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Abstract

In this thesis, field theoretical and variational methods are applied to few- and
many-body problems of strongly interacting ultracold atomic gases and atomically-
thin semiconductors. In strongly interacting mixtures of particles, the renormalizing
effect of one species upon another is investigated to study the competition between
the formation of different quasiparticles and the associated quantum phases related
to the appearance of such particles. Tracing back to the Fermi polaron problem in
which an impurity interacts attractively with a bath of fermionic particles, a majority
of the work presented in this thesis may be understood in the context of a transition
between the molecule state, in which a bath particle binds tightly to the impurity,
and a quasiparticle best described as an impurity dressed by a cloud of bath par-
ticles. Going from a few to many impurities, due to the small energy gap between
these quasiparticles, insights obtained in the Fermi polaron problem are leveraged
to study the phase diagram of Fermi-Fermi and Bose-Fermi mixtures. First, the
phase diagram of two- and three-dimensional Bose-Fermi mixtures is studied using
the functional renormalization group (fRG). Three-body correlations are considered,
and the approach is suited to treat finite-density populations of both bosons and
fermions to study the molecular phase. Concurrently, experimental data are analyzed
to characterize the superfluid-to-normal transition encountered in three-dimensional
Bose-Fermi mixtures. A self-consistent, frequency- and momentum-resolved fRG ap-
proach is used to predict the transition point. This fRG method is then improved
leveraging its analytical structure to obtain Greens functions at arbitrary complex
frequencies using exact analytical continuation at a reduced computational cost. This
is used to study the momentum-dependent decay rates of low-lying excited states, and
predictions for Ramsey and Raman measurements are made. A stochastic variational
approach is used to study bound-state formation in few-body problems. Precursors of
the physics of the Fermi polaron problem are observed, and we find that finite interac-
tion ranges, along with confinement, can greatly enhance trimer formation, relating to
superfluid p-wave pairing. Finally, insights obtained in the study of strongly coupled
Bose-Fermi mixtures are leveraged to study superconductivity in two-dimensional het-
erostructures of transition metal dichalcogenides. Here, capturing the strong-coupling
physics of Bose-Fermi mixtures, boson-induced correlations are studied as a means to
induce/enhance superfluid pairing with high critical temperatures.
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Zusammenfassung

In dieser Dissertation werden feldtheoretische und variationelle Methoden auf
Wenig- und Vielteilchenprobleme in stark wechselwirkenden ultrakalten atomaren
Quantengasen und atomar dünnen Halbleitern angewandt. In stark wechselwirk-
enden Teilchenmischungen wird der renormierende Effekt, den eine Teilchenspezies
auf eine andere ausübt, untersucht, um den Wettbewerb zwischen der Bildung ver-
schiedener Quasiteilchen und der mit ihrem Auftreten assoziierten Quantenphasen zu
untersuchen. Zurückgehend auf das Fermi Polaron Problem, in dem ein Störteilchen
attraktiv mit einem Bad fermionischer Teilchen wechselwirkt, kann ein Großteil der
Ergebnisse dieser Dissertation verstanden werden im Kontext eines Übergangs zwis-
chen einem Molekülzustand, in dem ein Badteilchen eng an das Störteilchen gebun-
den wird, und eines Quasiteilchens, das man als ein von einer Wolke von Badteilchen
umgebenes Störteilchen beschreiben kann. Wird die Anzahl der Störteilchen von weni-
gen auf viele erhöht, so lassen sich, aufgrund der kleinen Energielücke zwischen diesen
Teilchen, im Fermi Polaron Problem gewonnene Erkenntnisse auf Untersuchungen das
Phasendiagrams von Fermi-Fermi und Bose-Fermi Mischungen übertragen. Zunächst
untersuchen wir mithilfe der funktionellen Renormierungsgruppe (fRG) das Phasendi-
agramm zwei- und drei-dimensionaler Bose-Fermi Mischungen. Dreiteilchenkorrelatio-
nen werden berücksichtigt und mit dieser Herangehensweise können endliche Boson-
and Fermiondichten behandelt werden, um die auftretende Molekülphase zu unter-
suchen. Im Zuge dieser Untersuchung werden experimentelle Daten analysiert, um
den Übergang zwischen superfluidem und normalfluidem Verhalten in einer dreidi-
mensionalen Bose-Fermi Mischung zu charakterisieren. Wir nutzen eine selbstkonsis-
tente, frequenz- und impuls-aufgelöste fRG, um den Übergangspunkt vorherzusagen.
Diese fRG-Methode wird anschließend unter Ausnutzung ihrer analytischen Struktur
verbessert, um Greensche Funktionen bei beliebig komplexer Frequenz unter Nutzung
einer exakten analytischer Fortsetzung bei stark reduziertem Rechenaufwand zu er-
halten. Dies wird genutzt, um frequenzabhängige Zerfallsraten tiefliegender Anre-
gungszustände zu untersuchen, um Vorhersagen für Ramsey und Raman Messungen
zu tätigen. Eine stochastisch-variationelle Methode wird anschließend genutzt, um die
Bildung gebundener Zustände in Wenigteilchensystemen zu untersuchen. Vorläufer
der aus dem Fermi Polaron Problem bekannten Physik werden hierbei beobachtet und
wir finden, dass endliche Wechselwirkungsreichweiten und räumliche Einschränkung
die Bildung von Trimeren verstärken können, was Auswirkungen auf superfluide p-
Wellen Paarungen hat.
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viii Zusammenfassung

Anschließend werden in der Untersuchung stark gebundener Bose-Fermi Mischun-
gen gewonnene Erkenntnisse genutzt, um Supraleitung in zwei-dimensionalen Het-
erostrukturen von Übergangsmetalldichalkogeniden zu untersuchen. Hierzu werden,
unter Berücksichtigung der starken Bindungsphysik in Bose-Fermi Mischungen, bosonin-
duzierte Korrelationen als ein Mechanismus zur Erzeugung und Verstärkung superflu-
ider Bindungen bei hohen kritischen Temperaturen untersucht.



Publications

This work is based on the following articles, ordered by appearance in this thesis. The
last three publications are not subject of this dissertation.

[1] J. von Milczewski, F. Rose, and R. Schmidt, Functional-renormalization-group
approach to strongly coupled Bose-Fermi mixtures in two dimensions, Phys.
Rev. A 105, 013317 (2022).

[2] M. Duda, X.-Y. Chen, A. Schindewolf, R. Bause, J. von Milczewski, R. Schmidt,
I. Bloch, and X.-Y. Luo, Transition from a polaronic condensate to a degenerate
fermi gas of heteronuclear molecules, Nature Physics 19, 720–725 (2023).

[3] R. Li*, J. von Milczewski*, A. Imamoglu, R. Odziejewski, and R. Schmidt,
Impurity-induced pairing in two-dimensional fermi gases, Phys. Rev. B 107,
155135 (2023).

[4] J. von Milczewski, X. Chen, A. Imamoglu, and R. Schmidt, Superconductivity
induced by strong electron-exciton coupling in doped atomically thin semicon-
ductor heterostructures, arXiv: 2310.10726, (2023).

[5] J. von Milczewski and R. Schmidt, Momentum-dependent quasiparticle prop-
erties of the fermi polaron from the functional renormalization group, arXiv:
2312.05318, (2023).

[6] J. von Milczewski and J. R. Tolsma, Dispersion forces between weakly disordered
van der waals crystals, Phys. Rev. B 104, 125111 (2021).

[7] A. Nikolaenko, J. von Milczewski, D. G. Joshi, and S. Sachdev, Spin den-
sity wave, fermi liquid, and fractionalized phases in a theory of antiferromag-
netic metals using paramagnons and bosonic spinons, Phys. Rev. B 108, 045123
(2023).

[8] O. K. Diessel, J. von Milczewski, A. Christianen, and R. Schmidt, Probing mo-
lecular spectral functions and unconventional pairing using raman spectroscopy,
arXiv:2209.11758, (2022).

[9] G. Ness, C. Shkedrov, Y. Florshaim, O. K. Diessel, J. von Milczewski, R.
Schmidt, and Y. Sagi, Observation of a Smooth Polaron-Molecule Transition in
a Degenerate Fermi Gas, Phys. Rev. X 10, 041019 (2020).

ix

https://doi.org/10.1103/PhysRevA.105.013317
https://doi.org/10.1103/PhysRevA.105.013317
https://doi.org/10.1038/s41567-023-01948-1
https://doi.org/10.1103/PhysRevB.107.155135
https://doi.org/10.1103/PhysRevB.107.155135
https://doi.org/10.48550/ARXIV.2310.10726
https://doi.org/10.48550/ARXIV.2312.05318
https://doi.org/10.48550/ARXIV.2312.05318
https://doi.org/10.1103/PhysRevB.104.125111
https://doi.org/10.1103/PhysRevB.108.045123
https://doi.org/10.1103/PhysRevB.108.045123
https://doi.org/10.48550/ARXIV.2209.11758
https://doi.org/10.1103/PhysRevX.10.041019




Contents

Abstract v

Zusammenfassung vii

Publications ix

Contents xi

1 Introduction 1
1.1 Ultracold quantum gases . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Transition metal dichalcogenides . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Scattering physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Feshbach resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Two-channel and single-channel models . . . . . . . . . . . . . . . . . . 11
1.6 Regularization of the two-channel model and the single-channel model . 12

1.6.1 Two-body limit in two dimensions . . . . . . . . . . . . . . . . . 16
1.7 The Fermi polaron problem . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8 Fermi polaron problem in ultracold atoms and atomically thin semi-

conductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.9 Effective action and functional renormalization group (fRG) formalism 23

2 Strongly coupled Bose-Fermi mixtures 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Degenerate three-dimensional Bose-Fermi mixtures in the density-matched

regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1.1 Quantum phase transition from a polaronic phase to
a molecular phase . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Review of theoretical treatments of the quantum phase transition 36
2.2.2.1 Theoretical treatment by Ludwig et al. (2011) . . . . . 36
2.2.2.2 Theoretical treatment by Guidini et al. (2015) . . . . . 40
2.2.2.3 Calculation using a functional renormalization group

(fRG) approach and its comparison to the non-self-
consistent T -matrix approach . . . . . . . . . . . . . . 43

2.2.3 Experimental setup and probe of the QPT . . . . . . . . . . . . 45
2.2.3.1 Reversal of the phase transition . . . . . . . . . . . . . 49

xi



xii Contents

2.2.3.2 Projection of polaronic states onto deeply bound molecules 50
2.2.4 Degenerate Fermi gas of NaK Feshbach molecules . . . . . . . . 51
2.2.5 Conclusion on strongly coupled three-dimensional Bose-Fermi

mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3 Strongly coupled Bose-Fermi mixtures in two dimensions . . . . . . . . 54

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3.2.1 fRG formalism and effective action . . . . . . . . . . . 57
2.3.2.2 Truncation schemes . . . . . . . . . . . . . . . . . . . 58
2.3.2.3 Regulators . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.2.4 Vertex projections and gradient expansion parameters 61
2.3.2.5 Flow Equations . . . . . . . . . . . . . . . . . . . . . . 62
2.3.2.6 RG initial conditions . . . . . . . . . . . . . . . . . . . 63
2.3.2.7 Chemical potentials and distinction of phases . . . . . 64

2.3.3 Quantum impurity limit: single boson in a Fermi sea . . . . . . 66
2.3.3.1 Quasiparticle energies . . . . . . . . . . . . . . . . . . 66
2.3.3.2 Vertex functions . . . . . . . . . . . . . . . . . . . . . 68
2.3.3.3 The polaron energy within the gradient expansion scheme 71

2.3.4 Bose-Fermi mixture at finite boson density . . . . . . . . . . . . 73
2.3.4.1 Phase diagram as a function of chemical potential . . . 74
2.3.4.2 Phase diagram as a function of density . . . . . . . . . 76
2.3.4.3 Mean-field model . . . . . . . . . . . . . . . . . . . . . 79

2.3.5 Quasiparticle properties of polarons and molecules in the quan-
tum impurity limit from a frequency- and momentum-resolved
scheme (FMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.3.5.1 Frequency- and momentum-resolved flow equations . . 81
2.3.5.2 Equivalence to a non-self-consistent T -matrix resum-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.3.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.3.6 Conclusion on strongly coupled two-dimensional Bose-Fermi mix-
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3 Impurity-induced pairing in two-dimensional Fermi gases 93
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3.1 Algorithm and Sampling . . . . . . . . . . . . . . . . . . . . . . 98
3.3.2 The Hamiltonian in the ECG basis . . . . . . . . . . . . . . . . 101
3.3.3 Angular Momentum in the ECG basis . . . . . . . . . . . . . . 103

3.4 Ground state transition between a dimer and a trimer state . . . . . . 104
3.4.1 Two-body problem without confinement . . . . . . . . . . . . . 105
3.4.2 Non-interacting fermions . . . . . . . . . . . . . . . . . . . . . . 105
3.4.3 Coulomb interaction . . . . . . . . . . . . . . . . . . . . . . . . 112
3.4.4 Deviation from the asymptotic result αc ≈ 3.34 . . . . . . . . . 115



Contents xiii

3.5 Polaron-to-molecule transition within a few-body system . . . . . . . . 118
3.5.1 Triggering a polaron-to-molecule transition by tuning the po-

tential depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.5.2 Spatial wavefunction analysis of the polaron and the molecule . 122
3.5.3 Angular momentum expectation values 〈L2

tot〉, 〈L2
I〉 and 〈L2

F 〉 of
the non-interacting ground state . . . . . . . . . . . . . . . . . . 124

3.5.4 Could the polaron be the trimer? Comparison of the simplified
Ansatz in Eq. (3.9) in the polaron-to-molecule transition . . . . 127

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4 Superconductivity induced by strong electron-exciton coupling in doped atom-
ically thin semiconductor heterostructures 131
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.4 Analytical expressions and practical computation . . . . . . . . . . . . 137

4.4.1 Trion self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.4.2 Renormalized Green’s functions . . . . . . . . . . . . . . . . . . 138
4.4.3 Exciton self-energy . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.4.4 Fermion number equation . . . . . . . . . . . . . . . . . . . . . 140
4.4.5 Computation of electron-trion scattering vertex . . . . . . . . . 140
4.4.6 Solving for the chemical potentials and determining the critical

pairing temperature . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.5 Results: critical pairing temperature . . . . . . . . . . . . . . . . . . . 142

4.5.1 Determining the boundary of the BCS regime from the bipo-
laron binding energy . . . . . . . . . . . . . . . . . . . . . . . . 143

4.5.2 Approximation of the BKT transition temperature . . . . . . . 145
4.5.3 BCS-BEC crossover . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.7 RG analysis of the extended Fröhlich model in the few-body limit . . . 148

4.7.1 Flow of coupling constants in two dimensions . . . . . . . . . . 149
4.7.2 Flow of coupling constants in three dimensions . . . . . . . . . . 151
4.7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5 Momentum-dependent quasiparticle properties of the Fermi polaron from
the functional renormalization group 153
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2.1 fRG equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.3 Exact Matsubara integration . . . . . . . . . . . . . . . . . . . . . . . . 158

5.3.1 Analytical structure of zero-density propagators and the residue
theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.4 Solution of the coupled flow equations . . . . . . . . . . . . . . . . . . 163
5.4.1 Parametrization of inverse retarded Green’s functions . . . . . . 163



xiv Contents

5.4.2 Initial conditions of the flow . . . . . . . . . . . . . . . . . . . . 164
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.5.1 Energies and lifetimes at zero momentum in 3D . . . . . . . . . 166
5.5.2 Decay width of the excited state molecule from Fermi liquid

theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.5.3 Momentum-dependent energies and decay widths . . . . . . . . 172
5.5.4 Decay of the ground state attractive polaron at finite momen-

tum from Fermi liquid theory . . . . . . . . . . . . . . . . . . . 177
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6 Dispersion forces between weakly disordered van der Waals crystals 181
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.2 Induced dispersion forces in bilayer systems . . . . . . . . . . . . . . . 183

6.2.1 Derivation of ground state energy and force per layer from the
fRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.2.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.3 Impact of disorder on VdW forces: The 'Diffuson' . . . . . . . . . . . 191
6.4 Quantum interference effects on VdW forces: The 'Cooperon' . . . . . 196
6.5 Summary And Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 198

7 Conclusion and Outlook 201

A Bose-Bose-Fermi coupling in the three-body limit and at finite density 205

B Explicit flow equations for the functional renormalization group analysis of
a strongly-coupled two-dimensional Bose-Fermi mixture 207
B.1 Boson renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
B.2 Molecule renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . 208
B.3 Three-body renormalization . . . . . . . . . . . . . . . . . . . . . . . . 208

B.3.1 Bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
B.3.2 Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
B.3.3 Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
B.3.4 Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

B.4 Fermion renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . 209
B.5 Effective potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

C Two-body problem with confinement from the SVM 211

D Convergence Analysis of SVM method 213
D.1 Convergence analysis of the number of basis states N . . . . . . . . . . 215
D.2 Convergence analysis of the number of sampling steps . . . . . . . . . . 216

Bibliography 219

Acknowledgements 247



Chapter 1

Introduction

The realm of quantum mechanics brings with itself many instances of physical behavior
that even a professional quantum physicist may deem counter-intuitive, to say the
least. As a quick query in the search engine of one’s choice may easily confirm, in
the past decades many, many technological advances have been the fruit of quantum
physics research, both in spite and because of the complications it brings with it.

While virtually all physical properties of the objects we interact with in our daily
life draw their properties from quantum mechanics, some of which with very useful
properties, their basic ingredients come as nature provides them and sometimes this
means that they do not hold the properties we would like them to hold. Now, of course,
there are many ways in which one can change the quantum mechanical properties of
an object without having to resort to quantum mechanics, let alone have heard of it.
However if that does not then prove successful then one way to change or engineer
quantum mechanical properties is to manufacture a quantum system from ground up
in a way that holds the properties you are looking for. You may even go the opposite
way and build a quantum system in which you study the conditions under which it
holds certain properties.

Depending on the insight one is after, such a pursuit may go many ways; one might
aim to build a device that holds the properties one is looking for without caring too
much about the microscopic processes that lie underneath. However, if one is after
a property that has so far remained elusive to experimental implementation, then a
microscopic understanding of the system might go a long way. One might even go as
far as modeling a system that one is interested in by implementing it in an utterly
different system that is easier to study and drawing conclusions about the original
system from that.

This is where the systems studied in this thesis come into play, ultracold atom
systems and two-dimensional semiconductor structures. Not only do these systems
offer controlled environments that show truly quantum mechanical behavior, they also
offer various possibilities to tune their properties externally and to probe the system to
learn more about it. Most importantly, these systems master the difficult balancing act
between (i) having microscopic ingredients that are simple enough to be susceptible to
the description in effective theoretical models and experimental implementations, and
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2 Ultracold quantum gases

(ii) interesting enough to host a rich variety of universal many-body physics arising
from these simple ingredients.

As these systems offer strong interparticle interactions, most physical properties
can be studied along the lines of the quasiparticles, or collective excitations, aris-
ing from these interactions, which may look rather different from the microscopic
ingredients. Throughout this thesis we will repeatedly study the quasiparticle forma-
tion arising from strongly coupled mixtures of bosons and fermions, which are in the
quantum-degenerate regime. In the present chapter, we will provide an overview of
the systems hosting the processes we study, their coupling processes, how they might
be modeled and finally, we will introduce the Fermi polaron problem, which against
all odds seems to be a reoccurring paradigm in our work.

1.1 Ultracold quantum gases
In ultracold quantum gas systems, a dilute alkali-metal vapor is trapped within a
magnetic or optical trap and cooled using a variety of cooling techniques such as
evaporative and laser cooling [10, 11]. Due to a careful interplay of different length
scales, these systems are rather stable and can be cooled to be in the quantum degen-
erate regime in which the system particles exhibits quantum statistics. As such, the
first experimental realization of a Bose-Einstein condensate (BEC) in 1995 [12–14],
the subsequent realization of a degenerate Fermi gas a few years later [15–17], and
the realization of Feshbach resonances [18, 19] have paved the way for a myriad of
research directions, which are facilitated by a high degree of experimental control and
tunability. In the following, we shall review the length scales governing cold atoms to
gain an understanding of how these systems may be modeled.

Due to the loading of the trap and the ensuing harmonic oscillator potential, a
number of atoms is confined to a region of space. The resulting density profile of
atoms is determined by the trapping, and by using different trapping frequencies for
different spatial directions, the effective dimensionality of the system may be tuned.
These traps are rather shallow in energy and thus the atoms need to have low kinetic
energies to avoid single-particle losses. Another key source of loss occurs when atoms
collide and transition to lower-lying states, releasing large amounts of kinetic energy.
To avoid such losses, ultracold gases are kept dilute, that is, at low densities where
the distance between particles d is large compared to their interaction range. At the
same time, the gas may not be too dilute, since for extremely low densities the cooling
can no longer compete with technical sources of heating and loss [11].

In order for the ultracold quantum gas to be in the quantum-degenerate, also
referred to as ultracold, regime the thermal de Broglie wavelength

λth =
√

2π~2

mkBT
(1.1)

needs to be on the order of or larger than the interparticle distance d, where T is the
temperature, m the atom mass and kB the Boltzmann constant. This is enabled due
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to the advanced cooling techniques which allow for temperatures in the nanokelvin
range [20].

While the atoms are neutral in charge, usually they still interact with each other.
At length scales comparable to the physical extent of the atom, the electron clouds
of the atoms overlap, and due to Pauli exclusion, there is strong repulsion between
the atoms. At larger distances, the electron clouds of the atoms may polarize to form
dipoles, resulting in mutual attraction. This attraction at large distances may be
captured in the effective van der Waals potential [20].

Vl(r) = −C6

r6 + ~2

2µ
l(l + 1)
r2 , (1.2)

where r denotes the distance between the atoms, C6 is a constant, l denotes the relative
angular momentum of the two atoms atoms and µ is their reduced mass. The latter
part is the angular momentum barrier that arises in the radial part of the Schrödinger
equation. Comparing the two terms, one may define the van der Waals length

lvdW = 1
2

(2µC6

~2

)
, (1.3)

as a range length scale of the potential. This length scale is typically significantly
larger than the distance where strong Pauli repulsion becomes relevant, but impor-
tantly it is usually much smaller than the interparticle distance lvdW � d. As a
result, for the low-energy collisions studied in ultracold systems, s-wave scattering
(l = 0) is the dominant collision process as higher momentum states (l > 0) reflect
from the centrifugal barrier without seeing the attractive potential within Eq. (1.2).
Furthermore, as the interparticle distance is much larger than the interaction length
scale, the microscopic details of the interatomic interaction potential do not need to
be resolved, but rather the culmination of the sum of microscopic details into a single
(or sometimes a few) parameter which describes the effect of the scattering at length
scales of the interparticle distances suffices. The most important parameter is called
the s-wave scattering length a, which we will introduce in Section 1.3.

The precise form of the interatomic potentials depends on the species of quantum
gases used and also on the internal state of the scattering atoms. Apart from that,
however, they cannot really be modified. The use of Feshbach resonances between
different interaction channels, however, has enabled access to ultra-strong coupling
physics in ultracold quantum gases and allows for tunable interaction parameters.

Thus, ultracold quantum gases have been at the forefront of studies of strongly
coupled many-body systems, as they allow to enter the quantum degenerate regime
in a controlled way where due to the tunability of interactions, a rich variety of
exciting physics awaits. At the same time, the microscopic ingredients are rather well
understood, since due to the length scales mentioned in this section the constituent
particles may be approximated as point-like particles that interact through an s-wave
potential, which can be parametrized by few coefficients.
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(a) (b) (c)
K+ K−

σ+ σ−

Figure 1.1. Schematic diagrams of monolayer TMD. Side (a) and top view (b) of a
single layer of TMD, where the transition metals are shown in black, and the chalcogen
atoms are shown in yellow. In (b) the hexagonal lattice structure becomes visible
which has a three-fold rotational symmetry around the atoms. A schematic band
structure near the K+ and K− points is shown in (c) which features a direct band
gap. Here, spin-orbit coupling lifts the degeneracy between the different electron spin
states (red and blue). Due to selection rules, the optical transition is highly selective
of spin and valley index, resulting in separate addressability based on the polarization,
σ+ and σ−, of light. Figure adapted from [21].

1.2 Transition metal dichalcogenides
The second type of physical system studied in this thesis are so-called transition metal
dichalcogenides (TMD), which are a class of layered materials. For a detailed account
of TMD, we refer to Ref. [22]. Here, we provide a brief introduction to TMD systems.
The fundamental building blocks of TMDs are two-dimensional crystalline sheets of
transition metals and chalcogenides which are each only one atomic layer thick (see
Fig. 1.1). A sheet of transition metal is sandwiched between two chalcogenide sheets,
making up a single layer of transition metal dichalcogenide. TMDs exist in nature
in bulk form containing many layers of TMD. While bulk TMDs have been studied
for a long time, more recently, newly developed exfoliation techniques have enabled
atomically thin structures of few to only a single layer of TMD, where the electrons
are effectively confined to two dimensions. These techniques were originally developed
to produce graphene from graphite, but have recently been also in heavy use for the
study of TMDs.

The band structure of graphene is remarkable: It does not have a band gap and
at the Dirac points the conduction and valence bands touch [23]. As a result, one can
not only tune the electron density through gating, so that graphene may continuously
be tuned from a hole gas into an electron gas. Furthermore, at the Dirac point,
the electrons and holes fulfill a massless Dirac equation with a dispersion relation
that is linear in momentum. Although TMDs have been studied for decades, they
have made a comeback into scientific interest, as the advances made in the study
of graphene have enabled better sample preparation, manipulation and detection in
few-layer TMD systems. As a result, TMD can now be manufactured in single- to
few-layer configurations. While molybdenum disulfide (MoS2), a common TMD, in
its bulk form has an indirect band gap, with decreasing layer number, it transitions
towards a direct band gap, and finally in single-layer form it possesses, in contrast
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to single-layer graphene, a direct band gap [24, 25]. The presence of a direct band
gap facilitates optical excitations across the band gap, which in itself already has
interesting applications [26–29].

In addition, MoS2 belongs to a group of semiconducting dichalcogenides in which
the band extrema (where conduction and valence band are closest in energy) are not
located at the center of the Brillouin zone, but rather at finite momentum at the
K+ and K− points (similar to graphene). Due to the selection rules at these points,
the optical transitions require specific polarizations of light, which differ for the K+

and K− points (see Fig. 1.1). As optical transitions they do not require momentum
transfer and additionally they can be selectively excited based on the polarization of
the used light [30, 31]. When exciting across the band gap, the created (conduction-
band) electron and the (valence-band) hole experience mutual Coulomb attraction
and may form a bound state, called exciton, with binding energies of several 100 meV
(for comparison, the energy scale of room temperature is 26 meV). Thus excitons
play an important role not only at extremely cold temperatures but also at room
temperature. This tight binding is enabled by the unique combination of almost ideal
in-plane confinement of particles in TMD and the thinness of the material layers which
greatly reduces the dielectric screening that usually weakens Coulomb interactions in
three-dimensional bulk materials.

Although the exciton is a neutral particle, due to its spatial extent of a few lattice
sites (in single-layer systems), in the presence of a charge it may develop a dipole
moment that may interact attractively with an electron or hole to form a negatively
or positively charged three-particle state, called trion [22]. These states typically have
a binding energy of roughly 10% of the exciton binding energy [32] and therefore may
play a role even at room temperature. While TMD systems appear very different from
the ultracold quantum gas systems discussed in the previous section, they also realize
strong coupling, not only between electrons and holes but also between excitons and
electrons/holes. It is thus not surprising that both the Bose polaron and the Fermi
polaron problem (which we will discuss in Section 1.7), have not only been studied
within ultracold atoms but also within TMDs [33, 34] and qualitatively similar physics
can be found in both systems.

Today, excitons may be created not only within single layers of TMD but also an
electron and a hole living in two different layers of TMD may bind and form a so-
called interlayer exciton [35–39]. Due to the ensuing spatial alignment of the exciton
(and the ensuing dipole), this thus enables much stronger exciton-electron interactions
leading to stronger trion formation, as we will discuss in the context of exciton-induced
superconductivity in Chapter 4.

1.3 Scattering physics
Having familiarized ourselves in Section 1.1 with the concept of ultracold atoms and
their length scales, let us briefly recall the low-energy scattering theory which we will
use to describe most of the interactions throughout this thesis.
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As mentioned before, in the ultracold atom systems we consider, the range of the
interatomic interaction potential is usually quite a bit smaller than the average inter-
particle distance and the thermal de Broglie wavelength, so that the main scattering
contributions come from vanishing angular momentum l = 0. Moreover, the micro-
scopic structure of the interaction usually does not need to be resolved, since we are
only interested in its effect far beyond its interaction range. Here, the solution of the
two-body problem takes on the form of the free-space solution of two free particles.
Thus, the microscopic structure of the interaction potential has two effects: First,
inside the interaction range it may strongly modify the two-body wavefunction, which
secondly provides the boundary conditions for the solution outside the interaction
range.

The resulting two-body wavefunction can then be compared to standard results
from two-body scattering theory [20, 40, 41]. Let us consider two atoms in their center
of mass frame colliding with momenta k and −k and a reduced mass of µcd. At large
distances from the origin, the two-body wavefunction of a planar wave |k| = k in
z-direction, scattering at the origin into a spherical wave at large distances, is written
as

ψ(r, θ) ∼ eikz + f(θ)
r
eikr, (1.4)

defining the angle-dependent scattering amplitude f . Here we have assumed a spher-
ically symmetric potential, such that f depends only on the polar angle θ. Rather
than being explicit with respect to the normalization constant, we choose to suppress
the normalization constant.

The incoming plane wave has a representation in terms of angular momentum

eikz = eikr cos(θ) =
∞∑
l=0

il(2l + 1)Jl(kr)Pl(cos(θ)), (1.5)

where Jl is the l-th Bessel functions of the first kind and Pl is the l-th Legendre
polynomial. At large distance this expression simplifies to

eikr cos(θ) ≈
∞∑
l=0

2l + 1
ikr

(eikr − (−1)le−ikr)Pl(cos(θ)), (1.6)

and it is clear that the incoming wave has many different angular momentum contri-
butions (and so may the scattered spherical wave). As we are merely interested in
s-wave (l = 0) scattering, we now limit our attention to the corresponding wavefunc-
tions. As mentioned before, at large interparticle distances, the microscopic details
of the interatomic potential provide boundary conditions to the asymptotic solution
and as a result the two-body wavefunction at momentum k and large distances may
be written as

ψ(r) ∼ eiδ
sin(kr + δ(k))

kr
, (1.7)

where the microscopic details of the interatomic potential U(r) have culminated in
a mere phase shift δ. The additional phase eiδ is retained to keep up with notation
frequently used in literature.



Scattering physics 7

Matching factors of eikr in Eqs. (1.4) and (1.7), for s-wave scattering one thus
obtains

f(k, θ) = f(k) = e2iδ − 1
2ik = 1

k cot(δ) − ik
, (1.8)

relating the scattering amplitude to the phase shift.
When solving the Laplace equation which was used to obtain Eq. (1.7), in the radial

component of the wavefunction, it is useful to define an auxiliary function u, such
that the radial component of ψ is captured by u(r)/r. Thus, from the corresponding
Laplace equation (

d2

dr2 + k2 − 2µcdU(r) − l(l + 1)
r2

)
ul(r) = 0 (1.9)

one can see that for l = 0 at low energy (k → 0) the second derivative of u0(r),

d2

dr2u0(r) → 0 for k → 0 (1.10)

vanishes. As a result, for small values of k and with the aim of comparing to Eq. (1.7),
we may write u0 as

u0(r) = c(r − a), (1.11)

where c and a are constants. Given that we have neglected normalization, we may
either boldly identify u0 from the expression in Eq. (1.7) or, as is commonly done, we
may compute a dimensionless logarithmic derivative, which takes care of normalization
factors. This may be defined as

r
u′

0(r)
u0(r)

= (rψ(r))′

ψ(r) . (1.12)

Thus, matching Eqs. (1.7) and (1.11) using Eq. (1.12), for k → 0 we obtain the
condition that

r

r − a
= lim

k→0
kr cot(kr + δ(k)), (1.13)

which can be interpreted as a low energy boundary condition. For completeness, we
have included a momentum dependence for the phase shift. We may use this equation
to define the scattering length a as

−1
a

= lim
k→0

k cot(δ(k)), (1.14)

which by virtue of Eq. (1.11) has the geometrical interpretation that it is the node of
u0(r) of the wavefunction outside of the interatomic interaction range. Similarly, we
note that the low-energy scattering amplitude is given by

lim
k→0

f(k) = −a. (1.15)



8 Feshbach resonances

Considering scattering at small but finite energies, one may expand Eq. (1.14) to
higher orders in k

k cot(δ(k)) ≈ −1
a

+ 1
2r0k

2, (1.16)

where r0 is called the effective range, such that

f(k) ≈ 1
− 1
a

+ 1
2r0k2 − ik

. (1.17)

Importantly, attractive microscopic interactions may lead to both positive and
negative scattering lengths. For positive scattering lengths, it can be shown that an
attractive bound state of energy

EB = − ~2

2µcda2 (1.18)

exists, where µcd is the reduced mass of the two particles and we assumed that r0 = 0.

1.4 Feshbach resonances
Having discussed basic scattering physics and how microscopic interatomic interac-
tions may lead to observable phase shifts and scattering lengths, let us discuss how
interactions may be tuned in ultracold atoms using so-called Feshbach resonances [20].
The effective interatomic interaction potential between two atoms (i = 1, 2) depends
on their internal state, as different combinations of spin Si, angular momentum Li

and nuclear spin Ii all lead to different effective interactions between atoms.
Let us consider two atoms with internal states K1 and K2 (in a state |K1, K2〉

to respect (anti)-symmetrization) scattering off each other at low energy. After these
atoms have scattered, they may now have different internal states K ′

1 and K ′
2. If these

internal states lie lower in energy, then to conserve energy, the atoms must have picked
up kinetic energy. On the other hand, if the scattering happens at sufficiently low
energy, then the final states may not lie higher in internal energy, as energy must be
conserved. The former case is referred to as an inelastic collision, and within ultracold
atoms this often leads to atoms being ejected from the trap. As a result, we will focus
on collisions where the final internal states are the same as the initial internal states.

In the absence of external manipulation, the scattering of the two atoms with
internal states K1 and K2 due to their interatomic potential Vopen is not tunable and
may very often be rather weak in the sense that they provide only a small phase
shift. However, by means of a so-called Feshbach resonance, it may be tuned. The
two atoms in K1 and K2 have an energy E that, due to their low kinetic energy, is
slightly above the scattering threshold of the |K1, K2〉 state. Consider now a different
scattering channel between atoms in H1 and H2 which interact with an interatomic
potential Vclosed whose scattering threshold lies higher in energy than E (see Fig. 1.2).

As mentioned above, one may not scatter into an asymptotic state of |H1, H2〉
because of energy conservation, and thus we refer to such a scattering channel as
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er
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Vclosed

E

0
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Figure 1.2. Schematic diagram of a Feshbach resonance in a two-channel model. Two
atoms with energy E in the open channel interact via the open channel potential Vopen

(solid, black). They may virtually scatter into a closed channel where they interact via
the closed channel potential Vclosed (solid, red); however, they may not asymptotically
scatter into that channel, as the closed channel scattering threshold (dashed, red)
lies higher in energy. If the closed channel supports a bound state of energy EMol.,
using magnetic field tuning, this state may be brought into resonance with the closed
channel scattering threshold (dashed, black), significantly increasing the scattering
cross section between atoms in the open channel. Figure adapted from Ref. [20].

closed (in the same way a channel is open if it is allowed energetically). However,
we may very well scatter into such a state virtually before eventually scattering back,
especially at a shorter distance where Vclosed may lie below the scattering threshold
of the open channel. If the closed-channel potential Vclosed supports a state confined
at small distances, which we refer to as a bound state or a molecule, then this can
increase the scattering cross section between atoms in the open channel, as atoms can
virtually couple into the closed channel and back into the open channel. The strength
of this induced interaction depends not only on the scattering rate between the open
and closed channels, but also on the energy difference EMol. between the bound state
and the scattering threshold of the open channel.

If the open channel (|K1, K2〉) and the closed channel (|H1, H2〉) have different
magnetic moments, µK , µH , then tuning an external magnetic field in a suitable way,
the relative energy shift EMol. may be tuned and may eventually vanish. This may
significantly enhance the scattering in the open channel. The resulting scattering
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Figure 1.3. Scattering properties near a Feshbach resonance. The scattering length
a according to Eq. (1.19) (top) and the ensuing closed channel binding energy EB
(bottom) are shown as a function of magnetic field B near a Feshbach resonance at
B0. As discussed in the text, away from the resonance EB varies linearly with B, while
close to the resonance in the universal regime the scattering length is large. For large,
positive scattering length the binding energy is given by Eq. (1.20). Figure adapted
from Ref. [20].

length in dependence of the magnetic field may be written as [20]

a(B) = abg

(
1 − ∆

B −B0

)
= abg − 2

r∗µ(B −B0)
, (1.19)

where µ = µH − µK , B0 is the magnetic field at which the scattering length diverges
and abg is the scattering length within the open channel, when couplings to other
channels are not relevant. Note that B0 is different from Bc = EMol./µ as the molecule
energy EMol. is an asymptotic energy, which itself is modified when both channels are
brought close to resonance. The parameter r∗ is related to the width of the resonance
and microscopically it originates from the scattering matrix between the open and
the closed channel. It is related to the effective range as r0 = −2r∗. Similarly, the
parameter ∆ relates to the magnetic width of the Feshbach resonance and incorporates
both the scattering between open and closed channels as well as the difference in
magnet moment.

The physics of a Feshbach resonance is akin to an avoided crossing, and as such
the eigenstates near the resonance are admixtures of the open- and closed-channel
asymptotic eigenstates. Similar to the two-body collisions discussed in Section 1.3, for
positive values of a(B) a bound state emerges whose energy vanishes at the resonance.
Away from the resonance, the energy of this bound state is given by the energy of
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the unperturbed closed channel bound state, which varies linearly with the magnetic
field B with a slope given by µ [20]. Closer to the resonance, the bound state is an
admixture between the open and closed channels, which is increasingly dominated
by the open channel as the resonance is approached. Near the resonance, for large
positive values of a(B) the molecule state has an energy given by [20]

EB = − ~2

2µcda(B)2 , (1.20)

analogous to Eq. (1.18). This is illustrated in Fig. 1.3.
The parameter ∆ controls the width of the magnetic field range in which the

effective scattering range a(B) differs from the background scattering length abg. One
may see the difference between these two as a measure for the degree of admixture
between the open and closed channels, and thus ∆ also controls the range in which the
molecule energy is given by Eq. (1.20) before it begins to be linear with magnetic field
strength. To quantify this, it is useful to define a dimensionless resonance strength
parameter [20]

sres = ā

r∗ , (1.21)

where ā denotes the mean scattering length which is defined in terms of the van
der Waals length lvdW as ā ≈ 0.955978 lvdW . Resonances with sres � 1 are thus
referred to as open-channel dominated and resonances with sres � 1 are referred to
as closed-channel dominated.

1.5 Two-channel and single-channel models

In the following, let us consider an ultracold mixture of two species of atoms which
interact near a Feshbach resonance. For example, these may be different Zeeman
states of 40K interacting with each other, it may be different Zeeman states of 40K
and 23Na interacting with each other, but also other combinations are possible. In
Ref. [20] a characterization of common Feshbach resonances is given. In its simplest
form, when there is only a single bound state in the closed channel that is relevant,
such a system may be modeled by the following two-channel Hamiltonian [20, 42–48]

Ĥ =
∑

p
εcpĉ

†
pĉp +

∑
p
εdpd̂

†
pd̂p +

∑
p

(ξp + ν) m̂†
pm̂p + h√

V

∑
l,p

(
m̂†

pĉl d̂p−l + d̂†
p−lĉ

†
l m̂p

)
.

(1.22)

Here, the ĉ† and d̂† are the creation operators of the two species in the open channel.
The m̂† are the creation operators of the corresponding bound state in the closed
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channel. Setting ~ = 1, their dispersion relations are given by

εcp = p2

2Mc

(1.23)

εdp = p2

2Md

(1.24)

ξp = p2

2(Mc +Md)
, (1.25)

where Mc and Md are the masses of the two species and ν denotes the magnetically
tuned detuning of the unperturbed closed channel bound state energy with respect to
the scattering threshold of the open channel. The last term in Eq. (1.22) couples the
open and closed channels due to the scattering between these states with a rate of h
(which should not be confused with the Planck constant). While Eq. (1.19) contains a
background scattering length abg, which would correspond to a term ∼ d̂†

−l′+pĉ
†
l′ ĉl d̂−l+p

in Eq. (1.22), in practice the background scattering is often so weak that it may be
disregarded altogether. In the following sections, we will see how the macroscopic
parameters ν and h may be related to the observable parameters of scattering length
a and effective range r0. Note that the bare molecule which is created using the m̂†

operators should not be confused with the dressed molecule bound state which may
appear in the spectrum of the Hamiltonian in Eq. (1.22).

In an open channel-dominated Feshbach resonance (r∗ → 0), the bound state in
the spectrum has little admixture from closed channel molecules and as we will see,
this corresponds to h → ∞, where ν ∼ h2. As a result, the dynamics of the bare
closed channel molecule will not be relevant and the particle may be integrated out
to yield the single-channel Hamiltonian

Ĥ =
∑

p
εcpĉ

†
pĉp +

∑
p
εdpd̂

†
pd̂p + g

V

∑
p,p′,q

ĉ†
p+qĉpd̂

†
p′−qd̂p′ , (1.26)

which is equivalent to Eq. (1.22), provided that g = −h2/ν and h → ∞ [49, 50].
This Hamiltonian only takes into account the open-channel scattering between c and d
particles and its coupling constant g is tuned to the scattering length a which originally
stems from interactions with the closed channel. As we will see, the effective range r0

of this Hamiltonian vanishes.

1.6 Regularization of the two-channel model and the single-
channel model

After having introduced the two-channel model, let us relate its parameters to physical
observables. There are different ways one may start such a quest. Using a variational
wavefunction Ansatz, one may describe the two-body bound state and relate this to
the scattering function f . Alternatively, one may use quantum field theory to compute
the effective scattering vertex, which one can also relate to f . One may even use the
functional renormalization group to solve this problem. In this case, we will use
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Σϕ =

ψ

φ

ϕ ϕ

Figure 1.4. Self-energy of the molecule ϕ. Straight lines denote ψ particle propagators,
while curly lines and lines with two arrows denote φ and ϕ particles, respectively. The
square blocks, denote the Yukawa coupling ∼ h.

quantum field theory. In Section 1.7 we will use variational wavefunctions to solve the
Fermi polaron problem, from which one may also deduce the corresponding two-body
solution. Finally, in Section 1.9 we will also introduce the functional renormalization
group and use it to solve a similar two-body problem in Section 4.7.

To begin, let us define an action corresponding to the two channel model of
Eq. (1.22) as

S =
∫

p,ω

{
ψ∗
P

(
−iω + εcp − µψ

)
ψP + φ∗

P

(
−iω + εdp − µφ

)
φP + ϕ∗

P (−iω + ξp + ν)ϕP
}

+ h
∫
x

{ψ∗
xφ

∗
xϕx + ϕ∗

xφxψx} , (1.27)

where the fields ψ, φ and ϕ, correspond to the operators ĉ, d̂, and m̂; µψ and µφ
are chemical potentials, P = (p, ω) comprises the momentum p and the Matsubara
frequency ω,

∫
x ≡

∫ 1/T
0 dτ

∫
d3r and

∫
p,ω ≡

∫
d3pdω.

To operate in the two-body limit, we set both chemical potentials to vanish, µψ =
µφ = 0, such that due to the locations of the poles in the propagators of the ψ

and φ particles, their densities vanish [51, 52]. In fact, only the ϕ particles experience
quantum fluctuations in the two-body limit. As a result, we can compute the molecule
self-energy Σσ

ϕ (see Fig. 1.4) as

Σϕ(p, ω) = h2
∫

q,ν
G0
ψ∗

σψσ
(p − q, ω − ν)G0

φ∗φ (q, ν)

= h2

(2π)4

∫
dqdν

1
[−i(ω − ν) + εcp−q][−iν + εdq]

= h2

(2π)3

∫
dq

1[
−iω + (p−q)2

2Mc
+ q2

2Md

] . (1.28)
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Shifting q → q + pMd/(Mc + Md) and introducing an upper momentum cutoff, we
thus obtain

= 4πh2

(2π)3

∫ Λ

0
dqq2 1

−iω + 1
2(Mc+Md)p2 + Mc+Md

2McMd
q2

= 4πh2

(2π)3

 2McMd

Mc +Md

Λ −

√
−iω + p2

2(Mc+Md)(
Mc+Md

2McMd

)3/2 tan−1


√

Mc+Md

2McMd
Λ√

−iω + p2

2(Mc+Md)


 , (1.29)

where we can identify the reduced mass µcd of Md,Mc such that we arrive at

Σϕ(p, ω) = h2

2π2

2µcdΛ − (2µcd)3/2

√√√√−iω + p2

2(Mc +Md)
tan−1


√

Mc+Md

2McMd
Λ√

−iω + p2

2(Mc+Md)


.

(1.30)

Finally, we can compute the renormalized inverse molecule Green’s function

G−1
ϕ (p, ω) = −iω + ξp + ν − Σϕ(p, ω), (1.31)

which in turn is related to the T -matrix as

T (p, ω) = − h2

G−1
ϕ (p, ω) . (1.32)

Now, we can proceed to compare the T -matrix to the scattering amplitude to relate
ν and h to a and r0. To do this, we must evaluate the T -matrix in the center-of-
mass frame of the two colliding particles, setting p = 0, at the energy of the two
particles of opposite momenta q and −q, which is achieved by continuing iω → Ω =
q2/2Mc + q2/2Md + i0+ = q2/2µcd + i0+. Then

f(q) != −µcd
2π T (0,−iΩ) = h2µcd

2πG−1
ϕ (0,−iΩ)

= h2µcd
2π

1
− q2

2µcd
− i0+ + ν − Σϕ(0,−iΩ)

, (1.33)

where

Σϕ(0,−iΩ) = h2

2π2

2µcdΛ − (2µcd)3/2
√

− q2

2µcd
− i0+ tan−1

 Λ
√

2µcd
√

− q2

2µcd
− i0+

 .
(1.34)

Considering Eq. (1.17) and taking q → 0, we have

lim
q→0

1/f(q) = −1
a

!= lim
q→0

2πG−1
ϕ (0,−iΩ)
h2µcd

= 2π
h2µcd

(
ν − h2

2π2 2µcdΛ
)

(1.35)

such that

ν = h2
(

− µcd
2πa + µcdΛ

π2

)
(1.36)
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and noting that

h2µcdΛ
π2 = h2

∫ dq
(2π)3

1
εcq + εdq

, (1.37)

we obtain the fixing condition for ν

ν = h2
(

− µcd
2πa +

∫ dq
(2π)3

1
εcq + εdq

)
. (1.38)

Ideally, one would now go back and using the fixing condition for ν, one would
compute the combination ν − Σϕ(p, ω), in which the divergences cancel. However,
one can also read off that the divergences cancel, and taking the limit Λ → ∞, we
arrive at

G−1
ϕ (p, ω) = −iω + ξp − µcdh

2

2πa + h2

4π (2µcd)3/2

√√√√−iω + p2

2(Mc +Md)
. (1.39)

Considering

lim
q→0

1
f(q)q = −i != lim

q→0

1
q

2πG−1
ϕ (0,−iΩ)
h2µcd

= lim
q→0

1
q

2π
h2µcd

h2

4π (2µcd)3/2
√

− q2

2µcd
− i0+

= −i, (1.40)

is a sanity check of our result. Finally, we can compute

lim
q→0

1
f(q)q2 = r0

2
!= lim
q→0

1
q2

2πG−1
ϕ (0,−iΩ)
h2µcd

= − π

h2µ2
cd

, (1.41)

which can be used to fix h by the effective range r0 (or equivalently r∗).
From Eq. (1.39) one may obtain a retarded propagator by continuing iω → z onto

the upper half of the complex plane

G−1,R
ϕ (p, z) = −z + ξp − µcdh

2

2πa + h2

4π (2µcd)3/2

√√√√−z + p2

2(Mc +Md)
. (1.42)

As Eq. (1.39) is valid for both ω > 0 and ω < 0, the same procedure may be carried
out in the lower half of the complex plane for the advanced propagator. Due to the
appearing square-root the retarded Green’s function is analytic for Re(−z+p2/2(Mc+
Md)) > 0. As a result, Eq. (1.42) is an analytic continuation onto the whole complex
plane, except for z ∈ R, z > p2/2(Mc +Md), where the propagator has a branch cut.
Finally, we note that the resulting molecule propagator has poles if and only if a > 0,
in which case the poles are given by

z = ξp − µcdh
2

2πa − 1
2

(
h2

4π (2µcd)3/2
)2

+ 1
2

√√√√(h2

4π (2µcd)3/2

)4

+ 4
(
h2

4π (2µcd)3/2

)2
µcdh2

2πa ,

(1.43)

giving the energy of the molecule.
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In the single-channel model, a similar calculation may be carried out. Alterna-
tively, from Eq. (1.38) one may obtain a fixing condition for g = −h2/ν, which does not
depend on h. More generally, when computing a quantity in the two-channel model
which has an equivalent quantity in the single-channel model, the single channel result
can be obtained simply by sending h → ∞, while ensuring that all h-dependencies
are explicit.

1.6.1 Two-body limit in two dimensions
In two dimensions, renormalizing the coupling constant works slightly differently. For
a sufficiently short-ranged attractive interaction, the molecular bound state always ex-
ists in two dimensions [53], such that we may use its binding energy εB = ~2/(2µcda2

B)
(where we have introduced a change in notation from EB to εB)to fix the microscopic
coupling constant.

On a technical level, the calculations work in a similar fashion as in three dimen-
sions, however the fixing conditions are slightly different. Furthermore, while we carry
out the calculation in a two-channel model, we will take the single-channel limit, as in
the context of our work effective range corrections are less relevant in two dimensions.

Once again, our starting point is the vacuum two-body limit, where we set both
chemical potentials to negative values, such that the corresponding densities vanish,
µψ, µφ < 0. To fix the binding energy of the molecule, the location of the pole of
the renormalized molecule Green’s function Ωmol must lie an amount of εB below the
combined energy of the φ and ψ particles such that we have

G−1,R
ϕ (0,Ωmol) = 0 (1.44)

Ωmol + µφ + µψ = −εB. (1.45)

Thus, we choose chemical potentials with µφ + µψ = −εB and µψ, µφ < 0, such that
Ωmol

!= 0. Tracing the steps of the calculation in three dimensions, we thus have

Σϕ(p, ω) = h2
∫

q,ν
G0
ψ∗

σψσ
(p − q, ω − ν)G0

φ∗φ (q, ν)

= 2πh2

(2π)2

∫ Λ

0
dqq

1
−iω + 1

2(Mc+Md)p2 + Mc+Md

2McMd
q2 + εB

= h2µcd
2π

[
log

(
εB − iω + ξp + Λ2

2µcd

)
− log (εB − iω + ξp)

]
(1.46)

and using the fixing condition Eq. (1.44) one finds that

ν = h2µcd
2π log

(
1 + Λ2

2µcdεB

)
= h2

(2π)2

∫
|q|<Λ

dq
1

εcq + εdq + εB
. (1.47)

With this renormalization, we can safely compute the renormalized molecule Green’s
function for ω > 0 as

G−1
ϕ (p, ω) = −iω + ξp − h2µcd

2π log
(

εB
εB + ξp − iω

)
. (1.48)
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After going to the single-channel limit we thus have

1
g

= − 1
(2π)2

∫
|q|<Λ

dq
1

εcq + εdq + εB
, (1.49)

T (p, ω) = 2π
µcd

1
log

(
εB

εB+ξp−iω

) . (1.50)

1.7 The Fermi polaron problem
Having discussed the scattering of two different particles with each other, an important
milestone in understanding strongly coupled two-component mixtures is the so-called
Fermi polaron problem. It describes a strongly population-imbalanced mixture of a
Fermi gas (called a bath) of density nF interacting with a single particle of another
species (referred to as an impurity).

The Fermi polaron problem has been realized experimentally both in ultracold
atom and in TMD experiments. Most of its physical observables can be explained
using a simple variational Ansatz, which we will review in the following. Like its
natural counterpart, the Bose polaron problem of a Bose gas of density nB interacting
with a single particle of another species, these extremely population-imbalanced cases
of strongly interacting mixture systems capture significant aspects of the scattering
physics observed in balanced mixtures. We will see in Section 2.2 that a description of
the Fermi polaron problem can make meaningful predictions even in an almost density-
matched regime, which came as a surprise at the time. Similarly, in Chapter 4 we
will use a theory that connects to both polaron problems to describe induced coupling
processes in strongly coupled Bose-Fermi mixtures. This connection to both polaron
problems will be used to argue that the strong-coupling physics has been treated
appropriately.

In Sections 1.3 and 1.4, we reviewed the two-body scattering near a Feshbach
resonance and found that in three dimensions a bound state exists between these two
particles for positive scattering lengths, while in two dimensions it always exists. In
both cases, the interaction parameters 1/a and εB determine the bound state energy
(or the lack thereof) and in the Fermi polaron problem they are complemented by
the length and energy scales of the Fermi gas to obtain dimensionless interaction
parameters 1/kFa and εB/εF . Here kF is the Fermi wavevector and εF is the Fermi
energy of the Fermi gas, which in three dimensions is related to the fermion density
through εF = ~2(6π2nF )2/3/2Mc = ~2k2

F/2Mc, where Mc is the fermion mass.
The physics of the Fermi polaron can be understood qualitatively from a tuning

of the dimensionless interaction parameters. The tuning of 1/kFa from −∞ to +∞
may be regarded as going from (vanishingly) weak to strong interactions. This can be
appreciated from the underlying two-body bound state energy, where for 1/kFa < 0
the interaction is too weak to feature a bound state. For 1/kFa > 0 the bound state
energy begins to increase and eventually diverges for 1/kFa → +∞. In the absence of
interactions, the ground state of the system is given by an unperturbed Fermi sea along
with an impurity in a zero-momentum state. We call this state the non-interacting
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interaction strength

non-int. GS att. polaron molaron

Figure 1.5. Schematic picture of the physics of the Fermi polaron problem. For
vanishing impurity-bath interactions, the ground state is given by an unperturbed
Fermi sea (red particles) along with an impurity in a well-defined momentum state
(left). As interactions increase, the impurity may scatter with particles near the
Fermi surface and due to the attractive nature of the interaction the bath particles
are pulled slightly towards the impurity. In this attractive polaron state (middle),
the impurity is dressed due to the bath particles and its quasiparticle properties such
as its effective mass begin to change, as bath particles are dragged along. Once the
interaction strength is strong enough, a molaron (right) forms in which a bath particle
binds closely to the impurity. The molaron still experiences dressing due to the Fermi
sea. Another polaron state, the repulsive polaron exists as an excited state in which
bath particles are pushed away from the impurity rather than being attracted to it.

ground state, as interactions increase in strength, the impurity may interact with
the Fermi sea and a superposition of the non-interacting state along with particle-
hole excitations around the Fermi sea may form (see Fig. 1.5). This state which is
adiabatically connected to the noninteracting ground state is commonly referred to
as the Fermi polaron and for reasons that will become clear in the course of this
section, we refer to it as the attractive polaron. In the opposite limit of near-infinitely
strong interactions (1/kFa → +∞), the average interfermion distance ∼1/kF is much
larger than the binding length of the two-body bound state ∼a and as a result, the
ground state will be a two-body bound state on top of a Fermi sea. Of course, the
Pauli blocking of the Fermi sea will affect this state, but in the limit 1/kFa → +∞
the Pauli blocking becomes negligible. We refer to this state as the molecule state.
Moving towards unitarity, this state will experience dressing due to the Fermi sea and
the effect of Pauli blocking will become more noticable. The resulting state, which
connects to the molecule state for 1/kFa → +∞, is commonly referred to as the
molaron to indicate its dressing due to the Fermi sea, however in an abuse of notation
it is often referred to as the molecule.

Between these limits, both types of states experience significant modifications of
their quasiparticle properties due to the fermionic dressing, and the ground state of
the system changes from the polaron to the molaron. In the Fermi polaron problem,
the polaron and the molaron are orthogonal, and as a result at a critical interac-
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tion strength there is a transition between these states which is referred to as the
polaron-to-molecule transition. In the Bose polaron this is a crossover, as the presence
of a condensate of bosons hybridizes polarons and molecules. Importantly, both the
molaron and the attractive polaron exist as quasiparticles in the whole range of in-
teraction strengths, even though the underlying two-body molecule state exists only
for positive scattering lengths. Interestingly, a second polaron state exists above the
attractive polaron, which we will refer to as the repulsive polaron. It is a well-defined
quasiparticle only for 1/kFa & 0.

In Chapter 5 we will treat the Fermi polaron problem using a self-consistent func-
tional renormalization group method, however to familiarize ourselves with the con-
cept, in the following we will treat it using a variational wave function Ansatz, which
we will then relate to an equivalent diagrammatic approach. Within the single-channel
model Eq. (1.26), both polaron states can be captured using a variational wavefunction
commonly referred to as the Chevy Ansatz [54, 55]

|ψp
P 〉 = αp

0 d̂
†
p |FSN〉 +

∑
k,q

′
αp

k,qd̂
†
p+q−kĉ

†
kĉq |FSN〉 , (1.51)

where p denotes the momentum of the state, |FSN〉 a Fermi sea of N particles, the
sums are for |q| < kF , |k| > kF and the αp

0 , α
p
k,q are variational parameters. Similarly,

the molaron state can be captured using the following Ansatz [55–57]

|ψp
M〉 =

∑
k

′
βp

k ĉ
†
−kd̂

†
k+p |FSN−1〉 , (1.52)

where to preserve particle number between both wavefunctions, |FSN−1〉 denotes a
Fermi sea of N − 1 particles. Near a narrow Feshbach resonance, both Ansätze may
be extended to also feature molecule operators and be treated in the two-channel
Hamiltonian Eq. (1.22). For h → ∞ the results reduce to those obtained using
Eqs. (1.51) and (1.52) within a single-channel Hamiltonian.

For a given p, minimizing the energy functional 〈ψp
P/M |Ĥ − E|ψp

P/M〉 with respect
to the variational parameters

δ

δαp
0

〈ψp
P/M |Ĥ − E|ψp

P/M〉 != 0

δ

δαp
k,q

〈ψp
P/M |Ĥ − E|ψp

P/M〉 != 0 ∀|q| < kF , |k| > kF , (1.53)

the ensuing equation systems admit two solutions for the Chevy Ansatz (1.51) and
one solution for the molaron Ansatz (1.52). The quasiparticle weight/residue Zp =
|αp

0 |2 gives the overlap of the polaron state with the non-interacting ground state.
Furthermore, it quantifies the occupation probability of finding the impurity in the
p-state, which, as we shall see in Section 2.2, connects to the condensate fraction in
a nearly balanced Bose-Fermi mixture. Furthermore, it quantifies the residue of the
corresponding pole in the retarded Green’s function.

The resulting energies of both polaron states and the molaron state are shown
in Fig. 1.6. Furthermore, the quasiparticle weights are shown. As can be seen, the
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Figure 1.6. Quasiparticle energy and weight of different quasiparticles in the Fermi
polaron problem as obtained from the Ansätze in Eqs. (1.51) and (1.52). The energies
(left) and quasiparticle weights (right) of the molaron (red), the attractive polaron
(black) and the repulsive polaron (orange) are shown as a function of 1/kFa. Energies
are shown in units of the Fermi energy. Furthermore, the energy of the two-body
bound state (yellow, dashed) is shown for comparison.

attractive polaron and molaron energies cross at the polaron-to-molecule transition
(kFa)c. At small, positive values of 1/kFa the repulsive polaron begins to exist as an
excited state and its energy asymptotically tends to zero for 1/kFa → +∞. The mo-
laron exists for all interaction strengths. With increasing values of 1/kFa, the molaron
energy turns from positive to negative and eventually crosses the attractive polaron
energy. Asymptotically, both the attractive polaron and the molaron energy lie within
a range of εF around the two-body binding energy. The quasiparticle weight of the
attractive polaron is near unity for small values of 1/kFa, decreases with increasing
1/kFa and vanishes asymptotically for 1/kFa → ∞. The quasiparticle weight of the
attractive polaron is slowly transferred to the repulsive polaron, which increases with
increasing 1/kFa and approaches unity for 1/kFa → ∞. The attribute attractive and
repulsive for the polaron stem from its energy lying above or below the energy of a
non-interacting system and also have corresponding effects on the spatial configuration
of the fermion dressing cloud [58].

The treatment within the variational Ansatz of up to one particle-hole excitation
is equivalent [59] to a diagrammatic Ansatz (see Fig. 1.7), in which the T -matrix is
computed as

1
T (p, ω) =

(
µcd
2πa −

∫ dk
(2π)3

1
εck + εdk

+
∫

k,ν
G0
ψ∗

σψσ
(p − k, ω − ν)G0

φ∗φ (k, ν)
)

= µcd
2πa +

∫ dk
(2π)3

(
nF (εF − εcp−k)

−iω + εcp−k + εdk − εF − µφ
− 1
εck + εdk

)
(1.54)
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−q,−ν

p + q, ω + ν

−q′,−ν ′

p + q′, ω + ν ′

T (p, ω) = + T (p, ω)

ψ

φ

Σ(p, ω) = T

Figure 1.7. Feynman diagrams of the T -matrix (Eq. (1.54)) and the impurity self-
energy (Eq. (1.55)) within the non-selfconsistent T -matrix approach. The same nota-
tion as in Fig. 1.4 is used, and the dots denote the four-body vertex ∼g.

while the self-energy of the impurities is computed as

Σφ(p, ω) = −
∫ dq

(2π)3nF (εcq − εF )T (p + q, ω − i(εcq − εF )) (1.55)

such that the renormalized inverse impurity Green’s function is given by

G−1
φ (p, ω) = −iω + εdp − µφ − Σφ(p, ω). (1.56)

To set the density of the Fermi gas to nF , we have set its chemical potential as µφ = εF .
The scattering matrix T can be interpreted as the Green’s function of the molecule
operator, and thus its spectrum contains the molaron. Similarly, the impurity Green’s
function contains the polaron.

Continuing both T and Gφ to the complex plane iω → z, we find that the retarded
impurity propagator GR

φ has two poles, corresponding to the two polaron states, and
TR has one, corresponding to the molaron state. From the location of the poles
z = Ω − iγ, the energy E and the decay width Γ of the corresponding particles can
be determined as

E = Ω + µφ

Γ = γ. (1.57)

Being able to relate the variational Ansätze to an equivalent treatment within
field theory has the key advantage that properties such as the quasiparticle spectral
function of the different operators can be computed in a natural way. Defining the
impurity Aφ and molecule spectral functions Aϕ as

Aφ(Ω,p) = 2 ImGR
φ (Ω + i0+,p)

Aϕ(Ω,p) = 2 ImTR(Ω + i0+,p), (1.58)
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Figure 1.8. Spectral functions as obtained from the non-selfconsistent T -matrix ap-
proach. The molecule (left) and impurity (right) spectral functions, Aϕ and Aφ, are
shown as a function of momentum and p (in units of kF ) and energy E (in units of
εF , see Eq. (1.57)) for 1/kFa = 0 (top) and 1/kFa = 1.3 (bottom).

we are able to study their excitation spectra1. In Fig. 1.8, both spectral functions
from Eq. (1.58) are shown at unitarity and near the transition at 1/kFa = 1.3. In
the impurity spectral functions the attractive and repulsive polaron can be seen along
with particle-hole continua. At unitarity the repulsive polaron lies within the particle-
hole continuum, thus it is not a well-defined quasiparticle, evidenced also by its low
quasiparticle weight. The molaron is visible in both spectra, tough near unitarity
it eventually joins the continuum at intermediate momenta, which it does not do at

1Note that the impurity spectral function is sometimes referred to as a polaron spectral function,
because it contains the polaron states. Strictly speaking, however, a spectral function describes the
response of a system due to an excitation by a bare operator, so the name impurity spectral function
is more precise.
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1/kFa = 1.3. Spectra and quasiparticle properties obtained from a functional renor-
malization group approach are shown in Chapter 5. Furthermore, in Section 2.3.5.2 we
will show how the results obtained for the diagrammatic non-selfconsistent T -matrix
approach shown in this section may also be obtained using the functional renormal-
ization group (fRG) formalism which we will introduce in Section 1.9.

1.8 Fermi polaron problem in ultracold atoms and atom-
ically thin semiconductors

As we have seen in the previous section, the nature of the ground state of the Fermi
polaron problem universally depends on the ratio of the two relevant energy scales of
the problem: the kinetic energy, represented by εF , and the interaction energy, set by
εB in two dimensions and the scattering length a in three dimensions. While εF/εB
can, in theory, be tuned by either adjusting εF or εB, in experiments it depends on
the physical system which parameter is accessible for easy tunability.

As discussed in Sections 1.1 and 1.2 two major systems in which strongly coupled
Bose-Fermi mixtures can be realized today are ultracold atoms and TMD. To support
the following discussion, in Table 1.1 we summarize key parameters and quantities
describing the universal connection between these systems.

In monolayer TMD, εB represents the trion binding energy that is typically fixed
[33, 60–63]. However, by electrostatically doping the system with charge carriers, the
Fermi energy εF is easily adjusted and thus εF/εB can be tuned. In cold atoms the
situation is reversed. Here, the binding energy εB (or the scattering length in three
dimensions) can be tuned using Feshbach resonances, while adjusting the Fermi energy
over a wide range of values is challenging. As a result, in cold atoms, the Fermi energy
εF is the natural unit and, correspondingly, the spectrum of the system is expressed
as a function of the dimensionless energy E/εF and the interaction strength εB/εF .
In contrast, in TMD the binding energy εB provides the appropriate unit, and the
spectrum is expressed as a function of E/εB and εF/εB.

Of course, physics does not depend on the chosen units. It is, however, still
instructive to compare spectra for both sets of units, as the choice of units reflects the
experimental protocols employed to observe the physics of Fermi polarons: in TMD
using gate-doping of εF and in cold atoms interaction tuning of εB exploiting Feshbach
resonances.

1.9 Effective action and functional renormalization group
(fRG) formalism

Throughout this thesis, we will make use not only of conventional diagrammatic meth-
ods in field theory, but also of functional renormalization group (fRG) methods, which
are a momentum space implementation of Wilson’s renormalization group idea. The
fRG has been successfully applied to the study of strongly coupled systems in a broad
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2D semiconductors (TMD) cold atoms
fermions electron/hole atom

charge negative/positive neutral
size pointlike ∼ a0

bosons exciton atom
charge neutral neutral

size ∼ 1nm ∼ a0

composite fermion trion molecule
charge charged neutral

size ∼ 2nm (fixed) ∼ 1000a0 (tunable)
typical Fermi energy ∼ εF 0 − 50meV =̂ 0 - 10THz 50peV =̂ 10kHz

tune? tunable: gate doping ∼fixed
typical int. energy ∼ εB 30meV =̂ 10THz 0 − 50peV =̂ 0 − 10kHz

tune? fixed tunable:
Feshbach resonances

dimension 2D 1D, 2D, 3D
Fermi temperature T/TF mK − 300K: 5nK − µK:

T/TF ∼ 0 − 2 T/TF ∼ 0.05 − 2
Bose-Fermi potential short-ranged short-ranged,

polar. int. ∼ 1/r4 vdW/Feshbach int.
Fermi-Fermi separation > 1nm (tunable) ∼ 1000a0 (∼ fixed)
int. strength εB/εF ∼ 1, strong coupling ∼ 1, strong coupling

Table 1.1. Comparison of key properties of physical systems in which two-dimensional
Bose-Fermi mixtures can be realized in a universal way: two-dimensional semiconduc-
tors hosted in atomically thin transition metal dichalcogenides (TMD) and confined,
quasi-two-dimensional gases of ultracold atoms interacting via Feshbach resonances.
The constant a0 = 0.529Å denotes the Bohr radius.

range of areas [64–67], spanning from the asymptotic safety of quantum gravity [68–70]
to high-energy [71, 72], statistical [73–75] and condensed matter physics [76–80]. Com-
pared to conventional quantum field theory approaches, it displays several advantages.
First, it usually provides for a fully self-consistent treatment that naturally includes
high-order quantum fluctuations and incorporates these on equal footing. Second,
the fRG includes quantum fluctuations in a coarse-grained fashion —momentum-by-
momentum shell— which makes it ideally suited to treat competing ordering instabili-
ties. Third, similar to variational techniques, the fRG can be improved systematically
by using increasingly refined truncations of the underlying quantum effective action.
Finally, it offers easier access to spectral and dynamical response functions compared
to Monte Carlo approaches, where the analytic continuation of noisy data is required.
In the following, we briefly provide an introduction to the effective action functional
and then give a brief introduction into the principle ideas and equations concerning
the fRG. For a detailed discussion, we refer to Refs. [64–66, 79].
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Being presented with a Hamiltonian Ĥ such as the one in Eq. (1.22), the corre-
sponding grand canonical partition function is given by

Z = Tr e−β(Ĥ−µN̂), (1.59)

where β = 1/T is the inverse temperature, µ denotes different chemical potentials and
N̂ the particle number operator corresponding to these chemical potentials. Using the
Matsubara frequency formalism this can be reformulated in terms of quantum fields
(for details see e.g. [52, 81]) and field integrals over them

Z =
∫

Dφe−S[φ], (1.60)

where φ denotes the quantum fields corresponding to the operators in Ĥ − µN̂ , Dφ
is the measure for the field integration and S is the corresponding classical action.
To give an intuition in the following, we will proceed for the simplest case of real,
bosonic fields. Of course, these expressions can also be generalized to hold for more
complicated fields. Note, however, that the fields may still have many field indices
and should thus be treated analogous to vectors.

To be able to obtain observables from the partition function, one may add a source
term to the exponent such that expectation values may be obtained using suitable
functional derivatives

Z[J ] =
∫

Dφe−S[φ]+Jφ, (1.61)

such that

〈φn〉J = 1
Z

δn

δJn
Z[J ]. (1.62)

Note that in this definition 〈φn〉 is dependent on the source term J and the physical
expectation value is computed for J = 0 . The functional Z generates correlation
functions, while one can show that in a similar way W [J ] = log Z[J ] is the generator
of connected correlation functions.

Defining a Legendre transform of W , we can then introduce an effective action as

Γ[ϕ] = J [ϕ]ϕ−W [J(ϕ)], (1.63)

where J [ϕ] is implicitly defined using the relation

ϕ = δ

δJ
W [J ]

∣∣∣∣∣
J=J [ϕ]

, (1.64)

such that one can show that

ϕ = 〈φ〉J [ϕ] (1.65)
δ

δϕ
Γ[ϕ] = J [ϕ] (1.66)

δ2

δϕ2 Γ =
(
δ2

δJ2W

)−1

, (1.67)



26 Effective action and functional renormalization group (fRG) formalism

where Eq. (1.67) should be understood in the sense of a matrix inverse of a Hesse
matrix in the case of fields and source terms with more than one entry. The quantum
effective action Γ can be related to the W functional by noting that the equilibrium
field configuration ϕeq = 〈φ〉J=0 is obtained for J [ϕeq] = 0 such that

Γ[ϕeq] = −W [J = 0], (1.68)

and

Z = e−Γ[ϕeq ], (1.69)

where due to Eq. (1.66) we have that

0 = δ

δϕ
Γ[ϕ]

∣∣∣∣∣
ϕ=ϕeq

. (1.70)

Thus, from obtaining the quantum effective action Γ all physical observables can
be deduced from it as it is the generating functional of one-particle irreducible (1PI)
correlation functions. While the classical action S contains no quantum fluctuations,
all quantum fluctuations are contained within Γ and thus the quantum fluctuations
contained within Z[J ] may equally be described by considering classical physics of a
hypothetical classical action described by the effective action Γ.

The fRG is a method to obtain an approximation of the effective action. The idea
behind the fRG is to build a family of theories indexed by a momentum scale k such
that only quantum fluctuations above that scale are taken into account. Thus rather
than treating fluctuations at all scales at once, one iteratively integrates out modes
from high to low energies by smoothly lowering k from the microscopic UV scale Λ
down to k = 0. In practice this is done by adding to the classical action S[φ] an
infrared regulator term

∆Sk[φ] = 1
2φRkφ, (1.71)

which penalizes low-energy fluctuations, such that only high-energy modes contribute
to the field integral.

