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Abstract

Understanding a social situation requires the ability to reason about the underlying emotions
and behaviour of others. For example, when we read a personal story, we use our prior
commonsense knowledge and social intelligence to infer the emotions, motives, and anticipate
the actions of the characters in a story. For machines to understand text related to personal
stories and social conversations, they must be able to make commonsense inferences. While
most people can reason deeply about the social implications of the text, it is challenging for
natural language processing systems as these implications are often subtle and implicit.

This dissertation argues that NLP systems must learn to reason more explicitly about
the underlying social knowledge in text to perform social commonsense reasoning. We
divide the above argument into two sub-problems: (i) understanding the underlying social
knowledge and (ii) explicitly reasoning about such knowledge for social commonsense
reasoning. To address these problems, we propose building NLP systems that integrate neural
network-based learning with structured knowledge representations.

In the first part of this dissertation, we study the role of structured commonsense knowl-
edge in understanding the social dynamics of characters and their actions in stories. Our
motivation behind enriching the model with structured commonsense knowledge is to bridge
the gap between the surface meanings of texts and the underlying social implications of each
event in the stories. We develop a novel model that incorporates commonsense knowledge
into neural models and showcases the importance of commonsense knowledge in understand-
ing the social dynamics of story characters. Further, we investigate the role of temporal
dynamics of story events in understanding social situations. We develop a model that can
explicitly learn about what social event follows another event from personal narrative stories.
We demonstrate that implicitly leveraging such temporal knowledge about story events can
support social commonsense reasoning tasks.

In the second part of this dissertation, we investigate methods to explicitly reason about
the knowledge related to social dynamics of characters (behaviour, mental states) and the
cause/effect of social events. We propose a novel model named as multi-head knowledge
attention that incorporates such social knowledge into state-of-the-art neural NLP models
to address two complex commonsense inference tasks. We demonstrate that our method
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of incorporating knowledge can improve – (i) the robustness and the interpretability of the
model and (ii) the overall performance of the model compared to other knowledge integration
methods. We also aim to investigate social commonsense reasoning as a natural language
generation task. We design a story completion task that requires natural language generation
models to perform both forward and backward reasoning. We study the role of contextualized
commonsense knowledge in natural language generation tasks. We propose a model that
jointly learns to generate contextualized inference rules as well as narrative stories. We
demonstrate that our model can outperform state-of-the-art non-contextualized commonsense
knowledge-based generation models.

We hope that the research presented in this dissertation will open up interesting scopes
for future research involving social commonsense reasoning and other related topics.
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Chapter 1

Introduction

“Reasoning is here only to wag the dog, to create
post-hoc justification that cover the tracks of the
intuitions and emotions secretly running the show."

– Jonathan Haidt

1.1 Motivation

Humans can effortlessly understand natural language text about everyday situations by
relying on commonsense knowledge and making inferences. For example, given a straight-
forward narrative, “My friend is upset with me. I will have to go to a gift shop.” consists
of two sentences that are supposedly unrelated to one another while we can understand
the underlying conditions that make them related. As a first step, we identify the implicit
commonsense knowledge relevant in the context, for example, “my friend might like gifts”,
“gifts will make my friend happy”. Then this commonsense knowledge can be utilized to
reason about the above context, such as:

(1) ((my friend is upset⇒ want to make my friend happy) ∧ (buying gifts for friend⇒
will make my friend happy) ∧ my friend might like gifts)⇒ have to go to a gift shop

Research on commonsense reasoning has primarily focused on physical commonsense
reasoning and hence, focused on building resources such as knowledge graphs that cover
physical or taxonomic knowledge (Lenat and Guha, 1989; Miller, 1995; Tandon et al., 2017),
and related datasets (Winograd, 1972; Weston et al., 2016). In this dissertation, we will focus
instead on Social Commonsense Reasoning (SCR), that requires the ability to infer mental
states (human needs, motives, emotional reactions), and deeper social implications (causes
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and effects of social events). There are two key challenges in making social commonsense
inferences: (i) usually they are subtly implied in the text, and (ii) the inferences are stochastic
in nature and can be defeasible1 with additional context. For example, when we add to the
context that “I lost all contacts with my friend” the above conclusion (deduction) does not
hold.

In recent years, natural language processing (NLP) systems have been widely used
in society for different real-world applications such as interactive virtual assistants (e.g.,
Amazon Alexa), writing assistants (e.g., GMail’s or Grammarly’s writing assistant), etc.
Their effectiveness relies on their ability to understand and reason about the social dynamics2

and social commonsense (Pereira et al., 2016; Gunning, 2018). For instance, if a human
user asks a virtual assistant, “Alex’s friend is upset. What should Alex do next?", we would
like a typical assistant to understand the user’s mental state and suggest Alex to call his
friend or buy him a gift. Similarly, if a user says something a bit more complex such as
“Alex spilt his friend’s food all over the floor, making a huge mess. How will his friend feel?
What will Alex do next?”, we would like systems be able to perform the required multi-hop
reasoning steps and suggest the user to apologize and mop up (Sap et al., 2019b). Recently,
there have been AI assistants that are designed as therapeutic counselling systems to assist
people with cognitive disabilities (e.g., Woebot, Youper, Wysa, Cocobot), which also require
social commonsense reasoning abilities in order to operate more effectively (Pollack, 2005;
Graham et al., 2019).

The ability to reason about what others think or believe (also known as “theory of
mind”) is an important component for reasoning about mental states (human needs, motives,
emotions) (Premack and Woodruff, 1978; Moore, 2013; Gordon, 2019) and for daily commu-
nication (Apperly, 2010). Humans are good at such reasoning tasks as we rely on our prior
knowledge and learned experiences through interaction with the world. On the other hand,
machines do not possess such prior knowledge and interaction-based experiences. Instead,
they must be provided with this knowledge directly or find alternative ways of learning it.
This dissertation presents novel work that integrates social commonsense knowledge into
current NLP systems to improve their social commonsense reasoning capabilities. Achiev-
ing human-level proficiency at commonsense reasoning tasks is considered “AI-complete”
(i.e., solving commonsense reasoning requires human intelligence). This thesis makes an
ambitious step towards filling the gap between current NLP systems and human reasoning
capabilities centred around social commonsense reasoning.

1The reasoning is defeasible when the inference is rationally compelling but not deductively valid (Koons,
2021).

2Social dynamics is a form of reasoning that involves interactions between individuals, their mental states,
and how this impacts their actions and behaviour (Rashkin, 2020)
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Previous approaches for endowing natural language processing systems with the ability to
perform commonsense reasoning have mostly focused on creating knowledge graphs (KGs)
(Speer et al., 2017; Tandon et al., 2017; Cambria et al., 2020) or building neural models
that can learn relevant knowledge implicitly from training on large-scale data (Goldberg,
2016). Constructing commonsense knowledge graphs is vital for commonsense reasoning;
however, manual construction is expensive and time-consuming. Further, Valiant (2008)
argued that a purely symbolic approach would be insufficient for successful reasoning with
commonsense knowledge. More recently, large-scale pretrained language models (Peters
et al., 2018; Radford et al., 2018, 2019; Devlin et al., 2019; Liu et al., 2019) have shown to
capture implicit knowledge from a large text corpus (Petroni et al., 2019) and also outstanding
performance on several NLU tasks. However, although these models adapt to various NLP
tasks, their behaviour and reasoning capabilities remain opaque.

Neuro-symbolic AI (Besold et al., 2017; Mao et al., 2019; Garcez and Lamb, 2020), on the
other hand, uses both deep neural network architectures and symbolic reasoning techniques. It
aims to leverage the strengths of each approach: the structure, interpretability and readability
of symbolic representations and the expressivity and connectionism of neural networks
(Besold et al., 2017). In this thesis, we view knowledge graphs (KGs) as discrete symbolic
representations of entities and their relations (Xiao et al., 2016; Ji et al., 2021; Hwang et al.,
2021). We will focus on developing methods that combine structured knowledge and neural
representations to address social commonsense reasoning tasks. We study the performance
of our models on understanding social dynamics and social commonsense reasoning tasks3

:(i) mental states prediction (Rashkin et al., 2018a), (ii) abductive commonsense reasoning
(Bhagavatula et al., 2020), (iii) counterfactual invariance prediction task (Paul and Frank,
2020), and (iv) narrative story completion task (Paul and Frank, 2021a).

1.2 Research Questions

* The role of commonsense knowledge in understanding social dynamics: Various stud-
ies have recently shown the importance of external commonsense knowledge on dif-
ferent Natural Language Understanding (NLU) tasks (Bian et al., 2021). While the
role of structured and unstructured external knowledge is well-established for popular
NLU tasks like Question Answering, Reading Comprehension, etc., their usefulness in
identifying social commonsense knowledge such as people’s mental states in a social

3Details about these social dynamics and social commonsense reasoning tasks are in section 4.1, 2.1, 5.1
and 6.1.1.



4 Introduction

context is still unclear. We hypothesize that implicit knowledge is crucial for a better
understanding of social dynamics. This leads us to the following research questions:

RQ1(a) How can we develop a method to automatically predict people’s mental states
and how do these mental states alter with changes of social situations?

RQ1(b) What is the role of external structured commonsense knowledge in identifying
mental states?

While a large knowledge graph is important for neural-symbolic AI research, Garcez
and Lamb (2020) argue that a large knowledge graph is not more explainable than
a large neural network. Moreover, large commonsense knowledge graphs contain
unnecessary information; hence, extracting relevant knowledge4 is an essential part
of neural-symbolic AI and a significant ingredient for explaining black-box AI sys-
tems. Meanwhile, in the last few decades, several graph-based algorithms have been
developed to estimate the importance of a node in a particular graph (Page et al.,
1999; Borgatti, 2005). However, no prior research explores graph connectivity or
graph structure to identify relevant knowledge from large KGs for understanding social
dynamics. This inspires the following research question:

RQ1(c) How can we use graph-based algorithms to extract relevant knowledge
(grounded in social situations) from large static commonsense knowledge graphs?

* The role of temporal knowledge in understanding social dynamics: Recently there
are various works which focus on learning temporal knowledge5 to order sequence of
events (Chambers and Jurafsky, 2008a; McDowell et al., 2017; Madaan and Yang, 2021;
Lin et al., 2021; Ghosal et al., 2021). Several prior studies have focused on temporal
relation extraction, which orders pairs of events in text (Mani et al., 2006; Chambers
et al., 2007; Han et al., 2019). There are also work which focused on building schema
learning systems to automatically learn about related eventsm a temporal ordering of
events (Chambers and Jurafsky, 2008b, 2010). However, the importance of learning
about what events could follow other events for social commonsense reasoning is
an understudied problem. Abductive reasoning is a backward reasoning task, which
typically requires models to reason about past events. We hypothesize that learning
about temporal order of social events can support abductive reasoning. This stimulates
the following research questions:

4Here by relevant knowledge, we mean a machine readable knowledge that is correct, complete and can be
used to explain a context.

5Here by temporal knowledge we mean knowledge about what event precedence another event
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RQ2(a) How can we design a method that can learn what event could follow another
event in a social context?

RQ2(b) Can we make use of temporal knowledge when performing abductive reason-
ing?

* Integrating dynamic social commonsense knowledge into neural networks: Once we
have established methods for extracting relevant social commonsense knowledge from
static knowledge graphs or narrative stories, we can explore how much such knowledge
impacts downstream social commonsense reasoning tasks. However, one crucial
bottleneck is that we need methods to integrate such knowledge into neural models.
This leads us to the following research questions:

RQ3(a) Can we find suitable methods for integrating different kinds of extracted
knowledge into state-of-the-art machine learning models, in order to enhance
interpretability and robustness?

RQ3(b) To what extent does the integration of knowledge affect the performance
of the model in the targeted downstream social commonsense reasoning tasks :
abductive reasoning and counterfactual invariance prediction)?

* Dual learning: Grounding inferential knowledge is essential for interpreting and applying
the knowledge in context. Moreover, by contextualizing the knowledge we can address
the problem of disambiguation in commonsense inference. Previous works considered
non-contextualized knowledge for their task settings (Guan et al., 2020; Ji et al., 2020;
Yu et al., 2022). Additionally, they designed the extraction of relevant knowledge and
its integration in a neural network as two separate steps. Our final set of research
questions challenges this practice by asking are as follows:

RQ4(a) How can we design a model framework that jointly learns to generate con-
textualized relevant knowledge and uses it in order to guide the generation of
task-specific textual outputs e.g., when perform narrative story completion tasks?

RQ4(b) Does jointly learning to generate relevant knowledge and perform down-
stream task helps the model to be more transparent?

1.3 Thesis Outline & Contributions

In the remainder of this thesis, we will first provide the background on several fundamental
concepts and techniques that we need to achieve our proposed contributions. In Chapter
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2 we start by describing some of the important work on commonsense reasoning in NLP
(Section 2.1) and commonsense knowledge acquisition (Section 2.2). We describe some
basic concepts and techniques of neural network models that are used in natural language
processing and that will be relevant for this thesis (Section 2.4). Chapter 3 reviews the
literature related to the above research questions. We survey some of the most prominent
knowledge extraction and integration approaches (Sections 3.1 and 3.2).
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Fig. 1.1 Overview of our approach: This thesis covers four tasks centered around social
commonsense reasoning.

We address the above research questions in a multi-faceted approach for studying social
commonsense reasoning in text by investigating four tasks described in Figure 1.1. These
tasks can be grouped into two themes: (i) understanding social dynamics and (ii) reasoning
about social situation. In the first, we develop methods that can make inferences about the
social dynamics of story characters (mental states prediction) and story events (temporal
knowledge about events). In the second, we investigate how such knowledge related to
mental states and cause/effect of events can contribute to reasoning about social situations.
To this end, the contributions of this thesis can be summarized as follows:

• Understanding Social Dynamics:

– In Chapter 4, we address the task of automatically predict mental states of story
characters given a story context. We first address research question RQ1(a) by
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presenting an end-to-end LSTM-based model enhanced with attention and a gated
knowledge integration component to predict mental states in a given context. This
model provides interpretability in two ways by selecting relevant words from the
input text and choosing relevant knowledge paths from the imported knowledge.
In both cases, the degree of relevance is indicated via an attention map in both
cases. Next, to address RQ1(c), we propose a novel approach to extract and rank
multi-hop relation paths from a commonsense knowledge resource using graph-
based features and algorithms. Finally, we address RQ1(b) by investigating how
well commonsense knowledge obtained from a specific commonsense resource
can help NLP models in understanding the mental state of characters based on
story events. To this end, we also conduct a small-scale human evaluation to
study the relevance of the commonsense knowledge paths in classifying mental
states.

– In Chapter 5, we address (generating next events) RQ2(a), where we investigate
different fine-tuning strategies to learn what events could follow other events in a
social situation. Next to address RQ2(b), we present a novel method for address-
ing the abductive reasoning task by explicitly learning temporal knowledge. We
conduct human evaluation and show that learning about temporal knowledge can
support abductive reasoning in both an unsupervised and a supervised setting.

• Reasoning about Social Situations:

– In Chapter 6, to address (social commonsense reasoning) RQ3(a) we explore
ways to integrate commonsense knowledge into state-of-the-art (SOTA) transformer-
based models. We propose a multi-head knowledge attention model that encodes
semi-structured commonsense knowledge rules and learns to incorporate them
into transformer-based models. Next to address RQ3(b), we introduce a novel
counterfactual invariance prediction (CIP) task and show a correlation between
abduction and counterfactual reasoning in a narrative context. We analyze the
reasoning capabilities of our model and perform model inspection using manually
validated knowledge rules. Finally, we show that our knowledge enhanced model
is more robust than other SOTA models by perturbing and adding noise to the
knowledge.

– In Chapter 7, to address (generate contextualized inferences) RQ4(a) we investi-
gate how NLP models can learn to generate commonsense inference knowledge
grounded in a context and to perform downstream reasoning, using the generated
inferences as a guide. We focused on the narrative story completion (Natural
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Language Generation (NLG)) task. We propose a model named COINS that
recursively performs an inference step (generating inferential knowledge) and
a generation step (generating next story sentence). Further to address RQ4(b),
we demonstrate that the recursive nature of our model and the individuation of
the inference prediction and sentence generation tasks make the process more
interpretable. The generated inference rules can be viewed as intermediate rep-
resentations and can serve as explanations of how the dynamically produced
inferences influence the quality of generated story sentences.

Lastly, in Chapter 8 we summarize our findings, discuss limitations of our work and propose
potential future directions of research.

1.4 Published Work

The following published papers are included in the text of this dissertation, listed in the order
of their appearance:

• Paul, D. and Frank, A. (2019). Ranking and Selecting Multi-Hop Knowledge Paths
to Better Predict Human Needs. Proceedings of the Annual Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL-HLT).

• Paul, D., Opitz, J., Becker, M., Kobbe, J., Hirst, G., and Frank, A. (2020). Argumen-
tative Relation Classification with Background Knowledge. Proceedings of the 8th
International Conference on Computational Models of Argument (COMMA 2020), vol.
326 of Frontiers in Artificial Intelligence and Applications.

• Paul, D. and Frank, A. (2020). Social Commonsense Reasoning with Multi-Head
Knowledge Attention. In Findings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

• Paul, D. and Frank, A. (2021). COINS: Dynamically Generating COntextualized
Inference Rules for Narrative Story Completion. Proceedings of the Joint Conference
of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (ACL-IJCNLP
2021).

• Paul, D. and Frank, A. (2021). Generating Hypothetical Events for Abductive Inference.
Proceedings of The Tenth Joint Conference on Lexical and Computational Semantics
(*SEM 2021).
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Chapters 4 and 5 have been published as (Paul and Frank, 2019; Paul et al., 2020) and
(Paul and Frank, 2021b) respectively. Chapters 6 and 7 have been published as (Paul and
Frank, 2020) and (Paul and Frank, 2021a).





Chapter 2

Background

“If I have seen further than others, it is by standing
upon the shoulders of giants."

–Issac Newton

The concepts and techniques that are presented in this chapter will provide the basis for
understanding the work in subsequent chapters of this dissertation. We start by introducing
various research on commonsense reasoning and commonsense knowledge in Natural Lan-
guage Processing (sections 2.1, 2.2). We review some popular symbolic approaches (section
2.3) and describe some fundamental concepts and methods related to Deep Learning in NLP
(section 2.4).

2.1 Commonsense Reasoning

Commonsense Reasoning or Commonsense thought is the underlying reasoning process
(ability) that allows humans to connect pieces of implicit knowledge to reach a new conclusion
(Minsky, 2000; Davis and Marcus, 2015). For example, consider the following sentences:

“Peter was thirsty, so he went and shook his water bottle. He was disappointed when it made
no sound.” From these sentences, we can easily infer that there was no water in the bottle,
and because of that, Peter was sad. We use our knowledge about the world and connect
them to reach a conclusion that is not explicitly stated. John McCarthy, one of the founding
fathers of AI, was amongst the first to realize the importance of commonsense reasoning.
McCarthy (1960) proposed commonsense reasoning through a hypothetical program named
as ADVICE TAKER for solving problems by manipulating sentences in formal languages.
Although McCarthy (1960) only suggested key specifications for commonsense programs,
later, with the boom of AI, its importance became more evident.
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2.1.1 Human Cognitive System

Daniel Kahneman, in his Nobel Prize lecture “Maps of Bounded Rationality” (Kahneman,
2003) presented a human cognitive system. Figure 2.1 depicts three cognitive operations:
perception, intuition, and reasoning. Perception requires us to detect the surface level
patterns and helps us in observing the world and in generating impressions. Examples of
perception operations are object detection, image recognition, machine translation, and
automatic speech recognition. The operations of intuition require intuitive inferences that
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Fig. 2.1 Daniel Kahneman’s three cognitive functions (Kahneman, 2003)

are fast and effortless, based on impressions. Humans perform these operations every
moment of their life. Examples of such operations are understanding other person’s emotions,
predicting what happens before or after certain events, and reasoning about motivations and
intentions. Finally, Reasoning involves deliberate thought processes and judgements that are
slow and require effort and only happen when humans intentionally make them (deliberately
controlled). Examples of such operations are writing PhD theses, solving puzzles, and writing
paper reviews. The key difference between intuition and reasoning is the accessibility – the
ease with which any particular mental contents come to mind (Kahneman, 2003; Higgins,
1996). For example, the multiplication problem 19 times 53 often takes a few moments to
perform the lengthy act of computation before we arrive at its answer, 1007. On the contrary,
when we read a sentence “I broke my leg”, we immediately infer that “it must hurt”, it
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seems the inference is accessible, almost as an instantaneous extension of our thinking.
Most intuitive inferences are commonsense inferences. In this thesis, we focus on intuitive
commonsense reasoning over natural language text.

2.1.2 Commonsense Reasoning in Natural Language Processing

The research in Natural Language Processing has made much progress in lexical and syntactic
tasks. However, state-of-the-art NLP models struggle to tackle pragmatic level tasks such
as reference resolution, question answering, text generation, and dialogue. Moreover, these
tasks often require a deeper understanding of natural languages and systems to reason
over commonsense knowledge (Mihaylov and Frank, 2018a). Endowing machines with
commonsense reasoning capabilities has remained an elusive goal of natural language
research for decades (Bar-Hillel, 1960a). One of the primary reasons is that commonsense
knowledge is implicit. From the above example in section 2.1 we could see there was no
water in the bottle is implicit in the text.

In NLP, there has been a surge in the variety of benchmarks to evaluate and analyze
the performance of models on commonsense reasoning. Some of the notable tasks and
benchmarks are described as follows:

• Reference Resolution : The task of reference resolution is to identify a referent,
typically a linguistic expression, that a particular entity (e.g., a pronoun or phrase)
refers to in a span of text. Reference resolution can be significantly complicated due to
ambiguities which arise when multiple entities are present in a sentence or discourse,
originating a need for external knowledge, e.g., commonsense knowledge. Winograd
Schema Challenge (Winograd, 1972; Levesque et al., 2012) is one such example,
which was proposed in the spirit of the Turing test, to evaluate commonsense reasoning
capabilities by resolving co-references for ambiguous pronouns. Interestingly later
Trichelair et al. (2019) found biases in the original Winograd Schema Challenge. To
reduce human bias (Sakaguchi et al., 2020) introduced a more challenging and large-
scale version called Winogrande. The dataset provides an adversarial version of the
problem and focuses on intuitive physics and psychology.

• Question Answering (QA): Unlike reference resolution, QA focuses more on a com-
prehensive mix of language processing and reasoning skills. Recently, there has been a
focus on creating QA benchmark datasets that require external knowledge and com-
monsense reasoning. OpenBookQA (Mihaylov et al., 2018) is one such dataset that
focuses on the challenge of combining a corpus of provided science facts (open book)
with external broad common knowledge. Talmor et al. (2019) presented a dataset
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Task Context Alternatives
COPA Premise: The man broke his toe. 1. He got a hole in his sock.
(Roemmele
et al., 2011)

What was the CAUSE of this? 2. He dropped a hammer on his
foot.

αNLI O1 : It was a very hot summer day. H1: He decided to run in the heat.
(Bhagavatula
et al., 2020)

O2 : He felt much better! H2: He drank a glass of ice cold
water.

SocialIQA Alex spilled the food she just prepared all 1. taste the food
over the floor and it made a huge mess. 2. mop up

(Sap et al.,
2020a)

What will Alex want to do next? 3. run around in the mess

SC Cindy really likes apples. She wanted to Motivation (Reiss): Curiosity
(Rashkin et al.,
2018a)

try something new with them. Emotion (Plutchik): Joy, Anticipa-
tion

Table 2.1 Examples from benchmarks requiring plausible inference and intuitive psychology.
The correct choice in each example is given in bold text.

named CommonsenseQA in which each question requires commonsense knowledge to
disambiguate a target concept from three related concepts in ConceptNet (Speer et al.,
2017). There are also research work which focuses on specific aspects of commonsense
reasoning such Contextual commonsense reasoning (Cosmos QA) (Huang et al., 2019),
Temporal commonsense understanding (MC-TACO) (Zhou et al., 2019), Physical com-
monsense reasoning (PIQA) (Bisk et al., 2020), Prototypical commonsense reasoning
(ProtoQA) (Boratko et al., 2020), and Social Intelligence commonsense reasoning
(SocialIQA) (Sap et al., 2019b).

• Plausible Inference: One of the challenging aspects of commonsense reasoning is that
it involves plausible reasoning. Therefore, it requires models to arrive at a reasonable
conclusion given what is already known (Peirce, 1883; Hobbs et al., 1993a). Performing
plausible reasoning requires reasoning over linguistic context and external knowledge
(Davis and Marcus, 2015). Roemmele et al. (2011) proposed a dataset named Choice
of Plausible Alternatives (COPA) to evaluate the model’s performance on the causal
reasoning between events, such that it requires commonsense knowledge about what
usually takes place in the world. Each example provides a premise and either ask
for the correct cause or effect from two choices, thus testing backwards or forward
causal reasoning. Table 2.1 shows one example from Roemmele et al. (2011). Story
Cloze Test was proposed by (Mostafazadeh et al., 2016) to test the model’s capabilities
in selecting the correct ending to a four-sentence story. The dataset addresses the
challenge of understanding causal and correlational relationships between events.
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Intuitive psychology requires inference of emotions, intentions and other observable
psychological states through human’s behaviour. A significant domain in plausible in-
ference tasks is intuitive psychology (Gordon, 2016a). Rashkin et al. (2018a) annotated
15k stories from ROC Stories dataset (Mostafazadeh et al., 2016) with motivations and
emotions of characters in each story to enable more concrete reasoning in this area.
This dataset known as Story Commonsense (SC), consists of three classification tasks
for inferring: the basic human needs theorized by Maslow (1943), human motives
theorized by Reiss (2004), and human emotions theorized by Plutchik (1980). Sap
et al. (2019b) presented Social Intelligence QA (SocialIQA) that tests a model’s ability
to perform intuitive psychology and commonsense knowledge of social interactions.
In Table 2.1, we can see one such example where intuitive social and psychological
commonsense knowledge is require to answer the plausible reactions (want) of “Alex"
after “he made a huge mess". Recently, Bhagavatula et al. (2020) proposed a dataset
named αNLI, which addresses the abductive reasoning task where given two observa-
tions as an incomplete context, the model needs to predict which of two hypothesized
events is more plausible to have happened between the observations. Table 2.1 depicts
one example from αNLI dataset.

In this dissertation, we focus on several plausible inference tasks, which are as follows:

1. In Chapter 3, we address the task of classifying human need categories of characters
in narrative stories from two inventories: Maslow’s (Maslow, 1943) (with five coarse-
grained) and Reiss’s (Reiss, 2004) (with 19 fine-grained) categories.

2. In Chapter 4, 5, we investigate the impact of intuitive social and psychological
commonsense knowledge on downstream plausible inference tasks like abductive
commonsense reasoning (Bhagavatula et al., 2020), and counterfactual invariance
prediction task (CIP) (Paul and Frank, 2020). In (Paul and Frank, 2020), we introduce
a new task of counterfactual invariance prediction 1.

3. In Chapter 6 unlike most of the above mentioned existing benchmark datasets, which
treat commonsense reasoning as a deterministic task, we explore commonsense reason-
ing as a natural language generation task. Finally, we present a new task setting named
Narrative Story Completion (NSC) (Paul and Frank, 2021a) to test the model’s ability
to generate intuitive social commonsense knowledge and perform story completion.

In the human cognitive system, there is a need for an information system to maintain
knowledge representations (Kahneman, 2003). Humans learn knowledge and apply it in

1More details about counterfactual invariance prediction task (CIP) is in section 6.1
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intuition and reasoning to make better judgments. Hence, commonsense knowledge is
essential for performing intuitive reasoning and deliberate reasoning. In the next section,
we will introduce existing knowledge resources and several recent efforts in building such
resources to facilitate commonsense reasoning.

2.2 Commonsense Knowledge

Commonsense Knowledge (CSK) is routine knowledge that humans typically possess that
helps them make sense of daily situations (Ilievski et al., 2021). Although this knowledge
is assumed to be possessed by most humans, according to Gricean maxims, it is usually
omitted in (written or oral) communication (Grandy and Warner, 2020). Similarly, (Gordon
and Van Durme, 2013) showed that words like "murdered", "laughed" are observed five
times more than "inhaled", "breathed" in a large text corpus (Google Web 1T n-gram data)
even though breath or inhale are more predominant actions. Since it is not explicitly stated,
automatically learning commonsense knowledge from text presents a challenge for natural
language processing systems.

