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Abstract

Given a hyperbolic surface with boundary, arc coordinates provide a parametriza-
tion of the Teichmiiller space. They rely on the choice of a family of arcs which
start and end at boundary components and are orthogonal to them. Higher
rank Teichmiiller theories are a generalization of classical Teichmiiller theory
and are concerned with the study of representations of the fundamental group
of an oriented surface ¥ of negative Euler characteristic into simple real Lie
groups G of higher rank. It is well known that maximal representations are a
higher rank Teichmiiller theory for G Hermitian. In this thesis we will discuss
how to generalize arc coordinates for maximal representations, focusing on the
case where ¥ is a pair of pants ¥ 3 and G = PSp(4,R). This will be possible
by introducing geometric parameters on the space of right-angled hexagons in
the Siegel space X, which lead to the visualization of a right-angled hexagon
as a polygonal chain inside H?. We discuss geometric properties of reflections
in X and introduce the notion of maximal representations of a reflection group
Ws = Z/)2Z « Z/27 + Z./27Z. We give a parametrization of maximal representa-
tions of W into PSp™* (4,R), which allows us to parametrize a subset of maximal
and Shilov hyperbolic representations into PSp(4, R).






Zusammenfassung

Bei einer hyperbolischen Fldche mit Rand liefern so genannte Bogenkoordi-
naten eine Parametrisierung des Teichmiiller-Raums. Sie hdngen von der Wahl
einer Familie von Kurven ab, die an Randkomponenten beginnen und enden
und orthogonal zu diesen sind. Hoherrangige Teichmiiller-Theorien sind eine
Verallgemeinerung der klassischen Teichmiiller-Theorie und befassen sich mit
Darstellungen der Fundamentalgruppe einer orientierten Fldche ¥ mit nega-
tiver Euler-Charakteristik in einfache reelle Lie-Gruppen G hoéheren Rangs. Es
ist bekannt, dass Maximaldarstellungen eine hoherrangige Teichmiiller-Theorie
fiir G Hermitesch sind. In dieser Arbeit beschéftigen wir uns mit der Frage,
wie Bogenkoordinaten fiir maximale Darstellungen verallgemeinert werden kon-
nen, wobei wir uns auf den Fall konzentrieren, in dem ¥ die Fliche X 3 ist
und G = PSp(4,R). Dies wird durch die Einfithrung geometrischer Parame-
ter auf dem Raum rechtwinkliger Sechsecke im Siegel-Raum X mdglich, die zu
einer Visualisierung eines rechtwinkligen Sechsecks als Polygonzug innerhalb von
H? fiihren. Wir diskutieren geometrische Eeigenschaften von Spiegelungen in
X und fithren den Begriff der maximalen Darstellung einer Spiegelungsgruppe
W3 = 7Z/27 = 7./27 = Z/2Z ein. Wir geben eine Parametrisierung maximaler
Darstellungen von W3 in F’Spi(él7 R). Das ermoglicht uns, eine Teilmenge max-
imaler und Shilov-hyperbolischer Darstellungen in PSp(4, R) zu parametrisieren.






Acknowledgements

My gratitude goes, first and foremost, to my advisors Beatrice and Anna W. for
their constant support throughout these years. In particular I want to thank
Bea for all the great moments together. Thanks for constantly inspiring me,
and not only in mathematical issues.

I would like to thank Eugen R. for all the helpful comments and suggestions in
many parts of this thesis. Thanks also to Valentina D., Daniele A., Gabriele
V. and Max R. for interesting discussions related to this thesis. I acknowledge
funding by the DFG, through the RTG 2229 “Asymptotic Invariants and Limits
of Groups and Spaces™ 281869850- and the Emmy Noether project 427903332
of B. Pozzetti.

I am so deeply grateful that I could share my PhD with my friends Arni, Fer,
Merik, Mitul and Valerio. Thanks for all the fun we had in Heidelberg and
around the world, thanks also for just being there. Your presence was vital for
me. Thanks also to Jero and Luca D.R., I am so happy to have met you.
Thanks to Luca B. for all the fun we had together and for being such a great
person. And of course thanks to little Anna for your positive energy, but also
for making some mathematical discussions with your mother much more adven-
turous. Thanks to Simone, Dai, Johannes and Colin for sharing many great
moments together.

Even if not inside the mathematical environment, I have to express my deep
gratitutide for some people who were essential to me in this journey.

Thanks to my roommates Agnes, Manca, Tamara, Tiimay and Yuval, together
with the Graga-crew Charly, Dani C., Daniele C., Lara C., Lara M. and Joel.
You all are the reason why I immediately felt at home here and why I loved
being in Heidelberg even during hard pandemic times.

Grazie alla Nonna, che se ne é andata poco prima che mi trasferissi a Heidelberg.
Grazie perché in ogni difficolta mi trasmetti ancora la tua grinta. La tua forza
nel saper affrontare ogni situazione -anche quelle assai pitt dure di un dottorato-
€ sempre con me.

Grazie a Pietro per aver condiviso con me gran parte di questi anni. Grazie a
tutto il supporto che mi hai dato, che é stato ed é ancora oggi di grandissimo
aiuto. Ti auguro tutto il meglio.

Grazie ai miei zii e ai miei cugini sparsi in Germania e in Svizzera, la vostra
presenza e la nostra unione é molto importante per me.

Danke Oliver. Danke dass du so bist wie du bist. Deine Unterstiitzung ist
unglaublich wertvoll fiir mich. Danke fiir alle Abentuer die wir hatten und die
vor uns stehen. Du warst die schonste Uberraschung dieser Jahren.

Grazie a Celi, Elli, mia sorella Emi, Flami, Gaia, Tolly, Sabo e ai miei genitori.
Nei momenti piu duri di questo dottorato siete la ragione per cui ho sempre
saputo che niente poteva andare male, che nella vita i traguardi importanti li
avevo gid raggiunti. Perché ci siete voi.






Contents

1__Introductionl
[L.1 The space of maximal representations|

2" Theresults . . ... ..........
1.3 Organization of the work|. . . . . . ..

[2__The Siegel space
21 Definition and modeld . . . . .. ...

2.2 Boundary and Lagrangians| . . . . ..
2.3 Sp(2n,R)-invariant distances| . . . . .
2.4 Copies of H? inside the Siegel space X
2.5 R-tubesd .. ... ... ... ......
[2.6 Computing orthogonal tubes| . . . . .

2.7 Orientation of boundary points: the Sp(4,R)-case]. . . . . . . ..

2.8 The symmetric spaces Xqr(n,r) and Xspmr) | - -+« -« -« - - -

2.9 'The geometry of the standard tube Voo . . . . . . . . ... . ..

2.10 Geometric interpretation of diagonalization matrix| . . . . . . . .

2.11 Orientation of the hyperbolic component of Vo oo . . . . . . . ..

2.12 Isometries reflecting the hyperbolic component| . . . . . . . . ..

3 Parameters for quintuples
B.1_ The sets Q9" and és!l .........

4 Parameters for right-angled hexagons|

(42 on-generic hexagons: the set
4.3 Arc coordinates for generic hexagons| .

4.1 Definition of hexagon, the sets H, H9™ and H|. . . . . ... ..

4.4 Polygonal chain associated to a right-angled hexagon|. . . . . . .

4.5 Arc coordinates for non-generic hexagons| . . . .. ... ... ..

4.6 Arc coordinates for Hl . . . . . .. ..

4.7 Hexagons inside a maximal polydisc| .

[ Discussion about the parameters|
5.1 The H’-casel . . . ... ... ......
5.2  Length parametersin AX| . . . ... ..
5.3 Changing side of the hexagon| . . . . .

5.4 Constraints in generalizing hexagon parameters of H?| . . . . . .

6 Reflections in the Siegel space]
. . z

6.1 Reflectionsin H4 . . . ... ......
6.2 Reflectionsin X . ... ........

6.3 Reflection set associated to the side of a hexagon| . . . . . . . ..

6.4  Geometrical interpretation of the set K|

— s e

13
14
16
17
18
19
23
26
27
30
34
35

37
37



|7 Parameters for maximal representations|
7.1 Shilov hyperbolic isometries|
[7.2  Maximal representations| . . . . . . ... ..o
[7.3 Arc coordinates in classical Teichmullerl . . . . . ... ... ...

7.4 The group 'y 3 as a subgroup of Wij|

7.5 Theset x°| . . . . . .

7.6 Parameter space for y™* (W5, PSp™(4,R))|

7.7 Parameter space for x°|

I8 Python program|

19 Other approaches to parameterize hexagons|

109
109
113
117
120
123
129
131

134

138



1 Introduction

1.1 The space of maximal representations

Given Y a closed oriented surface of negative Euler characteristic and funda-
mental group T', the Teichmiiller space T (X) is the parameter space of marked
hyperbolic structures on X. It is well known that, with the introduction of the
holonomy map, one can associate to a point in 7(X) a discrete and faithful
representation p : I' — PSL(2,R) so that the surface ¥ is realized by the quo-
tient ¥ = p(I')\H2. This representation is well defined up to conjugation by
an element in PSL(2,R) so that the space 7(X) can be identified with a con-
nected component of the representation variety Hom(I', PSL(2,R))/PSL(2,R)
which consists entirely of discrete and faithful representations |Gol80].

This phenomenon of the representation variety to admit components con-
sisting only of injective homomorphisms with discrete image is still true if we
substitute PSL(2,R) with a semisimple real Lie group of higher rank G. In
this sense higher rank Teichmiiller space was developed as a generalization of
classical Teichmiiller space (see [BIW14], [Wiel§|, [Poz19] for an introduction
to higher Teichmiiller theory). More precisely given G a semisimple real Lie
group of higher rank, a higher Teichmiiller space is a subset of Hom(T', G)/G
which is a union of connected components that consist entirely of discrete and
faithful representations. To such a representation p we can associate the quo-
tient p(I')\X where X is the symmetric space associated to G. The space X is
a non-positively curved Riemannian symmetric manifold of higher rank, where
rank denotes the maximal dimension of an isometrically embedded flat inside
X. The quotient p(T')\X is a locally symmetric space whose fundamental group
is isomorphic to the fundamental group of 3.

There are two well-known families of higher Teichmiiller spaces: Hitchin com-
ponents and maximal representations. Hitchin components are defined when
G is a split real simple Lie group such as PSL(n,R) or PSp(2n,R). Max-
imal representations are defined when G is a Hermitian Lie group such as
PSp(2n,R). Coherently, when G = PSL(2,R) both Hitchin components and
the space of maximal representations coincide with the Teichmiiller space T (X).
Moreover, the only family of split simple Lie groups of Hermitian type is given
by PSp(2n,R) and in this case Hitchin representations are maximal, but not
vice-versa [BILWO05].

More precisely, Hitchin [Hit92]| initiated the study of the connected com-
ponent in Hom(T, G)/G of the composition 7 o p where p : T' — PSL(2,R)
is the holonomy of a hyperbolization and 7 is the irreducible representation
7 : PSL(2,R) — PSL(n,R) . In general any split real simple Lie group G con-
tains an embedding 7 : PSL(2,R) — G which is unique up to conjugation, and
if G = PSL(2,R) this is the irreducible representation. The Hitchin component
is then defined as the connected component of [7 o p] € Hom(T', G)/G, where
p: T — PSL(2,R) is the holonomy of a hyperbolization. Hitchin showed, using
the theory of Higgs bundles, that the Hitchin component is homeomorphic to
the Euclidean space of dimension dim(G)(2g — 2), where g denotes the genus



of ¥. Using techniques of dynamical systems Labourie |[Lab06] showed that
representations in the Hitchin component are discrete and faithful. An indipen-
dent approach to Hitchin components was developed by Fock and Goncharov
|[FGO6|, who showed that representations in any Hitchin component are discrete
and faithful.

In this thesis we are interested in maximal representations. These are sin-
gled out by the Toledo number, which is a generalization of the Euler number
and was first introduced by Toledo for representations p : I' — PU(1,n) [Tol89).
In |Gol88| Goldman showed that the Euler number distinguishes the connected
components of Hom(T', PSL(2,R))/PSL(2,R) and that Teichmiiller space corre-
sponds to the connected component formed by representations with the maxi-
mal value of the Euler number. Burger Tozzi and Wienhard [BILWO05|, [BIW10]
studied the Toledo invariant for general Hermitian Lie groups. A group G is
Hermitian if the symmetric space X associated to G admits a G-invariant com-
plex structure. An equivalent definition is that X is a Hermitian manifold such
that every point x € X' is the isolated fixed point of an isometric involution s,.
Symmetric spaces which are Hermitian admit a Kéhler form wy on X which
allows to associate to every representation p : I' — G a characteristic number,
that is the Toledo number 7j,. The Toledo number is constant on connected
components of Hom(T', G) and satisfies a Milnor—-Wood type inequality

Tpl < x(E)rka (1)

where rky is the real rank of X'. Maximal representations are the ones for which
equality holds in .

With these tools Burger lozzi and Wienhard proved that maximal repre-
sentations are higher rank Teichmiiller spaces. Moreover, they provided an
equivalent characterization of maximal representations through the existence of
a "well-behaved" boundary map £. This is a generalization of a phenomenon in
classical Teichmiiller space: a representation p : I' — PSL(2,R) is the holonomy
of a hyperbolization if and only if there exists a continuous monotone equivariant
map & : ST — 0,,H?, where d,H? is a homogeneous PSL(2, R)-space isomor-
phic to S*. A crucial difference when considering a general Hermitian group
G and the correspondent symmetric space of higher rank X is that the visual
boundary 0., X is not a homogeneous G-space and stratifies in orbits isomor-
phic to partial flag varieties [Ebe96]. These are compact G-homogeneous spaces
G/P determined by the choice of a parabolic subgroup P. When considering
boundary maps, it is thus natural to consider, instead of maps ¢ : S' — 0, X,
maps of the form £p : ST — G/P for a suitable choice of a parabolic subgroup
P. In the case of a Hermitian Lie group the parabolic subgroup is the stabiliser
of a point in the Shilov boundary S of the Hermitian symmetric space (this is
the set of Lagrangians in the case of G = PSp(2n,R)). The Maslov cocycle
induces a partial cyclic order on S and maximal representations Hom™** (T, G)
can be characterised as those representations admitting a monotone equivariant
boundary map, namely a map £ : S* — S such that for every positively oriented
triple (x,v,2) € (S!)? the image (&(2),£(y),£(2)) is Maslov-positively oriented
[BIW10].



A common framework explaining the various higher rank Teichmiiller the-
ories was introduced by Guichard and Wienhard [GW1S]|, [GW22|, [GLW21]
through the notion of ©-positivity. Hitichin components and maximal represen-
tations admit a common characterization in terms of positive structures of flag
varieties. For Hitchin components they consider full flag varieties and Lusztig’s
total positivity [Lus94]. For maximal representations the flag variety is the
Shilov boundary of the symmetric space of G and positivity is given by the afore-
mentioned Maslov cocycle. The theory of ©-positivity generalizes Lusztig’s total
positivity to a larger class of simple Lie groups (e.g. SO(p, q),p # q). Guichard
Labourie and Wienhard conjecture that ©-positive representations also form
higher rank Teichmiiller spaces. The conjecture has, by now, been proven for
the most part in [GLW21| and |[BP21].

Another notion that plays an important role in higher rank Teichmiiller the-
ory is the notion of Anosov representations. They were introduced by Labourie
[Lab06] and further investigated by Guichard and Wienhard [GW12]. Anosov
representations are representations of Gromov hyperbolic groups into Lie groups
G with strong dynamical properties, defined using continuous equivariant bound-
ary maps. Many key properties of Hitichin and maximal representations, such
as being discrete and faithful or admitting p-equivariant boundary maps
¢ : 8! — G/P with respect to a certain parabolic subgroup P, follow from
them being Anosov representations. We refer to [Kas18| for a definition and a
description of geometric and dynamical properties of Anosov representations.

Till now we have assumed X to be a closed surface. There is a related theory
for surfaces with punctures or boundary components. The first thing to notice is
that when 0% # @ then I is a free group and the whole representation variety is
connected. Denote ¥ = ¥ ,,, a surface of genus g and m boundary components
with fundamental group I'y ,,. Let

i=1

g m
Ly m =<a1,b1,...aq,bg, 1, ...C| H[ai,bi] H c;=1)
j=1

be a presentation where the elements ¢; represent loops which are freely homo-
topic to the corresponding boundary components of 0% with positive orienta-
tion. Fixing a set C = {C1,...,Cy,} of conjugacy classes in G one can define the
relative representation variety as the subspace of Hom(T'y ,,, G) given by

HomC(I’g)m,G) = {peHom(I'y n, Q)| p(c;) € C;, 1 <i<m}

The representation variety Hom(I'y ,,,, G) is a disjoint union of all the relative
representation varieties Homc(lﬂgym7 G) over all possible choices for C.

The Toledo number is constant on the connected components of Hom® (Lgm, G)
but for many choices of conjugacy classes the intersection
Hom™(T', ., G) n Hom® (T, ,,, G) is empty [BILWO5|. The topology and the
structure of Hom® (', ,,, G)/G has been studied in [BG99], [DT19|, [TT21]. See
also [Gol23] for a recent survey.



A more general boundary condition might be imposed by considering

Homg(ngm, G) ={peHom(T'y n,G) | p(c;) has at least @)

one fixed point in §, 1<i<m}

where S denotes the Shilov boundary. This is a union of relative character
varieties and in this case Hom™**(T'y ,,,G) < HomS(FgmL,G). In particular

Hom™(T',. ., G) is a union of connected components of the set Hom® (T, ,,,, G)
[BILWO5, Corollary 14].

In this thesis we are interested in maximal representations inside ([2) that
satisfy a further condition: we will fix a union of conjugacy classes by i 1mpos1ng
in QID that every p(c;) fixes exactly two points in S on which it acts expandingly
(resp. contractingly). This is equivalent for the representation to be Anosov
in the sense of [GW12]. We denote this space Hom™™SMlev(p, "G The
definition for the case G = PSp(2n,R) is given in In particular we will study
how to generalize arc coordinates for Hom™®SMo¥(Dy 5 PSp(4, R))/PSp(4, R).
This will be made more clear in the next section.

1.2 The results

Let ¥ be an oriented surface of negative Euler characteristic and fundamental
group I'. In this thesis we are interested in the case where 0% # @.

Parametrizations are a very useful tool to construct examples of represen-
tations in higher rank Teichmiiller spaces. Several coordinates have been intro-
duced on the space of maximal representations. These often arise as a general-
ization of well known coordinates on the classical Teichmiiller space 7 (%), such
as Fenchel-Nielsen coordinates and shear coordinates.

In classical Teichmiiller theory Fenchel-Nielsen coordinates are obtained by
decomposing the surface in pairs of pants through the choice of a maximal col-
lection of pairwise disjoint simple closed curves. The parametrization of 7(X) is
obtained by recording the length of the curves together with a gluing-parameter
which records how much twist is involved in the gluing (see for example [Mar16]).
Analogues of Fenchel-Nielsen coordinates on the space of maximal representa-
tions were developed by Strubel [Str15].

On the other hand, the construction of shear coordinates on the Teichmiiller
space of a hyperbolic surface ¥ with at least one hole depends on the choice of
a triangulation of ¥ |Thu22|. Analogues of shear coordinates on the space of
maximal representations were developed by Alessandrini Guichard Rogozinnikov
and Wienhard [AGRW19).

Other examples of parametrizations of higher Teichmiiller spaces are the
work of [BD17| generalizing shearing coordinates on the Hitchin component in
PSL(n,R) and its generalizations [MMMZ23], [Pfe22].

In this thesis we are interested in arc coordinates. In classical Teichmiiller
theory arc coordinates were introduced by Harer [Har86] who defined a complex
of arcs on a surface with punctures and boundary components. This arc system



allowed him to define a cell complex onto which 7 (X) may be I'-equivariantly
retracted. These coordinates were developed by Penner [Pen87| to decompose
decorated Teichmiiller space of punctured surface. This decomposition was gen-
eralized by [Ush99| [Pen02] for surfaces with boundary. Similar coordinates were
used in |[Luo07]| [Guo09] to show that the Teichmiiller space is an open convex
polytope and by |[Mon09| to express the Weil-Petersson Poisson structure on
T (%) for a surface with geodesic boundary.

In this thesis we want to generalize arc coordinates to the space of maxi-
mal representations. We will consider the case where ¥ = ¥, ,,, is a compact
orientable smooth surface of genus g and m boundary components. We denote
I'y m the fundamental group 71 (X, ), which is isomorphic to the free group
Fog4m—1. An element v € Iy ,, is called peripheral if it is represented by a loop
that is freely homotopic into a boundary component of ¥, ,,,. We can equip X,
with a complete hyperbolic structure of finite volume with geodesic boundary.
The universal covering ¥ ,, of ¥, ,, is a closed subset of the hyperbolic plane
H? where boundary curves are geodesics.

Arc coordinates are obtained by decomposing the surface in hexagons through
the choice of a maximal collection {ay, ..., a;} of pairwise disjoint arcs with start-
ing and ending point on a boundary component which are essential and pairwise
non-homotopic. For every hexagon in this decomposition there are exactly three
alternating edges belonging to 03, ,,,. We denote by E the set of all edges and by
Eyary the set of edges lying on a boundary component. For a fixed hyperbolic
structure we can always realize the hexagon decomposition of X, ,, in a way
such that every edge is a geodesic and every arc is the unique geodesic which is
orthogonal to the boundary at both endpoints. For each choice of {ay, ..., ax} we
get a parametrization of the Teichmiiller space 7 (X, ,,): once we fix the lengths
l(a1), ..., l(ag) there is a unique hyperbolic metric that makes ¥4 ,,,\ |, a; a union
of hyperbolic right-angled hexagons where each hexagon has exactly three al-
ternating edges a;,, Gi,, @i, in E\Ey4ry of length I(a;, ), (ai, ), l(as, ) respectively,
where i1,142,i3 € {1,...,k}. This is due to the well known fact that given three
real numbers b,¢,d > 0 there exists (up to isometries) a unique right-angled
hexagon in H? with alternating sides of lengths b,c and d (see for example
[Marl6, Lemma 6.2.2]).

A point in the Teichmiiller space T (X,,,) is identified with a maximal repre-
sentation p : T'y ,,, — PSL(2,R). Since we are considering surfaces with geodesic
boundary, the image p(7y) of every element v € I'y ,,, is a hyperbolic isometry
fixing exactly two points in dHZ2. The above discussion asserts that once we
fix the lengths I(ay),...,I(ar) we can explicitly write (up to conjugation) the
maximal representation p such that £, ,, = p(I'y,,)\H?. An example for the
surface X 3 (pair of pants) is given in Figure [1} where the fundamental group
I'g,3 is the free group generated by o and S.

More generally, given a maximal representation p : I'y,,, — PSp(2n,R),
the image p(7y) of every non-peripheral element v € Ty, is Shilov hyperbolic
(see |Str15]). Equivalently, p(v) fixes two transverse Lagrangians [ and [ on
which it acts expandingly and contractingly respectively. These Lagrangians
are the images £(y*) and £(y~) where ¢ : S — L(R?") is the equivariant



Figure 1: The maximal representation
P ].—‘073 - PSL(Q,R)

boundary map and l$ = £(y*). We want to parametrize the set of maximal
representations where the property of being Shilov hyperbolic is true also for
peripheral elements.

Definition. (see A maximal representation p : 7 (X) — PSp(2n,R) will
be called Shilov hyperbolic if p(~y) is Shilov hyperbolic for every v € m1(X). The
set of maximal representations which are Shilov hyperbolic will be denoted by
Hom™>5hlov (7 (33) PSp(2n,R)). We define y™5hilov (7 (%) PSp(2n, R)) as
the quotient

Xmax,Shilov (71—1 (E), PSp(2’I’L, R)) = Hommax,Shilov (7_(_1 (2)7 PSp(2n7 R))/PSp(2n,R)

where PSp(2n,R) is acting by conjugation: p ~ p’ if there exists g € PSp(2n, R)
such that p(y) = gp'(v)g~! for all v € 71 (2).

The standard example that we will consider is the surface ¥ 3 (pair of pants),
where I'g 3 = Fy = {a, ). We study in detail how to generalize arc coordinates
for the space x™max:Shilov(T, 3 PSp(4,R)). To do this we consider the Siegel space
X, the symmetric space associated to Sp(4,R). We fix the Weyl chamber a*

ﬁ+ = {(.’tl,xg) € R2| T = T = 0}

and the set of regular vectors inside @a* will be denoted by a

a= {(CEl,.’[Q) ER2| Tl > To > 0}



We further denote by 0 the set
0= {(1‘1,12) € R2| T = IQ}

The first step is to introduce a parameter space for a right-angled hexagon in
X. The subspaces of the Siegel space that play the role of geodesics in H? are
called R-tubes (see Definition . In Section we give the definition of
a right-angled hexagon H in X', which is determined by a cyclic sequence of
R-tubes

H = [Y1,Y2,Y3,V1,V5, Vo]

where any two consecutive tubes are orthogonal. We further define the set of
ordered right-angled hezagons H (Definition [£.3). This is the data (H,Y;) of
a right-angled hexagon together with the choice of a tube ). We distinguish
between generic (Definition and non-generic hexagons (Section . A
generic hexagon will be parametrized by length parameters b, ¢, d inside a and
angle parameters a1, az lying in [0,27) (Proposition [l.15]). In the non-generic
case some length parameters will lie in 0 and some angle parameters will vanish
(Propositions [4.20} [4.21) and |4.22)). This leads to a geometric visualization of a
right-angled hexagon inside X in terms of a polygonal chain. This is obtained
by projecting boundary points to the standard tube )y o which is isometric to
R x H? (Lemma [2.28). This is explained in Section and is illustrated in
Figure [2] below.

Ve

Figure 2: Geometrical interpretation of a hexagon in
terms of a polygonal chain in the case of a generic
and a non-generic hexagon.

A parameter space which encloses both generic and non-generic hexagons is
given by

Theorem. (see The space H is parametrized up to isometry by

A =1ax[0,27) x [0,27)/~



The equivalence relation collapses one of the angles to a point in the case
where the hexagon degenerates to a non-generic one.

These parameters were firstly introduced with the aim of generalizing (|[Mar16,
Lemma 6.2.2]). This approach turned out to be very tricky and this is explained
in detail in Chapter [5

Geometric parameters for maximal representations should be thought as the
data of lengths and angles which uniquely determine two adjacent hexagons both
having three alternating sides of length b, ¢ and d respectively. The maximal
representation is then determined by determining the image of the generators
of the fundamental group generalizing the geometric construction of Figure [T
The problem is that when extending our hexagon-parameters for two adjacent
hexagons we can not guarantee that the constructed hexagons have the same
alternating side-lengths. We will therefore construct two adjacent hexagons
starting with one hexagon H and obtaining the others by reflecting H across a
side (Figure. A precise definition of a reflection in the Siegel space X’ together
with interesting geometric properties is given in Chapter [6]

Figure 3: The maximal representation
p:To3 — PSp(4,R)



This will lead to the parametrization of a subset
XS - Xmax,Shilov(l—\O’S’ PSp(4, R))

The idea is to see the fundamental group I'g 3 as a subgroup of the Coxeter

group
Wz = Z/27 « 727 + /27, = {s1, 52, 83| 57 = 553 = 53 = 1)

through the following homomorphism ¢
¢:To3 — W3
Q= 5189
B — s283
We will define the notion of maximal representation of the reflection group

W3 into PSp™ (2n, R), where PSp™ (2n,R) denotes the union of symplectic and
antisymplectic matrices (Definition . Other interesting works introducing

maximal representations for orbifold groups are developed in [AC19| |[ALS23|.

P L

Yo

Ry

Q2

Y;
Xo

Figure 4: The reflections p(s1), p(s2), p(s3) for
p: W3 — PSpT(2n, R) maximal
Definition. (see A representation
p: W3 — PSpi(Zn,R)

is mazimal if there exists a maximal 6-tuple of Lagrangians (P, Py, Q1, Q2, R1, R2)
such that p(s1), p(s2), p(s3) are reflections of X fixing (P, Ps), (Q1,Q2), (R1, R2)



respectively and such that

p(s1)(X1) = Xz and p(s1)(Z1) = Z2
p(s2)(X1) = Xz and p(s2)(Y1) = Y2
p(s3)(Y1) = Yz and p(s3)(Z1) = Z»

where X1, Xo,Y1,Ys, Z1, Z5 are uniquely determined by

Yr,.p L Vxxo L V01,0, L IYvive L VR go L V2, 2,

We provide a parametrization of the set of maximal representations of the
reflection group Ws in the case of PSp*(4,R).

Theorem. (see[7.21)) The set x™**(W3, PSp™ (4, R)) = Hom™**(Ws, PSp* (4, R))/PSp(4, R)

is parametrized by the parameter space S:
Sc AxK?

where A is the parameter space of a right-angled hexagon and K is the set

/c_{((f{ I()() K e PO(2), KQ:Id}

In Section [6.4] we give a geometrical interpretation of the set K in terms
of the polygonal chain associated to a right-angled hexagon. We prove that
the restriction to I'gp 3 of such a maximal representation is maximal and Shilov
hyperbolic.

Proposition. (see Fiz p € Hom™**(Ws, PSp*(4,R)). Then the represen-
tation p := p|rm(g) is inside Hom™*5hilov (T 5 PSp(4, R)).

This allows us to define x° (Definition [7.19) as the image x° := Im(f)
where f is the map

f . Xmax(W:S, Pspi (47 R)) N XmaX’Shﬂov(PO,Su PSp(4, R))
[] = [Plimo)]
This leads to a parametrizatin of x™®%Shilov(T o PSp*(4,R)) by imposing

an equivalent relation on & which identifies the points that have same image
under f.

