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Abstract 

Since the dawn of multicellular life, cells have diversified through the differentiation of 

functionally distinct cell types. These cell types give rise to different cancer types and 

subtypes, with cell of origin central to intertumor heterogeneity. For example, B-cell non-

Hodgkin lymphomas are tied to distinct stages of B-cell maturation. In contrast, intratumor 

heterogeneity, intrinsic to cancer evolution and treatment response, is typically considered 

distinct from cell-type differentiation. In this thesis, I challenged this view by investigating 

whether cell-type differentiation influences intratumor heterogeneity in B-cell lymphomas.  

Through joint single-cell transcriptomic and surface epitope profiling of diffuse large B-cell 

(DLBCL), mantle cell (MCL), follicular (FL), and marginal zone (MZL) lymphomas from 43 

patients, alongside 8 reactive lymph nodes, I found that individual tumors were comprised of 

multiple B-cell maturation states, suggesting ongoing differentiation from the cell of origin. 

Tumor maturation state composition varied across and within lymphoma entities, blurring 

entity boundaries. Cell-of-origin classifiers revealed the presence of mixed germinal center 

(GCB) and activated B-cell (ABC) clinical subtypes within DLBCL and FL tumors. Varying 

tumor maturation state composition over time indicates tumors evolve through 

differentiation, maintained by differentially active maturation transcription factors observed 

between tumor maturation states. Highly multiplexed immunohistochemistry revealed 

intratumor maturation states occupy distinct spatial niches, differing in immune infiltration 

while maintaining maturation-associated cellular interactions. Intratumor maturation states 

were subject to copy number variation and showed varying expression patterns of mutated 

genes, suggesting that differentiation and genetic variation are interconnected in cancer.  

My findings put forward a model of tumor evolution in which cancer cells achieve 

diversification through cell-type differentiation. Mutability of cell types in cancer poses 

challenges and opportunities for cancer diagnosis, whereby tumors are not tied to their cell of 

origin, and cancer treatment, which may need to account for diverse and evolving spectra of 

cancer cell types. These insights open a wealth of future research avenues in clonal evolution, 

drug resistance, and precision medicine across cancers. 
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Zusammenfassung 

Seit den Anfängen des mehrzelligen Lebens haben sich die Zellen durch die Differenzierung 

in funktionell unterschiedlicher Zelltypen diversifiziert. Diese Zelltypen führen zu 

verschiedenen Krebsarten und Subtypen, wobei die Ursprungszelle für die Heterogenität 

zwischen den Tumoren von zentraler Bedeutung ist. So sind beispielsweise B-Zell-Non-

Hodgkin-Lymphome an unterschiedliche Stadien der B-Zell-Reifung gebunden. Im 

Gegensatz dazu wird die intratumorale Heterogenität, welchedie sowohl für diemit der 

Krebsentwicklung als auchund dessendem Ansprechen auf einedessendie Behandlung 

essentiell istzusammenhängt, in der Regel als von der Zelltypendifferenzierung unabhängig 

betrachtet. In dieser Arbeit habe ich mich kritisch mit dieser Frage auseinandergesetzthabe 

ich diese Ansicht in Frage gestellt, indem ich untersucht habe, ob die Zelltypdifferenzierung 

die Intratumorheterogenität bei B-Zell-Lymphomen beeinflusst. 

Durch parallelegemeinsame Einzelzell-Transkriptom- und Oberflächenepitop-Profilierung 

von diffusen großzelligen B-Zell-Lymphomen (DLBCL), Mantelzell-Lymphomen (MCL), 

follikulären Lymphomen (FL) und Marginalzonen-Lymphomen (MZL) von 43 Patienten 

sowie 8 reaktiven Lymphknoten fand ich heraus, dass einzelne Tumore aus mehreren B-Zell-

Reifungszuständen bestehenbestanden, was auf eine fortlaufende Differenzierung ausgehend 

von der Ursprungszelle hindeutet. Die Zusammensetzung der Tumorreifungsstadien variierte 

zwischen und innerhalb von Lymphom-Entitäten und verwischte die Entitätsgrenzen. Die 

Klassifizierung der Ursprungszellen lieferte Hinweise aufergab das Vorhandensein von 

gemischtern Keimzentren (GCB) und aktiviertern B-Zellen (ABC) als klinische Subtypen bei 

DLBCL und FL-Tumoren. Die variableunterschiedliche Zusammensetzung der 

Tumorreifungsstadien im Laufe der Zeit deutet darauf hin, dass sich die Tumoren durch 

Differenzierung weiterentwickeln, welchedie durch unterschiedlich aktive 

Reifungstranskriptionsfaktoren zwischen den Tumorreifungsstadien aufrechterhalten wird. 

Hochmultiplex-Immunhistochemie zeigte, dass intratumorale Reifungsstadien 

verschiedeneunterschiedliche räumliche Nischen besetzen, die sich in der Immuninfiltration 

unterscheiden, während reifungsassoziierte zelluläre Interaktionen erhalten bleiben. 

Intratumorale Reifungsstadien unterlagen einer Variation der Kopienzahlvariation und wiesen 

diverseunterschiedliche Expressionsmuster mutierter Gene auf, was darauf hindeutet, dass 

Differenzierung und genetische Variation bei Krebs miteinander verbunden sind. 

Meine Ergebnisse stellen ein Modell der Tumorevolution vor, bei dem Krebszellen die 
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Zelldtyp-Differenzierung missbrauchen, um eine Diversifizierung zu erreichen. Daraus 

ergeben sich Herausforderungen und Chancen sowohl für die Krebsdiagnose, bei der Tumore 

nicht an ihre Ursprungszelle gebunden sind, als auchund für die Krebsbehandlung, welchedie 

möglicherweise den vielfältigen und sich entwickelnden Spektren von Tumorzelltypen 

Rechnung tragen muss. Diese Erkenntnisse eröffnen eine Fülle künftiger 

Forschungsmöglichkeiten in den Bereichen klonaler Evolution, Arzneimittelresistenz und 

Präzisionsmedizin bei verschiedenen Krebsarten.  
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Introduction 

This thesis explores if and how cell-type differentiation influences the variation and evolution 

of cancers, which I studied in B-cell lymphomas1. To address this subject, I first introduce the 

role of intratumor heterogeneity (ITH) in cancer evolution. I then outline the cell-type 

differentiation processes responsible for normal cellular diversification, with different cancer 

subtypes arising from distinct cells of origin. Bridging these topics, I then consider a potential 

relationship between cell-type differentiation and ITH. 

Cancer as an evolutionary process 

“For a biologist, the alternative to thinking in evolutionary terms is not to think at all.” 

Peter Medawar2 

Cancer can be conceptualized as an evolutionary process, echoing the Darwinian 

characteristics governing the natural selection of species; Overproduction and struggle for 

existence, inheritance, variation, natural selection, and speciation3. 

Cancer cells inherently undergo uncontrolled proliferation, a process which is termed clonal 

expansion4,5, leading to a struggle for scarce resources such as space, oxygen, and nutrients in 

the tumor microenvironment. The proliferation rate of cancer cells can far exceed the tumor’s 

growth rate6, such that the vast majority of cancer cells are unable to survive or continue 

proliferation7. 

As the genetic code is passed from cell to cell, so too are the somatic mutations that 

accumulate, including those that give rise to malignancy and mutations that confer a survival 

advantage over other cancer cells. The heritable nature of these advantageous mutations 

underpins the pathological and evolutionary progression of cancer8. The cell type from which 

a tumor arises, known as the cell of origin, also shapes the tumor phenotype, with distinct 

cancer types arising from different cell types9,10. 

Diversification provides evolutionary advantage by creating the foundation for adaptation and 

enabling the population to better utilize the resources of its environment. Variation arises 

within tumors in the form of intratumor heterogeneity, where phenotypically distinct 

subpopulations of cancer cells emerge from a common progenitor. Cancer cells can diversify 
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through acquiring different genetic mutations4,5, but also from non-genetic variation on the 

transcriptomic, epigenetic, and microenvironmental levels11. This diversification expands the 

pool for selection, promoting treatment resistance and cancer progression. 

The tumor microenvironment acts as a selective landscape, whereby cancer cells must adapt 

to evade the immune response and survive through resource scarcity. Clones with 

advantageous mutations outcompete others, leading to clonal expansion. This selective 

growth advantage is a cornerstone of the clonal evolution model of cancer5.  Although 

treatment may eradicate the majority of cancer cells, selection for treatment-resistant 

subclones is a frequent cause of cancer relapse and progression12,13. In some ways, this is 

analogous to the development of resistance or vaccine escape in microbes, such as SARS-

CoV-214. 

Natural selection of organisms ultimately leads to speciation, where populations diverge into 

distinct species uniquely adapted to their environments. An analogous phenomenon occurs in 

tumors, where selection gives rise to distinct tumor subpopulations uniquely adapted to their 

microenvironments, including immune pressures, spatial constraints, and treatment 

exposures, thereby promoting metastasis and progression15,16. 

The characteristics and effects of intratumor heterogeneity 

With intratumor heterogeneity (ITH) central to cancer evolution, a growing number of studies 

have examined its characteristics and effects. ITH was initially described exclusively as 

genetic variation among cancer cells arising from the accumulation of different mutations 

throughout their clonal evolution5. This is intuitive as cancers arise from genetic variation, 

through the onset of oncogenic driver mutations such as TP53, KRAS, and EGFR that are 

critical to their malignant transformation and precipitate further mutations. Tumors can 

exhibit a range of mutations, from single nucleotide variations to large chromosomal 

rearrangements, which contribute to the genetic diversity of tumors17.  

In addition to genetic variation, however, numerous studies have shown that non-genetic 

intratumor heterogeneity is also abundant. This includes variation observed on the epigenetic, 

transcriptional, morphological, and metabolic levels, which are intricately connected in 

driving tumor phenotype 11,18–20. Large-scale transcriptional studies across cancers have 

highlighted the variable nature of cancer cells in proliferation and stress exposure and 
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response21. Another important axis of ITH is the tumor microenvironment, consisting of 

variable composition and spatial patterns of stromal cells, immune cells, and the extracellular 

matrix. Microenvironmental heterogeneity influences the development of ITH by creating 

spatial niches with differential survival signals and immune infiltration among cells of the 

same tumor22.  

The abundance of ITH observed across cancer types underscores the key role it plays in 

cancer pathogenesis, survival, and progression. As ITH leads to a greater diversity of 

phenotypes, each acquiring different mutations or states promoting evasion of specific 

therapies, it is a major contributor to treatment resistance18. In B-cell lymphomas, 

transcriptional subpopulations of the same tumor showed differential response to a broad 

range of drug classes23. Conversely, drug treatment can precipitate the emergence of diverse 

clonal fates24. Heterogeneity within the primary tumor can also influence metastatic potential, 

as subpopulations with specific genetic alterations may be more adept at invading or 

colonizing distant organs25. Therefore, the extent of ITH has been correlated with poor 

prognosis in various cancer types26.  

The complex and progressive nature of ITH poses significant challenges for cancer diagnosis 

and treatment. Routine diagnostic methods such as biopsy or bulk genotyping rarely account 

for ITH, leading to inaccurate prognosis and ineffective therapeutic strategies27. The presence 

of heterogeneous phenotypes in a single patient with different therapeutic sensitivities adds 

further complexity to the choice of treatment for personalized medicine. Combination therapy 

(e.g. chemoimmunotherapy combinations like R-CHOP) can help reduce the risk of relapse 

by targeting multiple survival mechanisms simultaneously but adds to the treatment burden, 

risk of adverse events, and costs, so drug combinations must be selected carefully28.  

Intratumor heterogeneity is a central aspect of cancer pathogenesis and evolution with 

profound implications for the understanding, diagnosis, and treatment of cancer. Addressing 

the challenges posed by ITH requires a better understanding of the processes which govern it. 

Cellular diversification via cell-type differentiation 

Before studying the processes governing ITH, it is helpful to consider how cells diversify in a 

healthy context. Cells diversify throughout development, from a unicellular zygote to a 

multicellular organism with functionally specialized tissues and organs. Here, although 
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genetic variation can arise from accumulating somatic mutations, this is too unstable to cover 

the vast multitude of roles that cells need to play in an organism. The most dominant form of 

cellular diversification is the emergence of different cell types through differentiation, which 

is intricately regulated by a network of signaling pathways, transcription factors, and 

epigenetic modifications in response to environmental interactions29.  

The diversification of cell types through differentiation arose with multicellular life itself, and 

is critical for the complex organization, functionality, and evolutionary success of eukaryotic 

organisms. The genome contains the necessary genes for all cellular functions of an 

organism, but these functions are too diverse for a single cell to realize. Therefore, analogous 

to the division of labor into diverse professional specializations in societies, from architects to 

zoologists, cells specialize through preferentially activating different elements of the genome 

to fulfil diverse physiological roles. The human body consists of over 200 functionally 

distinct cell types making up our tissues and organs29, with diverse characteristics ranging 

from neurons for carrying electrical signals across the body to muscle cells specialized for 

different forms of movement. Cell types are not discrete classes but exist on a continuous tree 

of cell-type lineages, including many intermediary states and subtypes that are ever being 

refined due to advancing single-cell technologies and vast single-cell atlases such as Tabula 

Sapiens30.  

Differentiation is not a unidirectional or deterministic process. Cellular plasticity allows 

differentiated cells under certain conditions to de-differentiate or trans-differentiate, 

contributing further to cellular diversity31,32. For instance, in regenerative medicine, this 

plasticity is harnessed to reprogram differentiated cells into pluripotent stem cells, which can 

then be induced to form different cell types33.  

The cell of origin model of inter-tumor heterogeneity 

Cell-type differentiation has implications for the pathogenesis of cancers as distinct cancer 

types and subtypes are thought to arise from different cell types and states. This concept of 

‘cell of origin’, the cell type from which a tumor originates, has emerged as a fundamental 

principle of cancer initialization and progression. Cancer cells usually retain characteristics of 

their cell of origin, which therefore plays a crucial role in dictating the phenotypic 

characteristics and behavior of the resulting tumor, influencing aspects such as growth rate, 

invasiveness, response to therapy, and overall prognosis9. Due to the vast diversity of cell 
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types that can undergo malignant transformation, cell of origin is considered central to the 

heterogeneity of cancer types and subtypes across tissues and organs. Cell of origin patterns 

have been shown to dominate the molecular classification of tumors and cancer types10, 

highlighting the central role it plays in inter-tumor heterogeneity.  

