halo's one. However, the samples mat
hing the oblateness of halo at t = 0, remain oblate

after their evolution, i.e �(90

Æ

) < �(0

Æ

) whi
h, therefore, goes against the observational data.

A possible reason for su
h a mismat
h with observations might be that the initial distributions

that we use do not 
orrespond to those in the Universe at early times. However, (i) the resulting

gala
to-
entre distan
e distributions show a remarkable agreement with the observations for r <

300 kp
, (ii) di�erent e

entri
ity distributions to that proposed by van den Bos
h et al. (1999)

would result to a 
hange of the slope of the distan
e distribution (for instan
e, if all satellite follow

nearly radial orbits, the proje
ted spatial distribution would appear steeper), but it is unlikely that

the �nal in
lination distribution be
ame more anisotropi
, sin
e it appears as barely dependent of

the spatial gradient. (iii) The satellite mass spe
trum is not known. However, de
reasing the mass

range seems not a remedy sin
e this would lead to a de
rease of the fri
tion for
e and, therefore,

a de
rease of the e�e
ts of the halo 
attening on the orbital in
lination evolution.

We have analysed the evolutionary solution to the also known as \Holmberg problem" without

su

ess. A solution might be found in the initial distribution of in
linations. For instan
e, had

satellites formed initially in a prolate distribution, they would be observed today preferentially in

polar orbits if Dark Matter haloes are 
attened.

Another open question is whether the initial distribution is in equilibrium or, on the 
ontrary, it

follows the Dark Matter evolution on the galaxy s
ale at early times. This will be analysed in

Pe~narrubia, Kroupa & Just (2003) in more detail.



Bibliography

[℄ Arnaboldi M., Capa

ioli M., Cappellaro E., Held E.V., Sparke L.S., 1993, A&A, 267, 21

[℄ Bah
all J.N., S
hmidt M., Soneira R.M., 1982, ApJ, 258, L23

[℄ Bah
all N., Ostriker J.P., Pelmutter S., Steinhardt P.J., S
ien
e, 284, 1481

[℄ Bardeen J.M., Bond J.R., Kaiser N., Szalay A.S., 1986, ApJ, 304, 15

[℄ Barnes, J.E, 1988, ApJ, 331, 699

[℄ Be
quaert J.F., Combes F., Viallefond F., 1997, A&A, 325, 41

[℄ Begeman K.G., Broeils A.H., Sanders R.H., 1991, MRAS, 249, 532

[℄ Binggeli B., Sandage A., Tarenghi M., 1984, AJ, 89, 64

[℄ Binney J., 1977, MNRAS, 181, 735

[℄ Binney J., 1992, ARA&A, 30, 51

[℄ Binney J., Merri�eld M., 1998, Gala
ti
 Astronomy. Prin
eton University Press, Prin
eton, New

Jersey

[℄ Binney J., Tremaine S., 1987, Gala
ti
 Dynami
s. Prin
eton University Press, Prin
eton, New

Jersey (BT)

[℄ Boily C.M., Kroupa P., Pe~narrubia J., 2001, NewA, 6, 27 (BKP)

[℄ Bond J. R., Cole S., Efstathiou G., Keiser N., Szalay A., 1986, ApJ, 304, 15

[℄ Boute D.A., Canizares C.R., 1998, ApJ, 468, 184

[℄ Buote D.A., Jeltema T.E., Canizares C.R., Garmire G.P., 2002, ApJ, 577, 183

[℄ Bus
h A. E., 1983, M.S
. thesis, University of Toronto

[℄ Carney B., Lathman D.W., 1987, in Kormendy J., Knapp G.R., eds, Pro
. IAU Symp 117, Dark

Matter in the Universe. Reidel, Dordre
ht, p.39

[℄ Carr B., 1994, ARA&A, 32, 531

[℄ Chandrasekhar S., 1943, ApJ, 97, 255

[℄ Chandrasekhar S., 1960, Prin
iples of Stellar Dynami
s. Dover, New York

[℄ Colin P. Avila-Reese V., Valenzuela O., 2000, ApJ, 542,622

[℄ Colpi M., Mayer L., Governato F., 1999, ApJ, 525, 720

[℄ Cora S.A., Muzzio J.C., Vergne M.M., 1997, MNRAS, 289, 253

143



144 BIBLIOGRAPHY

[℄ Dohm-Palmer R. C., Helmi A., Morrison H., Mateo M., Olszewski E. W., Harding P., Freeman

K. C., Norris J., She
tman S. A., ApJ, 555, 37

[℄ Dubinsky J., 1994, ApJ, 431, 617

[℄ Dubinsky J., Calberg R., 1991, ApJ, 378, 496

[℄ Efstathiou G., Frenk C. S., White S. D. M., Davis M., 1988, MNRAS, 235, 715

[℄ Einasto J., Kaasik A., Saar E., 1974, Nature, 250, 309

[℄ Fellhauer M., Kroupa P., Baumgardt H., Bien R., Boily C. M., Spurzem R., Wassmer N., 2000,

