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Abstract
Given a hyperbolic surface with boundary, arc coordinates provide a parametriza-
tion of the Teichmüller space. They rely on the choice of a family of arcs which
start and end at boundary components and are orthogonal to them. Higher
rank Teichmüller theories are a generalization of classical Teichmüller theory
and are concerned with the study of representations of the fundamental group
of an oriented surface Σ of negative Euler characteristic into simple real Lie
groups G of higher rank. It is well known that maximal representations are a
higher rank Teichmüller theory for G Hermitian. In this thesis we will discuss
how to generalize arc coordinates for maximal representations, focusing on the
case where Σ is a pair of pants Σ0,3 and G “ PSpp4,Rq. This will be possible
by introducing geometric parameters on the space of right-angled hexagons in
the Siegel space X , which lead to the visualization of a right-angled hexagon
as a polygonal chain inside H2. We discuss geometric properties of reflections
in X and introduce the notion of maximal representations of a reflection group
W3 “ Z{2Z ˚ Z{2Z ˚ Z{2Z. We give a parametrization of maximal representa-
tions of W3 into PSp˘

p4,Rq, which allows us to parametrize a subset of maximal
and Shilov hyperbolic representations into PSpp4,Rq.





Zusammenfassung
Bei einer hyperbolischen Fläche mit Rand liefern so genannte Bogenkoordi-
naten eine Parametrisierung des Teichmüller-Raums. Sie hängen von der Wahl
einer Familie von Kurven ab, die an Randkomponenten beginnen und enden
und orthogonal zu diesen sind. Höherrangige Teichmüller-Theorien sind eine
Verallgemeinerung der klassischen Teichmüller-Theorie und befassen sich mit
Darstellungen der Fundamentalgruppe einer orientierten Fläche Σ mit nega-
tiver Euler-Charakteristik in einfache reelle Lie-Gruppen G höheren Rangs. Es
ist bekannt, dass Maximaldarstellungen eine höherrangige Teichmüller-Theorie
für G Hermitesch sind. In dieser Arbeit beschäftigen wir uns mit der Frage,
wie Bogenkoordinaten für maximale Darstellungen verallgemeinert werden kön-
nen, wobei wir uns auf den Fall konzentrieren, in dem Σ die Fläche Σ0,3 ist
und G “ PSpp4,Rq. Dies wird durch die Einführung geometrischer Parame-
ter auf dem Raum rechtwinkliger Sechsecke im Siegel-Raum X möglich, die zu
einer Visualisierung eines rechtwinkligen Sechsecks als Polygonzug innerhalb von
H2 führen. Wir diskutieren geometrische Eeigenschaften von Spiegelungen in
X und führen den Begriff der maximalen Darstellung einer Spiegelungsgruppe
W3 “ Z{2Z ˚ Z{2Z ˚ Z{2Z ein. Wir geben eine Parametrisierung maximaler
Darstellungen von W3 in PSp˘

p4,Rq. Das ermöglicht uns, eine Teilmenge max-
imaler und Shilov-hyperbolischer Darstellungen in PSpp4,Rq zu parametrisieren.
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1 Introduction

1.1 The space of maximal representations
Given Σ a closed oriented surface of negative Euler characteristic and funda-
mental group Γ, the Teichmüller space T pΣq is the parameter space of marked
hyperbolic structures on Σ. It is well known that, with the introduction of the
holonomy map, one can associate to a point in T pΣq a discrete and faithful
representation ρ : Γ Ñ PSLp2,Rq so that the surface Σ is realized by the quo-
tient Σ “ ρpΓqzH2. This representation is well defined up to conjugation by
an element in PSLp2,Rq so that the space T pΣq can be identified with a con-
nected component of the representation variety HompΓ,PSLp2,Rqq{PSLp2,Rq

which consists entirely of discrete and faithful representations [Gol80].
This phenomenon of the representation variety to admit components con-

sisting only of injective homomorphisms with discrete image is still true if we
substitute PSLp2,Rq with a semisimple real Lie group of higher rank G. In
this sense higher rank Teichmüller space was developed as a generalization of
classical Teichmüller space (see [BIW14], [Wie18], [Poz19] for an introduction
to higher Teichmüller theory). More precisely given G a semisimple real Lie
group of higher rank, a higher Teichmüller space is a subset of HompΓ, Gq{G
which is a union of connected components that consist entirely of discrete and
faithful representations. To such a representation ρ we can associate the quo-
tient ρpΓqzX where X is the symmetric space associated to G. The space X is
a non-positively curved Riemannian symmetric manifold of higher rank, where
rank denotes the maximal dimension of an isometrically embedded flat inside
X . The quotient ρpΓqzX is a locally symmetric space whose fundamental group
is isomorphic to the fundamental group of Σ.

There are two well-known families of higher Teichmüller spaces: Hitchin com-
ponents and maximal representations. Hitchin components are defined when
G is a split real simple Lie group such as PSLpn,Rq or PSpp2n,Rq. Max-
imal representations are defined when G is a Hermitian Lie group such as
PSpp2n,Rq. Coherently, when G “ PSLp2,Rq both Hitchin components and
the space of maximal representations coincide with the Teichmüller space T pΣq.
Moreover, the only family of split simple Lie groups of Hermitian type is given
by PSpp2n,Rq and in this case Hitchin representations are maximal, but not
vice-versa [BILW05].

More precisely, Hitchin [Hit92] initiated the study of the connected com-
ponent in HompΓ, Gq{G of the composition τ ˝ ρ where ρ : Γ Ñ PSLp2,Rq

is the holonomy of a hyperbolization and τ is the irreducible representation
τ : PSLp2,Rq Ñ PSLpn,Rq . In general any split real simple Lie group G con-
tains an embedding τ : PSLp2,Rq Ñ G which is unique up to conjugation, and
if G “ PSLp2,Rq this is the irreducible representation. The Hitchin component
is then defined as the connected component of rτ ˝ ρs P HompΓ, Gq{G, where
ρ : Γ Ñ PSLp2,Rq is the holonomy of a hyperbolization. Hitchin showed, using
the theory of Higgs bundles, that the Hitchin component is homeomorphic to
the Euclidean space of dimension dimpGqp2g ´ 2q, where g denotes the genus
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of Σ. Using techniques of dynamical systems Labourie [Lab06] showed that
representations in the Hitchin component are discrete and faithful. An indipen-
dent approach to Hitchin components was developed by Fock and Goncharov
[FG06], who showed that representations in any Hitchin component are discrete
and faithful.

In this thesis we are interested in maximal representations. These are sin-
gled out by the Toledo number, which is a generalization of the Euler number
and was first introduced by Toledo for representations ρ : Γ Ñ PUp1, nq [Tol89].
In [Gol88] Goldman showed that the Euler number distinguishes the connected
components of HompΓ,PSLp2,Rqq{PSLp2,Rq and that Teichmüller space corre-
sponds to the connected component formed by representations with the maxi-
mal value of the Euler number. Burger Iozzi and Wienhard [BILW05], [BIW10]
studied the Toledo invariant for general Hermitian Lie groups. A group G is
Hermitian if the symmetric space X associated to G admits a G-invariant com-
plex structure. An equivalent definition is that X is a Hermitian manifold such
that every point x P X is the isolated fixed point of an isometric involution sx.
Symmetric spaces which are Hermitian admit a Kähler form ωX on X which
allows to associate to every representation ρ : Γ Ñ G a characteristic number,
that is the Toledo number Tρ. The Toledo number is constant on connected
components of HompΓ, Gq and satisfies a Milnor–Wood type inequality

|Tρ| ď χpΣqrkX (1)

where rkX is the real rank of X . Maximal representations are the ones for which
equality holds in (1).

With these tools Burger Iozzi and Wienhard proved that maximal repre-
sentations are higher rank Teichmüller spaces. Moreover, they provided an
equivalent characterization of maximal representations through the existence of
a "well-behaved" boundary map ξ. This is a generalization of a phenomenon in
classical Teichmüller space: a representation ρ : Γ Ñ PSLp2,Rq is the holonomy
of a hyperbolization if and only if there exists a continuous monotone equivariant
map ξ : S1 Ñ B8H2, where B8H2 is a homogeneous PSLp2,Rq-space isomor-
phic to S1. A crucial difference when considering a general Hermitian group
G and the correspondent symmetric space of higher rank X is that the visual
boundary B8X is not a homogeneous G-space and stratifies in orbits isomor-
phic to partial flag varieties [Ebe96]. These are compact G-homogeneous spaces
G{P determined by the choice of a parabolic subgroup P . When considering
boundary maps, it is thus natural to consider, instead of maps ξ : S1 Ñ B8X ,
maps of the form ξP : S1 Ñ G{P for a suitable choice of a parabolic subgroup
P . In the case of a Hermitian Lie group the parabolic subgroup is the stabiliser
of a point in the Shilov boundary qS of the Hermitian symmetric space (this is
the set of Lagrangians in the case of G “ PSpp2n,Rq). The Maslov cocycle
induces a partial cyclic order on qS and maximal representations Hommax

pΓ, Gq

can be characterised as those representations admitting a monotone equivariant
boundary map, namely a map ξ : S1 Ñ qS such that for every positively oriented
triple px, y, zq P pS1q3 the image pξpxq, ξpyq, ξpzqq is Maslov-positively oriented
[BIW10].
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A common framework explaining the various higher rank Teichmüller the-
ories was introduced by Guichard and Wienhard [GW18], [GW22], [GLW21]
through the notion of Θ-positivity. Hitichin components and maximal represen-
tations admit a common characterization in terms of positive structures of flag
varieties. For Hitchin components they consider full flag varieties and Lusztig’s
total positivity [Lus94]. For maximal representations the flag variety is the
Shilov boundary of the symmetric space of G and positivity is given by the afore-
mentioned Maslov cocycle. The theory of Θ-positivity generalizes Lusztig’s total
positivity to a larger class of simple Lie groups (e.g. SOpp, qq, p ‰ q). Guichard
Labourie and Wienhard conjecture that Θ-positive representations also form
higher rank Teichmüller spaces. The conjecture has, by now, been proven for
the most part in [GLW21] and [BP21].

Another notion that plays an important role in higher rank Teichmüller the-
ory is the notion of Anosov representations. They were introduced by Labourie
[Lab06] and further investigated by Guichard and Wienhard [GW12]. Anosov
representations are representations of Gromov hyperbolic groups into Lie groups
G with strong dynamical properties, defined using continuous equivariant bound-
ary maps. Many key properties of Hitichin and maximal representations, such
as being discrete and faithful or admitting ρ-equivariant boundary maps
ξ : S1 Ñ G{P with respect to a certain parabolic subgroup P , follow from
them being Anosov representations. We refer to [Kas18] for a definition and a
description of geometric and dynamical properties of Anosov representations.

Till now we have assumed Σ to be a closed surface. There is a related theory
for surfaces with punctures or boundary components. The first thing to notice is
that when BΣ ‰ ∅ then Γ is a free group and the whole representation variety is
connected. Denote Σ “ Σg,m a surface of genus g and m boundary components
with fundamental group Γg,m. Let

Γg,m “ xa1, b1, ...ag, bg, c1, ...cm|

g
ź

i“1

rai, bis
m
ź

j“1

cj “ 1y

be a presentation where the elements ci represent loops which are freely homo-
topic to the corresponding boundary components of BΣ with positive orienta-
tion. Fixing a set C “ tC1, ..., Cmu of conjugacy classes in G one can define the
relative representation variety as the subspace of HompΓg,m, Gq given by

HomC
pΓg,m, Gq “ tρ P HompΓg,m, Gq| ρpciq P Ci, 1 ď i ď mu

The representation variety HompΓg,m, Gq is a disjoint union of all the relative
representation varieties HomC

pΓg,m, Gq over all possible choices for C.
The Toledo number is constant on the connected components of HomC

pΓg,m, Gq

but for many choices of conjugacy classes the intersection
Hommax

pΓg,m, Gq X HomC
pΓg,m, Gq is empty [BILW05]. The topology and the

structure of HomC
pΓg,m, Gq{G has been studied in [BG99], [DT19], [TT21]. See

also [Gol23] for a recent survey.
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A more general boundary condition might be imposed by considering

Hom
qS
pΓg,m, Gq “ tρ P HompΓg,m, Gq | ρpciq has at least

one fixed point in qS, 1 ď i ď mu
(2)

where qS denotes the Shilov boundary. This is a union of relative character
varieties and in this case Hommax

pΓg,m, Gq Ă Hom
qS
pΓg,m, Gq. In particular

Hommax
pΓg,m, Gq is a union of connected components of the set Hom

qS
pΓg,m, Gq

[BILW05, Corollary 14].
In this thesis we are interested in maximal representations inside (2) that

satisfy a further condition: we will fix a union of conjugacy classes by imposing
in (2) that every ρpciq fixes exactly two points in qS on which it acts expandingly
(resp. contractingly). This is equivalent for the representation to be Anosov
in the sense of [GW12]. We denote this space Hommax,Shilov

pΓg,m, Gq. The
definition for the case G “ PSpp2n,Rq is given in 7.6. In particular we will study
how to generalize arc coordinates for Hommax,Shilov

pΓ0,3,PSpp4,Rqq{PSpp4,Rq.
This will be made more clear in the next section.

1.2 The results
Let Σ be an oriented surface of negative Euler characteristic and fundamental
group Γ. In this thesis we are interested in the case where BΣ ‰ ∅.

Parametrizations are a very useful tool to construct examples of represen-
tations in higher rank Teichmüller spaces. Several coordinates have been intro-
duced on the space of maximal representations. These often arise as a general-
ization of well known coordinates on the classical Teichmüller space T pΣq, such
as Fenchel–Nielsen coordinates and shear coordinates.

In classical Teichmüller theory Fenchel-Nielsen coordinates are obtained by
decomposing the surface in pairs of pants through the choice of a maximal col-
lection of pairwise disjoint simple closed curves. The parametrization of T pΣq is
obtained by recording the length of the curves together with a gluing-parameter
which records how much twist is involved in the gluing (see for example [Mar16]).
Analogues of Fenchel–Nielsen coordinates on the space of maximal representa-
tions were developed by Strubel [Str15].

On the other hand, the construction of shear coordinates on the Teichmüller
space of a hyperbolic surface Σ with at least one hole depends on the choice of
a triangulation of Σ [Thu22]. Analogues of shear coordinates on the space of
maximal representations were developed by Alessandrini Guichard Rogozinnikov
and Wienhard [AGRW19].

Other examples of parametrizations of higher Teichmüller spaces are the
work of [BD17] generalizing shearing coordinates on the Hitchin component in
PSLpn,Rq and its generalizations [MMMZ23], [Pfe22].

In this thesis we are interested in arc coordinates. In classical Teichmüller
theory arc coordinates were introduced by Harer [Har86] who defined a complex
of arcs on a surface with punctures and boundary components. This arc system
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allowed him to define a cell complex onto which T pΣq may be Γ-equivariantly
retracted. These coordinates were developed by Penner [Pen87] to decompose
decorated Teichmüller space of punctured surface. This decomposition was gen-
eralized by [Ush99] [Pen02] for surfaces with boundary. Similar coordinates were
used in [Luo07] [Guo09] to show that the Teichmüller space is an open convex
polytope and by [Mon09] to express the Weil-Petersson Poisson structure on
T pΣq for a surface with geodesic boundary.

In this thesis we want to generalize arc coordinates to the space of maxi-
mal representations. We will consider the case where Σ “ Σg,m is a compact
orientable smooth surface of genus g and m boundary components. We denote
Γg,m the fundamental group π1pΣg,mq, which is isomorphic to the free group
F2g`m´1. An element γ P Γg,m is called peripheral if it is represented by a loop
that is freely homotopic into a boundary component of Σg,m. We can equip Σg,m

with a complete hyperbolic structure of finite volume with geodesic boundary.
The universal covering rΣg,m of Σg,m is a closed subset of the hyperbolic plane
H2 where boundary curves are geodesics.

Arc coordinates are obtained by decomposing the surface in hexagons through
the choice of a maximal collection ta1, ..., aku of pairwise disjoint arcs with start-
ing and ending point on a boundary component which are essential and pairwise
non-homotopic. For every hexagon in this decomposition there are exactly three
alternating edges belonging to BΣg,m. We denote by E the set of all edges and by
Ebdry the set of edges lying on a boundary component. For a fixed hyperbolic
structure we can always realize the hexagon decomposition of Σg,m in a way
such that every edge is a geodesic and every arc is the unique geodesic which is
orthogonal to the boundary at both endpoints. For each choice of ta1, ..., aku we
get a parametrization of the Teichmüller space T pΣg,mq: once we fix the lengths
lpa1q, ..., lpakq there is a unique hyperbolic metric that makes Σg,mz

Ť

i ai a union
of hyperbolic right-angled hexagons where each hexagon has exactly three al-
ternating edges ai1 , ai2 , ai3 in EzEbdry of length lpai1q, lpai2q, lpai3q respectively,
where i1, i2, i3 P t1, ..., ku. This is due to the well known fact that given three
real numbers b, c, d ą 0 there exists (up to isometries) a unique right-angled
hexagon in H2 with alternating sides of lengths b, c and d (see for example
[Mar16, Lemma 6.2.2]).

A point in the Teichmüller space T pΣg,mq is identified with a maximal repre-
sentation ρ : Γg,m Ñ PSLp2,Rq. Since we are considering surfaces with geodesic
boundary, the image ρpγq of every element γ P Γg,m is a hyperbolic isometry
fixing exactly two points in BH2. The above discussion asserts that once we
fix the lengths lpa1q, ..., lpakq we can explicitly write (up to conjugation) the
maximal representation ρ such that Σg,m “ ρpΓg,mqzH2. An example for the
surface Σ0,3 (pair of pants) is given in Figure 1, where the fundamental group
Γ0,3 is the free group generated by α and β.

More generally, given a maximal representation ρ : Γg,m Ñ PSpp2n,Rq,
the image ρpγq of every non-peripheral element γ P Γg,m is Shilov hyperbolic
(see [Str15]). Equivalently, ρpγq fixes two transverse Lagrangians l`γ and l´γ on
which it acts expandingly and contractingly respectively. These Lagrangians
are the images ξpγ`q and ξpγ´q where ξ : S1 Ñ LpR2nq is the equivariant
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α

β

ρpα)

ρpβ)

H2

Figure 1: The maximal representation
ρ : Γ0,3 Ñ PSLp2,Rq

boundary map and l˘γ “ ξpγ˘q. We want to parametrize the set of maximal
representations where the property of being Shilov hyperbolic is true also for
peripheral elements.

Definition. (see 7.6) A maximal representation ρ : π1pΣq Ñ PSpp2n,Rq will
be called Shilov hyperbolic if ρpγq is Shilov hyperbolic for every γ P π1pΣq. The
set of maximal representations which are Shilov hyperbolic will be denoted by
Hommax,Shilov

pπ1pΣq,PSpp2n,Rqq. We define χmax,Shilovpπ1pΣq,PSpp2n,Rqq as
the quotient

χmax,Shilovpπ1pΣq,PSpp2n,Rqq :“ Hommax,Shilov
pπ1pΣq,PSpp2n,Rqq{PSpp2n,Rq

where PSpp2n,Rq is acting by conjugation: ρ „ ρ1 if there exists g P PSpp2n,Rq

such that ρpγq “ gρ1pγqg´1 for all γ P π1pΣq.

The standard example that we will consider is the surface Σ0,3 (pair of pants),
where Γ0,3 – F2 “ xα, βy. We study in detail how to generalize arc coordinates
for the space χmax,ShilovpΓ0,3,PSpp4,Rqq. To do this we consider the Siegel space
X , the symmetric space associated to Spp4,Rq. We fix the Weyl chamber a`

a`
“ tpx1, x2q P R2| x1 ě x2 ě 0u

and the set of regular vectors inside a` will be denoted by a

a “ tpx1, x2q P R2| x1 ą x2 ą 0u
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We further denote by d the set

d “ tpx1, x2q P R2| x1 “ x2u

The first step is to introduce a parameter space for a right-angled hexagon in
X . The subspaces of the Siegel space that play the role of geodesics in H2 are
called R-tubes (see Definition 2.12). In Section 4.1 we give the definition of
a right-angled hexagon H in X , which is determined by a cyclic sequence of
R-tubes

H “ rY1,Y2,Y3,Y4,Y5,Y6s

where any two consecutive tubes are orthogonal. We further define the set of
ordered right-angled hexagons H (Definition 4.3). This is the data pH,Y1q of
a right-angled hexagon together with the choice of a tube Y1. We distinguish
between generic (Definition 4.6) and non-generic hexagons (Section 4.2). A
generic hexagon will be parametrized by length parameters b, c, d inside a and
angle parameters α1, α2 lying in r0, 2πq (Proposition 4.15). In the non-generic
case some length parameters will lie in d and some angle parameters will vanish
(Propositions 4.20, 4.21 and 4.22). This leads to a geometric visualization of a
right-angled hexagon inside X in terms of a polygonal chain. This is obtained
by projecting boundary points to the standard tube Y0,8 which is isometric to
R ˆ H2 (Lemma 2.28). This is explained in Section 4.4 and is illustrated in
Figure 2 below.

Figure 2: Geometrical interpretation of a hexagon in
terms of a polygonal chain in the case of a generic

and a non-generic hexagon.

A parameter space which encloses both generic and non-generic hexagons is
given by

Theorem. (see 4.26) The space H is parametrized up to isometry by

A “ a3 ˆ r0, 2πq ˆ r0, 2πq{„

7



The equivalence relation collapses one of the angles to a point in the case
where the hexagon degenerates to a non-generic one.

These parameters were firstly introduced with the aim of generalizing ([Mar16,
Lemma 6.2.2]). This approach turned out to be very tricky and this is explained
in detail in Chapter 5.

Geometric parameters for maximal representations should be thought as the
data of lengths and angles which uniquely determine two adjacent hexagons both
having three alternating sides of length b, c and d respectively. The maximal
representation is then determined by determining the image of the generators
of the fundamental group generalizing the geometric construction of Figure 1.
The problem is that when extending our hexagon-parameters for two adjacent
hexagons we can not guarantee that the constructed hexagons have the same
alternating side-lengths. We will therefore construct two adjacent hexagons
starting with one hexagon H and obtaining the others by reflecting H across a
side (Figure 3). A precise definition of a reflection in the Siegel space X together
with interesting geometric properties is given in Chapter 6.

R2pHq

H
ρpaq

ρpβq

R3pHq

R1pHq

Figure 3: The maximal representation
ρ : Γ0,3 Ñ PSpp4,Rq
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This will lead to the parametrization of a subset

χS Ă χmax,ShilovpΓ0,3,PSpp4,Rqq

The idea is to see the fundamental group Γ0,3 as a subgroup of the Coxeter
group

W3 “ Z{2Z ˚ Z{2Z ˚ Z{2Z “ xs1, s2, s3| s21 “ s22 “ s23 “ 1y

through the following homomorphism ϕ

ϕ : Γ0,3 Ñ W3

α ÞÑ s1s2

β ÞÑ s2s3

We will define the notion of maximal representation of the reflection group
W3 into PSp˘

p2n,Rq, where PSp˘
p2n,Rq denotes the union of symplectic and

antisymplectic matrices (Definition 6.9). Other interesting works introducing
maximal representations for orbifold groups are developed in [AC19] [ALS23].

X2

Q1

P2

X1

Z2

P1
R2

Z1

Y2

R1

Q2

Y1

ρps1q

ρps2q

ρps3q

Figure 4: The reflections ρps1q, ρps2q, ρps3q for
ρ :W3 Ñ PSp˘

p2n,Rq maximal

Definition. (see 7.8) A representation

ρ :W3 Ñ PSp˘
p2n,Rq

is maximal if there exists a maximal 6-tuple of Lagrangians pP1, P2, Q1, Q2, R1, R2q

such that ρps1q, ρps2q, ρps3q are reflections of X fixing pP1, P2q, pQ1, Q2q, pR1, R2q
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respectively and such that
$

’

&

’

%

ρps1qpX1q “ X2 and ρps1qpZ1q “ Z2

ρps2qpX1q “ X2 and ρps2qpY1q “ Y2

ρps3qpY1q “ Y2 and ρps3qpZ1q “ Z2

where X1, X2, Y1, Y2, Z1, Z2 are uniquely determined by

YP1,P2
K YX1,X2

K YQ1,Q2
K YY1,Y2

K YR1,R2
K YZ1,Z2

We provide a parametrization of the set of maximal representations of the
reflection group W3 in the case of PSp˘

p4,Rq.

Theorem. (see 7.21) The set χmaxpW3,PSp
˘

p4,Rqq “ Hommax
pW3,PSp

˘
p4,Rqq{PSpp4,Rq

is parametrized by the parameter space S:

S Ă A ˆ K3

where A is the parameter space of a right-angled hexagon and K is the set

K “

!

ˆ

´K 0
0 K

˙

, K P POp2q, K2 “ Id
)

In Section 6.4 we give a geometrical interpretation of the set K in terms
of the polygonal chain associated to a right-angled hexagon. We prove that
the restriction to Γ0,3 of such a maximal representation is maximal and Shilov
hyperbolic.

Proposition. (see 7.18) Fix rρ P Hommax
pW3,PSp

˘
p4,Rqq. Then the represen-

tation ρ :“ rρ|Impϕq is inside Hommax,Shilov
pΓ0,3,PSpp4,Rqq.

This allows us to define χS (Definition 7.19) as the image χS :“ Impfq

where f is the map

f : χmaxpW3,PSp
˘

p4,Rqq Ñ χmax,ShilovpΓ0,3,PSpp4,Rqq
“

rρ
‰

ÞÑ
“

rρ|Impϕq

‰

This leads to a parametrizatin of χmax,ShilovpΓ0,3,PSp
˘

p4,Rqq by imposing
an equivalent relation on S which identifies the points that have same image
under f .

Theorem. (see 7.23) The set χS is parametrized by S{„

In Corollary 7.24 we show that, contrary to the hyperbolic case (Proposition
7.16), the map f is not injective nor surjective.

A motivation for this work is to study compactification of character vari-
eties where similar arguments can be carried out with non-Archimedean Siegel
spaces as in [BP17]. We expect applications of this work in the study of the
real spectrum compactification of maximal character varieties (see [BIPP21a],
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[BIPP23]) Of particular interest are rank two groups where [BIPP21b] and
[OT23b] [OT23a] suggest a link with flat structures with angle multiple of π

2 .
Developing arc coordinates for those would be interesting.

Finally, the parameter space of χS was implemented on a Python program
which constructs the generators of a maximal representation into PSpp4,Rq.
The most important functions appearing in the program are shown in Chapter
8.

The last chapter investigates other methods for the generalization of arc
coordindates to maximal representations and is a joint work with Eugen Ro-
gozinnikov.

1.3 Organization of the work
In Chapter 2 we discuss properties of the geometry of the Siegel space X - the
symmetric space associated to Spp2n,Rq. We cover the basic definitions and
study in detail the geometry of R-tubes in the case of Spp4,Rq.

In Chapter 3 we define the set of generic quintuples and give a parameter
space for them (Proposition 3.7). These parameters will be very useful for the
parametrization of right-angled hexagons.

Chapter 4 is dedicated to the study of hexagons. We define the set of or-
dered right-angled hexagons (Definition 4.3) and distinguish between generic
(Definition 4.6) and non-generic hexagons (Section 4.2). We introduce a param-
eter space for both cases (Proposition 4.15 for the generic case and Propositions
4.20, 4.21 and 4.22 for the non-generic case). A parameter space which encloses
both generic and non-generic hexagons is given in Theorem 4.26. These param-
eters will be called arc coordinates. Note that this term could be misleading as
we have used it also for the parametrization of classical Teichmüller space and
for its generalization in the case of maximal representations. Nevertheless, we
have decided to keep this name also for the parameters of a hexagon as they are
crucial for the construction of parameters for maximal representations and will
appear in their parameter space (Theorem 7.23).

In Chapter 5 we show how arc coordinates arise from the idea of generalizing
coordinates of a hexagon in H2 and explain the problems encountered in this
approach.

In Chapter 6 we discuss properties of reflections in H2 and their analogues
in the Siegel space X . We define the reflection set associated to the side of a
hexagon (Definition 6.20) and give a geometric interpretation of it (Section 6.4).

In Chapter 7 we discuss geometric properties of Shilov hyperbolic isometries
and we define the set χmax,Shilovpπ1pΣq,PSpp2n,Rqq. We further define the
notion of a maximal representation from the Coxeter group
W3 “ Z{2Z ˚ Z{2Z ˚ Z{2Z into PSp˘

p2n,Rq (Definition 7.8) and provide a
parameter space for the PSp˘

p4,Rq-case (Theorem 7.21). We further define the
set χS Ă χmax,ShilovpΓ0,3,PSpp4,Rqq (Definition 7.19) to which we provide a
parameter space (Theorem 7.23).

In Chapter 8 we list and explain the functions of a Python program which
implements the proof of Theorem 7.23, that is it constructs the generators of a

11



ρ P χS for a given point in its parameter space.
In Chapter 9 we discuss other approaches to parametrize right-angled hexagons

in X . This chapter is a joint work with Eugen Rogozinnikov. We discuss the
problems that arise when extending these parameters to maximal representa-
tions.
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2 The Siegel space

2.1 Definition and models
The Siegel space X is the symmetric space associated to the symplectic group
Spp2n,Rq. Standard references for the theory of symmetric spaces are for ex-
ample [Hel79], [Ebe96], [Mau04], [Boo86]. Recall that the symplectic group

Spp2n,Rq “ tM P SLp2n,Rq | MTJnM “ Jnu

is the subgroup of SLp2n,Rq preserving the symplectic form ωp¨, ¨q represented,
with respect to the standard basis, by the matrix

Jn “

ˆ

0 Idn
´Idn 0

˙

The group Spp2n,Rq can also be described as the group of block matrices:

Spp2n,Rq “

!

ˆ

A B
C D

˙

| ATC,BTD symmetric, and ATD ´ CTB “ Idn

)

If n “ 1 the group Spp2n,Rq coincides with SLp2,Rq. There are two models com-
monly used for the Siegel space: the upper-half space and the Borel embedding
model.

1. The upper-half space model is a generalization of the upper-half space
model of the hyperbolic plane and is given by a specific set of symmetric
matrices:

X “ tX ` iY, X P Sympn,Rq, Y P Sym`
pn,Rqu

where Sympn,Rq denotes the set of n-dimensional symmetric matrices
with coefficients in R and Sym`

pn,Rq is the subset of Sympn,Rq given by
positive definite matrices. The group Spp2n,Rq acts on X by fractional
linear transformations:

ˆ

A B
C D

˙

¨ Z “ pAZ `BqpCZ `Dq´1

This action is transitive and the stabilizer of the point iIdn P X is isomor-
phic to the group Upnq.

2. The Borel embedding model is given by

X “ tl P LpC2nq| iωpσp¨q, ¨qC|lˆl is positive definiteu

where LpC2nq is the set of Lagrangians and σ : C2n Ñ C2n denotes com-
plex conjugation.
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An Spp2n,Rq-equivariant identification X ÞÑ X is induced by the affine chart

ι : Sympn,Cq Ñ LpC2nq

that associates to a symmetric matrix Z the linear subspace of C2n spanned

by the columns of the matrix
ˆ

Z
Idn

˙

2nˆn

, where it is easy to show that the

symmetry of Z implies ιpZq P LpC2n.
For the inverse of ι observe that for any l P LpC2nq we can always write l as

l “ x

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

z11
...
zn1
1
0
...
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, ...,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

z1n
...
znn
0
...
0
1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y “ xv1, ..., vny

where zji P C. Then for l to be a Lagrangian it must hold ωpvi, vjq “ 0, that is

ωpvi, vjq “ ´zij ` zji “ 0

so that l is a subspace of C2n spanned by the columns of the matrix
ˆ

Z
Idn

˙

where Z P Sympn,Cq. The restriction of the affine chart ι to the subspace
Sympn,Rq provides a parametrization of the set of real Lagrangians that are
transverse as linear subspaces to xe1, ..., eny, which will be denoted by l8 or just
8.

Remark 2.1. We have seen that the group Spp2n,Rq acts on X by fractional

linear transformations. Given M “

ˆ

A B
C D

˙

P Spp2n,Rq and Z P X it holds

M ¨ Z “ pAZ `BqpCZ `Dq´1 “ p´Mq ¨ Z

When studying actions on X it makes therefore sense to consider M and ´M
to be the same element inside Spp2n,Rq. This means considering the group

PSpp2n,Rq “ Spp2n,Rq{t˘Idu

2.2 Boundary and Lagrangians
The set of real Lagrangians LpR2nq naturally arises as the unique closed Spp2n,Rq-
orbit in the boundary of X in its Borel embedding and for this reason LpR2nq

is the Shilov boundary of the bounded domain realization of X (see [Wie04]).
Denote by LpR2nqpkq the set of k-tuples of pairwise transverse Lagrangians.
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It is easy to prove that the group Spp2n,Rq acts transitively on LpR2nqp2q.
Moreover, it has pn ` 1q orbits in LpR2nqp3q, indexed by the Maslov index: let
pl1, l2, l3q P LpR2nqp3q and denote by l3 the unique linear map

l3 : l1 Ñ l2

u ÞÑ v| u` v P l3

Using the symplectic form ω we can define the bilinear form β on l1 as
following

βpu1, u2q :“ ωpu1, l3pu2qq

Definition 2.2. The bilinear form β defined as above is called the Maslov form.

The Maslov form is symmetric and nondegenerate (see for example [Sou05]).
We denote the signature of β by

sgnpβq “ p´ q

where p is the dimension of a maximal subspace of l1 on which β is positive
definite and q is the dimension of a maximal subspace of l1 on which β is
negative definite.

Definition 2.3. The Maslov index of the triple pl1, l2, l3q is the signature of the
associated Maslov form β and is denoted by µnpl1, l2, l3q.

The Maslov index is cyclically invariant, is invariant under the action of
Spp2n,Rq on LpR2nqp3q and the group Spp2n,Rq acts transitively on the set of
triples of pairwise transverse Lagrangians with the same Maslov index [LV80].

The value of the Maslov index is maximal on the orbit of

pxe1, ..., eny, xen`1, ..., e2ny, xe1 ` en`1, ..., en ` e2nyq “ pl8, 0, Idq

It is minimal on the orbit of pl8, Id, 0q and is zero on the orbit of pl8, 0,

ˆ

1 0
0 ´1

˙

q.

Definition 2.4. (Maximal triple and maximal m-tuple) A triple of pair-
wise transverse Lagrangians is called maximal if it is in the Spp2n,Rq-orbit of
pl8, 0, Idq. An m-tuple pl1, ..., lmq is maximal if for every i ă j ă k the triple
pli, lj , lkq is maximal.

Maximal triples are a generalization of positively oriented triples in the circle
S1 “ BH2 and they play a central role in the study of maximal representations.
It is useful to have a concrete criterion to check when triples of Lagrangian are
maximal. The following Lemma can be found for example in [BP17, Lemma
2.10].

