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Abstract

Neuromorphic hardware addresses the limitations of traditional computers, particularly
in terms of power consumption and simulation speed when handling neural networks. The
first-generation BrainScaleS system achieves this by physically implementing neurons and
synapses with analog circuits, complemented by the utilization of wafer-scale integration
to realize high circuit counts. However, both techniques come with the compromise of
limited control over the system, constraining previous emulations to small network sizes.

This thesis introduces an optimized approach to hardware utilization that enables the
execution of large-scale experiments. Techniques are developed that address hardware
defects, reduce parameter variations through extended calibrations, increase neuron
and synapse utilization by enhancing the routing capabilities, and bypass undesired
circuit behaviors. Building upon these improvements, a precise model of hardware
behavior is generated. This model serves as a foundation for aligning two large-scale
biological networks with the inherent constraints of the hardware. To achieve this
alignment, methods are developed that facilitate the necessary modifications while
preserving biological behavior. By emulating these adapted network descriptions, the
thesis demonstrates the system’s capabilities for large-scale experiments and enables
performance comparisons with other simulators.

Zusammenfassung

Neuromorphe Hardware begegnet den Einschränkungen traditioneller Computer, insbeson-
dere hinsichtlich Energieverbrauch und Simulationsgeschwindigkeit bei der Verarbeitung
neuronaler Netzwerke. Das BrainScaleS System der ersten Generation erreicht dies, indem
es Neuronen und Synapsen physisch mithilfe analoger Schaltungen implementiert, ergänzt
durch den Einsatz von Wafer-Scale Integration zur Realisierung hoher Schaltungszahlen.
Beide Techniken gehen jedoch mit dem Kompromiss einer eingeschränkten Kontrolle über
das System einher, was bisherige Emulationen auf kleine Netzwerkgrößen beschränkte.
Diese Arbeit stellt einen optimierten Ansatz zur Hardwarenutzung vor, der die

Durchführung von großskaligen Experimenten ermöglicht. Es werden Techniken entwick-
elt, die Hardwaredefekte angehen, Parametervariationen durch erweiterte Kalibrierungen
reduzieren, die Nutzung von Neuronen und Synapsen steigern, indem die Fähigkeit
zur Routenfindung erhöht wird und unerwünschtes Schaltungsverhalten umgehen. Auf-
bauend auf diesen Verbesserungen wird ein präzises Modell des Hardwareverhaltens
generiert. Dieses Modell dient als Grundlage für die Anpassung von zwei großskaligen
biologischen Netzwerken an die inhärenten Einschränkungen der Hardware. Um diese
Anpassung zu erreichen, werden Methoden entwickelt, die die notwendigen Modifikationen
ermöglichen, während das biologische Verhalten erhalten bleibt. Durch die Emulation
dieser angepassten Netzwerkbeschreibungen demonstriert die Arbeit die Fähigkeiten
des Systems bezüglich großskaliger Experimente und ermöglicht Leistungsvergleiche mit
anderen Simulatoren.
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1. Introduction

The evolutionary success of the human species can be attributed to the remarkable
features of the human brain. Serving as an immensely powerful computational system, it
demonstrates a unique combination of efficiency and robustness that has no equal. These
capabilities stem from its massive network structure, characterized by approximately
1011 parallel operational neurons interconnected by 1014 synapses [Azevedo et al. 2009;
Pakkenberg et al. 2003].

Exploring its operational principles and underlying structure holds great promise. It
not only has the potential to unveil diagnostic and treatment possibilities for diseases
affecting the nervous system but also provides an opportunity to learn from its design,
enabling the achievement of hardware implementations that surpass the capabilities of
existing technologies.

To accomplish this, diverse models are developed to depict the intricacies of the brain
at varying scales and levels of abstraction. While simple models still permit analytical
evaluations, the utilization of simulations becomes inevitable with increasing model
complexity [Gerstner et al. 2012]. However, as the model size increases, simulations
conducted on conventional computers based on the von Neumann architecture encounter
limitations. The necessity to distribute neural events introduces a substantial communica-
tion overhead, limiting the potential for parallelization [Zenke et al. 2014]. Consequently,
reduced simulation speed and power efficiency are observed when simulating the numerous
parallel operational components present in the human brain.

To overcome these limitations, the development of dedicated hardware architectures
has been initiated [Mead 1989; Mead 1990]. With a focus on simulating spiking neu-
ral networks, these architectures promise reduced power consumption at accelerated
speeds. Summarized under the term neuromorphic computing, various systems have
been developed, ranging from specialized FPGA-based implementations to full-custom
ASICs [Furber et al. 2014; Davies et al. 2018; Merolla et al. 2014; Moradi et al. 2018;
Furber 2016; Schuman et al. 2017; Indiveri et al. 2011].

The first-generation wafer-scale neuromorphic hardware platform BrainScaleS-1 is such
a system [Schemmel et al. 2010; Schemmel et al. 2008]. By physically implementing
models of neurons and synapses through analog circuits, their dynamics are emulated,
eliminating the need for numerical calculations. As a result of this, network dynamics
are obtained at variable speedup factors between 103 and 105 compared to biological
real-time. Additionally, high circuit counts are achieved through wafer-scale integra-
tion. Interconnecting 384 individual ASICs on a single wafer, each system comprises
approximately 2× 105 neuron circuits and 43× 106 synapses.

However, both approaches come with trade-offs in terms of reliability and flexibility.
Physical modeling imposes restrictions on the configurability of neuron parameters and
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1. Introduction

leads to parameter variations. Furthermore, the utilization of wafer-scale integration
introduces constraints in addressing malfunctioning components. As a consequence of
this, it is crucial to address and mitigate the inherent constraints of the system during
hardware operation. Moreover, benchmarks are required to demonstrate the correct
operation of the system and to facilitate comparisons with other simulators [Davies 2019].
In previous works, successful operation of the system could be demonstrated on

networks comprising a small subset of neurons [Schmitt et al. 2017; Kungl et al. 2019;
Göltz et al. 2021]. This thesis builds upon these prior efforts and concludes long-standing
endeavors by demonstrating the system’s full potential through the emulation of two
large-scale biological models, the balanced random network [Brunel 2000] and the cortical
microcircuit [Potjans et al. 2012].

Based on idealized assumptions, the balanced random network is analytically traceable
and explores various states of spiking neural network behavior. Therefore, it forms
the foundation for several biologically plausible network descriptions and is utilized in
this thesis to investigate the system’s behavior and limits. Building upon the obtained
results, the cortical microcircuit is implemented. Representing the sub-surface structure
of approximately 1mm2 of the cerebral cortex of mammal brains, it serves as a typical
benchmark that has been recently implemented on various simulators [Albada et al. 2018;
Rhodes et al. 2020; Knight et al. 2021; Golosio et al. 2021]. Consequently, it allows for a
comparison of the system.

Given the limitations of the hardware, a direct implementation of the network structures,
as outlined in their respective publications, proves unfeasible. To this end, this thesis
adopts a twofold strategy to address these constraints.
Firstly, techniques are developed to alleviate the inherent limitations of wafer-scale

neuromorphic hardware, thereby facilitating the execution of large-scale experiments.
A key aspect of this development involves the implementation of defect management
aimed at enhancing system reliability. Furthermore, significant progress is made in
improving control and predictability of neuron parameters by extending the system’s
calibration routines. Additionally, the utilization of the system for neural networks is
enhanced through the refinement of its routing capabilities. Simultaneously, concepts are
developed and applied to mitigate undesired effects observed during hardware operation.
Conclusively, leveraging the insights derived from the results obtained, a precise model
characterizing the hardware’s behavior is constructed.

In the second part, this model is employed to modify the investigated network descrip-
tions, aligning them with the constraints of the system. These modifications include
reducing neuron and synapse counts to fit within a single wafer system, transitioning the
synapse model, and adjusting neuron parameters to comply with hardware limitations.
Given that the network behavior inevitably changes under these modifications [Albada
et al. 2014], software simulations are conducted using the NEST simulator [Gewaltig
et al. 2007]. Based on these simulations, techniques are developed that facilitate the
transition of the networks while preserving biologically plausible characteristics, as defined
in Potjans et al. 2012.

Emulating the adapted models on the hardware while preserving these characteristics
demonstrates the functionality of the system. Furthermore, obtaining similar behavior

2



between the simulation and emulation serves as a validation for the correctness of the
hardware model.
Utilizing these results, comparisons can be drawn with other simulators, showcasing

the distinct advantages of the techniques employed in the BrainScaleS-1 system. Simulta-
neously, any shortcomings identified offer valuable insights for advancing the development
of future large-scale neuromorphic systems.

Outline

The thesis is organized into seven chapters. Chapter 2 introduces the fundamental
concepts of spiking neural networks and presents the neuron model adopted in this work.
Additionally, it provides an overview of the two networks under investigation.

Chapter 3 explains the structure and operation of the BrainScaleS-1 system, thereby
providing essential details and concepts for subsequent chapters.
Building upon this, chapter 4 delves into the enhancements made to the system

for large-scale experiments. This encompasses the availability management to address
hardware defects, dedicated calibration routines, improvements to network routing, and
strategies for bypassing undesired hardware behavior.
Moving forward, the implementations of the two network models on the hardware

are presented, separated into the implementation of the balanced random network in
chapter 5 and the cortical microcircuit in chapter 6. In the initial part of each chapter,
the focus lies on aligning the NEST simulation of the model with the constraints imposed
by the hardware. Following this, the second part discusses the emulation of the adapted
models on the hardware.
Finally, in chapter 7, the performance of the system is analyzed and compared to

other simulators. Moreover, conclusions are drawn, offering insights for future large-scale
emulations.
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2. Biological Models

The human brain represents an immensely efficient, robust, and powerful computation
system [Mead 1990]. Gaining a profound understanding of its structure and fundamental
operational concepts not only holds the potential to unveil new possibilities for diagnosing
and treating nervous system-related diseases but also enables learning from its design to
construct hardware that may surpass the capabilities of existing systems.
One approach to gain more insights into the human brain is to construct systems

that imitate its operational principles, thereby facilitating simulations of brain dynamics.
However, because of the immense complexity of its fundamental building block, the
neuron, modeling it in all its details is computationally costly. Therefore, simplified
neuron models, which focus on mirroring key features of their archetype, are utilized.
By doing so, simulations of large network models investigating structures found in the
human brain are achievable, which is this thesis’ focus.

This chapter provides the necessary background for the biological models investigated.
It starts with a summary of the fundamental operational principles of the biological
neuron in section 2.1. Building upon it, section 2.2 introduces the LIF neuron, which
constitutes the simplified neuron model implemented in the network structures of this
thesis. Moving forward, section 2.3 shows the network characteristics necessary to evaluate
and compare the behavior of the investigated networks. Finally, the two biological network
models investigated in this thesis are presented: the balanced random network model in
section 2.4 and the cortical microcircuit model in section 2.5.

2.1. The Biological Neuron

As per Azevedo et al. 2009, the human brain consists of approximately 86× 109 neurons,
which, according to Pakkenberg et al. 2003, are interconnected by approximately 15× 1013

synapses. Besides its immense network structure, the properties of its basic building
blocks, the neurons, constitute to its efficiency, robustness, and learning capabilities. To
facilitate the implementation of brain-like networks and to justify the adoption of simpler
neuron models like the LIF neuron, introduced in section 2.2, this section provides an
overview of the fundamental characteristics of the biological neuron. A more detailed
summary of the biological principles is given in Alberts et al. 1994.

The biological neuron is a cell that is specialized to propagate electric pulses. Like any
other cell in the human body, it contains organelles like the nucleus or mitochondria.
However, as they are common in all cells and have no particular role in the transmission
of signals, they are not further introduced in this consideration.
Characteristic for the neuron is its spatial structure, which is basically split into

three sections: dendritic tree, soma, and axon. A sketch depicting the fundamental
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2.1. The Biological Neuron

Dendrites

Nucleus
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Myelin sheath

Axon terminal

Schwann cell

Node of

Ranvier

Figure 2.1.: Schematic of a neuron cell. At the dendrites, incoming signals are collected
and transmitted to the soma, the main cell body that hosts the nucleus.
There, the signals are accumulated, and, if strong enough, a spike is generated
and sent along the axon. The transmission speed is increased by myelin
sheaths that isolate the neuron, therefore forming a saltatory conduction
where the spike is only regenerated at the nodes of Ranvier. At the axon
terminals at the end of the axon, the neuron connects via synapses to the
dendrites of other neurons. Adapted from Jarosz 2009.

components essential for signal transmission within the brain is shown in fig. 2.1. Signals
are represented by differences in the electric potential between the inside and the outside
of the neuron. This potential, separated by the neuron’s membrane, is referred to as the
membrane potential. It is defined by the concentration of different ions, mainly sodium
Na+, potassium K+, calcium Ca2+ and chloride Cl−. These ions can be exchanged
between the inside and outside of the cell through either passive or actively driven ion
channels hosted in the membrane. In the absence of any stimulation, the electrical
and chemical potential, along with the permeability of the ion channels, establish an
equilibrium value for the membrane potential, the so-called resting potential. For most
neurons, this is approximately −70mV but it differs depending on the purpose of the
neuron.

If the potential difference caused by stimulations accumulated at the soma exceeds a
threshold, which is normally −55mV, a so-called action potential or spike is triggered.
At this point, a runaway process is started and the permeability of the Na+ ion channels
increases such that the membrane potential is drastically rising and the neuron is
depolarized. After less than 1ms, the Na+ channels close and the slower K+ channels
open and the neuron repolarizes by releasing K+ ions. As the K+ channels do not close
immediately when reaching the resting potential, the neuron enters the hyperpolarization,
where its membrane potential is below the resting potential and the neuron is less
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Figure 2.2.: Spike-based signal transmission in biological neurons. (a) Shape of an action
potential, also called spike, generated at the soma of the neuron. Starting
from the resting potential, stimuli are accumulated until the threshold voltage
is reached and a spike is triggered. This starts a process where the membrane
potential is first depolarized and after approximately 1ms repolarizes again,
followed by the hyperpolarization in the refractory period, during which the
neuron is less excitable. Taken from Chris 73 et al. 2007. (b) Schematic
of a chemical synapse. Synapses transmit signals from the pre-synaptic
neuron to the postsynaptic neuron. If a spike arrives at the pre-synaptic part,
neurotransmitters stored in vesicles are released into the synaptic cleft that
separates the two neurons. These neurotransmitters bind to receptors in the
postsynaptic neuron. As a result of this, ion-channels are opened, triggering
a voltage change in the postsynaptic neuron. Taken from Splettstoesser 2015

excitable. This is called the refractory period and typically lasts for a few milliseconds.
The voltage trace of a spike is sketched in fig. 2.2a.

This spike then propagates along the axon of the now so-called spiking neuron. Myelin
sheaths covering and insulating the axon speedup the transmission as the spike is only
refreshed in myelin-sheath gaps, the nodes of Ranvier, which are highly enriched in
ion channels. During its propagation, the spike is distributed on different branches of
the axon, thereby reaching on average approximately 7000 end points, so-called axon
terminals [Drachman 2005]. This count significantly varies based on the specific function
of the neuron.

At the axon terminal, connections to either the dendritic tree of other neurons or to
other cells like muscles are established. These connections are called synapses, which, due
to their ability to modify the transmitted signal, significantly contribute to the learning
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2.2. The Leaky Integrate-and-Fire Neuron

capabilities of the brain. To achieve this, complex underlying structures and processes
within synapses are required, which are still under current research. Here, only a short
overview of the basic principles of synapses is given sufficient for the studies of this thesis.
For a more comprehensive overview, the reader is referred to Cowan et al. 2003.

Synapses form a directed transmission of information from the pre-synaptic neuron,
where the spike is generated, to the postsynaptic neuron. Although some synapses
implement an electrical transmission of signals, in most synapses a chemical process
takes place. Figure 2.2b sketches the process of signal transmission in such a chemical
synapse. If a spike arrives at the pre-synaptic part of the synapse, the changed membrane
potential leads to an influx of Ca2+ ions via the voltage gated ion channels. These Ca2+

ions bind to the synaptic vesicles present in the pre-synaptic neuron. These vesicles carry
neurotransmitters that act as chemical messengers. As a result of the binding, the vesicles
fuse with the pre-synaptic membrane, releasing their neurotransmitters into the synaptic
cleft, the gap between the two neurons. These neurotransmitters then bind to receptors
at the postsynaptic neuron, thereby opening ion gates there. The resulting voltage change
in the postsynaptic neuron is called postsynaptic potential (PSP). Depending on the type
of neurotransmitters involved and the ion channels that are activated in the synapse, the
membrane voltage either increases or decreases. As an increase in the PSP facilitates
the emergence of a spike in the postsynaptic neuron such a synapse is called excitatory.
In contrast, a synapse that decreases the PSP inhibits the postsynaptic neuron and
is therefore called inhibitory. With a few exceptions, in biology, a neuron releases the
same set of neurotransmitters in all synapses where it contributes as the pre-synaptic
partner [Eccles et al. 1954]. Consequently, as a rule of thumb, a neuron appears either
excitatory or inhibitory to all its connected neurons. This generalization is referred to as
Dale’s law. Moreover, by changing its structure over time and thereby the strength of
the stimulation at the postsynaptic neuron, synapses are able to adapt to the tasks they
are faced with.

All in all, the interactions of neurons and synapses in the human brain are complex and
this introduction only forms a strongly simplified summary of the real processes focused on
the basic network functions necessary to understand this thesis’ investigations. Using the
presented principles, in the next section, a simplified neuron model is introduced, which
reduces the computational overhead and thereby allows for implementing large-scale
networks.

2.2. The Leaky Integrate-and-Fire Neuron

The replication of biological neuron behavior is computationally expensive due to its
tremendous complexity. However, many properties found in biology are not necessary
to imitate the basic neuron behavior found in the brain. Depending on the functions
that are investigated, simplifications can be made, resulting in different abstractions
of the neuron model. Therefore, a variety of different descriptions exist, ranging from
the close-to-biology Hodgkin-Huxley neuron [Hodgkin et al. 1952], which still models
individual ion channels, to the McCulloch-Pitts cell [McCulloch et al. 1943], an idealized

7



2. Biological Models

model often used in artificial neural networks.
In this thesis, biological networks using the LIF neuron are investigated. This model

boils down the neuron dynamic to its very basic principles and is therefore extensively
used in computational neuroscience [Brunel et al. 2007]. An introduction to the model is
provided in this section. For an in-depth analysis, reference is made to Petrovici 2016.
The LIF neuron is a point neuron model. In contrast to multi compartment ap-

proaches [London et al. 2005], which replicate the spatial structure of biological neurons,
any signal transmissions inside the neuron are neglected and the neuron is treated without
extension. In addition, since it is observed that all action potentials in biological neurons
have approximately the same shape, it is assumed that the only relevant information is
their timing. Therefore, the internal dynamics of the neuron are drastically simplified.

A circuit diagram of the model is depicted in fig. 2.3. There, the membrane potential
is abstracted by the voltage across a capacitor Cm. The resting potential of the neuron,
which the membrane potential approaches in the absence of any stimulus, is implemented
by a voltage source Erest that is connected in parallel to the capacitor via a resistor.
As this resistor resembles leak currents across the cell membrane, its conductance is
called leak conductance gleak. Stimulations the neuron receives via the dendritic tree are
modeled by a time-dependent synaptic input current Isyn(t). There are two approaches to
generate this current as a response to an incoming spike: current- or conductance-based.
Figure 2.3 shows the LIF neuron with conductance-based synapses. A corresponding
circuit diagram for current-based synapses is obtained by replacing Isyn with a time-
dependent current source. Both possibilities are discussed in more detail in the second
part of this section.
In summary, the time evolution of the membrane voltage U of the LIF neuron below

the threshold voltage can be described by the differential equation

Cm
dU

dt
= −gleak (U − Erest) + Isyn(t). (2.1)

Furthermore, the decision whether the neuron fires, i.e., elicits a spike, is made by a
comparator, which compares the membrane potential to the threshold voltage Vthres. In
case the threshold value is reached, a spike is generated and distributed to all connected
neurons. In addition, a voltage source is short-circuited to the capacitor, forcing the
membrane to the reset potential Vreset. This connection is established for a time period
of τrefrac, reproducing the refractory time during the hyperpolarization of the neuron
after emitting a spike. In short, the fire mechanism is expressed as

U(t) = Vreset for t ∈ (ts, ts + τrefrac) if U(ts) = Vthres. (2.2)

2.2.1. Current-Based Synapses

Current-based synapses form one of two possibilities to model the synaptic input current
of the LIF neuron. There, a time-dependent current source is used to model the inputs the
neuron receives. At first glance, this is in contrast to biology, where a PSP is generated by

8



2.2. The Leaky Integrate-and-Fire Neuron

Figure 2.3.: Circuit diagram of the LIF neuron with conductance-based synapses. The
membrane of the neuron is modeled by a capacitor Cm that is connected
via the leak conductance gleak to the resting potential Erest. A comparator
compares the voltage of the capacitor to the threshold voltage Vthres. If it
is exceeded, a spike is sent and the reset potential Vreset is short-circuited
to the capacitor for the time period τrefrac. The synaptic input current Isyn
is implemented as two time-dependent conductances ge(t) and gi(t) that
either connect the membrane to the excitatory reversal potential Ee

rev or the
inhibitory reversal potential Ei

rev, respectively.

a change in the conductance of the neuron’s membrane. However, in the LIF model, the
spatial structure of the neuron and therefore the signal transmission from the dendrites
to the soma is neglected. Considering the neuron from the point of view of the soma, the
conductance-based behavior at the dendrites can be ignored for distant synapses, and the
incoming PSPs resemble an input current. Furthermore, compared to conductance-based
synapses, input currents are easier to implement and simplify the analytical solution of
the membrane behavior.
In this case, the synaptic input current Isyn(t) in eq. (2.1) is given by

Isyn =
∑︂
k

∑︂
s

wkϵ(t− ts), (2.3)

where the first sum iterates over all synapses k stimulating the neuron and the second
sum iterates over all spikes s transmitted via each synapse. The weight wk determines
the strength of the stimulation caused by synapse k that receives a spike at time ts. It
is positive for excitatory connections and negative for inhibitory ones. Finally, ϵ is the
synaptic kernel, which determines the temporal course of the synaptic input current.
Different functions can be used to imitate different synaptic behavior.

In this thesis, the delta peak kernel and an exponentially decaying kernel are used. For
the delta peak, the whole charge is immediately transmitted to the postsynaptic neuron,
therefore modeled by a delta peak

ϵ(t) = δ(t). (2.4)
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2. Biological Models

While serving as a practical simplification for analytical considerations, it lacks biological
plausibility and can only be approximated in physical models. In contrast, the exponen-
tially decaying kernel more accurately resembles currents in the neuron’s soma. It is
described by

ϵ(t) = Θ(t) exp

(︃
− t

τsyn

)︃
, (2.5)

where τsyn is the synaptic time constant of the exponentially decaying current. In addition,
the Heaviside step function Θ ensures that current is only flowing after the pre-synaptic
neuron spiked.

Inserting the synaptic input current of the current-based model with an exponentially
decaying kernel into eq. (2.1), according to Petrovici 2016, the analytic solution

U(t) = Eleak +
∑︂
k

∑︂
s

τksynwk

gleak
(︁
τksyn − τm

)︁Θ(t− ts)

(︃
exp

(︃
− t− ts

τksyn

)︃
− exp

(︃
− t− ts

τm

)︃)︃
(2.6)

of the neuron’s membrane voltage time course is found, with the membrane time constant
τm = Cm

gleak
. The shape of a PSP stimulated by a single spike is visualized in fig. 2.4a.

2.2.2. Conductance-Based Synapses

The other possibility to model the synaptic input current of the LIF neuron are
conductance-based synapses. By adapting the conductance towards a so-called reversal
potential, this approach imitates the behavior of the membrane in the synapses.

The circuit diagram of the model is shown in fig. 2.3. Two additional voltage sources
imitate the potential difference over the neuron’s membrane seen by the different ions.
The excitatory reversal potential Ee

rev resembles primarily the sodium channels and the
inhibitory reversal potential Ei

rev the potassium channels. Moreover, the permeability of
the membrane is modeled by time-dependent conductances, which connect the membrane
to the two reversal potentials. For excitatory inputs, the excitatory conductance ge(t) is
increased and for inhibitory inputs the inhibitory conductance gi(t). Consequently, the
synaptic input current is expressed as

Isyn = ge(t) (E
e
rev − U(t)) + gi(t)

(︁
Ei

rev − U(t)
)︁
, (2.7)

with the temporal behavior of the conductances

gx =
∑︂
kx

∑︂
s

wkxϵ(t− ts) for x ∈ {e, i}. (2.8)

Again, k and s represent the synapses and their spikes. However, this time they are
divided into excitatory and inhibitory synapses, each exclusively contributing to the
respective conductance. Additionally, it is worth mentioning that, in contrast to the
current-based model, the weight wk is given in Siemens instead of Ampere.
Similar to the current-based case, different temporal behavior of the conductances

can be modeled by different kernels. In this thesis, exclusively exponentially decaying
conductances are used, represented by the kernel introduced in eq. (2.5).
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2.2. The Leaky Integrate-and-Fire Neuron

(a) (b)

Figure 2.4.: Comparison of current-based and conductance-based synapses. Both figures
are generated with the NEST simulator. (a) Voltage trace of a LIF neuron
with either current-based (CUBA) or conductance-based (COBA) synapses
that is stimulated by a single input spike. The weight of the stimulating
synapse is chosen such that both PSPs have the same height. To visualize
the adaptation of the effective membrane time constant, a biologically im-
plausible high weight and a relatively low excitatory reversal potential is
used. Consequently, high-conductances are reached in the conductance-based
synapse and the membrane potential changes slightly faster compared to the
current-based synapse. Used parameters are listed in table A.1. (b) Stacking
of PSPs. The measured neuron receives spikes with a fixed interval and
the resulting PSPs add up to the membrane potential. For larger distances
between membrane potential and resting potential, the leak current rises
and reduces the voltage increase until an equilibrium is reached. While the
first spike achieves a similar PSP height in both synapse models, the stimula-
tion strength decreases for the conductance-based synapse as the membrane
potential approaches the excitatory reversal potential. Consequently, the
membrane saturates at a lower voltage level. Used parameters are listed in
table A.2.
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2. Biological Models

Modeling the synaptic input current with time-dependent conductances to the reversal
potentials results in two effects. On the one hand, incoming spikes change the total
conductance

gtot = gleak +
∑︂

exc syn m

gme +
∑︂

inh syn n

gni (2.9)

of the membrane, which results in an increased effective membrane time constant of

τeff =
Cm

gtot
. (2.10)

For strong stimulation, this leads to a faster reacting membrane potential compared to
the current-based neuron, visualized in fig. 2.4a. On the other hand, the synaptic current
explicitly depends on the distance between the current membrane potential and the
reversal potentials. This effect is demonstrated in fig. 2.4b. There, starting with similar
PSP heights in both synapse models, the strength of received stimulations reduces in
the conductance-based case the more the membrane potential approaches the reversal
potential. Combining both effects, reduced deviations from the resting potential and a
faster reacting membrane are observed, which leads to a smaller dynamic range with
fewer fluctuations for conductance-based synapses.

Furthermore, due to this increased complexity, no analytical solution to the membrane
dynamic can be found. However, considering a strongly stimulated neuron, the dynamic
of the model simplifies as the synaptic conductances are much larger compared to the leak
conductance and the total conductance is found to be approximately constant [Petrovici
2016]. This state of the neuron is called high-conductance state and is either achieved
by strong input weights or a high input rate. Assuming a constant total conductance
⟨gtot⟩, the membrane time constant in eq. (2.6) can be replaced by a constant effective
membrane time constant

⟨τeff⟩ =
Cm

⟨gtot⟩
. (2.11)

This substitution leads to the closed-form solution

PSP(t) =
τsyn⟨τeff⟩w (Erev − ⟨U⟩)

Cm (τsyn − ⟨τeff⟩)
Θ(t− ts)

(︃
exp

(︃
− t− ts

τsyn

)︃
− exp

(︃
− t− ts
⟨τeff⟩

)︃)︃
(2.12)

for a PSP of a conductance-based neuron in the high-conductance state starting from its
average membrane potential ⟨U⟩ that is stimulated by a single additional spike [Petrovici
2016]. Dependent of the considered synapse type, Erev represents the excitatory or
inhibitory reversal potential.
Consequently, in the high-conductance state, the behavior of the conductance-based

model differs from the current-based model. Reaching this state is hindered by utilizing
small weights and less stimulating synapses. Considering a neuron without previous
stimulation that is stimulated by a single spike with low weight, the effective membrane
time constant ⟨τeff⟩ can be replaced with the unmodified membrane time constant τm
in eq. (2.12) as the change in conductance can be neglected. The obtained membrane
behavior resembles a current-based neuron with weight w/ (Erev − ⟨U⟩).
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2.3. Network Characteristics

2.3. Network Characteristics

Building upon models of individual neurons, networks can be constructed, consisting of
multiple neurons, providing valuable insights into the functioning of the brain. However,
to thoroughly investigate and compare these networks, the utilization of appropriate
measurement variables is essential. Although the neuron’s membrane potential can be
measured, for example using the patch clamp technique [Sakmann et al. 1984], the most
prominent observable in the brain is the spike output of the neurons. Therefore, the
networks investigated in this thesis are focused on the analysis of the spikes emitted by
their neurons. Besides the timing of the spikes, two characteristics of the spiking behavior
of the neurons are considered, the irregularity and the synchrony. Both are discussed
in this section, subsequent to a short introduction into the most important terms used
during the evaluation.

All considerations presented in this section are based on the spike times of investigated
neurons. The collection of all outgoing spikes s of a single neuron is called spike train
and is defined by

ρ(t) =
∑︂
s

δ(t− ts). (2.13)

An often used quantity to describe such a spike train is the inter-spike interval, i.e., the
time between consecutive spikes. Its nth element is calculated by

ISIn = tn+1 − tn (2.14)

and its mean value by

ISI =
1

N − 1

N−1∑︂
n=1

ISIn, (2.15)

with N being the total number of spikes in the spike train.
A related quantity is the mean firing rate

ν =
N

T
, (2.16)

where T is the total measurement time. For sufficiently long spike trains or high firing
rates, it is equal to the inverse of the inter-spike interval

ν =
1

ISI
(2.17)

as the time before the first spike and after the last spike becomes negligible.

2.3.1. Irregularity

The irregularity is a measure of the variation observed in the spiking behavior of a single
neuron. It is described by the coefficient of variation (CV) of its inter-spike interval,
which is calculated by

CV(ISI) =
σ(ISI)

ISI
, (2.18)
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2. Biological Models

where σ(ISI) denotes the standard deviation of the inter-spike interval. For an irregularity
of 0, the neuron spikes perfectly regular with all spikes being equidistant. For larger
irregularities, the variation of the spike times increases. E.g., a spike train that is
generated by a Poisson process has an irregularity of 1.
Moreover, the irregularity is also used to characterize the behavior of a collection of

neurons, a so-called population. There, the mean value

CV =
1

N

N∑︂
n=1

CVn(ISI), (2.19)

of the irregularity of all neurons N is used to describe the firing behavior of the whole
population.

2.3.2. Synchrony

The synchrony classifies the correlation between neurons and is therefore a measurement
parameter concerning an entire population of neurons. One method to determine the
synchrony, introduced in Brunel 2000, is based on the evaluation of global firing behavior
and holds under the assumption of randomly and sparsely connected neurons. This means
that the number of connections between a pair of neurons C is much smaller than the total
number of neurons N in the network. In the limit of C/N → 0, the correlations between
neurons due to shared inputs can be neglected. Consequently, any correlations are caused
by the shared network behavior, which, for a random point process, is described by the
instantaneous firing rate

ν(t) = lim
∆t→0

P (t, t+∆t)

∆t
(2.20)

of its neurons, where P (t, t+∆t) is the probability for a spike to occur in the time interval
between t and t + ∆t. Since neurons that share a common instantaneous firing rate
are correlated, the temporal behavior of the instantaneous firing rate of all neurons is a
measure of the synchrony of the network. If it is constant, the global network behavior is
not changing over time and the neurons spike independently of each other. This network
state is referred to as asynchronous. In contrast, if the global instantaneous firing rate
varies, the neurons adopt a common firing behavior and are therefore correlated. This
state is termed synchronous.

The spike data evaluated in this thesis is based on implementations of network models
with a finite number of elements. Therefore, idealized network behavior, which is necessary
for analytical solutions, does not necessarily hold and an experimental approach is pursued
to evaluate the global firing behavior of the neurons. For this, the spike times of all
investigated neurons are gathered in a histogram and the ratio between the variance
and mean of the resulting bin heights is employed as an indicator of the global firing
pattern. High values indicate strong fluctuations of the global spike count compared to
its average value and thereby represent variations of the instantaneous firing rate, which
is accompanied by synchronous network behavior. In contrast, small values are found
for a constant global network behavior, which is obtained for asynchronously spiking
neurons.
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2.4. The Balanced Random Network Model

A disadvantage of this approach is that the absolute values of the synchrony depend on
the chosen bin width and the number of investigated neurons. Therefore, an appropriate
parametrization has to be found, which is discussed in more detail in section 5.1.1 and
section 6.1.1. Moreover, for comparison reasons, equal values have to be chosen in all
implementations of the model.

2.4. The Balanced Random Network Model

The enormous capabilities of the human brain strongly rely on the properties of its basic
building blocks, the neurons and synapses. However, arguably even more important is
its immense network structure. Therefore, to understand and benefit from the brain’s
working principles, the investigation of its connections and network behavior is essential.
For this, in recent years, network models have been created based on connectivity
principles found in animal brains [Bragin et al. 1995; Bassett et al. 2018]. One important
model, especially for the investigation of the network behavior of large brain areas, is
the balanced random network model. Focused on the connectivity properties and firing
behavior of sparsely connected LIF neurons, it forms the foundation of more complex
models. Being one of the models that are investigated in this thesis, its network structure
and firing characteristics are introduced in this section. More details about the model
and the utilized analytical methods can be found in Brunel 2000.

2.4.1. Network Structure

The model is based on analytical considerations but also comprises a network description
that resembles its theoretical requirements. It is built on the basis of sparsely and randomly
connected LIF neurons, which are organized in two populations. An excitatory one with
NE neurons, which, in accordance with Dale’s law, exclusively implement excitatory
connections to their postsynaptic partners and an inhibitory one with NI neurons, which
only implement inhibitory connections. Each of these neurons is connected to a fixed
number C of randomly chosen other neurons, from which CE = ϵNE are excitatory
and CI = ϵNI are inhibitory. Sparsity is achieved by a large pool of available neurons
compared to the number of implemented connections per neuron, i.e., ϵ ≪ 1. In addition,
each neuron receives Cext = CE connections from excitatory external neurons. These
external neurons are not modeled themselves but are represented by spike trains, which
are generated by independent Poisson processes with a fixed firing rate νext. This firing
rate is given by νext = ηνthr, in relation to

νthr =
Vthres − Erest

wextCEτm
, (2.21)

which represents the frequency required for the external input to induce a single spike in
the neuron over an infinite time period while sending equidistant spikes with a synaptic
weight of wext in the absence of any internal stimulation.
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2. Biological Models

Table 2.1.: Parameters of the balanced random network model. The external input rate
parameter η, the transmission delay D, and the relation between excitatory
and inhibitory weight g are not listed since they are modified during the
investigation. The parameter notation introduced in section 2.2 is used.

Network parameter Value

NE 10 000
Next 10 000
NI 2500
CE 1000
Cext 1000
CI 250
νext ηνthr

Neuron parameter Value

τm 20 ms
τrefrac 2 ms
Vthres 20 mV
Vreset 10 mV
Erest 0 mV
wE 0.1mV
wI −gwE

Based on anatomical studies, 80% of the neurons are are chosen to be excitatory,
implying that NE = 4NI. As a consequence of this, each neuron receives four times more
excitatory internal connections than inhibitory ones.
The synaptic input is modeled by current-based synapses with a delta peak kernel.

As this stimulation lacks temporal dependency, the weight w of each connection is
characterized by the resulting PSP height. It has to be much smaller than the voltage
necessary to reach the threshold Vthres of the neuron, i.e., w ≪ Vthres, such that the
neuron has to accumulate many stimulations to elicit a spike. Moreover, the same weights
are used for all excitatory and all inhibitory synapses, respectively. Both weights are
connected via the parameter g, which is given by

g =
−wI

wE
, (2.22)

where wE > 0 is the excitatory and wI < 0 the inhibitory weight. In addition, the
external input matches the weight of the excitatory connections, i.e., wext = wE. For the
spike transmission, a delay D is added to the spike time. Therefore, spikes arrive at time
ts +D at the postsynaptic neuron, imitating the time it takes to travel from one neuron
to another. Finally, the spiking behavior of the network is studied for different values of
the parameters g, νext, and D. A summary of all model parameters is listed in table 2.1.

2.4.2. Network Behavior

The network behavior of the balanced random network model can be obtained either
analytically, using idealized network assumptions, or by simulations. With the aim
of replicating the model on wafer-scale neuromorphic hardware, this section focuses
on introducing network characteristics that allow for a comparison between software
simulations and results obtained on the hardware. To this end, the firing behavior of the
network is investigated for different external input frequencies given by the parameter η,
transmission delays D, and relative strength of the inhibitory synapses g. Dependent on
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Figure 2.5.: Firing regimes of the balanced random network model. For different values
of the external input rate νext and the relative strength of the inhibitory
weight g the network exhibits different firing regimes. Transitions between
regimes are identified by Hopf bifurcation curves, shown as solid lines. SR
indicates synchronous regular, AR asynchronous regular, SI synchronous
irregular, and AI asynchronous irregular firing behavior. In the left panel, a
fixed transmission delay of D = 1.5ms is assumed for all neurons. Dependent
on the external input frequency, the synchronous irregular regime occurs with
fast and slow oscillations. Diamonds mark the parameters of the simulations
visualized in fig. 2.6. In the right panel, the neurons’ delays are uniformly
distributed between 0ms and 3ms. As a consequence of this, the synchronous
regular and synchronous irregular regime with fast oscillations are lost and
the neurons spike asynchronously. Adapted from Brunel 2000. Reproduced
with permission from Springer Nature.

these values, four different firing regimes, based on the network characteristics introduced
in section 2.3, are observed, depicted in fig. 2.5. In addition, the firing patterns of chosen
parameter sets are visualized in fig. 2.6.

For values of g < 4 the excitatory stimulation exceeds the inhibitory stimulation, since,
in addition to the already exclusively excitatory external input, each neuron receives
four times more excitatory internal connections. Due to the strong internal stimulation,
the neurons reach nearly immediately their threshold and therefore spike approximately
independently of the external input frequency close to their maximum frequency

νmax =
1

τrefrac
, (2.23)

only limited by the neurons’ refractory period τrefrac. This leads to an approximately
equidistant inter-spike interval and the neuron behavior is regular.
Moreover, the global behavior of the neurons is found to be dependent on their
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2. Biological Models

Figure 2.6.: Simulation results of the balanced random network in its different regimes.
For each regime, the top part shows the spike times of 50 randomly chosen
neurons and the lower part the histogram of all spikes with a bin width of
0.1ms. A dashed line indicates the average firing activity. A synchronous
regular (SR) at g = 3, η = 2. B synchronous irregular (SI) with fast
oscillations at g = 6, η = 4. C asynchronous irregular (AI) at g = 5, η = 2.
D synchronous irregular (SI) with slow oscillations at g = 4.5, η = 0.9. Taken
from Brunel 2000. Reproduced with permission from Springer Nature.
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2.4. The Balanced Random Network Model

transmission delay. If all neurons share the same delay value, they form groups with
similar firing times, as observed in panel A of fig. 2.6. This is possible since all neurons
share identical parameters and therefore behave identically. If many neurons spike close
to each other, their accumulated inputs will cause other neurons to spike again with
similar spike times. Consequently, for a delay value of D = 1.5ms, independent of the
external input, the neurons show synchronous regular firing, shown in fig. 2.5. The only
exception occurs if the delay value gets close to the refractory period, i.e., D ≈ τrefrac, and
spikes arrive at the same time the neurons are just able to be excited again. Therefore,
some neurons are still refractory and the accumulation of neurons with identical spike
times is disturbed and the stimulation is dominated by the Poisson generated external
input. As a result of this, asynchronous behavior is found and synchronous behavior is
only preserved for weak external inputs, e.g., for g = 1 and η < 1.5.

Additionally, since the synchronization strongly depends on the identical parameter
settings of the neurons, it is lost if the fixed delay value of the neurons is replaced by
a uniform distribution. As a consequence of this, asynchronous spiking is observed,
depicted in fig. 2.5.

