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Abstract

Machine Reading Comprehension is a language understanding task where a system is
expected to read a given passage of text and typically answer questions about it. When humans
assess the task of reading comprehension, in addition to the presented text, they usually
use the knowledge that they already know, such as commonsense and world knowledge,
or language skills that they previously acquired - understanding the events and arguments
in a text (who did what to whom), their participants and the relation in discourse. In
contrast, neural network approaches for machine reading comprehension focused on training
end-to-end systems that rely only on annotated task-specific data.

In this thesis, we explore approaches for tackling the reading comprehension problem,
motivated by how a human would solve the task, using existing background and commonsense
knowledge or knowledge from various linguistic tasks.

First, we develop a neural reading comprehension model that integrates external com-
monsense knowledge encoded as a key-value memory. Instead of relying only on document-
to-question interaction or discrete features, our model attends to relevant external knowledge
and combines this knowledge with the context representation before inferring the answer.
This allows the model to attract and imply knowledge from an external knowledge source
that is not explicitly stated in the text but is relevant for inferring the answer. We demon-
strated that the proposed approach improves the performance of very strong base models
for cloze-style reading comprehension and open-book question answering. By including
knowledge explicitly, our model can also provide evidence about the background knowledge
used in the reasoning process.

Further, we examined the impact of transferring linguistic knowledge from low-level
linguistic tasks into a reading comprehension system using neural representations. Our
experiments show that the knowledge transferred from the neural representations trained
on these linguistic tasks can be adapted and combined together to improve the reading
comprehension task early in training and when trained with small portions of the data.

Last, we propose to use structured linguistic annotations as a basis for a Discourse-Aware
Semantic Self-Attention encoder that we employ for reading comprehension of narrative
texts. We extract relations between discourse units, events, and their arguments, as well
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as co-referring mentions, using available annotation tools. The empirical evaluation shows
that the investigated structures improve the overall performance (up to +3.4 Rouge-L),
especially intra-sentential and cross-sentential discourse relations, sentence-internal semantic
role relations, and long-distance coreference relations. We also show that dedicating self-
attention heads to intra-sentential relations and relations connecting neighboring sentences is
beneficial for finding answers to questions in longer contexts. These findings encourage the
use of discourse-semantic annotations to enhance the generalization capacity of self-attention
models for machine reading comprehension.
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Chapter 1

Introduction

1.1 Motivation

Machine Reading Comprehension (MRC) is a language understanding task, typically evalu-
ated in a question answering setting, where a system reads a text passage (document D) and
answers questions (Q) about it. It is inspired by the standard reading comprehension exams
used in schools to measure the ability of students, to read, comprehend, and reason about
a given text. The MRC task was originally adapted by (Hirschman et al., 1999) who has
proposed using the task to evaluate an automatic language comprehension model. This was
later extended by (Breck et al., 2001) and (Richardson et al., 2013) but these were not enough
to get the computational linguistics community attention to the MRC task. Recently, work on
novel datasets for machine reading comprehension gained a lot of attention when Hermann
et al. (2015) automatically created a large scale cloze-style reading comprehension inspired
by the cloze test (Taylor, 1953; Bormuth, 1967). Soon several other large-scale automatically
created (Weston et al., 2015a; Hill et al., 2016; Onishi et al., 2016) and crowdsourced (Ra-
jpurkar et al., 2016; Trischler et al., 2017; Joshi et al., 2017; Kociský et al., 2017) datasets
has appeared and allowed training deep neural networks to perform the task.

Analysis of the data (Sugawara et al., 2017) and where models fail (Chen et al., 2016a;
Rajpurkar et al., 2016) show that the Machine Reading Comprehension task in some of
these datasets requires a set of linguistic and congnitive skills such as paraphrase detection,
recognition of named entities, natural language inference, understanding of the discourse,
reasoning, and knowledge such as background and common sense, etc. According to the
research in cognitive science, in order to perform well on reading comprehension tests, in
addition to being thought to read and practice answering questions (Tierney and Cunningham,
1980; Collins and Smith, 1980), humans would greatly benefit from, prior commonsense and
background knowledge (Pearson et al., 1979; Cai, 2002; Hirsch, 2003; Willingham, 2006),
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and linguistic awareness (Bialystok, 1988). In this thesis, we hypothesize that solving the
task of Machine Reading Comprehension would benefit from some automatic annotations
and information that resembles these skills and knowledge.

Initial approaches on MRC has proposed simple neural network models that encode the
question and context with a neural netowrks in a single read (one-hop) (Hermann et al.,
2015; Kadlec et al., 2016; Chen et al., 2016a). Later work includes more complex neural
models (Weston et al., 2015c; Dhingra et al., 2017b; Cui et al., 2017; Munkhdalai and
Yu, 2016; Sordoni et al., 2016) that are focused on reading and practicing by performing
reading of the story and a question on multiple times before inferring the correct answer.
While these approaches perform well when trained from scratch (i) they have complex
architecture, require large training data, and (iii) are particularly a black-box. These data-
hungry approaches can be aligned with the reading and practice that students usually do, to
perform well on real reading comprehension tests but lack the background, commonsense,
and linguistic knowledge that they have.

Given the skill-focused analysis of MRC datasets (Chen et al., 2016a; Sugawara et al.,
2017) and findings in the cognitive science, mentioned above, we explore different methods
to solve the task of Machine Reading Comprehension in a similar way that humans do: by
combining prior commonsense and background knowledge and existing linguistic skills in
the process of solving the reading comprehension task.

[Picard]ARG0 is [taken]V [prisoner]ARG1 .

[Picard goes on a mission.]ARG1 [Picard is

captured]ARG2 => Temporal.Succession

Picard is temporarily replaced from being captain of

Enterprise. => He is the regular captain.

Learn linguistic knowledge

... Starfleet assigns [Jellico] as a temporary

captain of [Enterprise] while [Picard] is on a 

mission. ... [Picard] is taken prisoner. Gul 

Madred informs him attracting him to go to
[Celtris III] was a trap. ...

The captain of which ship was captured by the

Cardassians?

USS Enterprise

ship [has] captain

captain [can be] replaced

Starfleet [isA] organization

Cassadians [own] Celius III

Event Detection (Semantic Role Labeling)

Understanding Discourse Relations

Natural Language Inference

Integrate external

knowledge

[Gul Madred]PERSON informs him that attracting him to

go to [Celtris III]LOCATION was a trap.

Named Entity Recognition

[Picard] goes on a mission. [He ]Picard is captured

Coreference Resolution

Reading 

Comprehension

Document

Question

Answer

Commonsense 
knowledge

Background knowledge
(domain/long text)

Fig. 1.1 Reading Comprehension requires using external commonsense knowledge and
combination of linguistic tasks and background knowledge.
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Figure 1.1 shows different types of external background and linguistic knowledge from
existing knowledge-bases and natural language processing tasks that can be combined with
the input data of the more complex task of Machine Reading Comprehension. 1

We hypothesize that the knowledge from knowledge-bases such as ConceptNet (Speer
et al., 2017) (commonsense: ex. captian [can be] replaced) or Wikidata (Vrandečić and
Krötzsch, 2014) (world knowledge: ex. Starfleet [isA] space organization (fictional)) could
be integrated in a neural network model and improve the performance of answering questions
about a text document. Moreover, existing natural language processing tasks represent
semantic and discourse knowledge that can be beneficial for reading comprehension: how
to recognize events and their participants (Semantic Role Labeling), make inferences about
statements (Natural Language Inference / Textual Entailment), recognize discourse relations
between events (Discourse Parsing), and detecting mentions of story participants (Coreference
Resolution).

We hypothesize that prior external background knowledge and linguistic knowledge
could help the neural network model by (i) improving the overall performance, (ii) learning
the target machine reading comprehension task with less training data, and (iii) making the
model decisions easier to analyze.

1.2 Research Objective

In this work, we propose new methods for machine reading comprehension and question
answering that model the human approach of using previously acquired to reason about the
content of a natural language text.

Based on our motivations above, we formulate the following research questions:

• Question 1: Can existing commonsense knowledge form knowledge-base such as
ConceptNet and WordNet be incorporated in a neural network model to improve
Machine Reading Comprehension?

• Question 2: Can neural network representations learned from linguistic knowl-
edge from existing natural language processing tasks such as discourse parsing,
event and argument detection, and natural language inference be transferred to a
higher-level task of Machine Reading Comprehension?

1Not all of the presented knowledge would be relevant to the question and given context so the model needs
to be able to utilize only the useful one.
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• Question 3: Can knowledge from linguistic structured annotations representing
linguistic knowledge about discourse relations, events, and coreference resolution,
improve neural network models for Machine Reading Comprehension?

1.3 Contributions

The recent success in Machine Reading Comprehension and most of the research in neural
networks is mostly due to the large-scale datasets and computational power that allowed
scaling of deep neural networks using gradient-based methods (See Chapter 2). At first, most
of the MRC neural approaches used to rely on Recurrent Neural Networks, such as Long
Short-Term Memory Networks (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated
Recurrent Units (GRU) (Cho et al., 2014) due to their ability to build a rich contextualized
representation of document and question which gives a very well performance when used
in very simple systems (Hermann et al., 2015; Kadlec et al., 2016; Chen et al., 2016a).
In this thesis, we built upon MRC methods leveraging Recurrent Neural Netoworks and
attention-based transformers (Vaswani et al., 2017). We proposed novel approaches and
models for machine reading comprehension that leverage external background knowledge
from knowledge bases and linguistic knowledge into recurrent neural networks to seek
answers to the first two questions raised in Section 1.2:

First, we tackle the question Q1: Can existing commonsense knowledge form knowledge-
base such as ConceptNet and WordNet be incorporated in a neural network model to improve
Machine Reading Comprehension? and describe our findings in our first contribution:

Neural Machine Reading Comprehension with External Commonsense Knowledge.
We propose extending a standard machine reading comprehension task with explicit external
commonsense knowledge and show that this is beneficial for the overall performance and
intractability. We develop a method for integrating knowledge in a simple but effective
reading comprehension neural model (AS Reader, Kadlec et al. (2016)) and improve its
results, whereas other models employ features or multiple hops. We examine two sources of
commonsense knowledge: WordNet (Miller et al., 1990) and ConceptNet (Speer et al., 2017)
and show that this type of knowledge is important for answering common nouns questions
and named entities questions from the Children Book Test (CBTest) dataset (Hill et al.,
2016). Our proposed approach is explainable. Unlike concurrent work that encodes the
knowledge implicitly in the word embeddings layer (Weissenborn et al., 2017a), our approach
of injecting external knowledge is explicit and gives evidence about the used portion of
information (facts) for reasoning about the correct answers to a question. We demonstrate
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the effectiveness of the injected knowledge by case studies and data statistics in a qualitative
evaluation study for Reading Comprehension and Question Answering. We further examine
the effectiveness of our approach by adapting it for multi-hop question answering over partial
context (Mihaylov et al., 2018) and demonstrate that when the proper background knowledge
is available, the model performs with high accuracy on the task and makes the model easy to
interpret.

Next, we answer Q2: Can neural network representations learned from linguistic knowl-
edge from existing natural language processing tasks such as discourse parsing, event and
argument detection, and natural language inference be transferred to a higher-level task of
Machine Reading Comprehension?:

Machine Reading Comprehension using Neural Contextual Representations Trained
on Supervised Language Tasks. In this work, we propose to learn neural representations
from multiple supervised lower-level linguistic tasks (referred to as ‘skills’) and transfer
them to Machine Reading Comprehension. We develop a simple RC model that allows us
to combine the learned ‘skill’ representations easily and analyze the learning behavior of
this skillful neural model. We show that using such skills, learned from specialized natural
language processing tasks, boosts the performance of a neural reading comprehension model
(i) early in training and (ii) when training on smaller portions (2, 5, 10, or 25 percent) of the
original training data. We further show which skills are important for the task by performing
ablations of neural representations integrated into the target reading comprehension model.

While the recurrent neural networks had great success due to their ease of use and good
performance for many tasks in natural language processing, they have issues with scalability
due to their recurrent nature. Recently (Vaswani et al., 2017) introduced the Transformer
- a new class of neural network models that use self-attention and positional encoding and
transformations based on feed-forward neural network layers that perform well for many
tasks such as Machine Translation and Question Answering. They do not have recurrent
connections in their nature and therefore are very scalable. However, these models have
other weak spots like the inability to generalize to long sequences (Dai et al., 2019) and large
memory consumption due to their O(n2) complexity regarding the number of tokens in the
text. In our third contribution, we answer our third research question:"Q3: Can we use lower-
level linguistic structured annotations such as discourse relations, events, and coreference,
to improve state-of-the-art MachineReading Comprehension systems?. Primarily we focus
on improving the state-of-the-art model for reading comprehension (QANet (Yu et al., 2018))
that uses a Transformer-based self-attention architecture and has poor performance when
used on longer narrative texts:
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Neural Machine Reading Comprehension with Structured Linguistic Knowledge. We
propose a Discourse-Aware Semantic Self-Attention mechanism, an extension to the standard
self-attention models – without significant increase of computation complexity. We show that
discourse and semantic annotations help the self-attention model to improve its performance
when evaluated on long texts. We analyze the impact of different discourse and semantic
annotations on narrative reading comprehension. We perform an empirical fine-grained
evaluation of the discourse-semantic annotations on specific question types and context
size regions and show interesting dependence between discourse and semantic types and
question types (ex. Semantic Role Labeling (events) improves who and when questions,
intra-sentential Explicit discourse relations improve why and where questions). We also
show that all relations improve the performance of answering questions on longer texts. To
annotate the raw text, we use existing tools for Semantic Role Labeling (Gardner et al.,
2017) and Coreference Resolution. To annotate our documents with discourse relations,
we developed a fast and simple method for discourse relation sense disambiguation that
achieves state-of-the-art results and has won first place in the overall evaluation of CoNLL
2016 Shared Task on Discourse Relation Sense Classification (Xue et al., 2016a).

1.4 Thesis Outline

In Chapter 2 we present the background needed for understanding the content of the work,
presented in this thesis. We also review related work on machine reading comprehension
including multiple formulations of the task, datasets, standard architecture, and state-of-
the-art approaches. We also place our own contributions and show how they fit in the
field.

In the next three chapters, we describe proposed methods and approaches for leveraging
linguistic and background external knowledge for machine reading comprehension.

In Chapter 3 we propose an approach for integrating external commonsense knowledge in
a neural network for cloze-style reading comprehension, published at ACL 2018 (Mihaylov
and Frank, 2018), and its adaptation for integrating commonsense and domain knowledge for
multi-choice science question answering, published at EMNLP 2018 (Mihaylov et al., 2018).

In Chapter 4 we describe a novel approach for transferring linguistic knowledge from
supervised language tasks (‘skills’) to machine reading comprehension and analyze its impact
on the task. This work has been presented at the Workshop on Learning with Limited Labeled
Data at NeurIPS 2017.
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In Chapter 5 we describe an approach for leveraging multiple types of linguistic annota-
tions into a self-attention Transformer architecture for narrative machine reading comprehen-
sion. This paper is presented at the EMNLP-IJCNLP 2019 conference.

The last chapter (Chapter 6) summarizes our work and findings and proposes future
research directions.

1.5 Publications

The contributions, described of this thesis have been published on several conferences and
workshops:

• Todor Mihaylov, Anette Frank (2016). Discourse Relation Sense Classification Using
Cross-argument Semantic Similarity Based on Word Embeddings. In Proceedings
of the Twentieth Conference on Computational Natural Language Learning - Shared
Task, 2016

• Todor Mihaylov, Zornitsa Kozareva, Anette Frank (2017). Neural Skill Transfer from
Supervised Language Tasks to Reading Comprehension. Workshop on Learning with
Limited Labeled Data (LLD) at NIPS 2017

• Todor Mihaylov, Anette Frank (2018). Knowledgeable Reader: Enhancing Cloze-
Style Reading Comprehension with External Commonsense Knowledge. In Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL
2018

• Todor Mihaylov, Peter Clark, Tushar Khot, Ashish Sabharwal (2018). Can a Suit
of Armor Conduct Electricity? A New Dataset for Open Book Question Answering,
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2018

• Todor Mihaylov, Anette Frank (2019). Discourse-Aware Semantic Self-Attention for
Narrative Reading Comprehension, In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP 2019

The following articles are related, but will not be discussed in detail:

• Todor Mihaylov, Anette Frank (2017). AIPHES-HD system at TAC KBP 2016:
Neural Event Trigger Span Detection and Event Type and Realis Disambiguation with
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Word Embeddings. In Proceedings of the TAC Knowledge Base Population (KBP)
2016

• Todor Mihaylov, Anette Frank (2017). Story Cloze Ending Selection Baselines and
Data Examination. In Proceedings of the Linking Models of Lexical, Sentential and
Discourse-level Semantics – Shared Task 2017

• Markus Zopf, Teresa Botschen, Tobias Falke, Ana Marasovic, Todor Mihaylov,
Avinesh P.V.S, Eneldo Loza Mencía, Johannes Fürnkranz und Anette Frank (2018).
What’s Important in a Text? An Extensive Evaluation of Linguistic Annotations for
Summarization. In Proceedings of the Second International Workshop on Advances in
Natural Language Processing 2018, Valencia, Spanien.



Chapter 2

Background

Machine Reading Comprehension (MRC) is a language understanding task, typically eval-
uated in a question answering setting, where a system reads a text passage (document D)
and answers questions (Q) about it. Recently, work on novel datasets for MRC gained a
lot of attention: ‘CNN/Daily Mail’ (Hermann et al., 2015), and Who Did What (Onishi
et al., 2016), Children Book Test (Hill et al., 2016) was created semi-automatically created
as cloze-style tasks. bAbI (Weston et al., 2015a) was generated using templates aiming
at evaluating particular reasoning skills. Later SQuAD (Rajpurkar et al., 2016), NewsQA
(Trischler et al., 2017), and TriviaQA (Joshi et al., 2017) were created using crowd-sourcing
to evaluate systems’ ability to find answers spanning to multiple tokens. these datasets
covered a set of linguistic skills required to match the answers to a given question.

Given the wide variety of Machine Reading Comprehension (MRC) datasets, together
with the accessible computation power that allowed the training of large neural networks
gained a lot of attention from the computational linguistics community. The common
approach to tackling the Reading Comprehension task was to build a complex neural model
that reads a large-scale dataset and tries to learn to perform the task at once. Careful analysis
of existing datasets (Sugawara et al., 2017; Chen et al., 2016a; Rajpurkar et al., 2016) shows
that the RC task requires a set of language skills such as paraphrase detection, recognition
of named entities, natural language inference, and understanding of the discourse, among
others. While building an end-to-end neural model, trained on a large dataset and achieving
state-of-the-art results, was tempting, the work presented in this thesis focused on exploring
methods for using linguistic and background knowledge in neural networks for solving the
task of Machine Reading Comprehension.

In this chapter, we will start with a high-level discussion of knowledge encoding in neural
networks. Then we will provide the background for understanding the Machine Reading
Comprehension task and formulations and existing work that influenced the contributions
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of this thesis. We will start by introducing different task formulations and the datasets used
to evaluate MRC systems. We will also introduce the linguistic tasks that were used in the
next chapters. We will review the aspects of a common neural network architecture used
for machine reading comprehension and how it was adapted by previous work. We will
discuss related approaches for using external knowledge with the MRC and where the work
described in this thesis stays in this line of work.

2.1 Knowledge Encoding in Neural Networks

In this section, we discuss the notion of knowledge in neural networks more broadly. We
discuss the usage of knowledge for tasks closely related to Machine Reading Comprehension
in Section 2.4. We refer to knowledge as the information that is required to perform a given
task or reason about a specific context. This can be learned by a model that is trained to
perform a task or external knowledge that helps with reasoning about concepts and their
relations in context. In terms of its scope, we can classify the knowledge required to solve
natural language tasks as task-specific and general. Task-specific is the knowledge required
to learn to perform a concrete task. Such knowledge is often learned implicitly in the weights
of a neural network trained on a supervised dataset that represents the task. To solve a given
task, we often need prior general knowledge that might not be presented in the given text.
Most often this is knowledge about the world or commonsense knowledge that can be used to
reason about concepts and their relations. Such knowledge can be encoded implicitly in the
parameters of a neural network that was trained on a large natural language corpus (Mikolov
et al., 2013a; Pennington et al., 2014) or together with a large relational knowledge base
(Riedel et al., 2010). The method is referred to as Parametric Knowledge Encoding. The
knowledge can also be introduced at the inference stage after the model is trained and it is
referred to as Non-parametric.

Parametric Knowledge Encoding Collobert and Weston (2008) demonstrated that a
neural network can be trained to encode knowledge from multiple natural language tasks and
transfer it across tasks to improve them simultaneously. Riedel et al. (2010) proposed to use
the relations between entities from a knowledge base to better model the relation of these
entities in text. Bengio (2011) argued more broadly that neural networks learn knowledge
in their parameters and that this knowledge can be used at a later stage to improve other
related tasks. In Section 2.4.4 we discuss in more detail how related approaches impacted
the Machine Reading Comprehension task that we are targeting in this thesis. In Chapter 4
we describe our approach to learning task-specific representations from multiple tasks and



2.1 Knowledge Encoding in Neural Networks 11

how they can be used to improve the learning of the MRC task. Mikolov et al. (2013a) and
Pennington et al. (2014) demonstrated that semantic knowledge about words can be encoded
in an unsupervised way by training to predict the missing word in a given token window. In
Section 2.4.1 we discuss the usage of these word representations for MRC.

More recently, towards the end of conducting the research for this thesis, models like
ELMO (Peters et al., 2018), GPT-1 (Radford et al., 2018a) and (Devlin et al., 2019a) were
trained on a large amount of text in an unsupervised manner and have been shown to perform
well on multiple tasks. Petroni et al. (2019) demonstrated that such models have encoded
broad factual world knowledge. GPT-3 (Brown et al., 2020b) further demonstrated that the
amount of knowledge is crucial and can be leveraged by the model to perform reasoning with
a few examples presented at inference. T5 (Raffel et al., 2020) explored the limits of transfer
learning with a unified text-to-text transformer, demonstrating the power of parametric
encoder-decoder approaches in various natural language generation tasks. Roberts et al.
(2020) looked deeper into the encoding of factual knowledge in model parameters, illustrating
how neural language models can store and retrieve knowledge without external data sources.
While the parametric approaches have shown amazing results, they have multiple drawbacks:
i) The knowledge that is encoded in the neural network parameters needs to be available
during training. ii) To encode a large amount of knowledge, the models need to be large
which makes their training and inference expensive (Brown et al., 2020b). iii) Encoding the
knowledge in the parameters often results in inaccurate recall of facts at inference (Petroni
et al., 2019). To address these limitations, many works have developed approaches for
augmenting the neural networks with additional retrieved knowledge at inference, without
encoding it in their parameters, hence referring to the methods as Non-parametric.

Non-parametric Knowledge Encoding In contrast to encoding the knowledge implicitly,
non-parametric knowledge encoding uses external information sources. In Chapter 3, we
proposed to teach the reading comprehension model to leverage external commonsense
knowledge at inference to improve performance. Work by Lample et al. (2019) on large
memory layers with product keys contributed to the non-parametric approaches by providing
an innovative method for storing and accessing large amounts of external data efficiently. The
work of Lewis et al. (2020b) demonstrated the effectiveness of external sources on retrieval-
augmented generation for knowledge-intensive natural language tasks. REALM (Guu et al.,
2020a) introduced a pre-training method that incorporates retrieval mechanisms, highlighting
the importance of external knowledge sources even at a larger scale. Izacard and Grave (2021)
discussed enhancing generative models for open-domain question answering with passage
retrieval, highlighting the benefits of external data. Fan et al. (2021) augmented Transformers
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(Vaswani et al., 2017) with KNN-based composite memory for dialog, demonstrating the
effectiveness of external knowledge memory in dialogue systems. Chen et al. (2023) explored
augmenting pre-trained language models with question and answer memory for open-domain
question answering, highlighting how external question-answer pairs can enhance model
performance. While augmenting neural networks with external knowledge sources tackles
many of the problems of parametric approaches mentioned above, it often reduces throughput
at inference since it requires performing the retrieval from usually big sources of data. To
tackle this in the context of generative large language models, Wu et al. (2022) combined
the ideas of parametric and retrieval-augmented approaches into an Efficient Memory-
Augmented Transformer. The proposed approach encodes knowledge into a key-value
memory and introduces new pre-training tasks that help the model learn how to integrate the
knowledge into the network.

To summarize, parametric methods that encode knowledge into the models are limited by
their training data and although they are very good at reasoning, often produce inaccurate
results. On the other hand, non-parametric models improve the accuracy of certain knowledge
tasks with up-to-date information and make the process more trustworthy at the expense of
inference throughput and search in large knowledge bases.

2.2 Machine Reading Comprehension

Originally the task of reading comprehension has been used for testing the understanding
of school students. In terms of machine reading comprehension, the task was initially
adapted by (Hirschman et al., 1999) who proposed using it to evaluate an automatic language
comprehension model. This was extended by (Breck et al., 2001) who annotated 75 stories
with natural language questions, whose answers were entire sentences in the story context.
To better understand how the machine reading comprehension task evolved we will discuss
the most widely used datasets in the field. We group the datasets by task formulation (how
the answer is presented) or the requirements for additional (external) knowledge.

2.2.1 Task Formulations

The task of Machine Reading Comprehension has several formulations, implemented by
recent datasets, based on the answer selection type.

Reading Comprehension as Multi-Choice Question Answering One of the first MRC
datasets that got wider adoption was MCTest (Richardson et al., 2013) which used a scalable



2.2 Machine Reading Comprehension 13

crowdsourcing approach and annotated 500 stories with multiple multi-choice questions.
The dataset consists of almost 600 children’s and everyday stories with four multi-choice
questions each. The dataset aims to evaluate reasoning understanding of natural language
and reasoning. An example of multi-choice MRC from the dataset is shown in Figure 2.2.

More recently Lai et al. (2017) built a large-scale machine comprehension dataset created
by collecting reading comprehension exams for Chinese students learning English. By its
structure, the questions and documents are similar to MCTest but the dataset is much larger
and contains enough examples for training large neural models. Some of the examples are
also framed as cloze-style questions.

In contrast to other multi-choice datasets, MultiRC (Khashabi et al., 2018a) contains
questions that have multiple correct answers. This made the task even more challenging
because a model that tried to solve this dataset had to determine how many of the answers
were valid rather than just pick the most probable.

Reading Comprehension with Cloze-style Evaluation is another task presentation. Re-
cently several large-scale, automatically generated datasets for cloze-style reading com-
prehension gained a lot of attention. These include the CNN/Daily Mail (Hermann et al.,
2015), WhoDidWhat (Onishi et al., 2016) and the Children’s Book Test (CBTest) data set
(Hill et al., 2016). Originally, cloze-style reading comprehension is a setting where the reader
is presented with a passage with a randomly removed (missing) word, and it is required to
fill the gap with a word from the context. In the Natural Language Processing community,
this formulation is often anecdotally considered to be just ‘gap-filling’, instead of reading
comprehension, although the task itself often requires looking at the broader context and
often requires reasoning about it (Hill et al., 2016). Indeed cloze-style tests measuring
reading comprehension skills of human subjects using cloze-style reading comprehension
tests are considered to have a high correlation with conventional human-created datasets
(Bormuth, 1968a) and multi-choice reading comprehension (Bormuth, 1968b). The earliest
large-scale cloze-style dataset ‘CNN/Daily Mail dataset’ (Hermann et al., 2015) has been
automatically collected from a large number of news articles from CNN and Daily Mail
news websites. In this dataset, a news article is used as a document context and the questions
are generated by removing an entity from the given summary highlights 1. The main goal
pursued with this dataset is to stimulate the development of models that memorize facts men-
tioned in the discourse concerning actual (but anonymized) named entities, which typically
constitute the answer to the question. Later Who-Did-What (WDW) (Onishi et al., 2016) was

1See Story Highlights section in http://edition.cnn.com/2017/03/08/politics/white-house-wikileaks-donald-
trump-cia-documents/index.html for an example.
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Story Context: Once upon a time there a little girl named Ana. Ana was a smart girl.
Everyone in Ana’s school knew and liked her very much. She had a big dream of becoming
spelling bee winner. Ana studied very hard to be the best she could be at spelling. Ana’s best
friend would help her study every day after school. By the time the spelling bee arrived Ana
and her best friend were sure she would win. There were ten students in the spelling bee.
This made Ana very nervous, but when she looked out and saw her dad cheering her on she
knew she could do it. The spelling bee had five rounds and Ana made it through them all.
She was now in the finals. During the final round James, the boy she was in the finals with,
was given a really hard word and he spelled it wrong. All Ana had to do was spell this last
word and she would be the winner. Ana stepped to the microphone, thought really hard and
spelled the word. She waited and finally her teacher said "That is correct". Ana had won the
spelling bee. Ana was so happy. She won a trophy. Ana also won a big yellow ribbon. The
whole school was also happy, and everyone clapped for her. The whole school went outside.
They had a picnic to celebrate Ana winning.

1: What made Ana very nervous?
*A) The other ten students
B) Her best friend
C) The bright lights
D) The big stage

2: Where did the school have the picnic?
A) The gym
B) Ana’s house
*C) Outside
D) Ana’s classroom

3:What was Ana’s big dream?
A) Becoming a ballerina
B) Becoming a famous singer
C) Becoming class president
*D) Becoming spelling bee winner

4: Who helped Ana study everyday?
A) Her dad
*B) Her best friend
C) Her mom
D) Her sister

Fig. 2.1 Example context and multiple multi-choice questions from the MCTest dataset. *
indicates the correct answer.
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created in a similar way to ‘CNN/Daily mail’. It was derived from the Gigaword English
corpus and provides cloze-style questions whose answers are entities. In order to avoid some
paraphrase matching biases, in contrast to the CNN/DM corpus, the cloze-style questions
in WDW are derived from a different article than the context. The questions (around 200
000) are written by crowd workers. In addition, the questions in the dataset are filtered so
they are not answerable by simple baselines. They are answerable by human annotators
with 84% accuracy. Children’s Book Test (CBTest) (Hill et al., 2016) is a cloze-style dataset
that examines how well a natural language understanding model captures the meaning in
children’s books. The dataset contains subsets on guessing missing Named Entities, Common
Nouns, Verbs, and Prepositions with the common noun setting being the most challenging.
An example of the Common Nouns subset is shown in Figure 2.1.

In this thesis, we use Common Nouns and Named Entities subsets of this dataset for
evaluating our method for incorporating external commonsense knowledge into a neural
network model, presented in Chapter 3. When we conducted this research, The CB Test
dataset seemed the most prominent large-scale dataset that allowed training an end-to-end
neural model and contained queries that would benefit from commonsense knowledge.