Starting from the sum of S and ∆Sk one then defines a scale-dependent partition
function

Zk[J ] = eWk[J ] =
∫

Dφe−S[φ]−∆Sk[φ]+Jφ, (1.72)

as well as a scale-dependent effective action

Γk[ϕ] = J [ϕ]ϕ−Wk[J(ϕ)] − ∆Sk[ϕ] (1.73)

through a (modified) Legendre transform of the free energy log Zk, which is required
to respect Eq. (1.64) for Wk. One can then show that

∂kWk[J ] = −1
2 〈φ∂kRkφ〉 = −1

2
δ

δJ
(∂kR) δ

δJ
W − 1

2
δW

δJ
(∂kR)δW

δJ

= −1
2 Tr

(
(∂kRk)

δ2W [J ]
δJ2

)
− 1

2 〈φ〉 ∂kR 〈φ〉 . (1.74)
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To avoid confusion, we now make the field indices explicit to show that(
δ2

δϕ2 (Γ[ϕ] + ∆Sk[ϕ])
)
αβ

= δ2

δϕαδϕβ
(Γ[ϕ] + ∆Sk[ϕ]) = δJβ[ϕ]

δϕα
, (1.75)

while  δ2

δJ2W [J ]
∣∣∣∣∣
J=J [ϕ]


αβ

= δ2

δJαδJβ
W [J [ϕ]] = δϕβ[ϕ]

δJα
, (1.76)

such that we obtain

∂kΓk[ϕ] = −∂kWk[J [ϕ]] − 1
2ϕ(∂kRk)ϕ

= 1
2 Tr

(
(∂kRk)

δ2W [J ]
δJ2

)

= 1
2 Tr

(∂kRk)
(
δ2

δϕ2 (Γ[ϕ] + ∆Sk[ϕ])
)−1

 . (1.77)

Generalizing this result to include fermionic fields, the evolution or ‘flow’ of the effec-
tive action as the scale k is lowered is then given by the Wetterich equation [82],

∂kΓk = 1
2 STr

[(
Γ(2)
k +Rk

)−1
∂kRk

]
. (1.78)

In the above expression, the supertrace STr denotes a summation over all momenta
and frequencies, as well as the different fields, including a minus sign for fermions.
Moreover, Γ(2)

k and Rk represent the matrices of second functional derivatives of Γk
and ∆Sk, respectively, with respect to the quantum fields. From now on we use the
same symbol for the fields in the action S and in the flowing effective action Γk.

Provided Rk=Λ = ∞2 at k = Λ all fluctuations are suppressed and Γk=Λ =
S + const. [65, 66]. On the other hand, for Rk=0 = 0 one recovers at k = 0 the
effective action of the original model, Γk=0 = Γ. Crucially, the effective action Γ
(Gibbs free energy) is the generating functional of all one-particle irreducible vertices.
It thus contains all information about the exact solution of the theory, and hence
its determination corresponds to solving the non-relativistic, many-body Schrödinger
equation.

In Chapters 2 and 5 we will make use of rather advanced fRG methods. An analysis
of coupling constants which may serve as a first introduction to RG flows is provided
in Section 4.7.

2In practice Rk=Λ ' Λ2 is sufficient.





Chapter 2

Strongly coupled Bose-Fermi mixtures

This chapter is based on the following publications:

[1] J. von Milczewski, F. Rose, R. Schmidt,
Functional-renormalization-group approach to strongly coupled Bose-Fermi mixtures
in two dimensions,

Physical Review A 105, 013317 (2022).

[2] M. Duda, X.-Y. Chen, A. Schindewolf, R. Bause, J. von Milczewski, R. Schmidt,
I. Bloch, X.-Y. Luo,
Transition from a polaronic condensate to a degenerate Fermi gas of heteronuclear
molecules,

Nature Physics 19, 720-725 (2023).

In this chapter we study the phase diagram of strongly coupled Bose-Fermi mixtures
both in two and three dimensions. The discussions in this chapter are based on the
work presented in Ref. [1] along with our contributions to Ref. [2] where we provided
a theoretical explanation of the experimental observations.

2.1 Introduction
Ever since the theoretical explanation of conventional superconductivity as arising
from the effective attraction between electrons mediated by phonons [83, 84], Bose-
Fermi mixtures have been the subject of intense research. As they combine systems
of different quantum statistics, their many-body behavior can be vastly different from
that of the underlying bosonic or fermionic subsystems alone. Consequently, they can
feature rich many-body physics ranging from superconductivity to the formation of
composite bosonic or fermionic bound states similar to mesons and baryons in particle
physics.
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In solid-state physics, bosons typically appear as collective degrees of freedom.
These may be, for instance, phonon excitations of an underlying crystalline lattice
or collective excitations of the electronic system itself in the form of, e.g., magnons
or plasmons. While electron-phonon coupling is captured by Fröhlich or Holstein
models, developments in ultracold atoms [20] and van-der-Waals materials [33] now
make it possible to realize Bose-Fermi mixtures that are governed by beyond-Fröhlich
physics. Here bosons and fermions can bind to fermionic molecules [85–90] reaching
the quantum-degenerate regime [91]. The competition between this novel bound state
physics and mediated interactions leads to an enriched phase diagram potentially fea-
turing supersolidity and charge-density-wave phases [92–95], molecular Fermi liquids
[1, 96–100], and unconventional boson-induced superconductivity [101, 102].

Crucially, direct pairing between bosons and fermions is a new essential ingredient
in these mixtures. Recently, it was shown [103] that for such strongly coupled Bose-
Fermi mixtures a description in terms of Fröhlich or Holstein models [104, 105], in
which fermions couple linearly to the bosonic degrees of freedom, fails. In addition,
the coupling to bosons at quadratic order becomes relevant, which has to be accounted
for in an extended Fröhlich Hamiltonian [103], giving rise to qualitatively new physics
recently observed in experiments in cold gases [106–108] and Rydberg systems [109].

Various aspects of atomic, three-dimensional Bose-Fermi mixtures have been inves-
tigated theoretically using the Fröhlich model —thus disregarding the crucial quartic
interaction term. This revealed a rich structure of the phase diagram ranging from
polaron formation [110–112] and boson-induced p-wave superfluidity [101], to phonon
softening and phase separation [92].

Similarly, the phase diagram of two-dimensional Bose-Fermi mixtures has been
explored using the Fröhlich model. These studies were motivated in particular by
exciton-electron mixtures in semiconductors, and, following initial work by Ginzburg
[113], it was predicted that the system may turn superconducting [102, 114, 115], while
other works proposed a transition to supersolidity [93, 94], or that the formation of
both phases might be intertwined [95].

Due to the shortcomings of the Fröhlich model and mean-field inspired approaches
that neglect pairing [116–121], these initial studies missed the fact that the microscopic
interaction between atoms in ultracold gases and between excitons and electrons in
semiconductors is fundamentally attractive. While in cold gases interactions arise
from long-range van der Waals forces, the polarization of charge-neutral excitons by
electrons gives rise to attractive forces in semiconductors. Crucially, in both cases
the interactions support bound states between the fermionic and bosonic particles.
Consequently, as the strongly coupled regime is entered, one has to consider the ex-
tended Fröhlich Hamiltonian in order to account for the pairing to fermionic Feshbach
molecules in cold atoms and exciton-electron bound states, called trions, in semicon-
ductors.

The presence of this novel bound state physics renders the description of strongly
coupled Bose-Fermi mixtures an outstanding theoretical challenge. This is reflected
by the fact that until now —except for initial studies in three dimensions [96, 98–100,
122–125]— the phase diagram of strongly coupled Bose-Fermi mixtures as function of
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the density of bosons nB and fermions nF , schematically shown in Fig. 2.1, remains
unexplored. With the discovery of atomically thin transition-metal-dichalcogenides,
the semiconducting class of layered van der Waals materials, the exploration of this
phase diagram in two dimensions becomes particularly urgent. This is not only due
to the potential of layered materials for technological applications, but also due to
the possibility of realizing long-lived, stable exciton-electron mixtures that feature a
striking similarity to cold atomic mixtures [61, 62, 126]. This universal connection,
detailed by the comparison of typical scales in both systems shown in Table 1.1,
opens the possibility to explore emerging phases in strongly interacting systems in
two complementary and seemingly disparate systems, that while playing on vastly
different energy and length scales, are governed by the same dimensionless system
parameters. Furthermore, applications such as inducing superconductivity between
electrons via the exchange of excitons come within reach of experimental realization,
and theoretical efforts to describe these systems require foundational work in the
describing their phase diagram.

In three-dimensional ultracold atom experiments, the phase diagram of Bose-Fermi
mixtures has primarily been explored in the regime of large population imbalance
where one species acts as a dilute, thermal gas of impurities dressed by its environment.
Bose polarons were recently observed in the limit of fermionic impurities in a bosonic
bath [106–108], while the existence of a transition from Fermi polarons to molecules
has by now been firmly established for impurities immersed in a Fermi sea [9, 128–
130]. However, so far it has remained unclear how the transition from atoms to
molecules proceeds when the impurities are degenerate, in particular when bosons and
fermions of comparable density dress each other mutually and drastically modify their
respective behavior. Importantly, this regime of matched particle density is promising
for the association of heteronuclear molecules at high phase space density, which
finds wide-ranging applications in quantum chemistry and the exploration of dipolar
quantum many-body systems [131, 132]. At the same time, reaching this regime is
notoriously difficult in double-degenerate mixtures due to the enhanced density of
the bosonic condensate. The excess density of the Bose-Einstein condensate (BEC)
causes fast interspecies loss, which remains the key bottleneck for reaching quantum
degeneracy in heteronuclear molecules and for the study of strongly correlated Bose-
Fermi mixtures.

This chapter of the thesis, consisting of studies in two and three dimensions, is
structured as follows:

In the next section, after reviewing existing literature on the phase diagram of
strongly coupled three-dimensional Bose-Fermi mixtures and performing related fRG
calculations, experimental data obtained in three-dimensional strongly interacting
Bose-Fermi mixtures with comparable densities are analyzed and interpreted. The
data suggest that in the low temperature regime where the bosonic impurities con-
dense, strong boson-fermion interactions induce a phase transition from a polaronic
condensate to a molecular Fermi gas, connecting to an underlying quantum phase
transition (QPT) at T = 0 [98]. Using a novel density-decompression technique which
mitigates atomic loss, a double-degenerate Bose-Fermi mixture of 23Na and 40K with
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Figure 2.1. Schematic phase diagram of two-dimensional Bose-Fermi mixtures as a
function of the density of either species. At strong coupling, the system is described
by the extended Fröhlich model that accounts for the formation of a two-body bound
state between fermions and bosons of energy εB. The limit nB = 0 (along the y-axis)
defines the Fermi polaron problem, discussed in Section 2.3.3, where a single bosonic
impurity interacts with a fermionic bath. In this limit the impurity can either bind
with a fermion into a molecule or remain unbound as a Fermi polaron. At finite boson
density, discussed in Section 2.3.4, a transition from a molecular phase which hosts
a Fermi sea of bound molecules (light gray) to a mixed phase in which a condensate
of bosons hybridizes fermionic and molecular degrees of freedom (red/dark shading)
is found. With the exception of the extreme limit nF = 0 that corresponds to the
Bose polaron problem (along the x-axis), as the boson density is increased beyond
the regime nB � nF (red/dark to blue/light shading), the phase diagram remains
largely unexplored. Starting with the possibility of bipolaron formation [127], various
competing phases can be conjectured based on studies of the simpler weak-coupling
Fröhlich model, ranging from supersolid charge density wave states [94, 95] to boson-
mediated s/p-wave fermion pairing [92, 101, 102, 114].

matched density was produced which reveals signatures of this QPT. Starting from
a weakly interacting mixture, increased attractive interactions dress the bosonic con-
densate polaronically. By continuously tuning the interaction strength, the polaronic
condensate is depleted, and a transition into a phase of quantum-degenerate fermionic
molecules is observed. Driving the underlying QPT enhances the association efficiency
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of Feshbach molecules to near unity. This enables the subsequent creation of ground-
state 23Na40K molecules with a large molecular-frame dipole moment of 2.7 Debye
in the quantum-degenerate regime. Section 2.2 ends with a conclusion on the works
presented in that section.

In the following section, the phase diagram of strongly coupled two-dimensional
Bose-Fermi mixtures is studied theoretically as a function of the boson and fermion
densities. A key theoretical challenge is that the pairing between bosons and fermions
gives rise to fermionic composite particles. Due to their fermionic nature, these par-
ticles evade conventional mean-field approaches and are thus much harder to describe
than their bosonic counterparts in Fermi mixtures, where they emerge as Cooper pairs
or bosonic molecules. Moreover, the existence of such fermionic composites implies
a phase diagram that is richer in possible phase transitions compared to the simpler
Fröhlich model. In two dimensions, however, the emergence of such fermionic compos-
ites is more challenging to capture than in three dimensions, as will be explained in
Section 2.3. In that section, this challenge is tackled by developing first steps towards
a comprehensive functional renormalization group approach that allows access to the
full phase diagram of Bose-Fermi mixtures in two dimensions. Our approach accounts
for the bound state physics arising from the extended Fröhlich Hamiltonian and can
be systematically extended to describe the plethora of competing phases illustrated
in Fig. 2.1. Section 2.3 ends with a conclusion on the work presented in that section.

2.2 Degenerate three-dimensional Bose-Fermi mixtures
in the density-matched regime

2.2.1 Phase diagram
A simplified phase diagram of strongly coupled three-dimensional Bose-Fermi mixtures
is illustrated in Fig. 2.2 as a function of the ratio of boson to fermion density nB/nF
and the dimensionless interaction strength 1/kiaBF . Here, aBF denotes the boson-
fermion scattering length and the wave vector ki is determined by the interparticle
spacing of the majority species ki = (6π2ni)1/3 where we denote B(F) for nB > nF
(nB < nF ). Phases involving bound states of more than one boson are ignored as
these are intrinsically unstable due to fast recombination loss.

Qualitatively, the phase diagram in Fig. 2.2 can then be divided into two regimes.
In the limit of vanishing Bose-Fermi attraction, (kiaBF )−1 → −∞, bosons and fermions
decouple and form a BEC along with a Fermi sea. As attractive interactions are
switched on, fermions and bosons modify each other’s properties, leading to quasipar-
ticle formation. Due to the polaronic character of this interaction, the resulting phase
is denoted as the Polaronic phase. In the opposite limit of strong attraction, realized
at (kiaBF )−1 → ∞, for nB ≤ nF binding of all bosons to fermions leads to a Fermi
sea of molecules coexisting with an atomic Fermi sea; denoted as the Molecular phase.
For nB ≤ nF the Polaronic and Molecular phase are predicted to be either separated
by a first-order QPT with phase separation or by a second-order QPT [96, 98–100,
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Figure 2.2. Simplified phase diagram of degenerate Bose-Fermi mixtures as a func-
tion of the density ratio nB/nF and the dimensionless interaction strength (kiaBF )−1.
For nB/nF → 0 one attains the Fermi polaron limit featuring a polaron-to-molecule
transition (black diamond), while for nB/nF → ∞ the Bose polaron limit with a
smooth crossover is reached. For nB < nF a QPT between a Polaronic and a Mo-
lecular phase of either first-order with phase separation or second-order is expected.
The long-dashed line marks the complete depletion of the condensate (kFaBF )−1

c and,
in the case of phase separation, the dotted line marks its onset at (kFaBF )−1

ps . The
dash-dotted line marks a possible further QPT of unknown order.

124, 133]. When tuning the density ratio across nB/nF ≈ 1 in the regime of strong
attraction, an additional phase transition, where a condensate reappears, is predicted
to occur [96]. This phase featuring molecules and an excess condensate is predicted to
cross over into the Polaronic phase for nB/nF & 1 [96]. Most experiments have been
carried out in the impurity limits either on the far left- or the far right-hand side of
the phase diagram [9, 106, 108, 128–130].

2.2.1.1 Quantum phase transition from a polaronic phase to a molecular phase

In the regime where nB ≤ nF , theory at low temperature predicts a transition from
a phase where a BEC coexists with a Fermi gas to a liquid where all bosons are
bound into molecules [96, 98–100, 124, 133]. By tuning the interactions from weak
to strong coupling, the boson-fermion interaction gradually depletes the BEC until
the condensate fraction, representing the order parameter of the transition, vanishes
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at the critical interaction parameter (kFaBF )−1
c resulting in a phase transition. At

this interaction strength for T = 0 a quantum phase transition, possibly masked by
a phase-separation regime [99, 124, 133], occurs. This is a distinct feature in Bose-
Fermi mixtures that is absent for the BEC-BCS crossover in spin-balanced fermionic
mixtures where no symmetry-breaking pattern is changed as the interaction strength
is varied across the Feshbach resonance [134]. Furthermore, in contrast to the BEC-
BCS phase, the Molecular phase is more robust with respect to temperature [98, 135,
136]. In both cases pairing is required, which is not affected by small temperature
fluctuations, as pairing occurs with binding energies on the order of several Fermi
energies. In the BEC-BCS phase, however, molecules are additionally required to
condense, whereas in Bose-Fermi mixtures they merely need to form a Fermi sea.

The order of the transition depends on the Bose-Bose repulsion aBB and the density
ratio nB/nF [99, 124, 133]. The transition is predicted to be of first order in a
large parameter regime, and only beyond a threshold do stronger Bose-Bose repulsion
and lower nB/nF favor a second order transition [99, 124]. Tuning the Bose-Fermi
interaction strength (kFaBF )−1 from weak to strong interactions at a fixed density
ratio nB/nF < 1, the condensate density decreases smoothly and vanishes beyond a
critical interaction parameter (kFaBF )−1

c for a second-order phase transition. For a
first-order transition, on the other hand, the homogeneous system passes through a
phase separation region. Upon reaching the lower boundary (kFaBF )−1

ps the system
enters a phase-separated state (see Fig. 2.2, where the local condensate density drops
to zero discontinuously in some parts of the system while it remains finite in others.
Tuning the interactions further, the mixing ratio between the two phases shifts towards
the Molecular phase and, once (kFaBF )−1

c is reached, all parts of the system have
transitioned to the Molecular phase. Importantly, however, the globally averaged
condensate density is expected to decrease smoothly and to vanish continuously at
(kFaBF )−1

c in both cases. This effect is enhanced by the harmonic trap (see Fig. 2.9
and it makes distinguishing between the two cases challenging.

Within the condensed Polaronic phase it is predicted that the depletion of the
condensate depends weakly on the boson-fermion density ratio which, remarkably,
extends all the way to the Fermi polaron limit, nB/nF → 0 [100, 130]. In the extreme
limit of a single bosonic impurity in a Fermi gas, the phase transition connects to a
polaron-to-molecule transition and the condensate fraction reduces to the impurity
quasiparticle weight (for a detailed explanation see Ref. [100]). A computational, self-
consistent functional renormalization group (fRG) technique that takes into account
an infinite number of particle-hole excitations of the Fermi sea [137] predicts this
transition to occur at (kFaBF )−1 = 1.16 (see Fig. 2.7, Section 2.2.2.3). This transition
point is expected to shift to larger values as temperature and boson-density increase
[9, 100, 138].
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2.2.2 Review of theoretical treatments of the quantum phase tran-
sition

In order to understand how the conclusions about the phase diagram described in
Section 2.2.1 are reached, it is instructive to understand the methods used to obtain
them. In this regard, the theory presented in Ref. [99] acts as a natural starting point
to understand the statements made regarding the order of the phase transition. Next,
to understand the physical properties of the polaronic and the molecular phase, the
theory presented in Ref. [100] proves useful.

2.2.2.1 Theoretical treatment by Ludwig et al. (2011)

In Ref. [99], an atomic mixture of a Bose gas φ with a Fermi gas ψ is considered in
a two-channel model in the limit of an infinitely broad Feshbach resonance (h → ∞)
(see Section 1.5). They include a Bose-Bose repulsion λ and an attractive Bose-Fermi
interaction featuring a bound state molecule ξ. The resulting action can be written
as

S =
∫
x
φ∗(x)G−1,0

B (x)φ(x) + ψ∗(x)G−1,0
F (x)ψ(x) + ξ∗(x)G−1,0

ξ (x)ξ(x)

+ λ

2 [φ∗(x)φ(x)]2 − h [ψ∗(x)φ∗(x)ξ(x) + h.c] , (2.1)

where G−1,0
B , G−1,0

F and G−1,0
ξ denote the bare Green’s functions of the bosons, fermions

and molecules, which contain the chemical potentials µB and µF . To obtain an ex-
pression for the grand canonical potential ΩG, the effective potential U(ρ̄) is computed
where ρ̄ is the condensate density of the bosonic field, related to φ via

√
ρ̄ = 〈φ〉. To

this end, the path integral associated with the canonical distribution function Z (see
Section 1.9) is solved in the following way. After expanding the action in Eq. (2.1) to
second order in the bosonic and fermionic fields around their respective expectation
values 〈φ〉 =

√
ρ̄ and 〈ψ〉 = 0 these fields can be integrated out. From this one obtains

an effective action Seff in terms of molecules and the condensate density

e−Seff[ξ,ρ̄] =
∫

DφDψe−S[φ,ψ,ξ]. (2.2)

After expanding Seff to second order in ξ around its expectation value ξ̄, the effective
action can be computed by integrating ξ

e−Γ[ξ̄,ρ̄] =
∫

Dξe−Seff[ξ,ρ̄] = Z. (2.3)

The effective potential U(ρ̄) = Γ[0, ρ̄]T/V is obtained by setting ξ̄ to its physical
value, 0. The effective potential thus reads explicitly [99]

U(ρ̄) = λ

2 ρ̄
2 − µφρ̄+ 1

2

∫
p

ln
[
detG−1

B

]
−
∫
p

lnG−1,0
F −

∫
p

lnG−1
ξ , (2.4)

where the term containing G−1
B originates from purely bosonic fluctuations which are

ignored for simplicity. The first two terms are equally found in a repulsive Bose
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gas (λ > 0), that does not interact with another species: for µφ > 0 the system is
stable only due to the repulsive term and possesses a minimum at ρ̄ > 0. The fourth
term describes the energy density due to populating a Fermi sea of free fermions.
Finally, the last term accounts for the Bose-Fermi interactions, which modify the
physical properties of bosons, fermions and molecules. As a result, this term accounts
for the population of molecules and may lead to condensation of the bosonic field
(ρ̄ > 0) even when the bosonic field is gapped at the bare level (µφ < 0). The self-
energy contribution contained within Gξ is fully equivalent to those contained within
a standard non-self-consistent T -matrix approach Section 2.2.2.2 for ρ̄ = 0 and thus
the strong Bose-Fermi coupling physics is captured.

For a vanishing Bose-Bose repulsion the system is unstable towards collapse as
the fermions mediate an attractive force between the bosons. This is evident as the
effective potential diverges as

U(ρ̄) ∝ −ρ̄κ for ρ̄ → ∞, λ = 0, (2.5)

where κ ≈ 1.6, which thus describes a thermodynamically unstable system. This term
is balanced by the quadratic contributions from the Bose-Bose repulsion which render
the system stable.

The effective potential U(ρ̄) takes as input the fermionic and bosonic chemical
potentials, µF and µB, along with the two scattering lengths aBF and aBB and is
a function of the condensate density. For given chemical potentials and scattering
lengths, the ground state of the system is found at the minimum of the effective
potential with respect to the condensate density. From the effective potential at
the minimum one can then compute the resulting fermionic and bosonic densities by
differentiating with respect to the chemical potentials

nF = −∂U(ρ̄)
∂µF

(2.6)

nB = −∂U(ρ̄)
∂µB

. (2.7)

Unlike the bosonic and the fermionic chemical potential, the bosonic and fermionic
densities are physical observables in ultracold quantum gases. In two-dimensional
semiconductor systems, on the other hand, the chemical potential is a physical ob-
servable in the form of gate doping.

For 1/kFaBF → ∞ and arbitrarily small Bose-Bose repulsion, the bosonic con-
densate is fully depleted and the system is in the normal phase where the condensate
density vanishes ρ = 0. Here, for nB < nF all bosons are bound into molecules at
T = 0, resulting in the name molecular phase, used before. Tuning the interaction
strength and approaching the quantum phase transition from the normal phase, there
are two different scenarios in which one can enter a phase with a finite condensate
density (i.e. the minimum of the effective potential is at a finite condensate density).
These are shown in Fig. 2.3. On the right a parameter is tuned and at a critical
value a minimum away from zero forms, however the location of that minimum starts
at 0 and then continuously moves away. In contrast on the left, the potential has a
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Figure 2.3. Effective potential for the Bose-Fermi mixture as a function of ρ̄, illus-
trating a first (left) and a second (right) order phase transition. In both cases from
bottom to top, the curves correspond to increasing values of 1/kFaBF . On the left,
one can see how the minimum jumps from ρ̄ = 0 to ρ̄ > 0, while on the left the
minimum continuously moves away from ρ̄ = 0 once a critical value of 1/kFaBF is
reached. Figure adapted from Ref. [99].

dip, and once that dip becomes the global minimum the condensate density jumps.
The former case describes a continuous, second order transition while the latter is a
discontinuous, first order transition. Depending on the Bose-Bose repulsion both first-
and second-order transitions are found where weaker repulsion favors first-order and
strong repulsion favours a second-order quantum phase transition.

The jump in condensate density upon crossing a first-order phase transition implies
that also the densities carry a discontinuity. As a result, when considering a phase
diagram that maps out densities, some regions may be skipped over and are thus not
realizable. Forcing the system into such a forbidden region leads to phase separation,
where the system locally realizes bubbles of different phases and mixes these bubbles
accordingly. This phase separation, however can not be described in a quantum field
theory. The forbidden region, however, can be seen in a phase diagram because no
combination of chemical potentials and scattering lengths can realize it.

In Fig. 2.4 a first order transition with a forbidden region is visible. This diagram
is given in terms of computed densities and the first-order transition curves are shown
in red. Were this phase diagram given in terms of fundamental quantities (chemical
potentials and scattering lengths) instead then no forbidden regions would appear.
The jump in density when approaching the phase transition from both sides leads
to these lines separating a region in between that is only realizable by mixing sepa-
rated phase bubbles. The full circles denote a point in a fundamental phase diagram
approached from within two different phases.

While a first-order quantum phase transition may occur when tuning a parameter,
there may be a large potential barrier between the two states, corresponding to distinct
local minima at ρ = 0 and ρ > 0. This barrier may suppress the transition to the new
ground state [99]. In an experiment, one may thus enter a metastable state which
only decays to the true ground state if the experimental timescales are larger than
the timescales of decay to the ground state. Tuning further beyond the transition
point, this potential barrier in the effective potential eventually ceases to exist and
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Figure 2.4. Illustration of the phase diagram as a function of the ratio of fermion to
boson density nψ/nφ and interaction parameter 1/(kFa), including a small Bose-Bose
repulsion of ãB = aB/a = 0.17. transition separates The symmetry broken phase
(ρ > 0, BEC-LIQUID) and the normal phase (ρ = 0, NORMAL) are separated by
a first-order transition. The region between the two solid red lines corresponds to a
mixed state where the two phases coexist due to phase separation. In this regime
the second order phase transition line (blue dashed) separates the metastable (MS)
normal and BEC phases. Figure adapted from Ref. [99].

the effective potential no longer holds a local minimum at ρ̄ = 0 such that a second-
order phase transition is reached. In Fig. 2.4 this transition between two metastable
states inside of the forbidden region is shown.

To study the second-order transition between a metastable polaronic and a mo-
lecular phase, a full solution of the effective potential is not necessary and rather
its behavior near ρ̄ = 0 is sufficient. Such a transition point is characterized by
the Thouless criterion [139] which states that the renormalized bosonic propagator
becomes gapless,

−µB + ΣB = 0, (2.8)

leading to condensation of the boson mode. Here, Σφ denotes the self-energy correc-
tions to the bosonic propagator and this criterion is related to the derivative of the
effective potential

−µB + ΣB ∝ ∂U(ρ̄)
∂ρ̄

∣∣∣
ρ̄=0

. (2.9)

More generally, the relation between the gap of the bosonic propagator and the deriva-
tive of the effective potential can also be used for ρ̄ > 0 to determine local minima of
the effective potential, from which the phases can be described. However, to deter-
mine whether the phase is stable or metastable, i.e. whether a found local minimum
is also a global minimum the full effective potential needs to be determined.

In such a study, the Bose-Bose repulsion may be disregarded safely: the repulsion
ensures thermodynamic stability of the system at large condensate densities, however
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(a) (b)

(c)

(d)

Figure 2.5. Feynman diagrams for the boson self-energy ΣB (a), the fermion self-
energy ΣF (b) , along with the T -matrix (c) and the scattering vertex Γ (d). Full
lines correspond to bare boson (B) and fermion (F) Green’s functions G−1,0

φ and G−1,0
ψ ,

dashed lines to the regularised Bose-Fermi interaction g, zig-zag lines to condensate
insertions √

ρ. Dotted lines corresponds to interaction vertices. Figure adapted from
Ref. [100].

when considering only local minima at small condensate densities no stability needs
to be ensured. Furthermore, as the Bose-Bose repulsion in ultracold atom systems is
typically very weak, the effect at small condensate densities is usually negligible [20].

2.2.2.2 Theoretical treatment by Guidini et al. (2015)

In Ref. [100], a theoretical description of the polaronic phase and its transition into
a molecular phase is provided. The system is described using a diagrammatic Ansatz
involving the use of Feynman diagrams. As mentioned before, this treatment is thus
not suitable to determine the order of the transition, however it provides valuable pre-
dictions about the physical properties of the polaronic phase, independent of whether
it is stable or merely metastable. While Bose-Bose repulsion is included in the study
carried out in Ref. [100], its effects are almost negligible and thus for simplicity we
review their methods omitting the Bose-Bose repulsion.

Rather than working in a two-channel model, they work in a single-channel model

S =
∫
x
φ∗(x)G−1,0

B (x)φ(x) + ψ∗(x)G−1,0
F (x)ψ(x)

+ g
∫
x
ψ∗(x)φ∗(x)φ(x)ψ(x), (2.10)

where g is renormalized to reproduce the s-wave scattering length aBF . They employ a
non self-consistent T -matrix approach to renormalize the Bose-Fermi coupling vertex
which they then use to compute self-energy corrections. The corresponding Feynman
diagrams are shown in Fig. 2.5. The diagram shown Fig. 2.5d) is the same type of
ladder resummation done for the Fermi polaron problem discussed in Section 1.7.
When considering a phase in which the bosons condense 〈φ〉 = √

ρ, additional terms
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in the T -matrix arise from condensate insertions denoted as wiggly lines in Fig. 2.5c).
This ladder resummation Γ and the T -matrix are then used in self-energy contributions
to the bosonic and the fermionic propagator. The self-energy contributions are again
similar to those seen in Fermi polaron in Section 1.7. Additionally, the fermionic
self-energy obtains contributions from condensate insertions.

While the diagrammatics are quite challenging to derive in a single-channel frame-
work, they arise naturally in a two-channel framework. This diagrammatics will be
used in Chapter 4 and a derivation in terms of the two-channel model can be found
there and the renormalization to vertices in the effective action holds a simple form.
The complicated structure in Eq. (2.10) arises when to obtain the propagator G the
inverse propagator G−1 is inverted, which is given by second derivatives of the effective
action

G−1
σ,σ′ ∝ δ2Γ

δσδσ′ (2.11)

with respect to the fields. Note that in Eq. (2.11), Γ denotes the effective action and
not the scattering vertex seen in Fig. 2.5(d) From these diagrammatics the renormal-
ized Green’s functions are obtained as

G−1
B = G−1,0

B − ΣB (2.12)
G−1
F = G−1,0

F − ΣF (2.13)

and a local minimum of the effective potential is enforced using the Hugenholtz-Pines
relation [140]

−µB + ΣB = 0, (2.14)

to obtain the condensate density ρ. This is the same Thouless criterion as in Eq. (2.8).
Finally, for given Bose-Fermi scattering length aBF and chemical potentials, µB and
µF , the boson and fermion density are obtained as

nB = ρ−
∫ dk

(2π)3

∫ dω

2πGB(k, ω)eiω0+ (2.15)

nF =
∫ dk

(2π)3

∫ dω

2πGF (k, ω)eiω0+
, (2.16)

which is used to define the Fermi wave vector kF as kF ≡ (6π2nF )1/3 and the Fermi
energy as εF = k2

F/2mF . Here (k, ω) denote the momentum and a Matsubara fre-
quency.

In Fig. 2.6 simultaneous solutions of the Hugenholtz-Pines relation in Eq. (2.14)
and the number equations in Eqs. (2.15) and (2.16) are shown for the bosonic chemical
potential µB the fermionic chemical potential µF and the condensate density for differ-
ent density ratios nB/nF . The data are obtained for different mass ration mB/mF = 1,
5 and 23/40. As it can be seen, the chemical potential of the bosons lies below the
two-body binding energy εB and decreases with increasing interaction strength. The
bosonic chemical potential has only a weak dependence on the density ratio nB/nF
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Figure 2.6. Bosonic chemical potential µB (a)), fermionic chemical potential µF
(b)) and condensate fraction ρ/nB (c)) as a function of the interaction strength
(kFaBF)−1 for different values of nB/nF . These are simultaneous solutions of the
Hugenholtz-Pines relation in Eq. (2.14) and the number equations in Eqs. (2.15)
and (2.16). The dashed-dotted line in a) denotes the two-body binding energy
−εB = − 2

a2
BF

(
1
mB

+ 1
mF

)
. The data in the main plots is for mB = mF , while the

inset in c) shows data for mB/mF = 5 and 23/40. Figure adapted from Ref. [100].

and since the bosonic chemical potential connects to the Fermi polaron energy in the
limit nB/nF → 0 this is a first hint towards a universal behavior in terms of the Fermi
polaron. The chemical potential of the fermions shows a much stronger dependence
with respect to the density ratio nB/nF and approaches the Fermi energy µF → εF
for nB/nF → 0.

Finally, the condensate fraction shows the behavior described in the introduction.
At weak interactions (1/kFaBF → −∞), all the bosons are within the condensate.
For increasing (kFaBF )−1 the condensate fraction begins to decrease and eventually
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vanishes completely. The curves show a striking universality with respect to the
density ratio nB/nF in that for a large range of (kFaBF )−1 the condensate fraction
is insensitive to the density ratio nB/nF . This shows a close correspondence between
the condensate fraction ρ/nB and the quasiparticle weight Z encountered in the Fermi
polaron problem (see Section 1.7 and Chapter 5), which is noted in Ref. [100] and
will also be discussed further in the context of the fRG calculations we undertook
in studying this phase transition. Interestingly, because the diagrammatics used in
Ref. [100] reduces to the diagrammatics of the polaron-to-molecule transition in the
Chevy Ansatz, the condensate fraction obtained in Ref. [100] reduces exactly to the
quasiparticle weight Z obtained in the polaron-to-molecule transition of the Fermi
polaron within the Chevy Ansatz.

In the impurity limit nB/nF → 0 the condensate fraction suddenly drops to 0
upon reaching the polaron-to-molecule transition. For increasing density ratios the
condensate fraction follows the quasiparticle weight until it reaches approximately the
polaron-to-molecule transition, the condensate fraction then quickly drops to zero and
with increasing density ratio, the critical (kFaBF )−1

c at which the condensate fraction
vanishes increases. From this a physically intuitive picture in terms of the Fermi
polaron problem arises: the system behaves as if it was occupying the polaron and
molecule quasiparticle spectrum of the Fermi polaron impurity problem. For a given
density ratio, the bosons form a condensate of Fermi polarons. Beyond the polaron-
to-molecule transition the lower-lying molecule dispersion is populated with a Fermi
sea of molecules. While the energy difference between the bottom of the molecule
and the polaron band is small, the Fermi energy of the molecules is located at the
energy of the lowest-lying polaron mode and the remaining bosons condense in the
polaron mode. Eventually, the energy gap between molecules and polarons is so big,
that all bosons can be accommodated for within the Fermi sea of molecules and thus
the Fermi energy of the molecules lies below the bottom of the polaron band. As this
point, no more bosons condense withing the polaron band and the condensate fraction
vanishes. With increasing bosons density nB a larger energy gap is necessary, which
in turn leads to an increase in (kFaBF )−1

c as seen in Fig. 2.6.

2.2.2.3 Calculation using a functional renormalization group (fRG) approach and
its comparison to the non-self-consistent T -matrix approach

The non-self-consistent T -matrix (NSCT) approach in Section 2.2.2.2, from which
a condensate depletion at equal density can be obtained, predicts the polaron-to-
molecule transition to occur at (kFaBF )−1 = 1.60 [100] for a mass ratio of 23/40. For
finite boson densities it predicts the phase transition between the polaronic condensate
and the molecular phase to take place beyond this value as the boson concentration
increases, i.e. (kFaBF )−1

c > 1.60. Specifically, for the case of balanced densities,
nB = nF , it predicts (kFaBF )−1

c = 2.02.
The NSCT approach, however, only takes into account single particle-hole exci-

tations of the Fermi sea [141] and underestimates the modification of the binding
energy of molecules inside the many-body environment. Indeed, when applying the
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Figure 2.7. Energy spectrum of the zero-momentum Fermi polaron (red line) and the
zero-momentum molecule (gray line) for a single bosonic impurity obtained from a self-
consistent functional renormalization group (fRG) calculation at a mass imbalance of
23/40. The energies cross at the polaron-to-molecule transition at (kFaBF )−1

c = 1.16
(red dashed line). For aBF > 0, the binding energy Eb = −~2/2µa2

BF is subtracted
where µ is the reduced mass.

NSCT approach [100] to the Fermi polaron problem at mass balance one finds the
polaron-to-molecule transition to occur at (kFaBF )−1

c = 1.27 [56], while techniques
that include higher-order correlations such as functional renormalization group (fRG)
[137] and state-of-the-art diagrammatic Monte Carlo (QMC) [142, 143] predict a value
of (kFaBF )−1

c = 0.90.
Thus, in order to obtain a more accurate description of the critical interaction

strength for the heteronuclear case considered in this work, an fRG scheme which
takes into account an infinite number of particle-hole excitations in the Fermi sea
[137] is employed. The scheme is described in detail in Chapter 5 and although it
uses a different method to solve the self-consistent fRG equations it is in principle
equivalent to the calculations carried out in [137], albeit for a different mass ratio of
23/40.

The resulting polaron and molecule energies are shown in Fig. 2.7, yielding a
polaron-to-molecule transition at (kFaBF )−1 = 1.16. The polaron quasiparticle weight
is shown in Fig. 2.8 and we see that the polaron quasiparticle weight obtained in the
impurity limit already describes the condensate fraction well except for its disconti-
nuity at the polaron-to-molecule transition. From investigations of two-component
Fermi gases it is expected that this discontinuity will be smoothed out due to finite
boson density, temperature or combinations thereof [9, 138]. Moreover, as explicitly
shown in [1, 9, 100, 138] and suggested by mean-field arguments [1], one expects the
transition to shift to larger values of (kFaBF )−1 as the boson density increases. Hence,
the value of (kFaBF )−1 = 1.16 obtained from the fRG in the impurity limit can be
regarded as a lower bound on the actual location of the quantum phase transition at
(kFaBF )c.

We note that the polaron and molecule energies cross at a rather shallow angle as
can be seen in Fig. 2.7. As a result, the underestimation of the molecule energy is
the main reason for the difference in the predicted location of the polaron-to-molecule
transition in the NSCT and fRG calculations. The quasiparticle weight is, in contrast,
less affected and, as shown in Fig. 2.8, both approaches yield similar results for the
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Figure 2.8. Impurity quasiparticle weight in the Fermi polaron problem for α = 23/40.
The quasiparticle weight of the impurity as a function of the interaction strength is
shown as obtained from the fRG (red, solid) and the NSCT approach (black, dashed).
While both methods yield similar results they differ in the prediction of the point
where the polaron-to-molecule transitions occurs, beyond which the occupied quasi-
particle weight drops to zero. To indicate the effect of finite boson density, the con-
densate fraction of the mixture computed in NSCT is shown for nB = nF (black solid,
also shown in Fig. 2.11).

quasiparticle weight of a bosonic impurity. Based on this finding, NSCT theory can be
expected to give a reliable prediction for the condensate fraction also at finite boson
density [100].

2.2.3 Experimental setup and probe of the QPT

A natural way to investigate the phase diagram away from the impurity limits starts
from producing a double-degenerate Bose-Fermi mixture. Especially the regime of
matched densities is of interest where the system becomes strongly correlated and
neither of the atomic species can be regarded as a quantum impurity. To access this
novel regime, in Ref. [2] a species-dependent dipole trap at 785 nm was employed,
which was near-detuned to the D-lines of the K atoms. This trap provides a weaker
confinement of the Na compared to the K atoms, lowering the density of the Na BEC
and increasing overlap between the species (see Fig. 2.9, right). As a consequence,
the detrimental loss resulting from collisions of Na atoms in the BEC with NaK∗

Feshbach molecules is dramatically reduced. In contrast, for a typical trap setup
where the trapping effect is similar for both atomic species, the peak density of the
BEC is considerably larger than that of the Fermi gas (see Fig. 2.9, left). The latter
trap setup results in an entirely different physical regime related to the Bose polaron
problem with a low molecule association efficiency when starting from the BEC.

In the following, experimental probes of signatures of this QPT are described.
The experiment described in Ref. [2] typically starts with 2.3 × 105 40K atoms at a
temperature T = 80 nK (corresponding to T/TF ∼ 0.2) and 0.8 × 105 23Na atoms
with a condensate fraction of 60% at a magnetic field of 81 G. A single magnetic
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Figure 2.9. Calculated in-trap density profiles. Calculated in-situ density profiles of
bosons (blue) and fermions (red) in the species-dependent 785-nm dipole trap (right),
and in a far-detuned trap (left). The dashed blue line gives the thermal boson fraction,
showing a lack of thermal bosons in regions where bosons and fermions overlap. The
black and the red star indicate different ratios of boson to fermion density shown in
Fig. 2.2.

field ramp with a speed of 3.5 G/ms is employed that is terminated at the desired
magnetic field close to a Feshbach resonance at 78.3 G [144, 145], corresponding to
different interaction strengths (kFaBF )−1 while the Bose-Bose interaction remains at
aBB = 53 a0 [144]. Due to the small effective-range parameter kFR∗ = 0.08 of this
broad Feshbach resonance, the Bose-Fermi interactions are characterized by the single
parameter (kFaBF )−1 [144].

Theory [99, 123, 133, 146] and early experiments [147, 148] suggest that for strong
interactions, especially close to unitarity, the Bose-Fermi mixture might undergo col-
lapse. However, the timescale for the collapse to occur is on the order of the trapping
period. In this experiment the strongly interacting regime is ramped through on a
time scale shorter than the trapping period, prohibiting the collapse to occur. Indeed,
the observations show that the Bose-Fermi mixture remains in a metastable state on
such experimental time scales, which in turn allows the physics of the phase diagram
shown in Fig. 2.2 to be explored. Specifically, the density increase in a collapse sce-
nario would lead to enhanced interspecies loss, which is not observed. As a further
instability one might also consider immiscibility of the mixture leading to a separation
of bosonic and fermionic atoms. Such immiscibility is expected to occur for repulsive
interactions between bosons and fermions. However in this experiment the attractive
interaction branch of the system is followed and, given the efficient molecule formation
observed, immiscibility, which would be characterized by poor spatial overlap, can be
excluded.

Furthermore, it was ensured that the depletion of the BEC is independent of
the ramp speed for the sufficiently slow ramp used there. This indicates that the
system stays close to a local equilibrium state until near the critical point. Then
the magnetic field is quenched to 72.3 G. This projects the system onto free atoms
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Figure 2.10. Association and dissociation process of degenerate Feshbach molecules.
(a) Absorption images of Na atoms (Na) and Feshbach molecules (NaK∗) after 18 ms
time of flight during the association ramp from the polaronic BEC to the Molecular
phase. (b) Production of Feshbach molecules. Numbers of condensed Na atoms (dark
orange points), thermal Na atoms (bright orange diamonds) and Feshbach molecules
(gray points) are shown as a function of (kFaBF )−1 for n̄B/n̄F = 0.7. The red line
indicates the polaron-to-molecule transition at (kFaBF )−1 = 1.16 in the Fermi polaron
problem. (c) Absorption images during the dissociation ramp with 18 ms time of
flight. (d) Dissociation of Feshbach molecules. Condensed Na atom (dark orange
points), thermal Na atom (bright orange diamonds) and Feshbach molecule (gray
points) numbers are shown as a function of (kFaBF )−1 for n̄B/n̄F = 0.7.

and deeply bound molecules which are subsequently imaged in time of flight after
Stern-Gerlach separation as shown in Fig. 2.10a, b.

To characterize the phase transition quantitatively, the normalized order param-
eter φ = NBEC/(Nm + NBEC) is defined. Here NBEC and Nm represent the number
of condensed Na atoms and those associated to molecules, respectively. The order
parameter φ describes the depletion of the condensate fraction due to the excita-
tion of bosons to finite-momentum states by quantum fluctuations. These quantum
fluctuations are dominated by the build-up of pairing correlations, measured by the
projection onto molecules. Note, in the definition of φ thermal Na atoms are disre-
garded as the condensate fraction in the center of the trap is described: First, the
spatial extension of thermal bosons (see Fig. 2.9, right) is much larger than that of
the BEC and the fermions, both of which are concentrated in the center of the trap.
Here the density of thermal bosons is more than twenty times smaller than that of
the BEC. Second, on the time scales of the experiment thermal bosons do not play a
significant role in the molecule formation due to their weak spatial overlap with the
fermions. Molecules are thus formed predominantly from BEC atoms.

The temperature of bosons in the center of the trap where most of the boson-
fermion collisions take place is thus effectively much lower than suggested by the
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Figure 2.11. Quantum phase transition in a density-matched Bose-Fermi mixture.
Order parameter φ as a function of (kFaBF )−1 for the boson-fermion average-density
ratio n̄B/n̄F = 0.4 (orange points) and n̄B/n̄F = 0.7 (blue points). The black solid
line shows the order parameter from zero-temperature theory in Ref. [100] predicting
the QPT to occur at (kFaBF )−1

c = 2.02 (black triangle) for ideal bosons interacting
with a Fermi gas at nB/nF = 1. The red solid line shows the polaron quasiparticle
weight of a bosonic impurity in a Fermi gas obtained from a self-consistent functional
renormalization group (fRG) calculation that predicts the polaron-to-molecule tran-
sition to occur at (kFaBF )−1

c = 1.16 (red triangle).

equilibrium temperature, allowing for a direct comparison of the findings with zero-
temperature theory. Specifically, in Fig. 2.11 comparison is made with the quasipar-
ticle weight of a bosonic impurity calculated from a self-consistent fRG approach (see
Section 2.2.2.3, red dashed line) and predictions of the condensate fraction from a
non-self-consistent T -matrix (NSCT) theory (see Section 2.2.2.2 and Ref. [100], black
solid line) for nB = nF which neglects multiple particle-hole excitations in the Fermi
sea.

In Fig. 2.11, the measured order parameter φ is shown as a function of (kFaBF )−1

for n̄B/n̄F = 0.4 and 0.7 where n̄B/n̄F denotes the ratio of the average boson and
fermion density in parts of the trap with a finite condensate fraction in the weakly
interacting regime. As the interaction strength increases, φ reduces slowly for nega-
tive values of the interaction parameter (kFaBF )−1 < 0. However, once the scatter-
ing length becomes positive, φ decreases rapidly and vanishes in the regime beyond
(kFaBF )−1 = 1.44(15) (n̄B/n̄F = 0.7) and (kFaBF )−1 = 1.75(18) (n̄B/n̄F = 0.4)
where the residual condensate fraction is comparable to the uncertainty of the mea-
surement. The experimental measurements agree well with the predicted condensate
fraction from the NSCT approach throughout the entire interaction regime. Impor-
tantly, both data sets overlap within error bars, providing support for the predicted
universality of the condensate depletion with respect to varying nB/nF [100, 130].
This, in turn, justifies comparing the in-trap experiment with predictions for a homo-
geneous system. The data also show a remarkable agreement with the quasiparticle
weight of a single impurity in most of the interaction regime except close to the phase
transition. This indicates that, despite having a large boson density, the system can
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be well described as a condensate of polaronically dressed bosons. In contrast, how-
ever, at the transition the order parameter vanishes smoothly compared to a jump
predicted in the impurity limit.

To estimate the transition point independently from the slowly varying order pa-
rameter, we consider the projected Feshbach molecule number shown in Fig. 2.10b
as a measure of existing boson-fermion pairing correlations (see Section 2.2.3.2). As
(kFaBF )−1 increases, so do the pairing correlations (including potential mixing be-
tween fermions and molecules [96]) until they saturate when the bosons are fully
bound into molecules. The resulting transition point (kFaBF )−1 = 1.29(14) extracted
from the measured Feshbach molecule number is consistent with the transition point
obtained through the vanishing of the order parameter.

Driving through the transition provides an efficient method to create molecules.
The data show that a striking conversion efficiency of around 80% of the Na atoms in
the BEC into Feshbach molecules can be achieved. Accounting for the residual density
mismatch and the resulting interspecies loss from the excess bosons, the experimental
data suggest that the entirety of the BEC could be converted into molecules for
perfectly matched density conditions. In contrast, the highest conversion efficiency
from a BEC previously reported was less than 50% in KRb, where the density of
bosons in the center of the trap was ten times higher than that of the fermions, which
was possible only because of the ten-fold lower interspecies loss coefficients compared
to NaK [91, 145, 149].

2.2.3.1 Reversal of the phase transition

Following the drive through the phase transition, the reversal of the phase transition
can be investigated. After the association ramp reaches (kFaBF )−1 = 1.3, in Ref.
[2] the magnetic field was ramped back to dissociate the molecules. The dissociation
ramp was followed by a magnetic field quench to 72.3 G for detection. As can be
seen from the time-of-flight images in Fig. 2.10c, the number of projected Feshbach
molecules decreases, while a finite BEC fraction is recovered. In particular, it is shown
that the number of Na atoms in the BEC can be increased from 3(2)×103 to 8(1)×103

(see Fig. 2.10d). Heating is evident after the dissociation in the form of an increase
of thermal Na atoms which is attributed to the non-adiabatic nature of the magnetic
field ramps near the transition point. Due to the changing number of Na atoms in
the thermal wings, the reversal of the phase transition thus cannot be characterized
with the order parameter φ as done in the association ramp. Nonetheless, the partial
restoration of the BEC highlights the coherence preserved in the experiment and is
a striking example of how bosons that were bound into fermionic molecules in finite-
momentum states are converted back into their motional ground state. Thus, the
Fermi degeneracy of the molecules and the partial restoration of the BEC underline
the low entropy of the observed molecular clouds.
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2.2.3.2 Projection of polaronic states onto deeply bound molecules

As evident from Fig. 2.10b, a finite number of Feshbach molecules is detected already
before the phase transition. This can be understood from the fact that the rapid ramp
to 72.3 G projects the system onto deeply bound molecules. As a result, short-distance
pairing correlations between bosons and fermions are effectively measured before the
phase transition. However, once the phase transition is crossed in the initial magnetic-
field ramp, all bosons are bound into weakly bound molecules in an adiabatic fashion.
In that case, the weakly bound Feshbach molecules are transferred into deeply bound
states by the subsequent rapid magnetic field ramp.

In the following, it is demonstrated that a simple Fermi polaron wavefunction
indeed overlaps with deeply bound molecules when a projection measurement is per-
formed. Similar to the calculations performed in Ref. [150] one can define the molecule
number operator as

N̂Mol =
∑
mlk

ĉ†
m+kd̂

†
−kφm(k)φ∗

m(l)d̂−lĉm+k . (2.17)

Here, dq and cq are the fermionic and bosonic annihilation operators, respectively,
while φp(k) denotes the wavefunction of the molecule in vacuum at center-of-mass
momentum p. It is approximated with the form valid for an attractive contact inter-
action potential,

φ̃p(k) = 1
Eb + α+1

2mFα

(
k + α

1+αp
)2 , (2.18)

φp(k) = φ̃p(k)√∑
l

∣∣∣φ̃p(l)
∣∣∣2 . (2.19)

Here, Eb denotes the energy of the molecule at p = 0, mF denotes the mass of the
fermions, and α = 23/40 is given by the ratio of the bosonic mB and the fermionic
mass mF .

The operator N̂Mol measures the number of projected molecules with respect to
the Chevy Ansatz [54] for the Fermi polaron (see also Section 1.7)

|Pol〉 = α0d̂
†
0 |FSN〉 +

∑
kq
αkqd̂

†
q−kĉ

†
kĉq |FSN〉 (2.20)

as NMol = 〈Pol| N̂Mol |Pol〉. Here, α0 and αkq denote variational parameters and |FSN〉
denotes a Fermi sea containing N fermions.

The resulting fractions are shown in Fig. 2.12 for a mass ratio of α = 23/40 and
different values of Eb. For the binding energies shown, it can be seen that with increas-
ing (kFaBF )−1 the molecule fraction increases, with the fraction getting smaller as Eb
increases. This shows that, although the polaron is by no means a molecular state, it
still features pairing correlations that will lead to a finite overlap with deeply bound
molecules. Note that when the transition to the molecular phase is reached, in the
experimental procedure described before the associated weakly bound molecules will
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Figure 2.12. Number of projected molecules. The projected molecule fraction NMol

obtained from the Fermi polaron state within the Chevy Ansatz [54] is shown as a
function of the interaction parameter (kFaBF )−1 for different binding energies of the
deeply bound molecule.

be transferred nearly adiabatically to the more deeply bound molecules approximately
described by Eq. (2.18). Thus the number of observed molecules would approximately
saturate (in absence of losses). Since during the final part of the initial ramp, however,
excess bosons undergo lossy collisions with the molecules, the number of molecules
will be further reduced, and it is thus expected that the number of observed molecules
will in fact be maximized at the transition using the experimental procedure described
before.

2.2.4 Degenerate Fermi gas of NaK Feshbach molecules

After the preparation 5 × 104 of Feshbach molecules at a temperature of 100 nK by
ramping across the QPT, these can be converted to more deeply bound states by
quenching the magnetic field to 75 G. At this magnetic field, a strong gradient is
turned on to levitate the molecules and remove any residual atoms from the trap. In-
elastic collisions between molecules are strongly suppressed by Pauli blocking, leading
to a second-long lifetime. The quantum degeneracy of the molecular gas after asso-
ciation is determined by time-of-flight imaging after holding the molecules for 100 ms
(see Fig. 2.13), ensuring that collective oscillations induced by the magnetic field
ramps of the molecular cloud are dampened out. The momentum distribution of the
molecules is well described by a Fermi-Dirac distribution [91] with a temperature of
T = 0.28(1) TF , while a thermal Gaussian fit, which unlike the Fermi-Dirac distribu-
tion does not include Pauli blocking, overestimates the occupation of lower momentum
modes. This highlights the quantum-degeneracy of the Feshbach molecules.
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Figure 2.13. Quantum degeneracy of Feshbach molecules. (a) Velocity distribution
of Feshbach molecules. The angular integral (black points) of an average of fifteen
images with a time of flight of 15 ms (shown in the inset) was fitted with a Fermi-Dirac
(blue line) and a Gaussian distribution (red line). While the Gaussian fit overesti-
mates the occupation at lower velocities, the data are well described by a Fermi-Dirac
distribution, which accounts for the Pauli blocking. The fit of the Fermi-Dirac distri-
bution results in a T/TF = 0.28(1). (b) Angular integral of the residuals.

2.2.5 Conclusion on strongly coupled three-dimensional Bose-Fermi
mixtures

Using a species-dependent decompression technique of atomic clouds, signatures of a
QPT in Bose-Fermi mixtures between a phase featuring condensation and a molecular
Fermi gas were observed in excellent quantitative agreement with theory. By driv-
ing the system through this phase transition, a gas of quantum-degenerate Feshbach
molecules was produced with a record efficiency. The characterized phase transi-
tion represents a new phenomenon complementary to the paradigmatic BEC-BCS
crossover observed in Fermi systems [134] and the atomic-to-molecular BEC crossover
in Bose systems [151]. It is a first step in the exploration of strong-correlation physics
in degenerate Bose-Fermi systems and provides a benchmark for their theoretical un-
derstanding. The investigation of the order of the transition is an intriguing venue for
future research such as an observation of hysteresis [99] and quantum critical dynamics
[152] or the exploration of solid state systems where chemical potentials can be readily
tuned [33]. This method can be extended to other Bose-Fermi mixtures to produce
large degenerate samples of fermionic molecules and may help achieve a heteronuclear
molecular BEC from Bose-Bose mixtures that suffer even more severe losses when
both bosonic species condense [153–158]. Ultimately this technique allows to pro-
duce a gas of nonreactive ground-state molecules in the quantum-degenerate regime
with five times stronger molecular-frame dipole moments than the first degenerate
polar molecules of KRb and provides excellent conditions for evaporative cooling of
ground-state molecules as demonstrated for KRb [159, 160] and recently also for NaK
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[161]. This opens up exciting opportunities to study strongly correlated dipolar quan-
tum systems [162] ranging from the collapse of dipolar Fermi gases [163] to extended
Heisenberg XXZ models [164] and extended Fermi-Hubbard models [165] in optical
lattices.
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2.3 Strongly coupled Bose-Fermi mixtures in two dimen-
sions

2.3.1 Introduction
In order to explore the phase diagram of two-dimensional Bose-Fermi mixtures at
strong coupling, shown in Fig. 2.1, it is crucial to start from limits that allow for a
controlled understanding of the physics involved. One such limit is found at extreme
population imbalance where just a single boson is immersed in a fermionic bath. This
so-called Fermi polaron problem already displays rich physics that has been studied
extensively in three dimensions [50, 54, 56, 57, 59, 137, 138, 141, 142, 166–169]. As
discussed in Section 1.7, one finds that as the interaction between the impurity and
the bath is tuned, the system undergoes a sharp transition from a polaronic to a
molecular state. While in the polaron state the impurity is essentially weakly dressed
by bath excitations, in the molecular state the impurity binds tightly to one fermion
of the surrounding environment giving rise to a state that, close to the transition [137,
167], is orthogonal to the polaron state.

The two-dimensional case has received attention over the last decade [170–176] as
well. It turns out that this case is more challenging to describe due to the increased
significance of quantum fluctuations in reduced dimensions. While early works based
on simple variational wavefunctions found no polaron-to-molecule transition [170],
later studies showed that this finding was in fact an artifact caused by the neglect of
three-body correlations. Including these, one indeed recovers a polaron-to-molecule
transition in two dimensions [171, 174], a result supported by subsequent studies using
a variety of Quantum Monte-Carlo (QMC) techniques [173, 175, 176].

As the preceding discussion shows, there are strong constraints on any approach
that aims to reliably describe strongly-coupled Bose-Fermi mixtures in two dimensions
even on a qualitative level. First, in order to address the strong-coupling character of
the problem correctly, it must be based on the extended Fröhlich model. Second, it
must go beyond perturbation theory in order to describe the formation of fermionic
bound states. Third, at vanishing boson density it must correctly reproduce the quan-
tum impurity limit, which necessitates the incorporation of three-body correlations.
Fourth, in order to describe the phase diagram at finite boson density nB, the ap-
proach must be able to deal with the fermionic nature of the composite particles that
will experience Pauli blocking at finite density similar to baryons in atomic nuclei.

Unfortunately, the approaches used in the previous section to describe the phase
diagram at fermion-dominated density ratios (nB < nF ) quite reliably, cannot be
applied to the two-dimensional problem: In two dimensions, the non-self consistent
T -matrix approach discussed in Section 2.2.2.2 does not feature a polaron-to-molecule
transition and as a result cannot capture the transition into a molecular phase. The
same goes for the effective potential approach discussed in Section 2.2.2.1 which fea-
tures very similar self-energies.

As mentioned in Section 1.9, these requirements are met by the functional renor-
malization group (fRG). In addition to addressing the aforementioned constraints im-
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posed by the two-dimensional polaron problem, the fRG technique developed in this
section displays several other advantages. First, in contrast to variational approaches
based on particle-hole excitation expansions, it provides a fully self-consistent ap-
proach that naturally includes high-order quantum fluctuations and treats polaron
and molecular states on equal footing. Second, by including quantum fluctuations in
a coarse-grained fashion, momentum-by-momentum shell, unlike conventional quan-
tum field theory approaches the fRG may treat competing instabilities in an unbiased
way. Third, by using increasingly refined truncations of the underlying quantum ef-
fective action one may improve the fRG improved systematically. Finally, it offers an
easier access to spectral and dynamical response functions compared to Monte Carlo
approaches where the analytic continuation of noisy data is required.

We demonstrate the applicability of our approach by focusing on the case where
the size aB of the fermionic bound state is small compared to the average distance
d ∼ n

−1/2
B between bosons. Since for sufficiently short-ranged attraction this bound

state always exists in two dimensions [53], its binding energy εB = ~2/(2µa2
B) (with

µ the reduced mass) is the relevant interaction scale, i.e. we work in the limit
(~2/2µ)nB/εB � 1.

By including the full feedback of three-body correlations on the renormalization
group flow, we demonstrate the correct description of the polaron-to-molecule tran-
sition in the single boson limit. In particular we predict the transition to occur at a
critical dimensionless interaction strength (εF/εB)∗ = 1/18.78 in excellent agreement
with state-of-the-art variational [171, 174] and diagrammatic MC approaches [173,
175, 176].

Having thus established the limiting case of the phase diagram, we extend the
renormalization group (RG) flow to finite boson density. At small dimensionless Fermi
energies εF/εB, we find that fermionic composites build up a well-defined Fermi sur-
face, leading to the formation of a trion liquid in the case of semiconductors and a
Fermi sea of dressed Feshbach molecules in the case of ultracold atoms. As the bo-
son density is increased, the effective energy gap of the composites decreases, leading
to a transition into a strongly-correlated phase where fermions are hybridized with
molecular degrees of freedom. This extension of a single boson framework does not
take into account the formation of higher-order bound states including more than one
boson [177–179]. While this description might thus be missing some of the phases
and states at play, recent theoretical and experimental results suggest that this sim-
plified treatment may, however, still be sufficient to describe the physics relevant on
experimental times scales [2, 100].

Adapting the fRG approach to account for the full frequency-dependence of self-
energies, we predict the spectral properties of the model. We find that the inclusion
of three-body correlations has a strong impact on the effective masses of polarons and
molecules (trions) which can be observed using state-of-the-art experimental tech-
niques recently developed in ultracold atoms [9, 180, 181].

This section is structured as follows: in Section 2.3.2 we introduce the strong-
coupling model of Bose-Fermi mixtures and discuss the effective action formalism.
Here we also introduce our fRG approach, derive the corresponding renormalization
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group equations and discuss how the various phases discussed in this work can be
distinguished. As this section contains a detailed discussion of the used technique,
readers mainly interested in the predictions of our work may proceed from the in-
troduction to Section 2.3.3 and the sections thereafter. In Section 2.3.3 we discuss
the universal connection between strongly-coupled Bose-Fermi mixtures in atomically
thin semiconductors and ultracold atoms. We benchmark our approach on the limit-
ing case of a single boson embedded in a fermionic environment, obtain the ground
state energy of the system and study the evolution of correlation functions in depen-
dence on the fermion density and interaction strength. In Section 2.3.4 we turn to
the case of finite boson density. We determine the phase diagram both as a function
of the chemical potential and density of both species. In Section 2.3.5 we adapt the
fRG scheme to describe the spectral functions of the model and we predict the prop-
erties of quasiparticles emerging in the theory. We conclude in Section 2.3.6, discuss
perspectives for possible experimental realizations and provide an overview of open
questions and promising extensions of the fRG approach introduced in the present
chapter.

2.3.2 Model
Let us consider a two-dimensional Bose-Fermi mixture consisting of a fermionic species
ψ into which bosonic particles φ are embedded. The system is described by the
microscopic action

S =
∫
x
ψ∗
x

(
∂τ − ∇2

2mF

− µψ

)
ψx +

∫
x
φ∗
x

(
∂τ − ∇2

2mB

− µφ

)
φx + g

∫
x
ψ∗
xφ

∗
xφxψx

(2.21)

where x = (r, τ) denotes the coordinate r and imaginary time τ ∈ [0, 1/T ]; moreover,∫
x =

∫ 1/T
0 dτ

∫
d2r. In the following, we consider zero temperature, T = 0, and assume

that bosons and fermions have the same mass m = mF = mB. We work in units
~ = kB = 1, and set 2m = 1 unless indicated otherwise. The fields ψ and φ are
of fermionic Grassmann and complex boson nature, respectively. The two species
interact by means of an attractive contact potential of strength g < 0. The model is
regularized in the ultraviolet (UV) by a momentum cutoff Λ.

The densities of both species are set by the chemical potentials µψ/φ. At a finite
fermion density nψ (set by a chemical potential µψ > 0), tuning the boson chemical
potential µφ at fixed µψ and g, triggers a transition at a critical chemical potential
µcφ between a vacuum phase of bosons (µφ < µcφ) with vanishing boson density to a
phase of finite boson density nB > 0 (µφ > µcφ).

For strongly-coupled Bose-Fermi mixtures it is crucial to allow for the possibility
of the pairing of the bosons and fermions to a composite fermionic molecular (trion)
state. In order to describe this bound state, it is essential to resolve the pole structure
of the scattering vertex sufficiently well [59, 182]. In order to achieve this in an efficient
way, rather than considering the action in Eq. (2.21), we study a two-channel model
where the interspecies interaction is mediated by a molecule field t, that describes a
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composite fermionic particle of mass 2m [43, 44, 47, 48]. The action is given by

S =
∫

p,ω

{
ψ∗
P

(
−iω + p2 − µψ

)
ψP

+ φ∗
P

(
−iω + p2 − µφ

)
φP + t∗P

(
−iω + p2

2 +mt

)
tP

}

+ h
∫
x

{ψ∗
xφ

∗
xtx + t∗xφxψx} . (2.22)

Here, a boson and a fermion can be converted into the molecule (trion) t with a
conversion Yukawa coupling h, and mt is the detuning energy of the molecule. In
Eq. (2.22) we give the action in Fourier space where P = (p, ω) comprises the mo-
mentum p and the Matsubara frequency ω, and

∫
p,ω ≡

∫
d2pdω. We operate in the

limit where h → ∞ which universally describes both open-channel dominated Fesh-
bach resonances in cold atoms [20] as well as electron-exciton scattering in atomically
thin transition metal dichalcogenides [61]. In this limit, t becomes a purely auxiliary
Hubbard-Stratonovich field, i.e. it can be integrated out to yield back the original
action (2.21) when h2/mt = −g is fulfilled [49, 50].

In two dimensions, a bound state exists for any attractive interaction strength
g < 0 [53]. Using a sharp UV cutoff in the Lippmann-Schwinger equation, the binding
energy εB is related to the parameters of the microscopic model through [53, 170, 183]

mt = h2

8π log
(

1 + 2Λ2

εB

)
. (2.23)

Thus, rather than using the microscopic coupling g (or equivalently h and mt) we
can parametrize the interaction strength in terms of the experimentally measurable
binding energy εB of the molecule (in the case of cold atoms) or trion (in the case of
2D semiconductors), respectively. Note, in the following we will often use the terms
trion and molecule interchangeably.

2.3.2.1 fRG formalism and effective action

As introduced in Section 1.9, the fRG is a momentum space implementation of Wil-
son’s renormalization group. To introduce a scale-dependent partition function Zk as
well as a scale-dependent effective action Γk through a modified Legendre transform
of the free energy ln Zk (see Section 1.9), we add to the action (2.22) an infrared
regulator term

∆Sk =
∫

p,ω

{
ψ∗
PRψ,k(P )ψP + φ∗

PRφ,k(P )φP

+t∗PRt,k(P )tP
}

(2.24)

which penalizes low-energy fluctuations, such that only high-energy modes contribute
to the field integral.

For bosons and fermions at vanishing density the low-energy modes are located at
small momenta. Thus the cutoff function Rσ,k(P ) (σ = ψ, φ, t) is set to be large (wrt.
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k2) for |p| � k and negligible for |p| � k. In this way, low-momentum fluctuations
are suppressed while high-momentum ones are left unaffected. For fermions at a finite
density, the low-energy modes are located around the Fermi surface. Accordingly, in
this case Rσ,k is chosen to suppress fluctuations of modes inside a momentum shell of
width ∼ 2k around the Fermi surface.

After specifying a regulator on may thus compute the flow of the effective action
Γk from the UV regime down to the infrared regime at k = 0 to obtain the quantum
effective action Γ using the Wetterich equation

∂kΓk = 1
2 STr

[(
Γ(2)
k +Rk

)−1
∂kRk

]
(2.25)

introduced in Section 1.9.

2.3.2.2 Truncation schemes

While the Wetterich flow equation (1.78) is exact, it is, in most practical cases, impos-
sible to solve without resorting to approximations. A standard strategy is to propose
an Ansatz for the flowing effective action Γk. When dealing with fermions, it is custom-
ary to expand in the powers of the fields in a so-called vertex expansion [79]. Following
this strategy we choose the Ansatz for the field-dependent part of the effective action

Γ2,k =
∫

p,ω

{
ψ∗
PG

−1
ψ,k(P )ψP + φ∗

PG
−1
φ,k(P )φP

+ t∗PG
−1
t,k (P )tP

}
+ hk

∫
x
(ψ∗

xφ
∗
xtx + t∗xφxψx) . (2.26)

We perform an additional gradient expansion by neglecting a possibly emerging
momentum dependence of the Yukawa coupling hk via vertex corrections. Each field
σ = ψ, φ, t carries renormalized flowing single-particle Green’s functions whose mo-
mentum dependence is approximated within the gradient expansion as

G−1
ψ,k(p, ω) = Aψ,k

(
−iω + p2 − µψ

)
+mψ,k , (2.27)

G−1
φ,k(p, ω) = Aφ,k

(
−iω + p2

)
+mφ,k , (2.28)

G−1
t,k (p, ω) = At,k

(
−iω + p2/2

)
+mt,k , (2.29)

parametrized by inverse quasiparticle weights Aσ,k and detunings mσ,k. Note that for
the boson field φ we have absorbed the dependence on the chemical potential µφ into
the definition of the detuning mφ,k for convenience. The Ansatz (2.26) incorporates
in detail two-body correlations between the bosons and fermions. In particular, it
describes well the pairing correlations between the particles which is essential to enter
the strong-coupling regime. As a short-hand we refer to the effective flowing action
(2.26) as the ‘two-body truncation’.

The two-body truncation has been used successfully to study the Fermi polaron
problem in three space dimensions [137, 184, 185]. In two space dimensions, however,
quantum fluctuations are stronger and previous works [170, 171] have established that
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Figure 2.14. (a) Tree-level diagram generated from the effective action that leads
to the emergence of three-body correlations in the system. (b) Exchange tree-level
diagram giving rise to the Bose-Fermi scattering T -matrix. (c), (d) Tree-level diagrams
contributing to the overall atom-molecule scattering amplitude. The dashed, solid and
double lines denote the boson, fermion and molecule Green’s functions Gφ/ψ/t,k=0,
respectively, while the dots and squares denote hk=0 and λk=0, all evaluated at k = 0.

higher-order correlations must be taken into account to describe the ground state of
the system. Indeed, as we shall see in Section 2.3.3, the two-body truncation is not
sufficient to describe the polaron–to–molecule transition.

Consequently, we extend the Ansatz for the effective action to a ‘three-body trun-
cation’. To this end we add a term to the two-body truncation that accounts for the
build up of three-body correlations during the RG flow:

Γ3,k = Γ2,k + λk

∫
x
ψ∗
xt

∗
xtxψx . (2.30)

The additional term proportional to the contact coupling λk describes the scattering
between composite molecules and fermions, and thus, by virtue of the tree-level dia-
gram depicted in Fig. 2.14(a), it accounts effectively for the emergence of three-body
correlations in the system.

Let us briefly comment on the validity of the gradient expansion used for both
truncations (2.26) and (2.30). In the single-boson limit, we expect the low-energy
excitations of the boson φ and the composite particle t to be at small momenta and
we may thus expand the momentum-dependence of their propagators in a power series
about p = 0, ω = 0. For the fermions, on the other hand, we expect the most relevant
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excitations to lie around the Fermi surface. We thus expand their propagator about
p2 = εF , ω = 0.

As we extend our calculation to a finite boson density we retain the expansion
around p = 0 for the molecules as we will find that their phase appears in a regime
of the phase diagram where nB � nF . Thus the Fermi energy of molecules always
remains small. Moreover, we employ a gradient expansion that neglects effective mass
corrections as these are not expected to be crucial to correctly capture the qualitative
physics of the phase diagram (except for large mass ratios mF � mB [186], a regime
we have not considered in our work).

In the quantum impurity limit, the vanishing of the boson density implies that the
properties of the fermionic Green’s function are not affected by interactions; i.e. the
propagator in Eq. (2.27) with Aψ,k = 1 and mψ,k = 0 is exact. This can also be verified
explicitly from the flow equations derived further below [cf. Eqs. (2.42) to (2.46)]. At
finite boson density we neglect the renormalization of the fermionic propagators since
throughout this section we will remain in the regime of density ratios nB � nF .