Lemma 2.5. The following hold:
(1) Any cyclic permutation of a maximal triple is maximal;
(2) The triple pl8, X, Y q is maximal if and only if Y ´X is positive definite;
(3) If Z ´ X is positive definite, the triple pX,Y, Zq is maximal if and only if
Z ´ Y and Y ´X are positive definite.
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From a given maximal m-tuple we can obtain a maximal pm ` kq-tuple by
adding a maximal k-tuple between two consecutive Lagrangians. More precisely:

Lemma 2.6. Let pP1, ..., Pmq be a maximal m-tuple. For i P t1, ...,m´ 1u and
k ě 1 let pPi, Q1, ..., Qk, Pi`1q be maximal. Then the pm` kq-tuple
pP1, ..., Pi, Q1, ..., Qk, Pi`1, ..., Pmq is maximal.

Proof. Up to isometry we reduce to the case where P1 “ 0, Pm “ l8, that is we
consider the pm`kq-tuple p0, P2, ...Pi, Q1, ..., Qk, Pi`1, ..., l8q where p0, P2, ..., Pm´1, l8q

maximal and pPi, Q1, ..., Qk, Pi`1q maximal. Using Lemma 2.5 result follows im-
mediately.

2.3 Spp2n,Rq-invariant distances
We introduce a Spp2n,Rq-invariant distance on the symmetric space X . Fix
a point p in a maximal flat F and a Weyl chamber a`

Ă TpF . This is a
fundamental domain for the action of Spp2n,Rq on the tangent bundle TX . In
our case we have

a`
“ tpx1, ..., xnq P Rn| x1 ě ... ě xn ě 0u

A vector in the Weyl chamber is regular if all the inequalities are strict,
which is equivalent to being contained in a unique flat. The set of regular
vectors inside a` will be denoted by a

a “ tpx1, ..., xnq P Rn|x1 ą ... ą xn ą 0u

We will further denote by d the following set

d “ tpx1, ..., xnq P Rn|x1 “ ... “ xnu

In order to define a vectorial Spp2n,Rq-invariant distance in X we need
to recall from [BP17] the definition of an endomorphism-valued cross-ratio. If
l1, l2 P LpR2nq are transverse (denoted by l1&l2), we denote by p||l2

l1
: R2n Ñ l1

the projection to l1 parallel to l2.

Definition 2.7. (Cross-ratio) For Lagrangians l1, ..., l4 P LpC2nq such that
l1&l2 and l3&l4 the cross-ratio Rpl1, l2, l3, l4q is given in the Borel embedding
model by the endomorphism of l1

Rpl1, l2, l3, l4q “ p
||l2
l1

˝ p
||l3
l4

|l1

In the upper half space model the explicit expression for the cross-ratio is
given by ([BP17, Lemma 4.2]):

RpX1, X2, X3, X4q “ pX1 ´X2q´1pX4 ´X2qpX4 ´X3q´1pX1 ´X3q

where R is expressed with respect to the basis of X1 given by the columns

of the matrix
ˆ

X1

Idn

˙

.

The following lemma can be found in [BP17, Lemma 4.3]:
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Lemma 2.8. Assume 0, Z,X, l8 are pairwise transverse. Then

Rp0, Z,X, l8q “ Z´1X

We can now define the vectorial distance da
`

. The fact that the cross-ratio
can be used to describe the projection of a pair of points in X onto the Weyl
chamber was proved by Siegel in [Sie43].

Definition 2.9. The vectorial distance da
`

is the projection onto the Weyl
chamber a`:

X 2 Ñ a`

pX,Zq ÞÑ plogpλ1q, ..., logpλnqq

where λi “
1`

?
ri

1´
?
ri

and 1 ą r1 ě ... ě rn ě 0 are the eigenvalues of
RpX,Z,Z,Xq

For interesting properties about the distance da
`

see [Par10],[KLP17]. For
other interesting Spp2n,Rq-invariant distances such as the Finsler distance see
[FP20]. The following lemma can be found in [FP20, Lemma 2.14]:

Lemma 2.10. Let A and B be positive definite symmetric matrices such that
the difference B ´A is positive definite. Let µ1 ě ... ě µn be the eigenvalues of
A´1B. Then

da
`

piA, iBq “ plogµ1, ..., logµnq

2.4 Copies of H2 inside the Siegel space X
Definition 2.11. Let X be the symmetric space associated to Spp2n,Rq. A
maximal polydisc in X is the image of a totally geodesic and holomorphic em-
bedding of the Cartesian product of n copies of H2 into X .

We will be interested in the symmetric space X associated to Spp4,Rq. In
this case an example of a maximal polydisc is the image of the following map
ψ:

ψ : H2 ˆ H2 Ñ X

pz1, z2q ÞÑ

ˆ

z1 0
0 z2

˙

We will refer to this polydisc as the model polydisc since every other polydisc
is translate of our model polydisc by an element in Spp4,Rq (see [Wol72]). Let
pM1,M2q be an element of SLp2,Rq ˆ SLp2,Rq. Then pM1,M2q acts on the
model polydisk as following:

pM1,M2q ¨

ˆ

z1 0
0 z2

˙

“

ˆ

M1pz1q 0
0 M2pz2q

˙
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where
Mpzq “

ˆ

a b
c d

˙

¨ z “ paz ` bqpcz ` dq´1

is the action on a point z P H2 by Möbius transformation. Let ∆ be the diagonal
embedding given by

∆ : SLp2,Rq ˆ SLp2,Rq Ñ Spp4,Rq

´

ˆ

a1 b1
c1 d1

˙

,

ˆ

a2 b2
c2 d2

˙

¯

ÞÑ

¨

˚

˚

˝

a1 0 b1 0
0 a2 0 b2
c1 0 d1 0
0 c2 0 d2

˛

‹

‹

‚

then we obtain the following commuting diagram

H2 ˆ H2 H2 ˆ H2

X X

ψ

pM1,M2q¨

∆ppM1,M2qq

ψ

In particular the set

ψ
`

pz, zq
˘

“

ˆ

z 0
0 z

˙

Ă X

is a copy of H2 inside X and will be called the diagonal disc.

2.5 R-tubes
The subspaces of the Siegel space that play the role of geodesics in H2 are called
R-tubes. Let ta, bu be an unordered pair of transverse Lagrangians.

Definition 2.12. (R-tube) The R-tube associated to ta, bu is the set

Ya,b “ tl P X | Rpa, l, σplq, bq “ ´Idu

It can be proven (see [BP17]) that Ya,b is a totally geodesic subspace of X of
the same real rank as X and that it is the parallel set of the Riemannian singular
geodesics whose endpoints in the visual boundary of X are the Lagrangians
a and b. The group Spp2n,Rq acts transitively on LpR2nqp2q and for every
g P Spp2n,Rq it holds g ¨ Ya,b “ Yga,gb. Up to the symplectic group action we
can therefore reduce to a model R-tube, the one with endpoints 0 and l8. In
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the upper-half space model this will be called the standard tube and consists of
matrices of the form

Y0,8 “ tiY |Y P Sym`
pn,Rqu

Intersection patterns of R-tubes in the Siegel space reflect the intersection
patterns of geodesics in the hyperbolic plane. This is shown in the following
result, which can be found in [FP20, Proposition 2.16].

Proposition 2.13. If pl1, l2, l3, l4q is maximal, the intersection Yl1,l3 X Yl2,l4

consists of a single point and Yl1,l2 X Yl3,l4 is empty.

Definition 2.14. (Orthogonal R-tubes) Two R-tubes Ya,b and Yc,d are or-
thogonal if they are orthogonal as submanifolds of the symmetric space (where
there is a well defined Spp2n,Rq-invariant scalar product).

Remark 2.15. The orthogonality relation can be expressed as a property of
the cross-ratio of the boundary points: if pa, c, b, dq is maximal, the R-tubes Ya,b

and Yc,d are orthogonal if and only if Rpa, c, b, dq “ 2Id (see [BP17, Definition
4.14]).

Denote by ppa, bqq :“ tl P L| pa, l, bq is maximalu and by

pa,b : X Y ppa, bqq Ñ Ya,b

the orthogonal projection. It will be useful to have concrete expressions
for the orthogonal projection to ppa, bqq when pa, bq “ p0, l8q and for the Weyl
chamber distance between two orthogonally projected points. Recall that we
identify Sympn,Rq with the Lagrangians in LpR2nq that are transverse to l8 via
the restriction of the affine chart ι : Sympn,Cq Ñ LpC2nq. Both of the following
lemmas can be found in [FP20, Lemma 2.24 and 2.25].

Lemma 2.16. For any A P Sym`
pn,Rq the R-tubes YA,´A and Y0,8 are or-

thogonal and their unique intersection point is iA. In particular p0,8pAq “ iA.

Lemma 2.17. If pa, x, y, bq P LpR2nq4 is a maximal 4-tuple and pa,b is the
orthogonal projection onto Ya,b, the distance

da
`

ppa,bpxq, pa,bpyqq “ plogµ1, ..., logµnq

where µi are the eigenvalues of the cross-ratio Rpa, x, y, bq.

2.6 Computing orthogonal tubes
In Chapter 4 we will define right-angled hexagons in the Siegel space X and
introduce a suitable parameter space for them. A crucial tool to construct
right-angled hexagons is computing orthogonal R-tubes. For this reason, this
section lists concrete criteria to determine them.

Lemma 2.18. Let pP1, P2, P3, P4q be a maximal 4-tuple. Then there exists a
unique tube YP5,P6 orthogonal to both YP1,P4 and YP2,P3 .
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Proof. Up to Spp2n,Rq-action we can consider

pP1, P2, P3, P4q “ p0, Id, P,8q

By Lemma 2.16 the tubes orthogonal to Y0,8 are of the form Y´Q,Q where
Q P Sym`

pn,Rq. We want to find Q such that the triple pId, Q, P q is maximal
and such that Y´Q,Q K YId,P . By the orthogonality condition (see Remark 2.15)
this happens if and only if RpP,´Q, Id, Qq “ 2Id. Developing the left-hand side
we obtain:

2pP `Qq´1QpQ´ Idq´1pP ´ Idq “ 2pP `Qq´1
`

pQ´ IdqQ´1
˘´1

pP ´ Idq “

“ 2
`

pId ´Q´1qpP `Qq
˘´1

pP ´ Idq “ 2Id

This simplifies to
P `Q´Q´1P ´ Id “ P ´ Id

We obtain
Q2 “ P which has unique solution Q “

?
P

In particular P P Sym`
pn,Rq as p0, Id, P,8q is maximal (see Lemma 2.5).

Lemma 2.19. Let p0, Id, P,8q be a maximal quadruple. Then Y
´

?
P,

?
P is the

unique R-tube orthogonal to both Y0,8 and YId,P .

0

8

Id

P

?
P´

?
P

Figure 5: The tube Y
´

?
P,

?
P orthogonal to both

YId,P and Y0,8

Proof. Follows directly from proof the of Lemma 2.18 The configuration of the
tubes Y0,8 K Y

´
?
P,

?
P K YId,P is illustrated in Figure 5.

In the more general case we have:
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Lemma 2.20. Let pP1, P2, P3, P4q be a maximal quadruple. Then the unique
tube orthogonal to both YP1,P4 and YP2,P3 is YZ1,Z2 where

Z1 “ g´1
`

´
a

gP3

˘

, Z2 “ g´1
`

a

gP3

˘

g “

ˆ

A 0
0 A´T

˙ˆ

Id pP1 ´ P4q´1

0 Id

˙ˆ

0 Id
´Id 0

˙ˆ

Id ´P4

0 Id

˙

and A “
a

pP1 ´ P4qpP2 ´ P1q´1pP2 ´ P4q

Proof. The matrix g P Spp2n,Rq is an isometry such that

g ¨ pP1, P2, P4q “ p0, Id,8q

Result follows from Lemma 2.19.

Lemma 2.21. Let pP1, P2, P3, P4, P5, P6q be a maximal 6-tuple and let Q1, Q2, Q3, Q4

be such that
YP1,P2 K YQ1,Q2 K YP3,P4 K YQ3,Q4 K YP5,P6

Then the quadruple pP3, Q2, Q3, P4q is maximal.

Q2

P3

P2

Q1

P1
P6

Q4

P5

P4

Q3

Figure 6: The quadruple pP3, Q2, Q3, P4q is maximal

Proof. Let g P Spp2n,Rq be such that

g ¨ pQ1, Q2q “ p8, 0q and g ¨ pP3, P4q “ p´Id, Idq

We obtain the tubes

g ¨ YP1,P2
“ Y´M,M , g ¨ YP5,P6

“ YP,Q
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for some M,P,Q positive definite matrices. The tube g ¨YQ3,Q4 “ YX,Y is such
that

Y´Id,Id K YX,Y K YP,Q (3)

where P and Q are positive definite matrices (Figure 7).

´Id

M´M

8

Q

Y

P

Id

X
0

Figure 7: The quadruple p0, X, Id, Y q is maximal

By construction of orthogonal tubes we know p´Id, 0, Idq and pX, Id, Y q

maximal (Lemma 2.19). It is not hard to show that the matrix X needs to be
positive definite for the condition (3) to be satisfied. It follows p´Id, 0, X, Idq

maximal and so is its preimage pP3, Q2, Q3, P4q.

We end this section by giving some concrete expressions to find two orthogo-
nal tubes when one of them is of the form Y´P,P for a positive definite matrix P .
This configuration will turn out to be very useful when defining the parameter
space of right-angled hexagons.

Lemma 2.22. Let p0, P1, P2,8q be a maximal quadruple. Then

Y´P1,P1 K YP1P
´1
2 P1,P2

and Y´P2,P2 K YP1,P2P
´1
1 P2

Proof. For the first case it is sufficient to find X P Sympn,Rq such that
RpX,P1, P2,´P1q “ 2Id (see Remark 2.15). Developing the left-hand side we
obtain

pX ´ P1q´1p´2P1qp´P1 ´ P2q´1pX ´ P2q “ 2Id

which can be rewritten

P1pP1 ` P2q´1pX ´ P2q “ pX ´ P1q
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0

8

P2

P1P
´1
2 P1

P1´P1

0

8
P2P

´1
1 P2

P2
´P2

P1

Figure 8: Expressions to find the unique orthogonal
tubes

and this simplifies to

pX´P2q “ pP1`P2qP´1
1 pX´P1q “ pId`P2P

´1
1 qpX´P1q “ X´P1`P2P

´1
1 X´P2

We obtain
P2P

´1
1 X “ P1

Result follows. The proof for the second case is the same. The configuration
of the orthogonal tubes Y´P1,P1

K YP1P
´1
2 P1,P2

and Y´P2,P2
K YP1,P2P

´1
1 P2

is
illustrated in Figure 8.

2.7 Orientation of boundary points: the Spp4,Rq-case
In this section we investigate orientation of boundary points. From now on we
will consider the symmetric space X associated to Spp4,Rq. This leads us to
consider real Lagrangians LpR4q in the boundary of X . Recall that for l P LpR4q

the dual space is given by

l˚ “ tλ : l Ñ R linearu

If v1, v2 is a basis of l then v˚
1 , v

˚
2 is a basis of l˚ where v˚

i pvjq “ δij and δij is
the Kronecker delta:

δij “

#

0 if i ‰ j

1 if i “ j

For l1&l2 then l2 – l˚1 through the map

l2 Ñ l˚1

u ÞÑ ωpu, ¨q
(4)
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where ω is the symplectic form represented by the matrix
ˆ

0 Id2
´Id2 0

˙

.

The inverse map is given by

l˚1 Ñ l2

λ ÞÑ u| λpvq “ ωpu, vq @v P l1
(5)

In particular take a basis vector vi of l1. Then v˚
i can be seen as the vector

u P l2 such that
v˚
i pvq “ ωpu, vq @v P l1

where v˚
i pvjq “ δij . We obtain v˚

i – u P l2 where

ωpu, viq “ 1 and ωpu, vjq “ 0

Definition 2.23. Let l1 P LpR4q, l1 “ xv1, v2y and fix the orientation ol1 on l1
given by the volume form v1 ^ v2. For l2&l1 the orientation on l2 induced by l1
is given by v˚

1 ^ v˚
2 and will be denoted by ol2 Ð ol1 .

Recall that we denote by LpRnqpkq the set of k-tuples of pairwise transverse
Lagrangians.

Proposition 2.24. Let pl1, l2q P LpR4qp2q and fix an orientation ol1 of l1. Then
ol1 coincides with the induced orientation ol1 Ð ol2 Ð ol1 .

Proof. Let g P Spp4,Rq such that gpl1, l2q “ pl8, 0q. Put

l8 “ xe1, e2y, 0 “ xe3, e4y

Let ol8 be the orientation on l8 given by the volume form e1 ^ e2. We want to
show that this orientation coincides with ol8 Ð o0 Ð ol8 . The orientation on
0 – l˚8 induced by l8 “ xe1, e2y is given by e˚

1 ^ e˚
2 . In the identification (5)

the vector e˚
1 P l˚8 is the vector u P 0 “ xe3, e4y such that

ωpu, e1q “ 1 and ωpu, e2q “ 0

where we have the following equalities for ω:

ωpe1, e2q “ 0

ωpe1, e3q “ 1

ωpe1, e4q “ 0

ωpe2, e3q “ 0

ωpe2, e4q “ 1

ωpe3, e4q “ 0

We obtain u “ e˚
1 “ ´e3 and similarly e˚

2 “ ´e4, so that o0 Ð ol8 is given
by the volume form ´e3 ^ ´e4 “ e3 ^ e4. The orientation ol8 Ð o0 Ð ol8 is
therefore given by e˚

3 ^ e˚
4 , where this time e˚

3 , e
˚
4 P 0˚ – l8. In the same way

as before one can show that this orientation corresponds exactly to e1 ^ e2.
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Remark 2.25. Observe that the proof of Proposition 2.24 works more generally
for the Spp4n,Rq case, that is pl1, l2q P LpR2nqp2q. It is false for the Spp4n`2,Rq-
case, where pl1, l2q P LpR2n`1qp2q and where an odd number of minus signs is
appearing in the volum form.

Recall that we denote by µnpl1, l2, l3q the Maslov index of a triple in LpRnqp3q

(see Section 2.2). Given pl1, l2, l3q P LpR4qp3q we obtain µ2pl1, l2, l3q P t´2, 0, 2u.

Proposition 2.26. Let pl1, l2, l3q P LpR4qp3q and fix an orientation ol1 of l1.
Then the induced orientation ol3 Ð ol1 coincides with ol3 Ð ol2 Ð ol1 if
µ2pl1, l2, l3q ‰ 0 and it does not coincide if µ2pl1, l2, l3q “ 0.

0

l8

“

oId Ð o0 Ð ol8

oId Ð ol8

Figure 9: Induced orientation on a positive triple

Proof. 1) µ2pl1, l2, l3q ą 0.
Let g P Spp4,Rq such that gpl1, l2, l3q “ pl8, 0, Idq. Put

l8 “ xe1, e2y, 0 “ xe3, e4y, Id “ xe1 ` e3, e2 ` e4y “ xϵ1, ϵ2y

Let ol8 be the orientation on l8 given by the volume form e1 ^ e2. We
want to show that oId Ð ol8 coincides with oId Ð o0 Ð ol8 (see Figure 9).
The orientation on Id – l˚8 induced by l8 “ xe1, e2y is given by e˚

1 ^ e˚
2 .

In the identification (5) the vector e˚
1 P l˚8 is the vector u P Id “ xϵ1, ϵ2y

such that
ωpu, e1q “ 1 and ωpu, e2q “ 0
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Recall again the following equalities for ω:

ωpe1, e2q “ 0

ωpe1, e3q “ 1

ωpe1, e4q “ 0

ωpe2, e3q “ 0

ωpe2, e4q “ 1

ωpe3, e4q “ 0

We obtain u “ e˚
1 “ ´ϵ1 and similarly e˚

2 “ ´ϵ2, so that oId Ð ol8 is
given by the volume form ´ϵ1 ^ ´ϵ2 “ ϵ1 ^ ϵ2.

In the same way one can show that the orientation on 0 “ xe3, e4y induced
by l8 “ xe1, e2y is given by e3 ^ e4 and that oId Ð o0 Ð ol8 is given by
ϵ1 ^ ϵ2.

2) µ2pl1, l2, l3q ă 0.
Let g P Spp4,Rq such that gpl1, l2, l3q “ pl8, Id, 0q. The proof is very
similar to 1), where this time o0 Ð ol8 is given by e3 ^ e4 and coincides
with o0 Ð oId Ð ol8 .

3) µ2pl1, l2, l3q “ 0.
Let g P Spp4,Rq such that gpl1, l2, l3q “ pl8, 0,mq where m is the La-
grangian

m “ xe1 ` e3,´e2 ` e4y “ xϵ1, f2y

and coincides with the matrix
ˆ

1 0
0 ´1

˙

in the Spp4,Rq-equivariant iden-

tification X ÞÑ X (see Section 2.1). The proof is again very similar to the
previous cases, where this time om Ð ol8 is given by ´ϵ1 ^ ´f2 whereas
om Ð o0 Ð ol8 is given by ϵ1 ^ ´f2.

2.8 The symmetric spaces XGLpn,Rq and XSLpn,Rq

Recall that the standard model for the symmetric space associated to GLpn,Rq

is
XGLpn,Rq “ Sym`

pn,Rq

We endow XGLpn,Rq with the distance given by

dGLpX,Y q “

g

f

f

e

n
ÿ

i“1

plog λiq2

where λi are the eigenvalues of XY ´1. With this choice of dGL the natural
identification XGLpn,Rq “ Y0,8 is an isometry (where Y0,8 is equipped with the
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induced Riemannian metric).

Recall also that the symmetric space associated to SLpn,Rq is

XSLpn,Rq “ tX P Sym`
pn,Rq| detpXq “ 1u

Similarly, we endow XSLpn,Rq with the distance given by

dSLpX,Y q “

g

f

f

e

n
ÿ

i“1

plog λiq2

where λi are the eigenvalues of XY ´1. In particular, the symmetric space
XSLp2,Rq can be identified with the hyperbolic upper-half plane
H2 “ tz “ x` iy| x, y P R, y ą 0u via the following map:

h : XSLp2,Rq Ñ H2

B ÞÑ
“

B
‰

¨ i

where B is an element of PSLp2,R) and acts on H2 via Möbius transformations.
The inverse of h is given by

h´1 : H2 Ñ XSLp2,Rq

z ÞÑ
?
AAT

where A P PSLp2,Rq and A ¨ i “ z.

Remark 2.27. If we endow H2 with the distance dH2 relative to the standard
metric dx2

`dy2

y2 on the upper-half plane then h is not an isometry and in general
pXSLp2,Rq, dSLq and pH2, dH2q are not isometric. It holds

dSLpB1, B2q “
1

?
2
dH2phpB1q,hpB2qq

2.9 The geometry of the standard tube Y0,8

Let us consider the symmetric space X associated to Spp4,Rq. This case pro-
vides nice geometric interpretations in the construction of right-angled hexagons
inside X . A precise definition of hexagon will be given in Section 4.1. Hexagons
are the building blocks that will be glued together to compute maximal repre-
sentations. The geometric features arising in the case of Spp4,Rq can already
be seen in the description of the standard tube Y0,8, as stated in the following
lemma:

Lemma 2.28. The tube Y0,8 is isometrically identified with R ˆ H2.
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Proof. As seen in Section 2.8 there is a natural identification Y0,8 “ XGLp2,Rq,
where XGLp2,Rq is the set of positive definite symmetric matrices. The map

f “ πR ˆ πH2

: XGLp2,Rq Ñ R ˆ XSLp2,Rq

Q ÞÑ

´ log detQ
?
2

,
Q

?
detQ

¯

is a bijection, with inverse

f´1 : R ˆ XSLp2,Rq Ñ XGLp2,Rq

pr,Bq ÞÑ

a

e
?
2rB

When RˆXSLp2,Rq and XGLp2,Rq are considered as metric spaces (endowed with
dR ˆ dSL and dGL respectively), the map f is an isometry (see [FP20] Lemma
2.17). The identification Y0,8 “ RˆH2 follows from XSLp2,Rq “ H2 (see Section
2.8). In particular all copies of H2 in Y0,8 are canonically identified. Observe
that to turn Y0,8 “ RˆH2 into an isometric identification we have to scale the
metric dH2 by a factor k “ 1?

2
(Remark 2.27).

For any A P Sym`
p2,Rq the point obtained by projecting A orthogonally on

Y0,8 is p0,8pAq “ iA (Lemma 2.16). We give the following:

Definition 2.29. Given A P Sym`
p2,Rq the hyperbolic component of A is the

H2-component of iA in the isometric identification Y0,8 “ R ˆ H2, that is the
point πH2

pp0,8pAqq. Similarly the R-component of A is the point πRpp0,8pAqq

and will be called level of A.

Consider the upper-half space model H2 “ tx ` iy| x, y P R, y ą 0u. Then
for any fixed level in R ˆ H2 the set of diagonal matrices coincides with the

y-axis of H2, where the set
␣

ˆ

λ1 0
0 λ2

˙

, λ1 ą λ2, λ1 ¨λ2 “ 1
(

consists of points

"above" i P H2 in the vertical y-axis of the hyperbolic plane. The isometries
stabilizing the standard tube Y0,8 are of the form:

StabPSpp4,Rqp0,8q “

!

ˆ

A 0
0 A´T

˙

, A P GLp2,Rq

)

» GLp2,Rq

Remark 2.30. Let iX, iY P Y0,8 and pd1, d2q P a` such that

da
`

piX, iY q “ pd1, d2q

We can associate to pd1, d2q another vector

pr, hq “
`

rpd1, d2q, hpd1, d2q
˘

that has a geometric interpretation in the cylinder Y0,8 “ R ˆ H2. The vector
pr, hq based at iX has first coordinate r equal to the difference between the
levels of iX and iY

r “ dRpπRpiXq, πRpiY qq
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and second coordinate h equal to the distance between the two points in H2

h “ dH
2

pπH2

piXq, πH2

piY qq

The vector pr, hq is illustrated in Figure 10.

Xh

r

iX

iY

Y0,8

Figure 10: The geometric interpretation of pr, hq for two points iX, iY in Y0,8

It is not hard to show that given da
`

piX, iY q “ pd1, d2q then

r “
d1 ` d2

?
2

and h “ pd1 ´ d2q

The vector pr, hq also gives a geometric condition for the maximality of the triple
pl8, X, Y q i.e. for the matrix Y ´X to be positive definite (see Lemma 2.5). It
holds ([FP20, Corollary 2.21])

Y ´X positive definite ðñ r ą
1

?
2
h

The following Lemma of linear algebra will play a crucial role in the definition
of meaningful parameters for hexagons inside X .

Lemma 2.31. For any M P Sym`
p2,Rq with distinct eigenvalues there exist

unique S,Q in PSOp2q and POp2qzPSOp2q respectively such that

SMST “ QMQT “

ˆ

λ1 0
0 λ2

˙

,where λ1 ą λ2
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Proof. Let v1, v2 be orthonormal eigenvectors relative to the eigenvalues
λ1 ą λ2 ą 0 respectively and let L denote the orthogonal matrix

L “

´

“

v1
‰ “

v2
‰

¯

If detL “ 1, it is a standard fact of linear algebra that

S “

ˆ

r vT1 s

r vT2 s

˙

“ LT

is the unique element of PSOp2q such that SMST “

ˆ

λ1 0
0 λ2

˙

, λ1 ą λ2. Put

Q “

ˆ

´1 0
0 1

˙

S “

ˆ

´r vT1 s

r vT2 s

˙

Then detQ “ ´1 and Q is the desired matrix in POp2qzPSOp2q.
If detL “ ´1 then the two diagonalizing matrices are Q “ LT and

S “

ˆ

´1 0
0 1

˙

Q.

2.10 Geometric interpretation of diagonalization matrix
The group PSpp4,Rq acts on a point iM P Y0,8 via fractional linear transfor-
mations (Section 2.1). Recall the following identifications (see Sections 2.8 and
2.9):

Sym`
p2,Rq “ Y0,8 “ R ˆ H2

In this identification the identity matrix is identified with the point i P H2 in
the 0-level of Y0,8. Moreover, all copies of H2 in Y0,8 are canonically identified.
For a matrix S P PSOp2q we want to interpret the action

PSpp4,Rq Q

ˆ

S 0
0 S

˙

¨ piMq “ iSMST (6)

as a transformation which fixes the level of M and rotates its hyperbolic com-
ponent around i P H2. This will be very useful in the description of parameters
for generic quintuples (Chapter 3). If we consider the action on H2 through
Möbius transformations we see that

StabPSLp2,Rqpiq “ PSOp2q

For θ P r0, πq the action (6) of a matrix S “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

P PSOp2q can

be interpreted as a clockwise rotation of angle 2θ around i P H2. For every
S P PSOp2q and every θ P r0, πq there is a unique way to write S as a rotation
matrix of the form

S “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

„

ˆ

cospπ ` θq ´ sinpπ ` θq

sinpπ ` θq cospπ ` θq

˙

“ ´S
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Given M positive definite with distinct eigenvalues we interpret the unique
S P PSOp2q for which

SMST “

ˆ

λ1 0
0 λ2

˙

, λ1 ą λ2

as the angle formed by the semi-axis tp0, yq| y ą 1u inside H2 and the geodesic
segment connecting the hyperbolic components of Id and M (Figure 11). This
will be very practical for a concrete visualization of hexagon-parameters.

S
Id

M

ˆ

λ1
ą λ2

˙

Figure 11: Geometric interpretation of
diagonalization matrix S as an angle 2θ

In this thesis we will use both the matrix and the angle notation: angle
parameters will be denoted by S or α depending on the context, where

S “

ˆ

cos α
2 ´ sin α

2
sin α

2 cos α
2

˙

, α P r0, 2πq

Remark 2.32. (Drawing angles "on the left")

The matrix S “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

acts on M by clockwise rotation of center Id

and angle 2θ on the H2-component of the standard tube Y0,8. For this reason
to draw the angle parameters we will consider the oriented geodesic going from
M to Id and draw the angle on the left of it.

Remark 2.33. For Λ “

ˆ

λ1 0
0 λ2

˙

with λ1 ‰ λ2, the stabilizer StabPSpp4,Rqp0, Id,Λ,8q

is given by

StabPSpp4,Rqp0, Id,Λ,8q “

!

Id,

ˆ

r 0
0 r

˙

)

– Z{2Z
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where r “

ˆ

´1 0
0 1

˙

.

Observe that in the identification Y0,8 “ R ˆ H2 the action of the matrix
ˆ

r 0
0 r

˙

P PSpp4,Rq, r “

ˆ

´1 0
0 1

˙

on Y0,8 is a reflection across the y-axis of H2: for any

H2 Q a` ib
p§2.8q

“

ˆ

m1 m2

m2 m3

˙

P Sym`
p2,Rq

it holds
ˆ

´1 0
0 1

˙ˆ

m1 m2

m2 m3

˙ˆ

´1 0
0 1

˙

“

ˆ

m1 ´m2

´m2 m3

˙

p§2.8q
“ ´a` ib P H2

Put
M “

ˆ

m1 m2

m2 m3

˙

and Mr “

ˆ

´1 0
0 1

˙ˆ

m1 m2

m2 m3

˙ˆ

´1 0
0 1

˙

If M is a point of angle α P r0, 2πq from
ˆ

λ1 0
0 λ2

˙

, λ1 ą λ2, then M r is a

point of angle p2π ´ αq from
ˆ

λ1 0
0 λ2

˙

, λ1 ą λ2 (Figure 12).

S2
S1

Id

MMr

ˆ

λ1
ą λ2

˙

Figure 12: The point Mr is obtained by reflecting
M across the y-axis

To see this using the angle interpretation of diagonalization matrices take
S1 P PSOp2q diagonalizing M as in Lemma 2.31. It holds:

S1MST
1 “

ˆ

λ1 0
0 λ2

˙

“ S1

ˆ

´1 0
0 1

˙

Mr

ˆ

´1 0
0 1

˙

ST
1
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so that
ˆ

λ1 0
0 λ2

˙

“

ˆ

´1 0
0 1

˙ˆ

λ1 0
0 λ2

˙ˆ

´1 0
0 1

˙

“

“

ˆ

´1 0
0 1

˙

S1

ˆ

´1 0
0 1

˙

loooooooooooooomoooooooooooooon

S2PSOp2q

Mr

ˆ

´1 0
0 1

˙

ST
1

ˆ

´1 0
0 1

˙

loooooooooooooomoooooooooooooon

ST
2

If
S1 “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

then
S2 “

ˆ

cos θ sin θ
´ sin θ cos θ

˙

“

ˆ

cosp2π ´ θq ´ sinp2π ´ θq

sinp2π ´ θq cosp2π ´ θq

˙

Remark 2.34. More generally let A,B be symmetric positive definite ma-
trices such that A´1B has distinct eigenvalues λ1 ą λ2. Then the stabilizer
StabPSpp4,Rqp0, A,B,8q is given by

StabPSpp4,Rqp0, A,B,8q “

!

Id,

ˆ
?
APT rP

?
A´1 0

0
?
A´1PT rP

?
A

˙

)

where r “

ˆ

´1 0
0 1

˙

and P is the unique matrix in PSOp2q such that

P p
?
A´1B

?
A´1qPT “

ˆ

λ1 0
0 λ2

˙

Geometrically we should interpret the non-trivial element of this stabilizer as
a reflection across the hyperbolic component of the standard tube across the
geodesic going through A and B (Figure 13).

A

B

H2

Figure 13: The non-trivial element of the stabilizer
StabPSpp4,Rqp0, A,B,8q in the Poincaré disk model

of H2
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2.11 Orientation of the hyperbolic component of Y0,8

Let us consider the symmetric space X associated to Spp4,Rq. In this section
we want to investigate the relation between fixing an orientation of
H2 Ă Y0,8 “ R ˆ H2 and fixing the orientation of the Lagrangian l8 P LpR4q

in the boundary of X . It will be useful to use the interplay between symmetric
matrices and Lagrangian subspaces. Recall the two models of the Siegel space,
the upper-half space model

X “ tX ` iY, X P Symp2,Rq, Y P Sym`
p2,Rqu

and the Borel embedding model

X “ tl P LpC4q| iωpσp¨q, ¨qC|lˆl is positive definiteu

where σ : C4 Ñ C4 denotes complex conjugation and ω is the symplectic

form represented by the matrix
ˆ

0 Id2
´Id2 0

˙

.

The Spp4,Rq-equivariant identification X ÞÑ X is induced by the affine chart

ι : Symp2,Cq Ñ LpC4q

that associates to a symmetric matrix Z the linear subspace of C4 spanned by

the columns of the matrix
ˆ

Z
Id2

˙

.

Proposition 2.35. Consider the symmetric space X associated to Spp4,Rq.
Choosing an orientation of H2 inside Y0,8 “ R ˆ H2 is equivalent to choosing
an orientation of Pp8q » Pp0q where 8, 0 P LpR4q.

Proof. Fix a basis B “ te1, e2, e3, e4u of R4. Consider the two transverse La-
grangians 0 “ xe3, e4y and 8 “ xe1, e2y. The standard tube

Y0,8 “ tiY | Y P Sym`
p2,Rqu

is isometrically identified with RˆH2 (see Lemma 2.28). The hyperbolic plane
inside Y0,8 is identified with the symmetric space associated to SLp2,Rq, that
is

XSLp2,Rq “ tX P Sym`
p2,Rq| detpXq “ 1u

All copies of H2 inside Y0,8 are canonically identified and stabilized by the set
of matrices

!

ˆ

R 0
0 R

˙

, R P Op2q

)

» Op2q (7)

acting Spp4,Rq-equivariantly in the identification X ι
ÞÑ X.