Reading Comprehension as Span-based Question Answering Initially, cloze-style read-
ing comprehension has been accepted by the community due to its cheap way of producing
large-scale datasets. The power of end-to-end neural network models trained to answer
such queries was impressive and it was overseen as a way for retrieving information from
documents, in contrast to existing information retrieval models. However, in the real world,
humans usually form the query for retrieving information, as a grammatical question ("Who
is the chancellor of Germany?") rather than statements with a missing token (‘The chancel-
lor of Germany is XXXX?’) and the correct answer can contain multiple tokens (‘Angela
Merkel’). Therefore, there was a need for span-based reading comprehension datasets to
fill the gap.2 In span-based MRC, a system is given a passage of text (context) and natural
language question and is required to select an answer span in the context.

SQuAD (Rajpurkar et al., 2016) (Stanford Question Answering Dataset) was the first
large-scale RC dataset (about 100 000 questions) that contains natural language questions and
answers (See Figure 2.3). It has been created using crowd-sourced questions from paragraphs
from about 500 Wikipedia articles. To generate questions, workers were presented with
a paragraph as a context and were asked to come up with questions that have an answer
that appears as a span in this context. Later, a new version of the dataset was released that
contained also unanswerable questions Rajpurkar et al. (2018).

2Pun intended!
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Story Context: “ How can you be so absurd ? ” cried the queen . “ How often must I tell
you that there are no fairies ? And even if there were – but , no matter ; pray let us drop the
subject . ” “ They are very old friends of our family , my dear , that ’s all , ” said the king
timidly . “ Often and often they have been godmothers to us . One , in particular , was most
kind and most serviceable to Cinderella I. , my own grandmother . ” “ Your grandmother ! ”
interrupted her majesty . “ Fiddle-de-dee ! If anyone puts such nonsense into the head of
my little Prigio – ” But here the baby was brought in by the nurse , and the queen almost
devoured it with kisses . And so the fairies were not invited ! It was an extraordinary thing ,
but none of the nobles could come to the christening party when they learned that the fairies
had not been asked . Some were abroad ; several were ill ; a few were in prison among the
Saracens ; others were captives in the dens of ogres . The end of it was that the king and
queen had to sit down alone , one at each end of a very long table , arrayed with plates and
glasses for a hundred guests – for a hundred guests who never came ! “ Any soup , my dear ?
” shouted the king , through a speaking-trumpet ; when , suddenly , the air was filled with a
sound like the rustling of the wings of birds . Flitter , flitter , flutter , went the noise ; and
when the queen looked up , lo and behold ! on every seat was a lovely fairy , dressed in green
, each with a most interesting-looking parcel in her hand . Do n’t you like opening parcels ?

Cloze-style query: The king did , and he was most friendly and polite to the XXXXX.
Candidates: grandmother majesty fairies baby king air others dens friends
Answer: fairies

Fig. 2.2 Example from the Common Noun subset of the cloze-style reading comprehension
dataset CBTest. XXXXX is the question placeholder that has to be replaced with the correct
choice.
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Context (Paragraph): The Rhine (Romansh: Rein, German: Rhein, French: le Rhin, Dutch:
Rijn) is a European river that begins in the Swiss canton of Graubünden in the southeastern
Swiss Alps, forms part of the Swiss-Austrian, Swiss-Liechtenstein border, Swiss-German
and then the Franco-German border, then flows through the Rhineland and eventually
empties into the North Sea in the Netherlands. The biggest city on the river Rhine is Cologne,
Germany with a population of more than 1,050,000 people. It is the second-longest river in
Central and Western Europe (after the Danube), at about 1,230 km (760 mi),[note 2][note 1]
with an average discharge of about 2,900 m3/s (100,000 cu ft/s).

Questions:

Q: What is the largest city the Rhine runs through?
Ground Truth Answers: Cologne, Germany | Cologne, Germany | Cologne

Q (SQuAD2.0): In what country does the Danube empty?
Ground Truth Answers: <No Answer>

Fig. 2.3 Example of a context and question from SQuAD 1.0 ((Rajpurkar et al., 2016)) and
unasnwerable question from SQuAD 2.0 (Rajpurkar et al., 2018)
(Q2). The spans containing the answer are underlined. If multiple ground truth spans overlap,
the underline is on the combined text span.

Trischler et al. (2017) created NewsQA in a similar way to SQuAD from more than 10,000
news articles from CNN. The questions are collected using a multi-stage crowdsourcing
process including collecting questions, finding their answers, and validation. The process
ensures that the answering of the generated questions requires reasoning beyond word
matching and paraphrasing. To make the dataset closer to a real-world setting, this is the first
dataset that also presents unanswerable questions - questions that do not contain an answer
in the presented context.

Several span-prediction machine reading comprehension datasets have been later con-
structed, inspired by open domain question answering 3 including TriviaQA (Joshi et al.,
2017), SearchQA (Dunn et al., 2017), NaturalQA (Kwiatkowski et al., 2019). Instead of
using a single coherent context like previous work, these datasets provide the system with a
collection of documents collected from an external source or search engine.

TriviaQA (Joshi et al., 2017) collects around 95k questions written by trivia enthusiasts.
The questions are long compositional questions that are supposed to require reasoning from
multiple sentences or background knowledge. Another difference from previous datasets
is that the questions are created independently from the context. Moreover, the context

3TREC open question answering challenge https://trec.nist.gov/data/qamain.html
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is constructed from several evidence paragraphs extracted from sources like Wikipedia or
Bing.com web search. Similarly to TriviaQA, SearchQA (Dunn et al., 2017) collects questions
from trivia questions - in this case, Jeopardy question-answer pairs from j-archive.com. To
collect evidence snippets for the context (Dunn et al., 2017) uses the Google search engine to
retrieve relevant text, given the question as a query.

Most recently Kwiatkowski et al. (2019) introduced Natural Questions - a machine
reading comprehension dataset with questions generated from real users on the Google
search engine. In contrast to others, instead of having as a context only paragraphs (parts of
stories, etc), it provides entire Wikipedia pages as a context and contains more than 300k
questions.

Reading Comprehension as Question Answering with Open Answers Finding an answer
in a context through span-selection is convenient for training a machine learning model but it
does not always represent how a human would answer a given question. Therefore, several
datasets were created with the answer as a free text, independent of the context. Nguyen
et al. (2016) used more than 1 million questions and answers from the Bing search engine
to create MS Marco. The given context is a set of passages retrieved from relevant to the
query documents. The answer is generated by first selecting the passages that contain an
answer and then summarizing in a single human-written answer. The dataset also provides a
sub-task of ranking relevant passages which allows the evaluation of information retrieval
techniques as well. NarrativeQA (Kociský et al., 2017) is a reading comprehension dataset
about narrative stories. The dataset has two settings: summary - which requires answering
questions about a summary of 400 to 1200 tokens and full where the questions are generated
by looking at the summary but the given context is a very long text (up to 50k tokens) from
an actual book or a movie script. The dataset is interesting for evaluating semantic and
discourse phenomena. Its stories are (as the title suggests) narratives and answering questions
requires reasoning between character relations in the discourse such as ‘Why did Jericho
replace Picard as captain of Enterprise?’. We use this dataset to evaluate our approach for
combining semantic and discourse knowledge with a self-attention mechanism in a neural
network model for machine reading comprehension, presented in Chapter 5.

Multi-hop Reading Comprehension Since it has been shown (Chen et al., 2016a,b;
Weissenborn et al., 2017b) that many of the MRC formulations and datasets mentioned
above contain a high number of questions that can be answered easily by word or paraphrase
matching, there was a need for more complex and challenging datasets that require reasoning
beyond a single sentence.



2.2 Machine Reading Comprehension 19

WikiHop and MedHop (Welbl et al., 2018) are reading comprehension datasets that were
constructed to evaluate complex multi-hop reasoning, They require combining information
from multiple pieces of evidence (paragraphs) to reach the answer. The context consists of
multiple paragraphs. The answers to the questions should be selected by choosing an entity
from the entities in the context. The proposed method for the dataset construction starts with
a fact (s, r, o) from a knowledge graph and forms a question q = (s, r, ?) and answer a = o.
The context paragraphs are then selected so that the entities in them connect to the answer
through at least one other paragraph. The method is used for constructing datasets from
Wikipedia (WikiHop) and the domain of molecular biology (MedHop). HotpotQA (Yang
et al., 2018) is another multi-hop reading comprehension dataset that requires reasoning
across multiple sentences. The questions in the dataset are from various topics. The context
is presented as a set of sentences and to reach the answer a model should collect information
from a chain of them. In addition, the exact sentences required for the reasoning are annotated
so the models can be trained for reasoning and interpretability.

Although many of the reading comprehension datasets are designed to be answered only
with the context, they would benefit from external background or commonsense knowledge,
in addition to the given context.

Machine Reading Comprehension with External Knowledge In Chapter 3, we focus
on knowledge-enhanced reading comprehension where additional knowledge is used to
complement the document context. At the time our work in this area was conducted, there
were no reading comprehension datasets that were designed to use external knowledge, so we
extended the Children’s Book Test (Hill et al., 2016) with knowledge from ConceptNet. Later,
several machine comprehension datasets focused on this setting where a context is provided
but in order to answer a question, a system could or should use some external knowledge.

MCScript (Ostermann et al., 2018) is a dataset that was built especially with the aim of
collecting questions that require both the usage of a context and additional script knowledge.
The examples in the dataset contain a context which is an everyday story about a specific
event such as ‘going to a restaurant’ or ‘preparing food’ and the questions provided can be
answered using the context alone or combining a statement from the context and external
script knowledge.

In a similar fashion, ProPara (Mishra et al., 2018) requires answering questions about
changing specific procedural states in processes such as producing electricity, photosynthesis,
etc. In order to answer a question the model should understand the process states and
constraints and include additional commonsense knowledge.
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OpenBookQA (Mihaylov et al., 2018) is a dataset modeled after open book exams for
assessing human understanding of a subject and most questions require multi-hop reasoning
over knowledge facts. The almost 6000 multi-choice questions set comes with an open
book (common context) of 1329 elementary-level science facts. The questions probe an
understanding of these facts and their application to novel situations in a multi-hop fashion.
This requires combining an open book fact (e.g., metals conduct electricity) with broad
common knowledge (e.g., a suit of armor is made of metal) obtained from other sources.
While existing QA datasets over documents or knowledge bases focus mainly on linguistic
understanding, OpenBookQA probes a deeper understanding of the language in the context
of common and commonsense knowledge. Therefore the dataset can also be seen as machine
comprehension over a ‘partial context and external knowledge‘ since the open book that is
provided is not sufficient for answering the questions.

This dataset was used for evaluation of the commonsense knowledge-enhanced neural
model, presented in Chapter 3.

2.2.2 Related Natural Language Processing Tasks

Sugawara et al. (2017); Chen et al. (2016a); Rajpurkar et al. (2016) shown that the Reading
Comprehension task, represented by existing Machine Reading Comprehension datasets
requires a set of natural language ‘skills’ such as paraphrase detection, recognition of named
entities, natural language inference, and understanding of the discourse. In this thesis, we
explore approaches to teach neural networks to perform several of these skills and combine
them to solve the more complex Machine Reading Comprehension task. The natural language
skills referred to above are often resembled by datasets constructed for building Natural
Language Processing systems.

Here we briefly describe several natural language ‘skill’ tasks important for this work and
their formulation. More details about the dataset and the usage of these tasks are presented
in Chapter 4 and 5.

Question Answering is a task that requires a system to answer natural language questions.
Typically the questions can be answered by different sources - knowledge bases, text corpus,
etc. Recently QA systems are built using a two-stage system: an Information Retrieval
module to retrieve documents from a large corpus (such as Wikipedia) and an MRC model to
read through selected documents and find the answer of the question.

Named Entity Recognition (NER) is a task that aims at recognizing entities and their
types in natural language text. The task is often formed as a token annotation task (Tjong
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Kim Sang, 2002) that requires assigning a label to a span from the text. An example is
[Starfleet]ORG assigned [Captain Jellico]PER as [Picard]PER‘s replacement, where Starfleet
is an entity with type Organization and the rest of the entities are of type Person.

Shallow Discourse Parsing (SDP) Xue et al. (2016b) is a task that aims at identifying two
discourse arguments in the text (text spans or entire sentences) and recognizing the discourse
relation between them. The main types of discourse relations, in terms of their presentation
of the discourse, are Explicit and Implicit.

Explicit discourse relations are usually present when the two discourse arguments (Arg1
and Arg2) are connected with an explicit connective such as but, because, when, etc. Implicit
discourse relations are identified when there is no explicit connective that characterizes the
relation between the arguments.

Semantic Role Labeling Semantic Role Labeling (Palmer et al., 2005) is a task that
recognizes relations between predicates and their arguments in a sentence. An e xample is
[Starfleet]A0 [assigned]V [Jellico]A1 [as Picard‘s replacement]A2. Similarly to NER, this
task is formulated as a token sequence labeling task.

Coreference Resolution Coreference Resolution (Hobbs, 1978) aims at identifying the
occurrence of references to the same entity in a given text. For example in the text: Captain
[Picard]C1 went on a mission. [Cardassians]C2 took [him]C1 as a prisoner. [They]C2

accused [him]C1 in terrorism, Picard and Cardassians are two entities that have references
(they, him) in multiple sentences.

Natural Language Inference Entailment or Natural Language Inference [cite] detects if
two two phrases or sentences (usually referred as Premise and Hypothesis) are in entailment
relations (see Table 2.1).

Premise Relation Hypothesis
Animals need food to survive. Entailment Dogs need food every day.
The dog is man’s best friend. Neutral Cats like playing with kids.
Everyone is staying at home. Contradiction Streets are full of people.

Table 2.1 Examples of different natural language inference relations

Text Classification Many natural language processing tasks are based on text classification
where a model is required to assign a label to a given text. In this work, we use the tasks of



2.3 Neural Network Approaches for Machine Reading Comprehension 22

Question Type Classification and DBPedia text classification. Question Type Classification
(Li and Roth, 2002a) was created with the idea that models that are able to perform well on
the task can be used as a component in an automatic QA system. Questions are classified
in 6 high-level classes (Abbreviation, Entity, Description, Human, Location, and Numeric
Value) and 50 fine-grained classes. DBPedia text classification is a dataset that challenges
systems to classify the types of entities, given either their name (ex. President Obama) or
short description (ex. Barack Obama served as the 44th president of the United State of
America.) available in the DBPedia (Auer et al., 2007) knowledge base.

Language Modeling (LM) is an artificial task that evaluates to what extent a machine
learning model can ‘guess‘ the next word in a continuous text. To do that statistical and
neural models are trained to estimate the probability distribution P (wi|wi−(n−1)..wi− 1) for
each word wi in a text, given the previous n− 1 words.

2.3 Neural Network Approaches for Machine Reading Com-
prehension

2.3.1 Common Architecture

Depending on the target dataset and the required information for solving it, the architecture
of a Machine Reading Comprehension system may vary. However, given the specificity of
the MRC tasks, the majority of proposed models based on neural networks used a general
architecture which we summarize in Figure 2.4. Most neural network-based systems read
an input and pass it to a Neural Reader. This module is usually an end-to-end trained
model that outputs the answer to a given query. Optionally, if the given context D1..N is a
multi-paragraph or a very long context, too big to be processed as a whole by the Neural
Reader, only a specified number of paragraphs can be retrieved by a Document Retriever
module. Another module that could be integrated is a Feature Extraction module. It extracts
features based on external annotations and heuristics that are usually used as additional input
by the Neural Reader module.

After the Neural Reader module is been trained, the final answers predicted for a question
can be re-ranked by combining multiple external rules or models (ex. TF-IDF, PMI, Language
Model, etc.), or simply by using an ensemble (See Section 2.3.3) of the predictions of multiple
instances of the model trained with different initialization.

In Chapter 3, we propose to use a Knowledge Retrieval module to enhance the original
MRC task input (D1..N , Q, C1..M ) with an external set of background or commonsense
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Fig. 2.4 Flowchart of general architecture of a MRC/QA system. D1..N are one or more
paragraph documents, Q is a question and C1..M are number of candidates in terms of
multi-choice answer candidates. The blue modules (solid line) are common for all neural
network-based systems. Modules in green (punctuated line) are optional. Modules in orange
(punctuated dotted line) are proposed in our contributions.

knowledge facts K, retrieved from an external knowledge-base such as ConceptNet, and
used by the Neural Reader.

2.3.2 Neural Reader

Figure 2.5 shows a common neural architecture for MRC with an optional knowledge
integration module. The neural reader is a system that is trained end-to-end on the MRC task.
It usually reads the input document (or passage) and the given question and tries to select the
answer, depending on the task formulation (span detection, generation, multi-choice, etc.). It
has several layers that take care of different parts of the process.

Embedding Layer The embedding layer takes the input tokens w0..wn and generates
outputs vector representations e0..en with size de:

e0..en = EmbeddingLayer(w0..wn) ∈ Rn×de (2.1)

(2.2)
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Fig. 2.5 Flowchart of common neural reader model of a MRC system. The blue modules
(solid line) are common for all neural network-based systems. Modules in orange (punctuated
dotted line) are proposed in this work.

The goal is to convert the input text tokens to numerical representations that can be read in
the neural network models. The embedding layer is applied to both the document and the
question tokens.

There are several ways to embed the word tokens into an embedding vector that have
varied success based on the task and dataset.

Lookup Word Embedding Initial works in the field initially have used pre-trained
word embeddings where each word token (ex. dog) maps to exactly one embedding vector:

elookupi = LookupEmnbedder(wi, E) ∈ Rd (2.3)

E is an embedding matrix with size nv × d, where nv is the number of unique tokens in the
vocabulary and d is the size of the embedding. E can be initialized with pre-trained word
embeddings like GLOVE (Pennington et al., 2014) and Word2Vec (Mikolov et al., 2013b)
or randomly. The different missing tokens in the pre-trained model are either initialized
randomly with different values or are replaced with the same vector corresponding to a single
UNK token.

Different pre-trained embedding models have different impacts on the performance of the
model, and this often depends on the reading comprehension task and the domain (Dhingra
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et al., 2017a; Mihaylov and Frank, 2017a). The size of the lookup word embedding vectors
can vary and it is often treated as a hyper-parameter when the embeddings are initialized
randomly. While using pre-trained embedding might be often beneficial, early work (Kadlec
et al., 2016) has also found that for training end-to-end neural models on large datasets, it is
also sufficient to initialize the embedding vectors randomly for all tokens in the vocabulary.

Character-based Embeddings Another type of representing tokens is using character-
based embedding. In contrast to lookup embedding where each word is encoded with a
corresponding vector, here each token is encoded as a sequence of characters. Each character
in the token is embedded with a different randomly initialized vector with a relatively smaller
size (dc = 20, 50, etc.) than the word-level embeddings. Then, the word-level character
embeddings are obtained by processing the set character with a convolutional neural network
(Zhang et al., 2015b) or recurrent neural network (Luong and Manning, 2016; Ling et al.,
2015) and outputs a single vector for each word token. Character-based encoding echari of a
single word token wi with characters wc

0..w
c
nc

can be formalized as:

echari = CharEncoder(LookupEmbedder(wc
0..w

c
nc
)), (2.4)

where CharEncoder can be CNN, RNN, or Transformer encoder. The benefit of character-
based word embedding is that tokens that are morphologically close such as buy, buying, and
buyer could be represented in similar vector spaces. Character-level embedding of the words
can also help with out-of-vocabulary words. For example, unseen words in the evaluation
such as Anna will have a similar representation to others that might be seen during training
(Ana) or share a property that the model can learn (ex. person names start with a capital
letter). Character-based word embeddings and lookup embeddings from a pre-trained model
are often used together by simply concatenating the output of both: EmbeddingLayer(x):
concat(CharEncoder, LookupEmbedder(w) or using more sophisticated mechanisms (Yang
et al., 2017a).

Pre-trained Contextualized Word Representations Recently Peters et al. (2018)
introduced ELMO (Embeddings from Language Models), deep contextualized embeddings
derived from pre-trained bi-directional language models. These have been shown to work
great as a replacement for conventional word embedding models and improve the state-of-the-
art on multiple tasks (Peters et al., 2018). Other pre-trained contextualized models have been
proposed such as GPT (Radford et al., 2018b), ULMFit(Howard and Ruder, 2018a), and most
recently BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al.,
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2019a). When used as a replacement for standard lookup embeddings or character-based
embeddings alone are improving greatly the state-of-the art in multiple tasks.

The pre-trained contextualized embeddings can be used as a fixed encoding layer or
fine-tuned during the learning of the RC task. This depends on many factors such as the size
of the pre-trained model, the hidden size of the embeddings, and the training data size can
often be used as a hyper-parameter (tune vs. not to tune). When fine-tuned these embeddings
can be used as a replacement for the standard context encoder that is a fundamental part of
most neural readers.

Context Encoding After the input tokens of the document and question are converted to
vector representations by the embedding layer, the neural models usually include an additional
context encoder layer. The purpose of this layer is to learn contextualized representation
of the input, that is trained especially for the task. That is in contrast to the embedding
layer which (when not fine-tuned) can provide general word representations. We process the
output of the embedding layer with an Encoder to obtain context-encoded representations for
document (cctxd1..n

) and question (cctxq1..m
) encoding:

cctxd1..n
= Encoderctx(ed1..n) ∈ Rn×h (2.5)

cctxq1..m
= Encoderctx(eq1..m) ∈ Rm×h, (2.6)

where di and qi denote the ith token of a text sequence d (document) and q (question),
respectively, n and m is the size of d and q, and h is the vector (hidden) size of the output.
The most used architectures for contextual encoding in the machine reading comprehension
literature are Recurrent Neural Networks and Transformers.

Recurrent Neural Network (RNN) Encoders Until the invention of self-attention
transformer models Vaswani et al. (2017) RNN models such as LSTM (Hochreiter and
Schmidhuber, 1997) and GRU (Chung et al., 2014) were de-facto standard for building
contextual representations due to their ability to learn contextual dependencies and ease of
use in existing deep learning frameworks (Abadi et al., 2015; Paszke et al., 2019).

Transformers Since RNN-based models require a lot of time for execution, due to
their recurrent nature, Vaswani et al. (2017) introduced the Transformer encoder that uses
multi-layer multi-head self-attention to build efficient contextual representations. QANet Yu
et al. (2018) was the first to use the Multi-Head Self-Attention model as a context encoder
to speed-up computation and allow training RC models at scale. Since 2018 this became a
standard in context encoding for machine reading comprehension models. In Chapter 5 we
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discuss the architecture and limitations of a standard self-attention architecture and propose
a method to augment it with linguistic knowledge to improve its performance for machine
reading comprehension.

Question-Context Interaction The contextual representation of document and question
are often encoded with separate encoders (Chen et al., 2016a; Kadlec et al., 2016; Dhingra
et al., 2017b). This is motivated by the assumption that the question usually has different
grammar than the context and there is a need to better learn the alignment to the document
tokens (Chen et al., 2016a; Weissenborn et al., 2017b). An important part of the neural reader
in machine reading comprehension architectures is the question-context interaction between
the contextually encoded representations of question and context. The goal of this module is
to create neural representations of the context (Hermann et al., 2015), based on the question
and/or context-aware representation of the question, usually using neural attention methods
(Dzmitry Bahdanau et al., 2014).

Depending on the number of interactions between the question and context representa-
tions, the interaction layers can be classified as single-turn and multi-turn. 4 Early work
introduced simple but good single-turn models (Hermann et al., 2015; Kadlec et al., 2016;
Chen et al., 2016a), that read the document once with the question representation ‘in mind’
and select an answer from a given set of candidates. In these models, the context-question
interaction layer and the answer selection layer are combined.

Initially Hermann et al. (2015) introduced the Attentive Reader as a simple but good
baseline for the task of cloze-style reading comprehension. In their work Hermann et al.
(2015) used the final states from a bi-directional LSTM encoder to obtain a contextualized
representation of the question as a single vector rctxq ∈ R2h. This was then used to retrieve
weighted representation from the encoded document context and combine it with a non-linear
layer to predict the answer from the vocabulary.

Chen et al. (2016a) introduced the Stanford Reader which used a higher number of
parameters and more complex attention functions to achieve competitive results.

Stanford Reader and Attentive Reader can be classified as aggregation models since they
obtain single aggregated representations of the context, given the question, and then infer
the answer. The early aggregation-based models were soon outperformed by models that
represent the interaction between question and documents tokens explicitly for cloze-style
reading comprehension.

4Turn refers to the process of going from a contextual representation to question-aware contextual represen-
tation
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Kadlec et al. (2016) introduced the Attentive Sum Reader (ASR) which instead of building
an attention-weighted sum of the context and inferring the answer, points to the answer in the
text. Additionally, they sum the attention of all occurrences of every candidate answer in the
context. At the same time, Kobayashi et al. (2016) proposed a Dynamic Entity Representation
model that similarly to Kadlec et al. (2016) keeps track of the entity states in order to infer
the desired answer.

More complex models (Weston et al., 2015c; Dhingra et al., 2017b; Cui et al., 2017;
Munkhdalai and Yu, 2016; Sordoni et al., 2016) perform multi-turn reading of the story con-
text and the question, before inferring the correct answer. Weston et al. (2015c); Sukhbaatar
et al. (2015) proposed Memory Networks that aggregate the information from consecutive
sentences into long-term memory. These perform multiple steps of ‘reasoning’ over the
memory blocks before inferring the answer. The proposed models were shown to perform
well on several synthetic reading comprehension tasks bAbI (Weston et al., 2015a).

Dhingra et al. (2017c) used a model called Gated-Attention Reader, which has a multi-
layer architecture and uses different GRU parameters for encoding the question and the
context. The Attention-over-Attention Reader Cui et al. (2017) uses different attention over
the question and context and then attention over these attention representations.

A study on some of the early models for cloze-style reading comprehension argues
(Wang et al., 2016a) that all the proposed readers and pointer architectures are driven by a
logical structure in the vector representations that they learn. They perform experiments on
CNN/Daily Mail, Who-did-What(WDW), and Children’s Book Test(CBT) datasets. Wang et al.
(2016a) presented experiments supporting the existence of logical structure in the hidden
state vectors of aggregation readers such as the Attentive Reader and Stanford Reader. They
have shown that the logical structure of aggregation readers reflects the architecture of pointer
readers such as the Attention-Sum Reader (Kadlec et al., 2016), the Gated Attention Reader
(Dhingra et al., 2017b) and the Attention-over-Attention Reader (Cui et al., 2017).

Performing multiple hops and modeling a deeper relation between question and document
was further developed by several models (Seo et al., 2017; Xiong et al., 2016; Wang et al.,
2016b, 2017; Shen et al., 2016) on the newer generation of span-based RC datasets, e.g.
SQuAD (Rajpurkar et al., 2016), NewsQA (Trischler et al., 2017), and TriviaQA (Joshi et al.,
2017).

Answer Prediction The last module of a standard reading comprehension neural model is
usually the answer prediction module. It takes the output representations from the context-
question interaction representations and outputs values that can be used for decoding the
answers. The prediction of the answer depends on the task formulation. In Section 2.2 we
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described several task formulations in terms of answer representation. These usually have
different answer-prediction modules.

In a cloze-style reading comprehension setting the answer is usually presented as a
single token. If the original token is not in the source document used for reading, a single
representation is obtained from the context and question, and the answer is inferred from the
full vocabulary (Chu et al., 2016)]. If the target token is in the text, we usually use a pointer
module similar to Attention Sum Reader. In both cases, an attention function Att is employed
to select the answer:

P (ai|q, d) = softmax(Att(rctxq , cctxdj
)), (2.7)

where rctxq is a query representation and mj is the j-th vector representation from the
vocabulary or the encoded context. The neural network is trained using cross-entropy loss
between the correct answer token index and P (ai|q, d).

In span selection tasks (Rajpurkar et al., 2016; Kwiatkowski et al., 2019) the answer
is selected as a token span from the text document. The first span prediction dataset that
took off in the community was SQuAD (Rajpurkar et al., 2016) and the proposed techniques
of span prediction and evaluation have been used for several datasets (Joshi et al., 2017;
Kwiatkowski et al., 2019). In this setting, the answer is represented as the indices of the start
(astart) and end (aend) tokens.

To train the model we minimize the sum of the cross-entropy losses:

L = CE(apredstart, astart) + CE(apredend , aend). (2.8)

During inference, dynamic programming is used to select the answer with the indices istart
and iend, such that iend > istart, iend − istart <= lansmax, and iend ∗ istart = max.

In generative question answering, the answer prediction requires generating a sequence
of text tokens that are not necessarily in the source document. In this case, the answer pre-
diction is executed as a sequence-to-sequence architecture, usually combining the inference
from a vocabulary and a copy-mechanism (Gu et al., 2016; See et al., 2017) pointing to the
source document. While some datasets such as NarrativeQA (Kociský et al., 2017) require
answer generation, previous work (Hu et al., 2018b) has shown that mapping the task to span
selection can yield better results than others that train the model as answer generation (Bauer
et al., 2018; Wang and Jiang, 2016).
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2.3.3 Answer Re-Ranking and Ensemble

Neural readers for reading comprehension are often evaluated based on the performance of
the best model trained with this architecture. In order to measure the maximum possible per-
formance for a given task, the neural model is often combined across multiple initializations
of the same model (Ensemble) or re-ranked using external information about the task.

Ensemble Several ensemble methods have been adopted in the community. Kadlec et al.
(2016) have tried different ensemble methods for cloze-style reading comprehension. They
used average ensembling - the selected answer is determined by averaging the probabilities
of the same neural models with different initializations. Another ensemble method that they
adopted is to take the average of only the top 20% best performing on the Dev set, or greedy
ensemble, by using a combination of models that yields the highest performance on Dev.
However, the average ensemble worked best for their AS Reader. This has also been adopted
for many other models for cloze-style RC (Cui et al., 2017; Chen et al., 2016a; Onishi et al.,
2016). Simple averaging of the prediction probabilities of the output model has worked
well for span-based RC where start and end probabilities are used. This was adopted by the
majority of works that worked on SQuAD (Rajpurkar et al., 2016).

Answer Re-Ranking Another way to improve the overall performance, on top of a trained
single neural model or ensemble is by using another source of information that contains prior
knowledge relevant to the task. In their work Cui et al. (2017) proposed the n-best re-ranking
strategy that includes selecting the top N answers selected by the model and using additional
methods for re-scoring. For each example, the cloze query was filled with each of the N
answer choices to form N sentences.

They used a combination of a Global N-gram model trained on the train data documents,
a local N-gram model, trained only on the current document, and a Word-class LM (Och,
1999) to score each of the sentences. This improved the performance with an additional 4%.

2.4 Neural Machine Reading Comprehension with Prior
Knowledge

Most work in machine reading comprehension before the work conducted for this thesis has
focused on training end-to-end neural networks on large-scale datasets, without explicitly
adding new data to the task. In this thesis, we focus on using additional knowledge to tackle
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the reading comprehension task. Below we review existing methods for augmenting neural
network models with various types of external knowledge.