While the truncation in Eq. (2.30) can be improved systematically, e.g., by con-
sidering higher-order correlations or a more involved momentum dependence of the
propagators or the vertices, the model in Eq. (2.30) is sufficient to accurately de-
scribe the intricate quantum impurity limit, as shown in Section 2.3.3. In particular,
even though hk and λk have no momentum dependence, the Bose-Fermi scattering
T -matrix, as described by the exchange tree-level diagram shown in Fig. 2.14(b), ac-
quires a momentum dependence due to the dynamic field t that is sufficient to describe
accurately the Bose-Fermi scattering at the relevant energy scales.

We note that at finite boson density our truncation does not account for the possi-
ble formation of bound states between two or more bosons and a single fermion [177–
179]. In a realistic experimental setting, where the system will be prepared adia-
batically, the formation of these higher-order bound states requires several bosons to
be located in the close vicinity of the fermions. Since we focus here, however, on
the regime where the boson density is significantly smaller than the fermion density,
nB � nF , the probability to find such configurations will be small. As a result,
compared to the time scale of Fermi polaron or molecule formation, the formation of
higher-order bound states will be suppressed, enabling the observation of the phase
diagram studied in this section on transient time scales. Nevertheless, while recent
results suggest that this treatment is appropriate [2, 100], the framework used in this
section can be extended to feature bound states between two bosons and a fermion;
both in the vacuum limit as well as at finite density (for details see Appendix A).
This highlights that this study provides only an initial step in the exploration of this
phase diagram which, given sufficiently stable bound states, may feature an even richer
structure.



Strongly coupled Bose-Fermi mixtures in two dimensions 61

2.3.2.3 Regulators

For the regulators Rσ,k we use sharp cutoff functions [79], defined so that the regulated
inverse flowing propagators

(Gc
σ,k)−1 = (Gσ,k)−1 +Rσ,k (2.36)

appearing on the rhs. of the flow equation (1.78) acquire the simple form

Gc
ψ,k(p, ω) = Gψ,k(p, ω)Θ(|p2 − εF,k| − k2) , (2.37)

Gc
φ,k(p, ω) = Gφ,k(p, ω)Θ(|p| − k) , (2.38)
Gc
t,k(p, ω) = Gt,k(p, ω)Θ(|p| − k) . (2.39)

Here,

εF,k = µψ −mψ,k/Aψ,k (2.40)

is the Fermi energy of the fermionic species ψ. For the fermions ψ the regulator
suppresses fluctuations at momenta in a shell of width 2k around the, in principle,
flowing Fermi-surface of the bath [187]. Even though the molecule is a fermion as well
and thus may develop a Fermi surface at finite boson density, we regulate it about zero
momentum as all phases considered in this section appear in the regime nB � nF .

The choice of sharp cutoff functions has several advantages (For a detailed dis-
cussion of regulator dependence in this model in three dimensions see Ref. [185]).
Foremost, it allows for an analytic derivation of the flow equations. In addition, it
facilitates the comparison to previous FRG studies [137, 184, 185] as well as to self-
consistent diagrammatic approximations that display a similar mathematical struc-
ture [103].

2.3.2.4 Vertex projections and gradient expansion parameters

To be able to compute a flow equation of one of the n-point functions contained in
the Ansatz for the effective action in Eqs. (2.26) and (2.30), they need to be obtained
using suitable functional field derivatives. The n-point functions considered here are
obtained from the effective flowing action Γk using the following projections:

G−1
ψ,k(p, ω) = δ

δψ(p, ω)
δ

δψ∗(p, ω)Γk ,

G−1
φ,k(p, ω) = δ

δφ(p, ω)
δ

δφ∗(p, ω)Γk ,

G−1
t,k (p, ω) = δ

δt(p, ω)
δ

δt∗(p, ω)Γk ,

hk
(2π)3/2 = δ

δt(0, 0)
δ

δφ∗(0, 0)
δ

δψ∗(0, 0)Γk ,

λk
(2π)3 = δ

δψ(0, 0)
δ

δt(0, 0)
δ

δt∗(0, 0)
δ

δψ∗(0, 0)Γk . (2.41)
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−1
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 +
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 +
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Figure 2.15. Diagrammatic representation of the fRG flow equations Eqs. (2.42)
to (2.46). Lines represent the full scale-dependent propagators, including the regula-
tors, and the dots denote interaction vertices.

2.3.2.5 Flow Equations

We now turn to the explicit derivation of the RG equations [188, 189] of all running
coupling constants. For the three-body truncation Γ3,k (Γ2,k is a subset obtained by
setting λk ≡ 0 in all flow equations) all vertices can be expressed in terms of the
six running couplings Aσ,k, mσ,k, hk and λk. Following the prescription detailed in
Section 2.3.2.4, the flow equations are obtained from appropriate functional derivatives
of the Wetterich equation. Their diagrammatic representation is shown in Fig. 2.15
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and in terms of the flowing Green’s functions they read

∂kG
−1
φ,k(P ) = h2

k∂̃k

∫
Q
Gc
t,k(P +Q)Gc

ψ,k(Q) , (2.42)

∂kG
−1
ψ,k(P ) = −h2

k∂̃k

∫
Q

[
Gc
t,k(P +Q)Gc

φ,k(Q) + λk
h2
k

Gc
t,k(Q)

]
, (2.43)

∂kG
−1
t,k (P ) = −h2

k∂̃k

∫
Q

[
Gc
φ,k(P −Q)Gc

ψ,k(Q) + λ

h2
k

Gc
ψ,k(Q)

]
, (2.44)

and

∂khk = −λk
hk
∂kG

−1
φ,k(0) , (2.45)

∂kλk = −λ2
k∂̃k

∫
Q
Gc
t,k(Q)

[
Gc
ψ,k(Q) +Gc

ψ,k(−Q)
]

− h4
k∂̃k

∫
Q
Gc
t,k(Q)Gc

φ,k(Q)2Gc
ψ,k(−Q)

− 2h2
kλk∂̃k

∫
Q
Gc
t,k(Q)Gc

φ,k(Q)Gc
ψ,k(−Q) . (2.46)

In these expressions ∂̃k stands for the derivative with respect to the k dependence of
the regulator only, i.e. ∂̃k = (∂kRk)∂Rk

and
∫
P ≡ (2π)−3 ∫ d2pdω. From Eqs. (2.42)

to (2.44) the flow equations of the couplings Aσ,k, mσ,k are obtained by projection
onto the momentum dependencies given in Eqs. (2.27) to (2.29). The parameters of
the gradient expansion of the two-point functions G−1

φ,ψ,t,k are thus given by

mψ = G−1
ψ,k(p, ω)|p2=εF ,ω=0 ,

Aψ = ∂−iωG
−1
ψ,k(p, ω)|p2=εF ,ω=0 ,

mφ = G−1
φ,k(p, ω)|p=0,ω=0 ,

Aφ = ∂−iωG
−1
φ,k(p, ω)|p=0,ω=0 ,

mt = G−1
t,k (p, ω)|p=0,ω=0 ,

At = ∂−iωG
−1
t (p, ω)|p=0,ω=0 . (2.47)

In Appendix B we provide the explicit form of the flow equations.

2.3.2.6 RG initial conditions

The initial conditions for the flows are obtained by setting Γk=Λ = S+const. First, we
discuss the UV initial conditions for mt and At which are obtained from the physical
renormalization condition that in the two-body problem a bound state of energy εB
forms between the boson and the fermion species. This two-body problem of a single
boson scattering with a single fermion can be solved exactly and as a result it can also
be solved exactly in an fRG framework and the resulting initial condition for mt,k=Λ

is given by Eq. (2.23).
To arrive at this expression one may recognize that in the two-body problem the

molecule is the ground state. As such it has to be a gapless degree of freedom in
the infrared, i.e. mt,k=0 = 0. Moreover, µψ and µφ must be set to negative values
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µvac
ψ and µvac

φ to yield a vanishing density of either species and the molecule has to
remain gapped mt,k ≥ 0 throughout the flow. In addition, µvac

ψ + µvac
φ = −εB has to

be fulfilled to ensure that the energy cost to create two particles from the vacuum to
form a bound state is given by the molecular binding energy εB. These conditions
guarantee that the chemical potentials are tuned correctly to the boundary between
the vacuum state and the state comprised of a molecule submersed in vacuum.

The flow of the three-body vertex does not have to be taken into account, since λk
does not feed back into the solution of the two-body problem. Similarly, in the two-
body problem the flow equations of G−1

ψ,k(P ) and G−1
φ,k(P ) evaluate to zero because the

poles of their propagators in Eqs. (2.42) and (2.43) lie in the same half of the complex
plane and thus their frequency contour integrals evaluate to zero. Physically, this is
because neither of the particle species has a finite density which would be required to
generate a renormalization of the particle self-energies by particle-hole fluctuations.
The molecule on the other hand is renormalized by a particle-particle diagram and
thus does not require a finite density of bosons or fermions.

As the three body-vertex is not relevant in the two-body problem, the Yukawa
term h does not renormalize. After evaluation and projection of Eq. (2.44), the flow
equations of mt,k and At,k in the two-body limit are therefore given by

∂kmt,k = h2k

2π
1

2k2 − µφ − µψ
(2.48)

and

∂kAt,k = −h2k

2π
1

(2k2 − µφ − µψ)2 . (2.49)

Using mt,k=Λ = mt,k=0 +
∫ Λ

0 dk(∂kmt,k) and mt,k=0 = 0 this yields Eq. (2.23). Note
that since in this few-body calculation no Fermi surfaces are present, the regulators
are proportional to Θ(|p| − k) for all particles involved.

We work in the limit of large hk=Λ which ensures t to be purely an auxiliary field
and we use At,k=Λ = 1. Furthermore, we set λk=Λ = 0 as it does not appear in the
classical action in Eq. (2.22).

The initial condition for the field renormalization of the boson field is naturally
given by Aφ,Λ = 1, and the UV value of its detuning is set by the boson chemical
potential, mφ,Λ = −µφ. Finally, since we will only study phases at small ratios
nB � nF we can assume that the fermion field is not renormalized, i.e. Aψ,k = 1 and
mψ,k = 0 throughout the RG flow.

2.3.2.7 Chemical potentials and distinction of phases

The numerical integration of the flow equations yields the physical value of the prop-
agators and interaction vertices at the infrared scale k = 0. Depending on their
properties we can distinguish various states and phases of the strongly-coupled Bose-
Fermi mixture, summarized in Table 2.1.

In the single-boson limit, yet at finite fermion density, we distinguish two states: a
molecular state in which the boson is paired into a composite particle, and a polaron



Strongly coupled Bose-Fermi mixtures in two dimensions 65

nt nφ µφ mt,0 mφ,0 state/phase # bosons
= 0 = 0 < µcφ > 0 > 0 boson-vacuum 0
= 0 = 0 = µcφ = 0 > 0 molecular state 1
= 0 = 0 = µcφ > 0 = 0 polaron state 1
> 0 = 0 > µcφ < 0 > 0 molecular phase � 1
> 0 > 0 > µcφ ∈ R = 0 mixed phase � 1

Table 2.1. Characterization of different ground states and phases of strongly-coupled
Bose-Fermi mixtures discussed in this chapter.

state where the boson is dressed by fluctuations of majority fermion particles. At
finite boson density, we distinguish two phases: a molecular phase, where all bosons are
paired into fermionic molecules, nt > 0 and nφ = 0, and a mixed phase where molecules
and unpaired polarons coexist [96]. In the mixed phase, nφ > 0, so that the condensate
of bosons creates a bilinear coupling in the effective action ∼ h

√
nφ(t∗ψ+c.c.) leading

to a hybridization of the fermions with the molecular degree of freedom. This means
that no purely polaronic phase with nt = 0 and nφ > 0 is possible. In the limit of
nB → 0 the mixed phase connects to the polaron state, whereas the molecular phase
connects to the molecular state.

Note, that the phases referred to in this section as the mixed phase and the po-
laronic phase from Section 2.2 are equivalent phases (albeit described in different
dimensions). As the work presented in this section only describes the transition into
the mixed phase but not its physical properties within the phase, we refrain from
referring to it as the polaronic phase: While in three dimensions it is now known that
the polaronic phase behaves very similar to the Fermi polaron (see Section 2.2), in
two dimensions this connection has not been made and is merely a conjecture.

In order to differentiate between these states and phases we consider the differ-
ent densities defined by integrals proportional to

∫
p,ω Gσ,k=0(p, ω). These densities

are nonzero only when poles of Gσ,k=0(p, ω) lie in the upper half of the complex ω-
frequency plane. Hence, from the location of poles, manifest in the energy gaps of the
particle in the infrared, we can determine whether the corresponding densities vanish.

Specifically, the boson vacuum corresponds to a finite excitation gap for both the
boson and the molecule, mφ,k=0, mt,k=0 > 0. Likewise, in the single-boson limit the
ground state has to be gapless while the excited state is gapped since this limit marks
the boundary between the boson vacuum and the many-boson regime.

At finite boson density, the molecular phase corresponds to mφ,k=0 > 0 and
mt,k=0 < 0, i.e. molecules feature a Fermi surface determined by their Fermi en-
ergy −mt,k=0/At,k=0. For the mixed phase, the situation is more subtle. Our Ansatz
does not allow for the description of a condensate at finite boson density that could
be accounted for, e.g., by shifting the φ-field expectation value by a coherent state
transformation. However, it is still possible to predict whether a boson condensate
forms. Indeed, a necessary condition for the existence of a φ-condensate is that for
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molecular state polaron state

Figure 2.16. Schematic characterization of the relevant states in the Fermi polaron
problem. In the molecular state the impurity binds to a single fermion while in the
polaron state it is collectively dressed by the environment. For each state, we give the
expressions for the energies Epol and Emol of the polaron and the molecule.

some 0 ≤ k ≤ Λ the boson gap mφ,k vanishes 1. In that case, even though we are
unable to further pursue the RG flow, we identify the phase to be the mixed phase.

In this mixed phase the bilinear term mentioned above leads to a mixing of the
fermionic and the molecular propagators. Consequently, these propagators share the
same pole structure and the corresponding species are thus populated simultaneously.
As a result all three particle species are present in this phase. This implies that in our
model a regime populated exclusively by majority fermions and condensed minority
bosons is only possible in the single-boson limit at nB = 0.

2.3.3 Quantum impurity limit: single boson in a Fermi sea
We first apply our approach to the limiting case of the Bose-Fermi phase diagram
where an individual boson is immersed in a bath of fermions. This limit defines the
so-called Fermi polaron problem, and its solution determines the phase diagram along
the y-axis of Fig. 2.1. In order to reach this single-boson limit, the boson chemical
potential is tuned to the critical value µφ = µcφ that separates the boson vacuum
(µφ < µcφ) from the phase of a finite boson density (µφ > µcφ); see Table 2.1.

2.3.3.1 Quasiparticle energies

In order to obtain the spectrum of the Fermi polaron problem we first determine the
ground state energy of the system, set by µcφ, the critical energy needed to bring a
boson from the vacuum. The procedure is summarized in Fig. 2.16: when the polaron
is the ground state, mφ,k=0 = 0, and the polaron energy is given by Epol = µcφ. In this
‘polaron regime’ the molecular state is an excited state whose energy is determined

1When the condensate appears at finite RG scale k > 0 it could, of course, again vanish at smaller
RG scales due to the effect of quantum or thermal fluctuations.
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Figure 2.17. Polaron and molecule energies, Epol (orange) and Emol (blue), obtained
using the two- and three-body truncations Γ2,k (dashed lines) and Γ3,k (solid lines). (a)
Energy spectrum expressed in units most suitable for cold atom experiments where εB
is the tunable parameter whereas εF is fixed. As all particle energies are approximately
proportional to εB, the energies Epol/mol are shifted by εB to enhance visibility. The
inset shows the energies without the shift. (b) Energy spectrum expressed in units
most suitable for 2D semiconductor experiments. Here εB is fixed and εF is varied
using gate-doping. Despite the different appearance, both panels show the same data.
The polaron-to-molecule transition is marked by the vertical, dashed gray line. The
results are obtained for h2

k=Λ = 108εF and Λ2 = 2.5 × 105εF which ensures that the
two-channel model reduces to a model of contact interactions between fermions and
bosons.

from the pole of its Green’s function which yields Emol = Epol + mt,k=0/At,k=0. In
turn, in the ‘molecular regime’ the molecule is the ground state. Here, mt,k=0 = 0,
and the molecule energy is given by Emol = µcφ, while the polaron is an excited state
with an energy gap Epol = Emol +mφ,k=0/Aφ,k=0.

In Fig. 2.17 we show the polaron and the molecular energy as obtained from the
two- and three-body truncations. The spectrum of the Fermi polaron problem is
shown both in units convenient for cold atoms [Fig. 2.17(a)] as well as 2D materials
[Fig. 2.17(b)]. The comparison of (a) and (b) demonstrates that despite the fact
that both panels contain fully redundant information, they yet represent seemingly
different behavior which is, however, solely due to the different choice of units.

In Fig. 2.17 the results obtained from the two-body truncation (2.26) are shown
as dashed lines. This truncation takes into account a similar set of diagrams as a non-
self-consistent T -matrix approach [172] which, in turn, is equivalent to a variational
Chevy approach [59, 170]. By contrast to the aforementioned approaches our fRG
is self-consistent. As expected from these approaches, we find that the two-body
truncation is not sufficient to generate a polaron-to-molecule transition.
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Instead we find that the inclusion of irreducible three-body correlations is cru-
cial, which is consistent with diagrammatic MC [175] and higher-order variational
approaches [171, 174]. We find that the inclusion of the three-body vertex Γ3,k lowers
the molecular energy while increasing the polaron energy. As a result, taking into ac-
count the RG flow of the irreducible atom-molecule scattering vertex λk (solid lines in
Fig. 2.17) we find a transition at a dimensionless interaction strength (εB/εF )∗ = 18.78
which is in excellent agreement with MC and variational results. A comparison of our
result for (εB/εF )∗ with literature is provided in Table 2.2.

Similar to previous field-theoretical or variational approaches [170–172, 174], we
do not include all possible two-body correlations and focus on the effect of pairing
correlations. Further two-body correlations can, for instance, be generated by the
re-emergence of the four-point vertex ∼ γψ∗ψφ∗φ. One may justify the exclusion of
this vertex by an analogy to BEC superconductivity. There the vertex γ accounts for
induced interactions in the particle-hole channel, leading to a contribution similar to
the Gorkov corrections to BCS superconductivity [190–192]. In the BCS case, it leads
to an effective shift of the inverse dimensionless interaction strength that appears in
the gap equation determining Tc/TF . Based on this analogy, we expect that such
terms will not establish a new polaron-to-molecule transition, but rather only shift
the location of an already present transition. Thus we concur with previous studies
that it is three-body correlations that are essential to establish the formation of a
phase of trions in strongly-coupled Bose-Fermi mixtures 2.

We note that at low Fermi energies, we find a weak non-monotonous behavior of
the polaron energy in the dependence on εF/εB. Such a behavior is not present in
works using variational [170–172, 174] or MC approaches [175, 176]. As we will discuss
in Section 2.3.3.3, we attribute this effect to the limited resolution of the frequency-
and momentum-dependence of the vertex functions in both our truncations. This
effect is, however, not relevant for our study of the Bose-Fermi phase diagram which
only depends on the relative energy gaps between the polaron and molecular state
and not on their respective absolute values.

2.3.3.2 Vertex functions

The FRG approach allows one to analyze the two- and three-body vertices that deter-
mine the emergent effective interactions and correlations in the system. In Fig. 2.18,
the dimensionless, renormalized atom-molecule scattering vertex

λ̃ ≡ λk=0εF/h
2
k=0 (2.50)

and molecular gap

m̃t ≡ mt,k=0/h
2
k=0 (2.51)

2In this argument we disregard the Coulomb repulsion between the excess charge carriers in 2D
semiconductors that might further reduce the interaction range over which trions can build a stable
phase.
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Theoretical approach (εB/εF )∗ ηc
fRG (present work) 18.78 −1.12

Basic variational [171] 9.9 −0.8
High-order variational [174] 14 −0.97

Diag. MC [175] 18.1 ± 7.2 −1.1 ± 0.2
Diag. MC [176] 13.4 ± 4 −0.95 ± 0.15

Diffusion MC [173] ≈ 15 ≈ −1
Experiment [129, 193] 11.6 ± 4.6 −0.88 ± 0.2

Table 2.2. Comparison of the critical ratio (εB/εF )∗ and the interaction parameter
ηc = − log(εB/2εF )/2 = log(kFa2D) (that relates the 2D scattering length to the bind-
ing energy) obtained from our approach (fRG, first line) with that found by previous
theoretical calculations based on Monte-Carlo techniques, variational Ansätze and ex-
periment.

are shown as function of εF/εB. We have scaled both vertices by powers of h that
reflect the scaling of the vertices with the molecular wavefunction renormalization
A−1
t,k=0 yielding results independent of h in the contact-interaction limit at h → ∞.

Atom-molecule scattering The vertex λk describes the scattering between the com-
posite fermionic molecules and the excess fermions in the system. During the RG
flow, λk evolves from λk=Λ = 0 in the UV to a negative value in the infrared at k = 0.
Thus λ̃ yields an attractive contribution, shown in Fig. 2.14(c), to the overall atom-
molecule scattering amplitude that has an additional, significant contribution from
the tree-level φ-exchange diagram depicted in Fig. 2.14(d).

Fig. 2.18 shows the absolute value of the scattering vertex in the three-body limit
(dashed orange line) where it takes the value

λ̃ = λ̃(3B) = −εF/εB, (2.52)

as we will show towards the end of this subsection. Thus the vertex scales proportional
to the square of the size of the molecular bound state aB ∝

√
1/εB. The solid orange

line shows the result for λ̃ in the polaron problem. At small fermion density the
molecule is the ground state. In this ‘molecular regime’ the density of fermions is
so low that the average inter-fermion spacing greatly exceeds the molecular size aB.
Thus the atom-molecular scattering vertex is essentially unaffected by the presence of
the fermionic medium, and λ̃ follows the three-body result λ̃(3B).

As εF/εB is increased we observe a suppression of the atom-molecule scattering
vertex. We attribute this effect to two contributing factors. First, the molecule
becomes an excited state beyond the critical interaction (εF/εB)∗. In this case the
molecule is gapped and within our FRG approach which projects vertex functions on
vanishing external vertex frequencies and momenta (see Section 2.3.2.5), λ̃ is thus
suppressed by the molecular energy gap. More importantly, however, as the Fermi
energy becomes larger than εB, εF/εB > 1, the size of the bound state starts to exceed
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Figure 2.18. Renormalized dimensionless three-body vertex |λ̃| = |λk=0εF/h
2
k=0| (or-

ange, solid) and renormalized dimensionless molecular gap m̃t = mt,k=0/h
2
k=0 (blue,

solid) obtained within the three-body truncation Γ3,k as a function of εF/εB. The
dashed orange line shows the value of the atom-molecule scattering vertex in the
three-body (vacuum) limit where λ̃ → λ̃(3B) = −εF/εB. Deep in the strong-binding
or, equivalently, low fermion doping regime εF/εB � 1, λ̃ approaches the three-
body result. Starting at around the scale εF ≈ εB, medium corrections to the atom-
molecule scattering lead to a pronounced suppression effect. The inset shows that
close to the polaron-to-molecule transition the molecular gap m̃t vanishes linearly as
(εF/εB) − (εF/εB)∗. In the two-body truncation λk ≡ 0, and m̃t remains positive for
all εF/εB, since no polaron-to-molecule transition exists at this level of approximation.
The results are obtained for Λ2 = 2.5 × 105εF and h2

k=Λ = 108εF .

the typical inter-fermion distance. As a consequence, in-medium effects come into
play leading to significant modifications of λ̃. Indeed, these corrections become so
strong that λ̃ starts to decrease at even larger values of εF/εB.

Molecular gap The dimensionless molecular gap m̃t = mt,k=0/h
2
k=0 is shown as a

blue line in Fig. 2.18. For interaction strengths εF/εB < (εF/εB)∗ where the molecule
is the ground state, the molecule is gapless, m̃t = 0. Beyond the transition the
molecule becomes an excited state and we find that its gap vanishes linearly as mt ∼
(εF/εB) − (εF/εB)∗ towards the transition.
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The corresponding crossing of the molecular and the polaron state can also be
interpreted as leading to an effective Feshbach resonance in the polaron-fermion scat-
tering where the tree-level diagram shown in Fig. 2.14(b), evaluated on-mass-shell,
diverges. The associated polaron-fermion scattering length changes sign at the tran-
sition, with a positive value signaling the existence of a fermionic bound state.

In turn, within a single-channel theory that is formulated purely in terms of the
‘atomic fields’ ψ and φ, the divergence of the effective polaron-fermion scattering
vertex ∼ h2/Pt signals the instability towards a phase of fermionic bound states. In
this language, entering this phase at finite boson density would necessarily require
the introduction of the emergent fermionic composite states. Finally we note that
in Fig. 2.18 we only show results from the three-body truncation Γ3,k since in the
two-body truncation Γ2,k, the vertex λk = 0 vanishes by definition throughout the
RG flow. Moreover, since no polaron-to-molecule transition is present in this simpler
truncation, m̃t always remains finite.

Atom-molecule scattering in the vacuum three-body limit Having discussed the
atom-molecule scattering vertex in medium and having compared it to its value of
λ̃ = λ̃(3B) = −εF/εB in the three-body limit, let us briefly show how this asymptotic
result comes about. To determine the value of the three-body vertex in the limit
where two ψ-particles and a single φ-particle are present, we solve the flow equations
under the initial conditions of the two-body problem discussed in Section 2.3.2.6,
and additionally take into account the flow of λk. Since λk corresponds to the on-
mass-shell scattering of a molecule and a quasi-free excess fermion, we supplement
the two-body initial conditions by setting the fermionic chemical potential to a small,
negative value µψ = 0− while we set µφ = −εB − 0−.

As in the two-body case, G−1
φ,k and G−1

ψ,k do not flow and as a result neither does
hk. Consequentially, the flow of mt,k and At,k is not influenced by the flow of λk such
that according to Eqs. (2.48) and (2.49)

mt,k = h2

8π log
(

1 + 2k2

εB

)
(2.53)

and similarly

At,k = 1 + h2

8π

( 1
εB + 2k2 − 1

εB + 2Λ2

)
. (2.54)

The flow equation of λk is then given by

∂kλk = k(h2 + 2λkk2 + λkεB)2

πAt,k(2k2 + εB)2(3k2 + 2mt,k/At,k − 2µψ) (2.55)

leading to λk=0 = −h2/εB for large values of h. Combining this result with the
definition of λ̃ in Eq. (2.50) yields Eq. (2.52).

2.3.3.3 The polaron energy within the gradient expansion scheme

Let us briefly discuss the weak non-monotonous behavior of the polaron energy as
a function of εF/εB mentioned in Section 2.3.3.1. Generally, the polaron energy lies
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Figure 2.19. Energies of the polaron (orange lines) and the molecule (blue lines) as
a function of dimensionless interaction strength using different fRG implementations.
The solid lines show energies using Γ2,k while the dash-dotted lines show a two-step
implementation of Γ2,k in which the molecule is renormalized in the first step and the
φ-boson is renormalized in the second step. The dashed lines show the Γ3,k imple-
mentation and the dotted lines show a Γ3,k implementation in which the flow of hk is
neglected by setting ∂khk = 0. The cross markers show the polaron energies resulting
from a non-self-consistent T -matrix approximation [172], while the dot markers show
the result of this calculation in a gradient expansion.

approximately within a range of ±εF around the value of −εB. For small values of
εF/εB it is thus not surprising to see that E → −εB. Previous calculations [170–172,
174–176] indicate that for all values of εF/εB the value of the polaron energy should
lie below −εB, in disagreement with the results shown in Fig. 2.17. This discrepancy
highlights one of the major shortcomings of fRG, namely the dependence on regulators
and on the truncation scheme.

To analyze this finding in detail in Fig. 2.19 we show the polaron and the molecule
energies using different truncation and regulator schemes. As one can see, the Γ2,k

truncation (solid line) presented also in Fig. 2.17 results in polaron energies above
−εB. If, however, the same truncation is used and the regulators are changed such
that the renormalization group flow consists of two steps, where in the first step
only the molecule and in the second step only the minority particle is allowed to
flow, this results (dash-dotted) in polaron energies strictly below −εB. Within this
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scheme, however, the resulting molecule energy lies higher than before. Effectively,
by treating the molecule and polaron on different footing (i.e. by treating them
in different steps of the fRG) we have improved the polaron energy at the cost of a
higher-lying molecular energy. Interestingly, this two-step calculation is closely related
to the results obtained within the variational approach in Ref. [170] and the ladder
resummations performed in Ref. [172] (crosses). If the full frequency- and momentum-
resolved T -matrix in these two approaches is replaced by a gradient expansion of the
T -matrix, the resulting method is equivalent to the two-step fRG. The results for this
modified variational/diagrammatic calculation are shown as dots and coincide with
the two-step calculation as expected. A similar equivalence of the FMR scheme is
discussed in Section 2.3.5.2.

Within the Γ3,k calculation presented in Fig. 2.19 (dashed) and also in Fig. 2.17
the polaron energy lies again above −εB for small εF/εB. If, however, the flow of hk
is turned off (dotted) the polaron energy lies once again strictly below −εB. These
observations illustrate the dependence of the absolute values of the energy on the
regulators and truncation employed. For example, the flow of the Yukawa vertex hk
has a significant impact on the polaron energy, which is likely due to its point-like
projection.

Although the relative deviations of these energies are only of the order of a few
percent, we do not expect that the used fRG schemes are a reliable method of de-
termining the absolute energy of the polaron and the molecule. Most of the varia-
tional approaches, however, do not consider the polaron and the molecule on an equal
footing and therefore can produce ambiguous results when one considers transitions
which depend on relative energy differences between the emergent quasiparticles. We
thus believe that, by treating the polaron and the molecule on equal footing within
a unified renormalization approach, the fRG scheme captures the qualitative physics
correctly and can thus make qualitative predictions about a transition in the quantum
many-body system.

2.3.4 Bose-Fermi mixture at finite boson density

We now turn to the mixture regime, where a finite density of bosons interacts with a
bath of majority fermions. As discussed in Section 2.3.2.2, within our truncations we
can identify two phases: a molecular phase, where all bosons are bound into molecules,
and a mixed phase where molecules are hybridized with majority fermions and coexist
with a condensate of polarons.

While we can describe the molecular phase directly, we can not fully access the
regime in which a condensate of polarons exists since this would require to explicitly
include the condensate and thus an effective potential for the bosonic field. However,
we can still determine the critical system parameters at which the system becomes
unstable towards condensation. Indeed, the associated phase boundary is determined
by the vanishing of the scale-dependent boson gap mφ,k/Aφ,k at the end of the RG
flow.



74 Strongly coupled Bose-Fermi mixtures in two dimensions

0 10 20 30 40 50

εB/εF

−0.5

0.0

0.5

1.0

1.5

2.0
(µ
φ

+
ε B

)/
ε F

boson vacuum

molecular phase

mixed phase

stopped flow region

(a)

0 10 20 30 40 50

εB/εF

−0.5

0.0

0.5

1.0

1.5

2.0

boson vacuum

mixed phase

(b)

Figure 2.20. Phase diagram of the Bose-Fermi mixture for different ratios of µφ/εF
and εB/εF using Γ3,k (a) and Γ2,k (b). The white regions indicate the vacuum phase,
while the red and blue regions denote the molecular and the mixed phase. The mint-
colored region above the mixed phase denotes the stopped flow region in which the
flow was stopped at k > 0 because the molecular Fermi surface became larger than
the majority’s (−2mt,k/At,k > εF ), indicating the breakdown of our approximation.
The gray dashed line denotes the boundary above which the molecules form a Fermi
surface at the end of the flow, i.e. mt,k=kend/At,k=kend < 0. The orange line indicates
the path along which µφ = 0. In both truncations the boundary between the vacuum
and finite density phases approaches the origin for εB/εF → 0.

For large values of the boson chemical potential µφ, the underlying assumption
nB � nF is no longer valid. When this condition breaks down, we thus terminate the
fRG flow. While this does not define a phase, we dub this part of the phase diagram
the ‘stopped flow region’, further discussed below.

2.3.4.1 Phase diagram as a function of chemical potential

In Fig. 2.20 we present the phase diagram of the Bose-Fermi mixture for both Γ2,k

and Γ3,k [Eqs. (2.26) and (2.30)] at a fixed Fermi energy εF , as function of εB and
µφ. In the three-body truncation Γ3,k [Fig. 2.20(a)] a molecular phase forms at finite
boson density in the interaction regime where the molecule is the ground state of the
quantum impurity limit discussed in Section 2.3.3.

In fact, the ground state energy of the quantum impurity limit determines the
chemical potential µφ = µcφ(εB, εF ) that separates the vacuum of bosons from the
mixed phase or the phase of a finite density of molecules. Along this phase boundary
the system undergoes a transition from a polaronic to a molecular ground state.

In the interaction regime εB/εF > (εB/εF )∗, increasing the boson chemical poten-
tial starting from values µφ < µcφ leads to a boson-vacuum-to-molecule transition as
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µφ crosses the critical chemical potential. Directly on the critical line one enters the
quantum impurity regime and a single molecule forms 3. Increasing µφ beyond µcφ one
enters the molecular phase where a finite density of bosons, all bound into molecules,
exists. In this phase mt,k=0/At,k=0 < 0, and the molecules acquire a Fermi surface.
Tuning µφ further to larger values one reaches the phase boundary to the mixed phase.
Here, a finite density of molecules coexists with gapless boson particles.

For εB/εF < (εB/εF )∗ there is no molecular phase and one transitions directly
from the boson vacuum to the mixed phase. As the flow is terminated at a finite RG
scale kend once the boson becomes gapless mφ,k=kend/Aφ,k=kend = 0, at the boundaries
to the molecular phase and to the boson vacuum phase the boson turns gapless at the
end of the flow at kend = 0. Moving further into the phase from these boundaries the
value of kend at which the flow is terminated increases.

When the flow is stopped in the mixed phase, the molecules might have already
formed a molecular Fermi level during the course of the RG flow. This is indicated by
the dashed gray line in Fig. 2.20. Above this line the molecule has developed a Fermi
surface when the flow ends or is terminated at k = kend. Below the line the molecule
has remained gapped. As expected, for εB/εF > (εB/εF )∗ this line parametrizes the
boson-vacuum-to-molecule transition. For εB/εF < (εB/εF )∗ on the other hand, it
bisects the mixed phase. These regions then correspond to phases of a single Fermi
sea (boson vacuum), two Fermi seas (molecular phase), two Fermi seas with a bosonic
condensate (mixed phase above the gray dashed line) and a bosonic condensate with
only a single Fermi sea (mixed phase below the gray dashed line) as discussed in
Refs. [96, 194].

Increasing the bosonic chemical potential µφ further within the mixed phase, the
bosonic density increases until eventually the molecular Fermi wave vector becomes
larger than the fermionic Fermi wave vector (−2mt,k/At,k > εF ). Within this regime,
the bosonic density has become comparable to the fermionic density. This means
that it is no longer justified to neglect the renormalization of the fermionic Green’s
function and to disregard higher-order correlations along with sub-dominant interac-
tion channels. As we expect that in this case our truncation no longer renders an
appropriate description of the system, we terminate the flow at finite scale kend once
−2mt,k/At,k > εF . When this happens during the RG flow, a molecular Fermi sea has
already formed while the bosons are still gapped mφ,k/Aφ,k > 0. This ‘stopped flow
region’ (mint in Fig. 2.20) occurs after the bosonic chemical potential has been tuned
well into the mixed phase. We therefore expect that in the stopped flow region, close
to the boundary to the mixed phase, the system would still be in a mixed phase, if
one were to continue the flow.

Within the two-body truncation [see Fig. 2.20(b)] it is unsurprising to see that no
molecular phase forms at finite boson density, since already in the single-boson regime
this Ansatz does not form a molecule in the ground state. Rather, one transitions from
the boson vacuum phase directly to the mixed phase as the molecule only becomes

3Strictly speaking along the critical line any finite particle number can be realized as long as the
boson density nB vanishes in the thermodynamic limit. In a field theory approach the exact particle
number considered is then determined by the highest-order vertex function taken into account.
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gapless at kend well within the mixed phase (gray dashed line). Within this truncation
the stopped flow regime is not realized for the considered range of µφ and it only sets
on at around (µφ + εB) ≈ 2.4εF .

2.3.4.2 Phase diagram as a function of density

In the previous subsubsection results were given as a function of chemical potential.
Experimentally it is, however, often simpler to determine the density of particles
instead of their chemical potential. Thus, to make direct connection to experiments,
it is useful to also consider the phase diagram as a function of particle densities. Since
in the effective action formalism employed in this chapter, the chemical potentials are
the parameters of the theory, the canonically conjugate densities have to be computed
explicitly.

In principle, the fermion and boson densities can be determined directly from the
two-point Green’s functions. Within the derivative expansion and two-channel model
an alternative approach is, however, more convenient. Here one makes use of the fact
that the densities are connected to the derivative of the effective potential U evaluated
at the equilibrium field configuration σeq by the standard relation

nF/B = −∂U(σeq)
∂µψ/φ

. (2.56)

Here nB and nF , respectively, denote the total density of bosons and fermions in the
system, including those bound into molecules. The effective potential U(σeq), in turn,
is obtained from the derivative-free part of the infrared effective action evaluated at
the field expectation values U(σeq) = Γk=0[σeq]/(V/T ) where for the considered phases
σeq = (ψeq, φeq, teq) = 0.

In the absence of approximations, determining the densities from the effective
potential or from the Green’s functions are equivalent methods, as follows from the
Luttinger theorem [96, 195]. Within our fRG scheme we, however, expect it to be
computed more accurately using the flow of U than using the flow of Gσ as this
approach relies on lower-order vertices.

In the fRG, the effective action is promoted to a flowing effective action that
depends on the RG scale k. Accordingly, it is convenient to define corresponding
scale-dependent densities nF/B,k and to determine the densities of the systems from
their value at the end of the RG flow. The resulting density values are then associated
with the corresponding phases. Since there is no polaron-to-molecule transition for
Γ2,k, in the following we only discuss results obtained in the three-body truncation.

The flow equation of the effective potential is obtained by evaluating the Wetterich
equation (1.78) at vanishing fields,

∂kUk(σeq) =
∑

σ=ψ,φ,t
ξσ

∫
P
Gc
σ,k(p, ω)∂kRσ,k(p, ω) (2.57)

where ξφ = 1 for bosons and ξσ = −1 for fermions (ψ and t). Due to the pole structure
of the integrand, Eq. (2.57) can be simplified further: Expanding Eq. (2.57) and using
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the explicit form of the sharp regulators in Eqs. (2.36) to (2.39) one obtains that
∂kUk(σeq) has the following structure

∂kUk(σeq) ∝
∑

σ=ψ,φ,t

ξσ ∫
P

Θσ,k(p, ω)∂k
[

1
Θσ,k(p, ω) − 1

]

+ ξσ

∫
P

[1 − Θσ,k(p, ω)]Gσ,k(p, ω)∂kG−1
σ,k(p, ω)

 . (2.58)

The integrand in the first term in Eq. (2.58) does not have a pole in the frequency
domain as the Θσ,k-functions are frequency-independent. Stemming from the con-
struction of the quantum field theory and the convergence factor of eiω0+ , this integral
thus evaluates to zero. The second term, in contrast, possesses a pole within Gσ,k and
therefore does not vanish. Note that because the integrand only falls off fast enough
due to the convergence factor, these ω contour integrals need to be closed within the
upper half of the complex plane. Consequently, the second term in Eq. (2.58) always
vanishes for σ = φ: In order to yield a finite value it would require the polaron to
develop a finite density which we do not allow for within our phase identification
scheme.

The flow equation of the effective potential in Eq. (2.57) can thus be simplified to

∂kUk(σeq) = −
∫
P

[1 − Θψ,k(p)]Gψ,k(p, ω)∂kG−1
ψ,k(p, ω)

+
∫
P

[1 − Θφ,k(p)]Gφ,k(p, ω)∂kG−1
φ,k(p, ω)

−
∫
P

[1 − Θt,k(p)]Gt,k(p, ω)∂kG−1
t,k (p, ω) , (2.59)

where we have left in the vanishing contribution due to the φ propagators for the sake
of completeness. Here, the step functions Θσ,k(p) originate from the sharp regulators
in the flow equations [see Eqs. (2.36), (2.38) and (2.39)]. For the bosonic and molecular
field they are defined as Θt,k(p) = Θφ,k(p) = Θ(p2 − k2), while for the fermionic field
Θψ,k(p) is redefined in the following in Eq. (2.60) to cover the fermion density more
accurately.

As the scheme described in Section 2.3.2 does not feature a renormalization of the
majority propagator it is evident from Eq. (2.59) that, within that approximation, the
fermions do not contribute to the flow of the effective potential Uk. Consequently, from
the integration of Eq. (2.59) the density of fermions would not be calculated accurately
since the depletion of majority carriers, resulting from fermions being bound into
molecules, is not taken into account.

In order to take this effect into account, we derive —separate from the flow of
the Green’s functions of the bosons, molecules and the interaction vertices— a flow
equation for the propagator of the majority species, that does not feed back into any
flow other than that of the effective potential. Since the majority fermions have a
finite density already at the start of the RG flow, we regulate the fermions around
their flowing Fermi level εF,k = εF − mψ,k/Aψ,k [187]. Accordingly, the step function
in the first line in Eq. (2.59) is given by

Θψ,k(p) = Θ(|p2 − εF +mψ,k/Aψ,k| − k2) . (2.60)
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Figure 2.21. Phase diagram of the Bose-Fermi mixture for different boson and fermion
densities nF and nB at a fixed interaction strength set by εB. The red region indicates
the molecular phase while the blue region indicates the mixed phase. The mint-
colored dashed line denotes the mean-field phase boundary extrapolated from the
Fermi polaron problem.

To derive the flow equations of Aψ,k and mψ,k, we evaluate the RG flow of the as-
sociated vertex function at external frequency and momentum (p2, ω) = (εF , 0), i.e.,
we perform the gradient expansion around the bare Fermi surface of the majority
species as detailed in Section 2.3.2.5. This flow is then used to determine the effec-
tive potential U , and, in turn, the boson and fermion densities through Eq. (2.56).
In order to reproduce the majority carrier density εF/4π in the UV with regard to
Eq. (2.56), the initial condition for the density flow is given by the mean-field result
Uk=Λ(σeq) = −ε2

F/8π.

In Fig. 2.21, we show the resulting phase diagram of the system as a function of
the boson and fermion density. It can be regarded as the counterpart of Fig. 2.20(a),
expressed in different variables. Specifically, to obtain Fig. 2.21, for the combinations
of boson chemical potential µφ and interaction strength εB/εF that lie in the molecular
phase we computed the corresponding values of nB/εB and nF/εB. For combinations
that lie inside the mixed phase or the stopped flow region we can not compute the
boson and fermion density as the flow is terminated at finite kend. In Fig. 2.21 we
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thus identify density combinations outside the molecular phase as being part of the
mixed phase 4.

In Fig. 2.21, the single-boson limit discussed in Section 2.3.3 corresponds to the
y-axis at nB/εB = 0, and the polaron-to-molecule phase transition occurs at nF/εB =
(εF/εB)∗/4π = 0.00424. As the boson density is increased, the mixed phase becomes
favorable, i.e., the maximal density of fermions for which all bosons are bound into
molecules decreases. We find that there is also a minimal fermion density required
to enter the molecular phase. Below that critical value one again enters the mixed
regime.

2.3.4.3 Mean-field model

Remarkably, a simple mean-field-inspired argument can provide an approximate phase
diagram of the model: In the single-boson limit, the polaron is a gapped excitation in
the molecular regime. It has a gap ∆E = Epol − Emol which is a function of εF/εB,
or equivalently nF/εB (equal to εF/4πεB along the y-axis in Fig. 2.21). This gap was
determined numerically in Section 2.3.3 where we found,

∆E((εF/εB)∗) = 0,
∆E((εF/εB) → 0) ≈ 0.41εF , (2.61)

reflecting that the energy gap vanishes at the polaron-to-molecule transition and at-
tains a value proportional to εF in the strong-binding, low-density limit.

In our mean-field model of the molecular phase, the interactions are taken into
account by considering the effective Hamiltonian

HMF =
∑

k
εkψ

†
kψk + εk

2 t
†
ktk + (εk + ∆E(εF/εB))φ†

kφk (2.62)

where εk = k2/2m and the additional factor of 1/2 in front of t†ktk stems from the
molecular mass of 2m. Even though HMF is quadratic in the fields, this effective
model goes beyond naive mean-field as ∆E incorporates the non-trivial solution of the
single-impurity polaron problem obtained through our fRG scheme in Section 2.3.3.
The polaronic, mixed phase appears when it is energetically unfavorable to bind into
molecules, i.e. when the Fermi energy εF,t of the molecules is larger than the gap ∆E.
When this condition is reached the polarons start to form a condensate, as described
previously.

For a molecular Fermi energy below the gap ∆E, the ground state of the mean-
field model (2.62) is given by separate Fermi seas of densities nψ = εF/4π and nt =
εF,t/2π for the fermionic and molecular sectors, respectively. Hence, in the molecular
phase, the total bosonic and fermionic densities are given by nB = nφ + nt = nt and
nF = nψ +nt = nt + εF/4π. The mean-field transition line below which the molecular

4Fig. 2.21 only shows density ratios of the mixed phase in vicinity of the molecular phase. Since
in Fig. 2.20(a) the stopped flow region does not border the molecular phase directly, we thus do not
expect the stopped flow region to appear close to the molecular phase in Fig. 2.21.
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state is favored (parametrized by εF,t = ∆E) is thus parametrized by

nB
εB

= ∆E(εF/εB)
2πεB

, (2.63)

nF
εB

= εF
4πεB

+ ∆E(εF/εB)
2πεB

. (2.64)

This mean-field phase boundary is shown as a dashed line in Fig. 2.21. While the
mean-field picture is over-simplified and does not correctly capture the quantitative
renormalization effects beyond the vacuum-to-molecule transition, it correctly cap-
tures the qualitative nature of the structure of the phase diagram. A similar behavior
was observed in Section 2.2, where the many-body phase showed physical proper-
ties similar to a mean-field model of the single-impurity Fermi polaron. The phase
boundary, by construction, reaches the y-axis at the polaron-to-molecule transition
and approaches the origin at an angle of about nF/nB ≈ 2.22 which directly follows
from the behavior of the polaron gap ∆E((εF/εB) → 0) ≈ 0.41εF .

2.3.5 Quasiparticle properties of polarons and molecules in the quan-
tum impurity limit from a frequency- and momentum-resolved
scheme (FMR)

The calculations presented in Sections 2.3.3 and 2.3.4 only yield information about
ground state properties of the system. In order to extract spectral information such as
dispersion relations, particle lifetimes, effective masses or higher-lying excited states,
however, the spectral functions need to be computed.

The spectral functions are obtained from the Green’s functions Gψ,φ,t by analytic
continuation of the Matsubara frequencies iω → Ω + i0+ which yields the retarded
Green’s functions GR

ψ,φ,t(p,Ω). From this, the momentum- and frequency-resolved
spectral functions are obtained as

Aψ,φ,t(p,Ω) = Im 1
π
GR
ψ,φ,t(p,Ω) . (2.65)

Two difficulties arise when determining the spectral function within the fRG. First,
an analytic continuation has to be performed, either at the level of the flow equa-
tions [196–198], see also Chapter 5, or the final output of the RG flow in the infrared
[137]. Second, in order to capture non-trivial spectral functions one needs the full
momentum- and frequency-dependence of the propagator, which the gradient expan-
sion employed in Sections 2.3.3 and 2.3.4 does not provide. A solution to the latter
difficulty can be found, e.g., by the direct implementation of fully frequency- and
momentum-resolved Green’s functions [137] or in the BMW scheme [74, 199], which
also yields a full momentum- and imaginary frequency-dependence of the propagators.
Both these approaches, however, do not resolve the analytic continuation issue. For
this reason, we implement here a method developed in nuclear physics [198, 200–202]
which was recently applied to the polaron problem in three dimensions [184]. In the
following we shall refer to this method as the frequency- and momentum-resolved
scheme (FMR).
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In FMR, the flow equations [Eq. (1.78) and Eqs. (2.42) to (2.46)] are analytically
continued to real frequencies. In order to achieve that, rather than projecting the flow
equation onto the gradient expansion parameters, we retain the full momentum- and
frequency-dependence of the single-particle Green’s functions on the lhs. of the flow
equations, while we keep the gradient expansion for the two-body [Eq. (2.26)] and
three-body truncation [Eq. (2.30)] on the rhs. of the equations. This enables us to
perform the loop integration over imaginary frequencies analytically. In turn, this al-
lows us to perform the analytic continuation to real frequency to obtain direct access
to the retarded Green’s functions. From that we evaluate the single-particle spec-
tral function using Eq. (2.65). We remark that, when applying a non-self-consistent
implementation of FMR —in which only bare quantities appear on the rhs. of the
flow equations— to the spectral function of the molecule, the differential equation
system yields the same results as a corresponding T -matrix resummation [172] (see
Section 2.3.5.2).

2.3.5.1 Frequency- and momentum-resolved flow equations

In order to compute the frequency- and momentum-resolved spectral functions within
the FMR scheme, for a given value of εF , µφ and εB in a first step the flow of the
expansion parameters is computed as detailed in Section 2.3.2.5. In a second step
the solutions of the flow equations for the different gradient expansion parameters
are plugged into the rhs. of the flow equations given in Eqs. (2.42) to (2.46). This
time, however, the flow equations are considered for arbitrary external momentum and
frequency. Next, the Matsubara integration is performed as usual and the complex
frequency ω of P = (p, ω) is continued to the real frequency axis iω → Ω + i0+.

Let us demonstrate this process in detail for the flow of GR
φ,k. According to

Eq. (2.42), for a Matsubara frequency ω and a momentum p this flow is given by

∂kG
−1
φ,k(p, ω) = h2

k∂̃k

∫ dν

2π
dq

(2π)2G
c
t,k(p + q, ω + ν)Gc

ψ,k(q, ν)

= h2
k∂̃k

(2π)3

∫
dνdq

Θ(|p + q| − k)
At,k[−iω − iν + (p+q)2

2 ] +mt,k

Θ(|q2 − εF | − k2)
(−iν + q2 − εF )

(2.66)

such that after performing a Matsubara integration over ν one obtains

= − h2
k∂̃k

(2π)2

∫
dq

Θ(|p + q| − k)Θ(εF − q2 − k2)
At,k[−iω + (p+q)2

2 − q2 + εF ] +mt,k

. (2.67)

Since for ω > 0 we have that G−1
φ,k(p, ω) = GR,−1

φ,k (p, iω), using the identity theorem
from complex analysis we can now perform the analytical continuation of the flow
equation iω → Ω + i0+ to obtain

∂k
(
GR
φ,k

)−1
(p,Ω) = − h2

k∂̃k
(2π)2

∫
dq

Θ(|p + q| − k)Θ(εF − q2 − k2)
At,k[−Ω − i0+ (p+q)2

2 − q2 + εF ] +mt,k

, (2.68)
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where we have suppressed the i0+ in the argument of the retarded Green’s function as
in this section we will only evaluate retarded Green’s functions infinitesimally above
the real axis. Performing similar steps for the flow equations of GR

t,k the retarded
Green’s functions and carrying out the scale derivative ∂̃k one obtains the following
flow equations

∂k
(
GR
φ,k

)−1
(p,Ω) = h2

kk

At,k

∫ dθ

(2π)2

 Θ (εF − p2 − 2|p|k cos(θ) − 2k2)
−k2

2 − p2 + εF − 2|p|k cos(θ) − Ω + mt,k

At,k
− i0+

+
Θ
(
p2 + εF + 2|p|

√
εF − k2 cos(θ) − 2k2

)
Θ (εF − k2)

k2

2 + p2

2 + εF
2 + |p|

√
εF − k2 cos(θ) − Ω + mt,k

At,k
− i0+

 (2.69)

∂k
(
GR
t,k

)−1
(p,Ω) = h2

kk

Aφ,k

∫ dθ

(2π)2

 Θ(p2 + 2|p|k cos(θ) − εF )
2k2 + p2 − εF − Ω + 2|p|k cos(θ) + mφ,k

Aφ,k
− i0+

+ Θ(p2 + εF + 2|p|
√
εF + k2 cos(θ))

2k2 + p2 + εF + 2|p|
√
εF + k2 cos(θ) − Ω + mφ,k

Aφ,k
− i0+


− k

2πλkΘ(εF − k2). (2.70)

2.3.5.2 Equivalence to a non-self-consistent T -matrix resummation

Let us show the close correspondence between the FMR scheme and diagrammatic
ladder approximations, shown in Section 1.7. More specifically, let us show that a
non-self-consistent implementation of the FMR method exactly corresponds to the
result obtained for the molecule in a non-self-consistent T -matrix resummation as
presented in Ref. [172].

Using only bare quantities on the rhs. of the flow equation (i.e. λk = 0, hk =
h,Aφ,k = 1,mφ,k = −µφ) and performing the frequency integration in the quantum
impurity limit, the flow of the retarded inverse molecule propagator reads

∂k
(
GR
t,k

)−1
(p,Ω) = −h2∂k

∫ dq
(2π)2

Θ((p − q)2 − k2)Θ(q2 − εF − k2)
q2 − εF + (p − q)2 − µφ − Ω − i0+ . (2.71)

Where we used that since we only use bare quantities on the rhs., we have ∂̃k = ∂k.
Thus we can perform the k-integration analytically to obtain(

GR
t,k=0

)−1
(p,Ω) =

(
GR
t,k=Λ

)−1
(p,Ω)

− h2
∫

q2>εF

dq
(2π)2

1
q2 − εF + (p − q)2 − µφ − Ω − i0+

+ h2
∫ dq

(2π)2
Θ((p − q)2 − Λ2)Θ(q2 − εF − Λ2)
q2 − εF + (p − q)2 − µφ − Ω − i0+ (2.72)

and using that for h → ∞ we have (see Section 1.6)

G−1
t,k=Λ(p, ω) = h2

∫
q2<Λ2

dq
(2π)2

1
εB + 2q2 (2.73)
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we obtain(
GR
t,k=0

)−1
(p,Ω) = − h2

∫
q2>εF

dq
(2π)2

1
q2 − εF + (p − q)2 − µφ − Ω − i0+

+ h2
∫ dq

(2π)2

(
Θ((p − q)2 − Λ2)Θ(q2 − εF − Λ2)
q2 − εF + (p − q)2 − µφ − Ω − i0+ − Θ(q − Λ)

εB + 2q2

)

+ h2
∫ dq

(2π)2
1

εB + 2q2 . (2.74)

Finally, taking the limit Λ → ∞ this can be evaluated to yield

(
GR
t,k=0

)−1
(p,Ω) (Λ→∞)= − h2

iπ + log
(

εB
Ω+εF +µφ−p2/2+i0+

)
8π

−
∫

q2<εF

dq
(2π)2

1
q2 − εF + (p − q)2 − µφ − Ω − i0+

 , (2.75)

reproducing the molecular results presented in Ref. [172]. Furthermore, similar anal-
ysis shows that performing a modified non-self-consistent two-step fRG of the FMR
scheme also reproduces the polaron results presented in Ref. [172]. In such a two-step
approach the molecular propagator is renormalized in the first step as described in
Eq. (2.71), and in the second step the minority propagator is renormalized as pre-
scribed by Eq. (2.42). In this second step, on the rhs. the coupling constants along
with the majority propagator appear in their bare form and the molecular propagator
with its full frequency- and momentum-dependence obtained in the first RG step is
used instead of a gradient expansion. The polaron energy resulting from this calcula-
tion is shown as crosses in Fig. 2.19. It is worth noting, however, that as a starting
point for the second step one may also perform a gradient expansion of the molecular
propagator of the form

(
GR,2nd

t

)−1
(p,Ω) =

(
GR
t,k=0

)−1
(0, 0) −

(
−Ω − i0+ + p2

2

) [
∂Ω
(
GR
t,k=0

)−1
(0,Ω)

]
Ω=0

(2.76)

and still obtain similar results (dash-dotted lines and dot markers in Fig. 2.19).
This then directly corresponds to a version of the FMR scheme used to obtain spectral
functions in which the renormalization of the molecule and the minority is divided
into two consecutive steps while retaining the gradient expansion on the rhs. of the
flow equations.

2.3.5.3 Results

Polaron spectral function The polaron spectral function obtained using FMR is
shown for different interaction strengths in Fig. 2.22. Subfigures (a), (c) and (d) are
obtained in the three-body truncation Γ3,k. Subfigure (b) shows the result from the
two-body truncation Γ2,k in order to highlight the effect of the inclusion of irreducible
three-body correlations.
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Figure 2.22. Polaron spectral function Aφ for different dimensionless interaction
strengths (εB/εF ): (a) 1, (b) 10, (c) 10, (d) 20. In (a), (c) and (d) Γ3,k is used
while in (b) Γ2,k is used to highlight the effect of the renormalization of the three-
body sector. Dashed horizontal lines denote the Bose-Fermion scattering threshold at
Ω = −µφ. In (a) the range of the color spectrum is [0, 0.5], while in (b), (c), (d) it is
[0, 0.05].

The polaron spectral functions show the same qualitative behavior as the cor-
responding spectra in 3D [137, 184]. Two quasiparticle peaks —the attractive and
the repulsive polaron— can be discerned, and a molecule-hole continuum in between
these dominant excitations is visible. The attractive polaron is the ground state in
Fig. 2.22 (a), (b), (c), and thus is a gapless excitation. In contrast, in Fig. 2.22(d),
the ground-state is a molecule, and thus a small gap at p = 0 can be seen. Generally,
at finite but small momenta the attractive polaron is a well-defined quasiparticle with
an interaction-dependent effective mass which, along with the effective masses of the
repulsive polaron and the molecule, is shown in Table 2.3. For larger momenta, the
attractive polaron peak eventually merges with the molecule-hole continuum, such
that it is no longer a well-defined quasiparticle.

The repulsive polaron appears at energies above the scattering threshold (indi-
cated by the dashed horizontal lines in Fig. 2.22) as a narrow peak, indicating a long
quasiparticle life-time for the interaction strengths shown. Consistent with Ref. [172]
we find that as εB/εF decreases, the repulsive polaron gradually disappears. More-
over, while at small interaction strength (Fig. 2.22(a)) the repulsive polaron eventually
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att. Pol. rep. Pol. Mol.
(εB/εF ) Γ3,k Γ2,k Γ3,k Γ2,k Γ3,k Γ2,k

1 0.62 0.6 0.05 0.056 −.11 −.09
10 2.29 1.2 0.3 0.42 ≥ 6 −.69
20 ≈ 5 1.42 0.32 0.46 1.84 −1.04

Table 2.3. Effective masses of the attractive and repulsive polaron as well as the
molecule obtained from quadratic fits to the dispersion relation at p = 0, both in the
three-body and the two-body truncation.

merges with the molecule-hole continuum at finite momentum, at larger interaction
strength the repulsive polaron peak remains distinct from the molecule-hole contin-
uum at any momentum and thus keeps a long life-time at high momenta.

As evident from the comparison of Fig. 2.22(b) and (c), the inclusion of the irre-
ducible three-body correlations moves the molecule-hole continuum to lower energies.
This has the effect that the dispersion relation of the attractive polaron becomes
flatter, increasing the polaron effective mass compared to the two-body truncation
(see Table 2.3). Furthermore, its quasiparticle peak joins the continuum at lower mo-
menta. In Table 2.4 the energy of the repulsive polaron is shown relative to the ground
state energy. For the repulsive polaron the inclusion of three-body correlations has
the effect of slightly altering its effective mass and of lowering its energy relative to
the scattering threshold. For a fermionic impurity this indicates a reduced tendency
towards itinerant Stoner ferromagnetism [58].

Molecular spectral function In Fig. 2.23, the molecular spectral function is shown
for different interaction strengths εB/εF . Here the subfigures (a), (c) and (e) in the left
column are obtained in the three-body truncation while (b), (d) and (f) in the right
column result from the two-body truncation. It can be seen that a general feature
of this spectral function is spectral weight that appears above a parabola centered
around p = kF and that is defined by the frequency Ωp = (p − kF )2 + mφ,k=0/Aφ,k=0

as will be derived towards the end of this subsection. The quasiparticle peak of the
molecule follows a distorted dispersion relation which, in the strong-binding limit,
tends to a free-molecule dispersion relation. Dependent on the interaction strength,
at low momenta the molecular quasiparticle peak lies outside of the particle-particle
continuum and joins the continuum at finite momenta just to leave it again at higher
momenta. More specifically, at low εB/εF , the quasiparticle peak joins the continuum
at a low momentum, which increases with interaction strength εB/εF . Likewise, the
momentum at which the peak leaves the continuum again increases with εB/εF as
well.

Similar to a non-self-consistent T -matrix resummation, in our approach the mo-
lecular quasiparticle peak has a vanishing width when it is not embedded in the
continuum. This can be seen analytically by inspecting the flow equation of the two-
point function GR

t which we will analyze later on in this section. Apart from the
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(εB/εF ) rep Pol. Γ2,k rep. Pol. Γ3,k

1 Epol + 5.67εF Epol + 5.29εF
10 Epol + 12.15εF Epol + 10.99εF
20 Epol + 21.92εF Emol + 20.52εF

Table 2.4. Energy of the repulsive polaron at different interaction strengths obtained
in the two-body and three-body truncation. The energies are given with respect to
the respective ground state energies, Epol and Emol.

structure originating from the parabola-shaped particle-particle continuum and the
quasiparticle peak, further structure exists within the parabola that originates from
contributions in the RG flow where the Feynman diagrams are evaluated close to their
poles (see the discussion in the next sub-subsection).

The minimal energy of the parabola Ωp is equal to the renormalized energy gap
of the polaron, indicating a close relationship between the polaron at p = 0 and
the molecule at p = kF , supporting the argument that both of these states overlap
with the actual groundstate of the system and possibly with each other [167]. This
finding can also be understood conceptually in a mean-field picture where a bosonic
minority particle at p = 0 along with a majority fermions at the Fermi surface can
be interpreted as either a polaron at p = 0 or a molecule at p = kF (previously noted
by Cui [203]). Note that, because the particle-particle continuum in the molecular
spectrum is shifted due to the renormalization of the boson gap, this effect can not
be captured in a non-self-consistent approximation such as employed in Ref. [172]. In
such an approximation spectral peaks distinct from the continuum are present, that
in our implementation are a part of the continuum.

Within the spectral functions obtained using Γ2,k, the quasiparticle peak at p = 0
—located at approximately mt,k=0/At,k=0— is always at a finite energy whereas using
Γ3,k it is moved closer to Ω = 0 and eventually attains Ω = 0 past the polaron-
to-molecule transition. At the same time, the minimum of the parabola, given by
mφ,k=0/Aφ,k=0, detaches from Ω = 0 as the polaron is no longer the ground state.
Hence using Γ3,k the effective mass (see Table 2.3) of the molecule, which is negative
at small εB/εF , diverges with increasing εB/εF and eventually becomes positive at an
interaction strength before the polaron-to-molecule transition. Beyond the transition
the molecule is gapless at p = 0 and its effective mass is positive. Using Γ2,k, increas-
ing εB/εF makes the molecule dispersion flatter leading to an increasingly negative
effective mass.

Analytical structure of the FMR flow equations In the following, let us analyze the
analytical structure of the flow of the retarded inverse Green’s function of the molecule
and how it is reflected in the spectral functions shown in Fig. 2.23. A similar analysis
can be performed on the retarded inverse Green’s function of the polaron as well.

Within the FMR scheme of analytic continuation, the retarded self-energy can
only pick up a non-vanishing imaginary part in the limit of i0+ → 0 if during the flow
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Figure 2.23. Molecular spectral function At for different dimensionless interaction
strengths εB/εF : (a), (b), 1, (c), (d) 10, (e), (f) 20. In (a), (c) and (e) Γ3,k is used
while in (b), (d) and (f) Γ2,k is used to highlight the effect of the renormalization of
the three-body sector. Dashed horizontal lines denote the Bose-Fermion scattering
threshold given by Ω = −µφ. The range of the color spectrum is (a,b) [0, 5 × 10−6],
(c,d) [0, 5 × 10−5] (e,f) [0, 10−4] for h = 2 × 103kF .

one integrates over a pole caused by iω → Ω. In that case we have encountered a pole
in the flow that is only avoided by the use of a retarded frequency and the self-energy
picks up an imaginary part that is non-vanishing for all i0+.

Contributions to the spectral function defined in Eq. (2.65) can have two different
origins. Either the Green’s function picks up an imaginary part in the course of the
flow as described above, or the inverse Green’s function tends to i0+ resulting in a
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Figure 2.24. Molecular spectral function at εB/εF = 20 within Γ2,k. The minimal
frequencies Ωmin,1 = min

[
Ω<

min,1,Ω>
min,1

]
and Ωmin,2 are shown in red (dash-dotted)

and mint-color (dashed), respectively.

sharp excitation feature in the spectral function. In the former case the corresponding
states are part of a particle-particle continuum of states with a finite lifetime, whereas
in the latter case the corresponding excitations have an infinite lifetime.

Inspecting the first term of Eq. (2.70), one can see that it causes the self-energy
to develop an imaginary part if during the flow

Ω = 2k2 + p2 − εF + 2|p|k cos(θ) + mφ,k

Aφ,k
(2.77)

while p2 + 2|p|k cos(θ) − εF > 0. For p2 < εF the minimal frequency for which this
can occur is given by

Ω<
min,1 =

[
mφ,k

Aφ,k
+ 2k2

]
k= εF −p2

2|p|

, (2.78)

where we made use of the fact that mφ,k/Aφ,k decreases monotonically during the flow.
As a result the smallest value of k needs to be found for which p2+2|p|k cos(θ)−εF > 0
can barely be fulfilled. In turn, for p2 > εF this frequency is given by

Ω>
min,1 = min

k,0≤k≤ p2−εF
2|p|

p2 − 2|p|k − εF + 2k2 + mφ,k

Aφ,k
. (2.79)
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Analogously, the minimal frequency for which the second term of Eq. (2.70) leads to
an imaginary part is given by

Ωmin,2 = min
k, k>0,

k≤ |εF −p2|
2|p|

k2 +
(

|p| −
√
εF + k2

)2
+ mφ,k

Aφ,k
. (2.80)

Given that this we find that this is solved by

Ωmin,2 = (|p| −
√
εF )2 +

[
mφ,k

Aφ,k

]
k=0

(2.81)

for the interaction strengths studied here.
In Fig. 2.24, the spectral function from Fig. 2.23(f) is shown along with the minimal

frequencies Ωmin,1 and Ωmin,2. As it can be seen, these frequencies determine the onset
of the particle-particle continua. Furthermore, as the molecule peak at low and high
momenta lies outside the boundaries of the continua, the corresponding excitations
possess an infinite lifetime within this renormalization scheme.

2.3.6 Conclusion on strongly coupled two-dimensional Bose-Fermi
mixtures

In this section we investigated the phase diagram of strongly-coupled Bose-Fermi mix-
tures in two dimensions. In order to make progress in the exploration of this complex
phase diagram it is important to establish limits that can be understood controllably.
To this end we focused on the regime of fermion-dominated population-imbalance
which, in the extreme imbalance limit, connects to the Fermi polaron problem where
a single bosonic impurity interacts with a Fermi sea. The opposite limit of a fermionic
impurity coupled to a Bose-Einstein condensate corresponds to the Bose polaron prob-
lem which features qualitatively different physics. Already this asymmetry reflects the
impact the interplay of different particle statistics has on the phase diagram away from
the extreme population imbalanced limits.

In order to approach the problem we employed a functional renormalization group
approach that allows to systematically incorporate high-order correlation functions.
This enables us to reproduce the polaron-to-molecule transition in the single-boson
limit which is a necessary condition for any theoretical approach that aims to describe
this strong-coupling phase diagram. In contrast to the simpler three-dimensional
case [54, 56, 137], we showed that three-body correlations have to be included to
describe the polaron-to-molecule transition in two dimensions and we obtain excellent
agreement with ab-initio approaches [175] that can be applied in the quantum impurity
limit.

Using the fRG we extended the analysis to finite boson densities. There, depending
on the boson and fermion densities (or equivalently their chemical potentials), we
observed two phases: a fermionic liquid with two Fermi seas in which all bosons are
bound into molecules, themselves immersed in a majority Fermi sea, and a hybridized
liquid in which the condensation of bosons leads to a mixing of the fermionic and
molecular sectors [96].
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This hybridization and the associated mixing are not a result of the Hubbard-
Stratonovich field used in our two-channel model, but they occur equally in atomic
single-channel models whenever scattering vertices between fermions and bosons de-
velop a pole in presence of a boson condensate. In this regard, the phase diagram
away from the molecular phase at nB � nF shares a remarkable similarity to the Bose
polaron problem that describes the opposite limit of few fermions immersed in a Bose
condensate, where the same hybridization mechanism leads to a crossover between
the polaron and molecule instead of a transition [103, 108].

Naively, one may suspect that in a mixture of bosons and fermions as many parti-
cles as possible are bound into fermionic bound states in order to maximize attractive
potential energy. This, however, does not take into account the properties of the
system in two ways. First, this argument neglects the fermionic nature of the bound
states which leads to the formation of a molecular Fermi energy, representing a kinetic
energy cost. As a result, when the bosonic density is increased, the molecular Fermi
energy eventually exceeds the energy of the lowest-lying polaron state and the system
enters the mixed phase.

Second, the argument misses the fact that already in the limit of a vanishingly small
boson density the formation of a bound state competes with the formation of a polaron
state in which a single boson interacts collectively with a large number of surrounding
fermionic bath particles [62]. For a fixed interaction strength, the polaron state can
thus profit more efficiently from an increased density of bath particles. Vice versa,
as the bath density is lowered polaron dressing looses efficiency so that eventually
the composite bound state becomes the new ground state (in absence of Coulomb
interactions).

While the fRG approach employed in this section provides nontrivial insights into
the phase diagram of the Fermi-Bose mixture, the approximations used are insufficient
to explore the phase diagram in its whole richness. First hints to a plethora of exciting
phenomena can already be inferred from numerous quasiparticle features of the single-
particle spectral functions uncovered using the FMR scheme in Section 2.3.5, ranging
from non-trivial effective mass renormalization and the non-monotonous dispersion of
molecules, to incoherent parts in the spectral function reflecting quasiparticle insta-
bility.

Indeed, for a more accurate description of such features it would be necessary to
go beyond the gradient expansion we impose on our Ansatz and instead allowing for
an arbitrary momentum and frequency dependence of vertex functions. While such a
treatment has been used in the three-dimensional case [137], it remains challenging to
implement numerically. Preliminary results (obtained from a calculation analogous to
Chapter 5 in two dimensions), however, suggest that including the full momentum-
and frequency-dependence indeed cures the spurious non-monotonous behavior of the
polaron energy discussed in Section 2.3.3. Far from being only of quantitative im-
portance, such a fully momentum- and frequency-resolved approach could give new
qualitative insight into the phase diagram, e.g. by allowing for the description of
transitions to non-trivial molecular Fermi surface topology [204] akin to Fulde-Ferrell-
Larkin-Ovchinnikov phases in BCS superconductors [205, 206].
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We did not include Bose-Einstein condensation in our formalism. Its explicit
inclusion would allow for the study of subregions of the mixed phase in which a
bosonic condensate is accompanied by molecular or fermionic Fermi seas. Additionally,
the presence of a condensate will require the incorporation of a repulsive Bose-Bose
interaction to ensure the mechanical stability of the condensate. Since the bosons
are strongly-coupled to the fermions a strong renormalization of the boson-boson
interaction has to be expected which may enhance or suppress the stability of Bose-
Einstein condensation. While fermionic self-energy corrections are expected to play a
subdominant role in the limit of strong population imbalance nF � nB, for a study
of the phase diagram away from this limit these also become an essential ingredient
and may lead to striking effects such as boson-mediated p-wave pairing at sufficient
interaction strength [92].

The question as to which vertices (i.e. correlation functions) to include in more
refined approximations of our fRG scheme is dependent on the type of phases one
may expect to govern the Bose-Fermi mixture phase diagram away from the strongly-
imbalanced limit —see the introductory Fig. 2.1. Quite generally, and similar to vari-
ational techniques, in field theoretical approaches the range of phases one can discern
is limited by the variety of —potentially competing— channels taken into account
in the renormalization procedure. In this regard, the strongly-coupled Bose-Fermi
mixtures present a vast testbed to develop comprehensive theoretical approaches to
competing order where a manifold of scenarios and phases may unfold, including:
phase separation between the fermionic species in case of repulsive effective interac-
tions, competing bipolaron and trion formation, boson-mediated s- or p-wave pairing
of fermions, fermion-induced phonon softening that may result in supersolidity, higher-
order pairing mechanisms such as boson-mediated Cooper binding of trions and phases
of Efimov-type states that may condense depending on their statistics.

