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Double Diffusion Encoded Magnetic Resonance Imaging: Compensation of Arti-
facts Arising from Concomitant Magnetic Fields by Means of Additional Oscillat-
ing Gradients
Concomitant or Maxwell fields imprint additional phases on the transverse magneti-
zation. This concomitant phase can cause severe image artifacts due to the induced
intravoxel dephasing.
In particular, double diffusion encoding (DDE) schemes consisting of two pairs of
bipolar diffusion-weighting gradients separated by a refocusing radiofrequency pulse
are prone to concomitant field artifacts that may distort determination of quantita-
tive parameters such as microscopic tissue anisotropy.
In this work, different compensation methods were developed using additional os-
cillating gradients that reduce the concomitant phase before signal readout without
additional refocusing pulses in the context of DDE.
It is shown that adding oscillating gradients to the bipolar gradient pairs is an effi-
cient method to reduce the self-squared concomitant phase.
In simulations, it is demonstrated that a pulse-width modulation of the diffusion-
weighting waveforms enables a compensation of both the self-squared terms and
cross terms of the concomitant field.
Oscillating gradient pulses obtained by constrained optimization, added to the orig-
inal gradient waveforms, reduce the overall accumulated concomitant phase without
significant changes in the original sequence characteristics. In vivo measurements
in the brain of a healthy volunteer exhibited an increase in the signal-to-noise ratio
of up to 35 % for b = 750 s/mm2 for each weighting for a transversal slice that had
an isocenter distance of 5 cm.





Doppelt diffusionsgewichtete Magnetresonanztomographie: Kompensation von
Artefakten durch Begleitfelder mittels zusätzlicher oszillierender Gradienten
Maxwell- oder Begleitfelder prägen der transversalen Magnetisierung zusätzliche
Phasen auf. Diese Begleitphasen können schwere Bildartefakte durch die entste-
hende Intravoxel-Dephasierung verursachen.
Insbesondere doppelte Diffusionskodierungsverfahren (DDE), die aus zwei Paaren
bipolarer Diffusionswichtungsgradienten bestehen, die durch einen refokussieren-
den Hochfrequenzpuls getrennt sind, sind anfällig für Artefakte durch Begleitfelder,
die die Bestimmung quantitativer Parameter wie beispielsweise der mikroskopischen
Gewebeanisotropie verfälschen können.
In dieser Arbeit wurden verschiedene Kompensationsmethoden entwickelt, bei de-
nen zusätzliche oszillierende Gradienten verwendet werden, die die Begleitphase vor
der Signalauslese ohne zusätzliche Refokussierungspulse im Rahmen der DDE re-
duzieren.
Es wird gezeigt, dass das Hinzufügen von oszillierenden Gradienten zu bipolaren
Gradientenpaaren eine effiziente Methode zur Reduzierung der selbstquadrierten
Begleitphase ist.
In Simulationen wird dargelegt, dass eine Pulsweitenmodulation der diffusionswich-
tenden Gradientenprofile eine Kompensation sowohl der selbstquadrierten Terme als
auch der Kreuzterme des Begleitfeldes ermöglicht.
Oszillierende Gradientenpulse, die durch eine Optimierung mit Nebenbedingungen
erhalten werden und die ursprünglichen Gradientenprofile überlagern, reduzieren
die gesamte akkumulierte Begleitphase ohne signifikante Änderungen der ursprüng-
lichen Sequenzcharakteristika. In vivo Messungen im Gehirn eines gesunden Proban-
den ergaben einen Anstieg bezüglich des Signal-zu-Rausch-Verhältnisses von bis zu
35 % für b = 750 s/mm2 für jede Wichtung in einer transversalen Schicht mit einem
Abstand von 5 cm vom Isozentrum.
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1. Introduction
Fortes fortuna adiuvat.

Lateinisches Sprichwort

The first observation of nuclear magnetic resonance (NMR) effects was made by
Isidor Isaac Rabi in 1938 [Rab+38; Rab+39]. For this achievement he was awarded
the Nobel Prize in 1944. Shortly thereafter, Felix Bloch and Edward Purcell inde-
pendently performed the first successful NMR experiments [PTP46; Blo46]. This
achievement was rewarded with the Nobel Prize in 1952. From the first successful
spin echo experiment performed by Erwin Hahn in 1950 [Hah50], to spatial encoding
using magnetic gradient fields, proposed by Paul Lauterbur in 1973 [Lau73] (Nobel
Prize in 2003), and fast imaging techniques as echo planar imaging proposed by Sir
Peter Mansfield [Man77] (Nobel Prize in 2003), magnetic resonance imaging (MRI)
has established as a sectional imaging technique. Since the first commercial MRI
scanner available in 1980 [Mor00], advances in magnetic field strength and usable
gradient amplitude have enabled quantitative measurements in addition to morpho-
logical imaging.

Among other methods of quantification, diffusion-weighted magnetic resonance imag-
ing (DW-MRI) has proven particularly useful for obtaining noninvasively informa-
tion about the probed material without the need of ionizing radiation or radioactive
tracers. The motion of atoms or molecules due to self-diffusion can be probed with
DW-MRI by application of linear gradient pulses. Since the diffusive motion is re-
stricted in biological tissue by cell membranes, nerve fibers or macromolecules, for
example, a study of the diffusion process allows to draw conclusions about the struc-
ture of the tissue on the micrometer scale, which is far below the typical millimeter-
scale image resolution.

The white matter of the brain exhibits a high degree of anisotropy, so that diffusion
is widely free parallel to nerve fibers, while diffusion obstacles are present perpen-
dicular to the fiber bundles [Bea02]. Diffusion tensor imaging (DTI) [BML94; BP96;
Jon12] enables the determination of fiber orientations and even a three-dimensional
reconstruction of neural pathways in the brain [MZ02; Sti+01]. A very large fraction
of state-of-the-art clinical MRI examinations comprise diffusion-weighted imaging
sequences. Due to the sensitivity of the apparent diffusion coefficient (ADC ) to
changing size and packing density of cells [Guo+02; Sin+12], practically all onco-
logical MRI protocols employ diffusion weighting. An other important application



1. Introduction

of diffusion imaging in routine clinical practice is in stroke diagnosis, because of the
early and drastic change in diffusion coefficient in ischemic areas of the brain [Hui03;
Mos+90; Muk+00].

Despite its great benefits, this method, which is based on single diffusion encoding
(SDE), has a major drawback. Since diffusion is probed only along one direction per
signal readout in SDE, the fractional anisotropy (FA), which can be estimated from
DTI, cannot differentiate between microscopically isotropic diffusion and an isotropic
distribution of anisotropic diffusion compartments within an image voxel, i.e., is sen-
sitive to orientation dispersion of anisotropic cell structures [Las+14; Szc+15].

Double diffusion encoding (DDE) sequences [She+16], where two diffusion weight-
ings are applied within one sequence, have raised attention due to their wide range
of possible applications [Hen+21; Yan+18; She+10], and are particularly suitable
to disentangle present microscopic diffusion anisotropy from orientation dispersion
[CK02; OB08; LKF10; LF13]. Metrics such as microscopic anisotropy [LF15; LF19]
and fractional eccentricity [Jes+13] overcome this ambiguity. These parameters can
be derived from measurements with a particular DDE gradient scheme, where two
subsequent diffusion weightings with different angle between the directions are sep-
arated by a refocusing radiofrequency (RF) pulse.

This angle between the diffusion weightings results in gradient pulses that are not
symmetrical about the refocusing pulse, making these sequences prone to artifacts
caused by concomitant or Maxwell fields. As the name suggests, these additional
magnetic fields are a consequence of Maxwell’s equations [JF99] named after James
Clerk Maxwell. Whenever a linear magnetic field gradient is generated by an ade-
quate arrangement of current-carrying conductors, a concomitant magnetic field is
present to fulfill Maxwell’s equations. At this point, physics strikes engineering and
Maxwell’s equation will always intervene when trying to design gradient coils with
a perfect linear gradient without other undesired field components. The first full
description of the concomitant field was given in 1998 [Ber+98] in the context of
phase contrast magnetic resonance. This magnetic field scales with the applied am-
plitude of the linear gradient and the spatial distance from the gradient isocenter.
The malign impact results from an additional phase on transverse magnetization
[Ber+98; ZTB98]. Concomitant fields are not the subject of research only with the
advent of high gradient strengths, but have been addressed as early as 1990 in the
context of low-field scanners [NH90], since the strength of the concomitant field is
inversely proportional to the main magnetic field. With recent advances in low-field
scanners [Cam+19; Hor+21], also diffusion-weighted experiments [Rus+22] are en-
abled, leading to an increased interest in correction strategies for concomitant fields.

In literature, the artifacts caused by concomitant magnetic fields and correspond-
ing correction methods are described for echo planar imaging [WCR93; Zho+98;
DJB02] or spiral [Kin+99; CSP11; Wan+23] acquisition schemes. Furthermore, ar-
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tifacts such as signal dropouts [Mei+08; SM07], degradation of the signal-to-noise
ratio (SNR), or corrupted T ∗

2 -relaxometry measurements [Hof+17] are reported.
Concomitant fields are also known to impede proper evaluation of quantitative dif-
fusion metrics [Bar+12]. Depending on the considered problem, various compen-
sation strategies for concomitant field effects have been developed. These include
"prewarping" the accumulated concomitant phase [WCR93], redesigning the pulse
sequence for fast spin echo imaging [ZTB98] and real-time gradient pre-emphasis for
asymmetric gradient systems [Tao+17; Tao+18]. Furthermore, approaches based
on additional constraints in optimized waveform design [SWN19; Pen+19] and
reconstruction-based corrections for spiral-ring turbo spin-echo imaging [Wan+23]
are described in literature.

Based on [LP21], novel methods for compensation of concomitant field effects in
the context of DDE were developed in the course of this thesis. The elaborated
techniques are based on modifications of the gradient waveforms by oscillating gra-
dients without the need for additional refocusing pulses. The manipulation of the
waveforms allows for a reduction of the concomitant phase before readout, which
prevents a loss of signal. Adequate parameters for the oscillating gradients are found
either analytically or in a numerical optimization. The benefit of the compensation
techniques was estimated in simulations and as well verified in both phantom and
in vivo measurements.
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2. Theory

Jetzt weiß ich auch, dass man in
der Welt sich mit allem befassen
kann, wenn man nur die dazu
nötigen Handschuhe anzieht.

Heinrich Heine

In this chapter, a brief introduction to the most important theoretical basics of the
phenomenon of nuclear magnetic resonance (NMR) and magnetic resonance imaging
(MRI) is presented. After the introduction of the basic principles, a section is dedi-
cated to concomitant magnetic fields and their analytical description. Additionally,
the issue of eddy currents in MRI is touched upon briefly. More detailed descriptions
of the presented topics can be found in [Abr07; Bro+14; Cal91] and [Ber+04].

Afterwards, the fundamentals of diffusion-weighted magnetic resonance imaging are
presented together with a description of a special class within double diffusion en-
coding (DDE) techniques. Additional and deeper information is found in [Jon12]
and [Mor07].

The presentation of this chapter is partly oriented on [Kud14] and [Rau20]1.

2.1. Nuclear Magnetic Resonance

2.1.1. Nuclear Spin
The nucleus possesses an overall nuclear spin I since the nucleus consists of protons
and neutrons with spin 1

2 each. The quantity of the nuclear spin depends on the
composition of the nucleus. The nuclear spin I is always zero if the number of pro-
tons and the number of neutrons is even ("gg-Kern"). A half-integer nuclear spin is
formed if the number of protons plus the number of neutrons is odd. For an odd
number of protons and an odd number of neutrons ("uu-Kern"), an integer spin is
observed. It is essential that the overall nuclear spin I of the nucleus is unequal zero
for the NMR phenomenon to occur.

Since spin is an intrinsic form of angular momentum, the operator ˆ⃗
I for nuclear

1The sections 2.1 up to and including 2.4.2 are slightly modified taken from this source.
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spin obeys the commutation relations[
Îk, Îl

]
= iℏÎmϵklm (2.1)

and [
ˆ⃗
I

2
, Îx

]
=
[

ˆ⃗
I

2
, Îy

]
=
[

ˆ⃗
I

2
, Îz

]
= 0, (2.2)

where ℏ is the reduced Planck constant and ϵklm denotes the Levi-Civita symbol.
Relation (2.2) implies that ˆ⃗

I
2

shares a mutual set of eigenfunctions with Îx, Îy and
Îz:

ˆ⃗
I

2
|I,m⟩ = ℏ

2I(I + 1) |I,m⟩ (2.3)
Îz |I,m⟩ = ℏm |I,m⟩ , m = −I, .., I , (2.4)

with m being the magnetic quantum number.

In a static external magnetic field B⃗0, the potential energy of a magnetic moment
µ⃗ is given by

Emag = −µ⃗B⃗0. (2.5)

The gyromagnetic ratio γ relates the magnetic moment µ⃗ to the nuclear spin I⃗:

µ⃗ = γI⃗. (2.6)

For protons, its value amounts to γ = 2.6752218744(11) · 108 (s T)−1 [COD18].

According to Eq. (2.5), the Hamiltonian reads

Ĥ = − ˆ⃗µB⃗0, (2.7)

while with the usual convention of B⃗0 = B0 · êz, i.e., the static external magnetic
field is aligned along the z-axis, the Hamiltonian takes the form

Ĥ = −µ̂zB0. (2.8)

As a consequence, the expectation value of the energy of a state with magnetic
quantum number m is thus given by

Em = ⟨I,m|Ĥ|I,m⟩ = ⟨I,m| − γB0Îz|I,m⟩ = −γB0ℏm. (2.9)

The degeneracy of the energy is removed by the external magnetic field due to the
Zeeman effect according to (2.9).
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2.1. Nuclear Magnetic Resonance

2.1.2. Macroscopic Magnetization
In common NMR experiments, not a single spin is considered but a net macroscopic
magnetization M⃗ that is formed by a large number of single magnetic moments.
The net macroscopic magnetization is given by

M⃗ = 1
V

⟨
N∑

i=1
µ⃗i⟩ = N

V

I∑
m=−I

pmγℏm, (2.10)

which is the average of the N different macroscopic magnetic moments within a
control volume V .

Boltzmann statistics describes the occupation of the different energy levels at high
temperature:

pm = e−Em/kBT∑I
n=−I e−En/kBT

. (2.11)

Here, kB denotes the Boltzmann constant and T the temperature. By applying the
high temperature approximation, i.e., e−Em/kBT ≈ 1 − Em/kBT , Curie’s law can be
derived from Eq. (2.10):

M = 1
V

Nγ2
ℏ

2I(I + 1)B0
3kBT

(2.12)

Curie’s law shows the important relationship between the magnetization and the
applied magnetic field at a certain temperature:

M ∝ B0
T

(2.13)

This holds if the magnetization is based on paramagnetic effects, which is the case
in nuclear magnetism.

Since water is the main component of the human body, most magnetic resonance
imaging experiments2 exploit the abundance of hydrogen protons 1H. The nuclear
spin of the hydrogen proton is I = 1

2 , hence only two Zeeman states with differ-
ent energy levels exist according to (2.9). The state |I = 1

2 ,m = 1
2⟩ is energetically

lower and therefore more favorable. This state is denoted as "spin-up" and the
spins are aligned parallel to the static external magnetic field. The upper state
|I = 1

2 ,m = −1
2⟩ is called "spin-down", where the spins are aligned antiparallel to

the magnetic field.

In this case, the occupation numbers are given by

N∓ ∝ e
− E0±δE

kBT , δE = ∆E

2 , (2.14)

2In this thesis, only hydrogen protons are considered.
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2. Theory

where N− and N+ denote the "spin-down" and "spin-up" state, respectively. The
energy difference between the two states is

∆E = ℏγB0 = ℏωL, (2.15)

where ωL is the Larmor frequency.

A calculation of the ratio of the occupation numbers with

η := N+ − N−
N+ + N−

= tanh
(

∆E

2kBT

)
(2.16)

and using T = 310 K and B0 = 3 T yields a ratio of η = 9.8·10−6. This small surplus
in the ppm range leads to a net magnetization and enables NMR experiments due
to the typical large number of hydrogen atoms in the considered objects.

2.1.3. Dynamics in External Magnetic Fields
The general equation of motion for the net macroscopic magnetization vector M⃗ in
an external magnetic field B⃗ can be derived with the help of the Ehrenfest theorem
d⟨Â⟩

dt = 1
iℏ ⟨
[
Â, Ĥ

]
⟩ + ⟨∂Â

∂t ⟩ [Sch07] for an operator Â. The time evolution of the
magnetic moment is then given by

d⟨ ˆ⃗µ⟩
dt

= 1
iℏ ⟨

[ ˆ⃗µ,Ĥ(t)
]
⟩ = ⟨ ˆ⃗µ⟩ × γB(t), (2.17)

where Ĥ(t) = −γÎ · B(t) was used.

Considering a spin ensemble consisting of N spins, the time evolution of the net
macroscopic magnetization as defined in (2.10) is given by

dM⃗

dt
= γM⃗ × B⃗. (2.18)

This equation describes the precession of the macroscopic magnetization about the
external magnetic field. For a temporally constant magnetic field B⃗0 = (0,0,B0)⊤,
the frequency of the precession is given by the Larmor frequency as introduced in
(2.15):

ωL = γB0 (2.19)

This precession occurs if the macroscopic magnetization M⃗ is not parallel to the
external magnetic field B⃗0.

Since in the equilibrium case, the net magnetization vector M⃗ and the applied
external magnetic field B⃗0 are aligned in parallel, no precession of M⃗ occurs. To
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2.2. Relaxation

receive a signal, the net magnetization vector M⃗ must be flipped, so that the oc-
curring precession induces a voltage in a surrounding coil. In order to explain the
mechanism of excitation, it is convenient to introduce a rotating coordinate system
S′ that rotates with angular velocity Ω⃗ about the z-axis. In S′, an effective magnetic
field

B⃗eff = B⃗0 + Ω⃗

γ
(2.20)

is formed along the z-axis.

To tilt the net magnetization vector M⃗ , another time-dependent magnetic field
B⃗1(t) with frequency ω1 in the radio frequency (RF) regime has to be applied in
the plane perpendicular to B⃗0. Ideally, this field has circular polarization. In the
case of linear polarization, the field can, in analogy to optics, be decomposed into
two circular polarized components. Only one component is important for the mech-
anism to work, the other one is off-resonant by twice its frequency since it precesses
in opposite direction compared to the magnetization. Thus, the remaining rotating
field in the x-y-plane reads

B⃗1(t) = B1(cos(ω1t)êx − sin(ω1t)êy), (2.21)

with B1 = |B⃗1(t)|.

When the angular velocity |Ω⃗| of S′ equals the frequency ω1, B⃗1(t) is aligned along
the x′-axis of the rotating coordinate system. The effective magnetic field B⃗eff now
forms an angle with the z-axis. In the resonance case, i.e., |Ω⃗| = ω1 = ωL, the
effective magnetic field B⃗eff is tilted by 90° and points along the x′-axis. It is worth
mentioning that, according to equation (2.15), the transition energy of the states is
proportional to the Larmor frequency. The torque which points along the x′-axis
leads to a tilting of the net magnetization M⃗ about the x′-axis. The flip angle of M⃗
is given by

θflip = γ
∫ t=tp

t=0
B1(t)dt (2.22)

Thus, the flip angle depends on the duration tp of the B1-pulse. In the case of a
90°-pulse (θflip = π

2 ), a transversal magnetization M⃗⊥ is generated. After the pulsed
magnetic field has been switched off, the now tilted magnetization M⃗ performs a pre-
cession about the z-axis. If a 180°-pulse is applied to a longitudinal magnetization,
the magnetization M⃗z is formed.

2.2. Relaxation
The generated magnetization returns to its equilibrium value after being tilted by
a time-dependent pulsed magnetic field. This process is called relaxation and is
described by the phenomenological equations of Felix Bloch [Blo46].
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2. Theory

2.2.1. Spin-Lattice Relaxation
The recovery of the longitudinal magnetization M⃗z is called spin-lattice relaxation
and is based on stimulated emission. Transitions between the Zeeman states are
induced by energy which is transferred from the heat bath of the surrounding spin
packets, i.e., the lattice, to the nuclear spin packets. The source of the energy in-
ducing the transitions is thermal motion of magnetic dipoles nearby the considered
spin packet3 [BPP48], which produces a fluctuating transverse magnetic field. These
fluctuations cause a faster recovery when they occur in the range of the Larmor fre-
quency of the spin packet. The time development of the longitudinal magnetization
is described by

dMz(t)
dt

= γ(M⃗(t) × B⃗)z − Mz(t) − M0
T1

, (2.23)

where T1 is the longitudinal relaxation time and is the time constant for the recovery
of the longitudinal magnetization to the equilibrium longitudinal magnetization M0.

2.2.2. Spin-Spin Relaxation
Considering the components of the transversal magnetization, the respective relax-
ation is described by the following Bloch equations:

dMx(t)
dt

= γ(M⃗(t) × B⃗)x − Mx(t)
T2

(2.24)

dMy(t)
dt

= γ(M⃗(t) × B⃗)y − My(t)
T2

(2.25)

The interaction of one magnetic dipole with the fluctuating fields of other magnetic
dipoles leads to a loss of phase coherence of the spin packets and consequently to a
decay of the transversal magnetization with time constant T2. In this process, no
transfer of energy occurs since it is a pure entropy effect.

Additionally, inhomogeneities in the static external magnetic field B⃗0 and suscepti-
bility-induced field distortions from different materials nearby alter the specific Lar-
mor frequency of the spin packets. As a consequence, the spin packets precess with
a different frequency which leads to a "fanning out".

Taking all the effects together, the dephasing of the transversal magnetization is
described by the observed or effective relaxation time T ∗

2 , which is always less than
or equal to T2:

1
T ∗

2
= 1

T2
+ 1

T ′
2
. (2.26)

In (2.26), T ′
2 represents the time constant describing the loss of phase coherence due

to the mentioned inhomogeneities.
3The term spin packet denotes a group of spins encodable at the same point.
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2.3. Free Induction Decay and Spin Echo

2.3. Free Induction Decay and Spin Echo
The relaxing transversal magnetization is precessing with the specific Larmor fre-
quency ωL. During this phenomenon, which is called the free induction decay (FID),
a voltage is induced in a surrounding coil due to Faraday’s law of induction and al-
lows to obtain a signal from the sample. The FID decays with time constant T ∗

2 as
depicted in 2.1 and this precession of the transversal components of the magnetiza-
tion can be represented by

Mx = M⊥(0)cos(ωLt)e
− t

T ∗
2 (2.27)

My = −M⊥(0)sin(ωLt)e
− t

T ∗
2 , (2.28)

where M⊥(0) is the absolute value of the transversal magnetization after excitation.
The free induction decay of the transversal magnetization can therefore be expressed
by

M⊥(t) = Mx(t) + iMy(t) = M⊥(0)e−iωLte
− t

T ∗
2 . (2.29)

The frequency spectrum of the signal is obtained by a Fourier transformation of
the signal of the FID. The linewidth at half height FWHM = ∆ω allows a simple
measurement of T ∗

2 since these quantities are connected through

∆ω = 2
T ∗

2
. (2.30)

The spin echo experiment allows a measurement of the spin-spin relaxation time
T2, which was first carried out by Erwin Hahn in 1950 [Hah50]. The formation
principle of a spin echo experiment with maximum possible echo signal is shown in
Fig. 2.2. The experiment consists of a 90°-pulse which generates the transversal
magnetization. This pulse is followed by a 180°-pulse at time t = TE/2, where
TE is denoted as echo time. Due to inhomogeneities in the static magnetic field
B⃗0, the single spin packets accumulate different phases. These phases are inverted
by the 180°-pulse. Since the inhomogeneities are constant, the different precessing
velocities are unchanged and the spin packets are in phase at the echo time t = TE .
A single spin echo signal decays with time constant T ∗

2 , but by measuring the signal
envelope as shown in Fig. 2.1 at different echo times,

|M⊥(TE)| = M0e−TE/T2 , (2.31)

a decay curve is obtained.

2.4. Imaging
In 1973, Paul Lauterbur introduced the concept of applying magnetic gradient fields
to achieve spatial encoding of the signal [Lau73], which is crucial in order to perform
an MRI experiment. This section aims to give a short overview of the principle of
imaging with gradient fields and introduces the k-space as basic concept.
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2. Theory

Signal

Figure 2.1.: Signal curve on a receiver coil for the spin echo experiment. The envelope
of the free induction decay is shown in black (dashed) and is proportional
to e−t/T ∗

2 . Due to the 180°-pulse at time t = TE/2, the spin packets are
in phase at time t = TE and the spin echo is formed. The envelope of
the spin echo is proportional to e−t/T2 (dashed blue).

1

a) b) c) d)

90° 180°1

2

3

2

3

Figure 2.2.: Principle of a spin echo experiment represented in the rotating reference
frame. a) The transversal magnetization is generated by the 90°-pulse.
b) Inhomogeneities in the static magnetic field lead to differences in the
Larmor frequencies of the spin packets. c) The phases of the different
spin packets are reversed by the 180°-pulse at time t = TE/2. d) At time
t = TE , the spin packets are in phase and the echo is formed.
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Figure 2.3.: Trapezoidal gradient shape. The total time of the gradient is given by
the sum of the rise time ξ which indicates the length of the gradient ramp
and the duration δ of the gradient. The flat top time FTT of the gradient
pulse is calculated by subtraction of the rise time from the duration.

2.4.1. Magnetic Gradient Fields
If a linear magnetic gradient field

G⃗ = (Gx,Gy,Gz)⊤ =
(

∂Bz

∂x
,
∂Bz

∂y
,
∂Bz

∂z

)⊤
(2.32)

is superimposed to the static B0-field, the Larmor frequency becomes dependent on
the spatial vector x⃗:

ωL(x⃗) = γ(B0 + G⃗x⃗) (2.33)

The phase ϕ gained by a single spin packet at location x⃗ due to the gradient G⃗ can
be calculated with

ϕ(x⃗, t) = γx⃗
∫ ttot

t=t0
dt′G⃗(t′), (2.34)

where t0 is the start time of the gradient and ttot the end time. Consequently, the
dephasing is proportional to the area of the gradient, which is also referred to as
the "dephasing moment". The trapezoidal shape is a common temporal profile of a
magnetic field gradient4 and can be characterized by the maximum amplitude G,
the duration δ and the rise time ξ (see Fig. 2.3). The plateau of the gradient pulse
is denoted as flat top time FTT .

2.4.2. Spatial Encoding
Slice Selection

A slice selective excitation of the sample allows to obtain an image of a particular
slice of the sample. To this end, a slice selection gradient during the RF pulse in,
e.g., z-direction, G⃗ = (0,0,Gz) may be applied. According to (2.33), the Larmor
frequency becomes location-dependent,

ωL(z) = γ(B0 + Gzz), (2.35)
4All magnetic gradient pulses applied in the course of this thesis had trapezoidal shape.
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and every adjacent spin packet in z-direction precesses with a different frequency.
The position of the slice is determined by the carrier frequency ωc of the excitation
pulse, while the thickness of the slice is set by the bandwidth ∆ω of the pulse and
is connected with the applied slice selection gradient via

∆z = ∆ω

γGz
, (2.36)

which can be derived from (2.35). Consequently, a change of the carrier frequency
results in a change of position, while a change of the bandwidth or the gradient
strength causes a change in the slice thickness.

To excite a rectangular slice with thickness d, a rectangular frequency distribution
in the frequency space is needed. For small flip angles, a sinc-pulse

B1(t) ∝ sin(a1t)
a1t

, with a1 = dγGz

2 (2.37)

in the time domain leads to a rectangular slice profile. Due to finite excitation time,
the sinc-pulse is cut in the time domain which may lead to truncation artifacts due
to the excitation of unwanted spin packets.

During the application of the slice selection gradient, the Larmor frequency varies
within the excited slice, which leads to a dephasing of the transversal magnetization.
To take this into account, a refocusing gradient with half the area of the selection
gradient is applied after the slice selection gradient.

Frequency Encoding

Considering a sample consisting of pure water, the spectrum of the signal for an
1H experiment consists of one single resonance at the Larmor frequency. To link
the Larmor frequency with a particular position, e.g., x, a magnetic gradient field
Gx along the x-axis during data acquisition is applied. The Larmor frequency then
reads

ωL(x) = γ(B0 + Gxx), (2.38)
leading to a different Larmor frequency in different slices perpendicular to the gra-
dient direction. In these slices, all nuclei contribute to the signal at frequency
ωL(x). A spectral analysis I(ωL(x)), where I denotes intensity, of the signal using
Fourier transformation allows the determination of the different frequency compo-
nents. With the relation ωL(x) ∝ x, the signal strength projected onto the gradient
direction at location x within the slice can be specified.

Phase Encoding

To obtain information about the second dimension of the desired two-dimensional
image, a magnetic field gradient, e.g., Gy along the y-direction, prior to the data
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acquisition is applied. This field gradient varies the Larmor frequency along the y-
direction and thus imprints a position-dependent phase onto the excited spin packets
within the slice, which is given by

ϕ(y) = γy
∫ ttot

t=t0
dt′Gy(t′), (2.39)

where t0 denotes the start time and ttot the end time of the used gradient. After
the gradient has been switched off, the spin packets are continuing to precess with
the original Larmor frequency, but possess different phases. These phase angles
are preserved and allow for the distinction of different planes orthogonal to the y-
direction. The individual phase distribution can be analyzed by a second Fourier
transformation of the signal.

2.4.3. k-Space
Basic Concept

The additional phase due to a magnetic gradient according to (2.34) modifies the
transversal magnetization as expressed in (2.29), which can then be written in the
rotating reference frame, neglecting the relaxation factor e−t/T ∗

2 , as

M ′
⊥(t) = Mx(t) + iMy(t) = M⊥(0)e−iϕ(x⃗,t) = M⊥(0)e−i⃗k(t)x⃗. (2.40)

In (2.40), the wave vector k⃗ is introduced:

k⃗ := γ
∫ t

0
dt′G⃗(t′) (2.41)

The detected signal results from an integration over the sample volume V ,

s(k⃗(t)) ∝
∫

V
dx⃗M⊥(x⃗,0)e−i⃗k(t)x⃗, (2.42)

where M⊥(x⃗,0) represents the magnetization generated by a spin packet at position
x⃗ at time t = 0 after an RF pulse.

According to (2.42), the obtained signal is the Fourier transform of the spatial distri-
bution of the transversal magnetization. If S(k⃗(t)) is known, the spatial distribution
can be obtained by inverse Fourier transformation:

M⊥(x⃗,0) ∝
∫

dk⃗ s(k⃗)ei⃗kx⃗ (2.43)

The k-space is filled successively by sampling the signal for varying k⃗(t), which can
theoretically be carried out in an arbitrary scheme. The information is stored in the
k-space as a hologram and by application of the inverse Fourier transformation the
real image is obtained. Generally, the center of k-space contains information about
the contrast and rough resolution of the image, while the peripheral part delivers
high-resolution information.
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Discrete Sampling

In practice, the signal can only be sampled in a discretized manner, which leads to a
discrete k-space. In the case of a two-dimensional hologram sampled on a Cartesian
grid, the variation of k⃗(t) may be connected to magnetic field gradients Gx(t) and
Gy(t) with rectangular time profile by

kx(nx) = γGxnx∆t (2.44)

and
∆ky(∆tPE) = γGy∆tPE. (2.45)

In this case, kx(nx) represents a discrete sampling step nx along kx at a specific
time point nx∆t since the starting of the frequency encoding gradient. The dwell
time ∆t is the interval between samples. Analogously, ∆ky(∆tPE) is a step along ky

performed during the time period ∆tPE, which denotes the duration of the phase
encoding gradient.

Mathematically, the discrete sampling at every assumed value for kx(t) is expressed
by a sampling function consisting of an infinite sum of Dirac delta functions

u(kx) = ∆kx

∞∑
p=−∞

δ (kx − p∆kx) , (2.46)

where ∆kx denotes the spacing between two kx-points separated by a step labeled
with the integer p. The discrete signal distribution is then given by the multiplica-
tion of the sampling function u(kx)/∆kx with the continuous signal.

In the spatial domain, an infinite series of copies of the acquired image is obtained
due to the convolution of the theoretically continuous image with the Fourier trans-
form of (2.46), which again is a Dirac comb but now with spacing 2π/∆kx. One of
these copies is chosen to construct an image, while the spacing of the Dirac comb in
the spatial domain defines the maximum extent of the object to be imaged, which
is called the field-of-view (FOV) and is generally defined by

FOV x = 2π

∆kx
. (2.47)

An inadequate separation of these copies leads to "aliasing", which is prevented by
complying with the Nyquist sampling criterion [Sha49],

FOV x > L or ∆kx <
2π

L
, (2.48)

which means that data has to be sampled such that the size L of the imaged object
is smaller than the inverse of the sampling step in k-space multiplied with 2π.
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Finite Sampling

The Dirac comb in (2.46) is infinitely extended, but in practice only a finite volume
of k-space can be sampled. This data truncation is mathematically achieved by the
multiplication of the sampled discrete k-space signal with a boxcar function, which
changes the sampling function into

u(kx)trunc = u(kx) · rect
(

kx + 1
2∆kx

2kmax,x

)
= ∆kx

n−1∑
p=−n

δ (kx − p∆kx) , (2.49)

with 2kmax,x = Nx∆kx and Nx = 2nx being the total number of points. Equation
(2.49) takes into account an asymmetric sampling scheme. The rect-function in
(2.49) is defined by

rect
(

kx + 1
2∆kx

2kmax,x

)
=


0, for kx + 0.5∆kx < −kmax,x

0, for kx + 0.5∆kx > kmax,x

1, else
(2.50)

Point Spread Function

So far the mathematical description of discrete and finite sampling of k-space data
was given. This modification of the signal is achieved by a multiplication of the
signal with the sampling function (2.49). Generally, all functions which are multi-
plied with k-space data are denoted as k-space filters. Applying the inverse Fourier
transformation to a filter generates the associated point spread function (PSF). The
reconstructed image is then given by the convolution of the physical spin density
with the PSF.

The inverse Fourier transform of the boxcar function used in (2.49) is proportional
to a sinc-function,

F−1
(

rect
(

kx + 1
2∆kx

2kmax,x

))
∝ sinc(kmax,xx), (2.51)

which consequently is the PSF with respect to data truncation in k-space. In Fig. 2.4
it can be seen that the FWHM of this PSF is approximatively 1.2 pixel.

Due to the PSF, a point in the spatial domain is smeared out, which leads to
blurring in the image. In general, the resolution of an imaging technique is defined
as the smallest separation between two point objects at which the separation is still
visible. One approach to define the resolution is to calculate the ratio between the
area under the PSF and its value at the origin,

∆x = 1
PSF(0)

∫ ∞

−∞
dxPSF(x). (2.52)
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Figure 2.4.: Point spread function due to truncation of k-space data. The full width
at half maximum is seen to be approximatively 1.2 pixel.

With this definition, the resolution under consideration of the PSF due to discrete
and finite sampling is given by

∆x = π

kmax,x
= FOVx

Nx
, (2.53)

which can be seen to be identical to the distance between two voxels. Analogous
considerations hold for ∆y for a two-dimensional image.

Besides the filters, which represent discrete and finite sampling, also T ∗
2 -decay dur-

ing readout may have effect on the resolution. For an FID, this particular filter can
be modeled as a relaxation exponential, so the corresponding PSF is a Lorentzian.
The convolution of the Lorentzian with the other PSFs leads to a broadening of the
resulting PSF and causes a decrease in resolution.