2.4.1 Token Embeddings

While many large-scale datasets can be used to train the neural network from scratch, many
have used pre-trained word embeddings (Chen et al., 2016a; Seo et al., 2017; Kumar et al.,
2016; Chen et al., 2016b; Dhingra et al., 2017a; Mihaylov and Frank, 2017a) . These
embeddings are usually obtained using distributional approaches for pre-training such as
Word2Vec (Mikolov et al., 2013b) and Glove (Pennington et al., 2014) or additionally trained
with structured knowledge (Speer and Chin, 2016).

2.4.2 Features

Several models have used heuristic features to improve Machine Reading Comprehension
(Weissenborn et al., 2017b; Chen et al., 2016b). FastQA proposed by Weissenborn et al.
(2017b) used word in question binary features combined with Bi-LSTM to reach very good
performance on the SQuAD (Rajpurkar et al., 2016) dataset. For each word in the context,
such word in question feature indicated if the word token is contained in the question. The
assumption is that the answers to some questions are often found in a similar context to a
question paraphrase. These features were also used in DrQA (Chen et al., 2016b). They also
used an additional soft similarity feature, computed using a cosine similarity between the
Glove word embeddings of each word token in the context and each token in the question.
Chen et al. (2016b) also augments the word embedding layer with token-based features such
as part-of-speech (POS) and named entity labels. These were obtained by annotating the text
with existing natural language processing tools (Manning et al., 2014). Independent work by
Wang et al. (2016a) also confirmed that the addition of linguistics features to the input of
strong neural readers significantly boosts their performance on multiple datasets.

2.4.3 Combining Text and External Knowledge Sources

In Chapter 3 we propose employing knowledge from an external commonsense knowledge
base to improve machine reading comprehension. Below we discuss some related neural
approaches, published before our work, and applied to machine reading comprehension and
related natural language processing tasks.
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Knowledge Base with External Text The alignment of text and knowledge bases is
initially explored in the context of relation extraction and semantic parsing by a wide range
of work (Bunescu and Mooney, 2007; Mintz et al., 2009; Yao et al., 2010; Riedel et al.,
2010). Riedel et al. (2013) proposed modeling these alignments jointly in a single model
representation trained end-to-end. They proposed using a Universal Schema obtained by
relations from structured knowledge bases and schema-free relations extracted from text.
This approach improved significantly the accuracy of knowledge-vase completion. Das et al.
(2017a) later used the alignment from the Universal Schema to enhance a knowledge-base
question answering neural model with textual knowledge.

In Chapter 3 we use a similar approach in the opposite setting - we propose a text-first
model and enhance it with structured commonsense knowledge for cloze-style reading
comprehension.

Reading Comprehension with External Knowledge Work similar to ours from Chapter 3
is by Long et al. (2017), who have introduced a new task of Rare Entity Prediction. The task
is to read a paragraph from WikiLinks (Singh et al., 2012) and to fill a blank field in place
of a missing entity. Each missing entity is characterized with a short description derived
from Freebase, and the system needs to choose one from a set of pre-selected candidates to
fill the field. While the task is superficially similar to cloze-style reading comprehension, it
differs considerably: first, when considering the text without the externally provided entity
information, it is clearly ambiguous. In fact, the task is more similar to Entity Linking tasks
in the Knowledge Base Population (KBP) tracks at TAC 2013-2017, which aim at detecting
specific entities from Freebase. Our work, by contrast, examines the impact of injecting
external knowledge in reading comprehension, or NLU task, where the knowledge is drawn
from a commonsense knowledge base, ConceptNet in our case. Another difference is that
in their setup, the reference knowledge for the candidates is explicitly provided as a single,
fixed set of knowledge facts (the entity description), encoded in a single representation. In
our work, we are retrieving (typically) distinct sets of knowledge facts that might (or might
not) be relevant for understanding the story and answering the question. Thus, in our setup,
we crucially depend on the ability of the attention mechanism to retrieve relevant pieces of
knowledge. Our aim is to examine to what extent commonsense knowledge can contribute to
and improve the cloze-style RC task, which in principle is supposed to be solvable without
explicitly giving additional knowledge. We show that by integrating external commonsense
knowledge we achieve clear improvements in reading comprehension performance over a
strong baseline, and thus we can speculate that humans, when solving this RC task, are
similarly using commonsense knowledge as implicitly understood background knowledge.
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Another work from Weissenborn et al. (2017a) was driven by similar intentions of using
commonsense knowledge for natural language understanding tasks. The authors exploit
knowledge from ConceptNet to improve the performance of a reading comprehension model,
experimenting on the recent SQuAD (Rajpurkar et al., 2016) and TriviaQA (Joshi et al.,
2017) datasets. While the source of the background knowledge is the same that we use,
the way of integrating this knowledge into the model and task is completely different. (i)
In our work from Chapter 3 we are using attention to select unordered facts triples using
key-value retrieval and (ii) we integrate the knowledge that is considered relevant explicitly
for each token in the context. The model of Weissenborn et al. (2017a), by contrast, reads
the acquired additional knowledge sequentially after reading the document and question,
but transfers the background knowledge implicitly, by refining the word embeddings of the
words in the document and the question with the words from the supporting knowledge that
share the same lemma. In contrast to the implicit knowledge transfer of Weissenborn et al.
(2017a), our explicit attention to external knowledge facts can deliver insights about the used
knowledge and how it interacts with specific context tokens.

Neural Models with External Knowledge for Other NLP Tasks Kiddon et al. (2016)
integrated knowledge about food ingredients in a neural-checklist model to enhance text
generation of recipes. They copied words from a list of ingredients instead of inferring the
word from a global vocabulary. Ahn et al. (2016) proposed a language model that copies
fact attributes from a topic knowledge memory. The model predicts a fact in the knowledge
memory using a gating mechanism and given this fact, the next word to be selected is copied
from the fact attributes. The knowledge facts are encoded using embeddings obtained using
TransE (Bordes et al., 2013). Yang et al. (2017b) extended a sequence-to-sequence model
with attention to embedded facts for dialogue and recipe generation and a co-reference
resolution-aware language model. A similar model was adopted by He et al. (2017c) for
answer generation in dialogue. Incorporating external knowledge in a neural model has
proven beneficial for several other tasks: Yang and Mitchell (2017) incorporated knowledge
directly into the LSTM cell state to improve event and entity extraction. They used knowledge
embeddings trained on WordNet (Miller et al., 1990) and NELL (Mitchell et al., 2015) using
the BILINEAR (Yang et al., 2014) model.

2.4.4 Neural Transfer Learning for Machine Reading Comprehension

Above we discussed that most recent neural models use a form of transfer learning by
incorporating word embeddings (Section 2.4.1) and features (Section 2.4.2).



2.4 Neural Machine Reading Comprehension with Prior Knowledge 34

Transferring Knowledge Between Machine Reading Comprehension Datasets Neural
transfer learning between the same or very similar tasks in different domains often works
well (Ruder, 2017). This was shown to also work well for Machine Reading Comprehension
on multiple occasions. Initially Kadlec et al. examined transfer learning using neural models
trained on a source MRC dataset and evaluated on a target dataset. Golub et al. (2017)
proposed a novel two-stage transfer learning approach to perform out-of-domain question
answering without explicit neural representation transfer learning. Instead, they first trained
modules for the generation of question-answer pairs trained on SQuAD (Rajpurkar et al.,
2016) and used the method to generate question-answer for the NewsQA dataset documents
(Trischler et al., 2017). The generated pairs are later used for training a neural network model
that performed well on the NewsQA. Min et al. (2017) showed supervised transfer learning
from SQuAD to WikiQA (Yang et al., 2015) and community question answering (Nakov
et al., 2016a) is beneficial compared to the standard training setup. Chung et al. (2018)
evaluated supervised transfer learning and self-supervised iterative labeling technique and
reported improvements across all target datasets. More recently, to examine the generalization
capabilities of MRC models Fisch et al. (2019) has organized the MRQA 2019 Shared Task
on Evaluating Generalization in Reading Comprehension combining several datasets for
training and evaluation. The generalization evaluation has been ensured by allowing the
participating teams to train on a limited set of training datasets and evaluating out-of-domain
target datasets. Talmor and Berant (2019) examined the transferability and generalization
between 10 datasets for machine reading comprehension using several models. They have
shown that the MRC tasks greatly benefit from each other and provided a fine-grained analysis
of the transfer relations between multiple datasets. The transfer between various question
answering and machine reading comprehension datasets was shown to further benefit from
unifying the format of the tasks (Khashabi et al., 2020).

Supervised Transfer from Natural Language Processing Tasks In contrast to using
transfer learning between datasets and similar question answering and machine reading
comprehension datasets, inspired the ability of humans to transfer skills across tasks, in
Chapter 4 we examine how different lower-level linguistic tasks contribute to the machine
reading comprehension task.

In natural language processing supervised transfer learning with neural models was
proposed initially by (Collobert and Weston, 2008). It was encouraged (Bengio, 2011) as a
way of sharing representations between tasks and is now widely adopted in the community.
Supervised knowledge transfer using neural representations can be performed jointly on
multiple tasks (Ruder, 2017), by learning linguistic information in a hierarchical fashion
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(Søgaard and Goldberg, 2016), and on many levels (Hashimoto et al., 2016). It was also
examined between tasks from different modalities including text, images, and audio (Kaiser
et al., 2017b).

Concurrently to our work from Chapter 4 (Mihaylov et al., 2017), direct transfer of less
related supervised tasks to machine reading comprehension was performed by McCann et al.
(2017). They used it as initialization for the DCN (Xiong et al., 2016) and improved the
result on SQuAD. By contrast in Chapter 4, we examined a generic and modular supervised
approach to learning a set of diverse language tasks (referred to as ‘skills’) and analyzed their
performance on the task of machine reading comprehension.

Unsupervised Pre-trained Language Models While many target tasks benefit from
supervised transfer learning, it is usually expensive to create supervised datasets for multiple
tasks. Therefore many new works focused on obtaining knowledge from natural language by
training unsupervised models on large text corpora.

Initially Dai and Le (2015) proposed unsupervised training on natural language text to
improve the stability of training for LSTM models and improve text classification. The
LSTM recurrent neural network models were very new to the field and this method remained
underlooked. Later Peters et al. (2017) and Liu et al. (2018) revisited the approach and used
weights from pre-trained language models to improve sequence labeling tasks. Building on
their previous work (Peters et al., 2017), Peters et al. (2018) proposed ELMo (Embeddings
from Language Models) - a bi-directional LSTM language model pre-trained on a large por-
tion of text. ELMo was used as a replacement for traditional word embeddings and improved
the performance on a wide range of tasks, including machine reading comprehension (Peters
et al., 2018). Concurrently to Peters et al. (2018), Howard and Ruder (2018b) successfully
adopted a similar approach to Dai and Le (2015) and improved text classification across vari-
ous datasets. Radford et al. (2018a) pre-trained a Transformer-based uni-directional language
model (GPT1) on an even bigger amount of natural language text and also proposed a new
method of fine-tuning for multi-choice question answering task on RACE (Lai et al., 2017).
This was followed by Devlin et al. (2019a)’s BERT (Bidirectional Encoder Representations
from Transformers) and RoBERTa (Liu et al., 2019) that matched the human annotators’
performance on SQuAD and improved the performance of several other MRC benchmarks.
In the next chapters, we will not focus on these approaches since they emerged after the work
from the last chapter was published (Mihaylov and Frank, 2019).
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2.5 Summary

Machine Reading Comprehension is a complex task that aims at evaluating text content
comprehension by a natural language processing agent. Recent work in the area has focused
on using neural approaches to machine reading comprehension, hence we refer to the recent
approaches to solve the task as Neural Machine Reading Comprehension. The task has
different formulations captured in several large-scale datasets used for the training and
evaluation of the systems. Most neural approaches to machine reading comprehension have
focused on learning the task solely from the data provided by task- and domain-specific
datasets. The interest in the task moved the field forward by producing multiple improvements
on common MRC model architectures.

New approaches, including those described in this thesis, have focused instead on using
different sources of external knowledge to enrich the representations of common MRC neural
architectures. They showed promising directions in improving the MRC models in terms of
overall performance and robustness.



Chapter 3

Neural Machine Reading Comprehension
using External Declarative Knowledge

3.1 Motivation

In contrast to many previous models (Weston et al., 2015c; Dhingra et al., 2017b; Cui et al.,
2017; Munkhdalai and Yu, 2016; Sordoni et al., 2016) that perform a reading of only the
story and a question before inferring the correct answer, we aim to tackle the cloze-style RC
task by additionally using background knowledge. We develop a neural model for RC that
can successfully deal with tasks where some of the information to infer answers from is given
in the document (story), but where additional information is needed to predict the answer,
which can be retrieved from a knowledge base and added to the context representations
explicitly. 1 An illustration is given in Figure 3.1.

In general, such knowledge may be commonsense knowledge or factual background
knowledge about entities and events that is not explicitly expressed in the text but can be
found in a knowledge base such as ConceptNet (Speer et al., 2017), BabelNet (Navigli and
Ponzetto, 2012), Freebase (Tanon et al., 2016) or domain-specific knowledge bases collected
with Information Extraction approaches (Fader et al., 2011; Mausam et al., 2012; Bhutani
et al., 2016). Thus, we aim to define a neural model that encodes pre-selected knowledge in
memory, and that learns to include the relevant information as an enrichment to the context
representation.

The main difference between our model and prior state-of-the-art is that instead of relying
only on document-to-question interaction or discrete features while performing multiple hops
over the document, our model (i) attends to relevant selected external knowledge and (ii)

1‘Context representation’ refers to a vector representation computed from textual information only (i.e.,
document (story) or question).
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The	  prince	  put	  his	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  away	  
and	  prepared	  for	  his	  long	  trip..

He	  mounted	  his	  XXXX	  and	  rode	  away.
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Commonsense	  knowledge
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…
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Fig. 3.1 Cloze-style reading comprehension with external commonsense knowledge. Task
setup shows the official task formulation. Commonsense knowledge is external knowledge
that is presented to the model. Connecting lines show some examples of desired attention
between context and knowledge: solid - a higher attention score, punctuated - a lower
attention score.

combines this knowledge with the context representation before inferring the answer, in a
single hop. This allows the model to explicitly imply knowledge that is not stated in the text
but is relevant for inferring the answer, and that can be found in an external knowledge source.
Moreover, by including knowledge explicitly, our model provides evidence and insight about
the used knowledge in the RC.

3.2 Data and Task Descriptions

We experiment with knowledge-enhanced cloze-style reading comprehension on the Com-
mon Nouns and Named Entities partitions of the Children’s Book Test (CBT) dataset (Hill
et al., 2016). We also evaluated the proposed approach to multi-choice open book question
answering on OpenBookQA (Mihaylov et al., 2018).

3.2.1 Cloze-style Reading Comprehension with External Commonsense
Knowledge

Dataset Description In the CBT cloze-style task (Hill et al., 2016). a system is asked
to read a children’s story context of 20 sentences. The following 21st sentence involves
a placeholder token that the system needs to predict, by choosing from a given set of 10
candidate words from the document. An example with suggested external knowledge facts
is given in Figure 3.1. While in its Common Nouns setup, the task can be considered as
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CBT Statistics
Common Nouns (CN) Named Entities (NE)

Train 120,769 / 470 108,719 / 433
Dev 2,000 / 448 2,000 / 412
Test 2,500 / 461 2,500 / 424

Vocab 53,185 53,063
Table 3.1 Characteristics of Children Book Test datasets. CN: Common Nouns, NE: Named
Entities. Cells for Train, Dev, Test show overall numbers of examples and average story size
in tokens.

a language modeling task, Hill et al. (2016) shows that humans can answer the questions
without the full context with an accuracy of only 64.4% and a language model alone with
57.7%. By contrast, the human performance when given the full context is at 81.6%. Since
the best neural model (Munkhdalai and Yu, 2016) achieves only 72.0% on the task, we
hypothesize that the task itself can benefit from external knowledge. The characteristics of
the data are shown in Table 3.1.

Other popular cloze-style datasets such as CNN/Daily Mail (Hermann et al., 2015) or
WhoDidWhat (Onishi et al., 2016) are mainly focused on finding Named Entities where the
benefit of adding commonsense knowledge (as we show for the NE part of CBT) would be
more limited.

Knowledge Source As a source of common-sense knowledge we use the Open Mind
Common Sense part of ConceptNet 5.0 that contains 630k fact triples. We refer to this entire
source as CN5All. We hypothesize that some of the lexical relations that resemble semantic
similarity can be learned in the training so we also conduct experiments with subparts of this
data: CN5WN3 which is the WordNet 3 part of CN5All (213k triples) and CN5Sel, which
excludes the following WordNet relations: RelatedTo, IsA, Synonym, SimilarTo, HasContext.

3.2.2 Open Book Question Answering with External Background and
Commonsense Knowledge

Dataset Description OpenBookQA is a question answering modeled after open book
exams for assessing human understanding of a subject. The open book that comes with our
questions is a set of 1326 elementary-level science facts. Roughly 6000 questions probe an
understanding of these facts and their application to novel situations. This requires combining
an open book fact (e.g., metals conduct electricity) with broad common knowledge (e.g., a
suit of armor is made of metal) obtained from other sources. While existing QA datasets
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OpenBookQA Statistics
Total # of questions 5957
Train # of questions 4957
Dev # of questions 500
Test # of questions 500
# of choices per question 4
Avg. question sentences 1.08 (6)
Avg. question tokens 11.46 (76)
Avg. choice tokens 2.89 (23)
Avg. science fact tokens 9.38 (28)
Vocabulary size (q+c) 11855
Vocabulary size (q+c+f) 12839
Answer is the longest choice 1108 (18.6%)
Answer is the shortest choice 216 (3.6%)

Table 3.2 Statistics for full OpenBookQA dataset. Parenthetical numbers next to each average
are the max.

over documents or knowledge bases, being generally self-contained, focus on linguistic
understanding, OpenBookQA probes a deeper understanding of both the topic—in the
context of common knowledge—and the language it is expressed in. Human performance on
OpenBookQA is close to 92%, but many state-of-the-art pre-trained QA methods perform
surprisingly poorly, worse than several simple neural baselines we develop. OpenBookQA
consists of 5957 questions, with 4957/500/500 in the Train/Dev/Test splits. Table 3.2
summarizes some statistics about the full dataset. Each question has exactly four answer
choices and one associated fact used in the creation process. We report the average length of
questions, candidate choices, and associated facts, as well as how often is the longest/shortest
choice the correct one.

Knowledge Sources The dataset comes with an open book containing 1326 elementary
level science facts. Each question in the dataset is accompanied by an oracle fact that bridges
it with a fact from the open book. The selected oracle fact is not intended for use in the
evaluation but can be used for computing an upper bound of a knowledge-enhanced model.
Instead, for experimentation with knowledge, we consider the ‘open book’ set of facts F in
conjunction with two sources of common knowledge: the Open Mind Common Sense (Singh
et al., 2002) part of ConceptNet (Speer et al., 2017), and its WordNet (Miller, 1995) subset.
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Fig. 3.2 Full architecture of our approach.

3.3 Cloze-style Reading Comprehension with Background
Knowledge Sources

In this work, we examine the impact of using external knowledge as supporting information
for the task of cloze style reading comprehension.

We build a system with two modules (Figure 3.2). The first, Knowledge Retrieval,
performs fact retrieval and selects a number of facts f1, ..., fp that might be relevant for
connecting story, question, and candidate answers. The second, main module, the Knowl-
edgeable Reader, is a knowledge-enhanced neural module. It uses the input of the story
context tokens d1..m, the question tokens q1..n, the set of answer candidates a1..k and a set of
‘relevant’ background knowledge facts f1..p in order to select the right answer. To include
external knowledge for the RC task, we encode each fact f1..p and use attention to select the
most relevant among them for each token in the story and question. We expect that enriching
the text with additional knowledge about the mentioned concepts will improve the prediction
of correct answers in a strong single-pass system. See Figure 3.1 for illustration.

3.3.1 Knowledge Retrieval

In our experiments we use knowledge from the Open Mind Common Sense (OMCS, Singh
et al. (2002)) part of ConceptNet, a crowd-sourced resource of commonsense knowledge with
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a total of ∼630k facts. Each fact fi is represented as a triple fi=(subject, relation, object),
where subject and object can be multi-word expressions and relation is a relation type. An
example is: ([bow]subj , [IsUsedFor]rel, [hunt, animals]obj)

We experiment with three set-ups: using (i) all facts from OMCS that pertain to Con-
ceptNet, referred to as CN5All, (ii) using all facts from CN5All excluding some WordNet
relations referred to as CN5Sel(ected) (see Section 3.2.1), and using (iii) facts from OMCS
that have source set to WordNet (CN5WN3).

To address our cloze-style setup where our answer is a single token, we employ a heuristic
approach for selecting relevant facts from our knowledge source. For each instance (D, Q,
A1..10) we retrieve relevant commonsense background facts. We first retrieve facts that
contain lemmas that can be looked up via tokens contained in any D(ocument), Q(uestion)
or A(nswer candidates). We add a weight value for each node: 4, if it contains a lemma of a
candidate token from A; 3, if it contains a lemma from the tokens of Q; and 2 if it contains a
lemma from the tokens of D. The selected weights are chosen heuristically such that they
model relative fact importance in different interactions as A+A > A+Q > A+D > D+Q >

D+D. We weight the fact triples that contain these lemmas as nodes, by summing the weights
of the subject and object arguments. Next, we sort the knowledge triples by this overall
weight value. To limit the memory of our model, we run experiments with different sizes of
the top number of facts (P ) selected from all instance fact candidates, P ∈ {50, 100, 200}.
As an additional retrieval limitation, we force the number of facts per answer candidate to be
the same, to avoid a frequency bias for an answer candidate that appears more often in the
knowledge source. Thus, if we select the maximum 100 facts for each task instance and we
have 10 answer candidates ai=1..10, we retrieve the top 10 facts for each candidate ai that has
either a subject or an object lemma for a token in ai. If the same fact contains lemmas of two
candidates ai and aj (j > i), we add the fact once for ai and do not add the same fact again
for aj . If several facts have the same weight, we take the first in the order of the list2, i.e., the
order of retrieval from the database. If one candidate has less than 10 facts, the overall fact
candidates for the sample will be less than the maximum (100).

3.3.2 Knowledgeable Reader: Neural Reader with Explicit Knowledge
Memory

We implement our Knowledgeable Reader (KnReader) using as a basis the Attention Sum
Reader (Kadlec et al., 2016) as one of the strongest core models for single-hop RC. We

2We also experimented with re-ranking the facts with the same weight sums using tf-idf but we did not
notice a difference in performance.
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Fig. 3.3 The Knowledgeable Reader combines plain context & enhanced (context + knowl-
edge) representations of D and Q and retrieved knowledge from the explicit memory with
the Key-Value approach.

extend it with a knowledge fact memory that is filled with pre-selected facts. Our aim is to
examine how adding commonsense knowledge to a simple yet effective model can improve
the RC process and to show some evidence of that by attending to the incorporated knowledge
facts. The model architecture is shown in Figure 3.3.

Base Model Our model for RC is based on the Attention-Sum Reader (Kadlec et al., 2016).
It reads the input of story tokens d1..n, the question tokens q1..m, and the set of candidates
a1..10 that occur in the story text. The model calculates the attention between the question
representation rq and the story token context encodings of the candidate tokens a1..10 and
sums the attention scores for the candidates that appear multiple times in the story. The
model selects as answer the candidate that has the highest attention score.

Word Embeddings Layer We represent input document and question tokens w by looking
up their embedding representations ei = Emb(wi), where Emb is an embedding lookup
function. We apply dropout (Srivastava et al., 2014) with keep probability p = 0.8 to the
output of the embeddings lookup layer.
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Context Representations To represent the document and question contexts, we first encode
the tokens with a Bi-directional GRU (Gated Recurrent Unit) (Chung et al., 2014) to obtain
context-encoded representations for document (cctxd1..n

) and question (cctxq1..m
) encoding:

cctxd1..n
= BiGRU ctx(ed1..n) ∈ Rn×2h (3.1)

cctxq1..m
= BiGRU ctx(eq1..m) ∈ Rm×2h, (3.2)

where di and qi denote the ith token of a text sequence d (document) and q (question),
respectively, n and m is the size of d and q and h the output hidden size (256) of a single
GRU unit. BiGRU is defined in (3.3), with ei a word embedding vector

BiGRU ctx(ei, hiprev) =
[
−−−→
GRU(ei,

−−−→
hiprev),

←−−−
GRU(ei,

←−−−
hiprev)],

(3.3)

where hiprev = [
−−−→
hiprev ,

←−−−
hiprev ], and

−−−→
hiprev and

←−−−
hiprev are the previous hidden states of the

forward and backward layers. Below we use BiGRU ctx(ei) without the hidden state, for
short.

Question Query Representation For the question we construct a single vector represen-
tation rctxq by retrieving the token representation at the placeholder (XXXX) index pl (cf.
Figure 3.3):

rctxq = cctxqi..m
[pl] ∈ R2h, (3.4)

where [pl] is an element pickup operation.
Our question vector representation is different from the original AS Reader that builds the

question by concatenating the last states of a forward and backward layer [
−−−→
GRU(em),

←−−−
GRU(e1)].

We changed the original representation as we observed some very long questions and in this
way aim to prevent the context encoder from ’forgetting’ where the placeholder is.

Answer Prediction: Qctx to Dctx Attention In order to predict the correct answer to the
given question, we rank the given answer candidates a1..aL according to the normalized
attention sum score between the context (ctx) representation of the question placeholder rctxq
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and the representation of the candidate tokens in the document:

P (ai|q, d) = softmax(
∑

αij) (3.5)

αij = Att(rctxq , cctxdj
), i ∈ [1..L], (3.6)

where j is an index pointer from the list of indices that point to the candidate ai token
occurrences in the document context representation cd. Att is a dot product.

Enriching Context Representations with Knowledge (Context+Knowledge) To enhance
the representation of the context, we add knowledge, retrieved as a set of knowledge facts.

Knowledge Encoding For each instance in the dataset, we retrieve a number of relevant
facts (cf. Section 3.3.1). Each retrieved fact is represented as a triple f = (wsubj

1..Lsubj
, wrel

0 , wobj
1..Lobj

),
where wsubj

1..Lsubj
and wobj

1..Lobj
are a multi-word expressions representing the subject and object

with sequence lengths Lsubj and Lobj , and wrel
0 is a word token corresponding to a relation.3

As a result of fact encoding, we obtain a separate knowledge memory for each instance in
the data.

To encode the knowledge we use the same BiGRU weights used for the context and
question to encode the triple argument tokens into the following context-encoded representa-
tions:

f subj
last = BiGRU(Emb(wsubj

1..Lsubj
), 0) (3.7)

f rel
last = BiGRU(Emb(wrel

0 ), f subj
last ) (3.8)

f obj
last = BiGRU(Emb(wobj

1..Lsubj
), f rel

last), (3.9)

where f subj
last , f rel

last, f
obj
last are the final hidden states of the context encoder BiGRU , that are

also used as initial representations for the encoding of the next triple attribute in left-to-right
order. Comprehensive visualization of the facts encoding and the unrolled token states is
shown on Figure 3.4.

The motivation behind this encoding is: (i) using the same BiGRU weights used for
context encoding, we encode the knowledge fact attributes in the same vector space as the
plain tokens; (ii) we preserve the triple’s directionality; (iii) we use the relation type as a way
of filtering the subject information to initialize the object.

3The 0 in wrel
0 indicates that we encode the relation as a single relation type word. Ex. /r/IsUsedFor.
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Fig. 3.4 Encoding the knowledge triple using BiGRU.

Querying the Knowledge Memory To enrich the context representation of the doc-
ument and question tokens with the facts collected in the knowledge memory, we select a
single sum of weighted fact representations for each token using Key-Value retrieval (Miller
et al., 2016). In our model the key M

k(ey)
i can be either f subj

last or f obj
last and the value M

v(alue)
i

is f obj
last.
For each context-encoded token cctxsi

(s = d, q; i the token index) we attend to all
knowledge memory keys Mk

i in the retrieved P knowledge facts. We use an attention
function Att, scale the scalar attention value using softmax, multiply it with the value
representation M v

i and sum the result into a single vector value representation cknsi :

cknsi =
∑

softmax(Att(cctxsi
,Mk

1..P ))
TM v

1..P (3.10)

Att is a dot product, but it can be replaced with another attention function. As a result of this
operation, the context token representation cctxsi

and the corresponding retrieved knowledge
cknsi are in the same vector space ∈ R2h.

Combine Context and Knowledge (ctx+ kn) We combine the original context token
representation cctxsi

, with the acquired knowledge representation cknsi to obtain cctx+kn
si

:

cctx+kn
si

= γcctxsi
+ (1− γ)cknsi , (3.11)

where γ = 0.5. We keep γ static but it can be replaced with a gating function.

Answer Prediction: Qctx(+kn) to Dctx(+kn) To rank answer candidates a1..aL we use
attention sum similar to Eq.3.5 over an attention αensemble

ij
that combines attentions between
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context (ctx) and context+knowledge (ctx+ kn) representations of the question (rctx(+kn)
q )

and candidate token occurrences aij in the document cctx(+kn)
dj

:

P (ai|q, d) = softmax(
∑

αensemble
ij

) (3.12)

αensemble
ij

=

W1Att(r
ctx
q , cctxdj

)

+W2Att(r
ctx
q , cctx+kn

dj
)

+W3Att(r
ctx+kn
q , cctxdj

)

+W4Att(r
ctx+kn
q , cctx+kn

dj
),

(3.13)

where j is an index pointer from the list of indices that point to the candidate ai token
occurrences in the document context representation c

ctx(+kn)
d . W1..4 are scalar weights

initialized with 1.0 and optimized during training.4 We propose the combination of ctx and
ctx+ kn attentions because our task does not provide supervision on whether the knowledge
is needed. Having the combinations of knowledge and context interaction, we can examine
the attention values at inference and validate if the knowledge was needed to answer the
question correctly.

3.3.3 Technical Details

We implement our model in TensorFlow 0.12 (Abadi et al., 2015). Below we report pre-
processing steps and hyper-parameters required for reproducing the model.

Dataset We perform experiments on the Common Nouns and Named Entities parts of the
Children’s Book Test (CBT) (Hill et al., 2016). 5

Pre-processing For each instance of the dataset (21 sentences, 20 for the story and 1 for
question), we remove the line number, which is originally presented in the text as a first token
of the sentence and split the tokens using str.split() in Python 2.7. We then concatenate the
tokens for the sentences in the story into a single list of story tokens d1..m.

Knowledge Source We use knowledge from the Open Mind Common Sense (OMCS,
Singh et al. (2002)) part of ConceptNet (Speer et al., 2017), a crowd-sourced resource of
commonsense knowledge with a total of ∼630k facts. 6

4An example for learned W1..4 is (1.84, 1.41, 2.13, 1.49) in setting (CBT CN, CN5Sel, Subj-Obj as k-v, 50
facts).

