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Abstract

The cell-type composition in bulk samples serves as key evidence for examining disease
progression, phenotypic characterisation and treatment responses. Therefore, cell-type
deconvolution has been spotlighted as a computational approach to estimating cell-type
composition in bulk samples. DNA methylation (DNAm) has been broadly used as epige-
netic marks for cell-type deconvolution because it carries cell type-specific signals at CpG
sites in mammal genomes. In particular, cell-type deconvolution methods using DNAm
data can be used for tumour purity estimation due to distinctive DNAm patterns domi-
nantly found in tumour cells.

There are two major approaches for generating DNAm data: sequencing-based and array-
based profiling. Sequencing-based DNAm data, which profiles every single DNAm pattern
in the format of sequencing reads, provides broader genomic coverage and better cap-
tures rare cell-type signals compared to array-based data. Thus, sequencing-based DNAm
data is more suitable for accurate cell-type deconvolution compared to array-based data
which contains average methylation levels only at designated CpG sites. Nevertheless,
so far, array-based data has been the primary target of cell-type deconvolution methods
because the matrix shape makes it easier to apply linear algebraic algorithms. Hence,
sequencing-based cell-type deconvolution still needs intensive explorations to accomplish
accurate estimation of cell-type compositions by taking the benefits of read-level methy-
lation patterns into account.

In this thesis, we introduce a new sequencing-based cell-type deconvolution method us-
ing DNAm data and perform a systematic evaluation of existing cell-type deconvolution
methods. We divide the evaluation into two major steps of sequencing-based cell-type de-
convolution: informative region selection and cell-type composition estimation. In order
to cover diverse scenarios of biological samples, we test the methods using DNAm data
from mouse neurons and human tumours. The evaluation shows that existing sequencing-
based methods do not outperform array-based methods despite having the advantage
of exploiting read-level methylomes. This underscores the need for the development of
new sequencing-based cell-type deconvolution methods that accurately identify cell type-
specific methylation patterns and eliminate confounding factors.

To address the limitations of existing methods, we developed the deep learning method
MethylBERT based on Bidirectional Encoder Representations from Transformers (BERT).
The proposed method is specifically designed for tumour purity estimation. MethylBERT
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classifies sequencing reads into tumour and normal cell types, and infers the proportion of
tumour cell type via maximum likelihood estimation. The tumour purity is inferred with
a likelihood function computed using the estimated posterior probability of cell types.
We also employ the Fisher information to calculate the precision of MethylBERT tumour
purity estimation. Furthermore, in order to address dissimilar region-wise cell-type dis-
tributions in a bulk sample, we developed an algorithm to adjust the estimated tumour
purity by minimising the skewness of inferred region-wise tumour purities.

We thoroughly evaluate MethylBERT and perform a comparison with previous methods.
The evaluation demonstrates the good performance of the proposed method for read-level
methylation pattern classification and estimation of tumour purity. In particular, the
read-level methylation pattern classification shows that MethylBERT outperforms other
methods regardless of the pattern complexity, read length, and read coverage. Our investi-
gation also includes an analysis of the model training and the estimated cell-type posterior
probabilities. We also explore which kinds of DNA sequence features are learnt during
MethylBERT pre-training and emphasise the importance of pre-training. In addition, we
show that MethylBERT is capable of detecting rare tumour signals by yielding accurate
tumour purity estimation results for bulk samples with a very low tumour percentage
(<1%). This demonstrates the potential of MethylBERT for non-invasive early cancer
diagnostics via blood tests, and accurate circulating tumour DNA analyses.
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Zusammenfassung

Die Zusammensetzung von Zelltypen in Massenproben dient als wichtiger Nachweis für
die Untersuchung des Krankheitsverlaufs, der phänotypischen Charakterisierung und des
Ansprechens auf die Behandlung. Daher wurde die Zelltyp-Deconvolution als rechneri-
scher Ansatz zur Bestimmung der Zelltyp-Zusammensetzung in Massenproben hervor-
gehoben. DNA-Methylierung (DNAm) wird häufig als epigenetische Markierung für die
Zelltyp-Deconvolution verwendet. Sie erzeugt zelltyp-spezifische Signale an CpG-Stellen in
Säugetiergenomen. Insbesondere Zelltyp-Deconvolutionsmethoden unter Verwendung von
DNAm-Daten können aufgrund der in Tumorzellen vorherrschenden charakteristischen
DNAm-Muster zur Bestimmung der Tumorreinheit verwendet werden.

Es gibt zwei Hauptansätze zur Generierung von DNAm-Daten: sequenzierungsbasiertes
und array-basiertes Profiling. Sequenzierungsbasierte DNAm-Daten, die jedes einzelne
DNAm-Muster im Format von Sequenzierungs-Reads profilieren, bieten eine breitere ge-
nomische Abdeckung und erfassen seltene Zelltypsignale besser als Array-basierte Daten.
Daher eignen sich sequenzierungsbasierte DNAm-Daten besser für eine genaue Zelltyp-
Deconvolution als Array-basierte Daten, die durchschnittliche Methylierungsgrade nur
an bestimmten CpG-Stellen enthalten. Dennoch waren Array-basierte Daten bisher das
Hauptziel von Zelltyp-Deconvolutionsmethoden, da die Matrixform die Anwendung Al-
gorithmen aus der linearen Algebra erleichtert. Daher bedarf die sequenzierungsbasierte
Zelltyp-Deconvolution noch intensiver Erforschung, um eine genaue Schätzung der Zelltyp-
Zusammensetzungen unter Berücksichtigung der Vorteile von Methylierungsmustern auf
Read-Level zu erreichen.

In dieser Arbeit stellen wir eine neue Zelltyp-Deconvolutionsmethode, welche sequenzie-
rungsbasiert ist und DNAm-Daten verwendet. Zudem führen wir eine systematische Be-
wertung bestehender Zelltyp-Deconvolutionsmethoden durch. Wir unterteilen die Auswer-
tung in zwei Hauptschritte der sequenzierungsbasierten Zelltyp-Deconvolution: informative
Regionsauswahl und Schätzung der Zelltyp-Zusammensetzung. Um verschiedene Szenari-
en biologischer Proben abzudecken, testen wir die Methoden anhand von DNAm-Daten
von Mausneuronen und menschlichen Tumoren. Die Auswertung zeigt, dass bestehende
sequenzierungsbasierte Methoden Array-basierte Methoden nicht übertreffen, obwohl sie
den Vorteil haben, Methylome auf Read-Level zu nutzen. Dies unterstreicht die Notwendig-
keit der Entwicklung neuer sequenzierungsbasierter Zelltyp-Deconvolutionsmethoden, die
zelltypspezifische Methylierungsmuster genau identifizieren und Störfaktoren beseitigen.
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Um die Einschränkungen bestehender Methoden zu beseitigen, haben wir die Deep Lear-
ning Methode MethylBERT entwickelt, die auf Bidirectional Encoder Representations from
Transformers (BERT) basiert. Die vorgeschlagene Methode ist speziell für die Schätzung
der Tumorreinheit konzipiert. MethylBERT klassifiziert Sequenzierungsablesungen in Tu-
mor und normale Zelltypen über eine Maximum-Likelihood-Schätzung, um den Anteil der
Tumorzelltypen zu bestimmen. Die Reinheit des Tumors wird mit Hilfe einer Wahrschein-
lichkeitsfunktion bestimmt, die anhand der geschätzten A-posteriori-Wahrscheinlichkeit
der Zelltypen berechnet wird. Wir verwenden auch die Fisher-Information, um die Präzision
der MethylBERT-Tumorreinheitsschätzung zu berechnen. Um unterschiedliche regionale
Zelltypverteilungen in einer Massenprobe zu berücksichtigen, haben wir außerdem einen
Algorithmus entwickelt, um die geschätzte Tumorreinheit anzupassen, indem die Schiefe
der abgeleiteten regionalen Tumorreinheiten minimiert wird.

Wir evaluieren MethylBERT gründlich und führen einen Vergleich mit früheren Methoden
durch. Die Bewertung zeigt die gute Leistung der vorgeschlagenen Methode zur Klassifi-
zierung von Methylierungsmustern auf Read-Level und zur Schätzung der Tumorreinheit.
Insbesondere zeigen die Klassifizierung des Methylierungsmusters auf Read-Level, dass
MethylBERT andere Methoden übertrifft, unabhängig von der Musterkomplexität, der
Read-Länge und der Read-Abdeckung. Unsere Untersuchung umfasst auch eine Analy-
se des Modelltrainings und der geschätzten Zelltyp-Posteriori-Wahrscheinlichkeiten. Wir
untersuchen auch, welche Arten von DNA-Sequenzmerkmalen während des MethylBERT-
Vortrainings gelernt werden, und betonen die Bedeutung des Vortrainings. Darüber hinaus
zeigen wir, dass MethylBERT in der Lage ist, seltene Tumorsignale zu erkennen, indem
es genaue Ergebnisse zur Schätzung der Tumorreinheit für Massenproben mit einem sehr
geringen Tumoranteil (<1%) liefert. Dies zeigt das Potenzial von MethylBERT für die
nicht-invasive Frühdiagnose von Krebs durch Bluttests und genaue Analysen zirkulieren-
der Tumor-DNA.
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Chapter 1

Introduction

1.1 Motivation

Analysing cell-type compositions of complex tissue or cell-mixture samples, also known as

bulk samples, provides key evidence to characterise genomic features and phenotypes in

large cohorts [Prince et al., 2007, Wen et al., 2017]. For example, immune cell composi-

tion in the tumour microenvironment is related to tumour prognosis and immunotherapy

responses [Stankovic et al., 2019]. Nonmalignent cell populations have been used as a

biomarker for clinical analyses and targeted therapy for tumour [Chu et al., 2022].

In cancer biology, cell-type composition analysis enables the examination of tumour pu-

rity. Tumour purity has long been used as a prognostic indicator for many cancer types

including liver cancer, T-cell lymphoma, and nasopharyngeal cancer [Chuanben et al.,

2018, Ho et al., 2021, Schmid et al., 1999]. In addition to estimating cancer prognosis,

tumour purity is used for predicting immunotherapy responses [Kim et al., 2021, Deng

et al., 2021].

Purification of cell types from bulk samples can be achieved via in vitro techniques such as

cell sorting. However, in vitro cell-type purification often suffers from additional sources of

variation introduced during the experiments (e.g., expression level changes). Even though

recent advancements in sequencing technology have enabled the acquisition of single-cell

profiles, it is still costly and generates highly sparse features. Alternatively, many studies

have used a computational approach called cell-type deconvolution, which estimates cell-

type compositions from bulk samples in silico.

DNA methylation (DNAm), which refers to the addition of methyl groups to nucleotide

bases in DNA, is one of the most extensively studied epigenetic modifications. In mammals,

DNAm particularly at CpG sites involves cell type-specific signals [Wen et al., 2017, Hui

et al., 2018]. Cell type-specific patterns present in DNAm data can be used for cell-type
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Figure 1.1: Cell-type deconvolution using DNAm data. Based on heterogeneous methyla-
tion patterns in different cell types, cell-type deconvolution methods estimate the cell-type
composition in given bulk samples. The result can be used for various biological studies
and clinical applications (Figure modified from [Leung et al., 2020]).

deconvolution (Figure 1.1). Various machine learning approaches have been suggested to

use such cell type-specific patterns in DNAm data for disentangling bulk samples [Decamps

et al., 2020, Song and Kuan, 2022].

Sequencing-based profiling of DNAm such as reduced representation bisulfite sequencing

(RRBS) or whole genome bisulfite sequencing (WGBS) particularly offers broad genomic

coverage and a single-CpG resolution of methylation patterns in a format of sequencing

reads. The decreasing sequencing costs have more popularised assorted types of bisul-

fite sequencing data. On the contrary, array-based profiling, which is another commonly

applied technology for generating DNAm data, covers only a limited number of CpGs.

With these benefits, read-level methylomes should provide more information to perform

accurate cell-type composition estimation compared to array-based DNAm data. Nev-

ertheless, the majority of cell-type deconvolution methods use array-based DNAm data

[Scherer et al., 2020, Houseman et al., 2012]. The existing sequencing-based methods often

do not capitalise on the benefits of read-level methylomes. For example, coMethy reshapes

the acquired DNAm profiles from sequencing data into a matrix losing the single-CpG res-

olution [Yin et al., 2019]. On the other hand, DXM estimates cell-type proportions by

finding the best fit of distribution to given DNAm data out of a thousand randomly gener-

ated distributions [Fong et al., 2021]. This approach limits model optimisation compared

to regression-based models by highly relying on the random sampling result.

Consequently, the increasing demand for sequencing data and the limitations of existing

methods encourage the development of new methods for accurate cell-type deconvolution

using read-level methylomes.
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1.2 Contributions

This thesis consists of two parts: (i) A comprehensive benchmarking of existing cell-

type deconvolution methods for sequencing-based DNAm data, and (ii) development of

a novel sequencing-based cell-type deconvolution method using Transformers for tumour

methylomes, named MethylBERT.

The benchmarking study systematically evaluates existing sequencing-based cell-type de-

convolution methods together with two array-based deconvolution methods. So far, bench-

marking studies have been mainly published for deconvolution methods targeting array-

based DNAm data. However, considering the advantages and popularity, it is necessary

to analyse the current state of deconvolution methods for sequencing-based DNAm data

taking its specific features into account. Our benchmarking study proposes a new perspec-

tive to evaluating cell-type deconvolution methods by distinguishing between informative

region selection and cell-type composition estimation, which has not been suggested before.

The separate analysis proved the importance of informative region selection results and

the algorithmic design, for accurate deconvolution. Furthermore, from the comparison

of the methods, one can conclude that many of the existing sequencing-based deconvo-

lution methods do not significantly outperform array-based methods, despite the abun-

dance of detailed information about cell type-specific methylation in sequencing-based

data. This underscores the necessity of developing new sequencing-based deconvolution

methods. This work has been published in [Jeong et al., 2022].

The outcome of the benchmarking study motivated the development of a new model for

sequencing-based DNAm deconvolution. We propose MethylBERT as a new Transformer-

based cell-type deconvolution model for tumour read-level methylomes. MethylBERT uses

bidirectional encoder representations from Transformers (BERT) for the classification of

read-level methylation patterns into cell types. Although Transformers have previously

been applied to DNAm-related tasks such as DNAm pattern imputation [De Waele et al.,

2022], they have not been used for cell-type deconvolution using DNAm data. Methyl-

BERT also determines the Fisher information and includes a new algorithm for adjustment

of the estimated tumour purity. The Fisher information yields the precision of tumour

purity estimation. This is essential information for the analysis of tumour data which can

involve highly noisy methylation patterns. The adjustment of tumour purity estimation

is performed by minimising the skewness of estimated region-wise tumour purity. We

prove that the adjustment algorithm improves the accuracy of tumour purity estimation

by considering region-wise cell-type distributions which can differ from the global cell-type

distribution. This work has been published in [Jeong et al., 2023a].

Our experiments show that MethylBERT significantly improves the performance of tu-

mour deconvolution compared to previous methods and provides a highly sensitive tu-

mour signal detection which can be potentially used for early tumour diagnosis via blood

test. These results highlight the broad applicability of MethylBERT to diverse types of
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biological samples. The existing methods were developed for either general tumour bulk

samples [Houseman et al., 2012] or blood biopsy samples [Li et al., 2018, Li et al., 2021],

thus their performance was found to be biased toward the targeted sample type. However,

MethylBERT can accurately estimate tumour purity for both high and very low percent-

ages of tumour cells. In addition to the performed evaluation, our in-depth analyses of

model training and estimated cell-type posterior probabilities provide valuable inputs for

the field of bioinformatics. Even though a variety of studies have shown the successful

application of Transformer-based models for genomic data analysis [Ji et al., 2021, Gwak

and Rho, 2022], to the best of our knowledge, there has not been an explanation of what

Transformer-based models learn from DNA sequences. In this thesis, the efficacy of BERT

pre-training using 3-mer DNA sequences and the variation of gained knowledge during the

MethylBERT training are thoroughly analysed. The examination results confirm that the

BERT pre-training on DNA sequences lets the model recognise important DNA sequence

features such as DNA nucleotide pairs and CpG-context, without supervision. The pre-

training also leads the MethylBERT model to unbiased fine-tuning towards dominant

methylation patterns, and to identify correct CpG-specific methylation patterns. The

evaluation of MethylBERT has been published in [Jeong et al., 2023a].

A part of the doctoral studies was dedicated to developing a new single-cell multi-omics in-

tegration model using variational autoencoder (VAE), named scMaui [Jeong et al., 2023b].

This work is not included in this thesis due to its divergence from the scope. However,

scMaui has achieved superior performance in cell-type clustering and molecular profile im-

putation compared to previous methods, as well as identified hidden cell subpopulations.

1.2.1 Publication

Peer-reviewed publication

• Yunhee Jeong, Lisa Barros de Andrade e Sousa, Dominik Thalmeier, Reka Toth,

Marlene Ganslmeier, Kersten Breuer, Christoph Plass, Pavlo Lutsik, Systematic

evaluation of cell-type deconvolution pipelines for sequencing-based bulk DNA methy-

lomes, Briefings in Bioinformatics, Volume 23, Issue 4, July 2022, bbac248, https:

//doi.org/10.1093/bib/bbac248,[Jeong et al., 2022]
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Preprint

• Yunhee Jeong, Karl Rohr, Pavlo Lutsik, MethylBERT: A Transformer-based model

for read-level DNA methylation pattern identification and tumour deconvolution,

bioRxiv, 2023.10.29.564590; doi: https://doi.org/10.1101/2023.10.29.564590,

[Jeong et al., 2023a].

• Yunhee Jeong, Jonathan Ronen, Wolfgang Kopp, Pavlo Lutsik, Altuna Akalin,

Decoding single-cell multiomics: scMaui - A deep learning framework for uncov-

ering cellular heterogeneity in presence of batch effects and missing data, bioRxiv

2023.01.18.524506; doi: https://doi.org/10.1101/2023.01.18.524506,

[Jeong et al., 2023b]

1.2.2 Conference presentations

• Yunhee Jeong, Jonathan Ronen, Wolfgang Kopp, Pavlo Lutsik, Altuna Akalin,

scMaui: variational autoencoders combined with adversarial learning reveal cellular

heterogeneity from single-cell multiomics data and handle multiple batch effects inde-

pendently, Genes 2023: Single-cell multiomics moving forward (Oral Presentation),

Barcelona, Spain.

1.3 Thesis outline

This thesis is organised as follows. Chapter 2 introduces the background knowledge about

epigenomics and machine learning necessary for understanding this thesis. The epigenomic

section focuses on DNAm which is the targeted epigenetic modification in the thesis, while

the machine learning section describes machine learning models for sequential data along

with examples of applications to sequencing-based methylation data. The last section

describes the general concept of cell-type deconvolution and existing methods categorised

into two groups according to the requirement of the reference data.

Chapter 3 is devoted to the evaluation of six existing sequencing-based cell-type deconvo-

lution methods. Two array-based methods are included as a comparison group, thus we

clarify the separate test pipelines designed for sequencing-based and array-based deconvo-

lution methods, respectively. The two major steps of cell-type deconvolution, informative

region selection and cell-type composition estimation steps, are assessed separately, there-

after we examine the relation between the two steps.

In Chapter 4, MethylBERT is introduced as a new Transformer-based cell-type deconvo-

lution model for tumour read-level methylomes. The first section explains the network

architecture and the training process of MethylBERT. In the second section, the tumour

purity estimation algorithm using the estimated cell-type posterior probability is described.

The last section specifies the overall training schemes of the MethylBERT.
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In Chapter 5, we present the experimental results of MethylBERT and compare its per-

formance with other existing methods. The experimental results are divided into four sec-

tions. The first section evaluates MethylBERT in terms of read-level methylation pattern

classification. In the second section, we explore the cell-type deconvolution performance

of MethylBERT for tumour bulks. The third section demonstrates the efficacy of pre-

training in MethylBERT, and the last section showcases the application of MethylBERT

to circulating tumour DNA analysis.

Finally, we summarise the thesis and discuss the outcomes in Chapter 6. The future

work section includes further tasks that could be achieved by an improved version of

MethylBERT in the future.
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Chapter 2

Background

In this chapter, background knowledge about the topics covered by this thesis is intro-

duced. Section 2.1 explains the phenomenon of epigenetic modifications, particularly

focusing on DNA methylation (DNAm), and how methylation can be a crucial biomarker

for tumour analysis. Also, different technologies for DNAm profiles are demonstrated. In

Section 2.2, machine learning approaches for modelling read-level methylation patterns

are described. Finally, cell-type deconvolution models are explained in detail in Section

2.3. This section describes the concept and the importance of cell-type deconvolution as

well as the difference between reference-based and reference-free cell-type deconvolution

methods.

2.1 Epigenomics

2.1.1 Epigenetic modifications and DNA methylation

Epigenetic modifications are referred to as DNA or histone1 modifications affecting gene

expression without changing the genetic code [Plass et al., 2013]. Different types of epige-

netic modifications such as DNA methylation and histone modifications strongly support

our understanding of fundamental biological processes [Han and He, 2016]. For instance,

epigenetic modifications are capable of regulating cell development, thus epigenetic deregu-

lation may cause abnormal cell development linked to diseases such as cancer [Pujadas and

Feinberg, 2012, Atlasi and Stunnenberg, 2017]. Therefore, many biomedical studies have

spotlighted epigenetic modifications as a primary biomarker [Prince et al., 2007, Portela

and Esteller, 2010, Waldmann and Schneider, 2013].

DNAm is defined as a biological mechanism in which a methyl group is attached to DNA

molecules. In mammalian DNA, methylation dominantly occurs at cytosines (C). Cyto-

1Histone is a protein which can support the structure of chromosomes.
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sine methylation at CpG sites is especially one of the most broadly explored epigenetic

modifications due to its relevance to gene expression. CpG sites indicate the regions in

DNA sequences where a cytosine is followed by a guanine. Hypomethylation at CpG-dense

promoters2 can activate gene transcription which results in high gene expression, whereas

gene silencing can be associated with hypermethylation of promoters. Therefore, cytosine

methylation at CpG sites carries cell type-specific patterns that influence the expression

of neighbouring genes forming heterogeneous cell types [Hui et al., 2018, Wen et al., 2017].

Cytosine DNA methylation is primarily controlled by six different enzymes: DNA methyl-

transferase (DNMT) 3A, DNMT3B, DNMT1, and ten-eleven translocation (TET) 1-3

[Ambrosi et al., 2017] (Figure 2.1). TET1-3 refers to the three TET family members,

TET1, TET2, and TET3. While DNMT3A and DNMT3B catalyse de novo DNA methy-

lation at cytosines, DNMT1 maintains the methylation on the cytosine molecule after

the DNA replication during cell division. Demethylation of cytosine can occur via two

different mechanisms: active and passive demethylation mechanisms. If DNA replicates

without the DNMT1 activity, the methylation of the mother DNA strand is not copied

to the new strand of DNA (passive demethylation). Otherwise, TET enzymes catalyse

the hydroxylation of the methylated cytosine which leads to DNA demethylation (active

demethylation) [Melamed et al., 2018].

[Waddington, 2014] introduced the concept of epigenetic landscape to explain cellular

differentiation3 during cell development, without genetic alterations. The change of epi-

genetic landscapes is also shown in DNAm patterns. Cell type-specific DNAm profiles

are acquired via the methylation change during embryonic development, which is also

known as DNAm reprogramming. Starting from a zygote4, cell differentiation results in

different cell types by changing epigenetic landscapes including DNAm patterns. The

2Promoter is a genomic region where proteins bind to start transcription of a gene.
3Cellular differentiation means a cell-type transition occurring in a cell.
4Zygote is a fertilized cell created by sperm and ovum.

8



unique state of DNAm contributes to programming cell type-specific gene expressions

which determines the cell identity eventually [Goldberg et al., 2007, Basu and Tiwari,

2021]. Therefore, DNAm has been used for investigating cell type-specificity explaining

the biological development and malignant disease progression [Greenberg and Bourc’his,

2019, Zhou et al., 2017].

Individual cells can show highly heterogeneous properties or behaviours based on many

factors, such as cell type or tissue type. This phenomenon is known as cellular hetero-

geneity. The measurement of cellular heterogeneity can be done in various ways including

epigenomic studies using DNA methylomes [Goldman et al., 2019]. Explaining cellular

heterogeneity based on DNAm data has provided valuable evidence extending our per-

spectives in biological and clinical studies. For instance, [Liu et al., 2013] claimed that

DNAm can pave the way for reducing genetic risk in rheumatoid arthritis (RA) based on

cellular heterogeneity analysis of RA patient data.

DNAm has two main strengths as a promising biomarker: stability and inheritability.

Numerous previous studies have certified that DNAm keeps its status in both different

stages of the cell cycle and different conditions of sample storage [Gosselt et al., 2021,

Vandiver et al., 2015] which makes analyses more rigorous. DNAm is also steadily inherited

over multiple cell divisions, and some of the inherited DNA methylation has shown its

association with cancer susceptibility [Reid and Fridley, 2020, Joo et al., 2018].