Moreover, as discussed in Appendix A, the formation of bound states contain-
ing several bosons may be considered. However, in ultracold quantum gases these
higher-body bound states are usually subject to rapid decay to deeply bound states.
The competition between such dissipative multi-particle losses and the formation of
many-body phases is an intriguing perspective for future studies, posing a significant
theoretical challenge that requires extension beyond equilibrium theory.

Another compelling question is what the impact of Coulomb interactions between
the fermionic degrees of freedom may be. These long-range interactions will ultimately
impose limits on the universal connection between strongly-coupled Bose-Fermi mix-
tures in atomically thin semiconductors and ultracold atoms (see Table 1.1). Coulomb
interaction can be expected to play a key role in particular at low doping where screen-
ing becomes increasingly ineffective. Taking Coulomb interactions into account may
indeed suppress the formation of well-defined electronic and molecular Fermi sur-
faces and instead lead to qualitatively different physics even in the limit of extreme
population imbalance εB/εF , where understanding the interplay of Coulomb interac-
tion, favoring Wigner crystallization, and boson-mediated Fermi-Fermi interactions,
remains an open challenge.
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Considering the myriad of open questions, the full exploration of the phase diagram
of two-dimensional Bose-Fermi mixtures remains a formidable task. Due to the strong-
coupling nature of the problem, uncovering the possible in- and out-of-equilibrium
phases and phenomena will ultimately require a concerted effort between theory and
experiment. Starting from limiting cases, such as considered in this chapter, that can
be controllably understood and combining ab initio approaches with experimental
observations will be key to tackle this outstanding challenge and can lead to new
insight into effective descriptions of strongly-coupled many-body quantum systems.



Chapter 3

Impurity-induced pairing in
two-dimensional Fermi gases

This chapter is based on the following publication:

[3] R. Li*, J. von Milczewski*, A. Imamoglu, R. Oldziejewski, R. Schmidt,
Impurity-induced pairing in two-dimensional Fermi gases,

Physical Review B 107, 155135 (2023).

In this chapter we study induced pairing between two identical fermions mediated by
an attractively interacting quantum impurity in two-dimensional systems. Based on
a Stochastic Variational Method (SVM), in the first part of this chapter we inves-
tigate the influence of confinement and finite interaction range effects on the mass
ratio beyond which the ground state of the quantum three-body problem undergoes
a transition from a composite bosonic trimer to an unbound dimer-fermion state. We
find that confinement as well as a finite interaction range can greatly enhance trimer
stability, bringing it within reach of experimental implementations such as found in
ultracold atom systems. In the context of solid-state physics, our solution of the
confined three-body problem shows that exciton-mediated interactions can become
so dominant that they can even overcome detrimental Coulomb repulsion between
electrons in atomically-thin semiconductors. This work is thus of relevance as it paves
the way towards a universal understanding of boson-induced pairing across various
fermionic systems at finite density, and opens perspectives towards realizing novel
forms of electron pairing beyond the conventional paradigm of Cooper pair forma-
tion. As such it offers insights that we will also draw upon in Chapter 4 dealing with
boson-induced superconductivity in two-dimensional semiconductor materials as this
system shows properties of a many-body system despite being a few-body system in
every sense of the word.

Finally in Section 3.5, we will investigate the effect of confinement and interaction
strength, parametrized by the vacuum dimer energy, to identify signatures of the
polaron-to-molecule transition introduced in Section 1.7.
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The findings presented in Sections 3.1 to 3.4 are based on the work published in
Ref. [3]. The findings presented in Section 3.5 are based on unpublished work.

3.1 Introduction
Frequently, the relevant physics of a many-body system is determined by the prop-
erties of its few-particle correlators, and thus a deep understanding of a many-body
problem often comes only after carefully examining its few-body counterpart. An ex-
cellent example is given by the discovery of Cooper pair formation as the key ingredient
leading to superconductivity [83, 84, 207]. No matter the type of a superconductor,
be it s-wave, p-wave, d-wave, or other like charge-4e superconductors [208–217], the
phenomenon requires electrons to be bound into bosonic compounds. While, for con-
ventional superconductors, the binding originates from phonon-mediated attraction,
a variety of bosons —partially stemming from collective excitations of the electronic
system itself— have been considered as the mediating particle [218–221].

More generally, quantum impurity-mediated pairing of fermions in the mass im-
balanced 1+N fermion problem has been scrutinized extensively in recent years [177,
222–232]. The vast majority of theoretical efforts have focused on non-interacting
fermions and point-like impurity-fermion attraction that can be studied experimen-
tally with ultracold gases [128, 233, 234]. Interestingly, in the unconfined case, the
system supports cluster-bound states whenever the mass mI of the quantum impurity
is sufficiently light compared to the mass mF of the fermions . The critical mass ratio
α = mF/mI required for such bound states to appear depends on the dimensionality
of the system: in two dimensions (2D), the role of interactions is enhanced, and hence
the mass ratio can be smaller compared to the three dimensional (3D) case [186, 235].

A recent twist to the quantum impurity problem in 2D emerged with the advent
of atomically-thin van der Waals materials, particularly semiconducting transition
metal dichalcogenides (TMDs) [22, 33]. In TMDs, excitons (bosons) can be either
employed as an experimental probe of the many-body physics exhibited by electrons
(fermions), ranging from Mott physics [236], excitonic insulators [39] and the fractional
Quantum Hall effect [237] to the recent observation of Wigner crystallisation [238,
239], or they can be viewed as novel constituents of Bose-Fermi mixtures [1, 33,
62], potentially supporting superconductivity [95, 101, 102]. Importantly, in this
case, strong Coulomb repulsion is present between the fermionic electrons, and the
impurity-fermion interaction itself is characterized by a substantial range [61]. So far,
little is known about the existence and character of bosonic cluster-bound states in
such a scenario.

Recent advances in controlling 2D external confinement in ultracold setups [48,
240] and TMDs [241] open an exciting possibility of exploring the physics of the
quantum impurity problem in a fermionic background in a controlled bottom-up ap-
proach [242–244]. Quite intriguingly, from the perspective of many-body physics, an
alternative interpretation of the confinement potential is that of imitating a finite
fermion density found in many-body paradigms such as the Fermi polaron problem
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Figure 3.1. Impurity-induced fermion pairing. (a) Illustration of the three-body sys-
tem solved in this work. A mobile impurity particle (‘I’, red) of mass mI interacts with
two fermions (‘F’, blue) of mass mF with all particles confined in a two-dimensional
spherical box of radius R. Their positions, measured from the center of the box po-
tential, are denoted by r1, r2 and r3. The coordinates R2, R3 and θ, in turn, denote
the positions of the fermions and their angle relative to the impurity, respectively.
(b) Qualitative influence of the system size R on the critical mass ratio α = mF/mI

required for induced fermion pairing. By tuning the system size R, the density and
Fermi energy εF of the fermions are tuned. This allows to infer how an increase of the
Fermi level in a many-body system may enable impurity-induced bound state forma-
tion. (c) Qualitative effect of the range r0 of the impurity-fermion interaction on the
critical mass ratio αc = (mF/mI)c of the dimer-trimer transition. The critical value
obtained in free space (R → ∞) for contact interactions (r0 → 0) is shown as a dashed
line. Both, increasing interaction range or the Fermi energy, favors trimer formation
(which can even withstand detrimental Coulomb repulsion between the fermions, de-
noted as VFF in (a)).

[9, 128–130]. Specifically, the change of the confinement (∼ R, see Fig. 3.1) can be
regarded as a primitive means of tuning the bath density (nF ∼ 1/R2 ∼ k2

F ), realizing
a few-body analog of the full many-body problem [245].

In this chapter, we refine the understanding of 2D systems comprised of one impu-
rity and two identical fermions (quantum statistically, the smallest Fermi sea possible)
by studying the effects of a finite-range impurity-fermion potential, confinement, and
strong inter-fermion repulsion on the ground state properties using a Stochastic Vari-
ational Method (SVM).

Our first key result is that we show that the critical mass ratio of the dimer-
to-trimer transition strongly departs from previous findings obtained for the simpler
case of ideal fermions and zero-range impurity-fermion attraction (see Fig. 3.1(b,c)
for a schematic illustration). Remarkably, for TMDs, where the transition occurs
between a fermionic trion and a bosonic p-wave bound state of two electrons glued
together by an exciton, we find that trimer formation is robust against Coulomb
repulsion. Moreover, our numerical calculations show that the stability (in the sense
of an increase of the dissociation energy required to unbind the trimer into a dimer
state) of emerging bosonic p-wave bound states is enhanced by confinement. This
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suggests that direct exciton-mediated p-wave superconductivity may be well in reach
in solid-state systems.

Next, we study signatures of the polaron-to-molecule transition in the few-body
regime, by tuning the dimer energy from the non-interacting regime to a regime where
the dimer is the ground state. We find a qualitative analog of the polaron-to-molecule
transition which upon tuning the fermion density shows the same behavior as the
transition in the many-body problem. Furthermore, we show that the states we iden-
tify as the polaron and the molaron exihibit similar quasiparticle properties to their
many-body analogs, introduced in Section 1.7.

3.2 Model
We consider an interacting system of two fermions and a quantum impurity confined
in a two-dimensional spherical box; for an illustration, see Fig. 3.1(a). This could
represent two electrons interacting with an exciton in a quantum dot within a TMD,
as well as two degenerate ultracold fermionic atoms interacting with an atom of a
different quantum number within an oblate optical trap. Using an effective mass
approximation, the Hamiltonian for this system reads

Ĥ = − ~2

2mI

∇2
1 − ~2

2mF

∇2
2 − ~2

2mF

∇2
3 +

3∑
i=1

Vconf(ri)

+ VFI(r1 − r2) + VFI(r1 − r3) + VFF(r2 − r3).
(3.1)

Here r1, r2 and r3 denote the positions of the impurity and the two fermions, re-
spectively, while mI and mF are their masses. The fourth term in the Hamiltonian
represents the external confinement potential, which is modeled by an infinite poten-
tial well. In practice, this is achieved by setting

Vconf(r) = Eref

( r
R

)p
(3.2)

where R is the box size, Eref is a reference energy scale and p is a large integer so that
an infinite potential well is approximated. In our calculation, we set p = 30 and use
the vacuum dimer energy as the reference energy Eref = E∞

2B .
To account for finite range effects, the fermion-impurity interaction is modeled via

a square well potential

VFI(r) =

− V0, |r| ≤ r0

0, |r| > r0
, (3.3)

of depth V0 and range r0. Using this model potential, we mimic the finite range effects
of the short-range interactions both in two-dimensional materials [22, 61] as well as
ultracold atoms [20].

A possible Coulomb interaction between the two fermions,

VFF(r) = e2

4πε0ε

1
|r|
, (3.4)
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is included by the last term in Eq. (3.1). Here, e is the electron charge and ε the
dielectric constant of a given material. Note that in cold atoms this direct interaction
is absent (VFF = 0). For TMD Eq. (3.4) is a good approximation at large distance
scales. At short range, the interaction between charge carriers is more accurately
modeled using the Rytova-Keldysh potential [246, 247]. However, to capture the
essential physics of the interplay of Coulomb repulsion, confinement, and electron-
exciton attraction, we restrict ourselves to the use of the pure Coulomb potential
in Eq. (3.4). On the one hand, this allows for efficient numerics, and, on the other
hand, this does not complicate the analysis by introducing additional physical tuning
parameters, such as the screening length. In the following, we set ~ = 1, unless stated
otherwise.

3.3 Method
Apart from the task of solving the quantum mechanical problem of three interacting
particles, this system brings with itself the challenge of the additional confinement po-
tential. This confinement is, however, crucial in order to imitate the effect of a finite
fermion density nF in many-body systems, which scales as nF ∼ 1/R2 ∼ k2

F . Here kF
denotes the Fermi wavevector of the fermions. The confinement breaks translational
symmetry and thus is not susceptible to momentum space approaches using conven-
tional variational wavefunctions or quantum field theory and diagrammatic methods.

To solve for the ground state and its energy, we employ the SVM [248]. To this
end, the Hamiltonian H is diagonalized with respect to a set of wavefunctions {Φn}Nn=1
which is successively extended by drawing from a manifold of trial functions. In every
extension step N → N +1, the choice of the new wavefunction ΦN+1 is optimized in a
stochastic random walk, minimizing the lowest-lying eigenstates of the Hamiltonian H
with respect to the vector space spanned by the set {Φn}N+1

n=1 . During the optimization,
we first draw a set of independent samples from the manifold of trial functions and then
perform a random descend walk around the best proposal state. Having performed
an extension step, the Hamiltonian H is diagonalized with respect to the vector space
spanned by the {Φn}N+1

n=1 . The resulting i-lowest eigenstate Ψi is then given by a
superposition of these basis states, i.e.

Ψi =
N+1∑
n=1

cinΦn, (3.5)

where i = 1, ..., N + 1 and the eigenstates {Ψi}N+1
i=1 are mutually orthogonal.

In many applications of SVM, trial functions are generated from explicitly corre-
lated Gaussians (ECG). These are parametrized as

Φ(r1, r2, r3) = 1
r3
B

P exp

−1
2
(
rT1 rT2 rT3

)
A


r1

r2

r3


 (3.6)

where A denotes a positive definite, symmetric 6 × 6 matrix and P is an antisym-
metrization operator. The length scale rB, introduced in Section 3.4, characterizes
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the size of the dimer bound state. Throughout our work in this chapter the matrix A
in Eq. (3.6) is given by

A =


A11R(0) A12R(φ1) A13R(φ2)
A12R(−φ1) A22R(0) A23R(φ3)
A13R(−φ2) A23R(−φ3) A33R(0)

 , (3.7)

where A is a symmetric matrix, and R(φ) is a 2 rotation matrix by the angle φ

with R(0) given by the identity matrix R(φ) = I2. In the first parts of this chapter
when investigating the dimer-trimer transition a significantly simplified wavefunction
Ansatz is used where the matrix A of Eq. (3.6) is given by

A = A⊗ I2, (3.8)

where A is a positive definite, symmetric 3×3 matrix, and I2 the 2×2 identity matrix.
With this simplification the wavefunction simplifies to [248, 249]

Φ(r1, r2, r3) = 1
r3
B

P exp
−1

2

3∑
i,j=1

Aijri · rj

 . (3.9)

Here, A denotes a positive definite, symmetric 3 × 3 matrix. While this simplification
works well when studying dimer and trimer particles, in Section 3.5 we discuss short-
comings of this wavefunction in describing the polaron state which necessitate the use
of the more general wavefunction Eq. (3.6).

The advantage of using these trial functions is threefold. First, they allow one
to find the analytical solution to the matrix elements of the Hamiltonian [249, 250].
Second, by using them, high accuracy in the energy can be achieved. Finally, the
ECG contain the relevant physical states (dimers, trimers, and scattering states in
our system) and, as such, they have been used to calculate exciton, trion and even
biexciton energies in solid state systems with high precision [251–254].

3.3.1 Algorithm and Sampling
Let us provide further information on the optimization process undertaken in every
step of the SVM [248]. The sampling method and algorithm described here were used
for the results obtained to describe the dimer-to-trimer transition in Section 3.4. For
some of the calculations, the algorithm and the sampling were modified to achieve
faster convergence. The modifications will be mentioned in the respective places and
these modifications will be with respect to the base algorithm and sampling described
in this subsection.

For the results regarding the dimer-to-trimer transition, we performed 10 indepen-
dent calculations for every data point. In each of these calculations, 100 basis states
are computed. In the following, we refer to each one of these calculations as a run,
and the combination of 10 runs makes up a single data point.

To compile a set of 100 basis states {Φn}100
n=1 in a single run, we successively increase

the set of basis states by drawing from the manifold of trial wavefunctions described
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in Eq. (3.9), which have φ1 = φ2 = φ3 = 0 when comparing with the form shown in
Eqs. (3.6) and (3.7).

In a step N → N + 1, we draw proposal states {Φα} independently. From these
proposals, we choose the state Φβ which produces the lowest-lying eigenstate of the
Hamiltonian H with respect to the vector space V N

α spanned by the previously chosen
states {Φn}Nn=1 and the proposal state Φα

1

V N
α = span

(
{Φn}Nn=1 ∪ Φα

)
(3.10)

where

σ((H|V N
α

)) = {λNα,1, ..., λNα,N+1} (3.11)

denotes the spectrum of the Hamiltonian H, restricted to the vector space V N
α . The

minimization is carried out as

β = min
α

[
min
i

({λNα,i}i)
]
, (3.12)

where the minimization over i chooses the lowest eigenvalue of H|V N
α

, while the mini-
mization over α optimizes the proposal state.

Next, we perform a random descent walk in the vicinity of Φβ, for which every step
is accepted so long as it lowers the lowest eigenvalue. This process is terminated after
a fixed number of proposals which is specified below and can be varied depending on
the speed of numerical convergence to stable results.

A straightforward method to draw independently from the ECG manifold is to
draw proposal states Φα as

mα = 1
R


x11 x12 x13

x21 x22 x23

x31 x32 x33

 (3.13)

with

Aα = mT
αmα . (3.14)

Here, the xij are drawn from a uniform distribution in the interval xij ∈ [−1, 1].
The corresponding (unrenormalized) basis state is then given as Φα(r1, r2, r3)r3

B =
P exp

{(
−1

2
∑3
i,j=1 Aα,ijri · rj

)}
. In the second part of the optimization, in which we

perform the random descent walk, the proposal is updated as

m′
β = mβ + δx


x11 x12 x13

x21 x22 x23

x31 x32 x33

 (3.15)

with

A′
β = (m′

β)Tm′
β. (3.16)

1for a detailed description of SVM and different optimization strategies see Ref. [248].
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In practice, a value of δx = 0.1/rB has shown to yield good results for the parame-
ters considered in this work (for a detailed analysis of convergence see Section 3.4.4
and Appendix D).

As the manifold of trial functions is fairly large, a large number of random pro-
posals is necessary in every step of the algorithm to ensure convergence. This choice
of sampling quickly yields reliable results for dimer states. For trimer states, conver-
gence is much slower, and especially close to the dimer-to-trimer transition, it can
occur that no trimer state is obtained. To address this challenge, we leverage the
physical intuition that a trimer state should feature all particles confined within a
length scale of the interaction range. Exploiting this fact also allows us to reduce the
number of required steps, as well as improve stability of the algorithm.

In order to implement this idea in the algorithm, it is important to note that the
matrices A−1

α carry the meaning of a covariance matrix

〈xixTj 〉 ∼ (A−1
α )ijR(θα,ij). (3.17)

For the trimer, this suggests a covariance matrix of close to constant value (propor-
tional to the mean distance squared of the particles from the center of the trap), with
fluctuations around this value of the order of the interaction range. We thus introduce
a further sampling method described as

B = 5Rx0 + 2r0


x11 x12 x13

x21 x22 x23

x31 x32 x33

 ,
A−1
α = B +BT

2 , (3.18)

where x0 ∈ [0, 1]rB, xi,j ∈ [−1, 1]rB. Using δx′ = 0.1rB the corresponding random
walk method is determined by

B′ = B + δx′


x11 x12 x13

x21 x22 x23

x31 x32 x33

 ,
(A′

α)−1 = B′ + (B′)T
2 . (3.19)

In Eq. (3.18), the value of 5R (representing a sampling range of the mean distance
squared of the particle from the center of the trap) was chosen to ensure reasonable
convergence. The value of 2r0, in turn, representing the interparticle distances was
selected based on the fact that the localization of particles with respect to each other
should be on the order of the interaction range. In the first part of the algorithm,
where states are independently drawn, we then alternate between the two sampling
methods, Eqs. (3.13) and (3.18), while in the second part (where the random walk is
performed) we alternate between the methods defined by Eqs. (3.15) and (3.19).

While the sampling method described by Eq. (3.18) may seem very biased at first
glance, this presumption does not capture the full picture for several reasons. First,
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states of the form of Eq. (3.18) are usually also found using the sampling method
described in Eq. (3.13). There, however, many more sampling steps are necessary for
this to occur, implying less efficiency. Second, states found using Eq. (3.18) are often
accepted in the regime where the trimer is the ground state, but indeed also where
the dimer is the ground state. Furthermore, we use a large number of sampling steps,
namely about 15000 independent samples and 15000 local descents, each repeated
twenty times for every run. Thus the exact form of the sampling coefficients used in
Eqs. (3.13) and (3.19) does not play a dominant role as long as the space of eligible
wavefunctions is sufficiently small (i.e. the confinement is not too big) and the space
of appropriate wavefunction is large enough (i.e. the interaction range is not too
small). However, as can be seen in Fig. 3.2, for some parameter regimes, the data
begins to develop a scatter which could be addressed by increasing the number of
sampling steps further, or by restricting the sampling method described in Eq. (3.19)
to a smaller parameter space.

After we have finally performed 10 different runs, each yielding 100 basis states,
we then combine the results of these different runs to obtain a basis set of 1000 basis
states {Φn}1000

n=1 . In the very end, the Hamiltonian is diagonalized with respect to these
1000 states and the physical quantities are extracted from the resulting ground state.

3.3.2 The Hamiltonian in the ECG basis

Having discussed the Hamiltonian, the trial wavefunctions and the sampling method,
all that is left to do calculations are the matrix elements of the Hamiltonian. In
the following we give a detailed account of the representation of the Hamiltonian in
Eq. (3.1) within the manifold spanned by the ECG. For simplicity, we give expressions
for the simplified wavefunction Ansatz in Eq. (3.9), for the more general Ansatz in
Eq. (3.6), these expressions can be obtained in the same way.

Given two basis functions |A〉 and |B〉, corresponding to

〈x|A〉r3
B = exp


−1

2

3∑
i,j=1

Aijri · rj



and

〈x|B〉r3
B = exp


−1

2

3∑
i,j=1

Bijri · rj
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with xT = (rT
1 , rT

2 , rT
3 ), the matrix elements of the kinetic parts − ~2

2mi
∇2
i = p2

i

2mi
are

given by [250]

〈A|p2
i |B〉r6

B =
∫
dx(∇i〈x|A〉) · (∇i〈x|B〉)

=
3∑

k,l=1
AikBil

∫
dx rk · rl〈x|A+B〉

= 16π3

det{(A+B)}

3∑
k,l=1

AikBil(A+B)−1
kl

= 16π3

det{(A+B)} [A(A+B)−1B]ii. (3.20)

The remaining parts of the Hamiltonian consist of one-and two-body potentials of
the form V (ri) and V (ri − rj). Given a suitable vector wT = (w1, w2, w3), both types
of potential can thus be written in the form V (w̃Tx) where w̃T = wT ⊗ I2×2 such that
w̃Tx = w1r1 + w2r2 + w3r3. Then, the matrix element of this general form of the
potential reads [250, 255]

〈A|V (w̃Tx)|B〉 =
∫
dx V (w̃Tx)〈x|A+B〉 =

∫
dxdrV (r)δ(r − w̃Tx)〈x|A+B〉

= 1
4π2

∫
dxdrV (r)

∫
dk exp

(
ik ·

[
r − w̃Tx

])
〈x|A+B〉

= 4π2

det(A+B)
r−6
B

wT(A+B)−1w

∫
drV (r) exp

(
− 1

2wT(A+B)−1w
r2
)
,

(3.21)

where we have inserted a Dirac δ-distribution for which we then used a representation
in terms of exponentials.

From this expression, the matrix elements of Vconf(ri) = E∞
2B(|ri|/R)n, VFI(ri−rj),

and VFF(ri − rj) can be obtained for appropriate choices of w. For Vconf(ri), wj = δij,
while for VFI(ri − rj) and VFF(ri − rj), wk = δik − δjk. The matrix element of Vconf(ri)
is then given by

〈A|Vconf(ri)|B〉 = E∞
2B

4π2

det(A+B)
r−6
B

(A+B)−1
ii

∫
dr

|r|n

Rn
exp

(
− r2

2(A+B)−1
ii

)

= E∞
2B

Rnr6
B

8π3

det(A+B)
[
2(A+B)−1

ii

]n
2 Γ
(
n+ 2

2

)
, (3.22)

where Γ(x) is the Gamma function. In practice we use n = 30.
The matrix element of the fermion-impurity interaction reads

〈A|VFI(ri − rj)|B〉 = − 8π2V0bij
r6
B det(A+B)

∫
drΘ(r0 − |r|)e−bijr2

= − 8π3

r6
B det(A+B)V0

(
1 − e−bijr

2
0
)
, (3.23)

where

bij = 1
2wT(A+B)−1w

= 1
2
[
(A+B)−1

ii + (A+B)−1
jj − 2(A+B)−1

ij

] . (3.24)
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Finally, the matrix element of VFF(r) = E∞
2BrBq

2/|r| is given by

〈A|VFF(r2 − r3)|B〉r6
B = E∞

2BrBq
2 8π2b23

det(A+B)

∫
dr

e−b23r2

|r|

= E∞
2BrBq

2 8π3

det(A+B)

√
πb23. (3.25)

3.3.3 Angular Momentum in the ECG basis
For reasons that will become clear in Section 3.4.2, let us also define a total angular
momentum of the (2+1) system relative to the impurity by

Ltot = L2 + L3 = R2 × P2 + R3 × P3, (3.26)

where R2, R3, P2, P3 are the positions and momenta of the two fermions relative
to the impurity. Because our variational wavefunctions are real functions, it follows
that 〈Ltot〉 = 0 [248]. As a result, even when describing states with 〈Ltot〉 6= 0,
superpositions of different expectation values will be formed resulting in 〈Ltot〉 = 0.

In order to capture the transition from the dimer state (which will have 〈Ltot〉 =
0) to the trimer state (which will have 〈Ltot〉 = ±1), we focus on the expectation
value of L2

tot, which may be nonzero. To that end, let us first define the coordinate
transformation

R1 = mIr1 +mF r2 +mF r3

(mI + 2mF )
R2 = r2 − r1,

R3 = r3 − r1. (3.27)

Given an ECG wavefunction |A〉 with 〈x|A〉r3
B = exp

{(
−1

2
∑3
i,j=1 Aijri · rj

)}
and

xT = (rT
1 , rT

2 , rT
3 ), this can be represented in the relative coordinates as 〈x̃|A〉r3

B =
exp

{(
−1

2
∑3
i,j=1 ÃijRi · Rj

)}
where x̃T = (RT

1 ,RT
2 ,RT

3 ), and Ã is defined as

Ã = OTAO (3.28)

with

O =


mI

mI+2mF

mF

mI+2mF

mF

mI+2mF

−1 1 0
−1 0 1


−1

. (3.29)

The matrix element of L2
tot is then given as (for more detail see Ref. [248])

〈A|L2
tot|B〉r6

B =8π3

Tr
(
f(Ã)

[(
Ã+ B̃

)−1
⊗ I2×2

])
Tr
(
f(B̃)

[(
Ã+ B̃

)−1
⊗ I2×2

])
4 det

(
Ã+ B̃

)

+
Tr
(
f(Ã)

[(
Ã+ B̃

)−1
⊗ I2×2

]
f(B̃)

[(
Ã+ B̃

)−1
⊗ I2×2

])
2 det

(
Ã+ B̃

)
.

(3.30)
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Here, we have defined the function f(Ã) in the following way. Given a symmetric
3 × 3 matrix

Ã =


Ã11 Ã12 Ã13

Ã12 Ã22 Ã23

Ã13 Ã23 Ã33

 , (3.31)

we define R =
(

0 1
−1 0

)
, such that f(Ã) reads

f(Ã) =


0 −Ã12 −Ã13

Ã12 0 0
Ã13 0 0

⊗R . (3.32)

3.4 Ground state transition between a dimer and a trimer
state

Let us finally calculate the ground state near the dimer-to-trimer transition using
the SVM. As the 2D system features binding via the fermion-impurity potential VFI

for any potential depth2, states composed of a dimer and a fermion in a scattering
state are expected to play a vital role [53]. Moreover, for sufficiently light impurities,
the formation of a trimer is expected. In this state, two fermions and the impurity
bind together by the mediating force of the impurity [225]. This is similar to the
three-dimensional case where a p-wave trimer and eventually Efimov states appear for
sufficiently light impurities [222, 227, 229].

In the limit of a vanishing interaction range r0 → 0 and infinite system sizeR → ∞,
a ground state transition from a dimer to a trimer state is predicted to occur when
the mass ratio α = mF/mI is tuned across the critical value αc ≈ 3.34 [177, 186, 235].
Having this limiting case as a benchmark, we investigate the effect of interaction range
r0 and confinement (determined by the system size R) on the critical value αc. It is
important to note that the transition will occur as a crossover because of the finite
size of the system. Specifically, we study how the ground state characteristics and
energy change as we tune α, r0, and R and, as a result, how the critical mass ratio
varies with r0 and R.

In the following, we will refer to the two-body bound state appearing in an un-
trapped (R → ∞) two-body problem consisting of the impurity and a fermion as the
‘vacuum dimer’. Its binding energy will be denoted as the ‘vacuum dimer energy’ E∞

2B.
The terms ‘dimer’ and ‘trimer’, in turn, will refer to states in the three-body problem.
Specifically, the dimer refers to a state comprised of a fermion in a scattering state
along with a two-body bound state of an impurity and a fermion, while the trimer
denotes a three-body bound state consisting of an impurity bound to both fermions.

To study the dimer-to-trimer transition, we vary α, r0 and R while keeping the
non-trapped (R → ∞) vacuum dimer energy E∞

2B constant. We define a corresponding
2As long as the size of the impurity-fermion bound state is smaller than the confinement length

scale.
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binding length rB = 1/
√

2mFE∞
2B, and, unless explicitly stated otherwise, we will work

in units where the fermion mass is set to mF = 1/2. Note, that we have defined rB
by the fermion mass and not the reduced mass. This convention ensures a fixed value
of rB as α is changed. One has to keep in mind, however, that now rB is proportional
to the physical binding length of the dimer state. The two-body Hamiltonian of one
fermion and one impurity interacting via VFI can be solved exactly [256], as we will
show in the following in Section 3.4.1. This allows to obtain the required potential
depth V0 for given values of α, r0, and E∞

2B.

3.4.1 Two-body problem without confinement
Let us consider an impurity (with mass mI) interacting with a single fermion (with
mass mF ) via VFI(r) = −V0Θ(r0 − |r|) where Θ(x) is the Heaviside function. The
Schrödinger equation in the relative coordinate frame then reads

−∇2

2µψ(r) + VFI(r)ψ(r) = −E∞
2Bψ(r) (3.33)

where µ = mFmI/(mF +mI) is the reduced mass of an impurity and a fermion. The
wavefunction ψ(r) can be decomposed into a radial part and an angular part, i.e.
ψ(r) = u(r)eimθ with m the angular momentum of the state. For the ground state,
we have m = 0. Thus the equation for the radial wavefunction is given by

r2u′′ + ru′ + 2µ[−E∞
2B + V0Θ(r0 − r)]r2u = 0, (3.34)

which takes the form of a Bessel differential equation in the regions r < r0 and r > r0.
As a result, the solution of this equation can be found in text books [256], as the
Bessel differential equation is simply solved on the two domains r < r0 and r > r0

and a matching conditions in between the two domains is enforced. The ground state
energy E∞

2B is found by the solution of the implicit equation

J0
(√

2µ(−E∞
2B + V0)r0

)
√

2µ(−E∞
2B + V0)K0

(√
2µE∞

2Br0
) =

J1
(√

2µ(−E∞
2B + V0)r0

)
√

2µE∞
2BK1

(√
2µE∞

2Br0
) (3.35)

with J0, J1 Bessel functions of the first kind, and K0, K1 modified Bessel functions
of the second kind. In Appendix C, the two-body problem including confinement is
solved using the SVM.

3.4.2 Non-interacting fermions
We now begin our numerical study by first considering the system without Coulomb
interactions (VFF = 0). After establishing the dimer-to-trimer transition for this case,
in Section 3.4.3 we will switch on Coulomb interactions (VFF > 0), and systematically
explore their effect.

Fig. 3.2 shows the energy of the SVM ground state as function of the mass ratio α,
for different values of r0 and R. Here, r0 and R are varied in terms of the dimensionless
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Figure 3.2. Energies E/E∞
2B (top panels) and angular momentum expectation values

〈L2
tot〉 (bottom panels) of the ground state as a function of mass imbalance α for var-

ious dimensionless interaction ranges r0/rB and system sizes R/rB. The energies are
located around E∞

2B with upward shifts mainly due to the confinement contributions
to the kinetic energy of the particles. The crossover from the dimer to the p-wave
trimer bound state is visible in the angular momentum (lower panels) which crosses
over from being close to 0 to approximately 1. This crossover is similarly reflected in
a drop of the ground state energy which develops an almost linear dependence on α

beyond the crossover from the dimer to the trimer ground state. For increasing values
of r0/rB (R/rB), this crossover region is shifted to lower (higher) mass ratios α. For
R/rB → ∞, the crossover becomes a sharp transition which, for r0/rB → 0, occurs at
αc ≈ 3.34 [177, 186, 235].

quantities r0/rB and R/rB. The ground state energies are all located in the vicinity
of −E∞

2B. For fixed r0/rB and R/rB, the ground state energies first increase slightly
with the mass ratio and then show a drop at a critical mass ratio. Beyond the
critical mass ratio, the ground state energy decreases steadily, exhibiting an almost
linear dependence on the mass ratio, E ∝ −α [177, 186, 235]. One can see that r0

and R have a strong influence on the energies and the critical mass ratio at which
the qualitative change in the ground state energy occurs. For a fixed system size
R/rB, upon increasing r0/rB, both the ground state energies and the critical mass
ratio decrease. On the other hand, for a fixed interaction range r0/rB, an increase in
system size R leads to a decrease of the energy that is accompanied by an increase of
the critical mass ratio.

Let us now turn to a detailed discussion of the qualitative change observed in the
ground state energy. This change signifies a transition of the ground state, where,
for values of α smaller than a critical value, the system is in the ‘dimer’ state, i.e. it
is composed of a bound dimer along with an unbound fermion. In contrast, beyond
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the critical value of α, the ground state energy falls below the dimer-fermion scat-
tering threshold energy, indicating the emergence of the trimer state, similar to the
unconfined system [177, 186, 235].

While the energy is a good indicator of a qualitative change, a reliable identification
of the nature of the ground state requires a deeper analysis of the corresponding
wavefunction. In the following, we will show that the angular momentum and the
density distribution provide two measures to clearly distinguish the dimer and trimer
state.

First, let us focus on the analysis of angular momentum. To this end, we introduce
the relative coordinates R2 = r2 − r1 and R3 = r3 − r1, where R2 and R3 denote
the positions of the fermions relative to the impurity. The total angular momentum
relative to the impurity particle is then given by Ltot = L2 + L3, where L2 = R2 × P2

and L3 = R3 × P3. Here, P2 and P3 are the momentum operators corresponding
to R2 and R3, respectively. This is the same angular momentum operator as the
one introduced briefly in Section 3.3.3. In this relative coordinate frame, fermionic
statistics imposes the trimer to have odd, finite angular momentum 〈Ltot〉 = ±1, while
the dimer state has 〈Ltot〉 = 0 [177, 186, 225, 235, 257].

As a result of the ECG functions used, the basis functions are real and hence
any measured value of 〈Ltot〉 has to vanish. As a consequence of this constraint, the
wavefunction of the trimer state obtained from the SVM is an equal superposition of
degenerate ground states with 〈Ltot〉 = 1 and 〈Ltot〉 = −1; resulting in the expectation
value 〈Ltot〉 = 0. Thus, in order to obtain a characterization of the ground state, we
consider the expectation value 〈L2

tot〉. This allows us to distinguish the dimer and
trimer state in a reliable way.

We show the ground state value of 〈L2
tot〉 in the lower column of Fig. 3.2. As one

can see, 〈L2
tot〉 sharply increases from values close to 0 to approximately 1 as the mass

ratio is tuned beyond a critical value. The region in which this qualitative change
occurs coincides with the critical mass ratio at which the drop in energy is observed
(upper panels of Fig. 3.2). The close link between the behavior of the ground state
energy and angular momentum is robust across all values of r0/rB and R/rB. While
for smaller system sizes, the transition region is larger, with increasing system size,
the transition region becomes more narrow. This indicates that, as expected, the
crossover found for a finite system turns into a sharp transition for an infinite system
size.

From the behavior of energy and angular momentum, a simple physical pic-
ture of the crossover from a dimer to a trimer arises. At smaller mass ratios α,
the ground state is given by a dimer along with a fermion in a delocalized scat-
tering state. Thus, for large system sizes, the energy approaches the two-body en-
ergy −E∞

2B. However, for smaller system sizes the confinement induces exchange-,
correlation- and confinement-energies between the two fermions increasing the en-
ergy above −E∞

2B. This increase in energy is larger for smaller system sizes and
features an additional weak dependence on the mass ratio that can be understood
already from the non-interacting system where the confinement energy is given by
Econf = z2

01/2mIR
2 + z2

11/mFR
2 = (z2

01α/2 + z2
11)/mFR

2 with z01 and z11 the first



108 Ground state transition between a dimer and a trimer state

2

3

α
c

R/rB = 10 R/rB = 20

i
ii
iii
iv

0.2 0.5 0.8

r0/rB

2

3

α
c

R/rB = 50

0.2 0.5 0.8

r0/rB

R/rB = 100

Figure 3.3. Critical mass ratio for the dimer-to-trimer transition as function of the
interaction range r0/rB for R/rB = 10, 20, 50, 100. The mass ratios are determined
using four different criteria: i. appearance of ground state energy decrease (black
dots); ii. 〈L2

tot〉 ≈ 1 (purple triangles); iii. 〈L2
tot〉 ≈ 0 (red squares); iv. 〈L2

tot〉 ≈ 0.5
(yellow crosses). The different criteria lead to different values of αc, with the 〈L2

tot〉 ≈ 0
criterion consistently giving the lowest mass ratio, while the 〈L2

tot〉 ≈ 1 criterion yields
the highest. With increasing R/rB, the crossover region becomes more narrow, and
the results from the different methods converge.

zeros of the Bessel functions J0 and J1, respectively. Beyond the critical mass ratio,
the ground state is described by a trimer state, and its energy starts to decrease close
to linearly with the mass ratio, as also found in the continuum case [177, 186, 235].

We now turn to a more detailed analysis of how the system size R and interaction
range r0 affect the critical mass ratio αc (see Fig. 3.3). Decreasing the system size has
a stronger effect on the dimer state than on the trimer state. This is caused by the fact
that the unbound fermion in its delocalized scattering state feels the confinement more
strongly than a fermion bound tightly to the impurity. As a result, the trimer state is
subject to a confinement energy contribution less than the dimer state. Consequently,
decreasing system size moves the transition to smaller mass ratios.

Increasing the interaction range r0 affects the trimer state stronger than it affects
the dimer state. For R � r0, the average distance between the fermions in a trimer
state is related to the short distance scales rB and r0 while, in the dimer state (which
includes the unbound fermion), it is related to R. Thus, increasing r0, lowers the
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Pauli-repulsion within the trimer state, making the trimer favorable which decreases
the critical mass ratio. This intuitive picture is reflected in the numerical results
presented in Fig. 3.3. In this Figure, we additionally analyze the increasing sharpness
of the transition as the system size is increased by showing the critical mass ratio as
obtained from different criteria imposed on the energy and the angular momentum.
As one can see, for R/rB = 100, all criteria give nearly identical results, and only the
dependence on the scale r0 remains.

As can be seen from the lower panel in Fig. 3.2, the impact of the interaction
range and system size on the dimer and trimer state is also reflected in the angular
momentum. Due to the confinement, the free fermion in the dimer state is forced to
take on a finite angular momentum state, resulting in a nonzero value of 〈L2

tot〉. As
the system size is increased, the free fermion is less affected and 〈L2

tot〉 approaches
zero. The trimer, on the other hand, is hardly affected by the finite system size as
long as R � r0, and thus 〈L2

tot〉 is very close to 1.
Our finding of a strong dependence of αc on r0 and R shows that the critical mass

ratio of 3.34, obtained in the limit r0 → 0 and R → ∞ [177, 186, 235], potentially
features only a small window of universality. In this regard we note that the critical
mass ratios in Fig. 3.3 for R/rB = 100, r0/rB = 0.2 tend to lie slightly higher than
the asymptotic value of 3.34. This is due to the stochastic nature of our method
which is particularly challenged when the energetic difference between dimer and
trimer particles becomes very small, which precisely occurs close to the transition.
As a result, especially for larger system size and shorter interaction range, a suitable
trimer wavefunction can only be found for a high number of proposed wavefunctions.
In Section 3.4.4, the deviation from the asymptotic value of αc = 3.34 is studied in
detail, and additionally, a convergence analysis, including an estimate for the basis
set extrapolation error, is undertaken.

The spatial localization of the fermions around the impurity —or the lack thereof—
provides a further means to confirm the presence of two- and three-body bound states.
To that end, we study the spatial structure of the ground state wavefunction. It is
expected that in the trimer state the two fermions are both close to the impurity, while
in the dimer state, one fermion should be close to the impurity while the other resides
in a delocalized scattering state. To study this behavior, we consider the correlation
functions (which can be regarded as reduced density distributions)

u1(R2, R3) =
∫

|Ψ(r1, r1 + R2, r1 + R3)|2d2r1dθ2dθ3, (3.36)

u2(R2) = R2

∫
dR3R3u1(R2, R3). (3.37)

Here, Ψ denotes the three-body wavefunction, and the angles θ2, θ3 are defined via
R2 = R2(cos θ2, sin θ2) and R3 = R3(cos θ3, sin θ3). From this definition, one can see
that the reduced density distribution u1 measures the probability of simultaneously
finding one electron at a distance R2 while the other is situated at distance R3 from
the impurity. The distribution is obtained by integrating out the coordinates of the
impurity followed by a further average over the angular orientation of the fermions
with respect to the impurity. Performing an additional integral over the distance of
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Figure 3.4. Reduced density distributions of a dimer (α = 2) and trimer (α = 3)
state. The main plot shows u2(R2)rB for the dimer (black, solid) and the trimer
(red, dashed) state for R/rB = 20 and r0/rB = 0.8. The exponential decay of the
trimer distribution is clearly visible while the dimer state contains a fermion that is
delocalized at the length scale of the system size. The insets show u1(R2, R3)r4

B for the
dimer (left) and the trimer state (right). For the trimer state, u1(R2, R3)r4

B attains
its largest values when R2 and R3 are both small, which shows that both fermions are
close to the impurity, while for the dimer state u1(R2, R3)r4

B attains its maximum on
the x- and y-axis.

one of the fermions from the impurity, one obtains a measure for the probability (u2)
of finding one fermion at a distance R2 from the impurity.

In Fig. 3.4, density distributions are shown for exemplary trimer and dimer states.
For the trimer state, the density distribution u2 indeed exhibits an exponential decay,
in line with the expectation that both fermions are closely-bound to the impurity. In
contrast, for the dimer state, u2 does not decay exponentially but features a tail that
corresponds to one of the fermions being situated in a scattering state. Note that
for the confinement length of R/rB = 20 chosen in this figure, the distance between
particles can be up to twice as large. Thus the density distribution does not vanish
beyond R2/rB = 20 but rather beyond the maximal interparticle distance (not shown
in the graph).

Density plots of the correlation function u1 are shown in the inset of Fig. 3.4.
They give further insight into the anatomy of the dimer and trimer states with
respect to their radial distribution. For the dimer state, the density distribution
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Figure 3.5. Reduced density distribution u3(R2, θ)rB for systems with and without
Coulomb interaction (see Section 3.4.3). Upper panel: Results for a dimer (α = 2,
left) and a trimer state (α = 3, right) for r0/rB = 0.8, R/rB = 20, and q = 0.
Lower panel: Results for a dimer (α = 2, left) and a trimer state (α = 3.5, right)
for r0/rB = 0.8, R/rB = 100 and q = 0.3. For the trimer state, u3(R2, θ)rB has
an angular dependence such that it achieves its minimal value around θ = 0 and its
maximal value around θ = π. This shows that the fermions in the trimer state have a
preference for an anti-parallel configuration that is mainly caused by Pauli exclusion.

u1 almost vanishes along the diagonal and achieves its maximum at approximately
(R2/rB, R3/rB) ≈ (0, 12). This exemplifies how in the dimer state one fermion is
closely bound to the impurity while the other fermion is delocalized. For the trimer
state, u1 attains its largest values when R2 and R3 are both small. Moreover, u1 van-
ishes rapidly for larger R2 and R3, which shows that both fermions are tightly bound
to the impurity. However, the analysis of u1 also reveals that, within the trimer state,
there is always one fermion that is bound tightly to the impurity, while the second
fermion will be in a bound ‘orbit’ at a slightly larger distance.

To further study the anatomy of the dimer and trimer states with respect to their
angular distribution, let us define the reduced density distribution u3(R2, θ) as

u3(R2, θ) = R2

∫
d2r1d

2R3|Ψ(r1, r1 + R2, r1 + R3)|2. (3.38)

Here, the vectors R2 and R3 are parametrized as R2 = R2(cos (θ3 + θ), sin (θ3 + θ)),
R3 = R3(cos θ3, sin θ3). Fig. 3.5 shows the density distribution u3(R2, θ) for dimer and
a trimer states. For the trimer states, when R2 is close to 0, the density distribution
u3 almost vanishes around θ = 0 and achieves its maximum at approximately θ = π

which shows that the fermions tend to locate at opposite sides of the impurity mainly
due to Pauli exclusion. On the other hand, u3 shows no visible angular dependence
for the dimer state as the distance between the two fermions is relatively large and
thus Pauli exclusion does not play an important role.
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Figure 3.6. Expectation value of rB/|r2 − r3| of the ground state wavefunctions
obtained in Section 3.4.2, for r0/rB = 0.5 (left) and 1.2 (right), shown for a range
of system sizes R/rB. The crossover from the dimer to trimer state is visible in the
steep increase of the expectation value. Increasing the box size R and decreasing the
interaction range r0 moves the crossover to higher α, consistent with our previous
results. Moreover, the expectation value increases as the box size becomes smaller,
because the confinement of the fermions in a smaller area results in a larger Coulomb
energy.

3.4.3 Coulomb interaction

We now consider the impact a repulsive interaction potential between the two fermions
(VFF > 0) has on the dimer-to-trimer transition. In particular, we focus on Coulomb
interactions present in 2D semiconductors (see Eq. (3.4)). In the trimer state, both
electrons bind to the exciton bringing themselves closer together. Intuitively, this
can give rise to a considerable increase in the total energy of the cluster, weakening
its binding. Consequently, given a fixed mass ratio, if the repulsive Coulomb energy
becomes larger than the energy gap between the trimer and dimer states, the ground
state is expected to unbind into a state comprised of a dimer and a free electron.

To roughly estimate the impact of the Coulomb energy on the total energy, we
first calculate the expectation value of the Coulomb interaction ∼ 〈rB/|r2 − r3|〉 with
respect to the ground state of the system without Fermi-Fermi interaction. We stress
again (see Section 3.2) that, in the following, we shall use the Coulomb potential
instead of a more accurate approximation of 2D interactions between charges given
by the Keldysh potential. In any case, since the Coulomb interaction is more extreme
than the Keldysh potential at short range, we expect our choice to be more restrictive
than the Keldysh interaction (at short distance the Coulomb interaction diverges as
1/r, while the Keldysh potential diverges as log(r/rsc); with rsc the screening length).

The expectation value of rB/|r2 − r3| is shown in Fig. 3.6. We find a transition
in the expectation value for increasing mass ratio. For dimer states, two electrons
are relatively distant, rendering the value of 〈rB/|r2 − r3|〉 small. In contrast, for
trimer states, this value is considerable and increases as the mass ratio rises. The
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Figure 3.7. Energies and expectation values of L2
tot of the ground state of the system

in presence of Coulomb repulsion (parametrized by the effective charge q) for system
sizes R/rB = 10 (left), and 100 (right). The interaction range of the fermion-impurity
potential is chosen as r0/rB = 0.8. As in Fig. 3.2, the steep decrease in energy beyond
a critical mass ratio reflects the crossover from a dimer to a trimer state. The position,
at which this transition occurs, moves to higher α upon increasing the box size R and
the effective charge q.

moderate increase of the Coulomb energy in the trimer state as function of the mass
ratio, suggests already in this simple estimate that the existence of the dimer-to-trimer
transition will persist even in presence of Coulomb repulsion.

Motivated by the above, we now solve numerically for the ground states of the sys-
tem including the Coulomb interaction (Eq. (3.4)) by applying the SVM for different
values of a dimensionless effective charge q, defined by the square root of the ratio of
Coulomb repulsion to dimer binding energy

q =

√√√√VFF(rB)
E∞

2B
=
√

2mFrB
4πε0ε~2 e, (3.39)

where we have restored the factor of ~ for clarity.
From the SVM, we calculate the energy and the expectation value of L2

tot for an
interaction range r0/rB = 0.8 and box sizes R/rB = 10 and R/rB = 100. The result is
shown in Fig. 3.7. Depending on the effective charge q, the energies start to decrease
significantly beyond a critical mass ratio. At the same time, the corresponding values
of L2

tot rapidly increase, signaling a dimer-to-trimer crossover.
The larger the effective charge q, the larger the critical value αc becomes. Con-

versely, the larger the density nF (∼ 1/R2 ∼ k2
F ), the smaller the critical value of αc.
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Figure 3.8. Reduced density distributions of a dimer (α = 2) and trimer (α = 3.5)
state in presence of Coulomb repulsion. The plot shows u2(R2)rB for a dimer (purple,
solid) and a trimer (orange, solid) state for R/rB = 100, r0/rB = 0.8 and q = 0.3. For
comparison the result is also shown for a smaller value of effective charge q = 0.1 in
orange. The insets show u1(R2, R3)r4

B for the trimer (α = 3.5, right) and the dimer
state (α = 2, right) with R/rB = 100, r0/rB = 0.8 and q = 0.3. As in Fig. 3.4, the
qualitative distribution of fermions within the dimer and the trimer state is visible.

Notably, the dimer-to-trimer transition remains robust upon the strong, long-range
Coulomb repulsion. Thus, while Coulomb repulsion weakens trimer formation (in-
creasing the critical value), it does not inhibit it. Indeed, for all effective charges we
considered3, we have observed the eventual transition into a trimer state. Importantly,
one can also always offset the detrimental effects of Coulomb repulsion on forming a
trimer, either by tighter confinement (i.e. larger effective electron density), or a larger
interaction range.

We show the reduced density distribution for the system in presence of Coulomb
repulsion in Fig. 3.8. The effective charges and mass ratios were chosen to realize both
dimer and trimer states as in Fig. 3.4. As can be seen, both states feature a localized
part, while the dimer again exhibits the additional contribution of a delocalized scat-
tering state. The density plots of u1, shown in the inset of Fig. 3.8, exhibit the same
qualitative behavior as those in Fig. 3.4. Fig. 3.8 also shows that, increasing the effec-

3the q = 0.5, R/rB = 100 data set shown in Fig. 3.7 does not show a trimer state, however, this
is merely due to the chosen plot range. A trimer state appears eventually upon increasing the mass
ratio.
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tive charge q, the density distribution of the trimer decays over a larger length scale.
This clearly shows that the Fermi-Fermi repulsion tends to favor a larger separation
between fermions, while still supporting the formation of a trimer state. Similarly,
within the dimer state, Coulomb repulsion has the effect of pushing the scattering tail
away from the impurity-fermion bound state.

For typical parameters and energy scales in TMDs, i.e. ε ≈ 4.4, mF ≈ 0.5me,
where me indicates the bare electron mass, and |E∞

2B| ≈ 30 meV (trion binding en-
ergy) [61], one arrives at q ≈ 2.6. This value is consistent with the absence of experi-
mental observations of higher-order bound states as the ground state. While at first
sight this might suggest the absence of the p-wave trimer state for typical TMD real-
izations, this estimate is obtained assuming an electronic system at vanishing density.
In this regard, it is important to note that, as we also find, confinement naturally
decreases the role of Coulomb interaction. In turn, regarding the increase in con-
finement as an increase in the effective electron density, our results suggest that at
sufficiently high fermion densities, p-wave bosonic trimers could indeed be stabilized
as the actual ground state in the system already for the typical experimental param-
eters. Moreover, our results show that the critical mass ratio αc could be changed by
experimentally tuning the effective charge q. This could, for instance, be realized by
appropriate dielectric engineering of the materials [258] that encapsulate the TMD
layer 4.

3.4.4 Deviation from the asymptotic result αc ≈ 3.34
As it can be seen in Fig. 3.2, for R/rB = 100 and r0/rB = 0.2 the 〈L2

tot〉 value begins
to increase at around α = 3.35 and has arrived at approximately 1 at the data point
corresponding to α = 3.45. Thus, the data indicates that the transition occurs for
3.35 < αc < 3.45, which lies higher than the asymptotic value of αc ≈ 3.34. This is in
opposition to our finding that, generally, confinement and a finite interaction range
should in fact cause a reduction of the value of αc.

To study this deviation, for each mass ratio we perform single runs of up to 1000
basis states, rather than performing ten runs of up to 100 basis states. These runs
are executed in two different ways which are motivated by noting the important point
that for R/rB = 100, r0/rB = 0.2 the transition region is very narrow (for further
information, see also the detailed discussion in Appendix D). Hence, few basis states
share overlaps with both the dimer and the trimer state. As a consequence, the ground
and the excited state each have to be optimized for with a significant number of basis
states, as few basis states optimize the energy of both the trimer and the dimer, and
it is thus easy to miss the true ground state.

This is visible in Fig. 3.9, where the purple dots show the result of a single run in
which the expansion of the basis set towards 1000 states keeps optimizing with respect
to the current ground state (and convergence is thus slow when the dimer and trimer
state are almost degenerate in energy). In contrast, convergence can be dramatically

4Such a modification of the dielectric environment will also affect the trion binding energy resulting
in a redefinition of E∞

2B .
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Figure 3.9. Angular momentum values as function of the mass imbalance α, for
R/rB = 100 and r0/rB = 0.2. The data of the ground state from Fig. 3.2 is shown
(yellow, crosses) along with ground state data obtained from single runs with N =
1000 basis states. This data was obtained using two different optimization strategies:
either by optimizing with respect to the ground state (purple dots), or by optimizing
for the first excited state in the second half of the run (black squares). For the latter,
the corresponding expectation value of the first excited state properties is shown as
red triangles.

sped up by allowing for more drastic updates; specifically, by adapting the acceptance
criteria for basis states such that for the first 500 basis states acceptance depends
on improving the ground state, and, for the next 500 basis states, it depends on
improving the first excited state. Away from the transition this is not an efficient
method to obtain a good ground state estimate. However, close to the transition this
approach offers dramatically improved efficiency in describing the ground state. The
result is shown as black squares in Fig. 3.9. For both optimization criteria one can
see that, compared to the data shown in Fig. 3.2 (reproduced also in Fig. 3.9), the
scatter in 〈L2

tot〉 is absent, and the transition region has become sharper. While for
the pure ground state optimization, the transition still occurs for 3.4 < αc < 3.45, for
the first excited state optimization criterion in the second half of the run, it now sets
on shortly before α = 3.3 and 〈L2

tot〉 ≈ 1 is reached shortly before α = 3.35, consistent
with the free space result.

In order to offer further insight into the two different optimization criteria, in
Fig. 3.10, energy and angular momentum data of the ground and first excited state
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Figure 3.10. Energy (top) and angular momentum (bottom) values of the ground and
first excited state as a function of basis states N for SVM calculations at α = 3.35,
R/rB = 100 and r0/rB = 0.2 using a single run of up to 1000 basis states. The results
were obtained in two different ways: optimizing the ground state for all 1000 states
(black) and optimizing the ground state for 500 states and then optimizing the first
excited state for another 500 states (red), showing ground (solid) and first excited
state properties (dashed).

are shown for parameters α = 3.35, R/rB = 100, r0/rB = 0.2 close to the free-space
dimer-to-trimer transition. The data, shown as a function of the number of basis
states, is obtained in the two different ways described above. That is, optimizing the
ground state for all 1000 basis states (‘ground state opt.’), and optimizing the ground
state for the first 500 basis states followed by the optimization of the first excited
state for the next 500 basis states (‘high prec.’). By construction, the latter algorithm
is more efficient in allowing admixtures of the excited state manifold to the optimized
basis set.

As one can see from Fig. 3.10, in the first approach that optimizes for the ground
state only, the energy of the ground state saturates already early on, and the first
excited state sees very little improvement. Optimizing the first excited state as well,
however, the energies cross over, triggering a transition from dimer to trimer behavior
as can be seen in the corresponding angular momentum plot in Fig. 3.10. Here, it can
also be seen that optimizing the ground state only, its angular momentum remains
close to 0, while the first excited state does not immediately attain a value close to 1;
which is natural, since it is not optimized for. Optimizing for the first excited state
in the second half of the algorithm, one can see that its expectation value attains a
value close to 1 already after being optimized for only about 100 basis states. At
around 700 basis states, the first excited state has been optimized enough to trigger
the crossover between ground and first excited state.
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3.5 Polaron-to-molecule transition within a few-body sys-
tem

We are interested in seeing a precursor of the many-body polaron-to-molecule transi-
tion in a few-body system. In a many-body system, the ratio of the two-body bound
state energy to the Fermi energy can be tuned to trigger a polaron-to-molecule transi-
tion, as long as the impurity is heavy enough. With confinement as a few-body analog
of finite density, a similar tuning can be performed in the few-body limit.

For sufficiently heavy impurities, without any confinement, the ground state of
a system with one impurity and many fermions consists of the impurity forming a
dimer/molecule with one of the fermions. Neglecting the influence of the range of the
potential well, the binding length of this molecule is given approximately by rB (or
at least by a quantity that scales like rB) which is related to the binding energy of
the dimer. At the same time, our physical understanding of a polaron state is that of
being adiabatically connected to the ground state of a non-interacting system.

For given r0, V0 and a given mass ratio α, one can compute the corresponding
two-body vacuum binding energy E∞

2B as described in Section 3.4.1. Furthermore,
as seen in previous sections one can choose a range of these parameters in which a
dimer/molecule is formed. Tuning the depth of the potential well V ′

0 continuously
from V0 to 0, we can then tune the system from a molecular ground state into a
non-interacting ground state (given of course that we had a molecular state to begin
with). Equivalently, every value of V ′

0 corresponds to an unconfined two-body energy
E∞′

2B , which in turn can be used to define a length scale r′
B = 1/

√
2mFE∞′

2B . As V ′
0 is

tuned from V0 to 0, the effective confinement length r
′
B increases from rB to ∞. At

some point, however, r′
B becomes of the order of R and thus it should no longer be

physically possible to form molecules.

3.5.1 Triggering a polaron-to-molecule transition by tuning the po-
tential depth

In the following, we show results for the system described in Section 3.2 which we
interpret as a precursor of a polaron-to-molecule transition. As will become clear in
Section 3.5.4, the generalized form of the ECG introduced in Eq. (3.6) is necessary to
reproduce the non-interacting ground state and as a result the simplification that was
possible in describing the dimer to trimer transition (i.e. setting φ1 = φ2 = φ3 = 0
to use Eq. (3.9)) in previous sections is no longer appropriate when describing the
polaron.

From Fig. 3.2, it is clear that at α = 1.5, r0/rB = 0.8, R/rB = 10 and also for
α = 1.5, r0/rB = 0.8, R/rB = 20 the system holds a molecular ground state. Thus,
these parameters serve as ideal starting parameters to then tune V ′

0 (and by that E∞′
2B

and r
′
B).

As the depth of the potential well V ′
0 is tuned continuously between the molecular

ground state at V0 and the non-interacting ground state at V ′
0 , it is natural to expect
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that the properties of the ground state change: While for small V ′
0 we expect the

ground state to have good overlap with the non-interacting ground state, a molecular
state should hold small overlap with the non-interacting ground state as it stems from
a strong interaction. Naturally, for a finite box size a molecular state will hold a finite
overlap even with a non-interacting ground state, however when increasing the box
size this overlap should decrease.

Furthermore, we have seen in Fig. 3.2 that the molecular states hold 〈L2
tot〉 ≈ 0,

while in Section 3.5.3 we will show that the non-interacting ground state for R = 10rB
has 〈L2

tot〉 ≈ 1.035.
It is thus natural to expect that the nature of the ground state changes smoothly

between these different qualitative features as the potential depth V ′
0 is tuned between

V0 and 0. Furthermore, the changes in the ground state should also be visible upon
inspection of the reduced density distributions such as the u1(R1, R2) function defined
in Eq. (3.36): While we expect the molecular state to have one fermion tightly confined
to the impurity (on the order of the binding length r′

B) and one fermion in a scattering
state (confined to the impurity on the order of the box size R), the polaron is expected
to have both fermions rather tightly confined to the impurity. Not necessarily as tight
as the molecule, but certainly the second fermion should not be in a scattering state
whose mean distance from the impurity scales with R.

From the analogy to the many-body case where the polaron-to-molecule transition
occurs at a fixed ratio of the binding energy to the Fermi energy εB/εF (see Sections 1.7
and 2.3 for details), we expect the polaron-to-molecule transition to occur at lower
values of E∞′

2B/E
∞
2B for R = 20rB than for R = 10rB, because in the former case the

corresponding ‘Fermi energy’ is lower.
In the left panel of Fig. 3.11, the energies of the ground as well as the first excited

state are shown for R = 10rB as well as R = 20rB as a function of E∞′
2B/E

∞
2B for

r0 = 0.8rB and a mass imbalance of α = 1.5. For convenience, these energies are
shifted by the varying two-body vacuum bound state energy E∞′

2B . Furthermore, in
the right panel of Fig. 3.11 the corresponding energy gap ∆E between the ground and
the first excited state is shown. As one can see, in both cases the first excited state
energy approaches the ground state energy and then moves away from it again. For
R = 10rB this happens around E∞′

2B/E
∞
2B = 0.2, while for R = 20 this happens around

E∞′
2B/E

∞
2B = 0.03. This gives a first indication towards the occurrence of a transition

or crossover behavior between the ground and the first excited state. In the following,
we will characterize this behavior which results in a qualitative change in the nature
of the ground and first excited space using different observables.

To begin the characterization, in the upper and lower left panels of Fig. 3.12 we
show the expectation value of the squared angular momentum around the impurity
〈L2

tot〉 (introduced in Section 3.4) for the ground and the first excited state at both
R = 10rB and R = 20rB. As one can see, for both values of R, the squared angular
momentum of the ground state starts at a value slightly above 0.8, before rising to a
value around 1.1 quickly (more on this later). It remains at that value before crossing
over quickly to a lower value around 0.3 near E ′∞

2B/E
∞
2B = 0.2 for R = 10rB and below

0.2 near E∞′
2B/E

∞
2B = 0.03 for R = 20rB, respectively. Similarly, the squared angular
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Figure 3.11. Ground and first excited state energies as a function of two-body bind-
ing energy. The left panel shows the ground (solid) and first excited state (dashed)
energies at r0 = 0.8 for R = 10rB (purple) and R = 20rB (red) as a function of the
varying two-body binding energy E∞′

2B . For convenience, the energies are shifted by
E∞′

2B . The right panel shows the energy gape between the ground and the first excited
state. The energy gap closes at E∞′

2B/E
∞
2B ≈ 0.2 for R = 10rB and at E∞′

2B/E
∞
2B ≈ 0.03

for R = 20rB. The dash-dotted and dotted lines in the left panel show the exact
particle-in-a-box ground and first excited state energies at E∞′

2B as computed in Sec-
tion 3.5.3.

momentum of the first excited state performs the opposite maneuver, it starts at a low
value and eventually swaps places with the ground state angular momentum. These
crossovers coincide with the closing of the energy gap seen in Fig. 3.11. To identify
the corresponding states, it is useful to recall that in Section 3.4 we have previously
identified the ground state at E ′

B/EB = 1 as a molecule/dimer state and the low
angular momentum expectation value 〈L2

tot〉 confirms this further. Similarly, we will
show analytically in Section 3.5.3 that the angular momentum expectation value 〈L2

tot〉
of the non-interacting ground state can be computed to give 〈L2

tot〉 ≈ 1.035. This
closely connects the corresponding state shown in Fig. 3.12 to the non-interacting
ground state and therefore to the polaron state which consider as being adiabatically
connected to the non-interacting ground state. In Section 3.5.3 we will comment on
this further.

To further this connection, in the upper and lower right panels of Fig. 3.12 we
show the overlap | 〈Ψ|Ψ0〉 | of the ground (solid lines) or first excited (dashed lines)
state |Ψ〉 at a given value of E∞′

2B/E
∞
2B with the non-interacting ground state |Ψ0〉 at

E∞′
2B/E

∞
2B = 0. As one can see, a crossover behavior between the ground and the first

excited state takes place which coincides with the behavior seen in energy and angular
momentum. Furthermore, the state we identified as a polaron based on its angular
momentum retains significant overlap with the non-interacting ground state and is
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Figure 3.12. Angular momentum and overlaps with the non-interacting ground state
of the ground and first excited state as a function of two-body binding energy. The
left panels show the angular momentum expectation value 〈L2

tot〉 of the ground (solid)
and first excited state (dashed) at r0 = 0.8rB for R = 10rB (purple) and R = 20rB
(red) as a function of the varying two-body binding energy E∞′

2B . The right panels
show the overlap | 〈Ψ|Ψ0〉 | of the ground (solid lines) or first excited (dashed lines)
state |Ψ〉 at a given value of E∞′

2B/E
∞
2B with the non-interacting ground state |Ψ0〉

at E∞′
2B/E

∞
2B = 0. The lower panels show enlargements of the crossover regions seen

in the upper panels. In the angular momentum a crossover behavior between the
polaron state at 〈L2

tot〉 ≈ 1.12 and the dimer state at low values of 〈L2
tot〉 is visible

which coincides with the behavior observed also in Fig. 3.11. A similar behavior is
seen in the overlap with the non-interacting ground state which is rather significant
for the polaron state and almost vanishing for the dimer state.
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Figure 3.13. Reduced density distribution function u1 of the ground (top) and the
first excited state (bottom) for E∞′

2B/E
∞
2B = 0.05, 0.1, 0.5 and 1 (from left to right)

at r0 = 0.8rB, R = 10rB. The red dots indicate the positions where the distribution
function attains its maximal value. Molecule states feature a fermion located near the
impurity and a fermion in a scattering state centered ≈ 7rB away from the impurity
(in a box with radius R = 10rB). Unlike the molecule state, the polaron features a
tighter confinement of the second fermion to the impurity which becomes tighter as
E∞′

2B increases.

thus adiabatically connected to it. The molecule/dimer state on the other hand holds
close to vanishing overlap with the non-interacting ground state which comes as no
surprise as it stems from strong interactions unlike the non-interacting ground state.

3.5.2 Spatial wavefunction analysis of the polaron and the molecule

To understand better the spatial structure of the polaron and molecule states observed
in the previous subsection, let us analyze their reduced density distribution function
u1 which was introduced in Eq. (3.36). In Fig. 3.13 the u1 function of the ground
and the first excited state is shown for different two-body binding energies. While the
contour plots corresponding to the polaron and the molecule look similar, they hold a
qualitative difference in the position of the second, less confined fermion with respect
to the position of the impurity: Molecule states feature a fermion located near the
impurity and a further fermion in a scattering state centered ≈ 7rB away from the
impurity, which is on the order of the box radius R = 10rB. The polaron on the other
hand confines the second fermion much tighter to the impurity and as the two-body
binding energy E∞′

2B increases this confinement becomes tighter.



Polaron-to-molecule transition within a few-body system 123

0 0.2 0.4 0.6 0.8 1

E
′∞
2B /E

∞
2B

2

3

4

5

6

7

r m
a
x
/
r B R = 10rB, GS

R = 10rB, 1XC

0 0.2 0.4 0.6 0.8 1

E
′∞
2B /E

∞
2B

2

4

6

8

10

12

14

R = 20rB, GS

R = 20rB, 1XC

Figure 3.14. Position of the maximum rmax of the reduced density distribution func-
tion u1 along the R2 = 0 axis for the data shown in Fig. 3.11. This maximum is shown
for the ground state as well as the first excited state wavefunction both for R = 10rB
(left) and for R = 20rB (right). The transition/crossover behavior is clearly visible for
both box sizes and the two states show qualitatively different behavior: the molecule
is strongly sensitive to the box size R, while the polaron is strongly sensitive to the
varying two-body bound state energy E∞′

2B .

To illuminate this behavior, using the reduced density distribution function u1 of
the SVM runs with R = 10rB and R = 20rB ( shown in Fig. 3.11), we can determine
the maximum rmax of the u1 function for R2 = 0

rmax = max
R3

u1(R2 = 0, R3) (3.40)

as a function of E∞′
2B . Note that we may also lift the requirement of R2 = 0 and define

(r2
max, r

3
max) = max

R2,R3
u1(R2, R3), (3.41)

and we would find that except for very close to E∞′
2B = 0, either r2

max = 0 or r3
max = 0.

Thus to keep better comparability, we use the rmax measure defined in Eq. (3.40).
In Fig. 3.14 this measure is shown and as one can see there, for R = 10rB, the
position of the second fermion within the molecule state is nearly insensitive to the
two-body binding energy E∞′

2B . For the polaron, the position decreases much stronger
as E∞′

2B increases. Comparing with the curves obtained for R = 20rB this picture
solidifies: the position of the molecule maximum has almost doubled in comparison
to R = 10rB, while the polaron shows a behavior similar to that of R = 10rB. The
behavior observed in Fig. 3.14 thus matches the physical intuition that the position
of the second fermion in the molecule state is strongly sensitive to the box size R,
while the position of the second fermion in the polaron state is strongly sensitive to
the varying two-body bound state energy E∞′

2B .
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Figure 3.15. Level diagram of the non-interacting Hamiltonian Eq. (3.42) for α = 1.5.
Different (integer) angular momentum values l are shown and the energies are given
in units of ~2/2mFR

2. Black, solid lines denote the spectrum of the fermions while
red, dashed lines denote the spectrum of the impurity. The different lines for a single
value of l represent the different values of n where the energy increases wit n. Note
that every energy with |l| > 0 is twofold degenerate in ±l.

3.5.3 Angular momentum expectation values 〈L2
tot〉, 〈L2

I〉 and 〈L2
F 〉

of the non-interacting ground state
The angular momentum expectation value 〈L2

tot〉 of the non-interacting ground state
can be computed exactly and serves as a further physical limit to which the state found
in Figs. 3.11 and 3.12 can be compared. In the following we give a brief sketch of how
this angular momentum value can be computed as it is not a standard computation.

For vanishing impurity-fermion and fermion-fermion interactions, the Hamiltonian
reduces to a simply form

H = − ~2

2mI

∇2
1 − ~2

2mF

∇2
2 − ~2

2mF

∇2
3 (3.42)

which due to a lack of interactions can be solved using a three-body wavefunction Ψ
which consists of single particle wavefunctions ψ. The confinement range R imposes
that any solution to this Hamiltonian fulfills ψ(|r| > R) = 0. The single particle
wavefunction solutions to the corresponding Schrödinger equation are given in radial
coordinates by

ψln(r, θ) = eilθ√
Aln

Jl

(
zlnr

R

)
,

Aln = πR2J|l|+1(zln)2 (3.43)
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where zln is the n-th zero of the l-th order Bessel function Jl and the single particle
energies are given by

Eln = ~2

2mR2 z
2
ln. (3.44)

As a result of the level diagram (see Fig. 3.15) and the requirement that the three-
body wavefunction have vanishing total angular momentum, for α = 1.5 the resulting
three-body wavefunction is given by

Ψ(r1, r2, r3) =
√

2
A01A2

11
sin(θ2 − θ3)J0

(
z01r1

R

)
J1

(
z11r2

R

)
J1

(
z11r3

R

)
, (3.45)

that is, the impurity is in l = 0 and the fermions are in l = 1 and l = −1, all for
n = 1. Here ri, θi parametrize the ri in circular coordinates.