NewA, 5, 305

[℄ Fi
h M., Tremaine S., 1999, ARA&A, 29, 409

[℄ Firmani C., D'Onghia E., Chin
arini G., Hern�andez X., Avila-Reese V., 2000b, MNRAS, 321,

713

[℄ Fisher J. R., Tully R. B., 1981, ApJ Suppl, 47, 139

[℄ Freeman K.C., 1970, ApJ, 160, 811

[℄ Frenk C.S., White S.D.M., Davis M., Efstathiou G., 1988, ApJ, 327, 507

[℄ Fukugita M., Hogan C.J., Peebles P.J.E., ApJ, 503, 518

[℄ Ghigna S., Moore B., Governato F., Lake G., Quinn T., Stadel J., 1999, ApJ, 554, 616

[℄ Goodman J., 2000, NewA, 5, 103

[℄ Gnedin O.Y., Hernquist L., Ostriker J.P., 1999, ApJ, 514, 109

[℄ Gnedin O.Y.,Ostriker J.P., 1997, ApJ, 474, 223G

[℄ Gnedin O.Y.,Ostriker J.P., 1999, ApJ, 513, 626 (GO)

[℄ Goldstein, H, 1980, Classi
al Me
hani
s, Singapore. Addison-Weasley

[℄ Gonz�alez A.H., Williams K.A., Bullo
k J.S., Kolatt T.S., Prima
k J.R., 1999, ApJ, 528, 145

[℄ Hashimoto Y., Funato Y., Makino J., 2002, astro-ph/0208452

[℄ Helmi A., White S.D.M., 1999, MNRAS, 307, 495

[℄ Helmi A., de Zeeuw P.T., 2000, MNRAS, 319, 657

[℄ Hernquist L., 1990, ApJ, 356, 359

[℄ Hernquist L., 1993, ApJS, 86, 389

[℄ Hofner P., Sparke L., 1994, ApJ, 428, 466

[℄ Hohl F., 1970, NASA Te
hni
al Report R-343

[℄ Holmberg E., 1969, Arkiv. Astr, 5, 305

[℄ Ibata R., Lewis G.F., Irwin M., Totten E., Quinn T., 2001, ApJ, in press

[℄ Ibata, R. A., Gilmore, G. & Irwin, M. J. 1994, Nature 370, 194

[℄ Johnston K., Sigurdsson S., Hernquist L., 1999, MNRAS, 302, 771

[℄ Keeton C.R., Ko
hanek C.S., 1998, ApJ, 495, 157



BIBLIOGRAPHY 145

[℄ King I.R., 1962, AJ, 67, 471

[℄ King I.R., 1966, AJ, 71, 65

[℄ Klessen R.S., Kroupa P., 1998, ApJ, 498, 143

[℄ Klypin A., Kravtsov A.V., Bullo
k J.S., Prima
k J.R., 2001, ApJ, 554,903

[℄ Kroupa P., 1997, NewA, 2, 139

[℄ Kundi�
 T., Ostriker J.P., 1995, ApJ, 438, 702

[℄ La
ey C., Cole S., 1993, MNRAS, 262, 627

[℄ La
ey C., Cole S., 1994, MNRAS, 271, 676

[℄ Landau l.D., Lifs
hitz E.M., The 
lassi
al Theory of Fields, Pergamon, Oxford, pp. 358-368

[℄ Lewis J.R., Freeman K.C., 1989, AJ, 97, 139

[℄ Lin, D.N.C., Tremaine S., 1983, ApJ, 264, 364

[℄ Ma
Gillivray H. T., Dodd R. J., Ma
Nally B. V., Corwin H. G. Jr., 1982, MNRAS, 198, 605

[℄ Maller A.H., Flores R.A., Prima
k J.R., 1997, ApJ, 486, 681

[℄ Maller A.H., Simard L., Guhathakurta P., Hjorth J., Jaunsen A.O., Flores R., Prima
k J.R.,

2000, ApJ, 533, 194

[℄ Mart

�

inez-Delgado D., Apari
io, A., G�omez-Fle
hoso, M. A., Carrera R., 2001, ApJ, 547, 133

[℄ M
kay T.A. et al, ApJ, 2002, 571, L85

[℄ Milgrom M., 1983, AJ, 270, 365

[℄ Moore B., Quinn T., Governato F., Stadel J., Lake G., 1999b, MNRAS, 310, 1147

[℄ Moore B., Gighna S., Governato F., Lake G., Quinn T., Stadel J., Tozzi P., 1999a, ApJ, 524,

L19

[℄ Navarro J.F., Frenk C.S., White S.D.M., 1996, ApJ, 462, 563 (NFW)

[℄ Navarro J.F., Frenk C.S., White S.D.M., 1997, ApJ, 490, 493

[℄ Navarro J.F., Steinmez M., 2000, ApJ,538, 477

[℄ Nelson R.W., Tremaine S., 1999, MNRAS, 306, 1

[℄ Nilson P., 1973, Uppsala General Catalogue of Galaxies, Uppsala, Sweden. Upsala O�set Centre

AB.