Distinct cancer subtypes have been associated with cells of origin at different stages of their 

differentiation lineages. For example, different subtypes of B-cell lymphomas are tied to 

distinct stages of B-cell development34–36, acute leukemia subtypes originate from 

hematopoietic stem cells or differentiated progenitor cells37, and pancreatic ductal 

adenocarcinoma subtypes arise from ductal or acinal cells38. 

The concept of the cell of origin is closely tied to the cancer stem cell (CSC) theory. CSCs, a 

small subpopulation within tumors, possess the ability to self-renew and drive tumor 

growth39. The origin of these CSCs, whether they arise from normal stem cells or from more 

differentiated cells that acquire stem-like properties, is a subject of intense research. The 

nature of the cell of origin can profoundly influence the characteristics of these CSCs and, by 

extension, the behavior of the cancer40. 

The cell of origin does not act in isolation but interacts with its surrounding 

microenvironment, which can modulate its microenvironment and subsequent malignant 

progression41. For example, in solid tumors, interactions with stromal cells and the 

extracellular matrix can influence the tumor phenotype that arises from the cell of origin. 

The cell of origin has practical implications for cancer treatment. Therapies targeting specific 

pathways or mutations effective in one subtype of cancer may be ineffective in another, 

depending on the cell of origin. For example, leukemias originating from hematopoietic stem 

cells are less sensitive to chemotherapy compared to leukemias derived from myeloid 

progenitors, which is mediated by differences in apoptotic priming and p53 loss of function42. 

B-cell lymphomas and B-cell maturation 

Cell of origin has been well studied in nodal B-cell non-Hodgkin lymphomas (B-NHL), a 

heterogeneous set of cancers causing over 200,000 deaths annually43. B-NHL entities are 

thought to arise from varying stages of differentiation along the B-cell maturation lineage in 

the lymph node34.  
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The B-cell maturation process in secondary lymphoid organs such as lymph nodes is a key 

component of B-cell development where B-cell receptor antigen affinity is honed. To 

facilitate this process, nodal B cells assemble into follicular structures, consisting of a 

germinal center (GC), containing a dark zone and a light zone, surrounded by a mantle zone. 

Naïve B cells undergoing T-cell-dependent activation migrate to the GC, where they undergo 

somatic hypermutation of the B-cell receptor and proliferation in the dark zone (DZ) as 

centroblasts, followed by selection for improved affinity in the light zone (LZ) as centrocytes 

by antigen-presenting follicular dendritic (FDC) and follicular helper T-cells (TFH). During 

this iterative process, termed the GC reaction, selected B cells are stimulated to differentiate 

into memory B cells (Mem) or plasma cells44. 

B-NHL entities are associated with a cell of origin at different stages of B-cell maturation, 

including typically pre-GC origin mantle cell lymphoma (MCL) resembling naïve B cells, 

GC origin follicular lymphoma (FL) resembling DZ or LZ cells, GC origin (GCB) or post-

GC activated B cell (ABC) origin diffuse large B-cell lymphoma (DLBCL) resembling LZ or 

plasma cells respectively, and post-GC origin nodal marginal zone lymphoma (MZL) 

typically resembling memory B cells (Mem)34,45,46. 

Figure 1: The B-cell maturation process in lymph nodes 

 
Schematics are shown of the human lymphatic system and its large network of lymph nodes (left), a lymph node 

showing the inner medulla surrounded by the outer cortex containing B-cell follicles (center), and B-cell 

maturation states in B-cell follicles (right), consisting of a germinal center with a dark zone (brown) and light 

zone (yellow) surrounded by a mantle zone (green), and their associated B-NHL entities (below). Maturation 

state annotations: Naïve = Naïve B cells, DZ = Centroblasts from the dark zone of the germinal center, LZ = 

Centrocytes from the light zone of the germinal center, Mem IgM = IgD+ and IgM+ memory B cells, Mem IgG 

= class-switched (IgG+ or IgA+) memory B cells, Plasma = plasma cells. Schematics were created with 
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BioRender47. Adapted from Fitzgerald et al. 20231, originally produced by myself. 

 

These B-NHL entities show large differences in their clinical courses, ranging from the more 

indolent FL and MZL to the more aggressive MCL and DLBCL1. This emphasizes the 

clinical impact of cell of origin. In addition, however, high variability in treatment response 

and survival is observed among patients with the same B-NHL entity36,48, which has also 

been associated different cells of origin. For example, DLBCL ABC subtype (from post-GC 

B cells) shows more frequent relapse to standard chemotherapy treatment than DLBCL GCB 

subtype (from GC B cells)36. This link between the maturation state of DLBCL tumors and 

their clinical outcomes has been recently recognized as extending beyond the GCB and ABC 

dichotomy, with poorer outcomes in DZ- vs LZ-associated tumors49.  

Concurrently, ITH is increasingly recognized as an important phenomenon in B-NHL23. 

Differences in treatment response have been observed among subpopulations within the same 

tumor. For example, a CD32 high subpopulation of an FL tumor responded better to 

panabinostat, romidepsin, or vorinostat than its CD32 low counterpart, which was more 

susceptible to pomalidomide or ibrutinib. Likewise, a CD48/CD62L high DLBCL 

subpopulation responded better to cladribine or vincristine, while its CD48/CD62L low 

counterpart was more susceptible to acalabrutinib or dasatinib23. This emphasizes the 

importance of combinatorial therapy that covers distinct susceptibilities within a tumor for 

successful tumor eradication. To anticipate the different phenotypes that emerge within 

tumors for devising combinatorial therapy strategies, understanding what drives ITH and 

tumor evolution is key.  

The influence of cell-type differentiation on intratumor 

heterogeneity 

Cell-type differentiation gives rise to cellular diversity among healthy cells, while it is also 

recognized as central to the diversity of cancers through the cell-of-origin model of inter-

tumor heterogeneity. As exemplified in B-NHL, distinct cells of origin along differentiation 

axes leads to substantial biological and clinical heterogeneity between tumors. Meanwhile, 

ITH is considered a key mediator of treatment resistance and tumor evolution through 

phenotypic adaptation, although its relationship with the differentiation processes driving 

cell-type and cancer-type diversity is currently unclear. Studying this relationship could pose 
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important insights into cancer pathogenesis, variation, and evolution. B-NHL serves as an 

ideal model to investigate this as it has been well studied with regard to the B-cell maturation 

differentiation lineage while exhibiting substantial biological and clinical heterogeneity. To 

this end, I set out to perform a single-cell multi-modal and spatial characterization of B-NHL 

in relation to B-cell maturation.  

Figure 2: Study Design 

 
Overview of the study design, including the distribution of disease entities in the patient cohort and the data types 
included. Entities: reactive lymph nodes (rLN), mantle cell lymphoma (MCL), follicular lymphoma (FL), 
germinal center and non-germinal center diffuse large B-cell lymphoma (DLBCL, GCB/non-GCB), and marginal 
zone lymphoma. FACS = flow-activated cell-sorting. CITE-Seq = cellular indexing of transcriptomes and epitopes 
by sequencing. Illustrations were created with BioRender47. 
 

I generated a CITE-Seq (cellular indexing of transcriptomes and epitopes)50 dataset together 

with Mareike Knoll and Tobias Roider for joint single-cell transcriptomic and surface protein 

profiling of reactive lymph nodes (rLN), MCL, FL, DLBCL (GCB and ABC), and MZL 

samples from 51 patients. I first annotated B-cell maturation states in the rLN samples (n=8). 

In parallel, Artur Kibler performed flow-activated cell sorting (FACS) of B-cell maturation 

states in rLN samples (n=5) for RNA sequencing, which I analyzed with Bettina Budeus to 

generate gene expression profiles for each B-cell maturation state identified and validate the 

annotations in the CITE-Seq data. I then leveraged the rLN reference to classify B-cell 

maturation states in cancer cells in the CITE-Seq tumor samples (n=43), which I isolated 

from non-malignant B cells based on light-chain restriction. Johannes Mammen generated 
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CITE-Seq data from longitudinal samples in 3 patients, which enabled me to analyze the 

shifts in B-cell maturation states over time. To understand how gene regulatory networks of 

maturation states are affected over time, I analyzed transcription factor activity based on gene 

expression in the CITE-Seq dataset together with Anna Mathioudaki. To link phenotype with 

genetics, Verena identified tumor variants with DNA sequencing, and I inferred copy number 

variation on the single-cell level based on gene expression in the CITE-Seq dataset. To 

profile the spatial distribution of maturation states, Marc-Andrea Bärtsch generated CODEX 

(co-detection by indexing)51 highly multiplexed immunohistochemistry data with 52 markers 

for 18 patients in our cohort. Using the annotated CITE-Seq data for each sample, I classified 

B-cell maturation states in the CODEX data. Together with Anastasiia Horlova, Erin Chung, 

and Harald Vöhringer, I characterized the spatial niches and microenvironmental interactions 

of B-cell maturation states. This large-scale single-cell characterization of intratumor 

heterogeneity in B-NHL on the transcriptional, protein, genetic, and spatial levels provides 

unprecedented insights into the role of differentiation in tumor variation and evolution1. 
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Results 

This section was adapted from Fitzgerald et al. 20231, which was originally written by me. 

Single cell sequencing of lymph node samples 

This study included reactive lymph node (rLN, n = 8), mantle cell lymphoma (MCL, n = 8), 

follicular lymphoma (FL, n = 12), germinal center (GCB, n = 5) or activated B cell 

(ABC/non-GCB, n = 7) diffuse large B-cell lymphoma (DLBCL), and marginal zone 

lymphoma (MZL, n = 11) samples from a total of 51 patients. Of the B-NHL samples, 20 

were collected at the time of initial diagnosis and 23 were from patients who had previously 

undergone one or more lines of systemic treatment. Relapse samples were collected at least 3 

months after cessation of systemic treatment. Patient characteristics are summarized in Table 

1. 

I generated single-cell multi-omic data for each of these samples with CITE-Seq50, 

combining single-cell RNA sequencing with surface epitope profiling using oligonucleotide-

tagged antibodies for 70 immunological markers (Table 2), in collaboration with Tobias 

Roider and Mareike Knoll. The alignment of transcripts was carried out against the hg38 

reference genome. Post quality control, we successfully acquired data from 154,282 B cells, 

with a sample median of 2,988 B cells [140-7,868] and a median count of 6,887 transcripts 

and 2,532 surface protein counts per cell. For 8 of these samples (1 rLN, 1 MCL, 2 FL, 2 

GCB DLBCL, and 2 MZL), we also performed joint single-cell RNA sequencing and 

immune receptor profiling to study clonality. 

A single-cell reference map of B-cell maturation states in reactive 

lymph nodes 

Before studying ITH in B-NHL samples, I first sought to profile the B-cell states that arise 

across the B-cell maturation differentiation lineage (B-cell maturation states) in the non-

malignant lymph node context. I performed clustering on the rLN CITE-Seq data (8 samples, 

16,625 B cells), and annotated B-cell clusters to known maturation states based on a broad 

range of maturation state markers from the literature (Table 5, Figure 3B-C)34,44,49,52–56. 16 

clusters were mapped to 6 distinct B-cell maturation states found at different frequencies 
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across samples, averaging: 30% pre-germinal center naïve B cells (Naïve), 3% centroblasts 

from the dark zone of the germinal center (DZ), 6% centrocytes from the light zone of the 

germinal center (LZ), 30% IgD+/IgM+ memory B cells (Mem IgM), 30% IgG+ or IgA+ 

class-switched memory B cells (Mem IgG), and 2% plasma cells (Plasma). 

Figure 3: A single-cell B-cell maturation reference map in reactive lymph 
nodes 

 
(A) Schematic of the B-cell maturation trajectory in the lymph node. The labeled populations represent the 
identified B-cell maturation states. Illustrations were created with BioRender.com47. 

(B) Transcriptomic UMAP of the rLN reference CITE-Seq dataset (8 samples) labeled by the B-cell maturation 
states in (A). Transcriptomic clusters were assigned to maturation states based on their expression of the 
maturation markers in Table 5.  

(C) Heatmap showing the z-scored average expression of a subset of markers for each maturation state 
annotated in the reference CITE-Seq dataset.  

(D) Confusion matrix of cells’ maturation state labels annotated by maturation marker profiling of 
transcriptomic clusters (y-axis) and predicted by a logistic regression57 classifier trained on RNA-sequencing 
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data from B-cell maturation states sorted with FACS (x-axis) (Figure 4B-F). The color scale shows probability 
estimates for each class.  

Maturation state annotations: Naïve = Naïve B cells, DZ = Centroblasts from the dark zone of the germinal 
center, LZ = Centrocytes from the light zone of the germinal center, Mem IgM = IgD+ and IgM+ memory B 
cells, Mem IgG = class-switched (IgG+ or IgA+) memory B cells, Plasma = plasma cells. From Fitzgerald et al. 
20231, originally produced by myself.  
 
 

In parallel, Artur Kibler profiled and sorted B-cell maturation states from 5 rLN samples with 

flow-activated cell sorting (FACS) using a maturation marker antibody panel (Table 3) and 

the gating strategy outlined in Figure 4A. I analyzed RNA sequencing data from the sorted B-

cell maturation states together with Bettina Budeus to determine their gene expression 

profiles (Figure 4B-D). I trained a logistic regression classifier to predict maturation states 

based on gene expression, achieving a balanced accuracy of 94% in cross-validation. I 

applied this classifier to the single-cell gene expression profiles of B cells in the CITE-Seq 

dataset (Figure 4E-F). For each annotated maturation state, the majority of cells conformed to 

the maturation state predicted by the logistic regression model (Figure 3D).  
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Figure 4: FACS-based classification of B-cell maturation states in reactive 
lymph nodes 

 

(A) B-cell maturation state gating strategy for flow-activated cell sorting (FACS) employed on B cells isolated 
from human rLN (n=5) and tonsils (n=2) using the following marker panels: Naïve B cells (CD19+, CD20+, 
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CD38low, CD27-, IgD high), germinal center dark zone B cells (CD19+, CD20+, CD38+, CD184+, CD83-), 
germinal center light zone B cells (CD19+, CD20+, CD38+, CD184-, CD83+), IgM memory B cells (CD19+, 
CD20+, CD38 low, CD27+, IgM+), IgG memory B cells (CD19+, CD20+, CD38 low, CD27+, IgG+), and 
plasmablasts/plasma cells (CD19+, CD20 low, CD38 high, CD27 high, IgD low). 