As defined in Eq. (3.27) the relative coordinates R2 and R3 along with the center-
of-mass coordinate R1 are defined as

R1

R2

R3

 =


mI

mI+2mF

mF

mI+2mF

mF

mI+2mF

−1 1 0
−1 0 1




r1

r2

r3

 (3.46)

and the corresponding momenta P1,P2P2 are defined as


P1

P2

P3

 =




mI

mI+2mF

mF

mI+2mF

mF

mI+2mF

−1 1 0
−1 0 1


−1

T 
p1

p2

p3

 . (3.47)

Using that

ri × pi = −i
(
xi
yi

)
×
(
∂xi

∂yi

)

= −i
[
ri sin(θj − θi)∂rj

+ ri
rj

cos(θj − θi)∂θj

]
(3.48)

one can then compute the action of Ltot on Ψ as

L̂totΨ(r1, r2, r3) = (R2 × P2 + R3 × P3) Ψ(r1, r2, r3)

=
[

mF

mI + 2mF

((2r1 − r2 − r3) × p1 + (r2 − r3) × (p2 − p3))

+ mI

mI + 2mF

((−r1 + r2) × p2 + (−r1 + r3) × p3)
]
Ψ(r1, r2, r3)

(3.49)

and finally the angular momentum expectation value can be computed as

〈L2
tot〉 =

( 3∏
i=1

∫ R

0
dri

∫ 2π

0
dθiri

) ∣∣∣L̂totΨ(r1, r2, r3)
∣∣∣2 . (3.50)
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Figure 3.16. Angular momentum expectation values 〈L2
I〉 = 〈(r1 × p1)2〉 and 〈L2

F 〉 =
〈(r2 × p2)2〉 of the ground (solid) and the first excited (dashed) state wavefunctions
shown in Figs. 3.11 and 3.12 as a function of E∞′

2B/E
∞
2B. For both R = 10rB (purple)

and R = 20rB (red), the expectation values of the ground and first excited states in
Eqs. (3.45) and (3.52) are found.

For the non-interacting ground state wavefunction in Eq. (3.45) and α = 1.5, this
integral can be evaluated numerically and yields

〈L2
tot〉 ≈ 1.0345. (3.51)

This value differs from the values found using the SVM in Fig. 3.11: There, the
angular momentum expectation value is approximately 〈L2

tot〉 ≈ 0.87 at E∞′
2B = 0

and quickly rises to 〈L2
tot〉 ≈ 1.12. Interestingly, this behavior is attained for both

R = 10rB and R = 20rB. The nature of this deviation is not entirely clear: As
marked by the dash-dotted lines in Fig. 3.11, in the case of R = 10rB the ground
and first excited state energies found by the SVM lie slightly lower than the energy of
the non-interacting ground state computed using Eqs. (3.44) and (3.45). At the same
time, the energies computed for R = 20rB lie sightly higher.

In Fig. 3.16 for the ground and the first excited states shown in Figs. 3.11 and 3.12,
the angular momentum expectation values of the impurity 〈L2

I〉 = 〈(r1 × p1)2〉 and
the fermions 〈L2

F 〉 = 〈(r2 × p2)2〉 are shown as E∞′
2B is varied. For E∞′

2B → 0 for both
R = 10rB and R = 20rB the ground state has 〈L2

I〉 = 0 and 〈L2
F 〉 = 1 as expected

from the analytical wavefunction in Eq. (3.45). Meanwhile, the first excited state has
〈L2

I〉 = 1 and 〈L2
F 〉 = 0.5 as can be inferred from the first excited state wavefunction

(impurity in l = 1, fermions in l = 0,−1)

Ψ(r1, r2, r3) = ψ11(r1, θ1) [ψ−11(r2, θ2)ψ01(r3, θ3) − ψ−11(r3, θ3)ψ01(r2, θ2)] . (3.52)
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The reason for the deviation in 〈L2
tot〉 is thus unclear: while the SVM seems to

find the correct ground state with the correct distribution of angular momentum onto
the impurity and the fermions, the SVM energy lies slightly below the analytical
result, which should be a strict lower bound; especially for a method that can only
approximate the ground state. A possible explanation for these deviations may lie in
the nature of the confinement: While the analytical result is obtained for a hard wall,
the SVM uses a confinement that merely approximates a hard wall as can be seen in
Eq. (3.2).

3.5.4 Could the polaron be the trimer? Comparison of the simplified
Ansatz in Eq. (3.9) in the polaron-to-molecule transition

Having explored both the polaron-to-molecule/dimer transition and the dimer-to-
trimer transition, it is natural to ask whether in this 1 + 2 problem the polaron and
the trimer state are the same. After all, they share a similar angular momentum
expectation value 〈L2

tot〉 and at least conceptually one may be tempted to interpret
them similarly: While the interpretation is that the dimer state has bound a fermion
closely to the impurity and has a further fermion in a scattering state, the difference
between polaron and trimer is not as clear. Leaving aside the qualitative nature of the
confinement of fermions to the impurity, the trimer has two fermions confined close to
the impurity, while the polaron attracts all fermions to the impurity, which in a 1 + 2
system is two fermions. Naturally, this argument would then connect the polaron to
a tetramer state in a 1 + 3 system.

To investigate this possible similarity, we recall that when describing the dimer-to-
trimer transition in Section 3.4, we were able to use a simplified wavefunction for which
φ1 = φ2 = φ3 = 0 in Eq. (3.6). The dimer and trimer state were described sufficiently
well within this Ansatz. On the other hand, for the polaron-to-molecule/dimer transi-
tion, this simplification was not used and instead the more general Ansatz with φ1 6=,
φ2 6= 0, φ3 6= 0 was used. In Fig. 3.17 the simplified Ansatz with φ1 = φ2 = φ3 = 0
is compared with results obtained using the more general Ansatz. As is can be seen,
for small values of E∞′

2B/E
∞
2B the energy of the ground state of the simplified Ansatz

follows the first excited state energy of the more general Ansatz, while at larger values
of E∞′

2B/E
∞
2B the energy of the ground state of the simplified Ansatz follows the ground

state energy of the more general Ansatz. This change in behavior coincides with the
polaron-to-molecule transition observed in Figs. 3.11 and 3.12 and indicates that the
simplified wavefunctions Ansatz is not capable of capturing the polaron state, while
it is capable of capturing the dimer state. This is also evident from the correspond-
ing angular momentum expectation values shown in Fig. 3.17, where it can be seen
that the angular momentum expectation values of the ground state in the simplified
wavefunction Ansatz reproduces the behavior of the dimer state. Finally, in Fig. 3.18
the angular momentum expectation values 〈L2

I 〉 and 〈L2
F〉 are shown and at E∞′

2B a
ground state with 〈L2

I 〉 = 1 and 〈L2
F〉 = 0.5 is obtained which corresponds to the

first excited state in the general Ansatz shown in Fig. 3.16. As the non-interacting
ground state in Eq. (3.45) is of the form ∼ sin(θr2 − θr3)J0(|r1|)J1(|r2|)J1(|r3|) this
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Figure 3.17. Comparison of the simplified Ansatz Eq. (3.9) to the more general Ansatz
Eq. (3.6). The energy (left) and angular momentum expectation value 〈L2

tot〉 (right)
of the ground (solid) and first excited state (dashed) are shown at r0 = 0.8, R = 10rB
as a function of the varying two-body binding energy E∞′

2B . The simplified Ansatz
Eq. (3.9) with φ1 = φ2 = φ3 = 0 (orange) and the more general Ansatz Eq. (3.6) with
φ1 6=, φ2 6= 0, φ3 6= 0 are used for comparison. The simplified Ansatz can reproduce
the dimer state, while it cannot reproduce the polaron state.

can easily be explained: Of course, this form cannot be obtained exactly using the
ECG wavefunctions, but to have at least an explicit dependence on the sine of the
angle between r2 and r3 one would have to set θ3 = π/2 in Eq. (3.6), at variance with
θ1 = θ2 = θ3 = 0.

Furthermore, the overlap with the non-interacting ground state shows now tran-
sition or crossover behavior using this Ansatz as can be seen in Fig. 3.18.

As a result, we can conclude that while the trimer and the polaron state may seem
similar at a first glance, they are in fact not the same and are adiabatically connected
to different states, the polaron to the non-interacting ground state and the trimer to
a strongly-interacting three-body bound state.

3.6 Discussion
In this chapter we started by studying the influence of confinement and finite in-
teraction ranges on the formation of ground state trimers in confined three-body
systems where two identical fermions interact with a mobile quantum impurity. We
showed that the position of the dimer-to-trimer transition, previously characterized
in Refs. [177, 186, 235], varies significantly under these effects. Our results show how
these effects can, in principle, be leveraged to realize p-wave trimers in atomically-thin
semiconductors and ultracold quantum gases.
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Figure 3.18. Angular momentum expectation values 〈L2
I〉, 〈L2

F 〉 (left) and overlap
with the non-interacting ground state (right) of the ground (solid) and the first excited
(dashed) state as a function of E∞′

2B/E
∞
2B for the results shown in Fig. 3.17. The non-

interacting ground state obtained using this simplified Ansatz admits the angular
momentum expectation values as the first excited state shown in Fig. 3.16.

While in two-dimensional cold atom systems already a great variety of mass ratios
is available, trimer formation could be further enhanced using a longitudinal trapping
confinement. In TMDs, the available mass ratios are more restricted (unless, e.g.,
flat Moiré bands are considered). However, our results show that a finite exciton-
electron interaction range as well as confinement can enhance and stabilize trimer
formation. Furthermore, we have argued that, given a suitable TMD, trimers can, in
principle, survive Coulomb repulsion as long as the effective charge, given by material
parameters such as the dielectric constant, remains below a critical value.

In regards to interpreting confinement as a means to imitate a finite bath density,
the remarkable robustness of the dimer-to-trimer transition suggests that bosonic p-
wave trimers might already appear as the ground state of realistic TMD heterostruc-
tures [22]. Our work thus highlights that experiments may already be close to the
point of exploring exciton-induced p-wave electron pairing, opening up the avenue
to novel mechanisms of exciton-mediated p-wave superconductivity in van-der Waals
materials.

We then moved on to study physics akin to the Fermi polaron to see whether
traces of this many-body behavior may already be found in the few-body limit. We
showed that there is a crossover between a state, adiabatically connected to the non-
interacting ground state, to a dimer state, which we interpret as a few-body analog of
the polaron-to-molecule transition. This crossover becomes sharper as the confinement
length increases which we also saw for the dimer-to-trimer transition, suggesting that
this crossover connects to the polaron-to-molecule transition. Interestingly, the point
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at which this occurs shows the same qualitative behavior as the transition point in
the true many-body regime.

Moving forward from our work, there are several exciting paths to pursue. For
one, it has been shown that for systems with a greater number of bath particles also
higher-order bound states may play an important role [235], which could lie lower
in energy than the trimer state. The influence of confinement and finite range on
these states is unexplored, and might drastically change the position of ground state
transitions as well as the occurrence of these transitions in the first place. Similarly, to
confirm the connection of the polaron-to-molecule transition studied in this chapter,
one might look to study the same system in 1 + 3 and 1 + 4, to see if the same trend
towards the many-body regime appears, possibly even approaching the many-body
observables asymptotically.

Going beyond 1 + N -type systems, the phase diagram of Bose-Fermi mixtures
[2] at a given density imbalance of the constituent species might be studied in few-
body systems with comparable density ratios. In this regard, the occurrence, nature,
and dynamics of interesting phenomena such as phase separation in the many-body
regime could be illuminated by corresponding observations in a few-body system. For
instance, in a system of type 2 + 3, one might compare the formation of a four- or
five-particle bound state to the coexistence of a dimer with a trimer.

Cold atomic systems offer a wealth of tunable parameters such as mass ratio,
bound-state energy and confinement [48]. Moreover, ultracold polar molecules and
magnetic atoms with strong dipolar interactions can now be realized experimen-
tally [132, 259, 260]. Exploiting the long-range character of their interactions, the
effects of Coulomb repulsion between identical fermions in solid-state structures can
now be mimicked in cold atom systems, highlighting these as an exciting platform to
gain new insights into the physics of the exciton-electron mixtures in layered van der
Waals materials.



Chapter 4

Superconductivity induced by strong
electron-exciton coupling in doped
atomically thin semiconductor
heterostructures

This chapter is based on the following publication:

[4] J. von Milczewski, X. Chen, A. Imamoglu, R. Schmidt,
Superconductivity induced by strong electron-exciton coupling in doped atomically thin
semiconductor heterostructures,

arXiv:2310.10726 (2023).

In this chapter we study a mechanism to induce superconductivity in atomically thin
semiconductors where excitons mediate an effective attraction between electrons. Our
model includes interaction effects beyond the paradigm of phonon-mediated super-
conductivity and connects to the well-established limits of Bose and Fermi polarons.
By accounting for the strong-coupling physics of trions, we find that the effective
electron-exciton interaction develops a strong frequency and momentum dependence
accompanied by the system undergoing an emerging BCS-BEC crossover from weakly
bound s-wave Cooper pairs to a superfluid of bipolarons. Even at strong-coupling the
bipolarons remain relatively light, resulting in critical temperatures of up to 10% of
the Fermi temperature. This renders heterostructures of two-dimensional materials a
promising candidate to realize superconductivity at high critical temperatures set by
electron doping and trion binding energies.

4.1 Introduction
In the past decade van der Waals materials have been shown to host a plethora of
quantum phases of matter ranging from Mott and Wigner crystals [236, 238, 239,
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261], the anomalous quantum Hall effect [237, 262–264], chiral edge states [265] and
Chern insulators [266] to interaction-driven insulators [267]. Following the observa-
tion of unconventional superconductivity in NbSe2 monolayers [268], the discovery of
superconductivity in magic-angle graphene [269, 270] and twisted bilayers of atomi-
cally thin semiconductors [36] have advanced van der Waals materials as a platform
to realize novel forms of superconductivity.

The existence of strongly bound excitons in transition metal dichalcogenides (TMD)
[22] has inspired studies exploring new routes to superconductivity. Recently, repul-
sive pairing mechanisms in twisted Moiré materials came into focus [271–277]. In this
setting flat bands limit Fermi energies and thus the critical transition temperature. In
absence of flat bands, theoretical works have explored exciton-mediated interactions
between electrons analogous to the phonon-exchange in conventional BCS theory [92,
95, 101, 102, 278]. However, TMDs feature an exciton-electron coupling that is strong
enough to feature exciton-electron bound states, trions, that remain stable up to
room temperature [22], which cannot be captured by previously employed Fröhlich-
type models [92, 95, 101, 102, 278]. Including this non-perturbative pairing physics
in theoretical models has remained a central challenge, and the question how trion
formation impacts superconductivity has been left unanswered.

In this chapter, we present a theory of boson-induced superconductivity which
incorporates the strong-coupling physics of the Bose-Fermi mixtures [1, 2, 34, 99,
100, 124] comprised of excitons and electrons. We do not rely on flat bands and our
theory applies to heterostructures of van der Waals materials where electrons interact
with excitons in separated layers. We account for trion formation by considering
beyond-linear electron-exciton coupling terms that extend the Fröhlich paradigm of
electron-phonon exchange [104, 105]. As a result we find that the effective exciton-
electron vertex becomes strongly retarded and non-local leading to strong dressing
of electrons by the excitonic background. As the doping level in the TMD is tuned,
the mutual dressing of electrons and excitons leads to an emergent crossover from a
weak-coupling BCS superconductor into a superfluid state of bipolarons, akin to the
BCS-BEC crossover observed in cold atoms [244, 279–294]. Remarkably, we find the
bipolarons to remain relatively light, facilitating the transition temperature to reach
values of up to 10 % of the Fermi temperature. The physics of a BCS-BEC crossover
emerging from mediated interactions complements the direct interaction mechanism
in cold atoms and opens perspectives to reach high transition temperatures in van der
Waals materials.

In the following, in Section 4.2 we motivate and introduce the model we work
with. Next, in Section 4.3 we introduce our diagrammatic approach to computing
the critical pairing temperature while taking into account strong-coupling physics be-
tween electrons and excitons. In Section 4.4 we provide detailed analytical expressions
and provide information on the practical computation of the diagrams introduced in
Section 4.3. Finally, in Section 4.5 we show the resulting critical pairing tempera-
tures and extend on the conditions under which these may be interpreted as critical
temperatures of superconductivity. In Section 4.6 we draw conclusions from our re-
sults. Furthermore, in Section 4.7 we provide an RG analysis of the used Hamiltonian
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Figure 4.1. (a) Illustration of the TMD heterostructure. Charge carriers in the tunnel-
coupled (t > 0) layers 1 and 2 form interlayer excitons which can bind with electrons in
the spatially separated, tunnel-decoupled (t = 0) top layer into deeply-bound trions.
(b) Using gates the band alignment of the layers can be modified to allow doping of
the third layer, while the interlayer (12) exciton remains stable. εF marks the Fermi
level.

and show that strong-coupling is a relevant interaction mechanism which cannot be
disregarded safely.

4.2 Model

We start from a two-dimensional Fermi gas of electrons (ĉ↑p, ĉ↓p) in absence of a
magnetic field. The electrons interact with long-lived interlayer excitons in a spatially
separated heterobilayer which could be realized in a MX2-WX2-MX’2 heterostructure
(X, X’ label chalcogen atoms) shown in Fig. 4.1(a). Electron tunneling between the top
layers is fully suppressed by a large layer separation dB > dA enabling s-wave pairing
between electrons in the top layer. Gating can be employed to allow for doping of
layer 3 in presence of a long-lived interlayer-(12) exciton. Since interlayer-(12) exciton
energies for vanishing separation of the lower TMD layers 1 and 2 would be in the range
100 to 150 meV [39], Fermi energies of around 30 meV in the TMD layer 3 would be
possible. Importantly, due to the dipolar character of the system, the interlayer-(123)
trion can have a substantial binding energy εT ∼ 30 meV comparable with the Fermi
energy which brings the system into the strong coupling regime. We also emphasize
that the generation of interlayer excitons need not require optical excitation [37, 38].
The interaction between electrons and the interlayer excitons, described by operators
X̂†

p, can be modelled by an attractive contact interaction of strength g which can
be directly related to the trion energy εT [53, 295]. In experiments the value of εT
could for instance be tuned by changing the thickness of the hBN layer separating
TMD layers 2 and 3, or using dielectric engineering [22, 63, 258]. The corresponding
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Hamiltonian is given by

Ĥ =
∑
σ=↑,↓

∑
k
εckĉ

†
σkĉσk +

∑
k
εXk X̂

†
kX̂k

+ g
√
n0√
A

∑
σ=↑,↓

∑
kq
ĉ†
σk+qĉσk(X̂†

q + X̂−q)

+ g

A

∑
σ=↑,↓

∑
kk′q

ĉ†
σk+qĉσkX̂

†
k′−qX̂k′ , (4.1)

with A the system area. Assuming an effective mass approximation, the electron and
exciton dispersion relations are

εck = k2

2mF

(4.2)

εXk = k2

2mB

. (4.3)

Although we investigate superconductivity in TMD, the Hamiltonian in Eq. (4.1) may
also be realized in ultracold atomic systems where the mass ratio between bosons and
fermions can vary substantially. Considering the universal relevance of the model,
we work at an equal mass ratio of excitons and electrons mB = mF . As the Fermi
gas is spin-balanced, both components σ =↑, ↓ are described by the Fermi wavevector
kF =

√
4πnF with density nF . The Fermi level εF and temperature TF are given by

εF = TF = k2
F/2m. We set ~ = kB = 1.

We employ a mean-field description of the Bose gas that is sufficient to demonstrate
the mechanism of exciton-induced superconductivity enhanced by the presence of
trions. This mean-field picture, in which the exciton gas is described by a condensate
of density n0, is justified by the algebraic decay of the boson correlator in the BKT
phase [296–300] which occurs on scales larger than the range of induced interactions.
In Eq. (4.1) we have expanded in fluctuations around the condensate, i.e.

X̂k → δk,0

√
n0A+ X̂k. (4.4)

Considering the much smaller separation between layers 1 and 2 compared to recent
experiments [37], we can consider the regime of a weakly interacting exciton gas with
healing length ξ much larger than the interelectron distance. Moreover, considering
that the exciton-electron interaction dominantly probes the particle-like branch of the
exciton Bogoliubov dispersion we treat the excitons as an ideal Bose gas.

The first interaction term in Eq. (4.1) describes a Fröhlich-type electron-phonon
interaction λ∼g√n0. In perturbative approaches to exciton-induced superconductiv-
ity [95, 101, 102, 278], induced interactions between electrons originated solely from
this term and scale with λ2; i.e. independent of the sign of λ. However, the micro-
scopic origin of this phonon-like interaction is the attractive potential parametrized
by the last term ∼g in Eq. (4.1). This term is responsible for the formation of trions,
and its relevance has been demonstrated by observations in cold atoms and TMD that
show strong deviations from the Fröhlich model [34, 106–108]. Using a renormaliza-
tion group (RG) analysis presented at the very end of this chapter in Section 4.7, we
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Figure 4.2. Feynman diagrams for (a) bare exciton-electron scattering vertex, (b) in-
duced electron-electron vertex, (c) renormalized electron-trion scattering vertex, (d)
full trion propagator, and (e) off-diagonal electron-trion propagator. The exciton
self-energy (f) is used within the Hugenholtz-Pines condition and contains the renor-
malized electron propagator (black, double line). Bare electron (black, single line)
and excitons (blue) interact via the exchange of the trion field (bare: dashed red,
renormalized: double red line). The Bethe-Salpether equation in (c) contains the
renormalized, hybridized electron-trion propagator Gψ∗

σtσ shown in (e), representing
the geometric sum of condensate insertions. Analytical expressions are introduced in
Sections 4.3 and 4.4.

show this term to be RG-relevant and crucial in the strong-coupling regime. Unlike
previous works we consider this term fully and study its non-perturbative effect on
exciton-induced electron pairing.

Note, that in principle the Hamiltonian in Eq. (4.1) involves terms ∼gn0ĉ
†ĉ due

to the presence of the condensate. However, g is regulated using an upper momentum
cutoff Λ [170] and thus these terms vanish as Λ is increased and are hence left out in
Eq. (4.1) and in the following.

4.3 Method
In this section, we introduce our diagrammatic method with a focus on its qualitative
nature. The technical details along with the analytical expressions and numerical
computation methods of the different introduced quantities will be covered in detail
in Section 4.4.

To study electron pairing we employ finite-temperature quantum field theory [49,
50]. Using a diagrammatic approach, it is practical to study the system in a two-
channel model that is equivalent to Eq. (4.1). To arrive at this model one employs
a Hubbard-Stratonovich transformation where a trion field t manifests the strong-
coupling physics and formally mediates the electron-exciton interaction (Fig. 4.2(a)).
The corresponding action is given by

S =
∫
Q

φ∗
QPφ(Q)φQ +

(
ψ∗
σ,Q

t∗σ,Q

)T (
Pψ(Q) h

√
n0

h
√
n0 P 0

t (Q)

)(
ψσ,Q
tσ,Q

)
+ h

∫
P,Q

[
ψ∗
σ,Q−Pφ

∗
P tσ,Q + h.c.

]
, (4.5)
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where the relation g = −h2/P 0
t establishes the equivalence of the models (4.1) and

(4.5) in the contact interaction limit h → ∞. The fields ρ ∈ {ψσ,Q, tσ,Q, φQ} corre-
spond to electrons, trions, and fluctuations of the exciton gas around its mean value
√
n0. Capital letters Q = (q, ωn) refer to momenta q and Matsubara frequencies ωn,

Pφ(q, ω) = −iω + εXq − µB (4.6)
Pψ(q, ω) = −iω + εcq − µF , (4.7)

and
∫
Q contains Matsubara and spin summations. Electron and exciton chemical

potentials are denoted by µF , µB.
The presence of the exciton condensate hybridizes electrons and trions into a joint

excitation (see the term ∼√
n0t

∗
σψσ in Eq. (4.5)). This hybridization is key for induc-

ing the electron-electron interaction shown in Fig. 4.2(b). Due to the hybridization,
this vertex is internally governed by a trion-electron scattering vertex at tree level
h2γ0(Q)t∗σψ∗

σ′ψσtσ′ (gray box in Fig. 4.2(b)), where γ0(Q) = 1/Pφ(Q) represents the
exchange of an exciton. We study exciton-induced Cooper pair formation in terms
of the renormalization of this trion-electron vertex, accounting for the infinite ladder
of exciton exchanges (Fig. 4.2(c)). In this ladder resummation, the strong-coupling
physics between excitons and electrons is accounted for by the self-energy Σt

σ(p, ω) of
the trion field (Fig. 4.2(d), Section 4.4.1). As a result of the (p, ω)-dependence of Σt,
the effective electron-exciton vertex (red box in Fig. 4.2(b)), becomes retarded and
non-local, adding a new ingredient to the mechanism of exciton-induced superconduc-
tivity.

We approach the pairing problem within a non-self-consistent T -matrix (NSCT)
approach [1, 54–56, 59, 137, 170, 172] (for details see Sections 4.4.1 to 4.4.4), which
describes both the non-perturbative scattering physics of electrons and excitons, and
the self-energy corrections for the excitons and electrons via the diagrams shown in
Fig. 4.2(e,f). In this way we recover the associated Fermi [1, 170–176] and Bose
polaron formation [103, 301] observed in ultracold atoms [2, 9, 106–108, 128–130, 233]
and TMDs [33, 34, 302–305]. Recently it has been shown that this approach applies
equally to nearly population balanced, strongly-coupled Bose-Fermi mixtures [1, 2,
99, 100]. Hence, our approach is based on a model (4.1) that has been firmly tested
in experiments on a quantitative level.

We incorporate self-energy effects by using the renormalized (matrix-valued) Green’s
function G,

(
G−1

)
ρρ′

=
(
G−1

0

)
ρρ′

− ∂2

∂ρ∂ρ′

∑
σ

t∗σΣt
σtσ

∣∣∣∣
ψσ ,φ,tσ=0

, (4.8)

rather than the bare Green’s function G0 defined by
(
G−1

0

)
ρρ′

= ∂2

∂ρ∂ρ′S
∣∣∣∣
(ψσ ,φ,tσ)=0

. (4.9)

In Eq. (4.8) we have suppressed (p, ω)-arguments; for analytic expressions see Sec-
tion 4.4.2. The pole of the trion Green’s function Gt∗σtσ in the two-body limit deter-
mines the trion energy εT [295].
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The electron pairing problem is solved in terms of the effective Bethe-Salpether
equation for the renormalized electron-trion vertex function (Fig. 4.2(c)),

γ(K −K ′, K,K ′)σ,σ′ = γ0(K −K ′)

+ h2
∫
P

[
γ0(K − P ) ×Gψ∗

σtσ(P )Gt∗
σ′ψσ′ (−P )γ(P −K ′, P,K ′)σ,σ′

]
.

(4.10)

A singularity in γ indicates a pairing instability. As Pauli exclusion suppresses bound
state formation between equal spin fermions, we consider s-wave pairing of electrons
of opposite spin, σ 6= σ′ 1; see Section 4.4.5. In Eq. (4.10) we focus on a subset of dia-
grams where the γ-vertex couples to itself and which contains the off-diagonal Green’s
function Gψ∗

σtσ (Fig. 4.2(e)). This approximation leaves out exchange diagrams lead-
ing to bosonic three-body bound state formation already in the few-body limit [227].
Hence we expect that including such diagrams would enhance Cooper pair formation
even further.

The Green’s functions for electrons and excitons in Eq. (4.8) contain the chemi-
cal potentials µF and µB. For given n0, nF , T and εT , the chemical potentials are
determined self-consistently to fulfill two conditions:

(i) The number equation, nF = T
(2π)2

∫
dp∑nGψ∗

σψσ
(p, ωn), to set the density of

fermions.

(ii) The Hugenholtz-Pines relation, 0 = µB + ΣB(0, 0), to ensure that excitations
from the condensate are gapless (the condensate is kept as a background field in
our model), where ΣB(p, ω) is the boson self-energy of the bosons (see Fig. 4.2(f)),
which will be introduced in Section 4.4.3.

These two conditions naturally incorporate the physics of both Bose and Fermi
polarons: For a vanishing fermion density nF = 0, (i) determines the energy of Bose
polarons [103] in agreement with experiments [34, 106–108]. In the opposite limit of
a vanishing boson density n0 = 0, (ii) yields the Fermi polaron energy in excellent
agreement with experiments [9, 33, 54–56, 59, 128–130, 170–172, 302–305].

4.4 Analytical expressions and practical computation
In this section, we present explicit expressions for the method introduced in the previ-
ous section. Furthermore, as the introduced diagrammatics contain finite temperature
Matsubara sums, we provide details on their practical computation as a straight-
forward computation may not result in converging numerics.

The results of the calculations described here and in the previous section will
be shown in Section 4.5 and readers not interested in the technical details of the
previously presented method may safely skip this section.

1We assume equal interaction strength of ↑-, ↓-electrons with the excitons as the layer separation
strongly suppresses exchange effects.
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As the diagrammatics introduced in Fig. 4.2 have a certain hierarchy to them,
in the following we will discuss the different objects appearing in the diagrammatics.
Starting from the smallest building block, the trion self-energy, we will work our way
up from there.

4.4.1 Trion self-energy
The trion self-energy Σσ

t shown in Fig. 4.2(d) is given by

Σσ
t (p, ω) = h2 lim

T→0

∫
q,n

G0
ψ∗

σψσ
(p − q, ω − νn)G0

φ∗φ (q, νn)

= h2

(2π)3

∫
dqdν

1
Pψ(p − q, ω − ν)Pφ(q, ν) . (4.11)

Here we have approximated the diagram by its zero temperature T = 0 expression
which allows us to obtain an analytical result that can be readily employed in the
following numerical computation. Based on favorable comparisons of T = 0 theory and
experimental observations at finite temperature in the Fermi polaron limit, we expect
finite temperature corrections to yield only small quantitative changes to the results.
The microscopic short-range interaction has to be regularized and renormalized (see
Section 1.6) which gives the condition [1, 170, 171]

P 0
t (q, ω) = h2

(2π)2

∫
|q|<Λ

dq
1

εT + 2q2 , (4.12)

where Λ is the upper momentum cutoff [170], so that

Pt(q, ω) = P 0
t (q, ω) − Σσ

t (p, ω). (4.13)

This function is related to the non-self-consistent T -matrix used commonly in single-
channel approaches [1] via

T (p, ω) = − h2

Pt(q, ω) , (4.14)

which can easily be seen when the trion field is integrated out. For µF > 0 it is given
in Eq. (3) of Ref [172]. For µF < 0 and ω > 0 it is given by [1]

Pt(p, ω) = −h2
iπ + log

(
εT

µF +µB−p2/2+iω

)
8π , (µF < 0, ω > 0) (4.15)

and one can use Pt(p, ω) = Pt(p,−ω)∗ to obtain values with ω < 0.

4.4.2 Renormalized Green’s functions
Having introduced the trion self-energy to capture the strong coupling physics and the
trion formation between electrons and excitons, the propagators used in the remaining
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diagrams are computed using Eq. (4.8). They are thus obtained as

Gψ∗
σψσ

(p, ω) =
(

Pt
PtPψ − h2n0

)
(p, ω) (4.16)

Gt∗σtσ(p, ω) =
(

Pψ
PtPψ − h2n0

)
(p, ω) (4.17)

Gt∗σψσ
(p, ω) =

(
−h√

n0

PtPψ − h2n0

)
(p, ω) (4.18)

Gψ∗
σtσ(p, ω) =

(
−h√

n0

PtPψ − h2n0

)
(p, ω) (4.19)

Gφ∗φ (p, ω) =
(

1
Pφ

)
(p, ω), (4.20)

where changing the order of fermionic (bosonic) indices results in an additional factor
of −1(1). The remaining matrix elements of the matrix valued Green’s function G,
which cannot be generated from changing the order of indices in Eqs. (4.16) to (4.20),
vanish.

4.4.3 Exciton self-energy

As discussed in Section 4.3, the bosonic chemical potential is fixed by the Hugenholtz-
Pines relation used in the condition (ii). The exciton self-energy entering this condition
is represented by the diagram in Fig. 4.2(f). It is given by

ΣB(q, νm) = h2T

(2π)2

∫
dp
∑
n,σ

Gt∗σtσ(p + q, ωn + νm)Gψσψ
∗
σ
(p, ωn). (4.21)

Instead of numerically evaluating the Matsubara sum directly (leading to poor con-
vergence), we rather compute an equivalent contour integral for which a contour is
laid around the Matsubara frequencies and then deformed to the real axis to arrive at

ΣB(0, 0) =
∑
σ

1
4π3

∫
dp
∫ ∞

−∞
dΩnF (Ω) Im

(
Pt(p,−iz)Pψ(p,−iz)

[Pt(p,−iz)Pψ(p,−iz) − h2n0]2

) ∣∣∣∣∣∣
z=Ω+i0+

(4.22)

where nF (Ω) = 1/(1+eΩ/T ) is the Fermi-distribution function. This allows for efficient
numerical evaluation.

In obtaining Eq. (4.22) from Eq. (4.21), a modification analogous to Section 4.2
of Ref. [52] was conducted, where by introducing suitable poles using a Fermi/Bose
distribution function a Matsubara summation was mapped onto an equivalent contour
integration around the imaginary frequency axis. Using that the integrand may have
poles and branch cuts along the real axis, but is otherwise analytic, this contour can
then be inflated where the arcs to infinity vanish and only the counter-propagating
paths along the real axis remain which result in Eq. (4.22).
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4.4.4 Fermion number equation
Similar to the exciton self-energy ΣB in Eq. (4.21), the Matsubara summation for
the number equation, entering the condition (i) of Section 4.3, converges only slowly.
Hence we again deform the integration contour to wrap around the real freqency axis.
In this way, the fermion density can be computed as follows:

nF = − 1
(2π)2

∫
dp

1
β

∑
n

Pt(p, ωn)
Pt(p, ωn)Pψ(p, ωn) − h2n0

= 1
(2π)2

∫
dp

1
π

∫ ∞

−∞
dΩnF (Ω) Im

(
Pt(p,−iz)

Pt(p,−iz)Pψ(p,−iz) − h2n0

) ∣∣∣∣∣∣
z=Ω+i0+

(4.23)

4.4.5 Computation of electron-trion scattering vertex
As mentioned in Section 4.3, we perform an s-wave projection of the electron-trion
scattering vertex in which we consider scattering at the Fermi-wavevector kF of the
balanced two component Fermi gas of electrons

γ̃σ,σ′ = 1
2π

∫
dθk,k′

1
2

[
γ(K+ −K ′

+, K+, K
′
+)σ,σ′ + γ(K− −K ′

−, K−, K
′
−)σ,σ′

]
. (4.24)

Here K± = (k,±πT ), K ′
± = (k′,±πT ), |k| = |k′| = kF , θk,k′ denotes the angle

between k and k′ and γ̃σ,σ′ is used within Eq. (4.10).
Using Eqs. (4.10) and (4.24) the expression for the s-wave projection of the electron-

electron scattering vertex is then given by

γ̃σ,σ′ = γ̃0
σ,σ′+γ̃σ,σ′

∫
p

T

2
∑
ωn

(
1

Pφ(p − k, ωn + πT ) + 1
Pφ(p − k, ωn − πT )

)

× h2n0

[Pt(p, ωn)Pψ(p, ωn) − h2n0] [Pt(−p,−ωn)Pψ(−p,−ωn) − h2n0]
,

(4.25)

where |k| = kF . The pairing instability is computed by rearranging Eq. (4.25) to
γ̃σ,σ′ = γ̃0

σ,σ′/(1 − F ) and solving for F = 1 where

F =
γ̃σ,σ′ − γ̃0

σ,σ′

γ̃σ,σ′
. (4.26)

F represents the integral and sum part in Eq. (4.25). As this integral decays faster
in frequency than the number equation and the exciton self-energy, the Matsubara
summation in Eq. (4.25) can be directly computed numerically, without the need to
deform the integration contour.

4.4.6 Solving for the chemical potentials and determining the critical
pairing temperature

To estimate the critical pairing temperature for given values of εT/εF and n0/nF , the
critical pairing condition (see Section 4.4.5) needs to be solved for, while fulfilling
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Figure 4.3. Exemplary optimization procedure to simultaneously solve for the
Hugenholtz-Pines relation and the number equation at εT = 5εF , n0/nF = 1. (a) The
boson chemical potential µB(µF , n0, εT , T ) to fulfill the Hugenholtz-Pines relation is
shown as a function of the fermion chemical potential. At an initial temperature of
T0 = εF/50 (purple) the critical boson chemical potential is computed as a function
of the fermion chemical potential and the resulting pairs of (µF , µB(µF , n0, εT , T0))
are used to compute the corresponding fermion density n′

F (µF , µB(µF , n0, εT , T0)),
shown in (b). The point at which n′

F (µ1
F , µB(µ1

F , n0, εT , T0)) = nF is used to deter-
mine µ1

F . From this, the corresponding boson chemical potential µ1
B is computed as

µ1
B = µB(µ1

F , n0, εT , T0). In (c) the value of F obtained using µ1
F and µ1

B is shown
for varying temperatures and it is used to determine a critical inverse temperature
β1 = 1/T1 by locating where F = 1. This temperature is used in a second iteration
(yellow) from which µ2

F and µ2
B are found which are used in (c) to find a critical

inverse temperature β2 = 1/T2. This cycle is repeated until the chemical potentials
and critical temperatures are found to be converged.

the number equation (i) and the Hugenholtz-Pines relation (ii). This is done in a
self-consistent optimization procedure which we describe in the following.

First, for given values of n0/εF , εT/εF and an initial temperature of T0 = εF/50
the critical boson chemical potential to fulfill the Hugenholtz-Pines relation (i) is
computed as µB(µF , n0, εT , T0) for a varying fermion chemical potential µF . Next,
these chemical potentials are used within the number equation (4.23) to compute the
Fermi density n′

F (µF , µB(µF , n0, εT , T0)). From this, the fermion chemical potential
µ1
F fulfilling nF = n′

F (µ1
F , µB(µ1

F , n0, εT , T0)) is found and the corresponding boson
chemical potential is determined as µ1

B = µB(µ1
F , n0, εT , T0).

Using µ1
F and µ1

B, the critical temperature T1, where F = 1, is then found using
Eq. (4.25). This critical temperature T1 is then used as an input to find µ2

F and µ2
B

which are in turn used to find a critical temperature T2. This cycle is repeated until
the chemical potentials and the temperature have converged to a fixed point which
simultaneously satisfies the number equation, the Hugenholtz-Pines relation and the
critical pairing condition. For given values of n0/εF , εT/εF the temperature found
gives the critical pairing temperature T ∗

c . This procedure is shown in Fig. 4.3 for the
first two iterations of this cycle.
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Figure 4.4. The boson (a) and fermion (b) chemical potentials µB and µF at the
critical temperature T ∗

c are shown as a function of εT/εF for the condensate densities
n0/nF = 1 (purple), 2 (red), 5 (orange), and 10 (yellow). These potentials are simul-
taneous solutions of the number equation (i) and the Hugenholtz-Pines relation (ii),
and to satisfy these, the chemical potentials increase in magnitude with increasing
binding energy.

The resulting chemical potentials for the results shown in Fig. 4.5 of Section 4.5
are given in Fig. 4.4.

4.5 Results: critical pairing temperature

The critical temperature T ∗
c for the instability towards s-wave pairing is determined by

lowering the temperature until γ develops a singularity as described in Section 4.4.6.
The results for T ∗

c are shown in Fig. 4.5 in dependence of the dimensionless trion
energy εT/εF for different exciton densities n0/εF .

As εT/εF is increased, T ∗
c /TF increases monotonously. Similarly, T ∗

c increases with
n0, reflecting the role of excitons as the mediators of interactions. Increasing interac-
tions and condensate density leads to dressing of bosons and fermions by many-body
fluctuations. This results in a strong increase of the boson and fermion chemical po-
tentials (see Fig. 4.4) as imposed by the conditions (i) and (ii). Since these chemical
potentials enter the propagators in our diagrammatics, they suppress pairing fluctua-
tions. Despite this suppression, we find that T ∗

c keeps on increasing without apparent
bound.

In the weak-coupling limit, where T ∗
c is small, an effective BCS theory applies. In

the BCS regime, it has been established that T ∗
c is close to the actual BKT transition

temperature Tc towards superfluidity [300, 306, 307]. This equivalence typically ap-
plies when the size of Cooper pairs lC is extended over many interfermion distances
d∼k−1

F . However, as lC becomes comparable to the interfermion distance, T ∗
c rather

starts to indicate only the formation of pairs but does not imply their transition into
a superfluid state, i.e. Tc < T ∗

c .
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Figure 4.5. Critical pairing temperatures T ∗
c /TF as a function of trion energy εT/εF

for various condensate densities. In the BCS limit where T ∗
c is close to the BKT

temperature Tc (see Fig. 4.6) the data is shown as solid lines, while at strong coupling
bipolarons are formed and the dashed lines represent their dissociation temperature.
The solid dots represent the critical interaction strength [εT/εF ]c where the bipolaron
energy becomes comparable to the Fermi energy (see also Fig. 4.6 and Section 4.5.1).
The dash-dotted lines give Tc = TBKT where the bipolaron gas turns superfluid (see
Section 4.5.2).

4.5.1 Determining the boundary of the BCS regime from the bipo-
laron binding energy

At strong coupling we expect the superfluid transition temperature Tc to be more
accurately captured by a BKT theory of a Bose gas of bipolarons and a different
criterion to determine Tc is thus required. At zero temperature the vertex described
in Eq. (4.10) and the s-wave projected pairing vertex γ̃σ,σ′ defined in Eq. (4.24) admit
a bound state between two electrons even in the polaron limit where nF = 0, n0 > 0
[127], representing a bipolaron. By determining where the bipolaron energy EBP
becomes comparable to the Fermi energy εF , we obtain an estimate for where the
Cooper pair size becomes comparable to the interparticle distance, lC ≈ d, which
yields an estimate for the point where the system crosses over from a BCS-type to a
BKT/BEC-type behavior.

To this end, we calculate EBP by solving Eq. (4.10) in the polaron limit. The
critical values of [εT/εF ]c corresponding to this criterion are shown in Fig. 4.5 as dots
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Figure 4.6. Critical interaction strength εT/εF (as a function of condensate density
n0/nF ) beyond which the bipolaron binding energy exceeds the Fermi energy. Colored
points mark densities n0/nF shown in Fig. 4.5. Inset: Critical temperature at the
critical interaction strengths. For illustration we also show a data point for n0/nF = 1
(open circle) where trion formation might deplete the condensate to a degree beyond
our description [1, 2, 100, 171, 173].

and the full dependence on n0/nF is shown in Fig. 4.6. For interaction strengths
beyond [εT/εF ]c a description in terms of pairs that immediately condense as they
form is clearly invalid. In this regime, T ∗

c should instead be regarded as the molecular
dissociation temperature of bipolarons. Bipolarons at T ∗

c form a thermal bipolaron
gas that has to be cooled further to facilitate the transition into a superfluid state.

To compute the Bipolaron energy, we note that finding a singularity in γ̃ implies
the formation of a bound state between two Bose polarons, which we refer to as the
bipolaron [127]. At T = 0 in the polaron limit (nF = 0) the exciton self-energy
vanishes identically and as a result we set µB = 0. Thus for given values of εT , n0

there exists a critical chemical potential µF,nF =0(n0, εT ) for which

nF = 0 for µF < µF,nF =0(n0, εT ),
nF > 0 for µF > µF,nF =0(n0, εT ).

This chemical potential in fact determines the Bose polaron energy which, for three
dimensional systems, has been shown to agree remarkable well with experimental
observations [106].
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Figure 4.7. Bipolaron binding energy EBP (left) and bipolaron effective mass mBP

(right) as a function of the trion energy εT . The energies are given in units of con-
densate density n0 while the mass is given in units of the fermion mass mF . With
increasing εT the bipolaron becomes deeper bound and acquires a moderate effective
mass.

The binding energy of the bipolaron is determined from the divergence of γ̃BP ,

γ̃BP = γ̃0
BP + γ̃BP

∫ dpdω
(2π)3

h2n0

Pφ(p, ω)

× 1
Pt(p, ω)Pψ(p, ω) − h2n0

1
Pt(−p,−ω)Pψ(−p,−ω) − h2n0

, (4.27)

which is obtained from Eq. (4.25) in the limit kF → 0, T → 0. The divergence of
γ̃BP occurs at a fermion chemical potential µF,BP (n0, εT ) < µF,nF =0(n0, εT ). Thus the
bipolaron binding energy is given as

EBP = 2 [µF,BP (n0, εT ) − µF,nF =0(n0, εT )] . (4.28)

The resulting bipolaron binding energies are shown in Fig. 4.7. Hence, requiring
the binding energy per particle of the bipolaron to be smaller than the Fermi energy
each fermion experiences, we require

µF,nF =0(n0, εT ) − εF < µF,BP (n0, εT ) < µF,nF =0(n0, εT ) (4.29)

for the BCS theory to be applicable. The resulting critical dimensionless interaction
strengths εT/εF for given values of n0/nF are shown in Fig. 4.6 and the end points of
the BCS regime are indicated in Fig. 4.5.

4.5.2 Approximation of the BKT transition temperature
For large εT/n0, bipolarons are sufficiently deeply bound that, at finite fermion density
nF > 0, the system can be described by an effective theory of weakly interacting, rigid
bosons using BKT theory [300, 308–310]. To estimate the critical temperature for the
BKT transition into the superfluid state, we employ the Nelson criterion [300, 308–
310],

TBKT = 2πnF
mBP

1
log

(
η

4π log
(

1
nF d

2
∗

)) . (4.30)
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Here the density of bipolarons is given by nF (all fermions can be assumed to be
paired into bipolarons), and η ≈ 380 [300]. The bipolaron-bipolaron scattering length
is given by d∗ , and mBP is the effective bipolaron mass. The bipolaron scattering
length is approximated by the binding length of the bipolaron [300], which in turn is
parametrized by the bipolaron binding energy as

d∗ =
√

− 1
2EBP

( 1
mF

+ 1
mF +mB

)
. (4.31)

The bipolaron effective mass is computed by evaluating Eq. (4.27) at a finite incoming
momentum q which is distributed along the two fermionic propagator legs as p + q/2
and q/2 − p. From this, the bipolaron dispersion relation is computed as a function
of |q| and the effective bipolaron mass mBP is obtained from a quadratic fit to this
dispersion relation. The resulting bipolaron effective mass is shown in Fig. 4.7.

We note that the bipolarons remain relatively light which, similar to recent studies
of bipolarons in the Peierls model [311, 312], facilitates rather large values of Tc. The
BKT transition temperatures obtained from Eq. (4.30) are shown in Fig. 4.5 as dashed-
dotted lines. We see that the predictions from the BCS limit and the bipolaron theory
intersect in the expected region indicated by the dots in Fig. 4.5.

4.5.3 BCS-BEC crossover
Connecting these two results for Tc from weak to strong coupling makes evident that
the systems is governed by an emerging BCS-BEC crossover from superfluid Cooper
pairs to a quasi-condensate of bipolarons.

Remarkably, despite originating from mediated interactions, the maximal Tc/TF in
our model reaches values on the order of 10%, not far below the values obtained in the
conventional model of the BCS-BEC crossover [183, 223, 295, 300, 306, 313–318] which
describes fermions that interact via direct, short-range potentials. We estimate this
maximum value of Tc/TF by considering the temperature at the endpoints calculated
in Fig. 4.5. The results are shown in the inset of Fig. 4.6 and demonstrate insensitivity
with respect to the density of the exciton gas. In particular at exciton densities
n0/nF � 1 the critical temperature remains robust. At such densities, neither thermal
nor interaction-driven depletion of the condensate —not taken into account in our
work— plays a significant role, attesting to the robustness of the mechanism of trion-
enhanced, exciton mediated superconductivity.

4.6 Conclusion
Incorporating the strong-coupling physics of exciton-electron mixtures, we have shown
that exciton-mediated pairing of electrons in doped, atomically thin semiconductor
heterostructures offers a promising route towards realizing superconductivity at high
temperatures Tc/TF . Our work applies in the experimentally realizable regime where
exciton densities are larger than the electron density. A unified description of the
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strong-coupling regime where all scales, εF , n0, εT are of the same order is an in-
teresting venue for future studies. In this regime, a fully self-consistent treatment
of quasiparticles is required and interaction driven condensate depletion may have a
significant effect.

In this chapter we did not discuss the impact of the underlying repulsive Coulomb
interaction. While this can be justified by screening at sufficient electron densities (as
evidenced by the agreement of the model (4.1) with experimental observations [33]),
it remains an open problem to formally study the interplay of Coulomb screening
and pairing fluctuations. Ultimately this competition may result in p-wave pairing
becoming the leading instability in certain density regimes [3] while, in turn, higher-
order correlation functions [227] may favor the s-wave pairing studied in this work.
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4.7 RG analysis of the extended Fröhlich model in the
few-body limit

For the interested reader, in this section we conduct a renormalization group (RG)
analysis in the few-body limit of the running coupling constants within the Hamilto-
nian, introduced in Eq. (4.1) of Section 4.2. To begin, we consider the action

S =
∫
Q
φ∗
QPφ(Q)φQ + ψ∗

QPψ(Q)ψQ

+λ
∫
Q,P

ψ∗
QψP

(
φ∗
P−Q + φQ−P

)
+g

∫
Q,P,P ′

ψ∗
PψQ−Pφ

∗
P ′φQ−P ′ . (4.32)

The λ term originates from the term proportional to the condensate density n0,
λ∼√

n0g. We will use a functional RG approach in the following [82]. For an analysis
excluding terms in λ, see Ref. [50]. The truncation of the relevant flowing effective
action corresponding to Eq. (4.32) is given by

Γk =
∫
Q
φ∗
QPφ(Q)φQ + ψ∗

QPψ(Q)ψQ

+λk
∫
Q,P

ψ∗
QψP

(
φ∗
P−Q + φQ−P

)
+gk

∫
Q,P,P ′

ψ∗
PψQ−Pφ

∗
P ′φQ−P ′ . (4.33)

Here k is the RG scale, above which all fluctuations have been integrated out. It
runs from the UV cutoff scale k = Λ to the infrared at k = 0. As before, ψ denotes
the electron (fermion) field, while φ denotes the exciton (boson) field. We fix the
initial conditions such that λk=Λ = λ and gk=Λ = g. In the following, we treat these
running couplings as independent to establish a complete picture of the RG flow of
the model. We disregard that the flowing coupling constants may acquire a frequency
and momentum dependence during the RG flow and instead use a projection

λk = δ3

δφ∗
0δψ0δψ

∗
0
Γk
∣∣∣∣∣
ψ=φ=0

(4.34)

gk = δ4

δφ0δφ
∗
0δψ0δψ

∗
0
Γk
∣∣∣∣∣
ψ=φ=0

, (4.35)

where the subindices on the fields indicate a projection onto zero frequency and mo-
mentum. Using the Wetterich equation [82] we compute the flow of the effective action
Γk

∂kΓk = 1
2 STr

[(
Γ(2)
k +Rk

)−1
∂kRk

]
, (4.36)

from which we can determine the flow of the coupling constants λk and gk.
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Figure 4.8. Diagrammatic representation of the flow equations of the coupling con-
stants gk and λk. In the flows of ∂kgk (Eq. (4.37)) and ∂kλk (Eq. (4.38)) dashed lines
denote exciton propagators and solid lines denote electron propagators. Dots denote
the electron-exciton three point vertex ∼λk, while squares denote the electron-exciton
four point vertex ∼gk.

The corresponding diagrams are shown in Fig. 4.8. Choosing a sharp momentum
regulator as done in Refs. [1, 137], the RG flows are given by

∂kgk = ∂̃k

∫
P

(
− g2

k

Pψ(P ) + 3λ2
kgk

Pψ(P )2 − 2λ4
k

Pψ(P )3

)(
1

Pφ(P ) + 1
Pφ(−P )

)
Θ(|p| − k)

(4.37)

∂kλk = ∂̃k

∫
P

(
− gkλk
Pψ(P ) + λ3

k

Pψ(P )2

)(
1

Pφ(P ) + 1
Pφ(−P )

)
Θ(|p| − k). (4.38)

4.7.1 Flow of coupling constants in two dimensions
To evaluate the flow equations in the few-body limit, we set the chemical potentials
to µB = µF = 0 following similar RG analysis, e.g., of the BEC-BCS crossover [50].
After performing the momentum and frequency integrals, defining a dimensionless RG
scale

t = log
(
k

Λ

)
(4.39)

and the dimensionless coupling constant

λ̃k = λk
k
, (4.40)
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Figure 4.9. Flow chart for the dimensionless coupling constants λ̃ and g̃ in (a) two di-
mensions and (b) three dimensions, obtained from a functional renormalization group
analysis of the model Eq. (4.33). Using the dimensionless RG scale t = log(k/Λ), for
given values of gk and λ̃k = λk/k ( g̃k = gkk and λ̃k = λk/

√
k in 3D) the direction

of the RG flow, given by the beta functions ∂tλ̃t and ∂tgt (∂tλ̃t, ∂tg̃t in 3D) is shown.
In the left panel the purple curves denote points with λ̃2

t = gt and λ̃2
t = 2gt where

∂tgt = 0 while the red curves denote points with gt = (8π + λ̃2
t )/2 and λ̃t = 0 where

∂tg = 0. Similarly, in the right panel the purple curve denotes points with ∂tg̃t = 0
and the red curves represent points with ∂tλ̃t = 0. RG fixed points occur when the
red and purple lines cross. The thick arrows indicate the flow of g and g̃ when λ̃ = 0.

the flow equations in dimensionless form read

∂tgt = 1
2π

(
g2
t

2 − 3
4 λ̃

2
tgt + λ̃4

t

4

)
(4.41)

∂tλ̃t = 1
2π

(
λ̃tgt

2 − λ̃3
t

4

)
− λ̃t. (4.42)

The corresponding flow chart is shown in Fig. 4.9, where flows begin in the UV at t = 0
and end in the IR at t = −∞. For a given point in the flow diagram the arrows point
in the direction of the flow. As one can see for λ̃k=Λ = 0 and gk=Λ > 0 the coupling
constant g flows towards the Gaussian, i.e. weak-coupling, fixed point, limk→0 gk = 0.
On the other hand, for λ̃k=Λ = 0 and gk=Λ < 0 the coupling flows to limk→0 gk = −∞,
indicating bound state formation; this RG behavior reflects that a bound state exists
for any attractive interaction in 2D [53]. For λ̃k=Λ = ±

√
8π, gk=Λ = ±8π we find two

additional repulsive fixed points, while for all other initial values with |λ̃k=Λ| > 0 the
flows are always driven towards limk→0 gk = −∞, meaning that bound state formation
is inevitable and gk always represents a relevant correlation function that cannot be
ignored.
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4.7.2 Flow of coupling constants in three dimensions
For completeness we also perform the RG analysis in three dimensions. After again
using t = log(k/Λ) we can define the dimensionless coupling constants

g̃k = gkk, (4.43)

λ̃k = λk√
k

(4.44)

and obtain the flow equations

∂tg̃t = 1
2π2

(
g̃2
t

2 − 3
4 λ̃

2
t g̃t + λ̃4

t

4

)
+ g̃t (4.45)

∂tλ̃t = 1
2π2

(
λ̃tg̃t

2 − λ̃3
t

4

)
− λ̃t

2 . (4.46)

The resulting flow chart is shown in Fig. 4.9(b). For λ̃k=Λ = 0 it shows three different
qualitative regions [50]

lim
k→0

g̃k =


0+, for g̃k=Λ > 0
0−, for − 4π2 < g̃k=Λ < 0
− ∞, for g̃k=Λ < −4π2.

(4.47)

which yield different results with respect to the relevance of g̃k. For λ̃k=Λ 6= 0, on the
other hand, both dimensionless coupling constants are always relevant:

lim
k→0

g̃k = −∞ (4.48)

lim
k→0

λ̃k = sign(λ̃k=Λ)∞ (4.49)

again demonstrating that there exists no scenario where bound state formation be-
comes irrelevant. Note, the fixed point at g̃ = −1, λ̃ = 0 is the well-known fixed point
representing the regime of unitary interactions in the BEC-BCS crossover in three
dimensions.

4.7.3 Discussion
The flows of coupling constants in Fig. 4.9 show a qualitatively similar picture in
both two and three dimensions. Without the electron-exciton three-point vertex ∼λk
the relevance of the four-point vertex gk is dependent on the initial value of the four
point vertex g. In both cases, for repulsive initial values g > 0 the four point vertex
is irrelevant and vanishes as a result of the renormalization process limk→0 gk = 0.
For attractive initial values g < 0 in two dimensions the coupling is relevant and
flows to strong-coupling physics featuring an exciton-electron bound state. In three
dimensions, it is not sufficient that the coupling is attractive, but rather it needs to
be sufficiently attractive g < −4π2/Λ. If these conditions are fulfilled, the few-body
system flows to strong coupling and thus the bound state physics needs to be taken
into account.
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Considering the electron-exciton three-point vertex ∼λk, the qualitative nature of
the relevance of the coupling changes. In two and three dimensions, apart from the
two repulsive fixed points in 2D, a finite value of λ always leads to the system flowing
to strong coupling, highlighting the relevance of the four-body vertex. This behavior
is akin to the in medium behavior of the two-body bound state in three dimensions:
as the three-point vertex may be regarded as stemming from the immersion of a
two-body problem within a bosonic medium λ∼√

n0g, represented by the condensate.
While in the vacuum two-body limit in three dimensions the bound state exists only for
positive scattering lengths, when introducing a bosonic or fermionic medium, however,
the two-body bound state exists for all scattering lengths.

This analysis thus indicates that the four-point vertex is relevant and therefore
needs to be taken into consideration, including the associated strong-coupling physics.



Chapter 5

Momentum-dependent quasiparticle
properties of the Fermi polaron from
the functional renormalization group

This chapter is based on the following publication:

[5] J. von Milczewski, R. Schmidt,
Momentum-dependent quasiparticle properties of the Fermi polaron from the functional
renormalization group,

arXiv:2312.05318 (2023).

In this chapter, we study theoretically the lifetimes of attractive and repulsive Fermi
polarons, as well as the molecule at finite momentum in three dimensions. To this
end, we developed a new technique that allows for the computation of Green’s func-
tions in the whole complex frequency plane using exact analytical continuation within
the functional renormalization group. The improved numerical stability and reduced
computational cost of this method yield access to previously inaccessible momentum-
dependent quasiparticle properties of low-lying excited states. While conventional
approaches like the non-selfconsistent T -matrix approximation method cannot deter-
mine these lifetimes, we are able to find the momentum-dependent lifetime at differ-
ent interaction strengths of both the attractive and repulsive polaron as well as the
molecule. At weak coupling our results confirm predictions made from effective Fermi
liquid theory regarding the decay of the attractive polaron, and we demonstrate that
Fermi liquid-like behavior extends far into the strong-coupling regime where attrac-
tive polaron and molecule exhibit a p4 momentum scaling in their decay widths. Our
results offer an intriguing insight into the momentum-dependent quasiparticle prop-
erties of the Fermi polaron problem, which can be measured using techniques such as
Raman transfer and Ramsey interferometry.
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5.1 Introduction
In recent years, the polaron problem which we introduced in Section 1.7, has attracted
significant theoretical and experimental attention, due to its fundamental nature, its
significance in understanding strongly coupled systems such as ultracold atoms and
two-dimensional semiconductor heterostructures, and its widespread occurrence in a
range of different experimental and natural systems, such as dilute mixtures of protons
within neutron stars [319, 320] or electrons moving through a crystal lattice of atoms
[104, 321].

In two-dimensional semiconductor heterostructures, the Fermi and Bose polaron
problems capture the physical properties of the interaction of electrons and excitons,
along with the formation of trion states [33, 34, 302–305]. As such, these systems have
been used to implement these limiting cases of extreme population imbalance. An
understanding of these limits is an important step towards understanding the strong-
coupling physics in such systems, which may render useful in exploring whether they
might be used for practical applications such as inducing superconductivity [4, 95,
101, 102, 278, 322] (see Chapter 4).

In ultracold atom systems, the understanding of polaron problems has helped char-
acterize the phase diagram of both Fermi-Fermi and Bose-Fermi mixtures at strong
coupling [1, 2, 8, 9, 99, 100, 124, 130] (see Chapter 2). Experimental observations
of the Fermi [9, 128–130] and the Bose polaron problem [106–108] have been flanked
by theoretical insights obtained from different methods such as variational [54–57,
169–171, 174, 203, 323], diagrammatic [58, 59, 166, 167, 172], Monte Carlo [141–143,
173, 175, 176] and functional renormalization group (fRG) approaches [1, 50, 103, 137,
168, 184, 301]. These methods have been used to characterize properties such as the
polaron-to-molecule transition/crossover and the competition with the formation of
higher-order bound states. Furthermore, quasiparticle properties such as the energy,
effective mass, and quasiparticle width have been extracted from these methods with
great success.

The decay widths, or equivalently the quasiparticle lifetimes of the different col-
lective excitations within the Fermi polaron problem, however, have largely remained
elusive to a theoretical description. As the decay width may be determined from the
self-energy of a quasiparticle, its self-energy needs to contain the correct low-energy
states to decay into. As a result, at T = 0 common non-self-consistent T -matrix ap-
proaches which contain bare propagators can yield qualitatively correct decay widths
for the repulsive polaron [58, 324, 325] but not for the attractive polaron or the
molecule state as these renormalized particles lie lower in energy than the bare parti-
cles contained in their self-energies. Of course, at T > 0 these particles may decay via
thermal excitations [326–328]. Thus, at strong coupling, a description of the decay
channels of polaron and molecule states needs to feature a form of self-consistency,
requiring the use of renormalized Green’s functions within the computation of the
quasiparticle self-energies and decay widths.

Such self-consistency is challenging to achieve within conventional methods using
a wavefunction Ansatz or a non-selfconsistent T -matrix approach [54–56, 59, 170,
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172]. As a result, decay widths have been analyzed using Fermi liquid theory and
Fermi’s golden rule [329], in which the renormalization process is taken into account
by using simplified Green’s functions with modified quasiparticle weight, energy gap,
and effective mass. This works well when the lower-lying particles are well described
using Fermi liquid theory [130] and may yield scaling laws for the decay rates in
different decay channels [58, 167, 330–333], however it is expected to break down at
strong coupling [334] and thus the applicability of Fermi liquid theory can only really
be tested by comparison to a fully self-consistent calculation.

Within fRG treatments [137] this self-consistency is naturally included and thus the
decay width may be computed without the need to rely on the validity of Fermi liquid
theory. However, as the decay width of the zero-momentum ground state vanishes
identically, at a fixed interaction parameter momentum-dependent decay widths of
low-lying excited states can vary across several orders of magnitude within a small
momentum range. Especially at smaller decay widths, this puts high requirements of
numerical stability and precision on the used methods. Previous treatments using fRG
[137] lacked precisely this stability due to the need of a costly Matsubara integration
and an analytic continuation of the resulting Green’s function to real frequencies using
numerical methods.

In this chapter, we present a novel, improved fRG treatment of the method used in
Ref. [137]. By incorporating all information about the analytical structure of the Fermi
polaron problem, we are able to carry out the Matsubara integration over imaginary
frequencies exactly. By a subsequent mapping of the fRG onto a horizontal line above
the real frequency axis we perform an exact analytical continuation of the problem
onto the whole complex frequency plane. While this treatment is formally equivalent
to the treatment used in Ref. [137], it provides greatly enhanced numerical stability
and precision at a significantly lower computational cost. These improvements are not
only used to study previously inaccessible quasiparticle properties such as momentum-
dependent decay widths of low-lying excited states but also allow to revisit previous
results in the literature that implied a 9/2-power law scaling of the decay of the
excited polaron and molecule as function of the energy gap towards the respective
ground state [167].

This chapter is structured as follows: In Section 5.2 the model along with the
fRG are introduced. In Section 5.3 the exact frequency integration and the exact
analytical continuation onto an equivalent fRG operating on a horizontal line above
the real frequency axis are performed. Next, in Section 5.4 the numerical solution of
the resulting coupled flow equations is described along with the initial conditions of the
flow and the parametrization of the renormalized Green’s functions. In Section 5.5 the
quasiparticle properties of the two polaron states and the molecule are analyzed using
this method, complemented by an analysis in terms of Fermi liquid theory. Finally, in
Section 5.6 we discuss possible experimental probes of quasiparticle properties such
as the momentum-dependent decay width and we consider theoretical extensions of
our work to finite impurity concentrations.
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5.2 Model
We study the three-dimensional Fermi polaron problem consisting of a mixture in
which a bosonic or fermionic impurity φ is immersed in a fermionic bath ψ (see also
Sections 1.7 and 2.3). This is a well-studied system whose microscopic action is given
by

S =
∫
x
ψ∗
x

(
∂τ − ∇2

2mψ

− µψ

)
ψx

+
∫
x
φ∗
x

(
∂τ − ∇2

2mφ

− µφ

)
φx

+ g
∫
x
ψ∗
xφ

∗
xφxψx (5.1)

where x = (r, τ) denotes the coordinate r and imaginary time τ ∈ [0, 1/T ] and
∫
x =∫ 1/T

0 dτ
∫
ddr with d = 3 the dimension. In the following, we consider zero temperature,

T = 0, and assume that impurity and bath particles have a bare dispersion described
by the same mass m = mψ = mφ. We work in units ~ = kB = 1, and set 2m = 1
unless indicated otherwise. The field ψ is of fermionic Grassmann nature, while the
statistic of φ is irrelevant due to the single-impurity limit taken in this work. The
fields φ and ψ interact by means of an attractive contact potential of strength g < 0,
regularized in the ultraviolet (UV) by a momentum cutoff Λ.

In the vacuum and single-impurity limit this system can host a bound state be-
tween a bath and an impurity particle, both in 2D and 3D. Thus, in order to facilitate
the description of this composite particle in a convenient way we consider an equiva-
lent two-channel model [49, 50] in which the interspecies interaction is mediated by a
molecule field t describing the composite particle of mass 2m [43, 44, 47, 48]

S =
∫

p,ω

{ ∑
σ=ψ,φ

σ∗(ω,p)
(
−iω + p2 − µσ

)
σ(ω,p)

+ t∗(ω,p)G−1
t,Λ(ω,p)t(ω,p)

}

+ h
∫
x

{ψ∗
xφ

∗
xtx + t∗xφxψx} . (5.2)

Here the momentum p and the Matsubara frequency ω are the Fourier variables of r
and τ and

∫
p,ω ≡ (2π)−d−1 ∫ ddpdω. In this two-channel model a bath and an impurity

particle can be converted into a molecule with a Yukawa coupling h and Gt,Λ denotes
the bare molecule propagator. We operate in the limit where h → ∞ such that t
becomes a purely auxiliary Hubbard-Stratonovich field with no dynamics, i.e. it can
be integrated out to yield back the original action Eq. (5.1) for h2Gt,Λ = −g [49, 50].

To obtain access to the physical properties of this system, inscribed in the full
Green’s and vertex functions we deploy a functional renormalization group approach
similar to the constructions used in Section 2.3 and Refs. [137, 184]. For a detailed
explanation of the Fermi polaron problem we refer to Section 1.7 and Refs. [1, 50,
54, 56, 57, 59, 137, 141–143, 166–176, 323], for a detailed discussion of the fRG in
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general we refer to Refs. [64–67, 79]. In the following we provide a brief summary of
the involved steps, see Section 2.3 and Refs. [137, 184] for more detail.

5.2.1 fRG equations
The fRG accounts for the renormalization of Green’s functions due to quantum fluctu-
ations by providing coupled differential equations linking the quantum effective action
Γ (the generating functional of all one-particle irreducible vertices) to the bare action
S using a flowing effective action Γk. This is achieved using the Wetterich equation
[82]

∂kΓk = 1
2 STr

[(
Γ(2)
k +Rk

)−1
∂kRk

]
, (5.3)

where Γ(2)
k represents the matrix of second functional derivatives of Γk in the fields and

Rk is a matrix containing so-called regulator functions which control the integration
of quantum fluctuations. The supertrace STr denotes a summation over all momenta
and frequencies, as well as the different fields, including a minus sign for fermions.

Provided that the regulator functions within Rk fulfill certain conditions [65, 66], in
the ultraviolet (UV) at k = Λ the flowing effective action will be equivalent to the bare
action Γk=Λ = S + const. while in the infrared at k = 0 the quantum effective action
is obtained as Γk=0 = Γ. Having obtained this functional, all physical information can
be extracted from it.

While the treatment of the problem so-far using Eq. (5.3) is exact; it is also impos-
sible to solve as the effective quantum action contains infinitely-many vertices yielding
an infinite-dimensional set of coupled differential equations. It is thus customary to
introduce an Ansatz containing finitely-many terms representing the physically most
relevant processes in a so-called vertex expansion. Following the treatment in Refs. [1,
137, 184] we thus choose the following effective action truncation

Γk =
∫

p,ω

{ ∑
σ=ψ,φ

σ(ω,p)∗G−1
σ,k(ω,p)σ(ω,p)

+ t∗(ω,p)G−1
t,k (ω,p)t(ω,p)

}

+ h
∫
x
(ψ∗

xφ
∗
xtx + t∗xφxψx) . (5.4)

From this truncation one can obtain flow equations for its different constituents
using appropriate functional derivatives of Eq. (5.3). Their diagrammatic represen-
tation is shown in Fig. 5.1 and in terms of the flowing Green’s functions they read
[137]

∂kG
−1
φ,k(ω,p) = h2∂̃k

∫
q,ν
Gc
t,k(ω + ν,p + q)Gc

ψ,k(q, ν), (5.5)

∂kG
−1
ψ,k(ω,p) = −h2∂̃k

∫
q,ν
Gc
t,k(ω + ν,p + q)Gc

φ,k(q, ν), (5.6)

∂kG
−1
t,k (ω,p) = −h2∂̃k

∫
q,ν
Gc
φ,k(ω − ν,p − q)Gc

ψ,k(q, ν). (5.7)
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(a) (b)

Figure 5.1. Diagrammatic representation of the fRG flow equations in Eqs. (5.5)
and (5.7). The flows of the impurity Green’s function ∂kG

−1
φ,k (a) as well as the mo-

lecular Green’s function ∂kG
−1
t,k (b) are shown, where wiggly and dashed lines denote

impurity and bath propagators, while solid lines denote molecular propgators. The
coupling vertex ∼hkψ∗φ∗t is denoted by square dots.

Here, the Gc denote the regulated Green’s functions given by

(Gc
σ,k)−1 = (Gσ,k)−1 +Rσ,k, (5.8)

where Rσ,k is a regulator function contained within Rk, which will be defined in
the following. In these expressions ∂̃k denotes a derivative with respect to the k-
dependence of the regulator only, i.e. ∂̃k = (∂kRk)∂Rk

. As we will see in the following,
∂kG

−1
ψ,k = 0, and thus the bath Fermi energy εF is equivalent to its chemical potential

µψ = εF .
In the single-impurity limit, we expect the low-energy excitations of the impurity

and the composite molecule particle to lie at low momenta while those of the bath
lie around its Fermi surface where p2 = εF . It is desirable for these fluctuations to
be integrated out towards the end of the flow near k = 0. To this end, we use sharp
momentum regulators [79, 185] which yield regulated flowing propagators of the form

Gc
ψ,k(ω,p) = Gψ,k(ω,p)Θ(|p2 − εF | − k2) , (5.9)

Gc
φ,k(ω,p) = Gφ,k(ω,p)Θ(|p| − k) , (5.10)
Gc
t,k(ω,p) = Gt,k(ω,p)Θ(|p| − k) . (5.11)

While this choice of regulator functions allows for simple comparison to different
approximations, it holds a further advantage that is not immediately obvious. In the
following, we will see how its trivial dependence on frequency and its simple structure
allow for an exact evaluation of the Matsubara integration in Eqs. (5.5) to (5.7) and
an exact analytical continuation of the obtained Green’s function to a horizontal line
in the complex frequency plane (see Fig. 5.2).

5.3 Exact Matsubara integration
So far, our treatment of the Fermi polaron problem in 3D is exactly equivalent to the
treatment developed in Ref. [137]. A treatment in 2D can be achieved as a natural
extension of that work using also Section 2.3. In Ref. [137] the flowing inverse Green’s
functions G−1

σ,k are parametrized by laying out a grid in Matsubara frequencies and



Exact Matsubara integration 159

(a) iω

Ω
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exact int.+ cont.
iω(b)

|p|

Ω (Ωmax, pmax)

(Ωmin, pmax)

|p|

exact int.+ cont.