[℄ Olling R.P., 1996, AJ, 112, 481

[℄ Olling R.P., Merri�eld M.R., 2000, MNRAS, 311, 361

[℄ Ostriker J.P., Peebles P.J.E., Yahil A., 1974 ApJ, 193L, 10

[℄ Ostriker J.P., 1993, ARA&A, 31, 689

[℄ Pea
o
k J.A., 1999, Cosmologi
al Physi
s. Cambridge, Cambridge University Press

[℄ Pe~narrubia J., Kroupa P., Just A., in preparation

[℄ Pe~narrubia J., Kroupa P., Boily C.M., 2001, MNRAS, 333, 779 (PKB)



146 BIBLIOGRAPHY

[℄ Peebles P.J.E., 1993, 'Prin
ipes of Physi
al Cosmology', Prin
eton University Press, Pri
eton

[℄ Peebles P.J.E., 2000, ApJ, 534, L127

[℄ Per
ival W.J., and 25 
o-authors, MNRAS, 337, 1068

[℄ Persi
 M., Salu

i P., Stel F., 1996, MNRAS, 281, 27

[℄ Pfenniger D., Combes F., Martinet L., 1994, A&A, 285, 79

[℄ Piatek S., Pryor C., 1995, AJ, 109, 1071

[℄ Popolo A., Gambera M., 1999, A&A, 342, 34

[℄ Prada F., Vitvitska M., Klypin A., Holtzman J.A., S
hlegel D.J., Grevel E., Rix H.W.,

brinkmann J., M
kay T.A., 2003, astro-ph/0301360

[℄ Press W., S
he
hter P., 1974, ApJ, 187, 425

[℄ Press W.P., Flannery B.P., Teukolsky S.A., Vetterling W.T., 1986, Numeri
al Re
ipes. Cam-

bridge University Press, New York

[℄ Prugniel Ph., Combes F., 1992, A&A, 259, 25

[℄ Quinn P.J., Goodmann J., 1986, ApJ, 306, 472

[℄ Quinn P.J., Hernquist L., Fullagar D.P., 1993, ApJ, 403, 74

[℄ S�an
hez-Sal
edo F.J., Brandenburg A., 1999, ApJ, 522,35

[℄ S�an
hez-Sal
edo F.J., Brandenburg A., 2001, MNRAS, 322,67

[℄ Sa
kett P.D., Rix H.W., Jarvis B.J., Freeman K.C., 1994, ApJ, 436, 629

[℄ Sanders R.H., 1990, A&A Rev., 2, 1

[℄ S
iama D., 1990, MNRAS, 244, 1

[℄ Smith D.R., Bernstein G.M., Fis
her P., Jarvis M., 2001, apJ, 551, 643

[℄ Sofue Y., Rubin V., 2001, ARA&A, 39, 107

[℄ Spergel D.N., Steinhardt P.J., 2000, Phys.Rev.Lett., 84,3760

[℄ Spinnato P.F., Fellhauer M., Portegies Zwart S.F., astro-ph/0212494

[℄ Spitzer L. Jr., 1987, Dynami
al Evolution of Globular Clusters, Prin
eton University Press,

Prin
eton

[℄ Spitzer L., 1942, ApJ, 95, 329

[℄ Steinman-Cameron T.Y., Kormendy J., Durisen R.H., 1992, AJ, 104, 1339

[℄ Stenmetz M., White D.M., 1997, 288, 545

[℄ T�oth G., Ostriker J.P, 1992, ApJ, 389, 5

[℄ Taylor J.E., Babul A., 2001, ApJ, 559, 716 (TB)

[℄ Tormen G., 1997, MNRAS, 290, 411

[℄ van den Bos
h F. C., Lewis G. F., Lake G., Stadel J., 1999. ApJ, 515, 50

[℄ de Vau
ouleurs G., 1948, Annales d'Astrophysique, 11, 247



BIBLIOGRAPHY 147

[℄ Vel�azquez H., White S.D.M., 1999, MNRAS, 304, 254 (VW)

[℄ Weinberg M. D., 1994, AJ, 108, 1398

[℄ Weinberg M.D., 2000, ApJ, 532, 922

[℄ Whade M., Donner K.J., 1996, A&A, 312, 431

[℄ Zaritsky D., Gonz�alez A., 1999, PASP, 111, 1508

[℄ Zaritsky D., Olszewski E. W., S
hommer R. A., Peterson R. C., Aaronson M., 1989, ApJ, 345,

759

[℄ Zaritsky D., Smith R., Frenk C, White S. D. M., 1993, ApJ, 405, 464

[℄ Zaritsky D., Smith R., Frenk C, White S. D. M., 1997, ApJ, 478, 39

[℄ Zaritsky D., White S.D.M., 1994, ApJ, 435, 599

[℄ Zhao H., Johnston K.V., Hernquist L., Spergel D.N., 1999, A&A, 348, L49

[℄ Zwi
ky F., 1933, Helveti
a Physi
a A
ta, 6, 10



148 BIBLIOGRAPHY



Chapter 11

Summary

The results presented in this Thesis 
an be summarised as,

� Theoreti
al study of dynami
al fri
tion

In Chapter 5 we have presented a detailed develop of the method and the di�erent approxi-

mations that lead to the �nal expressions of dynami
al fri
tion in inhomogeneous systems.