(B-D) The first two principal components of RNA-seq data from FACS-sorted B-cell maturation states from 
rLN (n = 5) and tonsils (n = 2) colored by (B) tissue source, (C) the sample of origin, and (D) maturation state.  

(E) Transcriptomic UMAP of the integrated CITE-Seq B cells data from 8 rLN labeled by maturation state 
predicted with logistic regression from the sorted states’ RNA-seq data. 

(F) Z-scaled gene expression of a subset of B-cell maturation markers (rows) across predicted maturation states 
(columns) in the rLN reference. 

From Fitzgerald et al. 20231, originally produced by myself and Artur Kibler. 

Mapping B-cell maturation states in tumors 

Having mapped B-cell maturation states in healthy lymph nodes, I then extended this analysis 

to the 43 tumor samples in the CITE-Seq dataset (8 MCL, 12 FL, 5 GCB DLBCL, 7 non-

GCB DLBCL, and 11 MZL). As cancer cells undergo clonal expansion, B-cell malignancies 

consist of an expanded population of monoclonal B cells restricted to either a kappa or 

lambda immunoglobulin light chain, a phenomenon known as light chain restriction. I could 

therefore identify malignant cells in each sample through light chain restriction analysis, 

whereby I deemed transcriptional clusters with either kappa or lambda light chain proportions 

>75% as malignant subpopulations. I validated this approach with joint single-cell RNA 

sequencing and B-cell receptor (BCR) profiling in 8 samples, confirming that each tumor 

sample harbored an expanded B-cell receptor clone with a restricted immunoglobulin light 

chain representing the malignant cells, as exemplified in Figure 5A-B. Malignant populations 

could be identified by light chain restriction in all but 2 tumor samples (ABC5 and FL4) in 

the CITE-Seq dataset, which showed light chain depletion instead (Figure 5C). Non-

malignant B cells, predominantly naïve B cells, accounted for a median of 6% [0%-94%] of 

all B cells across tumor samples in the CITE-Seq dataset (Figure 5D). 
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Figure 5: Isolation of malignant B cells based on light chain restriction 

 
(A) Reference-based UMAP labeled by malignant clone as determined by BCR profiling (left) and 
immunoglobulin light chain (right) for an MCL (top) and MZL (bottom) sample.  

(B) Horizontal violin plot depicting the proportion of kappa light chain gene expression (x-axis) in malignant 
and normal B cells in the samples shown in (A). Red = kappa-positive, blue = lambda-positive.  

(C) Vertical violin plot showing the proportion of kappa light chain surface epitope detected in malignant cells 
isolated from all tumor samples in the CITE-Seq cohort (n = 43). Red = kappa-restricted, blue = lambda-
restricted. Malignant B cells were identified as light chain-restricted transcriptional clusters (mean kappa 
proportion >0.75 or <0.25). A light-chain-restricted tumor population was identified in all samples except ABC5 
and FL4, which showed light-chain depletion instead.  

(D) The proportion of B cells that are malignant or non-malignant, based on light chain restriction, in each 
sample, faceted by entity: reactive lymph nodes (rLN), mantle cell lymphoma (MCL), follicular lymphoma 
(FL), germinal center and non-germinal center diffuse large B-cell lymphoma (DLBCL, GCB/non-GCB), and 
marginal zone lymphoma (MZL). 

From Fitzgerald et al. 20231, originally produced by myself. 

 

I used the annotated rLN samples to map B-cell maturation states in each tumor sample in our 

CITE-Seq dataset. To this end, I employed a data integration technique utilizing mutual 

nearest neighbors and canonical correlation analysis for label transfer58, with the rLN samples 

as the reference dataset and each tumor sample as a query dataset. Label transfer was 

performed on the log-normalized transcriptomic counts for each tumor sample separately, 
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thereby avoiding the risk of introducing artefacts from sample integration or scaling in the 

transferred annotations.  To validate these maturation states, I analyzed the maturation marker 

profiles of maturation states in each entity and compared them with those of rLN samples. 

Strong concordance was observed, with key maturation markers differentially expressed in 

the respective states of each entity as in the non-malignant rLN context (Figure 6A). For 

further validation, I computed maturation state-specific gene signature scores for each 

entity’s maturation states using the top 50 differentially expressed genes from maturation 

states annotated in a previously published tonsil dataset49. As in the rLN context, higher gene 

signature scores were observed in their respective maturation states in each entity. Although 

these differences were better preserved between distant states such as DZ and plasma than 

between LZ and memory states which are closer in lineage (Figure 6B). 
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Figure 6: B-cell maturation marker expression and gene signature scores 
by entity 

 
(A) Dot plots showing the relative gene expression and abundance of maturation markers for maturation states 
mapped from the reactive lymph node reference (Figure 1B) in each entity.  

(B) Heatmap of maturation state scores calculated from annotated maturation states in a published tonsil 
germinal center scRNA-seq dataset49. Each score shown is scaled across all scores in the dataset (mean = 0, SD 
= 1).  

(C) Confusion matrix (left) showing the predicted (x) vs true (y) classes when predicting entity by maturation 
state proportions with random forest (nested cross-validation), with test statistics (right) for classification of 
each entity (overall accuracy 63%).  

Entities: reactive lymph nodes (rLN), mantle cell lymphoma (MCL), follicular lymphoma (FL), germinal center 
and non-germinal center diffuse large B-cell lymphoma (DLBCL, GCB/non-GCB), and marginal zone 
lymphoma. See Figure 3 for maturation state annotations. From Fitzgerald et al. 20231, originally produced by 
myself.  
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Inter- and intratumor heterogeneity in B-cell maturation states 

To study B-cell maturation states among cancer cells, non-malignant B cells were removed 

for further analysis. The cell-of-origin model of inter-tumor heterogeneity postulates that 

each tumor reflects a single cell type that it originated from, such as naïve B cells in an MCL 

tumor or DZ cells in an FL tumor. In contrast, I observed a range of B-cell maturation states 

within individual tumors (Figure 7A-B). These intratumor maturation states were of the same 

BCR clone, therefore diverging from the same cell of origin. This finding suggests that 

differentiation in cancer is not static but rather exhibits ongoing plasticity and divergence. 

We detected distinct tumor maturation state fingerprints within each entity that 

predominantly mirrored their cell-of-origin. For example, GC (DZ and LZ) states were 

prominent in DLBCL GCB and memory states in MZL. Although these states coexisted with 

others either preceding or succeeding them in the maturation lineage. Notably, there was 

significant variation in the proportion of these maturation states across different tumors of the 

same entity (Figure 7B). This inter-tumor heterogeneity in maturation state composition 

blurred entity boundaries. Predicting entity based on maturation state composition using 

logistic regression achieved a peak accuracy of 63% in nested cross-validation (Figure 6C). 

These findings highlight cell-type differentiation lineages as a source of variation both across 

and within tumors. 

In both FL and non-GCB DLBCL tumors, GC states (DZ and LZ) co-existed with post-GC 

states (memory and plasma cells). This indicates a potential for FL, like DLBCL, to 

transform into post-GC phenotypes. Comparative analysis revealed a significant enrichment 

of the LZ state in DLBCL and FL compared to reactive lymph node (rLN) controls (p < 0.01, 

Wilcoxon signed-rank test). However, FL did not show similar enrichment for the DZ state 

(Figure 7C). This suggests that DLBCL is more likely to retain a DZ phenotype, even in non-

GCB DLBCL. The ongoing processes of somatic hypermutation and proliferation within the 

DZ state could contribute to the aggressive nature of DLBCL's disease progression. 
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Figure 7: Intra- and intertumor heterogeneity in B-cell maturation states 

 
(A) Transcriptomic UMAPs for individual samples from each entity, labeled by B-cell maturation states 
assigned by label transfer from the reactive lymph node reference (Figure 3B). Only malignant cells, identified 
based on light-chain restriction as in Figure 5, are shown for tumor samples. 

(B) Maturation state composition of all samples (n=51) split by entity and ordered by days since diagnosis.  

(C) Box plot of the proportion of each maturation state in each entity. Each data point is a sample, grouped by 
entity. The Wilcoxon signed-rank test59 (two-sided) was performed for each maturation state’s proportion 
between reactive lymph nodes and each entity: p<0.05 (*), p<0.01 (**), p<0.001 (***). Centerline = median, 
box limits = upper and lower quartiles, whiskers = 1.5x interquartile range.  
 
rLN = reactive lymph nodes, MCL = mantle cell lymphoma, FL = follicular lymphoma, DLBCL = diffuse large 
B-cell lymphoma (GCB = germinal center, non-GCB/ABC = activated B cell), MZL = marginal zone 
lymphoma. See Figure 1 for maturation state annotations. From Fitzgerald et al. 20231, originally produced by 
myself. 
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To investigate the extent to which the B-cell maturation differentiation lineage explains 

phenotypic diversity among B-NHL tumor cells, I employed an unsupervised technique for 

multimodal subpopulation mapping across our full CITE-Seq B-cell dataset (51 samples with 

154,282 cells). Using Multi-Omic Factor Analysis (MOFA)60,61, I generated a joint low-

dimensional embedding and clustering based on the co-variance of transcriptomic and surface 

protein features across cells (Figure 8A). This analysis revealed 25 distinct multimodal 

subpopulations, largely distinguished by their maturation states, highlighting the significant 

role of maturation in driving tumor variation (Figure 8B-E). Furthermore, within each 

maturation state, I identified multiple unique subpopulations. Notably, the memory B-cell 

states exhibited the most pronounced heterogeneity, with distinct subpopulations for each B-

NHL entity. Key features distinguishing these subpopulations included entity-associated 

pathogenic mechanisms like CCND1 overexpression in MCL62 and CD152 (CTLA-4) 

overexpression in FL63(Figure 8F-G). This sheds light on the dual axes of differentiation and 

oncogenesic mechanisms in tumor variation. 
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Figure 8: Multimodal subpopulation mapping of B-NHL 

 
(A-E) UMAP visualization of the full CITE-Seq B-cells dataset (n=51) constructed with the latent factors (n = 
50) from multi-omic factor analysis (MOFA)60 based integration of the single-cell RNA and ADT (surface 
markers) data layers as principle components, labeled by clustering on the multimodal latent factor space (A), 
maturation states (B) mapped from the reactive lymph node reference in Figure 1B, entity (C), malignancy (D) 
as determined by light chain restriction (Figure 5C), and samples taken at diagnosis or relapse (E). 

(F-G) Z-scaled expression across multi-modal clusters of the 3 most differentially expressed genes (F) and 
proteins (G) by fold-change per cluster. 
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From Fitzgerald et al. 20231, originally produced by myself. 

Distinct cell-of-origin subtypes within tumors 

Subsequently, I explored how ITH in maturation states affects cell-of-origin (COO) 

classifiers for B-NHL diagnosis. These classifiers are used to categorize DLBCL into GCB 

and ABC subtypes according to a GC or post-GC COO, respectively. This however does not 

account for the presence of multiple maturation states in a tumor. To test this, I applied the 

Lymph2Cx DLBCL COO classifier, which is based on the expression of 20 genes54 linked to 

GC and post-GC maturation states64, to single-cell RNA sequencing data from DLBCL tumor 

cells. GCB and ABC gene expression signature scores corresponded with germinal center 

(DZ and LZ) and post-germinal center (Mem and Plasma) states, respectively (Figure 9A). 

20-30% of the tumor cells did not predominantly express GCB or ABC signatures and were 

thus unclassified. Contrary to a single COO subtype per tumor, many tumors displayed a mix 

of COO subtypes (GCB, unclassified, and ABC), with the prevalent subtype often aligning 

with the GCB or non-GCB diagnosis (Figure 9B).  

This ITH in COO subtypes was verified with the Tally DLBCL COO classifier, a simpler 

method typically employing immunohistochemistry to determines tumor subtype based on 

the presence or absence of proteins linked to GCB (CD10, GCET1, LMO2) or non-GCB 

(MUM1, FOXP1) states65. The Tally classifier's results mirrored those obtained with the 

Lymph2Cx classifier when applied to the scRNA-seq data from DLBCL samples (Figure 9D-

E). With both classifiers, GCB DLBCL frequently harbored ABC-like cell populations, 

indicating the differentiation of some GCB-originating tumor cells into the ABC subtype. 

The existence of multiple COO subtypes within tumors suggests a more complex pathology 

of DLBCL than previously understood. 

I previously noted that FL exhibits characteristics of both germinal center (GC) and post-

germinal center states, despite the absence of an established ABC subtype as seen in DLBCL. 

Thus, I explored the possibility of detecting both GCB and ABC COO subtypes within FL 

tumors at the single-cell level. Utilizing the Lymph2Cx and Tally classifiers as previously in 

DLBCL tumors, I identified the presence of both GCB and ABC classes in 10 of the 12 FL 

tumors analyzed (Figure 9C+F). This finding indicates the emergence of an additional ABC-

like subtype within FL tumors. 
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Figure 9: Distinct cell-of-origin subtypes coexist within tumors 

 
(A) Normalized GCB and ABC scores for each DLBCL and FL tumor cell determined by the Lymph2Cx cell-
of-origin classifier, labeled by B-cell maturation state. The diagonal line divides cells by their classification 
(above = ABC, below = GCB). Cells without ABC or GCB gene set average expression above the housekeeping 
genes were unclassified (grey box).  

(B-C) Lymph2Cx class proportions among the tumor cells of DLBCL samples faceted by GCB or non-GCB 
diagnosis (B) and FL samples (C).  

(D) Normalized GCB and ABC scores for each DLBCL and FL tumor cell as determined by the Lymph2Cx 
classifier, as shown in (A), labeled by Tally class. 

(E-F) Tally class proportions among the tumor cells of DLBCL samples faceted by GCB or non-GCB diagnosis 
(E) and FL samples (F).  

FL = follicular lymphoma, DLBCL = diffuse large B-cell lymphoma (GCB = germinal center, non-GCB = non-
germinal center), COO = cell-of-origin. See Figure 3 for maturation state annotations. From Fitzgerald et al. 
20231, originally produced by myself. 
 

Longitudinal variation in maturation state composition 

Discovering ITH in B-cell maturation states, indicating ongoing differentiation within 

tumors, led me to hypothesize that differentiation influences tumor evolution. A flux in the 
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composition of maturation states over time could result from ongoing differentiation and/or 

the selective pressures of treatment. I investigated this through analysing longitudinal tumor 

samples from three B-NHL patients. In an MZL patient who achieved complete remission 

after six rounds of obinutuzumab and bendamustine but experienced a relapse after 15 

months, I observed a decrease in plasma cells and a surge in the Mem IgG state (Figure 10A). 