Consider the geodesic ray

γptq “

ˆ

iet 0
0 ie´t

˙
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which lies inside the hyperbolic component of Y0,8 and converges to the
Lagrangians l`, l´ where

γptq ÝÝÝÑ
tÑ8

l` “ xe1, e4y

γptq ÝÝÝÝÑ
tÑ´8

l´ “ xe2, e3y

To fix an orientation of H2 inside Y0,8 it is sufficient to orient its visual boundary
B8H2. Recall that 0&8 where

0 “ xe3, e4y and 8 “ xe1, e2y

In Section 2.10 we have investigated the action of orthogonal matrices on
H2 Ă Y0,8 “ RˆH2 and we have interpret matrices as angles in the hyperbolic
component. The set in (7) acts preserving the Lagrangians 0 and 8 respectively
and the visual boundary of the hyperbolic component is realized by the Op2q-
orbit of the Lagrangian l` “ xe1, e4y. It is identified to Pp8q through the
following map

B8H2 Ñ Pp8q

l ÞÑ l X 8

To fix an orientation of H2 inside Y0,8 it is therefore sufficient to orient
Pp8q. This set is canonically identified with Pp0q. To see this let us note by
vKω the set

vKω “ tu P R4| ωpv, uq “ 0u

In particular v P vKω and dim(vKω)=3. Then Pp0q and Pp8q are identified
through the map

Pp0q Ñ Pp8q

rvs ÞÑ rvKω X 8s

2.12 Isometries reflecting the hyperbolic component
In Section 2.11 we have studied how to orient the hyperbolic component of the
standard tube Y0,8. The group of isometries stabilizing the standard tube is
the group:

!

ˆ

A 0
0 A´T

˙

, A P GLp2,Rq

)

P PSpp4,Rq

Proposition 2.36. For A P GLp2,Rq let fA be an isometry stabilizing the
standard tube Y0,8:

fA : Y0,8 Ñ Y0,8

iY ÞÑ iAY AT
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Then fA is reversing the orientation of the hyperbolic component of Y0,8 if
and only if detA ă 0

Proof. Recall that

Y0,8 “ χGL2,R “ Sym`
p2,Rq “ R ˆ χSL2,R “ R ˆ H2

The isometry fA is linear in Y and its differential is the map

X ÞÑ AXAT

for any tangent vector X “

ˆ

x1 x2
x2 x3

˙

–

¨

˝

x1
x2
x3

˛

‚. For A “

ˆ

a1 a2
a3 a4

˙

the tangent

vector AXAT “ dfApXq can be rewritten as
¨

˝

a21x1 ` 2a1a2x2 ` a22x3
a1a3x1 ` pa1a4 ` a2a3qx2 ` a2a4x3

a23x1 ` 2a3a4x2 ` a24x3

˛

‚“

¨

˝

a21 2a1a2 a22
a1a3 a1a4 ` a2a3 a2a4
a23 2a3a4 a24

˛

‚

¨

˝

x1
x2
x3

˛

‚

where

det

¨

˝

a21 2a1a2 a22
a1a3 a1a4 ` a2a3 a2a4
a23 2a3a4 a24

˛

‚“ pdetAq3

The map fA is therefore reversing the orientation of the tube Y0,8 if and only
if detA ă 0. To finish the proof we need to show that only the orientation of the
hyperbolic component can be reversed, not the orientation of the R-component.

The action of a A P GLp2,Rq on the R-component of iY P R ˆ H2 is a
translation: if we note by r the R-component of iY then the R-component of
iAY AT is given by r `

2 log | detA|
?
2

. The map fA is therefore preserving the
orientation on the R-component of the tube.

Remark 2.37. For an isometry g “

ˆ

A 0
0 A´T

˙

P PSpp4,Rq whether or not

g is reversing the orientation of the hyperbolic component of Y0,8 is intrinsic
and only depends on the sign of detA. This is true in general for any element

in PSpp4,Rq which is conjugate to
ˆ

A 0
0 A´T

˙

for an A P GLp2,Rq.

Definition 2.38. An isometry g P PSpp4,Rq conjugate to
ˆ

A 0
0 A´T

˙

with

A P GLp2,Rq is called reflecting (resp. non-reflecting ) if detA ă 0 (resp. ą 0).
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3 Parameters for quintuples

3.1 The sets Qgen and Qst

As already mentioned, our goal is to define parameters for right-angled hexagons.
A precise definition of hexagon will be given in Section 4.1. To study mean-
ingful parameters we first parametrize a set Qgen consisting of specific ordered
quintuples of Lagrangians at the boundary of X which we call generic (Defi-
nition 3.3). Recall that we can identify Lagrangians and symmetric matrices
through the map ι introduced in Section 2.1. Up to isometry we can consider
quintuples of Lagrangians where the first and the last Lagrangian are 0 and 8

respectively and we can further diagonalize one symmetric matrix choosing an
order on the diagonal. This choice will lead us to define the set of standard
quintuples Qst and we will focus on the case where X is the symmetric space
associated to Spp4,Rq. To define generic and standard quintuples we first need
to define generic quadruples.

Definition 3.1. (Generic quadruple) Let pP,X, Y,Qq be a maximal quadru-
ple and let µ1, ..., µn be the eigenvalues of the cross-ratio RpP,X, Y,Qq. The
quadruple pP,X, Y,Qq is said to be generic if for any i ‰ j it holds µi ‰ µj .

Remark 3.2. Recall that we denote by pP,Q the orthogonal projection on the
tube YP,Q. Let b be the vector obtained by the orthogonal projection of X and
Y on the tube YP,Q (Figure 14)

b “ da
`

ppP,QpXq, pP,QpY qq

X

P

Q

Y

b

Figure 14: The quadruple pP,X, Y,Qq is generic if
and only if vector b is regular
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From Lemma 2.17 it is easy to see that the quadruple pP,X, Y,Qq is generic
if and only if the vector b is a regular vector of the Weyl chamber (see Section
2.3 for the definition of a regular vector).

Definition 3.3. The set of generic quintuples Qgen is given by:

Qgen :“ tpP,X, Y, Z,Qq maximal| pP,X, Y,Qq and pP, Y, Z,Qq generic u

Remark 3.4. Observe that the definition of generic quintuple strongly depends
on the order of the quintuple: given pP,X, Y, Z,Qq generic it is not necessarily
true that a cyclic permutation of the quintuple is generic.

We will see in the next section how the parametrization of Qgen is connected
with the parametrization of right-angled hexagons of X . Let us now consider
the symmetric space associated to Spp4,Rq. We give the following

Definition 3.5. The set of standard quintuples Qst Ă Qgen is given by

Qst :“ tp0, X, Id,

ˆ

λ1 0
0 λ2

˙

,8q P Qgen| λ1, λ2 P R, λ1 ą λ2 u

Remark 3.6. Recall that the set of isometries stabilizing the standard tube
Y0,8 is the group:

StabPSpp4,RqpY0,8q “

!

ˆ

A 0
0 A´T

˙

, A P GLp2,Rq

)

Recall also that for a diagonal matrix Λ with different eigenvalues we have

StabPSpp4,Rqp0, Id,Λ,8q “

!

Id,

ˆ

r 0
0 r

˙

)

– Z{2Z

where r “

ˆ

´1 0
0 1

˙

. For any pP,X, Y, Z,Qq P Qgen we can always find a

g P PSpp4,Rq (more details in proof of Proposition 3.7) such that

g ¨ P “ 0, g ¨ Y “ Id, g ¨ Z “

ˆ

λ1 0
0 λ2

˙

, g ¨Q “ 8

where λ1 ą λ2. It is therefore clear that

Qgen{PSpp4,Rq – Qst{Z{2Z

Recall that we denote by a the set of regular vectors of the Weyl chamber,
that is the set

a “ tpx1, x2q P R2| x1 ą x2 ą 0u

We can now state the following:
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Proposition 3.7. The set Qgen{PSpp4,Rq is parametrized by

a ˆ a ˆ PSOp2q{„

where for S, S1 P PSOp2q we have the following equivalence relation:

S „ S1 ðñ S1 “

ˆ

´1 0
0 1

˙

S

ˆ

´1 0
0 1

˙

(8)

The parametrization is given by

´

pc1, c2q, pd1, d2q, rSs

¯

ÞÑ

”´

0, ST

ˆ

1
ec2 0
0 1

ec1

˙

S, Id,

ˆ

ed1 0
0 ed2

˙

,8
¯ı

P Qst{Z{2Z

with inverse map

rpP,X, Y, Z,Qqs ÞÑ

´

pc1, c2q “ da
``

pP,QpXq, pP,QpY q
˘

, pd1, d2q “ da
``

pP,QpY q, pP,QpZq
˘

, rSs

¯

where
SpgXqST “

ˆ

1
ec2 0
0 1

ec1

˙

,
1

ec2
ą

1

ec1

and g is a map in PSpp4,Rq such that

gpP,X, Y, Z,Qq P Qst

The parameter space of Qgen{PSpp4,Rq can be rewritten as

a3 ˆ r0, 2πq{„

where for α P r0, 2πq it holds

S “

ˆ

cos α
2 ´ sin α

2
sin α

2 cos α
2

˙

and the equivalence relation is given by

α „ α1 ðñ α1 “ 2π ´ α

Proof. We first show how to find parameters pc, d, rSsq for a given quintuple
rpP,X, Y, Z,Qqs in Qgen{PSpp4,Rq. We want to use the fact that (Remark 3.6) :

Qgen{PSpp4,Rq – Qst{Z{2Z

Let pP,X, Y, Z,Qq P Qgen. Up to isometry we can consider P “ 0 and
Q “ 8. Put

c “ pc1, c2q “ da
``

p0,8pXq, p0,8pY q
˘

P a

d “ pd1, d2q “ da
``

p0,8pY q, p0,8pZq
˘

P a
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0

8

Id “ g ¨ Y

g ¨X

ˆ

ed1 0
0 ed2

˙

“ g ¨ Z

d

c

S

Figure 15: The isometry g sends the quintuple
pP,X, Y, Z,Qq to a standard one

Let g P StabpY0,8q be such that (Figure 15)

g ¨ Y “ Id

g ¨ Z “

ˆ

ed1 0
0 ed2

˙

Recall that

StabpY0,8q “

!

ˆ

A 0
0 A´T

˙

, A P GLp2,Rq

)

P PSpp4,Rq

The first equality forces A “ O
?
Y ´1 where O P POp2q. The second equal-

ity forces O “ P,Q where P and Q are the unique matrices in PSOp2q and
POp2qzPSOp2q respectively (see Lemma 2.31) such that

P p
?
Y ´1Z

?
Y ´1qPT “ Qp

?
Y ´1Z

?
Y ´1qQT “

ˆ

ed1 0
0 ed2

˙

Accordingly, the two only possibilities for g are:

g1 “

ˆ

P
?
Y ´1 0

0 P
?
Y

˙

and g2 “

ˆ

Q
?
Y ´1 0

0 Q
?
Y

˙

It holds:
g1X “

ˆ

´1 0
0 1

˙

g2X

ˆ

´1 0
0 1

˙

Let S be the unique matrix in PSOp2q such that Sg1XST “

ˆ

λ1 0
0 λ2

˙

for λ1 ą λ2 (see Lemma 2.31). The triple p0, g1X, Idq is maximal and the
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map g is preserving the Weyl chamber distance, by Lemma 2.17 we deduce

λ1 “ 1
ec2 , λ2 “ 1

ec1 . Furthermore S1 “

ˆ

´1 0
0 1

˙

S

ˆ

´1 0
0 1

˙

is the unique

matrix in PSOp2q such that S1g2XS
1T “

ˆ

1
ec2 0
0 1

ec1

˙

. The point g2X is the

image of g1X through a reflection on the hyperbolic component g2X “ pg1Xqr

(see Remark 2.33) and the two quintuples

Qst Q p0, g1X, Id,

ˆ

ed1 0
0 ed2

˙

,8q and p0, g2X, Id,

ˆ

ed1 0
0 ed2

˙

,8q P Qst

are equivalent in Qst{Z{2Z. The third parameter rSs P PSOp2q{„ is given by
the diagonalization matrix and has the geometric interpretation of an angle: for
S P PSOp2q we write S as the matrix (see Section 2.10)

S “

ˆ

cos α
2 ´ sin α

2
sin α

2 cos α
2

˙

, α P r0, 2πq

and the equivalence relation is the identification of angle α with angle p2π ´ αq

(see Figure 12). We obtain parameters

pc, d, rSsq P a ˆ a ˆ PSOp2q{„ “ a ˆ a ˆ r0, 2πq„

The parameter S or α will be called the angle parameter of the generic quintuple
and provides information about the angle between the hyperbolic components
of X and Z (Figure 16). We will draw the angle on the left as explained in
Remark 2.32.

Y

X

Z

S

H2

Figure 16: Geometric interpretation of the angle
parameter S in the Poincaré disk model of H2
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For the inverse map, to any element of the parameter space

a ˆ a ˆ PSOp2q{„

we can associate a unique quintuple inside Qst{Z{2Z. To
`

pc1, c2q, pd1, d2q, rSs
˘

in a ˆ a ˆ PSOp2q{„ we associate the standard quintuple

pP,X, Y, Z,Qq “

´

0, ST

ˆ

1
ec2 0
0 1

ec1

˙

S, Id,

ˆ

ed1 0
0 ed2

˙

,8
¯

Then X is a matrix such that da
`

piX, iIdq “ pc1, c2q and SXST “

ˆ

1
ec2 0
0 1

ec1

˙

where 1
ec2 ą 1

ec1 . For S1 „ S we obtain an equivalent quintuple pP,X 1, Y, Z,Qq

inside Qst{Z{2Z where

pP,X 1, Y, Z,Qq “ pP,Xr, Y, Z,Qq “

ˆ

r 0
0 r

˙

¨pP,X, Y, Z,Qq, where r “

ˆ

´1 0
0 1

˙

Remark 3.8. (PSOp2q and not SOp2q) By definition of the parameter S P

PSOp2q{„, the matrix S is such that

SMST “

ˆ

λ1 0
0 λ2

˙

, λ1 ą λ2

for M a positive definite symmetric matrix. It makes therefore sense to consider
S inside PSOp2q to guarantee unicity of the diagonalization matrix i.e. S is
equivalent to p´Sq as SMST “ p´SqMp´ST q.

Remark 3.9. (Genericity condition) The hypothesis of a quintuple pP,X, Y, Z,Qq

to be generic is essential for the parameter space a ˆ a ˆ PSOp2q{„ to be well
defined: the uniqueness of the angle parameter is strictly related to Lemma
2.31, which holds only for matrices with different eigenvalues.

Corollary 3.10. The set Qgen{PSpp4,Rq is parametrized by

a ˆ a ˆ r0, πs

Proof. The equivalence relation of Proposition 3.7 is given by α „ 2π ´ α. We
can always choose α P r0, πs as representative of the equivalence class.

To conclude this section we state two technical lemmas that will be very
useful in the description of parameters of right-angled hexagons.

Lemma 3.11. Let p “
`

pc1, c2q, pd1, d2q, rSs
˘

P a ˆ a ˆ PSOp2q{„ and let X,Y
be positive definite such that da

`

piX, iY q “ pc1, c2q. Then the unique Z such
that p0, X, Y, Z,8q corresponds to p in the parametrization of Proposition 3.7 is
given by

Z “
?
Y RTS

ˆ

ed1 0
0 ed2

˙

STR
?
Y

42



where R is the unique matrix in PSOp2q such that

Rp
?
Y

´1
X

?
Y

´1
qRT “

ˆ

1
ec2 0
0 1

ec1

˙

0

8

Y

X

Z “?

d

c

S

Figure 17: Given X,Y, c, d, S we want to find Z

Proof. It is easy to check that for such a Z

da
`

piY, iZq “ pd1, d2q

By Proposition 3.7 we know that SgXST “

ˆ

λ1 0
0 λ2

˙

for λ1 ą λ2 and where

g is such that g ¨ p0, X, Y, Z,8q P Qst, that is g such that

g ¨ Y “ Id, g ¨ Z “

ˆ

ed1 0
0 ed2

˙

Then g “

ˆ

A 0
0 A´T

˙

where A “ STR
?
Y

´1
and

g ¨X “ STR
?
Y

´1
X

?
Y

´1
SRT

It holds

Spg ¨XqST “ Rp
?
Y

´1
X

?
Y

´1
qRT “

ˆ

1
ec2 0
0 1

ec1

˙

, where
1

ec2
ą

1

ec1

To finish the proof we need to check that for S1 „ S we obtain the same point
in Qgen{PSpp4,Rq. Take S1 such that

S1 “

ˆ

´1 0
0 1

˙

S

ˆ

´1 0
0 1

˙

43



Then
Z 1 “

?
Y RTS1

ˆ

ed1 0
0 ed2

˙

S1TR
?
Y

Take h P StabpY0,8q – GLp2,Rq

h “

¨

˚

˚

˝

?
Y RTS1

ˆ

´1 0
0 1

˙

STR
?
Y

´1
0

0
?
Y

´1
RTS1

ˆ

´1 0
0 1

˙

STR
?
Y

˛

‹

‹

‚

Then it holds
h ¨ p0, X, Y, Z,8q “ p0, X, Y, Z 1,8q

so that rp0, X, Y, Z,8qs “ rp0, X, Y, Z 1,8qs in Qgen{PSpp4,Rq. Geometrically the
map h can be seen as a reflection in the H2-component across the geodesic
passing through X and Y , as shown in Figure 18 below.

Y

h

X

h

Z

S S1

Z 1

X

Y

H2 H2

Figure 18: The map h in the Poincaré disk model of
H2

Lemma 3.12. Let p “
`

pc1, c2q, pd1, d2q, rSs
˘

be inside a ˆ a ˆ PSOp2q{„ and
let Y,Z be positive definite such that da

`

piY, iZq “ pd1, d2q. Then the unique X
such that p0, X, Y, Z,8q corresponds to p in the parametrization of Proposition
3.7 is given by

X “
?
Y PTST

ˆ

1
ec2 0
0 1

ec1

˙

SP
?
Y

where P is the unique matrix in PSOp2q such that

P p
?
Y

´1
Z

?
Y

´1
qPT “

ˆ

ed1 0
0 ed2

˙
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0

8

Y

X “?

Z

d

c

S

Figure 19: Given Y, Z, c, d, S we want to find X

Proof. It is easy to check that for such X

da
`

piX, iY q “ pc1, c2q

Furthermore take

g “

˜

P
?
Y

´1
0

0 P
?
Y

¸

then g ¨ Y “ Id, g ¨ Z “

ˆ

ed1 0
0 ed2

˙

and

g ¨X “ P
?
Y

´1
X

?
Y

´1
PT “ ST

ˆ

1
ec2 0
0 1

ec1

˙

S

so that
Spg ¨XqST “

ˆ

1
ec2 0
0 1

ec1

˙

, where
1

ec2
ą

1

ec1

To finish the proof we need to check that for S1 „ S we obtain the same point
in Qgen{PSpp4,Rq. Take S1 such that

S1 “

ˆ

´1 0
0 1

˙

S

ˆ

´1 0
0 1

˙

Then

X 1 “
?
Y PTS1T

ˆ

1
ec2 0
0 1

ec1

˙

S1P
?
Y “

?
Y PT

ˆ

´1 0
0 1

˙

ST

ˆ

1
ec2 0
0 1

ec1

˙

S

ˆ

´1 0
0 1

˙

P
?
Y

Take h P StabpY0,8q – GLp2,Rq

h “

¨

˚

˚

˝

?
Y PT

ˆ

´1 0
0 1

˙

P
?
Y

´1
0

0
?
Y

´1
PT

ˆ

´1 0
0 1

˙

P
?
Y

˛

‹

‹

‚
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Then it holds
h ¨ p0, X, Y, Z,8q “ p0, X 1, Y, Z,8q

so that rp0, X, Y, Z,8qs “ rp0, X 1, Y, Z,8qs in Qgen{PSpp4,Rq. Geometrically the
map h can be seen as a reflection in the H2-component across the geodesic
passing through Y and Z (similar to Figure 18).
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4 Parameters for right-angled hexagons
In this chapter we define right-angled hexagons in the Siegel space X and give
meaningful parameters for them. A right-angled hexagon will be formed by
six R-tubes and we will define the space of ordered hexagons H consisting of
hexagons together with the choice of one R-tube (Definition 4.3). We distinguish
between generic (Definition 4.6) and non-generic hexagons (Section 4.2). We
introduce a parameter space for both cases (Proposition 4.15 for the generic
case and Propositions 4.20, 4.21 and 4.22 for the non-generic case). A parameter
space which encloses both generic and non-generic hexagons is given in Theorem
4.26. These parameters will be called arc coordinates and aim to generalize
the parameters for a right-angled hexagon inside H2. It is well known that in
H2 we can parametrize a right-angled hexagon by giving the length of three
alternating side (see for example [Mar16, Lemma 6.2.2] ). The hope is to prove
a similar result for hexagons inside X , where beyond length parameters we
will introduce angle parameters. This approach will turn out to be tricky as
explained in Chapter 5. The consequence is that we will not be able to extend
our parameters to the space of adjacent hexagons having same alternating-side
lengths, which is very useful to compute maximal representations. This will be
solved by introducing reflections and symmetric hexagons and will be explained
in Chapter 6.

4.1 Definition of hexagon, the sets H,Hgen and Hst

Definition 4.1. A right-angled hexagon in X is a cyclic sequence of six R-tubes
H “ rY1,Y2,Y3,Y4,Y5,Y6s where any two consecutive tubes are orthogonal and
such that

Y1 “ YP1,P2
, Y2 “ YQ1,Q2

, Y3 “ YP3,P4
, Y4 “ YQ3,Q4

, Y5 “ YP5,P6
, Y6 “ YQ5,Q6

for a maximal 12-tuple pP1, Q6, Q1, P2, P3, Q2, Q3, P4, P5, Q4, Q5, P6q.

The maximal 12-tuple determining a right hexagon H in X is illustrated in
Figure 20.

Definition 4.2. Let H “ rY1,Y2,Y3,Y4,Y5,Y6s be a right-angled hexagon in
X . We define the stabilizer of H and denote it by StabpHq the stabilizer

StabpHq “
␣

g P PSpp2n,Rq| g ¨ Yi “ Yi, i P t1, ..., 6u
(

Definition 4.3. The set H of ordered right-angled hexagons in X is defined by

H :“ tpH,Y1q| H “ rY1,Y2,Y3,Y4,Y5,Y6s right-angled hexagon u

We want to be able to determine a point pH,Y1q inside H by giving the data
of an ordered maximal 6-tuple. There are many ways to do this, as explained
in the following lemma.
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Q2

P3

P2

Q1

Q6

P1
P6

Q5

Q4

P5

P4

Q3

H

Y1

Y2 Y3

Y4

Y5

Y6

Figure 20: The maximal 12-tuple determining the
right-angled hexagon H “ rY1,Y2,Y3,Y4,Y5,Y6s

Lemma 4.4. Let H “ rY1,Y2,Y3,Y4,Y5,Y6s be a right-angled hexagon with as-
sociated maximal 12-tuple pP1, Q6, Q1, P2, P3, Q2, Q3, P4, P5, Q4, Q5, P6q. Then
pH,Y1q P H is uniquely determined by the following ordered maximal 6-tuples:

pP1, P2, P3, P4, P5, P6q (9)

pQ1, Q2, Q3, Q4, Q5, Q6q (10)

pP2, Q2, P4, P5, Q5, P1q (11)

Proof. Given the maximal 6-tuple pP1, P2, P3, P4, P5, P6q we use Lemma 2.20 to
uniquely determine Q1, Q2, Q3, Q4, Q5, Q6 such that

YP1,P2 K YQ1,Q2 K YP3,P4 K YQ3,Q4 K YP5,P6 K YQ6,Q5 K YP1,P2 (12)

The hexagon H is determined by the R-tubes in (12) and we put Y1 “ YP1,P2
.

The quadruples pP1, Q6, Q1, P2q, pP3, Q2, Q3, P4q, pP5, Q4, Q5, P6q are maximal
by Lemma 2.21 and we obtain a maximal 12-tuple
pP1, Q6, Q1, P2, P3, Q2, Q3, P4, P5, Q4, Q5, P6q by Lemma 2.6. The proof for the
6-tuple in (10) is similar and we put again Y1 “ YP1,P2

where the 6-tuple
pP1, P2, P3, P4, P5, P6q is uniquely determined by the orthogonality conditions
in (12).
Given pP2, Q2, P4, P5, Q5, P1q maximal we construct the hexagonH as following:
let g P Spp2n,Rq such that g ¨ pP1, P2q “ p8, 0q. Let us denote

gpQ2q “ A, gpP4q “ B, gpP5q “ C, gpQ5q “ D

We use Lemma 2.20 and Lemma 2.22 to uniquely determine the right-angled
hexagon H0,A,B,C,D,8 as shown in in Figure 21 below.

The maximality of the 12-tuple at the boundary is again guaranteed by
Lemma 2.21. We now put H “ g´1pH0,A,B,C,D,8q and Y1 “ YP1,P2 .
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0

8

B

Z1

C

Z2

DC´1D
D

´D

AB´1A

A
´A

Figure 21: The right-angled hexagon H0,A,B,C,D,8 is
uniquely determined by the maximal 6-tuple in red

p0, A,B,C,D,8q

Notation 4.5. In this thesis we will use a maximal 6-tuple as in (11) to uniquely
determine a right-angled hexagon pH,Y1q inside H. In order to simplify the
notation we will write the 6-tuple as pP,A,B,C,D,Qq. By writing

H “ pP,A,B,C,D,Qq

we will refer to the hexagon pH,YP,Qq where H is uniquely determined by
pP,A,B,C,D,Qq as shown in Lemma 4.4 (11). The choice of the tube YP,Q

is therefore encoded in the order of the maximal 6-tuple. When P “ 0 and
Q “ 8 then A,B,C,D are positive definite matrices and we obtain the hexagon
pH,Y0,8q where H is shown in Figure 21. In particular the maximal 12-tuple
associated to H is given by

H “ p8,´D,´A, 0, AB´1A,A,Z1, B, C, Z2, D,DC
´1Dq

where Z1, Z2 are uniquely defined by requiring

YAB´1A,B K YZ1,Z2 K YC,DC´1D

Recall Definition 3.1 for the notion of a generic quadruple. Let us now give
the following

Definition 4.6. The set of generic hexagons Hgen Ă H is given by ordered
6-tuples of the form

Hgen :“ tpP,A,B,C,D,Qq maximal| pP,A,B,Qq, pP,B,C,Qq, pP,C,D,Qq genericu
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Remark 4.7. Let pH,Y1q be a generic hexagon determined by the maximal
6-tuple pP,A,B,C,D,Qq where Y1 “ YP,Q. Then both pP,A,B,C,Qq and
pP,B,C,D,Qq are inside Qgen. In particular let b, c, d be the three vectors
(Figure 22)

b “ da
`

ppP,QpAq, pP,QpBqq

c “ da
`

ppP,QpBq, pP,QpCqq

d “ da
`

ppP,QpCq, pP,QpDqq

A

P

Q D

C

B

b

c

d

Y1

Figure 22: The hexagon pH,Y1q is generic if and
only if b, c, d are regular

By Lemma 2.17 it is easy to see that the hexagon pH,Y1q is generic if and
only if the vectors b, c, d are regular.

Let us now focus on the symmetric space associated to Spp4,Rq.

Definition 4.8. The set of standard hexagons Hst Ă Hgen is given by

Hst :“ tp0, A, Id,

ˆ

λ1 0
0 λ2

˙

, D,8q P Hgen| λ1, λ2 P R, λ1 ą λ2u

Remark 4.9. Similarly to what we have seen for quintuples (Remark 3.6) for
any pH,Y1q P Hgen we can always find an isometry g P PSpp4,Rq such that
g ¨ pH,Y1q “ pgH,Y0,8q P Hst. Given a standard hexagon pHst,Y0,8q P Hst its
stabilizer is the group

StabpHstq “

!

Id,

ˆ

r 0
0 r

˙

)

– Z{2Z
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where r “

ˆ

´1 0
0 1

˙

. It holds

Hgen{PSpp4,Rq – Hst{Z{2Z

4.2 Non-generic hexagons: the set Hnongen

In this section we define non-generic right-angled hexagons. Recall that by
definition a generic hexagon pH,Y1q P Hgen is given by an ordered 6-tuple
H “ pP,A,B,C,D,Qq where three quadruples pP,A,B,Qq, pP,B,C,Qq and
pP,C,D,Qq are generic and Y1 “ YP,Q (Definition 4.6). When the hexagon
is non-generic some of these quadruples fail to be generic. We define three
different types of non-generic hexagons depending on how many quadruples in
H “ pP,A,B,C,D,Qq fail to be generic: a non-generic hexagon of type k is a
hexagon where k quadruples are non-generic. Let us start with the following

Definition 4.10. (Non-generic quadruple) Let pP,X, Y,Qq be a maximal
quadruple and let pµ1, µ2q be the eigenvalues of the cross-ratio RpP,X, Y,Qq.
The quadruple pP,X, Y,Qq is said to be non-generic if µ1 “ µ2.

Definition 4.11. The set Hnongen
type1 is given by

Hnongen
type1 :“ Hnongen

type1.1 Y Hnongen
type1.2 Y Hnongen

type1.3

where

Hnongen
type1.1 :“ tpP,A,B,C,D,Qq maximal| pP,A,B,Qq non-generic, pP,B,C,Qq, pP,C,D,Qq genericu

Hnongen
type1.2 :“ tpP,A,B,C,D,Qq maximal| pP,B,C,Qq non-generic, pP,A,B,Qq, pP,C,D,Qq genericu

Hnongen
type1.3 :“ tpP,A,B,C,D,Qq maximal| pP,C,D,Qq non-generic, pP,A,B,Qq, pP,B,C,Qq genericu

Definition 4.12. The set Hnongen
type2 is given by

Hnongen
type2 :“ Hnongen

type2.1 Y Hnongen
type2.2 Y Hnongen

type2.3

where

Hnongen
type2.1 :“ tpP,A,B,C,D,Qq maximal| pP,A,B,Qq, pP,B,C,Qq non-generic, pP,C,D,Qq genericu

Hnongen
type2.2 :“ tpP,A,B,C,D,Qq maximal| pP,A,B,Qq, pP,C,D,Qq non-generic, pP,B,C,Qq genericu

Hnongen
type2.3 :“ tpP,A,B,C,D,Qq maximal| pP,B,C,Qq, pP,C,D,Qq non-generic, pP,A,B,Qq genericu

Definition 4.13. The set Hnongen
type3 is given by

Hnongen
type3 :“ tpP,A,B,C,D,Qq maximal| pP,A,B,Qq, pP,B,C,Qq, pP,C,D,Qq non-genericu

Proposition 4.14.

H “ Hgen Y Hnongen
type1 Y Hnongen

type2 Y Hnongen
type3
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Proof. The inclusion Hgen Y Hnongen
type1 Y Hnongen

type2 Y Hnongen
type3 Ă H is trivial.

Let pH,Y1q P H. By Lemma 4.4 we can uniquely determine pH,Y1q from a
maximal 6-tuple pH,Y1q “ pP,A,B,C,D,Qq where Y1 “ YP,Q. Let b, c, d be
the three vectors in Figure 22

b “ da
`

ppP,QpAq, pP,QpBqq

c “ da
`

ppP,QpBq, pP,QpCqq

d “ da
`

ppP,QpCq, pP,QpDqq

The hexagon pH,Y1q is generic if and only if the vectors b, c, d are regular (Re-
mark 4.7) and is non-generic if one of them is inside d. For every vector b, c and
d we see if it is generic or not and we list all the possible configurations. The
hexagon pH,Y1q must be contained in one of this exhaustive list. We obtain
23 “ 8 possible configurations, one in Hgen, three in Hnongen

type1 , three in Hnongen
type2

and one in Hnongen
type3 .

4.3 Arc coordinates for generic hexagons
In this section we parametrize right-angled hexagons in X up to isometry. We
will concentrate on the case where X is the symmetric space associated to
Spp4,Rq. The parameters that we introduce aim to generalize the parameters
for a right-angled hexagon inside H2. It is well known that given three real num-
bers b, c, d ą 0 there exists (up to isometries) a unique right-angled hexagon in
H2 with alternating sides of lengths b, c and d (see for example [Mar16, Lemma
6.2.2]). When considering the Siegel space X the length parameters are vec-
tors and take value in the Weyl chamber a`. Beyond length parameters it is
necessary to introduce what we will call angle parameters. This will lead to a
geometric interpretation of elements in PSOp2q in the spirit already mentioned
in Section 2.10.

Let us now consider X the symmetric space associated to Spp4,Rq. Recall
that we denote by a the subset of the Weyl chamber consisting of regular vectors:

a “ tpx1, x2q P R2| x1 ą x2 ą 0u

We compute the parameter space for Hgen. We will use the fact (Remark
4.9)

Hgen{PSpp4,Rq – Hst{Z{2Z

Proposition 4.15. The set Hgen{PSpp4,Rq is parametrized by

a3 ˆ

´

PSOp2q ˆ PSOp2q

¯

{„

where for pS1, S2q P PSOp2q ˆ PSOp2q it holds

pS1, S2q „ pS1
1, S

1
2q ðñ S1

i “

ˆ

´1 0
0 1

˙

Si

ˆ

´1 0
0 1

˙

, i P t1, 2u
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The parametrization is given by

pb, c, d, rS1, S2sq ÞÑ rp0, A, Id, C,D,8qs P Hst{Z{2Z

where b “ pb1, b2q, c “ pc1, c2q, d “ pd1, d2q and

A “ ST
1

ˆ

1
eb2

0
0 1

eb1

˙

S1

C “

ˆ

ec1 0
0 ec2

˙

D “

ˆ

0
?
ec1

´
?
ec2 0

˙

S2

ˆ

ed1 0
0 ed2

˙

ST
2

ˆ

0 ´
?
ec2

?
ec1 0

˙

This parameter space can be rewritten as

a3 ˆ

´

r0, 2πq ˆ r0, 2πq

¯

{„

where for αi P r0, 2πq, i P t1, 2u it holds

Si “

ˆ

cos αi

2 ´ sin αi

2
sin αi

2 cos αi

2

˙

and the equivalence relation is given by

pα1, α1q „ pα1
1, α

1
2q ðñ α1

i “ 2π ´ αi, i P t1, 2u

0

8

Id

Z1

C “

ˆ

ec1 0
0 ec2

˙

Z2

DC´1D
D´D

A2

A´A

S1

S2

b

c

d

Figure 23: The standard right-angled hexagon
pHst,Y0,8q with parameters pb, c, d, S1, S2q
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Proof. As we have done for quintuples, we first show how to find parameters
`

pb1, b2q, pc1, c2q, pd1, d2q, rS1, S2s
˘

for a given pH,Y1q inside Hgen. Let

pH,Y1q “ pP,A,B,C,D,Qq

where Y1 “ YP,Q. Up to isometry we can consider P “ 0 and Q “ 8. As
pH,YP,Qq “ pH,Y0,8q P Hgen the quintuples p0, A,B,C,8q and p0, B,C,D,8q

both belong to Qgen. We use Proposition 3.7 to find length parameters b, c, d
inside a:

pb1, b2q “ da
`

piA, iBq

pc1, c2q “ da
`

piB, iCq

pd1, d2q “ da
`

piC, iDq

Let g P StabpY0,8q be such that g ¨ B “ Id and g ¨ C “

ˆ

ec1 0
0 ec2

˙

(this is

the same procedure exposed in the proof of Proposition 3.7). We obtain exactly
two possibilities g1, g2 which correspond to the standard hexagons

pH1,Y0,8q “ p0, g1A, Id, C, g1D,8q and pH2,Y0,8q “ p0, g2A, Id, C, g2D,8q

where
g1A “

ˆ

´1 0
0 1

˙

g2A

ˆ

´1 0
0 1

˙

g1D “

ˆ

´1 0
0 1

˙

g2D

ˆ

´1 0
0 1

˙

The points on the right hand side should be thought as the image under a reflec-
tion in the hyperbolic component of Y0,8 (Remark 2.33). Let S1, S2 be the angle
parameters obtained by the quintuples p0, g1A, Id, C,8q and p0, Id, C, g1D,8q

respectively (see Proposition 3.7). These parameters are obtained by diago-
nalization matrices and the matrix Si P PSOp2q, i P t1, 2u has the geometric
interpretation of an angle αi P r0, 2πq where it holds

Si “

ˆ

cos αi

2 ´ sin αi

2
sin αi

2 cos αi

2

˙

, i P 1, 2

The quintuples p0, g1A, Id, C,8q, p0, Id, C, g1D,8q are parametrized by pb, c, rS1sq

and pc, d, rS2sq respectively where

Si „ S1
i ðñ S1

i “

ˆ

´1 0
0 1

˙

Si

ˆ

´1 0
0 1

˙

This equivalence relation is the identification of angle αi with angle p2π ´ αiq.
See Figures 23 and 24 for a visualization of the parameters pb, c, d, rS1, S2sq.
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S1

S2

Id

C

A

D H2

S1
1

S1
2

Id

C

A

D
H2

Figure 24: Visualization of the equivalence relation
rS1, S2s “ rS1

1, S
1
2s in the Poincaré disk model of H2

Now take pb, c, d, rS1, S2sq inside a3 ˆ

´

PSOp2q ˆ PSOp2q

¯

{ „. We want
to construct a standard hexagon pHst,Y0,8q. Up to PSpp4,Rq-action we can
consider B “ Id and C diagonal. It is sufficient to determine A,C and D for
pHst,Y0,8q to be uniquely determined. The equality

pc1, c2q “ da
`

piId, iCq

forces C “

ˆ

ec1 0
0 ec2

˙

. We use Lemma 3.11 and Lemma 3.12 to uniquely

determine A and D respectively. We use Lemma 2.20 and Lemma 2.22 to
compute the corresponding orthogonal tubes.

