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Improvements for Medical Imaging

Robotic computer tomography systems offer a wide range possibilities for non-
circular and patient specific trajectories. These could reduce metal artifacts,
improve the image quality or increase the available space for the practitioners.
But every trajectory needs to be calibrated to reconstruct the CT image. There
are two main approaches, an offline calibration uses a special phantom that has
to be imaged before the patient and the online calibration where the trajectory
is calibrated with the images acquired from using a prior CT image.

In chapter 5, a method for calibrating arbitrary Cone-Beam Computed
Tomography (CBCT) trajectories (FORCASTER) is developed. It detects
and matches feature points in simulated projections and acquired projections.
These paired feature points are then used to correct the projection parameters
by directly calculating the correction factor or with a minimization algorithm,
which is also presented in this part. To simulate projections a prior image of
the object is needed, but it is also shown that this calibration functions if the
prior image has some differences compared to the object that is currently im-
aged. The FORCASTER algorithm achieves similar calibration results when
compared to state-of-the-art algorithms.

The following chapter 6 introduces FORCAST-EST, an extension for the
FORCASTER algorithm, which estimates the starting parameters for the cali-
bration. This allows the calibration of trajectories that come without positional
and rotational data for the individual projections. It simulates projections in a
grid and then compares every acquired projection to the grid, first in a coarse
search and then in the surrounding of the best matches. The estimates are
sufficient to calibrate the trajectory with a similar accuracy as FORCASTER
using the regular starting parameters recorded by the CBCT system.

In chapter 3 of this thesis, an algorithm for detecting arteries in dynamic
contrast enhanced MRI images is presented. Through thresholding, flood fill
and morphological operations, a mask for the artery at the time point where
the initial wave of contrast agent arrives is created. The process is deterministic
and independent of the user experience. Since the annotation of the artery has
a strong impact on the calculated perfusion values, helps this algorithm with
reproducibility and comparability of perfusion imaging.

The chapter 4 presents a web-based MRI image generator for teaching stu-
dents. It allows the students to choose different sequences and set the relevant
parameters, and they can then see how it changes the resulting MRI image.
The software runs completely inside the browser and is open source1.

The presented work show algorithms that help in the imaging process by
improving reproducability and comparability or in reconstructing CBCT vol-
umes.

1https://github.com/ChristianToennes/VirtMRI
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Verbesserungen für die medizinische Bildgebung

Robotische Computertomographen bieten eine Vielzahl von Möglichkeiten für
nicht-zirkuläre und patientenspezifische Trajektorien. Diese können Metal-
lartefakte reduzieren, die Bildqualität verbessern oder den im Intervention-
sraum zur Verfügung stehenden Platz vergrößern. Aber jede Trajektorie muss
kalibriert werden bevor das CT-Bild rekonstruiert werden kann. Es gibt zwei
Hauptansätze: die Offline-Kalibrierung, bei der ein spezielles Phantom ver-
wendet wird, und die Online-Kalibrierung, in der die Trajektorie mit einem
vorherigen CT Bild des Patienten kalibriert wird.

Im Kapitel 5 wird eine Kalibrierung für beliebige CBCT-Trajektorien en-
twickelt. Er erkennt und gleicht Merkmalspunkte in simulierten Projektio-
nen und erworbenen Projektionen ab, um die Differenz zu minimieren, die
dann die korrekten Parameter für die Projektion ergibt. Dies erfordert ein
vorheriges Bild des Objekts, aber es wird auch gezeigt, dass die Kalibrierung
auch dann funktioniert, wenn das vorherige Bild mehrere Unterschiede im
Vergleich zum Objekt aufweist, wenn es mit der zu kalibrierenden Trajektorie
abgebildet wurde.

Im darauffolgenden Kapitel 6 wird eine Erweiterung des FORCASTER-
Algorithmus vorgestellt, die die Startparameter für die Kalibrierung schätzt.
Dies ermöglicht die Kalibrierung von Trajektorien, die ohne Positions- und
Rotationsdaten für die einzelnen Projektionen vorliegen. Der Algorithmus
simuliert Projektionen in einem Gitter und vergleicht dann jede aufgenommene
Projektion mittels markanten Punkten mit diesem Gitter, erst einer groben
Schrittweite, dann in den Umgebung zu den besten Funden. Diese Schätzungen
reichen aus, um die Trajektorie mit einer ähnlichen Genauigkeit zu kalibrieren
wie FORCASTER mit den regulären Startparametern, die vom CBCT-System
aufgezeichnet werden.

Kapitel 3 dieser Arbeit stellt ein Algorithmus zur Erkennung von Arterien
in dynamischen kontrastverstärkten MRT-Bildern vor. Durch Schwellenwert-
bildung, Flutung und morphologische Operationen wird eine Maske für die
Arterie erstellt. Der Prozess ist deterministisch und unabhängig von der Er-
fahrung des Anwenders. Da die Annotierung der Arterie einen starken Einfluss
auf die berechneten Perfusionswerte hat, hilft dieser Algorithmus der Repro-
duktion und der Vergleichbarkeit von Perfusionsbildgebung.

In Kapitel 4 wird ein webbasiertes MRT für die Ausbildung von Studenten
vorgestellt. Die Student*innen können verschiedene Sequenzen auswählen und
die entsprechenden Parameter einstellen, um dann festzustellen wie sich das
MRT-Bild verändert. Die Software läuft vollständig innerhalb des Browsers
und ist quelloffen2.

Die vorgestellte Arbeit zeigt Algorithmen, die bei der Bildgebung helfen,
indem sie die Reproduzierbarkeit und Vergleichbarkeit oder die Rekonstruktion
von CBCT-Bildern verbessern.

2https://github.com/ChristianToennes/VirtMRI
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1 Introduction and Outline

1.1 Motivation

Imaging technology offers many benefits to medical interventions, but also sev-
eral challenges. Two of these challenges are metal artifacts from instruments
or implants that are introduced during the procedure and the limited available
space, so every device has to contest for it. The Cone-Beam Computed To-
mography (CBCT) is uniquely suited for these, it occupies just a little space
and due to its high flexibility in position and motion it can acquire images
with reduced metal artifacts.

A CBCT system consist of an X-Ray source and a digital detector, com-
monly fixed to a C-Arm. The C-Arm can be moved and rotated around the
table with a high degree of freedom, which allows an easy acquisition of X-Rays
from different directions. Also, these systems can acquire X-Ray images con-
tinuously as a fluoroscopy, e.g. useful for heart catheter interventions where
the flow of contrast agent through the coronary arteries is observed. The third
image type CBCT can acquire are 3D images. Here, the C-Arm is rotated in
a circle around the patient while many X-Ray images are acquired. Then the
3D image can be reconstructed from these images. Since these systems are
often used in interventional settings the images often contain metal objects,
while not a problem for 2D images in the reconstructed 3D image the metal
creates artifacts. There are different strategies to remove metal artifacts, one
is to adapt the trajectory on which the images are acquired. The CBCT is
due to its flexible movement, uniquely suited for this. The new trajectories are
called task-based, free, or arbitrary trajectories. The CBCT allows not only to
simply tilt the standard circular trajectory it can follow any path, as long as
the surrounding has enough space for it, even acquiring projections at totally
random spots. Another use-case for arbitrary trajectories is the reduction of
radiation. If only one slice is relevant for the task, then a trajectory that only
creates a sharp image in the required slice but nowhere else (a tomosynthesis),
can achieve the task with reduced radiation.

These techniques aren’t used in current systems, there is a problem with
adapting trajectories to the current task. To reconstruct an image from the
projections acquired with a trajectory, this trajectory has to be calibrated. The
robotic systems that control the C-Arm are unable to accurately follow the de-
sired path and therefore the reconstructed image is incorrect. But the deviance
of the system is always the same, so the actual trajectory of the CBCT is mea-
sured and then used for reconstruction. This is called calibration and can be
done in multiple ways. Image a calibration phantom with well known proper-
ties where for every projection the actual acquisition position and orientation
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can be calculated from the position of the visible objects. Another way is to
use a prior image of the patient and then find the parameters by comparing the
acquired projection image to simulated projections. The former one is called
offline calibration, the latter online calibration. For offline calibration you have
to calibrate the trajectory before you want to use it. Whereas, online calibra-
tion allows calibrating the trajectory with just the images that should be used
to reconstruct the image and a previously acquired Computed Tomography
(CT) image. Therefore, online registration offers the opportunity to create
CBCT trajectories on the fly, then calibrate and reconstruct the 3D volume
without removing the patient, but we are not there, yet. Online calibration
needs a lot of time to find the parameters and it is not feasible to wait for an
hour until the image is calibrated and reconstructed. Here, research is needed
to reduce the runtime, but also to increase the accuracy and robustness.

Acquiring images so a physician can look at them is a tremendous help for
medicine, but it is not enough for evidence based medicine. We want images,
that can be quantitatively compared to images from other devices, hospitals or
times. This is especially a problem for Magnetic Resonance Imaging (MRI) im-
ages where the measured values aren’t even reproducible on the same machine
with the same patient. It gets worse if a physician has to annotate structures
inside a noisy and low resolution Magnetic Resonance Imaging (MRI) image,
which are then used to calculate quantitative parameters, for example the per-
fusion. Different physicians will annotate the structures differently and then
the calculated parameters also change. Algorithms offer the chance to repro-
ducible annotate structures. Every time a deterministic algorithm processes
the same image, it will create the same annotation. So when recalculating, the
parameters will stay the same, even if the original annotations were not saved
or lost. An algorithmic annotation also makes results of different physicians
more comparable, since the experience of the physician is no longer relevant for
the quality of the annotation. Thus, reproducibility and quantitative imaging
goes hand in hand with algorithm development.

MRI systems allows the use of many different sequences with adjustable
parameters, that can generate a lot of different image contrasts. But it is
not possible to try different options on a real scanner, because the acquisition
requires too much time. Here, simulation or virtualization of the imaging
process can help. Allowing physicians to test different parameters or sequences
beforehand and find the one with the image contrast they want.

In this thesis, I will present two algorithms for calibrating CBCT trajectories
and one that segments arteries to be used in the parametrization of perfusion
calculation. Furthermore, I present a side project that can help with teaching
MRI to students.

2
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1.2 Outline

This thesis is written cumulatively. The chapter 3 introduces an algorithm
for finding the arteries in contrast enhanced MRI images. In 5 and 6 two
algorithms for calibrating CBCT trajectories are presented. The chapter 4
is a little detour about a web-based simulator for teaching MRI sequences
to students. All of these four mentioned chapters consist of published and
peer-reviewed scientific papers.

The theoretical background for the above described chapters can be found
in 2. It gives an overview of the basics for MRI and CT imaging, then goes
further into calibration of CT trajectories. Feature finding and matching, used
by the algorithms in 5 and 6, is explained and the relevant algorithm shortly
described.

In chapter 3 an algorithm for finding the arteries in dynamic contrast en-
hanced MRI images is described. From the found arteries, the arterial input
function can be extracted to be then used in perfusion calculations. To seg-
ment the arteries, the algorithm first finds the time point where the contrast
agent appears and then uses classical algorithmic filters to segment the pixels
belonging to the artery.

A side project is the MRI simulator shown in chapter 4, a web-based simu-
lator which can be used in the common modern browsers. The purpose is to
teach students how different MRI sequences and parameters influence the re-
sulting images. It is completely browser based and calculates everything within
the browser, the server only provides the static files and data sets needed for
the simulation.

Chapter 5 is about an algorithm to calibrate CBCT trajectories. It is based
on the FORCAST[3] algorithm and improves it in several parts. To calibrate
a trajectory, each individual projection is separately registered to a prior CT
image. For this, feature points are detected and then matched to feature points
from forward projections of the prior image. Several metrics are minimized to
find the correct position of the projection.

A further improvement of the FORCASTER algorithm is shown in chapter 6,
where the need for an initialization is removed. The initial parameters needed
are estimated by comparing the projection with a coarse grid of projections
around the prior image, and then refined until the estimates are close enough
until a calibration algorithm like the one described in chapter 5 can successfully
calibrate the trajectory.

A summary of this thesis and the four papers can be found in chapter 7.

The outlook in chapter 8 contain future plans and development options for
the presented algorithms and software.
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1.3 Citation of Previous Publications

Several chapters of this thesis have already been published or are currently
submitted for publication. The citations for these chapters are:

Chapter 3: C. Tönnes, S. Janssen, A. Schnurr, T. Uhrig, K. Chung, L.
Schad and F. Zöllner. Deterministic Arterial Input Function selection in DCE-
MRI for automation of quantitative perfusion calculation of colorectal cancer.
Magn. Reson. Imaging, 75, pp.116-123 (2021), doi: 10.1016/j.mri.2020.09.009

Chapter 4: C. Tönnes, C. Licht, L. Schad and F. G. Zöllner. VirtMRI: A
tool for teaching MRI. J. Med. Syst. Submitted

Chapter 5: C. Tönnes, T. Russ, L. Schad and F. Zöllner. Feature-based
CBCT Self-Calibration for Arbitrary Trajectories. Int J CARS, 2022, 17 (11),
pp.2151-2159. doi: 10.1007/s11548-022-02645-9

Chapter 6: C. Tönnes and F. G. Zöllner, Feature-Oriented CBCT Self-
Calibration Parameter Estimator for Arbitrary Trajectories: FORCAST-EST.
Appl. Sci. 2023, 13, 9179. https://doi.org/10.3390/app13169179

4



2 Theoretical Background

2.1 Medical Imaging

Medical Imaging encompasses several technologies, in this thesis only magnetic
resonance imaging and computed tomography are used. The following section
explains shortly how MRI and CT function. It is followed by an introduction
to detecting feature points in images and

2.1.1 Magnetic Resonance Imaging

MRI is based upon the behavior of spins inside a magnetic field. To simplify
it until it is technically wrong but understandable for humans, a spin is a tiny
compass. A standard MR image measures the spins of single protons, so the
spin of hydrogen atoms.[4] It is often shortened to 1H MRI or proton MRI and
this spin has two possible states, ±1/2. In theory all Atoms with spin states
unequal to zero could be used for imaging, but for biological tissue 1H is the
most common due to its abundance in water and fat. Another interesting
atom is sodium imaging, or 23Na imaging. It has a spin number of 3/2 and
therefore can have the spin states of ±3/2, ±1, and ±1/2. This allows not
only to create image that show how much sodium is present, but also if this
sodium is free or bound to a molecule, which can give information about the
cell functions.

Regardless of the measured atom cores, the signal acquisition follows the
same principle. When a magnetic field 𝐵0 is present, the spins tend to orient
themselves parallel to it, or antiparallel. The parallel orientation has a slightly
lower energy and is therefore preferred. This energy difference and the ratio
of parallel to antiparallel is proportional to the magnetic field. Because of
quantum mechanical shenanigans, the spins don’t actually decide on one ori-
entation, since we are unable to measure the signal of a single spin. Instead,
we measure the sum of all spins inside one voxel, which create a magnetization
𝑀0, that is parallel and proportional to the magnetic field. This magnetization
alone is not enough to create images, but fortunately this netto magnetization
vector is also rotating around the magnetic field direction. If 𝑀0 is oriented
along the magnetic field, we cannot measure it, but we can push it out of its
orientation with a high-frequency radio signal. Then the magnetization vector
will rotate around the magnetic field, and therefore it induces a currency in
a correctly oriented coil. The rotation is called precession and can also be
observed if you push a spinning top out of its resting position. The behavior
of Spins is comparable to such a spinning top, and it will slowly return to its
resting position, parallel to the magnetic field. At this point it is important to
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2 Theoretical Background

mention, that an atom core having a spin does not mean this core is spinning,
it just behaves as if it was spinning.

The high-frequency radio signal needs to have the same frequency as the
precession of the spins that should be rotated. This precession frequency, called
the Larmor frequency, depends on the magnetic field 𝐵0 and the gyromagnetic
ratio 𝛾, see also equation 2.1. All spins with a different Larmor frequency are
not affected by the radio signal, and thus only the rotated spins generate a
measurable signal.

𝜔0 = −𝛾𝐵0, (2.1)

To describe the magnetization further, a few definitions are needed. In the
following, we will only consider the magnetization vector of a single voxel.
Then we will divide it into two parts, 𝑀𝑧 describes the magnetization along
the magnetic field or longitudinal magnetization and 𝑀𝑥𝑦 is the magnetization
perpendicular to it, the lateral magnetization. Because the spins are constantly
precessing around the magnetic field, a further subdivision into 𝑀𝑥 and 𝑀𝑦
will only complicate the equations but won’t enhance the understanding of the
principles.

Now, the equation 2.2 describes how the magnetization of our spins return
to equilibrium after we have rotated them by 90°. The constant 𝑇1 is unique
to every tissue and substance and is 63% (1 − 1

𝑒) of the time needed for the
magnetization to turn back, parallel to the magnetic field. This return of
magnetization to the equilibrium 𝑀𝑧,𝑒𝑞 is called T1 relaxation or spin-lattice
relaxation.

𝑀𝑧(𝑡) = 𝑀𝑧,𝑒𝑞 − (𝑀𝑧,𝑒𝑞 − 𝑀𝑧(0)) 𝑒− 𝑡
𝑇1 , (2.2)

A second kind of relaxation happens to the magnetization in x, y direc-
tion 𝑀𝑥𝑦, which is perpendicular to the magnetic field and to the magnetic
component 𝑀𝑧. This relaxation is described by equation 2.3 and is called T2
relaxation or spin-spin relaxation. The name already indicates it, this relax-
ation is caused by interaction between spins. Neighboring spins interact with
each other and get out of phase. This dephasing of individual spins leads to
a reduction of the total magnetization vector in the transversal plane 𝑀𝑥𝑦.
It’s important to note, that this reduction in magnetization is not equal to
the increase in the longitudinal magnetization 𝑀𝑧. The reduction is due to
spins getting out of sync, while the other is due to spins realigning with the
magnetic field.

𝑀𝑥𝑦(𝑡) = 𝑀𝑥𝑦(0) 𝑒− 𝑡
𝑇2 , (2.3)

The 𝑇1 and 𝑇2 relaxation are both dependent on the tissue and therefore
very interesting for medical applications. There is a third relaxation which is
independent of the tissue, the 𝑇 ∗

2 relaxation, or free induction decay (FID).
In an ideal MRI device the magnetic field has the same strength everywhere,
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but this is not true in reality with imperfect coils, a patient in our scanner,
different temperatures, materials with magnetic properties, etc..., therefore
differs the Larmor frequency slightly for each spin. Since our HF radio pulse
is also imperfect and has a certain, adjustable, bandwidth we can turn all
these spins, even though they have different Larmor frequencies, but in the
transversal plane they will rotate with different speeds. A good representation
of this is a race between Achilles and a tortoise. The Achilles is faster and will
run around the stadium faster than the tortoise, and the combined signal will
be reduced and finally vanish completely. For a mathematical explanation of
the relaxation see equation 2.4.