Figure 5.2. Schematic diagram of the complex plane and the interpolation space. The
complex frequency plane is shown in (a), with the Matsubara frequencies along the
vertical axis (blue shaded) and the real frequencies along the horizontal. The theory
originally operates on the Matsubara frequencies and the inverse Green’s functions
G−1
σ,k(ω,p) are parametrized by laying out a grid (iωi, pj) in frequency and momentum

space (blue crosses in (b)) and interpolating between the grid points (blue shaded
region in (b)), using also the symmetry G−1

σ,k(−ω,p) = G−1
σ,k(ω,p)∗. After exact Mat-

subara integration and exact continuation, the RG is defined on a horizontal line R+iε
(red shaded region in (a)) and the retarded inverse Green’s functions GR,−1

σ,k (Ω + iε,p)
are parametrized by laying out a grid (Ωi + iε, pj) (red dots in (b)) and interpolating
between the grid points (red shaded region in (b)). For Ω < Ωmin or p > pmax the
retarded Green’s functions are approximated by asymptotic functions GR,−1

>,σ,k in the
flow equations (see Eqs. (5.21) and (5.22)), while Ω > Ωmax is never accessed due to
the structure of the flow equations (5.19) and (5.20). By comparison in Ref. [137],
the RG equations are solved on a grid of Matsubara frequencies (blue in (b)) and
only afterwards are the results continued to real frequencies using numerical analytic
continuation.

momenta (ωi, pj) (see Fig. 5.2). The full frequency- and momentum-dependence of
G−1
σ,k is then obtained interpolating over the function values at these points Ci,j

σ,k ≡
G−1
σ,k(ωi, pj). In Ref. [137] the flow of these coefficients is computed as a coupled

differential equation and at the end of the flow the full Green’s function in terms
of Matsubara frequencies is obtained as an interpolation over these coefficients. To
obtain the retarded Green’s function just above the real axis, in Ref. [137] this function
is then continued analytically using a Padé approximation (see Fig. 5.2).

During the course of the evaluation of the flow equations, however, in Ref. [137]
a costly integration over the Matsubara frequencies is performed numerically. Due
to the slow convergence rate of this integration, its evaluation yields only moderate
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precision for reasonable computation times. For ground-state properties, this yields
reasonable results. However, for the study of excited state properties the points of
interest in the complex frequency plane lie further away from the points at which
the fRG was performed. Thus, the numerical error incurred from the Matsubara
integration is propagated during the numerical analytical continuation, rendering the
obtained results for excited states highly unstable. This may lead to misleading results
such as a p2 dispersion with positive effective mass of the attractive polaron in a region
where it is known to have a negative effective mass [55, 335] (see also Fig. 5.8).

Leveraging the analytical structure of the flowing propagators in the single-impurity
system we will now demonstrate how these two problems can be circumvented in a sim-
ply maneuver by performing the Matsubara integration exactly which yields an exact
analytical continuation of the propagator functions to the whole complex frequency
plane.

5.3.1 Analytical structure of zero-density propagators and the residue
theorem

To begin, we recall general analytical properties of the Green’s functions at hand
[51, 52]. In the complex frequency plane, the Matsubara frequencies ω ∈ R lie along
the imaginary axis z = iω and the flowing Matsubara Green’s functions Gσ,k are
evaluated along this axis. Along this axis in the upper half of the complex frequency
plane (UCP), they correspond to the retarded Green’s functions Gσ,k(ω > 0,p) =
GR
σ,k(iω,p) and since the retarded Green’s function GR

σ,k(z,p) is analytic for Im(z) > 0,
the Matsubara Green’s function can be continued to the retarded Green’s function
here. The analogous statement holds for the advanced Green’s function GA

σ,k(z,p)
for Im(z) < 0. Along the real axis, the retarded and the advanced Green’s functions
fulfill the relations ReGR

σ,k(Ω+i0+,p) = ReGA
σ,k(Ω−i0+,p) and ImGR

σ,k(Ω+i0+,p) =
− ImGA

σ,k(Ω − i0+,p) for Ω ∈ R. Furthermore, from the retarded Green’s function
one can obtain the flowing spectral function

Aσ,k(Ω,p) = GR
σ,k(Ω + i0+,p) −GA

σ,k(Ω − i0+,p)
= 2 Im

[
GR
σ,k(Ω + i0+,p)

]
(5.12)

from which the occupation of states with momentum p can be obtained as

nσ,k(p) =
∫

Ω
nB/F (Ω)Aσ,k(Ω,p), (5.13)

where depending on the statistics of the σ-field nB/F (Ω) = 1/(exp(Ω/T ) ∓ 1) denotes
a Bose- or Fermi-distribution function and nB/FAσ,k ≥ 0.

Since we work in the single-impurity limit, the occupation of impurity and molecule
states must vanish at all times: nσ,k(p) = 0 for σ = φ, t and for all k,p. Thus, from
Eq. (5.13) it is easy to see that at T = 0 for Ω < 0, irrespective of the statistic of the
impurity, it holds that

Aφ/t,k(Ω < 0,p) = 0. (5.14)



Exact Matsubara integration 161

This has striking consequences: while the functional form of the impurity and molecule
Green’s function is generally unknown (it is exactly these functions that we are solving
for), the bath Green’s function is known exactly as it does not flow. Suppressing the
momentum-dependencies for now and using the analytic properties for ω > 0, Eq. (5.6)
can be rewritten as

∫
ν
Gc
t,k(ω + ν)Gc

φ,k(ν) =
∫ ∞

0

dν

2πG
c,R
t,k (iω + iν)Gc,R

φ,k(iν)

+
∫ 0

−ω

dν

2πG
c,R
t,k (iω + iν)Gc,A

φ,k(iν)

+
∫ −ω

−∞

dν

2πG
c,A
t,k (iω + iν)Gc,A

φ,k(iν). (5.15)

After (i) performing contour integration along the paths shown in Fig. 5.3a), (ii) using
that the integrands are analytic in the interior of these paths, and (iii) respecting that
the integrand vanishes along the arcs to infinity, this is equivalent to

= −
∫ −∞

0

dΩ
2π

[
Gc,R
t,k (iω + Ω)Ac

φ,k(Ω)

+ Ac
t,k(Ω)Gc,A

φ,k(−iω + Ω)
]

= 0. (5.16)

Here Gc,R
σ,k and Ac

σ,k are defined analogous to the regulated flowing propagators in
Eqs. (5.9) to (5.11). As a result ∂kG−1

ψ,k = 0 and G−1
ψ,k(ω,p) = −iω+ p2 − εF such that

GR,−1
ψ,k (z,p) = GA,−1

ψ,k (z,p) = −z+ p2 − εF , which can be used to significantly simplify
the remaining flow equations.

In Eqs. (5.5) and (5.7), the appearing bath propagators have poles at ν = −iz =
−i(q2−εF ) and ν = −iz = i(q2−εF ), respectively, which each lie in the left half of the
complex plane for q2 − εF < 0 and q2 − εF > 0, respectively. Replacing the integrand
in Eqs. (5.5) and (5.7) with the corresponding advanced and retarded propagators
and carrying out a contour integration along the contours shown in Fig. 5.3b) and
Fig. 5.3c), while taking into account the pole of the bath propagator and the vanishing
of the spectral functions described above for ω > 0, one thus obtains

∂kG
−1
φ,k(ω,p)

= −h2∂̃k

∫
q

Θ(|p + q| − k)Θ(εF − q2 − k2)
G−1,R
t,k (iω + q2 − εF ,p + q)

, (5.17)

∂kG
−1
t,k (ω,p)

= −h2∂̃k

∫
q

Θ(|p + q| − k)Θ(q2 − εF − k2)
GR,−1
φ,k (iω − q2 + εF ,p + q)

. (5.18)
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a) iν

Ω

−iω

b) iν

Ω

−iω

c) iν

Ω
iω

Figure 5.3. Schematic drawing of the contours in the complex plane used to ob-
tain Eqs. (5.16), (5.19) and (5.20). (a) The Matsubara summation on the lhs. of
Eq. (5.15) is broken up into the three pieces shown along the y-axis, where the Mat-
subara Green’s functions can be replaced with the corresponding retarded/advanced
Green’s functions. Using the analyticity of the integrands, the integral along the
whole contour vanishes and the integral along the arcs to infinity vanishes due to the
decay of the Green’s functions. As result, the vertical components of this contour
integration (Eq. (5.15)) can be inferred from the horizontal components shown in
Eq. (5.16), which vanish due to the single-impurity limit (see Eq. (5.14)). In (b) and
(c) the contours used to obtain Eqs. (5.19) and (5.20), respectively, are shown. For
q − εF < 0 (red crosses) and q − εF > 0 (green crosses) the position of the pole in
the bath propagator is shown and it contributes to the integral if it lies within the
contour.

Finally, the flow of the imaginary-time Green’s function can be continued to an arbi-
trary horizontal line in the upper complex plane iω → Ω + iε to arrive at

∂kG
R,−1
φ,k (Ω + iε,p)

= −h2∂̃k

∫
q

Θ(|p + q| − k)Θ(εF − q2 − k2)
G−1,R
t,k (Ω + iε+ q2 − εF ,p + q)

, (5.19)

∂kG
R,−1
t,k (Ω + iε,p)

= −h2∂̃k

∫
q

Θ(|p + q| − k)Θ(q2 − εF − k2)
GR,−1
φ,k (Ω + iε− q2 + εF ,p + q)

, (5.20)
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where ε > 0 is a positive number that does not necessarily have to be close to 0. The
∂̃k acts only on the Heaviside functions and under suitable parametrization, the rhs. of
Eqs. (5.19) and (5.20) contains only an integral over the angle between p and q. The
Matsubara integration has been eliminated completely and the coupled differential
equation in Matsubara frequencies has been mapped to a coupled differential equation
within a horizontal line in the complex frequency plane.

5.4 Solution of the coupled flow equations
After the elimination of the Matsubara integration along with the analytical con-
tinuation, we can now solve the coupled differential equation system in Eqs. (5.19)
and (5.20). Importantly, upon choosing a horizontal line in the complex plane (see
Fig. 5.2) these differential equations only couple the retarded impurity and molecule
Green’s functions within the given horizontal line, without coupling to other horizontal
lines.

5.4.1 Parametrization of inverse retarded Green’s functions
To parametrize the flowing inverse retarded Green’s functions we lay out a grid con-
sisting of momenta pi and frequencies Ωj + iε on which we store the function values
of the Green’s functions in form of the coefficients Di,j

σ,k ≡ GR,−1
σ,k (Ωj + iε, pi) for Ω ∈ R

and ε > 0. The momenta and frequencies in this grid need to be chosen such that
they

1. resolve well the regions of interest in the retarded Green’s function, and

2. enable a good resolution in the regions that are integrated over in the evalu-
ation of the flow equations (5.19) and (5.20), such the interpolating function
approximates the actual Green’s function well.

From Eqs. (5.19) and (5.20) it can easily be seen that for a point of interest
Ω + iε only retarded Green’s functions at points Ω′ + iε with Ω′ < Ω are evaluated.
Furthermore, all Green’s functions have spherical symmetry in their momentum com-
ponent such that GR,−1

σ,k (Ω + iε,p) = GR,−1
σ,k (Ω + iε, |p|), enabling a parametrization

by the modulus of the momentum component. Thus the grid is contained within
(pi,Ωj + iε) ∈ [0, pmax] × [Ωmin + iε,Ωmax + iε] where Ωmax is chosen according to inter-
est in physical properties and pmax,Ωmin are chosen to enable integration during the
evaluation of flow equations. The choice of the value of ε follows from a compromise:
It needs to be chosen such that R+ iε is close enough to the real axis to yield a good
approximation for the spectral function Eq. (5.29). However, if the chosen value of ε is
too small, the integration of the flow equations will be over strongly peaked functions
which requires small step sizes as the differential equation is solved along the flow
parameter k.

Within the grid, the GR,−1
σ,k are obtained from the coefficients Di,j

σ,k using a bivariate
cubic spline interpolation, while for values outside the grid we use that asympotically
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for p → ∞,Ω → −∞ the GR,−1
σ,k take on their bare form. Thus, ensuring continuity

at the boundaries of the grid, for |p| > pmax or Ω < Ωmin they are approximated by
functions of the functional form of their vacuum solutions [137]

GR,−1
>,φ,k(z,p) = −z + p2 − µφ + f 1

cont, (5.21)

GR,−1
,>t,k(z,p) = h2

8π

−1
a

+
√

−z

2 + p2

4 + f 2
cont

 , (5.22)

where f 1,2
cont ensure continuity at the boundary.

5.4.2 Initial conditions of the flow

The initial conditions for the flow of the impurity at the cutoff scale k = Λ are given
by the bare impurity propagator

GR,−1
φ,k=Λ(Ω + iε,p) = −(Ω + iε) + p2 − µφ. (5.23)

The initial condition of the molecule propagator is chosen such that for a flow in the
vacuum two-body limit, which is obtained by tuning the chemical potentials accord-
ingly, it reproduces the vacuum molecule propagators at k = 0 ( see Section 1.6 and
Ref. [137])

GR,−1
t,k=Λ(Ω + iε,p) = − h2

8πa + h2Λ
4π2 − h2

∫
q

[
Θ(|p + q| − Λ)Θ(|q| − Λ)
−Ω − iε+ q2 + (p + q)2 − Θ(|q| − Λ)

2q2

]
.

(5.24)

The initial condition of the bath fermions is given by

GR,−1
ψ,k=Λ(Ω + iε,p) = −(Ω + iε) + p2 − εF . (5.25)

From the flow equations in Eqs. (5.19) and (5.20) one can see that the impurity
propagator does not flow for k2 > εF . Thus for εF < k2 < Λ2, the impurity propagator
remains in its bare form and Eqs. (5.19) and (5.20) can be integrated analytically from
k = Λ down to k = √

εF . Hence the actual numerical solution of the flow equations
begins at k = √

εF with the initial condition

GR,−1
φ,k=√

εF
(Ω + iε,p) = GR,−1

φ,k=Λ(Ω + iε,p) (5.26)

for the impurity and

GR,−1
t,k=√

εF
(Ω + iε,p) = GR,−1

t,k=Λ(Ω + iε,p) −
∫ Λ

√
εF
dk′

[
∂kG

R,−1
t,k=k′

]
(Ω + iε,p)
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for the molecule. As a result, the molecule’s initial condition is given by

GR,−1
t,k=√

εF
(Ω + iε,p) = GR,−1

t,k=Λ(Ω + iε,p) + h2
∫

q

Θ(|p + q| − Λ)Θ(q2 − εF − Λ2)
GR,−1
φ,Λ (Ω + iε− q2 + εF ,p + q)

− Θ(|p + q|2 − εF )Θ(q2 − 2εF )
GR,−1
φ,Λ (Ω + iε− q2 + εF ,p + q)

 (5.27)

= − h2

8πa + h2
∫

q

 1
2q2 − 1

GR,−1
φ,Λ (Ω + iε− q2 + εF ,p + q)

−Θ(|p + q| − εF )Θ(q2 − 2εF ) − 1
GR,−1
φ,Λ (Ω + iε− q2 + εF ,p + q)

 , (5.28)

where we have cancelled the third term in Eq. (5.24) against the second term in
Eq. (5.27). Due to the start of the flow not at k = Λ, but rather at k = √

εF in
Eq. (5.27) we can safely take the limit Λ → ∞ during the computation of the molecular
initial condition such that the solution of the flow equations is entirely independent
of the upper cutoff scale. The integrals in Eq. (5.28) can be solved analytically.

5.5 Results
From the numerical evaluation of the flow equations down to k = 0, we obtain the
renormalized retarded Green’s functions of the molecule and the impurity along a
horizontal line in the complex frequency plane GR,−1

φ/t (Ω + iε,p) = GR,−1
φ/t,k=0(Ω + iε,p).

Performing the same calculation several times for different horizontal lines (charac-
terized by the value of ε ∈ R, ε > 0), one then obtains a discretized parametrization
of these Green’s functions in the whole upper half of the complex frequency plane 1.

Several quantities can be deduced from this data via analytical continuation of the
retarded Green’s function. The single particle spectral function of the molecule and
the impurity can be obtained by analytical continuation to the real axis

Aφ/t(Ω,p) = lim
ε→0

ImGR
φ/t(Ω + iε,p) . (5.29)

Here, in practice, a small but finite value of ε is sufficient, such that the results of our
flow solution can be used without further analytical continuation.

To obtain the exact energies and lifetimes of the quasiparticles visible as sharp
peaks in the spectral function, one needs to find the poles of the retarded Green’s
function in the lower half of the complex plane (LCP) via analytic continuation of the
retarded Green’s function across the real axis. At such a pole the inverse retarded
Green’s functions vanish

GR,−1
φ/t (Ω′

φ/t(p) − iΓφ/t(p),p) = 0,Γφ/t > 0 (5.30)

1Similarly, performing the calculation for ε < 0 one obtains the advanced Green’s function in the
lower half of the complex plane.
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and the momentum-dependent quasiparticle energy and decay width of the respective
quasiparticle are given by Eφ/t(p) = Ω′

φ/t(p) + µφ and Γφ/t, respectively. Finally, the
inverse quasiparticle weight can be obtained as

Z−1
φ/t = − ∂

∂ΩG
R,−1
φ/t

(
Ω′
φ/t(p) − iΓφ/t(p),p

)
. (5.31)

The analytic continuation to the LCP can be achieved using a Padé approximation
in which data from the UCP is used as input. Alternatively, one can also employ an
approximation to linear order making use of the Cauchy-Riemann equations to find
the location of the quasiparticle poles, yielding very similar results.

5.5.1 Energies and lifetimes at zero momentum in 3D
To begin, we study the energies, quasiparticle weights and lifetimes of the attractive
and the repulsive polaron as well as the molecule. In Fig. 5.4 we show the zero-
momentum energies Eφ/t(p = 0) as obtained in Ref. [137]. Below a critical interaction
strength of 1/(kFa)c ≈ 0.9 [137] the ground state is given by the attractive polaron
while at the critical interaction strength the polaron-to-molecule transition [54, 56,
137, 141–143] takes place, beyond which the ground state is given by a molecular state.
The repulsive polaron exists as an excited state in the spectrum above the scattering
threshold and its energy vanishes asymptotically for 1/kFa → ∞. The quasiparticle
weight Z of the attractive and the repulsive polaron is shown as well, and as expected
[58, 137] with increasing 1/kFa, the quasiparticle weight of the attractive polaron
decreases while the quasiparticle weight of the repulsive polaron increases.

Additionally, in Fig. 5.4 we show the decay widths of the zero-momentum attrac-
tive and repulsive polaron, Γatt.

φ (p = 0) and Γrep.
φ (p = 0), as well as the molecule,

Γt(p = 0). Furthermore, the decay widths of the repulsive polaron as obtained from
a non-selfconsistent T -matrix approach are shown [58, 59, 166]. As expected, the re-
spective ground state particles have a decay width consistent with zero. In the regime
where the attractive polaron or the molecule are excited state particles, their decay
widths increase as one moves away from the polaron-to-molecule transition. With
increasing quasiparticle weight, the decay width of the repulsive polaron Γrep.

φ (p = 0)
decreases.

Compared to previous work using a similar model (but a different method of solving
the flow equations), we obtain decay widths about an order of magnitude larger than
those obtained in [137], highlighting the delicacy of obtaining these roots and the
need for a numerically stable method with many grid points and a small step size.
For higher-excited states the decay widths are larger and the poles are further inside
the LCP. As a result the numerical fluctuations of our method are clearly visible, but
remain on the order of a few percent in contrast to previous work.

We note that for most interaction strengths, the decay widths of the attractive
polaron and the molecule are not accessible in simple non-selfconsistent approaches,
but rather approaches with some degree of self-consistency (such as a treatment in
Fermi liquid theory, in self-consistent T -matrix theory [328] or as in our work with
fRG) are necessary to obtain access to these quantities. Compared to the decay widths
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Figure 5.4. Energy, quasiparticle weight and decay width of the attractive and re-
pulsive polaron and the molecule, as function of 1/kFa. (a) Zero-momentum ener-
gies are shown for the attractive polaron Eatt.

φ (p = 0) (black), the repulsive polaron
Erep.
φ (p = 0) (yellow) and the molecule Et(p = 0) (red) in units of the Fermi energy

εF . A ground state transition at 1/(kFa)c ≈ 0.9 between the molecule and the at-
tractive polaron can be seen, while the repulsive polaron is an excited state above the
scattering threshold. For increasing 1/kFa the modulus of the quasiparticle weight
|Z| (b) of the attractive polaron decreases and the spectral weight is shifted to the
repulsive polaron, for which |Z| increases. (c) Approaching the transition, the decay
width Γt of the molecule, shown in units of the Fermi energy εF , decreases and even-
tually turns to zero (within numerical accuracy) as the transition is reached. The
decay width (c) of the attractive polaron Γatt.

φ , is zero before the transition and begins
to increase beyond it. The repulsive polaron has a decreasing decay width Γrep.

φ as its
quasiparticle weight increases. While the decay widths of the attractive polaron Γatt.

φ

and the molecule Γt are shown for the scale on the left, the repulsive polaron decay
width Γrep.

φ is shown with respect to the right scale. In addition to the results obtained
from the fRG (solid), the decay width of the repulsive polaron is shown as obtained
from a conventional non-selfconsistent T -matrix approach (dashed) [58, 59, 166].
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Figure 5.5. Decay width of the attractive polaron as a function of the energy gap
∆E = Eatt.

φ −Et, both in units of the Fermi energy εF . The decay width Γatt.
φ (p = 0)

of the attractive polaron as obtained from Eq. (5.30) is shown (red crosses) along
with the imaginary part of the inverse polaron propagator GR,−1

φ (Ω′′
φ(0),0) at the

pole position as obtained from Eq. (5.33) (black dots). Note, that along the real
axis, the imaginary parts of the self-energy and the inverse propagator coincide. A
curve proportional to ∆E9/2 is shown in yellow dots and fits the imaginary part of
the self-energy. Furthermore, a fit according to Eq. (5.32) is shown (solid black line).
Multiplying the power law shown in Eq. (5.32) with the quasiparticle weight of the
attractive polaron Zφ, in analogy to Eq. (5.34), closely matches the decay width as
obtained form Eq. (5.30) (solid red line).

of the repulsive polaron obtained from non-selfconsistent approaches, the fRG yields
larger decay widths in the regime where the attractive polaron is the ground state,
however the decay width of the fRG yields a more stable polaron as 1/kFa is increased.

In Ref. [167] the decay width of the attractive polaron in the excited state was
predicted to follow a ∆E9/2 scaling where ∆E = Eφ(p = 0) − Et(p = 0) > 0 denotes
the energy gap between the attractive polaron and the molecule. To be precise, it was
predicted that the imaginary part of the retarded self-energy follows a scaling

Im ΣR
φ

(
Ω′′
φ(p = 0),p = 0

)
∝ Z ′′

t kFa

(
∆E
εF

) 9
2

εF , (5.32)
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where in contrast to Eq. (5.30), Ω′′ is defined as

ReGR,−1
φ/t (Ω′′

φ/t(p),p) = 0 (5.33)

and Z ′′
φ/t is evaluated at Ω′′

φ/t(p = 0). In this scheme one can then approximate the
decay width as

Γ′′
φ/t ≈ Re(Z ′′

φ/t) Im
[
ΣR
φ/t

(
Ω′′
φ/t(p = 0),p = 0

)]
. (5.34)

Using Eq. (5.33), in Fig. 5.5 we show the imaginary part of the inverse polaron
propagator GR,−1

φ at Ω′′
φ(p = 0) and p = 0 as a function of the energy gap for

1/kFa > 1/kFac. Note that the self-energy and the inverse propagator are related
by GR,−1

φ/t = GR,−1
φ/t,k=Λ − ΣR

φ/t. Furthermore we show the polaron quasiparticle decay
width as obtained from Eq. (5.30). As it can be seen the imaginary parts as obtained
using Eq. (5.33) fit well with a power law scaling of ∆E9/2, obtained by fitting a
function of the form C1(∆E/εF )9/2, where C1 ∈ R. Furthermore, they fit well with the
scaling proposed in Ref. [167], obtained by fitting the function C2ZtkFa (∆E/εF )9/2,
C2 ∈ R. Multiplying that same curve with the polaron quasiparticle weight Zφ results
in a curve that fits well with the quasiparticle decay widths computed according to
Eq. (5.30). This relation between the imaginary part of the self-energy and the decay
width remains accurate for all the results shown in this work. At small energy gaps
the value of ε = 10−4 we used becomes larger than the decay widths and thus the
decay widths become inaccurate and begin to fluctuate.

Conducting the same analysis for the molecule for 1/kFa < 1/kFac, in Fig. 5.6 we
show the imaginary part of the molecule self-energy along with the molecule decay
widths. As before, at small energy gaps the decay widths and imaginary parts fluc-
tuate, but for ∆E > 0.06εF they are stable. As can be seen, the imaginary parts fit
well a C3(∆E/εF )4 scaling with C3 ∈ R which is notably different from the ∆E9/2

scaling proposed in [167]. While the diagrammatics in Ref. [167] does not include
decay processes to infinite order like our fRG, there is also a fundamental difference
in the diagrammatics used. Due to the coupling of the impurity-majority interaction
into a molecule channel, crossed diagrams are excluded in our approach at all orders.
In Ref. [167], however, a low-order diagrammatic expansion is employed that includes
crossed diagrams. Within that diagram, two T -matrices appear which contain no
crossed diagrams within them (see Section 5.5.2). As a result, as one approaches
the transition, in the diagrammatics in Ref. [167] the available phase space for de-
cay processes vanishes as ∆E7/2, while the corresponding matrix element vanishes as
∆E. The vanishing of the matrix element in that approach, however, is entirely due
to the use of a non-crossed T -matrix within a crossed diagrammatics. Performing
a similar analysis as in Ref. [167], but excluding crossed diagrams we analytically
obtain a scaling proportional to ∼Z3

φZ
2
t (m∗

φ)7/2(m∗
t )2∆E7/2 (see Section 5.5.2 for de-

tail). This scaling is shown in Fig. 5.6 as well, but it fits the data points only for
0.05εF < ∆E < 0.2εF , as the effective mass of the molecule eventually diverges and
turns negative (see Fig. 5.8), and thus the pure ∆E4 scaling fits more accurately.
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Figure 5.6. Decay width of the molecule as a function of the energy gap ∆E =
Et − Eatt.

φ , both in units of the Fermi energy εF . Like in Fig. 5.5, the decay width
Γt(p = 0) of the molecule obtained from Eq. (5.30) is shown (red crosses) along
with the imaginary part of GR,−1

t (Ω′′
t (0),0)εF/h2 at the pole position as obtained

from Eq. (5.33) (black dots). A curve fit proportional to ∆E4 is shown as a solid
line and fits the imaginary part of the self-energy. Furthermore, a fit following a
∼Z3

φZ
2
t (m∗

φ)7/2(m∗
t )2∆E7/2 power law is shown (dotted black line) along with a sim-

plified scaling ∼Zφ(m∗
φ)3/2∆E7/2 (dotted purple line), for detail see Section 5.5.2.

5.5.2 Decay width of the excited state molecule from Fermi liquid
theory

To highlight the dependence of the decay width on the diagrammatic method used, in
the following we discuss how a similar approach as used in Ref. [167] may yield a dif-
ferent power law behavior of the molecule decay width. As mentioned in Section 5.5.1,
the self-energy diagrammatics used in Ref. [167] employ a T -matrix (containing no
crossed diagrams) within a crossed diagram (see Fig. 5.7(c)) to obtain a ∼∆E9/2 de-
pendence of the molecule decay width. We show that neglecting the crossed diagrams,
as is done within conventional T -matrix approaches, and using a Fermi liquid theory
approximation for these particles, one obtains a different power law dependence.
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(a) (b) (c)

Figure 5.7. Diagrammatic representation of the decay of the excited state molecule.
(a) Possible decay channel of an excited state molecule (solid line) into a ground
state polaron (wavy line) and several bath particles and holes (dashed lines), which
correspond to self-energy contributions (b,c) using the optical theorem. The decay
channel in (a) allows for two distinct self-energy contributions, a crossed in (c) and a
non-crossed in (b). The square dots denote coupling vertices ∼h.

The non-crossed self-energy contribution Σt (see Fig. 5.7(b)) corresponding to the
decay process shown in Fig. 5.7(a) is then proportional to

Σt(ω,0) ∝
∫

k,k′,q,ν1,ν2,ν3

GR
φ (i[ω − ν1],−k)2GR

φ (i[ω − ν1 − ν2 + ν3],q − k − k′)
(−iν1 + k2 − εF )

(
−iν2 + k′2 − εF

)
(−iν3 + q2 − εF )

× TR(i[ω − ν1 + ν3],q − k)2

. (5.35)

To proceed, we use a pole expansion for the retarded molecule propagator TR and the
retarded impurity propagator GR

φ

GR
φ (z,p) ∝ Zφ

−z + p2

2m∗
φ

(5.36)

TR(z,p) ∝ Zt

−z + p2

2m∗
t

+ ∆E
, (5.37)

where m∗
φ and m∗

t are the effective masses of the attractive polaron and the molecule
and ∆E denotes the energy difference between the attractive polaron and the molecule.
Carrying out the frequency integrations and evaluating the self-energy near the pole
of the molecule, we then obtain

Im ΣR
t (∆E + i0+,0) ∝

∫
k,k′,q

Z3
φZ

2
t δ
(

k2 + k′2 − q2 − εF + (q−k−k′)2

2m∗
φ

− ∆E
)

(
k2 − q2 + (q−k)2

2m∗
t

)2
(

k2 − εF + k2

2m∗
φ

− ∆E
)2 . (5.38)

For ∆E � εF , the condition of the δ-function in Eq. (5.38) is fulfilled when k, k′ and q
form an almost equilateral triangle at the Fermi surface with |k|, |k′|, |q| ≈ kF . Thus
the two terms in the denominator of Eq. (5.38) approach [k2

F/(2m∗
t )]2 and [k2

F/2m∗
φ]2,
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while in Ref. [167] it was shown that the phase space integral scales as (m∗
φ)3/2∆E7/2.

Hence, within this approximation we obtain that

Im ΣR
t (∆E + i0+,0) ∝ Z3

φZ
2
t ∆E7/2(m∗

φ)7/2(m∗
t )2. (5.39)

Alternatively, one may disregard the dynamics of the propagators in Eq. (5.35), as
these propagators are not evaluated near their pole. Approximating these as con-
stant instead, one obtains only the scaling due to the phase space integral given by
∼Zφ(m∗

φ)3/2∆E7/2 which is also shown in Fig. 5.6.

5.5.3 Momentum-dependent energies and decay widths
Using the precision available within our numerical approach it is possible to obtain
not only zero-momentum properties but also momentum-resolved energies (i.e. the
full dispersion relation, including effective mass) as well as lifetimes and quasiparti-
cle weight. In Fig. 5.8, we show the momentum-dependent attractive polaron and
molecule dispersion relations with respect to the energy of the ground state. As can
be seen, for 1/kFa < 1/kFac, the polaron energies at p = 0 coincide with the ground
state energies. The dispersion relations follow a close to quadratic behavior with |p|.
Approaching and crossing the transition at 1/kFac this quadratic dependence becomes
weaker as the effective polaron mass increases and eventually diverges, as can be seen
from the polaron dispersions at 1/kFa = 1.25 and 1/kFa = 1.5 [55]. Accordingly, the
decay width of the attractive polaron has Γatt.

φ (p = 0) ≈ 0 for 1/kFa < 1/kFac and
for 1/kFa > 1/kFac it has Γatt.

φ (p = 0) > 0. In both regimes the decay width of the
attractive polaron increases monotonously as |p| increases, see Fig. 5.8(c,d).

Similarly, the dispersion of the molecule is gapped for 1/kFa < 1/kFac and ex-
hibits a negative effective mass at sufficient detuning from 1/kFac. Approaching the
transition the effective mass diverges and turns towards a quadratic dispersion with
positive effective mass before the transition is crossed. Beyond the transition, the
dispersion is ungapped and the effective mass is always positive. As expected, the
decay width of the zero-momentum molecule vanishes for 1/kFa > 1/kFac, while it
is finite for 1/kFa < 1/kFac. As for the polaron, the decay width of the molecule
increases as the momentum |p| increases.

The momentum-dependent decay widths observed in Fig. 5.8 are qualitatively
different from the decay described in Figs. 5.4 to 5.6: There, the decay is from a
zero-momentum excited state such as the attractive polaron to a lower-lying ground
state manifold such as the molecule. In Fig. 5.8 on the other hand, the decay may
take place within the ground-state manifold from higher to lower momenta [331]. For
example, as can be seen from Fig. 5.8, at 1/kFa = 0 the attractive polaron with
|p| = 0.5kF lies lower in energy than the molecule state and the respective particle-
particle continuum. As a result, the attractive polaron with |p| = 0.5kF decays to
attractive polaron states with |p′| < 0.5kF , necessitating at least a minimal degree of
self-consistency to capture this process.

As can be seen in Fig. 5.8, for 1/kFa � 1/kFac the polaron exhibits a near
quadratic dispersion relation, while the molecule exhibits a near quadratic dispersion
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Figure 5.8. Momentum-dependent dispersion relations and decay widths of the attrac-
tive polaron and the molecule at different interaction parameters. The momentum-
dependent energies of the attractive polaron Eatt.

φ (p) (a) and the molecule Et(p) (b)
are shown in units of εF as a function of momentum p = |p| for interaction strengths,
1/kFa = 1.5 (black), 1.25 (purple), 0.91 (red), 0.5 (orange) and 0 (yellow). The zero-
momentum ground-state energy, Eatt.

φ (0) for 1/kFa < 0.91 and Et(0) for 1/kFa > 0.91
is subtracted for reference. The corresponding decay widths, Γatt.

φ (p) and Γt(p) are
shown in (c) and (d), respectively. As can be seen, away from the transition, the
ground state develops a quadratic dispersion relation, while the excited state acquires
a negative effective mass. In both cases, increasing the momentum leads to increasing
decay widths.

relation for 1/kFa � 1/kFac. This suggests that the decay width within the ground
state manifold may follow a simple behavior with respect to its dependence on mo-
mentum. In the following, we investigate the momentum-dependent decay widths of
the attractive polaron and the molecule, in regions where they are the ground state
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Figure 5.9. Impurity spectral function and momentum-dependent decay width of the
attractive polaron at unitarity. The impurity spectral function Aφ(Ω,p) is shown
in (a), along with a quadratic fit to the dispersion relation, which coincides with
both energies Ω′

φ(p) and Ω′′
φ(p) obtained from different criteria, (5.30) and (5.33). In

(b) the momentum-dependent decay width Γatt.
φ (red crosses) as well as the self-energy

contribution Im ΣR
φ (Ω′′

φ(p),p) (black crosses), each also offset by their zero-momentum
contribution (dots) are shown. For p & 0.1kF they all follow a ∼p4 scaling (solid black
line). A value of ε = 10−4εF was used.

and where their dispersion relations suggest that a treatment of the particle within
Fermi liquid theory may be appropriate.
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In Fig. 5.9(a) we show the momentum-resolved impurity spectral function Aφ (see
Eq. (5.29)) at unitarity. The attractive polaron is the dominant feature of the plot
and its energy as obtained from Eqs. (5.30) and (5.33) shows a quadratic dependence
∼ p2 with respect to momentum with effective mass m∗/m ≈ 1.15. Moreover, the
attractive polaron shows a continuously increasing broadening for increasing momen-
tum. This is directly reflected in the behavior of the momentum-dependent decay
width of the attractive polaron shown in Fig. 5.9(b). In this figure we show both
Γatt.
φ (p) as evaluated from Eq. (5.30) as well as the imaginary part of the self-energy

Im Σφ(Ω′′
φ(p),p). Both evaluations yield consistent results indicating a ∝ p4 scaling

for p & 0.1kF .
The p4 scaling can be obtained from an analysis within Fermi liquid theory (see

Section 5.5.4) [330]. In this analysis the attractive polaron at small momenta is
treated as a free particle with quasiparticle properties such as energy, effective mass,
quasiparticle weight and decay width that are modified compared to the original bare
particle. In this picture one thus makes full use of the quasiparticle picture of the
attractive polaron that despite strong renormalization by strong-coupling at unitarity
still behaves as essentially a free particle (building the basis of Fermi liquid theory).

In Fig. 5.9, it can be seen that for p . 0.1kF the decay width and the self-energy
depart from the ∝ p4 scaling. At this point, the decay width has become so small
that it is comparable to the distance from the real axis (ε = 10−4εF ) and thus the
numerical continuation of the obtained grid data from z = Ω + iε to z = Ω − iΓ
incurs errors that are comparable to iε. At the same time, lowering the value of
iε further slows down the integration over the renormalization group scale k and the
momentum q within Eqs. (5.19) and (5.20) as effectively a narrowly shaped Lorentzian
curve needs to be integrated over numerically, which requires an increasing amount
of computational effort as the Lorentzian becomes sharper. Thus, it can be seen that
the decay width of the zero-momentum attractive polaron Γatt.

φ (p = 0) does not tend
to zero (the expected behavior for a ground state) but rather approaches a small, but
finite value. Subtracting the contribution of the decay width and the self-energy at
zero momentum, we see that both are closer to the ∝ p4 scaling, but there is still
residual error left.

In Fig. 5.10(a) we show the spectral function of the molecule At (see Eq. (5.29))
for 1/kFa = 3 as well as its dispersion relations. Again, both methods to determine
the energy coincide and the dispersion is well characterized by a ∝ p2 scaling. In
Fig. 5.10(b) in turn the momentum-dependent decay widths and self-energy evalu-
ations of the molecule are shown. As for the polaron, the ∝ p2 dispersion suggests
a ∝ p4 scaling in decay width and its self-energy contribution. In Fig. 5.10(b) such
a scaling can be seen to develop for p & 0.12. At smaller momenta the value of ε
dominates the results. In this calculation ε = 10−5εF was used. Interestingly, the
values obtained for Γt(0) and also those obtained for the corresponding imaginary
self-energy contribution are so small that subtracting them does not alter the shown
results significantly. Instead, for p . 0.12 a ∝ p2 scaling is observed. A similar obser-
vation was noted in Ref. [330], where for a strongly population-imbalanced mixture
of two Fermi gases, the decay width scaled quadratically with impurity momentum,



176 Results

0.0 0.2 0.4 0.6 0.8 1.0

p[kF ]

0.0

0.1

0.2

0.3

E
[ε
F

]

Ω
′
(p)

Ω
′′
(p)

∝ p2

10−2 10−1

p[kF ]

10−8

10−7

10−6

10−5

10−4

10−3

Γ
[ε
F

]

−ImΣRt (Ω
′′
t (p),p)εF /h

2 × 103

Γt(p)

∝ p4

∝ p2

∝ p4

∝ p2

(b)

(a)

Figure 5.10. Molecule spectral function and momentum-dependent decay width of the
molecule state at 1/kFa = 3. The molecule spectral function At(Ω,p) is shown in (a),
along with a quadratic fit to the dispersion relation, which reproduces both energies
Ω′
t(p) and Ω′′

t (p) obtained from Eqs. (5.30) and (5.33). The momentum-dependent
decay width Γt(p) (red crosses) as well as the self-energy contribution Im ΣR

t (Ω′′
φ(p),p)

(black dots, rescaled by a factor of 103εF/h
2) are shown in (b) and follow a ∼p4 scaling

(black and red solid lines) for p & 0.1kF . Interestingly, for p . 0.12 a ∼p2 scaling is
observed (black and red dotted lines). A value of ε = 10−5εF was used.

when the impurity momentum was below the impurity Fermi wavevector, representing
the well-known scaling of fermionic quasiparticles in Fermi liquid theory. Of course,
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(a) (b)

Figure 5.11. Diagrammatic representation of the decay of ground-state polarons at
finite momentum into lower-lying polarons. (a) Possible decay channel of a polaron
at finite momentum into a ground-state polaron at lower momentum and a particle
and hole excitation, which corresponds to a self-energy contribution (b). Unlike in
Fig. 5.7, the decay channel in (a) allows only for a single self-energy contribution (b).

the impurity Fermi level vanishes in our work (and therefore so does the impurity
Fermi wavevector), however it is possible that the error incurred from a small, but
non-vanishing ε and the ensuing analytical continuation from the horizontal line R+iε
effectively results in a small, effective pseudo impurity Fermi wavevector, leading to
an analogous quadratic scaling at very small momenta.

5.5.4 Decay of the ground state attractive polaron at finite momen-
tum from Fermi liquid theory

At 1/kFa � 1/kFac the decay of the attractive polaron at small momentum is
only into attractive polaron states of a smaller momentum because the lowest-lying
molecule state lies higher in energy. The simplest decay process representing this
route is shown in Fig. 5.11(a) and involves a particle-hole exchange with the bath
particles. Using the optical theorem, this process can easily be turned into a corre-
sponding self-energy contribution, which is shown in Fig. 5.11(b). As a result, the
self-energy is proportional to

Σφ(ω,p) ∝
∫

k,q,ν1,ν2

GR
φ (i[ω + ν1 − ν2],p + q − k)T (ω + ν1,q + p)2

(−iν1 + q2 − εF )(−iν2 + k2 − εF ) , (5.40)

where T denotes the T -matrix [59]. Carrying out the integration over ν1 and ν2

analytically by closing the contours in the right and in the left half of the complex
plane, respectively, we obtain

∝
∫

|k|>kF ,|q|<kF

GR
φ (i[ω + −i(q2 − k2)],p + q − k)T (ω − i(q2 − εF ),q + p)2. (5.41)

Considering the attractive polaron as a free particle, whose interactions with the bath
have been taken into account via a modification of the quasiparticle gap (to zero, as
the p = 0 attractive polaron is the ground state), quasiparticle weight Zφ and the
effective mass m∗

φ, we approximate the polaron propagator GR
φ (z,p) using Eq. (5.36).

Furthermore, as the decay of the attractive polaron is not into a molecule state,
we approximate the scattering matrix T ≈ g via the bare coupling constant. Later
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The contributions follow a ∼p4 scaling (blue line).

we will investigate how the inclusion of T changes the behavior of the decay width.
Thus, evaluating the self-energy near the real axis at the location of the quasiparticle
pole Ω = p2/2m∗

φ, we obtain that

Im ΣR
φ

(
p2

2m∗
φ

+ i0+,p
)

∝
∫

k>kF ,q<kF

δ

(
− p2

2m∗
φ

+ (p + q − k)2

2m∗
φ

− q2 + k2
)
, (5.42)

where we have dropped the dependence on Zφ.
The imaginary part of the self-energy Eq. (5.42), is shown in Fig. 5.12 for different

values of the effective mass m∗
φ and it can be seen that the imaginary part of the

self-energy at the quasiparticle pole follows a ∝ p4 scaling, as also seen for the full
fRG model in Section 5.5.3.

Suppose now that the scattering T -matrix was not approximated by g, then along
the real axis it is clear that for iω → Ω + i0+ = p2/2m∗

φ + i0+ and q2 < εF we have
that

ImTR
(

p2

2m∗
φ

+ (q2 − εF ) + i0+,q + p
)

= 0 (5.43)
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because the lowest-lying molecule state lies higher in energy (see also the discussion
Section 5.3.1). One thus arrives at

Im ΣR
φ

(
p2

2m∗
φ

+ i0+,p
)

∝
∫

k>kF ,q<kF

δ

(
− p2

2m∗
φ

+ (p + q − k)2

2m∗
φ

− q2 + k2
)

× TR
(

p2

2m∗
φ

+ (q2 − εF ) + i0+,q + p
)2

. (5.44)

Since the molecule is a higher-lying excited state by assumption, at small momentum p
the T -matrix approaches a finite, constant value and thus the scaling of the imaginary
part of the self-energy is solely determined by the phase space configuration scaling
enforced by the δ-function.

5.6 Conclusion
In this chapter we have presented a modified fRG treatment of the Fermi polaron
problem which not only avoids the necessity to carry out a numerical integration
over imaginary Matsubara frequencies but also the need of continuing analytically to
real frequencies. This is achieved by leveraging the analytical structure of the Fermi
polaron problem to carry out the integration and continuation exactly. As a result,
the fRG in imaginary frequencies is mapped onto an equivalent fRG on a horizontal
line above the real axis, which can be shifted arbitrarily close to the real axis. The
resulting fRG is significantly simpler to solve and allows to consider quasiparticle
properties that either may not be accessible to previous treatments due to a lack in
stability and precision or that fundamentally cannot be accessed in these treatments.

Using this modified fRG, the Fermi polaron problem was solved and the quasi-
particle properties of the attractive polaron, the repulsive polaron and the molecule
were revisited. We showed that energy and quasiparticle width are in accordance with
previous findings and the decay width of the attractive polaron does follow a scaling
of ∆E9/2 with respect to the energy gap to the molecule. For the decay width of the
molecule near the polaron-to-molecule transition, however, the applicability of the
∆E9/2 scaling is less clear and further research in this direction is necessary. One of
the significant improvements of the method presented in this chapter is that it allows
to investigate momentum-dependent decay widths which are small for states near the
ground state. We find that both the attractive polaron and the molecule seem to be
captured rather accurately within Fermi liquid theory.

The measurement of these quasiparticle properties is within experimental reach,
using for instance Raman transfers of impurities to finite momentum states [9]. The
decay of such states is then observable using Ramsey interferometry [334, 336]. Simi-
larly, such properties may be accessed using implementations relying on a constantly
driven many-body system [337]. This may be of particular relevance as momentum
relaxation seems to play an important role in the decay of Rabi oscillations [338, 339].

As polarons may now be controlled so reliably that even induced interactions
between polarons can be measured [340], extensions of our fRG method may be of
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interest where for small impurity concentrations the interaction between polarons may
be derived from an additional polaron-polaron scattering vertex. At larger impurity
concentrations further modifications may be in order where some of the exact fre-
quency integrations are replaced by contour integrals along horizontal lines above the
real axis, which may prove as a promising method of self-consistently investigating
strongly-coupled Bose-Fermi and Fermi-Fermi mixtures.



Chapter 6

Dispersion forces between weakly
disordered van der Waals crystals

This chapter is based on the following publication:

[6] J. von Milczewski, J. R. Tolsma,
Dispersion forces between weakly disordered Van der Waals crystals,

Physical Review B 104, 125111 (2021).

In this chapter, we describe a many-body theory for interlayer dispersion forces be-
tween weakly disordered atomically thin crystals and we numerically investigate the
role of disorder for different layer-separation distances and for different densities of
induced electrons and holes. In contrast to the common wisdom that disorder tends
to enhance the importance of Coulomb interactions in Fermi liquids, we show that
short range disorder tends to weaken interlayer dispersion forces. This is in line with
previous findings that suggest that transitioning from metallic to insulating propa-
gation weakens interlayer dispersion forces. We demonstrate that disorder alters the
scaling laws of dispersion forces and we comment on the role of the maximally crossed
vertex-correction diagrams responsible for logarithmic divergences in the resistivity of
two-dimensional metals.

6.1 Introduction
Even when two objects are each electrically neutral, forces between the two objects
which are mediated by the electromagnetic field can still be present. These so-called
dispersion forces were named by London in his theoretical investigation of forces
between molecules [341]. Although each molecule has zero total charge, quantum
fluctuations in the charge density of each molecule lead to an effective dipole-dipole
intermolecular force. This mechanism was later generalized by Lifshitz [342, 343] to
describe forces between solids, wherein he discovered a force which scales like 1/d3

when the distance d between two thick slabs becomes large. Depending on the context,
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Figure 6.1. An illustration of the change in interlayer separation distance d(ρ)−d(0),
which results from the attractive forces between layers that are induced by creating a
finite density of electrons and holes in each layer, ρ.

these forces also go under the name of van der Waals or Casimir forces, where the for-
mer (latter) often indicates that the force is mediated by the longitudinal (transverse)
component of the electromagnetic gauge field [344].

Dispersion forces are relatively weak and short ranged compared to electrostatic
forces, and thus are difficult to observe in experiments on solids. Recently however,
advances in x-ray spectroscopy have allowed for atomic-level precision measurements
of interlayer strain in thin films and atomically thin crystals [345, 346], and signatures
consistent with interlayer dispersion forces among optically induced electrons and
holes have been measured in transition-metal dichalcogenide multilayers [347]. This
adds a new, experimentally measurable quantity to the class of phenomena which
are sensitive to correlations among quasiparticles in neighboring layers of atomically
thin crystals like transition-metal dichalcogenides, graphene, twisted bilayer graphene,
and phosphorene. Coulomb drag [348] is a notable example of the type of phenomena
which are sensitive to interlayer correlations. In these experiments a current is driven
in one layer and as a result of interlayer Coulomb interactions an induced voltage
drop appears in a second (otherwise passive) nearby layer. Drag experiments have
led to a deeper understanding of the nature of the elementary excitations and ground
state wavefunctions of complex phases of matter, from two-dimensional Fermi liquids
to more exotic phases like exciton condensates [349, 350] and Luttinger liquids [351].
Just like Coulomb drag, the interlayer dispersion force between atomically thin crys-
tals offers an interesting test bed for the various many-body theories describing the
complex behavior of solids.

In this chapter we construct many-body approximations to explore the impact of
weak disorder on the interlayer dispersion forces which act between layers of a bilayer
heterostructure after a finite density of electrons and holes are induced in each layer
as illustrated in Fig. 6.1. While ab initio methods for obtaining van der Waals con-
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tributions to the ground state energy exist [352–357], the diagrammatic approach is
sensitive to the exchange-correlation effects which density-functional theory usually
deals with only on a mean-field level using variations of the local-density approxima-
tion; the approach discussed in this chapter is complementary to these existing tools
and allows for the treatment of systems with strongly correlated ground states or, as
we investigate in detail below, random disorder. Quasiparticle-impurity interactions
are known to be responsible for a number of fascinating properties of metals, from
weak-localization corrections to the longitudinal conductivity [358] to anomalies in
the tunneling conductivity [359, 360], and we will make use of some of these well-
developed many-body approximations in determining the role of weak disorder on
interlayer dispersion forces.

To begin, in Section 6.2 we describe a many-body theory for the interlayer disper-
sion force based on a linked-cluster expansion for the correlation energy of a bilayer
in the absence of disorder as discussed previously [361, 362]. Furthermore, we con-
nect this approach to an equivalent treatment using the functional renormalization
group. In the limit of high quasiparticle density and large separation distance d,
one recovers a well-known d−5/2 scaling behavior [362–364] in agreement with predic-
tions from Quantum Monte Carlo methods [365]. Then, in Section 6.3 we describe
a leading-order-in-1/εFτ theory for interlayer forces. We demonstrate that disorder
qualitatively alters the scaling laws and demonstrate that disorder tends to reduce
the magnitude of interlayer forces. In Section 6.4 we discuss the impact on inter-
layer forces by a class of Feynman diagrams known to yield logarithmic divergences
in the longitudinal resistivity of two-dimensional metals. Finally, in Section 6.5 we
summarize the results and discuss interesting questions to be addressed in the future.

6.2 Induced dispersion forces in bilayer systems
Let us consider a system governed by the following Hamiltonian:

Ĥ = Ĥ0 + Ĥe-e + Ĥe-imp (6.1)

which describes the kinetic energy of electrons and holes, the Coulomb interaction,
and the interaction of electrons and holes with impurities, respectively. We assume,
as is often the case experimentally, that the density of induced electrons and holes
(quasiparticles) is such that the kinetic energy of electrons and holes can be described
by an effective mass approximation

Ĥ0 =
∑
kαI

εα(k) â†
kαI âkαI , (6.2)

where εα(k) = ~2k2/2mα and α is a composite index which labels the spin, valley,
and band (e.g., valence vs conduction band) quantum numbers. In the following, we
will consider the limit in which interlayer hopping is weak compared to the exchange-
correlation energy per electron. Thus, the single-particle wavefunctions have a which-
layer quantum number I = 1, 2, which denotes the two layers. Interlayer hybridization
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of the conduction and valence bands is notoriously weak in van der Waals crystals
(as the name suggests) and is often further weakened by rotational misalignment of
neighboring layers.

The charged quasiparticles in the various layers of the system interact with each
other via the Coulomb interaction

Ĥe-e = 1
2L2

∑
q IJ
k1k2
αβ

VIJ(q) â†
k1+qαI â

†
k2−qβJ âk2βJ âk1αI , (6.3)

where

VIJ(q) =

2πe2/(κq), I = J

2πe2e−qd/(κq), I 6= J.
(6.4)

The material-specific parameter κ describes the dielectric contributions of the elemen-
tary excitations outside of our model [e.g., phonons and propagation of electric field
outside of the two-dimensional (2D) material]. The strength of Coulomb interactions
is traditionally [366] described by the value of a parameter rs which expresses the
ratio of average interaction energy to average kinetic energy in a disorder-free two-
dimensional electron gas (2DEG), rs ∝ 〈Ĥe-e〉/〈Ĥ0〉. The parameter depends on the
total density of electrons (and holes) in each layer nI and is larger when the density is
lower, rs =

[
a∗
B

√
πnI

]−1
. Here, a∗

B = κaB/meff is the effective Bohr radius. When the
system contains particle populations described by different effective masses it is useful
to define a∗

B using the geometric mean of the masses meff → √
memh. Interactions

of charged quasiparticles in different layers are ultimately responsible for the induced
van der Waals forces we describe. In this chapter we consider densities of induced
quasiparticles which are large enough to form electron liquids and hole liquids rather
than excitons, as was recently demonstrated at room temperature [367].

The interaction between impurities of the crystal and electrons as well as holes is
obtained by assuming that each impurity creates a deviation in the perfectly periodic
scalar potential created by the underlying lattice. This scalar potential couples linearly
to the density of electrons and holes,

Ĥe-imp = 1
L2

∑
Q,I

uI(Q)ρI(Q)
∑
kα

â†
k+QαI âkαI , (6.5)

where ρI(Q) is the Fourier transform of the density of impurities in layer I, and uI(Q)
is the Fourier transform of the scalar potential of each impurity. We assume that
electrons and holes only scatter off the impurity potential in the same layer, and we
assume that the scalar potential is short ranged so that uI(Q) is actually independent
of wave vector. The quasiparticle-impurity scattering time τk can be defined using the
Born approximation for the self-energy [81] where Σ(k, ω) = −i~/2τk. In the presence
of finite disorder, the scattering rate at the Fermi energy is used to define the small
parameter of our perturbation theory 1/(τεF) � 1, where we here (and will continue
to) drop the subscript on τ .

Our method for evaluating the force between two atomically thin crystals con-
sists of first calculating the ground state energy per layer as a function of interlayer
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Figure 6.2. Feynman diagrams for the correlation energy of a bilayer system whose
quasiparticles interact via intralayer Coulomb interactions (single wavy lines) and
interlayer Coulomb interactions (double wavy lines). Only the four lowest-order di-
agrams are shown here. Solid lines with arrows represent noninteracting Green’s
functions of quasiparticles.

separation distance d, and then calculating the force by taking the first derivative

F = −1
2
∂E

∂d
. (6.6)

The ground state energy can be evaluated by taking the zero-temperature limit of the
thermodynamic free energy Ω. The latter has a well-known perturbative formulation
in the linked-cluster expansion [81]

Ω − Ω0 = − 1
β

∑
`>0

1
`!

(−1
~

)̀∫ ~β

0
dτ1 . . .

∫ ~β

0
dτ`tr

{
ρ0Tτ

[
V̂ (τ1) . . . V̂ (τ`)

]}
0
, (6.7)

where ρ0 is the non-interacting density matrix, Tτ is the (imaginary) time-ordering op-
erator, and V̂ (τ) = Ĥe-imp(τ)+ Ĥe-e(τ) is the sum of the two interactions in our model
within the interaction picture of time evolution [81]. By applying Wick’s theorem,
all contributions at order ` can be expressed in terms of integrals over noninteracting
Green’s functions, the Coulomb interaction V , and the electron-impurity interaction
uI . One can now make use of Feynman diagram techniques to efficiently calculate
these contributions. We now have all the tools necessary to evaluate the interlayer
force to any order in perturbation theory.

Before we consider the effects of weak disorder on the interlayer forces, we repro-
duce the well-known d−5/2 scaling of energy [362–365, 368] by examining the force
between two two-dimensional electron gases within the random-phase approximation
(RPA) [369–372] and taking the limit of large interlayer distance d. We thus ignore
disorder and take V̂ (τ) = Ĥe-e(τ) within Eq. (6.7). The RPA can be understood as
an expansion of the ground state energy in powers of the small parameter rs, and
therefore gives a criterion for selecting which subset of Feynman diagrams at each



186 Induced dispersion forces in bilayer systems

order in ` within Eq. (6.7) must be included in an approximation to a given order
in rs. The four lowest-order diagrams which contribute to the correlation energy are
shown in Fig. 6.2. The full RPA approximation consists of summing all diagrams of
this type, which at each order in ` contain ` bubble subdiagrams. The degeneracy
of the diagrams in Fig. 6.2 is such that the infinite series of these types of diagrams
can be resummed into a logarithm of a simple function of the single bubble diagram.
After taking the derivative of the RPA approximation for the correlation energy [362],
we obtain the following integral expression for the force per layer between a bilayer
system containing a finite density of electrons and holes in each layer

F = −~L2

4π2

∫ ∞

0
dq
∫ ∞

0
dω

q2V 2
12χ

2
0

(1 − V11χ0)(1 − V22χ0) − V 2
12χ

2
0
. (6.8)

Here, χ0 is represented by the bubble subdiagrams found in the four diagrams in
Fig. 6.2 and describes the noninteracting density-density response function of each
layer. The zero-temperature limit of χ0 can be evaluated for parabolic-band effective
mass models, and in the presence of both valence and conduction bands, χ0 = ∑

α χ
α
0 ,

where χα0 is the Lindhard function [373] of the α−particle species. The integral over
frequency in Eq. (6.8) is over the imaginary frequency axis, and the arguments of
χα0 (q, iω) have been omitted for brevity.

The application of Eq. (6.8) assumes that thermal equilibrium has been reached
among the electrons and holes, which is usually several orders of magnitude faster than
the electron-hole recombination time, and does not limit experimental observations.
For arbitrary electron/hole densities and interlayer separation distances, Eq. (6.8)
must be evaluated numerically. Furthermore, it should be mentioned that Eq. (6.8)
leads to a nonvanishing force even in the absence of holes.

6.2.1 Derivation of ground state energy and force per layer from the
fRG

Rather than using the linked cluster expansion and conducting Feynmann diagram-
matics, the ground state energy and the force per layer can also be obtained using a
two-channel model and the functional renormalization group, which we will sketch in
the following. For simplicity, we consider only a single spin, valley and band quantum
number in every layer, which can easily be generalized. In this case the Hamiltonian
in Eqs. (6.2) and (6.3) can be used to generate a corresponding action

S =
∑
I

∫
Q
ψ∗
I (Q) [−iω + ε(q) − µF ]ψI(Q)

+ 1
2
∑
IJ

∫
QKK′

VIJ(q)ψ∗
I (K +Q)ψ∗

J(K ′ −Q)ψJ(K ′)ψI(K), (6.9)

where the ψ-field corresponds to the electron operators a. Using a Hubbard-Stratonovich
transformation [49, 50] into a scalar bosonic field mI ∝ ψ∗

IψI this can then be rewritten
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∂k(G−1
m,k)IJ = δIJ ∂̃k

I

I

Figure 6.3. Feynman diagram of the flow of the m-field propagator shown in
Eq. (6.11). Wiggly lines denote the m-field propagators, while solid lines denote
electrons.

into an equivalent two-channel action

S2CH =
∑
I

∫
Q
ψ∗
I (Q) [−iω + ε(q) − µF ]ψI(Q) + 1

2
∑
IJ

mI(Q)PIJ(Q)mJ(−Q)

+ λ
∑
I

∫
QK

ψ∗
I (K +Q)ψI(K)mI(Q), (6.10)

where in the limit λ → ∞ we have −λ2P−1
IJ (Q) = VIJ(q). Note that while PIJ

formally is dependent on frequency (rendering m a dynamic field), in the limit h → ∞
this dependence is asymptotically vanishing and as a result we will disregard this
dependence. For simplicity, in the following we set λ = 1. Of course λ could be
restored at anytime, but the results will not change.

Let us now, perform a two-step RG, where in the first RG we renormalize the self-
energy of the m-field using a particle-hole bubble shown in Fig. 6.3. The first RG is
conducted in a one-loop approximation such that after introducing a sharp regulator
for the electrons (for details on this procedure see Section 2.3 and Chapter 5) the flow
of the renormalized Green’s function of the m particles takes the following form

∂k(G−1
m,k)IJ(P ) = −δIJ ∂̃k

∫
Q

Θ(|q| − k)
−iν + ε(q) − µF

Θ(|q + p| − k)
−i(ν + ω) + ε(q + p) − µF

, (6.11)

where

(G−1
m,k=Λ)IJ(P ) = PIJ(P ) (6.12)

such that

(G−1
m,k=0)IJ(P ) = PIJ(P ) + δIJ

∫
Q

1
−iν + ε(q) − µF

1
−i(ν + ω) + ε(q + p) − µF

= PIJ(P ) + δIJχ0(P ). (6.13)

Here χ0 denotes the Lindhard function mentioned earlier and keeping the notation
introduced before, its function argument contains Matsubara frequencies iω rather
than ω.
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Thus, the resulting quantum effective action Γ2CH which acts as an input classical
action S ′ to the second RG is given by

S ′ = Γ2CH =
∑
I

∫
Q
ψ∗
I (Q) [−iω + ε(q) − µF ]ψI(Q)

+ 1
2
∑
IJ

mI(Q) [PIJ(Q) + δIJχ0(Q)]mJ(−Q)

+ h
∑
I

∫
QK

ψ∗
I (K +Q)ψI(K)mI(Q). (6.14)

Once again we can use the Wetterich equation in a one-loop approximation where on
the left hand side of the flow equation no vertex flows. We then have that the effective
action after a second RG process is given by

Γ′

2CH = S ′ + 1
2 STr log

(
Γ(2)

2CH

)
, (6.15)

where (
Γ(2)

2CH

)
σσ′

= δ2

δσδσ′ Γ2CH

=


0 Pψ 0 0

−Pψ 0 0 0
0 0 P11 + χ0 P12

0 0 P12 P22 + χ0


σσ′

(6.16)

and Pψ(p, ω) = −iω + ε(q) − µF . We thus arrive at

Γ′

2CH = S ′ + 1
2

∫
P

log
(

[P11 − P12 + χ0]2 [P11 + P12 + χ0]2
)

+ (terms involving Pψ)

= S ′ + 1
2

∫
P

log
((1 − V11χ0)(1 − V22χ0) − (V12χ0)2

V11V22 − V 2
12

)
+ (terms involving Pψ)

(6.17)

and since the denominator in the logarithm does not hold a frequency dependence as
mentioned in Section 2.3.4.2 this can be simplified to

Γ′

2CH = S ′ + 1
2

∫
P

log
(

(1 − V11χ0)(1 − V22χ0) − (V12χ0)2
)

+ (terms involving Pψ).

(6.18)

As a result, the part of the energy density Γ′
2CH that depends on the interlayer distance

is given by

E12[d] = 1
2

1
(2π)2

∫ ∞

0
dqq

∫ ∞

−∞
dω

× log
(

[1 − V11(q)χ0(q, iω)] [1 − V22(q)χ0(q, iω)] − [V12(q)χ0(q, iω)]2
)
, (6.19)

which after using that χ0(q, iω) = χ0(q,−iω) and

−1
2
∂

∂d
E12[d] = F

L2 , (6.20)



Induced dispersion forces in bilayer systems 189

10−1 100 101

rs

10−7

10−5

10−3

10−1

101

−P
[R

y
d
∗ /
a
∗3 B

]

d = 0.1a∗B
d = a∗B
d = 10a∗B

Figure 6.4. Interlayer forces as a function of the density of induced quasiparticles in
a disorder-free bilayer system. On the vertical axis is the force per area in units of
effective Rydbergs per effective Bohr radius cubed, where Ryd∗ = e2/κa∗

B. On the
horizontal axis is the dimensionless parameter rs which is inversely proportional to
the square root of the density of induced quasiparticles.

reproduces Eq. (6.8).
This serves as a further example of how complicated diagrammatics within a single-

channel model are surprisingly simple to derive in a two-channel model, as we saw
already when comparing the diagrammatics in Section 2.2.2.2 and Chapter 4.

6.2.2 Numerical Results

In Fig. 6.4 we present the results of numerical calculations for the pressure (i.e.,
force per area) between two layers of atomically thin crystals with induced densities
of electrons and holes parametrized by rs. One immediately notices that the force
between layers is attractive and that the magnitude varies dramatically with interlayer
separation distance as V12 is dependent on d. This is a particular feature of the type
of dispersion force that derives from the instantaneous Coulomb interaction (typically
called van der Waals forces) instead of forces originating from the transverse and
retarded parts of the electromagnetic field (typically called Casimir forces). While
Casimir forces act at larger distances than van der Waals forces, they are significantly
weaker and they are independent of the amount of impurities in the materials.
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To demonstrate how the RPA theory obtains the known d−5/2 scaling for the energy
[362–365, 368], Eq. (6.8) is now evaluated in the limit of large interlayer separation
to find the leading-order contribution to the interlayer force in the small parameter
1/(kFd), where kF =

√
keFk

h
F is the Fermi wave vector of the electron and hole Fermi

seas which are present in each layer after excitation and thermalization. The presence
of e−2qd in the numerator of Eq. (6.8) restricts the relevant range of q in the integral
to q . 1/d, which bears the physical interpretation that 2D in-plane charge per-
turbation waves at wavelengths which are short compared to the interlayer distance
appear averaged out on the adjacent plate and thus will not contribute to forces. Long
wavelengths, however, will not appear as averaged out and will therefore contribute
to interlayer forces. In the limit kFd � 1, the dominant contribution to interlayer
forces will then come from long in-plane wavelengths and this thus restricts the rel-
evant part of phase space to small values of q. In this region of phase space one can
approximate χα0 by its dynamic long-wavelength limit (i.e., ω > q, q → 0) which gives
the leading-order contribution to the force. In the dynamic long-wavelength limit the
noninteracting density-density response function of band α is given by

χα0 (q, iω) = − ρα
mα

q2

ω2 , (6.21)

where ρα is the two-dimensional density of charged quasiparticles in band α. It is then
straightforward to evaluate Eq. (6.8) analytically: using the dynamic long-wavelength
of Eq. (6.21) within Eq. (6.8), one can carry out the frequency integral analytically
and the momentum integral numerically to obtain the leading order in 1/(kFd):

F7/2 = − ~eξ1L
2

8
√

2πm

( √
ρ

d7/2

)
, (6.22)

which corresponds to the d−5/2 scaling for the energy. Here,

ξ1 ≈ 0.315, (6.23)

ρ is the total two-dimensional quasiparticle density in each layer, and we have taken
mh = me = m, and κ = 1 for simplicity. Interestingly, in the case of infinitely many
parallel plates (superlattice), the scaling of force per layer is identical to Eq. (6.22) up
to redefinition of ξ1 [347]. By randomly choosing two adjacent plates and identifying
the gap between them as the gap between two semi-infinite thick slabs separated by
a distance d, one can connect this result to Lifshitz’ theory for thick, semi-infinite
slabs. Introducing the three-dimensional density ρ3D = ρ/d in Eq. (6.22) to compare
with Lifshitz’ theory, one immediately sees that we have reproduced the power law
for the interlayer force in terms of interlayer separation and quasiparticle density (i.e.,
F ∝ √

ρ3Dd
−3).

Despite the obvious utility of simple formulas like Eq. (6.22), the derivation demon-
strates that only the long-wavelength excitations (i.e., plasmons) are accounted for,
while finite q excitations (e.g., noncoherent particle-hole excitations) are neglected.
Indeed, Eq. (6.22) is only reasonable in the limit 1/(kFd) � 1, and outside of this
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Figure 6.5. Ratio of the interlayer force in the random-phase approximation (RPA)
FRPA, calculated numerically using Eq. (6.8), to the interlayer force in the leading-
order-in-(kFd)−1 approximation F7/2, given by Eq. (6.22). The more accurate RPA
approximation predicts much smaller interlayer attraction unless kFd � 1, in which
case both approximations yield the same result.

regime the interlayer forces are more accurately described by numerically evaluating
Eq. (6.8). This is demonstrated in Fig. 6.5, where the ratio of pressure in the RPA ap-
proximation of Eq. (6.8) to the asymptotic form of Eq. (6.22) is shown. In the limit of
kFd � 1 the predictions coincide, while for smaller values of kFd the asymptotic form
gives much higher interlayer attraction than the RPA form. In subsequent sections we
will describe how these power law scalings are altered by the presence of impurities.

6.3 Impact of disorder on VdW forces: The 'Diffuson'
In this section we lay out the basic elements of a many-body theory for the impact of
weak disorder on the interlayer van der Waals (VDW) forces between atomically thin
crystals. Specifically, we begin by introducing the small parameter (i.e., 1/εFτ) of the
electron-impurity and hole-impurity interactions within the context of the first-order
Born approximation (1BA) for the self-energy. We then identify the most relevant
Feynman diagrams which contribute to interlayer dispersion forces within the regime
of rs < 1/εFτ . These diagrams contain an infinite series of ladder diagrams, and we
discuss the solution of the Bethe-Salpeter equation for the vertex correction of the
density-response function in the limit of short ranged impurity potentials. In contrast
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to the effect of disorder on other phenomena which arise due to interlayer interactions
(e.g., Coulomb drag [374]), one finds that disorder tends to weaken the magnitude of
van der Waals forces.

The electron-impurity and hole-impurity scattering rates can be defined by the
1BA for the self-energy. In this approximation the self-energy is purely imaginary,
Σ(k, ω) = −i~/2τk. For simplicity, we will take the hole’s and electron’s impurity
scattering rates to be equal, although this condition is easily relaxed if required. The
1BA is given by the Feynman diagrams depicted in panel a) and b) of Fig. 6.6.
Explicitly, the 1BA for the q-independent scattering rate at the Fermi energy is

1
τ

= να
2~πρ

imp|u|2, (6.24)

where να is the two-dimensional density of states at the Fermi surface of a single spin-
and valley-resolved band, and ρimp = limQ→0 [ρI(Q)]. In obtaining Eq. (6.24) we have
made two standard approximations for treating quenched disorder in solids [81]. First,
we assume that the impurity potential is short ranged, such that the Fourier transform
of the potential which appears in Eq. (6.5), uI(Q), becomes independent of wave
vector. Second, the impurity potential at any two different points is uncorrelated, such
that the average over the probability distribution governing the impurity potential
leads to 〈ρI(Q)ρI(−Q)〉imp = Nimp, where Nimp is the number of impurities in layer
I.

Next, we consider how to incorporate quasiparticle-quasiparticle interaction dia-
grams and quasiparticle-impurity interaction diagrams into an approximation for the
dispersion force between atomically thin crystals. In the previous section we identified
the leading-order-in-rs contribution to interlayer forces as the derivative of the RPA
diagrams for the ground state energy. In order to work with a well-controlled pertur-
bation theory we will restrict our selection of diagrams to the case when rs � 1/(τεF).
This allows us to obtain a well-controlled theory in both small parameters. The key
is to not alter the order in rs of a diagram when adding any particular quasiparticle-
impurity interaction line. We can accomplish this by adding to the RPA diagrams
a nearly identical set of diagrams in which the noninteracting density-density re-
sponse function bubble is dressed by quasiparticle-impurity interaction lines between
the electron propagator and hole propagator which form each bubble. As long as
these vertex-correction quasiparticle-impurity lines do not cross each other, they can
be summed to infinite order and together they give the leading order in 1/(τεF). The
sum of all ladder Feynman diagrams for the density-density response function of each
layer I is represented in panels c) and d) of Fig. 6.6. The latter is the diagrammatic
representation of the Bethe-Salpeter equation

ΓD
k,k′(q, ω) = Γ0

k,k′ +
∑
k′′

Γ0
k,k′′Πk′′(q, ω)ΓD

k′′,k′(q, ω), (6.25)

where
Πk′′(q, ω) = 1

~2L2 GR(k′′ + q, εF + ω)GA(k′′, εF) (6.26)

and where GR/A(k, ω) = [ω − ~−1ξkα ± i/2τ ]−1 and ξkα = εkα − εF. The Bethe-
Salpeter equation must usually be solved self-consistently for an arbitrary impurity
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Figure 6.6. Feynman diagrams [375, 376] for the leading-order in 1/εFτ corrections to
interlayer dispersion forces from impurity-quasiparticle interactions. Panel a) shows
the diagrams for the Dyson equation for the self-energy. Single lines with arrows are
noninteracting Green’s functions and double lines with arrows are the noninteracting
Green’s functions dressed by scattering with impurities. Panel b) shows the proper
self-energy in the first Born approximation. Each dashed line with a single cross
represents the (disorder averaged) scattering off of the impurity potential. Panel c)
shows the diagrams which contribute to the noninteracting density-response function
in the leading-order in 1/εFτ . Panel d) shows the diagrammatic representation of
the Bethe-Salpeter equation for the diffuson contribution, i.e. the ladder-diagram
vertex-correction ΓD(q, ω)

potential. However, here it can be solved directly as a result of the bare-scattering am-
plitude being independent of momentum Γ0

k,k′ = ρimp|uI |2. In the regime where disor-
der gives significant contributions to the density-density response of a system, ω < 1/τ
and q < 1/vFτ , it has been shown [377–379] that ΓD(q, ω) = Γ0(q)/ [−iωτ + τDq2]
where the diffusion constant is defined in two dimensions as D = v2

Fτ/2. The diffusion
pole present in ΓD(q, ω) at ω = −iDq2 is also present in the disordered density-density
response function of layer I that is obtained by summing the diagrams in panel c) of
Fig. 6.6 and yields

χD(q, ω) = −ν0
Dq2

−iω + Dq2 , (6.27)

where ν0 is the total density of states at the Fermi energy in layer I.
We can now evaluate the effect of weak disorder on the dispersion force between two

atomically thin crystals by numerically evaluating Eq. (6.8) after replacing χ0(q, iω)
by χD(q, iω) in the region of phase space where ω < 1/τ and q < 1/vFτ . In Fig. 6.7
we plot the ratio of the interlayer force in the presence of disorder Fdirty to the force
in the absence of disorder Fclean. We find that the interlayer attraction is reduced
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Figure 6.7. Ratio of the interlayer force in the presence of disorder Fdirty to the
interlayer force with no disorder Fclean, plotted against the interaction parameter rs
which is inversely proportional to the square root of the induced quasiparticle density
in each layer of a bilayer. The three curves are for three different values of the
interlayer separation distance d in units of the effective Bohr radius a∗

B. The degree of
disorder is given by ~/εF τ = 1/2. The values of both Fdirty and Fclean are calculated
numerically using Eq. (6.8). In Fdirty, the density response is given by the disordered
limit χD(q, ω) for ω < 1/τ and q < 1/vFτ .

in magnitude by the presence of quasiparticle-impurity interactions, which we will
analyze in more detail below. We also find that Fdirty/Fclean is reduced as d increases.
This occurs due to the presence of e−2qd in Eq. (6.8) which originates from the form of
the 2D in-plane Fourier transform of the interlayer Coulomb interaction. This factor
restricts the density fluctuations which contribute to interlayer forces to wave vectors
q . 1/2d, and as d is increased, more of this region of phase space lies in the region
governed by the disordered density-density response, q < 1/vFτ . We will now show
that this phase space effect is also responsible for a change in the power-laws for
the dispersion forces at large interlayer separation distances. In other words, in the
presence of disorder, the asymptotic limit for forces between 2D planes presented in
Eq. (6.22), F ∝ d−7/2, is altered.