The main results are:

(i) For 
ompleteness with the lo
al and the straight line approximations, the Coulomb log-

arithm must in
lude a gala
to-
entre distan
e dependen
e so that the maximum impa
t

parameter 
an be estimated as,

b

2

1

= b

2

0

+Q

2

+

�

�

jjrrhojj

�

2

V

2

0

4v

2

M

+ V

2

0

;

where b

0

is the minimum impa
t parameter, � is the system density pro�le, V

0

is the relative

velo
ity (in the straight line approximation) of the satellite-ba
kground parti
le en
ounter,

the satellite moving with a velo
ity v

M

and Q is a free parameter to �t to the N-body data.

The Coulomb logarithm in our s
heme, therefore, provides the expli
it dependen
e on V

0

; v

M

and �.

(ii) We also 
al
ulate the �rst order term of spe
i�
 dynami
al fri
tion that results from the

lo
al approximation, whi
h s
ales as F

[1℄

/ M

2

s

jjr�jj, whereas F

[0℄

/ M

s

�, whi
h implies

that the ratio F

[1℄

=F

[0℄

in
reases for de
reasing gala
to-
entre distan
e and satellite mass.

We have also developed the expression of dynami
al fri
tion in 
attened systems, where

� = �(r; �), � being the azimuthal angle. The velo
ity dispersion ellipsoid of axi-symmetri


systems owns two 
omponents (�

R

; �

z

), whi
h a

omplish �

R

� �

z

.

� Semi-analyti
 study of dynami
al fri
tion

In Chapter 4 we outline a semi-analyti
 
ode that 
an reprodu
e the satellite dynami
s

and evolution on
e the galaxy and satellite pro�les are provided. This 
ode implements

the analyti
 formul� of dynami
al fri
tion presented in Chapter 5 in order to test these

expressions as against the N-body data.

First, in Chapter 6 we 
he
k dynami
al fri
tion in a spheri
al systems. The results indi
ate

that (i) the velo
ity dependen
e of the Coulomb logarithm 
an be negle
ted and (ii) for

satellites with initially M

s

= 0:1M

d

, where M

d

is the dis
 mass, the 
ontribution of F

[1℄

to dynami
al fri
tion is approximately 10� 30% at the peri and apo-gala
ti
a, respe
tively.

Moreover, sin
e F

[1℄

is parallel to
^
e

?

= [
^
n � (

^
n �

^
v

M

) �
^
v

M

℄=jj
^
n � (

^
n �

^
v

M

) �
^
v

M

jj, the


omponent of
^
e

?

parallel to v

M

nearly vanishes after the average over one orbital period.

The resulting 
urves of the satellite's gala
to-
entre distan
e evolution where F

df

= F

[0℄

+F

[1℄

and F

df

= F

[0℄

show dis
repan
ies of solely 0.5 kp
 after 5 Gyr.

On
e it has been shown that neither the velo
ity dependen
e of the Coulomb logarithm nor

the addition of the �rst order term F

[1℄

introdu
e signi�
ant e�e
ts on the satellite dynami
s,
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in Chapter 8 we test the expressions of dynami
al fri
tion in axi-symmetri
 systems assuming

that ln� =
onst and F

df

= F

[0℄

. We observe that (i) polar satellites survive longest, whereas


oplanar orbit present the fastest de
ay, (ii) for �

z

=�

R

= 0:6, the de
ay time of polar satellites

�

90

if 
ompared with that of 
oplanar ones �

0

a

omplishes (�

90

��

0

)=(�

90

+�

0

) ' 0:26 (orbital

e

entri
ity e = 0:5), (iii) the orbital in
lination (i) su�ers a strong de
rease not observed in

spheri
al systems. Satellites, therefore, tend to align with the symmetry plane along their

evolution. For orbits not aligned with the symmetry axes, the �nal in
lination after the

merge is i � 10 � 20

Æ

, independently of i(t = 0). The analyti
 expressions of Chapter 4

reprodu
e remarkably well these e�e
ts. We show that the anisotropy in velo
ity spa
e is

responsible for the in
lination redu
tion, whereas the dependen
e of the de
ay time on the

initial in
lination is due to (i) the density 
attening, whi
h in
reases �� = �

90

� �

0

and (ii)

the velo
ity anisotropy, whi
h redu
es �� . Sin
e (�

90

� �

0

)=(�

90

+ �

0

) ' 0:26 we 
on
lude

that the 
attened density dominates the spread of de
ay times as a fun
tion of the orbital

in
lination.

� Dis
 and bulge e�e
ts

An important aspe
t for 
osmologi
al studies is to determine the 
ontribution of the gala
ti


baryoni
 
omponents (namely, dis
 and bulge) to the satellite evolution. In Chapter 9 we


ompare the N-body evolution of several orbits in galaxies with and without bulge and dis


for two halo axis-ratios q

h

= 0:6 and q

h

= 1. The results 
an be summarised as follows:

(i) The dis
 and bulge presen
e enhan
es the satellite mass loss through the a
tion of tidal

for
es and tidal heating whi
h, as a result, slows down the satellite de
ay. On the another

hand, these 
omponents indu
e additional dynami
al fri
tion that redu
es the de
ay time.