The behavior of the model changes significantly for g > 4, where the inhibitory
stimulation exceeds the excitatory one. In general, the behavior is dominated by the
strong inhibition and spikes are mainly driven by the external input. The expected
firing patterns are depicted in panel C in fig. 2.6. Due to the permanent inhibition,
the neurons spike irregularly. Moreover, small variations in the global firing rate are
observed compared to the average firing activity of the network. Therefore, the neurons
are expected to spike independent, hence asynchronous. In this regime, the firing rate
can be approximated by

ν0 =
νext − νthr

g CI
CE

− 1
, (2.24)

derived in Brunel 2000. However, for specific parameter settings, two additional firing
regimes are observed. On the one hand, for strong inhibitory weights with g > 6 and
strong external inputs with η > 2.5, a synchronous irregular firing with fast oscillating
global behavior is found. There, the strong inhibitory weight leads to a reduced network
activity when the internal spikes are received D time units after the network has been
active. This, however, results in a lack of inhibition and due to the strong external input,
groups of neurons will start to spike in close proximity in time, which will then again
lead to reduced network activity after a time period of D. Consequently, the global
network behavior oscillates with a frequency smaller than 1/(2D). Since this behavior is
based on a fixed delay value for all neurons, it is not observed in networks with uniformly
distributed delays.

On the other hand, for g > 4 and weak external inputs with η ≈ 1, a synchronous
irregular firing with slow oscillating global behavior is obtained. There, the strong
inhibition leads to a mostly non-spiking network behavior. However, due to the missing
inhibitory spikes in this state, the external Poisson input will excite some neurons to
elicit a spike, which will then again inhibit all neurons in the network. As a result of this,
the frequency of the oscillation depends on the strength of the external input.
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All in all, depending on the chosen parametrization, the model exhibits distinguishable
firing patterns. Although the synchronous states are mainly based on the idealized
assumption of identical neurons, the measurement of its firing rate and the neurons’
irregularity allows for the validation of replications of the model on wafer-scale neuro-
morphic hardware. Moreover, introducing basic concepts of connected inhibitory and
excitatory LIF neurons, the model lays the foundation for models of more complex
network structures found in the human brain.

2.5. The Cortical Microcircuit Model

The structure of the human brain, with approximately 86× 109 neurons and 15× 1013

synapses, forms an inherently complex system with hard to obtain network dynamics.
Subdividing it into smaller modular building blocks with specific functions promises
a simplification of the problem. Such modular organization is found in the cerebral
cortex of mammal brains. There, neurons are organized in layers with cell-type spe-
cific connectivity, which form a repetitive cylindrical structure, the so-called cortical
column [Mountcastle 1997]. Although extensively studied since its first discovery more
than 50 years ago [Mountcastle 1957], its function remains poorly understood. However,
over the years, a large amount of experimental data has been obtained describing its
connectivity and activity. This facilitates the construction of connectivity maps, which
model the cortical column’s structure and behavior.

The cortical microcircuit model, introduced in Potjans et al. 2012 and subject to this
thesis’ investigation, is such a connectivity map. Its structure and network characteristics
are introduced in this section.

2.5.1. Network Structure

The connectivity map of the cortical microcircuit model combines the connectivity data of
various studies, e.g, based on anatomy [Binzegger et al. 2004], electrophysiology [Thomson
et al. 2002], photostimulation [Dantzker et al. 2000] or electron microscopy [McGuire et al.
1984]. Thereby, it focuses on data obtained from the primary visual and somatosensory
areas of rat brains and area 17 of cat brains. Resembling the structure under the surface
of 1mm2 of the cerebral cortex, it is subdivided into iour different layers, displayed in
fig. 2.7.

In total, the network comprises approximately 8× 104 neurons and 3× 108 synapses.
Since the incorporated studies provide only neuron and synapse counts and do not
include individual pre- and postsynaptic neuron partners, i.e., the structure the network
adopted to take over specific tasks, connectivity is treated statistically and is described by
connection probabilities between populations. Inspired by the balanced random network
model, introduced in section 2.4, each layer is subdivided into an excitatory and inhibitory
population, which implement randomly drawn connections to all populations according to
this predetermined connection probabilities. The number of neurons in each population
is listed in table A.3 and the connection probability between populations in table A.4.
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Figure 2.7.: Connectivity of the cortical microcircuit. The model replicates the structure
under the surface of 1mm2 of the cortex of the brain. It is organized
in four layers, L2/3, L4, L5 and L6, which host two populations, each.
One of them, depicted by a triangle, acts excitatory to all its postsynaptic
neurons, which is indicated by arrows with a triangular head. The other
one, illustrated by a circle, exclusively forms inhibitory connections, shown
by arrows with a circular head. Each population receives Poisson generated
excitatory external stimulations. Additional inputs to L4 and L6 represent
thalamo-cortical stimulations. Connections are drawn randomly with a
predetermined probability between a pair of populations. Only connections
with a connection probability > 0.04 are depicted. Taken from Potjans et al.
2012 by permission of Oxford University Press.
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In addition to the internal connections, stimulation received from its surrounding are
modeled by Poisson generated excitatory external inputs, which spike with a fixed rate
of νbg = 8Hz. The number of external pre-synaptic partners depends on the target
neuron’s population and is displayed in table A.3. Moreover, an optional time-dependent
external input can be used to imitate thalamo-cortical stimulations. It is represented
by 902 external neurons connected randomly with predefined probabilities to neurons in
layer L4 and L6. During the first 10ms of the experiment, these neurons send Poisson
generated excitatory spikes with a firing rate of νth = 15Hz.

Similar to the balanced random network, the cortical microcircuit is build of LIF
neurons. However, a different parametrization (table A.5) is used to resemble biological
neuron behavior. In particular, the synapses are current-based and use an exponen-
tial kernel characterised by the synaptic time constant τsyn. In addition, to include
heterogeneity, its weight and delay values are Gaussian distributed, with the mean
inhibitory weight being four times larger than the excitatory one. Although in general
layer-independent, the weight values of connections from the excitatory population of
layer L4 to the excitatory population of L2/3 are doubled. Consequently, the cortical
microcircuit model extends the balanced random network model into a multi-layered
network with biologically inspired connectivity obtained from measurements on mammal
brains.

2.5.2. Network Behavior

Implementing a biologically realistic network structure and neuron parameters, the
cortical microcircuit model tries to imitate firing patterns found in the cortex. According
to Amit et al. 1997, this corresponds to asynchronous irregular neuron behavior with
low firing rates, which is specified by a mean firing rate of ν < 30Hz, an irregularity of
0.7 < CV < 1.2 and a synchrony smaller 8 [Potjans et al. 2012]. The balanced random
network model demonstrates this behavior for a relative strength of the inhibitory
synapses of g > 4 in combination with a sufficiently strong external input. Using a similar
parametrization, the cortical microcircuit achieves asynchronous irregular firing in all
populations.

A detailed overview of the model’s firing behavior is depicted in fig. 2.8. In accordance
with experimentally obtained data from awake animals, the firing activity of neurons is
layer dependent. With focus on excitatory populations, layers L2/3 and L6 show the
lowest firing rates with ν < 1Hz. While for L2/3 this is caused by the integration of
primarily inhibitory inputs from all layers, L6 is dominated by inhibitory inputs from
within its layer. Similar to L6, L4 is mainly characterized by connections within its layer
but demonstrates elevated firing rates. The smallest layer, L5, receives inputs from all
other layers containing the highest proportion of excitatory inputs. This results in the
highest firing activity and also leads to the largest distribution of firing rates. In contrast,
inhibitory populations generally receive a greater amount of excitatory input compared
to the excitatory population within the same layer and therefore show higher firing rates.

Moreover, the observed variation of spike frequencies is caused by the random selection
of pre- and postsynaptic connection partners in the model. For this reason, the number
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2.5. The Cortical Microcircuit Model

A B

C

D

Figure 2.8.: Firing characteristic of the cortical microcircuit model. A shows the spike
times of randomly chosen neurons for each layer. The number of presented
neurons is chosen relative to the size of their population. Inhibitory neurons
are depicted in gray and excitatory neurons in black. The remaining box
plots display the firing rate (B), the irregularity (C) and the synchrony (D)
for all populations. For this, 1000 spike trains per population are recorded
for 60 s in B and C and 5 s in D. In B, stars mark the mean firing rates. A
bin width of 3ms is used for the synchrony calculation. Taken from Potjans
et al. 2012 by permission of Oxford University Press.
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of stimulations a neuron receives and its pre-synaptic partners differ within a population.
Representing a dynamic system, the stability of the model can be tested for modifi-

cations of the external input, and weight and delay values. Similar to measurements
obtained from animals executing different tasks, small variations of the firing rates are
observed. Nevertheless, the overall layer-dependent firing behavior of the model remains
stable [Potjans et al. 2012]. This suggests that the model’s behavior is encoded in
its connectivity. Consequently, reproducing the cortical microcircuit’s structure and
comparing the obtained network dynamics serves as a benchmark for software simulators
as well as for implementations on neuromorphic hardware.
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Hardware System

Simulations are a widely recognized technique for gaining insights into systems that are
otherwise difficult or even impossible to comprehend. This also applies to the human brain,
with its inherently complex network structure. In recent years, with increasing compute
power, the dimensions of simulated brain models have expanded, with the potential to
reach the size of the entire human brain in the future [Gerstner et al. 2012]. Therefore,
in general, traditional computers based on the von Neumann architecture are utilized.
However, despite their flexible and easy to scale up technology, their different operational
principle introduces a large computational overhead when simulating biological systems
with numerous parallel operational components. Consequently, large compute clusters
with high energy consumption are necessary to achieve reasonable simulation durations
for large models.

In order to address these limitations, the development of specialized computational
systems has been started. Optimized to model the structures of the human brain,
these so-called neuromorphic hardware systems promise reduced power consumption at
accelerated simulation speed [Mead 1989; Mead 1990].

The BrainScaleS-1 system, the first generation wafer-scale mixed-signal accelerated
neuromorphic hardware platform developed in Heidelberg, is such a neuromorphic sys-
tem [Schemmel et al. 2010; Schemmel et al. 2008]. Realized in 180 nm CMOS technology,
it follows a physical modeling approach where neurons are built from analog circuits
that communicate via digital spike transmission. Instead of solving differential equations
that describe the dynamics of the neuron model, analog circuits implement the neurons’
behavior. Consequently, in contrast to software simulations, the hardware is emulating
the investigated network dynamic.

The system achieves a high neuron count by utilizing wafer-scale integration. There,
the entire silicon wafer is used and not diced after fabrication. Therefore, a single wafer
comprises 384 individual ASICs, so-called High Input Count Analog Neural Network
(HICANN) chips with up to 196 608 analog neuron circuits and a total of 43 253 760
synapses.

Moreover, the high configurability of analog parameters allows for a variable acceleration
speed between 1000 and 100 000 compared to biological real time. Assuming the typically
used acceleration factor of 10 000, this means the emulation of 1 s of biological behavior
takes 0.1ms on hardware.

The system and the means to operate it are introduced in this chapter. It starts with the
introduction of its basic building block, the HICANN chip, in section 3.1. Subsequently,
in section 3.2, the wafer-scale integration and module assembly as well as the resulting
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implications for experiments are discussed. Finally, since such a complex system cannot
be operated without appropriate software, key features of the BrainScaleS-1 operating
system necessary to execute hardware emulations are presented. Throughout the chapter,
selected concepts that are used in the later parts of this thesis are presented with the
necessary increased level of detail.

3.1. The HICANN Chip

The central building block of the BrainScaleS-1 system is the HICANN chip. A picture of
it with sketched components is illustrated in fig. 3.1. Depicting several different aspects
of the chip, it is used throughout the following sections to introduce major functional
parts of the chip following the signal path of a spike.

3.1.1. Neuron Circuit

In the chip’s center, 512 analog membrane circuits are located, each implementing the
behavior of the adaptive exponential leaky integrate-and-fire neuron, an extension of the
LIF neuron model, which allows for generating sophisticated neuron firing patterns [Brette
et al. 2005; Millner et al. 2010]. Since the LIF neuron is a subset of this model, it is
obtained by deactivating the adaptation mechanism, which represents the mode of
operation employed throughout this thesis.

The circuits are based on the principles introduced in section 2.2 and their membranes
are modeled by one of two available capacitors. Depending on the user’s selection, either
a small capacitor with approximately 0.16 pF or a big capacitor with approximately
2.16 pF is used. Moreover, the membrane circuits are organized in blocks of 64, which are
split into a top and bottom row. Each of them is connected via a synaptic input circuit,
introduced in section 3.1.5, to a synapse column consisting of 220 synapses that is, in
accordance with its membrane circuit, either located in the top or the bottom synapse
array. Since the synapse count of a single membrane circuit is in general insufficient for
large-scale networks, membrane circuits of a single block can be interconnected to build
larger neurons. Therefore, at the expense of available neurons, the number of stimulating
synapses per neuron can be increased to a maximum of 14 080. A side effect of this is an
increased membrane capacitance of the composite neuron as its individual capacitors are
connected in parallel. However, since each membrane circuit implements its own leak
conductance, the membrane time constant of the composite neuron is not affected by
this.
Each membrane circuit is configured by a set of parameters, with the most relevant

ones depicted in fig. 3.2. In addition to routing-specific configurations, these parameters
are stored in single-poly floating gate cells, which provide voltages between 0V and 1.8V
or currents between 0 µA and 2.5 µA according to their gate’s accumulated charge [Millner
2012; Lande et al. 1996]. Subdivided into 4 blocks, in this thesis called FG blocks, the
target value of each floating gate is set according to a configurable 10-bit value stored
in one of two available SRAM cells per block. During programming, the cell’s gate
charge is modified incrementally in feedback loops until a satisfactory alignment with
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3.1. The HICANN Chip

Figure 3.1.: Overview of the HICANN chip. On the left, a photograph of the chip is shown
with labeled components and marked cutouts displayed on the right. a sketch
of the lower right part of the synapse array, comprising a synapse driver
connected to two synapse rows. Two additional synapse rows are connected to
a synapse driver on the left half of the syanpse array. Neurons are represented
by compoundable membrane circuits, each linked to a synapse column with
220 synapses. b left half of the merger tree. Spikes received at the top are
optionally merged with spikes generated by background generators. The
following layers allow for combining adjacent signals. The last stage enables
injecting external spikes and reading out the received spikes to the host
computer. Finally, all spikes are transmitted to the bus system of the chip.
The right half of the tree is structured accordingly. c bus system of the chip.
Horizontal and vertical buses, connected by configurable switches, distribute
spikes across the wafer. On chip boundaries, repeater circuits regenerate the
signals. Hosted alternating on two chips, at each edge they connect to a bus
on the same and on the adjacent chip. Adapted from Schmidt et al. 2023.
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Figure 3.2.: Simplified schematic of the HICANN’s neuron circuit and its synaptic input.
If a digital spike is received, the synapse drivers and synapses of the connected
synapse column generate an input current, denoted as Isyn, and transmit it
to one of the two synaptic input circuits, depending on whether the input is
excitatory or inhibitory. There, it is converted into an exponentially decaying
signal with an adjustable synaptic time constant, configured by the parameter
Vsyntc. This signal controls the conductance towards the reversal potential
Erev. Furthermore, the signal’s strength is scaled by the parameter Iconv and
a bias generator. Configured by the parameters Vsyn and Vconvoff , it allows
for mismatch corrections between the involved components. The neuron’s
membrane Vm is constantly connected via the leak conductance, set by the
parameter Igl, to the resting potential Erest. If the membrane potential
reaches the threshold value Vthres a spike is elicited and the membrane is
connected for the refractory time, configured by Ipulse, to the reset potential
Vreset. Adapted from Schmidt et al. 2023.
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the target value is found. Although representing a low-power and low-space solution to
store the 12 384 configuration parameters per HICANN, the incremental programming
is time-consuming in comparison to digital parameter storage implemented in other
parts of the chip and introduces write-cycle to write-cycle variability to the neurons’
configuration [Kononov 2011].

3.1.2. Merger Tree

If the membrane potential of a neuron reaches its threshold, a digital spike is emitted.
This spike signal exclusively consists of a 6-bit address, which is used to identify the
target synapses of the neuron. It is injected into the merger tree, a multilayered structure
of so-called mergers. These circuits are either configured to merge two distinct sources or
to forward one of two input signals to a shared output line. Additionally, a FIFO buffer
implemented for each neuron circuit permits the storage of a single spike if the merger
tree is still blocked by a prior signal. In the event that the neuron spikes again before
the buffer is emptied, the second spike will be discarded.

As depicted in fig. 3.1 b, all neurons in a single neuron block enter the merger tree
at the same merger, located in the first layer of the merger tree. Consequently, on each
HICANN there are 8 mergers, which allow for injecting additional spikes from so-called
background generators. These circuits can be programmed to either generate regular or
Poisson-distributed spike trains with a predefined frequency and spike address.

In the following layers of the merger tree, neighboring signals can either be merged
until all are combined in the central merger or individual connections can be directly
forwarded into the last merger stage. A duplication of spike signals is prevented, as in
the routing logic, only one merger is allowed to use the output of a previous merger.

The last merger stage contains again 8 mergers to allow for a configuration where all
layer-1 mergers directly forward their spike signals. On the one hand, these mergers are
used to inject external spike signals with spike times programmed into the memory of
the connected FPGA, as introduced in section 3.2. On the other hand, spikes received
from the neurons are sent to the FPGA and, from there, read out by the host computer.
For this, each external input merger can store up to 2 spike signals in a FIFO buffer to
compensate for the reduced transmission speed of theoretically 25MEvents/s from each
HICANN to its FPGA [Klähn 2017].

Finally, each merger of the last stage is connected to one of eight specialized repeater
circuits, the so-called sending repeaters, which inject the received signals into the layer-1
network, introduced in more detail in section 3.1.3.

In general, the digital circuits involved in signal transmission are operated with a
configurable clock speed between 100MHz and 250MHz, which is provided by an internal
PLL. However, as the sending repeaters require two clock cycles to process a signal, the
speed of the merger tree is reduced to operate at every second clock cycle. Consequently,
with a clock frequency of 125MHz, which is used throughout this thesis, the smallest
interval between consecutive spikes corresponds to 16 ns.
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3.1.3. Layer-1 Routing

The layer-1 network routes on-wafer spike signals from the neurons to their target
synapses. Possible injection points are 8 sending repeaters per HICANN receiving signals
from the last stage of the merger tree. Depending on its configuration, each sending
repeater connects to one horizontal bus on the same as well as on the neighboring
HICANN to the left. These buses distribute the signal as they connect to buses on both
neighboring HICANNs. In total, 64 buses are available per HICANN to distribute the
signal horizontally across the wafer. Moreover, switches allow for connecting vertically
aligned buses. Due to space constraints, these switches are implemented sparsely such
that from each horizontal bus only 8 of the 256 available vertical buses can be reached.
A cutout of the resulting switch matrix is visualized in fig. 3.1 c.

Once routed to its destination, a second set of horizontal buses can be connected
to vertical buses to transmit the signal to the synapse drivers of the synapse array,
introduced in section 3.1.5. Again, a sparse switch representation is implemented,
enabling the connection of 24 out of 224 horizontal buses, organized in an alternating
pattern. Depending on whether they are located on the left or right side of the chip, these
buses also establish a direct connection to a synapse driver on the adjacent HICANN
to the left or right, respectively. Furthermore, to reduce bus utilization, each synapse
driver is able to inject its input into neighboring drivers, thereby implementing a chain
of drivers that receive the same spike addresses.

As the signal strength decreases with the number of connected buses, it is regenerated
between chip boundaries by repeater circuits. To this end, each HICANN hosts 64
repeaters for horizontal and 256 repeaters for vertical connections. Since each boundary
requires only one repeater, their location alternates between the chip’s left and right or
top and bottom edges. Consequently, each repeater connects to one bus on the same
and one on the neighboring HICANN. The previously introduced sending repeater is
a specialized version of this circuit that, in addition to normal operation, allows for
injecting signals from the merger tree. An in-depth discussion of the repeater circuit is
provided in section 3.1.4.

In order to ensure signal integrity, during routing, the maximum number of connected
buses is constrained. Therefore, a maximum of two closed switches are allowed before
the signal has to be regenerated by a repeater. Additionally, a chain of synapse drivers
is limited to 3 drivers. These restrictions are handled by the BrainScaleS-1 operating
system, introduced in section 3.3. Providing experiment-specific routing results, at the
beginning of an emulation, repeaters and switches are configured such that the layer-1
network statically connects utilized resources.

3.1.4. Layer-1 Repeater

The fundamental principle of a repeater circuit on the BrainScaleS-1 system is to de-
serialize a received spike signal from one bus and resend it serialized again on the other
bus. Each signal consists of 8 bits. A 6-bit address, which identifies the target synapses,
enclosed by a start and stop bit. Since, due to space constraints, no clock signal is
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Figure 3.3.: Timing diagram of the repeater circuit. A spike signal arriving at the
input of the repeater consists of a 6-bit address enclosed by a start and stop
bit. There, the start bit is detected, and a DLL subdivides the time period
between the falling edge of the start bit and the rising edge of the stop bit,
marked in red, into 16 equidistant time steps. At every second time step,
the address bit at the input is read and cached. After 3 address bits are
received, the repeater starts to regenerate the cached data on the output. In
addition, the DLL’s timing is updated by detecting the rising edge of the
stop bit. This edge detection is limited to the expected time frame of the
stop bit, indicated in blue. Taken from Kaiser 2020.

provided to the repeaters, they have to extract the correct timing from the transmitted
signals. To this end, at the beginning of each experiment, the background generators
send spikes with address 0, which results in a low state of the bus for the duration of
the signal transmission. By detecting the falling edge of the start bit and the rising
edge of the stop bit, the duration of the signal is estimated. A DLL in the repeater
circuit uses this timing information and divides it into 16 equally sized time bins. Once
set to the correct timing, only the start and stop bit are exposed to the edge detection
circuit, while the address bits are masked. Therefore, the DLL’s timing can be adjusted
according to all received signals to compensate for small changes caused by temperature
or voltage fluctuations. This is further facilitated by adding one background generator to
each connection, which sends regular spikes with address 0 at a frequency of 1MHz to
allow the DLLs to regularly refresh their timing during experiments.

During normal hardware operation, the repeaters detect the rising edge of the start bit
and de-serialize and serialize the received signals according to the obtained time bins,
visualized in fig. 3.3. Since every second time step occurs in the middle of a transmitted
bit, the repeater captures and caches the values there. After it received 3 address bits, it
regenerates the cached values on the second bus.

Repeaters are bidirectional and can be configured to either transmit in one direction
or block the signal. Organized in 6 blocks, each group of repeaters is programmed by a
custom on-chip SRAM controller. As a consequence of this, all repeaters in the same
group share common settings, and their DLLs can only be resetted collectively. Moreover,
each repeater, except the sending repeaters, implements a test data output, which allows
for reading out its de-serialized addresses. A more comprehensive overview of the repeater
circuits can be found in Hock 2009 and Schemmel et al. 2008.

31



3. The BrainScaleS-1 Neuromorphic Hardware System

3.1.5. Synapse Array and Synaptic Input Circuit

Each HICANN implements two synapse arrays, each hosting 110 synapse drivers connected
to two synapse rows, respectively, as visualized in fig. 3.1. Implementing one synapse
per connected membrane circuit, each synapse row contains 256 synapses. Consequently,
each membrane circuit connects to 220 synapses, which are, according to the position of
the membrane circuit, either located in the top or bottom synapse array.

Spike signals from the layer-1 network arrive at the synapse drivers, whose positions
alternate between the left and right side of the array. There, the address of the received
spike is de-serialized as each driver implements a reduced repeater circuit without test
data output. This address determines which synapses in the two connected rows are
enabled to stimulate their membrane circuit. To this end, each synapse implements a
configurable digital SRAM cell, the so-called synapse decoder, which stores the address at
which the synapse is enabled. Due to space constraints, this memory only represents the
4 least significant bits of the spike address. The two remaining bits get separated in the
synapse driver and determine which of 4 possible strobe lines gets activated. Subdividing
both synapse rows into blocks of 4 synapses, each of these lines implements a fixed
connection to either the top left, top right, bottom left or bottom right synapses in these
blocks. Consequently, a synapse is enabled if its strobe line is switched on and the lower
four bits of the spike address match the value stored in its synapse decoder. In this
case, the synapse is connected to either the excitatory, inhibitory, or both synaptic input
circuits of its membrane circuit. Since this connection is selected row-wise in the synapse
driver, all synapses in the same synapse row share the same synapse type.

The length of the input current pulse that gets added to the synaptic input line for
each enabled synapse is controlled by the clock frequency of the HICANN provided by
its PLL. For 125MHz it is tsyn = 8ns. Its strength is provided by the synapse driver. As
visualized in fig. 3.4, it is configurable to allow for different weight settings. The HICANN
also incorporates two additional options for altering the synaptic weights, specifically
for modeling weight modulations caused by the neurons’ spiking behavior: short-term
plasticity (STP) [Tsodyks et al. 1997; Abbott et al. 2004; Billaudelle 2014] and spike
timing-dependent plasticity (STDP) [Song et al. 2000; Schemmel et al. 2006]. However,
both features are not utilized in this thesis and are therefore deactivated and not taken
into account in this consideration.

In the absence of the two mechanisms, the input current Isyn of a single synapse is
designed to be

Isyn = Vgmax · gscale ·
w

gdiv
. (3.1)

There, the reference current Vgmax is provided by 16 floating gate cells distributed on 4
FG blocks. Every synapse driver selects one of 4 available values, as its placement on the
HICANN, which is either top left, top right, bottom left, or bottom right, dictates its
connection to a specific FG block. Subsequently, its reference current is scaled by two
current mirrors. The first one has a fixed scaling factor of gscale = 0.4. The factor of
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Figure 3.4.: Generation of the synaptic input current Isyn. The reference current Vgmax,
stored in a floating gate cell, gets rescaled by two current mirrors. The first
one realizes a fixed scaling factor of gscale = 0.4. The second factor depends
on the ratio between the two parameters w/gdiv. Both values are determined
by transistors of different sizes, which are controlled by programmable SRAM
cells. The configuration of gdiv is stored per synapse row in the synapse driver
and selects from 8 available transistors implementing scaling factors between
2 and 30. In contrast, w is stored per synapse and controls 4 transistors,
realizing scaling factors ranging from 0 to 15. If an arriving spike activates
the synapse, the enable switch is closed for 1 cycle of the HICANN clock.
Adapted from Koke 2017.

the second one depends on the ratio between the parameters w and gdiv, which are both
realized by combining transistors of different sizes. The digital weight w is configured
by a 4-bit value stored in an individual SRAM cell for each synapse. Due to space
limitations, it is configured, along with the synapse decoder value, using a custom on-chip
SRAM controller, which is implemented per synapse array [Friedmann 2013]. Each bit
of the digital weight controls a different transistor representing the factors 1, 2, 4, and
8, therefore, in combination, realizing values ranging from 0 to 15. In contrast, the
parameter gdiv is stored in the synapse driver and configured per synapse row. Its 8-bit
value controls transistors implementing the same scaling factors as used in the digital
weight. However, each transistor is implemented twice. Consequently, scaling factors
between 2 and 30 are realized.

Unfortunately, parasitic capacities residing in the synaptic circuit lead to a deviating
behavior of the input current, as investigated in Koke 2017. Between consecutive pulses
the synaptic circuit and thus also the parasitic capacities discharge. Hence, they have to
be charged again during the next pulse. This results in a high peak current Ipeaksyn at the
beginning of the pulse, used to charge the parasitic capacities, followed by a plateau of
height Imid

syn , which is approximately given by Isyn. The height of Ipeaksyn depends on the
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total parasitic capacitance of the synaptic circuit and thus on the different transistors
used to realize the synaptic weight. Consequently, it can be approximated by

Ipeaksyn = i0 + i1w1 + i2w2 + i4w4 + i8w8, (3.2)

where wn ∈ {0, 1} is the state of the nth significant bit of the 4-bit weight value stored
in the synapse, and in is the current required to charge the parasitic capacity of the
corresponding transistor over the whole pulse length tsyn.
As a result of this charging effect, the current arriving at the denmem circuit is no

longer rectangular but follows a more complex shape and is prolonged. However, since the
pulse length of the synaptic input is 2-3 orders of magnitude smaller than the synaptic
time constant, the actual shape of the current has no effect on the PSP trace of the
neuron and thus allows for approximating it by a constant current

Isyn = Ipeaksyn + Imid
syn = Vgmax · gscale ·

w

gdiv
+ i0 + i1w1 + i2w2 + i4w4 + i8w8 (3.3)

of length tsyn, which preserves the total charge. Since the charging is independent of the
duration of the pulse, the effect is more prominent for smaller timescales and thus for
higher PLL values.

Fitting the model to simulation results reveals the need to extend the model. Finally,
according to Koke 2017, the synaptic current can be best fitted to the simulation using

Isyn = Vgmax · gscale ·
w

gγdiv
+

β1w + β2w
2

gdiv
+ i0 + i1w1 + i2w2 + i4w4 + i8w8, (3.4)

with the additional fit parameters γ, β1 and β2.
This input current is accumulated for all synapses in one synapse column and enters

the synaptic input circuit, sketched in fig. 3.2. There, it is modified into a time-dependent
signal, imitating an exponentially decaying kernel, c.f., section 2.2.2. Implementing
conductance-based synapses, the generated signal modifies the conductance towards
the reversal potential to stimulate the target neuron’s membrane potential, thereby
concluding the circle of a transmitted spike.

3.2. Wafer-Scale Integration and Module Assembly

In traditional semiconductor manufacturing, multiple copies of integrated circuits are
fabricated on a single silicon wafer, which is then cut to obtain individual chips. This is
exploited in the context of wafer-scale integration, where the entire wafer is employed as
a single, uncut, large circuit. While sacrificing the flexibility to swap individual defective
components, dense packaging is achieved. Moreover, the short on-chip interconnections
lead to improved performance and power efficiency in contrast to multiple single-chip
systems.

With all these features being desirable for large neuronal network emulators, wafer-scale
integration is utilized in the BrainScaleS-1 neuromorphic hardware system to implement
high neuron counts. This way, a 20 cm wafer accommodating 384 single HICANN chips
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is obtained. Manufacturing-related, the wafer is subdivided into individual chips or
groups of chips that implement no connections, as each of them is fabricated separately
by applying the same structure with different alignment. On the BrainScaleS-1 wafer,
such a group of chips comprises 8 HICANNs oriented in a rectangular shape, which is in
this thesis referred to as HICANN-Group. Typically, connecting them is not required
since the wafer is usually diced between chip boundaries anyway. However, for the
BrainScaleS-1 system, utilizing wafer-scale integration, this does not hold. Therefore,
the wafer is covered with a multilayered routing structure that interconnects all 384
HICANNs. Applied post wafer production, it is called post-processing layer.
In order to utilize a wafer, it is embedded into a module, which, together, form a

BrainScaleS-1 system as depicted in fig. 3.5. This happens during the assembly process,
which is described in detail in Schmidt et al. 2023. In the following, a short introduction
to the most relevant parts of the system and their functions is given.
The system is supplied by a 48V source, which connects to the main power supply.

This, together with two auxiliary power supply boards, generates all intermediate voltages
required by the system’s components.
Central to the system is the main PCB, which combines all components. Correctly

aligned and put under pressure, 384 elastomeric connectors, which are held in place by a
positioning mask, establish a connection between the post-processing layer of the wafer
and the main PCB. These connections are used to supply power and exchange data with
the HICANNs. Thereby, individual parts of the wafer can be switched on and off, as the
main PCB implements a separate power control for each HICANN-Group.

Moreover, two methods are implemented to communicate with the wafer. On the one
hand, individual links to each HICANN, called high-speed communication, enable high
bandwidth communication of 1Gbit/s in both directions with each HICANN. On the
other hand, one JTAG connection per HICANN-Group is daisy-chained through all of its
8 HICANNs. Although much slower, in the event of a failing high-speed connection, it
provides an independent and reliable option to configure each HICANN into a desirable
state for experiments.

Furthermore, 48 FPGAs, one per HICANN-Group, are connected via custom designed
communication PCBs to the main PCB. Positioned next to the wafer, they are used
for time-critical operations that cannot be performed using the larger overhead of the
host connection. Therefore, each FPGA implements logic to configure, monitor and
communicate with the HICANNs of their associated group.

Together with the large number of repetitive components of the HICANN, this modular
design makes up the fault tolerance of the system, as undesired components can be
deactivated and replaced by other parts. This capability is essential for operating a
wafer-scale system.

Fully assembled, the system is placed into one rack of the BrainScaleS-1 machine
room, shown in fig. 3.5. There, the analog breakout board of the system is connected
to the analog readout module located in a drawer in the center of each rack. Equipped
with twelve 12-bit ADCs, the module allows for the digitization and reading of analog
membrane traces provided by the analog breakout boards. In general, a wafer provides 96
analog outputs, 2 per HICANN-Group, which are multiplexed between all its membrane
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Figure 3.5.: Structure of the BrainScaleS-1 neuromorphic hardware system. In the top-
left, a photograph of a wafer is shown that accommodates 384 HICANNs,
interconnected by the post-processing layer, visible as a golden covering.
Due to design constraints, additional circuits observable at the edge of the
wafer are omitted in the final system. During system assembly, the wafer
is built into a module, where it connects via elastomeric connectors to the
main PCB. Different boards connected to the main PCB supply power and
I/O possibilities to the wafer. Moreover, 48 FPGAs are used to orchestrate
experiments. All components of a wafer module are visualized in the top
right. Fully assembled, the module, shown in the lower right corner, is placed
in the machine room depicted in the lower left corner. There, each rack
accommodates up to 4 wafer modules, and in its center the analog readout
module, which is connected to the analog breakout boards and allows for
digitizing analog membrane traces. All modules are connected via Ethernet
cables to the host computers positioned in the central rack.
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circuits. However, the capabilities of the readout module used in this thesis are limited.
Only 12 membrane traces of neurons, which have to be located in different wafer regions,
can be recorded in parallel. Moreover, being distant from the system, the module adds
noise to the signals during readout. Additional information about the structure and
capabilities of the analog readout system can be found in HBP SP9 partners 2014.

The assembly is finalized by connecting a Raspberry Pi [Upton et al. 2017]. Communi-
cating with individual components of the system via the I2C [NXP Semiconductors 2012]
protocol, it is used to start up the system, adapt voltage values, and readout monitoring
data. Furthermore, it regulates the fans located in the rack, which keep the system at a
constant temperature of approximately 50 °C, allowing for variations of ±5 °C.

In total, the machine room provides capacity for 20 BrainScaleS-1 systems. Designed
to be interconnected with each other, it becomes possible to combine multiple systems
and achieve even higher neuron and synapse counts. However, as the development of
inter-module communication is still ongoing, this thesis focuses on conducting experiments
on a single wafer module.

3.3. Software Implementation

Operating large-scale neuromorphic hardware is complex, as its many custom components
add different constraints to the system. Therefore, to ensure proper experiment execution,
the correct configuration of a substantial number of parameters is required. Moreover,
starting from biological models, appropriate hardware representations have to be found.
This also includes the translation of model parameters into hardware configurations,
which often requires detailed knowledge of the hardware structure.

To accomplish this, the BrainScaleS-1 system deploys an extensive software framework
that facilitates the emulation of experiments. This section introduces its most relevant
features that are used throughout this thesis. Further details about the entire operating
system are available in Müller et al. 2022.

The BrainScaleS-1 software is mainly written in the C++ programming language [ISO
2017]. However, with Python [Van Rossum et al. 2009] being very popular in the
neuroscience community [Muller et al. 2015], automatically generated Python bindings
are used to provide a Python interface. Allowing for direct access to a majority of C++
functions, network description and experiment control can entirely be done from within
the Python programming language.

An experiment on the BrainScaleS-1 hardware typically unfolds as outlined below.
The user describes the network under investigation and the software translates it into a
valid hardware configuration. This configuration is written to the hardware and network
execution is started. During the experiment, external spikes are injected into the network
at predefined times stored in the FPGAs. In addition, spikes generated on the hardware
are transmitted to the FPGAs and stored there. After a predefined execution time, spike
results and analog traces are read back from the FPGAs and the analog readout module
and made available for the user.

To accomplish this, the software is structured in different abstraction layers, as demon-
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Figure 3.6.: Data-flow diagram of the BrainScaleS-1 software stack. The user describes
the network model using a BrainScaleS-1-specific implementation of the
PyNN API called PyHMF. Subsequently, the data structure, encapsulated in
the PyHMF container, is translated by the map and route tool marocco into
a valid hardware configuration. Stored in the StHAL container, it gets used
by the next software layer, HALbe, to configure the hardware and execute
the emulation. Finally, recorded membrane and spike results are transmitted
back through all layers, allowing them to be accessed within the PyNN
interface. Moreover, intermediate representations and the routing results
generated by marocco can be stored on disk. Therefore, network translation
and hardware execution can be separated and emulations can be rerun with
identical or manually modified configurations. Adapted from Müller 2014.

strated in fig. 3.6. Its first layer forms the BrainScaleS-1-specific PyNN backend PyHMF1.
Fully configurable in Python, it provides the user the PyNN API [Davison et al. 2009]
to generate a description of the investigated biological network model. Since PyNN
is simulator-independent and also provides other neural network simulators as back-
ends [Rhodes et al. 2018; Eppler et al. 2008; Goodman et al. 2008], this enables the reuse
of network descriptions.

Results are stored in a binary representation, which is handed over to the next software
layer, the map and route routine marocco2. There, a network graph is generated, which
matches the structure and all restrictions of the hardware. This procedure is mainly split
into two steps.

It starts with the mapping, during which each neuron of the biological model gets
assigned to physically available membrane circuits on the wafer. Since neurons on the
HICANN are composed of multiple membrane circuits, cf. section 3.1.1, a configuration

1Available at https://github.com/electronicvisions/pyhmf
2Available at https://github.com/electronicvisions/marocco
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parameter enables the user to select the desired neuron size. Moreover, manual placement
requests can be applied to define target HICANNs or membrane circuits for groups of
biological neurons. Networks in which neurons lack corresponding available membrane
circuits are prohibited and result in the termination of the program.

In the second step, according to the network description, available connections on
the bus system of the wafer are routed between the previously placed neurons. To this
end, a hardware graph is generated, which encompasses all hardware-specific constraints
and allows for handling undesired components by excluding corresponding vertices
and edges. Subsequently, either the backbone algorithm [Fieres et al. 2008] or the
Dijkstra algorithm [Dijkstra 1959] is utilized to find routes on the hardware between the
pre-synaptic and postsynaptic neuron circuits. Due to the limited amount of available
resources on the hardware, it is possible that not all connections required by the biological
model can be established on the hardware. The percentage of not implemented routes
is called synapse loss and represents a performance measure for the map and route
results. Due to the separation of mapping and routing as well as the limited capabilities
of the routing algorithms, the results found do not necessarily represent the optimal
solution. Often, manual placement requests and the selection of different neuron sizes
can be applied to assist the algorithms in further reducing the synapse loss. An in depth
description of the map and route software is presented in Jeltsch 2014.

Once the network is mapped to the hardware, the map and route layer is also responsible
for translating biological neuron parameters into corresponding circuit configurations.
This is necessary since the voltages and currents used on the hardware differ from those
found in biology, cf. section 3.1.1 and section 2.1. Moreover, utilizing analog components,
the BrainScaleS-1 hardware is affected by manufacturing induced circuit mismatches.
Therefore, during parameter translation, the algorithm utilizes a circuit-specific calibration
to minimize resulting variations.

This calibration is generated using the standalone Python framework cake3. In line with
the map and route software, it utilizes the lower software layers to execute measurements
with specialized configurations. Evaluating the response of the neuron’s membrane
potential to different settings of individual configuration parameters, depicted in fig. 3.2,
a translation of the corresponding neuron property is obtained for the whole parameter
range. During the measurements, all other configuration parameters are set to appropriate
but fixed values. Therefore, possible effects of configuration parameters on unrelated
neuron properties are not considered. In addition, the precision of the calibration is
limited by the write-cycle to write-cycle variability of the floating gates. Individual steps
of the calibration routines and their performance are discussed in detail in Koke 2017;
Kleider 2017; Schmidt 2014; Schmidt et al. 2023.

The results of the calibration are represented in a custom database4. Different states
of it can be stored on disk in either XML or binary format and later loaded during
routine parameter translation, therefore facilitating the utilization of experiment-specific
calibration data.

3Available at https://github.com/electronicvisions/cake
4Available at https://github.com/electronicvisions/calibtic
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Finally, the map and route layer generates a binary representation of the desired
hardware state for the experiment, consisting of target values for all floating gates,
switch and repeater configurations, as well as synapse driver and synapse settings.
Moreover, the graph representation of the network on the hardware is available as a
routing result. Storing both containers on disk enables the evaluation of the resulting
network topology. Furthermore, since configuration generation and hardware execution
are separable, previously obtained results can be loaded and executed on the hardware.
This allows for faster execution of experiments with the same or slightly adapted settings.
However, still under development, files are stored in human-readable XML format, which
is not optimized for performance.