To finish the proof, we need to check that for pS1
1, S

1
2q „ pS1, S2q we obtain

an equivalent hexagon pH 1st,Y0,8q inside Hst{Z{2Z. Recall that for any M in
Sym`

p2,Rq we can draw its hyperbolic component inside the standard tube
Y0,8 – RˆH2 and recall that we denote by Mr the point obtained by reflecting

M across the y-axis of H2, that is Mr “ rMr where r “

ˆ

´1 0
0 1

˙

(Remark

2.33). For i “ 1, 2 let

S1
i “

ˆ

´1 0
0 1

˙

Si

ˆ

´1 0
0 1

˙

then

A1 “

ˆ

´1 0
0 1

˙

ST
1

ˆ

´1 0
0 1

˙ˆ

1
eb2

0
0 1

eb1

˙ˆ

´1 0
0 1

˙

S1

ˆ

´1 0
0 1

˙

“

ˆ

´1 0
0 1

˙

A

ˆ

´1 0
0 1

˙

“ Ar

C 1 “ C
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D1 “

ˆ

0
?
ec1

´
?
ec2 0

˙ˆ

´1 0
0 1

˙

S2

ˆ

´1 0
0 1

˙ˆ

ed1 0
0 ed2

˙ˆ

´1 0
0 1

˙

ST
2

ˆ

´1 0
0 1

˙ˆ

0 ´
?
ec2

?
ec1 0

˙

“

“

ˆ

0
?
ec1

?
ec2 0

˙

S2

ˆ

ed1 0
0 ed2

˙

ST
2

ˆ

0
?
ec2

?
ec1 0

˙

“

ˆ

´1 0
0 1

˙

D

ˆ

´1 0
0 1

˙

“ Dr

so that g ¨ pHst,Y0,8q “ pH 1st,Y0,8q where

g “

ˆ

r 0
0 r

˙

, r “

ˆ

´1 0
0 1

˙

Again, we should think of this equivalent relation as the identification of
angles S1 “ α1, S2 “ α2 with angles p2π ´ α1q, p2π ´ α2q respectively.

Corollary 4.16. The set Hgen{PSpp4,Rq is parametrized by

a3 ˆ r0, πs ˆ r0, 2πq

Proof. The equivalence relation of Proposition 4.15 is given by αi „ 2π´αi for
i P t1, 2u. We choose α1 P r0, πs as representative of the equivalence class (see
Figure 24 above).

Definition 4.17. (Arc coordinates for generic right-angled hexagons)
The parameters of Proposition 4.15 will be called arc coordinates for a generic
right-angled hexagon pH,Y1q. The vectors b, c, d will be called length parameters
and α1, α2 will be called angle parameters.

Remark 4.18. The term arc coordinates introduced in Definition 4.17 could be
misleading as we also use it for the parametrization of classical Teichmüller space
and for its generalization in the case of maximal representations. Nevertheless,
we have decided to keep this name also for the parameters of a hexagon as they
are crucial for the construction of parameters for maximal representations and
will appear in their parameter space (Theorem 7.23).

4.4 Polygonal chain associated to a right-angled hexagon
In the previous section we have introduced arc coordinates for a generic right-
angled hexagon in the symmetric space X associated to Spp4,Rq. In particular
we have seen that a hexagon pH,Y1q P Hgen is parametrized up to isometry by
length and angle parameters as explained in Proposition 4.15. In this section we
define the polygonal chain associated to an ordered right-angled hexagon and
show how this is related to length and angle parameters. For the purposes of this
thesis we will define the polygonal chain of pH,Y1q in the case where Y1 “ Y0,8.

Recall that given A P Sym`
p2,Rq, the hyperbolic component of A is the

point πH2

pp0,8pAqq, i.e. the H2-component of iA “ p0,8pAq in the identification
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Y0,8 “ RˆH2 (Definition 2.29). Recall also (Remark 2.30) that for two points
iA, iB with

da
`

piA, iBq “ pd1, d2q

the hyperbolic distance dH
2

pπH2

piAq, πH2

piBqq “ h is given by

h “ hpdq “ d1 ´ d2 (13)

Definition 4.19. Let X be the symmetric space associated to Spp4,Rq and let
pH,Y0,8q P H be an ordered right-angled hexagon in X . Let us write

H “ p0, A,B,C,D,8q

for a maximal 6-tuple p0, A,B,C,D,8q. The polygonal chain associated to
pH,Y0,8q is the connected series of geodesic segments with vertices given by the
ordered sequence of points (possibly coinciding)

´

πH2

piAq, πH2

piBq, πH2

piCq, πH2

piDq

¯

The segments of the polygonal chain are the oriented geodesic segments (possibly
collapsing to one point):

ÝÝÝÝÝÝÝÝÝÝÝÑ
πH2

piAqπH2

piBq,
ÝÝÝÝÝÝÝÝÝÝÝÑ
πH2

piBqπH2

piCq,
ÝÝÝÝÝÝÝÝÝÝÝÑ
πH2

piCqπH2

piDq

The angles of the polygonal chain are the angles formed by two consecutive
segments (measured on the left-hand side of the oriented segments).

hpbq

hpcq

hpdq

Id

A

C

D

hpbq

hpcq

D

Id

A

C

α1

α2

α1

Figure 25: Polygonal chains of a generic hexagon
and of a non-generic hexagon of type 1.3

If pH,Y0,8q P Hgen the segments of the polygonal chain of pH,Y0,8q have
hyperbolic length given by hpbq, hpcq and hpdq respectively where h is the map in
(13) and b, c, d are length parameters of the arc coordinates. Up to an isometry
g P Spp4,Rq we can consider the case where B “ Id and C is diagonal. Observe
that to a generic hexagon pH,Y0,8q we can associate exactly two polygonal
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chains up to isometry, and these are drawn in Figure 24. If the hexagon is non-
generic some segments contract to a point. The hyperbolic length of the segment
is zero as the corresponding length parameter is inside d “ tpx1, x2q| x1 “ x2qu.
This will be made more clear in the next section. The polygonal chain of both
a generic and a non-generic hexagon is illustrated in the Poincaré disc model in
Figure 25. For simplicity for any X P Sym`

p2,Rq we have denoted the point
πH2

piXq as X.

4.5 Arc coordinates for non-generic hexagons
In this section we want to study arc coordinates in the case of non-generic
hexagons inside X . Again we will focus on the case where X is the symmetric
space associated to Spp4,Rq. Recall that we denote by a the subset of the Weyl
chamber consisting of regular vectors:

a “ tpx1, x2q P R2| x1 ą x2 ą 0u

Recall also that we denote by d the following set

d “ tpx1, x2q P R2| x1 “ x2u

A generic hexagon pH,Y1q P Hgen is defined by an ordered 6-tuple
H “ pP,A,B,C,D,Qq where three quadruples are generic and Y1 “ YP,Q. The
genericity of these quadruples allows us to associate to pH,Y1q three regular
vectors inside a (Remark 4.7). When the hexagon is non-generic these vectors
can land inside d. We have defined three different types of non-generic hexagons
depending on how many quadruples inside pH,Y1q “ pP,A,B,C,D,Qq are non-
generic. We now give parameters which arise as a natural generalisation of
Proposition 4.15.

Proposition 4.20. Non-generic hexagons of type 1 are parametrised up to
isometry by

Hnongen
type1.1 {PSpp4,Rq – d ˆ a2 ˆ r0, 2πq{„

Hnongen
type1.2 {PSpp4,Rq – a ˆ d ˆ a ˆ r0, 2πq{„

Hnongen
type1.3 {PSpp4,Rq – a2 ˆ d ˆ r0, 2πq{„

where for α P r0, 2πq the equivalence relation is given by

α „ α1 ðñ α1 “ 2π ´ α

Proof. LetH “ pP,A,B,C,D,Qq P Hnongen
type1.1 . The proof is analogue to the proof

of Proposition 4.15. Up to isometry we can assume P “ 0, Q “ 8, B “ Id and
C diagonal. As p0, A, Id,8q non-generic we can not define an angle parameter
between the hyperbolic components of A and Id and the parameter da

`

piA, iIdq

is inside d. Geometrically this means that the two points coincide in the H2-
component of Y0,8 (Figure 26). The quintuple p0, Id, C,D,8q is generic and
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IdA

C

D D

IdC
A

DC

Id

A

Figure 26: Polygonal chains of non-generic hexagons
of type 1.1, 1.2 and 1.3 respectively

we use Proposition 3.7 to determine the angle parameter. Observe that the
stabilizer of Hnongen

type1.1 “ p0, A, Id, C,D,8q is also given by

StabpHnongen
type1.1 q “ tId,

ˆ

r 0
0 r

˙

u – Z{2Z where r is the reflection across the

hyperbolic component (Remark 2.33). Up to isometry we can always choose the
angle parameter to lie inside r0, πs – PSOp2q{„.

Conversely, given
`

pb, bq, pc1, c2q, pd1, d2q, rSs
˘

P d ˆ a2 ˆ PSOp2q{„ we con-
struct the hexagon Hnongen

type1.1 “ p0, A, Id, C,D,8q where

A “

ˆ

1
eb

0
0 1

eb

˙

C “

ˆ

ec1 0
0 ec2

˙

D “

ˆ

0
?
ec1

´
?
ec2 0

˙

S

ˆ

ed1 0
0 ed2

˙

ST

ˆ

0 ´
?
ec2

?
ec1 0

˙

The proofs for type 1.2 and 1.3 are similar.

Proposition 4.21. Non-generic hexagons of type 2 are parametrized up to
isometry by

Hnongen
type2.1 {PSpp4,Rq – d2 ˆ a

Hnongen
type2.2 {PSpp4,Rq – d ˆ a ˆ d

Hnongen
type2.3 {PSpp4,Rq – a ˆ d2

Proof. The proof is similar to the proof of Proposition 4.15 and Proposition
4.20. Since two quintuples are non-generic, we do not have any angle in the
parameter space. Up to isometry we can move the polygonal chains of the
hexagons in a configuration shown in Figure 27. The vector parameters are the
same of Proposition 4.15, where two length are not regular and lie inside d.
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A IdC

D C D

IdA Id

Figure 27: Polygonal chains of three non-generic
hexagons of type 2.1, 2.2 and 2.3 respectively

Proposition 4.22. Non-generic hexagons of type 3 are parametrized up to
isometry by

Hnongen
type3 – d3 – R3

ą0

Proof. Let pH,Y1q “ pP,A,B,C,D,Qq be inside Hnongen
type3 and up to isometry

let us consider again P “ 0, Q “ 8 and B “ Id. We obtain three vectors

da
`

pp0,8pAq, p0,8pIdqq “ pb, bq

da
`

pp0,8pIdq, p0,8pCqq “ pc, cq

da
`

pp0,8pCq, p0,8pDqq “ pd, dq

which are all contained in d. The matrices A,C and D are all multiples of
the identity matrix. Equivalently, the points A, Id, C,D all coincide in the H2-
component of Y0,8 and there is no angle parameter.

Remark 4.23. Proposition 4.22 corresponds to hexagon-parameters in the hy-
perbolic case: we obtain the 3-dimensional space of right-angled hexagons of
H2.

4.6 Arc coordinates for H
In Sections 4.3 and 4.5 we have introduced arc coordinates for a right-angled
hexagon pH,Y1q in X . We have first considered the case where the hexagon
is generic and we have then adapted the parameters in the case of non-generic
hexagons of type 1, 2 and 3 respectively. In this section we want to present arc
coordinates in a more compact way. We will introduce a parameter space for H
which encloses both the generic and the non-generic case. Again we will focus
on the case where X is the symmetric space associated to Spp4,Rq.
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Recall that we denote by a the subset of the Weyl chamber consisting of
regular vectors:

a “ tpx1, x2q P R2| x1 ą x2 ą 0u

and by d the following set

d “ tpx1, x2q P R2| x1 “ x2u

We introduce the symbol a to denote the union a “ a Y d that is the set

a “ tpx1, x2q| x1 ě x2 ą 0u

Definition 4.24. The space of decorated arc coordinates Adec
pH,Y1q

is given by

Adec
pH,Y1q :“ a3 ˆ r0, 2πq ˆ r0, 2πq

We further define ApH,Y1q to be the set

ApH,Y1q :“ Adec
pH,Y1q{„

where the equivalence relation is given by

pb, c, d, α1, α2q „ pb, c, d, 2π ´ α1, 2π ´ α2q

Remark 4.25. It is straightforward to see that if b, c, d P a3 then ApH,Y1q is
the space of arc coordinates for non-generic hexagons described in Proposition
4.15.

We can now state the following

Theorem 4.26. Let X be the symmetric space associated to Spp4,Rq and let
H be the space of ordered right-angled hexagons in X :

H “ tpH,Y1q| H “ rY1,Y2,Y3,Y4,Y5,Y6s right-angled hexagon u

Then H is parametrized up to isometry by

A :“ ApH,Y1q{„

where for pb, c, d, α1, α2q P ApH,Y1q we have the following equivalent relation „ :

(i) If b P d:
pb, c, d, α1, α2q „ pb, c, d, α1, α2q @α1

(ii) If c P d:
pb, c, d, α1, α2q „ pb, c, d, α1, α2q

for α1, α2 such that α1 ` α2 “ α1 ` α2

(iii) If d P d:
pb, c, d, α1, α2q „ pb, c, d, α1, α2q @α2
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Proof. Let pb, c, d, rα1, α2sq P A. We want to construct a right-angled hexagon

pH,Y0,8q “ p0, A, Id, C,D,8q

fro a maximal 6-tuple p0, A, Id, C,D,8q where C is diagonal. We construct
pH,Y0,8q in the following way: we look at the length parameters pb, c, dq which
uniquely determine the genericity type of the hexagon (Remark 4.7) and then
we use one of Propositions 4.20, 4.21 and 4.22 to construct pH,Y0,8q. In the
case of non-generic hexagons some of the angle parameters vanish and this is
translated in the equivalent relations of A by collapsing the angle parameter in
one point. More precisely:

0. If b, c, d P a3 we construct a generic hexagon with arc coordinates pb, c, d, rα1, α2sq

using Proposition 4.15:

pH,Y0,8q “ pb, c, d, rα1, α2sq

1.1 If b P d, c, d P a2 then the angle parameter α1 is collapsed into a point and
we use α2 to construct a non-generic hexagon of type 1.1 using Proposition
4.20

pH,Y0,8q “ pb, c, d, rα2sq

The polygonal chain of such a hexagon is illustrated in Figure 26.

1.2 If c P d, b, d P a2 we use Proposition 4.20 to construct a non-generic
hexagon of type 1.2 where

pH,Y0,8q “ pb, c, d, rα1 ` α2 ´ πsq

The reason why we choose to translate the angle by π is the follow-
ing: in the procedure of constructing a hexagon pH,Y0,8q from a point
pb, c, d, rα1, α2sq inside A we know that angle parameters α1, α2 have a ge-
ometric interpretation realised in the polygonal chain of pH,Y0,8q. If the
hexagon is non-generic of type 1 then we only need one angle parameter to
construct pH,Y0,8q. In this construction procedure, when moving contin-
uously from a point pb, c, d, rα1, α2sq where c P a to a point pb, c, d, rα1, α2sq

where c P d we want the constructed hexagons to be close. To do this we
need to construct pH,Y0,8q using the angle parameter rα1 `α2 ´πs. This
is illustrated in Figure 28 below.

1.3 If d P d, c, d P a2 then the angle parameter α2 is collapsed into a point and
we use α1 to construct a non-generic hexagon of type 1.1 using Proposition
4.20

pH,Y0,8q “ pb, c, d, rα1sq

If two length parameters are inside d then two of the three equivalence relations
of A are satisfied. In this case both angle parameters are collapsed into a point.
For example if (i) b P d and (ii) c P d then

pb, c, d, α1, α2q „ pb, c, d, α1, α2q @α1,@α2
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hpbq

hpcq

hpdq

Id

A

C D

D
Id

A

α1

α2 ´ π

α1

α2 ´ π

Figure 28: Construction of pH,Y0,8q of type 1.2
when c Ñ d

as

pb, c, d, α1, α2q
piiq
„ pb, c, d, α1 ` α2 ´ α2, α2q @α2

piq
„ pb, c, d, α1, α2q @α1

We construct pH,Y0,8q in the following way:

2.1 If b, c P d2, d P a we use Proposition 4.21 to construct a non-generic
hexagon of type 2.1 where

pH,Y0,8q “ pb, c, dq

2.2 If b, d P d2, c P a we use Proposition 4.21 to construct a non-generic
hexagon of type 2.2 where

pH,Y0,8q “ pb, c, dq

2.3 If c, d P d2, b P a we use Proposition 4.21 to construct a non-generic
hexagon of type 2.3 where

pH,Y0,8q “ pb, c, dq

3. If b, c, d P d3 we use Proposition 4.22 to construct a non-generic hexagon
of type 3 where

pH,Y0,8q “ pb, c, dq “ pb, c, dq P R3
`

It is clear that any equivalent point pb, c, d, α1, α2q „ pb, c, d, α1, α2q in A
induces an isometric hexagon pH 1,Y0,8q in H.

Conversely, let pH,Y1q be a hexagon in H and let us writeH “ pP,A,B,C,D,Qq.
Up to isometry we can consider P “ 0, B “ Id, Q “ 8 and C diagonal, so that
Y1 “ Y0,8. We put

b “ da
`

piA, iIdq
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c “ da
`

piId, iCq

d “ da
`

piC, iDq

Again we use Propositions 4.20 and 4.21 to determine arc coordinates. More
precisely:

0. If b, c, d P a3 we associate to pH,Y0,8q the point pb, c, d, rα1, α2sq using
Proposition 4.15.

1.1 If b P d, c, d P a2 then for pb, c, d, α1, α2q P AH,Y1
it holds

pb, c, d, α1, α2q „ pb, c, d, α1, α2q @α1

We compute the point pb, c, d, rα2sq using Proposition 4.20 and we associate
to pH,Y0,8q the point pb, c, d, r‚, α2sq.

1.2 If c P d, b, d P a2 then for pb, c, d, α1, α2q P AH,Y1
it holds

pb, c, d, α1, α2q „ pb, c, d, α1, α2q

for α1, α2 such that α1 `α2 “ α1 `α2. We compute the point pb, c, d, rαsq

using Proposition 4.20 and we associate to pH,Y0,8q the point
pb, c, d, rα2 ,

α
2 ` πsq.

1.3 If d P d, c, d P a2 then for pb, c, d, α1, α2q P AH,Y1
it holds

pb, c, d, α1, α2q „ pb, c, d, α1, α2q @α2

We compute the point pb, c, d, rα1sq using Proposition 4.20 and we associate
to pH,Y0,8q the point pb, c, d, rα1, ‚sq.

For the cases 2.1, 2.2, 2.3 and 3 all the angle parameters vanish and we associate
to pH,Y0,8q the point pb, c, d, r‚, ‚sq.

Definition 4.27. (Arc coordinates for H) The parameters of Theorem 4.26
will be called arc coordinates for a right-angled hexagon pH,Y1q. Given pH,Y1q

inside H its arc coordinates pb, c, d, rα1, α2sq will be denoted ApH,Y1q. The
vectors b, c, d are length parameters and α1, α2 are angle parameters.

4.7 Hexagons inside a maximal polydisc
Let X be the symmetric space associated to Spp4,Rq. We have seen in Section
2.4 how to embed H2 ˆ H2 inside X through the map:

ψ : H2 ˆ H2 Ñ X

pz1, z2q ÞÑ

ˆ

z1 0
0 z2

˙

The image of ψ in X is called the model polydisc since each other polydisc
is translate of our model by an element in Spp4,Rq. A right-angled hexagon
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H “ rY1,Y2,Y3,Y4,Y5,Y6s is therefore contained in a maximal polydisc if there
exists an isometry g such that g ¨ H is contained in the model polydisc. In
particular a hexagon H is contained in the model polydisc of X if and only if
all tubes have diagonal matrices as endpoints. Recall that the subset ψ

`

pz, zq
˘

is a copy of H2 inside X and is referred to as the diagonal disc.
In Theorem 4.26 we have parametrized the space of ordered right-angled

hexagons H up to isometry. In the following Proposition we show which sub-
space correspond to hexagons contained in a maximal polydisc.

Proposition 4.28. The subspace D Ă A

D “

!

pb, c, d, rα1, α2sq P A| rα1, α2s P tr0, 0s, r0, πs, rπ, 0s, rπ, πsu

)

Ă A

corresponds to right-angled hexagons inside a maximal polydisc in X .

Proof. In the case where b, c, d P a3 the point p “ pb, c, d, rα1, α2sq corresponds
to a generic hexagon. Using Proposition 4.15 we know p “ rpH,Y0,8qs where

pH,Y0,8q “ p0, A, Id, C,D,8q

with C “

ˆ

ec1 0
0 ec2

˙

and

A “

ˆ

1
eb2

0
0 1

eb1

˙

, D “

ˆ

ec1`d2 0
0 ec2`d1

˙

for α1 “ α2 “ 0

A “

ˆ

1
eb1

0
0 1

eb2

˙

, D “

ˆ

ec1`d1 0
0 ec2`d2

˙

for α1 “ α2 “ π

A “

ˆ

1
eb2

0
0 1

eb1

˙

, D “

ˆ

ec1`d1 0
0 ec2`d2

˙

for α1 “ 0, α2 “ π

A “

ˆ

1
eb1

0
0 1

eb2

˙

, D “

ˆ

ec1`d2 0
0 ec2`d1

˙

for α1 “ π, α2 “ 0

All four cases correspond to hexagons consisting of tubes that have diagonal
matrices as endpoints. This is consistent with the geometrical meaning of the
angle parameter described in Section 2.10. A similar argument can be used
for the case of non-generic hexagons of type 1. All non-generic right-angled
hexagons of type 2 and 3 are contained in a maximal polydisk in X and in these
cases for all pb, c, d, rα1, α2sq P D it holds

pb, c, d, α1, α2q „ pb, c, d, α1, α2q @α1, α2

Conversely, if rpH,Y1qs P H{PSpp4,Rq is contained in a maximal polydisc then we
can move it into the model polydisc through an isometry. It is easy to see that
in this case the point p P A corresponding to rpH,Y1qs must be inside D.

Definition 4.29. We define DH2 as the set

DH2 “
␣

pb, c, d, rα1, α2sq P A| b, c, d P d3
(
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In Definition 4.2 we have defined the stabilizer of a right-angled hexagon H “

rY1,Y2,Y3,Y4,Y5,Y6s as

StabpHq “
␣

g P PSpp4,Rq| g ¨ Yi “ Yi, i P t1, ..., 6u
(

Proposition 4.30. (Stabilizer of a right-angled hexagon) Let X be the
symmetric space associated to Spp4,Rq and let H “ rY1,Y2,Y3,Y4,Y5,Y6s be a
right-angled hexagon in X . It holds

(i) If H is contained in a copy of H2 inside X then StabpHq – POp2q

(ii) If H is contained in a maximal polydisc then StabpHq – Z{2Z

(iii) If H is not contained in any maximal polydisc then StabpHq “ tidu

Proof. Up to isometry let us consider

H “ p0, A, Id, C,D,8q

where C is diagonal.

(i) If H is contained in the diagonal disc then the matrices A,C,D are all
multiples of Id and so are all endpoints of the tubes of H. It is clear that
the stabilizer is POp2q.

(ii) The matrices A,C,D are all diagonal and so are all endpoints of the tubes

of H. The stabilizer is given by the identity together with
ˆ

r 0
0 r

˙

where

r “

ˆ

´1 0
0 1

˙

.

(iii) This is clear.
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5 Discussion about the parameters
In the previous section we have introduced arc coordinates A to parametrize
the space H{PSpp4,Rq (Theorem 4.26). In particular to an ordered right-angled
hexagon rpH,Y1qs inside H{PSpp4,Rq we associate a point pb, c, d, rα1, α2sq where
b, c, d are called length parameters and whose geometric interpretation is il-
lustrated for example in Figure 22. This choice of length parameters could
somehow appear not natural, especially if compared with the parameters of a
right angled-hexagon in the hyperbolic space. In H2 a right-angled hexagon is
uniquely determined by the length of three alternating sides. In the Siegel space
all length parameters b, c, d are lying in the tube Y1. In this chapter we will
recall the proof of the parametrization in H2 of right-angled hexagons as done
in [Mar16, Lemma 6.2.2] (suitably adapted to the upper-half space model). We
then discuss the differences and the problems that arise when generalizing these
hexagon-parameters in the symmetric space X associated to Spp4,Rq. We refer
to [BP92], [RR95], [Lou20] for an introduction to hyperbolic geometry.

5.1 The H2-case
We start by recalling the definition of cross-ratio in H2 and by giving a propo-
sition that will have an analogue in the Siegel space X .

Definition 5.1. Let z1, z2, z3, z4 P H2. The cross-ratio Rpz1, z2, z3, z4q is the
point

Rpz1, z2, z3, z4q “ fpz3q

where f is the unique map in PSLp2,Rq such that

fpz1q “ 0, fpz2q “ 1, fpz4q “ 8

In the upper-half space model H2 “ tx ` iy| x, y P R, y ą 0u the explicit
expression for the cross-ratio Rpz1, z2, z3, z4q where zi “ xi ` iyi is given by

Rpz1, z2, z3, z4q “ pz1 ´ z2q´1pz4 ´ z2qpz4 ´ z3q´1pz1 ´ z3q

The following lemma is well known and is the analogue of Lemma 2.17 for
the hyperbolic plane:

Lemma 5.2. Let pa, x, y, bq P BH2 and let γa,b be the infinite geodesic with
endpoint ta, bu. Let pa,b be the orthogonal projection onto γa,b. Then

dH
2

ppa,bpxq, pa,bpyqq “ logµ

where µ “ Rpa, x, y, bq.
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Lemma 5.3. Let γa,b, γc,d, γe,f be three infinite geodesics with endpoints ta, bu, tc, du

and te, fu respectively. Suppose

γa,b K γc,d K γe,f

Then there exists a bijective map

T : R` Ñ R`

Rpc, b, e, dq ÞÑ Rpa, b, e, fq

given by T pxq “
px`1q

2

4x

Proof. Up to isometry we can consider γc,d “ γ0,8 and γa,b “ γ´1,1. Then
γe,f “ γ´x,x for an x P R`, x ą 1 (Figure 29 below).

´1´x 0 1 x

8

H2

Figure 29: There is a bijective map between
Rp0, 1, x,8q and Rp´1, 1, x,´xq

We obtain
Rpc, b, e, dq “ Rp0, 1, x,8q “ x ą 1

and

Rpa, b, e, fq “ Rp´1, 1, x,´xq “
px` 1q2

4x

so that T pxq “
px`1q

2

4x .

Proposition 5.4. Let γx,z K γy,w be two orthogonal geodesics in H2 with end-
points tx, zu and ty, wu respectively and let P be their intersection point. Then
there exists a bijective map f “ fpγx,z, γy,w, P q defined as follows:
For d ą 0 let P 1 be one of the two points in γy,w at distance d from P . Let
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γP 1 be the geodesic through P 1 orthogonal to γy,w and denote by b one of its
endpoints. Then we can define

f : R` Ñ R`

dH
2

pP, P 1q ÞÑ dH
2

pP, px,zpbqq

where px,z denotes the orthogonal projection on the geodesic γx,z. The map f is
given by

f : R` Ñ R`

d ÞÑ log
´ed ` 1

ed ´ 1

¯

This expression does not depend on the choice of the points P 1, b.

x y z

px,zpbq

b

d

fpdq

P

P 1

w

H2

Figure 30: The map f

Proof. Let us consider the upper-half plane model

H2 “ tx` iy| x P R, y P R`u

Without loss of generality we can assume γy,w “ γ0,8 “ tiy| y ą 0u and
γx,z “ γ´1,1, so that their intersection is the point P “ i (Figure 31).

Let P 1 “ ied and b “ ed. By Lemma 5.2 we know that

dH
2

pi, p´1,1pedqq “ Rp´1, 0, e´d, 1q “
ed ` 1

ed ´ 1

so that fpdq “ logp ed`1
ed´1

q. Note that f´1 “ f . It is trivial to show that the
cases

P 1 “ eb, b “ ´ieb
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´1 0 1

p´1,1pedq

ede´d

d

fpdq

i

ied

8

H2

Figure 31: The map f

P 1 “ e´b, b “ ie´b

P 1 “ e´b, b “ ´ie´b

all lead to the same expression of f .

Lemma 5.5. ([Mar16, Lemma 6.2.2]) Given three real numbers b, c, d ą 0
there exists (up to isometries) a unique hyperbolic right-angled hexagon with
three alternate sides of length b, c and d respectively.

D

γC,D

C

F pxq

BA

γA,B

b

Q1

x

P1 “ i

F

d

p0,8pCq

P2

Q2

p0,8pBq

0

8

H2

Figure 32: Construction of a right-angled hexagon in
the H2-case
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Proof. Let b, d ą 0. Then the construction of the hexagon goes as follows: take
a geodesic γ with two arbitrary points P1, P2 in it. Without loss of generality we
can assume γ to be the vertical geodesic γ0,8 “ tiy| y ą 0u and P1 “ i (Figure
32). Draw the perpendicular from P1 “ i and from P2. At distances b and d
we find two points Q1 and Q2 and we draw again two perpendiculars γA,B and
γC,D, with some points at infinity A,B and C,D respectively. Draw the unique
perpendiculars to γ pointing to B and C: they intersect γ in two points p0,8pBq

and p0,8pCq. Note that the lengths dH
2

pP1, p0,8pBqq and dH
2

pp0,8pCq, P2q have
some fixed length depending only on b and d through a bijective map explicitly
given in Proposition 5.4 (this is the map f “ f´1). We can vary the parameter
x “ dH

2

pp0,8pBq, p0,8pCqq, the geodesics γA,B and γC,D are ultra-parallel and
there is a unique segment orthogonal to both of some length F pxq. The function
F : p0,`8q Ñ p0,`8q is continuous, strictly monotonic, and with limxÑ8 “ 8:
therefore there is precisely one c such that F pxq “ c.

Remark 5.6. (Explicit form of the map F ) In the proof of Lemma 5.5 we
have shown how to parametrize a right-angled hexagon in H2 by the lengths
b, c, d of three alternating sides. This is illustrated in Figure 32, where F pxq “ c
for a bijective map F . By Proposition 5.4 we know that there is a bijection
between the length b, d and the segments dH

2

pP1, p0,8pBqq, dH
2

pp0,8pCq, P2q re-
spectively. We can therefore think as the lengths b, c, d determining the hexagon
as all lying on the vertical geodesic γ0,8.

ec`d ec`2dz2ec1z1e´be´2b0´e´b´ec`d

b

c

d

ie´b

i

iec

iec`d

8

F

H2

Figure 33: There is a bijection between segments of
the same colour
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More concretely we can parameterize a right-angled hexagon as shown in Figure
33, where by abuse of notation we keep the letters b, c, d referring to lengths of
segments lying on γ0,8. This can be thought as the parametrization of a non
generic hexagon of type 3 in Proposition 4.22 (drawn in the upper-half plane).
Proposition 5.4 provides a bijective map f to explicitly write the length of the
blue and green sides of Figure 33. To explicitly write the map F let us consider
the configuration of Figure 33.
By Lemma 5.2 it holds

c “ Rp0, 1, ec,8q

and
c “ Rp0, 1, ec,8q

F
ÞÑ Rpz1, 1, e

c, z2q
T
ÞÑ Rpe´2b, 1, ec, ec`2dq

Where T is the bijective map of Lemma 5.3. For b, d fixed we obtain

T ˝ F pcq “
pec`2d ´ 1qp1 ´ e2b`cq

ecp1 ´ e2bqpe2d ´ 1q
“ y

and F pcq “ T´1pyq.

5.2 Length parameters in X
In the Siegel space X the analogue of geodesics are R-tubes: in this case the
length-parameters take value in the Weyl chamber

a`
“ tpx1, ..., xnq P Rn| x1 ě ... ě xn ě 0u

The analogue of Lemma 5.3 in X is given by the following:

Lemma 5.7. Let YA,B ,YC,D,YE,F be three R-tubes inside X such that

YA,B K YC,D K YE,F

Let us denote by px1 ě ... ě xnq the eigenvalues of RpC,B,E,Dq and by
py1 ě ... ě ynq the eigenvalues of RpA,B,E, F q. Then there exist a bijective
map T

T px1, ...xnq “ py1, ...ynq

where for i P t1, ...nu

yi “
pxi ` 1q2

4xi

Proof. Up to isometry we can consider YC,D “ Y0,8, YA,B “ Y´Id,Id and

YE,F “ Y´X,X for an X P Sym`
pn,Rq, X ą Id, X “

¨

˚

˝

x1
. . .

xn

˛

‹

‚

(see

Figure 34).