5The dataset can be downloaded from: http://www.thespermwhale.com/jaseweston/babi/CBTest.tgz
6ConceptNet 5 github page: https://github.com/commonsense/conceptnet5.

http://www.thespermwhale.com/jaseweston/babi/CBTest.tgz
https://github.com/commonsense/conceptnet5
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Vocabulary To build the vocabulary we select the words that occur at least 5 times in the
training set. We extend the vocabulary with all words retrieved from the knowledge source.
All words are lowercased. Following Kadlec et al. (2016) we use multiple unknown tokens
(UNK1, UNK2, . . . , UNK100). In each example, for each unknown word, we pick randomly
an unknown token from the list and use it for all occurrences of the word in the document
(story) and question.

Word Embeddings We use Glove 100D7 word embeddings pre-trained on 6B tokens from
Wikipedia and Gigaword5. We initialize the out-of-vocabulary words by sampling from a
uniform distribution in range [−0.1, 0.1]. We optimize all word embeddings in the first 8000
training steps.

Encoder Hidden Size. We use a hidden size of 256 for the GRU encoder states (512
output for our bi-directional encoding). This setting has been shown to perform well for the
Attention Sum Reader (Kadlec et al., 2016).

Batching, Learning rate, Sampling We sort the data examples in the training set by
document length and create batches with 64 examples. For each training step we pick batches
randomly. After every 1000 training steps we evaluate the models on the validation Dev set.
We train for 60 epochs and pick the model with the highest validation accuracy to make the
predictions for Test.

Optimization We use cross entropy loss on the predicted scores for each answer candidate.
We use Adam (Kingma and Ba, 2015) optimizer with initial learning rate of 0.001 and clip
the gradients in the range [−10, 10].

3.4 Open Book Question Answering with External Knowl-
edge Sources

In addition to reading comprehension, which is the main focus of this thesis, we evaluate
our Knowledgeable Reader model to open book question answering on OpenBookQA
(Mihaylov et al., 2018). OpenBookQA is a multi-choice dataset that requires answering
scientific questions given scientific knowledge (open book) and requiring external common
or commonsense knowledge. An example is shown in Figure 3.5.

7The embeddings can be downloaded from: http://nlp.stanford.edu/data/glove.6B.zip

http://nlp.stanford.edu/data/glove.6B.zip
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Question:
Which of these would let the most heat travel through?
A) a new pair of jeans.
B) a steel spoon in a cafeteria.
C) a cotton candy at a store.
D) a calvin klein cotton hat.

Science Fact:
Metal is a thermal conductor.

Common Knowledge:
Steel is made of metal.
Heat travels through a thermal conductor.

Fig. 3.5 An example for a question with a given set of choices and supporting facts.

To tackle this dataset we implement a two-stage model for incorporating external common
knowledge, K. The first module performs information retrieval on K to select a fixed size
subset of potentially relevant facts KQ,C for each instance in the dataset. The second module
is a neural network that takes (Q, C, KQ,C) as input to predict the answer aq,c to a question
Q from the set of choices C.

3.4.1 Knowledge Retrieval

This module is the first part of a two-stage approach for incorporating knowledge from an
external source K.

For the information retrieval, we use TfIdfVectorizer8 to build vector representations
⃗qtfidf , ⃗citfidf and ⃗ktfidf for the question q, choice ci ∈ C, and fact k ∈ K based on the tokens in

the training set. We then calculate similarity scores tq,k and tq,ci,k between q and ci, resp.,
and each of the external facts in k ∈ K:

tq,k = 1− sim(q⃗tfidf , k⃗tfidf)

tq,ci,k = 1− sim(c⃗itfidf , k⃗tfidf) · tq,k,

where sim is implemented as cosine distance. Based on these similarity scores, we obtain
a set Kq,C of facts for each (q, C,K) as Kq ∪

⋃
i Kq,ci , where Kq and Kq,ci are the top Nk

facts each with highest similarity tq,k and tq,ci,k, respectively. Nk is a hyper-parameter chosen
from {5, 10, 20} so as to yield the best Dev set performance.

8Term frequency, Inverse document frequency based vectorizer from scikit-learn (Pedregosa et al., 2011).
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For experimentation with knowledge, we consider the ‘open book’ set of facts F in
conjunction with two sources of common knowledge: the Open Mind Common Sense
(Singh et al., 2002) part of ConceptNet (Speer et al., 2017), and its WordNet (Miller, 1995)
subset.

3.4.2 Knowledgeable Reader for Multi-Choice Question Answering

Base Model: BiLSTM Max-Out As a base neural model, we adapt BiLSTM max-out
model (Conneau et al., 2017a) to our QA task. That is, we first encode the question tokens and
choice tokens ws

1...ns
, independently with a bi-directional context encoder (LSTM) to obtain

a context (ctx) representation hctx
s1...ns

= BiLSTM(es1...ns
) ∈ Rns×2h Next, we perform an

element-wise aggregation operation max on the encoded representations hctx
s1..ns

to construct
a single vector:

rctxs = max(hctx
s1..ns

) ∈ R2h. (3.14)

Given the contextual representations for each token sequence, we experiment with three
configurations for using these representations for QA:

(a) Plausible Answer Detector. This baseline goes to the extreme of completely
ignoring q and trying to learn how plausible it is for ci to be the correct answer to some
question in this domain. This captures the fact that certain choices like ‘a magical place’
or ‘flying cats’ are highly unlikely to be the correct answer to a science question without
negation (which is the case for OpenBookQA).

We implement a plausible answer detector using a choice-only model for predicting the
answer by obtaining a score αci as: αci = W T

c r
ctx
ci
∈ R1, where W T

c ∈ R2h is a weights
vector optimized during training, i = {1..4} is the index of the choice. To obtain the
answer choice from the set of choice scores αc1..4 using argmax(softmax(αc1..4)), where
softmax(αci) =

exp(αci )∑4
j=1 exp(αcj )

as usual.
This model tries to predict which choice best matches the question (Nakov et al., 2016b),

without relying on external knowledge. To achieve that, we compute an attention score
αq,ci between q and each of the choices qi as αq,ci = Att(rctxq , rctxci

), and select the one with
the highest score. We also experiment with a model where rctxq and rctxci

are obtained using
token-wise interaction proposed in ESIM (Chen et al., 2017).

Knowledgeable Reader for Multi-choice Question Answering As a base knowledge-
aware model, we use a variant of the model of Mihaylov and Frank (2018), implemented
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by extending our BiLSTM max-out For each instance the model reads the question q

and answers c1..4 independently and attends to the set of retrieved external knowledge
facts KQ,C . We encode each fact kj from KQ,C = k1..Nk

(Nk is the number of facts)
with the same BiLSTM as used for q and c1..4 and construct a single vector rctxkj

∈ R2h

using Eq. 3.14. Having such representations for each kj results in knowledge memory
matrix Mk = rctxk1..Nk

∈ RNk×2h. Note that Mk is dynamic memory, specific for each
instance in the batch, and is encoded in each step during training. This memory is used to
calculate a knowledge-aware representation, rkns =

∑
((MT

k r
ctx
s ).Mk) ∈ R2h. Each context

(ctx) representation rctxs (s ∈ S) is combined with rkns to obtain a knowledge-enhanced
representation rctx+kn

s = (rctxs + rkns )/2. We then model the knowledge-enhanced attention
αkn
q,ci

between q and ci as a linear combination of the ctx, kn and ctx + kn representations as

αq,ci = W T [Att(rctxs , rctxci
); Att(rkns , rknci );

Att(rctx+kn
s , rctxci

); Att(rctxs , rctx+kn
ci

);

Att(rctxs , rknci ); Att(r
kn
s , rctxci

);

Att(rctx+kn
s , rknci ); Att(r

kn
s , rctx+kn

ci
);

Att(rctx+kn
s , rctx+kn

ci
)],

where W ∈ R9 is a weight vector initialized with the ones vector and optimized during
training. We then select the answer ci with the highest score.

3.4.3 Baseline Models

We evaluate the performance of several baseline systems on the Dev and Test subsets of
OpenBookQA. For each question, a solver receives 1 point towards this score if it chooses
the correct answer, and 1/k if it reports a k-way tie that includes the correct answer. The
“Guess All” baseline, which always outputs a 4-way tie, thus achieves a score of 25%, the
same as the expected performance of a uniform random baseline.

3.4.3.1 No Training, External Knowledge Only

Since OpenBookQA is a set of elementary-level science questions, one natural baseline
category is existing systems that have proven to be effective on elementary- and middle-school
level science exams. These pre-trained systems, however, rely only on their background
knowledge and do not take the set F of core facts into account. Further, their knowledge
sources and retrieval mechanism are close to those used by the IR solver that, by design,
is guaranteed to fail on OpenBookQA. These two aspects place a natural limit on the
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effectiveness of these solvers on OpenBookQA, despite their excellent fit for the domain of
multiple-choice science questions. We consider four such solvers.

PMI (Clark et al., 2016) uses pointwise mutual information (PMI) to score each answer
choice using statistics based on a corpus of 280 GB of plain text. It extracts unigrams,
bigrams, trigrams, and skip-bigrams from the question q and each answer choice ci. Each
answer choice is scored based on the average PMI across all pairs of question and answer
n-grams.

TableILP (Khashabi et al., 2016) is an Integer Linear Programming (ILP) based reasoning
system designed for science questions. It operates over semi-structured relational tables
of knowledge. It scores each answer choice based on the optimal (as defined by the ILP
objective) “support graph” connecting the question to that answer through table rows. The
small set of these knowledge tables, however, often results in missing knowledge, making
TableILP not answer 24% of the OpenBookQA questions at all.

TupleInference (Khot et al., 2017a), also an ILP-based QA system, uses Open IE
tuples (Banko et al., 2007) as its semi-structured representation. It builds these subject-verb-
object tuples on-the-fly by retrieving text for each question from a large corpus. It then
defines an ILP program to combine evidence from multiple tuples.

DGEM (Khot et al., 2018) is a neural entailment model that also uses Open IE to produce
a semi-structured representation. We use the adaptation of this model to multiple-choice
question answering proposed by Clark et al. (2018), which works as follows: (1) convert q
and each ci into a hypothesis, hi, and each retrieved fact into a premise pj; and (2) return the
answer choice with the highest entailment score, argmaxi e(pj, hi).

3.4.3.2 No Training; F and External Knowledge

We also consider providing the set F of core facts to two existing solvers: the IR solver of
Clark et al. (2016) (to assess how far simple word-overlap can get), and the TupleInference
solver.

3.4.3.3 Trained Models, No Knowledge

We consider several neural baseline models that are trained using Train set of OpenBookQA.
For ease of explanation, we first define the notation used in our models. For a given question
qmc = (q, {c1, c2, c3, c4}), we define the set of token sequences , S = {q, c1, c2, c3, c4}. For
each token sequence s ∈ S, ws

j is the jth and esj = Emb(ws
j) is the embedding for this

token. We use ns to indicate the number of tokens in s and d for the dimensionality of the
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embeddings.9 We model multiple-choice QA as multi-class classification: Given qmc, predict
one of four class labels L = {1, 2, 3, 4}, where the true label is the correct answer index.

Embeddings + Similarities as Features. We first experiment with a simple logistic re-
gression model (Mihaylov and Nakov, 2016; Mihaylov and Frank, 2016a, 2017b) that uses
centroid vectors remb

s of the word embeddings of tokens in s, and then computes the cosine
similarities between the question and each answer choice, rcosq,ci

:

remb
s =

1

ns

ns∑
j=1

esj ∈ Rd

rcosq,ci
= cos(remb

q , remb
ci

) ∈ R1

For each training instance, we build a feature representation f⃗ by concatenating these vectors
and train an L2 logistic regression classifier:

f⃗ = [remb
q ; remb

c1..4
; rcosq,c1..4

] ∈ R5d+4

3.4.4 Technical Details

Our neural models are implemented with AllenNLP10 (Gardner et al., 2017) and PyTorch11

(Paszke et al., 2017).
We use cross-entropy loss and the Adam optimizer (Kingma and Ba, 2015) with an initial

learning rate of 0.001.

Training For the neural models without external knowledge, we typically train the model
with a maximum of 30 epochs and stop training early if the Dev set accuracy does not
improve for 10 consecutive epochs. We also halve the learning rate if there is no Dev set
improvement for 5 epochs. For the neural models with external knowledge, we typically train
for 60 epochs with patience of 20 epochs.

Encoder Hidden Size For most of our neural models, we use h = 128 as the LSTM hidden
layer size.

9For all experiments we use d = 300 GloVe (Pennington et al., 2014) embeddings pre-trained on 840B
tokens from Common Crawl (https://nlp.stanford.edu/projects/glove/).

10https://allennlp.org
11https://pytorch.org

https://allennlp.org
https://pytorch.org
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Embeddings We use Glove 100D word embeddings. The embedding dropout rate is
chosen from {0.1, 0.2, 0.5}, again based on the best Dev set performance.

Reporting Results For each model configuration, we perform 5 experiments with different
random seeds. For each run, we take the model with the best performance on Dev and
evaluate on Test. We report the average accuracy for the best Dev score and the average of
the corresponding Test score ± the standard deviation across the 5 random seeds.

The code for the models and the configuration files required for reproducing the results
are available at http://data.allenai.org/OpenBookQA.

3.5 Experiments and Results

We perform quantitative analysis through experiments. We study the impact of the used
knowledge and different model components that employ external knowledge for cloze-style
reading comprehension and open book question answering.

3.5.1 Cloze-style Reading Comprehension

We perform experiments on knowledge-enhanced cloze-style question answering on the
CBTest dataset. Some of the experiments below focus only on the Common Nouns (CN)
dataset, as it has been shown to be more challenging than Named Entities (NE) in prior work.

3.5.1.1 Model Parameters

We experiment with different model parameters.

Number of facts. We explore different sizes of knowledge memories, in terms of the
number of acquired facts. If not stated otherwise, we use 50 facts per example.

Key-Value Selection Strategy. We use two strategies for defining key and value (Key/Value):
Subj/Obj and Obj/Obj, where Subj and Obj are the subject and object attributes in the fact
triples and they are selected as Key and Value for the KV memory (see Section 3.3.2, Querying
the Knowledge Memory). If not stated otherwise, we use the Subj/Obj strategy.

Answer Selection Components. If not stated otherwise, we use ensemble attention
αensemble (combinations of ctx and ctx+kn) to rank the answers. We call this our Full
model (see Sec. 3.3.2).

http://data.allenai.org/OpenBookQA
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Source Dev Test
CN5All 71.40 66.72
CN5WN3 (WN3) 70.70 68.48
CN5Sel(ected) 71.85 67.64

Table 3.3 Results with different knowledge sources, for CBT-CN (Full model, 50 facts).

# facts 50 100 200 500
Dev 71.85 71.35 71.40 71.20
Test 67.64 67.44 68.12 67.24

Table 3.4 Results for CBT (CN) with different numbers of facts. (Full model, CN5Sel)

Hyper-parameters. For our experiments we use pre-trained Glove (Pennington et al.,
2014) embeddings, BiGRU with hidden size 256, batch size of 64, and learning rate of
0.001 as they were shown (Kadlec et al., 2016) to perform good on the AS Reader.

3.5.1.2 Empirical Results

We perform experiments with the different model parameters described above. We report
accuracy on the Dev and Test and use the results on Dev set for pruning the experiments.

Knowledge Sources. We experiment with different configurations of ConceptNet facts
(see Section 3.2.1). Results on the CBT CN dataset are shown in Table 3.3. CN5Sel works
best on the Dev set but CN5WN3 works much better on Test. Further experiments use the
CN5Sel setup.

Number of facts. We further experiment with different numbers of facts on the Common
Nouns dataset (Table 3.4). The best result on the Dev set is for 50 facts so we use it for further
experiments.

Component ablations. We ensemble the attention from different combinations of the inter-
action between the question and document context (ctx) representations and context+knowledge
(ctx+kn) representations in order to infer the right answer (see Section 3.3.2, Answer Rank-
ing).

Table 3.5 shows that the combination of different interactions between ctx and ctx+kn
representations leads to clear improvement over the w/o knowledge setup, in particular for
the Common Nouns dataset.
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Named Entities (NE) Common Nouns (CN)
Drepr to Qrepr interaction Dev Test Dev Test
Dctx, Qctx (w/o know) 75.50 70.30 68.20 64.80
Dctx+kn, Qctx+kn 76.45 69.68 70.85 66.32
Dctx, Qctx+kn 77.10 69.72 70.80 66.32
Dctx+kn, Qctx 75.65 70.88 71.20 67.96
Full model 76.80 70.24 71.85 67.64
w/o Dctx, Qctx 75.95 70.24 70.65 67.12
w/o Dctx+kn, Qctx+kn 76.20 69.80 70.75 67.00
w/o Dctx, Qctx+kn 76.55 70.52 71.75 66.32
w/o Dctx+kn, Qctx 76.05 70.84 70.80 66.80

Table 3.5 Results for different combinations of interactions between document (D) and
question (Q) context (ctx) and context + knowledge (ctx+kn) representations. (CN5Sel, 50
facts)

Named Entities (NE) Common Nouns (CN)
Key/Value Dev Test Dev Test
Subj/Obj 76.65 71.52 71.85 67.64
Obj/Obj 76.70 71.28 71.25 67.48

Table 3.6 Results for key-value knowledge retrieval and integration. (CN5Sel, 50 facts).
Subj/Obj means: we attend over the fact subject (Key) and take the weighted fact object as
value (Value).

Key-Value Selection Strategy. Table 3.6 shows that for the NE dataset, the two strategies
perform equally well on the Dev set, whereas the Subj/Obj strategy works slightly better on
the Test set. For Common Nouns, Subj/Obj is better.

Results for Ensemble Models. For each dataset, we combine our best 11 runs and use
majority voting to predict the answer for our Ensemble model.

In Table 3.8 we show the comparison of our approach with multi-hop models. We report
Accuracy on the Dev and Test sets, rounded to the first decimal point as done in previous
work. The AoA Reader (Cui et al., 2017) uses re-ranking as a post-processing step and the
other neural models are not directly comparable. Our ensemble model is comparable to the
performance of most multi-hop models that do not use re-ranking.

Comparison to Previous Work. Table 3.7 compares our model (Knowledgeable Reader)
to previous work on the CBT datasets. We show the results of our model with the settings
that performed best on the Dev sets of the two datasets NE and CN: for NE, (Dctx+kn, Qctx)
with 100 facts; for CN the Full model with 50 facts, both with CN5Sel.
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Named Entities (NE) Common Nouns (CN)
Models dev test dev test

Human (ctx + q) - 81.6 - 81.6
Single interaction

LSTMs (ctx + q) (Hill et al., 2016) 51.2 41.8 62.6 56.0
AS Reader 73.8 68.6 68.8 63.4
AS Reader (our impl) 75.5 70.3 68.2 64.8
KnReader (ours) 77.4 71.4 71.8 67.6

Multiple interactions
MemNNs (Weston et al., 2015c) 70.4 66.6 64.2 63.0
EpiReader (Trischler et al., 2016) 74.9 69.0 71.5 67.4
GA Reader (Dhingra et al., 2017b) 77.2 71.4 71.6 68.0
IAA Reader (Sordoni et al., 2016) 75.3 69.7 72.1 69.2
AoA Reader (Cui et al., 2017) 75.2 68.6 72.2 69.4
GA Reader (+feat) 77.8 72.0 74.4 70.7
NSE (Munkhdalai and Yu, 2016) 77.0 71.4 74.3 71.9

Table 3.7 Comparison of KnReader to existing end-to-end neural models on the benchmark
datasets.

Named Entities (NE) Common Nouns (CN)
Models dev test dev test

Human (ctx + q) - 81.6 - 81.6
Ensemble

AS Reader (Kadlec et al., 2016) 74.5 70.6 71.1 68.9
KnReader (ours) 78.0 73.3 72.2 70.6
EpiReader (Trischler et al., 2016) 76.6 71.8 73.6 70.6
IAA Reader (Sordoni et al., 2016) 76.9 72.0 74.1 71.0
AoA Reader (Cui et al., 2017) 78.9 74.5 74.7 70.8

Re-ranking
AoA Reader (re-ranking) 79.6 74.0 75.7 73.1
AoA Reader (ens + re-rank) 80.3 75.6 77.0 74.1

Table 3.8 Comparison of KnReader to existing ensemble models and models that use re-
ranking.

Note that our work focuses on the impact of external knowledge and employs a single
interaction (single-hop) between the document context and the question so we primarily
compare to and aim at improving over similar models. KnReader clearly outperforms prior
single-hop models on both datasets. While we do not improve over the state of the art, our
model stands well among other models that perform multiple hops.
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Solver Dev Test

Human solver 89.3 91.7
Guess All (“random”) 25.0 25.0

NO TRAINING, KB ONLY (§3.4.3.1)
TupleInference 15.9 17.9
PMI (Waterloo corpus) 19.7 21.2
TableILP 20.0 23.4
DGEM 27.4 24.4

NO TRAINING, KB + F (§3.4.3.2)
IR with F 25.5 24.8
TupleInference with F 23.6 26.6
DGEM with F 28.2 24.6

TRAINED MODELS, NO F OR KB (§3.4.3.3)
Embedd+Sim 44.6 41.8
ESIM 53.9±0.4 48.9±1.1
Question Match (BiLSTM Max-Out) 54.6±1.2 50.2±0.9

KNOWLEDGABLE READER, ORACLE SETUP, F AND/OR KB (§3.4.2)
f 63.0±2.3 55.8±2.3
f + WordNet 57.6±1.4 56.3±1.3
f + ConceptNet 57.0±1.6 53.7±1.5
f + k 80.2±1.1 76.9±0.7

KNOWLEDGABLE READER, KB (§3.4.2)
ConceptNet only (cn5omcs) 54.0±0.6 51.1±2.1
Wordnet only (cn5wordnet) 54.9±0.4 49.4±1.5
OpenBook + ConceptNet 53.8±1.0 51.2±1.1
OpenBook + Wordnet 53.3±0.7 50.6±0.6

Table 3.9 Scores obtained by various solvers on OpenBookQA, reported as a percentage
± the standard deviation across 5 runs with different random seeds. Other baselines are
described in the corresponding referenced section. For oracle evaluation, we use the gold
science fact f associated with each question, and optionally the additional fact k provided by
the question author. Bold denotes the best Test score in each category.

3.5.2 Open Book Question Answering

Here, we report the results for open book question answering. The results for various
baseline models are summarized in Table 3.9, grouped by method category. We make a few
observations:

First, the performance of crowd-workers is 92%, whereas the random guess is 25%.
The second group shows that pre-trained retrieval solvers (Clark et al., 2018) for multiple-

choice science questions perform poorly. One explanation is their correlation with the IR
method used for question filtering (Mihaylov et al., 2018).
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The third group of results suggests that adding F to pre-trained models has a mixed
effect, improving TupleInference by 8.7% but not changing DGEM.12 Unlike DGEM, Tuple-
Inference relies on brittle word-overlap similarity measures very similar to the ones used by
IR. Since IR (KB) gets 0% by design, TupleInference (KB) also has poor performance, and
adding F helps it find better support despite the brittle measures.

The fourth group demonstrates that carefully designed trainable neural models — even
if simplistic and knowledge-free — can be surprisingly powerful. The “question match”
solver, which simply compares the BiLSTM max-out encoding of the question with that of
various answer choices, also achieves 50.2%.13

Interestingly, all of these neural knowledge-free baselines simultaneously succeed on
34.4% of the Dev questions and simultaneously fail on 23.6%. For Question Match and
ESIM we also experiment with ELMo (Peters et al., 2018) which improved their score on
Test with 0.4% and 1.8%.

The fifth group demonstrates the need for external knowledge and deeper reasoning.
When the “oracle” science fact f used by the question author is provided to the knowledge-
enhanced reader, it improves over the knowledge-less models by about 5%. However, there
is still a large gap, showing that the core fact is insufficient to answer the question. When
we also include facts retrieved from WordNet (Miller et al., 1990), the score improves by
about 0.5%. Unlike the WordNet gain, adding ConceptNet (Speer et al., 2017) introduces
a distraction and reduces the score. This suggests that ConceptNet is either not a good
source of knowledge for our task, or only a subset of its relations should be considered.
Overall, external knowledge helps, although retrieving the right bits of knowledge remains
difficult. In the fourth row of the fifth group of Table 3.9, we use the oracle core fact along
with the question author’s interpretation of the additional fact k. This increases the scores
substantially, to about 76%. This big jump shows that improved knowledge retrieval should
help with this task. At the same time, we are still not close to the human performance level
of 92% due to various reasons: (a) the additional fact needed can be subjective, as hinted at
by our earlier analysis; (b) the authored facts K tend to be noisy (incomplete, over-complete,
or only distantly related), also as mentioned earlier; and (b) even given the true gold facts,
performing reliable “reasoning” to link them properly remains a challenge.

In the last group we show the results of the knowledgeable reader with ConceptNet or
WordNet as sources of external knowledge as well as their combination with the OpenBook.

12By design, IR with its default corpus gets 0% on OpenBookQA. Hence we don’t consider the effect of
adding F , which appears artificially magnified.

13At the time (April 2018) this model also achieved the best score, 33.87%, on the ARC Reasoning
Challenge (Clark et al., 2018). When adapted for the textual entailment task by comparing BiLSTM max-out
encodings of premise and hypothesis, it achieves 85% on the SciTail dataset (Khot et al., 2018).
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We observe a peak of the performance for the experiments where ConceptNet is used, com-
pared to the baseline trained models without knowledge. While WordNet does not perform
better alone, it improves the Question Match (no-knowledge) baseline when combined with
the OpenBook.

3.6 Discussion and Analysis

In this section, we analyze the results for our Knowledgeable Reader. Here we focus our
analysis mostly on the cloze-style reading comprehension task which is the main scope of
this thesis.

3.6.1 Analysis of the empirical results.

Our experiments examined key parameters of the KnReader. As expected, injection of
background knowledge yields only small improvements over the baseline model for Named
Entities. However, on this dataset, our single-hop model is competitive to most multi-hop
neural architectures.

The integration of knowledge clearly helps for the Common Nouns task. The impact
of knowledge sources (Table 3.3) is different on the Dev and Test sets which indicates that
either the model or the data subsets are sensitive to different knowledge types and retrieved
knowledge. Table 3.6 shows that attending over the Subj of the knowledge triple is slightly
better than Obj. This shows that using a Key-Value memory is valuable. A reason for the
lower performance of Obj/Obj is that the model picks facts that are similar to the candidate
tokens, not adding much new information. From the empirical results we see that training
and evaluation with fewer facts is slightly better. We hypothesize that this is related to the
lack of supervision on the retrieved and attended knowledge.

3.6.2 Interpreting Component Importance

Figure 3.6 shows the impact on prediction accuracy of individual components of the Full
model, including the interaction between D and Q with ctx or ctx + kn (w/o ctx-only).
The values for each component are obtained from the attention weights, without retrain-
ing the model. The difference between blue (left) and orange (right) values indicates how
much the module contributes to the model. Interestingly, the ranking of the contribution
(Dctx, Qctx+kn > Dctx+kn, Qctx > Dctx+kn, Qctx+kn) corresponds to the component impor-
tance ablation on the Dev set, lines 5-8, Table 3.5.
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Fig. 3.6 # of items with reversed prediction (±correct) for each combination of (ctx+kn, ctx)
for Q and D. We report the number of wrong→ correct (blue) and correct→ wrong (orange)
changes when switching from score w/o knowledge to score w/ knowledge. The best model
type is Ensemble. (Full model w/o Dctx, Qctx).

3.6.3 Qualitative Data Investigation

We will use the attention values of the interactions between Dctx(+kn) and Qctx(+kn) and
attentions to facts from each candidate token and the question placeholder to interpret how
knowledge is employed to make a prediction for a single example.

Method: Interpreting Model Components. We manually inspect examples from the
evaluation sets where KnReader improves prediction (blue (left) category, Fig. 3.6) or makes
the prediction worse (orange (right) category, Fig. 3.6). Figure 3.8 shows the question with a
placeholder, followed by answer candidates and their associated attention weights as assigned
by the model w/o knowledge. The matrix shows selected facts and their assigned weights for
the question and the candidate tokens. Finally, we show the attention weights determined
by the knowledge-enhanced D to Q interactions. The attention to the correct answer (head)
is low when the model considers the text alone (w/o knowledge). When adding retrieved
knowledge to the Q only (row ctx, ctx+ kn) and to both Q and D (row ctx+ kn, ctx+ kn)
the score improves, while when adding knowledge to D alone (row ctx+ kn, ctx) the score
remains ambiguous. The combined score Ensemble (see Eq. 3.13) then takes the final
decision for the answer. In this example, the question can be answered without the story.
The model tries to find knowledge that is related to eyes. The fact eyes /r/PartOf head is
not contained in the retrieved knowledge but instead the model selects the fact ear /r/PartOf
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head which receives the highest attention from Q. The weighted Obj representation (head) is
added to the question with the highest weight, together with animal and bird from the next
highly weighted facts This results in a high score for the Qctx to Dctx+kn interaction with
candidate head.

Using the method described above, we analyze several example cases that highlight
different aspects of our model:

Case 1 We provide an extended illustration of the example discussed in the main paper
in Figure 3.8. We manually inspect examples from the evaluation sets where KnReader
improves prediction or makes the prediction worse. Figure 3.8 shows the question with
placeholder, followed by answer candidates and their associated attention weights as assigned
by the model w/o knowledge. The matrix shows selected facts and their learned weights for
the question and the candidate tokens. Finally, we show the attention weights determined by
the knowledge-enhanced D to Q interactions.

The attention to the correct answer (head) is low when the model considers the text alone
(w/o knowledge). When adding retrieved knowledge to the Q only (row ctx, ctx+ kn) and to
both Q and D (row ctx+ kn, ctx+ kn) the score improves, while when adding knowledge
to D alone (row ctx+ kn, ctx) the score remains ambiguous. The combined score Ensemble
then takes the final decision for the answer. In this example, the question can be answered
without the story. The model tries to find knowledge that is related to eyes. The fact eyes
/r/PartOf head is not contained in the retrieved knowledge but instead the model selects
the fact ear /r/PartOf head which receives the highest attention from Q. The weighted Obj
representation (head) is added to the question with the highest weight, together with animal
and bird from the next highly weighted facts This results in a high score for the Qctx to
Dctx+kn interaction with candidate head.

Case 2 Figure 3.9 shows another interesting example. The document is part of the The
kings new clothes by Hans Christian Andersen. While, given the story, many of the choices
are plausible (cloth, clothes, nothing, air, cloak) the model without knowledge selects cloth as
the most probable answer. Adding the knowledge facts reverts the answer. We can speculate
that the reason is the fact clothes /r/Antonym undressed retrieved by the answer candidate
token clothes which has multiple occurrences in the text, and since the updated representation
combines well with the phrase put on which is antonym to undressed clothes /r/Antonym
undressed and clothes /r/Antonym naked. A reason for this could also be the high frequency
of clothes in the story. However, the example cannot be answered using the story context
alone, as it talks about the imaginary, not existing (air, nothing) new clothes of the king.