In conclusion, the analysis of heterogeneous DNA methylation patterns contributes to

understanding both phenotypic and genotypic variability [Sheffield et al., 2017, Li et al.,

2016]. Previous studies have explored epidemiology, disease, as well as early mammalian

development based on cell type-specificity shown in DNAm [Felix and Cecil, 2019, Green-

berg and Bourc’his, 2019]. Furthermore, revealing cell type-specific effects from bulk

samples is fundamental evidence to disclose cellular mechanisms associated with diseases

and to determine therapeutic targets [Rahmani et al., 2019]. Specifically, a broad range

of diseases are known to be detectable with DNAm alteration including cardiovascular

diseases, diabetes, neurological disorders and cancer [Kulis and Esteller, 2010, Bansal

and Pinney, 2017, Cuadrat et al., 2021, Rasmi et al., 2023]. Hence, varying strategies

for disease therapies and prevention have been suggested based on DNAm [Yang et al.,

2010, Cheng et al., 2019].

2.1.2 Aberrant DNA methylation and cancer

In cancer, which brings abnormal cell growth, aberrant methylation patterns associated

with dysregulated gene expression are often found. Hypermethylation at CpG sites in

promoter regions can silence tumour suppressor genes, whereas genome-wide hypomethy-

lation is known to increase with cancer progression [Ehrlich, 2002, Kulis and Esteller,

2010, Ehrlich, 2009]. For example, hypermethylation of P16 gene promoter region has been

repetitively reported in breast, oral, gastric and colorectal cancer patients [Abbaszadegan
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et al., 2008, Hall et al., 2008, Veganzones-de Castro et al., 2012, Wang et al., 2012].

This hypermethylation can silence the P16 gene involved in cell cycle regulation, causing

cancerous cell development.

For successful cancer diagnosis and therapy, understanding tumour heterogeneity is key

due to the vast variety of genotypic and phenotypic characteristics within a tumour and

across patients, which are referred to as intra- and inter-tumour heterogeneity, respectively

[Guo et al., 2019, Sollier et al., 2023]. Although many failures in cancer therapies are

attributed to tumour heterogeneity giving rise to different cell populations in tumours,

it is often not properly addressed in many therapeutic strategies. Therefore, in-depth

knowledge of cellular heterogeneity is crucial to explain different tumour samples and

establish precise clinical strategies [Waas and Kislinger, 2020].

In the field of cancer research, DNAm is particularly considered a valuable resource for

examining tumour heterogeneity due to its stability as explained in Section 2.1.1. DNAm

data holds major promise for diagnostics and clinical applications based on tumour het-

erogeneity analysis.

Previous studies have found heterogeneous methylation patterns across tumours and estab-

lished tumour classification based on DNAm data [Sill et al., 2020]. For example, [Capper

et al., 2018] developed a molecular classification method for the central nervous system

(CNS) tumours based on DNAm profiles. This classification method has contributed to

the standardised diagnostics in CNS tumours. Classification of juvenile myelomonocytic

leukaemia (JMML) patients based on DNAm profiles was suggested for designing stratifi-

cation of clinical trials [Schönung et al., 2021].

DNAm-based biomarkers enhance the diagnosis and prognosis of cancers. For instance,

hypermethylation at the promoter region of SHOX2 gene is used for lung cancer diagno-

sis [Schmidt et al., 2010], whereas hypomethylation of TBRG4 has been identified as a

biomarker for colorectal cancer metastasis [Jang et al., 2020].

Clinical applications targeting DNAm have been broadly proposed over multiple cancer

types [Yang et al., 2020a, Lietz et al., 2022]. Decitabine, one of the chemotherapy drugs,

that causes global hypomethylation shows efficacy for acute myeloid leukaemia (AML)

patients [Klco et al., 2013]. Moreover, clinical trials which control specific oncogenes5 via

DNAm have been developed and applied to both haematological malignancies and solid

tumours [Cheng et al., 2019, Blagitko-Dorfs et al., 2019, Azad et al., 2013].

Recently, early non-invasive diagnosis of tumours has been demonstrated using circulating

tumour DNA (ctDNA) analysis. Cell-free DNA (cfDNA) refers to DNA fragments in body

fluids and ctDNA is a type of cfDNA that originates from tumour cells in the stage of

5An oncogene is a gene whose mutation can cause cancer.
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apoptosis6 or circulating tumour cells (Figure 2.2). Blood plasma is the most commonly

collected sample type utilised for the detection of ctDNA and the results can be used for

monitoring, early diagnosis and treatment responses of cancer [Yan et al., 2021, Duffy and

Crown, 2022, Yang et al., 2022]. DNAm profiling is broadly conducted to detect ctDNA

signals in various cancer types [De Mattos-Arruda et al., 2013, Pantel and Alix-Panabières,

2017, Salvianti et al., 2021] because it occurs at the very early stage of cancer and provides

a clearer distinction between tumour and normal tissues compared to other biomarkers,

such as DNA mutation [Fiala and Diamandis, 2018].

2.1.3 Profiling and analysis of DNA methylation

DNA methylation can be profiled using a range of different technologies. Bisulfite treat-

ment changes only unmethylated cytosines (C) into uracil (U), while does not affect methy-

lated cytosines (Figure 2.3A). When PCR amplification is applied to the bisulfite-converted

DNA, uraciles are converted to thymine (T), whereas cytosines stay intact. Based on

the discriminative conversions of cytosines, methylation patterns can be detected at each

CpG using multiple read-outs, including microarrays such as Illumina 450K/EPIC arrays

or sequencing protocols like whole genome bisulfite sequencing (WGBS) (Figure 2.3B). In

array-based profiling, the methylation intensity is normalised into a range between zero

and one. The resulting measure of DNAm is known as methylation beta-value. The two

different types of DNAm data have pros and cons (Table 2.2).

6Apoptosis is the programmed destruction of a cell [Hengartner, 2000].

11



A C G A T G C A A T
CH3

A U G A T G C A A T
CH3

A T G A T G C A A T

Bisulfite 
conversion

PCR 
Amplification

A C G A T G C A A T
Compare to reference genome

ref.
genome

AAGGTTTGCGAAGGACGATAAGG
Sequencing read

Unmethylated
Methylated

Methylation 
beta value

Sa
m

pl
es

CpGs

A B

Sequencing-based profiling

Array-based profiling

Figure 2.3: DNA methylation profiling. (A) The process of bisulfite sequencing data
generation. (B) Two types of DNA methylation profiling.

Table 2.2: Comparison of bisulfite-treated DNAm profiling methods

Array-based profiling Sequencing-based profiling

Description
Beta-values in a CpG-by-
sample array normalised from
the measured methylation
intensities

Sequencing reads including bi-
nary methylation patterns

Technologies

• Human Methylation 450K
• EPIC array

• Illumina short read sequencer
(WGBS, RRBS, scBS-Seq
etc.)

• Long-read sequencing

Pros
• Small file size
• Well-summarised information

• Higher coverage of CpGs
• Detection of rare cell type
• Genomic context is provided

Cons • Limited available CpGs
• Less detailed information

• Large file size
• High cost
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In array-based profiling, the data is usually stored as a CpG-by-sample matrix comprised

of beta-values. 450K arrays contain beta-values measured at ca. 450,000 sites mostly

representing genic regions, whereas EPIC arrays capture ca. 850,000 CpGs that mostly

lie in regions of biological importance such as enhancers7 [Shu et al., 2020]. Both methods

are broadly used for methylation profiling in large population-level cohorts due to their

low cost and straightforward analysis. Array-based profiling data is considered more suit-

able for modelling or analysis using linear algebraic algorithms such as non-negative least

squares or matrix factorization. Nevertheless, the number of CpGs captured by array-

based profiling is below 5% of the entire CpGs in the human genome (ca. 28 million),

so the obtainable information is largely limited. Detection of rare cell types is another

difficulty faced by array-based profiling since the average methylation level can mask the

methylation patterns from the minority cell type. Even if the proportion is very low, some

cell types can be a crucial indicator for disease prognosis [Orkin and Zon, 2008]. ctDNA

analysis, as explained in the previous section, also requires the identification of a very low

ratio of tumour-derived cells.

Sequencing-based profiling is an attractive alternative allowing it to cover a much higher

number of CpGs. Reduced representation bisulfite sequencing (RRBS) can cover up to

10% of CpGs, whereas WGBS ideally captures all CpGs in the genome. The high CpG

coverage of sequencing-based profiling compensates for the limitation of array-based pro-

filing and enables in-depth analysis of methylomes. Such data contains sequencing reads,

including both a binary sequence of methylation patterns at cytosines and inferred DNA

base pairs. Sequencing-based data provides read-level methylation patterns as well as

genomic sequence which enables the joint analysis of genomics and epigenomic modifi-

cations. Moreover, sequencing-based profiling better preserves the signals from rare cell

types through the single molecule-level methylation patterns on sequencing reads. Even

though sequencing data remains more costly than array data, the cost of bisulfite sequenc-

ing data generation has dropped without losing genomic coverage, making the data more

popular and accessible.

With the advance of sequencing technologies, more variations of methylation profiling are

available nowadays. Single-cell bisulfite-sequencing (scBS-Seq) is able to profile methy-

lomes of individual cells up to ca. 48% of CpG sites, and it has broadened our perspectives

in cellular heterogeneity [Smallwood et al., 2014]. Long-read sequencing is also available

for methylation profiling via nanopore or single-molecule real-time sequencing and provides

a longer context of methylation changes. Compared to short-read sequencing technologies

whose read length is usually 100 to 150 bps, long-read sequencing can generate reads up

to 2 Mbps.

7Enhancer is a genomic region where proteins bind to enhance transcription of a gene.
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Bisulfite sequencing data processing

After acquiring sequencing reads from biological samples, data processing steps must be

followed to make a standard quality and analysable sequencing-based DNAm profiling.

This processing encompasses alignment to a reference genome, and different sorts of quality

control. All BS-seq data present in this thesis were processed via the processing steps

below:

1. Trimming

The raw sequencing reads generated by a bisulfite sequencer may involve technical

errors, thus every nucleotide base within a sequencing read comes with a quality

value, called base quality. The standard base quality is defined as a Phred quality

score (Q) of base calling error probabilities (P ) [Ewing and Green, 1998]:

Q = −log10P. (2.1)

During trimming, low-quality ends of sequencing reads are trimmed off with a given

threshold. Adapter sequences within the sequencing reads are also removed during

trimming. The adapter sequence is a short sequence ligated to DNA fragments

and enables the binding of DNA fragments to a flow cell. Once the fragments are

attached to the flow cell, they can be sequenced base-by-base. We used Cutadapt

[Martin, 2011] and Trim Garlore (for the other samples, https://github.com/

FelixKrueger/TrimGalore) for the trimming.

2. Alignment

Alignment is a step to find the genomic location of sequencing reads on a reference

genome. It requires a reference genome acquired from the same organism that the

samples originated from. Because of the bisulfite conversion, BS-seq data needs to

be aligned with a bisulfite-aware aligner. We used bismark [Krueger and Andrews,

2011] for aligning all BS-seq data sets in this thesis. As reference genome, mm10

and hg19 were used for mouse and human samples, respectively.

3. Sorting

Sorting the aligned reads according to the genomic position not only supports fast

analyses but also reduces the file size. For the data used in this thesis, we ran

samtools sort to sort the reads [Danecek et al., 2021].

4. Duplicate removal

PCR amplification conducted during BS-seq data generation results in many copies

of the same DNA fragments. Therefore, the duplicates need to be removed to avoid

the potential errors caused by the amplification. Here, we used Picard for the du-
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plicate removal [Pic, 2019].

5. Filtering (optional)

The mapping quality indicates the probability that each read is mapped to an in-

correct location. It is also calculated using the Phred score (Equation 2.1). Only

for non-cancer samples, we filtered reads whose mapping quality is lower than 30

by using samtools view [Danecek et al., 2021]. However, for the tumour samples,

filtering based on the mapping quality score could discard the mutant signals that

occurred in tumour cells.

2.1.4 Differentially methylated region

Once DNAm data is generated from different samples, one of the gold-standard analysis

methods is to look at differentially methylated loci (DMLs) or regions (DMRs). DMLs

and DMRs are referred to as genomic loci and regions, respectively, that exhibit methyla-

tion level differences between the groups of interest (Figure 2.4). A specific region where

many DMLs are closely located to each other is generally considered a DMR. Not only

are such regions considered to be associated with gene regulations, but their methylation

patterns also predominantly reveal cellular or tumour heterogeneity [Ferreira et al., 2019].

Especially in bulk samples, which are comprised of multiple cell types in different states,

there could be many confounding factors that conceal cell type-specific methylation pat-

terns. DMRs identified using scBS-seq data or cell line-generated BS-seq data give an

informative subset of genomic regions for downstream analysis minimising the impact of

confounding factors.

Bulk

Figure 2.4: An example of DMR. This region (chr1:75244319-75244379) shows differen-
tially methylated patterns between two mouse neuronal cell types, mL6-2 and mPv. Each
row represents sequencing reads covering methylated (black) and unmethylated (white)
CpGs. Missing methylation patterns at CpGs not covered by the reads remain empty
in respective rows. mL6-2 dominantly has fully methylated reads, whereas reads in mPv
mostly have fully unmethylated patterns. Because these two cell types (indicated by red
and blue) have different methylation patterns, we observe complex methylation patterns
in the bulk sample.
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Throughout this thesis, the DSS package was used for DMR calling [Park and Wu, 2016].

When the DMR calling is conducted for D samples containing N CpG methylation pat-

terns, DSS assumes that the number of methylated reads Yid at CpG i in sample d follows

a beta-binomial distribution:

Yid ∼ BetaBinom(mid, πid, γi) (2.2)

where πid and γi are the mean and dispersion of the beta distribution. These two pa-

rameters are explained in more details in Section 2.2.1. mid is the total number of reads

at CpG i in sample d. Let X be a D × P matrix containing P experimental designs (or

phenotypes) for the samples. X can have both continuous and discrete values. Here, DSS

assumes an arcsin link function of πid as follow:

arcsin(2πid − 1) = xdβi (2.3)

where xd is the dth row of X. βi is given as a vector of coefficients for P designs. The model

coefficient vector βi is estimated via a beta-binomial generalised linear model, and then

used for hypothesis test to determine DMLs. CpGs whose test statistic for the standard

Wald test with the null hypothesis H0 : CTβi = 0 is lower than a given threshold are

considered DMLs. C is a P -dimensional binary vector where 1 indicates the experimental

design to test differentially methylated patterns.

A DMR is identified as a region of adjacent DMLs. The areaStat score is the sum of the

test statistics of DMLs in a DMR, while the diff.Methy score is calculated by subtracting

the mean methylation value of the tested experimental design from the value of the others.

2.2 Machine learning models for read-level methylomes

2.2.1 Beta-binomial/Bernoulli distribution model

Using a beta-binomial or Bernoulli distribution is considered to be a suitable approach

for modelling read-level methylomes. This is because DNA methylation has two discrete

events, methylated and unmethylated CpGs, which can be interpreted as ‘success’ and

‘failure’ in these distributions.

The beta-binomial distribution is a discrete probability distribution that models Bernoulli

trials whose success probability is drawn from a beta distribution. For the Bernoulli

trials, which are referred to as random trials resulting in two possible outcomes, a fixed

value for the number of trials n must be given. Therefore, three parameters need to be

determined for the beta-binomial model: α ∈ R+, β ∈ R+ and n ∈ N. α and β are used to

characterise a beta function B(α, β) in the beta-binomial distribution BetaBinom(n, α, β).

The mathematical expression of the beta-binomial model is:
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B(α, β) =

∫ 1

0
tα−1(1− t)β−1dt, (2.4)

BetaBinom(x;n, α, β) =

(
n

x

)
B(x + α, n− x + β)

B(α, β)
. (2.5)

[Dolzhenko and Smith, 2014] modelled read-level methylomes from WGBS data using a

beta-binomial model and utilised the model for DMR identification. Given the methylation

level, the number of methylated reads m divided by the number of total reads n at a CpG

site, they assume the probability mass function of m follows the beta-binomial distribution:

P (m|n, α, β) = BetaBinom(m;n, α, β). (2.6)

The beta function in the beta-binomial can also be written with other parameters π and

γ reparametrised by α and β:

π :=
α

α + β
and γ :=

1

α + β + 1
(2.7)

where π and γ are interpreted as the mean and dispersion of the beta distribution. The

expectation of m is then calculated as E(m) = nπ, thus π can be interpreted as the

average methylation level over the given samples E(m)
n . The parameters are estimated via

beta-binomial regression [Crowder, 1978] using WGBS data from a set of samples.

The Bernoulli distribution models a binary random variable with fixed probabilities p and

1− p. Therefore the probability mass function Bernoulli(x; p) is given as:

Bernoulli(x; p) = px(1− p)1−x for x ∈ {0, 1}. (2.8)

This function is also a type of the binomial distribution whose trial number is 1.

[Kapourani and Sanguinetti, 2019] used Bayesian inference to cluster single-cell methy-

lation sequencing data and found methylation variability between cells. In their model,

the CpG-wise methylation has one binary value observed in an individual cell. Therefore,

they modelled the methylation at CpG site i in a genomic region g with the Bernoulli

distribution. The CpG methylation at the site i in the region g is denoted as yg,i:

yg,i ∼ Bernoulli(pg,i) (2.9)

where pg,i is an unobserved true methylation level. They assume the cumulative distribu-

tion function (CDF) of the standard Gaussian distribution Φ(·) which ensures the output

value to be in the range between zero and one, for a probit regression model estimating

true methylation pg,i from neighbouring CpG methylation patterns xg within the same
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region g. The model is written as:

Φ(w⊺
gxg) = pg,i (2.10)

where wg is the unknown parameter vector for the regression.

Both beta-binomial and Bernoulli distributions have limitations in handling methylation

patterns on sequencing reads because these do not consider the relationship between neigh-

bouring CpG methylation patterns. [Dolzhenko and Smith, 2014] modelled the methyla-

tion levels of individual CpGs independently but could not capture the relations between

neighbouring CpGs using these distributions. [Kapourani and Sanguinetti, 2019] intro-

duced another probit regression to address the neighbouring CpGs. Hence, modelling

read-level methylomes based on the beta-binomial or Bernoulli distribution either requires

another method to explain the neighbouring CpG methylation patterns or disregards the

adjacency.

2.2.2 Hidden Markov Model (HMM)

A hidden Markov model (HMM) explains unobserved hidden states following a Markov

chain and observations assumed to be dependent on the hidden states [Baum and Petrie,

1966, Baum and Eagon, 1967, Baum, 1968, Baum et al., 1970, Baum et al., 1972]. A

Markov chain is a sequential model in which the probability of every step only depends

on the previous steps, not on the future steps (Figure 2.5A). When the hidden states

h = {h1, ..., hT } over a discrete time series t ∈ {1, ..., T} follows the first order Markov

chain (each step only relies on one previous step), the sequence of hidden states can be

expressed as:

P (h) = P (h1)
T−1∏
t=1

P (ht+1|ht). (2.11)

For a sequence of observations O = {O1, ..., OT } that emitted from the hidden states ht,

an HMM (Figure 2.5B) is modelled as follows:

P (O,h) = P (h1)

T−1∏
t=1

P (ht+1|ht)
T∏
t=1

P (Ot|ht). (2.12)

Assume that the observation Ot and the hidden state ht are categorical random variables

with N and M possible categories each. Then, the transition probability matrix A ∈
RM2

whose elements Aij = P (ht+1 = j|ht = i) and the emission probability matrix

E ∈ RM×N whose elements Eij = P (Ot = j|ht = i) need to be calculated for every

possible combination to create an HMM. In the standard case, an HMM assumes that the

transition and the emission probability mass functions (PMFs) are the same at all time

steps. For the first time step, P (h1) needs to be given separately as a vector π ∈ RM .
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Figure 2.5: Dependency graph of sequential learning models. (A) Markov chain with
states hi. (B) Hidden Markov Model with hidden states hi and observation Oi. (C)
Unfolded dependency of recurrent neural network for input Xi, hidden states hi and
output Yi.

Therefore, training an HMM is to estimate the parameter set (A,E,π).

There have been several works using the Markov chain and HMM to model the dynamics

of DNA [Sontag et al., 2006, Kyriakopoulos et al., 2019]. These works categorise DNAm

into multiple classes describing respective stages of the DNAm establishment process. For

example, considering that DNA is double-stranded, [Sontag et al., 2006] separates DNAm

from different strands of DNA, thus making four states: both strands unmethylated,

hemimethylated on one strand, hemimethylated on the other strand, and both strands

methylated. This model was also applied to calculate the efficiency of DNA methyl-

transferases (DNMT), which is a type of enzyme contributing to the transfer of a methyl

group to DNA molecules, in de novo methylation and DNAm maintenance (see Section

2.1.1). [Kyriakopoulos et al., 2019] employed an HMM to model the cytosine methy-

lation and demethylation processes over time caused by chemical modifications such as

5-hydroxymethyl cytosine or 5-formyl cytosine.

HMM-Fisher adopts an HMM to detect unique methylation features from read-level DNAm

data taking sequencing errors into account [Sun and Yu, 2016]. A transition matrix of

HMM is inferred to model true CpG-wise methylation patterns correcting errors in each

sample. The model yields three types of hidden state categories whose transition probabil-

ity follows a multinomial distribution: N (non-methylated), P (partially methylated) and

F (fully methylated). Then, it uses a truncated normal distribution for the emission prob-

ability that an observed methylation is emitted from each category. Finally, Fisher’s exact

test is applied to determine CpG sites showing unique methylation features by comparing

the count of estimated hidden states at each site between the two groups.

In comparison with the beta-binomial and Bernoulli distributions (see Section 2.2.1), HMM
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better captures the relationships between adjacent CpG methylation patterns. Nonethe-

less, HMM makes a strong assumption that the hidden states must form a Markov chain,

which may not apply to true CpG methylation patterns. [Yoon, 2009] also pointed out

that the hidden states in HMM, solely dependent on the previous steps, do not perfectly

fit to explain biological sequences where molecular interactions occur in both directions.

2.2.3 Recurrent Neural Networks (RNNs)

Advancements in deep neural networks have had a great impact on performance increases

in various fields [Min et al., 2017, Goh et al., 2017, Kamilaris and Prenafeta-Boldú,

2018]. Deep neural networks can exploit the entangled information behind a large data

set through their high model complexity and nonlinearity. Recurrent Neural Networks

(RNNs) are a class of neural networks primarily developed for sequential data. RNNs

capture sequential information through recurrent training of nodes in the network over

all elements in the input sequence. In standard RNNs, each hidden node ht receives the

current input point values xt and the hidden node values in the previous state ht−1 [Lipton

et al., 2015] (Figure 2.5C). RNNs for an input xt and an output yt at the time step t are

modelled as:
ht = ah(Whxt + Uhht−1 + bh)

yt = ay(Wyht + by)
(2.13)

and the model is trained to learn the model parameters and biases, Wh,Wy,Uh,bh and

by. ah and ay are the activation functions for calculating values of the hidden nodes at

the current time point t and the output, respectively.

The recurrent structure of RNNs gives the networks the capacity to handle sequential

information, but also brings the problem of exploding/vanishing gradients [Pascanu et al.,

2013]. In particular, the vanishing gradient problem makes it difficult to learn long-

distance dependencies [Lipton et al., 2015]. Long Short-Term Memory (LSTM) was pro-

posed to overcome this problem by having a memory cell that memorises the essential

information from previous time steps. [Cho et al., 2014] improved the LSTM in terms

of model complexity by controlling the update of hidden layers using a reset gate and an

update gate. The developed model is named gated recurrent unit (GRU).

RNNs have been used in a broad range of fields such as natural language processing

or speech recognition [Graves et al., 2013, Yin et al., 2017]. Likewise, many studies

have suggested using RNNs for modelling sequencing-based DNAm data for varying tasks

[Angermueller et al., 2017, Maruyama et al., 2022].

DeepCpG is a combined model of bidirectional GRU and convolutional neural networks

(CNNs) to infer missing CpG methylation patterns based on neighbouring DNAm patterns

and DNA sequences [Angermueller et al., 2017]. The bidirectional GRU networks were

designed to encode binary methylation patterns of neighbouring CpGs collected from

multiple cells, and the CNNs encode the reference DNA sequence. In this way, the model
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can infer a CpG-wise methylation pattern taking both cell-to-cell methylation variability

and the sequence motifs associated with DNAm. This model has become particularly

useful with the growth of scBS-seq data which often involves a sparsity problem.

[Maruyama et al., 2022] also used GRU to determine the impact of DNA sequences on

DNAm inheritance in CpG islands (CGIs), which is a genomic region where a high fre-

quency of CpG sites are found. The method processes DNA sequences at CGIs into

k-mer sequences and creates embedding vectors from the k-mer sequences which are given

as input to the GRU model. Then, the sigmoid-transformed output is compared with

ground-truth methylation patterns interpreting the output as the probability that CGI is

unmethylated given the DNA sequence.

[Angermueller et al., 2017] and [Maruyama et al., 2022] discovered that RNNs make it pos-

sible to associate sequential methylation patterns with DNA sequences. The nonlinearity

and the high model complexity of neural networks seem to catch the relations between

methylation patterns and DNA sequences. This also applies to Transformer-based models

explained in the following section and the newly developed cell-type deconvolution model

for tumour samples developed in this thesis (see Chapter 4).

2.2.4 Transformers

[Vaswani et al., 2017] proposed a new sequential learning model called Transformer over-

coming the major limitations of the recurrent models described in Section 2.2.3. Due to

the dependence between the current hidden state and the previous hidden state, recurrent

models cannot exploit the benefit of parallel computing and suffer from a long training

time. On the other hand, the Transformer uses attention mechanisms enabling bidirec-

tional learning in sequences without a time-dependent hidden layer or state. Specifically,

the Transformer applies ‘self-attention’ to create representations of input and output se-

quences.