2.5. Echo Planar Imaging
In a conventional spin echo sequence, the k-space is sampled line by line with every
excitation. In contrast, echo planar imaging (EPI) enables the acquisition of the
whole k-space after a single excitation. This technique was proposed by Sir Peter
Mansfield in 1977 [Man77].

In Fig. 2.5, a schematic EPI sequence with a refocusing RF pulse (spin echo EPI)
together with the corresponding k-space sampling scheme is shown. This example
sequence starts with the excitation pulse followed by the refocusing pulse, where the
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90° 180°

RF

A/D

Figure 2.5.: Schematic timing diagram of a spin echo EPI sequence (left) together
with the corresponding k-space sampling scheme (right). The signal is
acquired during the frequency encoding gradients (shown in red), while
the ky-line to be sampled is changed with so-called "blip" gradients in
phase encoding-direction (green). The signal is digitalized with an analog-
to-digital converter (A/D). Illustrations after [Bro+14], colorized as in
[Mül17].

respective slice selection gradients are related to the gradient Gz. In the depicted
example, the frequency encoding steps are linked to Gx, while the phase encoding
is connected to Gy. The readout starts with gradients on Gx and Gy (both in blue)
to move to the lower right corner of the k-space. According to (2.44) and (2.45),
kx and ky are changed (blue arrow). To sample the whole k-space, gradients in the
frequency encoding-direction (shown in red) and phase encoding-direction (green,
so-called "blips") change kx (red arrows) and ky (green arrows), respectively. The
frequency encoding gradients on the Gx-axis generate a train of gradient echoes
that are sampled and converted by an analog-to-digital converter (A/D). In a spin
echo EPI sequence, the timing is set such that the k-space center is sampled at the
echo time. The acquired image exhibits a T2-contrast since effects of static dephas-
ing mechanisms are reduced [NR99]. If no refocusing pulse is applied, the image
exhibits a T ∗

2 -weighting (FID-EPI).

2.6. Concomitant Magnetic Field

2.6.1. Analytical Expression
In general, a magnetic field can be represented by the vector B⃗ = (Bx,By,Bz)⊤,
which allows a decomposition of the magnetic field into its three orthogonal com-
ponents. These three components itself may posses a spatial dependence along the
Cartesian axes x, y and z. In (2.32), the linear magnetic field gradients (Gx,Gy,Gz)⊤
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current

Figure 2.6.: Generation of Gx with four conductor loop coils (shown in blue). The
red arrows represent the ideal desired magnetic field while the real field is
indicated with large white arrows. For z = 0, no difference between the
ideal and real magnetic field is present. At point x1 the real field exhibits
an x-component. The gradient isocenter is located at point x0. Modified
reproduction with kind permission of F.B. Laun.

were introduced. These gradients generate a spatial dependence of the component
Bz along the Cartesian axes.

Fig. 2.6 shows a very simplified method for generating the gradient Gx with four
conductor loop coils and reveals the presence of transversal components of the mag-
netic field. Generally, it is impossible to generate a linear magnetic field gradient
with a single component Bz ∥ B0. The simultaneous generation of other magnetic
field gradients if a linear desired gradient is applied is a consequence of Maxwell’s
equations [JF99]:

∇⃗ · B⃗ = 0 (2.54)
1
µ0

∇⃗ × B⃗ = ϵ0
∂E⃗

∂t
+ J⃗ (2.55)

Equation (2.54) is known as Gauss‘s law for magnetism and states that the magnetic
field is a divergence-free vector field. The connection of the curl of the magnetic field
with the electric field E⃗ and the current density J⃗ is done by Ampère’s circuital law
with Maxwell’s addition as presented in (2.55), which states that electric currents
lead to a rotational magnetic field. Here, µ0 and ϵ0 are the magnetic permeability
and permittivity of the vacuum, respectively.

These additional gradients generate magnetic field components perpendicular to
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2.6. Concomitant Magnetic Field

Figure 2.7.: Graphical illustration of the concomitant field. In the presence of
transversal magnetic field components the absolute value of the magnetic
field |B⃗|, which is the length of the whole hypotenuse, contains an addi-
tional contribution BCC, the concomitant field, such that |B⃗| > B0 + G⃗x⃗.
Usually, the applied static magnetic field B0 is very large compared to the
applied desired gradients and the generated transversal field components
so that θG → 0. The illustration is not to scale. Modified recreated from
[Ber+98].

Bz. In Fig. 2.7, it can be seen that in the case of present transversal components,
the absolute value of the magnetic field |B⃗|, which governs the Larmor frequency,
exceeds the sum of the desired magnetic field B0 +G⃗x⃗ by the amount BCC. Further-
more, the net magnetic field vector deviates from the direction of B0. The additional
contribution to the net magnetic field is called the concomitant magnetic field or
Maxwell field. The concomitant field is coupled to the linear gradients such that it
immediately disappears if the gradients are switched off.

In the following, the derivation of the analytical expression for BCC is given, which
was first carried out in [Ber+98]. In regions with negligible current density and
electric displacement, the relation

∇⃗ × B⃗ ≈ 0 (2.56)

holds in good approximation. Considering for example the human body, the electric
currents are usually much smaller compared to those in the gradient coils. From
(2.54) and (2.56), the following relations for the spatial derivatives for the magnetic
field components can be obtained:

∂Bx

∂x
+ ∂By

∂y
+ ∂Bz

∂z
= 0 (2.57)

∂Bx

∂y
= ∂By

∂x
=: g (2.58)

∂By

∂z
= ∂Bz

∂y
= Gy (2.59)
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∂Bz

∂x
= ∂Bx

∂z
= Gx (2.60)

In these relations, the intentionally applied linear gradients ∂Bz
∂x , ∂Bz

∂y and ∂Bz
∂z can be

identified. In (2.58), undesired field gradients, which are uncoupled to the desired
gradients, are linked to a parameter g. Furthermore, a dimensionless symmetry
parameter α is introduced to describe the relative strength of the concomitant fields
along the x- and y-axes that are concomitant to an applied gradient Gz:

∂Bx

∂x
= −αGz (2.61)

∂By

∂y
= Gz(α − 1) (2.62)

The second relation (2.62) follows from (2.54) which must be fulfilled. For cylindri-
cal symmetry of the MRI system α = 0.5 holds, while for asymmetric gradient coils
α assumes a different value depending on the considered system [Mei+08].

The vector Taylor expansion of the magnetic field

B⃗ = B0êz + (x⃗ · ∇⃗)B⃗

+
(

x2

2
∂2

∂x2 + y2

2
∂2

∂y2 + z2

2
∂2

∂z2 + xy
∂2

∂x∂y
+ xz

∂2

∂x∂z
+ yz

∂2

∂y∂z

)
B⃗ + ...,

(2.63)

with x⃗ = (x,y,z)⊤, terminates with the first order if perfectly uniform gradients are
assumed, i.e., the gradients do not exhibit a spatial dependence, and if g is assumed
to be at least spatially constant. Thus, the second and higher order derivatives
vanish and the expansion yields

B⃗ = B0êz + (x⃗ · ∇⃗)B⃗ ⇔ B⃗ − B0êz = (x⃗ · ∇⃗)B⃗. (2.64)

The explicit form of (2.64) reads

B⃗ − B0êz =

 Bx

By

Bz − B0

=


∂Bx
∂x

∂Bx
∂y

∂Bx
∂z

∂By

∂x
∂By

∂y
∂By

∂z

∂Bz
∂x

∂Bz
∂y

∂Bz
∂z


x

y
z



=

−αGz g Gx

g (α − 1)Gz Gy

Gx Gy Gz


x

y
z

 , (2.65)

where in the last step the relations deduced and defined before were inserted. From
(2.65) it can be seen that the net magnetic field is not necessarily aligned along the
z-axis.

The absolute value of the magnetic field

|B⃗(x,y,z)| =
√

B2
x + B2

y + B2
z (2.66)
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can be transformed into

|B⃗(x,y,z)| =
√

B2
x + B2

y +
(
B0 + G⃗x⃗

)2

=
√

B2
x + B2

y + B2
0 + 2B0G⃗x⃗ +

(
G⃗x⃗

)2

= B0

√√√√√1 +
B2

x + B2
y

B2
0

+ 2G⃗x⃗

B0
+
G⃗x⃗

B0

2

. (2.67)

The square root in (2.67) can now be expanded around the origin x⃗ = 0 according
to

√
1 + u ≈ 1+(1/2)u−(1/8)u2, which is justified since |G⃗ · x⃗| ≪ B0, and the static

magnetic field B0 being much larger than the generated transversal components of
the magnetic field. The expansion reads

|B⃗(x,y,z)| ≈B0

1 + 1
2

B2
x + B2

y

B2
0

+ 2G⃗x⃗

B0
+
�

�
�
�

(
G⃗x⃗

)2

B2
0


− 1

8


(
B2

x + B2
y

)2
+
(
G⃗x⃗

)4
+ 2

(
B2

x + B2
y

)(
G⃗x⃗

)2

B4
0

+
4
(
B2

x + B2
y

)
G⃗x⃗ + 4

(
G⃗x⃗

)3

B3
0

+
�
�
�
��4

(
G⃗x⃗

)2

B2
0




≈B0 + G⃗x⃗ +
B2

x + B2
y

2B0
−

G⃗x⃗
(
B2

x + B2
y

)
−
(
G⃗x⃗

)3

2B2
0

− 1
8

(
B2

x + B2
y

)2
+
(
G⃗x⃗

)4
+ 2

(
B2

x + B2
y

)(
G⃗x⃗

)2

B3
0

. (2.68)

In (2.68) it is visible that the expansion of (2.67) to the second order was necessary
to cancel out the

(
G⃗x⃗

)2
term. From the matrix equation (2.65) the expressions for

the magnetic field components are known:

Bx = −αGzx + gy + Gxz (2.69)
By = gx + (α − 1)Gzy + Gyz (2.70)
Bz = Gxx + Gyy + Gzz + B0 (2.71)

Inserting these expressions in (2.68), and furthermore setting α = 0.5 and also
g = ∂Bx(x⃗=0)

∂y = ∂By(x⃗=0)
∂x ≈ 0, which is a valid assumption for cylindrical gradient
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coils5, and neglecting terms ∝ 1/B2
0 and ∝ 1/B3

0 , yields

|B⃗| ≈ B0 + G⃗x⃗ + 1
2B0

(
G2

xz2 + G2
yz2 + G2

z
x2 + y2

4 − GxGzxz − GyGzyz

)
. (2.72)

According to (2.72), the expression for the concomitant magnetic field to the lowest
order reads

BCC(x,y,z, t) = 1
2B0

(
G2

xz2 + G2
yz2 + G2

z
x2 + y2

4 − GxGzxz − GyGzyz

)
. (2.73)

The first two terms in (2.73) are denoted as the concomitant self-squared terms,
while the last two terms are known as the concomitant cross terms. The specific
cross terms arise only if both the longitudinal gradient Gz and one of the transverse
gradients Gx and Gy are simultaneously applied. Furthermore, the cross terms ex-
hibit a hyperbolic spatial dependence in contrast to the parabolic dependence of the
self-squared terms. From (2.73) it can also be seen that the concomitant magnetic
field is equal to zero at the isocenter of the scanner. Equation (2.73) is a handy
expression since the transversal components are usually unknown in contrast to the
applied linear gradients.

From Fig. 2.7 it can be deduced that in the limit of a small deviation angle θG → 0
due to the relatively large applied external magnetic field B0, the magnetic field
still points along the z-direction, i.e., only the z component of the magnetic field is
relevant:

B⃗(x,y,z, t) ≈ B0êz + G⃗x⃗ + BCCêz (2.74)

2.6.2. Effect of the Concomitant Field
Due to the concomitant field term in (2.74), the Larmor frequency ωL is also altered
in comparison to (2.33) by an additional angular frequency

∆ωCC(x,y,z, t) ≈ γBCC(x,y,z, t) (2.75)

which depends on the spatial coordinate as a consequence of (2.73). Fig. 2.8 gives an
example for the magnitude of the concomitant fields together with the correspond-
ing frequency shift ∆ωCC. For the considered parameters the resulting concomitant
field based on (2.73) is in the ppm range of the applied static field B0 while the
frequency shift due to (2.75) is in the range of kHz. During the time of a present
concomitant field, the transversal magnetization accumulates a spatially and tempo-
rally dependent additional phase caused by the spatially different Larmor frequency.
This concomitant phase or Maxwell phase is given by

ΦCC(x,y,z, t) = γ
∫

dt(−1)nrf(t)BCC(x,y,z, t), (2.76)

5All experiments in this thesis were conducted on a system with cylindrical symmetry.
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2.6. Concomitant Magnetic Field

Figure 2.8.: Ratio of the concomitant field to the static magnetic field BCC/B0 (left
colorbar) together with the corresponding concomitant field-induced shift
of the Larmor frequency ∆ωCC for hydrogen protons 1H (right colorbar)
for a transversal slice with a FOV of -0.25 m to 0.25 m in both x- and
y-direction. The concomitant field results from an applied linear gradient
along the z-axis Gz = 80 mT/m, the static magnetic field is chosen to be
B0 = 2.89 T.

where nrf(t) is the number of applied refocusing pulses to account for the induced
phase shifts of π.

The complex signal attenuation due to the caused intravoxel dephasing under in-
fluence of the concomitant field in a voxel with center at position (x0,y0, z0) can be
approximated with

SCC(x0,y0, z0) ≈ SCC
0 (x0,y0, z0) ·

∫
Voxel dV e−iΦCC∫

Voxel dV
. (2.77)

In (2.77), SCC
0 (x0,y0, z0) represents the expected signal from a voxel without the

additional concomitant phase, while
∫
Voxel dV denotes the volume integral over the

considered voxel.
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2.6.3. Maxwell Integral
To assess the sensitivity of a particular MRI sequence to concomitant field-induced
artifacts, the Maxwell moments can be calculated. These moments are obtained
by the individual temporal integrals of the five terms in (2.73), taking only the
applied gradient profiles into account. As a consequence, the obtained moments
are independent of the chosen spatial coordinates and depend only on the applied
desired linear gradients. These individual temporal integrals, also known as Maxwell
integrals, read

Mxx =
∫

dt(−1)nrf(t)Gx(t)Gx(t), (2.78)

Myy =
∫

dt(−1)nrf(t)Gy(t)Gy(t), (2.79)

Mzz =
∫

dt(−1)nrf(t)Gz(t)Gz(t), (2.80)

Mxz =
∫

dt(−1)nrf(t)Gx(t)Gz(t), (2.81)

and
Myz =

∫
dt(−1)nrf(t)Gy(t)Gz(t). (2.82)

In these definitions, nrf(t) again denotes the number of applied refocusing pulses
to account for the induced phase shifts of π. Ideally, all five Maxwell moments are
equal to zero before readout or at least cancel each other in equation (2.76).

2.7. Eddy Currents
According to the Maxwell-Faraday equation, also known as Faraday’s law of induc-
tion,

−dB⃗(t)
dt

= ∇⃗ × E⃗ (2.83)

a magnetic field which changes with time generates an electric vortex field and vice
versa. If a linear gradient is applied in an MRI pulse sequence, currents are induced
in conducting structures of the MRI scanner, e.g., within the magnet, gradient coils
and RF coils in accordance with (2.83). These currents result from the time-varying
part of the applied magnetic field gradient, i.e., the ramps in case of trapezoidal
gradient profiles (compare Fig. 2.3). These currents are denoted as eddy currents
which itself again cause a magnetic field that opposes the initial magnetic field ac-
cording to Lenz’s law [Len34] and are another source of artifacts.

The field generated due to the eddy currents can be modeled by approximating
the conducting structures as inductive-resistive circuits [JWS90; VB90]. The gener-
ated eddy current-related field due to an applied gradient G can then be expressed
by

g(t) = −dG

dt
∗ e(t), (2.84)
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which describes the convolution of the applied gradient G with the eddy-current
impulse response. Generally, this function is a sum of decaying exponentials

e(t) =
∑
n

wne−t/τn (2.85)

with constant amplitudes wn and time constants τn. Thus, in contrast to concomi-
tant fields, which appear and disappear concurrently with the applied gradients, a
time constant is connected to eddy currents.

2.8. Diffusion-Weighted Magnetic Resonance
Imaging

Magnetic resonance imaging offers the unique possibility to obtain information about
diffusion processes in a sample noninvasively. Generally, the random movement of
atoms, molecules, but also other particles due to their thermal energy is known as dif-
fusion. Usually, diffusion is considered as the mechanism that leads to a degradation
of a present concentration gradient. In MRI, the self-diffusion process of particles
is observed. In this case, no concentration gradient is present but Brownian motion
leads to the change in the position of the particles. Diffusion-weighted magnetic
resonance imaging has become a clinical standard, where usually the self-diffusion
of water molecules is probed.

2.8.1. Free Diffusion
If the diffusion-induced movement of the particles occurs in a homogeneous medium
without stationary obstacles, the process is denoted as free diffusion. Considering
a concentration gradient ∂c(x,t)

∂x in one dimension, Fick’s first law [Fic55a; Fic55b]
states that the resulting particle current density j is proportional to the concentra-
tion gradient against the direction of diffusion,

j(x,t) = −D
∂c(x,t)

∂x
, (2.86)

where the proportionality constant D is the diffusion coefficient. The water diffusion
coefficient at 37°C is D ≈ 3 µm2/ms [Mil73]. With help of the continuity equation

∂c(x,t)
∂t

= −∂j(x,t)
∂x

, (2.87)

Fick’s second law in one dimension can be derived:
∂c(x,t)

∂t
= ∂

∂x

(
D

∂c(x,t)
∂x

)
(2.88)

This law states that the temporal change in concentration at a given position is
proportional to the spatial curvature of the concentration.
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Equation (2.88) can be adapted to self-diffusion by discarding the concentration
gradient and searching a different propagator function. The evolution of the proba-
bility for the position of a diffusing particle is then given by the diffusion equation,
which reads in one dimension

∂P (X,t)
∂t

= ∂

∂X

(
D

∂P (X,t)
∂X

)
. (2.89)

In this equation, the propagator function P (X,t) is introduced which gives the prob-
ability for a movement X of a particle during the time t.

If the considered diffusion time during which the particles carry out the random
Brownian molecular movement is larger than the typical time between two collisions,
the propagator function P (X,t) is found to be Gaussian [Ein56] as a consequence
of the central limit theorem. With the initial condition P (X,t = 0) = δ(X), i.e., the
particle is assumed to start at the origin, the propagator function then reads in one
dimension

P (X,t) = 1√
4πDt

e− X2
4Dt . (2.90)

This propagator is also the solution to (2.89) if no boundary conditions are consid-
ered.

Since the probability is identical for all step directions, the mean value of the dis-
placement vanishes:

⟨X⟩ =
∫ ∞

−∞
XP (X)dX = 0. (2.91)

Considering the variance σ2 of (2.90) gives the Einstein-Smoluchowski equation for
isotropic diffusion

σ2(t) = ⟨X2⟩ = 2Dt, (2.92)

which states that the mean quadratic displacement is proportional to the time t.
The equations (2.90) and (2.92) can also be derived for three dimensions:

P (X⃗, t) = 1
√

4πDt
3 e− X⃗2

4Dt (2.93)

σ2(t) = ⟨X⃗2⟩ = 6Dt (2.94)

2.8.2. Basic Measurement Principle
In order to perform a diffusion-weighted experiment, usually a modified spin echo
sequence is deployed. The sequence shown in Fig. 2.9a is known as Stejskal-
Tanner-sequence [ST65]. Two identical gradients that are positioned around a 180°-
refocusing pulse sensitize the signal to diffusion effects. In Fig. 2.9b, the effect of
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Figure 2.9.: a) Spin echo imaging sequence modified for single diffusion encoding.
The diffusion-sensing gradients (green) in this schematic depiction have
a trapezoidal shape and are characterized by their duration δ, rise time ξ
and amplitude G. The time ∆ gives the time difference between the onsets
of the two gradients. The data acquisition (A/D) at the echo time TE is
usually realized as EPI readout. b) Effect of the diffusion-sensing gradi-
ents on spin packets (illustrated as red arrows) in the transversal plane
in the rotating reference frame. The magnetic field is given as superpo-
sition of the static field B0 and the gradients if applied. In the case with
diffusion, the phase accumulated due to the first diffusion gradient is not
completely reversed by the second diffusion gradient due to the change
in position of the spin packets. This incomplete rephasing leads to a loss
in signal. Modified from [Kud14].
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the diffusion gradients on spin packets in the transversal plane in the rotating ref-
erence frame is shown. After the initial 90°-pulse, an additional phase is imprinted
onto the spin packets by the first diffusion-sensing gradient. This phase is reverted
by the second diffusion gradient after the 180°-pulse. The two diffusion gradients
have same polarity since the refocusing pulse also inverts the phases gained by the
spin packets. Without diffusion occurring, the signal strength is the same as in a
standard spin echo sequence.

If a spin packet undergoes a diffusion-induced movement, the phase accumulated
due to the first gradient is not fully compensated by the second diffusion gradient
due to the change in position and the related change in the Larmor frequency. As a
result, the signal acquired is lower compared to a signal without diffusion weighting
since the macroscopic magnetization is the sum of all magnetic moments.

Calculating the area under a diffusion gradient gives rise to the q-wave vector in
analogy to the concept of k-wave vectors as defined in (2.41):

q⃗ = γ
∫ t

0
dt′G⃗(t′) (2.95)

The diffusion-weighting gradients have to fulfill the rephasing condition:

q⃗(t = TE) = γ
∫ TE

0
dt′G⃗(t′) = 0 (2.96)

Since the concomitant phase (see Eq. (2.76)) generated by the first diffusion gradient
is completely reversed by the second diffusion gradient, this sequence scheme is
intrinsically compensated for concomitant field-induced artifacts.

2.8.3. Signal Equation for Free Diffusion
To obtain a connection between the signal and the applied diffusion gradients, the
Bloch equations are extended by an additional term which describes the effect of
diffusion [Tor56]. These extended equations are known as Bloch-Torrey equations.

∂M⃗

∂t
= γM⃗ × B⃗ −

 Mx/T2
My/T2

(Mz − M0)/T1

+ ∇⃗(D∇⃗M⃗) (2.97)

In this consideration, the static magnetic field is still aligned along the z-axis. The
diffusion term ∇⃗(D∇⃗M⃗) corresponds to the right-hand side of Fick’s second law
of diffusion (see equation (2.88)) in three dimensions, where the concentration has
been replaced by the magnetization M⃗ .

The time evolution of the transversal magnetization in the complex plane with a
magnetic field B⃗ = (0,0,B0 + x⃗ · G⃗(t)) reads:

∂M⊥
∂t

= −iγM⊥(B0 + x⃗ · G⃗(t)) − M⊥
T2

+ ∇⃗(D∇⃗M⊥) (2.98)
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This equation results by substituting the magnetic field in the x and y-component
of (2.97), multiplying the resulting equation for the y-component by the imaginary
unit and adding the resulting equations according to M⊥ = Mx + iMy. By inserting
the ansatz m⊥(x⃗, t) = M⊥(x⃗, t)eiγB0t+t/T2 , which separates the Larmor precession
and the decay related to T2, (2.98) is simplified to

∂m⊥(x⃗, t)
∂t

= −iγx⃗ · G⃗(t)m⊥(x⃗, t) + ∇⃗(D∇⃗m⊥(x⃗, t)). (2.99)

Here, m⊥(x⃗, t) denotes the amplitude of the precessing magnetization unaffected by
relaxation.

Considering a volume element with a constant amplitude of the transversal magne-
tization inside and diffusion occurring within allows to separate m⊥ in a location-
independent magnitude fraction M(t) and a phase fraction, i.e.,

m⊥(x⃗, t) = M(t)e−ix⃗·q⃗(t) (2.100)
⇔M(t) = m⊥(x⃗, t)eix⃗·q⃗(t) (2.101)

where q⃗(t) = γ
∫ t
0 dt′G⃗(t′), equal to (2.95).

The equation obtained by considering the derivation with respect to the time of
(2.101) together with (2.99) can be integrated and describes the loss of signal at the
echo time TE :

M(TE)
M(0) = e−D

∫ TE
0 q⃗(t′)·q⃗(t′)dt′

= e−bD, (2.102)

where
b =

∫ TE

0
q⃗ 2(t′)dt′. (2.103)

In (2.103), the b-value is defined. This value is a reference for the strength and
timing of the diffusion-weighting gradients.

Considering a trapezoidal gradient shape like it is shown in Fig. 2.9a, the b-value is
given by

b = γ2G2(δ2(∆− δ/3) + ξ3/30 − δξ2/6), (2.104)

where ∆− δ/3 is defined as the effective diffusion time in this case.

2.8.4. Determination of the Diffusion Coefficient
In the case of free diffusion, the diffusion coefficient can be determined independently
of the gradient waveform or the diffusion time. According to (2.102), the signal S(b)
is given by

S(b) = S0e−bD, (2.105)
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where S0 is the original signal without applied diffusion gradients.

A simple calculation reveals the linear connection between the logarithmized sig-
nal ratio and the b-value valid for free diffusion:

ln S(b)
S0

= −bD (2.106)

The diffusion coefficient can be measured from two signals acquired with different
b-values, b1 and b2:

D = 1
b1 − b2

ln S(b2)
S(b1) (2.107)

2.8.5. Apparent Diffusion Coefficient
In biological tissue, not the true diffusion coefficient D is obtained but rather the
ADC (apparent diffusion coefficient). Usually, the obtained ADC is smaller than
the true diffusion coefficient D. This behavior can be exploited to gain information
about structures being smaller than the typical spatial resolution in an MRI experi-
ment. The ADC is influenced by the viscosity of the medium and spatial restrictions
impeding the diffusion-induced movement. As a consequence, the typical diffusion
distance is smaller than for free diffusion. The loss in signal and the measured diffu-
sion coefficient in this case depend not only on the b-value but also on the diffusion
time and the actual gradient waveform [Kis17]. It should be noted that the ADC
represents an average value over a voxel consisting of various microenvironments.

2.8.6. Diffusion Tensor
Typically, different diffusion coefficients are present along different directions in
anisotropic biological tissue since, e.g., in the human brain cellular membranes ham-
per the diffusion motion [Bea02]. The diffusion propagator function is still assumed
to be Gaussian, which is valid also in the case of restricted diffusion for various
experimental parameters [Gre07; ZS03]. In this case of anisotropic and restricted
diffusion, a symmetric 3×3 diffusion tensor of the second order D replaces the scalar
diffusion coefficient:

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.108)

Considering an isotropic material, the diffusion tensor has only elements on the
diagonal, which read

Dxx = Dyy = Dzz = D. (2.109)

Frequently, the diffusion tensor D is represented as an ellipsoid. The principal axes
of the ellipsoid correspond to the eigenvectors of D while the eigenvalues D′

x, D′
y and
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D′
z of D are the diffusion coefficients along the principal axes. The signal considering

D can be calculated by
S(b)
S0

= e−
∫ TE

0 dt q⃗(t)⊤Dq⃗(t). (2.110)

If the direction n⃗ = q⃗
|q⃗| of the applied diffusion-sensing gradient is constant with

respect to time, the gradient vector can be rewritten by G⃗(t) = n⃗G(t) and it follows

S(b) = S0e−bn⃗⊤Dn⃗. (2.111)

With n⃗⊤Dn⃗ = n2
xDxx + n2

yDyy + n2
zDzz + 2nxnyDxy + 2nxnzDxz + 2nynzDyz, where

Dij are the elements of the diffusion tensor, the signal S(b) can be displayed by

S(b) = S0e−bg⃗·d⃗, (2.112)

with

g⊤ = (n2
x,n2

y,n2
z,2nxny,2nxnz,2nynz) (2.113)

d⊤ = (Dxx,Dyy,Dzz,Dxy,Dxz,Dyz). (2.114)

To determine all elements of the diffusion tensor (2.108), at least six measurements
with linear independent gradient directions have to be carried out since the diffusion
tensor has six degrees of freedom.

Knowledge of D allows to derive rotational invariant metrics, for instance the ADC ,
also denoted as mean diffusivity MD,

ADC = MD = 1
3tr(D) =

Dx′ + Dy′ + Dz′

3 (2.115)

and the fractional anisotropy FA,

FA =
√√√√3

2
(Dx′ − MD)2 + (Dy′ − MD)2 + (Dz′ − MD)2

D2
x′ + D2

y′ + D2
z′

, 0 ≤ FA ≤ 1. (2.116)

The latter is equal to 0 for isotropic diffusion and reaches 1 if diffusion is only
possible along one direction.

2.8.7. Double Diffusion Encoding
The concept of diffusion tensor imaging [BML94; BP96] as previously introduced
allows to infer metrics on the macroscopic scale. Since these metrics represent the
average over the voxel, information about the underlying microscopic distribution
may not be displayed. This problem is depicted in Fig. 2.10, where three different
microscopic distributions of diffusion tensors are shown together with the corre-
sponding macroscopic diffusion tensor. On the macroscopic scale, only the coherent
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Figure 2.10.: Microscopic diffusion tensor distribution and corresponding macroscopic
tensors. The first row shows different microscopic distributions of dif-
fusion tensors in a voxel: a) perfectly aligned, anisotropic b) randomly
orientated, anisotropic c) isotropic. The second row depicts the corre-
sponding macroscopic diffusion tensors obtained in the voxel. As de-
picted, both the randomly orientated, anisotropic distribution and the
isotropic distribution result in an isotropic macroscopic diffusion tensor.
Illustration modified from [Szc+15].

arrangement of the microscopical diffusion tensors is distinguishable while the mi-
croscopic random arrangement and the isotropic distribution result in an identical
macroscopic diffusion tensor. Thus, the use of FA (compare Eq. (2.116)) may lead to
confounding results in regions of crossing or dispersing fibers in brain white matter
[Dou+11] or gray matter when deployed as diagnostic marker [McN+09].

This possible ambiguity can be overcome by deploying a particular double diffusion
encoding (DDE) [She+16] sequence which is depicted in the schematic illustration
in Fig. 2.11. This sequence consists of two subsequent diffusion weightings q⃗1 and
q⃗2. Similar to the single diffusion encoding approach, the q-value for every of the
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2.8. Diffusion-Weighted Magnetic Resonance Imaging

Figure 2.11.: Schematic representation of a particular double diffusion encoding se-
quence. Two diffusion weightings consisting of a bipolar pair of gradients
are subsequently applied. The weightings are separated by a refocusing
RF pulse that allows for a mixing time tm. The gradients are char-
acterized by the duration δ and the amplitude G. The onsets of the
gradients of each bipolar pair are separated by the time ∆. Both pairs
apply the same diffusion weighting. The directions of the two applied
diffusion weightings are not necessarily equal and can be varied by an
angle between the weightings. The gradients are shown without the rise
time for simplicity, i.e., are of rectangular shape in this illustration. The
obtained signal is digitalized by the analog-to-digital converter (A/D).

two diffusion weightings is defined by

q = γ
∫ t0+∆

t0
G(t)dt, (2.117)

where t0 denotes the onset of the first gradient of the bipolar pair. In the considered
sequence, both diffusion-weighting gradient pairs apply the same diffusion weight-
ing (|q⃗1| = |q⃗2| = q). The weightings are separated by a refocusing RF pulse, which
enables to include a mixing time tm into the sequence [Mit95]. Generally, the angle
between the two weightings can be varied [KF08], i.e., n⃗1 , n⃗2, where the index
refers to the weighting. Considerations with this sequence are often referred to as
angular double-pulsed-field-gradient (d-PFG) experiments.

Based on this sequence, microstructural information can be obtained. Orienta-
tionally invariant estimations of angular d-PFG metrics can be derived deploying
a particular sampling scheme as described in [Jes+13] (see section 3.6 of this the-
sis). A dedicated derivation of these metrics can be found in [Jes+13], which is
also the basis of this brief introduction. With the definition of a compartment as
an ensemble of effectively impermeable spaces in which spin packets can diffuse,
often referred to as pores, the compartment eccentricity ϵ can be derived from the
particular angular d-PFG experiment, which can be interpreted as the anisotropy
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of the single pore diffusion tensor. The compartment eccentricity depends on the
compartment size or diffusion tensor magnitude. By division with a measure of
the magnitude of the single pore diffusion tensor, this dependency can be removed.
Based on this metric, the fractional eccentricity FE can be calculated. In contrast
to the fractional anisotropy FA, the fractional eccentricity FE is not sensitive to
orientation dispersion of anisotropic cell structures, while both metrics represent
fractional anisotropy of diffusion in an isolated pore. In systems formed by identical
pores the fractional eccentricity is identical to the microscopic fractional anisotropy
µFA [Jes+14b], which was introduced in [Las+14]. Due to the deployed sampling
scheme, concomitant field-induced artifacts can arise since the particular individual
sequence may not be intrinsically compensated.
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3. Materials and Methods
Freude an der Arbeit lässt das
Werk trefflich geraten.

Aristoteles

In the course of this thesis, different methods for concomitant phase compensation
were developed. This chapter is divided in several sections and gives an overview of
the equipment used for the corresponding simulations and experiments performed,
and to explain those very simulations and experiments.

3.1. Imaging Scanners
Two MRI systems were used to conduct measurements in the course of this the-
sis. Initial experiments were carried out on the MAGNETOM AERA imaging sys-
tems (Siemens Healthcare GmbH, Erlangen, Germany) with a system frequency of
63.6 MHz for 1H that corresponds to a nominal value of B0 = 1.49 T. The maxi-
mum gradient amplitude of this system is 43 mT/m with a maximum slew rate of
180.18 mT/(m·ms) per axis.

The main part of the experiments was done on a MAGNETOM PRISMA imaging
system (Siemens Healthcare GmbH, Erlangen, Germany) with a system frequency
of 123.2 MHz for 1H, which corresponds to a nominal value of B0 = 2.89 T. The
maximum gradient amplitude of this system is 80 mT/m with a maximum slew rate
of 200 mT/(m·ms) per axis.

3.2. Phantoms
In Fig. 3.1, all phantoms used in the course of this thesis are shown. Since the
concomitant phase has a spatial dependence, phantoms with large extension are
suitable. Therefore, an elongated water cylinder with a length of 30 cm (b) and
a spherical oil phantom (c) with a diameter of 25 cm were used. The ADC of
the oil phantom was measured to be 0.04 µm2/ms at room temperature, the lon-
gitudinal relaxation time was measured to be T1 ≈ 200 ms. In order to be able
to perform experiments regarding the concomitant phase and considering diffusion
effects, a cylindrical phantom with a diameter of 25 cm was filled with an aqueous
solution of polyvinylpyrrolidone (PVP) K30 43 % (w/w) [Wag+17] (phantom (f) in
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fedcba

Figure 3.1.: Overview of the phantoms used in this thesis. a) Vendor-provided water
bottle. b) Elongated water cylinder with a length of 30 cm. c) Spherical
oil phantom with a diameter of 25 cm. d) Q-Ball phantom. e) Small PVP
cylinder (top part) suitable for head coils. f) Large PVP cylinder with a
diameter of 25 cm.

Fig. 3.1). At room temperature, the phantom has an apparent diffusion coefficient
of ADC ≈ 0.5 µm2/ms. The longitudinal relaxation time of this phantom was mea-
sured to be T1 ≈ 800 ms, the time constant for decay of the transverse magnetization
was measured to be T2 ≈ 400 ms. To enable measurement in a head coil, also smaller
phantoms were used: a small PVP cylinder (e) with ADC ≈ 0.5 µm2/ms at room
temperature and a phantom with interleaved fiber strands at 60° (Q-Ball phantom
[Mou+11], (d) in Fig. 3.1), which is suitable, e.g., for measurements regarding
diffusional anisotropy.