The final layer of the BrainScaleS-1 software stack forms HALbe5. It implements the
communication with the FPGAs and is used to configure the wafer according to the map
and route results.
Upon completion of the experiment, the recorded spikes and analog traces are trans-

mitted back through all the software layers. In this process, they are translated from the
hardware domain into the biological domain and finally made available in PyNN.
In addition, independent of the experiment workflow, continuous system monitoring

ensures the correct operation of the system. This is accomplished through the attached
Raspberry Pi, which continuously reads more than 1800 metrics per system, including
data such as voltage, current or temperature [Schmidt et al. 2023]. Visualized in Grafana
dashboards [Labs 2018] this allows for tracking system changes over time or during
hardware operation.

5Available at https://github.com/electronicvisions/halbe

40

https://github.com/electronicvisions/halbe


4. Commissioning of the BrainScaleS-1
System Towards Large-Scale Experiments

This thesis aims to replicate large-scale biological networks on BrainScaleS-1, a wafer-
scale neuromorphic hardware system. In this context, the system’s physical modeling
approach and the utilization of wafer-scale integration introduce intricate challenges in
realizing emulations. These challenges arise from the diminished flexibility and reliability
of components. Furthermore, in contrast to the successful implementation of smaller
networks [Göltz et al. 2021; Kungl et al. 2019; Schmitt et al. 2017], conducting large-scale
experiments demands an even higher level of control over the utilized system. Manual
adjustments and fine-tuning of individual parameters are no longer feasible once several
thousand components have to be adjusted. Therefore, the establishment of automatic
tests and a controlled workflow is imperative.

At the initial state of this thesis, several BrainScaleS-1 systems were fully assembled
or were close to completion. Although extensively tested during assembly to achieve a
maximum number of working components, cf. Schmidt et al. 2023, the state of individual
components was unknown, and accordingly, large-scale emulations were not possible
due to the utilization of malfunctioning components. A calibration framework was in
place to translate neuron parameters from the biological regime to hardware parameters
while minimizing the fixed pattern noise of the analog components [Koke 2017; Kleider
2017; Schmidt 2014; Schmidt et al. 2023]. To find a physical representation of the
biological network described in the PyNN framework, the map and route routine was
implemented [Jeltsch 2014; Müller et al. 2022].

During this thesis, the commissioning of the BrainScaleS-1 system was extended to
allow for large-scale experiments. An extensive test framework was established, which,
in combination with the availability management and fault tolerance of the system,
allows the user to handle the system as an idealized substrate without malfunctioning
components. This framework is presented in section 4.1. In addition, missing calibration
routines necessary to parametrize biologically plausible large-scale networks such as
the cortical microcircuit or the balanced random network were implemented, shown
in section 4.2. Furthermore, the map and route routine was improved, as discussed
in section 4.3, to cope with the requirements of larger experiments by improving the
utilization of the available hardware resources. Finally, section 4.4 introduces undesired
characteristics identified during hardware operation, along with the developed solutions
designed to minimize their influence on experiments.

If not mentioned otherwise, in this chapter, all parameters are given in the biological
regime.
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4.1. Availability Management

Utilizing wafer-scale integration to interconnect individual chips, the BrainScaleS-1 system
achieves high energy efficiency and high-bandwidth inter-chip communication [Zoschke
et al. 2017]. The downside of this approach is the reduced flexibility in handling
malfunctioning components, since individual problematic chips cannot be replaced.
Therefore, malfunctioning components are inevitable on a wafer hosting 384 individual
HICANNs. While these components can be manually avoided in small-scale experiments
this is no longer feasible using large parts of the system, which is the focus of this
thesis. Not handled correctly, these components either disturb experiments or prohibit
the execution of them in the first place. For this reason, a resource management
was developed that is subject to this section, which is used to find, store and handle
malfunctioning components. A custom availability database stores components that
should not be used. Several steps, comprising communication tests, digital memory tests,
an exclusion of dependent components, and a calibration-based exclusion are filling this
database. There, the execution sequence is important as each step uses the resulting
database state of the previous step. Additionally, storing different states of the database
on disk allows for distinguishing the origin of entries, as well as the utilization of dedicated
components for each operation.

4.1.1. Availability Database

The basic principle of the availability database of the BrainScaleS-1 system is to store
components that should not be used during hardware operation. While the fundamental
implementation of the database was already present [Jeltsch 2014] it was largely extended
during this thesis and full support for it was added to the map and route algorithm.
The database is written in C++ and only stores excluded components without further
information. Different states of the database can be stored on disk in either XML-based
or binary format using boost serialization. This makes it possible to generate experiment-
specific availability data. In addition, as the hardware is still under development and
system components might be replaced or modified, it allows for flexible adjustments of
the stored data and for tracking the state of the system over time.

The database is stored in separate files for different involved hardware components,
reducing the amount of data that has to be updated if components are changed and
facilitating parallel executions. There, a wafer file contains the communication details
of the corresponding wafer. One file per FPGA holds the communication possibilities
of its corresponding FPGA, and one file per HICANN the information of each chips’
malfunctioning components. Using the coordinate system of the BrainScaleS-1 operating
system, introduced in Müller et al. 2022, this HICANN file is subdivided into different
abstraction layers of the chip. For example, in case of problems with individual synapse
configuration registers, the corresponding components can be excluded individually,
whereas for a malfunctioning control flow, the affected synapse array can be removed as
a whole, cf. section 4.1.3. This constitutes a lightweight solution to store the data as a
single entry may encompass all unavailable components. Loaded during every hardware
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Figure 4.1.: Operation of the availability database. The chips of one HICANN-Group are
depicted by eight large rectangles, left before and right after the exclusion of
malfunctioning components. Using the hierarchical structure of the system,
in the database, each HICANN is subdivided from an individual-component
level up to larger functional units, visualized by different-sized rectangles
within one of the HICANNs. For demonstration purposes, some components,
highlighted in gray, are chosen to be malfunctioning. Detected in the avail-
ability tests, the appropriate unit dependent on these components is excluded
from the database, visualized by red crosses. Figure taken from Müller et al.
2022.

execution and fully integrated into the map and route algorithm, unwanted components
are removed from the hardware graph and thus are not utilized. Therefore, the wafer
can be treated as an idealized substrate without malfunctioning components from the
user’s perspective. The operation of the database is demonstrated in fig. 4.1.

Since excluded components are ignored in experiments, another application of the
database is to manually adjust the automatic routing process. A command-line tool was
developed to facilitate the generation of experiment-specific databases. It uses the syntax

$ redman_cli.py <PATH> <FILE> <OPERATION> <NAME> <NUMERATIONS>

where the database file that should be adapted is stored in the directory specified by
PATH. FILE represents the short format of the target file, where the wafer id prefixed with
“W” and if required, the HICANN or FPGA id, prefixed with an “H” or “F”, respectively,
can be handed over to the program. The user chooses from three OPERATIONs: “enable”,
“disable” and “has”. While the first two options remove or add components from the
database, respectively, the last one checks if a specific component is available. Finally,
the NAME and the NUMERATIONS of the target coordinates are chosen.

$ redman_cli.py . W30H100 disable synapses 0 1

for example removes the first and second synapse of HICANN 100 on wafer 30 from
the availability database and the results are stored in the current directory “.”.
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Table 4.1.: Communication test results at the time of writing for five fully assembled wafer
modules, named by their position in the racks. The number of HICANNs
failing the initialization via JTAG communication are shown in the first row
and the number of HICANNs that fail the initialization via high-speed com-
munication are shown in the second row. HICANNs that have no high-speed
connection by design or that have already failed the JTAG communication
test are excluded from the high-speed test results.

Resource Module 23 Module 24 Module 30 Module 33 Module 37

JTAG 51 11 2 39 73
High-speed 1 1 4 0 0

4.1.2. Communication Test

After assembly, a series of tests, developed in the course of this thesis, have to be
executed on the hardware to generate the availability data that is essential for large-scale
experiments. These tests build upon each other and start with the communication test.
It is separated from the digital memory test since during normal hardware operation
all HICANNs controlled by the same FPGA have to be initialized correctly. Therefore,
the communication test is executed in advance to find the appropriate communication
method for each HICANN. During the communication test, only the HICANN under test
is initialized. Failing initialization of one HICANN leads to an unexpected termination
of the program and might result in an unresponsive state of the corresponding FPGA.
To circumvent this, before each communication test, the FPGA is reprogrammed and
thus a reliable state is ensured.

There are two possibilities for communicating with the HICANNs. The first one
is given by the JTAG ports of the chips that are daisy-chained within one HICANN-
Group consisting of eight HICANNs. By design, all control registers can be reset using
this JTAG communication. However, chaining through all HICANNs of one group,
the connection offers not enough bandwidth during experiments. Therefore, a faster
high-speed serial link connects each HICANN individually to the communication board.
Since the link initialization requires an existing JTAG connection, HICANNs without
JTAG communication also have no high-speed communication. During the test, the
chip is initialized using both communication methods. Failures indicate malfunctioning
behavior and the used communication method of the corresponding chip is marked in
the availability database.

In table 4.1 the number of HICANNs failing the communication test are shown for
five fully assembled wafer modules. Using the test results and the fault tolerance of
the system, all wafer modules can be used for experiments. However, to maximize the
number of usable components, the large-scale experiments discussed in this thesis are
mainly emulated on wafer module 30, which performs best in the test. Therefore, the
methods in this section are demonstrated by means of this wafer module but are acquired
for all other wafer modules accordingly.
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Figure 4.2.: Overview of the commissioning test results for wafer module 30. Each rect-
angle represents the position of one HICANN on the wafer and its color
indicates the test result. Red HICANNs cannot be initialized, neither via
JTAG nor high-speed communication. Yellow HICANNs only fail initializa-
tion via high-speed communication. Green HICANNs can be initialized using
both methods. Sixteen HICANNs in the center of the wafer are without
high-speed communication by design.

The location of the initialization problems found on wafer module 30 can be seen in
fig. 4.2. Two HICANNs cannot be initialized via JTAG communication and therefore
also have no high-speed communication. Since the JTAG connection is implemented
as a chain through all HICANNs of one group, single-chip failures most likely indicate
that the problem is not caused by the JTAG connection itself. One reason for the failing
initialization could be a underpowered supply of these chips caused by an insufficient
connection to the main PCB. As the correct behavior of circuits with undervoltage is
not guaranteed, this could also explain an unstable circuit behavior observed in the
long-term stability measurements shown in fig. 4.3. There, dependent on the current
state of the system, HICANN at position 200 occasionally fails the JTAG communication
and HICANN 304 the high-speed communication test.

This unstable behavior presents a problem as all hardware executions depend on a
stable connection to the HICANNs. However, successful communication with problematic
connections is only achieved during the limited interaction with the chip required for the
communication test. Consequently, the memory test, outlined in the subsequent section,
enables the detection of unstable HICANNs, allowing for their manual exclusion from
the final test results.

Executed on the systems once they are fully assembled and integrated into the rack,
these tests aim to guarantee their correct operation despite having malfunctioning
components. Therefore, at this point, distinctions are not made regarding whether
problems are caused by the communication method, malfunctioning auxiliary boards,
insufficient power supply, or issues on the chips themselves With these test results
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Figure 4.3.: Long-term stability of the nightly executed communication tests of wafer 30.
The number of HICANNs that cannot be initialized via JTAG or high-speed
communication is shown. HICANNs that have no high-speed connection by
design or that already failed the JTAG communication test are excluded from
the high-speed test results. One HICANN for each of the two communication
types fails the test occasionally. All other HICANNs show stable results in
all tests.

available, chips failing initialization are excluded in all following steps and thus do not
affect hardware executions.

4.1.3. Digital Memory Test

Manufacture-induced malfunctioning components are inevitable on wafer-scale micro-
electronics. Without careful management, especially in large-scale experiments with
complex and hard-to-track network dynamics, the unknown behavior of components could
compromise the reliability of results. Therefore, a digital memory test was developed
to identify malfunctioning digital configuration registers on each HICANN. On the one
hand, using the test results, malfunctioning components can be excluded and therefore
do not disturb experiments. On the other hand, the results are used to characterize the
wafer modules and allow for the evaluation of their digital building blocks.

The digital memory test utilizes the communication test results and the whole HICANN-
Group of the HICANN under test is initialized using the available communication methods,
respectively. HICANNs that cannot be initialized are removed from the test and therefore
do not further disturb the execution. If the HICANN under test is not available in the used
availability database, the test is skipped. As explained in the previous section, HICANNs
with communication-induced initialization problems may fail the digital memory test
if these problems go undetected beforehand. In this case they are identified by their
missing test results and the respective communication method for this HICANN has
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to be manually excluded from the database. Subsequently, the memory test has to be
repeated for all the other HICANNs of the related HICANN-Group using the adapted
availability database.
During the test, all digital configuration registers on the HICANN are repeatedly

write/read-tested with random but valid configuration values. Instead of testing the whole
parameter space, random values are chosen to cover different parameter combinations
without exceeding reasonable runtimes. Thereby, 10 repetitions were found sufficient to
characterize a chip. If a write/read mismatch is detected, functional units that cannot
be used without the register under test have to be marked in the database. Here, it is
enough to exclusively exclude the highest-level affected functional unit in the system’s
hierarchy. This ensures a minimal but sufficient exclusion of components. Moreover,
since only a single entry has to be stored in the availability database, it makes up its
sparsity.
For example, if a register in the decoder of an individual synapse fails the test, the

whole synapse driver is marked in the database since this is the only possibility to ensure
that the malfunctioning decoder is not activating its related synapse when receiving a
spike. As a result, all 512 synapses connected to this synapse driver are not used in
experiments.
In total, the test checks more than 42MiB of configuration registers on a wafer.

For wafer 30 the size of the tested registers per resource and the number of excluded
components are depicted in table 4.2. Additionally, the distribution of malfunctioning
components on individual HICANNs is shown in table 4.3.
It can be seen that only on 19 out of 384 HICANNs components failing the test are

observed. There, most malfunctioning behavior in synapse related registers can be traced
back to problems in the configuration registers of individual synapses, which dominate
the test with 110KiB per HICANN. For example, only on HICANN 373 synapse driver
related registers show malfunctioning behavior, while all other excluded drivers can be
attributed to issues in individual synapse decoders.
Moreover, synapse-related problems have been observed to occur concentrated on

single synapse arrays. However, manufacturing-induced errors in digital registers are
expected to occur rarely and to be isolated, as observed on HICANN 360. Therefore,
the accumulation of malfunctioning behavior most likely indicates a problem in the
digital control chain of individual HICANNs. Consequently, the reliability of write/read
operations during the test is not ensured on these HICANNs. To address this issue,
tailored handling procedures are established depending on the type of components.

For non-synapse-related components, the utilized approach is described in section 4.1.4.
However, synapse-related registers are treated differently. On the one hand, they face a
higher likelihood of manufacturing-induced errors due to the large number of registers.
On the other hand, they are programmed per synapse array by a custom on-chip SRAM
controller, described in Friedmann 2013, introducing an additional source of errors.
Therefore, special attention was given to the evaluation of synapse behavior, and an
additional memory test was implemented as detailed in the following.
On HICANNs 204 and 373 malfunctioning SRAM controller registers are found. As

a consequence of this, the correct programming of the synapses on the corresponding
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Table 4.2.: Details of the digital memory test and the synapse stability test for wafer
module 30 at the time of writing. The size in bits of the tested configuration
registers per HICANN is given. Since no register is exclusively assigned
to synapse rows, they are marked with a hyphen (“-”). However, they are
still listed as they form functional units that are excluded if registers they
depend on fail the test. In addition, the number of components that are
tested on the whole wafer is shown. These numbers are smaller than the
total number of components on a wafer, since components on HICANNs
without communication possibilities are excluded as they cannot be tested.
In the final column, the ratio of excluded components to the total number
of tested components is presented. There, synapse-related components can
be excluded multiple times. For example, an excluded synapse could be part
of an excluded synapse row or array and could be connected to an excluded
synapse driver.

Resource Register size (Bit) #Components Excluded

Synapse arrays 560 726 0.96%
Synapse drivers 10 560 79 860 1.24%
Synapse rows - 162 624 0.07%
Synapses 901 120 40 888 320 0.3 %
FG blocks 184 1528 0.2 %
Analog outputs 22 726 0.0 %
Background-generators 192 2904 0.0 %
Mergers 77 8349 0.0 %
Switches 7680 2 933 760 0.14%
Repeaters 2560 122 240 0.04%
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Table 4.3.: Distribution of excluded components on wafer module 30 at the time of writing.
All HICANNs that contain components that failed the digital memory test
or synapse stability test are shown. In the first column, the positions of
the relevant HICANNs are listed. HICANNs are enumerated per wafer, row-
wise, starting at the top left. The remaining columns display the number
of components per resource failing the tests on the respective HICANN. For
each resource, the total number of available components on a single HICANN
is shown in parentheses. Due to observed problems in the digital control
chain on a small number of HICANNs, the number of excluded synapses and
repeaters show varying test results.

HICANN Synapse FG blocks Switches Repeaters
Arrays Drivers Rows Individual
(2) (220) (440) (112640) (4) (7680) (320)

23 1 110 0 948 0 0 0
36 0 110 0 32 885 0 0 0
86 0 0 0 0 0 170 0

109 0 110 0 220 0 0 0
121 1 1 0 2 0 0 0
132 0 110 0 56 320 0 0 0
152 1 1 0 8 0 0 0
154 0 0 0 0 0 0 2
181 0 110 0 475 0 0 0
189 0 0 0 0 0 0 16
190 0 0 0 0 0 0 35
204 1 110 0 7035 0 1530 0
272 1 110 0 660 0 0 0
275 1 110 0 8363 0 0 0
287 0 0 0 0 1 0 0
304 0 0 0 0 0 225 0
336 0 0 0 0 2 284 0
360 0 0 0 1 0 0 0
373 1 110 110 14 077 0 1762 0
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Figure 4.4.: Stability test results for different values of the supply voltage VDDBUS for
HICANN 272 that shows unstable behavior and hosts most malfunctioning
synapses. For each synapse of the HICANN it is shown how often it is
excluded in 100 write/read repetitions of the memory test. A value of 0 or
100 demonstrates that the synapse is stable and fails either none or all of the
tests, respectively. Values in between indicate unstable behavior in the test.
Synapses with a synapse number above 56 320 are located on the second
synapse array. The test results differ depending on the array the synapses
are located on.

synapse array is not possible and the whole array is excluded. On the remaining HICANNs,
five synapse arrays show varying test results. This means, in consecutive executions of
the memory test different synapse registers fail the test, as shown in fig. 4.4. There, no
difference is observed if the registers are written once and read repeatedly or write/read
tested in each iteration (cf. fig. A.2).

To rule out potential issues with the power supply, all measurements are conducted
at two distinct voltage levels of the controller’s supply voltage (VDDBUS). These levels
are 1V and 1.8V. Although no improvement is observed, the default supply voltage
used for experiments is set to the maximum value of 1.8V to minimize potential further
implications. Nevertheless, the power supply of individual HICANNs could still suffer
from an insufficient connection to the main PCB. Dependent on the current state of the
system, which is subject to vibrations and temperature fluctuations in the order of 5 °C,
this could lead to malfunctioning behavior in individual components farthest away from
their operation point, possibly explaining the unstable programming observed in some
controllers.

Unstable behavior during the test is a problem, as malfunctioning synapses may remain
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Figure 4.5.: Synapse array stability results in dependence on the number of test repetitions
for wafer 30 in comparison to wafer 24. Wafer 24 shows up to 13 unstable
synapse arrays, wafer 30 up to 5. On wafer 24, more than 10 repetitions of
the test turn out to be beneficial to reliably detect more unstable synapses.
In contrast, on wafer 30, 3 arrays host only a few unstable synapses and
therefore fail the test rarely. There, taking the increased execution time into
account, more than ten test repetitions are not practical as they show no
reasonable improvement. Furthermore, undetected synapse arrays can be
excluded through long-term measurements, as discussed in section 4.1.3.

undetected. To address this, a stability test was developed. During this test, all synapses
of each synapse array are write/read tested repeatedly with a fixed value. If at least
one synapse shows different results in one of the tests, the whole array is assumed to be
unstable and is excluded. The proportion of affected synapse arrays on wafer 30 is shown
in table 4.2 and the number of excluded arrays per HICANN in table 4.3.

Results of the stability test on wafer 24 and wafer 30 for different repetition counts are
visualized in fig. 4.5. In contrast to wafer 24, on wafer 30 instability is only observed on
a small subset of synapses on affected arrays. Therefore, unstable behavior rarely occurs
and might remain undetected even after many repetitions of the test. To account for
this, further exclusion can be made, as discussed in the following paragraph.

During long-term measurements on wafer 30 spanning from June 2022 to March 2023, a
consistent observation was made (cf. fig. A.4). Across 216 measurements, each consisting
of ten repetitions of the stability test, the presence of the same five HICANNs with
one unstable synapse array was identified. There, HICANNs 272 and 23 are always
detected. HICANN 275 fails 74% of the tests, HICANN 152 58%, and HICANN 121
4%. Consequenly, HICANNs with fewer individual synapse problems show less unstable
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behavior and are therefore harder to detect. This shows that the test only fails to
reliably detect problems on arrays having a small number of unstable synapses. However,
since only a small percentage of synapse arrays show unstable behavior, depending on
the requirements of the experiment, all arrays that failed the test once or show more
than isolated failing synapses can be excluded from the final database. Thereby, at the
expense of losing stable programmable synapses, it is ensured that no unstable behavior
is observed in experiments.

4.1.4. Effective Exclusion of Components

In the last section, memory tests were introduced, developed to detect and exclude
malfunctioning digital registers to ensure the correct configuration of all components
utilized in experiments. However, due to dependencies between components of the
hardware and detected instability in the digital control chain of some HICANNs, additional
steps are necessary to circumvent all problems arising from wrongly configured digital
registers. In addition, the flexibility of the availability database and its utilization
in different software layers can be exploited to take into account chip versioning and
optimizations of the map and route algorithm. Throughout all steps of this process,
the previously acquired communication and memory test results are evaluated, and no
additional measurements on the hardware are made.
Executed after the memory test, this process allows to exclude all the components

that should not be used during experiments, not only due to their individual problems,
but also because of their dependencies on other components. Consequently, without
further knowledge about low-level dependencies, the hardware can be treated as a perfect
substrate for experiments by the user. Exclusion steps covering all expected hardware
dependencies were developed in the context of this thesis and are discussed in more detail
in the following. The numbers of thereby excluded components on wafer 30 are listed in
table 4.4.

Handling of unstable repeater registers : The memory test results reveal that most registers
on a wafer can be reliably programmed. Only a small number of synapse and repeater
related registers show varying results, demonstrated in appendix A.2. Both components
are organized in larger building blocks, on which individual components are programmed
by custom on-chip SRAM-controllers. Due to the increased complexity in the digital
control chain and the fact that errors are isolated to individual blocks, excluding entire
blocks exhibiting components with unstable behavior is expected to effectively address
the issue. To this end, for the synapses a stability test was developed to distinguish
individual malfunctioning registers from problems arising due to unstable building blocks,
as introduced in the previous section. In contrast, the digital registers of the repeaters
only represent a small amount of the tested memory. Consequently, individual failing
registers are very unlikely. As a result of this, repeater blocks that host more than one
repeater failing the memory test are considered unstable, and thus all repeaters controlled
by this block are excluded from the availability database.

Buses connected to malfunctioning repeaters : Repeaters are used to regenerate the signals
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Table 4.4.: Details of excluded components after the effective exclusion for wafer module
30. The values extend the memory test results shown in table 4.2. Only
affected resources are listed. Additionally, for each resource, the number of
available components on the whole wafer is shown. Exclusions caused by
hardware versioning are not shown, as these would include components that
are not present in wafer 30. The results represent the number of components
unavailable for experiments, but these components do not necessarily show
malfunctioning behavior.

Resource #Components Excluded

JTAG communication 384 2.08%
High-speed communication 384 6.77%
Mergers 8501 1.79%
Repeaters 122 240 0.16%
Buses 122 240 0.79%

transmitted via the buses between two HICANNs. Therefore, each repeater is connected
to buses on its own and the neighboring HICANN. If a repeater is excluded from the
availability database, it is not ensured that it does not send wrong signals to its connected
buses. To prevent this, all connected buses are also excluded.

Additionally, due to a bug in the control chain, the reset bit of the repeaters is not
automatically released after powering up the chip, leading to incorrect signals on buses
connected to powered but non-initialized HICANNs. Therefore, all buses connected to
HICANNs without JTAG communication are also removed from the availability database,
as these chips cannot be initialized. Extending beyond chip boundaries, this dependency
rules out a simplistic approach of addressing malfunctioning components by merely
removing entire chips, an approach which on top has the drawback of losing many usable
components.

Malfunctioning switch registers : The observed quantity of malfunctioning switch registers
exceeds the anticipated number attributed to manufacturing-induced issues. For these
components, where no additional on-chip SRAM controller is involved in the programming
process, problems in the digital control chain of the entire HICANN cannot be ruled
out. However, digital memory tests are inconclusive in the presence of a malfunctioning
control chain. Consequently, HICANNs with failing switch registers are entirely removed
from the database. This is achieved by excluding the respective JTAG communication.
As a consequence of this, the HICANN is no longer initialized during experiments. This
is desired because, due to the potentially unreliable control chain, correct programming
is not guaranteed. However, as explained earlier, this necessitates the exclusion of buses
on the neighboring chips.

Malfunctioning floating gate controllers: On the HICANN, neuron parameters as well as
routing-specific configurations are stored in floating gates. If a malfunctioning controller
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programming the floating gates is found, the correct operation of neurons and repeaters
is not ensured. To prevent the utilization of such chips, affected HICANNs are excluded
by removing their JTAG communication from the availability database. Consequently,
the HICANN is neither used for the placement of neurons nor for routing of signals.

HICANNs without high-speed connection: Injection and recording of spikes, as well as
the configuration of neurons, is expensive in terms of bandwidth requirements. Although
chips can be programmed via their JTAG connection, they cannot be employed for
neuron placement or external input injection based solely on this communication method.
Therefore, HICANNs without the possibility to communicate via high-speed are exclusively
used for routing signals between chips. This is achieved by excluding all their neurons
and external input mergers from the availability database.

HICANNs without routing possibilities: A spike sent by a neuron circuit must traverse
the merger tree until it is injected via a sending repeater into the layer-1 interface.
There, due to malfunctioning components, it might occur that no routing possibilities
are left for functioning neurons. For this reason, any neuron and external input merger
lacking at least one essential component for signal transmission is excluded from the
availability database. Since different components are required for different merger tree
routing algorithms, introduced in section 4.3.1, the script allows the user to select the
desired strategy to generate experiment-specific availability data. As a consequence of
this, resource utilization is enhanced in the routing process.

Hardware versioning : The availability database facilitates the management of various
chip versions by adjusting the excluded components. At the time of writing, it serves two
purposes. On the one hand, in the latest chip version, the number of synapse rows was
reduced from 448 to 440 to make space for an extended neuron circuit [Koke 2017]. To
prevent algorithms to take removed components into consideration, the synapse drivers
of the 8 rows are excluded from the database for wafers built with the latest chip version.
On the other hand, in an earlier version of the post-processing layer, connections were
established from HICANNs at the corner of the wafer to unused chips beyond the area
of the 48 utilized HICANN groups. To prevent leakage currents arising from these
connections, all affected buses are excluded from the database. Consequently, no further
distinctions have to be made in software loading the dedicated availability database for
each wafer, regardless of its chip or post-processing versions.

Depending on the requirements of the user, different steps can be skipped or extended
to find a suitable availability database for each experiment. Results of the effective
exclusion are stored separately to disk so that malfunctioning and dependent components
can be distinguished afterward. In addition, the memory test results are used to initialize
the chips before experiments, while the results of the effective exclusion are used during
experiments.
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4.1.5. Calibration Based Exclusion

The final step to acquire the availability data for experiments is the calibration based
exclusion. Since all components have to work correctly for the neuron calibration to
succeed, this constitutes a test for all analog components of the chip. All neurons that do
not successfully complete all calibration steps are excluded from the availability database.
Failing calibrations are either caused by malfunctioning circuits or by outliers that do
not satisfy defined thresholds. In the calibration based exclusion on wafer 30, at the time
of writing, 11.29% of the 195 584 neuron circuits are excluded. This number strongly
depends on the requested neuron settings and set thresholds. For the biologically inspired
large-scale experiments described in this thesis, stable neuron behavior is essential.
Therefore, the calibration is optimized for stability rather than to maximize the number
of usable neurons.

4.2. Extended Calibration for Large-Scale Experiments

The investigation of biologically inspired large-scale neural networks requires the precise
tuning of neuron parameters. However, due to the analog nature of the BrainScaleS-1
chips, manufacturing-induced device variability is unavoidable. In addition, for each
neuron, many hardware-specific parameters have to be set to obtain the desired neuron
behavior. While for very small neuron numbers, manual adjusting of hardware parameters
might still be possible, for large-scale experiments, this is no longer feasible. Therefore,
calibration routines were developed in Koke 2017; Kleider 2017; Schmidt 2014 to allow
for configuring the hardware in biological parameters and to minimize the variability
of the circuits. Focused on in-the-loop training of comparatively small networks, these
calibration routines were extended in the course of this thesis to cope with the requirements
of large-scale experiments, which is this section’s topic.

In order to become independent of predetermined settings of the investigated biological
networks, the static parameter translation from the biological domain to the hardware
domain was changed to an automated translation that always utilizes the whole dynamic
range of the hardware circuits, which is introduced in section 4.2.1. Furthermore,
saturation effects were found in the circuits of the reversal potentials that were not
handled by the existing calibration. To allow for a precise setting of the reversal potential,
a new calibration method was developed, shown in section 4.2.2. Moreover, in previous
experiments the synaptic weights were either set manually or adjusted by in the loop
training of the network, thus requiring no calibration. However, the investigation of
biological networks requires the setting of predefined weight values in the biological
domain. To this end, a weight calibration and automatic translation was developed,
presented in sections 4.2.3 and 4.2.4. Finally, in order to enable simulations of the
hardware behavior, the transmission delays between chips were determined, provided in
section 4.2.5
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4.2.1. Parameter Translation

The typical resting potential of neurons in the human brain is −70mV, with the amplitude
of an action potential being approximately 100mV [Petrovici 2016]. In contrast, the
BrainScaleS-1 system operates with voltages between 0V and 1.8V. Additionally, the
time constants arising from its electronic components make up a typical acceleration factor
of 10 000 compared to biological real time. Therefore, parameters have to be translated
between the two regimes. This transition is possible since the network behavior of LIF
neurons is independent of the absolute voltage values if all parameters are adapted
accordingly. To this end, in previous experiments, the static parameter translation

Uhardware = 10 · Ubio + 1.2V (4.1)

for voltage parameters and

thardware =
tbio

tscaling
(4.2)

for time constants was used, where tscaling depends on the used hardware settings and is
typically set to 10 000. Handled by the BrainScaleS-1 operating system, experiments are
exclusively configured in the biological regime.

However, there are two major problems using a static translation for emulating
biologically inspired networks. On the one hand, different biological network descriptions
utilize different parameter ranges that require different translation parameters. For
example, the two models investigated in this thesis use a resting potential of 0mV for the
balanced random network [Brunel 2000] and −65mV for the cortical microcircuit [Potjans
et al. 2012]. On the other hand, the static parametrization does not restrict the utilized
parameter range to the hardware boundaries, which are further constrained by saturation
effects present in the circuits of the reversal potentials, as discussed in section 4.2.2.

Both problems are solved by a dynamic parameter translation that always utilizes
the whole available parameter range of the hardware. This is achieved by exploiting the
characteristic of the LIF neuron that the reversal potentials are not exceeded by other
voltages. Therefore, the reversal potentials are mapped to the maximum voltage Umax

and minimum voltage Umin of the hardware, which are introduced in section 4.2.2. This
results in the translation

Uhardware =
Umax − Umin

Ee
rev − Ei

rev

· Ubio +
Ee

rev · Umin − Ei
rev · Umax

Ee
rev − Ei

rev

. (4.3)

Here, Ee
rev is the excitatory and Ei

rev the inhibitory reversal potential of the biological
model. In this way, used voltages never exceed hardware boundaries and the maximum
voltage resolution is achieved by utilizing the whole dynamic range of the circuits.

4.2.2. Extended Reversal Potential Calibration

The excitatory and inhibitory reversal potentials of the LIF neuron constitute the
boundaries for all voltages of the model. Their precise configuration on the hardware is
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fundamental for the parameter translation from the biological to the hardware domain
and therefore a prerequisite for the weight calibration.

In the previously existing calibration routine, the membrane voltage of the neuron was
clamped to one of the two reversal potentials using a strong input current. Subsequently
it was read out using the analog readout system. In this manner, a corresponding reversal
potential was determined for various configurations of the respective floating gate, which
are specified in units of LSB and therefore represent the value of the 10 bit register used
for its programming. This method will be called direct measurement in the following.
Although providing accurate results for the inhibitory reversal potential, deviating

values are obtained when measuring the excitatory reversal potential using this ap-
proach [Wehrheim 2019]. The reason for this is that, similar to its biological counterpart,
the membrane potential on the hardware is not designed to reach the excitatory reversal
potential since it is typically above the threshold value of the neuron. Therefore, the
circuits are not optimized to operate close to this operation point and show non-linear
effects when approaching the excitatory reversal potential. This unintended behavior
can be made visible by measuring the PSP height of a stimulated neuron at different
resting potentials. In the conductance-based LIF neuron model, the height of a single
PSP starting from the resting state can be described by

h =
wτsyn(Erev − Erest)

gleak(τm − τsyn)

(︃
τsyn
τm

τsyn
τm−τsyn − τsyn

τm

τm
τm−τsyn

)︃
(4.4)

with the same notations used in section 2.2, taken from Koke 2017. Considering only
modifications of the resting potential, all other neuron parameters can be substituted
into the constant C, resulting in the linear dependency

h = C(Erev
e,i − Erest). (4.5)

Measurement results of the PSP height of a single neuron circuit for different settings
of the excitatory reversal potential are shown in fig. 4.6a. The expected linear behavior
is is indeed observed, but only when the membrane potential is distant from the rever-
sal potential. Approaching it, the PSP height drops. Consequently, using the direct
measurement method leads to the determination of an incorrect reversal potential.

To circumvent this, the indirect measurement method was developed. Here, the reversal
potential is obtained by extrapolating the linear regime of the PSP height measurement
to the resting potential value where the height reaches 0V. At this point, according to
eq. (4.5), the used resting potential is equal to the reversal potential the neuron is actually
affected by in the linear regime, where it is exclusively operated during experiments.
Calibration results of the direct and indirect method measured on a single neuron

circuit are compared in fig. 4.6b. On the one hand, due to the non-linear behavior of
the circuits close to the excitatory reversal potential, the direct method underestimates
the correct reversal potential. On the other hand, the error of the indirect calibration
is larger, given its additional dependency on variations in all other neuron parameters,
stemming from the necessity to determine the PSP height.
Extrapolating from 4 measured PSP heights for 4 different values of the reversal

potential, respectively, all neuron circuits of the wafer are calibrated. Results before
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(a) (b)

Figure 4.6.: Excitatory reversal potential calibration. (a) Indirect measurement of the
excitatory reversal potential. The PSP height of a stimulated neuron is
extracted for different resting potentials. Different colors indicate distinct
hardware settings of the reversal potential in LSB. Non-linear behavior
is observed for small distances between membrane potential and reversal
potential. A linear extrapolation of the linear region (dotted line) is used to
extract the correct reversal potential. (b) Comparison of direct and indirect
calibration of the excitatory reversal potential. The direct measurement
underestimates the reversal potential, while the indirect measurement exhibits
a greater degree of uncertainty. Taken from Schmidt et al. 2023.

and after the reversal potential calibration of all neurons of one HICANN on Wafer 30
are shown in fig. 4.7. Due to the calibration, the distribution of obtained voltages is
narrowed and shifted towards the expected mean value. Even if the uncertainty during
the measurement leads to a larger deviation compared to results of the direct method,
the obtained mean values of the indirect method correspond to the values seen by the
neurons in their operated range.

The intended voltage range in which the circuits of the HICANN should be operated is
between approximately 0.4V and 1.4V and the membrane potential must be kept below
approximately 1.2V, which is the maximum voltage the membrane can reach. As a result
of this, the deviation of the calibration at 1.4V increases as some neuron circuits are
already reaching this boundary. For even higher hardware voltage settings, the measured
mean reversal potential always corresponds to the maximum of 1.4V.

Similar behavior is observed for the inhibitory reversal potential. Although no non-
linear behavior of the circuits is found when operated in the intended regime above
0.4V, as illustrated in the measurement of a single neuron circuit in fig. 4.8a, for smaller
settings of the reversal potentials, the direct and indirect measurement results deviate
due to non-linear circuit behavior, as shown in fig. 4.8b.

From measurements on all neuron circuits, a lower voltage boundary of 0.45V is
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(a) (b)

Figure 4.7.: Performance demonstration of the excitatory reversal potential calibration.
Both figures present reversal potentials obtained from all neurons within a
single HICANN using the indirect measurement method. Different colors
indicate distinct target values to which the reversal potential is configured.
Neurons are configured using (a) a default parameter translation or (b) the
extended excitatory reversal potential calibration. Black dotted lines signify
the configured mean values, while colored dotted lines represent the measured
mean values of the corresponding histograms.

identified for the inhibitory reversal potential. Above this threshold, the already existing
direct-measurement calibration method can be applied, and the circuits exhibit the
intended behavior.

Constraining the operating range of the circuits to the obtained boundaries is achieved
through the parameter translation, introduced in section 4.2.1. By default, this translation
fixes the excitatory and inhibitory reversal potentials to 1.3V and 0.45V, respectively.

4.2.3. Synaptic Weight Calibration

In the BrainScaleS-1 system, the configuration of the synaptic weight is special compared
to all other parameters due to its increased complexity. Additional to the 512 individual
neuron circuits, there are 110 synapse drivers that generate the synaptic input signal
for each neuron. The strength of this signal is configured per driver by two hardware
parameters, Vgmax and gdiv, and is further modified by the digital parameter w stored
per synapse. On top of that, the neuron’s time constants, the membrane capacitance
that changes with the number of interconnected neuron circuits (cf. section 3.1.1), and
the reversal potentials also affect the strength of the final stimulation. Consequently,
with the current analog readout possibilities of the system, a precise per-circuit weight
calibration would exceed reasonable runtimes [Schmidt et al. 2023].

In previous experiments, weights were manually adjusted or learned during hardware in-
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(a) (b)

Figure 4.8.: Inhibitory reversal potential calibration. (a) Verification of the linear behavior
of the inhibitory reversal potential. The PSP height of a stimulated neuron
is extracted for different resting potentials. Different colors indicate distinct
hardware settings of the reversal potential in LSB. Non-linear behavior is
only observed for reversal potential settings below 300LSB. (b) Comparison
of direct and indirect calibration of the inhibitory reversal potential. Results
deviate for values below 0.45V.

the-loop experiments [Göltz et al. 2021; Kungl et al. 2019; Schmitt et al. 2017]. However,
the manual adjustment of each weight is no longer feasible for large-scale experiments.
In addition, the goal of the experiments carried out in this thesis is to investigate the
spiking behavior of biologically inspired networks with a given parametrization, which
requires defining weights in the biological regime.

Therefore, a per-wafer calibration that configures the weights to match the mean
weight of all circuits of one wafer is developed in this thesis. This is possible, since only
a small fraction of the available synaptic input circuits has to be investigated there. This
per-wafer calibration and its dependency on all other neuron parameters are discussed in
this section.

The only two observables on the HICANN that can be used for calibration are the
membrane potential and spike times of the neurons. In order to determine the strength
of a synapse for a specific hardware setting, the voltage trace of a stimulated neuron’s
membrane is recorded. To reduce the noise in the measurements, which partially
originates from the analog readout itself, the neuron is stimulated by 100 consecutive
spikes. Subsequently, the recorded membrane trace is segmented, the segments are
overlapped, and their mean value is extracted. A comparison between the raw data and
the resulting mean trace is shown in fig. 4.9.

Following this, the differential equation of the conductance-based LIF neuron model,
given in eq. (2.1), is fitted to the data using scipy curve fit [Jones et al. 2001] to obtain
the parameters of the emulated neuron, in particular the desired weight parameter.
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Figure 4.9.: Signal quality of membrane voltage recordings during weight calibration. (a)
shows the membrane voltage of a continuously stimulated neuron, where the
traces of 10 out of 1000 recorded PSPs are cut and overlapped. The intended
stimulation of the membrane causes the voltage increase at approximately
60ms that is common in all traces. Further deviations of the membrane
voltage are caused by noise partially added by the readout itself and therefore
not present on the chip. In (b) the mean trace of all 1000 overlapped PSPs
is calculated to improve the signal quality.

To minimize variations caused by a different parametrization during calibration and
experiment, all the other parameters are pre-calibrated and set to the values of the
experiment under investigation. On top of that, in the following, 3 neuron parameters
are investigated in particular due to their major impact on the result of the fit.