Attention mechanism

An attention function is designed to map a query vector and a pair of key and value vectors

to an output vector. In the Transformer network, ‘Scaled Dot-Product Attention’ is used.

Scaled dot-product attention for the query, key and value vectors Q ∈ RdQ ,K ∈ RdK ,V ∈
RdV is calculated as:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V. (2.14)

1√
dk

is applied as a scaling factor to prevent a large magnitude of Attention(Q,K,V) value

due to a large size of the vector. The large magnitude can eventually cause the vanishing

gradient problem.
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In order to find different projections of query, key and value vectors, the Transformer

employs multiple attention functions, the so-called ‘Multi-head attention’. Multi-head

attention concatenates H attention matrices computed from the weighted query, key and

value vectors with WQ,WK , and WV , respectively:

Multi-head attention(Q,K,V) = Concatenate(A1, ...,AH)WO,

where Ai = Attentioni(QWQ
i ,KWK

i ,VWV
i ).

(2.15)

WO is a projection matrix of the concatenated attention matrices yielding the final output

of the multi-head attention. The three input vectors of the attention function can be three

different sequences, but it can be also one sequence. The latter is called ‘self-attention’.

Self-attention relates different positions in the same sequence and finds positions considered

to be important by other positions.

The Transformer architecture consists of two parts: an encoder and a decoder. The

encoder applies multi-head self-attention to the input sequence and extracts encoded fea-

tures, whereas the decoder involves both a multi-head self-attention layer for the output

sequence and a multi-head attention layer applied to the encoded input and output.

BERT

Taking the superior performance of Transformers, there have been diverse strategies pro-

posed to pre-train Transformer-based models for NLP tasks [Sarzynska-Wawer et al.,

2021, Radford et al., 2018]. Bidirectional Encoder Representations from Transformers

(BERT) is one of the Transformer-based models, which is mainly comprised of the Trans-

former encoder part [Devlin et al., 2018]. It is pre-trained in an unsupervised manner using

masked language model (MLM) and next sentence prediction (NSP). Once pre-training is

complete, the model can be fine-tuned for a specific task.

Prior to the pre-training, the input consisting of two sentences needs to be processed

into three embeddings containing different information (Figure 2.6). Token embeddings

are created referring to a lookup table where individual words are matched with a unique

number. Sentence embeddings indicate which sentence each token belongs to, and position

embeddings are given to store the order of tokens within the input.

After the embedding step, the three embedded vectors are summed up into one final

embedding vector. For MLM, some of the input tokens are randomly masked and the

BERT model predicts a token at the masked positions. The first token of any input is

[CLS] to inform the beginning of the input. The output at [CLS] position is used for NSP

to predict whether sentences A and B are connected to each other. The pre-training makes

the BERT model understand the context of the language so that model fine-tuning can

be performed more easily for specific tasks, such as language translation.
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Sentence A : But the eyes are blind. 
Sentence B : One must look with the heart.

[CLS] But the eyes are [MASK] [SEP] One must [MASK] with the [SEP]heart
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Figure 2.6: BERT pre-training. Two input sentences are converted into three embed-
dings. BERT uses next sentence prediction and masked language model for pre-training.

BERT is able to associate input tokens within a sentence using the multi-head self-

attention mechanism via the encoders from Transformers. Using BERT for sequential

data has two major benefits: global context learning and non-directional training. For

training with sequential data, CNNs calculate features using a convolution operation in a

fixed-size window, usually much shorter than the input sequence. On the other hand, a

long training time caused by the dependence on the previous hidden state often becomes

a problem in RNNs. BERT addresses these issues by calculating attention matrices over

whole sequences, not assuming a certain direction of flow in the sequence, and not focusing

on a specific part of the sequence.

Transformers and BERT have achieved groundbreaking performance in many tasks involv-

ing sequential data such as NLP, computer vision, speech recognition, and so on [Subakan

et al., 2021, Lin et al., 2022, Wang et al., 2019, Wagner and Rohr, 2022]. The application

of Transformer-based models in bioinformatics has also solved unanswered questions in bi-

ology by discovering complicated hidden relationships in molecule-level systems [Jumper

et al., 2021, Ji et al., 2021, Gwak and Rho, 2022]. There have also been studies suggest-

ing the use of Transformers or BERT for sequencing-based methylation data, [Yu et al.,

2021, De Waele et al., 2022], which are described below.

[Yu et al., 2021] applied BERT to identify different types of DNAm in multiple species
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using DNA sequences surrounding methylated nucleotides. In their model, methylation

patterns are not encoded using the BERT model but instead, long-distance dependencies

on DNA sequences are found to determine the DNAm type. As input data, DNA sequences

are encoded into token and position embeddings. Sentence embeddings are not used.

[De Waele et al., 2022] developed a model called CpG Transformer which infers missing

methylation patterns based on Transformers. CpG Transformer and DeepCpG introduced

in Section 2.2.3 aim at the same task: methylation imputation, and both combine a sequen-

tial model with CNNs whose input are embeddings of DNA sequences. CpG Transformer

merges the embedded DNA sequences and a cell-by-CpGs DNAm matrix, then calculates

attention matrices over cells and CpG sites in separate steps.

Both models outperformed previous works, however, they are still not applicable to address

cell type-specific patterns in read-level methylomes. While the model suggested by [Yu

et al., 2021] relies solely on DNA sequences as input, [De Waele et al., 2022] did not take

read-level information into account.

2.3 Cell-type deconvolution models using DNA methylomes

2.3.1 Cell-type deconvolution

Despite the recent rise in the popularity of single-cell data, bulk profiling of DNA methy-

lation is still commonly applied to samples with multiple populations and cell types.

Therefore, knowing cell type-specific signals and the composition of cell types is crucial to

analysing the impact of individual cell types in bulks. However, dissecting cell type-specific

signals from bulk DNA methylomes is challenging because of confounding factors. DNA

methylation is also related to gender, age, and environmental influences [Zhang et al.,

2011, Boks et al., 2009]. Additionally, in vitro experiments conducted while generating

DNAm profiles may introduce technical artefacts perplexing cell type-specific signals.

Cell-type deconvolution, also known as cellular deconvolution, is an in silico method to

estimate the cell-type proportions within bulk samples. The estimated cell-type propor-

tions are strongly related to phenotypic characteristics and can be a biomarker in clinical

applications [Prince et al., 2007, Wen et al., 2017]. A robust and accurate cell-type de-

convolution method enables cellular-level analyses on a large cohort of data. Single-cell

sequencing would not be a realistic option for such a large cohort due to high cost. More-

over, cell-type deconvolution methods are also not affected by technical biases like the

error rate caused by high dropout events and high sparsity. The high dropout and high

sparsity problems have been regarded as a challenge in single-cell technologies. Cell sort-

ing and cell enrichment are available as in vitro technologies for dissecting a cell mixture.

However, these technologies also induce additional costs and have the risk of introducing

technical variations in the data. Another benefit of cell-type deconvolution is the applica-

tion for analysing stored bulk data. In many biological studies, the stored (old) data is still
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worthwhile for a longitudinal study. In addition, such data can lead to new conclusions

when a novel analysis method is applied. Since the biological samples for the old data are

often not available, single-cell technologies cannot be used to generate new data for the

same samples. In this case, cell-type deconvolution is significantly advantageous.

Due to the cellular heterogeneity observed in multiple layers of the omic profile, cell-type

deconvolution methods can target different types of data. For example, CIBERSORT and

MuSiC infer cell-type proportions based on gene expression profiling using RNA sequencing

data [Wang et al., 2019, Newman et al., 2019]. It is not very common, but there have

been a few studies to perform cell-type deconvolution using proteomic data [Wang et al.,

2022, Petralia et al., 2021]. The following sections exclusively focus on DNAm-based cell-

type deconvolution methods, which are the main topic of this thesis. Reference-based and

reference-free cell-type deconvolution methods are described in separate sections.

2.3.2 Reference-based methods

Reference-based cell-type deconvolution methods require reference data to train a super-

vised model for cell-type composition estimation. Different types of information can be

provided as reference data. DNAm profiles of pure cell types are commonly acquired from

either scBS-seq data or bulk methylomes from cell lines made of specific cell or tissue

types. When it comes to cell line-originated bulk data, cell lines can be generated using

one specific cell type. As an alternative, another set of bulk samples with ground-truth

compositions can be given as reference data, particularly for regression-based models, but

it is usually not easy to obtain.

For array-based data, regression is one of the most common approaches for cell-type de-

convolution [Houseman et al., 2012, Arneson et al., 2020, Chakravarthy et al., 2018]. The

majority of regression-based models estimating the composition of C cell types within N

bulk samples based on methylation pattern of M CpG sites assume:

Y = WX + e, (2.16)

when bulk DNAm profiles Y ∈ [0, 1]N×M and pure cell-type DNAm profiles X ∈ [0, 1]C×M

are given. Then the approaches infer the cell-type composition matrix W ∈ [0, 1]N×C . e

is an error vector of the model, which can be estimated either from the data or sampled

from a designated distribution.

Reference-based cell-type deconvolution models for read-level DNAm data vary more in

terms of methodological design compared to the array-based methods. MethylFlow is

based on a minimum-cost flow problem on the network of reads where edges connect re-

gions with equal methylation patterns on overlapping CpGs [Dorri et al., 2016]. ClubCpG

employs a regression-based model to estimate cell-type compositions using extracted prin-

cipal components from the bulk DNAm profiles. The method requires training data, which
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consists of bulk samples containing the same cell types to build a regression model [Scott

et al., 2020]. BED is a probabilistic model to infer cell-type compositions via the maximum

a posteriori method [Barrett et al., 2017].

Recently, reference-based cell-type deconvolution using read-level methylomes has been

used for ctDNA analysis. CancerDetector assumes a beta-binomial distribution on the

CpG-wise methylation values, and it separately calculates a probability of tumour and

healthy cell types given a read [Li et al., 2018]. DISMIR is an RNN-based model yielding

a ‘d-score,’ which is a sigmoid-calculated output [Li et al., 2021]. Both methods employ

maximum likelihood estimation (MLE) to infer the tumour purity using the calculated

probability or d-score.

CancerDetector and DISMIR, however, have limitations as reference-based cell-type de-

convolution methods for read-level methylomes. CancerDetector averages the methylation

values on a read, disregarding single molecule level methylation patterns. On the other

hand, DISMIR restricts the maximum read length to 66 bps, which is shorter than half

of the common read length in BS-seq data (150 bps). Consequently, both models cannot

fully utilise the benefits of read-level methylation patterns due to either the averaging of

values or the short read length.

2.3.3 Reference-free methods

Reference-free cell-type deconvolution methods are unsupervised learning methods for es-

timating the cell-type compositions. The absence of reference data involves difficulties

not only in the inference of cell type-specific methylation patterns, but also in choosing

genomic regions to explore, since detecting DMRs also requires DNAm profiles of purified

cell types. Therefore, many reference-free methods recommend providing DNAm profiles

on promoter or enhancer regions, or CpGs showing the highest variability of methylation

patterns over multiple samples.

Non-negative matrix factorisation (NMF) is a representative algorithm used for reference-

free cell-type deconvolution methods developed for array-based DNAm data. NMF fac-

torises a matrix V into two different matrices W and H with the assumption that all

matrices do not have a negative value:

V ≈WH. (2.17)

In NMF for DNAm-based cell-type deconvolution, V ∈ [0, 1]M×N is a methylation beta-

value matrix at M CpGs including N bulk samples. W ∈ [0, 1]M×C and H ∈ [0, 1]C×N

refer to a DNAm profile of the estimated number of cell types C and the composition of C

cell types in N bulk samples, respectively. [Titus et al., 2017b] applied the NMF algorithm

to estimate tumour purity in breast cancer patients. [Lutsik et al., 2017] improved the

NMF by introducing a regularisation term forcing the inferred subpopulation-wise DNAm
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profiles (equal to cell type-wise DNAm profiles in this thesis) to the range of [0, 1].

Reference-free cell-type deconvolution models for sequencing-based data commonly sum-

marise read-level methylomes per cell type in multiple genomic regions and estimate the

cell-type composition based on the summarised information. The method Prism corrects

outlier read-level methylation patterns using HMM and fits a beta-binomial distribution

to region-wise fully methylated and unmethylated reads distributions in order to estimate

the cell-type composition [Lee et al., 2019]. [Yin et al., 2019] also used an NMF-based

algorithm to estimate the cell-type composition from a summarised methylation pattern

matrix from read-level methylation patterns in multiple samples.

Reference-free methods are preferred when suitable reference data are not available, but

they are bound to the cell types associated with phenotypic variations [Houseman et al.,

2016]. Additionally, the estimated proportions have to be annotated by users and this

usually requires another source of data to compare the inferred methylation profiles of cell

types.
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Chapter 3

Systematic Evaluation of

Cell-Type Deconvolution Methods

for DNA methylomes

3.1 Introduction

In the past decade, cell-type deconvolution methods have been extensively applied to

estimate the cell-type composition within array-based DNA methylation (DNAm) data.

Following the popularity, there have been several benchmarking studies about array-based

cell-type deconvolution for DNAm data. [Titus et al., 2017a] tested array-based cell-type

deconvolution methods using blood-derived DNAm data and analysed the relations be-

tween the estimated cell-type proportions and risk factors of multiple cancer types. [De-

camps et al., 2020] particularly evaluated reference-free cell-type deconvolution methods

using array-based DNAm data. They elaborated on the importance of feature selection

and confounding factor removal for accurate cell-type proportion estimation. [Song and

Kuan, 2022] more recently performed a benchmarking study of array-based cell-type de-

convolution methods specifically for blood samples.

Next-generation sequencing1 technologies allow for the profiling of read-level methylomes

and provide deeper insights into cellular heterogeneity within DNAm. With the ad-

vent of next-generation sequencing, several cell-type deconvolution methods tailored for

sequencing-based DNAm data have been published [Zheng et al., 2014, Barrett et al.,

2017, Lee et al., 2019, Yin et al., 2019, Scott et al., 2020, Fong et al., 2021]. However, the

authors tested their methods with different data sets and criteria. In addition, method-

specific data preprocessing pipelines and different formats of output make it hard to assess

1Next-generation sequencing is a sequencing technology which can process millions of DNA fragments
in parallel [Behjati and Tarpey, 2013].
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the published methods.

In this work, we systematically evaluate current cell-type deconvolution methods for

sequencing-based DNAm data and perform an unbiased and thorough comparison. We

establish a benchmarking strategy to assess the unique properties of sequencing-based

cell-type deconvolution methods. In addition, we compare the performance of previous

methods to each other, as well as to array-based methods, in varying aspects. Our bench-

marking study specifically addresses three questions as follows:

• What are the commonly shared characteristics in the algorithmic design of sequencing-

based cell-type deconvolution methods?

• What is the current state-of-the-art of sequencing-based cell-type deconvolution

methods and how do they perform compared to array-based methods?

• What are the limitations of current methods?

Compared to the previous benchmarking studies [Titus et al., 2017a, Decamps et al.,

2020, Song and Kuan, 2022], not only does our work provide a systematic evaluation

targeting sequencing-based cell-type deconvolution methods, but the evaluation also en-

compasses a broad range of biological scenarios including normal tissues, tumour tissues,

and circulating tumour DNA (ctDNA) samples. Furthermore, we conduct a thorough com-

parison between sequencing-based and array-based cell-type deconvolution methods which

has not been attempted by other studies. Therefore, our benchmarking study provides

important information for the field of bioinformatics by covering unexamined aspects of

sequencing-based cell-type deconvolution. This work was published in [Jeong et al., 2022].

Below, in Section 3.2, an overview of our benchmarking study is given. In Sections 3.3 and

3.4, the data sets used for the evaluation and algorithmic details of the evaluated methods

are described, respectively. Section 3.5 explains the performance evaluation metrics. In the

following sections, we present the comparison results for the informative region selection

step (Section 3.6) and the cell-type composition estimation step (Section 3.7). Finally,

Section 3.8 studies the influential factors affecting cell-type deconvolution performance.

3.2 Overview of benchmarking procedures

Figure 3.1 shows the overall scheme of our benchmarking study. We compare six sequencing-

based cell-type deconvolution methods: Bayesian epiallele detection (BED) [Barrett et al.,

2017], ClubCpG [Scott et al., 2020], csmFinder + coMethy [Yin et al., 2019], DXM [Fong

et al., 2021], MethylPurify [Zheng et al., 2014] and PRISM [Lee et al., 2019]. Two array-

based methods, Houseman’s method [Houseman et al., 2012] and MeDeCom [Lutsik et al.,

2017], are added to the evaluation as a comparison group.
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Figure 3.1: Overall scheme of cell-type deconvolution benchmarking. For the evaluation,
synthetic mixtures of reads were generated. The read-level methylomes were acquired
from the mouse neuronal single-cell bisulfite sequencing (scBS-seq) data set or tumour
whole genome bisulfite sequencing (WGBS) data set. Synthetic mixtures are referred to
as pseudo-bulks. Sequencing-based cell-type deconvolution methods can use the read-level
methylomes without further processing and select informative regions for cell-type specific
signals (upper part). Then, the cell-type composition is estimated within these regions.
On the other hand, we converted the read-level methylomes into a matrix shape for the
array-based cell-type deconvolution methods (bottom part). Pre-designated CpGs are
used for the conversion, and the array-based methods infer cell-type distributions from
the matrix-shaped data.

The evaluated sequencing-based methods consist of two steps: informative region selec-

tion and cell-type composition estimation. Approximately 80% of CpGs are methylated

in mammal genomes [Acharjee et al., 2023], and many of these regions have identical

methylation patterns regardless of cell types. Only a minor number of genomic regions

are detected as differentially methylated regions for human normal cell types [Loyfer et al.,

2023], which means that it is excessive to investigate the entire genome for cellular hetero-

geneity analysis. Furthermore, confounding factors can perturb methylation patterns in

some genomic regions. Therefore, selecting informative regions in the entire genome can

avoid infeasible computational complexity and remove irrelevant signals, perplexing the

modelling of cell-type composition estimation.

During the informative region selection step, each method defines a ‘region’ as a group

of CpGs closely located to each other or covering a certain genomic region. Afterwards,

the methods filter out regions that do not satisfy certain criteria. The remaining regions

are considered ‘informative regions’ to deconvolute the mixture of cell type-specific signals

shown in bulk samples. Three criteria to select informative regions for each benchmarked

method are specified in Table 3.1. We followed the hyperparameter values mentioned in
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the original publications, but modified some values when a method performed poorly for

the data used in our benchmarking study. Based on these criteria, only regions overlapping

with a sufficient number of CpGs within a certain length of region and covered by enough

number of reads are selected.

Houseman’s method and MeDeCom do not have a specific informative region selection step,

since array-based methods require array-shaped data containing methylation patterns only

at designated CpGs. Thus, in our benchmarking study, we pre-selected CpGs to convert

the sequencing-based DNAm data to an array-shaped format for these methods. For

Houseman’s method, which is reference-based, cell-type differentially methylated regions

(DMRs) calculated by comparing reference cell types were chosen for the conversion of

sequencing-based data. For MeDeCom, which is designed to be a reference-free method,

20,000 CpGs with the highest variance of methylation patterns were selected. methrix

package [Mayakonda et al., 2020] was used to convert the data and the details are described

in Section 3.3.2.

Once CpG-wise methylation patterns are collected from the selected informative or pre-

defined regions, the cell-type deconvolution methods estimate cell-type compositions based

on the methylation patterns in these regions. There are three criteria to characterise

the cell-type composition estimation step: reference methylomes prerequisite, number of

identifiable subpopulations, and estimation scope (Table 3.1).

Reference methylomes prerequisite. For supervised (reference-based) cell-type de-

convolution models, reference methylomes are required as data to train a cell-type com-

position estimation model. Among the benchmarked methods, BED, Houseman’s method

and ClubCpG are classified as reference-based methods. In the BED and Houseman’s

method algorithms, pure cell-type methylation profiles are required as reference data. On

the other hand, ClubCpG trains a regression model on a training set of bulk samples given

with ground-truth cell-type composition.

Number of identifiable subpopulations. Cell-type deconvolution methods specifically

targeting tumour samples presume that the given cell mixtures have binary components of

healthy and tumour stroma2. Such methods are often named ‘tumour purity estimation’

methods and output the proportion of two subpopulations. On the other hand, standard

cell-type deconvolution methods do not make an assumption about the number of sub-

populations to detect. In our benchmarking study, BED and MethylPurify are considered

tumour purity estimation methods.

Estimation scope. A common approach to cell-type composition estimation is to cal-

culate final estimates from the summarised methylation patterns across the informative

regions. Depending on the scope of estimation, we categorise the methods into ‘local’

and ‘global’ methods. Local methods calculate statistics in each informative region and

2Stroma means the area of an organ or a tissue which gives structural support.
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establish a distribution of the region-wise statistics. Then, the final estimation of cell-type

proportions is decided by choosing the peak or the best value of the distribution. BED,

MethylPurify and PRISM belong to this category. The other methods, however, globally

estimate the cell-type proportions directly from all selected regions.

3.3 Data set

3.3.1 Pseudo-bulk generation

For the evaluation of cell-type deconvolution methods, ground-truth cell-type proportions

are compulsory for test bulk samples. However, as mentioned in Section 2.3, obtaining

very accurate cell-type proportions from biological samples in vitro is not easy, and it

potentially introduces technical variations that affect cell-type proportions. Therefore,

we generated a virtual cell mixture in silico, called ‘pseudo-bulk’, by mixing randomly

sampled sequencing reads from single cell or cell line3 samples. We regard the ratio of

reads sampled from each cell type as ground-truth cell-type proportions that cell-type

deconvolution methods are supposed to infer.

In order to simulate various biological scenarios, three pseudo-bulk data sets were created

(Table 3.2). 20 pseudo-bulk samples were generated to create two different data sets

containing two and five different mouse neuronal cell types. These data sets represent

normal (non-tumour) tissue samples including a different number of subpopulations. Pure

mouse neuronal cell-type samples were collected from a publicly accessible single-nucleus

mouse brain DNA methylation data set [Luo et al., 2017]. The data set was downloaded

from Gene Expression Omnibus (GEO) with the accession number GSE97179. Since the

downloaded data set contains 16 different mouse neuronal cell types, five cell types that

have adequate single-cell samples and constitute clear clusters on the t-SNE visualisation

made by the authors were chosen. Both inhibitory (mPv) and excitatory (mDL-2, mL2-3,

mL5-1 and mL6-2) neuron types were included in the five cell types.

The nature of tumour methylomes certainly differs from normal cell-type methylomes. For

example, partially methylated domain (PMD) and increasing allele-specific methylation

(ASM) in tumours form a greater number of anomalies in tumour tissue methylation

patterns [Do et al., 2020, Nishiyama and Nakanishi, 2021]. For this reason, another pseudo-

bulk data set is prepared for evaluating the cell-type deconvolution methods in terms of

tumour-derived abnormal DNAm patterns. The tumour-normal pseudo-bulk data set

also has 20 bulk samples generated by merging reads from diffuse large B-cell lymphoma

(DLBCL) and normal healthy B-cell samples downloaded with the GEO accession number

GSE137880 [Do et al., 2020].

The ground-truth cell-type proportions in pseudo-bulk data sets were sampled from Dirich-

3Cell line refers to as cultures of a specific population of cells [Farrell, 2011].
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Table 3.2: Specification of generated pseudo-bulk data sets. Three different sets of
pseudo-bulks were created for our benchmarking study. Mouse neuronal scBS-seq data
set was used as a resource for two and five cell-type mouse neuronal pseudo-bulk samples,
and one more data set was created from DLBCL and normal B cell WGBS data. Each
pseudo-bulk data set contains 20 samples.

Resource
(GEO accession)

#bulks Cell types
Biological

sample
Sequencing

protocol

2 cell-type
mouse neuronal
pseudo-bulk

GSE97179 20 mL6-2, mPv
Mouse
neuron

scBS-seq
(Illumina HiSeq 4000)

5 cell-type
mouse neuronal
pseudo-bulk

GSE97179 20
mL6-2, mPv, mDL-2,

mL2-3, mL5-1

Mouse
neuron

scBS-seq
(Illumina HiSeq 4000)

Tumour-normal
pseudo-bulk

GSE137880 20
Normal B-cell,

DLBCL
B-cell

WGBS
(Illumina NovaSeq 6000)

let distributions using the generateExample function implemented in R package MeDe-

Com (https://rdrr.io/github/lutsik/MeDeCom/src/R/utilities.R). Most parame-

ters were set up as default values, but we changed proportion.var.factor value to 10 and

the number of genomic features value to 1 million. The simulated cell-type proportions are

listed in Table 3.3 and the pipeline can be found on https://github.com/CompEpigen/

SeqDeconv_Pipeline/blob/main/Pseudo_bulk_generation_pipeline.md.

3.3.2 Conversion of BS-seq data into an array data

In order to compare the sequencing-based methods with the array-based methods, we

reshaped the read-level methylomes into an array shape. The conversion was done by

methrix R package [Mayakonda et al., 2020]. Methrix is a toolkit for WGBS data analysis

which provides various functions including genomic strand collapse, quality control, and

read coverage filtering. It creates a matrix of methylation beta-values from a tab-delimited

file (e.g., bedGraph file) containing read coverage, and the number of methylated reads

at CpGs. As input data of methrix, a bedGraph file from each pseudo-bulk sample was

generated using MethylDackel4.