Both e�e
ts are of the same magnitude, so that satellites in galaxies with and without a

baryoni
 mass fra
tion present similar de
ay times. The dis
 rotation also di�erentiates

the satellite orbit with respe
t to its orbital sense (i.e., prograde and retrograde orbits), so

orbits anti-aligned with the dis
 rotation survive longer than those aligned (for example,

orbits with orbital in
linations i = 45

Æ

(prograde) and i = 135

Æ

in galaxies with q

h

= 1

show (�

135

� �

45

)=(�

135

+ �

45

) ' 0:06. However, this e�e
t is negligible if the halo is 
attened

q

h

= 0:6.

(ii) In the se
ond part of Chapter 9 we 
he
k the a

ura
y of the self-
onsistent semi-analyti



ode in order to des
ribe the satellite evolution in spiral galaxies (i.e., galaxies formed by

dis
, bulge and Dark Matter halo). For that purpose, we implement a analyti
 s
heme of

mass loss. The 
omparison is 
arried out for a large set of orbital parameters, satellite masses

and the two values of halo 
attening. We �nd that the semi-analyti
 algorithm reprodu
es

remarkably well the satellite dynami
s as well as its mass evolution.

� Satellite distribution

In Chapter 10 we outline the present observational data of the satellite distribution in spiral

galaxies. This distribution is highly anisotropi
, in the sense that the major part of satellite

galaxies is lo
ated with � > 45

Æ

with respe
t to the dis
 plane. After the subtra
tion of

the proje
tion e�e
ts, this anisotropy suggests the total absen
e of satellites with orbital

in
linations lower than approximately 80

Æ

.

The main goal of Chapter 10 is the analysis of the possible 
onne
tion between the preferen
e

of satellites to move on high in
lined orbits and the Dark Matter halo 
attening. The state

of a�airs is still preliminary. We evolve satellite samples with di�erent initial distributions:

(i) the initial spatial distribution is sele
ted either to be isothermal or to follow a Navarro,

Frenk & White (1997) pro�le, (ii) the initial in
lination distribution is either isotropi
 or

it mat
hes the halo mass distribution. The galaxy parameters are assumed 
onstant and

independent of the satellite sample.

The evolved distributions show that, (i) the resulting anisotropy is roughly independent of

the initial spatial distribution, (ii) those samples that mimi
 the mass 
attening at t = 0,

present in
lination distribution where the number of satellites moving on low in
lined or-

bits is mu
h larger than those on nearly polar orbits (\oblate" shape) whi
h, therefore,
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goes against observations, (iii) those samples initially isotropi
 be
ome \prolate" as a 
on-

sequen
e of the halo 
attening. However, after proje
ting the sample onto the sky, the

�nal value �(0

Æ

)=�(90

Æ

) ' 0:8 (for q

h

= 0:5), where � is the surfa
e density as a fun
-

tion of the in
lination (� = 1 denotes isotropy), is by far lower than the observational one

�

obs

(0

Æ

)=�

obs

(90

Æ

) ' 0:33.

We want to 
ontinue with this investigation in a following proje
t, whi
h must in
lude a

more realisti
 des
ription of the galaxy evolution. Satellite dynami
s may give insights on

the halo shape and the initial satellite distribution, whi
h are dire
tly 
onne
ted with Dark

Matter models. Sin
e satellites are observed as far as 500 kp
 from the parent galaxy, this

study may also 
onstrain the halo density pro�le at large radii. These investigations will

provide a hint on the Dark Matter nature.
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Appendix A

Pre
ession and nutation

Due to the 
omplexity of the motion of a parti
le within a axi-symmetri
 system, it is more straight

forward to analyse the evolution of the planes de�ned by the angular momentum (L) to des
ribe

the orbit of the satellite. In doing this, we shall apply the Euler angles for the satellite 
oordinates

(see Fig. A.1), de�ned as

!

x

=

_

� sin � sin +

_

� 
os (A.1)

!

y

=

_

� sin � 
os �

_

� sin 

!

z

=

_

� 
os � +

_

 ;

where ! is (Goldstein 1980)

v =

_

Re

R

+ _ze

z

+ ! � r: (A.2)

The position of the satellite in the orbital plane is determined by (R; z;  ;

_

R; _z;

_

 ), whereas the

plane itself by the angular momentum ve
tor, with 
oordinates (�; �). Note that eq. A.2 re
overs

eq. 1B-23 of Binney & Tremaine (1987), hereinafter BT, if

_

� =

_

� = 0 8t.

Using this angles and spheri
al 
oordinates, the kineti
 and total energy of the satellite are

T =

1

2

(

_

R

2

+ _z

2

) +

1

2

R

2

!

2

z

+

1

2

z

2

!