First of all, observing the PSP trace caused by a single spike of a conductance-based
LIF neuron, a change of the reversal potential cannot be distinguished from a change
in the synaptic weight, cf. eq. (2.12). Consequently, it is not possible to correctly fit
the synapse weight and reversal potential at the same time. Therefore, the value of the
reversal potential is fixed during the fit. As a result of this, the weight calibration is
only valid if the setting of the reversal potential during calibration is also used during
experiments. This was taken into account and addressed while developing the extended
reversal potential calibration, introduced in section 4.2.2, and the parameter translation,
discussed in section 4.2.1. Another consequence of fixing the value of the reversal potential
during the weight calibration is that variations of the reversal potential add up to the
variations observed during the weight calibration.

Secondly, on the HICANN it is not possible to directly measure the capacitance CHW

of the neuron’s membrane, which is required to extract the exact weight value from the fit.
However, similar to the membrane time constant, given by τm = CHW/gleak, it is possible
to characterize the stimulation strength through the ratio between the weight and the
neuron’s membrane capacitance wbio/CHW. As introduced in section 3.1.1, there are
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Figure 4.10.: Weight dependency on the number of connected membrane circuits. A
single neuron is stimulated by a single synapse with a fixed weight configu-
ration (w = 15, gdiv = 8, Vgmax = 1000mV). The ratio between weight and
membrane capacitance wbio/CHW is determined for varying numbers of con-
nected membrane circuits that the neuron is constructed from. The dashed
line represents the expected behavior of the weight relation, assuming a
linear dependency between membrane capacitance and number of connected
membrane circuits, normalized to the mean weight value measured for a
single membrane circuit.

only two distinct settings for the membrane capacitance on the HICANN. Therefore, a
separate calibration is done for each of them. In addition, the capacitance of the neuron’s
membrane depends on the number of interconnected neuron circuits as their capacitors
are connected in parallel. Consequently, a linear increase in capacitance is anticipated
with these interconnections. This linear dependency is confirmed by measurements with
fixed neuron parameters for various sizes of the recorded neuron, as illustrated in fig. 4.10.
As a result of this, during experiments, the calibrated weight-to-capacitance ratio can be
rescaled to the used neuron size. Furthermore, in this thesis, the calibration is executed
with a neuron size of eight to match the configuration used during experiments. It is
subsequently normalized to a neuron size of one to ensure universal applicability, as
discussed in section 4.2.4.

Finally, the shape of the PSP is expected to be symmetrical for the synaptic time
constant τsyn and the membrane time constant τm (cf. eq. (2.12)). Due to the observed
deterioration in fit performance when swapping their values, these parameters are con-
strained to ±20% of their anticipated values during the fitting process. However, as
demonstrated in Schmidt et al. 2023, the time constants exhibit significant deviations
during calibration. Therefore, on some HICANNs, the actual values might surpass the
constraints of the fit, leading to incorrect parameter assumptions. To address this and
identify and reject erroneous fit results, quality measurements are introduced, as detailed
in the following.

To guarantee a correct weight estimation, each fit has to fulfill different quality
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measurements. Therefore, the reduced χ2 value

χ2
red =

1

ν

N∑︂
i=0

(vfiti − vi)
2

σ2
err

(4.6)

of the fit is calculated, where ν = N − p is the number of degrees of freedom, N is
the number of measurement points, p is the number of free parameters of the fit, vfiti
are the fit values, vi are the measured values, and σ2

err is the estimated error of the
measurement given by the standard deviation of a recording of the membrane voltage
of the same neuron without stimulation. This allows for the rejection of traces that
show large deviations between model and measurement that are most likely caused by
variations of the time constants or saturation effects, mostly found for strong excitations
of the membrane, where the circuits leave their linear range. There, an upper limit of
χ2
red = 2 was found to be a good match between fit quality and number of rejected traces.
In addition, an estimation of the signal-to-noise ratio is done. For small weights, the

probability of failing fits increases since PSPs can no longer be separated from the noise.
For this reason, the ratio between the standard deviation of the neuron’s membrane trace
with and without stimulation is calculated and traces with values below 1.7 are rejected.

Finally, the recorded membrane voltage is checked for negative peaks that could be
caused by wrong configuration of the neurons or measurement artifacts. There, traces are
rejected if the distance between baseline and minimum value is larger than the distance
between baseline and maximum value. This most likely happens for small weights due to
the expected lower peak height.
In general, traces can be rejected by several quality measurements. The typical

percentage of rejected traces during a weight calibration on wafer 30 is shown in fig. 4.11.
As expected for large weight values, more fits are rejected by the reduced χ2 value,
since the circuits leave their linear range. In contrast, for smaller weights, the reduced
signal-to-noise ratio leads to more rejections. This is especially a problem for very low
weight configurations, which are affected to a large extend by the parasitic capacities of
the circuits. There, only strong PSPs can be identified, which leads to a wrong weight
estimation in this region.

In total, approximately half of the traces get rejected, whereby a large deviation is found
between neuron circuits. This adds a bias to the available data used for the calibration.
Nevertheless, apart from very low weight settings, the remaining measurements are found
to be sufficient to find a satisfactory average weight translation.
In the first part of this section, the method to extract the biological weight expected

for different weight configurations of the hardware is presented. This data is used to fit
the expected hardware behavior given by

wbio = A(
w · Vgmax · gscale

gdiv
+ i0 + i1 · w1 + i2 · w2 + i4 · w4 + i8 · w8) (4.7)

that allows for translating biological weights into an appropriate set of the three hardware
parameters Vgmax, gdiv and the digital weight w. Equation (4.7) is adapted from eq. (3.4)
without additional correction terms due to their negligible impact on the fit accuracy
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Figure 4.11.: Rejected membrane recordings during weight calibration. Shown is the
percentage of rejected recordings of measurements taken for all combinations
of the 16 possible digital weight values w and the gdiv values 2, 8, 15, and
25 with 4 repetitions per setting. From top to bottom, the rejections due
to the χ2 criteria, the signal-to-noise ratio, and the negative peak detection
are displayed (cf. section 4.2.3), followed by the total number of rejected
traces. Each box displays the deviation between measurements done on
10 neurons on 12 HICANNs, respectively. To investigate the dependency
on the synaptic strength, different boxes represent the results for different
Vgmax settings. Circles represent outliers.
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taking the variations caused by the rewrites of the floating gate and the per-wafer
calibration into account.

Figure 4.12 shows measured data and the found weight calibration for a single neuron
circuit stimulated by a single synapse driver using a single Vgmax value without rewriting
the floating gates during the measurement. The fit accuracy suffices to describe the
influence of the parasitic capacities localized in the synaptic input line, shown in detail
in fig. 4.12b. Therefore, the non-linear weight increase that is caused by input currents
added for each enabled bit of the digital weight is taken into account by the calibration
for each combination of Vgmax and gdiv.

However, since the parametrization of the neuron changes slightly with each rewriting
of the floating gates, additional variations are added to the measurements, demonstrated
in fig. 4.13a. On top of that, the necessity to record neuron traces for 110 synapse
drivers per neuron in combination with the time required to reconfigure the floating gate
value Vgmax exceeds reasonable runtimes using the possibilities of the current analog
readout module attached to the BrainScaleS-1 system. As a consequence, the per-wafer
calibration is chosen, where only a subset of neuron circuits is calibrated to find the
average translation between hardware configuration and expected biological weight, which
is later applied for all circuits.

Since the per-wafer calibration is not circuit specific, the found values are less accurate,
as demonstrated in fig. 4.13b. A higher precision is achieved by a per-neuron calibration,
where variations of individual circuits can be corrected, and malfunctioning components
can be detected and removed from the availability database. With the current readout
system, this is only possible for measurements with a constant floating gate value Vgmax,
changing only the faster programmable digital weight parameters. However, this would
result in a reduced parameter range for the weights, which is not sufficient for the
experiments conducted in this thesis.

Nevertheless, the presented per-wafer method preserves the mean weight value, which is
most important for the biologically inspired networks investigated in this thesis [Dasbach
et al. 2021]. Moreover, the found weight variations can be used to emulate the Gaussian
weight distributions of the investigated networks. For this reason, the correlation across
synapses is examined in the following.

Although different neuron circuits are expected to be independent of each other, they
are stimulated by a common set of synapse drivers and each neuron is connected via
the same input circuit to different synapses (cf. section 3.1.5). Consequently, synapses
on the same HICANN are not independent. The existence of row-wise or column-wise
correlations would be undesired for modeling weight deviations. Instead, similar variations
across both rows and columns would be more suitable. This is investigated in fig. 4.14a,
which shows the weight variations for different neuron circuits with a fixed stimulus in
comparison to a fixed neuron circuit stimulated by different synapse drivers. On the one
hand, the non-negligible variations between synapse drivers demonstrate the necessity to
investigate all possible combinations of drivers and neurons during a potential per-circuit
calibration. On the other hand, the average variation between synapse drivers is smaller
than between neuron circuits. Consequently, stronger correlations between weights
connected to the same neuron, i.e. column-wise, are expected. Moreover, additional
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Figure 4.12.: Results of the synapse weight calibration for a single neuron circuit. (a)
Weight measurement for different settings of the digital weight parameter
w and hardware parameter gdiv with Vgmax = 700LSB. Horizontal dashed
lines indicate cuts with fixed values of the hardware parameter gdiv, shown
in (b); vertical dashed lines indicate cuts with fixed digital weight values
w, shown in (c). In (b) and (c), solid lines represent measured values, and
dashed lines illustrate fit results. The fit is obtained by applying eq. (4.7)
to the whole measured parameter space. Taken from Schmidt et al. 2023.
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(a) (b)

Figure 4.13.: (a) Variations of weight measurements with and without rewriting the
floating gates. Values are extracted for 3 digital weight parameters w
from a single neuron with fixed hardware parameters (Vgmax = 700LSB,
gdiv = 2LSB). (b) Comparison of a per-wafer and a per-neuron weight
calibration. Measurements across the entire parameter spectrum of the
synaptic input are carried out on a subset neurons. Subsequently, the
calibration fit is applied to the entire subset or executed individually for
each neuron. The histogram depicts the difference between measured and
expected values derived from the respective fit. Taken from Schmidt et al.
2023.

variations are found for the four floating gate cells that are common for 55 synapse
drivers to store the four Vgmax values each driver can be configured with, demonstrated
in fig. 4.14b. Although the obtained variations are smaller compared to changing the
driver or neuron circuits, they add a correlation to all weights that are connected to the
same floating gate cell. Nonetheless, given that the per-wafer calibration conducted in
this thesis does not yield per-circuit information, coupled with the limited configurability
of the hardware weight as discussed in section 4.2.4, there is no possibility to adjust the
weight distribution during experiments. For this reason, the variations are left unmodified
during emulations.

All previous measurements are executed using the excitatory inputs of the neurons.
However, the inhibitory input circuits can be calibrated accordingly using the same
routines on the inverted membrane potentials. A comparison of calibration results of the
excitatory and inhibitory input is shown in fig. 4.15. There, for a fixed set of parameters
a slightly smaller biological weight is found for the inhibitory circuits. Most likely, this
is caused by a wrong assumption of the reversal potential during the calibration. As
described above, during the calibration the reversal potentials have to be fixed to the value
finally used during the experiment. Assuming a wrong value of the reversal potential, the
weight is wrongly scaled by an additional factor. This is demonstrated in fig. 4.15 with an
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(a) (b)

Figure 4.14.: Weight variations expected from different components involved in the
synaptic input line. For all measurements, the weight of a stimulated neuron
is extracted for a fixed setting of w = 15, gdiv = 8, and Vgmax = 1000mV.
To rule out variations caused by the floating gates, each weight value is
determined by the mean value of 100 repetitions, with rewritten floating
gates in between. Reliability of the extracted data is ensured by rejecting all
weight values where less than 50 repetitions pass the quality measurements.
(a) Comparison of deviations caused by neuron circuits or synapse drivers.
Shown are the standard deviations of the weights measured for either
7 different synapse drivers stimulating a fixed neuron or a fixed driver
stimulating 7 different neurons. A fixed neuron demonstrates the variations
expected from different synapse drivers, and a fixed synapse driver the
variations expected from different neuron circuits. In total, all combinations
of 7 synapse drivers and 7 neurons on 12 HICANNs are measured. There,
only if a weight value for at least 3 different neuron or driver circuits
is found their standard deviation is considered. (b) Deviation between
different Vgmax input lines. The histogram shows the standard deviation of
the weights measured for the 4 possible Vgmax input lines of a single synapse
driver stimulating a fixed neuron. A floating-gate value of Vgmax = 1000mV
is configured for each of the four input lines. The measurement is done for
775 neurons on 78 randomly chosen HICANNs. However, neurons are only
considered if a weight value is found for all 4 floating gate connections.

68



4.2. Extended Calibration for Large-Scale Experiments

Figure 4.15.: Comparison of the weight calibration results for excitatory and inhibitory
input circuits. All lines show the expected weight ratio wbio/CHW expected
from the weight calibration for different digital weight values w with the
fixed settings Vgmax = 1000mV and gdiv = 2. “Exc” shows the calibration
results of the excitatory synaptic input and “Inh 0.45” the results of the
inhibitory synaptic input with a reversal potential set to 0.45V. In addition,
the result of a weight calibration done for the inhibitory synaptic input with
a wrongly configured reversal potential of 0.3V that cannot be reached on
the hardware is demonstrated with “Inh 0.3”.

additional inhibitory calibration utilizing a reversal potential value of 0.3V that cannot
be reached by the circuits, as described in section 4.2.2. Since the distance between
resting and reversal potential is overestimated during the calibration, the derived weight
is too low. Although the reversal potentials used for the other calibrations are within
the designed range of the circuits, small offsets of the mean value of the less accurately
obtained excitatory reversal potential could explain the found difference between the
excitatory and inhibitory weight calibrations.

4.2.4. Implementation of the Weight Translation

To allow for parametrizing experiments using biological weight values, once the weight
calibration is found, the hardware has to be configured accordingly. For this reason, the
targeted biological weight has to be translated into the hardware domain and for each
synapse an appropriate set of hardware parameters has to be found (cf. section 3.1.5).
Parametrization is made more complex by the fact that not all weight related hardware
parameters can be set independently. Furthermore, the weight translation, given by
eq. (4.7), allows for different parametrizations that lead to similar biological weights.
Therefore, a routine was developed that addresses these circumstances and by utilizing
the weight calibration results automatically determines hardware settings for all synapses
that provide the closest representation of their targeted value. This routine is presented
in this section.
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Initially, as demonstrated in the following, a hardware-setting independent target
weight wtarget is calculated for the biological weight of each synapse, aligning with
the parameters of the weight calibration. As explained in the previous section, the
weight calibration is conducted for the ratio between weight and membrane capacitance
wrel =

wbio
CHW

, without determining CHW explicitly. This is possible since the only other
quantity of the LIF model that depends on the membrane capacitance, the membrane time
constant τm = CHW

gleak
, is calibrated using the identical neuron configuration. Consequently,

the differential equation of the conductance-based LIF neuron can be parametrised as

dU

dt
=

1

τm
(Erest − U) +

∑︂
i

wi
rel(Erev − U), (4.8)

which is independent of the absolute value of the membrane capacitance. Therefore,
arbitrary membrane constants of the biological model Cmodel can be emulated as long as
the hardware weight is set to resemble wrel =

wmodel
Cmodel

. Without measuring CHW this is
only possible if the hardware neurons are configured to the same membrane capacitance
during calibration and experiment. On the one hand, this is achieved by recording
separate calibration datasets for the two membrane capacitors available on the hardware.
On the other hand, the linear increase of the membrane capacitance with the number of
interconnected membrane circuits is compensated by rescaling the target weight with the
size of the used neurons nneuron. As a result of this, the target weight of each synapse is
calculated by

wtarget =
nneuron

Cmodel
wmodel. (4.9)

Since the results of the weight calibration, which are treated like an inverse time parameter,
are already stored in the biological domain, no further parameter translation has to be
done to compensate for the speedup factor of the hardware at this stage.

Subsequently, the set of hardware parameters w, gdiv and Vgmax has to be determined
for each target weight. Due to the complexity of eq. (4.7), it is necessary to reduce the
dimensionality of the problem, as multiple parametrizations exist that represent similar
target weights. This is achieved by successively setting the parameters, starting with the
least flexible, the four Vgmax values of each HICANN quadrant.

At this early stage of the configuration, it is not desirable to add constraints to the
other parameters. Consequently, only Vgmax values that lie outside a suitable range to
configure the target weights of the respective quadrant are excluded. Boundary values
are calculated using the maximum and minimum target weight of the synapses of each
quadrant and the maximum and minimum gdiv setting, respectively. If the target weight
cannot be reached, the maximum or minimum Vgmax setting is used. Results are rounded
to the nearest integer value. The four floating gate cells of the respective HICANN
quadrant are then configured with the found maximum and minimum values and two
evenly spaced values in between. During all calculations, the digital weight parameter w is
set to a user defined value wstart that is only increased if the current target weight cannot
be reached within the limits of the other two parameters. Consequently, parametrizations
using wstart for the maximum target weight are preferred by the algorithm. As a result
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of this, it becomes feasible to define initial values for fast per-synapse weight updates
during in-the-loop training or parameter sweeps during experiments.
Subsequently, for each synapse row, the appropriate floating gate cell, selected from

the four available, and the best-matching gdiv value are determined. Both values are
optimized for the maximum target weight of the row to ensure all values can be reached.
Therefore, the pair of available Vgmax and gdiv values is obtained that minimizes the
distance to the maximum target weight. Smaller weights on the same row are then
addressed in the next step via the most flexible of the three parameters, the digital weight
w.
As a final step, the digital weight w is set per synapse to get as close as possible

to the target weight. With all other parameters already defined, the expected weights
for all sixteen values of the digital weight parameter are calculated per synapse row
and the nearest values which are higher and smaller than the target weight of each
synapse is selected. All possible configurations are considered here to take the non-linear
weight dependency caused by the parasitic capacities into account. The final digital
weight setting is then selected through statistic rounding, proportional to the distance
between the calculated weights and the target weight. This is done to prevent systematic
strengthening or weakening.
Figure 4.16a demonstrates the weight deviations after the weight translation caused

by shared configurations and the limited resolution of the hardware parameters. For
the measurement, the worst-case scenario of uniformly distributed weights covering the
whole weight range of the hardware and placed on a single HICANN is used. Neglecting
the effect of the parasitic capacities, the maximum difference between expected and
configured weight ∆max can be estimated. It is obtained when the shared parameters
are set to their maximum values and thereby enlarge the distances between the sixteen
quantized weights. Moreover, a synapse that would ideally be represented by a specific
digital weight value is configured to a different value due to stochastic rounding. In this
case, the maximum difference can be approximated by

∆max˜︁wexp
=

A˜︁wexp
· Vgmax · gscale

gdiv
· 1

nneuron
≈ 0.195 s−1

45 s−1 · 1023 · 0.4
2

· 1
8
≈ 0.11 (4.10)

derived from eq. (4.7) with rescaled target weights according to eq. (4.9) considering a
neuron size of 8 and normalized to the mean expected weight value ˜︁wexp of the uniform
distribution. In the measurement, slightly larger deviations are observed due to different
parasitic terms that are added to the equation by different enabled bits of the digital
weight value. The average deviation, however, is smaller since it is scaled with the
shared parameter settings per row, which are kept as low as possible by the algorithm.
Moreover, due to the stochastic rounding, the probability of selecting a specific weight
configuration decreases linearly with the difference to the target weight, which explains
the approximately linear decrease of synapses found for larger weight deviations.

Although the final distribution also depends on the routing algorithm and the number
of synapses that get placed on each synapse row, due to the stochastic rounding the
mean weight value is preserved. Therefore, the found deviations add up to the deviations
expected from the circuit mismatch without changing the mean weight.
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(a) (b)

Figure 4.16.: Weight deviations expected from the weight configuration algorithm. A
network of 50 neurons is placed on a single HICANN and stimulated by
20000 randomly connected synapses from an external population consisting
of 50 neurons. The weights wmodel

Cmodel
of the synapses are drawn from a uniform

distribution between 15 s−1 and 75 s−1. For each synapse, the hardware
parameters Vgmax, gdiv and w are found by the weight translation algorithm
considering shared configurations. These values are then translated back
into corresponding biological weights, and the difference from the original
weight is calculated and normalized to the mean original weight of all
synapses. The histogram of the normalized differences is shown for a
resolution of the digital weight parameter w of (a) 4 bit and (b) 6 bit. For
the 4 bit resolution, the existing weight calibration of the small capacitor
is used for the weight translation. Since no calibration is available for a
hypothetical 6 bit resolution, the 4 bit calibration was rescaled so that both
comprise the same parameter range. Additionally, the terms of the parasitic
capacities (cf. eq. (4.7)) were removed in the 6 bit case. The black dashed
lines mark the mean values of the distributions.
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Figure 4.17.: Demonstration of the automated weight configuration using the weight
calibration. Histograms of PSP heights, measured on a single neuron on
each available HICANN within wafer 30, are displayed. Each neuron is
stimulated by a single synapse configured with a biological weight value
corresponding to a PSP height of either 1mV (blue) or 2.5mV (orange), as
indicated by the nearest black dashed line. Colored dashed lines represent
the mean values of the respective histograms.

In general, a more precise weight configuration is achieved by increasing the parameter
space of the digital weight value. In fig. 4.16b, the same measurement is shown for a
hypothetical resolution of the digital weight parameter of 6 bit, which reflects the weight
resolution implemented in the next chip generation, the BrainScaleS-2 chip. There, the
maximum weight deviation is reduced by a factor of 4. It is also possible to increase
the weight resolution on the BrainScaleS-1 system by combining synapses to resemble a
single synapse with higher resolution. However, due to the higher demand for synapses,
which are the limited resource for large networks, it was not included in the routing
algorithm and therefore not used.

Aside from that, the effect of the limited configurability is much smaller for the weight
configurations of the networks investigated in this thesis. In both networks, excitatory
and inhibitory synapses are configured to the same or similar weight values, respectively.
Since excitatory and inhibitory synapses are never placed on the same synapse row, a
precise weight configuration is achieved since only one target value is chosen, discussed
in more detail in appendix A.3.

The final performance of the weight calibration in combination with the weight transla-
tion during an emulation is demonstrated in fig. 4.17. It resembles the weight requirements
of the balanced random network model, introduced in section 2.4. As a result of the
weight calibration, the same mean PSP height is found during emulation and simulation.
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4.2.5. Delay Calibration

The delay of a connection between two neurons is the time interval between when an action
potential is elicited at the pre-synaptic neuron and its arrival at the postsynaptic neuron’s
membrane. Consequently, it is predetermined by the network structure. However, the
network descriptions investigated in this thesis are based on statistical evaluations of
biologically inspired connectivity models. Therefore, connections between neurons are
described by their average delay value. In contrast, similar to its biological counterpart,
the delay on the BrainScaleS-1 hardware is defined by the physical distance between the
neuron circuits. Neglecting RC-delays of the buses, the delay of a connection is given by
the number of involved repeaters used to regenerate the signal between HICANNs. In
addition, a constant offset is expected for the time the signal spends in the merger tree
and synaptic input of the neurons, cf. sections 3.1.2 and 3.1.5. Consequently, it is not
possible to adjust delays according to the investigated network descriptions.

To still be able to compare the hardware behavior with software simulations, the
network model has to be adapted to match the hardware restrictions. To this end,
an exact model of the network structure on the hardware is transferred to software.
Although for each connection the number of repeaters is available in the routing results,
it is necessary to estimate their contribution to the delay. Therefore, a delay calibration
is performed.

For this reason, one neuron is configured to spike continuously by setting its resting
potential above its threshold value. It stimulates a second neuron whose membrane
potential is recorded. The delay between the two neurons is then represented by the time
interval between spike time and start of the PSP on the recorded membrane.

Figure 4.18a demonstrates the principle of the delay measurement displaying a cutout
of the membrane recording for two spikes. In total, the neuron is recorded for 1000ms of
biological time, which corresponds to approximately 25 spikes. Finally, the average delay
of all recorded spikes determines the delay value of the connection. This measurement is
repeated for connections comprising all repeater counts used during experiments. The
resulting delay calibration is shown in fig. 4.18b. There, an offset of approximately 0.6ms
is observed that corresponds to the time the signal spends in the merger tree and the
synaptic input. In addition, a linear increase of the delay with the number of repeaters
is found. Finally, the result of a linear fit is used to translate the routing results into
expected connection delays during software simulations.

The introduced delay measurements are based on the comparison of spike times recorded
on the HICANN chip and membrane recordings done by the analog readout system.
Both systems work with individual clocks that show variations from their nominal values.
To prevent divergence between spike data and membrane recordings the results of each
combination of HICANN and readout system is corrected for these variations during
the delay calibration. Therefore, one background generator on the HICANN is used
to produce a regular source of spikes. These spikes are routed to one of two synapse
drivers from which the preout-debug signal can be recorded using the analog readout
system. This debug signal is used to monitor the digital pulse generated by the synapse
driver as a result of a spike. Consequently, it allows for measuring the interval of the
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(a) (b)

Figure 4.18.: Measurement of synapse transmissions delays on the wafer. (a) Membrane
trace of a neuron that is continuously stimulated by a pre-synaptic neuron.
The black line indicates the point in time the spike is sent from the pre-
synaptic neuron, while the red line shows the estimated start of the PSP,
i.e., the time the spike arrives at the postsynaptic membrane. The delay of
the connection is given by the time gap. (b) Measured delay and linear fit
for different connection lengths, characterized by the number of repeaters
connecting two neurons. For each connection length, the delay between 7
randomly selected HICANNs is measured.

arriving spikes. By comparison with the frequency of the original spike source and the
nominal values of the HICANN clock and the analog readout system, a correction factor
for the clock frequency of the analog readout system can be calculated. This method is
introduced in more detail in Koke 2017.

In all possible combinations of HICANNs and analog readout systems, a maximum
deviation of 1000Hz from the nominal value of 96MHz is found. Without correction,
this leads to a final shift of 0.01ms between spike data and membrane recording for a
measurement time of 1000ms, which is already much smaller than the error of the delay
measurement. Consequently, using the correction, divergences of the clock frequencies
are negligible for the delay calibration.

4.3. Improvements of the Hardware Connectivity

The BrainScaleS-1 system uses a physical modeling approach to emulate neural networks.
Therefore, in advance of each experiment, a physical representation has to be found
on the hardware that resembles the investigated network, as introduced in section 3.3.
Especially large-scale experiments, investigated in this thesis, form a challenging task
due to the limited number of resources available on the hardware. To this end, the map
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and route algorithms were improved towards large-scale experiments in the course of
the master thesis by Felix Passenberg [Passenberg 2019]. In addition, the algorithms
were extended for compatibility with the availability database. A short summary of the
most important adaptions is given in the first part of this section. Moreover, to ensure
implemented routes transmit spike signals as expected, the locking of the repeater circuits
was investigated and improved during the master thesis of Jakob Kaiser [Kaiser 2020].
The resulting procedure and performance improvements are demonstrated in the second
part of this section.

4.3.1. Improvements of the Map and Route Algorithm

In this section, the most important improvements of the map and route algorithm towards
large-scale experiments are summarized, which were mainly implemented during the
master thesis of Felix Passenberg [Passenberg 2019]. In the course of this, full support
for the availability database was also added to the algorithms so that malfunctioning
components are not utilized in experiments.
First, the mapping between model and hardware neurons, the placement algorithm,

was extended to allow the user to choose from different strategies. Possible choices are:

� Model neurons are placed on the wafer in descending order of their population’s
ID on neuron blocks, starting on the block with the least available space. Space
limitations are caused by excluded neuron circuits in the availability database. In
case of equal sized blocks, a spiral ordering starting at the center of the wafer
is applied. This algorithm represents the already existing algorithm before the
adjustments, which has two major disadvantages. On the one hand, populations
are more likely split on different HICANNs due to the preference of small neuron
blocks. Since neurons of the same population often share destinations and only
neurons placed on the same HICANN can share buses, the number of required buses
increases. On the other hand, using this algorithm, the distribution of neurons
primarily depends on the availability data. Therefore, target neurons get split over
the whole wafer, which leads to resource intensive long bus connections.

� Model neurons are placed on the wafer in either descending or ascending order
of their population’s ID on neuron blocks, starting on the top left of the wafer.
Consequently, populations and target neurons are no longer split over the whole
wafer. Additionally, due to its simplicity, it is more performant compared to the
original algorithm and was chosen as the new default. An ascending order is
preferred over a descending order due to the more intuitive placement results.

� Populations are clustered by their connectivity. Populations are prioritized according
to the number of connections to an already placed population and placed close to
it using a spiral order. Although computationally expensive, a lower bus utilization
is expected due to the preference of short connection lengths.

� Neurons are clustered by their connectivity. Similar to the previous algorithm but
the priority is calculated per neuron instead of per population.
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Since it is enforced that all neurons are placed on the hardware, the performance of the
algorithms is evaluated by the number of connections that can be realized. The perfor-
mance of the individual algorithm strongly depends on the respective network topology.
More details and performance comparisons for commonly used network structures are
shown in Passenberg 2019.
Furthermore, for the networks investigated in this thesis, manual placement requests

that restrict individual neurons to target components were used to further improve the
performance. The final place and route results of the networks investigated in this thesis
are discussed for each network in sections 5.2.2 and 6.2.1.
Once circuits are found for each model neuron, connections are implemented. Due

to the limited number of buses available, it is beneficial to merge as many signals on a
single bus as possible. This is achieved in the merger tree, introduced in section 3.1.2.
However, the number of signals that can be fed into the synapse array is limited by
the number of synapses that can be reached from the target synapse driver. Although
the signal can be mirrored to neighboring drivers, in the current chip version this is
limited to adjacent drivers only. Therefore, the number of target synapses that can be
reached by a single bus depends on the number of available drivers and is restricted to
at most 3 drivers. In the original implementation of the merger routing, this restriction
was ignored and as many signals as possible were merged on a single bus, resulting in
increased synapse loss for large networks. To this end, a synapse driver-aware merger
tree strategy was implemented that calculates the expected number of synapse drivers
needed for a specific merger tree configuration, starting with maximum merging. If it
exceeds the number of available drivers for this route, the signals are split using an
additional bus. This is repeated until the driver requirement is satisfied. Consequently,
for all synapse connections that could not be routed previously, a different bus connection
is tested. Synapses excluded from the availability database are not considered during
the calculations. However, this should have almost no effect on the performance of the
algorithm since excluded synapses normally go along with the exclusion of the related
synapse driver and exclusively excluded synapses are rare, cf. table 4.3.
Although, merging as many signals as possible is beneficial in regard to synapse loss,

it is also limited by the bandwidth of a single bus system. This is not considered by the
algorithm, since the expected spike rate of the model is normally not available at the
time of routing. Therefore, detailed bandwidth considerations were done with focus on
the networks investigated in this thesis in section 5.2.1.

Additionally, during the overhaul of the algorithms, several problems were detected and
corrected that led to wrong hardware configurations. A description of all corrections can be
found in Passenberg 2019. Undetected, such errors could lead to wrong network behavior
that is nearly impossible to distinguish from, for example, a wrong parametrization.
Due to the complexity of the algorithms, it is difficult to identify incorrect hardware
assumptions during the routing process. Therefore, tools were developed in the course
of this thesis to validate the final routing results. There, the results of the map and
route algorithm as well as the final hardware configuration are loaded and checked for all
hardware restrictions described in section 3.1. Results that do not fulfill all restrictions
are rejected. Consequently, correct routing results are ensured during experiments, in
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particular when testing different algorithms.

Finally, full support of the availability database was added to the map and route
algorithm. Since the algorithm selects available components from a graph representation
of the hardware this is achieved by removing all unavailable components from this graph.

The influence of excluded components on the performance of the map and route
algorithm for a feed-forward network is shown in fig. 4.19.

There, a chain of populations is established, where the neurons of each population
are exclusively connected to the next population. On the one hand, the simplicity of
the network structure allows the algorithm to implement short connections utilizing a
minimum number of resources. On the other hand, the dense network structure leaves
little to no room for reroutes. Therefore, an approximately linear dependency between
removed buses and synapse loss is found.

All in all, besides improving the overall performance, the introduced modifications
allow the user to adjust the used algorithms to the investigated network structure to
minimize synapse loss. However, with increasing complexity and size of the network
structure, synapse loss becomes inevitable using a limited number of hardware resources.
To address this in the investigations, not-implemented synapses are extracted from the
routing results and are incorporated into the software simulations.

4.3.2. Repeater Re-Locking

During emulations, network connectivity does not only depend on the quality of the
routing results, but also on the reliability of the connections themselves. As explained
in section 3.1.3, spike signals are regenerated in repeater circuits between HICANNs.
Introduced in section 3.1.4, these circuits recover the timing reference necessary to decode
and encode the spike addresses from the received signal itself at the beginning of each
experiment. This process is called repeater locking, and repeaters that found the correct
timing reference are referred to as locked repeaters.

All repeaters except 8 per HICANN that are directly connected to the merger tree
have a test data output. It allows for reading out the addresses decoded by the repeater,
and by comparison with the sent addresses, it is used to check the locking state of the
repeater. Using this, in large-scale experiments, repeaters are found that do not recover
the correct timing during the initial locking phase and therefore stay unlocked. These
repeaters are not able to correctly decode the signals they receive and therefore forward
arbitrary spikes. To this end, a re-locking scheme was developed in the master thesis of
Jakob Kaiser to reduce the number of unlocked repeaters, which is summarized in the
following. It is discussed in more detail in Kaiser 2020.

The idea of the repeater re-locking is to repeat the locking for unlocked repeaters.
Therefore, the test data outputs are used to check the locking state of all measurable
repeaters after locking. Subsequently, the locking process is rerun for unlocked repeaters.
Since the repeaters are organized in groups, the DLL reset that is necessary to restart
the locking process can only be done for a whole repeater block. Consequently, the
locking process is rerun for all repeaters of repeater blocks that host at least one unlocked
repeater. This process is repeated a predefined number of times or until all repeaters are
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Figure 4.19.: Map and route performance with excluded components. Shown is the
synapse loss of a feed-forward network placed and routed on a wafer for dif-
ferent states of the availability data. The network consists of 25 populations
with 200 neurons each, where all neurons of one population are connected
to all neurons of the next population. Neurons are placed according to
their population’s connectivity. Moreover, synapse driver-aware merger tree
routing and neurons consisting of 8 membrane circuits are utilized. Due
to the hierarchical structure of the availability data, the exclusion of some
components is equivalent to the exclusion of multiple other components.
Therefore, for comparison reasons, the test availability data is exclusively
generated from randomly excluded bus circuits. The shaded area represents
the standard deviations of measurements with 100 randomly generated
datasets. The dotted line indicates the synapse loss that is observed using
the availability data extracted from a real wafer given in table 4.2 and
table 4.4.
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locked. The effect of repeater re-locking is demonstrated in fig. 4.20.
Using one re-locking attempt, a significant number of additional repeaters can be

locked. Further repetitions seem to have no effect. In addition, different waiting times
during the re-locking are tested. There, treset determines the time between pulling and
releasing the reset of the delay locked loop before a new locking attempt and tlocking the
time between locking and testing of the repeaters. A constant number of locked repeaters
is found for all timings.
Due to the necessity to record the decoded addresses, the test is only possible for

repeaters that have a test data output. This is not the case for the 8 repeaters per
HICANN that are used to inject the signal from the merger tree and the repeater circuits
that are implemented in the synapse drivers. Therefore, these circuits are not considered
in the test.

Although the reliability of connections increases with re-locking some repeaters remain
unlocked. Since they only make up a small part of the whole network, a limited influence
on the final network behavior is expected. Therefore, no further efforts were undertaken
in the course of this thesis to further reduce their number.
Nevertheless, for future experiments, it would be possible to use the availability

database to exclude undesired repeaters. To this end, a test was developed that generates
random connections on the wafer and measures the locking state of all repeaters. Since
the locking probability of each repeater depends on the quality of the signal it receives
from previous repeaters, correlations are expected during the measurement. Therefore, a
statistical evaluation of different routes would be necessary to detect repeaters with the
highest probability of remaining unlocked. The final result would then be a compromise
between available circuits for routing and the probability of finding unlocked repeaters.

Additionally, repeaters with no test data output could be tested by detecting correctly
received spikes using membrane potential measurements. However, due to the larger
measurement overhead and the limited analog readout possibilities, such measurements
are expected to be slow and are therefore not considered during re-locking.

4.4. Hardware Characteristics and Solutions

One of the challenges of operating analog hardware is unintended circuit behavior. The
BrainScaleS-1 system, the first implementation of a wafer-scale analog neuromorphic
system for emulating large-scale networks of spiking neurons, is not an exception. During
the hardware operation done for this thesis, unintended hardware effects were observed
that lead to modifications of the network behavior. Since currently no revision of
the BrainScaleS-1 system is planned, these effects have to be compensated by suitable
hardware operation. In this section, all hardware characteristics and methods used to
compensate for them are introduced.

4.4.1. Iterative Calibration

The calibration of the BrainScaleS-1 system is generated to cover the whole parameter
range of the circuits. Therefore, each neuron parameter is calibrated by sweeps of its

80



4.4. Hardware Characteristics and Solutions

Figure 4.20.: Effect of repeater re-locking on the number of unlocked repeaters. The
percentage of unlocked repeaters after various numbers of re-locking retries
is shown. Investigated networks are generated by placing a single population
on each of 39 randomly selected HICANNs on wafer 33. Populations consist
of 120 neurons and connect to all neurons of the next population. In total,
the measurements are repeated 50 times for 5 differently placed networks,
respectively. Due to the implementation of different routings, the number
of utilized repeaters ranges from 1089 to 1348. The percentage of unlocked
repeaters drops after the first retry and stays basically the same afterward.
Different colors indicate distinct waiting times during the locking that have
nearly no effect on the success rate. Taken from Kaiser 2020.
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Figure 4.21.: Dependency of the resting potential on the neuron time constants. The
actual resting potential of a calibrated neuron configured to Erest = 0.7V
is measured for different hardware settings of the membrane time constant
τm or synaptic time constant τsyn. Only one time constant is modified at a
time, while the other one is set to a value above 200LSB where no effect
on the resting potential is expected. The solid line represents the mean
value, and the pale area the standard deviation of measurements on all 512
neurons of 12 HICANNs. Below a specific value of their control parameters,
the time constants affect the resting potential and therefore invalidate the
calibration.

control parameter, while all other parameters are kept fixed at suitable values. Although
this approach allows for great flexibility when configuring the hardware, it does not account
for dependencies between different neuron parameters. However, such a dependency is
observed between the resting potential and the time constants of the neuron. This is
demonstrated in fig. 4.21. For small control parameters of the time constants, leakage
currents increase the resting potential. This effect is strong enough to change the neuron
behavior considerably.

To circumvent this, the range of the control parameters of the time constants was
reduced. Too small values are clipped to a minimum value where no leakage currents
are expected. Excitatory synaptic time constants that can be realized with the reduced
parameter range for each neuron are exemplarily shown for HICANN 0 of wafer 30 in
fig. 4.22. Furthermore, the investigated network models were adapted to time constants
that correspond to large control parameters. Preferably, small values between 2ms and
3ms, which can be realized by most neuron circuits, are chosen.

To prevent further parameter dependencies that are not covered by the calibration, an
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Figure 4.22.: Excitatory synaptic time constants available on HICANN 0 on wafer 30.
For each neuron, a vertical line represents the available parameter range
obtained for the synaptic time constant during calibration with restricted
control parameters. The neurons are arranged in descending order based
on the parameter range. 38 neurons that fail calibration are excluded.

experiment-specific calibration was done that uses the same neuron configuration that
is finally used during each experiment. This is achieved through an iterative approach
where the calibration is executed twice. The first iteration begins with an ideal parameter
transformation used to configure the neurons. Subsequently, during the second run,
the results of the first iteration are utilized. As a result of this, more accurate model
parameters are anticipated during calibration. Additional repetitions are found to have
no improving effect. Furthermore, neurons that cannot achieve the desired configuration
fail the calibration and are excluded from the availability database.