4https://github.com/dpryan79/MethylDackel
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Table 3.3: Cell-type proportions for pseudo-bulk samples used in Chapter 3

2 cell-type
mouse neuron

5 cell-type mouse neuron Tumour-normal

Samples mL6-2 mPv mDL-2 mL2-3 mL5-1 mL6-2 mPv
B cell

non-cancer
B cell

Lymphoma

Bulk 1 0.731 0.269 0.350 0.148 0.242 0.091 0.169 0.151 0.849
Bulk 2 0.445 0.555 0.149 0.096 0.451 0.106 0.197 0.945 0.055
Bulk 3 0.810 0.190 0.444 0.166 0.078 0.293 0.020 0.152 0.848
Bulk 4 0.658 0.342 0.376 0.176 0.245 0.091 0.112 0.190 0.810
Bulk 5 0.338 0.662 0.049 0.459 0.062 0.172 0.258 0.680 0.320
Bulk 6 0.352 0.648 0.381 0.100 0.037 0.407 0.074 0.801 0.199
Bulk 7 0.617 0.383 0.176 0.035 0.242 0.317 0.230 0.790 0.210
Bulk 8 0.591 0.409 0.141 0.075 0.124 0.249 0.410 0.496 0.504
Bulk 9 0.558 0.442 0.160 0.199 0.166 0.151 0.324 0.624 0.376
Bulk 10 0.444 0.556 0.280 0.130 0.456 0.034 0.100 0.657 0.343
Bulk 11 0.330 0.669 0.259 0.155 0.264 0.290 0.032 0.552 0.448
Bulk 12 0.377 0.623 0.081 0.446 0.140 0.166 0.166 0.963 0.037
Bulk 13 0.662 0.338 0.248 0.142 0.141 0.118 0.351 0.955 0.045
Bulk 14 0.461 0.539 0.119 0.340 0.118 0.245 0.177 0.315 0.685
Bulk 15 0.835 0.165 0.150 0.062 0.278 0.295 0.215 0.983 0.017
Bulk 16 0.694 0.306 0.201 0.451 0.088 0.241 0.019 0.804 0.196
Bulk 17 0.550 0.450 0.266 0.210 0.210 0.169 0.146 0.170 0.830
Bulk 18 0.624 0.376 0.350 0.027 0.340 0.225 0.058 0.738 0.262
Bulk 19 0.671 0.329 0.271 0.159 0.334 0.198 0.039 0.673 0.327
Bulk 20 0.539 0.461 0.053 0.390 0.055 0.112 0.390 0.926 0.074
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3.4 Algorithmic details of evaluated methods

In this section, we describe the details of six sequencing-based and two array-based cell-

type deconvolution algorithms benchmarked in this thesis. Although the study aims to

evaluate sequencing-based methods, also array-based cell-type deconvolution algorithms

were included as a comparison group.

3.4.1 Sequencing-based methods

Bayesian epiallele detection (BED)

[Barrett et al., 2017] suggested using Bayesian modelling for the distribution of all possible

methylation patterns in specified genomic regions. The method is named BED and the

authors define ‘epialleles’ as all possible cases of methylation patterns in a region. Over

the modelled distribution, BED estimates tumour purity. The BED algorithm involves

two inferences performed in every region: epialleles and the epiallele class of individual

reads. These inferences are done via maximum a posteriori (MAP). Tumour purity is

finally estimated by taking the peak of estimated region-wise tumour purity. In a region i

that has Q epiallele classes {q1, ..., qQ}, the tumour purity is approximately estimated as

follows:

1

2

Q∑
j=1

|P (qj |b, i)− P (qj |n, i)|, (3.1)

where b and n are a bulk sample to deconvolute and normal tissue reference data, re-

spectively. Preprocessing of the input data and cell-type composition estimation were

performed by a pipeline uploaded on bed-beta Github page5.

ClubCpG

Density-based spatial clustering of applications with noise (DBSCAN) [Ester et al., 1996]

is used for clustering reads in ClubCpG algorithm [Scott et al., 2020]. Only reads that fully

cover the selected regions are used to perform the clustering. We modified the parameter

values for the informative region selection step from the default setup to more suitable

values for the data set used in this study (Table 3.1). As a cell-type composition estimation

procedure, the authors suggested regression-based estimation on principal components

(PCs), which we followed to obtain the final estimates. As a training set for the regression

model, 100 pseudo-bulks were additionally generated. Following the paper, we fitted a

multivariate linear regression model to 20 PCs extracted from the training set to predict

the cell-type composition and the fitted model inferred cell-type compositions within given

pseudo-bulk samples.

5https://github.com/james-e-barrett/bed-beta
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csmFinder + coMethy

[Yin et al., 2019] proposed a pipeline consisting of two computational models, csmFinder

and coMethy. csmFinder identifies putative cell-type specific methylated (pCSM) loci

which are conceptually equal to informative regions in our benchmarking study. The de-

sign of the csmFinder algorithm assumes bipolar patterns, meaning that fully methylated

and unmethylated reads exclusively exist in informative regions thus filtering out other

regions. coMethy dissects a samples-by-pCSM loci methylation beta-value matrix into cell-

type proportions of the samples and cell type-specific methylomes in each cell type. The

coMethy algorithm is developed based on non-negative matrix factorisation (NMF). Due

to the special input requirement of csmFinder, the input bulk samples were converted into

methylation call files by bismark methylation extractor [Krueger and Andrews, 2011]. To

determine pCSM loci, csmFinder also requires reference genomes, so hg19 human genome

and mm10 mouse genome were provided accordingly. After detecting pCSM loci in each

bulk sample, we only retained loci where all bulk samples present methylation signals.

DXM

DXM employs L1-norm minimisation to infer the number of subpopulations, the propor-

tions, and the methylome profiles of each subpopulation [Fong et al., 2021]. The concept

of subpopulation can be regarded the same as the concept of cell type in our bench-

marking study. It computes the L1-norm between 10,000 randomly generated distribu-

tions and the distribution of methylation beta-values of a given bulk in every informative

region. Then, the generated distribution yielding the lowest L1-norm value is chosen

to represent the cell-type distribution in the bulk. Although it is a sequencing-based

method, DXM demands users to provide a pre-selected genomic region set rather than

finding informative regions. Therefore, we have provided promoter and CpG island re-

gions where the read coverage is higher than 4. The UCSC genome annotation data set was

used to obtain CpG island regions in mm10 and hg19 genomes (https://hgdownload.

cse.ucsc.edu/goldenpath/mm10/database/ and https://hgdownload.cse.ucsc.edu/

goldenpath/hg19/database/). Promoter regions were collected from TxDb objects of

UCSC annotation [Team and Maintainer, 2020, Carlson and Maintainer, 2015].

MethylPurify

MethylPurify [Zheng et al., 2014] is a tumour purity estimation method based on the

Expectation-Maximisation (EM) algorithm. The EM algorithm infers both methylation

levels in tumour and normal cell types (denoted as m1 and m2 in the paper), and the

tumour purity (denoted as α1). Technically, the original paper does not explicitly mention

that cell-type 1 is the tumour cell type, but here we assume so for convenience. Also, we

introduce another random variable ci for cell type, where c1 is tumour and c2 is normal.

The authors established a likelihood function involving m1, m2, α1 and, α2 assuming that
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N sequencing reads R = {r1, ..., rN} are independently sampled:

L(m1,m2, α1, α2) =
∏
ri∈R

2∑
j=1

αjPmj (ri|cj). (3.2)

We note that αj is the estimated proportion of cell type cj , thus α1 + α2 = 1. Therefore,

the parameter estimation problem has 3 degrees of freedom. Parameters are estimated via

the EM algorithm by maximising the likelihood value. Regarding hyperparameters, the

mouse neuronal data set and tumour data set had 300 bp and 200 bp as bin size values, but

other values were given, as stated in the paper. The original implementation determined

informative regions only in CpG islands, but, for our benchmarking study, it was modified

to not restrict the range of discovering informative regions due to the insufficient number

of informative regions detected in CpG islands.

PRISM

PRISM [Lee et al., 2019] mainly focuses on only fully methylated and fully unmethy-

lated reads to disregard non-dichotomous methylation patterns while estimating tumour

purity using the EM algorithm. Prior to the estimation, it employs a hidden Markov

model (HMM) to amend possibly erroneous methylation patterns. The HMM model in

the PRISM algorithm resembles the principle of DNMT1 enzyme6. DNMT1 methylates

hemimethylated CpGs7 Associating the DNMT1 enzyme status with observed methyla-

tion patterns, [Lee et al., 2019] designed an HMM whose hidden state has two categories:

whether DNMT1 is attached to DNA or not. The observation of the HMM is the methy-

lation pattern. After correcting methylation patterns, PRISM assumes a beta-binomial

mixture model for region-wise binary pattern distributions. The parameters of the beta-

binomial model, α and β (described in Section 2.2), and the weight of cell types (referred

to as subclones in their paper) in the mixture model are estimated via the EM algorithm.

The weight values can be regarded as cell-type proportions. Although the authors stated

that PRISM can identify multiple cell types within a bulk, we found that PRISM can only

detect two cell types for the pseudo-bulk data set used in our benchmarking study.

3.4.2 Array-based methods

Houseman’s method

Houseman’s method uses regression calibration to predict cell-type distribution within

array-based DNAm data [Houseman et al., 2012]. To convert bisulfite sequencing data into

an array shape, CpGs that are located in DMRs were chosen following the marker-CpG

selection part in the original paper. Then, the conversion from read-level methylomes

6DNMT1 maintains the methylation on the cytosine molecule after the DNA replication as explained
in Section 2.1

7Hemimethylation means CpGs are only methylated at one strand.
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to the array shape has been done as described in Section 3.3.2. Although the original

implementation selects only 500 CpGs, we increased the number to 1,000 because of the

broader CpG coverage of the pseudo-bulk data compared to the real microarray data used

in the original paper.

MeDeCom

MeDeCom is an unsupervised array-based cell-type deconvolution method based on NMF

[Lutsik et al., 2017]. As mentioned in Section 2.3, MeDeCom includes an additional regu-

larisation term in the optimisation to ensure that the inferred cell type-specific methylation

profiles are in the range between zero and one. For the informative region, 20,000 CpG

sites showing the highest variance of methylation level across all samples were chosen. The

following parameter specifications were used: 500 for regularisation and 30 for the random

initialisation number.

3.5 Performance metrics

In this section, we explain the metrics used for measuring informative region selection and

cell-type composition estimation performances of benchmarked cell-type deconvolution

methods.

3.5.1 Performance metrics for informative region selection

Overlaps with DMRs

Ideally, selected informative regions should involve clearly different methylation patterns

between cell types. Once DNAm data from different types of samples are given, calcu-

lating differentially methylated regions (DMRs) is a gold-standard analysis. DMRs can

be calculated by comparing methylation profiles between given sample types. In the case

of cell-type deconvolution, DMRs calculated between different cell types can be regarded

as an ideal selection of genomic regions involving cell type-specific methylation patterns.

Therefore, we established the hypothesis that more clear cell type-specific signals are ob-

tained from selected informative regions with higher similarity to DMRs. DMRs for each

cell type were called as described in Section 2.1.4. As measurements of the similarity,

we use the number of overlaps between DMRs and the selected regions to measure how

accurately a method can identify DMRs.

For counting overlaps, we used the findOverlaps function in the GenomicRanges R package

[Lawrence et al., 2013]. The findOverlaps function identifies overlaps between query and

reference sets of genomic ranges based on a red-black tree T whose node i contains an

individual genomic range in the reference set [Cormen et al., 2022]. The contained genomic

range (interval) is written as i.int. i.int.start and i.int.end indicate the start and end
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positions of the region. Then, the overlap of two regions i.int and i′.int is defined as:

i.int.start ≤ i′.int.end AND i′.int.start ≤ i.int.end (3.3)

with an assumption that both regions are located on the same chromosome.

For each query genomic range j, the findOverlaps function identifies a node whose region

overlaps with j by using the Interval-Search(T, j) operation as described in Algorithm 1

[Cormen et al., 2022].

Algorithm 1 The Interval-Search(T, j) algorithm

Input: T a red-black tree whose nodes contain regions in the reference set
j Query region

Output: i The node whose region overlaps with query region j

1: i = T.root
2: while i ̸= nil AND j does not overlap with i.int do
3: if i.left ̸= AND i.left.max ≤ j.start then
4: i = i.left
5: else
6: i = i.right

T.root indicates the root node of tree T
nil means an empty tree
i.left and i.right mean the left and right subtrees of the node i
i.left.max is the max value in {i.end, the largest end within i.left, the largest end within i.right}

Genomic correlation

‘Genomic correlation’ was suggested by [Favorov et al., 2012] to determine the difference

between two region sets based on a distribution of distances. In our benchmarking study,

we used it to measure the similarity between DMRs and selected informative regions.

For calculating genomic correlation, the ‘relative distance’ needs to be defined to form a

distribution of distances between two region sets. Here, we define a genomic region as

[chr, s, e], where chr, s, e refer to the chromosome, start and end of the region. When a

selected informative region qi := [chrqi , sqi , eqi ] and a set of D DMRs ordered by genomic

position dk := [chrdk , sdk , edk ] ∈ {d1, ..., dD}, the relative distance ηi is defined as:

mqi = ⌈sqi + eqi
2

⌉, mdk = ⌈sdk + edk
2

⌉ (3.4)

k̄ = arg min
k

(mqi −mdk), where chrqi = chrdk and mdk < mqi (3.5)

ηi =
min(|mqi −mdk̄

|, |mqi −mdk̄+1
|)

|mdk̄+1
−mdk̄

|
. (3.6)
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ηi is a normalised distance between qi and the closest DMR in the range [0, 1
2 ]. Then

the genomic correlation is calculated using the empirical cumulative distribution function

defined as:

ECDFη(x) =
1

Q

∑
ηi∈{η1...ηQ}

1ηi<x (3.7)

when Q selected informative regions are given. The genomic correlation is calculated

by comparing ECDFη with ECDFideal. ECDFideal is defined as the ECDF under a

null hypothesis. Here, the null hypothesis is that the relative distances have a uniform

distribution between 0 and 0.5 when the two region sets are independent. The comparison

between two ECDF s is done based on the area between two functions:

GenomicCorr :=

∫ 1
2
0 (ECDFη(x)− ECDFideal(x))dx∫ 1

2
0 ECDFideal(x)dx

. (3.8)

The genomic correlation is interval-bounded by [-1, 1]. Two independent region sets

yield zero and identical region sets yield one. Although the genomic correlation can be

-1 if all selected regions fall into the middle between two DMRs, all selected regions in

our benchmarking study had values ≥ 0 (see Section 3.6). Therefore, we consider the

magnitude of genomic correlation as the overall proximity measure between informative

region selection results and DMRs.

3.5.2 Performance metrics for cell-type composition estimation

Absolute error and percentage absolute error

The major criterion used for the cell-type composition estimation step is the median

absolute error (MAE) between the predicted and ground-truth cell-type proportions. The

two NMF-based methods benchmarked in this chapter, coMethy and MeDeCom, do not

assign cell types automatically to the estimated proportions. Therefore, we assigned cell

types to the estimated proportions by comparing the MAE of all possible combinations of

cell types.

In the cell-type deconvolution analysis for very low cell-type proportions, the median

absolute error may become harder to interpret. Therefore, for this analysis, we used the

mean absolute percentage error (MAPE), which is known to be scale-independent [Kim

and Kim, 2016]. MAPE calculated over N cell types is defined as:

MAPE :=
1

N

N∑
n=1

|yn − ŷn
yn

|, (3.9)

where yn and ŷn are the ground-truth and estimated cell-type proportions for a cell type

n.
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Entropy of cell-type distribution

For a random variable, the entropy measures the uncertainty or the amount of carried in-

formation of the possible results. It is also commonly used for quantifying the irregularity

of proportion or distribution [Humeau-Heurtier, 2018, Inouye et al., 1991]. Here, we deter-

mine the irregularity (or the uniformity) of the cell-type distribution within a cell mixture

using entropy to test if a biased cell-type distribution makes the cell-type deconvolution

intractable. The entropy of the cell-type distribution H(C) in a bulk sample whose N

cell-type proportions are given as C = {c1, ..., cN} is calculated as:

H(C) = −
N∑
i=1

cilog(ci). (3.10)

The entropy value increases, when cell types are more uniformly distributed.

3.6 Informative region selection result comparison

In this section, we evaluate the informative region selection step of the benchmarked cell-

type deconvolution methods. For the overlap between the selected informative regions

and DMRs, BED and csmFinder yielded the highest number for the two cell-type mouse

neuronal and tumour-normal pseudo-bulks (Figure 3.2A and B). For the five cell-type

pseudo-bulks, ClubCpG detected the largest number of regions overlapping with DMRs

for all cell types (Figure 3.2C). However, measuring the total number of overlaps cannot

be the only metric to compare the informative region selection step, because the methods

detected different sizes of informative region sets, and the number of detected regions is

highly correlated with the number of overlaps in all pseudo-bulk samples (Figure 3.3).

Therefore, even if the selected regions have a lot of overlapping regions with DMRs, there

might be many more regions not overlapping with DMRs in the selected region set. This

can eventually hinder extracting sufficient cell type-specific methylation patterns for cell-

type deconvolution due to the majority of uninformative regions.

To complement the limitations of the number of overlaps for informative region selection

evaluation, the genomic correlation was calculated as another score to measure the simi-

larity. In both two cell-type mouse neuronal and tumour-normal pseudo-bulk analyses, a

high genomic correlation value is achieved by csmFinder, Prism and MethylPurify (Figure

3.4A and C). On the other hand, BED - which yields the largest number of overlaps for two

cell-type mouse neuronal pseudo-bulks (Figure 3.2A) - had the lowest genomic correlation

for both cell-type DMR sets. csmFinder achieved the highest genomic correlation for all

five cell-type DMRs in the five cell-type pseudo-bulk analysis (Figure 3.4B).
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A B

C

Figure 3.2: Overlaps between DMRs and selected informative regions. (A) 2 cell-type
mouse neuronal pseudo-bulks (B) Tumour-normal pseudo-bulks (C) 5 cell-type mouse neu-
ronal pseudo-bulks. The coloured boxplots at the top present the number of overlapping
informative regions with DMRs over all pseudo-bulk samples. Two groups where overlaps
were calculated are connected by a line in the middle. The right grey boxplot shows the
size of the region set in each method or DMR. We mark the result for different cell types
by different colours.
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Figure 3.3: Correlation between the number of overlapping regions with DMRs and
the size of region set. (A) 2 cell-type mouse neuronal pseudo-bulks (B) Tumour-normal
pseudo-bulk (3) 5 cell-type mouse neuronal pseudo-bulk. For every pair of cell-type and
pseudo-bulk samples, the correlation was calculated for all benchmarked methods. Non-
significant correlations (p-value > 0.05) have a p-value written on the ellipse.

A B C

Figure 3.4: Genomic correlation between the selected informative regions and DMRs.
(A) 2 cell-type mouse neuronal pseudo-bulks. (B) 5 cell-type mouse neuronal pseudo-
bulks. (C) Tumour-normal pseudo-bulks. A higher score is indicated with a darker green
colour.
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Genome annotation is another broadly used analysis method in bioinformatics to investi-

gate functional elements over genomic sequences such as promoters8 or enhancers9. Re-

lating methylation patterns with specific genome annotations can explain the mechanism

of gene expression controlled by epigenetic modifications. Many studies have associated

DNAm in promoter regions with gene silencing and cell-type specificity [Phillips et al.,

2008, Suzuki and Bird, 2008]. Negative correlations between the gene expression level and

DNAm in the first intron regions also have been reported [Anastasiadi et al., 2018].

Figure 3.5 shows the genomic annotation results of the selected informative regions for each

method. The ratio of promoter regions is higher in the selected informative regions than

in DMRs. In particular, regions detected by DXM include the highest ratio of promoters.

This corresponds to the previous finding that promoter methylation plays a role as a gene

regulator forming cell-type identity. Furthermore, both selected regions and DMRs involve

a much larger number of distal intergenic regions in the tumour-normal pseudo-bulk data

set than the other two data sets created from mouse neuronal cells. This concurs with

studies showing that dominant aberrant methylation patterns are present in intergenic

regions in lymphoma and leukaemia [Kretzmer et al., 2015, Almamun et al., 2017].

8Promoter is a genomic region where proteins bind to start transcription of a gene
9Enhancer is a genomic region where proteins bind to enhance transcription of a gene
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Figure 3.5: Genome annotation of selected informative regions and DMRs. The anno-
tation was conducted in individual bulk samples. The box plot depicts the distribution of
annotation frequencies over the bulk samples. The median, the first, and third quantiles
are shown as the middle bar, at each end of the box. Annotation of DMRs are marked
as different shapes of dots in the box plots. The same analysis was done for all CpGs of
each bulk sample, which is referred to as ‘background’ to present the original distribution
of annotations.
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Furthermore, we examined CpG-wise methylation differences in the selected informative

regions and DMRs (Figure 3.6). The analysis was done by comparing methylation beta-

values between pure cell-type samples at examined CpG sites. This analysis is necessary

because, even if DMRs are selected based on the CpGs showing distinct methylation pat-

terns between two cell types, all CpGs in DMRs do not necessarily present cell-type specific

methylation patterns. DSS, which is the DMR calling method used for our benchmarking

study, selects regions based on the number of CpGs with a statistically significant methy-

lation difference [Feng et al., 2014]. The statistics are calculated by a hypothesis test with

a null hypothesis that a CpG methylation pattern difference is zero between two cell types

(see Section 2.1.4). Other methods, such as MethylKit or DMRcaller, select regions where

region-wise methylation level differs between two cell types, not CpG-wise methylation

level [Akalin et al., 2012, Catoni et al., 2018].

For bi-component pseudo-bulks (2 cell-type mouse neuronal and tumour-normal pseudo-

bulk samples), we subtracted the beta-value of one cell type from the other. Then, a

difference > 0 means hypermethylation of the cell type whereas a difference < 0 means

hypomethylation of the cell type. A difference value of 0 means that there is no dif-

ference between the two cell types in methylation beta-value. Figure 3.6A and B show

the distributions of beta-value difference in the bi-component pseudo-bulks. Although

CpGs covered by DMRs mostly have hyper- or hypomethylation in the corresponding cell

type, a noticeable number of CpGs were also detected not to have a significant methyla-

tion difference between the two cell types. DLBCL DMRs tend to be hypermethylated,

while both mouse neuronal cell-type DMRs have much more hypomethylated CpGs. This

result agrees with the exceeding number of hypermethylations discovered specifically in

cancer [Das and Singal, 2004]. Array-based methods also involve the majority of CpGs

with cell-type specific methylation patterns, since the regions were selected from DMRs

or based on methylation variance. However, sequencing-based methods cannot detect as

many CpGs with cell-type specific signals compared to DMRs or array-based methods. In

all sequencing-based method results, a peak was observed at zero in the methylation beta-

value difference distribution, which means that most CpGs do not present a methylation

difference between two compared cell types.

For five cell-type mouse neuronal bulks, in the ideal case of informative regions, a single cell

type is supposed to present a unique pattern and all others cannot be distinguished from

each other. Therefore, we calculated the absolute difference of minimum and maximum

among five methylation beta-values at individual CpG sites (Figure 3.6C). The absolute

value closer to 1 implies a clearer cell-type specific methylation pattern. The largest

number of CpGs in DMRs and the regions for array-based methods have a highly different

methylation pattern in one cell type. However, within the regions detected by sequencing-

based methods, far more CpGs have low methylation beta-value difference (<0.3).
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5 cell-typeTumourA B c2 cell-type

Figure 3.6: Methylation beta-value difference at CpGs in the selected regions. (A) 2
cell-type mouse neuronal pseudo-bulk result. (B) Tumour-normal pseudo-bulk result. (C)
5 cell-type mouse neuronal pseudo-bulk result. For the bi-component bulks (2 cell-type
mouse and tumour-normal samples), the difference between two pure cell-type methylomes
was calculated at CpGs located in the regions. For the five cell-type mouse samples, the
difference was calculated between min and max methylation beta-values among five pure
cell-type methylomes. The difference values are binned by 0.1, and the boxplots contain
the results of 20 bulks in each data set.
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3.7 Cell-type composition estimation

Based on the selected informative regions in the previous step, sequencing-based cell-type

deconvolution methods estimate global cell-type compositions within given bulk samples.

In this section, we evaluate the cell-type composition estimation performance for all bench-

marked methods. For a fair comparison, reference-based and reference-free methods are

assessed separately.

Mouse neuronal cell-type deconvolution

For two cell-type pseudo-bulk analysis shown in Figure 3.7, only mPv cell-type results are

shown because two cell-type proportions sum up to one, and the cell-type deconvolution

performance measured for both cell types makes it redundant. Houseman’s method and

coMethy yield the lowest median absolute error among reference-based and reference-free

methods each (Figure 3.7A). It is noted that, for the high percentage of mPv cell type in

the bulks, MethylPurify and Prism performed better than coMethy which overestimates

the proportion for those samples (Figure 3.7B).

In the analysis of five cell-type pseudo-bulks shown in Figure 3.8, Houseman’s method

again performed best among the reference-based methods, but DXM showed the best

performance among reference-free methods (Figure 3.8A). According to the performance

comparison per cell type, the mL2-3 cell-type proportion is the most difficult to estimate

for coMethy, while ClubCpG and MeDecom are the most inaccurate in estimating mDL-2

cell-type proportion (Figures 3.8B). Most of the methods struggled more with estimating

cell-type compositions in five cell-type bulks, but Houseman’s method and DXM achieved

lower median absolute error compared to the result for two cell-type bulks.