𝑀𝑥𝑦(𝑡) = 𝑀𝑥𝑦(0) 𝑒− 𝑡
𝑇∗

2 (2.4)

This 𝑇 ∗
2 leads directly to the first and most basic MR imaging technique,

called Spin Echo[5]. Since this relaxation depends only on approximately static
things, like the temperature, objects and manufactured imperfections in the
MRI device which do not change much over time, we can reverse those. Imagine
the race between the Achilles and the tortoise, after a certain time both will
turn back and run the same distance towards the starting point, they each run
back with the same speed they had when running forward, so they reach the
start at the same time. For our spins that means, if we manage to turn them by
180° they will run backwards until they are at the starting point, at which they
all had the same phase and we can measure the full 𝑀𝑥𝑦 magnetization. So we
have to first rotate the spins by 90° into the transversal plane, then we wait
some time 𝑇 𝐸

2 and rotate everything by 180°. A specific order of rotations,
activations of gradient magnetic fields, waiting times and acquisition of the
signal is called a Sequence, in our case it is the Spin Echo Sequence. The spins
will take the same time 𝑇 𝐸

2 to reach a synchronized phase again. After the
time 𝑇 𝐸, called the Echo Time, we will have an echo of the original signal at
𝑡 = 0. Depending on the time we wait, this echo signal will be reduced based
on the 𝑇2 relaxation and equation 2.3. Therefore, the Spin Echo Sequence
can be used to measure 𝑇2 weighted images. Depending on the echo time,
𝑇 𝐸 the contrasts between different tissues will change. Another parameter
for the Spin Echo Sequence is the repetition time 𝑇 𝑅, the time to wait until
the next 90° degree rotation is made, and the sequence starts over. This time
should be larger than the 𝑇1 time, otherwise the 90° rotation will not rotate the
maximum magnetization 𝑀𝑧,𝑒𝑞, but only the part 𝑀𝑧(𝑇 𝑅) that has relaxed.
For this more complex case, see equation 2.5.

𝑀𝑥𝑦(𝑡) = (1 − 𝑒− 𝑇𝑅
𝑇1 ) 𝑒− 𝑡

𝑇∗
2 (2.5)

Apart from images that use the 𝑇2 sequence for tissue contrast, there is
the Inversion Recovery Sequence to create image contrasts based on the 𝑇1
relaxation times. Here we add a 180° rotation before the Spin Echo Sequence.
The time before the first inversion and the 90° rotation is the inversion time
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𝑇 𝐼 . To reduce the impact of 𝑇2 relaxation, the 𝑇 𝐸 time should be very short.
The mathematical relation can be seen in equation 2.6.

𝑀𝑥𝑦 = (1 − 2 𝑒− 𝑇𝐼
𝑇1 + 𝑒− 𝑇𝑅

𝑇𝐼 ) 𝑒− 𝑇𝐸
𝑇2 (2.6)

These two very basic sequences are not everything possible with MRI de-
vices. Another way to refocus the spins after their inevitable discord is using
the gradient magnetic fields. This sequence, called Gradient Recalled Echo,
does not need a 180° radio pulse, instead it inverts one of the gradient magnets.

𝑀𝑥𝑦 = 𝑀0 𝑒− 𝑇𝐸
𝑇∗

2
𝑠𝑖𝑛𝜃 (1 − 𝑒− 𝑇𝑅

𝑇1 )

1 − 𝑐𝑜𝑠𝜃 𝑒− 𝑇𝑅
𝑇1

(2.7)

Gradient Magnetic Fields haven’t been covered so far. They have multiple
purposes, one is their use in refocusing spins, as seen previously, another use
is for 3D imaging. As stated previously, we measure the sum of all spins
in our object. This is not desired, the sum of all spins inside a body gives
little information usable for diagnosis concerning specific regions. A way to
differentiate the measured signals into all three space dimensions is needed.
Previously the relation of the Larmor frequency to the strength of the magnetic
field was described, this is elemental for the next part. Also elemental is the
addition of three distinct magnetic fields 𝐵𝑥, 𝐵𝑦, 𝐵𝑧, one for each dimension
and all perpendicular to each other. To get three different information for
every signal, we have to encode these three dimensions into our signal. All
encodings will use the gradient fields and the Larmor frequency.

To show this encoding the simplest sequence, Spin Echo, will be used. First,
we will select one slice out of the volume, only this slice will be rotated by
the first 90° HF signal. Therefore, only spins in this slice will be part of the
measured signal. This reduces our problem to a two-dimensional one.

For the next two encodings we have to use Fourier transformations, one is
implicit, the other explicit. Starting with the easy one, the explicit Fourier
transformation or frequency encoding. When measuring a signal we acquire it
over time, this allows us to decompose it into individual frequencies using the
Fourier transformation. These frequencies correspond to different areas where
the Larmor frequency differs. Using the gradient magnetic fields, we can add a
magnetic field strength gradient to force a certain difference in frequency along
a defined vector. In this way, we can resolve our signal along one dimension.

What remains is encoding the final dimension. The Fourier transformation
returns a complex signal, the amplitude for each frequency and the phase.
The frequency encoding uses the amplitude, so for the last dimension we have
to use the phase information. The phase encoding happens between the 180°
HF pulse and the acquisition, we create a magnetic field, perpendicular to the
one used for frequency encoding and to the one used for slice selection, to
change the Larmor frequencies of the spins. Before the signal is measured, this
gradient field is turned off. It results in the spins along this direction having a
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specific phase. Since our gradient field is linear, which leads to a linear increase
in the precession frequency, the resulting phase shift between spins can be
described with a sinus function. Changes in contrast along this direction with
the same frequency as the frequency of the phase shifts is enhanced, and all
other frequencies are suppressed. Repeating the measurement with different
phase encoding frequencies allows us to differentiate signals along this axis.

The measurements are recorded in the so called K-Space. In the center of this
space are the low frequencies, and towards the edges the frequencies raise. The
direction of all frequencies is from their point in the K-Space towards the center
point. For our example, the K-Space consists of a stack of two-dimensional
planes. Every plane consists of lines that are measured at once and then
decomposed using the Fourier transformation. The phase encoding gives the
second dimension for our measured lines. No phase encoding gradient equals
to no difference in phases, so we save our recorded line through the center.
With increasing phase encoding gradients, the phases diverge more and the
distance to the center increases, since the frequency to describe the difference
in phases increases. This is also the reason why this phase encoding is an
indirect Fourier transformation. We don’t perform the actual transformation,
but use physical processes to extract the individual frequencies.

After measuring the K-Space with our three-dimensional encoding, slice se-
lection, phase encoding, and frequency encoding, we perform an inverse Fourier
transformation to calculate the actual MRI image. If the K-Space is acquired in
the way we described above, we use a two-dimensional inverse Fourier trans-
formation. There are also more advanced MRI sequences that acquire the
K-Space fully in three dimensions, then a three-dimensional Fourier transfor-
mation is needed.

One of the mentioned sequences and all the three-dimensional localization
have to be combined to create a three-dimensional MRI image. There are also
a multitude of other sequences that can be combined with the described dimen-
sional localizations, and also a plethora of truly three-dimensional sequences
that mix localization and signal generation.

2.1.2 Computed Tomography

Computed tomography generates three-dimensional images based upon the
absorption of X-rays. X-Ray images of an object are acquired from many
different angles, and from these the three-dimensional image is reconstructed.
A simplified version of this process is described in the following paragraph.

The X-Rays are generated inside a Coolidge tube also known as Hot Cathode
Tube ([6]). The cathode is heated with the filament voltage and electrons
exit the filament to form a cloud around the cathode. From the cathode
these electrons get accelerated towards the anode by an acceleration voltage.
When an electron hits the anode, it gets slowed down and the kinetic energy is
released as a photon. This radiation is called Bremsstrahlung and the energy of
these photons is a spectrum that is limited by the applied acceleration voltage.
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An electron accelerated with the current 𝑈 has an energy of 𝑈 electron volts
𝑒𝑉 (Equation 2.8). Electron volts can be converted to the joule, the SI unit
for energy, but electron volts is more convenient.

𝐸 = 𝑒 ⋅ 𝑈, (2.8)

Additionally, the electrons will excite the atoms of the anode which will
create photons with very specific energies, called characteristic radiation, when
returning to an unexcited state. The combination of these two radiations is
the X-ray radiation that will exit the tube ([6]). At the exit of the tube is a
metal plate to filter out the photons with a low energy, these can’t penetrate
the human body and would therefore contribute nothing to the image but still
damage the tissue.

When photons traverse a material, a part will be exponentially absorbed.
This depends on the material and the energy of the photons and is described
by the absorption coefficient 𝜇. As a general rule, the absorption coefficient
is higher for denser materials and materials with a higher atomic number and
lower for photons with a higher energy. The absorption also depends on the
depth of the traversed material 𝑑. When traveling through multiple materials,
the x-ray beam will be absorbed by the integral of all the individual absorption
coefficients. The Beer-Lambert law (Equation 2.9) describes how the initial
intensity of the x-ray radiation 𝐼0 is reduced. This equation is simplified,
since the absorption coefficient also depends on the energy of the photons, but
for computed tomography this is ignored. The newer photon counting CTs
have a limited ability to measure the energy of photons and the more complex
equation is used. A standard CT cannot measure the energy of photons, and
therefore it is only possible to calculate an average absorption coefficient for
all energies.

𝐼 = 𝐼0𝑒− ∫ 𝜇(𝑥,𝑦)d𝑠 (2.9)

The measured signal is 𝐼 in equation 2.9, to get the absorption along one
x-ray beam we have to divide by the initial radiation intensity 𝐼0 and calculate
the negative natural logarithm (equation 2.10).

𝑝 = − ln( 𝐼
𝐼0

) = ∫ 𝜇(𝑥, 𝑦) 𝑑𝑠 (2.10)

With this equation, we now have the absorption along all our measured
angles. With these we could create a bunch of equations in which we sum up
the values of each voxel a ray travels through, weighted by the length of the
ray inside the voxel, and equal it with the measured value. If we have enough
measurements, we could solve this set of equations to get an CT image. A
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(a) Unfiltered back projections.

(b) Filtered back projections using a ramp filter.

Figure 2.1: CT reconstruction using 1, 4, 10 and 600 projections.

normal CT volume has 512 ∗ 512 voxel per slice, so we would need to measure
our object from 262144 different angles, which is unfeasible, it would take
too long and create too much radiation damage. Instead, the back projection
algorithm is used. It is the inverse operation to taking an x-ray image, which is
a forward projection since it goes forward through the object and integrates all
values. The back projection takes the value 𝑝 and smears it equally across the
volume in the direction of the x-ray beam. This is repeated for all projections
and will result in a reconstructed image of the object. The process is shown
in figure 2.1 (a). The more projections from different directions are used, the
better the image, but even when using many projections, the resulting image is
blurry. This happens if the measured values are used directly. They have, the
problem, that low frequencies are measured in a higher proportion than high
frequencies. To remedy this, the low frequencies have to be suppressed, this can
be done by applying a ramp filter in the frequency domain. This simplest filter
is just a multiplication with the absolute value of the frequency (equation 2.11
divided by the maximum frequency. The maximum frequency we can measure
is constrained by Nyquist–Shannon sampling theorem, therefore all frequencies
above this maximum are noise and should be discarded.

𝜙(𝑓) = {
|𝑓|

𝑓𝑚𝑎𝑥
, |𝑓| < 𝑓𝑚𝑎𝑥

0 , 𝑒𝑙𝑠𝑒
(2.11)

After applying this filter to the projections, the back projection algorithm
will create an image with sharp edges and no blurring (Fig. 2.1 b).

In the next step, the attenuation values 𝜇 from the reconstructed CT image
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are normalized using the attenuation of water 𝜇Water and air 𝜇Air (eq. 2.12),
this gives results in Hounsfield Unit (HU). With this normalization, the CT
value of air is -1000 and water has a value of 0.

𝐻𝑈 = 𝜇 − 𝜇Water
𝜇Water − 𝜇Air

⋅ 1000 (2.12)

Trajectory Calibration

To get a good reconstruction for every projection, the exact position and orien-
tation is needed. For this, the trajectory the CBCT uses has to be calibrated.
This can be done in multiple ways, one is using a calibration phantom. A
calibration phantom is precisely crafted where the position of every part is
well known, and the parts are easily distinguishable from the background in a
projection. After acquiring the projections on each of those the parts of the
phantom are marked and because the positions are known the parameters of a
projection can be calculated. Of course, the calibration phantom is build so it
looks different from different angles. This offline calibration is highly precise,
but there are two requirements. First, the used trajectory has to be run twice,
once with the phantom and once with the patient. Secondly, the CBCT system
needs the ability to perform the trajectory twice with only minimal deviations.
The second requirement is easily fulfilled by modern CBCT systems.

Another way to calibrate a trajectory is online calibration. Here a prior im-
age is acquired using an already calibrated trajectory, then the new trajectory
is acquired. The projections from the new trajectory are then calibrated using
the prior image as a reference. This allows to easily create new trajectories,
use them and immediately calibrate and reconstruct an image. But on the
other hand, it needs a prior image. Similar to registration tasks, the accuracy
depends on how close the prior image is to the actual image and how close the
starting parameters are to the actual parameters.

2.1.3 Feature Points

Feature points are significant points in an image, that can be used to describe
or understand that image. Widely used algorithms are Speeded-Up Robust
Features (SURF)[7] or Scale-Invariant Feature Transform (SIFT)[8]. Both use
a multiscale representation of the input image. They create this scale space by
convolution with a Gaussian kernel and increasing standard deviation. This
creates increasingly blurred images. Then these images are used to detect the
significant points of the input image.

In this thesis, feature points are detected using the AKAZE[9] algorithm,
which is an accelerated version of KAZE (jap. for ”wind”)[10]. Similar to
SURF and SIFT, it uses a multiscale representation, but instead of a Gaussian
filter it uses a nonlinear diffusion function. While the Gaussian blurs noise
and edges equally, this nonlinear blurring function preserves strong edges and
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Figure 2.2: Multiscale image representation for Gaussian in the top row and
the nonlinear diffusion function used by AKAZE in the bottom
row. Notice, how the nonlinear diffusion preserves strong edges
between the objects.

blurs only within the regions. An example of this difference can be seen in
Figure 2.2.

It is clearly visible, that the multiscale representation generated by AKAZE
is preserving the high-contrast edges in the image while the low-contrast edges
withing regions are removed.

The features are then detected by calculating the Hessian matrix for ev-
ery point in the image and finding extremas. For every found feature point,
AKAZE creates a binary description vector. This vector contains information
about the gradients around the point. The algorithms in this thesis use the
rotation invariant version of this descriptor.

Since the descriptor is binary, it can be compared using the Hamming dis-
tance. This distance counts the number of different bits. A few quick examples:
101 and 111 have a Hamming distance of one; 100 and 011 a Hamming distance
of three. For the descriptors of the feature points, a low Hamming distance
corresponds to a similar distribution of gradients around the feature point.
This means, that a low distance equals a similar distribution of gradients and
these points look similar in the images.

To find matching parts in two images, first detect feature points and extract
the descriptors. Then every feature point from one is compared to every other
feature point from the other image. For the binary descriptor, the comparison
is done using the Hamming distance. Using this, there will be a matching
feature point for every point, but obviously this means many of these matching
pairs are very poor matches.

Therefore, the ratio filter developed by Lowe et al.[8] is commonly used.
Here, for every feature point the two points with the lowest Hamming distance
are selected and the point with the lower distance is only considered a good
match if the distance is less than 0.7 times the distance of the second-best
match. The used ratio can be adapted, in this thesis it is between 0.7 and 0.8.
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2 Theoretical Background

Matching feature points can then be used for registration or object track-
ing. An example of matching the entrance to the complete tower is shown in
figure 2.3. In addition to Lowe’s ratio filter, the matches were also filtered by
using Random sample consensus (RANSAC). This algorithm divides all found
matches into inliers (good matches) and outliers. The door, signs and the big
crack in the wall were all successfully matched between the two images. It is
very common, that only few feature points will have a match. In this example
there are 25 good matches, but the upper image has 1442 feature points and
the lower one has 39315.

Since the coordinates of each point is known and matched to a coordinate
in the other image, it is easy to get a transformation matrix between these two
images.

14



2.1 Medical Imaging

Figure 2.3: Matching a photo of the entrance of the tower to the photo showing
the complete tower and surrounding. Detected feature points are
shown as red dots, matching points are connected with a blue line.
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3.1 Abstract

Development of a deterministic algorithm for automated detection of the Ar-
terial Input Function (AIF) in DCE-MRI of colorectal cancer.
Using a filter pipeline to determine the AIF region of interest. Comparison to
algorithms from literature with mean squared error and quantitative perfusion
parameter 𝐾𝑡𝑟𝑎𝑛𝑠.
The AIF found by our algorithm has a lower mean squared error (0.0022 ±
0.0021) in reference to the manual annotation than comparable algorithms.
The error of 𝐾𝑡𝑟𝑎𝑛𝑠 (21.52 ± 17.2%) is lower than that of other algorithms.
Our algorithm generates reproducible results and thus supports a robust and
comparable perfusion analysis.

3.2 Introduction

Quantitative perfusion calculation[11][12] can be used to measure the response
of rectal cancer to treatment[13][14][15]. A physician needs to annotate the
artery and tumor region in DCE-MRI images to perform a quantification of the
perfusion parameters from the DCE-MRI time series data. Manual annotations
however, suffer from high inter- and intra-user variability[16][17].

Furthermore, the task of annotating images is time consuming. Due to this,
in the current clinical workflow, the arterial input function (AIF) and tumor
region of interest (ROI) is only annotated on a single slice. Depending on
the slice, which can be chosen freely by the practitioner, the resulting perfu-
sion parameters may have even higher variations. Therefore, there is a need
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of reliable, fast and automated AIF determination in quantitative perfusion
imaging.

Apart from deep learning approaches to segment [18] the artery several
classical algorithms to find the AIF were proposed. Murase et. al. used a
half automatic fuzzy c-means clustering[19] to detect the AIF in DCE MRI
images of the brain. Parker et al.[20] introduced a semi-automatic algorithm
to find the AIF in the lung, prostate and brain region, where the user has to
select a slice and then the algorithm find the 5% of voxels with the highest peak
value within the first 20 seconds. A semi-automatic algorithm - the authors
claim it is fully automatic, but the user has to select a slice - for DCE MRI
brain images using k-means clustering was developed by Mouridsen et. al.[21].
K-Means clustering is not deterministic because the initial cluster centers are
chosen randomly. Chen et. al. published [22] a pipeline with height, slope and
2D/3D blob filter together with a region growing to select the artery in the
breast, brain, liver and prostate region. This algorithm is not fully automatic
because the user has to change the parameters to get a optimal result. From
Peruzzo et. al. [23] comes an algorithm for the brain, that fits a gamma variate
function and then uses a clustering algorithm to iteratively reduce the found
voxels to six. Another algorithm for detecting the AIF in the prostate region
using the gamma variate function and a clustering algorithm is by Zhu et. al.
[24]. An algorithm by Shi et. al. [25], developed on datasets of rat kidneys
and human heads, also uses a clustering algorithm, after filtering voxel by the
area under the curve and the peak value. Recently Tabbara et. al. published
an algorithm to find the AIF in DCE MRI images of the brain. The algorithm
uses k-means clustering to find the arteries and then a priority-flooding to
segment the brain areas, that are supplied by each found artery[26].

For a reproducible and robust perfusion calculation the algorithm to find
the AIF has to be deterministic. A deterministic algorithm cannot depend on
user interaction or random initialization. Selecting a slice or using k-means
clustering lead to not reproducible results.

In short the criteria for our algorithm. It has to be deterministic and fully
automatic. If the algorithm only uses the images as input, if it runs without
user interaction or random number generators, it will generate reproducible
results. The algorithm should annotate the artery in the full 3D Volume and
annotate only the main artery trunk.