4.4.2. Finite Resistance Between Membrane Circuits

On the BrainScaleS-1 system, neurons are build of an adjustable number of membrane
circuits. Thereby, the number of possible incoming synapses per neuron can be configured
to meet the requirements of the experiment, cf. section 3.1.1. The membrane circuits are
expected to behave like a single membrane and are therefore short circuited. However,
measurements indicate a finite resistance between circuits that is no longer negligible for
large neurons. Consequently, stimulations of the first membrane circuit get attenuated
until they reach the last circuit, which is demonstrated in fig. 4.23. Moreover, fig. 4.24
shows that stimulations at the edge of the neuron lead to stronger excitations of the
stimulated membrane circuit compared to stimulations at the center. Due to the non-zero

83



4. Commissioning of the BrainScaleS-1 System Towards Large-Scale Experiments

Figure 4.23.: Finite resistance between membrane circuits. Neurons, comprising ei-
ther 8 or 64 connected membrane circuits, are stimulated at their top-left
membrane circuit. Furthermore, in various measurements, the neuron’s
membrane potential is recorded at different membrane circuits. For each
recorded position, the PSP height, resulting from the stimulation, normal-
ized to the mean height measured at the stimulated membrane circuit, is
depicted. During the measurement, only circuits located in the top row of
the neuron block are recorded. As the same number of circuits is located
in the bottom row, the maximum distance to the stimulating neuron is
equal to half of the neuron size. Consequently, for neurons of size 8, every
fifth membrane circuit is part of a new neuron that is investigated. In
contrast, for a neuron size of 64, all recorded membranes belong to a single
neuron. The pale area shows the standard deviation of 20 repetitions of each
measurement on 12 different HICANNs. Due to their smaller membrane
capacity, neurons of size 8 are more sensitive to variations.
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Figure 4.24.: Effects of connected membrane circuits. Neurons, comprising either 32
or 64 connected membrane circuits, are stimulated and recorded on the
same membrane circuit. In this manner, the PSP height, resulting from
the stimulation, is measured for all membrane circuits located in the top
row of each investigated neuron. Subsequently, the obtained heights are
normalized to the mean height measured at the top left membrane circuit of
each neuron. Since only the top row is considered, the maximum distance
between first and last circuit of each neuron is equal to half of the neuron size.
Consequently, for neurons of size 32, membrane 16 is part of a new neuron
that is investigated. Higher PSP values are observed when the neuron is
stimulated at membrane circuits on the edge of the neuron. The pale area
shows the standard deviation of 20 repetitions of each measurement on 12
different HICANNs.
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Figure 4.25.: Effect of concurrently spiking synapses. The PSP height of a fixed neuron
is measured for varying numbers of concurrently spiking synapses placed in
one synapse row. The recorded neuron comprises a single membrane circuit
and is consistently stimulated exclusively by a single synapse of the same
row. Different colors signify distinct digital weight parameters w for the
remaining synapses, although the neuron is consistently stimulated with
a fixed weight. Each measurement is repeated 20 times per neuron on 12
HICANNs.

resistance, the charge is not instantly distributed, and in contrast to the center, it can
only dissipate in one direction at the edges.

This is a problem since the models investigated in this thesis are based on point neurons.
There, an equal distribution of the charge is necessary, since both the stimulation strength
and the threshold comparison depend on the momentary membrane potential. To this
end, only neuron sizes smaller or equal to 8 are used in this thesis, for which no effects of
the membrane potential are observed.

4.4.3. Synaptic Weight Enhancement by Concurrent Spiking

Investigations of biologically inspired neural networks depend on a precise configuration
of the synaptic weights. Therefore, the weight calibration introduced in section 4.2.3 is
implemented. However, on the BrainScaleS-1 hardware, weights are found to be dependent
on the number of concurrently spiking synapses on a single synapse row, demonstrated
in fig. 4.25. There, concurrent stimulation is achieved by programming all synapses to
respond to the same address. Although the membrane is always stimulated by a single
synapse with a fixed weight configuration, the PSP height of the stimulated membrane
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increases with more concurrently spiking synapses. The effect is more pronounced if the
additional synapses are configured to higher digital weight values.

As introduced in section 3.1.5, each synapse circuit implements a current mirror that
copies the current provided by the synapse driver. In case of a spike, using a HICANN
clock frequency of 125MHz, the output current is connected for 8 ns to the synaptic input
line of the neuron. Therefore, the observed effects could be explained by a modified gate
potential of the current mirror caused by charge injection during the switching process.
Since all synapses of one row share the same gate potential, this effect is enhanced if
more synapses are activated at the same time. Moreover, the digital weight parameter
defines the conductance to the synaptic input line. Consequently, stronger capacitive
coupling between gate and synaptic input line is expected for higher weight parameters.

To assess the impact of the effect during experiments, the duration for which a previously
spiking synapse affects other synapses on the same row is estimated. At maximum every
second clock cycle a signal is transmitted on the bus system, cf. section 3.1.2. Since it is
not possible to provide the exact clock cycle a signal is sent, all synapses of one row except
one are continuously stimulated by the on-chip background generator with rates close to
the maximum frequency, which corresponds to 16 ns between consecutive signals using a
HICANN clock frequency of 125MHz. The maximum frequency cannot be reached since
occasional signals are required to keep the repeaters locked, and one additional signal
that exclusively stimulates the remaining synapse which excites the measured neuron.
It is assumed that each stimulation of the separate synapse happens less than 3 time
steps or 36 ns after all other synapses have been stimulated simultaneously. In these
measurements, no weight enhancement caused by the additionally spiking synapses is
observed.

However, the measurement does not guarantee that the investigated neuron is stimulated
in the next possible clock cycle after all other synapses have been stimulated. Therefore,
the probability of two spikes sent in 16 ns is simulated using the routing results of the
investigated networks. For the cortical microcircuit model, on average, 26 synapses are
placed on a single synapse row. Targeting for asynchronous irregular spiking behavior,
Poisson distributed spikes with an average rate of 10Hz are expected. With this, on
average, only 6% of all sent spikes occur in the next possible clock cycle after a previous
spike on the same row.
Since the weight enhancement is only significant for many preceding spikes and no

weight enhancement is observed after 3 time steps, the effect is negligible for consecutive
spikes.
Nevertheless, synapses on the same row that are stimulated by the same address will

always spike simultaneously. To minimize resulting deviations, the weight calibration is
performed with the expected average number of concurrently spiking synapses during
experiments. Thereby, all involved synapses are configured identically since similar
weights are expected for all synapses sharing the same row. For the cortical microcircuit
model, a maximum of 23 and on average 2.4 synapses on the same row share addresses.
Therefore, the anticipated effect is small compared to the deviations of the weight
calibration for most synapses. Nevertheless, it depends on the synapse placement and
has to be considered for adapted routing.
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Figure 4.26.: Saturation of the synaptic input. The mean membrane voltage of a single
neuron is measured for different rates of a regularly spiking input with
maximum weight settings. The neuron consists of 8 membrane circuits
and is configured to a resting potential of −20mV and its threshold value
is set high enough that it is never reached. Different colors represent the
number of synapse columns that are used to stimulate the neuron. In
all measurements, the same spike times are used, which are distributed
round-robin on the available synapse columns. The shaded area represents
the standard deviation of 20 repetitions.

4.4.4. Synapse Input Saturation

In software simulations, network parameters are only limited by the precision of the
data types used. Therefore, no restrictions are expected for high weight values. In
contrast, emulations on the BrainScaleS-1 system are restricted to the physical limits of
the involved circuits. Consequently, for strong stimulation the input current saturates.
Since neurons are built from individual membrane circuits that all implement their own
synaptic input circuit, currents from different circuits add up, and a higher maximum
stimulation is achieved for larger neuron sizes. This is demonstrated in fig. 4.26. There,
the mean membrane potential of a non-spiking but stimulated neuron is used to visualize
the stimulation strength. While for higher input rates a linear increase of the recorded
membrane voltage would be expected from the LIF model, the saturation of the synaptic
input is observed. Using more synapse columns, individual inputs add up and an
approximately linear increase of the maximum stimulation is found.

During experiments, there are two possibilities to mitigate this saturation. On the one
hand, if possible, a large distance between the reversal potentials is desirable. According
to the parameter translation eq. (4.3) this results in a smaller distance between resting
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potential and threshold potential. Therefore, less stimulation is required for the neuron
to spike. On the other hand, large neurons should be used. Thereby, the number of
available synapse columns increases, although the finally used number depends on the
routing, specifically on the number of synapses connected to the same target neuron that
are stimulated from a single bus. However, due to the effects described in section 4.4.2,
the maximum neuron size is limited to eight interconnected membrane circuits.
In biologically plausible networks, where typical spike rates remain below 10Hz and

with the expected connection counts on the system, saturation effects are anticipated to
be small. Nevertheless, for higher spike rates, it becomes imperative to consider effects
arising from the saturation.
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5. The Balanced Random Network Model
on BrainScaleS-1

Inspired by the human brain, neuromorphic hardware seeks to address the limitations of
conventional computers. Particularly when emulating models of its archetype, i.e., spiking
neural networks, its numerous parallel computational units offer the potential to reduce
power consumption at accelerated speed. This becomes significant as the complexity
of the simulation grows, as seen in large brain models. However, it is precisely these
models that are of interest, as it is assumed that the computational power and stability
of the human brain reside in its immense network structure with many redundant compo-
nents. Therefore, the emulation of large-scale biological network models is the ultimate
benchmark for existing neuromorphic hardware systems. Furthermore, by physically
implementing neuron circuits, their reduced flexibility compared to software simulators
provides an opportunity to verify the plausibility and stability of the investigated models.

The focus of this thesis is on the BrainScaleS-1 neuromorphic hardware system, intro-
duced in chapter 3. Already successfully demonstrated its capabilities on small neural
networks in Göltz et al. 2021; Kungl et al. 2019; Schmitt et al. 2017, this thesis con-
cludes long-standing efforts with the emulation of large-scale experiments that utilize a
significant portion of a single wafer-scale system. To this end, two large-scale biological
models are investigated. The first one is the balanced random network, introduced in
section 2.4. Subject to this chapter, its network behavior with respect to the limitations
of the BrainScaleS-1 hardware is examined, which forms the foundation for the emulation
of the cortical microcircuit discussed in chapter 6.

Representing numerous sparsely connected LIF neurons, the idealized balanced random
network exceeds the capabilities of the hardware system. Therefore, modifications have
to be applied to the model to match the restrictions found on the hardware. Since these
changes, in turn, affect the network behavior, a software simulation of the model using the
simulator backend NEST [Gewaltig et al. 2007] is performed in parallel to the hardware
implementation efforts. On the one hand, this allows for investigating the network’s
behavior with respect to applied changes. On the other hand, the final emulation can be
validated with the obtained simulation results.

This parallel development of model adaptations and hardware implementation is
also reflected in the structure of this chapter. Its first section introduces the model
modifications conducted on the NEST simulator. Subdivided into the presentation and
evaluation of individual changes, the model approaches the capabilities of the hardware.
Subsequently, in section 5.2, the implementation of the adapted model on the hardware is
presented. Based on the improvements for large-scale experiments, discussed in chapter 4,
the network is mapped to the hardware structure and emulated. Finally, the obtained
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network behavior is compared to the simulation results.

5.1. Adapting the Model to the Neuromorphic Hardware

When comparing the balanced random network model, introduced in section 2.4, to
the BrainScaleS-1 hardware, introduced in chapter 3, several significant differences
become apparent. The balanced random network, based on theoretical considerations,
makes assumptions that cannot be met by the hardware. Demanding a high number
of neurons and synapses, it exceeds the routing capacities of a single BrainScaleS-1
system. Additionally, it implements current-based synapses with a delta peak kernel,
whereas the hardware realizes conductance-based synapses with an exponentially decaying
kernel. Furthermore, unlike an identical parametrization of all neurons in the model, the
configurability of neuron parameters on the BrainScaleS-1 system is limited and subject
to variations due to the constraints of physically available analog circuits. This limitation
extends to the neuron delay, which does not follow a random distribution but instead
depends on the distance between circuits on the wafer. Moreover, despite all efforts,
the routing capabilities of the BrainScaleS-1 system are limited and for sufficiently large
networks it is not possible to incorporate all synapses into the hardware representation.

Consequently, in parallel to preparing the hardware for large-scale experiments, which is
discussed in chapter 4, the model is adapted to match the restrictions of the hardware. This
is accomplished through a NEST simulation, which permits incorporating modifications
while studying the inevitable changes in the model’s behavior. Furthermore, since the
operating system of the hardware and the software simulator provide the PyNN API,
both implementations are based on the same experiment description and evaluation
routines, which allows for comparing and validating the obtained network results.
The simulation and modifications applied to the model were implemented during the

bachelor thesis of Quirinus Schwarzenböck [Schwarzenböck 2019] and later extended to
provide a more precise representation of the hardware restrictions. The results of these
investigations are introduced in this section.

It starts in section 5.1.1 with a simulation, aiming for the closest possible representation
of the original network description, which forms the basis for all subsequent considerations.
The following section 5.1.2 addresses the reduction of the neuron and synapse numbers to
accommodate placement on a single BrainScaleS-1 wafer. Based on this, in section 5.1.3,
the transition from current-based to conductance-based synapses is discussed. This leads
to section 5.1.4, where the parametrization of the model is adjusted to the hardware values
and parameter variations are introduced. Finally, in section 5.1.5, an exact routing model
of the hardware is incorporated into the software simulation, including not implemented
synapses and delay values obtained from the hardware.

5.1.1. Simulation of the Original Model

In this section, the NEST simulation of the original model, described in Brunel 2000,
is investigated to provide a reference for all following network modifications. Based
on theoretical considerations, the original network structure is defined by idealized
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assumptions of sparsely connected neurons. However, the publication also suggests
network parameters that approach these assumptions. They are introduced in section 2.4,
with relevant parameters listed in table 2.1.

This network comprises 12 500 LIF neurons with 15 625 000 internal and 12 500 000
external current-based synapses. In order to reduce the computational overhead during
the simulation, a simplification is applied, which is possible as the external inputs are
not simulated but modeled by Poisson-distributed spiketrains. Therefore, instead of
providing CE external connections to each neuron, a single external source with a firing
rate of

νext = η · CE · νthr (5.1)

is used per neuron, reducing the external connection count to 12 500. Due to the additive
characteristic of the Poisson distribution, this results in the same stimulation. To account
for this, in the following studies, the external reference frequency νthr is redefined to

νthr = CE · ν ′thr, (5.2)

where ν ′thr represents its original definition, introduced in eq. (2.21).

Moreover, to facilitate the transition to hardware, the synapses are simulated with
an exponentially decaying kernel from the very beginning. Implementing a very short
synaptic time constant of τsyn = 0.01ms, it forms a good approximation of the originally
used delta peak kernel. As a consequence of this, the weights of the model, given by
the PSP height of a single spike, must be translated into a corresponding current value.
Starting from eq. (2.6), the time of the maximum PSP height tmax as a result of a single
spike arriving at a membrane in its resting state at time ts = 0 s is calculated by setting
dV/dt = 0. This yields

tmax =
τsynτm log

τsyn
τm

τm − τsyn
. (5.3)

Inserting it into eq. (2.6), the maximum height

∆U = U(tmax)− Eleak =
wτsyn

gleak(τm − τsyn)

(︃
τsyn
τm

τsyn
τm−τsyn − τsyn

τm

τm
τm−τsyn

)︃
(5.4)

of the PSP is found. Assuming τsyn ≪ τm, setting the synapse weight according to

w =
∆U · Cm

τsyn
, (5.5)

approximately preserves the PSP height ∆U , which is verified in simulation. For the
simulation, the membrane capacitance is set to Cm = 0.001 nF. However, since it only
affects the time constants and synaptic efficacy, which remain fixed during the simulation,
it can be freely adjusted.

Finally, as the software simulation calculates the model behavior for discrete points in
time, an appropriate time step has to be found. On the one hand, employing smaller
time intervals leads to a more accurate representation of the network’s dynamic, with
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the specific requirement that each time interval should be significantly shorter than the
delay of the spike transmission. On the other hand, increasing the number of time steps
results in higher computational costs. Therefore, in experimental trials, a time step of
dt = 0.1ms was determined as an appropriate compromise [Schwarzenböck 2019]. This
value is implemented in all simulations within this thesis.

Using the presented parametrization and a fixed delay value of 1.5ms, the original
model is simulated for 2 s of biological time. Restricting the evaluation to observables
obtained in the last 1000ms allows the network to settle in the beginning of the experiment.
Figure 5.1 shows an overview of the resulting network states in relation to the relative
inhibitory weight g and the external input frequency νext. Following the methodology
outlined in the original publication, the network is evaluated with respect to the neurons’
average firing rate, irregularity, and synchrony, which are introduced in section 2.3.
Given the neurons’ inter-spike intervals approximate a Gaussian distribution, which is
demonstrated in Schwarzenböck 2019, their mean coefficient of variation represents a
good approximation of the network’s irregularity. In addition, the measure of synchrony
is determined by the variance divided by the mean of the bin heights of the spike time
histogram. As mentioned in section 2.3, its value depends on the chosen bin size and
number of considered neurons. To align the results with all following evaluations, 2083
neurons are regarded, which corresponds to the maximum number of neurons in the
downscaled model presented in section 5.1.2. In this context, the origin of the chosen
neurons is unimportant, as all neurons, regardless of their population, demonstrate
uniform behavior due to their shared parametrization and input properties. Moreover, in
all analyses, a bin width of 0.2ms is set, which is short enough to detect individual spike
clusters and represents a multiple of the simulation time step to avoid artifacts caused
by the discrete nature of the simulation.
The thus observed network behavior is in good agreement with the regimes of the

original publication, presented in fig. 2.5. As long as the excitatory stimulation exceeds the
inhibitory one in the regime g < 4, the neurons’ firing behavior is regular and synchronous
with a high firing rate. For high external frequencies of νext ≈ 4 · νthr and weak inhibition
of g ≈ 0 the strong Poisson generated external input disturbs the synchronous firing
behavior, which results in a reduced synchrony. This also leads to an increased firing
rate of approximately 400Hz. A similar behavior is observed for low external stimulation
of νext ≈ νthr with negligible internal inhibition of g ≈ 0, which is not described in the
original publication. It is assumed that due to the weak external stimulation, the neurons
start to spike at different points in time and therefore do not synchronize. This leads
to more equally distributed stimulation compared to the otherwise accumulated input
spikes, which results in higher firing rates. It is found that this state is not stable but
varies between differently seeded simulations. Once the neurons synchronize, the obtained
behavior is in agreement with observations of higher external firing rates. However, given
that the synchronous firing behavior is not preserved once variations of the delay value
are taken into account anyway, this unstable state is not further investigated.
For strong inhibitory weights in the regime g > 4, the neurons mainly exhibit asyn-

chronous irregular firing behavior, as indicated by the reduced synchrony and increased
irregularity. Only for high (νext ≈ 4 · νthr) and low (νext ≈ νthr) external input rates
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Figure 5.1.: Heat map of the simulated balanced random network behavior with param-
eters as outlined in Brunel 2000. From left to right, the neurons’ mean firing
rate, irregularity and synchrony are shown for different relative inhibitory
strengths g and external input rates νext. The synchrony is determined from
the spike time histogram of 2083 neurons using a bin width of 0.2ms. For
g < 4, excitation exceeds inhibition and the network exhibits synchronous
regular firing with rates of approximately 350Hz. Slightly higher rates of
approximately 400Hz are obtained for strong external excitation and weak
inhibition as the network adopts a less synchronous firing behavior. Fur-
thermore, unstable network behavior is found for weak external excitation
without internal inhibition. Depending on the simulator’s seed, the network
either aligns its firing pattern with its surrounding parametrization or, as
depicted, shows less synchronous firing with elevated rates. In contrast, when
g exceeds 4, the neurons change into an asynchronous irregular state with
low firing rates. The sole exception to this pattern occurs in the presence
of either strong external stimuli, resulting in rapid global oscillations, or
weak external stimuli, leading to slow global oscillations. Both instances are
indicated by heightened synchrony.
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synchronous behavior with fast or slow oscillations is found. Therefore, all firing regimes
of the original publication are visible, as demonstrated by the spike times and spike
histograms shown in fig. 5.2.

Representing the behavior of the original model, the parametrization and results of
the simulation form the basis for all subsequent adaptations.

5.1.2. Downscaling the Model

When comparing the size of the software implementation of the balanced random network,
introduced in the last section, with the component count of a single BrainScaleS-1 system,
it is not immediately apparent that it does not match. In general, the approximately
200× 103 membrane circuits and 43× 106 synapses would suffice to host the whole
model. This still holds considering that each neuron receives 1250 inputs from sources
within the network, necessitating composite neurons. To achieve such high input counts,
e.g., 8 membrane circuits can be interconnected. This reduces the number of available
neurons by a factor of 8, which would still suffice for the model. However, the network
implements an all-to-all connection scheme where pre- and postsynaptic neurons are
chosen randomly. Therefore, the number of buses required to transmit the signals
increases quadratically with network size, which exceeds the available routing capabilities
and leads to a substantial loss of synapses when mapping the original network. This is
further intensified by the unavailability of a subset of components that exhibit undesired
behavior, as introduced in section 4.1. Consequently, since it is not possible to increase
the number of physically available components on the hardware, as can be achieved
in software simulations through time multiplexing, the model must be scaled down to
accommodate the hardware limitations.

In general, the model does not enforce a specific number of neurons or synapses but is
based on the assumption of sparse connections, which might no longer hold for smaller
networks. There are two options for downscaling a network: either by decreasing the
number of neurons or by reducing the number of synapses per neuron. Both produce
distinct effects on the network. On the one hand, by solely reducing the number of neurons,
the stimulation and therefore the behavior of individual neurons remains unaffected. The
same applies to the global network behavior as long as the network remains sparse, i.e.,
the connections of each neuron are sampled from a much larger pool of neurons. Once
this is no longer the case, neurons share common stimuli and begin to synchronize. On
the other hand, reducing the synapse count also decreases the stimuli received by each
neuron, which, if left unattended, results in modified neuron and network behavior.

Since the routing profits from a reduction of both quantities, they are decreased
simultaneously by the same scaling factor k. As a consequence of this, the ratio of
neurons and connections per neuron remains unchanged. Moreover, missing stimulations
are compensated by an increased synaptic weight.

In this thesis, the focus is on sustaining the asynchronous irregular firing regime,
which, due to its biological plausibility, also represents the neuron behavior of the cortical
microcircuit model. As described in Albada et al. 2014, in this regime, the neuron
behavior is defined by a below threshold mean membrane potential, where spikes are
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Figure 5.2.: Firing patterns of the simulated balanced random network model with
parameters as outlined in Brunel 2000. In the upper part of each figure, the
spike times of 30 neurons are shown, indicated by vertical lines. In the lower
part, the spike time histogram of all neurons is visualized using a bin size of
0.2ms. For better visualization, only 100ms of biological time close to the
end of the simulation are illustrated. All figures represent parametrizations
similar to those used in fig. 2.6 to portray the various regimes of the network.
(a) demonstrates the synchronous regular regime for g = 3 and νext = 2 · νthr.
The synchronous irregular regime is shown with fast oscillations in (b), found
for g = 6 and νext = 4 · νthr, and with slow oscillations in (d), obtained for
g = 4.5 and νext = νthr. The asynchronous irregular regime is demonstrated
for g = 5 and νext = 2 · νthr in (c).
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Table 5.1.: Parametrization of the downscaled balanced random network model for
a scaling factor k. Values are given in comparison to the full-scale model
introduced in table 2.1, where N = NE + NI is the sum of excitatory and
inhibitory neurons. The change of the external input frequency is also reflected
in the external reference frequency νthr due to its inverse proportionality to
the synaptic weight (cf. eq. (2.21)).

Full-scale Downscaled

Neuron number N N/k
Internal inputs per neuron C C/k
Total internal connections NC NC/k2

External frequency νext νext/k
Synaptic weight w kw

driven by fluctuations arising from dominating inhibitory stimulation. This suggests
two possibilities to perform weight adjustments to compensate for a reduced synapse
number. On the one hand, the weight can be upscaled with the square root of the scaling
factor used to downscale the synapses. Since the variations of independent inputs are
quadratically dependent on their synaptic weight, this method targets to preserve the
network fluctuations. At the same time, an external constant current can be applied
to replace the missing mean stimulation and elevate the membrane potential to its
original state. On the other hand, the synaptic weight can be increased linearly with
the scaling factor. Maintaining the mean input of the neuron, the fluctuations increase.
To compensate for this, the external Poisson generated input can be substituted by a
constant current. However, this technique is limited to the total amount of variation
added by the original external input of the model.

For the scaling factors of k ≥ 6, utilized in this thesis, both techniques fail to preserve
the original network behavior, as demonstrated in Albada et al. 2014. However, since
replacing the extensive external input is desired for the cortical microcircuit model and as
it preserves the mean firing rates of the neurons, linear upscaling of the synaptic weight
is performed in this thesis. Nevertheless, in the case of the balanced random network
model, the substitution of external inputs is deliberately avoided to demonstrate the
capabilities of the hardware to incorporate external spikes, which is possible due to the
reduced routing complexity compared to the cortical microcircuit model.

The thus found parametrization of the downscaled balanced random network model
is presented in table 5.1. Moreover, in repeated attempts to map the network to the
hardware, a scaling factor of k = 6 has been determined as a favorable compromise
between lost synapses and network size. This scaling factor was ultimately applied to
the model. The resulting network behavior of the downscaled model is demonstrated in
fig. 5.3.

In agreement with the original model, the network is split in a synchronous regular
regime for relative inhibitory weights of g < 4 and an irregular asynchronous regime
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Figure 5.3.: Heat map of the downscaled balanced random network behavior with
parameters as outlined in Brunel 2000. The visualization and synchrony
parametrization correspond to the full-scale network (fig. 5.1). The network
is still split in a synchronous regular regime for g < 4 and an asynchronous
irregular regime for g > 4. For low internal inhibition (g ≤ 2), additional
neuron clusters are formed, leading to an elevated firing rate with reduced
synchrony. Compared to the original model, the irregularity is increased and
no fast oscillating regime is observed.

for g > 4. Moreover, observed firing rates are approximately preserved. However, the
necessity to increase the synaptic weight leads to elevated neuron variations, indicated
by higher irregularity values. Another consequence of this is the enlargement of the high
firing rate region, with rates of 400Hz, in the synchronous regular regime. Caused by the
reduced number of neurons necessary to elicit spikes, the formation of additional clusters
of concurrently spiking neurons is facilitated, as indicated in fig. A.6. This limits the
observed synchrony and results in higher firing rates than observed in the original model
for small values of g and νext. Since more concurrent spikes are necessary for inhibited
neurons, the formation of additional clusters is hindered for stronger inhibitory synapses
in the range of 2.5 ≪ g ≪ 4. Furthermore, the highest variations are obtained in the
asynchronous irregular regime. There, the increased synaptic weight further intensifies
the fluctuations caused by the already strong inhibitory connections. Therefore, compared
to the original model, no fast oscillating global neuron behavior is observed for high
external input rates.

5.1.3. Transition From Current-Based to Conductance-Based Synapses

The next step in aligning the balanced random network with the hardware is to adjust
the synapse model. This means a transition from current-based to conductance-based
synapses. Both models and their distinct features are introduced section 2.2.
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(a) (b)

Figure 5.4.: Comparison of membrane fluctuations. The membrane recording of the
same neuron within the simulated downscaled balanced random network
model is displayed using current-based synapses in (a) and conductance
based synapses in (b). Both figures show 1 s of biological time, obtained in
the asynchronous irregular regime (g = 6, νext = 2 · νthr).

The differences between the two models become apparent when the conductance-
based synapses enter the high-conductance state. There, due to the modification of the
membrane time constant, the neurons’ membranes react much faster to input currents.
Moreover, stimulations no longer add up linearly but are attenuated as they approach
the reversal potentials. Both effects lead to a reduction of the amplitude of membrane
fluctuations, which is demonstrated by recording a single neuron’s membrane in the
asynchronous irregular regime, depicted in fig. 5.4.

As a result of this, the intrinsic neuron behavior differs. In current-based synapses,
there is a balance between excitatory and inhibitory inputs, resulting in a mean membrane
potential below threshold. Spiking occurs due to significant fluctuations in the membrane
potential. In contrast, with conductance-based synapses, these fluctuations are reduced.
Therefore, to preserve the model’s connectivity, membrane potentials must remain close to
the threshold to trigger spikes. This is discussed in detail in Sanzeni et al. 2022. However,
selecting an appropriate translation, it is still possible to achieve comparable network
statistics in terms of mean firing rates, irregularity, and synchrony, as demonstrated in
the following.

In this thesis, the synaptic weights of the conductance-based synapses are chosen
such that the same PSP height is obtained for a single spike in the absence of the
high-conductance state, starting from the mean membrane potential ⟨U⟩ of the neurons.
This is achieved by translating the weight according to

wcond =
wcurr

Erev − ⟨U⟩
, (5.6)
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where wcurr is the synaptic weight in the current-based model and Erev is the excitatory
or inhibitory reversal potential, dependent of the considered synapse type. Since the
model only holds true when the mean membrane potential falls between the two reversal
potentials, this, as desired, results in a positive conductance for both synapse types.
For the balanced random network, the resting potential is observed to be a suitable
approximation for the mean membrane potential of the neurons.

In general, this weight transition already suffices to preserve the characteristics of the
network behavior, as the model is expected to be robust with respect to small changes
of the absolute weight value. This is already evident in the original model, which does
not enforce specific weight settings but is built on the assumption that many spikes
are required for the membrane potential to reach the threshold. There, the impact
of changing to conductance-based synapses is much smaller compared to the already
implemented downscaling. Furthermore, the possibility of creating an imbalance between
inhibitory and excitatory weights does not render beneficial, given that all neurons share
identical parameters and the relationship between these two weights is already under
investigation by altering the parameter g.

However, in contrast to the weight configuration, the selection of appropriate reversal
potentials, which are newly introduced into the model, is crucial. This is because the
distance between them dictates the strength of the high-conductance state’s effects. This
becomes obvious when considering an infinite separation. In such a scenario, synaptic
conductance diminishes, and as per eq. (2.10), the membrane time constant remains
unaltered. Additionally, a reduction of the distance between the momentary membrane
potential and the reversal potentials is negligible under these conditions. Consequently,
the neurons behave identically to the current-based version, which is confirmed through
simulations. In contrast, when selecting reversal potentials close to the membrane
potential, the effects of the high-conductance state start to dominate. In the extreme
case, no spikes are elicited since the network’s stimulation is insufficient to reach the
threshold value. This happens because even minor changes from the resting potential,
for which the weight is calculated, strongly reduce the efficacy of the synapses.
As a result of this, distant reversal potentials are desirable. However, they are

biologically implausible and challenging to implement on hardware. As introduced in
section 4.2.1, neuron parameters are translated into the hardware domain. To this end,
the maximum and minimum achievable voltages represent the reversal potentials and
the remaining parameters are set to preserve relative distances. Therefore, selecting
large reversal potentials, the membrane’s dynamic is limited to a few millivolts and
approaches the noise level of the circuits. Moreover, according to eq. (5.6), the minimum
representable weight on the hardware further limits possible choices.
In agreement with the restrictions imposed by the hardware, reversal potentials of

Erev = ±140mV are chosen. Symmetrical with respect to the resting potential, no bias
is added to the efficacy of excitatory or inhibitory synapses. This also applies to the
asymmetry, which is in general added by the threshold mechanic. Exclusively constraining
the membrane dynamic towards the excitatory reversal potential, inhibitory stimulations
are diminished for lower membrane potentials. Based on the observed voltage fluctuation,
depicted in fig. 5.4b, it becomes evident that this effect is negligible for the chosen
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Figure 5.5.: Heat map of the downscaled balanced random network behavior with
conductance-based synapses. The visualization and synchrony parametriza-
tion correspond to the full-scale network (fig. 5.1). The same regimes are
observed as for the model with current-based synapses, depicted in fig. 5.3.
However, the transition from the synchronous regular to the asynchronous
irregular regime is shifted to g ≈ 3 and the irregularity is reduced.

reversal potentials. Another option to preserve the original behavior is to alter the
neurons’ time constants. This is natural because the high-conductance state decreases
the membrane time constant. Nevertheless, there are some constraints to consider. On
the one hand, the synaptic time constant in the original model is already significantly
smaller than the membrane time constant. Consequently, there is only a limited scope
for improvement. On the other hand, as discussed in section 4.4.1, the achievable time
constants on the hardware are strongly restricted, preventing any further modifications.
Thus, the adjustments are limited to the presented weight translation.

By simulating this parametrization, the network characteristics, visualized in fig. 5.5,
are obtained for the downscaled conductance-based balanced random network. Compared
to the model with current-based synapses, the same network regimes with similar firing
statistics are obtained, with two noticeable differences. The overall network behavior
is less irregular and the transition from the synchronous regular to the asynchronous
irregular regime is shifted to less dominant inhibitory weights. Both effects are caused by
the changed underlying neuron behavior with reduced membrane fluctuations.

Therefore, the original neuron behavior is not preserved. However, focused on first- and
second-order statistics, similar results are obtained, which still represent a biologically
plausible benchmark for neuromorphic hardware.
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5.1.4. Introducing Hardware Parameters With Variations

In contrast to software simulators, the configurability of the BrainScaleS-1 system, which
is based on physically implemented circuits, is limited. Moreover, being subject to
manufacturing induced device mismatch, parameter variations are introduced that are
not considered in the original model. Therefore, despite extensive optimization efforts
towards biologically plausible large-scale networks, which are discussed in chapter 4, it is
not possible to preserve the idealized neuron parametrization of the original model, listed
in table 2.1. To this end, in the following, the parametrization of the model is adapted
to match possible configurations on the hardware, and the resulting network behavior is
studied in simulation.

Variations

The model behavior with respect to parameter variations is investigated in Schwarzenböck
2019. There, the original parametrization is used and Gaussian distributed parameters
are considered. While the final adapted model implements distributions with standard
deviations obtained from the hardware calibration, for this consideration, standard
deviations of 10% from the respective mean value of all voltage parameters and 20%
of all time constants are assumed. This reflects the less precise calibration of the time
constants, explained in Schmidt et al. 2023. Moreover, a Gaussian distributed delay
(σD = 20%D) and membrane capacitance (σCm = 5%Cm) are considered. Since the
membrane capacitance does not directly affect the neuron’s dynamics, its variation
represents modifications of the synaptic weights. In the final model, this variation is
absorbed into the parameter distribution of the weights and the capacitance is considered
fixed at Cm = 1nF.

The effects on the network behavior of individually modified parameters are depicted
in fig. 5.6a. The results are split into synchrony and irregularity values obtained in the
four network regimes. As observed, distributed parameters have a minor impact on the
irregularity. Only in the synchronous irregular (SI) state the irregularity is reduced,
mainly caused by adaptations of the delay and the threshold voltage. The most significant
modifications are detected when all variations are applied simultaneously. In this case, the
reduction of the irregularity surpasses all individual effects, even though the measurement
is conducted with fixed delays.

Similarly, only in the synchronous irregular state is the synchrony of the network affected
by parameter variations. However, the delay constitutes an exception. As expected
from the original studies, introduced in section 2.4.2, distributed delay values prevent
clustering of neurons in the synchronous regular (SR) regime. Therefore, asynchronous
firing behavior is obtained in this regime. This is visualized in detail in fig. 5.6b, which
depicts the synchrony of the network for different standard deviations of the delay
distribution. For values larger than 10% of the mean delay neuron clustering is disturbed.
This also results in unstable network behavior, indicated by elevated error bars, as cluster
formation depends on the network’s current state.

All in all, despite distributed neuron parameters, the network statistic is still split

102



5.1. Adapting the Model to the Neuromorphic Hardware

(a)

0 5 10 15 20

Standard deviation in %

0.5

1.5

2.5

S
y
n
c
h
ro

n
y

(b)

Figure 5.6.: Effect of parameter variations for the full-scale balanced random network
model with current-based synapses. Each color represents a distinct regime in
the original model (cf. fig. 2.5) from which data is collected using the follow-
ing parametrization: SI (D = 1.5ms, g = 8, νext = 4νthr), SR (D = 1.5ms,
g = 2.2, νext = 2.2νthr), AI (D = 1.5ms, g = 6.5, νext = 1.9νthr), and
AR (D = 2ms, g = 1, νext = 3.5νthr). Error bars indicate the standard
deviation of differently seeded simulations. Variations are modeled by Gaus-
sian distributed neuron parameters with mean values matching those of the
original model. In (a), the firing statistics of the network are investigated
when variations are applied exclusively to individual neuron parameters with
standard deviations in relation to their mean value given in parentheses. For
comparison reasons, the column labeled “Standard” displays the network
statistics without variations. The column labeled “Combined” presents re-
sults obtained with all variations, except the delay value D, simultaneously
applied to the network. The influence of varying standard deviations of
the delay value with all other parameters fixed is separately illustrated in
fig. 5.6b. Adapted from Schwarzenböck 2019.
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in different regimes with distinct characteristics. However, as described in the original
publication, the synchronous regular regime is not preserved and is replaced by an
asynchronous regular regime.

Hardware Parametrization

Transitioning the model to the BrainScaleS-1 hardware involves not only the introduction
of distributed parameters but also shifts of their mean values to align with hardware
constraints. Excluded from these adaptations are all voltage related neuron parameters.
Stored in the floating gate cells of the chips, a linear voltage range between approximately
0.45V and 1.1V (1.3V for the excitatory reversal potential) is provided, as demonstrated
in section 4.2.2. Although representing a very different parameter range, this discrepancy
is handled by automated parameter translations, introduced in section 4.2.1. In general,
this enables the realization of arbitrary network parametrizations with biologically
plausible settings, meaning that all voltages fall within the excitatory and inhibitory
reversal potentials. This is only limited by the measurement precision of the sub-threshold
membrane dynamic and the synaptic input currents that can be implemented on the
hardware. These aspects are discussed during the selection of the reversal potentials in
section 5.1.3. Mapping the introduced reversal potentials to the maximum and minimum
hardware voltages, the noise of the membrane is negligible compared to the resulting
distance between resting and threshold potentials. Moreover, the synaptic efficacy suffices
to represent all network states. Therefore, it is possible to preserve the model’s original
voltage values on the hardware.

In contrast to this, the time constants of the model must be adapted. On the
one hand, the delta peak kernels of the originally used synapses are resembled by
biologically implausible very short synaptic time constants, which represent a challenging
parametrization. On the other hand, the hardware provides only very limited parameters
for the time constants, demonstrated in section 4.4.1. Therefore, the excitatory and
inhibitory synaptic time constants are prolonged from τsyn = 0.01ms to τsyn = 3ms.
Furthermore, the membrane time constant is reduced from τm = 20ms to τm = 10ms.
Only the refractory period is preserved at τrefrac = 2ms. It is worth mentioning that,
due to the acceleration factor on the hardware, all membrane dynamics run 10 000 times
faster than the presented values but are translated into the biological regime.

Considering that the weight calculation, introduced in eq. (5.5), is only valid for
τsyn ≪ τm, a correction factor of fcorr = 1.7 is introduced, which has been determined
in NEST simulations. As illustrated in fig. 5.7, although the time course of a PSP is
altered, its amplitude remains preserved. The effect of modified synaptic time constants
with preserved PSP heights is investigated in fig. 5.8. Caused by the different temporal
behavior of the neurons’ membranes as a response to an input spike, synchronous network
behavior is disturbed. This is mainly observed in the synchronous regular regime with
clustered neurons. There, the formation of clusters depends on simultaneous stimulation
from various sources. However, with prolonged synaptic time constants, the charge is no
longer immediately applied to the membranes but accumulates over time, diminishing the
impact of concurrent spikes. Furthermore, the irregularity in the synchronous irregular
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Figure 5.7.: Comparison of PSP height for modified time constants, with and without
correction. According to the increased weight of the downscaled balanced
random network model, the targeted PSP height corresponds to 0.6mV.
The curve labeled “Original” shows the PSP shape of the originally used
delta peak kernel, which is approximated by a synaptic time constant of
τsyn = 0.01ms. The two remaining curves depict the PSP shape of a neuron
with a synaptic time constant of τsyn = 3ms and a reduced membrane time
constant of τm = 10ms that is either corrected for a weight factor of 1.7
or uncorrected. All simulations are performed using conductance-based
synapses.

regime is reduced due to the distribution of stimulations over time. Overall, similar
network effects are observed for prolonged synaptic time constants and distributed
parameters.

Resulting Model Behavior

Finally, a model is established that comprises adapted and distributed parameters. To
closely resemble the behavior expected on the hardware, these parameters are chosen
according to the mean values and standard deviations obtained in a network specific
calibration. Utilized parameters and variations are listed in table 5.2. As evident, the
variations of the parameters differ. In general, more precise calibration results are achieved
for voltage parameters because they can be directly read out via the membrane potential
using suitable neuron configurations. The only exception to this is the reset potential
and the excitatory reversal potential. The former is limited by its configurability, which
only allows for setting a common value for all 64 neuron circuits of each neuron block.
Therefore, no precise per-neuron calibration is possible. The latter, as introduced in
section 4.2.2, requires an indirect measurement method due to the observed non-linear
behavior of the membrane potential when approaching the reversal potential. As a result
of this, both parameters are modeled by broader distributions.

In contrast to the voltages, the time constants show larger deviations. On the one

105



5. The Balanced Random Network Model on BrainScaleS-1

Figure 5.8.: Effect of prolonged synaptic time constants on the firing statistic of the
full-scale balanced random network model with current-based synapses. The
synaptic weight is modified such that the PSP height of an isolated spike is
identical in all measurements. The same parametrizations used in fig. 5.6
are depicted. Error bars indicate the standard deviation of differently seeded
simulations. Adapted from Schwarzenböck 2019.

Table 5.2.: Neuron parametrization of the hardware representation of the downscaled
balanced random network with conductance-based synapses. Defined by
Gaussian distributions, the mean and standard deviation are presented. The
distributions’ ranges are provided in the last column. The mean and standard
deviation of the inhibitory weight are scaled according to gwE.

