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Elastic phase field approach for modelling cell mechanics and
mechanotransduction

Biological cells constantly sense and adapt to the mechanical properties of their en-
vironment. While traditionally the cytoskeleton has been considered to be the prime
determinant of cell mechanics, more recently it has been shown that the nucleus is also
an essential element. In this thesis, we propose continuum models to investigate the
effect of nuclear rigidity on whole-cell elasticity, the mechanosensitive accumulation of
proteins in the nucleus as well as the formation of thick cytoskeletal filament bundles,
so-called stress fibres. These aspects are modelled using a diffuse interface approach,
the phase field method, coupled to standard elasticity theory and are numerically solved
by a combination of spectral and matrix methods. First, we demonstrate the applica-
bility of the approach to standard biological situations of single cells and cell monolay-
ers without internal structures. We than extent it for single cells to include a nucleus
and illustrate that nuclear mechanics has important implications on the mechanical re-
sponse of cells for a selection of relevant situations. Combining this method with a
reaction-diffusion system, we propose a model that shows that nuclear rigidity affects
nuclear protein import. Lastly, we present a continuum model for the mechanosensi-
tive formation of stress fibres by coupling a dynamic nematic order parameter tensor,
as suggested by liquid crystal theory, to the elastic phase field method. This combined
model can qualitatively capture prominent experimental observations. In conclusion,
we developed a versatile continuum framework that can describe and quantify several
important effects of mechanobiology.





Elastische Phasenfeldmethode zur Modellierung von Zellmechanik und
Mechanotransduktion

Biologische Zellen nehmen ständig die mechanischen Eigenschaften ihrer Umgebung
wahr und passen sich diesen an. Während traditionell das Zytoskelett als bestimmend
für die Zellmechanik angesehen wurde, hat sich in jüngster Zeit gezeigt, dass auch der
Zellkern ein wesentliches Element ist. In dieser Arbeit schlagen wir Kontinuumsmod-
elle vor, um die Auswirkung der Zellkernsteifigkeit auf die Elastizität der ganzen Zelle,
die mechanosensitive Anreicherung von Proteinen im Zellkern sowie die Bildung von
dicken Filamentbündeln des Zytoskeletts, sogenannten Stressfasern, zu untersuchen.
Diese Aspekte werden mit der Phasenfeldmethode modelliert, welche an die lineare
Elastizitätstheorie gekoppelt ist. Die Modellgleichungen werden numerisch durch eine
Kombination aus Spektral- und Matrixmethoden gelöst. Wir demonstrieren die An-
wendbarkeit dieser Methode auf biologische Standardsituationen von Einzelzellen und
Zellmonoschichten ohne interne Strukturen. Anschließend erweitern wir die Meth-
ode für Einzelzellen um einen Zellkern und zeigen für eine Auswahl relevanter Situa-
tionen, dass die Kernmechanik wichtige Auswirkungen auf die mechanische Reaktion
von Zellen hat. Dieses Modell kombinieren wir mit einem Reaktions-Diffusions-System
und schlagen so ein Modell vor, das zeigt, dass die Kernsteifigkeit den Import von Pro-
teinen in den Zellkern beeinflusst. Schließlich stellen wir ein Kontinuumsmodell für
die mechanosensitive Bildung von Spannungsfasern vor, indem wir einen dynamis-
chen nematischen Ordnungstensor, wie er von der Flüssigkristalltheorie vorgeschla-
gen wird, mit der elastischen Phasenfeldmethode koppeln. Dieses kombinierte Mod-
ell kann prominente experimentelle Beobachtungen qualitativ erfassen. In Summe,
haben wir eine vielseitiges Kontinuumsmethode entwickelt, mit dem wichtige Effekte
der Mechanobiologie beschrieben und quantifiziert werden können.
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1 Introduction

Animal cells constantly interact with their environment to collect information on it and
to rapidly react to changing physiological conditions. One important aspect are the
material properties of the cellular surrounding. Force production by the cell itself and
transmission of these forces to the outside allow it to sense the mechanical characteris-
tics of the environment. The conversion of these mechanical stimuli into biochemical
signals, termed mechanotransduction, then triggers adequate cellular responses.

A plethora of biological processes on a single cell and tissue scale are highly depen-
dent on this informational pathway, like development, organogenesis and migration of
immune cells, metastatic cancer cells or epithelial cells in wound healing. The correct
perception of and adaptability to mechanical cues by individual cells and cell collectives
scales up to be vital for complex multicellular organisms such as the human body with
its approximately 1013 cells [1]. Dysfunctions often result in diseases and the progres-
sion of malignancies, which can ultimately lead to death [2].

Although more light has been shed on the role of cell and environmental mechanics
in various biological processes, many questions still remain unanswered. In particular,
how individual cellular substructures impact whole-cell rheology. It is nowadays well-
known, that the main determinant of cell mechanics is the cytoskeleton, a highly cross-
linked but dynamic polymer network, giving the cell stability while at the same time
allowing a fast cellular reaction to the outsideworld. Nevertheless, certain aspects of the
mechanisms guiding the formation of thick contractile polymer bundles, called stress
fibres, and their mechanical feedback within a cell, are still not fully understood.

Over the last years, the mechanics of a second cellular structure has attracted a lot
of attention: the cell nucleus. Due to its prominent role as the container of a cell’s
genetic information, nuclear influence on whole-cell mechanics has been overlooked
for a long time. However, there is an increasing amount of evidence of a dramatic impact
of the nucleus on cellular mechanical responses. Additionally, the discovery of physical
connections between the cytoskeleton and the nucleus enabling direct transmission of
mechanical stimuli to the gene expression machinery [3–5] manifests that cell rheology
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1 Introduction

and associated reactions cannot be considered without this cellular compartment.
Recently, it has also been shown that nuclear deformations and arising tensions are

involved in the opening of nuclear pores [6, 7], facilitating the influx of transcription-
ally active proteins into and out of the nucleus; a major ingredient in mechanotrans-
duction [8, 9].

Despite the thriving number of evidence for the biological and physical significance
of the nucleus, models regarding whole-cell mechanics that specifically account for
nuclear mechanical properties are still rare, often due to the lack of suitable theoretical
modelling frameworks.

In this thesis, we aim to contribute a versatile modelling approach for cell mechanics,
including internal cell structures, in stationary as well as dynamic situations. Our mod-
elling framework of choice is the so-called phase field method, an efficient approach for
treating deformable and/or moving boundary problems. We use a formulation able to
describe full (reversible) elasticity and show its application to the cases of single cells
and cohesive cell monolayers [10]. Further, we incorporate an elastic nucleus, studying
its effect on whole-cell mechanics and the implications of associated nuclear straining
on the spatio-temporal transport of molecules through the nuclear boundary. Lastly, we
consider the mechanosensitive reorganization of the cytoskeleton, especially regarding
the formation of stress fibres and their feedback on cell elasticity.

Outline of the thesis

In Chapter 2, the biological background on the structural mechanics of cells is pre-
sented, by introducing the cytoskeleton and the nucleus. The three major polymeric
structures of the cytoskeleton (actin cytoskeleton, intermediate filaments and micro-
tubules) are discussed, with focus on the actin cytoskeleton. Especially stress fibres
as distinct mechanical elements in cells will be of importance in one of the projects
discussed later.

Regarding the nucleus, the composition of its envelope and interior are outlined.
Here, the structure of nuclear pore complexes (NPCs) and the protein transport mech-
anism through them is of special interest.

Following the biological background, we give an overview on the theory of contin-
uummechanics, specializing to linear elasticity, which provides the theoretical basis for
describing cell deformations.

Chapter 3 introduces the phase field approach, a diffuse interface method, used for
modelling the problems of interest throughout this thesis. The idea of interface-based
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1 Introduction

methods and the basics of the phase field method are presented.
Next, in Chapter 4, we continue with the presentation of our developed reversible

elastic phase field approach [10]. First, we explain why the standard formulation of
coupling phase field dynamics and elasticity is not able to describe elastic reversibility.
This means, when a deforming force is removed from a modelled elastic object, the
deformation does not go back and the object does not return to its undeformed reference
state. We then present an alternative approach in two-dimensions, which accounts
for this reversibility, and apply it to paradigmatic geometries for single cells and cell
monolayers, both to verify the correct description of elasticity and for demonstrating
its applicability.

In Chapter 5, we propose a two-phase field approach, extending the one of Chap-
ter 4 for modelling elastic cells with an internal compartment representing the nucleus.
Using analytical solutions, we again verify that this approach correctly describes elas-
tic behaviour. Subsequently, we examine the mechanical effect of an elastic nucleus in
a selection of biologically highly relevant situations and experimental setups, ranging
from spread cells in varying adhesion geometries to the description of cell compression
between two plates and micropipette aspiration. For the latter two, the model is used
to extract effective moduli of the cell-nucleus composite.

Complementing the model from the previous part, Chapter 6 focuses on modelling
the nucleocytoplasmic import of proteins in mechanically strained cells. Here, a sys-
tem of reaction-diffusion equations is employed and coupled to the elastic phase field
method in order to model mechanosensitive protein import into the nucleus. The sen-
sitivity of the transport process to nuclear rigidity is explored for spread cells.

Chapter 7 shifts the focus from the nucleus to the cytoskeleton. Here, a continuum
theory for nematic liquid crystals is used to describe the cytoskeletal reorganization and
the formation of stress fibres in response to stress. We model contractile cells adhered
to well-defined geometries and show that the presented continuum approach captures
qualitative experimental observations regarding the assembly of stress fibres, i.e. the
regions of their occurrence and alignment direction. Further, a mechanical feedback of
those structures on the elastic properties of the cell are included.

We close inChapter 8with a general discussion and prospects on further interesting
applications.
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2 Structural mechanics of cells

Cell mechanics and a cell’s ability to sense environmental mechanical properties allow
a cell to adequately respond to its surrounding, which is essential in a large number
of biological processes. Substrate stiffness has been shown to influence the spreading
behaviour of cells, evoking larger spread areas on stiffer substrates [11–13]. Migratory
cells are guided by the properties of their environment [14], e.g. tending to move in
the direction of increasing stiffness, a phenomenon termed durotaxis [15–17]. Further-
more, cells are known to adapt their stiffness to the rigidity of their environment [18,
19], which is also observed in the differentiation of stem cells [20, 21]. Having different
mechanical characteristics than the environment may also be advantageous for cells.
Special cell types, like migratory immune and cancer cells, respond to increased con-
finement by softening to facilitate their migration through constrictions [22], making
cellular stiffness a marker for determining the malignancy of cancer cells [23].

The importance of the interplay between cells and their neighbourhood extends to
tissues, where organogenesis [24], tissue homeostasis [25] and collective cell migration
in wound healing [26, 27] are to a high degree mechanically driven and organized [28,
29].

What determines cellular mechanics? The interior of a cell is a highly heterogeneous
and crowded environment, containing many different structures and an elusive number
of proteins [1]. Three of these structures have a major influence on cellular mechanical
properties and the process of mechanotransduction1: the cell plasma membrane, the
cytoskeleton (a cross-linked polymer network) and the nucleus (containing the genetic
information of a cell). The cell plasmamembrane is a 4 nm thick [1] phospholipid bilayer
containing many proteins and which separates the interior of the cell from the outside
world [30]. As the outer envelope, it determines the volume and surface area of a cell.
The plasmamembrane affects cell mechanicsmostly indirectly by guiding the formation
of a mechanically stabilizing cytoskeletal cortex beneath it, which encloses the entire

1Mechanotransduction means the conversion of mechanical stimuli into biochemical information, pos-
sibly triggering a cellular response.
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2 Structural mechanics of cells

cell [31]. Main determinants of cellular rigidity are the cytoskeleton and the nucleus.
Out of this relevance, an overview on both is given in this chapter.

2.1 The cell cytoskeleton

Cellular rigidity stems primarily from a stiff but at the same time dynamic polymer
network spanning the entire cell: the cytoskeleton [32, 33].

It consists of threemajor polymeric substructures formed by actin filaments, interme-
diate filaments andmicrotubules (cf. Fig. 2.1). Their distinct physical and chemical prop-
erties are used by a cell to perform specialized tasks. Nevertheless, all three subsystems
are highly interconnected and mutually influence each other [32, 34]. The cytoskeleton
not only ensures the stability and integrity of cells and tissues under mechanical load,
but also permits cells to exert forces, central to processes like mechanosensing, cell di-
vision or migration [32, 33, 35, 36]. Polymerization of cytoskeletal filaments can induce
pushing forces, while their depolymerization and interplay with specific molecular mo-
tors can result in pulling forces [37]. Additionally, its reorganization capacity adjusts
cell shape and mechanics to the properties of the extracellular environment [38–42].

In this section, we will provide an overview on the cytoskeletal substructures, partic-
ularly focusing on the actin cytoskeleton, which is the most relevant one in our context.
Further information can be found in the literature this section is based on: for books
and reviews on the cytoskeleton see Refs. [30, 32, 33, 37]; specialized reviews on actin
filaments are Refs. [36, 43, 44]; for intermediate filaments see Refs. [45–47] and for
microtubules see Refs. [48–51].

2.1.1 Actin cytoskeleton

The actin cytoskeleton is a generic term for different intracellular structures formed
by so-called actin filaments, organized into networks and linear filament bundles (cf.
Fig. 2.2) [30, 32]. Cell mechanics is mainly determined by the actin cytoskeleton, which
is also central to cellular force generation [36, 43].

The basic subunit of actin filaments is the globular and polar protein actin (G-actin)
[30]. Binding via non-covalent interactions, the actin monomers polymerize into two
protofilaments wound around one another in parallel into a right-handed helix [30].
The resulting actin filament (also filamentous actin or F-actin) has a diameter of around
7 nm [30] (cf. Fig. 2.1 B left).
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2.1 The cell cytoskeleton

Figure 2.1: A Sketch of the three major polymeric substructures of the cell’s cytoskeleton:
actin filaments (left), intermediate filaments (middle) and microtubules (right). Actin filaments
are organized into a highly cross-linked network (actin cortex) enveloping the whole cell and
into thick bundles of filaments (stress fibres). Intermediate filaments are flexible polymers form-
ing a network within the cell. Microtubules are very stiff, rod-like polymers originating at the
microtubule-organizing centre (centrosome in orange). B Depiction of the molecular struc-
ture of the three cytoskeletal polymer types with their typical diameters. C1 Super-resolution
STORM microscopy image of the actin cytoskeleton (red), clearly showing the cortical network
and thick stress fibres visible as bright, straight lines. C2 Fluorescence microscopy image show-
ing actin (red), intermediate filaments (green) and the nucleus (blue). C3Microtubule structure
(green) observed during mitosis. This so-called mitotic spindle is anchored to chromatids and
separates them during cell division. Panel A adpated from [34]; Panels in B adapted from [30];
C1 taken from [52]; C2 taken from [53]; C3 adapted from [54].
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2 Structural mechanics of cells

Polymerization of actin is a non-equilibrium process [37], which is energetically fu-
elled by the hydrolysis of G-actin bound adenosine triphosphate (ATP) into adenosine
diphosphate (ADP) during monomer association [30]. This lowers the binding affinity
of G-actin, enabling a rapid assembly and disassembly of actin filaments [30]. In fact,
the actin cytoskeleton can be reorganized by filament turnover on the time scales of
minutes [35, 55].

As a consequence of the polarity of the monomers, actin filaments are also polar,
whichmanifests itself in two structurally different ends: a fast growing plus (barbed) end
and a slower growingminus (pointed) end [30]. When encountering a barrier, extending
F-actin can exert pushing forces on the order of pN [1]. Filament growth can be stopped
by capping proteins binding to the filament ends, inhibiting further monomer addition.

In the context of polymer mechanics, the resistance to bending is important and can
be quantified by the persistence length 𝑙𝑝 .2 For actin 𝑙𝑝 ≈ 10 µm [1], making it semiflex-
ible on the scale of a cell.

Actin networks

In cells, actin filaments are assembled into branched (partially aligned) networks or
non-aligned networks, via a variety of cross-linking proteins connecting neighbouring
filaments [44].

Most animal cells posses a thin and dense F-actin meshwork beneath the cell plasma
membrane, also being physically connected to it, which wraps the whole cell [31]. This
actin cortex has a thickness of tens to hundreds of nanometers, depending on the cell
type, cell cycle stage as well as the actual adhesion geometry [31]. Cross-linkers such as
filamin and non-musclemyosin II motor proteins provide physical connections between
adjacent filaments in the generally non-aligned network [44].

Myosin II motors perform mechanical work by converting chemical energy in form
of ATP [37]. Upon ATP consumption and hydrolysis, they move along actin filaments,
sliding cross-linked and antiparallel aligned polymers against each other, leading to
an effective contraction of the system and putting the cortex under tension. This cell
contractility enables the cell to generate pulling forces [37]. In addition, the actin cortex
is mainly responsible for cellular rigidity.
2The persistance length 𝑙𝑝 measures the distance over which orientational correlations between sub-
units of the polymers are lost due to thermal fluctuations. Defined as 𝑙𝑝 = 𝐸𝐼/𝑘𝐵𝑇 , it is linearly related
to the Young’s modulus (stiffness) 𝐸 of the polymer, with area moment of inertia 𝐼 , Boltzmann con-
stant 𝑘𝐵 and temperature 𝑇 [56]. The product 𝐸𝐼 is the bending stiffness. Due to the above relation,
𝑙𝑝 is commonly used as a measure for polymer flexibility.
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2.1 The cell cytoskeleton

During cell motility, the formation of a quasi-two dimensional planar network in the
direction of migration, i.e. the leading edge of the cell, is initiated [30]. This so-called
lamellipodium has a branched structure evoked by another important cross-linking pro-
tein, namely the actin related protein 2/3 complex (Arp2/3 complex) [30]. Binding to
the side of an already present filament, it initiates the nucleation of a new one at an
angle of 70◦ to the mother filament [44]. The pushing forces generated at the cell mem-
brane result in the formation of a characteristic protrusion. Capping proteins regulate
the polymerization dynamics [44]. The different association and dissociation rates at
the ends of the actin filaments effectively transport the meshwork of the lamellipodium
from the cell periphery towards the centre of the cell, where it depolymerizes, allowing
a recycling of actin monomers at the leading edge. This phenomenon is known as ret-
rograde flow [30]. Cell locomotion is the outcome of the interplay of the actin polymer-
ization dynamics in the lamellipodium with intermingled myosin II motors and force
transmission to the extracellular surrounding via adhesive connections [57].

Actin bundles - Stress fibres

In addition to these networks, actin can be organized into more discrete bundle-like
structures. At the cell periphery, a small number of filaments bundled by fascin form
filopodia; small finger-like protrusions with which a cell explores its vicinity [30].

Cells can also assemble thick actin bundles, also called stress fibres [58–63]. They con-
sist of 10 to 30 highly aligned filaments, mainly tied together by 𝛼-actinin and myosin
II minifilaments [60]. The diameter of these fibres is on the order of several hundred
nanometres with intrafilament distances of around 35 to 50 nm, depending on the di-
mensions of the cross-linking proteins [62].

Three main classes of actin bundles can be distinguished: ventral stress fibres, dorsal
stress fibres and transverse arcs (cf. Fig. 2.2 A) [58, 59, 61–63]. Their distinction is based
on the number of fibre ends attached to the extracellular environment via so-called focal
adhesions (cf. Sect. 2.1.3), their molecular structure and also location in the cell [58, 59,
61].

Ventral stress fibres are at both ends attached to a substrate and consist of anti-
parallel aligned actin filaments. They display a periodic pattern of 𝛼-actinin andmyosin
II, where the activity of the latter renders them contractile. These fibres can be poly-
merized from scratch at adhesive spots, i.e. their latter attachment points. Some ventral
stress fibres span over the nucleus and are called perinuclear actin caps, constituting a
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2 Structural mechanics of cells

Figure 2.2: A The actin cytoskeleton is organized in different structures ranging from the lamel-
lipodial and cortical networks to filament bundles like filopodia and various kinds of stress fibres.
Some stress fibres can even span over the nucleus (in dark grey). These are called perinuclear
caps. B1-B4 Sketches of the different actin filament structures and the forces they are experi-
encing (compressive forces as red arrows and tensional forces as green arrows). B1 Branched
actin network as encountered in the lamellipodium of a migrating cell. The filaments are cross-
linked by Arp 2/3. Upon encountering a barrier, such as the cell plasma membrane, the growing
filaments lead to its protrusion and experience compressive forces due to mechanical resistance
of the membrane. B2 Filopodia are thin filament bundles cross-linked by fascin. When growing
against the plasma membrane, they lead to slender protrusions, facing compressive forces. B3
The actin cortex is located beneath the cell membrane and consists of non-aligned filaments
interconnected via proteins like filamin and myosin II motors. The activity of the latter puts
the network under tension. B4 Stress fibres consist of highly aligned actin filaments bundled
by 𝛼-actinin and myosin II minifilaments. Stress fibres containing myosin II motors encounter
tensional forces. Panel A adapted from [55] and panels B1-B4 adapted from [32].

subtype of ventral stress fibres [63].3 Perinuclear actin caps have been shown to con-
trol the shape of the cell nucleus mediated by physical connections, so-called LINC
complexes [4], transmitting forces to the nucleus (cf. Sect. 2.2.1) [5, 65]. This makes
perinuclear actin caps crucial in the context of mechanotransduction.

Dorsal stress fibres primarily assemble at the leading edge of a migrating cell [60].
They are only with one end connected to a focal adhesion and extend into the cell inte-
rior, generally rising with their free end towards the upper cell surface (dorsal surface).
In contrast to ventral stress fibres, they consist of parallel aligned actin filaments and
do not contain myosin II motors, which makes them non-contractile.

The third member of the stress fibre family, transverse arcs, are not anchored di-
3Recently, Lehtimäki et al. [64] observed actin bundles, with a structure reminiscent to ventral stress
fibres, forming predominantly beneath the nucleus. They suggested that these are a new type of actin
bundles, which they named cortical stress fibres.
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2.1 The cell cytoskeleton

rectly to the ECM. Instead, they are connected to dorsal stress fibres, mediated by the
cross-linker Arp2/3. With a similar molecular structure as ventral stress fibres, i.e. anti-
paralell actin filaments and a periodic 𝛼-actinin-myosin II pattern, transverse arcs are
contractile filament bundles. However, the generated forces are transmitted to the en-
vironment via the dorsal stress fibres and their focal adhesion points. Transverse arcs
form at the leading edge of migratory cells and are transported towards to the cell centre
by the growing dorsal stress fibres and the retrograde flow. Furthermore, these F-actin
bundles are important for assembling new ventral stress fibres, as several transverse
arcs can associate with a dorsal stress fibre to form a ventral one [66].

Mechanically, stress fibres are one of the most rigid structures within the cell with
a tensile stiffness up to the MPa-range [67]. In general, their rigidity is limited by the
load-bearing capacity of the cross-linking proteins, leading to a lower rigidity compared
to single actin filaments [68]. Nevertheless, being multi-stranded makes them more
stable against bending and breaking [37]. Their primary purpose is the absorption of
mechanical stresses and the exertion of forces due to their internal tension. Actin stress
fibres associated with focal adhesions have been shown to generate stresses of up to
5.5 pN/µm2 [69].

In general, stress fibres assembly is a mechanosensitive process promoted by the pro-
tein RhoA regulating actin polymerization [70]. RhoA further promotes the activity of
ROCK, which in turn stimulates myosin II motor activity [71] by mediating the phos-
phorylation of the myosin light chain (MLC) [58]. The latter drives focal adhesion and
stress fibre assembly [70].

Although it appears that actin networks and bundles are separated structures, it has
recently been demonstrated that they are highly connected and that stress fibres may
even form out of the cortex by filament bundling [52].

2.1.2 Microtubules and intermediate filaments

Besides to the already complex actin cytoskeleton, cells posses subsystems of interme-
diate filaments and microtubules (cf. Fig. 2.1). In addition to their specific tasks, they
also contribute to cellular morphology, mechanical properties and mechanosensing.

Microtubules

Microtubules are long and hollow cylinders, with outer and inner diameters of 25 nm
and 17 nm, respectively [48, 49]. Due to their structure and persistence length of 𝑙𝑝 ≥ 1 mm
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2 Structural mechanics of cells

[1, 32, 48], they are the stiffest of all three cytoskeletal filament types [48].4 Their me-
chanical stability makes them important in the context of preserving and supporting
cell morphology, in particular protrusions like cilia and dendrites [48].

These long filaments originate in microtubule-organizing centres (MTOC)5 and are
polymerized from tubulin, a dimer of 𝛼- and 𝛽-tubulin, by weak non-covalent inter-
actions [30]. Similar to ATP/ADP in actin polymerization, unbound tubulin contains
a guanosine triphosphate (GTP) which is converted to guanosine diphosphate (GDP)
upon binding, altering the affinity of tubulin [30]. Together, this allows microtubules
to be assembled and dissembled easily and quickly. Microtubules are typically made
of 13 to 16 protofilaments laterally bound together, forming the aforementioned cylin-
drical outline [47]. Due to the polarity of the tubulin monomers and their head-to-tail
association, the resulting microtubule is also polar, with a faster growing and shrinking
plus end and a slower minus end [30]. Characteristic for microtubule polymerization
dynamics is a (stochastically) occurring rapid shrinkage of the polymer, termed catas-
trophe, which can subsequently change back to growth. This phenomenon is known
as dynamic instability [73]. Microtubule assembly and disassembly can induce pushing
and pulling forces in the pN-range [37], used in the organization of the cell interior by
moving organelles. Nuclear positioning and the separation of sister chromatids during
mitosis by the mitotic spindle are two examples [49]. In cell migration, the direction
of motion is influenced by the microtubule distribution [51]. Moreover, they serve as
transport routes for cargo by the motor proteins kinesin and dynein [30].

Intermediate filaments

The third cytoskeletal polymer type are intermediate filaments, representing a large
protein family categorized in 5 major forms (type I to V). They can be found in the
cytoplasm (type I to IV, like vimentin, desmin, keratin) as well as in the nucleus (type
V, nuclear lamins A/C and B) [45–47]. Historically, the name ’intermediate filaments’
refers to their characteristic diameter of 10 nm [30, 46] , with places them between actin
filaments and microtubules.6

Structurally, their basic subunit are polar coiled-coil dimers, which can form a non-

4Nevertheless, microtubules are known to buckle under compressive load in cells, despite their rigid-
ity [72].

5In most animal cells, this MTOC is the centrosome in the vicinity of the nucleus [30].
6Originally, the name referred to their diameter being in between the one of actin and myosin fila-
ments in muscle [47, 74]. The references changed to actin and microtubules after the discovery of
intermediate filaments in non-muscle cells [47]
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2.1 The cell cytoskeleton

polar tetramer by antiparallel and half-staggered binding [45, 46]. First, these tetramers
rapidly form approx. 60 nm-long unit length fibres (ULFs), which then longitudinally
associate to long, non-polar intermediate filaments [45, 46]. With a persistence length
of 𝑙𝑝 ≤ 1 µm, they are more flexible than actin filaments and microtubules [30, 46, 47].
However, they are very extensible and can be strained to 3.5 times their original length,
withstanding tensile stresses of up to 2 nN before breakage [45].

The main purpose of intermediate filaments is to assist the actin cytoskeleton in the
absorption of externally applied stresses and the stabilization of cell shapes, also by
adapting to the mechanical properties of the environment [45, 46]. A special role is
attributed to nuclear lamins, which form a protective cage enclosing the DNA in the
nuclear interior [75]. Cytoplasmic intermediate filaments are also assumed to take part
in the process of mechanotransduction by being attached to the nucleus [46, 75]. Just
like microtubules, these polymers are also involved in organizing the cell interior and
directing cell motility [46]. Furthermore, they are indispensable for ensuring tissue
integrity, where intermediate filament networks of neighbouring cells are connected
by cell-cell junctions (desmosomes) [30, 45].

2.1.3 Cell adhesion

Cells sense and interact with the environment, for instance by chemical signals, ex-
changed through respective channels, or mechanical stimuli, transmitted by physical
connections between the cytoskeleton and the cellular physiological surrounding. This
can be the (three-dimensional) extracellular matrix (ECM), which is a network of poly-
mers and proteins such as collagen and fibronectin, providing an anchoring substrate
for the cell or neighbouring cells in a tissue [30].

Cell-matrix connections

Cell-matrix adhesion, termed focal adhesions, primarily involves the connection of the
actin cytoskeleton with the ECM based on the transmembrane protein integrin (cf.
Fig. 2.3 A) [30, 77]. On the cytoplasmic side, integrin is connected to actin filaments, in
particular stress fibres [60], over adapter proteins such as vinculin and talin. Outside of
the cell, it establishes links with complementary proteins like fibronectin in the ECM.
Beginningwith the formation of small and short-lived nascent adhesions (also known as
focal complexes), these first precursors mature under mechanical load to fully grown
focal adhesions. With these adhesion sites, cells are able to mechanically sense their
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2 Structural mechanics of cells

Figure 2.3: A Focal adhesions are protein complexes based on the transmembrane protein in-
tegrin and adapter proteins such as vinculin and talin. They connect the actin cytoskeleton,
especially stress fibres, with the ECM. B Adherens junctions connect via the transmembrane
protein E-cadherin and adaptor proteins, such as vinculin and catenin, the actin cytoskeletons
of neighbouring cells. Adapted from [76].

surrounding and to migrate by transmitting internally generated forces and stresses to
the outside. Cells are known to exert constant stresses of approximately 5.5 kPa per
focal adhesion [69], also depending on the substrate stiffness, as this feeds back to the
maturation state of stress fibres. Stiff substrates lead to larger focal adhesions and the
assembly of thicker actin bundles generating larger forces.

In addition to focal adhesions, some cell types, like epithelial cells, also form links be-
tween intermediate filaments and the ECM. These connections are called hemidesmo-
somes and keep the cells tightly on the substrate.

Cell-cell connections

Neighbouring cells in a tissue establishmechanical connections between their cytoskele-
tons, based on the transmembrane protein cadherin, responsible for tissue cohesiveness
(cf. Fig. 2.3 B) [30]. These so-called adherens junctions couple the actin cytoskele-
tons with each other, allowing force-based communication and sensing between neigh-
bours [30]. Desmosomes connect the intermediate filament networks of neighbouring
cells and are indispensable for tissue integrity [30]. Cell-cell adhesions are further im-
portant in the context of collective cell migration [78].
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2.2 The cell nucleus

2.2 The cell nucleus

Single cell organisms are divided into two distinct groups: prokaryotes and eukaryotes.
The central difference between both is that eukaryotic cells contain a large number
of mostly membrane-enclosed substructures, which to a large part lack in prokary-
otes [30].

The most prominent of all organelles in eukaryotic cells is the nucleus [79]. It is
the largest cellular compartment, reaching a cell type-dependent diameter of 5 µm to
20 µm [79], typically occupying up to 30 % of the total cell volume [1, 80, 81]. However,
not only its size makes it a distinct structure within a cell. With a mechanical stiffness 2
to 10-fold higher compared to the surrounding cytoskeleton and cytoplasm, the nucleus
is one of the most rigid cellular structures [75, 82, 83].

The nucleus primarily serves as container of the cellular genetic information, separat-
ing it from the surrounding cytoplasm and the proteins therein, protecting it at the same
time [30]. In recent years, it has become clear that nuclear mechanical properties are
also important in many cellular processes, particularly in the context of mechanosens-
ing [84, 85]. Direct physical connections between nucleus and cytoskeleton allow a
nearly instantaneous transmission of forces to the nucleus [4, 5]. This leads to an influx
of transcriptionally relevant proteins and the possible subsequent onset of biochemical
cascades triggering gene expression and cellular reactions to the received mechanical
stimuli [8, 86, 87].

Motivated by this importance of the nucleus, an overview on its structure, giving rise
to its mechanical characteristics, is provided. Further, the mechanosensitive nuclear-
cytoplasmic transport of proteins is described.

This section is based on Refs. [30, 75, 79, 88].

2.2.1 Building plan of the nucleus

The nuclear structure can be divided into two major parts: the interior, containing the
DNA in form of densely packed chromatin, and the nuclear envelope as boundary layer.

Nuclear envelope

Cytoplasm and nuclear content, i.e. nucleoplasm and the DNA, are spatially separated
by the nuclear envelope, which consists of two layers (cf. Fig. 2.4 A). The first peel are
the outer and inner nuclear membrane, each having the well-known width of approxi-
mately 4 nm [75]. These two concentric lipid bilayers have a 20 nm to 50 nmwide lumen
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2 Structural mechanics of cells

between them, referred to as perinuclear space [75]. However, bothmembranes are con-
tiguous as they are joined at pores, so-called nuclear pore complexes (NPC), perforating
the nuclear envelope. The outer nuclear membrane is also continuously connected to
the endoplasmic reticulum, which can serve as a membrane reservoir for the nuclear
surface upon deformation [75]. Over this, inner and outer nuclear membrane serve as
anchoring surfaces for a vast number of different proteins on the cytoplasmic as well
as nucleoplasmic side.

The second layer, below the inner nuclear membrane, is the nuclear lamina. It is a
14 nm to 30 nm [75] thick and dense network of nuclear lamins (type V intermediate
filaments), exclusive to the nucleus. Similar to the actin cortex being connected to the
cell plasma membrane, this network is connected to the inner nuclear membrane by
the protein emerin and mechanically stabilizes the nuclear envelope and therefore the
whole nucleus.

Nuclear lamins have the characteristic 10 nm diameter of intermediate filaments [79].
The nuclear lamina of animal cells is formed by two types: the A-type lamin A and C
and the B-type lamins B1 and B2. Both are forming separate meshworks, which are
interconnected. Lamin-A/C is only expressed in fully differentiated cells. They are the
load-bearing elements of the nuclear envelope, determining to a large part the stiffness
of the nucleus, as has been shown by decreased nuclear rigidity in lamin-A/C knock-
down cells. Furthermore, the lamin-A level in the nuclear lamina, and therefore the
nuclear stiffness, positively correlates with the substrate rigidity guiding cell differen-
tiation [89]. Lamins-A/C are mostly localized to the nuclear periphery, but were also
found in the nuclear interior, where they are assumed to be involved in the positioning
and stabilization of the chromatin structure. B-tpye lamins are present in all cells, i.e.
also undifferentiated stem cells. They contribute little to the mechanics of the cell nu-
cleus, however, they have a vital role in establishing the nuclear-cytoskeletal coupling.

In addition to the responsibility in determining nuclear mechanics and morphology,
the nuclear lamina takes part in various biological processes such as cell division, differ-
entiation, chromatin organization, DNA replication, and also DNA repair. Its physical
connections to the cytoskeleton and also to the DNA structure in the nucleus, makes
the lamina a key component in mechanotransduction. For unstressed nuclei (i.e. low
nuclear surface tension), the nuclear envelope is wrinkled [90–93], providing an ad-
ditional surface reservoir [75]. During mitosis, the nuclear envelope is disassembled,
facilitating gene separation, and afterwards the nucleus and its envelope are rebuild [30,
94].
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Figure 2.4: A The nuclear envelope (NE) consists of the outer (ONM) and inner nuclear mem-
brane (INM), separated by the perinuclear space (PNS), and the nuclear lamina. Nuclear pore
complexes (NPCs) allow nuclear-cytoplasmic transport across the NE. The Lamina and INM are
connected via proteins like lamin B receptor (LBR) and emerin. They also establish links be-
tween the NE and chromatin. LINC complexes provide anchoring points for the cytoskeleton
on the nuclear surface. B Cartoon of the mechanotransduction pathway allowing direct force
transmission from the ECM to the nucleus. External forces are transmitted via integrins to the
actin CSK and further via LINC complexes to the NE and chromatin, possibly triggering gene
expression. This signalling pathway is up to 4 orders of magnitude faster than diffusional trans-
port in the cytoplasm or active transport along intermediate filaments (IF) and microtubules
(MT). Panel A adapted from [75]; panel B adapted from [95]

Nuclear-cytoskeletal coupling - the LINC complex

Forces originating from the cytoskeleton or the extracellular environment can be di-
rectly transmitted to the nucleus [3]. This is enabled by physical connections, known as
LINC complexes (Linker of Nucleoskeleton and Cytoskeleton), between the cytoskele-
ton and the nuclear envelope (cf. Fig. 2.4 B) [4, 5].

LINC complexes are composed of members of the nesprin protein family (nuclear
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envelope spectrin repeat protein), which are localized to the outer nuclear membrane,
and SUN 1/2 proteins, anchored to the inner nuclear membrane. Both bind across the
perinuclear space with each other. On the cytoplasmic side, nesprins bind directly to
actin filaments such as stress fibres, while connections to the other two cytoskeletal
polymers require respective bridging proteins.7 On the other end of the complex, the
SUN proteins provide the link to the lamin network of the nucleoskeleton below the
inner nuclear membrane. Additionally, SUN proteins are known to directly interact
with NPCs and chromatin [75].

LINC complexes are crucial for adapting the nuclear shape, for example by compres-
sion via perinuclear actin caps, which has been shown by LINC complex disruption
to severely alter the cytoskeletal organization [5, 65]. Similar experiments indicated
their crucial role in nuclear mechanosensing, where decreased nuclear deformation by
LINC complex rupture resulted in decreased nuclear accumulation of mechanosensi-
tive transcription regulators [8]. Nuclear straining mediated by LINC complexes has
also been observed during cell migration through a confined environment, facilitating
the passage [96]. Davidson et al. [96] demonstrated that in such situations LINC com-
plexes predominantly form at the front of the nucleus, providing anchor points for actin
filaments, which pull the nucleus across the constriction.

Nuclear interior

The interior of the nucleus, encaged by the nuclear envelope, is mainly occupied by the
DNA of the cell and the nucleoplasm containing a large variety of proteins involved e.g.
in DNA-transcription and repair [30].

The DNA of eukaryotic cells is a double helix structure [97] of nucleotides, encoding
the genetic information [30]. It is a long chain with a width of 2 nm and a length of
approximately 2 m, in the case of humans [30]. In order to fit the long genome into the
nucleus, it is wound around so-called nucleosomes and further arranged into higher
organizational fibrous structures, called chromatin. The resulting dense packing con-
tributes to the mechanical rigidity of the nucleus.

Two types of chromatin can be distinguished, related to their condensation state, i.e.
packing density: euchromatin and heterochromatin. Euchromatin has a lower density,
providing better gene accessibility for transcription regulators, and is predominantly lo-
cated in the nuclear interior and near NPCs. The short distance to the pores decreases
7In the case of microtubules kinesin and dynein motors are used for establishing a connection to ne-
sprins. For intermediate filaments, plectrin forms this bridge.
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the reaction time of a cell to stimuli. Heterochromatin has a much higher packing den-
sity and is therefore thought to be transcriptionally inactive. In contrast to euchromatin,
it is primarily localized at the nuclear rim region.

Specific regions of the genome associate with the nuclear lamina (LAD - lamina-
associated chromatin domains), altering the packing density of chromatin upon nuclear
deformation and thereby possibly enabling subsequent gene transcription activity [98].
This decondensation is associated with a decrease in nuclear stiffness. However, large
nuclear deformations may also cause DNA damage (e.g. double-strand breaks), either
by nuclear envelope rupture and following exposition of the DNA to cytoplasmic pro-
teins [99–101] or by increased replication stress without envelope rupture [101].

2.2.2 Nuclear pore complexes (NPCs)

Gene expression to mechanical and biochemical stimuli often involves proteins, which
are natively cytoplasmic and have to cross the nuclear envelope to reach the DNA and
trigger transcription. The transcription of the genes than have to exit the nucleus, in or-
der to reach the ribosomes in the cytoplasm [30]. Here, the proteins are build according
to this blue print as a response to the stimuli.

Nucleocytoplasmic protein transport is mediated by nuclear pore complexes (NPCs)
perforating the nuclear envelope. NPCs are on a coarse scale homogeneously dis-
tributed [75] with nuclei having hundreds to thousands of these pores, depending on
the cell type [30, 88]. Each of them can translocate up to 1000molecules per second [102,
103] with translocation times of 10 ms [103] in and out of the nucleus at the same time.
Despite this bidirectional, high-throughput protein transport, NPCs are highly selec-
tive. While allowing passive diffusion of small molecules up to a molecular mass of
approximately 40 kDa, larger ones need adaptor proteins and are actively transported
through the NPC [75]. However, this permeability barrier is not a hard one, but above
the translocation probability shows a high dependence on molecule size.

NPC architecture

NPCs are build from up to 1000 copies of approx. 30 different and evolutionary highly
conserved proteins, called nucleoporins (Nups), with a total mass of 60−125 MDa [104,
105], making NPCs the largest molecular complexes in cells [88]. The constituting Nups
are organized to a scaffold with 8-fold rotational symmetry [106–108] and a length in
the range of 100 nm [88] with an outer diameter of around 120 nm [75] (cf. Fig. 2.4 A).
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2 Structural mechanics of cells

Figure 2.5: A Cartoon of the architecture of a NPC providing a transport channel through the
NE between cytoplasm and nucleus. The NPC is anchored via a transmembrane scaffold of Nups
to the NE. The central channel is filled with so-called FG nups, intrinsically disordered proteins,
in a gel-like state responsible for the permeability barrier preventing passive diffusional passage
of molecules above a mass of ∼40 kDa. B High-resolution, AI-based reconstruction of the NPC
scaffold. Visible are the two outer and the inner ring as well as the NE anchoring structures.
Panel A adapted from [109]; panel B adapted from [110]

In this structure a cytoplasmic ring, a nuclear ring and an inner ring are distinguished
(cf. Fig. 2.5). Located at the fusion area of inner and outer nuclear membrane, the inner
ring anchors the NPC via transmembrane proteins to the nuclear envelope. Long fila-
ments of intrinsically disordered proteins , attached to the cytoplasmic ring, extended
into the cytoplasm, thought to serve as tentacles catching cargo for transport. On the
nucleoplasmic side, such extensions form a basket-like structure.

The inner ring represents the central transport channel with a width of 35−60 nm[6,
7, 88]. It is filled with 200 − 300 intrinsically disordered Phenylalanin-Glycin amino-
acid polymers (FG nups; repeats of nucleoporins) forming a gel-like barrier [88]. They
are responsible for the high selectivity of the transport process by forming the afore-
mentioned permeability barrier for molecules larger than ∼40 kDa. An open/closed
two-state system controlling the in- and outflux does not exist for NPCs.

NPC-mediated nuclear-cytoplasmic protein transport

The description of the nuclear-cytoplasmic transport cycle in this section is based on
Refs. Hoogenboom et al. [88] and Cautain et al. [111] and Fig. [fig: NPC transport].
Larger proteins exceeding the permeability barrier need transport receptors in or-

der to be actively translocated through the NPC. Depending on the transport direction,
these are called importins (for nuclear import) and exportins (for nuclear export). Trans-
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2.2 The cell nucleus

Figure 2.6: Shown are the three cycles of the active transport mechanism through NPCs: the
RanGTP/GDP cycle, the import cycle and the export cycle. Molecules with masses above the
nuclear permeability barrier (∼40 kDa) cannot passively diffuse throughNPCs, but have to be ac-
tively transported. Proteins equipped with special signal sequences, nuclear localization (NLS)
or nuclear export signals (NES), are targetted by transport receptors. These importins and ex-
portins interact with the FG-Nups in the central channel of the NPC facilitating the transloca-
tion. The direction of transport is given by the cytoplasmic localization of RanGAP and nu-
clear localization of RCC1, establishing a RanGTP gradient with low RanGTP concentration in
the cytoplasm and high RanGTP concentration in the nucleus; vice versa for RanGDP. All re-
actions, with the exception of the conversion of RanGTP to RanGDP, are thermodynamically
reversible [88]. Taken from [88].

port receptors recognize cargo by special sequences, namely nuclear localization signals
(NLS) and nuclear export signals (NES). Regarding nuclear import, cargo proteins con-
taining an NLS sequence, in general, first associate to the adaptor protein importin-𝛼
which than recruits importin-𝛽 enabling theNPC-transport process. 8 Acargomay even
posses more than one NLS allowing the binding of multiple importins. Upon entering
the NPC, the cargo-importin complex interacts with the FG nups in the central channel,
in a way which is up to now still under investigation, weakening the diffusion barrier

8However, it is also known, that for certain cargo importin-𝛽 can associate without importin-𝛼 .
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2 Structural mechanics of cells

and allowing for passage. The transport motion of the complex within the channel still
exhibits diffusion-like behaviour, and is referred to as facilitated diffusion. Reaching the
nuclear side, the cargo-importin complex rapidly dissociates by RanGTP, omnipresent
in the nucleus, displaying a high affinity for importins. The RanGTP-bound importins,
sometimes with other adpator proteins, can leave the nucleus again. Back in the cyto-
plasm, the importins are released from RanGTP by its hydrolysis to RanGDP and can
begin the next import cycle.

Export is functioning in a similar way, where exportins bind to cargo having NES
sequences, facilitating nuclear export. These complexes often require RanGTP associa-
tion. On the cytoplasmic side, RanGTP is hydrolysed to RanGDP, leading to the break
up of the cargo-exportin complex.

Directionality of the transport is determined by a RanGTP/GDP gradient established
by the spatial localization of two RanGTPases, RanGAP and RanGEF (RCC1). RangGAP
is exclusively cytoplasmic and rapidly hydrolizes RanGTP to RanGDP, while RanGEF is
localized to the nucleus and converts RanGDP to RanGTP. Physiologically, this results
in a high RanGDP concentration in the cytoplasm and a high RanGTP concentration
in the nucleus.9 Due to the export of importin-bound RanGTP into the cytoplasm after
the nuclear import of one cargo, RanGDP has to be brought actively into the nucleus
via the nuclear transport factor 2 (NTF2) in order to maintain the RanGTP gradient and
directionality of transport. This happens in addition to its passive diffusional passage.
Apart from the RanGAP-mediated hydrolysis of RanGTP to RanGDP, all other processes
described above are thermodynamically reversible [88]. This commonly accepted pic-
ture of the transport process can be split into three cycles, the RanGTP/GDP cycle, the
import cycle and the export cycle as summarized in Fig. 2.6.

9Nuclear accumulation of cargo proteins can be inverted to cytoplasmic accumulation by switching the
direction of the RangGTP gradient [112].
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2.3 A primer of continuum mechanics

2.3 A primer of continuum mechanics

The theoretical framework to describe cellular mechanical responses on a macroscopic
level is continuum mechanics. In this thesis, we describe cell deformations in the
context of elasticity theory, in particular resorting to its linearised version. Here, an
overview is given on the relevant concepts of continuum mechanics and the specifica-
tion to linear elasticity theory. This section is based on the textbooks on continuum
mechanics by Landau & Lifschitz [113], Howell et al. [114] and Sadd [115, 116].

2.3.1 Describing deformations

Forces applied to continuous elastic bodies lead to their deformation and changes in
their morphology. This can be uniquely described by specific quantities, which we will
introduce in the following.

Eulerian and Lagrangian framework

Consider a solid body as a continuous collection of material points each located at a
point𝑿 at time 𝑡 = 𝑡0 in euclidean space. This state can be defined as initial or reference
configuration of the solid. If the body is not subject to forces and moments, this state
can be considered the undeformed configuration. However, the choice of the reference
configuration is arbitrary. Upon the action of forces or moments the material points
are displaced to new positions 𝒙 (𝑿 , 𝑡) for 𝑡 > 𝑡0. The new state is the current or de-
formed configuration of the body. Between both the reference and current configuration
a unique, invertible mapping

𝒙 = 𝜒 (𝑿 , 𝑡) (2.1)

can be defined [116].
If the initial configuration of a body is known, it is possible to fix the position of a

material point 𝑿 within the body and to follow its trajectory in time to 𝒙 (𝑿 , 𝑡) This de-
scription is called the Lagrangian ormaterial description and is the common framework
in solid mechanics, since in general the initial configuration is known. Alternatively,
it is possible to express the evolution of quantities with time at fixed spatial positions
𝒙 . This is the Eulerian or spatial framework, the natural description in fluid dynamics,
where a reference material configuration is generally unknown.
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2 Structural mechanics of cells

Displacement

The displacement of a material point from its initial coordinate 𝑿 to its current one
𝒙 (𝑿 , 𝑡) is defined as

𝒖 (𝑿 , 𝑡) = 𝒙 (𝑿 , 𝑡) − 𝑿 . (2.2)

This is the fundamental measure in continuum mechanics. Due to the continuity of the
material, a neighbouring point, initially at distance 𝑑𝑿 from the previous one, is also
displaced by

𝒖 (𝑿 + 𝑑𝑿 , 𝑡) = (𝒙 + 𝑑𝒙) − (𝑿 + 𝑑𝑿 ). (2.3)

By rearranging Eq. (2.3) and using Eq. (2.2) we can write

𝑑𝒙 = 𝑑𝑿 + 𝒖 (𝑿 + 𝑑𝑿 , 𝑡) − 𝒖 (𝑿 , 𝑡)

= 𝑑𝑿 + 𝜕𝒖

𝜕𝑿
𝑑𝑿

= (𝑰 + ∇𝒖)𝑑𝑿

(2.4)

and define another fundamental measure in continuummechanics, the deformation gra-
dient tensor

𝑭 = 𝑰 + ∇𝒖 =
𝜕𝒙

𝜕𝑿
, (2.5)

which is the Jacobian matrix of the mapping 𝜒 (𝑿 , 𝑡). It measures local relative position
changes. The quantity ∇𝒖 is called displacement gradient tensor. 𝑭 allows to determine
the volume change of an infinitesimal element of the body due to a deformation by
𝐽 = 𝑑𝑒𝑡 (𝑭 ) with 0 < 𝐽 < ∞, meaning that the material cannot intersect itself. An
important insight from the deformation gradient tensor is, that uniform translations of
a body with 𝒖 = 𝑐𝑜𝑛𝑠𝑡 . result in 𝑭 = 𝑰 , i.e. reference and current configuration of the
body are identical. Rigid body motions do not change the deformation state.