3.3. Software
If not stated otherwise, all programs built in the course of this thesis for, e.g., simu-
lations, data evaluations or optimization were written in MATLAB (The Mathworks
Inc., Natick, MA, USA) up to version R2021a.

3.4. Imaging Sequences
All adaptions to existing sequence code were done in the Integrated Development
Environment for Applications (IDEA) provided by Siemens. In dependence on the
installed version on the scanner at the time of the experiment the development was
carried out under VE11C, VE11E and XA30.

Two different imaging sequences were used for the conducted imaging experiments
in this thesis. The vendor-provided MiniFLASH sequence was adapted for spin echo
measurements by adding a refocusing RF pulse with corresponding crusher gradients
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(b ≈ 0.07 s/mm2) between the excitation pulse and the readout. A bipolar gradient
pair was inserted before the refocusing pulse to enable a direct generation of the
concomitant phase. The duration and amplitude of these gradients is adjustable
in the sequence user interface at the MRI scanner to control the applied diffusion
weighting and the generated concomitant phase.

Furthermore, a spin echo EPI sequence based on the vendor-provided MiniFLASH
sequence [WSL15], in which also ramp sampling had been implemented [Mar+20;
Mar+21; Mar20], was utilized. This sequence was adapted to double diffusion en-
coding as depicted in Fig. 2.11 with fixed axes, i.e., the diffusion weighting generated
by one bipolar gradient pair is applied along one physical axis of the scanner. The
idle axes in the sequence can be used to compensate the concomitant phase intro-
duced by the diffusion-weighting gradients as explained in section 3.7.

Based on the spin echo EPI imaging sequence a second version was developed that
allows to read in normalized gradient profiles stored in textfiles. This enables the
application of arbitrary waveforms designed in advance to the imaging experiment.
Changes made to the original sequence code allowed, in principle, unlimited acqui-
sition of images.

In all EPI measurements, the refocusing RF pulse was accompanied by crusher
gradients, which introduced an additional diffusion weighting of b ≈ 0.7 s/mm2.

3.5. Signal Simulations
In order to provide a theoretical prediction and a comparison basis for the conducted
experiments, the complex signal under influence of concomitant fields was simulated.
To this end, a discretized numerical approximation of (2.77) was deployed to calcu-
late the complex signal in a voxel at position (x0,y0, z0):

SCC,discrete(x0,y0, z0) ≈ SCC
0 (x0,y0, z0) ·

∑M
i=1

∑M
j=1

∑M
k=1 e−iΦCC(xi,yj ,zk)

M3 (3.1)

In (3.1), M denotes the number of the considered equally spaced spin isochromats
in the voxel along the dimensions, respectively.

3.5.1. Coordinate System
Considering Eq. (2.73), a hyperbolic spatial dependency of the cross terms can be
seen. In order to properly calculate the signal also under influence of the cross
terms, the correct coordinate system must be known. In Fig. 3.2a, the currently1

1The used patient coordinate system depends on the vendor and may be different for a different
software version.
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Figure 3.2.: Coordinate systems for the PRISMA imaging system. a) Patient co-
ordinate system deployed by the scanner software. b) Actual gradient
coordinate system with respective signs of the coordinate values.

used patient coordinate system on the PRISMA imaging system is shown while
Fig. 3.2b depicts the actual gradient coordinate system that determines the sign
of the coordinates used in the simulations. The gradient coordinate system can
be found out in the IDEA framework with any imaging sequence. By choosing
different imaging planes (transversal, coronal, sagittal) that have an offset ∆r from
the isocenter in the patient coordinate system, the polarity of the slice selection
gradient Gslice in the sequence diagram together with the indicated shift of the
carrier frequency ∆ωc permits the determination of the sign of ∆r in the gradient
coordinate system due to the relation ∆ωc = γGslice ·∆r.

3.5.2. Slice Profile

As previously mentioned, the factor SCC
0 (x0,y0, z0) in (3.1) describes the signal that

is unaffected by concomitant field-related effects. In the optimum case, this initial
value is equal in all considered voxels. One factor leading to an anisotropic distribu-
tion across the considered imaging plane is the actual slice profile due to deviations
from a perfect rectangular profile caused by the applied RF pulses.

The IDEA framework offers the possibility to obtain the excitation profile for the
pulses used in the MRI sequence deploying the "pulsetool" program. With help of
this tool, the absolute value of the 90° RF pulse and the 180° RF pulse applied
in the sequences with EPI readout in the frequency domain was extracted. Gener-
ally, without consideration of relaxation effects the resulting fraction of excited spin
isochromats in a spin echo experiment is given by [Woe61]

M⊥(θ1 = π/2, θ2 = π) = sin(θ1) · sin2(θ2/2) (3.2)
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Figure 3.3.: Extracted excitation profiles for the 90° RF pulse (a) and the 180° refo-
cusing RF pulse (b). The final resulting slice profile expressed as fraction
of excited spin isochromats along the slice selection direction is shown in
(c). All shown profiles are based on a slice located at the isocenter of the
scanner with a nominal thickness of 3 mm.

In Fig. 3.3, the extracted excitation profiles for the 90°- and the 180°-pulse are
shown along the direction of the slice selection gradient. The profiles are based on
a slice with nominal thickness of 3 mm located at the isocenter. The resulting final
slice profile shown in Fig. 3.3c is then calculated based on (3.2). The deviations in
the excitation profile compared to the perfect uniform profile can be represented by
the mentioned factor SCC

0 (x0,y0, z0) in (3.1).

3.5.3. Point Spread Function
As explained in subsection 2.4.3, the transformation from the physical spin density
to the final image can be modeled with k-space filters in the frequency domain or the
corresponding point spread function in the spatial domain. Since all computer sim-
ulations are naturally carried out on a grid, the effect of discrete sampling described
by Eq. (2.46) is intrinsic to the result.

Finite Sampling

The goal is to quantify the effects of the concomitant fields based on an image with
two-dimensional k-space acquisition, taking into account the effect of finite sampling.
The signal simulations used for this thesis can include the boxcar function filter in
k-space (see Eq. (2.49)) to account for finite sampling. For this purpose, an input
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image is used for the simulation that is up-scaled to provide sufficient resolution to
determine the concomitant field-induced intravoxel dephasing. In the simulation, the
complex entries in the two-dimensional up-scaled image matrix at position (x1,x2)
were calculated by

SCC,discrete,up(x1,x2) ≈ SCC
0 (x1,x2) ·

∑K
k=1 e−iΦCC(x1,x2,x3,k)

K
, (3.3)

where K denotes the number of spin isochromats along the dimensions, respectively.
The coordinates (x1,x2) in (3.3) are wildcards for the physical spatial coordinates,
while x3,k denotes the position of a spin isochromat along the slice selection direction,
which in general is not the z-coordinate. To obtain an up-scaled two-dimensional
image the averaging is performed only for all x3,k-values, i.e., along the direction
of slice selection taking into account the chosen slice profile. For a transversal
imaging plane it follows (x1,x2,x3,k) = (x,y,zk), while a coronal orientation demands
(x1,x2,x3,k) = (x,z,yk). After application of the Fourier transformation on the up-
scaled two-dimensional image, a two-dimensional boxcar function with the size of
the original matrix is applied in k-space. The inverse Fourier transformation yields
the final image, which includes the effect of blurring due to finite sampling and
effects related to the concomitant phase. In Fig. 3.4, the concept to include finite
sampling into the simulations is illustrated for a transversal slice, where the initial
image used for the simulation is of size Nx,initial × Ny,initial.

T ∗
2 -Filter

As mentioned previously, the decay of the signal related to T ∗
2 has effects on im-

age resolution. The model for the k-space filter corresponding to a spin echo EPI
sequence is shown in Fig. 3.5a assuming frequency encoding along the x-axis and
phase encoding along the y-axis. The parameters for the model were selected to
match the parameters used in the experiments described in 3.9.1. For further inves-
tigation, also the filter corresponding to an FID-EPI sequence was modeled using
identical parameters (Fig. 3.5b). By pointwise multiplication of the simulated k-
space of a particular image with these filters, the effect on the image after inverse
Fourier transformation can be investigated, respectively.

3.6. Multidirectional Sampling Scheme
In [Jes+13], a set of 60 pairs of diffusion wave vectors {n⃗1, n⃗2} is published. This
sampling scheme permits a rotationally invariant estimation of particular diffusion
metrics, i.e., the orientation of the sample relative to the diffusion wave vectors is
irrelevant. It is constructed such that the first bipolar pairs n⃗1 sample the 12 vertices
of a regular icosahedron (see Fig. 3.6a). In this way, it is possible to perform
an averaging over all possible directions on a sphere. For every vertex, 5 evenly
distributed endpoints of the q-trajectory of n⃗2 with an polar angle of θn⃗1,n⃗2 = π/2 to
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Figure 3.4.: Principle of the signal simulation including blurring due to finite sampling
shown for a transversal imaging plane. The initial 3 × 3 matrix (upper
left) is up-scaled by a factor of 3 in the transversal plane in this illus-
trating example and corresponding complex signal values are calculated
considering also the z-dimension of the image. The up-scaled 9 × 9 × 9
matrix is averaged along the z-direction to obtain a two-dimensional up-
scaled matrix. A two-dimensional boxcar function with the size of the
initial matrix is then applied on the resulting hologram in k-space. In-
verse Fourier transformation yields then the final blurred image together
with concomitant field effects.

the vertex are considered, i.e., the second wave vector is orthogonal to the first wave
vector and samples directions along a great circle on the sphere (see Fig. 3.6b). In
total, 12 × 5 diffusion wave vector pairs are obtained. The vectors n⃗1 and n⃗2 refer
to the coordinate system of the scanner. Only one physical gradient axis applies the
total diffusion weighting of the first q-vector in the first ten wave vector pairs. With
respect to concomitant fields, these unique pairs do not generate cross terms. The
used diffusion wave vector pairs are listed in appendix A.1.
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Figure 3.5.: Modeled T ∗
2 k-space filter used in this thesis. a) Filter corresponding to a

spin echo EPI sequence. b) Filter related to an FID-EPI sequence. The
filters are shown for T ∗

2 = 30 ms.
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Figure 3.6.: Multidirectional sampling scheme. a) The sampling scheme is constructed
such that the first diffusion weightings sample the vertices of an icosahe-
dron that are represented by filled circles. b) Two opposed vertices are
selected to show the connection of the 5 corresponding directions of the
second diffusion weightings, respectively. In total, 10 points on a plane
in q-space are reached by the trajectories of the corresponding second
diffusion weightings. Illustration inspired by [Jes+13].
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Compartment Eccentricity and Fractional Eccentricity

With this sampling scheme, the compartment eccentricity [Jes+13] can be quantified
by

ϵ ≈
(

log
( 1

12
∑

S∥

)
− log

( 1
60
∑

S⊥

))
/q4, (3.4)

which is independent of macroscopic anisotropy. In (3.4), S∥ denotes the parallel
wave vector signal obtained by sampling the 12 vertices of the icosahedron, while
S⊥ is the perpendicular wave vector signal given by the 60 pairs of diffusion wave
vectors. To determine ϵ, in total 72 measurements are required.

Based on the compartment eccentricity ϵ, the fractional eccentricity FE [Jes+13;
Jes+14a] can be quantified via

FE =
√

3
2

√√√√√√
 ϵ

ϵ +
(

3∆2
5

)(
trD

3

)2

, (3.5)

where ∆ denotes the separation time between the onsets of the two gradients of a
bipolar pair (see Fig. 2.11).

The diffusion tensor D can either be determined with additional measurements
or calculated from the 12 parallel vector pairs. For the latter, the equation


ADC 1
ADC 2

...
ADC 12

=


g⃗⊤

1
g⃗⊤

2
...

g⃗⊤
12

 · d⃗ (3.6)

has to be solved to obtain the elements of the diffusion tensor in d⃗ (see Eq. (2.114)).
The vectors g⃗i are given by the respective applied diffusion direction (compare
Eq. (2.113)).

SNR Determination and Relative Signal Gain

Besides the determination of the diffusion metrics described above, the sampling
scheme consisting of 60 pairs of diffusion wave vectors is also suited for an assess-
ment of the benefit of concomitant field effect compensation deploying a particular
compensation technique. For a quantification of the benefit of a compensation tech-
nique, the SNR was assessed. Considering N acquisitions of an image with identical
settings, the SNR in a particular pixel i can be calculated by

SNRi = S̄i

σi
, (3.7)
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where S̄i denotes the average over N acquisitions for a pixel and σi the correspond-
ing standard deviation. By calculating the relative gain in signal achieved with a
compensation technique, the benefit for different diffusion wave vector pairs {n⃗1, n⃗2}
can be quantified. To this end, a pixelwise division of the SNR-values obtained with
an unchanged and a compensated imaging sequence for one diffusion wave vector
pair was carried out within a ROI (region of interest) and subsequently averaged
within the ROI. The corresponding standard error was used to assess the uncer-
tainty. To account for occurring deviations in the b-value between an original and a
compensated imaging sequence, the SNR-values corresponding to the compensated
waveforms were corrected by adjusting the diffusion-induced signal loss to that of
the original, unchanged waveforms using the applied b-values and an ADC map.

3.7. Self-Squared Terms of the Concomitant Field
3.7.1. Compensation Principle
According to (2.73), the concomitant field consists of three self-squared terms and
two cross-terms. In [WCR93], a method for the compensation of the self-squared-
related concomitant phase in the context of a spin echo EPI readout was proposed.
The principle is shown in Fig. 3.7. If not corrected for, the concomitant phase
introduced by the readout gradients leads to image artifacts. The technique is
based on additional oscillating gradients that generate a concomitant phase before
the refocusing RF pulse. By a suitable choice of the parameters of the oscillating
gradients, it is possible to null the accumulated concomitant phase at the center
of k-space since the phase generated by the oscillations, which is inverted by the
refocusing RF pulse, is reversed by the phase introduced by the readout gradients.
This condition can be generalized for a self-squared-related Maxwell integral:

Mii =
∫ TE

0
dt(−1)nrf(t)G2

i (t) = 0, i ∈ {x,y,z} (3.8)

This technique can be adapted to the context of double diffusion encoding when
the two bipolar diffusion weightings are separated by a refocusing RF pulse. If the
bipolar diffusion weightings are applied on a particular gradient axis, for instance
n⃗1 = (1,0,0)⊤ and n⃗2 = (0,0,1)⊤ as depicted in Fig. 3.8a , the idle gradient axes
can be used for concomitant phase compensation with oscillating gradients as it is
shown in Fig. 3.8b. The principle from [LP21] was seized in this thesis and further
elaborated and adapted for both self-squared compensation and cross term compen-
sation, which is described in detail in section 3.8.

The usage of oscillating gradients for compensation has only a minor effect on the
applied b-value since their contribution is suppressed with the square of the number
of oscillations. Furthermore, theoretically no increase in the echo time is neces-
sary since the oscillating gradients are played out concurrently with the diffusion
weighting on the other axis (compare Fig. 3.8b).
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Figure 3.7.: Schematic depiction of the correction method for concomitant field-
related artifacts in a spin echo EPI readout sequence proposed in
[WCR93]. Oscillating gradients (red dashed) on the axis correspond-
ing to the readout gradients (red) "prewarp" a concomitant phase that
is inverted by the refocusing RF pulse. By an adequate choice of the
oscillating gradients, the accumulated concomitant phase at the k-space
center can be brought to zero, which is indicated by the schematic pro-
gression of the corresponding Maxwell integral Mread. For simplicity the
shown gradients have rectangular shape.

3.7.2. Experiments

The experiments described in the following had two purposes: First, a self-squared
concomitant phase was induced by controlled application of one bipolar diffusion-
weighting gradient pair. These results were then compared to the theoretical pre-
diction. Second, the compensation technique for the self-squared concomitant phase
described above was deployed and the effect was evaluated. All experiments were
carried out with phantoms.

Phase Analysis

In the first experiment, images were acquired with the vendor-provided MiniFLASH
sequence that was changed to a spin echo sequence with diffusion weighting. These
experiments were carried out on the AERA imaging system. Phase images were re-

47



3. Materials and Methods

180° RF pulse

180° RF pulse

180° RF pulse

180° RF pulse

a) b)

Figure 3.8.: Schematic representation of the method for compensation of the con-
comitant phase related to the self-squared terms in a spin echo double
diffusion encoding sequence. a) For double diffusion encoding, bipolar
diffusion-weighting gradients (blue) are used, here for example along the
physical x- and z-axes (n⃗1 = (1,0,0)⊤ and n⃗2 = (0,0,1)⊤, respectively).
These gradients generate an additional concomitant phase. b) To null the
concomitant phase induced by the bipolar diffusion-weighting gradients,
oscillating gradients (green) are implemented. Illustration adapted from
[LP21].

constructed online2 with the vendor-provided reconstruction software and resulted
from measurements with the integrated Tx/Rx body coil. A coronal slice orienta-
tion was chosen, the slice had a thickness of 5 mm. The field-of-view was set to
FOV x = FOV y = 300 mm with a resolution of 128 × 128. One bipolar diffusion-
weighting gradient pair was applied along Gx as depicted in the upper sequence
diagram in Fig. 3.8a. The trapezoidal gradients had a flat top time of 18 ms with a
rise time of 0.43 ms. The time ∆ matched the total time of one trapezoidal gradient
pulse, i.e., no spacing between the bipolar pulses was provided. The gradient ampli-
tude of the bipolar pair was ramped up in steps of 5 mT/m in every measurement
to reach 9 qx-values between 0 mm−1 and 197 mm−1. The phase encoding direction
was set to L → R. For this experiment, the vendor-provided water bottle phantom
was used, the center of the phantom coincided with the isocenter of the scanner.
The echo time was set to TE = 84 ms, the repetition time was TR = 500 ms. The
receiver bandwidth was rBW = 260 Hz/pix. The pixel values in the reconstructed
phase images were converted into radian by multiplication with (2π/4095 − π). To
obtain the evolution of the concomitant phase at a particular position while incre-

2An online reconstruction is meant to be a reconstruction on the imaging scanner.
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menting the q-value, one small ROI with a distance of ∆z = 16.4 mm from the
isocenter was chosen in which the acquired phase values were averaged. The phase
value obtained at the isocenter was subtracted from the averaged value obtained in
the ROI. The concomitant phase was further evaluated with respect to the evolution
along the z-axis for qx = 173 mm−1 and qx = 197 mm−1. The phase value obtained
at the isocenter was again subtracted from the resulting values. The corrected phase
values were further multiplied by -1 and wrapped to 2π. Based on the z-position of
the obtained phase values, a theoretical reference value was calculated using (2.76),
which in this case simplifies to ΦCC(z) = γ

2B0

∫
dtG2

xz2.

Similar measurements were also performed on the PRISMA imaging system with
the spin echo EPI sequence. First, the compensation technique based on oscillating
gradients as previously described was assessed with the elongated water cylinder.
Coronal slices were acquired with FOV x = FOV y = 350 mm and a matrix size of
128 × 128. The cylinder was placed such that the center of the phantom matched
the isocenter of the scanner. The slice thickness was 5 mm. Data was acquired with
the integrated Tx/Rx body coil. The bipolar diffusion-weighting gradient pair was
applied along the x-axis with a maximum amplitude of Gx = 70 mT/m for both
the diffusion-weighting gradients and the oscillating gradients. The acquired 10 qx-
values ranged from 0 to 289 mm−1, which corresponds to a maximum b-value of
900 s/mm2. The flat top time of the diffusion gradients was FTT = 14.5 ms at a
rise time of ξ = 0.8 ms, which corresponds to a duration of δ = 15.3 ms. The time
∆ was equal to the total time of one trapezoidal gradient pulse. The oscillating
gradients had a flat top time of FTT osc = 0.5 ms and a rise time of ξosc = 0.8 ms to
stay below the peripheral nerve stimulation (PNS) threshold of the imaging scan-
ner. The number of oscillations required to compensate the concomitant phase was
determined by the ratio of the corresponding Maxwell moments of one diffusion-
weighting gradient and one oscillation lobe, i.e., Nosc = 2 · (Mdiff/Mosc). The factor
of 2 reflects that the diffusion weighting consists of two trapezoidal gradients and
ensures the rephasing of the compensation gradients due to the even number of ap-
plied oscillation lobes. With this configuration, the oscillation period was 4.2 ms
and the oscillating gradients introduced a maximum b-value of 14 s/mm2. Both
uncompensated and compensated images were acquired. To account for the finite
rise time of the oscillations, the echo time was set to TE = 225 ms. The repe-
tition time was TR = 4000 ms. For this experiment, the receiver bandwidth was
rBW = 1500 Hz/pix and the phase encoding direction was set to L → R. Phase
maps were obtained by offline reconstruction of raw data using the mapVBVD-tool
[Ehs23] for MATLAB. Only a single channel of the used body coil was considered.
A small ROI with distance ∆z = 28.7 mm from the isocenter was used for analysis
of the phase data that was done analogously to the experiment on the AERA sys-
tem described above. Corresponding simulations of the k-space under influence of
the uncompensated and compensated parabolic concomitant phase were conducted
considering 11 spin isochromats along the y-axis and an up-scaling factor of 5.
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In a second experiment, the evolution of the concomitant phase in transversal slices
shifted from the isocenter was measured using the vendor-provided water bottle.
The shifts from the isocenter were ∆z = 0 and ∆z = -50 mm, the respective data
was acquired within one sequence. In total, 9 qx-values ranging from 0 mm−1 to
283 mm−1 were acquired with the integrated Tx/Rx body coil. The maximum gradi-
ent amplitude was Gx = 70 mT/m. In this experiment, only the diffusion-weighting
bipolar gradient pair, which had a duration of δ = 15.1 ms, without the compen-
sating oscillating gradients was applied. The time ∆ matched the total time of one
trapezoidal gradient pulse. The field-of-view was FOV x = FOV y = 350 mm at a
matrix size of 128 × 128. The slice thickness was 3 mm. Echo time was set to
TE = 82 ms with TR = 4000 ms, receiver bandwidth was rBW = 1954 Hz/pix.
The phase images obtained from raw data were evaluated in a centered small ROI,
the phase at qx = 0 was set to zero. Theoretical reference data was calculated using
ΦCC(z) = γ

2B0

∫
dtG2

xz2.

Magnitude Images

Similar to the phase experiments carried out on the PRISMA imaging system, as well
DICOM (Digital Imaging and Communications in Medicine, [MEM02; Kah+07])
magnitude images were acquired. The parameters of the first experiment were equal
to those of the first phase experiment with the EPI sequence with changes in the
acquisition parameters: a phase partial Fourier factor of 5/8 was used, GRAPPA
[Gri+02] was enabled with an acceleration factor of 2 and the receiver bandwidth
was set to rBW = 1954 Hz/pix, allowing for an echo time of TE = 150 ms. For this
experiment, the spine coil array together with a flexible 18-channel body array coil
was used. For qx = 289 mm−1, the resulting magnitude image was simulated as-
suming a uniform slice profile and 11 spin isochromats along every dimension in the
voxel. The simulation was carried out without and also with the two-dimensional
boxcar k-space filter using an up-scaling factor of 5.

The second experiment investigated the effect of an uncompensated concomitant
phase and the compensation on the signal. To this end, 8 b-values ([0, 400, 500, 600,
700, 800, 900, 1000] s/mm2) were acquired with both the original, uncompensated
sequence and with the compensation. A 64-channel head coil was used in which the
smaller PVP cylinder was placed. Transversal slices were acquired with a field-of-
view of FOV x = FOV y = 210 mm with a voxel size of 3 × 3 × 3 mm3. GRAPPA
was enabled with an acceleration factor of 2 together with a phase partial Fourier
factor of 6/8. Without compensating oscillating gradients, the maximum gradient
strength was Gx = Gz = 76 mT/m, i.e., the diffusion weighting was applied along
the x- and z-axis, respectively. The gradient duration was δ = 14.6 ms. Echo
time was TE = 86 ms. When the compensating oscillating gradients were applied,
the time between the onsets of the gradients forming one bipolar gradient pair was
set to ∆ = 22.7 ms to stay below the PNS threshold, which reduced the maximum
applied amplitude to Gx = Gz = 60.5 mT/m. Gradient duration in this case was
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δ = 14.7 ms, the echo time was TE = 99 ms. The compensating oscillating gradi-
ents were manually adjusted: 4 oscillations with a period of 9.2 ms were applied,
which led to a ratio of the Maxwell moments of Mdiff,tot/Mosc,tot = 1.0002, where
the subscripts assign the total moments to the diffusion-weighting gradients and
the oscillating gradients on one gradient axis. The oscillations gave rise to a maxi-
mum additional b-value of 50 s/mm2. Measurements were performed with a shift of
the transversal slice from the isocenter of ∆z = -25 mm and ∆z = -50 mm, respec-
tively. The repetition time was set to TR = 6500 ms with a receiver bandwidth of
rBW = 1984 Hz/pix in all experiments.

3.8. Developed Compensation Strategies
In general, the diffusion weightings applied before and after the refocusing RF pulse
are not applied along a physical axis but are arbitrarily oriented. In this case,
|q⃗1| = |q⃗2| = q still holds but the bipolar diffusion-weighting gradient pair is split
across the scanner axes. This means that generally no idle time of a axis is usable
for concomitant field effect compensation (compare section 3.7). To find possible
compensation strategies based on oscillating gradients, different simulation frame-
works have been developed in the course of this thesis. In all considerations made in
this section, the time ∆ (compare Fig. 2.11) is meant to be equal to the total time
of one gradient pulse of the bipolar pair, so there is no spacing between the bipolar
gradients.

3.8.1. Efficiency Analysis for Self-Squared Terms
In a first step, only the self-squared terms of the Maxwell phase were considered,
which are dominant for many MRI sequences. Later in the sections 3.8.2 and 3.8.3,
also the cross terms were considered, which are increasingly relevant for arbitrary
diffusion wave vector pairs.

The efficiency of compensating the self-squared concomitant phase using additional
oscillating gradients in the case of occupied gradient axes before and after the refo-
cusing pulse was assessed in simulations. The basic principle is depicted in Fig. 3.9.
A bipolar diffusion-weighting gradient pair is applied along the x-axis before the
refocusing pulse. The second bipolar gradient pair is split across the x- and y-axis
such that an angle ϕG is formed between G⃗1 = (Gx,1,0)⊤ and G⃗2 = (Gx,2,Gy,2)⊤,
where the subscript of the vector and of its components refers to the position before
("1") and after ("2") the refocusing pulse. For a given angle ϕG ∈ [90◦,0◦], oscillat-
ing gradient lobes are added onto the bipolar gradient pair that has the amplitude
Gx,2. Suitable parameters for the oscillation lobes were searched to reach the high-
est compensation efficiency, which is defined as the absolute value of the percental
decrease of Mxx =

∫TE
0 dt(−1)nrf(t)Gx(t)Gx(t) (compare Eq. (3.8)) such that the

complete gradient profile is considered. The used searching methods are explained
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180° RF pulse
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a) b)

Figure 3.9.: Schematic principle of the simulation framework to assess the efficiency
of compensation of the self-squared terms of the concomitant field with
oscillating gradient lobes. For simplicity, all depicted gradient pulses
have rectangular shape. a) Illustration of the considered gradients for
the efficiency analysis. A bipolar gradient pair with amplitude Gx,1 is
applied before the refocusing pulse along the x-axis (blue). The second
bipolar gradient pulse (red) is split across the x- and y-axis and has the
amplitudes Gx,2 and Gy,2, respectively. These gradients have a duration
of δ. Oscillating gradient lobes with amplitude GOsc and a particular flat
top time are added onto the bipolar pair that has the amplitude Gx,2
with the aim to null the Maxwell integral Mxx, resulting in the dashed
green waveform. In the shown sequence diagram, three full oscillation
periods consisting of two oscillation lobes were added onto each of the
two bipolar gradients, respectively. b) The two vectors G⃗1 = (Gx,1,0)⊤

and G⃗2 = (Gx,2,Gy,2)⊤ enclose the angle ϕG. The maximum amplitude
is set by Gmax = Gx,1 =

√
G2

x,2 + G2
y,2.

in the following. The results can be transferred analogously to the gradients Gy and
Gz since only a self-squared Maxwell integral is considered.

Brute-Force Search

To demonstrate the possibility to reduce a self-squared-related Maxwell moment
also in the case ϕG , 90◦, first a brute-force search was carried out. For this sim-
ulation experiment, bipolar diffusion gradients introducing a diffusion weighting of
b = 500 s/mm2 with gradient pulse duration δ = 12 ms were considered. The oscil-
lating gradients were added subsequently onto the bipolar gradient pair starting at
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the onset of the first gradient. In total, 49 equidistantly spaced values for ϕG were
evaluated and the best parameter combination with respect to the highest percental
decrease of Mxx were selected, respectively. The effect of allowing an increase of
the total time of the superimposed waveform, i.e., the modified bipolar gradient
pair, by 5, 10 and 20 ms was evaluated as well. In these experiments, the added
oscillations introduced an absolute b-value deviation of less than 100 s/mm2. Fur-
thermore, this limit was reduced to 50 s/mm2 and analyzed without allowed time
extensions of the superimposed waveform that may result in an increase in echo
time. The maximum amplitude of all gradients was limited to 76 mT/m at a slew
rate of 200 mT/m/ms, leading to a rise time of 0.38 ms. For a given angle ϕG, the
number of added full integer oscillation periods was equidistantly incremented from
0 to 9. For every considered number of periods, 50 equidistant values for the flat
top time of the oscillation lobes ranging from 0 ms to 4 ms were tested. For every of
these combinations, 50 equidistant values for the amplitude of the oscillation lobes
in the range from 0 mT/m to 76 mT/m were considered. The found combinations
complied with the amplitude limit of 76 mT/m. For this analysis, only Mxx was
considered as an example as stated above.

Optimization Approach

Besides the brute-force search, an optimization framework was developed to assess
the optimum compensation efficiency with balanced deviations. The optimum pa-
rameters for the oscillations were found by minimizing a cost function that contains
weighted squared deviations of the considered quantities from the optimum value.
The function reflects the trade-off between an increase in the echo time due to the
non-zero rise times of the gradients, the additional b-value due to the oscillating gra-
dients, the desired compensation of the parabolic concomitant phase and the desired
diffusion direction, i.e., the q-value. The fmincon solver in MATLAB was deployed.
The total time allowed for all oscillation lobes was limited by the total time of the
underlying bipolar gradient waveform. For this experiment, equal parameters for
the bipolar gradients as in the brute-force search were used. The effect of prolonging
the duration δ of the waveforms by 5 ms was also investigated, which resulted in
a maximum amplitude of the bipolar diffusion gradients of 57.4 mT/m. The rise
time of all applied gradients remained 0.38 ms. For a fixed number of oscillation
lobes ranging from 1 to 5, which were added equally to the first and second gradient
of the bipolar diffusion-weighting gradient pair, 20 starting values for the flat top
time of the oscillation in the range from 0 ms to 10 ms were provided. Furthermore,
20 starting values for the amplitude of the oscillation lobes ranging from 0 mT/m
to 76 mT/m were considered. The different parameters did not vary among the
added oscillations during optimization of a particular waveform, i.e., were equal for
all added oscillating gradients for a particular angle ϕG. Since also odd numbers
of oscillation lobes are possible, an amplitude scaling of the underlying bipolar dif-
fusion gradients was enabled to maintain the qx,2-value, 40 starting parameters in
the range of 0 to 2 were considered. For the same reason, it was also possible to
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Figure 3.10.: Pulse-width modulation shown for rectangular bipolar gradient pairs. a)
Two bipolar diffusion-weighting gradient pulses with arbitrary diffusion
directions, i.e., n⃗1 , n⃗2 are applied. Without loss of generality, only the
x-axis is considered, where the stronger bipolar pulse has the amplitude
G1 and the weaker pulse the amplitude G0. The gradient duration
δ0 is equal for both pulses. b) The weaker bipolar gradient pulse and
oscillating gradients have been composed to one pulse-width modulated
gradient pulse with short and long durations δ− and δ+, respectively, to
compensate the concomitant phase introduced by the stronger bipolar
pulse while conserving the q-value of the original weaker bipolar pulse.
The modulation has also the amplitude G1. The oscillations are chosen
to be point-symmetric with respect to the endpoint of the first gradient
of the original bipolar pair with amplitude G0. Illustration adapted from
[LP21].

change the polarity of all lobes added onto the first gradient. All starting parameters
were equally spaced. For each of the 49 equidistant values for ϕG, the parameters
minimizing the cost function best were selected and considered as optimum.

3.8.2. Pulse-Width Modulation
In addition to the technique of adding adequate oscillating gradients onto the un-
derlying waveform to obtain a compensation of the self-squared concomitant phase,
also an analytical method to find the compensating waveform has been investigated
and developed in the course of this thesis. This method is based on a pulse-width
modulation (PWM) of the underlying waveform. The principle for rectangular gra-
dient pulses is described in [LP21] and was the basis for the further development of
this technique carried out and described in the following.

First, the case of rectangular gradient pulses is considered, then the correspond-
ing equations for the case of gradient pulses with finite slew rate are presented.
Based on this, it is then explained how adequate compensation of the self-squared
phase is achieved by means of pulse-width modulation. Finally, it is shown how the
method can be applied to compensate the complete concomitant phase, i.e., taking
into account the cross terms.
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Rectangular Gradient Pulses

In Fig. 3.10a, two rectangular bipolar diffusion-weighting gradient pulses with differ-
ent amplitudes are shown with no loss of generality along the x-axis. This represents
the general case of arbitrarily oriented diffusion directions, i.e., n⃗1 , n⃗2. The weaker
bipolar gradient pulse can be modulated to compensate the concomitant phase in-
troduced by the stronger bipolar pulse. To find the corresponding durations of the
modulating pulses for rectangular gradients, two conditions are considered:

NOsc · (δ+ + δ−) = δ0 (Conservation of gradient duration) (3.9)
G0 · (δ+ + δ−) = G1 · (δ+ − δ−) (Conservation of q-value) (3.10)

These equations can be inferred from Fig. 3.10b, which shows the modulated gra-
dient pulse. In these equations, δ+ and δ− denote the long and short duration of a
modulated oscillation, respectively, while δ0 is the original duration of one diffusion-
weighting gradient pulse. The amplitudes G0 and G1 correspond to the weaker and
stronger original bipolar pulse, respectively. The number of applied full modulated
oscillations per single gradient of one pair is denoted as NOsc. From (3.9) and (3.10),
expressions for δ+ and δ− can be obtained:

δ+ = δ0
2NOsc

(
1 + G0

G1

)
(3.11)

δ− = δ0
2NOsc

(
1 − G0

G1

)
(3.12)

In the described case of rectangular gradients, the pulse-width modulation of the
weaker pulse enables a complete compensation of the concomitant phase introduced
by the stronger pulse with simultaneous diffusion weighting. Furthermore, the echo
time remains unaffected since the original duration δ0 is conserved.

Finite Slew Rate

Since in a real-world experiment the gradients have a finite slew rate, the equations
(3.9) and (3.10) have to be adapted to trapezoidal gradients by considering a non-
zero rise time ξ of the bipolar gradient pulses and the modulated oscillations:

NOsc · (δ+ + δ− + 2ξ) = δ0 + ξ (Conservation of gradient duration) (3.13)
G0 · δ0 = G1 (δ+ − δ−) · NOsc (Conservation of q-value) (3.14)

From (3.13) and (3.14), the expressions for the short and long duration of the mod-
ulated oscillations can be derived:

δ+ = δ0
2NOsc

(
1 + G0

G1
+ ξ

δ0

)
− ξ (3.15)

δ− = δ0
2NOsc

(
1 − G0

G1
+ ξ

δ0

)
− ξ (3.16)
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It should be noted that, due to the finite slew rate, a full compensation of the self-
squared-related concomitant phase is not ensured since the derived equations do not
contain this condition.