Theorem. (see The set x° is parametrized by S/~

In Corollarywe show that, contrary to the hyperbolic case (Proposition
, the map f is not injective nor surjective.

A motivation for this work is to study compactification of character vari-
eties where similar arguments can be carried out with non-Archimedean Siegel
spaces as in |[BP17]. We expect applications of this work in the study of the
real spectrum compactification of maximal character varieties (see [BIPP21a],
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[BIPP23|) Of particular interest are rank two groups where |BIPP21b| and
|OT23b] |[OT23a| suggest a link with flat structures with angle multiple of 7.
Developing arc coordinates for those would be interesting.

Finally, the parameter space of x° was implemented on a Python program
which constructs the generators of a maximal representation into PSp(4,R).
The most important functions appearing in the program are shown in Chapter
S|

The last chapter investigates other methods for the generalization of arc
coordindates to maximal representations and is a joint work with Eugen Ro-
gozinnikov.

1.3 Organization of the work

In Chapter [2] we discuss properties of the geometry of the Siegel space X- the
symmetric space associated to Sp(2n,R). We cover the basic definitions and
study in detail the geometry of R-tubes in the case of Sp(4,R).

In Chapter [3] we define the set of generic quintuples and give a parameter
space for them (Proposition . These parameters will be very useful for the
parametrization of right-angled hexagons.

Chapter [ is dedicated to the study of hexagons. We define the set of or-
dered right-angled hexagons (Definition and distinguish between generic
(Deﬁnition and non-generic hexagons (Section. We introduce a param-
eter space for both cases (Proposition for the generic case and Propositions
[4.20} 4.21] and [4.22] for the non-generic case). A parameter space which encloses
both generic and non-generic hexagons is given in Theorem [4.26] These param-
eters will be called arc coordinates. Note that this term could be misleading as
we have used it also for the parametrization of classical Teichmiiller space and
for its generalization in the case of maximal representations. Nevertheless, we
have decided to keep this name also for the parameters of a hexagon as they are
crucial for the construction of parameters for maximal representations and will
appear in their parameter space (Theorem .

In Chapter [5| we show how arc coordinates arise from the idea of generalizing
coordinates of a hexagon in H? and explain the problems encountered in this
approach.

In Chapter |§| we discuss properties of reflections in H? and their analogues
in the Siegel space X. We define the reflection set associated to the side of a
hezxagon (Deﬁnition and give a geometric interpretation of it (Section.

In Chapter [7] we discuss geometric properties of Shilov hyperbolic isometries
and we define the set y™a%Shilov(z, (1) PSp(2n,R)). We further define the
notion of a maximal representation from the Coxeter group
Wi = Z/27 + 7./27 « Z,/2Z into PSp™(2n,R) (Definition and provide a
parameter space for the PSp™ (4, R)-case (Theorem [7.21)). We further define the
set x& < ymaxShilov(p, o PSp(4,R)) (Definition [7.19) to which we provide a
parameter space (Theorem .

In Chapter [§ we list and explain the functions of a Python program which
implements the proof of Theorem [7.23] that is it constructs the generators of a

11



p e x® for a given point in its parameter space.

In Chapter[J]we discuss other approaches to parametrize right-angled hexagons
in X. This chapter is a joint work with Eugen Rogozinnikov. We discuss the
problems that arise when extending these parameters to maximal representa-
tions.

12



2 The Siegel space

2.1 Definition and models

The Siegel space X is the symmetric space associated to the symplectic group
Sp(2n,R). Standard references for the theory of symmetric spaces are for ex-
ample [Hel79|, [Ebe96|, [Mau04], [Boo86|. Recall that the symplectic group

Sp(2n,R) = {M € SL(2n,R) | MTJ, M = J,,}

is the subgroup of SL(2n,R) preserving the symplectic form w(-,-) represented,
with respect to the standard basis, by the matrix

0 Id,
In = (—Idn 0 )

The group Sp(2n,R) can also be described as the group of block matrices:

Sp(2n,R) = { (g g) | ATC, BT D symmetric, and ATD — CTB = Idn}

If n = 1 the group Sp(2n, R) coincides with SL(2,R). There are two models com-
monly used for the Siegel space: the upper-half space and the Borel embedding
model.

1. The upper-half space model is a generalization of the upper-half space
model of the hyperbolic plane and is given by a specific set of symmetric
matrices:

X = {X +1iY, X e Sym(n,R), Y € Sym™* (n,R)}

where Sym(n,R) denotes the set of n-dimensional symmetric matrices
with coefficients in R and Sym™ (n, R) is the subset of Sym(n, R) given by
positive definite matrices. The group Sp(2n,R) acts on X by fractional
linear transformations:

(é g) Z=(AZ+B)(CZ+D)™"

This action is transitive and the stabilizer of the point iId,, € X is isomor-
phic to the group U(n).

2. The Borel embedding model is given by
X = {l e L(C*)| iw(o(-), )c|ix: is positive definite}

where £(C?") is the set of Lagrangians and o : C*" — C?" denotes com-
plex conjugation.

13



An Sp(2n, R)-equivariant identification X — X is induced by the affine chart
¢ : Sym(n,C) — L£(C?")

that associates to a symmetric matrix Z the linear subspace of C?" spanned

. Z o
by the columns of the matrix ( Id > , where it is easy to show that the
"/ 2nxn
symmetry of Z implies +(Z) € L(C?".
For the inverse of ¢ observe that for any [ € £L(C?") we can always write [ as

Eh zy
21 Zy
= 1|, O =<(v1,..,0n)
0 .
: 0
0 1

where zf € C. Then for [ to be a Lagrangian it must hold w(v;,v;) = 0, that is

w(vi,vj5) = —zj— +2/ =0

so that [ is a subspace of C?" spanned by the columns of the matrix < If )

where Z € Sym(n,C). The restriction of the affine chart ¢ to the subspace
Sym(n,R) provides a parametrization of the set of real Lagrangians that are
transverse as linear subspaces to {ey, ..., e, y, which will be denoted by [, or just
0.

Remark 2.1. We have seen that the group Sp(2n,R) acts on X' by fractional

linear transformations. Given M = <é g) € Sp(2n,R) and Z € X it holds

M-Z=(AZ+B)(CZ+D)'=(-M)-Z

When studying actions on X' it makes therefore sense to consider M and —M
to be the same element inside Sp(2n,R). This means considering the group

PSp(?n, R) = Sp(2nv R)/{ild}

2.2 Boundary and Lagrangians

The set of real Lagrangians £(R?") naturally arises as the unique closed Sp(2n, R)-
orbit in the boundary of X in its Borel embedding and for this reason L£(R?*")
is the Shilov boundary of the bounded domain realization of X' (see [Wie04]).
Denote by L(R?")(*) the set of k-tuples of pairwise transverse Lagrangians.

14



It is easy to prove that the group Sp(2n,R) acts transitively on E(R2”)(2).
Moreover, it has (n + 1) orbits in £(R?")®), indexed by the Maslov index: let
(I1,12,13) € £L(R**)(®) and denote by I3 the unique linear map

l3tllﬁ>lg
u—vlu+vels

Using the symplectic form w we can define the bilinear form S on I; as
following

Blui,ug) := wlus, l3(uz))
Definition 2.2. The bilinear form § defined as above is called the Maslov form.

The Maslov form is symmetric and nondegenerate (see for example [Sou05|).
We denote the signature of 8 by

sgn(B) =p—q

where p is the dimension of a maximal subspace of [; on which § is positive
definite and ¢ is the dimension of a maximal subspace of [; on which £ is
negative definite.

Definition 2.3. The Maslov index of the triple (I1, 12, 13) is the signature of the
associated Maslov form 8 and is denoted by w,(l1,12,13).

The Maslov index is cyclically invariant, is invariant under the action of
Sp(2n,R) on L(R?")®) and the group Sp(2n,R) acts transitively on the set of
triples of pairwise transverse Lagrangians with the same Maslov index [LV80].

The value of the Maslov index is maximal on the orbit of

(<613 RS €n>,<€n+1, eeey 62n>7<61 + €ntlyy€n + 62n>) = (locv OaId)

It is minimal on the orbit of (I, Id, 0) and is zero on the orbit of (I, 0, <é _01> ).
Definition 2.4. (Maximal triple and maximal m-tuple) A triple of pair-
wise transverse Lagrangians is called mazimal if it is in the Sp(2n,R)-orbit of
(ln,0,1d). An m-tuple (l1,...,1mn) is mazimal if for every i < j < k the triple
({3515, 1x) is maximal.

Maximal triples are a generalization of positively oriented triples in the circle
S1 = 0H? and they play a central role in the study of maximal representations.
It is useful to have a concrete criterion to check when triples of Lagrangian are
maximal. The following Lemma can be found for example in [BP17, Lemma
2.10].

Lemma 2.5. The following hold:

(1) Any cyclic permutation of a mazimal triple is mazimal;

(2) The triple (I, X,Y) is mazimal if and only if Y — X is positive definite;
(3) If Z — X s positive definite, the triple (X,Y,Z) is mazimal if and only if
Z —Y and Y — X are positive definite.
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From a given maximal m-tuple we can obtain a maximal (m + k)-tuple by
adding a maximal k-tuple between two consecutive Lagrangians. More precisely:

Lemma 2.6. Let (Py,..., Py,) be a mazimal m-tuple. Forie {1,...m —1} and
k=1let (P;,Q1,..., Qr, Piy1) be mazimal. Then the (m + k)-tuple

(P, P Q1 ooy Qs Piy 1y -y Pry) is mazimal.

Proof. Up to isometry we reduce to the case where P, = 0, P,,, = [, that is we
consider the (m+k)-tuple (0, Py, ...P;, Q1, ..., Qr, Pis1, ..y lon) where (0, P, ..., Pri—1, o)
maximal and (P, Q1, ..., Qk, Pi+1) maximal. Using Lemmaresult follows im-
mediately. O

2.3 Sp(2n,R)-invariant distances

We introduce a Sp(2n,R)-invariant distance on the symmetric space X. Fix
a point p in a maximal flat F and a Weyl chamber a* < T,F. This is a
fundamental domain for the action of Sp(2n,R) on the tangent bundle TX. In
our case we have

ot ={(z1,..,zn) R 21 > ... = 1, =0}

A vector in the Weyl chamber is regular if all the inequalities are strict,
which is equivalent to being contained in a unique flat. The set of regular
vectors inside at will be denoted by a

a={(z1,..,Tpn) E Rz > ... > 2, >0}
We will further denote by 0 the following set
0= {(z1,....,xn) e R |21 = ... = 2,}

In order to define a vectorial Sp(2n,R)-invariant distance in X we need

to recall from [BP17| the definition of an endomorphism-valued cross-ratio. If

I1,ly € L(R?™) are transverse (denoted by I1hly), we denote by p}lll’" ‘R [y

the projection to l; parallel to ls.

Definition 2.7. (Cross-ratio) For Lagrangians [1,...,I4 € £(C?") such that
lyhls and l3hly the cross-ratio R(l1,ls,13,14) is given in the Borel embedding
model by the endomorphism of Iy

RO 1o 1o 1) =l o2,

In the upper half space model the explicit expression for the cross-ratio is
given by (|BP17, Lemma 4.2]):

R(X1, X2, X3, X4) = (X1 — Xo) M Xy — Xo) (X4 — X3) (X1 — X3)

where R is expressed with respect to the basis of X; given by the columns

. X4
of the matrix < Id, )
The following lemma can be found in [BP17, Lemma 4.3]:
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Lemma 2.8. Assume 0,7, X,y are pairwise transverse. Then
R(0,Z,X,l,) = Z7'X

We can now define the vectorial distance d® . The fact that the cross-ratio
can be used to describe the projection of a pair of points in X onto the Weyl
chamber was proved by Siegel in [Sie43].

Definition 2.9. The vectorial distance d® is the projection onto the Weyl

chamber a*:
XQ _>a+
(X, Z) = (log(A1), ..., log(An))
4T ~ .
where \; = v and 1 > ry = ... = r, > 0 are the eigenvalues of
R(X,Z,7,X)

For interesting properties about the distance d®  see [Par10],|KLP17|. For
other interesting Sp(2n,R)-invariant distances such as the Finsler distance see
|[FP20]. The following lemma can be found in [FP20, Lemma 2.14]:

Lemma 2.10. Let A and B be positive definite symmetric matrices such that
the difference B — A is positive definite. Let 1 > ... = u, be the eigenvalues of
A71B. Then

d® (iA,iB) = (log i1, ..., 10g 1)

2.4 Copies of H? inside the Siegel space X

Definition 2.11. Let X be the symmetric space associated to Sp(2n,R). A
mazximal polydisc in X is the image of a totally geodesic and holomorphic em-
bedding of the Cartesian product of n copies of H? into X.

We will be interested in the symmetric space X associated to Sp(4,R). In
this case an example of a maximal polydisc is the image of the following map

P:
¥ H?2 x H?2 - X

0
(21, 22) — <201 Zz)

We will refer to this polydisc as the model polydisc since every other polydisc
is translate of our model polydisc by an element in Sp(4,R) (see [Wol72|). Let
(M1, M) be an element of SL(2,R) x SL(2,R). Then (Mj, Ms) acts on the
model polydisk as following:

(My, My) - (Zol 202> = (Ml(gm Mz(()zz))
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where M) - (i Z) 2= (az +b)(cz + d)~!

is the action on a point z € H? by Mébius transformation. Let A be the diagonal
embedding given by

A: SL(2,R) x SL(2,R) — Sp(4, R)

al 0 b1 0

( (a1 bl) ((12 bg) ) o 0 a9 0 by
C1 dl ’ Co d2 C1 0 d1 0

0 Co 0 dg

then we obtain the following commuting diagram

H? x H? H? x H?

(M17M2)'

In particular the set

vl = (5 O

is a copy of H? inside X and will be called the diagonal disc.

2.5 R-tubes

The subspaces of the Siegel space that play the role of geodesics in H? are called
R-tubes. Let {a,b} be an unordered pair of transverse Lagrangians.

Definition 2.12. (R-tube) The R-tube associated to {a,b} is the set
Vap = {l € X| R(a,l,0(1),b) = —1d}

It can be proven (see |[BP17]) that ), 5 is a totally geodesic subspace of X' of
the same real rank as X and that it is the parallel set of the Riemannian singular
geodesics whose endpoints in the visual boundary of X are the Lagrangians
a and b. The group Sp(2n,R) acts transitively on £(R**)(®) and for every
g € Sp(2n,R) it holds ¢ - Vap = Vga,go- Up to the symplectic group action we
can therefore reduce to a model R-tube, the one with endpoints 0 and lo. In
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the upper-half space model this will be called the standard tube and consists of
matrices of the form
Yoo = {iY|Y € Sym™ (n, R)}

Intersection patterns of R-tubes in the Siegel space reflect the intersection
patterns of geodesics in the hyperbolic plane. This is shown in the following
result, which can be found in [FP20, Proposition 2.16].

Proposition 2.13. If (I1,12,13,14) is mazimal, the intersection Vi, 1, N Viy i
consists of a single point and Vi, 1, N Vij,1, 15 empty.

Definition 2.14. (Orthogonal R-tubes) Two R-tubes ), ; and ). 4 are or-
thogonal if they are orthogonal as submanifolds of the symmetric space (where
there is a well defined Sp(2n,R)-invariant scalar product).

Remark 2.15. The orthogonality relation can be expressed as a property of
the cross-ratio of the boundary points: if (a, ¢, b, d) is maximal, the R-tubes Y,
and Y. 4 are orthogonal if and only if R(a,c,b,d) = 2Id (see [BP17, Definition
4.14]).

Denote by ((a,b)) := {l € L] (a,l,b) is maximal} and by

pa,b X v ((a7b)) - ya,b

the orthogonal projection. It will be useful to have concrete expressions
for the orthogonal projection to ((a,b)) when (a,b) = (0,ly) and for the Weyl
chamber distance between two orthogonally projected points. Recall that we
identify Sym(n,R) with the Lagrangians in £(R?") that are transverse to l,, via
the restriction of the affine chart ¢ : Sym(n, C) — £(C?"). Both of the following
lemmas can be found in [FP20, Lemma 2.24 and 2.25|.

Lemma 2.16. For any A € Sym™ (n, R) the R-tubes Ya _a and Yoo are or-
thogonal and their unique intersection point is iA. In particular poo(A) = iA.

Lemma 2.17. If (a,z,y,b) € L(R?™)* is a mazimal 4-tuple and p,, is the
orthogonal projection onto Ve p, the distance
=+
d* (pa,p(x), pas(y)) = (l0g pi1, ..., log in)

where p; are the eigenvalues of the cross-ratio R(a,x,y,b).

2.6 Computing orthogonal tubes

In Chapter [4] we will define right-angled hexagons in the Siegel space X and
introduce a suitable parameter space for them. A crucial tool to construct
right-angled hexagons is computing orthogonal R-tubes. For this reason, this
section lists concrete criteria to determine them.

Lemma 2.18. Let (Py, Py, P3, Py) be a maximal 4-tuple. Then there exists a
unique tube Vp, p, orthogonal to both Vp, p, and Yp, p,.
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Proof. Up to Sp(2n,R)-action we can consider
(Pl,PQ,Pg,P4) = (O,Id,P,OO)

By Lemma the tubes orthogonal to )Yy o are of the form Y_g o where
Q € Sym™ (n,R). We want to find Q such that the triple (Id, @, P) is maximal
and such that Y_g ¢ L Vi, p. By the orthogonality condition (see Remark
this happens if and only if R(P, —@Q,1Id, Q) = 2Id. Developing the left-hand side
we obtain:

20P+Q)7'QQ-10)7H(P ~1d) =2(P + Q)" ((Q - 1)Q™")

=2(1d-Q M) (P+Q) (P -1d) =21d

"P-1d) =

This simplifies to
P+Q-Q'P-Id=P-1d

We obtain
Q? = P which has unique solution Q = v/ P

In particular P € Sym™ (n,R) as (0,Id, P,o0) is maximal (see Lemma. O

Lemma 2.19. Let (0,1d, P,o0) be a mazimal quadruple. Then Y_vp.vF 18 the
unique R-tube orthogonal to both Yo o and Viq,p-

0

Figure 5: The tube J_ VPP orthogonal to both
Via,p and Vo,

Proof. Follows directly from proof the of Lemma [2.18 The configuration of the

tubes Vo oo L yﬂ/ﬁﬁ 1 Via,p is illustrated in Figure E} O

In the more general case we have:
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Lemma 2.20. Let (Py, P2, P3, Py) be a mazimal quadruple. Then the unique
tube orthogonal to both Vp, p, and Vp, p, s Yz, ,z, where

Zy=g " (- \/9?3), Zo :g_l(\/g?zz)

(30T (G 6 )

and A = \/(Pl — P4)(P2 — Pl)fl(PQ — P4)

Proof. The matrix g € Sp(2n,R) is an isometry such that
g- (Pl,PQ,P4) = (O,Id,OO)
Result follows from Lemma [2.19 O

Lemma 2.21. Let (Py, Pa, Ps, Py, Ps, Ps) be a mazimal 6-tuple and let Q1, Q2, Qs, Q4
be such that
yP1,P2 1 le;Q2 1 yPS;P4 1 yQ37Q4 1 yP57P6

Then the quadruple (Ps, Q2,Q3, Py) is maximal.

P P

Q4
P

o} °

P P,
P3
Q3
Q2

Figure 6: The quadruple (Ps, Q2, @3, Py) is maximal

Proof. Let g € Sp(2n,R) be such that

g (Q1,Q2) = (0,0) and g - (Ps, Py) = (—1d,1d)
We obtain the tubes

9-Yp.p, =YV-mM, 9 Vps,ps = VPQ
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for some M, P, () positive definite matrices. The tube g- Vg, 0, = Yx,y is such
that

Y_1a1d L Vxy L Vpq (3)

where P and @) are positive definite matrices (Figure [7)).

0
-M
Q
Y
P
—Id 1d
X
0

Figure 7: The quadruple (0, X,1Id,Y’) is maximal

By construction of orthogonal tubes we know (—Id,0,Id) and (X,Id,Y)
maximal (Lemma [2.19). It is not hard to show that the matrix X needs to be
positive definite for the condition to be satisfied. It follows (—Id, 0, X,1d)
maximal and so is its preimage (Ps, Q2,Qs, P1). O

We end this section by giving some concrete expressions to find two orthogo-
nal tubes when one of them is of the form Y_p p for a positive definite matrix P.
This configuration will turn out to be very useful when defining the parameter
space of right-angled hexagons.

Lemma 2.22. Let (0, Py, P»,0) be a mazimal quadruple. Then
yipl"Pl 1 yPlpglpl,Pz and y7P2’P2 1 yP1,P2Pf1P2

Proof. For the first case it is sufficient to find X € Sym(n,R) such that
R(X, Py, Py,—P;) = 21d (see Remark . Developing the left-hand side we
obtain

(X —P) (=2P)(-P - P) /(X — P) =2Id

which can be rewritten

PP +P) (X -P)=(X—-P)
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8 1
_P PP P
P

Py

P

0 0

Figure 8: Expressions to find the unique orthogonal
tubes

and this simplifies to
(X=P) = (P+P) PN (X—P)) = 1d+ PP ) (X—Py) = X—Pi+ PP ' X—P;
We obtain

PP 'X =P,
Result follows. The proof for the second case is the same. The configuration
of the orthogonal tubes V_p, p, L yPlP;Pth and V_p, p, L yP17P2P1_1P2 is

illustrated in Figure
O

2.7 Orientation of boundary points: the Sp(4,R)-case

In this section we investigate orientation of boundary points. From now on we
will consider the symmetric space X associated to Sp(4,RR). This leads us to
consider real Lagrangians £(R?) in the boundary of X'. Recall that for [ € £(R?)
the dual space is given by

I* = {\:1— R linear}
If v1,v2 is a basis of [ then vf, v} is a basis of I* where v}(v;) = 0;; and &;; is
the Kronecker delta:
T
lifi=j
For [ iy then lp = ¥ through the map
12 - ZT

u— w(u,-)
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where w is the symplectic form represented by the matrix ( ? q I(Sz).
—ld;

The inverse map is given by
lik i lg

A= u| A(v) = w(u,v) Yo e ly (5)

In particular take a basis vector v; of ;. Then v} can be seen as the vector
u € ly such that
v¥(v) =w(u,v) Yvel

where v}(v;) = d;;. We obtain v} =~ u € ly where
w(u,v;) =1 and w(u,v;) =0

Definition 2.23. Let I; € L(R*),l; = (v1,v2) and fix the orientation o't on [;
given by the volume form vy A vo. For lohly the orientation on ly induced by 1y
is given by v} A v} and will be denoted by 02 « o1,

Recall that we denote by £(R™)*) the set of k-tuples of pairwise transverse

Lagrangians.

Proposition 2.24. Let (I1,12) € LIR*)?) and fix an orientation ot of ly. Then
o't coincides with the induced orientation o't «— o'2 « o1,

Proof. Let g € Sp(4,R) such that g(I1,12) = (I, 0). Put

loy = (e1,e2), 0 ={es, eq)

Let o'* be the orientation on Iy, given by the volume form e; A es. We want to
show that this orientation coincides with o!® « 09 « ol~. The orientation on
0 = 1% induced by lo, = {e1,e2) is given by e} A e3. In the identification
the vector ef € [% is the vector u € 0 = {e3, e4) such that

w(u,e1) =1 and w(u,ez) =0

where we have the following equalities for w:

We obtain u = e¥ = —e3 and similarly e} = —ey, so that 0¥ « o' is given
by the volume form —es A —eq = e3 A e4. The orientation o'* «— 00 « ol* is
therefore given by ef A e} , where this time ef, ef € 0% =~ I,,. In the same way
as before one can show that this orientation corresponds exactly to e; A es.

O
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Remark 2.25. Observe that the proof of Proposition [2.24] works more generally
for the Sp(4n, R) case, that is (I1,12) € L(R?")?), Tt is false for the Sp(4n+2, R)-
case, where (I1,13) € L(R?*"*1)?) and where an odd number of minus signs is
appearing in the volum form.

Recall that we denote by pu,, (11, l2,l3) the Maslov index of a triple in £(R™)®)
(see Section. Given (I3, 1s,13) € L(R*)®3) we obtain ps(ly,12,13) € {—2,0,2}.

Proposition 2.26. Let (I1,ls,13) € L(RY)®) and fizx an orientation o' of 1.
Then the induced orientation o <« o't coincides with o' « o2 « ol if
pa(li,la,13) # 0 and it does not coincide if us(ly,la,l3) = 0.

loo

old — ¢V « ol»

0

Figure 9: Induced orientation on a positive triple

PT’OOf. ].) ,U,Q(ll,lg,lg) > 0.
Let g € Sp(4,R) such that g(l1,12,13) = (I, 0,Id). Put

loo = {e1,€2), 0= {es, €q), Id = (&1 + €3,€2 + €4) = (€1, €2)
Let o' be the orientation on lo, given by the volume form e; A es. We
want to show that o' « o'= coincides with o' « 0¥ « o= (see Figure@).
The orientation on Id = I* induced by Iy, = {e1,e2) is given by e A ed.

In the identification the vector ef € I is the vector u € Id = {ey, €2)
such that

w(u,e1) =1 and w(u,ez) =0
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Recall again the following equalities for w:

We obtain u = ef = —¢; and similarly el = —ea, so that o'd « ol= is
given by the volume form —e; A —ey = €1 A €3.

In the same way one can show that the orientation on 0 = {es, e4) induced
by ly = {e1,e2) is given by e3 A e4 and that o'd « 0% « o!* is given by
€1 N €9.

2) ug(l1,l2,l3) < 0.
Let g € Sp(4,R) such that g(l1,l2,l3) = (lw,1d,0). The proof is very
similar to 1), where this time 0° « o'~ is given by e3 A e, and coincides
with 00 « old

3) p2(ly,la,l3) = 0.
Let g € Sp(4,R) such that g(ly,1l2,13) = (lon,0,m) where m is the La-
grangian

— ole=.

m ={e; +e3,—ey + eqgy = €1, fo)

. . (1 0. e
and coincides with the matrix 0 _1> in the Sp(4, R)-equivariant iden-
tification X — X (see Section [2.1)). The proof is again very similar to the
previous cases, where this time 0™ « o'* is given by —e; A —f; whereas
0™ «— 0¥ « ol* is given by €; A —fo.

O

2.8 The symmetric spaces Xqp(,r) and Xspnr)

Recall that the standard model for the symmetric space associated to GL(n,R)
is
Xcr(nr) = Sym™ (n,R)

We endow X, r) With the distance given by

dGL (X, Y) = (log /\1)2

-

1=1

where \; are the eigenvalues of XY ~!. With this choice of dgj, the natural
identification Xgr,(;,,r) = Yo,c0 is an isometry (where Yo o is equipped with the
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induced Riemannian metric).

Recall also that the symmetric space associated to SL(n,R) is
XsL(n,p) = {X € Sym™ (n,R)| det(X) = 1}

Similarly, we endow Xgp,(, r) With the distance given by

dsL(X,Y) =

Zn: (log \;)?

where ); are the eigenvalues of XY ~!. In particular, the symmetric space
Xsp(2,r) can be identified with the hyperbolic upper-half plane
H? = {z =z +iy| x,y € R, y > 0} via the following map:
h: Xop o r) — H?
B~ [B]-i
where B is an element of PSL(2, R) and acts on H? via Mébius transformations.
The inverse of h is given by

h_1 : H2 g XSL(Q,R)
AAT
where A € PSL(2,R) and A ¢ = z.

Remark 2.27. If we endow H? with the distance dy= relative to the standard
2 2

metric dmy%dy on the upper-half plane then h is not an isometry and in general

(Xsr(2,r), dsL) and (H?, dy=) are not isometric. It holds

1
ﬁng (h(Bi),h(Bs))
2.9 The geometry of the standard tube )

dsy (B, B2) =

Let us consider the symmetric space X associated to Sp(4,R). This case pro-
vides nice geometric interpretations in the construction of right-angled hexagons
inside X. A precise definition of hexagon will be given in Section [£.1] Hexagons
are the building blocks that will be glued together to compute maximal repre-
sentations. The geometric features arising in the case of Sp(4,R) can already
be seen in the description of the standard tube )y «, as stated in the following
lemma:

Lemma 2.28. The tube )y o is isometrically identified with R x H2.

27



Proof. As seen in Section there is a natural identification Yy o = Xqr2,r),
where Xqr,(o,r) is the set of positive definite symmetric matrices. The map

2
f= & x 7. XGL(QVR) —- R x XSL(Q,R)

QH(logj%tQ,\/(gTQ)

is a bijection, with inverse

SR X Xgpor) — Xaner)
(r,B) — VeV2rB

When R x Xgp,2,r) and Xgp(2,r) are considered as metric spaces (endowed with
dr x dg1, and dgy, respectively), the map f is an isometry (see [FP20] Lemma
2.17). The identification Vp oo = R x H? follows from XsL(2,r) = H? (see Section
. In particular all copies of H? in ) o are canonically identified. Observe
that to turn Vo oo = R x H? into an isometric identification we have to scale the

metric dy2 by a factor k = % (Remark . O

For any A € Sym™ (2, R) the point obtained by projecting A orthogonally on
Yo, is po,oo(A) = tA (Lemma . We give the following:
Definition 2.29. Given A € Sym™ (2, R) the hyperbolic component of A is the
H2-component of 4 in the isometric identification VYo,0 = R x H?2, that is the
point 7H’ (Po.o(A)). Similarly the R-component of A is the point 7%(pg o (A))
and will be called level of A.