Strain

Relative changes of distances between two material points can be derived from the
above introduced quantities. Suppose, two points in a body are separated by the dis-
tances |𝑑𝑿 | and |𝑑𝒙 | in initial and deformed configuration, respectively. Taking the
difference of the squared distances and using the relation 𝑑𝒙 = 𝑭 𝑑𝑿 we find

|𝑑𝒙 |2 − |𝑑𝑿 |2 = (𝑭𝑑𝑿 ) · (𝑭𝑑𝑿 ) − 𝑑𝑿 · 𝑑𝑿

= 𝑑𝑿𝑇
(︂
𝑭𝑇 𝑭 − 𝑰

)︂
𝑑𝑿

(2.6)
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with the symmetric Green-Lagrange strain tensor

𝑬 =
1
2

(︂
𝑭𝑇 𝑭 − 𝑰

)︂
, (2.7)

where 𝑭𝑇 𝑭 = 𝑪 is known as the right Cauchy-Green strain tensor. By use of Eq. (2.5)
the Green-Lagrange strain tensor can be written as

𝑬 =
1
2

[︁
∇𝒖 + ∇𝒖𝑇 + (∇𝒖𝑇 ) (∇𝒖)

]︁
. (2.8)

For later purposes the same considerations can be made for the Eulerian description

|𝑑𝒙 |2 − |𝑑𝑿 |2 = 𝑑𝒙
[︂
𝑰 −

(︁
𝑭−1)︁𝑇 (︁

𝑭−1)︁ ]︂ 𝑑𝒙 (2.9)

leading to the definition of the Euler-Almansi strain tensor

𝒆 =
1
2

[︂
𝑰 −

(︁
𝑭−1)︁𝑇 (︁

𝑭−1)︁ ]︂ (2.10)

where 𝑑𝑿 = 𝑭−1𝒙 was used. In the absence of any deformation both quantities 𝑬 and
𝒆 vanish. More general, pure rigid body transformations, such as uniform translations
and rotations, lead to vanishing strains as they do not induce internal deformations.

Stress tensor

Deformations of a body lead to the emergence of internal restoring forces and stresses.
To describe them, a body is divided into infinitesimal volume elements 𝑑𝑉 . On each of
its surface elements 𝑑𝐴 a force

𝑑𝒇 = 𝒕 𝑑𝐴 (2.11)

is acting, where 𝒕 is called traction vector. It depends on the position and orientation of
the considered surface element, where the latter is given by the normal vector 𝒏 of 𝑑𝐴.
The traction vector 𝒕 is defined as

𝒕 = 𝝈 · 𝒏 (2.12)

with 𝝈 being the symmetric second-order Cauchy stress tensor. Each of its components
𝜎𝑖 𝑗 describes the stress acting in direction 𝑗 on a surface element with normal vector in
direction 𝑖 . Per definition, positive stresses always point out of the considered volume
element. Traction 𝒕 as well as the stress components 𝜎𝑖 𝑗 bear the unit force/area (𝑁 /𝑚2)
as can be inferred from eqs. (2.11) and (2.12).
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2 Structural mechanics of cells

Linear momentum conservation

Newton’s second law demands that the sum of all momenta of the material points of
a considered solid body balances all external forces acting on it. Therefore, we can
consider an arbitrary volume element Ω(𝑡) of a solid of denisty 𝜌 and state that the
momentum of it equals the sum of all body force densities 𝒇 on Ω(𝑡) and traction forces
𝒕 on its surface 𝜕Ω(𝑡),i.e.

𝑑

𝑑𝑡

∫
Ω(𝑡)

𝜌
𝜕𝒖

𝜕𝑡
𝑑𝒙 =

∫
Ω(𝑡)

𝒇𝑑𝒙 +
∫
𝜕Ω(𝑡)

𝝈𝒏𝑑𝑨 (2.13)

where relation (2.12) was used in the last term. Realizing that the mass of the consid-
ered fixed volume Ω(𝑡) remains constant under deformation, i.e the mass density 𝜌 is
independent of 𝑡 , and using the divergence theorem10 gives∫

Ω(𝑡)
𝜌
𝜕2𝒖

𝜕𝑡2 𝑑𝒙 =

∫
Ω(𝑡)

𝒇𝑑𝒙 +
∫
Ω(𝑡)

∇ · 𝝈𝑑𝒙 . (2.14)

As the chosen volume Ω(𝑡) is arbitrary, the above holds true for any other portion of
the body under consideration. We arrive therefore at the governing equations of motion
for an elastic material

𝜌
𝜕2𝒖

𝜕𝑡2 = ∇ · 𝝈 + 𝒇 . (2.15)

For soft matter, like biological cells and tissue, the inertial term can be neglected11,
resulting in the equation of mechanical equilibrium

∇ · 𝝈 + 𝒇 = 0. (2.16)

2.3.2 Linear elasticity

The above introduced elasticity theory can be specified to the case of small strains lead-
ing to its linearization. This linear elasticity theory is a widely used approximative
description for the mechanical behaviour of cells and also used throughout this thesis.

The origin of linear elasticity theory is the assumption that all relative length changes
within a deformed body are small. Hence, for all components of the displacement gra-

10The divergence theorem (Gauss’s theorem) is
∫
Ω
∇ · 𝒂 𝑑𝑉 =

∫
𝜕Ω

𝒂 · 𝒏𝑑𝐴 for an arbitrary vector 𝒂.
11The associated wave velocity is 𝑐 ∝

√︁
𝐸/𝜌 , where the Young’s modulus 𝐸 is the stiffness of the material.

For cells, which have a size of 5-50 µm [1], it is on the order of m/s, assuming 𝐸 =1 kPa and a water-
like density 𝜌 =1 kg/m3.
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dient tensor ∇𝒖 it is assumed that

𝜕𝑢𝑖

𝜕𝑋 𝑗
≪ 1. (2.17)

First consequence of this approximation is that the deformation gradient tensor 𝑭 ≈ 𝑰

and therefore 𝑑𝑿 ≈ 𝑑𝒙 , meaning that reference and current configuration fall onto
each other and do not need to be differentiated. This obviously propagates to the strain
tensors, where now eqs. (2.8) and (2.10) are equal and from now on denoted as 𝝐 .12

Furthermore, the higher-order terms in the symmetric strain tensor 𝝐 can be neglected,
resulting in the linearized version

𝜖 =
1
2

(︂
∇𝒖 + ∇𝒖𝑇

)︂
(2.18)

or in index notation
𝜖𝑖 𝑗 =

1
2

(︃
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)︃
. (2.19)

Additionally to the above assumption, a linear relation between stress and strain tensor
is assumed, known as Hooke’s law

𝜎𝑖 𝑗 = 𝐶𝑖 𝑗𝑘𝑙𝜖𝑖 𝑗 , (2.20)

where 𝐶𝑖 𝑗𝑙 is a fourth-order tensor. It contains all characteristic parameters to describe
the mechanics of a material and is known as the elasticity or stiffness tensor. Its 81 com-
ponents can be reduced to 36 independent entries by acknowledging the symmetry of
stress and strain tensor. Further reductions are achieved by considering special material
symmetries. Isotropic materials, i.e. solids mechanically behaving the same way in any
direction, only have two entries such that

𝐶𝑖 𝑗𝑘𝑙 = 2𝜇𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝜆𝛿𝑖 𝑗𝛿𝑘𝑙 (2.21)

and the stress tensor can be written in terms of the strain tensor as

𝜎𝑖 𝑗 = 2𝜇𝜖𝑖 𝑗 + 𝜆𝜖𝑘𝑘𝛿𝑖 𝑗 (2.22)

where the Einstein summation rule over identical indices is assumed, if not mentioned

12This follows from: 𝜕𝑢𝑖
𝜕𝑋 𝑗

=
𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑥𝑘
𝜕𝑋 𝑗

=
𝜕𝑢𝑖
𝜕𝑥𝑘

(︂
𝜕𝑢𝑘
𝜕𝑋 𝑗

+ 𝛿𝑘 𝑗
)︂
≈ 𝜕𝑢𝑖

𝜕𝑥𝑘
𝛿𝑘 𝑗 =

𝜕𝑢𝑖
𝜕𝑥 𝑗

.
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otherwise. The material parameters

𝜇 =
𝐸

2(1 + 𝜈) and 𝜆 =
𝜈𝐸

(1 + 𝜈) (1 − 2𝜈) . (2.23)

are called Lamé coefficients and are combinations of the Young’s modulus or stiffness 𝐸
of the material with unit N/m2 and the unitless Poisson’s ratio 𝜈 , measuring the com-
pressibility of the material.13

Lastly, the elastic free energy stored within a deformed object is given by

F𝑒𝑙 =
∫ 1

2𝜎𝑖 𝑗𝜖𝑖 𝑗𝑑𝑉 =

∫ [︃
𝜇𝜖𝑖 𝑗𝜖𝑖 𝑗 +

𝜆

2𝜖 𝑗 𝑗𝜖𝑘𝑘
]︃
𝑑𝑉 , (2.24)

where the integrand is the elastic free energy density 𝑓𝑒𝑙 .

2.3.3 From 3D to 2D: Plane stress and plane strain

In many biological situations cells are widely spread, which allows to consider them as
thin elastic sheets. In this special case, the three-dimensional elasticity theory can be
reduced to effectively two dimensions, simplifying its treatment. The most common 2D
approximations are the plane stress and plane strain theories.

Plane stress

The plane stress theory can be applied to thin objects, whose height 𝑑 (assumed to be in
Cartesian 𝑧-direction) is much smaller than their extension in the other two orthonor-
mal spatial directions. It is assumed, that the components of the stress tensor

𝜎𝑥𝑧 = 𝜎𝑦𝑧 = 𝜎𝑧𝑧 = 0 (2.25)

and that 𝑧-variations of the other stress components are negligible small. Therefore,
the stress tensor reduces to 𝜎𝑖 𝑗 = 𝜎𝑖 𝑗 (𝑥,𝑦) with 𝑖, 𝑗 = {𝑥,𝑦}.

However, the out-of-plane strain component

𝜖𝑧𝑧 =
𝜕𝑢𝑧

𝜕𝑧
= −𝜈

𝐸

(︁
𝜎𝑥𝑥 + 𝜎𝑦𝑦

)︁
(2.26)

13The Poisson ratio is defined via uniaxial extension experiments as the ratio between the lateral con-
traction of a material and its longitudinal dilation. A material with Poisson’s ratio 𝜈 = 0.5 is said to
be incompressible, i.e. its volume does not change under deformation.
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is in general not zero. To rescue the two-dimensional description, all quantities and
Eq. (2.16) can be height-averaged under the assumption that the average of the out-of-
plane displacement 𝑢𝑧 vanishes. This procedure modifies the Lamé coefficients to

𝜇 =
𝐸𝑑

2(1 + 𝜈) and 𝜆 =
𝜈𝐸𝑑

(1 − 𝜈2) , (2.27)

which can be found by expressing the out-of-plane strain 𝜖𝑧𝑧 , cf. Eq. (2.26), in terms
of the in-plane strains 𝜖𝑥𝑥 and 𝜖𝑦𝑦 and insertion into Hooke’s law, cf. Eq. (2.22). The
two-dimensional Lamé coefficients, and hence the stress tensor, have the unit N/m.

Plane strain

In the second two-dimensional approximation, the considered body is assumed to be
of cylindrical shape, being much longer in one spatial direction than its extension in
the other two. In the simplest case, it is assumed to be infinitely long.14 Again, con-
sider this direction to be the Cartesian 𝑧-direction, without loss of generality. All strain
components associated with this spatial direction vanish, i.e.

𝜖𝑥𝑧 = 𝜖𝑦𝑧 = 𝜖𝑧𝑧 = 0, (2.28)

and the displacement components 𝑢𝑥 (𝑥,𝑦) and 𝑢𝑦 (𝑥,𝑦) should be independent of 𝑧.
With this, the deformation state is completely described in the (𝑥,𝑦)-plane without
out-of-plane deformations. Consequently, the mid-plane solution is valid throughout
the body length.

A comparison with Hooke’s law shows that the Lamé coefficients in plane strain are
equal to the three-dimensional ones, cf. Eq. (2.23), again with unit N/m2. Note that
the mechanical equilibrium Eq. (2.16) is of the same form for plane stress and plane
strain, despite their different geometrical assumptions. They can be transformed into
each other by appropriate substitutions of the material parameters. For example, a
transformation from plane stress to plane strain is achieved by substituting 𝐸 → 𝐸/(1−
𝜈2) and 𝜈 → 𝜈/(1 − 𝜈) in the Lamé coefficients for plane stress, cf. Eq. (2.27) [115].

14Otherwise, the ends of a body of finite length require special attention to obtain a full solution [115].
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Physical problems and especially continuum ones can often be described by resorting to
their translation into the language of partial differential equations (PDEs). Most often,
these systems are not analytically solvable, unless the exploitation of special symme-
tries allow for it, and numerics have to be used for examining them. A plethora of
different numerical methods exists for solving systems of PDEs, each with their own
advantages and disadvantages. When it comes to moving boundary problems, espe-
cially in combination with complex shapes, implicit interface methods have proved to
be a suitable approach for efficient numerical treatment. We will apply and develop
further such an implicit method, namely the phase field approach, in order to solve
complex and dynamic situations involved in cell mechanics. For this purpose, we dis-
cuss in this chapter the concept of boundary methods. First, the idea of sharp interface
approaches is outlined, focussing on the implicit level-set method. We than introduce a
diffuse interface approach, the phase field method, which is used throughout this thesis.

3.1 Sharp interface approaches

In sharp interface methods, the central feature is the well-defined interface position,
where jumps in physical quantities occur when the interface is crossed. One distin-
guishes between explicit and implicit interface approaches, where the latter is numeri-
cally easier to implement.

3.1.1 Explicit interface

Explicit interface methods require to resolve the interfaces of a system by a sufficiently
large number of points often called markers. The discretization accuracy has to en-
sure to capture the boundary motion in sufficient detail, especially to keep the physi-
cal integrity of the interface. Like discretization points in the bulk of a system, these
boundary points are moved according to the underlying system of PDEs and respective
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boundary conditions, which can be time- and space-dependent. Because the discretiza-
tion grid is not fixed in space, but rather in the material itself, explicit interface methods
rely on a Lagrangian (material) description. The markers have to be tracked in space
at every point of time in order to apply the respective (dynamic) boundary conditions,
which makes explicit interface methods a computationally expensive task. Complex ge-
ometries add further difficulties to the interface discretization, particularly for regions
with high curvature. Especially topological changes, such as breaking or merging of
phases, are difficult to model with explicit interface methods.

3.1.2 Level-set method

The numerical complexity arising by explicitly tracking interface marker points can be
remedied by describing the interface implicitly via a so-called level-set function, whose
evolution is dictated by the PDEs of the considered system. The level-set method was
first proposed by Osher and Sethian (1988) [117] as a computational tool for solving
problems involving the motion interfaces, such as incompressible two-phase flow [118].
In the biological context, it has been for instance used to model cell motility [119] and
cell deformation [120]. The following description is based on Refs. [121, 122].

Consider for simplicity a two-dimensional domain Ω containing a (dynamic) inter-
face Γ(𝑡) separating two subdomains Ω(1) and Ω(2) (cf. Fig. 3.1 B). In general, these two
subdomains do not need to be simply connected, i.e. they can exhibit holes1. A smooth
function 𝜑 (𝒙, 𝑡), the level-set function, is introduced, which is of higher dimensional-
ity than Ω. The intersection of the surface of 𝜑 (𝒙, 𝑡) with the plane Ω is defined as
the zero level-set of 𝜑 (𝒙, 𝑡) and identified as the interface, i.e. Γ(𝑡) = {𝒙 |𝜑 (𝒙, 𝑡) = 0}
(cf. Fig. 3.1 A). While traditionally set to zero, the exact value of the level-set character-
izing Γ(𝑡) is in principle arbitrary.

Additionally, the exact form of 𝜑 (𝒙, 𝑡) is free to choose and most often a signed dis-
tance function 𝜑 (𝒙, 𝑡) = ±𝑑 is used, with 𝑑 being the distance to Γ(𝑡) [122, 123]. All
points 𝒙 of the computational domain can now be uniquely assigned to one subdomain

1A simply connected set is a topological space where any two points can be connected by a path and
any loop within this set can be contracted to a point. A not simply connected set is called multiply
connected.

32



3.1 Sharp interface approaches

Figure 3.1: Sketch of the level-set method in 2D. A The intersection of the level-set function
𝜑 (𝒙, 𝑡) with the plane of the domain Ω is identified with the boundary Γ(𝑡) (zero level-set)
between two subdomains Ω (1) and Ω (2) of the considered system. B The level-set function
𝜑 (𝒙, 𝑡) allows to assign each point of the domain Ω to a respective subpart, i.e. one of the two
bulk domains Ω (1) and Ω (2) or the interface Γ(𝑡) associated with the zero level-set 𝜑 (𝒙, 𝑡) = 0.

or the interface by defining (cf. Fig. 3.1 B) [121–123]

𝜑 (𝒙, 𝑡)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
< 0 for 𝒙 ∈ Ω(1) (𝑡)

= 0 for 𝒙 ∈ Γ(𝑡)

> 0 for 𝒙 ∈ Ω(2) (𝑡).

(3.1)

The motion of Γ(𝑡) under a velocity field v, given by the evolution equations of the
physical system, can now be described by

𝜕𝜑

𝜕𝑡
+ v · ∇𝜑 = 0 (3.2)

with 𝜑 (𝒙, 𝑡) = 0 being the quantity of interest, describing the interface(s). This is the
central equation of the level-set approach. The physical values of v are only required
on the interface, while it is otherwise arbitrarily extended on the rest of the domain.

This implicit sharp interface formulation is especially suited for problems in which
topological changes of the subsets of Ω occur, as those mentioned in the foregoing
section, e.g. droplet splitting in a jet. Further advantages of this approach are the
straightforward calculation of geometrical quantities of the interface like the normal
vector 𝒏 = ∇𝜑/|∇𝜑 |and curvature 𝜅 = −∇ · 𝒏 [122]. Additionally, the implicit formu-
lation of interfaces via a level-set function enables to discretize the model PDEs on a
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3 Phase field method

fixed grid, without the need of remeshing, rendering it an Eulerian formulation. All this
makes the level-set approach numerically more efficient than explicit interface tracking
methods. Nevertheless, as a sharp interfacemethod, sophisticated numerical algorithms
are needed for dealing with discontinuities of physical quantities at the interface Γ(𝑡).
Moreover, often one has to reset/redefine the level set from time to time [123].

3.2 Phase field method - a diffuse interface approach

An alternative to implicit sharp interface methods for efficiently modelling moving
boundary problems is the diffuse interface approach. This so-called phase field method
also omits the necessity of explicit interface tracking for applying boundary conditions,
showing similarities to the level-set method. It is the modelling approach used through-
out this thesis to model cell mechanics in stationary and dynamic situations. We will
therefore give here an overview on the basic principles of the phase field method.

3.2.1 Making interfaces diffuse

The phase field method was originally developed for modelling solidification processes
such as crystal growth out of a solution [124, 125]. Its basic idea is to replace the sharp
boundary (depending on the system, this can be angstrom or nanometer scale) between
two distinguished phases (subdomains) of a system by a continuous one. For this pur-
pose, a smooth regularized function 𝜌 (𝒙, 𝑡), the phase field, is introduced. This auxiliary
field is constant in the bulk of the two phases, distinguishing both by assigning each
of them a different numerical value (cf. Fig. 3.2 A). At the position of the interface Γ(𝑡)
between the two phases it varies rapidly but continuously, in a small but finite region of
width 𝜖 , from one bulk value to the other. Hence, the previously sharp boundary and its
dynamics are implicitly described by the variation and evolution of the order parame-
ter field 𝜌 (𝒙, 𝑡), making the interface ’diffuse’. Therefore, the phase field method is also
known as diffuse interface approach.

The phase field dynamics can be coupled to the equations of motion of the modelled
system, which then evolves according to these. If coupled properly, boundary condi-
tions at interfaces are inherently described in the phase field-translated system of PDEs
and only at the boundary of the computational domain they have to be stated explicitly.

In addition to facilitating the computational treatment of moving boundaries, the
phase field approach omits the numerical difficulties arising from discontinuities of
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3.2 Phase field method - a diffuse interface approach

Figure 3.2: A Sketch of the phase field method for a two-phase system. In a domain Ω with
boundary 𝜕Ω the phase field 𝜌 (𝒙, 𝑡) takes on constant values in the bulk phases. Here, 𝜌 (𝒙, 𝑡) = 0
in the white (outside) phase and 𝜌 (𝒙, 𝑡) = 1 in the blue (inside) phase. At the position of the
sharp interface (black dashed line) it continuously changes between these values. B Double
well potential 𝑔(𝜌) = 𝜌2(1 − 𝜌)2 with minima at 𝜌 = 0 and 𝜌 = 1 associated with two distinct
bulk phases. The interface is identified with the 𝜌 = 1/2-isocurve or the maximum of |∇𝜌 |.
C One-dimensional phase field profiles as steady-state solutions to Eq. (3.8) for different inter-
face widths set by the phase field diffusion coefficient 𝐷𝜌 . The numerical phase field profile
agrees with the analytical solution (black dashed line), cf. Eq. (3.9), as exemplified for the case
𝐷𝜌 = 1 and 𝑥0 = 0. For simulation parameters to C see Table B.1.

physical quantities at the interface due to its regularized description. Like the level-
set method, the phase field approach is an Eulerian method, allowing the use of a fixed
discretization grid. However, its numerical simplicity and efficiency compared to other
methods comes with the expense of reduced accuracy. The latter can be partially re-
gained by a higher degree of discretization and reduction of the interface width 𝜖 . In
fact, in the sharp interface limit 𝜖 → 0 the ’sharp interface equations’ for each consid-
ered phase are recovered and the phase field solution approaches the exact one.2

Since its first appearance, the phase field method has been applied to a large vari-
ety of different physical problems, proving its versatility and usefulness. Apart from
microstructure evolution [126], solidification [127] and crystallization processes [125,
128, 129], the phase field approach has also been successfully applied to model fracture
mechanics [130–133], stress-induced instabilities of the surface of a solid with its melt
(Grinfeld instability) [134, 135] or fluid-structure interaction [136]. In the last decade, it
attracted attention in the soft matter [137] and biological context and was for instance
used to model vesicles in fluid flow [138, 139], actin gel growth [140] and the motility
of single cells [123, 141–149]. Its efficiency and ease of implementation made it even

2This procedure is also known as asymptotic analysis and is exemplified in Appendix A.1 for the elastic
phase field equation used in this thesis, cf. Chapter 4.
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3 Phase field method

possible to model multiple cells at the same time; from pairs of cells [150] up to cell col-
lectives and tissues [151–158]. In general, the models used in soft matter and biological
systems do not account for cell elasticity. Only recently, phase field models for single
cell [10] and tissue mechanics [159] have been proposed.

The success and flexibility make the phase field approach an important element for
numerical studies of dynamic complex systems.

3.2.2 Theoretical framework of the phase field method

Having described the principal idea of the phase field approach, we now introduce the
scaffolding structure of the associated dynamic equation.

Time-dependent Ginzburg-Landau equation

The derivation of a PDE describing the evolution of the order parameter field 𝜌 (𝒙, 𝑡) for
a two-phase system starts from associating a Ginzburg-Landau free energy functional

F [𝜌] =
∫
𝑉

𝑓 (𝜌)𝑑𝒙 =

∫
𝑉

[︃
1
2𝐷𝜌 (∇𝜌)

2 + 𝑔(𝜌)
]︃
𝑑𝒙 (3.3)

to it, where the first term penalizes the formation of interfaces and the second term is the
energy contribution of the distinguished bulk phases. Via the diffusion parameter 𝐷𝜌
the width of the interface 𝜖 ∝

√︁
𝐷𝜌 is controlled. The bulk contribution 𝑔(𝜌) is a double

well potential, whose minima represent the two phases. Its exact form is arbitrary 3 and
hence it is convenient to choose the simplest form [140]

𝑔(𝜌) = 𝜌2 (1 − 𝜌)2 , (3.4)

with minima at 𝜌 = 0 and 𝜌 = 1 (cf. Fig. 3.2 B).
The time-dependent Ginzburg-Landau equation follows from theminimization of the

energy functional (3.3). For an a non-conserved order parameter field 𝜌 (𝒙, 𝑡), a so-called
Allen-Cahn type equation is obtained.

𝜕𝜌

𝜕𝑡
+ v · ∇𝜌 = −𝑀−1𝛿F

𝛿𝜌
. (3.5)

3Consequently, the numerical values of the minima associated to the bulk phases can be set freely.
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3.2 Phase field method - a diffuse interface approach

Here,𝑀−1 is a mobility coefficient, v is a possible advection velocity and

𝛿F [𝜌]
𝛿𝜌

=
𝜕𝑓

𝜕𝜌
− ∇ ·

(︃
𝜕𝑓

𝜕(∇𝜌)

)︃
(3.6)

is the functional derivative of the free energy. Similarly, the dynamic equation for a
conserved phase field 𝜌 (𝒙, 𝑡) is given by the Cahn-Hilliard equation

𝜕𝜌

𝜕𝑡
+ v · ∇𝜌 = ∇ ·

(︃
𝑀−1∇𝛿F

𝛿𝜌

)︃
. (3.7)

To solve this fourth-order PDE, appropriate computational methods are required as
it is prone to numerical instabilities. Thus, often the Allen-Cahn formulation (3.5) is
used and mass conservation is enforced by adding additional terms [142] or employing
Lagrangian multipliers. Inserting the free energy functional (3.3) into Eq. (3.5) results
in

𝜕𝜌

𝜕𝑡
+ v · ∇𝜌 = 𝐷𝜌Δ𝜌 −

𝜕𝑔(𝜌)
𝜕𝜌

. (3.8)

with 𝜕𝑔(𝜌)/𝜕𝜌 = 4𝜌 (1−𝜌) (1/2−𝜌). The sharp interface position is assumed to coincide
with the maximum of the gradient |∇𝜌 |, or simpler, with the isoline 𝜌 = 0.5. In steady
state and v = 0, the solution to Eq. (3.8) in one dimension under the conditions that
𝜌 (𝑥 → −∞) = 0 and 𝜌 (𝑥 → +∞) = 1 is

𝜌 (𝑥) = 1
2

[︄
1 + tanh

(︄
𝑥 − 𝑥0√︁

2𝐷𝜌

)︄]︄
, (3.9)

where 𝑥0 can be identified with the interface position (Fig. 3.2 C; for derivation see
Appendix A.2).

Correcting for surface tension

In two and higher dimensions, the phase field formulation presented above has no sta-
tionary state for non-planar interfaces. This circumstance stems from an inherent sur-
face tension energy, leading to an effective normal force at the interface proportional to
its local mean curvature and pointing towards the centre of curvature [160]. Under this
force, curved interfaces tend to shrink, in order to reduce their surface area. Parallel to
this shrinking, phases of arbitrary (convex) geometry will evolve into a sphere [161],
which has the lowest surface-to-volume ratio (Fig. 3.3 top row). The radius 𝑟 (𝑡) of an
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3 Phase field method

Figure 3.3: The phase field formulation, as presented in Eq. (3.8), is endowed with an inherent
surface tension which tends to shrink curved interfaces in order to reduce the surface area, as
shown in the example for a phase of rectangular shape (top row). During this shrinking, the
rectangle deforms into a sphere, which has the optimal surface-to-volume ratio. It is possible to
counteract this effect up to first order by adding a respective balancing term. Folch et al. [160]
(middle row) and later Jamet and Misbah [162] (bottow row) introduced such terms. In absence
of any other driving forces, both possibilities stabilize the phase field interface for sufficiently
long times. For simulation parameters see Appendix B.1 Table B.2.

area equivalent sphere in 𝑑 dimensions shrinks with the velocity

𝑑𝑟 (𝑡)
𝑑𝑡

= −
𝐷𝜌 (𝑑 − 1)
𝑟 (𝑡) (3.10)

where 1/𝑟 (𝑡) = 𝜅 (𝑡) is the time-dependent curvature of the𝑑-dimensional sphere. From
Eq. (3.10) follows that

𝑟 (𝑡) =
√︂
𝑅2

0 − 2𝐷𝜌 (𝑑 − 1)𝑡 (3.11)

with 𝑡 ∈
[︂
0, 𝑅2

0
2𝐷𝜌 (𝑑−1)

)︂
and 𝑅0 being the initial sphere radius at 𝑡 = 0 (cf. Fig. 3.4 black

dashed and yellow solid lines). For some physical problems, this surface tension might
pose an undesired feature. Folch et al. [160] found that the surface tension can be bal-
anced to first order by adding a term that is linearly dependent on the interface curva-
ture 𝜅𝜌 to the phase field equation

𝜕𝜌

𝜕𝑡
+ v · ∇𝜌 = 𝐷𝜌Δ𝜌 −

𝜕𝑔(𝜌)
𝜕𝜌

+ 𝐷𝜌𝜅𝜌 |∇𝜌 |. (3.12)
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Figure 3.4: Time evolution of the radius 𝑅(𝑡)
of the rectangle area for the simulations shown
in Fig. 3.3 normalized by the initial radius 𝑅0.
Without correction of the surface tension (yel-
low solid line) the rectangle shrinks accord-
ing to the theoretical expectation (black dashed
line), cf. Eq. (3.11). The balancing terms
by Folch et al. [160] (solid blue line) and by
Jamet and Misbah [162] (red symbols) prevent
the shrinkage for times that are sufficient long
for most purposes. For simulation parameters
see Appendix B.1 Table B.2.

This term acts only in the interface indicated by |∇𝜌 |. The curvature 𝜅𝜌 is given by

𝜅𝜌 = −∇ · 𝒏 = −∇ ·
(︃
∇𝜌
|∇𝜌 |

)︃
(3.13)

with the normal vector
𝒏 =

∇𝜌
|∇𝜌 | . (3.14)

Practically, the normal vector field and the curvature are calculated in a tube around
the interface.4 The sharp interface limit of Eq. (3.12) naturally shows that the ’Folch
term’ counteracts the surface tension energy up to first order in interface width 𝜖 (cf.
Appendix A.1). However, no energy functional can be associated to it. Jamet and Mis-
bah [162] introduced a thermodynamic consistent alternative5, which is up to first order
in interface width 𝜖 identical to the expression by Folch et al. [160]. The corresponding
phase field equation reads

𝜕𝜌

𝜕𝑡
+ v · ∇𝜌 = 𝐷𝜌Δ𝜌 −

𝜕𝑔(𝜌)
𝜕𝜌

+
√︂

2𝐷𝜌𝑔(𝜌)𝜅𝜌 . (3.15)

Both balancing terms can be used equivalently, and stabilize the phase field for suffi-
ciently long times as shown in Fig. 3.3 (middle and bottom row) and Fig. 3.4 (blue line
and red symbols). Equations (3.12) and (3.15) both provide the basic structure of the
phase field equation. If thermodynamic consistency is required, Eq. (3.15) should be

4For example, in the region where |∇𝜌 | ≥ 10−4.
5The corresponding energy reads F𝑠𝑢𝑟 𝑓 𝑎𝑐𝑒 = −

∫
𝑉

√︁
2𝐷𝑔(𝜌) |∇𝜌 |𝑑𝒙 [162].
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used. Otherwise, when the phase field is regarded as a numerical tool as in our case,
the choice is a matter of taste. Both versions are used in this thesis, demonstrating the
insensitivity of the proposed phase field model to this choice.

3.2.3 Multi-phase field approach

The above formulation can be extended straightforwardly to situations involving more
than two "phases". A prominent example in the biological context are cell collectives [151–
153, 155]. Here, each cell 𝑖 is represented by its own phase field 𝜌𝑖 in the same man-
ner as described above. The free energy functional of the system is the sum of the free
energies of each of the 𝑁 cell phase fields

F [𝜌0, ..., 𝜌𝑁 ] =
𝑁∑︂
𝑖=0

F [𝜌𝑖] (3.16)

which leads to the respective dynamic equations

𝜕𝜌𝑖

𝜕𝑡
+ v𝒊 · ∇𝜌𝑖 = 𝐷𝜌𝑖Δ𝜌𝑖 −

𝜕𝑔(𝜌𝑖)
𝜕𝜌𝑖

+ 𝑓 (𝜌𝑖, 𝜌 𝑗 ) (3.17)

for each cell phase field 𝜌𝑖 . The term 𝑓 (𝜌𝑖, 𝜌 𝑗 ) denotes all possible additional terms such
as the correction for surface tension or interactions between cell 𝑖 and a neighbouring
cell 𝑗 . We will use this approach (for 𝑁 = 2) in Chapter 5, when we will model a cell
with an additional internal compartment, the nucleus. The whole cell and the nucleus
will each be represented by an own phase field.
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4 Reversible elastic phase field
approach and application to cell
monolayers

Having introduced the concepts of elasticity theory and the phase field method, we now
want to discuss how both can be combined into an elastic phase field approach, enabling
the prediction of the dynamics of elastic cells and cell monolayers in two-dimensions.
First, we will briefly summarize the commonly used elastic phase field method and
an alternative formulation (as described in the Master’s thesis [163] and in Chojowski
et al. [10]), which accounts for the reversibility of elastic deformations. This reversible
elastic phase field approach is than verified by being applied to a selection of biologically
relevant situations and comparison to analytical solutions. It is the formulation used
throughout this thesis.

This chapter is based on the publication Chojowski, R., Schwarz, U. S., and Ziebert, F.
“Reversible elastic phase field approach and application to cell monolayers”. European
Physical Journal E 43.10 (2020), p. 63.

4.1 Introduction

Cell and tissue mechanics is an essential element of many physiological processes, in-
cluding development, tissue homeostasis and wound healing [24, 29]. Both single cells
and cell collectives are highly dynamic. For animal cells, fluorescence-based experi-
ments have shown that subcellular structures like the actomyosin cortex, lamellipodia
and adhesion complexes turn over on the timescale of minutes, despite their function to
provide mechanical stability to cells and tissues [164–166]. In most developing and even
in some homeostatic tissues (notably skin and intestine), there exists a constant flow
of cells [167]. Together, these observations suggest that biological systems should be
viscous rather than elastic on large time scales, at least in the absence of an extracellular
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matrix [168].

Surprisingly, recent experiments with epithelial monolayers did reveal elastic signa-
tures despite the high cellular and subcellular dynamics. The standard setup in this
context is the so-called wound healing assay. In these experiments, cell monolayers
of well-defined geometry migrate into free space created by the removal of a straight
barrier. This setup has been used to quantify cellular velocity fields, traction forces
and intramonolayer tension [26, 169, 170]. Several new effects have been discovered,
including plithotaxis [171], where cells tend tomigrate in the direction of maximal prin-
cipal stress within the tissue, and collective durotaxis [17], where cells follow a stiffness
gradient of the underlying substrate.

Very important in our context, it has been shown that one can extract a linear re-
lation between stress and strain, thus defining an elastic modulus [172]. This agrees
with the results of experiments that stretch free-standing monolayers without adhe-
sion, from which a well-defined elastic modulus can be extracted [173, 174]. Later it
has been argued that the seemingly elastic signature in expanding monolayers can also
be explained as an emergent property of an active fluid with a purely viscous material
law [175].

Three phenomena have received special attention in the context of the wound heal-
ing assay: mechanical waves, interface protrusions with leader cells and monolayer or-
ganization at boundaries. Mechanical waves in expanding epithelial monolayers were
discovered with traction force microscopy and initially explained by repeated cycles
of cytoskeleton fluidization and reinforcement [176]. Later it was shown that both an
elastic material law [177] or a viscous material law [178] can explain their origin. A
similar situation exists for the finger-like protrusions that are often observed to form
at the wound margin [26]. Reminiscent of fingering in flow cells, these protrusions
are often explained by viscous theories that include mechanisms for wavelength selec-
tion [179]. Some years ago, however, it has been shown that these protrusions tend to
have a characteristic distance between each other that can be explained by the elastic
properties of the monolayer [27]. Experiments with circular wounds and monolayer
flow around obstacles have also provided evidence for both elastic and viscous pro-
cesses in cell monolayers. While flow around a circular obstacle has been shown to be
described best by the Maxwell model for viscoelastic fluids [180], the mechanical prop-
erties around a gap seem to correspond more to those of the Kelvin-Voigt model for a
viscoelastic solid [181–183].

Taken together, a growing body of experimental and modelling results suggest that
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4.2 Coupling elasticity and phase field dynamics

cell monolayers are highly dynamic and reconcile both viscous and elastic signatures.
However, the identification of the appropriate material law is often not clear and might
strongly depend on context. Rather than extending the ongoing discussion of viscous
versus elastic laws in a continuum mechanics framework, here we present an approach
that brings together these two aspects in a different mathematical framework, namely
the phase field method. It is nowadays widely used in the biological context, as has been
discussed in Sect. 3.2.1, but has not been applied to the (bulk) elastic aspects of cells
and cell monolayers. For these elastic aspects, we resort to standard elasticity theory,
which is turned into a dynamic description by coupling it to the phase field. In fact, the
phase field method has already a tradition for problems involving elasticity, especially
for fracture mechanics [130, 132] and stress-induced instabilities [134, 135]. However,
because they address irreversible problems like fracture, these existing implementations
are typically not reversible under a removal of the forces and stresses. They hence are
not adapted to the biological situation described above, which requires the combination
of dynamics and reversible elasticity. Reversibility has been shown e.g. by optogenetics,
when cells return to a homeostatic level of contraction after transient stimulation of
motor activity [184].

In this chapter, we first briefly review how elastic stresses can be defined in the phase
field sense and how elastic effects have been incorporated in previous studies, arguing
why the reversibility of elastic deformations after a release of the applied forces, one of
the hallmarks of elasticity, is not recovered in the existing (commonly used) approaches.
Afterwards we present an alternative way of coupling elasticity to the phase field via
an imbalance of forces at short times that allows to drive the phase field interfaces [10].
The method is than applied to a few simple model problems inspired by single cell and
cell monolayer experiments, including a contractile cell (or cell sheet) adhering to a
substrate, a hole in a contractile cell monolayer and a contractile cell pinned via strong
focal adhesions, in order to verify and demonstrate the approach.

4.2 Coupling elasticity and phase field dynamics

The phase field equation can be coupled to model equations describing the evolution of
a physical system. This coupling will lead the phase field domain to deform as predicted
by these equations. In the biological context, the incorporation of continuummechanics
is of particular interest. Here we will present the aforementioned standard method of
combining elasticity and phase field dynamics and the alternative approach, able to
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Figure 4.1: Plot of the weighting
function ℎ(𝜌) = 𝜌2(3−2𝜌) (red curve)
and the double well potential 𝑔(𝜌) =

𝜌2(1 − 𝜌)2 (blue curve) for reference.
The chosen interpolation function has
extrema at 𝜌 = 0 and 𝜌 = 1, coinciding
with the minima of 𝑔(𝜌), i.e. with the
bulk phases. This is highlighted by the
black dashed lines.
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account for elastic reversibility.

4.2.1 Standard elastic phase field approach

Consider a system of two elastic materials represented by the bulk regions 𝜌 = 0 and
𝜌 = 1 of a phase field 𝜌 (𝒙, 𝑡). In order to couple the phase field to the elastic variables,
first an expression for the stress field in the whole domain is needed. Assuming both
materials are linearly elastic and isotropic, for each phase one has Hooke’s law [113],

𝜎𝑖 𝑗 = 2𝜇𝜖𝑖 𝑗 + 𝜆𝜖𝑘𝑘𝛿𝑖 𝑗 , (4.1)

with the strain field 𝜖𝑖 𝑗 and Lamé coefficients 𝜇 and 𝜆 that can be different in the two
materials, and the respective elastic energy density

𝑓𝑒𝑙 =
1
2𝜎𝑖 𝑗𝜖𝑖 𝑗 =

1
2𝜆𝜖 𝑗 𝑗𝜖𝑘𝑘 + 𝜇𝜖𝑖 𝑗𝜖𝑖 𝑗 . (4.2)

To define the stress tensor in the whole domain, one interpolates by writing

Σ𝑖 𝑗 (𝜌) = ℎ (𝜌) 𝜎1
𝑖 𝑗 + [1 − ℎ (𝜌)] 𝜎0

𝑖 𝑗 , (4.3)

with 𝜎0
𝑖 𝑗 and 𝜎1

𝑖 𝑗 the stresses in the materials described by 𝜌 = 0 and 𝜌 = 1, respec-
tively, and an interpolation function ℎ (𝜌) = 𝜌2 (3 − 2𝜌) [135, 140]. This function is
not unique, but it should have values ℎ(0) = 0 and ℎ(1) = 1 for the phases 𝜌 = 0
and 𝜌 = 1, respectively. The given choice has in addition a minimum for 𝜌 = 0 and a
maximum for 𝜌 = 1 (cf. Fig. 4.1), i.e. 𝜕𝜌ℎ(𝜌) |𝜌=0 = 𝜕𝜌ℎ(𝜌) |𝜌=1 = 0.

Equation (4.3) can also be interpreted as an interpolation of the Lamé coefficients of
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4.2 Coupling elasticity and phase field dynamics

both material phases
𝜇 (𝜌) = ℎ(𝜌)𝜇1 + [1 − ℎ(𝜌)] 𝜇0

𝜆(𝜌) = ℎ(𝜌)𝜆1 + [1 − ℎ(𝜌)] 𝜆0.
(4.4)

where the superscripts denote the respective material phase.
The equations of mechanical equilibrium ∇ · 𝝈 + 𝑭 = 0 (cf. Eq. (2.16), where the

external force density 𝒇 will be from now an denoted by 𝑭 to avoid confusion with the
energy densities) should still hold for the stress in the phase field formulation, i.e

∇ · 𝚺 + 𝑭 = 0, (4.5)

with 𝚺 being defined in Eq. (4.3). Note that the divergence operator then generates
several terms, including derivatives of the interpolation field ℎ(𝜌) and hence of 𝜌 . Sim-
ilar to the stress field, the elastic energy can be interpolated by replacing 𝜎𝑖 𝑗 by Σ𝑖 𝑗 in
Eq. (4.2), resulting in

𝑓𝑒𝑙 (𝜌) = ℎ (𝜌) 𝑓 1
𝑒𝑙
+ [1 − ℎ (𝜌)] 𝑓 0

𝑒𝑙
. (4.6)

The standard approach to couple elasticity to the phase field dynamics is to add the
interpolated (and hence phase field-dependent) elastic energy to the free energy density
of the phase field defined in Eq. (3.3), i.e. 𝑓𝑡𝑜𝑡 = 𝑓 (𝜌) + 𝑓𝑒𝑙 (𝜌) [129, 132–135, 140, 185].
Performing the functional derivative results in

𝜕𝜌

𝜕𝑡
= 𝐷Δ𝜌 − 𝜕𝑔 (𝜌)

𝜕𝜌
− 𝜕ℎ (𝜌)

𝜕𝜌

(︁
𝑓 1
𝑒𝑙
− 𝑓 0

𝑒𝑙

)︁
(4.7)

where the new term can be interpreted as a driving force for the phase field due to elas-
ticity. In principle, it has also to be accounted for a balancing of the phase field inherent
surface tension. To preserve the thermodynamic consistency of the above formulation,
the term by Jamet & Misbah [162] (cf. Eq. (3.15)) would be the most obvious choice.
Since 𝜕ℎ (𝜌) /𝜕𝜌 for 𝜌 ∈ [0, 1] is a positive function peaked at the phase field interface,
the phase field (associated to phase 𝜌 = 1) will advance if 𝑓 1

𝑒𝑙
> 𝑓 0

𝑒𝑙
and retract other-

wise, according to Eq. (4.7). For example, consider the stress-induced surface instability
(Grinfeld instability) [134, 135], where phase 𝜌 = 0 is the outside, non-material phase
(hence 𝑓 0

𝑒𝑙
= 0) and phase 𝜌 = 1 is under stress (hence 𝑓 1

𝑒𝑙
> 0). Consequently, phase

𝜌 = 1 will grow – in fact, because of incompressibility, by undulating its surface – to
release the stress. Note that Eq. (4.7) has to be solved together with Eq. (4.5) describing
mechanical equilibrium.

The standard elastic phase field approach describes situations in which elastic defor-
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4 Reversible elastic phase field approach and application to cell monolayers

mations drive changes in the position of a domain. However, it does not describe any
elastic relaxation back to the original configuration. The reason is that in Eq. (4.7) only
the elastic energy enters, which is quadratic in deformation (or, equivalently, in stress).
Hence a sign change of the applied force 𝒇 does not lead to a sign change in the driving
force term (last term of Eq. (4.7)) and the interface does not go back. We should note that
for the problems treated with Eq. (4.7) so far, this “non-reversibility” was not a problem:
in fracture mechanics problems of brittle materials, when the material is broken, it does
not close under release of the force [132, 133]. Similarly, in Ref. [140] the growth of an
actin gel was modelled, but the healing/depolymerisation of the gel was not considered.
However, for many other situations of interest, and in particular for single cells and cell
monolayers, as extensively discussed in the introduction, a phase field approach with
elastic reversibility is highly desirable.

4.2.2 Reversible elastic phase field approach

We will now describe an alternative approach for coupling elasticity to the phase field
dynamics, which is able to recover the reversibility of linear elasticity. First, the phase
field should be regarded as a numerical method to describe deforming ormoving bound-
aries. As such, although this may be convenient, its dynamics does not need to be the
functional derivative of a potential. Keeping the phase field potential defined in Eq. (3.3),
the coupling to elasticity can be implemented via forces instead of energy. Hence, the
phase field dynamics in two and higher dimensions can be written as

𝜕𝜌

𝜕𝑡
= 𝐷Δ𝜌 − 𝜕𝑔(𝜌)

𝜕𝜌
+

√︁
2𝐷𝑔(𝜌)𝜅 − 1

𝜉
(∇ · 𝚺 + 𝑭 ) · ∇𝜌, (4.8)

where we stick to the surface tension elimination term by Jamet &Misbah [162]. Equiv-
alently, the term by Folch et al. [160] can be used as thermodynamic consistency for the
phase field is not necessarily demanded. The last term in brackets is the sum of internal
elastic forces and an external force density. At mechanical equilibrium, this sum is zero
and hence the whole term vanishes, and the interface described by the phase field is sta-
tionary. If there is an imbalance of forces, however, the interface will be advected in the
direction of this force imbalance due to the term ∇𝜌 . This proceeds until the phase field
has attained a new shape fulfilling force balance, where mechanical equilibrium again
holds and the movement stops. The prefactor 1/𝜉 is a coupling parameter (a mobility
or inverse friction) setting the characteristic velocity of this movement.

To implement the elastic movement during the times of force imbalance, various
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4.2 Coupling elasticity and phase field dynamics

choices are possible, depending on the system to be modelled. In the soft matter and
biology context, one would argue that motion should be overdamped. The simplest
assumption then is a relaxational (overdamped) dynamics for the displacement field,

𝜉
𝜕𝒖

𝜕𝑡
= ∇ · 𝚺 + 𝑭 (4.9)

where 𝜉 is a friction coefficient setting the relaxation timescale into mechanical equi-
librium.

The dynamics of Eqs. (4.8) and (4.9) then is as follows: let us assume we start with a
stationary phase field (for the standard phase field, this corresponds to a tanh(𝑥)-like
profile) and vanishing displacement field 𝒖 (𝒙) = 0. If we apply a force density 𝑭 at
the phase field boundary, as the stress in Eq. (4.9) is zero, 𝒖 will increase with a cer-
tain timescale proportional to 𝜉 . This will lead to a build-up of stress until mechanical
equilibrium is reached via Eq. (4.9) and at the same time the phase field interface moves
via Eq. (4.8) because of the transient force imbalance. When the applied force is re-
moved, the accumulated internal stresses (having opposite sign than 𝑭 ) will lead to a
sign change in front of the driving force in Eq. (4.8) and the body relaxes back to its
initial equilibrium configuration before force application.

To ensure the independence of the phase field dynamics on 𝜉 , the coupling parameter
of the elastic driving force in Eq. (4.8) is chosen to be the inverse of 𝜉 . This becomes
clear by recognizing that the right-hand side of Eq. (4.9) is the driving term of Eq. (4.8).
This choice yields consistent results, meaning that the phase field interface moves as
far as the displacement field at the initial boundary indicates, independent of 𝜉 . In turn,
𝜉 should be chosen as small as possible to minimize computational costs, although for
a specific system of interest, the exact choice should depend on microscopic details.