We obtain
RpC,B,E,Dq “ Rp0, Id, X,8q “ px1, ..., xnq
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0

8

X “

¨

˚

˝

x1
. . .

xn

˛

‹

‚

´X

Id´Id

Figure 34: There is a relation between the
cross-ratios of the red and of the blue points

and

RpA,B,E, F q “ Rp´Id, Id, X,´Xq “

¨

˚

˚

˝

px1`1q
2

4x1

. . .
pxn`1q

2

4xn

˛

‹

‹

‚

We now state the analogue of Proposition 5.4 for the Siegel space. See Figure
35 for a better visualization of the statement.

Proposition 5.8. Let YX,Z K YY,W be two orthogonal R-tubes in X and let P be
their intersection point. Then there exists a bijective map f “ fpYX,Z ,YY,W , P q

defined as follows:
For pd1, ...dnq P a` let P 1 be a point in YY,W at distance pd1, ...dnq from P .
Let YP 1 be the tube through P 1 orthogonal to YY,W and denote by B one of its
endpoints. Then we can define

f : a`
Ñ a`

da
`

pP, P 1q ÞÑ da
`

pP, pX,ZpBqq

where pX,Z denotes the orthogonal projection on the tube YX,Z . The map f is
given by

f : a`
Ñ a`

pd1, ...dnq ÞÑ plog
´edn ` 1

edn ´ 1

¯

, ..., log
´ed1 ` 1

ed1 ´ 1

¯

q

This expression does not depend on the choice of the points P 1, B. In particular
the image of a regular point inside a` is a regular point.
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Y

W

B

Z

X

P 1

P pX,ZpBq

Figure 35: There is a bijection between the green
vectors

Proof. Without loss of generality we can assume YY,W “ Y0,8 and
YX,Z “ Y´Id,Id, so that their intersection is the point P “ iId (Figure 36).

0

8

B “

¨

˚

˝

ed1

. . .
edn

˛

‹

‚

B´1
Id´Id

P 1 “ iB

iId
p´Id,IdpBq

Figure 36: There is a bijection between the green
vectors

Let

P 1 “ i

¨

˚

˝

ed1

. . .
edn

˛

‹

‚

and B “

¨

˚

˝

ed1

. . .
edn

˛

‹

‚

By Lemma 2.17 and Lemma 2.22 we know that

da
`

pP, p´Id,IdpBqq “ plogµ1, ..., logµ1q
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where µ1 ą ... ą µn are the eigenvalues of Rp´Id, 0, B´1, Idq. Calculations give

Rp´Id, 0, B´1, Idq “ pId ´B´1q´1pId `B´1q “

¨

˚

˚

˚

˝

´

ed1`1
ed1´1

¯

. . .
´

edn`1
edn´1

¯

˛

‹

‹

‹

‚

so that

f
`

pd1, ..., dnq
˘

“ plog
´edn ` 1

edn ´ 1

¯

, ..., log
´ed1 ` 1

ed1 ´ 1

¯

q

Observe that we need to invert the order of d1, ..., dn since the function
hpxq “ log

´

ex`1
ex´1

¯

is decreasing for x ą 0. From the expression of f it is clear

that regular points of a` are sent to regular points. Moreover, it is trivial to
show that the expression of f does not depend on the choice of the points P 1, B.
In particular recall that the points at distance pd1, ..., dnq from P “ iId are of
the form

P 1 “ iQ

¨

˚

˝

ed1

. . .
edn

˛

‹

‚

QT , Q P Opnq

together with its inverses.

5.3 Changing side of the hexagon
Let X be the symmetric space associated to Spp4,Rq and let us consider a right-
angled hexagon H “ rY1,Y2,Y3,Y4,Y5,Y6s in X . In the previous chapter we
have introduced arc coordinates for an ordered right-angled hexagon pH,Y1q in
H.

Y1

Y2

Y6

b

c

d

Figure 37: There is a bijection between the green
vectors and between the blue vectors
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These consist of length and angle parameters, where all length parameters are
lying on the same tube Y1. By Proposition 5.8 two of the three length param-
eters (vectors b and d in Figure 37 ) can be thought as lying on the tubes Y2

and Y6 respectively. The bijection between these vectors is an analogue of the
H2-case (Proposition 5.4) and does not depend on the angle parameters.
The following Proposition relates length parameters of arc coordinates when we
change side of the right-angled hexagon.

Proposition 5.9. Let H “ rY1,Y2,Y3,Y4,Y5,Y6s be a right-angled hexagon.
Let pbi, ci, diq denote length parameters where

pb1, c1, d1q length parameters of ApH,Y1q

pb2, c2, d2q length parameters of ApH,Y3q

pb3, c3, d3q length parameters of ApH,Y5q

Then
b1 “ d2

b2 “ d3

b3 “ d1

Y1

Y3

Y5

b1

d1

b2d2

d3

b3

Figure 38: There is a bijection between vectors of
the same colour

Proof. Let us prove b1 “ d2. Let

Y1 “ YP1,P2
, Y2 “ YQ1,Q2

, Y3 “ YP3,P4
, Y4 “ YQ3,Q4

, Y5 “ YP5,P6
, Y6 “ YQ5,Q6
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By definition of arc coordinates ApH,Y1q associated to pH,Y1q we know

b1 “ da
`

ppP1,P2
pQ2q, pP1,P2

pP4qq

where pH,Y1q “ pP2, Q2, P4, P5, Q5, P1q, Y1 “ YP1,P2
(Figure 39). By definition

of arc coordinates ApH,Y3q associated to pH,Y3q we know

d2 “ da
`

ppP3,P4
pP1q, pP3,P4

pQ1qq

where pH,Y3q “ pP4, Q4, P6, P1, Q1, P3q, Y3 “ YP3,P4
.

Q2

P3

P2

Q1

Q6

P1
P6

Q5

Q4

P5

P4

Q3

b1

d2

Y1

Y3v

Figure 39: b1 “ d2

Let v be the vector

v “ da
`

ppQ1,Q2
pP2q, pQ1,Q2

pP3qq

and let f be the map

f : a`
Ñ a`

pa1, a2q ÞÑ plog
´ea2 ` 1

ea2 ´ 1

¯

, log
´ea1 ` 1

ea1 ´ 1

¯

q

By Proposition 5.8 it holds

b1 “ f´1pvq “ d2

The proof for b2 “ d3 and b3 “ d1 is similar.

An analogue Proposition which relates the length parameters ci is trickier. More
generally when we try to generalize the map F described in Lemma 5.5 we can
not guarantee bijectivity. This will be explained in the next section. Let us
finish this section with the following
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Corollary 5.10. Let pH,Y0,8q P Hgen be a generic hexagon

pH,Y0,8q “ p0, A, Id, C,D,8q

Then the quadruples p´A, 0, A2, Aq, p´D, 0, C,Dq are generic.

Proof. As pHst,Y0,8q P Hst we know that p0, A, Id,8q is generic i.e. the pa-
rameter b “ pb1, b2q of Proposition 4.15 lies inside the set of regular vectors
a. To show genericity of p´A, 0, A2, Aq we need to prove that the cross-ratio
Rp´A, 0, A2, Aq has distinct eigenvalues. By Lemma 2.17 we know that taking
the logarithm of these ordered eigenvalues gives the distance da

`

pp´A,Ap0q, p´A,ApA2qq

which is the blue vector in Figure 37. Moreover, by Proposition 5.8 we know that
this vector is the image under the bijection f of the vector b and that f is sending
regular points to regular points. It follows da

`

pp´A,Ap0q, p´A,ApA2qq P a and so
p´A, 0, A2, Aq is generic. For completeness of the proof we show genericity of
p´A, 0, A2, Aq by explicitly calculating the cross-ratio:

Rp´A, 0, A2, Aq “ p´Aq´1ApA´A2q´1p´A´A2q “ pA´A2q´1pA`A2q “

“ pApId ´Aqq´1ApId `Aq “ pId ´Aq´1pId `Aq

Since pHst,Y0,8q P Hst we know that p0, A, Id,8q is generic i.e. A´1 and hence

A has distinct eigenvalues. Let
ˆ

a1 0
0 a2

˙

“ PAPT for P P Op2q and a1 ‰ a2.

Then we can rewrite the cross-ratio as
`

P pId´

ˆ

a1 0
0 a2

˙

qPT
˘´1`

P pId`

ˆ

a1 0
0 a2

˙

qPT
˘

“ P pId´

ˆ

a1 0
0 a2

˙

q´1pId`

ˆ

a1 0
0 a2

˙

qPT

which is a matrix with distinct eigenvalues t 1`a1

1´a1
, 1`a2

1´a2
u.

The proof for the genericity of the quadruple p´D, 0, C,Dq is similar and it also
follows from the bijectivity of the map f in Proposition 5.8. In this case we
can explicitly calculate the cross-ratio Rp´D, 0, C,Dq “ pD ´Cq´1pD `Cq by
using the parameters of Proposition 4.15. We obtain

C “

ˆ

ec1 0
0 ec2

˙

D “

ˆ

0
?
ec1

´
?
ec2 0

˙

S2

ˆ

ed1 0
0 ed2

˙

ST
2

ˆ

0 ´
?
ec2

?
ec1 0

˙

where pc1, c2q, pd1, d2q P a and S2 P PSO. The cross-ratio takes the form
ˆ

0 ´
?
ec2

?
ec1 0

˙´1
´

S2

ˆ

ed1 0
0 ed2

˙

ST
2 ´Id

¯´1´

S2

ˆ

ed1 0
0 ed2

˙

ST
2 `Id

¯

ˆ

0 ´
?
ec2

?
ec1 0

˙

This matrix has the same eigenvalues of the matrix
´

S2

ˆ

ed1 0
0 ed2

˙

ST
2 ´Id

¯´1´

S2

ˆ

ed1 0
0 ed2

˙

ST
2 `Id

¯

“ S2

´

ˆ

ed1 0
0 ed2

˙

´Id
¯´1´

ˆ

ed1 0
0 ed2

˙

`Id
¯

ST
2

and this is a matrix with distinct eigenvalues t ed1`1

ed1´1 ,
ed2`1

ed2´1 u
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5.4 Constraints in generalizing hexagon parameters of H2

In the previous section we have shown (Proposition 5.8) that given a right-angled
hexagon pH,Y1q with arc coordinates ApH,Y1q we can find a bijection between
length parameters b, d of ApH,Y1q and the vectorial length of two alternating
sides (see Figure 37). This is analogue to the hyperbolic case (Proposition
5.4). Taking inspiration from the H2-case, it is natural to ask whether for a
right-angled hexagon in X there exists a bijective map also between the vector-
parameter c of Figure 37 and the missing alternating side of the hexagon. When
the hexagon is non-generic of type 3 this is trivially true and corresponds to the
immersion of hyperbolic hexagons inside X . In this section we show that this is
not the case for a general right-angled hexagon H inside X . More precisely, let
pH,Y0,8q be a right-angled hexagon inside H. We can determine pH,Y0,8q by
the following maximal 12-tuple

pH,Y0,8q “ p8,´D,´A, 0, A2, A, Z1, Id, C “

ˆ

ec1 0
0 ec2

˙

, Z2, D,DC
´1Dq

0

8

Id

Z1

C “

ˆ

ec1 0
0 ec2

˙

Z2

DC´1D
D´D

A2

A´A

P

Q

Ü

b

c

d

Figure 40: There is no bijective map between the
red vectors

Let P,Q be the two intersection points (Figure 40)

P “ YA2,Id X YZ1,Z2 , Q “ YZ1,Z2 X YC,DC´1C

and let F be the following map

F : a Ñ a

da
`

piId, Cq “ pc1, c2q ÞÑ da
`

pP,Qq
(14)
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Then one can ask if the map F is bijective. In this section we show that this
is not the case and we provide a counterexample in the case where pH,Y0,8q is
contained in a maximal polydisc.

Remark 5.11. The image of the map F in (14) is the distance

da
`

pP,Qq “ plogµ1, logµ2q

where µ1 ą µ2 are the eigenvalues of RpZ1, Id, C, Z2q (see Lemma 2.17). Asking
for the existence of such a map F is equivalent to ask for the existence of a map
T ˝ F

T ˝ F : a Ñ a

pc1, c2q ÞÑ plog λ1, log λ2q
(15)

where λ1 ě λ2 are the eigenvalues of RpA2, Id, C,DC´1Dq and T is the bijective
map of Lemma 5.7 (composed with the logarithm map). By abuse of notation
we will write this map as F and we can express the cross-ratio with respect to
arc coordinates. This is made more precise in the following definition.

Definition 5.12. (Malefic map) Let b, d P a and α1, α2 P r0, 2πq. We will call
the malefic map Fb,d,α1,α2

the map defined as following:

Fb,d,α1,α2
: a Ñ a

pc1, c2q ÞÑ plog λ1, log λ2q

where λ1 ě λ2 are the eigenvalues of the cross-ratio RpA2, Id, C,DC´1Dq where

pH,Y0,8q “ p0, A, Id, C,D,8q

is the right-angled hexagon with arc coordinates ApH,Y0,8q equal to pb, c, d, rα1, α2sq.

Example 5.13. The malefic map Fb,d,α1,α2
clearly depends on the choice of

the parameters b, d, α1, α2. It is not hard to show that for pα1, α2q “ p0, 0q and
pα1, α2q “ pπ, πq respectively we obtain

Fb,d,0,0pc1, c2q “

´

pec1`2d2 ´ 1qp1 ´ e2b2`c1q

ec1p1 ´ e2b2qpe2d2 ´ 1q
,

pec2`2d1 ´ 1qp1 ´ e2b1`c2q

ec2p1 ´ e2b1qpe2d1 ´ 1q

¯

Fb,d,π,πpc1, c2q “

´

pec1`2d1 ´ 1qp1 ´ e2b1`c1q

ec1p1 ´ e2b1qpe2d1 ´ 1q
,

pec2`2d2 ´ 1qp1 ´ e2b2`c2q

ec2p1 ´ e2b2qpe2d2 ´ 1q

¯

where b “ pb1, b2q and d “ pd1, d2q. Observe that in both cases the con-
structed hexagon lies inside a maximal polydisc (see Proposition 4.28).

Lemma 5.14. Let b, d P a, α1, α2 P r0, 2πq and let Fb,d,α1,α2 be the malefic
map. It holds

Fb,d,α1,α2
pc1, c2q “ Fb,d,2π´α1,2π´α2

pc1, c2q
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Proof. This is straightforward by Proposition 4.15 in the generic case and more
generally by Theorem 4.26: for angle parameters pα1, α2q and p2π´α1, 2π´α2q

we obtain two isometric hexagons.

We can extend the malefic map Fb,d,α1,α2
of Definition 5.12 to the set

`

Rě0ˆRě0

˘

ztp0, 0qu, that is we allow the case where pc1, c2q is such that c1 ă c2
or ci “ 0 for an i P t1, 2u. The image Fb,d,α1,α2pc1, c2q for a point pc1, c2q P a is
obtained by computing the cross-ratio RpA2, Id, C,DC´1Dq. In Theorem 4.26
we have provided an explicit way to compute a hexagon pH,Y0,8q P H from arc
coordinates pb, c, d, rα1, α2sq. More precisely we have shown how to compute pos-
itive definite symmetric matrices A,C,D where pH,Y0,8q “ p0, A, Id, C,D,8q.
The explicit formulas appear in Proposition 4.15 for the generic case and are
suitably adapted to the non-generic case in Proposition 4.20, 4.21 and 4.22. We
extend these formulas to the case where pc1, c2q is such that c1 ă c2 or ci “ 0
for an i P t1, 2u.

Proposition 5.15. Let b, d P a, α1, α2 P r0, 2πq and let rF denote the malefic
map extended to

`

Rě0 ˆ Rě0

˘

ztp0, 0qu. Then

rFb,d,α1,α2pc1, c2q “ rFb,d,π´α1,π´α2pc2, c1q

Furthermore, if pc1, c2q is a point lying on one of the semi-axis of
`

Rě0 ˆ Rě0

˘

ztp0, 0qu then rFb,d,α1,α2pc1, c2q is also lying on a semi-axis.

Proof. Let us understand the geometrical meaning of rFb,d,α1,α2pc1, c2q for a point
pc1, c2q with c1 ă c2. If in the parametrization of Proposition 4.15 we consider
the set a´ “ t0 ă x1 ă x2u instead of a “ tx1 ą x2 ą 0u we are choosing
to diagonalize the matrix C with an increasing order of the eigenvalues. In
the geometric interpretation of angle parameters illustrated in Section 2.10 the
angle α denotes the angle from the semi-axis tp0, yq| y ą 1u P H2. By picking
the set a´ we are considering the angle α ` π when α P r0, πq and the angle
α ´ π when α P rπ, 2πq (Figure 41).

α
α ` π α

α ´ π

H2

Figure 41: Geometric interpretation when
considering the Weyl chamber a´
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From the equivalent relations of the angle parameters we know

α ` π „ 2π ´ pα ` πq “ π ´ α and α ´ π „ 2π ´ pα ´ πq “ π ´ α

so that
rFb,d,α1,α2

pc1, c2q “ rFb,d,π´α1,π´α2
pc2, c1q

We should think at the extended map rFb,d,α1,α2
as a way to construct right-

angled hexagons in a continuous way by moving the point C. The polygonal
chain of the hexagon is transformed as shown in Figure 42.

Id
A

CD

C 1

Id
A

D1

Figure 42: Continuous transformation of the
polygonal chain when going from a to a´

Let us now show that rFb,d,α1,α2 preserves semi-axes. Let pc1, c2q be such that
c1 “ 0. This means that

C “

ˆ

e0 0
0 ec2

˙

“

ˆ

1 0
0 λ

˙

, λ ą 0

so that C and Id are not transverse. Furthermore, there exists a g P Spp4,Rq

such that
g ¨ pA2, Id, C,DC´1Dq “ p0, Id,M,8q

where M is positive definite and such that Id and M are not transverse. This
means

M “

ˆ

1 0
0 µ

˙

, µ ą 0

and we know (see Lemma 2.8) that Rp0, Id,M,8q “ M so that

rFb,d,α1,α2p0, c2q “ plogp1q, logpµqq “ p0, yq

for some y ą 0.
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Corollary 5.16. Let b, d P a2 and let F0, Fπ be the maps

F0 “ Fb,d,0,0, Fπ “ Fb,d,π,π

where Fb,d,α1,α2
denotes the malefic map. Then F0 is not surjective and Fπ is

not injective.

Proof. Consider the extended malefic maps rF0 “ rFb,d,0,0 and rFπ “ rFb,d,π,π.
The map rFb,d,α1,α2 is continuous and from example 5.13 it is easy to see that
rF0px, xq ‰ pX,Xq (Figure 43 below).

rF0

c1 Ø c2

rFπ

Figure 43: rF0pc1, c2q “ rFπpc2, c1q

We deduce that when restricting to a “ tx1 ą x2 ą 0u (i.e. considering the
malefic map F ) the map F0 is not surjective and the map Fπ is not injec-
tive. This is illustrated in Figures 44 and 45 below. The program to gener-
ate these figures can be found in the github repository https://github.com/
martamagnani/Arc-coord/blob/main/Lemma_is_false.py.
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Figure 44: The bottom-right corner shows the image of the map F0 (not sur-
jective) when b “ p40, 0.01q and d “ p35, 0.01q

Figure 45: The bottom-right corner shows the image of the map Fπ (not injec-
tive) when b “ p40, 0.01q and d “ p35, 0.01q

Remark 5.17. (Genericity is well defined on an ordered 6-tuple) In Corollary
5.10 we have seen how the genericity of the hexagon

pH,Y0,8q “ p0, A, Id, C,D,8q

induces the genericity of the quadruples p´A, 0, A2, Aq and p´D, 0, C,Dq re-
specticely. This is strictly related to the existence of a bijective map f as seen
in Proposition 5.8, so that the vectors b and d are in bijection with the length
of two alternating sides (Figure 37). In the discussion that followed we showed
that we can not do the same with the vector c as there is no such bijective map.
In particular we have seen how the map depends on the angle parameters of the
hexagon and we have provided counterexamples where this map is in turn not
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injective and not surjective. In these counterexamples it is clear that the ex-
tended map rF in Proposition 5.15 does not preserve the diagonal d “ tx1 “ x2u.
By continuity of rF we deduce that in general

pc1, c2q P a œ F pc1, c2q P a

Equivalently, the genericity of the hexagon pH,Y0,8q does not imply the gener-
icity of the quadruple pZ1, Id, C, Z2q where Z1, Z2 are uniquely determined by
requiring (Figure 40)

YA2,Id K YZ1,Z2 K YC,DC´1D

The parameters of Proposition 4.15 strongly depends on the order of the 6-tuple
defining the hexagon or equivalently on the choice of a tube Y0,8.
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6 Reflections in the Siegel space
In this chapter we study reflections in the Siegel space. We first recall properties
of reflections in the hyperbolic plane H2 and we then generalize the results for
the Siegel space X . We define the notion of a reflection set associated to the
side of a hexagon, which will be used in the next chapter to construct maximal
representations.

6.1 Reflections in H2

Let H2 be the upper-half space model of the hyperbolic plane

H2 “ tx` iy| x, y P R, y ą 0u

A reflection in H2 can be defined as a non-trivial isometry fixing an infinite
geodesic γ P H2. In this section we propose an equivalent definition of reflection
that will be generalized to define reflections in the Siegel space. Let us start
with the following

Definition 6.1. Let SL´
p2,Rq be the set

SL´
p2,Rq “ tM P GLp2,Rq| detM “ ´1u

The union SLp2,Rq Y SL´
p2,Rq forms a group that we denote SL˘

p2,Rq.

The action of PSLp2,Rq on H2 by Möbius transformations is not well defined for
M R PSLp2,Rq since the resulting point may not lie in H2. To define the action
of a matrix M P SL´

p2,Rq on H2 we denote the extended hyperbolic plane by

H2
˘ “ tx˘ iy| x, y P R, y ą 0u

so that
H2 “ H2

˘{„

where x`iy „ x´iy. The matrixM acts on H2 through Möbius transformations
in the following way

M ¨ z :“ rM ¨ zs P H2
˘{„

Definition 6.2. A reflection in H2 is an involution of SL´
p2,Rq.

Remark 6.3. We have seen that SL´
p2,Rq acts on H2 “ H2

˘{„ by Möbius

transformations. Given R “

ˆ

a b
c d

˙

P SL´
p2,Rq and z P H2 it holds

R ¨ z “ p´Rq ¨ z

It makes sense to think at R inside the group SL˘
p2,Rq and to consider the

group
PSL˘

p2,Rq “ SL˘
p2,Rq{t˘Idu

When studying reflections we will always assume R and ´R to be identified in
PSL˘

p2,Rq.
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Lemma 6.4. All reflections of H2 are conjugated by an element of SLp2,Rq.

Proof. The proof is given in the more general case in Lemma 6.12 where it is
shown for the Siegel space X and the group Spp2n,Rq. The proof for H2 is the
case n “ 1.

Definition 6.5. We will call the standard reflection in H2 the map

r “

ˆ

´1 0
0 1

˙

Proposition 6.6. Let R be a reflection in H2. Then R fixes exactly two bound-
ary points p, q P BH2. Moreover, R fixes the infinite geodesic γp,q that has p, q
as endpoints.

Proof. The proof is given in the general case in Proposition 6.15.

Proposition 6.7. Given p, q P BH2, there is a unique reflection R fixing both p
and q. The map R is an isometry sending any boundary point x to the unique
boundary point Rpxq such that γp,q K γx,Rpxq

Proof. The proof is given in the general case in Proposition 6.18.

Proposition 6.8. Let pq1, q2, q3, q4q be a positive quadruple in BH2 and let R
be the reflection fixing two boundary points p1, p2 P BH2. Suppose that:

pp2, q1, q2, q3, q4, p1q is positive (possibly p2 “ q1 or p1 “ q4q

then pp1, Rpq4q, Rpq3q, Rpq2q, Rpq1q, p2q is positive.

Proof. The proof is given in the general case in Proposition 6.19

6.2 Reflections in X
Taking inspiration from the previous section, we want to define reflections in
the Siegel space X . We start by giving the following

Definition 6.9. Let ωp¨, ¨q be the symplectic form represented, with respect to
the standard basis, by the matrix

Jn “

ˆ

0 Idn
´Idn 0

˙

A matrix M P GLp2n,Rq is antisymplectic if

MTJnM “ ´Jn

The set of antisymplectic matrices will be denoted by Sp´
p2n,Rq. More pre-

cisely Sp´
p2n,Rq is the set

Sp´
p2n,Rq “

!

ˆ

A B
C D

˙

| ATC,BTD symmetric, and ATD ´ CTB “ ´Idn

)
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The union of symplectic and antisymplectic matrices forms a group that will be
denoted by Sp˘

p2n,Rq.

Recall that Spp2n,Rq acts on X by fractional linear transformations:
ˆ

A B
C D

˙

¨ Z “ pAZ `BqpCZ `Dq´1

Observe that this action is not well defined for R in Sp´
p2n,Rq since the result-

ing point may not lie in X . To define the action of an antisymplectic matrix on
the Siegel space we denote by X˘ the extended Siegel space:

X˘ “ tX ˘ iY | X P Sympn,Rq, Y P Sym`
pn,Rqu

Then
X “ X˘{„

where X ` iY „ X ´ iY . For R antisymplectic and Z P X we define the action

R ¨ Z :“ rR ¨ Zs P X˘{„

Recall that the Borel embedding model X of the Siegel space is given by

X “ tl P LpC2nq| iωpσp¨q, ¨qC|lˆl is positive definiteu

where σ : C2n Ñ C2n denotes complex conjugation. Recall also that an
Spp2n,Rq-equivariant identification X ÞÑ X is induced by the affine chart

ι : Sympn,Cq Ñ LpC2nq

that associates to a symmetric matrix Z the linear subspace of C2n spanned

by the columns of the matrix
ˆ

Z
Idn

˙

(see Section 2.1). In this model the

extented Siegel space is given by the set

X˘ “ tl P LpC2nq| iωpσp¨q, ¨qC|lˆl is positive or negative definiteu

and
X “ X˘{„ (16)

where a Lagrangian l P X

l “ x

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x11 ` iy11
...

xn1 ` iyn1
1
0
...
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, ...,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

xn1 ` iyn1
...

xnn ` iynn
0
...
0
1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y
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is equivalent to the Lagrangian l1 P X´ where

l1 “ x

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x11 ´ iy11
...

xn1 ´ iyn1
1
0
...
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, ...,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

xn1 ´ iyn1
...

xnn ´ iynn
0
...
0
1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y

We can now give the following

Definition 6.10. A reflection R in X is an antisymplectic involution of X .

Remark 6.11. We have seen that Sp´
p2n,Rq acts on X “ X {˘ by fractional

linear transformations. Given R “

ˆ

A B
C D

˙

P Sp´
p2n,Rq and Z P X it holds

R ¨ Z “ p´Rq ¨ Z

It makes sense to think at R inside the group Sp˘
p2n,Rq and to consider the

group
PSp˘

p2n,Rq “ Sp˘
p2n,Rq{t˘Idu

When studying reflections we will always assume R and ´R to be identified in
PSp˘

p2n,Rq.

Lemma 6.12. All reflections of X are conjugated by an element of Spp2n,Rq.

Proof. Let R be a reflection of X . Since R is an involution we know that its
eigenvalues are given by the set t˘1u. Recall that we denote by LpR2nqpkq the
set of k-tuples of real pairwise transverse Lagrangians. Given the R-eigenspaces
E1, E´1, we want to show that E1, E´1 P LpR2nqp2q. For u, v P E1 it holds

ωpu, vq “ ωpRpuq, Rpvqq “ ´ωpu, vq

where the first equality holds since u, v P E1 and the second one since R is
antisymplectic. It follows that ωpu, vq “ 0 for any u, v P E1, that is E1 is a
Lagrangian subspace. Similarly one can show that E´1 is also a Lagrangian
subspace. Since a real matrix with real eigenvalues has real eigenvectors, we
conclude that E1, E´1 P LpR2nqp2q. Result follows as Spp2n,Rq acts transitively
on pairs of transverse Lagrangians.

Definition 6.13. We will call the standard reflection the map Rst where

Rst “

ˆ

´Id 0
0 Id

˙
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Lemma 6.14. Let R be a reflection inside X . Then for any X,Z in X it holds

da
`

pRpXq, RpZqq “ da
`

pX,Zq

Proof. Recall that we have defined da
`

in Definition 2.9 as the projection onto
the Weyl chamber a`:

X 2 Ñ a`

pX,Zq ÞÑ plogpλ1q, ..., logpλnqq

where λi “
1`

?
ri

1´
?
ri

and 1 ą r1 ě ... ě rn ě 0 are the eigenvalues of the
cross-ratio CrpX,Z,Z,Xq (Definition 2.7). For a matrix R P GLp2n,Rq, it is
not hard to show that the cross-ratio

Cr
´

RpXq, RpZq, RpZq, RpXq

¯

has eigenvalues pλ1, ...λnq: eigenvalues are stable under conjugation and it holds

Cr
´

RpXq, RpZq, RpZq, RpXq

¯

p1q
“ Cr

´

RpXq, RpZq, RpZq, RpXq

¯

p2q
“ RCr

´

X,Z,Z,X
¯

R´1

where equality p1q follows directly from the properties of complex conjugation
and equality p2q is trivial once we express the cross-ratio as in Definition 2.7. Let
us consider X “ X˘{„ the Borel embedding model of the Siegel space described
in (16). We are left to show that for a reflection R and a point l P X the point
Rplq is inside X. For l P LpC2nq and v, w P l it holds

iωpRpvq, Rwq “ iωpRpvq, Rwq “ ´iωpv, wq

Result follows.

Proposition 6.15. Let X be the symmetric space associated to Spp4,Rq and
let R be a reflection of X . Then the set

FixLpR4qpRq “ tl P LpR4q| Rplq “ lu

is given by the R-eigenspaces E1, E´1 together with an S1-isomorphic family F
of pairwise transverse Lagrangians each of which is not transverse to neither E1

nor E´1. Moreover, R fixes the tube YE1,E´1
and fixes a flat inside any Yli,lj

where li, lj P F .

Proof. Since any R is conjugated to the standard reflection through an element

of Spp4,Rq, let us prove the proposition for Rst “

ˆ

´Id 0
0 Id

˙

. Let pe1, e2, e3, e4q

denote the standard basis of R4. We have

E1 “ xe3, e4y

E´1 “ xe1, e2y
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where E1, E´1 P LpR4qp2q (see Lemma 6.12). For any u P PpE1q there exists
a unique v P PpE´1q such that ωpu, vq “ 0. For any w1, w2 P xu, vy we have
ωpw1, w2q “ 0 so that l “ xu, vy P LpR4q and Rstplq “ l. We obtain the set
F Ă FixLpR4qpRstq:

F “
␣

l “ xu, vy
(

– PpE1q – PpE´1q – S1

where u P PpE1q and v is the unique element of PpE´1q such that ωpu, vq “ 0.
We want to show that for any l P F it holds

E1 &{ l &{ E´1

and that for any l1, l2 inside F we have

l1&l2

Let us fix α P R and consider u P PpE1q, u ‰ e4 to be the vector

u “ e3 ` αe4 P PpE1q

Then the corresponding v P PpE´1q, v ‰ e1 such that ωpu, vq “ 0 is given by

v “ ´αe1 ` e2

Let

l “ xu, vy “ x

¨

˚

˚

˝

0
0
1
α

˛

‹

‹

‚

,

¨

˚

˚

˝

´α
1
0
0

˛

‹

‹

‚

y P Fztxe4, e1yu

then l intersects E1 in the line x

¨

˚

˚

˝

0
0
1
α

˛

‹

‹

‚

y Ă E1 and intersects E´1 in the line

x

¨

˚

˚

˝

´α
1
0
0

˛

‹

‹

‚

y Ă E´1. We are left with the case l “ xe4, e1y which is clearly not

transverse to E1 nor E´1. We have showed E1 &{ l &{ E´1 for every l P F . Let us
now consider l1, l2 inside F . Similarly as before let l1, l2 P Fztxe4, e1yu where

l1 “ xu1, v1y “ x

¨

˚

˚

˝

0
0
1
α

˛

‹

‹

‚

,

¨

˚

˚

˝

´α
1
0
0

˛

‹

‹

‚

y

l2 “ xu2, v2y “ x

¨

˚

˚

˝

0
0
1
β

˛

‹

‹

‚

,

¨

˚

˚

˝

´β
1
0
0

˛

‹

‹

‚

y
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where β P R, β ‰ α. It is easy to see that l1&l2. It is also trivial to show that
transversality holds in the case l1 “ xe4, e1y.
The reflection Rst is fixing the tube YE1,E´1

: to see this recall that the affine
chart ι in Section 2.1 identifies LpC4q with Symp2,Cq. In this chart the La-
grangian E´1 “ xe1, e2y is the point at infinity in the Shilov boundary LpR4q of
X and the expression for the tube YE1,E´1 is given by the standard tube

Y0,8 “ tiY | Y P Sym`
p2,Rqu

For any iY P Y0,8

RstpiY q “ ´iY “ iY in X˘{„ “ X

Observe that with respect to the tube YE1,E´1 the reflection Rst is the analogue
of a reflection in H2: it is sending any boundary pointX P Symp2,Rq (transverse
to both E1 and E´1) to the unique RpXq “ ´X such that Y0,8 K YX,RpXq. Let
us now consider l1, l2 P F where

l1 “ xe1, e4y, l2 “ xe2, e3y

Let us change the standard basis B “ pe1, e2, e3, e4q with the basis B1 given by
B1 “ pe3, e2, e1, e4q. Writing vectors of C4 in this new basis means considering
the chart T ˝ ι : Symp2,Cq Ñ LpC4q where T pBq “ B1. In particular in this
chart the tube Yl1,l2 has the standard form

Yl1,l2 “ tiY | Y P Sym`
p2,Rqu

and the reflection Rst written in basis B1 is given by

rR “ RB1 “

ˆ

´r 0
0 r

˙

where r “

ˆ

´1 0
0 1

˙

. It holds

rRpiY q “ ´iY r “ iY r in X˘{„ “ X

where by Y r we denote the point in the H2-component of the standard tube
which is obtained by reflecting Y across the standard vertical geodesic of the
hyperbolic plane (see Section 2.33). The reflection rR fixes the flat

D “ i

ˆ

d1 0
0 d2

˙

– R ˆ

ˆ

λ 0
0 1

λ

˙

Ă Y0,8

So the reflection rR is reflecting across a geodesic γ in the H2-component of the
tube Yl1,l2 and is therefore fixing the flat R ˆ γ inside the tube. Since Spp4,Rq

acts transitively on the space of transverse Lagrangians we deduce that the same
holds for any l1, l2 P F .
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Corollary 6.16. There is no maximal triple in the S1-family F of Proposition
6.15.