Improvement of Compensation of the Self-Squared Terms

Considering the efficiency regarding the compensation of the self-squared concomi-
tant phase on one particular axis, an analysis using the angle ϕG can be carried out
analogously to the principle shown in Fig. 3.9. By considering

ϕG = arccos
 G⃗1 · G⃗2

|G⃗1| · |G⃗2|

= arccos
(

Gx,1 · Gx,2
Gx,1 · Gx,1

)
= arccos

(
Gx,2
Gx,1

)
≡ arccos

(
G0
G1

)
,

(3.17)
the connection is visible.

To improve the compensation efficiency regarding the self-squared terms of the con-
comitant field, the amplitude of the modulation oscillations GPWM can be increased
to a value of G1 ≤ GPWM ≤ Gmax, where Gmax represents an amplitude limit that
is, e.g., set by the scanner hardware.

As explained previously, all bipolar diffusion-weighting gradients have the same
duration, in this section denoted as δ0. This duration is connected to the high-
est amplitude Gn,max occurring in the set of considered gradient wave vector pairs
{n⃗1, n⃗2} via δ0 = δ0 (Gn,max, ξ, b), i.e., δ0 is given by the maximum amplitude occur-
ring in the set, the chosen rise time ξ and the b-value introduced by each complete
bipolar gradient pair.

In a given vector set, there also exists one maximum amplitude G0,max of all bipolar
pulse pairs that are combined with the modulated oscillations. To enable a pulse-
width modulation as described above for all wave vector pairs in the set {n⃗1, n⃗2}
deploying a predetermined number of full oscillations NOsc, the condition

δ− − ξ = δ0
2NOsc

(
1 − G0,max

GPWM
+ ξ

δ0

)
− 2ξ ≥ 0 (3.18)

must be kept, which ensures a non-negative flat top time of the short modulated
oscillation. The condition (3.18) can be transformed into

νmax := G0,max
GPWM

≤ −4ξNOsc
δ0

+ ξ

δ0
+ 1, (3.19)

where νmax is the maximum ratio of the maximum occurring amplitude of a pulse
that is combined with modulated oscillations and the minimum amplitude of these
oscillations enabling the pulse-width modulation technique for a given set {n⃗1, n⃗2}.
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For an amplitude limit of Gmax = 75 mT/m and a rise time of ξ = 0.4 ms, the
compensation efficiency with respect to the self-squared terms of the concomitant
field was examined for 49 equidistant values of ϕG ∈ [90◦,0◦[, forming the considered
wave vector pair set {n⃗1, n⃗2} in this experiment. Each complete bipolar gradient
pair applied a diffusion weighting of b = 500 s/mm2, the gradient duration was
δ0 = 12.1 ms.

First, the compensation efficiency was evaluated for the case of equal gradient
amplitudes, i.e., GPWM = G1 (compare Fig. 3.10). This means that the ampli-
tude of the modulated oscillations was not increased, so a possible improvement
of the compensation efficiency was not considered. This experiment was done for
NOsc = {1, 2, 3, 4}, respectively. The amplitude G1 was equal to the limit Gmax.

Second, the efficiency was also examined in the case of applied improvement, i.e.,
GPWM ≥ G1, which means that the amplitude of the modulated oscillations can also
be larger than the amplitude of the waveform to be compensated as explained above.
This experiment was done with two different values for NOsc. In this experiment,
the amplitude G0,max (compare Eq. (3.18)) is given by Gn,max and corresponds to
ϕG = 0°. The maximum occurring amplitude Gn,max was set to 71.1 % (NOsc = 3)
and 63.5 % (NOsc = 4) of Gmax to comply with Eq. (3.19) even for the small-
est occurring value of ϕG. The resulting gradient durations δ0 were 15.3 ms and
16.5 ms, respectively. For two diffusion directions from the considered set {n⃗1, n⃗2},
the parameters GPWM, δ+ and δ−, which compensated the self-squared concomitant
phase best (see Eq. (3.8)), were determined by a gradient-based optimization with
the constraint from (3.19) using the fmincon solver in MATLAB.

Consideration of Cross Terms of the Concomitant Field

So far, only the compensation regarding the self-squared terms of the concomitant
field has been considered. For a sampling scheme consisting of various diffusion wave
vectors as in, for instance, the scheme described in section 3.6, the cross terms of the
concomitant field may also have a significant influence on the acquired image. To
minimize the impact of the cross terms of the concomitant field, the overlap integral
occurring in (2.76) due to the cross terms has to be minimized.

Analogously to the modulation for compensation of the self-squared terms, the three
gradient axes are considered subsequently to achieve compensation of concomitant
field effects for a particular wave vector pair {n⃗1, n⃗2}. On a gradient axis, the gra-
dient form with the highest amplitude undergoes a gradient-based optimization to
determine GPWM, δ+ and δ− with a minimal b-value deviation and the constraint in
Eq. (3.19). The optimum for the same parameters for the lower amplitude gradients
is then found with the objective of concomitant field effect compensation based on
Eq. (3.8). The fmincon solver in MATLAB was used. The modulated oscillation
lobes on the gradient axes x and y are cyclically shifted by one oscillation lobe in-
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dependently. The variation of the 24 = 16 possible shifting variations that leads to
the smallest concomitant field-induced signal loss in a transversal slice with a field-
of-view of FOV = 210 × 210 mm2 and an isotropic voxel size of 3 × 3 × 3 mm3 is
then chosen for the particular wave vector pair {n⃗1, n⃗2}. A shift of the transversal
slice with respect to z can be considered. Along the voxel dimensions, 10 equally
spaced spin isochromats, i.e., a total of 1000, were considered for the evaluation,
respectively. Considering a set of i pairs of bipolar diffusion-weighting gradients
with diffusion directions {n⃗1,i, n⃗2,i}, G0,max is given by the maximum occurring am-
plitude of one bipolar pulse within this set since all bipolar pulses are replaced by
modulated oscillations.

This technique was evaluated in simulations using the sampling scheme consist-
ing of 60 pairs of diffusion wave vectors as described in section 3.6 and listed in ap-
pendix A.1. Two b-values of 500 s/mm2 and 2000 s/mm2 applied per bipolar gradient
pair, i.e., direction vector, were considered. The rise time was set to ξ = 0.4 ms, the
limit of the amplitude of the modulated oscillations was set to Gmax = 75 mT/m. A
number of NOsc = 4 oscillations per single gradient of a bipolar pair was used. To en-
able the pulse-width modulation, the maximum amplitude occurring in the original
set of waveforms was set to G0,max = 0.635 · Gmax = 47.625 mT/m (b = 500 s/mm2)
and G0,max = 0.74 · Gmax = 55.5 mT/m (b = 2000 s/mm2) that led to durations of
δ0 = 16.5 ms and 23.7 ms, respectively. The optimum parameters for the modulated
oscillations and the optimum shifting were searched for all diffusion wave vector pairs
for an off-isocenter shift of ∆z = -50 mm. The found optimum waveforms were then
used for the signal simulations. These simulations were done for a field-of-view of
FOV = 300 × 300 mm2 and an isotropic voxel size of 3 × 3 × 3 mm3. The simu-
lations considered 101 uniformly distributed spin isochromats along the three voxel
dimensions, respectively. The benefit in terms of the relative signal gain was evalu-
ated in a central ROI with a diameter of 17 cm. The relative signal gain for every
diffusion wave vector pair was calculated with reference to the respective unchanged
waveforms based on the maximum amplitude Gmax = 75 mT/m.

3.8.3. Cross Term Compensation by Optimized Addition
In section 3.8.1, the idea of addition of trapezoidal oscillating gradients onto the
originally applied linear diffusion-weighting gradients with the aim of compensation
of the self-squared-related concomitant phase was introduced. As explained above,
in the general case of arbitrary diffusion wave vector pairs, the cross terms of the
concomitant field may contribute significantly to the concomitant phase accumu-
lated by the transversal magnetization. In order to deploy the technique of adding
trapezoidal oscillating gradients for concomitant field effect reduction for arbitrary
diffusion wave vector pairs, a tailored optimization framework was developed in the
course of this thesis. This technique combines the idea presented in section 3.8.1
with the method of adequate shifting of the oscillation lobes as presented in sec-
tion 3.8.2.
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Figure 3.11.: Representation of the developed compensation method for concomitant
field effects in a spin echo EPI sequence deploying added oscillation
gradients. Trapezoidal oscillations modify the original gradients (blue),
which are applied on the physical gradient axes, resulting in the compen-
sating gradient pulses (red). For simplicity, all other applied gradients
are not shown. All original gradient pulses are defined by the rise time
ξbipolar and the duration δ, giving the total gradient time τ , which was
equal to the time ∆. A predetermined diffusion weighting is applied
along a particular direction before and after the refocusing pulse (here
n⃗1 = (−0.53,0.72,−0.45)⊤ and n⃗2 = (−0.69,−0.05,0.72)⊤, respectively,
corresponding to vector pair 28 in appendix A.1). The two diffusion
wave vectors are separated by a mixing time tm. Among others, the
flat top times of the positive and negative oscillation lobes (FTT+ and
FTT−), which modify a partial bipolar gradient pair, are free parame-
ters for the optimization. The maximum allowed amplitude is denoted
by Gmax.

For an input waveform g⃗original = (gx,1(t) + gx,2(t),gy,1(t) + gy,2(t),gz,1(t) + gz,2(t))⊤,
where the subscripts associate the six split bipolar gradient pulses to the gradient
axes and to the first or second bipolar pulse pair, respectively, the aim is to find
optimum parameters for the added oscillation lobes that reduce the signal loss in-
duced by the concomitant phase. These optimum parameters include the number
of added oscillation lobes, their amplitude, the flat top time and the arrangement.

The optimum configuration g⃗opt(t) reducing the signal loss induced by the concomi-
tant phase was searched using the patternsearch algorithm [CGT91; CGT97; AD02]
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(see Fig. 3.12) in MATLAB. As described previously, each of the bipolar gradient
pairs applies a diffusion weighting b along a particular gradient direction given by
the q-vector. One example input waveform and the corresponding parameterization
is depicted in Fig. 3.11. All original bipolar diffusion-weighting gradient pulses have
the same duration δ and rise time ξbipolar. Consequently, the total time τ is equal
for all original pulses. As mentioned in the introduction to this section, the time
∆ equals the total time τ , which also is the smallest possible time. As sketched in
Fig. 3.11, trapezoidal oscillating gradients are added onto all original underlying
trapezoidal bipolar gradient pulses. When the voxel-averaged signal loss caused by
the concomitant field-induced intravoxel dephasing was minimal, a modulated wave-
form g⃗modulated(t) was considered optimal. Since the affected absolute signal has to
be calculated for every considered cubic-shaped voxel, a Taylor-approximation of
equation (2.77) was used assuming a uniform slice profile:

|SCC,approx(x0,y0, z0)| ≈ 1 −
0.5 · c · γ2

(∫
dt∇⃗BCC (g⃗modulated(t),x0,y0, z0, t)

)2

∫
Voxel dV

,

(3.20)
with c = 1

12∆x5 being a constant including the isotropic voxel size ∆x. With the
help of (3.20), the iterations of the optimization algorithm could be accelerated
since cases with only moderate dephasing were considered in the simulations. A
derivation of (3.20) is given in appendix A.2. The time integral in (3.20) was evalu-
ated for every call of the optimizer for the corresponding modulated waveform with
consideration of the phase shift due to the 180° refocusing pulse.

For an equal predefined number of oscillation lobes added to each of the six bipolar
pulses considered, the flat top time of the positive and negative lobes FTT+ and
FTT−, respectively, and the gradient amplitude of the oscillation were left as free
parameters for optimization, so that they could vary between the different six pulses
but remain the same within a pulse (compare Fig. 3.11). A scaling of the amplitude
of the underlying original waveforms was allowed during optimization to enable the
keeping of the respective q-value of the underlying original waveform for odd num-
bers of added oscillation lobes.

Respective constraints set for the optimization ensured that the optimized wave-
form g⃗opt(t) complied with set limits and only exhibited small deviations from the
characteristics of the original waveform g⃗original(t) to within small tolerances. The
oscillation lobes were added only within the time τ , i.e., no deviation with respect
to the total time of the underlying gradient pulse was allowed. Furthermore, the
maximum absolute amplitude of the added oscillating gradients was restricted to a
set limit Gmax. The properties of the original waveform regarding the b- and q-value
were kept by allowing a maximum deviation of the b-value of 6 % of the applied
weighting and a maximum absolute deviation of the q-value of |∆q| = 0.05 mm−1.
The refocusing condition

∫ t0+2τ
t0 dt g⃗opt(t) = 0 was kept strictly for every modulated

bipolar pulse, where t0 is the onset of the first or second bipolar pulse pair.
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All optimizations carried out in the course of this thesis used the same set of starting
parameters for the optimization. For an equal integer number of oscillation lobes
ranging from 2 to 6 added onto each single diffusion gradient, 10 equal values for
the flat top time of the positive and negative oscillation lobes for the six considered
pulses were initialized and subsequently fed into the optimizer. Starting with the
maximum possible values to stay within the time constraint, the values were equally
decreased by 400 µs. The initial amplitude of the added oscillations was chosen such
that the initial modulated waveform reached the predefined amplitude limit Gmax.
The so prepared waveform consisting of the addition of the original waveform and
the initial oscillation lobes was then optimized with the aim of a minimum signal
loss within the set constraints. All optimizations carried out in this thesis consid-
ered a transversal slice in the optimization target function. The slice had a FOV
of 210 mm × 210 mm with an isotropic voxel size of ∆x = 3 mm. The rise times of
the added oscillation lobes were adjusted not to exceed the maximum slew rate and
in case of in vivo measurements to respect the peripheral nerve stimulation limits.

Since in contrast to the pulse-width modulation method presented in section 3.8.2,
a complete sequence was optimized and not the sequence axes independently, a
different method for finding the optimum arrangement of the oscillation lobes was
deployed. To also take into account the cross terms of the concomitant field, the best
arrangement of the oscillation lobes was determined in advance to the optimization
individually for every considered diffusion wave vector pair. To this end, 4 full oscil-
lations using the total available time and having the maximum allowed amplitude
were added onto the original waveform pulses. For every considered diffusion wave
vector pair, 36 = 729 variations of the three following options were tested: no change
in one particular pulse pair, cyclical shifting of all lobes within a particular pulse
pair and only shifting of the lobes added onto the second bipolar gradient pulse of a
particular pulse pair. The variations were evaluated and selected with respect to the
maximum decrease of the cross term-related Maxwell moments due to the respective
arrangement. The optimization itself was then carried out based on this arrange-
ment. Without any shifting, the oscillating gradients are added point-symmetrically.

The optimization was repeated for different "expansion" and "contraction" values
used by the patternsearch algorithm that control the deployed mesh size after a suc-
cessful and unsuccessful polling of the algorithm, respectively. All resulting 92 = 81
combinations of the values [2, 5, 10, 20, 50, 100, 200, 500, 1000] and the respective
reciprocal used for the "contraction" and "expansion" factor, respectively, were eval-
uated for all considered diffusion wave vector pairs. Out of these combinations, the
best result for every diffusion wave vector pair with respect to the minimum signal
loss was chosen. Every run of the optimizer was limited to 1000 iterations.
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Figure 3.12.: Flow chart of the patternsearch algorithm. Starting from an initial point,
mesh points are calculated based on the size of the mesh. These points
are polled by calculating the target function. If a new local minimizer
was found, the poll was successful and the mesh size is increased by a
given "expansion" factor. If a poll was unsuccessful, the mesh is refined
by a set "contraction" factor. Figure modified reproduced from [Mat23].

3.9. Phantom Experiments with a Multidirectional
Sampling Scheme

3.9.1. Relative Signal Gain
To assess the benefit of the technique described in section 3.8.3, the complete set of
60 diffusion wave vector pairs (see appendix A.1) was measured. The measurements
were conducted with waveforms that were optimized for a transversal slice with off-
isocenter shift of ∆z = -50 mm for different b-values. The parameters of the wave-
forms applying different diffusion weightings are listed in Tab. 3.1. The experiments
were carried out on the PRISMA imaging system. The EPI sequence with the pos-
sibility of input of textfiles containing the gradient profiles was used. In accordance
with the optimization parameters, transversal slices that had an off-isocenter shift
of ∆z = -50 mm were acquired in all measurements conducted to assess the relative
gain in SNR. The field-of-view was set to 300 × 300 mm2 with an isotropic voxel
size of 3 × 3 × 3 mm3, the receiver bandwidth was set to rBW = 2000 Hz/pix.
Every measurement series of the whole vector set first acquired an image without
diffusion weighting (b0-image). Afterwards, the original and optimized sequences
corresponding to the diffusion wave vector pairs in ascending order were applied.

62



3.9. Phantom Experiments with a Multidirectional Sampling Scheme

Table 3.1.: Parameters of the waveforms used to assess the relative signal gain. The b-
value is applied along every direction before and after the refocusing pulse,
respectively. The values given for the rise times correspond to both the
original and the optimized gradients. Corresponding measurements were
carried out with the stated (minimum) echo time TE .

b-value Gmax Rise times δ TE
(s/mm2) (mT/m) (ms) (ms) (ms)

500 75 0.4 12.1 117
1000 75 0.4 15.3 129
1500 75 0.4 17.6 138
2000 75 0.4 19.3 146

All repetitions of a particular waveform were acquired subsequently: an original
sequence was repeated and then followed by the repetitions of the corresponding
optimized sequence. In total, 121 data sets were acquired within a measurement
series. The PNS monitoring of the imaging scanner was disabled for these mea-
surements. If the large PVP cylinder was used, the repetition time was set to
TR = 4000 ms. Measurements with the spherical oil phantom were conducted with
TR = 2000 ms. The total acquisition time for one experiment depended on the
number of acquired repetitions, and amounted up to 13.66 h for 100 repetitions per
waveform using the large PVP cylinder that were acquired to accurately determine
the SNR. Corresponding simulations to compare the results to were done consid-
ering a uniform slice profile and 101 spin isochromats along the voxel dimensions,
respectively. The FOV and the voxel size in the simulations were set identical to
the parameters used for the measurements. Raw data evaluation was done with a
sum-of-squares reconstruction using the mapVBVD-tool for MATLAB and a self-
built correction for the EPI N/2-ghost, which corrects odd and even lines of k-space
with an assumed gradient delay and interpolates acquired data on expected position
in k-space. All measurements were carried out with the spine array together with a
flexible 18-channel body coil. The phase encoding direction was A → P .

3.9.2. Elemental Rotations
To assess the influence of the sampling scheme on the measured relative signal gain,
the originally deployed scheme (see appendix A.1) was changed. For every origi-
nal diffusion wave vector pair, the normalized direction vectors were altered by an
elemental rotation deploying the angles αx = αy = π/4 and αz = 0 for rotations
about the x, y and z-axis, respectively, and then fed into the developed optimiza-
tion framework described in section 3.8.3. Measurements with 100 repetitions were
carried out with the large PVP cylinder and the spherical oil phantom. The orig-
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inal waveforms applied a diffusion weighting of b = 2000 s/mm2 per bipolar pair.
The echo time was set to TE = 145 ms for these sequences. All other parameters
regarding measurement and simulation were identical to those mentioned in section
3.9.1.

3.9.3. Testing for Agreement
The multidirectional sampling scheme as listed in appendix A.1 can also be sep-
arated in two sets a and b of 30 wave vector pairs each where the conditions
(n⃗1)a = −1 · (n⃗1)b and (n⃗2)a = −1 · (n⃗2)b hold, i.e., each diffusion wave vector pair in
a has an inverted twin pair in b. Theoretically, these twin pairs generate an equal ac-
cumulated concomitant phase. The respective optimized sequences can be inverted
without influence on the concomitant phase compensation. To test the agreement
of the effect of the initial optimized waveform and the inverted optimized waveform,
the diffusion wave vector pairs 25 and 30 as inverted twin pair were chosen. With
the basic setup parameters described in section 3.9.1, 100 repetitions were acquired
using the large PVP cylinder to assess the respective relative signal gain. In this
experiment, the original waveforms applied a diffusion weighting of b = 2000 s/mm2

per bipolar gradient along the respective diffusion direction.

3.9.4. Position Experiments
To obtain information about possible vibrations in an imaged object due to the
strong oscillations applied in the optimized waveforms, experiments with different
positionings of the larger PVP cylinder were conducted. The first 5 diffusion wave
vector pairs (see appendix A.1) were used in this experiment. If not stated differ-
ently, the parameters as described in section 3.9.1 were applied for measurements
and simulations. The respective original and optimized waveforms applied a diffu-
sion weighting of b = 500 s/mm2 per bipolar pair with a maximum amplitude of
Gmax = 75 mT/m. The cylinder was put horizontally, i.e., the normal vector of the
cylinder basis pointed along the y-axis of the gradient coordinate system, directly
on the table of the scanner and in an elevated position supported by a foam layer.
Furthermore, the cylinder was also put vertically with the cylinder basis normal
vector pointing along the z-axis of the gradient coordinate system. The SNR and
the averaged standard deviation of the signal resulting from 10 acquired repetitions
were calculated for small ROIs located either in the bottom region or in the top
region of the field-of-view for the different positionings of the phantom. Together
with b0-acquisitions, i.e., without diffusion weighting, in total 11 data sets were gen-
erated using the original and compensated waveforms of the first 5 vector pairs.
The experiments were carried out without slice shift (∆z = 0 mm) and with a shift
of ∆z = -50 mm, although the waveforms have been optimized for a slice shift of
∆z = -50 mm as stated in section 3.9.1. The flexible 18-channel body array was
used together with the spine array. The repetition time was set to TR = 3000 ms
in this experiment.
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3.10. In Vivo Experiments
In order to enable experiments in vivo with the optimized waveforms as described
in section 3.8.3, the maximum slew rate was limited to 46.9 mT m−1 ms−1. For
a maximum amplitude of Gmax = 75 mT/m, the rise time of the bipolar diffusion-
weighting gradients was therefore set to ξbipolar = 1.6 ms. The original bipolar pulses
applied a diffusion weighting of b = 750 s/mm2, respectively. The gradient duration
was δ = 13.3 ms, which results in a value for ∆ of 14.9 ms. To better utilize the
gradient strength of the imaging system, the optimized waveforms were designed
with the maximum slew rate where possible, i.e., in particular cases with a rise time
smaller than 1.6 ms. The waveforms were optimized for transversal slices with a shift
from the isocenter of ∆z = -50 mm. All in vivo experiments were carried out on the
PRISMA imaging scanner with a 64-channel head coil. The EPI sequence with
textfile-input was deployed. Fat suppression was enabled in all in vivo experiments.
For these experiments, the field-of-view of the acquired transversal slices was set
to FOV = 240 × 240 mm2 with an isotropic voxel resolution of 3 × 3 × 3 mm3.
The receiver bandwidth was set to rBW = 1954 Hz/pix, phase encoding direction
was L → R. The experiments were carried out within an IRB approved study after
written informed consent was obtained from the volunteers.

3.10.1. Relative Signal Gain
The relative signal gain was considered as a measure of the benefit of the concomitant
phase compensation in vivo as well. For this experiment, the brain of one healthy
volunteer was examined, 11 slices were acquired with a spacing of 9.5 mm. The
middle slice was positioned in the isocenter. From the 60 diffusion wave vector pairs
as listed in appendix A.1, 12 vector pairs were selected for this experiment: 3, 8,
13, 18, 23, 28, 33, 38, 43, 48, 53, 58. Every original and corresponding optimized
waveform was acquired with 40 repetitions, respectively, to be able to conduct a per-
pixel estimation of the signal gain due to compensation of the concomitant phase.
The echo time was set to TE = 120 ms, the repetition time was TR = 2400 ms.
The total acquisition time was 40.4 min. The evaluation was done in the slice that
corresponds to an off-isocenter shift of ∆z = -50 mm. The contour of the brain set
the boundaries of the mask for data evaluation. Respective simulations were done
assuming a uniform slice profile and considering 101 equally spaced spin isochromats
along the voxel dimensions, respectively.

3.10.2. Diffusion Metrics
As explained in section 3.6, the multidirectional sampling scheme is suitable for
determination of microscopic diffusion metrics. To examine the effect of the op-
timization on the fractional eccentricity FE (see Eq. (3.5)), measurements in the
brain of two healthy volunteers were conducted. In each experiment, first all 60
original diffusion wave vector pairs together with 12 parallel pairs corresponding
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to the vertices of the icosahedron were subsequently measured. Each vector pair
was repeated 7 times. Afterwards, the complete set of optimized wave vector pairs
was applied equivalently. The mixing time was set to tm = 12 ms, 11 slices with
a spacing of 9.5 mm were acquired. GRAPPA was enabled with an acceleration
factor of 2 together with a phase partial Fourier factor of 6/8. The echo time was
TE = 86 ms, the repetition time was set to TR = 2400 ms. The total measurement
time to measure both sets amounted to 40 min. The fractional eccentricity was
then calculated for both the original and the optimized vector pairs for the slice
corresponding to ∆z = -50 mm. The diffusion tensor D occurring in Eq. (3.5) was
determined by solving Eq. (3.6) with a multiple linear regression [LR19] for every
relevant pixel.

Additionally, equivalent phantom experiments have been carried out with the Q-Ball
phantom. In these experiments, 5 repetitions with a repetition time of TR = 4000 ms
were acquired.

3.11. Magnetic Field Maps
3.11.1. Vendor-Provided Magnetic Field Maps
Since the expression for the concomitant field (see Eq. (2.73)) is a system-independent
approximation, a comparison of the formula with vendor-provided magnetic field
maps for the PRISMA imaging system was done. For all three magnetic field gradi-
ents, the field maps provide the three components of the magnetic field as scalable
entries (BGx

x (x⃗),BGx
y (x⃗),BGx

z (x⃗)) (equivalent for y- and z-gradients) on a grid with
spacing 0.005 m for a volume of ±0.35 m along the three dimensions, respectively.
The field maps were interpolated to refine the grid. By multiplication with the gra-
dient values (Gx(t),Gy(t),Gz(t)) that describe a particular waveform, the respective
components of the magnetic field on a particular point on the grid were obtained:

Bx,map(x⃗, t) = Gx(t) · BGx
x (x⃗) + Gy(t) · BGy

x (x⃗) + Gz(t) · BGz
x (x⃗)

By,map(x⃗, t) = Gx(t) · BGx
y (x⃗) + Gy(t) · BGy

y (x⃗) + Gz(t) · BGz
y (x⃗)

Bz,map(x⃗, t) = Gx(t) · BGx
z (x⃗) + Gy(t) · BGy

z (x⃗) + Gz(t) · BGz
z (x⃗) (3.21)

The absolute value of the magnetic field

|Bmap|(x⃗, t) =
√

B2
x,map(x⃗, t) + B2

y,map(x⃗, t) + (B0 + Bz,map(x⃗, t))2 (3.22)

was used to calculate the concomitant phase based on the field maps resulting from
a particular waveform:

ΦCC,map(x⃗) = γ
∑

i

∆t|Bmap|(x⃗, ti), (3.23)

where the sum is meant to include all subsequent values for |Bmap| calculated for
time points ti with step size in time ∆t. Based on this approach, the relative
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Table 3.2.: Configurations of conductor loops investigated. For every gradient-
generating coil array, the respective parameters are given for all three
considered configurations. The displacement values ∆x, ∆y and ∆z denote
the center positions of the coils. The gradient isocenter was at (0,0,0). All
coils generating a particular gradient had the same radius R per configu-
ration.

x-gradient y-gradient z-gradient
Configuration 1 2 3 1 2 3 1 2 3

±∆x [m] 3 0.25 0.25 - - - - - -
±∆y [m] - - - 3 0.25 3 - - -
±∆z [m] 1 0.25 0.25 1 0.25 1 3.5 0.75 3.5

R [m] 0.35 0.20 0.20 0.35 0.20 0.20 0.35 0.20 0.35

signal gain for the 60 diffusion wave vector pairs (see appendix A.1) was calcu-
lated. The original and optimized waveforms as described in section 3.8.3 were used
with b = 2000 s/mm2 (see Tab. 3.1), a transversal slice with off-isocenter shift of
∆z = -50 mm and FOV = 300 × 300 mm2 with a voxel size of 3 mm isotropic was
considered. The resulting signal in a voxel was calculated by inserting the phase
matrices (3.23) in Eq. (3.1). The number of subvoxels was M = 31 and a uniform
slice profile was assumed.

3.11.2. Simulations with Configurations of Conductor Loops

To find a possible explanation of observed deviations between measurements and
simulations of the relative signal gain, magnetic field maps were also generated with
a symmetric configuration of conductor loops (see Fig. 3.13). Based on the Biot-
Savart law [Nol16]

B⃗(x⃗) = µ0I

4π

∫
C

d⃗l × x⃗′

|x⃗′|3
(3.24)

(I current, d⃗l differential element of the wire along path C, x⃗′ = x⃗ − l⃗ displacement
vector from wire element at l⃗ to point x⃗), the magnetic field components gener-
ated by the current-carrying conductor loops in cylindrical coordinates (ρ,φ,z) were
calculated:

B⃗ (ρ,z) = Bρêρ + Bz êz (3.25)
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Figure 3.13.: Symmetric configuration of conductor loops used to simulate the mag-
netic field. a) Basis setup used for the simulations. The conductor loops
generating the x-gradient (blue), the y-gradient (red) and the z-gradient
(purple) within the cylindrical bore are shown. In this illustration no
gradients are generated but the field lines of the B0-field are represented
as arrows in the bore. b) Topview on the illustration of resulting mag-
netic field lines represented by arrows from current-carrying x-gradient
conductor loops. The bending of the field lines is well visible.

The components depend on the coil radius R, the current I and the cylindrical
coordinates ρ and z and are given by [Sim+01; CCS22]

Bρ = µ0I

2π

1√
(R + ρ)2 + z2

z

ρ

(
R2 + ρ2 + z2

(R − ρ)2 + z2 E(k2) − K(k2)
)

Bz = µ0I

2π

1√
(R + ρ)2 + z2

(
R2 − ρ2 − z2

(R − ρ)2 + z2 E(k2) + K(k2)
)

, (3.26)

where K(k2) and E(k2) are complete elliptic integrals of first and second kind,
respectively, with3 k2 = 4Rρ

(R+ρ)2+z2 . The 9 obtained scalable magnetic field maps
were transformed back to Cartesian coordinates and were equivalently processed as
described above to obtain the phase matrix (3.23) with same parameters used for
the vendor-provided field maps and M = 11 however. Three different configurations
of the conductor loops were investigated, the respective arrangements are listed in
Tab. 3.2.

3The variable k is convention in literature on elliptic integrals and should not be confused with
the wave vector k⃗.
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3.12. Simulations with Concentric Radial Phase and
T ∗

2 -Filter
The effect of a concomitant phase with (x2 + y2)-dependence present before read-
out, which is accumulated during, e.g., a diffusion-weighting experiment, was inves-
tigated in simulations. Infinitesimally thin transversal slices with a field-of-view of
FOV = 300 × 300 mm2 were considered. The initial images used as basis for the
simulations were up-scaled with a factor of 5. Frequency encoding direction was set
along x and phase encoding along y.

First, a simulated visual comparison to acquired k-space data, which resulted from
a measurement with b = 2000 s/mm2 (see Tab. 3.1) using the large PVP cylinder
and the original waveform of vector pair 1 (see appendix A.1) with parameters as
described in section 3.9.1 and 100 repetitions acquired, was generated. To this end,
the magnitude image reconstructed from acquired raw data in the measurement ex-
periment was used as basis for the simulations and additionally provided with the
concomitant phase calculated in accordance with the measurement parameters. The
absolute value of k-space was then calculated by applying a two-dimensional Fourier
transformation and taking the absolute value.

Second, to investigate the effect of the interaction with a present radially concentric
phase and subsequently applied k-space filters before applying a two-dimensional
inverse Fourier transformation, a disk with uniform magnitude within the up-scaled
image was considered. The disk was additionally provided with a concentric radial
phase to mimic a concomitant phase present in an object before the signal read-
out. Different strengths of the concentric radial phase in the spatial domain were
combined with the k-space filters corresponding to finite sampling and T ∗

2 as shown
in Fig. 3.5. Different values for T ∗

2 ranging from 30 ms to 400 ms were examined.
The resolution of the final reconstructed image was 3 × 3 mm2 corresponding to
100 × 100 pixels.

To provide a reference to the simulations with the k-space filters for the FID-EPI,
the point spread functions corresponding to the boxcar function and the T ∗

2 -filter for
FID-EPI (Fig. 3.5b) were applied in the spatial domain. The up-scaled image with
the additional phase was symmetrically padded with zeros to enable downsampling
with a two-dimensional sinc-kernel with size 1001 × 1001. Afterwards, the point
spread function corresponding to the FID-EPI with kernel size 101 × 101 was ap-
plied via a two-dimensional convolution with the downsampled image. A derivation
of the point spread function of the FID-EPI k-space filter is done in appendix A.3.
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4. Results
Die Praxis sollte das Ergebnis des
Nachdenkens sein, nicht umgekehrt.

Hermann Hesse

This chapter is dedicated to the results obtained in the course of this thesis. The
first section 4.1 contains the results of the experiments and simulations regarding
the self-squared terms of the concomitant field. An analysis of the developed pulse-
width modulation-technique and simulation results are given in section 4.2. The
results of the phantom measurements and simulations corresponding to the devel-
oped compensation technique based on optimized addition of oscillating gradients
that also accounts for the cross terms of the concomitant field is given in section 4.3.
The results from in vivo experiments with this compensation method are presented
in section 4.4. In section 4.6, the effect of an additional concentric radial phase on
k-space and of the interaction of k-space filters with this phase is presented based
on measurement results and simulations.

4.1. Self-Squared Terms of the Concomitant Field
4.1.1. Phase Analysis
Fig. 4.1 shows the results from the experiment conducted on the AERA imaging
system. The online-reconstructed phase image in Fig. 4.1a shows the expected con-
comitant phase along the z-axis caused by the applied gradient Gx. The comparison
of the measured concomitant phase within a ROI for increasing values of qx with
the reference value exhibits a high degree of accordance (Fig. 4.1b). The measured
profiles of the concomitant phase along the z-axis for qx = 173 mm−1 (Fig. 4.1c)
and qx = 197 mm−1 (Fig. 4.1d) show the expected parabolic behavior. Reference
values were calculated for values of z up to ±70 mm. The reference curve shows
good agreement for negative values of z, while for increasing values of z deviations
between the measurement and the reference curve increase.

To compensate for the self-squared terms of the concomitant field generated by a
bipolar diffusion-weighting gradient pair, oscillating gradients are applied during the
idle time of the gradient axis. In Fig. 4.2a, the resulting sequence diagram between
the excitation and the acquisition is shown, i.e., only the diffusion-weighting part of
the sequence is considered. The bipolar pair generated a value of qx = 289 mm−1.
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Figure 4.1.: a) Uncompensated phase image acquired with qx = 197 mm−1 at the
AERA imaging system with the spin echo sequence. The phase values
for all acquired qx-values were analyzed in the ROI shown in red. The
dashed white line marks the used pixel line for the phase evaluation along
the z-axis. b) Concomitant phase in dependence of the q ≡ qx-value
evaluated in a ROI with distance from the isocenter of ∆z = 16.4 mm.
c, d) Profile of the measured phase along the z-axis for qx = 173 mm−1

and qx = 197 mm−1, respectively.