From this point onwards, we will always assume that phase 𝜌 = 1 describes an elastic
material (like a cell) and phase 𝜌 = 0 the outside, i.e. empty space, where 𝝈0 = 0. Hence,
the phase field stress simplifies to

Σ𝑖 𝑗 (𝜌) = ℎ (𝜌) 𝜎1
𝑖 𝑗 . (4.10)

Finally, we have to take into account that if the interface moves backwards, i.e. if the
domain shrinks, it has to be assured that the displacement field is suppressed in what
will become the outside of the domain, where no material and hence no displacement
field exists. This problem is easy to remedy by adding a suppression term to Eq. (4.9)
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4 Reversible elastic phase field approach and application to cell monolayers

for the displacement field

𝜉
𝜕𝒖

𝜕𝑡
= ∇ · 𝚺 + 𝑭 − 𝛾 (𝑭 ) [1 − ℎ(𝜌)] 𝒖 . (4.11)

This suppression term is active only in the outside, is linear in 𝒖 and has a rate 𝛾 (𝑭 ).
We write the damping rate as 𝛾 (𝑭 ) = 𝛾0 + 𝛾1(𝑭 ). While 𝛾0 is always active, 𝛾1(𝑭 ) is
only non-zero when forces are applied to the interface. The use of two terms makes the
procedure more flexible and in particular allows to adapt to the Poisson effect, which
leads to movement at free boundaries that are not directly pulled by an external force.1

Since the suppression term is active also in the interface region, as a consequence the
total force actually applied to the domain is reduced. Therefore, 𝛾 (𝑭 ) has to be taken as
small as possible.2 Its effect can be partially compensated by decreasing the interface
width (decreasing 𝐷) and increasing spatial accuracy by a finer grid. We will call the
forces/stresses modulated in such a way effective force/stress in the following. Lastly,
we note that we use an implicit matrix relaxation scheme (Crank-Nicolson) to solve
Eq. (4.9), while the phase field dynamics is solved by the Fourier pseudo-spectral method
(cf. Appendix C).

4.3 Application to cells and cell monolayers

Having described the reversible elastic phase field approach, we will discuss its spec-
ification and usefulness to describe biological systems that deform themselves due to
active internal forces in the plane stress approximation (cf. Sect. 2.3.3). Afterwards, the
elastic phase field approach will be used to investigate several archetypical experimen-
tal geometries.

4.3.1 Introducing cell contractility and substrate adhesion

Cells and cell monolayers continuously generate internal forces to probe the mechanics
of their environment, to stabilize their interactions with the environment and to control
their shape and mechanics. In order to address this biological situation, two important
aspects have to be included in our modelling approach, namely internal contractility
and adhesion to the underlying surface. Regarding contractility, single cells and cell
1The presented formulation works best for large Poisson ratios 𝜈 (cf.) Ref. [10]. This poses no weakness
for treating biological materials, as these are in general nearly incompressible, i.e. 𝜈 ≈ 0.5.

2In a simple 1D example the new effective force can be calculated to be 𝐹𝑒 𝑓 𝑓 =
∫
[𝐹 − 𝛾 (1 − ℎ(𝜌))𝑢] 𝑑𝑥 .
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sheets are known to be contractile due to myosin II motors actively contracting the
actin cytoskeleton [37]. For epithelial monolayers, this contraction is coherent over
very large distances (hundreds of micrometres) due to the strong cohesion provided
by the cadherin-based adherens junctions [27, 186]. Such a global contractility can
be modelled on a coarse scale by adding an isotropic contractile stress 𝜎0 < 0 to the
constitutive relation from Eq. (4.1):

𝜎𝑖 𝑗 = 2𝜇𝜖𝑖 𝑗 + (𝜆𝜖𝑘𝑘 + 𝜎0𝑑) 𝛿𝑖 𝑗 . (4.12)

For simplicity, we here consider only a homogeneous, time-independent contractile
stress, but clearly the method is also applicable for time-dependent and spatially inho-
mogeneous active stresses 𝜎0(𝑥,𝑦, 𝑡).

Regarding adhesion, cells and cell monolayers are connected to the substrate through
a layer of integrin-mediated adhesions. This adhesion layer allows for exchange of
information and for mechanical coupling between cells and their substrates [187]. Cell-
matrix adhesion to the substrate has been extensively characterized with traction force
microscopy [188, 189]. A simple approach to model an adhesive soft interface that
transmits force is the so-called elastic foundation [71, 190–193]. Here one assumes a
homogeneous surface coverage with springs of spring constant density 𝑌 (measured
in N/m3) positioned between a stiff substrate and the cell. This leads to an additional
contribution to the force balance, Eq. (4.5), reading

𝑭𝑎𝑑ℎ = −𝑌𝒖 . (4.13)

In the dynamics, this term simply enters the right-hand side of Eq. (4.11). In principle,
this adhesion strength can also vary in time and space, i.e. 𝑌 = 𝑌 (𝒙, 𝑡) . Note,𝑌 is deter-
mined by two contributions, namely the properties of the engaged adhesions modelled
as the springs and the mechanical properties of the substrate [192]. In the case of very
stiff substrates, the adhesions springs dominate. For our purpose this simplification is
sufficient and we will neglect the substrate details.

Finally, the case of very strong adhesions can also be modelled by defining regions𝐴
where both the phase field and the displacement field are pinned, i.e. via the boundary
condition

𝜕𝑡𝜌 |𝐴 = 0, 𝜕𝑡𝒖 |𝐴 = 0 and 𝒖 |𝐴 = 0. (4.14)

For modelling cell monolayers, cell-cell junctions are inherently treated by not re-
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solving individual cells but by describing the tissue as a coherent material.
With these ingredients added, we continue with modelling specific geometries rele-

vant for single cells and cell monolayers.

4.3.2 Contractile cell adhered to a substrate

We first address the problem of a contractile elastic disk on an elastic foundation (cf.
Fig. 4.2 A) which constitutes a simple model for an adherent cell or cell monolayer [71,
191–193]. Generally, the disk is assumed to adhere on a ring at its periphery of inner
radius 𝑅𝑌 < 𝑅𝐶 with a constant adhesion strength 𝑌 , i.e.

𝑌 (𝒙) =
⎧⎪⎪⎨⎪⎪⎩

𝑌 > 0 for 𝑅𝑌 ≤ 𝑟 ≤ 𝑅𝐶

0 for 0 ≤ 𝑟 < 𝑅𝑌 .
(4.15)

For 𝑅𝑌 → 0, the cell is completely and homogeneously adhered. This model has been
used before to explain the characteristic localization of traction forces at the cell or cell
layer periphery [191].

First, Edwards & Schwarz [191] derived an analytical solution for the homogeneously
adhered disk (i.e. 𝑅𝑌 → ∞ in Fig. 4.2 A), where the radial displacement field is given by

𝑢𝑟 (𝑟 ) = −𝑙 𝜎0𝑑

2𝜇 + 𝜆
𝐼1

(︁
𝑟
𝑙

)︁
𝐼0

(︂
𝑅𝐶
𝑙

)︂
− 2𝜇

2𝜇 + 𝜆 𝐼1
(︂
𝑅𝐶
𝑙

)︂ . (4.16)

Here 𝑙 =
√︂
𝐸𝐶𝑑/𝑌

(︁
1 − 𝜈2

𝐶

)︁
is the localization length [191], which combines the moduli

and dimension of the disk with the substrate stiffness, i.e. the spring stiffness density,
𝑌 . 𝐼0 and 𝐼1 are the modified Bessel functions of the first kind.

Later, an analytical solution was given for the case of adhesion on a ring geome-
try [194] being of the form

𝑢𝑟 (𝑟 ) =
⎧⎪⎪⎨⎪⎪⎩

𝐴 𝐼1
(︂𝑟
𝑙

)︂
+ 𝐵 𝐾1

(︂𝑟
𝑙

)︂
for 𝑅𝑌 ≤ 𝑟 ≤ 𝑅𝐶

𝐶 𝑟 for 0 ≤ 𝑟 < 𝑅𝑌
, (4.17)

where 𝐴, 𝐵 and 𝐶 are constants determined by respective boundary conditions. Note,
the radial displacement field is linear for the non-adhered cell part. Due to its com-
plexity, the reader is referred to Solowiej-Wedderburn et al. [194] for the full solution.
In the phase field model, the adhesion of the diffuse cell boundary has to be smoothly
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Figure 4.2: A Sketch of a radial symmetric, elastic cell (𝐸𝐶 , 𝜈𝐶 ) of radius 𝑅𝐶 and height 𝑑 . The
cell is subject to an isotropic contractile stress 𝜎0, while being adhered to an adhesive substrate
via a layer of springs with spring stiffness density 𝑌 on a ring 𝑅𝑌 ≤ 𝑟 ≤ 𝑅𝐶 . For 𝑅𝑌 → 0 the
case of complete homogenous adhesion is recovered. Shown are the phase field (solid lines) and
corresponding analytical solutions (symbols in same colour) for the radial displacement field
𝑢𝑟 , normalized by the cell radius 𝑟𝑐 in mechanical equilibrium, for B a completely adhered cell
(𝑅𝑌 = 0) for different adhesion strengths 𝑌 and for C adhesion on a ring for different inner
ring radii 𝑅𝑌 /𝑅𝐶 and 𝑌 = 0.5 nN/µm3. The inset in B shows the phase field profiles for the
cases 𝑌 = 0.25 nN/µm3 (blue) and 𝑌 = 0.5 nN/µm3 (red) at three different time points: the initial
profiles before contraction (black), in mechanical equilibrium after stress application (coloured
lines) and after stress removal and elastic relaxation (coloured symbols). The same is shown
in the inset of C for the cases 𝑅𝑌 /𝑅𝐶 = 0.5 (blue) and 𝑅𝑌 /𝑅𝐶 = 0.6 (red). This demonstrates
reversibility in both cases. Simulations were performed on 𝑁 = 512 × 512 grid points on a
domain of 100 µm × 100 µm. If not specified above or in the figures, other relevant mechanical
parameters are 𝑅𝐶 = 25 µm, 𝐸𝐶 = 5 kPa, 𝜈𝐶 = 0.45, 𝜎0 = 3.182 kPa. The obtained disk radii at
mechanical equilibrium are 𝑟𝑐 = 23.24 µm (𝑌 = 0.25 nN/µm3), 𝑟𝑐 = 23.83 µm (𝑌 = 0.5 nN/µm3),
𝑟𝑐 = 24.41 µm (𝑌 = 1 nN/µm3) and 𝑟𝑐 = 24.61 µm (𝑌 = 2 nN/µm3). Further parameters as in
Appendix B.2.2 Table B.3.

continued towards the outside phase 𝜌 = 0. Arguing that the displacement field 𝒖 is sup-
pressed in phase 𝜌 = 0, a straightforward possibility is to define the adhesion strength
𝑌 (𝒙) = 𝑌 in the whole computational domain. This corresponds to the case of complete
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adhesion. The ring adhesion geometry can then be modelled by setting 𝑌 (𝒙) = 0 for
𝑟 < 𝑅𝑌 without the need of a smooth change as the phase field 𝜌 is constant in the cell.

Figure 4.2 B shows results of phase field simulations (solid lines) for a completely
adhered, elastic disk of radius 𝑅𝐶 = 25 µm under the action of a strong homogeneous
contractile stress and for different values of the substrate spring stiffness density 𝑌 =

0.25−2nN/µm3. Note that this leads to localization lengths in the range 𝑙 ≈ 0.8−2.3 µm
for a cell of stiffness 𝐸𝐶 = 1 kPa. The agreement of the displacement field, which by
symmetry is only radial, with the analytical solution (symbols) is very good inside the
bulk material. At the interface, the displacement smoothly crosses over to zero in the
no-material region.

The inset of Fig. 4.2 B investigates the reversibility of the phase field method. Shown
are the phase field profiles for the cases 𝑌 = 0.25 nN/µm3 (blue) and 𝑌 = 0.5 nN/µm3

(red) for three time points: the initial profile (equal for both cases) before applying the
contractile stress (black solid line), the phase field profile in mechanical equilibrium
with applied stress (coloured solid lines) and after removal of the stress.

It should be noted that the used stress value for the simulations in Fig. 4.2 B and C
is rather high, so deformations are only small for large stiffnesses 𝑌 . Nevertheless, the
reversibility is well captured down to𝑌 = 0.25 nN/µm3 implying displacements of order
10 %. We nevertheless should give thewarning that for too large displacements (i.e. large
𝜎0 and/or small 𝑌 ), reversibility may be no longer complete, because the phase field
model includes non-linear effects associated to the large-scale motion of its interface
that go beyond linear elasticity.

Figure 4.2 C shows results of phase field simulations (solid lines) and analytical so-
lutions (symbols) for cells adhered on a ring at their periphery with inner ring radii
𝑅𝑌/𝑅𝐶 = 0.5 − 0.8 and 𝑌 = 0.5 nN/µm3. Again, both are in very good agreement with
each other. As expected, increasing the adhesion area by decreasing 𝑅𝑌 , decreases the
deformation within the cell, approaching the solution of a completely adhered disk
(solid black line), i.e. 𝑅𝑌/𝑅𝐶 = 0. Note, the linear deformation in the non-adhered cell
part is obtained as predicted by Eq. (4.17).

The inset of Fig. 4.2 C shows phase field profiles for the cases 𝑅𝑌/𝑅𝑌 = 0.5 and
𝑅𝑌/𝑅𝑌 = 0.6 for three different time points as in Fig. 4.2 B. Again, elastic reversibil-
ity is recovered.

To make the above comparisons, in Eqs. (4.16) and (4.17) it has to be accounted for
two effects. First, the initial disk radius 𝑅𝐶 has to be replaced by 𝑟𝑐 , the current radius,
since the displacement field moves with the phase field. Second, the suppression term
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in Eq. (4.9) reduces the applied contractile stress, hence an effective (radial) stress is
acting given by

𝜎0,𝑒 𝑓 𝑓𝑑 = 𝜎0𝑑 − 𝛾0 + 𝑌
𝑟𝑐

∫
[1 − ℎ(𝜌)] 𝑢𝑟𝑟𝑑𝑟, (4.18)

where 𝑟𝐶 is again the current radius of the disk. Note that to get this good agree-
ment, the contribution of the substrate spring stiffness density 𝑌 in the interface region
has also to be accounted for. The interpretation is that, while inside the cell’s domain
(i.e. underneath the cell) the springs reduce the displacement as elastic elements should
do, their effect outside the cell and in the diffuse interface is indistinguishable of the
implemented damping term ∝ 𝛾 . Note that the effect is large in the given case, since
the displacement is largest at the boundary and 𝑌 is large, but it can be reduced by
decreasing the interface width of the phase field.

4.3.3 Contractile cell monolayer with a hole

Motivated by earlier work on wound closure [182, 183, 195–199] (cf. Fig. 4.3 A1 and A2),
as a second test case we model a hole (devoid of cells) of radius 𝑅ℎ in a cell monolayer
under isotropic contraction, sketched in Fig. 4.3 B.

If adhesion to the substrate is not considered, the analytical solution for a hole of
radius 𝑅ℎ in an infinite monolayer under an isotropic stress 𝜎0 is given by [115]

𝑢𝑟 (𝑟 ) =
1 − 𝜈𝐶
𝐸𝐶

𝜎0𝑅
2
ℎ

𝑟
(4.19)

yielding a long-ranged 1/𝑟 -decay. In the numerical implementation we have to apply
periodic boundary conditions, corresponding to a regular array of holes.

The result for the radial displacement field for a hole of 𝑅ℎ = 100 µm is shown in
Fig. 4.3 C for three different system sizes 𝐿 = 2 mm, 3 mm, 4 mm (coloured curves) and
compared to the analytical solution (dashed). One can see that the – most interesting –
part of the displacement close to the hole is well captured, while the long-ranged decay
suffers from finite size effects that become smaller for larger system sizes. The inset of
Fig. 4.3 C again confirms the reversibility after the release of the stress.

Note, again the for comparing the analytical and phase field solutions the stress 𝜎0

and initial hole radius 𝑅ℎ in the analytical solution have to be replaced by the actually
applied stress 𝜎0,𝑒 𝑓 𝑓 and the final radius 𝑟𝑐 in mechanical equilibrium, equivalent to the
previous example of the contractile disk.3

3For the effective stress see again Eq. (4.18) with 𝑌 = 0 as adhesion is not considered here.
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Figure 4.3: A1/A2 Examples of gaps/wounds of different, circle-like geometries in cell mono-
layers. B Simple model for a circular hole of radius 𝑅ℎ in an infinite, elastic monolayer (𝐸𝐶 , 𝜈𝐶 ).
The monolayer contracts isotropically with the stress 𝜎0. No substrate adhesion is assumed,
i.e 𝑌 = 0. C Radial displacement 𝑢𝑟 normalized by the current hole radius 𝑟𝑐 in mechanical
equilibrium after applying the contractile stress 𝜎0. Shown are the phase field solutions for do-
main sizes 𝐿 = 2 mm, 3 mm, 4 mm (coloured lines) and the theoretical solution for an infinite
monolayer(black dashed line), cf. Eq. (4.19). The behaviour close to the hole is well captured,
while far away finite size effects are visible due to the applied periodic boundary conditions.
The inset shows the phase field profile 𝜌 before stress application (black line), in mechanical
equilibrium after contraction (blue line) and after stress removal and relaxation (blue symbols)
for 𝐿 = 2 mm. This demonstrates again the elastic reversibility. Simulations were performed on
𝑁 = 512 × 512 (𝑁 = 1024 × 1024 for 𝐿 = 4 mm) grid points. If not specified above or in the
figures, other relevant mechanical parameters are 𝑅ℎ = 100 µm, 𝐸𝐶 = 1 kPa, 𝜈𝐶 = 0.5, 𝜎0 = 75 Pa.
Final hole radii: 𝑟𝑐 = 109.4 µm (𝐿 = 2 mm), 𝑟𝑐 = 111.3 µm (𝐿 = 3 mm), 𝑟𝑐 = 109.4 µm (𝐿 = 2 mm).
Further parameters as in Appendix B.2.2 Table B.3. Panel A1 adapted from [183]; A2 adapted
from [182].

Note that to make this comparison – as already explained in the previous section –
in Eq. (4.19) one again has to use the current radius 𝑟𝑐 instead of 𝑅ℎ and 𝜎0,𝑒 𝑓 𝑓 as given
by Eq. (4.18), where 𝑌 = 0 in the present case.

4.3.4 Contractile cell pinned at focal adhesions

Studying cells on micropatterned adhesive substrates has a long tradition in cell biology
and biophysics [200–202]. Today this approach is used on a routine level to mimic
the behaviour of different cell types in their physiological environment, which is more
structured than a glass or plastic dish [187].

We beginwith a cell pinned to the corners of a 50 µm× 50 µm square pattern by strong
focal adhesions. The latter were implemented as being centred around the four corners,
where we draw circles of radius 𝑟𝐴 = 3 µm wherein the rigid boundary condition,
Eq. (4.14), was applied. We then allowed the cell to contract under an isotropic stress
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Figure 4.4: A Sketch of a contractile cell (𝐸𝐶 , 𝜈𝐶 ), which is fixed to a square-shaped adhesion
pattern with half-edge length 𝐿𝐶 . The adhesive spots of radius 𝑟𝐴 are centred at the cell corners.
The cell is contracting under the homogenous stress 𝜎0. B Shown is the displacement field 𝒖 for
𝜌 > 0.5 (left panel) and the von Mises stress field Σ𝑣𝑀 normalized with respect to its maximal
value Σ𝑚𝑎𝑥

𝑣𝑀
(right panel) in mechanical equilibrium. The isocontour 𝜌 = 0.5 is drawn as red line

and the adhesive areas as blue andwhite circles, respectively. Visible are the in such experiments
ubiquitous invaginated arcs and stress condensation at the the focal adhesions. Simulations
were performed on 𝑁 = 512 × 512 grid points on a domain of size 100 µm × 100 µm. Relevant
mechanical parameters are 𝐿𝐶 = 25 µm, 𝐸𝐶 = 1 kPa, 𝜈𝐶 = 0.5, 𝜎0 = 0.4 kPa and 𝑟𝐴 = 3 µm. Further
parameters as in Appendix B.2.2 Table B.3.

(here 𝜎0 = 0.4 kPa).
In mechanical equilibrium the cell’s boundaries displayed invaginated arcs as shown

in Fig. 4.4 B in red (corresponding to the 𝜌 = 1/2−isocurve). The displacement field is
shown as arrows and the adhesion sites, where the cell is pinned, as blue circles. To get
a scalar quantification of the stress inside the cell, we calculated the von Mises stress,
which is defined (in plane stress) as

𝜎𝑣𝑀 =

√︂
𝜎2
𝑥𝑥 + 𝜎2

𝑦𝑦 − 𝜎𝑥𝑥𝜎𝑦𝑦 + 3𝜎2
𝑥𝑦 . (4.20)

Note that in the phase field sense, 𝜎𝑖 𝑗 was replaced by the interpolated stress Σ𝑖 𝑗 . A
stress accumulation at the focal adhesions is visible.

Applying a small substrate adhesion below the rest of the cell, in addition to the
strong pinning, does not change the overall quantitative picture. In contrast, when im-
plementing only substrate adhesion via a spring stiffness density 𝑌 , but no pinning,
the square-shaped cell just contracts homogeneously (in an affine fashion), i.e. with-
out displaying invaginations, and the stress was highest in the centre, as expected (cf.
Appendix B.2.1 Fig. B.1).

Next, we consider again an isotropically contracting circular cell, which is fixed via
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Figure 4.5: An initially circular, contractile cell of initial radius 𝑅𝐶 adhered to 5 (A) and 10 (B)
adhesion spots of radius 𝑟𝐴 (white circles). The focal adhesions are evenly distributed with
their centres lying on a circle 𝑟 = 0.98𝑅𝐶 − 𝑟𝐴, having in both geometries equal total area
corresponding to 10 % of the cell area. Shown is the total deformation field 𝜌 |𝒖 | in the cell phase
normalized by 𝑅𝐶 . Decreasing adhesive spot distance reduces the deformation at the free edges.
C Upon removal of one focal adhesion (here the most right one, shown as dotted white circle),
for instance by dissolution or rupture, a substantial increase in deformation is observed. In all
panels the isocontour 𝜌 = 0.5 is drawn as black solid line. Simulations were performed on
𝑁 = 256 × 256 grid points on a domain of size 100 µm × 100 µm. Other relevant mechanical
parameters are 𝑅𝐶 = 25 µm, 𝐸𝐶 = 1 kPa, 𝜈𝐶 = 0.5, 𝜎0 = 0.4 kPa. Further parameters as in
Appendix B.2.2 Table B.3.

the boundary conditions Eqs. (4.14) to a varying number 𝑁 of circular adhesive spots
of radius 𝑟𝐴. The centres of these mimicked focal adhesions are equally distributed on
a circle of radius 𝑅 = 0.98𝑅𝐶 − 𝑟𝐴 [194]. The total area of the adhesive spots 𝐴𝑡𝑜𝑡 is
assumed to be constant, hence 𝑟𝐴 =

√︁
𝐴𝑡𝑜𝑡/(𝑁𝜋).

In Fig. 4.5 the normalized total deformation field in the cell phase 𝜌 |𝒖 |/𝑅𝐶 for 𝑁 = 5
(Fig. 4.5 A) and𝑁 = 10 (Fig. 4.5 B) adhesive patches, indicated bywhite circles, is shown.
Like for the square-shaped cell, invaginated arcs are forming between neighbouring
focal adhesions with reduced deformation for increasing adhesion spot number, as has
been reported previously [194].

The phase field method makes it possible to model dynamically changing boundary
conditions. To demonstrate this, we again modelled the situation in Fig. 4.5 B. After
mechanical equilibrium has been reached, we remove one focal adhesion (the most
right one, dotted circle) and let the cell evolve into an equilibrium. The removal of one
adhesion spot is a simple model for its rupture or dissolution. Figure 4.5 C shows the
total deformation field in equilibrium after the removal of the adhesion patch. At the
liberated edge high deformation occurs, associatedwith a considerable stress relaxation.
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4.4 Discussion and conclusion

Cells and cell monolayers are both elastic and dynamic at the same time, making it very
challenging to develop appropriate mathematical models. The phase field approach is
very suitable for describing moving interfaces and versions accounting for elasticity
have already been developed. However, existing elastic phase field approaches are not
reversible under release of forces. As this is crucial in the biological context, e.g. when
a protrusion first forms and then relaxes again in a wound healing assay, here we pre-
sented an alternative approach. It is based not on a total phase field energy that includes
the elastic energy, but rather implements elasticity on the level of forces.

We applied the method to several standard situations that are often studied exper-
imentally for both single cells and cell monolayers. Important features of biological
systems, namely active stresses generated inside the layer as well as both weak ad-
hesion and strong pinning to an underlying substrate can be integrated easily into the
method. All tests worked well, including reversibility, and several features observed ex-
perimentally were well captured, such as the appearance of invaginated arcs and stress
focusing for strongly pinned contractile cells.

Care has to be taken when using strong damping outside of the domain (to ensure
good reversibility) and when implementing an elastic foundation, since both involve a
rescaling of the forces/stresses for finite widths of the phase field interface. Accounting
for this, we have shown that the method is in agreement with all tests against analytical
results performed and is completely reversible for not too large forces and stresses.
Reversibility may become only partial (i.e. the system does not go back completely to
its initial state) for higher forces or stresses. This is to be expected since the phase field
moving under the action of elastic forces is an effect going beyond linear elasticity, and
the more so, the further the phase field boundaries move.

In the future, the method should prove very useful to investigate dynamically self-
organized forces and stresses, especially concerning contractile cells pinned at focal
adhesions or finger formation and dynamics at monolayer boundaries. Building on ex-
isting cellular phase field models, as additional features relevant to cell dynamics one
could implement actin filament orientation [142], concentration fields [141], the effects
of biochemical signalling like the Rho-pathway [203], as well as adhesion and traction
force dynamics. The latter have been modelled previously within the phase field ap-
proach [143, 145] by introducing reaction-diffusion kinetics for the engaged adhesive
bonds, transmitting traction forces on an elastic substrate, while elasticity of the cell
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4 Reversible elastic phase field approach and application to cell monolayers

was disregarded. In the framework proposed here, the simplest approach would be to
let the distribution of engaged adhesive bonds modulate the substrate’s spring stiffness
density. Further on, in view of the viscoelastic flow behaviour of monolayers migrating
around an obstacle [180], a generalization of the approach to different viscoelastic mod-
els [136] would be highly interesting. The approach can be extended to multicellular
situations in which single cell resolution is required, by using different phase fields for
different cells [149, 151, 152, 154, 204]. The approach could be generalized to three di-
mensions, to model e.g. cell spheroids or cells moving in strong confinement [146, 148,
205]. In summary, the new method of reversible elastic phase fields introduced here
should find many interesting applications in modelling biological systems.
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5 The role of the nucleus for cell
mechanics: an elastic phase field
approach

Cells contain a large variety of substructures with varying size and material charac-
teristics [30]. It is not far-fetched to assume that this heterogeneity influences the me-
chanical response and perception of a cell and therebymany biological processes. In the
last decades, it has become clear that the nucleus as the largest and one of the stiffest
compartments of a cell is here of primary interest [75]. Here, we present an elastic
two-phase field approach, using the formulation presented in the previous chapter, in-
corporating the nucleus as a second field associated with nuclear elastic properties. We
investigate the mechanical role of a nucleus for a selection of relevant experimental se-
tups including micro-patterning, cell compression and micropipette aspiration. For the
last two, we are able to extract effective elastic moduli for the cell-nucleus composite.
Lastly, we give an outlook on modelling cell migration through narrow channels.

This chapter is based on the manuscript Chojowski, R., Schwarz, U. S., and Ziebert,
F. “The role of the nucleus for cell mechanics: an elastic phase field approach”. arXiv
preprint arXiv:2309.12777 (2023), which has been submitted for publication. Further,
the method and some results discussed in this chapter have been presented on the
03/06/2023 as a contributed talk at the APS March Meeting 2023 in Las Vegas (Nevada,
USA) and the abstract is published in the Bulletin of theAmerican Physical Society [207].

5.1 Introduction

Many essential biological processes depend on the mechanical properties of animal
cells and their ability to dynamically react to mechanical cues from their environment.
Classical examples include the spreading behaviour of cells on substrates of variable
stiffness [11, 13], cell migration in the direction of larger rigidity [15, 17] and cell dif-

59



5 The role of the nucleus for cell mechanics: an elastic phase field approach

ferentiation in response to environmental stiffness [20, 21]. A typical cell response to
variable environmental stiffness is to adapt the own stiffness to match the one of the
environment [18, 19]. However, there are also situations in which it is favourable for
cells to work with a different stiffness then the surrounding. One prominent example
are migratory immune and cancer cells in confined spaces, which tend to increase their
softness to more easily squeeze through the pores in their environment [23, 208, 209].

The main determinant of cell mechanics is the cytoskeleton, a crosslinked and highly
dynamical polymer network, giving the cell stability and the ability to quickly change
its mechanics [33, 36, 43]. In particular, the cytoskeleton allows cells to generate forces,
mainly pushing forces through polymerization and pulling forces through motor activ-
ity, both of which convert chemical energy into mechanical work and thus make the
cell an active system [36, 71]. Although the plasma membrane typically does not con-
tribute much to cell mechanics directly, it is important in the sense that it determines
cell volume and surface area; in addition, it provides guidance for the organization of
the cell cortex generated by the cytoskeleton as a thin polymeric network wrapping the
whole cell [31, 166].

In recent years, it has become clear that a third important mechanical component of
animal cells is the nucleus [75]. The nucleus harbours the genetic information of the
cell and is separated from the cytoplasm by its nuclear envelope. Due to its overarch-
ing role for gene expression, it has long been overlooked that the nucleus also plays
an important role in mechanics. Having a cell-type dependent diameter of several mi-
crometres and occupying a large fraction of the overall cell volume (typically up to 30%),
the nucleus is the largest andmost prominent of all cellular organelles [79]. Since it is so
densely packed with chromatin, the nucleus can be up to 10-fold stiffer than the rest of
the cell [83], which together with its size already suggests its importance in whole-cell
mechanics.

During recent years, it has been shown in many experimental studies that the nu-
cleus indeed has very specific mechanical roles in animal cells. In matrix-driven cell
differentiation, the nuclear stiffness correlates with tissue and matrix compliance, lead-
ing to stiffer cell nuclei on stiffer substrates and pointing at its ability of perceiving
mechanical cues and adapting to it [89]. Recently, it has been demonstrated that nu-
clear deformations instruct migratory behaviour of cells in confined spaces, indicating
that the nucleus serves as a ruler and mechanosensor [92, 93]. Moreover, the nuclear
size and stiffness limits the minimal size of constrictions through which a migratory
cell can squeeze through [208, 210, 211]. In turn, it has been observed that nuclear soft-
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ening during passage of narrow constrictions is often associated with nuclear envelope
rupture and DNA damage, which in our context are not only failure, but also signalling
events [99, 100, 208]. Stresses and strains on the nucleus can also lead to structural
changes in the chromatin packing and a subsequent softening of the nucleus [98]. It
also has been shown that metastatic cancer cells use the nucleus as a "battering ram" to
invade soft tissue [212]. In cell migration, the nucleus is positioned by the microtubule-
organizing centre either at the front or the back, depending also on the properties of the
environment; when positioned at the front, it can be used as a ram during cell migra-
tion. Last but not least, it is known that forces originating from the interplay between
cytoskeleton and the cellular surrounding can be directly transmitted to the nuclear
envelope leading to nuclear deformations, triggering transcriptional activities and cel-
lular reactions to these stimuli. This direct mechanotransduction pathway includes the
LINC protein complexes establishing a direct physical connection between nucleus and
cytoskeleton [4, 5, 65].

Despite this growing body of evidence of its importance for cell mechanics andmech-
anotransduction, the nucleus is often neglected when modelling whole-cell mechanics,
often due to lack of an appropriate theoretical framework. We here propose an exten-
sion of our previously developed elastic phase field approach for cell mechanics [10]
(cf. Chapter 4) that also includes the nucleus. In the spirit of multi-phase field ap-
proaches [151, 152, 155], the nucleus is introduced as an additional field, as was done
in previous phase field studies of cells [213, 214], but this time, we associate to the nu-
cleus elastic material characteristics and make them different from the ones of the rest
of the cell. This enables us to study the effect of the nucleus on the cell’s mechanical
behaviour in a variety of different and biologically highly relevant situations, including
various boundary conditions between both cell and substrate and nucleus and cyto-
plasm.

This chapter is structured as follows. First, we present the modelling approach for
an elastic cell with a nucleus. We then demonstrate its applicability for homogeneously
and locally adhered cells, already pointing out an important role of the nucleus. For the
simple geometry of an isotropically contracting, homogeneously adhering, disk-like cell
with a nucleus, we can use analytical solutions to validate the numerical solution. We
then proceed with discussing numerical studies of more complex experimental setups,
namely patterned adhesion and dynamic failure of an adhesion point. Finally, we turn
to cells in confinement and discuss as examples the compression of cells between two
parallel plates as well as micropipette aspiration of an elastic cell. We conclude with a
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discussion and outlook on possible applications and further extensions of the proposed
method.

5.2 Elastic phase field model for a cell with nucleus

In order to explicitly account for the nucleus in a model for an elastic cell, we extend the
elastic phase field approach described in the previous chapter and in Ref. [10]. Following
the idea of multi-phase field approaches [151, 152, 155–157], we extend this model by
implementing an additional phase field𝜓 (𝒙, 𝑡) describing an intracellular compartment,
which will be associated with nuclear elastic properties. A similar approach has been
used previously to account for an explicit nucleus in phase field models for cells [213,
214]. However, Camley et al. [213] neglected mechanics by solely considering the dy-
namics of two intercellular chemicals, while Moure et al. [214] assumed Stokesian hy-
drodynamics for both cell compartments. To our knowledge, no phase field model has
been proposed yet that would account for elastic continuum mechanics and allow to
model several cellular compartments – here the cytoplasm and the nucleus – having
different material properties.

  

Figure 5.1: A Sketch of the two-phase field approach for modelling a cell with a nucleus. The
computational domain Ωwith boundary 𝜕Ω is divided into different compartments by use of the
phase fields 𝜌 (𝒙, 𝑡) and𝜓 (𝒙, 𝑡) for thewhole cell and the nucleus, respectively. The distinguished
phases are the outside of the cell (𝜌 = 0,𝜓 = 0), the cytoplasm (𝜌 = 1,𝜓 = 0), and the nucleus,
(𝜌 = 1,𝜓 = 1). B Radial cut showing the interpolation functions for a cell of diameter 2𝑅𝐶 with
a nucleus of diameter 2𝑅𝑁 . The cell (ℎ(𝜌), black dashed line) is split into two compartments,
the cytoplasm (ℎ(𝜌) − ℎ(𝜓 ), red) and the nucleus (ℎ(𝜓 ), blue).
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5.2 Elastic phase field model for a cell with nucleus

In our approach, the cell and its nucleus are represented by two phase fields, 𝜌 (𝒙, 𝑡)
and𝜓 (𝒙, 𝑡), respectively, cf. Fig. 5.1 A.
Equivalent to the previous chapter, the cell is described by the bulk phase 𝜌 = 1 and
the outside by the phase 𝜌 = 0. Similar, the nucleus phase field 𝜓 (𝒙, 𝑡) takes on the
value 𝜓 = 1 in presence of the nucleus and 𝜓 = 0 otherwise. Cell and nucleus bound-
ary are described by a smooth tanh-like variation of the respective fields 𝜙 (𝒙, 𝑡) ∈
{𝜌 (𝒙, 𝑡),𝜓 (𝒙, 𝑡)}, where the interface location can be identified with the location of
the maximum of |∇𝜙 |, or simpler with the isocontour 𝜙 = 1/2. Each phase field has its
own evolution equation which follows an overdamped relaxational dynamics

𝜕𝜙

𝜕𝑡
= 𝐷𝜙Δ𝜙 − 𝜕𝑔(𝜙)

𝜕𝜙
+ 𝐷𝜙𝜅𝜙 |∇𝜙 | −

1
𝜉
(∇ · 𝚺 + 𝑭 − 𝛾 (𝒙) [1 − ℎ(𝜌)] 𝒖) · ∇𝜙 (5.1)

with 𝜙 ∈ {𝜌,𝜓 }, respectively. As before, the first term penalizes the formation of in-
terfaces whose width 𝜖𝜙 is set by the diffusion coefficient 𝐷𝜙 (𝜖𝜙 ∝

√︁
𝐷𝜙 ). In gen-

eral, the two interface widths, set by 𝐷𝜙 , could be chosen to be different. The sec-
ond term in Eq. (5.1) is the derivative of a double-well potential of the form 𝑔(𝜙) =

𝜙2(1 − 𝜙)2, already used in Chapter 4.1 Its minima are associated with the interior of
the cell/the nucleus (𝜙 = 1) and the space outside the cell/the nucleus (𝜙 = 0), respec-
tively (cf. Fig. 5.1 A). The third term in Eq. (5.1) is correcting for the method inher-
ent surface tension (cf. Sect. 3.2.2), which is proportional to the local mean curvature
𝜅𝜙 = −∇ · (∇𝜙/|∇𝜙 |), as before. Different to Chapter 4, we here use the surface ten-
sion correction term by Folch et al. [160] instead of the one by Jamet & Misbah [162]
(cf. Eq. (4.8) third term). We recall that the expressions by Folch et al. [160] and Jamet
& Misbah [162] are up to first order equivalent. If thermodynamic consistency is not
required, they can be interchangeably used. However, the surface tension correction
by Folch et al. [160] follows directly from an asymptotic expansion (cf. Appendix A.1),
which is why we will use it from now on. Finally, the last term in Eq. (5.1) couples the
phase field dynamics to continuum mechanics. It describes a movement of the phase
fields in case the mechanical force balance, ∇·𝚺+𝑭 = 0 with stress tensor 𝚺 and applied
external force 𝑭 , is not fulfilled.

The evolution of the displacement field 𝒖 can be written, using the common assump-

1As mentioned in Chapter 4, the double-well potential is not unique. Here, we remain with the simplest
choice.
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tion of overdamped dynamics for cells and tissues, as

𝜉
𝜕𝒖

𝜕𝑡
= ∇ · 𝚺 + 𝑭 − 𝛾 (𝒙) [1 − ℎ(𝜌)] 𝒖 . (5.2)

As previously, 𝜉 sets the timescale of the relaxation into mechanical equilibrium, given
by the force balance, and the last term suppresses 𝒖 in the region outside of the cell,
which is assumed to be empty space, i.e. without any elastic material properties.2 Equa-
tions (5.1) and (5.2) have been verified for the biological context in Ref. [10] and Chap-
ter 4.

The stress tensor 𝚺 must be defined on the entire computational domain. In case of
several compartments with different material properties, the phase field stress tensor
has to interpolate the stress tensors 𝝈 (and lastly material parameters) of the individual
considered phases, with smooth transitions at the respective interfaces. For this pur-
pose, we use weighting functions of the form ℎ(𝜙) = 𝜙2(3− 2𝜙) – already known from
the previous chapter – for the cell and the nucleus, respectively [10, 135, 140].

The total phase field stress tensor 𝚺 is then defined as

𝚺(𝜌,𝜓 ) = [ℎ(𝜌) − ℎ(𝜓 )] 𝝈𝑪 + ℎ(𝜓 )𝝈𝑵 (5.3)

where 𝝈𝑪 and 𝝈𝑵 are the stress tensors of the cytoplasmic (𝑪), i.e. the intracellular part
without nucleus3, and the nuclear compartment (𝑵 ). To indicate in which regions cy-
toplasmic and nuclear material properties are valid, an interpolation function for both
compartments have to be defined. We chose the interpolation function for the cyto-
plasmic compartment to be ℎ(𝜌) − ℎ(𝜓 ) (i.e. cell, but not nucleus), consistent with the
interpolation function ℎ(𝜓 ) for the nucleus (cf. Fig. 5.1 B). In general, the interpola-
tion functions are not unique, however, they should fulfil certain conditions, namely
ℎ(1) = 1, ℎ(0) = 0 and 𝜕𝜙ℎ(1) = 𝜕𝜙ℎ(0) = 0 (cf. Sect. 4.2.2). Outside of the cell we
assume the stress tensor to be zero for simplicity. Note that the cytoplasmic and the
nuclear compartments are mechanically coupled (only) via the phase field stress tensor,
Eq. (5.3).

Finally, the constitutive relation for the cytoplasm and the nucleus have to be spec-
ified. Both compartments are assumed to be linear elastic materials (cf. Eq. (2.22))
with Young’s moduli 𝐸𝐶 and 𝐸𝑁 and Poisson ratios 𝜈𝐶 and 𝜈𝑁 for cytoplasm and nu-
cleus, respectively (cf. Sect. 2.3.2) [113]. Recall that the stress tensors are defined as

2For more details on this aspect, see Sect. 4.2.2.
3From now on, when the cell part without nucleus is meant, we will refer to it cytoplasm.
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𝝈𝛼 = 2𝜇𝛼𝝐 + 𝜆𝛼𝑡𝑟 (𝝐)1, where 𝛼 = {𝐶, 𝑁 }. Here, 𝜇𝛼 and 𝜆𝛼 are the Lamé coefficients of
each compartment and 𝝐 is the strain tensor (cf. Eq. (2.19)).

In this chapter, we will consider cells of different geometries and therefore different
two-dimensional approximations of elasticity theory will be used: the plane stress ap-
proximation for strongly spread cells and the plain strain approximation for cells having
the shape of a long cylinder (cf. Sect. 2.3.3). Furthermore, two of the modelled experi-
mental setups, namely cell compression between two parallel plates and micropipette
aspiration, will be described in axial symmetry, i.e. quasi-3D. Here, the Lamé coeffi-
cients are the three-dimensional ones (cf. Eq. (2.23)). We will specifically mention the
used approximation for each experiment discussed in this chapter.

5.3 Modelling strongly spread cells

Having proposed the two-phase field method for modelling elastic cells containing a
nucleus, we will demonstrate its applicability by studying a cell of height 𝑑 spread onto
a compliant substrate in the 2D plane stress approximation. This situation is biologi-
cally highly important, since cells are able to sense the mechanical properties of their
environment via internal force generation and transmission of these forces to the out-
side [19]. The received information can then be used by the cell to adapt its mechan-
ical properties and morphology, and possibly even to induce division, differentiation
or motility (processes which are beyond the scope of this work). Similar to the situa-
tions studied in Chapter 4, active cell contractility and cell-substrate adhesion have to
be included as central features into the proposed method, in order to model a spread
cell.

Active stresses 𝚺𝒂𝒄𝒕 can be straightforwardly introduced into the phase field stress
tensor, Eq. (5.3), as an additive contribution. In principle, the active stress can be time-
and space-dependent. As discussed in Sects. 2.1.1 and 4.3.1, contractile stresses within a
cell arise due to the activity of myosin II motor proteins, which slide cytoskeletal actin
filaments relatively to each other [37]. While parts of the contracting actin cytoskeleton
span over the nucleus, a fraction 𝑓 ∈ [0, 1] can directly bind to it via LINC complexes
(cf. Sect. 2.2.1) exerting direct contractile stresses on the nuclear boundary [4, 5, 65].
Using the common – and previously used – approximation of an isotropic contractile
stress 𝝈𝑎𝑐𝑡 = −𝜎0𝑑1, with 𝜎0 > 0 and 1 the identity matrix, we write the active stress
tensor as

𝚺𝒂𝒄𝒕 = [ℎ(𝜌) − 𝑓 ℎ(𝜓 )]𝜎0𝑑1. (5.4)
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The function in the square brackets indicates in which cell compartment the contractile
stress is active. Two limiting cases can be distinguished: for 𝑓 = 0 the whole cell, includ-
ing the nucleus, is actively contracting, while for 𝑓 = 1 only the cytoplasm, but not the
nuclear region, is contracting. Biologically, varying 𝑓 should correspond to variable
degrees of nuclear-cytoplasmic coupling of active contractility (the passive elasticity
always corresponds to the one of a coherent elastic body): 𝑓 = 0 can be interpreted
as the case in which the nucleus is rather not connected to the actin cytoskeleton, so
that the actin cortex is effectively contracting the whole cell body, while 𝑓 = 1 can
be interpreted as the case in which the nucleus is connected such that the contractile
actin cytoskeleton pulls on it. In the following, we consider 𝝈𝑎𝑐𝑡 to be time-independent
and homogeneous in the respective cell compartments and investigate only steady state
situations.

The second feature needed to model spread cells is cell-substrate adhesion, anchor-
ing the cell and allowing for force transmission from the cytoskeleton to the substrate
via integrin-mediated adhesion sites (cf. Sect. 2.1.3). We here use again the concept of
an elastic foundation as an approximation for a fully elastic substrate (cf. Sect. 4.3.1).
Engaged adhesion sites are modelled as a spring stiffness density 𝑌 (𝒙) resisting cell
deformations [190–192]. The associated restoring force entering the elastic Eq. (5.2) is
then given by

𝑭𝑎𝑑ℎ (𝒙) = −𝑌 (𝒙)ℎ(𝜌)𝒖 (5.5)

where ℎ(𝜌) indicates that adhesion sites can only form underneath the cell. In princi-
ple, 𝑌 (𝒙) could be made time-dependent as well, allowing to model dynamics of bond
formation [143]. Note, the above formulation of the adhesion force differs from the pre-
vious one, Eq. (4.13), by the factor ℎ(𝜌). The scaling with the weighting function ℎ(𝜌),
i.e. the restriction of 𝑭𝑎𝑑ℎ (𝒙) to the cell interior, reduces possible effects on the sup-
pression of the displacement field 𝒖 outside of the cell, if 𝑌 (𝒙) extends into the outside
phase 𝜌 = 0 (cf. Eq. (4.18)).

5.3.1 Adhered cell of radial symmetry

We first study a circular, elastic cell of radius 𝑅𝐶 which is spread and actively contract-
ing on an elastic foundation, as shown in Fig. 5.2 A. Adhesion can be restricted to a ring
at the cell periphery of outer radius 𝑅𝐶 and inner radius 𝑅𝑌 , such that the cell adheres in
the region 𝑅𝑌 ≤ 𝑟 ≤ 𝑅𝐶 (cf. Eq. (4.15)). For 𝑅𝑌 → 0, the case of homogeneous adhesion
of the whole cell is recovered. This geometry was originally used to explain the ex-
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perimentally observed concentration of traction forces at the cell periphery from a me-
chanical perspective and is analytically solvable for homogeneously adhered cells [71,
191, 192]. Recently, an analytical solution for the case where adhesion is restricted to a
ring at the cell’s periphery has been also given [194]. Both have already been discussed
in Sect. 4.3.2.

To benchmark our numerical framework, we generalized the homogeneous adhesion
model (𝑅𝑌 → 0) by additionally considering a disk-like nucleus of radius 𝑅𝑁 in the cell’s
centre. We have calculated an analytical solution to this problem, which we here give
in an abbreviated form:

𝑢𝑟 (𝑟 ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 𝜎𝑁𝑑𝑙𝑁

2𝜇𝑁 + 𝜆𝑁

𝐼1
(︂
𝑟
𝑙𝑁

)︂
𝐼0

(︂
𝑅𝑁
𝑙𝑁

)︂
− 2𝜇𝑁

2𝜇𝑁 +𝜆𝑁
𝑙𝑁
𝑅𝑁
𝐼1

(︂
𝑅𝑁
𝑙𝑁

)︂ for 0 ≤ 𝑟 ≤ 𝑅𝑁

𝐴𝐼1
(︂
𝑟
𝑙𝐶

)︂
+ 𝐵𝐾1

(︂
𝑟
𝑙𝐶

)︂
for 𝑅𝑁 < 𝑟 ≤ 𝑅𝐶,

(5.6)

where 𝐼0(𝑥), 𝐼1(𝑥) and 𝐾1(𝑥) are modified Bessel functions of the first and second
kind [215], and 𝐴, 𝐵 and 𝜎𝑁 are long expressions following form lengthy but straight-
forward algebra. For a sketch of the calculation and the full solution see Appendix A.3.

We begin with the simplest case of a cell fully and homogeneously adhered to the
substrate, i.e. 𝑌 (𝒙) = 𝑌0 and 𝑅𝑌 → 0, and with no nuclear-cytoskeletal coupling (i.e.
𝑓 = 0). First, the model with a nucleus rigidity 𝐸𝑁 /𝐸𝐶 = 1 is compared to the phase
field model without an explicit nucleus from Sect. 4.3.2) and the analytical solution,
Eq. (5.6). Figure 5.2 B (upper panel) shows both phase field solutions (blue curve: with
explicit nucleus, red curve: without nucleus) and the analytical one (black curve) for the
radial displacement field 𝑢𝑟 normalized by the cell radius 𝑟𝐶 in mechanical equilibrium.
All three are in excellent agreement with each other. This demonstrates that for the
case, where cytoplasmic and nucleus compartment are mechanically indistinguishable,
the current approach and the previously verified one without nucleus yield the same
results, as to be expected. This also applies to the phase field profile of 𝜌 (𝒙, 𝑡), as shown
in Fig. 5.2 B (lower panel).