Commonsense knowledge can be broadly categorize into two categories : “naive physics”
and “intuitive psychology”. Commonsense knowledge related to “naive physics” involves
inference of how physical objects interact with each other. For example, if a glass falls onto
the floor, one can infer that the glass most likely break. On the other hand, commonsense
related to “intuitive psychology” involves inference about people’s behaviors, intents, or
emotions. For example, if a person breaks their leg, one can infer that their will be sad.
Due to its prominence and implicit nature, there has been a lot of work on constructing
commonsense knowledge resources in a machine-readable form that includes ConceptNet
OpenCyc (Lenat and Guha, 1989), WebChild (Tandon et al., 2017), (Speer et al., 2017),
Event2Mind (Rashkin et al., 2018c), ATOMIC (Sap et al., 2019a), GLUCOSE (Mostafazadeh
et al., 2020a), ASER (Zhang et al., 2020b), SenticNet (Cambria et al., 2020), etc. In this thesis
we mainly focused on knowledge related to the intuitive psychology of human beings (e.g.,
emotion states, intents, possible behaviors), that emphasizes on the social intelligence found
in daily human-human interactions. Some of the most prominent commonsense knowledge
resources that contain knowledge about intuitive psychology are summarized in Table 2.2
and there descriptions are as follows:

• OpenCyc (1984-2012) (Lenat and Guha, 1989) It is an artificial intelligence project
toward integrating ontologies and commonsense knowledge from different domains
into one knowledge base. The objects in Cyc are called as constants and categorized
into entities, collections, functions, and truth functions. Cyc includes a powerful
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Knowledge Graphs Size Relation Annotation
OpenCyc 239, 000 concepts, – Manual
(Lenat and Guha, 1989) 2, 039, 000 facts
ConceptNet (Speer et al., 2017) 8 million nodes, 34 Crowd-sourcing

21 million edges
WebChild (Tandon et al., 2017) 2 million concepts, 4 (groups) Automatic

18 million assertions
Event2Mind 24, 716 events, 3 Crowd-sourcing
(Rashkin et al., 2018c) 57, 097 edges
ATOMIC (Sap et al., 2019a) 877, 108 triples 9 Crowd-sourcing
ASER (Zhang et al., 2020a) 194, 000, 677 nodes, 15 Automatic

64, 351, 959 edges
GLUCOSE(Mostafazadeh et al.,
2020a)

670, 000 pairs of rules 10 Crowd-sourcing

Table 2.2 Overview of some commonsense knowledge bases. Source: Ilievski et al. (2021)

inference engine, which is capable of performing general logical deduction. The latest
release (OpenCyc 4.0) contains 239, 000 concepts and 2, 039, 000 facts.

• ConceptNet(1999-2017) (Speer et al., 2017) is a multilingual commonsense knowl-
edge graph derived from the Open Mind Common Sense (OMCS) (Singh et al., 2002).
It is a directed graph whose nodes are concepts, and the edges are relations which
connect the concepts, e.g., “is a”, “used for”, “motivated by goal”, etc. The nodes
are natural language phrases, e.g., noun phrases, verb phrases, or clauses and there are
34 different relation types. ConceptNet 5.5 is the latest version which contains over 8
million nodes and over 21 million edges. Figure 2.2(a) depicts an example of entities
and relations extracted from ConceptNet that are related to the concept of glass.

• WebChild (2014–2017) (Tandon et al., 2017) is a large-scale commonsense knowl-
edge base of general noun-adjective relations extracted from Web contents, using
semi-supervised label propagation over graphs of noisy candidate assertions. It con-
sists of about 78, 000 distinct noun senses, 5, 600 distinct adjective senses, and 4.6

million assertions between them. These assertions captured fine-grained relations
among the noun and adjective senses. The knowledge base contains fine-grained
relationships (like “hasShape”, “hasTaste”, “evokesEmotion”, etc.) between nouns and
adjectives. WebChild 2.0 was released in 2017 and includes over 2 million concepts
and activities, and over 18 million assertions.
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(Sap et al., 2019a)

• Event2Mind (Rashkin et al., 2018c) is a corpus that supports commonsense inference
about people’s intents and reactions, described in short free-form text over a diverse
range of everyday events. The knowledge focused on stereotypical intents and reactions
of people involved in the events.

• ATOMIC (Sap et al., 2019a) is a commonsense knowledge graph consisting of 877K
textual descriptions of inferential (if-then) knowledge obtained from crowd-sourcing.
The knowledge expresses pre- and post-states for events and their their participants in
a lexical form with nine relations (e.g., xIntent, xNeed, xReact, etc.). These relations
connect the event in question with manifold properties, emotions, as well as other
states or events. Figure 2.2(b) shows an example of causes and effects of an event

“PersonX attends a party" from ATOMIC knowledge graph.

• ASER (Zhang et al., 2020a) is a large-scale eventuality knowledge graph. The authors
proposed to extract eventualities from a wide range of corpora from different sources
based on dependency graphs. The relations were automatically extracted using a
selected set of seed (unambiguous) connectives found from PDTB (Marcus et al.,
1993). The knowledge graph consists of around 11-billion-token unstructured textual
data. It contains 194 million unique eventualities, 15 relation types divided into five
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categories, and 64 million edges between them. Figure 2.3 depicts an example from
ASER.

• GLUCOSE (Mostafazadeh et al., 2020a) is a dataset, which contains implicit com-
monsense knowledge in form of semi-structured general and specific inference rules. It
has a unique take on explaining story events, inspired by human cognitive psychology.
In GLUCOSE, give a story S and a selected sentence X from the story, the authors
define ten causal dimensions to explain the sentence X. These ten dimensions are
about states (i.e., location, possession states of an event), motivations, and emotions.
GLUCOSE dataset is sourced from ROCStories (Mostafazadeh et al., 2020b) and
the knowledge is crowd-sourced based on semi-automatic templates, and generalized
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Dimensions Semi-structured Specific Statement and Inference Rule: antecedent
connective consequent

1: Event that A car turned in front of him Causes/Enables Gage turned his bike
directly causes or
enables X

SomethingA turns in front of SomethingB (that is SomeoneA’s vehicle)
Causes/Enables SomeoneA turns SomethingB away from SomethingA

2 : Emotion or Gage wants safety Causes/Enables Gage turned his bike
basic human drive
that motivates X

SomeoneA wants safety Causes/Enables SomeoneA moves away from
SomethingA (that is dangerous)

6 : Emotion or Gage turned his bike Causes/Enables He fell off his bike
basic human drive
that motivates X

SomeoneA turns SomethingB (that is SomeoneA’s vehicle)
Causes/Enables SomeoneA falls off SomethingB

8 : Emotion or Gage turned his bike away from the car Results in Gage was further from
the car

basic human drive
that motivates X

SomeoneA moves away from SomethingA Results in SomeoneA is further
from SomethingA

Table 2.3 An example from GLUCOSE knowledge. Given a story and a sentence from the
story X = “Gage turned his bike sharply". White and gray rows show specific statements
and general rules, respectively. Source : Mostafazadeh et al. (2020b)

from individual stories to more abstract rules. Figure 2.4 depicts the dimensions in
GLUCOSE and 2.3 demonstrates an example from GLUCOSE.

In this thesis, we use different knowledge resources for each task settings for the following
reasons:

1. We use ConceptNet to explain the characters’ human needs in a story. ConceptNet
contains how and what commonsense knowledge (for example, it contains relational
knowledge like is a, used for, has a, etc.), which we hypothesize to be helpful to
explain the mental states of characters in a story (see Chapter 4). ConceptNet contains
a large amount of entities (8 million nodes see Table 2.2), therefore extracting relevant
knowledge is a challenging task. To address that we propose a graph-based method to
extract relevant knowledge (see Chapter 4).

2. We utilize ATOMIC to investigate the usefulness of inferential knowledge on down-
stream social commonsense reasoning tasks. However, given the amount of common-
sense knowledge needed for real-world tasks, the size of the ATOMIC knowledge
resource is small, hence incomplete. Thus, we propose to dynamically generate
inference rules for downstream SCR task (see Chapter 6).

3. We use GLUCOSE for narrative story completion tasks. GLUCOSE contains contex-
tualized knowledge, we propose learning to generate contextualized inference rules
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and use the inference rules to improve the quality of generated story sentences (see
Chapter 7).

The following sections will briefly overview various approaches ranging from symbolic to
recent advanced deep neural approaches to address problems like knowledge representation
to natural language reasoning. This section will also point out some of the limitations of
existing methods.

2.3 Symbolic Approaches

Symbolic approaches make use of logical forms and perform inferences. There has been a
wide range of work in logical reasoning, starting from Aristotle’s theories of logic and deduc-
tive reasoning (Aristotle, 1989; Smith, 2020) to modern mathematical, logical frameworks
by Selman and Levesque (1990); Hobbs et al. (1993b); de Morgan (2002). Simultaneously,
Peirce (1883) proposed the process of logical abduction (non-deductive inference), i.e., the
process of identifying a hypothesis from a limited set of observations. Similarly, later Davis
and Marcus (2015) proposed plausible inference as a natural language problem. In this thesis,
we present a method to address the task of abductive reasoning for NLP.

In Linguistics, Lakoff (2004) proposed a theory of natural logic (a logical form for natural
language) in the direction of a semantic representation of language. Natural logic ’s goal is to
represent all concepts capable of being expressed in natural language, to characterize all the
valid inferences that can be made in natural language. Meanwhile, Zadeh (1975) proposed
fuzzy logic (a basis for approximate reasoning), which maps linguistic descriptions (words
or sentences in a natural language) of numeric variables to probability distributions over the
numeric variables. For example, the word age is a variable if its value is more linguistic than
numerical, such as young or old, and someone may calculate the likelihood of these words
being used to describe someone over a range of ages. It was a significant development to
handle ambiguity in human language. In 1990s, symbolic approaches were pre-dominantly
used for knowledge representation and semantic processing of language (Birnbaum, 1991;
Menzies, 1996).

Raina et al. (2005) proposed a system for the textual inference that uses parsed sentences
(a logical-formula semantic representation of text) and learned assumptions. The system aims
to combine statistical machine learning and classical logical reasoning to find the robustness
and scalability of learning with the preciseness and elegance of logical theorem proving.
Recently, Gordon (2016b) proposed a new dataset named Triangle-COPA and presented
a benchmark by creating a set of manually authored logic and commonsense rules and
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performing logical reasoning. The logic-based benchmark achieved 91% accuracy on the
Triangle-COPA task.

The main limitations of symbolic approaches are scalability, and due to this reason, these
methods are not competitive in recent benchmarks with large data sizes. Consequently,
creating manually authored logic and rules are time-consuming and expensive. Hence, we
need methods to automatically capture the variation in knowledge and language and semantic
phenomena. In Chapter 6 and 7, we study methods that learn to automatically generate
inference rules. The next section provides some of the basic building blocks of many machine
learning models introduced in later chapters.

2.4 Deep Learning in Natural Language Processing

In the NLP field, statistical approaches were predominately used to address the scalability
problem from the mid-1990s to the 2010s. Most statistical approaches relied on engineered
features to train various statistical models from training data and applied them to various NLP
benchmarks (Manning and Schütze, 2002). Later, with the shift in computational paradigm,
there was a shift from statistical to neural approaches. Neural approaches are used to identify
valuable features in the data, rather than manually selecting features.

The inspiration behind Neural Networks (NNs) is the human brain. The neural net-
work came from a very popular machine learning algorithm named perceptron (Freund
and Schapire, 1999). The perceptron is a mathematical model of a biological neuron. A
computational neural network architecture comprises multiple interconnected units called
neurons. In practice, multiple layers of neurons are added in a network.

Word Embeddings. Most machine learning models require inputs in a vector form for
computation. Therefore, in NLP, it is essential to represent discrete data (words, charac-
ters, and sentences) in vector form that a neural network can process. A naive approach
in constructing such vector representations x ∈ IRV is one-hot-encoding, where V is the
vocabulary size. Due to sparsity, the curse of dimensionality (Neal, 2007), and the incapa-
bility of capturing the polysemous nature of language, several works considered using the
distributional property of language. Bengio et al. (2003) is the first to propose learnable dense
representations for word embeddings. Bengio et al. (2003) initialized word embeddings
as dense vectors x ∈ IRV XD, allowing each word in the vocabulary to be represented by a
unique vector with D dimensions. Later, word embeddings are usually trained using neural
networks on large-scale text corpora. Among traditional word embedding models word2vec
(Mikolov et al., 2013) and GloVe (Pennington et al., 2014) are most popular. In Chapter
4, we use GloVe embeddings as initialization embeddings for our models. However, these
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embedding vectors are context-independent. Hence, the embedding of a target word is always
constant. Recently, some works focused on incorporating context into word embeddings,
such as Embeddings from Language Models (ELMO) by Peters et al. (2018) and Bidirec-
tional Encoder Representations from Transformers (BERT) by Devlin et al. (2019). These
models provide different distributional representations based on the context in which they
appear. These pre-trained word representations can be used as initialization embeddings or
fine-tuned for downstream tasks. In Chapter 4, we use ELMO embedding as as initialization
embeddings for our models and in Chapter 5, and 6 we use BERT to fine-tune on downstream
tasks.

2.4.1 Recurrent Neural Networks

Classical deep feed-forward neural networks generally assume that data points are indepen-
dent of each other. However, in Natural Language Processing (NLP), words are the input
features, and the input is presented as a sequence of tokens. Hence, we need models that can
deal with sequential data and are powerful enough to compress full-text sequences down to
arbitrarily-sized vector representations. Recurrent neural networks (RNNs) (Elman, 1990)
are expressive neural models that can encode representations for sequential inputs. The
recursive nature of RRN takes previous vector xt−1 in the sequence and its own previous state
ht−1 as input at each time-step t to upgrade the current state ht. A vanilla RNN is defined
using the following equation:

ht = tanh(Wx ∗ xt +Wh ∗ ht−1 + bh) (2.1)
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where, ht is the current hidden state of the network, ht−1 is the hidden state at the previous
time step, and xt is the input to the RNN at the current time step. One significant drawback
of the vanilla RNN is that it suffers from the vanishing gradient problem2. For long input
sequences the gradient are computed through multiple steps. Hence, the gradient either
saturates to zero (vanishes) or they grow too large (explodes) which makes the learning
process unstable. Gated recurrent neural networks such as the long short-term memory
(LSTM) and gated recurrent unit (GRU) have been more commonly used models to overcome
this problem.

The Long Short-term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) is an RNN-
based architecture that controls gradient flow through its network using a cell state to avoid
passing through a bounded activation function. An LSTM contains a cell state ct, which
encodes a hidden representation of the information collected by the LSTM up to a point
in time t. The LSTM also contains multiple gates (input gate, forget gate, output gate) to
control how input information is added to the cell state. The input gate (it) controls the
information fed into the cell state. The forget gate (ft) controls the information retained by
the cell state. Finally, the output gate (ot) estimates how much information the cell state
should be extracted after computing the hidden representation. The values of these gates are
computed in the following way:

it = σ(Wxi
∗ xt +Whi

ht−1 + bi) (2.2)

ft = σ(Wxf
∗ xt +Whf

∗ ht−1 + bf ) (2.3)

ot = σ(Wxo ∗ xt +Who ∗ ht−1 + bo) (2.4)

where all W are unique weights, all b are unique bias, xt corresponds to the input vector
to the LSTM at any time step, and ht−1 corresponds to the output of the LSTM at the previous
step. Bidirectional-LSTM (Bi-LSTM) is a variant of LSTM, which computes a representation
of a sequence in both the forward and backward directions.

In this thesis, for consistency purpose, from now on when we talk about recurrent neural
networks, we will refer to LSTM and Bi-LSTM. We use recurrent neural networks as a model
base in Chapter 4.

2Vanishing Gradient problem arises because of the non-linear functions used in practice (e.g. sigmoid) in
the neurons squash the numeric values into a small region.
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2.4.2 Attention Mechanism

The LSTM model addresses the vanishing gradient problem, and it should capture the long-
range dependency better than the RNN. However, it is shown by (Cho et al., 2014) that for
specific cases, it becomes forgetful. Additionally, with the vanilla LSTM model, it is difficult
to learn how to give more importance to some input words compared to others. The attention
mechanism was first introduced as an application by Bahdanau et al. (2015) to address the
above limitations for neural machine translation. Bahdanau et al. (2015) propose a simple
yet elegant idea where they suggested considering not only all the input words in the context
representation but also relative importance for each word in the context. Given a sequence of
hidden states h1, h2, ..., hT , the attention mechanism combines all hidden states to calculate
the context representation ci:

ci =
N∑
j=1

αijhj (2.5)

where N is the number of words in the sequence. The weights αij are calculated by a softmax
function given by the following equation:

αij =
exp(eij)∑N
k=1 exp(eik)

(2.6)

where eij is the output score of a feedforward neural network.
There are the following advantages of the attention mechanism :

• It addresses the vanishing gradient problem by providing a way to consider words that
are far away in the input sequence.

• The learned attention distribution can provide an alignment between inputs and outputs,
which allows some understanding of their relations.

Because of the above advantages, attention mechanisms have been often applied to many
NLU benchmark tasks. We incorporate attention mechanism in our neural model discussed
in Chapter 4.

2.4.3 Transformers

In recurrent neural networks, the input representations ht at each time step depends on the
previous steps ht−1, hence hindering the benefits offered by modern parallel computing
hardware. To combat this problem, (Vaswani et al., 2017) proposed the transformer model
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that comprises multiple self-attention layers to construct the input representations. Self-
attention allows the model to build the input representation in parallel, because it re-computes
a state representation from input at every step. Unlike in recurrent neural networks, the
representations from the transformer do not rely on a time-dependent state. Self-attention also
allows it to attend to all positions in the sequence to get a better-contextualized representation
of a word. We explore the different components of a Transformer model in the following
paragraphs.

Positional Embedding. The order of words and their position are crucial parts of any
language. They help in defining the grammar and the semantics of a sentence. Recurrent
neural networks consider the order of words as it sequentially parses a sentence. However,
in Transformer architecture the recurrence mechanism is absent, therefore Vaswani et al.
(2017) proposed to add a position embedding pt along with the input sequence xt. A position
embedding can be initialized as the exact position of the word in a sentence. The input h0

t to
the first transformer layer is following:

h0
t = xt + pt (2.7)

Transformer Block. A transformer is composed of stacked layers of identical trans-
former blocks. Each transformer block comprises of the following transformation steps:
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al = MultiHead(hl−1) (2.8)

f l = LN(al + hl−1) (2.9)

ĥl = FFN(f l) (2.10)

hl = LN(ĥl + f l) (2.11)

where MultiHead is a multi-headed self-attention mechanism, FFN is a fully connected
feed-forward network, and LN is a layer normalization (Ba et al., 2016) operation that is
applied to the output of the self-attention and the feed-forward network.

Multi-Head Attention. Instead of performing a single attention function, the transformer
performs multi-head attention. It applies the attention function multiple times with different
linear projections and allows the model to capture different attentions from different sub-
spaces jointly. Vaswani et al. (2017) has defined three inputs for multi-head attention function:
a query q ∈ IRD, a set of keys K ∈ IRN×D, and a set of values V ∈ IRN×D. The attention
is made of multiple heads where each head computes a unique scaled dot product attention
distribution over V using Q and K, see Fig. 2.6:

Attention(q, k, V ) = softmax(
qKT

√
D

)V (2.12)

where D is the input embedding size. The attention heads are concatenated and projected
to yield the final values.

MultiHead(q, k, V ) = Concat(head1, ...headh))W o (2.13)

where headi is Attention(q, k, V ), and W o is an output projection of the concatenated
outputs of the attention heads.

The recent advancement in transfer learning methods (Ruder et al., 2019; Rothe et al.,
2020), transformer model (Vaswani et al., 2017), and the resource-intense process of using
large training data led the research towards training language models. With the release of
these trained language models, the NLP community applies them to their NLP problems
using small, if any, additional data. There are two major variants of such transformer-based
language models, which are as follows :

• Conditional Transformer Model (Radford et al., 2018, 2019; Brown et al., 2020)
is trained on a typical language modeling objective i.e., to assign a probability to a
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sequence of words given some conditioning context (x):

p(wn|x,w1, .., wn−1) (2.14)

A left-to-right transformer model is trained to maximize the conditional log-likelihood
of predicting the next word in a sequence given the context. We use left-to-right
transformer language models as important components of our approaches in Chapters
5, 6 and 7.

• Bidirectional Transformer Model was introduced by Devlin et al. (2019), famously
known as BERT, which uses the transformer encoder to read the entire sequence
of words at once. BERT was trained with masked-language modelling (MLM) and
next sentence prediction objectives, i.e., it is trained to predict words that are masked
from the input. Unlike uni-directional or conditional transformer models (see Eq.
2.14 ), bidirectional transformers can condition on future tokens as well. Later, Liu
et al. (2019) proposed RoBERTa, which outperforms BERT’s performance using more
training data, and the same architecture without the next-sentence prediction objective.
We use bidirectional transformer language models as base model in the empirical study
in Chapters 5 and 6.

2.5 Explainablity of NLP models

Despite the success of large pre-trained language models, recent studies have raised some
critical points such as: high accuracy scores do not necessarily reflect understanding (Min
et al., 2019), large pretrained models may exploit superficial clues and annotation artifacts
(Gururangan et al., 2018; Kavumba et al., 2019). Therefore, the ability of models to generate
explanations has become desirable, as this enhances interpretability. Explainations are often
categories into two aspects (Guidotti et al., 2018; Danilevsky et al., 2020) : (1) local vs
global (2) self-explaining vs post-hoc.

A local explanation justifies the model’s prediction on a specific instance. Whereas a
global explanation justifies the model’s prediction process as a whole. Moreover, explanations
can be further categorised into two categories – (i) when explanation generation is a part of
the prediction process and (ii) when explanation generation requires post-processing after
the model’s prediction. A self-explaining approach generates an explanation while making a
prediction, using information generated by the model. On the contrary, a post-hoc approach
requires an additional operation to be performed after the model prediction.
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There are a lot of approaches used to enable explainability in our literature (Guidotti
et al., 2018; Moradi and Samwald, 2021), however, here we mention some notable methods.

1. Saliency is a neural network interpretation method that interpret a specific output y
made by a model M , by assigning a distribution of importance ϕ(F ) over the input
feature set F of the original neural network model (Li et al., 2016a; Arras et al., 2016;
Mudrakarta et al., 2018; Ding et al., 2019). The most widely used method to calculate
importance is by the gradient (Simonyan et al., 2014). It estimates the contribution of
input x ∈ F towards output y by computing the partial derivative of y with respect to
x.

2. Attention is a popular strategy to explain the feature importance in a neural network
architecture (Luo et al., 2018; Xie et al., 2017; Li et al., 2019b). In section 2.4.2, we
explain the basic idea behind attention mechanism. The key idea is that an attention
layer in a NN architecture can help indicate where the model is “focusing”. Recently,
few studies have focused on answering the question that how much explainability
attention provides? (Jain and Wallace, 2019; Wiegreffe and Pinter, 2019; Serrano and
Smith, 2019).

3. Input Perturbations. Recently, few studies have shown that models can be sensitive to
small changes in the input that cause the model to make wrong decisions (Ribeiro et al.,
2020; Moradi and Samwald, 2021). Hence, to test the robustness of a model, the input
x ∈ F is perturbed to study the change in the model’s output y. One can view this as an
explainability method because it explains which input features x are responsible for the
correct or wrong outcome. There can be different kinds of (word-level) perturbation
methods; some are as follows: addition, deletion, replace with synonym, negation,
singular verb to plural verbs, word order, verb tense, etc.

In this thesis, we consider explainability from an end user’s perspective whose goal is to
understand how a model arrives at a particular output. We focus on local explanations, i.e.,
providing justification (using external commonsense knowledge) for the model’s prediction
on a specific input. In Chapter 4 we study the local self-explaining approach by investigating
the learned attention distributions of the interactions between input representation and
knowledge paths in order to interpret how knowledge is employed to make predictions. In
Chapters 5 and 7 we study local self-explaining approach by investigating the relevance of
generated knowledge. This process is similar to a human explanation as the model generates
natural language text as an explanation. In Chapter 6, we study the local post-hoc method by
perturbing knowledge input to study its impact on the models’ output.





Chapter 3

Related Work

This chapter reviews prior related works to the research questions we address in this thesis.
We start by surveying the most prominent knowledge extraction and integration approaches
for LSTM-based and Transformer-based models in sections 3.1 and 3.2. We also discuss
some of the limitations of these existing methods (sections 3.1.1, and 3.2.1). The purpose of
this chapter is to position this thesis in the broad research spectrum.

3.1 Extracting Commonsense Knowledge

“Nothing is truth unless proven by knowledge and
reason."

– Albert Williams

In recent years, the acquisition of machine-readable knowledge has become an essential
sub-task for building systems that can automatically perform reasoning about daily situations
(Storks et al., 2019). There has been a large number of works on (1) automatically acquiring
structured knowledge from unstructured data (Mausam et al., 2012; Mausam, 2016), (2)
knowledge representation learning (Bordes et al., 2013; Li et al., 2019a). However, it is
difficult to acquire commonsense knowledge because of its implicit nature automatically. In
section 2.2, we mentioned about some notable large social commonsense knowledge graphs.
This thesis assumes that there exist commonsense knowledge graphs and instead focuses
on developing methods for automatic extraction of the relevant knowledge1 for downstream
tasks.

Extract Knowledge from Static Knowledge Graphs. A standard approach to extract
knowledge for a given text has two steps : (a) Linking text to Knowledge Graphs (KGs) and

1relevant knowledge is a knowledge that is correct, complete and can be used to explain the context.
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Fig. 3.1 COMET Model Architecture. Source: (Bosselut et al., 2019)

(b) Retrieve knowledge relevant to the text. For the first step, a simple approach is string
matching i.e., to identify keywords in the input data to query large KGs (e.g., ConceptNet,
WordNet, NELL, etc.) using only the lemmatized noun, verb, adjective words for each
instance, with stop words excluded. Recently, Becker et al. (2021) proposed COCO-EX,
a tool for extracting and linking concepts from texts to the ConceptNet knowledge graph.
For the second step, Xu et al. (2017) proposed to rank the entity-attribute pairs using tf-idf
score. Later, Mihaylov and Frank (2018a) proposed a heuristics method based on term
frequency to retrieve triples (head node, relation, tail) within one hop. Concurrently, Bauer
et al. (2018a) proposed a multi-hop commonsense knowledge path retrieval method for
Reading Comprehension Task. They build ‘prototype’ paths by constructing trees rooted in
concepts in the query with the aim of selecting paths with high recall. Additionally, they
proposed a heuristic method to rank and filter knowledge paths with the aim to improve the
precision of useful concepts in paths.

Dynamically Generate Knowledge. A shortcoming of static KGs is that they are
incomplete. To address this shortcoming, Bosselut et al. (2019) proposed a framework,
named COMET, for modifying the weights of language models to learn to generate novel
commonsense knowledge tuples. One key component of this framework is the conditional
transformer model (see section 2.4.3), which is trained to produce the phrase object o of
a knowledge tuple given the tuple’s phrase subject s and relation r. Figure 3.1 depicts the
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COMET architecture, where each word is an input to a first-layer transformer block along
with all preceding tokens.

3.1.1 Limitations

Although the above knowledge extracting approaches have worked well for the different
downstream tasks, here we mention some significant drawbacks:

1. Single-Hop Knowledge. Only considering a single-hop knowledge tuple will allow
preserving the information of direct relations in a KG. However, it ignores indirect
relations, and for a task that requires multi-hop reasoning, such single-hop knowledge
will be incomplete.

2. Knowledge Retrieval Methods. Previous works used methods that are either bias
towards frequency of concepts (Xu et al., 2017) or methods which are task-dependent
(Mihaylov and Frank, 2018a; Bauer et al., 2018a). Ideally, we want a commonsense
knowledge retrieval method that is unbias and can be used for various tasks.

3. Dynamically Generating Knowledge. Training a language model on KGs can gener-
ate novel knowledge but does not ensure that it will generate contextualized knowledge.
However, addressing commonsense reasoning tasks requires context-dependent knowl-
edge. Hence, such generated knowledge can add noise in knowledge representation
and be insufficient.

In this thesis, we address the above limitations, and we investigate the importance of
selecting multi-hop paths over considering only single-hop paths (see Chapter 4). To show
that our proposed method is task-agnostic we apply it on the argument classification task (Paul
et al., 2020). Further, we study the importance of automatically generating contextualized vs
non-contextualized knowledge on a narrative story completion task (see Chapter 7).

3.2 Integrating Commonsense Knowledge.

“All possible knowledge, then, depends on the
validity of reasoning. Unless human reasoning is
valid no science can be true. "

– C.S.Lewis

There have been several attempts at using external knowledge to build hybrid models to
address various NLP tasks. Most research on integrating knowledge into the network models
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has been done based on three key reasons: (a) improving the performance of neural models
on downstream tasks, (b) reduction in the amount of data needed to train the model, (c)
improve the coverage of model parameters. In particular, the main reason for incorporating
commonsense knowledge is to compensate for the lack of implicit knowledge in neural
models. Bar-Hillel (1960b) was one of the first to recognize the importance of incorporating
commonsense knowledge in NLP systems. Bar-Hillel argued that it is not feasible to build
fully automatic high-quality machine translation systems without addressing the requirement
of world knowledge to help machine translation to infer correct translations for ambiguous
words or linguistic structures (Bar-Hillel, 1960b). Lately, with the development of new
advanced neural models, the idea of integrating background knowledge has regained more
attention in NLP research.