The numerical results presented in Fig. 6.7 show that disorder decreases the mag-
nitude of interlayer forces. This is in contrast to the effect of disorder on other phe-
nomena, like Coulomb drag [374], which also originates from interlayer quasiparticle-
quasiparticle interactions. In the case of Coulomb drag, this conventional cartoon pic-
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ture of the effect of disorder is that the change in the density-density response function
from the noninteracting limit χ0(q, iω) to the disordered limit χD(q, iω) represents a
change from ballistic to diffusive motion of the quasiparticles. Indeed, the disordered
density-density response function can be derived from semiclassical arguments using
the diffusion equation [366], which is equivalent to the relaxation time approximation
(RTA) [380] in the region ω < 1/τ, q < 1/vFτ in the dynamic limit. Since quasi-
particles in neighboring layers which experience diffusive motion tend to spend longer
periods of time near each other, they interact more strongly and this increases the
Coulomb drag (i.e., disorder tends to enhance the transresistivity). However, since the
interlayer forces are decreased in magnitude by the presence of disorder, we find that
the cartoon picture of the effect of disorder cannot be imported to understand our
case of interest. The reason why disorder decreases interlayer forces while increasing
the interlayer Coulomb drag is most simply identified by again examining the large-d
limit of the two quantities. Specifically, while both Coulomb drag and the interlayer
force depend on the density-density response function, the leading-order-in-1/(kFd)
contribution to Coulomb drag comes from the static limit (ω < q, q → 0) of χ(q, iω)
while the analogous contribution to the interlayer force comes from the dynamic limit
(ω > q, q → 0) of χ(q, iω).

In the large-d limit our numerical results for the correlation energy per layer can be
compared to previous investigations of disordered correlation energies within single-
layer systems [381] where it was found that the introduction of disorder increases
exchange energies in magnitude but decreases correlation energies in magnitude. Fur-
thermore, by following similar steps as we took to derive the disorder-free expres-
sion presented in Eq. (6.22), we can also compute leading-order expression for the
force. Plugging Eq. (6.27) into Eq. (6.8) and carrying out the frequency integral for
0 < ω < 1/τ we have

F ≈ −~L2

4π2

∫ ∞

0
dq
∫ 1

τ

0
dω

q2V 2
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= −
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4
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)]

= −
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0
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4

4π2 log
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ν0V12

] [
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τ
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]
[
1 − 1+ν0V11
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] [
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]
 .

(6.28)

Keeping only the highest order in kFd term, this can then be simplified to

≈ −D2e2L2ν0~
2πd4

∫ ∞

0
dxe−xx3 log

( 1 + ex

−1 + ex

)
= −D2e2L2ν0~

2πd4 ξ2

= −~e2ξ2L
2τ

4πm

(
ρ

d4

)
, (6.29)



196 Quantum interference effects on VdW forces: The 'Cooperon'

where ξ2 ≈ 0.768 and ρ is the total two-dimensional density of quasiparticles in each
layer and we have again taken me = mh = m, κ = 1 for simplicity. Notice that
the interlayer force now decays more quickly with distance than in the absence of
disorder. This qualitative change is a direct result of the transition of electron and
hole propagation from ballistic to diffusive.

While it might be surprising that the effect of disorder on the interlayer forces is
opposite to its effect on interlayer Coulomb drag, this behavior actually fits nicely into
a trend observed in other systems [382, 383]: the less metallic a system is, the faster its
energy (and therefore its pressure) decreases with interlayer separation. Concretely,
for a metallic sample, the energy scales as d−5/2 [362–365, 368] while for a combination
of a graphene and a metallic plate it scales as log(d)d−3 [382] and for two graphene
plates is scales as d−3 [382]. Finally, for two insulator system it scales as d−4 [353].
The change of the scaling of the distance-dependent part of the correlation energy
from d−5/2 to d−3 upon changing from ballistic to diffusive propagation thus confirms
this picture.

6.4 Quantum interference effects on VdW forces: The
'Cooperon'

In the previous section we developed a theory for interlayer dispersion forces between
the layers of a bilayer system of atomically thin crystals which have uncorrelated
and short ranged disorder. We summed an infinite set of Feynman diagrams by
solving the Bethe-Salpeter equation and thus obtained the diffuson vertex correction
of the density-density response function to leading-order in 1/(εFτ). In this section
we will sum the class of diagrams which corresponds to the subleading-order terms
for the interlayer dispersion force in powers of 1/εFτ . These diagrams are famil-
iar from the theory of weak-localization and together they constitute the cooperon
vertex-correction. Despite being of lower order in the small parameter governing the
impurity-quasiparticle interaction, they are known to be responsible for a logarithmic
divergence in the longitudinal resistivity of two-dimensional conductors [358], which
is the motivation to consider them here as well.

The cooperon contributions to the density-density response function are obtained
by summing the ’maximally crossed’ vertex-correction; this infinite set of diagrams is
illustrated in panel c) of Fig. 6.8. These diagrams represent the quantum interference
of a wave packet of charge density which interferes with itself while traversing along
the time-reversed path. This requires the system to have a time-reversal symmetry
present in order for phase coherence to be maintained in-between collisions of the
wave packet with different impurities. As previously mentioned, these diagrams give
a logarithmic divergence in the resistivity (which is proportional to the current-density
response function), and indeed a similar phenomenon happens in our case of interest.
Specifically, the subleading-order contribution to the density-density response function
yields a logarithmic divergence in the diffusion constant. When both the diffuson and
cooperon contributions to the density-density response function are included [384], the
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a)

b)

c)

Γc Γc Γc

= + ΓD

Γc = + Γc

Figure 6.8. Feynman diagrams representing the cooperon contributions to the non-
interacting density-response function from scattering of electron and holes off of the
impurity potential. Panel a) shows the three diagrams that contribute at subleading
order in 1/εFτ . Panel b) shows the diagrams describing the diffuson dressing of the
density-fluctuation operator. Panel c) shows the Bethe-Salpeter representation of the
maximally crossed diagrams that represent the vertex-correction ΓC(q, ω).

functional form of χD(q, ω) remains the same as presented in the last section except
that D gets an additional contribution which depends on frequency

δD(ω) = − 1
4π2~ν0

log
[

1 + 2τω
(τ/τ0)2 + 2τω

]
, (6.30)

where ν0 is the total two-dimensional density of states of all quasiparticles in layer
I. Just as in the case of the cooperon contribution to the longitudinal resistivity, the
logarithmic divergence one obtains is cutoff at long distances, or small momenta, by
the inelastic scattering time of the quasiparticles, τ0. This time-scale is determined,
for example, by the quasiparticle-quasiparticle scattering rate, and is responsible for
destroying the phase coherence of the propagating (and time-reversed propagating)
wave packet on very long time scales τ0 > τ . This form of the disordered response
function is only a reasonable approximation in the range where ω < 1/τ and q <

1/vFτ .
I numerically evaluate the interlayer dispersion forces using the disordered density-

density response function including the renormalized diffusion constant D → D +
δD(ω). The results are shown in Fig. 6.9. They demonstrate that the maximally
crossed diagrams tend to further reduce the magnitude of interlayer forces. More
surprisingly, perhaps, there is no logarithmic divergence in the interlayer force, in
contrast to what happens when using the analogous approximation for the longitu-
dinal conductivity. This is surprising in light of the well-known relationship σdc =
limq→0(q2/ω2)χD(q, ω), which follows from the presence of global gauge symmetry.
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Figure 6.9. The fractional change in the interlayer dispersion force when the maxi-
mally crossed (i.e., weak-localization) diagrams are included. Notably, the logarithmic
divergence which appears in the longitudinal resistivity of two-dimensional conduc-
tors is not present here. Instead, the cooperon diagrams have a similar, but weaker,
effect as the diffuson diagrams, where both tend to reduce the magnitude of interlayer
attractive forces. The fractional changes are shown at ~/εF τ = 1/2, kFd = 10 as a
function of rs for different values of τ/τ0.

However, while the conductivity is the response of the system to an external electric
field whose frequency one can always fix to zero, in contrast, the interlayer dispersion
force is an integral over all frequencies of density fluctuations in both layers (it is the
Coulomb interaction between these density fluctuations which yields the dispersion
force). And when the logarithmic divergence in χD(q, ω) is integrated over frequency,
it results simply in a finite reduction (on the order of . 10 percent) of the interlayer
force’s magnitude.

6.5 Summary And Discussion
I have presented a many-body theory for the dispersion forces between atomically thin
crystals with weak disorder. Such systems can be realized within van der Waals crys-
tals [385] (e.g., graphene, transition-metal dichalcogenides, etc.) which form multi-
layer systems with very weak interlayer hybridization, a property which has allowed for
optically induced interlayer strain, originating from dispersion forces, to be observed
recently [347]. In these systems dispersion forces arise due to Coulomb interactions
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between fluctuations in the charge density of neighboring layers. The linked-cluster
expansion as well as an equivalent renormalization group method was used to approx-
imate the correlation energy of a bilayer system and the force between the layers of
the bilayer system was obtained by taking a derivative of the correlation energy with
respect to interlayer separation distance.

In the high-density limit, the random-phase approximation bubble diagrams give
the leading-order contribution to the disorder-free interlayer dispersion force. To
account for disorder, we have summed an infinite series of ladder diagrams by solving
the Bethe-Salpeter equation. These ladder diagrams form the diffuson contribution
to the vertex correction of the density-density response function (i.e., the bubble),
and yield the leading-order-in-1/(εFτ) theory. Numerical evaluation of the interlayer
dispersion force shows that interlayer forces are weakened by disorder. On one hand,
this is in contrast to the more conventional case [386] in which Coulomb interactions
become more important when electron motion becomes diffusive rather than ballistic.
On the other hand, this behavior is in accordance with previously observed changes
in scaling laws as one transitions from metallic to insulating electron propagation.

This behavior is explained by considering the analytic structure of the density-
response function in the small frequency and wave-vector limit. We find that the
diffusive motion of electrons and holes leads to a qualitative change in the scaling laws
for the interlayer dispersion force as a function of quasiparticle density and interlayer
separation distance. Subsequently, the impact of the higher-order vertex-correction
diagrams was investigated. Specifically, maximally crossed diagrams which are known
to produce logarithmic divergences in the longitudinal resistivity of two-dimensional
metals (i.e., weak localization diagrams) are found to be much less important for
interlayer dispersion forces.

All the calculations shown in this chapter were carried out within a bilayer sys-
tem consisting of two parallel plates. It should be mentioned, however, that the
effects of the theories developed in this chapter were all at the level of “same-layer”-
density-density response functions. As the theory of the bilayer system can easily be
generalized to the theory of a superlattice system [347], the results of this chapter can
easily be transferred to the superlattice system with similar effects (e.g., same power
laws and qualitative effects).

Optical control of electron and hole populations yields a convenient control knob
for manipulating the interlayer separation distance of van der Waals crystals. In
future calculations one may investigate the possibility of inducing interlayer dispersion
forces by doping heterostructures with electrostatic gates. While these systems include
interlayer electrostatic forces which compete with dispersion forces, the latter are not
reliant on equal populations of electrons and holes and can hopefully still be observed.
Through electrostatic gating the role of the excitonic spectrum in the formation of
strains could be differentiated from the induced strains presented in this chapter. In
order to complement this investigation of the role of excitons, it would furthermore
be interesting to study the qualitative changes in interlayer dispersion forces which
are present in multilayer systems with more exotic ground state wavefunctions, such
as are present in bilayer exciton condensates.





Chapter 7

Conclusion and Outlook

In this thesis we explored different aspects of the phase diagram and the quasiparticles
found within strongly coupled Bose-Fermi mixtures. Employing a broad range of
approaches such as quantum field theory/diagrammatics (see Chapters 4 and 6 and
Ref. [7]), variational wavefunctions (see Section 1.7 and Refs. [8, 9]), stochastic
variational methods (SVM) (see Chapter 3) and functional renormalization group
approaches (fRG) (see Sections 2.2 and 2.3 and Chapter 5), where we have focused
on utilizing analytical and physical insights to facilitate numerical implementations.

In Chapter 2 we studied the phase diagram of strongly coupled Bose-Fermi mix-
tures in two and three dimensions by combining the analysis of an experiment con-
ducted in a three-dimensional ultracold quantum gas with an analysis from the func-
tional renormalization group in two dimensions. Section 2.2 contains an analysis of the
experimental data (along with a review of existing literature) and focuses on a charac-
terization of the superfluid polaronic phase which transitions into a normal molecular
phase. Section 2.3 on the other hand, employs an investigation in terms of the fRG and
explores the molecular phase. The data obtained in the three-dimensional strongly
interacting Bose-Fermi quantum gas mixtures with comparable densities (Section 2.2)
suggest that at low temperatures where bosons commonly condense, strong boson-
fermion interactions may induce a phase transition from a polaronic condensate to a
molecular Fermi gas which connects to an underlying quantum phase transition (QPT)
at T = 0 [98]. Signatures of this QPT were observed by producing a density-matched,
double-degenerate Bose–Fermi mixture of 23Na and 40K. For vanishingly weak inter-
actions, the bosons were unperturbed and thus condensed. As attractive interactions
were increased, the bosonic condensate was dressed polaronically, and with increas-
ing interaction strength, the condensate was eventually depleted, at which point a
transition into a phase of quantum-degenerate fermionic molecules was observed. We
found that this process of driving through the underlying QPT was highly efficient
in associating Feshbach molecules, which allows for the creation of molecules with
a large dipole moment, providing exciting opportunities to study strongly correlated
dipolar quantum systems. Next, in Section 2.3 the phase diagram of strongly-coupled
two-dimensional Bose-Fermi mixtures was studied theoretically for different boson
and fermion densities. Connecting to the extreme limit of population-imbalance, the
Fermi polaron problem, we developed a functional-renormalization-group approach
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that by including three-body correlations reproduces the polaron-to-molecule transi-
tion in the two-dimensional Fermi polaron problem. By extending this approach to
allow for a finite boson density, we found that beyond a critical bound state energy,
the fermions and bosons can form a fermionic composite, with a well-defined Fermi
surface. The physics described both in Sections 2.2 and 2.3 connects naturally to the
polaron-to-molecule transition in the impurity limit, and key observables of both the
experiment as well as the theoretical computations can be inferred from observables in
the impurity limit, highlighting that the Fermi polaron problem captures key aspects
of the strong coupling physics even in density-balanced Bose-Fermi mixtures.

In Chapter 3 we studied induced pairing between two identical fermions mediated
by an attractively interacting quantum impurity in two-dimensional systems. Con-
sidering the two identical fermions as a small-scale Fermi sea in the few-body limit,
we then went on to study the fate of the polaron-to-molecule transition within such
few-body systems. Using a Stochastic Variational Method (SVM), in the first part
of Chapter 3 we investigated the influence of confinement and finite interaction range
effects on the mass ratio at which the ground state of this quantum three-particle
system transitions from forming a three-particle bound state, a trimer, to a state con-
taining a two-particle bound state between the impurity and a fermion along with the
second fermion in a scattering state, an unbound dimer-fermion state. Both tighter
confinement as well as longer interaction ranges favor trimer formation over dimer
formation. The impurity induces strong coupling between the fermions, which can
be so dominant that it can even outweigh Coulomb repulsion between the fermions.
Furthermore, considering the confinement of the particles as an effective means to
tune the density within the system, this suggests that Fermion-Fermion pairing may
be stabilized in the presence of a Fermi sea, opening perspectives towards realizing
novel forms of electron pairing in atomically-thin semiconductors beyond the conven-
tional paradigm of Cooper pair formation. In the second part of the chapter, we
then studied remnants of the polaron-to-molecule transition, to see how much of the
many-body behavior transpires into the few-body limit. We showed that an analog
of the transition occurs also in the few-body regime, exhibiting the same qualitative
physics as its many-body relative.

In Chapter 4 we studied strong Bose-Fermi coupling as a means to induce su-
perfluid pairing between fermions. To this end, we presented a mechanism to induce
superconductivity in atomically thin semiconductors, where excitons mediate an effec-
tive attraction between electrons. Using the insights gained from the strong coupling
physics described in Chapter 2, we devised a corresponding model that accounts for
this and connects to the well-established limits of Bose and Fermi polarons. Us-
ing these ingredients, we showed that the system undergoes an emerging BCS-BEC
crossover from weakly bound s-wave Cooper pairs to a superfluid of bipolarons with
critical temperatures of up to 10% of the Fermi temperature. Given this scaling with
Fermi temperature and given that the coupling physics within TMD is stable at high
temperatures, we concluded that exciton-mediated pairing of electrons in doped, atom-
ically thin semiconductor heterostructures offers a promising route towards realizing
superconductivity at high critical temperatures.
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Next, in Chapter 5 we revisited the Fermi polaron problem using a self-consistent,
momentum- and frequency-resolved fRG approach. Leveraging the analytical struc-
ture of the impurity limit, we were able to compute Green’s functions in the whole
complex frequency plane using exact analytical continuation, circumventing a possibly
unstable numerical analytical continuation. This came at a greatly reduced compu-
tation cost, allowing access to observables that were previously inaccessible due to
a lack of numerical stability and precision. We used these improvements to study
momentum-dependent decay widths of the attractive and repulsive polaron, as us-
ing Raman and Ramsey methods these observables are coming within experimental
reach. Importantly, these decay widths are not accessible using conventional non-
selfconsistent methods. Surprisingly, we found that both the attractive polaron and
the molaron exhibit Fermi liquid-like behavior even deeply in the strongly interacting
regime.

Finally, rather than studying dynamics originating from a particle-particle channel,
in Chapter 6 we studied the effect of disorder on interlayer dispersion forces within
TMD systems. These forces occur as a result of the dielectric density-density response
of one layer to quantum fluctuations in the local charge distribution of the other layer.
As the diffusive disorder we consider inhibits the coherent propagation of particles,
the dielectric response of the system is inhibited, resulting in weaker Dispersion forces.
Our results and the power laws we derived fit into this picture of force originating from
dielectric response, as the diffusive results lie between insulting and metallic behavior.

Throughout this thesis, we have studied different aspects of strong coupling within
Bose-Fermi mixtures from different angles and in different constellations. We have seen
that large parts of the physics observed in these strongly coupled systems originate
from the simplest of physics and the competition between simple states: Before even
thinking of interactions, the first building block is the non-interacting ground state
of a system and the intuition that sufficiently weak interactions merely perturb this
state, but do not lead to a qualitatively different state. The second building block
is the behavior of two-interacting particles, the two-body limit. These particles may
bind together, forming a molecule, or they may remain unbound, likely expressing
behavior similar to the non-interacting ground state. Moving from two particles of
a different species to two particles of a fermionic species and a single particle of
another species, it is clear that for sufficiently weak interactions, the ground state
will be similar to the non-interacting ground state. For stronger interactions, it will
be similar to the molecule state, along with a fermion in a non-interacting ground
state. For even stronger interactions, a third building block becomes relevant: all
three particles binding together. Moving from two particles of a fermionic species to a
finite density of a fermionic species, the fundamental physics still remains a transition
between the fundamental building blocks of a non-interacting ground state (dressed
polaronically) and a molecule state (complemented with a Fermi sea). Now, going
from a single impurity to a finite density of bosonic impurities, we can again make use
of the building blocks to describe a quantum phase transition between a condensate
of polarons (adiabatically connected to the non-interacting state) and a Fermi gas of
molecules (connecting to the molaron, which in turn connects to the two-body bound
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state). Finally, considering the induced pairing between fermions, the third building
block reappears, albeit in a slightly modified version, as the induced pairing described
in Chapter 4 is between electrons of different spin.

This benign comparison of different quasiparticles in different constellations serves
to show that the fundamental physics studied in the course of this thesis consists of
simple building blocks which reappear in different disguises. Their description may
require advanced methods to be able to capture the qualitative physics at play, and
even more sophisticated methods for these descriptions to be quantitatively correct.
Their physical properties and their competition, however, may be explained in simple
layperson’s terms, giving rise to the beauty within the balancing act mentioned in the
introduction.



Appendix A

Bose-Bose-Fermi coupling in the
three-body limit and at finite density

The truncations considered in Section 2.3 neglect the emergence of a Bose-Bose-Fermi
(BBF) coupling (and other higher-order couplings). In this Appendix we seek to
explore the relevance of this coupling. From a physical standpoint, unlike the Fermi-
Fermi-Bose (FFB) coupling λk, the BBF coupling does not suffer from Pauli blocking
and may thus be considerably stronger, potentially resulting in the formation of bound
states containing more than one boson.

First, we study the BBF coupling in the limit where two φ bosons and a single ψ
fermion are present. We define the corresponding coupling vertex τk as

τk

∫
x
φ∗
xt

∗
xtxφx . (A.1)

The flow equations given in Eqs. (2.42) to (2.45) (excluding the flow of λk) are then
complemented by the RG flow of τk

∂kτk = −τ 2
k ∂̃k

∫
Q
Gc
t,k(Q)

[
Gc
φ,k(Q) +Gc

φ,k(−Q)
]

− h4
k∂̃k

∫
Q
Gc
t,k(Q)Gc

ψ,k(Q)2Gc
φ,k(−Q)

+ 2h2
kτk∂̃k

∫
Q
Gc
t,k(Q)Gc

ψ,k(Q)Gc
φ,k(−Q) . (A.2)

These equations are solved using the initial conditions of the two-body problem dis-
cussed in Section 2.3.2.6 where, unlike in Section 2.3.3.2, we consider the on-mass-
shell scattering of a molecule and a quasi-free excess boson such that µφ = 0− and
µψ = −εB − 0−. As in the previous section G−1

φ,k, G−1
ψ,k and hk do not flow such that

mt,k and At,k are given by Eqs. (2.54) and (2.55), respectively. We find that τk flows
from τk=Λ = 0 to negative values before diverging at k > 0 and continuing to flow to
τk=0 = h2/εB at the end of the flow. The divergence indeed indicates the formation
of three-body bound states in the vacuum limit as predicted in Refs. [177–179]. Our
results show that these can, in principle, be captured using our fRG technique. We
now demonstrate that this treatment can be extended to finite density.

To this end, we study the behavior of the BBF coupling at finite density. Thus, we
apply the initial conditions used for Fig. 2.20 by tuning the binding energy and the
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Figure A.1. Instability towards higher-order bound state formation. Indication of a
divergence of τk for different ratios of µφ/εF and εB/εF using Γ3,k (a) and Γ2,k (b).
The blue (dark gray) regions indicate the divergence of τk at finite k (thus resulting in
a potential instability towards the formation of a Boson-Boson-Fermion bound state),
while the yellow (light gray) regions indicate that τk had not diverged when the flow
ended as discussed in Section 2.3.4. The solid black line shows the transition to the
finite boson density regime, while the dashed red line indicates the path along which
µφ = 0, as in Fig. 2.20.

boson chemical potential at a fixed Fermi energy. In order to simplify the calculation,
however, here we do not choose a fully self-consistent calculation, but rather treat the
BBF coupling as an observing flow that does not feed back into the renormalization
of the other coupling constants. Hence, the flow of τk is influenced by the flow of λk
(but not vice versa). In this framework at finite density the RG flow of τk picks up
another term given by:

−h2
kλk∂̃k

∫
Q
Gc
t,k(Q)Gc

ψ,k(Q)2 . (A.3)

We now turn to the question under which conditions a divergence of τk occurs
during the flow. The result of this calculation is shown in Fig. A.1. As can be
seen, in both truncations, Γ2,k and Γ3,k, the coupling constant τk diverges for most
of the combinations of µφ/εB and εB shown in Fig. 2.20. Only at weaker interaction
strengths when the boson is gapped strongly does the coupling constant remain finite.
This shows the importance of ‘non-Pauli-blocked’ coupling channels such as τk which
lead to bound states containing more than one boson, especially at a finite boson
density where these are not suppressed.



Appendix B

Explicit flow equations for the
functional renormalization group
analysis of a strongly-coupled
two-dimensional Bose-Fermi mixture

In this appendix we provide the explicit flow equations of parameters of the gradient
expansion. These flows are obtained as described in Section 2.3.2.5, and for complete-
ness we state them here explicitly. Note that we state the flow equations as used in
Section 2.3.4. These are a generalization of the flow equations used in Section 2.3.3
and as such may also be used there.

B.1 Boson renormalization

∂kmφ,k = h2
kk

π

Θ(εF − 2k2)

 Θ
(
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B.2 Molecule renormalization
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B.3 Three-body renormalization

B.3.1 Bubble
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B.3.2 Triangle
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π (Aφ,k (2k2 + εF ) +mφ,k)2 (At,k (3k2 + εF ) + 2mt,k)

(B.10)

C2 =
Aφ,kh

4
kkΘ

(
−2mt,k+At,k

(
k2+εF

)
2At,k

)
(2Aφ,kmt,k − At,k [5Aφ,kk2 + 4mφ,k + 3Aφ,kεF ])

π (Aφ,k (2k2 + εF ) +mφ,k)2 (−2Aφ,kmt,k + Aφ,kAt,k (k2 + εF ) + 2At,kmφ,k)2

(B.11)

C3 = −
4A2

t,kh
4
kkΘ

(
−k2

2 − mt,k

At,k

)
Θ (εF − 2k2)

π (3At,kk2 − 2At,kεF + 2mt,k) (−2Aφ,kmt,k + Aφ,kAt,kk2 + 2At,kmφ,k)2 (B.12)

C4 = −
4A2

t,kh
4
kkΘ

(
k2 − 2mt,k

At,k
− εF

)
Θ (εF − 2k2)

π (At,k (εF − 3k2) + 2mt,k) (2Aφ,kmt,k + Aφ,kAt,k (k2 − εF ) − 2At,kmφ,k)2

(B.13)

B.3.4 Total

∂kλ = −λ2
k

h2
k

∂kmφ,k + A1 +
4∑
i=1

Bi +
4∑
i=1

Ci (B.14)

B.4 Fermion renormalization

∂kmψ,k = h2
kk

At,kAφ,k

∫ π

−π

dθ

2π2

Θ
(
−k2 − 2mt,k

At,k

)
Θ (p2 − 2kp cos(θ))

−k2 + 2mt,k

At,k
− 2mφ,k

Aφ,k
− 2p2 + 4kp cos(θ)

∣∣∣∣∣∣
p=√

εF

+
∫ π

−π

dθ

2π2

Θ
(
−k2 − 2mt,k

At,k
− p2 − 2kp cos(θ)

)
Θ (p2 + 2kp cos(θ))

−k2 + 2mt,k

At,k
− 2mφ,k

Aφ,k
+ p2 + 2kp cos(θ)

∣∣∣∣∣∣
p=√

εF


− λkk

2πAφ
Θ
(

−k2 − 2mt,k

At,k

)
(B.15)

∂kAψ,k = − 2h2
kk

At,kAφ,kπ

∫ π

−π

dθ

2π
Θ
(
−k2 − 2mt,k

At,k

)
Θ (p2 − 2kp cos(θ))(

−k2 + 2mt,k

At,k
− 2mφ,k

Aφ,k
− 2p2 + 4kp cos(θ)

)2

∣∣∣∣∣∣
p=√

εF

+
∫ π

−π

dθ

2π
Θ
(
−k2 − 2mt,k

At,k
− p2 − 2kp cos(θ)

)
Θ (p2 + 2kp cos(θ))(

−k2 + 2mt,k

At,k
− 2mφ,k

Aφ,k
+ p2 + 2kp cos(θ)

)2
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p=√

εF
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B.5 Effective potential

∂kUk = 1
4π

(
∂k
mt,k

At,k

)
min

(
k2,−2mt,k

At,k
Θ
(

−mt,k

At,k

))

+ 1
4π

(
∂k
mψ,k

Aψ,k

)(
max

(
εF − mψ,k

Aψ,k
, 0
)

− max
(
εF − mψ,k

Aψ,k
− k2, 0

))
(B.17)





Appendix C

Two-body problem with confinement
from the SVM

In this appendix, we show the influence of confinement on the solution of the two-body
problem.

Let us consider a two-body system consisting of one impurity (with mass mI) and
one fermion (with mass mF ) in a 2D spherical box. The Hamiltonian then reads

H = − ~2

2mI

∇2
1 − ~2

2mF

∇2
2 +

2∑
i=1

Vconf(ri) + VFI(r1 − r2), (C.1)

where we have used the same notation as in Section 3.4.1. To solve this two-body
problem, we employ the SVM as described in Section 3.2.

In Fig. C.1, we show the two-body as well as the three-body ground state energy
as a function of α for r0/rB = 1.2 and different values of R. The dimer energies lie
slightly higher than −E∞

2B due to the confinement, while for larger system sizes the
energies approach −E∞

2B. Additionally, a close to linear increase of the energies with
the mass ratio α is visible, which decreases as R increases. This observation is in line
with the interpretation of a decrease of the two-body confinement energy, given by

Econf = z2
01

2mIR2 + z2
01

2mFR2 = z2
01(α + 1)
2mFR2 , (C.2)

where z01 is the first zero of the Bessel function J0.
Comparing the three-body energy with the two-body energy, one can see that,

below the critical mass ratio, the three-body energy also increases linearly with α,
and that the increase is larger for smaller box size. Additionally, especially for smaller
system sizes, the three-body energies below the critical mass ratio lie considerably
higher than their two-body counterparts. This is caused by the confinement energy
of the fermion in a scattering state, as expected from our analysis in Section 3.4.2.
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Figure C.1. Ground state energy of the two- (crosses, dashed lines, described n
this appendix) and three-body system (dots, solid lines, described in Section 3.4 for
R/rB = 10 (black), 20 (purple), 50 (red) and 100 (orange), and a fixed value r0/rB =
1.2. The two-body ground state energy increases linearly with mass ratio α, which
coincides with the behavior of the three-body ground state energy below the critical
mass ratio.



Appendix D

Convergence Analysis of SVM method

In this appendix, we analyze the convergence of the results shown in Fig. 3.2, which
is followed by a study with regards to the number of wavefunctions sampled in every
expansion step.

There are two aspects in which the SVM algorithm needs to achieve convergence
in:

1. The number of basis states needs to be sufficiently large to describe the ground
state accurately.

2. A sufficient number of samples have to be drawn from the ECG manifold in
every basis expansion step in order to ensure stable results.

The number of basis states and the number of samplings necessary to obtain
accurate results varies depending on the nature of the ground state and the energy
gap to the first excited state. Additionally, there are ranges of R/rB and r0/rB that
are more challenging to achieve convergence in. That is, when the confinement length
R is large and the interaction range r0 is small, the manifold of wavefunctions that
respect the confinement-imposed boundary conditions increases in size. In contrast,
the subset of wavefunctions resolving the box potential is quite small. Combining both
arguments, one sees that a larger number of sampling steps is required. Additionally,
when the energy gap between the dimer and the trimer state becomes small near the
transition, the numerically-determined ground state can be a varying admixture of
dimer and trimer state, resulting in angular momentum scatter.

To study the convergence of the results shown in Fig. 3.2, we have performed a
convergence analysis of select data points. The results are shown in Appendix D.1
(Figs. D.1 and D.2), and they serve to investigate the behavior of the energy and the
angular momentum of the ground state as the number of basis states N is increased.
To further study the role of the number of sampling steps, in Appendix D.2 a similar
analysis was performed in which, for varying numbers of sampling steps, the ground
state properties were tracked, again, as a function of the number of basis states N .
These results are shown in Figs. D.3 and D.4.
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Figure D.1. Analysis of convergence with increasing number of basis states N , for
parameters R/rB = 10, r0/rB = 0.8 that yield a critical mass ratio of around αc = 2.
The analysis is conducted for mass ratios well before (left, α = 1), close to (center,
α = 2) and well after (right, α = 3) the dimer-to-trimer transition. For every data
point (α, R/rB, r0/rB), shown in Fig. 3.2, 10 independent runs with up to 100 basis
states were conducted. For the present figure, the ground state in each of these
10 independent runs was tracked as the number of basis states N increased from 1
to 100, and the energies and angular momentum expectation values 〈L2

tot〉 of these
states were computed. In the upper row, the down-(up-)facing triangles, connected
by dashed lines, mark the highest (lowest)-lying ground state energies of these ten
runs at 1/N = 1/25, 1/50, 1/60, 1/70, 1/80 and 1/100. In the lower panels, the 〈L2

tot〉
values are shown in the same way. The energy (〈L2

tot〉 values) obtained by combining
the bases of the 10 individual runs into a single basis of 10 × N states is shown as
a solid line. From the relation between energy and 1/N , we estimate the energy at
N = ∞ (diamond marker) by extrapolation (dotted line). The difference between the
obtained extrapolation and the combined energy of 10 × 100 = 1000 basis states is
given by 0.0079E∞

2B (α = 1), 0.0098E∞
2B (α = 2), and 0.0121E∞

2B (α = 3), and it can
be regarded as an estimated basis set extrapolation error.
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Figure D.2. Analysis of convergence with increasing number of basis states N , for
parameters R/rB = 100, r0/rB = 0.2 that yield a critical mass ratio of around αc = 3.3
(see also Fig. 3.9). In the same manner as the analysis shown in Fig. D.1, the analysis
is conducted for mass ratios well before (left, α = 2), close to (middle, α = 3.3) and
well after (right, α = 3.6) the dimer-to-trimer transition. Additionally, for α = 3.3 and
α = 3.6, energies and angular momentum expectation values obtained in a single run
with up to N = 1000 basis states are shown (crosses, dashed, purple). The difference
between the combined energy of 10 × 100 = 1000 basis states and the extrapolation
is given by 0.00098E∞

2B (α = 2), 0.0019E∞
2B (α = 3.3) and 0.0066E∞

2B (α = 3.6), and
it can be regarded as an estimated basis set extrapolation error. The results obtained
from the extrapolated energy (diamond) and the single run with N = 1000 basis states
are consistent.

D.1 Convergence analysis of the number of basis states
N

In Fig. D.1, values of R/rB = 10, r0/rB = 0.8 were chosen as representing parameters
for which it is easier to achieve convergence. In contrast, the values R/rB = 100,
r0/rB = 0.2 chosen for Fig. D.2 represent parameters more challenging for the al-
gorithm. For each of these sets of parameters, mass ratios before the transition, in
the transition region, and beyond the transition were chosen to show the effect of the
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closing energy gap between the trimer and dimer states. A detailed description of the
data presented in the figures can be found in the respective figure captions.

As mandated by the variational principle, the energies found are upper bounds
for the true energy of the ground state. Moreover, as the number of basis states is
increased, the variational energy must be lowered. In Fig. D.1, it can be seen that away
from the transition (α = 1, α = 3) the 10 individual energies and angular momenta
have a tight grouping, indicating that the number of sampling steps is sufficient. At
the transition, the individual energies are also grouped tightly, but because the energy
gap to the first excited state is small, the angular momentum expectation values have
a significant spread and a stabilization of the observable comes from the combination
of individual runs. Fig. D.2, on the other hand, is obtained for a larger system size,
making the dimer-to-trimer crossover much more narrow. As a consequence, the
spread of energies relative to the energy gap to −E∞

2B is much larger than in Fig. D.1.
Highlighting the challenge in describing such parameter regimes, even away from the
transition, stabilization of the results is achieved only after the combination of basis
states of the individual runs, and not by a sheer increase of the number of sampling
steps as in Fig. D.1.

Away from the transition, no qualitative changes in the angular momentum ex-
pectation value are observed once around 50 states have been taken into account.
This holds true even when comparing with a run in which the basis states are derived
from a single run of up to 1000 basis states (see also Fig. 3.9), rather than from 10
independent runs of up to 100 basis states. Close to the transition, however, a larger
number of basis states is required to achieve convergence, as both the ground and the
first excited state need to be resolved with a sufficiently large number of basis states.
As a result, the single run of up to 1000 basis states shows different results than the
combined runs at α = 3.3 shown in Fig. D.2, see also the discussion in Section 3.4.4.

For the data shown in Figs. D.1 and D.2 we estimate the uncertainties of our
energies as the energy difference between the combined energies at N = 100, and
the extrapolated energies at 1/N = 0. The resulting uncertainties are given in the
captions of Figs. D.1 and D.2. We note that these estimated uncertainties are of the
order of ∼ 0.01E∞

2B in Fig. D.1, and, in Fig. D.2, they are of the order ∼ 0.001E∞
2B

before the transition and about ∼ 0.007E∞
2B beyond the transition. As such, they are

much smaller than the actual gap between the ground state and −E∞
2B. Furthermore,

we note that, as can be seen in Fig. D.2, the extrapolated energies are very close to
the energies obtained from a single run of 1000 basis states.

D.2 Convergence analysis of the number of sampling steps
Finally, we investigate the impact of the number of sampling steps on convergence.
To this end, we show in Fig. D.3 an analysis of the convergence with the number
of basis states for relatively low numbers of sampling steps obtained for R/rB = 10
and r0/rB = 0.8. In Fig. D.4, the same analysis is performed for R/rB = 100 and
r0/rB = 0.2. In the case of R/rB = 10 and r0/rB = 0.8, the energies and angular
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Figure D.3. Analysis of convergence as function of the number of basis states N
and increasing numbers of sampling steps. The analysis is conducted for the param-
eters R/rB = 10, r0/rB = 0.8 and for mass ratios well before (left, α = 1), close
to (middle, α = 2) and well after (right, α = 3) the transition region. 10 indepen-
dent runs with up to 300 basis states using 1000 (black), 2000 (purple) and 4000
(yellow) sampling steps in every basis expansion step were conducted and the re-
sulting ground states were tracked as a function of the number of basis states N for
1/N = 1/300, 1/250, 1/200, 1/150, 1/125, 1/100, 1/70 and 1/50. Ground state ener-
gies and angular momentum expectation values are shown in the same manner as in
Figs. D.1 and D.2, with different colours representing different numbers of sampling
steps.

momenta are, along with their spreads, comparable to those shown in Fig. D.1, even
though the former results were obtained for a significantly lower number of sampling
steps. In contrast, in the case of R/rB = 100 and r0/rB = 0.2, shown in Fig. D.4,
one can see that, by increasing the number of sampling steps, one obtains a much
tighter grouping in energy, which differs from the results shown in Fig. D.2. The
estimated uncertainties obtained from the data given in Figs. D.3 and D.4 are shown
in Table D.1. This illustrates further the requirements different parameter ranges of
r0/rB and R/rB pose on the number of sampling steps.
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Figure D.4. Analysis of convergence with increasing number of basis states N for
R/rB = 100, r0/rB = 0.2, and different numbers of sampling steps. In the same
manner as the analysis shown in Fig. D.3, the analysis is conducted for mass ratios
well before (left,α = 2), close to (middle,α = 3.3), and well after (right, α = 4) the
transition region.

extrapolation error [E∞
2B]

R/rB = 10, r0/rB = 0.8 R/rB = 100, r0/rB = 0.2
α = 1 α = 2 α = 3 α = 2 α = 3.3 α = 4

1000 sampling steps 0.0068 0.0092 0.0079 0.0033 0.0043 0.0009
2000 sampling steps 0.0065 0.0087 0.0072 0.0026 0.0050 0.0069
4000 sampling steps 0.0051 0.0081 0.0081 0.0026 0.0021 0.0037

Table D.1. Estimated extrapolation error of the ground state energy in units of E∞
2B

in dependence of the number of sampling steps, for different system parameters. The
uncertainty is obtained by comparing the extrapolated energy and the energy obtained
by a combination of 10 × 100 basis states, shown in Fig. D.3 and Fig. D.4.



Bibliography

[1] J. von Milczewski, F. Rose, and R. Schmidt, Functional-renormalization-group
approach to strongly coupled Bose-Fermi mixtures in two dimensions, Phys.
Rev. A 105, 013317 (2022).

[2] M. Duda, X.-Y. Chen, A. Schindewolf, R. Bause, J. von Milczewski, R. Schmidt,
I. Bloch, and X.-Y. Luo, Transition from a polaronic condensate to a degenerate
fermi gas of heteronuclear molecules, Nature Physics 19, 720–725 (2023).

[3] R. Li*, J. von Milczewski*, A. Imamoglu, R. Odziejewski, and R. Schmidt,
Impurity-induced pairing in two-dimensional fermi gases, Phys. Rev. B 107,
155135 (2023).

[4] J. von Milczewski, X. Chen, A. Imamoglu, and R. Schmidt, Superconductivity
induced by strong electron-exciton coupling in doped atomically thin semicon-
ductor heterostructures, arXiv: 2310.10726, (2023).

[5] J. von Milczewski and R. Schmidt, Momentum-dependent quasiparticle prop-
erties of the fermi polaron from the functional renormalization group, arXiv:
2312.05318, (2023).

[6] J. von Milczewski and J. R. Tolsma, Dispersion forces between weakly disordered
van der waals crystals, Phys. Rev. B 104, 125111 (2021).

[7] A. Nikolaenko, J. von Milczewski, D. G. Joshi, and S. Sachdev, Spin den-
sity wave, fermi liquid, and fractionalized phases in a theory of antiferromag-
netic metals using paramagnons and bosonic spinons, Phys. Rev. B 108, 045123
(2023).

[8] O. K. Diessel, J. von Milczewski, A. Christianen, and R. Schmidt, Probing mo-
lecular spectral functions and unconventional pairing using raman spectroscopy,
arXiv:2209.11758, (2022).

[9] G. Ness, C. Shkedrov, Y. Florshaim, O. K. Diessel, J. von Milczewski, R.
Schmidt, and Y. Sagi, Observation of a Smooth Polaron-Molecule Transition in
a Degenerate Fermi Gas, Phys. Rev. X 10, 041019 (2020).

[10] H. J. Metcalf and P. Van der Straten, Laser cooling and trapping (Springer
Science & Business Media, 1999).

219

https://doi.org/10.1103/PhysRevA.105.013317
https://doi.org/10.1103/PhysRevA.105.013317
https://doi.org/10.1038/s41567-023-01948-1
https://doi.org/10.1103/PhysRevB.107.155135
https://doi.org/10.1103/PhysRevB.107.155135
https://doi.org/10.48550/ARXIV.2310.10726
https://doi.org/10.48550/ARXIV.2312.05318
https://doi.org/10.48550/ARXIV.2312.05318
https://doi.org/10.1103/PhysRevB.104.125111
https://doi.org/10.1103/PhysRevB.108.045123
https://doi.org/10.1103/PhysRevB.108.045123
https://doi.org/10.48550/ARXIV.2209.11758
https://doi.org/10.1103/PhysRevX.10.041019


220 Bibliography

[11] W. Ketterle and M. W. Zwierlein, Making, probing and understanding ultracold
fermi gases, La Rivista del Nuovo Cimento 31, 247–422 (2008).

[12] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of bose-
einstein condensation in an atomic gas with attractive interactions, Phys. Rev.
Lett. 75, 1687–1690 (1995).

[13] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.
Cornell, Observation of bose-einstein condensation in a dilute atomic vapor,
Science 269, 198–201 (1995).

[14] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,
D. M. Kurn, and W. Ketterle, Bose-einstein condensation in a gas of sodium
atoms, Phys. Rev. Lett. 75, 3969–3973 (1995).

[15] B. DeMarco and D. S. Jin, Onset of fermi degeneracy in a trapped atomic gas,
Science 285, 1703–1706 (1999).

[16] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles,
and C. Salomon, Quasipure bose-einstein condensate immersed in a fermi sea,
Phys. Rev. Lett. 87, 080403 (2001).

[17] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G.
Hulet, Observation of fermi pressure in a gas of trapped atoms, Science 291,
2570–2572 (2001).

[18] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and
W. Ketterle, Observation of feshbach resonances in a boseeinstein condensate,
Nature 392, 151–154 (1998).

[19] P. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J.
Verhaar, Observation of a feshbach resonance in cold atom scattering, Phys.
Rev. Lett. 81, 69–72 (1998).

[20] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ul-
tracold gases, Rev. Mod. Phys. 82, 1225–1286 (2010).

[21] Wikipedia, Transition metal dichalcogenide monolayers — Wikipedia, the free
encyclopedia, Link, [Online; accessed 05-December-2023], 2023.

[22] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and
B. Urbaszek, Colloquium: excitons in atomically thin transition metal dichalco-
genides, Rev. Mod. Phys. 90, 021001 (2018).

[23] D. R. Cooper, B. DAnjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N.
Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, Experimental
review of graphene, ISRN Condensed Matter Physics 2012, 1–56 (2012).

[24] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2:
a new direct-gap semiconductor, Phys. Rev. Lett. 105, 136805 (2010).

https://doi.org/https://doi.org/10.1393/ncr/i2008-10033-1
https://doi.org/10.1103/PhysRevLett.75.1687
https://doi.org/10.1103/PhysRevLett.75.1687
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1126/science.285.5434.1703
https://doi.org/10.1103/PhysRevLett.87.080403
https://doi.org/10.1126/science.1059318
https://doi.org/10.1126/science.1059318
https://doi.org/10.1038/32354
https://doi.org/10.1103/PhysRevLett.81.69
https://doi.org/10.1103/PhysRevLett.81.69
https://doi.org/10.1103/revmodphys.82.1225
http://en.wikipedia.org/w/index.php?title=Transition%20metal%20dichalcogenide%20monolayers&oldid=1183940194
https://doi.org/10.1103/RevModPhys.90.021001
https://doi.org/10.5402/2012/501686
https://doi.org/10.1103/PhysRevLett.105.136805


Bibliography 221

[25] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and
F. Wang, Emerging photoluminescence in monolayer mos2, Nano Letters 10,
1271–1275 (2010).

[26] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Ultra-
sensitive photodetectors based on monolayer mos2, Nature Nanotechnology 8,
497–501 (2013).

[27] F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and
B. T. Jonker, Chemical vapor sensing with monolayer mos2, Nano Letters 13,
668–673 (2013).

[28] B. Radisavljevic, M. B. Whitwick, and A. Kis, Integrated circuits and logic
operations based on single-layer mos2, ACS Nano 5, 9934–9938 (2011).

[29] R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y.
Huang, and X. Duan, Electroluminescence and photocurrent generation from
atomically sharp wse2/mos2 heterojunction pn diodes, Nano Letters 14, 5590–
5597 (2014).

[30] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B.
Liu, and J. Feng, Valley-selective circular dichroism of monolayer molybdenum
disulphide, Nature Communications 3, 887 (2012).

[31] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley
physics in monolayers of MoS2 and other group-vi dichalcogenides, Phys. Rev.
Lett. 108, 196802 (2012).

[32] M. Van der Donck, M. Zarenia, and F. M. Peeters, Excitons and trions in
monolayer transition metal dichalcogenides: a comparative study between the
multiband model and the quadratic single-band model, Phys. Rev. B 96, 035131
(2017).

[33] M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler,
and A. Imamoglu, Fermi polaron-polaritons in charge-tunable atomically thin
semiconductors, Nat. Phys. 13, 255–261 (2017).

[34] L. B. Tan, O. K. Diessel, A. Popert, R. Schmidt, A. Imamoglu, and M. Kroner,
Bose polaron interactions in a cavity-coupled monolayer semiconductor, Phys.
Rev. X 13, 031036 (2023).

[35] E. V. Calman, M. M. Fogler, L. V. Butov, S. Hu, A. Mishchenko, and A. K.
Geim, Indirect excitons in van der waals heterostructures at room temperature,
Nature Communications 9, 1895 (2018).

[36] L. Wang et al., Correlated electronic phases in twisted bilayer transition metal
dichalcogenides, Nat. Mat. 19, 861–866 (2020).

https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w
https://doi.org/10.1038/nnano.2013.100
https://doi.org/10.1038/nnano.2013.100
https://doi.org/10.1021/nl3043079
https://doi.org/10.1021/nl3043079
https://doi.org/10.1021/nn203715c
https://doi.org/10.1021/nl502075n
https://doi.org/10.1021/nl502075n
https://doi.org/10.1038/ncomms1882
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevB.96.035131
https://doi.org/10.1103/PhysRevB.96.035131
https://doi.org/10.1038/nphys3949
https://doi.org/10.1103/PhysRevX.13.031036
https://doi.org/10.1103/PhysRevX.13.031036
https://doi.org/10.1038/s41467-018-04293-7
https://doi.org/10.1038/s41563-020-0708-6


222 Bibliography

[37] L. Ma, P. X. Nguyen, Z. Wang, Y. Zeng, K. Watanabe, T. Taniguchi, A. H.
MacDonald, K. F. Mak, and J. Shan, Strongly correlated excitonic insulator in
atomic double layers, Nature 598, 585–589 (2021).

[38] Z. Zhang et al., Correlated interlayer exciton insulator in heterostructures of
monolayer WSe2 and moiré WS2/WSe2, Nat. Phys. 18, 1214–1220 (2022).

[39] I. Amelio, N. D. Drummond, E. Demler, R. Schmidt, and A. Imamoglu, Polaron
spectroscopy of a bilayer excitonic insulator, Phys. Rev. B 107, 155303 (2023).

[40] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultracold atomic fermi
gases, Rev. Mod. Phys. 80, 1215–1274 (2008).

[41] M. Macêdo-Lima and L. Madeira, Scattering length and effective range of micro-
scopic two-body potentials, Revista Brasileira de Ensino de Física 45, 1 (2023).

[42] E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman, Feshbach reso-
nances in atomic boseeinstein condensates, Physics Reports 315, 199–230 (1999).

[43] M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo, and R. Walser, Reso-
nance Superfluidity in a Quantum Degenerate Fermi Gas, Phys. Rev. Lett. 87,
120406 (2001).

[44] E. Timmermans, K. Furuya, P. W. Milonni, and A. K. Kerman, Prospect of
creating a composite Fermi-Bose superfluid, Phys. Lett. A 285, 228–233 (2001).

[45] R. A. Duine and H. T. C. Stoof, Microscopic many-body theory of atomic bose
gases near a feshbach resonance, Journal of Optics B: Quantum and Semiclas-
sical Optics 5, S212 (2003).

[46] R. Duine and H. Stoof, Atommolecule coherence in bose gases, Physics Reports
396, 115–195 (2004).

[47] G. M. Bruun and C. J. Pethick, Effective theory of feshbach resonances and
many-body properties of fermi gases, Phys. Rev. Lett. 92, 140404 (2004).

[48] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases,
Rev. Mod. Phys. 80, 885–964 (2008).

[49] D. Lurié and A. J. Macfarlane, Equivalence between four-fermion and yukawa
coupling, and the Z3 = 0 condition for composite bosons, Phys. Rev. 136, B816–
B829 (1964).

[50] P. Nikolic and S. Sachdev, Renormalization-group fixed points, universal phase
diagram, and 1/N expansion for quantum liquids with interactions near the
unitarity limit, Phys. Rev. A 75, 033608 (2007).

[51] A. L. Fetter and J. D. Walecka, Quantum theory of many-particle systems -
(Courier Corporation, New York, 2012).

https://doi.org/10.1038/s41586-021-03947-9
https://doi.org/10.1038/s41567-022-01702-z
https://doi.org/10.1103/PhysRevB.107.155303
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1590/1806-9126-rbef-2023-0079
https://doi.org/https://doi.org/10.1016/S0370-1573(99)00025-3
https://doi.org/10.1103/PhysRevLett.87.120406
https://doi.org/10.1103/PhysRevLett.87.120406
https://doi.org/10.1016/S0375-9601(01)00346-2
https://doi.org/10.1088/1464-4266/5/2/382
https://doi.org/10.1088/1464-4266/5/2/382
https://doi.org/10.1016/j.physrep.2004.03.003
https://doi.org/10.1016/j.physrep.2004.03.003
https://doi.org/10.1103/physrevlett.92.140404
https://doi.org/10.1103/revmodphys.80.885
https://doi.org/10.1103/PhysRev.136.B816
https://doi.org/10.1103/PhysRev.136.B816
https://doi.org/10.1103/PhysRevA.75.033608


Bibliography 223

[52] A. Altland and B. D. Simons, Condensed matter field theory (Cambridge Uni-
versity Press, Mar. 2010).

[53] S. K. Adhikari, Quantum scattering in two dimensions, Am. J Phys. 54, 362–
367 (1986).

[54] F. Chevy, Universal phase diagram of a strongly interacting Fermi gas with
unbalanced spin populations, Phys. Rev. A 74, 063628 (2006).

[55] C. Trefzger and Y. Castin, Impurity in a fermi sea on a narrow feshbach reso-
nance: a variational study of the polaronic and dimeronic branches, Phys. Rev.
A 85, 053612 (2012).

[56] M. Punk, P. T. Dumitrescu, and W. Zwerger, Polaron-to-molecule transition
in a strongly imbalanced fermi gas, Phys. Rev. A 80, 053605 (2009).

[57] C. Mora and F. Chevy, Ground state of a tightly bound composite dimer im-
mersed in a fermi sea, Phys. Rev. A 80, 033607 (2009).

[58] P. Massignan and G. M. Bruun, Repulsive polarons and itinerant ferromag-
netism in strongly polarized fermi gases, The European Physical Journal D 65,
83–89 (2011).

[59] R. Combescot, A. Recati, C. Lobo, and F. Chevy, Normal state of highly po-
larized fermi gases: simple many-body approaches, Phys. Rev. Lett. 98, 180402
(2007).

[60] E. Courtade et al., Charged excitons in monolayer WSe2: experiment and the-
ory, Phys. Rev. B 96, 085302 (2017).

[61] C. Fey, P. Schmelcher, A. Imamoglu, and R. Schmidt, Theory of exciton-electron
scattering in atomically thin semiconductors, Phys. Rev. B 101, 195417 (2020).

[62] A. Imamoglu, O. Cotlet, and R. Schmidt, Excitonpolarons in two-dimensional
semiconductors and the taviscummings model, Comptes Rendus. Physique 22,
1–8 (2021).

[63] A. Raja et al., Coulomb engineering of the bandgap and excitons in two-dimensional
materials, Nat. Comm. 8, 15251 (2017).

[64] J. Berges, N. Tetradis, and C. Wetterich, Non-perturbative renormalization flow
in quantum field theory and statistical physics, Physics Reports 363, 223–386
(2002).

[65] H. Gies, Introduction to the functional RG and applications to gauge theories,
in Renormalization group and effective field theory approaches to many-body
systems (Springer Berlin Heidelberg, 2012), pp. 287–348.

[66] B. Delamotte, An introduction to the nonperturbative renormalization group,
in Renormalization group and effective field theory approaches to many-body
systems (Springer Berlin Heidelberg, 2012), pp. 49–132.

https://doi.org/10.1119/1.14623
https://doi.org/10.1119/1.14623
https://doi.org/10.1103/physreva.74.063628
https://doi.org/10.1103/PhysRevA.85.053612
https://doi.org/10.1103/PhysRevA.85.053612
https://doi.org/10.1103/PhysRevA.80.053605
https://doi.org/10.1103/physreva.80.033607
https://doi.org/10.1140/epjd/e2011-20084-5
https://doi.org/10.1140/epjd/e2011-20084-5
https://doi.org/10.1103/PhysRevLett.98.180402
https://doi.org/10.1103/PhysRevLett.98.180402
https://doi.org/10.1103/PhysRevB.96.085302
https://doi.org/10.1103/physrevb.101.195417
https://doi.org/10.5802/crphys.47
https://doi.org/10.5802/crphys.47
https://doi.org/10.1038/ncomms15251
https://doi.org/10.1016/s0370-1573(01)00098-9
https://doi.org/10.1016/s0370-1573(01)00098-9
https://doi.org/10.1007/978-3-642-27320-9_6
https://doi.org/10.1007/978-3-642-27320-9_6
https://doi.org/10.1007/978-3-642-27320-9_2
https://doi.org/10.1007/978-3-642-27320-9_2


224 Bibliography

[67] N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. Pawlowski, M. Tissier, and
N. Wschebor, The nonperturbative functional renormalization group and its
applications, Phys. Rep. 910, 1–114 (2021).

[68] M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev.
D 57, 971–985 (1998).

[69] A. Eichhorn, Status of the Asymptotic Safety Paradigm for Quantum Gravity
and Matter, Found. Phys. 48, 1407–1429 (2018).

[70] J. M. Pawlowski and M. Reichert, Quantum gravity: a fluctuating point of view,
Frontiers in Physics 8, 527 (2021).

[71] J. M. Pawlowski, Equation of state and phase diagram of strongly interacting
matter, Nucl. Phys. A 931, 113–124 (2014).

[72] N. Strodthoff, Phase Structure and Dynamics of QCD-A Functional Perspec-
tive, Journal of Physics: Conference Series 832, 012040 (2017).

[73] B. Delamotte, D. Mouhanna, and M. Tissier, Nonperturbative renormalization
group approach to frustrated magnets, Phys. Rev. B 69, 134413 (2004).

[74] F. Benitez, J.-P. Blaizot, H. Chaté, B. Delamotte, R. Méndez-Galain, and N.
Wschebor, Nonperturbative renormalization group preserving full-momentum
dependence: Implementation and quantitative evaluation, Phys. Rev. E 85, 026707
(2012).

[75] G. Tarjus and M. Tissier, Random-field Ising and O(N) models: theoretical
description through the functional renormalization group, Eur. Phys. J. B 93,
50 (2020).

[76] J.-P. Blaizot, R. Mendez Galain, and N. Wschebor, Non-Perturbative Renormal-
ization Group calculation of the transition temperature of the weakly interacting
Bose gas, Europhys. Lett. 72, 705–711 (2005).

[77] A. Rançon and N. Dupuis, Nonperturbative renormalization group approach to
strongly correlated lattice bosons, Phys. Rev. B 84, 174513 (2011).

[78] J. Reuther and R. Thomale, Functional renormalization group for the anisotropic
triangular antiferromagnet, Phys. Rev. B 83, 024402 (2011).

[79] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schönhammer,
Functional renormalization group approach to correlated fermion systems, Rev.
Mod. Phys. 84, 299–352 (2012).

[80] F. Rose and N. Dupuis, Superuniversal transport near a (2 + 1)-dimensional
quantum critical point, Phys. Rev. B 96, 100501 (2017).

[81] G. D. Mahan, Many-particle physics (Springer, Mar. 31, 1990), 1032 pp.

https://doi.org/https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1103/PhysRevD.57.971
https://doi.org/10.1103/PhysRevD.57.971
https://doi.org/10.1007/s10701-018-0196-6
https://doi.org/10.3389/fphy.2020.551848
https://doi.org/https://doi.org/10.1016/j.nuclphysa.2014.09.074
https://doi.org/10.1088/1742-6596/832/1/012040
https://doi.org/10.1103/PhysRevB.69.134413
https://doi.org/10.1103/PhysRevE.85.026707
https://doi.org/10.1103/PhysRevE.85.026707
https://doi.org/10.1140/epjb/e2020-100489-1
https://doi.org/10.1140/epjb/e2020-100489-1
https://doi.org/10.1209/epl/i2005-10318-5
https://doi.org/10.1103/PhysRevB.84.174513
https://doi.org/10.1103/PhysRevB.83.024402
https://doi.org/10.1103/revmodphys.84.299
https://doi.org/10.1103/revmodphys.84.299
https://doi.org/10.1103/PhysRevB.96.100501


Bibliography 225

[82] C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B
301, 90–94 (1993).

[83] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Microscopic theory of supercon-
ductivity, Phys. Rev. 106, 162–164 (1957).

[84] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity,
Phys. Rev. 108, 1175–1204 (1957).

[85] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J.
Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, A high phase-space-
density gas of polar molecules, Science 322, 231–235 (2008).

[86] J. W. Park, S. A. Will, and M. W. Zwierlein, Ultracold dipolar gas of fermionic
23Na40K molecules in their absolute ground state, Phys. Rev. Lett. 114, 205302
(2015).

[87] T. M. Rvachov, H. Son, A. T. Sommer, S. Ebadi, J. J. Park, M. W. Zwierlein,
W. Ketterle, and A. O. Jamison, Long-Lived Ultracold Molecules with Electric
and Magnetic Dipole Moments, Phys. Rev. Lett. 119, 143001 (2017).

[88] F. Seesselberg, N. Buchheim, Z.-K. Lu, T. Schneider, X.-Y. Luo, E. Tiemann, I.
Bloch, and C. Gohle, Modeling the adiabatic creation of ultracold polar 23Na40K
molecules, Phys. Rev. A 97, 013405 (2018).

[89] H. Yang, D.-C. Zhang, L. Liu, Y.-X. Liu, J. Nan, B. Zhao, and J.-W. Pan,
Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K+
40K collisions, Science 363, 261–264 (2019).

[90] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly
bound trions in monolayer mos2, Nature Materials 12, 207–211 (2012).

[91] L. De Marco, G. Valtolina, K. Matsuda, W. G. Tobias, J. P. Covey, and J. Ye,
A degenerate Fermi gas of polar molecules, Science 363, 853–856 (2019).

[92] T. Enss and W. Zwerger, Superfluidity near phase separation in bose-fermi
mixtures, EPJ B 68, 383–389 (2009).

[93] M. Matuszewski, T. Taylor, and A. V. Kavokin, Exciton supersolidity in hybrid
Bose-Fermi systems, Phys. Rev. Lett. 108, 060401 (2012).

[94] I. A. Shelykh, T. Taylor, and A. V. Kavokin, Rotons in a hybrid bose-fermi
system, Phys. Rev. Lett. 105, 140402 (2010).

[95] O. Cotlet, S. Zeytinoglu, M. Sigrist, E. Demler, and A. Imamoglu, Supercon-
ductivity and other collective phenomena in a hybrid bose-fermi mixture formed
by a polariton condensate and an electron system in two dimensions, Phys. Rev.
B 93, 054510 (2016).

[96] S. Powell, S. Sachdev, and H. P. Büchler, Depletion of the Bose-Einstein con-
densate in Bose-Fermi mixtures, Phys. Rev. B 72, 024534 (2005).

https://doi.org/10.1016/0370-2693(93)90726-x
https://doi.org/10.1016/0370-2693(93)90726-x
https://doi.org/10.1103/physrev.106.162
https://doi.org/10.1103/physrev.108.1175
https://doi.org/10.1126/science.1163861
https://doi.org/10.1103/PhysRevLett.114.205302
https://doi.org/10.1103/PhysRevLett.114.205302
https://doi.org/10.1103/PhysRevLett.119.143001
https://doi.org/10.1103/PhysRevA.97.013405
https://doi.org/10.1126/science.aau5322
https://doi.org/10.1038/nmat3505
https://science.sciencemag.org/content/363/6429/853
https://doi.org/10.1140/epjb/e2009-00005-y
https://doi.org/10.1103/PhysRevLett.108.060401
https://doi.org/10.1103/physrevlett.105.140402
https://doi.org/10.1103/PhysRevB.93.054510
https://doi.org/10.1103/PhysRevB.93.054510
https://doi.org/10.1103/PhysRevB.72.024534


226 Bibliography

[97] K. Suzuki, T. Miyakawa, and T. Suzuki, p-wave superfluid and phase separation
in atomic Bose-Fermi mixtures, Phys. Rev. A 77, 043629 (2008).

[98] E. Fratini and P. Pieri, Pairing and condensation in a resonant Bose-Fermi
mixture, Phys. Rev. A 81, 051605 (2010).

[99] D. Ludwig, S. Floerchinger, S. Moroz, and C. Wetterich, Quantum phase tran-
sition in bose-fermi mixtures, Phys. Rev. A 84, 033629 (2011).

[100] A. Guidini, G. Bertaina, D. E. Galli, and P. Pieri, Condensed phase of Bose-
Fermi mixtures with a pairing interaction, Phys. Rev. A 91, 023603 (2015).

[101] J. J. Kinnunen, Z. Wu, and G. M. Bruun, Induced p-wave pairing in bose-fermi
mixtures, Phys. Rev. Lett. 121, 253402 (2018).

[102] F. P. Laussy, A. V. Kavokin, and I. A. Shelykh, Exciton-polariton mediated
superconductivity, Phys. Rev. Lett. 104, 106402 (2010).

[103] S. P. Rath and R. Schmidt, Field-theoretical study of the bose polaron, Phys.
Rev. A 88, 053632 (2013).

[104] H. Fröhlich, Electrons in lattice fields, Advances in Physics 3, 325–361 (1954).

[105] T. Holstein, Studies of polaron motion, Annals of Physics 8, 325–342 (1959).

[106] M.-G. Hu, M. J. Van de Graaff, D. Kedar, J. P. Corson, E. A. Cornell, and
D. S. Jin, Bose polarons in the strongly interacting regime, Phys. Rev. Lett.
117, 055301 (2016).

[107] N. B. Jørgensen, L. Wacker, K. T. Skalmstang, M. M. Parish, J. Levinsen,
R. S. Christensen, G. M. Bruun, and J. J. Arlt, Observation of attractive and
repulsive polarons in a bose-einstein condensate, Phys. Rev. Lett. 117, 055302
(2016).

[108] Z. Z. Yan, Y. Ni, C. Robens, and M. W. Zwierlein, Bose polarons near quantum
criticality, Science 368, 190–194 (2020).

[109] F. Camargo, R. Schmidt, J. D. Whalen, R. Ding, G. Woehl, S. Yoshida, J.
Burgdörfer, F. B. Dunning, H. R. Sadeghpour, E. Demler, and T. C. Killian,
Creation of Rydberg Polarons in a Bose Gas, Phys. Rev. Lett. 120, 083401
(2018).

[110] J. Tempere, W. Casteels, M. K. Oberthaler, S. Knoop, E. Timmermans, and
J. T. Devreese, Feynman path-integral treatment of the BEC-impurity polaron,
Phys. Rev. B 80, 184504 (2009).

[111] W. Casteels, T. Cauteren, J. Tempere, and J. T. Devreese, Strong coupling
treatment of the polaronic system consisting of an impurity in a condensate,
Laser Physics 21, 1480–1485 (2011).

https://doi.org/10.1103/PhysRevA.77.043629
https://doi.org/10.1103/PhysRevA.81.051605
https://doi.org/10.1103/PhysRevA.84.033629
https://doi.org/10.1103/PhysRevA.91.023603
https://doi.org/10.1103/PhysRevLett.121.253402
https://doi.org/10.1103/PhysRevLett.104.106402
https://doi.org/10.1103/PhysRevA.88.053632
https://doi.org/10.1103/PhysRevA.88.053632
https://doi.org/10.1080/00018735400101213
https://doi.org/10.1016/0003-4916(59)90002-8
https://doi.org/10.1103/PhysRevLett.117.055301
https://doi.org/10.1103/PhysRevLett.117.055301
https://doi.org/10.1103/PhysRevLett.117.055302
https://doi.org/10.1103/PhysRevLett.117.055302
https://doi.org/10.1126/science.aax5850
https://doi.org/10.1103/PhysRevLett.120.083401
https://doi.org/10.1103/PhysRevLett.120.083401
https://doi.org/10.1103/physrevb.80.184504
https://doi.org/10.1134/s1054660x11150035


Bibliography 227

[112] A. Shashi, F. Grusdt, D. A. Abanin, and E. Demler, Radio-frequency spec-
troscopy of polarons in ultracold bose gases, Phys. Rev. A 89, 053617 (2014).

[113] V. Ginzburg, On surface superconductivity, Phys. Lett. 13, 101–102 (1964).

[114] F. P. Laussy, Superconductivity with excitons and polaritons: review and exten-
sion, Journal of Nanophotonics 6, 064502 (2012).

[115] E. Cherotchenko, T. Espinosa-Ortega, A. Nalitov, I. Shelykh, and A. Kavokin,
Superconductivity in semiconductor structures: the excitonic mechanism, Su-
perlattices and Microstructures 90, 170–175 (2016).

[116] L. Viverit, C. J. Pethick, and H. Smith, Zero-temperature phase diagram of
binary boson-fermion mixtures, Phys. Rev. A 61, 053605 (2000).

[117] D. V. Efremov and L. Viverit, p-wave cooper pairing of fermions in mixtures
of dilute fermi and bose gases, Phys. Rev. B 65, 134519 (2002).

[118] R. Roth and H. Feldmeier, Mean-field instability of trapped dilute boson-fermion
mixtures, Phys. Rev. A 65, 021603 (2002).

[119] R. Roth, Structure and stability of trapped atomic boson-fermion mixtures,
Phys. Rev. A 66, 013614 (2002).

[120] A. P. Albus, S. A. Gardiner, F. Illuminati, and M. Wilkens, Quantum field
theory of dilute homogeneous bose-fermi mixtures at zero temperature: general
formalism and beyond mean-field corrections, Phys. Rev. A 65, 053607 (2002).

[121] H. Hu and X.-J. Liu, Thermodynamics of a trapped bose-fermi mixture, Phys.
Rev. A 68, 023608 (2003).

[122] T. Watanabe, T. Suzuki, and P. Schuck, Bose-fermi pair correlations in attrac-
tively interacting bose-fermi atomic mixtures, Phys. Rev. A 78, 033601 (2008).

[123] Z.-Q. Yu, S. Zhang, and H. Zhai, Stability condition of a strongly interacting
boson-fermion mixture across an interspecies Feshbach resonance, Phys. Rev.
A 83, 041603 (2011).

[124] G. Bertaina, E. Fratini, S. Giorgini, and P. Pieri, Quantum Monte Carlo Study
of a Resonant Bose-Fermi Mixture, Phys. Rev. Lett. 110, 115303 (2013).

[125] A. Guidini, G. Bertaina, E. Fratini, and P. Pieri, Bose-fermi mixtures in the
molecular limit, Phys. Rev. A 89, 023634 (2014).

[126] D. K. Efimkin, E. K. Laird, J. Levinsen, M. M. Parish, and A. H. MacDonald,
Electron-exciton interactions in the exciton-polaron problem, Phys. Rev. B 103,
075417 (2021).

[127] A. Camacho-Guardian, L. A. Peña Ardila, T. Pohl, and G. M. Bruun, Bipo-
larons in a bose-einstein condensate, Phys. Rev. Lett. 121, 013401 (2018).

https://doi.org/10.1103/physreva.89.053617
https://doi.org/10.1016/0031-9163(64)90672-9
https://doi.org/10.1117/1.jnp.6.064502
https://doi.org/10.1016/j.spmi.2015.12.003
https://doi.org/10.1016/j.spmi.2015.12.003
https://doi.org/10.1103/physreva.61.053605
https://doi.org/10.1103/PhysRevB.65.134519
https://doi.org/10.1103/PhysRevA.65.021603
https://doi.org/10.1103/physreva.66.013614
https://doi.org/10.1103/physreva.65.053607
https://doi.org/10.1103/physreva.68.023608
https://doi.org/10.1103/physreva.68.023608
https://doi.org/10.1103/physreva.78.033601
https://doi.org/10.1103/PhysRevA.83.041603
https://doi.org/10.1103/PhysRevA.83.041603
https://doi.org/10.1103/PhysRevLett.110.115303
https://doi.org/10.1103/PhysRevA.89.023634
https://doi.org/10.1103/PhysRevB.103.075417
https://doi.org/10.1103/PhysRevB.103.075417
https://doi.org/10.1103/PhysRevLett.121.013401


228 Bibliography

[128] A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwierlein, Observation of
fermi polarons in a tunable fermi liquid of ultracold atoms, Phys. Rev. Lett.
102, 230402 (2009).