The example also shows what kind of knowledge is missing in our currently used
resources: ideally, the question can be answered using information from the question alone,
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by analyzing the meaning of the phrases take off your clothes and then we will put on the new
XXXX. If they were available, the model could exploit the knowledge that taking off (clothes)
and putting on (clothes) are actions often performed in temporal sequence.

Case 3 In Figure 3.10 we have an example where the model overcomes the frequency
bias of the story (magician occurs 4 times) to select a more plausible example (father) using
the fact father /r/Antonym son.

Case 4 Figure 3.11 shows an example where a correct initial prediction obtained without
knowledge is reversed and a clearly wrong answer is selected instead. Although a relevant
fact is selected (people /r/UsedFor help you), apparently, the model misses the information
that brothers are people and can’t combine the acquired concept help you with the question
context and with their help dragged ..., and thus, the correct answer is not sufficiently
promoted.

Case 5 The example in Figure 3.12 illustrates the lack of knowledge about locations. The
context of Q talks about climbing up and while the text-only module selects the right answer
cliff, the available knowledge modifies the representation and reverses the answer to sea
which is usually on lower level. Here the association is made with a cliff and sea by the fact
inlet /r/PartOf sea and beach /r/PartOf shore). That is, the context-only neural representation
guesses that the plausible answer is similar to cliff (inlet and shores are usually associated
with cliff ). Again, we are missing knowledge of actions, e.g., that climbing is done to move
up steep locations such as hills, or cliffs. In future work we plan to experiment with sources
that offer more information about events.

Here we summarize our observations:
(i.) Answer prediction from Q or Q+D. In both human and machine RC, questions can

be answered based on the question alone (Figure 3.8) or jointly with the story context (Case
2, Suppl.). We show that empirically, enriching the question with knowledge is crucial for
the first type, while enrichment of Q and D is required for the second.

(ii.) Overcoming frequency bias.. We show that when appropriate knowledge is
available and selected, the model is able to correct a frequency bias towards an incorrect
answer (Cases 1 and 3).

(iii.) Providing appropriate knowledge. We observe a lack of knowledge regarding
events (e.g. take off vs. put on clothes, Case 2; climb up, Case 5). Nevertheless relevant
knowledge from CN5 can help predicting infrequent candidates (Case 2).

(iv.) Knowledge, Q and D encoding. The context encoding of facts allows the model
to detect knowledge that is semantically related, but not surface near to phrases in Q and D
(Case 2). The model finds facts to non-trivial paraphrases (e.g. undressed–naked, Case 2).
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bird head legs sides wood
Dctx, Qctx (w/o know) 0.00 0.26 0.40 0.33 0.02

Q: UNK_59 did not say anything ; but when the other two had
passed on she bent down to the bird , brushed aside the

feathers from his xxxxx , and kissed his closed eyes gently
.
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Fig. 3.7 Interpreting the components of KnReader. Adding knowledge to Q and D increases
the score for the correct answer. Results for top 5 candidates are shown. (Full model, CN
data, CN5Sel, Subj/Obj, 50 facts)
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Story: ... ‘ what has a bird , in spite of all his singing , in the winter-time ? he must
starve and freeze , and that must be very pleasant for him , i must say ! ’

bird birds head house legs mine sides spite time wood

Dctx, Qctx (w/o know) 0.00 0.00 0.26 0.00 0.40 0.00 0.33 0.00 0.00 0.02

<UNKNWN>_59 did not say anything ; but when the other two had passed on she bent down to the bird ,
brushed aside the feathers from his xxxxx , and kissed his closed eyes gently .
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Fig. 3.8 Case 1: Interpreting the components of KnReader (Full model). Adding retrieved
knowledge to Q and D helps the model to increase the score for the correct answer. Results
for top 5 candidates are shown. (Subj/Obj as key-value memory, 50 facts, CN5Sel) (Item
#357)
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Story: ... they pretended they were taking the cloth from the loom , cut with huge
scissors in the air , sewed with needles without thread , and then said at last , ‘ now the
clothes are finished ! ’ the emperor came himself with his most distinguished knights ,
and each impostor held up his arm just as if he were holding something , and said , ‘ see

! here are the breeches ! here is the coat ! here the cloak ! ’ and so on .
‘ spun clothes are so comfortable that one would imagine one had nothing on at all ; but
that is the beauty of it ! ’ ‘ yes , ’ said all the knights , but they could see nothing , for

there was nothing there .

air candles cloak cloth clothes knightsnothingscissors time whole

Dctx, Qctx (w/o know) 0.02 0.01 0.17 0.51 0.26 0.01 0.00 0.01 0.00 0.01

Q: ` will it please your majesty graciously to take off your clothes , ' said the impostors , ` then
we will put on the new xxxxx , here before the mirror . '
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Fig. 3.9 Case 2: Interpreting the components of KnReader (Full model). Adding retrieved
knowledge to Q and D helps the model to increase the score for the correct answer. Results
for top 5 candidates are shown. (Subj/Obj as key-value memory, 50 facts, CN5Sel) (Item
#52)
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Story: ... a celebrated magician , who had given the seed to my father , promised him
that they would grow into the three finest trees the world had ever seen .

‘ after this i had the beautiful fruit of these trees carefully guarded by my most faithful
servants ; but every year , on this very night , the fruit was plucked and stolen by an

invisible hand , and next morning not a single apple remained on the trees .
for some time past i have given up even having the trees watched .

father hand life magician morning orders servants wanderings

Dctx, Qctx (w/o know) 0.36 0.00 0.00 0.56 0.00 0.00 0.07 0.00

Q: when the king had finished his story , UNK_8 , his eldest son , said to him : ` forgive me ,
xxxxx , if i say i think you are mistaken .
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Fig. 3.10 Case 3: Interpreting the components of KnReader (Full model). Adding retrieved
knowledge to Q and D helps the model to increase the score for the correct answer. Results
for top 5 candidates are shown. (Subj/Obj as key-value memory, 50 facts, CN5Sel) (Item
#240)
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Story: ... in the same village there lived three brothers , who were all determined to
kill the mischievous hawk . ... ... his eyelids closed , and his head sank on his shoulders ,

but the thorns ran into him and were so painful that he awoke at once . the hawk fell
heavily under a big stone , severely wounded in its right wing .

the youth ran to look at it , and saw that a huge abyss had opened below the stone .

brotherscarriage head noise peace people thorns virtues walls windows

Dctx, Qctx (w/o know) 0.52 0.02 0.15 0.01 0.00 0.01 0.22 0.00 0.00 0.05

Q: he went at once to fetch his xxxxx , and with their help dragged a lot of UNK_22 and ropes to the
spot .
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Fig. 3.11 Case 4: Interpreting the components of KnReader (Full model). Adding retrieved
knowledge to Q and D confuses the model and decreases the score for the correct answer.
Results for top 5 candidates are shown. (Subj/Obj as key-value memory, 50 facts, CN5Sel)
(Item #172)
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Story: ... i also lay this belt beside you , to put on when you awaken ; it will keep you
from growing faint with hunger .

the woman now disappeared , and unk_98 woke , and saw that all her dream had been
true .

the rope hung down from the cliff , and the clew and belt lay beside her .

giant beach cliff dogs hold journey legs sea shoes strength

Dctx, Qctx (w/o know) 0.00 0.04 0.91 0.00 0.00 0.00 0.00 0.04 0.00 0.00

Q: the belt she put on , the rope enabled her to climb up the xxxxx , and the clew led her on till
she came to the mouth of a cave , which was not very big .
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Fig. 3.12 Case 5: Interpreting the components of KnReader (Full model). Adding retrieved
knowledge to Q and D confuses the model and decreases the score for the correct answer.
Results for top 5 candidates are shown. (Subj/Obj as key-value memory, 50 facts, CN5Sel)
(Item #187)
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3.6.4 Success and Failure Examples for Open Book QA

We give some examples of questions that were answered correctly/incorrectly by various
groups of models on the OpenBookQA(Mihaylov et al., 2018) dataset. We include here the
first three questions in each case.

Neural Baseline Successes We begin with three examples of questions that all neural
models without external knowledge (namely Question Match, Plausible Answer, One-Odd-
Out, and ESIM from the fourth group in Table 3.10) predicted correctly.

A body may find its temperature to be lowered after (A) water is heated up (B) fluid spreads
from pores (C) the air becomes arid (D) the sky stays bright
Oil is a non-renewable resource which tells us that when (A) it can be remade (B) it can
be found in other places (C) there is an endless supply (D) the final barrel is gone, there
supply is finished
Magma contains (A) particles of iron (B) Loads of leaves (C) Soda (D) Silly Putty

Table 3.10 Sample questions predicted correctly (172/500) by all trained neural models
without external knowledge.

In these examples, we observe that the correct answer usually contains a word that is
semantically closer (than words in other answer choices) to an important word from the
question: pores to body; non-renewable (negative sentiment) to gone, finished (also negative
sentiment); iron to magma (liquid rock).

Frilled sharks and angler fish live far beneath the surface of the ocean, which is why they are
known as (A) Deep sea animals (B) fish (C) Long Sea Fish (D) Far Sea Animals. Oracle
facts: (f ) deep sea animals live deep in the ocean. (k) Examples of deep sea animals are
angler fish and frilled sharks.
Gas can fill any container it is given, and liquid (A) is standard weight and size (B) is the
opposite of variable (C) only needs a few (D) uses what it needs. Oracle facts: (f ) Matter
in the liquid phase has definite volume. (k) liquid cannot spread endlessly.
When birds migrate south for the winter, they do it because (A) they are genetically called
to (B) their children ask for them to (C) it is important to their happiness (D) they decide to
each year. Oracle facts: (f ) migration is an instinctive behavior. (k) instinctive is genetic.

Table 3.11 Sample questions predicted correctly by the f + k Oracle model (405/500) but
were predicted incorrectly by all of the 4 neural models without knowledge (total of 69 out
of 405).
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An example of data collection is: (A - 0.9977) Deleting case files on the computer, (B -
0.0000) Touching evidence without gloves, (C - 0.0004) speaking with a witness, (D -
0.0019) Throwing documents in the trash. Oracle facts: (f ) An example of collecting data
is measuring. (k) Interviews are used to collect data.
If a farmland up the hill gets rainfall, what could happen to lower lands? (A - 0.0005) all
of these, (B - 0.0245) they could get fertilizer washed to them, (C - 0.9542) they could
experience unfavorable chemical change in their lands, (D - 0.0208) they could have their
lands poisoned. Oracle facts: (f ) runoff contains fertilizer from cropland. (k) fertilizers for
certain crops could poison other crops or soil types.
Layers of the earth include all but: (A - 0.0429) mantle, (B - 0.0059) center, (C - 0.0334)
crust, (D - 0.9177) inner core. Oracle facts: (f ) the crust is a layer of the Earth. (k) the last
layer is the outer core.

Table 3.12 Sample questions predicted incorrectly by all models w/o knowledge, as well as
the f + k Oracle model, even though the Oracle model has confidence higher than 0.90.

Neural Baseline Failures, Oracle Success Table 3.11 shows example questions (with
the Oracle facts) from the Dev set that were predicted correctly by the f + k Oracle model
(405/500) but incorrectly by all of the 4 neural models without knowledge (69/405). In
contrast to Table 3.10, a simple semantic similarity is insufficient. The questions require
chaining multiple facts in order to arrive at the correct answer.

Neural Baseline and Oracle Failures 42/500 questions in the Dev set were predicted
incorrectly by all models without external knowledge, as well as by the Oracle f + k model.
In Table 3.12 we show 3 such questions. In all cases, the Oracle f + k model made an
incorrect prediction with confidence higher than 0.9.

As noted earlier, there are several broad reasons why even this so-called oracle model
fails on certain questions in OpenBookQA. In some cases, the core fact f associated with
a question q isn’t actually helpful in answering q. In many other cases, the corresponding
second fact k is noisy, incomplete, or only distantly related to q. Finally, even if f and k are
sufficient to answer q, it is quite possible for this simple model to be unable to perform the
reasoning that’s necessary to combine these two pieces of textual information in order to
arrive at the correct answer.

In the shown examples, the first question falls outside the domain of Science where
most of the core facts come from. The scientific fact “(f ) An example of collecting data is
measuring” is transformed into a question related to the law and judicial domain of collecting
data for a (court) case. This is an indication that the model trained on the Train set does not
perform well on distant domains, even if the core facts are provided.
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In the second question, we have an option all of these. Indeed, the selected answer seems
the most relevant (a generalized version of the other two), but the model did not know that if
we have an option all of these and all answers are plausible, it should decide if all answers
are correct and not pick the “most likely” individual answer.

The third question again requires the model to select a special type of aggregate answer
(“all but xyz”), but the related Oracle facts are pointing to a specific answer.

3.7 Summary and Conclusions

In this chapter, we proposed a neural model that incorporates external commonsense knowl-
edge, building on a single-turn neural model for cloze-style reading comprehension and
open book question answering. Incorporating external knowledge improves its results for
cloze-style reading comprehension with a relative error rate reduction of 9% on Common
Nouns, thus the model can compete with more complex models. We show that the types of
knowledge contained in ConceptNet are useful both for cloze-style reading comprehension
and science question answering. For cloze-style reading comprehension, we experimented
with knowledge encoded as directional triples, and for science question answering with Open-
BookQA, we used natural language text since it was available as additional external resources
with the dataset. We provide quantitative and qualitative evidence of the effectiveness of our
model, which learns how to select relevant knowledge to improve reading comprehension.
The attractiveness of our model lies in its transparency and flexibility: due to the attention
mechanism, we can trace and analyze the facts considered in answering specific questions.
This opens up a deeper investigation and future improvement of RC models in a targeted
way, allowing us to investigate what knowledge sources are required for different data sets
and domains. Since our model directly integrates background knowledge with the document
and question context representations, it could be adapted to very different task settings where
we have a pair of two arguments (i.e. entailment, retrieval, etc.).



Chapter 4

Neural Machine Reading Comprehension
using Contextual Representations
Pre-trained on Lower-Level Supervised
Language Tasks

4.1 Introduction

Reading comprehension (RC) is a language understanding task, typically evaluated in a
question answering setting, where a system reads a text passage (document D) and answers
questions (Q) about it. Recently, work on novel datasets for machine reading comprehension
gained a lot of attention: ‘CNN/Daily Mail’ (Hermann et al., 2015), Children Book Test (Hill
et al., 2016), Who Did What (Onishi et al., 2016), bAbI (Weston et al., 2015b) and before that
MCTest (Richardson et al., 2013). Most recently SQuAD (Rajpurkar et al., 2016), NewsQA
(Trischler et al., 2017) and TriviaQA (Joshi et al., 2017) were created using crowd-sourcing.

Sugawara et al. (2017); Chen et al. (2016a); Rajpurkar et al. (2016) have shown that
Reading Comprehension requires a set of language skills such as paraphrase detection,
recognition of named entities, natural language inference, etc. The common approach to
tackling higher-level tasks such as Reading Comprehension is to build a complex neural
model that reads a large-scale dataset and tries to learn all required skills at once.

We propose learning the ‘skills’ required for reading comprehension from existing
supervised language tasks. We evaluate the performance of several learned lower-level ‘skills’
for MRC on SQuAD (Rajpurkar et al., 2016) by integrating them in a base neural model.
This is in contrast to Conneau et al. (2017b) who learn sentence compression representations
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from a large supervised corpus and transfer the learned knowledge to a set of lower-level
tasks. Our approach is similar to McCann et al. (2017) who use weights pre-trained on
machine translation to improve a strong RC system (Xiong et al., 2016).

We propose a simple RC model that allows us to combine learned ‘skill’ representations
easily and analyze the learning behavior of this skill transfer model. We show that using
such skills, learned from specialized corpora, boosts the performance of a good baseline
RC system (i) early in training and (ii) when training on smaller portions (2, 5, 10, and 25
percent) of the original training data.

4.2 Method

We tackle the RC task using lower-level ‘skill’ tasks. To do that, we implement a baseline
model to represent the relation between a given question and the story context and enrich the
representation by reusing encoder weights from the chosen ‘skill’ tasks.
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Fig. 4.1 Skillful Reader: Architecture for transferring knowledge from ‘skill’ language tasks
to an RC model.

Our skill transfer model is visualized in Figure 4.1. It can be summarized in two main
steps: (i) Skill Learning: Train context encoder-based (Bi-LSTM) models for several language
‘skill’ tasks and preserve the learned encoder weights; (ii) Neural Skill Transfer: Reuse the
learned context encoder skill weights to encode and extend the text context of document and
question, in a simple model for the target task (QA/RC).
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Task Task Type
Named Entity Recognition (NER),

Sequence Labeling
Semantic Role Labeling (SRL)
Question Type Classification (TREC)

Text Classification
Entity Description Classification (DbPedia)
Discourse Relation Sense Classification (CoNLL 16 ST)

Relation Classification
Natural Language Inference (SNLI, MNLI)
Paraphrasing Detection (Quora, MRPC)

Table 4.1 Skill tasks, datasets, and model types used in the experiments

Dataset Model Train size Dev size Test size Vocab
NER (CoNLL 2012) SeqLbl 59914 8217 8252 36090
SRL (CoNLL-05 ST) SeqLbl 39832 1346 426 39549
QTC TC/TC-TW 5452 500 - 8868
DbPedia TC/TC-TW 560000 70000 70000 1016562
DR - Explicit (CoNLL 16 ST) TC-P 14865 678 584 32049
DR - Non-Exp (CoNLL 16 ST) Rel 17068 730 983 36664
SNLI Rel 550152 10000 10000 36732
MNLI Rel 392702 10000 10000 86330
SNLI+MNLI Rel 942854 10000 10000 100220
Quora Question Paraphrasing Rel 384290 10000 10000 117099
MRPC Rel 4076 1725 1725 14801

Table 4.2 Skill datasets and the size of training, evaluation sets (number of examples), and
vocabulary size (number of tokens).

This model can be considered similar to progressive neural networks (Rusu et al., 2016)
without the notion of sequential learning of the tasks. In Table 4.1 we show the skill tasks
used in this study grouped by task type: Sequence Labeling, Text Classification, or Relation
Classification.

4.2.1 Skill Tasks

We transfer knowledge from several ‘skill‘ tasks presented in Table 4.2) together with their
data properties. We briefly describe each of the tasks as follows:

Named Entity Recognition (NER) (Pradhan et al., 2012; Weischedel et al., 2011) is a
task that aims at automatically tagging entities in natural language text. We hypothesize that
having a NER skill could be beneficial since many of the questions from machine reading
datasets such as SQuAD(Rajpurkar et al., 2016) are about different entities (people, locations,
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etc.). In our experiments, we employ NER from Ontonotes (Weischedel et al., 2011) to train
our skill encoders in a sequence labeling setting (see Section 4.2.2).

DbPedia Entity Type Classification (Zhang et al., 2015c) is a dataset for text classification
of entity descriptions extracted from the English DbPedia 1 in 15 entity classes such as
Company, Athlete, Artist, etc.. With a similar intuition to using NER, we hypothesize that
such a task would help a model to detect which tokens in a given paragraph are from the
description of an entity with a specific type. Having such representations could help answer
questions such as ‘What is Luis Armstrong famous for?’, which requires the model to focus
on a relevant text similar to ‘was an American trumpeter, composer, vocalist, and actor’.

Question Type Classification (Li and Roth, 2002a) aims at classifying the type for a given
question. The QTC dataset by Li and Roth (2002a) offers annotation on six coarse types
(ABBR, DESC, ENITY, HUM, NUM) and a total of 50 fine-grained types (ex. DESC:reason,
ENTITY:animal, HUM:group, etc.). In this work, we train a model to classify questions in
these fine-grained classes. For example ‘Why do heavier objects travel downhill faster?’ is of
type ‘DESC:reason’ and the answer would be "gravity acceleration". Our motivation is that
understanding the type of a question should be beneficial for a question answering model.

Semantic Role Labeling (SRL) (Carreras and Màrquez, 2005) represents the relations
of ‘who did what, to whom’ - it decomposes a sentence into verbs (V) and it’s depending
arguments (ARG0, ARG1, ARG2, etc.). If a simple neural network model is able to perform
this task, it could be able to recognize events and their participants, when integrated into
a MRC system. We use the CoNLL 2005 SRL dataset (Carreras and Màrquez, 2005) in a
sequence labeling setting.

Discourse Relation Sense Classification (Xue et al., 2015, 2016a) is a task that aims
at detecting the relation of text arguments (sentences or phrases) in discourse. Example
for a relation in discourse with type Contingency.Cause.Reason between two arguments
ARG1, ARG2, and discourse connective CONN is ‘[Warsaw gained the title of the ‘Phoenix
City‘]ARG0 [because]Conn [it has survived many wars, conflicts, and invasions throughout
its long history.]ARG1’. We hypothesize that understanding discourse relations would help
in answering specific questions such as ‘Why was Warsaw called ‘Phoenix City‘?’. For
pre-training we use the data from the CoNLL 2016 Shared Task on Discourse Relation Sense
Classification (Xue et al., 2016b). We teach two separate neural network models to learn

1DbPedia - https://wiki.dbpedia.org/
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detecting the fine-grained type of Explicit (arguments connected with a discourse connective)
and Non-Explicit (the relation is not characterized by a given discourse connective) discourse
relations.

Natural Language Inference is a task that aims at recognizing if a given hypothesis is in
entailment, contradiction, or neutral relation to a given premise. We are inspired by work
by Conneau et al. (2017b) showing that using representations trained on NLI can be helpful
for sentence similarity tasks. In this work, we use two NLI datasets: SNLI (Bowman et al.,
2015) which contains natural language inference examples from common knowledge, and
MNLI (Williams et al., 2018) which covers a broad set of domains such as Fiction, Travel,
Govertnment, etc.. We hypothesize that neural representations, trained on NLI data would
help find answers which require inference beyond text matching. For example, if we have the
question ‘Who is the usual captain of the Enterprise spaceship?’, and the sentence ‘Picard is
temporarily replaced by Jellico from being captain of Enterprise.’ we need to understand
it entails a hypothetical sentence ‘Picard was the regular captain of Enterprise’ so that we
arrive at the correct answer ‘Picard‘, rather selecting ‘Jellico‘.

Paraphrase Identification is another skill which would be beneficial for answering ques-
tions (Sugawara et al., 2017). To ‘learn‘ this skill we use two datasets different datasets for
paraphrase detection. Microsoft Research Paraphrase Corpus (MRPC) (Dolan and Brockett,
2005) is a small dataset that contains high-quality pairs of sentences in English that are la-
beled as being paraphrases or not. With similar labels, Quora Question Pairs is a large-scale
dataset that contains around 400k pairs of questions collected from quora.com. 2

4.2.2 Skill Learning Architectures

For encoding the ‘skill’ knowledge from lower-level tasks we first implement simple context
encoder models for each low-level learning setup. In this work, we implement three types of
models for encoding language tasks: Sequence Labeling, Text Classification, and Relation
Classification.

Sequence Labeling is applied for labeling each token in a text with a specific category.
For this type of encoder model, we use a vanilla Bi-LSTM (Graves and Schmidhuber, 2005)
architecture, that uses word embeddings as input and a label projection layer with a softmax
layer to predict the sequence labels. While this does not lead to a supreme performance in

2https://www.kaggle.com/c/quora-question-pairs
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any sequence-labeling task, it is a reasonable unified baseline for our setup (Ma and Hovy,
2016; Lample et al., 2016; Chiu and Nichols, 2016). We hypothesize that by using a simple
architecture for the skill learning model, we can encode the skill knowledge in the context
layer. With the sequence labeling model (SeqLbl), we encode knowledge from the tasks
of Named Entity Recognition (NER) based on the CoNLL 2012 NER dataset derived from
Ontonotes (Pradhan et al., 2012) and the Semantic Role Labeling (Carreras and Màrquez,
2005) from CoNLL 2005 shared task. For both, we use the BIO schema for label encoding
as shown in Figure 4.2.

Word embeddings

LSTM LSTM LSTM LSTM
Context Encoder 

(Bi-LSTMN)

Label projection
+ Softmax 

Angela Merkel visited

LSTM

Sofia .

B-PER I-PER O B-LOC OToken label

Fig. 4.2 Vanilla Bi-LSTM for sequence labeling (NER)

Text Classification is applied to categorize a given word token sequence. Since our RC task
is cast as a QA problem, we propose to employ the skill of Question Type (QT) Classification,
using the TREC Question Classification dataset (Li and Roth, 2002b). To ensure that we
learn diverse question types we use the fine-grained classification with 50 classes for training.
The task is to classify a given question according to the type of its answer. Since the answer
is not given during training, using this task we learn a valuable skill to implicitly recognize
what type of answer to look for in a text. We employ a simple model with a Bi-LSTM context
encoder and label prediction layer. We have two modifications of the model depending
on the label-prediction layer. We train the text classification using token-wise (TW) and
sentence-wise supervision. Figure 4.3 A) shows sentence-wise supervision where the label is
predicted from an aggregated representation from the context layer. In Figure 4.2 B) we have
the token-wise label prediction. That is, instead of retrieving a single vector representation
of the sentence (with avg- or max-pooling, etc.) and predicting the label, we project the
token context representation ct1..n to the label space (50 classes) clblt1..n

and sum the soft label
prediction for each token, to obtain the label for the sentence:

rlblsent = softmax(
∑

clblt1..n
).
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Fig. 4.3 Text classification (Question Type Classification) with Bi-LSTM context encoder
and A) sentence-wise label prediction and B) token-wise label supervision.

We hypothesize that with lower-level label supervision, we can propagate the knowledge
expressed by the label to the context representations of specific tokens. This is a form of
deep supervision (Lee et al., 2015), similar to (Lipton et al., 2015).

Relation Classification is used to classify the relationship between two arguments rep-
resented as text. We implement relation classification skills following the exact Bi-LSTM
max-out model from Conneau et al. (2017b) (Figure 4.4), which has been shown to be
successful for learning sentence representations.

As relation classification skills we employ Natural Language Inference from SNLI(Bowman
et al., 2015) and MNLI (Williams et al., 2018).

We also employ a specific relation classification model (Figure 4.5) for Explicit Dis-
course Relation Sense Classification. In this model, we encode the sentence containing two
arguments (Arg1, Arg2) and the discourse connective (Conn) together using a contextual
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Fig. 4.4 General model for learning representations from relation classification tasks, pro-
posed by (Conneau et al., 2017b)
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Fig. 4.5 Relation classification using pooled connective tokens for Explicit Discourse Relation
Sense Classification.

representation built with Bi-LSTM. We then model the relation between the whole sentence
and the discourse relation tokens only. This is done by aggregating the token information of
i) all tokens and ii) pooled discourse relation tokens. We hypothesize that this is useful for
Explicit discourse relations since discourse relation type is greatly dependent on the explicit
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discourse connectives (Pitler et al., 2009; Xue et al., 2015). We argue that by combining the
discourse connective tokens in the context of the whole sentence at the projection layer, we
would help the context encoder to encode the main knowledge required for the task.

4.2.3 Skillful Reader: Reading Comprehension with Skill Representa-
tions

We build a simple neural model that uses pre-trained embeddings and word-matching features
as input to a bi-directional LSTM context-encoder of document and question and two feed-
forward (FF) layers for predicting the start and end of the answer span.

Word Embedding Layer As input to the neural model we use pre-trained 100D Glove
(Pennington et al., 2014) word embeddings (WE). We also use two features for each token:
the exact word matching feature (em) for words in the document in question (Weissenborn
et al., 2017b; Chen et al., 2016b) and the maximum similarity between the word embeddings
vector of each of the document tokens and each token in the question:

maxsim(wd
i , w

q
1..m) = max(cos(wd

i , w
q
1..m)).

We hypothesize that using these features, we would help the model to learn word-matching
patterns easily and focus on extracting other more-important phenomena from the natural
language tasks. For each token, we concatenate the WE and the two features:

wr
p1..N

= concat(wp
ei
,maxsim, em),

r means input representation, p is a token sequence that can be d(document) or q(question))
and use them as input to the context-encoder. For the question, the two features above are set
to 1 as in (Weissenborn et al., 2017b).

Context Encoder We use a Bi-LSTM context encoder represented as

cp1..N = BiLSTM(wr
p1..N)

and refer to it as a task-specific context-encoder Enctask.

Context Encoder for the Target Task For the reading comprehension target task, we
initialize an encoder EncRC with random weights and fine-tune them during training.
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Skill Task Context Encoders For each skill task, we train a context-encoder model as
described in Section 4.2.2. We use the learned weights to initialize the task-specific encoders
Encskill. For some of the tasks that employ token label prediction (NER, and Question Type
Classification), we also experiment with concatenating the soft label prediction vectors with
the context encoder states:

EncNER/QTC = concat(cp1..N , c
lbl
p1..N

)

Adapted Representations Each output from the skill context encoder is projected to a
lower dimension using adapters (Rusu et al., 2016) as follows:

c1..ntask = Enctask(w1..n)Atask + batask,

where Atask is a weight matrix for the current task (skill task or target task (RC)) and
batask is a bias vector.

Ensemble Representation For each token in the document d and question q we concatenate
all adapted skill representations ctask to the main task representation crc to obtain the ensemble
representation:

ep = concat(crc, cner, cqtc, cte, cppdb),

where p is d or q. We represent the question by a weighted representation of its ensemble
token vectors: rq = sum(eq1..m ∗ softmax(eq1..mWqw)), where Wqw is a learnable weight
matrix. We then model interaction between the question representation rq and each document
token edi as

rdi2q = concat(edi , rq, edi ∗ rq).

Answer Spans Prediction In our setup, we use extractive reading comprehension and we
predict answer spans with their start and end tokens in the document. The probability of an
answer span’s start and end tokens is presented as:

ansstarti = softmax(WstartFF (rdi2q) + bstart)

ansendi = softmax(WendFF (concat(rdi2q, ans
start
i , ansstarti ∗ edi)) + bend)

with Wstart and Wend being a weight matrix and bstart and bend bias vectors.
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4.3 Learning Skill Encoders from Tasks

In this section, we describe the trained models used as skill encoder learners.
We first train our neural encoders with various configurations of the models for Sequence

Labeling - (SeqLlbl), Text Classification (TC), Text Classification with Token-wise label
supervision (TC-TW), Relation Classification (Rel), and Relation Classification with Pooled
representation (Rel-P). We ensure that all skill encoders have the same capacity as the
trainable parameters. For all skill tasks and the RC task, we use pre-trained Glove word
embeddings with size 100. For all tasks, including the target RC task, we train the bi-
directional LSTM encoder with output size 256 (2 x 128). For the adaption layer, we use an
output size of 100 for the skills and RC.

Question Type Classification (QTC) We train two models for question type classification
using the QTC dataset by Li and Roth (2002a) in its fine-grained setup using 50 labels. The
QTC is trained with the default text classification model and QTC TW uses Question Type
Classification with token-wise label prediction. The assumption here is that the question type
classifier can identify tokens in the context that are a good indicator for specific question
types and would help to align it with the corresponding question.