The oscillating gradients are inserted directly after the second crusher gradient,
which accompany the 180° refocusing pulse. In Fig. 4.2b, the corresponding result-
ing Maxwell integral Mxx =

∫
Gx(t)2 dt is shown. The integral value generated by

the bipolar pair is inverted by the 180° refocusing pulse. The integral contribution
of the oscillating gradients then increases the integral value, which is then almost
zero. The absolute value of the resulting Maxwell moment amounts to 3.06 % of the
value introduced by the bipolar gradient pair.

The effect on the self-squared concomitant phase of the compensation using os-
cillating gradients is depicted in Fig. 4.3. The phase values in the coronal slices
were evaluated within a ROI with distance ∆z = 28.7 mm from the scanner isocen-
ter. Without the compensation by the additional oscillating gradients, the measured
phase shows the expected parabolic dependency on the applied qx-value. A com-
parison with a theoretical reference curve for the concomitant phase reveals a good
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Figure 4.2.: Compensation of self-squared terms of the concomitant field. In (a), the
time diagram of the applied gradient Gx in the phase analysis experiment
on the PRISMA imaging system is shown for qx = 289 mm−1. The
bipolar diffusion-weighting gradient pair is applied before the refocusing
RF pulse, the position is marked with an arrow. The refocusing pulse is
accompanied by two crusher gradients that introduce a marginal diffusion
weighting of b ≈ 0.7 s/mm2. After the pulse, the oscillating gradients
with finite rise time are applied to compensate the phase introduced by
the bipolar gradient pair. In (b), the corresponding Maxwell integral Mxx

is shown. The integral is close to zero after application of the oscillating
gradients. The shown time interval is adapted to the pulses on the Gx-
axis and does not apply to the complete imaging sequence.

agreement with the measurements. The phase values measured for increasing qx

while deploying the compensation remain mainly constant, i.e., no notable influence
of the concomitant field is visible.

The influence of the accumulated self-squared concomitant phase on the acquired
k-space is shown in Fig. 4.4. The shown absolute data of k-space correspond to a
value of qx = 289 mm−1 generated by the bipolar gradient pair. To stay within the
convention, the axis corresponding to frequency encoding is denoted as kx, while
the axis corresponding to phase encoding is denoted kz since coronal slices are con-
sidered. Without compensation of the self-squared concomitant phase, the k-space
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Figure 4.3.: Measured phase in a coronal slice in dependence of the applied q ≡ qx-
value at the PRISMA imaging system with the spin echo EPI sequence.
The phase was evaluated in a ROI at distance ∆z = 28.7 mm from the
isocenter. The phase values for qx = 0 were set to zero. Without com-
pensation, the expected parabolic dependency on the gradient strength,
i.e., on the q-value, is visible (blue). The theoretical reference curve
(black) was calculated based on the distance of the ROI from the scan-
ner isocenter. With the compensating oscillating gradients, the phase
remains mainly constant (red).

appears smeared out along kz (Fig. 4.4a). The corresponding simulation (Fig. 4.4b)
exhibits an alternating amplitude profile at kx = 0 along kz, while the measured
k-space shows a decreasing amplitude towards higher absolute values of kz. When
the concomitant phase is compensated by the oscillating gradients, the correspond-
ing measured absolute value of the k-space exhibits the maximum intensity in the
center (Fig. 4.4c). The absolute value of the measured k-space in the case of ap-
plied compensation does not show the symmetry seen in the simulation (Fig. 4.4d).

The concomitant phase was also evaluated in transversal slices. In this experi-
ment, no compensation was applied. In Fig. 4.5a, a parabolic behavior of the
measured phase on the applied qx-value for the slice at ∆z = 0, i.e, at the isocenter,
can be seen. The initially obtained respective behavior for the phase in the slice
at ∆z = -50 mm is shown in blue in Fig. 4.5b. These values exhibit an increasing
deviation with increasing value for qx from the theoretical reference. By subtracting
the respective obtained phase values in the slice at ∆z = 0, the so corrected phase
values show high agreement with the reference values.
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Figure 4.4.: Normalized absolute value of acquired and simulated k-space for
qx = 289 mm−1 originating from coronal slices from the spin echo EPI
experiment on the PRISMA imaging system. In (a), the effect of the un-
compensated parabolic concomitant phase is visible, the respective simu-
lation is seen in (b). The acquired k-space with compensating oscillating
gradients is depicted in (c), while the corresponding simulation is shown
in (d). For the simulations, 11 spin isochromats along the y-direction
(slice selection direction) were considered and an up-scaling factor of 5
was used.
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Figure 4.5.: Obtained phase values in a small ROI in the transversal slices originating
from the measurement with an uncompensated bipolar gradient pair on
the x-axis. The phase values for qx = 0 were set to zero. In (a), the
phase values measured in the unshifted slice for the considered q ≡ qx-
values are depicted. Part (b) shows the behavior of the phase in a slice
shifted by ∆z = -50 mm from the isocenter. The original values obtained
are plotted in blue and exhibit a deviation from the reference plot (black).
When subtracting the values shown in (a) from the blue curve for every
qx-value, the phase behavior depicted in red is obtained.

4.1.2. Effect on Image Magnitude
The effect of the self-squared concomitant phase and the respective compensation
on the full image magnitude is shown in Fig. 4.6 for coronal slices acquired with
the elongated water cylinder. The concomitant phase induced by the bipolar gradi-
ent pair generating a qx-value of 289 mm−1 leads especially to strong signal voids
that worsen with distance from the isocenter (Fig. 4.6a). The application of ade-
quate oscillating gradients removes the concomitant phase and no artifacts related
to the concomitant field are visible (Fig. 4.6b). Except for the lower SNR due to
the applied diffusion weighting, no differences to the reference image acquired with
qx = 0 mm shown in Fig. 4.6c are visible.

Fig. 4.7 demonstrates the appearance of signal voids in the elongated water cylin-
der caused by the concomitant phase by showing representative signal profiles along
the z-axis. As can be seen in Fig. 4.7a, the shown averaged signal profile exhibits
severe signal attenuations starting at a value of qx = 232 mm−1 applied by the un-
compensated bipolar gradient pair. The artifacts get worse with increasing distance
from the isocenter. In Fig. 4.7b, the effect of the compensation is shown. For all
qx-values, the concomitant phase has been removed by the oscillating gradients and
no related artifacts can be seen.
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c)b)a)

Figure 4.6.: Comparison of the acquired coronal magnitude images using the elon-
gated water cylinder. The isocenter is marked with a yellow dotted
line. The images were corrected for the respective diffusion attenuation
to adapt the contrast. a) Without compensation of the parabolic con-
comitant phase, the image acquired with qx = 289 mm−1 exhibits strong
artifacts, especially signal voids. b) No concomitant field related artifacts
are visible when the concomitant phase is compensated by the oscillating
gradients (qx = 289 mm−1). c) Reference image acquired with qx = 0.
The windowing was adjusted.
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a) b)

0
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0 0

Figure 4.7.: Comparison of signal profiles along the z-axis in dependence of the ap-
plied q-value. The data results from the magnitude images of the elon-
gated water cylinder with coronal orientation. A band of 30 pixels within
the phantom was averaged to obtain the shown length representations.
The uncompensated and compensated images were corrected for the re-
spective diffusion loss. The isocenter is marked with a dotted red line. a)
Severe signal attenuations occur under the influence of the parabolic con-
comitant phase. Due to the z2-dependency of the concomitant phase in
the experiment, the phantom seems to shrink and develops a stripe pat-
tern. b) The compensating oscillating gradients removed the concomitant
phase and related artifacts. No signal attenuations are visible.
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Figure 4.8.: a) Normalized coronal magnitude image of the elongated water cylinder
acquired with qx = 289 mm−1. b) Normalized simulation result including
the truncation artifact provoked by application of the two-dimensional
boxcar k-space filter. c) Normalized simulation result without considering
k-space filters. d) Profile of the signal along the z-axis of the images (a),
(b) and (c) at x = 0 mm.

Simulations of magnitude images under the influence of the self-squared concomitant
phase are depicted in Fig. 4.8. As previously described, the measured uncompen-
sated image for qx = 289 mm−1 exhibits severe signal voids increasing with the
absolute value of z (Fig. 4.8a). Additionally, Gibbs-like artifacts are visible. Similar
stripe patterns are also visible in the simulation that included a two-dimensional
boxcar function to simulate finite sampling (Fig. 4.8b). Without consideration of
this k-space filter, the magnitude is continuously decreasing towards higher absolute
values of z (Fig. 4.8c). The comparison of the line profiles taken at x = 0 mm of the
three previously described images reveals a good agreement between the measure-
ment and the simulation including the k-space filter corresponding to finite sampling
(Fig. 4.8d), especially when considering the edges of the resulting magnitude profile.
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Figure 4.9.: Logarithmized ratio of the signals obtained with diffusion weighting and
without weighting for transversal slices at the isocenter and with a shift of
∆z = -50 mm. For each position, the signal ratio was measured without
compensating oscillating gradients ("original") and with the compensa-
tion. The reference line is calculated based on the ADC of the used
phantom. The insert shows the ROI used for data evaluation.

The influence of the self-squared concomitant phase on diffusion-weighting is de-
picted in Fig. 4.9. A deviation of the logarithmized signal ratio from the expected
linear behavior is visible, especially for higher b-values. This deviation increases
with larger distance from the isocenter. By additional application of oscillating
gradients, the resulting compensated logarithmized signal ratio shows the expected
linear behavior with a small deviation from the calculated reference line. The re-
sults obtained with the compensation by oscillating gradients for ∆z = -25 mm and
∆z = -50 mm cannot be differentiated since the values are almost equal.

4.1.3. Efficiency Analysis
In the following, the results of the analysis of the efficiency in reducing the self-
squared Maxwell moment based on the frameworks described in section 3.8.1 are
presented.

In Fig. 4.10, the results from the brute-force search are shown. The bipolar pulse
pairs applied a diffusion weighting of b = 500 s/mm2, respectively. A visual de-
piction of parameter combinations on the deployed grid that decrease the Maxwell
moment best is given in Fig. 4.10a. Here, a maximum deviation of ∆b < 100 s/mm2
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Figure 4.10.: Results obtained with the brute-force search. a) Three-dimensional illus-
tration of parameters for the flat top time FTTOsc and the amplitude
GOsc for the number of full oscillations that lead to the highest com-
pensation efficiency (absolute value of the percental decrease of Mxx)
for the considered angles ϕG. The evaluation was done for the case
of no allowed time extension and a maximum deviation of the b-value
of less than 100 s/mm2. The colors represent the applied number of
full oscillation periods NOsc. Empty spots in the grid mean that no
suitable parameter combination was found or that the efficiency was
equal or lower than 50 %. In this representation combinations with
GOsc = 0 mT/m are omitted. b) Three-dimensional illustration of best-
performing parameters evaluated for the case of no time extension and
a limit of ∆b < 50 s/mm2. c) Highest compensation efficiency in de-
pendency of the angle for ∆b < 100 s/mm2 and different allowed time
extensions. d) Comparison of the highest found compensation efficiency
in dependency of the angle for two b-limits and no time extension per-
mitted.

and no extension in time was allowed. Only suitable combinations with an efficiency
higher than 50 % within the set constraints are considered. It is visible that be-
low an angle of ϕG < 45°, for high amplitudes GOsc suitable combinations are only
possible with the intrinsic compensation (NOsc = 0). Towards lower amplitudes,
solutions with NOsc > 0 are performing best, where with decreasing angle ϕG the
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range of suitable amplitudes is diminished. For small angles ϕG, only the intrinsic
compensation, i.e., partial compensation between the two original diffusion weight-
ings, provides suitable solutions. Above angles of 45°, suitable solutions are found
for all angles but with empty spots on the grid caused by the set restrictions. With
higher angles, the oscillation amplitude of suitable combinations increases, and for
ϕG = 90° the compensating oscillations have the maximum possible amplitude. It is
observable that solutions with different NOsc are divided into blocks along FTTOsc.
When setting the maximum allowed b-deviation below 50 s/mm2 (Fig. 4.10b), the
found best performing combinations are similar to those shown in Fig. 4.10a with a
visible exception for higher angles, where for NOsc = 2 and NOsc = 3 former found
combinations are now unsuitable with the lower b-limit.

In Fig. 4.10c, the maximum achieved efficiency of the compensation is plotted for ev-
ery angle ϕG. Different allowed time extensions of the added train of oscillations are
considered. For the initial decrease of the angle between the waveforms, the simula-
tion results reveal a sharp drop in the compensation efficiency. Allowing more time
for the added train of oscillations leads to a better compensation as it is expected
since more oscillations can be included for the compensation. Towards smaller an-
gles, a rise in the efficiency is visible and the different curves exhibit equal behavior.
With an extension of ∆t = 10 ms, the efficiency is always higher than 67 %, which
is to be compared with the minimum efficiency of 60.6 % for ∆t = 0 ms. For angles
ϕG < 16°, the intrinsic compensation (NOsc = 0) provides the only suitable solution
leading to the visible smooth course of the efficiency curves. A comparison of the
achieved maximum compensation efficiency for the different limits of the deviation
in b-value is presented in Fig. 4.10d, no time extension was considered in these
searches. If the b-limit is set stricter, a drop in the compensation efficiency for large
angles is visible, where the minimum is seen to be 51.8 % for the considered grid.
For smaller angles, no discrepancy to the efficiencies found with ∆b < 100 s/mm2 is
visible. It should be highlighted that q-value deviation was ignored in this proof-of-
principle example.

The parameters of the added oscillations were also searched in an optimization
process for identical parameters for the unchanged waveforms as used for the re-
sults shown in Fig. 4.10. In contrast to the performed brute-force search, in the
optimization approach also the original q-value of the underlying gradient waveform
is conserved. The results are shown in Fig. 4.11. The compensation efficiency
achieved without an extension of the waveform duration exhibits a drop for the
initial decrease of the angle ϕG (Fig. 4.11a). For further decreasing angles, the ef-
ficiency has the tendency to rise again. Below approximatively 45°, the efficiency
first decreases and then increases towards ϕG = 0°. The efficiency is always higher
than 75 %. If the duration of the waveforms is increased by ∆t = 5 ms, full com-
pensation is achieved for almost all angles. As visible in Fig. 4.11b, the initial drop
in efficiency for ∆t = 0 ms is connected to a sharp decrease in the deviation of the
b-value. With the rise in efficiency after the initial drop, also the b-deviation in-
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Figure 4.11.: Results obtained with the optimization approach for the case of no time
extension (blue) and an extension of the underlying bipolar pulse of
5 ms (red). a) Compensation efficiency achieved by parameters for the
oscillation lobes that best minimized the cost function in dependence of
the angle ϕG. b) Corresponding absolute deviations in the b-value (left
diagram) and the q-value (right diagram). The total applied q-value be-
fore and after the refocusing pulse amounted to 244 mm−1 (∆t = 0 ms)
and 223 mm−1 (∆t = 5 ms).

creases. Towards smaller angles, the deviation in b decreases. For angles lower than
85°, the deviations are below 100 s/mm2. In the case of an allowed extension of
the duration, the resulting b-deviation is always below 16 s/mm2. In comparison to
∆t = 0 ms, the resulting deviations are smaller, or in comparable magnitude for the
angles with decreasing efficiency (∆t = 0 ms, Fig. 4.11a) and for small angles. As
visible in Fig. 4.11b (right), the q-deviation is in negligible magnitude for all angles
for the two experiments.
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4.2. Pulse-Width Modulation

4.2.1. Analysis of the Method

First, the compensation efficiency deploying the pulse-width modulation approach
with finite rise times but without further improvements regarding the compensation
of the self-squared concomitant phase, i.e., GPWM = G1, was examined. This experi-
ment was intended to show that the variant described in [LP21] with finite rise times
is not suitable for arbitrary wave vector pairs and that additional modifications are
necessary for general use. The results for different angles ϕG for b = 500 s/mm2

and rise times ξ = 0.4 ms are depicted in Fig. 4.12a. Here, the influence of an
increasing number of oscillations NOsc per single gradient of the bipolar pair on the
compensation efficiency is observable. Starting from ϕG = 90°, higher efficiency of
compensating the self-squared concomitant phase is obtained the smaller the num-
ber of oscillations. For decreasing angle ϕG, the efficiency seems to rise: the higher
NOsc, the higher the corresponding angle ϕG where the efficiency starts to rise. A
closer look on Fig. 4.12b reveals that starting from this certain angle, the shorter
flat top time FTT− becomes negative and consequently meaningless. The effect
on the q-value is shown in Fig. 4.12c, where in the range of ϕG that corresponds
to non-negative values for FTT− no deviation in the q-value is observable. When
FTT− becomes negative, the deviation in q rises as well. In this range of ϕG, the
analytical pulse-width modulation fails.

To enable the pulse-width modulation approach for all occurring angles ϕG, the
maximum occurring amplitude Gn,max of the original uncompensated gradients was
adequately decreased and the parameters of the modulated oscillations were found
in an optimization. The experiment shown in Fig. 4.12 was accordingly repeated
for NOsc = 3 and NOsc = 4, respectively, and the corresponding results are depicted
in Fig. 4.13. For large angles, full compensation of the self-squared concomitant
phase is given, while the compensation efficiency is reduced towards smaller an-
gles (Fig. 4.13a) and amounts to less than 40 % (NOsc = 3) and less than 10 %
(NOsc = 4) for the smallest considered angle. This reduction begins for a smaller
angle for NOsc = 3 in comparison to NOsc = 4. The angle at which the intrinsic
compensation, i.e., compensation achieved without application of the PWM ap-
proach to the bipolar gradient pair, is higher than the compensation achieved with
pulse-width modulation is also higher for NOsc = 4. The absolute deviation in b-
value (Fig. 4.13b) reveals a larger deviation for all angles for NOsc = 3. For both
NOsc = 3 and NOsc = 4, the deviation first increases towards smaller angles, reaches
a maximum and begins to decrease again. After the value for ϕG corresponding to
the begin of loss in efficiency, the deviation increases again.

The improved pulse-width modulation approach, which better compensates for the
self-squared concomitant phase, may set high requirements on the available gradient
amplitude such that the amplitude of the original bipolar gradient pair that is com-
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Figure 4.12.: Results obtained by pulse-width modulation for Gmax = 75 mT/m with-
out further adaptions, i.e., the amplitude of the compensating modu-
lated oscillations matches the amplitude of the bipolar gradient pair with
b = 500 s/mm2 that induces the concomitant phase (GPWM = G1). All
gradients had a rise time of ξ = 0.4 ms. a) The efficiency seems to in-
crease if ϕG is below a certain value depending on the applied number
of oscillations NOsc. b) The flat top times of the shorter modulated os-
cillation FTT− are negative and consequently meaningless if the angle
gets below a particular value, which corresponds to the value of ϕG for
the rising efficiency in (a). c) Below a particular angle, the deviation
in q-value increases, meaning that the pulse-width modulation approach
fails.

bined with the modulated oscillations may be needed to be decreased as done in the
experiment corresponding to Fig. 4.13. An analysis of the dependence between a
considered maximum gradient amplitude of a bipolar pair that is combined with the
modulated oscillations G0,max, the rise time ξ of the used gradients and the needed
available gradient amplitude is provided in Fig. 4.14. The contour lines represent
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Figure 4.13.: Results obtained with the adapted pulse-width modulation approach
(GPWM ≥ G1) using a numerical optimization. The used parameters
were: Gmax = 75 mT/m, ξ = 0.4 ms, b = 500 s/mm2. a) Compensation
efficiency for NOsc = 3 and NOsc = 4 together with the intrinsic com-
pensation, i.e., the compensation achieved by the original bipolar pair
without pulse-width modulation. b) Absolute deviation in the b-value.

the minimum needed available gradient amplitude to enable a pulse-width modula-
tion for a given amplitude G0,max of a bipolar pair that is combined with modulated
oscillations and a certain rise time. For both considered diffusion weightings, the
space of suitable parameters is larger for less applied oscillations per gradient of the
bipolar pair. The suitable parameter space increases also with increasing applied
b-value. For more applied oscillations, the minimum needed amplitude increases,
i.e., the requirements are shifted towards higher needed amplitudes for more ap-
plied oscillations. Furthermore, the amplitude requirements increase for higher rise
times. For instance, for b = 500 s/mm2 and NOsc = 3, to stay below an ampli-
tude of 75 mT/m for a rise time of ξ = 0.4 ms, the amplitude G0,max must not be
higher than 53.3 mT/m, which corresponds to 71.1 % of the limit of 75 mT/m. For
NOsc = 4, this value is found to be 47.6 mT/m or 63.5 % of the limit.

4.2.2. Multidirectional Sampling Scheme
The multidimensional sampling scheme as described in section 3.6 and listed in ap-
pendix A.1 was first applied in the context of the developed PWM approach. As
explained previously, this sampling scheme is suitable to derive microstructural in-
formation from the diffusion-weighted signals, e.g., in the human brain. To assess
the effect on the SNR of the methods for compensating the concomitant phase ap-
plied to the multidirectional sampling scheme, considering also the cross terms of
the concomitant field, a ROI with a diameter of 17 cm (Fig. 4.15), which mimics
the typical size of a human brain in transversal orientation, was used for data eval-
uation.

86



4.2. Pulse-Width Modulation

0 50 100 150 200
0

500

1000

1500

2000

4
0 80

200
1000

0 50 100 150 200
0

500

1000

1500

2000

4
0 8
0

200
1000

0 50 100 150 200
0

500

1000

1500

2000

4
0 8
0

200

1000

0 50 100 150 200
0

500

1000

1500

2000

4
0 8
0

200

1000

R
is

e 
tim

e
(µ

s)

R
is

e 
tim

e
(µ

s)

R
is

e 
tim

e
(µ

s)

R
is

e 
tim

e
(µ

s)

(mT/m)(mT/m)

(mT/m) (mT/m)

a) b)

c) d)

= 500 s/mm2

= 3
= 500 s/mm2

= 4

= 2000 s/mm2

= 3
= 2000 s/mm2

= 4

Figure 4.14.: Analysis of amplitude requirements for adapted pulse-width modula-
tion. For a given maximum amplitude G0,max of a bipolar gradient
pair being combined with modulated oscillations and the rise time ξ
of the gradients, the required minimum amplitude of the modulated
oscillations to enable a pulse-width modulation is shown in mT/m as
a contour plot with four levels. Here, four example cases were eval-
uated: a) b = 500 s/mm2, NOsc = 3, b) b = 500 s/mm2, NOsc = 4, c)
b = 2000 s/mm2, NOsc = 3, d) b = 2000 s/mm2, NOsc = 4. The gray
area marks parameter combinations that violate the conditions of non-
negative flat top times of the modulated oscillations.

In Fig. 4.16, the amplitude of the contributions to the concomitant phase is de-
picted. As visible in Fig. 4.16a and Fig. 4.16b, the first ten diffusion wave vector
pairs have the highest contribution via the self-squared terms of the concomitant
field (G2

x + G2
y and G2

z, respectively) in comparison to the following vector pairs.
The first ten vector pairs do not have a contribution via the cross terms of the con-
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Figure 4.15.: ROI used for evaluation regarding the multidirectional sampling scheme.
The ROI has a diameter of 17 cm to mimic the typical size of a human
brain.

comitant field as visible in Fig. 4.16c and Fig. 4.16d for the GxGz-cross term and
GyGz-cross term, respectively, while for the following vector pairs the contributions
from the cross terms become relevant.

Since the cross terms of the concomitant field cause a relevant contribution for
most of the 60 considered diffusion wave vector pairs, the PWM approach was now
applied to all diffusion gradient pairs and not only to one of the two weightings on
each axis. An additional cyclic temporal shift of the PWM lobes was introduced
for cross term reduction (see last segment of section 3.8.2). The resulting gradient
profiles for NOsc = 4 and an applied diffusion weighting of b = 500 s/mm2 per diffu-
sion vector for an example vector pair are shown in Fig. 4.17a. The profile shown in
blue was not adequately shifted to account for the cross terms of the concomitant
field in contrast to the profile shown in dashed red, which considered a transversal
slice with an off-isocenter shift of ∆z = -50 mm to find the optimum arrangement.
The effect of the shifting becomes visible by looking at the corresponding Maxwell
integrals shown in Fig. 4.17b. Here, also the integral resulting from a pulse-width
modulation with same parameters exclusively considering the self-squared terms of
the concomitant field is displayed. It is visible that the self-squared-related Maxwell
integrals are close to zero for all three approaches. Considering the cross term-
related Maxwell integrals Mxz and Myz, the benefit of the shifting of the modulated
oscillations is apparent: the resulting absolute value of the Maxwell moment Mxz,
i.e., the last value of the Maxwell integral, is reduced by 50 % with respect to the
unshifted waveform and by 67 % with respect to the exclusive consideration of the
self-squared terms. For Myz, the moment is reduced by 99 % and 97 %, respectively.

The expected relative signal gain by deploying the PWM approach with adequate
shifting and NOsc = 4 to the multidirectional sampling scheme is shown for every
considered diffusion wave vector pair in Fig. 4.18a. The simulations were done for
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Figure 4.16.: Amplitudes of the contributions to the concomitant phase for the con-
sidered 60 diffusion wave vector pairs. The amplitudes are calculated by
the sum of the respective components of the normalized direction vectors
n⃗1 and n⃗2 for every diffusion wave vector pair. The components of the
first vector contribute with a minus to account for the 180° refocusing
pulse. a) Amplitudes of the contribution to the sum of the self-squared
terms G2

x + G2
y. b) Amplitudes of contributions to the G2

z-self-squared
term. c) Amplitudes of contributions to the GxGz-cross term. d) Am-
plitudes of contributions to the GyGz-cross term.

transversal slices with an off-isocenter shift of ∆z = -50 mm. It can be seen that
the higher the b-value, the higher the expected relative gain. For both considered
b-values, the highest gain is expected for the first 10 diffusion wave vector pairs: up
to 18 % for b = 500 s/mm2 and up to 58 % for b = 2000 s/mm2. The predicted rel-
ative signal gain is lower for the following vector pairs but remains positive for both
considered b-values. In Fig. 4.18b, the maximum occurring absolute deviation of the
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Figure 4.17.: Effect of adequate shifting of the modulated oscillations (NOsc = 4,
b = 500 s/mm2, ξ = 0.4 ms, Gmax = 75 mT/m) for wave vector pair
26 as listed in appendix A.1. a) Direct comparison of the resulting in-
dividual gradient profiles for the six gradient blocks before (subscript
"1") and after ("2") the 180° refocusing pulse without (blue) and with
adequate shifting (red). The vertical dotted line represents the start
point of the second gradient of the bipolar pair. b) Maxwell integrals
calculated for the gradient profiles shown in (a) (blue and red) together
with the integral obtained by exclusive compensation of the self-squared
terms (green) as sketched in Fig. 3.10, but with the improvement de-
scribed in section 3.8.2. The arrows mark the final value of the integral,
i.e., the Maxwell moments, regarding the cross terms. The horizontal
dashed line marks the zero line.
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Figure 4.18.: Results obtained with the PWM technique with NOsc = 4 with consid-
eration of the cross terms of the concomitant field. The simulations were
done for transversal slices with a shift from the isocenter of ∆z = -50 mm.
a) Relative signal gain with the corresponding standard error obtained
for the two considered b-values. The signal gain was calculated with ref-
erence to the original waveforms without the time extension necessary
to enable the pulse-width modulation. b) Maximum of the absolute b-
value deviations occurring in the first and second weighting. c) Absolute
value and relative fraction of the deviation of the b-value for the bipolar
gradient pair placed before (black) and after (purple) the 180° refocusing
pulse for the waveforms applying a diffusion weighting of b = 500 s/mm2

per bipolar gradient. d) Equivalent to (c) for b = 2000 s/mm2 applied
per bipolar pair.

b-value for the vector pairs is shown. For b = 2000 s/mm2, the deviation is higher
for all considered vector pairs, with the first ten vector pairs exhibiting the largest
absolute deviations of ∆b = 211 s/mm2. For b = 500 s/mm2, the largest occurring
deviation amounts to ∆b = 81 s/mm2. The deviations for the first direction vector
applied before the 180°-pulse and the second vector for all vector pairs are displayed
in Fig. 4.18c for b = 500 s/mm2 and in Fig. 4.18d for b = 2000 s/mm2. In both
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cases, no difference between the first and the second gradient block with respect to
∆b for the first ten vector pairs is visible. The deviations amount to around 16 %
of the original diffusion weighting for b = 500 s/mm2 and 10.5 % for an initially
applied weighting of b = 2000 s/mm2. For the following vector pairs, the deviation
is below 10 % of the original diffusion weighting in both cases.

4.3. Optimized Addition: Phantom Measurements
and Simulations

In this section, the results of the phantom experiments with the aim of investigation
of the relative signal gain achievable with the compensation method described in
section 3.8.3, which also takes into account the cross terms of the concomitant field,
are presented. All results were obtained from the ROI shown in Fig. 4.15 if not
stated otherwise.

4.3.1. Relative Signal Gain
In Fig. 4.19, the relative signal gain obtained in the large PVP cylinder with ac-
quisition of 100 repetitions for each waveform, i.e., b0-image and the original and
compensated sequences based on the vector pairs listed in appendix A.1, is shown.
Thus in total (1 + 60 + 60) · 100 = 12100 images were acquired in this experiment.
A b-value of 500 s/mm2 was applied per diffusion wave vector. The transversal slices
had an off-isocenter shift of ∆z = -50 mm. The results with respect to the mea-
sured relative signal gain for every diffusion wave vector pair with the corresponding
simulation values are displayed in Fig. 4.19a. Both data from online-reconstructed
DICOMs and processed raw data were used for the evaluation. The simulations
predict a positive relative signal gain for all vector pairs and up to 18.4 % for the
first ten vector pairs. The values obtained in the measurement are also positive with
exception of 4 outliers, but show deviations in comparison to the simulation. For
the first ten wave vector pairs the measured values fluctuate between a relative gain
of 4.7 % (vector pair 8) and 21.4 % (vector pair 6) considering the DICOM data.
Fluctuations are also visible for the following vector pairs, where the measured val-
ues tend to be higher than the simulation. Both DICOM data and raw data exhibits
the same trend, but also shows deviations among them. This is especially visible for
vector pair 56, where the value obtained from DICOM data shows a relative increase
of 56.9 %.

The rescaled SNR obtained from DICOM data in the ROI for all 121 data sets,
i.e., different applied gradient waveforms, is shown in Fig. 4.19b with the respective
simulation. The measured SNR values were corrected for the theoretical diffusion-
induced loss and normalized to the first data set, i.e., the b0-image. The shown
measured SNR thus has no dependence on diffusion loss but exhibits the loss due
to the concomitant field-induced intravoxel dephasing, i.e., a value of 100 % for the
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Figure 4.19.: a) Relative signal gain with the corresponding standard error obtained
with the optimized sequences. The large PVP cylinder was used. A
b-value of 500 s/mm2 was applied by each bipolar pulse, the transversal
slices had an off-isocenter shift of ∆z = -50 mm. The evaluation was
done with the online-reconstructed DICOMs (blue) and the raw data
(black). b) Rescaled measured SNR averaged in the ROI with standard
error together with the corresponding prediction for all acquired 121
data sets. The measured SNR was corrected for the theoretical diffusion-
induced loss and normalized to the first data set, which corresponds to
the measurement without diffusion weighting. The following data sets
correspond to the original and optimized sequence for each diffusion
wave vector pair in ascending order. c) Zoom for the data sets 2 to 21
that correspond to the first 10 diffusion wave vector pairs.
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SNR refers to no concomitant field-induced loss in the signal. After data set 1, which
corresponds to the b0-image, the SNR obtained from the original gradient waveform
corresponding to the first diffusion wave vector pair follows (data set 2). This data
set is then followed by the SNR from the optimized sequence for the first vector pair
(data set 3). In this alternating order, all 120 data sets corresponding to the 60 con-
sidered vector pairs are displayed. The simulated values show a "zig zag" behavior as
indicator of the benefit of the compensation of the concomitant phase: every SNR
value obtained from the simulation with an original gradient waveform is followed
by an increased SNR value from the simulation with the optimized sequence. This
behavior is also visible for the measured SNR values with some exceptions, which
then manifest itself as negative relative signal gain in Fig. 4.19a. It is visible that
the measured SNR tends to be smaller than the predicted values, especially for the
gradient waveforms corresponding to the wave vector pairs 11 to 60.

In Fig. 4.19c, a closer look at the 20 data sets corresponding to the wave vec-
tor pairs 1 to 10 is presented. The measured values for the SNR also show the
expected "zig zag" behavior, but exhibit also deviations from the simulation. For
instance, data set 7, which corresponds to the optimized sequence of wave vector
pair 3, shows a relative decrease from the simulation of 10.3 %. These findings gave
rise to the positioning experiments (see results in section 4.3.8). The simulations
predict full compensation for the first 10 diffusion wave vectors due to the optimiza-
tion of the respective sequences. Values higher than 100 % for the measured SNR
are the result of the diffusion loss correction with the theoretically applied diffusion
weighting.

An equivalent experiment was conducted with b = 2000 s/mm2 applied by every
direction vector. The results regarding the measured relative signal gain for every
of the 60 used diffusion wave vector pairs are depicted in Fig. 4.20a. The simula-
tions predict a positive effect for all considered wave vector pairs. With exception
of one outlier in the DICOM data, a positive effect due to the compensation was
measured for the remaining wave vectors evaluating DICOM data. With respect to
the raw data, a positive effect was obtained within the standard error for all consid-
ered wave vector pairs. For the first ten diffusion wave vector pairs, the simulation
predicts a higher gain compared to the results of the measurement. Considering for
instance vector pair 3, the result obtained from DICOM data shows a relative de-
crease of 18.1 % from the prediction. For the following vector pairs, a trend towards
a higher measurement result than predicted by the simulation can be observed while
the qualitative behavior of the simulation is reflected by the measurements.

Equally to the experiment conducted with a diffusion weighting of b = 500 s/mm2

per direction vector (see Fig. 4.19), the rescaled SNR from DICOM data together
with the predicted values for the signal is shown in Fig. 4.20b for b = 2000 s/mm2.
The measured SNR values were corrected for the theoretical diffusion-induced loss
and normalized to the first data set. Considering the data sets from data set 21 that
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Figure 4.20.: Relative signal gain (a) and rescaled SNR (b) as in Fig. 4.19, but with
b = 2000 s/mm2 for each diffusion weighting. c) Zoom for the data sets
2 to 21 that correspond to the first 10 diffusion wave vector pairs.

correspond to the wave vectors 11 to 60, the measured values of the SNR tend to
be lower than the prediction but show the expected "zig zag" reflecting the effect of
the compensation of the concomitant phase.