In Fig. 5.2 C (upper panel) the phase field (solid curves) and analytical solutions
(dashed) for the radial displacement field 𝑢𝑟 for different nuclear stiffnesses and radii
are shown. Both are in very good agreement, further confirming our approach.
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Figure 5.2: A Sketch of the model for a cell (thickness 𝑑 , radius 𝑅𝐶 ) with a concentric nucleus
(radius 𝑅𝑁 ). The cell is contracting isotropically with active stress 𝜎0 while being adhered to
a substrate via a spring stiffness density 𝑌 (𝒙) on a ring 𝑅𝑌 ≤ 𝑟 ≤ 𝑅𝐶 . The cytoplasm (𝐸𝐶 ,
𝜈𝐶 ) and the nucleus (𝐸𝑁 , 𝜈𝑁 ) can have different material properties. B Comparison of phase
field models with and without nucleus. Shown in the upper panel are the phase field solution
without nucleus (red dashed), with nucleus for 𝐸𝑁 /𝐸𝐶 = 1 (blue solid) and the analytical one
(black dashed) for the radial displacement field 𝑢𝑟 , normalized by the cell radius in mechanical
equilibrium 𝑟𝐶 . The lower panel shows the radial profile of 𝜌 (blue solid) and𝜓 (blue dashed) of
the model with nucleus and for 𝜌 (red dashed) without it. C Full homogeneous adhesion case
with 𝑅𝑌 = 0. The upper panel shows the phase field (solid) and analytical (dashed) solutions for
𝑢𝑟/𝑟𝐶 , for the cases: 𝐸𝑁 /𝐸𝐶 = 10, 𝑅𝑁 /𝑅𝐶 = 0.5 (blue); 𝐸𝑁 /𝐸𝐶 = 10, 𝑅𝑁 /𝑅𝐶 = 0.75 (red); and the
phase field solution for 𝐸𝑁 /𝐸𝐶 = 1 and 𝑅𝑁 /𝑅𝐶 = 0.5 (black, mostly covered by the blue curve).
The inset shows the trace of the stress tensor, normalized by the active stress 𝜎0, for 𝐸𝑁 /𝐸𝐶 = 10,
𝑅𝑁 /𝑅𝐶 = 0.5; the contour lines correspond to 𝜌 = 0.5 (cell, solid) and𝜓 = 0.5 (nucleus, dashed).
The lower panel shows the radial profile of 𝜌 (cell, solid) and𝜓 (nucleus, dashed) in mechanical
equilibrium with colours corresponding to the upper panel. D Adhesion on an outer ring only.
In the upper panel phase field solutions for 𝑢𝑟/𝑟𝐶 are shown for 𝐸𝑁 /𝐸𝐶 = 10, 𝑅𝑁 /𝑅𝐶 = 0.5
and varying 𝑅𝑌 /𝑅𝐶 = 0.5, 0.6, 0.7.0.8 (blue to green). The inset shows the normalized stress
for 𝑅𝑌 /𝑅𝐶 = 0.8 (dotted line marks inner ring boundary) and the lower panel the phase field
profiles for the case 𝑅𝑌 /𝑅𝐶 = 0.5. E Homogenous adhesion case for varying 𝑓 = 0, 0.2, 0.5, 1
(blue to green) (cf. Eq. (5.4)) for a nucleus of radius 𝑅𝑁 /𝑅𝐶 = 0.5. Shown are the phase field
solutions for 𝑢𝑟/𝑟𝐶 . The inset shows the normalized stress for 𝐸𝑁 /𝐸𝐶 = 2 and 𝑓 = 1 and the
lower panel the phase field profiles for 𝑓 = 0 (blue) and 𝑓 = 1 (green). All simulations were
performed on 𝑁 = 512 × 512 grid points on a domain of 50 µm × 50 µm. If not specified above,
the other mechanical parameters are 𝑅𝐶 = 12.5 µm, 𝑑 = 1 µm, 𝐸𝐶 = 𝜎0 = 1 kPa, 𝜈𝐶 = 𝜈𝑁 = 0.5
and 𝑌0 = 0.8 nN/µm3. Further parameters as in Appendix B.3.2 Table B.4.
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5.3 Modelling strongly spread cells

Deviations result from the diffuse description of the nucleus-cytoplasm boundary in
the phase field framework and can be reduced by decreasing its interface width. The
kink at the nucleus-cytoplasm interface, occurring in both the analytical and numeri-
cal solution, is due to the different rigidities of the two considered cell compartments.
Consistent with previous results, the highest deformations are visible at the cell periph-
ery [191]. This is associated with high traction stresses at the periphery and lowered
total internal stresses, as visualized in the inset of Fig. 5.2 C by plotting the trace of the
stress tensor 𝑡𝑟 (𝚺), normalized by the applied active stress level 𝜎0.

Physiologically, nuclei of animal cells can take up to 30 % of the total cell volume and
can be up to 10-fold stiffer than the rest of the cell [1, 75, 79, 83]. Hence, the question
arises, how important the nucleus is for cell mechanics. For a nucleus of half the cell’s
radius, 𝑅𝑁 /𝑅𝐶 = 0.5 (which is in the above volume range), the nucleus stiffness 𝐸𝑁 has
only a negligible effect on the cell’s deformation, as exemplified in the upper panel of
Fig. 5.2 C for a stiff nucleus (𝐸𝑁 /𝐸𝐶 = 10; blue curve) and a soft nucleus (𝐸𝑁 /𝐸𝐶 = 1;
black curve, mostly hidden by the blue one). Increasing the nuclear radius, a realisti-
cally stiff (𝐸𝑁 /𝐸𝐶 = 10) nucleus (red curves) leads to considerably different slopes in
the displacement field. However, the overall position of the cell periphery remains ap-
proximately the same, cf. the solid curves in the lower panel of Fig. 5.2 C, displaying
the radial phase field profiles.

It is important to note that the displacement field in the nucleus always remains small.
This demonstrates that strong cell adhesion protects the nucleus against large deforma-
tions and stresses. The determining factors are the distance between the nucleus and
the cell boundary, 𝑅𝐶 − 𝑅𝑁 , and the characteristic distance over which stress can prop-
agate through the cytoplasm, which for an adhering cell is given by the localization
length 𝑙𝐶 =

√︂
𝐸𝐶𝑑/𝑌 (1 − 𝜈2

𝐶
). [191] Peripheral cell adhesion seems to be sufficient for

protecting the nucleus, corresponding to the experimental observation of strong adhe-
sions forming mostly at the cell periphery, while the basal side under the nucleus is
mostly adhesion free [216].

We further recall from Sect 4.3.2, that in order to compare the analytical solution,
Eq. (5.6), with the numerically obtained phase field solutions, the initial radius of the nu-
cleus (𝑅𝑁 ) and the cell (𝑅𝐶 ) have to be replaced by the current radius – here in mechan-
ical equilibrium – of the nucleus (𝑟𝑁 ) and the cell (𝑟𝐶 ). Importantly, the applied stress
is reduced by the suppression of the displacement field outside of the cell (cf. Sect. 4.2.2
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and Eq. (5.2)) to an effective stress

𝜎0,𝑒 𝑓 𝑓𝑑 = 𝜎0𝑑 − 𝛾0 + 𝑌 (𝒙)ℎ(𝜌)
𝑟𝑐

∫
[1 − ℎ(𝜌)] 𝑢𝑟𝑟𝑑𝑟, (5.7)

similar to Eq. (4.18). However, due to the weighting of the adhesion strength 𝑌 (𝒙) with
ℎ(𝜌) its impact becomes small.

The shielding observed above can have a major impact on the nuclear mechanosens-
ing ability of stimuli originating at the cell edge. In a second study we therefore restrict
the adhesion to a ring at the cell periphery of inner radius𝑅𝑌 , to see whether the nuclear
deformation increases, indicating a higher perception of mechanical stimuli. In most
cell types, the nucleus occupies not more than a third of the cellular volume. Therefore,
we fix the nucleus radius to 𝑅𝑁 /𝑅𝐶 = 0.5, for which we found above that the nuclear
stiffness has only a negligible effect on cell mechanics, and the stiffness to 𝐸𝑁 /𝐸𝐶 = 10.
We then examine the radial deformation 𝑢𝑟 upon varying the inner radius 𝑅𝑌 of the ad-
hesion ring between 𝑅𝑌/𝑅𝐶 = 0.5−0.8 as shown in the upper panel of Fig. 5.2 D (blue to
green curves). First we remark, that the deformation field is linear in the non-adhered
cell parts, i.e. both in the nucleus and the inner part of the cytoplasm. As visible from
the displacement field, a larger 𝑅𝑌 , and therefore a decreased adhesion area, increases
the deformation the nucleus experiences. This demonstrates that adhesion restricted to
the cell periphery leads to an increased stress propagation to the nucleus, as also visible
in the inset of Fig. 5.2 D. Nevertheless, peripheral adhesion is sufficient to prevent large
deformations as shown by the only slightly increased deformation peak compared to
the fully adhered case in Fig. 5.2 C (upper panel). Similar results are obtained for soft
nuclei, i.e. 𝐸𝑁 /𝐸𝐶 = 1 and 𝐸𝑁 /𝐸𝐶 = 2 with the same radius 𝑅𝑁 /𝑅𝐶 = 0.5 (cf. Ap-
pendix B.3.1 Fig. B.2). This agrees with recent experiments on optogenetic activation of
whole cells that showed only small differences in whole-cell contractility between cells
on disk and ring adhesion geometries [217].

Having analysed the effect of adhesion geometry, we now return to the situation of
a fully adhered disk, but now with a varying fraction 𝑓 of actin filaments that cou-
ple to the nucleus via LINC complexes. This coupling leads to an tensile stress on the
nuclear boundary upon filament contraction (cf. Eq. (5.4)). Figure 5.2 E (upper panel)
demonstrates the radial displacement field 𝑢𝑟 for 𝑅𝑁 /𝑅𝐶 = 0.5 and 𝐸𝑁 /𝐸𝐶 = 2 for dif-
ferent degrees of nuclear-cytoskeletal coupling (𝑓 = 0, 0.2, 0.5, 1). The peaks close to
the nucleus-cytoplasm interface clearly show a radial stretching of the nucleus, which
is also visible in the lower panel of Fig. 5.2 E showing the phase field profiles for the
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cases 𝑓 = 0 (blue) and 𝑓 = 1 (green). Interestingly, the whole-cell deformation, i.e. the
displacement of the cell membrane, indicated by the 𝜌-interface position, remains un-
affected. For increasing coupling parameter 𝑓 , the nucleus experiences higher tensile
stresses, also visualized in the inset of Fig. 5.2 E for the case 𝑓 = 1, in contrast to the
previous discussed cases.

We also investigated the combination of the ring adhesion geometry combined with
the maximal nuclear-cytoskeletal coupling 𝑓 = 1, showing a substantial increase in
the radial stretch of the nucleus due to the absence of adhesion in its vicinity (cf. Ap-
pendix B.3.1 Fig. B.3).

In summary, the above results verify our elastic phase field approach and indicate
that the transmission of mechanical cues to the nucleus strongly depends on the actual
adhesion geometry and the possible force transmission from the cytoskeleton to the
nucleus.

5.3.2 Contractile cells on adhesion patterns

Micro-patterned adhesive substrates are a standard setup for studying cellular behaviour
in structured environments [200–202, 218]. Adherent cells are always under contrac-
tion, as demonstrated by the ubiquitous invaginated arcs that form when cells adhere
with point-like adhesions [71, 219]. Here, we investigate the impact of the nucleus on
the overall cell morphology in such geometries. As a first example, we study a rect-
angular pattern with four (identical) circular adhesive patches of radius 𝑟𝑎𝑑ℎ located at
its corners. A 2D rectangular cell, described in plane stress is allowed to form focal
adhesions at the corners and to contract isotropically under a contractile stress 𝜎0. The
nucleus initially has a circular shape of radius 𝑅𝑁 with physiological nucleus-to-cell
volume ratio𝑉𝑁 /𝑉𝐶 ≈ 0.17. We neglect nucleo-cytoskeletal coupling, i.e. 𝑓 = 0. For the
adhesion strength 𝑌 (𝒙) we use a smoothly varying field, transitioning in a tanh-like
manner from the maximal value 𝑌0 in the focal adhesion towards zero outside of it, i.e.

𝑌𝑖 (𝒙) =
𝑌0
2

[︃
1 − tanh

(︃
𝑟 − 𝑟𝑎𝑑ℎ√

2𝐷𝑌

)︃]︃
(5.8)

for each adhesive spot 𝑖 , where𝐷𝑌 sets the steepness of the transition region. Primarily,
this ensures numerical stability compared to pinning the cell completely to the focal
adhesion (via the boundary condition 𝒖 = 0, cf. Eq. (4.14) and Ref. [10]). It also would
allow to study different adhesive strengths in different focal adhesions.

Representative results for varying nuclear stiffness, position and shape are shown in
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Figure 5.3: A spread cell is adhering to a rectangular shape due to adhesive spots in its cor-
ners.The adhesive spots (dotted) have a radius 𝑟𝑎𝑑ℎ =1.15 µm with high 𝑌 =16 nN/µm3, to pre-
vent slipping from the adhesion sites. The cell is contracting under an isotropic contractile
stress 𝜎0/𝐸𝐶 = 0.4. The trace of the normalized stress tensor Σ𝑘𝑘/|2𝜎0 | is shown as colour map
for the cases 𝐸𝑁 /𝐸𝐶 = 1, 2, 10 (top to bottom) with an initially round nucleus (A) centred in
the cell, (B) shifted by Δ𝑥 = 1.5 𝑅𝑁 in 𝑥-direction and (C) for an elliptical nucleus (initial ec-
centricity 𝑒 = 0.64) in the cell’s centre. Cell and nucleus boundary positions are marked by
contour lines corresponding to 𝜌 = 1/2 (solid, cell) and 𝜓 = 1/2 (dashed, nucleus). D-F Shown
is the trace of the stress tensor along the symmetry line𝑦 = 0 for the corresponding simulations
shown in (A)-(C). All simulations were performed on 𝑁 = 1024×512 grid points on a domain of
50 µm × 25 µm. Initial cell dimensions are 30 µm × 15 µm with 𝑅𝑁 = 5 µm, 𝑑 = 1 µm, 𝐸𝐶 = 1 kPa
and 𝜈𝐶 = 𝜈𝑁 = 0.5. Rest as in Appendix B.3.2 Table B.4.

Fig. 5.3. The panels of Fig. 5.3 A study a centred and circular nucleus and demonstrate
the effect of an increased nuclear-cytoplasmic stiffness ratio 𝐸𝑁 /𝐸𝐶 . Clearly, the nu-
cleus is deformed by the invaginated arcs for low nuclear stiffness. A higher nuclear
stiffness rather changes the shape of the cell by perturbing the formation of invaginated
arcs, demonstrating again that localized adhesion together with an increased nuclear
stiffness protect the nucleus against large deformations/stresses. Similar perturbations
are observable for example for cells spreading on nanonets [220]. Yet one also sees
how stress bridges start to emerge between nucleus and adhesion sites, which look like
precursors of stress fibres.
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Similar to the previous study in circular geometry, the distance between the nucleus
and the cell edge is a determining factor for the magnitude of the morphology per-
turbation. If the nucleus position is shifted away from the cell’s centre, as shown in
cf. Fig. 5.3 B, a stress accumulation at the cytoplasm-nucleus boundary can be observed,
while the stress is lowered on the opposite side of the nucleus. Other observations made
above still apply here, i.e. the stiffer the nucleus, the less it gets deformed and the more
it perturbs the overall cell morphology. However, the asymmetry introduced by the
positional shift of the nucleus clearly leads to an asymmetric deformation of the softer
nuclei.

Lastly, we study the effect of nuclear shape, as nuclei are not only spherical/circular
but are also known to be of oval/elliptic morphology [79]. We centre the nucleus again
in the cell and change its aspect ratio AR = 𝑏/𝑎, where 𝑎 and 𝑏 are the semi-major and
semi-minor axis length of the ellipse, respectively.4 Figure 5.3 C shows the stress dis-
tribution for AR ≈ 0.77 and different 𝐸𝑁 /𝐸𝐶 = 1, 2, 10. The resulting stress distribution
within the cell is qualitatively very similar to Fig. 5.3 A, suggesting that in the present
case the initial nuclear morphology is of minor importance. Nevertheless, the average
deformation of the cell decreases the lower the aspect ratio and the higher the stiffness
of the nucleus is (cf. Appendix B.3.1 Fig. B.4).

In Fig. 5.3 D-F the trace of the stress along the symmetry line 𝑦 = 0 is depicted for
the case shown in Fig. 5.3 A-C, clearly showing the stress decrease for higher 𝐸𝑁 /𝐸𝐶
and its asymmetry when shifting the nucleus. Note again the similarity in the stress
between the centred spherical and elliptical nucleus in Fig. 5.3 D and F.

Interestingly, as visible in Fig. 5.3 B, the stress "builds a bridge" between the close-by
focal adhesions and the nucleus, [221] quite possibly impacting the mechanosensing of
the nucleus. One can hypothesize that the asymmetric stress distribution for shifted
nuclei allows the cell to differentiate between left and right, which may be important
to polarize for cell migration.

5.3.3 Focal adhesion failure

Having demonstrated that the proposed modelling framework is able to describe static
spread cells with nucleus in complex geometries, we now give an example of a simple
dynamic response. Like in the last example, we consider a cell on a micro-patterned
adhesive environment favouring a hexagonal cell shape. The adhesion spots are again

4For a circle AR = 1 and for an ellipse AR < 1.
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Figure 5.4: A A cell with nucleus was allowed to spread in a hexagonal adhesion pattern and
to contract isotropically with 𝜎0/𝐸𝐶 = 0.4 until it reached mechanical equilibrium (left panel).
Subsequently, the most right adhesion spot was removed and the cell evolved towards a new
mechanical equilibrium (right panel). The colour map shows the normalized trace of the stress
tensor. The cell shape (isocline 𝜌 = 0.5, solid black) and nucleus shape (𝜓 = 0.5, dashed black)
are also shown. B Shown is the average displacement ⟨𝛿 |𝒖 |⟩, with respect to the initial reference
displacement in (A), as a function of time 𝑡 for different friction coefficients 𝜉 . For all tested 𝜉 , the
behaviour is the one of a Kelvin-Voigt model. The simulations were performed on 𝑁 = 512×512
grid points on a domain of 50 µm × 50 µm. Initial cell edge length is 17.5 µm and 𝑅𝑁 = 6.65 µm
with cell height 𝑑 = 1 µm resulting in 𝑉𝑁 /𝑉𝐶 ≈ 0.17. Further, 𝐸𝑁 /𝐸𝐶 = 10 with 𝐸𝐶 = 1 kPa,
𝜈𝐶 = 𝜈𝑁 = 0.5, 𝑟𝑎𝑑ℎ = 1.25 µm and 𝑌0 = 16 nN/µm3. Further parameters as in Appendix B.3.2
Table B.4.

described by a smoothly varying function, cf. Eq. (5.8).

The cell first contracts isotropically under a stress 𝜎0 until it reaches mechanical equi-
librium, i.e. ∇ ·𝚺+ 𝑭 = 0. The resulting shape, including stress focusing at the adhesion
spots and invaginated arcs in between, is shown in the left panel of Fig. 5.4 A for a
nucleus-cell volume ratio𝑉𝑁 /𝑉𝐶 ≈ 0.17 and nucleus rigidity 𝐸𝑁 /𝐸𝐶 = 10. Subsequently,
one of the adhesion spots (here, the most right one) is suddenly removed, mimicking
the rupture/dissolution of a focal adhesion, and the cell deforms into a new mechanical
equilibrium given by this geometry (cf. right panel of Fig. 5.4 A). One can clearly see
that the cell relaxes a substantial amount of stress in the area of the missing adhesion
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point. The stress inside the nucleus is also reduced, in the shown example by 14.5 %,
and again shows an asymmetry. Because our elastic phase field model uses a reference
configuration, it is attributed with a memory preventing the cell edge, which was con-
nected to the removed adhesion, to relax fully to a new invaginated arc. Consequently,
one still sees the remnants of the original adhesion in the cell morphology.

To quantify the dynamics of this relaxation, we investigated the cell-averaged dis-
placement

⟨|𝒖 |⟩ = 1
𝑉𝑐𝑒𝑙𝑙

∫
𝜌 |𝒖 |𝑑Ω, (5.9)

where the cell’s volume is given by 𝑉𝑐𝑒𝑙𝑙 =
∫
𝜌𝑑Ω. Figure 5.4 B shows the deviation

⟨𝛿 |𝒖 (𝑡) |⟩ = ⟨|𝒖 (𝑡) |⟩ − ⟨|𝒖𝑟𝑒 𝑓 |⟩, (5.10)

from the average reference displacement ⟨|𝒖𝑟𝑒 𝑓 |⟩ at the time point of the removal of the
focal adhesion as a function of time and for different friction coefficients 𝜉 (cf. Eq. (5.2))
and 𝐸𝑁 /𝐸𝐶 = 10. As can be seen, the displacement ⟨𝛿 |𝒖 |⟩ always levels at the same
plateau value, reflecting that mechanical equilibrium is reached, with 𝜉 determining
the relaxation time.

It should be noted that the elastodynamic formulation of Eq. (5.2) was introduced out
of necessity to couple the phase field dynamics with elasticity in a reversible fashion,
as explained in Chapter 4 and Ref. [10]. Hence, if one wants to describe a system with
"pure" elastic behaviour, one should not probe the system on time scales 𝜏 faster than
the one set by 𝜉 . On the other hand, if one does so, the average displacement follows the
relaxation behaviour of a viscoelastic material with long-term elastic behaviour. This
is reflected by the dashed curves in Fig. 5.4 B where we applied a Kelvin-Voigt model,
predicting

⟨𝛿 |𝒖 (𝑡) |⟩ = 𝑢𝑚𝑎𝑥
[︃
1 − exp

(︃
𝑡

𝜏𝑅

)︃]︃
(5.11)

to interpret the data, which fits perfectly. Here 𝑢𝑚𝑎𝑥 is the maximum average displace-
ment and 𝜏𝑅 the characteristic relaxation timescale. The Kelvin-Voigt model is a widely
used and experimentally validated model for cellular mechanics, describing that me-
chanical relaxation does not occur instantaneously (as in linear elasticity), but is re-
tarded by internal friction, stemming from viscous flow and cytoskeletal reorganization.
For a Kelvin-Voigt material the relaxation timescale is given by 𝜏𝑅 = 𝜂/𝐸, where 𝐸 is the
Young’s modulus and 𝜂 the material’s viscosity. We verified that the correspondence
to a Kelvin-Voigt model holds for all tested nucleus stiffnesses, although slightly less
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5 The role of the nucleus for cell mechanics: an elastic phase field approach

accurate for softer nuclei (cf. Appendix B.3.1 Fig. B.5). The above comparison hence al-
lows to associate the friction coefficient 𝜉 with an effective viscosity 𝜂. However, since
the cell is a composite material of cytoplasm and nucleus, both 𝐸 and 𝜂 entering 𝜏𝑅 are
cell-averaged quantities.

5.4 Cells in confinement and modulus measurements

We now turn to the problem of cells in confinement, again focusing on the effects of the
nucleus. On the one hand, in their physiological environment, cells are often subject to
(dynamic) straining induced by their surrounding. Examples include cyclic stretching
in lung and vascular tissue or the migration of immune cells and metastatic cancer cells
through narrow openings in tissues or fibrous networks. On the other hand, several
experimental methods have been developed to probe cellular mechanical responses,
including local indentation using an atomic force microscope [222, 223], compression
of cells between two plates [92, 93, 224–228] and cell aspiration by micropipettes [229–
234]. Here, we show how the latter two can be modelled using our framework to extract
effective elastic moduli.

In both experimental setups, the interaction of the examined cell with the confining
obstacles – the plates of the compression apparatus or the tube walls of themicropipette
– is crucial. In the phase field method, such "obstacles" can be described by implement-
ing another, static phase field 𝜑 (𝒙), also having tanh-like transitions from 𝜑 = 1 within
the obstacle to 𝜑 = 0 outside, and which is assumed here to be perfectly rigid. The lo-
cal presence of the obstacle is then manifesting itself by interactions of the cell’s phase
field with 𝜑 . Motivated by a phenomenological excluded volume potential of the form
F = 𝛼

2 𝜌
2𝜑2 presented earlier [123, 151, 152], we add the following excluded volume

force to the force 𝑭 entering Eqs. (5.1) and (5.2):

𝑭𝑒𝑥𝑐𝑙 = 𝛼𝜌𝜑
2 ∇ℎ(𝜌)
𝑓 (ℎ(𝜌)) . (5.12)

Here the first term, including the interaction strength𝛼 , is the derivative of the excluded
volume energy. ∇ℎ(𝜌) indicates that the volume exclusion force acts orthogonal to
the 𝜌-interface5 and is restricted to the interface region.6 Finally, 𝑓 (𝑥) =

√︁
1 + 𝜖 (∇𝑥)2

5The orthogonality to the 𝜌-interface follows from∇ℎ(𝜌) = 𝜕𝜌ℎ(𝜌)∇𝜌 . Hence, 𝑭𝑒𝑥𝑐𝑙 acts in the direction
𝒏ℎ (𝜌 ) = ∇ℎ(𝜌)/|∇ℎ(𝜌) | = ∇𝜌/|∇𝜌 | = 𝒏𝜌 , i.e normal to the interface.

6Practically, 𝑭𝑒𝑥𝑐𝑙 is implemented to be only active if 𝜌𝜑2 ≥ 10−2 to prevent ’long-range’ interaction if
𝛼 is large.

76



5.4 Cells in confinement and modulus measurements

with a small 𝜖 ≪ 1 implements saturation of the force in case the phase field gradient
becomes too steep [152].

5.4.1 Compression of cells between two parallel plates

Compressing cells between two parallel plates is nowadays a standard experimental
technique to mechanically probe global cell mechanics [83, 225–228, 235, 236]. For
instance, in combination with computational predictions, it has been demonstrated that
formitotic cells the cell cortex dominates cell mechanics. [228] Beyond that, also cellular
responses to increased confinement have been addressed, evidencing that it can induce
the mesenchymal-amoeboid transition [237] and trigger cell migration [92, 93]. In the
latter studies it was suggested that the extent of nuclear compression determines the
onset of this response.

We model compression experiments by implementing the upper and lower plates via
the field 𝜑 (𝒙). Both plates are initially not in contact with the cell, such that 𝑭𝑒𝑥𝑐𝑙 = 0.
They are moved towards each other successively by the grid spacing Δ𝑥 each time the
cell has relaxed into mechanical equilibrium. Having reached the desired compression
level/plate distance, this procedure can be reversed to release the cell from the con-
finement. Note that we study here the quasi-static, purely elastic process to be able
to compare with analytical solutions; however, it is possible to also study compres-
sion that is continuous in time, where the response will then be of Kelvin-Voigt-type
(cf. Sect. 5.3.3).

So far, in Sect. 5.3 we used an effectively 2D plane stress approach, whichwas justified
for a thin, spread cell. In the compression experiment, the simplest effective 2D problem
would be the plane strain approach, corresponding to a long cylinder with circular
cross-section (cf. Sect. 2.3.3). To see how sensitive the compression experiment is to the
geometry, we compared this simple case (unrealistic for a cell) to the axially symmetric
case of a 3D sphere compressed between the plates. Note that the latter needs solving
all equations defined above in cylindrical coordinates.

Figure 5.5 A shows the distribution of stresses, visualised via the trace of the stress
tensor 𝑡𝑟 (𝚺), within the cross-section of a cell in plane strain (top, cylinder geometry;
note that this implies that the nucleus is also a cylinder) and of a spherical cell in axial
symmetry (bottom). The nuclear stiffnesses are 𝐸𝑁 /𝐸𝐶 = 1 (left), 𝐸𝑁 /𝐸𝐶 = 2 (middle)
and 𝐸𝑁 /𝐸𝐶 = 10 (right), respectively. For all shown cases, the nucleus radius is set
to 𝑅𝑁 /𝑅𝐶 = 0.5. In the snapshots, the plates have a distance of 90% of the initial cell
diameter 2𝑅𝐶 . Both cases, plane strain and axial symmetry, show an increased stress
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5 The role of the nucleus for cell mechanics: an elastic phase field approach

Figure 5.5: A Compression of a cell in the plane strain geometry (long cylinder, top) com-
pared to a spherical cell (axial symmetry, bottom). Shown is the trace of the stress for the cases
𝐸𝑁 /𝐸𝐶 = 1, 2, 10, normalized to the cytoplasm stiffness 𝐸𝐶 . The stress tensor is only shown for
𝜌 > 0.5 with the isolines corresponding to 𝜌 = 0.5 (black solid line) indicating the cell boundary,
𝜓 = 0.5 (black dashed line) for the nucleus boundary and 𝜑 = 0.5 marking the boundary of the
plates (black solid line outside the cells). Snapshots are for a compression of ≈10 % of the initial
cell diameter. B Numerically obtained force-compression curves. The symbols are numerical
solutions for plane strain (triangles) and axial symmetry (circles), respectively, cf. panel A. The
solid curves are fits to the respective analytical solutions (available in the absence of the nu-
cleus). C For the case of axial symmetry, we extracted an effective elastic modulus from fits as
shown in panelB. In the physiological range of nucleus sizes and stiffness, the effective modulus
measured in compression is up to three times larger than the one of the pure cytoplasmic stiff-
ness. Colours in B: 𝐸𝑁 /𝐸𝐶 = 1 in axial symmetry (blue), 𝐸𝑁 /𝐸𝐶 = 2 in axial symmetry (yellow),
𝐸𝑁 /𝐸𝐶 = 10 in axial symmetry (grey); 𝐸𝑁 /𝐸𝐶 = 1 in plane strain (red), 𝐸𝑁 /𝐸𝐶 = 2 in plane
strain (green), 𝐸𝑁 /𝐸𝐶 = 10 in plane strain (violet). Colours in C: nucleus size of 𝑉𝑁 /𝑉𝐶 = 0.125
(blue); nucleus size𝑉𝑁 /𝑉𝐶 = 0.3 (red). Simulations were performed on 𝑁 = 512×512 grid points
on a domain of size 50 µm × 50 µm. Mechanically relevant parameters for all shown simulations
(if not mentioned otherwise) are 𝑅𝑁 = 6.25 µm, 𝐸𝐶 = 1 kPa, 𝜈𝐶 = 𝜈𝑁 = 0.48, and 𝛼 = 6 kPa. Rest
as in Appendix B.3.2 Table B.4.
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concentration for increasing nuclear stiffness in the regions between the nucleus and
the plates, with a band-like stress accumulation connecting the cell edge in contact with
the plates and the nucleus. This is reminiscent of the ’stress bridges’ between nucleus
and focal adhesion as seen in Fig. 5.3 A-C, again possibly indicating a special role in the
perception of mechanical stimuli by a stiffer nucleus. The plane strain case shows an
overall higher stress, since it does not allow a considerable stress relaxation within the
nucleus. Nevertheless, the overall behaviour is quite similar.

To further quantify the compression experiments, we obtained the force-compression
curves for the results shown in Fig. 5.5 A. This was done by calculating the total force

𝐹 =

∫
|∇ · Σ|𝜌𝑑Ω (5.13)

in mechanical equilibrium for the respective total compression 𝛿 of the cell, normalized
by the cell diameter 2𝑅𝐶 , as shown in Fig. 5.5 B. As can be noticed, a consistently higher
force is required to deform a plane strain cylinder (triangles) by the same 𝛿 as compared
to a sphere in axial symmetry (circles), consistent with Fig. 5.5 A. Note that for the
resulting line contact problem in plane strain, the fundamental measure for this case
is the in-plane force per length 𝐹/𝐿 [238]. In order to compare the force-compression
curves in both geometries, we determined the length of the cylinder 𝐿 = 4/3𝑅𝐶 in plane
strain, such that the cylinder volume is equal to the sphere volume in axial symmetry
and multiplied the average force per length by 𝐿.

Importantly, for both contact problems studied here, plane strain and axial symmetry,
there exists an analytical solution for the force-compression relation in the absence of
the nucleus [238]. The force-compression relation of an elastic sphere compressed by
two rigid plates is the Hertz problem with

𝐹 ∝ 𝛿3/2 (5.14)

for an arbitrary pressure distribution [238, 239]. In plane strain, the relation is more
complicated and can be given as

𝛿 ∝ 𝐹

𝐿
log

(︄
𝐵√︁
𝐹/𝐿

)︄
, (5.15)

where 𝐵 is a constant containing information about the cell size and its effective stiff-
ness [238, 240]. Figure 5.5 B shows, apart from the numerically obtained data (symbols),

79



5 The role of the nucleus for cell mechanics: an elastic phase field approach

also fits to these relations (solid curves), resulting in a very good agreement for both
geometries. Importantly, the Hertzian theory 𝐹 ∝ 𝛿3/2 is still valid, even in the pres-
ence of a rather large and stiff nucleus. Throughout all tested 𝐸𝑁 /𝐸𝐶 the plane strain
geometry (triangles) requires a considerably higher force for the same compression 𝛿
compared to the respective axial symmetric case (circles), consistent with the previous
observations.

As the two-plate setup is extensively used to measure cellular stiffnesses, we tried to
infer the effective Young’s modulus 𝐸𝑒 𝑓 𝑓 (i.e. cell plus nucleus asmeasured in the respec-
tive apparatus) of our model cell in the physically relevant axial symmetric situation.
We used the full Hertzian law

𝐹 =

√
2𝑅𝐶
3 𝐸′𝛿3/2, (5.16)

for a parabolic pressure distribution with 𝐹 the total force per plate and 𝐸′ = 𝐸𝑒 𝑓 𝑓 /(1 −
𝜈2
𝑒 𝑓 𝑓

). Here 𝐸𝑒 𝑓 𝑓 and 𝜈𝑒 𝑓 𝑓 are the effective elastic parameters of the cell-nucleus com-
posite for rigid plates [239]. We assumed here that 𝜈𝑒 𝑓 𝑓 = 𝜈𝐶 = 𝜈𝑁 . In general, the
effective modulus in Eq. (5.16) is 1/𝐸 ′

= (1 − 𝜈2
𝑃
)/𝐸𝑃 + (1 − 𝜈2

𝑒 𝑓 𝑓
)/𝐸𝑒 𝑓 𝑓 , where (𝐸𝑃 , 𝜈𝑃 )

and (𝐸𝑒 𝑓 𝑓 , 𝜈𝑒 𝑓 𝑓 ) are the (effective) Young’s moduli and Poisson ratios of the plates of
the compression apparatus (P) and the compressed cell, respectively [238]. As we here
consider rigid plates 𝐸𝑃 → ∞. Equation (5.16) can be derived from the original Hertz
problem of an elastic sphere pressed into an elastic half-space.

Figure 5.5 C then shows that 𝐸𝑒 𝑓 𝑓 increases non-linearly with increasing nucleus
stiffness 𝐸𝑁 . For physiological nucleus sizes𝑉𝑁 /𝑉𝐶 = 0.125− 0.3, the effective modulus
𝐸𝑒 𝑓 𝑓 experiences an up to three-fold increase for 𝐸𝑁 /𝐸𝐶 = 10. Note that for 𝐸𝑁 /𝐸𝐶 = 1
the comparison with Hertzian theory yields an effective modulus slightly 𝐸𝑒 𝑓 𝑓 < 1,
resulting from the unknown pressure distribution in the phase field simulation. Nev-
ertheless, we argue that because the deviation is small, the assumption of a parabolic
pressure distribution in the Hertzian law is still sufficiently accurate.

Finally, while the above results indicate a considerable effect of nucleus size and stiff-
ness on the mechanics of a cell, we now consider cellular shape. Figure 5.6 shows the
compression of an initially pancake-like shaped cell (A) and droplet-like cell (B) in axial
symmetry, for different nucleus stiffnesses 𝐸𝑁 /𝐸𝐶 = 1, 2, 10. The pancake-like geometry
is similar to the one studied in Ref. [228]. They can be directly compared to the initially
spherical cell in Fig. 5.5 A (bottom). Again, for increasing nucleus stiffness a redistribu-
tion of stresses within the cell is visible. For the pancaked-like cell and 𝐸𝑁 /𝐸𝐶 = 1, the
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Figure 5.6:Compression experiments similar to Fig. 5.5 of (A) pancaked-shaped and (B) droplet-
shaped cells with nuclei of stiffness 𝐸𝑁 /𝐸𝐶 = 1, 2, 10 between two parallel plates in axial sym-
metry. Shown is the normalized trace of the stress tensor for 𝜌 > 0.5. The cell boundary is
indicated by the isoline 𝜌 = 0.5 (black solid line), the nucleus boundary by the isoline 𝜓 = 0.5
(dashed black line) and the plate boundaries by 𝜑 = 0.5 (black solid lines outside the cell). All
cells are compressed to ≈90 % of their initial height. C Force-compression curves for the simula-
tions shown in (A). D Force-compression curves for the simulations shown in (B). The symbols
are the simulation results and the solid lines are fits to them according to the relation 𝐹 = 𝐴𝛿3/2,
where 𝐴 is a fit constant. Note that the relation is in good agreement also for non-spherical cell
shapes in presence of a nucleus.Simulations were performed on 𝑁 = 512 × 256 grid points on a
domain of size 50 µm × 25 µm. Mechanically relevant parameters for all shown simulations (if
not mentioned otherwise) are 𝑅𝑁 = 6.25 µm, 𝐸𝐶 = 1 kPa, 𝜈𝐶 = 𝜈𝑁 = 0.48, and 𝛼 = 6 kPa. Further
parameters as in Appendix B.3.2 Table B.4.

regions of highest stress are located close to the cell boundary at the transition points
from vanishing to finite curvature, as predicted before [228]. However, for increasing
nucleus stiffness the upper and lower poles of the nucleus, nearest to the plates, be-
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come the zones of highest stress. Again, a band-like stress from the cell boundary in
contact with the plates to the nucleus boundary is visible. Special to the droplet-like cell
(cf. Fig. 5.6 B), modelled as a half-sphere, is that the±𝑧-symmetry of the cell morphology
is broken. This translates to an asymmetry in the compressed nuclear morphology and
the stress distribution within the cell between lower and upper half. Highest stresses
are visible in the cytoplasmic region between the upper nucleus pole and the upper
plate. Figure 5.6 C and D show the respective force-compression curves for the cases
shown in Fig. 5.6 A and B. Higher forces are needed to compress the pancake-like cell
compared to the droplet-like cell. We fitted the Hertzian relation Eq. (5.14) (solid lines),
which is also valid for objects of non-spherical shape (at least without a nucleus) [113],
to the numerical solution (circles). For soft nuclei, both agree well. However, the agree-
ment is less accurate for stiff nuclei, compared to the spherical cell (cf. Fig. 5.5 B). We
here refrained from determining effective moduli 𝐸𝑒 𝑓 𝑓 , as Eq. (5.16) should not apply
for these geometries.

The main impact of cell morphology (sphere vs. pancake vs. droplet) on nuclear
straining thereby comes from the distance between the nucleus and the cell bound-
ary: forces are better propagated to the nucleus for flatter cell shapes. Apical-basal
asymmetries in the initial cell morphology, as for the droplet-shaped cell, propagate
also to the nuclear deformation, possibly allowing a cell to distinguish between top and
bottom and to use the nucleus as compression sensor [92, 93].

5.4.2 Micropipette aspiration

An alternative to cell compression experiments for measuring cellular rheological re-
sponses are micropipette experiments [229, 232–234, 241]. In this setup, cells are sucked
into a pipette tube by applying a pressure difference Δ𝑃 between the tube’s interior and
the exterior space. In this setup, forces are more locally applied compared to global
straining in compression experiments. Micropipette aspiration has already been stud-
ied numerically and together with experiments showed that cells can have elastic and
viscous signatures [242]. Therefore, this experiment has been used to measure both the
elastic modulus 𝐸 and viscosity 𝜂 of cells [229].
We are again interested in the influence of the nucleus on the measurement of the

effective cell stiffness, in the context of this more local force application. Considering a
spherical cell with axial symmetry, the stationary pipette wall can be modelled as in the
previous example by using a field 𝜑 (𝒙), placing it closely to the cell membrane. Before
sucking the cell into the pipette, we first let the cell relax into mechanical equilibrium
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Figure 5.7: AMicropipette aspiration of a spherical cell (𝑅𝐶 = 15 µm) with nucleus (𝑅𝑁 = 7.5 µm)
into a pipette of 𝑅𝑝/𝑅𝑁 = 2/3 with Δ𝑃/𝐸𝐶 = 0.5 in axial symmetry. Shown are the cases
𝐸𝑁 /𝐸𝐶 = 1, 𝐸𝑁 /𝐸𝐶 = 2 and 𝐸𝑁 /𝐸𝐶 = 10. Cell and nucleus boundary are depicted for three
different time points: before pressure application (dotted black), during pressure application
(dashed grey) and in mechanical equilibrium (solid black). The solid line outside the cell marks
the edges of the pipette walls (top) and the spherical bead the cell adheres to (bottom). The
colour map shows the trace of the stress tensor normalized by the cytoplasmic stiffness 𝐸𝐶 . An
axial symmetric, spherical cell with nucleus is aspirated into a micropipette. The cell adheres to
a spherical bead to suppress rigid body motions. B Effective moduli extracted from experiments
as shown in A at Δ𝑃/𝐸𝐶 = 0.5 (blue), for higher pressures Δ𝑃/𝐸𝐶 = 0.75 (red) and Δ𝑃/𝐸𝐶 = 1
(yellow), and at Δ𝑃/𝐸𝐶 = 0.5 but for a larger nucleus 𝑉𝑁 /𝑉𝐶 = 0.3 (grey) or for a larger pipette
𝑅𝑝/𝑅𝑁 = 1 (green). All cases show an increase in effective modulus with nucleus stiffness,
but much smaller as compared to the compression experiment in Fig. 5.5 C. Note, due to the
unknown shape factor for the micropipette, we shifted the curves slightly such that for 𝐸𝑁 /𝐸𝐶 =

1 the expected modulus is recovered. Simulations were performed on 𝑁 = 512 × 512 grid
points. Further parameters used are 𝐸𝐶 = 1 kPa, 𝜈𝐶 = 𝜈𝑁 = 0.48, 𝛼 = 6 kPa and 𝑌 = 5 nN/µm2

(unit for adhesion strength is now different due to phase field-type definition, Eq. (5.17)). Other
parameters as in Appendix B.3.2 Table B.4.

due to the interaction with the pipette walls, cf. Eq. (5.12) To prevent any rigid body
motion of the cell, we let it adhere to a sphere (field �̃� (𝒙)) on the side opposite to the
pipette, as also done experimentally [230, 231] using an adhesion force

𝑭𝑎𝑑ℎ = 𝑌 (∇�̃�) (∇ℎ(𝜌))𝒖 . (5.17)

Note that this is the phase field version of Eq. (5.5) modelling adhesion of the cell with
strength 𝑌 when it is in contact with the sphere.

Applying now a pressure, 𝑃1, in themicropipette tube that is smaller than the pressure
𝑃0 in the cell’s interior (the outside pressure is assumed to be 𝑃0 as well) leads to a
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boundary force acting at the cell membrane within the pipette like

𝑭𝑝 = Δ𝑃 (𝒙) ∇ℎ(𝜌)
𝑓 (ℎ(𝜌)) (5.18)

where Δ𝑃 (𝒙) = (𝑃1 − 𝑃0)𝑝 (𝒙) and where 𝑝 (𝒙) marks the micropipette interior (where
𝑃1 is applied).

Figure 5.7 A shows results for the aspiration of spherical nucleated cells (𝑅𝐶 =15 µm,
𝑅𝑁 =7.5 µm) for nucleus stiffnesses 𝐸𝑁 /𝐸𝐶 = 1, 2 and 10 into a micropipette of radius
𝑅𝑝 = 2/3𝑅𝑁 =5 µm using a pressure difference of Δ𝑃/𝐸𝐶 = 0.5. As expected, the highest
positive stresses occur at the cell membrane within the pipette, while negative stresses
arise at the edges of the micropipette, where it effectively pushes against the cell. Fur-
thermore, in the case of stiff nuclei (𝐸𝑁 /𝐸𝐶 = 10), stress accumulation occurs again
in the vicinity of the nucleus boundary nearest to the pipette. This again suggests the
possible perception of mechanical stimuli by the nucleus, even for very locally applied
forces. While stiffer nuclei only deform marginally and are shifted within the cell to-
wards the pipette position, soft nuclei (𝐸𝑁 /𝐸𝐶 = 1, 2) show some egg-like asymmetry
in their morphology due to deformation. The black curves in the panels of Fig. 5.7 A
show the cell and nucleus boundaries (1/2-phase field isocurves) for three different time
points, to exemplify the dynamic nature of the problem.

Also in the micropipette geometry, one can extract an effective modulus for the cell-
nucleus composite. Within the elastic regime of aspiration, the stiffness can be approx-
imated by the relation

𝐸 =
3𝜁
2𝜋 Δ𝑃

𝑅𝑝

𝐿𝑝
, (5.19)

where 𝑅𝑝 is the inner micropipette radius and 𝜁 is a shape factor for the micropipette
geometry [243]. No closed form exists for calculating the shape factor 𝜁 [242].

To calculate the effective cell stiffness 𝐸𝑒 𝑓 𝑓 from the numerics, we determine the as-
piration length 𝐿𝑝 and, knowing the applied pressure difference and the micropipette
radius, we estimated the effective modulus over a range of nucleus stiffnesses, nucleus
sizes, pressure differences and micropipette radii, cf. Fig. 5.7 B. All tested cases yield
𝐸𝑒 𝑓 𝑓 ≈ 1 for 𝐸𝑁 /𝐸𝐶 = 1 with a deviation of less than 5 % for Δ𝑃/𝐸𝐶 = 0.5. Since the
shape factor is unknown, we hence shifted all results such that for 𝐸𝐶 = 𝐸𝑁 we get
the correct modulus. There also is a slight dependence on the applied pressure. How-
ever, with increasing pressure (from blue to yellow curves in Fig. 5.7 B), the extracted
effective moduli 𝐸𝑒 𝑓 𝑓 approach each other, indicating that the method is best suited for
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sufficiently large applied pressures.

All studied cases show an increase in effective stiffness for stiffer nuclei. However,
this increase is approximately 30 % for the largest and stiffest nuclei. Hence the localized
force application due to the micropipette geometry leads to much lower measured 𝐸𝑒 𝑓 𝑓
compared to the global cell compression geometry (cf. Fig. 5.5). This clearly demon-
strates – and quantifies – that experimentally measured effective cell stiffnesses do not
only depend on the inner structure of the cell, but also on the experimental setup.

5.4.3 Outlook on modelling cells migrating through narrow
channels

Weherewant to present a first approach on how cell migration can bemodelledwith the
elastic phase field approach discussed in this chapter in a 2D plane stress formulation.

Migrating cells often have to squeeze through narrow channels and gaps in their sur-
roundings. Here, the size of the cell nucleus in conjuncture with its mechanical prop-
erties pose a constraint on the minimal constriction size, which still allows a passage of
the cell [208, 210, 244]. Often passage through narrow constrictions is associated with
nuclear envelope rupture and therefore loss of nuclear rigidity [99, 100, 208]. However,
passage can be facilitated without such an event by the formation of actin cytoskeletal
structures linked to the nucleus assisting in its deformation [208, 245] and pulling it
through the constriction [96, 246]. Recently, it has been proposed that nuclei can be
pushed by the cytoskeleton [247] and that a transition between pushing and pulling by
the cytoskeleton exists, depending on the degree of confinement [248].

Models for cell migration (containing a nucleus) need to combine elastic deforma-
tions of the cell, such as the formation of the lamellipodium or mechanical interactions
with obstacles, and rigid-body motions. We note that the elastic description (of the
nucleus) is supported by recent experimental observations on cell squeezing trough a
constriction [248]. Rigid-body motions of the cell require the deformation field – or
rather the reference configuration – to move with the cell and is not incorporated in
the model equations discussed in Chapter 4 to 7.

This can be achieved by adding an advection-like term to the phase field and elasto-
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dynamic equations

𝜕𝜙

𝜕𝑡
= 𝐷𝜙Δ𝜙 − 𝜕𝑔(𝜙)

𝜕𝜙
+ 𝐷𝜙𝜅𝜙 |∇𝜙 | −

[︃
𝜕𝒖

𝜕𝑡
+

(︃
𝜕𝒓𝑐𝑜𝑚
𝜕𝑡

· ∇
)︃
𝒖

]︃
· ∇𝜙 − 𝜕𝒓𝑐𝑜𝑚

𝜕𝑡
· ∇𝜙 (5.20)

𝜉

[︃
𝜕𝒖

𝜕𝑡
+

(︃
𝜕𝒓𝑐𝑜𝑚
𝜕𝑡

· ∇
)︃
𝒖

]︃
= ∇ · 𝚺 + 𝑭 − 𝑌ℎ(𝜌)𝒖 − 𝛾 (𝒙) [1 − ℎ(𝜌)] 𝒖, (5.21)

where 𝜙 ∈ {𝜌,𝜓 } denotes the cell phase field 𝜌 (𝒙, 𝑡) and nucleus phase field 𝜓 (𝒙, 𝑡),
respectively. For details on these equations see for instance Chapter 5. The term pro-
portional to the centre of mass velocity 𝜕𝒓𝑐𝑜𝑚/𝜕𝑡 are the advection-like terms, allowing
to describe rigid-body motions by shifting the displacement field/ reference configura-
tion in space.