DbPedia Entity Type Classification Similarly to the Question Type Classification pre-
training we train two models for text classification on classifying the type of an entity, given
its description. In our experiment DbPd is the standard text classification model. DbPd
TW is trained with entity type classification with token-wise text classification model. We
hypothesize that the entity type classifier can identify tokens in the context that are a good
indicator for specific entity types and would help in answering specific questions about these
types.

Named Entity Recognition (NER) We train a model with the standard sequence labeling
setup with BIO label encoding as described in the previous section.

Semantic Role Labeling (SRL) Similar to NER we train a model in the standard sequence
labeling model using BIO label encoding. With this experiment we wanted to introduce
information from a semantic task, that would be valuable for finding answers to the questions
"Who did what to whom?". Typically the task is evaluated with the F1 score of the full
arguments which is calculated after decent prediction performance of the sequence BIO
labeling. However, the performance of the trained model is low and the official evaluation
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Task Config Measure Dev Test
Question Type Classification

QTC Acc 0.8740 -
QTC TW Acc 0.8620 -

DbPedia Entity Type Classification

DbPd Acc 0.9897 -
DbPd TW Acc 0.9865 -

Discourse Relations

DR (Exp) Avg F1 85.43 79.03
DR (Exp) Max F1 91.05 77.66
DR (Exp) Wiki Avg F1 81.80 84.27
DR (Exp) Wiki Max F1 82.31 83.28
DR (Non-Exp) Max F1 42.86 37.02
DR (Non-Exp) Avg F1 42.03 38.41
DR (Non-Exp) Wiki Avg F1 36.05 36.14
DR (Non-Exp) Wiki Max F1 33.72 36.05

Named Entity Recognition

NER Acc/F1 95.13/69.34 95.44/70.67

Semantic Role Labeling

SRL Acc - tokens - unofficial 42.00 67.00

Natural Language Inference

MNLI Max Acc 64.89 65.30
MNLI Avg Acc 66.87 66.65
SNLI Max Acc 80.01 79.48
SNLI Avg Acc 80.10 78.81
SNLI + MNLI Max Acc 66.39 67.82
SNLI + MNLI Avg Acc 66.90 67.63

Paraphrasing

Para MSR Acc 73.39 -
Para Quora Q Acc 85.40 84.52

Table 4.3 Results with different configurations of the source tasks.
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produces inconsistent BIO labels so we report the token accuracy. 3 We hypothesize that
the results of the trained SRL model are low due to its simplicity and the complexity of
the task. For comparison, top-performing models that use LSTM-based architecture (He
et al., 2017a) are much deeper and usually have a CRF layer on top together with a set of
heuristic rules for closing open BIO tags, etc. In contrast, here we want to examine the
performance of one-layer Bi-LSTM models as context encoders for neural transfer and we
keep the architecture simple for all tasks.

Discourse Relation Sense Classification We train several model configurations for Explicit
(DR (Exp)) and Non-Explicit (DR (Non-Exp)) Discourse Relation Sense Classification. We
train the models with either average pooling (Avg) or max-pooling (Max) as aggregation
strategies over the context representations of the underlying text fragments. The discourse
relation sense disambiguation dataset that we use (Xue et al., 2016b) offers data sets in two
domains. It has training, validation, and test sets from Penn Discourse Tree Bank (PDTB)
(Prasad et al., 2008a) which contain documents from Wall Street Journal (WSJ) and a test set
with instances from Wikipedia which is also the source of our target reading comprehension
dataset SQuAD (Rajpurkar et al., 2016). For all DR models we use the same training set
from the WSJ domain and we use configurations optimized for different validation sets: the
original validation set or the Wikipedia evaluation set (Wiki). In column Test on Table 4.3 we
display the results for the original WSJ test set. In column Dev we display the results for the
original WSJ validation set or the Wiki set. That is, the models marked with Wiki are trained
on WSJ documents, they are validated on the Wiki set and evaluated on the WSJ test set (Test
column). The rest of the models are trained on WSJ documents, are validated on the WSJ
dev set, and are evaluated on the WSJ test set (Test column). The experiments with models
optimized on different domains aim at validating if the target domain is important for our
setting. We hypothesize that we could improve the domain transfer from the DR task to RC
by only optimizing the model on the target domain. 4 The results give us information about
the tasks and the model architectures. The results for the Explicit discourse relations are much
higher than those for Non-Explicit. The reason is that the arguments for the Non-Explicit
DR are not connected with an explicit discourse connective which is usually a great indicator
for the type. We also see that models trained with Average pooling versus Max pooling have
higher test performance whereas the opposite is observed for the development set. This holds

3The results are oddly round but these are indeed the correct values, rounded to two digits after the decimal
point!

4These experiments are only available for the DR task since it is the only dataset that provides validation set
in the target domain.
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both for Explicit and Non-explicit discourse relations and indicates that max-pooling helps
to better fit the training data but does not generalize well when in Test.

We also perform experiments with the model trained on the original WSJ domain and
validated on the Wiki domain instead. We see that for the best checkpoints on the Wiki
validation set, the resulting relative performance on the Test set differs for Exp and Non-Exp.
For the Exp, fine-tuning on the Wiki set leads to better results for the WSJ test. This might
mean that the WSJ (in-domain) validation set is too similar to the training data and overfitting
it would lead to poorer test performance with the LSTM model. We hypothesize that for
DR (Exp) Wiki, we have learned better transferable representations and we expect them to
perform better when evaluated on the RC task. For the Non-Explicit Discourse Relations, the
best performance on the Wiki validation sets lead to worse performance on the WSJ test. We
argue that the harder task of Non-Explicit discourse relation classification would generally
require more in-domain knowledge due to the lack of a discourse connective to characterize
the relations.

Natural Language Inference For the natural language inference task, we compare models
by their training dataset and representation aggregation. The training datasets we use are
SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018), and their combination
(MNLI+SNLI). We hypothesize that the multi-domain dataset would yield better results
when transferred to an unseen domain or task. For the model trained on a combination of
datasets, we evaluate on the MultiNLI. Similarly to other relation classification tasks, we
experiment with average pooling and max-pooling as representation aggregation techniques.
From the results in Table 4.3 we can see that getting more data (MNLI+SNLI vs MNLI)
helps in learning the NLI skill. The aggregation technique does not seem to have a great
impact on the in-domain skill performance.

Paraphrasing We also train models on two paraphrasing tasks which are very different
from each other. Both are framed as binary relation classification but they have significantly
different domains and sizes of the training data.

In this section, we presented the results for several different tasks and models. We further
evaluate the transfer performance on the target machine reading comprehension task.

4.4 Neural Transfer to Machine Reading Comprehension

Here, we report results on evaluating the pre-trained skill models as part of a model for
machine reading comprehension on SQuAD.
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4.4.1 Training Details

We compare multiple models based on the pre-trained representations transferred from the
supervised tasks. Since we want to evaluate the knowledge that is transferred from the
pre-training tasks, we fix the ‘skill‘ representation encoder when used on the target task. For
our target task, we use a base contextual encoder, that is fine-tuned during training and a
single ‘skill‘ encoder or a combination of ‘skill‘ encoders in an ablation setting. For each
configuration, we evaluate the importance of the ‘skill‘ encoder by comparing it to the same
model architecture with randomly initialized parameters. This way we keep the number of
learnable parameters fixed for all groups of experiments.

Since our computational resources are limited, we run all experiments with the same
fixed hyper-parameters. The parameters are selected by using recommended or widely used
parameters from previous work, and they fit an 8G GPU with a batch size of 32 for our task:

• Batch size - 32.

• LSTM hidden size - 128.

• Pre-trained Glove 100 embeddings.

• Embedding dropout rate - 0.2.

• Adapter output size for the transferred representations - 100.

Each setting for the reading comprehension task is evaluated using at least three runs with
different random seeds and the reported results are the average of all runs. In the experiments
below we also look at the evaluation curves compared to the number of training steps. For
each evaluation step, we report the average performance from the same step for multiple
runs.

4.4.2 Experiments and Results

We evaluate the pre-trained skill representations when used on the SQuAD reading compre-
hension dataset. Our aims here are to better understand the way the ‘skill‘ representations
help for learning the reading comprehension task, rather than maximizing the performance
on this task. We are comparing the skill encoder with transferred representations to such
with random initialization of the Bi-LSTM.
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Fig. 4.6 Experiments with selected single representations on the full training data.

4.4.2.1 Overall Results

For our experiments, we are reporting the F1 validation performance for each step of the
training. Figure 4.6 shows the training performance of several representations trained on our
skill tasks with the reading comprehension model.

In Figure 4.6 we can see that using pre-trained skill representations improves the perfor-
mance on the reading comprehension task, early in training and the performance gap gets
smaller when the models are trained with more iterations. To investigate further the behavior
of different tasks we run experiments with different sizes of data and focus on the different
stages of training based on the number of training steps.

4.4.2.2 Limited Data and Training Stages

Since using pre-trained representations is helpful early in training we hypothesize that we
would also see better gains with these representations when we train with less data.

We run the same experiments with different portions of the training data including sets of
2%, 5%, 10%, 25%, and 100%. 5

5All experiments for the same portion of the data are trained with the same sample. We sample the data by
iterating over the data and take every 50th, 20th, 10th, 4th, and all question examples correspondingly. We
evaluate on the full validation set of SQuAD.
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Fig. 4.7 Comparison of different skill representations on SQuAD. Top results by training
stage. Training with different sizes of the training data (2%, 5%, 25%, 100%), evaluated on
the validation set. Very early: 1250 steps for 2%, 5%, 5000 steps for the rest of the sizes,
Early: < 2500 steps for 2% and 5% and 10000 steps for the rest, All: (50000) steps.

We observe (Figure 4.7) changing performance of the transfer depending on the training
data size and the training stage. Some skill representations (QTC, NER, NLI) have strong
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performance Very early in training (1250 steps for 2%, 5% and 5000 steps for the rest of
the sizes), still dominate in the whole Early stage (< 2500 steps for 2% and 5% and 10000
steps for the rest), whereas they are performing similarly to other tasks when the models are
trained with All (50000) steps.

The task with the highest positive impact in the Very early and Early stages is Question
Type Classification with Token-wise projections. It has consistent improvements across
all data sizes. We argue that this is the case since finding the correct answer requires
understanding the question and the specific type of the answer such as named entity type,
reason, etc. At the same time, it is also surprising since the training data for the QTC task is
relatively small (around 5000 examples).

The next best representations in the Early stage are Natural Language Inference models.
Representations pre-trained on this task have been shown to perform well across different
tasks (Conneau et al., 2017b). The SNLI and MNLI have a high number of training examples
(500 thousand) which might be critical for learning good representations.

Another relation classification task that helps in the Early stage with low data sizes (2%,
5%) is the DR (Non-Exp). This model has identical architecture to the NLI pre-trained
models. This also suggests that the relation classification architecture is suitable for learning
transferable representations.

Explicit Discourse Relation Sense Classification fine-tuned on Wikipedia set is also
improving over the baseline for the limited data setups with 2% and 5%. Below, we also
perform experiments with different DR models to check if this is due to the task in general,
the domain, or the architecture.

These are followed by Named Entity Recognition which was previously shown to be
important for machine reading comprehension on SQuAD (Rajpurkar et al., 2016).

Another ‘skill‘ that we examine is paraphrasing. The representations trained on Quora
Question Paraphrasing detection yield the smallest improvements over Random trained with
25% and 100% of the data. In the early stages, Para MSR performs much worse than all
models including the baseline but performs best when trained with the full number of steps.
We hypothesize that the Para MSR representations learned helpful knowledge about the
paraphrasing task, but it is harder to pick up from the reading comprehension model with
limited training data.

We see SRL performing in a similar way to Para MSR - it performs poorly in the early
stages but well when the model is trained long enough. As we observe in Section 4.3, the
model that we use for SRL is probably not deep enough to learn to perform Semantic Role
Labeling since this task usually needs a much deeper model (He et al., 2017b). However, we
hypothesize that the representations picked relevant implicit semantic information which is
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useful for the SQuAD task but is harder for the model to ‘notice‘ early in training due to the
weak signal.

Above, we compare the impact of different tasks trained with selected architectures,
based on the source skill task results. We see that the variance between different models and
settings is higher with limited RC data and we will be focusing on the settings with 2% to
25% of the data in the next evaluations.

To better understand the performance of the representations trained on supervised natural
language tasks, we further evaluate different model configurations from Section 4.3. We
analyze the results for our models grouped by model architecture and then specific tasks, in
multiple RC data size settings.

4.4.2.3 Skill Learning Architecture and Modifications

We want to check if the performance of the transferred representations is affected by the model
architecture. We hypothesize that if some architecture is crucial, then most tasks trained
with the same architecture should have performance or behavior, significantly better than the
random initialization. Here we compare the learning architecture by task formulations as
training objectives Text Classification, Relation Classification, Sequence Labeling.

Text Classification Figure 4.8 displays the results of the experiments with Text Classifica-
tion architectures (Figure 4.3). We see that the performance for Question Type Classification
(QTC) and DbPedia Text Classification differ greatly and the results hold for all data sizes.
QTC models perform much better than the model with Random initialized representations
early in training but the baseline performs better in the small data size (2% and 5%) when
trained with all steps. The DbPd performs slightly better when trained with the aggregation
across all tokens (the model in Figure 4.3A) and worse than the baseline when trained with
the token-wise objective (the model in Figure 4.3B). In contrast, QTC TW (token-wise
label-prediction) performs better than the standard QTC model. One reason is that enhancing
the relevant tokens in the question with type information is more important for finding answer
clues than the entity type information learned from the DbPedia Entity classification task.
Concatenating the explicit token-wise label prediction logits with the text encoder output
(QTC TW with Lbl) is beneficial for the small data setup but lacks behind the TW only
setting when the data is more than 25%. The different natural language tasks perform very
differently in the same setting. We argue that the linguistic tasks used for training and their
relevance to the target SQuAD Reading Comprehension task are more important for learning
good representations rather than the Text Classification architecture.
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Fig. 4.8 Results on SQuAD for representations learned with the Text Classification architec-
ture. Early (left column) and aggregated performance (right column) training with different
sizes of the training data (2%, 5%, 25%, 100%).

Sequence Labeling We evaluate two skill tasks that are framed as Sequence Labeling -
Named Entity Recognition and Semantic Role Labeling.
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Fig. 4.9 Results on SQuAD for representations learned with the Sequence Labeling architec-
ture. Early (left column) and top (right column) when training with 10% and 100% of the
training data are evaluated on the validation set.

In Figure 4.9 we have the representations learned from these tasks to the reading com-
prehension task on SQuAD. While NER expectedly yields good performance, the SRL
representations are performing worse than the baseline early in training. Both tasks perform
similarly in later training steps. We hypothesize that this could be due to the sequence
labeling architecture, which is similar to the Reading Comprehension objective that uses
token-wise objective and would benefit from contextual token-wise information that the
Bi-LSTM provides. Moreover, the performance of the learned representations trained on the
sequence labeling tasks compares to the best-performing task of Question Type Classification
across all data settings, late in training (Figure 4.6).
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Fig. 4.10 Results on SQuAD for representations learned with the Relation Classification
architecture. Early (left column) and all steps (right column) training 25% of data are
evaluated on the validation set.

Relation Classification We further compare the tasks that are trained as Relation Clas-
sification problems. Most of our tasks are trained with this architecture. These include
Natural Language Inference trained on SNLI (Bowman et al., 2015), MNLI (Williams et al.,
2018), and combination of both, paraphrasing detection on sentences (Para MSR) and similar
question (Para Quora Q), as well as Explicit and Non-Explicit Discourse Relation Sense
Classification (DR (Exp), DR (Non-Exp)). We discussed the performance of these in Sec-
tion 4.4.2.2. For DR and NLI tasks, we have different datasets for the same task (SNLI,
MNLI), or different representations of the task (Explicit vs Non-Explicit DR), so we look at
these aspects in greater detail. We would like to get better insights into the importance of
these for obtaining representations that can be transferred to the higher-level task of reading
comprehension.

In Figures 4.11 and 4.12 we present RC results for the pre-trained DR and NLI represen-
tations, evaluated on SQuAD.

For DR we can compare the representations by the source training model depending
on i) Explicit vs Non-Explicit, ii) the in-domain validation fine-tuning (Wiki vs Non-Wiki
validation), and iii) representation pooling (Max vs Avg). The source-task results for DR
are in the Discourse Relations of Table 4.3. For NLI we can compare the representations by
dataset (SNLI vs MNLI vs SNLI+MNLI) and representation pooling (Max vs Avg).

We observe similar performance differences across DR models when the RC data is
greater than 2% (Figure 4.11 ). When we train the model with 100% of the data for the full
steps, the performance between different models is very close. The greatest differences are
when we compare the 25% data size - they are displayed in Figure 4.11. We observe that
Non-Explicit Relations perform better than Explicit.
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Fig. 4.11 Results on SQuAD for representations learned from Discourse Relation Sense
Classification. Models trained with 25% and 100% of the RC data.

In the Very Early stage of training, the performance of representations obtained from DR
models validated on the Wiki subset of the data performs much better than the models that are
validated on the WSJ text. This shows that in the Very Early stages the in-domain calibration
of the pre-trained representations helps. This also correlates with source task performance on
the Test set (Table 4.3) - higher source task performance yields higher performance in Very
Early transfer. In terms of pooling strategy (Average vs Max), the results for representations
trained on DR models with Average pooling yield better results on the test set of the source
task, and these results are translated to the performance of the RC task, Very Early in training.

For NLI, the representations obtained with Average pooling also yield better results
than Max pooling for MNLI and SNLI+MNLI which also correlates with the source task
performance (Figure 4.12 ).

Combining Multiple Representations The results of the combination and ablation of
multiple skill tasks are shown in Figure 4.13. The combination of features is not very efficient
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Fig. 4.12 Results on SQuAD for representations learned from Natural Language Inference.
Early (left column) and all steps (right column) training with different sizes of the training
data (2%, 25% ) are evaluated on the validation set.

since for each token from the text we have to compute the various contextual representations.
Therefore, we only run experiments with 25 percent of the data. The bottom part of the figure
clearly shows that the combinations of skill representations work very well in the Very early
and Early stages in training. Also, the ablations result in expected gains when the worst
performing single representations (Para Quora Q) and drops when the best performing (QTC)
is excluded.
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Fig. 4.13 Results for tasks Ablations. Early (left column) and all steps (right column) training
with 25% of the training data are evaluated on the validation set.

4.5 Discussion

In this work, we experiment with the transfer of linguistic knowledge from supervised human
annotated tasks to machine reading comprehension.

Training Stages Our results show that there are several tasks (Question Type Classification,
Natural Language Inference, Discourse Relations) that help greatly in the Very early and
Early stage of training, or after training for a long time (Paraphrasing, SRL), and others do
not help much when transferred to reading comprehension (DbPedia Entity Classification).
However, if we train the base model long enough, it often reaches the performance of the
models with transferred representations.
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Task Formulation We observe that the tasks that are formulated as relation classification
perform well in both early and full training. The models trained with sequence labeling (NER
and SRL) have bad performance in the early training stages and limited data, but are among
the best when the model is trained with more steps.

Training Data Size We also observed that most models that use supervised pre-trained
representations have the highest improvement margin over the model without such knowledge
when we use a smaller training size. These results show that we benefit most from linguistic
knowledge transfer with limited training data. When the reading comprehension training
data is sufficient, the model trained from scratch is sufficient to reach peak performance.

Source Task Performance vs. Transfer Performance In our experiments, we see that
models that have higher performance on the source task, perform better when transferred to
the target task. This correlation can be observed when we compare the improvements for DR
and NLI where we compare different architecture variations (Avg vs. Max pooling) on the
same train data. We hypothesize that if we have a better source model the representations
would perform better when transferred to the target task. However, this would also make
the comparison between tasks harder, since their models will be trained with different
architectures.

Domain We observe that the domain of the source task is important for the target perfor-
mance. The performance models trained with the Multi-Genre Natural Language Inference
(MNLI) (Williams et al., 2018) dataset performs better than the broad SNLI. The SQuAD
dataset that we use is collected from Wikipedia. We observe that DR models obtained with
validation on an in-domain Wiki set perform better when the representations are transferred
to the RC task.

Limitations While our results are positive in some data settings and align with our motiva-
tions and assumptions (e.g. question understanding performed via question type classification
helps answer questions), we observed that the performance might be affected by the properties
of the chosen model architecture and data of the source task.

Architecture In our experiments we found that the transfer between the source tasks
and the target task is most helpful early in training and when we have limited training
data. However, it would be interesting to explore more architectures where we could have
improvement of the transfer in the resource-rich setting. We expect that if we have an
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architecture that uses more structured representations learned from the source task would
work better for the MRC task.

Evaluation with More Datasets Due to the computationally intensive training for
transfer learning to machine reading comprehension and the scarcity of hardware resources at
the time when this work was performed, we transferred representations that are evaluated only
on the SQuAD dataset. It would have been better to see how the pre-trained representations
work on datasets that require different linguistic tasks.

Hyper-parameter Search Another limitation of our setup is that we do not perform
extensive hyper-parameter searches for training our representations on our source tasks and
the target task. It could be the case that some of the tasks would learn better representations
in a specific hyper-parameter setting.

Fine-tuning In our setup we evaluate the transferred representations when transferred
to the target task without further fine-tuning. While having the parameters fixed, makes
it easier to examine the learned knowledge rather than the ability of continuous learning,
further fine-tuning we would gain better results in the reading comprehension task.

Join Training We hypothesize that it would also be beneficial if we train the source
representations, jointly over all tasks and find a setup where they have a positive impact
on the MRC task when combined together. Moreover, currently, our setup would require
the model to compute several contextual representations using several different task-based
encoders, in order to benefit from the multiple source tasks.

Annotated Task Data vs. Actual Linguistic Knowledge In our setup, we use the as-
sumptions common to the Computational Linguistics field, that a supervised task dataset,
annotated with particular linguistic phenomena reflects this linguistics knowledge. Moreover,
having a model that learns to perform well on the test sets of this dataset would learn the
linguistic knowledge required to perform this task. After our work was done, the community
started to realize that some datasets contain annotation biases (Gururangan et al., 2018), and
often the models conveniently learn to pick on these biases (McCoy et al., 2019).
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4.6 Summary and Conclusions

In this chapter, we proposed an approach to analyzing the impact of injecting linguistic
knowledge from supervised language skill tasks into a Machine Reading Comprehension
model. In particular, we train simple shallow models that rely on Bi-LSTM contextual
representations and transfer the knowledge encoded in these representations to MRC. Our
experiments include tasks created around several linguistic phenomena including Named
Entity Recognition, Natural Language Inference, Paraphrasing, Semantic Role Labeling,
and Discourse Relation, represented by different hand-annotated datasets. We evaluate the
models with different data size settings and training phases. We find that representations
learned from models trained on these tasks are most beneficial early in training or limited
data settings.

In particular, we find that Question Type Classification is the most beneficial in Very
early and Early training stages which suggest that this question understanding skill is very
important for the task. The next most important task, early in training is the Natural Language
Inference where learning this from a multi-domain dataset (MNLI) would be most beneficial.
Representations trained on sentence paraphrasing, named entity recognition, and semantic
role labeling are among the best when the RC model is trained with more training steps. We
also observe that representations learned with models that perform better on the source task,
perform better when transferred to the target task.



Chapter 5

Neural Machine Reading Comprehension
with Structured Linguistic Knowledge

5.1 Introduction

Transformer-based self-attention models (Vaswani et al., 2017) have been shown to work
well on many natural language tasks that require large-scale training data, such as Machine
Translation (Vaswani et al., 2017; Dai et al., 2019), Language Modeling (Radford et al.,
2018a; Devlin et al., 2019b; Dai et al., 2019; Radford et al., 2019) or Reading Comprehension
(Yu et al., 2018), and can even be trained to perform surprisingly well in several multi-modal
tasks (Kaiser et al., 2017c).

Recent work (Strubell et al., 2018) has shown that for downstream semantic tasks with
much smaller datasets, such as Semantic Role Labeling (SRL) (Palmer et al., 2005), self-
attention models greatly benefit from the use of linguistic information such as dependency
parsing annotations. Motivated by this work, we examine to what extent we can use discourse
and semantic information to extend self-attention-based neural models for a higher-level task
such as Reading Comprehension.

Many datasets have been proposed for the Reading Comprehension task, starting with
a small multi-choice dataset (Richardson et al., 2013), large-scale automatically created
cloze-style datasets (Hermann et al., 2015; Hill et al., 2016) and big manually annotated
datasets such as Onishi et al. (2016); Rajpurkar et al. (2016); Joshi et al. (2017); Kociský
et al. (2017). Previous research has shown that some datasets are not challenging enough, as
simple heuristics work well with them (Chen et al., 2016a; Weissenborn et al., 2017b; Chen
et al., 2016b). In this work, we focus on the NarrativeQA (Kociský et al., 2017) dataset that
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[Captain Picard went on a mission.] S1
[Cardassians took him as a prisoner.] S2
[Starfleet assigned Jellico as Picard‘s
replacement.] S3

Q1: When was Picard taken prisoner?

DiscRel: S1, S2 => Temp.Succession 
Coref: Picard, him

Q2: Who replaced Picard as a captain?

Context:

A: when he was on a mission

A: Jellico
SRL: [Starfleet]A0 [assigned]V
[Jellico]A1 [as Picard‘s replacement]A2. 

Fig. 5.1 Motivational example: context and questions with required discourse and semantic
annotations.

was designed not to be easy to answer and that requires a model to read narrative stories and
answer questions about them.

In terms of model architecture, previous work in reading comprehension and question
answering has focused on integrating external knowledge (linguistic and/or knowledge-based)
into recurrent neural network models using Graph Neural Networks (Song et al., 2018), Graph
Convolutional Networks (Sun et al., 2018; De Cao et al., 2019), attention (Das et al., 2017b;
Mihaylov and Frank, 2018; Bauer et al., 2018) or pointers to coreferent mentions (Dhingra
et al., 2017d).

In contrast, in this chapter, we examine the impact of discourse-semantic annotations
(Figure 5.1) in a self-attention architecture. We build on the QANet (Yu et al., 2018) model
by modifying the encoder of its self-attention modeling layer. In particular, we specialize
self-attention heads to focus on specific discourse-semantic annotations, such as, e.g., an
ARG1 relation in SRL, a CAUSATION relation holding between clauses in shallow discourse
parsing, or coreference relations holding between entity mentions.

Our contributions are the following:

• To our knowledge we are the first to explicitly introduce discourse information into a
neural model for reading comprehension.

• We design a Discourse-Aware Semantic Self-Attention mechanism, an extension to the
standard self-attention models – without significant increase of computation complex-
ity.
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B-ARG1I-ARG0 B-V B-ARG2 I-ARG2 . B-ARG0 B-V B-ARG1 B-ARG2 I-ARG2 I-ARG2 .

himCardassians took as prisoner . Starleet assigned Jellico as Picard‘s replacement .Tokens

SRL

S-ARG1S-ARG1 S-ARG1 S-ARG1 S-ARG1 . S-ARG2 S-ARG2 S-ARG2 S-ARG2 S-ARG2 S-ARG2 .DR (NE)

Coref

I-ARG2

a

S-ARG1

The

B-ARG0

S-ARG1

C6C5 O O C6 C7 O C8 O C6 O .OO

Fig. 5.2 Example on different discourse-semantic annotations: DiscRel (Dicourse Relations)
(NE - Non-Explicit), SRL (Semantic Role Labeling), Coref (Co-reference resolution). The
distinct horizontal lines show the interaction between the tokens: Coref - full context, SRL -
single sentence, Non-Explicit DR - two neighbouring sentences.

• We analyze the impact of different discourse and semantic annotations for narrative
reading comprehension and report improvements of up to 3.4 Rouge-L over the base
model.

• We perform empirical fine-grained evaluation of the discourse-semantic annotations
on specific question types and context size.

5.2 Discourse-aware Semantic Annotations

Understanding narrative stories requires the ability to identify events and their participants
and to identify how these events are related in discourse (e.g., by causation, contrast, or
temporal sequence) (Mani, 2012). We aim to extract structured knowledge about these
phenomena from long texts and to integrate this information in a neural self-attention model,
in order to examine to what extent such knowledge can enhance the efficiency of a strong
reading comprehension model applied to NarrativeQA.

Specifically, we enhance self-attention with knowledge about entity coreference (Coref),
their participation in events (SRL), and the relation between events in narrative discourse
(Shallow Discourse Parsing (Xue et al., 2016b), DR).

All these linguistic information types are relational in nature. For integrating relational
knowledge into the self-attention mechanism, we follow a two-step approach: i) we extract
such relations from a multi-sentence paragraph and project them down to the token level,
specifically to the tokens of the text fragments that they involve; ii) we design a neural self-
attention model that uses the interaction information between these tokens in a multi-head
self-attention module.

To be able to map the extracted linguistic knowledge to paragraph tokens, we need
annotations that are easy to map to the token level (see Figure 5.2). This can be achieved



5.2 Discourse-aware Semantic Annotations 104

with tools for the annotation of span-based Semantic Role Labeling, Coreference Resolution,
and Shallow Discourse Parsing.

Events and Their Participants Relations between characters in a story are expressed in
the text through their participation in states or actions in which they fill a particular event
argument with a specific semantic role (see Figure 5.2). For annotation of events and their
participants, we use the state-of-the-art SRL system of He et al. (2017b) as implemented in
AllenNLP (Gardner et al., 2017). The system splits paragraphs into sentences and tokens,
performs POS (part of speech tagging) and for each verb token V it predicts semantic tags
such as ARG0, ARG1 (Argument Role 0, 1 of verb V), etc. When several argument-taking
predicates are realized in a sentence, we obtain more than a single semantic argument
structure, and each token in the sentence can be involved in the argument structure of more
than one verb. We refer to these annotations as different semantic views (Khashabi et al.,
2018b), e.g., ‘semantic view for verb 1‘. Different self-attention heads will be able to attend
to individual semantic views.

Coreference Resolution Narrative texts abound of entity mentions that refer to the same
entity in the discourse. We hypothesize that by directing the self-attention to this spe-
cific coreference information, we can encourage the model to focus on tokens that refer
to the same entity mention. Although token-based self-attention models can attend over
wide-ranged context spans, we hypothesize that it will be beneficial to allow the model to
focus directly on the parts of the text that refer to the same entity. For coreference anno-
tation, we use the medium size model from the neuralcoref spaCy extension available at
https://github.com/huggingface/neuralcoref. For each token we give as information the label
of the corresponding coreference cluster (see Figure 5.2) that it belongs to. Therefore, tokens
from the same coreference cluster get the same label as input.