2

R

(A.3)

E = T +�(r; �);

the potential supposed axi-symmetri
. Using the Euler 
oordinates, the orbit of the satellite in

the orbital plane is de�ned by the potential and 
an be parametrised as (R[ ℄; z[ ℄).

Therefore, the Langrange fun
tion is

L =

1

2

(

_

R

2

+ _z

2

) +

1

2

z

2

!

2

R

+

1

2

R

2

!

2

z

� �(r; �) = (A.4)

=

1

2

(

_

R

2

+ _z

2

) +

1

2

z

2

(

_

�

2

+

_

�

2

sin

2

�) +

1

2

R

2

(

_

 +

_

� 
os �)

2

� �(r; �):

Sin
e in the Lagrangian � and  do not appear expli
itely we have two 
onstant of motion

p

 

= r

2

sin

2

�(

_

 +

_

� 
os �) = R

2

!

z

� a (A.5)

p

�

= (R

2


os

2

� + z

2

sin

2

�)

_

� +R

2


os �

_

 � b;

the 
onstant a being simply the z-
omponent of the angular momentum. After some algebra, one


ould easily 
he
k that last equations are equivalent to

_

� =

b� a 
os �

z

2

sin

2

�

(A.6)

_

 =

a

R

2

� 
os �

b� a 
os �

z

2

sin

2

�

:
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y

z

r

L

ψ

orbital
plane

Figure A.1: Euler 
oordinates of the satellite's position ve
tor (r) and the angular momentum

ve
tor (L).

It is straight forward to 
he
k that if there is no variation of the angular momentum ve
tor, i.e,

_

� = 0 8t (whi
h, as we see later, is equivalent to have a spheri
al potential), then these last

equations redu
e to the 
ondition:

b = a 
os �; (A.7)

and therefore the angular momentum of the satellite is just

_

 R

2

= a = 
onst:

Substituting the 
onstant of motion in the equation of the energy (A.4) and using the de�nition

of the angular velo
ities (A.2) one �nds

E =

1

2

(

_

R

2

+ _z

2

) +

1

2

z

2

(

_

�

2

+

_

�

2

sin

2

�) +

1

2

R

2

!

2

z

+�(r; �) (A.8)

�

1

2

(

_

R

2

+ _z

2

) +

1

2

z

2

(

_

�

2

+

_

�

2

sin

2

�) + �

e�

;

where �

e�

= � + a

2

=(2R

2

) is the e�e
tive potential typi
ally de�ned in axi-symmetri
 systems.

Note that E = E(a; b) is also a 
onstant of motion. From this last equation one 
ould solve the

evolution of � by quadratures if R[ (t)℄; z[ (t)℄ were known

_

�

2

sin

2

� =

�

E �

1

2

(

_

R

2

+ _z

2

)� �

e�

�

2(1� u

2

)

z

2

�

(b� a 
os �)

2

z

4

; (A.9)

where we substitute the value of

_

� from the eq. (A.7).

De�ning the variable:

u = 
os �;

it be
omes

_u

2

=

�

E �

1

2

(

_

R

2

+ _z

2

)� �

e�

�

2(1� u

2

)

z

2

�

(b� au)

2

z

4

: (A.10)
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As expe
ted, the fun
tion f(u) is not determined for z ! 0 (f(u) = 0=0), 
orresponding to the


ase in whi
h the angular momentum is parallel to the z-axis, i.e, 
oplanar orbits.

It is immediate to �nd that the 
ondition of

_

� =

_

� = 0 8t is therefore equivalent to

E =

1

2

(

_

R

2

+ _z

2

) + �

e�

;

whi
h re
overs eq. 3.53 of BT.

Until here, the development of these expressions has been done without loss of generality and it

holds for any parti
le moving within an axi-symmetri
 system. However, to 
arry on our study on

of the evolution Euler planes, we should use a determined potential and a given orbital e

entri
ity.

We de�ne now:

�(u) = E �

1

2

(

_

R

2

+ _z

2

)� �

e�

= E �

1

2

(

_

R

2

+ _z

2

)�

a

2

2R

2

� �(u); (A.11)

whi
h a

omplishes �(u) � 0 (the equality being for spheri
al systems).

Giving the initial 
onditions

_

�(t = 0) =

_

�(t = 0) = 0

u(t = 0) = u

0

;

it is straight forward to show that b = au

0

and �(u

0

) = 0 at t = 0. Sin
e the value of (R[ ℄; z[ ℄)

does not depend expli
itely on �, the equation of the nutation be
omes

_u

2

� f(u) = [�(u

0

)� �(u)℄

2(1� u

2

)

z

2

�

a

2

z

4

(u

0

� u)

2

: (A.12)

The fun
tion f(u) is limited to the interval (-1,1) 
orresponding to � 2 (��=2; �=2), thus any

value of u whi
h makes f(u) < 0 or lo
ates out of this range has no physi
al meaning.