Being controlled by the strength of force transmission by the cell to an underlying
substrate, the centre of mass velocity is given by

𝜒
𝜕𝒓𝑐𝑜𝑚
𝜕𝑡

=

⎧⎪⎪⎨⎪⎪⎩
𝑘 (⟨𝒖⟩ − ⟨𝒖⟩𝑐𝑟 ) for ⟨𝒖⟩ > ⟨𝒖⟩𝑐𝑟
0 else

, (5.22)

where 𝜒 is a friction coefficient setting the timescale of motion and 𝑘 controls the cou-
pling strength or force transmission efficiency to the substrate. Onset of motion occurs
when the average traction force 𝑘 ⟨𝒖⟩ exerted by the cell, with average displacement

⟨𝒖⟩ = 1
𝑉𝑐𝑒𝑙𝑙

∫
Ω
𝒖 (𝒙)𝜌 (𝒙)𝑑Ω and 𝑉𝑐𝑒𝑙𝑙 =

∫
Ω
𝜌 (𝒙)𝑑Ω , (5.23)

is above a critical average traction force 𝑘 ⟨𝒖⟩𝑐𝑟 ; otherwise, the cell is only deformed and
does not move. Note that the elastic effect of substrate coupling is still introduced to the
elastodynamic equation via the adhesion force 𝑭𝑎𝑑ℎ = −𝑌 (𝒙)ℎ(𝜌)𝒖, cf.Eq. (5.21). Instead
of considering a centre of mass velocity, a (more realistic) local velocity description
could be employed.

To move the cell, we introduce an effective propulsion force 𝑭𝑝𝑟𝑜𝑝 (𝒙) ∝ ∇𝜌 , spatially
restricted to a part of the cell edge, into Eq. (5.21). This is a simplification for the propul-
sion forces exerted via internal dynamics of the cytoskeleton. A more detailed model
of cell polarization and motion can be introduced by considering an internal polariza-
tion field 𝒑, representing actin polymerization dynamics, as previously done by Ziebert
et al. [142] without considering elasticity. The polarization field induces a force at the
cell boundary, which can be written as 𝑭𝑝𝑟𝑜𝑝 = 𝛼𝑝 |𝒑 |2∇𝜌 , entering the force balance in
Eq. (5.21).
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5.4 Cells in confinement and modulus measurements

Figure 5.8: A cell of initial radius 𝑅𝐶 with a nucleus of radius 𝑅𝑁 /𝑅𝐶 = 1/2 and stiffness
𝐸𝑁 /𝐸𝐶 = 5 is migrating through a channel of a width corresponding to 60 % of the initial cell
diameter 2𝑅𝐶 . Shown are snapshots of the trace of the stress tensor for 𝜌 > 1/2 for two time
points: when the cell is entering the channel (𝑡1) and when it is completely within the channel
(𝑡2). The channels walls are marked by the isocontour 𝜑 = 1/2 (dashed black lines), the cell
boundary by 𝜌 = 1/2 (black solid line) and the nucleus boundary by𝜓 = 1/2 (dotted black line).
Mechanical parameters are 𝐸𝐶 = 1 kPa, 𝐸𝑁 = 5 kPa, 𝜈𝑁 /𝐶 = 0.5, propulsion force 𝐹/𝐸𝐶 = 0.2,
𝛼/𝐸𝐶 = 6.

Figure 5.8 shows snapshots of an initially circular cell of radius 𝑅𝐶 with a nucleus
of radius 𝑅𝑁 /𝑅𝐶 = 1/2 and stiffness 𝐸𝑁 /𝐸𝐶 = 5 migrating through a narrow channel
for two different time points. The interactions with the channel walls are modelled
via Eq. (5.12). Shown is the trace of the stress tensor, showing similarities in the stress
distribution observed in the compression of cells between two plates (cf. Fig. 5.5 A),
notably the concentration of stress between channel walls and nucleus. Note that the
cell gets stretched at its leading edge due to the pulling force leading to its movement.
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5.5 Discussion

Cell mechanics and mechanotransduction are strongly influenced by the largest and
stiffest cellular organelle, the nucleus. Despite increasing evidence of its mechanical
importance, models explicitly accounting for nuclear mechanics are still rare. We here
developed a two-phase field approach for modelling cell mechanics with an additional
internal compartment associated with nuclear elastic properties and investigated the
mechanical response of cells in a selection of biologically relevant geometries and ex-
perimental setups. We also verified our approach in cases for which analytical solutions
are available to the elastic equations.

In the first part described in Sect. 5.3, we considered the case of spread cells in un-
structured and structured environments using a 2D plane stress formulation. For ho-
mogeneous adhesion, the effect of a physiologically sized nucleus on the mechanical
response of the cell is small as the adhesion to the substrate effectively shields the nu-
cleus from deformations and stresses. Even peripheral adhesion on a ring pattern is
still sufficient to protect the nucleus. However, in more structured environments with
highly localized adhesion sites, a much higher transmission of stresses to the nucleus
was observed. These observations demonstrate that the actual adhesion geometry can
be sensed by cells at the nucleus. Further on, applying tensile stresses on the nucleus by
letting only the cytoplasm contract (again for a homogeneously adhered cell), indicates
that the geometry dependence is complemented by the manner of force transmission
from the cytoskeleton to the nucleus. This agrees with previous experimental results
and the role of the LINC complex in direct force transmission from the cytoskeleton to
the nucleus, where it is known that its disruption dramatically impedes nuclearmechan-
otransduction. [8]

Onmicro-patterned environments, stiffer nuclei also change the cellularmorphology,
by perturbing the formation of the invaginated arcs. Additionally, the nuclear position
largely effects the stress distribution within the cell, which may be an important input
for the cell with regard to the determination of its polarity, e.g. when having to distin-
guish between front and back. For stiff nuclei, "stress bridges" resembling stress fibres
form from close-by focal adhesions to the nuclear boundary, suggesting an effect on the
perception of mechanical cues.

The here-proposed phase field method allows to model not only stationary but also
dynamic situations. As a simple example we considered the failure of a focal adhesion
for a cell on a hexagonal micro-patterned substrate. The coupling of phase field dy-
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namics and elasticity made it necessary to use an elastodynamic formulation for the
evolution of the displacement field (cf. Sect. 4.2) [10]. We here showed that the relax-
ation into mechanical equilibrium is of Kelvin-Voigt type (cf. Sect. 5.3.3). In turn, if a
purely elastic behaviour of the system is desired, it should not be probed on timescales
shorter than the respective relaxation time. Also note that the elastic description mem-
orizes the initial condition of the cell before the application of forces or stresses. The
cell shown in Fig. 5.4 A hence does not relax to a (deformed) pentagonal shape with an
invaginated arc at the cell edge where the disappeared focal adhesion was located.

In the second part, Sect. 5.4, we modelled compression experiments of cells between
two parallel plates and the aspiration of cells into micropipettes in an axial symmetric
geometry. Again, stiffer nuclei showed stress accumulation near their boundary point-
ing towards a significant role of nuclear mechanics in determining the properties of the
cellular environment. Importantly, our model allowed the extraction of effective elastic
moduli of the cell-nucleus composite for both experimental methods, yielding consis-
tently lower effective moduli for local pressure application in micropipette experiments
compared to more global cell compression. This shows that the determination of effec-
tive cell moduli is not only dependent on cell geometry but also the experimental setup
used. We have also shown that the cell geometry influences the distribution and possi-
ble perception of stresses. Flatter shapes allow a better force propagation to the nucleus
and top-bottom asymmetries in cell morphology translate to asymmetric nuclear defor-
mations, possibly enabling the nucleus to distinguish between top and bottom.

In the case of the compression of cells, we here used a quasi-stationary compression,
allowing the comparison to analytical solutions. Nevertheless, the approach is also
applicable for dynamic compression with different plate velocities. For the micropipette
aspiration experiments the extraction of elastic moduli is best suited for sufficiently
large pressures. Low pressure application leads to a slight underestimation in the range
of 5% of the effective cell stiffness. This is partially influenced by the unknown shape
factor for the pipette, cf. the discussion of Fig. 5.7 B.

In the future, the here developed method should prove useful for investigating the
effect of a nucleus and/or other cellular organelles, potentially described with different
material laws, in a large variety of situations. Additional new insights on mechan-
otransduction could be gained by examining the effect of the nuclear position within
the cell in fully three-dimensional (3D) situations. In this respect, the phase fieldmethod
can be extended relatively easily to 3D, making it possible to consider more complex en-
vironments like fibrous network geometries or non-symmetric constrictions [146, 205,
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249].
The presented method could also be used to describe the role of cell nucleus mechan-

ics in tissues, using the multi-phase field approach [151, 152, 155]. Note that recently,
a new jamming transition due to the presence of nuclei was predicted for tissues by an
active foammodel [250]. It would be interesting to study the same effect in our dynamic
continuum framework.

Another important context of cell and nuclear mechanics is cell migration through
constrictions, where the minimal constriction size is predominantly determined by the
nuclear size and stiffness [208]. A first, simple approach tomodel cell migration through
a narrow channel was demonstrated in Sect. 5.4.3, showing similarities to the compres-
sion of a cell between two plates. We envision to supplement the current approach
by self-organized internal driving forces inducing cellular motility, that could be im-
plemented by an actin "polarization" field [142] and should naturally enter the elasto-
dynamic equation, Eq. (5.2). In the context of mechanotransduction, the coupling of
the proposed method to a system of reaction-diffusion equations should allow to model
nuclear translocation of proteins like YAP/TAZ in response to nuclear straining (and
opening of nuclear pore complexes [6, 8, 9]). This could elucidate further – and more
directly – the role of nuclear mechanics on spatio-temporal import dynamics and me-
chanically induced signalling events.

In summary, the elastic phase field approach for modelling the mechanics of nucle-
ated cells is very versatile and easy to generalize for future applications. The results
presented should be useful to quantify experiments and last but not least point to many
interesting implications with regarding the role of the nucleus on whole cell mechanics,
mechanosensing and related subjects.
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6 Modelling the spatiotemporal
dynamics of nucleocytoplasmic
transport in mechanically
strained cells

In the previous chapter, we have proposed a phase field model for elastic cells with
nuclei and examined the role of the nucleus for cell mechanics in a selection of bio-
logically relevant experimental setups. Here, we now consider mechanotransduction,
i.e. the mechanosensitive transport of proteins into the nucleus. We extend the model
from Chapter 5 by a reaction-diffusion system for modelling nucleocytoplasmic protein
transport dynamics, in order to investigate its sensitivity on nuclear rigidity.

6.1 Introduction

Cellular reactions to external mechanical stimuli are to a large part mediated by the di-
rect transmission of forces to the nucleus. Essential in the mechanotransduction path-
way is a biochemical component involved in gene transcription, namely the accumu-
lation of transcriptionally active proteins in the nucleus. Additionally, nuclear defor-
mations are known to disturb the chromatin organization in cells and, hence, possibly
allowing transcription of previously inactive genes [98, 251].

Transport of proteins into the nucleus occurs through hundreds to thousands of nu-
clear pore complexes (NPCs) perforating the nuclear envelope (cf. Sect. 2.2.2). In the last
years, the structure of these massive protein complexes has been more and more un-
veiled up to atomic resolution [252–254], recently assisted by artificial intelligence [110,
255]. NPCs show a high throughput capacity of around 1000 proteins per second per
NPC [102] in and out of the nucleus, while still being highly selective [88]. This se-
lectivity manifests itself by the so-called permeability barrier allowing efficient passive
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diffusional passage only for macromolecules with molecular weights below 40 kDa to
60 kDa [75, 88, 256]. Above this size threshold, adaptor proteins, so-called importins
and exportins, binding to the cargo molecules are needed to facilitate nuclear import
and export.

Being the gateway to the cellular genome, NPCs are also used by viruses to bring
their genetic information into the nucleus of cells [257]. A recent study has demon-
strated that cone-shaped HIV capsids invade cell nuclei by squeezing through NPCs
and releasing their cargo directly in the nucleus [258].

To understand the protein transport mechanisms, pathways and selectivity of NPCs,
experiments on isolated, in vivo [108] and artificial NPCs have been performed, comple-
mented by theoretical models. Still, many aspects of NPC-mediated nucleocytoplasmic
transport have to be revealed.

During recent years, nuclear mechanics has been identified as another component
in determining nucleocytoplasmic transport efficiency. An extensively studied macro-
molecule in this context is YAP/TAZ, which is known to be a mechanosensitive tran-
scription regulator involved in many physiological processes, including development
and wound healing [259]. With a molecular weight of 65 kDa [260], YAP lies at the edge
of the NPC permeability barrier. It has been shown that nuclear accumulation of YAP
occurs above a critical substrate stiffness associated with focal adhesion growth and
increased traction forces [261]. In line, several studies on spread cells in 2D and 3D en-
vironments have indicated a connection between YAP accumulation in the nucleus and
nuclear morphology/ deformation [8, 220, 262, 263]. Importantly, YAP nuclear translo-
cation is highly dependent on the transmission of cytoskeletal forces to the nucleus via
LINC complexes, which has been demonstrated by disruption of the latter leading to
heavily decreased nuclear YAP signals [8]. However, the mechanosensitivity of the
transport process depends on the differential effect of forces exerted on the nucleus on
passive and facilitated diffusion through NPCs [9].

It is argued that NPC-mediated transport is (partially) facilitated by tension induced
stretching of NPCs in response to nuclear deformation, weakening the permeability
barrier [8, 88]. This has been recently supported by electronmicroscopy studies demon-
strating changes in the diameter of NPCs [6, 7]. However, other aspects such, as con-
formational changes of the NPC structure [6], may also be important in this context.

Here, we aim at investigating the sensitivity of nucleocytoplasmic protein shuttling
on nuclear rigidity using the elastic phase fieldmodel for cells with nuclei (cf.Chapter 5)
extended by a reaction-diffusion model for the cargo transport, similar to those of An-
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dreu et al. [9] and Kim et al. [264]. In contrast to these kinetic models, our approach
allows to model spatiotemporal transport dynamics in moving boundary problems in
two dimensions. NPC widening due to nuclear tension is accounted for by increase of
the local permeability of the nuclear boundary.

This chapter is structures as follows: First, we describe a sharp interface reaction-
diffusion model describing the import of proteins into the nucleus, which will then
be translated into the phase field framework. We then study how nuclear tension has
to influence the permeability of the nuclear boundary for increased accumulation of
proteins in the nucleus. Afterwards, we consider the effect of nuclear mechanics on the
accumulation of cargo in the nucleus for spread cell, focussing on molecules of a size
similar to YAP.

6.2 Reaction-diffusion model for nucleocytoplasmic
transport

In the following, we will propose a system of reaction-diffusion equations describing
the import of cargo proteins into the nucleus in a mechanosensitive manner. This con-
tinuum approach is justified by experimentally measured fluorescence signals of trans-
portable cargo in cells, suggesting the possibility to consider concentrations of cargo
proteins [8, 9, 220]. First, the sharp interface equations of the model and later their
corresponding phase field version are discussed.

6.2.1 Sharp interface model

We consider a domain Ω representing a cell, which is divided into two compartments:
the nucleus (Ω𝑁 ) and the cytoplasm (Ω𝐶 ), i.e. the cell part without nucleus (cf. Fig. 6.1).
The cell boundary (𝜕Ω𝐶 ), i.e. the cell plasma membrane, is assumed to be impermeable,
while the nuclear envelope (𝜕Ω𝑁 ) can be traversed by molecules through NPCs.

Cargo proteins of interest can diffuse in both compartments and shuttle between
nucleus and cytoplasm. In order to distinguish cargo proteins in the cytoplasm from
those in the nucleus, we denote the cargo concentration in the cytoplasm by 𝑐 (𝒙, 𝑡) and
in the nucleus by𝑛(𝒙, 𝑡). Similar, complexes of cargo proteins and importins, facilitating
the nucleocytoplasmic transport, are referred to by 𝑐𝐼 (𝒙, 𝑡) in the cytoplasm and𝑛𝐼 (𝒙, 𝑡)
in the nucleus compartment. The general model equations with boundary conditions
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Figure 6.1: A cell is divided
into two compartments: the
cytoplasm (Ω𝐶 ) and the nu-
cleus (Ω𝑁 ). The cell bound-
ary (𝜕Ω𝐶 ) and is assumed to
be impermeable. The nu-
cleus boundary (𝜕Ω𝑁 ) is per-
meable due to NPCs perfo-
rating it.

Ω

Ω

Ω

Ω

for each species are

𝜕𝑐

𝜕𝑡
= 𝐷𝑐Δ𝑐 + 𝑘−1 𝑐𝐼 − 𝑘1𝑐 𝒏 · ∇𝑐 |𝜕Ω𝑁= 𝑃𝑝 (𝑛 − 𝑐) 𝒏 · ∇𝑐 |𝜕Ω𝐶= 0 (6.1)

𝜕𝑛

𝜕𝑡
= 𝐷𝑛Δ𝑛 + 𝑘−2 𝑛𝐼 − 𝑘2𝑛 𝒏 · ∇𝑛 |𝜕Ω𝑁= −𝑃𝑝 (𝑛 − 𝑐) (6.2)

𝜕𝑐𝐼

𝜕𝑡
= 𝐷𝑐𝐼Δ𝑐𝐼 − 𝑘−1 𝑐𝐼 + 𝑘1𝑐 𝒏 · ∇𝑐𝐼 |𝜕Ω𝑁= 𝑃𝑎 (𝑛𝐼 − 𝑐𝐼 ) 𝒏 · ∇𝑐𝐼 |𝜕Ω𝐶= 0 (6.3)

𝜕𝑛𝐼

𝜕𝑡
= 𝐷𝑛𝐼Δ𝑛𝐼 − 𝑘−2 𝑛𝐼 + 𝑘2𝑛 𝒏 · ∇𝑛𝐼 |𝜕Ω𝑁= −𝑃𝑎 (𝑛𝐼 − 𝑐𝐼 ). (6.4)

where the total number of cargo proteins 𝑁𝑡𝑜𝑡 in the entire cell, irrespective if they are
in a complex or not, is conserved, i.e. 𝜕𝑡𝑁𝑡𝑜𝑡 = 𝜕𝑡 (𝑁𝑐 +𝑁𝑛 +𝑁𝑛𝐼 +𝑁𝑐𝐼 ) = 0, where the 𝑁𝑖
are the total number of cargo and cargo-importin complexes in cytoplasm and nucleus.

The above system for nuclear import is a simplified version of the transport cycle
shown in Fig. 2.6. It dynamics is as follows: Cargo proteins and cargo-importin com-
plexes diffuse through each compartmentwith a diffusion coefficient𝐷𝑖 .Cargomolecules
can associate with importins to cargo-importin complexes in both compartments with a
rate 𝑘1 with units s−1. Note, importins (𝐼 ) are not considered explicitly as their concen-
tration is assumed to be much higher in the cytoplasm and in the nucleus than those of
the cargo proteins, such that there are always enough available importins for binding
and the reaction becomes independent of the importin concentration [9].

In the cytoplasm the cargo-importin complexes dissociate with a (small) rate 𝑘−1 ,
while in the nucleus the unbinding rate 𝑘−2 is much higher due to a large nuclear con-
centration of RanGTP involved in separating cargo and importins. Similar to the cargo-
importin association, the large RanGTP concentration in the nucleus allows to assume
that it is in a steady state and the dissociation rate 𝑘−1

2 is constant. Additionally, we
assume the RanGTP/GDP cycle (cf. Fig. 2.6) to be in steady state. Note that the RanGTP
concentration in the cytoplasm is much smaller than in the nucleus, creating a concen-
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tration gradient responsible for the directionality of the transport process [88, 265].
Lastly, no-flux boundary conditions are assumed at the cell membrane, while the

nuclear membrane is permeable due to NPCs perforating it. Simple cargo can shuttle
by passive diffusion due to a jump in concentration across the nuclear envelope with
an efficiency given by the passive impermeability 𝑃𝑝 with units µm/s, similar to a ve-
locity. Cargo-importin complexes are actively transported through NPCs, also called
facilitated diffusion, with a permeability 𝑃𝑎 > 𝑃𝑝 . In principle, both passive and active
permeability can vary along the nuclear boundary.

6.2.2 Diffusion-reaction model in the phase field method

To couple the model equations presented in the previous section to the elastic phase
field model from Chapter 5, Eqs. (6.1)-(6.4) first have to be transcript into the phase
field sense.

Consistent with Chapter 5, we describe the cell domainΩ𝐶 by a phase field 𝜌 (𝒙, 𝑡) and
the nucleus domain Ω𝑁 by a second phase field𝜓 (𝒙, 𝑡), both taking on the value 1 in the
respective domains and 0 otherwise. The cytoplasmic domain Ω𝐶 can be represented
by the difference between both fields Φ(𝒙, 𝑡) = 𝜌 (𝒙, 𝑡) − 𝜓 (𝒙, 𝑡). In the phase field
framework Eqs. (6.1)-(6.4) are written as

𝜕(Φ𝑐)
𝜕𝑡

= 𝐷𝑐∇ [Φ∇𝑐] + 𝑃𝑝 (𝑛 − 𝑐) |∇𝜓 | + Φ
(︁
𝑘−1 𝑐𝐼 − 𝑘1𝑐

)︁
+ 𝛽Φ

(︁
𝑁𝑡𝑜𝑡,0 − 𝑁𝑡𝑜𝑡

)︁
(6.5)

𝜕(𝜓𝑛)
𝜕𝑡

= 𝐷𝑛∇ [𝜓∇𝑛] − 𝑃𝑝 (𝑛 − 𝑐) |∇𝜓 | +𝜓
(︁
𝑘−2 𝑛𝐼 − 𝑘2𝑛

)︁
(6.6)

𝜕(Φ𝑐𝐼 )
𝜕𝑡

= 𝐷𝑐𝐼∇ [Φ∇𝑐𝐼 ] + 𝑃𝑎 (𝑛𝐼 − 𝑐𝐼 ) |∇𝜓 | − Φ
(︁
𝑘−1 𝑐𝐼 − 𝑘1𝑐

)︁
(6.7)

𝜕(𝜓𝑛𝐼 )
𝜕𝑡

= 𝐷𝑛𝐼∇ [𝜓∇𝑛𝐼 ] − 𝑃𝑎 (𝑛𝐼 − 𝑐𝐼 ) |∇𝜓 | −𝜓
(︁
𝑘−2 𝑛𝐼 − 𝑘2𝑛

)︁
. (6.8)

Let us discuss the structure of these equations: Assuming for now that cell and nu-
cleus boundary are impermeable the factors𝜓 and Φ on the left-hand side of Eqs. (6.5)-
(6.8) automatically incorporate no-flux boundary conditions [266]. Note that the con-
centrationsmay leak out of the cell compartments, but for example

∫
Φ𝑐𝑑𝒙 is conserved,

which is the relevant part [266]. This is also true for the other quantities.
On the right-hand side of Eqs. (6.5)-(6.8) the phase field factors indicate in which

compartment/subdomain of the whole computational domain they are active. For in-
stance, in the diffusion terms (first terms) the phase field factors determine where the
diffusion coefficients 𝐷𝑖 are defined and for the reaction terms where these reactions
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take place. Assuming that the 𝐷𝑖 are constant in the respective domains, they can be
put in front of the first gradient in the diffusion terms, as done above. In the case that
they vary spatially in the respective compartment, i.e. 𝐷𝑖 (𝒙), they have to be put inside
the square-brackets next to the phase field variable.

To account for the permeability of the nuclear boundary 𝜕Ω𝑁 , the flux boundary con-
ditions as given in Eqs. (6.1)-(6.4) (middle column) can be directly incorporated into the
phase field Eqs. (6.5)-(6.8) (second terms), thanks to the diffuse description of the nucle-
ocytoplasmic boundary [267]. Thereby, the factor |∇𝜓 | indicates the nucleus boundary.
Note that this is only one possibility how boundary conditions can be implemented into
the PDEs of phase field models [267].

Finally, we need to ensure the conservation of the total cargo number 𝑁𝑡𝑜𝑡 . Although
no-flux boundary conditions are applied at the cell membrane, the total cargo num-
ber is not perfectly conserved. Depending on the required spatial and time resolution
when solving the PDEs the loss may become considerably large. Therefore, we addi-
tionally introduce a Lagrange multiplier for the conservation of the total cargo number
𝑁𝑡𝑜𝑡 =

∫
𝜌 (𝑐 + 𝑐𝐼 + 𝑛 + 𝑛𝐼 )𝑑𝒙 , cf. last term Eq. (6.5). Here, 𝑁𝑡𝑜𝑡,0 is the initial reference

cargo number and 𝛽 is the (small) rate/strength of the conservation condition. We chose
to implement the cargo number conservation in Eq. (6.5) because the cytoplasmic com-
partment Φ is much larger than the nuclear one, hence its relative effect here is reduced.
From a biological perspective, proteins are synthesized in the cytoplasm [30] most prob-
ably without directly binding to importins, i.e. 𝑐 is created where Φ = 1. Consequently,
Eq. (6.5) is a natural choice to implement total cargo number conservation.

6.2.3 Mechanosensitive import

There is increasing evidence that proteins are imported in a mechanosensitive manner
into the nucleus and that this process is associated with nuclear deformations [8, 9,
75, 84, 220, 262]. An extensively studied protein in this context are YAP and TAZ [259],
whose activity and accumulation in the nucleus has been shown to depend on the trans-
mission of cytoskeletal forces to the nucleus [8, 9, 86, 268].

Lomakin et al. [93] and Venturini et al. [92] independently demonstrated that the
normally wrinkled nuclear envelope can unfold in response to deformation triggering
cell migration. It is hypothesized that forces applied to the nucleus stretchNPCs thereby
facilitating the nucleocytoplasmic transport through them [8, 9, 256]. In fact, recent
studies revealed that nuclear envelope tension leads to an expansion of NPCs [6, 7].

To incorporatemechanosensitivity into themodel presented in the foregoing sections
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6.2 Reaction-diffusion model for nucleocytoplasmic transport

we will consider two aspects: a stress-dependent binding rate 𝑘1 of cargo proteins and
importins and a mechanically-induced change of the local permeabilities 𝑃 and 𝑃𝑎 in
Eqs. (6.5)-(6.8).

Assuming that the binding rates 𝑘1/2 are stress-dependent (hence, they can vary in
space), we write it as

𝑘1/2(𝒙) = 𝑘0
1/2

Σ𝑣𝑀
Σ𝑣𝑀,𝑐𝑟 + Σ𝑣𝑀

, (6.9)

where 𝑘0
1/2 is the maximal binding rate and the (phase field) von Mises stress Σ𝑣𝑀 (cf.

Eq. (4.20)) serves as scalar measure for the stress in the cell. The onset of the association
process is controlled via a critical stress Σ𝑣𝑀,𝑐𝑟 . This ensures that facilitated transport
can only occur in presence of stress.

Further, we assume that the passive permeability 𝑃𝑝 (𝒙) as well as the active per-
meability 𝑃𝑎 (𝒙) can locally change due to NPC dilation when the tension 𝜏 (𝒙) on the
nuclear boundary is above a threshold 𝜏𝑐𝑟 , i.e.

𝑃𝑝 (𝒙) =
⎧⎪⎪⎨⎪⎪⎩
𝑃𝑝 if 𝜏 (𝒙) ≤ 𝜏𝑐𝑟
𝑃 ′𝑝 if 𝜏 (𝒙) > 𝜏𝑐𝑟

and 𝑃𝑎 (𝒙) =
⎧⎪⎪⎨⎪⎪⎩
𝑃𝑎 if 𝜏 (𝒙) ≤ 𝜏𝑐𝑟
𝑃 ′𝑎 if 𝜏 (𝒙) > 𝜏𝑐𝑟

. (6.10)

𝑃𝑝, 𝑃𝑎 are the permeabilities if the NPCs are constricted and 𝑃 ′𝑝, 𝑃 ′𝑎 are the (larger) per-
meabilities if the NPCs are dilated. Note, an exact value for the threshold tension 𝜏𝑐𝑟
is not known to us. Therefore, we will always take the limiting case 𝜏𝑐𝑟 = 0, hence, as
soon as tension arises on the nuclear envelope the impacted NPCs are stretched. The
local tension can be calculated by [269, 270]

𝜏 =

∫
𝒕 · [𝝈 − (𝒏 · 𝝈 · 𝒏) 1] · 𝒕 𝑑𝒏 (6.11)

where 𝒏 is the interface normal, 𝒕 is the tangent and an integral across the nucleocyto-
plasmic interface is performed. Equation (6.11) amounts to be the difference between
the local stress tangential (𝜎 | |) and normal (𝜎⊥) to the interface, i.e. 𝜏 =

∫ (︁
𝜎 | | − 𝜎⊥

)︁
𝑑𝒏 [271].

In the phase field model, we omit the integration due to the diffuse interface descrip-
tion and the tension, which is from now on called Σ𝜏 as it will have the dimensions of
a stress, can be calculated by

Σ𝜏 = 𝒕 · [𝚺 − (𝒏 · 𝚺 · 𝒏) 1] · 𝒕 |∇𝜓 |, (6.12)

where 𝚺 is the phase field stress tensor (cf. Eq. (5.3)), 𝒏𝜓 = ∇𝜓/|∇𝜓 | is the normal vector
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of the nucleus interface and |∇𝜓 | indicates the interface position.

In summary, the governing equations of the model are Eqs. (6.5)-(6.8) together with
the phase field model for a cell with nucleus from the previous chapter, i.e.

𝜕𝜙

𝜕𝑡
= 𝐷𝜙Δ𝜙 − 𝜕𝑔(𝜙)

𝜕𝜙
+ 𝐷𝜙𝜅𝜙 |∇𝜙 | −

1
𝜉
(∇ · 𝚺 + 𝑭 − 𝛾 (𝒙) [1 − ℎ(𝜌)] 𝒖) · ∇𝜙 (6.13)

𝜉
𝜕𝒖

𝜕𝑡
= ∇ · 𝚺 + 𝑭 − 𝛾 (𝒙) [1 − ℎ(𝜌)] 𝒖, (6.14)

where 𝜙 denotes the phase field for cell (𝜌) and nucleus (𝜓 ) and the phase field stress
tensor is

𝚺(𝜌,𝜓 ) = [ℎ(𝜌) − ℎ(𝜓 )] 𝝈𝑪 + ℎ(𝜓 )𝝈𝑵 (6.15)

with 𝝈𝑪 and 𝝈𝑵 being the stress tensors of the cytoplasmic (𝑪), i.e. the intracellular part
without nucleus, and the nucleus (𝑵 ). For more detail on these equations see Chapters 4
and 5.

6.3 Model results for nuclear import

Having introduced the model equations, we will now investigate the model and its
implications on the mechanosensitive import of proteins into the nucleus of spread
cells. A protein frequently studied in the context of nuclear transport is the approx.
65 kDa protein YAP [260], due to its importance inmechanotransduction [8, 9, 220, 261].
Therefore, we restrict our study to molecules of this size, i.e. we will fix the diffusion
constants accordingly.

First, we discuss how nuclear tension has to alter the relation between passive and ac-
tive transport to allow for an increased protein accumulation in the nucleus in response
to stress. Later, we investigate the effect of nuclear rigidity and position in different sit-
uations, including the application of local and global strain. We already note that in the
performed experiments, the central quantity studied is the nucleocytoplasmic signal
ratio of cargo proteins [9]

𝑁

𝐶
=

⟨𝑛 + 𝑛𝐼 ⟩𝐴𝑐𝑦𝑡𝑜
⟨𝑐 + 𝑐𝐼 ⟩𝐴𝑛𝑢𝑐

, (6.16)

where ⟨· · · ⟩ are volume integrals of the concentrations in the respective cell compart-
ments and 𝐴𝑐𝑦𝑡𝑜/𝑛𝑢𝑐 are the areas of cytoplasm and nucleus, respectively.
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6.3 Model results for nuclear import

6.3.1 Parameters of the reaction-diffusion system

We first discuss the default parameters used in Eqs. (6.5)-(6.8) for the following simula-
tions. The diffusion coefficient in the cytoplasm of eukaryotic cells of proteins such as
YAPwith amolecular weight of approx. 65 kDa can be estimated to𝐷𝑐 ≈ 10 µm2/s [272].
As importins have a molecular weight of around 100 kDa [273], we estimate the diffu-
sion coefficient of the cargo-importin complex to be 𝐷𝑐𝐼 ≈ 2 µm2/s [272]. For the diffu-
sion coefficients of the cargo (𝐷𝑛) and cargo-importin complex (𝐷𝑛𝐼 ) in the nucleus, we
use the same values as in the cytoplasm, as they have been shown to be similar [272].

The association rates of cargo-importin complexes in cytoplasm and nucleus will be
always set to the same value, i.e we do not assume the maximal binding affinity 𝑘0

1/2 of
cargo proteins and importins (cf. Eq. (6.9)) to change between the cell compartments.
As values we will use 𝑘0

1/2 = 0.054 s−1 [9], 𝑘0
1/2 = 0.2 s−1 [9] and 𝑘0

1/2 = 0.5 s−1 [273] for
an importin concentration in the µM-range [9, 274]. In the study by Elosegui-Artola et
al. [261] it has been shown that the onset of nuclear accumulation of YAP is observable
above a critical substrate stiffness and traction stress (around 0.1 kPa). Therefore, we
set the critical von Mises stress Σ𝑣𝑀,𝑐𝑟 = 0.1 kPa in Eq. (6.9).

For the dissociation rate in the cytoplasm, we set 𝑘−1 = 0.05 s−1 [9], which is on the
order of magnitude as reported by Catimel et al. [273]. The dissociation rate in the
nucleus, in general, depends on the nuclear RanGTP concentration as it is responsible
for the separation of cargo and importin [9, 88]. For an assumed RanGTP concentration
of around 5 µM in steady state, we will set 𝑘−2 = 5 s−1 [9, 265].

The default values for the permeabilities in absence of forces on the nucleus are es-
timated by measurements reported by Andreu et al. [9]. For 67 kDa molecules, they
have measured passive influx rates of 0.03 s−1 into the nucleus and facilitated, i.e active,
influx rates of around 0.08 s−1. These quantities can be converted to permeabilities of
the nuclear envelope by the relation

𝑃 = 𝑘
𝐴𝑛𝑢𝑐

𝑉𝑛𝑢𝑐
(6.17)

where 𝑘 is the measured rate, 𝐴𝑛𝑢𝑐 is the surface area and 𝑉𝑛𝑢𝑐 the volume of the nu-
cleus [275]. In 2D, we find 𝑃 = 𝑘𝑅𝑁 /2, which for a spherical nucleus of radius 𝑅𝑁 5 µm
yields for the passive permeability 𝑃𝑝 = 0.075 µm/s and for the active permeability
𝑃𝑎 = 0.2 µm/s. The permeabilities in presence of tension will be discussed later. These
are the parameters used in the following simulations, if not explicitly stated otherwise.
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6.3.2 Nuclear tension has to influence passive and active import
differently

Tension-induced stretch of NPCs may alter their permeability for active and passive
transport. Recent experimental results suggest a differential effect of NPC dilation on
the passive (𝑃𝑝 ) and active (𝑃𝑎) permeability leading to an increased nuclear influx of
proteins and 𝑁 /𝐶 ratio in strained cells [9].

To test our modelling approach in this direction, we first assume that 𝑃𝑝 and 𝑃𝑎
change by the same factor 𝑓𝑝 in response to tension, i.e. they are both equally im-
pacted by tension-induced NPC stretch. This idea is motivated by assuming that only
the change in the NPC geometry, i.e. bigger "holes" in the nuclear envelope, influences
the permeabilities. Hence, this geometrical change is naively the same for 𝑃𝑝 and 𝑃𝑎 .

We model a cell, which is allowed to adhere to a rectangular shape on adhesive spots
of radius 𝑟𝑎𝑑ℎ and high adhesion strength 𝑌 in its corners (cf. Sect. 5.3.2 Fig. 5.3 or
Fig. 6.3 C). The cell has a nucleus of stiffness 𝐸𝑁 /𝐸𝐶 = 10 in its centre and is isotropically
contracting with a contractile stress 𝜎0/𝐸𝐶 = 0.4 with 𝐸𝐶 = 1 kPa. Initially, we assume a
uniform distribution of cargo molecules in the cell, hence 𝑁 /𝐶 (𝑡 = 0) = 1, as has been
measured for cells on soft substrates and supports [8, 220, 261]. This is also the expected
𝑁 /𝐶 ratio obtained if only passive transport is allowed. We note that initially only bare
cargo is present in the nucleus and the cytoplasm, which is set to Φ𝑐 (𝒙, 𝑡 = 0) =! and
𝜓𝑛(𝒙, 𝑡 = 0) = 1, while Φ𝑐𝐼 (𝒙, 𝑡 = 0) = 0 and 𝜓𝑛𝐼 (𝒙, 𝑡 = 0) = 0. The above initial
conditions apply for all simulations presented.

Figure 6.2 A shows the time evolution of the 𝑁 /𝐶 ratio for tension-induced changes
of the passive and active permeability to 𝑃 ′𝑝 = 𝑓𝑝𝑃𝑝 and 𝑃 ′𝑎 = 𝑓𝑝𝑃

′
𝑎 by the factor 𝑓𝑝 = 1,

1.25 and 2 (blue to yellow) for 𝑘0
1/2 = 0.054 s−1 (dashed lines) and 𝑘0

1/2 = 0.5 s−1 (solid
lines). Interestingly, an increase of both permeabilities by the same factor 𝑓𝑝 leads to
a decrease of the 𝑁 /𝐶 ratio compared to the case without NPC dilation in response to
tension, i.e the case 𝑓𝑝 = 1. This observation can be made for both tested association
rates. One can explain this phenomenon by the establishment of a high gradient in
bare cargo protein concentration between nucleus (𝑛) and cytoplasm (𝑐), increasing the
passive protein flux out of the nucleus. Passive diffusion therefore seems to benefitmore
from NPC dilation, which decreases the 𝑁 /𝐶 ratio. The influence of passive diffusion
on 𝑁 /𝐶 ratios has been previously demonstrated by Görlich et al. [265], whose model
for Ran-driven cargo transport through NPCs yielded a dramatic decrease of the 𝑁 /𝐶
ration when passive transport was allowed compared to only active transport.
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6.3 Model results for nuclear import

A B C

Figure 6.2: A Time evolution of the nucleocytoplasmic signal ratio (𝑁 /𝐶 ratio) in an isotrop-
ically contracting cell on a rectangular micropattern (cf. Sect. 5.3.2 Fig. 5.3 or Fig. 6.3 C)) with
a nucleus of stiffness 𝐸𝑁 /𝐸𝐶 = 10 for an equal response of passive and active permeability to
nuclear tension (Σ𝜏 > 0). Shown are the cases that both permeabilities change by the factor
𝑓𝑝 = 1, 1.25 and 2 (blue to yellow) in response to tension for association rates 𝑘0

1/2 = 0.054 s−1

(dashed lines) and 𝑘0
1/2 = 0.5 s−1 (solid lines). B As in (A) but now only the active permeability

is changing by the factor 𝑓𝑝 = 1, 1.25 and 2 (blue to yellow), while the passive permeability is
constant. C Shown is the 𝑁 /𝐶 ratio with time for 𝑃𝑎 = 0.1 µm/s, 𝑃 ′𝑎 = 0.5 µm/s and varying
𝑃𝑎/𝑃𝑝 = 5, 20 and 50 (blue to yellow) for 𝑘0

1/2 = 0.054 s−1 (dashed lines) and 𝑘0
1/2 = 0.5 s−1 (solid

lines). Other parameters as in Appendix B.4.2 Table B.5.

Next, we consider the case where tension impacts 𝑃𝑝 and 𝑃𝑎 differently. For proteins
with a size similar to YAP, Andreu et al. [9] reported approximately equal passive influx
and efflux rates for cells on soft and stiff substrates, i.e. with and without forces exerted
on the nucleus. On the other hand, active influx rates increased in response to forces [9].
Following these results, we assume the passive permeability not to change in response
to tension, i.e. 𝑃 ′𝑝 = 𝑃𝑝 = 0.075 µm/s. However, the active permeability is allowed to
increase from 𝑃𝑎 = 0.2 µm/s to 𝑃 ′𝑎 = 𝑓𝑝𝑃𝑎 .

In Fig. 6.2 B, the time evolution of the 𝑁 /𝐶 ratio is shown for the case, that only
the active permeability is affected by tension for 𝑓𝑝 = 1, 1.25 and 2 (blue to yellow)
and two different cargo-importin association rates 𝑘0

1/2 as before. In contrast to the
previous observation, the different response of the permeabilities to tension leads to an
increase of the stead state value of the 𝑁 /𝐶 ratio compared to the case without tension-
induced NPC stretch (𝑓𝑝 = 1). This is true for the tested association rates 𝑘0

1/2. This is
in agreement with the previously mentioned experimental results [9], that a different
response of passive and facilitated transport to tension is responsible for increased 𝑁 /𝐶
ratios.

We note that the magnitude of the steady state 𝑁 /𝐶 ratio depends on the cargo-
importin association rates 𝑘0

1/2 (cf. Fig. 6.2 A and B) and should also depend on the
ratio between active and passive permeability as shown by Kim et al. [264]. To ver-
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ify our modelling approach regarding this aspect, we here set for testing purposes the
active permeability in absence of stress to a lower value 𝑃𝑎 = 0.1 µm/s which changes
in presence of tension to 𝑃 ′𝑎 = 0.5 µm/s, which is the by Ribbeck et al. [102] estimated
velocity with which cargo-transportin complexes can traverse NPCs. The passive per-
meability is varied and kept constant, irrespective of the tension. Figure 6.2 C shows
again the evolution of the 𝑁 /𝐶 ratio for association rates 𝑘0

1/2 = 0.054 s−1 (dashed lines)
and 𝑘0

1/2 = 0.5 s−1 (solid lines) and ratios 𝑃𝑎/𝑃𝑝 = 5, 20 and 50 (blue to yellow). One
sees the expected increase of the signal ratio with increasing 𝑃𝑎/𝑃𝑝 ratio [264]. Note
that for low association rates larger 𝑁 /𝐶 ratios can be reached for high ratios 𝑃𝑎/𝑃𝑝 , as
active and passive efflux are severely reduced. Active efflux is reduced due to the rapid
dissociation of cargo-importin complexes in the nucleus.

6.3.3 Effect of nuclear stiffness

In the previous section, our model showed that only if passive and active permeability
react differently to nuclear tension, i.e. the ratio 𝑃 ′𝑎/𝑃 ′𝑝 > 𝑃𝑎/𝑃𝑝 , the accumulation of
proteins in the nucleus is higher compared to the case without a permeability change
due to tension, consistent with recently published experimental results [9].

We here want to investigate the effect of nuclear stiffness on the obtained 𝑁 /𝐶 ratio
in spread cells. The values for the different permeabilities are fixed as previously to
𝑃 ′𝑝 = 𝑃𝑝 = 0.075 µm/s, 𝑃𝑎 = 0.2 µm/s and 𝑃 ′𝑎 = 0.5 µm/s. Again, we first consider a
contractile cell adhered to a rectangular shape with a nucleus of stiffness 𝐸𝑁 /𝐸𝐶 , which
is centred in the cell.

Figure 6.3 A shows the evolution of the𝑁 /𝐶 ratio with time for physiological nucleus
stiffnesses 𝐸𝑁 /𝐸𝐶 = 2 and 𝐸𝑁 /𝐸𝐶 = 10. One clearly sees that a stiff nucleus (𝐸𝑁 /𝐸𝐶 = 10)
increases the import of cargo and their accumulation in the nucleus. Note, the initial
decrease of the 𝑁 /𝐶 ratio below 1 results from reduction of (especially) the cytoplasmic
area due to the cell contraction. The regions on the nuclear envelope with increased
permeability can be inferred from the tension Σ𝜏 on the nucleocytoplasmic boundary (cf.
6.3 B for 𝐸𝑁 /𝐸𝐶 = 10) in mechanical equilibrium, showing that a dilation of NPCs and
an increase of the active permeability (as we assume the passive one not to change) is
expected at the upper and lower pole of the nucleus. For a soft nucleus (𝐸𝑁 /𝐸𝐶 = 2) the
distribution of Σ𝜏 on the nucleus boundary is very similar. Accordingly, the distribution
of the cargo concentration Φ(𝑐+𝑐𝐼 ) and𝜓 (𝑛+𝑛𝐼 ) (cf. Fig. 6.3 C for 𝐸𝑁 /𝐸𝐶 = 10 and three
different time points) shows a decreased 𝑐 + 𝑐𝐼 concentration near the nucleus where
Σ𝜏 > 0. Furthermore, the accumulation of cargo proteins in the nucleus is clearly visible.

102



6.3 Model results for nuclear import

A

B

C

Figure 6.3: Effect of nuclear stiffness on themechanosensitive nucleocytoplasmic protein trans-
port in isotropically contracting, spread cells of rectangular shape. A Shown is the time evo-
lution of the 𝑁 /𝐶 ratio for 𝐸𝑁 /𝐸𝐶 = 2 (blue) and 𝐸𝑁 /𝐸𝐶 = 10 (red) with 𝐸𝐶 = 1 kPa and
𝑘0

1/2 = 0.5 s−1. B Depicted is Σ𝜏 (cf. Eq. (6.12)) for |∇𝜓 | > 0.1 in mechanical equilibrium for
a stiff nucleus (𝐸𝑁 /𝐸𝐶 = 10), to visualize the nuclear regions of increased active permeability,
where Σ𝜏 > 0. C Shown is the concentration of cargo proteins Φ(𝑐 + 𝑐𝐼 ) +𝜓 (𝑛 + 𝑛𝐼 ) for 𝜌 ≥ 0.5
for a centred nucleus with 𝐸𝑁 /𝐸𝐶 = 10 at three different time points: 𝑡1 = 5 s, 𝑡2 = 15 s and
𝑡3 = 300 s. In (B) and (C) the adhesion spots of radius 𝑟𝑎𝑑ℎ are marked by dotted lines, the cell
boundary is indicated by the isocontour 𝜌 = 1/2 (solid line) and the nuclear boundary by the
isocontour𝜓 = 1/2 (dashed line). Other parameters as in Appendix B.4.2 Table B.5.

As a next example, we consider the effect of local straining. We model again the
situation as before, i.e. a cell which is allowed to adhere to a rectangular shape and
which is isotropically contracting with 𝜎0/𝐸𝐶 = 0.4. First, the cell is allowed to contract.
When mechanical equilibrium has been reached, we apply a localized force of Gaussian
shape

𝑭 (𝒙) = 𝐹0
2𝜋𝜐𝑥𝜐𝑦

exp
[︄
−

(︄
(𝑥 − 𝑥0)2

2𝜐2
𝑥

+ (𝑦 − 𝑦0)2

2𝜐2
𝑦

)︄]︄
𝒆𝒙, (6.18)

with amplitude 𝐹0 and width in 𝑥- and 𝑦-direction given by 𝜐𝑥 and 𝜐𝑦 [10]. This force
enters the right-hand side of Eq. (6.14) and pulls on the right edge of the cell at 𝑦 = 0
in positive 𝑥-direction. Note that Eq. (6.18) is a boundary force and should always
be located in the phase field interface, hence, it should follow its motion, i.e. 𝑥0 =

𝑥0(𝜌) [10]. As the Gaussian function converges to a Dirac delta function in the sharp
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interface limit, it is a suitable choice for a smooth representation of boundary forces in
the phase field sense [10]. For reasons of numerical stability, the force was increased
by a small amount Δ𝐹 per timestep until 𝐹0 had been reached.

Figure 6.4 A shows the 𝑁 /𝐶 ratio with time for a nucleus of stiffness 𝐸𝑁 /𝐸𝐶 = 2
(blue) and 𝐸𝑁 /𝐸𝐶 = 10 (red), which is centred in the nucleus (solid, cf. Fig. 6.4 B)
and shifted to the right (dashed, cf. Fig. 6.4 C) for pulling forces 𝐹0 = 0.5 nN (top) and
𝐹0 = 2.5 nN (bottom). The force magnitude has only small effect and decreases the
𝑁 /𝐶 ratio for increasing force as it counteracts the cell contraction. As in the previous
example, the stiffer nucleus shows a higher 𝑁 /𝐶 ratio compared to the softer nucleus.
For a nucleus displaced in positive 𝑥-direction (cf. Fig. 6.4 C) similar observations can be
made regarding the relation between the 𝑁 /𝐶 ratios (dashed lines) of a cell with a stiff
nucleus (𝐸𝑁 /𝐸𝐶 = 10, red) and a cell with a softer nucleus (𝐸𝑁 /𝐸𝐶 = 2, blue). Again, the
concentration map for the two nucleus positions for 𝐸𝑁 /𝐸𝐶 = 10 shown in Fig. 6.4 B and
C, demonstrate a decreased concentration Φ(𝑐+𝑐𝐼 )+𝜓 (𝑛+𝑛𝐼 ) where the permeability of
the boundary is increased (cf. Fig. 6.4 D and E) due to tension Σ𝜏 > 0. Note that shifting
the nucleus results in a lowered concentration in the cell-half where the nucleus is
present, while the concentration is higher in the other (left) cell-half (cf. Fig. 6.4 E). The
slightly lower 𝑁 /𝐶 ratio in this case may result from a reduced nuclear boundary area
under tension. Nevertheless, an increased nuclear concentration of cargo at the side of
higher permeability is visible, while it is lower on the corresponding cytoplasmic side.