[129] M. Koschorreck, D. Pertot, E. Vogt, B. Fröhlich, M. Feld, and M. Köhl, At-
tractive and repulsive fermi polarons in two dimensions, Nature 485, 619–622
(2012).

[130] I. Fritsche, C. Baroni, E. Dobler, E. Kirilov, B. Huang, R. Grimm, G. M. Bruun,
and P. Massignan, Stability and breakdown of Fermi polarons in a strongly
interacting Fermi-Bose mixture, Phys. Rev. A 103, 053314 (2021).

[131] L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, Cold and ultracold molecules:
science, technology and applications, New J. Phys. 11, 055049 (2009).

[132] J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: progress in quantum engi-
neering of chemistry and quantum matter, Science 357, 1002–1010 (2017).

[133] F. M. Marchetti, C. J. M. Mathy, D. A. Huse, and M. M. Parish, Phase sep-
aration and collapse in Bose-Fermi mixtures with a Feshbach resonance, Phys.
Rev. B 78, 134517 (2008).

[134] W. Zwerger, The bcs-bec crossover and the unitary Fermi gas, Vol. 836 (Springer
Science & Business Media, 2011).

[135] R. Haussmann, W. Rantner, S. Cerrito, and W. Zwerger, Thermodynamics of
the bcs-bec crossover, Phys. Rev. A 75, 023610 (2007).

[136] K. V. Houcke, F. Werner, E. Kozik, N. Prokof’ev, B. Svistunov, M. J. H. Ku,
A. T. Sommer, L. W. Cheuk, A. Schirotzek, and M. W. Zwierlein, Feynman
diagrams versus Fermi-gas Feynman emulator, Nat. Phys. 8, 366–370 (2012).

[137] R. Schmidt and T. Enss, Excitation spectra and rf response near the polaron-
to-molecule transition from the functional renormalization group, Phys. Rev. A
83, 063620 (2011).

[138] M. M. Parish, H. S. Adlong, W. E. Liu, and J. Levinsen, Thermodynamic
signatures of the polaron-molecule transition in a Fermi gas, Phys. Rev. A 103,
023312 (2021).

[139] D. J. Thouless, Perturbation theory in statistical mechanics and the theory of
superconductivity, Annals of Physics 10, 553–588 (1960).

[140] N. M. Hugenholtz and D. Pines, Ground-state energy and excitation spectrum
of a system of interacting bosons, Phys. Rev. 116, 489–506 (1959).

[141] C. Lobo, A. Recati, S. Giorgini, and S. Stringari, Normal state of a polarized
Fermi gas at unitarity, Phys. Rev. Lett. 97, 200403 (2006).

https://doi.org/10.1103/physrevlett.102.230402
https://doi.org/10.1103/physrevlett.102.230402
https://doi.org/10.1038/nature11151
https://doi.org/10.1038/nature11151
https://doi.org/10.1103/PhysRevA.103.053314
https://iopscience.iop.org/article/10.1088/1367-2630/11/5/055049/meta
https://www.science.org/doi/10.1126/science.aam6299
https://doi.org/10.1103/PhysRevB.78.134517
https://doi.org/10.1103/PhysRevB.78.134517
https://doi.org/10.1103/PhysRevA.75.023610
https://doi.org/10.1038/nphys2273
https://doi.org/10.1103/PhysRevA.83.063620
https://doi.org/10.1103/PhysRevA.83.063620
https://doi.org/10.1103/PhysRevA.103.023312
https://doi.org/10.1103/PhysRevA.103.023312
https://doi.org/10.1103/PhysRev.116.489
https://doi.org/10.1103/PhysRevLett.97.200403


Bibliography 229

[142] N. Prokof’ev and B. Svistunov, Fermi-polaron problem: diagrammatic Monte
Carlo method for divergent sign-alternating series, Phys. Rev. B 77, 020408
(2008).

[143] N. V. Prokof’ev and B. V. Svistunov, Bold diagrammatic Monte Carlo: a
generic sign-problem tolerant technique for polaron models and possibly inter-
acting many-body problems, Phys. Rev. B 77, 125101 (2008).

[144] A. Viel and A. Simoni, Feshbach resonances and weakly bound molecular states
of boson-boson and boson-fermion NaK pairs, Phys. Rev. A 93, 042701 (2016).

[145] X.-Y. Chen, M. Duda, A. Schindewolf, R. Bause, I. Bloch, and X.-Y. Luo, Sup-
pression of unitary three-body loss in a degenerate Bose-Fermi mixture, Phys.
Rev. Lett. 128, 153401 (2022).

[146] K. Mølmer, Bose Condensates and Fermi Gases at Zero Temperature, Phys.
Rev. Lett. 80, 1804–1807 (1998).

[147] M. Zaccanti, C. DErrico, F. Ferlaino, G. Roati, M. Inguscio, and G. Modugno,
Control of the interaction in a Fermi-Bose mixture, Phys. Rev. A 74, 041605
(2006).

[148] C. Ospelkaus, S. Ospelkaus, K. Sengstock, and K. Bongs, Interaction-driven
dynamics of 40K−87Rb fermion-boson gas mixtures in the large-particle-number
limit, Phys. Rev. Lett. 96, 020401 (2006).

[149] R. S. Bloom, M.-G. Hu, T. D. Cumby, and D. S. Jin, Tests of universal three-
body physics in an ultracold Bose-Fermi mixture, Phys. Rev. Lett. 111, 105301
(2013).

[150] M. Pini, P. Pieri, M. Jäger, J. H. Denschlag, and G. C. Strinati, Pair correla-
tions in the normal phase of an attractive Fermi gas, New J. Phys. 22, 083008
(2020).

[151] Z. Zhang, L. Chen, K.-X. Yao, and C. Chin, Transition from an atomic to a
molecular Bose–Einstein condensate, Nature 592, 708–711 (2021).

[152] W. Witczak-Krempa, E. S. Sørensen, and S. Sachdev, The dynamics of quantum
criticality revealed by quantum Monte Carlo and holography, Nat. Phys. 10, 361–
366 (2014).

[153] T. Takekoshi, L. Reichsöllner, A. Schindewolf, J. M. Hutson, C. R. Le Sueur,
O. Dulieu, F. Ferlaino, R. Grimm, and H.-C. Nägerl, Ultracold dense samples
of dipolar rbcs molecules in the rovibrational and hyperfine ground state, Phys.
Rev. Lett. 113, 205301 (2014).

[154] P. K. Molony, P. D. Gregory, Z. Ji, B. Lu, M. P. Köppinger, C. R. Le Sueur,
C. L. Blackley, J. M. Hutson, and S. L. Cornish, Creation of ultracold 87Rb133Cs
molecules in the rovibrational ground state, Phys. Rev. Lett. 113, 255301 (2014).

https://doi.org/10.1103/PhysRevB.77.020408
https://doi.org/10.1103/PhysRevB.77.020408
https://doi.org/10.1103/PhysRevB.77.125101
https://doi.org/10.1103/PhysRevA.93.042701
https://doi.org/10.1103/PhysRevLett.128.153401
https://doi.org/10.1103/PhysRevLett.128.153401
https://doi.org/10.1103/PhysRevLett.80.1804
https://doi.org/10.1103/PhysRevLett.80.1804
https://doi.org/10.1103/PhysRevA.74.041605
https://doi.org/10.1103/PhysRevA.74.041605
https://doi.org/10.1103/PhysRevLett.96.020401
https://doi.org/10.1103/PhysRevLett.111.105301
https://doi.org/10.1103/PhysRevLett.111.105301
https://doi.org/10.1088/1367-2630/ab9ee3
https://doi.org/10.1088/1367-2630/ab9ee3
https://www.nature.com/articles/s41586-021-03443-0
https://doi.org/10.1038/nphys2913
https://doi.org/10.1038/nphys2913
https://doi.org/10.1103/PhysRevLett.113.205301
https://doi.org/10.1103/PhysRevLett.113.205301
https://doi.org/10.1103/PhysRevLett.113.255301


230 Bibliography

[155] M. Guo, B. Zhu, B. Lu, X. Ye, F. Wang, R. Vexiau, N. Bouloufa-Maafa, G.
Quéméner, O. Dulieu, and D. Wang, Creation of an ultracold gas of ground-state
dipolar 23Na87Rb molecules, Phys. Rev. Lett. 116, 205303 (2016).

[156] K. K. Voges, P. Gersema, M. Meyer zum Alten Borgloh, T. A. Schulze, T.
Hartmann, A. Zenesini, and S. Ospelkaus, Ultracold gas of bosonic 23Na39K
ground-state molecules, Phys. Rev. Lett. 125, 083401 (2020).

[157] W. B. Cairncross, J. T. Zhang, L. R. B. Picard, Y. Yu, K. Wang, and K.-K. Ni,
Assembly of a rovibrational ground state molecule in an optical tweezer, Phys.
Rev. Lett. 126, 123402 (2021).

[158] C. Warner, A. Z. Lam, N. Bigagli, H. C. Liu, I. Stevenson, and S. Will, Overlap-
ping Bose-Einstein condensates of 23Na and 133Cs, Phys. Rev. A 104, 033302
(2021).

[159] G. Valtolina, K. Matsuda, W. G. Tobias, J.-R. Li, L. D. Marco, and J. Ye,
Dipolar evaporation of reactive molecules to below the Fermi temperature, Na-
ture 588, 239–243 (2020).

[160] J.-R. Li, W. G. Tobias, K. Matsuda, C. Miller, G. Valtolina, L. D. Marco,
R. R. W. Wang, L. Lassablière, G. Quéméner, J. L. Bohn, and J. Ye, Tuning
of dipolar interactions and evaporative cooling in a three-dimensional molecular
quantum gas, Nat. Phys. 17, 1144–1148 (2021).

[161] A. Schindewolf, R. Bause, X.-Y. Chen, M. Duda, T. Karman, I. Bloch, and
X.-Y. Luo, Evaporation of microwave-shielded polar molecules to quantum de-
generacy, Nature 607, 677–681 (2022).

[162] M. A. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller, Condensed Matter
Theory of Dipolar Quantum Gases, Chem. Rev. 112, 5012–5061 (2012).

[163] V. Velji, A. Pelster, and A. Bala, Stability of quantum degenerate Fermi gases
of tilted polar molecules, Phys. Rev. Res. 1, 012009 (2019).

[164] D. Peter, S. Müller, S. Wessel, and H. P. Büchler, Anomalous behavior of spin
systems with dipolar interactions, Phys. Rev. Lett. 109, 025303 (2012).

[165] A.-L. Gadsbølle and G. M. Bruun, Dipolar fermions in a two-dimensional lattice
at nonzero temperature, Phys. Rev. A 86, 033623 (2012).

[166] R. Combescot, S. Giraud, and X. Leyronas, Analytical theory of the dressed
bound state in highly polarized fermi gases, EPL 88, 60007 (2009).

[167] G. M. Bruun and P. Massignan, Decay of polarons and molecules in a strongly
polarized fermi gas, Phys. Rev. Lett. 105, 020403 (2010).

[168] K. B. Gubbels and H. T. C. Stoof, Renormalization group theory for the imba-
lanced fermi gas, Phys. Rev. Lett. 100, 140407 (2008).

https://doi.org/10.1103/PhysRevLett.116.205303
https://doi.org/10.1103/PhysRevLett.125.083401
https://doi.org/10.1103/PhysRevLett.126.123402
https://doi.org/10.1103/PhysRevLett.126.123402
https://doi.org/10.1103/PhysRevA.104.033302
https://doi.org/10.1103/PhysRevA.104.033302
https://doi.org/10.1038/s41586-020-2980-7
https://doi.org/10.1038/s41586-020-2980-7
https://doi.org/10.1038/s41567-021-01329-6
https://doi.org/10.1038/s41586-022-04900-0
https://doi.org/10.1021/cr2003568
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.1.012009
https://doi.org/10.1103/PhysRevLett.109.025303
https://doi.org/10.1103/PhysRevA.86.033623
https://doi.org/10.1209/0295-5075/88/60007
https://doi.org/10.1103/physrevlett.105.020403
https://doi.org/10.1103/physrevlett.100.140407


Bibliography 231

[169] R. Combescot and S. Giraud, Normal state of highly polarized fermi gases: full
many-body treatment, Phys. Rev. Lett. 101, 050404 (2008).

[170] S. Zöllner, G. M. Bruun, and C. J. Pethick, Polarons and molecules in a two-
dimensional fermi gas, Phys. Rev. A 83, 021603 (2011).

[171] M. M. Parish, Polaron-molecule transitions in a two-dimensional fermi gas,
Phys. Rev. A 83, 051603 (2011).

[172] R. Schmidt, T. Enss, V. Pietilä, and E. Demler, Fermi polarons in two dimen-
sions, Phys. Rev. A 85, 021602 (2012).

[173] G. Bertaina, BCS-BEC crossover in two dimensions: a quantum monte carlo
study, AIP Conference Proceedings 1485, 286–290 (2012).

[174] M. M. Parish and J. Levinsen, Highly polarized fermi gases in two dimensions,
Phys. Rev. A 87, 033616 (2013).

[175] P. Kroiss and L. Pollet, Diagrammatic monte carlo study of quasi-two-dimensional
fermi polarons, Phys. Rev. B 90, 104510 (2014).

[176] J. Vlietinck, J. Ryckebusch, and K. Van Houcke, Diagrammatic monte carlo
study of the fermi polaron in two dimensions, Phys. Rev. B 89, 085119 (2014).

[177] L. Pricoupenko and P. Pedri, Universal (1 + 2)-body bound states in planar
atomic waveguides, Phys. Rev. A 82, 033625 (2010).

[178] J. Levinsen, P. Massignan, and M. M. Parish, Efimov trimers under strong
confinement, Phys. Rev. X 4, 031020 (2014).

[179] P. Naidon and S. Endo, Efimov physics: a review, Rep. Prog. Phys. 80, 056001
(2017).

[180] C. Shkedrov, Y. Florshaim, G. Ness, A. Gandman, and Y. Sagi, High-sensitivity
rf spectroscopy of a strongly interacting fermi gas, Phys. Rev. Lett. 121, 093402
(2018).

[181] C. Shkedrov, G. Ness, Y. Florshaim, and Y. Sagi, In situ momentum-distribution
measurement of a quantum degenerate fermi gas using raman spectroscopy,
Phys. Rev. A 101, 013609 (2020).

[182] R. Combescot, X. Leyronas, and M. Y. Kagan, Self-consistent theory for mole-
cular instabilities in a normal degenerate fermi gas in the BEC-BCS crossover,
Phys. Rev. A 73, 023618 (2006).

[183] M. Randeria, J.-M. Duan, and L.-Y. Shieh, Superconductivity in a two-dimensional
fermi gas: evolution from cooper pairing to bose condensation, Phys. Rev. B 41,
327–343 (1990).

https://doi.org/10.1103/physrevlett.101.050404
https://doi.org/10.1103/PhysRevA.83.021603
https://doi.org/10.1103/PhysRevA.83.051603
https://doi.org/10.1103/physreva.85.021602
https://doi.org/10.1063/1.4755827
https://doi.org/10.1103/physreva.87.033616
https://doi.org/10.1103/physrevb.90.104510
https://doi.org/10.1103/physrevb.89.085119
https://doi.org/10.1103/PhysRevA.82.033625
https://doi.org/10.1103/PhysRevX.4.031020
https://doi.org/10.1088/1361-6633/aa50e8
https://doi.org/10.1088/1361-6633/aa50e8
https://doi.org/10.1103/physrevlett.121.093402
https://doi.org/10.1103/physrevlett.121.093402
https://doi.org/10.1103/physreva.101.013609
https://doi.org/10.1103/physreva.73.023618
https://doi.org/10.1103/physrevb.41.327
https://doi.org/10.1103/physrevb.41.327


232 Bibliography

[184] K. Kamikado, T. Kanazawa, and S. Uchino, Mobile impurity in a fermi sea
from the functional renormalization group analytically continued to real time,
Phys. Rev. A 95, 013612 (2017).

[185] J. M. Pawlowski, M. M. Scherer, R. Schmidt, and S. J. Wetzel, Physics and
the choice of regulators in functional renormalisation group flows, Annals of
Physics 384, 165–197 (2017).

[186] J. Levinsen and M. M. Parish, Bound states in a quasi-two-dimensional fermi
gas, Phys. Rev. Lett. 110, 055304 (2013).

[187] S. Floerchinger, M. M. Scherer, and C. Wetterich, Modified fermi sphere, pairing
gap, and critical temperature for the BCS-BEC crossover, Phys. Rev. A 81,
063619 (2010).

[188] M. Q. Huber and J. Braun, Algorithmic derivation of functional renormalization
group equations and dysonschwinger equations, Computer Physics Communi-
cations 183, 1290–1320 (2012).

[189] M. Q. Huber, A. K. Cyrol, and J. M. Pawlowski, DoFun 3.0: functional equa-
tions in mathematica, Computer Physics Communications 248, 107058 (2020).

[190] L. Gor’kov and T. Melik-Barkhudarov, Contribution to the theory of superflu-
idity in an imperfect fermi gas, Sov. Phys. JETP 13, 1018 (1961).

[191] C. J. Pethick and H. Smith, Boseeinstein condensation in dilute gases (Cam-
bridge University Press, Nov. 2001).

[192] S. Floerchinger, M. Scherer, S. Diehl, and C. Wetterich, Particle-hole fluctua-
tions in BCS-BEC crossover, Phys. Rev. B 78, 174528 (2008).

[193] M. Köhl, in (2012).

[194] H. Yabu, Y. Takayama, and T. Suzuki, Bosefermi mixed condensates of atomic
gas with bosonfermion quasi-bound state, Physica B: Condensed Matter 329,
25–27 (2003).

[195] A. A. Abrikosov, Methods of quantum field theory in statistical physics (Dover
Publications, New York, 1975).

[196] S. Floerchinger, Analytic continuation of functional renormalization group equa-
tions, Journal of High Energy Physics 2012, 21 (2012).

[197] J. M. Pawlowski and N. Strodthoff, Real time correlation functions and the
functional renormalization group, Phys. Rev. D 92, 094009 (2015).

[198] K. Kamikado, N. Strodthoff, L. von Smekal, and J. Wambach, Fluctuations in
the quark-meson model for QCD with isospin chemical potential, Phys. Lett. B
718, 1044–1053 (2013).

https://doi.org/10.1103/physreva.95.013612
https://doi.org/10.1016/j.aop.2017.06.017
https://doi.org/10.1016/j.aop.2017.06.017
https://doi.org/10.1103/physrevlett.110.055304
https://doi.org/10.1103/physreva.81.063619
https://doi.org/10.1103/physreva.81.063619
https://doi.org/10.1016/j.cpc.2012.01.014
https://doi.org/10.1016/j.cpc.2012.01.014
https://doi.org/10.1016/j.cpc.2019.107058
https://doi.org/10.1103/physrevb.78.174528
https://doi.org/10.1016/s0921-4526(02)01878-1
https://doi.org/10.1016/s0921-4526(02)01878-1
https://doi.org/10.1007/jhep05(2012)021
https://doi.org/10.1103/PhysRevD.92.094009
https://doi.org/10.1016/j.physletb.2012.11.055
https://doi.org/10.1016/j.physletb.2012.11.055


Bibliography 233

[199] J.-P. Blaizot, R. Méndez-Galain, and N. Wschebor, A new method to solve the
non-perturbative renormalization group equations, Phys. Lett. B 632, 571–578
(2006).

[200] K. Kamikado, N. Strodthoff, L. von Smekal, and J. Wambach, Real-time corre-
lation functions in the o(n) o ( n ) model from the functional renormalization
group, The European Physical Journal C 74, 1–10 (2014).

[201] R.-A. Tripolt, N. Strodthoff, L. von Smekal, and J. Wambach, Spectral functions
for the quark-meson model phase diagram from the functional renormalization
group, Phys. Rev. D 89, 034010 (2014).

[202] R.-A. Tripolt, L. von Smekal, and J. Wambach, Flow equations for spectral
functions at finite external momenta, Phys. Rev. D 90, 074031 (2014).

[203] X. Cui, Fermi polaron revisited: polaron-molecule transition and coexistence,
Phys. Rev. A 102, 061301 (2020).

[204] S. Sachdev, Topological order, emergent gauge fields, and Fermi surface recon-
struction, Reports on Progress in Physics 82, 014001 (2018).

[205] P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field,
Phys. Rev. 135, A550–A563 (1964).

[206] A. Larkin and Y. N. Ovchinnikov, Zh. é ksp. teor. fiz. 47, 1136 1964 sov. phys,
JETP 20, 762 (1965).

[207] L. N. Cooper, Bound electron pairs in a degenerate fermi gas, Phys. Rev. 104,
1189–1190 (1956).

[208] J. B. Ketterson and S. N. Song, Superconductivity (Cambridge University Press,
1999).

[209] B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, Opto-
electronic devices based on electrically tunable pn diodes in a monolayer dichalco-
genide, Nat. Nano. 9, 262–267 (2014).

[210] D. J. Scalapino, A common thread: the pairing interaction for unconventional
superconductors, Rev. Mod. Phys. 84, 1383–1417 (2012).

[211] A. Mackenzie and Y. Maeno, P-wave superconductivity, Physica B: Condensed
Matter 280, 148–153 (2000).

[212] O. Viyuela, L. Fu, and M. A. Martin-Delgado, Chiral topological superconduc-
tors enhanced by long-range interactions, Phys. Rev. Lett. 120, 017001 (2018).

[213] J. R. Kirtley, C. C. Tsuei, J. Z. Sun, C. C. Chi, L. S. Yu-Jahnes, A. Gupta,
M. Rupp, and M. B. Ketchen, Symmetry of the order parameter in the high-tc
superconductor YBa2cu3o7- δ, Nature 373, 225–228 (1995).

https://doi.org/https://doi.org/10.1016/j.physletb.2005.10.086
https://doi.org/https://doi.org/10.1016/j.physletb.2005.10.086
https://doi.org/10.1140/epjc/s10052-014-2806-6
https://doi.org/10.1103/PhysRevD.89.034010
https://doi.org/10.1103/PhysRevD.90.074031
https://doi.org/10.1103/PhysRevA.102.061301
https://doi.org/10.1088/1361-6633/aae110
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.104.1189
https://doi.org/10.1103/PhysRev.104.1189
https://doi.org/10.1038/nnano.2014.25
https://doi.org/10.1103/RevModPhys.84.1383
https://doi.org/https://doi.org/10.1016/S0921-4526(99)01546-X
https://doi.org/https://doi.org/10.1016/S0921-4526(99)01546-X
https://doi.org/10.1103/PhysRevLett.120.017001
https://doi.org/10.1038/373225a0


234 Bibliography

[214] S. A. Kivelson, V. J. Emery, and H. Q. Lin, Doped antiferromagnets in the
weak-hopping limit, Phys. Rev. B 42, 6523–6530 (1990).

[215] S.-K. Jian, Y. Huang, and H. Yao, Charge-4e superconductivity from nematic
superconductors in two and three dimensions, Phys. Rev. Lett. 127, 227001
(2021).

[216] B. Uchoa and A. H. Castro Neto, Superconducting states of pure and doped
graphene, Phys. Rev. Lett. 98, 146801 (2007).

[217] R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Chiral superconductivity
from repulsive interactions in doped graphene, Nat. Phys. 8, 158–163 (2012).

[218] J. C. Wheatley, Experimental properties of superfluid 3He, Rev. Mod. Phys. 47,
415–470 (1975).

[219] A. J. Leggett, A theoretical description of the new phases of liquid 3He, Rev.
Mod. Phys. 47, 331–414 (1975).

[220] D. Vollhardt and P. Wolfle, The superfluid phases of helium 3, (1990).

[221] G. R. Stewart, Unconventional superconductivity, Advances in Physics 66, 75–
196 (2017).

[222] D. S. Petrov, Three-body problem in fermi gases with short-range interparticle
interaction, Phys. Rev. A 67, 010703 (2003).

[223] J. Levinsen and M. M. Parish, Strongly interacting two-dimensional fermi gases,
Ann. Rev. C. At. Mol., 1–75 (2015).

[224] B. Bazak and D. S. Petrov, Five-body efimov effect and universal pentamer in
fermionic mixtures, Phys. Rev. Lett. 118, 083002 (2017).

[225] B. Bazak and D. S. Petrov, Stable p-wave resonant two-dimensional fermi-bose
dimers, Phys. Rev. Lett. 121, 263001 (2018).

[226] V. Efimov, Energy levels of three resonantly interacting particles, Nucl. Phys.
A 210, 157–188 (1973).

[227] O. I. Kartavtsev and A. V. Malykh, Low-energy three-body dynamics in binary
quantum gases, J Phys. B 40, 1429 (2007).

[228] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultracold atomic fermi
gases, Rev. Mod. Phys. 80, 1215–1274 (2008).

[229] J. Levinsen, T. G. Tiecke, J. T. M. Walraven, and D. S. Petrov, Atom-dimer
scattering and long-lived trimers in fermionic mixtures, Phys. Rev. Lett. 103,
153202 (2009).

[230] Y. Castin, C. Mora, and L. Pricoupenko, Four-body efimov effect for three
fermions and a lighter particle, Phys. Rev. Lett. 105, 223201 (2010).

https://doi.org/10.1103/PhysRevB.42.6523
https://doi.org/10.1103/PhysRevLett.127.227001
https://doi.org/10.1103/PhysRevLett.127.227001
https://doi.org/10.1103/PhysRevLett.98.146801
https://doi.org/10.1038/nphys2208
https://doi.org/10.1103/RevModPhys.47.415
https://doi.org/10.1103/RevModPhys.47.415
https://doi.org/10.1103/RevModPhys.47.331
https://doi.org/10.1103/RevModPhys.47.331
https://www.osti.gov/biblio/6233899
https://doi.org/10.1080/00018732.2017.1331615
https://doi.org/10.1080/00018732.2017.1331615
https://doi.org/10.1103/PhysRevA.67.010703
https://doi.org/10.1142/9789814667746_0001
https://doi.org/10.1103/PhysRevLett.118.083002
https://doi.org/10.1103/PhysRevLett.121.263001
https://doi.org/https://doi.org/10.1016/0375-9474(73)90510-1
https://doi.org/https://doi.org/10.1016/0375-9474(73)90510-1
https://doi.org/10.1088/0953-4075/40/7/011
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/PhysRevLett.103.153202
https://doi.org/10.1103/PhysRevLett.103.153202
https://doi.org/10.1103/PhysRevLett.105.223201


Bibliography 235

[231] D. Blume, Universal four-body states in heavy-light mixtures with a positive
scattering length, Phys. Rev. Lett. 109, 230404 (2012).

[232] P. Massignan, M. Zaccanti, and G. M. Bruun, Polarons, dressed molecules and
itinerant ferromagnetism in ultracold fermi gases, Rep. Prog. Phys. 77, 034401
(2014).

[233] C. Kohstall, M. Zaccanti, M. Jag, A. Trenkwalder, P. Massignan, G. M. Bruun,
F. Schreck, and R. Grimm, Metastability and coherence of repulsive polarons in
a strongly interacting fermi mixture, Nature 485, 615–618 (2012).

[234] M. Cetina, M. Jag, R. S. Lous, I. Fritsche, J. T. M. Walraven, R. Grimm, J.
Levinsen, M. M. Parish, R. Schmidt, M. Knap, and E. Demler, Ultrafast many-
body interferometry of impurities coupled to a Fermi sea, Science 354, 96–99
(2016).

[235] R. Liu, C. Peng, and X. Cui, Universal tetramer and pentamer bound states in
two-dimensional fermionic mixtures, Phys. Rev. Lett. 129, 073401 (2022).

[236] Y. Shimazaki, C. Kuhlenkamp, I. Schwartz, T. Smolenski, K. Watanabe, T.
Taniguchi, M. Kroner, R. Schmidt, M. Knap, and A. Imamoglu, Optical sig-
natures of periodic charge distribution in a mott-like correlated insulator state,
Phys. Rev. X 11, 021027 (2021).

[237] A. Popert, Y. Shimazaki, M. Kroner, K. Watanabe, T. Taniguchi, A. Imamoglu,
and T. Smolenski, Optical sensing of fractional quantum hall effect in graphene,
Nano Lett. 22, 7363–7369 (2022).

[238] T. Smoleski et al., Signatures of Wigner crystal of electrons in a monolayer
semiconductor, Nature 595, 53–57 (2021).

[239] Y. Zhou et al., Bilayer Wigner crystals in a transition metal dichalcogenide
heterostructure, Nature 595, 48–52 (2021).

[240] N. Navon, R. P. Smith, and Z. Hadzibabic, Quantum gases in optical boxes,
Nat. Phys. 17, 1334–1341 (2021).

[241] Y. Xu, X. Wang, W. L. Zhang, F. Lv, and S. Guo, Recent progress in two-
dimensional inorganic quantum dots, Chem. Soc. Rev. 47, 586–625 (2018).

[242] L. Bayha, M. Holten, R. Klemt, K. Subramanian, J. Bjerlin, S. M. Reimann,
G. M. Bruun, P. M. Preiss, and S. Jochim, Observing the emergence of a quan-
tum phase transition shell by shell, Nature 587, 583–587 (2020).

[243] M. Holten, L. Bayha, K. Subramanian, C. Heintze, P. M. Preiss, and S. Jochim,
Observation of pauli crystals, Phys. Rev. Lett. 126, 020401 (2021).

[244] M. Holten, L. Bayha, K. Subramanian, S. Brandstetter, C. Heintze, P. Lunt,
P. M. Preiss, and S. Jochim, Observation of cooper pairs in a mesoscopic two-
dimensional fermi gas, Nature 606, 287–291 (2022).

https://doi.org/10.1103/PhysRevLett.109.230404
https://iopscience.iop.org/article/10.1088/0034-4885/77/3/034401
https://iopscience.iop.org/article/10.1088/0034-4885/77/3/034401
https://doi.org/10.1038/nature11065
https://doi.org/10.1126/science.aaf5134
https://doi.org/10.1126/science.aaf5134
https://doi.org/10.1103/PhysRevLett.129.073401
https://doi.org/10.1103/PhysRevX.11.021027
https://doi.org/10.1021/acs.nanolett.2c02000
https://doi.org/10.1038/s41586-021-03590-4
https://doi.org/10.1038/s41586-021-03560-w
https://doi.org/10.1038/s41567-021-01403-z
https://doi.org/10.1039/C7CS00500H
https://doi.org/10.1038/s41586-020-2936-y
https://doi.org/10.1103/PhysRevLett.126.020401
https://doi.org/10.1038/s41586-022-04678-1


236 Bibliography

[245] A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, From
few to many: observing the formation of a fermi sea one atom at a time, Science
342, 457–460 (2013).

[246] N. S. Rytova, The screened potential of a point charge in a thin film, MSU
Phys. Bulletin 3, 18 (1967).

[247] L. V. Keldysh, Coulomb interaction in thin semiconductor and semimetal films,
JETP Lett. 29, 658 (1979).

[248] M. Suzuki, Y. Suzuki, and K. Varga, Stochastic variational approach to quantum-
mechanical few-body problems, Vol. 54 (Springer Science & Business Media,
Nov. 1998), 332 pp.

[249] J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz, W. Cencek, K.
Szalewicz, J. Komasa, D. Blume, and K. Varga, Theory and application of
explicitly correlated gaussians, Rev. Mod. Phys. 85, 693–749 (2013).

[250] K. Varga, Solution of few-body problems with the stochastic variational method
ii: two-dimensional systems, Comp. Phys. Comm. 179, 591–596 (2008).

[251] Y. Cho, S. M. Greene, and T. C. Berkelbach, Simulations of trions and biex-
citons in layered hybrid organic-inorganic lead halide perovskites, Phys. Rev.
Lett. 126, 216402 (2021).

[252] J. Yan and K. Varga, Excited-state trions in two-dimensional materials, Phys.
Rev. B 101, 235435 (2020).

[253] M. Van der Donck, M. Zarenia, and F. M. Peeters, Excitons, trions, and biexci-
tons in transition-metal dichalcogenides: magnetic-field dependence, Phys. Rev.
B 97, 195408 (2018).

[254] D. W. Kidd, D. K. Zhang, and K. Varga, Binding energies and structures of
two-dimensional excitonic complexes in transition metal dichalcogenides, Phys.
Rev. B 93, 125423 (2016).

[255] D. V. Fedorov, Analytic matrix elements and gradients with shifted correlated
gaussians, Few-Body Systems 58, 21 (2016).

[256] T. M. Whitehead, L. M. Schonenberg, N. Kongsuwan, R. J. Needs, and G. J.
Conduit, Pseudopotential for the two-dimensional contact interaction, Phys.
Rev. A 93, 042702 (2016).

[257] S. Becker, A. Michelangeli, and A. Ottolini, Spectral analysis of the 2+1 fermionic
trimer with contact interactions, Math. Phys. Anal. Geom. 21, 35 (2018).

[258] P. Steinleitner et al., Dielectric engineering of electronic correlations in a van
der waals heterostructure, Nano Lett. 18, 1402–1409 (2018).

[259] S. A. Moses, J. P. Covey, M. T. Miecnikowski, D. S. Jin, and J. Ye, New frontiers
for quantum gases of polar molecules, Nat. Phys. 13, 13–20 (2016).

https://doi.org/10.1126/science.1240516
https://doi.org/10.1126/science.1240516
https://arxiv.org/pdf/1806.00976.pdf
https://arxiv.org/pdf/1806.00976.pdf
http://jetpletters.ru/ps/1458/article_22207.pdf
https://doi.org/10.1103/RevModPhys.85.693
https://doi.org/https://doi.org/10.1016/j.cpc.2007.07.015
https://doi.org/10.1103/PhysRevLett.126.216402
https://doi.org/10.1103/PhysRevLett.126.216402
https://doi.org/10.1103/PhysRevB.101.235435
https://doi.org/10.1103/PhysRevB.101.235435
https://doi.org/10.1103/PhysRevB.97.195408
https://doi.org/10.1103/PhysRevB.97.195408
https://doi.org/10.1103/PhysRevB.93.125423
https://doi.org/10.1103/PhysRevB.93.125423
https://doi.org/10.1007/s00601-016-1183-0
https://doi.org/10.1103/PhysRevA.93.042702
https://doi.org/10.1103/PhysRevA.93.042702
https://doi.org/10.1007/s11040-018-9294-0
https://doi.org/10.1021/acs.nanolett.7b05132
https://doi.org/10.1038/nphys3985


Bibliography 237

[260] L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. Laburthe-Tolra, B. L. Lev, and T.
Pfau, Dipolar physics: a review of experiments with magnetic quantum gases,
Rep. Prog. Phys. 86, 026401 (2022).

[261] E. C. Regan et al., Mott and generalized wigner crystal states in WSe2/WS2
moiré superlattices, Nature 579, 359–363 (2020).

[262] M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T.
Taniguchi, L. Balents, and A. F. Young, Intrinsic quantized anomalous hall
effect in a moiré heterostructure, Science 367, 900–903 (2020).

[263] Y.-M. Xie, C.-P. Zhang, J.-X. Hu, K. F. Mak, and K. T. Law, Valley-polarized
quantum anomalous hall state in moiré MoTe2/WSe2 heterobilayers, Phys. Rev.
Lett. 128, 026402 (2022).

[264] J. Cai et al., Signatures of fractional quantum anomalous hall states in twisted
MoTe2, Nature 622, 63–68 (2023).

[265] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D.
Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori,
and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-
angle graphene superlattices, Nature 556, 80–84 (2018).

[266] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi,
M. A. Kastner, and D. Goldhaber-Gordon, Emergent ferromagnetism near
three-quarters filling in twisted bilayer graphene, Science 365, 605–608 (2019).

[267] X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, Y. Ronen, H. Yoo, D. H. Najafabadi, K.
Watanabe, T. Taniguchi, A. Vishwanath, and P. Kim, Tunable spin-polarized
correlated states in twisted double bilayer graphene, Nature 583, 221–225 (2020).

[268] X. Xi, Z. Wang, W. Zhao, J.-H. Park, K. T. Law, H. Berger, L. Forró, J. Shan,
and K. F. Mak, Ising pairing in superconducting NbSe2 atomic layers, Nat.
Phys. 12, 139–143 (2015).

[269] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P.
Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene su-
perlattices, Nature 556, 43–50 (2018).

[270] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D.
Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer
graphene, Science 363, 1059–1064 (2019).

[271] V. Crépel, D. Guerci, J. Cano, J. H. Pixley, and A. Millis, Topological super-
conductivity in doped magnetic moiré semiconductors, Phys. Rev. Lett. 131,
056001 (2023).

[272] Z. Sun, J. Beaumariage, Q. Wan, H. Alnatah, N. Hougland, J. Chisholm, Q.
Cao, K. Watanabe, T. Taniguchi, B. M. Hunt, I. V. Bondarev, and D. Snoke,

https://iopscience.iop.org/article/10.1088/1361-6633/aca814
https://doi.org/10.1038/s41586-020-2092-4
https://doi.org/10.1126/science.aay5533
https://doi.org/10.1103/PhysRevLett.128.026402
https://doi.org/10.1103/PhysRevLett.128.026402
https://doi.org/10.1038/s41586-023-06289-w
https://doi.org/10.1038/nature26154
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1038/s41586-020-2458-7
https://doi.org/10.1038/nphys3538
https://doi.org/10.1038/nphys3538
https://doi.org/10.1038/nature26160
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1103/PhysRevLett.131.056001
https://doi.org/10.1103/PhysRevLett.131.056001


238 Bibliography

Charged bosons made of fermions in bilayer structures with strong metallic
screening, Nano Lett. 21, 7669–7675 (2021).

[273] K. Slagle and L. Fu, Charge transfer excitations, pair density waves, and su-
perconductivity in moiré materials, Phys. Rev. B 102, 235423 (2020).

[274] V. Crépel and L. Fu, New mechanism and exact theory of superconductivity
from strong repulsive interaction, Science Advances 7, eabh2233 (2021).

[275] V. Crépel and L. Fu, Spin-triplet superconductivity from excitonic effect in
doped insulators, Proceedings of the National Academy of Sciences 119, 17735119
(2022).

[276] V. Crépel, T. Cea, L. Fu, and F. Guinea, Unconventional superconductivity due
to interband polarization, Phys. Rev. B 105, 094506 (2022).

[277] Y. He, K. Yang, J. B. Hauck, E. J. Bergholtz, and D. M. Kennes, Superconduc-
tivity of repulsive spinless fermions with sublattice potentials, Phys. Rev. Res.
5, L012009 (2023).

[278] A. Julku, J. J. Kinnunen, A. Camacho-Guardian, and G. M. Bruun, Light-
induced topological superconductivity in transition metal dichalcogenide mono-
layers, Phys. Rev. B 106, 134510 (2022).

[279] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. H.
Denschlag, and R. Grimm, Bose-einstein condensation of molecules, Science
302, 2101–2103 (2003).

[280] M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and W. Ketterle, Direct obser-
vation of the superfluid phase transition in ultracold fermi gases, Nature 442,
54–58 (2006).

[281] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, Revealing
the superfluid lambda transition in the universal thermodynamics of a unitary
fermi gas, Science 335, 563–567 (2012).

[282] M. Feld, B. Fröhlich, E. Vogt, M. Koschorreck, and M. Köhl, Observation of a
pairing pseudogap in a two-dimensional fermi gas, Nature 480, 75–78 (2011).

[283] A. T. Sommer, L. W. Cheuk, M. J. H. Ku, W. S. Bakr, and M. W. Zwierlein,
Evolution of fermion pairing from three to two dimensions, Phys. Rev. Lett.
108, 045302 (2012).

[284] M. G. Ries, A. N. Wenz, G. Zürn, L. Bayha, I. Boettcher, D. Kedar, P. A.
Murthy, M. Neidig, T. Lompe, and S. Jochim, Observation of pair condensation
in the quasi-2d bec-bcs crossover, Phys. Rev. Lett. 114, 230401 (2015).

[285] P. A. Murthy, M. Neidig, R. Klemt, L. Bayha, I. Boettcher, T. Enss, M. Holten,
G. Zürn, P. M. Preiss, and S. Jochim, High-temperature pairing in a strongly
interacting two-dimensional fermi gas, Science 359, 452–455 (2018).

https://doi.org/10.1021/acs.nanolett.1c02422
https://doi.org/10.1103/PhysRevB.102.235423
https://doi.org/10.1126/sciadv.abh2233
https://doi.org/10.1073/pnas.2117735119
https://doi.org/10.1073/pnas.2117735119
https://doi.org/10.1103/PhysRevB.105.094506
https://doi.org/10.1103/PhysRevResearch.5.L012009
https://doi.org/10.1103/PhysRevResearch.5.L012009
https://doi.org/10.1103/PhysRevB.106.134510
https://doi.org/10.1126/science.1093280
https://doi.org/10.1126/science.1093280
https://doi.org/10.1038/nature04936
https://doi.org/10.1038/nature04936
https://doi.org/10.1126/science.1214987
https://doi.org/10.1038/nature10627
https://doi.org/10.1103/PhysRevLett.108.045302
https://doi.org/10.1103/PhysRevLett.108.045302
https://doi.org/10.1103/PhysRevLett.114.230401
https://doi.org/10.1126/science.aan5950


Bibliography 239

[286] L. Sobirey, N. Luick, M. Bohlen, H. Biss, H. Moritz, and T. Lompe, Observation
of superfluidity in a strongly correlated two-dimensional fermi gas, Science 372,
844–846 (2021).

[287] M. Greiner, C. A. Regal, and D. S. Jin, Emergence of a molecular boseeinstein
condensate from a fermi gas, Nature 426, 537–540 (2003).

[288] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta,
Z. Hadzibabic, and W. Ketterle, Observation of bose-einstein condensation of
molecules, Phys. Rev. Lett. 91, 250401 (2003).

[289] C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation
of fermionic atom pairs, Phys. Rev. Lett. 92, 040403 (2004).

[290] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman,
and W. Ketterle, Condensation of pairs of fermionic atoms near a feshbach
resonance, Phys. Rev. Lett. 92, 120403 (2004).

[291] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. H. Denschlag,
and R. Grimm, Observation of the pairing gap in a strongly interacting fermi
gas, Science 305, 1128–1130 (2004).

[292] J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E. Thomas, Evidence
for superfluidity in a resonantly interacting fermi gas, Phys. Rev. Lett. 92,
150402 (2004).

[293] T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann,
L. Tarruell, S. J. J. M. F. Kokkelmans, and C. Salomon, Experimental study of
the bec-bcs crossover region in lithium 6, Phys. Rev. Lett. 93, 050401 (2004).

[294] K. E. Strecker, G. B. Partridge, and R. G. Hulet, Conversion of an atomic fermi
gas to a long-lived molecular bose gas, Phys. Rev. Lett. 91, 080406 (2003).

[295] M. Randeria, J.-M. Duan, and L.-Y. Shieh, Bound states, cooper pairing, and
bose condensation in two dimensions, Phys. Rev. Lett. 62, 981–984 (1989).

[296] N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromag-
netism in one- or two-dimensional isotropic heisenberg models, Phys. Rev. Lett.
17, 1133–1136 (1966).

[297] P. C. Hohenberg, Existence of long-range order in one and two dimensions,
Phys. Rev. 158, 383–386 (1967).

[298] V. L. Berezinsky, Destruction of Long-range Order in One-dimensional and
Two-dimensional Systems Possessing a Continuous Symmetry Group. II. Quan-
tum Systems. Sov. Phys. JETP 34, 610 (1972).

[299] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transi-
tions in two-dimensional systems, J Phys. C 6, 1181 (1973).

https://doi.org/10.1126/science.abc8793
https://doi.org/10.1126/science.abc8793
https://doi.org/10.1038/nature02199
https://doi.org/10.1103/PhysRevLett.91.250401
https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevLett.92.120403
https://doi.org/10.1126/science.1100818
https://doi.org/10.1103/PhysRevLett.92.150402
https://doi.org/10.1103/PhysRevLett.92.150402
https://doi.org/10.1103/PhysRevLett.93.050401
https://doi.org/10.1103/PhysRevLett.91.080406
https://doi.org/10.1103/PhysRevLett.62.981
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRev.158.383
http://jetp.ras.ru/cgi-bin/dn/e_034_03_0610.pdf
https://doi.org/10.1088/0022-3719/6/7/010


240 Bibliography

[300] D. S. Petrov, M. A. Baranov, and G. V. Shlyapnikov, Superfluid transition in
quasi-two-dimensional fermi gases, Phys. Rev. A 67, 031601 (2003).

[301] F. Isaule, I. Morera, P. Massignan, and B. Juliá-Daz, Renormalization-group
study of bose polarons, Phys. Rev. A 104, 023317 (2021).

[302] T. Goldstein, Y.-C. Wu, S.-Y. Chen, T. Taniguchi, K. Watanabe, K. Varga,
and J. Yan, Ground and excited state exciton polarons in monolayer MoSe2, J
Chem. Phys. 153, 070401 (2020).

[303] K. Xiao, T. Yan, Q. Liu, S. Yang, C. Kan, R. Duan, Z. Liu, and X. Cui, Many-
body effect on optical properties of monolayer molybdenum diselenide, J Phys.
Chem. Lett. 12, 2555–2561 (2021).

[304] E. Liu, J. van Baren, Z. Lu, T. Taniguchi, K. Watanabe, D. Smirnov, Y.-C.
Chang, and C. H. Lui, Exciton-polaron rydberg states in monolayer MoSe2 and
WSe2, Nat. Comm. 12, 6131 (2021).

[305] J. Zipfel, K. Wagner, M. A. Semina, J. D. Ziegler, T. Taniguchi, K. Watanabe,
M. M. Glazov, and A. Chernikov, Electron recoil effect in electrically tunable
MoSe2 monolayers, Phys. Rev. B 105, 075311 (2022).

[306] K. Miyake, Fermi Liquid Theory of Dilute Submonolayer 3He on Thin 4He II
Film: Dimer Bound State and Cooper Pairs, Prog. Theor. Phys. 69, 1794–1797
(1983).

[307] S. Maiti and A. V. Chubukov, Superconductivity from repulsive interaction,
AIP Conference Proceedings 1550, 3–73 (2013).

[308] D. S. Fisher and P. C. Hohenberg, Dilute bose gas in two dimensions, Phys.
Rev. B 37, 4936–4943 (1988).

[309] N. Prokof’ev, O. Ruebenacker, and B. Svistunov, Critical point of a weakly
interacting two-dimensional bose gas, Phys. Rev. Lett. 87, 270402 (2001).

[310] N. Prokof’ev and B. Svistunov, Two-dimensional weakly interacting bose gas in
the fluctuation region, Phys. Rev. A 66, 043608 (2002).

[311] J. Sous, M. Chakraborty, R. V. Krems, and M. Berciu, Light bipolarons stabi-
lized by peierls electron-phonon coupling, Phys. Rev. Lett. 121, 247001 (2018).

[312] M. R. Carbone, A. J. Millis, D. R. Reichman, and J. Sous, Bond-peierls polaron:
moderate mass enhancement and current-carrying ground state, Phys. Rev. B
104, L140307 (2021).

[313] D. M. Eagles, Possible pairing without superconductivity at low carrier concen-
trations in bulk and thin-film superconducting semiconductors, Phys. Rev. 186,
456–463 (1969).

[314] S. S. Botelho and C. A. R. Sá de Melo, Vortex-antivortex lattice in ultracold
fermionic gases, Phys. Rev. Lett. 96, 040404 (2006).

https://doi.org/10.1103/PhysRevA.67.031601
https://doi.org/10.1103/PhysRevA.104.023317
https://doi.org/10.1063/5.0013092
https://doi.org/10.1063/5.0013092
https://doi.org/10.1021/acs.jpclett.1c00320
https://doi.org/10.1021/acs.jpclett.1c00320
https://doi.org/10.1038/s41467-021-26304-w
https://doi.org/10.1103/PhysRevB.105.075311
https://doi.org/10.1143/PTP.69.1794
https://doi.org/10.1143/PTP.69.1794
https://doi.org/10.1063/1.4818400
https://doi.org/10.1103/PhysRevB.37.4936
https://doi.org/10.1103/PhysRevB.37.4936
https://doi.org/10.1103/PhysRevLett.87.270402
https://doi.org/10.1103/PhysRevA.66.043608
https://doi.org/10.1103/PhysRevLett.121.247001
https://doi.org/10.1103/PhysRevB.104.L140307
https://doi.org/10.1103/PhysRevB.104.L140307
https://doi.org/10.1103/PhysRev.186.456
https://doi.org/10.1103/PhysRev.186.456
https://doi.org/10.1103/PhysRevLett.96.040404


Bibliography 241

[315] A. J. Leggett, Diatomic molecules and cooper pairs, in Modern trends in the
theory of condensed matter, edited by A. Pkalski and J. A. Przystawa (1980),
pp. 13–27.

[316] P. Nozières and S. Schmitt-Rink, Bose condensation in an attractive fermion
gas: from weak to strong coupling superconductivity, J Low Temp. Phys. 59,
195–211 (1985).

[317] S. Schmitt-Rink, C. M. Varma, and A. E. Ruckenstein, Pairing in two dimen-
sions, Phys. Rev. Lett. 63, 445–448 (1989).

[318] M. Drechsler and W. Zwerger, Crossover from BCS-superconductivity to bose-
condensation, Ann. Phys. 504, 15–23 (1992).

[319] A. Gezerlis and J. Carlson, Strongly paired fermions: cold atoms and neutron
matter, Phys. Rev. C 77, 032801 (2008).

[320] M. M. Forbes, A. Gezerlis, K. Hebeler, T. Lesinski, and A. Schwenk, Neutron
polaron as a constraint on nuclear density functionals, Phys. Rev. C 89, 041301
(2014).

[321] L. D. Landau, Electron motion in crystal lattices, Phys. Z. Sowjet. 3, 664 (1933).

[322] C. Zerba, C. Kuhlenkamp, A. Imamoglu, and M. Knap, Realizing topological
superconductivity in tunable bose-fermi mixtures with transition metal dichalco-
genide heterostructures, arXiv:2310.10720, (2023).

[323] M. M. Parish, H. S. Adlong, W. E. Liu, and J. Levinsen, Thermodynamic
signatures of the polaron-molecule transition in a fermi gas, Phys. Rev. A 103,
023312 (2021).

[324] H. Tajima and S. Uchino, Many fermi polarons at nonzero temperature, NJP
20, 073048 (2018).

[325] H. S. Adlong, W. E. Liu, F. Scazza, M. Zaccanti, N. D. Oppong, S. Fölling,
M. M. Parish, and J. Levinsen, Quasiparticle lifetime of the repulsive fermi
polaron, Phys. Rev. Lett. 125, 133401 (2020).

[326] H. Hu, B. C. Mulkerin, J. Wang, and X.-J. Liu, Attractive fermi polarons at
nonzero temperatures with a finite impurity concentration, Phys. Rev. A 98,
013626 (2018).

[327] H. Hu and X.-J. Liu, Fermi polarons at finite temperature: spectral function and
rf spectroscopy, Phys. Rev. A 105, 043303 (2022).

[328] H. Hu and X.-J. Liu, Spectral function of fermi polarons at finite temper-
ature from a self-consistent many-body T -matrix approach in real frequency,
arXiv:2311.11554, (2023).

[329] G. Baym and C. Pethick, Landau fermi-liquid theory (Wiley, Dec. 1991).

https://doi.org/10.1007/bf00683774
https://doi.org/10.1007/bf00683774
https://doi.org/10.1103/PhysRevLett.63.445
https://doi.org/10.1002/andp.19925040105
https://doi.org/10.1103/PhysRevC.77.032801
https://doi.org/10.1103/PhysRevC.89.041301
https://doi.org/10.1103/PhysRevC.89.041301
https://doi.org/10.48550/ARXIV.2310.10720
https://doi.org/10.1103/PhysRevA.103.023312
https://doi.org/10.1103/PhysRevA.103.023312
https://doi.org/10.1088/1367-2630/aad1e7
https://doi.org/10.1088/1367-2630/aad1e7
https://doi.org/10.1103/PhysRevLett.125.133401
https://doi.org/10.1103/PhysRevA.98.013626
https://doi.org/10.1103/PhysRevA.98.013626
https://doi.org/10.1103/PhysRevA.105.043303
https://doi.org/10.48550/ARXIV.2311.11554


242 Bibliography

[330] G. M. Bruun, A. Recati, C. J. Pethick, H. Smith, and S. Stringari, Collisional
properties of a polarized fermi gas with resonant interactions, Phys. Rev. Lett.
100, 240406 (2008).

[331] K. Sadeghzadeh, G. M. Bruun, C. Lobo, P. Massignan, and A. Recati, Metasta-
bility in spin-polarized fermi gases and quasiparticle decays, NJP 13, 055011
(2011).

[332] V. Ngampruetikorn, J. Levinsen, and M. M. Parish, Repulsive polarons in two-
dimensional fermi gases, EPL 98, 30005 (2012).

[333] C. Trefzger and Y. Castin, Self-energy of an impurity in an ideal fermi gas to
second order in the interaction strength, Phys. Rev. A 90, 033619 (2014).

[334] M. Cetina, M. Jag, R. S. Lous, J. T. M. Walraven, R. Grimm, R. S. Christensen,
and G. M. Bruun, Decoherence of impurities in a fermi sea of ultracold atoms,
Phys. Rev. Lett. 115, 135302 (2015).

[335] R. Schmidt and T. Enss, private communication, 2022.

[336] M. Cetina, M. Jag, R. S. Lous, I. Fritsche, J. T. M. Walraven, R. Grimm, J.
Levinsen, M. M. Parish, R. Schmidt, M. Knap, and E. Demler, Ultrafast many-
body interferometry of impurities coupled to a fermi sea, Science 354, 96–99
(2016).

[337] F. J. Vivanco, A. Schuckert, S. Huang, G. L. Schumacher, G. G. Assumpção,
Y. Ji, J. Chen, M. Knap, and N. Navon, The strongly driven fermi polaron,
arXiv:2308.05746, (2023).

[338] F. Scazza, G. Valtolina, P. Massignan, A. Recati, A. Amico, A. Burchianti, C.
Fort, M. Inguscio, M. Zaccanti, and G. Roati, Repulsive fermi polarons in a
resonant mixture of ultracold 6Li atoms, Phys. Rev. Lett. 118, 083602 (2017).

[339] B. C. Mulkerin, J. Levinsen, and M. M. Parish, Rabi oscillations and magneti-
zation of a mobile spin-1/2 impurity in a fermi sea, arXiv:2308.06659, (2023).

[340] C. Baroni, B. Huang, I. Fritsche, E. Dobler, G. Anich, E. Kirilov, R. Grimm,
M. A. Bastarrachea-Magnani, P. Massignan, and G. M. Bruun, Mediated in-
teractions between fermi polarons and the role of impurity quantum statistics,
Nat Phys., 1–6 (2023).

[341] R. Eisenschitz and F. London, Über das verhältnis der van der waalsschen kräfte
zu den homöopolaren bindungskräften, Z. Phys. 60, 491–527 (1930).

[342] E. M. Lifshitz, The theory of molecular attractive forces between solids, Sov.
Phys. JETP 2, [Zh. Eksp. Teor. Fiz. 29, 94 (1956)], 73–83 (1956).

[343] I. Dzyaloshinskii, E. Lifshitz, and L. Pitaevskii, The general theory of van der
waals forces, Adv. Phys. 10, 165–209 (1961).

[344] J. D. Jackson, Classical electrodynamics (Wiley, July 27, 1998), 832 pp.

https://doi.org/10.1103/PhysRevLett.100.240406
https://doi.org/10.1103/PhysRevLett.100.240406
https://doi.org/10.1088/1367-2630/13/5/055011
https://doi.org/10.1088/1367-2630/13/5/055011
https://doi.org/10.1209/0295-5075/98/30005
https://doi.org/10.1103/PhysRevA.90.033619
https://doi.org/10.1103/PhysRevLett.115.135302
https://doi.org/10.1126/science.aaf5134
https://doi.org/10.1126/science.aaf5134
https://doi.org/10.48550/ARXIV.2308.05746
https://doi.org/10.1103/PhysRevLett.118.083602
https://doi.org/10.48550/ARXIV.2308.06659
https://doi.org/10.1038/s41567-023-02248-4
https://doi.org/10.1007/bf01341258
http://www.jetp.ac.ru/cgi-bin/dn/e_002_01_0073.pdf
http://www.jetp.ac.ru/cgi-bin/dn/e_002_01_0073.pdf
https://doi.org/10.1080/00018736100101281


Bibliography 243

[345] M. Kozina et al., Measurement of transient atomic displacements in thin films
with picosecond and femtometer resolution, Struct. Dyn. 1, 034301 (2014).

[346] I.-C. Tung et al., Anisotropic structural dynamics of monolayer crystals revealed
by femtosecond surface x-ray scattering, Nat. Photonics 13, 425–430 (2019).

[347] E. M. Mannebach et al., Dynamic optical tuning of interlayer interactions in
the transition metal dichalcogenides, Nano Lett. 17, 7761–7766 (2017).

[348] B. N. Narozhny and A. Levchenko, Coulomb drag, Rev. Mod. Phys. 88, 025003
(2016).

[349] J. P. Eisenstein and A. H. MacDonald, Boseeinstein condensation of excitons
in bilayer electron systems, Nature 432, 691–694 (2004).

[350] M. Kellogg, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Ob-
servation of quantized hall drag in a strongly correlated bilayer electron system,
Phys. Rev. Lett. 88, 126804 (2002).

[351] D. Laroche, G. Gervais, M. P. Lilly, and J. L. Reno, 1d-1d coulomb drag signa-
ture of a luttinger liquid, Science 343, 631–634 (2014).

[352] Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Van der waals interactions
in density-functional theory, Phys. Rev. Lett. 76, 102–105 (1996).

[353] H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard, S. I. Simak,
D. C. Langreth, and B. I. Lundqvist, Van der waals density functional for
layered structures, Phys. Rev. Lett. 91, 126402 (2003).

[354] J. Antony and S. Grimme, Density functional theory including dispersion cor-
rections for intermolecular interactions in a large benchmark set of biologically
relevant molecules, Phys. Chem. Chem. Phys. 8, 5287–5293 (2006).

[355] S. Grimme, J. Antony, T. Schwabe, and C. Mück-Lichtenfeld, Density func-
tional theory with dispersion corrections for supramolecular structures, aggre-
gates, and complexes of (bio)organic molecules, Org. Biomol. Chem. 5, 741–758
(2007).

[356] A. Tkatchenko and M. Scheffler, Accurate molecular van der waals interactions
from ground-state electron density and free-atom reference data, Phys. Rev.
Lett. 102, 073005 (2009).

[357] A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, Accurate and efficient
method for many-body van der waals interactions, Phys. Rev. Lett. 108, 236402
(2012).

[358] L. P. Gor’kov, A. I. Larkin, and D. E. Khmelnitski, Particle conductivity in a
two-dimensional random potential, JETP Lett. 30, [Pisma Zh.Eksp. Teor. Fiz.
30, 248 (1979)], 228 (1979).

https://doi.org/10.1063/1.4875347
https://doi.org/10.1038/s41566-019-0387-5
https://doi.org/10.1021/acs.nanolett.7b03955
https://doi.org/10.1103/RevModPhys.88.025003
https://doi.org/10.1103/RevModPhys.88.025003
https://doi.org/10.1038/nature03081
https://doi.org/10.1103/PhysRevLett.88.126804
https://doi.org/10.1126/science.1244152
https://doi.org/10.1103/PhysRevLett.76.102
https://doi.org/10.1103/PhysRevLett.91.126402
https://doi.org/10.1039/B612585A
https://doi.org/10.1039/B615319B
https://doi.org/10.1039/B615319B
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1103/PhysRevLett.108.236402
https://doi.org/10.1103/PhysRevLett.108.236402


244 Bibliography

[359] B. Altshuler and A. Aronov, Contribution to the theory of disordered metals in
strongly doped semiconductors, Zh. Eksp. Teor. Fiz 77, [Sov. Phys. JETP 50,
968 (1979)], 2028–2044 (1979).

[360] B. Altshuler and A. Aronov, Zero bias anomaly in tunnel resistance and electron-
electron interaction, Solid State Commun. 30, 115–117 (1979).

[361] T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer, and K. W.
West, Mutual friction between parallel two-dimensional electron systems, Phys.
Rev. Lett. 66, 1216–1219 (1991).

[362] B. E. Sernelius and P. Björk, Interaction energy for a pair of quantum wells,
Phys. Rev. B 57, 6592–6601 (1998).

[363] M. Boström and B. E. Sernelius, Fractional van der waals interaction between
thin metallic films, Phys. Rev. B 61, 2204–2210 (2000).

[364] J. F. Dobson, K. McLennan, A. Rubio, J. Wang, T. Gould, H. M. Le, and B. P.
Dinte, Prediction of dispersion forces: is there a problem?, Aust. J. Chem. 54,
513 (2001).

[365] N. D. Drummond and R. J. Needs, Van der waals interactions between thin
metallic wires and layers, Phys. Rev. Lett. 99, 166401 (2007).

[366] G. Giuliani and G. Vignale, Quantum theory of the electron liquid (Cambridge
University Press, 2005).

[367] T. B. Arp, D. Pleskot, V. Aji, and N. M. Gabor, Electronhole liquid in a van
der waals heterostructure photocell at room temperature, Nat. Photonics 13,
245–250 (2019).

[368] S. Lian Tan and P. Anderson, Long-range van der waals forces between restricted-
dimensional metals, Chem. Phys. Lett. 97, 23–25 (1983).

[369] D. Bohm and D. Pines, A collective description of electron interactions. i. mag-
netic interactions, Phys. Rev. 82, 625–634 (1951).

[370] D. Pines and D. Bohm, A collective description of electron interactions: ii.
collective vs individual particle aspects of the interactions, Phys. Rev. 85, 338–
353 (1952).

[371] D. Bohm and D. Pines, A collective description of electron interactions: iii.
coulomb interactions in a degenerate electron gas, Phys. Rev. 92, 609–625
(1953).

[372] D. Pines, A collective description of electron interactions: iv. electron interac-
tion in metals, Phys. Rev. 92, 626–636 (1953).

[373] J. Lindhard, On the properties of a gas of charged particles, Dan. Mat. Fys.
Medd. 28, 8 (1954).

https://doi.org/10.1016/0038-1098(79)90967-0
https://doi.org/10.1103/PhysRevLett.66.1216
https://doi.org/10.1103/PhysRevLett.66.1216
https://doi.org/10.1103/PhysRevB.57.6592
https://doi.org/10.1103/PhysRevB.61.2204
https://doi.org/10.1071/ch01052
https://doi.org/10.1071/ch01052
https://doi.org/10.1103/PhysRevLett.99.166401
https://doi.org/10.1038/s41566-019-0349-y
https://doi.org/10.1038/s41566-019-0349-y
https://doi.org/https://doi.org/10.1016/0009-2614(83)87176-0
https://doi.org/10.1103/PhysRev.82.625
https://doi.org/10.1103/PhysRev.85.338
https://doi.org/10.1103/PhysRev.85.338
https://doi.org/10.1103/PhysRev.92.609
https://doi.org/10.1103/PhysRev.92.609
https://doi.org/10.1103/PhysRev.92.626


Bibliography 245

[374] L. Zheng and A. H. MacDonald, Coulomb drag between disordered two-dimensional
electron-gas layers, Phys. Rev. B 48, 8203–8209 (1993).

[375] J. P. Ellis, Tikz-feynman: feynman diagrams with tikz, Comp. Phys. Comm.
210, 103–123 (2017).

[376] M. Dohse, Tikz-feynhand: basic user guide, (2018).

[377] D. Vollhardt and P. Wölfle, Diagrammatic, self-consistent treatment of the an-
derson localization problem in d ≤ 2 dimensions, Phys. Rev. B 22, 4666–4679
(1980).

[378] E. Akkermans and G. Montambaux, Mesoscopic physics of electrons and pho-
tons (Cambridge University Press, 2007).

[379] M. V. Sadovskii, Diagrammatics (World Scientific, Aug. 2019).

[380] N. D. Mermin, Lindhard dielectric function in the relaxation-time approxima-
tion, Phys. Rev. B 1, 2362–2363 (1970).

[381] R. Asgari and B. Tanatar, Effects of disorder on the ground-state energy of a
two-dimensional electron gas, Phys. Rev. B 65, 085311 (2002).

[382] J. F. Dobson, A. White, and A. Rubio, Asymptotics of the dispersion inter-
action: analytic benchmarks for van der waals energy functionals, Phys. Rev.
Lett. 96, 073201 (2006).

[383] J. F. Dobson and T. Gould, Calculation of dispersion energies, J Phys. Cond.
Matt. 24, 073201 (2012).

[384] C. D. Castro and R. Raimondi, Statistical mechanics and applications in con-
densed matter (Cambridge University Press, 2015).

[385] A. K. Geim and I. V. Grigorieva, Van der waals heterostructures, Nature 499,
419–425 (2013).

[386] P. A. Lee and T. V. Ramakrishnan, Disordered electronic systems, Rev. Mod.
Phys. 57, 287–337 (1985).

https://doi.org/10.1103/PhysRevB.48.8203
https://doi.org/10.1016/j.cpc.2016.08.019
https://doi.org/10.1016/j.cpc.2016.08.019
https://doi.org/10.1103/PhysRevB.22.4666
https://doi.org/10.1103/PhysRevB.22.4666
https://doi.org/10.1103/PhysRevB.1.2362
https://doi.org/10.1103/PhysRevB.65.085311
https://doi.org/10.1103/PhysRevLett.96.073201
https://doi.org/10.1103/PhysRevLett.96.073201
https://doi.org/10.1088/0953-8984/24/7/073201
https://doi.org/10.1088/0953-8984/24/7/073201
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.57.287




Acknowledgements

The work presented in this thesis would not be would be without the great amount
of support, guidance, supervision, encouragement, care and trust I have received
throughout my life and during this dissertation.

To begin, I would like to thank my supervisor Richard Schmidt for his continued
support and trust throughout the years. It is challenging to put into words how much
I have been able to learn from him, both in physics and in life, and how valuable
his insights and ideas have been. He has the unique talent of speaking the language
of his conversation partners, whether they are experimentalists or theorists, seasoned
professors or incoming bachelor students. This great talent meant that the valuable
advice I received from him was always accessible to me, allowing me to benefit from
it. He was dedicated to help me succeed and showed great commitment in that
with, sometimes with unconventional solutions, sometimes at unconventional times
and sometimes within unconventional time frames. Having the professional support
of a great scientist and a great person is more than I could reasonably ask for.

Along the way, I had the great privilege of discussing and collaborating with a
series of excellent scientists and exceptional persons. Among these are Marcel Duda,
Oriana Diessel, Rafał Ołdziejewski, Ruipeng Li, Aileen Durst, Felix Rose, Gal Ness,
Arthur Christianen, Darshan Joshi, Keerthan Subramanian and Xin Chen. Aside
from the physics we explored, a whole lot of laughter was shared and many intriguing
conversations were lead.

Furthermore, I would like to thank Immanuel Bloch, Atac Imamoglu and Yoav Sagi
for the fruitful discussions and collaborations we had. I would further like to thank
Subir Sachdev for the opportunity to spend time in his research group at Harvard
University and the opportunity to contribute to his research.

During my time as a PhD student, I had the opportunity to devote significant
efforts to my passion, Ultimate Frisbee. I am grateful for the great experiences this
sport has provided me, the people I have had the honor of getting to know and play
with, and the many places I got to visit in the process. I thank my team mates
from MUC, the german men’s beach national team, MINT, Super Swimsuits 3000
and Unicorn Butts for all the great times we got to spend together.

I would like to thank my dear friends for the friendships we share and all the joy
they have brought into my life.

Finally, I would like to thank my parents, Dr. Christine von Milczewski and
Driss Denguir, and my grandparents, Frauke von Milczewski and Dr. Karl-Ernst von

247



248 Acknowledgements

Milczewski. I am deeply grateful for the continuous support I have received from
them.


	Abstract
	Zusammenfassung
	Publications
	Contents
	Introduction
	Ultracold quantum gases
	Transition metal dichalcogenides
	Scattering physics
	Feshbach resonances
	Two-channel and single-channel models
	Regularization of the two-channel model and the single-channel model
	Two-body limit in two dimensions

	The Fermi polaron problem
	Fermi polaron problem in ultracold atoms and atomically thin semiconductors
	Effective action and functional renormalization group (fRG) formalism

	Strongly coupled Bose-Fermi mixtures
	Introduction
	Degenerate three-dimensional Bose-Fermi mixtures in the density-matched regime
	Phase diagram
	Quantum phase transition from a polaronic phase to a molecular phase

	Review of theoretical treatments of the quantum phase transition
	Theoretical treatment by Ludwig et al. (2011)
	Theoretical treatment by Guidini et al. (2015)
	Calculation using a functional renormalization group (fRG) approach and its comparison to the non-self-consistent T-matrix approach

	Experimental setup and probe of the QPT
	Reversal of the phase transition
	Projection of polaronic states onto deeply bound molecules

	Degenerate Fermi gas of NaK* Feshbach molecules
	Conclusion on strongly coupled three-dimensional Bose-Fermi mixtures 

	Strongly coupled Bose-Fermi mixtures in two dimensions
	Introduction
	Model
	fRG formalism and effective action
	Truncation schemes
	Regulators
	Vertex projections and gradient expansion parameters
	Flow Equations
	RG initial conditions
	Chemical potentials and distinction of phases

	Quantum impurity limit: single boson in a Fermi sea
	Quasiparticle energies
	Vertex functions
	The polaron energy within the gradient expansion scheme

	Bose-Fermi mixture at finite boson density
	Phase diagram as a function of chemical potential
	Phase diagram as a function of density
	Mean-field model

	Quasiparticle properties of polarons and molecules in the quantum impurity limit from a frequency- and momentum-resolved scheme (FMR)
	Frequency- and momentum-resolved flow equations
	Equivalence to a non-self-consistent T-matrix resummation
	Results

	Conclusion on strongly coupled two-dimensional Bose-Fermi mixtures


	Impurity-induced pairing in two-dimensional Fermi gases
	Introduction
	Model
	Method
	Algorithm and Sampling
	The Hamiltonian in the ECG basis
	Angular Momentum in the ECG basis

	Ground state transition between a dimer and a trimer state
	Two-body problem without confinement
	Non-interacting fermions
	Coulomb interaction
	Deviation from the asymptotic result ac approx 3.34

	Polaron-to-molecule transition within a few-body system
	Triggering a polaron-to-molecule transition by tuning the potential depth
	Spatial wavefunction analysis of the polaron and the molecule
	Angular momentum expectation values L2tot, L2I and L2F of the non-interacting ground state
	Could the polaron be the trimer? Comparison of the simplified Ansatz in Eq ... in the polaron-to-molecule transition

	Discussion

	Superconductivity induced by strong electron-exciton coupling in doped atomically thin semiconductor heterostructures
	Introduction
	Model
	Method
	Analytical expressions and practical computation
	Trion self-energy
	Renormalized Green's functions
	Exciton self-energy
	Fermion number equation
	Computation of electron-trion scattering vertex
	Solving for the chemical potentials and determining the critical pairing temperature

	Results: critical pairing temperature
	Determining the boundary of the BCS regime from the bipolaron binding energy
	Approximation of the BKT transition temperature
	BCS-BEC crossover

	Conclusion
	RG analysis of the extended Fröhlich model in the few-body limit
	Flow of coupling constants in two dimensions
	Flow of coupling constants in three dimensions
	Discussion


	Momentum-dependent quasiparticle properties of the Fermi polaron from the functional renormalization group
	Introduction
	Model
	fRG equations

	Exact Matsubara integration
	Analytical structure of zero-density propagators and the residue theorem

	Solution of the coupled flow equations
	Parametrization of inverse retarded Green's functions
	Initial conditions of the flow

	Results
	Energies and lifetimes at zero momentum in 3D
	Decay width of the excited state molecule from Fermi liquid theory
	Momentum-dependent energies and decay widths
	Decay of the ground state attractive polaron at finite momentum from Fermi liquid theory

	Conclusion

	Dispersion forces between weakly disordered van der Waals crystals
	Introduction
	Induced dispersion forces in bilayer systems
	Derivation of ground state energy and force per layer from the fRG
	Numerical Results

	Impact of disorder on VdW forces: The 'Diffuson'
	Quantum interference effects on VdW forces: The 'Cooperon'
	Summary And Discussion

	Conclusion and Outlook
	Bose-Bose-Fermi coupling in the three-body limit and at finite density
	Explicit flow equations for the functional renormalization group analysis of a strongly-coupled two-dimensional Bose-Fermi mixture
	Boson renormalization
	Molecule renormalization
	Three-body renormalization
	Bubble
	Triangle
	Square
	Total

	Fermion renormalization
	Effective potential

	Two-body problem with confinement from the SVM
	Convergence Analysis of SVM method
	Convergence analysis of the number of basis states N
	Convergence analysis of the number of sampling steps

	Bibliography
	Acknowledgements