Integrating Commonsense Knowledge into LSTM-based Models. Incorporating ex-
ternal knowledge in a LSTM2 model has proven beneficial for several NLP tasks: text
generation (Kiddon et al., 2016), language modeling (Ahn et al., 2016), dialogue generation
(Yang et al., 2017), sentiment analysis (Ma et al., 2018), question answering (Lan et al.,
2019) and reading comprehension (Bauer et al., 2018b).

Although different methods are used to inject knowledge into LSTM-based models,
in this section we will only review the most notable methods. Xu et al. (2017) showed
that injecting loosely structured knowledge with a recall-gate mechanism is beneficial for
conversation modelling. The recall-gate mechanism was designed to convert structured
domain knowledge to a global memory, which incorporates with the local cell memory
of LSTM to provide information to judge whether a sentence is related to another or not.
Mihaylov and Frank (2018b) and Weissenborn et al. (2018) proposed the integration of
commonsense knowledge for reading comprehension: the former explicitly encode selected
triples from ConceptNet using attention mechanisms, the latter enriches question and context
embeddings by encoding triples as mapped statements extracted from ConceptNet. Bordes
et al. (2014) made use of knowledge bases to obtain longer paths connecting entities appearing
in questions to answers in a QA task. They provided a richer representation of answers by
building subgraphs of entities appearing in answers. Bauer et al. (2018a) proposed a heuristic
method to extract multi-hop paths from ConceptNet for a reading comprehension task. They
construct paths from concepts appearing in the question to concepts appearing in the context,
aiming to emulate multi-hop reasoning. Tamilselvam et al. (2017) used ConceptNet relations
for aspect-based sentiment analysis. Yang and Mitchell (2017) proposed to incorporate
knowledge directly into the LSTM cell state to improve event and entity extraction. They
used the BILINEAR (Yang et al., 2015) model to extract knowledge embeddings trained

2In section 2.4.1, we described the LSTM model architecture.
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Fig. 3.2 The architecture for performing Question Answering task with external knowledge.
Source: (Bian et al., 2021)

on WordNet and NELL (Miller, 1995). Kiddon et al. (2016) proposed a neural checklist
model that generates globally coherent text and tracks the agenda of items. Ahn et al.
(2016) proposed a language model named NKLM that combines symbolic knowledge from
knowledge graphs with an LSTM-based language model. The model copies fact attributes
from a topic knowledge memory. Then the model is used to predict a fact in the knowledge
memory using a gating mechanism, and given this fact, the next word to be selected is copied
from the fact attributes. We integrate commonsense knowledge into LSTM based model
using attention mechanism to examine to what extent it can contribute to and improve the
prediction of people’s mental states in a narrative story setting (ref. Chapter 4).

Integrating commonsense knowledge into Transformer Models. Since 2018, there is
a shift in NLP research, due to the impressive performance of transformer models. In section
2.4.3, we described the transformer architecture. There has been a few notable works which
aim to incorporate external commonsense knowledge into SOTA transformer models. For
classification tasks, a standard approach is to concatenate the extracted external knowledge
as an input along with the input context (Banerjee et al., 2019; Mitra et al., 2019; Bian
et al., 2021). Figure 3.2 shows one knowledge-enhanced model for Multi-Choice Question
Answering task from Bian et al. (2021), where the input is a sequence of concatenated tokens
from the knowledge description Km = (km

1 , .. km
p ), question Q = (q1, .. qn) and the answer

Am = (am1 , .. aml ) for each question and answer. It is passed through a transformer model
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Fig. 3.3 The architecture of Knowledge Enhanced Pretrained model from (Guan et al., 2020).
Transformer block architecture (left) and training framework (right). Train the language
model GPT-2 (Radford et al., 2018) (a) with a large-scale corpus, (b) with commonsense
knowledge from external knowledge bases. Source: (Guan et al., 2020)

to obtain a contextualized representation. After obtaining representation a feed-forward
classifier is used as the outer layer to predict the answer scores.

For natural language generation task, similar to classification task, a simple approach is to
concatenate the knowledge representations and word-embeddings (from pre-trained language
models) and pass through a transformer-based NLG model to generate text (Bhagavatula et al.,
2020). However, recent methods have explored beyond such simple concatenation (Guan
et al., 2020; Liu et al., 2021). Guan et al. (2020) proposed a knowledge-enhanced pretraining
model (KEP) for commonsense story generation task. Guan et al. (2020) transformed
the commonsense triplets (ConceptNet, ATOMIC) into machine-readable sentences using
templates. Then they fine-tuned the language model (GPT-2) on the transformed knowledge
sentences to improve the long-range coherence of generated stories. Figure 3.3 illustrates
an overview of KEP model. One advantage of the KEP model is that the model complexity
does not change from the base GPT-2 model.

Concurrently, Ji et al. (2020) proposed a model named GRF that dynamically attends KG
representations during the decoding step. First, the authors extract the subgraph consisting of
inter-connected n-hop paths starting from the source concepts extracted from the input text.
Then, they encode the subgraph using GNNs and the input text using pre-trained language
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Fig. 3.4 The architecture of GRF model. It contains multiple steps: (a) context module
with pre-trained transformer, (b) encoding the multi-relational graph with non-parametric
operation to combine relations and concepts, (c) a multi-hop reasoning module aggregates
evidence from source concepts along structural paths to all nodes where shade indicates the
node score, (d) decoding module : generation distribution with gate control. Source: (Ji et al.,
2020)

model (GPT-2). Figure 3.4 illustrates an overview of the GRF model. The main idea is that
the sequence decoder of the model use attention mechanism to useful semantics from the
subgraph representations as well as from the input text representations. Additionally, they
added a relevance score that reflected the relevancy of the knowledge edge with respect to the
decoding state. In short, GRF enables pre-trained models (GPT-2) with dynamic multi-hop
reasoning on multi-relational paths extracted from the external ConceptNet commonsense
knowledge graph.

3.2.1 Limitations

Although these knowledge integration approaches have worked well for the different down-
stream tasks, here we mention some significant drawbacks:

1. The method to encode both context and knowledge together can lead to a bottleneck
for computation on a GPU with limited memory (Banerjee et al., 2019; Mitra et al.,
2019; Bian et al., 2021).

2. The KEP model (Guan et al., 2020) has lower complexity but does not consider
grounding the knowledge to the input context.
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3. The GRF model (Ji et al., 2020) considered static subgraph knowledge, which might
lead to low coverage of valuable concepts for generating the output. Recently Yu
et al. (2022) argued that static subgraph knowledge methods like GRF do not utilize
a large portion of relevant concepts in the generation process. Yu et al. (2022) found
that only 21.1% of concepts in the output from Ji et al. (2020) could be found on
ConceptNet, and only 5.7% of concepts in the output can be found on the retrieved
2-hop sequence-associated subgraph.

In this thesis, we address these limitations and propose a multi-head knowledge inte-
gration method for classification tasks that encode knowledge and context separately; for
the NLG tasks, our method dynamically generates contextualized knowledge to support
downstream NLG tasks (see Chapter 6 and 7 respectively).



Chapter 4

Commonsense Knowledge for Mental
States Prediction in a Narrative Story

“Rationalization is a process of not perceiving
reality, but of attempting to make reality fit one’s
emotion."

– Ayn Rand

In the first section of this chapter, we give motivation and introduce the mental states
prediction problem. The second section reviews related work on mental states detection
in NLP. In the third section, we present a task agnostic graph-based method to extract,
rank, filter and select multi-hop relation paths from a commonsense knowledge resource to
interpret the expression of sentiment in terms of their underlying human needs. The third
section presents a method to integrate the acquired knowledge paths in a neural model that
interfaces context representations with knowledge using a gated attention mechanism. In the
fourth section, we evaluate our model in predicting appropriate categories from two theories
of psychology: Hierarchy of needs (Maslow, 1943) and basic motives (Reiss, 2002) in a
narrative story setting. Finally, we end the chapter with a human evaluation study to assess
the relevance of the encoded knowledge. This chapter is based on work originally published
in Paul and Frank (2019).

4.1 Mental States Prediction in Narrative Stories

Sentiment analysis and emotion detection are essential tasks in human-computer interaction.
Due to its broad practical applications, in NLP there has been rapid growth in the field of
sentiment analysis (Zhang et al., 2018). Although state-of-the-art sentiment analysis can
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detect the polarity of text units (Hamilton et al., 2016; Socher et al., 2013), there has been
little work towards explaining the reasons for the expression of sentiment and emotions
in texts. Exploring the connection between language and people’s psychology holds great
potential for understanding the underlying reasons for people’s emotional reactions (Li and
Hovy, 2017). For example, given two syntactically similar expressions “I broke my leg” and

“I broke up with my girlfriend” with same (negative) sentiment, however, the reason is very
different from each other as one related to a need concerning ‘health’ and another related to
’social relationship’. The ability to reason about what others think or believe (mental states)
is a crucial component of a system that can perform social commonsense reasoning.

esteem; approval

trust, fear
love; family

esteem;  approval,
belonging, contact

joy; surprise

love; family

joy, trust, anticipation joy, trust, anticipation

joy

love; family

esteem; approval

sadness, disgust,
anticipation

Meg Mom

Meg was invited to a fancy dinner party.

But she could not afford any fancy clothing 
to wear.

Her mom encouraged her to go anyways.

Meg decided to take her mom's advice.

She attended the party and had a great time 
in her old dress!

Fig. 4.1 A narrative story example with partial annota-
tions for motivation and emotional reactions. Source :
(Rashkin et al., 2018a)

The new advancement in tech-
nological capability and availabil-
ity of the massive amount of textual
data coming from interactions in
social networks, blogs and online
communities has made accessing
people’s emotional states remark-
ably easy. Hence, the research on
human psychological phenomena
has substantially increased, such
as detecting or monitoring mental
health problems. In this chapter
we explore the connection between
people’s emotions and the naive
psychology of characters in a narrative story. Figure 4.1 demonstrates an example of a
narrative story annotated with human needs, basic motives and emotions. We see how the
story character’s (Meg) mental state and emotion changes over time in the narrative. For
example, initially Meg was “sad and disgusted” but with her Mom’s support her emotion and
needs changed, suggesting how change in the underlying need explains change in people
emotion. Additionally, capturing these underlying human motives and needs of characters
plays an important role in narrative understanding (Rashkin et al., 2018a). Humans are good
at understanding situations described in natural language and can easily connect them to the
character’s psychological needs using commonsense knowledge. In this chapter, we aim to
imitate humans by (i) learning to select relevant words from the text, (ii) extracting pieces of
knowledge from the commonsense inventory and (iii) associating them with human motive
or need categories put forth by psychological theories. We hypothesize that integrating
commonsense knowledge into a neural model will be helpful in overcoming the lack of
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textual evidence in establishing relation between story events and the inferable mental states
of story characters.

4.2 Related Work

Lehnert (1981) proposed formalisms for affect and mental state in story narratives that
included motivations and reactions. Lehnert (1981) hypothesized that to summarize a story,
it is essential to access a high-level analysis of the story that highlights its central concepts.
Lehnert considered plot units (emotional reactions, affect states) conceptual structures that
overlap when a narrative is cohesive. Since then, there has been a growing interest in
developing methods to model aspects of human behaviour from daily life events or stories.
Goyal et al. (2013) proposed fully automated system, named AESOP that generates plot
unit representations for narrative texts. AESOP performs four steps: affect state recognition,
character identification, affect state projection, and link creation.

Chaturvedi et al. (2016) addressed the novel task of analyzing small pieces of text
containing an expression of a desire to identify if the desire was fulfilled in the given text.
They used three approaches: (a) a textual entailment model to analyze small fragments of
texts independently; (b) an unstructured model to analyze the complete text as a whole; (c) a
structured model to understand and model the narrative structure using latent variables. In the
meantime, there have been multiple works related to goals, desires, wish detection (Goldberg
et al., 2009; Rahimtoroghi et al., 2017). Most recently, Ding and Riloff (2018) propose
to categorize affective events into physiological needs to explain people’s motivations and
desires. Interestingly, Li and Hovy (2017) argued that human needs could categorize the
goals of an opinion holder. Unlike previous work, in this thesis, we focus on understanding
the role of commonsense knowledge in identifying the character’s motivation in a narrative
story. Inspired by (Lehnert, 1981), Rashkin et al. (2018b) published a dataset for tracking the
emotional reactions and motivations of characters in stories. In this work, we use this dataset
to develop a knowledge-enhanced system that ‘explains’ sentiment in terms of human needs.

4.3 Extracting Multi-Hop Commonsense Knowledge Paths

Our task is to automatically predict human needs of story characters given a story context.
In this task, following the setup of Rashkin et al. (2018b), we explain the probable reasons
for the expression of emotions by predicting appropriate categories from two theories of
psychology: Hierarchy of needs (Maslow, 1943) and basic motives (Reiss, 2002). The task
is defined as a multi-label classification problem with five coarse-grained (Maslow) and 19
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Fig. 4.2 Maslow and Reiss: Theories of Psychology as presented in Rashkin et al. (2018b).

fine-grained (Reiss) categories, respectively (see Fig. 4.2). We start with a Bi-LSTM encoder
with self-attention as a baseline model, to efficiently categorize human needs. We then show
how to select and rank multi-hop commonsense knowledge paths from ConceptNet that
connect textual expressions with human need categories. We now describe each component
in detail.

4.3.1 A Bi-LSTM Encoder with Attention to Predict Human Needs

Our Bi-LSTM encoder takes as input a sentence S consisting of a sequence of tokens, denoted
as ws

1, w
s
2, ...., w

s
n, or ws

1:n and its preceding context Cxt, denoted as wcxt
1 , wcxt

2 , ...., wcxt
m , or

wcxt
1:m. As further input we read the name of a story character, which is concatenated to the

input sentence. For this input the model is tasked to predict appropriate human need category
labels z ∈ Z, according to a predefined inventory.

Embedding Layer: We embed each word from the sentence and the context with a con-
textualized word representation using character-based word representations (ELMo) (Peters
et al., 2018). The embedding of each word wi in the sentence and context is represented as
esi and ecxti , respectively.

Encoding Layer: We use a single-layer Bi-LSTM (Hochreiter and Schmidhuber, 1997)
to obtain sentence and context representations hs and hcxt, which we form by concatenating
the final states of the forward and backward encoders.

hs = BiLSTM(es1:n);h
cxt = BiLSTM(ecxt1:m) (4.1)
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A Self-Attention Layer allows the model to dynamically control how much each token
contributes to the sentence and context representation. We use a modified version of self-
attention proposed by Rei and Søgaard (2018), where both input representations are passed
through a feedforward layer to generate scalar values for each word in context vcxti and
sentence vsi (cf. (2-5)).

asi = ReLU(W s
i h

s
i + bsi ), (4.2)

acxti = ReLU(W cxt
i hcxt

i + bcxti ) (4.3)

vsi = W s
v ia

s
i + bsvi (4.4)

vcxti = W cxt
v ia

cxt
i + bcxtv i (4.5)

where, W s, bs,W cxt, bcxt,W s
v ,W

cxt
v are trainable parameters. We calculate the soft

attention weights for both sentence and context:

ṽi =
1

1 + exp(−vi)
; v̂i =

ṽi∑N
k=1 ṽk

(4.6)

where, ṽi is the output of the sigmoid function, therefore ṽi is in the range [0,1] and v̂i is the
normalized version of ṽi. Values v̂i are used as attention weights to obtain the final sentence
and context representations xs and xcxt, respectively:

xs =
N∑
i=1

v̂i
shs

i (4.7)

xcxt =
M∑
i=1

v̂i
cxthcxt

i (4.8)

with N and M the number of tokens in S and Cxt. The output of the self-attention layer
is generated by concatenating xs and xcxt. We pass this representation through a FF layer of
dimension Z:

y = ReLU(Wy[x
s;xcxt] + by) (4.9)

where Wy, by are trainable parameters and ’;’ denotes concatenation of two vectors. Finally,
we feed the output layer y to a logistic regression layer to predict a binary label for each
class z ∈ Z, where Z is the set of category labels for a particular psychological theory
(Maslow/Reiss, Fig. 4.2).
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4.3.2 Extracting Commonsense Knowledge

To improve the prediction capacity of our model, we aim to leverage external commonsense
knowledge that connects expressions from the sentence and context to human need categories.
For this purpose we extract multi-hop commonsense knowledge paths that connect words
in the textual inputs with the offered human need categories, using as resource ConceptNet
(Speer and Havasi, 2012), a large commonsense knowledge inventory.

Identifying contextually relevant information from such a large knowledge base is a non-
trivial task. We propose an effective two-step method to extract multi-hop knowledge paths
that associate concepts from the text with human need categories: (i) collect all potentially
relevant knowledge relations among concepts and human needs in a subgraph for each input
sentence; (ii) rank, filter and select high-quality paths using graph-based local measures and
graph centrality algorithms.

4.3.2.1 Construction of Sub-graphs

ConceptNet is a graph G = (V,E) whose nodes are concepts and edges are relations be-
tween concepts (e.g. CAUSES, MOTIVATEDBY). For each sentence S we induce a subgraph
G′ = (V ′, E ′) where V ′ comprises all concepts c ∈ V that appear in S and the directly
preceding sentence in context Cxt. V ′ also includes all concepts c ∈ V that correspond to
one of the human need categories in our label set Z. Fig. 4.3 shows an example.

The sub-graph is constructed as follows:
Shortest Paths: In a first step, we find all shortest paths p′ from ConceptNet that connect

any concept ci ∈ V ′ to any other concept cj ∈ V ′ and to each human needs concept z ∈ Z.
We further include in V ′ all the concepts c ∈ V which are contained in the above shortest
paths p′.

Neighbours: To better represent the meaning of the concepts in V ′, we further include in
V ′ all concepts c ∈ V that are directly connected to any c ∈ V ′ that is not already included
in V ′.

Sub-graph: We finally construct a connected sub-graph G′ = (V ′, E ′) from V ′ by
defining E ′ as the set of all ConceptNet edges e ∈ E that directly connect any pair of
concepts (ci, cj) ∈ V ′.

Overall, we obtain a sub-graph that contains relations and concepts which are supposed
to be useful to “explain" why and how strongly concepts ci that appear in the sentence and
context are associated with any of the human needs z ∈ Z.
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4.3.2.2 Ranking and Selecting Multi-hop Paths

We could use all possible paths p contained in the sub-graph G′, connecting concepts ci

from the text and human needs concepts z contained in G′, as additional evidence to predict
suitable human need categories.

But not all of them may be relevant. In order to select the most relevant paths, we propose
a two-step method: (i) we score each vertex with a score (Vscore) that reflects its importance
in the sub-graph and on the basis of the vertices’ Vscores we determine a path score Pscore,
as shown in Figure 4.3; (ii) we select the top-k paths with respect to the computed path score
(Pscore) .

(i) Vertex Scores and Path Scores: We hypothesize that the most useful commonsense
relation paths should include vertices that are important with respect to the entire extracted
subgraph. We measure the importance of a vertex using different local graph measures: the
closeness centrality measure, page rank or personalized page rank.

Closeness Centrality (CC) (Bavelas, 1950) reflects how close a vertex is to all other
vertices in the given graph. It measures the average length of the shortest paths between
a given vertex vi and all other vertices in the given graph G′. In a connected graph, the
closeness centrality CC(vi) of a vertex vi ∈ G′ is computed as

V scoreCC(vi) =
| V ′ |∑

j d (vj, vi)
(4.10)

where | V ′ | represents the number of vertices in the graph G′ and d(vj, vi) represents the
length of the shortest path between vi and vj . For each path we compute the normalized sum
of VscoreX of all vertices vj contained in the path, for any measure X ∈ {CC,PR, PPR}.

PscoreX =

∑
j V scoreX(vj)

N
(4.11)

We rank the paths according to their PscoreCC , assuming that relevant paths will contain
vertices that are close to the center of the sub-graph G′.

PageRank (PR) (Brin and Page, 1998) is a graph centrality algorithm that measures
the relative importance of a vertex in a graph. The PageRank score of a vertex vi ∈ G′ is
computed as:

V scorePR(vi) = α
∑
j

uji
vj
Lj

+
1− α

n
(4.12)

where Lj =
∑

i uji is the number of neighbors of vertex j, α is a damping factor representing
the probability of jumping from a given vertex vi to another random vertex in the graph and
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n represents the number of vertices in G′. We calculate PscorePR using Eq. 4.11 and order
the paths according to their PscorePR, assuming that relevant paths will contain vertices with
high relevance, as reflected by a high number of incoming edges.

Personalized PageRank (PPR) (Haveliwala, 2002) is used to determine the importance
of a vertex with respect to a certain topic (set of vertices). Instead of assigning equal
probability for a random jump 1−α

n
, PPR assigns stronger probability to certain vertices to

prefer topical vertices. The PPR score of a vertex v ∈ G′ is computed as:

V scorePPR(vi) = α
∑
j

uji
vj
Lj

+ (1− α)T (4.13)

where T = 1
|Tj | if nodes vi belongs to topic Tj and otherwise T = 0. In our setting, Tj will

contain concepts from the text and human needs, to assign them higher probabilities. We
calculate PscorePPR using Eq. 4.11 and order the paths according to their scores, assuming
that relevant paths should contain vertices holding importance with respect to vertices
representing concepts from the text and human needs.

(ii) Path Selection: We rank knowledge paths based on their Pscore using the above
relevance measures, and construct ranked lists of paths of two types: (i) paths connecting
a human needs concept z ∈ Z to a concept mentioned in the text (pc−z) 2 and (ii) paths
connecting concepts in the text (pc−c) 3. Ranked lists of paths are constructed individually
for concepts that constitute the start or endpoint of a path: a human needs concept for pc−z

or any concept from the text for pc−c. Figure 4.3 illustrates an example where the character
Stewart felt joy after winning a gold medal. The annotated human need label is status. We
show the paths selected by our algorithm that connect concepts from the text and the human
need status. We select the top-k paths of type pc−z for each human need to capture relevant
knowledge about human needs in relation to concepts in the text. Similarly, we select the
top-k paths of type pc−c for each ci to capture relevant knowledge about the text (not shown
in Fig. 3).

4.4 Integrating Multi-Hop Commonsense Knowledge

In this section, we extend our model with a gated knowledge integration mechanism to
incorporate relevant multi-hop commonsense knowledge paths for predicting human needs.
An overview of the model is given in Figure 4.4. We have seen how to obtain a ranked
list of commonsense knowledge paths from a subgraph extracted from ConceptNet that

2pc−z denotes path connecting a human needs concept z ∈ Z and a concept c mentioned in the text.
3pc−c denotes path connecting a concept c and another concept c mentioned in the text.
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Stewart has always been a big gamer since the age of 5. 
One day while at the mall he saw a sign for a video game 
tournament. He promptly signed up for the tournament.

Previous Sentence

He came home with a gold medal.

Sentence

Concepts mentioned in the text (c)

The following week he ended 
up winning the tournament.

Narrative Story

week wingold medal tournament

Path connecting human need (z) and concepts (c) 
with Vscores and Pscores

gold

medal jewelry

week time fine

position first gold medal

gold medal

Pscores

0.12 0.09 0.15

0.10 0.09 0.15

0.08 0.10 0.08

0.15 0.12 0.13

0.15

0.15

0.12

0.11

0.10

0.1375

Character: ‘Stewart’, Emotion: ‘Joy’, Human need = ‘status’ 

gold 
medal

medal

first 
place

first

position

status

jewelry

gold

Subgraph

status

status

statusjewelry

status

Fig. 4.3 Illustration of commonsense path selection. Top: Context and sentence, Bottom:
Selected knowledge paths with Vscores and Pscores (left) and the corresponding subgraph.
Concepts from the text are marked with green dashed lines; blue boxes show the human need
label status assigned to Stewart.

connect concepts from the textual input and possible human needs categories that are the
system’s classification targets. Our intuition is that the extracted commonsense knowledge
paths will provide useful evidence for our model to link the content expressed in the text
to appropriate human need categories. Paths that are selected by the model as a relevant
connection between the input text and the labeled human needs concept can thus provide
explanations for emotions or goals expressed in the text in view of a human needs category.
We thus integrate these knowledge paths into our model, (i) to help the model making correct
predictions and (ii) to provide explanations of emotions expressed in the text in view of
different human needs categories. For each input, we represent the extracted ranked list of n
commonsense knowledge paths p as a list crk,1, crk,2, ...., crk,n, where each crk,i1:l represents
a path consisting of concepts and relations, with l the length of the path. We embed all
concepts and relations in crk,i1:l with pretrained GloVe (Pennington et al., 2014) embeddings.

Encoding Layer: We use a single-layer BiLSTM to obtain encodings (hk,i) for each
knowledge path

hk,i = BiLSTM(ek,i1:n) (4.14)

where hk represents the output of the BiLSTM for the knowledge path and i its the ranking
index.
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Fig. 4.4 Attention over multi-hop knowledge paths.

Attention Layer: We use an attention layer, where each encoded commonsense knowl-
edge path interacts with the sentence representation xs to receive attention weights (ĥk,i):

h̃k,i = σ(xshk,i), ĥk,i =
h̃k,i∑N
i=1 h̃

k,i
(4.15)

In Eq. 4.15, we use sigmoid to calculate the attention weights, similar to Eq. 4.6. However,
this time we compute attention to highlight which knowledge paths are important for a given
input representation (xs being the final state hidden representation over the input sentence,
Eq. 7).

To obtain the sentence-aware commonsense knowledge representation xk, we pass the
output of the attention layer through a feedforward layer. Wk, bk are trainable parameters.

xk = ReLU(Wk(
N∑
i=1

ĥk,ihk,i) + bk) (4.16)
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Classification Train Dev Test

Reiss 5432 1469 5368
Reiss without belonging class 5431 1469 5366
Maslow 6873 1882 6821

Table 4.1 Dataset Statistics: nb. of instances (sentences with annotated characters and human
need labels).

4.4.1 Distilling Knowledge into the Model

In order to incorporate the selected and weighted knowledge into the model, we concatenate
the sentence xs, context xcxt and knowledge xk representation and pass it through a FF layer.

oi = ReLU(Wz[x
s
i ;x

cxt
i ;xk

i ] + bz) (4.17)

We employ a gating mechanism to allow the model to selectively incorporate relevant
information from commonsense knowledge xk and from the joint input representation yi (see
Eq. 4.9) separately. We finally pass it to a logistic regression classifier to predict a binary
label for each class z in the set Z of category labels

zi = σ(Wỹz(oi ⊙ yi + oi ⊙ xk
i ) + bỹz) (4.18)

where ⊙ represents element-wise multiplication, bỹz , Wỹz are trainable parameters.

4.5 Experimental Setup

Dataset: We evaluate our model on the Modeling Naive Psychology of Characters in Simple
Commonsense Stories (MNPCSCS) dataset (Rashkin et al., 2018b). It contains narrative
stories where each sentence is annotated with a character and a set of human need categories
from two inventories: Maslow’s (with five coarse-grained) and Reiss’s (with 19 fine-grained)
categories (Reiss’s labels are considered as sub-categories of Maslow’s). The data contains
the original worker annotations. Following prior work we select the annotations that display
the “majority label" i.e., categories voted on by ≥ 2 workers. Since no training data is
available, similar to prior work we use a portion of the devset as training data, by performing
a random split, using 80% of the data to train the classifier, and 20% to tune parameters. Data
statistics is reported in Table 4.1.

Rashkin et al. (2018b) report that there is low annotator agreement i.a. between the
belonging and the approval class. We also find high co-occurrence of the belonging, approval
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and social contact classes, where belonging and social contact both pertain to the Maslow
class Love/belonging while approval belongs to the Maslow class Esteem. This indicates that
belonging interacts with Love/belonging and Esteem in relation to social contact. We further
observed during our study that in the Reiss dataset the number of instances annotated with the
belonging class is very low (no. of instances in training is 24, and in dev 5). The performance
for this class is thus severely hampered, with 4.7 F1 score for BiLSTM+Self-Attention and
7.1 F1 score for BiLSTM+Self-Attention+Knowledge. After establishing benchmark results
with prior work (cf. Table 4.2, including belonging), we perform all further experiments with
a reduced Reiss dataset, by eliminating the belonging class from all instances. This impacts
the overall number of instances only slightly: by one instance for training and two instances
for test, as shown in Table 4.1.

Training: During training we minimize the weighted binary cross entropy loss,

L =
Z∑

z=1

wzyzlogỹz + (1− wz)(1− yz)log(1− ỹz) (4.19)

wz =
1

1− exp−
√

P (yz)
(4.20)

where Z is the number of class labels in the classification tasks and wz is the weight. P (yz)

is the marginal class probability of a positive label for z in the training set.
Embeddings: To compare our model with prior work we experiment with pretrained

GloVe (100d) embeddings (Pennington et al., 2014). Otherwise we used GloVe (300d) and
pretrained ELMo embeddings (Peters et al., 2018) to train our model.

Hyperparameters for Knowledge Inclusion: We compute ranked lists of knowledge
paths of two types: pc−z and pc−c. We use the top-3 pc−z paths for each z using our best
ranking strategy (Closeness Centrality + Personalized PageRank) in our best system results
(Tables 4.2, 4.3, 4.5), and also considered paths pc−c (top-3 per pair) when evaluating different
path selection strategies (Table 4.4).