Lastly, we consider a rectangular cell which is globally stretched along its long axis.
Here, cell contractility is neglected to study the effect of global stretching of the cell
(and the nucleus) on the associated nuclear protein accumulation. The forces, which are
stretching the cell are applied along the left and right edge of the cell. Both are again of
Gaussian-like shape along the 𝑥-direction, while they are restricted to the length of the
short edges. The initial 𝑁 /𝐶 ratio is again set to 1, with Φ𝑐 (𝒙, 𝑡 = 0) = 𝜓𝑛(𝒙, 𝑡 = 0) = 1
and Φ𝑐𝐼 (𝒙, 𝑡 = 0) = 𝜓𝑛𝐼 (𝒙, 𝑡 = 0) = 0.

Figure 6.5 A shows the 𝑁 /𝐶 ratio with time for 𝐸𝑁 /𝐸𝐶 = 2 and 𝐸𝑁 /𝐸𝐶 = 10 for
different cargo-importin association rates 𝑘0

1/2, for a nucleus centred in the cell (top
panel) and a nucleus shifted to the right in 𝑥-direction (bottom panel) (see also Fig. 6.5 B
and C). In both cases and for all tested cargo-importin association rates 𝑘0

1/2, the softer
nucleus (𝐸𝑁 /𝐸𝐶 = 2) shows a higher protein accumulation in the nucleus as the stiffer
one,different to the previous examples of a contractile cell. The higher the association
rate, the bigger is the absolute difference. Furthermore, the shifted nucleus accumulates
more cargo as it is closer to one of the forced cell edges. In Fig. 6.5 B and C the protein
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A CB

D E0
0

Figure 6.4: Protein import into the nucleus of a rectangular cell adhered to focal adhesions
it its corners. The cell first is isotropically contracting with 𝜎0/𝐸𝐶 = 0.4 and when mechan-
ical equilibrium is reached a localized force is pulling on its right edge at 𝑦 = 0 in positive
𝑥-direction with magnitude 𝐹0. A 𝑁 /𝐶 ratio with time for two different forces 𝐹0 = 0.5 nN (top)
and 𝐹0 = 2.5 nN (bottom) with 𝜐𝑥 = 0.5 µm and 𝜐𝑦 = 1.75 µm. Shown are the cases of centred
nucleus (solid lines) and for a nucleus shifted by to the right by Δ𝑥𝑁 = 7.5 µm (dashed lines) with
nucleus stiffnesses 𝐸𝑁 /𝐸𝐶 = 2 (blue) and 𝐸𝑁 /𝐸𝐶 = 10 (red). B Shown is the concentration field
of cargo proteins Φ(𝑐 +𝑐𝐼 ) +𝜓 (𝑛+𝑛𝐼 ) for 𝜌 ≥ 0.5 for a centred nucleus with 𝐸𝑁 /𝐸𝐶 = 10 at three
different time points: 𝑡1 = 5 s, 𝑡2 = 15 s and 𝑡3 = 300 s. C as in (B) for a shifted nucleus. D/EMaps
of the tension Σ𝜏 in the region |∇𝜓 | > 0.1 at the nuclear boundary in mechanical equilibrium
with the pulling force for the case shown in (B/C). In (B-E) the adhesion spots of radius 𝑟𝑎𝑑ℎ are
marked by dotted lines, the solid black line marks the cell boundary by the 𝜌 = 1/2-isocontour
and the dashed black line marks the nuclear boundary by the 𝜓 = 1/2-isocontour. If not stated
otherwise, the parameters are as in Appendix B.4.2 Table B.5.

concentration for 𝐸𝑁 /𝐸𝐶 = 2 is shown for three different time points and in Fig. 6.5 D
and E the corresponding tension Σ𝜏 along the nuclear boundary. The observations are
similar to the previous cases.

In summary, our modelling approach predicts that nuclear rigidity effects the trans-
port of proteins into the nucleus for contractile and stretched cells. While in contractile
cells a stiff nucleus imports more cargo protein, in stretched cells the soft nucleus shows
a higher 𝑁 /𝐶 ratio.
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A B C

D E

Figure 6.5: Effect of nuclear stiffness on themechanosensitive nucleocytoplasmic protein trans-
port in a rectangular cell, which is uniaxially stretched by a force of magnitude 𝐹0/𝐸𝐶 = 0.1 and
𝜐𝑥 = 0.5 µm applied at its left and right edge and pulling on them in±𝑥-direction. A Shown is the
time evolution of the 𝑁 /𝐶 ratio for 𝐸𝑁 /𝐸𝐶 = 2 (blue) and 𝐸𝑁 /𝐸𝐶 = 10 (red) with 𝐸𝐶 = 1 kPa and
cargo-importin association rates 𝑘0

1/2 = 0.054 s−1 (solid), 𝑘0
1/2 = 0.2 s−1 (dashed) and 𝑘0

1/2 = 0.5 s−1

(dashed-dotted). The top panel corresponds to the case of a (B) nucleus centred in the cell and
the bottom panel to (C) a nucleus shifted by Δ𝑥𝑁 = 7.5 µm in positive 𝑥-direction. B Shown is
the concentration field of cargo proteins Φ(𝑐 + 𝑐𝐼 ) +𝜓 (𝑛 + 𝑛𝐼 ) for 𝜌 ≥ 0.5 for a centred nucleus
with 𝐸𝑁 /𝐸𝐶 = 2 at three different time points: 𝑡1 = 5 s, 𝑡2 = 15 s and 𝑡3 = 300 s. C as in (B)
for a nucleus shifted by Δ𝑥𝑁 = 7.5 µm in positive 𝑥-direction. D/E Shown are the maps of the
tension Σ𝜏 in the region |∇𝜓 | > 0.1 at the nuclear boundary in mechanical equilibrium for the
corresponding cases shown in (B/C). In (B-E) the adhesion spots of radius 𝑟𝑎𝑑ℎ are marked by
dotted lines, the cell boundary is marked by the 𝜌 = 1/2-isocontour (solid line) and the nucleus
boundary is indicated by the 𝜓 = 1/2-isocontour (dashed line). If not stated otherwise, the
parameters are as in Appendix B.4.2 Table B.5.

6.4 Discussion

To react to mechanical stimuli, cells import proteins into their nucleus, which are in-
volved in gene expression and transcription [86]. This import is enabled by the trans-
mission of forces via the cytoskeleton to the nucleus [268]. Forces transmitted to the
nucleus can lead to tension-induced stretching of NPCs [6], which is hypothesized to
weaken the NPC permeability barrier and thereby facilitating transport through NPCs
leading to an accumulation of proteins in the nucleus [8, 9].

In this chapter, we studied the effect of nuclear rigidity on mechanotransduction, i.e.
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whether the stiffness of the nucleus influences the nuclear import of proteins. We pro-
posed a model that combines the elastic phase field approach for modelling a cell with
nucleus from Chapter 5 with a reaction-diffusion system for describing mechanosen-
sitive protein import. The mechanosensitivity of the import process was accounted
for by allowing the formation of actively transportable cargo-importin complexes due
to stress and a tension-induced increase of the active and passive permeability of the
nuclear envelope. For simplicity, we assumed a permeability increase as soon as the nu-
clear boundary is locally under tension. We restricted the investigation to proteins with
a size similar to YAP, which is an important and often studied protein in the context of
mechanotransduction [86].

First, we studied the 𝑁 /𝐶 ratio in the case that passive and active permeability are
only affected by the geometrical dilation of NPCs, i.e. both change by a same factor in
response to nuclear tension, keeping their ratio. The result was that passive transport
benefits more from an NPC dilation, possibly due to the accumulation of cargo proteins
(not in a complex with importins) and a high concentration gradient of cargo between
cytoplasm and nucleus. This led to a decrease of the 𝑁 /𝐶 ratio compared to the case
without a tension-induced increase of the permeabilities. However, assuming that only
the active permeability increases in response to tension, while the passive permeability
remains constant resulted in an increase of the 𝑁 /𝐶 ratio. Hence, to allow for increased
import due to increased permeability, passive and active transport have to react differ-
ently to nuclear tension, as previously suggested [9].

Consequently, we assumed in the following studies that only the active permeability
increases while the passive one does not change. This is motivated by the study of
Andreu et al. [9], who measured no considerable change of passive influx rates into the
nucleus for YAP-sized proteins, while the facilitated influx rates increased in response
to force. Hence, the increased facilitated transport is possibly mediated also by other
effects, e.g. by conformational changes of the NPC in response to tension [6, 256].

Thereafter, we investigated whether nuclear stiffness and position influences the dy-
namics of nuclear import and the obtained 𝑁 /𝐶 ratios in steady state for a contractile
cell on a micropattern. We found that stiff nuclei (𝐸𝑁 /𝐸𝐶 = 10) led to increased ac-
cumulation of proteins in the nucleus in contractile cells also in presence of localized
pulling forces. In contrast, uniaxial cell stretching resulted in a higher accumulation of
proteins in soft nuclei (𝐸𝑁 /𝐸𝐶 = 2). The position of the nucleus, in our cases closer to
focal adhesions in adhered cells, led to a slight decrease of the𝑁 /𝐶 ratio, possibly due to
lower nuclear deformation. In all cases, the concentration in the cytoplasm was lower
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at the nuclear boundary with tension, and larger in the nucleus at these sites of higher
permeability. In summary, nuclear stiffness impacts the accumulation of cargo, how-
ever seemingly in a context-dependent manner, where stiff nuclei have higher import
rates in contractile cells and soft nuclei in stretched cells.

Our proposed model is motivated by previously published kinetic models for nucle-
ocytoplasmic transport of proteins by Elosegui-Artola et al. [8] and Kim et al. [264].
While we accounted in a simplified model for spatial mechanical effects on the im-
port process, Kim et al. [264] focussed on the impact of competition between differ-
ent cargo proteins and Andreu et al. [9] developed a detailed model for the import
process, including the RanGTP/GDP cycle (cf. Fig. 2.6) and transport kinetics through
NPCs, where mechanics entered by increasing NPC translocation rates. To further im-
prove the presented model, one could additionally add these two aspects, cargo com-
petition and the RanGTP/GDP cycle. Further, it should be feasible to also include the
export cycle as shown in Fig. 2.6 to extend the model to describe the full transport
process. Especially, accounting for a possible feedback of mechanotransduction on cell
behaviour/mechanics should be a future goal of previous studies.

Turning from single cell to cell collectives, tissues can be described by resolving the
constituting cells and their nuclei by an individual phase field, respectively. It would
be highly interesting to study mechanosensitive nucleocytoplasmic transport in such
situations, especially in the context of development.

As discussed in the previous chapters, the phase field model could be extended to
three dimensions [146, 205]. It would be interesting to study the mechanotransduc-
tion for cells in more physiological environments, especially in the context of migra-
tion [263] through constrictions, where the nucleus can be heavily deformed and even
can even rupture [99, 100, 208].

Nevertheless, in order to get a full picture of the effect of NPC dilation one could think
of including resolved holes in the nucleus representing NPCs, instead of considering an
effective permeability of the nuclear envelope. How and whether this could be done in
the phase field framework should be the subject of future studies.

In summary, the elastic phase field approach is a framework, which can be used to
studymechanotransduction and themechanosensitive nucleocytoplasmic protein shut-
tling inmany different biological situations, ranging from stationary to possibly dynam-
ics ones.
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In the previous chapters, the role of the nucleus in whole-cell mechanics (cf. Chapter 5)
and its effect onmechanosensitive nuclear-cytoplasmic protein transport (cf. Chapter 6)
have been studied by using adapted phase field models. However, the main determinant
of cell mechanics is the cytoskeleton, thereby playing a key role in many biological
processes. Also recall that it is involved in the transmission of mechanical information
to the nucleus. Dynamical reorganization of the cytoskeleton in response to strain and
stress, allows a cell to adapt its shape and stiffness to the environment. Especially in
stationary, adherent cells the prominent actin filament bundles, called stress fibres, are
emerging in a mechanosensitive manner.

Here, we extent the elastic phase field approach of Chapter 4 to model this mechano-
sensitive stress fibre formation. Instead of discrete stress fibres, we model a continuous
orientation field in the cell, which is coupled to elasticity. This orientation field repre-
sents the degree of alignment of the actin cytoskeleton, which reorients from an initially
isotropic to a locally order state in response to stress. A high degree of alignment can
be seen as a precursor for full stress fibre formation. More specifically, we study stress
fibre emergence in contractile, stationary cells of various shapes, also investigating a
possible mechanical feedback of these cytoskeletal structures on whole-cell elasticity.

7.1 Introduction

In physiological conditions, cells are constantly subject to stresses from their envi-
ronment, which they have to resist. An important module in this context are thick
and stiff actin filament bundles, which can be contractile and mechanically stabilize
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cells.1 Prominent stress fibres have been shown to assemble in cells spreading on
micro-engineered substrates of well-defined geometry at non-adhered cell edges, i.e.
invaginated arcs [201]. Important here is, that the geometry of the adhesive pattern
determines the stress fibre distribution and that their transient presence during cell
spreading has been associated with a ’memory’ for the spreading history [276]. Stress
fibres are the main contractile elements in cells [60], whose cross-sectional area ap-
parently linearly correlates with focal adhesion area and thus substrate rigidity [62].
Consistently, the size of focal adhesions correlates with the exerted traction forces, and
hence stress fibre contractility, resulting in average shears stresses of approximately
5.5 kPa [69], which are however not constant along the focal adhesions [277].

Stress fibres are especially important in mechanotransduction. They are able to sub-
stantially alter nuclear morphology [220], which is a key element in nuclear mechano-
sensing of themechanical properties of the ECM. LINC complexes form a direct physical
bridge for force transmission between stress fibres and the nuclear envelope [75], which
has been shown by severely reduced nuclear accumulation of proteins such as YAP (cf.
Sect. 2.2.2 and Chapter 6) upon the dissolution of LINC complexes [8]. Although be-
ing exceptionally prominent in stationary cells, as this allows for their full maturation,
thinner and smaller stress fibres have also been observed in migrating cells [64].

Assembling mostly at focal adhesions where high traction forces are exerted by the
cell on the underlying substrate, it is nowadays accepted that these stress fibres form
in a mechanosensitive manner [60, 63, 70]. Mechanosensitivity has for instance been
observed in micro-pattern experiments involving cyclic straining of the adhered cell,
stimulating the assembly of new stress fibres [278]. Recently, it has been demonstrated
that they are continuously embedded into the cell cortex and can form out of it through
filament bundling and not only from anew polymerization [52]. Nevertheless, many
details on their assembly processes are still unknown.

To unravel the complexity of stress fibres, models have been conducted to investigate
their mechanical behaviour and assembly process. Models have been proposed for sin-
gle stress fibres to investigate for instance their mechanics [68, 279] and, more recently,
response to tension [280] and stretch [281]. Further, the biochemically-mediated con-
traction of stress fibres in a cell has been studied in a 1Dmodel [282], where stress fibres
were described as viscoelastic materials [283]. Mechanosensitive stress fibre formation
has also been studied in higher dimensions, where either stress/tension (in combina-
tion with biochemical processes) determines the emergence and orientation of stress

1For more details see Sect. 2.1.
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fibres [221, 284–288] or mechanical stretch [289]. In contrast to whole-cell mechanical
models, stress fibre alignment and mechanical feedback has been investigated using a
contour model combined with liquid crystal theory demonstrating cell shape induced
stress fibre orientation [290].

We here propose a continuum approach using our now well-developed phase field
method for modelling the reorganization of the cytoskeleton, i.e. its alignment in re-
sponse to stress, indicating the location and growth direction of precursors of stress
fibres. The mechanosensitive alignment of cytoskeletal filaments is modelled in a con-
tinuum fashion by using a nematic liquid crystal as in Ref. [290], which is coupled to
whole-cell mechanics described by linear elasticity theory [284] also including a pos-
sible feedback of emerging stress fibres on cell rigidity and contractility. The nematic
description is motivated by experimental results showing that actin filaments in so-
lution exhibit a transition from an isotropic (unaligned) state to nematic ordering in
response to increasing filament density [291–293].

In this chapter, we will first briefly introduce the theory of nematic liquid crystals and
then discuss the developed model. Afterwards we study the formation of stress fibres
in contractile cells adhered on micro-patterns with and without a feedback of filament
bundling on cell stiffness and contractility.

7.2 Overview on nematic liquid crystals

Liquid crystals (LCs) are mesomorphic materials of anisotropic molecules, which show
liquid- and crystal-like characteristics [294]. One distinguishes between three main
classes: nematics, smectics and columnar phases [294]. Nematic LCs consist of elon-
gated particles with no positional order (like a liquid) but long-range orientational order
(similar to a crystal) [294, 295]. This class is further divided into uniaxial and biaxial
nematics. In the uniaxial case the constituting molecules are rod-like with rotational
symmetry around their long axis [295]. Biaxial nematics are formed by rather plate-like
molecules with two symmetry axes [294].

While nematic LCs have three spatial degrees of freedom, for smectic LCs this num-
ber is reduced to two by imposing positional order in one dimension [294]. In this
case, the constituting molecules can arrange in layers which may slide against each
other [296]. If the positional degrees of freedom reduce to one, the considered system
is a columnar LC as the particles are further ordered into columns, hence the name [294,
296].
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All LC classes have in common, that they show long-range orientational order, which
renders them anisotropic systems.

For our purposes, i.e. modelling fibre orientations in strongly spreading quasi-two-
dimensional cells, we will use the theory of uniaxial nematic liquid crystals in two
dimensions, which will be introduced in the following.

7.2.1 Landau - de Gennes free energy functional

Phase transitions from an unordered (isotropic) to an ordered (nematic) state observed
for nematic LCs, for example above a critical particle density or in presence of an exter-
nal field, can phenomenologically be described by constructing a Landau free energy
functional using an order parameter describing the system’s orientational state [294].
The most rational choice would be the (local) preferred orientation of uniaxial nematic
molecules, given by the director 𝒏 (cf. Fig. 7.1 A). Physically, its sign is irrelevant as it
is assumed that no preferential orientation exists regarding the two particle ends [296].
However, no free energy functional can be constructed with the director as it would
not be invariant under the transformation 𝒏 → −𝒏 [297]. Therefore, a symmetric and
traceless tensor is built from the director 𝒏, describing the nematic crystalline order and
being invariant under the aforementioned transformation [294]. In two-dimensions it
is defined as

𝑸 = 𝑆

(︃
𝒏 ⊗ 𝒏 − 1

21
)︃

or in index notation 𝑄𝑖 𝑗 = 𝑆

(︃
𝑛𝑖𝑛 𝑗 −

1
2𝛿𝑖 𝑗

)︃
, (7.1)

where 1 is the identity matrix 𝑆 is a scalar order parameter quantifying the local degree
of alignment of molecules [290, 294, 296]. It is defined to be in the range 0 ≤ 𝑆 ≤ 1 [294,
296]. The limiting cases are the isotropic state (𝑆 = 0) and a state of perfect parallel
alignment (𝑆 = 1) [294–296].

In the two-dimensional case, when𝑸 is known, the order parameter 𝑆 can be straight-
forwardly calculated with

𝑆 =

√︂
2𝑡𝑟 (Q2), (7.2)

where 𝑡𝑟
(︁
𝑸2)︁ = 𝑄𝑖 𝑗𝑄𝑖 𝑗 = 2

(︁
𝑄2

11 +𝑄2
12
)︁2 [290].

Note, if in 2D the director is written as 𝒏 = (cos (𝜃 ) , sin (𝜃 )), the 𝑸-tensor can be
reformulated as a pseudovector 𝒒 = (𝑆/2) (cos (2𝜃 ) , sin (2𝜃 )) using its symmetry prop-
erties.
2Using that 𝑸 is traceless ( 𝑄22 = −𝑄11) and symmetric (𝑄21 = 𝑄12).
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Figure 7.1: A Cartoon of a nematic liquid crystal. The rod-like molecules are oriented in the
direction given by the director 𝒏. Note that under the transformation 𝒏 → −𝒏 the nematic state
is unchanged. B The three elastic modes in a 3D nematic liquid crystal: splay (𝐾1), twist (𝐾2)
and bend (𝐾3). In 2D, the twist deformation is not possible. Figure adapted from [296].

A phenomenological free energy functional, the Landau-de Gennes free energy, can
be formulated. This has to be done in terms of scalar invariants of 𝑸 [294]. Up to fourth
order, it reads

𝑓𝐿𝑑𝐺 =
𝐴

2 𝑡𝑟
(︁
Q2)︁ − 𝐵

3 𝑡𝑟
(︁
Q3)︁ + 𝐶4 𝑡𝑟 (︁

Q2)︁2 + O
(︁
Q5)︁ , (7.3)

where commonly 𝐴 depends on the state variable under whose change the isotropic-
nematic transition occurs and 𝐵,𝐶 are constants [294, 295].3 For the two-dimensional
case 𝑡𝑟

(︁
𝑸3)︁ = 0 and this holds for all odd powers of 𝑸 . Consequently, Eq. (7.3) consists

solely of invariants in even powers of 𝑸 and only second order phase transitions (i.e.
continuous phase transitions) exist [294, 298]. One can show from Eq. (7.3) that for𝐴 >

0 the state 𝑆 = 0 is the only equilibrium, while for 𝐴 < 0 the system can spontaneously
establish a nematic order 𝑆 > 0 [298].

7.2.2 Distortions in nematic liquid crystals

Changes in local orientation of the LC can be penalized by an additive distortion energy
contribution to Eq. (7.3). It is up to second order given in index notation by

𝑓 2𝐷
𝑒𝑙

=
𝐿1
2 𝜕𝑘𝑄𝑖 𝑗 𝜕𝑘𝑄𝑖 𝑗 +

𝐿2
2 𝜕 𝑗𝑄𝑖 𝑗 𝜕𝑘𝑄𝑖𝑘 . (7.4)

The Landau constants 𝐿𝑖 are phenomenological and their interpretation is not straight-
forward.

However, the distortion energy can be described in terms of gradients in the director
𝒏, which in its most general form is given by

F𝑒𝑙 =
1
2

∫
𝐾𝑖 𝑗𝑘𝑙

(︁
∇𝑖𝑛 𝑗

)︁
(∇𝑘𝑛𝑙 ) 𝑑𝒙, (7.5)

3The first order vanishes as 𝑸 is traceless, i.e. 𝑡𝑟 (𝑸) = 0.
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where 𝐾𝑖 𝑗𝑘𝑙 is a 4-th order tensor containing the elastic constants [297]. For nematic
liquid crystals in 3D the distortion energy is given by the Oseen-Frank elastic energy

𝑓 3𝐷
𝑒𝑙

=
1
2𝐾1(∇ · 𝒏)2 + 1

2𝐾2 [𝒏 · (∇ × 𝒏)]2 + 1
2𝐾3 [𝒏 × (∇ × 𝒏)]2 (7.6)

with the individual terms having a clear physical (and measurable) significance, namely
splay (𝐾1), twist (𝐾2) and bending (𝐾3) deformations (cf. Fig. 7.1 B) [294–297]. Practically,
it is often assumed that the three elastic parameters are equal (so-called one constant
approximation) [294]. In 2D, twist does not exist and Eq. (7.6) reduces to

𝑓 3𝐷
𝑒𝑙

=
1
2𝐾1(∇ · 𝒏)2 + 1

2𝐾3 [(𝒏 · ∇) · 𝒏]2 , (7.7)

where bending (𝐾3 term) appears in its 2D form [299].
If discontinuous changes of the director 𝒏 occur, i.e. in the case of singularities known

as defects, the formulation of the elastic energy in terms of 𝒏 can diverge. Here, Eq. (7.4)
is more suitable. It is possible to relate the phenomenological Landau constants 𝐿𝑖 to
the Frank constants 𝐾𝑖 [295, 296]. One can show (cf. Appendix A.4) that Eq. (7.4) leads
in two dimensions to the one constant approximation

𝐾1 = 𝐾3 = 2𝐿1 + 𝐿2. (7.8)

Therefore, higher order terms in gradients of 𝑸 would be needed in the distortion free
energy, Eq. (7.4), to leave the one constant approximation and allow for different 𝐾𝑖
values, if required [296, 300].

Since we expect to get defects for fibre orientations in highly symmetric cells, we
here employ the Landau-de Gennes free energy as follows:

𝑓𝑡𝑜𝑡 =
𝐿1
2 𝜕𝑘𝑄𝑖 𝑗 𝜕𝑘𝑄𝑖 𝑗 +

𝐿2
2 𝜕 𝑗𝑄𝑖 𝑗 𝜕𝑘𝑄𝑖𝑘 +

𝐴

2𝑄𝑖 𝑗𝑄𝑖 𝑗 +
𝐶

4
(︁
𝑄𝑖 𝑗𝑄𝑖 𝑗

)︁2
. (7.9)

7.2.3 Defects in 2D nematic liquid crystals

Discontinuities in the director field 𝒏 are known as (point) defects and disclinations
(line defects) [294]. They are characterized by their topological charge 𝑚, stating the
number of times the director 𝒏 rotates when going along a closed contour around the
defect core. It is given by

𝜏 = 2𝜋𝑚 (7.10)
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Figure 7.2: Sketches of relevant defects encountered later. Shown are defects of topological
charge𝑚 = −1,±1/2 (left to right). The blue arrows are the LC molecules. Adapted from [301].

where𝑚 is a half-integer or integer [294]. Figure 7.2 shows sketches of possible nematic
defects with topological charge𝑚 = ±1/2 and𝑚 = −1.

7.2.4 Boundary conditions - Anchoring energy

Liquid crystals in confinement can show specific orientational order imposed by the
confining boundaries of the considered system [294]. This boundary effects can be
introduced into the free energy of the system by so-called anchoring energy terms such
as

F𝑎𝑛𝑐ℎ =
𝑊

2

∫
𝜕Ω
𝑡𝑟

[︁
(𝑸 − 𝑸0)2]︁ 𝑑𝑆 (7.11)

which is a boundary integral [302]. The tensor

𝑸0 = 𝑆0

(︃
𝒏0 ⊗ 𝒏0 −

1
21

)︃
(7.12)

denotes the imposed orientation, with degree of alignment 𝑆0 and in orientation 𝒏0, at
the boundary. The prefactor𝑊 in Eq. (7.12) is related to the strength of the anchoring
and therefore enforcement of the preferred alignment at the domain walls.

7.3 Phase field model including a liquid crystal

We aim at modelling stress-induced cytoskeletal reorientation and stress fibre emer-
gence in a continuum elastic framework. Therefore, we combine the theory of nematic
LCswith the elastic phase fieldmodel for contractile spread cells in the two-dimensional
plane stress approximation as described in Chapter 4.
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7.3.1 Model with stresses leading to nematic alignment

Recalling the phase field models of the previous chapters, we describe an elastic and
contractile cell by a phase field 𝜌 (𝒙, 𝑡), where the interior of the cell is assigned the
bulk value 𝜌 = 1 and its exterior (empty space) the value 𝜌 = 0. The dynamic equation
for the phase field is as before

𝜕𝜌

𝜕𝑡
= 𝐷𝜌Δ𝜌 −

𝜕𝑔(𝜌)
𝜕𝜌

+ 𝐷𝜌𝜅𝜌 |∇𝜌 | −
1
𝜉
(∇ · 𝚺 + 𝑭 − 𝛾 (𝒙) [1 − ℎ(𝜌)] 𝒖) · ∇𝜌, (7.13)

where the last term is the driving force due to elasticity. Its evolution is described by
the overdamped relaxation equation for the deformation field

𝜉
𝜕𝒖

𝜕𝑡
= ∇ · 𝚺 + 𝑭 − 𝛾 (𝒙) [1 − ℎ(𝜌)] 𝒖 . (7.14)

Assuming linear elasticity, the total phase field stress tensor is

𝚺𝑖 𝑗 (𝜌) = ℎ(𝜌)
[︁
2𝜇𝜖𝑖 𝑗 + 𝜆𝜖𝑘𝑘𝛿𝑖 𝑗 + 𝜎𝑎𝑐𝑡𝑖 𝑗

]︁
(7.15)

with cell material parameters 𝜇 and 𝜆, and an active stress 𝜎𝑎𝑐𝑡𝑖 𝑗 . In this chapter cells
adhered to micropatterns are modelled. Adhesion is again described by the force

𝑭𝑎𝑑ℎ = −𝑌 (𝒙)ℎ(𝜌)𝒖 (7.16)

entering the forces in Eqs. (7.13) and (7.14), with locally varying adhesion strength𝑌 (𝒙).
For more details on these model equations, the reader is referred to Chapters 3 and 4.

As a next step, the nematic liquid crystal has to be coupled to the above phase field
model. Starting point is the Landau free energy functional in 2D, i.e. Eq. (7.9)

𝑓𝑡𝑜𝑡 =
𝐿1
2 𝜕𝑘𝑄𝑖 𝑗 𝜕𝑘𝑄𝑖 𝑗 +

𝐿2
2 𝜕 𝑗𝑄𝑖 𝑗 𝜕𝑘𝑄𝑖𝑘 +

𝜖

2𝑄𝑖 𝑗𝑄𝑖 𝑗 +
1
4

(︁
𝑄𝑖 𝑗𝑄𝑖 𝑗

)︁2
, (7.17)

where we fixed the constant 𝐶 = 1 and 𝐴 = 𝜖 ≪ 1. Although small, 𝜖 has to be larger
than zero such that in the absence of any external driving the isotropic state 𝑆 = 0 is a
minimum and no spontaneous symmetry breaking, i.e no transition to a nematic state
with 𝑆 > 0, can occur. The dynamic equation of the nematic LC can then be obtained
by a functional derivative of Eq. (7.17)

𝜏𝑄
𝜕𝑄𝑖 𝑗

𝜕𝑡
= − 𝛿F

𝛿𝑄𝑖 𝑗
+

(︁
𝑎𝑖 𝑗 − 𝑎 𝑗𝑖

)︁
+ 𝑏𝛿𝑖 𝑗 (7.18)
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where
𝛿F
𝛿𝑄𝑖 𝑗

= −
(︃
𝜕𝑓

𝜕𝑄𝑖 𝑗
− ∇ 𝑗 ·

𝜕𝑓

𝜕(∇𝑘𝑄𝑖𝑘)

)︃
(7.19)

and the last two terms

𝑎𝑖 𝑗 − 𝑎 𝑗𝑖 =
𝐿2
2

(︁
𝜕𝑖𝜕𝑘𝑄 𝑗𝑘 − 𝜕 𝑗 𝜕𝑘𝑄𝑖𝑘

)︁
and 𝑏𝛿𝑖 𝑗 = −𝐿2

2 𝜕𝑙 𝜕𝑘𝑄𝑙𝑘𝛿𝑖 𝑗 (7.20)

are Lagrange multipliers ensuring that the symmetry and traceless properties of 𝑸 are
respected [303, 304]. Performing the calculation leads to

𝜏𝑄
𝜕𝑄𝑖 𝑗

𝜕𝑡
= 𝐾Δ𝑄𝑖 𝑗 − 𝜖𝑄𝑖 𝑗 −

1
2𝑆

2𝑄𝑖 𝑗 , (7.21)

hence the case of two Landau constants 𝐿𝑖 automatically results in a single constant
𝐾 = 𝐿1 + 𝐿2/2.

Assuming that the cytoskeleton described by the 𝑸-tensor rearranges in response to
stress, we introduce a respective active term into Eq. (7.21), i.e

𝜏𝑄
𝜕𝑄𝑖 𝑗

𝜕𝑡
= 𝐾Δ𝑄𝑖 𝑗 − 𝜖𝑄𝑖 𝑗 −

1
2𝑆

2𝑄𝑖 𝑗 +
𝛾𝑄

2 Σ𝑑𝑒𝑣𝑖 𝑗 , (7.22)

where stress and nematic order parameter are coupled via the deviatoric (symmetric
and traceless) part of the stress tensor

Σ𝑑𝑒𝑣𝑖 𝑗 = Σ𝑖 𝑗 −
1
2Σ𝑘𝑘𝛿𝑖 𝑗 , (7.23)

consistent with the properties and symmetries of 𝑸 . 𝜏𝑄 in Eq. (7.22) sets the relaxation
timescale and 𝛾𝑄 = 1/𝐸 is later chosen to be the inverse of the (local) Young’s modulus
𝐸 of the cell to normalize the stress, Eq. 7.23. Otherwise 𝑆 may get larger one, as no
upper bound exists.

Finally, the anchoring term Eq. (7.24) can be added to the dynamic equation. Rewrit-
ing it in the phase field sense as [305]

F𝑎𝑛𝑐ℎ =
𝑊

2

∫
Ω
𝑡𝑟

[︂ (︁
Q − Q0

)︁2
]︂
|∇𝜌 |2𝑑Ω, (7.24)

where Ω is the computational domain, and performing the functional derivative, the
resulting full dynamic equation for the nematic LC is

𝜏𝑄
𝜕𝑄𝑖 𝑗

𝜕𝑡
= 𝐾Δ𝑄𝑖 𝑗 − 𝜖𝑄𝑖 𝑗 −

1
2𝑆

2𝑄𝑖 𝑗 +
𝛾𝑄

2 Σ𝑑𝑒𝑣𝑖 𝑗 −𝑊
(︁
𝑄𝑖 𝑗 −𝑄0,𝑖 𝑗

)︁
|∇𝜌 |2. (7.25)
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Arguing that actin preferentially orients parallel to the cell boundary, as seen for in-
stance for stress fibres forming along invaginated arcs [201, 278], the preferred align-
ment (cf. Eq. (7.12)) is taken to be along the tangent 𝒏0 = 𝒕 with 𝑆0 = 1, for simplicity.
Note, the so-constructed 𝑸0 at the phase field interface will be proportional to |∇𝜌 |−2,
motivating the choice of the boundary description in Eq. (7.24), which facilitates the
numerical implementation.

Lastly, we remark that in Eq. (7.25) the dynamics 𝑸 is considered for simplicity, not
the one of 𝜌𝑸 , because 𝑸 does not need to be conserved and is only created inside the
cell via stresses.

In summary, the governing equations for the model with stress-induced cytoskeletal
fibre orientation are

𝜕𝜌

𝜕𝑡
= 𝐷𝜌Δ𝜌 −

𝜕𝑔(𝜌)
𝜕𝜌

+ 𝐷𝜌𝜅𝜌 |∇𝜌 | −
1
𝜉
(∇ · 𝚺 + 𝑭 − 𝛾 (𝒙) [1 − ℎ(𝜌)] 𝒖) · ∇𝜌 (7.26)

𝜉
𝜕𝒖

𝜕𝑡
= ∇ · 𝚺 + 𝑭 − 𝛾 (𝒙) [1 − ℎ(𝜌)] 𝒖 (7.27)

𝜏𝑄
𝜕𝑄𝑖 𝑗

𝜕𝑡
= 𝐾Δ𝑄𝑖 𝑗 − 𝜖𝑄𝑖 𝑗 −

1
2𝑆

2𝑄𝑖 𝑗 +
𝛾𝑄

2 Σ𝑑𝑒𝑣𝑖 𝑗 −𝑊
(︁
𝑄𝑖 𝑗 −𝑄0,𝑖 𝑗

)︁
|∇𝜌 |2. (7.28)

7.3.2 Adding feedback of alignment on cell mechanics

Up to now, the LC within the cell is describing the expected anisotropic reorientation of
the cytoskeleton in response to stress. Besides the polymerization of new stress fibres,
the alignment of adjacent actin filaments of the cell cortex can lead to filament bundling
and emergence of stress fibres out of the cell cortex [52]. Therefore, we argue that high
degrees of alignment 𝑆 should be associated with a high actin filament density (due to
alignment and polymerization) sufficient for bundling into stress fibres. Consequently,
we assume that above a certain substantial critical scalar order parameter 𝑆𝑐𝑟 stress
fibres are forming, whose mechanical properties should affect the background elasticity
of the cell. This is supported by AFM experiments demonstrating a higher local rigidity
of cells, where stress fibres are present [223].

We assume the local stiffness of the cell to change with the degree of alignment 𝑆
due to the formation of stress fibres according to

𝐸 (𝑆) =
⎧⎪⎪⎨⎪⎪⎩
𝐸𝐶 for 𝑆 < 𝑆𝑐𝑟

𝐸𝐶 + 𝐸𝑆𝐹𝑆𝛼 for 𝑆 ≥ 𝑆𝑐𝑟 .
(7.29)

Here, 𝐸𝐶 is the Young’s modulus of the cellular background and 𝐸𝑆𝐹 models its increase
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due to stress fibres. The exponent 𝛼 captures the dependence of the stiffness on the
degree of alignment. It has been shown for entangled, isotropic semiflexible polymer
networks, that the shear modulus 𝜇 and filament length density 𝜌 𝑓 𝑖𝑙 are related by 𝜇 ∝
𝜌2.2
𝑓 𝑖𝑙

[306–308]. Further, experiments on actin filaments in solution revealed a seemingly
linear relationship between the actin filament density and their degree of alignment
𝑆 [292]. Together, this suggests in Eq. (7.29) that for network formation one expects
𝛼 = 2.2. For stress fibres, which are bundles of highly aligned actin filaments, it is
likely that 𝛼 is even larger 2.2. However, as they can be embedded in the cortical actin
network [52], we assume for simplicity and as a lower bound 𝛼 = 2. Note that while we
include an increase in stiffness due to stress fibre formation, we do not model the effect
that the cell acquires anisotropic elasticity for simplicity. This would be possible, but
complicated, and in addition would introduce many more (unknown) elastic constants.

In a similar spirit, the cell’s contractility should also change assumed due to the
formation of stress fibres. While contracting isotropically with 𝜎0 until 𝑆𝑐𝑟 has been
reached, the assembling stress fibres introduce an anisotropic stress component due to
their myosin II-driven contraction in direction of their orientation 𝒏. The increase in
active stress𝜎𝑆𝐹 is assumed to scale linearly with the alignment 𝑆 as suggested by earlier
studies [76, 168, 304]. We write for the active stress in the phase field formulation

𝜎𝑎𝑐𝑡𝑖 𝑗 (𝑆) = 𝜎0𝛿𝑖 𝑗 + 𝜎𝑆𝐹𝑆𝑛𝑖𝑛 𝑗

=

(︃
𝜎0 +

1
2𝜎𝑆𝐹𝑆

)︃
𝛿𝑖 𝑗 + 𝜎𝑆𝐹𝑄𝑖 𝑗 ,

(7.30)

where in the last step the definition of 𝑸 (cf. Eq. (7.1)) has been used [290]. In total, the
assumed behaviour of the active stress in response to the formation of stress fibres is

𝜎𝑎𝑐𝑡𝑖 𝑗 (𝑆) =
⎧⎪⎪⎨⎪⎪⎩
𝜎0𝛿𝑖 𝑗 for 𝑆 < 𝑆𝑐𝑟(︁
𝜎0 + 1

2𝜎𝑆𝐹𝑆
)︁
𝛿𝑖 𝑗 + 𝜎𝑆𝐹𝑄𝑖 𝑗 for 𝑆 ≥ 𝑆𝑐𝑟 .

(7.31)

which enters Eq. (7.15).

7.4 Model results

Motivated by micropattern experiments showing the appearance of prominent actin
stress fibres in spread cells [201], we will consider in the following stationary, spread
and contractile cells of distinct geometries. We first study the alignment of the liquid
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7 Continuum model for mechanosensitive stress fibre formation

Figure 7.3: Stress-induced alignment of the nematic liquid crystal modelling cytoskeletal ori-
entation without feedback on cell mechanics. Cells are allowed to adhere to adhesive patches
(white circles) of radius 𝑟𝑎𝑑ℎ and spring stiffness density 𝑌 in a (A) triangular, (B) square and
(C) hexagonal arrangement.Upon an isotropic contractile stress 𝜎0/𝐸𝐶 = 0.4 the nematic liquid
crystal experiences a phase transition from an isotropic (𝑆 = 0) to a locally aligned (𝑆 > 0) state.
Shown are the order parameter field 𝑆 (colour maps) within the cell, i.e 𝜌𝑆 , and the director field
𝒏 (short black lines) where 𝑆 > 0.01. The 𝜌 = 1/2-isocontours (black solid lines) indicate the
cell boundary. The lower panels show 𝜌𝑆 along (D) the symmetry line 𝑥 = 0 for the triangular-
shaped cell and along 𝑦 = 0 for the (E) square - and (F) hexagonal-shaped cell for different time
points 𝑡0 < ... < 𝑡4 (blue to grey). The black dashed line shows the phase field profile 𝜌 . For
simulation parameters see Appendix B.5 Table B.6.

crystal within the cell, associated with the formation of stress fibres, in response to
stresses and localized forces without a mechanical feedback on the cell’s rigidity and
contractility. This corresponds to the model of Sect. 7.3.1. Later, we investigate the
effect of the presence of stress fibres, as described by Eqs. (7.29) and (7.31).

7.4.1 Stress fibre formation without mechanical feedback

Stresses and forces exerted on a cell lead to a reorganization and realignment of the
cytoskeleton including stress fibre assembly at focal adhesions. These stress fibres are
known to follow non-adhered parts of the cell periphery (peripheral stress fibres) be-
tween focal adhesions or by spanning through the interior of the cell.

To see whether our proposed approach, stating that actin filament alignment and
fibre formation directly depends on the stress distribution in the cell, captures such
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experimental observations, we model contractile cells adhered to adhesive patches ar-
ranged in a triangular, square and hexagonal shape (cf. Fig. 7.3 A-C). The adhesive
spots of radius 𝑟𝑎𝑑ℎ are described by a smooth (but steep) tanh-like transition from the
maximal adhesion strength 𝑌0 in the interior of the focal adhesion to zero outside of
it (cf. Eq. (5.8)), with a high 𝑌0 to prevent slipping from the adhesive spots.4 For the
square and hexagonal cell, the adhesive spots (white circles) are entirely located in the
corners of the cells (cf. Fig. 7.3 B and C), while in the case of the triangle (cf. Fig. 7.3 A)
they are centred at the cell corners with a larger radius and adhesion strength to ensure
sufficiently strong substrate coupling.

We first consider the situation without a feedback of the liquid crystal alignment, i.e.
stress fibre assembly, on cell mechanics. Hence, cell stiffness and contractility are not
affected and stay constant throughout the cell, i.e.

𝐸 (𝑆) = 𝐸𝐶 and 𝜎𝑎𝑐𝑡𝑖 𝑗 (𝑆) = 𝜎0𝛿𝑖 𝑗 for all 𝑆. (7.32)

Figure 7.3 A-C show the degree of alignment 𝜌𝑆 within the cell for the three different
shapes and the respective director fields 𝒏 for 𝜌𝑆 > 0.01. The highest degree of align-
ment, indicating the presence of (highly) aligned actin filaments that we interpret as
stress fibres, are visible close to the focal adhesions. This is consistent with experimen-
tal observations, where stress fibres originate from there. From the point of view of a
focal adhesion, the orientation of the director 𝒏 points towards the centre of the cell and
parallel to the cell periphery towards adjacent adhesion spot, similar as experimentally
observed [201].

In Fig. 7.3 D-F cuts through the 𝜌𝑆-field along the symmetry lines 𝑥 = 0 for the
triangular-shaped cell and 𝑦 = 0 for the square-shaped and hexagonal-shaped cells are
shown for different times. One sees the growth of 𝜌𝑆 towards the cell centre, which in
our context can be interpreted as the growth of stress fibres. In the cell centre, where the
stress fibres should meet, a nematic defect occurs and 𝜌𝑆 drops to zero. Such defects are
possible, considering that here stress fibres coming from different directions cross, i.e.
run over each other, and hence there is no preferential alignment and 𝑆 = 0. The results
are qualitatively similar to those obtained in the modelling approach of Deshpande et
al. [284]. We note that the director field 𝒏 coincides with the direction of the principal
stresses in the cell (cf.Appendix Fig. B.9), because the principal stresses of the deviatoric
stress tensor 𝜎𝑑𝑒𝑣𝑖 𝑗 are equal to those of the full stress tensor 𝜎𝑖 𝑗 .
4As discussed in Chapter 5, this improves numerical stability compared to imposing fixed boundary
conditions (cf. Eq. (4.14)).
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BA C

Figure 7.4: A contractile cell on a square-shaped adhesive pattern (white circles) is pulled in
positive 𝑥-direction by a Gaussian force of magnitude 𝐹0 at its right edge and𝑦 = 0. Shown is the
degree of alignment 𝜌𝑆 within the cell and the director field 𝒏 for 𝜌𝑆 > 0.01 (short black lines).
The cell boundary is indicated by the isocontour 𝜌 = 0.5 (black solid line). The force increases
from A to C with 𝐹0 =0.5 nN, 𝐹0 =2.5 nN and 𝐹0 =5 nN with 𝜐𝑥 = 0.5 µm and 𝜐𝑦 = 1.75 µm.
The stationary configurations at mechanical equilibrium are shown. For other parameters see
Appendix B.5 Table B.6.

We also tested if nematic anchoring, as described by the last term in Eq. (7.25),
changes these observations (cf. Appendix Fig. B.8). We assumed preferred tangen-
tial alignment to the cell periphery and set the preferred degree of alignment 𝑆0 = 1.
Anchoring has only a limited effect, mainly by increasing 𝑆 at the cell edge, becoming
considerable only for very strong anchoring, i.e. high𝑊 . The director field 𝒏 remains in
general unchanged. If sufficiently strong, anchoring in the above implementation will
lead to filament alignment at the cell periphery also in the absence of stresses or focal
adhesions. However, the stress itself is sufficient to enforce a peripheral alignment of
the nematic LC parallel to the cell edge (cf. Fig. 7.3 A-C). Consequently, we will neglect
explicit anchoring, as described by Eq. (7.24), in the following.

Straining of adhered cells, e.g. by displacing one of the micropillars they are adhered
to, induces the formation of additional stress fibres and reinforcement of existing ones,
which are connected to the displaced adhesion spot (cf. Fig. 7.5 B) [278]. Inspired by
this experimental setup, we modelled a square cell adhered at its corners to adhesive
spots as before. First, a contractile stress 𝜎0/𝐸𝐶 = 0.4 is applied and the cell is allowed
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Figure 7.5: Comparison between the (A) numerical pulling experiment with 𝐹0 = 5 nN and
the (B) periodic stretching experiment in Ref. [278]. In the experimental figure the cell is of
hexagonal shape hold by movable pillars. The pillar marked by the star is periodically pulled.
The colour map marks the signal intensity for actin from lowest (blue) to highest (red). As in
the experiment, the pulling at the cell edge in A leads to increased alignment and stress fibre
formation at the pulled edge. Panel B adapted from [278].

to relax into mechanical equilibrium. Subsequently, a force of Gaussian shape [10]

𝑭 (𝒙) = 𝐹0
2𝜋𝜐𝑥𝜐𝑦

exp
[︄
−

(︄
(𝑥 − 𝑥0)2

2𝜐2
𝑥

+ (𝑦 − 𝑦0)2

2𝜐2
𝑦

)︄]︄
𝒆𝒙, (7.33)

with 𝐹0 being the force amplitude and 𝜐𝑥 and 𝜐𝑦 the width in 𝑥 and 𝑦 direction, is added
that pulls at the right edge and 𝑦 = 0 of the cell in 𝑥-direction. Recall, that 𝑥0 = 𝑥0(𝜌) as
the force is always located in the phase field interface, movingwith it [10]. TheGaussian
shape has been chosen, as it is a smooth representation of a boundary force in the phase
field sense, converging to a Dirac delta function in the sharp interface limit [10]. Similar
to Sect. 6.3.3, the force was increased by a small amount Δ𝐹 every time step until 𝐹0 had
been reached, for numerical stability. Figure 7.4 shows the 𝜌𝑆-field and the director field
𝒏 in the cell for different applied force amplitudes (A) 𝐹0 = 0.5 nN, (B) 𝐹0 = 2.5 nN and
(C) 𝐹0 = 5 nN in mechanical equilibrium. With increasing force, the degree of alignment
𝜌𝑆 increases where the force is applied, i.e. at the tip of the force-induced protrusion.
Furthermore, an increase of 𝜌𝑆 is visible at the cell edge connecting the protrusion with
the upper and lower focal adhesion. Hence, here a reinforcement/ assembly of stress
fibres occurs in response to the force, consistent with experimental results in Ref [278]
(cf. also the direct comparison shown in Fig. 7.5).