Parameter Mean± Std Range

τm 10 ± 2.0 ms [0 ,∞)
τrefrac 2 ± 1.0 ms [0 ,∞)
τ esyn 3 ± 0.4 ms [0 ,∞)

τ isyn 3 ± 0.2 ms [0 ,∞)

Vthres 20 ± 1.12mV (−∞ ,∞)
Vreset 10 ± 4.2 mV (−∞ , 0.9Vthres]
Erest 0 ± 1.96mV (−∞ ,∞)
Ee

rev 140 ± 14.0 mV (−∞ ,∞)
Ei

rev −140 ± 1.96mV (−∞ ,∞)
wE 2.4± 1.2 nS [0 ,∞)
Cm 1 ± 0 nF [0 ,∞)
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hand, they are calibrated via appropriate fits of the neuron’s membrane trace in response
to stimulation. Analog to the calibration of the excitatory reversal potential, this leads
to an increased complexity with dependencies on several neuron parameters. On the
other hand, parameters stored in the floating gates are either provided as voltages or
currents. Consequently, to control time dependent behavior, these parameters have to be
translated via appropriate circuitry. These translations follow non-linear functions, which
further deteriorate the calibration precision. For more details on the utilized calibration
methodologies it is referred to Schmidt et al. 2023.

The synaptic weights and the membrane capacitance are treated differently. As
introduced in section 4.2.3 the absolute value of the membrane capacitance has no effect
on the neuron’s behavior and its uncertainties are already considered in the distributions
of the membrane time constant and the calibrated weight to membrane capacitance ratio
w
Cm

. Therefore, no additional deviations are assumed, and for simplicity, it is set to
Cm = 1nF. In case of the synaptic weight, the large parameter space in combination with
the limited analog readout capabilities of the BrainScaleS-1 system does not allow for a
per-circuit calibration. Furthermore, the limited configurability of its control parameters
adds additional uncertainty to the configured values. Consequently, no exact parameter
distribution is obtained and based on the results from section 4.2.3 and section 4.2.4, a
standard deviation of 50% of the respective mean weight value is approximated.

Using this parametrization, the network behavior is simulated for the downscaled
model with conductance-based synapses. This simulation does not yet incorporate
network properties extracted from the hardware’s map and route results but includes all
connections with a generic delay distribution, which follows a Gaussian distribution with
a mean of 1.5mV and a standard deviation of 0.2mV, with a minimum value of 0.3mV.
The results are visualized in fig. 5.9. As a consequence of the distributed parameters and
the prolonged synaptic time constant, synchronous states are replaced by asynchronous
firing. Nevertheless, the network still exhibits distinct firing regimes with behavior similar
to the original model. For small inhibitory weights at g < 3, elevated firing rates with
regular neuron behavior are observed. Due to the distributed refractory times, with
values approaching 0ms, the mean firing rate is no longer limited to a maximum of 500Hz.
Furthermore, the loss of synchrony results in a distributed stimulation of the neurons,
leading to higher firing activity for weak inhibition. The disappearance of clustered neuron
firing also replaces the sharp transition between the regimes at g ≈ 3 with a gradual one
since increasing inhibition reduces the mean neuron stimulation. As expected from the
prolonged synaptic time constants, the overall irregularity is diminished. However, the
asynchronous irregular regime for g > 3 is preserved, and the synchronization caused
by global oscillations for small external inputs and strong inhibitory connections is still
present, although less pronounced.

5.1.5. Incorporating Map and Route Results

As a final modification, the model is adapted with exact routing data obtained from the
hardware. To this end, the results of the map and route step, discussed in section 5.2.2,
are evaluated and all established connections are extracted and loaded into the simulation.
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Figure 5.9.: Heat map of the downscaled balanced random network behavior with
conductance-based synapses and adjusted parameter distributions. The
visualization and synchrony parametrization correspond to fig. 5.1. The
transition between regimes around g ≈ 3 becomes less distinct, and the
synchronous network behavior is lost.

Consequently, only routes that are also available on the hardware are incorporated into
the model. This is necessary since, due to the limited flexibility and component count
on the BrainScaleS-1 system, it is not possible to route each synapse’s connection. As a
result of this, synapse loss is observed, which is listed in table 5.3. There, different loss
values are obtained for different external input rates. This is caused by an additional
modification that is applied to the model to mirror the network topology on the hardware.
External inputs are no longer modeled by a single external source per internal neuron
but by a pool of external sources from which connections are sampled. As a consequence
of this, the map and route results are dependent on the external input rate since the
connections between populations compete for the available resources and higher rates
require additional external sources that get distributed over the whole wafer. The reason
for this modification and its implementation details are introduced in section 5.2.2.

In addition to the precise network topology, the number of repeaters involved in each
route is extracted. Combined with the results of the delay calibration presented in
section 4.2.5, a time delay is associated with each connection and incorporated into
the model. Solely based on the repeater count, a discrete distribution is obtained, as
demonstrated in fig. 5.10a. However, utilizing analog hardware, circuit variations have
to be considered. Therefore, taking into account the uncertainties observed during the
delay calibration, every delay value is sampled from a Gaussian distribution with its
corresponding mean value and a standard deviation of 0.1ms. Figure 5.10b illustrates
the resulting delay distribution. It is shown for mappings with minimum and maximum
external input rate. As expected, for higher rates, additional external sources are
necessary, which get spread over the whole wafer. Hence, the routes cover greater
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Table 5.3.: Synapse loss of the map and route results of the downscaled balanced random
network model. Connections are classified according to participating popula-
tions, where neurons from the population to the left of the arrow transmit
spikes to neurons of the population to the right of the arrow. There, “exc”
symbolizes the excitatory and “inh” the inhibitory population. In the last two
columns, the proportion of lost external connections and the total synapse
loss are represented. As the map and route results vary with the utilized
external input rate, a comprehensive list of all simulated rates is given.

νext/νthres exc → exc exc → inh inh → exc inh → inh External Total

1.0 30.50% 31.81% 30.86% 30.51% 2.78% 17.02%
1.43 28.46% 29.47% 26.36% 26.02% 4.57% 16.58%
1.86 30.26% 31.15% 28.33% 28.34% 1.20% 15.86%
2.29 30.66% 31.87% 26.38% 26.47% 1.90% 16.20%
2.71 29.36% 30.25% 22.63% 22.31% 3.47% 16.02%
3.14 25.87% 27.43% 21.43% 22.40% 6.01% 15.81%
3.57 19.45% 20.42% 16.54% 16.41% 13.66% 16.39%
4.0 17.48% 18.72% 13.69% 13.58% 19.57% 18.22%

(a) (b)

Figure 5.10.: Delays obtained from the map and route results of the downscaled bal-
anced random network. According to the calibration results discussed in
section 4.2.5, extracted connection lengths are translated into corresponding
delay values. Since the delay depends solely on the number of repeaters,
discrete results are observed in (a). There, each bin represents a specific
repeater count. To model circuit variations measured during the calibration,
in (b), individual connection delays are modeled by a Gaussian distribution
with a standard deviation of 0.1ms. Results are shown for the minimum
and maximum external rates νext/νthres, indicated by different colors.
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Figure 5.11.: Heat map of the downscaled balanced random network behavior with
conductance-based synapses, adjusted parameter distributions, reduced
synapse weight and incorporated map and route results. For each external
input rate, only connections of the corresponding map and route result of
the hardware are incorporated into the simulation. Delays are modeled using
a Gaussian distribution with a standard deviation of 0.1ms and a mean
value that is determined in relation to the connection’s length. External
inputs are represented by a pool of sources, from which each internal
neuron samples 200 connections (cf. section 5.2.2). The visualization and
synchrony parametrization correspond to fig. 5.1. Due to the incorporated
map and route results, slightly elevated irregularity values are observed in
the asynchronous irregular regime (g > 4).

distances, resulting in a shift of the corresponding delay distribution towards larger
values.

Finally, all the results are integrated into the model to simulate the downscaled
balanced random network, which has been adapted to the hardware constraints. This
includes incorporating conductance-based synapses, hardware parametrizations, as well
as the routing and delay values extracted from the hardware for each external input rate.
Furthermore, the weights of both excitatory and inhibitory synapses are adjusted to
align with the available hardware configuration. This modification involves altering the
correction factor of the prolonged synaptic time constant fcorr from 1.7 to 1.2. Simulation
results confirm that this reduction does not alter the network’s regimes. However, it does
result in a slight decrease in irregularity and mean firing rates.

Resulting network statistics of the final network model are displayed in fig. 5.11.
Despite the lost connections and the thus introduced inequality in synapses per neuron,
the characteristic behavior of the different network regimes is preserved. However, an
increased irregularity is obtained in the asynchronous irregular state for high external
input rates. This is not observed in simulations with fixed map and route results
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extracted from an external rate of νext = νthr, which are used for the whole parameter
range. Therefore, modified irregularities are traced back to the distinct routing results,
which get more complex for elevated firing rates. Nevertheless, as the differences are small,
the simulated firing statistics still represent a valid benchmark for the BrainScaleS-1
system obtained from a model that now matches the hardware’s restrictions.

5.2. Implementation on BrainScaleS-1

Emulating large-scale biological models on wafer-scale neuromorphic hardware is a
complex task that demands a high degree of control over both the hardware and the
model itself. Therefore, as introduced in chapter 4, the handling of the BrainScaleS-1
system is improved. On the one hand, this enables large-scale emulations in the first place.
On the other hand, it defines and minimizes the limitations of the hardware. Building
upon these results, the balanced random network is adapted to align with the hardware’s
restrictions, as detailed in section 5.1. By combining both efforts, the modified model is
successfully emulated on a single BrainScaleS-1 wafer system, which is demonstrated in
this section.

To achieve this emulation, neurons within the network are mapped onto the hardware
and routes are implemented between them with the aim of minimizing the number of lost
synapses. In contrast to the cortical microcircuit, the structure of the balanced random
network is simpler, comprising only two distinct populations. Consequently, it allows
for routing the model with external inputs. Furthermore, it comprises a biologically
implausible high firing rate regime with up to 500Hz. Both aspects make it an excellent
benchmark for assessing the I/O capabilities of the hardware.
This focus of the investigation is also addressed in the structure of this section.

It begins by introducing the bandwidth limitations of the BrainScaleS-1 system and
outlines techniques to overcome them. Following that, section 5.2.2 demonstrates the
considerations made to translate the network topology into a hardware representation.
Finally, section 5.2.3 discusses the results of the emulation.

5.2.1. Bandwidth Consideration

With its high firing regime for small inhibitory weights, the balanced random network
represents a challenging benchmark in terms of spike communication. When taking into
account the used speedup factor of 10 000 achieved by the hardware and the substantial
number of concurrently spiking neurons, it becomes evident that bandwidth is a critical
factor. Therefore, this section discusses the limits of spike processing on the hardware
and presents solutions to overcome bottlenecks, enabling the emulation of the high firing
regime. Unless otherwise specified, in this section, all values are provided in wall-clock
time, i.e., in the hardware domain.
This consideration is divided into three spike transportation pathways: injecting

external spikes from the FPGAs to the HICANNs, reading out spike results from the
HICANNs to the FPGAs, and inter-neuron communication between HICANNs. The
specific transportation layers are introduced in sections 3.1.2, 3.1.3 and 3.2.
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5. The Balanced Random Network Model on BrainScaleS-1

External Input

Starting with the injection of external inputs, in agreement with Klähn 2017, a maximum
transmission rate of 17.8MEvents/s is measured between an FPGA and each of its 8
connected HICANNs. Here, each event corresponds to a single spike transmission. In
comparison, the neurons of the downscaled balanced random network require Poisson-
distributed spikes with firing rates of η · 3333Hz in the biological regime, as outlined
in eq. (5.2). For the maximum rate of η = 4, this translates to a minimum bandwidth
requirement of 133MEvents/s per neuron, assuming equidistant spike transmission.

To assess this requirement against the available bandwidth, it is multiplied by the
number of neurons per HICANN, which is extracted from the final mapping results. This
calculation remains independent of the finally utilized routing as only the chosen mapping
strategy and the availability data of the membrane circuits influence the placement. As
illustrated in fig. 5.12a, a maximum number of 60 neurons per HICANN is observed.
Consequently, in the worst-case scenario, a rate of 8GHz of Poisson-distributed spikes is
necessary for such a HICANN, which already exceeds the combined capacity of all 368
links on a single wafer.

Therefore, in order to reduce the total number of external spikes, a pool of sources
is generated from which the connections to the internal neurons are sampled. Its
implementation details are introduced in section 5.2.2. In the final network topology,
each neuron is connected to 200 external sources distributed across the entire wafer. As a
result of this, a single external source transmits spikes at a maximum rate of 667 kHz and
multiple sources can be accommodated by a single HICANN link. Nevertheless, the links
are only filled up to 80% capacity to account for periods of higher firing rates caused by
the Poisson distribution.

Furthermore, the FPGA implementation was modified to count spikes that could not
be transmitted. During the network emulations, it is determined that with the introduced
configuration a maximum of 47 spikes are discarded on a single link, which is considered
negligible. Consequently, no limitations are anticipated in the transmission from the
FPGAs to the HICANNs.

Recording of Spikes

In the other direction, i.e., from the HICANNs to the FPGAs, a slightly higher bandwidth
of 25MEvents/s is measured. At the same time, the network requirements become more
challenging. Assuming a firing rate of 400Hz in the biological regime and on average 50
neurons per HICANN spikes occur at a rate of 200MHz. However, in this direction, spike
transmission is no longer time critical and spikes are buffered per neuron and per external
input merger, as introduced in section 3.1.2. Therefore, a straightforward bandwidth
comparison is no longer sufficient, and the count of dropped spikes is estimated using
a Monte Carlo simulation of the whole merger tree and external readout. Results are
shown in fig. 5.12b.

In addition to the implemented buffer size of 2 at the external input merger a larger
buffer of size 16 is demonstrated, which was planned for a future chip revision. While
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(a) (b)

Figure 5.12.: Evaluation of spike drops during readout. (a) number of neurons placed
per HICANN or per external input merger extracted from the placement
results of the balanced random network, scaled down by a factor of 6. (b)
Monte Carlo simulation of dropped spikes in the transmission from the
HICANN to the FPGA. Simulating 10 s of biological time, 50 neurons are
randomly placed on two external mergers on a single HICANN. Each neuron
sends a random spiketrain generated by a homogeneous Poisson process
with a fixed mean frequency shown in biological time. Identical to the
hardware implementation, the minimum distance between two spikes is
adjusted to be larger than 0.16ms biological time, defined by the maximum
clock frequency of the merger tree. Due to the faster operation and since
spikes injected into the merger tree are buffered per neuron, possible drops
are neglected at this stage. In addition, for each merger a FIFO buffer is
simulated that stores spikes until they can be sent to the shared bus of
the HICANN that transmits up to 25MEvents/s. Different colors indicate
different sizes of this buffer. Spikes arriving at a full buffer are dropped.
The standard deviation of 50 repetitions of the simulation is shown as an
error band, which is too small to be visible. The dotted line visualizes the
theoretical minimum spike loss given by the bandwidth limitations of the
bus, assuming an infinite buffer size where only spikes that have not been
transmitted at the end of the experiment are dropped.
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the larger buffer is close to the optimal solution, the current implementation already
significantly reduces the number of dropped spikes.

On the one hand, firing rates below 30Hz in the biological regime are considered
acceptable, and the impact of dropped spikes during the readout is disregarded in this
case. On the other hand, it is evident that the maximum readout rate is significantly
limited for higher rates, with an expected maximum of 50Hz per neuron, which aligns
with emulation results obtained from a naive network emulation conducted using the
presented neuron placement. Furthermore, the presented simulation aims for the irregular
firing behavior expected for low rates. In contrast, in the high firing regime, regular spikes
are anticipated. It is worth noting that worse performance is expected when neurons
accommodated by the same external input merger spike simultaneously.

Consequently, a distinct solution needs to be devised for the high firing regime,
particularly since it is not possible to detect dropped spikes on-chip. It is important to
keep in mind that each HICANN provides its own link, enabling the parallelization of
readout across all available chips. By manually adjusting the network mapping, it is
possible to enforce a maximum of 6 neurons per HICANN, precisely matching the readout
restrictions assuming a firing rate of 400Hz of regularly spiking neurons. However,
utilizing the entire wafer goes hand in hand with longer routes, resulting in significantly
increased bus usage and high synapse losses. Therefore, an alternative approach is
pursued, but the presented mapping is still used to verify internal bandwidth limitations.

In the final implementation, a subset of 30 neurons is separated and individually placed
on 30 HICANNs. Thus, each of these neurons has full bandwidth available, equivalent to
a firing rate of 2500Hz in the biological regime. By restricting the evaluation to only
these 30 neurons, the bandwidth limitation during readout is circumvented.

On-Chip Communication

Finally, the on-chip communication is examined. Neglecting the 1MHz signals from the
background generators used by the repeater circuits to adjust their timing, as introduced
in section 3.1.4, the same network requirements as for the external readout apply. However,
each internal bus provides a bandwidth of 62.5MEvents/s. Consequently, the bandwidth
is no longer shared by all neurons of a HICANN but is allocated per external input
merger. Figure 5.12a illustrates the utilization of mergers in the final mapping, where
two mergers are used per HICANN, each serving an average of 25 neurons.

Considering that each neuron buffers up to one spike, as introduced in section 3.1.2,
no dropped spikes are expected, provided that all neurons spike regularly with a rate
below 250Hz in the biological regime, as all buffers are emptied before the next spike
iteration occurs. For the network behavior as originally simulated, this would not suffice,
and mapping adjustments would be required. However, due to additional limitations
discussed in section 5.2.3, the hardware’s neurons spike at exactly this maximum rate of
250Hz. Consequently, no further adaptations are necessary. This has been confirmed
through emulations with a maximum of 6 neurons per HICANN. Even when in this
scenario the neurons are less constrained in terms of internal bandwidth, their results
show the same maximum firing rates. Moreover, in the final mapping of the high firing
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regime, 30 separated neurons on individual HICANNs also do not exhibit elevated rates.

Nevertheless, as spikes are buffered, spike times get shifted. To assess its extent, the
merger tree behavior of 50 neurons divided onto two external input mergers is evaluated
in a Monte Carlo simulation. Regarding neurons that spike regularly at a rate of 200Hz
for 10 s of biological time, only 78 of all spikes get shifted. For lower spike rates and
irregular firing behavior even fewer shifts are observed. Therefore, the effect of shifted
spikes is considered negligible and no internal limitations are expected for the observed
rates.

5.2.2. Mapping the Model to the Hardware System

In this section, the map and route process for the adjusted balanced random network is
discussed. Based on the bandwidth considerations introduced in the previous section,
the excessive external input is implemented using a pool of external sources from which
connections are sampled. As a consequence, the necessary external bandwidth is notably
diminished. However, due to neurons sharing connections, this reduction is limited to the
point where external stimulations are no longer considered independent. To address this
limitation, a sufficiently large external pool has to be employed. Its size is aligned with the
internal network’s structure, which is also designed under the assumption of independent
stimulations from a shared pool of neurons. Consequently, the number of external sources
is matched to the count of internal neurons. Moreover, the number of utilized connections
is determined by the best routing results. To this end, different network structures are
realized and evaluated, visualized in fig. 5.13. Additional parameters of the map and
route algorithms were chosen to minimize synapse loss and can be found in appendix A.5.
When dealing with low external connection numbers, each external source is required to
maintain high firing rates to preserve the total stimulus. Consequently, due to bandwidth
limitations, fewer sources can be accommodated by a single HICANN link. Therefore, the
sources are distributed across the entire wafer, necessitating longer connections, which,
in turn, results in increased synapse loss. Simultaneously, with the reduced connection
count, fewer buses are occupied near the internally placed neurons, leaving more available
for internal connections, thus resulting in reduced synapse loss there.

Conversely, when more external connections are implemented, it becomes feasible to
position many sources in close proximity to the target HICANNs. This results in fewer
lost external routes. However, at the same time, bus utilization increases, leading to a
higher number of internal routes being lost.

To maintain the balanced state of the network, an even distribution of losses on all
connections is pursued. This is approximately the case for 200 external connections per
neuron, which are consequently used in the final hardware implementation. Resulting
statistics regarding synapse loss are listed in table 5.3, and the network behavior of the
final model is showcased in section 5.1.5. In addition, simulations of the model without
synapse loss indicate that the investigated network statistics remain unaffected by the
sampling of external connections using the specified parametrization.

As introduced in section 5.2.1, specialized neuron placement is required to record the
immense number of spikes obtained in the high firing regime. There, manual adjustments
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Figure 5.13.: Impact of the external connection count per neuron on the map and route
performance. Depicted is the synapse loss derived from the map and route
results of the downscaled balanced random network for varying numbers
of connections to the external pool of sources. Different colors represent
the total loss of synapses, the loss of external connections, or the loss of
internal excitatory or inhibitory connections. Similar losses are observed
across all connection types when a total of 200 connections are employed.
The data is obtained for the maximum external firing rate of νext = 4νthr
and the parametrization displayed in appendix A.5.

are made to the automatic mapping to separate 30 neurons onto individual HICANNs.
All other settings remain unchanged. Due to the larger distribution of neurons, a small
increase of the total synapse loss to an average value of 24% is observed. A visualization
of the resulting distribution of placed neurons and routes on the wafer for both models is
depicted in fig. 5.14. As a result of the random connection topology of the model, which
allows for potential connections between all neurons, simplifications cannot be employed,
and routing complexity grows quadratically with size. Consequently, even though only
a fraction of the wafer is occupied by neurons, the model’s size is constrained by bus
utilization.

5.2.3. Emulation on BrainScaleS-1

Finally, with the model being adapted and mapped to the hardware, it is emulated
on the BrainScaleS-1 system. To this end, the neurons are configured according to the
mean values obtained from the calibration, introduced in table 5.2. There, no parameter
distributions are applied, as they are used to model the circuit variations in the first
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(a)

(b)

Figure 5.14.: Visualization of the map and route result of the balanced random network on
BrainScaleS-1. (a) displays the unmodified placement and (b) the placement
with 30 neurons separated onto distinct HICANNs. Each HICANN is
depicted as a rectangle with a triangle at the bottom. To illustrate this,
in (a), an unused HICANN at the right edge is outlined in black. A red
triangle indicates the injection of external spikes. Neuron placement is
represented by the use of blue coloration, with darker shades indicating
higher neuron counts. Therefore, the light blue HICANNs at the top of (b)
signify the separately placed neurons. Connections are visualized as colored
lines routed along the edges of the chips.
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place.
The only exception to this is the synaptic weight. As the inhibitory weight is examined

in relation to the excitatory weight by the parameter g, its values span almost one order
of magnitude. In the adapted downscaled model, values between 2.4 s−1 and 19.2 s−1

are required for wI/Cm. In comparison, the inhibitory weights that are achieved on the
hardware for the chosen neuron parametrization range from 0.70 s−1 to 18.72 s−1, with
only two possibilities to modify them: on the one hand, as discussed in section 5.1.3,
choosing more distant reversal potentials results in smaller weight requirements. However,
the reversal potentials are already optimized and further increasing them leads to an
undesired low signal-to-noise ratio of the membrane. On the other hand, the small
capacitors of the neuron circuits could be used. In this case, the weight calibration
reveals a minimum synaptic weight of 5.82 s−1. Since this exceeds the minimum required
weight by more than a factor of two it is even less suitable. Therefore, the emulations
are limited to the presented weight range.

In general, this suffices to explore the various network behaviors. However, the primary
focus of this thesis lies in obtaining the asynchronous irregular regime with low firing
rates. On the one hand, this regime mirrors a biologically plausible firing pattern, which
is also observed in the cortical microcircuit. On the other hand, with the BrainScaleS-1
system being specifically designed for biological networks, it comfortably operates within
the hardware’s bandwidth constraints. Therefore, an adequate hardware representation is
found without the need to reduce the number of evaluated neurons. As a consequence, the
model’s synaptic weights are adjusted to achieve even higher values of g on the hardware.
To this end, the excitatory weight is set to wE/Cm = 1.69 s−1. For comparison reasons,
this weight adjustment is also incorporated in the final simulation results, depicted in
fig. 5.11.
With these settings, the network is emulated on the BrainScaleS-1 hardware. In

contrast to the software simulations, the network is emulated for 60 s of biological time.
The resulting extension of runtime is negligible when considering the system’s speedup
factor. However, prolonging the emulation provides the network with additional time to
settle in the beginning, which is desirable as it is not possible to initialize the neuron
circuits on the hardware.

Figure 5.15 presents the obtained network statistics. For values of g and νext that result
in mean firing rates above 30Hz, the alternative neuron placement with 30 separated
neurons is used. In this case, only the separated neurons are evaluated to overcome the
bandwidth limitations. Due to the synchrony’s dependence on the number of evaluated
neurons and since 30 neurons are insufficient to produce reliable results, no synchrony
values are determined for the alternative placement.

To simplify the automatic weight configuration process, the hardware parameters for
both synapse types are set according to the excitatory weight calibration. However, to
address the discrepancies in calibration results observed for the inhibitory synapses, as
demonstrated in fig. 4.15, the evaluation process takes into account the correct biological
representation for each set of hardware parameters. As a consequence of this approach,
irregular values of the parameter g are obtained.
Although network regimes with firing statistics similar to those depicted in fig. 5.11
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Figure 5.15.: Heat map of the emulated downscaled balanced random network behavior on
BrainScaleS-1. The visualization and synchrony parametrization correspond
to fig. 5.1. Each configuration is emulated 10 times, and the resulting
mean values are depicted. For configurations with mean firing rates below
30Hz, the unmodified placement is used. For all other configurations,
the alternative placement is utilized, where only 30 separated neurons are
evaluated. Different placements can be distinguished, as a synchrony value
is determined only when all neurons are evaluated.

are observed, there are distinct differences noticeable.

Firstly, the maximum firing rate of the network is reduced to less than 250Hz. This
rate is also evident for a weight factor of g = 0, which, due to the parasitic capacities in
the synaptic input lines, is represented by removing all inhibitory connections. Measured
on separately placed neurons and also confirmed in emulations with a maximum of 6
neurons per HICANN, this is not a result of bandwidth limitations on the chips. However,
as demonstrated in section 4.4.4, there is a limitation on the maximum conductance that
can be generated by a single synaptic input circuit. Consequently, in contrast to the
software simulation, the maximum neuron stimulation and thus the maximum firing rate
are reduced. This observation is further validated by testing a single neuron that receives
strong stimulations from eight synaptic inputs, resulting in similar maximum firing rates.

Furthermore, this limitation becomes apparent when comparing the firing rates obtained
for external input rates of νext = 0.8νthr with νext = 3.2νthr at g = 1.16. For higher
external stimulations, lower firing rates are observed. This is caused by the different
number of utilized synaptic inputs, which is depicted in fig. 5.16. On the one hand, for
lower external rates, it is possible to accommodate more external sources on a single
HICANN, as explained in section 5.2.2. Due to the random sampling of connections,
sources end up sharing the same target neurons. Consequently, more connections have
to be routed from a single HICANN link to individual neurons. On the other hand,
the topology of the wafer dictates that only connections from the same external input
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Figure 5.16.: Synaptic input utilization. The histogram shows the number of synaptic
inputs utilized in the 30 separated neurons used to investigate the network
behavior in the high firing regime. Different colors show the placement
results for different external input rates νext given in relation to νthr. For
each neuron, there are a maximum of 8 inputs available, one for each of its
membrane circuits.

merger can share buses. Moreover, only when the signal is received from the same bus it
is distributed across different synapse columns instead of different synapse rows. This
results in more utilized synaptic inputs and therefore also higher firing rates for lower
external rates.

This effect could be circumvented by standardizing the placement of external sources.
However, in this context, it is intentionally refrained from doing so to demonstrate the
hardware’s behavior.

Figure 5.16 also demonstrates that the implemented placement closely approaches
maximum synaptic input utilization. The only possibility to increase this number is
to build larger composite neurons comprising more membrane circuits. However, as
demonstrated in section 4.4.2, the finite resistances between the circuits result in undesired
changes of the membrane behavior. Therefore, no further adjustments are made in this
thesis.

Additional modifications of the network behavior are demonstrated in fig. 5.17. It
displays a comparison of the firing rates in the emulation with those of a NEST simulation
of the final model. Both models share the same parametrization and network topology.
The results are presented for both the minimum and maximum external rates.

Except for small values of g, the emulations exhibit higher firing rates. This is also
attributed to synaptic input saturation. With higher weights on inhibitory connections,
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Figure 5.17.: Comparison of firing rates between emulation and simulation. The graph
illustrates the firing rates of the hardware emulation (HW) and NEST
simulation (NEST) at external input rates of 0.8 and 3.2 in relation to
νthr. In both implementations, the same network topology is employed
for each external rate. Error bars represent the standard deviation across
10 experiment repetitions. To achieve this, different seeds are used in the
simulation. In all simulations and for low firing rates in the emulations,
deviations are too small to be discernible.

their saturation effect is more pronounced compared to excitatory ones. Consequently,
inhibition is diminished, leading to elevated firing rates. However, in the asynchronous
irregular regime with firing rates below approximately 50Hz, this effect becomes negligible,
and similar results are observed. This observation is also evident in terms of irregularity.
For small values of g, where both inputs are equally saturated, regular firing in accordance
with the simulation results is obtained. However, with the attenuation of inhibition, less
irregularity is observed for higher values of g and high firing rates.

To account for this and to extend the observable range in the desired regime, the
investigated external input rates are shifted to slightly smaller values compared to the
original simulations. In agreement with the original model, for even lower external rates
than those depicted, the neurons cease to spike due to insufficient stimulation.

Furthermore, in the regime characterized by firing rates below 30Hz, the level of
network synchrony is determined, revealing increased values. A possible explanation for
this is the presence of additional neuron correlations on the hardware, such as correlated
weights caused by shared synapse drivers, as explained in section 4.2.3, or increased
stimulation due to concurrently spiking synapses, as discussed in section 4.4.3. These
factors are not accounted for in simulation. However, since the regime is still characterized
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by asynchronous irregular behavior, no further investigations are conducted in this regard.
All in all, similar firing patterns are observed in simulation and on the hardware. For

high inhibition and small external input rates, asynchronous irregular network behavior
is obtained with rates similar to those observed in simulation. Moreover, the emulation
results are stable, and consistent statistics are measured when repeating the experiment.
By reducing the inhibitory weight factor, a transition to regular firing with elevated rates
is found. Although the hardware is limited with respect to the biologically implausible
high stimulation, it is still valuable in demonstrating the capabilities of the bus system to
handle this enormous number of spikes, especially considering that the hardware operates
with a speedup factor of 10 000 compared to biological real-time.
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6. The Cortical Microcircuit Model on
BrainScaleS-1

Built upon the principles of the human brain, neuromorphic hardware is designed to
accelerate and enhance the power efficiency of spiking neural network simulations. To
accomplish this, it is necessary to have appropriate benchmarks that facilitate the
demonstration of system functionality and enable performance comparisons [Davies 2019].
Large-scale biological networks are particularly well-suited for this purpose, as they
present a significant challenge to conventional computers due to their intricate network
topology with numerous interacting components. The cortical microcircuit, introduced
in section 2.5, is such a network. By replicating the structure and behavior of the brain’s
cortex under the surface of 1mm2, it has become a standard benchmark for neuromorphic
computing [Ostrau et al. 2022]. Recently, it has been used to showcase the capabilities of
various simulators [Albada et al. 2018; Rhodes et al. 2020; Knight et al. 2021; Golosio
et al. 2021].

Therefore, in this thesis, the network is emulated on a BrainScaleS-1 system to evaluate
the hardware’s capabilities. However, due to the limited flexibility of the system, emulating
the original model is not feasible. Instead, adaptations are necessary to align the model
with hardware constraints. For this purpose, similar to the balanced random network
implementation discussed in chapter 5, a parallel simulation of the model using the NEST
simulator is conducted alongside the hardware-based efforts. This approach facilitates
the exploration of network adaptations and allows for a comparison of the final emulation
results.
This chapter encompasses both the simulation and emulation endeavors. Section 6.1

introduces the NEST simulation, its necessary modifications, and their impact on the
network’s behavior. Subsequently, section 6.2 delves into the hardware implementation.

6.1. Adapting the Model to the Neuromorphic Hardware

Following a physical modelling approach, the neuron and network properties on the
BrainScaleS-1 hardware are restricted by the capabilities of its integrated circuits. As
a result, networks must either conform to these limitations or be adjusted to align
with them. For this purpose, this thesis utilizes software simulations that facilitate the
exploration of model modifications.

Chapter 5 illustrates existing hardware constraints and presents potential adaptations
for large-scale biological networks using the balanced random network model as a foun-
dation. Since the structure of the cortical microcircuit is derived from the balanced
random network, the same constraints and strategies to address them can be applied
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to it. However, due to its more complex multi-layered structure, preserving the original
network behavior is not feasible. Consequently, the adaptations primarily aim to preserve
a biologically plausible neuron behavior characterized by an asynchronous irregular firing
pattern with firing rates below 30Hz, which is also observed in the balanced random
network.

This section introduces the impacts of these adaptations on the cortical microcircuit. It
closely follows the structure of section 5.1, commencing with a demonstration of the origi-
nal network behavior in section 6.1.1. Following that, section 6.1.2 discusses the reduction
of neuron and synapse counts to fit the network within a single BrainScaleS-1 wafer. Sub-
sequently, section 6.1.3 addresses the transition from current-based to conductance-based
synapses. Based on these findings, section 6.1.4 illustrates the effects of adjusted and
distributed neuron parameters, focusing on different delay distributions.

6.1.1. Simulation of the Original Model

This section presents the NEST simulation of the original cortical microcircuit model,
as detailed in Potjans et al. 2012. Implemented during the bachelor thesis of Jonas
Weidner [Weidner 2019], it serves as a reference for all subsequent model adaptations.
Additionally, it is used to determine appropriate parametrizations for the synchrony
evaluation.

The simulation follows the neuron and network descriptions provided in section 2.5.1.
For its implementation, the connection probability Kpre/post for each pair of pre- and
postsynaptic populations is converted into a corresponding connection count Cpre/post.
By reversing the probability calculation, it is determined to

Cpre/post =
log
(︁
1−Kpre/post

)︁
log
(︂
1− 1

NpostNpre

)︂ . (6.1)

Here, Npre and Npost represent the neuron counts of the populations involved. Each of
these connections is established by randomly selecting a pre- and post synaptic neuron
from the respective populations. Consequently, unlike in the balanced random network
model, neurons do not have identical synapse counts.

The resulting network is simulated for 10 s of biological time with a simulation time-
step of 0.1ms. Spikes obtained in the first second of the simulation are excluded from
the evaluation to allow for the network behavior to stabilize. Furthermore, since the
thalamo-cortical external input of the model is limited to the first 10ms of the simulation,
it is expected to have negligible impact on the obtained network behavior and is therefore
omitted.

To enable a comparison, the resulting network characteristics are initially prepared
as described in Albada et al. 2018. There, histograms are generated using a bin width
according to the Freedman-Diaconis [Freedman et al. 1981] rule:

Binwidth = 2
IQR(x)

3
√
n

. (6.2)
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Here, IQR(x) represents the interquartile range of the data and n is the number of data
points. Moreover, the results are smoothed using the scipy Gaussian kernel density
function [Jones et al. 2001] with a bandwidth of 0.3 s−1. The firing rate distributions
obtained in this manner for individual populations closely align with those from the
original publication and the implementation on the SpiNNaker system [Albada et al.
2018], as illustrated in fig. A.12.

However, given the substantial modifications in the model behavior due to necessary
adaptations, the given visualization method is unsuitable for meaningful comparisons.
With alterations in network characteristics, bin sizes change, leading to substantial
modifications in the visualized data. Unfortunately, this effect is not discernible due to
the application of Gaussian smoothing. For this reason, in the following, the firing rates
are represented in normalized histograms with a fixed bin width of 1ms. The outcomes
of this method for the original model are visualized in fig. 6.1. For the purpose of better
comparison, the figure also includes the downscaled model with both current-based and
conductance-based synapses, which will be discussed in later sections.
In addition, the irregularity and synchrony of the network are assessed using the

methods described in section 2.3. Given that modifications to the network behavior due
to model adaptations are inevitable, the focus during the alignment of the model is on
preserving the asynchronous irregular firing behavior of the populations. In the original
publication, this behavior is defined by mean firing rates below 30Hz, mean irregularity
values falling between 0.7 and 1.2, and a synchrony value below 8. There, particular
attention must be paid to the synchrony due to its dependence on the chosen bin width
of the spike count histogram and the number of evaluated neurons. For this reason, in
accordance with the original publication, a bin width of 3ms is utilized. However, due to
the necessary downscaling of the model, it is not possible to preserve a neuron count of
1000 evaluated neurons per population. For this purpose, the evaluation is limited to
100 neurons, and the synchrony boundary is rescaled accordingly.

The relationship between synchrony and neuron count is determined by randomly
sampling various numbers of neurons from the full-scale model. As visualized in fig. 6.2,
a linear correlation is observed. Furthermore, for lower neuron counts, the reduction
of the mean bin height and a maximum of one spike per bin, results in similar mean
and variation values for the bin heights, leading to synchrony values of 1. Therefore, the
original boundary value of 8 can be linearly extrapolated to a new threshold of 1.7 for
100 investigated neurons, which is applied in the following considerations.

Table 6.1 lists the resulting mean network characteristics of the simulated model.
There, the mean irregularity of all populations is smaller than expected from the original
publication and the obtained values are situated at the lower boundary of the irregular
firing regime. For a more comprehensive understanding of the results, the irregularity
distribution within each population is depicted in fig. A.13. Theses values closely align
with those observed in the SpiNNaker implementation in Albada et al. 2018. Moreover,
the population behavior is consistent with the original model. For instance, the excitatory
population of layer 5 demonstrates the highest level of synchrony while the inhibitory
population of layer 6 exhibits the lowest synchrony value. This suggests that the observed
discrepancies likely arise from differences in the evaluation method and are considered
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6. The Cortical Microcircuit Model on BrainScaleS-1

Figure 6.1.: Firing rate distributions of the NEST simulation of the cortical microcircuit
model for different stages of adaptation. “Original” shows the behavior of
the model with parameters extracted from Potjans et al. 2012. “10% Cuba”
demonstrates the downscaled current-based version, and “10% Coba” the
downscaled conductance-based implementation of the model. The mean
firing rates of the neurons are depicted as a histogram, with a fixed bin width
of 1ms. The area beneath the histograms is normalized to one. Each row
displays the results of a different layer of the network, with the excitatory
population on the left and the inhibitory population on the right. Displayed
are the mean values obtained from 30 simulations, each featuring different
randomly generated connections. The error bars represent the standard
deviation across these simulations.
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Figure 6.2.: Relationship between synchrony and the number of considered neurons. The
synchrony calculation is limited to spikes obtained from a subset of neurons
which are randomly drawn. The results are depicted for different sizes of
these subsets. Exemplarily, only the results for the excitatory populations are
shown; inhibitory populations behave analogous. The shaded area represents
the standard deviation across 10 subsets of neurons with same size.

Table 6.1.: Network characteristics obtained form the NEST simulation of the cortical
microcircuit model with parameters as outlined in Potjans et al. 2012. Different
columns list the mean rates, mean irregularities and synchrony values of all
eight populations. Displayed are the mean value and standard deviation
obtained from 30 simulations, each featuring different randomly generated
connections.

Population Rate (Hz) Irregularity Synchrony

23e 0.85± 0.02 0.646± 0.004 1.11± 0.05
23i 2.99± 0.02 0.725± 0.005 1.03± 0.04
4e 4.52± 0.03 0.719± 0.002 1.10± 0.05
4i 6.30± 0.01 0.738± 0.003 1.01± 0.04
5e 7.7 ± 0.2 0.721± 0.004 1.24± 0.05
5i 8.97± 0.02 0.695± 0.008 0.95± 0.03
6e 1.65± 0.03 0.683± 0.004 1.00± 0.02
6i 8.43± 0.02 0.683± 0.005 0.94± 0.03
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6. The Cortical Microcircuit Model on BrainScaleS-1

negligible compared to the expected model modifications resulting from the alignment to
the hardware. Additionally, the network behavior is found stable with respect to different
implementations of its random network connections.

When disregarding the peak of small irregularity values obtained from a small per-
centage of neurons exhibiting regular firing at higher rates, the irregularity distribution
is accurately represented by its mean value. Therefore, in the subsequent analysis, the
primarily focus is on comparing the mean values, with detailed distributions provided in
the appendix for reference.

6.1.2. Downscaling the Model and Replacing the External Input

As already demonstrated through the balanced random network, the routing possibilities
of the BrainScaleS-1 system are limited. Therefore, in order to mitigate large number of
not implemented connections, it is necessary to downscale the cortical microcircuit to
10% of its original size to fit on a single wafer, as detailed in section 6.2.1.

To achieve this, the same methodology as employed in the balanced random network
is used. Neuron and synapse counts are both downscaled by a factor of k = 10. At
the same time, to compensate for the lost stimulation, the synaptic weights are linearly
increased by the same factor. This results in an increased internal variance, which can
be compensated by substituting portions of the external Poisson input with a constant
input current. However, as demonstrated in Albada et al. 2014, there exists a limitation
to this scaling method, which is reached when the external input is completely replaced.
As a result, while a network with 90% of the original size can still be simulated with
comparable network statistics, the same does not apply for a network scaled down to
10% of the original model. Consequently, modifications of the network behavior become
inevitable and the primary focus of this thesis is on preserving a biologically plausible
network behavior characterized by asynchronous irregular firing patterns with mean firing
rates similar to the original model.