In this paper we propose an algorithm that is deterministic and fully inde-
pendent of the user and user input. Therefore it can generate reproducible
results and still reaches human performance.
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3.3 Methods

3.3.1 Image Data

We did a retrospective study on 40 patients with colorectal cancer. All images
were acquired by physicians during normal clinical assessment of patients with
colorectal cancer. The data was partly used in previous papers evaluating
quantitative perfusion calculation [27][28].

All patients received a DCE-MRI at 3T-(Magnetom Trio or Magnetom
Skyra, Siemens Healthineers, Erlangen, Germany). DCE-MRI was performed
using a 3D TWIST sequence with parameters TR/TE/FA = 3.6𝑚𝑠/1.44𝑚𝑠/15,
matrix size = 192 × 144, FOV = 260 × 158𝑚𝑚2, slice thickness = 3.6𝑚𝑚,
20 to 32 slices, and parallel imaging with a GRAPPA factor of 2 [27]. Images
were either acquired in axial plane or tilted in direction of the coronal plane
to cover the tumor as best as possible. Each data set consists of 70 volumes,
which were continuously acquired over the time of 5.2 to 7.55 minutes.

The pre-processing consisted of re-sampling all images to the same dimension
and then subtracting the first image of every time series from each following
image to extract the change of intensity relative to the baseline without tracer
agent. The pre-processed images were used as input for all algorithms.

3.3.2 Manual AIF determination

Manual AIF determination was performed using MeVisLab1 and a self devel-
oped annotation workflow. In this workflow the region of interest was delin-
eated in consensus with an experienced radiologist using a graphic tablet. All
annotations were done in 3D. It took 2.5 hours to annotate all tumors and also
2.5 hours for all arteries, i. e. on average 5 minutes to annotate a single tumor
and 2.5 minutes for a single artery.

3.3.3 Algorithm development

The physical and physiological properties of arteries and blood flow are well
known[29]. For our algorithm we used the shape of arteries. In the region of the
rectal colon the arteries are slightly curved tubes, parallel to the colon. This
leads to near circular representations on the image slices. Another property
concerns the concentration of trace agent. Over time the concentration of
tracer agent in the artery 𝑐𝑎(𝑡) behaves similar to a gamma variate function.
It has a steep increase to a high peak value and a slightly slower fall afterwards.
This increase will be the first one in the time series and it also has the highest
peak value.

Based on these artery properties multiple steps were implemented to filter
the input images. We developed a total of 9 steps which will be describe in
detail in the following. These steps are combined to a pipeline which results in

1https://www.mevislab.de/
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a binary mask for the 3D volume. Every step creates a 4D binary mask and a
timestep index, these are given to the next step together with the preprocessed
image.

1st Step: Select 1% of the brightest voxel
The first step is to select the voxel with the highest intensity in the first 15
timesteps. The average arrival time step for the contrast agent was 8.5 ± 1.3,
therefore a cutoff at the 15th timestep should suffice even for patients with
a low cardial output. Because our images are already preprocessed and show
only the change of intensity in contrast to the first image, this will discard
the background voxels and will only select the artery, tumor and noise or
movement artifacts. The bladder is inside the visible region and would be the
region with the highest concentration, but the tracer agent will not arrive there
within the first 15 timesteps, depending on the sequence that was after 65 to
96 seconds.

2nd Step: Binary Opening
Selected structures may be connected with just a few voxel that only have a
high intensity due to partial volume effects. These connections are eliminated
by using the morphological operation of a binary opening.

𝐼𝑚𝑎𝑔𝑒 ∘ 𝐵 = (𝐼𝑚𝑎𝑔𝑒 ⊖ 𝐵) ⊕ 𝐵 (3.1)

Our structuring element 𝐵 is a 1x3x3x3x1 matrix containing a sphere shape
𝐵0,𝑥,𝑦,𝑧,0 = 1|𝑥 = 1 ∨ 𝑦 = 1 ∨ 𝑧 = 1.

3rd: Find timestep with the most peak values.
First the timestep of the peak value for every voxel within the already selected
mask is determined. Then all voxels with peak values of 0 or less and those
with a timestep, that is not in the first quarter of the time series are discarded.
Afterwards select the timestep which contains most of these peak values. From
the previous mask only the volume at the found timestep is retained, the rest
is replaced with zeros.

𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 = argmax
𝑡

(∑
𝑥,𝑦,𝑧

argmax(𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑦, 𝑧, 𝑡′))𝑡′ == 𝑡) (3.2)

4th: Blob & Tube Filter
This step gets its mask from the 2nd step, so it essentially runs in parallel to
step 3. First we use a connected component analysis to find objects in the
mask. We used a connectivity of 18. The found objects are then processed
separate from each other. An object is sliced along the longitudinal direction
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3 Dis LAIF

and the bounding box on every slice is compared to the content.

𝑟 = 𝑂𝑏𝑗𝑒𝑐𝑡𝑉 𝑜𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡
𝑚𝑎𝑥(𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑥𝑥, 𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑥𝑦)2 (3.3)

If a square, defined by the longest side of the bounding box, is filled by less
then 60% or more than 80% with this object, then this object is not considered
roundish and discarded.

5th Step: Find timestep with most peak values and compare to result from
Step 3
Sometimes step 4 throws away enough objects to change the timestep with
the most peak values, but the new timestep might not be the correct one. So
another timestep is calculated with the results from step 4 and then compared
to the one from step 3A. The timestep that is smaller but still above five is
chosen. Then the mask from 3B is cropped to this timestep.

6th Step: Fit gamma variate function
The mask from the one timestep found in the previous step is used on all
timesteps to extract the intensity values over time for every voxel. A connected
component analysis is used to extract found objects form the mask. The
intensity values of each object is averaged. This results in one intensity curve
for each object. To these intensity curve we then fit a gamma variate function.

𝐺𝑉 𝑇 (𝑥) = 𝛽𝛼

Γ(𝛼)𝑥𝛼−1𝑒−𝛽𝑥 (3.4)

The selection criteria for the bounds of 𝛼 are defined similar to Zhu et. al.[24].

𝛼𝑙𝑜𝑤𝑒𝑟 =
log 𝑐(𝑡𝑙𝑎𝑠𝑡)

𝑐(𝑡𝑝𝑒𝑎𝑘)
1 + log 𝑡𝑙𝑎𝑠𝑡−𝑡0

𝑡𝑝𝑒𝑎𝑘−𝑡0
− 𝑡𝑙𝑎𝑠𝑡−𝑡0

𝑡𝑝𝑒𝑎𝑘−𝑡0

(3.5)

𝛼𝑢𝑝𝑝𝑒𝑟 = 𝑡𝑝𝑒𝑎𝑘 − 𝑡0 (3.6)

All object with a fitted alpha outside these bounds are discarded.

7th Step: Erosion and Dilation
To remove very small objects an morphological erosion is performed, after-
wards a dilation will restore the other objects to the previous size.

8th Step: Region Growing
To refine the boundaries of the objects a flood fill region growing is used. For
every object the brightest voxel is used as a seed point. The threshold for the
flood fill algorithm is determined by the average value of the object minus one
standard deviation.
The threshold for the flood fill is set to the average minus one standard devi-
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ation of upper 0.8 quantile of the object voxels.

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑎𝑣𝑔 (𝑣𝑜𝑥𝑒𝑙𝑠 >= 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒0.2(𝑣𝑜𝑥𝑒𝑙𝑠))
−𝑠𝑡𝑑 (𝑣𝑜𝑥𝑒𝑙𝑠 >= 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒0.2(𝑣𝑜𝑥𝑒𝑙𝑠)) (3.7)

9th Step: Select two largest objects
As the arteries are two big structures on the left and right halve of the image
volume, the last step simply selects the largest object in both halves. These
two objects are used as the ROI for the AIF.

Implementation
The algorithm and its steps were implemented in Python 3.5 using the python
packages numpy and scipy.

3.3.4 Evaluation

We performed three distinct experiments. First, all combinations, without
changing the order, of the substeps were evaluated. Then, we compare our
algorithm to algorithms from literature. In the last experiment we compute
quantitative perfusion parameters to compare the algorithm for the clinical
use case of tumor evaluation.

1st Experiment
These steps were evaluated in every possible combination to determine which
step improve the result and which steps have no or a detrimental impact.
The combination of 9 steps, without changing the order, results in a total of
28 = 512 combinations of steps.

To compare these versions of the algorithm two metrics were employed. The
overlap of the manual ROI and the ROI found by the algorithm is evaluated
using the Dice-Sørensen Coefficient[30][31]. The AIF generated from the ROI
is compared by calculating the mean squared error with the AIF from the
manual annotation.

2nd Experiment
We compared our algorithm to some already published algorithms. Algorithms
that were reimplemented are originally from Parker et. al. [20], Chen et.
al. [22] and Shi et. al. [25]. In addition to this, we used an erosion and
dilation of the manual annotation, furthermore three 2D slices, extracted at the
middle, the lower quarter and upper quarter of the volume in the longitudinal
direction. ”Lower” is the slice of the first quartile and ”Upper” is the 3rd
quartile. ”Middle” is the middle slice and ”Middle+-3” are the slices three
slices up or down from the middle. In our case every image consists of 20
slices, starting at slice number 1, so these slices are number 5, 7, 10, 13 and 15.
Those modifications of the manual annotations were made to better compare
the algorithms to the current medical practice of only annotating on a single
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slice.
The comparison of these algorithms to our algorithm after optimization and

the manual annotation uses the same metrics introduced above in the evalua-
tion of the pipeline steps, namely the Dice-Sørensen-Coefficient and the mean
squared error of the AIF curve obtained from the manual annotation and the
AIF curve from the algorithm defined ROI.

3rd Experiment
For the third experiment want to compare the automatic AIF detection algo-
rithms with respect to quantitative perfusion calculation. Therefore, the found
AIFs were employed to calculate 𝐾𝑡𝑟𝑎𝑛𝑠[1/𝑚𝑖𝑛] using the 2-compartment up-
take model (2CUM)[32][11]. The comparison then used the difference be-
tween the transfer constant 𝐾𝑡𝑟𝑎𝑛𝑠 calculated with the AIF algorithm and
the 𝐾𝑡𝑟𝑎𝑛𝑠 calculated with the manual annotation. We have chosen 𝐾𝑡𝑟𝑎𝑛𝑠

as our comparison parameter, because it can be used to measure the tumor
response to therapy[14][13]. The 2CUM model also provides the plasma flow
𝐹𝑝[𝑚𝑙/𝑚𝑖𝑛/100𝑚𝑙], extraction fraction of tracer agent 𝐸[%], the plasma vol-
ume 𝑣𝑝[𝑚𝑙/100𝑚𝑙], and the mean transit time 𝑀𝑇 𝑇 [𝑚𝑖𝑛] which are also in-
cluded in the evaluation to reflect the effect of different AIF selections to all
model parameters.

3.4 Results

1st Experiment
The evaluation of the 512 combinations of substeps resulted in the combina-
tion of six steps: Select brightest 1% (1), Binary Opening (2), Blob and Tube
filter (4), Gamma variate Filter (6), Flood fill region growing (8), Select two
largest structures (9). Figure 3.1 shows a flow chart of the proposed algorithm
DisLAIF (Discover Local AIF) algorithm and a 3D rendering of depicting the
results of each of the algorithms processing steps. Briefly, the algorithm selects
1% of the voxels with the highest value, then connecting voxel are removed
with a binary opening. The next step filters structures which are not formed
like a tube or smaller than a third of the volume height. Afterwards the gamma
variate function is fitted to each structure and unsuited ones are discarded. To
refine the borders of each structure a flood fill region growing is used. The
last step selects the largest structure on the left and right side of the volume,
resulting in the AIF.

2nd Experiment
Figure 3.2 shows the Dice coefficients obtained by the different algorithms.
Here DisLAIF (0.66 ± 0.09) has a higher dice coefficient than the other algo-
rithms (Shi: 0.37 ± 0.27; Parker: 0.0009 ± 0.0015; Chen: 0.0003 ± 0.0008).

For one example case are the resulting masks of one slice displayed in Figure
3.3. The manual annotation is shown in green, shown in red are the results
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1. Select 1% of
the brightest Voxel

2. Binary Opening 4. Blob & Tube Filter

6. Gamma
variate filter

8. Flood fill re-
gion growing

9. Select largest
structure on the
right and left side

Figure 3.1: Flowchart of the optimized AIF detection filter pipeline (DisLAIF)
with a representative 3D rendering to show the result after the
step. Each image is the sum of all timesteps and the image data
of patient 16 was used.

Figure 3.2: Dice coefficients for the different algorithms. The dotted line in
this and all following bot plots denotes the mean/average and the
solid line is the median value. The brackets indicate a significant
(p<0.05) difference. Only significance in reference to Dis LAIF was
calculated and, if significant, shown.
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(a) The manual annota-
tion

(b) Results from Parker
et. al. 2003

(c) Results from Chen et.
al. 2008

(d) Results from Dis
LAIF

(e) Results from Gamma
Variate Fit

(f) Results from Shi et.
al. 2013

Figure 3.3: The resulting AIF masks on a representative slice and patient for
different approaches for one representative slice of patient 16.

of the reference algorithms and blue is our algorithm Dis LAIF. Simple algo-
rithms, like the ones from Parker et. al. and Chen et. al., select many voxels
that are outside the artery. The Gamma Variate Fit selects few voxel outside
the artery, but also only a part of the artery. The results from Shi et. al.
covers the artery and only few additional voxels outside the artery. Dis LAIF
finds the artery correctly, but also includes arteries branching off the main
trunk.

Mean Error compared to Manual Annotation Median Error
AIF Algorithm Δ𝑡𝑝𝑒𝑎𝑘 Δ ̂𝑆(𝑡𝑝𝑒𝑎𝑘) Δ𝐴𝑈𝐶 Δ𝑡𝑝𝑒𝑎𝑘 Δ ̂𝑆(𝑡𝑝𝑒𝑎𝑘) Δ𝐴𝑈𝐶

Dis LAIF 0.050 ±0.218 0.270 ±0.230 17.268 ±12.568 0.000 0.195 13.281
Shi 12.825 ± 19.597 0.369 ± 0.377 18.307 ± 14.026 1.000 0.320 14.535
Chen 10.600 ± 20.386 0.691 ± 0.169 24.253 ± 14.476 1.000 0.735 21.560
Parker 2.200 ± 2.638 0.748 ± 0.151 24.257 ± 15.152 1.000 0.776 21.290
GVF Fit 22.100 ± 27.435 0.920 ± 0.044 27.164 ± 16.276 3.000 0.926 24.238

Table 3.1: Error of the different AIF algorithms in comparison to the manual
annotation. Shown are the difference of the peak timestep, the
difference of the peak value and the difference of the area under the
curve. Lowest errors are printed in bold.

Comparing the mean squared error of the generated AIF to the other algo-
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(a) AIF for min
Δ ̂𝑆(𝑡𝑝𝑒𝑎𝑘)

(b) AIF for 1st quartile
Δ ̂𝑆(𝑡𝑝𝑒𝑎𝑘)

(c) AIF for median
Δ ̂𝑆(𝑡𝑝𝑒𝑎𝑘)

(d) AIF for 3rd Quartile
Δ ̂𝑆(𝑡𝑝𝑒𝑎𝑘)

(e) AIF for max
Δ ̂𝑆(𝑡𝑝𝑒𝑎𝑘)

(f) AIF for average
Δ ̂𝑆(𝑡𝑝𝑒𝑎𝑘)

Figure 3.4: Several AIF curves generated by the algorithms for different pa-
tients. Selected curves show the error range of our algorithm.
Based on the error of the peak value the selected curves show the
patients where the error is the minimum (a), 1st quartile (b), me-
dian (c), 3rd quartile (d), maximum (e) and closest to the average
(f)

rithms DisLAIF has the lowest error (0.0022 ± 0.0021) of all algorithms (𝑝 <
0.05) (cf. Fig. 3.5). The algorithm by Shi et. al., which was developed for find-
ing the AIF in the brain has only slightly larger errors (0.0084 ± 0.0151) than
DisLAIF. Chen et. al. (0.0188 ± 0.0116) and Parker et. al. (0.0191 ± 0.0118)
have similar errors (𝑝 > 0.05) which are significantly higher than the errors of
Dis LAIF and Shi et. al..

Table 3.1 shows the errors of the AIF algorithm for the normalized peak
value ̂𝑆(𝑡), the timepoint of the peak value, and the area under the curve in
comparison to the manual annotation. It shows, that our algorithm has the
lowest average and median difference in comparison to the manual annotation.

̂𝑆(𝑡) = 𝑆(𝑡) − 𝑆(0)
𝑆𝑡𝑎𝑟𝑔𝑒𝑡(𝑡𝑝𝑒𝑎𝑘) (3.8)

In Figure 3.4 the resulting AIF curve for different patients is shown. The
shown patients are the ones where the error of the peak value (Δ ̂𝑆(𝑡𝑝𝑒𝑎𝑘) is the
minimum (0.033), 1st quartile (0.077), median (0.195), 3rd quartile (0.357),
maximum (0.808) and average (0.27) error.

3rd Experiment
The Figure 3.6 shows the percentage difference in the calculated 𝐾𝑡𝑟𝑎𝑛𝑠 per-
fusion parameter when the AIF generated by the algorithm is used in contrast
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Figure 3.5: Mean squared error sum of AIF from the different algorithms com-
pared to the AIF from the manual annotation. The brackets indi-
cate a significant (p<0.05) difference. Only significance in reference
to Dis LAIF was calculated and, if significant, shown.

Mean Error (%)
AIF Algorithm 𝐹𝑝 𝐾𝑡𝑟𝑎𝑛𝑠 𝐸 𝑣𝑝 MTT

Dis LAIF 21.8 ±21.1 21.5 ±20.9 7.6 ±7.1 42 ±130 394.3 ± 1225.2
Shi 30.8 ± 27.2 28.9 ± 24.2 9.2 ± 9.4 2086 ± 3420 281.7 ± 825.5
Chen 552.9 ± 541.8 865.9 ± 675.9 64.8 ± 78.5 1532 ± 3105 169.6 ±349
Parker 885 ± 1397 1314 ± 1339.9 130.9 ± 222.1 3521 ± 5745 274 ± 644.6
GVF Fit 435 ± 399.1 3691.3 ± 13087.2 814.7 ± 3503.2 5612 ± 6131 6001.6 ± 31768

Table 3.2: Error of the calculated perfusion parameters of the evaluated algo-
rithms in reference to the perfusion parameters calculated with the
manual annotation. The values are the average error in percent.

to the manual, target, annotation.

𝐸𝑟𝑟𝑜𝑟%(𝑋, 𝑌 ) = |𝑌 − 𝑋|
𝑋 ∗ 100 (3.9)

The algorithms by Chen, Parker and the simple GVF Fit truncated in the
graph, because with a median Difference of more than 700% and average dif-
ference higher than 1300% the graph would not adequately show the small
differences between the algorithms with a low error. The Figure shows that
the algorithms Dis LAIF (21.08% ± 15.07) and the one from Shi et. al.
(28.87% ± 24.20). The algorithms by Chen et. al. and Parker et. al. have an
average error of 866% and 1313%, that is approximately 40 to 60 times higher
than Dis LAIF. Further perfusion parameters provided by the compartment
tissue uptake model are shown in table 3.2.