Similarly, a GCB DLBCL patient who relapsed 11 months following CAR-T cell therapy 

(axicabtagene ciloleucel) showed enrichment of plasma cells (Figure 10B). Shifting 

maturation state composition implies tumors can evolve through differentiation. These effects 

seem largely time-dependent, as minimal alteration in the maturation state composition was 

observed in another GCB DLBCL patient who relapsed just two months after the same CAR-

T cell therapy (Figure 10C). 

Figure 10: Longitudinal patterns in tumor maturation state composition 

 

(A-C) B-cell maturation state composition of tumor cells in longitudinal samples from 3 patients: an MZL 
patient who relapsed 15 months following complete response to 6 cycles of obinutuzumab-bendamustine 
chemo-immunotherapy (A) and two GCB DLBCL patients who relapsed after 11months (B) and 2 months (C) 
following axicabtagene ciloleucel (CAR-T cell) therapy, respectively. Maturation states were mapped from the 
reactive lymph node reference dataset in Figure 3B. From Fitzgerald et al. 20231, originally produced by myself. 

 

Maturation-associated transcription factor activity in malignant 

states 

Having established differentiation as a driver of inter- and intra-tumor heterogeneity, I next 

examined the mechanisms by which differentiation continues in cancers. Differentiation is 
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orchestrated by a broad range of connected intrinsic and extrinsic processes, including gene 

regulation, epigenetic modifications, signal transduction pathways, and cell-cell 

interactions66.  

Transcription factors (TFs) play an overarching regulatory role in cell-type-differentiation, 

including in early B-cell development and subsequent B-cell maturation67. For example, 

Pax5, EBF1, and Ikaros are essential for early B-cell lineage commitment and the 

maintenance of B-cell identity68, while Blimp-1 (PRDM1) and Bcl-6 play crucial roles in 

terminal differentiation processes, such as the formation of plasma cells and germinal center 

B cells, respectively69,70. This intricate regulation by TFs not only ensures the effective 

functioning of the adaptive immune response but also maintains a delicate balance to prevent 

aberrant B-cell proliferation and the potential for lymphomagenesis. Furthermore, aberrant 

gene regulatory networks are considered part of the pathogenesis of B-NHL45,71 with frequent 

mutations observed in key TFs, including PRDM1 and Bcl-6 62. 

Given the observed ITH in B-cell maturation states, I aimed to determine the extent to which 

differential TF activities across maturation states persist in cancer despite the epigenomic 

dysregulation associated with B-NHL. This would shed light on whether TFs' key role in 

differentiation is preserved in cancer. Anna Mathioudaki computationally inferred TF 

activities from single-cell RNA sequencing data in the CITE-Seq dataset (51 samples) 

through the SCENIC workflow72. This method identifies co-expression modules of TFs and 

potential target genes with a common binding motif and then assesses TF activity based on 

the expression of these modules in each cell. We identified signature maturation TFs as those 

with target genes differential expressed between maturation states in the reactive lymph node 

(rLN) reference dataset (Benjamini-Hochberg73 adjusted p-value < 10e-16, average log2 fold-

change > 0.4). We then evaluated the relative activities of these TFs across different states for 

each sample. TFs showing differential activity between maturation states in rLN also 

exhibited similar patterns of activity across states in malignant samples (Figure 11A), 

indicating that TF signatures associated with maturation states were largely conserved in B-

NHL. However, this conservation was partially disrupted in the LZ state in both GCB and 

non-GCB DLBCL, whereby TFs that were more active in the rLN LZ (e.g., IRF8, NFKB1, 

HIVEP3, REL) demonstrated increased activity in the DLBCL memory state. We observed 

considerable variation in the activity of memory signature TFs across different samples, such 

as IRF7, STAT1, and IRF9. This variability aligns with the diverse phenotypes of memory B 

cells (Figure 8), which have completed maturation and thus may be less reliant on maturation 
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gene regulatory networks (GRNs). 

Figure 11: TF activity signatures of maturation states are maintained in 
malignancy 

 
(A) Scaled activity of transcription factors (TFs) across B-cell maturation states in each entity inferred using the 
scenic python package72; only TFs significantly enriched (log2 fold-change >0.4, p < 10e-16) for B-cell 
maturation stages target genes in reactive lymph node samples are shown. TFs (y-axis) are ordered by the 
maturation state in reactive lymph nodes in which they are enriched. Non-malignant cells in tumor samples were 
excluded based on light-chain restriction.  

(B) Density plots comparing the activity distribution of selected differentially active transcription factors for 
each maturation state in malignant cells aggregated from all tumor samples (n = 43). See all differentially active 
transcription factors in malignant maturation states in Figure 12. 

rLN = reactive lymph node, MCL = mantle cell lymphoma, FL = follicular lymphoma, DLBCL = diffuse large 
B-cell lymphoma (GCB = germinal center, non-GCB = non-germinal center), MZL = marginal zone lymphoma. 
See Figure 3 for maturation state annotations. From Fitzgerald et al. 20231, originally produced by myself and 
Anna Mathioudaki. 
 
 

In addition to studying TFs that are associated with maturation states in the non-malignant 

context, I also analyzed the most differentially active TFs between tumor maturation states in 

each entity (Figure 12). TFs exhibiting the most significant variation in activity across 

maturation states were also associated with B-cell development, activation, and 

differentiation processes. Key examples are KLF3, which is active in naïve and memory B 

cells, MAZ and HDAC2 in germinal center (GC) B cells, TBL1XR1 in memory B cells, and 
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XBP1 in plasma cells (Figure 11B). These TFs may play a particularly important role in the 

initiation or sustenance of the diversity observed in intratumor maturation states. 

Figure 12: Differential transcription factor activity between tumor 
maturation states 

 
(A) Bar charts showing the log2 odds ratio for differentially active transcription factors (TFs) in the tumor cells 
of each B-cell maturation state. Transcription factor activity was inferred with the SCENIC python package72 
using single-cell RNA-sequencing data from the malignant cells of all tumor samples combined (n=43). Only 
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TFs with differentially expressed target genes (log2 fold-change >0.4, p < 10e-16 as determined with the MAST 
R package74) are shown. Bars highlighted in darker orange represent transcription factors with significant 
differential activity (FDR < 0.1 threshold).  
 
(B) UpSet plot showing the intersections between the differentially active transcription factors (FDR <0.1) for 
each maturation state.  
 
See Figure 3 for maturation state annotations. From Fitzgerald et al. 20231, originally produced by myself and 
Anna Mathioudaki. 
 

Spatial mapping of B-cell maturation states via data integration 

The follicular architecture of lymph nodes, with germinal centers (GC) that facilitate the GC 

reaction44, is central to the B-cell maturation process. However, these B-cell follicles are 

often disrupted in malignancy75. Given the ITH in B-cell maturation states I found in the 

CITE-Seq dataset, I aimed to explore the spatial arrangement of maturation states within 

tumors and determine if malignancies maintain spatial niches that could support ongoing 

maturation. I analyzed the spatial arrangement of cell types in 18 samples (4 rLN, 4 MCL, 5 

FL, 3 non-GCB DLBCL, 2 MZL) from our CITE-Seq cohort using CODEX51 highly 

multiplexed immunochemistry data profiling 52 immunological markers (Table 4) generated 

by Marc-Andrea Bärtsch.  

To transfer B-cell maturation state labels from the CITE-Seq to the CODEX dataset, I 

developed a data integration technique leveraging the shared protein features (n=28) between 

the two datasets (Tables 2 and 4). For each sample, after log-normalization and z-scaling of 

the shared protein features in each dataset, I trained a logistic regression classifier for B-cell 

maturation states on the CITE-Seq features, which I applied to the corresponding features in 

the CODEX B-cells data. Logistic regression outperformed tree-based (random forest, 

gradient boosted decision trees) and neural network-based classification methods. Despite 

employing random sampling for class balancing, I observed a strong correlation in B-cell 

maturation state proportions between the CITE-Seq and CODEX data across samples 

(median R=0.91, p = 0.011) (Figure 13).  
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Figure 13: Maturation state correlations between CITE-Seq and CODEX 
by sample 

 
Scatter plots showing the Pearson correlation between B-cell maturation state proportions in the CITE-Seq and 
CODEX data for each reactive lymph node (rLN), mantle cell lymphoma (MCL), follicular lymphoma (FL), 
diffuse large B-cell lymphoma (DLBCL) and marginal zone lymphoma (MZL) sample. The median Pearson 
correlation coefficient across samples is shown (bottom-right). Maturation state labels were transferred from the 
CITE-Seq to CODEX data for each sample using logistic regression on the shared protein features (n = 28) in 
Tables 2 and 4. See Fig. 3 for maturation state annotations.  
 

Intratumor maturation states occupy unique spatial niches 

Marc-Andrea Bärtsch, Tobias Roider, Felix Czernilowsky, Harald Vöhringer, and I 

characterized immune and stromal cell types in the tumor microenvironment based on 

established nodal cell type marker profiles76. We observed variability in the tumor 
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microenvironment's composition and structure across tumors and entities, often marked by a 

disruption of the typical follicular structure in MCL and DLBCL. Heterogeneity was also 

observed in immune abundance and infiltration across samples. T-cell zones consisting of 

varying mixtures of helper, cytotoxic and regulatory T cells were generally more prominent 

in rLN, MCL, and FL samples than in MZL and DLBCL, although even within entities there 

was little consistent pattern (Figure 14A). 
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Figure 14: Spatial mapping of the tumor microenvironment and 
maturation states 

 
(A) Spatial distribution of cell types on CODEX images on FFPE sections of lymph node samples. Cell types 
were annotated by clustering on CODEX immunohistochemistry features (n = 52, Table 4). CD4T_naive = 
naive CD4+ T-cells, CD8T_naive = naive CD8+ T-cells, TH_memory = memory helper T-cells, 
TTOX_memory  = memory cytotoxic T-cells, TTOX_exh = exhausted cytotoxic T-cells, NKT = natural killer 
T-cells, TFH = follicular helper T-cells, TPR = proliferating T-cells, TREG = regulatory T-cells, FDC = 
follicular dendritic cells, DC = dendritic cells, Macro = macrophages, Stromal = stromal cells, NK = natural 
killer cells, MC = monocytes, Granulo = granulocytes. All B cells are labeled black. 
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(B) Spatial distribution of B-cell maturation states on CODEX images on FFPE sections of lymph node samples. 
Maturation states were classified with logistic regression from the CITE-Seq maturation state annotations in 
Figure 7. B Naïve = naïve B cells, B DZ = centroblasts from the dark zone of the germinal center, B LZ = 
centrocytes from the light zone of the germinal center, B Mem IgM = IgD+ and IgM+ memory B cells, B Mem 
IgG = class-switched (IgG+ or IgA+) memory B cells, B Plasma = plasma cells, 

rLN = reactive lymph node, MCL = mantle cell lymphoma, FL = follicular lymphoma, DLBCL = diffuse large 
B-cell lymphoma (GCB = germinal center, non-GCB = non-germinal center), MZL = marginal zone lymphoma. 
From Fitzgerald et al. 20231, originally produced by myself and Anastasiia Horlova. 
 
 

I also observed substantial variation in the spatial distribution of intratumor maturation states 

among tumors and entities (Figure 14B). For example, FL1 was characterized by enlarged 

follicles with distinct DZ and LZ states in the germinal center, encircled by memory and 

plasma states, reflecting the preservation of the follicular structure among tumor cells. MCL1 

lacked the usual follicular architecture but still displayed spatial separation between LZ and 

memory states. In contrast, ABC2 demonstrated a mix of several maturation states with 

minimal spatial separation, aligning with the diffuse nature of DLBCL (Figure 15). These 

observations highlight the diverse degrees and patterns of spatial segregation of intratumor 

maturations among different tumors and entities in B-NHL.  

Figure 15: Intratumor maturation states show distinct spatial patterns 

 
UMAP of scRNA-seq data labeled by B-cell maturation states alongside their proportions (top) and spatial 
distribution of B-cell maturation states on CODEX51 images (52 markers) of FFPE tissue sections (bottom) from 
a reactive lymph node (rLN), follicular (FL), mantle cell (MCL), and activated B-cell diffuse large B-cell 
lymphoma (DLBCL, ABC) sample. See Figure 14B for the distribution of maturation states and cell types on all 
CODEX slides (n=29). See Figure 3 for maturation state annotations. Adapted from Fitzgerald et al. 20231, 
originally produced by myself and Anastasiia Horlova. 
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Spatial niches within the CODEX data were uncovered by Anastasiia Horlova using a K 

nearest neighbor (KNN) graph-based cellular neighborhood (CN) analysis. We annotated 11 

CNs (KNN = 20) based on their enriched cell types (Figure 16A-B). Some CNs, such as T-

cell zones (Th Mem zone and Mixed T zone) and a stromal zone adjacent to B cells in 

tumors, were observed in both reactive lymph nodes (rLNs) and tumor samples. Although 

malignant B cells occupied CNs distinct from those occupied by healthy B cells in rLN 

samples. Different tumor maturation states occupied distinct CNs, which were often found 

co-existing within the same sample. For instance, FL1 comprised zones enriched in DZ, LZ, 

and plasma cells. The infiltration of immune cells like cytotoxic T-cells in tumors is crucial 

for the efficacy of cellular immunotherapies. We noted that intratumor maturation states were 

associated with distinct cellular microenvironments with variable immune infiltration, such as 

greater frequencies of neighboring cytotoxic T-cells (TTOX_memory and TTOX_exh) and 

macrophages (Macro) in plasma tumor zones (Figure 16A-B). 
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Figure 16: Cellular neighborhoods and interactions of intratumor 
maturation states 

 
(A) Spatial distribution of cellular neighborhoods (CNs) in reactive lymph nodes (rLN), mantle cell lymphoma 
(MCL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), and marginal zone lymphoma 
(MZL) from CODEX images on FFPE sections. CNs (n = 11, KNN = 20) were calculated using all CODEX 
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images (n=29) and labeled based on their distinguishing features, ie. tumor cells’ predominant maturation state 
(eg. DZ, Mem), B cells’ location or function in reactive lymph nodes (eg. Follicular, Mantle zone), or enriched 
cell type(s) (eg. Mixed T zone, T Mem zone).  