Proof. Let pe1, e2, e3, e4q be the standard basis in R4 and as usual let us denote
by l8, 0 and Id the Lagrangians

l8 “ xe1, e2y, 0 “ xe3, e4y, Id “ xe1 ` e3, e2 ` e4y

Since any reflection is conjugated to the standard one, we prove the result for

the standard reflection Rst “

ˆ

´Id 0
0 Id

˙

. In the proof of Proposition 6.15) we

have seen that for Rst we have:

E1 “ 0, E´1 “ l8

Each Lagrangian of F intersects l8 and 0 in one line and F – PpE1q – PpE´1q.
Let l1, l2, l3 be three points in F . Up to GLp2,Rq – StabpE1, E´1q-action we
can choose the three vectors of PpE´1q to be e1, e2 and e1 ` e2 respectively
(GLp2,Rq acts three-transitively on the lines of R2) and we obtain

l1 “ xe1, e4y, l2 “ xe2, e3y, l3 “ xe1 ` e2, e3 ´ e4y

Let g P Spp4,Rq be such that gpl1, l2q “ pl8, 0q. Then

g “

ˆ

A 0
0 A´T

˙

˝

¨

˚

˚

˝

1 0 0 0
0 0 0 ´1
0 0 1 0
0 1 0 0

˛

‹

‹

‚

and let us choose for simplicity A “ Id. Then gpl3q “ xe2 ` e3, e1 ` e4y which

corresponds to the matrix M “

ˆ

0 1
1 0

˙

in the identification of Section 2.1. The

triple pl8, 0,Mq is not maximal as its Maslov index is zero (Section 2.2 for the
definition of Maslov index).

In Proposition 6.15 we have seen that for a given reflection R P PSpp4,Rq´

there is a different geometrical behaviour when considering what R is doing with
respect to the tube YE1,E´1

or to the tube Yl1,l2 , where l1, l2 are two arbitrary
points inside F .

Definition 6.17. The reflection

Rex “

ˆ

´r 0
0 r

˙

, r “

ˆ

´1 0
0 1

˙

is called the exotic reflection.

As we have seen in Lemma 6.12 the exotic reflection is conjugated to the
standard one but its different geometrical behaviour on the tube Yl1,l2 (explained
in the proof of Proposition 6.15) is preserved as soon as we allow conjugation
only inside StabpYl1,l2q.
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6.3 Reflection set associated to the side of a hexagon
In this section we introduce the notion of the reflection set associated to the side
of a hexagon. We start by describing a set of reflections RpP,X, Y,Qq associated
to a maximal quadruple pP,X, Y,Qq.

Proposition 6.18. Let X be the symmetric space associated to Spp4,Rq. Let
pP,X, Y,Qq be a maximal quadruple in X and let R be a reflection such that

#

RpP q “ P and RpQq “ Q

YX,RpXq K YP,Q K YY,RpY q

(17)

Then the reflections satisfying (17) are given by a set RpP,X, Y,Qq where

RpP,X, Y,Qq Ă StabPSp˘p4,RqpP, pP,QpXq, pP,QpY q, Qq

Let g be an isometry such that g ¨ pP,X, Y,Qq “ p0, Id, Y 1,8q for Y 1 diagonal.
It holds:

(i) If pP,X, Y,Qq is generic then RpP,X, Y,Qq “ tg´1Rstg, g
´1Rexgu

(ii) If pP,X, Y,Qq is non-generic then RpP,X, Y,Qq “ g´1Kg

where
K “

!

ˆ

´K 0
0 K

˙

, K P POp2q, K2 “ Id
)

P “ RpP q

Q “ RpQq

YRpY q

XRpXq

Figure 46: The number of reflections satisfying (17)
depends on the genericity of the red quadruple
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Proof. Let g be an isometry such that g ¨ pP,X, Y,Qq “ p0, Id, Y 1,8q for Y 1

diagonal. Let R be a reflection such that
#

Rp0q “ 0 and Rp8q “ 8

YId,RpIdq K Y0,8 K YY 1,RpY 1q

(18)

Then R stabilizes the standard tube Y0,8 and belongs therefore to the group
StabPSp˘p4,Rqp0,8q. We know Y0,8 K YId,´Id (Lemma 2.16) so that
RpIdq “ ´Id. The map R stabilizes the tube YId,´Id and is therefore stabilizing
the intersection point Y0,8 X YId,´Id “ p0,8pIdq. The same reasoning holds for
the point Y0,8 X YY 1,RpY 1q “ p0,8pY 1q. We deduce

Rp0, Id, Y 1,8q Ă StabPSp˘p4,Rqp0, p0,8pIdq, p0,8pY 1q,8q

We obtain two possibilities for Rp0, Id, Y 1,8q:

(i) If p0, Id, Y 1,8q is generic then Y 1 is of the form Y 1 “

ˆ

y1 0
0 y2

˙

where

y1 ‰ y2. The only two elements of Rp0, Id, Y 1,8q are the standard and the
exotic reflections:

Rp0, Id, Y 1,8q “

!

Rst “

ˆ

´Id 0
0 Id

˙

, Rex “

ˆ

´r 0
0 r

˙

)

where r “

ˆ

´1 0
0 1

˙

and StabPSp˘p4,Rqp0, p0,8pIdq, p0,8pY 1q,8q is the group

StabPSp˘p4,Rqp0, p0,8pIdq, p0,8pY 1q,8q “

!

Id,

ˆ

r 0
0 r

˙

, Rst, Rex

)

The reflection Rst fixes the tube Y0,8 (as ERst
1 “ 0, ERst

´1 “ l8) whereas Rex

fixes a flat inside Y0,8 (see Proposition 6.15).

(ii) If p0, Id, Y 1,8q is non-generic then Y 1 “

ˆ

y 0
0 y

˙

“ y ¨ Id. The group

StabPSp˘p4,Rqp0, p0,8pIdq, p0,8pY 1q,8q is given by

StabPSp˘p4,Rqp0, p0,8pIdq, p0,8pY 1q,8q “

!

ˆ

K 0
0 K

˙

,

ˆ

´K 0
0 K

˙

, K P POp2q

)

Let R “

ˆ

´K 0
0 K

˙

for a K P POp2q. Then R is antisymplectic and it holds

RpIdq “ ´Id so that Y0,8 K YId,RpY 1q

RpY 1q “ ´Y 1 so that Y0,8 K YY 1,RpY 1q

We further need R2 “ Id for R to be an involution which is satisfied exactly
when K2 “ Id.
Result follows as

RpP,X, Y,Qq “ g´1Rp0, Id, Y 1,8qg
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Proposition 6.19. Let pl1, l2, l3, l4q be a maximal quadruple. Let R be a reflec-
tion inside RpP,X, Y,Qq where pP,X, Y,Qq is a maximal quadruple. Suppose

pX, l1, l2, l3, l4, Y q maximal (possibly X “ l1 or Y “ l4q

then pQ,RpY q, Rpl4q, Rpl3q, Rpl2q, Rpl1q, RpXq, P q is maximal.

Proof. Let g be an isometry such that g ¨ pP,X, Y,Qq “ p0, Id, Y 1,8q for Y 1

diagonal. We want to show that the image
`

Rp8q, RpY 1q, Rpl4q, Rpl3q, Rpl2q, Rpl1q, RpIdq, Rp0q
˘

(19)

is maximal for pId, l1, l2, l3, l4, Y
1q maximal and R P Rp0, Id, Y 1,8q. By Propo-

sition 6.18 we know

(i) Rp0, Id, Y 1,8q “ tRstRexu if Y 1 “

ˆ

y1 0
0 y2

˙

, y1 ‰ y2

(ii) Rp0, Id, Y 1,8q “ K if Y 1 “

ˆ

y 0
0 y

˙

Observe that tRstRexu Ă K. Using Lemma 2.5 it is not hard to show that (19)
is maximal.

We now define RYk´1,Yk`1

Yk
the reflection set associated to the side of a

hexagon H “ rY1,Y2,Y3,Y4,Y5,Y6s. The geometric properties of RYk´1,Yk`1

Yk

for k “ 2 are shown in Figure 47.

P2

Q1

Q6

P1

Q5

Q4

P5

P6

P4

Q3

Q2

P3

H

RY2

Y1

Y3

Figure 47: R is a reflection inside RY1,Y3

Y2
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Definition 6.20. (Reflection set associated to the side of a hexagon)
Let H “ rY1,Y2,Y3,Y4,Y5,Y6s be a right-angled hexagon. The reflection set
RYk´1,Yk`1

Yk
associated to Yk is the set of reflections which are fixing the end-

points of Yk and are switching the endpoints of Yk´1 and Yk`1 respectively.

Recall that we denote by Rst, Rex and K the following sets:

Rst “

ˆ

´Id 0
0 Id

˙

, Rex “

ˆ

´r 0
0 r

˙

, r “

ˆ

´1 0
0 1

˙

K “

!

ˆ

´K 0
0 K

˙

, K P POp2q, K2 “ Id
)

Observe that tRst, Rexu Ă K.

Corollary 6.21. Let H “ rY1, Y2, Y3, Y4, Y5, Y6s be a right-angled hexagon. Let

Yk´1 “ YP1,P2
, Yk “ YQ1,Q2

, Yk`1 “ YP4,P5

and let g be an isometry such that g ¨ pQ1, P2, P3, Q2q “ p0, Id, Y 1,8q for Y 1

diagonal. Then

RYk´1,Yk`1

Yk
“

#

tg´1Rstg, g
´1Rexgu, if pQ1, P2, P3, Q2q generic

g´1Kg if pQ1, P2, P3, Q2q non generic

Proof. Follows directly from Proposition 6.18.

We can rewrite Corollary 6.21 in terms of arc coordinates in the following way:

Corollary 6.22. Let H “ rY1,Y2,Y3,Y4,Y5,Y6s be a right-angled hexagon
where

Y1 “ YP1,P2 , Y2 “ YQ1,Q2 , Y3 “ YP3,P4 , Y4 “ YQ3,Q4 , Y5 “ YP5,P6 , Y6 “ YQ5,Q6

Suppose pH,Y1q has arc coordinates

ApH,Y1q “ pb, c, d, rα1, α2sq

Let Fb,d,α1,α2
be the malefic map of Definition 5.12 and let g1, g2, g3 be isometries

such that
g1pQ1, P2, P3, Q2q “ p0, Id, Y1,8q

g2pQ5, P6, P1, Q6q “ p0, Id, Y1,8q

g3pQ3, P4, P5, Q4q “ p0, Id, Y3,8q

where Y1, Y2, Y3 are diagonal matrices. Then it holds

RY1,Y3

Y2
“

#

tg´1
1 Rstg1, g

´1
1 Rexg1u, if b P a

g´1
1 Kg1 if b P d

(20)
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RY5,Y1

Y6
“

#

tg´1
2 Rstg2, g

´1
2 Rexg2u, if d P a

g´1
2 Kg2 if d P d

(21)

RY3,Y5

Y4
“

#

tg´1
3 Rstg3, g

´1
3 Rexg3u, if Fb,d,α1,α2

pcq P a

g´1
3 Kg3 if Fb,d,α1,α2pcq P d

(22)

P2

Q1

Q6

P1

Q5

Q4

P5

P6

P4

Q3

Q2

P3

Y2

Y1

Y3

Y4

Y5

Y6

b
c

d R1

R3

R2

Figure 48: R1, R2, R3 are in RY1,Y3

Y2
,RY3,Y5

Y4
,RY5,Y1

Y6

respectively

Proof. Let us prove (20). By Corollary 6.21 we know

RY1,Y3

Y2
“

#

tg´1
1 Rstg1, g

´1
1 Rexg1u, if pQ1, P2, P3, Q2q generic

g´1
1 Kg1 if pQ1, P2, P3, Q2q non generic

The quadruple pQ1, P2, P3, Q2q is generic if the matrix given by the cross-ratio
CrpQ1, P2, P3, Q2q has distinct eigenvalues µ1, µ2 and non-generic if µ1 “ µ2

(Definition 3.1 and 4.10). By Lemma 2.17 it holds

pµ1, µ2q “ da
`

ppQ1,Q2
pP2q, pQ1,Q2

qpP3q

The vector pµ1, µ2q is the image fpbq where f is the bijective map of Proposition
5.8. These vectors are drawn in blue in Figure 48. In particular f preserves
regular vectors. Equality (20) follows and the proof for (21) is similar. For (22)
we need to write Fb,d,α1,α2pcq instead of c as there is no bijective map as in the
cases (20) and (21). This is explained in Section 5.4.
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6.4 Geometrical interpretation of the set K
Hexagons are the building blocks that will be glued together to compute max-
imal representations. The idea is to parametrize maximal representations by
parametrizing adjacent right-angled hexagons which have equal alternating side-
lengths. This will be the case for adjacent symmetric hexagons, whose definition
is given in this section. Adjacent symmetric hexagons are obtained by reflect-
ing a hexagon across a side and the different ways to do this are encoded in
the reflection set introduced in Section 6.3. In this section we give a geometri-
cal interpretation to the reflection set associated to the side of a hexagon (and
in particular to the set K) in terms of the polygonal chain associated to the
hexagon. This will be very useful for a geometrical interpretation of the pa-
rameters appearing in Theorem 7.23. For simplicity we will consider an ordered
hexagon of the form pH,Y0,8q and will study the associated polygonal chain
defined in 4.19. Let us start with the following

Definition 6.23. Two right-angled hexagons H1, H2 are said to be adjacent at
Y1 if

H1 “ rY1,Y2,Y3,Y4,Y5,Y6s and H2 “ rY1,Y6,Y7,Y8,Y9,Y2s

Two such adjacent hexagons will be denoted H1#Y1
H2 (Figure 49).

H2

H1

Y1

Y6

Y7

Y8

Y9

Y2

Y3

Y4

Y5

Figure 49: Two adjacent hexagons H1#Y1H2

Definition 6.24. LetH1 “ rY1,Y2,Y3,Y4,Y5,Y6s andH2 “ rY1,Y6,Y7,Y8,Y9,Y2s

be two hexagons adjacent at Y1. The hexagons H1#Y1H2 are said to be sym-
metric if

H2 “ RpH1q

for a reflection R P RY6,Y2

Y1
.
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In Definition 4.19 we have introduced the notion of a polygonal chain associated
to an ordered right-angled hexagon pH,Y0,8q inside H. Let

H “ p0, A,B,C,D,8q

and let R P RY0,8,YA2,Id

Y´A,A
. Such a reflection is illustrated in Figure 53. By

Corollary 6.21 we know

R “ g´1Rg, R P K

where g is an isometry such that gp´A, 0, A2, Aq “ p0, Id, Y,8q with Y diagonal.
In this section we want to relate the parameter R inside K to the polygonal chain
of the hexagon pRpHq,Y0,8q. In particular we will show how the set K allows
us to draw the polygonal chain associated to pRpHq,Y0,8q once we are given
the polygonal chain associated to pH,Y0,8q. When two hexagons are adjacent
they share one vertex of the correspondent polygonal chains and we can look at
the "attached" polygonal chains.

Definition 6.25. (Attachment angle) Let pH,Y0,8q and pH 1,Y0,8q be two
adjacent right-angled hexagons inside H with

pH,Y0,8q “ p0, A,B,C,D,8q

pH 1,Y0,8q “ p0, A1, B1, C 1, D1,8q, D1 “ A

such that p0, A1, B1, C 1, A,B,C,Dq is maximal (Figure 50)

D

C
B

A “ D1

C 1

B1

A1

0

8

H

H 1

Figure 50: The tow adjacent hexagons H and H 1
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We can look at the ordered sequence of points
´

πH2

piA1q, πH2

piB1q, πH2

piC 1q, πH2

piAq, πH2

piBq, πH2

piCq, πH2

piDq

¯

obtained by the union of vertices of the polygonal chains associated to pH,Y0,8q

and pH 1,Y0,8q respectively. This induces an orientation on the segments forming
the polygonal chains. See for example Figure 54 where H 1 “ RstpHq. The
attachment angle β between these two polygonal chains is the angle (measured
on the left) formed by the two (non-vanishing) segments attached at the point
πH2

piD1q “ πH2

piAq. For a visualization of the attachment angle see for example
Figure 55.

We want to study the case where H and H 1 are symmetric adjacent. Let us
state a proposition which will be useful later:

Proposition 6.26. Let p0, P,Q,8q be a maximal quadruple and consider the
orthogonal tubes Y´Q,Q K YP,QP´1Q. Suppose p´Q, 0, P,Qq generic. Then the
hyperbolic components of iP, iQ and iQP´1Q lie on the same geodesic in H2,
and iQ is the middle point of the three. If p´Q, 0, P,Qq is non-generic then the
hyperbolic components coincide in H2.

The configuration of the points iP, iQ and iQP´1Q is illustrated in 51.

0

8

QP´1QiQP´1Q

P
iP

Q
´Q

iQ

Figure 51: The hyperbolic components of iP, iQ and
iQP´1Q are colinear in H2
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Proof. By Proposition 5.8 we know that p´Q, 0, P,Qq is generic if and only if the
quadruple p0, Q,QP´1Q,8q is generic. Up to Spp4,Rq-action we can consider
(see Figure 52)

Q “ Id and QP´1Q “ Y “

ˆ

y1 0
0 y2

˙

, y1 ą y2

0

8

Y “

ˆ

y1
ą y2

˙

iY

Y ´1
iY ´1 Id

´Id

iId

Figure 52: Configuration after the action of an
element g P Spp4,Rq

The hyperbolic component of Id is i P H2 in the identification of Section 2.9.
It is trivial that the hyperbolic components of iY and iY ´1 lie on the same
geodesic in H2 (the y-axis), where the point i is in the middle. Since isometries
preserve geodesics, the same is true more generally for tubes
Y´Q,Q K YP,PQP´1Q. The non-generic case is trivial.

Our aim is to give a geometric interpretation of the set K. More precisely we
want see how the choice of R P K is equivalent to choosing an attachment angle
β between the polygonal chains of H and RpHq, where H#RpHq are adjacent
symmetric and R is conjugate to R. Let us start by recalling a standard fact of
linear algebra.

Lemma 6.27. Let K P POp2q such that K2 “ Id. Then

K “ Id or K “

ˆ

´1 0
0 1

˙ˆ

cos θ ´ sin θ
sin θ cos θ

˙

for a unique θ P r0, πq.
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Let us denote by β the following map

β : K Ñ r0, 2πq

ˆ

´K 0
0 K

˙

ÞÑ

#

π ` 2θ

π if K “ Rst

(23)

where
K “

ˆ

´1 0
0 1

˙ˆ

cos θ ´ sin θ
sin θ cos θ

˙

, θ P r0, πq

We can now state the following result:

Proposition 6.28. Let pH,Y0,8q P H:

H “ p0, A, Id, C,D,8q, C diagonal

with arc coordinates

ApH,Y0,8q “ pb, c, d, rα1, α2sq

and let the angles of the polygonal chain associated to pH,Y0,8q be α1, α2 (pos-
sibly only α or no angle). Consider a reflection R inside RY0,8,YA2,Id

Y´A,A
:

R “ g´1Rg P RY0,8,YA2,Id

Y´A,A

for R P K and g an isometry such that gp´A, 0, A2, Aq “ p0, Id, Y,8q with Y
diagonal.
Then the attachment angle between the polygonal chains of pH,Y0,8q and pRpHq,Y0,8q

is given by βpKq where β is the map in (23).
Moreover the polygonal chain associated to pRpHq,Y0,8q has

(i) segments of lengths hpdq, hpcq, hpbq where h is the map

hpd1, d2q “ d1 ´ d2

(ii) angles (if there):

#

α2, α1 por αq

2π ´ α2, 2π ´ α1por 2π ´ αq if K “ Rst

Proof. Let us first consider the case where pH,Y0,8q is generic. The two adjacent
symmetric hexagons are illustrated in Figure 53. By Proposition 6.19 the 6-tuple

p0, RpDq, RpCq, RpIdq “ A2, RpAq “ A,8q is maximal

This 6-tuple determines the ordered sequence of vertices in the polygonal chain
associated to pRpHq,Y0,8q.
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0

8

RpCq

A2 “ RpIdq

Id

C

D´D

A “ RpAq´A

RpDq

H

R

RpHq

d

c

b

b

c

d

Figure 53: The adjacent symmetric hexagons
H#Y´A,A

RpHq

By Corollary 6.22 we know

RY0,8,YA2,Id

Y´A,A
“

#

tg´1Rstg, g
´1Rexgu, if b P a

g´1Kg if b P d

where gp´A, 0, A2, Aq “ p0, Id, Y,8q for Y diagonal and tRst, Rexu Ă K. As
pH,Y0,8q generic we know b P a so that

R “ g´1Rstg or R “ g´1Rexg

By Proposition 52 we know that the attachment angle is βpKq “ π as the points
A2, A, Id are colinear in the hyperbolic component of Y0,8. Put Rst “ g´1Rstg.
Computations give:

Rst “

ˆ

0 A
A´1 0

˙

and one can immediately see that Rst P RY0,8,YA2,Id

Y´A,A
as

Rstp´Aq “ ´A, RstpAq “ A, Rstp0q “ 8, RstpA
2q “ Id

It is straightforward to see that the segments of the polygonal chain associated to
pRstpHq,Y0,8q have length hpdq, hpcq, hpbq respectively. The eigenspaces ERst

˘1

of Rst are given by
ERst

1 “ A, ERst
´1 “ ´A
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By Proposition 6.15 we know that Rst is fixing the tube Y´A,A and sending
any transverse X&A to the unique RstpXq such that Y´A,A K YX,RstpXq

. By
Proposition 6.26 the hyperbolic components of RstpXq and X lie therefore on
the same geodesic inside H2. The polygonal chain associated to pRstpHq,Y0,8q

is obtained by rotating the polygonal chain of H of an angle π around A. This
is illustrated in Figure 54 where the polygonal chain of H is drawn in blue and
the polygonal chain of RstpHq is drawn in purple. It is easy to see that the
angles of the polygonal chain are therefore given by 2π ´ α2, 2π ´ α1.

2π´α1
A2

α2
C

A

RstpCq

Id
α1

D

2π´α2

RstpDq

Figure 54: Polygonal chain of pRstpHq,Y0,8q

obtained from the polygonal chain of pH,Y0,8q

Put now Rex “ g´1Rexg. Recall that RY0,8,YA2,Id

Y´A,A
“ tRst, Rexu (Corollary

6.22). Instead of directly computing Rex observe that if we denote by f the
map

f P StabPSpp4,Rqp0, A2, A,8q, f ‰ Id

then the map f ˝Rst satisfies

f ˝Rstp´Aq “ ´A, f ˝RstpAq “ A, f ˝Rst “ 8, f ˝RstpA
2q “ Id

so that Rex “ f ˝ Rst. The geometric interpretation of f is the reflection
across the geodesic going through the hyperbolic components of A and A2 re-
spectively (Remark 2.34) and this geodesic also goes through the hyperbolic
component of Id (Proposition 6.26). The angles of the polygonal chain associ-
ated to pRexpHq,Y0,8q are therefore given by α2, α1 and this is illustrated on
the right-hand side of Figure 55.

Let us now consider the case where pH,Y0,8q is non-generic of type 1.1, that is
b, c, d P d ˆ a2. The polygonal chain associated to pH,Y0,8q has only one angle
α and is illustrated in Figure 26. By Corollary 6.22 we know

R “ g´1Kg P RY0,8,YA2,Id

Y´A,A
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2π´α1
A2

A2

α1
α2

RexpCq

α2 α2
C C

A
A

RstpCq RexpDq

Id Id
α1

α1

β β

D D

2π´α2

RstpDq

Figure 55: Polygonal chains of pRstpHq,Y0,8q and
pRexpHq,Y0,8q obtained from the polygonal chain of

pH,Y0,8q

where gp´A, 0, A2, Aq “ p0, Id, Y,8q for Y diagonal. Since b P d we know
A “ a ¨ Id. Computations give

RY0,8,YA2,Id

Y´A,A
“

!

ˆ

0 aK
a´1K 0

˙

, K P K
)

Given R P RY0,8,YA2,Id

Y´A,A
let us decompose R as following: let

r “

ˆ

´1 0
0 1

˙

S “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

, θ P r0, πq

We write
R “

ˆ

r 0
0 r

˙

looomooon

r

ˆ

S 0
0 S

˙

looomooon

S

ˆ

0 aId
a´1Id 0

˙

loooooooomoooooooon

M

where K “

ˆ

´1 0
0 1

˙ˆ

cos θ ´ sin θ
sin θ cos θ

˙

, K ‰ Rst is the decomposition of

Lemma 6.27. The geometrical interpretation of this decomposition is illustrated
in Figure 56. The map M is analogue to the rotation of Figure 54. The map
S is a rotation of angle 2θ around i on the hyperbolic component of Y0,8 (see
Section 2.10) and the map r is a reflection across the vertical axis. We obtain an
attachment angle βpKq “ π ` 2θ and polygonal chain angle α. When K “ Rst

we only have

R “

ˆ

0 aId
a´1Id 0

˙

and we are nor rotating nor reflecting.
The proof for the other cases where pH,Y0,8q is non-generic are similar.
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α
M α

r

α2θ2θ
2θ
S β

Figure 56: Geometrical interpretation of R “ rSM

Remark 6.29. (Reflections producing the same hexagon) In Proposition
6.28 we have seen that the choice of R P K is equivalent to choosing an attach-
ment angle β between the hexagons H and RpHq, where H#Y´A,A

RpHq are
adjacent symmetric and R is conjugate to R. More precisely for pH,Y0,8q P H:

H “ p0, A, Id, C,D,8q, C diagonal

with arc coordinates

ApH,Y0,8q “ pb, c, d, rα1, α2sq

we know that the reflection set associated to Y´A,A is the set (Corollary 6.22)

RY0,8,YA2,Id

Y´A,A
“

#

tg´1Rstg, g
´1Rexgu, if b P a

g´1Kg if b P d

where gp´A, 0, A2, Aq “ p0, Id, Y,8q with Y diagonal. The polygonal chain
associated to pRpHq,Y0,8q is illustrated in Fugures 55 and 56 for the cases
pb, c, dq P a3 and pb, c, dq P d ˆ a2 respectively. Observe that if H is contained
in a maximal polydisc it can happen that RY0,8,YA2,Id

Y´A,A
contains two different

reflections R,R1 for which
RpHq “ R1pHq

Let us denote for simplicity p “ pb, c, d, rα1, α2sq the arc coordinates associated
to pH,Y0,8q. By the geometrical interpretation of Proposition 6.28 it is not
hard to show that the case RpHq “ R1pHq happens exactly for

R,R1 P tg´1Rstg, g
´1Rexgu if p P DzDH2 (24)

and for any
R,R1 P g´1Kg if p P DH2 (25)

where D and DH2 are described in Proposition 4.28 and Definition 4.29 respec-
tively. The two hexagons H and RpHq “ R1pHq lie both inside the model
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polydisc if R,R1 are as in (24) and all the points of the two polygonal chains lie
on the vertical geodesic of H2. In (25), the two hexagons H and RpHq “ R1pHq

lie both inside the diagonal disc and all the points of the polygonal chains coin-
cide with πH2

piIdq.

Remark 6.30. (Attaching several polygonal chains)
Let H “ p0, A, Id, C,D,8q be a generic right-angled hexagon and consider the
hexagon R2pHq where R2 P RY0,8,YA2,Id

Y´A,A
. As pH,Y0,8q is generic we know that

RY0,8,YA2,Id

Y´A,A
contains exactly two elements (Corollary 6.22). We have drawn the

correspondent attached polygonal chains of H#R2pHq in Figure 55. In partic-
ular we know that the attachment angle is β “ π (which follows directly from
Proposition 6.26) and we know how to draw the angles of the polygonal chain
associated to pR2pHq,Y0,8q using the geometrical interpretation of Proposition
6.28. We can state a similar result if we consider the hexagon R1pHq where
R1 P R

Y0,8,YC,DC´1D

Y´D,D
. We can then draw the three attached polygonal chains

R2pHq#H#R1pHq. This will turn out to be a very useful visualization in the
proof of Theorem 7.23. For this reason we end this chapter by drawing all the
possible polygonal chains of R2pHq#H#R1pHq in the case that pH,Y0,8q is
generic. This is illustrated in Figure 57. The polygonal chains are drawn up
to isometry, this means that we consider two polygonal chains to be equivalent
if there exists an isometry g P PSpp4,Rq sending all the vertices of one to the
vertices of the other.

H

R1pHq

R2pHq

Figure 57: All possible polygonal chains (up to
isometry) for R2pHq#H#R1pHq when pH,Y0,8q is

generic
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7 Parameters for maximal representations
In this chapter we use arc coordinates of right-angled hexagons to parametrize
maximal representations. We start by discussing geometric properties of Shilov
hyperbolic isometries in PSpp2n,Rq, where we investigate in detail the case of
PSpp4,Rq. We state the definition of a maximal representation into PSpp2n,Rq

and we further define the notion of a maximal representation from the Cox-
eter group W3 “ Z{2Z ˚ Z{2Z ˚ Z{2Z into PSp˘

p2n,Rq (Definition 7.8). We
recall the notion of arc coordinates for classical Teichmüller space T pΣq and
we consider the example of the surface Σ “ Σ0,3 (pair of pants), whose fun-
damental group we denote Γ0,3. In Theorem 7.21 we use arc coordinates of
right-angled hexagons to give a parametrization of the set of maximal repre-
sentations of W3 into PSp˘

p4,Rq. This will lead to the parametrization of a
set χS Ă χmax,ShilovpΓ0,3,PSpp4,Rqq (Definition 7.19) that will be described in
Theorem 7.23.

7.1 Shilov hyperbolic isometries
In this section we give the definition of a Shilov hyperbolic element in PSpp2n,Rq.
We will study in detail the case of PSpp4,Rq and give a classification of Shilov
hyperbolic elements.

Definition 7.1. An element g P PSpp2n,Rq is called Shilov hyperbolic if it is

conjugate to
ˆ

A 0
0 A´T

˙

for a matrix A P GLpn,Rq with complex eigenvalues

with modulus greater than one.

Example 7.2. As an example we study Shilov hyperbolic elements in PSpp4,Rq.
Let pe1, e2, e3, e4q be the standard basis of R4. Recall that we denote 0, l8 the
Lagrangians

0 “ xe3, e4y, l8 “ xe1, e2y

and that the standard tube

Y0,8 “ tiY | Y P Sym`
p2,Rqu

is isometrically identified (see Lemma 2.28) with R ˆ H2 through the map

πR ˆ πH2

: Y0,8 Ñ R ˆ Sym`
p2,Rq

iY ÞÑ

´ log detY
?
2

,
Y

?
detY

¯

Moreover, in the proof of Proposition 2.35 we have shown how the visual bound-
ary of the hyperbolic component in Y0,8 can be realized as the Op2q-orbit of

the Lagrangian l “ xe1, e4y. Let now gA “

ˆ

A 0
0 A´T

˙

P PSpp4,Rq be a Shilov
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hyperbolic element. The action of gA on the R-component of the standard tube
is given by

πRpgApiY qq “
log det2pAqdetY

?
2

“
log det2pAq

?
2

` πRpiY q

and Shilov hyperbolicity implies πRpgApiY qq ą πRpiY q. We now want to study
the action of gA on the hyperbolic component of the standard tube Y0,8. We
have the following possibilities:

• A has eigenvalues λ “ µ P R and acts on H2 as the identity map

• A has eigenvalues λ ą µ P R and is conjugate to a matrix
¨

˚

˚

˝

ˆ

λ 0
0 µ

˙

0

0

ˆ

1
λ 0
0 1

µ

˙

˛

‹

‹

‚

„ gA

The map gA acts on the hyperbolic component of Y0,8 as an hyperbolic
isometry: it fixes exactly two points in the boundary of H2.

• A has one eigenvalues λ P R and is conjugate to a matrix
¨

˚

˚

˝

ˆ

λ 1
0 λ

˙

0

0

ˆ

1
λ 0

´ 1
λ2

1
λ

˙

˛

‹

‹

‚

„ gA

The map gA acts on the hyperbolic component of Y0,8 as a parabolic
isometry: it fixes exactly one point in the boundary of H2.

• A has two complex eigenvalues λeiθ, λe´iθ, θ ‰ 2kπ and is conjugate to a
matrix

¨

˚

˚

˝

ˆ

λ cos θ ´λ sin θ
λ sin θ λ cos θ

˙

0

0

ˆ

1
λ cos θ ´ 1

λ sin θ
1
λ sin θ 1

λ cos θ

˙

˛

‹

‹

‚

„ gA

The map gA acts on the hyperbolic component of Y0,8 as an elliptic isom-
etry: it fixes exactly one point inside H2.

The geometrical interpretation of the action of gA on Y0,8 in the hyperbolic,
parabolic and elliptic case is illustrated in Figure 58.
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Y0,8 Y0,8 Y0,8

Figure 58: The action of gA on Y0,8 “ RˆH2 in the hyperbolic, parabolic and
elliptic case

Lemma 7.3. Let g be an element of PSpp2n,Rq. Then g is Shilov hyperbolic if
and only if g fixes two transverse Lagrangians l`g , l´g on which it acts expandingly
and contractingly respectively.

Proof. By Definition 7.1 the element g is Shilov hyperbolic if it is conjugate to

gA “

ˆ

A 0
0 A´T

˙

for a matrix A P GLpn,Rq with all eigenvalues with modulus

greater than one:
g “ hgAh

´1, h P PSpp2n,Rq

Let pe1, e2, e3, e4q be the standard basis of R4 and let 0, l8 be the Lagrangians

0 “ xe3, e4y, l8 “ xe1, e2y

It is not hard to prove that A has all eigenvalues with modulus greater than one
if and only if for any l P LpR4q, 0&l&l8 it holds

lim
kÑ´8

gkAplq “ 0 and lim
kÑ8

gkAplq “ l8

i.e. gA fixes 0, l8 on which it acts expandingly and contractingly respectively.
Put

l`g “ hp0q, l´g “ hpl8q

Lemma 7.4. Let g be an element of PSpp4,Rq fixing two Lagrangians l1, l2 in

LpR4q i.e. g is conjugated to gA “

ˆ

A 0
0 A´T

˙

for a matrix A P GLpn,Rq.

Denote by |λ| ě |µ| the modulus of the eigenvalues of A. Then

(i) There exists l P LpR4q such that pl1, l, l2q maximal and pl1, l, gplq, l2q max-
imal if and only if |µ| ą 1 (that is g is Shilov hyperbolic).

(ii) pl1, l, gplq, l2q maximal for all l such that pl1, l, l2q maximal if and only if
A “ λId for λ P R, λ ą 1.
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Proof. It is sufficient to prove the lemma for g “ gA, that is l1 “ 0 and l2 “ 8.

(i) We want to show that there exists Y such that p0, Y,8q maximal and
p0, Y, gAY,8q maximal if and only if |µ| ą 1. Let us write Y ą 0 for a
matrix Y which is positive definite. By Lemma 2.5 we know that p0, Y,8q

is maximal if and only if Y ą 0. Suppose that there exists Y ą 0 such
that p0, Y, gAY,8q maximal, that is

gAY ´ Y “ AY AT ´ Y ą 0

Recall that a matrix M is positive definite if and only if NMNT ą 0 for
every invertible matrix N . In particular for N “

?
Y ´1 we obtain

?
Y ´1pAY AT ´ Y q

?
Y ´1 “ p

?
Y ´1A

?
Y qp

?
Y AT

?
Y ´1q ´ Id ą 0 (26)

The matrix
?
Y AT

?
Y ´1 P GLp2,Rq has the same eigenvalues of A. Let

v be the orthonormal eigenvector associated to µ. Then

?
Y AT

?
Y ´1v “ µv ñ

?
Y AT

?
Y ´1v “ µv

It follows from (26):

vT p
?
Y ´1A

?
Y qp

?
Y AT

?
Y ´1qv ´ vT v “ |µ|2 ´ 1 ą 0

Let now suppose |µ| ą 1. We want to find Y ą 0 such that p0, Y, gAY,8q

maximal that is we want to find Y ą 0 such that gAY ´ Y ą 0. In
Remark 2.30 we have given an equivalent condition for gAY ´ Y to be
positive definite: let

r “ dRpπRpiY q, πRpigAY qq, h “ dH
2

pπH2

piY q, πH2

pigAY qq

then
gAY ´ Y ą 0 ðñ r ą

1
?
2
h (27)

As gA Shilov hyperbolic (this is the assumption |µ| ă 1) we know that
gA acts as a translation of distance r on the R-component of Y0,8 and
as an isometry on the H2-component which can be hyperbolic parabolic
or elliptic (see Example 7.2). Observe that for a fixed A the distance r
only depends on the eigenvalues of A and not on the point X, whereas
the distance h depends on X and decreases the more X is close to the
axis (if the isometry is hyperbolic) or to a fixed point (if the isometry is
parabolic or elliptic). We can always find an open neighbour of the axis
(or of a fixed point) such that the condition r ą 1?