Consider the upper-half space model H? = {z + iy| z,y € R, y > 0}. Then
for any fixed level in R x H? the set of diagonal matrices coincides with the
y-axis of H?, where the set { ()E)l )?) AL > Ao, Ao = 1} consists of points

2
"above" i € H? in the vertical y-axis of the hyperbolic plane. The isometries
stabilizing the standard tube Yy o are of the form:

A 0
Stabpsya.z) (0, %) = { ( . AT) ,AcGLEZR)| ~ GL(2,R)

Remark 2.30. Let iX,iY € My o and (di,d2) € a* such that
4 (iX,iY) = (dy,ds)
We can associate to (di,ds) another vector
(r,h) = (r(dy,dz), h(dy,d2))

that has a geometric interpretation in the cylinder Yy o, = R x H2. The vector
(r,h) based at ¢X has first coordinate r equal to the difference between the
levels of iX and Y

r=d¥rR(EX), R (iY))
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and second coordinate h equal to the distance between the two points in H?
h=d® (75 (i X), 7% (iY))

The vector (r, h) is illustrated in Figure

2

Figure 10: The geometric interpretation of (r, k) for two points iX,iY in Vp o

It is not hard to show that given d® (iX,iY) = (dy,ds) then

. dy + do
V2
The vector (r, h) also gives a geometric condition for the maximality of the triple

(lo, X,Y) i.e. for the matrix Y — X to be positive definite (see Lemma [2.5)). It
holds (JFP20, Corollary 2.21])

and h = (dl - dg)

1
Y — X positive definite < r > —h
p 2
The following Lemma of linear algebra will play a crucial role in the definition
of meaningful parameters for hexagons inside X'.

Lemma 2.31. For any M € Sym™(2,R) with distinct eigenvalues there exist
unique S, Q in PSO(2) and PO(2)\PSO(2) respectively such that

A0

T _ T _
SMST = QMQ _<0 Xo

> ,where A1 > Ao
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Proof. Let v1,v2 be orthonormal eigenvectors relative to the eigenvalues
A1 > Ao > 0 respectively and let L denote the orthogonal matrix

L= ([o][e2])

If det L = 1, it is a standard fact of linear algebra that
T
S = [ v ]) 7
(i
is the unique element of PSO(2) such that SM ST = </\ ;\)) A1 > Ag. Put

- (- (1)

Then det @ = —1 and @ is the desired matrix in PO( (2).
If det L = —1 then the two diagonalizing matrices are Q LT and

-1 0
Sz(o 1)Q'

2.10 Geometric interpretation of diagonalization matrix

O

The group PSp(4,R) acts on a point iM € Yy o via fractional linear transfor-
mations (Section [2.1)). Recall the following identifications (see Sections and

2.9):
Sym*(2,R) = Vo = R x H?

In this identification the identity matrix is identified with the point ¢ € H? in
the 0-level of Vg 5. Moreover, all copies of H? in Yo,.0 are canonically identified.
For a matrix S € PSO(2) we want to interpret the action

PSp(4,R) 3 (*g g) (iM) =iSMST (6)

as a transformation which fixes the level of M and rotates its hyperbolic com-
ponent around i € H?. This will be very useful in the description of parameters
for generic quintuples (Chapter [3). If we consider the action on H? through
Mobius transformations we see that

StabpSL(ZR) (’L) = PSO(Q)

cosf) —sinf

For 6 € [0,7) the action of a matrix S = | .
sinf  cos6

) € PSO(2) can

be interpreted as a clockwise rotation of angle 26 around i € H2. For every
S € PSO(2) and every 6 € [0, ) there is a unique way to write .S as a rotation
matrix of the form

g (cose —sin9) N (cos(w +60) —sin(r + 0)) __g

sinf  cosf sin(m 4+ 0)  cos(m + 0)
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Given M positive definite with distinct eigenvalues we interpret the unique
S € PSO(2) for which

SMST = <A01 )(\)2> VW

as the angle formed by the semi-axis {(0,y)| y > 1} inside H? and the geodesic
segment connecting the hyperbolic components of Id and M (Figure . This
will be very practical for a concrete visualization of hexagon-parameters.

()

oM

Figure 11: Geometric interpretation of
diagonalization matrix S as an angle 20

In this thesis we will use both the matrix and the angle notation: angle
parameters will be denoted by S or a depending on the context, where

S = (Cf)sg _Sm,f) ,a e [0,27)

Sin 5 COS b

Remark 2.32. (Drawing angles "on the left")

The matrix S = (COSQ —sinf

. acts on M by clockwise rotation of center Id
sinf  cosf

and angle 26 on the H?-component of the standard tube Vo, For this reason
to draw the angle parameters we will consider the oriented geodesic going from
M to Id and draw the angle on the left of it.

A0 > with A\; # Ag, the stabilizer Stabpg;, (4 r) (0,1d, A, 00)

Remark 2.33. For A = (0 Ay

is given by

Stabpsp(az) (0, 1d, A, 00) = {14, (g 2) }~2/22
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-1 0
where r = (0 1).

Observe that in the identification Yy o = R x H? the action of the matrix

(6 S) e PSp(4,R), r = (_01 (1)>

on Yy o is a reflection across the y-axis of H?: for any

H? 5q+ib (B (’”1 m2> e Sym™ (2, R)
mz m3g

it holds
-1 0 mi Mg -1 0 . my —ma\ (§2.8) _ . 2
(o 2 (i 2) (0 1) = (0 )1 o
_ my Mo ro_ -1 0 mi1 Mo -1 0
M = (mg mg) and M = < 0 1) (mg mg) < 0 1

A0
0 A

point of angle (2r — «) from (i\)l ;)) , A1 > Ao (Figure .
2

("> n)

Hﬁ'
Q0

Put

If M is a point of angle « € [0,27) from < ) , A1 > Ao, then M" is a

Figure 12: The point M" is obtained by reflecting
M across the y-axis

To see this using the angle interpretation of diagonalization matrices take
Sy € PSO(2) diagonalizing M as in Lemma It holds:

r (M 0\ -1 0\, (-1 0\ or
SlMSl_(o Ag)_51<0 1>M(0 1)51
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so that
A0 /=1 0\ /A O -1 0\ _
0 X/ 0 1 0 Ao 0o 1)
(-1 0 -1 0 ~(—1 0\ /-1 0
(0 D) (6 ) (6 )
S2e50(2) sT
g _ cosf) —sind
1= \sinf® cos6

S, = ( cosf  sin 9) _ (cos(27r —0) —sin(27 — 9))

If

then

—sinf cosf sin(2r —0)  cos(27m — 6)

Remark 2.34. More generally let A, B be symmetric positive definite ma-
trices such that A~'B has distinct eigenvalues A\; > A. Then the stabilizer
Stabpgp(a,r) (0, A, B, ) is given by

VAPTrPv A1 0
Stabesp(a.r) (0, 4, B, ) = {Id’ ( 0 VA-IPTrPy/A }
-1 0 . . -
where r = < 0 1) and P is the unique matrix in PSO(2) such that

P(VA-1BVA-1)PT = (Aol AOZ)

Geometrically we should interpret the non-trivial element of this stabilizer as
a reflection across the hyperbolic component of the standard tube across the
geodesic going through A and B (Figure .

Figure 13: The non-trivial element of the stabilizer
Stabpgp(4,r) (0, A, B, ) in the Poincaré disk model
of H?
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2.11 Orientation of the hyperbolic component of ) .

Let us consider the symmetric space X associated to Sp(4,R). In this section
we want to investigate the relation between fixing an orientation of

H? < Voo = R x H? and fixing the orientation of the Lagrangian l,, € £(R?*)
in the boundary of X. It will be useful to use the interplay between symmetric
matrices and Lagrangian subspaces. Recall the two models of the Siegel space,
the upper-half space model

X ={X +1iY, X € Sym(2,R),Y € Sym™* (2, R)}
and the Borel embedding model
X = {l e L(CY)| iw(o(), )clixi is positive definite}

where ¢ : C* — C* denotes complex conjugation and w is the symplectic
form represented by the matrix 0 1d .
—Ids O
The Sp(4, R)-equivariant identification X — X is induced by the affine chart

v : Sym(2,C) — L£(C%)

that associates to a symmetric matrix Z the linear subspace of C* spanned by
the columns of the matrix < 4 >

Ids
Proposition 2.35. Consider the symmetric space X associated to Sp(4,R).

Choosing an orientation of H? inside Yo oo = R x H? is equivalent to choosing
an orientation of P(c0) ~ P(0) where 00,0 € L(R?).

Proof. Fix a basis B = {ej, ez, e3,e4} of R, Consider the two transverse La-
grangians 0 = {e3, e4) and 00 = {ey, e2). The standard tube

Voo = {i¥Y| Y € Sym™ (2, R)}

is isometrically identified with R x H? (see Lemma [2.28). The hyperbolic plane
inside Yy o is identified with the symmetric space associated to SL(2,R), that
is

Xs,2,r) = {X € Sym™ (2, R)| det(X) =1}
All copies of H? inside )y o are canonically identified and stabilized by the set

of matrices
{(? g) Re0(2)} ~0() (1)

acting Sp(4, R)-equivariantly in the identification X +% X.
Consider the geodesic ray



which lies inside the hyperbolic component of )}y o and converges to the
Lagrangians [ ,l_ where

V() = b ={ersea)

t—0

V() ——— 1 = ez, e3)

t——o0

To fix an orientation of H? inside Vo, it is sufficient to orient its visual boundary
O0xH?2. Recall that 0hoo where

0 = {es,eq) and o0 = {e1, €2

In Section we have investigated the action of orthogonal matrices on

H? < Yo,00 = R x H? and we have interpret matrices as angles in the hyperbolic
component. The set in acts preserving the Lagrangians 0 and oo respectively
and the visual boundary of the hyperbolic component is realized by the O(2)-
orbit of the Lagrangian I, = {ej,es). It is identified to P(o0) through the
following map

0o H? — P(o0)
l—1lno

To fix an orientation of H? inside Vo, it is therefore sufficient to orient
P(c0). This set is canonically identified with P(0). To see this let us note by
v the set

vt = {ue R4| w(v,u) = 0}

In particular v € v** and dim(v'*)=3. Then P(0) and P(o0) are identified
through the map

2.12 Isometries reflecting the hyperbolic component

In Section 2:11] we have studied how to orient the hyperbolic component of the
standard tube ) o. The group of isometries stabilizing the standard tube is
the group:

(5 a'r) accrmpersian)

Proposition 2.36. For A € GL(2,R) let fa be an isometry stabilizing the
standard tube Vo o
fa: y07oc - yO,oo
iY i AY AT
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Then fa is reversing the orientation of the hyperbolic component of Vo o if
and only if det A < 0

Proof. Recall that
Voo = XGLox = Sym™ (2,R) =R x xs1,, = R x H?
The isometry f4 is linear in Y and its differential is the map

X — AX AT

x1
for any tangent vector X = <x1 x2> ~ | a9 |. For A = <a1 a2> the tangent
To I3 23 as a4

vector AXAT = dfa(X) can be rewritten as

a%ml + 2a1a0x2 + a%xg a% 2a1 a9 a% x
a1a3r1 + (a1a4 + a2a3).’132 + agaqx3 | = | a1as ajaq4 + asaz  asay T2
a%xl + 2azaqxo + ai:cg a§ 2a3ay4 ai T3
where
a? 2a1a2 a3
det | ajas ajaq + azas asaq | = (det A)3
a? 2a3a4 a?

The map f, is therefore reversing the orientation of the tube )y  if and only
if det A < 0. To finish the proof we need to show that only the orientation of the
hyperbolic component can be reversed, not the orientation of the R-component.

The action of a A € GL(2,R) on the R-component of iY € R x H? is a
translation: if we note by r the R-component of 7Y then the R-component of

iAY AT is given by r + %ie“”. The map f4 is therefore preserving the

orientation on the R-component of the tube. O
. A 0

Remark 2.37. For an isometry g = 0 A-T)E€ PSp(4,R) whether or not

g is reversing the orientation of the hyperbolic component of Vj o is intrinsic
and only depends on the sign of det A. This is true in general for any element

in PSp(4,R) which is conjugate to <61 AQT) for an A € GL(2,R).

A e GL(2,R) is called reflecting (resp. non-reflecting ) if det A < 0 (resp. > 0).

Definition 2.38. An isometry g € PSp(4,R) conjugate to <A
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3 Parameters for quintuples

3.1 The sets Q%" and Q%

As already mentioned, our goal is to define parameters for right-angled hexagons.
A precise definition of hexagon will be given in Section To study mean-
ingful parameters we first parametrize a set Q9¢™ consisting of specific ordered
quintuples of Lagrangians at the boundary of X which we call generic (Defi-
nition . Recall that we can identify Lagrangians and symmetric matrices
through the map ¢ introduced in Section Up to isometry we can consider
quintuples of Lagrangians where the first and the last Lagrangian are 0 and oo
respectively and we can further diagonalize one symmetric matrix choosing an
order on the diagonal. This choice will lead us to define the set of standard
quintuples Q%' and we will focus on the case where X is the symmetric space
associated to Sp(4,R). To define generic and standard quintuples we first need
to define generic quadruples.

Definition 3.1. (Generic quadruple) Let (P, X, Y, Q) be a maximal quadru-
ple and let pg, ..., u, be the eigenvalues of the cross-ratio R(P, X,Y, Q). The
quadruple (P, X,Y, Q) is said to be generic if for any ¢ # j it holds p; # ;.

Remark 3.2. Recall that we denote by pp o the orthogonal projection on the
tube Vp . Let b be the vector obtained by the orthogonal projection of X and
Y on the tube Vp g (Figure

= d" (pp.o(X),pro(Y))

IS

Q

X
Figure 14: The quadruple (P, X,Y, Q) is generic if
and only if vector b is regular
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From Lemma it is easy to see that the quadruple (P, X,Y, Q) is generic
if and only if the vector b is a regular vector of the Weyl chamber (see Section
for the definition of a regular vector).

Definition 3.3. The set of generic quintuples Q9°™ is given by:

Q9" .= {(P,X,Y, Z,Q) maximal| (P,X,Y,Q) and (P,Y, Z,Q) generic }

Remark 3.4. Observe that the definition of generic quintuple strongly depends
on the order of the quintuple: given (P, X,Y, Z, Q) generic it is not necessarily
true that a cyclic permutation of the quintuple is generic.

We will see in the next section how the parametrization of @9¢" is connected
with the parametrization of right-angled hexagons of X'. Let us now consider
the symmetric space associated to Sp(4,R). We give the following

Definition 3.5. The set of standard quintuples Q% < Q9¢" is given by

A0

st .__
Q .—{(O,X,Id,(o N

) ,00) € Q9" A, A e R, A > Ao }
Remark 3.6. Recall that the set of isometries stabilizing the standard tube
Vo, is the group:

A 0
Stabpgp(4,r) (Vo,0) = { (O A—T> JAe GL(2,R)}

Recall also that for a diagonal matrix A with different eigenvalues we have
r 0
Stabpsp(am) (0, 1d, A, 00) = {Id7 (0 T) } ~ 7./9Z

where r = (_01 (1)) For any (P, X,Y,Z,Q) € Q9" we can always find a

g € PSp(4,R) (more details in proof of Proposition such that

g P=0gY=1dg2=( ) gQ=u
0 Ao

where \; > A\o. It is therefore clear that

Qgen/PSp(Al,R) = QSt/Z/ZZ

Recall that we denote by a the set of regular vectors of the Weyl chamber,
that is the set
a= {(331,.132) € R2| T > To > 0}

We can now state the following:

38



Proposition 3.7. The set Q9°" /pgy ) is parametrized by
axaxPSO(2)/~

where for S, S’ € PSO(2) we have the following equivalence relation:

S~§ e § = (_01 (1))5(_01 (1)) (8)

The parametrization is given by

((e1, c2), (dr,d2), [8) = | (0,7 (; 0 )5, Id, (eg 622) )| e Q/zp

el

with inverse map

[(Pv XY, Za Q)] = ( (01762) = da+ (pRQ(X)’pP,Q(Y))? (dla d2) = da+ (pP7Q(Y)7pP,Q(Z))7 [S] )

where

se0s”- (4 1) me
and g is a map in PSp(4,R) such that
g(P,X,Y,Z,Q) e Q%
The parameter space of Q9" /pgpar) can be rewritten as

a® x [0,27)/~
where for «a € [0,27) it holds

[} P QO

S = COs 3 S11 bl
aQ [}
sin 5 COSs bl

2

and the equivalence relation is given by
! !
a~a <= o =21—«

Proof. We first show how to find parameters (¢, d, [S]) for a given quintuple
[(P,X,Y,Z,Q)] in Q9" /pgpa,r)- We want to use the fact that (Remark :

Q9" Jpsp(ar) = Q% /722

Let (P,X,Y,Z,Q) € Q9". Up to isometry we can consider P = 0 and
Q = 0. Put

c=(c1,62) = as’ (Po,00(X), po,o(Y)) €@

d=(dy,ds) = a’ (PO,oo(Y)»Po,oo(Z)) €a
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[

0

Figure 15: The isometry g sends the quintuple
(P, X,Y,Z,Q) to a standard one

Let g € Stab()y,«0) be such that (Figure

g-Y=1Id
edv
gZ_(o 6d2

Stab(Vo.«0) = { (61 A0T> JA€ GL(2,R)} € PSp(4,R)

Recall that

The first equality forces A = OVY ! where O € PO(2). The second equal-
ity forces O = P, where P and @ are the unique matrices in PSO(2) and
PO(2)\PSO(2) respectively (see Lemma [2.31)) such that

P(\/sz/yiq)PT _ Q(\/Yi_lz\/yi_l)QT _ (edl 0 )

0 ek

Accordingly, the two only possibilities for g are:

0= ("0 i) e (M0 o)

~1 0 10
91X:<0 1)92X<0 1>

Let S be the unique matrix in PSO(2) such that Sg; XST = <>£)1 f)
2
for Ay > Ay (see Lemma [2.31). The triple (0,¢;X,1d) is maximal and the

It holds:
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map ¢ is preserving the Weyl chamber distance, by Lemma we deduce
-1 0 -1 0
_ 1 _ 1 _ . .
Al = =iz, A2 = —y. Furthermore S’ = <0 1> S< 0 1) is the unique
1

matrix in PSO(2) such that S'g, XS = (662 (1) > The point go X is the
ecl

image of g1 X through a reflection on the hyperbolic component g, X = (g1X)"
(see Remark [2.33)) and the two quintuples

st edl 0 edl 0 st
Q 3 (Oangv Ida 0 ed2 700) and (0792X7 Ida 0 edg ,OO) € Q

are equivalent in Q%/z 7. The third parameter [S] € PSO(2)/~ is given by
the diagonalization matrix and has the geometric interpretation of an angle: for
S € PSO(2) we write S as the matrix (see Section [2.10)

g <cos2 —s1n2> Lael0,2r)

in & &
S ) COS 2

and the equivalence relation is the identification of angle o with angle (27 — «)
(see Figure . We obtain parameters

(¢,d,[S]) e axaxPSO(2)/. =axax][0,27).

The parameter S or « will be called the angle parameter of the generic quintuple
and provides information about the angle between the hyperbolic components
of X and Z (Figure . We will draw the angle on the left as explained in
Remark 2.32]

Figure 16: Geometric interpretation of the angle
parameter S in the Poincaré disk model of H?
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For the inverse map, to any element of the parameter space
axaxPSO(2)/~

we can associate a unique quintuple inside Q**/7/97. To ((cl, c2), (di,da), [S])
in a x a x PSO(2)/. we associate the standard quintuple

1 da
(P7 X? Y7 Z’ Q) = (07 ST <662 (3 ) S? Id’ (eo 682> 7w)

ecl

1
Then X is a matrix such that d® (iX,i1d) = (c1,cy) and SX ST = <€62 (1) >
ecl
where 612 > ell . For §' ~ S we obtain an equivalent quintuple (P, X",Y, Z, Q)
inside Q%' /757 where

(P,X/7KZ’Q) = (P7XT7Y’ Z7 Q) = <8 S).(PaXa Y7 Z)Q)? Where r= <_01 (1)>

O

Remark 3.8. (PSO(2) and not SO(2)) By definition of the parameter S €
PSO(2)/~, the matrix S is such that

SMST = <A01 AOQ) VW

for M a positive definite symmetric matrix. It makes therefore sense to consider
S inside PSO(2) to guarantee unicity of the diagonalization matrix i.e. S is
equivalent to (—S) as SMST = (—=S)M(-ST).

Remark 3.9. (Genericity condition) The hypothesis of a quintuple (P, X,Y, Z, Q)
to be generic is essential for the parameter space a x a x PSO(2)/. to be well
defined: the uniqueness of the angle parameter is strictly related to Lemma
which holds only for matrices with different eigenvalues.

Corollary 3.10. The set Q9" /pgpar) is parametrized by
axax|[0,7]

Proof. The equivalence relation of Proposition is given by a ~ 27w — . We
can always choose « € [0, 7] as representative of the equivalence class. O

To conclude this section we state two technical lemmas that will be very
useful in the description of parameters of right-angled hexagons.
Lemma 3.11. Let p = ((c1,¢2), (d1,d2), [S]) € a x a x PSO(2)/~ and let X,Y

be positive definite such that d* (iX,iY) = (c1,c2). Then the unique Z such
that (0, X,Y, Z,00) corresponds to p in the parametrization of Proposition 18
given by

dy
Z=VYRTS <60 62) STRVY
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where R is the unique matriz in PSO(2) such that

RWY 'XVY HRT = (é 0 )

0

0
Figure 17: Given X,Y, ¢, d, S we want to find Z

Proof. 1t is easy to check that for such a Z
d* (iY,iZ) = (d1,da)

A0
0 )\2) for A1 > A2 and where

g is such that g - (0, X,Y, Z, ) € Q% that is g such that

et 0
g-Y =1d, g~Z—<0 ed2>
A

Then g = <0 A9T> where A = STR\/?_1 and

By Proposition we know that SgX ST = (

g-X = STRVY 'XVY 'SRT
It holds
T -1 1. 7 L 0 1 1
S(g-X)8T =RWY XVY HRT =(¢2z 7 |, where prn

0 et

To finish the proof we need to check that for S’ ~ S we obtain the same point
in Q9" /pgp(ar)- Take S’ such that

= (0 V)6 Y)
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Then 4
7 = JYR'S' (60 63) STRVY
Take h € Stab(Yy,»0) = GL(2,R)

JYRTS' <01 2) STRVY ! 0

B =
0 JY RS (‘01 f) STRVY

Then it holds

h-(0,X,Y,Z,0)=(0,X,Y, 2" )
so that [(0, X, Y, Z,00)] = [(0, X, Y, Z’,00)] in Q9" /pgp4,r)- Geometrically the
map h can be seen as a reflection in the H2-component across the geodesic
passing through X and Y, as shown in Figure [I§ below. O

h

Figure 18: The map h in the Poincaré disk model of
H2

Lemma 3.12. Let p = ((c1,¢2), (d1,d2),[S]) be inside a x a x PSO(2)/~ and

let Y, Z be positive definite such that d® (iY,iZ) = (dy,ds). Then the unique X
such that (0, X,Y, Z,0) corresponds to p in the parametrization of Proposition
[57 is given by

1
X = VY PTST (0 0 ) SPVY

where P is the unique matriz in PSO(2) such that

PWVY 'ZvY H)PT = (egl 62)
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d

Y

[

?

—
O/X

Figure 19: Given Y, Z,¢,d, S we want to find X

Proof. 1t is easy to check that for such X
A (iX,iY) = (c1, c3)

N
77\ 0o Py

dq
theng-Y =1d, g-Z = (eO 622> and

Furthermore take

0o -t

el

_ _ 1
g-X = PVY ' XVY 1PT—ST(€C2 O)S

so that

L 1 1
S(g-X)sT = <€C2 ?), where — > —

0 oot ec2 ec1
To finish the proof we need to check that for S’ ~ S we obtain the same point
in Q9" /pgpa,r)- Take S” such that

s=(o s )

Then

1 _ 1 _
X’=\/7PTS’T<662 0 S’P\/?zx/?PT( 1 O)ST(G“2 9)5(1 0

0 1

-

eC

Take h € Stab(Yy,50) = GL(2,R)

JYPT (—1 0) Pyy ! 0
h— 0 1
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Then it holds
h-(0,X,Y,Z,0) = (0,X"Y, Z,0)

so that [(0, X,Y, Z,0)] = [(0, X",Y, Z,0)] in Q9" /pgp(4,r)- Geometrically the
map h can be seen as a reflection in the H2-component across the geodesic
passing through Y and Z (similar to Figure . O
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4 Parameters for right-angled hexagons

In this chapter we define right-angled hexagons in the Siegel space X and give
meaningful parameters for them. A right-angled hexagon will be formed by
six R-tubes and we will define the space of ordered hexagons H consisting of
hexagons together with the choice of one R-tube (Deﬁnition. We distinguish
between generic (Definition and non-generic hexagons (Section . We
introduce a parameter space for both cases (Proposition for the generic
case and Propositions|4.20} [4.21|and 4.22|for the non-generic case). A parameter
space which encloses both generic and non-generic hexagons is given in Theorem
[426] These parameters will be called arc coordinates and aim to generalize
the parameters for a right-angled hexagon inside H?. It is well known that in
H? we can parametrize a right-angled hexagon by giving the length of three
alternating side (see for example [Marl6, Lemma 6.2.2] ). The hope is to prove
a similar result for hexagons inside X, where beyond length parameters we
will introduce angle parameters. This approach will turn out to be tricky as
explained in Chapter 5] The consequence is that we will not be able to extend
our parameters to the space of adjacent hexagons having same alternating-side
lengths, which is very useful to compute maximal representations. This will be
solved by introducing reflections and symmetric hexagons and will be explained
in Chapter [6]

4.1 Definition of hexagon, the sets H,H" and H*!

Definition 4.1. A right-angled hexagon in X is a cyclic sequence of six R-tubes
H = [Y1,Y2,V3, V4, Vs, V]| where any two consecutive tubes are orthogonal and
such that

V= yPl,Pza Vo = le,Q27 Vs = yP3,P4a Yy = yQ37Q47 Vs = yPs,Pfs? Ve = yQ&in

for a maximal 12_tuple (Pla Qﬁa Qh P27P37 QQa Q3a P47 P57 Q47 Q57 Pﬁ)

The maximal 12-tuple determining a right hexagon H in X is illustrated in
Figure 20|
Definition 4.2. Let H = [V1, V2, Vs, V1, Vs, Vo] be a right-angled hexagon in
X. We define the stabilizer of H and denote it by Stab(H) the stabilizer

Stab(H) = {g € PSp(2n,R)| g- V; = V;, i€ {1,...,6}}
Definition 4.3. The set H of ordered right-angled hexagons in X is defined by
H = {(H7 y1)| H = [y17y27y3ay43y57y6] right-angled heXagOn }

We want to be able to determine a point (H, ) ) inside H by giving the data
of an ordered maximal 6-tuple. There are many ways to do this, as explained
in the following lemma.
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Q2
Figure 20: The maximal 12-tuple determining the

right-angled hexagon H = [V1, V2, V5, V4, Vs, Vs]

Lemma 4.4. Let H = (Y1, Y2, V3, V4, Vs, Vs] be a right-angled hexagon with as-
sociated mazimal 12-tuple (Pla Q67 Q17 P27 P37 QQ; Q?n P47 P57 Q47 Q5a PG) Then
(H, 1) € H is uniquely determined by the following ordered mazimal 6-tuples:

(Pr, Py, Py, Py, Ps, Ps) (9)
(Q17Q27Q37Q4,Q55Q6) <1O)
(P27Q27P47P5aQ5uP1) (11>

Proof. Given the maximal 6-tuple (Py, Ps, Ps, Py, P5, Ps) we use Lemma to
uniquely determine @)1, Q2, @3, @4, Q5, Q¢ such that

yPth 1 le,Q2 1 yPs,P4 1 yQ3,Q4 1 yPE);PEn 1 yQ67Q5 1 yPth (12)

The hexagon H is determined by the R-tubes in and we put Vi = Vp, p,.

The quadruples (P, Qe, Q1, I2), (P3,Q2, @3, Ps), (Ps, Qa, Q5, Ps) are maximal
by Lemma [2.21| and we obtain a maximal 12-tuple

(Pl7 QG, Ql, P27 P3, QQ, Q37 P4, P5, Q4, Q5, PG) by Lemma The proof for the
6-tuple in is similar and we put again )iy = Yp, p, where the 6-tuple
(Py, Py, P53, Py, Ps, Pg) is uniquely determined by the orthogonality conditions
in .

Given (Pa, Q2, Py, Ps, 5, P1) maximal we construct the hexagon H as following:
let g € Sp(2n,R) such that g - (P, P») = (0,0). Let us denote

9(Q2) = A, g(Py) =B, g(P5) =C, g(Qs) =D

We use Lemma [2:20] and Lemma [2:22] to uniquely determine the right-angled
hexagon Hy a,B,c,D,c0 @s shown in in Figure below.