To achieve this, the entire external input is replaced by an external current, calculated
for each population according to:

Ipopext = we · Cpop
ext · νbg · τ esyn. (6.3)

Here, Cpop
ext is the number of external connections received by the population, which

is listed in table A.3, we and τ esyn are the weight and synaptic time constant of the
excitatory external input, and νbg the external input rate. Due to the missing possibility
on the hardware to inject currents, this external input is generated by an increased leak
potential of

Epop
leak,new = Eleak +

Ipopext

gleak
= Eleak + Ipopext

τm
Cm

. (6.4)

According to eq. (2.1) this represents the same external stimulation.

Additionally, two factors are introduced, which independently modify the weights of
the excitatory and inhibitory synapses. By this, similar to the balanced random network
model, the imbalance between excitatory and inhibitory weights can be adjusted to correct
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Table 6.2.: Network characteristics obtained form the downscaled NEST simulation of
the cortical microcircuit model. Different columns list the mean rates, mean
irregularities and synchrony values of all eight populations. Displayed are
the mean values and standard deviation obtained from 30 simulations, each
featuring different randomly generated connections.

Population Rate (Hz) Irregularity Synchrony

23e 1.91± 0.05 0.915± 0.009 1.11± 0.04
23i 4.28± 0.06 1.02 ± 0.01 1.12± 0.04
4e 6.4 ± 0.1 1.059± 0.009 1.15± 0.04
4i 7.51± 0.04 1.12 ± 0.01 1.07± 0.04
5e 6.7 ± 0.5 1.06 ± 0.02 1.48± 0.07
5i 10.4 ± 0.2 1.08 ± 0.03 1.12± 0.05
6e 2.1 ± 0.1 0.88 ± 0.02 1.10± 0.04
6i 10.01± 0.06 1.02 ± 0.02 1.05± 0.04

the observed network activity. Due to the random connectivity of the 8 populations
with either excitatory or inhibitory synapses the network behavior is complex and higher
firing rates of a specific population are not necessarily compensated by a reduction of
the excitatory weight. Therefore, various parameter combinations and network models
have been tested regarding the best-matching mean firing rates with the original model.
The closest match was found for a linearly downscaled network with completely replaced
external input and an additional excitatory weight factor of 0.7 and an inhibitory weight
factor of 1.4, which corresponds to a relative inhibitory weight factor of g = 8.

The resulting firing rate distribution of this network is depicted in fig. 6.1, and the
mean network characteristics are detailed in table 6.2. Notably, the network behavior
changes. As introduced for the balanced random network, neuron firing is driven by
membrane fluctuations within the asynchronous irregular regime. Therefore, despite
partial compensation through an increase in the relative inhibitory weight, the heightened
variations caused by the stronger weights lead to higher firing rates in the majority of
neurons. Consequently, the distributions are not longer dominated by neurons with firing
rates below 1Hz but are shifted towards higher rates, predominantly below 20Hz. As a
consequence of this shift, the mean firing rates of all populations increase.

With the heightened internal variation of the neurons, consistent with the findings
from the downscaled balanced random network model, also higher irregularity values are
observed. Regarding synchrony, no specific trend is identified. While certain populations
exhibit elevated values, they still remain within the asynchronous regime.

In summary, as anticipated, the network characteristics are not preserved in the
downscaled model. Nevertheless, all observables remain within the asynchronous irregular
regime, with mean firing rates comparable to the original model.
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6.1.3. Transition From Current-Based to Conductance-Based Synapses

Analogous to section 5.1.3, the synapse model of the downscaled cortical microcircuit
has to be changed from current-based synapses to conductance-based synapses. This
transition involves the modification of mean synaptic weights, as specified in eq. (5.6).
This modification ensures the preservation of the PSP height of the membrane potential
in response to a single spike for a neuron that is far from the high-conductance state
and starts from its mean membrane potential ⟨U⟩. In this context, the mean membrane
potential of a specific postsynaptic neuron is calculated as

⟨U⟩post = Erest +
τm
Cm

· τsyn

(︄∑︂
pre

wpre · Cpre/post · ⟨νpre⟩+ wexc · Cpost
ext · νbg

)︄
, (6.5)

taking into account the inputs received from all eight pre-synaptic populations, each firing
with an average rate of ⟨νpre⟩, along with the contribution from external sources. Here, all
parameters are adopted from the original full-scale network description. Additionally, the
standard deviation of the weight distributions is again set to 10% of the newly calculated
mean value for each population.

While considering additional adjustments, such as modifying the time constants of the
neurons, they are found to be less advantageous since they would require parameters that
cannot be implemented on the hardware. However, similar to the balanced random net-
work, the selection of appropriate reversal potentials plays a crucial role. Optimal results
are achieved when employing reversal potentials of Ee

rev = 50mV and Ei
rev = −150mV.

In this case, the threshold value, which remains consistent across all populations, is
positioned in their center. Furthermore, distant values are chosen to limit the influence
of the high-conductance state. However, a narrower gap is selected in comparison to
the parametrization of the balanced random network. This choice is influenced by the
reduced separation between the threshold and resting potential of the neurons within
the cortical microcircuit. Given the smaller sub-threshold regime, the hardware achieves
higher resolution by mapping its maximum and minimum voltages to biologically closer
values, as elaborated in section 4.2.1.

Utilizing this parametrization, the simulation reveals the firing rate distribution illus-
trated in fig. 6.1, and the mean network characteristics listed in table 6.3. As introduced
in section 5.1.3, a distinct neuron behavior is observed in the case of conductance-based
synapses. As a consequence of this, the network characteristic changes and slightly
smaller mean firing rates and irregularity values are measured. Furthermore, the dif-
ference in synchrony between the populations is reduced. However, with the presented
parametrization, similar first- and second-order statistics are obtained without the need
for further adjustments, and the network maintains the desired asynchronous irregular
behavior.

6.1.4. Introducing Hardware Parameters With Variations

Due to the limited configurability of the hardware and the manufacturing-induced
variations between circuits, the neuron parameters of the model must be adjusted
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Table 6.3.: Network characteristics obtained form the downscaled NEST simulation of
the cortical microcircuit model with conductance-based synapses. Different
columns list the mean rates, mean irregularities and synchrony values of all
eight populations. Displayed are the mean values and standard deviation
obtained from 30 simulations, each featuring different randomly generated
connections.

Population Rate (Hz) Irregularity Synchrony

23e 1.62± 0.04 0.853± 0.008 1.13± 0.06
23i 3.93± 0.03 0.97 ± 0.01 1.12± 0.04
4e 8.09± 0.09 1.010± 0.003 1.25± 0.05
4i 6.78± 0.02 1.026± 0.008 1.12± 0.05
5e 5.0 ± 0.3 0.98 ± 0.01 1.48± 0.07
5i 10.1 ± 0.1 1.00 ± 0.02 1.17± 0.04
6e 1.35± 0.06 0.78 ± 0.01 1.07± 0.04
6i 9.38± 0.05 0.97 ± 0.01 1.05± 0.03

to match the hardware conditions. These modifications were incorporated into the
simulation during the bachelor thesis of Moritz Hornung [Hornung 2020]. The results of
these simulations, expanded by an exact model of the parameter distributions obtained
from the calibration routines, are presented in this section.

The adaptations are separated into three distinct parts. First, the neuron parameters
are aligned with the configurations available on the hardware. Subsequently, the influence
of distributed parameters on the network behavior is studied. Based on this, the different
delay configurations of the connections are tested resulting in the final model which is
implemented on the hardware.

Hardware Parametrization

Modeling a biologically plausible network structure, the cortical microcircuit aligns with
the parameter ranges for which the BrainScaleS-1 hardware is designed. Therefore, only
the synaptic time constants have to be prolonged from 0.5ms to 2.2ms to match their
limited configurability measured in fig. 4.22. This change, in turn, influences the strength
of synaptic inputs, as stimulations act on the membrane for a longer duration. To
compensate this, the synaptic weights are adjusted according to

wnew = worig τ
orig
syn

τnewsyn

, (6.6)

where “new” represents adapted parameters and “orig” the original parameters. As a
result of this, even though it is distributed over a longer time span, the overall stimulation
strength is approximately preserved. The resulting mean weight of each population in
the final model is listed in table A.6.
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Figure 6.3.: Firing rate distributions of the NEST simulation of the cortical microcircuit
model for different stages of adaptation. Each modification is added on top
of the previous adaptation. Therefore, “τsyn” shows the behavior of the
downscaled model with conductance-based synapses under the influence of
prolonged synaptic time constants. Based on this, “Variations” illustrates
the effects of additionally distributed neuron parameters. Finally, “Delay”
displays the final network model with identical delays for excitatory and
inhibitory connections, which are described by a Gaussian distribution with
a mean value of 1ms and a standard deviation of 0.25ms. The mean firing
rates of the neurons are depicted as a histogram, with a fixed bin width
of 1ms. Additionally, the area beneath the histograms is normalized to
one. Each row displays the results of a different layer of the network, with
the excitatory population on the left and the inhibitory population on the
right. Displayed are the mean values obtained from 30 simulations, each
featuring different randomly generated connections. In simulations involving
distributed parameters, in each repetition, both the connections and the
neuron parameters are regenerated. The error bars represent the standard
deviation across these simulations.
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Figure 6.3 shows the resulting firing rate distributions of the adapted model. Comparing
the results to the previous adaptation, which is illustrated in fig. 6.1, the most significant
deviation is observed in the excitatory populations of layer 5 and layer 6. In both cases,
the distributions are broader, accompanied by higher mean firing rates. Nonetheless, it
is worth noting that the mean firing rates of all eight populations remain below 11Hz.
This trend is similarly evident in the irregularity distributions depicted in fig. A.14.
There, slightly broader distributions are obtained for the same populations. At the same
time, the mean values of all populations are approximately preserved. Consequently, the
network behavior is still irregular with similar firing rates.

In terms of synchrony, prolonging the synaptic time constants results in either a slight
reduction or no change in most populations. Notably, the only exception is the excitatory
population of layer 5, which demonstrates an elevated synchrony value of 1.68 ± 0.08.
Consequently, this population is situated close to the boundary value of synchronous
behavior. However, as the model is further modified in the following, no additional
adjustments are made to correct for this deviating behavior.

Variations

Due to circuit variations of the analog components of the BrainScaleS-1 hardware, the
network behavior is examined in the presence of distributed parameters. To achieve this,
the downscaled cortical microcircuit with conductance-based synapses is simulated, em-
ploying neuron parameters selected from Gaussian distributions, which roughly resemble
the hardware variations. Initially, the network’s behavior is studied with individually
distributed parameters, applying the same standard deviations for voltages and time
constants as discussed in section 5.1.4. The results of this investigation are presented in
fig. 6.4. There, the impact on network behavior is measured by analyzing the variation
in the mean firing rate of each population.

The observations indicate that introducing distributed values has a limited impact
on the network behavior for the majority of neuron parameters. However, noticeable
differences become apparent in the case of distributed threshold, reset and resting
potentials. On the one hand, these potentials are associated with individual neurons.
Consequently, their influence on neuron behavior is not averaged across all incoming
synapses, unlike the case with distributed weights. On the other hand, along with the
weights, the three potentials have the most significant influence on the firing behavior.

An increased resting potential is equivalent to a constant positive input current, while a
reduction of the threshold potential lowers the stimulation required for a neuron to spike.
The same principle applies to elevated reset potentials, where less stimulation is needed
immediately after the refractory period. Consequently, neurons with parameters from
the edges of the Gaussian distribution exhibit either higher or lower firing rates. Capped
at 0Hz, the distribution is shifted towards higher mean firing rates. However, due to the
complex network structure with inhibitory connections, the effects manifest differently for
individual populations, with inhibitory populations generally showing larger deviations
due to their higher baseline firing rates.

In this study, the weights are not directly investigated, as they are already Gaussian
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Figure 6.4.: Influence of distributed neuron parameters on mean firing rates. Presented are
simulation results from the downscaled cortical microcircuit with conductance-
based synapses. In these simulations, individual neuron parameters are
replaced by Gaussian distributed parameters, while all other remain fixed.
The mean values of these distributions are set in accordance with the values of
the original model, with Ee

rev = 0mV and Ei
rev = −100mV for the reversal

potentials. Furthermore, a standard deviation of 5% for the membrane
capacitance, 10% for voltages, and 20% for time constants is considered, all
in relation to their respective mean values. Only for the reversal potentials,
a standard deviation of 10% of the difference from the resting potential is
taken into account. Parameters are redrawn if the reset potential exceeds the
threshold potential. For each parameter, the figure illustrates the difference
of the mean firing rate relative to the mean without variations. The data
points labeled “All” depict results obtained with all parameters distributed.
Results are shown for all eight populations. Error bars represent the standard
deviation of the measurement, obtained from 10 simulations with randomly
drawn variations. Figure adapted from Hornung 2020.

134



6.1. Adapting the Model to the Neuromorphic Hardware

Table 6.4.: Neuron parametrization of the hardware representation of the downscaled
cortical microcircuit network with conductance-based synapses. Defined by
Gaussian distributions, the mean and standard deviation are presented. The
distributions’ ranges are provided in the last column. For the resting potential
and the weights, only the standard deviations are provided. Their mean
values are dependent on the populations and are documented in tables A.6
and A.7. The specified percentage for the weight is relative to the respective
mean value of the population.

Parameter Mean± Std Range

τm 10 ± 8.0 ms [3 ,∞)
τrefrac 2 ± 1.5 ms [0 ,∞)
τ esyn 2.2± 0.6 ms [1.8 , 4]

τ isyn 2.2± 0.4 ms [1.9 , 6]

Vthres −50 ± 1.1 mV (−∞ ,∞)
Vreset −65 ± 1.6 mV (−∞ , 0.9Vthres]
Erest - ± 2.0 mV (−∞ ,∞)
Ee

rev 50 ± 11.1 mV (−∞ ,∞)
Ei

rev −150 ± 1.6 mV (−∞ ,∞)
w - ± 50% [0 ,∞)
Cm 250 ± 0 pF [0 ,∞)

distributed in the original model. However, due to the limited precision of the weight
calibration, as explained in section 4.2.3, it is necessary to increase the standard deviation
of this distribution from 10% to 50% of the respective mean value. Simulation results
indicate that the model remains robust in response to this adjustment, as the network
behavior remains largely unchanged. This resilience is also evident in the negligible
variation observed for distributed membrane capacitances. Since the time constants are
held constant for each neuron, distributed capacitances result solely in a modification of
neuron excitability.

In the final hardware representation, the parameter distributions are aligned with
the calibration results of the hardware, which are listed in table 6.4. Similar to the
parametrization of the balanced random network presented in section 5.1.4, the accu-
racy of the calibration varies depending on the neuron parameter. However, different
parameters are obtained. On the one hand, this discrepancy arises from dedicated
calibrations conducted for both models, which are necessary since the neurons in the
cortical microcircuit operate with different weights. Therefore, different capacitors are
utilized on the hardware to model the membrane capacitances. On the other hand, as
explained in section 4.2.1, variations measured on the hardware are translated differently
into the biological domain due to the distinct choice of reversal potentials.

Figure 6.3 illustrates the firing rate distribution of the model, using the presented
parameterizations. As a result of the parameter variations, the distributions adopt a
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Figure 6.5.: Dependence of asynchronous irregular behavior on the distribution of de-
lays. Different colors represent the percentage of populations within the
downscaled cortical microcircuit with conductance-based synapses that show
asynchronous irregular behavior, according to the definition introduced in
section 6.1.1. Results are shown for various Gaussian delay distributions
characterized by their mean value and standard deviation, given in percent
of the respective mean value. In contrast to the original model, identical
distributions are used for excitatory and inhibitory populations. On the left,
results are obtained from the network without distributed neuron parameters,
and on the right, with distributed parameters.

behavior similar to the original model. Reflecting increased differences among neurons
within the same population, larger variations in firing rates are observed. While the
distributions are once again primarily characterized by neurons with firing rates below
1Hz, a small percentage of neurons displays higher firing rates distributed throughout
the entire spectrum, constrained by their refractory period. Nonetheless, each population
continues to exhibit a distinct firing pattern with characteristics of the asynchronous
irregular regime, similar to the original model. This consistency persists across repetitions
with randomly selected connections and neuron parameters.

Adjusting the Delay Distribution

Finally, the delays of the model are adjusted to match the restrictions of the hardware.
To accomplish this, both the excitatory and inhibitory delays are configured to the same
mean values, as no hardware-related distinctions are expected, given that delays are
determined by the spatial separation between pre- and postsynaptic neurons. With this
adjustment, the network’s behavior is analysed for various delay distributions in fig. 6.5.
Without distributed parameters, the percentage of populations exhibiting asynchronous
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Table 6.5.: Network characteristics obtained form the downscaled NEST simulation of the
cortical microcircuit model with conductance-based synapses and distributed
parameters according to table 6.4. Moreover, the delays of excitatory and
inhibitory connections are drawn from a Gaussian distribution with a mean
value of 1ms and a standard deviation of 0.25ms. Different columns list the
mean rates, mean irregularities and synchrony values of all eight populations.
Displayed are the mean values and standard deviation obtained from 30
simulations, each featuring different randomly generated connections and
parameter distributions.

Population Rate (Hz) Irregularity Synchrony

23e 2.8 ± 0.3 0.81 ± 0.02 1.05± 0.05
23i 6.5 ± 0.3 0.86 ± 0.02 1.01± 0.06
4e 7.8 ± 0.6 0.85 ± 0.02 1.01± 0.05
4i 12.5 ± 0.3 0.89 ± 0.03 1.05± 0.06
5e 14 ± 3 0.86 ± 0.02 1.5 ± 0.2
5i 15.1 ± 0.7 0.82 ± 0.04 1.08± 0.10
6e 7.0 ± 0.8 0.81 ± 0.02 1.02± 0.09
6i 16.3 ± 0.5 0.82 ± 0.04 0.94± 0.07

irregular behavior decreases for mean delay values exceeding 1ms. This reduction is
solely attributed to changes in synchrony, which can reach values of up to 5 with higher
mean delays. Since the average stimulation remains unaffected by these adaptations, the
mean firing rates and irregularity values remain unaltered. Consequently, related to the
findings of the balanced random network model, the choice of delay distribution plays a
significant role for the correlations in the network. In the original model, asynchronous
behavior is achieved through the use of different distributions for inhibitory and excitatory
populations.

The simulations indicate two possibilities for preventing neuron synchronization. On
the one hand, synchronous behavior diminishes as the standard deviation of the delay
increases. On the other hand, the introduction of distributed parameters hinders neurons
from exhibiting correlated behavior, a pattern also observed for the balanced random
network model. The only exception to this behavior occurs when the mean delay
approaches and surpasses the refractory period of the neurons. In this case, with and
without distributed parameters, the network behavior changes, resulting in higher firing
rates, increased synchrony, and reduced irregularity. However, with an expected mean
delay of 1ms and a standard deviation of 0.25ms, the hardware implementation of the
model is expected within the asynchronous irregular regime.

The network characteristics of the final model are presented in fig. 6.3 and table 6.5.
It is evident that the firing rate distribution remains unaffected by the chosen delay
modifications. In addition, as a result of the parameter variations, higher mean firing
rates with reduced irregularity and synchrony values are observed. Furthermore, the
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disparities between populations are reduced.
In conclusion, the original model’s behavior is not preserved after all the necessary

modification. Nonetheless, a model has been developed that exhibits biologically plausible
firing characteristics similar to the original network behavior and adheres to the constraints
of the BrainScaleS-1 hardware.

6.2. Implementation on BrainScaleS-1

Inspired by the structure of the human brain’s cortex, the cortical microcircuit resembles
as an ideal benchmark for neuromorphic hardware. To this end, it is utilized in this thesis
to demonstrate the capabilities of the BrainScaleS-1 wafer-scale system. However, due
to the physical modeling approach of the system, which comes with reduced flexibility in
model parameters, implementing the original model is not feasible. Consequently, the
model is adapted to the hardware restrictions in section 6.1, while preserving biologically
plausible firing characteristics. Finally, in this section, the adapted model is emulated on
the hardware and its resulting network characteristics are compared with those obtained
in a NEST simulation.
This section is divided in three parts: Section 6.2.1 describes the generation of a

hardware representation of the model with a focus on minimizing the number of unrealized
synapses. Based on this, section 6.2.2 discusses the emulation of the resulting network
description on the hardware. Following the successful emulation of the model, section 6.2.3
presents the time spent during different steps of the execution.

6.2.1. Mapping the Model to the Hardware System

Although downscaled to 10% of its original size and with replaced external input con-
nections, mapping the adapted cortical microcircuit to the BrainScaleS-1 hardware is a
challenging task. This involves identifying neuron circuits for all of its approximately 8000
neurons and establishing up to 3 million connections among them. Given the hardware’s
limited resources, this high-connectivity between all neurons of the model inevitably
results in connections that have no physical representation.
To address this issue, various map and route options, as detailed in section 4.3, are

evaluated. There, the primary objective is not just minimizing the overall number of lost
connections but also to preserve the original network structure by distributing the loss
across all possible connections.

Without manual adjustments, the BrainScaleS-1 operating system automatically places
neurons on the wafer following different strategies. Figure 6.6 illustrates the performance
of three of these strategies across various network sizes of the the cortical microcircuit.
Additionally, the results take into account different numbers of neuron circuits within
each composite neuron, as introduced in section 3.1.1.
For network sizes smaller than 5% of the original model, consistent performance is

observed across all neuron sizes. However, as the network size increases, smaller neurons
exhibit decreasing performance due to an insufficient number of synapses per neuron to
handle the growing influx of connections.
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Figure 6.6.: Synapse loss of the cortical microcircuit at varying degrees of downscaling.
Different colors represent distinct placement strategies, where neurons are
organized according to their population’s connectivity (Population), individ-
ual neuron connectivity (Neuron), or placed in ascending order (Enum), as
detailed in section 4.3.1. Additionally, the numeric value associated with
each line specifies the used neuron size, i.e., the number of neuron circuits
within each composite neuron. The labels are arranged in ascending order of
synapse loss at 10% of the original size. For neuron sizes of 4 and 8, actual
availability data from wafer 30 is taken into account. In contrast, for neuron
sizes of 16, performance on a perfect wafer without missing components is
demonstrated. Error bars indicate the standard deviations of 10 repetitions,
each featuring models with randomly generated connections. For visibility
reasons, only the results with the lowest synapse loss are presented for specific
combinations of neuron size and placement strategy.
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Theoretically, a neuron of size 4 comprises 880 synapses while the 10% model of the
cortical microcircuit requires a maximum of 700 synapses per neuron. However, due to
routing restrictions, only a subset of these synapses can be utilized to implement the
synaptic input of each neuron. This limitation arises for two main reasons. Firstly, due
to the sparse connectivity matrix of the bus system and the limited number of synapse
drivers that can share their inputs, as explained in section 3.1.3, only a subset of synapses
are accessible from each bus. Secondly, connections compete for the available routing
resources. In particular, each synapse driver is exclusively linked to a single route, and
routes can only be shared by pre-synaptic neurons originating from the same HICANN.
Consequently, in combination with the random connectivity of the cortical microcircuit,
where pre-synaptic partners are distributed across the entire wafer, routing limitations
are already reached with smaller synapse counts.
For a neuron size of 8, this performance deterioration reaches a critical point at a

network size of 10%. This becomes evident when assessing the synapse loss of different
neuron sizes on a ideal wafer without excluded components (cf. section 4.1), where the
loss decreases even further for larger neurons.

Nevertheless, when considering a real wafer, it is not feasible to implement even larger
neurons. This limitation arises from two factors. On the one hand, due to unavailability
of certain circuits, there are not enough neighboring neuron circuits to represent all
neurons within the model. For example for a neuron size of 16, this limit is reached at a
network size of 5%. On the other hand, as elaborated in section 4.4.2, finite resistances
are observed between connected membranes, leading to altered neuron behavior for large
neuron sizes. Consequently, a neuron size of 8 and a scaling factor of 10% is chosen for
the final hardware implementation.

Furthermore, fig. 6.6 serves as a basis for evaluating the available placement strategies.
These strategies are responsible for distributing neurons on the wafer and result in
different utilizations of the available buses.

Given the population-specific connectivity within the model, it seems natural to cluster
neurons based on their populations. However, for the targeted neuron size of 8, lower
losses are observed when neurons are placed in numerical ordering. In this configuration,
neurons are placed independently of the underlying network structure, closely adjacent
to one another, which leads to fewer variations in losses when altering the network
structure, in comparison to other placement strategies. Nevertheless, as demonstrated
for neurons of size 16 on an ideal wafer, improved performance is seen with population-
specific placement. This suggests that the loss reduction of the population-independent
placement is a consequence of densely packing neurons in a local minimum of unavailable
components on the wafer.

To circumvent such correlations with the availability data and to optimize the utilization
of wafer components, the placement process is manually adjusted. This approach also
affords control over routing performance and permits the distribution of lost synapses
across all available connections. This is crucial because treating all neurons equally
carries a high risk of losing all connections between populations with limited synapse
counts.

To this end, each population is assigned to a specific group of adjacent HICANNs. These
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Figure 6.7.: Synapse loss per connection for the 10% cortical microcircuit mapped to
the availability data of wafer 30. Only connections containing synapses
are visualized. For each connection, the total number of synapses and the
number of successfully realized synapses is illustrated. To account for the
significant disparities in synapse counts, the connections are categorized into
three distinct ranges.

groups are randomly generated according to their population’s size and are distributed
over the entire wafer, prioritizing HICANNs with high routing possibilities. Subsequently,
various realizations are evaluated for minimal overall and per-connection synapse loss.

Following this approach, a network structure with a synapse loss of 20.53% is obtained.
Moreover, as illustrated in fig. 6.7, no connections are entirely lost, and at most, a 68.57%
synapse loss is observed in the connections between the inhibitory population of layer L5
and the excitatory population of layer L4. Nonetheless, it is inevitable that the number
of lost synapses varies depending on the specific connection.

Figure 6.8 visualizes the map and route results on the wafer, thereby illustrating the
distribution of the neurons. As evident, neurons are predominantly placed in the central
region of the wafer, since HICANNs at the edges have fewer routing partners. The only
exception to this pattern are the HICANNs that are unavailable for placement. Excluded
from the availability database, these HICANNs do not host any neurons and if necessary
are not even used to route connections.

In total, the neurons are accommodated by 266 HICANNs, while 351 HICANNs are
employed to route their connections. Therefore, the majority of the wafer area is utilized
for the network.

While manual distribution of neurons across the wafer yields benefits such as reduced
synapse loss and enhanced network control, it has the drawback of modifying the
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6. The Cortical Microcircuit Model on BrainScaleS-1

Figure 6.8.: Visualization of the map and route result of the cortical microcircuit on
BrainScaleS-1. Each HICANN is depicted as a rectangle with a white
triangle at the bottom. Neuron placement is represented by the use of blue
coloration, with darker shades indicating higher neuron counts. Connections
are visualized as colored lines routed along the edges of the chips.
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network’s delay characteristics. Clustering neurons in distinct regions of the wafer leads
to an increase in large delays. As a result, instead of the approximately Gaussian-
distributed delay values found in the automatically placed balanced random network, a
skewed distribution towards larger values is observed, which is visualized in fig. A.11a.
Additionally, as neurons are grouped according to their associated populations, smaller
delay values are expected between neurons within the same population.

To account for these delay adjustments and the altered network structure arising from
the loss of synapses, the software simulation is extended to incorporate the precise routing
results obtained from the hardware, as discussed in section 6.2.2. Hence, despite the
changed network structure, this approach facilitates a thorough comparison between
simulation and emulation results.

6.2.2. Emulation on BrainScaleS-1

This section addresses the emulation of the downscaled cortical microcircuit on the
BrainScaleS-1 hardware. A single wafer system is configured according to the network
description obtained in the preceding section and the network is emulated for 60 s of
biological time. Subsequently, the spike times of the neurons are retrieved from the
system and a comparison is drawn between the network characteristics obtained from
the hardware emulation and the results of the NEST simulation of the adapted model,
as discussed in section 6.1. However, as highlighted in the previous section, an altered
network structure is expected in the hardware representation of the model, attributed to
the loss of synapses and adjusted delay values. Since these changes are not accounted
for in the adapted model, a final adjustment is introduced, incorporating the projected
network structure of the hardware. Using this model, various weight parameterizations
are simulated to identify suitable adjustments to compensate the modified network
structure. Furthermore, executing the same experiments on the hardware enables a
comparison of resulting network characteristics for different parametrizations.

To integrate the hardware representation into the NEST model, the delay values for
each realized connection in the map and route results are assessed based on the delay
calibration discussed in section 4.2.5. Since the calibration does not encompass circuit
variations, the obtained values are further smoothed using a Gaussian distribution with
a standard deviation of 0.1mV. The resulting delay distribution is depicted in fig. A.11b.
Following this, the extracted connection results are loaded into the NEST model and
the network is simulated with the same structure and delay values as expected on the
hardware.

Given the altered structure of the model, the network characteristics undergo changes.
To account for this, the network is simulated with varying excitatory and inhibitory
weight factors introduced in the downscaled network model. Subsequently, the resulting
network characteristics are evaluated for asynchronous irregular behavior, according to
its definition in section 6.1.1. The outcomes of these measurements are illustrated in
fig. 6.9.

In the model without synapse loss, asynchronous irregular firing is observed with
an excitatory factor of 0.7 and an inhibitory factor of 1.4. Consequently, the results
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Figure 6.9.: Dependence of asynchronous irregular behavior on the excitatory and in-
hibitory weight factors. Different colors represent the percentage of popu-
lations within the cortical microcircuit that exhibit asynchronous irregular
behavior, according to the definition introduced in section 6.1.1. Results
are presented for different factors applied to all excitatory and inhibitory
weights. On the left, findings are displayed from the network emulation on
the BrainScaleS-1 hardware, while on the right, results are shown from the
adapted NEST simulation with incorporated map and route results. The
illustrated values represent the mean values of 10 repetitions with fixed
network topologies but randomly generated parameter variations.
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indicate that in the presence of lost synapses, achieving similar firing patterns requires
stronger inhibitory and weaker excitatory weights. This effect is expected, since in the
adapted model the excitatory external input is replaced by an increased resting potential
that is not affected by synapse loss. Therefore, excitation predominates in the network
with synapse loss, which is compensated by elevated inhibitory weights. As a result,
asynchronous irregular behavior is found in most populations for excitatory factors below
0.5 and inhibitory factors above 1.5.
Considering the already four times larger inhibitory weights of the original model,

the resulting parametrization poses a challenge due to the limited configurability of
the hardware. For instance, an excitatory factor of 0.2 and an inhibitory factor of
2.8 correspond to a weight range from w/Cm = 1.34 s−1 to w/Cm = 110.39 s−1. In
comparison, the minimum and maximum weights that, according to the weight calibration,
can be implemented on the hardware range from w/Cm = 5.82 s−1 to w/Cm = 96.73 s−1.
However, as discussed in the section 4.2.3, the lower bound of the hardware weights is not
addressed by the weight calibration. In this regime, the synaptic current mainly arises
from charge stored in parasitic capacities residing in the synaptic input line, which also
prevent the setting of the weight to zero. Due to the weak effect of the synapses there,
the noise of the membrane, added by the analog readout, surpasses the measured PSP
heights. Therefore, for specific configurations, smaller weights are anticipated although
they cannot be directly evaluated.

To address this limitation, similar to the software simulation, the network behavior of
the emulation is evaluated for different weight factors, as depicted in fig. 6.9. Here, an
excitatory factor of 1.7 corresponds to the minimum weight configuration possible on
the hardware. By employing this minimal weight configuration, asynchronous irregular
behavior is found in all populations for inhibitory weight factors exceeding 1.5. Moreover,
the observed network behavior aligns notably with the characteristics of the software
model, under the assumption of reduced excitatory weights on the hardware.
Given the close relationship between hardware and software implementation, the

obtained results serve as a basis for estimating the excitatory weight factor of the
hardware. To this end, the rate distribution of the hardware is measured under a fixed
configuration featuring minimal excitatory weights and an inhibitory weight factor of 2.8.
Following this, the bin heights of this distribution are compared with simulation results
obtained across various weight factors. The outcomes of this analysis are presented in
fig. 6.10.

Best matching rate distributions are obtained for an excitatory weight factor of 0.2 and
an inhibitory factor of approximately 2.8. Further reducing the excitatory weights leads
again to distinct network behavior. This suggests, that the minimal weight that can be
set on the hardware corresponds to approximately w/Cm = 1.34 s−1. Moreover, since the
inhibitory factors align in both implementations, it demonstrates the capabilities of the
weight calibration for weights that are not too small.

Figure 6.11 illustrates the resulting distributions of neuron firing rates of both the
emulation and simulation, using best matching parametrizations. Compared to the
NEST simulation without incorporated synapse losses, modified network behavior is
observed. Strongest deviations are apparent in the excitatory population of layer 4. As
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Figure 6.10.: Firing rate deviation between emulation and simulation results for different
weight factors. Different colors represent the disparity in the firing rate distri-
bution between the hardware emulation with fixed weights (excitatory = 1.8,
inhibitory = 2.8) and the adapted NEST simulation with incorporated map
and route results for various excitatory and inhibitory weight factors. The
deviation is calculated as the sum of the absolute differences of the bin
heights of the normalized firing rate histograms, using a fixed bin width of
1ms. To enhance the resolution of small variations, all values with differ-
ences larger than 4 are represented by the same color. While the hardware
results are derived from the mean values of 30 emulations, for each weight
factor, the mean values of 10 simulations with fixed network topologies but
randomly generated parameter variations are considered.
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Figure 6.11.: Firing rate distributions of the hardware emulation and software simulation
of the adapted cortical microcircuit with identical network topologies. While
in both implementations an inhibitory weight factor of 2.8 is used, the exci-
tatory weight factor is set to 0.2 in the simulation and 1.8 in the emulation.
The mean firing rates of the neurons are depicted as a histogram, with a
fixed bin width of 1ms. The area beneath the histograms is normalized
to one. Each row displays the results of a different layer of the network,
with the excitatory population on the left and the inhibitory population on
the right. Displayed are the mean values obtained from 30 repetitions. In
the case of the emulation, the floating gates are reconfigured in between
consecutive executions. For the software implementation, each simulation
features different randomly generated parameter variations. The error bars
represent the standard deviation across these repetitions.
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demonstrated in fig. 6.7, large parts of this population’s incoming internal connections are
lost in the hardware representation. Furthermore, due to its strong external stimulation, it
is characterized by one of the highest resting potentials. Therefore, the global adjustments
of the weights cannot mitigate the modified network behavior, and higher mean firing
rates, as depicted in table 6.6, are observed. As a result of this, the population is no longer
classified asynchronous irregular. In contrast, although exhibiting modified behavior, all
other populations remain within the asynchronous irregular regime.
In comparison to the hardware emulation, with its network characteristics shown in

table 6.7, higher mean firing rates are observed in the final NEST simulation. This
is primarily attributed to a small percentage of neurons with firing rates above 25Hz
in both models, demonstrating even higher values in the simulation. According to the
bandwidth considerations outlined in section 5.2.1, the anticipated loss of spikes during
readout is expected to be negligible for the network topology and firing rates of the
cortical microcircuit. Therefore, the increased rates are traced back to the saturation
of the synaptic input lines, as detailed in section 4.4.4. As already demonstrated in the
analysis of the balanced random network model in section 5.2.3, this effect restricts the
maximum firing rate achievable by neurons on the BrainScaleS-1 hardware.

This behavior is also evident in the irregularity distribution of the excitatory population
of layer 4, as illustrated in fig. A.15. A subset of neurons within this population exhibits
elevated firing rates. Given the strong stimulation of these neurons, their firing behavior
is relatively independent of inhibitory inputs, resulting in a firing activity characterized
by small irregularity values. In contrast, on the hardware, the maximum achievable
stimulation is limited due to the saturation effect. As a consequence, these neurons
are still influenced by inhibitory inputs, leading to a firing behavior characterized by
intermediate irregularity values.

Furthermore, additional deviations in network behavior between the two implementa-
tions can be attributed to hardware effects that have not been included into the NEST
model. For example, the reduced weight resolution of the excitatory weights on the
hardware is not represented in simulation. As a result of this, weight deviations between
individual populations, especially the duplication of the weight between the excitatory
populations of layer L4 and L23 cannot be represented on the hardware. Moreover,
correlations between synaptic inputs, arising from shared circuits on the hardware are
not considered. These correlations might be the reason for elevated synchrony values
that are measured on hardware. Finally, despite the efforts to enhance repeater stability,
as discussed in section 4.3.2, an average of 0.5% of the repeaters remain unlocked during
emulation. Therefore, connections routed via these repeaters are considered unreliable,
potentially transmitting inaccurate spike signals.
Nevertheless, when comparing the observed deviations with the model’s unstable

behavior during the adaptations, the observed differences in network behavior are minimal
in most populations. Both implementations exhibit similar firing rate distributions in
the regime below 25Hz across the majority of populations. Additionally, a comparison
of the behavior among individual populations reveals analogous characteristics in both
models. These similarities are also evident when examining individual spike times, as
shown in fig. 6.12. Neurons within the same population display various firing patterns
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Table 6.6.: Network characteristics obtained from the NEST simulation of the adapted
cortical microcircuit with incorporated map and route results. Different
columns list the mean rates, mean irregularities and synchrony values of all
eight populations. Displayed are the mean values and standard deviation
obtained from 30 simulations, each featuring different randomly generated
parameter variations.

Population Rate (Hz) Irregularity Synchrony

23e 4.5 ± 0.4 0.81 ± 0.01 0.77± 0.06
23i 3.6 ± 0.2 0.84 ± 0.02 0.96± 0.05
4e 38.0 ± 0.7 0.72 ± 0.02 0.59± 0.04
4i 5.9 ± 0.1 0.92 ± 0.02 0.94± 0.06
5e 5.4 ± 0.6 0.88 ± 0.02 1.17± 0.06
5i 8.5 ± 0.3 0.89 ± 0.04 0.89± 0.02
6e 4.2 ± 0.6 0.87 ± 0.04 0.90± 0.09
6i 8.9 ± 0.4 0.90 ± 0.04 0.83± 0.07

Table 6.7.: Network characteristics obtained form the hardware emulation of the down-
scaled cortical microcircuit. Different columns list the mean rates, mean
irregularities and synchrony values of all eight populations. Displayed are
the mean values and standard deviation obtained from 30 emulations with
reconfigured floating gates in between consecutive executions.

Population Rate (Hz) Irregularity Synchrony

23e 2.2 ± 0.2 0.83 ± 0.02 0.91± 0.04
23i 3.2 ± 0.2 0.95 ± 0.02 1.03± 0.04
4e 15 ± 2 0.79 ± 0.03 0.82± 0.04
4i 4.7 ± 0.3 0.94 ± 0.03 1.07± 0.05
5e 5 ± 1 0.92 ± 0.03 1.21± 0.08
5i 6.7 ± 0.8 0.94 ± 0.04 1.19± 0.05
6e 1.0 ± 0.7 0.83 ± 0.02 1.03± 0.03
6i 7.04± 0.09 0.96 ± 0.02 1.03± 0.04
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(a) (b)

Figure 6.12.: Spike times in (a) the hardware emulation and (b) the NEST simulation
of the adapted cortical microcircuit with identical network topologies. Dis-
played are the spike times of the initial neurons in each layer. The number
of presented neurons is chosen relative to the size of their population. In-
hibitory neurons are depicted in red and excitatory neurons in blue.

primarily characterized by irregular and asynchronous activity.

Moreover, obtained results are stable with respect to variations of the neuron parameters.
This stability is exemplified on the hardware through repeated emulations, involving
reprogramming of the floating gates in between. Despite the resulting write-cycle to
write-cycle variability in the stored neuron parameters, all emulations consistently exhibit
similar firing characteristics.

Therefore, despite subtle differences, the extracted model can be considered as an
accurate representation of the hardware. Moreover, by successfully preserving the asyn-
chronous irregular behavior across all populations, the results demonstrate a successful
emulation of the downscaled cortical microcircuit on the BrainScaleS-1 system. Addition-
ally, the stability and adaptability of the results for different parameterizations highlight
the robustness and accuracy of the emulation.

6.2.3. Temporal Analysis of the Hardware Execution

Having successfully emulated the downscaled cortical microcircuit with biologically
plausible firing patterns on the BrainScaleS-1 system, the subsequent analysis focuses
on the time allocated for various stages of the hardware execution. A analysis of the
performance of the emulation in comparison to other simulators is presented in chapter 7.
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Table 6.8.: Time spend in different steps during the hardware execution of the downscaled
cortical microcircuit emulated for 60 s of biological time. Presented are the
mean values and standard deviations based on 10 experiment repetitions
for both loaded and newly generated map and route results. Results are
obtained for the manually adjusted placement, where neurons are positioned
in ascending order. Additionally, a maximum of 5 cycles is utilized for repeater
re-locking. The host computer employed to generate the map and route data
and to communicate with the FPGAs is equipped with an Intel(R) Core(TM)
i7-4771 CPU featuring 8 threads. This CPU operates at a base clock frequency
of 3.5GHz and can achieve 3.9GHz in its boost mode.