Overall, reference-based methods (excluding BED) yielded lower median absolute error

values than reference-free methods for two cell-type pseudo-bulks (Figure 3.7A). For five

cell-type pseudo-bulks, the reference-free method DXM outperformed the reference-based

method ClubCpG (Figure 3.8A). From the individual bulk result analysis, we have discov-

ered that ClubCpG can produce an estimation below 0 or above 1 in the case of extremely

low or high ground-truth cell-type proportion because ClubCpG uses a linear regression

model without limiting a range of estimated values (Figure 3.7B and 3.8B).
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A B

Figure 3.7: Mouse neuronal two cell-type pseudo-bulk composition estimation. (A)
Absolute error calculated between ground-truth and predicted cell-type proportion. The
number above the box plot shows the median value. Error values were computed only in
the mPv cell type to prevent redundancy (B) Inferred proportions by cell-type deconvolu-
tion methods and the ground-truth proportion (black). Bulk samples are ordered by the
ground-truth cell-type proportion.

A B

Figure 3.8: Mouse neuronal five cell-type pseudo-bulk composition estimation. (A)
Absolute error calculated between the ground-truth and predicted cell-type proportions.
The number above the box plot shows the median value. The error values were obtained
for all five cell types. (B) Inferred proportions by cell-type deconvolution methods and
the ground-truth proportion (black) for different cell types. Bulk samples are ordered by
the ground-truth cell-type proportion.
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Tumour purity estimation

Tumour tissues contain not only tumour cells, but also normal cells associated with tumour

such as epithelial, immune, or stromal cells [Yoshihara et al., 2013]. Therefore, purifying

tumour signals from tumour tissue methylomes makes it possible to obtain pure tumour

DNAm profiles and measure the percentage of tumour cells within. Once the contami-

nation of non-targeted normal cells is high, clinical analysis of tumour tissues gets more

erroneous [de Ridder et al., 2005]. In conclusion, estimating accurate tumour purity is

crucial for tumour studies. Out of the benchmarked methods, BED and MethylPurify are

particularly designed for such bulk samples originating from tumour and normal subpop-

ulations. Yet, we assessed all methods with tumour-normal pseudo-bulks to see if these

methods actually perform better than others in tumour purity estimation (Figure 3.9).

The results of reference-based methods had the same tendency as the mouse neuronal

cell-type deconvolution results: Houseman’s method outperformed all other methods. It

even achieves a lower error value in tumour cell-type deconvolution than in mouse neuronal

cell-type deconvolution, despite the high complexity of tumour methylomes as described in

Section 2.1.2. In the reference-free method analysis, MeDeCom performed tumour purity

estimation most accurately.

In Section 2.1.2, we described that many of the recent studies in liquid biopsy have clari-

fied the usage of ctDNA in blood plasma samples for non-invasive early cancer diagnosis

[Martins et al., 2021, Egyud et al., 2019]. The main challenge in ctDNA analysis is the

extremely low percentage of ctDNA occurring, especially at the early stage of tumour

development, which requires a highly sensitive cell-type deconvolution model.

Therefore, we assessed the benchmarked methods with tumour-normal pseudo-bulks in-

cluding extremely low percentage of tumour-derived reads. Ten more bulk samples were

newly created by adding reads from DLBCL increasing the percentage by 0.1% from 0.1%

to 1%. As a performance metric, we used MAPE, rather than MAE, to show more com-

parable performance differences within the excessively small range of ground-truth values.

Consistently, the best performance is achieved by Houseman’s method among reference-

based methods (Figure 3.10A). In the reference-free method analysis, MethylPurify out-

performs all other methods. Notwithstanding, the estimation of tumour purity was

done more inaccurately compared to other pseudo-bulk analyses and only Houseman’s

method achieved a prediction below 1% (Figure 3.10B). Particularly, Prism, MeDeCom,

and coMethy are not able to purify rare tumour signals and often yield a tumour purity

estimate above 20%.
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Figure 3.9: Tumour-normal pseudo-bulk composition estimation. (A) Absolute error
calculated between ground-truth and predicted cell-type proportion. The number above
the box plot shows the median value. Again, the error values were calculated only in
the normal B cell type because of the redundant estimated proportions of the two cell
types. (B) Inferred proportions by cell-type deconvolution methods and the ground-truth
proportion (black). Bulk samples are ordered by the ground-truth cell-type proportion.

Figure 3.10: Rare cell-type pseudo-bulk composition estimation. (A) Mean absolute
percentage error calculated between ground-truth and predicted cell-type proportion. The
number above box plot shows the median value. (B) Inferred proportions by cell-type
deconvolution methods. The ground-truth values are given as a black line in each facet.
Pseudo-bulk samples are ordered by ground-truth tumour purity.
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3.8 Influential factors of cell-type deconvolution performance

Ultimately, we examine the influence of informative region selection on cell-type com-

position estimation in sequencing-based cell-type deconvolution methods. To cope with

different scales of values, the comparison is done by performance rank rather than the

value itself. For the considered methods, the cell-type composition estimation error and

genomic correlation values were averaged over all bulk samples, then the mean values were

ranked. Here, array-based methods whose pipeline does not involve the informative region

selection step have been excluded from the comparison.

For the two bi-component pseudo-bulk data sets, an inverse correlation has been found

between the mean absolute error rank and mean genomic correlation rank (Figure 3.11).

This indicates that when there are two cell types supposed to be discovered, the capability

of the informative region selection step in recognising CpGs overlapping with DMRs is

important to determine cell-type composition estimation performance. Yet, in five cell-

type pseudo-bulks, an opposite tendency has been discovered.

The distribution of cell types within a bulk can be another factor affecting the cell-type

Figure 3.11: Influence of genomic correlation in cell-type composition estimation. Pear-
son correlation coefficient and p-value were calculated between the rank of mean absolute
error and the rank of mean genomic correlation. The line with a grey background signifies
the fitted linear model and the confidence interval of 0.95. Tumour-normal pseudo-bulk
result has the same rank for two different cell types because DMRs were calculated by
comparing only two cell types, DLBCL and non-cancer B cell.
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deconvolution performance. A rare cell type may not present sufficient cell type-specific

signals for accurate cell-type deconvolution, whereas equally distributed cell types may

increase the complexity of overall methylation patterns across DMRs. Therefore, we in-

vestigate the relationship between cell-type composition estimation performance and the

entropy of cell-type proportions. The mean absolute error value is calculated over all cell

types in each bulk. As a result, the cell-type proportion entropy has been found as a

factor commonly affecting cell-type deconvolution performance in the five cell-type mouse

neuronal pseudo-bulk data set (Figure 3.12). With the exception of DXM, the entropy of

cell-type proportions is negatively correlated with the mean absolute error between the

predicted and the ground-truth values. Namely, cell-type deconvolution is conducted more

accurately when the composition of five cell types is more uniformly distributed. This can

be interpreted that a biased distribution of cell types, which yields a lower entropy, may

not have enough cell-type specific signals from the minor cell type. However, a reverse

result is obtained for DXM. We presume that the DXM algorithm, which determines the

best fit among multiple random distributions without regularisation, may be more suit-

able for a biased cell-type distribution than other methods whose computational model is

iteratively optimised. This trend is not necessarily observed for bi-component pseudo-bulk

analyses. For example, Houseman’s method has a positive correlation between the entropy

and mean absolute error for two mouse neuronal cell-type bulks. The same tendency is

observed for coMethy and Prism results for tumour-normal pseudo-bulk samples. This can

be understood that two cell types uniformly distributed result in two similar distributions

of methylation patterns in each DMR, which could confuse a model to find a correct match

of cell type and methylation pattern distribution.
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Figure 3.12: Correlation between cell-type proportion entropy and mean absolute error.
Pearson correlation coefficient and p-value are given in each plot. Individual points indicate
different bulk samples. A fitted linear function is shown as a line with a grey background
indicating a confidence interval of 0.95.
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3.9 Discussion

In this chapter, six existing sequencing-based cell-type deconvolution methods have been

systematically evaluated together with two array-based methods as a comparison group.

The array-based methods have been included particularly for assessing the capability of

sequencing-based methods to leverage the unique features of read-level methylation pat-

terns.

In order to cover the variability of biological data, three sets of pseudo-bulk samples

were simulated mimicking different biological scenarios. Two and five cell-type mouse

neuronal pseudo-bulk data sets represent the different compositions of subpopulations

within bulk samples, whereas the tumour-normal pseudo-bulk data set generated from

DLBCL samples was used for testing the methods on tumour bulk samples. Pseudo-bulk

samples were generated by merging randomly sampled reads from pure cell-type samples

with known proportions.

Regarding the algorithmic design, all benchmarked sequencing-based methods have two

major steps: informative region selection and cell-type composition estimation. During the

informative region selection step, the methods pre-filter genomic regions where cell type-

specific signals are not presented in the methylation patterns. Then, cell-type composition

estimation is conducted only using the DNAm profiles in the remaining regions. Therefore,

the assessment has been done separately for each step, and we investigated whether the

performance of informative region selection affects the final cell-type deconvolution result.

For the evaluation of informative region selection, DMRs were considered the gold-standard

genomic region involving cell type-specific signals. According to the comparison between

DMRs and selected genomic regions by individual methods, ClubCpG yielded the largest

number of overlaps with DMRs for the mouse neuronal pseudo-bulk samples, though

csmFinder achieved the highest genomic correlation value. ClubCpG did not have a high

genomic correlation because a large number of overlapping regions is rather caused by a

large region set size (Figure 3.2).

The assessment of the cell-type composition estimation step was done mainly based on

absolute error. Considering the prior knowledge provided in a reference-based manner,

the methods have been separately evaluated according to the requirement of reference

data. Houseman’s method clearly outperformed the others in the reference-based method

evaluation. Among the reference-free methods, coMethy most accurately estimated cell-

type composition for the mouse neuronal pseudo-bulk data set.

Cancerous bulks comprised of normal and tumour cell types generally contain more com-

plex structures of subpopulations. In addition, DNAm patterns gain abnormalities over tu-

mour development [McCabe et al., 2009]. To inspect the applicability of the benchmarked

methods to tumour samples, we conducted the same evaluation with another pseudo-bulk
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data set made of normal B cell and DLBCL cell types. In the informative region selection

result, csmFinder detects the largest overlapping regions with DMRs, as well as accom-

plishes the highest genomic correlation. However, for the cell-type composition estimation

step, two array-based methods, Houseman’s method and MeDeCom, inferred the most

accurate cell-type composition in reference-based and reference-free method evaluations,

respectively. In rare cell-type pseudo-bulk analysis, none of the benchmarked methods

achieved a reasonably positive correlation between the ground-truth and estimated cell-

type proportions, which implies that these methods cannot be used for the ctDNA analysis

which requires to deal with a very low percentage of tumour cells.

Finally, the analysis verified that selecting valid informative regions matters for accurate

cell-type composition estimation. The negative rank correlation between mean absolute

error and genomic correlation in bi-component pseudo-bulk samples emphasises that meth-

ods detecting more genomic regions overlapping with DMRs better estimate the cell-type

composition (Figure 3.11). However, when there are more cell types, this is not always

the case. For five mouse neuronal cell-type pseudo-bulks, the entropy of cell-type distri-

bution rather showed a negative correlation with the absolute error in most cases (Figure

3.12). This result indicates that the cell-type distribution is more impactful in deciding

the performance of cell-type deconvolution for a larger number of cell types.

Consequently, the benchmarked methods overall inferred reasonable cell-type propor-

tions, but we have discovered that sequencing-based cell-type deconvolution methods

do not perform significantly better than array-based deconvolution methods in terms of

cell-type composition estimation. Houseman’s method undoubtedly outperformed other

sequencing-based methods and MeDeCom performed best among reference-free methods

in the tumour-normal pseudo-bulk analysis. The biggest challenge of the sequencing-based

approach is addressing the high complexity of methylation patterns caused by the possibly

disparate methylation states in different DNA molecules at the same CpG site. This infor-

mation is simply averaged yielding one beta-value in array-based profiling, which makes

computational/statistical modelling smooth, yet loses the single-molecule resolution of

DNAm pattern. Removing redundant information by selecting valid informative regions

is also crucial to perform accurate cell-type deconvolution. Therefore, sequencing-based

methods need to be able to eliminate uninformative methylation patterns to prevent a

model bias towards non-cell type-specific methylation patterns, while at the same time,

preserving informative methylation patterns.

Another problem that arose is that the benchmarked sequencing-based methods do not

exploit the advantages of read-level methylomes for accurate inference. For example,

csmFinder + coMethy converts methylation patterns obtained from sequencing data into

a matrix, whereas DXM only finds the best fit to given data out of a thousand randomly

generated distributions, rather than performing regression, which would improve model

optimisation. Moreover, Prism retains only fully methylated and unmethylated reads
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during the informative region selection. Not involving partially methylated reads is critical

for tumour analysis where PMDs and ASM are not avoidable. These approaches over-

simplify the obtained methylation patterns in common which results in a less accurate

estimation of cell-type compositions. Thus, better modelling for cell-type deconvolution

needs to be designed to take advantage of read-level methylomes.

To sum up, our benchmarking study conveys an apparent paradigm of sequencing-based

cell-type deconvolution. Not only do the results provide a systematic comparison of cur-

rently available sequencing-based cell-type deconvolution methods, but the study also

suggests that there is room for methodological improvement. The intrinsic benefit of

sequencing-based methylation profiling should allow more accurate cell-type composition

estimation based on read-level information compared with array-based profiling. Taken all

together, we do see the necessity of a new sequencing-based cell-type deconvolution method

designed to extract appropriate cell type-specific signals, while handling confounding fac-

tors and outliers, which make read-level methylome analysis challenging. Therefore, the

following chapters of this thesis focus on the development of a novel sequencing-based

cell-type deconvolution method and the assessment of the developed method.
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Chapter 4

Transformer-based cell-type

deconvolution model for tumour

read-level methylomes

4.1 Introduction

Transformers were proposed by [Vaswani et al., 2017] as a deep learning model which

associates tokenised words with each other in given sentences. As explained in Section

2.2.4, the multi-head self-attention mechanism enables such associations by calculating the

scaled dot-product of the query, key, and value vectors, see Equation (2.14). The recent

advancements in natural language processing (NLP) have been predominantly achieved

by Transformer-based models. [Dong et al., 2018] replaced the 1D attention mechanism in

Transformers with a 2D attention mechanism for speech feature sequences which are repre-

sented in a time×frequency space and achieved competitive performances in speech recog-

nition tasks. The BigBird model showed better performance than other large language

models in the question-answering (QA) task by employing a sparse attention mechanism

in the Transformer model [Zaheer et al., 2020].

Bidirectional Encoder Representations from Transformers (BERT) is one of the most com-

monly used Transformer-based models. BERT particularly adopts the encoders of the

original Transformer model [Devlin et al., 2018]. [Devlin et al., 2018] confirmed the broad

extensibility of BERT to varying NLP tasks by testing it with multiple NLP benchmarking

data sets including the Stanford Question Answering Data set (SQuAD) [Rajpurkar et al.,

2016, Rajpurkar et al., 2018], the SWAG data set for common sense inference [Zellers et al.,

2018], and the General Language Understanding Evaluation (GLUE) benchmarking data

set [Wang et al., 2018]. The bidirectional training and global context learning are signifi-

cant advantages of BERT compared to other deep neural networks as described in Section
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2.2.4. The bidirectional training overcomes the long training time and vanishing gradi-

ents problems of recurrent neural networks (RNNs), whereas the global context learning

makes BERT more suitable for sequential data than convolutional neural networks (CNNs)

mainly focusing on a local context within the kernel window.

Transformers have also been broadly applied to biological sequential data. [Ji et al.,

2021] developed DNABERT based on Transformers to predict genomic features such as

promoters or enhancers. [Gwak and Rho, 2022] classified metagenome sequences into

virus types using a Transformer-based model. The application of Transformers has also

shown superiority in DNA methylation (DNAm)-related tasks. For instance, methBERT

successfully detected DNAm in long-read sequencing reads by using Transformers [Wang

et al., 2023], while [De Waele et al., 2022] suggested a Transformer-based model combined

with CNNs for single-cell DNAm pattern imputation.

In this chapter, we introduce MethylBERT, a new cell-type deconvolution model based

on Transformers for tumour read-level methylomes. Despite its successful application to

DNAm-related tasks, BERT has not been used for cell-type deconvolution for DNAm

data. Table 4.1 gives an overview of previous methods for sequencing-based DNAm data

categorised by purposes and baseline models. Transformers have been utilised for methy-

lation site prediction, nanopore (long-read) methylation calling, and DNAm imputation,

but not for cell-type deconvolution. On the other hand, although there have been various

classical machine learning methods such as the hidden Markov model (HMM) or RNNs

suggested for cell-type deconvolution, Transformers have not been used for this purpose.

Thus, to our best knowledge, MethylBERT is the first application of Transformers for

cell-type deconvolution using DNAm data. This work is published in [Jeong et al., 2023a].

This chapter explains the MethylBERT model in the following three sections. Section

4.2 describes the BERT architecture employed in MethylBERT and training strategies

separated into pre-training and fine-tuning. Section 4.3 explains maximum likelihood

estimation applied to the probability of cell types given reads estimated by the Methyl-

BERT network. Section 4.4 describes the general training schemes for MethylBERT and

implementation details for computational speed improvement.
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Table 4.1: Overview of methods for sequencing-based DNAm data analysis

HMM/Beta-binomial/
Bernoulli-based model

RNN-based model
Transformer-based

model

Methylation
site
prediction

iDNA-MS
[Lv et al., 2020]

SOMM4mC
[Yang et al., 2020b]

DeepTorrent
[Liu et al., 2021]

iDNA-ABT
[Yu et al., 2021]
MuLan-Methyl

[Zeng et al., 2023]

Nanopore
methylation
calling

Nanopolish
[Loman et al., 2015]

SignalAlign
[Rand et al., 2017]

DeepMod
[Liu et al., 2019]

DeepSignal
[Ni et al., 2019]

Rockfish
[Stanojević et al., 2022]

methBERT
[Wang et al., 2023]

DNA
methylation
imputation

Melissa
[Kapourani and

Sanguinetti, 2019]
METHimpute

[Taudt et al., 2018]

DeepCpG
[Angermueller et al.,

2017]

CpG Transformer
[De Waele et al., 2022]

Cell-type
deconvolution
for tumour

CancerDetector
[Li et al., 2018]

DXM
[Fong et al., 2021]

DISMIR
[Li et al., 2021]

MethylBERT
[Jeong et al., 2023a]

63



4.2 MethylBERT: BERT-based read classification

We developed a novel Transformer-based model, MethylBERT, by modifying the original

BERT model [Devlin et al., 2018]. MethylBERT embeds read-level methylation patterns

and uses the embedding for classifying reads into cell types.

A main difference between MethylBERT and the original BERT is the used input data

and corresponding embeddings (Table 4.2). Unlike BERT requiring word, sentence and

position embeddings as described in Section 2.2.4, MethylBERT needs the following in-

formation from an individual read: a reference DNA sequence, methylation patterns, and

a DMR label indicating in which DMR the read is located. Therefore, the word embed-

dings in the BERT model are replaced with 3-mer DNA sequence embeddings in Methyl-

BERT. Also, methylation embeddings, instead of sentence embeddings, are incorporated

in MethylBERT. Methylation embeddings have three values: 0 for unmethylated CpG, 1

for methylated CpG, and 2 for non-CpG. Since MethylBERT is designed for both paired-

end and single-end aligned reads, we removed the sentence embeddings that indicate to

which sentence individual tokens belong out of two input sentences, so the MethylBERT

model can handle single-end aligned reads which do not have a designated pair. Position

embeddings remain the same in MethylBERT.

Table 4.2: Comparison of input embeddings between the original BERT and Methyl-
BERT.

Original BERT MethylBERT

Word embeddings DNA sequence 3-mer embeddings

Sentence embeddings CpG methylation embeddings

Position embeddings Position embeddings

MethylBERT consists of three steps (Figure 4.1). The first step is the pre-training of

the MethylBERT network using reference genome data. The reference genome data is

processed into 3-mer DNA sequences. Second, the model is fine-tuned for the read classi-

fication task. The input data of the fine-tuning step are DNAm sequencing reads whose

DNA sequences and methylation patterns are processed into 3-mer and binary sequences,

respectively. In the third step, we calculate the tumour purity of a tumour-normal bulk

sample based on the class probability of individual reads calculated by the MethylBERT

network. The last step also includes the estimation of the model precision using the Fisher

information and the adjustment of estimated tumour purity based on the skewness of the

purity distribution. The details of each step except for tumour purity estimation are de-

scribed in the following subsections. The tumour purity estimation step is described in

Section 4.3.
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Figure 4.1: Overview of MethylBERT comprised of three steps.
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4.2.1 Pre-training of MethylBERT

As explained in Section 2.2.4, pre-training of BERT is done in an unsupervised manner via

masked language model (MLM) and next sentence prediction (NSP). The unsupervised

pre-training makes it easier to train the BERT model with a huge amount of unlabelled

data and diminishes the necessity for task-specific neural network architectures [Devlin

et al., 2018]. MethylBERT pre-training is particularly inspired by DNABERT, which

showed a high performance in various predictions of genomic features like promoters or

enhancers on DNA sequences [Ji et al., 2021].

The input data of pre-training are DNA sequences from the entire genome. The genome is

divided into 510 bps segments, and 3-mer sequences are generated from the split genome

sequences. Thereafter, each 3-mer segment is converted to a token using a look-up table.

We note that the methylation embeddings, which are only available when there are methy-

lation patterns, are filled with zeros during pre-training, since the reference genome does

not involve any DNAm. Although the original DNABERT pre-training uses a randomly

sampled sequence length in the range between 5 and 510, it is fixed as 510 in MethylBERT

because the random sampling of sequence length did not show a significant performance

change. Following the MLM scheme of the original BERT model [Devlin et al., 2018], 15%

of tokens in a 3-mer sequence are masked during pre-training. Within the 15%, different

tokens are used for masking. 80% of the chosen 15% tokens are masked with a [MASK]

token and 10% are replaced with randomly selected tokens. The remaining 10% of the

chosen 15% tokens remain unchanged. Since the input sequences are processed into 3-mer

tokens, the left and right neighbouring tokens of the selected token are also masked, so

that the MethylBERT model avoids predicting the masked token just by looking at the

neighbouring tokens.

In total, we use 69 labels for tokens (64 tokens for 3-mer tokens with four DNA nucleotides

adenine, cytosine, guanine and thymine and 5 special tokens [PAD], [UNK], [EOS], [SOS]

and [MASK] listed in Table 4.3). The pre-training was done with the categorical cross-

Table 4.3: Special tokens in BERT modeling

Token Meaning

[PAD] Padding token
[UNK] Unknown token (when the given token is not in the look-up table)
[EOS] End of sequence
[SOS] Start of sequence
[MASK] Masked token

entropy loss Lpre−training calculated over all masked tokens ti ∈ {t1...tT }:

Lpre−training = −
T∑
i=1

69∑
l=1

ytil · log(ŷtil ), (4.1)

66



where ytil and ŷtil indicate the logit and the one-hot encoded ground truth of label l for

token ti.

4.2.2 Read-level methylation pattern classification in MethylBERT

The fine-tuning of MethylBERT is conducted for the read classification task (Figure 4.2).

The input data for the fine-tuning consists of read-level methylation patterns, a DNA

sequence, and the label of DMR where the read originated from. For the DNA sequence,

we use the reference genome sequence at the genomic position of each read rather than the

aligned DNA sequences when each read is processed, so that the variations in nucleotides

can be disregarded. Therefore, DNA sequences do not contain tumour-related information,

yet they still can be an indicator of position in the region. Furthermore, in this way, the

model can catch DNA context or motifs1, which might be related to DNAm. Several

studies have argued that using both DNA sequence and DNAm together can create a

more sophisticated model for DNAm analysis [Li et al., 2021, Angermueller et al., 2017].

For the position embedding, we use absolute position embedding same as the original

BERT model [Devlin et al., 2018].

The DNA sequence and the read-level methylation pattern are fed into the encoder after

being embedded individually. The Transformer encoder in the MethylBERT network

contains multiple encoder blocks. Each encoder block has a self-attention layer followed

by three fully connected layers (denoted ‘linear’ in Figure 4.2). Although there is a pooling

block in the BERT model, we did not use it because the pooling layer generates outputs

for the NSP task which is not included in the MethylBERT pipeline.

The vector output by the encoder is then concatenated with an embedded DMR label.

The DMR label is separately embedded outside of the encoder because it is not sequen-

tial. The region information is provided to handle the region-specific tumour methylome

profile. The concatenated vector is given to the cell-type classifier network comprised

of two fully connected layers. The classifier for K cell types outputs a K -dimensional

vector that each value can be interpreted as the posterior probability of cell type given

read P (cell type|read). Here, the cell type is either tumour (T ) or normal (N), thus a

2-dimensional vector is the final output. During the fine-tuning process, the cross-entropy

loss (Lfine−tuning) for softmax-normalised activation values for given methylation sequenc-

ing reads ri and the groud-truth cell type ci ∈ {T,N} is calculated as:

Lfine−tuning(ri, ci) = −
∑

c∈{T,N}

1ci=c · log
exp(ac(ri))∑

c′∈{T,N} exp(ac′(ri))
(4.2)

where ac(ri) is the final activation function of the MethylBERT network for cell type c

given the read ri.