Evaluation Metrics: We predict a binary label for each class using a binary classifier so
the prediction of each label is conditionally independent of the other classes given a context
representation of the sentence. In all prediction tasks we report the micro-averaged Precision
(P), Recall (R) and F1 scores by counting the number of positive instances across all of the
categories. All reported results are averaged over five runs. More information on the dataset,
metrics and all other training details are given in the Supplement.
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Reiss Maslow
Model WE P R F1 P R F1

BiLSTM⋄ G100d 18.35 27.61 22.05 31.29 33.85 32.52
CNN⋄ G100d 18.89 31.22 23.54 27.47 41.01 32.09
REN⋄ G100d 16.79 22.20 19.12 26.24 42.14 32.34
NPN⋄ G100d 13.13 26.44 17.55 24.27 44.16 31.33
BM G100d 25.08 28.25 26.57 47.65 60.98 53.54
BM + K♣ G100d 28.47 39.13 32.96 50.54 64.54 56.69
BM ELMo 29.50 44.28 35.41±0.23 53.86 67.23 59.81±0.23

BM + K♣ ELMo 31.74 43.51 36.70±0.14 57.90 66.07 61.72±0.11

BM⋆ ELMo 31.45 44.29 37.70
BM + K⋆♣ ELMo 36.76 42.53 39.44

Table 4.2 Multi-label Classification Results: ⋄: results in Rashkin et al.; ⋆: w/o belonging;
BM: BiLSTM+Self-Att.; +K:w/ knowledge, ♣:ranking method CC+PPR.

4.6 Results

Our experiment results are summarized in Table 4.2. We benchmark our baseline BiLSTM+Self-
Attention model (BM, BM w/ knowledge) against the models proposed in Rashkin et al.
(2018b): a BiLSTM and a CNN model, and models based on the recurrent entity network
(REN) (Henaff et al., 2016) and neural process networks (NPN) (Bosselut et al., 2017).
The latter differ from the basic encoding models (BiLSTM, CNN) and our own models by
explicitly modeling entities. We find that our baseline model BM outperforms all prior work,
achieving new state-of-the-art results. For Maslow we show improvement of 21.02 pp. F1

score. For BM+K this yields a boost of 6.39 and 3.15 pp. F1 score for Reiss and Maslow,
respectively. When using ELMo with BM we see an improvement in recall. However, adding
knowledge on top improves the precision by 2.24 and 4.04 pp. for Reiss and Maslow. In all
cases, injecting knowledge improves the model’s precision and F1 score.

Table 4.2 (bottom) presents results for the reduced dataset, after eliminating Reiss’ label
belonging. Since belonging is a rare class, we observe further improvements. We see the
same trend: adding knowledge improves the precision of the model.

4.6.1 Model Ablations

To obtain better insight into the contributions of individual components of our models, we
perform an ablation study (Table 4.3). Here and in all later experiments we use richer
(300d) GloVe embeddings and the dataset w/o belonging. We show results including and not
including self-attention and knowledge components. We find that using self-attention over
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WE Atten K Gated P R F1

G300d - - - 23.31 34.69 27.89
G300d ✓ - - 26.09 35.59 30.11
G300d ✓ ✓ - 27.99 37.73 32.14
G300d ✓ ✓ ✓ 28.65 39.42 33.19
ELMo - - - 32.35 42.66 36.80
ELMo ✓ - - 31.45 44.29 37.70
ELMo ✓ ✓ - 32.65 45.60 38.05
ELMo ✓ ✓ ✓ 36.76 42.53 39.44

Table 4.3 Model ablations for Reiss Classification on MNPCSCS dataset w/o belonging.

Path Ranking P R F1

S+M(Pc−z+ Pc−c) None 32.51 42.70 36.90
S+M(Pc−z+ Pc−c) Random 31.63 43.35 36.57

Single Hop(Pc−z) CC + PPR 33.00 44.63 37.94
S+M(Pc−c + Pc−z) CC + PPR 35.30 44.11 39.21

S+M(Pc−z) CC 33.45 47.93 39.40
S+M(Pc−z) PR 35.51 42.82 38.82
S+M(Pc−z) PPR 36.23 43.09 39.34
S+M(Pc−z) CC + PPR 36.76 42.53 39.44

Table 4.4 Results for different path selection strategies on MNPCSCS w/o belonging;
S+M:Single+Multi hop.

sentences and contexts is highly effective, which indicates that learning how much each token
contributes helps the model to improve performance. We observe that integrating knowledge
improves the overall F1 score and yields a gain in precision with ELMo. Further, integrating
knowledge using the gating mechanism we see a considerable increase of 3.58 and 1.74
pp. F1 score improvement over our baseline model for GloVe and ELMo representations
respectively.

4.6.2 Commonsense Path Selection

We further examine model performance for (i) different variants of selecting commonsense
knowledge, including (ii) the effectiveness of the relevance ranking strategies discussed in
§4.3.2.2. In Table 4.4, rows 3-4 use our best ranking method: CC+PPR; rows 5-8 show
results when using the top-3 ranked pc−z paths for each human need z with different ranking
measures. None shows results when no selection is applied to the set of extracted knowledge
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paths (i.e., using all possible paths from pc−z and pc−c). Random randomly selects 3 paths
for each human need from the set of paths used in None. This yields only a slight drop in
performance. This suggests that not every path is relevant. We evaluate the performance
when only considering single-hop paths (now top-3 ranked using CC+PPR) (Single-Hop).
We see an improvement over random paths and no selection, but not important enough.
In contrast, using both single and multi-hop paths in conjunction with relevance ranking
improves the performance considerably (rows 4-8). This demonstrates that multi-hop paths
are informative. We also experimented with pc−c+pc−z. We find improvement in recall,
however the overall performance decreases by 0.2 F1 score compared to paths pc−z ranked
using CC + PPR. Among different ranking measures precision for Personalized PageRank
performs best in comparison with CC and PR in isolation, and recall for CC in isolation is
highest. Combining CC and PPR yields the best results among the different ranking strategies
(rows 5-8).

+2

34.0%
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24.0% 0

18.0%

-1

24.0%

Fig. 4.5 Human evaluation: Distribution of scores.

4.7 Analysis

4.7.1 Performance per Human Need Categories

We examined the model performance on each category (cf. Figure 4.6). The model performs
well for basic needs like food, safety, health, romance, etc. We note that inclusion of
knowledge improves the performance for most classes (only 5 classes do not profit from
knowledge compared to only using ELMo), especially for labels which are rare like honor,



54 Commonsense Knowledge for Mental States Prediction in a Narrative Story

Model WE P R F1

BM ELMo 33.39 45.15 38.39
BM+K ELMo 36.36 44.02 39.83

Table 4.5 Multi-label classification on MNPCSCS w/o belonging class and w/o context (1st
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Fig. 4.6 Best model’s performance per human needs (F1 scores) for Reiss on MNPCSCS
dataset.

idealism, power. We also found that the annotated labels can be subjective. For instance,
Tom lost his job is annotated with order while our model predicts savings, which we consider
to be correct. Similar to Rashkin et al. (2018b) we observe that preceding context helps
the model to better predict the characters’ needs, e.g., Context: Erica’s [..] class had a
reading challenge [..]. If she was able to read 50 books [..] she won a pizza party!; Sentence:
She read a book every day for the entire semester is annotated with competition. Without
context the predicted label is curiosity, however when including context, the model predicts
competition, curiosity. We measure the model’s performance when applying it only to the
first sentence of each story (i.e., without the context). As shown in Table 4.5, also in this
setting the inclusion of knowledge improves the performance.



4.7 Analysis 55

Context: Timmy had to renew his
driver’s license. He went to his local
DMV. He waited in line for nearly 2
hours. He took a new picture for his
driver’s license.
Sentence: He drove back home after an
exhausting day.
True Label: rest
Predicted Label (BM): status, ap-
proval, order
Predicted Label (BM+K): rest
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safety --> Synonym--> guard --> relatedto --> car --> relatedto --> driver

exhausting --> isa --> fatigue --> causesdesire --> rest

rest --> Synonym --> pillow --> atlocation --> home

calm --> relatedto --> water --> related to --> thirst --> isa --> drive

picture --> relatedto --> drawing --> isa --> competition

competition --> relatedto --> incompetent --> related to --> impaired --> related to --> drive

driver --> isa --> person --> Desires --> independent
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Fig. 4.7 Interpreting the attention weights on sentence representation and selected common-
sense paths.

4.7.2 Human Evaluation of Extracted Paths

We conduct human evaluation to test the effectiveness and relevance of the extracted com-
monsense knowledge paths. We randomly selected 50 extracted knowledge paths that contain
the gold label (using CC+PPR for ranking). We asked three expert evaluators to decide
whether the paths are relevant to provide information about the missing links between the
concepts in the sentence and the human need (gold label). We asked them to assign scores
according to the following definitions:

+2: the path specifies perfectly relevant information to provide the missing link between the
concepts in the sentence and the human need.

+1: the path contains a sub-path that specifies relevant information to provide the missing
links between the concepts in the sentence and the human need.

0: when the path is irrelevant but the starting and the ending nodes stand in a relation that is
relevant to link the sentence and the expressed human need. (In this case, either the
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Case 1: Inclusion of knowledge path improves the performance when there is no
context.

Context: No Context
Sentence: Tina was out for a
walk in the street.
True Label: Health
Predicted without Knowl-
edge: Serenity
Predicted with Knowledge :
Health
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walk --> MotivatedByGoal --> exercise --> relatedto --> health

walk --> hassubevent --> trip --> relatedto--> social

walk --> relatedto --> relaxation --> relatedto -->rest

walk --> Synonym --> get off --> mannerof --> love

food --> atlocation --> store --> atlocation --> street
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Fig. 4.8 Example 1: Visualizing the attention weights of the input sentence and of selected
commonsense paths.

path selected by our algorithm is not relevant or there is no relevant path connecting
the nodes given the context.)

-1: the path is completely irrelevant.

The inter-annotator agreement had a Fleiss’ κ= 0.76. Figure 4.5 depicts the distribution of
assigned scores (based on the majority class). The result for this evaluation shows that in
34% of the cases computed on the basis of majority agreement, our algorithm was able to
select a relevant commonsense path.

We study the visualization of attention distributions produced by our model. We provide
examples for different scenarios. Here we show the results found by our best model i.e.,
BiLSTM+Self-Attention+Gated-Knowledge with CC+PPR as path selection method.

4.7.3 Interpretabilty

Finally we study the learned attention distributions of the interactions between sentence
representation and knowledge paths, in order to interpret how knowledge is employed to
make predictions. Visualization of the attention maps gives evidence of the ability of the
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Case 2: Inclusion of knowledge paths improves the precision of the model.

Context: No Context
Sentence: Noah wanted to play golf
against Nick.
True Label: Competition
Predicted without Knowledge: Com-
petition, Curiosity
Predicted with Knowledge: Competi-
tion
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Fig. 4.9 Example 2: Visualizing the attention weights of the input sentence and of selected
commonsense paths.

model to capture relevant knowledge that connects human needs to the input text. The model
provides interpretability in two ways: by selecting tokens from the input text using Eq.4.6 and
by choosing knowledge paths from the imported knowledge using Eq.4.15. Figure 4.7-4.10
shows some examples where including knowledge paths helped the model to predict the
correct human need category. For example, in figure 4.7, the attention map depicts which
exact paths are selected to make the prediction. In this example, the model correctly picks
up the token “exhausting” from the input sentence and the knowledge path “exhausting is
a fatigue causes desire rest”. We present more examples of extracted knowledge and its
attention visualization with different scenarios like (case1) when no context is given, (case2)
when the precision of the model improved due to knowledge incorporation, (case3) when the
recall of the model improved due to knowledge incorporation. Finally, in Figure 4.11 we see
an example when our model fails to attend to the relevant knowledge path. Interestingly, the
graph-based ranking and selection algorithm were able to extract a relevant knowledge path,
but the neural model failed to correctly pick (attend to) the correct path. One intuitive reason
can be there are training data size for the class “serenity” is small compared to classes.
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Case 3: Inclusion of knowledge paths improves the recall of the model

Context: Liv was a budding artist and
she loved painting. She wanted to go
to art classes, but her school didn’t
offer any!, So Liv got together with her
friends and began brainstorming. They
decided to form their own art group at
the high school.
Sentence: They made an after-school
art club and named Liv president!
True Label: Independent, Curiosity,
Contact
Predicted without Knowledge: Con-
tact
Predicted with Knowledge : Indepen-
dent, Curiosity, Contact
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Fig. 4.10 Example 3: Visualizing the attention weights of the input sentence and of selected
commonsense paths.

4.8 Summary

In this Chapter, we introduced a new method to rank and select multi-hop relation paths
from a commonsense knowledge resource using graph-based algorithms. Our end-to-end
model incorporates multi-hop knowledge paths to predict human needs. We show that due
to the attention mechanism we can analyze the knowledge paths that the model considers
in prediction. This enhances transparency and interpretability of the model. We show that
implicit knowledge is crucial for a better predicting human needs and motives.

In our ablation study we observe that integrating knowledge and self-attention have a
complementary impact of the model performance. Particularly, we notice that self-attention
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Case 4: In this case our model fails to attend to the relevant path. Although the graph-
based ranking and selection algorithm were able to extract a relevant knowledge path,
the neural model fails to correctly pick (attend to) the correct path.

Context: Tom was driving his car. He
wanted to take a scenic way home. He
deliberately passed his exit. Tom saw
many beautiful trees.
Sentence: Tom took the scenic way
home.
True Label: Serenity
Predicted without Knowledge: Inde-
pendent, Curiosity
Predicted with Knowledge : Family,
Independent, Curiosity, Serenity

Tom took the scenic way home
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Fig. 4.11 Example 4: Visualizing the attention weights of the input sentence and of selected
commonsense paths.

improves the precision of the model (in relative terms) and the knowledge improves the recall
of the model. In our quantitative analysis we find that combination of closeness centrality
and personalized page rank yields the best results among the different ranking strategies.
To show that our ranking strategy is task-agnostic, we apply our method on argumentation
classification task1.

1More details about our experiments and results on argumentation classification task are in Appendix A





Chapter 5

Generating Hypothetical Events for
Abductive Inference

“Abduction is the process of forming explanatory
hypotheses. It is the only logical operation which
introduces any new idea”

– Charles Sanders Peirce

In the previous chapter, we investigated the role of commonsense knowledge in inferences
about the dynamics of mental states in stories. In this chapter, we investigate further the
dynamics of story events. We study how learning about what social event follows another
event impacts abductive commonsense reasoning. The first section of this chapter gives
motivation and introduction to abductive commonsense reasoning tasks. The second section
presents a method to learn about future events from a given social situation. In the third
section, we present supervised and unsupervised methods for leveraging the knowledge about
future events to support abductive commonsense reasoning tasks. Finally, we end the chapter
with our method’s automatic and human evaluation. This chapter is based on work originally
published in Paul and Frank (2021b).

5.1 Abductive Inference

Abductive reasoning (AR) is inference to the best explanation. It typically starts from
an incomplete set of observations about everyday situations and comes up with what can
be considered the most likely possible explanation given these observations (Pople, 1973;
Douven, 2017). One of the key characteristics that make abductive reasoning more chal-
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lenging and distinct from other types of reasoning is its non-monotonic character (Strasser
and Antonelli, 2019) i.e., even the most likely explanations are not necessarily correct.

The grass outside my house is wet 

The sprinkler outside was switched on

Observation 2

It rained last night 

Sprinkler made 
the grass wet

Plausible ExplanationObservation 1 

:  

:  

Fig. 5.1 Motivational example illustrating Abductive
Reasoning and its non-monotonic character.

For example, in Figure 5.1, the
most likely explanation for Ob-
servation 1: “wet grass outside
my house” is that “it has been
raining”. However, when a new
piece of information (observation
or evidence) becomes available, the
explanation must possibly be re-
tracted, showing the defeasible character of abduction. With the new observation (“the
sprinkler was switched on”) the most plausible explanation changes to “Sprinkler caused the
grass to be wet”. Humans, in such situations, could induce or validate such abductive infer-
ences by performing hypothetical reasoning (such as “What would happen if the sprinkler
was switched on?”) to arrive at a plausible explanation for “wet grass outside my house”.

There has been longstanding work on theories of abductive reasoning (Peirce, 1903,
1965a,b; Kuipers, 1992, 2013). Researchers have applied various frameworks, some focused
on pure logical frameworks (Pople, 1973; Kakas et al., 1992), some on probabilistic frame-
works (Pearl, 1988), and others on Markov Logics (Singla and Mooney, 2011). Recently,
moving away from logic-based abductive reasoning, Bhagavatula et al. (2020) proposed to
study language-based abductive reasoning. They introduced two tasks: Abductive Natural
Language Inference (αNLI) and Generation (αNLG).

In this chapter, we focus on the αNLI task (Bhagavatula et al., 2020), where given two
observations (O1 at time t1, O2 at time t2, with t1 < t2) as an incomplete context, the task
is to predict which of two given hypothesized events (H1 or H2) is more plausible to have
happened between O1 and O2. Figure 5.2 illustrates this with an example: given observations
O1:“Priya decided to try a new restaurant.” and O2: “Priya thought her food was delicious.”,
the task is to predict whether H1 or H2 is the more plausible explanation given observations
O1 and O2. Both H1 and H2 are different plausible hypothetical situations that can evolve
from the same observation (premise) O1.

We hypothesize that learning how different hypothetical scenarios (H1 and H2) can result
in different outcomes (e.g., OHj

2 , Fig. 5.2) can help in performing abductive inference. In
order to decide which Hi, is more plausible given observations, we assume each Hi to be
true and generate a possible next event OHi

2 for each of them independently (e.g.: What will
happen if Priya’s ordered food was microwaved and precooked?). We then compare the
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O1 : Priya decided to try a new restaurant.
O2 : Priya thought her food was delicious.

!"#$: Priya was disappointed in the quality of the food.

Hypothesis

!"#&: She was excited to try them out.

LM

Observations

LM

'" : The food that Priya
ordered was 

microwaved and 
precooked.

'( : She ordered two 
shrimp dishes What if

'( '"

Fig. 5.2 Motivational example for αNLI : The top box (red) shows the observations and two
callout clouds (green) contain the hypotheses. The implications (OHi

i ) – generated by the
LM conditioned on each hypothesis and the observations – are given in pink colored boxes.

generated sentences (OH1
2 , OH2

2 in Fig. 5.2) to what has been observed (O2) and choose as
most plausible hypothesis the one whose implication is closest to observation O2.

We design a language model (LMI ) which, given observations and a hypothesis, gen-
erates a possible event that could happen next, given one hypothesis. In order to train this
language model, we use the TIMETRAVEL (TT) corpus (Qin et al., 2019) (a subpart of the
ROCStories corpus1). We utilize the LMI model to generate a possible next event for each
hypothesis, given the observations. We then propose a multi-task learning modelMT L that
jointly chooses from the generated possible next events (OH1

2 or OH2
2 ) the one most similar

to the observation O2 and predicts the most plausible hypothesis (H1 or H2).

5.2 Learning about Counterfactual Scenarios

The main idea is to learn to generate assumptions, in a given situation, about “What could
have happened (next) if we had done X?” or “What could happen (next) if we do X?” (Bhatt
and Flanagan, 2010). Figure 5.3(a) depicts the αNLI task framework. We hypothesize
that getting to know what will happen (next) if any of two hypotheses occurs, will help us
verifying which of them is more plausible (see Fig. 5.3(c)). Therefore, we encourage the
model to learn how different hypothetical events (including counterfactual events) evolving
from the same premise (s1) can lead to different or similar outcomes (see Fig. 5.3(b)).

Accordingly, we teach a pre-trained GPT-2 (Radford et al., 2019) language model how to
generate a sequence of possible subsequent events given different hypothetical situations

1We ensure that αNLI testing instances are held out.
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(c) Learning to generate possible future event for each hypothesis  
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-#.
Counterfactual-"

-/

-/.
(b) Counterfactual Reasoning from TimeTravel

Fig. 5.3 Different reasoning schemes and settings for our task and approach. The arrows
denote the direction (temporal flow) of the reasoning chain. The dotted arrow in (b) denotes
the derivation of a counterfactual situation s′2 from a factual s2. In (c), the dotted arrows
denote the learned inference; the dotted lines indicate the similarity between O2 and OHi

2 .

in a narrative setting. Training such a model on narrative texts encourages it to learn
(latent learning) causal and temporal relations between events. We train a conditional
language model, LMI , which generates a possible event that could happen next, given some
counterfactual scenarios for a given story.

We train this model on the TIMETRAVEL (TT) dataset (Qin et al., 2019), by fine-tuning
GPT-2 to learn about possible next events emerging from a situation in a story, given some
alternative, counterfactual event. The TT dataset consists of five-sentence instances S =
(s1,s2,..,s5)2 from the ROCStories corpus1 plus additional crowd-sourced sentences s

′
2:5,

where s′
2 is counterfactual3 to s2 from the original story4. There are two reasons for using the

TT dataset for our purposes: a) the domains on which GPT-2 was pretrained are broad5 and
different from the domain of ROCStories, b) the model can see how alternative situations can
occur starting from the same premise s1, resulting in similar or different outcomes. Note that,
although intermediate situations may be counterfactual to each other, the future outcome can
still be similar to the original ending due to causal invariance 6.

Concretely, the language model LMI reads the premise (s1) and the alternative event(s)
(s2 or s′

2), the masked token (serving as a placeholder for the missing possible next event(s)

2s1 = premise, s2 = initial context, s3:5 = original ending
3a counterfactual s

′
states something that is contrary to s

4During our experiments we treat them as two separate instances: S1=(s1:5) and S2 = (s1,s
′

2:5).
5GPT-2 was trained on the WebText Corpus.
6the future events that are invariant under the counterfactual conditions (Qin et al., 2019)
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Observation (O) Hypothesis (Hj) Generated Implications OHj

2

O1: Dotty was being very grumpy. O2:
She felt much better afterwards

H1: Dotty ate something
bad.

OH1
2 :She started to feel sick.

H2:Dotty call some close
friends to chat.

OH2
2 : They all tried to make her

happy.
O1: Priya decided to try a new restau-
rant. O2: Priya thought her food was
delicious.

H1:She ordered two
shrimp dishes.

OH2
1 : She was excited to try them

out.

H2: The food that priya
ordered was microwaved
and precooked.

OH2
2 : Priya was disappointed in

the quality of the food.

O1: Jim got ready for his first date. O2:
Since then, she has ignored all of Jim’s
text messages.

H1: Jim’s date wasn’t
attracted to him.

OH2
1 : He tried to get her number.

She never responded to him.

H2: Jim went on the date
and said he didn’t like the
girl.

OH2
2 : He told her that he didn’t

want to date her.

O1: Cay had a crush on a boy in her
class. O2: He smiled at her after and
said he liked her too!

H1: Cay sent a love note
to the boy.

OH2
1 : The boy responded and

said he liked Cay.

H2: She told him she did
not like him.

OH2
2 : The boy was very sad

about it.
O1: Daniel wanted to buy a toy plane,
but he didn’t have any money. O2: He
bought his toy plane, and kept working
so he could buy another!

H1: He opened a lemon-
ade stand.

OH2
1 : He sold lemonade for a lot

of money .

H2: Daniel stayed home
and didn’t want to buy a
plane.

OH2
2 : He decided he needed to

get a part time job.

O1: Ali’s mom enrolled her in a karate
class. O2: Ali was so embarrassed she
didn’t tell any of her friends.

H1: Ali did not want to
take karate.

OH1
2 : She was afraid she would

get hurt.

H2: Ali did horribly in her
last class.

OH2
2 : Ali was so embarrassed.

She tried to hide it from her par-
ents.

Table 5.1 Example of generated implications using FI model. The plausible hypothesis in
each example is given in bold text.

(s3:i or s′
3:i), then the rest of the story (si+1:5 or s′

i+1:5) and again the premise (s1). We train
the model to maximize the log-likelihood of the missing ground-truth sentence(s) (s3:i).

LLMI(β) = logpβ(s3:i|[S]s1, [M ], si+1:5, [E], [S], s1, s2)

+logpβ(s
′

3:i|[S]s1, [M ], s
′

i+1:5, [E], [S], s1, s
′

2)
(5.1)

where i ∈ [3, 4], si= {wsi
1 , .., w

si
n } a sequence of tokens, [S]= start-of-sentence token, [E]=

end-of-sentence token, [M ]= mask token.
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5.3 Hypothetical Events for αNLI task

We aim to investigate whether models perform better on the αNLI task when explicitly
learning about events that could follow other events in a hypothetical scenario. We do so
by introducing two methods LMI + BERTScore and LMI +MT L for unsupervised and
supervised settings, respectively.

We first apply the trained model LMI on the αNLI task, where the given observations
O1 and O2, and alternative hypotheses Hj are fed as shown in (2) below.7

O
Hj

2 = β([S], O1, [M ], O2, [E], [S], O1, Hj) (5.2)

We generate a possible next event for each hypothetical event Hj , i.e., OH1
2 and OH2

2 (or:
what will happen if some hypothesis Hj occurs given the observations), where j ∈ [1, 2].
Table 5.1 illustrate some examples where different OHj

2 are generated using LMI . One of
the challenges when generating subsequent events given a hypothetical situation is that there
can be infinite numbers of possible next events. Therefore, to constrain this range, we chose
to give future events (O2) as input, such that the model can generate subsequent events in a
constrained context.

5.3.1 Unsupervised Setting

Fig. 5.4 Overview of our LMI +
BERTScore model for αNLI

In this setting, we do not train any supervised model
to explicitly predict which hypothesis is more plau-
sible given the observations. Instead, we apply the
fine-tuned LMI model to the αNLI data, generate pos-
sible next events OHj

2 given O1 and Hj , as described
above, and measure the similarity between such pos-
sible next events (OHj

2 ) and the observation (O2) in
an unsupervised way, using BERTScore (BS) (Zhang
et al., 2020c) 8. Figure 5.4 represents the overview of
our unsupervised model. We evaluate our hypothesis
that the generated possible next event OHj

2 given the
more plausible hypothesis Hj should be more similar
to observation O2. Table 5.1 illustrate some examples
where H2 is the more plausible hypothesis. We impose the constraint that for a correctly

7For definition of placeholders see (5.1).
8BERTScore is an automatic evaluation metric for text generation that leverages the pre-trained contextual

embeddings from BERT and matches words in candidate and reference sentences by cosine similarity.
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predicted instance BS(O2
H+

, O2) > BS(O2
H−

, O2) should hold, where H+, H− are the more
plausible vs. implausible hypothesis, respectively. In Table 5.5 we show some examples of
generated possible next events and their the bert scores with respect to the observation O2.

5.3.2 Supervised Setting

In this setting, displayed in Figure 5.5, we explore the benefits of training a multi-taskMT L
model that predicts i) the most plausible hypothesis and ii) which possible next event (OHj

2 )
is more similar to the observation (O2). Multi-task learning aims to improve the performance
of a model for a task by utilizing the knowledge acquired by learning related tasks (Ruder,
2019). We hypothesize that a) the possible next event OHj

2 of the more plausible hypothesis
Hj should be most similar to observation O2, and that b) learning which possible next event
is more similar supports the model in the αNLI task (inductive transfer). The architecture of

!", $%, !% $%, !%
&', !%$", !%

&(, !%

Linear Layer

!", $", !%

(b) BERT (MTL)

$" or	$% !%
&( or	!%

&'

Linear Layer

,-../0 = ,2345 + 7 ∗ ,9:;:<=>:?@

(a) GPT-2 (LMI)

!", A , !%, !", $B

What if CD EFGGHIJ? What if CL EFGGHIJ?

MN,O Similarity

Shared Layers

Fig. 5.5 Overview of our LMI +MT L model for αNLI: (a) language model LMI takes the
input in a particular format to generate different possible next events, (b) theMT L model
learns to predict the best explanation (Hj) and possible next events (OHj

2 ) at the same time to
perform the αNLI task.

LMI +MT L model is shown in Figure 5.5. The model marked (a) in Figure 5.5 depicts the
LMI model as described in §5.2. The outputs of the LMI model, which we get from Eq.
(5.2) for both hypotheses are incorporated as an input to theMT L model. Concretely, we
feed theMT L classifier a sequence of tokens as stated in part (b) of Figure 5.5, and aim
to compute their contextualized representations using pre-trained BERT. The input format
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Task Train Dev Test

αNLI 169654 1532 3059
TimeTravel (NLG) 53806 2998 –

Table 5.2 Dataset Statistics: number of instances

is described in Table 6.2. Similar to (Devlin et al., 2019), two additional tokens are added
[CLS] at the start of each sequence input and [SEP] at the end of each sentence. In the
shared layers (see Fig 5.5(b)), the model first transform the input sequence to a sequence of
embedding vectors. Then it applies an attention mechanism that learns contextual relations
between words (or sub-words) in the input sequence.