The maximality of the 12-tuple at the boundary is again guaranteed by
Lemma We now put H = g7 (Ho,a,5,c,p,0) and V1 = Yp, p,. O
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Figure 21: The right-angled hexagon Hy o B,c, D, iS
uniquely determined by the maximal 6-tuple in red
(0,A,B,C,D, )

Notation 4.5. In this thesis we will use a maximal 6-tuple as in to uniquely
determine a right-angled hexagon (H,);) inside H. In order to simplify the
notation we will write the 6-tuple as (P, A, B,C, D, Q). By writing

H= (PaAaBaC7D7Q)

we will refer to the hexagon (H,)pg) where H is uniquely determined by
(P,A,B,C,D,Q) as shown in Lemma . The choice of the tube Vp g
is therefore encoded in the order of the maximal 6-tuple. When P = 0 and
@ = oo then A, B, C, D are positive definite matrices and we obtain the hexagon
(H,Yo,5) where H is shown in Figure In particular the maximal 12-tuple
associated to H is given by

H = (0,-D,—A,0,AB™'A, A, Z,,B,C, Zy, D, DC™' D)
where Z1, Z5 are uniquely defined by requiring

VYap-1ap L V2,2, L YVepe-1p

Recall Definition [3.1] for the notion of a generic quadruple. Let us now give
the following

Definition 4.6. The set of generic hexagons HI" < H is given by ordered
6-tuples of the form

ngn = {(P’ A7 B7 C7 D) Q) rIla/)(iIIlall| (P’ A7 B7 Q)7 (P) B) O’ Q)? (P7 C? D7 Q) generic}
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Remark 4.7. Let (H,),) be a generic hexagon determined by the maximal
6-tuple (P, A, B,C,D,Q) where Y1 = Ypg. Then both (P, A4,B,C,Q) and
(P,B,C,D,Q) are inside Q9". In particular let b,¢,d be the three vectors

(Figure

+

b=d" (ppq(A),pro(B))
c=d* (ppq(B),pprq(C))
d=d" (ppq(C),pro(D))

Figure 22: The hexagon (H,))) is generic if and
only if b, ¢, d are regular

By Lemma it is easy to see that the hexagon (H,))) is generic if and
only if the vectors b, ¢, d are regular.

Let us now focus on the symmetric space associated to Sp(4, R).

Definition 4.8. The set of standard hezagons Ht = HI™ is given by

H = {(0, A, 1d, (Aol £2> ,D,o0) € HIM| A, A2 € R, A\p > Ao}

Remark 4.9. Similarly to what we have seen for quintuples (Remark for
any (H,)Y:) € H9"™ we can always find an isometry g € PSp(4,R) such that
g-(H, Y1) = (9H,Yo.o) € H*'. Given a standard hexagon (H**, Yy ) € H* its

stabilizer is the group

Stab(H*!) = {Id, (g 2) } ~ 7.)9Z
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-1 0

Wherer—<0 1

) . It holds

HI™ [psp(ar) = H* /22

4.2 Non-generic hexagons: the set H""9"

In this section we define non-generic right-angled hexagons. Recall that by
definition a generic hexagon (H,);) € H9" is given by an ordered 6-tuple
H = (P,A,B,C,D,Q) where three quadruples (P, A, B,Q), (P,B,C,Q) and
(P,C,D,Q) are generic and Vi = Yp (Definition [£.6). When the hexagon
is non-generic some of these quadruples fail to be generic. We define three
different types of non-generic hexagons depending on how many quadruples in
H = (P,A,B,C,D,Q) fail to be generic: a non-generic hexagon of type k is a
hexagon where k quadruples are non-generic. Let us start with the following

Definition 4.10. (Non-generic quadruple) Let (P, X,Y,Q) be a maximal
quadruple and let (uq1, p2) be the eigenvalues of the cross-ratio R(P, X,Y, Q).
The quadruple (P, X,Y, Q) is said to be non-generic if pu1 = po.

Definition 4.11. The set H;, 1" is given by

nongen ,__ g nongen nongen nongen
thpel T thpel.l thpel.2 thpel.fi

where

Hnongen = {(P7 Aa Bv Ca Da Q) maxima1| (Pﬂ Aa Ba Q) non_generic? (P’ B’ C’ Q)’ (P7 C’ D’ Q) generic}

typel.l

,Hnongen = {(P7 A, B, 07 l)7 Q) maximal| (P, B, C, Q) nOIl-generiCa (P7 Aa Ba Q)? (P7 07 D7 Q) generic}

typel.2

Hiomeew == {(P, A, B,C, D, Q) maximal| (P, C, D, Q) non-generic, (P, A, B, Q), (P, B,C, Q) generic}

typel.3

Definition 4.12. The set H;, /%" is given by

nongen ,__ g nongen nongen nongen
thpeZ T thpeQ.l thpeQ.Z %typeZB

where

Hpomdel = {(P, A, B,C, D, Q) maximal| (P, A, B, Q), (P, B, C, Q) non-generic, (P,C, D, Q) generic}

type2.1

Hom9wy = {(P, A, B,C, D, Q) maximal| (P, A, B,Q), (P, C, D, Q) non-generic, (P, B, C, Q) generic}

type2.2

Hpomdew = {(P, A, B,C, D, Q) maximal| (P, B,C,Q), (P,C, D, Q) non-generic, (P, A, B, Q) generic}

type2.3

Definition 4.13. The set H;, %™ is given by

H]omeem .— (P, A, B,C, D, Q) maximal| (P, 4, B,Q), (P, B,C,Q), (P,C, D, Q) non-generic}

type3

Proposition 4.14.

__ 1qyg9en nongen nongen nongen
H="H Y thpel Y thpeQ Y thpe?;
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Proof. The inclusion HI" U Hy, 9™ O Hy ™ O Hyy " < H is trivial.
Let (H,Y1) € H. By Lemma we can uniquely determine (H,Y;) from a
maximal 6-tuple (H,)1) = (P, A,B,C,D,Q) where Y1 = Ypq. Let b,c,d be

the three vectors in Figure 22]

S+

b=4d" (ppq(A),prq(B))
c=d" (ppo(B),pro(C))
d=d" (ppq(C),pra(D))

The hexagon (H,Y,) is generic if and only if the vectors b, ¢, d are regular (Re-
mark and is non-generic if one of them is inside 9. For every vector b, ¢ and
d we see if it is generic or not and we list all the possible configurations. The
hexagon (H,):) must be contained in one of this exhaustive list. We obtain
23 = 8 possible configurations, one in H9¢", three in H, 09", three in H,on5"

typel type2
. nongen ype ype
and one in Hy, 3

4.3 Arc coordinates for generic hexagons

In this section we parametrize right-angled hexagons in X' up to isometry. We
will concentrate on the case where X is the symmetric space associated to
Sp(4,R). The parameters that we introduce aim to generalize the parameters
for a right-angled hexagon inside HZ. It is well known that given three real num-
bers b, ¢,d > 0 there exists (up to isometries) a unique right-angled hexagon in
H? with alternating sides of lengths b, ¢ and d (see for example [Mar16, Lemma
6.2.2]). When considering the Siegel space X the length parameters are vec-
tors and take value in the Weyl chamber a*. Beyond length parameters it is
necessary to introduce what we will call angle parameters. This will lead to a
geometric interpretation of elements in PSO(2) in the spirit already mentioned
in Section 210

Let us now consider X’ the symmetric space associated to Sp(4,R). Recall
that we denote by a the subset of the Weyl chamber consisting of regular vectors:

a= {(1‘1,.132) ER2| T > To > 0}

We compute the parameter space for H9¢". We will use the fact (Remark

4.9)
HI [pspar) = H™ /702

Proposition 4.15. The set HI°" /pgy(ar) 5 parametrized by
a® x (PSO(z) x PSO(2)) /-

where for (S1,S2) € PSO(2) x PSO(2) it holds
-1 0 -1 0 )
Sus~ 615y = si= (30 1) s (5 9) ienn
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The parametrization is given by
(b; C, d7 [517 52]) = [(Oa A7 Ida 07 D7 OO)] € HSt/Z/ZZ
where b = (b1,b2), ¢ = (c1,¢2), d = (d1,d2) and

L 0
A_S;[<582 1)51

0 ect et 0 r( O —vee2
D= (—\/602 0 ) 52 ( 0 ed"‘) 52 ( ec1 0
This parameter space can be rewritten as

a® x ([0,27r) X [O,Qﬂ'))/~
where for a; € [0,2m),1 € {1,2} it holds

[ < a2 a2
S1n 2 COS 2

cos % —sin °”>

and the equivalence relation is given by

(ag,a1) ~ (o), a) <= o), =21 —«y, i€ {1,2}

-1
DCDD

Figure 23: The standard right-angled hexagon
(H*t, Yo.0) with parameters (b, ¢, d, S1, S2)
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Proof. As we have done for quintuples, we first show how to find parameters
((b1,b2), (c1,¢2), (d1,d2),[S1,S2])
for a given (H,));) inside H9¢™. Let
(H,Y1) = (P,A,B,C,D,Q)

where Y1 = Vpg. Up to isometry we can consider P = 0 and @ = 0. As
(H,Ypq) = (H,Y0,00) € H" the quintuples (0, A, B, C, ) and (0, B,C, D, )
both belong to Q9. We use Proposition to find length parameters b, ¢, d
inside a:

(b1,bs) = d*' (iA,iDB)

(c1,¢2) = d* (iB,iC)
(dy,ds) = d*' (iC,iD)

el

0
0 ex
the same procedure exposed in the proof of Proposition|3.7). We obtain exactly
two possibilities g1, g2 which correspond to the standard hexagons

Let g € Stab(Yo,«0) be such that g- B =1Id and g- C = (this is

(HlayO,OO) = (nglAvlda Ca nga OO) and (HQ, y0,00) = (OagQAaId, Ca 92D7 OO)

-1 0 -1 0
g1A = (0 1)9214(0 1>
-1 0 -1 0

The points on the right hand side should be thought as the image under a reflec-
tion in the hyperbolic component of Vy o (Remark. Let S1, 52 be the angle
parameters obtained by the quintuples (0, g1 4,1d, C,o0) and (0,1d, C, g1 D, o)
respectively (see Proposition . These parameters are obtained by diago-
nalization matrices and the matrix S; € PSO(2), i € {1,2} has the geometric
interpretation of an angle «; € [0, 27) where it holds

CcoSs 5+ —sIn &+ .
S,L=( 2 2), 1€1,2

in & Q4
sin 2 COS 5

where

The quintuples (0, g1 A4,1d, C, o0), (0,1d, C, g1 D, o0) are parametrized by (b, ¢, [S1])
and (¢, d, [S2]) respectively where

' r (-1 0\ o (-1 O
Si”si‘:’Si_<o 1)‘91(0 1>

This equivalence relation is the identification of angle «; with angle (27 — ).
See Figures [23| and [24] for a visualization of the parameters (b, ¢, d, [S1, S2]).
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Figure 24: Visualization of the equivalence relation
[S1,S2] = [S7,S5] in the Poincaré disk model of H?

Now take (b,c,d,[S1,S2]) inside a3 x (PSO(2) X PSO(Z))/ ~. We want

to construct a standard hexagon (H*', ) ). Up to PSp(4,R)-action we can
consider B = Id and C diagonal. It is sufficient to determine A, C and D for
(H**,Yo,5) to be uniquely determined. The equality

(c1,¢2) = d* (ild,iC)

et 0

0 e
determine A and D respectively. We use Lemma [2:20] and Lemma [2:22] to
compute the corresponding orthogonal tubes.

To finish the proof, we need to check that for (S7,55) ~ (S1,S2) we obtain
an equivalent hexagon (H'**,Yy ) inside H**/7/57. Recall that for any M in
Sym™(2,R) we can draw its hyperbolic component inside the standard tube
Voo = R x H? and recall that we denote by M" the point obtained by reflecting

M across the y-axis of H?, that is M" = rMr where r = <_01 (1)> (Remark
2.33)). For ¢ = 1,2 let

forces C' = We use Lemma [3.11] and Lemma [3.12f to uniquely

;=1 0\ or (-1 O\ (= O0)[/-1 0 -1 0) _ (-1 0 -1 0\ _ ,»
S O L T G ) ) B ORI OO A



D 0 Veerl (=1 0 g (-1 0 et 0 ~1 0 gr (=10
T \=veer 0 0 1)°2 0 1 0 et o 1)”2\0 1
(0 ect et 0N qr( 0 Wezx\ (-1 0 -1 0\ _ .
_<ec2 0)52(0 ed2)52(601 0)‘(0 1>D(0 1)_D

so that g - (H*, Vo.o0) = (H"**, Vo,) where

o=( 1) = (oY)

Again, we should think of this equivalent relation as the identification of
angles S = aq,S2 = as with angles (27 — 1), (2 — a3) respectively. O

Corollary 4.16. The set HI°" [pgp(ar) is parametrized by
a® x [0,7] x [0, 27)

Proof. The equivalence relation of Proposition is given by o ~ 2w — o; for
i € {1,2}. We choose ay € [0, 7] as representative of the equivalence class (see
Figure [24] above). O

Definition 4.17. (Arc coordinates for generic right-angled hexagons)
The parameters of Proposition will be called arc coordinates for a generic
right-angled hexagon (H, Y1). The vectors b, ¢, d will be called length parameters
and aq, as will be called angle parameters.

Remark 4.18. The term arc coordinates introduced in Definition f.17] could be
misleading as we also use it for the parametrization of classical Teichmiiller space
and for its generalization in the case of maximal representations. Nevertheless,
we have decided to keep this name also for the parameters of a hexagon as they

are crucial for the construction of parameters for maximal representations and
will appear in their parameter space (Theorem [7.23)).

4.4 Polygonal chain associated to a right-angled hexagon

In the previous section we have introduced arc coordinates for a generic right-
angled hexagon in the symmetric space X’ associated to Sp(4,R). In particular
we have seen that a hexagon (H,Y;) € H9™ is parametrized up to isometry by
length and angle parameters as explained in Proposition [4.15 In this section we
define the polygonal chain associated to an ordered right-angled hexagon and
show how this is related to length and angle parameters. For the purposes of this
thesis we will define the polygonal chain of (H, ):) in the case where Y1 = Yy 0.

Recall that given A € Sym™(2,R), the hyperbolic component of A is the
point 7&° (po,0(A)), i.e. the H?-component of iA = pg o (A) in the identification
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Vo.o = R x H? (Definition [2.29). Recall also (Remark [2.30)) that for two points
iA.iB with
d* (iA,iB) = (d1,ds)
the hyperbolic distance d (WH2 (iA), ot (iB)) = h is given by
b= hd) = dy —dy (13

Definition 4.19. Let X be the symmetric space associated to Sp(4, R) and let
(H,Y0,00) € H be an ordered right-angled hexagon in X'. Let us write

H=(0,4,B,C,D,x)

for a maximal 6-tuple (0, A, B,C,D,©). The polygonal chain associated to
(H, Yo,x0) is the connected series of geodesic segments with vertices given by the
ordered sequence of points (possibly coinciding)

(wH2 (i4), 7% (iB), 7 (iC), 7 (iD))

The segments of the polygonal chain are the oriented geodesic segments (possibly
collapsing to one point):

7 (1A (iB), 7 (iB)r™ (iC), 7 (iC)x™ (iD)

The angles of the polygonal chain are the angles formed by two consecutive
segments (measured on the left-hand side of the oriented segments).

Figure 25: Polygonal chains of a generic hexagon
and of a non-generic hexagon of type 1.3

If (H,Y0,0) € HI™ the segments of the polygonal chain of (H, )y o) have
hyperbolic length given by h(b), h(c) and h(d) respectively where h is the map in
and b, ¢, d are length parameters of the arc coordinates. Up to an isometry
g € Sp(4,R) we can consider the case where B = Id and C is diagonal. Observe
that to a generic hexagon (H,)p,) we can associate exactly two polygonal
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chains up to isometry, and these are drawn in Figure If the hexagon is non-
generic some segments contract to a point. The hyperbolic length of the segment
is zero as the corresponding length parameter is inside 0 = {(x1,x2)| 1 = x2)}.
This will be made more clear in the next section. The polygonal chain of both
a generic and a non-generic hexagon is illustrated in the Poincaré disc model in
Figure For simplicity for any X € Sym™(2,R) we have denoted the point
™ (iX) as X.

4.5 Arc coordinates for non-generic hexagons

In this section we want to study arc coordinates in the case of non-generic
hexagons inside X. Again we will focus on the case where X’ is the symmetric
space associated to Sp(4,R). Recall that we denote by a the subset of the Weyl
chamber consisting of regular vectors:

a = {((El,xg) € R2| T > To > 0}
Recall also that we denote by ? the following set
0= {(1‘1,1‘2) € R2| Ty = 1‘2}

A generic hexagon (H,);) € H9¢" is defined by an ordered 6-tuple
H = (P, A, B,C,D,(Q) where three quadruples are generic and V; = Vp . The
genericity of these quadruples allows us to associate to (H,)Y;) three regular
vectors inside a (Remark . When the hexagon is non-generic these vectors
can land inside 0. We have defined three different types of non-generic hexagons
depending on how many quadruples inside (H,);) = (P, A, B,C, D, Q) are non-
generic. We now give parameters which arise as a natural generalisation of

Proposition

Proposition 4.20. Non-generic hexagons of type 1 are parametrised up to
isometry by
H:Lyogegf?/psp(&]]@) >~ 0 X a2 X [0,27T)/~

Hiyper2/pspar) = axdxax[0,2m)/«

H:Lyoﬁgfg/PspM’R) = a2 X 0 X [0,27T)/~

where for a € [0,2m) the equivalence relation is given by

a~ad = o =21—«

Proof. Let H = (P, A, B,C, D, Q) € H,"4°]". The proof is analogue to the proof
of Proposition Up to isometry we can assume P = 0,Q = o0, B = Id and
C diagonal. As (0, A,1d, o) non-generic we can not define an angle parameter
between the hyperbolic components of A and Id and the parameter d=" (iA,dld)
is inside 9. Geometrically this means that the two points coincide in the H?2-

component of )y o (Figure . The quintuple (0,Id, C, D, 0) is generic and
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>

A%d

Figure 26: Polygonal chains of non-generic hexagons
of type 1.1, 1.2 and 1.3 respectively

we use Proposition to determine the angle parameter. Observe that the

stabilizer of H/,7'9°" = (0, A,1d, C, D, ) is also given by
0
r

Stab(H,,"9°") = {Id, 6 } =~ Z/27 where r is the reflection across the

typel.l

hyperbolic component (Remark . Up to isometry we can always choose the
angle parameter to lie inside [0, 7] = PSO(2)/~.

Conversely, given ((b,b), (c1,¢2), (d1,d2),[S]) € 0 x a x PSO(2)/~ we con-
struct the hexagon H,,""9%" = (0, A,1d, C, D, o0) where

typel.l —
1
= 0
A= (@
(5 3)

_ 0 ec1 e 0 r( 0 —ex2
p= (e )0 &) (e V)

The proofs for type 1.2 and 1.3 are similar. O

Proposition 4.21. Non-generic heragons of type 2 are parametrized up to
isometry by

nongen ~ 2
thpeQ.l/PSp(4,R) ~ 0" Xxa
nongen ~

thp62,2 /PSp(4,]R) ~ 0xaxo

nongen ~ 2
thpeQ.B/PSP(47R) = axo

Proof. The proof is similar to the proof of Proposition [£.15] and Proposition
420 Since two quintuples are non-generic, we do not have any angle in the
parameter space. Up to isometry we can move the polygonal chains of the
hexagons in a configuration shown in Figure The vector parameters are the
same of Proposition where two length are not regular and lie inside 2. [

99



Figure 27: Polygonal chains of three non-generic
hexagons of type 2.1, 2.2 and 2.3 respectively

Proposition 4.22. Non-generic hexagons of type 8 are parametrized up to
isometry by

nongen ._ ~3 ~ m3
thpeB =0 = R>0

Proof. Let (H,)1) = (P, A,B,C, D, Q) be inside nyozl%m and up to isometry

let us consider again P = 0,Q = c0 and B = Id. We obtain three vectors
A" (po.oo(4), po.o (1)) = (b,0)

d* (Po,e0(Id), po, (C)) = (c,¢)
4" (p0,0(C), po.o(D)) = (d, d)

which are all contained in 0. The matrices A,C and D are all multiples of
the identity matrix. Equivalently, the points A,Id, C, D all coincide in the H?-
component of Vo, and there is no angle parameter. O

Remark 4.23. Proposition corresponds to hexagon-parameters in the hy-
perbolic case: we obtain the 3-dimensional space of right-angled hexagons of
HZ2.

4.6 Arc coordinates for H

In Sections [£.3] and [£.5 we have introduced arc coordinates for a right-angled
hexagon (H,Y:) in X. We have first considered the case where the hexagon
is generic and we have then adapted the parameters in the case of non-generic
hexagons of type 1, 2 and 3 respectively. In this section we want to present arc
coordinates in a more compact way. We will introduce a parameter space for H
which encloses both the generic and the non-generic case. Again we will focus
on the case where X is the symmetric space associated to Sp(4,R).
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Recall that we denote by a the subset of the Weyl chamber consisting of
regular vectors:
a= {(331,.132) € R2| T > To > 0}

and by 0 the following set
0 = {(x1,22) € R?| 1 = a0}
We introduce the symbol @ to denote the union @ = a U d that is the set
a={(z1,22)] 1 = 22 > 0}
Definition 4.24. The space of decorated arc coordinates A‘(ifjfyl) is given by
Al y,y = x [0,27) x [0,27)

We further define Ay y,) to be the set

d
A = Al yn/ ~
where the equivalence relation is given by
(b7§a Qla aq, O[g) ~ (9727 da 2T — aq, 2m — 042)

Remark 4.25. It is straightforward to see that if b,c,d € a3 then Ay, is
the space of arc coordinates for non-generic hexagons described in Proposition
4. 19l

We can now state the following

Theorem 4.26. Let X be the symmetric space associated to Sp(4,R) and let
H be the space of ordered right-angled hexagons in X :

H={(H,W)| H=1[I1,Y2,V3, V4, V5, Vs] right-angled hexagon }

Then H is parametrized up to isometry by
A= A(Hvyl)/"’
where for (b, ¢, d, a1, a2) € Acp,y,) we have the following equivalent relation ~ :
(i) If beo:
(ba c, dv aq, 042) ~ (Q; C, dv ai, a2) va1

(i) If ced:
(bvg7dvalaa2) ~ (bag, d,ahaQ)

for @y, @y such that @y + @ = a1 + as

(iii) If d € -

(ba Q7d7 0(1,062) ~ (b) Q7dval762) an
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Proof. Let (b,¢,d, [a1,az]) € A. We want to construct a right-angled hexagon
(H,Yo0,0) = (0,A4,1d,C, D, 0)

fro a maximal 6-tuple (0, A,1d,C, D,o0) where C is diagonal. We construct
(H,Yo,%) in the following way: we look at the length parameters (b, ¢, d) which
uniquely determine the genericity type of the hexagon (Remark and then
we use one of Propositions [4.20} 4.21| and [4.22 to construct (H,Yy.«). In the
case of non-generic hexagons some of the angle parameters vanish and this is
translated in the equivalent relations of A by collapsing the angle parameter in
one point. More precisely:

0. If b, ¢, d € a® we construct a generic hexagon with arc coordinates (b,e, d, [a1,a2])
using Proposition

(H7 y0,00) = (b)ga da [0513 OéZ])

1.1 Ifbe D, ¢, d € a? then the angle parameter o is collapsed into a point and
we use ag to construct a non-generic hexagon of type 1.1 using Proposition
4, 20)

(H7 y0,00) = (bv c, d? [QQ])
The polygonal chain of such a hexagon is illustrated in Figure [26]

1.2 If ¢ € 0, b,d € a® we use Proposition to construct a non-generic
hexagon of type 1.2 where

(H7 y0,00) = (b7gada [Oél + Qg — ﬂ-])

The reason why we choose to translate the angle by 7 is the follow-
ing: in the procedure of constructing a hexagon (H,Yy,«) from a point
(b,¢,d, [a1, az]) inside A we know that angle parameters g, as have a ge-
ometric interpretation realised in the polygonal chain of (H, Yy o). If the
hexagon is non-generic of type 1 then we only need one angle parameter to
construct (H, Yy« ). In this construction procedure, when moving contin-
uously from a point (b, ¢, d, [av1, a2]) where ¢ € a to a point (b, ¢, d, [@1, a2])
where ¢ € 0 we want the constructed hexagons to be close. To do this we
need to construct (H, Vo) using the angle parameter [a; + g —m]. This
is illustrated in Figure 28] below.

1.3 If d €0, ¢,d € a? then the angle parameter ay is collapsed into a point and
we use a7 to construct a non-generic hexagon of type 1.1 using Proposition
4, 20)

(H7 y0,00) = (bagv d7 [al])

If two length parameters are inside ? then two of the three equivalence relations
of A are satisfied. In this case both angle parameters are collapsed into a point.
For example if (i) b€ 0 and (ii) c € ? then

(ba dev alaaQ) ~ (ba Q7d761,62) valaan
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as

Figure 28: Construction of (H, Yy o) of type 1.2
when ¢ — 0

(Qaga d7a17a2) ('7,\2’) (9727 dual + Qg — a2752> an (ZN) (ba deval752) val

We construct (H, Yo,«) in the following way:

2.1

2.2

2.3

If b,c € 92, d € a we use Proposition to construct a non-generic
hexagon of type 2.1 where

(H,Yo,0) = (b,c,d)

If b,d € 92, ¢ € a we use Proposition to construct a non-generic
hexagon of type 2.2 where

(H,Yo,) = (b,c,d)

If ¢,d € 92, b € a we use Proposition to construct a non-generic
hexagon of type 2.3 where

(H,Yo,0) = (b,c,d)

If b, c,d € 92 we use Proposition to construct a non-generic hexagon
of type 3 where

(H,Y0,0) = (b, ¢, d) = (b, ¢, d) € RS,

It is clear that any equivalent point (b,¢,d, @1, a@2) ~ (b,¢,d, a1, 2) in A
induces an isometric hexagon (H', Yy.o0) in H.

Conversely, let (H, Y1) be a hexagon in ‘H and let us write H = (P, A, B, C, D, Q).

Up to isometry we can consider P = 0, B = Id, Q = o0 and C diagonal, so that
V1 = Vo,0. We put

b=d" (iA,ld)
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¢ =d* (ild,iC)
d =d* (iC,iD)

Again we use Propositions [£:20] and to determine arc coordinates. More
precisely:

0. If b,c,d € a® we associate to (H, Vo,%0) the point (b, ¢, d, [, a2]) using
Proposition [£.15]

1.1 Ifbed, ¢,d € a? then for (b, ¢, d, a1, a2) € Ap.y, it holds
(b7gadaalva2) ~ (bvgadaalaQQ) val

We compute the point (b, ¢, d, [a2]) using Proposition and we associate
to (H7 y0,00) the pOint (b7 C, d> [.7 062]).

1.2 If ced, b,d € a? then for (b, ¢, d, a1,2) € Ap y, it holds
(b7§,d,a17a2) ~ (bugadvalvaZ)

for @, @y such that @y + @ = a1 + ay. We compute the point (b, ¢, d, [a])
using Proposition and we associate to (H, Yp,«) the point
(b7gvd7 [%’ % + 77])

1.3 If d€d, ¢,d € a? then for (b,c,d, a1, az) € Ayy, it holds
(b,c,d, on,a2) ~ (b,c,d, o, q2) Va

We compute the point (b, ¢, d, [a1]) using Proposition and we associate
to (H7 y0,00) the POint (ba C, dy [alv .])

For the cases 2.1, 2.2, 2.3 and 3 all the angle parameters vanish and we associate
to (H,Yo,0) the point (b,c,d, e, ]). O

Definition 4.27. (Arc coordinates for H) The parameters of Theoremm
will be called arc coordinates for a right-angled hexagon (H, ;). Given (H, 1)
inside H its arc coordinates (b,c¢,d, [a1, az2]) will be denoted A(H,);). The
vectors b, ¢, d are length parameters and oy, as are angle parameters.

4.7 Hexagons inside a maximal polydisc

Let X be the symmetric space associated to Sp(4, R). We have seen in Section
how to embed H? x H? inside X through the map:

Y H? x H? - X
Al 0
(21, 22) = (0 Z2>

The image of ¢ in & is called the model polydisc since each other polydisc
is translate of our model by an element in Sp(4,R). A right-angled hexagon
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H = [Y1,Y2,V3,V1,Vs, Vs] is therefore contained in a maximal polydisc if there
exists an isometry g such that g - H is contained in the model polydisc. In
particular a hexagon H is contained in the model polydisc of X" if and only if
all tubes have diagonal matrices as endpoints. Recall that the subset w((z, z))
is a copy of H? inside X and is referred to as the diagonal disc.

In Theorem we have parametrized the space of ordered right-angled
hexagons H up to isometry. In the following Proposition we show which sub-
space correspond to hexagons contained in a maximal polydisc.

Proposition 4.28. The subspace D < A
D = {(b.c.d, [o1,02]) € A] [, 2] € {[0,0], [0,7], [x, 0], [, ]} | = A

corresponds to right-angled hexagons inside a maximal polydisc in X .

Proof. In the case where b, ¢, d € a® the point p = (b, ¢, d, [, az2]) corresponds
to a generic hexagon. Using Proposition we know p = [(H, Yo,0)] where

(H, Vo) = (0, A,1d,C, D, )
with C = (ecl 0 ) and
0 e
A

1 ci1+d
4 0 efrtaz 0
b2 1)7D=< 0 662+d1> fora; =as =0

>

Il
/N TN

b

a
-

1 c1+dy
A el (1)), D= <e 0 020+d2> fora; =as =7
2] €
1 c1+d
1 0 e1+1 0
A_<E(b)2 6%1 7l)_( 0 662+d2) fOI'Oq:O, Qg =T
1 c1+d:
1 0 61+2 0
A=(€61 622>,D=( 0 eC2+d1) foray =7, az =0

All four cases correspond to hexagons consisting of tubes that have diagonal
matrices as endpoints. This is consistent with the geometrical meaning of the
angle parameter described in Section 2.10] A similar argument can be used
for the case of non-generic hexagons of type 1. All non-generic right-angled
hexagons of type 2 and 3 are contained in a maximal polydisk in X and in these
cases for all (b, ¢, d, [a1,az2]) € D it holds

(bvgad;alon) ~ (bag,daalaEQ) valan

Conversely, if [(H,V1)] € H/psp(4,r) is contained in a maximal polydisc then we
can move it into the model polydisc through an isometry. It is easy to see that
in this case the point p € A corresponding to [(H, Y1)] must be inside D. O

Definition 4.29. We define D2 as the set
Dz = {(b, ¢, d, [o1, a2]) € A b, ¢, d € 0°}
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In Definition [4.2| we have defined the stabilizer of a right-angled hexagon H =
V1, Vo, V3, V4, V5, V] as

Stab(H) = {g € PSp(4,R)| g-V; = Y;, i€ {1,...,6}}

Proposition 4.30. (Stabilizer of a right-angled hexagon) Let X be the
symmetric space associated to Sp(4,R) and let H = [Y1,V2,Vs3, V4, Vs, Vs] be a
right-angled hexagon in X. It holds

(i) If H is contained in a copy of H? inside X then Stab(H) =~ PO(2)
(i) If H is contained in a mazimal polydisc then Stab(H) = Z /27
(iii) If H is not contained in any mazimal polydisc then Stab(H) = {id}
Proof. Up to isometry let us consider
H = (0,A,1d,C, D, %)
where C' is diagonal.