1DNA motif is a short but recurring DNA sequence in the genome. It is known to be associated with
gene regulation [D’haeseleer, 2006].
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Figure 4.2: MethylBERT model architecture. Three different pieces of information (DNA
3-mer tokens, methylation patterns and the position on a read) are projected into separate
embedding spaces before being feed-forwarded into the network. Then, the Transformer
encoder part encodes the concatenated embeddings. The final embeddings of the read are
given to the cell-type classifier together with the DMR embedding, so that the read is
classified into cell types based on the provided information and encoded values.
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Interpretation of MethylBERT output

input (sequence read)  r
the MethylBERT network with a parameter set Θ  fΘ

output of fΘ  z  
the softmax function  σ
final output  y 

fΘ

r

z

y

σ
a function or a model

a variable or a vector 

Figure 4.3: Simplified description of
the MethylBERT network.

To use the final output of MethylBERT for tu-

mour purity estimation through MLE, we show

that the final output of MethylBERT represents

the posterior probability of cell types given a read.

In this section, a simplified description of the

MethylBERT network in Figure 4.3 is used.

Let Θ be the parameter set of the MethylBERT

network fΘ(r) classifying the input r (read) into

one of C labels (cell types). For such classifi-

cation, fΘ is designed to output z ∈ RC and the

final output y = {y1, ..., yC} ∈ (0, 1)C is yielded via the softmax function (non-parametric)

applied to z. The standard softmax function σ : RC → (0, 1]C is defined as:

σi(z) =
ezi∑C
j=1 e

zj
for z = {z1, ..., zC} ∈ RC (4.3)

where σi is the ith member of the output vector. We show that y can be considered the

posterior probability distribution of cell type given a read by confirming the following

statements:

1. y represents a (discrete) probability distribution of P (cell type).

2. yi ∈ y outputted from the MethylBERT network trained using a cross-entropy loss

function described in Equation (4.2) can be an approximation of the posterior prob-

ability, P (cell type = i|read).

Statement 1. To clarify that the softmax function outputs probability values, we use

the probability axioms introduced by [Kolmogorov, 1933]:

Probability axioms. Let (Ω, F , P ) be a probability space where Ω, F , and P

denote a sample space, an event space, and a probability function of an event E,

respectively. Then, the three probability axioms are

1. P (E) ∈ R and P (E) ≥ 0 ∀E ∈ F

2. P (Ω) = 1

3. P (
∞⋃
i=1

Ei) =
∞∑
i=1

P (Ei) for any countable sequence of mutually exclusive event

sets {Ei}.

If a function satisfies these conditions, it characterises a probability distribution. In the

case of the softmax function used for C labels of classification, σ : RC → (0, 1]C , we assume
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that input is classified into only one of C labels (mutually exclusive), thus:

P (Ei ∩ Ej) = 0, for all i ̸= j where i, j ∈ {1, ..., C} (4.4)

where Ei is an event that the label i is observed. [Bishop, 1995] clarified that the softmax

function satisfies the probability axioms 1 and 2. With the assumption of mutual exclu-

sivity for the events that each label is observed, the probability axiom 3 is also obviously

satisfied by the softmax function, but we include the proof for clarity in the Supplemen-

tary. [Bridle, 1989] also explained that applying the softmax function to the output of a

neural network makes the final result all positive and sum to 1 for any input, thus the

final result can be interpreted as a probability distribution.

Therefore, for the MethylBERT network designed for tumour (T ) and normal (N) cell-

type outputs, the output of the network gives an estimate of the probability of cell type c

given read r:

P (c|r,Θ) = σc(fΘ(r)) =
ezc∑

c′∈{T,N} e
zc′

. (4.5)

Although the input of MethylBERT technically consists of three pieces of information

(DNA sequence, read-level methylation patterns, and DMR label for every read), here we

regard the input as one random variable, read r by assuming that methylation patterns

depend on DMR label and DNA sequence. It is a broadly applied design to have one

random variable representing read in sequencing-based genomic data analysis models. For

example, [Wu et al., 2017] also regard sequencing reads as a random variable and use a

binomial distribution as the best-fitting model of sequencing reads.

Statement 2. Even if statement 1 is true, it is important to obtain a well-approximated

posterior probability P (cell type|read) from the MethylBERT network to use the output

for the MLE-based tumour purity estimation. [Richard and Lippmann, 1991] showed that

a neural network model trained for classification using either the squared error or the

cross-entropy loss function can estimate a Bayesian posterior probability, via simulated

experiments. [Saerens et al., 2002] also theoretically proved that the outputs of a classifica-

tion neural network model trained with a reasonable loss function can be always mapped

to a Bayesian posterior probability. Both [Richard and Lippmann, 1991] and [Saerens

et al., 2002] clarified that the following conditions need to be satisfied for the output of a

classification model to be an approximation of the posterior probability:

• The model complexity of the neural network is sufficiently high for the given data

and the classification task.

• [Richard and Lippmann, 1991]: Sufficient amount of training data needs to be given.

• [Saerens et al., 2002]: At least, a local minimum of the loss function is achieved after

70



the training.

We train the MethylBERT network until the loss value converges by minimising the cross-

entropy function. We assume that the converged loss value is the local minimum. During

the MethylBERT fine-tuning, both training and validation loss curves decrease and we use

the model at the lowest validation loss. Therefore, we assume that the MethylBERT model

has a sufficient model complexity not causing an underfitting. For the training data, we use

all available sequencing reads which makes an average read coverage of 1,241. In Section

5.3.2, we will show that the MethylBERT read classification accuracy converges at the best

performance for read coverage ≥ 110 in the training data set. Thus, we assume that we

have a sufficient amount of training data for the MethylBERT fine-tuning. Consequently,

the MethylBERT model can be regarded as satisfying these conditions. We consider

the calculated softmax value after the MethylBERT fine-tuning to be a well-estimated

posterior probability of cell types, P (cell type|read).

4.3 Tumour purity estimation

4.3.1 Maximum likelihood estimation

The third step of MethylBERT is tumour purity estimation based on the calculated pos-

terior cell-type probability. Maximum likelihood estimation (MLE) is chosen as a method.

The likelihood function has the tumour purity of bulk as a parameter.

Let a bulk sample, whose tumour purity is supposed to be inferred, be the test data. Then,

the tumour purity of the bulk sample is denoted as δ := Ptest(c = Tumour). We clarify

that the tumour purity Ptest(c = Tumour) must be distinguished from the proportion of

tumour reads in the training data set used for fine-tuning MethylBERT, which is denoted

as Ptrain(c = Tumour) here. δ̂, which is the optimal estimation of δ, is inferred by MLE

using the likelihood function of δ, L(δ|R), when reads R = {r1, ..., rN} are observed in the

test data. Assuming the reads are independently sampled and the read-level methylomes

only depend on the cell type c, the likelihood function L(δ|R) is calculated as:

L(δ|R) = Pδ(R) (4.6)

=
N∏
i=1

Pδ(ri) (4.7)

=
N∏
i=1

∑
c∈{Tumour,Normal}

P (ri|c)Ptest(c) (4.8)

=

N∏
i=1

{δP (ri|c = Tumour) + (1− δ)P (ri|c = Normal)}, (4.9)

where Ptest(c = Normal) = 1− Ptest(c = Tumour) = 1− δ.
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However, in the previous (second) step, only P (c|ri) is calculated by the MethylBERT

network (Section 4.2.2). Therefore, Bayes’ theorem is applied to re-express P (ri|c) with

P (c|ri), assuming that the tumour and normal sequencing reads in the bulk (test data)

and in the training data set originated from the same domain.

δ̂ = arg max
δ
L(δ|R) (4.10)

= arg max
δ

N∏
i=1

{δP (ri|c = Tumour) + (1− δ)P (ri|c = Normal)} (4.11)

= arg max
δ

N∏
i=1

{δP (c = Tumour|ri)P (ri)

Ptrain(c = Tumour)
+ (1− δ)

P (c = Normal|ri)P (ri)

Ptrain(c = Normal)
}. (4.12)

The prior probability of cell types, Ptrain(c = Tumour) and Ptrain(c = Normal), are

calculated by taking the ratio of reads from each cell type over the number of all reads

in the training data set. Here, we again note that δ = Ptest(c = Tumour), the estimated

tumour purity of bulk, is not the same as Ptrain(c = Tumour), the ratio of tumour reads

in the training data. For the calculation, we assume the probability of reads P (ri) are

equal. A grid-search algorithm is used to infer the optimal tumour purity δ̂.

4.3.2 Fisher information

The Fisher information is the information about a model parameter carried by observa-

tions. The Fisher information is calculated to estimate the precision of the model [Fujita

et al., 2022]. When the model has only one parameter, the Fisher information is one

value whereas, for a model with K parameters, the Fisher information is a K ×K matrix

which is also known as the Fisher information matrix. In the case of a likelihood estima-

tion model, the variance of the derivative of the log-likelihood function with respect to

the model parameter is the Fisher information. Therefore, the Fisher information (FI)

of MethylBERT tumour purity estimation likelihood calculated using Equation (4.6) is

calculated as:

FI(δ) = V ar[
∂

∂δ
logL(δ;R)]. (4.13)

FI(δ) indicates the model precision of MethylBERT tumour purity estimation which can

be used as a comparison metric when multiple bulk samples are deconvoluted.

4.3.3 Adjustment of estimated tumour purity

Analysing pseudo-bulk samples used in the evaluation of MethylBERT (Section 5.4), we

found that the median of region-wise tumour purity values is farther away from the ground-

truth tumour purity when the ground-truth tumour purity of bulk is extremely low or high

(Figure 4.4A). Here, we call region-wise tumour purity and bulk tumour purity local and

global purity, respectively. The MLE algorithm for estimating tumour purity in Section
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A B

Figure 4.4: Skewness of region-wise tumour purity distribution. The local purity value
was calculated for 100 DMRs used in the evaluation of MethylBERT (Section 5.4), and
the skewness value was calculated over the local purity values using Equation (4.14).
(A) Distribution of region-wise tumour purity ordered by ground-truth tumour purity
within pseudo-bulk samples. Ground-truth tumour purity is presented by the red line
plot. (B) Correlation between ground-truth tumour purity and skewness of region-wise
tumour purity distribution.

4.3.1 is, however, established with the assumption that all regions have the same distribu-

tion of cell types as the global cell-type distribution, therefore the global estimation does

not take the local purity into account. As a result, it disregards the case that some regions

do not have sufficient sequencing reads derived from the minor cell type to estimate the

global purity. Figure 4.4B confirms this by showing that ground-truth global tumour pu-

rity is negatively correlated with the skewness of local tumour purities in the pseudo-bulk

data set. In other words, local purity distribution is left-skewed, having most purity values

around zero when the ground-truth global purity is very low, and vice versa. We calcu-

late the skewness of given N values x = {x1, ..., xN} using the adjusted Fisher-Pearson

standardised moment:

G1(x) =
m3(x)

√
N(N − 1)

m2(x)3/2(N − 2)
, mi(x) =

1

N

N∑
i=1

(xi − x)i (4.14)

where x = 1
N

∑N
i=1 xi, the sample mean of given values. The adjusted Fisher-Pearson

standardised moment can adjust the bias in the sample distribution when calculating the

skewness [Joanes and Gill, 1998, Doane and Seward, 2011].

In order to alleviate the problem that the local tumour purity distribution can be skewed,

we applied the Expectation-Maximisation (EM) algorithm to adjust the estimated global

tumour purity taking local purity estimates into account (Algorithm 2 and Figure 4.5).

The idea is to optimise a mapping g : RK → RK to minimise the skewness of K local
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purities δ = {δ1, ..., δK} ∈ RK . We define the mapping g as:

g(δ) = W ◦ δ =

 w1δ1
...

wKδK

 (4.15)

where W = {w1, ..., wK} ∈ RK contains parameters of the mapping g and W ◦ δ means

element-wise multiplication of two vectors W and δ. Since a perfectly symmetric distri-

bution has a skewness value of zero, we assume that the mapped local purities have a

symmetric distribution whose mean value is the global purity. During the M-step of the

EM algorithm, the parameters W are optimised to minimise G1(W ◦ δ), which is the

skewness value of mapped local purities. The E-step estimates the new global tumour

purity denoted as δglobal in Algorithm 2. The optimised function parameters Ŵ yielded

by the EM algorithm are used for determining the final adjusted tumour purity δ̂global:

δ̂global =
1

K
Ŵ

⊺
δ (4.16)

where Ŵ
⊺

means the transpose of Ŵ. The effect of the adjustment will be analysed in

Section 5.6.
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Figure 4.5: Probabilistic graphical model of tumour purity estimation in MethylBERT.
(A) Original global tumour purity estimation. (B) Adjusted estimation considering local
tumour purity.

Algorithm 2 Adjustment of MethylBERT tumour purity estimation

Input: Pt = {pt1...ptR}, P
n = {pn1 ...pnR} Calculated P (read|cell type) for all R reads

M = {m1...mK} K DMRs

θ Threshold for EM algorithm iteration

Output: δglobal Estimated tumour purity

1: for mk ∈M do ▷ Estimate region-wise tumour purity

2: δk ← arg max
δ

∑
ri∈mk

log(δptri + (1− δ)pnri)

3: δglobal ← 1
K

∑K
k=1 δk

4: δprev ←∞
5: W← 1K ▷ Initialise the parameters with 1a

6: while |δglobal − δprev| > θ do

7: δprev ← δglobal
8: W← arg min

W
G1(W ◦ δ) ▷ M-step

9: δglobal ← 1
KW⊺δ ▷ E-step

a1N : Vector of N ones
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4.4 MethylBERT Training

Determining suitable schemes and hyperparameters for training deep learning models is

not trivial since the training performance significantly relies on those. In this section, we

introduce general training schemes for MethylBERT pre-training and fine-tuning.

The large number of parameters in the BERT model accompanies long training time and

consumption of large hardware memory. Therefore, we study the impact of the number

of model parameters for the fine-tuning performance to decrease the parameter number

in the MethylBERT model. To reduce the training time, we introduce two techniques to

handle it: mixed precision and multi-GPU.

4.4.1 MethylBERT training scheme

In deep learning training, epoch means one cycle of the training data set and consists of

multiple steps which indicate an iteration of a batch. Due to the large size of the training

data set, the BERT training is conducted in multiple steps [Devlin et al., 2018]. We also

use multiple steps instead of epochs for the MethylBERT training.

The pre-training was done for 120,000 steps which involve 10,000 warm-up steps at the

beginning and 20,000 learning rate decrease steps at the end. 4e−4 was chosen for the

learning rate. The batch size and the gradient accumulation steps were set to 256 and

4, respectively. For the optimisation, we used the AdamW optimiser whose weight decay

rate was 0.01. β1, and β2 values in the AdamW optimiser [Loshchilov and Hutter, 2017]

were set to 0.9, and 0.98, respectively.

The baseline BERT network has 12 hidden layers whose dimension is 768 and each hidden

layer has 12 attention heads. This setup is the same as the BERTBASE model in the

original BERT paper [Devlin et al., 2018]. Therefore, we used this setup for all experiments

conducted in Chapter 5. However, because of the large model size exceeding the GPU

A B

Figure 4.6: Comparison of read-level methylome classification (fine-tuning) performance
for different numbers of layers (A) and different numbers of attention heads (B).
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memory, 6 layers instead of 12 layers were assigned for the MethylBERT model used in the

simulated long-read data analysis in Section 5.3. We confirmed that the smaller number

of layers does not make a critical performance loss (Figure 4.6).

4.4.2 Mixed precision

In the classical way of neural networking training, all variables are 32-bit floating-point

type (float32). Mixed precision replaces some of the variables with 16-bit floating-point

type (float16) to reduce memory consumption. This is particularly beneficial for training

a large neural network such as BERT which requires a large amount of memory. Moreover,

many types of processors including NVIDIA GPUs run math operations faster for float16

than for float32, thus using mixed precision also improves computational speed. In the

mixed precision process, float16 is specifically used for the variables for the evaluation

metrics such as accuracy, since the coarse approximation has a lesser impact on model

evaluation compared to model parameters. In MethylBERT, mixed precision is applied

via the autocast function provided by PyTorch [Paszke et al., 2019].

4.4.3 Multi-GPU

MethylBERT supports multi-GPU processing by distributing an input batch over multiple

GPUs. This is implemented by the DataParallel function in PyTorch [Paszke et al., 2019].

The input reads in a batch are split into a given number of GPUs and each GPU processes

a split via a replicated network on the device. For backpropagation, the model parameters

need to be updated with respect to the gradient of loss values in a batch, thus the gradients

from all devices are summed up.
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Chapter 5

Experimental results using

MethylBERT for cell-type

deconvolution

5.1 Introduction

Tumour cells present distinctive methylation patterns at CpG sites [Guo et al., 2019], thus

DNA methylation (DNAm) data enables the estimation of tumour purity within tumour

bulk samples. The estimated tumour purity can be associated with tumour diagnostics,

phenotypes, and clinical outcomes [Zhao et al., 2021, Meyer et al., 2021, Zhang et al.,

2017]. Therefore, sequencing-based cell-type deconvolution models have been extensively

studied for tumour purity estimation. Such models are especially important in circulating

tumour DNA (ctDNA) analysis as explained in Section 2.1.2. The ctDNA analysis often

involves a low percentage of tumour-derived DNA fragments below 5% which would not

be accurately identified by array-based DNAm profiling.

Considering the crucial role of sequencing-based cell-type deconvolution in tumour bulk

and ctDNA analyses, our developed method MethylBERT (see Chapter 4) needs to be

thoroughly evaluated for both applications. The evaluation should be separated into read

classification and tumour purity estimation to assess the performance of each step. In

particular, the evaluation of the read classification step should take multiple scenarios

into account because of the assorted sequencing technologies available nowadays (e.g.,

Illumina short-read sequencing and long-read sequencing as shown in Table 2.2) or different

complexities of tumour signals in genomic regions. In addition, it is also necessary to study

the performance of the tumour purity adjustment algorithm in the MethylBERT model

by comparing it with other methods.
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Despite previous applications of the pre-trained BERT model to genomic sequence anal-

ysis [Ji et al., 2021, Gwak and Rho, 2022], the efficacy of pre-training on DNA sequences

has not been well-explored. On the other hand, when it comes to natural language pro-

cessing (NLP), several studies have been published for the analysis of the learnt linguistic

features by the pre-trained BERT model. [Clark et al., 2019] comprehensively investigated

the linguistic knowledge learnt by the pre-trained BERT model and explained why BERT

can accomplish outstanding performance in human language-related tasks. [Jawahar et al.,

2019] conducted several analyses on the language structure learnt by the pre-trained BERT

model and proved its capability of recognising the hierarchical structure of human lan-

guage. These studies provided an in-depth understanding of BERT pre-training in NLP,

whereas such analyses have not yet been done on BERT pre-training with DNA sequences.

In addition, the assessment of MethylBERT with patient samples is crucial to study its

applicability in clinical applications. Yet, in biological samples, the ground-truth tumour

purity is not given which makes the evaluation difficult. For cancer patient samples, the

cancer stage can be a reasonable metric for evaluating tumour purity estimation. The size

of tumours is one of the major standards to determine the cancer stage [Brierley et al.,

2016]. Therefore, it can be expected that a tumour sample acquired from a later-stage

cancer patient involves a higher purity of tumour.

In this chapter, we present experimental results using MethylBERT to comprehensively

evaluate our method and compare it with previous methods. Furthermore, we study the

efficacy of BERT pre-training on DNA sequences as well as the applicability of Methyl-

BERT in ctDNA analysis using blood samples from cancer patients. First, we describe

previous methods included in the evaluation (Section 5.2). Then, in Section 5.3, we

compare MethylBERT to other previous sequencing-based DNAm deconvolution methods

with respect to read classification. For the comparison, simulated read-level methylomes

are used, so the simulation algorithm will be also described. In Section 5.4, we com-

pare MethylBERT to the previous methods in terms of tumour purity estimation using

pseudo-bulk samples. Section 5.5 provides experimental results to show why pre-training

is important in MethylBERT, although the pre-training does not involve any methylation

information. The adjustment of tumour purity estimation is evaluated in Section 5.6. Fi-

nally, the cell-type deconvolution results on blood plasma samples are presented in Section

5.7, demonstrating the potential of MethylBERT as an early tumour diagnosis tool. This

work was published in [Jeong et al., 2023a].

5.2 Previous methods for experimental comparison

We selected three previous methods for the comparison with MethylBERT: Houseman’s

method [Houseman et al., 2012], CancerDetector [Li et al., 2018], and DISMIR [Li et al.,

2021]. Houseman’s method is chosen as the best-performing method in the benchmarking

described in Chapter 3. CancerDetector and DISMIR were developed for sequencing-based
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cell-type deconvolution targeting tumour samples by using the beta-binomial model and

RNNs, respectively. Hence, this evaluation can be seen as a comparison of the Transformer-

based method (MethylBERT) to array-based (Houseman’s method), beta-binomial-based

(CancerDetecotr), and RNN-based (DISMIR) cell-type deconvolution methods. Only for

the read classification performance evaluation in Section 5.3, we added a hidden Markov

model (HMM) as an alternative to Houseman’s method which does not have a read clas-

sification step.

Houseman’s method

As explained in Section 3.4.2, Houseman’s method is based on regression calibration for

array-based cell-type deconvolution. Therefore, as in the benchmarking study, we con-

verted the read-level DNAm data into an array shape to test Houseman’s method following

Section 3.3.2.

Hidden Markov Model

We implemented an HMM to compare MethylBERT in the read classification task. The

model inputs are CpG-wise methylation patterns which have binary categories: methylated

and unmethylated. For the hidden state, we assumed a variable with two categories

implying differentially methylated and non-differentially methylated CpGs between cell

types.

CancerDetector

In the CancerDetector algorithm, the methylation alpha value is introduced as an average

of methylation levels in individual reads. In a differentially methylated region (DMR) k,

CancerDetector yields the probability of each read r given cell type c :

P (r|c, k) = P (r|Bk,c(α, β)) (5.1)

where B(α, β) represents the beta distribution parameterised by α and β. The distribution

Bk,c(α, β) is modelled by cell type c-derived reads extracted from the DMR k in the training

data using the method of momentum [Bowman and Shenton, 2007].

DISMIR

DISMIR uses one-dimensional convolutional neural networks and a bi-directional long

short-term memory (LSTM) to model read-level DNAm patterns (Figure 5.1). Unlike

MethylBERT encoding which the DNA sequences and the methylation patterns are em-

bedded and encoded separately, DISMIR encodes those together using one-hot encoding.

The final output, which is named ‘d-score’, is calculated using the sigmoid function and

interpreted as the probability that the given read is derived from the cell type.
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Figure 5.1: Overview of DISMIR (Figure modified from [Li et al., 2021]).

5.2.1 Methodological comparison to MethylBERT

Both CancerDetector and DISMIR employ maximum likelihood estimation (MLE) for es-

timating tumour purity by using the calculated probabilities or the d-score. Technically,

CancerDetector and DISMIR do not mention the ‘read classification’ step in their model,

yet we use the computed P (read|cell type = Tumour) probabilities from the CancerDe-

tector algorithm and the d-score from the DISMIR algorithm for the read classification

evaluation. When the probability or d-score is above 0.5, reads are classified as tumour-

derived reads.

Regarding the adjustment of estimated tumour purity, only CancerDetector has a similar

step, named ‘removal of confounding factor’. In the removal of the confounding factor

algorithm, the Expectation-Maximisation (EM) algorithm is applied to iteratively remove

confounding factors. More details about the algorithm are explained in Section 5.6.

5.3 Read classification performance evaluation

In this section, we compare the performance of different read classification models using

simulated read-level methylomes. Since sequencing reads from real tumour bulks are intri-

cate to analyse due to the absence of ground-truth labels for individual reads, synthesised

methylation patterns with controlled parameters are used.

5.3.1 Read-level methylation pattern simulation

The complexity of methylation patterns is known to be associated with the regulation of

oncogenes and tumour suppressor genes which result in tumour heterogeneity [Wang et al.,

2020, Liu et al., 2019]. Hence, it is essential to address complex methylation patterns for

an accurate estimation of tumour purity.

For the read simulation, we mainly controlled the methylation pattern complexity to create

varying cases of tumour-specific methylation profiles. Different complexity of region-wise

tumour methylation level di is assumed to follow a beta distribution with a different shape
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parameter α:

di ∼ Beta(α, β = 5). (5.2)

To ensure adequate methylation signals, the top 100 CGIs with the largest number of CpGs

are chosen to simulate reads. Only α value changes to simulate different distributions, but

the other shape parameter β is fixed as five. For the normal cell type, we assign 1− di as

the region-wise methylation level.