Interestingly, the nematic defect in the centre of the cell is also affected by the pulling
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force. As soon as the force is applied, the defect of topological charge 𝑚 = −1 (cf.
Fig. 7.2), breaks up into multiple defects. Their distance to each other increases with
the applied force. Note that the total topological charge is conserved. One can see this,
by considering Fig. 7.4 C for 𝐹0 = 5 nN. Here, three −1/2-defects (in the cell interior)
and one +1/2-defect (outside of the cell at the protrusion tip; not shown) are forming.
Hence, the total topological charge stays𝑚 = −1 as for the case without applied force.
In summary, the straightforward coupling of the nematic alignment to the internal

stress in the cell is able to recover the main observations with regard to stress fibre
orientation and distribution on a qualitative level.

7.4.2 Feedback of stress fibre mechanics

The presence of stress fibres influences the mechanics of cells by increased local cell
stiffness [223] and contractility. This is evident by an increase of the traction forces
exerted by spreading cells, correlating with the focal adhesion size [69] and therefore
stress fibre thickness [62].

This mechanical feedback is incorporated on the phenomenological, macroscopic
level by Eqs. (7.29) and (7.31), assuming (as previously explained) that actin filament
bundling into stress fibres occurs above a (high) critical alignment parameter 𝑆𝑐𝑟 . Above
this critical value the emerging stress fibre increases local cell elasticity and contractil-
ity. We model cells on a square-shaped and hexagonal micropatterns, initially subject
to an isotropic stress 𝜎0/𝐸𝐶 = 0.4, where 𝐸𝐶 = 1 kPa is the background Young’s modulus
of the cell. Indentation experiments via atomic force microscopy (AFM) on living cells
resulted in an effective local stiffness of cell regions where stress fibres are present of
around 𝐸 = 11 kPa [223]. Assuming that in the case of perfect alignment (𝑆 = 1) the
local cell stiffness should reach this rigidity, we set 𝐸𝑆𝐹 = 10 kPa in Eq. (7.29). For the
contractility of the stress fibres, we set 𝜎𝑆𝐹 = 3.5 kPa in Eq. (7.31) such that for 𝑆 = 1 the
maximal contractile stress is 𝜎𝑚𝑎𝑥 = 3.9 kPa, a value which has been used previously
in the literature [284]. Additionally, the prefactor 𝛾𝑄 = 1/𝐸 (𝑆) in Eq. (7.22) is adjusted
to ensure that 𝑆 ≤ 1. Note that according to the foregoing results, no explicit nematic
anchoring is considered, i.e.𝑊 = 0.
Figure 7.6 shows local stiffness maps 𝐸 (𝑆) for the square-shaped cell (Fig. 7.6 A-C)

and the hexagonal cell (Fig. 7.6 D-F) for critical alignment parameters 𝑆𝑐𝑟 = 0.6, 𝑆𝑐𝑟 = 0.7
and for the case without mechanical feedback for comparison. One can see the expected
decrease of the stiff, stress fibre associated, area (yellow areas) with increasing 𝑆𝑐𝑟 . In
the absence of mechanical feedback, the cell stiffness is uniform and equal to 𝐸𝐶 = 1 kPa.
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A B C

D E F

Figure 7.6: Contractile cells are adhering to adhesive spots (white circles) to (A-C) a square
and (D-F) a hexagonal shape. Shown is the local stiffness 𝐸 (𝑆) for 𝜌 ≥ 0.5, which increases
with the degree of alignment 𝑆 according to Eq. (7.29). For reference, (A/D) show the case
without this mechanical feedback while B/E show the case for 𝑆𝑐𝑟 = 0.6 and (C/F) for 𝑆𝑐𝑟 = 0.7.
Stiffnesses above the background rigidity 𝐸𝐶 = 1 kPa are associated with increased filament
bundling. Note, these regions are also subject to an increased, anisotropic contractile stress
(cf. Eq. (7.31)). Additionally, the red lines show growth of the regions of increased stiffness at
different time points. The short black lines show the director field 𝒏 and the black curve gives
the isoline 𝜌 = 1/2 indicating the cell boundary. For parameters see Appenidx B.5 Table B.6.

The red lines within the cell demonstrate the growth of the stress fibre area by marking
the respective contour lines 𝑆 = 𝑆𝑐𝑟 at different time points. Again, the stress fibres start
to grow from the focal adhesions and grow towards the cell centre. No major changes
in the director field 𝒏 compared to the case of no mechanical feedback is visible.

As a last example, we again model the square-shaped cell subject to a boundary force
as in Fig. 7.4, but now with stress fibres modulating cell mechanics. Again, a Gaussian-
shaped force (cf. Eq. 7.33) is pulling on the right edge of the cell. In Fig. 7.7 the lo-
cal stiffness 𝐸 (𝑆) in mechanical equilibrium for different pulling forces 𝐹0 = 2.5 nN,
𝐹0 = 3.75 nN and 𝐹0 = 5 nN (A-c) and critical alignment parameter 𝑆𝑐𝑟 = 0.6 is visual-
ized. First, a more extended and asymmetric growth of the stress fibre region (yellow
areas and red lines) at the two left focal adhesions towards the pulled edge is visible for
increasing pulling force. In particular, in Fig. 7.7 C a stiffness increase at the pulled cell
edge is visible, i.e. stress fibres are forming along the pulled edge. This corresponds to
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A B C

Figure 7.7: A square-shaped cell adheres to adhesive spots (white circles) and is contracting
isotropically. After reaching mechanical equilibrium a Gaussian shaped force of strength (A)
𝐹0 = 2.5 nN, (B) 𝐹0 = 3.75 nN and (C) 𝐹0 = 5 nN is applied at the right cell boundary at 𝑦 = 0,
pulling on it towards the positive 𝑥-direction. Shown is the local stiffness 𝐸 (𝑆) for 𝜌 ≥ 0.5
increasing with the degree of alignment 𝑆 if it is above a critical value 𝑆𝑐𝑟 = 0.6 (cf. Eq. (7.29)).
Regions with a rigidity above the background 𝐸𝐶 = 1 kPa are associated with enhanced filament
bundling and stress fibre formation. Furthermore, they exhibit increased and anisotropic con-
traction (cf. Eq. (7.31)). The red lines show the growth of the stiff region (stress fibres) from
the focal adhesions at different time points. The short black lines are the director field 𝒏 and
the solid black line the isocountor 𝜌 = 0.5 indicating the cell boundary. For 𝐹0 = 5 nN (C) the
pulling force is sufficiently strong to induce stress fibre formation along the pulled edge. The
force width is 𝜐𝑥 = 0.5 µm and 𝜐𝑦 = 1.75 µm. For other parameters see Appendix B.5 Table B.6.

experimental observations [278], as shown in Fig. 7.5 B. Note, the increased stiffness
at the pulled cell edge leads to a disappearance of the invaginated arc and the force-
induced protrusion (cf. Fig. 7.4 C and Fig. 7.7 C).

7.5 Discussion

Spread cells are known to develop prominent actin filament bundles (cf. Sect. 2.1.1).
These stress fibres are essential cytoskeletal structures when it comes to providing me-
chanical stability, the generation of forces and the transduction of external mechanical
stimuli. Albeit many aspects of their assembly process are still unravelled, it is nowa-
days undebated that mechanical cues play a vital role. Stress fibre assembly is initiated
at focal adhesions, which represent regions of stress accumulation, and have been also
shown to form out of the cell cortex by filament bundling, demonstrating their embed-
ding in the ’cytoskeletal continuum’ [52]. Because they are stiff and (mostly) contractile
(cf. Sect. 2.1.1), they alter the overall mechanical behaviour of a cell, as evidenced by
increased local cell stiffness in presence of these fibres [223].

Motivated by these results, we proposed a model for mechanosensitive stress fibre
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formation in a continuum framework. Several models have already been proposed
regarding stress fibre appearance and orientation in response to cell mechanics and
shape [284, 288–290]. Resorting to the elastic phase field approach, which already
proved its usefulness in the previous chapters, we proposed a model for mechanosen-
sititve stress fibre formation in cells by coupling the continuum elasticity of the cell
and the alignment dynamics of a nematic liquid crystal representing the cytoskeleton.
This was inspired by Ref. [284], where the cell is modelled as an elastic continuum,
and Ref. [290], where stress fibre orientation is described by a nematic liquid crystal
in a contour model framework for cell shape. We accounted for the mechanosensitive
alignment and assembly of stress fibres by direct coupling of the deviatoric part of the
stress tensor to the dynamic equation for the orientation order parameter of the ne-
matic, where a high degree of alignment 𝑆 is associated with the emergence of stress
fibres. Furthermore, a feedback of appearing stress fibres was introduced into cell me-
chanics by increased local stiffness and increased as well as anisotropic contractility.

In the first study in Sect. 7.4.1 stationary adhered cell were studied without a feed-
back of stress fibres mechanics on whole-cell mechanics. Our approach was able to
capture qualitative features as observed in experiments, i.e. high filament alignment
associated with stress fibres at focal adhesions and parallel alignment to the cell edge
of the cytoskeleton/stress fibres [201]. Interestingly, no anchoring of the liquid crystal
is needed to achieve this alignment; it is solely dictated by the internal cellular stress.
A pulling experiment, where one edge of the cell was deformed by a localized force,
showed reinforced nematic alignment (hence possible stress fibres) at the pulled edge,
consistent to similar experimental studies [278]. Our modelling strengthens the idea
that the stress fibre distribution follows the stress distribution in the cell [284]. Topo-
logical defects visible in these numerical studies, arise naturally and (depending on the
context and geometry of the cell) can be interpreted as crossing of actin stress fibres,
where in this case low or vanishing order would be expected.

In Sect. 7.4.2 the mechanical feedback of the forming stress fibres on cell stiffness
and contractility has been introduced. To our knowledge such a feedback has not yet
been modelled before. It was assumed that filament bundling into stress fibres occurs at
high degrees of alignment 𝑆 , hence the mechanical feedback was turned on only when
degree of alignment 𝑆 exceeded some critical value 𝑆𝑐𝑟 . Besides leading to increased
alignment at focal adhesions, regions near focal adhesions stiffened due to the assembly
of stress fibres. Performing again a pulling experiment showed, that the force influences
the direction of stress fibre growth and (depending on the critical degree of alignment
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7 Continuum model for mechanosensitive stress fibre formation

𝑆𝑐𝑟 and magnitude of the pulling force) stress fibres formed along the pulled cell edge,
leading to a disappearance of the localized, force-induced protrusion. This supports the
idea that stress fibres protect cells from high (local) strains.

It has to be emphasized that the continuous framework proposed here, although suc-
cessful in capturing essential observations, has some limitations. Most importantly,
stress fibres are discrete structures, whose formation out of a continuum cannot be
described correctly with the current continuum approach. Nevertheless, a continuum
model leading at least to band-like structures in the stress distribution in a cell, associ-
ated with stress fibres, has been proposed some years ago [287].

Another aspect is that physiologically stress fibres are embedded in a three-dimensional
environment. In principle, a corresponding three-dimensional description has to be
used, which would allow to model stress fibres going over each other without crossing;
in two-dimensions this is not possible (cf. nematic defects in the current approach).
Going into this direction, a quasi-3D continuum model for stress fibre formation in
adhered cells of axial symmetric geometry has already been published [221].

A discretization of stress fibres, while still remaining in a continuum framework,
could be to describe their assembly by the association of elongated particles which are
implemented as smooth fields and represent stress fibre elements. How exactly such
a particle-field approach [309] can describe stress fibre growth and the associated me-
chanical effects may be a subject of a different study. However, a better (and more
realistic) modelling philosophy would be to consider the cell as a composite material
with e.g implicitly embedded discrete structures [310].

The proposed model can be extended by additional details. In Ref. [221], the cell nu-
cleus has been included as an internal elastic compartment. Such an extension is achiev-
able by a conjunction with the phase field approach for cells with nucleus presented in
Chapter 5. This would allow to study how the nucleus is affected by the formation
of stress fibres and vice versa. Here, also the effect on protein import (Cf. Chapter 6)
could be of interest. Furthermore, chemical details like e.g. the Rho-pathway involved
in stress fibre assembly could be implemented as well as adhesion dynamics. The latter
would be especially of interest for spreading or migrating cells with transient stress
fibres [64, 276].

In summary, the phase field approach presented in this chapter provides an alterna-
tive framework to model mechanically-driven stress fibre formation, which also allows
the addition of further assembly details. It should be useful and provide additional in-
sight, in particular, if stress fibre assembly in dynamic situations is of interest.
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Biological cells sense the mechanical properties of their surrounding by constantly gen-
erating forces, in order to adapt their own mechanics accordingly. The response of cells
to external mechanical stimuli is mainly determined by the stiff, but dynamically re-
organizing cytoskeleton and the nucleus. Both intracellular structures are linked with
each other, allowing a mechanosensitive transport of proteins through pores into the
nucleus, which are involved in triggering cellular reactions.

In this thesis, we developed models based on a diffuse interface approach to investi-
gate several aspects in the context of cell mechanics. More precisely, using an elastic
phase field method, we studied the effect of nuclear mechanics on whole-cell elastic-
ity and its implications on facilitated nucleocytoplasmic transport of proteins due to
a tension-mediated increase of the permeability of the nuclear boundary. Further, we
considered the stress-induced realignment of the cytoskeleton and the emergence of
(precursors of) stress fibres in spread cells in a continuum framework, using the theory
of nematic liquid crystals. We here provide a brief summary of this thesis and discuss
future perspectives.

In Chapter 2, we gave an overlook on the cellular structures determining cell me-
chanical responses, namely the cytoskeleton and the nucleus. Regarding the latter, we
described the nucleocytoplasmic transport process through nuclear pore complexes, es-
sential for cellular mechanical sensing, i.emechanotransduction. We closed the chapter
with a brief review on the theory of continuum elasticity and its linearization, which
we used to describe cell deformations.

The approach used throughout this thesis to model elastic cells in various geometries
and situations is a diffuse interface approach: the phase field method. Therefore, we
continued in Chapter 3 by introducing the concept of interface methods for modelling
moving boundary problems and discussed the phase field method in more detail.

Chapter 4 was concerned with the coupling of the phase field method and contin-
uum elasticity. It was discussed that the standard, energy-based formulation cannot
recover the reversibility of elastic deformations upon release of forces. We therefore
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presented an alternative, force-based formulation which is able to account for this re-
versibility [10]. Considering standard experimental geometries of spread single cells
and cell monolayers, we verified the method by comparison to available analytical so-
lutions. Importantly, we found out how analytical solutions to elastic problems can be
compared to the respective phase field solutions, where the displacement field moves
with the domain. Over this, the elastic phase field method can capture prominent ex-
perimental observations in cell morphology, such as the formation of invaginated arcs
for cells on micropatterned substrates. All in all, it is a method suited for describing
biological situations involving cell mechanics.

In Chapter 5, we extended the elastic phase field model from Chapter 4 by an addi-
tional phase field describing an elastic nucleus and verified the model against a derived
analytical solution. First, we investigated the role of the nucleus in cell mechanics by
considering spread cells on different adhesion geometries. We found that the transmis-
sion of forces to the nucleus is highly dependent on the actual adhesion geometry and
that nuclear rigidity has the potential to considerably perturb cell morphology, such as
the formation of invaginated arcs. Interestingly, nuclear position and increasing nuclear
stiffness changed the stress distribution in cells and was associated with the appearance
of ’stress bridges’ connecting nucleus and focal adhesions, reminiscent of stress fibres,
which may have important implications on the process of mechanotransduction and
determining cell polarity.

We then turned to the question how nuclear mechanics influences the measurement
of effective elastic moduli of the cell-nucleus composite. Therefore, we considered two
experimental setups which are frequently used to determine cell stiffness, namely the
compression of cells between two plates and micropipette aspiration. Our modelling
approach allowed us to extracted effective stiffnesses for spherical cells in axial sym-
metry in both modelled experiments. We found that in global straining of cells, as in
compression experiments, the impact of the nucleus on the measured effective modulus
is greater than in the case of local straining, as in micropipette aspiration. Hence, the
measured effective moduli depend on the experimental setup and the internal structure
of the cell. Our model provides evidence, that the nucleus is a cellular structure which
should be considered in models for whole-cell mechanics.

In Chapter 6, we looked at possible effect of nuclear rigidity on mechanosensitive
protein transport into the nucleus through nuclear pore complexes (NPCs) perforat-
ing the nuclear boundary. We proposed a system of reaction-diffusion equations in
the phase field framework of the previous chapters, allowing to consider spatiotempo-
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ral import dynamics. Motivated by a recent experimental study suggesting that force
transmission to the nucleus leads to a stretch of NPCs facilitating the transport through
them [9], we assumed an increase in the permeability of the nuclear envelope in regions
where the nuclear boundary is under tension. Our model for spread cells shows that if
passive and active transport efficiency benefit equally from a tension-induced opening
of NPCs, passive diffusion dominates leading to smaller nucleocytoplasmic signal ratios
(𝑁 /𝐶 ratio) of the considered protein compared to the case without NPC stretch. Only a
differential effect, leading to an increase of the ratio between active and passive import
efficiency can lead to an increase of the 𝑁 /𝐶 ratio, consistent with recent experimental
results [9]. Furthermore, we found that nuclear stiffness influences the obtained steady
state𝑁 /𝐶 ratio in a context-dependent manner, where contractile cells (also in presence
of localized pulling forces) showed a slightly larger 𝑁 /𝐶 ratio for stiff nuclei compared
to softer ones, while in uniaxially stretched cells this observation was reversed. Here,
softer nuclei had a larger 𝑁 /𝐶 ratio. Nuclear positioning can influence the signal ratio
as well by determining the extend of nuclear deformation.

In Chapter 7, we were interested in the mechanosensitive formation of stress fibres
in spread cells onmicropatterns. Tomodel stress fibre emergence, we coupled the elastic
phase field model from Chapter 4 with a continuous orientation field from the theory
of nematic liquid crystals. Increased alignment, induced by the stress within the cell,
was interpreted as the formation of (precursors of) stress fibres, where the orientation
field indicated their growth direction. Additionally, we implemented a feedback of the
forming stress fibres on the local contractility and stiffness of the cell. We found that
our model, predicting that the stress field in the cell directly determines stress fibre
growth, is able to qualitatively capture experimental observations, such as stress fibre
formation originating at focal adhesions and along invaginated arcs.

Regarding the above projects, a future validation of the made predictions by experi-
ments is highly desirable to further support the modelling approach. Nevertheless, in
the future, the elastic phase field approach should prove useful in studying a large
variety of different biological situations in complex geometries, which can be easily
described by this method. The phase field model could be extended to multicellular
systems in which each cell is described by a separate phase field [151, 152]. This would
allow a more detailed description of tissue mechanics and dynamics. Similarly, more
internal structures could be resolved, possibly with different material laws. Here the
phase field method could prove very efficient to understand the cell as a composite ma-
terial. Important in this context is a more discrete description of cytoskeletal structures
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and their dynamics, such as stress fibres and their assembly process. Features such as
cell motility or adhesion dynamics could be implemented by coupling additional fields
to the existing model [142, 145].

An extension to three-dimensions should be feasible and would allow to model cells
and their mechanics in physiological environments, such as fibrous networks [148, 205].
It would be highly interesting to investigate the effect of nuclear mechanics and posi-
tioning in three-dimensional cells, especially in cells migrating through narrow con-
strictions as the phase field approach is well-suited for suchmoving boundary problems.
Complemented by amodel containing all nucleocytoplasmic transport cycles, the phase
field approach could shed light on mechanotransduction in dynamic situations.

In summary, the elastic phase field method is a very versatile approach allowing an
incorporation of different cellular features also involving dynamics, with the potential
of providing many interesting new insights in the context of biomechanics.
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A Analytical calculations

A.1 Asymptotic analysis of the elastic phase field
method

Phase field models are diffuse interface approximations of originally sharp boundary
PDEs and their respective boundary conditions. Therefore, the underlying sharp bound-
ary system has to be recovered from the phase field model in the limit of an infinitely
thin interface (𝐷 → 0 or equivalently the interface width 𝜖 → 0). To check whether a
proposed phase field formulation properly describes the system of interest an asymp-
totic analysis (also known as sharp interface limit) has to be performed. We here per-
form such an asymptotic analysis for the elastic phase fieldmethod as proposed in Chap-
ter 4. However, we examine the generalized version with two elastic phases. Equivalent
calculations can be made for the phase field model for cells with elastic nuclei as pre-
sented in Chapter 5. During the analysis, we follow the procedure and partially the
notation as described in Jamet &Misbah (2008) [162] and the PhD thesis of Julien Beau-
court [311].

The governing equations for the elastic phase field method we will examine analyti-
cally are the phase field and elastodynamic equation for the displacement field 𝒖

𝜕𝜌

𝜕𝑡
= 𝐷Δ𝜌 − 𝜕𝑔(𝜌)

𝜕𝜌
+ 𝐷𝜅 |∇𝜌 | − 1

𝜉
(∇ · 𝚺 + 𝑭 + 𝐹𝑆∇𝜌) (A.1)

𝜉
𝜕𝒖

𝜕𝑡
= ∇ · 𝚺 + 𝑭 + 𝐹𝑆∇𝜌 (A.2)

where 𝑭 are general bulk (body) forces and 𝐹𝑆∇𝜌 are boundary forces acting only at
the 𝜌-interface. Recall, our double well potential of choice is 𝑔(𝜌) = 𝜌2(1 − 𝜌)2, distin-
guishing two bulk phases via assigning its minima values 𝜌 = 0 and 𝜌 = 1 to each of
them, respectively. In our cases of interest, these are the interior (𝜌 = 1) and exterior
(𝜌 = 0) of a cell. Assuming that the mechanics of both bulk phases can be described by
standard linear elasticity, the respective stress tensor in each phase is given by Hooke’s
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law
𝜎𝑖 𝑗 = 2𝜇𝜖𝑖 𝑗 + 𝜆𝜖𝑘𝑘𝛿𝑖 𝑗 (A.3)

with material parameters 𝜇 and 𝜆 and strain tensor

𝜖𝑖 𝑗 =
1
2

(︃
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)︃
. (A.4)

The interpolated phase field stress tensor in Eq. (A.2) is defined as

𝚺 = ℎ(𝜌)𝝈1 + [1 − ℎ(𝜌)]𝝈0 (A.5)

with ℎ(𝜌) being an interpolation function fulfilling the conditions ℎ(0) = 0, ℎ(1) = 1
and 𝜕𝜌ℎ |𝜌=0 = 𝜕𝜌ℎ |𝜌=1 = 0. Further, it should poses only these two extrema. Otherwise,
its exact form is arbitrary 1 and insignificant for the asymptotic expansion.
We are interested in recovering the sharp interface equilibrium equations. Therefore,

we perform the asymptotic analysis in steady state, such that eqs. (A.1) and (A.2) become

0 = 𝐷Δ𝜌 − 𝜕𝑔(𝜌)
𝜕𝜌

+ 𝐷𝜅 |∇𝜌 | (A.6)

0 = ∇ · 𝚺 + 𝑭 + 𝐹𝑆∇𝜌. (A.7)

This simplifies the following calculations enormously. 2

A.1.1 Curvilinear coordinates

Phase field models allow an efficient treatment of problems involving complex shapes.
To facilitated the analysis, it is essential to perform the sharp interface limit in a co-
ordinate system best suited for the phase field approach. Except for the special case
of planar interfaces, an asymptotic expansion in Cartesian coordinates would become
to cumbersome. The natural choice are curvilinear coordinates with orthogonal basis
vectors normal and tangential to the phase field interface.

Consider a curve Γ coinciding with the phase field isocline 𝜌 = 0.5 representing the
position of the interface 3. The coordinate variables are the arclength 𝑠 along the curve
Γ and the radial (normal) coordinate 𝑟 . On the isocline 𝜌 = 0.5 the radial coordinate can
1Recall, our choice for the interpolation function is ℎ(𝜌) = 𝜌2 (3 − 2𝜌).
2An example of an asymptotic analysis of a dynamical system is given in Ref. [162]
3For a phase field model with bulk values 𝜌𝐼 and 𝜌𝐼 𝐼 the isocontour (𝜌𝐼 + 𝜌𝐼 𝐼 )/2 can be associated with
the sharp boundary position [162].
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Γ

𝑟 = 0

𝒆𝒙

𝒆𝒚

𝛼
𝛼

𝑑𝑠

𝑿

𝑿 + 𝒅𝑿

𝒕𝒏

𝒙(𝑟, 𝑠)

Figure A.1: Curvilinear coordinate system for the asymptotic analysis of the reversible elastic
phase field method with orthogonal basis vectors 𝒏 and 𝒕 , being the local normal and tangential
vectors of a curve Γ, which is chosen as baseline. The orthogonal system is locally tilted by an
angle 𝛼 with respect to the Cartesian coordinate system defined by 𝒆𝒙 and 𝒆𝒚 . Γ coincides with
the phase field isocontour 𝜌 = 1/2 (black curve), interpreted as the sharp interface position, and
is set to 𝑟 = 0. Starting from a point 𝑿 , any point in space can be reached by shifting 𝑿 along
Γ by the arc length 𝑑𝑠 and by displacing it along the normal 𝒏 by a distance 𝑟 . Figure inspired
by [162].

be set to 𝑟 = 0, without loss of generality. The curvilinear coordinate system, with the
normal vectors 𝒏 and tangent vectors 𝒕 of Γ as orthogonal basis, is locally tilted by an
angle 𝛼 with respect to the Cartesian coordinate system, i.e. 𝒆𝑥 · 𝒕 = cos(𝛼) (cf. Fig. A.1).

Consider a point 𝑿 = (𝑋,𝑌 ) lying on Γ. Any point in the two-dimensional plane can
be reached by combining a translation along and normal to Γ of 𝒙 . We will consider
both translations separately. First, we shift 𝑿 along Γ by an arc length 𝑑𝑠 to a new
position 𝑿 + 𝒅𝑿 . This is given by

𝑿 → 𝑿 + 𝒅𝑿 =

(︄
𝑋 + cos(𝛼)𝑑𝑠
𝑌 + sin(𝛼)𝑑𝑠

)︄
(A.8)

while a normal translation of a point 𝑿 (𝑠) on Γ about a distance 𝑟 to a point 𝒙 in the
domain is described by

𝑿 → 𝒙 (𝑟, 𝑠) =
(︄
𝑋 (𝑠) − 𝑟 sin(𝛼)
𝑌 (𝑠) + 𝑟 cos(𝛼)

)︄
. (A.9)
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In order to transform all differential operators into the new coordinate system, so-called
scale factors have to be calculated, relating length changes in the different coordinate
systems with each other. They are given by ℎ𝑖 = |𝜕𝒙/𝜕𝑞𝑖 |, where 𝑞𝑖 are the curvilinear
coordinates 𝑟 and 𝑠 . Using eqs. (A.8) and (A.9) the scale factors in the given curvilinear
coordinate system are

ℎ𝑟 =

[︄(︃
𝜕𝑥

𝜕𝑟

)︃2
+

(︃
𝜕𝑦

𝜕𝑟

)︃2
]︄1/2

= 1 (A.10)

ℎ𝑠 =

[︄(︃
𝜕𝑥

𝜕𝑠

)︃2
+

(︃
𝜕𝑦

𝜕𝑠

)︃2
]︄1/2

= |1 − 𝑟𝜅 | (A.11)

where 𝜅 is the curvature of the curve 𝑠 at 𝑟 = 0 defined as 𝜅 = 𝜕𝛼/𝜕𝑠 . The differential
operators acting on a scalar field𝜙 and vector field v = (v𝑟 , v𝑠) in curvilinear coordinates
with above scale factors are

∇𝜙 = 𝒏𝜕𝑟𝜙 + 𝒕ℎ−1
𝑠 𝜕𝑠𝜙 (A.12)

∇ · v = ℎ−1
𝑠 [𝜕𝑟 (ℎ𝑠v𝑟 ) + 𝜕𝑠v𝑠] (A.13)

Δ𝜙 = 𝜕𝑟𝑟𝜙 − 𝜅ℎ−1
𝑠 𝜕𝑟𝜙 + ℎ−2

𝑠 𝜕𝑠𝑠𝜙 + 𝑟ℎ−3
𝑠 (𝜕𝑠𝜅)𝜕𝑠𝜙. (A.14)

A.1.2 Outer expansion

First, we will consider the elastic phase field method in the bulk phases far away from
the phase field interface. This is called the outer expansion. We begin by expanding all
base quantities of the model up to first order in the interface width 𝜖 :

𝜌 = 𝜌0 + 𝜖𝜌1 + O
(︁
𝜖2)︁

𝒖 = 𝒖0 + 𝜖𝒖1 + O
(︁
𝜖2)︁

𝑭 = 𝑭0 + 𝜖𝑭1 + O
(︁
𝜖2)︁ (A.15)

From the linearity of the elastic constitutive equation (A.3) and the differential operator,
it follows that the expansion of 𝒖 results in

𝝈 = 𝝈0 + 𝜖𝝈1 + O
(︁
𝜖2)︁ . (A.16)
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A.1 Asymptotic analysis of the elastic phase field method

Further, for any allowed interpolation function ℎ(𝜌) the expansion of 𝜌 will result in

ℎ(𝜌) = ℎ0(𝜌0) + 𝜖ℎ1(𝜌0, 𝜌1) + O
(︁
𝜖2)︁ (A.17)

where the lowest order term ℎ0(𝜌0) is of the same form as the original function ℎ(𝜌).4

By inserting the expansions (A.15) into eqs. (A.6) and (A.7) and sorting the resulting
terms by powers of 𝜖 , we are able to analyse them order by order to see, if the sharp
boundary system is recovered. We will restrict the expansion of each equation up to the
first non-vanishing order. It is important to keep in mind, that the phase field diffusion
coefficient 𝐷 and the interface width 𝜖 are related by 𝐷 ∝ 𝜖2.

order O(0)

For the phase field equation (A.6) we find in lowest order

2𝜌𝑜 (1 − 3𝜌0 + 2𝜌2
0) =

𝜕𝑔(𝜌0)
𝜕𝜌0

= 0 (A.18)

which is simply the derivative of the chosen double well potential with respect to the
phase field variable. The solutions are given by the stable minima 𝜌0 = 0 and 𝜌0 = 1,
assigned to the bulk phases, and the unstable maximum at 𝜌0 = 1/2, associated with
the sharp interface position. However, as we are interested for the bulk phases far away
from the interface only 𝜌 ∈ {0, 1} are of importance for now.

The lowest order term for the elastic equation (A.7) is

∇ ·
{︁
ℎ0(𝜌0)𝝈1

0 + [1 − ℎ0(𝜌0)] 𝝈0
0
}︁
+ 𝑭0 + 𝐹𝑆∇𝜌0 = 0. (A.19)

From the conditions ℎ(𝜌 = 0) = 0 and ℎ(𝜌 = 1) = 1 for the interpolation function, it
follows that ℎ0(𝜌0 = 0) = 0 and ℎ0(𝜌0 = 1) = 1 and this yields⎧⎪⎪⎨⎪⎪⎩

∇ · 𝝈1
0 + 𝑭0 = 0 for 𝜌0 = 1

∇ · 𝝈0
0 + 𝑭0 = 0 for 𝜌0 = 0.

(A.20)

The interfacial force drops out as ∇𝜌 = 0 in the bulk phases far away from the interface,
where 𝜌 is constant. Only body forces survive. We have therefore recovered in each
bulk phase the mechanical equilibrium equations.
4Consider for example our choice ℎ(𝜌) = 𝜌2 (3− 2𝜌). Inserting the expansion of 𝜌 from Eq. (A.15) gives
ℎ(𝜌) = 𝜌2

0 (3 − 2𝜌0) + 𝜖6𝜌0𝜌1 (1 − 𝜌0) + O
(︁
𝜖2)︁ = ℎ0 (𝜌0) + 𝜖ℎ1 (𝜌0, 𝜌1) + O

(︁
𝜖2)︁ .
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order O(𝜖)

In the next order we have for the phase field equation

6𝜌2
0𝜌1 − 12𝜌0𝜌1 + 2𝜌2

1 = 0 (A.21)

which has the trivial solution 𝜌1 = 0. The corresponding order for the mechanical
equation is

∇ ·
{︁
ℎ0(𝜌0)𝝈1

1 + [1 − ℎ0(𝜌0)] 𝝈0
1
}︁
+ 𝑭1 + 𝐹𝑆∇𝜌1 = 0. (A.22)

Knowing from above that 𝜌1 = 0, interfaces forces drop out again and we can further
infer that ℎ1(𝜌0, 𝜌1) = 0 as all terms in O(𝜖) and higher for the interpolation function
will contain a factor 𝜌1. Considering the bulk phases, we again find the equations of
mechanical equilibrium ⎧⎪⎪⎨⎪⎪⎩

∇ · 𝝈1
1 + 𝑭1 = 0 for 𝜌0 = 1

∇ · 𝝈0
1 + 𝑭1 = 0 for 𝜌0 = 0

(A.23)

as before. Therefore, this order has not given us any additional information, and we
shift all the problems complexity into the lowest order O(0) by setting 𝑭1 = 0 and
𝒖1 = 0 (and by linearity 𝝈1

1 = 𝝈0
1 = 0).

A.1.3 Inner expansion

Having analysed the phase field model equations in the bulk (outer) regions where the
phase field 𝜌 is (nearly) constant, we now focus on the interface (inner) region. Here
𝜌 is subject to strong variations. For the following steps, we need to renormalise the
radial coordinate 𝑟 in the inner region by the interface width 𝜖

𝑟 = 𝑟/𝜖. (A.24)

As for the outer expansion, we expand all fields in the inner region up to first order in
the interface width 𝜖

�̄� = �̄�0 + 𝜖�̄�1 + O
(︁
𝜖2)︁

�̄� = �̄�0 + 𝜖�̄�1 + O
(︁
𝜖2)︁

𝑭 = 𝑭 0 + 𝜖𝑭 1 + O
(︁
𝜖2)︁ (A.25)

Further, we define that in the limit 𝑟 → −∞ we leave the interface into the bulk
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A.1 Asymptotic analysis of the elastic phase field method

phase 𝜌 = 1, while for 𝑟 → +∞ we enter the bulk phase 𝜌 = 0. The solutions of the
asymptotic expansions in the outer and inner regions have to be matched in the above
limits.5 These matching conditions are

lim
𝑟→±∞

�̄�0(𝑟, 𝑠) =
⎧⎪⎪⎨⎪⎪⎩

1 for 𝑟 → −∞

0 for 𝑟 → +∞
lim
𝑟→±∞

�̄�1(𝑟, 𝑠) = 0 (A.26)

lim
𝑟→±∞

�̄�0(𝑟, 𝑠) = 𝒖0(0±, 𝑠) lim
𝑟→±∞

�̄�1(𝑟, 𝑠) = 0 (A.27)

lim
𝑟→±∞

𝑭 0(𝑟, 𝑠) = 𝑭0(0±, 𝑠) lim
𝑟→±∞

𝑭 1(𝑟, 𝑠) = 0 (A.28)

where the superscript for 0± indicates, to which inner expansion limit for 𝑟 → ±∞ the
outer solution of the respective phase is approached. Additionally, the scale factors and
differential operators have to be transformation into the new interface coordinate 𝑟 .
While the scale factor ℎ𝑟 = 1 remains unchanged, the second one becomes ℎ𝑠 = 1+ 𝜖𝑟𝜅.
Recalling the differential operators in curvilinear coordinates (A.12), we approximate

ℎ−1
𝑠 =

1
1 − 𝜖𝑟𝜅 ≈ 1 + 𝜖𝑟𝜅 + O

(︁
𝜖2)︁ . (A.29)

Together with 𝜕𝑟 = 𝜖−1𝜕𝑟 , the differential operators can be approximated as

∇𝑓 =
1
𝜖
𝒏𝜕𝑟 𝑓 + 𝒕 (1 + 𝜖𝑟𝜅)𝜕𝑠 𝑓 + O

(︁
𝜖2)︁ (A.30)

∇ · 𝑽 =
1
𝜖
𝜕𝑟𝑉𝑟0 + 𝜕𝑟 (𝑉𝑟1 − 𝜅𝑟𝑉𝑟0) − 𝑟𝜅𝜕𝑟𝑉𝑟0 + 𝜕𝑠𝑉𝑠0 + O (𝜖) (A.31)

Δ𝑓 =
1
𝜖2 𝜕𝑟𝑟 𝑓 −

1
𝜖
𝜅 (1 + 𝑟𝜅)𝜕𝑟 𝑓 + O

(︁
𝜖0)︁ . (A.32)

and
|∇𝜌 |= 1

𝜖
𝜕𝑟 �̄�0 + 𝜕𝑟 �̄�1 + O (𝜖) (A.33)

up to the second lowest order in 𝜖 . Moreover, it can be shown that the normal vector
is 𝒏 = ∇𝜌/|∇𝜌 | = 𝒏0 + O (𝜖) and the curvature approximates as 𝜅 = −∇ · 𝒏 = 𝜅0 +
O (𝜖) [162].
We repeat the procedure from above and examine the governing equations in the in-

ner interface region up to second non-vanishing order in 𝜖 by using the expansions (A.25)-
(A.33), sorting terms in powers of 𝜖 and examining them individually. Due to different
leading orders in 𝜖 , each equation is now examined separately, for convenience.

5Therefore the asymptotic analysis is also known as matched asymptotic expansion.
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Phase field equation

We begin with expanding the phase field equation as the informations we get here will
become useful when treating the expansion of the elastodynamic equations.

order O(𝜖0): The dominating term in the phase field equation is

𝜕𝑟𝑟 �̄�0 −
𝜕𝑔(�̄�0)
𝜕�̄�0

= 0. (A.34)

Solving this equation under the matching conditions (A.26) for �̄�0 yields

�̄�0(𝑟 ) =
1
2

[︃
1 + tanh

(︃
𝑟
√

2

)︃]︃
, (A.35)

hence the stationary phase field profile is recovered in lowest order (cf. appendix sec-
tion A.2).

order O(𝜖): In the next highest order O(𝜖) we find for the phase field equation

𝜕𝑟𝑟 �̄�1 + 8�̄�0�̄�1 − 4�̄�2
0�̄�1 + 𝜅0𝜕𝑟 �̄�0 − 𝜅0𝜕𝑟 �̄�0 = 0 (A.36)

which has the trivial solution �̄�1 = 0. Remark, that the surface tension term proportional
to the curvature 𝜅0 appears naturally in the expansion. It’s balancing by the respective
counter term, as introduced by Folch et al. (1999) (third term in Eq. (A.1)), ensures a
stationary phase field profile. It is worth noting, that the balancing term used here
cannot be related to an energy and is therefore not thermodynamic consistent. For
cases where this consistency is required, Jamet and Misbah (2008) [162] proposed an
alternative balancing term which is

√︁
2𝐷𝑔(𝜌)𝜅 6, which they showed to be up to first

order in 𝜖 equivalent to the expression by Folch et al. (1999) [160].

Equations of mechanical equilibrium

Now, we turn to the inner expansion of the equation of mechanical equilibrium (A.7).
To analyse these equations, one has to refer to the specific form of the strain and stress
tensor in curvilinear coordinates. For generalized coordinates 𝑞𝑖 the strain tensor com-

6The respective energy is F = −
∫
𝑉

√︁
2𝐷𝑔(𝜌) |∇𝜌 |𝑑𝒙 [162].
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ponents are

𝜖𝑖𝑖 =
𝜕𝑢𝑖

ℎ𝑖𝜕𝑞𝑖
and 𝜖𝑖 𝑗 =

1
2

(︃
𝜕𝑢𝑖

ℎ 𝑗 𝜕𝑞 𝑗
+
𝜕𝑢 𝑗

ℎ𝑖𝜕𝑞𝑖

)︃
(A.37)

with scale factors (A.10) and (A.11) for the in section A.1.1 defined local orthogonal
system. By using the approximations ℎ𝑟 = 1 and Eq. (A.29) of the scale factors in the
new coordinate 𝑟 = 𝑟/𝜖 the strain components yield

𝜖𝑟𝑟 =
1
𝜖
𝜕𝑟�̄�𝑟

𝜖𝑠𝑠 = (1 + 𝜖𝑟𝜅)𝜕𝑠�̄�𝑠

𝜖𝑟𝑠 =
1
2

[︃
(1 + 𝜖𝑟𝜅)𝜕𝑟�̄�𝑟 +

1
𝜖
𝜕𝑟�̄�𝑠

]︃ (A.38)

which is needed for transforming the stress tensor with respect to the new coordinate.
The stress tensor components in the local normal-tangential coordinate system are

𝜎𝑟𝑟 = (2𝜇 + 𝜆)𝜖𝑟𝑟 + 𝜆𝜖𝑠𝑠
�̄�𝑠𝑠 = (2𝜇 + 𝜆)𝜖𝑠𝑠 + 𝜆𝜖𝑟𝑟
�̄�𝑟𝑠 = 2𝜇𝜖𝑟𝑠

(A.39)

Further, one can expand the divergence of the phase field stress tensors 𝚺 by noting
that

∇ · 𝚺 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · ⎛⎜⎝
Σ̄𝑟𝑟

Σ̄𝑟𝑠

⎞⎟⎠ =
1
𝜖
𝜕𝑟 Σ̄𝑟𝑟 + [1 + 𝜖𝑟𝜅]𝜕𝑠 Σ̄𝑟𝑠 − 𝜅 [1 + 𝜖𝑟𝜅]Σ̄𝑟𝑟

∇ · ⎛⎜⎝
Σ𝑟𝑠

Σ𝑠𝑠

⎞⎟⎠ =
1
𝜖
𝜕𝑟 Σ̄𝑟𝑠 + [1 + 𝜖𝑟𝜅]𝜕𝑠 Σ̄𝑠𝑠 − 𝜅 [1 + 𝜖𝑟𝜅]Σ̄𝑟𝑠

(A.40)

where the expanded differential operator Eq. (A.31) has been used.

Finally, inserting the previous eqs. (A.39) in the displacement formulation (with the
help of eqs. (A.38)) into the equation of mechanical equilibrium (A.7), together with the
expansions of the body forces 𝑭 (A.25), the weighting function ℎ(𝜌) (being the same
as Eq. A.17) and the approximated gradient (A.30) for the surface forces 𝐹𝑆∇𝜌 , one can
expand the governing equation up to second lowest order.
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order O(𝜖−2): In leading order we get⎧⎪⎪⎨⎪⎪⎩
[︁(︁

2𝜇1 + 𝜆1)︁ − (︁
2𝜇0 + 𝜆0)︁ ]︁ (𝜕𝑟ℎ0𝜕𝑟�̄�𝑟0 + ℎ0𝜕𝑟𝑟�̄�𝑟0) + (2𝜇0 + 𝜆0)𝜕𝑟𝑟�̄�𝑟0 = 0(︁

𝜇1 − 𝜇0)︁ (𝜕𝑟ℎ0𝜕𝑟𝑢𝑠0 + ℎ0𝜕𝑟𝑟�̄�𝑠0) + 𝜇0𝜕𝑟𝑟�̄�𝑠0 = 0
(A.41)

which both can be written as⎧⎪⎪⎨⎪⎪⎩
𝜕𝑟

{︁[︁
ℎ0

(︁
2𝜇1 + 𝜆1)︁ − (1 − ℎ0)

(︁
2𝜇0 + 𝜆0)︁ ]︁ 𝜕𝑟�̄�𝑟0}︁ = 0

𝜕𝑟
{︁[︁
ℎ0𝜇

1 + (1 − ℎ0)𝜇0]︁ 𝜕𝑟𝑢𝑠0}︁ = 0
(A.42)

by using the product rule. Neither body nor surface forces enter the leading order.
Further, only radial gradients of the stress tensor components Σ̄𝑟𝑟 and Σ̄𝑠𝑠 appear in
dominating order. Tangential derivatives or the shear component Σ̄𝑟𝑠 , do not appear.
Since ℎ0 = ℎ0(�̄�0) is not constant (or vanishes) in the interfacial region, it follows from
eqs. (A.42) that

𝜕𝑟�̄�𝑟0 = 0 and 𝜕𝑟�̄�𝑠0 = 0 (A.43)

for all ℎ0. Integrating both across the interface width 𝑟 → ±∞ yields⎧⎪⎪⎨⎪⎪⎩
�̄�𝑟0(∞, 𝑠) = �̄�𝑟0(−∞, 𝑠) =⇒ 𝑢𝑟0(0+, 𝑠) = 𝑢𝑟0(0−, 𝑠)

�̄�𝑠0(∞, 𝑠) = �̄�𝑠0(−∞, 𝑠) =⇒ 𝑢𝑠0(0+, 𝑠) = 𝑢𝑠0(0−, 𝑠)
(A.44)

where the matching conditions (A.27) have been used. Therefore, in leading order, the
reversible elastic phase field method describes the desired continuity of the deformation
normal to the boundary between two elastic media, i.e. their cohesion. Otherwise, an
induced deformation could lead to their break up and physical distancing, i.e appearance
of a third void phase, or unphysical deformation into each other.

order O(𝜖−1): For examining the next order, knowledge from the previous one can
help to facilitate it. 7 Similar to the dominating order, we can reduce the remaining
terms to ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑟
{︁[︁
ℎ0

(︁
2𝜇1 + 𝜆1)︁ + (1 − ℎ0)

(︁
2𝜇0 + 𝜆0)︁ ]︁ 𝜕𝑟�̄�𝑟1

+
[︁
ℎ0𝜆

1 + (1 − ℎ0) 𝜆0]︁ 𝜕𝑠�̄�𝑠0 + 𝐹𝑆𝜌0
}︁
= 0

𝜕𝑟
{︁[︁
ℎ0𝜇

1 + (1 − ℎ0) 𝜇0]︁ (𝜕𝑠�̄�𝑟0 + 𝜕𝑟�̄�𝑠1)}︁ = 0
(A.45)

7In the full expansions terms containing eqs. (A.43) will automatically drop out. The same holds for
terms proportional to 𝜕𝑠𝑟�̄�𝑠0 = 𝜕𝑟𝑠�̄�𝑠0 = 0, which immediately follows from eqs. (A.43).
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where it is worth noting, that in the mechanical equilibrium equation for the radial
coordinate the surface force appears for the first time. The coupling between normal
and tangential displacement components in both equations, makes them more compli-
cated than the previous ones and impossible to directly infer information on the terms
in the curly brackets, as has been done before. To further analyse these equations, we
integrate both along the interface width. This procedure is further motivated by not-
ing, that all relevant information on the displacement field itself has been achieved in
leading order. Recall, that in the outer expansion 𝒖0 = 0 bears all information, while
𝒖1 = 0. This renders the �̄�𝑟1 and �̄�𝑠1 irrelevant through the matching conditions. Again,
the integration along the interface normal is performed in the limits 𝑟 → ±∞ giving

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{︁[︁
ℎ0

(︁
2𝜇1 + 𝜆1)︁ + (1 − ℎ0)

(︁
2𝜇0 + 𝜆0)︁ ]︁ 𝜕𝑟�̄�𝑟1

+
[︁
ℎ0𝜆

1 + (1 − ℎ0) 𝜆0]︁ 𝜕𝑠�̄�𝑠0 + 𝐹𝑆𝜌0
}︁ |︁|︁|︁+∞

−∞
= 0

{︁[︁
ℎ0𝜇

1 + (1 − ℎ0) 𝜇0]︁ (𝜕𝑠�̄�𝑟0 + 𝜕𝑟�̄�𝑠1)}︁ |︁|︁|︁+∞
−∞

= 0

(A.46)

which simplifies to ⎧⎪⎪⎨⎪⎪⎩
𝜆0𝜕𝑠�̄�𝑠0(∞, 𝑠) − 𝜆1𝜕𝑠�̄�𝑠0(−∞, 𝑠) − 𝐹𝑆 = 0

𝜇0𝜕𝑠�̄�𝑟0(∞, 𝑠) − 𝜇1𝜕𝑠�̄�𝑟0(−∞, 𝑠) = 0
(A.47)

by using thematching conditions (A.26) on 𝜌0, resulting inℎ0(𝜌0(+∞)) = 0 andℎ0(𝜌0(+∞)) =
1, and the displacement components, yielding 𝜕𝑟�̄�𝑟1(±∞, 𝑠) = 𝜕𝑟�̄�𝑠1(±∞, 𝑠) = 0. For de-
ductive purposes, we did notmatch the non-vanishing deformation gradients in eqs. A.47
yet. Finally, carrying out the matching for the remaining terms with the respective con-
ditions (A.26) we find ⎧⎪⎪⎨⎪⎪⎩

𝜆0𝜕𝑠�̄�𝑠0(0+, 𝑠) − 𝜆1𝜕𝑠�̄�𝑠0(0−, 𝑠) − 𝐹𝑆 = 0

𝜇0𝜕𝑠�̄�𝑟0(0+𝑦, 𝑠) − 𝜇1𝜕𝑠�̄�𝑟0(0−, 𝑠) = 0
(A.48)

which state that the displacement may exhibit a discontinuity along the boundary when
approaching it from each elastic phase. This jump occurs in the tangential displacement
component due to surface forces and, as for the normal component, due to differences
in the elastic parameters of the considered materials. Therefore, shear is not described
(at least up to first order) by our proposed elastic phase field method.
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A.2 One-dimensional phase field profile

The stead-state profile of the phase field can be derived by solving the leading order
equation of the inner asymptotic expansion of the phase field dynamics (A.34) under
matching conditions (A.26) for 𝜌 , which is similar to the solution of the one-dimensional
phase field equation

𝜕𝜌

𝜕𝑡
= 𝐷

𝜕2𝜌

𝜕𝑥2 − 𝜕𝑔(𝜌)
𝜕𝜌

(A.49)

with 𝑔(𝜌) = 𝜌2(1 − 𝜌)2 under the conditions 𝜌 (𝑥 → −∞) = 0 and 𝜌 (𝑥 → +∞) = 1.
Consider the stationary case

𝐷
𝜕2𝜌

𝜕𝑥2 − 𝜕𝑔(𝜌)
𝜕𝜌

= 0. (A.50)

By multiplying both sides of the equation with 𝜕𝜌/𝜕𝑥 , we get the expression

𝐷
𝜕2𝜌

𝜕𝑥2
𝜕𝜌

𝜕𝑥
− 𝜕𝑔(𝜌)

𝜕𝜌

𝜕𝜌

𝜕𝑥
= 0

⇒ 𝑑

𝑑𝑥

[︄
𝐷

2

(︃
𝑑𝜌

𝑑𝑥2

)︃2
− 𝑔(𝜌)

]︄
= 0.