Discourse Relations In narrative texts, events are connected by discourse relations such as
causation, temporal succession, etc. (Mani, 2012). In this work, we adopt the 15 fine-grained
discourse relation sense types from the annotation scheme of the Penn Discourse Tree Bank
(PDTB) (Prasad et al., 2008b). For producing discourse relation annotations we use the
discourse relation sense disambiguation system from Mihaylov and Frank (2016b) which is
trained on the data provided by the CoNLL Shared Task on Shallow Discourse Parsing (Xue
et al., 2016b). In this annotation scheme discourse relations are divided into two main types:
Explicit and Non-Explicit. Explicit relations are usually connected with an explicit discourse
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Fig. 5.3 A) Base Multi-Head Self-Attention Encoder Block, B) Discourse-Aware Semantic
Self-Attention (DASSA) Encoder Block , C) Single Attention Head with disource/semantic
Information, D) Example of attention scope masks for different attention heads and different
information.

connective, such as because, but, if. Non-Explicit1 relations are not explicitly marked with a
discourse connective and the arguments are usually contained in two consecutive sentences
(see Figure 5.2). To extract explicit discourse relations we take into account only arguments
that are in the same sentence. We consider as separate arguments (ARG1 and ARG2)
text sequences that are on the left and right of an explicit discourse connective (CONN):
ex. ’[Jeff went home]ARG1_CCR [because]CONN [he was hungry.]ARG2_CCR, where CCR is
Contingency.Cause.Reason’. To provide Non-Explicit discourse relation sense annotations,
we annotate every consecutive pair of sentences with a predicted discourse relation sense
type.

5.3 Discourse-Aware Semantic Self-Attention Model

5.3.1 Base Model

As a base reading comprehension model, we use QANet (Yu et al., 2018). QANet is a standard
token-based self-attention model with the following components, which are common across
many recent models: 1. Input Embedding Layer uses pre-trained word embeddings and
convolutional character embeddings; 2. Encoder Layer consists of stacked Encoder Blocks
(see Figure 5.3, A) based on Multi-Head Self-Attention (Vaswani et al., 2017) and depth-wise

1Non-Explicit relations include Implicit, AltLex and EntRel relation from PDTB. See Xue et al. (2016b) for
details.
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separable convolution (Chollet, 2016; Kaiser et al., 2017a); 3. Context-to-Query Attention
Layer is a standard layer, that builds a token-wise attention-weighted question-aware context
representation; 4. Modeling Layer has the same structure as 2. above but uses as input the
output of layer 3.; 5. Output layer is used for prediction of start and end answer pointers.
For detailed information about these layers, please refer to Yu et al. (2018). In this work
we replace the standard Multi-Head Self-Attention with Discourse-Aware Semantic Self-
Attention, using several different semantic and discourse annotation types. We describe this
below and explain the differences to the standard Encoder Block.

5.3.2 Discourse-Aware Semantic Self-Attention

In Figure 5.3 we show the difference between the Base Multi-Head Self-Attention Encoder
Block A) and the Discourse-Aware Semantic Self-Attention Encoder Block B). Both consist
of positional-encoding+ conv-layer×K+multi-head-self-attention+ feed-forward layer.
The difference is that B is provided additional inputs that are used by multi-head self-attention.
The multi-head self-attention is a concatenation of outputs from multiple single self-attention
heads hi followed by a linear layer. A single head of the extended multi-head self-attention
is shown in Figure 5.3C and is formally defined as

ahi
= mask_softmax

(
Qhi

KT
hi√

dh
,Mt

)
Vhi

(5.1)

Qhi
= WQ

hi
[rl−1; st] ∈ Rn×dh (5.2)

Khi
= WK

hi
[rl−1; st] ∈ Rn×dh (5.3)

Vhi
= W V

hi
rl−1 ∈ Rn×dh , (5.4)

where Qhi
, Khi

, Vhi
are components of the query-key-value attention and

√
dh is used

for weight scaling as originally proposed in Vaswani et al. (2017). WQ
hi

, WK
hi

, W V
hi

are
weights, specific for head hi, i ∈ 1..H 2, rl−1 is the input from the previous encoder
block, st is an embedding vector for the linguistic annotation type t (‘SRL_Arg1‘, ‘Dis-
cRel_Cause.Reason_Arg2‘, etc.), ahi

is the output of head hi. Mt is a sentence-wise attention
mask as shown in Figure 5.3D. st and Mt are the main difference compared to the standard
self-attention (Figure 5.3C).

In principle, representing edges of a graph (e.g., the V-ARG1 role from SRL) requires
memory of n2dhH , where n is the length of the context, which would be a bottleneck
for computation on a GPU with limited memory (8-16GB). Instead, we adopt a strategy
where the relation is represented as a source and target node and an attention scope (one

2Number of heads H=8 as in original QANet specification if not specified otherwise.
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sentence for SRL; two sentences for DR (Non-Exp); full context for Coref). The latter is
controlled using the attention mask. The combination of flat token labels and mask reduces
the maximum memory required for representing the information in the knowledge-enhanced
head to 2ndhH . The attention masks, which we use for reducing the attention scope of the
different semantic and discourse annotations, are shown in Figure 5.3D. These masks ensure
that the corresponding attention heads will only attend to tokens from the corresponding
scope (SRL: single sentence; DR (NonE): two sentences, etc.). The attention masks are
symmetric to the matrix diagonal. Therefore, they can easily be computed ‘on-the-fly‘ given
only the sentence boundaries (corresponding to the horizontal lines in Figure 5.2).

To reduce the model memory further and still benefit from the full-context self-attention,
we use the Discourse-Aware Semantic Self-Attention encoder (Figure 5.3B) only for blocks
[1,3,5] of the Modeling Layer that consists of 7 stacked encoder blocks (indexed 0 to 6).
Blocks [0,2,6] are set as the base encoders that look at the entire context (Figure 5.3A).

5.4 Data and Task Description

NarrativeQA We perform experiments with the NarrativeQA (Kociský et al., 2017) reading
comprehension dataset. This dataset requires an understanding of narrative stories (English)
in order to provide answers to a given question. It offers two sub-tasks: (i) answering
questions about a long narrative summary (up to 1150 tokens) of a book or movie, or (ii)
answering questions about entire books or movie scripts of lengths up to 110k tokens. We are
focusing on the summary setting (i) and refer to the summary as document or context. The
dataset contains 1572 documents in total, divided into Train (1102 docs, 32.7k questions),
Dev (115 documents, 3.5k questions), and Test (355 documents, 10.5k questions) sets.

Generative QA as Span Prediction An interesting aspect of the NarrativeQA dataset is
that in contrast to most other RC datasets, the two answers provided for each question are
written by human annotators. Therefore, answers typically differ in form from the context
passages that license them. To map the human-generated answers to answer candidate spans
from the context, we use Rouge-L (Lin, 2004) to calculate a similarity score between token
n-grams from the provided answer and token n-grams from candidate answers selected from
the context (we select candidate spans of the same length as the given answer). If two answer
candidates have the same Rouge-L score, we calculate the score between the candidates’
surrounding tokens (window size: 15 tokens to the left and right) and the question tokens and
choose the candidate with the higher score. We retrieve the best candidate answer span for
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each answer and use the candidate with the higher Rouge-L score as supervision for training.
We refer to this method for answer retrieval as Oracle (Ours).

5.5 Related Work

Reading Comprehension with Knowledge Recent work has proposed different ap-
proaches for integrating external knowledge into neural models for the high-level downstream
tasks of reading comprehension (RC) and question answering (QA). One line of work lever-
ages external knowledge from knowledge bases for RC (Xu et al., 2016; Weissenborn et al.,
2017a; Ostermann et al., 2018; Mihaylov and Frank, 2018; Bauer et al., 2018; Wang et al.,
2018b) and QA (Das et al., 2017b; Sun et al., 2018; Tandon et al., 2018). These approaches
make use of implicit (Weissenborn et al., 2017a) or explicit (Mihaylov and Frank, 2018;
Sun et al., 2018; Bauer et al., 2018) attention-based knowledge aggregation or leverage
features from knowledge base relations (Wang et al., 2018b). Another line of work builds on
linguistic knowledge from downstream tasks, such as coreference resolution (Dhingra et al.,
2017d) or notions of co-occurring candidate mentions (De Cao et al., 2019) and OpenIE
triples (Khot et al., 2017b) into RNN-based encoders. Recently, several pre-trained language
models (Peters et al., 2018; Radford et al., 2018b; Devlin et al., 2019b) have been shown to
incrementally boost the performance of well-performing models for several short paragraph
reading comprehension tasks (Peters et al., 2018; Devlin et al., 2019b) and question answer-
ing (Sun et al., 2019), as well as many tasks from the GLUE benchmark (Wang et al., 2018a).
Approaches based on BERT (Devlin et al., 2019b) usually perform best when the weights are
fine-tuned for the specific training task. Earlier, many papers that do not use self-attention
models or even neural methods have also tried to use semantic parse labels (Yih et al., 2016),
or annotations from upstream tasks (Khashabi et al., 2018c).

Self-Attention Models in NLP Vanilla self-attention models (Vaswani et al., 2017) use
positional encoding, sometimes combined with local convolutions (Yu et al., 2018) to model
the token order in the text. Although they are scalable due to their recurrence-free nature,
most self-attention models do not well work when trained with fixed-length context, because
they often learn global token positions observed during training, rather than relative. To
address this issue, Shaw et al. (2018) proposes relative position encoding to model the
distance between tokens in the context. Dai et al. (2019) address the problem of moving
beyond fixed-length context by adding recurrence to the self-attention model. Dai et al.
(2019) argue that the fixed-length segments used for language modeling hurt the performance
because they do not respect sentences or any other semantic boundaries. In this work, we
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also support the claim that the lack of semantic, and discourse boundaries is an issue, and
therefore we aim to introduce structured linguistic information into the self-attention model.
We hypothesize that the lack of local discourse context is a problem for answering narrative
questions, where the answer is contained inside the same sentence, or neighboring sentences
and therefore, by offering discourse-level semantic structure to the attention heads, offer
ways to restrict, or focus the model to wider or narrower structures, depending on what is
needed for specific questions.

Self-attention architectures can be seen as graph architectures (imagine the token (node)
interactions as an adjacency matrix) and are applied to graph problems (Veličković et al.,
2018; Li et al., 2019). Therefore, in very recent work Koncel-Kedziorski et al. (2019) have
used a self-attention encoder as a graph encoder for text generation, in a dual encoder model.
A dual-encoder model similar to Koncel-Kedziorski et al. (2019) is suitable for a setting
where the input is knowledge from a graph knowledge base. For a text-based setting like ours,
where word order is important and the tokens are part of semantic arguments, an approach
that tries to encode linguistic information in the same architecture (Strubell et al., 2018) is
more appropriate. Therefore our method is most related to LISA (Strubell et al., 2018), which
uses joint multi-task learning of POS and Dependency Parsing to inject syntactic information
for Semantic Role Labeling. In contrast, we do not use multi-task learning, but directly
encode semantic information extracted by pre-processing with existing tools.

NarrativeQA The summary setting of the NarrativeQA dataset (Kociský et al., 2017) has
in the past been addressed with attention mechanisms by the following models: BiAtt + MRU
(Tay et al., 2018a) is similar to BiDAF (Seo et al., 2017). It is bi-attentive (attends from context
to query and vice versa) but enhanced with an MRU (Multi-Range Reasoning Unit). MRU
is a compositional encoder that splits the context tokens into ranges (n-grams) of different
sizes and combines them in summed n-gram representations and fully-connected layers.
DecaProp (Tay et al., 2018b) is a neural architecture for reading comprehension, that densely
connects all pairwise layers, modeling relationships between passage and query across all
hierarchical levels. Bauer et al. (2018) observed that some of the questions require external
commonsense knowledge and developed MHPGM-NOIC - a seq2seq generative model
with a copy mechanism that also uses commonsense knowledge and ELMo (Peters et al.,
2018) contextual representations. Hu et al. (2018b) used an implementation of Reinforced
Mnemonic Reader (RMR) (Hu et al., 2018a). They also proposed RMR + A2D, a novel
teacher-student attention distillation method to train a model to mirror the behavior of the
ensemble model RMR (Ens).
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Model B-1 R-L
(Kociský et al., 2017)

Human 44.43 57.02
Oracle (original) 54.14 59.92
Seq2seq (no context) † 15.89 13.15
ASR † 23.30 22.26
BiDAF 33.72 36.30

Previous work
BiAtt + MRU (Tay et al., 2018a) 36.55 41.44
DecaProp (Tay et al., 2018b) 44.35 44.69
MHPGM + NOIC (Bauer et al., 2018) † 43.63 44.16
RMR (Hu et al., 2018b) 48.40 51.50
RMR (Ens) (Hu et al., 2018b) 50.10 53.90
RMR + A2D (Hu et al., 2018b) 50.40 53.30

This work
Oracle (ours) 70.71 70.82
BiDAF 47.19 49.63
QANet 46.37 48.66
+ DR (Exp) 50.12 52.14
+ DR (Exp) EMA 51.16 53.26

Table 5.1 Results on the NarrativeQA Test set. Models with † are generative, while the rest
use span prediction.

5.6 Experiments and Results

In this section, we describe the experiments and results of our proposed model in different
configurations. We compare the results of different models using overall results (Table 5.1)
on the dataset, but also the performance for different question types (Figure 5.4) and context
sizes (Figure 5.5).

5.6.1 Overall Results

Table 5.1 compares our baselines and proposed model to prior work. We report results for
Bleu-1, and Rouge-L scores. The first section lists results on the NarrativeQA dataset as
reported in Kociský et al. (2017). Oracle (original) uses the gold answers as queries to
match a token sequence (with the answer length) in the context that has the highest Rouge-L.
In contrast, using Oracle (Ours), described in Section 5.4, we report a +11 Rouge-L score
improvement (Table 5.1: This work). The Oracle performance in this setting is important
since the produced annotations are used for training of the span-prediction systems, and is
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QANet (baseline) - - - - 8
DR (All) 2 2 - - 4
DR (Exp) 2 - - - 6
DR (NonE) - 2 - - 6
Coref - - - 3 5
SRL - - 3 - 5
SRL+ DR (Exp) 2 - 3 - 3
SRL + DR (NonE) - 2 3 - 3
SRL + DR (All) 2 2 3 - 1
SRL + DR (Exp) + Coref 2 - 3 1 2
SRL + DR (All) + Coref 2 2 3 1 4

Table 5.2 The number of attention heads by discourse-semantic type. ‘No’ means that no
linguistic annotation types are provided (attends to all tokens).

considered upper-bound.3 Seq2Seq (no context) is an encoder-decoder RNN model trained
only on the question. ASR is a version of the Attention Sum Reader (Kadlec et al., 2016)
implemented as a pointer-generator that reads the question and points to words in the context
that are contained in the answer. BiDAF is Bi-Directional Attention Flow (Seo et al., 2017)
trained either with the Oracle (original) or Oracle (ours). The models from Previous Work
are described in Section 5.5. In the last section of Table 5.1 we present the results of our
experiments (This work). Here, BiDAF and QANet are implementations available in the
AllenNLP framework (Gardner et al., 2017). In the last two rows we give the results of QANet
extended with the proposed Discourse-Aware Semantic Self-Attention, using intra-sentential,
Explicit discourse relations (DR (Exp), EMA is Exponential Moving Average).

5.6.2 Fine-grained Evaluation

We further analyze the performance of different configurations of our model by conducting
fine-grained evaluation in view of question types (Figure 5.4) and context length (Figure 5.5).

We define a range of system configurations using attention heads enhanced with different
combinations of linguistic annotation types, including Explicit (referred to as Exp or E) and
Non-Explicit (NonE, NE), Discourse Relations (DiscRel, DR), Semantic Role Labeling (SRL),
and Coreference (Coref), and configurations without any such additional information (No).
We also experiment with a setting where instead of using specific discourse relation types

3The previous work that uses span-prediction models does not report their Oracle model used for training
supervision.
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Oracle
QANet

BiDAF
Coref

DR (All)
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onE NoSense)

Sent span 3 SRL

SRL + DR (Exp)

SRL + DR (N
onE)

SRL + DR (All)

SRL + DR (Exp) + Coref

SRL + DR (All) +
 Coref

all

how

how far*

how long*

how many

how much*

how old*

other*

what

when

where

which

who

why

70.82 48.66 0.97 1.21 1.34 3.43 0.98 0.56 1.34 1.61 1.53 1.84 1.40 1.31 1.13 1.21

53.48 33.00 2.26 0.71 1.00 1.32 1.86 1.11 -0.17 0.53 1.00 0.85 0.44 1.34 0.08 1.96

65.76 48.62 2.93 8.33 -26.40 10.45 10.45 2.86 10.45 16.70 2.93 10.45 10.45 -22.14 13.67 10.45

69.92 62.91 2.31 3.68 6.25 3.33 -1.34 -2.25 -0.37 -0.61 -2.32 2.50 4.04 -1.22 4.52 2.01

54.57 46.75 5.36 12.36 2.45 2.54 5.50 2.50 8.63 6.99 3.26 5.42 3.00 5.58 10.15 7.05

67.59 61.87 5.55 4.48 9.44 12.23 1.91 -4.11 0.09 5.75 3.91 11.52 4.73 7.28 9.43 4.22

28.62 23.52 -4.13 4.22 -0.03 -9.91 1.05 -13.88 3.48 -0.65 5.22 1.87 1.14 -5.66 3.69 3.92

50.11 18.59 -2.02 7.73 -5.60 -1.53 0.88 6.14 3.44 2.17 7.77 6.74 7.91 2.62 -0.48 3.43

69.73 47.88 0.69 0.77 0.40 3.11 0.28 0.71 0.62 0.68 1.24 1.36 1.61 0.97 0.54 0.55

64.11 39.66 5.35 4.25 2.05 5.71 4.04 4.88 5.03 5.81 4.80 6.98 2.57 3.25 4.21 6.55

80.66 62.75 -1.38 -0.22 -1.08 1.78 -0.01 0.10 0.61 -0.38 0.44 1.15 0.21 0.77 1.19 -0.40

85.64 55.99 -2.78 -1.59 0.94 3.44 -2.81 -0.24 -1.20 -0.95 -1.57 3.14 0.91 -1.06 -0.72 1.28

82.97 55.97 0.93 1.88 3.49 5.40 1.87 0.17 2.80 3.77 2.30 2.35 1.90 2.25 1.74 1.88

49.59 33.51 2.19 0.69 1.31 1.86 1.35 0.06 0.96 1.02 1.54 0.96 -0.15 0.17 0.60 0.31

     Absolute                                                   Improvement over QANet baseline

Fig. 5.4 Rouge-L performance per Question Type on the NarrativeQA Test set. The first two
columns represent Absolute values. The rest are improvements over the QANet baseline
model (i) by BiDAF and (ii) configurations of QANet with linguistic information. Question
types with * have less than 100 instances in the Test set.

(such as DiscRel_Exp_Cause_Arg1), we only identify that a token is a part of any (NoSense)
discourse relation (e.g., DiscRel_Exp_Arg1) or simply a multi-sentence attention span Sent
span 3 with labels Sent1, Sent2, Sent3 for each sentence. This is to examine whether the type
of discourse relation is important or rather the attention scope (intra-sentential, cross-sentence
- 2, 3 neighbouring sentences, full context).

Question Type Different question types might profit from different linguistic annotation
types. We thus examine the performance of different question types, and analyze how it
correlates with the presence of specific Semantic Self-Attention signals. We classify the
questions into question types using a simple heuristic based on the question words as an
indicator of their type (How / Where / Why / Who / What ...), and calculate the average
Rouge-L for each such question type. The resulting scores are displayed in Figure 5.4. In
the first two columns of the figure, we report the Oracle score and the baseline (QANet)
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Oracle
QANet

BiDAF Coref
DR (All)

DR (Exp)
DR (NonE)

DR (Exp NoSense) 

DR (NonE NoSense)

Sent span 3 SRL

SRL + DR (Exp)

SRL + DR (NonE)

SRL + DR (All)

SRL + DR (Exp) + Coref

SRL + DR (All) + Coref

200 - 400

400 - 600

600 - 800

800 - 1000

1000 - 1200*

71.54 50.89 -0.12 0.84 1.63 3.04 0.90 1.17 0.33 2.13 1.45 2.29 0.95 0.25 0.50 0.92

69.69 48.73 1.79 1.28 1.35 3.39 0.26 0.96 1.40 1.11 2.28 1.68 0.98 0.78 1.95 1.33

70.86 48.72 0.49 1.47 0.87 2.80 0.50 -0.56 1.73 1.23 0.67 1.41 0.81 0.98 0.39 0.62

70.54 46.31 1.35 1.42 1.90 4.23 1.64 1.02 1.64 1.73 1.40 1.71 2.07 2.50 1.44 1.79

73.05 51.66 1.96 0.19 0.33 3.99 2.45 0.48 1.07 2.70 3.60 3.34 3.51 2.16 2.27 1.65

     Absolute                                                   Improvement over QANet baseline

Fig. 5.5 Rouge-L performance by context length on the NarrativeQA Test set. The first two
columns represent Absolute values. The rest are improvements over the QANet baseline
model (i) by BiDAF and (ii) different configurations of QANet with linguistic information.
Rows with * have less than 100 instances in the Test set.

score. In the remaining columns we report (i) the improvement over the QANet baseline
of BiDAF, and (ii) of our models with different combinations of discourse-aware semantic
self-attention. In the first row, we report the score for each of the models on all questions.
We observe that best-performing models on all questions are the ones that include Explicit
DR, and/or SRL. In terms of hardness, how and why questions usually have the lowest score.
This is not surprising since Oracle performance is also low. For these types of questions,
the RNN-based encoder (BiDAF) and self-attention with DR (Exp) or DR (NonE) perform
best. Almost all models with additional linguistic information improve over the baseline on
when questions, lead by the SRL+DR (Exp) and SRL + DR (All) + Coref. What questions
are improved most by DR (Exp) and SRL alone or when combined. Who questions gain the
most from discourse relations and all models that contain SRL.

Context Length In Figure 5.5 we present the performance on documents of different
lengths, in number of tokens. All presented models are trained on the examples from
the Train set with context up to 800 tokens. Again, the models DR (Exp) and SRL+DR
(Exp) show clear improvement across all context lengths. It is clear that all models show
improvement over length 800-1000. This supports our hypothesis that discourse information
is required for generalizing to longer contexts. One reason is that some of the questions can
be answered with a local context (one-two sentences) which is better represented given short
discourse scope (one-three sentences) or long dependencies given coreference.

In the evaluation of multiple model configurations, we notice that in some cases a single
discourse/semantic type (e.g. DR (Exp)) performs better than in combination with others (e.g.
SRL+DR (Exp)). We hypothesize that the reason is that the linguistic annotations work well
in combination with free No attention heads (see Table 5.2). Currently, we place multiple
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Context Although he terrifies the fairies when he first arrives , Peter quickly gains
favour with them . He amuses them with his human ways and agrees to
play the panpipes at the fairy dances . Eventually , Queen Mab grants
him the wish of his heart , and he decides to return home to his mother .

Question After scaring the fairies, how does Peter win them over ?
Human 1: he agrees to play the panpipes at all of the fairy dances.; Human 2: He
amuses them with his human ways and plays the pipes at their dances.; Oracle: human
ways and agrees to play the panpipes at the fairy dances ; QANet: gains favour ; DR
(Exp), DR (NE): quickly gains favour with them; Coref, SRL, SRL+DR(Exp): He
amuses them with his human ways and agrees to play the panpipes; SRL+DR(NE):
He amuses them with his human ways and agrees to play the panpipes at the fairy
dances
Rationale: To find the correct answer we need to know that (i) ‘gains favor’ is a
synonym to ‘win’ in this context (commonsense); (ii) the following (2nd) sentence is
the reason for the previous (1st) (DR - the model fails in this case) (iii) ‘them’ are ‘the
fairies’, ‘he’ is Peter (Coref)

Fig. 5.6 Example of positive impact of SRL and Coref and negative impact from discourse
relations (DR).

Context Jacob frequently visits Jeff and Kenny , who are serving time in a juvenile
hall . Jacob initially threatens them , until eventually Jeff commits suicide
. Jacob befriends Kenny , soon learning he has an early release and is
illegally moving to New Mexico .

Question Why does Jeff committ suicide ?
Human 1: Jacob threatened them; Human 2: He is threatened by Jacob.; Oracle: site
which he says is ; QANet: Jeff and Kenny , who are serving time in a juvenile hall;
DR (Exp), DR (NE), SRL, SRL+DR(Exp), SRL+DR(NE): Jacob initially threatens
them ,; Coref: Jacob initially threatens them , until eventually Jeff commits suicide .
Jacob befriends Kenny , soon learning he has an early release and is illegally moving to
New Mexico
Rationale: To find the correct answer we need to understand that ‘until eventually’
suggests that the suicide of Jeff is caused by Jacob threatening ‘them’ (DR) and that
Jeff is part of ‘them’ (Coref).

Fig. 5.7 Example of positive impact of SRL and Coref, and discourse relations (DR).

annotations on the same Encoder Block which reduces the number of free attention heads.
For instance, for SRL+DR (Exp), each knowledge-enhanced encoder block has 3 SRL +
2 DR (Exp) + 3 No heads. In future work we plan to use different annotation heads per
Encoder Block (EB): e.g., EB0 has 3 SRL + 5 No; EB1 has 2 DR (Exp) + 6 No; etc.
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Context The four orphan children of the house , Edward , Humphrey , Alice and
Edith , are believed to have died in the flames . However , they are saved by
Jacob Armitage , a local verderer , who hides them in his isolated cottage
and disguises them as his grandchildren . Under Armitage ’s guidance , the
children from an aristocratic lifestyle to that of simple foresters .

Question Who rescues the children from fire at Arnwood ?
Human 1, Human 2: Jacob Armitage; Oracle: Jacob Armitage; DR (Exp), DR
(NE), Coref: Jacob Armitage; QANet, SRL, SRL+DR(Exp): Pablo; SRL+DR(NE):
Patience
Rationale: To find the correct answer we need to understand at least that ‘they’ are ‘the
children’ (Coref) and ‘who did what to whom’ in the context (SRL).

Fig. 5.8 Example of positive impact of Coref and DR and negative impact from SRL.

Success and Failure Examples In Figures 5.6, 5.7, 5.8 we show examples of context4

and questions, together with the answers from human annotators and some of the examined
models.5 We provide a hypothetical rationale of what we would need to answer the question.
6

5.7 Conclusion and Future Work

In this chapter, we use linguistic annotations as a basis for a Discourse-Aware Semantic
Self-Attention encoder that we employ for reading comprehension on narrative texts.

The provided annotations of discourse relations, events, and their arguments as well as
coreferring mentions, are using available annotation tools. Our empirical evaluation shows
that discourse-semantic annotations combined with self-attention yield significant (+3.43
Rouge-L) improvement over QANet’s token-based self-attention when applied to Narra-
tiveQA reading comprehension. We analyzed the impact of different semantic annotation
types on specific question types and context regions. We find, for instance, that SRL greatly
improves who and when questions, and discourse relations improve also the performance
on why and where questions. While all examined annotation types contribute, particularly
strong and constant gains are seen with intra-sentential DR (all context ranges), followed by
SRL (short to mid-sized contexts). Coreference shows positive, but weaker impact, mostly in
mid-sized contexts.

4The part that contains the correct answer.
5For easier reading, we color the gold, correct, and wrong answers and underline the mentions of different

characters.
6 The examples are selected from NarrativeQA Test, in such a way, that they depict the strength and

weaknesses of the different models, corresponding to the empirical evaluation on Figure 5.4 and they fit in the
space limit.



Chapter 6

Summary and Conclusions

In this chapter, we summarize the contributions and findings from the previous three chapters.
We also discuss some recent work in the field of machine reading comprehension and
knowledge integration for natural language processing and discuss possible future directions.

6.1 Summary of the Contributions

In this thesis, we focused on approaches that integrate linguistic knowledge and external
background and commonsense knowledge to the task of machine reading comprehension.

In Chapter 3 we proposed tackling the task of neural machine reading comprehension
with external commonsense knowledge. We developed an approach that enhances an exist-
ing cloze-style reading comprehension dataset with knowledge retrieved from ConceptNet
and encodes it in a neural model to improve the performance on the task. Our model uses
an attention-based mechanism to explicitly select relevant knowledge, encoded in a neural
memory and fuse it into a contextual representation of a given document and question. Our
proposed neural model is interpretable in nature. First, the linear combination of different
interactions between text-only and knowledge-enhanced representations allows us to track
in which examples the knowledge is used to make a decision. Second, the explicit retrieval
from the explicit memory shows what knowledge was selected to improve the representa-
tion. We demonstrate the interpretability using a case study and quantitative experiments
on the different knowledge-to-text interactions. We evaluated the effectiveness of different
sources of external knowledge for cloze-style reading comprehension where the answers
are common nouns and named entities, and open book question answering for science ques-
tions. We showed that the integration of relevant knowledge is important and improving
the performance further would benefit from better retrieval models and relevant knowledge
sources.
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In Chapter 4 we explore the benefits of transferring linguistic knowledge from su-
pervised natural language processing tasks to machine reading comprehension using
neural representations. We develop simple models around text classification, sequence
labeling, and relation classification and use them for encoding linguistic knowledge from
tasks that resemble skills such as identification of discourse relations, paraphrase identifi-
cation and natural language inference, event detection, and named entity recognition. We
compare the performance of these neural representations when adapted for machine read-
ing comprehension in a simple encoder-based ‘skillful’ neural model. We show that using
the representations, learned from specialized natural language processing tasks, boosts the
performance of the neural reading comprehension model (i) early in training and (ii) when
training on smaller portions (2, 5, 10, or 25 percent) of the original training data. We discuss
the effectiveness of different skill tasks in different training stages and data sizes. We also
perform ablation experiments of neural representations trained with various architectures
and show that they improve the machine reading comprehension performance further when
combined.

In Chapter 5 we aim to improve existing self-attention models for machine reading
comprehension using structured linguistic knowledge. We develop a Discourse-Aware
Semantic Self-Attention mechanism, an extension to the standard transformer-based self-
attention mechanism (Vaswani et al., 2017) without a significant increase in computation
complexity. We analyze the impact of different discourse and semantic annotations on
narrative reading comprehension. We annotate the raw text of NarrativeQA dataset (Kociský
et al., 2017) with available state-of-the-art tools for Semantic Role Labeling (Gardner et al.,
2017) and Coreference Resolution. To further annotate our documents with discourse
relations we developed a fast and simple method for discourse relation sense disambiguation
(Appendix B). We propose evaluating the output of our models using a fine-grained evaluation
of specific question types and context size regions. Our experiments with different discourse-
semantic annotations show interesting dependence between discourse and semantic types
and question types: ex. Semantic Role Labeling (events) improves who and when questions,
intra-sentential Explicit discourse relations improve why and where questions. We also show
that all relations improve the performance of answering questions on longer texts.