Read-level methylation patterns for each cell type are sampled from a binomial distribution

whose success probability is the sampled methylation level. In a region i containing K

CpGs, read-level methylation patterns for tumour cell type mT
i = {mT

i,1, ...,m
T
i,K} are

sampled as follows:

mT
i ∼ Binomial(n = K, p = di), (5.3)

where n and p are the number of trials and the probability of success of the binomial

distribution. Read-level methylation patterns for normal cell type mN
i = {mN

i,1, ...,m
N
i,K}

are also sampled in the same manner:

mN
i ∼ Binomial(n = K, p = 1− di). (5.4)

The beta distribution is used for the simulation of different methylation pattern complex-

ities by applying four different α values: 0.1, 1.0, 2.0 and 3.0. The simulated data set for

each complexity is named a0 b5, a1 b5, a2 b5 and a3 b5. Figure 5.2 presents the sampled

region-wise tumour methylation level using Equation (5.2) and Figure 5.3A shows the

example of simulated reads from respective distributions. A higher value of α creates a

higher mean value in the beta distribution. With a higher mean value, a higher tumour

methylation level di is sampled more often and this makes a lower methylation level for

normal cell type, 1− di. When the difference between di and 1− di is smaller, the DNAm

0.10

Figure 5.2: Distribution of sampled tumour mean methylation level for DMRs using
beta distribution in Equation (5.2) with four α values, 0.1, 1, 2 and 3.
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patterns generally get more complex to distinguish between two cell types.

The four simulations are done in two different read lengths: 150 bps and 500 bps. 150bp

read length represents standard bisulfite sequencing data, whereas 500bp read length has

been simulated to test the applicability of read classification models to long-read sequenc-

ing data, such as nanopore sequencing. The main challenge in long-read sequencing data

is that DMRs are generally shorter than the sequencing read (Figure 5.3B). Therefore, the

reads include CpGs not showing cell type-specific methylation patterns.

In biology, it is well understood that neighbouring CpGs tend to have the same methylation

patterns [Affinito et al., 2020]. However, this is not always the case. There have been many

studies reporting highly stochastic DNAm patterns, especially in cancer [Videtic Paska

and Hudler, 2015, Saghafinia et al., 2018]. Furthermore, allele-specific and strand-specific

methylation (ASM and SSM) diversify methylation patterns at CpGs, even in the same

tissue- or cell-type samples. These are also considered important indicators for examining

cell development and disease [Sen et al., 2021, Do et al., 2020]. Thus, we conducted a

simulation of another read-level methylome data set by giving two different cell type-

specific methylation patterns between odd and even indices of CpGs (Figure 5.3C). This

data set is called CpG-specific methylation data set in the following sections. We note

that region-wise DNAm level between two cell types does not have a large difference in

the CpG-specific methylation data set.
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B

C

Figure 5.3: Example of simulated reads from the four different beta-binomial distribu-
tions. (A) Example of simulated 150bps reads. (B) Example of simulated reads with 500
bp read length. (C) Example of simulated reads with CpG-specific methylation patterns.
Grey horizontal lines are sequencing reads. Yellow and black on each read mean methy-
lated and unmethylated CpGs. Reads for two cell types are divided by a dotted line in
the middle. Region-wise methylation levels in tumour and normal cell types are shown in
the histogram.
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5.3.2 Read classification performance comparison with simulated read-

level methylomes

With the simulated data, we evaluate the performance and robustness of the MethylBERT

read classification model in different scenarios of methylation patterns. We use region-wise

classification accuracy as a performance metric by calculating the proportion of correctly

classified reads over all reads in each DMR.

For the 150 bp read simulation, MethylBERT outperforms other methods regardless of

the complexity (Figure 5.4A). All the methods classify the reads most accurately with the

lowest deviation for the simplest case of simulation (a0 b5). Even though the accuracy

decreases with higher complexities, MethylBERT still achieves the highest accuracy in

each case. When it comes to the methods not based on deep learning, CancerDetector

performs better than HMM for the simulated reads with lower complexities, a0 b5 and

a1 b5, but HMM outperforms CancerDetector in the case of more complex simulations,

a2 b5 and a3 b5.

Compared to the other methods, MethylBERT again performs best in every complexity

of 500 bp read simulation (Figure 5.4B). In this simulation, reads are generally longer

than the DMR where they are located, so most reads have both differentially and non-

differentially methylated patterns (Figure 5.3B). Deep learning-based models, Methyl-

BERT and DISMIR, show higher accuracy and lower deviation of accuracy values at the

a0 b5 case. This tendency is similarly shown in the 150 bp read classification result (Fig-

ure 5.4A). However, CancerDetector and HMM yield a higher deviation of accuracy even

at the lowest complexity, compared to the same complexity level in 150bp read classifi-

cation results. Overall, MethylBERT and DISMIR performed better than others in the

evaluation using the simulated 500 bp reads.

In the evaluation using the CpG-specific methylation data set, CancerDetector and HMM

cannot correctly classify the reads for a0 b5 and a1 b5 despite a relatively clear differ-

ence in methylation patterns between two cell types (Figure 5.4C). On the other hand,

deep learning-based methods still show high accuracy of read classification. In particular,

MethylBERT outperforms DISMIR with the exception of the highly noisy methylation

patterns, a2 b5 and a3 b5. These results imply that Methylation can handle CpG-specific

methylation patterns not being biased towards the region-wise average methylation level

of cell types. This is important for analysing tumour bulk samples because, in tumour

cells, CpG-specific methylation patterns which differ from neighbouring CpGs are more

commonly found [Videtic Paska and Hudler, 2015].

In read-level methylome analysis, read coverage is always regarded as important for reliable

analysis. As described in Section 3.2, most sequencing-based deconvolution algorithms

have their own informative region selection procedure taking the minimum number of

CpGs and the read coverage into account. In this way, a sufficient amount of methylation
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Figure 5.4: Read classification performance comparison. (A) Performance for simulated
reads with 150 bp length. (B) Performance for simulated reads with 500 bp length. (C)
Performance for simulated reads for the CpG-specific methylation data set.
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Figure 5.5: MethylBERT performance in different read coverages. Performance compar-
ison with other read classification methods based on read classification accuracy.

patterns is ensured for deconvolution analysis.

For this reason, we compare MethylBERT to the other methods using another set of sim-

ulated read-level methylomes with different read coverage values from 10 to 150 in the

training data set (Figure 5.5). The read coverage of the test set is fixed as 50. Methyl-

BERT outperforms all other methods in terms of read classification accuracy. Particularly,

for read coverage values < 50, CancerDetector performed poorly compared to other meth-

ods. We describe the reason for poor performance with the standard error of the mean

(SEM) which measures how much sample means represent the underlying population mean

(Figure 5.6A). The SEM was estimated in each region for the mean methylation level of

simulated n reads µ = {µ1, ...µn}:
σµ√
n

(5.5)

where σµ is the standard deviation of µ. In Figure 5.6A, the lower the read coverage is,

the higher the SEM value is, regardless of the cell type and complexity. MethylBERT

and DISMIR still achieve an accuracy value higher than 0.95 for the read coverage < 50.

However, DISMIR shows a significant performance drop when the read coverage is higher

than 100.

We further evaluate MethylBERT with different read coverages for every simulation of

pattern complexity (Figure 5.6B). Regardless of the coverage, MethylBERT consistently

achieved an accuracy higher than 0.95 in simpler cases of read simulation, a0 b5 and

a1 b5. On the other hand, for the simulation of a2 b5 and a3 b5 which have more complex

patterns of methylation, the accuracy value increases over the coverage and converges at

the best performance with the coverage ≥ 110. Also, the deviation of region-wise accuracy

is higher for a2 b5 and a3 b5 than for a0 b5 and a1 b5. From these results, we conclude
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A B

Normal

Tumour

Figure 5.6: MethylBERT read classification result for different read coverages and com-
plexities of methylation patterns. (A) Standard error of the mean measure in each region
for different read coverages and complexities of methylation patterns. (B) Read classifi-
cation accuracy achieved by MethylBERT for different read coverages and complexities of
methylation patterns.

that when the methylation pattern is complex, the training data needs to have a relatively

high coverage of reads to properly train the MethylBERT model. However, for the simpler

cases of methylation patterns, the read coverage in the training data is not very impactful

in determining the read classification performance.

Based on the read classification results using simulated data, we conclude that the classi-

fication performance differs depending on the methylation pattern complexity. We verify

this tendency in diffuse large B-cell lymphoma (DLBCL) and normal B cell samples used

in Chapter 3 (Figure 5.7).

According to the correlation between region-wise area under the curve (AUC) values cal-

culated by MethylBERT and read coverage in DMRs, the DLBCL and normal B cell data

show the same tendency that the accuracy is higher with lower coverage (Figure 5.7A). It

differs from the read classification result for the simulated data shown in Figure 5.6B. For

the simulated reads, the accuracy is rather positively correlated with the coverage value

when the methylation patterns are complex.

In DMRs selected from biological samples, methylation pattern complexity is affected

by three different factors: the number of CpGs within the region, region length and

methylation level difference. The larger the region length and the number of CpGs are,

the higher the methylation pattern complexity is. On the contrary, a lower methylation
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level difference makes a higher complexity of methylation patterns. For quantifying the

methylation level difference between normal and tumour cells, diff.Methy score is used.

As described in Section 2.1.4, diff.Methy score is calculated as the distance between the

mean methylation level of two cell types. In the analysis, the absolute value of diff.Methy

score is used so we disregard the directionality in the score. Originally, the positive and

negative values of diff.Methy indicates which cell type of two is hypomethylated.

The AUC value of read classification shows a negative correlation with the number of

CpGs and region length, but a positive correlation with absolute diff.Methy (Figure 5.7B-

D). This corresponds to the analysis done with the simulated data: read classification

accuracy is lower when the methylation pattern complexity gets higher. To sum up,

the results present that the high complexity of methylation patterns also impedes the

read classification performance in actual tumour samples, as shown in the simulated data

results.
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Figure 5.7: Correlation between read classification AUC and region-wise statistics: (A)
read coverage, (B) number of CpGs in DMR, (C) length of DMR and (D) absolute value
of diff.Methy score (described in Section 2.1.4). We note that all correlation values are
statistically significant (p-value < 0.01).
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5.4 Tumour purity estimation performance evaluation with

pseudo-bulk samples

In this section, we describe the evaluation of the tumour purity estimation step of Methyl-

BERT and the comparison with previous cell-type deconvolution methods mentioned in

Section 5.2. For the evaluation data, pseudo-bulk samples were generated using DLBCL

and normal B cell-derived methylomes in the same way as in Section 3.3.1 (Table 5.1).

We only changed the distribution to simulate cell-type compositions. In Section 3.3.1, a

Dirichlet distribution was used, but we used a uniform distribution whose range is [0, 1]

in this chapter due to the binary cell-type composition (tumour and normal cell types).

In the evaluation using pseudo-bulks resembling ctDNA samples (Section 5.4.2), we used

ten pseudo-bulks with a very low proportion of tumour. These ten pseudo-bulks have a

ground-truth tumour purity between 0.001 and 0.01 with a difference of 0.001. For tumour

purity estimation, we used the top 100 DMRs selected based on the areaStat score ex-

plained in Section 2.1.4. The areaStat score quantifies the region-wise methylation pattern

differences taking the number of CpGs into account.

As a major evaluation metric, the absolute error between ground-truth and estimated

tumour purity is used. Yet, in Section 5.4.2, we calculate the absolute percentage error

and Spearman’s correlation between ground-truth and estimated values. This is because

the absolute error is not sufficient to evaluate the very low estimation values.

Table 5.1: Cell-type proportions for pseudo-bulk samples used in Section 5.4

Pseudo-bulks
Pseudo-bulks with

a very low tumour proportion
Samples Tumour Normal Tumour Normal

Bulk 1 0.186 0.814 0.001 0.999
Bulk 2 0.826 0.174 0.002 0.998
Bulk 3 0.633 0.367 0.003 0.997
Bulk 4 0.088 0.912 0.004 0.996
Bulk 5 0.267 0.733 0.005 0.995
Bulk 6 0.562 0.438 0.006 0.994
Bulk 7 0.022 0.978 0.007 0.993
Bulk 8 0.456 0.544 0.008 0.992
Bulk 9 0.889 0.111 0.009 0.991

Bulk 10 0.455 0.545 0.01 0.99
Bulk 11 0.967 0.033 - -
Bulk 12 0.933 0.066 - -
Bulk 13 0.733 0.267 - -
Bulk 14 0.178 0.822 - -
Bulk 15 0.133 0.867 - -
Bulk 16 0.579 0.421 - -
Bulk 17 0.950 0.050 - -
Bulk 18 0.891 0.109 - -
Bulk 19 0.316 0.684 - -
Bulk 20 0.761 0.239 - -
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5.4.1 Evaluation using tumour pseudo-bulks

As sequencing-based deconvolution models for the comparison, CancerDetector and DIS-

MIR are included [Li et al., 2018, Li et al., 2021]. Unlike CancerDetector and MethylBERT

which classify reads within pre-selected DMRs, the original model of DISMIR has an infor-

mative region selection step. However, during our experiments, DISMIR could not show

reasonable deconvolution results for some pseudo-bulks with its own informative region

selection algorithm. Therefore, we have included another deconvolution result yielded by

DISMIR but using pre-selected DMRs as for CancerDetector and MethylBERT. These

results are labelled as “DISMIR dmr”.

Figure 5.8 demonstrates that MethylBERT performs best in the tumour purity estima-

tion for 20 pseudo-bulk samples shown in Table 5.1. Two sequencing-based deconvolution

methods, CancerDetector and DISMIR, tend to have higher error values for the high pro-

portion of tumour-derived reads. Contrarily, the array-based Houseman’s method shows

better performance in the bulk samples with a higher tumour purity. The performance

gap between the low and high tumour purities is not as large in both MethylBERT results.

Especially with the estimation adjustment, the error value decreases for the bulks whose

tumour purity is higher than 0.95.
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Figure 5.8: Tumour purity estimation result for tumour pseudo-bulk samples. (A) The
distribution of absolute error values for different methods. (B) Absolute error for each
pseudo-bulk ordered by ground-truth tumour purity.

When investigating region-wise read classification accuracy in pseudo-bulk samples, we

observe that the accuracy tends to be lower in the bulk samples with higher tumour

proportion (Figure 5.9). This can be explained by two reasons: the impurity of the source

of tumour data in the training set and the intra-tumour methylation heterogeneity. The
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impurity is generally caused by tumour-associated stromal1 and epithelial cells2 commonly

observed in tumour bulk samples including DLBCL [Yoshihara et al., 2013, Sangaletti

et al., 2020]. Therefore, even if pure tumour bulk samples are acquired for the training set,

the samples are always expected to have a very minor amount of non-tumour cells. Intra-

tumour heterogeneity refers to subpopulations within a tumour presenting heterogeneity

in phenotypic characteristics or molecular features including DNAm [Guo et al., 2019].

Such heterogeneity reduces the accuracy of read classification caused by outlier tumour

methylation patterns. Therefore, the more tumour cells exist in a bulk sample, the lower

the read classification accuracy is.

We also find a positive correlation value of 0.574 between the read classification accuracy

and the tumour methylation level in selected DMRs (Figure 5.10). We explain this ten-

dency with the example of two DMRs. As shown by the calculated mean methylation

levels and the visualisation of DMR 92 and 20, the tumour methylation patterns are more

inconsistent when the tumour methylation level is lower (Table 5.2, Figures 5.11 and 5.12).

The partially/fully unmethylated reads which do not follow the dominant fully-methylated

CpGs cause heterogeneous methylation patterns in DMR 92 and deteriorate the read clas-

sification accuracy (Figure 5.11). On the other hand, in DMR 20, there are much fewer

partially/fully unmethylated reads (Figure 5.12).
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Figure 5.9: Read classification accuracy in each DMR. Individual lines show the accuracy
for each bulk. A darker colour means higher ground-truth tumour purity in the bulk.

Table 5.2: Selected DMRs for the comparison

DMR
ID

chr* Start End
Tumour
methyl
level

Normal
methyl
level

Gene Annotation

92 chr5 32708864 32714449 0.698841 0.0527377 NPR3 Promoter
20 chr7 155249319 155253114 0.828472 0.103014 EN2 Promoter

* chromosome

1Stromal cells are the cells at the differentiating stage. These cells are most commonly found in bone
marrow, but also observed all over the body.

2Epithelial cells comprise outer and inner surfaces of organs and blood vessels.
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Figure 5.10: 100 DMRs plotted by tumour and normal methylation levels. The colour
indicates the mean read classification accuracy in the region. The correlation value and
the p-value at the x- and y-axes were calculated using the read classification accuracy and
each cell-type methylation level.

Figure 5.11: Read-level methylation patterns for normal and tumour cells in DMR 92.
The blue and red mean unmethylated and methylated CpG each.
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Figure 5.12: Read-level methylation patterns for normal and tumour cells in DMR 20.
The blue and red mean unmethylated and methylated CpG each.
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Figure 5.13: Correlation between the ground-truth tumour purity and the Fisher in-
formation. (A) MethylBERT without adjustment. (B) MethylBERT with adjustment.
When the adjustment is applied, likelihood estimation is done in individual regions, thus
the Fisher information is also calculated separately.

If multiple bulk samples are given, MethylBERT not only performs deconvolution of the

samples but also calculates the Fisher information (Section 4.3.2). MethylBERT, without

the adjustment of estimated tumour purity, calculates the Fisher information over log-

likelihood values for the global tumour purity (Figure 5.13A), and the Fisher information

shows a positive correlation with the ground-truth tumour purity. When the tumour purity

estimation adjustment is applied, the likelihood is calculated in each DMR. Therefore,

MethylBERT outputs as many Fisher information values as the number of DMRs. For

the pseudo-bulk samples, the median of region-wise Fisher information also correlates

with the ground-truth tumour purity (Figure 5.13B). Both positive correlations indicate

that accurate estimation of tumour purity is harder when the tumour purity is higher.

We believe that this is also associated with the higher complexity of tumour methylation

patterns and the impurity of the source of tumour data in the training set.

We also study whether MethylBERT can reconstruct the methylation profiles of tumour

and normal cell types from a bulk sample, in addition to the accurate estimation of tumour

purity. Figure 5.14 shows the comparison between the ground-truth and MethylBERT-

estimated methylation profiles of tumour and normal cell types. As an example, we

reconstructed the cell type-specific methylation profiles in DMR 14 for the pseudo-bulk

8 sample which has relatively balanced tumour-normal cell-type proportions (0.456 and

0.544 for tumour and normal cell types, see Table 5.1). In the CpG-wise reconstruction

(Figure 5.14A), MethylBERT successfully inferred the methylation patterns corresponding
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B C D

Figure 5.14: Reconstructed methylation patterns in tumour and normal cell types by
MethylBERT. (A) Estimated tumour (T) and normal (N) CpG-wise methylation level
by MethylBERT. The result was obtained for DMR 14 (chr9:139738643-139742599) in
pseudo-bulk 8. The complex methylation patterns in the normal cell type are marked
by the magenta line. The empty spaces mean that there are no sequencing reads in the
sub-region. (B) The clustering of estimated and reference methylation profiles of DMR 14
in pseudo-bulk 8. We used the hierarchical clustering algorithm. (C) L2-norm calculated
between the estimated and reference methylation levels in selected DMRs. (D) L2-norm
calculated between the estimated and reference methylation levels in a new set of DMRs
where hyper- and hypomethylated tumour methylation patterns are equally distributed.

to the ground-truth profiles. In particular, MethylBERT could reconstruct the complex

methylation patterns in the normal cell type (marked by the magenta line in Figure 5.14A).

Furthermore, the estimated profiles could be clustered with the reference profiles of the

correct cell types (Figure 5.14B).

In addition to the CpG-wise reconstruction analysis, we compared the estimated cell type-

specific methylation profiles in DMRs to the reference profile. In the 100 selected DMRs,

MethylBERT successfully inferred the average methylation levels in every bulk sample

except for bulk 7 (Figure 5.15A). The inference did not perform well for the tumour

cell type in bulk 7 due to the lowest percentage of tumour cells. The L2-norm values

between the estimated and the reference methylation profiles are also lower for a pair of

the same cell types than for a pair of different cell types (Figure 5.14C). To prove that
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the inference does not depend on the tumour hypermethylation dominantly shown in the

selected DMRs, we did the same analysis with another 100 DMRs that 50 regions are

tumour hypermethylated and the others are tumour hypomethylated, respectively. As a

result, MethylBERT yielded an accurate reconstruction of both tumour and normal cell

type-specific methylation profiles (Figure 5.15B). Again, the L2-norm values are lower for

the same cell type than for the different cell types (Figure 5.14D).
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Figure 5.15: Inferred methylation profiles of each cell type from pseudo-bulks compared
to the reference profile. (A) Inference results when 100 DMRs were selected based on
areaStat. (B) Inference results when 100 DMRs were selected as tumour hyper- and
hypomethylated patterns evenly distributed within the set of regions. In each subfigure,
the top heatmap represents the methylation level in DMRs (columns) in each pseudo-bulk
(rows). Two heatmaps at the bottom present inferred methylation profiles for tumour
(left) and normal (right) cell types. The reference methylation profile of each cell type is
shown in the first row of two bottom heatmaps. Pseudo-bulks are ordered by the ground-
truth tumour purity.
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5.4.2 Evaluation using tumour pseudo-bulks with a very low tumour

purity

The recent progress in tumour diagnosis using ctDNA increases the demand for a highly

sensitive tumour purity estimation model that is capable of handling a very low number of

tumour-derived DNA fragments in blood plasma samples. As introduced in Section 2.1.2,

ctDNA analysis enables early diagnosis of cancer in a non-invasive manner by using blood

biopsies. Hence, we also conducted a validation of MethylBERT using 10 pseudo-bulks

whose tumour purity is below 1% (Table 5.1).

MethylBERT with the adjustment performs best with the lowest median absolute per-

centage error (MAPE) and the highest correlation between the ground truth and the

estimated values (Figure 5.16). Although CancerDetector achieves a relatively low MAPE

value, it cannot achieve a high correlation value. Reversely, DISMIR either cannot yield a

reasonable inference (when its own region selection method is used) or constantly overes-

timates the purity (when selected DMRs are used). The DISMIR dmr results only show a

strong correlation between the ground truth and the estimated values. Similarly, House-

man’s method also achieves a relatively strong correlation between the estimates and the

ground-truth values but achieves a higher MAPE value than MethylBERT. Hence, we con-

clude that MethylBERT is the most sensitive method to detect ctDNA signals in blood

plasma samples in comparison to previous methods.
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Figure 5.16: Tumour purity estimation results for pseudo-bulk with a very low tumour
purity. (A) Absolute percentage error of different methods. (B) Spearman’s correlation
between ground truth and estimated tumour purity values and p-value.
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5.5 The importance of pre-training

Pre-training is known to not only better generalisation but also show regularisation-like

behaviour in large deep neural networks [Erhan et al., 2009]. Particularly, BERT has a

unique design of bidirectional pre-training which resolves a conventional problem in NLP

models such as task-specific network architectures [Devlin et al., 2018]. For example,

Embeddings from Language Models, also known as ELMo, are generally integrated into a

task-specific network architecture despite the bidirectional feature extraction [Peters et al.,

2018]. On the other hand, BERT can be applied to varying tasks via fine-tuning.

The pre-trained BERT model has also contributed to the advanced analyses of DNA

sequences. For example, [Ji et al., 2021] successfully applied the BERT model to genomics-

related tasks, such as promoter or enhancer region prediction, by using a pre-trained BERT

model with DNA sequences.

From the perspective of NLP, the kind of information gained during BERT pre-training

has been meticulously analysed [Clark et al., 2019, Jawahar et al., 2019]. Nevertheless,

BERT pre-training on genomic sequences is still poorly understood. For this reason, we

analyse the DNA context learnt by the BERT model via pre-training and the efficacy of

pre-training in the fine-tuning task.

Primarily, we found that the BERT model can learn the common associations between

DNA 3-mer tokens during the pre-training (Figure 5.17). In the UMAP plot of embeddings

Before pre-training After pre-training

Figure 5.17: UMAP plot of 3-mer token embeddings extracted from the MethylBERT
model before pre-training (left) and after pre-training (right). K-means clusters are shown
by different colours.
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after the pre-training, the tokens that include “CG” context are regarded as a separate

cluster (cluster 4) from others, although the information about CpG sites or CpG methy-

lation was not given during the pre-training. We presume the BERT model could already

learn the unique characteristics of CpGs from the repetitive occurrence of “CG” on the

genome, especially in CpG islands (CGIs). Equally, special tokens are only distinguishable

after pre-training (cluster 5). Furthermore, the pre-trained BERT model can relate 3-mer

tokens in terms of DNA nucleotide pairs (A-T and C-G). Along the UMAP2 axis, the

tokens are separated into two groups: one starts with A/G (UMAP2 > 5) and the other

starts with C/T. The majority of 3-mer tokens are also clustered according to the last nu-

cleotides within each group. For example, cluster 0 is comprised of 3-mer tokens starting

with A and ending with A or G, which are nucleotide pairs. In our hypothesis, the identi-

fication of the nucleotide pairs achieved by the pre-trained BERT model could be feasible

due to Chargaff’s second parity rule that two paired nucleotides take an approximately

equal proportion in a single DNA strand [Rudner et al., 1968].

The final goal of BERT pre-training is to improve the generalisation of a model to an

unseen domain without requiring a massive amount of task-specific data sets. Therefore,

we investigate how much fine-tuning performance improvement is achieved by pre-training

in MethylBERT. For the fine-tuning read classification task, read-level methylomes from

DLBCL and normal B cell samples used in Section 5.3 were chosen. Although the DMRs

were chosen by the areaStat score in Section 5.4, the hypermethylation in promoter regions

can misguide the pre-training efficacy analysis (Figure 5.18). Therefore, we chose 50

tumour-hypermethylated DMRs and 50 tumour-hypomethylated DMRs for the analysis.