The data sets 2 to 20, which correspond to the first 10 diffusion wave vector pairs,
exhibit the malign effect of the concomitant phase on the signal and the respective
benefit of the compensation, which is manifest as a "zig zag" behavior due to the
alternating plot of a data set obtained from the original waveform and a data set
corresponding to the optimized waveform. For the first 10 wave vector pairs, the
simulation predicts a significant loss in signal for the original waveforms and full
compensation of the concomitant phase by the optimized waveforms. The measured
values of the SNR reflect this behavior but exhibit a weaker loss in signal and a less
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Figure 4.21.: Measured (top row) and simulated (bottom row) maps of the relative
signal gain for b = 2000 s/mm2 in percent for three example diffusion
wave vector pairs. The considered transversal slices were shifted by
∆z = -50 mm. The measured SNR maps used for the calculation of the
relative signal gain were corrected for the respective expected diffusion
loss. DICOM data were used. a) Relative signal gain for wave vector
pair 27 as listed in appendix A.1. b) Wave vector pair 38. c) Wave
vector pair 45.

strong effect of the compensation. Considering for example data set 2 and 3, which
correspond to the original and optimized sequence for the first diffusion wave vector
pair, respectively, a relative increase of 56.7 % of the signal from 63.6 % to 99.7 %
due to the compensation of the concomitant phase is predicted. The correspond-
ing measurement exhibits a relative gain in SNR of 34.9 % from 72.4 % to 97.6 %.
These values are also reflected in Fig. 4.20a, where, however, the relative signal gain
was obtained by a pixelwise division of the respective SNR image and subsequent
averaging.

The results for the relative signal gain obtained in the measurements shown in
Fig. 4.19 (b = 500 s/mm2) and Fig. 4.20 (b = 2000 s/mm2) are based on a pixelwise
division of the SNR maps obtained with an original and an optimized waveform
as explained previously. In Fig. 4.21, the measured relative signal gain and the
respective simulation for three example wave vector pairs is shown for every pixel
in the phantom in percent. The relative gain was calculated from DICOM data
from the experiment with b = 2000 s/mm2. For all three examples, a qualitative
agreement between the measurement and the simulation is observable: the measured
maps exhibit a pronounced dependence on the spatial position that is reflected in
the corresponding simulated maps of the relative signal gain. In a quantitative com-
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Figure 4.22.: Phase images obtained with the original (a) and optimized sequence (c)
using the large PVP cylinder. A b-value of 2000 s/mm2 was applied
by each original bipolar pulse, the transversal slices had an off-isocenter
shift of ∆z = -50 mm. In (b) and (d), the corresponding simulations to
(a) and (c) are seen, respectively. The considered diffusion wave vector
pair was n⃗1 = (0,0,1)⊤ and n⃗2 = (0,1,0)⊤ corresponding to wave vector
pair 1 in appendix A.1.

parison, it is visible that the measured maps exhibit a higher relative signal gain
than predicted for certain pixels while also a negative relative gain is present in a
number of pixels.

The reconstructed phase images with the corresponding simulations in Fig. 4.22
exhibit the measured and predicted effect of the concomitant phase. Raw data
acquired with the original and compensated waveform of wave vector pair 1 (see
appendix A.1) from the experiment with b = 2000 s/mm2 were used for this repre-
sentation. Concentric phase rings are visible in Fig. 4.22a and Fig. 4.22b that are
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Figure 4.23.: Comparison of the q-trajectories for an example diffusion wave vector
pair. All trajectories start and end at the origin. The trajectories n⃗1
and n⃗2 of the gradient waveforms applied before and after the 180°
refocusing pulse, respectively, are shown for the original and optimized
waveforms, the maximum value of the original trajectories is marked
with a purple circle. Along each vector n⃗1 and n⃗2, a diffusion weighting
of b = 2000 s/mm2 is applied. The shown trajectories correspond to
vector pair 28 as listed in appendix A.1.

expected for the chosen wave vector pair due to the x2- and y2-dependency of the
concomitant field for the z-gradient in the uncompensated image. The simulation
(Fig. 4.22d) predicts only a weak remaining concomitant phase generated by the
optimized pulse sequence. In the measurement (Fig. 4.22c), the removal of the con-
comitant phase is visible. However, an additional residual phase affects the image.
This residual phase also is manifest as a shift of the center of the concentric rings
and a spirally evolution of the phase in Fig. 4.22a.

A visual comparison of the trajectories of the q-value is given in Fig. 4.23 for
an example wave vector pair and b = 2000 s/mm2. It is visible that the original tra-
jectories of n⃗1 and n⃗2 have an angle of 90° as expected from the design of the vector
pairs. The optimized trajectories show slight deviations from the original path due
to the oscillations but coincide with the maximum of the original trajectories, i.e.,
the direction of the diffusion-weighting gradients is conserved.

4.3.2. Testing for Agreement
The results of testing the agreement of theoretically equal waveforms with respect
to the induced concomitant phase are shown in Fig. 4.24. Considering the mea-
surement results for the vector pair 25, the obtained values for the relative signal
gain with the inverted optimized sequence are higher than the values measured with
the unchanged compensation sequence: the DICOM data evaluation exhibits a rel-
ative gain of 44.3 % with the inverted optimization sequence while a relative gain of
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Figure 4.24.: Results of the test for agreement. The relative signal gain obtained
with the initial optimized and the inverted ("inv.") optimized sequences,
respectively, is shown for the two chosen diffusion wave vector pairs 25
and 30 as listed in appendix A.1. Results obtained from both DICOM
and raw data as well as the simulated values are presented with the
corresponding standard error, respectively.

36.9 % was obtained with the original compensation sequence. A similar behavior
was found in the raw data analysis: 48.2 % (inverted) in contrast to 40.8 % (origi-
nal compensation). The measurement results obtained with vector pair 30 exhibit
an opposing behavior: the values for the relative gain obtained with the original
compensating sequence are higher (DICOM: 50 %, raw data: 53.6 %) than the val-
ues obtained with the inverted compensation sequence (DICOM: 39.8 %, raw data:
42 %). The raw data evaluation generally exhibits a higher relative gain than the
corresponding evaluation based on DICOM data. Since the optimized waveforms
can be inverted without influence on the compensation efficiency, the resulting sim-
ulated value for the relative signal gain represents both the initial optimization and
the inverted optimized waveform. The simulation predicts a relative signal gain of
24.4 % for both considered vector pairs.

4.3.3. Influence of the Positioning of the ROI
Since different spatial dependencies of the concomitant phase for the 60 considered
diffusion wave vector pairs are expected, the achieved relative signal gain and the
respective simulation data were evaluated for different positionings of a small ROI.
The considered data originates from the experiment with b = 2000 s/mm2 evaluated
in section 4.3.1. The results are displayed in Fig. 4.25 for the different positionings
showed as inserts in the respective diagram. Compared to the remaining wave vector
pairs, a drop in the relative signal gain is observable for the vector pairs 21 to 40
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Figure 4.25.: Measured and simulated relative signal gain for different positionings
of the ROI. The measurement data originates from DICOM data and
raw data from the experiment with an applied diffusion weighting of
b = 2000 s/mm2 per direction vector. A clear influence of the ROI posi-
tioning on the relative signal gain is observable. For the four considered
positionings shown in (a-d), the used ROI is displayed as insert.

when the ROI is positioned in the upper part of the phantom (Fig. 4.25a), where
a maximum of 8.6 % for the relative signal gain is predicted. Similar behavior is
observed for the vector pairs 31 to 50 for the positioning in the right side corre-
sponding to positive x-coordinates (Fig. 4.25b). For these vector pairs, a maximum
relative gain in signal of 10.5 % is predicted. When the small ROI is positioned in
the lower part of the phantom (Fig. 4.25c), a decrease in the benefit of the optimized
sequences expressed as a lower relative signal gain is seen for the wave vector pairs
11 to 20 and 41 to 60, where the predictions fall below 15 %. For the final chosen
position of the small ROI in the left part of the phantom corresponding to negative
values of the x-coordinate, a predicted maximum value of 12.3 % for the vector pairs
11 to 30 is seen (Fig. 4.25d).
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For all shown positionings, the respective measured values for the relative signal
exhibit the same trend while also fluctuations are present. Considering for instance
Fig. 4.25d, the measured value from DICOM data for vector pair 19 exhibits a rel-
ative deviation from the prediction of 112.9 %. For all considered ROIs, a positive
effect of the optimization is predicted.

4.3.4. Influence of the Sampling Scheme
To evaluate the effect of a different order of the diffusion wave vector pairs used in
the experiment, the 60 pairs as listed in appendix A.1 were changed with elemental
rotations. The measured and simulated values for the relative signal gain achiev-
able with the optimized sequences using the altered sampling scheme are shown in
Fig. 4.26. A diffusion weighting of b = 2000 s/mm2 was applied along every di-
rection vector, the transversal slices had a shift of ∆z = -50 mm. The results for
the measurements using the large PVP cylinder are shown in Fig. 4.26a. Due to
the elemental rotations, the maximum relative gain in signal is predicted for the
wave vector pairs 21 to 30. A similar behavior to Fig. 4.20 is observable: the
measurements are below the prediction for these vector pairs and reach a maximum
of 49.8 % considering DICOM data while the simulation predicts a relative gain of
56.4 %. The measurement results of the remaining vector pairs tend to exhibit a
larger gain than the simulations predict. This experiment was also carried out with

1 10 20 30 40 50 60
Diffusion wave vector pair

0

20

40

60

80

R
el

at
iv

e 
si

g
n
al

 g
ai

n
 (

%
)

1 10 20 30 40 50 60
Diffusion wave vector pair

0

20

40

60

80

100

R
el

at
iv

e 
si

gn
al

 g
ai

n 
(%

)

DICOM
Raw data
Simulation

a) b)PVP Oil phantom

Figure 4.26.: Results obtained with the sampling scheme altered with elemental ro-
tations. A diffusion weighting of b = 2000 s/mm2 was applied along
every direction vector in the experiment. Both DICOM and raw data
were evaluated and are shown with the respective standard error and
the corresponding prediction. a) Results obtained with the large PVP
cylinder. b) Relative signal gain using the spherical oil phantom.
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the spherical oil phantom, the corresponding results are shown in Fig. 4.26b. In
comparison to the results of the PVP phantom, the measured relative signal gain
exhibits a trend towards higher values, especially notable for the vector pairs 21 to
30. Similarities between the results obtained with the two different phantoms can be
spotted with respect to deviating vector pairs: For example, in both measurements
the vector pairs 3, 9, 13, 45 and 49 show a pronounced increase in the measured
relative gain that is higher than predicted by the simulations.

4.3.5. Influence of the Order of Acquisitions
Since for an accurate determination of the SNR a relatively long measurement time
was needed, the influence of two different acquisition modes was examined. First, all
121 images (one b0-image and 120 original and optimized waveforms in alternating
order for every of the 60 diffusion wave vector pairs) were acquired one time, which
was then repeated (denoted as "outer loop" mode). Second, all repetitions of a par-
ticular waveform were acquired subsequently. In this mode, the b0-image and the
original and optimized waveforms of the diffusion wave vector pairs, respectively,
were also acquired in ascending order (denoted as "inner loop" mode). This mode
was the standard mode for the conducted measurements in this thesis. The exper-
iment was conducted with the large PVP cylinder using the waveforms applying a
b-value of 2000 s/mm2, 100 repetitions were acquired (refer to section 3.9.1 for the
parameters regarding the measurements and simulations).

The results regarding the relative signal gain measured for every diffusion wave
vector pair in the described acquisition orders are shown in Fig. 4.27. Comparing
the results evaluated with DICOM data (Fig. 4.27a) with the values for the relative
signal gain obtained from raw data (Fig. 4.27b), it can be noted that considering
the DICOM values for the first ten diffusion wave vector pairs, the values acquired
with the "outer loop" modus are lower than the values obtained with the "inner loop"
acquisition mode, while the raw data results show the opposite phenomenon. For
the following vector pairs, for both DICOM and raw data the values corresponding
to the "inner loop" acquisition tend to exhibit a larger deviation from the simulation
than the values corresponding to the "outer loop".

These results are also quantitatively visible when calculating the difference between
the simulation and the measured values for the relative signal gain. Considering
the DICOM data (Fig. 4.27c), the difference values for the first ten diffusion wave
vector pairs are comparable and amount to a maximum value of 24.4 pp (percentage
points) and 22.1 pp for the "outer loop" and "inner loop" modi, respectively. The
average deviation from the simulation values amounts to 20.8 pp and 17.5 pp ("outer
loop" and "inner loop" modi, respectively). For the following vector pairs, the values
obtained with the "inner loop" averaging modus tend to exhibit larger differences
to the simulation of up to -25 pp. The averaged deviations considering these vector
pairs 11 to 60 amount to -1.1 pp ("outer") and -4.6 pp ("inner"), while the respective
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Figure 4.27.: Influence of the acquisition order. a) Relative signal gain obtained from
DICOM data. b) Values for the relative signal gain from raw data. c)
Difference between the simulation value and the results from DICOM
in percentage points (pp). d) Difference between simulation and the
relative signal gain obtained from raw data.

mean value considering all vector pairs are 2.5 pp and -0.9 pp. These values are
summarized in Tab. 4.1. The difference values obtained from the raw data exhibit a
different behavior (see Fig. 4.27d). For the first ten vector pairs, the values acquired
with the "inner loop" mode exhibit a larger mean deviation. For the following vector
pairs, only a small difference in the calculated averages of 1.6 pp is present. The
averaged values are also given in Tab. 4.1. It can be seen that when all vector pairs
are considered, the absolute averaged difference from the simulations is smaller when
using the "inner loop" acquisition mode (DICOM data) or in a comparable range to
the "outer loop" acquisition mode (raw data).
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Table 4.1.: Mean differences between the simulation and the measurements for the
two acquisition modi in percentage points (pp).

Diffusion wave "Outer loop" "Inner loop"
vector pair DICOM Raw DICOM Raw

1-10 20.8 11.9 17.5 18.1
11-60 -1.1 -2.8 -4.6 -4.4

all 2.5 -0.4 -0.9 -0.7

A closer look at the acquired signal with the "outer loop" acquisition mode is pro-
vided in Fig. 4.28a. It is visible that with increasing number of repetitions, i.e.,
increasing time since start of the measurement, the signal exhibits a drift towards
higher values in the b0-image (relative increase of 1.7 %) and towards lower values
(relative decrease of 7.1 %) for the signals acquired with the compensating sequence
of the first diffusion wave vector pair. Calculating the apparent diffusion coefficient
ADC for all acquired repetitions reveals an increasing trend, which amounts to a
relative increase of 4.4 %. In contrast, the signal values acquired with the "inner
loop" acquisition mode remain constant over all repetitions (Fig. 4.28b), which is
then also visible in the calculated ADC . In Fig. 4.28c, the standard deviation for
corresponding pixels averaged over all 100 repetitions is shown. For the "outer loop"
acquisition, higher values for the standard deviation are obtained in comparison to
the "inner loop" acquisition mode.

4.3.6. Influence of Parameter Changes on Simulations
To check the accuracy of the numerical simulations, changes of different parameters
used in the simulations were examined. The results of the changes of parame-
ters for the simulation of the relative signal gain for a transversal slice shifted by
∆z = -50 mm are presented in Fig. 4.29. The simulations are based on original
waveforms that apply a b-value of 2000 s/mm2 per direction vector, the corre-
sponding compensating waveforms were optimized for a transversal slice with an
off-isocenter shift of ∆z = -50 mm. In comparison to the basis simulation that as-
sumed a uniform slice profile and an isotropic voxel size of 3 × 3 × 3 mm3 considering
101 spin isochromats along the voxel dimensions, respectively, first the influence of
the number of considered spin isochromats was investigated (Fig. 4.29a). It is visible
that for 5 considered spin isochromats along every voxel dimension, the simulated
relative signal gain is systematically higher than for a larger number of considered
subvoxels and reaches up to 104.2 % considering the first ten wave vector pairs,
while for the following vector pairs a maximum value of 49.7 % is predicted. By in-
creasing the number of spin isochromats in the simulation to 11 for all dimensions, a
decrease in the expected relative signal gain is visible. For the first ten vector pairs,
the relative decrease amounts to 29.8 % for the maximum value. For instance for the
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Figure 4.28.: Comparison of acquired signals and standard deviations for the two ac-
quisition modes. Values were obtained from DICOM data and are shown
with the respective standard error. a) Signals obtained from all 100 repe-
titions for the b0-image and the optimized waveform of the first diffusion
wave vector pair acquired with the "outer loop" acquisition mode. For
each repetition, the ADC was calculated from corresponding signal val-
ues from the b0-image and the compensated diffusion-weighted signals.
b) Measured signals and calculated ADC obtained with the "inner loop"
acquisition mode. c) The standard deviations for corresponding pixels
of all 100 repetitions for all used waveforms were averaged within the
ROI. The first data set corresponds to the b0-image while the following
data sets correspond to the original and optimized waveform of the 60
diffusion wave vector pairs in alternating order, respectively.
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Figure 4.29.: Influence of parameter changes on simulations of the relative signal
gain. Based on the basis simulations for a transversal slice shifted by
∆z = -50 mm with a uniform slice profile and an isotropic voxel size of
3 × 3 × 3 mm3 considering 101 spin isochromats along every direction,
which is used as reference, the influence of changes of different param-
eters on the simulations was investigated. The simulations were done
considering an applied b-value of 2000 s/mm2 per direction vector. a)
Changing number of considered spin isochromats along every voxel di-
mension. The reference corresponds to the yellow line. For comparison,
also the values based on the Taylor-approximation are shown. b) Differ-
ent slice thicknesses, where "pulsetool" refers to the slice profile shown
in Fig. 3.3c. The reference corresponds to the blue line. c) Different off-
isocenter shifts of the transversal slice. The reference corresponds to the
black line. d) Effect of blurring simulated with an up-scaling factor of 51
together with the k-space filter for the spin echo EPI sequence as shown
in Fig. 3.5a while using different values for T ∗

2 . The green line consid-
ers the "pulsetool"-based slice profile instead of the uniform profile. For
these simulations, 51 spin isochromats along the voxel dimensions were
considered.
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last considered vector pair, a relative decrease of 24.5 % is observable. If the number
of considered spin isochromats is further increased to 51 along all dimensions, the
simulated values for the relative signal gain are further decreasing for all considered
vector pairs: for the maximum value predicted for the first ten vector pairs, the
relative decrease is 18.4 % and for the last vector pair 15.6 %. By further increasing
the number of spin isochromats, a slight decrease for the first ten vector pairs is
observed. For the following pairs, almost no difference is visible. For comparison,
also the relative signal gain obtained with the Taylor-approximation (3.20) is shown.
The results obtained with this analytical calculation are in the range of the results
obtained by numerical integration considering 113 subvoxels.

As pointed out in section 3.5.2, also different slice profiles than the assumed uni-
form profile can be included into the simulations. The influence of different slice
profiles is depicted in Fig. 4.29b. With an increase in slice thickness, the simulated
relative signal gain is also increasing, where the highest absolute impact is seen for
the first ten wave vector pairs. Here, a relative increase of 52 % is predicted for
the maximum value while increasing the slice thickness from 3 mm to 3.5 mm but
still considering a uniform profile. For, e.g., vector pair 19, a relative increase of
51.4 % is present while the absolute change amounts to 14.2 pp (percentage points).
The largest changes in comparison to the thickness of 3 mm is seen by considering
the slice profile obtained with the "pulsetool" program available in the IDEA envi-
ronment (compare Fig. 3.3c). With consideration of this slice profile, most vector
pairs show an increase in the predicted relative signal gain. The absolute difference
compared to a thickness of 3 mm for the maximum predicted value for the first
ten vector pairs amounts to 119.4 pp, which is equivalent to a relative increase of
205.5 %. Considering for instance again wave vector pair 19, the absolute increase
is 62.3 pp, which translates to a relative increase of 225.1 %.

A possible deviation from the slice shift of ∆z = -50 mm from the isocenter by
±5 mm was also examined in simulations and the results are shown in Fig. 4.29c.
Generally, the larger the absolute shift in z from the isocenter, the higher the pre-
dicted relative signal gain. The first ten diffusion wave vector pairs depict the high-
est sensitivity to a changed slice position: the relative change from ∆z = -50 mm
to ∆z = -45 mm amounts to -22.6 % for the maximum value seen for the first ten
pairs, while the relative increase from ∆z = -50 mm to ∆z = -55 mm is 28.6 %.
For the following vector pairs, no equivalently large changes in absolute numbers
are observable. For instance, vector pair 30 shows a predicted relative increase of
21.9 % and an absolute increase of 5.3 pp going from ∆z = -50 mm to ∆z = -55 mm.

In Fig. 4.29d, the influence of blurring together with the k-space filter corresponding
to the spin echo EPI sequence (see Fig. 3.5a) is shown for different values of T ∗

2 .
To simulate the blurring, an up-scaling factor of 51 was used. This simulation con-
sidered 51 spin isochromats along every dimension and a uniform slice profile. For
T ∗

2 = 30 ms, additionally the slice profile obtained from the "pulsetool" program was
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considered. For T ∗
2 = 30 ms and the "pulsetool"-based slice profile, the predicted rel-

ative signal gain shows the largest deviations from the reference line. This deviation
is reduced when considering a uniform slice profile instead of the broadened profile
for the same value for T ∗

2 (blue). In comparison to the reference, changing behavior
of some unique vector pairs is observable. For instance, while the first vector pair
shows a lower predicted gain than the third vector pair in the reference, the opposite
case is observable for T ∗

2 = 30 ms. Generally, with increasing value of T ∗
2 , the rela-

tive signal gain is decreasing. For T ∗
2 = 400 ms, the predicted relative signal gain is

always lower than for the simulations without k-space filters used as reference. At
this value for T ∗

2 , the T ∗
2 -filter only has marginal influence at the chosen simulation

parameters.

4.3.7. Influence of Applied b-Value
In this section, the results of the measured and simulated relative signal gain for
different applied b-values are presented. Four b-values of 500 s/mm2, 1000 s/mm2,
1500 s/mm2 and 2000 s/mm2 applied along each diffusion direction were considered
(see Tab. 3.1), 10 repetitions of each waveform were acquired. The results using the
large PVP cylinder are presented in Fig. 4.30. With increasing b-value, a higher
relative signal gain is predicted by the simulations. The measured values also exhibit
this trend of an increasing relative gain for higher b-values, which especially can be
seen for the first 10 diffusion wave vector pairs. Here, a relative signal gain of 18.4 %
(b = 500 s/mm2) and up to 58.1 % (b = 2000 s/mm2) is predicted as seen previ-
ously in Fig. 4.19 and Fig. 4.20. The measurements tend to show a higher relative
gain than the corresponding simulations for all considered b-values. Especially for
the lower b-values the measurement results exhibit large fluctuations in comparison
to the simulation. For b = 500 s/mm2 (Fig. 4.30a), also negative values for the
relative signal gain were measured, while the simulation predicts a positive gain for
all considered diffusion wave vector pairs. The increasing benefit of the compensa-
tion is visible for b = 1000 s/mm2 (Fig. 4.30b), where only one negative value is
obtained from the DICOM data but all other measurement values are positive. In
Fig. 4.30c, a further tendency for increasing benefit of the compensation is visible.
The measurements also exhibit the same qualitative behavior as the simulation, but
are higher by tendency. Considering the results for b = 2000 s/mm2 (Fig. 4.30d),
the measured values are also following the qualitative trend of the simulations, but
with the tendency of being higher than the prediction. For comparison, also the
measurement result obtained with 100 repetitions is shown. The obtained values
for the relative signal gain are lower than the values obtained with 10 repetitions,
but exhibit the same trend. The seen deviations between the obtained values from
DICOM data and raw data for b = 2000 s/mm2 are not as strong as in the results
from b = 500 s/mm2.

The same experiment was carried out with the spherical oil phantom, the results are
presented in Fig. 4.31. In contrast to the results obtained in the PVP cylinder, all
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Figure 4.30.: Measured relative signal gain using the large PVP cylinder and cor-
responding simulations, 10 repetitions were acquired. Four different
b-values were applied: b = 500 s/mm2 (a), b = 1000 s/mm2 (b),
b = 1500 s/mm2 (c) and b = 2000 s/mm2. In d), also the results ob-
tained for 100 repetitions from DICOM data are shown for comparison.

measured relative signal gains are positive for b = 500 s/mm2 (Fig. 4.31a). Similarly
to the experiment with the PVP cylinder, the increasing benefit of the compensation
is also visible for the oil phantom in the results for b = 1000 s/mm2 (Fig. 4.31b).
In accordance with the results obtained in the PVP cylinder, especially the first ten
diffusion wave vector pairs exhibit an increased measurable relative signal gain with
increasing b-value. For b = 1500 s/mm2, the obtained measured values for these
pairs are above 58 % while the simulation predicts an expected gain of about 45 %
(Fig. 4.31c). For b = 2000 s/mm2, the measured values are qualitatively following
the prediction, but mostly exhibit a larger signal gain than the corresponding simu-
lations (Fig. 4.31d). This behavior is also observed for the lower b-values, where the
measured values also show fluctuations similar to the PVP results, but are strictly
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Figure 4.31.: Measured relative signal gain using the spherical oil phantom with cor-
responding simulations. Ten repetitions were acquired in the exper-
iments. Four different b-values were examined: b = 500 s/mm2 (a),
b = 1000 s/mm2 (b), b = 1500 s/mm2 (c) and b = 2000 s/mm2 (d).
In d), also the results obtained for 100 repetitions from DICOM data
are shown for comparison.

higher than the simulations. This trend is also visible in Fig. 4.26. In contrast
to the results obtained in the large PVP cylinder, the results of the measurements
conducted with 100 repetitions are in better agreement with the results obtained
with 10 repetitions. Also in contrast to the results obtained with the PVP cylinder,
no large deviations between the values resulting from DICOM data and from raw
data are observable.

Since the measurements of the relative signal gain due to the compensation show dif-
ferent behaviors for the PVP cylinder (see Fig. 4.30) and the spherical oil phantom
(compare Fig. 4.31), the standard deviations of the obtained signals are compared
in Fig. 4.32. The standard deviations for corresponding pixels of all acquired rep-
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Figure 4.32.: Comparison of the standard deviations of the measured signals from
DICOM data. The standard deviations for corresponding pixels of all
acquired repetitions for all applied waveforms were averaged within the
ROI and are shown with the corresponding standard error. The first
data set corresponds to the b0-image, the second data set to the original
waveform of the first diffusion wave vector pair, the third data set to the
optimized compensating waveform of the first vector pair. The follow-
ing data sets correspond to the subsequent vector pairs in this scheme.
The diagrams on the left correspond to data acquired with the PVP
cylinder, while the diagrams on the right correspond to experiments
with the spherical oil phantom. a) b = 500 s/mm2, 10 repetitions. b)
b = 2000 s/mm2, 10 repetitions. c) b = 2000 s/mm2, 100 repetitions.
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etitions were averaged for all applied waveforms. In Fig. 4.32a, which corresponds
to b = 500 s/mm2 and 10 repetitions, the data sets obtained with the PVP cylinder
exhibit larger values for the standard deviation than the corresponding data sets
acquired with the spherical oil phantom. For the b-value of 2000 s/mm2 acquired
with 10 repetitions, no substantial differences between the experiments with the two
different phantoms are observable (Fig. 4.32b). Considering the standard deviations
of the experiments with b = 2000 s/mm2 and 100 repetitions in Fig. 4.32c, no pro-
nounced differences are visible. The first data set corresponding to the b0-images
shows a slight increase of around 1.7 % with respect to the average of the standard
deviations of the remaining data sets. For the spherical oil phantom, more data sets
are seen with an increase in the standard deviation although these variations are
still small.

4.3.8. Positioning Experiments
The results of testing the impact of different positionings of the large PVP cylinder
on the SNR with the waveforms corresponding to b = 500 s/mm2 are displayed in
Fig. 4.33. The measured values of the SNR from DICOM data were normalized
to the SNR resulting from the acquired b0-images. The simulation reflects also the
expected signal loss due to diffusion. When the ROI for data evaluation was placed
in the bottom part of the phantom in the case of no shift of the transversal slice
(∆z = 0 mm, see Fig. 4.33a), a discrepancy for data set 3, which corresponds to the
optimized waveform of the first vector pair, is seen: the normalized value for the
SNR exhibits a relative increase of 14.7 % from the vertical to the horizontal posi-
tioning of the phantom. For this configuration, the measured values for the vertical
positioning tend to be lower than for the horizontal setup. No strong influence of the
concomitant phase on the signal is predicted, which is also reflected by the measure-
ments. The evaluation with the same ROI of the data acquired with an off-isocenter
shift of ∆z = -50 mm (Fig. 4.33b) also reveals the trend of lower values for the
vertical configuration of the phantom. The expected "zig zag" for the data sets 2 to
11 is not as pronounced as predicted. When the small ROI is set in the upper part
of the phantom for the slice in the isocenter (Fig. 4.33c), the vertical configuration
also exhibits the tendency to be lower than the horizontal arrangement. A drop of
the normalized SNR for both setups is seen for data set 7, which corresponds to
the optimized waveform of vector pair 3. Here, the vertical configuration exhibits a
relative deviation from the simulation of 19.8 %. The results from the top ROI for
the shifted slice position (Fig. 4.33d) show a relative good agreement between the
two configurations, but with a difference in data set 7. Similar to Fig. 4.33b, the
expected "zig zag" is not clearly visible in the measurement data.
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Figure 4.33.: Results of the positioning test using DICOM data. The measured SNR
was normalized to the SNR obtained from the b0-images. The simu-
lated values for the signal were diminished by the theoretical diffusion
loss (b = 500 s/mm2 per direction vector). The SNR with standard er-
ror for different positionings ("horizontal" or "vertical") of the large PVP
cylinder and different locations of the ROI is shown for every single data
set acquired. The used ROIs are displayed as insert in the respective
diagram. The first data set corresponds to the b0-image. The following
data sets refer alternating to the original and optimized waveforms for
the used first five diffusion wave vector pairs considered in this exper-
iment in ascending order. a) Bottom ROI, no shift. b) Bottom ROI,
∆z = -50 mm. c) Top ROI, no shift. d) Top ROI, ∆z = -50 mm.
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4.4. Optimized Addition: In Vivo Results
The results for the in vivo experiments with optimized waveforms, which also con-
sider the cross terms of the concomitant field as described in section 3.8.3, are pre-
sented in the following. All measurement results are based on online-reconstructed
DICOM data of a transversal slice with distance of ∆z = -50 mm from the isocenter.

The obtained values for the relative signal gain shown in Fig. 4.34 reveal a ben-
efit for the 12 selected diffusion wave vector pairs used in this experiment. The
measurements exhibit higher values than the corresponding simulations. For vector
pair 8, a relative signal gain of 35.3 % was measured while the simulation predicts
an expected gain of 19.4 % in the considered ROI. For all considered vector pairs,
the simulation predicts a benefit of the optimization, which is confirmed by the
measurement results.

The obtained SNR maps, which are the basis for calculating the relative signal
gain, are shown for three example wave vector pairs in Fig. 4.35. The wave vector
pairs 3, 28 and 53 were chosen (see appendix A.1). A comparison of the maps result-
ing from the original and optimized waveforms gives a visual representation of the
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Figure 4.34.: Relative signal gain achieved in vivo in a human brain with the op-
timized waveforms with b = 750 s/mm2 applied along each direction
vector. The ROI used for data evaluation is shown as insert. For all
considered 12 diffusion wave vector pairs, a benefit is predicted by the
simulation. The values for the averaged relative signal gain obtained
in the measurement are higher than the corresponding simulation. For
vector pair 8, a relative signal gain of 35.3 % was obtained in the mea-
surement.
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relative SNR gain: (19.6 ± 0.9) %

relative SNR gain: (34.0 ± 0.8) %

a b

c d

e f

10

20

0

relative SNR gain: (13.5 ± 0.6) %

Original Optimization

Figure 4.35.: Cropped SNR maps calculated based on the in vivo measurements for
three different diffusion gradient direction pairs. The region outside
the used mask was set to zero. The evaluated transversal slices had
a shift of ∆z = -50 mm from the isocenter. Every image pair in a
row represents the result obtained with the original (left) and optimized
compensating (right) pulse sequence for one particular diffusion wave
vector pair. For every considered pair, the obtained average relative
SNR gain is given. All three comparisons exhibit a visible increase in
SNR due to the compensation of the concomitant phase. The x- and
y-coordinates of the scanner isocenter are marked with a cross in light
blue. Regions with prominent gain in SNR are marked with an arrow.
a, b): Maps for diffusion wave vector pair 3. c, d): Maps for vector pair
28. e, f): Maps for vector pair 53. All images are equally windowed to
enhance comparability.
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Figure 4.36.: Obtained FE2 maps in the phantom from waveforms without compen-
sation of the concomitant phase (a) and from waveforms optimized for
concomitant field effect compensation (b). The background was set to
zero. The x- and y-coordinates of the isocenter are marked with a purple
cross. The region of crossing fibers is marked with a red arrow in both
maps. The green arrow points at the PVP surrounding of the phantom.
While this outer ring is clearly visible in (a), the ring exhibits values
close to zero in the map calculated from optimized waveforms (b).

benefit achieved with the optimization regarding the SNR. In all three examples,
also an increase in SNR in the inner regions of the brain is visible while the outer
regions generally show a higher SNR than the respective inner regions. The im-
provement exhibits different spatial dependencies for the different vector pairs (see
arrows in Fig. 4.35).

In preparation to the experiments to assess the effect of concomitant phase com-
pensation on microscopic diffusion metrics, also an experiment using the Q-Ball
phantom was carried out. A comparison of the FE2 maps resulting from the origi-
nal waveforms and from the optimized waveforms is given in Fig. 4.36. In the region
of crossing fibers in the phantom that is marked with a red arrow in both maps, a
value of FE2 = (0.68 ± 0.11) is obtained without compensation of the concomitant
phase (Fig. 4.36a). For the map based on the optimized waveforms, a value of
FE2 = (0.66 ± 0.10) was measured (Fig. 4.36b). The fibers in the used phantom
are surrounded by PVP. The resulting ring in the transversal slice is clearly visible in
the map calculated from uncompensated waveforms (see green arrow in Fig. 4.36a).
In the map based on the optimized waveforms, the ring is only slightly visible and
exhibits values near zero for FE2.

The resulting FE2 maps from the in vivo measurements of the brain of the two
volunteers are shown in Fig. 4.37. For the first volunteer, higher values in the gray
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Figure 4.37.: Calculated FE2 maps of the brain of the two volunteers examined. For
every volunteer, the maps corresponding to the data using the original
waveforms (a and d) and the map calculated from the optimized wave-
forms (b and e) are shown. Maps with the difference values obtained
by subtracting the optimization-based map from the map from original
waveforms are also provided for the first (c) and second (f) volunteer. All
maps are windowed. The images are cropped to enhance visibility. The
x- and y-coordinates of the isocenter are marked with a purple cross.
The region outside the used mask was set to zero.

matter of the brain are seen in the map calculated from the original waveforms
(see Fig. 4.37a) in comparison to the map resulting from the optimized waveforms
(Fig. 4.37b). A reduction of FE2 is further seen in the region of the ventricles for
the optimization-based map. Generally, the map generated with data from the op-
timized waveforms tends to exhibit lower values for FE2. In the difference map
(Fig. 4.37c), these findings are visible as positive values for the difference in gray
matter and in the area of the ventricles. For the second volunteer (Figs. 4.37d-f),
the tendency to lower values for the optimization-based map is visible similar to the
first volunteer. In the outer regions of the brain, also a decrease of FE2 can be noted
for the map based on optimized waveforms. This decrease is not as pronounced as
it is in the maps for volunteer 1. The difference map for volunteer 2 (Fig. 4.37f)
reflects these findings especially with positive values in the outer region of the brain.
In comparison to volunteer 1, also relatively large negative values are present, in-
dicating sharply higher values for FE2 in the optimization-based map for certain
pixels. These values result from the anatomically left upper part of the brain, i.e.,
top right in the image, as visible in Fig. 4.37e.
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Figure 4.38.: Comparison of pixel values of the FE2 maps resulting from the in vivo
experiments. For every pixel value in the FE2 map based on the origi-
nal waveforms, the value of the corresponding pixel in the optimization-
based map was plotted. Pixels with values lower than zero were omit-
ted for this analysis. A trend towards lower values of FE2 in the
optimization-based FE2 map is visible for both volunteers examined.