6.2 Current Trends and Future Directions

In this thesis, we explored approaches to machine reading comprehension and question
answering that use external knowledge, retrieved from external sources or transferred from
supervised language tasks and annotations. In this section, we will briefly discuss where
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similar approaches to those proposed in this thesis were adopted in the current era of large
pre-trained models, and what are plausible future directions in knowledge-enhanced neural
networks.

Transfer Learning from Pre-trained Language Models In this thesis, we employed
neural transfer learning of linguistic knowledge from supervised natural language processing
tasks (Chapter 4). Using transfer learning became indeed a standard in the field. However, in
contrast to our supervised approach of combining knowledge from multiple tasks, unlabeled
pre-training from language models turned out to be much more successful.

A big breakthrough in the field of NLP was unleashed by Peters et al. (2018) who
developed ELMo – a deep contextualized bi-directional recurrent neural network encoder,
pre-trained with an unlabeled language model objective. Using the weights of this pre-trained
model in existing task-specific neural models significantly improved the performance of
multiple tasks, including machine reading comprehension (Peters et al., 2018). Radford et al.
(2018a) trained a large transformer-based generative language model and proposed a method
for adapting it to multiple tasks using fine-tuning. The fine-tuning technique was further
developed by Devlin et al. (2019a) with the introduction of BERT and became a standard
approach for tackling almost any existing NLP task and getting a supreme performance.
Fine-tuning the BERT model surpassed the human annotator performance on the SQuAD
(Rajpurkar et al., 2016) dataset and many other tasks. The surprising performance of large
pre-trained models on natural language processing tasks is argued (Rogers et al., 2020) to be
due to its ability to encode background and linguistic knowledge, implicitly learned in the
pre-training phase.

While these models perform well with simple fine-tuning to a target task, they were shown
to benefit from efficient adapter-based approaches that are similar to ours proposed in Chapter
4. Houlsby et al. (2019) examined using adapters as an efficient approach to consolidating
knowledge in different layers of BERT. This was further developed for cross-lingual and
multi-task transfer (Pfeiffer et al., 2020b) and Pfeiffer et al. (2020a) even created a framework
to easily share adapters for different tasks and languages contributed by different authors.
Using adapters and other knowledge extraction techniques and combining the knowledge
from multiple tasks is a promising direction when the models become bigger and bigger and
the pure fine-tuning approaches require a lot of resources.

Pre-trained Language Models With External Knowledge Approaches similar to our
proposed in Chapter 3 have been used successfully for augmenting large pre-trained language
models with external knowledge retrieved from a knowledge base and textual corpus. Zhang
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et al. (2019) built ERNIE, a knowledge-augmented version of BERT (Devlin et al., 2019a) that
employs external information into a ‘knowledgeable’ encoder and achieved better results on
various tasks. Concurrently, Peters et al. (2019) proposed KnowBert which uses knowledge
from WordNet and Wikipedia to augment the contextual representation of a language model
and improve its performance for word sense disambiguation, entity typing, and relation
extraction tasks. Guu et al. (2020b) implemented the retrieve-and-augment approach as an
end-to-end system that jointly queries a densely-encoded version of Wikipedia, combines
the result with a text document, and is trained to recover a missing token in the document.
The system achieved SOTA performance on several Open QA tasks. (Lewis et al., 2020a)
used as a similar approach for retrieval-augmented generation. They combine a pre-trained
retriever and a pre-trained sequence-to-sequence model and fine-tune them further together
end-to-end. They show that the model performs better than other pre-training approaches
without external memory on multiple knowledge-intensive NLP tasks and open-domain QA.

While the examples above show the great potential of knowledge-augmented pre-training,
they often do not scale well. One limitation is the size of the explicit memory (document
index) which does not allow to add knowledge from multiple domains easily at pre-training
and adding so slows the retrieval. In contrast, several works have shown that adding more data
crawled from the web, and scaling the model size of a generative model or masked language
model, increases the performance on downstream tasks significantly: GPT-1(Radford et al.,
2018a) -> BERT (Devlin et al., 2019b) -> RoBERTA (Liu et al., 2019) -> GPT-2 (Radford
et al., 2019) -> GPT-3 (Brown et al., 2020a).

Language Models as Few-Shot Learners Recently, Brown et al. (2020a) trained GPT-3
- a gigantic generative language model and demonstrated that is able to perform zero and
few-shot in-context learning. They prompted the model with a simple task description and
zero or few positive examples of the task the model performed surprisingly well on new
examples without any parameter updates. To evaluate the generalization of such models Efrat
and Levy (2020) proposed using instructions from crowdsourcing tasks and demonstrated
the limitation of such models. Mishra et al. (2021) extended this to multiple tasks and
demonstrated that these models perform well when the instructions are simpler.

Framing existing tasks as instruction understanding is an exciting direction where
integrating external knowledge and knowledge from multiple tasks would be helpful if
done at scale or with smart task mapping. One possible approach to include knowledge
is to use metadata fields from crawled web pages or knowledge bases such as GDELT
(https://www.gdeltproject.org/) that already parsed some relevant information from crawled
pages. This knowledge can be grounded using schema formatting to achieve instruction-like
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input for generative pre-training at scale. The approach of Mishra et al. (2021) is a way
of transfer learning through grounding and extending this to multiple tasks or finding a
suitable schema is also a promising direction in order to augment large pre-trained models.
Depending on the number of datasets and size these can be used as later steps or continuous
training to improve the performance.
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Appendix A

Source Code

The source code used for obtaining the results for Chapters 3,4, and 5 of this Thesis is avail-
able at https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.
11588/data/HU3ARF. For details, see the README.md in each chapter folder.
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Appendix B

Discourse Relation Sense Classification

B.1 A System for Discourse Relation Sense Classification

In this section, we describe our approaches from (Mihaylov and Frank, 2016b), developed
for the CoNLL 2016 Shared Task’s supplementary task on Discourse Relation Sense Classi-
fication. Our system employs a Logistic Regression classifier with several cross-argument
similarity features based on word embeddings and performs with overall F-scores of 64.13
for the Dev set, 63.31 for the Test set and 54.69 for the Blind set, ranking first in the Overall
ranking for the task. We compare the feature-based Logistic Regression classifier to different
Convolutional Neural Network architectures. We further enriched our model for Non-Explicit
relations by including similarities of explicit connectives with the relation arguments, and
part-of-speech similarities based on modal verbs. This improved our Non-Explicit result by
1.46 points on the Dev set and by 0.36 points on the Blind set. We use our best system as
a base for our discourse relation annotation, used for Machine Reading Comprehension of
narrative texts as described in Chapter 5.

B.1.1 Discourse Relation Sense Classification Data

The CoNLL 2016 Shared Task on Shallow Discourse Parsing (Xue et al., 2016a) focuses on
identifying individual discourse relations presented in text. The shared task has a main track
that requires end-to-end discourse relation parsing and a supplementary task that is restricted
to discourse relation sense classification. For the main task, systems are required to build a
system that given a raw text as input can identify arguments Arg1 and Arg2 that are related
in the discourse, and also classify the type of the relation, which can be Explicit, Implicit,
AltLex or EntRel. A further attribute to be detected is the relation Sense, which can be one of
15 classes organized hierarchically in 4 parent classes. With this work, we participated in the



Supplementary Task on Discourse Relation Sense Classification in English. The task is to
predict the discourse relation sense when the arguments Arg1, Arg2 are given, as well as the
Discourse Connective in case of explicit marking.

In our contribution, we compare different approaches including a Logistic Regression
classifier using similarity features based on word embeddings, and two Convolutional Neural
Network architectures. We show that an approach using only word embeddings retrieved
from word2vec (Mikolov et al., 2013b) and cross-argument similarity features is simple and
fast, and yields results that rank first in the Overall, second in the Explicit and forth in the
Non-Explicit sense classification task.

Our system’s code is publicly accessible1.

B.1.2 Related Work

This year’s CoNLL 2016 Shared Task on Shallow Discourse Parsing (Xue et al., 2016a) is the
second edition of the shared task after the CoNLL 2015 Shared task on Shallow Discourse
Parsing (Xue et al., 2015). The difference to 2015’s task is that there is a new Supplementary
Task on Discourse Relation Sense classification, where participants are not required to build
an end-to-end discourse relation parser but can participate with a sense classification system
only.

Discourse relations in the task are divided into two major types: Explicit and Non-Explicit
(Implicit, EntRel and AltLex). Detecting the sense of Explicit relations is an easy task: given
the discourse connective, the relation sense can be determined with very high accuracy (Pitler
et al., 2008). A challenging task is to detect the sense of Non-Explicit discourse relations, as
they usually don’t have a connective that can help to determine their sense.

In the previous version of the task Non-Explicit relations have been tackled with features
based on Brown clusters (Chiarcos and Schenk, 2015; Wang and Lan, 2015; Stepanov et al.,
2015), VerbNet classes (Kong et al., 2015; Lalitha Devi et al., 2015) and MPQA polarity
lexicon (Wang and Lan, 2015; Lalitha Devi et al., 2015).

Earlier work (Rutherford and Xue, 2014) employed Brown cluster and coreference pat-
terns to identify senses of implicit discourse relations in naturally occurring text. More
recently Rutherford and Xue (2015) improved inference of implicit discourse relations via
classifying explicit discourse connectives, extending prior research (Marcu and Echihabi,
2002; Sporleder and Lascarides, 2008). Several neural network approaches have been pro-
posed, e.g., Multi-task Neural Networks (Liu et al., 2016) and Shallow-Convolutional Neural
Networks (Zhang et al., 2015a). Braud and Denis (2015) compare word representations for

1https://github.com/tbmihailov/conll16st-hd-sdp - Source code for our Discourse Relation Sense
Classification system

https://github.com/tbmihailov/conll16st-hd-sdp


implicit discourse relation classification and find that denser representations systematically
outperform sparser ones.

B.1.3 Method

We divide the task into two subtasks, and develop separate classifiers for Explicit and Non-
Explicit discourse relation sense classification, as shown in Figure . We do that because
the official evaluation is divided into Explicit and Non-Explicit (Implicit, AltLex, EntRel)
relations and we want to be able to tune our system accordingly. During training, the relation
type is provided in the data, and samples are processed by the respective classifier models in
Process 1 (Non-Explicit) and Process 2 (Explicit). During testing the gold Type attribute is
not provided, so we use a simple heuristic: we assume that Explicit relations have connectives
and that Non-Explicit2 relations do not.

As the task requires that the actual evaluation is executed on the provided server, we save
the models so we can load them later during evaluation.

Fig. B.1 System architecture: Training and evaluating models for Explicit and Non-Explicit
discourse relation sense classification

For classifying Explicit connectives we follow a feature-based approach, developing
features based on word embeddings and semantic similarity measured between parts of
the arguments Arg1 and Arg2 of the discourse relations. Classification is into one of the
fifteen classes of relation senses. For detecting Non-Explicit discourse relations we also make

2In fact, some AltLex discourse relations do have connectives, but they are considered Non-Explicit. More
detailed analysis will be required to improve on this simple heuristic. Given that their distribution across the
data sets is very small, they do not have much influence on the overall performance.



use of a feature-based approach, but in addition, we experiment with two models based on
Convolutional Neural Networks.

B.1.3.1 Feature-based approach

For each relation, we extract features from Arg1, Arg2 and the Connective, in case the type
of the relation is considered Explicit.

Semantic Features using Word Embeddings. In our models we only develop features
based on word embedding vectors. We use word2vec (Mikolov et al., 2013b) word embed-
dings with vector size 300 pre-trained on Google News texts.3 For computing similarity
between embedding representations, we employ cosine similarity:

1− u.v

∥u∥ . ∥v∥
(B.1)

Embedding representations for Arguments and Connectives. For each argument Arg1,
Arg2 and Connective (for Explicit relations) we construct a centroid vector () from the
embedding vectors w⃗i of all words wi in their respective surface yield.

centroid(w⃗1...w⃗n) =

n∑
i=1

w⃗i

n
(B.2)

Cross-argument Semantic Vector Similarities. We calculate various similarity features
based on the centroid word vectors for the arguments and the connective, as well as on parts
of the arguments:

Arg1 to Arg2 similarity. We assume that for given arguments Arg1 and Arg2 that
stand in a specific discourse relation sense, their centroid vectors should stand in a specific
similarity relation to each other. We thus use their cosine similarity as a feature.

Maximized similarity. Here we rank each word in Arg2’s text according to its similarity
with the centroid vector of Arg1, and we compute the average similarity for the top-ranked
N words. We chose the similarity scores of the top 1,2,3 and 5 words as features. The
assumption is that the average similarity between the first argument (Arg1) and the top N

most similar words in the second argument (Arg2) might imply a specific sense.

3https://code.google.com/archive/p/word2vec/ - Pre-trained vectors trained on part of the Google
News dataset (about 100 billion words).

https://code.google.com/archive/p/word2vec/


Aligned similarity. For each word in Arg1, we choose the most similar word from the
yield of Arg2 and we take the average of all best word pair similarities, as suggested in Tran
et al. (2015).

Part of speech (POS) based word vector similarities. We used part of speech tags
from the parsed input data provided by the organizers and computed similarities between
centroid vectors of words with a specific tag from Arg1 and the centroid vector of Arg2.
Extracted features for POS similarities are symmetric: for example, we calculate the similarity
between Nouns from Arg1 with Pronouns from Arg2 and the opposite. The assumption is
that some parts of speech between Arg1 and Arg2 might be closer than other parts of speech
depending on the relation sense.

Explicit discourse connectives similarity. We collected 103 explicit discourse connectives
from the Penn Discourse Treebank (Prasad et al., 2008a) annotation manual4 and for all of
them construct vector representations according to (), where for multi-token connectives we
calculate a centroid vector from all tokens in the connective. For every discourse connective
vector representation, we calculate the similarity with the centroid vector representations
from all Arg1 and Arg2 tokens. This results in adding 103 similarity features for every
relation. We use these features for implicit discourse relations sense classification only.

We assume that knowledge about the relation sense can be inferred by calculating the
similarity between the semantic information of the relation arguments and specific discourse
connectives. Our feature-based approach yields very good results on Explicit relations sense
classification with an F-score of 0.912 on the Dev set. Combining features based on word
embeddings and similarity between arguments in Mihaylov and Nakov (2016) yielded state-
of-the-art performance in a similar task setup in Community Question Answering (Nakov
et al., 2016a), where two text arguments (question and answer) are to be ranked.

B.1.3.2 CNNs for sentence classification

We also experiment with Convolutional Neural Network architectures to detect Implicit
relation senses. We have implemented the CNN model proposed in Kim (2014) as it proved
successful in tasks like sentence classification and modal sense classification (Marasović
and Frank, 2016). This model (Figure ) defines one convolutional layer that uses pre-trained
Word2Vec vectors trained on the Google News dataset. As shown in Kim (2014), this
architecture yields very good results for various single-sentence classification tasks. For our
relation classification task, we input the concatenated tokens of Arg1 and Arg2.

4
https://www.seas.upenn.edu/~pdtb/PDTBAPI/pdtb-annotation-manual.pdf - The Penn Discourse Treebank 2.0 Annotation Manual

https://www.seas.upenn.edu/~pdtb/PDTBAPI/pdtb-annotation-manual.pdf


Fig. B.2 CNN architecture by Kim (2014) (figure is from Kim (2014))

B.1.3.3 Modified ARC-1 CNN for sentence matching

An alternative model we try for Implicit discourse relation sense classification is a modifica-
tion of the ARC-1 architecture proposed for sentence matching by Hu et al. (2015). We will
refer to this model as ARC-1M.

The modified architecture is depicted in Figure . The input of the model are two sentences
Sx and Sy represented as sequence of tokens’ vector representations of Arg1 and Arg2. Here,
separate convolution and max-pooling layers are constructed for the two input sentences, and
the results of the max-pooling layers are concatenated and fed to a single final SoftMax layer.
The original ARC-1 architecture uses a Multilayer Perceptron layer instead of SoftMax. For
our implementation, we use TensorFlow (Abadi et al., 2015).

B.1.4 Experiments and Results

B.1.4.1 Data

In our experiments we use the official data (English) provided from the task organizers: Train
(15500 Explicit + 18115 Non-Explicit), Dev (740 Explicit + 782 Non-Explicit), Test (990
Explicit + 1026 Non-Explicit), Blind (608 Explicit + 661 Non-Explicit). All models are
trained on Train set.

B.1.4.2 Classifier settings

For our feature-based approach, we concatenate the extracted features in a feature vector,
scale their values to the 0 to 1 range, and feed the vectors to a classifier. We train and evaluate



Fig. B.3 Modified ARC-I CNN architecture for sentence matching.

an L2-regularized Logistic Regression classifier with the LIBLINEAR (Fan et al., 2008)
solver as implemented in scikit-learn (Pedregosa et al., 2011). For most of our experiments,
we tuned the classifier with different values of the C (cost) parameter and chose C=0.1 as it
yielded the best accuracy on 5-fold cross-validation on the training set. We use these settings
for all experiments that use the logistic regression classifier.

B.1.4.3 Official submission (LR with E+Sim)

Our official submission uses the feature-based approach described in Section for both Explicit
and Non-Explicit relations with all features described above, except for the Explicit connective
similarities (Conn) and Modal verbs similarities (POS MD) which have been added after
the submission deadline. Table presents the results divided by senses from our official
submission performed on the TIRA evaluation platform (Potthast et al., 2014) server. We
also compare our official and improved system results to the best-performing system in
the CoNLL 2015 Shared Task (Wang and Lan, 2015) and the best-performing systems in
the CoNLL 2016 Discourse Relation Sense Classification task. With our official system,
we rank first in the Overall5 ranking. We rank second in the Explicit ranking with a small
difference of 0.07 behind the best system and fourth in the Non-Explicit ranking with a more

5Overall score is the F-score on All (both Explicit and Non-Explicit) relations.



WSJ Dev Set WSJ Test Set Blind Set (Official task ranking)
Sense Overall Exp Non-E Overall Exp Non-E Overall Exp Non-E
Comparison.Concession 33.33 40.00 0.00 36.36 44.44 0.00 91.67 100.00 0.00
Comparison.Contrast 74.31 94.44 16.07 65.99 92.19 9.60 21.24 25.81 0.00
Contingency.Cause.Reason 51.48 78.95 38.51 64.36 94.03 47.93 35.71 82.61 18.03
Contingency.Cause.Result 38.94 91.43 15.38 40.74 100.00 17.53 53.33 91.67 27.78
Contingency.Condition 95.56 95.56 - 87.50 87.50 - 89.66 89.66 -
EntRel 58.73 - 58.73 70.97 - 70.97 47.06 - 47.06
Expansion.Alt 92.31 92.31 - 100.00 100.00 - 100.00 100.00 -
Expansion.Alt.Chosen alt 71.43 90.91 0.00 22.22 100.00 6.67 0.00 - 100.00
Expansion.Conjunction 70.45 97.00 40.00 75.88 98.36 40.26 63.48 94.52 27.51
Expansion.Instantiation 47.73 100.00 34.29 57.14 100.00 44.29 55.56 100.00 50.00
Expansion.Restatement 31.13 66.67 29.56 31.31 14.29 31.94 32.39 66.67 30.88
Temporal.Async.Precedence 78.46 98.00 13.33 82.22 100.00 11.11 84.44 97.44 0.00
Temporal.Async.Succession 82.83 87.23 0.00 58.82 63.49 0.00 96.08 96.08 -
Temporal.Synchrony 77.30 80.77 0.00 80.25 83.33 0.00 59.70 59.70 100.00
System All senses - comparison
Our system (Official) 64.13 91.20 40.32 63.31 89.80 39.19 54.69 78.34 34.56
Our improved system 64.77 91.05 41.66 62.69 90.02 37.81 54.88 78.38 34.92
Wang and Lan, 2015 65.11 90.00 42.72 61.27 90.79 34.45 54.76 76.44 36.29
Rutherford and Xue, 2016 - - 40.32 - - 36.13 - - 37.67
Jain, 2016 62.43 91.50 36.85 50.90 89.70 15.60 41.47 78.56 9.95

Table B.1 Evaluation of our official submission system, trained on Train 2016 and evaluated
on Dev, Test, and Blind sets. Comparison with our official system and our improved system
with the official results of CoNLL 2015 Shared Task’s best system (Wang and Lan, 2015) and
CoNLL 2016 Shared Task best systems in Explicit (Jain, 2016) and Non-Explicit (Rutherford
and Xue, 2016). F-Score is presented.

significant difference of 2.75 behind the best system. We can see that similar to (Wang and
Lan, 2015) our system performs well in classifying both types, while this year’s winning
systems perform well in their winning relation type and much worse in the others. 6

B.1.4.4 Further experiments on Non-Explicit relations

In Table we compare different models for Non-Explicit relation sense classification trained
on the Train and evaluated on the Dev set.

Embeddings only experiments. The first three columns show the results obtained with
three approaches that use only features based on word embeddings. We use word2vec word
embeddings. We also experimented with pre-trained dependency-based word embeddings
(Levy and Goldberg, 2014), but this yielded slightly worse results on the Dev set.

6The winner team in Non-Explicit (Rutherford and Xue, 2016) does not participate in Explicit.



Embeddings only Logistic Regression with Embeddings + Features
Sense LR CNN CNN ARC-1M E+Sim E+Sim+Conn E+Sim+Conn+POS MD
Comparison.Concession 0.00 0.00 0.00 0.00 0.00 0.00
Comparison.Contrast 2.33 13.68 8.51 16.07 18.80 17.86
Contingency.Cause.Reason 25.00 29.30 35.90 38.51 40.24 42.17
Contingency.Cause.Result 3.57 9.20 19.28 15.38 15.38 13.70
EntRel 53.13 59.53 56.87 58.73 60.80 61.26
Expansion.Alt.Chosen alt 0.00 0.00 0.00 0.00 0.00 0.00
Expansion.Conjunction 35.90 38.29 14.67 40.00 40.91 41.27
Expansion.Instantiation 0.00 21.98 4.08 34.29 31.43 33.80
Expansion.Restatement 12.74 0.00 21.56 29.56 26.87 27.45
Temporal.Async.Precedence 0.00 0.00 0.00 13.33 17.65 12.90
Temporal.Async.Succession 0.00 0.00 0.00 0.00 0.00 0.00
Temporal.Synchrony 0.00 0.00 0.00 0.00 0.00 0.00
All 35.54 34.34 36.21 40.32 40.99 41.66

Table B.2 Evaluation of different systems and feature configurations for Non-Explicit relation
sense classification, trained on Train 2016 and evaluated on Dev. F-score is presented.

Logistic Regression (LR). The LR column shows the results from a Logistic Regression
classifier that uses only the concatenated features from the centroid representations built
from the words of Arg1 and Arg2.

CNN experiments. The CNN column shows results obtained from the Convolutional
Neural Network for sentence classification (Section ) fed with the concatenated Arg1 and Arg2
word tokens’ vector representations from Word2Vec word embeddings. For our experiments
we used default system parameters as proposed in Kim (2014): filter windows with size 3,4,5
with 100 feature maps each, dropout probability 0.5, and mini-batch of size 50. We train the
model with 50 epochs.

CNN ARC-1M experiments The CNN ARC-1M column shows results from our
modification of ARC-1 CNN for sentence matching (see Section ) fed with Arg1 and Arg2
word tokens’ vector representations from the Word2Vec word embeddings. We use filter
windows with size 3,4,5 with 100 feature maps each, shared between the two argument
convolutions, dropout probability 0.5 and mini-batch of size 50 as proposed in Kim (2014).
We train the model with 50 epochs.

Comparing LR, CNN and CNN ARC-1M according to their ability to classify different
classes we observe that CNN ARC-1M performs best in detecting Contingency.Cause.Reason
and Contingency.Cause.Result with a substantial margin over the other two models. The
CNN model outperforms the LR and CNN-ARC1M for Comparison.Contrast, EntRel, Expan-
sion.Conjunction and Expansion.Instantiation but cannot capture any Expansion.Restatement
which leads to worse overall results compared to the others. These insights show that the



Neural Network models are able to capture some dependencies between the relation argu-
ments. For Contingency.Cause.Results, CNN ARC-1M even clearly outperforms the LR
models enhanced with similarity features (discussed below). We also implemented a modified
version of the CNN ARC-2 architecture of Hu et al. (2015), which uses a cross-argument
convolution layer, but it yielded much worse results.7

LR with Embeddings + Features The last three columns in Table show the results of
our feature-based Logistic Regression approach with different feature groups on top of the
embedding representations of the arguments. Column E+Sim shows the results from our
official submission and the other two columns show results for additional features that we
added after the submission deadline.

Adding the cross-argument similarity features (without the POS modal verbs similari-
ties) improves the overall result of the embeddings-only Logistic Regression (LR) baseline
significantly from F-score 35.54 to 40.32. It also improves the result on almost all senses
individually. Adding Explicit connective similarities features improves the All result by 0.67
points (E+Sim+Conn). It also improves the performance on Temporal.Async.Precedence,
Expansion.Conjunction, EntRel, Contingency.Cause.Reason and Comparison.Contrast indi-
vidually. We further added POS similarity features between MD (modal verbs) and other
part of speech tags between Arg1 and Arg2. The obtained improvement of 0.67 points shows
that the occurrence of modal verbs within arguments can be exploited for implicit discourse
relation sense classification. Adding the modal verbs similarities also improved the individual
results for the Contingency.Cause.Reason, EntRel and Expansion.Conjunction senses.

Some relations are hard to predict, probably due to the low distribution in the train and
evaluation data sets: Comparison.Concession8, Expansion.Alt.Chosen alt9, Temporal.Async.
Succession10, Temporal. Synchrony11.

B.1.5 Summary

In this section, we describe our system for participation in the CoNLL Shared Task on
Discourse Relation Sense Classification. We compare different approaches including Logistic
Regression classifiers using features based on word embeddings and cross-argument similarity
and two Convolutional Neural Network architectures. Our official submission uses a logistic
regression classifier with several similarity features and performs with overall F-scores of

7We are currently checking our implementation.
8

Comparison.Concession, Non-Explicit: Train:1.10 %, Dev:0.66 %: Test:0.59 %.
9

Expansion.Alt.Chosen-alt, Non-Explicit: Train:0.79 %, Dev:0.26 %: Test:1.49 %.
10

Temporal.Async.Succ, Non-Explicit: Train:0.80 %, Dev:0.39 %: Test:0.49 %.
11

Temporal.Synchrony, Non-Explicit: Train:0.94 %, Dev:1.19 %: Test:0.49 %.



64.13 for the Dev set, 63.31 for the Test set, and 54.69 for the Blind set. After the official
submission, we improved our system by adding more features for detecting senses for Non-
Explicit relations and we improved our Non-Explicit result by 1.46 points to 41.66 on the
Dev set and by 0.36 points to 34.92 on the Blind set.

We could show that dense representations of arguments and connectives jointly with
cross-argument similarity features calculated over word embeddings yield competitive results,
both for Explicit and Non-Explicit relations.


	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Research Objective
	1.3 Contributions
	1.4 Thesis Outline
	1.5 Publications

	2 Background
	2.1 Knowledge Encoding in Neural Networks
	2.2 Machine Reading Comprehension
	2.2.1 Task Formulations
	2.2.2 Related Natural Language Processing Tasks

	2.3 Neural Network Approaches for Machine Reading Comprehension
	2.3.1 Common Architecture
	2.3.2 Neural Reader
	2.3.3 Answer Re-Ranking and Ensemble

	2.4 Neural Machine Reading Comprehension with Prior Knowledge
	2.4.1 Token Embeddings
	2.4.2 Features
	2.4.3 Combining Text and External Knowledge Sources
	2.4.4 Neural Transfer Learning for Machine Reading Comprehension

	2.5 Summary

	3 Neural Machine Reading Comprehension using External Declarative Knowledge
	3.1 Motivation
	3.2 Data and Task Descriptions
	3.2.1 Cloze-style Reading Comprehension with External Commonsense Knowledge
	3.2.2 Open Book Question Answering with External Background and Commonsense Knowledge

	3.3 Cloze-style Reading Comprehension with Background Knowledge Sources
	3.3.1 Knowledge Retrieval
	3.3.2 Knowledgeable Reader: Neural Reader with Explicit Knowledge Memory
	3.3.3 Technical Details

	3.4 Open Book Question Answering with External Knowledge Sources
	3.4.1 Knowledge Retrieval
	3.4.2 Knowledgeable Reader for Multi-Choice Question Answering
	3.4.3 Baseline Models
	3.4.3.1 No Training, External Knowledge Only
	3.4.3.2 No Training; F and External Knowledge
	3.4.3.3 Trained Models, No Knowledge

	3.4.4 Technical Details

	3.5 Experiments and Results
	3.5.1 Cloze-style Reading Comprehension
	3.5.1.1 Model Parameters
	3.5.1.2 Empirical Results

	3.5.2 Open Book Question Answering

	3.6 Discussion and Analysis
	3.6.1 Analysis of the empirical results.
	3.6.2 Interpreting Component Importance
	3.6.3 Qualitative Data Investigation
	3.6.4 Success and Failure Examples for Open Book QA

	3.7 Summary and Conclusions

	4 Neural Machine Reading Comprehension using Contextual Representations Pre-trained on Lower-Level Supervised Language Tasks
	4.1 Introduction
	4.2 Method
	4.2.1 Skill Tasks
	4.2.2 Skill Learning Architectures
	4.2.3 Skillful Reader: Reading Comprehension with Skill Representations

	4.3 Learning Skill Encoders from Tasks 
	4.4 Neural Transfer to Machine Reading Comprehension
	4.4.1 Training Details
	4.4.2 Experiments and Results
	4.4.2.1 Overall Results
	4.4.2.2 Limited Data and Training Stages
	4.4.2.3 Skill Learning Architecture and Modifications


	4.5 Discussion
	4.6 Summary and Conclusions

	5 Neural Machine Reading Comprehension with Structured Linguistic Knowledge
	5.1 Introduction
	5.2 Discourse-aware Semantic Annotations
	5.3 Discourse-Aware Semantic Self-Attention Model
	5.3.1 Base Model
	5.3.2 Discourse-Aware Semantic Self-Attention

	5.4 Data and Task Description
	5.5 Related Work
	5.6 Experiments and Results
	5.6.1 Overall Results
	5.6.2 Fine-grained Evaluation

	5.7 Conclusion and Future Work

	6 Summary and Conclusions
	6.1 Summary of the Contributions
	6.2 Current Trends and Future Directions

	List of Figures
	List of Tables
	References
	A Source Code
	B Discourse Relation Sense Classification
	B.1 A System for Discourse Relation Sense Classification
	B.1.1 Discourse Relation Sense Classification Data
	B.1.2 Related Work
	B.1.3 Method
	B.1.3.1 Feature-based approach
	B.1.3.2 CNNs for sentence classification
	B.1.3.3 Modified ARC-1 CNN for sentence matching

	B.1.4 Experiments and Results
	B.1.4.1 Data
	B.1.4.2 Classifier settings
	B.1.4.3 Official submission (LR with E+Sim)
	B.1.4.4 Further experiments on Non-Explicit relations

	B.1.5 Summary