The computation time needed for our algorithm is, with an average of 15
seconds (±2.3𝑠), slightly higher than Shi (6.6 ± 0.5), Chen (5.8 ± 0.3) and
Parker (1.7 ± 0.04). The gamma variate needed 11 seconds (±2.3).
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Figure 3.6: The difference in percent of the 𝐾𝑡𝑟𝑎𝑛𝑠 parameter computed using
the compartment tissue uptake model with the manual annotation
and the output from different algorithms. The brackets indicate
a significant (p<0.05) difference. Only significance in reference to
Dis LAIF was calculated and, if significant, shown.

3.5 Discussion

Manual annotation of the AIF is a time consuming task, with inter- and intra-
user variability in the results [16]. But for the quantification of the perfusion
the calculation requires a stable AIF selection to be reproducible. We proposed
the algorithm DisLAIF which can fully-automatic select the AIF in a deter-
ministic way. This allows reproducible calculation of the AIF and therefore
reproducible perfusion calculation.

Other algorithms have previously been proposed to solve this problem, but
our results show, that our algorithms has a significantly (p<0.05) lower mean
squared error than the algorithms from literature. The error of the 𝐾𝑡𝑟𝑎𝑛𝑠

perfusion parameter is significantly (p<0.05) lower than all algorithms. This
is mostly due to more complex filtering, which incorporate steps taken from
the previous algorithms. The higher dice coefficient can partly be explained,
because the other algorithms were not developed to segment the complete
artery and only select enough voxel to reconstruct the AIF.

Parker et. al.[20] uses simple thresholding and the 95% quantile to select
the voxel for the AIF. This will select voxel only based on the signal strength
regardless of their position and time curve (see Figure 3.3). In the paper by
Parker et. al. they used this algorithm to find the AIF in a single, user-
selected slice and not in a 3D volume. In a 3D volume the artery is smaller in
comparison to the total count of voxel than in an optimally chosen 2D slice.
Therefore the selection of the top 5% will select more voxel than is necessary
and useful.

The algorithm by Chen et. al. begins similar to the one by Parker et. al.,
but it also considers the slope of the initial uptake and the 2D and 3D shape
of found regions. This drastically reduces the falsely selected voxel. But it still
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selects more fat and tumor than arterial voxel and thus the extracted AIF is
similar to the AIF by Parker et. al..

Shi et. al. combines thresholding to remove the background and then calcu-
lates the contrast agent curves. Based on these curves only voxels with a high
peak and a big area under the curve (AUC) are selected. Because the contrast
agent curves only contain the change of intensity over time tissue that has
a constant high signal has a small AUC and is discarded. So this algorithm
selects only few fat voxels.

In our algorithm we used parts of these algorithms and combined them with
new aspects. Our shape filter also considers the size of objects and discards
small regions. This will reduce remove the selection of noise. Our gamma
variate filter not only checks one slope but the general shape of the function.
This allows our algorithm to better discern between the main arteries, small
arteries and, other tissue like fat and tumor. Because our dataset contains
image series with different timings and the single volumes are not registered
to each other, it shows a robustness of our algorithm to temporal resolution
and motion artifacts. It is expected, that our algorithm has a higher compu-
tation time, as it has an overall higher complexity with more filter steps than
the compared algorithms. Despite this impact on the computation time the
algorithm is still faster than a human reader, who needs approximately 300
seconds per data set.

Our ground truth was annotated by humans and therefore the normal human
error apply. A better dataset with error free ground truth could be compiled by
using artificial intelligence to generate MRI images from a body phantom[33]
and then introduce the AIF by using the population based AIF from Parker
et. al.[34].

Our algorithm has several limitations. First, it was developed on images with
transversal slice orientation and arteries lying in perpendicular direction to the
slices. When transferring our algorithm to other applications, either the blob
filter needs to be adapted or, if possible the 3D volume needs to be reformated
to a transversal orientation. Furthermore we segment two arteries from the
images. This is due to the fact, that it is hard to detect the tumor feeding
artery, as this depends on the location of the tumor. Gaa et. al.[27] showed
that not taking both arteries into account hampers perfusion quantification.
When transferring our algorithm to an application with a single artery, e.g. the
abdominal artery in renal perfusion quantification, the last programming step
needs to be adapted. Further research towards a broader field of applications
is planned.

The pipeline architecture allows to easily facilitate these changes while reusing
the majority of unchanged steps. Using deep learning (”AI”), for finding the
AIF was discarded, for the sake of understanding the selection. A neural
network would be able to learn to find the AIF and the results would be de-
terministic and reproducible, but it is not possible to easily adapt the neural
network to find a different artery. A neural network, once it is trained, is
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inflexible and needs to be retrained for a new application, such as an artery
in a different part of the body. Also the decisions a neural network makes to
select the artery are not observable. The inner working is hidden in the neuron
weights. Here a classic algorithm has the advantage of being understandable.

3.5.1 Conclusion

In conclusion, our algorithm adequately solves the aforementioned problems.
It can find the AIF ROI with an accuracy that is comparable to a human
practitioner, but it is deterministic and generates reproducible results. As a
future step, incorporation into perfusion analysis software [35] is warranted to
benefit from user independent and reproducible AIF selection and to further
automate the process of perfusion analysis in DCE-MRI. In the long term this
can help translating quantitative DCE-MRI into clinical routine to the benefit
of the patient.
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4.1 Abstract

Magnetic resonance image formation is not trivial and remains a difficult sub-
ject for teaching. Therefore, we saw an urgent need to facilitate teaching by
developing a practical and easily accessible MR image generator. Due to the
increasing interest in X-nuclei MRI, sodium image generation is also offered.
The tool is implemented as a web application that is compatible with all stan-
dard desktop browsers and is open source. The user interface focuses on the
parameters needed for the creation and display of the resulting images. Avail-
able MR sequences range from the standard Spin Echo and Inversion Recovery
over steady-state to conventional sodium and more advanced single and triple
quantum sequences. Additionally, the user interface has parameters to alter
the resolution, the noise, and the k-space sampling. Our software is free to use
and specifically suited for teaching purposes.

4.2 Introduction

Teaching (medical) students about MRI is a balancing act between quantum
physics and understandable application. In our medical school, medical stu-
dents are taught very compressed about the physics of MRI systems at the
start of the first semester, and they have a short seminar where a table-top
MRI device and a program for generating MRI images are used to show how
sequences work and contrasts are generated. A second longer seminar with the
same table-top MRI and program is in the fourth year. So far, we have used
the software by Hackländer et al. [36] for our teaching. It is a Java program
that enables students to test different sequences and the influence of various
parameters. The software also supports noise addition, k-space manipulations,
and motion artifacts. A disadvantage is that students can access it only dur-
ing class and hence, we saw an urgent need to develop a tool that is remotely
accessible. To the best of our knowledge, the only MRI image generator for
teaching that is able to easily solve the accessibility problem published in the
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last decade is by Treceño-Fernández et al. [37]. This system is web-based and
therefore, could be made accessible over the internet. It also allows students
to test different sequences, set the parameters, add different types of noise,
manipulate k-space, and use different B0 inhomogeneities. This tool performs
all the calculations exclusively on the server, which leads to high server load
and bandwidth usage. Therefore, it is suitable for a class setting using the lo-
cal network, but probably does not scale well if large groups of students access
the web page simultaneously over the internet. In addition to this, Treceño-
Fernández et al. focus more on the usage of MRI devices and matched their
workflow and user interface to those of real MRIs, while the tool presented here
aims to demonstrate differences between sequences and the resulting images.
Apart from these two MR image generators, there are a number of simulators
published in recent years that run on the local computer[38, 39, 40, 41]. Those
simulators are mostly developed for researchers or physics and engineering stu-
dents. For non-technical students like medical students installing programs or
Java, using Matlab, simulators that only run on selected operating systems or
complicated interfaces that need in-depth knowledge about Bloch equations
or sequences make these simulators inaccessible. We present here a different
approach to a web-based image generator that performs all computations on
the client to eliminate the scaling problem and has a lean user interface.

4.3 MRI Generation

For our system, the main goal was to create a teaching tool that is compact,
usable across many platforms, intuitive, and with minimal load on the web
server.

4.3.1 Requirements

The work for the server should be minimal, which is realized by performing
all computations by the client’s device. This requires a system with low com-
putational overhead so that users can run the tool on smartphones or tablets.
Programming languages such as HTML, CSS, and JavaScript were used so that
the program can be run on any platform with a modern browser. Therefore,
the main objective was to make it independent of having a specific operating
system, 3rd party software or device. Hence, the following prioritization list
has been derived to guide the development of the presented software:

1. low server load

2. remote accessibility

3. cross-platform

4. low resource usage
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5. convenient and clear GUI

6. small file sizes

4.3.2 Functions

MRI enables users to create different contrasts between tissues by exploiting
different magnetization properties. Therefore, we included multiple sequences,
and besides standard hydrogen (¹H), sodium (²³Na) imaging was also included.

Currently, the system supports six basic sequences for ¹H MRI, Spin Echo,
Inversion Recovery, and more advanced sequences such as spoiled gradient
echo.

The symbols used in the following equations are explained in table 4.1

Spin Echo[5][42]
𝑆 ∝ 𝑝𝑑 ∗ 𝑒−𝑇𝐸

𝑇2 ∗ (1 − 𝑒−𝑇𝑅
𝑇1 ) (4.1)

Inversion Recovery[43][44]

𝑆 ∝ 𝑝𝑑 ∗ (1.0 − 2.0 ∗ 𝑒−𝑇𝐼
𝑇1 + 𝑒−𝑇𝑅

𝑇𝐼 ) ∗ 𝑒−𝑇𝐸
𝑇2 (4.2)

Spoiled Gradient Echo[45][46]

𝑆 ∝ 𝑝𝑑 ∗ (1 − 𝑒−𝑇𝑅
𝑇1 ) ∗ 𝑠𝑖𝑛(𝐹𝐴)

1 − 𝑒−𝑇𝑅
𝑇1 ∗ 𝑐𝑜𝑠(𝐹𝐴)

∗ 𝑒−𝑇𝐸
𝑇2∗ (4.3)

Also included are three steady-state sequences. These are common sequences
available on commercial MRI scanners and provide contrasts different from the
previous three sequences.

Balanced Steady-State Free Precession (True FISP/FIESTA/Balanced FFE)[47][48]

𝑆 ∝ 𝑝𝑑 ∗ (1 − 𝑒−𝑇𝑅
𝑇1 ) ∗ 𝑠𝑖𝑛(𝐹𝐴)

1 − (𝑒−𝑇𝑅
𝑇1 − 𝑒−𝑇𝑅

𝑇2 ) ∗ 𝑐𝑜𝑠(𝐹𝐴) − 𝑒−𝑇𝑅
𝑇1 ∗ 𝑒−𝑇𝑅

𝑇2
∗ 𝑒−𝑇𝐸

𝑇2 (4.4)

Postexcitation Refocused Steady-State Precession (FISP/GRASS, fast MPGR/FFE)[48]

𝑆 ∝ 𝑝𝑑 ∗ 𝑡𝑎𝑛(𝐹𝐴
2 ) ∗ 𝑒−𝑇𝐸

𝑇2∗ ∗ (1 − (𝑒−𝑇𝑅
𝑇1 − 𝑐𝑜𝑠(𝐹𝐴)) ∗ 𝑓(𝑇 𝑅, 𝑇 1, 𝑇 2, 𝐹𝐴))

𝑓(𝑇 𝑅, 𝑇 1, 𝑇 2, 𝐹𝐴) = √ 1 − 𝑒−2∗𝑇𝑅
𝑇2

(1 − 𝑒−𝑇𝑅
𝑇1 ∗ 𝑐𝑜𝑠(𝐹𝐴))2 − 𝑒−2∗𝑇𝑅

𝑇2 ∗ (𝑒−𝑇𝑅
𝑇1 − 𝑐𝑜𝑠(𝐹𝐴))2

(4.5)
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Preexcitation Refocused Steady-State Precession (PSIF/SSFP/T2-FFE)[48]

𝑆 ∝ 𝑝𝑑 ∗ 𝑡𝑎𝑛(𝐹𝐴
2 ) ∗ 𝑒−𝑇𝐸

𝑇2 ∗ (1 − (1 − 𝑒−𝑇𝑅
𝑇1 ∗ 𝑐𝑜𝑠(𝐹𝐴)) ∗ 𝑓(𝑇 𝑅, 𝑇 1, 𝑇 2, 𝐹𝐴))

(4.6)
For ²³Na imaging, we implemented the signal equation for ²³Na, enabling the

creation of conventional ²³Na MR images. However, sodium is a quadrupole
in its nature and thus, exhibits multi-quantum properties. Under certain con-
ditions, one can observe besides the Single Quantum (SQ) also Triple Quan-
tum (TQ) signal, which could provide a richer tissue sodium characterization.
Hence, we implemented CRISTINA[49] so we can generate three ²³Na images:
conventional, single-, and triple-quantum. The single- and triple-quantum im-
ages can be further used to calculate the ratio of triple- to single-quantum
signal.

²³Na Signal [50]

𝑆 ∝ (𝑛𝑎𝑣𝑜𝑙 − 𝑣𝑜𝑙) ∗ 𝑚𝑚 ∗ (1 − 𝑒−𝑇𝑅
𝑇1 ) ∗ (0.6 ∗ 𝑒−𝑇𝐸

𝑇2𝑓 + 0.4 ∗ 𝑒−𝑇𝐸
𝑇2𝑠 )

+ 𝑣𝑜𝑙 ∗ 𝑛𝑎𝑚𝑚 ∗ (1 − 𝑒−𝑇𝑅
𝑇1 ) ∗ 𝑒 −𝑇𝐸

𝑇2𝑓𝑟
(4.7)

Single Quantum Spin Echo[49]

𝑆𝑠𝑞 ∝ 1
|𝑇 𝐸𝑠| ∑

𝑇 𝐸∈𝑇 𝐸𝑠
𝑚𝑚 ∗ (𝑒−𝑇𝐸+𝜏1

𝑇2𝑠 + 𝑒
−𝑇𝐸+𝜏1

𝑇2𝑓 ) ∗ 𝑠𝑖𝑛(𝐹𝐴) (4.8)

Triple Quantum Spin Echo[49]

𝑆𝑡𝑞 ∝ 1
|𝑇 𝐸𝑠| ∑

𝑇 𝐸∈𝑇 𝐸𝑠
𝑚𝑚 ∗ (𝑒−𝑇𝐸

𝑇2𝑠 − 𝑒−𝑇𝐸
𝑇2𝑓 ) ∗ (𝑒 −𝜏1

𝑇2𝑠 − 𝑒
−𝜏1
𝑇2𝑓 ) ∗ 𝑒 −𝜏2

𝑇2𝑠 ∗ 𝑠𝑖𝑛(𝐹𝐴)5

(4.9)

TQ/SQ Spin Echo

𝑆 ∝ 𝑆𝑡𝑞
𝑆𝑠𝑞

(4.10)

For all these functions, the user can change the used parameters. The pa-
rameters are mostly the echo time, the repetition time, or the flip angle. For
most sequences, we give an estimate of the acquisition time that a real MRI
device would need.

Furthermore, subsampling with different interpolation modes, Gaussian noise,
simple k-space manipulation, and 2D or 3D Fourier transform is supported.

For undersampling of the k-space we give a choice of three schemes: Ran-
dom, density-adapted Pseudo-Random, and Regularly spaced. Random means
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Symbol Description Comment
S Measured signal strength proportional to real signal

T
iss

ue
Pa

ra
m
et
er
s

pd Proton Density only ¹H imaging
T1 T1 Relaxation Time
T2 T2 Relaxation Time only ¹H imaging
T2* T2* Relaxation Time only ¹H imaging
T2f T2 Time, fast component only ²³Na imaging
T2s T2 Time, slow component only ²³Na imaging
mm sodium concentration in mmol/ml
vol fraction of extracellular sodium

𝑛𝑎𝑣𝑜𝑙 voxel fraction containing sodium fixed to 0.7
𝑛𝑎𝑚𝑚 sodium in water fixed to 140mmol/ml
T2fr T2 Time for free sodium fixed to 60ms

Se
qu

en
ce

Pa
ra
m
et
er
s

TE Echo Time set by user in milliseconds
TR Repetition Time set by user in milliseconds
TI Inversion Time set by user in milliseconds
FA Flip Angle set by user in degree
𝜏1 Time between 1st and 2nd RF pulse set by user in milliseconds
𝜏2 Time between 2nd and 3rd RF pulse set by user in milliseconds

Table 4.1: Explanation for the symbols used in the signal equations.

an arbitrary decision to include or discard a voxel in k-space, yielding non-
Cartesian k-space trajectories. The other two schemes retain or discard com-
plete phase-encoding lines in k-space, representing Cartesian trajectories. Reg-
ularly spaced means for a 50% sampling fraction 𝑓𝑠 that every second line is
measured, for 33% every third. The condition for measuring a line 𝑦 is shown
in equation 4.11. If the condition for 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑦) is true, then the line 𝑦 is
measured; otherwise it will be dropped. The line numbering 𝑦 starts at 1.

𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑦) = {
ceil(𝑦 ⋅𝑓𝑠)

𝑓𝑠
− 𝑦 < 1 𝑓𝑠 < 0.5

ceil(𝑦 (1−𝑓𝑠))
(1−𝑓𝑠) − 𝑦 ≥ 1 𝑓𝑠 ≥ 0.5 (4.11)

A commonly used sampling scheme is the density-adapted pseudo-random
sampling, which keeps the full k-space center, and the probability to drop a
line increases with the distance from the center. This is a common sampling
scheme for compressed sensing [51]. We always keep a fraction 𝑓𝑖𝑛 10% in
the center of the complete k-space. Then a random number is generated at
each line and compared to a linearly decreasing threshold. The parameters for
this threshold are chosen so that the resulting sampling rate is the selected
sampling rate. The calculation for these parameters is shown in equation 4.12.
In these equations, 𝐷𝑖𝑚𝑦 is the total number of 𝑦 lines.
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𝑏 = {
𝑓𝑠−𝑓𝑖𝑛

0.5 (1−𝑓𝑖𝑛) − 1 𝑓𝑠 < 0.5
2 − 𝑓𝑠−𝑓𝑖𝑛

0.5 (1−𝑓𝑖𝑛) 𝑓𝑠 ≥ 0.5
𝑎 = 𝑏

1−𝑓𝑖𝑛

Ψ(𝑦) = { 2 ∗ 𝑦/𝐷𝑖𝑚𝑦 𝑦/𝐷𝑖𝑚𝑦 < 0.5
2 ∗ (1 − 𝑦/𝐷𝑖𝑚𝑦) 𝑦/𝐷𝑖𝑚𝑦 ≥ 0.5

𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑦) = 𝑟𝑟𝑎𝑛𝑑𝑜𝑚 ≤ −𝑎 (Ψ(𝑦) − 𝑓𝑖𝑛) + 𝑏

(4.12)

4.3.3 Architecture

The architecture can be viewed on two levels. There is a server-client archi-
tecture to deliver the web app to the browser. Here we use static files which
can be served by every standard web server. This project is based on the
SimpleHttpServer included in Python 3.