The trend towards lower values for FE2 is also seen in Fig. 4.38, where the values of
corresponding pixels from the FE2 maps calculated from the original waveforms and
from the optimization-based map (see Fig. 4.37) for the two volunteers examined
are plotted against each other. For volunteer 1, a clear trend towards lower values
of FE2 in the map based on the optimized waveforms is visible (Fig. 4.38a). For
volunteer 2, this trend is also visible (Fig. 4.38b) but not as prominent as for the
maps of volunteer 1. Here, a larger variance between the pixels is visible.

4.5. Comparison of Analytical Expression with
Magnetic Field Maps

To compare the analytical expression of the concomitant field (2.73) with the results
of the magnetic field maps provided by the manufacturer (see section 3.11.1) and
to test the limits of this approximative expression, the prediction for the relative
signal gain was examined. In Fig. 4.39a, the simulations of the relative signal gain
based on the vendor-provided magnetic field map and the analytical expression are
shown. Except for minor deviations for the first 10 diffusion wave vector pairs, the
results obtained with Eq. (2.73) show a high degree of agreement with the results
based on the vendor-provided field maps.

The comparison based on the simulations with the conductor loops is depicted in
Fig. 4.39b. The first configuration of the conductor loops (see Tab. 3.2) exhibits a
good agreement with the vendor-provided field map in terms of the resulting relative

118



4.5. Comparison of Analytical Expression with Magnetic Field Maps

1 10 20 30 40 50 60
Diffusion wave vector pair

0

50

100

150

200

R
el

at
iv

e 
si

g
n
al

 g
ai

n
 (

%
) Configuration 1

Configuration 2
Configuration 3
Vendor-provided field map

a) b)

1 10 20 30 40 50 60
Diffusion wave vector pair

0

10

20

30

40

50

60

70
R
el

at
iv

e 
si

g
n
al

 g
ai

n
 (

%
) Vendor-provided field map

Analytical expression

Figure 4.39.: Relative signal gain calculated from different magnetic field maps. a)
Comparison between the vendor-provided field map and the analytical
expression for the concomitant field. The resulting values exhibit a high
degree of agreement. b) Comparison of the relative signal gain based
on different configurations of conductor loops. See Tab. 3.2 for the
parameters used. The results based on configuration 1 (blue) are in high
accordance with the results from the vendor-provided field maps (green)
while the other configurations shown in red and black exhibit significant
deviations from the results based on the magnetic field maps from the
vendor. In (b), the shown results are based on 11 spin-isochromats
equally distributed along the voxel dimensions, respectively.

signal gain. For the examined other configurations, large deviations from the results
based on the field map of the vendor are visible. Especially, for configuration 2 (see
Tab. 3.2), relatively large discrepancies for the first ten and the last ten vector pairs
are present. Furthermore, configuration 3 also shows deviations for the first ten
wave vector pairs. The wave vector pairs 14 and 19 are equally increased for these
configurations with respect to the vendor-provided field map.

In Fig. 4.40, the gradient of the Bx-component with respect to x that is gener-
ated by the x-gradient coils is shown for a part of the transversal slice that is used
as basis for calculating the relative signal gain. The selected part corresponds to
the xz-plane at y = 0 m. The gradient maps are based on the vendor-provided field
maps (Fig. 4.40a) and the magnetic field simulation done with configuration 3 (see
Tab. 3.2) of the conductor loops (Fig. 4.40b). The shown gradient maps result
from an amplitude of Gx = 75 mT/m. The main difference can be noted in the
strength of this particular undesired gradient. The map based on the field map of
the vendor exhibits an absolute value of around 3 mT/m for this gradient, while
the configuration of the conductor loop exhibits absolute values up to 80 mT/m.
Furthermore, the course of the gradient is different and appears reversed. While the
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Figure 4.40.: Maps of the gradient ∂Bx/∂x in the xz-plane at y = 0 m generated by
x-gradient coils. The maps result from Gx = 75 mT/m. The selected
coordinates are part of the transversal slice used as basis for calculating
the relative signal gain. a) Gradient map based on the magnetic field
map provided by the vendor. b) Gradient map resulting from configu-
ration 3 for the conductor loops (see Tab. 3.2).

gradient based on the map provided by the vendor shows a non-monotonic course
along the x-direction, the gradient map resulting from the conductor loops exhibits
a linear course. The considered gradient is constant along z in both maps.

4.6. Action of Radially Symmetric Phase on k-Space
and on Reconstruction

To investigate the typical influence of concomitant fields on the signal characteris-
tics in k-space, the effect of an additional radially symmetric phase in the spatial
domain on the absolute value of k-space is presented in this section. Furthermore,
the results of the simulation experiments to examine the interaction of an addi-
tional concentric radial phase accumulated before readout with the k-space filters
are presented. Among with the filter corresponding to finite sampling, two different
T ∗

2 -filters have been considered (see Fig. 3.5) in these simulation experiments.

T ∗
2 -Filter Corresponding to Spin Echo EPI

In Fig. 4.41, the absolute values of k-space of images bearing an additional concen-
tric radial phase are shown. The absolute value of k-space obtained from measure-
ments (Fig. 4.41a) exhibits oval-shaped intensity patterns with a maximum in the
part corresponding to positive values of ky, but increased intensity is also visible in
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Figure 4.41.: Effect of a radial phase on absolute value of k-space. a) Left: Abso-
lute value of k-space obtained from measurements with b = 2000 s/mm2

per direction vector with the original waveform corresponding to vec-
tor pair 1 (see appendix A.1). The shown map results from a sum-of-
square combination of the coil channels and subsequent averaging over
all 100 acquisitions. Middle: Reconstructed magnitude image. Right:
Reconstructed phase image. The background was set to zero for the re-
constructions. b) The shown up-scaled magnitude image together with
the shown phase was used to mimic the intensity and phase distribu-
tion before readout. The magnitude image is equal to the reconstructed
image, the phase image is the expected radial phase induced by the
original waveform of vector pair 1. Based on these distributions, the
absolute value of k-space is obtained by Fourier transformation, which
looks similar to the absolute value of k-space obtained from the mea-
surement shown in (a). c) Demonstration that in principle every magni-
tude distribution is propagated to k-space if a sufficiently strong radial
phase has been accumulated before readout. For all experiments shown,
the simulated absolute values of k-space are shown with applied two-
dimensional boxcar function and T ∗

2 -filter corresponding to spin echo
EPI (T ∗

2 = 400 ms).

121



4. Results

the lower part of k-space with negative values of ky. The increased intensity locally
corresponds to the intensity maxima in the reconstructed magnitude image due to
the coil profile. The corresponding simulated k-space (right image in Fig. 4.41b)
based on the measurement data depicts similar behavior. Here, the seen rings are
indeed concentric. From the presented measurement and simulation data, it can be
inferred that an additional concentric radial phase that is present before readout
propagates the intensity distribution from the spatial domain to the frequency do-
main. This finding is confirmed in the simulation shown in Fig. 4.41c, where it is
visible that basically every intensity distribution in combination with a sufficiently
strong concentric radial phase, as for instance induced by the original waveforms of
vector pair 1 (see appendix A.1) in transversal slices, is propagated to k-space. In
the simulations, no effect of the applied T ∗

2 -filter is seen due to the relatively large
considered value of T ∗

2 = 400 ms.

Next, the effect of the k-space filter corresponding to a spin echo EPI sequence
is presented. In Fig. 4.42, the results for a moderate additional concentric radial
phase (Fig. 4.42a) are shown. The absolute value of the k-space exhibits concentric
rings around the center (Figs. 4.42b-d). For the moderate dephasing considered
here, the concentric rings are only present near the k-space center. For T ∗

2 = 30 ms
(Fig. 4.42b), the absolute value of k-space reflects the course of the applied T ∗

2 -filter
due to the pointwise multiplication: the magnitude is maximum for the horizontal
center line (ky = 0) while the magnitude is decreasing towards the positive and
negative maximum of ky. After application of an inverse Fourier transformation,
the absolute value in the image domain exhibits a non-uniform magnitude course.
Similar to the absolute value of the corresponding k-space, the magnitude is max-
imum for the horizontal line at y = 0 mm and then decreases towards the edges
of y. Towards higher values of T ∗

2 , the described effects on the magnitude in the
frequency and spatial domain are less pronounced (T ∗

2 = 100 ms, Fig. 4.42c) or no
longer visible (T ∗

2 = 400 ms, Fig. 4.42d).

The results of a strong accumulated additional concentric radial phase are depicted
in Fig. 4.43. Similar to the moderate concentric radial phase, the absolute value of
k-space shows concentric rings for all considered values of T ∗

2 (Figs. 4.43b-d) after
application of the k-space filters. In contrast to the moderate phase, these rings fill
the whole k-space to the edges. The previously described effects on the magnitude
of the absolute value of the k-space and the corresponding magnitude image in the
spatial domain after inverse Fourier transformation are also present for the strong
additional phase. Especially for T ∗

2 = 30 ms (Fig. 4.43b), the effect on the magni-
tudes is visible. For higher values of T ∗

2 , the effect on the magnitudes of the absolute
value of k-space diminishes and for T ∗

2 = 400 ms a radially symmetric intensity in
k-space is visible (Fig. 4.43d) similar to the results obtained with the moderate
additional phase (Fig. 4.42d). In contrast to the moderate concentric radial phase,
the magnitude images in the spatial domain show a quadratic intensity pattern even
for the relatively high value of 400 ms for T ∗

2 .
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Figure 4.42.: Simulated effect of interaction between an additional concentric radial
phase and k-space filters, including finite sampling. The applied T ∗

2 -
filter corresponds to a spin echo EPI sequence. A moderate concomitant
phase is considered. The initial uniform magnitude image (left) and the
considered phase before readout (right) is shown in (a). The normalized
absolute value of k-space after application of the filters (images on the
left) and the resulting normalized magnitude image in the spatial domain
after inverse Fourier transformation (right) are shown for T ∗

2 = 30 ms
(b), T ∗

2 = 100 ms (c) and T ∗
2 = 400 ms (d).
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Figure 4.43.: Simulation results for the interaction of a strong additional phase and
the spin echo EPI sequence T ∗

2 -filter. The simulations include the effect
of finite sampling. The initial uniform magnitude image (left) and the
considered phase before readout (right) is shown in (a). The normalized
absolute value of k-space (left images) after application of the k-space
filters and the resulting normalized magnitude image in the spatial do-
main after inverse Fourier transformation (right images) are shown for
T ∗

2 = 30 ms (b), T ∗
2 = 100 ms (c) and T ∗

2 = 400 ms (d).
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T ∗
2 -Filter Corresponding to FID-EPI

The T ∗
2 -filter modeling an FID-EPI sequence was also examined. The effects on the

absolute values of k-space and the corresponding magnitude images in the spatial
domain after inverse Fourier transformation are shown in Fig. 4.44 for a moderate
additional concentric radial phase. The presented findings are similar to the spin
echo EPI T ∗

2 -filter for moderate dephasing (see Fig. 4.42): the absolute values of k-
space exhibit concentric rings for all considered values of T ∗

2 (Figs. 4.44b-d). Here,
the magnitude course is different and shows a decreasing course from positive to
negative values of ky for T ∗

2 = 30 ms (Fig. 4.44b). This behavior is also present in
the corresponding magnitude image in the spatial domain, where a decrease in mag-
nitude from positive y-coordinates towards negative coordinates is visible. With
increasing T ∗

2 , the magnitude effect is reduced (Fig. 4.44c) and no longer visible
(Fig. 4.44d) similar to the simulations with the spin echo EPI filter. The findings
for the FID-EPI filter are also supported by the simulation in the spatial domain
with the point spread functions corresponding to the k-space filters (see right images
in Figs. 4.44b-d).

The interaction between the additional phase and the filters including the FID-
EPI filter was also examined for a strong concentric radial phase, the results are
presented in Fig. 4.45. Similar to the findings in Fig. 4.43 with the spin echo EPI
T ∗

2 -filter, the concentric rings in the absolute value of the k-space (Figs. 4.45b-d)
are extended over the whole k-space for all considered values of T ∗

2 . For T ∗
2 = 30 ms

(Fig. 4.45b), the decreasing course of the magnitude in k-space from positive to
negative values of ky is observable similarly to the case of a moderate concentric
radial phase (see Fig. 4.44b). This holds also for the normalized magnitude image
in the spatial domain obtained by inverse Fourier transformation, where a decrease
of intensity is visible from positive y-coordinates to negative coordinates. For the
FID-EPI filter, the magnitude effect also decreases with increasing T ∗

2 (see Fig. 4.45c
for T ∗

2 = 100 ms and Fig. 4.45d for T ∗
2 =400 ms) while a quadratic intensity pattern

remains for high T ∗
2 . These results are likewise obtained by application of the point

spread function in the spatial domain (see right images in Figs. 4.45b-d).
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Figure 4.44.: Effect of interaction between an additional moderate concentric radial
phase and k-space filters based on simulations. The applied T ∗

2 -filter
corresponds to an FID-EPI sequence. The initial uniform magnitude
image (left) and the considered phase before readout (right) is shown in
(a). The normalized absolute value of k-space after application of the
filters (images on the left) and the resulting normalized magnitude image
in the spatial domain after inverse Fourier transformation (middle) are
shown for T ∗

2 = 30 ms (b), T ∗
2 = 100 ms (c) and T ∗

2 = 400 ms (d).
Additionally, the simulation results of application of the point spread
functions in the spatial domain that correspond to the k-space filters
are shown in the right images in (b-d).
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Figure 4.45.: Simulation results for the interaction of a strong additional phase and the
FID-EPI sequence T ∗

2 -filter. The simulations include the effect of finite
sampling. The initial uniform magnitude image (left) and the considered
phase before readout (right) is shown in (a). The normalized absolute
value of k-space (left images) after application of the k-space filters and
the resulting normalized magnitude image in the spatial domain after
inverse Fourier transformation (images in the middle) are shown for
T ∗

2 = 30 ms (b), T ∗
2 = 100 ms (c) and T ∗

2 = 400 ms (d). The simulation
results of application of the point spread functions in the spatial domain
that correspond to the k-space filters are shown in the right images in
(b-d).
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5. Discussion
Warum muss alles im Leben immer
so schwierig sein?

Homer J. Simpson

5.1. Self-Squared Concomitant Phase
The first part of this chapter covers the analysis and the compensation of the self-
squared concomitant phase. The compensation is based on additional oscillating
gradients inserted in a DDE imaging sequence as described in [LP21] for gradients
with zero rise time.

The first analysis of the self-squared concomitant phase was done on DICOM data
acquired and reconstructed at the AERA imaging system (see Fig. 4.1). The mea-
sured phase coincides well with the prediction based on the analytical approximation
in Eq. (2.76) (compare Fig. 4.1b), providing evidence that this expression is suitable
on the AERA gradient system and describes the occurring self-squared concomitant
phase well. In the comparison of the phase profile along the z-axis with the refer-
ence data (see Fig. 4.1c and Fig. 4.1d), the increasing deviations towards positive
z-values might be caused by susceptibility-related distortions [Hua+08; Hua+15],
also visible in the acquired phase image (Fig. 4.1a). Generally, the measured phase
shows a high degree of agreement with the calculated values based on Eq. (2.76). In
the shown phase profiles, the peak at z = 0 mm is related to the wrapping-operation
of the measured phase.

A sequence diagram of an actual deployed imaging sequence for compensation of
the self-squared concomitant phase by additional oscillating gradients was provided
in Fig. 4.2a together with the corresponding Maxwell integral (Fig. 4.2b). The
Maxwell moment introduced by the bipolar diffusion-weighting gradient pair is al-
most set to zero by the oscillating gradients, demonstrating that the use of oscillating
gradients is an efficient tool to act against the self-squared concomitant phase in the
frame of DDE. As can be seen, the refocusing pulse is critical for the application
of magnetic field gradient-based compensation methods. The additional oscillating
gradients only introduced a diffusion weighting of 14 s/mm2 corresponding to 1.6 %
of the initially applied diffusion weighting. Thus, the desired diffusion image is well
conserved. The crusher gradients seen in the sequence diagram do not contribute
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to the concomitant phase due to their symmetrical arrangement around the refo-
cusing pulse. The oscillating gradients were applied with a finite rise time that is
necessary to stay below the PNS threshold. Due to frequent ramping up and down,
an increase in echo time is needed to fulfill the compensation condition in (3.8). In
order to null the Maxwell moment, a sufficient number of gradient oscillations with
appropriate strength and duration must be used, which causes a trade-off between
compensation efficiency, increase in echo time and additionally applied b-value. The
high degree of efficiency in removal of the self-squared concomitant phase induced
by a bipolar gradient pair is demonstrated in Fig. 4.3. With application of the
additional oscillating gradients, the phase remains constant for higher applied q-
values. Furthermore, the behavior of the uncompensated concomitant phase is well
described by the analytical expression (2.76) also on the PRISMA imaging system.

The effect of the self-squared concomitant phase, which propagates along the z-axis,
on the absolute value of k-space was also investigated (Fig 4.4). The concomitant
phase seems to smear out the normally present central intensity maximum along kz

and, since the effect is also visible in measurements, to counteract the dephasing
introduced for phase encoding that is responsible for the normally lower intensity in
peripheral k-space in Cartesian EPI sampling with the occurring spin echo sampled
in central k-space. The intensity pattern visible in the simulated k-spaces (Fig. 4.4b
and Fig. 4.4d) is caused by the applied rectangular mask to mimic the phantom
used in the measurements.

The self-squared concomitant phase was also analyzed in a transversal slice (Fig. 4.5).
A parabolic increase of the phase was measured at ∆z = 0 mm with increasing value
of qx. Due to the dependency ∝ z2 of the self-squared concomitant phase generated
by Gx, a certain phase is expected due to the intravoxel dephasing along the z-axis.
However, the expected value for this phase is lower than the measured phase. Possi-
ble sources for this phase could be background gradients, e.g. due to the shim, but
these are not expected to be that strong. The exact origin of this measured phase
remains unclear and requires closer examination. When measuring the concomitant
phase in a slice shifted by ∆z = -50 mm from the isocenter, accordance with the
expected reference value is only given when subtracting this very phase contribution
from ∆z = 0 mm. All data were acquired within one sequence in this experiment.

The benefit of compensation was also demonstrated in magnitude images acquired
with the elongated water phantom (Fig. 4.6). The magnitude image is not affected
by prominent signal voids in this shown example, since the concomitant phase has
been removed sufficiently. Only the diffusion-related signal loss distinguishes the
compensated image from the reference image acquired without diffusion weighting,
while both images exhibit susceptibility-related distortions at the phantom edge
[Hua+08; Hua+15]. If the concomitant phase is not reduced, the phantom begins
to shrink in the peripheral parts if a certain strength of the concomitant phase is
reached (Fig. 4.7), i.e., the caused intravoxel dephasing is strong enough for com-
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5.1. Self-Squared Concomitant Phase

plete dephasing. Additionally, Gibbs-like artifacts begin to appear and become more
intense for higher values of qx. The arising Gibbs-like artifacts visible in Fig. 4.6
and Fig. 4.7 can be attributed to the interaction of the relatively strong self-squared
concomitant phase and the effect due to finite sampling as demonstrated in Fig. 4.8.
The effect on the magnitude image is thus described more completely by considering
the corresponding k-space filter, especially important for relatively high self-squared
concomitant phase-related dephasings.

The utility was also demonstrated for the case of double diffusion weighting along
perpendicular gradient directions (Fig. 4.9), i.e., bipolar gradients were applied both
on the x-gradient and z-gradient axis. Arising cross terms were compensated intrin-
sically in this special case, since the overlap before and after the refocusing pulse is
equal. The deviation of the compensated signal curves in comparison to the uncom-
pensated signals is due to the slight change in the b-value of maximum 50 s/mm2

caused by the oscillating gradients, which corresponds to 5 % of the desired maxi-
mum applied diffusion weighting. The self-squared Maxwell moments Mxx and Mzz

were reduced to 0.02 % of the original value. In this example, the echo time had to
be increased by 13 ms. The experiment was performed with activated PNS moni-
toring, which demonstrates the potential use in vivo of this method to compensate
for the self-squared concomitant phase.

The addition of oscillating gradients onto the original waveforms using parame-
ters from a grid and selecting the combination with highest compensation efficiency
for a given angle ϕG between the diffusion weightings provided suitable parameter
combinations with NOsc > 0 for sufficiently large angles ϕG (Fig. 4.10). The seen
trend towards lower oscillation amplitudes GOsc for decreasing angles is caused by
the set total amplitude limit, since the total amplitude is given by the sum of GOsc
and the amplitude of the underlying waveform, which is increasing for decreasing
angle. The visible separation of the solutions with different NOsc along different
values for the flat top time of the oscillations FTTOsc is intrinsic to the technique,
since more oscillations can only be applied within a given time by restricting the
flat top time. Increasing the constraint on the additional b-value shows that only
solutions with NOsc = 5 are suitable for the chosen settings, since solutions with
NOsc = 2 and NOsc = 3, which worked for ∆b ≤ 100 s/mm2, introduce too much
additional diffusion weighting because of the large flat top time. The compensation
efficiency is high for perpendicular (ϕG → 90°) and parallel (ϕG → 0°) double diffu-
sion encodings, when no increase in time is allowed, but does not reach 100 % for
ϕG = 90° due to the ramping up and down of the oscillations. An increase in TE
using this technique might be justified depending on the exact sequence parameters
and the desired degree of reduction of the concomitant phase for angles of, e.g.,
45° between the diffusion directions. The efficiency increases if the time limit is in-
creased, since more oscillations can be applied to reduce the Maxwell moment. The
decrease in efficiency seen in Fig. 4.10d at angles ϕG > 45° as the b-deviation limit
becomes more stringent is due to the fact that the solutions found with NOsc = 5
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do not reduce the Maxwell moment as efficiently as the solutions with, for example,
NOsc = 3, since more ramping up and down is required, which eventually violates
the compensation condition (3.8). In both cases, for ϕG → 0° only the intrinsic
compensation with NOsc = 0 provides a solution. Possible exceedance of the PNS
limit was not taken into account in this search. In addition, this technique does not
preserve the original q-value by the superimposed waveform, but it does preserve
the rephasing condition, since only full oscillation periods are added. The artifacts
seen in the efficiency plots (Fig. 4.10c and Fig. 4.10d) are due to the search on the
discrete parameter space. The maximum amplitude and the allowed slew rate of the
gradients were chosen to potentially be able to make use of the available hardware
at the PRISMA imaging system.

The optimum parameters for the oscillations to compensate the self-squared con-
comitant phase were also searched in an optimizer-based approach, where also the
value of the original q-value was preserved. The resulting plot of the compensation
efficiency (Fig. 4.11a) and the corresponding deviations (Fig. 4.11b) are a result
of the cost function, since the different properties, e.g., compensation efficiency and
deviation in b-value, are weighed differently. For ∆t = 0 ms, the visible drop in the
compensation efficiency for angles around ϕG = 80° is connected with a drop in the
deviation in b-value. With changes in the cost function, efficiency could be increased
by putting a stronger weight on compensation efficiency with the price of stronger
deviations. In comparison to the efficiency values found with the brute-force search,
a clear advantage of an increase of the duration of the underlying waveform is visible
for all possible angles ϕG between the two diffusion-weighting bipolar pairs. Here,
the increase in the waveform duration is connected with a decrease in the maximum
applied gradient amplitude, which facilitates to fulfill the compensation condition
(3.8) with the added oscillating gradients. When ϕG becomes smaller, the amplitude
and also the b-value of the underlying waveform to which the oscillation lobes are
added to increases. As a consequence, the amplitude of the added oscillation lobes
decreases, reducing the deviation in the b-value. In the case of an allowed prolonging
of the waveform duration, a lower Maxwell moment has to be set to zero but at the
same allowed amplitude limit (here 76 mT/m), so the compensation condition can
be fulfilled by application of stronger, but shorter oscillation lobes, which decreases
the deviation of the b-value. The benefit in compensation has to be weighed with a
possible deviation in b-value or an increase in echo time when the waveform duration
is increased. By providing more degrees of freedom, e.g., by allowing different flat
top times of the added oscillations, efficiency could be increased. A more sophis-
ticated optimization of this compensation approach was not conducted due to its
general limitations, e.g., uncompensated cross terms.
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5.2. Pulse-Width Modulation
In the course of this thesis, also a magnetic field gradient-based compensation
method for the concomitant phase was developed that can be described analyti-
cally. By application of a pulse-width modulation, a bipolar diffusion-weighting
gradient is combined with oscillating gradients, which allows compensation of the
concomitant phase with simultaneous diffusion weighting without an additional re-
focusing RF pulse.

This technique is governed by the Eqs. (3.15) and (3.16), which allow a calculation
of the duration of the modulated oscillating gradient pulses and also set restrictions
in the parameters. These equations were derived for the case of finite non-zero rise
times of the applied gradients, since the originally provided equations in [LP21] de-
scribe the case of zero rise times. With the made adaptions, these equations do no
longer guarantee complete compensation of the self-squared concomitant phase as it
was ensured in the case of zero rise times. Nevertheless, it was possible to develop
a working framework in the course of this thesis that enables concomitant phase
reduction deploying the pulse-width modulation technique on bipolar gradient pairs
with finite rise time.

In Fig. 4.12, it is shown that the PWM method is not suitable for arbitrary angles
occurring between the bipolar pairs without further adaptions. These results are
based on the PWM technique using Eq. (3.15) and Eq. (3.16), i.e., the amplitude of
the modulated oscillations equals the amplitude of the bipolar gradient pair induc-
ing the concomitant phase on the same gradient axis. When the considered angle
ϕG decreases, the amplitude of the original bipolar gradient pair on the gradient
axis where the concomitant phase has been generated increases (G0 in Eqs. (3.15)
and (3.16)). The higher G0 becomes, the faster FTT− becomes negative (com-
pare Fig. 4.12b) according to Eq. (3.16). For more applied full oscillation periods
NOsc, this happens for higher values of ϕG, since more oscillation periods must be
temporally included in the available total time given by the original bipolar pulse.
The reducing compensation efficiency for increasing NOsc is due to more frequent
ramping up and down of the modulated oscillations. The concomitant phase to be
compensated was generated by a bipolar gradient pair with the same amplitude,
so more ramping up and down violates the compensation condition (3.8). On the
other hand, prohibitively high b-value deviations are expected for small NOsc. As
visible in Fig. 4.12c, a breakdown of the technique due to unreasonable negative
times leads to a deviation in the q-value, since Eq. (3.14) is no longer valid.

To make the pulse-width modulation approach usable for any arbitrary pair of bipo-
lar diffusion-weighting gradients, an increase of the amplitude of the modulated
oscillations was allowed. The parameters for the modulated oscillations were found
in an optimization approach. As it is visible in Fig. 4.13a, the pulse-width modu-
lation technique is now suitable for all occurring angles ϕG with this adaption and
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no violation of the condition regarding non-negative times happens. Furthermore,
the compensation efficiency could be increased significantly for angles higher than
ϕG ≳ 45° and a full compensation can be reached.

However, with the compensation strategy chosen here, i.e., the amplitudes of the
PWM oscillation lobes are symmetrical around the time axis, overcompensation oc-
curs for small ϕG, as the amplitude of the modulated oscillations must be increased
in order to enable PWM at all. Towards ϕG → 0, the efficiency is lower for a higher
number of used full oscillation periods, since the Maxwell moment to be compen-
sated is lower due to the lower maximum amplitude G0,max of the original bipolar
gradient pair (see (3.18)). This was solved by introducing more degrees of freedom
and led to the compensation method described in section 3.8.3.

The course of the b-deviation when deploying the adapted pulse-width technique
as depicted in Fig. 4.13b is explainable considering the behavior of the parameters
defining the modulated oscillations. From higher to lower angles ϕG, the amplitude
of the underlying waveform to which the pulse-width modulation is applied to in-
creases. With increasing amplitude, the longer duration δ+ becomes longer and δ−
becomes shorter, causing the b-value to increase due to b =

∫
q(t)2dt. This increase

or decrease is not linear and becomes weaker for smaller angles, causing the visible
decrease in the b-deviation. Towards even smaller angles, the durations remain con-
stant but the amplitude of the modulated oscillations becomes higher, leading to a
new increase in the deviation of the b-value.

As shown in Fig. 4.14, the pulse-width modulation approach sets requirements
on the available hardware. The higher the amplitude G0,max of a waveform that un-
dergoes a pulse-width modulation, the shorter the rise time ξ must be in order to be
able to deploy this technique at a given amplitude limit GPWM to comply with the
condition (3.18). For a given amplitude limit, a lower initial amplitude sets lower
requirements on the rise time than a higher initial amplitude, since for the same
b-value the waveform with the higher amplitude has a shorter duration δ0, which
decreases the amplitude ratio occurring in Eq. (3.19). This effect is counteracted by
a lower rise time necessary for increasing values of G0,max. Generally, more applied
full oscillation periods NOsc for a given b-value increase the parameter space that
violates the condition in Eq. (3.18) and also set an upper limit to the maximum
usable rise time for given amplitudes G0,max and GPWM, since a higher number of
oscillation periods requires more time. Increasing the applied b-value on the other
hand relaxes the requirements, since δ0 increases, allowing for longer rise times for
given amplitudes G0,max and GPWM.

In a practical implementation of this technique, usually an adequate value for G0,max
for a desired b-value, the number of applied oscillation periods NOsc, a particular
rise time and an amplitude limit has to be found. With an initial value for G0,max,
also δ0 is known, which allows the calculation of νmax according to (3.19). The final
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adequate value G0,max must be chosen such that G0,max/νmax < GPWM and can be
found, e.g., by an iterative search, since the duration δ0 depends on G0,max.

In order to also take into account occurring cross terms of the concomitant field
with the PWM approach, the method discussed above was extended and the PWM
technique was applied to all occurring bipolar gradient pairs in a sequence, as demon-
strated in Fig. 4.17a. In this example sequence diagram, a particular block along
each gradient axis shows partially triangular shapes in the modulated sequence.
These triangular oscillation lobes are caused by applying the pulse-width modula-
tion technique to the higher amplitude bipolar gradient pairs on a gradient axis.
The purpose is not to compensate for the concomitant phase, but to convert these
gradient pairs into modulated oscillations as well, which can then counteract the
cross terms by shifting the lobes accordingly. The triangular shape results from the
optimization-based search for the parameters with the objective of a minimum devi-
ation in b-value. It is visible in Fig. 4.17b that the shifting of the oscillation lobes is
an adequate method to reduce also the cross term-related Maxwell moments, where
in the shown example the Mxz- and Myz-Maxwell moment are well reduced without
significant drawback regarding the self-squared related moments.

The relative signal gain due to the compensation of the concomitant phase using the
60 diffusion wave vector pairs as listed in appendix A.1 was then estimated based on
simulations (see Fig. 4.18). Since the diffusion-weighting gradients become longer
when increasing the b-value, also the concomitant phase becomes stronger according
to (2.76). Due to this, the predicted relative signal gain deploying the pulse-width
modulation technique is generally higher for the higher b-value (here 2000 s/mm2)
than for the lower considered b-value of 500 s/mm2 but strictly positive in both con-
sidered cases, revealing a possible benefit of this technique. The obtained simulated
values for the relative signal gain follow the amplitudes of the contributions to the
concomitant phase as shown in Fig. 4.16. For instance, the ten first wave vector
pairs show the highest relative signal gain and also exhibit maximum contribution
regarding the self-squared terms (see Fig. 4.16a and Fig. 4.16b).

The first ten wave vector pairs show the highest absolute deviation in b-value (see
Fig. 4.18b), since in these pairs a pulse-width modulation of the bipolar pair that
applies the total diffusion weighting leads to a relatively strong deviation in b-value
due to the further increase of the already high amplitude. The absolute devia-
tion has to be set in relation to the total applied diffusion weighting, where it was
seen that the deviation for b = 500 s/mm2 amounts to 16 % of the total weighting,
while deviation for b = 2000 s/mm2 is around 10 % of the initially applied diffusion
weighting, which still can be considered to be in an acceptable range.

For this experiment, the best shifting arrangement was searched for a FOV of
210 × 210 mm2, which saves computational efforts and covers the area of the cho-
sen ROI for data evaluation. For this prediction, the simulations were kept simplistic
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by considering a uniform slice profile and 1013 equally distributed spin isochromats
in a voxel, which might be too inaccurate.

The shown examples of successful application in silico of the pulse-width modu-
lation technique also demonstrated its potential use on clinical MRI systems. The
effective diffusion time is not significantly influenced by the modulation due to two
different durations within one oscillation period. Longer rise times may be neces-
sary for in vivo applications of this compensation technique to stay below the PNS
limit. On whole-body MRI systems, PNS may be a major issue for the modulated
oscillations, which is expected to be less limiting for local gradient coils [Wei+18;
Jia+21]. An increase in the rise times could be achieved by lowering the number of
applied full oscillation periods but will increase the deviation in b-value as shown in
Fig. 4.13b. Generally, the rise times can be different for the bipolar gradients and
the modulated oscillations. The respective formulas have to be adapted in this case.
Going to higher b-values also increases the possible parameter space as described
above but might be undesired for the investigated question. Since the governing
equations (3.15) and (3.16) are derived from the conditions (3.13) and (3.14) that
refer to a single gradient of a bipolar pair, the method is also applicable for DDE
sequences with the time ∆ (see Fig. 2.11) being different from the total time of a
single gradient. By increasing ∆, a derating of the gradient amplitude is possible.
However, to conserve a desired b-value, the penalty regarding echo time might be
too high due to b ∝ G2 (see Eq. (2.104)). In conclusion, adequate decreasing of the
amplitude G0,max enables the application of the pulse-width modulation technique
for any amplitude or rise time limit, but the corresponding increase in echo time
must be weighed with the benefit of compensation of the concomitant phase, which
additionally is weaker for lower amplitudes of the bipolar gradient pairs.

5.3. Optimized Addition for Cross Term
Compensation

Compared to the methods discussed above, a more flexible approach was developed
that is dedicated to minimize concomitant phases from both self-squared and cross
terms. Here, suitable parameters for the oscillating gradients are found in an opti-
mization process.

As demonstrated with the pulse-width modulation approach, oscillating gradients
have the advantage of allowing an appropriate shift of the oscillation lobes to further
reduce the overlap integral that occurs in Eq. (2.76) corresponding to the cross terms
of the concomitant fields. Similar to the PWM approach, the optimization-based
compensation technique is also applicable for separated bipolar gradient pulses, i.e.,
∆ > τ (compare Fig. 3.11). Since the parameters for the added oscillations are found
with a constrained optimization, the sequence characteristics are well conserved,
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since deviations were limited. Consequently, compensation of the concomitant phase
before signal readout is possible with this technique without further changes in the
sequence, especially the need for longer echo times.