(i) If H is contained in the diagonal disc then the matrices A, C, D are all
multiples of Id and so are all endpoints of the tubes of H. It is clear that
the stabilizer is PO(2).

(i) The matrices A, C, D are all diagonal and so are all endpoints of the tubes
of H. The stabilizer is given by the identity together with (g 2) where

(% 1)

(#i) This is clear.
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5 Discussion about the parameters

In the previous section we have introduced arc coordinates A to parametrize
the space H/pgp(a,r) (Theorem . In particular to an ordered right-angled
hexagon [(H, Y1)] inside H/pgp(a,r) We associate a point (b, ¢, d, [, a2]) where
b,c,d are called length parameters and whose geometric interpretation is il-
lustrated for example in Figure 22} This choice of length parameters could
somehow appear not natural, especially if compared with the parameters of a
right angled-hexagon in the hyperbolic space. In H? a right-angled hexagon is
uniquely determined by the length of three alternating sides. In the Siegel space
all length parameters b, c,d are lying in the tube ));. In this chapter we will
recall the proof of the parametrization in H? of right-angled hexagons as done
in [Marl6, Lemma 6.2.2] (suitably adapted to the upper-half space model). We
then discuss the differences and the problems that arise when generalizing these
hexagon-parameters in the symmetric space X associated to Sp(4,R). We refer
to [BP92], [RR95], [Lou20| for an introduction to hyperbolic geometry.

5.1 The H?-case

We start by recalling the definition of cross-ratio in H? and by giving a propo-
sition that will have an analogue in the Siegel space X.

Definition 5.1. Let z1, 20,23,24 € H2. The cross-ratio R(z1, 22, 23, 24) is the
point
R(z1, 22,23, 21) = f(23)

where f is the unique map in PSL(2,R) such that

f(z1) =0, f(z2) =1, f(z4) =0

In the upper-half space model H? = {z + iy| z,y € R, y > 0} the explicit
expression for the cross-ratio R(z1, 22, 23, 24) where 2z; = x; + iy; is given by

R(z1,22,23,24) = (21 — 22) " (24 — 22) (24 — 23) ' (21 — 23)

The following lemma is well known and is the analogue of Lemma [2.17] for
the hyperbolic plane:

Lemma 5.2. Let (a,z,y,b) € dH? and let vop be the infinite geodesic with
endpoint {a,b}. Let p,p be the orthogonal projection onto vap. Then

™ (pay(2), Pas(y)) = log

where = R(a,x,y,b).
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Lemma 5.3. Let Yq.5,Ve,d, Ve, f e three infinite geodesics with endpoints {a, b}, {c, d}
and {e, f} respectively. Suppose

Ya,b 1 Ye,d 1 Ve, f
Then there exists a bijective map
T:Rt - Rt
R(C7 b? e? d) e R(a7 b? 67 f)

_ (z+1)2

given by T(x) =

Proof. Up to isometry we can consider v.q = 70,00 and Ygp = v—1,1. Then
Ye,f = V—u,z for an x € RT, z > 1 (Figure below).

o0
®

Figure 29: There is a bijective map between
R(0,1,z,0) and R(—1,1,z, —x)

‘We obtain
R(C’ b’e’d) = R(Oa 1,1},00) =z>1
and 2
1
R(a.b,e. f) = R(—1,1,2,—z) = 1"
4x
so that T'(z) = %' -

Proposition 5.4. Let v,.. L vy, be two orthogonal geodesics in H? with end-
points {x, z} and {y,w} respectively and let P be their intersection point. Then
there exists a bijective map f = f(Vu,2, Vyw, P) defined as follows:

For d > 0 let P’ be one of the two points in 7, . at distance d from P. Let
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vpr be the geodesic through P’ orthogonal to 7. and denote by b one of its
endpoints. Then we can define

f:RT > R*
4 (P, P') — d* (P, p,.. (b))

where p, . denotes the orthogonal projection on the geodesic v, .. The map f is
given by
f:RT - Rt

e+ 1
dHlog(ed—l)

This expression does not depend on the choice of the points P’ b.

Figure 30: The map f

Proof. Let us consider the upper-half plane model
H? = {z+iy| zeR, ye R"}

Without loss of generality we can assume 7, ., = 70,0 = {iy| ¥ > 0} and
Yz,z = Y—1,1, S0 that their intersection is the point P = i (Figure .
Let P’ = ie? and b = e¢. By Lemma we know that

; - el +1
dH2 (l’p_lvl(ed)) = R(*17076 d7 1) = ed —1

so that f(d) = log(ZZﬂ). Note that f~! = f. It is trivial to show that the
cases

P =¢eb b=—ie
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]H2
-1
Figure 31: The map f
P =eb b=ie?®
P =e? b=—ie®
all lead to the same expression of f. O

Lemma 5.5. ([Mari6, Lemma 6.2.2]) Given three real numbers b,c,d > 0
there exists (up to isometries) a unique hyperbolic right-angled hexagon with
three alternate sides of length b, c and d respectively.

00]

Figure 32: Construction of a right-angled hexagon in
the H2-case
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Proof. Let b,d > 0. Then the construction of the hexagon goes as follows: take
a geodesic v with two arbitrary points Py, P, in it. Without loss of generality we
can assume <y to be the vertical geodesic Y9, = {iy| y > 0} and P, =i (Figure
32). Draw the perpendicular from P; = i and from P,. At distances b and d
we find two points )1 and ()2 and we draw again two perpendiculars y4 p and
vc,p, with some points at infinity A, B and C, D respectively. Draw the unique
perpendiculars to v pointing to B and C': they intersect v in two points pg o (B)
and po,«(C). Note that the lengths dH (P1,po,00(B)) and dH (p0,0(C), P2) have
some fixed length depending only on b and d through a bijective map explicitly
given in Proposition (this is the map f = f~!). We can vary the parameter
z = d¥ (P0,00(B), p0,00(C)), the geodesics v4 g and ¢, p are ultra-parallel and
there is a unique segment orthogonal to both of some length F(z). The function
F : (0,400) — (0, +0) is continuous, strictly monotonic, and with lim,_,,, = oo:
therefore there is precisely one ¢ such that F(x) = c. O

Remark 5.6. (Explicit form of the map F') In the proof of Lemma we
have shown how to parametrize a right-angled hexagon in H? by the lengths
b, ¢, d of three alternating sides. This is illustrated in Figure where F(z) = ¢
for a bijective map F. By Proposition we know that there is a bijection
between the length b, d and the segments d™ (P1, po.(B)), dH (po,0(C), P2) re-
spectively. We can therefore think as the lengths b, ¢, d determining the hexagon
as all lying on the vertical geodesic v .

0

_ec+d _e—b 0 e—2b €_b 21 1 eC 29 ec+d

Figure 33: There is a bijection between segments of
the same colour
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More concretely we can parameterize a right-angled hexagon as shown in Figure
where by abuse of notation we keep the letters b, ¢, d referring to lengths of
segments lying on 79 .. This can be thought as the parametrization of a non
generic hexagon of type 3 in Proposition (drawn in the upper-half plane).
Proposition [5.4] provides a bijective map f to explicitly write the length of the
blue and green sides of Figure To explicitly write the map F' let us consider
the configuration of Figure

By Lemma it holds

¢ = R(0,1,e° )

and
¢ = R(0,1,e°, 00) LN R(z1,1,€% 22) L R(e™2%,1, e, e2%)

Where T is the bijective map of Lemma For b, d fixed we obtain

ec+2d o 1)(1 _ e2b+c) B
ec(1 —e2b)(e2d —1) 4

ToF(c) = (
and F(c) = T (y).

5.2 Length parameters in X

In the Siegel space X the analogue of geodesics are R-tubes: in this case the
length-parameters take value in the Weyl chamber

ot = {(21,.,2n) R 21 = ... = 7, = 0}

The analogue of Lemma [5.3]in X is given by the following:
Lemma 5.7. Let Ya,B,Yc,p, Ve, F be three R-tubes inside X such that

Yap LYoo LVer

Let us denote by (x1 = ... = x,,) the eigenvalues of R(C, B, E, D) and by
(y1 = ... = yn) the eigenvalues of R(A, B, E,F). Then there exist a bijective
map T

T(x1,...20) = (Y1,.--Yn)

where for i€ {1,...n}

x; + 1)2
Yi = ( . )
4$i
Proof. Up to isometry we can consider Yo p = Yo,0; Ya,B = YV-1d,1a and
€
Yer = Y_xx for an X € Sym*(n,R), X > Id, X = (see

In
Figure .

We obtain
R(C,B,E,D) = R(0,1d, X,0) = (21, ..., )
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1
-X X =
Tn
N
[ |
—Id Id
0
Figure 34: There is a relation between the
cross-ratios of the red and of the blue points
and
(1?1+1)2
4xq
R(A,B,E,F) = R(-14,Id, X, -X) =
(zn,4+1)?
4z,
O

We now state the analogue of Proposition [5.4] for the Siegel space. See Figure
for a better visualization of the statement.

Proposition 5.8. Let Vx 7 L Vy,w be two orthogonal R-tubes in X and let P be
their intersection point. Then there exists a bijective map f = f(Vx,z, Yy,w, P)
defined as follows:

For (dy,...d,) € a* let P' be a point in Vyw at distance (dy,...d,) from P.
Let Yp: be the tube through P’ orthogonal to Yy,w and denote by B one of its
endpoints. Then we can define

f:at —>at
d (P, P') = d" (P,px.z(B))
where px z denotes the orthogonal projection on the tube Vx 7. The map f is

given by
frat —>at
edn +1 e +1
(dy,...dy) — (log (edn — 1), .., log (edl - 1))

This expression does not depend on the choice of the points P, B. In particular
the image of a reqular point inside a* is a reqular point.
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Y

Figure 35: There is a bijection between the green
vectors

Proof. Without loss of generality we can assume Yy, i = My o and
Yx,z = Y_1d4,1d, so that their intersection is the point P = iId (Figure .

o0

Figure 36: There is a bijection between the green
vectors

d1
P =i and B =

ed"

By Lemma and Lemma we know that

" (P,p—14,1a(B)) = (log pt1, ..., log 1)
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where y; > ... > p,, are the eigenvalues of R(—Id,0, B~!,1d). Calculations give

ell41
ed1—1

R(~1d,0,B7',1d) = (Id— B~ ") Y(Ild+ B™!) =

edn 41
edn —1

so that

F((dr, . dy)) = (log (edn%i),...,log (edl i 1))

edn e —1

Observe that we need to invert the order of dy, ..., d, since the function

h(z) = log <§Zﬂ) is decreasing for x > 0. From the expression of f it is clear

that regular points of @* are sent to regular points. Moreover, it is trivial to
show that the expression of f does not depend on the choice of the points P’, B.
In particular recall that the points at distance (di, ...,d,) from P = iId are of

the form

et

P =iQ Q", QeO(n)

Ed"

together with its inverses. O

5.3 Changing side of the hexagon

Let X be the symmetric space associated to Sp(4, R) and let us consider a right-
angled hexagon H = [V1, Va2, V5, V4, V5, V6] in X. In the previous chapter we
have introduced arc coordinates for an ordered right-angled hexagon (H, ;) in

H.

Figure 37: There is a bijection between the green
vectors and between the blue vectors
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These consist of length and angle parameters, where all length parameters are
lying on the same tube ). By Proposition two of the three length param-
eters (vectors b and d in Figure ) can be thought as lying on the tubes )
and Y respectively. The bijection between these vectors is an analogue of the
H?2-case (Proposition and does not depend on the angle parameters.

The following Proposition relates length parameters of arc coordinates when we
change side of the right-angled hexagon.

Proposition 5.9. Let H = [V1,Ya,V3, V4, Vs, V] be a right-angled hexagon.
Let (bi,ci,d;) denote length parameters where

(b1, c1,dr) length parameters of A(H, Y1)

(b2, c2,da) length parameters of A(H,Ys)
(b3, c3,ds3) length parameters of A(H,)Ys)

Then
by = dy
by = dy
bs = dy

Figure 38: There is a bijection between vectors of
the same colour

Proof. Let us prove by = da. Let

V1 =Vp, Py, Vo =00,,Q.> V3 =VpPs,Psy Vi =V0Q,,Q4> V5 = Vps.Ps» Vo = V5,06
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By definition of arc coordinates A(H, V) associated to (H, Y1) we know

b =d% (pp,,p,(Q2),ppy py (Pa))

where (H, V1) = (P2, Q2, Py, P5,Qs, P1), Y1 = Yp,,p, (Figure|39). By definition
of arc coordinates A(H,Ys) associated to (H,Ys) we know

s = & oy s (P1), iy (@1)
where (H,y:}) = (P4,Q4,P67P1,Q1,P3), y3 = yP37P4'

Figure 39: by = dy

Let v be the vector

<+
v = d® (le,Qg (P2)upQ1,Q2 (P3))
and let f be the map

f:at —>at

(a1,a2) — (log (ﬁ»log (eal * 1))

ez —1 evr —1

By Proposition [5.8] it holds
bi=f"1)=ds
The proof for by = d3 and bs = d; is similar. U

An analogue Proposition which relates the length parameters ¢, is trickier. More
generally when we try to generalize the map F' described in Lemma [5.5| we can
not guarantee bijectivity. This will be explained in the next section. Let us
finish this section with the following
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Corollary 5.10. Let (H, Yo ) € HI®" be a generic hexagon
(H,Yo,0) = (0,A4,1d,C, D, 0)
Then the quadruples (—A,0, A%, A), (—D,0,C, D) are generic.

Proof. As (H®,Yp.«) € H" we know that (0, A4,Id, o) is generic i.e. the pa-
rameter b = (by,b2) of Proposition lies inside the set of regular vectors

a. To show genericity of (—A4,0, A%, A) we need to prove that the cross-ratio
R(—A,0,A?, A) has distinct eigenvalues. By Lemma m we know that taking

the logarithm of these ordered eigenvalues gives the distance d® (p_ 2.4(0),p_a.4(A?))
which is the blue vector in Figure Moreover, by Proposition we know that

this vector is the image under the bijection f of the vector b and that f is sending
regular points to regular points. It follows d® (p—a.4(0),p—4.4(A?)) € a and so
(—A,0,A2 A) is generic. For completeness of the proof we show genericity of
(—A,0, A2, A) by explicitly calculating the cross-ratio:

R(—A,0,A%A) = (—A) TA(A - AH)H(—A - A%) = (A - A?)"1(A+ A% =
= (A(Id — A))"TA(Id + A) = (Id — A) ' (Id + A)
Since (H*t, Vo o) € H*' we know that (0, 4,1d, o0) is generic i.e. A~! and hence
%1 aog) = PAPT for P € O(2) and a1 # as.
Then we can rewrite the cross-ratio as

(P(1d— <%1 C? ))PT)1 (P(1d+ (‘61 C? >)PT) = P(ld— <“01 C? ))1(1d+ (‘61 CZ) )PT

2 2 2

A has distinct eigenvalues. Let

which is a matrix with distinct eigenvalues {}fgi , }J_F—ZE )

The proof for the genericity of the quadruple (—D, 0, C, D) is similar and it also
follows from the bijectivity of the map f in Proposition In this case we
can explicitly calculate the cross-ratio R(—D,0,C, D) = (D — C)~Y(D + C) by
using the parameters of Proposition [£.15] We obtain

et 0
- (3 &)

B 0 Veer et 0\ rf 0 —yez
D(—\/e? 0)52(0 ed"‘)SQ(ecl 0

where (c1,¢2), (d1,d2) € a and Sy € PSO. The cross-ratio takes the form

0 —vez\ e 0\ o1 -1 e 0\ o1 0 —+ee
<ecl 0 ) (52<0 ed2> % 7Id> <S2 0 et2) 52 Hd) Ve 0

This matrix has the same eigenvalues of the matrix

(s (6; 62) st-1d) (s, (68 62) ST+1d) = 55 <e; 62) 10) " ( (6; eS) +1d) 57

.. . . s . di+1  gdo+l
and this is a matrix with distinct eigenvalues { 7=, 5=} O
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5.4 Constraints in generalizing hexagon parameters of H?>

In the previous section we have shown (Proposition that given a right-angled
hexagon (H, Y1) with arc coordinates A(H,Y;) we can find a bijection between
length parameters b,d of A(H,)Y:) and the vectorial length of two alternating
sides (see Figure . This is analogue to the hyperbolic case (Proposition
5.4). Taking inspiration from the HZ-case, it is natural to ask whether for a
right-angled hexagon in & there exists a bijective map also between the vector-
parameter ¢ of Figure [37)and the missing alternating side of the hexagon. When
the hexagon is non-generic of type 3 this is trivially true and corresponds to the
immersion of hyperbolic hexagons inside X'. In this section we show that this is
not the case for a general right-angled hexagon H inside X'. More precisely, let
(H,Y,%) be a right-angled hexagon inside 7. We can determine (H, Yy,«) by
the following maximal 12-tuple

(H,Yor0) = (0, —D,—A,0, A%, A, 7,,1d,C = (‘31 0

0 602) 7Z27D7D071D)

Figure 40: There is no bijective map between the
red vectors

Let P, @ be the two intersection points (Figure
P=Ya21an V2,2, Q=Vz,2, 0" Vo pc1c
and let F' be the following map

F:a—ua

. . (14)
d* (i1d,C) = (c1,¢2) — d* (P, Q)
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Then one can ask if the map F' is bijective. In this section we show that this
is not the case and we provide a counterexample in the case where (H, ) o) is
contained in a maximal polydisc.

Remark 5.11. The image of the map F' in is the distance

4 (P, Q) = (log ju1,1og 12)

where 1 > po are the eigenvalues of R(Z1,1d, C, Z5) (see Lemma|2.17)). Asking
for the existence of such a map F' is equivalent to ask for the existence of a map

ToF
ToF:a—a

(c1,¢2) — (log A\1,log \2)
where \; > A, are the eigenvalues of R(A?,1d,C, DC~'D) and T is the bijective
map of Lemma (composed with the logarithm map). By abuse of notation

we will write this map as F' and we can express the cross-ratio with respect to
arc coordinates. This is made more precise in the following definition.

Definition 5.12. (Malefic map) Let b,d € @ and a1, as € [0, 27). We will call
the malefic map F} g,a,,0, the map defined as following:

(15)

al

Fydor,e, 1 @

N
(Cla 02) =

—~

log A1, log A2)
where A; > \o are the eigenvalues of the cross-ratio R(A2,1d, C, DC~!D) where
(H,Yo,0) = (0,A4,1d,C, D, 0)

is the right-angled hexagon with arc coordinates A(H, Yy «) equal to (b, ¢, d, [a1, a2]).

Example 5.13. The malefic map F} 4.q,,q, clearly depends on the choice of
the parameters b, d, aq, as. It is not hard to show that for (a1, as) = (0,0) and
(a1, a0) = (m, ) respectively we obtain

(6c1+2d2 _ 1)(1 _ 62b2+c1) (6C2+2d1 _ 1)(1 _ €2b1+cQ)>

Fya00(c1,c2) = ( ec1 (1 — e2b2)(e2d2 — 1) T e (1— €201)(e2dh — 1)

(661+2d1 _ 1)(1 _ 62b1+61) (662+2d2 _ 1)(1 _ 62b2+62)>

Fodnm(crsez) = ( e (1 — e21)(e2d — 1) ' eea(1 — e2b2)(e2d2 — 1)

where b = (b1,b2) and d = (dy,d2). Observe that in both cases the con-
structed hexagon lies inside a maximal polydisc (see Proposition [4.28)).

Lemma 5.14. Let b,d € @, ai,a2 € [0,27) and let Fy 40,0, be the malefic
map. It holds
Foda1,0:(C1,¢2) = Fy g 2n—ay 2n—as (€1, €2)

80



Proof. This is straightforward by Proposition in the generic case and more
generally by Theorem for angle parameters (o, a2) and (27 —aq, 27 — ag)
we obtain two isometric hexagons. O

We can extend the malefic map Fj 4.a,.0, Of Definition to the set
(R=0 xRx0)\{(0,0)}, that is we allow the case where (c1, ¢2) is such that ¢; < ¢a
or ¢; = 0 for an i € {1,2}. The image F} 4.a,,a,(c1,c2) for a point (c1,c2) €@ is
obtained by computing the cross-ratio R(A?,1d,C, DC~!D). In Theorem
we have provided an explicit way to compute a hexagon (H, Vo ) € H from arc
coordinates (b, ¢, d, [a1, a2]). More precisely we have shown how to compute pos-
itive definite symmetric matrices A, C, D where (H, Yy ) = (0, 4,1d,C, D, o).
The explicit formulas appear in Proposition [£.15] for the generic case and are
suitably adapted to the non-generic case in Proposition [£.20] [£.21] and [£.22] We
extend these formulas to the case where (c1,cq) is such that ¢; < ¢y or ¢; = 0
for an i € {1,2}.

Proposition 5.15. Let b,d € @, aj,as € [0,27) and let F denote the malefic
map extended to (Rxo x Rx0)\{(0,0)}. Then

Nb,d,m,az (c1,c2) = Nk,d,wfamrfm (c2,c1)

Furthermore, if (c1,c¢2) is a point lying on one of the semi-axis of
(Rx0 x Rx0)\{(0,0)} then Fy4.a,,a,(c1,c2) is also lying on a semi-azis.

Proof. Let us understand the geometrical meaning of th’ahaz (¢1, ¢2) for a point
(c1,c2) with ¢; < cp. If in the parametrization of Proposition we consider
the set a= = {0 < 1 < x2} instead of a = {x; > x5 > 0} we are choosing
to diagonalize the matrix C' with an increasing order of the eigenvalues. In
the geometric interpretation of angle parameters illustrated in Section the
angle a denotes the angle from the semi-axis {(0,y)| y > 1} € H2. By picking
the set a~ we are considering the angle oo + 7 when « € [0,7) and the angle
o —m when «a € [, 27) (Figure [41).

H?

ﬁ
o+ a7

Figure 41: Geometric interpretation when
considering the Weyl chamber a™
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From the equivalent relations of the angle parameters we know
a+m~2r—(a+m)=m—aanda—7T~2r— (0 —7) =T —
so that N N
Fbad7a17a2 (Cla 02) = Fbadﬂ—alﬂf—az (027 Cl)

We should think at the extended map ﬁbvdyahag as a way to construct right-
angled hexagons in a continuous way by moving the point C. The polygonal
chain of the hexagon is transformed as shown in Figure

Figure 42: Continuous transformation of the
polygonal chain when going from a to a~

Let us now show that ﬁg,@,al,az preserves semi-axes. Let (¢1,c2) be such that
c¢1 = 0. This means that

e 0 1 0
C = (0 2] =\o A) A>0
so that C' and Id are not transverse. Furthermore, there exists a g € Sp(4, R)

such that
g-(A%1d,C,DC™'D) = (0,1d, M, )

where M is positive definite and such that Id and M are not transverse. This

means
10
M(O #>,u>0

and we know (see Lemma that R(0,1d, M, ) = M so that

~

bd.on,a (0, c2) = (log(1),log(n)) = (0,y)

for some y > 0. O
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Corollary 5.16. Let b,d € a® and let Fy, F, be the maps
Fo=1Fpd00, Fr=Fpdrn

where Fy g o, ,q, denotes the malefic map. Then Fy is not surjective and Fi is
not injective.

Proof. Consider the extended malefic maps Fy = ﬁg,g,o,o and F, = ﬁb,énwr-
The map F} g,a,,a, is continuous and from example it is easy to see that
Fy(z,z) # (X, X) (Figurebelow).

lCl > Co

Figure 43: ﬁb(cl, ca) = ﬁ’ﬂ(c%cl)

We deduce that when restricting to a = {z1 > x2 > 0} (i.e. considering the
malefic map F) the map Fp is not surjective and the map F, is not injec-
tive. This is illustrated in Figures [{4] and [45] below. The program to gener-
ate these figures can be found in the github repository https://github.com/
martamagnani/Arc-coord/blob/main/Lemma_is_false.py. O
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20

o
0 20 40

Figure 44: The bottom-right corner shows the image of the map Fy (not sur-
jective) when b = (40,0.01) and d = (35,0.01)

20

o
o 20 40

Figure 45: The bottom-right corner shows the image of the map F}. (not injec-
tive) when b = (40,0.01) and d = (35,0.01)

Remark 5.17. (Genericity is well defined on an ordered 6-tuple) In Corollary
5.10| we have seen how the genericity of the hexagon

(Hv y0,00) = (O’Aa Id7 C)D7 OO)

induces the genericity of the quadruples (—A,0, A%, A) and (-D,0,C, D) re-
specticely. This is strictly related to the existence of a bijective map f as seen
in Proposition 5.8 so that the vectors b and d are in bijection with the length
of two alternating sides (Figure . In the discussion that followed we showed
that we can not do the same with the vector ¢ as there is no such bijective map.
In particular we have seen how the map depends on the angle parameters of the
hexagon and we have provided counterexamples where this map is in turn not
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injective and not surjective. In these counterexamples it is clear that the ex-
tended map F' in Proposition does not preserve the diagonal ? = {x; = z3}.
By continuity of F' we deduce that in general

(c1,¢2) e a= F(c1,c2) € a

Equivalently, the genericity of the hexagon (H, )y «) does not imply the gener-
icity of the quadruple (Z1,1d,C, Z3) where Z1, Z5 are uniquely determined by
requiring (Figure

VYar1a L V2, 2, L Yope-1p

The parameters of Proposition [£.15]strongly depends on the order of the 6-tuple
defining the hexagon or equivalently on the choice of a tube Yy .
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6 Reflections in the Siegel space

In this chapter we study reflections in the Siegel space. We first recall properties
of reflections in the hyperbolic plane H? and we then generalize the results for
the Siegel space X'. We define the notion of a reflection set associated to the
side of a hexagon, which will be used in the next chapter to construct maximal
representations.

6.1 Reflections in H?
Let H? be the upper-half space model of the hyperbolic plane

H? = {x +iy| v,y e R, y > 0}

A reflection in H? can be defined as a non-trivial isometry fixing an infinite
geodesic v € H2. In this section we propose an equivalent definition of reflection
that will be generalized to define reflections in the Siegel space. Let us start
with the following

Definition 6.1. Let SL™(2,R) be the set
SL™(2,R) = {M € GL(2,R)| det M = —1}
The union SL(2,R) U SL™(2,R) forms a group that we denote SL*(2,R).

The action of PSL(2,R) on H? by Mé6bius transformations is not well defined for
M ¢ PSL(2,R) since the resulting point may not lie in H2. To define the action
of a matrix M € SL™(2,R) on H? we denote the extended hyperbolic plane by

H} = {z +iyl 2,y e R, y > 0}

so that
H? = H3 /-~

where 41y ~ £—iy. The matrix M acts on H? through Mébius transformations
in the following way
M-z:=[M-z]eH}/.

Definition 6.2. A reflection in H? is an involution of SL™(2,R).
Remark 6.3. We have seen that SL™(2,R) acts on H* = HZ /. by M&bius

transformations. Given R = <i Z) € SL™(2,R) and z € H? it holds

R-z=(—-R) -z

It makes sense to think at R inside the group SL*(2,R) and to consider the

group
PSL*(2,R) = SL*(2,R)/(+1a)

When studying reflections we will always assume R and —R to be identified in
PSL*(2,R).
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Lemma 6.4. All reflections of H? are conjugated by an element of SL(2,R).

Proof. The proof is given in the more general case in Lemma where it is
shown for the Siegel space X and the group Sp(2n,R). The proof for H? is the
case n = 1. 0

Definition 6.5. We will call the standard reflection in H? the map

=3 )

Proposition 6.6. Let R be a reflection in H?. Then R fizes exactly two bound-
ary points p,q € JH?. Moreover, R fizes the infinite geodesic 7, , that has p,q
as endpoints.

Proof. The proof is given in the general case in Proposition [6.15] O

Proposition 6.7. Given p,q € 0H?, there is a unique reflection R fizing both p
and q. The map R is an isometry sending any boundary point x to the unique
boundary point R(x) such that vp ¢ L Va4 p(a)

Proof. The proof is given in the general case in Proposition [6.18] O

Proposition 6.8. Let (q1,q2,q3,q4) be a positive quadruple in OH? and let R
be the reflection fixing two boundary points py,ps € OHZ2. Suppose that:

(P2, 91,92, G3, 94, 1) s positive (possibly p2 = q1 or p1 = qa)

then (p1, R(q4), R(g3), R(q2), R(q1),p2) is positive.