The solution of this last equation is in general not analyti
al, and should be 
al
ulated numer-

i
ally. However, it is interesting to estimate the behaviour of f(u). By de�nition f(u

0

) = 0, so

that the initial 
ondition is a root. For u tending to �1 the fun
tion is / �(u

0

� 1)

2

< 0, so that

the fun
tion is negative at � = ��=2. This implies that, at least, to roots must be present within

the interval u 2 (�1; 1)

Although this expression appears to be 
ompli
ate, one 
an a
tually analyse qualitatively the

evolution of � by 
al
ulating the points in whi
h

_

� 
hanges of sign, i.e, f(u) = 0.

Let's 
on
entrate the our 
al
ulus in the interval 0 < u

0

< 1. Sin
e the initial 
ondition must by

de�nition be a root and sin
e f(u) < 0 for u ! 0, we 
an assert that within (0,1) there are two

roots, i.e, two values of � for whi
h

_

� is zero, that we 
all u

0

; u

1

. Out of this range, we have that

_

�

2

< 0 with, therefore, no physi
al meaning. The evolution of � limited within two �xed values

is 
alled nutation. At the same time, the variation of � implies a variation of � de�ned as the

pre
ession of the orbit. (see Goldstein 1980).

One 
an a
tually 
al
ulate the magnitude of the nutation u

1

� u

0

by imposing f(u

1

) = 0.

However, this equality has no analyti
al solution for our system, and the root must be found

numeri
ally.

In Fig. (A.2) we plot the fun
tion f(u) with initial 
onditions as in our model H2S145 (substi-

tuting the initial v

s

by the 
ir
ular velo
ity). To determine the value of �(u) we 
al
ulate numeri-


ally the potential for di�erent �, whereas the 
onstant a is simply the z-
omponent of the angular

momentum at t = 0 and E = �

e�

(u

0

). As we see, there are two roots, u

0

= 
os(�=4) � 0:71 and

u

1

� 0:5, i.e, �

1

� 60

Æ

. The amplitude of the nutation is therefore �� � 15

Æ

whi
h is slightly

lower than what we �nd in the numeri
al 
al
ulations.

The eq. (A.12) is a non-linear di�erential equation with no analyti
al solution. Even though,

it is interesting to obtain the dependen
e of the nutation on the orbital parameters. For that

purpose we attempt to solve it in the regime of low aspheri
ity, for whi
h it is a

omplished that

z

2

j��j

a

2

<< 1: (A.13)
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Figure A.2: Behaviour of f(u) using the initial 
onditions of the model H1S145 to determine the


onstants.

The potential of an oblate halo with peaked density pro�le 
an be expanded in Harmoni
 series

�(u) = �

GM

r

+

GM

2r

3

(I

z

� I

R

)P

2

(u) +O

�

a

1

r

�

4

; (A.14)

where P

n

(u) is a Legendre polynomial and I

x

an eigen-
omponent of the inertia tensor per unit

mass (a

omplishing that I

z

> I

R

in oblate systems). We denote asM the mass inside the radius r

and a

1

the semi-major axis of the oblate. The equations of motion integration for su
h a potential

leads to the solution

x

i

(t) = x

0;i


os

�

w

1

(t� t

0

)

�

�

1 +

w

2

2

w

2

1

x

2

0;i

8r

2


os

2

�

w

1

(t� t

0

)

�

�

; (A.15)

where

w

2

2

=

9

2

I

z

� I

R

r

2

; w

2

1

= G��+ w

2

1

; �� =

M

4�r

3

=3

;

and x

i

the 
omponents of the position ve
tor in Cartesian 
oordinates. The average over one orbit

of period T = 2�=w

1

of the parti
le motion leads to the equation

< x

i

>

2

=

w

1

2�

Z

2�=w

1

t

0

x

2

i

dt = x

2

0;i

�

1 +

5

16

�

w

2

w

1

�

4

�

x

2

0;i

8r

2

�

2

�

: (A.16)

Sin
e our aim is to give a general quantitative des
ription of the satellite evolution, in the regime

of low aspheri
y, we shall approximate < x

i

>

2

' x

2

0;i

and therefore, for a satellite following a


ir
ular orbit the averaged verti
al 
omponent is < z

2

>= r

2

u

2

0

= 
onst.

De�ning the variable x = u�u

0

, the 
ondition of low aspheri
ity also implies x

1

= u

0

�u

1

<< 1,

where u

1

denotes the se
ond root of f(u). Sin
e the value of j��j is small we shall approximate

u

2

0

� u

2

= (u

0

� u)(u

0

+ u) ' 2u

0

x, and 1� u

2

' 1� u

2

0

, then

_x

2

' x

�

(I

z

� I

R

)

3GM

r

5

(1� u

2

0

)

u

2

0

+

a

2

r

4

u

4

0

x

�

; (A.17)

the solution is analyti
al and using our initial 
onditions it 
an be expressed as

x(t) = (I

z

� I

R

)

3GM

2a

2

r

(1� u

2

0

)u

2

0

�

1� 
os

�

a

r

2

u

2

0

t

��

: (A.18)

The solution gives an amplitude of

x

1

= (I

z

� I

R

)

3GM

a

2

r

(1� u

2

0

)u

2

0

; (A.19)
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Figure A.3: Value of (I

z
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R

) normailised to 3G=(2�

2

r) as a fun
tion of q

h

.

and a period of

T = 2�

r

2

u

2

0

a

: (A.20)

From the eq. (A.7), the pre
ession in this regime is

_

� =

a(u

0

� u)

< z

2

> (1� u

2

0

)

'

ax

r

2

u

2

0

(1� u

2

0

)

= (A.21)
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z

� I

R

)

3GM

2ar

3

�

1� 
os

�

a

r

2

u

2

0

t

��

:

As it is dedu
ed from the last equations,

(i) Pre
ession and nutation vanish in spheri
al systems (for whi
h I

z

= I

R

).