The web page uses the Model-View-Controller pattern and offloads the com-
putation to a worker thread. It only connects to the server to load a data set.
After that, all computation and data handling is performed within the browser.
The view is written in HTML and CSS using the CSS files from the Bootstrap
project. Some responsive behavior, e.g. calculating the needed time for a
scan, is calculated in JavaScript. The controller uses JavaScript and most of
the computation is written in both JavaScript and c/WebASM. An exception
is the FFT, where we use the KissFFT project, which is only written in c and
then compiled with emscripten to WebASM. This is done to speed up the com-
putations. We purposely did not write everything in c/WebASM so that an
interested user can simply open the web developer tools and follow the compu-
tation with the built-in debugger. The WebASM version of the image creation
process has a faster runtime and is therefore set as the default computation
backend.

4.3.4 Data sets

Each data set consists of multiple 3D arrays for the different parameter maps.
For 1H MRI that includes: T1, T2, T2*, and proton density. For ²³Na, the
parameters are T1, T2 fast, T2 slow, sodium density, and extracellular volume
fraction. Every array has a size of 256x256x256 voxels and was generated
using published head phantoms [2][52][53][54]. The data sets generated using
Aubertbroche et al.[2][52] and Holmes et al.[53] are available for 3T and 1T
¹H and 3T ²³Na MRI and the data set generated from Alfano et al.[54] is 1T
and 1.5T ¹H MRI. The phantoms we used consisted of segmentation masks
for different tissue types. We used these to generate the parameter maps by
simply inserting the values for each parameter found in the literature (Tables
4.2). These maps were then resampled to 256x256x256 voxels.
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Parameters for 1.5T ¹H[52]
Tissue T1 [ms] T2 [ms] T2* [ms] PD

Background 0 0 0 0
CSF 2569.0 329 58 1

Grey Matter 833 83 69 0.86
White Matter 500 70 61 0.77

Fat 350.0 70.0 58 1
Muscle 900.0 47 30 1

Muscle / Skin 569.0 329 58 1
Skull 0 0 0 0
Vessels 2569.0 329 0 1

Dura Mater 2569.0 329 58 1
Bone Marrow 500.0 70 61 0.77

Parameters for 3T ¹H[55][56][57]
Tissue T1 [ms] T2 [ms] T2* [ms] PD

Background 0 0 0 0
CSF 4163.0 329 58 1

Grey Matter 1445 83 66 0.86
White Matter 791 75 53.2 0.77

Fat 346 68 58 1
Muscle 1420 44 30 1

Muscle / Skin 371.0 133 58 1
Skull 0 0 0 0
Vessels 1984.4 275.0 0 1

Dura Mater 2569.0 329 58 1
Bone Marrow 365 133 61 0.77

Parameters for 3T ²³Na[58][59]
Tissue T1 [ms] T2 slow [ms] T2 fast [ms] Extracellular fraction Sodium [mmol]

Background 0 0 0 0 0
CSF 50 60 60 1 140

Grey Matter 30 60 2 0.21 55
White Matter 30 60 2 0.17 45

Fat 10 50 4 0.2 0
Muscle 25.2 30 2 0.2 20

Muscle / Skin* 25.2 30 2 0.2 20
Skull 0 0 0 0 0
Vessels 38.4 20 3 1 150

Dura Mater* 10 50 4 0.2 0
Bone Marrow* 10 50 4 0.2 0

Table 4.2: Parameters used for 1.5T ¹H, 3T ¹H and 3T ²³Na images. Param-
eter names are in analogy to [2]. *: Parameters were not found,
approximated with values for fat/muscle
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Figure 4.1: Image generation pipeline. The green boxes are part of the front
end and the blue ones are in the back end.

4.3.5 Image generation Pipeline

Our generation process (Fig. 4.1) is quite straightforward. MR images are
computed in the image domain using the equations 4.1 to 4.10 for every voxel
and followed by a Fourier transform to calculate the k-space. For added noise,
random numbers, chosen from a Gaussian distribution, are added to each value
in the k-space and if undersampling is activated, the k-space is filtered using
the selected sampling scheme to remove a configurable percentage of the total
lines prior to the inverse Fourier transformation. If the k-space was modified,
an inverse Fourier transform is used to compute the final image to be displayed.

4.3.6 GUI

The user interface is written using HTML and CSS. The base CSS files are
from the bootstrap project (version 5)[60], a toolkit to build web frontends.
The dark Gruvbox[61] scheme was chosen for the color theme. When the user
opens the web page, they first have to choose a data set. After loading the
data set, the input fields for general parameters and sequences become visible
(Fig. 4.2). The link ”Dataset source” next to the drop-down box always
links to the webpage of the selected data set, where the input files for each
data set can be downloaded. An MRI sequence can be selected by clicking on
the corresponding tab, which also visualizes the specific parameters for this
sequence. The parameters for each sequence are independent, e.g. changing
the Echo Time in Inversion Recovery does not change the Echo Time for Spin
Echo. Only the selected and visible parameters are used for a sequence, except
for the ’²³Na TQ/SQ’ sequence, which uses the parameters of the ’²³Na SQ’ and
’²³Na TQ’ tabs. The field ’Total Measuring Time’ provides an approximation
of the time required to conduct the selected MRI experiment.

The general parameters are in an accordion menu and can be expanded
or collapsed as needed. In the screenshot, the menu ”General Parameters”
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Figure 4.2: The GUI after loading a data set. General parameters are stated at
the top and sequence specific parameters are found at the bottom.

is expanded and the menus for noise and compressed sensing are collapsed.
Collapsed menus have a different font color to emphasize that they can be
expanded. We chose this to signify that all general parameters are always used
for image generation, except for the sequence parameters, only the ones on the
currently active and visible tab are used. However, displaying all parameters
at once creates an overloaded interface, so the user has the option to collapse
them. The button with the label ”Start Scan” starts the generation process.
The computed images will be displayed below (Fig. 4.3). The toggle buttons
allow the user to select which images should be displayed and to show or hide
the respective k-space.

Every image is displayed in a four-panel view. The top left corner contains
a transversal, the top right a sagittal, and the bottom left a coronal slice. The
bottom right quarter is either the k-space or a 3D view of the current slices,
which also allows for rotation of the view.

After generating a second image, the user can now decide to view both of
them next to each other (Fig. 4.4) or only one of them. Fig. 4.4 shows a
comparison of two Spin Echo images with different TE values. Additionally,
the crosshair has been hidden and the 3D view is replaced with the respective
k-spaces.

The user can interact with the other sections of the image by holding the
mouse button and moving it, which changes the center and width of the win-
dow. The slice can be changed with the mouse wheel. Both the window-
ing and the slice can also be selected using the input fields below the image.
When a 23Na is created, the selection fields for the windowing are replaced
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4.3 MRI Generation

Figure 4.3: Resulting signal computation for a Spin Echo acquisition based on
Eq. 4.1. The Viewer shows a slice from the transversal, sagittal,
and coronal planes and then these three slices in a 3D view. Control
panels to manipulate and navigate through the images are found
beneath the images.
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Figure 4.4: Generation of a second Spin Echo image. On the left-hand side is
the previous Spin Echo image from Fig. 4.3 and on the right side
the new Spin Echo image is shown. The crosshair has been turned
off and the 3D view replaced with the k-space.
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by a color bar. Slice selection for the image and the k-space is partly syn-
chronized. Scrolling through one image also scrolls through the other visible
images, enabling users to compare images with different acquisition parame-
ters and sequences. Slice selection using the input boxes below the image is
not synchronized. This allows a user to set every image to a different slice. In
that case, the scrolling is still synchronized, but the offset between the slices
is kept until one image is at the first or last slice.

To generate an image with a lower resolution, the value of the scale field
has to be changed. The interpolation mode then decides how to calculate the
voxel value. Possible options are to use the nearest neighbor or to average over
all voxels in the data set that would be within the virtual image voxel.

4.4 Results

We will focus on the impact of changing the general parameters, resolution,
interpolation mode, 3D vs. 2D FFT, computational subsystem, and noise
(Table 4.3). For all parameters, the JavaScript version was much slower than
WebASM. Chrome was always slower than Firefox when using WebASM, but
Chrome was faster most of the time when using the JavaScript version. Gen-
erating an image using only the nearest point of the data set to the center of
a voxel is faster than averaging over all data points inside the voxel. Reducing
the size of the generated image also reduces the computation time, since the
Fourier transformations are quicker and they take up a big share of the total
computation time. When noise is added to the k-space, an additional inverse
Fourier transform is required to obtain the noisy image, which, as expected,
increases the running time.

Spin Echo and Inversion Recovery images generated with the here proposed
software are shown in Fig. 4.5. The first four rows show generated images
using Spin Echo and different echo time, (𝑇 𝐸1 = 0.1𝑚𝑠,𝑇 𝐸2 = 13𝑚𝑠,𝑇 𝐸3 =
42𝑚𝑠,𝑇 𝐸4 = 121𝑚𝑠). Furthermore, two Inversion Recovery images are shown
with different inversion times chosen to suppress White Matter (𝑇 𝐼1 = 600𝑚𝑠)
and Grey Matter (𝑇 𝐼2 = 993𝑚𝑠).

The steady-state sequences are shown in Figure 4.6. Similar to the previous
figure, different parameters are used in each row and the same three slices of
the head are shown.

Figure 4.7 shows the Spin Echo sodium sequences in addition to single and
triple quantum imaging. These images are generated with a reduced resolu-
tion to better resemble state-of-the-art for sodium imaging in reality. The
Spin Echo images are downsampled to an isotropic voxel size of 4mm and the
single/triple quantum images have a voxel size of 16mm.
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Noise XxYxZ Interpolation FFT Compute Runtime
Subsystem Firefox [s] Chrome [s]

No 256x256x256

Nearest
3D JavaScript 6.85 ± 0.70 5.85 ±0.12

WebASM 2.98 ±0.12 4.16 ± 0.26
2D JavaScript 6.57 ± 0.69 6.03 ±0.81

WebASM 3.13 ±0.49 4.19 ± 0.46

Average
3D JavaScript 7.78 ± 0.81 7.50 ±1.05

WebASM 3.08 ±0.17 4.29 ± 0.44
2D JavaScript 7.66 ± 0.54 7.51 ±1.00

WebASM 3.16 ±0.22 4.31 ± 0.48

No 256x256x64

Nearest
3D JavaScript 1.66 ± 0.14 1.52 ±0.19

WebASM 0.77 ±0.05 1.07 ± 0.13
2D JavaScript 1.65 ± 0.10 1.54 ±0.20

WebASM 0.74 ±0.04 1.06 ± 0.09

Average
3D JavaScript 3.83 ± 0.23 2.91 ±0.33

WebASM 1.51 ±0.09 2.34 ± 0.25
2D JavaScript 4.09 ± 0.44 2.94 ±0.40

WebASM 1.68 ±0.28 2.36 ± 0.27

Yes

256x256x256
Nearest 2D JavaScript 11.38 ± 2.07 10.40 ±1.37

WebASM 4.65 ±0.51 7.12 ± 0.97

Yes
Average 2D JavaScript 11.99 ±1.57 12.20 ± 1.83

WebASM 4.58 ±0.51 7.48 ± 1.13

256x256x64
Nearest 2D JavaScript 2.72 ±0.31 2.77 ± 0.52

WebASM 1.20 ±0.13 1.86 ± 0.29
Average 2D JavaScript 4.92 ± 0.68 4.26 ±0.84

WebASM 1.94 ±0.20 3.19 ± 0.51

Table 4.3: Runtimes for several parameter combinations using a Spin Echo
sequence (TE: 23, TR: 666). All parameter combinations are com-
puted with the slow JavaScript and the faster WebASM version.
The runtimes are averaged over 10 runs, on a PC with Intel i5-6500
CPU and 64GB RAM. Maximum RAM used by the Browsers: Fire-
fox 1.8GB, Chrome 1.9GB.
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Figure 4.5: Generated images using the Spin Echo sequence (Eq. 4.1) with
different Echo Times and Inversion Recovery sequence (Eq. 4.2)
with different inversion times. In all rows, the shown slices are the
middle slice in the transversal, sagittal, and coronal planes.
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Figure 4.6: Images computed using the steady-state sequences balanced SSFP
(Eq. 4.4), FISP (Eq. 4.5), and PSIF (Eq. 4.6).
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Figure 4.7: Images were computed using the equations for the sodium se-
quences. The top three rows show ²³Na Spin Echo (Eq. 4.7), then
follows a single quantum (Eq. 4.8) and a triple quantum (Eq. 4.9)
image. The voxel size and spacing for the single/triple quantum
images is 16mm.
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4.5 Discussion

In summary, we have presented a web-based image generator designed for
teaching. The software allows the generation of signals based on different
sequences and the demonstration of the influence of the parameters. It sup-
ports a vast amount of sequences ranging from standard proton Spin Echo to
more advanced sodium sequences. Further, the system contains the options
to add noise, change image resolution, and k-space undersampling with dif-
ferent strategies. Secondly, a user-friendly interface was developed that eases
usage. Additionally, the software can run on a wide range of devices, which is
attributed to the fact, that the software was developed as a web-based applica-
tion. Lastly, the server management and costs are reduced since we have only
static files. No computation is necessary on the server, and static files can be
distributed to many clients without much effort. Deploying to a new server is
also simple, just copy the ”wwwroot” folder from the GitHub repository [62],
this contains all the required source and data files.

Our tool started as a small piece of software, but with added functions,
it increased in size and computational cost. While still able to be used on
smartphones, a user has to wait for some time until the computation process
is finished. One solution to reduce computational cost would be to detect mo-
bile devices like a smartphone and then provide a reduced version of the web
page, e.g. only allowing nearest-neighbor interpolation and 2D Fourier trans-
formation. Another solution, which we implemented already, is to code the
computationally intense algorithms in c and then compile them to WebASM.
This makes the computation process less transparent because interested users
would not be able to simply open the web debugger (which can be accessed
in most major browsers by pressing F12) and look at how the program runs
inside their browser. On the other hand, we see that the WebASM version
only takes 50% of the time required by the JS version to calculate an image.
This will allow a user to choose between the slow, but debuggable, JavaScript
and the fast, oblique WebASM version.

Future work will focus on including parallel imaging and compressed sensing.
Both are implemented in modern MRI devices and are quite interesting.

The added noise and image artifacts are quite basic. So far, the user can
only select Gaussian noise. A possible artifact we could add without much
hassle is B0 homogeneity by extending the image creation process with the
inclusion of a static homogeneity map. The movement of the patient would
be somewhat more difficult. To include a single and fast movement of the
complete patient, the interpolation grid could be shifted and rotated during
the computation. This would require computing the images and k-spaces twice,
and then merging these k-spaces so that the points captured before and after
the motion are from the corresponding k-space. While this is not a perfect
representation of patient movement, it should be a usable approximation and
starting point for more complex movements. The flexible interpolation grid
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required for the proposed patient motion artifacts could also be used for other
purposes, such as changing the orientation of the slices. Setting the slice
orientation could be done by simply changing values for the rotation in several
input boxes. But we think this would not be intuitive and a better approach
is a 3D view, similar to what Treceño-Fernández et al. implemented.

Other tools focus on having a GUI that resembles a real MRI machine.
However, we focused on convenience in regard to usage and accessibility, which
was the reason to neglect the implementation of a scanner related interface.
The workflow for acquiring images on a real MRI is beyond the scope of this
software.

In conclusion, we have presented a web-based image generator for a wide
range of MR sequences that is scalable, cross-platform, and freely available.
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5.1 Abstract

Purpose: Development of an algorithm to self-calibrate arbitrary CBCT tra-
jectories which can be used to reduce metal artifacts. By using feature detec-
tion and matching we want to reduce the amount of parameters for the BFGS
optimization and thus reduce the runtime.
Methods: Each projection is 2D-3D registered on a prior image with AKAZE
feature detection and brute force matching. Translational misalignment is
calculated directly from the misalignment of feature positions, rotations are
aligned using a minimization algorithm that fits a quartic function and deter-
mines the minimum of this function.
Evaluation: We did three experiments to compare how well the algorithm
can handle noise on the different degrees of freedom. Our algorithms are com-
pared to Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimizer with Normal-
ized Gradient Information (NGI) objective function, and BFGS with distance
between features objective function using SSIM, nRMSE, and the Dice coeffi-
cient of segmented metal object.
Results: Our algorithm (Feature ORiented Calibration for Arbitrary Scan
Trajectories with Enhanced Reliability (FORCASTER)) performs on par with
the state-of-the-art algorithms (BFGS with NGI objective). nRMSE: FOR-
CASTER=0.3390, BFGS+NGI=0.3441; SSIM: FORCASTER=0.83, BFGS+NGI=0.79;
Dice: FORCASTER=0.86, BFGS+NGI=0.87.
Conclusion: The proposed algorithm can determine the parameters of the
projection orientations for arbitrary trajectories with calibration quality com-
parable to state-of-the-art algorithms, but faster and with higher tolerance to
errors in the initially guessed parameters.
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5.2 Introduction

Arbitrary trajectories can be used to reduce metal artifacts[63] or cone beam
artifacts[64], change field of view[65], and to reduce needed projections[66]. For
the quality of these CBCT images, the exact position and rotation at which
each projection was acquired is essential. Even though, modern engineering
produces machines which can detect their position with a high accuracy, this
accuracy is still not sufficient for an artifact-free image. For circular trajectories
several algorithms have already been developed [67][68][69], these algorithms
use properties specific to circular trajectories which gives them a significant
speed advantage over our proposed algorithm, but it also means they are not
usable for arbitrary trajectories. Other calibration methods use phantoms con-
sisting of several metal balls [70][71][72]. Here the phantom is imaged and then
the trajectory can be calibrated using geometric analysis. Only after these two
steps the trajectory can be used for the intended image acquisition. This does
not work for trajectories that are created on the fly for the current patient and
situation, or when the imaging system cannot accurately reproduce the same
trajectory. For the calibration of completely arbitrary trajectories only a few
papers are published. Ouadah et. al. uses normalized gradient information as
the objective function for a Broyden–Fletcher–Goldfarb–Shanno (BFGS) min-
imization [73]. Chung et al. [3] uses BFGS minimization with an object func-
tion based on the distance of Speeded Up Robust Features (SURF)[7] features
in simulated forward projections and the acquired images. Both algorithms
need multiple hours for a calibration run. Furthermore, both algorithms are
evaluated on a regular CBCT image of the same object, which is acceptable
for experimental settings, but not for clinical routine examinations. The cal-
ibration algorithms has to work with a prior image that is older and differs
from the current image.

5.3 Methods

For arbitrary trajectories the calibration algorithm cannot use any inter-image
consistency conditions for the projection parameters. Every projection is pair-
wise independent, and relations, like being next to each other or on the opposite
site, are not known and cannot be assumed to exist. We will however, assume
that source and detector never change their position relative to each other, e.g.
because they are mounted on a c-arm. This leads to a 2D-3D registration for
every single projection. Such a registration typically consists of an optimiza-
tion (also called minimization) algorithm and an objective function. In the
approach by Ouadah et. al.[73] or Chung et al.[3] they use the optimization
algorithm BFGS to minimize an objective function. This objective function
evaluates all projection parameters at the same time and gives an estimate for
the correctness, with lower values meaning that the parameters are closer to
the correct values. We, instead, propose using different objective functions,
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one for each parameter. This approach allows us to create objectives, that are
sensitive towards change in only one of the parameters.

5.3.1 Projection and Optimization Parameters

In this paper, we use three 3D vectors to describe the position and orientation
of a projection (Fig. 5.1). The vector ⃗𝑑 points to the middle of the detector
and �⃗�, ⃗𝑣 contain the direction and distance from the center of one detector
element to the center of neighbour elements on the left and top. This definition
is equal to the vectors ⃗𝑑, �⃗� & ⃗𝑣 used by the Astra toolbox[74] to define cone
beam geometries.