(B) Relative abundance of each cell type across cellular neighborhoods (CNs), scaled by cell type frequency.  

(C) Log2 of the pairwise cell-cell observed over expected interaction ratios (IR) between B-cell maturation states 
and all other cell types in each entity, with a pseudocount of 1. Spatial interactions were determined with 
Delaunay triangulation. A higher ratio is associated with increased proximity. 

B Naïve = naïve B cells, B DZ = centroblasts from the dark zone of the germinal center, B LZ = centrocytes 
from the light zone of the germinal center, B Mem IgM = IgD+ and IgM+ memory B cells, B Mem IgG = class-
switched (IgG+ or IgA+) memory B cells, B Plasma = plasma cells, CD4T_naive = naive CD4+ T-cells, 
CD8T_naive = naive CD8+ T-cells, TH_memory = memory helper T-cells, TTOX_memory = memory 
cytotoxic T-cells, TTOX_exh = exhausted cytotoxic T-cells, NKT = natural killer T-cells, TFH = follicular 
helper T-cells, TPR = proliferating T-cells, TREG = regulatory T-cells, FDC = follicular dendritic cells, DC = 
dendritic cells, Macro = macrophages, Stromal = stromal cells, NK = natural killer cells, MC = monocytes, 
Granulo = granulocytes. Adapted from Fitzgerald et al. 20231, originally produced by myself, Anastasiia 
Horlova, and Erin Chung. 
 
 

The diversity of microenvironments within tumors may facilitate the divergence of 

maturation states by influencing various cellular interactions, which are essential for different 

stages of the B-cell maturation process. Follicular dendritic cells (FDCs) and T follicular 

helper cells (TFH) were predominantly found in GC-rich tumor CNs (DZ and LZ), which 

could shed light on the differentiation of malignant GC cells into post-GC memory or plasma 

cells (Figure 16B).  

To quantify cell-cell interactions of maturation states within each entity, Erin Chung 

calculated the pairwise cell-cell observed over expected interaction ratios (IR) between B-cell 

maturation states and other cell types in each entity. Interactions between GC B cells and 

FDCs/TFH were partially preserved in tumors, offering an explanation as to how the GC 

reaction is sustained in B-NHL to promote ongoing maturation (Figure 16C). These 

interactions were less pronounced in the more diffuse DLBCL and generally post-GC MZL, 

potentially explaining their reduced diversity in maturation states compared to FL (Figure 

7B). 

Genetic variation among intratumor maturation states 

The processes that govern the differentiation and activation of healthy B cells are often 

aberrated in B-cell lymphomas to support their unchecked growth and survival. Germinal 

center B cells have a particularly high susceptibility to malignant transformation because 
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somatic hypermutation for antibody diversification can lead to oncogenic chromosomal 

translocations and mutations. Therefore, aberrations are frequently observed in characteristic 

features of B-cell maturation states, such as BCL6, IRF4, and PRDM144,62. I therefor aimed to 

explore how intratumor maturation states relate to subclonal genetic variation. To set the 

stage for this, Verena Passerini conducted genetic variant profiling, including single-

nucleotide variants (SNVs), insertions and deletions, and copy number variants (CNVs) 

through targeted DNA sequencing of 25 samples (4 rLN, 3 MCL, 7 FL, 2 DLBCL GCB, 1 

DLBCL ABC, 8 MZL) from the CITE-Seq sample cohort (Figures 17-18).  

All B-NHL entities showed increased mutation frequency compared to the rLN samples, with 

the highest tumor mutational burden (TMB) in FL (Figure 17). Missense mutations were 

most common, with many genes harboring multi-hit variants. KMT2D methyltransferase and 

CREBBP acetyltransferase were the most frequently mutated genes across all B-NHL 

samples. Apoptosis regulator BCL2 and immune regulator TNFRSF14 were commonly 

aberrated in FL samples, while ATM and BCL10 harbored frequent mutations in MCL and 

MZL, respectively. Several mutated genes are involved directly or indirectly in the B-cell 

maturation process. KMT2D and CREBBP are both critical for the delivery of immune signals 

while BCL2 helps maintain survival during selection in the GC LZ44,77. IRF4 and XBP1, 

which are associated with plasma cells44, were also mutated in a minority of FL and DLBCL 

samples. 
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Figure 17: Non-silent mutation profile of tumor samples 

 
Mutation landscape of 25 samples included in the CITE-Seq cohort, as determined by targeted DNA 

sequencing. All non-silent mutations with VAF >= 10% are depicted. Mutation frequency is shown for samples 

(top) and genes (right). Adapted from Fitzgerald et al. 20231, originally produced by Verena Passerini.  

 

 

DNA copy number variation (CNV) is also a common feature of B-NHL pathogenesis78, with 

implications for disease classification and outcomes79,80. B-NHL entities are associated with 

different hallmark CNVs, such as 6q loss in FL and DLBCL which affects tumor suppressor 

genes81. We observed entity-specific patterns in CNV (Figure 18). All 3 MCL samples 

showed copy number gain in 3q, while 2 samples showed gain in 7p and loss of 9q. In FL, 

copy number gain was widespread access the genome, especially in 1q (~50%), and various 

regions of chromosome 12, while some samples showed 6q loss. DLBCL samples showed 

the most abundant CNV, with copy number gain in chromosomes 7 and 18 and copy number 

loss in 6q in 2 out of 3 samples. MZL showed the least CNV, although copy number gain was 

detected in chromosomes 3 and 12 in a minority of samples (<25%). 



 

 39 

Figure 18: Copy number variant profile by entity 

 

 

 

 
Average genome-wide copy number variation across samples for each entity. Copy numbers were calculated for 

each sample using CNVkit (v0.9.9), which takes advantage of both on- and off-target sequencing reads and 

estimates the copy number using a pooled normal reference to compare binned read depths. Log2 change from a 

pool of normal control of ±0.2 was used as an indication of chromosomal gain or loss. Chromosome X and Y 

are excluded from the analysis. Adapted from Fitzgerald et al. 20231, originally produced by Verena Passerini. 

 

To probe the relationship between intratumor maturation states and genetic variation, I 

inferred CNV at the single-cell level from the gene expression data in the CITE-Seq dataset 

(51 samples) using the copykat R package82. The results revealed CNV among the cells of 

individual tumors, indicating that CNV in a tumor may be limited to specific groups of tumor 

cells. Notably, I identified CNV across B-cell maturation states. For instance, in FL7, the 

majority of germinal center (GC) tumor cells exhibited aneuploidy, unlike its mostly diploid 

non-GC tumor cells (Figure 19A-D). This tumor demonstrated copy number gain in the 

6p22.2 region, which is linked to FL progression83. Remarkably, this gain in the 6p22.2 
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region was predominantly found in the DZ tumor cells, suggesting that DZ cells predisposed 

to acquiring this specific CNV or its acquisition might either induce a maturation lock at the 

DZ stage. 

Figure 19: Genetic variants among intratumor maturation states 

 
(A-C) UMAP of scRNA-seq data from malignant cells of follicular lymphoma sample FL7 labeled by (A) B-
cell maturation state, (B) diploid or aneuploid status, and (C) copy number variation (CNV) in cytogenetic band 
6p22.2 (chromosomal position 6-26329011) among tumor cells. CNV was inferred from gene expression with 
the copykat R package82. Copy number loss was also detected in this chromosomal region with targeted DNA 
sequencing (Figure 18). 

(D) Frequencies of the aneuploid and diploid variants in each intratumor maturation state in follicular lymphoma 
sample FL7.  

(E) The average expression (z-scaled) and percentage of cells expressing genes with non-silent mutations 
detected with targeted DNA sequencing (Supplemental DNA Sequencing Report) in mantle cell lymphoma 
(MCL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL) and marginal zone lymphoma 
(MZL) samples.  

From Fitzgerald et al. 20231, originally produced by myself. 

 

To understand whether mutations are associated with different stages of differentiation, I 

compared the expression of genes with detected variants across intratumor maturation states. 

I observed differential expression of mutated genes between maturation states in several 

tumors: an MCL tumor exhibiting multi-hit mutations in the ATM gene, typically inactivated 

in MCL, displayed regained expression in post-GC states; an FL tumor with multi-hit 

mutations in HIST1H1E and DTX1, linked to transformed FL, showed diminished expression 

exclusively in post-DZ states; a DLBCL tumor with multi-hit mutations in the PIM1 proto-
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oncogene, known for its association with ibrutinib resistance, exhibited decreased expression 

solely in the memory state; and an MZL tumor with a nonsense mutation in TNFAIP3, a 

frequently mutated NF-kB inhibitor in MZL, demonstrated reduced expression in post-GC 

states (Figure 19E). These instances suggest that the mutations may have occurred in only a 

subset of tumor cells, either halting or driving their maturation, thus promoting ITH in 

maturation states. 
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Discussion 

Cell-type differentiation is central to normal cellular diversification, while cancer types and 

subtypes are thought to originate from different cell types and states9,10. On the other hand, 

intratumor heterogeneity (ITH), which is central to tumor evolution and treatment response, 

has typically been considered distinct from the differentiation of cell types. In this thesis, I 

investigated whether differentiation and ITH may be interconnected. Through a single-cell 

mult-omic and spatial atlas of nodal B-cell non-Hodgkin lymphomas (B-NHL), a set of 

cancers tied to distinct stages of the B-cell maturation differentiation lineage, I found that 

tumors instead consist of multiple co-existing maturation states. This reveals that 

differentiation is not fixed in cancer, but remains plastic and divergent as a major driver of 

ITH1.  

Maturation state composition varied significantly between tumors of the same diagnosis, 

while DLBCL and FL tumors contained mixtures of germinal center and activated B-cell 

cell-of-origin subtypes. Tumor maturation state composition shifted over time, pointing to a 

role of differentiation in tumor evolution. The transcription factors that drive different stages 

of maturation in healthy B cells often maintained differential activity between malignant 

maturation states, highlighting that the gene regulatory networks driving differentiation are 

partially preserved in cancer. Intratumor maturation states tended to occupy unique spatial 

niches, maintaining the cell-type interactions required for ongoing differentiation. I also 

observed an association between genetic variants and maturation states in tumors, indicating 

a link between genetic aberrations and cell-type differentiation in cancer evolution1. 

In this Discussion, I consider the conceptual and practical implications of this discovery and 

its related findings across fields, from cancer pathogenesis and evolution to its diagnosis and 

management. 

Differentiation as a driver of intratumor heterogeneity 

Viewing cell-type differentiation as a driver of ITH reshapes our understanding of cancer 

pathogenesis and evolution. While ITH has long been attributed to clonal evolution guided by 

genetic variation5, a deluge of single-cell technologies and studies have propelled our 

appreciation of the role of non-genetic variation manifesting on the epigenetic, 

transcriptional, morphological, and metabolic levels11,18–20. This phenotypic variation has 
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been associated with a diverse range of mechanisms, including genetic mutations, epigenetic 

changes, cellular stress response, and microenvironmental interactions29. On the other hand, 

ITH has typically been viewed as distinct from differentiation. Blocking or evading 

differentiation is considered inherent to cancer pathogenesis, allowing tumor cells to 

proliferate at a particular stage indefinitely rather than reach terminal differentiation. For 

example, several forms of leukemia, including B-NHL, have been thought to arise from a 

disruption of the normal program of differentiation, such that a committed progenitor 

becomes able to divide indefinitely rather than continuing differentiation29. Our findings 

challenge this paradigm by showing that cancer cells can diversify through ongoing 

differentiation, revealing that malignancy and differentiation are not mutually exclusive. 

The wide spectrum of states observed across the B-cell maturation lineage within tumors 

indicates that tumor differentiation resembles clonal evolution, a sequential process where at 

each stage of differentiation a portion of cancer cells continue to differentiate while the 

remainder stay at the same differentiation stage. This has similarities and differences to the 

cancer stem cell (CSC) theory, which postulates that within a tumor there exists a subset of 

cancer cells with stem cell-like properties, CSCs, that can differentiate into non-stem cell 

cancer cells39,84. Like in the CSC theory, we also observe cancer cells can differentiate into 

multiple cell types. Although the CSC theory holds that cancer cells must start as stem-like 

cells or acquire a stem cell phenotype before giving rise to differentiated cell types, with the 

CSCs being the only subset of the tumor capable of prolonged self-renewal. For example, 

myelogenous leukemia CSCs have been thought to arise from the malignant transformation 

of normal tissue stem cells, and some B lymphocyte leukemias revert from a committed 

precursor B cell to a CSC29. In B-NHL, however, as B-cell maturation is a sequential 

differentiation process beginning from mature naïve B cells, we would therefore expect to 

find a portion of cells within tumors that reflect more stem-like earlier stages in the 

hematopoietic process. In contrast, I observed the same mature B-cell states that exist in non-

malignant lymph nodes, including an abundance of proliferating late-GC and post-GC states. 

This leads me to wonder to what extent the CSC theory accounts for ITH in cancers of more 

mature cell types, and how sequential and branched differentiation processes influence clonal 

evolution. 

Differentiation-driven ITH opens several interesting questions. One is whether the 

directionality of the differentiation process is altered in cancer. Although B-cell maturation is 

predominantly unidirectional, from naïve to functionally specialized memory or plasma 
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states44, we observed maturation states both upstream and downstream from the cell-of-origin 

associated with each entity, with post-GC states in GC tumors (eg., FL), and, conversely, GC 

states in post-GC tumors (eg., DLBCL non-GCB and MZL). This raises two potential roles of 

differentiation in cancer pathogenesis; it may either enable additional states to evolve from 

the cell of origin that determines the entity or drive the emergence of the entity-determining 

state from a cell-of-origin earlier in the differentiation process1. 

Revisiting the cell-of-origin model of cancer classification 

This plasticity in differentiation and emergence of multiple cell types in tumors leads me to 

reconsider the role of cell-of-origin in cancer classification. Different cancer types and 

subtypes are thought to originate from different cell types and states9, while cell of origin 

dominates the molecular classification of cancers10.  It is well established that B-NHL entities 

relate to distinct stages of B-cell maturation, such as GCB versus ABC DLBCL, exhibiting 

varying clinical outcomes49,85. However, substantial variation in treatment response and 

survival is also observed between patients of a given cancer entity. We observed substantial 

variation in maturation state composition between tumors of the same entity, which may 

drive this inter-tumor heterogeneity in clinical outcomes beyond cell of origin.  