(A.51)

This gives
𝐷

2

(︃
𝑑𝜌

𝑑𝑥2

)︃2
− 𝑔(𝜌) = 𝑐𝑜𝑛𝑠𝑡, (A.52)

where we can set the constant to zero due to the above conditions on 𝜌 . Now, we can
solve this equation for

𝜕𝜌

𝜕𝑥
=

√︃
𝐷

2 𝑔(𝜌) =
√︃
𝐷

2 𝜌 (1 − 𝜌), (A.53)

where we have used the exact form of the double well potential 𝑔(𝜌) used in this thesis.
A separation of variables leads to

𝑑𝜌

𝜌 (1 − 𝜌) =

√︃
𝐷

2 𝑑𝑥. (A.54)

Performing a partial fraction decomposition

𝑑𝜌

𝜌
− 𝑑𝜌

1 − 𝜌 =

√︃
𝐷

2 𝑑𝑥 (A.55)
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A.2 One-dimensional phase field profile

and integrating, gives

log
(︃
𝜌

1 − 𝜌

)︃
=

√︃
𝐷

2 𝑥 + 𝑘 (A.56)

which leads to
𝜌

1 − 𝜌 = exp
(︄√︃

2
𝐷
𝑥 + 𝑘

)︄
. (A.57)

Solving for the phase field variable 𝜌 results in

𝜌 (𝑟 ) =
[︄
1 + exp

(︄
−
√︃

2
𝐷
𝑥 − 𝑘

)︄]︄−1

(A.58)

which fulfils the above mentioned limiting conditions on 𝜌 . The integration constant 𝑘
can now be specified by noting that the interface position 𝑥0 can be identified with the
isocontour of the phase field 𝜌 = 1/2 for our chosen double-well potential. Finally, we
arrive at

𝜌 (𝑥) =
[︄
1 + exp

(︄
−
√︃

2
𝐷
(𝑥 − 𝑥0)

)︄]︄−1

=
1
2

[︃
1 + tanh

(︃
𝑥 − 𝑥0√

2𝐷

)︃]︃
(A.59)

where in the last step we have used the relation

tanh(𝑥) = 1 − 2
1 + 𝑒2𝑥 . (A.60)

For 𝐷 = 1 and 𝑥0 = 0, the Eq. (A.35) given in the asymptotic expansion of the previous
section is recovered.
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A.3 Analytical solution for a contractile cell with
nucleus adhered to a substrate in radial
symmetry

In section 5.3.1 a radial symmetric contractile cell homogeneously adhered to a compli-
ant substrate was discussed. We here give the calculation of the analytical solution to
the corresponding sharp interface problem, being an extension of the model presented
by Edwards & Schwarz [191], due to the incorporation of an elastic nucleus.

A strongly spread cell of height 𝑑 , much smaller than its extensions in the other two
spatial directions, can be approximated as a thin elastic sheet in plane stress (cf. Fig. 5.2 A).
Consider a radial symmetric cell of radius 𝑅𝐶 , split into two compartments: a concen-
tric nucleus (𝑁 ) of radius 𝑅𝑁 and the cytoplasm (𝐶), i.e the rest of the cell without the
nucleus. Both are assumed to be linear elastic. Young’s moduli 𝐸𝑁 and 𝐸𝐶 as well as
Poisson’s ratio 𝜈𝑁 and 𝜈𝐶 of these two compartments can differ from each other. Cor-
responding to the model described in section 5.3.1, we assume the cell to be subjected
to a homogeneous and isotropic active contractile stress 𝝈𝑎𝑐𝑡 = −𝜎01, where 𝜎0 > 0 is
the magnitude of the active stress and 1 is the identity matrix. The cell is coupled to an
underlying substrate by modelling the engaged adhesions as a homogeneous density of
springs with spring stiffness density 𝑌 . This elastic foundation evokes a restoring force
𝑭 = −𝑌𝒖 upon deformation.

In each compartment the equation of mechanical equilibrium

∇ · 𝝈𝛼 − 𝑌𝒖𝛼 = 0 (A.61)

has to be solved under appropriate boundary conditions, where 𝛼 ∈ {𝐶, 𝑁 } denotes the
compartment, i.e. cytoplasm (𝐶) or nucleus (𝑁 ). Due to the radial symmetric geometry,
the only non-vanishing displacement component in polar coordinates is the radial one,
i.e. 𝒖 = 𝑢𝑟 (𝑟 )𝒆𝑟 with 𝒆𝑟 being the radial basis vector. From this symmetry consideration
it follows, that in polar coordinates Eq. A.61 reduces to

𝑟 2 𝜕
2𝑢𝛼𝑟
𝜕𝑟 2 + 𝑟 𝜕𝑢

𝛼
𝑟

𝜕𝑟
−

(︃
1 + 𝑟

2

𝑙2𝛼

)︃
𝑢𝛼𝑟 = 0 (A.62)

where 𝑙𝛼 =

√︂
𝐸𝛼𝑑/

[︁
𝑌

(︁
1 − 𝜈2

𝛼

)︁ ]︁
is the localization length [191] for the respective cell

compartment 𝛼 . The localization lengths 𝑙𝛼 are a characteristic length scale, describing
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radial symmetry

how far forces can propagate through a body in the above configuration. Equation A.62
is a modified Bessel function, whose general solution

𝑢𝛼𝑟 (𝑟 ) = 𝐴𝐼1
(︃
𝑟

𝑙𝛼

)︃
+ 𝐵𝐾1

(︃
𝑟

𝑙𝛼

)︃
(A.63)

is a superposition of modified Bessel functions of the first kind 𝐼1(𝑥) and second kind
𝐾1(𝑥) [215]. 𝐴 and 𝐵 are constants which have to be determined through the boundary
conditions specifying the problem.

A.3.1 Subproblem I: Nucleus

We start with the nuclear compartment forwhich 𝑙𝑁 =

√︂
𝐸𝑁𝑑/

[︁
𝑌

(︁
1 − 𝜈2

𝑁

)︁ ]︁
. The bound-

ary conditions are

(I) 𝑢𝑁𝑟 (0) = 0 and (II) 𝜎𝑁𝑟𝑟 (𝑅𝑁 ) = −𝜎𝑁𝑑, (A.64)

where 𝜎𝑁 is the a priori unknown radial stress at the nuclear boundary which will be
specified later. By using the above conditions (I) and (II), the displacement field in the
nuclear compartment can be determined to be

𝑢𝑁𝑟 (𝑟 ) = − 𝜎𝑁𝑑𝑙𝑁

2𝜇𝑁 + 𝜆𝑁

𝐼1
(︂
𝑟
𝑙𝑁

)︂
𝐼0

(︂
𝑅𝑁
𝑙𝑁

)︂
− 2𝜇𝑁

2𝜇𝑁 +𝜆𝑁
𝑙𝑁
𝑅𝑁
𝐼1

(︂
𝑅𝑁
𝑙𝑁

)︂ (A.65)

where in the derivation it has to be used that [215]

𝜕

𝜕𝑟
𝐼1

(︃
𝑟

𝑙𝑁

)︃
=

1
𝑙𝑁

[︃
𝐼0

(︃
𝑟

𝑙𝑁

)︃
− 𝑙𝑁
𝑟
𝐼1

(︃
𝑟

𝑙𝑁

)︃]︃
. (A.66)

Equation A.65 is of the same form as derived by Edwards & Schwarz [191] for a adhered
contractile disk-like cell.

A.3.2 Subproblem II: Cytoplasm

For the cytoplasmic compartment with outer radius 𝑅𝐶 and 𝑙𝐶 =

√︂
𝐸𝐶𝑑/

[︁
𝑌

(︁
1 − 𝜈2

𝐶

)︁ ]︁
,

the boundary conditions are

(III) 𝜎𝑟𝑟 (𝑅𝐶) = −𝜎0𝑑 and (IV) 𝑢𝑁𝑟 (𝑅𝑁 ) − 𝑢𝐶𝑟 (𝑅𝑁 ) = 0, (A.67)
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where 𝜎0 is the contractile stress appearing as boundary force. Boundary condition
(IV) enforces a continuous displacement field in the cell, exhibiting no jumps at the
nucleus-cytoplasm interface. Otherwise, the cell would loose its coherency, what would
be equivalent to a rupture at the interface of the two cell compartments.

Determining the constants in Eq. (A.63) via the boundary conditions (A.67) (III) and
(IV) lead to the displacement field in the cytoplasm

𝑢𝐶𝑟 (𝑟 ) =
⎛⎜⎜⎝𝑢𝑁𝑟 (𝑅𝑁 ) −

𝜎0𝑑𝑙𝐶
2𝜇𝐶 + 𝜆𝐶

𝐾1
(︂
𝑅𝑁
𝑙𝐶

)︂
�̃�

⎞⎟⎟⎠ ×
𝐼1

(︂
𝑟
𝑙𝐶

)︂
+ 𝐼

�̃�
𝐾1

(︂
𝑟
𝑙𝐶

)︂
𝐼1

(︂
𝑅𝑁
𝑙𝐶

)︂
+ 𝐼

�̃�
𝐾1

(︂
𝑅𝑁
𝑙𝐶

)︂ + 𝜎0𝑑𝑙𝐶
2𝜇𝐶 + 𝜆𝐶

𝐾1
(︂
𝑟
𝑙𝐶

)︂
�̃�

.

(A.68)
Here, 𝑢𝑁𝑟 (𝑅𝑁 ) is the displacement field at the cytoplasm-nucleus boundary and

𝐼 = 𝐼0

(︃
𝑅𝐶

𝑙𝐶

)︃
− 2𝜇𝐶

2𝜇𝐶 + 𝜆𝐶
𝑙𝐶

𝑅𝐶
𝐼1

(︃
𝑅𝐶

𝑙𝐶

)︃
�̃� = 𝐾0

(︃
𝑅𝐶

𝑙𝐶

)︃
+ 2𝜇𝐶

2𝜇𝐶 + 𝜆𝐶
𝑙𝐶

𝑅𝐶
𝐾1

(︃
𝑅𝐶

𝑙𝐶

)︃
.

(A.69)

In the derivation of Eq. (A.68) it has to be used that [215]

𝜕

𝜕𝑟
𝐾1

(︃
𝑟

𝑙𝑁

)︃
= − 1

𝑙𝐶

[︃
𝐾0

(︃
𝑟

𝑙𝐶

)︃
+ 𝑙𝐶
𝑟
𝐾1

(︃
𝑟

𝑙𝐶

)︃]︃
, (A.70)

additionally to Eq. (A.66).
Lastly, the stress at the nucleus-cytoplasm boundary 𝜎𝑁 has to be specified. We use

that in the mechanical equilibrium the internal stress at the nucleus-cytoplasm inter-
face, when approaching it from the cytoplasm and the nucleus domain, have to balance
each other, i.e.

𝜎𝑁𝑟𝑟

|︁|︁|︁
𝑟→𝑅𝑁

= 𝜎𝐶𝑟𝑟

|︁|︁|︁
𝑟→𝑅𝑁

. (A.71)

By taking advantage of the von Neumann boundary condition (A.64) (II), it follows from
Eq. (A.71)

𝜎𝑁 =
𝜎0

�̃�

𝛼𝐾1
(︂
𝑅𝑁
𝑙𝐶

)︂
+ 𝐾0

(︂
𝑅𝑁
𝑙𝐶

)︂
1 − 𝑙𝑁

2𝜇𝑁 +𝜆𝑁
𝐼1

(︂
𝑅𝑁
𝑙𝑁

)︂
𝐼0

(︂
𝑅𝑁
𝑙𝑁

)︂
− 2𝜇𝑁

2𝜇𝑁 +𝜆𝑁
𝐼1

(︂
𝑅𝑁
𝑙𝑁

)︂
𝑙𝑁
𝑅𝑁

[︂
2𝜇𝐶+𝜆𝐶
𝑙𝐶

𝛼 − 2𝜇𝐶
𝑅𝑁

]︂ (A.72)

with

𝛼 =

𝐼0
(︂
𝑅𝑁
𝑙𝐶

)︂
− 𝐼

�̃�
𝐾0

(︂
𝑅𝑁
𝑙𝐶

)︂
𝐼1

(︂
𝑅𝑁
𝑙𝐶

)︂
+ 𝐼

�̃�
𝐾1

(︂
𝑅𝑁
𝑙𝐶

)︂ . (A.73)
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The full solution is hence given by

𝑢𝑟 (𝑟 ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 𝜎𝑁𝑑𝑙𝑁
2𝜇𝑁 +𝜆𝑁

𝐼1
(︂
𝑟
𝑙𝑁

)︂
𝐼0

(︂
𝑅𝑁
𝑙𝑁

)︂
− 2𝜇𝑁

2𝜇𝑁 +𝜆𝑁
𝑙𝑁
𝑅𝑁

𝐼1
(︂
𝑅𝑁
𝑙𝑁

)︂ for 0 ≤ 𝑟 ≤ 𝑅𝑁

(︄
𝑢𝑁𝑟 (𝑅𝑁 ) − 𝜎0𝑑𝑙𝐶

2𝜇𝐶+𝜆𝐶
𝐾1

(︂
𝑅𝑁
𝑙𝐶

)︂
�̃�

)︄
×

𝐼1
(︂
𝑟
𝑙𝐶

)︂
+ 𝐼

�̃�
𝐾1

(︂
𝑟
𝑙𝐶

)︂
𝐼1

(︂
𝑅𝑁
𝑙𝐶

)︂
+ 𝐼

�̃�
𝐾1

(︂
𝑅𝑁
𝑙𝐶

)︂ + 𝜎0𝑑𝑙𝐶
2𝜇𝐶+𝜆𝐶

𝐾1
(︂
𝑟
𝑙𝐶

)︂
�̃�

for 𝑅𝑁 < 𝑟 ≤ 𝑅𝐶

(A.74)
together with Eqs. (A.69), (A.72) and (A.73).

A.4 On the relation between Frank and Landau
elastic constants in 2D

In Sect. 7.2.2 Eq. (7.8) we gave the relation between the Frank elastic constants in 2D an
the respective phenomenlogical constants in an Landau expansion up to second order
in gradients of the 𝑸-tensor. Here, we want to demonstrate the procedure to obtain
these relation.

Distortions in the nematic order can be phenomenological described in an Landau
expansion in gradients of the order parameter

𝑄𝑖 𝑗 = 𝑆

(︃
𝑛𝑖𝑛 𝑗 −

1
2𝛿𝑖 𝑗

)︃
, (A.75)

which is a symmetric and traceless tensor. Up to second order, as used in this work, the
Landau distortional energy is

𝑓 2𝐷
𝑒𝑙

=
𝐿1
2 𝜕𝑘𝑄𝑖 𝑗 𝜕𝑘𝑄𝑖 𝑗 +

𝐿2
2 𝜕 𝑗𝑄𝑖 𝑗 𝜕𝑘𝑄𝑖𝑘 , (A.76)

with phenomenological elastic constants 𝐿𝑖 .
Alternatively, distortions can be described by gradients in the director 𝒏. The so-

called Oseen-Frank elastic energy for distortions in the nematic orientation in 2D reads

𝑓 3𝐷
𝑒𝑙

=
1
2𝐾1(∇ · 𝒏)2 + 1

2𝐾3 [(𝒏 · ∇) · 𝒏]2 , (A.77)

describing splay (𝐾1) and bending (𝐾3) deformations [299]. Here, the Frank elastic con-
stants 𝐾𝑖 have a clear physical meaning. Note that in 2D twist deformations (𝐾2) are
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not possible and the term describing bending appears in its 2D form (cf. Eq. (7.6)) [299].
We now want to establish a relation between the phenomenological elastic constants

of Eq. (A.76) and the Frank elastic constants in Eq. (A.77) in 2D. For simplicitywe assume
that the scalar order parameter 𝑆 in Eq. (A.75), which describes the degree of alignment
of the nematic liquid crystal, is 𝑆 = 𝑐𝑜𝑛𝑠𝑡 = 1. Inserting the expression of the 𝑸-tensor,
Eq. (A.75) in the Landau distortional energy Eq. (A.76) leads to

𝑓𝑒𝑙 =
𝐿1
2

[︁
𝜕𝑘

(︁
𝑛𝑖𝑛 𝑗

)︁
𝜕𝑘

(︁
𝑛𝑖𝑛 𝑗

)︁ ]︁
+ 𝐿2

2
[︁
𝜕 𝑗

(︁
𝑛𝑖𝑛 𝑗

)︁
𝜕𝑘 (𝑛𝑖𝑛𝑘)

]︁
=
𝐿1
2

[︁
(𝜕𝑘𝑛𝑖) 𝑛 𝑗 + 𝑛𝑖

(︁
𝜕𝑘𝑛 𝑗

)︁ ]︁2 + 𝐿2
2

[︁ (︁
𝜕 𝑗𝑛𝑖

)︁
𝑛 𝑗 + 𝑛𝑖

(︁
𝜕 𝑗𝑛 𝑗

)︁ ]︁
[(𝜕𝑘𝑛𝑖) 𝑛𝑘 + 𝑛𝑖 (𝜕𝑘𝑛𝑘)]

=
𝐿1
2

[︂
(𝜕𝑘𝑛𝑖)2 +

(︁
𝜕𝑘𝑛 𝑗

)︁2
]︂
+ 𝐿2

2

[︂ (︁
𝑛 𝑗 𝜕 𝑗𝑛𝑖

)︁
(𝑛𝑘𝜕𝑘𝑛𝑖) +

(︁
𝜕 𝑗𝑛 𝑗

)︁2
]︂

= 𝐿1 (𝜕𝑘𝑛𝑖)2 + 𝐿2
2

[︂
(𝑛𝑘𝜕𝑘𝑛𝑖)2 +

(︁
𝜕 𝑗𝑛 𝑗

)︁2
]︂
,

(A.78)

where in the third step 𝑛𝑖𝜕𝑘𝑛𝑖 = 0 was used. Furthermore, in the last step and the
second 𝐿1-term we relabeled 𝑗 to 𝑖 and in the first 𝐿2-term 𝑗 was relabeled to 𝑘 . Using
the identity 𝜕𝑘𝑛𝑖 = 𝑛𝑘

[︁ (︁
𝑛 𝑗 𝜕 𝑗

)︁
𝑛𝑖

]︁
+

(︁
𝜕 𝑗𝑛 𝑗

)︁
(𝛿𝑘𝑖 − 𝑛𝑘𝑛𝑖) in the last step of Eq. (A.78) and

rearranging the resulting terms leads to

𝑓𝑒𝑙 =

(︃
𝐿1 +

𝐿2
2

)︃ (︁
𝜕 𝑗𝑛 𝑗

)︁2 +
(︃
𝐿1 +

𝐿2
2

)︃ [︁ (︁
𝑛 𝑗 𝜕 𝑗

)︁
𝑛𝑖

]︁2
. (A.79)

This can be written in vector notation

𝑓𝑒𝑙 =

(︃
𝐿1 +

𝐿2
2

)︃
(∇ · 𝒏)2 +

(︃
𝐿1 +

𝐿2
2

)︃
[(𝒏 · ∇) · 𝒏]2 . (A.80)

and compared to the Frank free energy, Eq. (A.77). We find that

𝐾1 = 𝐾3 = 2𝐿1 + 𝐿2. (A.81)

Hence, a Landau expansion of the distortional energy up to second order effectively
results in a one constant approximation. To break this degeneracy and to allow for
different 𝐾𝑖 values, higher order terms in the Landau expansion Eq. (A.76) are needed.
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B Supplementary material

B.1 Supplementary material to Chapter 3

The following tables contain the computational parameters to Figs. 3.2, 3.3 and 3.4 in
Chapter 3.

Table B.1: Simulation parameters for Fig. 3.2 C.

Description Symbol Value
number of grid points 𝑁 2048
domain size 𝐿 100
time step size Δ𝑡 0.001
extension of domain 𝜌 = 1 𝐿𝑥 25
Phase field diffusion coefficient 𝐷𝜌 0.25 − 2

Table B.2: Simulation parameters for Fig. 3.3 and Fig. 3.4.

Description Symbol Value
number of grid points 𝑁𝑥 × 𝑁𝑦 1024 × 512
domain size 𝐿 100
time step size Δ𝑡 0.01
extension of rectangle 𝐿𝑥 × 𝐿𝑦 30 × 15
Phase field diffusion coefficient 𝐷𝜌 1
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B.2 Supplementary material to Chapter 4

This appendix contains supplementary information on Chapter 4, i.e supplementary
figures and parameters used for the simulations presented in the main text.

B.2.1 Supplementary figures
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Figure B.1: A contractile cell (𝐸𝐶 , 𝜈𝐶 ) of half-edge length 𝐿𝐶 is homogeneously adhered to an
underlying substrate via a spring stiffness density 𝑌 . The cell contracts isotropically due to
an active stress 𝜎0/𝐸𝐶 = 0.4. Shown is the displacement field 𝒖 (𝒙) (left) and the (phase field)
von Mises stress Σ𝑚𝑎𝑥

𝑣𝑀
, Eq. (4.20), normalized by the maximal stress value Σ𝑚𝑎𝑥

𝑣𝑀
(right). The

red line is the 𝜌 = 1/2-isocontour marking the cell boundary. The vectors in the left panel
are scaled by a factor of 2 for better visibility. Simulations were performed on 𝑁 = 512 × 512
grid points on a domain of size 100 µm × 100 µm. If not specified above, relevant mechanical
parameters are 𝐿𝐶 = 25 µm, 𝐸𝐶 = 1 kPa, 𝜈𝐶 = 0.5 and 𝑌 = 0.003 nN/𝜇m3. Further parameters as
in Appendix B.2.2 Table B.3.
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B.2.2 Parameters for simulations

The table below lists the default values for additional parameters used for the simula-
tions in Chapter 4, if not stated otherwise in the respective figure captions.

Table B.3: Additional simulation parameters to Chapter 4

Description Symbol Value
time step size∗ Δ𝑡 10−3 − 10−6

diffusion coefficient phase field∗∗ 𝐷𝜌 1
friction coefficient 𝜉 1
global suppression coefficient∗∗ 𝛾0 0.35
force-dependent friction coefficient 𝛾1(𝑭 ) 0
cell/monolayer height∗∗∗ d 0.1

∗Fig. 4.2 B: Δ𝑡 = 10−4: (Δ𝑡 = 10−5 for 𝑌 = 0.25 nN/µm3); Fig. 4.3: Δ𝑡 = 10−3; Fig. 4.4 and
Fig. B.1: Δ𝑡 = 10−6; Fig. 4.2 C and Fig. 4.5: Δ𝑡 = 10−5 .
∗∗ In Fig. 4.2 C 𝐷𝜌 = 0.5 and 𝛾0 = 0.
∗∗∗ In Fig. 4.2 𝑑 = 1.
Note, characteristic length scale for cell simulations is 𝐿0 = 1 µm and for monolayer
simulations 𝐿0 = 10 µm.
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B.3 Supplementary material to Chapter 5

This appendix contains supplementary information on Chapter 5, i.e supplementary
figures and parameters used for the simulations presented in the main text.

B.3.1 Supplementary figures
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Figure B.2: Adhesion on an outer ring only. In the upper panel phase field solutions for 𝑢𝑟/𝑟𝐶
are shown for 𝐸𝑁 /𝐸𝐶 = 1 (left panel) and 𝐸𝑁 /𝐸𝐶 = 2 (right panel). In both cases 𝑅𝑁 /𝑅𝐶 = 0.5.
For 𝐸𝑁 /𝐸𝐶 = 1 the solutions for adhesive ring radii 𝑅𝑌 /𝑅𝐶 = 0.5, 0.6, 0.7 (blue to yellow) are
shown. For 𝐸𝑁 /𝐸𝐶 = 2 the cases 𝑅𝑌 /𝑅𝐶 = 0.5, 0.6, 0.7 (blue to yellow) are shown. The lower
panel shows the phase field profiles for 𝜌 (solid)and 𝜓 (dashed) for the case 𝑅𝑌 /𝑅𝐶 = 0.5. All
simulations were performed on 𝑁 = 512× 512 grid points on a domain of 50 µm × 50 µm. If not
specified above, the other mechanical parameters are 𝑅𝐶 = 12.5 µm, 𝑑 = 1 µm, 𝐸𝐶 = 𝜎0 = 1 kPa,
𝜈𝐶 = 𝜈𝑁 = 0.5 and 𝑌0 = 0.8 nN/µm3. Further parameters as in Appendix B.3.2 Table B.4.
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Figure B.3: A contractile, disk-like cell is
adhered on an outer ring of radius 𝑅𝑌 for
nuclear-cytoplasmic coupling degree 𝑓 = 1
(cf. Eq. (5.4)). The upper panel shows phase
field solutions for the radial displacement
field 𝑢𝑟/𝑟𝐶 , normalized by the cell radius
in mechanical equilibrium, for 𝐸𝑁 /𝐸𝐶 = 2,
𝑅𝑁 /𝑅𝐶 = 0.5 with varying 𝑅𝑌 /𝑅𝐶 = 0.56
(blue), 0.7 (red) and 0.8 (yellow). The inset
shows the normalized stress for 𝑅𝑌 /𝑅𝐶 =

0.8 and the lower panel the radial phase
field profiles for 𝑅𝑌 /𝑅𝐶 = 0.56 (blue) and
𝑅𝑌 /𝑅𝐶 = 0.8 (yellow), where the 𝜓 -profile
is shown as dashed line and the 𝜌-profile as
solid line. Further parameters as in Fig. 5.2
and Appendix B.3.2 Table B.4
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Figure B.4: A rectangular cell is adhered at
its corners to a micropattern and is subject
to an isotropic contractile stress, as shown in
Fig. 5.3 A-C. Shown is the average deforma-
tion ⟨|𝒖 |⟩ of the cell with a circular nucleus
(aspect ratio 𝐴𝑅 = 1) and an oval nucleus
(𝐴𝑅 = 0.64 and 𝐴𝑅 = 0.36) for different nu-
cleus rigidities 𝐸𝑁 /𝐸𝐶 . The average deforma-
tion decreases with the aspect ratio and stiffness
of the nucleus. Parameters as in Fig. 5.3 and Ap-
pendix B.3.2 Table B.4.
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Figure B.5: A A cell with nucleus of stiffness 𝐸𝑁 /𝐸𝐶 = 2 was allowed to spread in a hexago-
nal adhesion pattern and to contract isotropically with 𝜎0/𝐸𝐶 = 0.4 until it reached mechanical
equilibrium (left panel). Subsequently, the most right adhesion spot was removed and the cell
evolved towards a new mechanical equilibrium (right panel). The colour map shows the nor-
malized trace of the stress tensor. The cell shape (isocline 𝜌 = 0.5, solid black) and nucleus
shape (𝜓 = 0.5, dashed black) are also shown. B Shown is the average displacement ⟨𝛿 |𝒖 |⟩, with
respect to the initial reference displacement in (A), as a function of time 𝑡 for different friction
coefficients 𝜉 . For all tested 𝜉 , the behaviour is the one of a Kelvin-Voigt model. Parameters as
in Fig. 5.4 and Appendix B.3.2 Table B.4.
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B.3.2 Parameters for simulations

The table below lists the default values for additional parameters used for the simula-
tions in Chapter 5, if not stated otherwise in the respective figure captions.

Table B.4: Additional simulation parameters for Chapter 5

Parameter Symbol Value Unit
time step∗ Δ𝑡 0.001 s
diffusion coefficient phase field (PF)∗∗ 𝐷𝜙 1.25 µm2/s
friction coefficient∗∗∗ 𝜉 0.004 nN · s/µm3

local suppression coeff.∗∗∗ 𝛾 (𝒙) 0.014 − 0.04 nN · s/µm3

regularization parameter 𝜖 0.0025 µm2

diffusion coefficient adhesion PF 𝐷𝑌 0.25 µm2/s
diffusion coefficient obstacle PF 𝐷𝜑 0.625 µm2/s
degree of nucleocytoplasmic coupling 𝑓 0

∗For Fig. 5.2 Δ𝑡 = 10−4 s. Chosen time scale is 𝜏 = 0.1 s in all simulations.
∗∗For 𝜙 ∈ {𝜌,𝜓 }, i.e. cell and nucleus. Sets the interface width to 0.5 µm.
∗∗∗Note, in plane strain and axial symmetry the unit is nN · s/µm4.
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B.4 Supplementary material to Chapter 6

This appendix contains supplementary information on Chapter 6, i.e supplementary
figures and parameters used for the simulations presented in the main text.

B.4.1 Supplementary figures

A B C

D E F

Figure B.6:Additional figures to simulations in Sect. 6.3.3. A-CConcentration maps for 𝜌 ≥ 0.5
and three different time points for an (A) only contracting, adhered cell with nucleus stiffness
𝐸𝑁 /𝐸𝐶 = 2, (B) a contractile, adhered cell pulled at its right edge at 𝑦 = 0 in positive 𝑥-direction
with nucleus stiffness 𝐸𝑁 /𝐸𝐶 = 2 and (C) a uniaxially stretched cell with 𝐸𝑁 /𝐸𝐶 = 2. D-F
Tension Σ𝜏 for |∇𝜓 | > 0.1 at the nuclear boundary for the corresponding panels above. Adhesion
spots are marked by dotted lines, the cell boundary is indicated by the isocontour 𝜌 = 1/2 (solid
line) and the nuclear boundary by the isocontour𝜓 = 1/2 (dashed line). For further parameters
for (A/D) see Fig. 6.3, for (B/E) see Fig. 6.4 and for (C/F) see Fig. 6.5. Other parameters as in in
Appendix B.4.2 Table B.5.
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A B

C D

Figure B.7: Additional figures to simulations in Sect. 6.3.3A-B Concentration maps for 𝜌 ≥ 0.5
and three different time points for a (A) contractile, adhered cell, which is pulled by a force
𝐹0 = 2.5 nN at 𝑦 = 0 at the right edge. The nucleus has a stiffness 𝐸𝑁 /𝐸𝐶 = 2 and is shifted
by Δ𝑥𝑁 = 7.5 µm. (B) a uniaxially stretched cell with a nucleus shifted as in (A) with stiffness
𝐸𝑁 /𝐸𝐶 = 10. C-D Tension Σ𝜏 for |∇𝜓 | > 0.1 at the nuclear boundary for the corresponding
panels above. Adhesion spots are marked by dotted lines, the cell boundary is indicated by the
isocontour 𝜌 = 1/2 (solid line) and the nuclear boundary by the isocontour 𝜓 = 1/2 (dashed
line). For further parameters for (A/C) see Fig. 6.4 and for (B/D) see Fig. 6.5. Other parameters
as in in Appendix B.4.2 Table B.5.
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B.4.2 Parameters for simulations

The table below lists the default values for additional parameters used for the simula-
tions in Chapter 6, if not stated otherwise in the respective figure captions.

Table B.5: Default simulation parameters for Chapter 6

Description Symbol Value Units Ref.
number grid points 𝑁𝑥 × 𝑁𝑦 512 × 256
domain size 𝐿𝑥 × 𝐿𝑦 50 × 25 µm × µm
time step Δ𝑡 0.01 s
diff. coeff. phase fields ∗ 𝐷𝜙 0.125 µm2/s
friction coefficient 𝜉 0.04 nN · s/µm3

local suppression coeff. 𝛾 (𝒙) 0.14 − 0.4 nN · s/µm3

Stiffness cytoplasm 𝐸𝐶 1 kPa
Poisson ratio nucleus and cytoplasm 𝜈𝐶/𝑁 0.5
isotropic cell contractility 𝜎0 0.4 kPa
diff. coeff. adhesion PF 𝐷𝑌 0.025 µm/s
spring stiffness density∗∗ 𝑌0 16 nN/µm3

focal adhesion radius∗∗ 𝑟𝑎𝑑ℎ 1.15 µm
diff. coeff. cargo in (cytoplasm) 𝐷𝑐 10 µm2/s [272]
diff. coeff. cargo in (nucleus) 𝐷𝑛 10 µm2/s [272]
diff. coeff. cargo-complex (cytoplasm) 𝐷𝑐𝐼 2 µm2/s [272]
diff. coeff. cargo-complex (nucleus) 𝐷𝑛𝐼 2 µm2/s [272]
passive permeability 𝑃𝑝 0.075 µm/s [9]
passive permeability with tension 𝑃 ′𝑝 0.075 µm/s [9]
active permeability 𝑃𝑎 0.2 µm/s [9]
active permeability with tension 𝑃 ′𝑎 0.5 µm/s [102]
cargo-importin association rates 𝑘0

1/2 0.5 s−1 [9, 273]
cytoplasmic dissociation rate 𝑘−1 0.05 s−1 [9]
nuclear dissociation rate 𝑘−2 5 s−1 [9, 265]
critical stress for association Σ𝑣𝑀,𝑐𝑟 0.1 kPa [261]
critical tension for NPC dilation 𝜏𝑐𝑟 0

∗ For the simulations of Fig. 6.4, 𝐷𝜙 = 0.25 µm2/s.
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B.5 Supplementary material to Chapter 7

This appendix contains supplementary information on Chapter 7, i.e supplementary
figures and parameters used for the simulations presented in the main text.

B.5.1 Supplementary figures

Figure B.8: Stress-induced alignment of the nematic liquid crystal without feedback on cell
mechanics andwith anchoring strength𝑊 = 0.8. Cells are allowed to adhere to adhesive patches
(white circles) of radius 𝑟𝑎𝑑ℎ and spring stiffness density 𝑌 in a (A) triangular, (B) square and
(C) hexagonal arrangement. Upon an isotropic contractile stress 𝜎0/𝐸𝐶 = 0.4 the nematic liquid
crystal experiences a phase transition from an isotropic (𝑆 = 0) to a locally aligned (𝑆 > 0) state.
Shown are the order parameter field 𝜌𝑆 (colour maps) the director field 𝒏 (short black lines) for
𝜌𝑆 > 0.01. The 𝜌 = 1/2-isocontours (black solid lines) indicate the cell boundary. The lower
panels show 𝜌𝑆 along (D) the symmetry line 𝑥 = 0 for the triangular-shaped cell and along𝑦 = 0
for the (E) square - and (F) hexagonal-shaped cell for different time points 𝑡0 < ... < 𝑡4 (blue
to grey). The black dashed line shows the phase field profile 𝜌 . For simulation parameters see
Appendix B.5 Table B.6.
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Figure B.9:A contractile cell is adhered
to a square-shaped micropattern. No
feedback of the forming stress fibres on
cell mechanics is assumed. Shown is
the degree of alignment 𝜌𝑆 , the direc-
tor field 𝒏 (black lines) and the direction
of principal stresses (white lines, below
the director lines) for 𝜌𝑆 > 0.01. Direc-
tor field and direction of local principal
stress are the same within the cell. For
simulation parameters see Table B.6.

20 10 0 10 20
 

20

10

0

10

20
 

0

0.2

0.4

0.6

S

0

0.2

0.4

0.6

S

x [ m]

y
[

m
]

164



B.5 Supplementary material to Chapter 7

B.5.2 Parameters for simulations

The table below lists the default values for additional parameters used for the simula-
tions in Chapter 7, if not stated otherwise in the respective figure captions.

Table B.6: Default simulation parameters for Chapter 7

Description Symbol Value Units Ref.
grid points 𝑁 × 𝑁 512 × 512
domain length 𝐿𝑥 × 𝐿𝑦 50 × 50 µm × µm
time step∗ Δ𝑡 0.001 s
diffusion coeff. phase field (PF)∗ 𝐷𝜙 1.25 µm/s
friction coefficient 𝜉 0.004 nN · s/µm3

local suppression coeff. 𝛾 (𝒙) 0.014 − 0.04 nN · s/µm3

cell stiffness 𝐸𝐶 1 kPa
Addition to stress fibre stiffness 𝐸𝑆𝐹 10 kPa [223]
Poisson ratio 𝜈𝐶 0.5
isotropic cell contractility 𝜎0 0.4 kPa
Addition to stress fibre contractility 𝜎𝑆𝐹 3.5 kPa [284]
diffusion coeff. adhesion PF 𝐷𝑌 0.25 µm/s
spring stiffness density∗∗ 𝑌0 16 nN/µm3

focal adhesion radius∗∗ 𝑟𝑎𝑑ℎ 1.15 µm
Nematic relaxation time scale∗ 𝜏𝑄 0.1 s
LC elastic constant 𝐾 0.2 µm2/s [142]
Nematic first order term coeff.∗ 𝜖 0.1 s−1

Nematic second order term coeff.∗ 𝛼 0.1 s−1

Nematic anchoring strength 𝑊 0 µm2s−1

∗ With time sclae set to 𝜏 = 0.1 s.
∗∗ For Fig. 7.3 A and D and Fig. B.9 A and D: 𝑌 = 40nN/µm3 and 𝑟𝑎𝑑ℎ = 2.5 µm.
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In this chapter we briefly introduce the numerical methods used to solve the model
equations in this thesis.

C.1 (Semi-implicit) pseudo-spectral method

Several model equations in this thesis are numerically solved using a pseudo-spectral
method. These are the phase field equations (cf. for example Eq. (4.8) or Eq. (5.1)), the
reaction-diffusion system of Chapter 6 (cf. Eqs. (6.5)-(6.8)) and the dynamic equation of
the nematic order parameter 𝑸 in Chapter 7 (cf. Eq. (7.25)). We here briefly describe
the implementation of an explicit version of the spectral method used in Chapter 4 and
a semi-implicit scheme used in Chapters 5-7.

Pseud-spectral method

Consider as an example the phase field equation (cf. Eq. (4.8))

𝜕𝜌

𝜕𝑡
= 𝐷Δ𝜌 − 𝜕𝑔(𝜌)

𝜕𝜌
+

√︁
2𝐷𝑔(𝜌)𝜅 − 1

𝜉
(∇ · 𝚺 + 𝑭 ) · ∇𝜌, (C.1)

which has to be solved in a domain Ω of size 𝐿𝑥 × 𝐿𝑦 with 𝑁𝑥 × 𝑁𝑦 grid points. We
can split the equation into a linear part L[𝜌] and a non-linear partN[𝜌]. L[𝜌] always
contains the derivative of highest order, i.e. the Laplacian term (first term of Eq. (C.1)),
while we consider the rest to be part of N[𝜌].

In the explicit spectral scheme, first the linear part

𝜕𝜌

𝜕𝑡
= 𝐷Δ𝜌 (C.2)

is solved in Fourier space, which gives

�̂� = exp
(︁
−𝑘2𝐷Δ𝑡

)︁
(C.3)
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with 𝑘2 = 𝑘2
𝑥 + 𝑘2

𝑦 where the wave numbers are given by [147]

𝑘𝑖 =

⎧⎪⎪⎨⎪⎪⎩
2𝜋
𝐿𝑖
𝑚 for 0 ≤ 𝑚 ≤ 𝑁𝑖

2
2𝜋
𝐿𝑖
(𝑚 − 𝑁𝑖) for 𝑁𝑖

2 ≤ 𝑚 ≤ 𝑁𝑖

(C.4)

with 𝑖 ∈ {𝑥,𝑦} and𝑚 the respective grid point coordinate.
The nonlinear part

𝜕𝜌

𝜕𝑡
= N[𝜌] (C.5)

is solved in real space by a finite difference method and Euler integration. This solution
is then Fourier transformed [312] and multiplied with the Fourier space solution of the
linear part, i.e.

�̂�𝑛+1 = 𝑒𝑥𝑝
(︁
−𝑘2𝐷Δ𝑡

)︁
𝐹𝐹𝑇 {𝜌𝑛 + Δ𝑡N[𝜌]} (C.6)

where �̂�𝑛+1 is the full solution in Fourier space. 𝐹𝐹𝑇 denotes the Fast Fourier trans-
form [312] and the expression in its brackets is the real space solution of the nonlinear
part. In the last step, one has to perform an inverse Fourier transform on Eq. (C.6) to
obtain the full solution in real space, i.e.

𝜌𝑛+1 = 𝐹𝐹𝑇 {�̂�𝑛+1}. (C.7)

Semi-implicit pseudo-spectral method

We also used a semi-implicit spectral method described in Camley et al. [147] for better
numerical stability. Here, we follow the description in Camley et al. [147]. To apply the
semi-implicit method, Eq. (C.1) (which we now abbreviate as 𝜕𝜌/𝜕𝑡 = 𝐷Δ𝑡𝜌 + N [𝜌])
has to be discretized and written as

𝜌𝑛+1 − Δ𝐷Δ𝑡𝜌𝑛+1 = 𝜌𝑛 − Δ𝑡N[𝜌𝑛], (C.8)

where Δ𝑡 is the time step, 𝜌𝑛 is known from the current time point 𝑛 and 𝜌𝑛+1 is the
solution in the next timestep which has to be calculated. Performing a Fourier trans-
formation yields (︁

1 + 𝑘2𝐷Δ𝑡
)︁
�̂�𝑛+1 = 𝐹𝐹𝑇 {𝜌𝑛 − Δ𝑡N[𝜌𝑛]}, (C.9)

where 𝑘2 = 𝑘2
𝑥 + 𝑘2

𝑦 , �̂� is the Fourier transformed solution we want to determine, and
𝐹𝐹𝑇 denotes that the expression in brackets is transformed via a Fast Fourier Transfor-
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mation [312]. Equation (C.9) can be solved for �̂�𝑛+1

�̂�𝑛+1 =
(︁
1 + 𝑘2𝐷Δ𝑡

)︁−1
𝐹𝐹𝑇 {𝜌𝑛 − Δ𝑡N[𝜌𝑛]}, (C.10)

which is the solution in Fourier space. To obtain the solution in real space, one has to
take the inverse Fourier transform of Eq. (C.10), i.e.

𝜌𝑛+1 = 𝐹𝐹𝑇 {�̂�𝑛+1}. (C.11)

Solving the equations of the reaction-diffusion system

When solving the equations of the reaction-diffusion system Eqs. (6.5)-(6.8)), one has
to pay attention to two aspects. Consider a concentration 𝑐 in a phase field domain 𝜙
with

𝜕𝜙𝑐

𝜕𝑡
= ∇ [𝐷𝜙∇𝑐] + N [𝜙𝑐] . (C.12)

In order to be able to perform the Fourier transformation without encountering convo-
lutions, we can write Eq (C.12) as [147]

𝜕𝜙𝑐

𝜕𝑡
= ∇ [𝐷𝜙∇𝑐] + N [𝜙𝑐] = 𝐷Δ (𝜙𝑐) − 𝐷∇ [𝑐∇𝜙] + N [𝜙𝑐] (C.13)

for𝐷 = 𝑐𝑜𝑛𝑠𝑡 , where the second term in the last step will join the nonlinear partN[𝜙𝑐],
i.e. the remaining terms. Performing the semi-implicit spectral method from above, one
solves for (𝜙𝑐)𝑛+1. 𝑐𝑛+1, which is needed for the permeability terms in Eqs. (6.5)-(6.8))
and the gradient of 𝑐 in the second term of Eq. (C.13) can be extracted by [147, 266]

𝑐 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜙𝑐

𝜙
if 𝜙 > 10−5

𝑐 else.
(C.14)

C.2 Iterative SOR matrix relaxation method

We here briefly describe the Successive overrealxation method (SOR method) used to
solve the elastodynamic equation Eq. (4.11) [163]. This section follows the explanation
in Press et al. [313].

The iterative SOR method is used to solve linear equations of the form

𝑨𝒙 = 𝒃 (C.15)
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where 𝑨 is a sparse 𝑁𝑥 × 𝑁𝑦 matrix, 𝒙 is the desired solution and 𝒃 is a vector with
known entries. Assume, Eq. (C.15) can be written as

𝑎 𝑗,𝑙𝑥 𝑗+1,𝑙 + 𝑏 𝑗,𝑙𝑥 𝑗−1,𝑙 + 𝑐 𝑗,𝑙𝑥 𝑗,𝑙+1 + 𝑑 𝑗,𝑙𝑥 𝑗,𝑙−1 + 𝑒 𝑗,𝑙𝑥 𝑗,𝑙 = 𝑓 𝑗,𝑙 (C.16)

which represents one row of the system of equations. The iterative procedure so solve
the above equation is

𝑥∗
𝑗,𝑙
=

1
𝑒 𝑗,𝑙

(︁
𝑓 𝑗,𝑙 − 𝑎 𝑗,𝑙𝑥 𝑗+1,𝑙 − 𝑏 𝑗,𝑙𝑥 𝑗−1,𝑙 − 𝑐 𝑗,𝑙𝑥 𝑗,𝑙+1 − 𝑑 𝑗,𝑙𝑥 𝑗,𝑙−1

)︁
. (C.17)

It is now possible to weight the residual 𝜉 𝑗,𝑙 (term in brackets in Eq. (C.17) times (−1))
in order to accelerate the convergence of the iterative method to the desired solution,
i.e.

𝑥𝑛𝑒𝑤
𝑗,𝑙

= 𝑥𝑜𝑙𝑑
𝑗,𝑙

− 𝜔
𝜉 𝑗,𝑙

𝑒 𝑗,𝑙
, (C.18)

where 𝜔 is the weighting factor. The iteration terminates when the right-hand side of
(C.18) reaches a termination condition, i.e. when it gets smaller than a threshold 𝜖𝑐𝑟 .
This is the Successive overrelaxation method (SOR) used in this thesis. For 𝜔 = 1 one
gets the Gauss-Seidel algorithm, which is used in Chapter 4 to solve the elastodynamic
equations of the elastic phase field method. In other cases a weighting factor 𝜔 = 1.6 is
used.

C.3 Time and space discretization schemes

C.3.1 Crank-Nicolson time discretization

For the time discretization of the elastodynamic equations of our elastic phase field
approach we use the second order accurate in time [313]. Consider a model function
𝑢 (𝒙, 𝑡), which may be one coordinate of the displacement field. The associated elasto-
dynamic equation has the general form

𝜕𝑢

𝜕𝑡
= 𝑓 (𝑢) (C.19)
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where 𝑓 (𝑢) is a function which depends on 𝑢 (𝑥, 𝑡) and possibly its derivatives. The
Crank-Nicolson scheme is a semi-implicit one that reads

𝑢𝑛+1 − 𝑢𝑛
Δ𝑡

=
1
2

[︁
𝑓 (𝑢𝑛+1) + 𝑓 (𝑢𝑛)

]︁
, (C.20)

where Δ𝑡 is the time step size, 𝑢𝑛+1 is the desired solution in the next time step 𝑛 + 1
and 𝑢𝑛 is the current known solution ate time point 𝑛 [313].

C.3.2 Isotropic finite differences

For the numerical calculation of the curvature

𝜅𝜌 = −∇ · ∇𝜌
|∇𝜌 | (C.21)

of the phase fields we use an isotropic finite difference scheme for the discretization
of the derivatives to prevent potential artefacts of the regular discretization grid. The
isotropic finite difference scheme for the gradient of a phase field 𝜌 (𝒙) in 2D is

𝜕𝜌

𝜕𝑥
=

1
12Δ𝑥

[︁
4
(︁
𝜌𝑖+1, 𝑗 − 𝜌𝑖−1, 𝑗

)︁
+ 𝜌𝑖+1, 𝑗+1 − 𝜌𝑖−1, 𝑗+1 + 𝜌𝑖+1, 𝑗−1 − 𝜌𝑖−1, 𝑗−1

]︁
(C.22)

𝜕𝜌

𝜕𝑥
=

1
12Δ𝑦

[︁
4
(︁
𝜌𝑖, 𝑗+1 − 𝜌𝑖, 𝑗−1

)︁
+ 𝜌𝑖+1, 𝑗+1 − 𝜌𝑖+1, 𝑗−1 + 𝜌𝑖−1, 𝑗+1 − 𝜌𝑖−1, 𝑗−1

]︁
, (C.23)

where Δ𝑥 and Δ𝑦 are the grid spacings in 𝑥- and 𝑦-direction [314]. Due to the use of
the spectral method for solving the phase field equation, we always use Δ𝑥 = Δ𝑦.
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