Figure 5.1: Overview of the coordinate system, parameters and degrees of free-
dom.

On these vectors we have the six common degrees of freedom in three di-
mensional space, that is three translations along the cartesian axes and three
rotations around these axes. These optimization parameters use a coordinate
system where the x- and y-axis point in the direction of �⃗� and ⃗𝑣. The z axis
is then given by the direction of the cross product �⃗� × ⃗𝑣 and points towards
the source. Therefore, the translations and rotations all depend on the current
orientation of the projection.

With this coordinate system a movement along the x- or y-axis corresponds
to simple horizontal or vertical shifts of the pixel values in the projection.
A rotation around the x- or y-axis results in points moving horizontally or
vertically. Movement in the z-direction zooms the image in or out and rotation
around the z-axis rotates the projection without any other change.

5.3.2 Feature Points Matching

The algorithmic parts shared by all of our investigated algorithms are feature
detection and matching. Features are detected in the real image 𝑝𝑟𝑖 and a
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simulated image 𝑝𝑠𝑖 using the Accelerated KAZE (AKAZE) algorithm [9].
This algorithm detects features and computes a descriptor for each feature.
Then the features from one image can be matched to the ones from the other
image by comparing the feature descriptors using the hamming distance. The
hamming distance is the number of different elements in two vectors of equal
length. For every feature in one image we will find the two features in the other
image with the lowest hamming distance. These are then used to perform the
ratio check described by Lowe et. al. [8] which will discard wrongly matched
features. Furthermore, we discard matches if two or more points in one image
are matched to the same point in the other image. Also discarded are matches
with larger distances than one standard deviation plus the mean distance of
all matched points (already excluding multiply matched points). Now we have
a set of points ⃗𝑝𝑠𝑖 ∈ Ω in the simulated images and a function to match them
to points ⃗𝑝𝑟𝑖 in the real, acquired, image.

⃗𝑝𝑟𝑖 = Ψ( ⃗𝑝𝑠𝑖)
⃗𝑝𝑠𝑖 = Ψ−1( ⃗𝑝𝑟𝑖)

5.3.3 Correcting Shifts

First, we will present the method for correcting shifts along the X- and Y-axis
(Listing 1). We calculate the shift along the x or y axis of every pair of points
in the real image and the simulated image. For a perfect matching image this
shift would be zero. So we simply move the simulated image by the median
detected shift.

def correctXY(cur, iterations):
for i in range(iterations):

projs = ForwardProjection(cur)
Ψ, Ω = FindFeatures(projs, real_acquisitions)
diff = [Ψ( ⃗𝑝) − ⃗𝑝 for ⃗𝑝 in Ω]
med = median(diff, axis=0)

xdir = cur[1]; ydir = cur[2]
cur[0] += med[0] * xdir
cur[0] += med[1] * ydir

return cur

Listing 1: Calibration function for shifts in x&y direction.

For correcting shifts along the z-axis our function calculates the pairwise
distance between points within each image and then uses the median ratio
of these distances multiplied with the distance between source and iso-center
for the shift along the z-axis (Listing 2). This ignores misalignment in x or y
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direction and only considers the magnification. If in both images all distances
have the same length the median ratio is one and no zooming is necessary.

def correctZ(cur, iterations):
for i in 1 ..its:

proj = ForwardProjection(cur)
Ψ, Ω = FindFeatures(proj, real_acquisitions)

dist_sim = [ ‖ ⃗𝑝1 − ⃗𝑝2 ‖2 for ⃗𝑝1, ⃗𝑝2 in Ω ]
dist_real = [ ‖ Ψ( ⃗𝑝1) − Ψ( ⃗𝑝2) ‖2 for ⃗𝑝1, ⃗𝑝2 in Ω ]
scale = median(dist_real/dist_new) - 1

xdir = cur[1]; ydir = cur[2]
zdir = cross_product(ydir, xdir)
zdir = zdir / ‖zdir‖2
cur[0] += dist_source_origin * scale * zdir

return cur

Listing 2: Calibration function for shifts in z direction.

With these functions we can correct the misalignment of the isocenter posi-
tion. First for the x and y directions then the z direction and another time for
x and y directions. Because we have noisy data and use the median to have
less influence from outliers we need multiple calls to both functions.

5.3.4 Correcting Rotations

Secondly, we have to correct the rotations. In contrast to the shift correction
we haven’t found a trivial algorithm, instead we needed an optimizer and a
suitable objective function. Despite trying to find objective functions which
are specific to each rotation the best results were achieved by measuring the
mean euclidean distance between matching feature points.

This objective function is too noisy for a simple minimization with an off-the-
shelf BFGS optimizer. So, to minimize this objective we developed a simple
function. We evaluate the objective at multiple points and then fit a quartic
function to these values. The smallest root within the bounds of the used
points is the minimized parameter value (Listing 3). We will call this quartic-
fitting trajectory alignment function (QUT-AF) during the rest of this paper.
A few iterations with decreasing range for the input parameters sufficient for
the calibration of the rotational parameters.

For our objective we included another filter for the matched features: Only
features present in all images are used. This reduces the noise of the objective
function.
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5.3.5 Full Algorithm

The two previously described algorithms are interwoven to perform the cali-
bration of all parameters. First we use the functions for correcting shifts, in the
order xy-z-xy, with three iterations each. Then we use the minimizer for the
rotations and between every iteration we do a fast shift correction with only
one iteration. After all iterations of the rotation calibration we have a final
correction for shift parameters. The full code of our algorithm ”Feature ORi-
ented Calibration for Arbitrary Scan Trajectories with Enhanced Reliability”
(FORCASTER) is shown in listing 4.

5.3.6 Image Data

We acquired two CBCT short scans on an Artis Zeego (Siemens Healthineers,
Erlangen, Germany) of a lumbar spine phantom. In the first scan a needle was
inserted, the second scan had an additional large metal object and the needle
position was changed slightly. An axial, saggital and coronal slice of these two
images is shown in figure 5.2. We use the first CBCT image, containing only
a needle, as our prior image. We will register the projections from the second
CBCT scan to this image.

Figure 5.2: Upper Row: 1st CBCT used as prior. Bottom Row: 2nd CBCT,
projections used in calibration
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5.3.7 Evaluation

We evaluated FORCASTER using three experiments and compared it to state-
of-the-art algorithms from literature. One of these is the BFGS minimiza-
tion using the distance between matched feature points [3], the other one is
BFGS minimization using the normalized gradient information as the objec-
tive function[73]. Additionally, we have two mixed algorithms where we correct
the translational errors with our algorithm and then use BFGS with our fea-
ture based objective and NGI for the rotations. We also test a variant of our
FORCASTER algorithm using NGI as an objective for the QUT-AF.

For the gradient used by the BFGS algorithm we use a numerical 3-step
approximation and run the BFGS multiple times with diminishing step sizes
(Table 5.1). For the algorithms where we mix BFGS optimization with our
algorithm for correcting translations we will run a translation correction at the
start and after every BFGS run.

Parameter 1st run 2nd run 3rd run*

Our Objective Rotations 0.25° 0.025°
Translations 2 1

NGI Objective Rotations 0.25° 0.05° 0.01°
Translations 3 2 1

Table 5.1: Step sizes for the gradient approximations. *only for NGI objective

For each BFGS run the stop conditions are an iteration limit of 50 and a
gradient norm of less than 10−5.

1st Experiment
The first experiments consist of calibrating a trajectory where only the trans-
lational parameters are noisy. To create this trajectory we shifted the initial
trajectory in x- and y-direction by an random amount of pixels from an uni-
form distribution with the bounds of -10 to +10. The zoom factor is chosen
from an uniform distribution using the interval from 0.95 to 1. This disturbed
trajectory is then calibrated by the different algorithms. The randomization
seed is constant, so all algorithms are initialized with the same trajectory. The
projections are taken from the second CBCT and the prior image is also the
second CBCT.

2nd Experiment
In the second experiment we add noise to the rotational and the translational
parameters. The noise for rotation parameters are sourced from an uniform
distribution of -2° to +2°. Similar to the 1st experiment all calibration al-
gorithms are initialized with the same noisy trajectory. We use the second
CBCT as our prior image and calibrate the projections of the same CBCT.

3rd Experiment
Finally, in the 3rd experiment we take the projections from the second CBCT,
add noise to all parameters, and then calibrate them using the 1st CBCT as
our prior image.
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Metrics
We use two metrics for comparison of the results. The first is the structural
similarity index (SSIM)[75] evaluated an the projection images. The second
is the normalized root mean square error (NRMSE) evaluated on the projec-
tions. As a third metric we segment part of the big metal object with simple
thresholds and then calculate the Dice-Sørensen-Coefficient. For this we re-
construct the images using the FDK algorithm from the astra toolbox. The
segmentation is performed by finding the voxel with the highest value in the
rough area where the object should be and then using a threshold at half this
maximum value. Afterwards a morhpological opening with a 3x3x3 kernel and
a connected component analysis is used to get the segmentation.

System Specification
Our algorithms were run on a system with an Intel Core i7-4790K, 32 GB
RAM, NVIDIA GeForce RTX 2070 SUPER. Due to each projection being
independent from the others, all these algorithms can be easily parallelized.
We use as many parallel processes as the CPU has logical cores, so 8 for the
i7. We use python 3.7.6 and the packages: astra-toolbox 1.9.9.dev[74], scipy
1.6.1, skimage 0.18.3, numpy 1.17.4, opencv 4.5.1-dev.

5.4 Results

1st Experiment
The results from the first experiment, where we only had translational noise
to calibrate, are in table 5.2. We have seen in this experiment, that after three
iterations of each correction step no further corrections are made. So whenever
we mention our translation correction algorithm it will be three iterations of
x,y correction, three times z correction and three times x,y correction. The
BFGS optimizer with NGI optimizer performed very poorly in all metrics. We
therefore added another run where the translational noise is reduced by halve
to a pixel shift of -5 to +5.

Algorithm SSIM NRMSE Dice Runtime [hh:mm]
Our Algorithm 1.00 0.0017 1.00 00:16

BFGS (Our Objective) 0.96 0.0287 0.99 05:30
BFGS (NGI Objective) 0.71 0.2456 0.82 07:20
BFGS (NGI Objective)* 0.91 0.0794 0.97 05:13

Table 5.2: Results for the 1st experiment. *reduced translational noise

2nd Experiment
In table 5.3 are the results for the 2nd experiment. Here we can see that our
minimizer performs equally good with our objective and the NGI objective.
Furthermore we can see in all three metrics, that our minimizer performs
better than the algorithms based on the BFGS optimizer.
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Algorithm SSIM NRMSE Dice Runtime [hh:mm]
FORCASTER 0.97 0.0237 0.99 03:14

FORCASTER (NGI Objective) 0.96 0.0322 0.99 01:16
Mixed BFGS (Our Objective) 0.91 0.0559 0.98 06:47
Mixed BFGS (NGI Objective) 0.98 0.0224 0.99 02:47

BFGS (Our Objective) 0.89 0.0606 0.97 13:01
BFGS (NGI Objective) 0.67 0.2491 0.94 11:32
BFGS (NGI Objective)* 0.90 0.0644 0.96 13:43

Table 5.3: Results for the 2st experiment. *: reduced translational noise

3rd Experiment
In the 3rd experiment the images were calibrated on the 1st CBCT and com-
pared to the 2nd CBCT, therefore all metrics (Table 5.4) are slightly worse
than those of the 2nd experiment. Still, it shows similar results. Our algo-
rithm is on par with the one from literature. BFGS using our feature distance
objective performs worse than the NGI objective for calibrating the rotations
but better in relation to the translations. In Figure 5.4 are images of the re-
constructions for the calibration done by our minimizer and the Mixed BFGS
with NGI objective. The selected slices are the same as in Fig. 5.2.

The runtime for the full BFGS algorithms are, as expected, very high. The
NGI objective always performed much faster than our objective unrelated to
the underlaying optimizer. The fastest algorithm was the one using our trans-
lation correction using feature matching and the QUT-AF minimizer with the
NGI objective. This algorithm needed only 10% of the time the state-of-the-art
algorithm of BFGS+NGI took. In figure 5.3 the NRMSE is plotted over the
iterations. The mixed and FORCASTER algorithms all start with the same
steps, therfore they have the same steep decline at the first iteration. The
total number of iterations for every algorithm can also be seen in the table
5.4. It shows, that the total number of iterations is only slightly decreased
when moving the translation correction out of the BFGS minimization.

5.5 Discussion

We have shown, that FORCASTER can achieve an accuracy that is compara-
ble to the state of the art for the problem of arbitrary task-basked trajectory
calibration. Even if we use a prior image, that has significant changes in con-
trast to the projections, we can successfully calibrate the trajectory. We deem
this to be an important property for online calibration algorithms if task-based
trajectories should be integrated into clinical practice.

Furthermore, our results show, that it is possible to separate the optimiza-
tion of rotations and translations without an impact to the calibration perfor-
mance. The mixed BFGS algorithms had a slightly lower NRMSE than the
full BFGS algorithms. The FORCASTER algorithm, going one step further
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Algorithm SSIM NRMSE Dice Runtime [hh:mm] Iterations **
Prior Difference 0.86 0.3380 0.88 Ø
FORCASTER 0.83 0.3390 0.86 02:59 9

FORCASTER (NGI Objective) 0.84 0.3390 0.87 01:03 9
Mixed BFGS (Our Objective) 0.79 0.3406 0.87 09:21 24
Mixed BFGS (NGI Objective) 0.85 0.3387 0.88 03:47 120

BFGS (Our Objective) 0.79 0.3410 0.87 20:54 31
BFGS (NGI Objective) 0.63 0.3743 0.82 10:23 124
BFGS (NGI Objective)* 0.79 0.3441 0.87 10:36 69

Table 5.4: Results for the 3st experiment and the difference of the prior image
to the calibrated image. *: reduced translational noise; **: itera-
tions of FORCASTER and BFGS not comparable due to different
minimzing algorithms.

and optimizing the parameters serially, but with six loops, also achieved a
lower NRMSE than a full BFGS.

One obvious problem with feature matching are wrong matches. Most mis-
matched features are eliminated by Lowe’s ratio check. From the remaining
matches 5% are still incorrect. These are removed by the outlier and double
match filters. In figure 5.5 the matches discarded by the filtering steps and
the remaining matches are displayed for one projection.

Using the distance between features for the objective function given to a
BFGS minimizer gave poor results when calibrating rotations. This is probably
due to the noisiness of this objective. Our approach with QUT-AF of fitting a
quartic function is more robust than the 2-point or 3-point numerical derivative
used for BFGS, but calculating this derivative with more points increases the
computational cost and thus further slows down the minimization.

Even though our algorithm is, with a runtime of 3 hours, faster than a
BFGS minimization (10h), its long runtime is still a problem that needs to
be solved. One approach could be by leveraging the pair-wise independence
of each projection and use more parallel processing. This could be done on
a high-performance cluster or on a GPU with enough memory. Alternatively,
developing a faster objective function for the calibration of the rotations might
improve processing speed. Here our results show, that the mixed approach of
a feature-based objective for translations and the NGI objective for rotations
is three times faster than our algorithm.

A way to estimate the needed rotation from two simulated projections, sim-
ilar to how we estimated the needed translation, would speed up the cali-
bration immensely. Removing the translational minimization from the BFGS
optimizer saved more than 10 hours of computation. Here the matched fea-
tures give a plethora of information on what changes between slightly rotated
projections which is hopefully enough for a simple and fast algorithm.

Also the feature-based approach showed a high tolerance to wrongly guessed
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start parameters. An adaption to further remove the need for an accurate ini-
tial guess would help with images that do not have attached positions. This is
the case for continuous acquisition on an Artis Zeego System. Only the start-
ing position is exported to the DICOM but not the positions of all subsequent
frames. In conclusion we have presented a viable approach to calibration which
uses techniques that are in this context not well explored but are interesting
for further research.

In conclusion we have shown, that feature based calibration is a contender
to the state of the art calibration algorithms. With equal quality, but shorter
runtime and higher robustness to wrong start parameters.
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def correctRotation(cur, axis, width, count):
�s = linspace(-width, 0, count)+[0]+linspace(0, width, count)

dvec = [applyRotation(cur, �, axis) for � in �s]
projs = ForwardProjections(dvec)

for i in 1 ..|�s|:
Ψ𝑖, Ω𝑖 = FindFeatures(projs[i], real_acquisitions)

# Only use points found in all projections
shared_points = ⋂𝑖 Ψ−1(Ω𝑖)
Ω𝑖 = Ψ𝑖(shared_points)

value𝑖 = [‖ ⃗𝑝 − Ψ𝑖( ⃗𝑝) ‖2 for ⃗𝑝 in Ω𝑖]
values = [mean(value𝑖) for i in 1 ..|�s|]

values = (values-min(values)) / (max(values)-min(values))
# fit to quartic function (𝑝4 ∗ 𝑥4 + 𝑝3 ∗ 𝑥3 + 𝑝2 ∗ 𝑥2 + 𝑝1 ∗ 𝑥 + 𝑝0)
poly = numpy.polyfit(�s, values, 4)
# find roots of 1st derivative of polynom
dpoly = numpy.polyder(poly)
roots = real(numpy.roots(dpoly))
# ignore roots outside of our input area
roots = [ r for r in roots if -width � r � width ]
if |r| == 0:
# if no roots are found use median of
# the five smallest objective values

midpoints = argsort(values)[:5]
min_� = median(�s[midpoints])

else:
min_root = argmin(numpy.polyval(poly, roots))
min_� = real(roots[min_r])

cur = applyRotation(cur, min_�, axis)

return cur

Listing 3: Our minimizer (QUT-AF) for calibration of rotations.
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# cur are three vectors: the translation,
# detector orientation in x, and y direction
iterations = 3 # correct shifts with 3 iterations each
cur = correctXY(cur, iterations)
cur = correctZ(cur, iterations)
cur = correctXY(cur, iterations)

for width,count in [(2,9),(1.5,9),(1,9),(0.5,9),(0.25,9),(0.1,9)]:
# (2,9) means: 9 points are used in range from [-2° to 0°)
# + 0° + 9 points in range (0° to 2°] ->
# -2, -1.77, -1.55, -1.33, -1.11, -0.88, -0.66, -0.44, -0.22,
# 0, 0.22, 0.44, 0.66, 0.88, 1.11, 1.33, 1.55, 1.77, 2

# to fit the quartic function
� = correctRotation(cur, 0, width, count) # x-axis
� = correctRotation(cur, 1, width, count) # y-axis
� = correctRotation(cur, 2, width, count) # z-axis
cur = applyRotation(cur, �, �, �) # apply rotations
iterations = 1 # correct shifts between iterations

# but only with 1 iteration to save time
cur = correctXY(cur, iterations)
cur = correctZ(cur, iterations)
cur = correctXY(cur, iterations)

iterations = 3 # final correction of shifts
cur = correctXY(cur, iterations)
cur = correctZ(cur, iterations)
cur = correctXY(cur, iterations)
return cur

Listing 4: Full calibration algorithm: Feature ORiented Calibration for Arbi-
trary Scan Trajectories with Enhanced Reliability (FORCASTER)
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5.5 Discussion

Figure 5.3: The NRMSE plotted over the iterations for the algorithms and
data used in the 3rd experiment.
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Figure 5.4: Error between reconstructions from Experiment 3 and the actual
image. First row: error of the prior image. Second row: error of
FORCASTER. Third row: error of mixed BFGS with NGI. Bottom
row: error of BFGS with NGI (reduced translational noise)
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5.5 Discussion

Figure 5.5: Top Left: Matches discarded by Lowe’s ratio check. Top Right:
Matches discarded by double match and outlier filter. Bottom:
Remaining matches after filtering.
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6.1 Abstract

Background: For the reconstruction of Cone-Beam CT volumes, the exact
position of each projection is needed; however, in some situations, this infor-
mation is missing. Purpose: The development of a self-calibration algorithm
for arbitrary CBCT trajectories that does not need initial positions. Meth-
ods: Projections are simulated in a spherical grid around the center of rota-
tion. Through using feature detection and matching, an acquired projection
is compared to each simulated image in this grid. The position with the most
matched features was used as a starting point for a fine calibration with a
state-of-the-art algorithm. Evaluation: This approach is compared with the
calibration of nearly correct starting positions when using FORCASTER and
CMA-ES minimization with a normalized gradient information (NGI) objec-
tive function. The comparison metrics were the normalized root mean squared
error, structural similarity index, and the dice coefficient, which were evaluated
on the segmentation of a metal object. Results: The parameter estimation
for a regular Cone-Beam CT with a 496 projection took 1:26 h with the follow-
ing metric values: NRMSE = 0.0669; SSIM = 0.992; NGI = 0.75; and Dice =
0.96. FORCASTER with parameter estimation took 3:28 h with the following
metrics: NRMSE = 0.0190; SSIM = 0.999; NGI = 0.92; and Dice = 0.99.
CMA-ES with parameter estimation took 5:39 h with the following metrics:
NRMSE = 0.0037; SSIM = 1.0; NGI = 0.98; and Dice = 1.0. Conclusions:
The proposed algorithm can determine the parameters of the projection ori-
entations for arbitrary trajectories with enough accuracy to reconstruct a 3D
volume with low errors.