For each instance we get four [CLS] embeddings (CLSHj
, CLS

O
Hj
2

; j ∈ [1, 2]) which
are then passed through two linear layers, one for the αNLI (main task) and another for
predicting the similarity (auxiliary task) between O

Hj

2 and O2. We compute the joint loss
function L = LαNLI + w ∗Lsimilarity; where w is a trainable parameter, LαNLI and Lsimilarity

are the loss function for the αNLI task and auxiliary task, respectively.

5.4 Experimental Setup

Data. We conduct experiments on theART (Bhagavatula et al., 2020) dataset. Data statistics
are given in Table 5.2. For evaluation, we measure accuracy for αNLI.

Hyperparameters. To train the LMI model we use learning rate of 5e− 05. We decay
the learning rate linearly until the end of training; batch size: 12. In the supervised setting
for the αNLI task, we use the following set of hyperparameters for ourMT L model with
integrated LMI model (LMI +MT L): batch size: {8, 16}; epochs: {3, 5}; learning rate:
{2e-5, 5e-6}. For evaluation, we measure accuracy. We use Adam Optimizer, and dropout
rate = 0.1. We experimented on GPU size of 11GB and 24GB. Training is performed using
cross-entropy loss. The loss function is LαNLI + w ∗ Lsimilarity, where w is a trainable
parameter. During our experiment we initialize w = 1. The input format is depicted in Table
5.3. We report performance by averaging results along with the variance obtained for 5
different seeds.

Baselines. We compare to the following baseline models that we apply to the αNLI task,
training them on the training portion of the ART dataset (cf. Table 5.2).
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Input Format Output
[CLS] O1 [SEP] Hi [SEP] O2 [SEP] H1 or H2

[CLS] Hi [SEP] OHi
2 [SEP] O2[SEP] OH1

2 or OH2
2

Table 5.3 Input and output format for the αNLI task: [CLS] is a special token used for
classification, [SEP] a delimiter.

• ESIM + ELMo is based on the ESIM model previously used for NLI (Chen et al.,
2017). We use (a) ELMo to encode the observations and hypothesis, followed by (b)
an attention layer, (c) a local inference layer, and (d) another bi-directional LSTM
inference composition layer, and (e) a pooling operation,

• Infersent (Conneau et al., 2017) uses sentence encoding based on a bi-directional
LSTM architecture with max pooling.

• BERT (Devlin et al., 2019) is a LM trained with a masked-language modeling (MLM)
and next sentence prediction objective.

As baselines for using theMT L model, we replace LMI with alternative generative
LMs:

• GPT-2 +MT L. In this setup, we directly use the pretrained GPT-2 model and task it
to generate a next sentence conditioned on each hypothesis (OHi

2 ) without finetuning it
on the TIMETRAVEL data. We then use the supervisedMT L model to predict the
most plausible hypothesis and which of the generated observations is more similar to
O2.

• COMET +MT L. In this setting, we make use of inferential if-then knowledge from
ATOMIC Sap et al. (2019a) as background knowledge. Specifically, we use COMET
to generate objects with Effect9 relations for each hypothesis as a textual phrase.

5.5 Results

5.5.1 Automatic Evaluation

In Table 5.4, we compare our models LMI + BERTScore and LMI +MT L against the
models proposed in Bhagavatula et al. (2020): a majority baseline, supervised models
(Infersent and ESIM+ELMo), as well as BERTLarge. Bhagavatula et al. (2020) re-train the

9as a result PersonX feels; as a result PersonX wants; PersonX then
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Model Dev Acc.(%) Test Acc.(%)

Majority (from dev set)⋄ – 50.8
LMI + BERTScore 62.27 60.08
Infersent ⋄ 50.9 50.8
ESIM + ELMo ⋄ 58.2 58.8
BERTLarge

⋄ 69.1 68.9±0.5
GPT-2 +MT L 68.9±0.3 68.8±0.3
COMET +MT L 69.4±0.4 69.1±0.5
LMI +MT L 72.9±0.5 72.2±0.6
Human Performance - 91.4

Table 5.4 Results on αNLI task, ⋄ : as in Bhagavatula et al. (2020) (no unpublished leaderboard
results). For each row, the best results are in bold, and performance of our models are in blue.

ESIM+ELMo and Infersent models on the ART dataset and fine-tuned the BERT model on
the αNLI task and report the results.

We find that our unsupervised model with BERTScore (LMI + BERTScore) outperforms
(by +9.28 pp. and +1.28 pp.) strong ESIM+ELMo and Infersent baseline models. Table 5.5
shows some examples of our generation model LMI along with the obtained BERTScores.

Unlike the unsupervised LMI + BERTScore, our supervised LMI +MT L model also
improves over the BERTLarge baseline, by +3.3 pp. We can attribute the improvement to
the model having been jointly trained to assess the similarity and dissimilarity of possible
next events OHj

2 and observations (O2) along with the αNLI task. One of the advantages
of training our proposed multi-task learning (MT L) model, instead of directly feeding the
possible next events OHj

2 as knowledge inputs is that it adds an explainable component to the
model. One can view the generated next events OHj

2 as natural language rationales and our
multi-task model explicitly chooses one of them. Hence, the multi-task framework makes the
model more expressive. Finally, we compare, for theMT Lmodel, our embedded generation
model LMI to pre-trained GPT-2 and COMET. Table 5.4 shows that LMI +MT L yields
better performance compared to both COMET +MT L (+3.1 pp.) and GPT-2 +MT L
(+3.4 pp.) – the intuitive reason being that the next events generated by LMI are more
helpful than events generated using pretrained GPT-2 and objects generated by COMET.

Table 5.5 illustrates some examples where ourMT L model not only chooses the correct
hypothesis, but also a likely possible next event that is similar to the observation O2. Interest-
ingly, during training ofMT L we initialize w = 1, and after training the model we found
the w value had been adjusted to a range between 0.85 and 0.75, which intuitively shows
both the effectiveness of our LMI -generated possible next events, and their similarity to the
given observations O2.
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84.0%

4.0%

12.0%

Grammatical
Understandable
Gibberish

Fig. 5.6 Human evaluation of the grammaticality of generated sentences: ratio of i) gram-
matical, ii) not entirely grammatical but understandable, iii) completely not understandable
sentences.

5.5.2 Manual Evaluation

Since the automatic scores only account for word-level similarity between observations and
generated possible next events, we conduct a manual evaluation study, to assess the quality
of sentences generated by our LMI model.

Annotation Study on LMI generations. The annotation was performed by three annota-
tors with computational linguistic background. We provide each of the three annotators with
observations, hypotheses and sentences, as produced by our LMI model, for 50 randomly
chosen instances from the αNLI task. They obtain i) generated sentences for a next possible
event for the correct and incorrect hypothesis, as well as ii) the sentence stating observation
O2. We ask each annotator to rate the sentences according to four quality aspects as stated
below.

Grammaticality: the sentence is i) grammatical, ii) not entirely grammatical but under-
standable, or iii) completely not understandable;

Redundancy: the sentence contains redundant or repeated information;

Contradiction: the sentence contains any pieces of information that are contradicting the
given observation O2 or not;

Relevance: the possible next event is i) relevant, ii) partially relevant, or iii) not relevant.
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Cause

Fig. 5.7 Human evaluation of the Relevance of generated sentences for possible next events.
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Fig. 5.8 Human evaluation of Redundancy and Contradiction of generations for possible next
events.

For each aspect, they are asked to judge the sentence generated for the correct hypothesis10.
Only for Contradiction, they are asked to judge both sentences, for correct and the incorrect
hypotheses.

Results and Discussion. Figures 5.6, 5.8, and 5.7 present the results of manual evaluations
of the generation quality, according to the different criteria described above.

For measuring inter-annotator agreement, we computed Krippendorff’s α (Hayes and
Krippendorff, 2007) for Grammaticality and Relevance, as it is suited for ordinal values,
and Cohen’s Kappa κ for Redundancy and Contradiction. We found α values are 0.587 and
0.462 for Grammaticality and Relevance, respectively (moderate agreement) and κ values
0.61 and 0.74 for Redundancy and Contradiction (substantial agreement). We aggregated the
annotations from the three annotators using majority vote.

10The correct hypothesis was marked for the annotation.
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Figure 5.6 shows that the majority of sentences (96%) are grammatical or understandable.
Figure 5.8 shows that most sentences for correct labels are non-redundant (84%) and non-
contradictory (88%), whereas for incorrect labels 39 instances are found to be contradictory
with the observation O2 (78%).

The manual evaluation supports our hypothesis that the generated sentences for correct
labels should be more similar (less contradictory) compared to the sentences generated for
incorrect labels. Figure 5.7 shows the ratio of sentences considered by humans as relevant,
partially relevant, and irrelevant. The results show that 46% of cases are relevant (based on
majority agreement) and 24% of cases are partially relevant. This yields that the generated
sentences are (partially) relevant in most cases and thus should support abduction for both
unsupervised (LMI + BERTScore) and supervised (LMI +MT L) models.

5.6 Analysis

5.6.1 Case Study

Table 5.5 displays possible next events, generated by our LMI model – along with the
BERTscore measured between the possible next events OHj

2 and observation O2. We see
four different scenarios: (i) examples (a), (b) and (d) depicting the scenario where possible
next events and observation pairs correctly achieve higher BERTscores 11, (ii) example (c)
depicting the scenario where an incorrect possible next event and observation pair achieves
higher BERTscores than the correct one, (iii) example (e) depicting the scenario where our
LMI model incorrectly generated similar next possible events, and (iv) example (f) depicting
the scenario where both hypotheses (Hj) are equally plausible and hence the generated
possible next events (OHj

2 ) are similar.
Intuitive reasons for these scenarios are, for example, for (a): there is a higher word

overlap and semantic similarity between a correct next event and observation O2, for example
(b): there is higher semantic similarity; whereas for example (c): although there is a higher
semantic dissimilarity, the word overlap between the wrong possible next event (“She started
to feel sick.") and the observation (“She felt much better afterwards.") is much higher. Figure
5.9 depicts the bert similarity matrix, where we see that the due to higher token overlap (such
as ‘she’, ‘felt’) between observation O2 and possible next event (OHj

1 ) overall bert-score is
higher.

11BERTscore matches words in candidate and reference sentences by cosine similarity.
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Observation (O) Given Hypotheses (Hj) What if Hj happens?
Generated possible next
events OHj

2

MTL Reasoning
Type

BERT
Score

Human
Evalua-
tion

a. O1: Jim got ready for
his first date.

H1: Jim’s date wasn’t at-
tracted to him.

OH2
1 : He tried to get her

number. She never re-
sponded to him.

H1, OH1
2 Reaction 47.34 Non-

Contradiction

O2: Since then, she has
ignored all of Jim’s text
messages.

H2: Jim went on the date
and said he didn’t like the
girl.

OH2
2 : He told her that he

didn’t want to date her.
44.19 Contradiction

b. O1: Nate had the sum-
mer off before college.

H1: Nate spent the sum-
mer traveling and party-
ing.

OH1
2 : Nate had a lot of fun. H1, OH1

2 Motivation 49.02 Non-
Contradiction

O2: Nate’s last summer
before college was a to-
tal blast!

H2:Nate decided to spend
the entire summer working
in the Mines.

OH2
2 : Nate spent the sum-

mer working in the mines.
44.34 Redundancy

c. O1: Dotty was being
very grumpy.

H1: Dotty ate something
bad.

OH1
2 : She started to feel

sick.
H2, OH2

2 Emotional
Effect

0.604 Contradiction

O2: She felt much better
afterwards

H2: Dotty call some close
friends to chat.

OH2
2 : They all tried to

make her happy.
0.405 Non-

Contradiction
d. O1: Cay had a crush on

a boy in her class.
H1: Cay sent a love note
to the boy.

OH1
2 : The boy responded

and said he liked Cay.
H1, OH1

2 Emotional
Effect

0.509 Non-
Contradiction

O2: He smiled at her af-
ter and said he liked her
too!

H2: She told him she did
not like him.

OH2
2 : The boy was very sad

about it.
0.423 Contradiction

e. O1: Daniel wanted to
buy a toy plane, but he
didn’t have any money.

H1: He opened a lemon-
ade stand.

OH1
2 : He sold lemonade for

a lot of money.
H1, OH1

2 Motivation 0.304 Non-
Contradiction

O2: He bought his toy
plane, and kept working
so he could buy another!

H2:Daniel stayed home
and didn’t want to buy a
plane.

OH2
2 : He decided he

needed to get a part time
job.

if-then
Effect

0.318 Non-
Contradiction

f. O1: Ali’s mom enrolled
her in a karate class.

H1: Ali did not want to
take karate.

OH1
2 : She was afraid she

would get hurt.
H2, OH2

2 if-then
Effect

0.324 Non-
Contradiction

O2: Ali was so embar-
rassed she didn’t tell any
of her friends.

H2: Ali did horribly in her
last class.

OH2
2 : Ali was so embar-

rassed. She tried to hide
it from her parents.

if-then
Effect

0.584 Non-
Contradiction

Table 5.5 Examples of generated possible next events for solving αNLI using our LMI
model. Column 3: Hypothesis and possible next events chosen by our LMI +MT L model;
Column 4: Reasoning type between the hypothesis Hj and O2; Column 5: BERTScore
between the O

Hj

2 and O2; Column5: Human evaluation of the possible next events with
respect the observation O2.

5.6.2 Impact of Reasoning types.

Finally, to better assess the performance of our model, we determine what types of rea-
soning underly the abductive reasoning tasks in our data, and examine to what extent our
models capture or not these reasoning types. We consider again the 50 instances that were
annotated by our previous annotators and manually classify them into different reasoning
types. We broadly divided the data into 6 categories: (i) Motivation, (ii) Spatial-Temporal,
(iii) Emotional, (iv) Negation, (v) Reaction, (vi) Situational fact. The most frequent type
was Emotional (10), most infrequent was Spatial (7). We ask a new annotator to annotate
the reasoning types for these 50 instances. Considering the relevance and contradiction
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Fig. 5.9 We compute a pair-wise bert score similarity matrix (without rescaling) between
the observation O2 and O

Hj

2 to better understand the observed score in Table 5.5(c). The left
hand side matrix is the scores for OH1

2 and the right one is for OH2
2 . The red circles highlights

some scores for important tokens and where the bert-score gave higher similarity scores.

categories from the previous annotations we determine that for Negation (8), Emotional
(10), and Reaction (8) all generated events for correct labels are partially or fully relevant
and non-contradictory. An intuitive reason can be that we train our LMI model to learn
how different counterfactual hypothetical events emerging from a single premise can lead
to the same or different outcomes through a series of events. Some counterfactual events
(s′

2) are negations of the original event (s2) in the TIMETRAVEL dataset. This may support
the reasoning class Negation. For the other categories: Motivation, Spatial-temporal, and
Situational fact, we detect errors regarding (missing) Relevance in 21%, 14% and 28% of
cases, respectively. Table 5.6 illustrates an example from the class Situational Fact, where
our generated next event is irrelevant and redundant.

5.7 Summary

In this Chapter, we have introduced a novel method for addressing the abductive reasoning
task by explicitly learning what events could follow other events in a hypothetical scenario,
and learning to generate such events, conditioned on a premise or hypothesis. We show
how a language model – fine-tuned for this capability on a suitable narrative dataset – can
be leveraged to support abductive reasoning in the αNLI tasks, in two settings: an unsu-



76 Generating Hypothetical Events for Abductive Inference

Observation (O) Given Hypotheses (Hj) What if Hj happens?
O1: Jenna hit the weight
hard in the gym.

H1: Her neck pain stopped
because of this.

OH1
2 : She decided to take a

break.
O2: She took a cold bath
in order to alleviate her
pain.

H2: Jenna pulled a mus-
cle lifting weights.

OH2
2 : Jenna lost weight in

the gym.

Table 5.6 Error Analysis: An example of generated possible next event OHj

2 from Situational
Fact category.

pervised setting in combination with BERTScore, to select the proper hypothesis, and a
supervised setting in a multi-task learning setting. Our experiments show that our unsuper-
vised LMI+BERTScore model outperforms some of the strong supervised baseline systems
on αNLI. We also showed that LMI +MT L yields better performance compared to both
COMET + MT L. One reason behind the improvement is that the temporal knowledge
generated by our method is grounded to the context, whereas COMET generates inferential
knowledge based on a single event without considering the context. Our research thus
offers new perspectives for training generative models in different ways for various complex
reasoning tasks.



Chapter 6

Social Commonsense Reasoning with
Multi-head Knowledge Attention

“Inferences of science and commonsense differ from
those of deductive logic and mathematics in a very
important respect, namely, when the premises are
true and the reasoning correct, the conclusion is
only probable. "

– Bertrand Russell

In the previous two chapters, we focused on developing methods that can make inferences
about the social dynamics of story characters (mental states prediction) and story events
(temporal knowledge about events). In this chapter, we pursue the ambitious goal of social
commonsense reasoning with NLP systems. In the first section, we give a brief motivation
to the role of commonsense knowledge for SCR tasks and introduce a new task named
counterfactual invariance prediction for NLP. The second section presents a new method
to integrate such knowledge into SOTA transformer-based NLP models to improve their
social reasoning capabilities. We evaluate our knowledge integration model on two social
commonsense reasoning tasks: language-based abductive reasoning and counterfactual
invariance prediction. Finally, we end the chapter with a human analysis of the model’s
robustness and knowledge incorporation capabilities. This chapter is based on work originally
published in (Paul and Frank, 2020).
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6.1 Social Commonsense Reasoning

Social Commonsense Reasoning is the ability to infer pragmatic implications that are beyond
surface level understanding. For example, in Figure 6.1, we see an abductive reasoning
task, where given two observations: Dotty was being very grumpy and She felt much better
afterwards – select a plausible explanation about what could have provoked the change in
Dotty’s emotion. In order to judge the plausibility of such explanations, we need to infer
knowledge about mental states of people and social implications. Such knowledge includes
that calling a close friend, in general, makes people feel happy, someone is being very
grumpy, wants to feel better. In our last two chapters we presented methods to automatically
identify such knowledge from social events in a narrative context. In this chapter we consider
such knowledge in a structured form to make our model more interpretable. In this chapter,
instead of retrieving and selecting knowledge from a static KG (see Chapter 4), we aim to
train a model to learn how to dynamically generate such knowledge. Additionally, we build
on the hypothesis that models performing such reasoning tasks need to consider multiple
knowledge rules jointly (see Fig. 6.1). Hence, we introduce a novel multi-head knowledge
attention model which learns to focus on multiple pieces of knowledge at the same time, and
is able to refine the input representation in a recursive manner (see sec.6.3).

Dotty was being very grumpy.Observation1:

She felt much better afterwards.Observation2 :

Dotty call some close friends to chat. Dotty ate something bad.

Dotty is having a bad day
cause

Dotty feels annoyed
effect

Dotty wants to feel better

wants

Dotty seen as social
seen as

Dotty needed to have
a good time

intent
Dotty feels friendly

effect

Dotty feels sick

Dotty wanted to eat

effect

Dotty wants to eat something else
wants

Dotty seen as pleased Dotty feels relieved

effect

❌✔

✔ ⁉

seen as

motivation

Fig. 6.1 Motivational example: The top and bottom
blue boxes show two observations. The green and red
box contain a plausible and an implausible hypothesis,
respectively. A green line denotes that an event is likely
to follow, the yellow line that an event is somewhat
unlikely to follow, the red line something unlikely.

In this chapter, we investigate
social commonsense reasoning in
narrative contexts. Specifically,
we address two different reason-
ing tasks: language-based abduc-
tive reasoning1, and counterfactual
invariance prediction. We intro-
duce the Counterfactual Invariance
Prediction task (CIP), which tests
the capability of models to pre-
dict whether under the assump-
tion of a counterfactual event, a
factual event remains invariant or
not in a narrative context. Fig-
ure 6.1 illustrates an example:
Given a narrative context – “Dotty
was being very grumpy” (premise),

1More details about the Abductive reasoning task is found in Chapter 5
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Context Answer
s1: Bob had to get to work in the morning.
s2: His car battery was struggling to start the car. s3: He called his
neighbor for a jump start.
s′2: His car won’t start. s3: He called his neighbor for a jump start. [Yes] or [No]
s1: Bill and Teddy were at the bar together.
s2: Bill noticed a pretty girl. s3: He went up to her to flirt.
s′2: Bill noticed his mom was there. s3: He went up to her to flirt. [Yes] or [No]
s1: I loved to eat honey with my oatmeal.
s2: One day I unexpectedly ran out of honey. s3: I did not want to
eat my oatmeal without honey.
s′2: One day I realized that maple syrup was even better with my oatmeal.
s3: I did not want to eat my oatmeal without honey.

[Yes] or [No]

Table 6.1 Examples from CIP task dataset used in this work. The correct choice in each
example is given in bold text.

“Dotty called some close friends to chat” (hypothesis), “She felt much better after-
wards.”(conclusion) – will a counterfactual assumption (alternative hypothesis), e.g., “Dotty
ate something bad”, still lead to same conclusion? Finally, we assume that a model learned
about such counterfactual assumptions learns can help in predicting the best explanation in
an abductive reasoning task.

6.1.1 Counterfactual Invariance Prediction Task

Counterfactual Reasoning (CR) is the mental ability to construct alternatives (i.e., counter-
factual assumptions) to past events (actual world) and to reason about their (hypothetical)
implications (Epstude and Roese, 2008; Roese and Morrison, 2009). In philosophy, there are
three broad questions that counterfactuals raise (Starr, 2021):

1. How do we communicate and reason about alternate possibilities which are different
from the way things actually are?

2. How can our experience in the actual world justify our thought and how we talk about
distant alternative possibilities? (Menzel, 2021a; Mallozzi et al., 2021)

3. Do these distant alternative possibilities exist independently from the actual world, or
are they grounded in things that actually exist? (Menzel, 2021b)

In this thesis, we are primarily interested in (first question) making NLP systems reason
about alternate possibilities. In social psychology, counterfactual thinking is linked to
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concepts like free will, sense of self, wishful thinking, etc (Alquist et al., 2015). For an in-
depth introduction to counterfactual thinking and how it is related to mental states, we refer
the reader to (Starr, 2021). Recently, in NLP, Qin et al. (2019) introduced a counterfactual
story generation task, where given an intervention (alternate possibility) the task is to
complete the narrative grounding it to the actual world. One of the key challenges of CR
is judging causal invariance, i.e., deciding whether a given factual event is invariant under
counterfactual assumptions, or whether it is not (Peters et al., 2016; Qin et al., 2019).

In the field of cognitive science and artificial intelligence, counterfactual reasoning plays a
crucial role to explain how a particular states of mind lead (forward looking) to certain choices
and actions (Chater et al., 2010). Causal invariance is an understudied problem for intuitive
inference tasks. Hence, we combine these two topics and define a new Counterfactual
Invariance Prediction (CIP) task that tests the capability of models to predict whether under
the assumption of a counterfactual event, a (later) factual event remains invariant or not in a
narrative context (cf. Table 6.1). This task requires deeper understanding of causal narrative
chains and reasoning in forward direction. Qin et al. (2019) proposed a dataset to encourage
models to learn to rewrite stories with counterfactual reasoning. We automatically collect
counterfactual invariance examples along with non-invariant examples from (Qin et al., 2019)
to create a balanced dataset for our proposed CIP task.

The formal setup is: given the first three consecutive sentences from a narrative story
s1 (premise), s2 (initial context), s3 (factual event) and an additional sentence s′2 that is
counterfactual to the initial context s2, the task is to predict whether s3 is invariant given
s1, s

′
2 or not. Hence, we impose a constraint that for counterfactual examples the (original) s3

should be same as the (edited) s′3 and for non-invariant examples the (original) s3 != (edited)
s′3. The train/dev/test data (cf. Table 6.3) are balanced with an equal number of Yes/No
answers, hence the random baseline is 50%. To compute human performance, we gave 100
instances from the test set to expert evaluators. Human accuracy on the CIP task is at 84.8%.
We aim to study the role of mental states and pragmatic inference (Social Commonsense
Knowledge (SCK)) for detecting counterfactual invariant social events.

6.2 Extracting Semantic & Social Commonsense Knowl-
edge

This section details the steps we follow to generate social commonsense knowledge about
events mentioned in a narrative. See Figure 6.2 for illustration. Understanding a narrative
text requires the ability to identify events and to reason about their causal effects. Beyond
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Priya bought and broke a new laptop
[ARG0: Priya] [V: bought] and broke
[ARG1: a new laptop]

[ARG0: Priya] bought and [V: broke]
[ARG1: a new laptop]SRL

Priya bought a new laptop Priya broke a new laptop

Priya is seen as
clumsy

Priya feels
upset

COMET2.0

Priya is seen as
rich

Priya feels
happy

As a result

Priya wanted a
new laptop

Priya wanted to
break a laptop

Fig. 6.2 Depicting the steps to extract commonsense knowledge about social events.

causal relations, they require the understanding of narrative relations, as in narrative chains or
schemata (Chambers and Jurafsky, 2008b). This is knowledge about characteristic script-like
event sequences where semantic roles of consecutive events are referentially bound to roles
of preceding events. While Chambers and Jurafsky (2008b) focused on the induction of
schemata using corpus statistics, we will combine detected events with deeper commonsense
knowledge.

In a first step we apply SRL to extract the basic structure “who did what to whom, when
and where” from each sentence in the context, using state-of-the-art SRL (Shi and Lin, 2019).
In a second step, we use commonsense transformer (COMET2.0,2 Bosselut et al. (2019)) to
extract social commonsense knowledge about the extracted events. COMET2.0 is trained
on the ATOMIC (Sap et al., 2019a) inferential knowledge resource which consists of 877K
everyday events, each characterized by nine relation types (xIntent, xNeed, xReact, etc.)
which we call dimensions. These dimensions connect the event in question with manifold
properties, emotions, as well as other states or events.

In the last processing step we generate, for each event in each sentence from our datasets,
all dimensions defined for it using COMET2.0. For example, for: Dotty ate something bad
we generate the tuple: ⟨PersonX, xReact, sick⟩3 and derive ⟨Dotty, feels, sick⟩ by substituting
PersonX with the logical subject, the filler of the role ARG0.

6.3 Multi-Head Knowledge Attention (MHKA) Model

In this section we introduce the MHKA model and discuss some key differences in how
MHKA works for the two different Social Commonsense Reasoning tasks. For a model
overview see Figure 6.3.

2COMET2.0 uses GPT-2 as pretrained model.
3where the structure format is: ⟨event, relation, object⟩
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Task Input Format Output

αNLI [CLS] O1 Hi [SEP] O2 [SEP] H1 or H2

CIP [CLS] s1 s2 s3 [SEP] s1 s′2 s3 [SEP] YES or NO

Table 6.2 Different input and output formats: [CLS] is a special token used for classification,
[SEP] a delimiter.

6.3.1 Model Architecture

MHKA consists of 3 modules: (a) the Context Encoding Layer consists of a pre-trained LM,
(b) the Knowledge Encoding Layer consists of stacked transformer blocks, (c) the Reasoning
Cell consists of transformer blocks with multi-head attention that allows the model to jointly
attend to the input representation and the encoded knowledge. The input format for each task
is depicted in Table 6.2.

(a) Context Encoding Layer: For each task, we concatenate the inputs as a sequence
of tokens xn = (xn1 , .. xnm), and compute contextualized representations with a pre-trained
LM. We obtain n different representations for n input options i.e., hxn = encode(xn) =

(hn1 , .., hnm), where for αNLI n=2 and for CIP n=1. As pre-trained LMs we consider (i)
BERT (Devlin et al., 2019) and (ii) RoBERTa (Liu et al., 2019).

(b) Knowledge Encoding Layer: As depicted in Figure 6.3, the knowledge encoding
layer is a Transformer-Block (Liu et al., 2018; Alt et al., 2019) as typically used in the
decoder part of the transformer model of Vaswani et al. (2017).

The core idea is that the model repeatedly encodes the given knowledge input over
multiple layers (i.e., Transformer blocks), where each layer consists of masked multi-head
self-attention followed by layer normalization and a feed-forward operation. Similar to the
context input format, we concatenate the knowledge inputs as a sequence of tokens kn =
(kn1 , .., knw), where kn is the knowledge used for input option xn. In order to obtain the
hidden knowledge representation we do the following:

hk0n
= knWke +Wkp,

hkln
= tb(hkl−1

n
),∀l ∈ [1, L]

(6.1)

where Wke is the token embedding matrix, Wkp the position embedding matrix, tb the
transformer block, and L the number of transformer blocks.

(c) Reasoning Cell: The main intuition behind the reasoning cell is that given the
context representation, the model should learn to emulate reasoning over the input using
the knowledge representation obtained from the knowledge encoder. The Reasoning Cell
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is another transformer block, where the model repeatedly performs multi-head attention
over the context and knowledge representations, and thus can iteratively refine the context
representation. This capability is crucial for allowing the model to emulate complex reasoning
steps through composition of various knowledge pieces.