2
h is satisfied.
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(ii) We want to show that p0, Y, gAY,8q is maximal @Y such that p0, Y,8q

maximal if and only if A “ λId for λ P R, λ ą 1. This is clear after the
discussion in (i): recall that λId for λ P R acts on the H2-component of
the tube as the identity map, so if A “ λId the inequality in (27) is clearly
satisfied. Conversely, suppose that p0, Y, gAY,8q is maximal for all Y ą 0.
Equivalently, for any Y ą 0 the inequality in (27) is satisfied, where the
distance r is a fixed length depending only on the eigenvalues of A. This
implies that the action of gA on the hyperbolic component of the tube is
the identity map i.e. gA “ λId, λ P R. If this were not the case, we could
always find an Y which does not satisfy the inequality in (27) by stepping
away from the axis (in the hyperbolic case) or the fixed points (in the
parabolic or elliptic case) and moving towards the boundary of H2.

7.2 Maximal representations
Let Σ be an oriented surface with negative Euler characteristic and boundary
BΣ. Fix a finite area hyperbolization on Σ inducing an action of the fundamental
group π1pΣq on S1 “ BH2. An element γ P π1pΣq is called peripheral if it is
freely homotopic to a boundary component.

Maximal representations are representations that maximize the Toledo in-
variant, an invariant defined using bounded cohomology (see [Tol89], [BIW10]).
It is a deep result from Burger Iozzi and Wienhard ([BIW10, Theorem 8] ) that
maximal representations can be equivalently characterized as representations
admitting a well-behaved boundary map, that is they can be defined by the
following

Definition 7.5. A representation ρ : π1pΣq Ñ PSpp2n,Rq is maximal if there
exists a ρ-equivariant map ξ : S1 Ñ LpR2nq which is monotone (i.e. the image
of any positively oriented triple in the circle is a maximal triple) and right
continuous.

Given a maximal representation ρ : π1pΣq Ñ PSpp2n,Rq, the image ρpγq

of every non-peripheral element γ P π1pΣq is Shilov hyperbolic (see [Str15]).
Equivalently, ρpγq fixes two transverse Lagrangians l`γ and l´γ on which it acts
expandingly and contractingly respectively (see Lemma 7.3). These Lagrangians
are the images ξpγ`q and ξpγ´q where ξ : S1 Ñ LpR2nq is the equivariant
boundary map and l˘γ “ ξpγ˘q. We want to parametrize the set of maximal
representations where the property of being Shilov hyperbolic is true also for pe-
ripheral elements. This is equivalent to the requirement that the representations
are Anosov in the sense of [GW12].

Definition 7.6. A maximal representation ρ : π1pΣq Ñ PSpp2n,Rq will be
called Shilov hyperbolic if ρpγq is Shilov hyperbolic for every γ P π1pΣq. The
set of maximal representations which are Shilov hyperbolic will be denoted by
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Hommax,Shilov
pπ1pΣq,PSpp2n,Rqq. We define χmax,Shilovpπ1pΣq,PSpp2n,Rqq as

the quotient

χmax,Shilovpπ1pΣq,PSpp2n,Rqq :“ Hommax,Shilov
pπ1pΣq,PSpp2n,Rqq{PSpp2n,Rq

where PSpp2n,Rq is acting by conjugation: ρ „ ρ1 if there exists g P PSpp2n,Rq

such that ρpγq “ gρ1pγqg´1 for all γ P π1pΣq.

We want to introduce the definition of a maximal representation from the
group Z{2Z ˚ Z{2Z ˚ Z{2Z into PSp˘

p2n,Rq.

Notation 7.7. For the rest of the thesis the group
Z{2Z ˚ Z{2Z ˚ Z{2Z “ xs1, s2, s3| s21 “ s22 “ s23 “ 1y will be denoted by W3.

X2

Q1

P2

X1

Z2

P1
R2

Z1

Y2

R1

Q2

Y1

ρps1q

ρps2q

ρps3q

Figure 59: The reflections ρps1q, ρps2q, ρps3q for
ρ :W3 Ñ PSp˘

p4,Rq maximal

Definition 7.8. Let W3 “ xs1, s2, s3| s21 “ s22 “ s23 “ 1y. A representation

ρ :W3 Ñ PSp˘
p2n,Rq

is maximal if there exists a maximal 6-tuple pP1, P2, Q1, Q2, R1, R2q such that

• ρps1q is a reflection of X fixing pP1, P2q such that

ρps1qpX1q “ X2 and ρps1qpZ1q “ Z2

where X1, X2, Z1, Z2 are uniquely determined by

YP1,P2
K YX1,X2

K YQ1,Q2
and YR1,R2

K YZ1,Z2
K YP1,P2
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• ρps2q is a reflection of X fixing pQ1, Q2q such that

ρps2qpX1q “ X2 and ρps2qpY1q “ Y2

where Y1, Y2 are uniquely determined by

YQ1,Q2
K YY1,Y2

K YR1,R2

• ρps3q is a reflection of X fixing pR1, R2q such that

ρps3qpY1q “ Y2 and ρps3qpZ1q “ Z2

The space of maximal representations will be denoted by Hommax
pW3,PSp

˘
p2n,Rqq.

We further define

χmaxpW3,PSp
˘

p2n,Rqq :“ Hommax
pW3,PSp

˘
p2n,Rqq{PSpp2n,Rq

The geometric properties of a maximal representation defined in 7.8 are
illustrated in Figure 59.

Remark 7.9. Observe that given the maximal 6-tuple pP1, P2, Q1, Q2, R1, R2q

the set of reflections ρpsiq, i “ 1, 2, 3 for which ρ :W3 Ñ PSpp4,Rq˘ is maximal
as in Definition 7.8 are given by the sets RpP1, Z2, X1, P2q,RpQ1, X2, Y1, Q2q

and RpR1, Y2, Z1, R2q respectively (recall Proposition 6.18).

Lemma 7.10. Let W3 “ xs1, s2, s3| s21 “ s22 “ s23 “ 1y and let
ρ :W3 Ñ PSpp4,Rq˘ be maximal. Then the composition ρpsisjq “ ρpsiqρpsjq is
a Shilov hyperbolic element of PSpp4,Rq for any i ‰ j where i, j P t1, 2, 3u.

Proof. The product of any two reflections is an element of PSpp2n,Rq: for two
reflections ρpsiq “ Ri, ρpsjq “ Rj it holds

pRiRjqTJpRiRjq “ RT
j R

T
i JRiRj “ RT

j p´JqRj “ J

Let ρ :W3 Ñ PSpp4,Rq˘ be maximal, we want to show that ρpsiqρpsjq is Shilov
hyperbolic. Without loss of generality let us sassume i “ 1, j “ 2. By definition
of maximality (see Definition 7.8 ) it is clear that ρps1qρps2q fixes X1 and X2,
where pP1, X1, P2, Q1, X2, Q2q is a maximal 6-tuple and

YP1,P2
K YX1,X2

K YQ1,Q2

Up to isometry let us consider pP1, P2, Q1, Q2, R1, R2q “ p0, A, Id, C,D,8q

where A,C,D are positive definite and C is diagonal (Figure 60).
The map ρps1qρps2q is inside PSpp4,Rq and fixes 0 and 8. This map is Shilov hy-
perbolic if and only if there exists a positive definite Y such that p0, Y, ρps1qρps2qY,8q

is maximal (see Lemma 7.4). Let Y “ A. Then

ρps1qρps2qpAq “ ρps1qpAq

We want to show that p0, A, ρps1qA,8q is maximal. We know p0, A,Cq maximal
and ρps1q P Rp´D, 0, C,Dq (Remark 7.9). Result follows by Proposition 6.19
and 2.6.
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0

´A

´D

8
DC´1D

D

C

Id

A

A2

ρps1q

ρps2q

Figure 60: The map ρps1qρps2q is Shilov hyperbolic

We finish this section with a lemma that will be useful later.

Lemma 7.11. Let ρ :W3 Ñ PSp˘
p4,Rq be maximal and let pX1, X2, Y1, Y2, Z1, Z2q

be a maximal 6-tuple as in Definition 7.8. Then for l1, l2, l3, l4 P LpR4q it holds:

(i) If pX2, l1, l2, l3, l4, Z1q is maximal then pZ2, ρps1ql4, ρps1ql3, ρps1ql2, ρps1ql1, X1q

is maximal

(ii) If pY2, l1, l2, l3, l4, X1q is maximal then pX2, ρps2ql4, ρps2ql3, ρps2ql2, ρps2ql1, Y1q

is maximal

(iii) If pZ2, l1, l2, l3, l4, Y1q is maximal then pY2, ρps3ql4, ρps3ql3, ρps3ql2, ρps3ql1, Z1q

ismaximal

Proof. Follows directly from Proposition 6.19. Point (i) is illustrated in Figure
61.

X2

P2

X1

Z2

P1 Z1

ρps1ql4
ρps1ql3

ρps1ql2

ρps1ql1

l3

l4

l1

l2

ρps1q

Figure 61: Configuration of (i)
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7.3 Arc coordinates in classical Teichmüller
Given a hyperbolic surface with boundary, arc coordinates provide a parametriza-
tion of the Teichmüller space. They were first introduced by Harer [Har86] and
were developed by Penner [Pen87] to decompose decorated Teichmüller space of
punctured surface. This decomposition was generalized by [Ush99] [Pen02] for
surfaces with boundary. Similar coordinates were used in [Luo07] [Guo09].

Let us recall arc coordinates for classical Teichmüller space T pΣq. Let
Σ “ Σg,m be a compact orientable smooth surface of genus g and m boundary
components. We can equip Σg,m with a complete hyperbolic structure of finite
volume with geodesic boundary. The universal covering rΣg,m of Σg,m is a closed
subset of the hyperbolic plane H2 where boundary curves are geodesics.

Let us consider a maximal collection ta1, ..., aku of pairwise disjoint arcs
in Σg,m with starting and ending point on a boundary component which are
essential and pairwise non-homotopic (Figure 62). The connected components
of Σg,mz

Ť

i ai are given by a union of hexagons. Every arc will be called an
edge of the hexagon decomposition. For every hexagon there are exactly three
alternating edges belonging to one boundary component of Σg,m. We denote by
E the set of all edges, Ebdry the set of edges lying on a boundary component
and by H the set of all hexagons of the decomposition. It can be shown that
for such a collection ta1, ..., aku it holds

k “ #EzEbdry “ 3|χpΣg,mq| “ 3p2g ´ 2 `mq

and that the number of hexagons is given by

#H “ 2|χpΣg,mq| “ 2p2g ´ 2 `mq

Σ0,3 Σ0,4

Figure 62: A collection ta1, ..., aku for the surfaces
Σ0,3 and Σ0,4

For a fixed hyperbolic structure we can always realize the hexagon decom-
position of Σg,m in a way such that every edge is a geodesic and every arc
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ai P ta1, ..., aku is the unique geodesic which is orthogonal to the boundary
at both endpoints. Moreover, we fix an orientation on the boundary com-
ponents such that the surface lies to the right of the boundary. For each
choice of ta1, ..., aku we get a parametrization of the Teichmüller space T pΣg,mq:
once we fix the lengths lpa1q, ..., lpakq there is a unique hyperbolic metric that
makes Σg,mz

Ť

i ai a union of hyperbolic right-angled hexagons where each
hexagon has exactly three alternating edges ai1 , ai2 , ai3 in EzEbdry of length
lpai1q, lpai2q, lpai3q respectively, where i1, i2, i3 P t1, ..., ku. This is due to the
well known fact that given three real numbers b, c, d ą 0 there exists (up to
isometries) a unique right-angled hexagon in H2 with alternating sides of lengths
b, c and d (see for example [Mar16, Lemma 6.2.2]). Let us denote by Γg,m the
fundamental group π1pΣg,mq. It is well known (see for example [FM11], [Ara12])
that one can define the Teichmüller space T pΣg,mq as the set of conjugacy classes
of discrete and faithful representations ρ where

ρ : Γg,m Ñ PSLp2,Rq

In Definition 7.6 we have defined the space χmax,ShilovpΓg,m,PSpp2n,Rqq. When
n “ 1 the group PSpp2,Rq coincides with PSLp2,Rq. A Shilov hyperbolic ele-
ment in PSLp2,Rq is conjugated to a matrix of the type

ˆ

λ 0
0 λ´1

˙

, |λ| ą 1

A representation ρ P HompΓg,m,PSLp2,Rqq is discrete and faithful if and only
if ρ is maximal and Shilov hyperbolic. The surface Σg,m is then realized by the
quotient

Σg,m “ρpΓg,mq zH2

where ρpΓg,mq acts freely and properly discontinuously on H2. The above dis-
cussion asserts that once we fix the lengths lpα1q, ..., lpαkq we can explicitly write
the representation ρ : Γg,m Ñ PSLp2,Rq P Hommax,Shilov

pΓg,m,PSLp2,Rqq such
that Σg,m “ ρpΓg,mqzH2. Concrete examples will be given in 7.13 and 7.14.

The fundamental group of the surface Σg,m is isomorphic to a free group.

Lemma 7.12. Let Γg,m denote the fundamental group π1pΣg,mq. Then Γg,m is
isomorphic to the free group F2g`m´1.

Proof. It is well known that Γg,m has the following presentation (see for example
[Lab13, Theorem 2.3.15] for the case m “ 0)

Γg,m “ xa1, b1, ...ag, bg, c1, ...cm|

g
ź

i“1

rai, bis
m
ź

j“1

cj “ 1y

where rai, bis “ aibia
´1
i b´1

i denotes the commutator of ai and bi. Then
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F2g`m´1 – Γg,m through the isomorphism given by

F2g`m´1 Ñ Γg,m

Xi ÞÑ

$

’

&

’

%

ai for i “ 1, ..., g

bi for i “ g ` 1, ..., 2g

ci for i “ 2g ` 1, ..., 2g `m´ 1

Example 7.13. (Pair of pants) Let Γ0,3 be the fundamental group π1pΣ0,3q.
By Lemma 7.12 we know

Γ0,3 – F2

Let us denote Γ0,3 “ xα, βy and consider a1, a2, a3 three arcs as in Figure 62
which decompose Σ0,3 in two hexagons. Once we fix the lengths lpa1q, lpa2q, lpa3q

we can uniquely draw two adjacent isometric hexagons in H2 up to isometry
and we can reconstruct the generators ρpαq, ρpβq of the maximal representation
which "closes up" the pair of pants. These are two hyperbolic isometries inside
PSLp2,Rq. This is illustrated in Figure 63.

α

β

ρpα)

ρpβ)

H2

Figure 63: The maximal representation
ρ : Γ0,3 Ñ PSLp2,Rq

Example 7.14. (The surface Σ0,4) By Lemma 7.12 we know

Γ0,4 – F3 “ xα, β, γy

The procedure to reconstruct the maximal representation is similar to Example
7.13. This is illustrated in Figure 64.
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α

β

γ

ρpα)

ρpβ)

ρpγ)

H2

Figure 64: The maximal representation
ρ : Γ0,4 Ñ PSLp2,Rq

7.4 The group Γ0,3 as a subgroup of W3

In Definition 7.6 and 7.8 we have defined the space χmax,ShilovpΓ0,3,PSpp2n,Rqq

and χmaxpW3,PSp
˘

p2n,Rqq respectively. When n “ 1 the group PSpp2,Rq

coincides with PSLp2,Rq. Let W3 be the Coxeter group

W3 “ Z{2Z ˚ Z{2Z ˚ Z{2Z

The fundamental group Γ0,3 is isomorphic to the free group F2 (see Lemma
7.12). The following lemma allows us to see Γ0,3 as a subgroup of W3.

Lemma 7.15. The group W3 has a normal subgroup Γ isomorphic to the free
group F2.

Proof. Let W3 “ xs1, s2, s3| s21 “ s22 “ s23 “ 1y and let us consider the subgroup
Γ of W3

Γ “ xs1s2, s2s3y

The subgroup Γ is torsion free and result follows by a generalized version of
[Löh17, Corollary 4.2.15].

Proposition 7.16. Let Γ0,3,W3 be the following groups

Γ0,3 “ π1pΣ0,3q “ xα, βy

W3 “ xs1, s2, s3| s21 “ s22 “ s23 “ 1y
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and denote by ϕ the following homomorphism

ϕ : Γ0,3 Ñ W3

α ÞÑ s1s2

β ÞÑ s2s3

Fix rρ P Hommax
pW3,PSL

˘
p2,Rqq. It holds

(i) The representation ρ :“ rρ|Impϕq is inside Hommax,Shilov
pΓ0,3,PSLp2,Rqq.

(ii) For any ρ P Hommax,Shilov
pΓ0,3,PSLp2,Rqq there exists a unique rρ P

Hommax
pW3,PSL

˘
p2,Rqq such that ρ “ rρ ˝ ϕ

Γ0,3 W3

PSL˘
p2,Rq

ϕ

rρ
ρ

(iii) The map f defined by

f : χmaxpW3,PSL
˘

p2,Rqq Ñ χmax,ShilovpΓ0,3,PSLp2,Rqq
“

rρ
‰

ÞÑ
“

rρ|Impϕq

‰

is a homeomorphism.

Proof. (i) This will be proven for PSpp4,Rq in Proposition 7.18. The proof
for PSLp2,Rq is similar.

(ii) Let ρ P Hommax,Shilov
pΓ0,3,PSLp2,Rqq. Denote by

tpx1, x2q, py1, y2q, pz1, z2qu Ă BH2

the fixed points of ρpαq, ρpβq and ρpβ´1α´1q respectively. Choose an ori-
entation of the boundary BH2 such that px1, x2, y1, y2, z1, z2q is positive. In
Section 6.1 we have defined a reflection in H2 as an involution of SL´

p2,Rq.
Reflections in H2 fix an infinite geodesic γ (see Proposition 6.6) and are
uniquely determined by the endpoints of γ at the boundary of H2 (Propo-
sition 6.7). For p, q P BH2 let γp,q denote the infinite geodesic having p, q
as endpoints.

Notation 7.17. For p, q P BH2 we denote Rp,q the unique non trivial
reflection fixing the infinite geodesic γp,q i.e. Rp,q is the unique non trivial
isometry such that

γp,q K γx,Rp,qpxq

for any x P BH2.
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Let pp1, p2, q1, q2, r1, r2q be the positive 6-tuple inside BH2 uniquely deter-
mined by

γx1,x2 K γp1,p2 K γy1,y2 K γq1,q2 K γz1,z2 K γr1,r2 K γx1,x2

Define rρ :W3 Ñ PSL˘
p2,Rq such that (Figure 65)

rρps1q “ Rr1,r2

rρps2q “ Rp1,p2

rρps3q “ Rq1,q2

α

β

ρpα)

ρpβ)

x2

y1

x1

p1 p2

y2
q1

q2
z1

r1
z2r2

H2
rρps1q

rρps2q

rρps3q

Figure 65: The maximal representation ρ as a
restriction of rρ

Then rρ is maximal. Moreover it is easy to show that (see for example
[Mar16] Proposition 6.2.1)

ρpαq “ Rq1,q2 ˝Rp1,p2

ρpβq “ Rr1,r2 ˝Rq1,q2

It follows

rρps1s2q “ rρps1qrρps2q “ ρpαq and rρps2s3q “ rρps2qrρps3q “ ρpβq

so that rρ ˝ ϕpγq “ ρpγq for all γ P Γ0,3. It is clear that rρ is the unique
maximal representation such that rρ ˝ ϕ “ ρ.
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(iii) This follows directly from (ii). In particular recall that as Γ0,3 is free,
the set of representations HompΓ0,3,PSLp2,Rqq can be identified with
PSLp2,Rq2 and we can carry over its topology.

7.5 The set χS

In Definition 7.8 we have defined the set of maximal representations Hommax
pW3,PSp

˘
p4,Rqq

and we know that we can see the fundamental group Γ0,3 as a subgroup of W3.
In this section we define the set χS Ă χmax,ShilovpΓ0,3,PSpp4,Rqq. We start by
giving an analogue of Proposition 7.16(i) in the case of PSpp4,Rq, that is we
show that the restriction to Γ0,3 of a maximal representation as in Definition
7.8 is a maximal and Shilov hyperbolic representation as in Definition 7.6.

Proposition 7.18. Let Γ0,3,W3 be the following groups

Γ0,3 “ π1pΣ0,3q “ xα, βy

W3 “ xs1, s2, s3| s21 “ s22 “ s23 “ 1y

and denote by ϕ the following homomorphism

ϕ : Γ0,3 Ñ W3

α ÞÑ s1s2

β ÞÑ s2s3

Fix rρ P Hommax
pW3,PSp

˘
p4,Rqq. Then the representation ρ :“ rρ|Impϕq is

inside Hommax,Shilov
pΓ0,3,PSpp4,Rqq.

Proof. By Lemma 7.10 we know that rρ ˝ ϕpγq is a Shilov hyperbolic element of
PSpp4,Rq for any γ P Γ0,3. By abuse of notation let us denote the subgroup
ϕpΓ0,3q Ĳ W3 just as Γ0,3. Given rρ P Hommax

pW3,PSp
˘

p4,Rqq we want to
prove that

ρ “ rρ ˝ ϕ : Γ0,3 Ñ PSpp4,Rq

is maximal. Fix ρ0 a hyperbolization of Σ0,3. Denote

tpx1, x2q, py1, y2q, pz1, z2qu Ă BH2

the fixed points of ρ0pαq, ρ0pβq and ρ0pβ´1α´1q respectively. Choose an ori-
entation of the boundary BH2 such that px1, x2, y1, y2, z1, z2q is positive. By
Proposition 7.16(ii) we know that there is a unique way to extend the action of
Γ0,3 on H2 (and on its boundary) to the group W3 making the following diagram
commute

Γ0,3 W3

PSL˘
p2,Rq

ϕ

rρ0ρ0
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where rρ0 is maximal. For simplicity given s P W3 and p P BH2 we will denote
the action rρ0psq ¨ p simply as s ¨ p.

Since rρ :W3 Ñ PSp˘
p4,Rq is maximal we know that there exists a maximal

6-tuple pP1, P2, Q1, Q2, R1, R2q satisfying the conditions of Definition 7.8. Let
us denote pX1, X2, Y1, Y2, Z1, Z2q the Lagrangians (see Figure 59) such that

YP1,P2
K YX1,X2

K YQ1,Q2
K YY1,Y2

K YR1,R2
K YZ1,Z2

K YP1,P2

We define the following sets

HH2

:“ tx1, x2, y1, y2, z1, z2u

HL :“ tX1, X2, Y1, Y2, Z1, Z2u

OH2

n :“
ď

|s|ďn

s ¨HH2

, s P W3

OL
n :“

ď

|s|ďn

ρpsq ¨HL

Define ξn : OH2

n Ñ OL
n such that

#

´

ξnpx1q, ξnpx2q, ξnpy1q, ξnpy2q, ξnpz1q, ξnpz2q

¯

“ pX1, X2, Y1, Y2, Z1, Z2q

ξnps ¨ pq “ ρpsqξnppq for s P W3, |s| ď n, p P HH2

We will show that the map ξn is monotone by induction on n.

n “ 0: From the definition of ξ it is clear that the map ξ0 : HH2

Ñ HL is
monotone.

n “ 1: We obtain the map ξ1 : OH2

1 Ñ OL
1 where

OH2

1 “ HH2

Y ts1H
H2

, s2H
H2

, s3H
H2

u

and
OL

1 “ HL Y tρps1qHL, ρps2qHL, ρps3qHLu

The set OH2

1 is given by HH2

together with other six points, two for every
siH

H2

, i P t1, 2, 3u. For s1HH2

we only add the two points {s1y1, s1y2} as

s1x1 “ x2, s1x2 “ x1 and s1z1 “ z2, s1z2 “ z1

The same holds for s2HH2

and s3HH2

. This is illustrated in Figure 66.
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s2s1y2
s2s1y1

s2H

s2s3H
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H

s1

s2

s3

s1H

Figure 66: Configuration of OH2

2

The set OH2

1 is therefore formed by 12 points. The order on OH2

1 is given by
the orientation of BH2. To explicitly write OH2

1 as a positive 12-tuple we use
Proposition 6.8 to show that the quadruples

pz2, s1y2, s1y1x1q, px2, s2z2, s2z1, y1q and py2, s3x2, s3x1, z1q

are positive. We obtain the following positive 12-tuple:

OH2

1 “ pz2, s1y2, s1y1, x1, x2, s2z2, s2z1, y1, y2, s3x2, s3x1, z1q

Similarly, the set OL
1 consists of 12 Lagrangians: it is given by HL together

with six Lagrangians, two for every ρpsiqH
L. For ρps1qHL we only add the

Lagrangians tρps1qY1, ρps1qY2u: by definition of ρ we know that (Definition 7.8)

ρps1qX1 “ X2, ρps1qX2 “ X1 and ρps1qZ1 “ Z2, ρps1qZ2 “ Z1
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and the same is true for ρps2qHL,ρps3qHL. To prove the monotonic behaviour
of ξ1 we need to show maximality of the 12-tuple

OL
1 “ pZ2, ρps1qY2, ρps1qY1, X1, X2, ρps2qZ2, ρps2qZ1, Y1, Y2, ρps3qX2, ρps3qX1, Z1q

we use Lemma 7.11 to show that the three quadruples
`

Z2, ρps1qY2, ρps1qY1, X1

˘

,
`

X2, ρps2qZ2, ρps2qZ1, Y1
˘

,
`

Y2, ρps3qX2, ρps3qX1, Z1

˘

are maximal . We use Lemma 2.6 to deduce that the 12-tuple is therefore max-
imal.

Assume true for n show true for n ` 1: Assuming ξn monotone we con-
sider the map

ξn`1 : OH2

n`1 Ñ OL
n`1

We will first study the set OH2

n`1 describing how to obtain it from OH2

n and how
to write its positive order (Claim 1 and Claim 2 ).

The set OH2

n`1 is given by

OH2

n`1 “ OH2

n Y
␣

s ¨H, |s| “ n` 1
(

If we fix an element s P W3 such that |s| “ n ` 1 and look at the set ts ¨ HH2

u

we are adding exactly two points inside OH2

n`1 both lying between two points
contained in OH2

n . This is made precise in the following two statements

Claim 1 : For any s P W3 such that |s| “ n` 1 it holds

|OH2

n Y ts ¨HH2

u| “ |OH2

n | ` 2

Claim 2 : Let s “ wsi where |w| “ n and si P W3. It holds

1. If si “ s1 then the two points ws1¨HH2

added inside OH2

n`1 are tws1y1, ws1y2u

and are such that

pwz2, ws1y2, ws1y1, wx1q positive if n even

pwx1, ws1y1, ws1y2, wz2q positive if n odd

2. If si “ s2 then the two points ws2¨HH2

added inside OH2

n`1 are tws2z1, ws2z2u

and are such that

pwx2, ws2z2, ws2z1, wy1q positive if n even

pwy1, ws2z1, ws2z2, wx2q positive if n odd
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3. If si “ s3 then the two points ws3¨HH2

added inside OH2

n`1 are tws3x1, ws3x2u

and are such that

pwy2, ws3x2, ws3x1, wz1q positive if n even

pwz1, ws3x1, ws3x2, wy2q positive if n odd

Proof of Claim 1 Let s P W3 such that |s| “ n` 1 and consider the set s ¨HH2

.
Let us suppose that s ends with the element s1 i.e. we can write

s “ ws1, for a w P W3, |w| “ n

Among the six points ws1 ¨ HH2

“ tws1x1, ws1x2, ws1y1, ws1y2, ws1z1, ws1z2u

we know

ws1x1 “ wx2, ws1x2 “ wx1 and ws1z1 “ wz2, ws1z2 “ wz1

so that tws1x1, ws1x2, ws1z1, ws1z2u Ă OH2

n . In particular

OH2

n Y tws1 ¨HH2

u “ OH2

n Y tws1y1, ws2y2u

A similar proof holds for s “ ws2 and s “ ws3.

Proof of Claim 2 Let us show 1. In the proof of Claim 1 we have already shown
that the two points added inside OH2

n`1 are tws1y1, ws1y2u. We know that we
can write OH2

1 as the positive 12-tuple (inductive step n “ 1)

OH2

1 “ pz2, s1y2, s1y1, x1, x2, s2z2, s2z1, y1, y2, s3x2, s3x1, z1q

In particular pz2, s1y2, s1y1, x1q is positive. Let w “ wn ¨ ... ¨ w1, where wi P

ts1, s2, s3u. At every step

pw1z2, w1s1y2, w1s1y1, w1x1q Ñ pw1w2z2, w1w2s1y2, w1w2s1y1, w1w2x1q Ñ ...

... Ñ pw1w2...wnz2, w1w2...wns1y2, w1w2...wns1y1, w1w2...wnx1q

we satisfy the conditions of Proposition 6.8. It follows that the image under
s “ ws1 of the positive quadruple pz2, s1y2, s1y1, x1q stays positive if n even and
is negative if n odd. 2. and 3. are similar.

We now want to state similar statements for the set OL
n`1 .

Claim 3 : For any s P W3 such that |s| “ n` 1 it holds

|OL
n Y tρpsq ¨HLu| “ |OL

n | ` 2

Claim 4 : Let s “ wsi where |w| “ n and si P W3. It holds
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1. If si “ s1 then the two Lagrangians ρpws1q ¨ HL added inside OL
n`1 are

tρpws1qY1, ρpws1qY2u and are such that

pρpwqZ2, ρpws1qY2, ρpws1qY1, ρpwqX1q maximal if n even

pρpwqX1, ρpws1qY1, ρpws1qY2, ρpwqZ2q maximal if n odd

2. If si “ s2 then the two Lagrangians ρpws2q ¨ HH2

added inside OL
n`1 are

tρpws2qZ1, ρpws2qZ2u and are such that

pρpwqX2, ρpws2qZ2, ρpws2qZ1, ρpwqY1q maximal if n even

pρpwqY1q, ρpws2qZ1, ρpws2qZ2, ρpwqX2q maximal if n odd

3. If si “ s3 then the two Lagrangians ρpws3q ¨ HH2

added inside OL
n`1 are

tρpws3qX1, rhopws3qX2u and are such that

pρpwqY2, ρpws3qX2, ρpws3qX1, ρpwqZ1q maximal if n even

pρpwqZ1, ρpws3qX1, ρpws3qX2, ρpwqY2q maximal if n odd

Proof of Claim 3 The proof is similar to Claim 1 where we change s with ρpsq
and xi, yi, zi with Xi, Yi, Zi and follows directly from the definition of ρ (Defi-
nition 7.8).

Proof of Claim 4 Let us show 1. By definition of ρ it is clear that the two La-
grangians added inside OL

n`1 are tρpws1qY1, ρpws1qY2u. We know that pZ2, ρps1qY2, ρps1qY1, X1q

is maximal (inductive step n “ 1). Let w “ wn ¨ ... ¨ w1, where wi P ts1, s2, s3u.
At every step

pρpw1qZ2, ρpw1s1qY2, ρpw1s1qY1, ρpw1qX1q Ñ pρpw1w2qZ2, ρpw1w2s1qY2, ρpw1w2s1qY1, ρpw1w2qX1q Ñ ...

... Ñ pρpw1w2...wnqZ2, ρpw1w2...wns1qY2, ρpw1w2...wns1qY1, ρpw1w2...wnqX1q

we satisfy the conditions of Proposition 6.19. It follows that the image under
ρpsq “ ρpws1q of the maximal quadruple pZ2, ρps1qY2, ρps1qY1, X1q is maximal
if n is even and is minimal if n is odd. 2. and 3. are similar.

The map ξn : OH2

n`1 Ñ OL
n is monotone by inductive hypothesis. In Claim

3 and Claim 4 we have proven that the set OL
n`1 is obtained in the following

way: for any s of length n` 1 we add two Lagrangians l1, l2 in a way such that
pa, l1, l2, bq maximal for a, b P OL

n . By Lemma 2.6 it is easy to see that ξn`1 is
monotone on the entire set OH2

n`1. We have proven that

ξn : OH2

n`1 Ñ OL
n

is monotone for any n ě 0 and it is ρ-equivariant by definition. Using the same
approach of [BIW10] it can be shown that ξn can be extended to a map ξ defined
on S1 such that ξ maximizes the Toledo invariant. To prove maximality we use
[Str15, Theorem 1.1.5.].
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Definition 7.19. (The set χS) Let Γ0,3,W3 be the following groups

Γ0,3 “ π1pΣ0,3q “ xα, βy

W3 “ xs1, s2, s3| s21 “ s22 “ s23 “ 1y

and denote by ϕ the following homomorphism

ϕ : Γ0,3 Ñ W3

α ÞÑ s1s2

β ÞÑ s2s3

Let f be the map

f : χmaxpW3,PSp
˘

p4,Rqq Ñ χmax,ShilovpΓ0,3,PSpp4,Rqq
“

rρ
‰

ÞÑ
“

rρ|Impϕq

‰

which is well defined by Proposition 7.18. We define χS as the set

χS :“ Impfq

Remark 7.20. Contrary to the PSLp2,Rq case (see Proposition 7.16) the map
f is not injective nor surjective. This will be proven in Corollary 7.24.

7.6 Parameter space for χmaxpW3,PSp
˘

p4,Rqq

Let X be the symmetric space associated to Spp4,Rq. The space of ordered right-
angled hexagons H inside X is parametrized by the set A defined in Theorem
4.26. Recall that we denote by Rst, Rex and K the following matrices:

Rst “

ˆ

´Id 0
0 Id

˙

, Rex “

ˆ

´r 0
0 r

˙

, r “

ˆ

´1 0
0 1

˙

K “

!

ˆ

´K 0
0 K

˙

, K P POp2q, K2 “ Id
)

Observe that tRst, Rexu Ă K. Recall also that we denote by Fb,d,α1,α2 the
malefic map defined in 5.12.