6.2 Introduction

To reconstruct a Cone-Beam Computed Tomography image, several X-ray
images are required and must be input into a reconstruction algorithm. This
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algorithm must know at which position and orientation each X-ray image was
made. Several methods have been developed to solve this problem, and they
come in two broad categories, offline and online calibration.

Offline calibration uses phantoms with markers, which are often small metal
beads that are imaged for each projection where the position and orientation
can be calculated [72, 71, 76, 77, 78, 79, 80]. The phantom is imaged with a
trajectory, and the correction factors are calculated. Then, these correction
factors are used when reconstructing the images from this trajectory. This
requires a dedicated run of the trajectory with the phantom.

Online calibration uses the acquired projections and then uses prior infor-
mation about the imaged object [81, 3, 1, 82], or it minimizes a cost function
that is defined on the reconstructed image [69, 83, 84, 85]. A review of current
approaches was published by Hatamikia et al. [66]. This approach does not
need a dedicated phantom nor an extra run of the trajectory for the calibra-
tion, but it does have other constraints. Some use a prior image on which the
projections are registered when using 2D–3D registration algorithms, others
require the trajectory to have a specific, often circular, shape.

Using a 2D–3D registration of the acquired projections on a prior image al-
lows for the calibration of fully arbitrary trajectories [73], and the registration
is faster if the initial parameters are close to the actual parameters. The po-
sition reported by the CBCT system is usually close enough for a quick and
good calibration with state-of-the-art algorithms. But, if this information is
not available (e.g., portable C-Arms, continuous acquisition/fluoroscopy mode
of the Artis Zeego), other means of obtaining these initial parameters are re-
quired.

One option is to track the C-Arm externally with inertia sensors [86, 87].
These sensors can be attached to the C-Arm and, after calibrating the sensors,
they track the inertia in all three dimensions. With this inertia data and a
known starting position, the movement of the C-Arm can be calculated.

Also possible is the use of 3D cameras [88, 89]. Here, the position of the
C-Arm is observed by tracking optical markers through using either a camera
attached to the X-ray source or two external cameras.

This paper presents another option that uses a prior image to simulate for-
ward projections from different angles, and then uses feature matching to find
the one that fits bests for each acquired projection. In this way, the parameters
for each projection can be estimated.

6.3 Materials and Methods

6.3.1 Projection and Optimization Parameters

The algorithm uses an intrinsic coordinate system that is bound to the detector
plane. The three vectors to define the position and orientation of the acquired
image are shown in Figure 6.1. The vector ⃗𝑑 points from the middle of the
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6 FORCAST-EST

detector to the source, and the length is the distance between the detector
and the source. The vectors �⃗� and ⃗𝑣 describe the direction and spacing of the
detector elements, respectively, and they point from the center of one detector
element to the center of the left/top neighbor. The size of each vector is the
spacing between elements.

The three unit vectors ⃗𝑥, ⃗𝑦, and ⃗𝑧 that make up the coordinate system are
parallel to the vectors �⃗�, ⃗𝑣 and ⃗𝑑, respectively, and the point of origin is the
isocenter, which is the center of the CT image.

Figure 6.1: Overview of the coordinate system, parameters, and the degrees of
freedom [1].

These vectors are also used for all movements and rotations. There are three
rotations, one around each of the vectors 𝑥, 𝑦, and 𝑧, and three translations
that are also along these vectors.

6.3.2 Feature Points Matching

The algorithm depends on feature points; these are found within each image
through using the AKAZE [90] algorithm. The parameters used for AKAZE
were as follows—threshold: 0.0005, four Octaves, and five Octave Layers.
AKAZE also generates a description vector for each feature point, and these
descriptors can be used to compare to points through using the Hamming
distance. To find the matching features between images, the Hamming dis-
tances between all feature descriptors of one image to all descriptors from the
other image are calculated. Then, for every feature in the calibration image,
the features with the lowest Hamming distance 𝑑1, and the one with the second
lowest distance 𝑑2 are selected. On these two distances, Lowe’s ratio test [8]
is applied. This compares the distance with a ratio 𝑟, and this is performed in
order to check that the smaller distance is much smaller than the second best
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match (𝑑1 < 𝑟∗𝑑2). When the test succeeds, the feature point with the smaller
distance is used to form a matching pair of feature points. If the distances do
not comply with this test, no matching pair was found.

Afterward, all found pairs are filtered by finding the ones that match to the
same feature point and those are removed.

The last step involves discarding pairs where the Euclidean distance between
the points in the matched pairs is more than one standard deviation from the
mean distance of all pairs.

6.3.3 Algorithm

Start Simulate
Projections

Detect Features
Discard Projection

Grid with
Feature Points

Acquired Projections

Detect Features

Compare with every
4th grid point

Compare 5 best with
surrounding grid points

Correct Detector RotationCorrect Reverse Projections

Correct X,Y-Shifts Correct Z-Shifts End

Figure 6.2: Pipeline of the estimation algorithm. Rectangles are processes,
trapezoids store data.

An overview of the estimation process is in Figure 6.2, and this will be ex-
plained in more detail in the following section.

The algorithm is initiated with the acquired images, a prior CT, and ge-
ometry information about the size of the detector, as well as the distance to
the source and to the isocenter. The first step of the algorithm is to generate
simulated projections in a regular grid around the center of the prior CT im-
age. The grid has 95 points each for the rotations around the x- and y-axis,
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6 FORCAST-EST

which results in a grid with a spacing of 3.8∘. Further, three different detector
rotations are used, 0∘, 120∘, and 240∘. On each of these images, the AKAZE
algorithm detects features and extracts the feature descriptors. The simulated
projections are then deleted, and only the feature points, descriptors, and pro-
jection rotations (𝛼, 𝛽, and 𝛾) are saved. They are calculated once and then
used for all further calibration.

To find the approximate position of an acquired image, the algorithm first
detects the features. They are then matched with each set of features from
the simulated grid projections and the matched feature points are counted. To
save time, the algorithm operates along this grid with a step size of four, and it
then selects the five grid points with the most matched feature points. Next,
the grid points surrounding these five points are compared to the acquired
image in the same way. For the grid point that has the most matched pairs,
the projection rotations are returned. These are the current approximation of
the rotations ̂𝛼1, ̂𝛽1, and ̂𝛾1 (Fig. 6.3 (a)).

This selected grid position is most likely the closest to the target position,
but it can also be a projection from the opposite side. These projections,
simulated from the wrong side, will be corrected later.

Before that, the detector rotation is approximated. The average value of
the feature point coordinates is used as the center point; this is performed
separately for the real and simulated image. Then, the coordinates of the
feature points are converted to polar coordinates by using the averaged center
point as the zero point. The angle for each feature point in the simulated image
is subtracted from the angle of the matching feature point in the real image.
The median of these differences is the new approximated detector rotation ̂𝛾2.
Listing 5 shows this in pseudocode.

A similar approach is taken to correct the projections taken from the oppo-
site direction. Four projections are simulated with different rotation param-
eters, as well as the approximate rotations with a detector rotation of 180°
( ̂𝛾2 + 𝜋). This is conducted from the opposite side that rotates around the
x-axis ( ̂𝛼1 + 𝜋) and around the y-axis ( ̂𝛽1 + 𝜋). For these four projections,
features are detected and matched, and the projection with the lowest mean
Euclidean distance between the matched points is then used.

The result of this first step is a rough calibration. As such, in the next
step, this rough calibration is further refined. The translational misalignment
is corrected using the method described by Tönnes et al. [1]. The median
Euclidean distance between the matching points is used to move the projection
in the x and y directions. The z-translation is corrected by calculating the
distance between the feature points within each image, and by then dividing
the distances of one image by those of the other image results in the zoom
factor. This ratio and the distance between the source and the isocenter are
multiplied to give the new distance.

After correcting the translations along the x-, y- and z-axis, the previously
described procedure that is used to correct the detector rotation is applied
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1 def approximate_detector_rotation(current_parameters):
2 # simulate projection and track features
3 simulated_projection = ForwardProjection(current_parameters)
4 simulated_feature_points =

trackFeatures(simultaded_projection, real_projection)↪

5 # calculate center point
6 simulated_mid = mean(real_feature_points, axis=0)
7 real_mid = mean(simulated_feature_points, axis=0)
8 sim_points = simulated_feature_points - simulated_mid
9 real_points = real_feature_points - real_mid

10 # calculate angle
11 angles = (arctan2(sim_points[:,0], sim_points[:,1])
12 -arctan2(real_points[:,0], real_points[:,1])) *

180.0/PI↪

13 angles[angle<-180] += 360
14 angles[angle>180] -= 360
15 detector_angle = median(angles)
16 # test in which direction to rotate
17 proj = ForwardProjection(applyRotation(current_parameters,

0,0,-detector_angle))↪

18 points = trackFeatures(proj, real_projection)
19 diffn = points - real_feature_points
20 proj = ForwardProjection(applyRotation(current_parameters,

0,0,+detector_angle))↪

21 points = trackFeatures(proj, real_projection)
22 diffp = points - real_feature_points
23 if sum( abs(diffn) ) < sum( abs(diffp) ):
24 return -detector_angle
25 else:
26 return detector_angle

Listing 5: Approximation function for the detector rotation.
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once more (Fig. 6.3 (b)).
The resulting parameters can then be used to run a state-of-the-art calibra-

tion algorithm and fully calibrate the trajectory (Fig. 6.3 (c)).

(a) (b) (c)

Figure 6.3: The sinograms for the different steps in the algorithm. From left
to right is as follows: (a) coarse estimate, (b) refined estimate,
and (c) the refined estimate with FORCASTER when using the
NGI objective.

6.3.4 Image Data

In this paper, the data from Tönnes et al. [1] were used, which were obtained
from a CT scan of a lumbal spine phantom with an inserted metal object.
The reconstructions can be seen in Figure 6.4.

(a) (b) (c)

Figure 6.4: CBCT used as a prior image. (a) Transversal slice. (b) Sagit-
tal slice. (c) Coronal slice.

Furthermore, a sinusoidal trajectory, acquired shortly after the abovemen-
tioned CT scan, is used. The phantom is not moved in between. The sinusoidal
trajectory is acquired in a step-and-shoot mode, which means moving the C-
Arm to each of the 161 positions on this trajectory, and then acquiring a single
X-ray image with the standard protocol called “P16_DR_L” at 70 keV and
with the mAs controlled by the Artis Zeego System.
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The third trajectory is acquired using the continuous acquisition mode and
by moving the C-Arm during acquisition. This one has the problem that was
mentioned in the introduction in that it does not contain positional informa-
tion for the individual frames. This trajectory is an arc around the object
tilted by 28∘, with 70 keV and 30 frames per s. The exposure time and tube
current are managed by the Artis Zeego System; furthermore, the average
pulse width is 3.5 ms, with an average current of 35 mA. It consists of 666
individual projections.

All three sinograms are shown in Figure 6.5. Since the sinograms are three-
dimensional, only two slices are shown, and each of them is cut through the
center of all individual projections, both horizontally and vertically.

6.3.5 Evaluation

To evaluate the quality of the estimator, the estimated parameters were used as
inputs for the FORCASTER [1] algorithm and the algorithm by Oudah et al. [73]
(which uses a CMA-ES minimizer with the normalized gradient information
(NGI) as the objective function).

The calibrated trajectories are then reconstructed with the FDK algorithm,
which is part of the astra toolbox [74]. The images become cropped to the field
of view, and no further post-processing is performed. The calibrated parame-
ters are also used to generate a forward projection using the prior image; this
simulated sinogram is compared to the simulated forward projections of the
state-of-the-art calibration algorithm. The continuous acquisition sinogram is
compared to the acquired data since there are no correctly calibrated param-
eters.

Metrics

The structural similarity index (SSIM) [75] (Equation (1)) is the normalized
gradient information (NGI) [91], and the normalized root mean squared error
(NRMSE) (Equation (2)) are evaluated on the projections that are simulated
with the parameters from the calibrated trajectory in comparison to the for-
ward projections of the reference calibration.

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 2𝜇𝑥𝜇𝑦(2𝜎𝑥𝑦 + 𝑐2)
(𝜇2𝑥 + 𝜇2𝑦 + 𝑐1)(𝜎2𝑥 + 𝜎2𝑦 + 𝑐2) (6.1)

𝑁𝑅𝑀𝑆𝐸(𝑥, 𝑦) = 𝑅𝑀𝑆𝐸(𝑥, 𝑦)
||𝑥||𝐹

(6.2)

𝑅𝑀𝑆𝐸(𝑥, 𝑦) =
√√√
⎷

1
𝑁

𝑁
∑

𝑖
(𝑥𝑖 − 𝑦𝑖)2 (6.3)

In this equation, 𝜇𝑥 is the mean value of 𝑥; 𝜎𝑥 the standard deviation; 𝑐1
and 𝑐2 are the constants; N : This is changed to be italics format to keep
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Figure 6.5: Two slices through the acquired three-dimensional sinograms.
The top row is the standard CBCT, the middle row is the sinu-
soidal trajectory, and the bottom row is a continuous acquisition
of a circular arc of 400∘.
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consistent with the equation, please confirm. Same below. is the number of
voxels; and ||𝑥||𝐹 is the Frobenius norm of x.

The reconstructions obtained after calibration and cropping to the point of
view are also compared through using the same metrics. Additionally, the ver-
tical part of the large metal object in the center of the phantom is segmented,
and the Dice coefficient on the segmentations is then calculated. All metrics
are applied to each 2D slice of the images and then averaged.

System Specifications

The algorithms were run on a system with an AMD Ryzen 9 7900X CPU,
128 GB RAM, and NVIDIA GeForce RTX 2070 SUPER. Due to each projec-
tion being independent of the others, the algorithm can be easily parallelized.
In this paper, ten parallel processes were used. Python version 3.9.9 the fol-
lowing packages was used: astra-toolbox 2.0 [74], scipy 1.7.3, skimage 0.19,
numpy 1.21.4, and opencv 4.5.4.

6.4 Results

The results obtained from comparing the sinograms are in Table 6.1. The sim-
ilarity index and NGI are low for the coarse estimate, but they increased
significantly after refining. When using the FORCASTER algorithm with the
estimated positions, the SSIM and NRMSE were comparable to the ones re-
ported by Tönnes et al. [1].

Similar to the results from the sinograms, the metrics evaluated on the re-
constructions, shown in Table 6.2, showed a significant improvement in the
refined estimate over the coarse one. Here, the NRMSE and Dice functions,
after estimating and applying FORCASTER, were also comparable to the
ones previously reported. There was no significant difference (p = 0.56) be-
tween the Dice values of the two reconstructions when using the state-of-the-
art algorithms and refined estimates; however, the other metrics—NGI, SSIM,
and NRMSE—were significantly better for the CMA-ES calibration.

The reconstructed images are shown in Figure 6.6. The top row contains the
reconstruction after only performing the rough estimate. There were obvious
artifacts visible, which can be seen in the left column. These artifacts are
regularly spaced and rotated around the center in the plane of the acquisition
trajectory. Several edges were reconstructed twice with a slight offset. In
the second row, the refined estimate was used for reconstruction. The radial
artifacts are still there, but the double edges are now consolidated. Finally,
the reconstruction without these radial artifacts is in the bottom row.
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Figure 6.6: Reconstructions of the different steps of the algorithms. From top
to bottom is as follows: Coarse estimate, Refined estimate and
Refined estimate + CMA-ES when using the NGI objective.
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Algorithm Runtime [hh:mm] NGI SSIM NRMSE
Coarse Estimate 01:06 0.397 * 0.944 * 0.2327 *
Refined Estimate 01:26 0.753 0.992 0.0669
Est. + FORCASTER 03:28 0.919 * 0.999 * 0.0190 *
Est. + CMA-ES & NGI 05:39 0.983 * 1.000 * 0.0037 *

Table 6.1: Results for the metrics evaluation on the CBCT sinogram. The two
bottom rows used the refined estimate as the input for the FOR-
CASTER algorithm, and this was achieved once with the NGI ob-
jective and once with the objective when based on feature points.
The values marked with an * had significant (𝑝 < 0.05) changes
compared to the refined estimate.

Algorithm NGI SSIM NRMSE Dice †

Coarse estimate 0.372 * 0.290 * 0.7898 * 0.60 *
Refined estimate 0.525 0.360 0.5485 0.96
Est. + FORCASTER 0.766 * 0.677 * 0.1627 * 0.99 *
Est. + CMA-ES & NGI 0.944 * 0.979 * 0.0295 * 1.00 *

Table 6.2: Results for the evaluation of the CBCT reconstructions. The dice †

: Please consider replacing this symbol with another one (e.g., **)
to distinguish from *. This applies also to Table 5. function was
evaluated on a segmentation of the large metal object in the phan-
tom. Values marked with an * had significant (𝑝 < 0.05) changes
compared to the refined estimate.

Figure 6.7 shows the sinograms for the sinusoidal trajectory. The calibrated
sinograms are the forward projections of the prior CT image. Because this
image does not contain the complete object, these two sinograms are missing
structures in comparison to the acquired images. One easily spotted difference
is in column (b) in the top right quadrant, which is missing a high-contrast
object. In the sinogram obtained with estimated starting parameters, i.e., in
the bottom row in column (a) and the right image in column (b), there is a dis-
tortion visible at the top (column (a)) and left edge (column (b)). This is more
pronounced in the sinograms that were calibrated with FORCASTER than the
ones calibrated with CMA-ES. This is a projection where the algorithm did not
estimate the starting parameters close to the correct ones, and where the cal-
ibration did not succeed. This projection is shown in Figure 6.8 alongside the
acquired image and the projection from the correctly calibrated parameters.