The multi-head attention function has three inputs: a query Q (context representation),
key K and value V (both knowledge representation). It relies on scaled dot-product attention

Q = hxn +Wxp

axkn = softmax(
QKT

√
dz

)V
(6.2)

where K = V = hkn , dz the dimensionality of the input vectors representing the key and
value, and Wxp is the position embedding. We project the output representations from the
reasoning cell into logit (s) of size n (the number of output values) using a linear classifier.
Finally, we compute the scores y = max(si) where, i = 1, .., n. For CIP, where n = 1, we
treat a logit score > 0 as predicting yes, otherwise the answer is no.

6.3.2 MHKA model for Social Commonsense Reasoning Tasks

There are some key differences in how MHKA solves the two reasoning tasks:
(a) In the abductive αNLI reasoning task, the model must predict – given incomplete

observations O1 and O2 – which of two hypotheses Hi is more plausible. For example: O1:
Daniel wanted to buy a toy plane, but he didn’t have any money; O2: He bought his toy plane,
and kept working so he could buy another; correct Hi: He opened a lemonade stand. Here,
the model needs to link O2 back to O1 using social inference knowledge relating to the Hi

that best supports one of the sequences: O1, Hi, O2.
In this case, the model obtains the (encoded) input: O1, Hi, O2, and is tasked to predict

the correct Hi, using available knowledge rules. 4

(b) For Counterfactual Invariance Prediction, CIP, the model needs to decide whether
for given a context Cs1,s2,s3 , under the assumption of a counterfactual s′2, the given s3 remains
invariant or not. I.e., given: Dotty was grumpy. Dotty called close friends to chat. She
felt better afterwards. and the counterfactual s′2: Dotty ate something bad – can it still be
true that Dolly felt better afterwards? Here our model gets as input the factual (s2) and a
counterfactual (s′2) context: s1, s2, s3 [SEP], s1, s′2, s3 (cf. Table 6.2) and is tasked to predict

4Relevant knowledge from COMET2.0 here includes: [O1: Daniel wanted to have money] → [Hi: Daniel
wanted to make money, Daniel then makes money] → [O2: Daniel needed to have money]. Clearly, Hi

is supported by H1: He opened a lemonade stand. So we can judge that the selected knowledge (partially)
supports H1.
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Fig. 6.3 Overview of our Multi-Headed Knowledge Attention Model. It consist of three
components (a) the Context Encoding Layer (b) the Knowledge Encoding Layer, and (c) the
Reasoning Cell.

whether or not s3 remains true under the assumption s′2. Again, the model needs to identify
relevant knowledge to substantiate whether s3 prevails given s1 and s′2.

Abduction meets Counterfactual Reasoning Clearly, when learning to judge whether
s3 holds true given both a factual (s1, s2) and counterfactual (s1, s′2) context, the CIP model
learns how different events can or cannot lead to the very same factual event in a hypothetical
reasoning task. Our intuition is that such a model effectively also acquires knowledge
about what kinds of events can provide evidence for a given event, as is needed to perform
abduction.

Hence, we hypothesize that a model that has learned to understand and reason about
counterfactual situations can also support abductive reasoning (i.e., finding the best explana-
tion for an event). In our experiments, we test this hypothesis, and evaluate the performance
of a model on the αNLI task, that we first train on CIP and then finetune it on the abductive
inference task.
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Task Train Dev Test

αNLI 169654 1532 3059
CIP 12700 1008 1184

Table 6.3 Dataset Statistics: nb. of instances.

6.4 Experiments

Tasks and Settings. We apply our model to the two social reasoning tasks (abductive
reasoning, CIP) introduced in §5.1 and §6.1.1. We train models for each task using the input
settings stated in Table 6.2. Data statistics is given in Table 6.3. We extract, for each event in
each input sentence, social commonsense reasoning knowledge from COMET2.0, as detailed
in §6.2. For the extraction process we use SRL as implemented in AllenNLP Gardner et al.
(2018).

Hyperparameter Details. In all models the Reasoning Cell and the Knowledge Encoder
are both instantiated by a Transformer with 4 attention heads and depth=4. For each task,
we select the hyperparameters that yield best performance on the dev set. Specifically, we
perform a grid search over the hyperparameter settings with a learning rate in {1e-5, 2e-5,
5e-6}, a batch size in {4, 8}, and a number of epochs in {3, 5, 10}. Training is performed
using cross-entropy loss. For evaluation, we measure accuracy. We report performance on
the test sets by averaging results along with the variance obtained for 5 different seeds.

Baselines. We compare our model to the following baselines:
(a) OpenAI-GPT (Radford et al., 2018) is a multi-layer Transformer-Decoder based language
model, trained with an objective to predict the next word.
(b) Transformer Encoder Model has the same architecture5 as OpenAI-GPT without pre-
training on large amounts of text.
(c) BERT (Devlin et al., 2019) is a LM trained with a masked-language modeling (MLM)
and next sentence prediction objective, i.e., it is trained to predict words that are masked
from the input.
(d) RoBERTa (Liu et al., 2019) has the same architecture as BERT, yet without next-sentence
prediction objective. RoBERTa-B(ase) and -L(arge) were trained on more data and optimized
carefully.
(e) McQueen (Mitra et al., 2019) proposed ways to infuse unstructured knowledge into

512-layer, 768-hidden, 12-heads



86 Social Commonsense Reasoning with Multi-head Knowledge Attention

Model Dev (%) Test (%)

Majority ⋄ 50.8 –
GPT ⋄ 62.7 62.3
BERT -L ⋄ 69.1 68.9
McQueen (Mitra et al., 2019) 86.68 84.18
Concurrent Work
L2R2 (Zhu et al., 2020) – 86.81
COMET +MT L 85.4±0.4 84.6±0.7
LMI +MT L 86.2±0.5 85.5±0.6
This work
Transformer Enc. w/o LM−Pretraining 52.12 51.25
+ MHKA 54.96 53.91
RoBERTa−B 71.2±0.3 71.13±0.5
RoBERTa−B + MHKA 73.87±0.2 74.17±0.2
RoBERTa−L 85.06±0.7 84.48±0.7
RoBERTa−L + Joint Training 85.58±0.5 84.91±0.7
RoBERTa−L + MHKA 87.44±0.5 87.12±0.5
Human Perf. – 91.4

Table 6.4 Results on αNLI dataset, ⋄: as in Bhagavatula et al. (2020), L = Large, B = Base,
excluding unpublished leaderboard submissions

pretrained language model (RoBERTa) to address the αNLI task. Mitra et al. (2019) used the
original ROCStories Corpus (Mostafazadeh et al., 2016) and the Story Cloze Test that were
used in creating the αNLI dataset.
(f) L2R2 (Learning to Rank for Reasoning) (Zhu et al., 2020) proposed to reformulate the
αNLI task as a ranking problem. They use a learning-to-rank framework that contains a
scoring function and a loss function.
(g) Finally, we also compare our current model with our previous methods : COMET +
MT L and LMI +MT L (see in Chapter 5). Please note, here we use RoBERTa as a
base-model.

6.5 Experimental Results

This section describes the experiments and results of our proposed model in different config-
urations.

Results on αNLI. Our experiment results for the αNLI task are summarized in Table
6.4. We compare performances of the following models: majority baseline, pre-trained
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LM baselines, and MHKA fine-tuned on RoBERTa-B(ase)/-L(arge). We observe consistent
improvements of our MHKA method over RoBERTa-B (+3.04 percentage points, pp.) and
RoBERTa-L (+2.64 pp.) on αNLI. Since MHKA uses RoBERTa to encode the input, this
gain is mainly attributed to the use of knowledge and the multi-head knowledge attention
technique. Interestingly, when we compare MHKA with COMET+MT L we see that there
is a gain of +2.52 pp., which suggests that explicitly incorporating knowledge helps more
than implicitly learning about knowledge. To better understand the impact of knowledge
from pre-trained LMs, we trained a transformer encoder model without fine-tuning on a
pretrained LM (see Table 6.4). Clearly, the overall performance of such a model drops
considerably compared to the SOTA supervised models, but the improvement of MHKA by
+2.84 points suggest that the impact of knowledge and reasoning obtained through multi-head
knowledge attention is stable and independent from the power of LMs. Further, we compare
our knowledge incorporation technique with Joint Training: this method uses pre-trained
LMs to jointly encode both task-specific input and the knowledge ([CLS] (K)nowledge
[SEP] (I)nput text). More details about the Joint Training model are given in §3.2. Table
6.4 shows that Joint Training yields limited improvement (+0.43 pp.) over the RoBERTa-L
baseline – the intuitive reason being that the pretrained LMs were never trained on such
structured knowledge.6 However, our MHKA model shows a solid improvement of 2.64
pp. over the baseline. This suggests the impact of the Multi-Head Knowledge Attention
integration technique.

Low Resource Setting for αNLI. To better understand the impact of dataset scale on the
performance of MHKA, and to test its robustness to data sparsity on αNLI, we investigate
low-resource scenarios where we only use {1, 2, 5, 10, 100}% of the training data. Figure
6.4 shows constant advances of MHKA over both RoBERTa-Base and -Large. This result
indicates the importance of knowledge in low-resource settings.

Results on CIP. Table 6.5 reports the results of our MHKA model on the CIP task,
comparing to both RoBERTa baselines. As this is a new task, we also report the results of
RoBERTa-Base with different input formats. We find that providing the model with the full
sequence (s1, s2, s3 [SEP] s1, s′2 , s3) gives best performance. By extending RoBERTa-Base
and -Large with our MHKA reasoning component, we obtain an improvement of +1.7 and
+1.1 percentage points, respectively.

CIP for Transfer Learning. We now test our hypothesis, discussed in §6.3.2, that a
model trained on the CIP task can support the αNLI task. We first fine-tune two models:
RoBERTa-L and the RoBERTa-L+MHKA model on the CIP task (using the hyperparameters

6They also have a disadvantage when the length of context + knowledge increases, as this causes a bottleneck
for computation on a GPU with limited memory (8-24GB).
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Model Input format Dev% Test%

RoBERTa-B s1, [SEP], s′2, [SEP], s3 63.29 61.8
s1, s2 [SEP] s1, s′2 57.44 58.9
s1, s2, s3 [SEP] s1, s′2 64.38 62.8
s1, s2, s3 [SEP] s1, s′2 , s3 66.66 67.98±0.5

+ MHKA s1, s2, s3 [SEP] s1, s′2 , s3 69.34 69.7±0.6
RoBERTa-L s1, s2, s3 [SEP] s1, s′2 , s3 72.4 71.95±0.6
+ MHKA s1, s2, s3 [SEP] s1, s′2 , s3 74.4 73.05±0.3

Human Perf. 84.8
Table 6.5 Results on Counterfactual Invariance Prediction (CIP).

Model Dev Test

RoBERTa-Large-αNLI 76.3 76.8
Transfer Learning 78.00 79.04
Transfer Learning + MHKA 78.6 80.77

Table 6.6 Impact of Counterfactual Invariance Prediction on αNLI. Training data size for
αNLI is 8.5k (5%)

for the CIP task, Table 6.5). As a transfer-learning method, we fine-tune these models on
5% of the training data for the αNLI task (using the hyperparameters for αNLI, Table 6.4)
and report the results in Table 6.6 as “Transfer Learning" and “Transfer Learning + MHKA".
Table 6.6 also reports the results for RoBERTa-L trained on 5% of the data of αNLI (called
RoBERTa-L-αNLI).7 We obtain a +2.84 pp. improvement over this baseline by applying
the pre-trained CIP model on the αNLI task, and observe a further +1.73 pp. improvement
(i.e., overall 3.97 points wrt. the baseline) with the stronger MHKA model. These results
confirm our hypothesis, and show that learning to distinguish the outcomes of factual and
counterfactual events can help the model to better perform abduction.

Ablation on Reasoning Cell. To give further insight into the factors for the model’s
capacity, we study the impact of the number of heads and layers in the reasoning cell. The
left part of Figure 6.5(a) shows the performance of the MHKA model with different numbers
of heads and layers. Note that the hidden dimensions of RoBERTa-Large is 1024 which is
not divisible by 3, therefore we have 1, 2, and 4 as our attention heads. We observe that
increasing the number of heads and layers improves the performance of the model. The
intuitive explanation is that multiple heads help the model to focus on multiple knowledge

7The training data size of αNLI is 14x larger than CIP. Therefore, in order to study the impact of CIP on
αNLI, we made the training data size of CIP and αNLI comparable.
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Fig. 6.5 (a) Performance of MHKA model with different numbers of Heads and numbers of
Layers.

rules and at the same time multiple layers help the model to recursively select the relevant
knowledge rules.

6.6 Analysis

Up to now, we have focused on performance analysis with different experimental settings
and model ablations to analyze our model’s capacities. Now, we turn to leveraging the fact
that our model works with semi-structured knowledge in order to obtain deeper insight into
its inner workings.
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Fig. 6.6 Human evaluation of the relevance of Knowledge Rules a) for 100 instances from the
αNLI dev set and b) for the 56 (out of the 100) instances where the MHKA model predicted
the correct hypothesis.

all know- w/o w/o relevant replacing
ledge irrelevant + partially relevant relevant

acc 56.2 57.6 (+1.4) 49.4 (−6.8) 45.05 (−11.2)
# 56 54 (−2) 20 (−36) 18 (−38)

Table 6.7 row 1: accuracy on 100 random instances from αNLI devset where the RoBERTa-L
baseline fails; row 2: nb. of instances (#) correctly predicted by MHKA.

6.6.1 Quantitative Analysis.

Analysis on Knowledge Relevance. We conduct human evaluation to validate the effective-
ness and relevance of the extracted social commonsense knowledge rules. We randomly
select 100 instances from the αNLI dev set for which the RoBERTa-Large Baseline had
failed, along with their gold labels and the extracted knowledge. Table 6.7 shows that MHKA
correctly predicts 56 instances correctly. We asked two annotators to mark the knowledge
rules that are relevant or partially relevant or irrelevant for each all 100 instances. The
obtained answers yield that in 20.50% of cases the knowledge rules were relevant, in 47.30%

of cases they were partially relevant (see Figure 6.6.a). Figure 6.6.b depicts the relevance of
knowledge rules for instances that are correctly predicted by MHKA. The inter-annotator
agreement had a Fleiss’ κ=0.62.

Analysis of Model’s Robustness. We then test the robustness of the models’ perfor-
mance by manipulating the knowledge it receives for these instances in different ways: (a)
we remove irrelevant and (b) relevant knowledge rules, (c) we manually change randomly
selected rules from those that were found to be relevant by our annotators, and perturb them
with artifacts. E.g., where annotators found that “PersonX’s feelings” is relevant, we change
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All Removing relevant Removing relation
knowledge relation tuples tuples randomly
87.85 85.4 (−2.45) 86.9 (−0.95)

Table 6.8 Accuracy on αNLI (dev set)

the sentiment by choosing incorrect possible values from ATOMIC; for other relation types,
we replace COMET’s generated object with an antonym “PersonX wanted to be [nice→
mean]”, etc. We evaluate the effect of the perturbations i) on all 100 instances, and ii) on the
56 correctly predicted instances. Results are shown in Table 6.7.

We see, for (a), a small improvement over the model results when using all knowledge,
whereas for (b) and (c) an important performance drop occurs. For the 56 instances that
MHKA resolves correctly, for (b) and (c) we find the same effect, but with a much more
drastic drop in performance for (b) and (c). This suggests that when the model is provided
with relevant knowledge rules, it is able to utilize the knowledge well to perform the inference
task.

In another test, we remove knowledge rules with relations which were found most relevant
by our annotators (namely, ‘PersonX’s intent’, ‘PersonX’s want’, ‘PersonX’s need’, ‘effect on
PersonX’, ‘effect on other’, ‘PersonX feels’) (see Supplement for details). Table 6.8 reports
the results on dev set.

We observe: (a) when we remove the relevant relational knowledge rules, the accuracy
drops by 2.4 pp. suggesting that the model is benefitting from the knowledge rules. (b)
when we remove knowledge rules randomly, the accuracy drop is minimal which shows the
robustness of our model.

6.6.2 Qualitative Analysis.

Finally, we perform a study to better understand which knowledge rules were “used or
incorporated in the Reasoning Cell” during the inference.

A case study. Figure 6.7 depicts an example from the αNLI task where we see the context
at the top, and knowledge rules along with different scores below. The Human scores are
annotated by the annotators where, 1.0 = Relevant, 0.50 = Partially relevant, 0.0 = Irrelevant.
We also show the normalized attention scores over the structured knowledge rules8.

We also measure a similarity score (using dot product) between the final representation
of the Reasoning cell and different knowledge rules. Intuitively, we expect that relevant

8Note that we do not consider the attention maps as explanations. We assume that attention exhibits an
intuitive interpretation of the model’s inner workings.
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Observation1 : Larry went to get some fast food. 
Observation2 : Larry decided he would stop eating fast food. 
Hypothesis1: He ended up getting a shower and smelling bad.(

❌
)  

Hypothesis2 : He gained 20 pounds in one month. (
✔

)

Si
m

ila
ri

ty
 sc

or
e

H
um

an
 S

co
re

A
tt

en
ti

on
 sc

or
e

Fig. 6.7 Comparing relevance scores of knowledge.

knowledge rules should be incorporated in the final representation of the Reasoning cell,
and therefore, should have a higher similarity score compared to irrelevant knowledge rules.
Figure 6.7, illustrates one such example where we see that some relevant knowledge (judged
by annotators) – “He gained 20 pounds in one month ⟨xIntent⟩ He wanted to lose weight",
and “He would stop eating fast food ⟨xWant⟩ he wants to lose weight” – are highly attended,
and scored higher in similarity measure compared to others, indicating that the Reasoning
Cell incorporated these knowledge rules.

To study this further, we randomly selected 10 instances from the αNLI dev set along
with the knowledge rules. We found for 7 out of 10 instances that the MHKA model gave
higher similarity scores to relevant or partially relevant knowledge rules than to irrelevant
ones.

6.7 Summary

In this chapter, we present a new multi-head knowledge attention model to incorporate
semi-structured social commonsense knowledge. We show that our model improves over
state-of-the-art LMs on two complex commonsense inference tasks. Besides the improvement
i) we demonstrate a correlation between abduction and counterfactual reasoning in a narrative
context, based on the newly proposed task of counterfactual invariance prediction, which we
apply to support abductive inference. Importantly, ii) we confirm the reasoning capacity of
our model by perturbing and adding noise to the knowledge, and performing model inspection
using manually validated knowledge rules. In future work, we aim to deeper investigate
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compositional effects of inferencing, such as the interaction of socially grounded and general
inferential knowledge.





Chapter 7

Generate Contextualized Inference Rules
for Narrative Story Completion

“The subconscious mind is more susceptible to
influence by impulses of thought mixed with ‘feeling’
or ‘emotions’, than by those originating solely in the
reasoning portion of the mind."

– Napoleon Hill

In the previous chapters, we addressed social commonsense reasoning challenges as
deterministic tasks, i.e., NLP systems are required to predict the correct option from a set
of choices based on a given context. In this chapter, we delve further into how current NLP
systems perform SCR as a NLG task. We study the role of contextualized commonsense
knowledge in generating coherent narratives. We design a story generation task that requires
NLG models to perform both forward and backward reasoning. We design a framework
that aims to jointly learn both generating inference rules and generating narrative stories to
address this challenge. Finally, we end the chapter with automatic and manual evaluations of
the model’s story sentence generation capabilities, especially in terms of coherence. This
chapter is based on work originally published in (Paul and Frank, 2021a).

7.1 Introduction

Narrative story understanding, and similarly story generation, requires the ability to construe
meaning that is not explicitly stated through commonsense reasoning over events in the
story (Rashkin et al., 2018b). Early work in modelling narrative stories focused on script
learning by defining stereotypical event sequences together with their participants (Schank
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and Abelson, 1977). In later works, Chambers and Jurafsky (2008b, 2009); Balasubramanian
et al. (2013); Nguyen et al. (2015); Pichotta and Mooney (2014) proposed methods to learn
narrative event chains using a more straightforward event representation that allows for
efficient learning and inference. Chambers and Jurafsky (2009) acquired Narrative Event
Schemata from corpora and established the Narrative Cloze Task (Chambers and Jurafsky,
2008b) that evaluates script knowledge by predicting a missing event (verb and its arguments)
in a sequence of observed events.

Most recent works have focused on different aspects of story generation such as (a)
enhancing the coherence of generated stories (Fan et al., 2018), (b) methods to incorporate
commonsense knowledge in NLG models (Guan et al., 2020; Ji et al., 2020), (c) generating
stories with controllable styles (Peng et al., 2018; Brahman and Chaturvedi, 2020). We
hypothesize that incorporating commonsense knowledge into NLG models can enhance the
capability of generating coherent stories. Due to the remarkable improvement in performance,
there is a shift in story-generating modelling from using sequence to sequence models
(Pichotta and Mooney, 2016; Li et al., 2018; Fan et al., 2018) to transformer-language-model-
based text generation model (Xu et al., 2020; Guan et al., 2020). While these pretrained
LMs learn probabilistic associations between words and sentences, they still have difficulties
in modelling causality (Mostafazadeh et al., 2020b). Also, in narrative story generation,
models need to be consistent with everyday commonsense norms. Hence, to address a story
generation task, (i) models need to be equipped with suitable knowledge, (ii) they need
effective knowledge integration and reasoning methods, and ideally (iii) we want to be able
to make the effectiveness of these methods transparent.

This chapter focuses on the aspects (i) to (iii), by investigating new methods that build on
pretrained LMs to generate missing sentences from an incomplete narrative story. Specifically,
we focus on Narrative Story Completion (NSC), a new task setting for story generation. Given
an incomplete story, specified only through its beginning and ending, the task is to generate
the missing sentences to complete the story (see Figure 7.1). We hypothesize that in order
to obtaining a consistent and coherent narrative story, the task requires a model’s ability to
perform commonsense inference about events and entities in a story. Unlike other existing
tasks, NSC requires: i) generating multiple sentences to complete a story, and ii) ensuring
that the generated sentences are coherent with respect to both beginning and ending of
the story. Hence, the NSC task offers a challenging setup for investigating the reasoning
capacities of a story generation model. In the next section, we describe our task setup in
detail.
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Beginning:
S1: Janie was excited to see her sister's play in theatre.
S2: Janie got a call from her boss about an emergency work. 

• SomeoneA wasn’t able to go 
SomewhereB (to see the play) 

End:
S5: Janie watched a video of the play later.

• SomeoneA wants to go to 
SomewhereB (to theatre)

• SomeoneA possess(es) a phone.
• SomeoneB wants SomeoneA to 

work.

Implicit Inference RulesEffect

Effect and Cause

Cause

Context :

S3: Janie’s boss gave her new work. 
S4: Janie couldn’t attend her sisters’ playMissing Sentence: 

Fig. 7.1 An example of the Narrative Story Completion Task. Top and bottom boxes show the
context (top) and missing sentences (bottom). The chain of implicit inference rules explains
the connection between beginning and end, and allows to infer the missing sentences.

7.2 Narrative Story Completion

We formulate the Narrative Story Completion task (NSC) as follows: given an incomplete
story (S= s1, s2, sn) as a sequence of tokens t = {t1, t2, ..., tSEP , ..., tm} (with tSEP a mask
token delimiting s2 and sn), the goal is to generate the missing sentences (s3, ..., sn−1) as a
sequence of tokens ysi={ysi1 , y

si
2 , ..., y

si
v } (with i = 3, ..., n−1 and v the maximum length

of each sentence). In the setting of the NSC task, we expect the completed story to be
coherent. That is, the generated sentences should exhibit reasonable logical connections,
causal relationships, and temporal dependencies with each other and the given beginning and
ending of the story. We define a discourse to be coherent if successive sentences that are
about the same entities, and the reported events involving them can be construed to reflect
common knowledge about how events are typically connected in a temporal sequence or by
causal relations. Similar to Hobbs (1985), the criteria to conclude that discourse is coherent
include the requirement that there are reflections of causality in the text.

Humans excel in drawing inferences and constructing causal chains that explain the
connection between events (Kintsch and Dijk, 1978). Figure 7.1 illustrates this with an
example from our NSC task.1 From Janie was excited to see her sister’s play in theatre(s1).
Janie got a call from her boss about new work(s2) and the outcome Janie watched a video
of the play later.(s5) – we can construct inference rules in forward and backward direction:
forward via EFFECT: SomeoneB (boss) gave work to SomeoneA (Janie); backward via
CAUSE: SomeoneA (Janie) wasn’t able to go SomewhereB (to the theatre). By combining

1We use the ROCstories dataset to frame the NSC task.
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Relation Type Dimensions
Cause (1) Event that directly causes or enables X;
(Dim 1-5) (2) Emotion or basic human drive that motivates X;

(3) Location state that enables X;
(4) A possession state that enables X;
(5) Other attribute that enables X.

Effect (6) An event that is directly caused or enabled by X;
(Dim 6-10) (7) An emotion that is caused by X;

(8) A change of location that X results in;
(9) A change of possession that X results in;
(10) Other change in attribute that X results in.

Table 7.1 Causal Relation types and their mapped relations (Mostafazadeh et al., 2020b).

these inferences, we can obtain a representation from which to generate a connection that
completes the story, e.g., Janie’s boss wanted her to look after the issue(s3). She missed the
theatre play(s4).

We simulate this process by designing a model that incrementally generates contextualized
inference rules from the given context and makes use of this knowledge to generate missing
story sentences.

7.3 Discourse-Aware Inference Rules

This section details how we construct training data for the NSC task, by enriching stories with
automatically predicted contextualized inferences.2 We utilize the GLUCOSE (Mostafazadeh
et al., 2020b) dataset, which contains implicit commonsense knowledge in form of semi-
structured general and specific inference rules3 (cf. Table 7.1) that are grounded in the context
of individual stories from ROCStories. In GLUCOSE, given a story S and a selected sentence
X from the story, the authors define ten dimensions d of commonsense causal explanations
related to X , inspired by human cognitive psychology. Only a small part of ROCStories is
annotated with GLUCOSE inferences (Table 7.3).

Given the amount of commonsense knowledge needed for real-world tasks, a static
knowledge resource is always incomplete. Thus, we fine-tune a pre-trained GPT-2 model on
the annotated part of GLUCOSE to dynamically generate inference rules for each sentence Xi

2For testing we rely on GLUCOSE’s manually validated inference rules on a small subset of the ROCStories
corpus.

3Specific means rules grounded in a given context and general corresponds to rules that are applicable to
other contexts.
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(1)Incomplete Story: s1: Jane loved cooking. s2: Everyone else in her family did too. s5: Eventually she
learned everything there was to teach.

Gold: SomeoneA loves SomethingA (that is an activity ) >CAUSES/ENABLES> SomeoneA
learns everything there is to learn.
Jane loves cooking >CAUSES/ENABLES> Jane learns everything there is to learn

COINS: SomeoneA is a quick learner >CAUSES/ENABLES> SomeoneA learns everything
there is to learn.
Jane is a quick learner >CAUSES/ENABLES> Jane learns everything there is to
learn.

(2) Incomplete
Story:

s1: Seth was at a party with his friends. s2: Someone dared a kid to climb on a
wall. s5: He immediately began screaming that his leg was broken.

Missing Sentences: s3: The kid climbed to the top and everyone cheered. s4: Suddenly he slipped and
fell to the ground.

Gold: Some PeopleA (who should not be there) start daring a SomeoneC to climb a
SomethingC (without safety gear) >Causes/Enables> SomeoneC (who should not be
there makes it to the top then falls down and SomeoneC (who is acting like monkey)).
The kids start daring a kid to climb the wall >CAUSES/ENABLES> He makes it to
the top then falls down and breaks his leg.

Fine-tuned GPT-2: Some PeopleB start daring a SomeoneA to climb a SomethingC >Causes/Enables>
SomeoneA quickly shouted that his leg was broken.
Someone start daring a kid to climb the wall >CAUSES/ENABLES> He shouted that
his leg was broken.

COINS: Some PeopleB start daring a SomeoneA to climb a SomethingC >Causes/Enables>
SomeoneA is on top of SomewhereA
Someone start daring a kid to climb the wall >Causes/Enables> He climbed at the
top.

Table 7.2 Example of inference rules generated by COINS (compared to Gold from GLU-
COSE). Grey: context-specific rules (SR); regular: general rules (GR). Bolded sentence s5 is
X, CAUSE is the relation type r. The second example of inference rules generated by COINS

and Fine-tuned GPT-2 when 2-sentences are missing (compared to Gold from GLUCOSE).
Bolded sentence s2 is X , EFFECT is the relation type r.

Dataset Relation Type Train Dev Test

NSC 88,344 4,908 4,909
GLUCOSE Effect 2949 849 –

Cause 2944 916 –

Table 7.3 Dataset Statistics: number of unique stories.

of each story Si from the underlying ROCStories data. We fine-tune two separate language
models CSIgen and CSIspec for general and specific rules, respectively (Table 7.2).