ITH in cell types and states therefore poses challenges for cancer diagnosis. If the goal of 

cancer diagnosis is to classify tumors into biologically and clinically similar subgroups for 

patient stratification, this ITH blurs the boundaries between previously defined subgroups. 

Notably, using two widely-used DLBCL subtype classifiers, Lymph2Cx64 and Tally65, which 

separate GCB and ABC subtypes known for their distinct prognoses, I observed both GCB 

and ABC classes within single tumors. This observation is particularly intriguing in FL, 

where an ABC subtype has not yet been established. Consequently, ITH along the 

differentiation axis suggests a need to reevaluate the classification of cancer types in B-NHL 

and other cancers distinguished by cell-of-origin, considering the diverse and dynamic 

differentiation stages within tumors. Further exploring ITH in cancer cell types in larger 

clinical studies across cancer types may refine cancer diagnosis and management by 

accounting for tumor differentiation. 

Tumor evolution through differentiation 

The concept that tumor cell types and states can adapt over time through differentiation86 
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changes our understanding of tumor evolution. Differentiation status in tumors is not just a 

passive reflection of their origin, but an active participant in their evolutionary trajectory. 

Variation in a population confers a survival advantage in natural selection as it enables 

subpopulations resistant to the selective pressures to emerge. My findings suggest that tumors 

hijack the normal cellular diversification mechanisms of cell-type differentiation to achieve 

this variation.  

In normal physiology, the diversification of cell types is essential for the function and 

structure of complex organisms, forming many diverse tissues and organs. Whereas in 

cancer, it is not clear whether the emergence of distinct cell types through differentiation 

confers an evolutionary advantage beyond driving variation. Tumors may also form a 

complex organization of functional cancer cell types, analogous to their normal counterpart 

tissues. In B-NHL, perhaps intratumor B-cell maturation states maintain survival by 

continuing the GC reaction, which promotes genetic diversity through somatic hypermutation 

and tumor growth through proliferation. PD-1 is upregulated following B-cell activation 

through the BCR, with maturation therefore potentially enabling immune escape. B cells in 

the tumor microenvironment play a critical role in controlling or promoting tumor growth87, 

while tumor and immune cells are thought to co-evolve88. Ongoing differentiation in immune 

cancers provides a direct mechanism for tumors to shape their immune microenvironment.  

It is interesting to contemplate how my theory of tumor evolution through differentiation 

relates to existing models of tumor evolution. The clonal evolution model posits that tumors 

evolve by a process of clonal expansion, genetic diversification, and clonal selection within 

the adaptive landscapes of tissue ecosystems. Mutations that confer a selective advantage are 

more likely to persist and come to dominate the tumor population. Another important aspect 

in tumor evolution is the tumor-immune microenvironment (TIME). The complex interplay 

between cancer cells and the immune system shapes the trajectory of tumor development and 

impacts the effectiveness of therapeutic interventions89,90. In the following sections, I will 

discuss the relationship between these features of clonal evolution in the TIME and 

differentiation. 

Microenvironmental influence on tumor differentiation 

In the pathogenesis, clonal evolution, and treatment response of B-NHL, the TIME is crucial, 

notably affecting survival, growth signaling, and immune response91. The organization of B-
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cell follicles, consisting of germinal centers and mantle zones, is vital for regular B-cell 

development. Our finding that intratumor maturation states occupy distinct spatial areas, each 

characterized by a unique microenvironment, poses that distinct microenvironments within a 

tumor can promote ITH along differentiation lineages86. The presence of follicular dendritic 

cells or follicular helper T cells, which drive maturation from GC to post-GC states, among 

GC cancer cells despite the disruption of lymph node follicles shows that tumors maintain 

spatial niches that support differentiation. FL, which typically preserves B-cell follicles, 

exhibited a broader range of maturation states compared to GCB DLBCL, suggesting that 

TIMEs resembling the microenvironment of their normal counterpart may better enable ITH 

through differentiation. 

Nature and nurture: genetic variation and differentiation in 

cancer 

The association between genetic variants and intratumor maturation states in B-NHL implies 

a tight interplay between clonal evolution and tumor differentiation. The presence of distinct 

copy number variants as well as differential expression of mutated genes between maturation 

states within tumors support this hypothesis86. Certain genetic changes might predispose cells 

to malignancy at different maturation stages. This could help explain the varying prevalence 

of oncogenic mechanisms across different types of B-cell lymphomas62.  

By extending this concept to the topic of ITH, one can consider that differentiation may 

promote divergent survival and growth mechanisms within the same tumor, thereby driving 

clonal evolution. I expect exciting research to emerge on characterizing the association 

between genetic aberrations and intratumor maturation states across space and time. 

Therapeutic implications and opportunities 

Investigating how tumor evolution through ITH relates to treatment resistance could reveal 

strategies for preventing relapse. These methods may include tailoring treatments to specific 

cancer-cell-type compositions or exploiting their differentiation trajectories to reign in tumor 

evolution. Therapeutic interventions might focus on exploiting weaknesses in certain cancer 

cell types or preventing the differentiation of tumor cells into more resistant forms. Our 

identification of distinct signaling pathways and gene regulatory networks associated with B-

NHL maturation states offers potential targets for treatment, some of which are already linked 
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to existing drugs or known ligands, such as XBP1 and HDAC292. Nonetheless, the risk of 

immunosuppression posed by interfering with the differentiation of immune cells warrants 

careful consideration. 

The growing prominence of T-cell-based immunotherapies, including CAR-T cells and Bi-

specific T-cell Engagers (BiTEs), in treating B-cell malignancies underscores their potential 

in transforming cancer treatment93,94. We observed that the patterns of immune cell 

infiltration, especially cytotoxic T-cells around plasma tumor cells, vary among the tumor's 

maturation states86. This raises the possibility of tailoring immunotherapy to the cancer-cell-

type composition, necessitating a combination approach to effectively address the ITH of 

immune microenvironments. Additionally, the diverse microenvironments surrounding 

different tumor states offers good reason for expanding immunotherapeutic strategies to 

include various other immune cell types, such as infiltrating macrophages, NK cells, and non-

malignant B cells. 

Further questions 

The findings discussed in this thesis brings to light a conceptual framework of the role of 

cell-type differentiation in tumor evolution, but it also raises several further questions beyond 

the scope of this study which I hope will inspire exciting future research directions. 

B-NHL proved a useful model to explore the relationship between differentiation and ITH 

due to the centrality of cell-of-origin in their pathogenesis and classification34. However, cell-

of-origin is also considered important in several other cancer types, such as glioma95, AML37, 

and pancreatic adenocarcinoma38. Extending the study of ITH from differentiation to other 

cancer types would help understand its extent and nuances across cancers. 

Through longitudinal analysis of maturation state composition in select B-NHL samples, this 

thesis exemplified how cancer-cell-type composition can change over time, elucidating a role 

of differentiation in tumor evolution. Larger, more comprehensive longitudinal follow-up 

studies would allow us to better understand cancer-cell-type evolution and the factors 

influencing these changes across time and space, including therapeutic and 

microenvironmental influences.  

The association between genetic variants and intratumor maturation states inferred from 

pairing bulk DNA sequencing with single-cell transcriptomic data suggests a relationship 
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between genetic diversification and differentiation in clonal evolution. More direct profiling 

of genetic variation among intratumor maturation states, such as through single-cell DNA 

sequencing, is necessary to understand the extent of this relationship. Genetic perturbation 

studies may help understand the causal directionality of this relationship; does genetic 

diversification promote differentiation or vice versa? This would significantly advance our 

understanding of and ability to control tumor evolution. 

Studying the relationship between intratumor maturation states and drug resistance 

mechanisms is key to understanding how differentiation influences treatment response. Large 

scale single-cell drug response screens, such as via flow cytometry or other microfluidic 

assays, could be employed to compare drug response profiles among cell types and states in a 

tumor. This may require advancing the feature coverage and cellular resolution of drug 

screening assays to accurately assign cell types and states (eg. via the transcriptome) and to 

comprehensively test the wide range of clinically actionable drug combinations and dosages. 

This would serve both to inform precision medicine strategies and predict tumor evolution 

according to a tumor’s composition and treatment.  

The diagnostic and therapeutic implications of differentiation driving ITH warrant extensive 

clinical investigation. The existence of multiple cell types within tumors, beyond the cell of 

origin, may require revision of existing cancer classifications, not least in B-NHL. The flux 

of tumor cell types brought about by differentiation gives cancers a fluid identity beyond 

what is typically accounted for in cancer diagnosis. Retrospective studies and/or clinical trials 

on the relationship between tumor cell type composition and patients’ clinical outcomes, 

including survival and treatment response profile, could forge new paths for precision 

oncology. 
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Conclusion 

In this thesis, I explored the intricate relationship between cell-type differentiation and 

intratumor heterogeneity (ITH) in nodal B-cell non-Hodgkin lymphomas (B-NHL), offering a 

novel perspective on cancer pathogenesis and progression. Our findings challenge the fixed 

cell-type paradigm of cancer by showing that cell types remain dynamic and divergent in 

tumor evolution through differentiation86, with significant implications for cancer diagnosis, 

treatment, and research. 

Key findings 

1. Differentiation drives ITH: The discovery that B-NHL tumors comprise multiple 

co-existing B-cell maturation states shows that differentiation remains a dynamic and 

divergent process in cancer, driving ITH. This upends the view that cell-type 

differentiation is blocked in malignancy, showing that cancer cell types are mutable 

beyond their cell of origin. 

2. Tumor differentiation blurs cancer subtypes: The observed variability in tumor 

maturation state composition suggests a need to revisit the cell-of-origin model in 

cancer classification, not least in B-NHL where the maturation state of the cell of 

origin has been associated with the tumor's diagnosis and clinical prognosis. 

3. Tumor evolution through differentiation: My findings present differentiation as an 

active process in tumor evolution, driving cellular diversification for clonal evolution. 

This concept adds a new dimension to the understanding of tumor dynamics beyond 

the typical focus on genetic diversification and stress response. 

Implications for diagnosis and treatment 

1. Diagnostic challenges: The fluidity of cell types in tumors complicates the diagnosis 

of cancers, particularly in B-NHL. Diagnostic methods may need to incorporate the 

assessment of cell-type diversity for more accurate and personalized cancer diagnosis, 

which may evolve over time with ongoing differentiation. 

2. Therapeutic opportunities: The identification of distinct signaling pathways and 

gene regulatory networks associated with B-NHL maturation states opens new 

avenues for targeted therapies. Understanding tumor evolution through differentiation 

can also aid in developing strategies to overcome treatment resistance and improve 
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patient outcomes. 

Future research directions 

1. Broadening the study across cancers: Extending this research to other cancer types 

will enhance our understanding of the role of differentiation in ITH and its 

implications across cancers. 

2. Longitudinal studies and genetic analysis: Longitudinal and genetic profiling of 

cancer cell types is crucial to unravel the dynamics of tumor evolution through 

differentiation and the interplay between genetic changes and differentiation over 

time. 

3. Drug resistance and precision medicine: Investigating the relationship between 

intratumor maturation states and drug resistance can inform precision medicine 

approaches and guide the development of more effective treatment strategies. 

4. Clinical investigations: Large-scale clinical studies on the impact of tumor cell type 

composition on patient outcomes could revolutionize cancer diagnosis and treatment, 

moving towards a more nuanced approach of precision oncology. 

In conclusion, this thesis highlights cell-type differentiation as a driver of ITH and tumor 

evolution, reshaping our understanding of cancer pathogenesis and opening promising 

pathways for advancements in precision oncology. 

Figure 20: Tumor evolution through differentiation 

 

Diagram on the proposed role of differentiation in clonal evolution, whereby the cell of origin undergoes 
malignant transformation, and subclones diversify through further differentiation and aberrations. 
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Materials and methods 

The text of the following section has been adapted from Fitzgerald et al, bioRxiv, 20231, and 

has been originally written by myself. The contributions of collaborators are outlined at the 

end of the Introduction section. 

“ 

Lymph node sample processing 

The University of Heidelberg's Ethics Committee approved our study (S-254/2016), and we 

secured informed consent from every patient beforehand. We processed and froze patient 

lymph node (LN) samples for later analysis, following previously described methods19. To 

mitigate the influence of treatment-associated effects on tumor cells and their surroundings, 

we excluded samples from patients who had undergone allogeneic stem cell transplantation, 

CAR T-cell, or bispecific antibody therapy from the CITE-Seq cohort. Furthermore, we 

ensured all samples were collected at least three months post the termination of the most 

recent treatment to maintain the same control. We provide an overview of the sample cohort 

in Table 1. 

Single-cell 3’ RNA-seq and epitope expression profiling (CITE-Seq) 

The cells were thawed, promptly washed to eliminate DMSO, and processed in groups of 

four to five that comprised a minimum of three distinct entities to avert entity-driven batch 

effects. A dead cell removal kit from Miltenyi Biotec was employed after thawing, aiming for 

cell viability of between 85% to 90%. Samples with less than 85% viability were not 

included. We then stained 5 x 10^5 live cells with a cocktail of oligonucleotide-linked 

antibodies (Table 2) and left them to incubate at 4°C for 30 minutes. The cells were washed 

thrice with chilled washing buffer and centrifuged for five minutes at 4°C each time. 

Following this, cell count and viability were re-evaluated; samples falling below 85% 

viability were discarded. Subsequently, we prepared the bead-cell suspensions and carried out 

the synthesis of complementary DNA, single-cell gene expression, and the production of 

antibody-derived tag (ADT) libraries. For these steps, we used a Chromium single-cell v3.1 

3’ kit from 10x Genomics and followed the manufacturer's guidelines. 
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Single-cell 5’ RNA-seq and B-cell receptor repertoire profiling 

Apart from epitope staining, sample processing was identical to 3’ scRNA-seq. The 

preparation of the bead-cell suspensions, synthesis of complementary DNA and single-cell 

gene expression, and BCR libraries were performed using a Chromium single-cell v2 5’ and 

human BCR amplification kit (both 10x Genomics) according to the manufacturer’s 

instructions. 

Single-cell library sequencing and data processing 

We pooled the 3’ gene expression and ADT libraries in a 3:1 ratio, targeting 40,000 reads 

(gene expression) and 15,000 reads per cell (ADT) respectively, and sequenced them on a 

NextSeq 500 (Illumina). 5’ gene expression libraries were sequenced on a NextSeq 2000 

(Illumina), aiming for 50,000 reads per cell. BCR libraries, sequenced on a NextSeq 500 

(Illumina), were aimed at achieving a minimum of 5,000 reads per cell. 