Step Time

Map and route 35.9 ± 0.6 min
Loading results 14 ± 0.6 min
Configuration 78 ± 2 s
Re-Locking 240 ± 30 s
Execution 6.66± 0.09ms
Retrieving data 150 ± 30 ms

Table 6.8 illustrates the time spent in various steps during the experiment execution.

For a newly generated network model, the predominant portion of the execution time
is dedicated to generating the network description. In this phase, half of the time is
allocated for placing neurons, while the remaining half is devoted to route connections.
Since the process is not time-critical and prioritizes the generation of reliable results, it
is neither multithreaded nor optimized for execution speed.

Once generated, existing network descriptions can also be loaded from disk. However,
still under development, it is not yet optimized for performance and results are currently
stored in human-readable XML format. Consequently, while this loading process more
than cuts the execution time in half, it still demands a significant amount of time.

As the executions transition from the host computer to the hardware system, there is a
decrease in execution times. Nevertheless, as explained in section 3.1.1, programming the
floating gates of the system is a time-consuming process, contributing to the measured
duration of the configuration. Moreover, improving routing reliability through repeater
re-locking, as introduced in section 4.3.2, comes at the cost of execution time. Full wafer
tests must be repetitively executed and evaluated up to five times. Generally, this step
can be skipped; however, for the purpose of achieving the highest network reliability, it
is opted for in this case.

Once configured, the hardware continuously emulates the desired network behavior.
The speedup of the system is crucial in this context, as 60 s of biological time corresponds
to a fixed duration of 6ms during emulation. The additional time displayed is spent
at the beginning of the experiment to communicate with the system, synchronize the
FPGAs, and initiate the recording process.
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Due to the time constraints during emulations, recorded spikes are stored in the memory
of the FPGAs. Consequently, as a final step, after the predefined execution time, the
results must be retrieved from the hardware and made available on the host computer.

Given the independence of emulation speed from the network size, hardware executions
demonstrate an advantage for large-scale experiments. Furthermore, since only the
execution time scales with the experiment duration, the system benefits from either
long or repetitive experiments that do not require reconfigurations of the floating gates.
Therefore, the current hardware implementation serves as a platform enabling researchers
to explore long-term neural developments, as years of biological network dynamics can
be emulated in hours of wall-clock time.
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The field of neuromorphic computing addresses the limitations of conventional computers
in terms of simulation speed and power consumption by drawing inspiration from opera-
tional principles observed in the human brain. To validate these assumptions and prove
that the systems are functioning, benchmarks are required [Davies 2019; Yik et al. 2023].
In the context of brain inspired implementations, the balanced random network [Brunel
2000] emerges as a natural choice for this task. Through the exploration of various
firing characteristics in spiking neural networks, this model provides the basis for several
biologically plausible network structures. This also applies to the cortical microcircuit,
as presented in Potjans et al. 2012, which has become a quasi-standard benchmark for
neuromorphic computing in recent years [Ostrau et al. 2022].

With a focus on the first-generation wafer-scale neuromorphic hardware platform
BrainScaleS-1, introduced in chapter 3, this thesis concludes long-standing efforts by
demonstrating the system’s capabilities through the emulation of both models. Accom-
plishing this demonstration is inherently challenging, given the constraints imposed by
the physical modeling approach of the hardware. To overcome these limitations, it is
crucial not only to ensure reliable hardware performance but also to develop a compre-
hensive understanding of its behavior. This was achieved through the optimization of
the hardware operation for large-scale experiments, as discussed in chapter 4.

As a basis for all hardware operations the systems had to be transitioned into a
reliable substrate for experiments. This is necessary due to the employed wafer-scale
integration, which limits flexibility in addressing malfunctioning components as individual
problematic chips cannot be replaced. To this end, the availability management was
developed, as introduced in section 4.1. In comparison to state-of-the-art denylisting,
where in general groups of components are tested and removed as a whole, the tests
are executed for each circuit individually. In combination with the modular structure
of the systems, this allows for a minimalistic exclusion of malfunctioning components.
This is necessary as each circuit is valuable facing the complexity of large-scale biological
networks. Moreover, all circuit interdependencies and unstable behaviors observed in the
hardware are taken into consideration. Therefore, the results enable the user to treat
each system as a idealized substrate for experiments. Furthermore, at the expense of
functioning components, circuits that display undesired analog behavior can be excluded,
thereby facilitating predictable network results.

Hardware reliability was further enhanced by extending the existing calibration frame-
work tailored to the requirements of biologically inspired network models, as detailed in
section 4.2. In pursuit of this objective, utilizing the scale invariance of the LIF neuron,
an automated parameter translation was implemented, enabling the configuration of
model parameters within the biological regime. By maximizing the dynamic range of the
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neurons in the subthreshold regime, it minimizes the influence of noise observed on the
membrane.
As a consequence of this translation, voltages are configured based on the reversal

potentials. For this reason, their calibration routine was revisited and a new indirect
measurement method was introduced specifically for the excitatory reversal potential,
leading to more accurate results. Moreover, the operational limits of the circuits were
identified and integrated into the automated parameter translation, mitigating the
otherwise observed saturation effects.

Given the necessity to precisely define the synaptic efficacy in the investigated networks,
a weight calibration was implemented. During this process, the insufficient capabilities
of the used analog readout system became evident. While a full-wafer characterization
of neuron parameters takes approximately 48 h and is thus already performed with
reduced precision, attempting a per-circuit calibration for the large parameter space of
the synaptic input generation would exceed practical runtimes. Moreover, restricting
the weight calibration exclusively to digitally configurable parameters, which can be
programmed more rapidly, proves unfeasible due to the networks’ requirement for an
extensive weight range that demands the full dynamic range of the hardware.

Therefore, to overcome these limitations, a per-wafer calibration was introduced. While
this method does not offer the possibility to correct circuit variations, it does allow for
the assessment of the average corresponding biological weight value for each configuration.
In addition, an algorithm was developed to configure the synapses based on the biological
weights of the models, considering parameter-specific interdependencies. In section 6.1.4,
it was demonstrated that the investigated networks are robust with respect to weight
deviations, as long as the mean is preserved. Since it could be shown in section 4.2.4
that the calibration and configuration, in good approximation, preserve the mean values
of the weights, the weight calibration is considered suitable for the networks. However, it
should be noted that the calibration exhibits limitations for small weight values, which
cannot be accurately assessed due to the relatively larger voltage fluctuations introduced
by the analog readout system in comparison.
To tackle the immense connection complexity of the biological models, the map and

route algorithms of the systems were improved, as introduced in section 4.3.1. In
section 6.2.1, this has proven crucial for preserving a desired network structure despite
the limited routing capabilities and the subsequent loss of connections. Furthermore,
as demonstrated in section 4.3.2, it was shown that iterative re-locking of the on-chip
repeater circuits improves routing reliability.

Additionally, as presented in section 4.4, operational limitations of the hardware were
identified, and it was demonstrated that, albeit at the cost of configurability, their impact
can be minimized through appropriate hardware operation.

Building upon the introduced enhancements in hardware management, the reliability
of the systems was significantly improved. However, the networks under investigation still
require adjustments to accommodate inherent variations of the hardware that cannot be
avoided. This involves the reduction of neuron and synapse counts, modification of the
synapse model, and the incorporation of distributed neuron parameters and transmission
delays aligned with those derived from the acquired hardware model.
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To achieve this, software simulations were conducted for both models using the NEST
simulator. As discussed in Albada et al. 2014 and demonstrated in section 5.1 and
section 6.1, the behavior of the networks is found to be unstable with respect to changes.
From this, two insights arise. On the one hand, the idealized network assumptions of the
two models are not well-suited to serve as benchmarks for analog neuromorphic hardware.
Because of the reduced flexibility associated with the physical modeling approach, the
models’ behavior is not stable enough with respect to network variations. Furthermore,
evaluating the internal dynamics of the hardware becomes challenging when dealing with
a large-scale network right from the outset. Consequently, scalable models are desirable.
On the other hand, according to Albada et al. 2014, the cortical microcircuit represents
the smallest network description with biologically plausible connection probabilities and
synapse counts. This demonstrates the necessity of developing even larger hardware
systems in the future.
To overcome the limited flexibility of the models, the evaluation was focused on pre-

serving biological firing characteristics, characterized by asynchronous irregular behavior
as defined in Potjans et al. 2012. Based on the NEST simulations, techniques were
developed that allow for obtaining networks in all states of adaptation, all of which
preserve the desired characteristics. These results enable benchmarks for less flexible
systems and were utilized to demonstrate the capabilities of a single BrainScaleS-1 wafer.

As presented in section 5.2, the adapted balanced random network model, comprising
2083 neurons and 690 157 synapses, was emulated on the hardware. While in the
asynchronous irregular regime comparable network behavior to the software simulation
is obtained, the regime with high firing rates reveals the limitations of the neuron
circuits concerning biologically implausible spike patterns. Nevertheless, by observing
typical firing characteristics in this regime, the system’s immense capabilities in spike
transmission with up to 1× 1012 synaptic events/s are demonstrated.
Moreover, section 6.2 illustrates the successful emulation of the adapted cortical

microcircuit on BrainScaleS-1. Comprising 7712 neurons and 2 373 933 synapses, this
implementation represents approximately 10% of the model’s original size. Based on the
obtained results, performance comparisons are drawn between the hardware and best-
performing implementations of the full-scale model across various simulators. Depicted in
table 7.1, size-independent measures are employed to account for the different investigated
network sizes. Additionally, limited by the processing speed in smaller networks and the
overhead introduced in distributing spike signals among all-to-all connected neurons in
larger networks, no significant performance improvements are expected in the presented
implementations for adapted network sizes with comparable network structure [Kauth
et al. 2023]. Therefore, the presented results demonstrate, to the best of one’s knowledge,
the fastest operation in terms of synaptic events per second in a network with the
complexity of the cortical microcircuit.

It should be noted that the performance stems from the large speedup factor of 10 000
during emulation, which remains independent of the implemented network size. Opera-
tional overhead that is introduced by the configuration of the system and the transmission
of recorded spikes is not incorporated into the presented results. As a consequence of this,
the speedup of the system can only be exploited during long or repetitive emulations
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Table 7.1.: Performance and energy comparison on the basis of the network structure of
the cortical microcircuit for different simulators. The energy estimation of the
BrainScaleS-1 system is based on the maximum possible power consumption
of 2 kW of the entire system, with the actual power consumption expected to
be considerably lower due to the application of typical safety margins.

Simulator Performance
(synaptic event/s)

Energy
(µJ/synaptic event)

BrainScaleS-11 162 × 109 <0.012

NeuroAIx-Framework2 19 × 109* 0.048

CsNN3 3.8× 109* 0.783

NEST4 1.8× 109* 0.48
SpiNNaker5 0.9× 109 0.6

References: 1Emulation results of this work, 2[Kauth et al. 2023], 3[Heittmann
et al. 2022], 4[Kurth et al. 2022], 5[Rhodes et al. 2020].
* Values are estimated from the reported speedup factor and the network behavior
of the full-scale model with external Poisson inputs.

of large-scale networks. Nevertheless, in combination with the comparable low energy
consumption during emulation, this thesis succeeds in demonstrating the advantages of
the physical modeling approach of the system.

Outlook

In this thesis, the capabilities of the BrainScaleS-1 system have been showcased. The
successful emulation of large-scale networks highlights the feasibility of wafer-scale
integration in the field of neuromorphic computing. The numerous parallel operational
components support a modular and, therefore, robust system design. Furthermore,
the study reveals that with precise hardware operation, the drawbacks associated with
the physical modeling approach can be effectively mitigated. However, the system’s
inherently limited flexibility still necessitates modifications to the biologically inspired
network descriptions. Therefore, future implementations should prioritize addressing and
enhancing this aspect.

An initial and essential step in this direction involves rectifying the identified operational
limitations, as discussed in detail in section 4.4. Moreover, concerning system reliability,
eliminating inter-chip dependencies enables a more minimalistic exclusion of hardware
defects. In the context of calibration, the limitations in observations mainly based on the
membrane potential and spike output of neurons often lead to compromises in precision.
Therefore, additional observables, such as integrating test data outputs into all repeater
circuits, would be desirable.

One immediate strategy for enhancing the existing BrainScaleS-1 system is by utilizing
the improved analog readout developed in Ilmberger 2017. By extending the parallel
readout capabilities from 12 to 96 channels at reduced noise, the implementations would
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benefit from more precise calibration results.
Furthermore, transitioning implementations to the second-generation BrainScaleS-2

chip [Schemmel et al. 2021] promises several enhancements. Firstly, it introduces a
per-neuron parallel membrane readout, enabling circuit-specific weight calibration based
on the presented algorithms. Additionally, reduced parameter variations are anticipated
due to the shift from a floating gate based storage to a digital solution [Billaudelle et al.
2022]. Finally, the chip allows for the implementation of current-based synapses, thereby
minimizing the need for extensive model adaptations.
Although currently utilized as a single-chip solution, the possibility to interconnect

individual chips via the EXTOLL network was recently demonstrated in Thommes 2023.
With comparable neuron and synapse counts per chip to BrainScaleS-1, it becomes
feasible to implement the presented 10% representation of the cortical microcircuit on
such an interconnected system.

To facilitate the integration of even larger networks in the future, such as the full-scale
microcircuit model, more extensive systems will be necessary. This could be achieved
by interconnecting multiple wafer-scale systems. Nevertheless, the findings of this thesis
emphasize that, with the current implementations, larger circuit counts alone are not
sufficient. Given the limitations in synapses per neuron, as demonstrated in sections 4.4.2
and 6.2.1, such a system would not cope with the increasing demand for connections.
Moreover, even if the implementation of larger synapse counts per neuron were feasible,
the current network sizes already reveal insufficient routing capabilities due to limited
flexibility and the restricted number of injection points into the synapse array. Therefore,
apart from scaling up the systems, it becomes imperative to enhance on-chip routing
capabilities for future large-scale implementations.

Furthermore, future implementations on the BrainScaleS-1 system would benefit from
employing different models. Evaluating network statistics for predefined neuron config-
urations poses a challenge due to the system’s inherent parameter variations. Similar
to its biological archetype, the human brain, the system benefits from synapse-specific
weight updates to learn specific tasks. This approach enables the reduction of parameter
variations through training. One suitable choice for this could be evolutionary algorithms,
which, given their large timescale, would take advantage of the speedup factor of the
system.
Finally, the constant emulation speed provided by the physical modeling approach

presents a clear advantage when handling more complex neuron models. In line with this,
the BrainScaleS-2 system facilitates the emulation of multi-compartment neurons [Kaiser
et al. 2022]. Expanding on this capability, the demonstration of future large-scale inter-
connected single-chip or wafer-scale systems holds great potential for further highlighting
the advantages of neuromorphic hardware over conventional computers.
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A. Appendix

A.1. Model Parameters

This section highlights additional model parameters utilized in this thesis. All software
simulations are conducted with the NEST simulator, and network descriptions are
formulated through the PyNN interface. The pyNN.IF curr exp model is employed for
current-based synapses, while the pyNN.IF cond exp model is utilized for conductance-
based synapses.

Neuron Stimulated by a Single Synapse

Table A.1.: Parameters used to illustrate the distinct shapes of the PSPs for current-
based and conductance-based synapses. In the context of the current-based
model, the weight is represented by the value w, while in the conductance-
based model, the weight is denoted by g. Both values are chosen to result in
identical PSP heights. Moreover, strong weights and a low reversal potential
are utilized to achieve the high-conductance state in the conductance-based
neuron. Furthermore, the threshold is set to a high value to prevent the
neuron from spiking. The value of the reversal potential is exclusively utilized
in the simulation with the conductance-based synapse. The terminology
introduced in section 2.2 is employed.

Parameter Value

Cm 1 nF
Ee

rev 0 mV
Eleak −70 mV
Vthres 20 mV
τm 10 ms
τ esyn 3 ms

w 27.92nA
g 0.87µS
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A.1. Model Parameters

Table A.2.: Parameters employed to illustrate the stacking of PSPs. The same con-
siderations as those presented in table A.1 apply here. However, reduced
weights are utilized as the high-conductance state is not required for the
demonstration. Moreover, the reversal potential is further reduced to enhance
the PSP height reduction in the conductance-based model.

Parameter Value

Cm 1 nF
Ee

rev −20 mV
Eleak −70 mV
Vthres 20 mV
τm 10 ms
τ esyn 3 ms

w 1.12 nA
g 0.022µS

Network and Neuron Parameters of the Cortical Microcircuit

Table A.3.: Population sizes and input counts of the cortical microcircuit model. Popula-
tions are labeled by the layer they are located in and an “e” for the excitatory
and an“i” for the inhibitory population in this layer. In the last column,
the number of external inputs per neuron are given for each population.
Extracted from Potjans et al. 2012.

Population Neuron number External inputs

L2/3e 20 683 1600
L2/3i 5834 1500
L4e 21 915 2100
L4i 5479 1900
L5e 4850 2000
L5i 1065 1900
L6e 14 395 2900
L6i 2948 2100
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Table A.4.: Connection probability of the cortical microcircuit model. Populations are
identified by the layer they are located in and an “e” for the excitatory and
an“i” for the inhibitory population in this layer. In the table, the column
specifies the pre-synaptic neuron’s population and the row the postsynaptic
neuron’s population. The last column shows the connection probability to
the thalamo-cortical inputs. Extracted from Potjans et al. 2012.

L2/3e L2/3i L4e L4i L5e L5i L6e L6i Th

L2/3e 0.101 0.169 0.044 0.082 0.032 0.0 0.008 0.0 0.0
L2/3i 0.135 0.137 0.032 0.052 0.075 0.0 0.004 0.0 0.0
L4e 0.008 0.006 0.05 0.135 0.007 0.0003 0.045 0.0 0.0983
L4i 0.069 0.003 0.079 0.160 0.003 0.0 0.106 0.0 0.0619
L5e 0.100 0.062 0.051 0.006 0.083 0.373 0.02 0.0 0.0
L5i 0.055 0.027 0.026 0.002 0.06 0.316 0.009 0.0 0.0
L6e 0.016 0.007 0.021 0.017 0.057 0.02 0.04 0.225 0.0512
L6i 0.036 0.001 0.003 0.001 0.028 0.008 0.066 0.144 0.0196

Table A.5.: Neuron parameters of the cortical microcircuit model. The terminology intro-
duced in section 2.2 is employed. Moreover, De represented the transmission
delay of excitatory connections and Di the delay of inhibitory connections. If
parameters are drawn from a Gaussian distribution, a standard deviation σx
for the model parameter x is given. In addition, in such cases, the value listed
for the parameter x represents the mean value of the distribution. Extracted
from Potjans et al. 2012.

Parameter Value

τm 10 ms
τrefrac 2 ms
τsyn 0.5ms
Cm 250 pF
Erest −65 mV
Vreset −65 mV
Vthres −50 mV
we 87.8pA
σwe 0.1we

wi −4we

σwi 0.1wi

De 1.5ms
σDe 0.5De

Di 0.8ms
σDi 0.5Di
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A.1. Model Parameters

Additional Neuron Parameters of the Adapted Cortical Microcircuit

Table A.6.: Mean weight values in the downscaled cortical microcircuit model with
conductance-based synapses and prolonged synaptic time constants, as de-
scribed in section 6.1. Weights exhibit variability based on the postsynaptic
neuron to which they are applied, as well as their classification as excitatory
(exc) or inhibitory (inh). In the table, the column specifies the postsynaptic
neuron’s population while the row shows the synapse type of the connection.
Populations are denoted by their layer and an “e” for the excitatory and an“i”
for the inhibitory population in this layer. All values are presented in pS. In
adherence with the model description in Potjans et al. 2012, the weight of
the connections from the excitatory population of layer L4 to the excitatory
population of L2/3 is doubled, equivalent to a value of 2.7148 pS.

L2/3e L2/3i L4e L4i L5e L5i L6e L6i

exc 1.3574 1.3791 1.4689 1.4189 1.4436 1.4564 1.5720 1.4958
inh 11.5090 11.3204 10.6520 11.0030 10.8238 10.7352 10.0541 10.4810

Table A.7.: Resting potential for each population in the downscaled cortical microcircuit
model with replaced external inputs. Populations are denoted by their layer
and an “e” for the excitatory and an“i” for the inhibitory population in this
layer. All values are given in mV.

L2/3e L2/3i L4e L4i L5e L5i L6e L6i

−42.52 −42.93 −35.50 −38.31 −36.90 −38.31 −24.26 −35.50
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A.2. Synapse Stability

As detailed in section 4.1.3, the digital memory tests reveal unstable behavior in the
synapse circuits on a small subset of HICANNs. Consequently, extensive testing has
been undertaken to scrutinize their performance under diverse conditions. This section
provides additional insights into the behavior of the synapses during these tests.
Figure A.1 illustrates, for each synapse within individual HICANNs, the frequency

of failures in the repeatedly executed memory test under two different values of the
supply voltage (VDDBUS) of the on-chip SRAM controller. Synapses that exhibit partial
test failures are categorized unstable. Results are provided for four distinct HICANNs
containing synapses marked as unstable. The figure demonstrates that varying the supply
voltage has no discernible impact on the observed unstable behavior.

In fig. A.2, an exploration of unstable synapse behavior is undertaken with different
writing patterns. At the beginning of each test, the synapse registers undergo either a
single write or repeated writes with a fixed value. Subsequently, the stored value is read
out 100 times. Additionally, results are presented where the memory is rewritten directly
before each read command. Each bin in the histogram represent a count of synapses that
failed an individual read test, signifying that a different value was read compared to the
value initially written. Thus, the height of each bin corresponds to the number of read
cycles demonstrating the same quantity of synapses that failed the test. A single bin
with height 100 would demonstrate stable synapse behavior.

Despite the repeated writing of values at the beginning, no improved results were
observed. Moreover, comparable variations are obtained in all methods. Consequently,
issuing several write commands did not demonstrate improved stability. As a result of
this, it is assumed that either values cannot be reliably read out, or each write process
poses a risk of setting wrong values.
Figure A.3 depicts long-term stability measurements for all resources exhibiting mal-

functioning behavior on wafer 30. As evident, unstable behavior is exclusively observed in
the registers of the synapse and repeater circuits. The observed jumps in the synapse mea-
surements result from the behavior of HICANN 275, which alternates between showing
no failing synapses or a significant number, O(8000), of failing synapses.
Figure A.4 illustrates the results of long-term measurements involving the memory

test in combination with the synapses stability test. If unstable behavior is detected in a
single synapse, the entire synapse array containing this synapse is excluded. Notably,
the reliability of individual synapse arrays is observed to vary over time. Therefore, all 7
synapse arrays that exhibited unstable behavior at least once are excluded from the final
database.
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A.2. Synapse Stability

(a) (b)

(c) (d)

Figure A.1.: Stability test results for different values of the supply voltage VDDBUS for
(a) HICANN 23, (b) HICANN 121, (c) HICANN 151 and (d) HICANN 275.
For each synapse of a HICANN it is shown how often it is excluded in 100
write/read repetitions of the memory test. A value of 0 or 100 demonstrates
that the synapse is stable and fails no or all tests respectively. Values in
between indicate unstable behavior in the test. Synapses with numbers
above 56 320 are located on the second synapse array. The test results
change dependent on the array the synapses are located in.
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(a) (b)

(c) (d)

Figure A.2.: Stability test results for different write/read patterns for (a) HICANN 23,
(b) HICANN 121, (c) HICANN 151 and (d) HICANN 272. HICANN 275 is
not shown since no unstable synapse was detected in the test. Each synapse
register is written with a fixed but random value and is read 100 times. On
the x-axis the number of synapses a wrong value is read from is shown. The
height of each bar represents how often this number of problematic synapses
is found in the 100 reads. Here, the color indicates how often the synapse
register is written with the same value before the reads are executed. “Each”
denotes that all registers are rewritten once before each read command.
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Figure A.3.: Long-term stability of wafer 30. The number of excluded components in
the nightly executed memory test are shown. Only resources with found
malfunctioning registers are visualized. For synapses and repeaters unstable
behavior is observed. Missing data points indicate that the test was not
executed either due to software issues in the continuous execution or since
the hardware was turned off. The detection of the correct communication
possibilities of HICANN 304 is only ensured in the memory test. Therefore,
obtaining correct results from it in the memory test requires manual inter-
action. For this reason, in the nightly executed tests the results for this
HICANN, in particular 225 excluded switches, are missing.
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Figure A.4.: Long term synapse array stability of wafer 30. The number of excluded
synapse arrays of the nightly executed memory test in combination with the
synapse stability test are shown. Missing data points indicate that the test
was not executed either due to software issues in the continuous execution or
since the hardware was turned off. Two synapse arrays are always excluded
due to malfunctioning registers in their controller observed in the memory
test. Additionally, five synapse arrays on different HICANNs are excluded
due to unstable behavior in the stability test. There, two arrays are found
in all tests. The remaining three arrays only fail occasionally and therefore
sometimes remain undetected in the test.
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A.3. Weight Configuration With Fixed Weight

A.3. Weight Configuration With Fixed Weight

As discussed in section 4.2.4 the efficacy of synapse circuits on the BrainScaleS-1 system
is configured by three parameters. One of it, the digital weight w, is individually set per
synapse with a precision of 4 bit. Due to this limited configurability, weights cannot be
precisely set.
Defined within the biological regime, weights are translated into a set of hardware

parameters based on the results of the weight calibration. The precision of the found
parametrization can be assessed by translating the determined hardware values back into
the biological regime and comparing them to the targeted values. It is important to note
that in this consideration, circuit variations are not taken into account.

For a fixed weight setting across all synapses, the precision of the weight configuration is
illustrated in fig. A.5. Due to the stochastic rounding, utilized to prevent modifications of
the mean weight, a precise and a less precise weight configuration is obtained, representing
two distinct settings of w. As evident by the large difference in synapse counts, the
results represent a scenario where one weight configuration closely aligns with the target
weight. Consequently, a considerable deviation is observed for the other configuration.
Nevertheless, in contrast to the anticipated variations resulting from circuit differences, as
depicted in fig. 4.13b, the imprecision arising from limited configurability and stochastic
rounding is considered negligible.

Figure A.5.: Weight deviations expected from the weight configuration algorithm for
a fixed target weight. A network of 50 neurons is placed on a single
HICANN and stimulated by 20 000 randomly connected synapses from
an external population consisting of 50 neurons. The target weight wmodel

Cmodel

of all synapses is set to 60 s−1. For each synapse, the hardware parameters
Vgmax, gdiv and w are found by the weight translation algorithm considering
shared configurations. These values are subsequently converted back into
corresponding biological weights, and the disparity from the target weight
is computed, normalized in relation to the target weight. The black dashed
line marks the mean value of the distribution.
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A.4. Firing Patterns of the Balanced Random Network for
Different Adaptions

In this section additional spike time plots and spike time histograms of the balanced
random network are depicted for different states of adaptation. The various regimes of the
model are comprehensively characterized by the neurons’ mean firing rate, irregularity, and
synchrony. However, the illustration of both individual and collective neuron dynamics
contributes valuable insights into the network’s behavior.
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A.4. Firing Patterns of the Balanced Random Network for Different Adaptions

(a) (b)

(c) (d)

Figure A.6.: Firing patterns of the downscaled balanced random network model. This
model aligns with the adaptation state outlined in section 5.1.2. In the
upper part of each figure, the spike times of 30 neurons are shown, indicated
by vertical lines. In the lower part, the spike time histogram of all 2083
neurons is visualized using a bin size of 0.2ms. For better visualization, only
100ms of biological time close to the end of the simulation are illustrated.
The figures (b), (c), and (d) represent the same parametrization as the
corresponding figures in fig. 5.2. Only (a) is taken from a different regime of
g = 1 and νext = 2 · νthr to demonstrate the formation of additional neuron
clusters. In contrast to the full-scale model, no fast global oscillations are
observed in (b).
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(a) (b)

(c) (d)

Figure A.7.: Firing patterns of the downscaled balanced random network model with
conductance-based synapses. This model aligns with the adaptation state
outlined in section 5.1.3. In the upper part of each figure, the spike times
of 30 neurons are shown, indicated by vertical lines. In the lower part, the
spike time histogram of all 2083 neurons is visualized using a bin size of
0.2ms. For better visualization, only 100ms of biological time close to the
end of the simulation are illustrated. The figures show the same regimes
depicted in fig. A.6.
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A.4. Firing Patterns of the Balanced Random Network for Different Adaptions

(a) (b)

(c) (d)

Figure A.8.: Firing patterns of the downscaled balanced random network model with
conductance-based synapses and distributed parameters This model aligns
with the adaptation state outlined in section 5.1.4. In the upper part of each
figure, the spike times of 30 neurons are shown, indicated by vertical lines.
In the lower part, the spike time histogram of all 2083 neurons is visualized
using a bin size of 0.2ms. For better visualization, only 100ms of biological
time close to the end of the simulation are illustrated. The figures show the
same regimes depicted in fig. A.6.
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(a) (b)

(c) (d)

Figure A.9.: Firing patterns of the downscaled balanced random network model with
conductance-based synapses, reduced weights, and distributed parameters
with extracted map and route results. This model aligns with the adaptation
state outlined in section 5.1.5. In the upper part of each figure, the spike
times of 30 neurons are shown, indicated by vertical lines. In the lower part,
the spike time histogram of all 2083 neurons is visualized using a bin size
of 0.2ms. For better visualization, only 100ms of biological time close to
the end of the simulation are illustrated. The figures show the same regimes
depicted in fig. A.6.
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A.4. Firing Patterns of the Balanced Random Network for Different Adaptions

(a) (b)

(c) (d)

Figure A.10.: Comparison of firing patterns obtained with the NEST simulator and
the BrainScaleS-1 hardware. In the upper part of each figure, the spike
times of 30 neurons are shown, indicated by vertical lines. In the lower
part, the spike time histogram of all 2083 neurons is visualized using a
bin size of 0.2ms. Only in (c) the evaluation is limited to 30 separately
placed neurons. For better visualization, only 100ms of biological time
close to the end of the simulation are illustrated. While figures (a) and (b)
show the results of the NEST simulation, figures (c) and (d) depict the
hardware results. Moreover, figures to the left are taken from the high
firing regime with g = 1.16 and νext = 1.2 · νthr and figures to the right
from the asynchronous irregular firing regime with low rates at g = 10.92
and νext = 0.8 · νthr.
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A.5. Map and Route Parameters of the Balanced Random
Network

As introduced in section 4.3.1 different map and route algorithms have been implemented
in order to find results with a minimum of synapse loss. This section highlights the
parametrization of the map and route algorithms, which shows the best results for the
balanced random network model and therefore is finally emulated. The utilized algorithms
are introduced in section 4.3.1.
To mitigate the impact of finite resistances between membranes, as discussed in

section 4.4.2, each neuron is constructed using a set of 8 membrane circuits.
When it comes to the placement algorithm, clustering neurons by their individual

connectivity yields best results. This observation is intuitive, as shorter connections with
less bus utilization are expected for clustered neurons. Moreover, the balanced random
network does not exhibit a population dependent connectivity. Thus, it makes sense
to cluster neurons on an individual basis. In addition, the merger tree is configured to
merge as many neurons onto a single bus as possible, while still taking into account the
maximum number of target synapses.
For handling connections, the Backbone router is employed. The use of the Dijkstra

router in a secondary step to route unplaced connections has been determined to provide
no significant benefits and, consequently, is not applied.

Spike addresses, used to identify the target synapses, are assigned starting with lower
addresses. Therefore, because the most significant bit is transmitted last, there is a
reduced likelihood of repeaters misinterpreting the last bit with the rising edge of the
stop bit while updating their timing.
Furthermore, the large neuron capacitor is used, given that the hardware implemen-

tation is constrained by small weight values. Additionally, the reversal potentials are
set to hardware values of Ee

rev1.3V and Ei
rev0.45V utilizing the entire available range, cf.

section 4.2.2,
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A.6. Additional Network Characteristics of the Cortical
Microcircuit

In this section, additional network characteristics of the cortical microcircuit are depicted.

Starting with fig. A.11, the distribution of transmission delays anticipated in the
hardware implementation of the cortical microcircuit is illustrated. Furthermore, to
enable comparisons with simulation results obtained on the SpiNNaker system, fig. A.12
illustrates the firing rate results derived from the NEST simulation of the cortical
microcircuit, processed similarly as presented in Albada et al. 2018.

In addition, to enhance the comprehensiveness of the mean irregularity values utilized
for model comparisons in the main text, the distribution of irregularity values within each
population of the model is shown for all states of adaptation as well as the final hardware
implementation. Each figure illustrates the respective irregularity values corresponding
to a firing rate plot presented in the main text. Thus, fig. A.13 corresponds to fig. 6.1,
fig. A.14 to fig. 6.3, and fig. A.15 to fig. 6.11.

(a) (b)

Figure A.11.: Delays obtained from the map and route results of the downscaled cortical
microcircuit. According to the calibration results discussed in section 4.2.5,
extracted connection lengths are translated into corresponding delay values.
Since the delay depends solely on the number of repeaters, discrete results
are observed in (a), where each bin represents a specific repeater count. To
model circuit variations measured during the calibration, in (b), obtained
results are smoothed by a Gaussian distribution with a standard deviation
of 0.1ms.
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Figure A.12.: Firing rate distributions of the NEST simulation of the cortical microcircuit
model as outlined in Potjans et al. 2012. The probability for each firing
rate is calculated using a histogram, with bin sizes determined according to
equation eq. (6.2). Additionally, the values are smoothed using a Gaussian
kernel density function with a bandwidth of 0.3 s−1. Each row displays the
results of a different layer of the network, with the excitatory population on
the left and the inhibitory population on the right. Displayed are the mean
values obtained from 30 simulations, each featuring different randomly
generated connections. The shaded area represents the standard deviation
across these simulations.
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Figure A.13.: Irregularity distributions of the NEST simulation of the cortical microcir-
cuit model for different stages of adaptation. “Original” shows the behavior
of the full-scale model, “10% Cuba” the downscaled current-based version,
and “10% Coba” the downscaled conductance-based implementation. The
probability for each value is calculated using a histogram, with bin sizes
determined according to equation eq. (6.2). Additionally, the area beneath
the histograms is normalized to one. Each row displays the results of
a different layer of the network, with the excitatory population on the
left and the inhibitory population on the right. Displayed are the mean
values obtained from 30 simulations, each featuring different randomly
generated connections. Error bars illustrate the standard deviation across
these simulations. The represented models correspond to those depicted in
fig. 6.1.
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Figure A.14.: Irregularity distributions of the NEST simulation of the cortical microcir-
cuit model for different stages of adaptation. Each modification is added on
top of the previous adaptation. Therefore, “τsyn” shows the behavior of the
downscaled model with conductance-based synapses under the influence of
prolonged synaptic time constants. Based on this, “Variations” illustrates
the effects of additionally distributed parameters. Finally, “Delay” displays
the final network model with identical delays for excitatory and inhibitory
connections, which are described by a Gaussian distribution with a mean
value of 1ms and a standard deviation of 0.25ms. The values are obtained
according to fig. A.13. In simulations involving distributed parameters,
it is worth noting that in each repetition, both the connections and the
neuron parameters are regenerated. The represented models correspond to
those depicted in fig. 6.3.
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Figure A.15.: Irregularity distributions of the hardware emulation and the NEST simula-
tion of the adapted cortical microcircuit with identical network topologies.
The values are obtained according to fig. A.13. Displayed are the mean
values obtained from 30 repetitions. In the case of the emulation, the
floating gates are reconfigured in between consecutive executions. For
the software implementation, each simulation features different randomly
generated parameter variations. The error bars represent the standard
deviation across these repetitions. The represented models correspond to
those depicted in fig. 6.11.
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Glossary

BrainScaleS-1 The first generation BrainScaleS system; a wafer-scale mixed-signal ac-
celerated neuromorphic system. 1, 3, 25, 26, 30, 34–42, 55, 56, 59, 66, 71, 73, 75,
81, 83, 86, 87, 90, 91, 95, 101, 104, 107, 108, 110, 111, 116–119, 122, 123, 127, 130,
132, 136, 137, 141–143, 148, 150, 152, 154–156, 166, 172

BrainScaleS-2 The second generation BrainScaleS system; an analog neuromorphic
system. 71, 156

ADC Analog-to-digital converter. 35

API Application programming interface. 38, 91

ASIC Application-specific integrated circuit. 1, 25

C++ C++ programming language. 37, 42

cake Calibration framework for the BrainScaleS-1 system. 39

CMOS Complementary metal-oxide-semiconductor. 25

DLL Delay-Locked Loop. 31, 79

EXTOLL Extended atomic low latency. 156

FG block One of 4 floating gate blocks per HICANN. 26, 32, 48, 49

FIFO First in, first out. 29, 113

FPGA Field-Programmable-Gate-Array. 1, 29, 35–37, 40, 42–44, 111, 112, 150, 151

HALbe Hardware abstraction layer back end. 38, 40

HICANN High Input Count Analog Neural Network. 25–30, 32–36, 38, 39, 42–54, 57–62,
64, 67, 68, 70–76, 79–87, 111, 112, 114, 116–119, 139–141, 161–166

HICANN-Group Group of 8 HICANNs connected to the same FPGA. 35, 43, 44, 46, 47

I2C Inter-integrated circuit protocol. 37

I/O input/output. 36, 111

181



Glossary

inter-spike interval Time between consecutive spikes in a spike train. 13, 14, 19, 93

JTAG Joint Test Action Group. 35, 44–46, 52–54

LIF Leaky Integrate-and-Fire. 4, 8–11, 15, 20, 22, 26, 56, 57, 60, 69, 70, 88, 90, 92, 152

LSB Least Significant Bit. 57, 58, 60, 65, 66, 82

marocco Mapping and routing software for the BrainScaleS-1 system. 38

NEST NEural Simulation Tool; simulator for spiking neural network models. 2, 3, 11,
90, 91, 104, 120–123, 125, 126, 128, 130, 131, 136, 137, 142–145, 147–149, 154, 155,
157, 172, 174–178
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PLL Phase-Locked Loop. 29, 32, 34
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Python Python programming language. 37–39

SpiNNaker Spiking neural network architecture. 124, 155, 174

SRAM Static random-access memory. 26, 31–33, 47, 53, 161

StHAL Stateful hardware abstraction layer. 38

XML Extensible markup language. 39, 40, 42, 150
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Benjamin Cramer, Dominik Dold, Ákos Ferenc Kungl, Walter Senn, Johannes Schem-
mel, Karlheinz Meier, and Mihai A. Petrovici (2021).

”
Fast and energy-efficient

neuromorphic deep learning with first-spike times“. In: Nature Machine Intelligence
3.9, pp. 823–835. doi: 10.1038/s42256-021-00388-x.

Goodman, Dan and Romain Brette (2008).
”
Brian: a simulator for spiking neural networks

in Python“. In: Front. Neuroinform. 2.5.

HBP SP9 partners (Mar. 2014). Neuromorphic Platform Specification. Human Brain
Project.

Heittmann, Arne, Georgia Psychou, Guido Trensch, Charles E. Cox, Winfried W. Wilcke,
Markus Diesmann, and Tobias G. Noll (2022).

”
Simulating the Cortical Microcircuit

Significantly Faster Than Real Time on the IBM INC-3000 Neural Supercomputer“.
In: Frontiers in Neuroscience 15. issn: 1662-453X. doi: 10.3389/fnins.2021.
728460. url: https://www.frontiersin.org/articles/10.3389/fnins.2021.
728460.

Hock, Matthias (2009). Test of Components for a Wafer-Scale Neuromorphic Hardware
System. Diploma thesis, University of Heidelberg, HD-KIP-09-37, http://www.kip.
uni-heidelberg.de/Veroeffentlichungen/details.php?id=1935.

Hodgkin, Alan Lloyd and Andrew F. Huxley (Aug. 1952).
”
A quantitative description of

membrane current and its application to conduction and excitation in nerve.“ In:
J Physiol 117.4, pp. 500–544. issn: 0022-3751. url: http://view.ncbi.nlm.nih.
gov/pubmed/12991237.

Hornung, Moritz (2020).
”
Adapting the Cortical Microcircuit Model for the BrainScaleS-1

hardware“. Bachelor thesis. Universität Heidelberg.

NXP Semiconductors (2012). I2C-bus specification and user manual.

Ilmberger, Joscha (2017).
”
Development of a digitizer for the BrainScaleS neuromorphic

hardware system“. Master thesis. Ruprecht-Karls-Universität Heidelberg.

Indiveri, Giacomo, Bernabe Linares-Barranco, Tara Julia Hamilton, André van Schaik,
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Christian Mauch, Eric Müller, Jakob Kaiser, Joscha Ilmberger, José Montes, Julian
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