The 10 dimensions d in GLUCOSE cover implicit causes and effects of a sentence X

in a given story. In our work, we are interested in inference rules that explain a sentence’s
causes and effects, to study the impact of such inferences on narrative story completion. We
therefore cluster all dimensions d into the two categories EFFECT vs. CAUSE (Table 7.1)
and aggregate all rules from the respective categories (preserving their dimensions). Once
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Contextualized 
Inference Rules (Ii)

Sentence (si)

Output Sentence (si+1)

(GPT-2) (GPT-2)
Generate Semi-Structured 

Inference Rules
Generate Missing Sentence

Ii + S’

Context (S’)
Update Context

Fig. 7.2 Architecture of the COINS model.

our models (CSIgen, CSIspec) are trained, we apply them to our NSC task training data, to
enrich it with inference rules for each sentence and story.

7.4 COINS: COntextualized Inference and Narrative Story
Completion Model

In this section we introduce a recursively operating reasoning and sentence generation model:
COINS. An overview is given in Figure 7.2. In each iteration, the model applies two
consecutive steps:
(1) Inference Step: Given an incomplete story context S ′= X ⊕Si and relation r, an inference
model CSI (gen or spec) generates COntextualized inference rules of type r.
(2) Generation Step: a sentence generator reads the generated inference rules concatenated
with the current context S ′ and generates the next story sentence si+1. The context S ′ is
updated with si+1 and steps (1) and (2) are repeated (cf. Algorithm 1).
This formulation allows us to i) examine inference and generation capabilities separately
from each other, ii) helps determine the impact of inferential knowledge on story generation,
and iii) can give us insight into how knowledge can guide story generation in a recursive
inference framework.
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Inference Step. We define the initial story context S ′ = {s1, s2,[SEP], sn}, a selected sen-
tence as si, and relation type r ∈ {EFFECT, CAUSE}, where i ∈ [2, . . . n-1], si={wsi

1 , .., w
si
v }.

We adopt a pretrained GPT-2 (base) (Radford et al., 2019) transformer model with multiple
Transformer blocks of multi-head self-attention and fully connected layers. During training,
in each iteration the input to the model is a concatenation of the current source (S ′, si, r) and
target sequence i.e., the inference rules (Ei or Ci). Eq. (1) defines the inference rule (IR)
generation model:

h0
p = ep + Pp,

hl
p = block(hl−1

<p ), l ∈ [1, L]

p(yp|y<p, p) = softmax(hL
pW

T )

(7.1)

where h0
p is a summation of token embedding ep and position embedding Pp for the p-th

token; hl
p is the l-th layer’s output at position p, computed through transformer blocks with

the masked multi-head self attention mechanism; hL
p is the final layer’s hidden state and y<p

indicates the left context of position p. The softmax layer defines the model to output the
most probable target sequence: the most likely inference rules (Ei and Ci) for each relation
type (cf. Algorithm Line 4-5).

During training, we minimize the objective (2)

LI(β) = −
m+N∑
k=m

log p(Ek
i |S ′, si, EFFECT)

−
m+N∑
k=m

log p(Ck
i |S ′, sn, CAUSE)

(7.2)

where m,N denote the number of tokens in the source (S ′, si, r) and target sequence (infer-
ence rules) respectively; β refers to model parameters.

In this work, we focus on the NSC task, which requires our model to capture temporal
dependencies and causal relationships between events. While we designed our sentence
generation model in such a way that it can utilize inference rules from both forward and
backward directions for each sentence, we here trigger the generation of CAUSE inference
rules for sn, since we expect that events, motivations or attributes that cause sn will be
relevant for generating the preceding sentences [s3, . . . sn−1]. Similarly, we generate EFFECT

relations for si, assuming that an event, changes of emotion or changes of attribute that are
possible effects caused by si will be most relevant for generating the missing follow-up
sentences. In principle, however, for NSC and other story generation tasks, we may consider
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Algorithm 1 COINS

Require: Initial Context (S ′ = {s1, s2, [SEP ], sn})
1: MemIR← empty
2: GenS ← empty list
3: for i← 2 to n− 1 do
4: Ei = GenInferenceRules(S ′, si, EFFECT)
5: Ci = GenInferenceRules(S ′, sn, CAUSE)
6: Ii = Ei ⊕ Ci

7: si+1 = GenNewSentence(Ii, S ′)
8: GenS := GenS + si+1

9: MemIR := MemIR ⊕ Ii
10: LS += −logp(θ)(si+1|Ii, S ′) −logp(β)(Ii|S ′)
11: LIR += −logp(θ)(si+1|Ii, S ′) −logp(β)(Ii|S ′)
12: S ′ := {s1, s2, si+1, [SEP ], sn}
13: end for
14: return GenS , MemIR

CAUSE and EFFECT relations for all sentences, letting the model freely choose from the full
space of inferences.

We concatenate the generated inference rules (Ii = Ei ⊕ Ci)4 and store the last hidden
representation in MemIR ∈ IRN×L×H , where N is the number of sentences, L the maximum
inference sequence length and H the hidden state dimensions. MemIR is updated with the
hidden representations of inference rules in each iteration. Hence, MemIR could act as an
intermediate representation, and as a basis for providing explanations for observed story
sentence generations. MemIR may also be used as a memory for long-form text generation
tasks, to keep track of implicit knowledge triggered by previously generated text, and could
support flexible discourse serialization patterns.5

Generation Step. Given the generated inference rules Ii (in form of tokens) and the
incomplete story context S ′, we aim to generate the next missing sentence. We pass the input
through another pretrained GPT-2 (base) model (cf. Equation 7.1). The loss function for the
sentence generator is

LS(θ) = −
v∑

k=1

log P (y
si+1

k |Ii, [EOK], S ′) (7.3)

4We use [SEP ] token to delimit the individual Ei and Ci when concatenating them.
5We leave such extensions to future work.
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where yk denotes the k-th token and v the maximum length of the generated sentence;
i ∈ [2, n− 1] ; [EOK] denotes the end of knowledge rule tokens, and θ refers to model
parameters.

Update Story Context. In the final step we update the story context by inserting the
generated sentence si+1 into the previous story context (cf. Algorithm 1, line 12).

Training and Inference. We add the losses LI for inference generation and LS for sen-
tence generation to make the models dependent on each other (Algorithm 1, line. 10-11). For
both the inference and the generation step model, we minimize the negative log likelihood
loss of the respective target sequence.

7.5 Experimental Setup

7.5.1 Dataset

We apply COINS to the NSC and the Story Ending Generation tasks.6 For data statistics
see Table 7.3. Narrative Story Completion. We follow the task definition as introduced in
§7.2.
Data Collection. We construct the NSC dataset on the basis of the ROCStories corpus
(Mostafazadeh et al., 2016), which contains 98,162 five-sentence stories with a clear be-
ginning and ending, thus making it a good choice for this task. We choose the first two
sentences (s1, s2) as beginning rather than just s1 because the first sentence (s1) tends to
be short in length, and usually introduces characters or sets the scene (Mostafazadeh et al.,
2016), wherease the second sentence (s2) provides more information about the initial story.

7.5.2 Hyperparameter Details

Parameter size. For GPT-2 we use the GPT-2 small checkpoint (117M parameters) based on
the implementation of HuggingFace (Wolf et al., 2020).
Decoding Strategy. In the inference stage, we adopt beam search decoding with a beam size
of 5 for all our models and all baselines we produce.
We used the following set of hyperparameters for our COINS model: batch size: {2, 4};
epochs: {3, 5}; learning rate: {1e-5, 5e-6}. We use Adam Optimizer, and dropout rate = 0.1.
We ran our experiments with GPU sizes of 11GB and 24GB.

6The results for Story Ending Generation will corroborate our results for NSC. All details are given in the
Appendix.



104 Generate Contextualized Inference Rules for Narrative Story Completion

7.5.3 Baselines

We compare our COINS model to the following baselines:
(a) GPT-2 (Radford et al., 2018) (with 12-layer, 768-hidden, 12-heads), trained with an

objective to predict the next word. The input to the GPT-2 model is the concatenation of the
source and the target story sequence. We follow the standard procedure to fine-tune GPT-2
on the NSC task during training and minimize the loss function:

−log(s3, s4|[SOS]s1, s2, [SEP ], s5[EOS]) (7.4)

(b) Knowledge-Enhanced GPT-2 (KE) (Guan et al., 2020) is the current SOTA for
ROCStories generation. It first fine-tunes a pre-trained GPT-2 (small) model with knowledge
triples from commonsense datasets (ConceptNet [CN] Speer et al. (2017) and ATOMIC [AT]
Sap et al. (2020b)). The knowledge triples were converted to sentences using templates.
A multitask learning framework further fine-tunes this model on both the Story Ending
Generation task and classifying corrupted stories from real ones. As our baseline we choose
the version without multi-tasking, since the corrupted story setting is not applicable for the
NSC task. More details about the KE model are given in §3.2.

(c) GRF (Ji et al., 2020) is the current SOTA for the Abductive Reasoning and the Story
Ending Generation tasks. GRF enables pre-trained models (GPT-2 small) with dynamic multi-
hop reasoning on multi-relational paths extracted from the external ConceptNet commonsense
knowledge graph. More details about the GRF model are given in §3.2.

(d) GLUCOSE-GPT-2 Similar to Guan et al. (2020), we fine-tune pretrained GPT-2
(small) on the GLUCOSE dataset using general rules (GR). We follow the same procedure as
Guan et al. (2020) and (i) first fine-tune a pre-trained GPT-2 , but here on the GLUCOSE
dataset, with the following loss:

−log(Ii|S, si, r), (7.5)

where r: CAUSE/EFFECT, Ii: Inference rules. (ii) Then we fine-tune the above model again
on the NSC dataset with the following loss:

−log(s3, s4|[SOS]s1, s2, [SEP ], s5[EOS]) (7.6)

The main difference between GLUCOSE-GPT-2 and COINS is: COINS explicitly
learns to generate (contextualized) inference rules on the fly during the inference step and
incorporates them in the story generation step.
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Model Knowledge PPL (↓) BLEU-1/2 (↑) ROUGE-L (↑)

GPT-2 – 11.56 16.66/6.8 17.2
KE [CN, AT] 12.61 17.55/7.6 17.9
GLUCOSE-GPT-2 [GL] 12.7 17.9/7.8 17.5
GRF [CN] 12.18 20.8/8.2 17.6
COINS (SR) [GL] 6.7 22.53/10.10 18.9
COINS (GR) [GL] 6.9 22.82/10.52 19.4
COINS Oracle (SR) (Test-only) [GL] – 30.75/22.76 32.5
COINS Oracle (GR) (Test-only) [GL] – 26.37/17.01 27.38
Human – 24.53/12.10 20.2

Table 7.4 Automatic evaluation results for Story Completion. Best performance highlighted
in bold; used Inference Rule types: specific (SR), general (GR).

7.5.4 Automatic Evaluation Metric

For automatic evaluation in the NSC task we use as metrics Perplexity (indicates fluency
of text generation), BLEU-1/2 (Papineni et al., 2002) and ROUGE-L (Lin, 2004). We
report performance on the test sets by averaging results obtained for 5 different seeds. All
improvements across all model variants are statistically significant at p < 0.05.

7.6 Evaluation and Results

7.6.1 Automatic Evaluation

Our experimental results are summarised in Tables 7.4 and 7.6.
NSC task. Table 7.4 shows the results for the models described in §6.3 and evaluated as
per §6.4. We observe the following: (i) COINS outperforms all strong baseline models that
utilize pre-trained language models and incorporate external commonsense knowledge with
respect to all automatic evaluation metrics. Note that GLUCOSE-GPT2 and COINS are
using the same knowledge resource, hence the clear performance increase of COINS (+4.92

BLEU score) indicates that jointly learning to generate contextualized inferences rules and
missing sentences in a recursive manner can enhance generation quality.7 (ii) Similar to Ji
et al. (2020) we observe that fine-tuning GPT-2 over knowledge triples ([CN], [AT]OMIC or
[GL]UCOSE) doesn’t improve the overall performance by much (Table 7.4, line 2: [CN+AT]
vs. line 3: [GL] vs. line 1: [no CSK]). (iii) For COINS, general rules (GR) boost performance

7Since GRF’s architecture is specific for ConceptNet, we cannot exclude that the better performance of
COINS (+2.2 BLEU) is in part due to differences in the used knowledge.
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Input PPL (↓) BLEU-1/2 (↑) ROUGE-L (↑)

IR only (GR) 13.05 10.65/4.01 6.31
IR only (SR) 8.01 15.65/6.08 15.31
No IR + w/oSE 11.5 15.12/5.95 12.47
IR (GR) + w/oSE 7.49 21.50/9.78 18.07

Table 7.5 Impact of different inputs to COINS for Story Completion, SR: specific rules, GR:
general rules, IR: inference rules, w/oSE: w/o the story ending (sn).

Full Context 1-Missing Sentence 2-Missing Sentence
Model E C E C E C

GPT-2† 58.3 63.3 56.5 58.3 55.4 53.9
COINS 59.9 62.9 58.6 60.3 57.5 56.8
GPT-2† 57.7 59.5 55.5 55.3 53.4 51.4
COINS 57.8 60.1 56.3 58.2 55.1 55.2

Table 7.6 Automatic evaluation of the quality of inference rules in different context settings.
Best results in bold. Metric: BLEU-1 scores, E: EFFECT, C: CAUSE, Grey: context-specific
rules (SR); regular: general rules (GR), †: fine-tuned on GLUCOSE dataset.

more than specific rules, indicating that the sentence generation model generalizes well.
(iv) In the oracle settings at inference time we provide the model with the silver inference
rules (generated as per §7.3) that use the complete story context as background. The result
indicates that SR performs better than GR when the model sees the full story context.

In general we observe that story generation benefits from higher-quality, contextualized
inference rules from GLUCOSE (for COINS).8 The improvement of COINS over GLUCOSE-
GPT-2 indicates that our model is well able to utilize and profit from the inference rules. In
the oracle setting, SR performs much better than GR. This is expected, since oracle rules with
access to the full context will deliver more contextually-relevant inferences, while GR rules
may diverge more from the story context. However, in the realistic NSC task setting (Table
7.4, lines 5,6) GR outperforms SR, which again underlines the generalization capacities of
COINS.

Impact of different inputs for the Generation Step. In Table 7.5 we investigate the
performance of COINS with different inputs to the sentence generation component at infer-
ence time: (i) When only inference rules (from the inference step) are given to the model
without any story context (S ′ = {s1, s2,[SEP], sn}) (IR only), sentence generation benefits

8Automatic (silver) GLUCOSE inference rules (cf. §7.3) of type GR yield 60.8 BLEU score i.e., performance
of CSIgen (avg. of both relation types).
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when specific rules are used. This is expected since the specific rules contain statements with
concrete character names and paraphrased events from the story. (ii) When only the story
beginning (s1,2) is provided to the sentence generation model without the ending sentence sn
(w/oSE) nor inference rules (w/oIR) we observe that the performance drops compared to
models given the full incomplete context (S ′), indicating that knowing the story ending helps
the model to generate missing sentences that are coherent with the story. However, (iii) when
adding inference rules IR (from the inference step i.e., Ei + Ci) to the context (s1,2) without
ending sentence (w/oSE), performance again improves (+5.85 BLEU scores). Note that the
inference rule contains the CAUSE relation for sn. This indicates that the model is able to
utilize inference rules for story generation.9

Performance of inference rule generation. We now investigate how difficult it is to
generate contextualized inference rules (specific and general) when multiple sentences are
missing from a story. For this we compare COINS to a GPT-2 model fine-tuned on GLUCOSE

data to generate inference rules (cf. §4). We study the impact of jointly and dynamically
learning sentence and inference rule generation (in COINS) on the inference generation task
– while the fine-tuned GPT-2 model only learns to generate inference rules conditioned on
the static story context. We specifically examine the difficulty of generating inference rules
for two consecutive sentences (s3 and s4) in a 5-sentence context, as opposed to shorter
sequences, in three different scenarios: i) when the complete story context S is given; ii)
when the incomplete context S ′ (i.e., s1, s2 and s5) is given, plus either s3 or s4 (1-missing
sentence), and iii) when S ′ is given, but neither of the intermediate sentences s3 and s4 (2-
missing sentences). In each setting, we generate EFFECT and CAUSE rules for the targeted
sentences s3, s4, and compare their quality. The results are reported in Table 7.6. We observe
that in the 2-missing sentences setting, COINS outperforms GPT-2 (by +2.3 BLEU score
on average). This indicates that learning to perform inference rule generation jointly with
sentence generation is beneficial for filling-in multiple story sentences. Interestingly, for
increasing numbers of missing sentences, performance drops drastically for CAUSE (as
opposed to EFFECT), but less so for COINS as opposed to GPT-2.

A possible reason for this may be the conditional, uni-directional nature of the underlying
GPT-2 language model, which is trained to predict follow-up words in forward direction.
This may favor future-directed EFFECT rules – as opposed to CAUSE relations.

9Here, we report the results with generalized rules as GR works better than SR when context is given (cf.
Table. 7.4).
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Knowledge Coherence Grammaticality
Models of Base Model Win(%) Tie(%) Loss(%) κ Win(%) Tie(%) Loss(%) κ
COINS vs GPT-2 None 54.7 32.0 13.3 0.52 45.7 41.3 13.0 0.49
COINS vs GLUC.-GPT-2 GLUCOSE 52.0 33.0 15.0 0.43 31.7 54.3 14.0 0.45
COINS vs KE CN + ATOMIC 50.0 32.0 18.0 0.44 21.3 69.7 9.0 0.37
COINS vs GRF CN 50.5 30.5 19.0 0.48 20.5 70.0 9.5 0.35

Table 7.7 Manual evaluation of sentence generation quality of COINS (GR) for 100 stories.
Scores are percentages of Win, Loss, or Tie when comparing COINS to baselines. Fleiss’
kappa κ: fair agreement or moderate agreement.

Fig. 7.3 A screenshot of the annotation guidelines for manual evaluation.

The milder effect on COINS could indicate that the concurrent inference model supports
the sentence generation model to overcome this weakness.10

10In future work, we will test the above hypothesis by experimenting with a bi-directional transformer
generation model.
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Cause

Fig. 7.4 Human evaluation of the relevance of Inference Rules generated by COINS.

7.6.2 Manual Evaluation

Automatic metrics can give us some indication of NLG quality, however, these metrics do
not necessarily reflect the coherence of generated story sentences. We thus conduct a human
evaluation focusing on the grammaticality and coherence of the generated sentences in their
story context. We conduct pairwise comparisons for 100 randomly sampled instances of our
best model, i.e., COINS with GR (according to automatic metrics) with four strong baseline
models (GPT-2, GLUCOSE-GPT-2, GRF, KE). For each pair of instances (one from COINS,
the other from a baseline model), we present the generated sentences in their story context,
and asked three annotators to give a preference rating (win, tie, lose) according to the criteria
grammaticality and coherence. For grammaticality, we present each sentence in isolation
and ask the annotators to rate which sentence is more fluent, readable, and compliant with
the English standard usage. For coherence, we ask the annotators to assess which of the two
generated sentences are more logically coherent with each other and the story beginning and
ending, in terms of causal and temporal dependencies. We applied majority voting among
the three annotators (who are with a linguistic background) to obtain final decisions. Figure
7.3, shows a screenshot of the annotation guidelines.

The human evaluation results are presented in Table 7.7.11 The results show that our
model produces more coherent and more grammatically correct sentences compared to all
baselines. This indicates that with support of learned contextualized inference rules based on
GLUCOSE knowledge, our model generates more coherent story sentences that are causally
and temporally well connected.

11We report inter-annotator agreement scores calculated with Fless’ kappa κ Fleiss (1971), calculated for
each comparison. We find moderate or fair agreement.
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Incomplete Story: s1: Ken was driving around in the snow. s2: He needed to get
home from work. s5: His tires lost traction and he hit a tree.

Missing Sentences: s3: He was driving slowly to avoid accidents. s4: Unfortunately
the roads were too slick and Ken lost control.

COINS (IGR) SomeoneA is going SomewhereB ≻Cause/Enables≻ SomeoneA
is at SomewhereB, SomeoneA is driving SomethingA fast
≻Cause/Enables≻ SomethingA hits SomethingB (that is a tree),
SomeoneA possess(es) SomethingA (that is a car) ≻Enables≻>
SomethingA (tires) lost SomethingB (traction)

COINS (ISR) He posses(es) a car ≻result in≻ His tires lost traction, He needed
to get home ≻Enables≻ He drove home, He was driving on ice
≻ Causes/Enables ≻ His tires lost traction, He was driving on ice
≻Causes/Enables≻ He lost control of his vehicle.

COINS(MSGR) He was driving too fast. He lost control of his car.
COINS(MSSR) He was driving on ice. He lost control of his vehicle.
GPT-2 He stopped at a gas station. He filled his tank.
GPT-2 GLUCOSE When he got to the house he realized he was stuck. Ken had to

pull over to get help.
GRF He pulled over to see what was wrong. He saw that his car was

stuck in the snow.
Human He was going very fast. The street was slippery from the snow.

Table 7.8 Example 1: inference rules and missing sentences generated by COINS (compared
to Gold from GLUCOSE, Green), as well as baseline model generations. Gray: COINS (SR);
Regular: COINS (GR); MS: missing sentences, I: inference rules. The orange and blue colors
denoting the overlap in tokens between the inference rules and generated missing sentences.

Relevance of Generated Inferences Rules. We further conduct human evaluation to vali-
date the effectiveness and relevance of the generated inference rules. We randomly select 50
instances from the NSC development set. We asked three annotators to evaluate the (GR)
inference rules12. We define an inference rule to be relevant if (a) it captures implicit causes
and effects of a selected sentence X given an incomplete story S ′, and (b) it is providing
useful explanations for the incomplete story S ′. The result for this evaluation is shown
in Fig.7.4, for EFFECT and CAUSE relations. We find that in 36% and 34% of cases for
effects and causes, respectively (computed on the basis of majority agreement), our algorithm
was able to generate relevant inference rules. Our annotations yielded fair inter-annotator
agreement of Fleiss’ κ = 0.45.

12We report only COINS (GR), our best model according to automatic metrics.
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Incomplete Story: s1: Danielle dreamed of living in California. s2: After college she had to
decide where to live. [mask] s5: She loved it there.

Missing Sentences: s3: She could move back home or move to California. s4: Danielle
decided to take a leap and move to California.

COINS (IGR) SomeoneA decide SomethingA (where to live) >Causes/Enables>
SomeoneA decides to live in SomewhereA.

COINS (ISR) She had to decide where to live >Causes/Enables> She chose to live in
California.

COINS(MSGR) She decided to live in California. She settled in California.
COINS(MSSR) She decided to live in California. She went to the beach.
GPT-2 She finally settled in California. She loved it there.
GPT-2 GLUCOSE She decided to move to NH. She found a nice apartment there.
GRF She decided to move to California. She found a great place to live.

Table 7.9 Example 2: Comparing COINS with different baselines on generating inference
rules and missing story sentence

Case Study. We provide an example from NSC with different generation outputs (Table
7.8and 7.9). We noticed that among the baseline models, GRF performs better. Note that
the generated sentences are grounded to the inference rules obtained from the inference step.
Hence, the rules provide controllability, an intermediate representation and explanations
for how knowledge can guide or influence story generation. In Table 7.8, comparing gold
missing sentences with human written missing sentences, we observe the first sentence is
semantically opposite. The result reflects the difficulty of the task and the requirement of
better evaluation for natural language generation tasks.

7.7 Summary

In this chapter, we addressed a Narrative Story Completion task that allows us to probe the
coherence capabilities of a neural generation model. We proposed COINS, a model that
iteratively generates commonsense inference rules grounded in the context and generates
story sentences, using the generated inferences as a guide.

Human and automatic evaluations show that the model outperforms strong commonsense
knowledge-based generation models. By individuating the inference rule and sentence
generation steps, COINS can make the contribution of commonsense knowledge on story
generation transparent. The recursive nature of the inference-driven generation model holds
potential for knowledge-driven control in the generation of longer sequences. In future work
we will explore how an enhanced memory of generated inferences can realize more complex
narrative patterns that diverge from strictly ordered narrative sequences.





Chapter 8

Conclusions & Future Work

8.1 Conclusions

“The truth of a theory can never be proven, for one
never knows if future experience will contradict its
conclusions."

– Albert Einstein

This dissertation investigates methods for integrating implicit knowledge into NLP
systems to address social commonsense reasoning in text. Our study focused on two sub-
problems of endowing machines with social commonsense reasoning: learning implicit social
dynamics in text and explicitly integrating and reasoning over such knowledge for social
commonsense reasoning. This chapter summarises our contributions, sheds light on a few
shortcomings of our methods, and discusses the scope for future research.

We studied the importance of implicit knowledge in understanding of social dynamics.
In Chapter 4, we presented a method that leverages graph structure to extract multi-hop
commonsense knowledge from large KGs. We showed that 34% of the extracted knowledge
is relevant and 42% is partially relevant. We presented an end-to-end model that incorporates
multi-hop commonsense knowledge using an attention mechanism to predict the mental
states of story characters. We found that implicit knowledge is crucial for predicting story
characters’ human needs and motives better.

We also studied the role of temporal knowledge of social events on abductive common-
sense reasoning tasks. In Chapter 5, we proposed to fine-tune LMs to learn what events
could follow other events in a social situation. We presented methods for addressing the
abductive reasoning task both in unsupervised and supervised settings. We find that our un-
supervised model outperforms strong supervised natural language inference baseline models.
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The relatively strong performance of our proposed models demonstrates that learning to
choose from generated hypothetical next events, the one that is most similar to the observation
supports the prediction of the most plausible hypothesis.

Next, we explored methods to explicitly reason over implicit social commonsense knowl-
edge. In Chapter 6, we proposed a multi-head knowledge attention method that encodes
semi-structured inferential knowledge rules and learns to incorporate them into transformer-
based models. We designed a new task for counterfactual invariance prediction. This complex
task requires causal narrative chains and reasoning in the forward direction. We showed
that a model that has learned to understand and reason counterfactual situations could also
support abductive reasoning in a narrative context. We manually analyzed the reasoning
capabilities of our model and showed that our knowledge-enhanced model is more robust
than other SOTA models.

We explored the importance of grounding a commonsense inference knowledge for
downstream natural language generation (NLG) task. In Chapter 7, we propose a model
named COINS that recursively performs an inference step (generate inferential knowledge)
and a generation step (generate next sentence) using the generated inferences as a guide. We
introduce a new task setting named as narrative story completion task. We observed that
filling in multiple story sentences benefits from contextualized inference rules. Our finding
suggests that grounding commonsense knowledge is useful for explaining a NLG system.

Recently, much research has argued that pretrained LMs already contain commonsense
knowledge (Davison et al., 2019; Petroni et al., 2019; Zhou et al., 2020). Language models
have several advantages over structured knowledge bases, such as no human supervision to
train, no schema engineering, etc. In this thesis, we argue that structured knowledge plays an
essential role in (a) making black-box deep learning models more interpretable (Chapter 4,
6 and 7)), (b) providing controllability (Chapter 7), (c) improving the overall performance
of current NLP systems (Chapter 4, 6 and 7). We hope our study will shed light on the
importance of structured knowledge and encourage researchers to build more interpretable
and controllable NLP systems.
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8.2 Discussions

“The important thing in science is not so much to
obtain new facts as to discover new ways of
thinking"

– Willam Bragg

In this section, we discuss some limitations and address some open research questions
related to our proposed methods in this thesis.

Extract Contextualized Knowledge from large KGs. To better assess the performance
of our knowledge integration methods, we need better knowledge. In this thesis, we have
observed that the extracted knowledge is only 34% (Chapter 4, section 4.6), 46% (Chapter
5, section 5.5), 20% (Chapter 6, section 6.6) and 35% (Chapter 7, section 7.6.2) relevant.
This result suggests that either (a) commonsense knowledge is incomplete in KGs or (b)
our knowledge extraction methods need improvements or (c) we need better-contextualized
knowledge. In Chapter 7, we attempted to address the problem (c) by learning to generate
commonsense knowledge grounded in the context. While we show that generating contextu-
alized knowledge is useful, the GLUCOSE (Mostafazadeh et al., 2020b) knowledge graph is
small in size. Therefore, learning to generate relevant knowledge from large KGs is still a
bottleneck. One potential way to address this challenge is by training a graph neural network
on a knowledge graph grounded to the context to automatically learn about contextualized
knowledge (Bordes et al., 2013; Riedel et al., 2013; Lin et al., 2019; Yu et al., 2019). While
we focused on understanding the role of CSK, the importance of knowledge representation is
understudied. One potential way to improve the performance of our method is by providing
the model with better knowledge representations using GNNs.