Post sequencing, we utilized the Cell Ranger software’s (10x Genomics, v6.1.1) cellranger 

mkfastq function for demultiplexing and aligning raw base-call files to the reference genome 

(hg38). For 3’ gene and epitope expression libraries, we used the cellranger count command 

on the resulting FASTQ files, while we used cellranger multi for 5’ gene expression and 

BCR libraries. For the BCR libraries, we used the VDJ Ensembl reference (hg38, v5.0.0) as a 

reference. Unless specifically stated otherwise, we adhered to default settings for all 

functions. 

CITE-Seq data analysis 

The Seurat R package (v4.1.0) was used to perform data quality control, filtering, and 

normalization (log-based normalization for RNA and centered log-ratio transformation for 

ADT data). Gene counts per cell, ADT counts per cell, and percentages of mitochondrial 

reads were computed using the built-in functions.  Principal component analysis96, Louvain 

clustering97, and UMAP98 were performed for the transcriptome (RNA) and epitope (ADT) 

data independently. After mapping the CD3 and CD19 epitope expression, non-B-cell 

transcriptomic clusters and doublets were removed.  We used the IntegrateData function of 

the Seurat package for data integration across the different preparation batches. For 

multimodal clustering, multi-omic factor analysis was performed with the MOFA2 R 
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package60,61 (v1.8) based on the combined transcriptome and epitope data, and the resulting 

latent factors (n=30) were used as principal components.  

5’ single-cell RNA-seq data and B-cell receptor profile analysis 

Transcriptomic analysis was performed using the R package Seurat (v4.1.0) as described in 

the CITE-Seq data analysis section above. B-cell receptor (BCR) clonotypes were added to 

the metadata from the cellranger multi output. 

Sorting of B-cell maturation states from reactive lymph nodes 

5 reactive lymph node and 2 tonsil samples were thawed as per a previously published 

protocol19. Using the BD FACSAria Fusion cell sorter equipped with the BD FACSDiva 

software v. 9.0, the antibody panel outlined in Table 3, and FlowJo analysis software version 

10.9.0, B-cell maturation stated were identified and sorted with the gating strategy outlined in 

Figure 4A and as below. Maturation states and their marker panels were sourced from 

previous studies which defined naïve99,100, germinal center101, memory99,100, and plasma102 

states with flow cytometry, 

Naïve Naïve B cells CD19+, CD20+, CD38 low, CD27-, IgD high 
DZ Germinal center dark zone B cells CD19+, CD20+, CD38+, CD184+, CD83- 

LZ Germinal center light zone B cells CD19+, CD20+, CD38+, CD184-, CD83+ 
Mem IgM IgD/IgM memory B cells CD19+, CD20+, CD38 low, CD27+, IgM+ 
Mem IgG Class-switched memory B cells CD19+, CD20+, CD38 low, CD27+, IgG+ 
Plasma Plasmablasts/plasma cells CD19+, CD20 low, CD38 high, CD27 high, 

IgD low 

RNA-seq of sorted maturation states 

RNA was isolated by the RNeasy Micro Kit (Qiagen, Hilden, Germany) and quantified with 

Bioanalyzer RNA 6000 pico assay (Agilent, Santa Clara, US). The libraries were generated 

with NuGENs Trio RNA-Seq System (NuGEN, Redwood City, California) for whole RNA 

and sequenced on an Illumina NextSeq2000 (Illumina, San Diego, US). Reads were trimmed 

with TrimGalore v0.6103 and aligned with hisat2 v2.2.1104. The DESeq2 R package105 

(v1.38.3) was used for differential gene expression analysis between maturation states. 

Default parameters were used unless otherwise specified. Gene symbols, as per the scRNA-

seq datasets, were obtained from Ensembl106 HGNC symbols.  
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Characterization of B-cell maturation states in the reactive lymph node reference 

Clustering and differential expression analysis of the scRNA-seq data from B cells in the 

integrated reactive lymph node samples (8 samples, 16625 cells) were performed as 

described in the Seurat Guided Clustering Tutorial 107, with the clustering resolution 

parameter set to 1. Clusters were assigned to known B-cell maturation states based on their 

differential expression (in RNA and ADT features) of established markers of B-cell 

maturation states from several sources in the literature34,44,49,52–56 (Table 5).  

Classification of rLN maturation states in single-cell RNA-seq data 

The RNA-seq data from the sorted maturation states was filtered by the 2000 most variable 

RNA features in the rLN scRNA dataset (8 samples combined) and scaled. The resulting 

matrix was used as input for training a logistic regression model with nested cross-validation 

for the classification of maturation states using the nestedcv package108–111. The resulting 

best-fit model was used to predict maturation states in the log-normalized and scaled scRNA-

seq data from reactive lymph nodes. Predicted states were used to validate marker-based 

maturation state annotations in the CITE-Seq rLN reference dataset. 

Mapping of maturation states in all lymph node samples 

B-cell maturation states defined in the reactive lymph node reference were mapped to each 

tumor sample in the CITE-Seq and 5’ scRNA-seq datasets using an anchor-based single-cell 

integration approach outlined in the Seurat multimodal reference mapping tutorial58,112.  Log-

normalized counts (without batch-effect correction to prevent bias introduced by sample 

integration) were used to find transfer anchors and project samples on the reference 

reductions - PCA (50 dimensions) and UMAP (2 dimensions). 

Isolation of malignant B cells 

Malignant B cells in tumor samples were identified based on immunoglobulin light chain 

restriction, whereby malignant (monoclonal) populations of cells are restricted to either the 

kappa or lambda immunoglobulin light chain and non-malignant B-cell populations 

(polyclonal) show mixed kappa and lambda light chain positivity1. As a minority of ADT 

counts may be present from ambient unbound antibodies during CITE-Seq library 

preparation, the proportion of total light chain counts of the kappa subtype (Kappa 
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counts/(Kappa + Lambda counts)) per cell was used as a surrogate for binary positivity. 

Transcriptional B-cell clusters with an average kappa light chain proportion of >80% or 

<20% across all cells were considered malignant. Non-malignant B cells represented a 

median of 6% [0%, 94%] of all B cells in tumor samples. 

Maturation state gene expression signature scoring 

Maturation state gene expression signature scores were calculated by averaging the log-

normalized counts for the 50 most differentially expressed genes (by fold-change) for each B-

cell maturation state annotated in a published tonsil scRNA-seq dataset49. 

Inference of transcription factor activity from single-cell RNA-sequencing data 

The pySCENIC72 workflow was executed through a custom Snakemake pipeline. To infer the 

Gene Regulatory Network (GRN), we used the GRNBoost2 algorithm from the Arboreto113 

package with 10 perturbations. The analysis was performed on the raw scRNA-seq data. 

Transcription factor (TF) regulons were predicted using the human v9 motif collection from 

cisTarget (hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.feather and hg38__refseq-

r80__500bp_up_and_100bp_down_tss.mc9nr.feather databases). AUC scores per cell and 

GRNs were obtained for visualization and downstream analysis. For the final GRN 

reconstruction, only target genes occurring in more than 95% of the runs were considered. 

Differential expression (DE) analysis between B-cell maturation stages was conducted using 

Seurat's FindMarkers114 function on the RNA assay, utilizing the MAST74 method for DE 

analysis from single-cell data. DE genes between conditions in all cell populations were 

identified (p.adj < 10e-16 & log2FC > 0.4), and p-values were adjusted for multiple 

comparisons using the Benjamini-Hochberg73 correction method. To determine differentially 

active TFs, we utilized the output of the SCENIC GRN, which provided TF activity at a 

single-cell level. Differentially active TFs were detected using Fisher's exact test to assess the 

enrichment of maturation stage-specific DE genes among all the TF target genes extracted 

from the SCENIC GRN (p.adj < 0.05). 

CODEX sample preparation 

Representative tumor or tumor-free lymph node areas were selected from archival FFPE 

tissue blocks belonging to18 patients. This selection was made by the certified pathologists at 

the National Center for Tumor Diseases' Tissue Bank and the University Hospital 
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Heidelberg's Institute of Pathology as previously described76. Two 4.5 mm cores per patient 

were incorporated into Tissue Microarrays (TMAs). TMA sections (4 μm) were affixed to 

Vectabond-precoated 25 x 25 mm coverslips, coated with paraffin, and stored for future 

staining. 

Antibody conjugation, validation, and titration 

We used the co-detection by indexing (CODEX) approach for multicolor 

immunofluorescence51. Antibodies utilized for CODEX experiments are summarized in Table 

4. We reduced purified, carrier-free antibodies with Tris(2-carboxyethyl)phosphine (TCEP) 

and conjugated them with maleimide-modified CODEX DNA oligonucleotides, procured 

from TriLink Biotechnologies. A board-certified pathologist supervised the evaluation of the 

conjugated antibodies in singleplex stains on tonsil and/or lymphoma tissue, comparing with 

online databases, immunohistochemical reference stains, and published literature. We 

validated staining patterns in multiplex experiments with positive and negative control 

antibodies and titrated the appropriate dilution of each antibody starting from 1:100 to 

optimize the signal-to-noise ratio. 

Multiplex tissue staining and fixation 

We deparaffinized, and rehydrated coverslips, and subjected them to heat-induced epitope 

retrieval at pH9 and 97°C for 10 minutes in a Lab Vision PT module. After blocking non-

specific binding with CODEX FFPE blocking solution, we stained the coverslips overnight 

with the full antibody panel at the dilutions shown in Table 4. Following staining, coverslips 

were fixed with 1.6% paraformaldehyde, methanol, and BS3 fixative, then stored in CODEX 

buffer S4 until imaging. 

Multicycle imaging 

We attached stained coverslips to custom acrylic plates and inserted them into a Keyence BZ-

X710 inverted fluorescence microscope. We selected 7x7 fields of view and an appropriate 

number of z-planes (10-14) to capture the best focal plane across the imaging area. 

Multicycle imaging was performed using a CODEX microfluidics device. Post completion of 

multicycle imaging, coverslips were stained with hematoxylin/eosin, and the same areas were 

imaged in brightfield mode. 
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Image processing 

We processed raw TIFF images using the RAPID pipeline115 in Matlab with the default 

settings. Post-processing, images were concatenated to hyperstacks. Each tissue core was 

visually inspected for staining quality using ImageJ/Fiji. 

Cell segmentation and cell type annotation 

We segmented individual nuclei based on the Hoechst stain and quantified cellular marker 

expression levels using a modified version of the Mask R-CNN-based CellSeg software. A 

threshold based on the intensity of the nuclear markers Hoechst and DRAQ5 was used to 

exclude non-cellular events. Cells were then submitted to Leiden-based clustering using the 

scanpy Python package, and cluster annotations were assigned according to previously 

identified cell type marker profiles76. 

CITE-Seq to CODEX data integration for B-cell maturation state label transfer 

B-cell maturation states in the CODEX data were classified sample-wise from annotations in 

the CITE-Seq data using shared features (n = 28) in the CITE-Seq and CODEX antibody 

panels (Tables 2 and 4). After selecting the shared features, CITE-Seq ADT counts and 

CODEX fluorescence intensities were subject to the same preprocessing steps of log-ratio 

normalization and scaling (z-scored) with Seurat v4. For each sample, a logistic regression 

classifier (glmnet package, 10-fold nested cross-validation)110,111 was trained on the annotated 

CITE-seq data to classify B-cell maturation states. To prevent prediction bias toward majority 

classes, random sampling was performed to balance class distribution within the splits. For 

each sample, the resulting best-fit model (with the highest balanced accuracy on the outer 

folds) was used to predict B-cell maturation states in the sample’s corresponding CODEX B-

cell data. The median Pearson correlation coefficient between the samples’ CITE-Seq and 

CODEX maturation state proportions was 0.91 (p = 0.011). 

Cellular neighborhood analysis 

We modified a previously described approach for neighborhood analysis116. For each cell, the 

20 nearest neighbors were determined based on their Euclidean distance of the X and Y 

coordinates, thereby creating one 'window' of cells per individual cell. Next, we grouped 

these windows using k-means clustering according to the proportions of cell types within 
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each window. We selected K=11 for the number of neighborhoods as we observed that higher 

values of k did not result in an improved biologically interpretable number of neighborhoods. 

Neighborhoods were annotated based on their biological function in normal lymph nodes or 

their enriched cell type(s)/state(s). 

Cellular interaction likelihood analysis 

Spatial graph representations of immediately neighboring cells were constructed based on 

Delaunay triangulation between centroid coordinates using the scipy.spatial Python 

package117. To compute pairwise association strengths between clusters, relative frequencies 

were computed using the following metric: 

𝑁𝑖𝑗 	× 	𝑁𝑡
𝑁𝑖	 × 	𝑁𝑗 	

in which Nij is equal to the total number of edges between clusters i and j, Nt the total 

number of edges in the sample, and Ni and Nj the total degrees of clusters i and j 

respectively116. Computed association strengths were calculated separately for each disease 

entity, between B-cell states and other cell types.  

DNA sequencing 

DNA was fragmented (Covaris sonication) to 250 bp and further purified using Agentcourt 

AMPure XP beads (Beckman Coulter). Size-selected DNA was then ligated to adaptors 

during library preparation. Each library was quantified using qPCR and analyzed for quality 

after fragmentation and library preparation based on library yield and size on an Agilent 

Bioanalyzer. The sample MZL2 failed at the library preparation stage. Finally, libraries were 

enriched for genes using the Sure Select XT Target Enrichment System for Illumina Paired-

End Multiplexed Sequencing and each capture pool was sequenced at 300-400x. 

 

Pooled samples were demultiplexed using a custom demultiplexing tool. Read pairs were 

aligned to the hg19 reference sequence using the Burrows-Wheeler Aligner118, and data were 

sorted and duplicate-marked using Picard tools (version 2.23.3)119. All steps were performed 

within the bcbio-nextgen toolkit (version 1.2.9)120. 
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The minimum quality criterion was 80% of target bases having > 30x sequencing coverage. 

Cases with 60-79% of target bases with > 30x sequencing coverage were also included if 

target bases not covered were < 1%. Cases with target bases covered 30x < 60% or cases with 

target bases covered 30x between 60-80% and target bases not covered > 1% were excluded. 

This was achieved for all sequenced samples (Supplemental DNA Sequencing Report). 

Metrics were collected using Picard tools (version 2.23.3)119.  