The values obtained from evaluating the metrics are shown in Table 6.3.
Similar to the calibration of the CBCT trajectory, the metrics improved with
every step. The final calibration produced lower results than the CBCT cali-
bration, which is in line with the distortions visible in the sinogram. The run-
time was much shorter because the sinusoidal trajectory contained only 161
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6 FORCAST-EST

(a) (b)

Figure 6.7: Two slices out of the sinogram of the sinusoidal trajectory from the
acquired data. The FORCASTER calibration used nearly accurate
starting parameters. The calibration with refined estimates and
FORCASTER, as well as the refined estimates with CMA-ES and
NGI objective are shown. The left column (a) is ordered from top
to bottom as follows: acquired data, simulated projections from the
calibration with starting parameters, simulated projections from
the FORCASTER calibration with estimated starting parameters,
and CMA-ES calibration with the estimated parameters. The right
columns (b) have the same order, also from left to right.

Figure 6.8: Example projections at a point where the parameter estimation
fails. From left to right is as follows: acquired projection, simulated
projection from the calibration with starting parameters, simulated
projection from the calibration with estimated starting parameters
and FORCASTER, and the projections from estimated parameters
with CMA-ES calibration.

projections in comparison to the 496 contained in the CBCT trajectory.
The results for the continuous arc trajectory are shown in Table 6.4. Be-

cause there was no correct calibration for this trajectory (since there were no
starting parameters for the individual projections), the metrics were not eval-
uated on the simulated projections but were instead evaluated on the acquired
images. The metric values were much lower there than for the ones for the two
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6.4 Results

Algorithm Runtime [hh:mm] NGI SSIM NRMSE
Coarse estimate 00:24 0.259 * 0.885 * 0.4513 *
Refined estimate 00:27 0.662 0.992 0.0851
Est. + FORCASTER 00:54 0.836* 0.997 0.0369 *
Est. + CMA-ES & NGI 01:50 0.955 * 0.999 * 0.0106 *

Table 6.3: Results of the evaluation on the sinusoidal trajectory. Values
marked with an * had significant (𝑝 < 0.05) changes compared
to the refined estimate.

previous trajectories. Still, they significantly improved with each step, and
there were no significant differences in the SSIM (p = 0.5) and NRMSE (p =
0.9) metrics between the two state-of-the-art algorithms.

For comparison, the calibrations for the other two trajectories on the ac-
quired images were evaluated and are included in the results located in the
lower part of the table.

Algorithm Runtime [hh:mm] NGI SSIM NRMSE
Coarse estimate 01:26 0.123* 0.532* 0.7019*
Refined estimate 01:31 0.205 0.626 0.6359
Est. + FORCASTER 03:43 0.240* 0.641* 0.6283*
Est. + CMA-ES & NGI 07:23 0.259 * 0.643* 0.6284*
Correct cal. CBCT traj. 00:35 0.294 0.377 0.7894
Est. + FORCASTER CBCT traj. 03:28 0.286 0.392 0.7817
Correct cal. sinus traj. 00:10 0.194 0.486 0.7291
Est. + FORCASTER sinus traj. 00:37 0.183 0.481 0.7311

Table 6.4: Results of the evaluation on the continuous arc trajectory. Here,
the forward projection is compared to the acquired data, and the
evaluation results for the other two trajectories are also included
if the forward projections from the correct calibration were com-
pared to the acquired data. Values marked with an * had significant
(𝑝 < 0.05) changes compared to the refined estimate.

In Figure 6.9, the acquired sinogram and the simulated sinogram that used
the estimated parameters, which was also calibrated by the CMA-ES with the
NGI objective, are shown. Similar to the sinusoidal trajectory, there were some
projections where the estimated parameters were wrong. These can be seen in
the lower half of column (a), and on the right of column (b). Apart from these
few slices, no major misalignment can be seen.

The reconstructed image that used the continuous arc and the calibration
is in Figure 6.10. The image was reconstructed using the FDK algorithm from
the astra toolbox without any postprocessing. The images show that the object
was reconstructed with just a few artifacts (which came from miscalibration).
The results of the metrics are in Table 6.5. Since there exists no correct cali-
bration and reconstruction of this set of projections, the image was compared
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6 FORCAST-EST

with the image obtained by reconstructing the CBCT trajectory. The NGI,
SSIM, and NRMSE metrics all increased significantly with each step. There
was no significant increase for the Dice value in the reconstruction with refined
estimates and the reconstruction after applying the two calibration algorithms.
Still, the high Dice score shows that the metal object was reconstructed with
a good quality and at the correct position. The SSIM and NGI metrics were
not as high as the results from the calibration of the CBCT trajectory. In
addition, the misaligned projections generated a few artifacts.

(a)
(b)

Figure 6.9: Two slices out of the arc trajectory sinogram from the acquired
data, as well as from the calibration with refined estimates and
CMA-ES with the NGI objective. The left column is (a) ordered
from top to bottom as follows: acquired data, and the simulated
projections from the calibration with estimated starting parame-
ters. The right columns (b) have the same order, also from left to
right. Since there were no positional data reported by the Artis
Zeego System, there was no calibration without estimated param-
eters conducted.

6.5 Discussion

This paper describes the FORCAST-EST algorithm, which is able to approxi-
mate the initial parameters for the calibration of arbitrary CBCT trajectories.
Based on the literature review, this algorithm is the first estimator that uses
only online calibration techniques. The results have shown that the estimated
parameters are close enough to the correct parameters, such that state-of-the-
art algorithms can successfully calibrate the trajectory. The reconstructed
images are of comparable quality to those that have been reconstructed after
calibration with close-to-accurate starting positions. The Dice score achieved
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6.5 Discussion

Figure 6.10: Reconstructions of the continuous arc when using the proposed
estimator, as well as CMA-ES with the NGI objective and the
FDK algorithm from the astra toolbox.

Table 6.5: Metric results for the arc reconstruction. The dice † was evaluated
on a segmentation of the large metal object in the phantom in com-
parison to the segmentation of this object in the reconstructed image
from the regular CBCT trajectory. Values marked with an * had
significant (𝑝 < 0.05) changes compared to the refined estimate.

Algorithm NGI SSIM NRMSE Dice †

Coarse estimate 0.353 * 0.360 * 0.3567 * 0.00 *
Refined estimate 0.446 0.418 0.2379 0.82
Est. + FOR-
CASTER

0.510 * 0.473 * 0.2114 * 0.84

Est. + CMA-ES &
NGI

0.535 * 0.535 * 0.1958 * 0.84

by both algorithms was very high ≥0.99, which means the metal object in
the center was reconstructed correctly. The CBCT calibrations also produced
very high SSIM values (>0.999), such that they are very close to the reference
calibration. These metric values are comparable to those previously reported
for the FORCASTER calibration [1]. The estimation, therefore, does not re-
duce the quality of the reconstructed images. A comparison to the calibration
algorithm was developed by Oudah et al. [73], and this was meant to be used
in this paper. However, this was not possible since the calibration algorithm
uses metrics that require specific objects in the measured phantom, and these
were not included in the object scanned for this work.

For the CBCT trajectory, the refined estimate needed about one and a half
hours, while together with the CMA-ES algorithm it took five and a half hours
for the calibration. As such, the estimation was less than 30% of the total
runtime; furthermore, this difference was even higher for the arc calibration,
where the estimation only contributed 20%.

Further, in contrast to the approaches by Grzeda et al. or Lemammer et al. [86,
87], no modification of the CBCT-Device was necessary to estimate the param-
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6 FORCAST-EST

eters. If the modification of the C-Arm is possible and allowed, the addition
of more sensors might be the preferred option.

Removing the dependency on roughly accurate starting parameters comes
with the cost of a higher computation time. In the experiments, there was
a steep increase in the time when compared to the calibration that had its
starting parameters provided by the CBCT device. Still, every projection
was optimized separately from one another, and they also independently used
the calibration algorithm. Therefore, parallelization was easily implemented.
The initial generation of the grid with projections can also be parallelized,
but this was not implemented since the data can be saved and reused for the
next time the calibration algorithm is run. This is possible as it only depends
on the prior image, and the same grid can be used for the calibration of different
trajectories around the object.

One caveat are projections where the acquired image and simulation differ
too much. This can happen for projections that are too far out of the plane
of the original CT trajectory. The acquired projections contain parts of the
object that are not in the prior CT because the phantom is larger than the CT
volume. This makes it harder to find enough matching feature pairs. There-
fore, the noise of the miss-matched features on one projection might outweigh
the low count of the correctly matched points on the correct projection; as
such, the estimated parameters would then be incorrect. During the develop-
ment, it became evident that the parameters like the ratio of Lowe’s ratio test
had a high impact on how far the projections would be miscalibrated. Further
exploration of the different parameter combinations, or other ways through
which to filter out wrong matches, might improve this algorithm. The filtering
system for matched feature points could also be replaced with the one used by
Yang et al. [82] in their calibration algorithm.

More development should be conducted to reduce the runtime. The im-
plementation relies heavily on the CPU, but the graphic card could reduce
the needed computation time drastically, since graphic cards are designed for
parallel computing.

6.6 Conclusions

In conclusion, this paper presents an algorithm that is able to roughly calibrate
a trajectory without initial parameters, and it is accurate enough for state-of-
the-art algorithms to further refine the produced image, as demonstrated when
using CMA-ES with NGI and the FORCASTER algorithm.
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7 Summary

The first part of this thesis is about MRI with two different focus points.
One is the algorithm for segmenting arteries in Dynamic Contrast Enhanced

MRI (DCE-MRI) images. This segmentation works without user input and is
a necessary step for reproducible quantitative MRI. Small changes in the seg-
mentation mask can have a big impact on the result of further processing[92].
An automatic and deterministic segmentation helps with reducing the variance
of quantitative measurements.

The second paper presents a web application to generate MRI images with
different sequences and parameters. This, while not helping directly during an
intervention or for image processing, allows medical students and physicians to
get an idea of how images will look like for the given sequence and parameters.

In the second part, two algorithms for the calibration of CBCT trajectories
are presented. The first (Feature ORiented Calibration of Arbitrary Scan Tra-
jectories with Enhanced Reliability (FORCASTER)) is a further development
of the Feature ORiented Calibration of Arbitrary Scan Trajectories (FOR-
CAST)[3] algorithm and has improvements to speed and reliability. This algo-
rithm can calibrate arbitrary trajectories and needs only a prior image and a
set of initial parameters. Arbitrary trajectories can be used to reduce metal ar-
tifacts or radiation. The second algorithm (FORCAST-parameter ESTimator
(FORCAST-EST)) uses the same principles as the other two and can estimate
the calibration parameters. It only needs a prior image and can therefore
be used to estimate the initial parameters for regular calibration algorithms.
Together, these two allow the use of arbitrary trajectories acquired with any
X-Ray or CBCT system.

A detailed summary of the four scientific studies presented in chapters 3 to
6 is following.

Deterministic Arterial Input Function selection in DCE-MRI for automation
of quantitative perfusion calculation of colorectal cancer,
Int J Comput Assist Radiol Surg, doi: 10.1016/j.mri.2020.09.009

In chapter 3 an algorithm for segmenting the abdominal arteries was intro-
duced. The motivation was to make quantitative perfusion calculation more
reproducible, which reduces the impact the experience of the physician has on
the result of the calculation.

The algorithm works on DCE-MRI images acquired over time, the first ac-
quired image is subtracted from every other image to remove the background.
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Then, the algorithm uses nine steps to find and refine the artery segmentation.
It starts by selecting the 1% brightest voxels in the first 15 time steps. Then a
binary opening separates structures only connected by a few voxels. The third
step is finding the time step where the majority of the selected voxels have
their highest value. This time step is now used for further segmentation. In
the fourth step, the structures in the segmentation mask are labeled and for
every structure the percentage they fill of their bounding box is determined.
If the filled area is between 60 and 80% the structure is considered roundish,
all other structures are removed. Afterward, step three is repeated and if it
results in an earlier time step than the one found in step three, it is chosen
as the new segmentation time step. Step six fits a gamma variate function
to each structure in the segmentation mask. Structures where the parameters
are out of bound are discarded. Step seven removes very small structures, and
in step eight a flood fill algorithm is applied to each structure. Finally, the
largest structure in the left half and right half of the image is selected as the
segmentation of the arteries.

To evaluate the accuracy, the output from the algorithm is compared to
manual segmentations using the dice coefficient. Here, the presented algorithm
reached higher coefficients than all the compared state-of-the-art algorithms.
Together with manual annotations of the tumor, the perfusion parameters were
calculated and compared. Again, the presented algorithm had lower errors in
all parameters than the other algorithms.

VirtMRI: A tool for teaching MRI,
submitted J. Med. Syst., 19.05.2021

The chapter 4 presents a web-based tool for teaching MRI to non-technical and
medical students. It allows students to generate MRI images using different
sequences and parameters within their own web-browser. The system supports
several sequences for the standard proton MRI and also some sodium MRI
sequences. The user can set the sequence specific parameters, but also general
parameters for image resolution, noise level and undersampling. Generated
images are displayed in a 4-pane view, showing a transversal, coronal and
sagittal slice. The fourth pane can be changed between the k-space and a
3D-view of the three visible slices. The display also supports windowing of the
image. The last two generated images can be displayed side by side to easily
compare the differences.

The image generation uses the solution to the Bloch equation for each se-
quence to calculate the signal response. The equations are evaluated on a
dataset consisting of 3D parameter maps for T1, T2, proton density, etc.. The
datasets are generated by using published head phantoms where every tissue
is filled with the appropriate values. The calculation is performed completely
within the browser using WebASM for lower computation time.
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7 Summary

Feature-based CBCT Self-Calibration for Arbitrary Trajectories,
Int J Comput Assist Radiol Surg, doi: 10.1007/s11548-022-02645-9

Chapter 5 introduces the FORCASTER algorithm for self-calibration of CBCT
trajectories. Calibration of trajectories is necessary to properly reconstruct a
CT image. The proposed algorithm uses online-calibration, so it does not
need a special phantom and an additional calibration run, only the acquired
data and a prior image. Different methods are used to calibrate the image in
the three lateral and the three rotational dimensions. The coordinate systems
x- and y-axis are in-plane of the detector, with the z-axis pointing towards
the source. To correct a shift in x- and y-direction, features are detected
and matched between the real and simulated image. Then the parameters
are shifted by the median Euclidean distance of the coordinates for matching
pairs. The shift in z-direction brings the object closer or farther away from
the detector and is therefore a zoom operation. To find the z-correction, all
distances between feature points in one image are divided by the distance of the
matching points in the other image. The difference to 1 is multiplied with the
source-detector-distance to give the z-correction. Each rotation is corrected
using a minimizer QUT-AF developed in that chapter. Several projections
with slightly changing angles are simulated, and the median Euclidean distance
between matching feature points is calculated. A quartic function is fitted to
those values, and the minimum is the corrected rotational parameter. All those
methods are repeatedly applied to the acquired projection.

The resulting trajectory parameters are of comparable quality as the param-
eters found by state-of-the-art algorithms. The proposed algorithm is several
times faster and has a higher tolerance to deviating starting parameters.

Feature-oriented CBCT Self-Calibration Parameter Estimator for Arbitrary
Trajectories: FORCAST-EST,
submitted Appl. Sci.

In chapter 6 an algorithm is presented, that can estimate the acquisition pa-
rameters for the projections in a CBCT trajectory. This estimation is needed
in the case where the CBCT system does not provide a position and orienta-
tion for each projection, but the calibration algorithm needs to be initialized
with starting parameters.

The algorithm uses a prior image of the object to generate projections in a
grid of possible rotations around the object, it uses a grid step size of about
4° or 95 projections for a full rotation. Then the AKAZE algorithm is applied
to get feature points for each projection. The projections themselves are dis-
carded. To estimate the parameters for an acquired projection the features are
extracted and then compared to the features from the previously generated
grid. To increase the speed in a first round the algorithm only compares them
to the every fourth grid point, then the five best matching grid points are se-
lected. In a second step the surrounding grid points of these five selected ones
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are compared to the features from the acquired projection. The best matching
grid point is taken as the coarse estimate.

A refinement of the coarse estimate is using the correction methods for
lateral shifts introduced in 5, additionally a new correction for the detector
rotation is introduced. Here the Cartesian coordinates of matched feature
points are converted to polar coordinates. The median difference of the angular
value for each pair of matching feature points is the corrective value for the
detector rotation. Each refinement step is repeated several times.

The evaluation of the estimated parameters show, that state-of-the-art cal-
ibration algorithms are able to correctly calibrate several different trajectories
using these estimates.

85



8 Outlook

In chapter 3 an algorithm for detecting arteries in DCE-MRI images was pre-
sented. The algorithm was compared to previously published algorithms and
from these the best algorithm was one that was designed to find arteries in
contrast enhanced brain CTs. Therefore, it would be interesting to see if how
well my algorithm performs for finding arteries in images of other parts of the
body, when using other MRI sequences or in CT images.

For quantitative MRI, more research could be done for deterministic al-
gorithms to segment structures. Time is a major constraint for physicians,
so algorithms so hand drawn segmentations are minimalistic. Segmentation
algorithms could support this process by quickly and accurately segmenting
complex structure. Further calculations, like blood perfusion, can then be
easier replicated and are independent of the physician’s experience.

VirtMRI

The MR image generator has many possible extensions. Researchers are con-
stantly developing new sequences to measure new signals. So, many additional
MR sequences could be added to the system.

New phantoms for different body parts would also be interesting to add.
This addition is quite straight-forward since it does not require any change
to the program itself, only finding a suitable dataset with the required tissue
segmentations. One idea for this was to use digital phantoms if the license
allows it.

Also, a real simulation of the Bloch equations should at some point be
implemented. This allows for more realistic images that are based on real
simulation. But such an implementation requires a lot of work and time.

Further development is also needed for the mobile interface. While the
system looks good on a Desktop PC, it is not quite as usable on smartphones.
The small display requires a drastically different user interface layout, and the
touch display offers different usage options for the image viewer.

Currently under development is the inclusion of the BART[93] toolkit. This
toolkit provides many methods for reconstructing MRI images, including some
for parallel imaging and compressed sensing. The main problem is correctly
cross-compiling the fortran code to WebAssemply, which is not yet supported
by the compiler.
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CBCT Calibration

Chapters 5 and 6 describe CBCT calibration algorithms. Further development
should focus on speed. In their current implementation, these algorithms work,
but are only usable in research settings where a few hours of runtime is ac-
ceptable. For real word usage, the runtime has to be much shorter.

Another possible research direction is accuracy. In this aspect, it does not
reach the same performance as the CMA-ES minimizer. But this increased
accuracy should not be accompanied by a large increase of the runtime.

The parameter estimator FORCASTEST needs some more fine-tuning to
remove the last few wrongly calibrated projections.

Besides calibrating the trajectory, there is also the task of finding a tra-
jectory. A good trajectory would be one, that reduces the radiation, reduces
artifacts within the important area and is fast. More conditions could be
included, limits to radiation for certain structures, limits to the C-Arm move-
ment, continuous acquisition, .... This is a very complex, multidimensional
optimization process. Research into this also needs to consider the runtime of
the system and the usability for physicians during an intervention. Especially
important is the user interface, since all the conditions are dependent, and
improving one will decrease others.
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