The measured values of the relative signal gain in the large PVP cylinder achieved
with this compensation technique generally exhibited the same trend than the cor-
responding simulations. The results for a diffusion weighting of b = 500 s/mm2 ap-
plied along every direction (Fig. 4.19) are generally lower than those obtained with
b = 2000 s/mm2 (Fig. 4.20), since the concomitant phase is smaller in the first case
due to shorter gradients forming the bipolar gradient pairs and so are the artifacts.
In the latter case, the simulations tend to describe the measurement better as de-
picted in Fig. 4.20c, but still exhibit considerable quantitative deviations, especially
visible for the first ten considered wave vector pairs. For these pairs, the measured
relative signal gain is lower than the prediction by the simulations. A comparison of
the measured SNR-values that were corrected for the diffusion-induced signal loss
and normalized to the value of the b0-image reveals discrepancies between the results
corresponding to b = 500 s/mm2 (Fig. 4.19c) and b = 2000 s/mm2 (Fig. 4.20c). In
the first case (b = 500 s/mm2), the signal loss due to diffusion was overestimated
for some vector pairs, causing the SNR-values higher than 100 %. In this exper-
iment, the SNR was mainly derated due to diffusion and the concomitant phase,
so either one of both or even both might have been misestimated. The equivalent
consideration of the SNR-values for b = 2000 s/mm2 reveals a similar trend, since
the loss and the gain seems overestimated by the simulations, leading to the lower
measurement results of the relative signal gain.

As described previously, the total diffusion weighting is applied along one physi-
cal gradient axis for the first direction vector n⃗1 (see appendix A.1), leaving the
other gradient axes completely free for compensation of the concomitant phase in
the optimized waveforms. This creates a high load on the gradient power amplifier,
since the oscillating gradients can be ramped up and ramped down from negative
to positive polarity within the amplitude limit and vice versa. This high load may
cause the applied gradient pulse to deviate from the desired pulse. For the fol-
lowing vector pairs, where the diffusion weighting is more evenly distributed, the
measured and simulated values show relatively good agreement. For these vector
pairs, the measured and likewise predicted lower relative signal gain may be due to
the influence of the cross terms of the concomitant field. As visible in Fig. 4.20,
the simulations do not predict a complete compensation for particular wave vector
pairs, but on the other hand also the predicted concomitant field-induced signal loss
is lower for certain vector pairs. The measured negative values for the relative signal
gain may be caused by too small changes of the signal, which are then overlaid by
noise.

The seen deviations in the values obtained from DICOM data and raw data are more
prominent in the experiment corresponding to b = 500 s/mm2. This may be caused
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by an unknown applied postprocessing in the reconstruction algorithm provided by
the vendor that may tend to correct for relatively small changes in the signal. On
the other hand, the self-built correction for the EPI N/2-ghost applied to raw k-
space data might be too inaccurate. Furthermore, raw data was reconstructed using
a sum-of-squares approach rather than an adaptive reconstruction [WGM00] which
may lead to increasing SNR-values and consequently more accurate determination
of the relative signal gain. The values for the in-plane resolution and slice thickness
were set as they were already used in the literature of DDE, e.g., from Lawrenz and
Finsterbusch [LF13]. A lower resolution would increase the SNR, but on the other
hand generate problems due to partial volume effects, especially when deriving dif-
fusion metrics, and also increase the concomitant field-induced intravoxel dephasing.

The spatially resolved comparison between measurements of the relative signal gain
and corresponding simulations in Fig. 4.21 and the phase (Fig. 4.22) also exhibited
some discrepancies. The shown example maps of the relative signal gain exhibit a co-
incidence regarding the spatial region of increasing signal due to the compensation.
On the other hand, the measured maps appear rather noisy and also negative values
are present as a consequence of the pixelwise calculation of the relative signal gain,
which then is consequently present in the averaged value of the signal gain as shown
in Fig. 4.20. The removal of the concomitant phase to great extent is demonstrated
in the phase images for the first wave vector pair (see Fig. 4.22). The deviation
from the expected concentric rings in the measurement for the uncompensated case
and the visible remaining phase in the theoretically compensated phase image may
be related to the above-mentioned deviations from the desired gradient pulse due
to the high load on the gradient power amplifier. Furthermore, the lower part of
the theoretically compensated measured phase image exhibits an artifact related to
insufficient correction of the EPI N/2-ghost in the raw data.

Various questions were investigated to test properties of the method and to clarify
possible causes for the discrepancies seen. The test with waveforms, which theoret-
ically should give the same relative signal gain, showed that different values were
measured despite the same theoretical prediction (Fig. 4.24). The optimized wave-
forms used differ in their polarity, so that the gradient amplifier is driven differently,
which may explain the discrepancies. Anyway, this experiment has shown that de-
spite the same theoretical compensation efficiency, there are different experimental
results.

The evaluation of measurement and simulation data with different positioning of
the ROI (Fig. 4.25) demonstrates the spatial impact of the concomitant phase for
the 60 considered diffusion wave vector pairs. In the considered cases, the same
trend towards a reduced measured and predicted signal gain for wave vector pairs
that share the first direction vector n⃗1 (see appendix A.1) can be observed. However,
the hyperbolic spatial dependence of the cross terms of the concomitant field can
lead to quite complicated phase patterns, making it difficult to predict the spatial
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effect of the concomitant phase caused by a particular waveform by visual consid-
erations. This becomes even more complicated when considering the relative signal
gain, as the exact phase distribution of an optimized waveform must be assessed on
a case-by-case basis.

The experiment to assess the relative signal gain in the large PVP cylinder with
the rotated sampling scheme (Fig. 4.26a) revealed the same trend as previously
observed in Fig. 4.20a: the wave vector pairs predicted to have the highest gain
show a lower gain in the measurements, indicating that the observed discrepancies
in Fig. 4.20a are not related to the applied order of the diffusion wave vector pairs
in the measurement. The values of the relative signal gain obtained in the spher-
ical oil phantom (Fig. 4.26b) exhibit a tendency to higher values, which may be
attributed to the very low ADC of around 0.04 µm2/ms of the oil in the phantom.
Consequently, the diffusion weighting does not cause relevant signal attenuation and
the obtained images are less noisy, especially for high additional concomitant phase-
induced dephasing, providing higher SNR-values for a more accurate determination
of the relative gain. The small difference in terms of the lower minimum echo time
of 1 ms compared to the original wave vector pairs is caused by the rotation, since
no diffusion wave vector pair applies all of the diffusion weighting along a single
axis, minimally reducing the gradient duration.

Since the phantom measurements with 100 repetitions per waveform had a total
acquisition time of 13.66 h, the influence of the acquisition order of the repetitions
of a particular waveform on the measurement results was investigated (Fig. 4.27).
These experiments revealed less overall deviation with respect to the simulation
values, when the repetitions of a particular waveform are acquired subsequently
(denoted as "inner loop" acquisition mode, see Tab. 4.1). This finding is highly de-
pendent on the accuracy of the simulations used as ground truth, but is supported
by an analysis of the signal values (Fig. 4.28). Here, a signal drift was noted when
repetition for certain gradient pulses occurred after signals of all other gradient
pulses had been acquired. This drift might be related to a temperature change in
the phantom due to dissipated energy of the RF pulses throughout the acquisition
time. The increase in signal in the b0-image thus might be due to increasing T2
when the temperature rises. With the seen increase in the signal over the 100 repe-
titions, the increase in temperature in the PVP can be estimated to about roughly
2 °C [Lin17], assuming a linear behavior of T2 in the relevant temperature range.
The simultaneous increasing ADC then causes the seen decrease in the diffusion-
weighted signals. For the "inner loop" experiment, the calculated ADC (see right
image in Fig. 4.28b) is slightly below the expectation of 500 mm2/µs, suggesting
that the concomitant phase was not fully compensated in contrast to the prediction
of almost complete compensation for the optimized waveform of the first diffusion
wave vector pair. On the other hand, the ADC depends on the (room) temperature,
which might have been slightly lower at the time of measurement. The averaged
standard deviations (Fig. 4.28c) suggest that the SNR is more reliably determined
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for a particular waveform using the "inner loop" acquisition mode, while there are
differences between the data sets due to the temperature change seen with such long
measurement times. The higher standard error of the signal values for the b0-images
is not related to higher noise but rather to the fact that effects on the signal due
to, e.g., the coil profile are scaled down in the diffusion-weighted image, which also
reduces the variance between the pixel values.

To find an explanation of visible discrepancies between measurements and simu-
lations, also the influence of parameter changes on the simulations was investigated
(Fig. 4.29). When the number of considered subvoxels is low, the predicted relative
signal gain is overestimated. More reliable results for the signal under influence
of the concomitant phase in a voxel are expected when the grid for calculating the
phase becomes narrower, i.e., more subvoxels are considered. Since the results based
on the analytical signal equation (3.20) derived in appendix A.2 are comparable to
those with 113 equally distributed subvoxels, no unexpected deviations occur during
the optimization process where Eq. (3.20) is used.

A scaling of the expected relative signal gain is also seen when changes are applied
to the considered slice. The gain becomes higher for increasing slice thickness, since
the through-plane dephasing caused by the concomitant phase becomes stronger.
Shifting the slice further away from the isocenter by only 5 mm also causes an
increase in the expected relative signal gain due to the spatial dependency of the
concomitant field (compare Eq. (2.73)), while a decreasing off-isocenter shift leads
to a decreased prediction for the same reason.

The slice profile obtained from the "pulsetool" program is a theoretical prediction
provided by the manufacturer and could describe the profile based on perfect RF
pulses and therefore may not correspond to the actual slice profile. In comparison
to the measurements in Fig. 4.20, an increase of the simulation values for the vector
pairs 11 to 60 reduces the discrepancy between measurement and simulation, but
on the other hand the then predicted gain for the first ten vector pairs would be too
high.

The simulations become more realistic by considering the effect of finite sampling
and T ∗

2 -blurring. The increased value of the predicted relative signal gain when T ∗
2

becomes lower is related to the interaction of the concomitant phase and the T ∗
2 -filter

corresponding to a spin echo EPI (compare Fig. 3.5a) as demonstrated in section
4.6 for radial concentric phases. The effect on the magnitude image becomes weaker
for higher values of T ∗

2 as demonstrated in Fig. 4.42 for a moderate radial concentric
in-plane dephasing, causing the expected relative gain to decrease. A higher relative
signal gain is predicted for the broader slice profile and T ∗

2 -related signal changes
due to the higher through-plane dephasing.
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In summary, all changes applied to the basis simulation led to a scaling effect of
the predicted relative signal gain, but did not reveal a behavior that provides a
unique explanation of the discrepancies.

The comparison of the achieved relative signal gain for increasing b-values con-
sidering 10 repetitions per waveform (Fig. 4.30 and Fig. 4.31) revealed a tendency
to higher values for higher b-values as expected due to the stronger concomitant
phase, demonstrating the benefit of concomitant phase compensation also for rela-
tive low b-values. Comparing the results for the PVP cylinder and the spherical oil
phantom shows that for the latter the measured values for the relative signal gain
tend to be generally higher, which might be attributed to the small ADC present
in oil as previously discussed in the context of Fig. 4.26. Due to the low ADC , the
signal is only slightly affected by the diffusion weighting. No large discrepancies are
visible between the results obtained with 10 and 100 repetitions for the spherical oil
phantom in Fig. 4.31d, since the SNR is generally higher due to the low ADC and a
stable determination is possible acquiring a lower number of repetitions than needed
for the large PVP cylinder. Only the averaged standard deviations of the experi-
ment with the PVP cylinder and b = 500 s/mm2 (see Fig. 4.32) exhibit increased
values in comparison to the equivalent experiment with the spherical oil phantom.
For higher b-values, the influence of the concomitant phase becomes higher and vari-
ability between corresponding pixels within the repetitions becomes smaller. In oil,
variability is generally smaller in the signal values as a consequence of the higher
SNR.

Due to the large discrepancies seen between prediction and measurement in Fig. 4.19c
for, e.g., data set 7, which corresponds to the optimized waveform of wave vector
pair 3 as listed in appendix A.1, the test with vertical and horizontal positioning of
the phantom in the scanner and different ROI positions for evaluation was carried
out (see Fig. 4.33). The difference of the SNR depending on phantom orientation
for, e.g., data set 7 is a hint that vibration may contribute to the observed differences
between simulations and experiments. The not so pronounced "zig zag" behavior in
the measurement results for ∆z = -50 mm is due to the relatively weak concomitant
phase for b = 500 s/mm2. It should be noted that the used waveforms were initially
optimized for ∆z = -50 mm.

The brain in vivo measurements (Fig. 4.34) revealed a benefit of the compensa-
tion method for the SNR also with clinically usable parameters. To allow in vivo
measurements, the slew rate was reduced, which at the same time reduced the load
on the gradient amplifier. Current limitations due to PNS are expected to be less rel-
evant for local gradient coils [Wei+18; Jia+21]. On the other hand, undesired effects
due to concomitant fields could be particularly important in such gradient systems
due to their high gradient amplitude. In the performed in vivo experiment, the ac-
curacy of SNR-determination was limited because of the small number of repetitions
acquired in order to stay within an acceptable measurement time of roughly 40 min.
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The relative signal gain achievable with the developed compensation method would
also be of interest for the other diffusion wave vector pairs, but would require fewer
measurement repetitions or splitting of measurements, making comparability diffi-
cult. The visible positive effect of the compensation method on SNR in vivo shown
(Fig. 4.35) also depends on the applied diffusion directions in the pulse sequence
and shows a spatial dependence as expected by Eq. (2.73). In the examples shown,
SNR increases from the inside of the brain to the outside. The generally higher SNR
in the outer regions of the brain can be attributed to the sensitivity profile of the
head coil. Because the examples shown were acquired with different orientations
of the q-vector, the specific diffusion-induced signal loss is different, which modi-
fies the local SNR distribution in addition to the concomitant field effects. Due to
the hyperbolic spatial dependence of the concomitant field cross terms, complicated
concomitant phase patterns can result as stated previously, which can make ad hoc
prediction of spatial effects difficult for a given gradient scheme. Nevertheless, a
significant SNR increase could also be observed in in vivo data.

As shown with phantom measurements (Fig. 4.36), the value for the fractional
eccentricity squared FE2 remains unchanged when this metric is derived from mea-
surements with the optimized waveforms. The PVP envelope surrounding the phan-
tom showed significantly increased values for FE2 when the metric was calculated
from measurements with the original, uncompensated waveforms. In contrast, mea-
surements with the optimized gradient shapes yielded values for FE2 close to zero
as expected, suggesting that the increased values are caused by uncompensated con-
comitant field effects.

The in vivo determination of FE2 (Fig. 4.37) revealed changes particularly in the
gray matter for volunteer 1, where the difference map (Fig. 4.37c) exhibits larger
changes in the frontal lobe towards smaller values of FE2 when calculating the metric
from measurements with the optimized compensating waveforms. This is in accor-
dance with the expectation, since in human cortical gray matter, anisotropy effects
appear to be smaller than in white matter [Szc+15; LF15; LBF15]. The squared
value of the fractional eccentricity was taken into account, since negative values also
occurred occasionally, so that the square root was not taken. Also pixels with white
matter exhibit a trend towards lower values for FE2 but not as pronounced as for
gray matter. The evaluated slice with distance ∆z = -50 mm from the isocenter for
volunteer 2 was slightly higher towards the top of the skull, which has less white
matter, so generally less high values for FE2 are expected. The spatial extent is also
limited in this slice, suggesting less negative influence of the concomitant phase.
This is then also reflected in a higher variance in Fig. 4.38 for volunteer 2, while for
volunteer 1 the pixel values are mainly shifted towards lower values. The difference
map for volunteer 2 (Fig. 4.37f) exhibits also more pixels with a larger difference
as volunteer 1, which might be an artifact due to movement of the volunteer dur-
ing the measurement. Since the interesting quantity in a clinical application is the
value of the diffusion metric and not the comparison of uncompensated and com-
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pensated measurements, the measurement time can be increased to determine only
the metric so that more repetitions can be acquired, which increases the SNR. Fur-
thermore, data preprocessing [Tax+22] may improve data quality when the metric is
determined alone. Metrics for the microscopical fractional anisotropy could also be
derived from q-space trajectory imaging (QTI) [Wes+16], providing a comparison
basis.

Since the analytical expression for the concomitant fields as first reported by Bern-
stein et al. [Ber+98; Ber+04] is based on approximations, the possible reasons for
the observed discrepancies between the measurements and the simulations could
be related to this. To investigate this issue, the expected relative signal gain was
determined using the approximation formula on the one hand and vendor-provided
magnetic field maps for the PRISMA imaging system on the other (see Fig. 4.39a).
The results suggest that the formula to describe the concomitant magnetic field is
well suited for the PRISMA imaging system. However, the vendor-provided field
maps were provided on a relatively coarse grid, which made an interpolation neces-
sary.

To test the effect of different degrees of gradient linearity, simulations with dif-
ferent arrangements of conductor loops generating the gradient field were carried
out (Fig. 4.39b). Interestingly, the magnetic field can be well approximated by an
adequate arrangement of the conductor loops as the results for configuration 1 (see
Tab. 3.2) suggest. Although this arrangement provides a relatively high gradient
linearity in a volume typically used for imaging (standard deviation of 1 % of the
applied gradient within a cube with length 30 cm with center in the isocenter), this
configuration is not practical due to its dimensions and requirements on the needed
currents in magnitude of ∼107 A to provide adequate gradient strengths. More prac-
tical arrangements were also tested, which then showed deviations from the results
obtained with the vendor-provided field maps. To provide a complete explanation
of the seen discrepancies between measurements and simulations, different results
for the relative signal gain must be visible also for twinned wave vector pairs re-
garding the resulting concomitant phase (refer to section 3.9.3 for an explanation
of twinned vector pairs). The pronounced deviations obtained with configuration 2
and 3 are related to increased non-linearities of the x- and y-gradients and reveal the
sensitivity of the considered wave vector pairs to the respective change in linearity.
More accurate results of these simulations would have been obtained by increasing
the number of considered subvoxels, but as demonstrated in Fig. 4.29a, this would
only lead to scaling, but not to different changes for individual wave vector pairs.
Generally, a decrease in linearity in the desired field gradients means an increase
of undesired field gradients according to Maxwell’s equations as demonstrated in
Fig. 4.40.

In this work, only transversal slices that had a distance of ∆z = -50 mm from
the isocenter were evaluated. For general usage of this compensation technique in
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conventional multislice experiments, a slice-specific optimization of the waveforms
should be performed taking into account the spatial coordinates of each acquired
slice. However, once optimized gradient shapes for a specific problem have been
found, there is no need to perform the optimization again. More degrees of freedom
in the optimization process, e.g., the individual consideration of all occurring flat top
times of the oscillation lobes, can lead to higher compensation efficiency, but also
increase the computational effort. The required computational time can be adjusted
by the number of initial conditions, but a smaller number increases the probability
that the found minimizer is significantly distant from the global minimizer. Fur-
thermore, the optimization process was limited to a FOV of 210 × 210 mm2, which
is suitable in typical head imaging protocols. The default ROI, shown in Fig. 4.15,
which was used for evaluation in most cases in this work, is within the optimized
range. In general, the approximation made in Eq. (3.20) might break down for
concomitant phases that are larger than the concomitant phases considered in the
present work, for example when considering experiments on imaging systems with
higher available gradient amplitudes. This can be circumvented by means of opti-
mized calculation approaches.

From the experiments and simulations it can be concluded that the discrepancies
seen are probably a result of the interplay of vibrations, imperfect RF pulses and
resulting deviating slice profiles, deviations in slice positioning and imperfections in
the gradient system. Characterization of the gradient system by gradient impulse re-
sponse function (GIRF) [AWN12; Van+13] and subsequent appropriate corrections
can increase the accuracy of the predictions, since the actual gradient waveforms
used might be unknown. In addition, undesired interaction with background gradi-
ents [SS21] or eddy currents could have distorted the measurements and contributed
to the observed discrepancies.

5.4. Radially Concentric Concomitant Phase
During the research connected to concomitant fields and the generated concomitant
phase in the course of this thesis, an interesting action of a quadratic radially con-
centric concomitant phase on k-space and on reconstructed magnitude images was
discovered.

For a sufficiently strong in-plane dephasing, the magnitude distribution of the object
is transferred into the frequency domain after signal readout (Fig. 4.41), so that
the general shape of the acquired object can be decoded from the absolute value
of k-space without application of the inverse Fourier transformation. As previously
mentioned in section 5.1 in the context of the self-squared concomitant phase, the
acquired phase appears to counteract the dephasing introduced by phase encoding
gradients, leading to increased intensities also in outer regions of k-space.
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An effect on the reconstructed magnitude image was noted in simulations when
the k-space filters related to finite sampling and T ∗

2 -related signal changes during
readout were applied. For T ∗

2 short enough, the respective readout filter is prop-
agated into the reconstructed magnitude image in spatial domain, causing signal
variations that are in form of the filters. These variations are indirectly seen in the
values for the relative signal gain in Fig. 4.29d, where the predictions corresponding
to T ∗

2 = 30 ms do not exhibit a scaling compared to the results with higher values,
but show a different course. In general, these resulting signal variations in Fig. 4.29d
are more complicated due to more complicated phase patterns caused by the cross
terms of the concomitant field.

The intensity pattern exhibiting concentric squares as seen in, e.g., Fig. 4.45 is due
to the interaction of a strong radially concentric phase and the k-space filter related
to finite sampling, since for relatively high T ∗

2 the used T ∗
2 readout filters do not

affect k-space (compare Fig. 4.43d) and consequently no effect on the reconstructed
image is expected. These findings are additionally supported by the application
of the respective point spread function of the FID filter in the spatial domain (see
Fig. 4.45d). A similar magnitude pattern was observed in Fig. 4.8a in the context
of a quadratic concomitant phase ΦCC ∝ G2

xz2, where the pattern occurred only
along the propagation direction of the phase, which is another indication that the
generated concomitant phase in this experiment was relatively strong in addition to
the signal voids seen. This observed propagation of these artifacts is in accordance
with the seen quadratic patterns in the simulations, representing the propagation
direction of the radial concentric phase.

An exact analysis of the phenomenon for the radial phase requires the solution of an
integral of the form

∫
dxdyM⊥(x,y)exp(−i(kxx + kyy))exp(−iβ(x2 + y2)), with β

representing a real constant different from zero. The two-dimensional boxcar func-
tion as well as the T ∗

2 -related signal behavior during readout has to be additionally
included in order to analyze the effect on the reconstructed image. According to
Eq. (2.73), transversal slices with an applied magnetic gradient Gz along z are best
suited to introduce a radially concentric concomitant phase. For a measurement
in, e.g., a phantom with sufficiently small value for T ∗

2 , the gradient strength must
be very high or the duration of the phase-generating gradient must be very long,
because this phase is suppressed by a factor of 4.
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6. Conclusion and Outlook
Die Zukunft soll man nicht
voraussehen wollen, sondern
möglich machen.

Antoine de Saint-Exupéry

Diffusion-weighted magnetic resonance imaging provides unique non-invasive in-
sights into living tissue. In clinical routine, only single-weighted diffusion sequences
are used in most cases. The quantities that can be determined from this, such as
ADC or FA, do not allow clear conclusions to be drawn at the microscopic level.
Double diffusion-weighted sequences, in which the different weightings are realized
as bipolar gradient pairs and separated by a refocusing pulse, allow to obtain infor-
mation about diffusion on a microscopic level.

However, this arrangement is prone to concomitant phase-induced artifacts, which
generally increase with increasing gradient amplitude and spatial extent of the FOV
used. If the dephasing is so severe that signal cancellations occur, the information
is irretrievably lost. This is where this work comes in. In the context of this work,
magnetic field gradient-based methods were developed that compensate for concomi-
tant phases accumulated before the signal is read out, so that no loss of information
occurs, making the use of correction algorithms, which may cause further uncertain-
ties, obsolete.

The compensation methods developed in this work for the mentioned DDE se-
quences are based on additional oscillating gradients inserted into the sequence.
Oscillating gradients have proven to be a good choice because, taking advantage of
the refocusing pulse, they allow to compensate the self-squared concomitant phase
without distorting the desired diffusion image. It has been shown that the use of
oscillating gradients is an efficient means to reduce self-squared concomitant field-
induced artifacts in the context of DDE. When combining diffusion weighting with
simultaneous concomitant phase compensation, optimal settings have to be found
to ensure adequate compensation without undue prolongation of the echo time and
additional b-value.

In this thesis, a compensation technique was elaborated that is based on a pulse-
width modulation of the bipolar diffusion-weighting gradients. In order to com-
pensate with this technique also occurring cross terms of the concomitant field, it



6. Conclusion and Outlook

was exploited that oscillating gradients can be shifted along the temporal axis, so
that also the occurring time overlap integral can be reduced considerably. Simula-
tions have shown that this technique can result in signal gain in a DDE experiment
with arbitrary diffusion directions by reducing the influence of the concomitant field
without requiring an additional refocusing RF pulse. This technique is based on an
analytical description that does not require a large computational effort to gener-
ate a set of compensated waveforms, but does place requirements on the available
hardware that may result in an increase in echo time.

Furthermore, a method for concomitant phase compensation based on a gradient
amplitude modulation with oscillating gradients, where the parameters are found in
an optimization process, was developed. It was shown that compensation with so
optimized waveforms leads to notable gains in SNR in phantom experiments as well
as in in vivo experiments using diffusion wave vector pairs with arbitrary directions.
The technique takes advantage of the fact that not all gradient axes are fully loaded
simultaneously in DDE experiments, thus providing room for optimization of tem-
poral gradient waveforms to reduce the concomitant field-induced signal loss. The
developed method combines artifact reduction with simultaneous diffusion weight-
ing with little change in the original sequence characteristics due to the constrained
optimization. During the research done for this thesis, an interesting interaction
was found between a radial concentric concomitant phase and the EPI readout, es-
pecially at low values for T ∗

2 , which causes signal variations in the reconstructed
image that are similar in shape to the signal evolution during the readout.

The methods developed can theoretically also be applied to DDE experiments with
parameters distinct from those used in this work, e.g., the slice parameters or higher
maximum allowed gradient amplitudes, which are expected to cause stronger con-
comitant phases. With the technical progress towards higher available gradient
amplitudes, it can be expected that the research field of concomitant fields might
also come to a higher importance. Similarly, the use of oscillating gradients for
compensation in other concomitant phase artifact-prone sequences such as diffusion
pore imaging [Lau+11; Lau+12] is conceivable. As previously stated, for exper-
iments with local gradient coils, compensation of the concomitant phase may be
necessary due to the high gradient amplitudes. At the same time, lower stimula-
tion limits can be expected for such coils. As mentioned in the introduction, the
advent of more powerful low-field tomographs is also leading to greater interest in
this topic. The developed compensation techniques have the potential to improve or
even enable the considered DDE measurements on such devices. Since these devices
are less expensive, this work can also be seen as a part of the democratization of
the wonderful technique of magnetic resonance imaging.
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A.1. Multidirectional Sampling Scheme

# n⃗1 n⃗2

1 (0,1,0)
2 (0.95,0.31,0)
3 (0,0,1) (0.59, -0.81,0)
4 (-0.59, -0.81,0)
5 (-0.95,0.31,0)
6 (0, -1,0)
7 (0.95, -0.31,0)
8 (0,0, -1) (0.59,0.81,0)
9 (-0.59,0.81,0)
10 (-0.95, -0.31,0)
11 (0.16,0.67, -0.72)
12 (0.53, -0.45, -0.72)
13 (0.85,0.28,0.45) (0.16, -0.95,0.28)
14 (-0.43, -0.14,0.89)
15 (-0.43,0.86,0.28)
16 (-0.53,0.45,0.72)
17 (-0.16, -0.67,0.72)
18 (-0.85, -0.28, -0.45) (0.43, -0.86, -0.28)
19 (0.43,0.14, -0.89)
20 (-0.16,0.95, -0.28)
21 (0.69,0.67,0.28)
22 (0.69,0.05, -0.72)
23 (0.53, -0.72,0.45) (-0.26, -0.64, -0.72)
24 (-0.85, -0.45,0.28)
25 (-0.26,0.36,0.89)
26 (0.85,0.45, -0.28)
27 (0.26,0.64,0.72)
28 (-0.53,0.72, -0.45) (-0.69, -0.05,0.72)
29 (-0.69, -0.67, -0.28)
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30 (0.26, -0.36, -0.89)
31 (0.26,0.36,0.89)
32 (0.85, -0.45,0.28)
33 (-0.53, -0.72,0.45) (0.26, -0.64, -0.72)
34 (-0.69,0.05, -0.72)
35 (-0.69,0.67,0.28)
36 (-0.26, -0.36, -0.89)
37 (0.69, -0.67, -0.28)
38 (0.53,0.72, -0.45) (0.69, -0.05,0.72)
39 (-0.26,0.64,0.72)
40 (-0.85,0.45, -0.28)
41 (0.43,0.86,0.28)
42 (0.43, -0.14,0.89)
43 (-0.85,0.28,0.45) (-0.16, -0.95,0.28)
44 (-0.53, -0.45, -0.72)
45 (-0.16,0.67, -0.72)
46 (0.16,0.95, -0.28)
47 (-0.43,0.14, -0.89)
48 (0.85, -0.28, -0.45) (-0.43, -0.86, -0.28)
49 (0.16, -0.67,0.72)
50 (0.53,0.45,0.72)
51 (0.59,0.36, -0.72)
52 (0.95, -0.14,0.28)
53 (0,0.89,0.45) (0, -0.45,0.89)
54 (-0.95, -0.14,0.28)
55 (-0.59,0.36, -0.72)
56 (0.59, -0.36,0.72)
57 (0.95,0.14, -0.28)
58 (0, -0.89, -0.45) (0,0.45, -0.89)
59 (-0.95,0.14, -0.28)
60 (-0.59, -0.36,0.72)
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A.2. Taylor-Approximation of the Signal under
Influence of the Concomitant Phase

In this part of this thesis, a derivation of equation (3.20) is given. The starting point
of the derivation is equation (2.77) with a uniform slice profile:

SCC(x0,y0, z0) ≈
∫
Voxel dV e−iΦCC∫

Voxel dV
. (A.1)

For typical settings in human examinations, a Taylor expansion of the concomitant
field to the first order can be carried out since the assumption of a sufficiently small
phase variation of ΦCC over the voxel size is reasonable. The Taylor expansion then
reads

BCC(x,y,z, t) ≈BCC(x0,y0, z0, t)

+
 ∂BCC(x,y,z, t)

∂x

∣∣∣∣∣
x=x0,y=y0,z=z0

+∂BCC(x,y,z, t)
∂y

∣∣∣∣∣
x=x0,y=y0,z=z0

+∂BCC(x,y,z, t)
∂z

∣∣∣∣∣
x=x0,y=y0,z=z0


= BCC(x0,y0, z0, t) + ∇⃗BCC(x0,y0, z0, t) · r⃗′, (A.2)

with r⃗ = r⃗0 + r⃗′, where r⃗ = (x,y,z)⊤ and r⃗′ = (x′,y′, z′)⊤. The vector r⃗0 points from
the isocenter to the center of a voxel.

The global phase induced by BCC(x0,y0, z0, t) does not cause intravoxel dephasing.
Consequently, this term can be neglected for calculations of the signal magnitude
and only the second term in equation (A.2) is considered for the further derivation
of the absolute value |SCC(x0,y0, z0)|. With ΦCC = γ

∫
dtBCC(x,y,z, t) and consid-

ering e−iΦCC ≈ 1 − iΦCC − Φ2
CC
2 , the absolute value of the signal under influence of

the concomitant phase is given by

|SCC(x0,y0, z0)| ≈

∫
Voxel dV

[
1 − iγ

∫
dt∇⃗BCC · r⃗′ − 1

2γ2
(∫

dt∇⃗BCC · r⃗′
)2]

∫
Voxel dV

, (A.3)

where the function arguments were omitted for better readability. The linear term
and the cross terms arising in the quadratic term in equation (A.3) vanish for the
assumption of cubic voxels, since

∫ ∆x
2

−∆x
2

dx′ x′ = 0, where ∆x is the voxel size. This
argument holds analogously for y′ and z′.
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The expression for the absolute value of the signal with the remaining self-squared
terms then reads

|SCC(x0,y0, z0)| ≈1 −
1
2γ2 ∫ ∆x

2
−∆x

2
dx′ ∫ ∆y

2
−∆y

2
dy′ ∫ ∆z

2
−∆z

2
dz′∫

Voxel dV

·
[
x′2
(∫

dt∂xBCC

)2
+ y′2

(∫
dt∂yBCC

)2

+z′2
(∫

dt∂zBCC

)2]
. (A.4)

The arising spatial integrals in the second term in (A.4) are equal for cubic voxels,
i.e., ∆x = ∆y = ∆z. The integration yields for instance for x′,

c =
∫ ∆x

2

−∆x
2

∫ ∆y
2

−∆y
2

∫ ∆z
2

−∆z
2

dx′dy′dz′x′2 = 1
12∆x5. (A.5)

The final result for the approximation of the signal magnitude under influence of
the concomitant phase is then given by

∣∣∣SCC,approx(x0,y0, z0)
∣∣∣≈ 1 −

0.5 · c · γ2
(∫

dt∇⃗BCC(x0,y0, z0, t)
)2

∫
Voxel dV

, (A.6)

with c = 1
12∆x5.

152



A.3. Point Spread Function for FID-EPI

A.3. Point Spread Function for FID-EPI
In the following, a derivation of the corresponding point spread function for the
k-space filter of an FID-EPI is given. A symmetrical sampling scheme is assumed.
The slice to be sampled may have transversal orientation such that the spatial co-
ordinates may be (x,y) and the corresponding frequency domain coordinates may
be (kx,ky). Here, kx may refer to frequency encoding while ky may refer to phase
encoding.

The filter function in k-space for kx is given by

f(kx) = e
− t

T ∗
2 = e

− kx
γGx

· 1
T ∗

2 , (A.7)
where kx = γGxt was used.

The point spread function F (x) is connected with the k-space filter f(kx) through
the inverse Fourier transformation:

F (x) = F−1 (f(kx))(x) =
∫ kmax

−kmax
e

− kx
γGx

· 1
T ∗

2 eikxxdkx (A.8)

=
∫ kmax

−kmax
e

kx

(
ix− 1

γGxT ∗
2

)
dkx (A.9)

= 1
ix − 1

γGxT ∗
2

e
kmax

(
ix− 1

γGxT ∗
2

)
− e

−kmax
(

ix− 1
γGxT ∗

2

)
(A.10)

To make the expression more handy for simulations, the occurring factor

a := ix − 1
γGxT ∗

2
(A.11)

can be rewritten with help of the sample time of a kx-line in k-space,

Ts,x = Nx ·∆t = FOVx

∆x
∆t = 2π

∆kx∆x
∆t = 2π

γGx∆x
, (A.12)

where ∆kx = 2π
F OVx

= γGx∆t was used.

With (A.12), the factor given in (A.11) can be rewritten into

a = ix − Ts,x∆x

2πT ∗
2

. (A.13)

Together with kmax = N
2 ∆kx = π

∆x , the point spread function for the FID-EPI reads

F (x) = 1
a

[
e

π
∆x a − e− π

∆x a
]

(A.14)

= 1
ix − Ts,x∆x

2πT ∗
2

e
π
∆x

(
ix− Ts,x∆x

2πT ∗
2

)
− e

− π
∆x

(
ix− Ts,x∆x

2πT ∗
2

) . (A.15)
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With similar considerations, also F (y) can be derived. In this case, not the sample
time Ts,x for one kx-line is considered but the total acquisition time needed to fill
the k-space.

For the practical implementation, F (x) and F (y) are evaluated for all coordinate
values xi and yi of the pixels in the spatial domain, respectively, generating two
vectors F⃗x and F⃗y. The convolution kernel K is then given by the outer product of
F⃗x and F⃗y:

K = F⃗x ⊗ F⃗y = F⃗xF⃗ ⊤
y (A.16)
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