Theorem 7.21. The set χmaxpW3,PSp
˘

p4,Rqq is parametrized by the param-
eter space S:

S Ă A ˆ K3

consisting of points
`

b, c, d, rα1, α2s, R1, R2, R3

˘

in A ˆ K3 such that
$

’

&

’

%

d P a ñ R1 P tRst, Rexu

b P a ñ R2 P tRst, Rexu

Fb,d,α1,α2
pcq P a ñ R3 P tRst, Rexu
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0

8

A

A2´A

C

Z2

Id

Z1

D

DC´1D

´D

R2pHq

Hg

h

R3pHq

R1pHq

Figure 67: Configuration of the hexagons
H,R1pHq, R2pHq and R3pHq

Proof. From parameters to representations: Let
`

b, c, d, rα1, α2s, R1, R2, R3

˘

be a point inside S. Let

pH,Y0,8q “ p0, A, Id, C,D,8q

be a right-angled hexagon with arc coordinates ApH,Y0,8q “ pb, c, d, rα1, α2sq.
In particular the maximal 12-tuple associated to pH,Y0,8q is given by

H “ p8,´D,´A, 0, A2, A, Z1, Id, C, Z2, D,DC
´1Dq

where Z1, Z2 are uniquely defined by requiring

YA2,Id K YZ1,Z2
K YC,DC´1D

Let g1, g2, g3 be isometries such that

g1pD,DC´1D,8,´Dq “ p0, Id, Y1,8q
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g2p´A, 0, A2, Aq “ p0, Id, Y2,8q

g3pZ1, Id, C, Z2q “ p0, Id, Y3,8q

for Y1, Y2, Y3 diagonal matrices inside Sym`
p2,Rq. Put

R1 :“ g´1
1 R1g1

R2 :“ g´1
2 R2g2

R3 :“ g´1
3 R3g3

By Corollary 6.22 we know thatR1, R2, R3 belong to R
Y0,8,YC,DC´1D

Y´D,D
,RY0,8,YA2,Id

Y´A,A
,R

YA2,Id,YC,DC´1D

YZ1,Z2

respectively.
Let W3 “ xs1, s2, s3| s21 “ s22 “ s23 “ 1y and define rρ as the representation

rρ :W3 Ñ PSp˘
p4,Rq

s1 ÞÑ R1

s2 ÞÑ R2

s3 ÞÑ R3

The representation rρ is maximal by construction (see Definition 7.8). The im-
ages RipHq for i P t1, 2, 3u are drawn in Figure 67. The maps g and h appearing
in the Figure are the generators of the representation restricted to the group
Γ0,3. This will be explained in Theorem 7.23.

From representations to parameters: Let rρ P χmaxpW3,PSp
˘

p4,Rqq

and denote again
W3 “ xs1, s2, s3| s21 “ s22 “ s23 “ 1y

We know that rρ has the properties described in Definition 7.8: we can deter-
mine a right-angled hexagon pH,YX1,X2

q where X1, X2 are as in Figure 59.
We compute the arc coordinates ApH,YX1,X2

q. By definition we know that
rρps1q, rρps2q and rρps3q belong to the reflection sets of three alternating sides of
this hexagon. We compute the corresponding elements in K3 (one for every
side) using Corollary 6.22.

7.7 Parameter space for χS

In Theorem 7.21 we have given a parametrization S Ă A ˆ K3 of the set
χmaxpW3,PSp

˘
p4,Rqq. Recall that the set χS is defined (Definition 7.19) as

χS :“ Impfq where f is the map

f : χmaxpW3,PSp
˘

p4,Rqq Ñ χmax,ShilovpΓ0,3,PSpp4,Rqq
“

rρ
‰

ÞÑ
“

rρ|Impϕq

‰

We want to use the parametrization S of Theorem 7.21 to parametrize χS . This
will be done by imposing an equivalent relation on S identifying the points that
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have same image under f . Recall that in Proposition 4.7 we have described the
set D Ă A corresponding to right-angled hexagons in X lying inside a maximal
polydisc. Let us give the following

Definition 7.22. We define S0 Ă A ˆ K3 as the set

S0 :“
!

pb, c, d, rα1, α2s, R1, R2, R3q P A ˆ K3| pb, c, d, rα1, α2sq P D
)

We further define the following equivalent relation on S0:

pp,R1, R2, R3q „ pp,R1
1, R

1
2, R

1
3q ðñ

#

R1R2 “ R1
1R

1
2

R2R3 “ R1
2R

1
3

(28)

Theorem 7.23. The set χS is parametrized by the parameter space S{„ where
S consists of points

`

b, c, d, rα1, α2s, R1, R2, R3

˘

in A ˆ K3 such that
$

’

&

’

%

d P a ñ R1 P tRst, Rexu

b P a ñ R2 P tRst, Rexu

Fb,d,α1,α2pcq P a ñ R3 P tRst, Rexu

and if
`

p,R1, R2, R3

˘

P S0 we put

pp,R1, R2, R3q „ pp1, R1
1, R

1
2, R

1
3q

where „ is the equivalent relation in (28).

Proof. From parameters to representations: Let
`

b, c, d, rα1, α2s, R1, R2, R3

˘

be a point inside S. The construction of a maximal rρ : W3 Ñ PSp˘
p4,Rq is

identical to the proof of Theorem 7.21. Let ρ be the restriction ρ “ fprρq where
f is the map of Definition 7.19. Then ρ is inside χS and we put

S Q
`

b, c, d, rα1, α2s, R1, R2, R3

˘

“ ρ P χS

In Figure 67 we have denoted

g “ rρps1s2q, h “ rρps2s3q

The equivalence relation on S0: Let Γ0,3 “ xα, βy. A representation
ρ : Γ0,3 Ñ PSpp4,Rq is uniquely determined by the maps ρpαq, ρpβq, which are
exactly the maps g and h of Figure 67. The isometry g is sending the hexagon
R2pHq to R1pHq and the isometry h is sending the hexagon R3pHq to R2pHq.
The equivalence relation on S0

S0 :“
!

pb, c, d, rα1, α2s, R1, R2, R3q P A ˆ K3| pb, c, d, rα1, α2sq P D
)

identifies the points for which the map f of Definition 7.19 is not injective.
More precisely for two points s “ pp,R1, R2, R3q and s1 “ pp,R1

1, R
1
2, R

1
3q inside
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S0 we denote Ri, R1
i the reflections constructed from the parameters s and s1

respectively as shown in Figure 67. In Remark 6.29 we have detected the points
for which R2pHq “ R1

2pHq, that is

R2 “ g´1
2 Rstg2, R1

2 “ g´1
2 Rexg2 if p P DzDH2

where H,R2pHq “ R1
2pHq are both contained in the model polydisc, and

R2, R1
2 P g´1

2 Kg2 if p P DH2

where H,R2pHq “ R1
2pHq are both contained in the diagonal disc. It is not

hard to show a similar result for Ri, R1
i when i P t2, 3u. Take now two points

s, s1 inside S where the corresponding reflections Ri, R1
i constructed as in proof

of Theorem 7.21 are such that
$

’

&

’

%

R1pHq “ R1
1pHq

R2pHq “ R1
2pHq

R3pHq “ R1
3pHq

with the hexagons H,RipHq, R1
ipHq of Figure 67 all contained in the model

polydisc. All the points of the polygonal chains drawn in Figure 57 are aligned.
Then there exists exactly two maps g, pg sending R2pHq to R1pHq and two maps
h,ph sending R3pHq to R2pHq. This follows directly from Proposition 4.30. We
obtain four elements xg, hy, xg,phy, xpg, hy, xpg,phy inside χS . But the parameter
space S produces |tRst, Rexu|3 “ 23 different maps. If we don’t put the equiv-
alence relation we would be over-counting the number of representations, that
is we would construct rρ, rρ1 P χmaxpW3,PSp

˘
p4,Rqq that have the same image

under f (see Definition 7.19).

From representations to parameters: This is as Theorem 7.21.

Corollary 7.24. Let f be the map of Definition 7.19

f : χmaxpW3,PSp
˘

p4,Rqq Ñ χmax,ShilovpΓ0,3,PSpp4,Rqq
“

rρ
‰

ÞÑ
“

rρ|Impϕq

‰

Then the map f is neither injective nor surjective.

Proof. It is clear by the proof of Theorem 7.23 that f is not injective. We want to
show χS Ĺ χmax,ShilovpΓ0,3,PSpp4,Rqq. The space χS Ĺ χmax,ShilovpΓ0,3,PSpp4,Rqq

is 10-dimensional (see for example [AGRW19]). In the parametrization of The-
orem 7.23 we see that the set S is immersed in a smaller dimensional space.
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8 Python program
In the github repository https://github.com/martamagnani/Arc-coord/blob/
main/Param_for_chiS.py we provide a Python program with output the maps
g, h uniquely determining the maximal representation constructed in the proof of
Theorem 7.23. More precisely for a given

`

b, c, d, rα1, α2s, R1, R2, R3

˘

P A ˆ K3

the program constructs a right-angled hexagon pH,Y0,8q with arc coordinates
pb, c, d, rα1, α2sq and the adjacent symmetric hexagons R1pHq, R2pHq, R3pHq

illustrated in Figure 67 following the proof of Theorem 7.23. The maximal rep-
resentation is then determined by g “ R1R2 and h “ R2R3. We only provide
the case where Ri P tRst, Rexu. In this chapter we describe the most impor-
tant functions used in the program. It will be useful to recall that for a matrix

g “

ˆ

A B
C D

˙

P Spp2n,Rq it holds

ˆ

A B
C D

˙´1

“

ˆ

DT ´BT

´CT AT

˙

• def sqrtmatrix(M):
eigvals ,eigvecs=la.eig(M)
eigvals=eigvals.real
S=eigvecs
s_0=math.sqrt(eigvals[0])
s_1=math.sqrt(eigvals[1])
D=np.array([[s_0 ,0],[0,s_1]])
return S@D@S.T

This function returns the square root of a positive definite 2 ˆ 2 matrix
M . Since M is symmetric, it is diagonalizable by an orthogonal matrix S.
The matrix S has as columns the orthonormal eigenvectors of M . Let D
be the matrix

D “

ˆ

s0 0
0 s1

˙

where s0, s1 denote the square roots of the eigenvalues of M . Then
?
M “

SDST is symmetric and is the square root of M .

• def diagonalizing_mat(M):
eigvals ,eigvecs=la.eig(M)
L=eigvecs
if eigvals[0]<eigvals[1]:

l=[1,0]
L=L[:,l]#if first eigenvalue smaller then the second I swap columns of L

J=np.array([[-1,0],[0,1]])
if la.det(L)>0:

P=L.copy()
Q=P@J

if la.det(L)<0:
Q=L.copy()
P=Q@J

return P.T,Q.T
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This function takes a positive definite matrixM (with distinct eigenvalues)
and returns P P PSOp2q, Q P POp2qzPSOp2q such that PMPT “ QMQT

is diagonal with a decreasing order of the eigenvalue on the diagonal. The
algorithm follows the proof of Lemma 2.31.

• ProblemaL1(c1 ,c2,d1,d2,S,Y,Z):
des1=[1/math.exp(c2),1/math.exp(c1)]
C=np.diag(des1)
X_pr=S.T@C@S
P=diagonalizing_mat(la.inv(sqrtmatrix(Y)) @Z@la.inv(sqrtmatrix(Y)))[0]
X=sqrtmatrix(Y)@P.T@X_pr@P@sqrtmatrix(Y)
return X

This function corresponds to Lemma 3.12.

• def ProblemaL2(c1 ,c2 ,d1,d2,S,X,Y):
P=diagonalizing_mat(la.inv(sqrtmatrix(Y)) @X@la.inv(sqrtmatrix(Y)))[0]
S_h=S.T@P
des2=[math.exp(d1),math.exp(d2)]
D=np.diag(des2)
Z=sqrtmatrix(Y)@S_h.T@D@S_h@sqrtmatrix(Y)
return Z

This function corresponds to Lemma 3.11.

• def Sp4_Action(A,B,C,D,Z):
return (A@Z+B)@la.inv(C@Z+D)

This is the Spp4,Rq-action of a matrix g “

ˆ

A B
C D

˙

on an element Z P X .

• def OrthTube(A,B,C,D):
X=la.inv(A-C)-la.inv(A-B)
Y=la.inv(A-D)-la.inv(A-B)
Q=la.inv(sqrtmatrix(X))@Y@la.inv(sqrtmatrix(X))
Z1=Sp4_Action(A@sqrtmatrix(X),
-la.inv(sqrtmatrix(X))+A@la.inv(A-B)@la.inv(sqrtmatrix(X)),
sqrtmatrix(X),
la.inv(A-B)@la.inv(sqrtmatrix(X)),-sqrtmatrix(Q))
Z2=Sp4_Action(A@sqrtmatrix(X),
-la.inv(sqrtmatrix(X))+A@la.inv(A-B)@la.inv(sqrtmatrix(X)),
sqrtmatrix(X),
la.inv(A-B)@la.inv(sqrtmatrix(X)), sqrtmatrix(Q))
return Z1,Z2

This function takes a maximal quadruple pA,B,C,Dq and returns the
unique Z1, Z2 such that

YA,B K YZ1,Z2 K YC,D

Let g be an isometry such that gpA,B,Cq “ p8, 0, Idq. Put gpDq “ Q for
a positive definite Q. By Lemma 2.19

Z1 “ g´1p´
a

Qq, Z2 “ g´1p
a

Qq
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The function computes explicitly the map g´1. It holds

g´1 “

˜

A
?
X ´

?
X

´1
`ApA´Bq´1

?
X

´1

?
X pA´Bq´1

?
X

´1

¸

where X “ pA´ Cq´1 ´ pA´Bq´1. It holds gpDq “ Q “
?
X

´1
Y

?
X

´1

where Y “ pA´Dq´1 ´ pA´Bq´1.

• def Hexagon(b1,b2 ,c1 ,c2,d1,d2 ,alpha1 ,alpha2):
S1= np.array([[math.cos(alpha1/2),-math.sin(alpha1/2)],
[math.sin(alpha1/2),math.cos(alpha1/2)]])
S2= np.array([[math.cos(alpha2/2),-math.sin(alpha2/2)],
[math.sin(alpha2/2),math.cos(alpha2/2)]])
Id=np.identity(2)
C=np.array([[math.exp(c1),0],[0,math.exp(c2)]])
A=ProblemaL1(b1 ,b2 ,c1,c2,S1 ,Id ,C)
D=ProblemaL2(c1 ,c2 ,d1,d2,S2 ,Id ,C)
Z1 ,Z2=OrthTube(A@A ,Id,C,D@la.inv(C)@D)
return A,C,D,Z1 ,Z2

This funciton constructs a generic right-angled hexagon pH,Y0,8q with
arc coordinates pb, c, d, rα1, α2sq. It follows the proof of Proposition 4.15.

• def maleficmapF(b1,b2 ,c1 ,c2,d1,d2 ,alpha1 ,alpha2):
A,C,D,Z1 ,Z2=Hexagon(b1,b2,c1 ,c2,d1,d2,alpha1 ,alpha2)
Id=np.identity(2)
R=CrossRatio(A, Id , C, D@la.inv(C)@D) #cross -ratio of four matrices
e1 ,e2=ord_eigvals(R) #e1 >e2
return math.log(e1),math.log(e2)

This function returns the image of the malefic map defined in Definition
5.12.

• def Stand4uple(A,B,C,D):
X=la.inv(D-B)-la.inv(D-A)
W=la.inv(D-C)-la.inv(D-A)
P=diagonalizing_mat(la.inv(sqrtmatrix(X)) @W@la.inv(sqrtmatrix(X)))[0]
Id=np.identity(2)
B1=P@la.inv(sqrtmatrix(X))@la.inv(D-A)
B2=P@la.inv(sqrtmatrix(X))@(Id-(la.inv(D-A)@D))
B3=-P@sqrtmatrix(X)
B4=P@sqrtmatrix(X)@D
return B1,B2,B3 ,B4

This function takes a maximal quadruple pA,B,C,Dq and returns the
blocks of an isometry g:

g “

ˆ

B1 B2
B3 B4

˙

such that gpA,B,C,Dq “ p0, Id, Y,8q where Y is diagonal. Computations
give:

g “

˜

P
?
X

´1
pD ´Aq´1 P

?
X

´1
pId ´ pD ´Aq´1Dq

´P
?
X P

?
XD

¸
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where X “ pD´Bq´1´pD´Aq´1 and P is such that P
?
X

´1
W

?
X

´1
PT

diagonal where W “ pD ´ Cq´1 ´ pD ´Aq´1.

• def checkflipgen(A,B,C,D,X,Y):
Id=np.identity(2)
B1 ,B2,B3,B4=multmat(A,B,C,D,Y,Y@la.inv(Y-X)-Id,Id,la.inv(Y-X))
A=multmat(la.inv(Y-X),Id-la.inv(Y-X)@Y,-Id,Y,B1 ,B2,B3,B4)[0]
if la.det(A)>0:

return 1
if la.det(A)<0:

return -1

This function takes two symmetric matricesX,Y and a matrix h P Spp4,Rq:

h “

ˆ

A B
C D

˙

P StabpX,Y q

and returns 1/-1 if h is conjugated to a non-reflecting/reflecting isometry
respectively (Definition 2.38). To do that let g be an isometry such that
gpX,Y q “ p0,8q. Then

h “ g´1

ˆ

A 0
0 A´T

˙

g

for some A P GLp2,Rq. The function calculates ghg´1 where

ghg´1 “

ˆ

A 0
0 A´T

˙

and computes the determinant of A. The function multmat takes as input
the blocks of two matrices (eight 2 ˆ 2 matrices) and returns the blocks
of the matrix obtained by multiplying them.
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9 Other approaches to parameterize hexagons
In this chapter we expose a different approach to parametrize right-angled
hexagons in the Siegel space X . What follows is a joint work with Eugen Ro-
gozinnikov. The idea is to describe a right angled hexagon by a triple of positive
definite symmetric matrices and to generalize this parametrization to the space
of two adjacent hexagons. We will see how the problem of this approach is that
when extending the parameters to adjacent hexagons we can not guarantee that
the constructed hexagons have the same alternating side-lengths.

Proposition 9.1. The set of right-angled hexagons in X is parametrized up to
isometry by

Sym`
n pRq3{POpnq

Proof. Let H “ rY1,Y2,Y3,Y4,Y5,Y6s be a right-angled hexagon in the Siegel
space X . Up to PSpp2n,Rq-action we can assume that one tube is coinciding
with Y0,8. In Lemma 4.4 we have seen that it is sufficient to specify A,B,C
and D at the boundary of X for the hexagon to be uniquely determined (Figure
21). Up to isometry we can assume one point to coincide with Id. In this case
it turns out to be more useful to consider the point A coinciding with Id (and
not B as we have done in the proof of Proposition 4.15). For

rpX,Y, Zqs P Sym`
n pRq3{POpnq

we construct the hexagon H “ p0, Id, B,C,Dq where

B “ X ` Id

C “ X ` Y ` Id

D “ X ` Y ` Z ` Id

so that pId, B,C,Dq is a maximal quadruple. All the other tubes are then
uniquely determined. The group POpnq is the stabilizer of the triple p0, Id,8q.
Observe that the parameter space has dimension 8 as we can always diagonalize
a matrix up to POpnq-action.

Proposition 9.2. The space of adjacent right angled hexagons in X is parametrized
(up to isometry) by

Sym`
n pRq5{POpnq

Proof. The proof is very similar to Proposition 9.1. Up to isometry we can al-
ways assume that the two hexagons have the tubes Y0,8 and Y´Id,Id in common.
For

rpX,Y, Z,X 1, Y 1qs P Sym`
n pRq5{POpnq

we construct the two adjacent hexagons

H1p0, Id, B,C,D,8q and H2p8,´D,´C 1,´B1, Id, 0q
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where
B “ X ` Id

C “ X ` Y ` Id

D “ X ` Y ` Z ` Id

B1 “ X 1 ` Id

C 1 “ X ` Y 1 ` Id

All the other tubes are uniquely determined (Figure 68).

0

8

B

Z1

C

Z2

DC´1D
D´D

´DC 1´1D

B´1

Id´Id

Z3

´C 1

´B1

Z4

´B1´1

Figure 68: Parameters for two adjacent right-angled
hexagons

Remark 9.3. The parametrization in Proposition 9.2 does not give any infor-
mation about the lengths of the sides of the two adjacent hexagons. In particular
in Theorem 7.23 we have seen that a crucial tool to construct maximal repre-
sentations is to construct adjacent hexagons where alternating sides have the
same length. In the parametrization of Proposition 9.2 this does not happen
even if we restrict to the case where

B1 “ O1BO
T
1

C 1 “ O2CO
T
2

for O1O2 P POpnq. In that case it holds (Figure 69)
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da
`

pp´Id,Idp0q, p´Id,IdpB´1qq “ da
`

pp´Id,Idp´B1´1q, p´Id,Idp0qq (29)

da
`

ppB´1,BpIdq, pB´1,BpZ1qq ‰ da
`

pp´B1,´B1´1p´Idq, p´B1,´B1´1pZ4qq (30)

0

8

B

Z1

C

Z2

DC´1D
D´D

´DC 1´1D

B´1

Id´Id

Z3

´C 1

´B1

Z4

´B1´1

P

Q

P 1

Q1

Figure 69: Side-length in the case B1 “ O1BO
T
1 and

C 1 “ O2CO
T
2 for O1, O2 P POpnq

The equality (29) follows by Proposition 5.8 and by the fact that

da
`

pp0,8pIdq, p0,8pBqq “ da
`

pp0,8p´Idq, p0,8p´B1qq

for B1 “ O1BO
T
1 , O1 P POpnq. To see (30) let us denote by P,Q and P 1, Q1 the

points obtained by intersecting the tube Y´Id,Id with YB´1,B and Y´B1´1,´B1

respectively (Figure 69). In general

da
`

pP,Qq ‰ da
`

pP 1, Q1q

Fix a “ da
`

pP,Qq and O1 P POp2q. The vector da
`

pP 1, Q1q depends on the
point P 1 which depends on the choice of O1. The same arguments holds for
the vectors in the tubes YC,DC´1D and Y´C1,´DC1´1D respectively as shown in
Figure 69.

140



References
[AC19] Daniele Alessandrini and Brian Collier. “The geometry of maximal

components of the PSpp4,Rq character variety”. In: Geometry &
Topology 23.3 (2019), pp. 1251–1337.

[AGRW19] Daniele Alessandrini, Olivier Guichard, Eugen Rogozinnikov, and
Anna Wienhard. “Noncommutative coordinates for symplectic rep-
resentations”. In: arXiv preprint arXiv:1911.08014 (2019).

[ALS23] Daniele Alessandrini, Gye-Seon Lee, and Florent Schaffhauser.
“Hitchin components for orbifolds”. In: Journal of the European
Mathematical Society (JEMS) 25.4 (2023), pp. 1285–1347.

[Ara12] Javier Aramayona. “Hyperbolic structures on surfaces”. In: Geom-
etry, topology and dynamics of character varieties. World Scien-
tific, 2012, pp. 65–94.

[BD17] Francis Bonahon and Guillaume Dreyer. “Hitchin characters and
geodesic laminations”. In: Acta Mathematica 218.2 (2017), pp. 201–
295.

[BG99] Robert L. Benedetto and William M. Goldman. “The topology of
the relative character varieties of a quadruply-punctured sphere”.
In: Experimental Mathematics 8.1 (1999), pp. 85–103.

[BILW05] Marc Burger, Alessandra Iozzi, François Labourie, and Anna Wien-
hard. “Maximal representations of surface groups: symplectic Anosov
structures”. In: Pure and Applied Mathematics Quarterly 1.3 (2005),
pp. 543–590.

[BIPP21a] Marc Burger, Alessandra Iozzi, Anne Parreau, and Maria Beat-
rice Pozzetti. “The real spectrum compactification of character
varieties: characterizations and applications”. In: Comptes Rendus
Mathématique. Académie des Sciences. Paris 359 (2021), pp. 439–
463.

[BIPP21b] Marc Burger, Alessandra Iozzi, Anne Parreau, and Maria Beatrice
Pozzetti. “Weyl chamber length compactification of the PSLp2,Rqˆ

PSLp2,Rq maximal character variety”. In: arXiv preprint arXiv:2112.13624
(2021).

[BIPP23] Marc Burger, Alessandra Iozzi, Anne Parreau, and Maria Beat-
rice Pozzetti. “The real spectrum compactification of character
varieties”. In: arXiv preprint arXiv:2311.01892 (2023).

[BIW10] Marc Burger, Alessandra Iozzi, and Anna Wienhard. “Surface group
representations with maximal Toledo invariant”. In: Annals of Math-
ematics (2010), pp. 517–566.

[BIW14] Marc Burger, Alessandra Iozzi, and Anna Wienhard. “Higher Te-
ichmüller spaces: from SL (2, R) to other Lie groups”. In: Handbook
of Teichmüller theory, Volume IV. Vol. 19. European Mathemat-
ical Society, 2014, pp. 539–618.

141



[Boo86] William M Boothby. An introduction to differentiable manifolds
and Riemannian geometry. Academic press, 1986.

[BP17] Marc Burger and Maria Beatrice Pozzetti. “Maximal representa-
tions, non-Archimedean Siegel spaces, and buildings”. In: Geome-
try & Topology 21.6 (2017), pp. 3539–3599.

[BP21] Jonas Beyrer and Beatrice Pozzetti. “A collar lemma for partially
hyperconvex surface group representations”. In: Transactions of
the American Mathematical Society 374.10 (2021), pp. 6927–6961.

[BP92] Riccardo Benedetti and Carlo Petronio. Lectures on hyperbolic ge-
ometry. Springer Science & Business Media, 1992.

[DT19] Bertrand Deroin and Nicolas Tholozan. “Supra-maximal represen-
tations from fundamental groups of punctured spheres to PSLp2,Rq”.
In: Annales Scientifiques de l’École Normale Supérieure. (4) 52.5
(2019), pp. 1305–1329.

[Ebe96] Patrick Eberlein. Geometry of nonpositively curved manifolds. Uni-
versity of Chicago Press, 1996.

[FG06] Vladimir Fock and Alexander Goncharov. “Moduli spaces of local
systems and higher Teichmüller theory”. In: Publications Mathé-
matiques de l’IHÉS 103 (2006), pp. 1–211.

[FM11] Benson Farb and Dan Margalit. A primer on mapping class groups
(pms-49). Vol. 41. Princeton university press, 2011.

[FP20] Federica Fanoni and Maria Beatrice Pozzetti. “Basmajian-type in-
equalities for maximal representations”. In: Journal of Differential
Geometry 116.3 (2020), pp. 405–458.

[GLW21] Olivier Guichard, François Labourie, and Anna Wienhard. “Pos-
itivity and representations of surface groups”. In: arXiv preprint
arXiv:2106.14584 (2021).

[Gol23] William M. Goldman. “Compact components of planar surface
group representations”. In: Computational Aspects of Discrete Sub-
groups of Lie Groups. Vol. 783. Contemp. Math. Amer. Math. Soc.,
[Providence], RI, [2023] ©2023, pp. 69–82.

[Gol80] William M. Goldman. Discontinuous groups and the Euler class.
University of California, Berkeley, 1980.

[Gol88] William M Goldman. “Topological components of spaces of rep-
resentations”. In: Inventiones Mathematicae 93.3 (1988), pp. 557–
607.

[Guo09] Ren Guo. “On parameterizations of Teichmüller spaces of surfaces
with boundary”. In: Journal of Differential Geometry 82.3 (2009),
pp. 629–640.

[GW12] Olivier Guichard and Anna Wienhard. “Anosov representations:
domains of discontinuity and applications.” In: Inventiones Math-
ematicae 190.2 (2012), pp. 357–438.

142



[GW18] Olivier Guichard and Anna Wienhard. “Positivity and higher Te-
ichmüller theory”. In: European Congress of Mathematics. Eur.
Math. Soc., Zürich, 2018, pp. 289–310.

[GW22] Olivier Guichard and Anna Wienhard. “Generalizing Lusztig’s to-
tal positivity”. In: arXiv preprint arXiv:2208.10114 (2022).

[Har86] John L. Harer. “The virtual cohomological dimension of the map-
ping class group of an orientable surface”. In: Inventiones Mathe-
maticae 84.1 (1986), pp. 157–176.

[Hel79] Sigurdur Helgason. Differential geometry, Lie groups, and sym-
metric spaces. Academic press, 1979.

[Hit92] Nigel J Hitchin. “Lie groups and Teichmüller space”. In: Topology
31.3 (1992), pp. 449–473.

[Kas18] Fanny Kassel. “Geometric structures and representations of dis-
crete groups”. In: Proceedings of the International Congress of
Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures.
World Sci. Publ., Hackensack, NJ, 2018, pp. 1115–1151.

[KLP17] Michael Kapovich, Bernhard Leeb, and Joan Porti. “Dynamics on
flag manifolds: domains of proper discontinuity and cocompact-
ness”. In: Geometry & Topology 22.1 (2017), pp. 157–234.

[Lab06] François Labourie. “Anosov flows, surface groups and curves in
projective space”. In: Inventiones Mathematicae 1.165 (2006), pp. 51–
114.

[Lab13] François Labourie. Lectures on representations of surface groups.
Zurich Lectures in Advanced Mathematics. European Mathemat-
ical Society (EMS), Zürich, 2013, pp. viii+138.

[Löh17] Clara Löh. Geometric group theory. Springer, 2017.

[Lou20] Brice Loustau. “Hyperbolic geometry”. In: arXiv e-prints (2020),
arXiv–2003.

[Luo07] Feng Luo. “On Teichmüller spaces of surfaces with boundary”. In:
Duke Mathematical Journal 139.3 (2007), p. 463.

[Lus94] George Lusztig. “Total positivity in reductive groups”. In: Lie the-
ory and geometry: in honor of Bertram Kostant. Springer, 1994,
pp. 531–568.

[LV80] Gerard Lion and Michèle Vergne. “The Weil representation”. In:
Maslov index and theta series," Birkkhauser, Boston (1980).

[Mar16] Bruno Martelli. An Introduction to Geometric Topology. Create
Space Independent Publishing Platform, 2016.

[Mau04] Julien Maubon. “Riemannian symmetric spaces of the non-compact
type: differential geometry”. In: Géométries à courbure négative ou
nulle, groupes discrets et rigidités (2004).

143



[MMMZ23] Sara Maloni, Giuseppe Martone, Filippo Mazzoli, and Tengren
Zhang. “d-pleated surfaces and their shear-bend coordinates”. In:
arXiv preprint arXiv:2305.11780 (2023).

[Mon09] Gabriele Mondello. “Triangulated Riemann surfaces with bound-
ary and the Weil-Petersson Poisson structure”. In: Journal of Dif-
ferential Geometry 81.2 (2009), pp. 391–436.

[OT23a] Charles Ouyang and Andrea Tamburelli. “Boundary of the Gothen
components”. In: Topology and its Applications 326 (2023), Paper
No. 108420, 11.

[OT23b] Charles Ouyang and Andrea Tamburelli. “Length spectrum com-
pactification of the SO0p2, 3q-Hitchin component”. In: Advances in
Mathematics 420 (2023), Paper No. 108997, 37.

[Par10] Anne Parreau. “La distance vectorielle dans les immeubles affines
et les espaces symétriques”. In: preprint (2010).

[Pen02] Robert Penner. “Decorated Teichmüller Theory of Bordered Sur-
faces”. In: Communications in Analysis and Geometry 12 (Nov.
2002).

[Pen87] Robert Penner. “The decorated Teichmüller space of punctured
surfaces”. In: Communications in Mathematical Physics 108.1 (1987),
pp. 299–339.

[Pfe22] Mareike Pfeil. “Cataclysms for Anosov representations”. In: Ge-
ometriae Dedicata 216.6 (2022), Paper No. 61, 31.

[Poz19] Maria Beatrice Pozzetti. “Higher rank Teichmüller theories”. In:
Séminaire BOURBAKI 1161 (2019), pp. 1–26.

[RR95] Arlan Ramsay and Robert D Richtmyer. Introduction to hyperbolic
geometry. Springer Science & Business Media, 1995.

[Sie43] Carl Ludwig Siegel. “Symplectic Geometry”. In: American Journal
of Mathematics 65.1 (1943), pp. 1–86.

[Sou05] Jean-Marie Souriau. “Construction explicite de l’indice de Maslov.
Applications”. In: Group Theoretical Methods in Physics: Fourth
International Colloquium, Nijmegen 1975. Springer. 2005, pp. 117–
148.

[Str15] Tobias Strubel. “Fenchel–Nielsen coordinates for maximal repre-
sentations”. In: Geometriae Dedicata 176 (2015), pp. 45–86.

[Thu22] William P. Thurston. “Minimal stretch maps between hyperbolic
surfaces”. In: Collected works of William P. Thurston with com-
mentary. Vol. I. Foliations, surfaces and differential geometry.
1986 preprint, 1998 eprint. Amer. Math. Soc., Providence, RI,
[2022] ©2022, pp. 533–585.

[Tol89] Domingo Toledo. “Representations of surface groups in complex
hyperbolic space”. In: Journal of Differential Geometry 29.1 (1989),
pp. 125–133.

144



[TT21] Nicolas Tholozan and Jérémy Toulisse. “Compact connected com-
ponents in relative character varieties of punctured spheres”. In:
Épijournal Géométrie Algébrique 5 (2021), Art. 6, 37.

[Ush99] Akira Ushijima. “A canonical cellular decomposition of the Teich-
müller space of compact surfaces with boundary”. In: Communi-
cations in Mathematical Physics 201 (1999), pp. 305–326.

[Wie04] Anna Wienhard. Bounded cohomology and geometry. Vol. 368.
Bonn. Math. Schr. Bonn: Univ. Bonn, Mathematisches Institut
(Dissertation), 2004.

[Wie18] Anna Wienhard. “An invitation to higher Teichmüller theory”. In:
Proceedings of the International Congress of Mathematicians: Rio
de Janeiro 2018. World Scientific. 2018, pp. 1013–1039.

[Wol72] Joseph A Wolf. “Fine structure of Hermitian symmetric spaces”.
In: Symmetric spaces (Short Courses, Washington Univ., St. Louis,
Mo., 1969–1970) 8 (1972), pp. 271–357.

145


	Introduction
	The space of maximal representations
	The results
	Organization of the work

	The Siegel space
	Definition and models
	Boundary and Lagrangians
	Sp(2n,R)-invariant distances
	Copies of H2 inside the Siegel space X
	R-tubes
	Computing orthogonal tubes
	Orientation of boundary points: the Sp(4,R)-case
	The symmetric spaces XGL(n,R) and XSL(n,R) 
	The geometry of the standard tube Y0,
	Geometric interpretation of diagonalization matrix
	Orientation of the hyperbolic component of Y0,
	Isometries reflecting the hyperbolic component

	Parameters for quintuples
	The sets Qgen and Qst

	Parameters for right-angled hexagons
	Definition of hexagon, the sets H,Hgen and Hst
	Non-generic hexagons: the set Hnongen
	Arc coordinates for generic hexagons
	Polygonal chain associated to a right-angled hexagon
	Arc coordinates for non-generic hexagons
	Arc coordinates for H
	Hexagons inside a maximal polydisc

	Discussion about the parameters
	The H2-case
	Length parameters in X
	Changing side of the hexagon
	Constraints in generalizing hexagon parameters of H2

	Reflections in the Siegel space
	Reflections in H2
	Reflections in X
	Reflection set associated to the side of a hexagon
	Geometrical interpretation of the set K

	Parameters for maximal representations
	Shilov hyperbolic isometries
	Maximal representations
	Arc coordinates in classical Teichmüller
	The group 0,3 as a subgroup of W3
	The set S
	Parameter space for max(W3,PSp(4,R))
	Parameter space for S

	Python program
	Other approaches to parameterize hexagons