Proof. The proof is given in the general case in Proposition [6.19] O

6.2 Reflections in X

Taking inspiration from the previous section, we want to define reflections in
the Siegel space X. We start by giving the following

Definition 6.9. Let w(-,-) be the symplectic form represented, with respect to
the standard basis, by the matrix

0 Id,
In = (Idn 0 )

A matrix M € GL(2n,R) is antisymplectic if
MTJ,M=—1J,

The set of antisymplectic matrices will be denoted by Sp~ (2n,R). More pre-
cisely Sp™ (2n,R) is the set

Sp~(2n,R) = { <é ZB;) | ATC, BT D symmetric, and ATD — CTB = —Idn}
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The union of symplectic and antisymplectic matrices forms a group that will be
denoted by Sp*(2n,R).

Recall that Sp(2n,R) acts on X by fractional linear transformations:

(4 5) 2= 1z ez

Observe that this action is not well defined for R in Sp™ (2n,R) since the result-
ing point may not lie in X. To define the action of an antisymplectic matrix on
the Siegel space we denote by X'* the extended Siegel space:

X* ={X +iY| X e Sym(n,R),Y € Sym™ (n,R)}

Then
X=Xx%/

where X +1iY ~ X —¢Y. For R antisymplectic and Z € X we define the action
R-Z:=[R-Z]e X*/.
Recall that the Borel embedding model X of the Siegel space is given by
X = {l e L(C*®™)| iw(o(-),)clix: is positive definite}

where o : C?® — (C?" denotes complex conjugation. Recall also that an
Sp(2n,R)-equivariant identification X — X is induced by the affine chart

¢ : Sym(n,C) — L£(C*")

that associates to a symmetric matrix Z the linear subspace of C2" spanned

by the columns of the matrix ( ) (see Section . In this model the

Z
1d,,
extented Siegel space is given by the set

X* = {le L(C®™)| iw(a(-), )c|ix: is positive or negative definite}

and
X=X*/. (16)
where a Lagrangian [ € X
11 + Y11 Tl + 1Yn1
Tpl + WYn1 Tpn + Wnn
=< 1 s e 0 >
0 :
: 0
0 1
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is equivalent to the Lagrangian I’ € X~ where

T11 — Y11 Tpl — WYn1
Tnl — Zynl LTnn — zynn
I'=¢( 1 0 5
0 :
: 0
0 1

We can now give the following
Definition 6.10. A reflection R in X is an antisymplectic involution of X.
Remark 6.11. We have seen that Sp™(2n,R) acts on X = X /4 by fractional

B) € Sp~ (2n,R) and Z € X it holds

. . . A
linear transformations. Given R = < C D

R-Z=(-R)-Z

It makes sense to think at R inside the group Sp*(2n,R) and to consider the
group
PSp* (2n,R) = Sp* (21, R)/{+1q)

When studying reflections we will always assume R and —R to be identified in
PSp* (2n,R).

Lemma 6.12. All reflections of X are conjugated by an element of Sp(2n,R).
Proof. Let R be a reflection of X. Since R is an involution we know that its
eigenvalues are given by the set {£1}. Recall that we denote by £(R?")(*) the

set of k-tuples of real pairwise transverse Lagrangians. Given the R-eigenspaces
FEy, E_1, we want to show that Ey, E_; € L(R?*")?). For u,v € E; it holds

w(u,v) = w(R(u), R(v)) = —w(u,v)

where the first equality holds since u,v € F; and the second one since R is
antisymplectic. It follows that w(u,v) = 0 for any u,v € Ep, that is E; is a
Lagrangian subspace. Similarly one can show that F_; is also a Lagrangian
subspace. Since a real matrix with real eigenvalues has real eigenvectors, we
conclude that Ey, E_; € L(R*")(2). Result follows as Sp(2n, R) acts transitively
on pairs of transverse Lagrangians. O

Definition 6.13. We will call the standard reflection the map R where

-1d 0
Hat = ( 0 Id)
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Lemma 6.14. Let R be a reflection inside X. Then for any X, Z in X it holds

+ .

4 (R(X),R(Z)) = d" (X,Z2)

Proof. Recall that we have defined d®" in Definition as the projection onto
the Weyl chamber a*:

XQ _ a-‘r
(X7 Z) - (10g<>\1)7 i) log()‘n))

1+4/T3
Loy
cross-ratio Cr(X, Z, Z, X) (Definition . For a matrix R € GL(2n,R), it is

not hard to show that the cross-ratio

where \; = and 1 > r; > ... = r, = 0 are the eigenvalues of the

Or(R(X), R(2), R(2), R(X))

has eigenvalues (A1, ...A,): eigenvalues are stable under conjugation and it holds

Cr (R(X), R(Z),R(2), R(X)) Lo (R(X), R(Z),R(2), R(Y)) @ gor (X, 7.7, Y) R

where equality (1) follows directly from the properties of complex conjugation
and equality (2) is trivial once we express the cross-ratio as in Deﬁnition Let
us consider X = X*/_ the Borel embedding model of the Siegel space described
in . We are left to show that for a reflection R and a point [ € X the point
R(1l) is inside X. For [ € £(C?") and v, w € [ it holds

iw(R(v), Rw) = iw(R(D), Rw) = —iw(T, w)
Result follows. O

Proposition 6.15. Let X be the symmetric space associated to Sp(4,R) and
let R be a reflection of X. Then the set

Fizpgsy(R) = {le LRY)| R(1) =1}

is given by the R-cigenspaces E1, E_1 together with an S*'-isomorphic family F
of pairwise transverse Lagrangians each of which is not transverse to neither E;
nor E_1. Moreover, R fizes the tube Vg, p_, and fives a flat inside any Yy, i,
where l;,1; € F.

Proof. Since any R is conjugated to the standard reflection through an element

of Sp(4, R), let us prove the proposition for Ry = <_gd I(()i) . Let (eq, e2,€3,€4)

denote the standard basis of R*. We have
El = <€3, 64>

E_, ={ey,ez)
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where By, E_; € L(R*)?) (see Lemma . For any u € P(E) there exists
a unique v € P(F_;) such that w(u,v) = 0. For any wy,ws € {u,v) we have
w(wy,ws) = 0 so that | = (u,v) € L(R?) and Ry () = I. We obtain the set
F c Fizpmey(Rst):

F={l=(uv)} =P(E) =2P(E_;) =S

where u € P(E;) and v is the unique element of P(E_1) such that w(u,v) = 0.
We want to show that for any [ € F it holds

EiNHNE_4
and that for any [, ls inside F we have
Iyl
Let us fix « € R and consider u € P(E;), u # e4 to be the vector
u = ez + aey € P(F1)

Then the corresponding v € P(E_1), v # e; such that w(u,v) = 0 is given by

V= —@oe; + ez
Let
0 —
0 1
=y =([ V|| Periene
a 0
0
then [ intersects E; in the line { 1 > © E; and intersects E_; in the line
«
—a
1

( 0 Y < E_1. We are left with the case | = (eq,e1) which is clearly not

0
transverse to E1 nor E_;. We have showed FE; fhI K E_; for every | € F. Let us
now consider /1,y inside F. Similarly as before let i1, € F\{<e4, e1)} where

0 -«
h=o= ]| o )

« 0

0 —B
lo = {uz, v2) = ( (1) ; é )

5] \ o
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where 8 € R, B # a. It is easy to see that [;Ml;. It is also trivial to show that
transversality holds in the case I = (eq, e1).

The reflection Ry, is fixing the tube Vg, g_,: to see this recall that the affine
chart ¢ in Section identifies £(C*) with Sym(2,C). In this chart the La-
grangian E_; = (e, ep) is the point at infinity in the Shilov boundary £(R*) of
X and the expression for the tube Vg, g, is given by the standard tube

Yoo = {iY| Y € Sym™ (2,R)}
For any 1Y € V.0
Ry(iY) = —iY =iy in X/ =X

Observe that with respect to the tube Vg, g_, the reflection R, is the analogue
of a reflection in H?: it is sending any boundary point X € Sym(2, R) (transverse
to both £y and E_;) to the unique R(X) = —X such that My o L Vx r(x). Let
us now consider I,y € F where

lh ={e1,eq), lo= <€2,63>

Let us change the standard basis B = (e, €2, €3, e4) with the basis B’ given by
B’ = (e3,ea,e1,e4). Writing vectors of C* in this new basis means considering
the chart T ot : Sym(2,C) — L£(C*) where T(B) = B’. In particular in this
chart the tube )}, ;, has the standard form

yll’lz = {ZY| Y e Sym+(2,R)}

and the reflection Ry written in basis B’ is given by

-1 0

Wherer=(0 1

) . It holds

R(iY) = —iY" =4iY" in XF/. =X

where by Y we denote the point in the H2-component of the standard tube
which is obtained by reflecting ¥ across the standard vertical geodesic of the
hyperbolic plane (see Section . The reflection R fixes the flat

~(dy 0 _ A0
ooi(l 2)enet e

So the reflection R is reflecting across a geodesic 7 in the H?-component of the
tube ), 1, and is therefore fixing the flat R x « inside the tube. Since Sp(4, R)
acts transitively on the space of transverse Lagrangians we deduce that the same
holds for any l,1s € F. O
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Corollary 6.16. There is no mazimal triple in the S*-family F of Proposition
673

Proof. Let (e1, ea,e3,e4) be the standard basis in R* and as usual let us denote
by ls,0 and Id the Lagrangians

ly = {e1,e2), 0 ={e3,eq), Id ={e1 +e3,ez +e4)
Since any reflection is conjugated to the standard one, we prove the result for

the standard reflection Ry = (—5d I%

>. In the proof of Proposition [6.15)) we

have seen that for R, we have:
E,=0, F_1=ly

Each Lagrangian of F intersects [, and 0 in one line and F = P(E;) = P(E_,).
Let ly,12,13 be three points in F. Up to GL(2,R) =~ Stab(F;, E_1)-action we
can choose the three vectors of P(F_1) to be ej,es and ey + es respectively
(GL(2,R) acts three-transitively on the lines of R?) and we obtain

Iy = {e1,eq), lo = ez, e3), I3 ={e1 +ea,e3 —e4)

Let g € Sp(4,R) be such that g(l1,l2) = (l5,0). Then
1 0 0 O

(A 0N [oo0o0 -1

9= o a7)%lo 0o 1 o0

01 0 0

and let us choose for simplicity A = Id. Then g(l3) = {ea + e3,e1 + e4) which

corresponds to the matrix M = ((1) (1) in the identification of Section The
triple (I, 0, M) is not maximal as its Maslov index is zero (Section for the
definition of Maslov index). O

In Proposition we have seen that for a given reflection R € PSp(4,R)~
there is a different geometrical behaviour when considering what R is doing with
respect to the tube Vg, g_, or to the tube ), ;,, where l;,l5 are two arbitrary
points inside F.

Definition 6.17. The reflection

—r 0 -1 0
we= (0 7) = (0 0)
is called the exotic reflection.

As we have seen in Lemma [6.12] the exotic reflection is conjugated to the
standard one but its different geometrical behaviour on the tube }, ;, (explained
in the proof of Proposition is preserved as soon as we allow conjugation
only inside Stab(), 1,)-
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6.3 Reflection set associated to the side of a hexagon

In this section we introduce the notion of the reflection set associated to the side
of a hexagon. We start by describing a set of reflections R(P, X,Y, Q) associated
to a maximal quadruple (P, X,Y, Q).

Proposition 6.18. Let X' be the symmetric space associated to Sp(4,R). Let
(P, X,Y,Q) be a mazimal quadruple in X and let R be a reflection such that

{R(P) —Pand R(Q) = Q

(17)
Yx rx)LYVro L Vyvry)

Then the reflections satisfying are given by a set R(P,X,Y,Q) where

R(Pa X7 K Q) < Sta‘bl:‘Spi (4,R) (Pa pPPQ (X)apP7Q(Y)a Q)

Let g be an isometry such that g - (P, X,Y,Q) = (0,1d,Y”,00) for Y’ diagonal.
It holds:

(i) If (P, X,Y,Q) is generic then R(P,X,Y,Q) = {g7 ' Rstg9, 9 ' Rexg}
(ii) If (P, X,Y, Q) is non-generic then R(P, X,Y,Q) = g 'Kg

where

/c_{(OK I()() K e PO(2), KQ:Id}

Q3 R(Q)
R(Y) %
H
[ ]
R(X X
P = R(P)

Figure 46: The number of reflections satisfying
depends on the genericity of the red quadruple
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Proof. Let g be an isometry such that g - (P, X,Y,Q) = (0,1d,Y’, ) for Y’
diagonal. Let R be a reflection such that

{R(O) =0 and R(x0) = o a8

Via,rad) L Voo L Yy rivr)
Then R stabilizes the standard tube )y o and belongs therefore to the group
Stabpgp (4,r)(0,00). We know Vo oo L Via,~14 (Lemma [2.16) so that
R(Id) = —Id. The map R stabilizes the tube Y14, _1q4 and is therefore stabilizing

the intersection point Vo oo N Vid,—1d = Po,(Id). The same reasoning holds for
the point Vo0 N Yy r(y) = Po,wo(Y’). We deduce

R(O, Id, Y/, OO) c Stabpspi (4,R) (OapO,OO (Id)7p0,oo(yl), (X))
We obtain two possibilities for R(0,1d, Y’ c0):
(i) If (0,1d,Y”’, ) is generic then Y’ is of the form Y’ = (‘161 y0> where
2

y1 # y2. The only two elements of R(0,1d,Y”’, ) are the standard and the
exotic reflections:

, _/-1d 0 (=0
R(O,Id,Y,oo)—{Rst—(O Id),Rm—<0 T)}

1 0 .
where r = ( 0 1) and Stabpgy= (4,r) (0, Po,o (Id), po,oo (Y”), 20) is the group

r 0
Stabpsy 10,0, 10) o o (V),0) = {10, (§ ) B, P

The reflection Ry fixes the tube Yy o (as Ef“ = O,Ef{t = ly) whereas R,
fixes a flat inside )y o (see Proposition [6.15).

(i) If (0,1d,Y”, 00) is non-generic then Y’ = <y 0

0 y> =y -Id. The group
Stabpspi(4,R)(0,po,oc(Id)apo,oo(yl)7 ) is given by

K 0 -K 0
StabPSpi(4,R)(O7pO,OC(Id)apO,OO(Y/)7OO) = { (0 K) ) < 0 K> ) Ke PO(2)}

-K

LetR=( 0

IO{) for a K € PO(2). Then R is antisymplectic and it holds

R(Id) = —Id so that yopo L yId’R(yl)

R(Y/) = —Y’ so that Vo0 L yY’ﬁ(Y')

We further need R? = Id for R to be an involution which is satisfied exactly
when K? = Id.
Result follows as

R(P,X,Y,Q) =g '"R(0,1d,Y’, 0)g
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Proposition 6.19. Let (I1,13,13,14) be a mazimal quadruple. Let R be a reflec-
tion inside R(P, X,Y, Q) where (P, X,Y,Q) is a mazimal quadruple. Suppose

(X,11,12,13,14,Y) mazimal (possibly X =11 orY =ly)
then (Q,R(Y), R(l4), R(l3), R(l2), R(l1), R(X), P) is mazimal.

Proof. Let g be an isometry such that g - (P, X,Y,Q) = (0,1d,Y’, ) for Y’
diagonal. We want to show that the image

(R(OO)7 R(Y/)v R(l4)7 R(l3)7 R(Zg), R(ll)7 R(Id)7 R(O)) (19)

is maximal for (Id, ly,1s,13,04,Y’) maximal and R € R(0,1d,Y”, ). By Propo-
sition [6.18 we know

(1) R(OvIda Y/,OO) = {RstRex} ifYy’' = (%1 ;2> YL 7# Y2

(i) R(0,1d,Y",00) = K if Y/ = <g 2)

Observe that {Rs;Re.} < K. Using Lemma it is not hard to show that
is maximal. O

We now define R%:’l’yk“ the reflection set associated to the side of a

hexagon H = [V1, V2, Vs, V4, V5, Vs]. The geometric properties of R;Z’l’y’““
for k = 2 are shown in Figure [I7]

Ps P,

o)

Figure 47: R is a reflection inside R%;y 3

96



Definition 6.20. (Reflection set associated to the side of a hexagon)

Let H = [V1, Y2, V3, Y4, V5, V6] be a right-angled hexagon. The reflection set

RYE-1YEe1 gssociated to Yy is the set of reflections which are fixing the end-

points of Vi and are switching the endpoints of V1 and Vi1 respectively.

Recall that we denote by Ry, R, and K the following sets:

1d 0 0 10
Rsf=<o Id)’R"””:(O r)”":(o 1)
C((-K 0 -
ic_{(o K),KePO(z),K _Id}

Observe that {Rs, Rer} < K.
Corollary 6.21. Let H = [Y1,Y5,Ys, Yy, Vs, Ys] be a right-angled hexagon. Let

Vie1 = VP, Psy Vi = V1,020 Yi+1 = Vpy, Py

and let g be an isometry such that g - (Q1, P2, P3,Q2) = (0,1d,Y’,0) for Y’
diagonal. Then

Ryk—hykJrl _ {gilRStgvgilRemg}y Zf (Ql,PQ,P37Q2) generic
Vi g 'Kg if (Q1, P2, P3,Q2) non generic

Proof. Follows directly from Proposition [6.18 O

We can rewrite Corollary in terms of arc coordinates in the following way:

Corollary 6.22. Let H = [V1,Y2,Y3,V1,V5, V6] be a right-angled hexagon
where

Vi = yPthv Vo = le,Qz’ Vs = yPB;P4’ Yy = st;QM Vs = yPs,Pm Ve = stnQe

Suppose (H, Y1) has arc coordinates
A(Hv yl) = (ba Q7d7 [aly 052])

Let Fy g0, 0, be the malefic map of Definition[5.79 and let g1, g2, g3 be isometries
such that
91(Q1, P2, P3,Q2) = (0,1d, Y1, 0)

92(Qs, Ps, P1,Qe) = (0,1d, Y1, 0)
93(Q37P4;P5’Q4) = (OaId7YE3aOO)

where Y1,Ys, Y3 are diagonal matrices. Then it holds

RIYs _ {97 ' Rotg1, 97 'Rexgn}, if bea
¥ 97 Kg1if bed
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Voyi _ ) 193 'Ret92, 93 'Rexg}, if dea

Ry = {2 (21)
¢ gy Kgo if ded

Rys,ys _ {gii_lRStgi’n g?,_lRemQS}v lf Fbyd,alytlm (Q) €a

. 95 'Kgs if Fodaa(c) €0

P

Figure 48: Ry, Ro, R3 are in Ri;’yB, R%Z’yE,Rﬁ’yl
respectively

Proof. Let us prove . By Corollary we know

Ryhya _ {gfletglagflRewgl}7 Z.f (Qla P27 P37 QQ) generic
2 91_1’C91 if (Q1, Pz, P3,Q2) non generic

The quadruple (Q1, Ps, P3,Q2) is generic if the matrix given by the cross-ratio
Cr(Q1, Py, P3,Q2) has distinct eigenvalues pq, o and non-generic if pu; = po

(Definition and 4.10). By Lemma it holds

—t
(:ulu ;U’Q) =d* (le,Qz <P2)7pQ1’Q2)(P3)

The vector (i1, p2) is the image f(b) where f is the bijective map of Proposition
These vectors are drawn in blue in Figure In particular f preserves
regular vectors. Equality follows and the proof for is similar. For
we need to write Fj g.a,,a, () instead of ¢ as there is no bijective map as in the

cases and (21). This is explained in Section O
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6.4 Geometrical interpretation of the set K

Hexagons are the building blocks that will be glued together to compute max-
imal representations. The idea is to parametrize maximal representations by
parametrizing adjacent right-angled hexagons which have equal alternating side-
lengths. This will be the case for adjacent symmetric hexagons, whose definition
is given in this section. Adjacent symmetric hexagons are obtained by reflect-
ing a hexagon across a side and the different ways to do this are encoded in
the reflection set introduced in Section [6.3] In this section we give a geometri-
cal interpretation to the reflection set associated to the side of a hexagon (and
in particular to the set K) in terms of the polygonal chain associated to the
hexagon. This will be very useful for a geometrical interpretation of the pa-
rameters appearing in Theorem [7.23] For simplicity we will consider an ordered
hexagon of the form (H,Yy.«) and will study the associated polygonal chain
defined in [£.19] Let us start with the following

Definition 6.23. Two right-angled hexagons Hi, Ho are said to be adjacent at
Yy if

Hy = [V1,Y2,Y3,V4,Y5,Vs] and Hy = (Y1, Vs, V7, Vs, Vo, V2]

Two such adjacent hexagons will be denoted Hi#y, Ho (Figure [49).

Figure 49: Two adjacent hexagons Hi#y, Ho

Definition 6.24. Let Hy = [V1,)2,Y3, V4, V5, Vs and Ha = [V1, Ve, V7, Vs, Vo, Vo]
be two hexagons adjacent at ;. The hexagons H;#y, Hs are said to be sym-
metric if

H, = R(H,)

for a reflection R € R%‘l”%.

99



In Definition [£.19] we have introduced the notion of a polygonal chain associated
to an ordered right-angled hexagon (H, )y ) inside H. Let

H = (0,4, B,C,D,x)

and let R € Rgi’j’j}ﬂ’ld. Such a reflection is illustrated in Figure By
Corollary we know

R=¢g 'Rg, ReK

where g is an isometry such that g(—A, 0, A%, A) = (0,1d, Y, c0) with Y diagonal.
In this section we want to relate the parameter R inside IC to the polygonal chain
of the hexagon (R(H), o). In particular we will show how the set K allows
us to draw the polygonal chain associated to (R(H),)o.«) once we are given
the polygonal chain associated to (H,Yp,«). When two hexagons are adjacent
they share one vertex of the correspondent polygonal chains and we can look at

the "attached" polygonal chains.

Definition 6.25. (Attachment angle) Let (H,)y.«) and (H', Yy o) be two
adjacent right-angled hexagons inside H with

(HayO,OO) = (O7A7B7C7D7 OO)
(H,Yo.0) = (0,A",B",C",D',0), D' = A
such that (0, A’, B’,C’, A, B,C, D) is maximal (Figure [50)

ve}

0

Figure 50: The tow adjacent hexagons H and H’
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We can look at the ordered sequence of points
H? A\ L H2 oy H2 o~y H? H? H? /- H?
(7T @AY, 7 (B, m" (C"), 7" (1A), " (iB), 7" (iC),w (zD))

obtained by the union of vertices of the polygonal chains associated to (H, Yo,«)
and (H', Yo« ) respectively. This induces an orientation on the segments forming
the polygonal chains. See for example Figure where H' = Ry (H). The
attachment angle B between these two polygonal chains is the angle (measured
on the left) formed by the two (non-vanishing) segments attached at the point

77 (iD') = 7% (iA). For a visualization of the attachment angle see for example
Figure

We want to study the case where H and H’ are symmetric adjacent. Let us
state a proposition which will be useful later:

Proposition 6.26. Let (0, P,Q,0) be a mazimal quadruple and consider the
orthogonal tubes Y_q.q L Vpgp-1q- Suppose (—Q,0, P, Q) generic. Then the
hyperbolic components of iP,iQ and iQP~'Q lie on the same geodesic in H?,
and iQ is the middle point of the three. If (—Q,0, P, Q) is non-generic then the
hyperbolic components coincide in H2.

The configuration of the points iP,iQ and iQP~'Q is illustrated in

Q0

QP'Q

Figure 51: The hyperbolic components of i P, i) and
iQP~1Q are colinear in H?
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Proof. By Propositionwe know that (—@, 0, P, Q) is generic if and only if the
quadruple (0,Q,QP~1Q, ) is generic. Up to Sp(4,R)-action we can consider
(see Figure [52))

_ 0
Q=1d and QP 1Q_Y:<%1 y2>,y1>y2

o0

Y1
Y =
< ” yz)

Id

In
0—//71

Figure 52: Configuration after the action of an
element g € Sp(4,R)

The hyperbolic component of Id is i € H? in the identification of Section
It is trivial that the hyperbolic components of 7Y and iY ~! lie on the same
geodesic in H? (the y-axis), where the point 4 is in the middle. Since isometries
preserve geodesics, the same is true more generally for tubes

Y_0.0 L Yppop-1¢g- The non-generic case is trivial. O

Our aim is to give a geometric interpretation of the set K. More precisely we
want see how the choice of R € K is equivalent to choosing an attachment angle
B between the polygonal chains of H and R(H), where H#R(H) are adjacent
symmetric and R is conjugate to R. Let us start by recalling a standard fact of
linear algebra.

Lemma 6.27. Let K € PO(2) such that K? = 1d. Then
—1 0\ [cosf —sinf
K=1d or K= <0 1) (Sine cos@)
for a unique 0 € [0, 7).
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Let us denote by § the following map

B: K —0,2m)
(—K o) T+ 20 (23)
0 K T if K = Rst

—1 0\ [cosf —sinf
KZ(O 1)(81119 cos@)’ee[oﬂr)

We can now state the following result:

Proposition 6.28. Let (H,Y.«) € H:

where

H = (0,A,1d,C,D, ), C diagonal
with arc coordinates

A(H7 y0,0C) = (b7§7d7 [ah O@])

and let the angles of the polygonal chain associated to (H,Yo.«) be a1, aa (pos-
Yo,0:Y 42 14 .

sibly only o or no angle). Consider a reflection R inside Ry_ ..

Yo,00,Y 42 14
YV_a,4

R=g 'Rg €R

for R e K and g an isometry such that g(—A,0, A%, A) = (0,1d,Y, ) with Y
diagonal.

Then the attachment angle between the polygonal chains of (H, Yo.o) and (R(H), Yo o)
is given by B(K) where B is the map in .

Moreover the polygonal chain associated to (R(H), Vo o) has
(i) segments of lengths h(d), h(c), h(b) where h is the map
h(dy,ds) = di — d2

as, a1 (or «)

ii) angles (if there):
() angles (if ) {27T—042,27r—oz1(0r 27 —a) if K = Rg

Proof. Let us first consider the case where (H, )y o) is generic. The two adjacent
symmetric hexagons are illustrated in Figure[53] By Proposition[6.19the 6-tuple
(0, R(D), R(C), R(Id) = A%, R(A) = A, 0) is maximal

This 6-tuple determines the ordered sequence of vertices in the polygonal chain

associated to (R(H), Vo)
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0

Figure 53: The adjacent symmetric hexagons
H#DLAA R(H)

By Corollary [6.22 we know

RyOYOC’yAQ,Id _ {{glet%glRezQ}, 1]0 bea

Y_a,4 gflng ifbed

where g(—A4,0,A4% A) = (0,1d,Y, ) for Y diagonal and {Rg, Res} < K. As
(H,Yo,%) generic we know b € a so that

R = g_letg or R = g_lRerg

By Proposition We know that the attachment angle is 3(K) = 7 as the points
A% A, 1d are colinear in the hyperbolic component of Vg . Put Rs; = g7 Ry g.

Computations give:
= 0o A
Rst - (A—l 0>

Yo,00:Y 42 14
Y_a,A

Est(—A) = —A7 Est(A) = A7 Rst(O) = 00, Est(Az) =1Id

and one can immediately see that Ry € R as

It is straightforward to see that the segments of the polygonal chain associated to

(Rot(H), Yo.55) have length h(d), h(c), h(b) respectively. The eigenspaces E-t

of Ry are given by B B -
Efft = A, By =-4
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By Proposition we know that ESt is fixing the tube V_4 4 and sending
any transverse X hA to the unique Ry (X) such that Y_4 4 L yX’Et(X). By

Proposition the hyperbolic components of R,;(X) and X lie therefore on
the same geodesic inside H2. The polygonal chain associated to (Rs:(H), Vo o)
is obtained by rotating the polygonal chain of H of an angle m around A. This
is illustrated in Figure [54] where the polygonal chain of H is drawn in blue and
the polygonal chain of R, (H) is drawn in purple. It is easy to see that the
angles of the polygonal chain are therefore given by 27 — a9, 27 — ;.