Temporal Knowledge for understanding social dynamics. In Chapter 5, we assumed
that pretrained LMs are poor in "temporal awareness," and hence, we fine-tuned LMs to
extract temporal knowledge to support a commonsense reasoning task. However, the role of
different temporal knowledge relations such as co-occurrence and causal are understudied.
Let us consider the following pairs of events to better understand the problem,

• Event1: “ Paul went to a supermarket.” , Event2: “ He bought vegetables.” ;

• Event3: “ Paul was hungry.” , Event4: “ He went to a restaurant.” ;

• Event5: “ Paul felt sick.” , Event6: “ He went to a hospital.” ;

• Event7: “ Paul went to a restaurant” , Event8: “ He ordered pasta.” ;
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Although the precedence from Event7 to Event8 is logical, it might be less a “cause”
compared with Paul was “hungry” (Event3). While the event pairs (Event3, Event4)
and (Event5, Event6) are causally related, the event pairs (Event1, Event2) and (Event7,
Event8) are less a cause and more co-occurring events. Our current fine-tuned LM (section
5.3) aims to capture such temporal knowledge in model parameters. One potential way to
better understand the role of temporal knowledge for commonsense reasoning is by explicitly
studying the importance of each temporal relations (co-occurrence vs causal events).

Commonsense Reasoning as Natural Language Generation Task. The success of an
NLG system can be estimated from two different perspectives: a user’s success in a task
and the system’s success in fulfilling its purpose (Celikyilmaz et al., 2020). In practice,
NLG evaluation can be categorised into three categories: (i) human-centric evaluation, (ii)
untrained automatic metrics, and (iii) machine trained metrics. Evaluating commonsense
reasoning as a NLG task brings a new evaluation challenge because of its plausible nature.

When human-centric evaluation methods are used we often observe a low inter-annotator
agreement (IAA) scores (see Chapter 5 and 7). One intuitive reason for low IAA scores is
highlighted in table 7.8, where we observe that the human-written missing sentences and
the gold missing sentences are semantically opposite, but both are equally plausible. The
untrained automatic metrics compares the machine-generated texts to human-generated texts
based on n-gram overlap. Since commonsense reasoning is not constrained only to token
overlaps, such automatic metrics are insufficient for evaluation. For example, in table 7.4, we
see the overall performance of human-written text is low using automatic evaluation. Finally,
the machine-learned metrics are also biased towards token-overlap. In chapter 5, we used
BERT-score, which is a metric for evaluating generated text against gold-standard references.
In table 5.5 and Figure 5.9, we observe how BERTScore is biased towards token overlap.

In this dissertation, we do not address improving the evaluation metrics for commonsense
reasoning as NLG tasks. One potential future work will be to design: (i) better evaluation
metrics and (ii) a revised inter-annotator metric for commonsense reasoning.

8.3 Future Research Plans

“The important thing is not to stop questioning.
Curiosity has its own reason for existing."

– Albert Einstein

We anticipate that the research presented in this dissertation will encourage different
opportunities to pursue the open challenges that have not been addressed so far. Below, we
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outline future directions for addressing new challenges arising from our research, and we
think are worth exploring.

Evaluation of Commonsense Reasoning and beyond. Recently, several works have
demonstrated that human agreement for commonsense reasoning evaluation is low (Rashkin
et al., 2018a; Qin et al., 2019). One particular reason is that it involves plausible reasoning.
Hence, automatically evaluating models on NLG tasks involving commonsense reasoning
becomes even more challenging. It would be particularly important to focus on multidimen-
sional metrics for evaluation. In our future work, we will focus on designing evaluation
metrics that target different dimensions of commonsense reasoning such as temporal, spa-
tial, causal, distinctness etc. and also on model robustness, transparency, generalization,
reasoning capabilities.

Role of Structured Knowledge in Continual Learning. We humans learn and under-
stand new concepts by building on our own memories and applying prior knowledge. In
contrast, most NLP systems learn about a new task in isolation. Recently, with the ad-
vancement in transfer learning1 methods, researchers have focused on addressing continual
learning2 for NLP tasks (Ruder et al., 2019; Chen et al., 2020). However, studies have shown
when a model is incrementally fine-tuned on new data distribution; it risks forgetting (concept
drift, catastrophic forgetting) how to treat instances of the previously learned ones (Mosbach
et al., 2021; Sun et al., 2019). As our research community move towards building NLP
systems that are environmentally friendly (less training time), we think continual learning
will be an important research direction. Rather than storing training data and re-training
from scratch, the use of a knowledge-based memory system can be useful. Hence, it will be
potentially relevant to investigate the role of structured knowledge (one can treat it as prior
memory) to address concepts like concept drift, catastrophic forgetting etc.

Societal Application of NLP. Research in the social commonsense reasoning area has far-
reaching value for designing NLP applications that are able to interact with humans in a more
natural way. Understanding and reasoning about the user’s intent or writer’s intent are relevant
in building systems that can recommend products to end-users or detect subtle bias in social
media posts. Another application where our research could be beneficial is dialogue systems,
where generating dialogue in a more empathetic, natural way is important. Therefore, a future
direction of our research is to connect improvements in social commonsense understanding
to such user applications.

Towards Diverse and Inclusive NLP systems. Commonsense Knowledge is the knowl-
edge that all humans typically possess, which helps them make sense of daily situations.

1Transfer learning methods deals with transferring knowledge from a source task to a target task to improve
the performance of the target task

2Continual Learning is the process of building complicated skills on top of those already developed.
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However, most current research efforts have focused predominantly on the English language.
To expand research on social commonsense reasoning, one needs to take into account the
cultural, linguistic, historical, societal and geophysical differences between people. There-
fore, we will focus on developing resources that consider diverse social norms and build NLP
systems that are more inclusive and equitable.



Appendix A

Application: Argumentation Relation
Classification

Automatically identifying relations between argumentative text units (e.g., support and attack
relations) has attracted much attention (Cabrio and Villata, 2012; Stab and Gurevych, 2014a,b,
2017). Argumentative relation classification (henceforth ARC) is the task of determining the
type of relation that holds between two argumentative units (AUs, for short). This task has
some overlap with stance detection, but differs in important aspects: while stance detection
aims at determining the relation of AUs towards a topic or conclusion, argumentative relation
classification analyzes relations between argumentative units. In this work we consider
both argument-topic relations and argument-argument relations – since only a system that
captures both types of relations can be applied in a real debate. We propose a ranking-based
knowledge- knowledge-enhanced argumentative relation classification approach that we
successfully apply to both (closely related) argumentative relation classification tasks.

Fig. A.1 A subgraph extracted from ConceptNet. Blue edges portray relevant knowledge
paths from ConceptNet. Concepts from the text in blue; intermediate nodes in orange.
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Defining abstract semantic patterns is one way to explain argumentative relations (Reisert
et al., 2017). Let us consider two argumentative units Arg1 : “Landlords may want to earn
as much as possible.” and Arg2 : “ Rent prices should be limited by a cap when there’s a
change of tenant.” We can observe that Arg1 implies that x is good for landlords, while Arg2
implies that x is bad for tenants, with x = ‘rise in price’. This pattern can indicate attack.
But Arg2 states that x should be limited and thus the correct relation is support (Arg1, Arg2).
Hence, we not only need good analysis of the text, but also further, so-called commonsense
knowledge about the events, entities and relations mentioned in it, in order to gain true
understanding of an argument. For example, we need to know that landlords and tenants are
in a relation where one pays the other, with conflicting interests in the amount to be paid (see
Fig. A.1).

In this work we propose to leverage commonsense knowledge from ConceptNet (Speer
and Havasi, 2012) in order to connect pairs of concepts in argumentative units with implicit
background knowledge relations. Fig. A.1 shows a semantic (sub)graph with nodes rep-
resenting concepts and edges (e.g., ‘not desire’) indicating relations between them. The
graph captures semantic relations between entities (tenant – landlord) and properties (much –
limited).

Our hypothesis is that capturing commonsense knowledge relations within and between
AUs is essential for deeper understanding of arguments, especially for aspects of practical
reasoning, cf. (Walton, 2015). We investigate this hypothesis by devising a system that
constructs subgraphs over pairs of AUs based on relevant concepts and multi-hop knowledge
from the ConceptNet graph (Speer and Havasi, 2012). We propose a graph-based ranking
method to extract relevant paths from these subgraphs that connect the argumentative units.

A.1 Argumentative Relation Classification with Common-
sense Knowledge

We propose a neural Argumentative Relation Classification (ARC) system that (i) encodes
pairs of argumentative units (AUs) using a cross-sentence attention mechanism over attentive
BiLSTM encoders to understand their contextual features and structures; (ii) we leverage
commonsense knowledge by linking concepts from the AUs to concepts from ConceptNet,
and construct instance-specific subgraphs from which we extract relevant knowledge paths
using graph-based ranking methods; finally (iii), we incorporate lexical knowledge from
WordNet – Synonyms and definitions – to expand the meaning of terms in the AUs. Recently,
Bauer et al. (2018b) and Paul and Frank (2019) proposed methods to select multi-hop



A.1 Argumentative Relation Classification with Commonsense Knowledge 121

B
IL

ST
M

s

Argument 1 En
co

di
ng

 la
ye

r

Encoding

Dense Layer

Self-Attention

B
IL

ST
M

s

Argument 2

Encoding

Dense Layer

Self-Attention

Input 
representation

.…
…. C

om
m

on
 

Se
ns

e 
Pa

th
s

Attention Cell
Sigmoid 

Gate

So
ftM

ax
 L

ay
er

D
en

se
 L

ay
er

Cross 
Attention

W
or

dN
et

Fig. A.2 ARK: Argumentative relation classification (ARC) with self-attention and knowl-
edge (ARK)

arg1

arg2
ConceptNet Subgraph

Map to 
ConceptNet

Induced 
Subgraph

Use local graph 
based method

List of paths

(a) (b)

Fig. A.3 Commonsense Knowledge Extraction. Left: Subgraph Construction. Right: Ranking & Path
Selection

Fig. A.4 (a) ARC model with knowledge (ARK) and (b) Commonsense Knowledge Extrac-
tion

knowledge paths for reading comprehension and human needs classification: the former
use heuristics, the latter graph-based measures for selection. In our work, we construct a
knowledge subgraph over AUs and use local graph measures to select relevant knowledge
for predicting the correct argumentative relation class. The selected knowledge paths along
with Synonyms and definitional knowledge are encoded and incorporated into the relation
prediction component. We use an attention cell that jointly encodes the encoded argument
pair representations and the selected knowledge paths to predict implicit knowledge relations
during inference. Figure A.4 gives an overview of the model.



122 Application: Argumentation Relation Classification

A.1.1 Argumentative Relation Classifier

The core of our model consists of three components: (1) encoding layer, (2) attention layer
with self-attention and cross-attention, (3) output layer. The BiLSTM encoder takes two
AUs arg ∈ [arg1, arg2] as inputs: sequences of tokens warg

1 , ...., warg
n (or warg

1:n ).

Encoding Layer We map the sequence of tokens of both AUs to sequences of word
representations using word embeddings, and encode them with a single-layer BiLSTM.1

Attention Layer We apply self-attention to capture the contribution of each token in the
argument Yang et al. (2016). We obtain argument representations xarg1 and xarg2 by taking
the weighted sum of the attention scores and the hidden states that were generated by the
BiLSTM.

We capture the relevance of the hidden representations of the arguments with cross-
attention. We calculate soft attention weights, this time across arguments and taking into
account the self-attention weighted token representations from (A.1) and (A.2):

ĥi

arg1
=

σ(xarg2
i hi

arg1)∑N
j=1 σ(x

arg2
j hj

arg1)
(A.1)

ĥi

arg2
=

σ(xarg1
i hi

arg2)∑M
j=1 σ(x

arg1
j hj

arg2)
(A.2)

xarg1
i =

N∑
j=1

ĥj

arg1
harg1
i ; xarg2

i =
M∑
j=1

ĥj

arg2
harg2
i (A.3)

with N , M the number of tokens in arg1 and arg2.

Output Layer We apply a final dense layer followed by softmax to predict the classes
support or attack. As input yi to this final layer we concatenate the output representations
xarg1
i and xarg2

i from the cross-attention layer, and their difference vector xarg1
i − xarg2

i and
feed them through a projection layer: yi = ReLU(Wy[x

arg1
i ;xarg2

i ;xarg1
i − xarg2

i ] + by).

1The final state of the forward and backward pass is composed by taking the max over each dimension.
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A.1.2 Commonsense Knowledge Extraction for Argumentative Rela-
tion Classification

Models for ARC will often require knowledge that is not overtly stated in the AUs or their
context Rajendran et al. (2016). We aim to solve this issue by leveraging commonsense and
lexical knowledge from resources such as ConceptNet and WordNet. We begin by extracting
connections between concepts mentioned in pairs of AUs from ConceptNet. For each pair
we (i) collect all potentially relevant relations and concepts in a subgraph and (ii) select the
top-ranked paths using local graph measures. Figure A.3, gives an overview of the extraction
method.

Subgraph Construction For each pair arg1, arg2 we construct a subgraph G′ = (V ′, E ′)

from ConceptNet G = (V,E) by initializing V ′ with all concepts carg1 ∈ arg1 and carg2 ∈
arg2. To do so, we remove stop words, lemmatize tokens and perform n-gram matching of
the remaining tokens to concepts in G. Similar to the subgraph construction in Bauer et al.
(2018b) and Paul and Frank (2019), we extend G′ by including all concepts contained in the
shortest paths between all concepts ci ∈ V ′ as well as all neighbouring nodes of concepts
carg from arg1 and arg2. The final subgraph G′ collects all edges E ′ from E that have both
endpoints in V ′.

Ranking and Selecting Paths We apply a two-step method: (i) Collect top-n concepts:
Although most concepts in the AUs may be useful, considering all of them may introduce
noise. For example, in Figure A.1, the concept possible in arg0 is not especially relevant in
the given context. Therefore, we filter and collect the top-n concepts from each AU argi by
ranking all the concepts cargi ∈ argi using personalized page rank Haveliwala (2002) given
the subgraph G′ and all concepts cargj ∈ argj (i ̸= j), i.e., the concepts mentioned in the
other argumentative unit. (ii) Select top-k paths: We then collect all shortest paths between
the remaining concepts (of length ≤ 4 hops). We rank each node in the path with closeness
centrality Bavelas (1950) scores. We select the top-k paths that connect any pair of filtered
concepts carg1 ∈ arg1 and carg2 ∈ arg2, which we denote as Selected Knowledge Paths
(SKP).

Lexical Knowledge WordNet2 Miller (1995) is a widely used lexical resource. It defines
the meaning of words and their relations for English. We employ WordNet’s lexical knowl-
edge by mapping each lemmatized token from the AUs to the WordNet graph, selecting the

2https://wordnet.princeton.edu/
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most frequent sense. We extract its SYNONYMS and sense definition. We denote WordNet
knowledge as WN and knowledge acquired from WN as Lexical Knowledge LK.

A.1.3 Injecting Knowledge for ARC

We leverage commonsense knowledge for the ARC task from three sources: structured knowl-
edge from ConceptNet via Selected Knowledge Paths (SKP) and Enriched Knowledge (EK),
and unstructured Lexical Knowledge (LK) from WordNet. SKP, EK and LK (SYNONYMS &
Definitions) can all be represented as sets of (multi- or single-hop) paths p1:l, i.e., sequences
(of length l) of nodes (concepts) and edges (relation types). For LK, each path p1:l consists
of the sequence of words from the sense definition of word w.3

Encoding Layer We use a single-layer BiLSTM to obtain encodings (hk,i) for each knowl-
edge path (hk the encoded knowledge path, i the path index).

Attention Cell We define a cell that allows the model to attentively encode the knowledge
paths (see Figure A.2). We use an attention layer, where each encoded knowledge path
interacts with the argument representations xarg (A.4) (to receive attention weights (ĥk,i)
from (A.5). In (A.5) we use sigmoid to calculate attention weights,

xarg = [xarg1
i ;xarg2

i ;xarg1
i − xarg2

i ] (A.4)

h̃k,i = σ(xarghk,i), ĥk,i =
h̃k,i∑N
i=1 h̃

k,i
(A.5)

To obtain the argument-aware commonsense knowledge representation xk
i , we pass the

output of the attention layer through a feedforward layer. Wk, bk are trainable parameters.

xk
i = ReLU(Wk(

N∑
j=1

ĥk,jhk,i) + bk) (A.6)

oi = sigmoid(Wz[x
arg
i ;xk

i ] + bz) (A.7)

To distill the selected and weighted knowledge into the model, we concatenate the
argument xarg

i and the knowledge xk
i representation and process it by a dense layer (Eq. A.8),

with ⊙ element-wise multiplication, bỹz and Wỹz trainable parameters, yi from Output Layer.

3We use the most frequent sense of w, as defined in WordNet. We embed each path pk,i1:l with pretrained
GloVe Pennington et al. (2014) embeddings (k ∈ {SKP, EK, LK}).
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Then, a sigmoid gate helps the model select when to incorporate knowledge xk
i (Eq. A.8).

zi = softmax(Wỹz(oi ⊙ yi + (1− oi)⊙ xk
i ) + bỹz) (A.8)

We finally pass the representation to a softmax classifier to form a probability distribution
over the two classes attack and support.

A.2 Experiments

4.1. Data There is are only few datasets for the ARC task. We use these two datasets:4

Student Essays. This well-established dataset comprises argumentative essays in English
written by students. We use the extended v.02 with 402 essays Stab and Gurevych (2017). An
issue with this data is that many of the relations can be easily identified by observing shallow
discourse clues (however, moreover). Therefore, we we use the more difficult content-based
setup Opitz and Frank (2019), where the relations between argumentative units have to be
determined without looking at the textual discourse context of unit clauses.

Debatepedia The Debatepedia website5 collects user-generated debates that each contain
several arguments in favor of or opposed to the debate’s topic. Topics are usually formulated
as polar questions. Cabrio and Villata (2012)

created a small dataset from Debatepedia consisting of 200 pairs of topics (questions)
and associated pro vs. con arguments, as well as further dependent pairs of pro and con
arguments among each topic. But the pairing of coherent pro and con arguments is difficult to
establish automatically. We thus restrict ourselves to pairs of directly connected questions and
pro/con arguments. To construct high-quality data, we manually reformulate the questions to
statements. If an argument is in favor of the debated topic, the claim supports the topic. Else
it attacks it.

4.2. Linear Classifier Baseline Among other text classification tasks, linear SVMs have
been successfully applied to ARC Pradhan et al. (2005); Kim (2014); Stab and Gurevych
(2017); Aker et al. (2017).

Next to our neural system we thus implement an SVM model w/ and w/o knowledge
enhancement. Below we describe text classification features used by our baseline SVM and

4Below we summarize the data statistics:
Student Essay train: 2803 / 273 (support / attack) dev: 1017 / 132 (support / attack)
Debatepedia train: 3240 / 3251 (support / attack) dev: 1121 / 1042 (support / attack)

5Debatepedia: http://www.debatepedia.org

http://www.debatepedia.org
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explain ways of modeling and abstracting the knowledge paths to make them accessible for
the SVM.
Text features. We feed the SVM a concatenation of the uni- and bigram (TF-IDF) repre-
sentation of (i) source, (ii) target and (iii) the text overlap of source and target. We also
concatenate averaged GloVe vectors to the bag-of-words feature representation; the vectors
are separately averaged over (i), (ii) and (iii). We further concatenate to the vector the
element-wise subtraction and multiplication of the averaged source from the averaged target
GloVe vector, to model the argumentative relation as a directional vector.
Modeling paths as features. We investigate whether the extracted and selected knowledge
paths (SKP) can improve the SVM classifier. But encoding paths is not straightforward for
an SVM compared to encoding sequential paths with a recurrent NN. We thus apply the
following steps: we represent every selected path as the mean vector of the token-wise GloVe
vectors in a path. We then retrieve different path selections, e.g., the mean vector of all
paths or the path-vector with the maximum and minimum norm. To determine the optimal
selection jointly with the optimal SVM margin, we run a greedy hyper-parameter search on
the development data. Details will be provided with the code.

4.3. Training Details Objective During training we minimize the cross-entropy loss
between the predicted and the actual distribution. We use Adam optimizer (Kingma and
Ba, 2014) with an initial learning rate of 0.001, and batch size of 8/32 for Student Es-
says/Debatepedia. We use pretrained GloVe (Pennington et al., 2014), ELMo (Peters et al.,
2018) embeddings, a hidden size of 100 for all Dense Layers and L2 regularization with λ =
0.01. We use k = 3 for selecting top-ranked paths. For filtering the number of concepts with
personalized page rank we use n ≤ 5 concepts per AU. Metrics We report macro-averaged
Precision (P), Recall (R), F1 scores.

A.3 Results

We examine 8 different systems: random baseline guesses labels according to the training
data label distribution. SVM is a knowledge-agnostic linear classifier baseline. When we
add selected knowledge paths via aggregation features, we denote this as SVM+CN and as
SVM+CWN (for the latter (+CN) extended with WordNet). BiLSTM is a neural knowledge-
agnostic baseline and Bi-ATT denotes the BiLSTM with self- and co-attention (see Fig. A.2
w/o Attention Cell and Sigmoid Gate). By further enriching Bi-ATT with knowledge paths
through the Attention Cell, we obtain our main model: ARK (again in different varieties:
+CN, etc.).
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Student essays Debatepedia
Model WE P R F1 P R F1

(1) random - 49.68 49.66 49.65 50.04 50.03 50.01
(2) BiLSTM G300d 53.53 52.89 53.13 55.67 55.68 55.63

(3) KOB2019 G300d 52.79 51.85 52.05 (2) ✗ 58.06 57.75 57.04 (2) ✓

(4) KOB2019 ELMo 55.72 53.16 54.37 (2) ✓ 59.16 59.17 59.11 (2) ✓

(5) SVM G300d 54.11 52.59 52.95 54.73 54.71 54.52
(6) SVM + CN G300d 54.11 54.23 54.17 56.12 56.00 55.58

(7) SVM + CWN G300d 55.80 56.38 56.06 (5, 3) ✓ 56.60 56.57 56.37 (5) ✓(3) ✗

(8) Bi-ATT G300d 54.46 53.31 53.70 56.20 56.19 56.18
(9) ARK + WN G300d 57.68 55.71 56.44 57.49 57.48 57.48
(10) ARK + CN G300d 57.64 57.71 57.67 57.38 57.25 57.31

(11) ARK + CWN G300d 60.70 55.55 58.03 (8, 3) ✓ 58.78 58.43 58.60 (8, 3) ✓

(12) Bi-ATT ELMo 56.44 54.77 55.16 59.10 59.08 59.09
(13) ARK + WN ELMo 57.13 56.26 56.69 63.00 62.70 62.85

(14) ARK + CN ELMo 59.13 58.68 58.89 (12) ✓ 63.64 63.45 63.50 (12) ✓

(15) ARK + CWN ELMo 63.43 55.90 59.43 (12, 4) ✓ 63.72 63.65 63.69 (12, 4) ✓

Table A.1 Classification results. Bi-ATT BiLSTM+Attention model, ARK = ARC model
+ Knowledge, where CN = ConceptNet; WN = WordNet; Superscripts mark significant
improvement ✓ or not ✗ of the result relative to the model the index names.

Table A.1 reports our experiment results in averaged scores over five runs. Our models
enhanced with knowledge (including SVM) perform significantly better (p< 0.05) compared
to their baselines, and similarly for ARK+CWN vs. KOB2019.

Knowledge helps The results show that adding selected knowledge to any of our baseline
models improves their overall performance on both datasets and for both types of embed-
dings. Our full model ARK profits most from the added knowledge when compared to its
knowledge-agnostic counterpart Bi-ATT (using ELMo: +4.27 pp. (percentage points) macro
F1 in Student essays; +4.6 in Debatepedia; when using GloVe: +4.33 pp. in Student essays;
+2.42 in Debatepedia). This finding not only applies to the global F1 metric, but also to
macro Precision and Recall: we obtain considerable gains in Recall on Student essays of
over 4 pp., i.e., a relative increase of more than 8%. Deeper analysis in §6 will show that
knowledge helps especially for classifying rare attack-examples. We compare our knowledge
representation and extraction method with the method in Kobbe et al. (2019). We empiri-
cally show that across two datasets and different embeddings we gain +4 F1 (on average)
improvement. Knowledge also helps the linear SVM baseline (SVM vs. SVM+CN/+CWN).
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For both datasets we see gains. Adding only knowledge from ConceptNet improves over
SVM by +1.22 pp. macro F1 in Student essays; +1.06 in Debatepedia. With access to the full
knowledge we observe a more notable gain: +3.11 pp. macro F1 in Student essays; +1.85
pp. in Debatepedia (SVM+CWN). The fact that a linear classifier profits less from added
knowledge compared to the neural system (Bi-ATT vs. ARK) is expected: the knowledge
paths are sequential and thus easier to model with recurrent computations of the neural model.
When computing path aggregates to make knowledge paths accessible for the SVM, we lose
important structural information.



Appendix B

COINS: Story Ending Generation Task

SEG task. We also investigate how COINS performs when applied to the task of generating
a story ending when given a 4-sentence story (SEG). In this task our model takes only one
iteration step to generate the story ending, where in the inference step it generates EFFECT

inference rules for sentence (s4).

Dataset Train Dev Test

SEG 90,000 4,080 4,081

Table B.1 Dataset Statistics: nb. of unique stories

Data. This task is to generate a reasonable ending given a four-sentence story context Guan
et al. (2019). The stories are from ROCStories Mostafazadeh et al. (2016). We use the same
data splits as Guan et al. (2019).

Automatic Metrics. For Story Ending Generation (SEG) we follow the metrics used in
Guan et al. (2019); Ji et al. (2020): they use BLEU-1/2 to measure n-gram overlap between
generated and human-written story endings, and Distinct-n Li et al. (2016b) to measure the
generation diversity using maximum mutual information.

Baselines. For the Story Ending Generation task, we compare COINS to the IE+GA model
Guan et al. (2019). It is based on incremental encoding and multi-source graph attention
Guan et al. (2019). We also compare to a Seq2Seq model Luong et al. (2015) based on gated
recurrent units (GRU) and attention mechanism.
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Model BLEU-1/2 (↑) Distinct-2/3 (↑)

Seq2Seq† 19.1 / 5.5 0.181 / 0.360
IE+GA† 20.8 / 6.4 0.140 / 0.280
GPT† 25.5 / 10.2 0.304 / 0.505
GPT2-OMCS† 25.5 / 10.4 0.352 / 0.589
GPT2-GLUCOSE 25.6 / 10.2 0.361 / 0.609
GRF† 26.1 / 11.0 0.378 / 0.622
COINS (GR) 27.4 / 12.3 0.428 / 0.724
COINS (Oracle) 41.80/28.40 0.479/0.786

Table B.2 Result: Automatic evaluation results on the Story Ending Generation Task, † Ji
et al. (2020)

Result. In Table B.2, we observe that the COINS model outperforms all previous strong
baselines, including GPT2-GLUCOSE that uses the same knowledge resource. Interestingly,
we also observe that fine-tuning on GLUCOSE or ConceptNet knowledge improves the
text generation diversity, indicating that the models leverage concepts and event knowledge
during generation (cf. Table B.2 line.4-8).



Appendix C

Data Management

The heiDATA repository available at heiDATA/AIPHES contains the code for reproducing
experiments presented in this thesis.

Resources for Chapter 4. The heiDATA repository and the instruction to run the code
available at Readme contains the code for reproducing experiments presented in Chapter 4
and the corresponding NAACL-HTL paper (Paul and Frank, 2019). In particular,

• To construct the ConceptNet graph, run the code conceptnet2graph.py

• To constrcut the subgraph per sentence, run the code make_sub_graph_server.py

• To extract relevant knowledge path, run extract_path.py

• To train the MHKA model, run run_experiment.sh

Resources for Chapter 5. The heiDATA repository available at Readme contains the code
for reproducing experiments presented in Chapter 5 and the corresponding StarSem paper
(Paul and Frank, 2021b). In particular,

• To create the counterfactual data, run the code create_counterfactual_-

data.py

• To run the unsupervised script and get the Bert score, run the code get_bert_-
score.py

https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/C56QUV
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/4PPMLH&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/82LELD&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/CS2PMZ&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/MW7Q56&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/GSQMRU&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/YG8KPV&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/SD4YW7&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/SD4YW7&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/BQLBCY&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/BQLBCY&version=1.0
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Resources for Chapter 6. The heiDATA repository available at Readme contains the code
for reproducing experiments presented in Chapter 6 and the corresponding EMNLP, Findings
paper (Paul and Frank, 2020). In particular,

• To extract the basic structure who did what to whom, when and where from each
sentence in the context, we use SRL code from AI2.

• To generate commonsense knowledge for each events, run the code run_gener-
ate.sh

• To train the MHKA model run the code run_multiple_choice_know.py

Resources for Chapter 7. The heiDATA repository available at Readme contains the code
for reproducing experiments presented in Chapter 7 and the corresponding ACL paper (Paul
and Frank, 2021a).

• To train and evaluate the COINS framework, run the script run_train.sh and
run_test.sh respectively.

https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/9QFV2Q&version=1.0
https://docs.allennlp.org/models/main/models/structured_prediction/predictors/srl/
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/MS0JF7&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/MS0JF7&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/KWOWIB&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/MQE9TY&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/8WAGVK&version=1.0
https://heidata.uni-heidelberg.de/file.xhtml?persistentId=doi:10.11588/data/C56QUV/M56HRO&version=1.0
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