(ii) Satellites following 
oplanar orbits do not present either pre
ession or nutation. In the 
ase of

a satellite in a polar orbit, the nutation vanishes, su�ering however pre
ession.

(iii) The nutation and pre
ession periods are the same, both being proportional to r

2

=a.

(iv) The pre
ession a

omplishes that

_

� � 0 thus there is no 
hange of the pre
ession sense.

Equivalently, the nutation makes that u

0

� u � 0 (oblate systems).

Consider that the Dark Matter halo employed in our numeri
al and semi-analyti
 
al
ulations

has a density pro�le that 
an be approa
hed as

� =

�

2

2�Gr

2

1

sin

2

� + 
os

2

�=q

2

h

; (A.22)

then the moments of intertia di�eren
e 
an be written as

I

z

� I

R

=

2�

2

r

3G

q

h

(1� q

2

h

)

3=2

�

3q

h

(1� q

2

h

)

1=2

� (2 + q

2

h

) atan

�

p

1� q

2

h

q

h

��

: (A.23)

In Fig. A.3 we plot the value of 3G(I

z

� I

R

)=(2�

2

r) as a fun
tion of q

h

. We 
an observe that the

maximum lies at q

h

' 0:4, whereas for the numeri
al 
al
ulations of Chapter 9 q

h

= 0:6, thus

I

z

� I

R

' 0:34

�

2

r

3G

;

the amplitude of nutation being

� 
os � ' 0:34�

2

M(r) sin

2

�

0


os

2

�

0

:

For a 
ir
ular orbit with initially � = 45

Æ

and r = 55 kp
, one has that from Fig. 3.1 and Fig. 3.2

M

h

(< 55kp
) ' 0:65M

h

(r


ut

), whereas � ' 0:32�262kms

�1

, respe
tively. The amplitude estimate

is � 
os � � 0:025, so that �� � 10

Æ

. This is roughly the amplitude that we observe in Fig. 8.6.
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Appendix B

Integration over velo
ity spa
e

We 
arry expli
itely out the integrals of eq. (5.26) and (5.30) whi
h 
orrespond to the integration

in velo
ity spa
e of the zeroth and �rst order dynami
al fri
tion, respe
tively.

The integral over �

Sin
e v

2

of the Dark Matter parti
les is a fun
tion of �, we must spe
ify the distribution fun
-

tion before going on. The distribution fun
tion in velo
ity spa
e is a Gaussian for the expli
ite

integration, although the general results do not depend strongly on the spe
ial shape of f(v

2

).

f(v

2

) =

1

(

p

2��)

3

exp(�

v

2

2�

2

)

1

(

p

2��)

3

exp(�X

2

�W

2

) exp(�u�) (B.1)

with u = 2WX;

where where we de�ne � � 
os � for simpli
ity.

For the zeroth order term (eq. 5.26) one must solve

Z
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�1

2�� exp(�u�)d� = �4�

�


osh(u)

u

�

sinh(u)

u

2

�

(B.2)

�

�4�u

3

�

1 +

u

2

10

�

for u << 1;

and for the �rst order 
omponents (eqs. 5.30)

Z

1

�1

�[1 + �

2

℄ exp(�u�)d� = �4�
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osh(u)
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2
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1 + u

2
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(B.3)

�
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5
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for u << 1

Z
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℄ exp(�u�)d� = 8�
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�

sinh(u)

u
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(B.4)

�

8�

3

�

1 +

u

2

10

�

for u << 1;

where for 
ompleteness the Taylor expansions for small velo
ities are also given.

Inserting the results of the angle integration into the equations of both dynami
al fri
tion terms
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we �nd
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Here we used K


h

, expli
itely given in eq. 5.28 and the fun
tion

g(X;W ) =
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2
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osh(2WX)
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sinh(2WX)
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; (B.6)

re
alling that � = �(X;W ), eq. (5.16) and (5.18).

For the inhomogeneous terms we get from eq. (5.30) the parallel 
omponent
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and the orthogonal 
omponent
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where we used analogous fun
tions
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with (B.11)
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Chandrasekhar's fri
tion formula

With the approximation of a Coulomb logarithm ln�

0

independent of W we �nd the standard

Chandrasekhar fri
tion formula by solving the integral present in eq. (B.5) by parts
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Inserting this into eq. (B.5) we �nd the result
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: (B.13)

Sin
e the maximum impa
t parameter depends on the lo
al s
ale length, it also depends on the

position of the satellite. The use of the global value hln �i negle
ts as well the position dependen
e

of the Coulomb logarithm.
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