Figure 54: Polygonal chain of (R (H), Yo,00)
obtained from the polygonal chain of (H, Yo,s)

Yo,0:Y 42 14

Put now R.; = g 'Resg. Recall that Ry = {Rgt, Rz} (Corollary

6.22). Instead of directly computing R., observe that if we denote by f the
map
f € Stabpsp(4’R) (0, A2, A, OO), f # Id

then the map f o R, satisfies

f ORst(_A) = _Aa foﬁst(A) = Aa foﬁst = O, fOESt(A2) =1d
so that R., = f o Ry. The geometric interpretation of f is the reflection
across the geodesic going through the hyperbolic components of A and A2 re-
spectively (Remark [2.34)) and this geodesic also goes through the hyperbolic
component of Id (Proposition [6.26). The angles of the polygonal chain associ-

ated to (Rez(H),Vo,«0) are therefore given by ag,ap and this is illustrated on
the right-hand side of Figure

Let us now consider the case where (H, )y o) is non-generic of type 1.1, that is
b,c,d € 0 x a%. The polygonal chain associated to (H, Yy ) has only one angle
o and is illustrated in Figure By Corollary we know

Yo,0,Y 42 1a
V_a,4

R=g'Kg eR
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Figure 55: Polygonal chains of (R (H), Vo «) and
(Rez(H), Yo,50) obtained from the polygonal chain of
(Hv y0,00)

where g(—A,0,A42, A) = (0,Id,Y,) for Y diagonal. Since b € d we know
A = a-1d. Computations give

Vo,0,Y 2, O aK
Ry—A,AA “ = { (a—lK O > 9 KE ’C}

Given R e Rz(i: ’j;AQ'Id let us decompose R as following: let

-1 0 cos) —sind
T:<0 1> S:<sin9 cos@)’ge[o’ﬂ-)

We write
B (r 0\ /S O 0 ald
“\o rJ\0 S/\a'Id O
—_— —— —
T S M
—1 0Y) (cosf —sinf . ..
where K = 0 1 <sin 0 cosd ) K # R, is the decomposition of

Lemma[6.27] The geometrical interpretation of this decomposition is illustrated
in Figure The map M is analogue to the rotation of Figure The map
S is a rotation of angle 26 around i on the hyperbolic component of Vo o (see
Section and the map r is a reflection across the vertical axis. We obtain an
attachment angle S(K) = m + 260 and polygonal chain angle a. When K = Ry

we only have
= 0 ald
R= (a‘lld 0 )

and we are nor rotating nor reflecting.
The proof for the other cases where (H, Yy ) is non-generic are similar. O
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Figure 56: Geometrical interpretation of R = rSM

Remark 6.29. (Reflections producing the same hexagon) In Proposition
we have seen that the choice of R € K is equivalent to choosing an attach-
ment angle  between the hexagons H and R(H), where H#y_, ,R(H) are

adjacent symmetric and R is conjugate to R. More precisely for (H, Yo ) € H:
H=(0,4,1d,C, D, ), C diagonal
with arc coordinates
A(H, Yo.00) = (b, ¢, d, [a1, az])
we know that the reflection set associated to Y_4 4 is the set (Corollary

RyﬂyocwyAQ,Id _ {g_letgvg_lRewg}a Zf QE a
Yoaa g Kgif bed

where g(fA,O,ilQ,A) = (0,Id,Y,00) with Y diagonal. The polygonal chain
associated to (R(H),Yo.«0) is illustrated in Fugures and for the cases
(b,c,d) € a® and (b,c,d) € 0 x a? respectively. Observe that if H is contained

in a maximal polydisc it can happen that Riﬂj j/A2‘Id contains two different
reflections R, R’ for which B o
R(H) = R'(H)

Let us denote for simplicity p = (b, ¢, d, [a1, az2]) the arc coordinates associated
to (H,Yo0,0)- By the geometrical interpretation of Proposition it is not
hard to show that the case R(H) = R/(H) happens exactly for

R, R € {9 'Rsg, g 'Rerg} if pe D\Dye (24)

and for any o
R,Re g 'Kg ifpe Dy (25)

where D and Dy are described in Proposition .28 and Definition respec-
tively. The two hexagons H and R(H) = R/(H) lie both inside the model
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polydisc if R, R’ are as in and all the points of the two polygonal chains lie
on the vertical geodesic of H2. In , the two hexagons H and R(H) = R/(H)
lie both inside the diagonal disc and all the points of the polygonal chains coin-
cide with 7" (ild).

Remark 6.30. (Attaching several polygonal chains)

Let H = (0, A,1d,C, D, ©) be a generic right-angled hexagon and consider the

hexagon Ry(H) where R € RYo> Va2

Y_a,A
R%ﬁj ’j;AZ’“ contains exactly two elements (Corollary[6.22). We have drawn the

correspondent attached polygonal chains of H# Ry(H) in Figure In partic-
ular we know that the attachment angle is § = 7 (which follows directly from
Proposition and we know how to draw the angles of the polygonal chain
associated to (Ra(H), Yo .«) using the geometrical interpretation of Proposition
We can state a similar result if we consider the hexagon R;(H) where

= Yo.0,.Ye pe-1p
R1 € Ry—D,D

Ro(H)#H#R,(H). This will turn out to be a very useful visualization in the
proof of Theorem For this reason we end this chapter by drawing all the
possible polygonal chains of Ro(H)#H#R,(H) in the case that (H, Yo ) is
generic. This is illustrated in Figure [57] The polygonal chains are drawn up
to isometry, this means that we consider two polygonal chains to be equivalent
if there exists an isometry g € PSp(4,R) sending all the vertices of one to the
vertices of the other.

PAP IS

Figure 57: All possible polygonal chains (up to
isometry) for Ro(H)#H#R1(H) when (H,Yo,o) is

generic

. As (H,Yo,«) is generic we know that

. We can then draw the three attached polygonal chains
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7 Parameters for maximal representations

In this chapter we use arc coordinates of right-angled hexagons to parametrize
maximal representations. We start by discussing geometric properties of Shilov
hyperbolic isometries in PSp(2n,R), where we investigate in detail the case of
PSp(4,R). We state the definition of a maximal representation into PSp(2n, R)
and we further define the notion of a maximal representation from the Cox-
eter group Ws = Z/27 * Z,/27 + 7./27 into PSp*(2n,R) (Definition . We
recall the notion of arc coordinates for classical Teichmiiller space 7 (X) and
we consider the example of the surface ¥ = X 3 (pair of pants), whose fun-
damental group we denote I'g 3. In Theorem [7.21] we use arc coordinates of
right-angled hexagons to give a parametrization of the set of maximal repre-
sentations of Wy into PSp*(4,R). This will lead to the parametrization of a
set x© < ymaxShilov(py o PSp(4,R)) (Definition that will be described in
Theorem

7.1 Shilov hyperbolic isometries

In this section we give the definition of a Shilov hyperbolic element in PSp(2n, R).
We will study in detail the case of PSp(4,R) and give a classification of Shilov
hyperbolic elements.

Definition 7.1. An element g € PSp(2n,R) is called Shilov hyperbolic if it is
conjugate to (61 AQT) for a matrix A € GL(n,R) with complex eigenvalues
with modulus greater than one.

Example 7.2. As an example we study Shilov hyperbolic elements in PSp(4, R).
Let (e1,ez,e3,e4) be the standard basis of R%. Recall that we denote 0,1y, the
Lagrangians

0= <€37 64>, loo = <€1,€2>

and that the standard tube
Voo = {iY] Y € Sym™ (2, R)}
is isometrically identified (see Lemma with R x H? through the map
m® x 75 Voo — R x Sym™ (2, R)

logdet Y Y )
V2 T W/detY

Moreover, in the proof of Proposition [2.35] we have shown how the visual bound-
ary of the hyperbolic component in Yy o, can be realized as the O(2)-orbit of

40 ) € PSp(4,R) be a Shilov

z'Y»—»(
0 AT

the Lagrangian [ = (e, e4). Let now g4 = (
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hyperbolic element. The action of g4 on the R-component of the standard tube
is given by

R (gali¥)) = log deti(};l) detY _ logd\e/t;(A) )

and Shilov hyperbolicity implies 7%(g4(iY)) > 7%(i1Y"). We now want to study
the action of g4 on the hyperbolic component of the standard tube )y . We
have the following possibilities:

e A has eigenvalues A = p € R and acts on H? as the identity map

e A has eigenvalues A > p € R and is conjugate to a matrix
A0
<0 u) !
1 ~ ga
+ 0
o ()
"
The map ga acts on the hyperbolic component of )y o as an hyperbolic

isometry: it fixes exactly two points in the boundary of H?2.

e A has one eigenvalues ) € R and is conjugate to a matrix
Al
03 o

The map ga acts on the hyperbolic component of )y o as a parabolic
isometry: it fixes exactly one point in the boundary of HZ2.

e A has two complex eigenvalues Ae?. e~ 6 # 2kr and is conjugate to a
matrix

Asin€  Acos@

0 %cos@ —%sin@ ga
%sinﬂ %cos@

()\ cosf —Asin 9) 0

The map g4 acts on the hyperbolic component of Vp o as an elliptic isom-
etry: it fixes exactly one point inside H?2.

The geometrical interpretation of the action of g4 on )y o in the hyperbolic,
parabolic and elliptic case is illustrated in Figure
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Vo,0 Vo,0 Yo,0
R N N

Figure 58: The action of g4 on Yy o = R x H? in the hyperbolic, parabolic and
elliptic case

Lemma 7.3. Let g be an element of PSp(2n,R). Then g is Shilov hyperbolic if
and only if g fizes two transverse Lagrangians l;, ly on which it acts expandingly
and contractingly respectively.

Proof. By Definition [7.1] the element g is Shilov hyperbolic if it is conjugate to
ga = <61 AQT) for a matrix A € GL(n,R) with all eigenvalues with modulus

greater than one:
g =hgah™', hePSp(2n,R)

Let (e1,ea,e3,e4) be the standard basis of R* and let 0,1, be the Lagrangians

0 = {es,ea), lon = e1,€2)

It is not hard to prove that A has all eigenvalues with modulus greater than one
if and only if for any [ € L(R*), 0hIhly it holds

lim ¢¥(1) =0and lim ¢g&(1) = I
k——o0 k—0o0

i.e. ga fixes 0,1y on which it acts expandingly and contractingly respectively.
Put

L= h(0), 15 = h(lx)

O
Lemma 7.4. Let g be an element of PSp(4,R) fixing two Lagrangians ly,ls in
61 AQT for a matriz A € GL(n,R).
Denote by |A| = |u| the modulus of the eigenvalues of A. Then

L(R*) i.e. g is conjugated to ga =

(i) There exists | € L(R?*) such that (I1,1,12) mazimal and (11,1, g(1),12) maz-
imal if and only if |p| > 1 (that is g is Shilov hyperbolic).

(ii) (11,1, g(1),12) mazimal for all I such that (11,1,12) mazimal if and only if
A=Md for \e R, A > 1.
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Proof. Tt is sufficient to prove the lemma for g = g4, that is [y = 0 and Iy = o0.

(i) We want to show that there exists Y such that (0,Y;00) maximal and
(0,Y, gaY,0) maximal if and only if || > 1. Let us write Y > 0 for a
matrix Y which is positive definite. By Lemma[2.5| we know that (0, Y, )
is maximal if and only if Y > 0. Suppose that there exists Y > 0 such
that (0,Y, gaY, ) maximal, that is

gAY =Y = AY AT —Y >0

Recall that a matrix M is positive definite if and only if NMNT > 0 for
every invertible matrix N. In particular for N = /Y ~! we obtain

VYAV AT —Y)WVY -1 = (VY1 AVY) (WY ATVY 1) —Td > 0 (26)

The matrix VY ATv/Y -1 € GL(2,R) has the same eigenvalues of A. Let
v be the orthonormal eigenvector associated to p. Then

VYATVY 1o = po = VY ATVY 15 = o
It follows from :
VT (VY 1AVY ) (VY ATVY 15 — 0o T = |p)? = 1> 0

Let now suppose |p| > 1. We want to find Y > 0 such that (0,Y,g4Y, )
maximal that is we want to find ¥ > 0 such that g4Y —Y > 0. In
Remark [2.30] we have given an equivalent condition for g4Y — Y to be
positive definite: let

r=d*(rRGY), 7R (igaY)), h = d¥ (7 (iY), 7% (igaY))

then

1
gAY7Y>O<:>r>Eh (27)

As g4 Shilov hyperbolic (this is the assumption |u| < 1) we know that
ga acts as a translation of distance r on the R-component of )y o, and
as an isometry on the H2-component which can be hyperbolic parabolic
or elliptic (see Example . Observe that for a fixed A the distance r
only depends on the eigenvalues of A and not on the point X, whereas
the distance h depends on X and decreases the more X is close to the
axis (if the isometry is hyperbolic) or to a fixed point (if the isometry is
parabolic or elliptic). We can always find an open neighbour of the axis
(or of a fixed point) such that the condition r > %h is satisfied.
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(1i)) We want to show that (0,Y,g4Y,0) is maximal VY such that (0,Y, )
maximal if and only if A = Ald for A € R, A > 1. This is clear after the
discussion in (i): recall that A\Id for A\ € R acts on the H2-component of
the tube as the identity map, so if A = AId the inequality in is clearly
satisfied. Conversely, suppose that (0,Y,g4Y, 00) is maximal for all Y > 0.
Equivalently, for any Y > 0 the inequality in is satisfied, where the
distance 7 is a fixed length depending only on the eigenvalues of A. This
implies that the action of g4 on the hyperbolic component of the tube is
the identity map i.e. g4 = AId, A € R. If this were not the case, we could
always find an Y which does not satisfy the inequality in by stepping
away from the axis (in the hyperbolic case) or the fixed points (in the
parabolic or elliptic case) and moving towards the boundary of H?.

O

7.2 Maximal representations

Let ¥ be an oriented surface with negative Euler characteristic and boundary
0%.. Fix a finite area hyperbolization on ¥ inducing an action of the fundamental
group m1(X) on St = JH2. An element v € 71(X) is called peripheral if it is
freely homotopic to a boundary component.

Maximal representations are representations that maximize the Toledo in-
variant, an invariant defined using bounded cohomology (see [Tol89], [BIW10]).
It is a deep result from Burger Iozzi and Wienhard ([BIW10, Theorem 8] ) that
maximal representations can be equivalently characterized as representations
admitting a well-behaved boundary map, that is they can be defined by the
following

Definition 7.5. A representation p : m1(X) — PSp(2n,R) is mazimal if there
exists a p-equivariant map ¢ : S — £(R?") which is monotone (i.e. the image
of any positively oriented triple in the circle is a maximal triple) and right
continuous.

Given a maximal representation p : m1(X) — PSp(2n,R), the image p(v)
of every non-peripheral element v € 71 (X) is Shilov hyperbolic (see [Strl5)).
Equivalently, p(v) fixes two transverse Lagrangians [ and [ on which it acts
expandingly and contractingly respectively (see Lemma. These Lagrangians
are the images £(y*) and £(y7) where € : S! — L(R?") is the equivariant
boundary map and l$ = £(y%). We want to parametrize the set of maximal
representations where the property of being Shilov hyperbolic is true also for pe-
ripheral elements. This is equivalent to the requirement that the representations
are Anosov in the sense of [GW12].

Definition 7.6. A maximal representation p : m1(3) — PSp(2n,R) will be
called Shilov hyperbolic if p(y) is Shilov hyperbolic for every v € m;(X). The
set of maximal representations which are Shilov hyperbolic will be denoted by
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Hom™Shilov (7 (33) PSp(2n,R)). We define y™xShilov (7 (%) PSp(2n, R)) as
the quotient

XSOV (7, (£), PSp(2n, R)) := Hom™ MY (7, (£), PSp(2n, R)) /psp(an,x)

where PSp(2n,R) is acting by conjugation: p ~ p’ if there exists g € PSp(2n, R)
such that p(y) = gp'(v)g~! for all v € 71 (2).

We want to introduce the definition of a maximal representation from the
group Z/27 x Z)2Z * 7./27Z into PSpT (2n, R).

Notation 7.7. For the rest of the thesis the group
Z)27 « 7.)27 + 1./27 = (31, 82, s3] s3 = s3 = 53 = 1) will be denoted by Ws.

P Ry

Z

Yo

Ry

Q2

Y;

Figure 59: The reflections p(s1), p(s2), p(s3) for
p: W3 — PSpT(4,R) maximal
Definition 7.8. Let W3 = (s1, s2,53| s7 = 53 = s3 = 1). A representation
p: Ws — PSp™(2n,R)
is mazimal if there exists a maximal 6-tuple (Py, P», Q1,Q2, R1, R2) such that
e p(s1) is a reflection of X fixing (P, P») such that
p(s1)(X1) = Xz and p(s1)(Z21) = Z»
where X1, X5, Z1, Z5 are uniquely determined by

Yr, p, L Vx,.x, L Vo,.0, and Vg, r, L Vz,,2, L Vp,.P,
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e p(s2) is a reflection of X fixing (Q1,Q2) such that
p(s2)(X1) = X2 and p(s2)(Y1) = Y2
where Y7, Y5 are uniquely determined by
Yo1,0: L Yvivs L VR R,
e p(s3) is a reflection of X fixing (R;, R2) such that
p(s3)(Y1) = Y2 and p(s3)(Z21) = Z»

The space of maximal representations will be denoted by Hom™* (W3, PSp*(2n, R)).
We further define

X" (W3, PSp™ (2n, R)) := Hom™ (W3, PSpT (21, R)) /psp(an.v)

The geometric properties of a maximal representation defined in [7.8] are
illustrated in Figure 59

Remark 7.9. Observe that given the maximal 6-tuple (Py, Ps, Q1,Q2, R1, R2)
the set of reflections p(s;),i = 1,2, 3 for which p : W3 — PSp(4, R)* is maximal
as in Definition are given by the sets R(P1, Z2, X1, P2), R(Q1, X2, Y1, Q2)
and R(R1,Ys, Z1, Ry) respectively (recall Proposition [6.18)).

Lemma 7.10. Let W3 = (51, 89,53| 3 = 53 = 53 = 1) and let
p: W3 — PSp(4,R)E be mazimal. Then the composition p(sisj) = p(si)p(s;) is
a Shilov hyperbolic element of PSp(4,R) for any i # j where i,j € {1,2,3}.

Proof. The product of any two reflections is an element of PSp(2n,R): for two
reflections p(s;) = Ry, p(s;) = R; it holds

(RiR;)"J(R;R;) = R] R JR;R; = R} (—J)R; = J

Let p : W3 — PSp(4,R)* be maximal, we want to show that p(s;)p(s;) is Shilov
hyperbolic. Without loss of generality let us sassume i = 1,7 = 2. By definition
of maximality (see Definition [7.8]) it is clear that p(s1)p(s2) fixes X; and X,
where (P1, X1, Py, Q1, X2, Q2) is a maximal 6-tuple and

yP11P2 1 thXz 1 thQz

Up to isometry let us consider (Pi, Ps,Q1,Q2,R1,Rs) = (0,A,1d,C, D, )
where A, C, D are positive definite and C is diagonal (Figure .

The map p(s1)p(s2) is inside PSp(4, R) and fixes 0 and co. This map is Shilov hy-
perbolic if and only if there exists a positive definite Y such that (0, Y, p(s1)p(s2)Y, )
is maximal (see Lemma. Let Y = A. Then

p(s1)p(s2)(A) = p(s1)(A)

We want to show that (0, A, p(s1)A, 0) is maximal. We know (0, A, C') maximal
and p(s1) € R(-D,0,C, D) (Remark . Result follows by Proposition
and 0
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Id

A2
Figure 60: The map p(s1)p(s2) is Shilov hyperbolic

‘We finish this section with a lemma that will be useful later.

Lemma 7.11. Let p : Wy — PSp™(4,R) be mazimal and let (X1, Xo,Y1,Ys, Z1, Z5)
be a maximal 6-tuple as in Definition . Then for ly,la, 13,14 € L(R*) it holds:

(’L) If (XQ, ll, ZQ, 13, l4, Zl) 1s maximal then (ZQ, p(Sl)l4, ,0(81)13, p(Sl)l27 p(Sl)ll, Xl)
18 maximal

(i) If (Ya,11,12,13,14, X1) is mazimal then (X2, p(s2)la, p(s2)l3, p(s2)l2, p(s2)l1, Y1)
18 maximal

(iii) If (Za,11,1a,13,14, Y1) is maximal then (Ya, p(s3)l4, p(s3)l3, p(s3)la, p(s3)l1, Z1)
ismazimal

Proof. Follows directly from Proposition Point (i) is illustrated in Figure
01}

Figure 61: Configuration of (%)
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7.3 Arc coordinates in classical Teichmiiller

Given a hyperbolic surface with boundary, arc coordinates provide a parametriza-
tion of the Teichmiiller space. They were first introduced by Harer [Har86| and
were developed by Penner [Pen87| to decompose decorated Teichmiiller space of
punctured surface. This decomposition was generalized by [Ush99| [Pen02| for
surfaces with boundary. Similar coordinates were used in |[Luo07] [Guo09].

Let us recall arc coordinates for classical Teichmiiller space T(X). Let
Y = Yg4.m be a compact orientable smooth surface of genus g and m boundary
components. We can equip ¥, ,, with a complete hyperbolic structure of finite
volume with geodesic boundary. The universal covering ig,m of ¥y, is a closed
subset of the hyperbolic plane H? where boundary curves are geodesics.

Let us consider a maximal collection {ay,...,ax} of pairwise disjoint arcs
in ¥, ., with starting and ending point on a boundary component which are
essential and pairwise non-homotopic (Figure . The connected components
of ¥g.m\J; a; are given by a union of hexagons. Every arc will be called an
edge of the hexagon decomposition. For every hexagon there are exactly three
alternating edges belonging to one boundary component of ¥, ,,,. We denote by
E the set of all edges, Epary the set of edges lying on a boundary component
and by H the set of all hexagons of the decomposition. It can be shown that
for such a collection {a1, ..., ax} it holds

k= #E\Ebdry = 3|X(Zg,m)| = 3(29 -2+ m)
and that the number of hexagons is given by

#H =2|x(Xgm)| = 2(29 — 2 +m)

>o,3 20,4

N—
)

Figure 62: A collection {ay,...,ax} for the surfaces
2073 and 2074

For a fixed hyperbolic structure we can always realize the hexagon decom-
position of X, ,, in a way such that every edge is a geodesic and every arc
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a; € {ay,...,ax} is the unique geodesic which is orthogonal to the boundary
at both endpoints. Moreover, we fix an orientation on the boundary com-
ponents such that the surface lies to the right of the boundary. For each
choice of {a1, ..., ar} we get a parametrization of the Teichmiiller space T (X, ,):
once we fix the lengths i{(a;), ...,l(ax) there is a unique hyperbolic metric that
makes X,,,\|J; @; a union of hyperbolic right-angled hexagons where each
hexagon has exactly three alternating edges a;,,a;,, ai; in E\Ejpgr, of length
l(ai,),1(a;,),(a;,) respectively, where iy,42,i5 € {1,...,k}. This is due to the
well known fact that given three real numbers b,¢,d > 0 there exists (up to
isometries) a unique right-angled hexagon in H? with alternating sides of lengths
b,c and d (see for example [Marl6, Lemma 6.2.2]). Let us denote by I'y ,,, the
fundamental group 7 (34, ). It is well known (see for example [FM11], [Aral2]|)
that one can define the Teichmiiller space T (3, .., ) as the set of conjugacy classes
of discrete and faithful representations p where

p:Tym — PSL(2,R)

In Deﬁnitionwe have defined the space y™@<Shilov(T' . PSp(2n, R)). When
n = 1 the group PSp(2,R) coincides with PSL(2,R). A Shilov hyperbolic ele-
ment in PSL(2,R) is conjugated to a matrix of the type

A0
(0 )\—1) ) |/\‘ >1

A representation p € Hom(I'y ,,, PSL(2,R)) is discrete and faithful if and only
if p is maximal and Shilov hyperbolic. The surface X ., is then realized by the
quotient

Xgm “p(Tg,m) \H2
where p(T'y) acts freely and properly discontinuously on H?. The above dis-
cussion asserts that once we fix the lengths I(a1), ..., I(ax) we can explicitly write
the representation p : Ty, — PSL(2,R) € Hom™*Shlev(p  PSL,(2,R)) such
that ¥y ,,, = p(Tg,m)\H?. Concrete examples will be given in and
The fundamental group of the surface X, ,, is isomorphic to a free group.

Lemma 7.12. LetT'y ., denote the fundamental group m1(Xg ). Then Ty, is
isomorphic to the free group Fogym—_1.

Proof. Tt is well known that I ,,, has the following presentation (see for example
|[Lab13, Theorem 2.3.15] for the case m = 0)

g m
Fg,m = <a1,b1, ...ag,bg,cl, Cm| H[a“bl] H Cj = 1>
j=1

i=1

where [a;, b;] = aibiaflbfl denotes the commutator of a; and b;. Then
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Fog4m—1 = I'ym through the isomorphism given by

F2g+m71 - Fg,m
a; fori=1,....g
Xi— b fori=g+1,...,2¢g
¢ fori=29g+1,...,2g+m—1

O

Example 7.13. (Pair of pants) Let I'g 3 be the fundamental group 71 (¢ 3).

By Lemma we know
[o3 =T,

Let us denote I'g 3 = {(a, 8) and consider aq, as,as three arcs as in Figure
which decompose ¥ 3 in two hexagons. Once we fix the lengths I(a1), {(a2), (a3)
we can uniquely draw two adjacent isometric hexagons in H? up to isometry
and we can reconstruct the generators p(a), p(3) of the maximal representation
which "closes up" the pair of pants. These are two hyperbolic isometries inside
PSL(2,R). This is illustrated in Figure

D .

p(a)

&lp(/ﬁ

Figure 63: The maximal representation
P ].—‘073 - PSL(2,R)
Example 7.14. (The surface ¥;4) By Lemma we know
Lo =F3 =<, B8,7)

The procedure to reconstruct the maximal representation is similar to Example

This is illustrated in Figure [64]
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Figure 64: The maximal representation
P ].—‘074 - PSL(Q,R)

7.4 The group I'y3 as a subgroup of W3

In Deﬁnition andwe have defined the space y™a%Shilov(T 5 PSp(2n, R))
and ™ (W5, PSpT (2n,R)) respectively. When n = 1 the group PSp(2,R)
coincides with PSL(2,R). Let W35 be the Coxeter group

W3 =727 « 7)27 = 727

The fundamental group I'g 3 is isomorphic to the free group Fs (see Lemma
7.12)). The following lemma allows us to see I'g 3 as a subgroup of Ws.

Lemma 7.15. The group W3 has a normal subgroup I" isomorphic to the free
group Fo.

Proof. Let W3 = (s1, 82,53] 7 = s3 = s2 = 1) and let us consider the subgroup
T of W3
T = (8182, S283)

The subgroup I' is torsion free and result follows by a generalized version of

Loh17, Corollary 4.2.15]. O

Proposition 7.16. Let Iy 3, W3 be the following groups

To3 =mi(0,3) =, )

W3 = (s1, s2, 83] s% = s% = s?)) =1)
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and denote by ¢ the following homomorphism
¢:To3— W;
Q= S§189
B s283
Fiz p e Hom™* (W5, PSL*(2,R)). It holds
(i) The representation p := p|rm(e) is inside Hom™*5hilov (T 5 PSL(2,R)).

(ii) For any p € Hom™*5"ilov(Dy 5 PSL(2,R)) there exists a unique p €
Hom™* (W3, PSL¥ (2, R)) such that p = o ¢

Log ——— W3
]
PSL*(2,R)

(iii) The map f defined by
f . Xmayc(m/?)7 PSLi (2, R)) _ Xmax,Shilov(FO’s, PSL(Q, R))

(2] = [Plrms)]

is a homeomorphism.

Proof. (i) This will be proven for PSp(4,R) in Proposition The proof
for PSL(2,R) is similar.

(i) Let p e Hom™®Shilov(1 o PST,(2,R)). Denote by
{(x1,22), (Y1, 92), (21, 22)} < OH?

the fixed points of p(c), p(3) and p(B~ta~1!) respectively. Choose an ori-
entation of the boundary 0H? such that (z1, 22, y1, y2, 21, 22) is positive. In
Sectionwe have defined a reflection in H? as an involution of SL™ (2, R).
Reflections in H? fix an infinite geodesic v (see Proposition and are
uniquely determined by the endpoints of v at the boundary of H? (Propo-
sition . For p,q € 0H? let Yp,q denote the infinite geodesic having p, g
as endpoints.

Notation 7.17. For p,q € 0H? we denote R, , the unique non trivial
reflection fixing the infinite geodesic v, 4 i.e. R, 4 is the unique non trivial
isometry such that

Yp,q 1 Yz,Rp,q(x)
for any x € OH?2.
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Let (p1,p2,q1,q2,71,72) be the positive 6-tuple inside dH? uniquely deter-
mined by

71?1,1’2 J- ’ypla;ﬂz J- ’yylﬁy2 J- 7111#]2 J— ’721,22 J— ’yTlﬂ‘z J— ’711,12
Define j: W3 — PSL*(2,R) such that (Figure [65)

5(81) = Rhﬂ“z
R

T2

Figure 65: The maximal representation p as a
restriction of g

Then p is maximal. Moreover it is easy to show that (see for example

[Mar16] Proposition 6.2.1)
p(a) = Ry, g, © Rp, s
p(ﬁ) = Rm,rz © RQ1,112
It follows
Ps152) = (s1)P(52) = pla) and P(ss5) = Ps2)7(s5) = p(F)
so that po ¢(vy) = p(y) for all v € T'g 3. It is clear that § is the unique

maximal representation such that po ¢ = p.
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(i1i) This follows directly from (7). In particular recall that as I'g 3 is free,
the set of representations Hom(I'g 3, PSL(2,R)) can be identified with
PSL(2,R)? and we can carry over its topology.

0

7.5 The set \°

In Deﬁnitionwe have defined the set of maximal representations Hom™* (W5, PSp* (4, R))
and we know that we can see the fundamental group I'g 3 as a subgroup of Ws.

In this section we define the set xS < ym@<Shilov(T, 5 PSp(4,R)). We start by

giving an analogue of Proposition (z) in the case of PSp(4,R), that is we

show that the restriction to I'g 3 of a maximal representation as in Definition

is a maximal and Shilov hyperbolic representation as in Definition

Proposition 7.18. Let I'g 3, W3 be the following groups
Los =m(X03) =<, B)

W3 = (s1,52,83] 57 =53 =s52=1)
and denote by ¢ the following homomorphism
¢:To3— W3

Q= 5189

B — s283
Fiz j € Hom™* (W5, PSpT(4,R)). Then the representation p := Plim(g) s
inside Hom™*@5"1°v (D 5 PSp(4, R)).
Proof. By Lemma, we know that po ¢(v) is a Shilov hyperbolic element of
PSp(4,R) for any v € I'g 3. By abuse of notation let us denote the subgroup
#(To3) < Ws just as [g3. Given p € Hom™ (W3, PSp*(4,R)) we want to
prove that

p=po¢:Tosz—PSp(4,R)

is maximal. Fix py a hyperbolization of ¥ 3. Denote

{(x1,22), (y1,92), (21, 22)} < oH?

the fixed points of po(a), po(B8) and po(B~ta~1) respectively. Choose an ori-
entation of the boundary 0H? such that (z1,z2,%1,%2,21,22) is positive. By
Proposition ( i1) we know that there is a unique way to extend the action of
I3 on H? (and on its boundary) to the group W5 making the following diagram
commute

¢
Tos Wa
00 Po
PSL*(2,R)
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where Py is maximal. For simplicity given s € W5 and p € 0H? we will denote
the action py(s) - p simply as s - p.