At the beginning of fine-tuning, both MethylBERT models without and with pre-training

have decreasing loss values, but only the model with pre-training reaches a fine-tuning

accuracy value above 0.9 for training and validation data sets (Figure 5.19A). On the other

hand, MethylBERT without pre-training cannot increase the accuracy approximately after

100 steps and the accuracy value drastically decreases afterwards. According to the AUC

value calculated for the validation set with the best-optimised parameters, MethylBERT

with pre-training can classify reads into cell types far more accurately (Figure 5.19B).

Read classification is not as accurate when MethylBERT is not pre-trained.
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A

B

Figure 5.18: Distribution of methylation levels and genomic annotations in selected
DMRs when (A) DMRs are selected based on the areaStat score and (B) DMRs are
selected to have the balanced proportion of tumour hyper- and hypomethylation patterns.
The histogram shows the distribution of the average methylation levels in each cell type,
whereas the pie chart represents the proportions of genomic annotations within selected
DMRs.

A

B

Figure 5.19: Fine-tuning performance of MethylBERT model without and with pre-
training. (A) Loss and read classification accuracy changes over fine-tuning steps. (B)
Confusion matrix calculated for read classification by MethylBERT without and with pre-
training
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The learning trend of MethylBERT with and without pre-training is presented more clearly

in Figure 5.20. For the pre-trained MethylBERT model, the P (cell type = Tumour|read)

distribution of tumour and normal reads already start separating from each other at

training step 50 and compute higher values of P (cell type|read) over further training steps.

When MethylBERT is not pre-trained, the P (cell type = Tumour|read) distribution of

normal and tumour reads are slightly different from each other at early steps, but both

distributions converge at the probability value 0.5 after 250 steps. The correlation between

P (cell type = Tumour|read) and the average methylation level of individual reads shows

that the read classification of both models is biased towards the methylation level at

step 50 (Figure 5.21). In other words, P (cell type = Tumour|read) is usually higher

when the read is fully methylated. Afterwards, the pre-trained MethylBERT model can

overcome the bias and classify reads more accurately, showing a lower correlation between

the probability and the methylation level. The lower correlation and the high performance

after step 50 imply that the model can classify reads into correct cell types based on cell

type-specific methylation patterns in respective DMRs. However, the MethylBERT model

without pre-training keeps classifying reads based on the average methylation level until
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Figure 5.20: Distribution of P (cell type = Tumour|read) during MethylBERT fine-
tuning. The top and bottom rows represent MethylBERT with and without pre-training,
respectively. The distributions were calculated every 50 steps between step 0 and step
350. ‘T’ and ‘N’ refer to tumour and normal cell types.
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Figure 5.21: Correlation between P (cell type = Tumour|read) and average methylation
level calculated over all reads. Correlation with a p-value below 0.05 is coloured by grey.
The correlation was calculated every 50 steps between step 0 and step 400.
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step 150, and then the classification performance decreases. Consequently, we argue that

pre-training plays a key role in the read classification task by preventing the model training

from being biased towards average methylation level and making the model detect correct

tumour-specific methylation patterns.

The biggest challenge of pre-training is the long training time caused by the large data

set. If the same pre-trained MethylBERT model is applicable to different species, it

improves usability by broadening the range of analysis without additional pre-training.

Figure 5.22 shows the comparison of the fine-tuning results between the two MethylBERT

models pre-trained with the human genome (hg19) and mouse genome (mm10). In terms

of read classification AUC score for the validation set, the two models achieve a very

similar value showing a difference smaller than 0.001. When comparing the distribution

of P (cell type = Tumour|read) calculated by each model, normal cell-derived reads did

not have a significant difference yielding the p-value of paired t-test statistics equal to 1.0.

Nevertheless, the distribution of tumour reads still significantly differs between the two

models showing the p-value below 1.0× 10−5.

A

B

C

Figure 5.22: Read classification results after pre-training with human genome (hg19)
and mouse genome (mm10). (A) Confusion matrix of read classification with mm10
pre-trained MethylBERT model. (B) Confusion matrix of read classification with hg19
pre-trained MethylBERT model. (C) P (cell type = Tumour|read) distribution of normal
B cell and tumour-derived B cell computed by both pre-trained MethylBERT models.

5.6 The effect of tumour purity estimation adjustment

We also assess the performance of MethylBERT with the adjustment algorithm described

in Section 4.3.3. In Figures 5.8 and 5.16, it can be seen that the tumour purity estimation

performance slightly increases with the adjustment. On the other hand, CancerDetec-

tor yields a higher error value for the bulk samples with tumour cell fraction above 50%
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although the read classification performance should be the same regardless of the tu-

mour purity. These imply that the tumour purity estimation relies not only on the read

classification results, but also on handling the variability of region-wise tumour purity.

Therefore, we compare the adjustment method to handle the variability of region-wise

tumour proportion in a bulk between MethylBERT and CancerDetector.

As explained in Section 5.2, we consider the ‘region filtering’ step in the CancerDetec-

tor algorithm conceptually equal to MethylBERT’s tumour purity adjustment algorithm.

Therefore, in this section, we call the region filtering step ‘CancerDetector tumour purity

adjustment’ for convenience. The CancerDetector tumour purity adjustment algorithm is

described in Algorithm 3. CancerDetector employs the EM algorithm to remove DMRs

whose estimated purity is outside of the standard deviation of region-wise tumour purity.

The removal is conducted iteratively until the estimated tumour purity value converges.

Then, the converged value is regarded as the final estimation.

For a fair comparison of the two adjustment methods, the evaluation is done using

the same read-wise probabilities P (cell type|read) for pseudo-bulk samples computed by

MethylBERT. We note that the performance of CancerDetector in this section is thus

different from the CancerDetector result shown in Figure 5.8, which was yielded using

P (cell type|read) calculated by CancerDetector.

When the adjustment is applied, MethylBERT achieves a lower median absolute error

Algorithm 3 CancerDetector tumour purity estimation adjustment algorithm

Input: Pt = {pt1...ptR}, P
n = {pn1 ...pnR} Calculated P (read|cell type) for all R reads

M = {m1...mK} K DMRs
λ Factor for stda of region-wise estimation
θ Threshold for EM algorithm iteration

Output: δnew Estimated tumour purity

1: δnew ← arg max
δ

R∏
ri=1
{δptri + (1− δ)pnri}

2: while |δnew − δprev| > θ do
3: for mk ∈M do ▷ Estimate region-wise tumour purity
4: δk ← arg max

δ

∏
ri∈mk

{δptri + (1− δ)pnri}

5: for mk ∈M do ▷ Exclude regions whose estimation is not in the std
6: if δk > δnew + λstd({δ1, ..., δK}) then
7: Remove mk from M
8: δprev ← δnew

9: δnew ← arg max
δ

R∏
ri=1
{δptri + (1− δ)pnri}

aThe standard deviation
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than CancerDetector (Figure 5.23A). The performance gain of MethylBERT with the

adjustment mainly comes from the pseudo-bulk samples where the tumour proportion is

higher than 50% (Figure 5.23B). Especially when the tumour proportion is above 95%,

MethylBERT with the adjustment performs better than the others.

Figure 5.24 shows why MethylBERT adjustment works better than CancerDetector ad-

justment when the tumour purity is very high. CancerDetector was originally designed

for ctDNA analysis, so the adjustment algorithm excludes regions whose estimated purity

is higher than the sum of the standard deviation of local purities and the estimated global

purity. This way of removing regions causes an underestimation of final tumour purity

when tumour-derived reads are not rare. On the other hand, MethylBERT adjustment

does not filter out any regions, and rather it transforms the region-wise estimated tu-

mour purities to a less biased distribution centred around the global tumour purity. This

alleviates the underestimation problem occurring in the CancerDetector adjustment and

improves the estimation regardless of the ground-truth tumour purity.
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Figure 5.23: Performance evaluation of MethylBERT adjustment method. (A) Absolute
error calculated by each method for 20 pseudo-bulk samples. (B) Mean squared error
calculated by each method ordered by ground-truth tumour purity.
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Figure 5.24: Comparison between region-wise estimation before and after adjustment.
The left column shows the result of the MethylBERT adjustment, and the right column
presents the result of the CancerDetector adjustment. The example has three different
cases of pseudo-bulks whose tumour content is 0.088, 0.579, and 0.967, respectively.
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5.7 Tumour diagnosis based on ctDNA in blood plasma

samples

In Section 2.1.2, we explained ctDNA and evaluated the performance of MethylBERT

using pseudo-bulk samples resembling ctDNA. ctDNA analysis enables non-invasive early

cancer diagnosis because the samples can be collected via liquid biopsy. Nonetheless, the

very low percentage of tumour-derived DNA fragments found in liquid biopsies requires

highly sensitive cell-type deconvolution methods which can detect rare cell-type signals.

In this case, sequencing-based cell-type deconvolution methods are considered more suit-

able than array-based methods because the methylation beta-value given by array-based

profiling can obscure the rare cell-type signals. The two benchmarked sequencing-based

cell-type deconvolution methods, CancerDetector and DISMIR, were also developed for

this purpose. Hence, we evaluate the usability of MethylBERT for non-invasive cancer

diagnosis using blood plasma samples from cancer patients.

We evaluated tumour purity estimation with blood plasma samples collected from 14

healthy donors and 40 colorectal cancer (CRC) patients (GEO accession number GSE1494-

38). The patient cohort is comprised of five different stages of CRC from stage 0 to stage

IV. The MethylBERT model was trained with the other non-cancer plasma samples from

the same data set and scBS-seq data from CRC tissue samples (GEO accession number

GSE97693). Figure 5.25 shows the analysis result. Based on the estimated tumour purity,

some of the early-stage CRC patients (II-III) are distinguished from the healthy donors

with p-value ≤ 0.01. Furthermore, the median value of estimated tumour purity is higher

for all stages of CRC patient groups than the healthy donor group. The estimated median

value is lower than 0.01 in all early stages of CRC patients (0-III), thus a sensitive model

for tumour purity estimation like MethylBERT is undoubtedly required to enable non-

invasive early tumour diagnosis.

44 pancreatic ductal adenocarcinoma (PDAC) patient samples were also analysed com-

pared to the 14 healthy donors (Figure 5.26). The patient samples are categorised by four

stages (IIA, IIB, III, and IV). The MethylBERT model was trained with the other healthy

donor blood plasma samples from GSE149438 and PDAC tissue WGBS data downloaded

with the GEO accession number GSE63123. Likewise, the median estimated tumour pu-

rity is higher in all stages of PDAC patients than in healthy donors. In particular, stage

IIB patients are distinguished from the healthy donors with the p-value < 0.05. This

result is particularly meaningful because PDAC is widely recognised as one of the trickiest

cancer types to be identified during the early stages. The original paper providing this

data set also confirmed this by showing their cell-type deconvolution results where PDAC

patients were the most difficult cases to be identified based on DNAm profiling compared

to other cancer patients such as colorectal, liver, and gastric cancers [Kandimalla et al.,

2021].
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Figure 5.25: ctDNA analysis by MethylBERT using blood plasma samples from healthy
donors and CRC patients. (A) Distribution of age and cancer stages in the cohort. (B)
Estimated tumour purity plotted by cancer stages. The p-value is calculated via a two-
sided Mann-Whitney-Wilxcoxon test. ‘**’ and ‘***’ mean p-value≤ 0.01 and ≤ 0.001,
respectively. The median value is written at the top of each box.
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Figure 5.26: ctDNA analysis by MethylBERT using blood plasma samples from healthy
donors and PDAC patients. (A) Distribution of age and cancer stages in the cohort.
(B) Estimated tumour purity plotted by cancer stages. The p-value is calculated via a
two-sided Mann-Whitney-Wilxcoxon test. ‘*’ and ‘**’ mean p-value≤ 0.05 and ≤ 0.01,
respectively. The median value is written at the top of each box.
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5.8 Discussion

Given the limitations of current sequencing-based cell-type deconvolution methods evalu-

ated in Chapter 3, we proposed a new Transformer-based model for cell-type deconvolution

using read-level methylomes specifically targeting tumour, MethylBERT, in Chapter 4 and

performed an evaluation in Chapter 5. Transformer encoders in the BERT model not only

enable bidirectional training over input sequences, but also apply an attention mechanism

to the entire sequence. The calculation of an attention matrix over the entire sequence

compensates for the lack of global context learning in CNNs, as well as the order-dependent

modelling in RNNs. Even though several Transformer-based methods have been success-

fully used for modelling sequencing-based DNAm data [Yu et al., 2021, De Waele et al.,

2022], application for cell-type deconvolution has not been reported to date.

MethylBERT consists of three steps. The first step of MethylBERT is pre-training using

reference genome data split into 3-mer tokens. In the second step, the model is fine-

tuned to classify reads into cell types based on DNA sequences and read-level methylation

patterns. The classification is done by assigning the cell type with the highest posterior

probability given the reads. The calculated posterior probability is used in the third step

of MethylBERT, which is maximum likelihood estimation of the tumour purity within a

given bulk sample.

Accurate estimation of the posterior probability is imperative to ensure high-performance

tumour purity estimation. Therefore, we evaluated the read-level methylation classifica-

tion performance of MethylBERT and existing methods. Since using read-level tumour-

derived methylomes obtained from biological samples for evaluation is highly complicated

due to other confounding factors or possible contamination, the major evaluation was

done using read-level methylation patterns simulated from a beta-binomial distribution.

CancerDetector and DISMIR, which were originally developed for ctDNA analysis, as well

as Houseman’s method which showed the best performance in the evaluation in the eval-

uation in Chapter 3 were included in the comparison. The simulation was conducted by

controlling methylation pattern complexity, read length, and read coverage. MethylBERT

mostly outperforms other methods, regardless of simulation setups.

The MethylBERT tumour purity estimation was also evaluated and compared with three

previous methods. As an evaluation data set, we used pseudo-bulk samples created using

DLBCL and normal B cell WGBS data. Again, MethylBERT shows the lowest absolute

error values. Houseman’s method performs better than MethylBERT only when the tu-

mour proportion is higher than 0.5, but cannot perform tumour purity estimation for a

low percentage of tumour-derived reads. On the contrary, the sequencing-based methods

CancerDetector and DISMIR tend to perform much better only when the ground-truth

tumour purity is low because they were originally designed to handle ctDNA analysis

where a low tumour signal is the biggest challenge.
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From the MethylBERT cell-type deconvolution results, we discovered that estimation gets

less accurate with increasing ground-truth tumour purity. This can be caused by partially

methylated reads which occur more frequently in tumour cells. The Fisher information

increases with a higher tumour purity for MethylBERT, as well as for MethylBERT with

the adjustment. Nevertheless, the adjustment in MethylBERT mitigates the problem

of biased local tumour purity distribution and improves the deconvolution accuracy in

tumour-dominant pseudo-bulk samples.

Furthermore, we interrogated the information the BERT model learned from DNA se-

quences during pre-training, which has not been done in previous work. The analysis of

pre-training results shows that MethylBERT can learn the basic context of DNA sequences,

such as CpG sites or DNA nucleotide pairs without any prior knowledge. Accordingly, ac-

curate read classification is achieved only after pre-training. If the model is not pre-trained,

it can classify reads into cell types only based on average methylation level, although cell

type-specific methylation patterns differ among genomic regions. These results show that

pre-training is essential in MethylBERT, despite the absence of information about DNA

methylation in the training data.

ctDNA analysis, as mentioned in previous chapters, has recently received a lot of attention

as a non-invasive tumour detection method. DNA methylation modifications particularly

occur at the very early stage of the tumour. Thus, DNAm profiles are considered a better

biomarker to conduct ctDNA analyses than mutational-based profiles. Yet, the very low

quantity of tumour-derived DNA fragments in blood plasma collected from cancer patients

demands a highly sensitive cell-type deconvolution method for the diagnosis of cancers us-

ing liquid biopsy. For this reason, in previous work, CancerDetector and DISMIR were

proposed to use read-level methylomes to detect rare tumour signals in blood plasma

and have shown promising performance. Using 10 DLBCL pseudo-bulk samples whose

tumour purity is below 1%, we confirmed that MethylBERT performs better than these

two methods as a sensitive cell-type deconvolution method for ctDNA analysis. More-

over, MethylBERT successfully distinguishes early CRC and PDAC patients from healthy

donors based on tumour purity estimation for blood plasma samples. Taken together, we

claim that MethylBERT can be used as a non-invasive early tumour diagnosis method in

the future.
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Chapter 6

Conclusion and future work

6.1 Conclusion

This thesis focuses on methods for cell-type deconvolution using read-level DNA methy-

lomes. The thesis consists of three main parts:

• First, we have comprehensively analysed and benchmarked previously published

sequencing-based cell-type deconvolution methods. This work is the first bench-

marking study specifically targeting sequencing-based cell-type deconvolution meth-

ods and contributes important input to the field of bioinformatics. We provide

systematic and unbiased evaluations using the same data sets and metrics, as well as

a thorough examination of their algorithmic designs. Furthermore, we established a

new paradigm in evaluating sequencing-based cell-type deconvolution methods. We

subdivided the evaluation into two major steps: informative region selection and

cell-type composition estimation. Our benchmarking results confirm that the infor-

mative region selection algorithm has a significant impact on cell-type composition

estimation performance. In particular, for the bi-component pseudo-bulk samples,

the cell-type composition estimation accuracy is higher when the selected regions are

more similar to the differentially methylated regions (DMRs). Therefore, in the case

of reference-based methods requiring pure cell-type samples, we recommend using

pre-calculated DMRs based on the reference data rather than estimating informative

regions based on the variance of the methylation level in given bulk samples. Con-

sequently, our benchmarking study showed that the currently available methods do

not significantly outperform array-based deconvolution methods, despite the much

more abundant and detailed information in sequencing-based DNAm data.

• Second, taking the limitations of current methods into account, we have developed a

new cell-type deconvolution method based on Transformers for read-level DNAm pat-
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terns derived from tumours, named MethylBERT. MethylBERT is the first applica-

tion of Transformers to cell-type deconvolution for DNAm data. In the MethylBERT

network, the BERT model encodes read-level methylation patterns and correspond-

ing DNA sequences together to identify tumour-specific signals in single sequencing

reads. For pre-training, the network performs the masked language model task on

3-mer DNA sequences. Afterwards, MethylBERT is fine-tuned to classify cell types

based on read-level methylomes. Based on the posterior class probability calculated

by the MethylBERT network, it finally estimates the proportion of tumour cells

within a bulk sample. We also suggest using Fisher information to determine the

precision of the tumour purity estimation. MethylBERT supports the adjustment of

purity estimation by minimising the skewness of estimated local proportions. This

scheme is designed to avoid over- or underestimation of tumour purity, especially

when bulks have a very high or low percentage of tumour-derived reads.

• Third, we evaluated MethylBERT and performed a comparison with previous meth-

ods. An analysis of pre-training results emphasises the importance of the pre-training

step in MethylBERT, although it does not exploit any information about DNA

methylation. The masked language model training using 3-mer DNA sequences en-

ables the model to learn the basic context of DNA sequences, such as CpG sites and

DNA nucleotide pairs. We showed that the DNA sequence context learnt during the

pre-training eventually renders the model fine-tuning unbiased towards the average

methylation level and aids the successful detection of the region-wise tumour-specific

signals. MethylBERT shows superior performance compared to other methods in

both read classification for simulated read-level DNAm patterns, and tumour purity

estimation for diffuse large B-cell lymphoma (DLBCL) pseudo-bulk data. The suc-

cessful deconvolution of pseudo-bulk samples with a very low percentage of tumour-

derived reads shows the potential of MethylBERT as a non-invasive early tumour

diagnosis method. This is also confirmed by the tumour purity estimation results

for the blood plasma samples obtained from colorectal cancer (CRC) and pancreatic

ductal adenocarcinoma (PDAC) patients. MethylBERT is capable of distinguishing

early-stage cancer patients from healthy donors in both cancer types. To sum up,

the evaluation results show that MethylBERT is not bound to a specific type of

tumour bulk and is able to accurately estimate tumour purity for bulks regardless

of the level of ground-truth tumour purity. This advances the state-of-the-art in

tumour purity estimation compared to previous methods that are restricted to a

specific type of tumour bulks (e.g., solid tumour tissue or liquid biopsies).
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6.2 Future work

In the benchmarking study described in Chapter 3, we evaluated sequencing-based cell-

type deconvolution methods for unspecified types of biological samples and tumour bulks.

The benchmarking study can be extended to cell-type deconvolution methods for other

cell types (e.g., immune cell types). Immune cell-type deconvolution is used for quantify-

ing immune infiltration in the tumour microenvironment. The immune infiltration level

contributes to grouping tumour subtypes in terms of clinical relevance as well as drug

discovery in immunotherapy [Singh et al., 2021, Tang et al., 2021]. [Sturm et al., 2019]

already performed a review study on transcriptome-based immune cell-type deconvolution

methods. Yet, such a review study has not been performed for methylation data, even

though DNAm-based lymphocyte1 infiltration estimation has improved diagnosis of vari-

ous cancer types like breast cancer and glioneuronal tumour [Jeschke et al., 2017]. [Singh

et al., 2021] also developed a method specifically for immune cell-type deconvolution using

DNA methylation data. Therefore, we suggest a further evaluation of sequencing-based

cell-type deconvolution methods for DNA methylomes from tumour microenvironment

samples for future work.

Regarding the MethylBERT result analysis, additional analyses can be done by examin-

ing calculated attention matrices in the model. Through simulated read-level methylation

pattern analysis, we found that MethylBERT accurately performs read classification, even

when the neighbouring CpGs do not have the same methylation patterns. This implies

that the model successfully distinguishes important CpG sites clearly presenting cell type-

specific signals. Therefore, we plan to conduct further analysis to see whether the cal-

culated attention matrices correspond to the informative genomic loci to identify tumour

signals. In addition, since blood plasma methylation data is publicly available for varying

types of cancer, MethylBERT could be applied to diagnose more cancer types in the early

stage using the blood plasma data.

Third-generation sequencing, which is introduced in Section 2.1.3, recently has shed light

upon long-range genomic makeup and features. Especially in cancer epigenomics, third-

generation sequencing has received attention as a bisulfite-free methylation sequencing

method by distinguishing methylation status based on ionic current [Sakamoto et al.,

2020]. Third-generation sequencing has already been attempted to profile circulating

tumour DNA methylation using long-read sequencing [Katsman et al., 2022]. Nonetheless,

MethylBERT application to long-read sequencing is not feasible due to the high number

of parameters demanding large memory consumption. Modified versions of the BERT

model have been proposed to reduce the computational complexity in the fields of machine

learning and computational biology [Zaheer et al., 2020, Beltagy et al., 2020, Avsec et al.,

2021]. Therefore, we intend to improve MethylBERT referring to the previous works so

that the model has fewer parameters. This can broaden the applicability of MethylBERT

1A lymphocyte is a type of immune cell whose subtypes include B cells and T cells.
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to long-read sequencing data.

Deconvolution for multiple cell types is another potential direction to develop Methyl-

BERT further. Currently, MethylBERT can only distinguish binary subpopulations, like

tumour and normal. Identifying more than two cell types in a bulk sample can stratify

subpopulations and enable a more thorough classification of bulk samples. For instance,

in the tumour microenvironment, it is necessary to distinguish tumour, normal (stromal)

and multiple immune cell types to avoid the confusion between normal and immune cell

types. Hence, as another future work, we propose extending the MethylBERT model to

handle complex cell populations and subpopulations to support a more comprehensive

analysis of bulk samples.
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Supplementary

Proof of the softmax function satisfying the probability ax-

ioms

In this section, we prove that the standard softmax function σ in Equation (4.3) satisfies

the probability axiom 3 when σi is used as a probability function of an event that label

i is observed, Ei. For the classification with C labels, the function σ is σ : RC → (0, 1]C

and the event space F = {E1, ..., EC}.

Theorem (probability axiom 3). For any countable sequence of mutually ex-

clusive event sets {Ei} chosen from the event space F , P (
∞⋃
i=1

Ei) =
∞∑
i=1

P (Ei).

Proof. Let n be the number of events in a chosen event set {Ei}, then

P (

∞⋃
i=1

Ei) = P (

n⋃
i=1

Ei).

We note that all events in F are mutually exclusive by our assumption that input

is classified into only one of C labels (see Section 4.2.2). Therefore, any event in F

can be selected to create {Ei}.

With this assumption, we prove Theorem by mathematical induction. When n is

1, P (
∞⋃
i=1

Ei) = P (
1⋃

i=1
Ei) = P (E1) is obviously true. For the case n = 2,

P (
∞⋃
i=1

Ei) = P (

2⋃
i=1

Ei)

= P (E1) + P (E2)− P (E1 ∩ E2)
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by Equation (4.4):

= P (E1) + P (E2).

Assume P (
∞⋃
i=1

Ei) =
∞∑
i=1

P (Ei) is true for a natural number k. Then, for n = k + 1,

P (
∞⋃
i=1

Ei) = P (
k+1⋃
i=1

Ei)

= P ((
k⋃

i=1

Ei) ∪ Ek+1)

= P (

k⋃
i=1

Ei) + P (Ek+1)− P ((

k⋃
i=1

Ei) ∩ Ek+1)

by Equation (4.4):

= P (
k⋃

i=1

Ei) + P (Ek+1)

by the assumption n = k is true:

=

k+1∑
i=1

P (Ei).

Thus, P (
∞⋃
i=1

Ei) =
∞∑
i=1

P (Ei) holds for any natural number n. □
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