Since p : W5 — PSpT (4, R) is maximal we know that there exists a maximal
6-tuple (Py, Pa, Q1,Q2, R1, Ro) satisfying the conditions of Definition Let
us denote (X1, Xo,Y1,Ys, Z1, Z5) the Lagrangians (see Figure such that

yPth 1 thXz 1 yQ17Q2 1 yYhYZ 1 thRz 1 yZl;Z2 1 yP17P2
We define the following sets

2
HY = {21, 22,91, 92, 21, 22}
H* = {X1,X2,Y1,Ya, Z1, Z}

OF .= U s-HE seWs

|s|<n

05 = nls) - H*

|s|<n

Define &, : OF — OF such that

{(fnm),mm),fn(yo,5n<y2>7§n(zl>,gn<zg>) — (X1, X2, 1, Y2, 21, 22)
En(s-p) = p(s)&n(p) for se W3, |s| < n, pe HY

We will show that the map &,, is monotone by induction on n.

n = 0: From the definition of £ it is clear that the map & : H® 5 HE is
monotone.

n = 1: We obtain the map &; : (9]{]12 — OF where
O]ﬁz = HH2 \ {SlHHQ,SQHHQ,Sg,HHQ}

and
Of = H® U {p(s1)H", p(s2)H*, p(s3) H"}

The set (’)]f12 is given by HY together with other six points, two for every
siHHQ,i € {1,2,3}. For s1HE we only add the two points {s1y1, s1y2} as

S§1X1 = T2,851T2 = I1 and S121 = 22,8122 = 21

The same holds for so H B and ssH H? This is illustrated in Figure
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Figure 66: Configuration of (91512

The set O]{ﬂg is therefore formed by 12 points. The order on Olfﬁ is given by
the orientation of dHZ2. To explicitly write (91{{2 as a positive 12-tuple we use
Proposition [6.§] to show that the quadruples

(22781y2781y1561)7 (96278222,822172/1) and (y2,33x2,53x1721)
are positive. We obtain the following positive 12-tuple:
H2
O = (22,512, 51Y1, %1, T2, S222, 5221, Y1, Y2, 53L2, S3%1, 21)

Similarly, the set OF consists of 12 Lagrangians: it is given by H” together
with six Lagrangians, two for every p(s;)H*. For p(s;)H* we only add the
Lagrangians {p(s1)Y7, p(s1)Ya2}: by definition of p we know that (Definition [7.8)

p(Sl)Xl = Xg,p(sl)Xg = X1 and p(Sl)Zl = ZQ,p(Sl)ZQ = Z1
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and the same is true for p(sy)H%,p(s3)H%. To prove the monotonic behaviour
of &1 we need to show maximality of the 12-tuple

Of = (Za, p(s1)Ya, p(31)Y1, X1, X, p(52) Za, p(s2) Z1, Y1, Yo, p(s3) X2, p(s3) X1, Z1)
we use Lemma [7.11] to show that the three quadruples
(Za, p(s1)Y2, p(s1)Y1, X1), (X2, p(52)Za, p(s2)Z1, Y1), (Y2, p(s3) X2, p(s3) X1, Z1)

are maximal . We use Lemma [2.6] to deduce that the 12-tuple is therefore max-
imal.

Assume true for n show true for n 4+ 1: Assuming &,, monotone we con-
sider the map

. HH? L
En+1 On+1 - On+1

We will first study the set OH?H describing how to obtain it from OEF and how
to write its positive order (Claim I and Claim 2).

The set OF" | is given by
Ogil = ng U{s-H, |s|=n+1}

2
If we fix an element s € W3 such that |s| = n + 1 and look at the set {s- H% }
. . . H2 . .
we are adding exactly two points inside O, ; both lying between two points
. . H2 .. . . .
contained in O, . This is made precise in the following two statements

Claim 1: For any s € W3 such that |s| = n + 1 it holds
0% U {s- HTY = O} +2
Claim 2: Let s = ws; where |w| = n and s; € W3. It holds

1. If s; = 51 then the two points wsl-HH2 added inside (’)Eﬁl are {ws1y1, WS1Y2}
and are such that

(wza, wS1Y2, WS1Y1, W) positive if n even
(wzy, ws1y1, WS1Y2, w2s) positive if n odd

2. If s; = s5 then the two points w52~HH2 added inside Ogﬁl are {wsgz1, Ws2 22}
and are such that

(wxe, WSz, WS221, WY1 ) positive if n even

(wy1, wso21, WSa29, wxs) positive if n odd
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3. If s; = s3 then the two points 11):33-HH2 added inside (’)Elil are {ws3x1, wWS3T2}
and are such that

(wy2, wSsTe, WS3xT1, w21 ) positive if n even
(wz1, ws3wy, WS3Ta, WY ) positive if n odd

Proof of Claim 1 Let s € W such that |s| = n+ 1 and consider the set s - HT .
Let us suppose that s ends with the element s; i.e. we can write

s=wsy, foraweWs, |w|=n

. . 2
Among the six pomts wsy - HH = {wslxl,wslxg, WS1Y1, WS1Y2,WS121, w31Z2}
we know

WS1T1 = WTy, WS1T2 = WT and WS121 = W22, WS122 = W2y
2 .
so that {ws1z1, ws1xe, ws1 21, wWs122} C (’)E . In particular
H2 H2 H2
O, viwsy-H" } =0, U {wsiyr, wsaya}
A similar proof holds for s = wsy and s = wss.

Proof of Claim 2 Let us show 1. In the proof of Claim 1 we have already shown

that the two points added inside OE_QH are {ws1y1,ws1y2}. We know that we
can write 01{]12 as the positive 12-tuple (inductive step n = 1)

H2
Oy :(22781y2,31y17$1,$2,5222,8221,y17y2,539€2,83301721)

In particular (22, $1y2, S1y1,21) is positive. Let w = w,, - ... - wy, where w; €
{s1,82,53}. At every step

(w122,w181y2,w181y1’w1$1) - (w1w2227w1w281y27w1w281y1,w1w29€1> e

e = (W1 Wa.. Wy 2o, W Wa.. Wy S1Y2, W1 Wa... Wy, S1Y1, W1 WS... W, X1 )
we satisfy the conditions of Proposition It follows that the image under
s = ws of the positive quadruple (22, $1y2, $1y1, 1) stays positive if n even and
is negative if n odd. 2. and 3. are similar.
We now want to state similar statements for the set 0%, ; .
Claim 3: For any s € W3 such that |s| = n + 1 it holds
L L c
O v {p(s) - H*}| = 0, +2

Claim 4: Let s = ws; where |w| = n and s; € Ws. It holds
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1. If s; = s; then the two Lagrangians p(ws;) - H- added inside 0%, are
{p(ws1)Y1, p(ws1)Ya} and are such that

(p(w)Za, p(ws1)Ya, p(ws1)Y7, p(w)X1) maximal if n even
(p(w) X1, p(ws1) Y1, p(ws1)Ys, p(w)Zy) maximal if n odd

2. If s; = s9 then the two Lagrangians p(wss) - H™ added inside OL_ | are
{p(ws2)Z1, p(wsz)Zy} and are such that

(p(w)Xa, p(wsa)Za, p(wsa) Z1, p(w)Y1) maximal if n even
(p(w)Y1), p(wsa) Z1, p(wse) Za, p(w)X2) maximal if n odd

3. If s; = s3 then the two Lagrangians p(wss) - H™ added inside OL_ | are
{p(ws3) X1, rho(wss) X2} and are such that

(p(w)Ya, p(wss) Xa, p(wss) X1, p(w)Z1) maximal if n even
(p(w)Z1, p(wsz) X1, p(wsz) Xa, p(w)Ys2) maximal if n odd

Proof of Claim 3 The proof is similar to Claim I where we change s with p(s)
and x;,y;, z; with X;,Y;, Z; and follows directly from the definition of p (Defi-

nition .

Proof of Claim 4 Let us show 1. By definition of p it is clear that the two La-

grangians added inside (’)ﬁﬂ are {p(ws1)Y1, p(wsy)Ya}. We know that (Za, p(s1)Y2, p(s1)Y1, X1)
is maximal (inductive step n = 1). Let w = wy, - ... - w1, where w; € {s1, $2, S3}.

At every step

(p(w1)Za, p(w151)Ya, plwisy) Y1, p(wr)X1) = (p(wiwe) Za, p(wrwas1)Ya, plwiwes) Y1, p(wrw2) X1) — ...

. = (p(wrwa... wy) Za, plwrwa...w, $1)Ya, p(wiws...w,s1) Y1, p(wiws...w,) X7)

we satisfy the conditions of Proposition It follows that the image under
p(s) = p(wsy) of the maximal quadruple (Z3, p(s1)Y2, p(s1)Y7, X1) is maximal
if n is even and is minimal if n is odd. 2. and 3. are similar.

The map &, : OEIL — (OF is monotone by inductive hypothesis. In Claim
3 and Claim 4 we have proven that the set O, | is obtained in the following
way: for any s of length n + 1 we add two Lagrangians [y, ls in a way such that
(a,l1,12,b) maximal for a,b e O%. By Lemma it is easy to see that &,,1 is

monotone on the entire set C’)gil. We have proven that
2
&n OEI-H - 05

is monotone for any n > 0 and it is p-equivariant by definition. Using the same
approach of [BIW10] it can be shown that &, can be extended to a map & defined
on S such that ¢ maximizes the Toledo invariant. To prove maximality we use
[Str15, Theorem 1.1.5.]. O
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Definition 7.19. (The set x°) Let T 3, W3 be the following groups

Log =m(X03) = (o, 8)
W3 = (s1,82,53| 57 =55 =63 =1)
and denote by ¢ the following homomorphism
¢:Tos— Ws
> $189
B 5983
Let f be the map
I+ XM (W, PSp™ (4, R)) — ™M (Tg 5, PSp(4, R))
[7] = [Plrms)]
which is well defined by Proposition We define x as the set

X :=Im(f)

Remark 7.20. Contrary to the PSL(2,R) case (see Proposition [7.16) the map
f is not injective nor surjective. This will be proven in Corollary [7.24]

7.6 Parameter space for Y™ (W, PSp*(4,R))

Let X be the symmetric space associated to Sp(4, R). The space of ordered right-
angled hexagons H inside X is parametrized by the set A defined in Theorem
[4:26] Recall that we denote by Ry, R, and K the following matrices:

“1d 0 0 10
R“_(o Id)’R“—<O r)”'_(o 1)
K:{(_K O),KGPO@LKQ:M}

0 K

Observe that {Rs;, Rez} < K. Recall also that we denote by Fp 4 a,,a, the
malefic map defined in

Theorem 7.21. The set x"%(Ws, PSpT(4,R)) is parametrized by the param-
eter space S:
ScAxK?

consisting of points (b, ¢, d,[a1, as], R, Ra, R3) in A x K3 such that

dea= Ry € {Rst, Rex}
b cea= R2 € {RstheI}
Fb7d7a17(12 (Q) ea= R3 € {Rsta Rem}
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0

Figure 67: Configuration of the hexagons
H Ri(H),R2(H) and R3(H)

Proof. From parameters to representations: Let (b, ¢, d, [a1, az], R1, Ra, R3)
be a point inside S. Let

(Ha y0,00) = (07A7 Id7 C,Dv OO)

be a right-angled hexagon with arc coordinates A(H, Yy o) = (b, ¢, d, [a1, az]).
In particular the maximal 12-tuple associated to (H,Yo,«) is given by

H = (0,-D,—A,0,A% A, Z,,1d,C, Z,, D, DC~' D)
where Z1, Z5 are uniquely defined by requiring
Yar1a L YVz,,2, L Yo, pe-1p
Let g1, g2, g3 be isometries such that

g1(D,DC™'D, 0, —D) = (0,1d, Y7, )
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ga(—A,0, A% A) = (0,1d, Y, 0)
93(Z17 Ida Ca ZQ) = (07 Ida }/37 OO)
for Y1, Ys, Y3 diagonal matrices inside Sym™ (2, R). Put

Rl = g;lngl
Ry = g; ' Rago
Rs := g3 ' Rags

V0,00,V 42 14
Y_a,a

By Corollary|6.22|we know that R, Ro, R belong to Riii’i}c’Dcle ,R
respectively.
Let W3 = (s1,89,83] s7 =82 = s

2 = 1) and define p as the representation

The representation p is maximal by construction (see Definition [7.8). The im-
ages R;(H) for i € {1,2,3} are drawn in Figure The maps g and h appearing
in the Figure are the generators of the representation restricted to the group
I'p,3. This will be explained in Theorem

From representations to parameters: Let § € Y™ (W5, PSpT(4,R))
and denote again

W3 = (s1, s2, s3] s? = sg = s% =1)

We know that p has the properties described in Definition we can deter-
mine a right-angled hexagon (H, Yx, x,) where X;, X, are as in Figure
We compute the arc coordinates A(H, Vx, x,). By definition we know that
p(s1), p(s2) and p(s3) belong to the reflection sets of three alternating sides of
this hexagon. We compute the corresponding elements in K2 (one for every

side) using Corollary O

7.7 Parameter space for y°

In Theorem we have given a parametrization S < A x K3 of the set
XX (W3, PSp™(4,R)). Recall that the set x° is defined (Definition [7.19) as
x® := Im(f) where f is the map

f . XmaX(Wg, Pspi (47 R)) N Xmax,Shilov(I\Oﬂs, PSp(4, R))
[2] = [Plims)]

We want to use the parametrization S of Theorem to parametrize x°. This
will be done by imposing an equivalent relation on § identifying the points that
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have same image under f. Recall that in Proposition [£.7] we have described the
set D < A corresponding to right-angled hexagons in X' lying inside a maximal
polydisc. Let us give the following

Definition 7.22. We define Sy © A x K3 as the set
So = {(b.c,d [on, as], B, Ra, Ry) € A x K| (bye,d [an,a0]) € D
We further define the following equivalent relation on Sy:

R\Ry = R\ R),

28
RyR3 = RyR), (28)

(p7R1;R27R3)~(p7 /1> /QaRé) — {

Theorem 7.23. The set x° is parametrized by the parameter space S/~ where
S consists of points (b, ¢, d, a1, az], R1, Ra, Rg) in A x K3 such that

de a = Rl € {Rst7Rex}
b eEa= R2 € {RstaRea:}
deﬂlﬂz (Q) eEa= R3 € {Rst7 Rea:}

and if (p, Rl,R27R3) € Sy we put
(p7R17R27R3) ~ (p/aR€[7 éaRé)
where ~ 1s the equivalent relation in (@

Proof. From parameters to representations: Let (b, ¢, d,[a1,as], R1, R, Rg)

be a point inside S. The construction of a maximal p : Wy — PSp*(4,R) is
identical to the proof of Theorem Let p be the restriction p = f(p) where
f is the map of Definition Then p is inside x° and we put

S El (bagada [a17a2]7R17 RQ, R3) =pE XS
In Figure [67] we have denoted
g =p(s152), h = p(s283)

The equivalence relation on Sy: Let I'g 3 = {a, 5). A representation
p:To3 — PSp(4,R) is uniquely determined by the maps p(«), p(3), which are
exactly the maps g and h of Figure[67] The isometry g is sending the hexagon
Ry(H) to Ri(H) and the isometry h is sending the hexagon R3(H) to Ra(H).
The equivalence relation on Sy

Sp = {(b,g,d, [o1, a2], R, Ro, R3) € A x K| (b, ¢, d, [, a2]) € D}

identifies the points for which the map f of Definition [7.19] is not injective.
More precisely for two points s = (p, Ry, Re, R3) and s’ = (p, R}, R}, R}) inside
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Sy we denote R;, R’; the reflections constructed from the parameters s and s’
respectively as shown in Figure [67] In Remark we have detected the points
for which Ry(H) = R'3(H), that is

Ry = g5 'Ratga, Rz = gy 'Reaga  if p € D\Dyo
where H, Ry(H) = R/3(H) are both contained in the model polydisc, and
Ry, Rs e gglngg if p € Dy

where H, Ry(H) = R/3(H) are both contained in the diagonal disc. It is not
hard to show a similar result for R;, R/; when i € {2,3}. Take now two points
s, 5" inside S where the corresponding reflections R;, R’; constructed as in proof
of Theorem [.21] are such that

with the hexagons H, R;(H), R';(H) of Figure [67] all contained in the model
polydisc. All the points of the polygonal chains drawn in Figure [57] are aligned.
Then there exists exactly two maps g, § sending Ro(H) to Ry(H) and two maps
h, h sending R3(H) to Ry(H). This follows directly from Proposition We
obtain four elements <g,h>,<g,ﬁ>,<§, h»,{g, /f\L> inside x°. But the parameter
space S produces |{ Ry, R, }|? = 22 different maps. If we don’t put the equiv-
alence relation we would be over-counting the number of representations, that
is we would construct J, ) € Y™ (W5, PSpT (4, R)) that have the same image

under f (see Definition |7.19)).

From representations to parameters: This is as Theorem

Corollary 7.24. Let f be the map of Definition[7.19
£ 1 XM (W, PSp* (4, R)) — y™a=Shilov(y o PSp(4, R))
[P] = [Plrm(s)]
Then the map f is neither injective nor surjective.

Proof. It is clear by the proof of Theorem|[7.23]that f is not injective. We want to
show x© ¢ ymaxShilov(Py o PSp(4,R)). The space x° & x™aShilov(T 3 PSp(4, R))
is 10-dimensional (see for example [AGRW19|). In the parametrization of The-
orem [7.23] we see that the set S is immersed in a smaller dimensional space. [
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8 Python program

In the github repository https://github. com/martamagnani/Arc-coord/blob/
main/Param_for_chiS.py we provide a Python program with output the maps
g, h uniquely determining the maximal representation constructed in the proof of
Theorem More precisely for a given (b, ¢, d, [a1, az2], R1, Ra, R3) e Ax K3
the program constructs a right-angled hexagon (H, Yy o) with arc coordinates
(b, ¢, d, [a1,a2]) and the adjacent symmetric hexagons R;(H), Ro(H), R3(H)
illustrated in Figure [67] following the proof of Theorem The maximal rep-
resentation is then determined by ¢ = Ry Ry and h = RyR3. We only provide
the case where R; € {Rs;, Re;}. In this chapter we describe the most impor-
tant functions used in the program. It will be useful to recall that for a matrix

A B .
g= (C D) € Sp(2n,R) it holds

A B\' (DT BT
Cc D S \-cT AT
® def sqrtmatrix(M):
eigvals ,eigvecs=la.eig(M)
eigvals=eigvals.real
S=eigvecs
s_O=math.sqrt(eigvals[0])
s_l=math.sqrt(eigvals[1])
D=np.array([[s_0,0],[0,s_111)
return S@D@S.T

This function returns the square root of a positive definite 2 x 2 matrix
M. Since M is symmetric, it is diagonalizable by an orthogonal matrix S.
The matrix S has as columns the orthonormal eigenvectors of M. Let D

be the matrix
_ (S0 0
1)-_ <() 81)

where s, s1 denote the square roots of the eigenvalues of M. Then v/ M =
SDST is symmetric and is the square root of M.

. def diagonalizing_mat (M):
eigvals ,eigvecs=1la.eig (M)
L=eigvecs
if eigvals[0]<eigvals([1]:

1=[1,0]

L=L[:,1]#if first eigenvalue smaller then the second I swap columns of L
J=np.array([[-1,0]1,[0,11])
if la.det(L)>0:

P=L.copy ()

Q=P@J
if la.det(L)<O0:

Q=L.copy ()

P=Q@J
return P.T,Q.T
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This function takes a positive definite matrix M (with distinct eigenvalues)
and returns P € PSO(2),Q € PO(2)\PSO(2) such that PMPT = QMQ”
is diagonal with a decreasing order of the eigenvalue on the diagonal. The
algorithm follows the proof of Lemma [2:31]

Problemal1 (c1,c2,d1,d42,S8,Y,Z):

desl=[1/math.exp(c2),1/math.exp(cl)]

C=np.diag(des1)

X_pr=S.TeCesS
P-diagonalizing_mat(la.inv(sqrtmatrix(Y))@Z@la.inv(sqrtmatrix(Y))) [0]
X=sqrtmatrix(Y)QP.T@X_pr@P@sqrtmatrix (Y)

return X

This function corresponds to Lemma [3.12

def ProblemaL2(cl1,c2,d1,d2,S,X,Y):

P=diagonalizing_mat (la.inv(sqrtmatrix(Y))@X@la.inv(sqrtmatrix(Y))) [0]
S_h=S.TQP

des2=[math.exp(dl) ,math.exp(d2)]

D=np.diag(des2)

Z=sqrtmatrix (Y)@S_h.T@D@S_h@sqrtmatrix (Y)

return Z

This function corresponds to Lemma [3.11]

def Sp4_Action(A,B,C,D,Z):
return (A@Z+B)@la.inv(CQZ+D)

This is the Sp(4, R)-action of a matrix g = (é g) on an element Z € X.

def OrthTube(A,B,C,D):

X=la.inv(A-C)-la.inv (A-B)

Y=1la.inv(A-D)-la.inv(A-B)
Q=la.inv(sqrtmatrix (X)) @Y@la.inv(sqrtmatrix (X))
Z1=Sp4_Action(A@sqrtmatrix (X),
-la.inv(sqrtmatrix (X)) +A@la.inv(A-B)@la.inv(sqrtmatrix (X)),
sqrtmatrix (X),
la.inv(A-B)@la.inv(sqrtmatrix (X)), -sqrtmatrix(Q))
Z2=Sp4_Action(A@sqrtmatrix (X),

-la.inv(sqrtmatrix (X))+A@la.inv(A-B)@la.inv(sqrtmatrix (X)),
sqrtmatrix (X),
la.inv(A-B)@la.inv(sqrtmatrix (X)), sqrtmatrix(Q))

return Z1,Z2

This function takes a maximal quadruple (A, B,C, D) and returns the
unique 77, Zs such that

VYapLVz.2, L Voo

Let g be an isometry such that g(A, B,C) = (o0, 0,1d). Put g(D) = @ for
a positive definite (). By Lemma [2.19

Z1=9'(—/Q), Z2=9"'(/Q)
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The function computes explicitly the map ¢g—!. It holds

1 [AVX VX T+ AA-B)WX
g = \/Y (A—B)*lx/y_l

where X = (A — ) — (A~ B)~!. Tt holds ¢(D) = Q = VX 'YVX
where Y = (A—D)~! — (A- B)~L

def Hexagon(bl,b2,cl,c2,d1,d2,alphal,alpha2):

S1= np.array([[math.cos(alphal/2),-math.sin(alphal/2)],
[math.sin(alphal/2) ,math.cos(alphal/2)]1])

S2= np.array([[math.cos(alpha2/2),-math.sin(alpha2/2)1],
[math.sin(alpha2/2) ,math.cos(alpha2/2)]1])
Id=np.identity (2)
C=np.array([[math.exp(c1),0],[0,math.exp(c2)]])
A=Problemalil (bl,b2,c1,c2,81,Id,C)
D=Problemal2(cl,c2,d1,d2,52,Id,C)

Z1,Z2=0rthTube (AQA,Id,C,D@la.inv(C)@D)

return A,C,D,Z1,2Z2

This funciton constructs a generic right-angled hexagon (H, Yy «) with
arc coordinates (b, ¢, d, [a1, az]). It follows the proof of Proposition m

def maleficmapF(bl,b2,cl,c2,d1,d2,alphal,alpha2):
A,C,D,Z1,Z2=Hexagon(bl,b2,cl1,c2,d1,d2,alphal,alpha2)
Id=np.identity(2)

R=CrossRatio(A, Id, C, D@la.inv(C)@D) #cross-ratio of four matrices
el,e2=ord_eigvals (R) #el>e2

return math.log(el) ,math.log(e2)

This function returns the image of the malefic map defined in Definition
0. 12)

def Stand4uple(A,B,C,D):

X=la.inv(D-B)-la.inv(D-4)

W=la.inv(D-C)-la.inv(D-A)

P=diagonalizing_mat (la.inv(sqrtmatrix (X)) @We@la.inv(sqrtmatrix(X))) [0]
Id=np.identity(2)

Bi=P@la.inv (sqrtmatrix (X)) @la.inv(D-4)
B2=P@la.inv(sqrtmatrix(X))@(Id-(la.inv(D-A)@D))

B3=-P@sqrtmatrix (X)

B4=P@sqrtmatrix (X) @D

return B1,B2,B3,B4

This function takes a maximal quadruple (A, B,C, D) and returns the

blocks of an isometry g:
_ (Bl B2
9=\B3 B4

such that g(A4, B,C, D) = (0,1d,Y, c0) where Y is diagonal. Computations
give:
) PYX '(D— A" PYX '(1d— (D - A)"'D)
-PVX PVXD
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where X = (D—B)~!—(D—A)~! and P is such that PﬁilWﬁilPT
diagonal where W = (D — C)~! — (D — A)~%

def checkflipgen(A,B,C,D,X,Y):

Id=np.identity(2)

B1,B2,B3,B4=multmat (A,B,C,D,Y,Y0la.inv(Y-X)-Id,Id,la.inv(Y-X))
A=multmat (la.inv(Y-X),Id-la.inv(Y-X)@Y,-Id,Y,B1,B2,B3,B4)[0]
if la.det(A)>0:

return 1
if la.det(A)<O:
return -1

This function takes two symmetric matrices X, Y and a matrix h € Sp(4, R):

A B
h= (C D> € Stab(X,Y)

and returns 1/-1 if h is conjugated to a non-reflecting/reflecting isometry
respectively (Definition [2.38]). To do that let g be an isometry such that

9(X,Y) = (0,00). Then
1 (A 0
h=g~ (0 A—T) g

for some A € GL(2,R). The function calculates ghg~! where

A 0
-1 _
ghg - (0 A—T>

and computes the determinant of A. The function multmat takes as input
the blocks of two matrices (eight 2 x 2 matrices) and returns the blocks
of the matrix obtained by multiplying them.
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9 Other approaches to parameterize hexagons

In this chapter we expose a different approach to parametrize right-angled
hexagons in the Siegel space X. What follows is a joint work with Eugen Ro-
gozinnikov. The idea is to describe a right angled hexagon by a triple of positive
definite symmetric matrices and to generalize this parametrization to the space
of two adjacent hexagons. We will see how the problem of this approach is that
when extending the parameters to adjacent hexagons we can not guarantee that
the constructed hexagons have the same alternating side-lengths.

Proposition 9.1. The set of right-angled hexagons in X is parametrized up to
isometry by
Symy (R)*/po(n)

Proof. Let H = (Y1, Y2, Vs, V4, Vs, Vs| be a right-angled hexagon in the Siegel
space X. Up to PSp(2n,R)-action we can assume that one tube is coinciding
with Vo . In Lemma @ we have seen that it is sufficient to specify A, B,C
and D at the boundary of X for the hexagon to be uniquely determined (Figure
. Up to isometry we can assume one point to coincide with Id. In this case
it turns out to be more useful to consider the point A coinciding with Id (and
not B as we have done in the proof of Proposition . For

[(X7 Y7 Z)] € Symz (R)S/PO(n)
we construct the hexagon H = (0,1d, B, C, D) where
B=X+1d

C=X+Y+1d
D=X+Y+Z+1d

so that (Id, B,C, D) is a maximal quadruple. All the other tubes are then
uniquely determined. The group PO(n) is the stabilizer of the triple (0,1Id, c0).
Observe that the parameter space has dimension 8 as we can always diagonalize
a matrix up to PO(n)-action. O

Proposition 9.2. The space of adjacent right angled hexagons in X is parametrized
(up to isometry) by
Sym,; (R)s/PO(n)

Proof. The proof is very similar to Proposition Up to isometry we can al-
ways assume that the two hexagons have the tubes Yy o and V_1q,1q4 in common.
For

[<X7 Y7 Za Xla YI)] € Symz (R)S/PO(n)

we construct the two adjacent hexagons

H,(0,1d, B,C, D, ) and Ha(w,—D,—C’,—B',1d,0)
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where
B=X+1d

C=X+Y+1d
D=X+Y+Z+1d
B =X'+1d
C'=X+Y'+1d
All the other tubes are uniquely determined (Figure . O

_Dclle e}

DCD
D

e

—1
B 0

Figure 68: Parameters for two adjacent right-angled
hexagons

Remark 9.3. The parametrization in Proposition [9.2] does not give any infor-
mation about the lengths of the sides of the two adjacent hexagons. In particular
in Theorem [7.23] we have seen that a crucial tool to construct maximal repre-
sentations is to construct adjacent hexagons where alternating sides have the
same length. In the parametrization of Proposition this does not happen
even if we restrict to the case where

B’ = 0,BOY

C' = 0,007
for 0102 € PO(n). In that case it holds (Figure
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A (p_1a1a(0),p1a1a(B™Y)) = d (p_tara(—B 1), p_1a1a(0))  (29)

& (pg-1,(d),pp-1,5(Z1)) # & (p—pr,—p—1(—1d),p_p _p-1(Z4))  (30)

—DC/_lD o}

DCD
D

Figure 69: Side-length in the case B’ = O; BO{ and
C'" = 0,C07T for 01,05 € PO(n)

The equality follows by Proposition [5.8] and by the fact that
d*" (po.oo (1), oo (B)) = d* (po,co(~1), poo(~B))
for B’ = O, BOY, O; € PO(n). To see let us denote by P,Q and P’,Q’ the

points obtained by intersecting the tube V_1q14 with Yp-1 p and Y_p—1 _p
respectively (Figure . In general

& (P,Q) #d* (P'.Q))
Fix a = d® (P,Q) and O; € PO(2). The vector d® (P’,Q’) depends on the

point P’ which depends on the choice of O;. The same arguments holds for
the vectors in the tubes Yo po-1p and YV_¢r _per-1p respectively as shown in

Figure
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