Variant Analysis 

Mutation analysis for single nucleotide variants (SNV) and Insertions and Deletions (InDels) 

was performed using MuTect2121 (GATK v4.1.9.0)122 and annotated by Funcotator123 (GATK 

v4.1.9.0). A panel-of-normals (PON) filter was generated using samples annotated as rLN 

and a panel of normal from the 1000 Genomes Project124. Variants were included in the PON 

if present in two or more normal samples. 

Non-silent variants (Missense_Mutation, Nonsense_Mutation, Nonstop_Mutation, 

Splice_Site, Translation_Start_Site) resulting from BestEffect Funcotator annotation 

(dataSources.v1.6) at a variant allele frequency of > 10% are kept for further investigations. 

Germline polymorphisms and sequencing artifacts were excluded by comparison with the 

panel-of-normals and with the gnomAD database125. Known germline polymorphisms from 

the Exome Sequencing Project126 and dbSNP127 databases were excluded. An overview of the 

somatic variants identified is depicted in the Supplemental DNA Sequencing Report. 

Genome-wide copy number aberrations (CNAs) were called using CNVkit (v0.9.9)128. 

Notably, this tool takes advantage of both on- and off-target sequencing reads and estimates 

the copy number using a pooled normal reference to compare binned read depths. Log2 

change from a pool of normal control of ±0.2 was used as an indication of chromosomal gain 

or loss. Chromosomes X and Y are excluded from the analysis. 

Inference of copy number variation from single-cell RNA-sequencing data 

Copy number variants (CNVs) and ploidy were inferred from single-cell RNA-sequencing 

count data in each sample using the copykat R package as per the package vignette82. A cell 

filtering threshold of 5 genes per chromosome and a minimal segmentation window size of 

25 genes was used. Copy number variation (Euclidean distance) was determined at a 

resolution of 5MB chromosomal segments, which was added as a new assay to CITE-Seq 
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Seurat objects for each sample for visualization of copy number variants across intratumor 

maturation states. 

” 
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Appendix 

Table 1: Sample overview 
Sample ID Run Entity Age Sex Status Ann-Arbor Stage  

ABC1 15 DLBCL, non-GCB 67 M Initial diagnosis IIIB 

ABC2 6 DLBCL, non-GCB 63 M Initial diagnosis III 

ABC3 8 DLBCL, non-GCB 80 M Initial diagnosis IIIB 

ABC4 8 DLBCL, non-GCB 61 F Initial diagnosis IIIB 

ABC5 3 DLBCL, non-GCB 38 F Relapse IVA 

ABC6 8 DLBCL, non-GCB 69 M Relapse IAE 

ABC7 6 DLBCL, non-GCB 54 M Relapse IIIA 

FL1 10 FL 64 F Initial diagnosis IVB 

FL10 2 FL 71 M Relapse IVA 

FL11 11 FL 74 M Relapse IVA 

FL12 9 FL 66 M Relapse IVA 

FL2 16 FL 78 M Initial diagnosis IIIA 

FL3 3 FL 67 F Initial diagnosis IVA 

FL4 1 FL 33 M Initial diagnosis IVB 

FL5 2 FL 54 M Relapse IIIA 

FL6 1 FL 67 M Relapse IVA 

FL7 10 FL 59 F Relapse IIIA 

FL8 8 FL 42 M Relapse IIA 

FL9 12 FL 72 F Relapse IIIA 

GCB1 16 DLBCL, GCB 52 F Relapse IIIAE 

GCB2 5 DLBCL, GCB 84 F Initial diagnosis IVA 

GCB3 4 DLBCL, GCB 57 M Initial diagnosis IIIA 

GCB4 13 DLBCL, GCB 45 M Relapse IVB 

GCB5 15 DLBCL, GCB 77 M Relapse IIB 

MCL1 4 MCL 63 M Initial diagnosis IVB 

MCL2 7 MCL 77 M Initial diagnosis IVA 

MCL3 3 MCL 68 M Initial diagnosis IVB 

MCL4 9 MCL 50 M Initial diagnosis IVB 

MCL5 10 MCL 69 M Initial diagnosis IVB 

MCL6 15 MCL 61 M Relapse IVA 

MCL7 12 MCL 62 M Relapse IVA 

MCL8 11 MCL 72 M Relapse IVA 

MZL1 4 MZL 49 M Initial diagnosis IVA 

MZL10 11 MZL 78 M Relapse IAE 
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MZL11 9 MZL 63 M Relapse IIIA 

MZL2 7 MZL 58 F Initial diagnosis IV 

MZL3 3 MZL 49 F Initial diagnosis IVB 

MZL4 14 MZL 34 F Initial diagnosis IVA 

MZL5 16 MZL 71 F Initial diagnosis IA 

MZL6 14 MZL 59 F Relapse IIA 

MZL7 6 MZL 82 M Relapse IV 

MZL8 5 MZL 52 F Relapse IVA 

MZL9 16 MZL 54 F Relapse IVA 

rLN1 7 rLN 73 F n / A n / A 

rLN2 10 rLN 35 F n / A n / A 

rLN3 6 rLN 33 F n / A n / A 

rLN4 11 rLN 51 M n / A n / A 

rLN5 14 rLN 20 M n / A n / A 

rLN6 4 rLN 46 F n / A n / A 

rLN7 7 rLN 23 F n / A n / A 

rLN8 9 rLN 61 M n / A n / A 
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Table 2: CITE-Seq antibody panel 
SPECI
FICITY 

ALTER
NATIVE 

CLONE ISOTYPE CAT
ALO
GUE 

BAR
COD
ENO 

CATA
LOG 
PE 

TITRA
TION 

CONCENT
RATION 

 

AMO
UNT 
USE

D 
CD10  HI10a Mouse 

IgG1, κ 
31223
1 

0062 31220
3 

1.25 µl 100 µg/ml 125 
ng 

CD103  Ber-
ACT8  

Mouse 
IgG1, κ 

35023
1 

0145 35020
5 

1.25 µl 12 µg/ml 15 ng 

CD11B  ICRF44 Mouse 
IgG1, κ 

30135
3 

0161        

CD11C  S-HCL-
3 

Mouse 
IgG2b, κ 

37151
9 

0053 37150
4 

0.63 µl 50 µg/ml 31 ng 

CD127 IL7R A019D
5 

Mouse 
IgG1, κ 

35135
2 

0390 35130
3 

0.63 µl 100 µg/ml 63 ng 

CD134  Ber-
ACT35 

Mouse 
IgG1, κ 

35003
3 

0158 35000
3 

0.63 µl 200 µg/ml 125 
ng 

CD137  4B4-1 Mouse 
IgG1, κ 

30983
5 

0355 30980
3 

1.25 µl 100 µg/ml 125 
ng 

CD150 SLAM A12 
(7D4) 

Mouse 
IgG1, κ 

30631
3 

0870        

CD152 CTLA4 BNI3 Mouse 
IgG2a, κ 

36961
9 

0151 36960
3 

0.63 µl 200 µg/ml 125 
ng 

CD16  3G8 Mouse 
IgG1, κ 

30206
1 

0083 30200
7 

0.63 µl 100 µg/ml 63 ng 

CD161  HP-
3G10 

Mouse 
IgG1, κ 

33994
5 

0149 33990
3 

1.25 µl 120 µg/ml 150 
ng 

CD183 CXCR3 G025H
7 

Mouse 
IgG1, κ 

35374
5 

0140 35370
5 

0.63 µl 100 µg/ml 63 ng 

CD184 CXCR4 12G5 Mouse 
IgG2a, κ 

30653
1 

0366        

CD185 CXCR5 J252D4 Mouse 
IgG1, κ 

35693
7 

0144 35690
3 

1.25 µl 100 µg/ml 125 
ng 

CD19  HIB19 Mouse 
IgG1, κ 

30225
9 

0050 30220
7 

0.63 µl 50 µg/ml 31 ng 

CD194 CCR4 L291H4 Mouse 
IgG1, κ 

35942
3 

0071 35941
1 

0.63 µl 50 µg/ml 31 ng 

CD195 CCR5 J418F1 Rat 
IgG2b, κ 

35913
5 

0141 35910
5 

1.25 µl 100 µg/ml 125 
ng 

CD197 CCR7 G043H
7 

Mouse 
IgG2a, κ 

35324
7 

0148 35320
3 

2.50 µl 160 µg/ml 400 
ng 

CD2  TS1/8 Mouse 
IgG1, κ 

30922
9 

0367        

CD20  2H7 Mouse 
IgG2b, κ 

30235
9 

0100 30230
5 

2.50 µl 25 µg/ml 63 ng 

CD200 - OX-104  na na 32920
6 

0.63 µl 200 µg/ml 125 
ng 

CD21  Bu32 Mouse 
IgG1, κ 

35491
5 

0181 35490
3 

0.63 µl 50 µg/ml 31 ng 

CD22  S-HCL-
1 

Mouse 
IgG2b, κ 

36351
4 

0393 36350
3 

0.63 µl 100 µg/ml 63 ng 

CD223 LAG3 11C3C6
5 

Mouse 
IgG1, κ 

36933
3 

0152 36930
5 

1.25 µl 100 µg/ml 125 
ng 

CD23  EBVCS
-5 

Mouse 
IgG1, κ 

33852
3 

0897 33850
7 

2.50 µl 50 µg/ml 125 
ng 

CD24  ML5 Mouse 
IgG2a, κ 

31113
7 

0180 31110
5 

1.25 µl 200 µg/ml 250 
ng 

CD244  C1.7 Mouse 
IgG1, κ 

32952
7 

0189 32950
7 

0.63 µl 50 µg/ml 31 ng 
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CD25 IL2RA BC96 Mouse 
IgG1, κ 

30264
3 

0085 30260
5 

1.25 µl 50 µg/ml 63 ng 

CD27  O323 Mouse 
IgG1, κ 

30284
7 

0154 30280
7 

0.63 µl 100 µg/ml 63 ng 

CD273 PDL2 24F.10
C12 

Mouse 
IgG2a, κ 

32961
9 

0008 32960
5 

0.63 µl 100 µg/ml 63 ng 

CD274 PDL1 29E.2A
3 

Mouse 
IgG2b, κ 

32974
3 

0007 32970
5 

0.63 µl 400 µg/ml 250 
ng 

CD278 ICOS C398.4
A 

Armenian 
Hamster 
IgG 

31355
5 

0171 31350
7 

0.63 µl 200 µg/ml 125 
ng 

CD279 PD1 EH12.2
H7 

Mouse 
IgG1, κ 

32995
5 

0088 32990
5 

1.25 µl 50 µg/ml 63 ng 

CD28  CD28.2 Mouse 
IgG1, κ 

30295
5 

0386 30290
7 

1.25 µl 100 µg/ml 125 
ng 

CD29 part of 
VLA-4 

TS2/16 Mouse 
IgG1, κ 

30302
7 

0369    50 µg/ml   

CD3  UCHT1 Mouse 
IgG1, κ 

30047
5 

0034 30040
7 

0.63 µl 100 µg/ml 63 ng 

CD31  WM59  30313
7 

0124 30310
5 

0.63 µl 100 µg/ml 63 ng 

CD32  FUN-2 Mouse 
IgG2b, κ 

30322
3 

0142 30320
5 

0.63 µl 50 µg/ml 31 ng 

CD357 GITR 108-17 Mouse 
IgG2a, κ 

37122
5 

0360 37120
3 

2.50 µl 100 µg/ml 250 
ng 

CD366 TIM-3 F38-
2E2 

Mouse 
IgG1, κ 

34504
7 

0169 34500
5 

1.25 µl 100 µg/ml 125 
ng 

CD38  HIT2 Mouse 
IgG1, κ 

30354
1 

0389 30350
5 

1.25 µl 100 µg/ml 125 
ng 

CD39  A1 Mouse 
IgG1, κ 

32823
3 

0176 32820
7 

0.63 µl 50 µg/ml 31 ng 

CD4  RPA-T4 Mouse 
IgG1, κ 

30056
3 

0072 30050
7 

0.63 µl 100 µg/ml 63 ng 

CD43  CD43-
10G7 

Mouse 
IgG1, κ 

34320
9 

0357 34320
3 

0.63 µl 400 µg/ml 250 
ng 

CD44  IM7 Rat 
IgG2b, κ 

10304
5 

0073 10302
3 

0.63 µl 50 µg/ml 31 ng 

CD45  HI30 Mouse 
IgG1, κ 

30406
4 

0391 30400
7 

1.25 µl 10 µg/ml 13 ng 

CD45R
A 

 HI100 Mouse 
IgG2b, κ 

30415
7 

0063 30410
7 

0.63 µl 12 µg/ml 8 ng 

CD45R
O 

 UCHL1 Mouse 
IgG2a, κ 

30425
5 

0087 30420
5 

0.63 µl 40 µg/ml 25 ng 

CD47  CC2C6 Mouse 
IgG1, κ 

32312
9 

0026 32310
8 

0.63 µl 80 µg/ml 50 ng 

CD48  BJ40 Mouse 
IgG1, κ 

33670
9 

0029 33670
7 

1.25 µl 200 µg/ml 250 
ng 

CD5  UCHT2 Mouse 
IgG1, κ 

30063
5 

0138 30060
7 

0.63 µl 100 µg/ml 63 ng 

CD56  QA17A
16 

Mouse 
IgG1, κ 

39242
1 

0084 39240
3 

0.63 µl 80 µg/ml 50 ng 

CD57  QA17A
04 

Mouse 
IgG1, κ 

39331
9 

0168 39330
7 

0.63 µl 200 µg/ml 126 
ng 

CD62L  DREG-
56 

Mouse 
IgG1, κ 

30484
7 

0147 30480
5 

1.25 µl 25 µg/ml 31 ng 

CD69  FN50 Mouse 
IgG1, κ 

31094
7 

0146 31090
5 

1.25 µl 50 µg/ml 63 ng 

CD7  CD7-
6B7 

Mouse 
IgG2a, κ 

34312
3 

0066 34310
5 

0.63 µl 100 µg/ml 63 ng 
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CD70  113-16 Mouse 
IgG1 

35511
7 

0027 35510
3 

1.25 µl 200 µg/ml 250 
ng 

CD73  AD2 Mouse 
IgG1, κ 

34402
9 

0577 34400
3 

  400 µg/ml   

CD79B  CB3-1 Mouse 
IgG1, κ 

34141
5 

0187 34140
4 

1.25 µl 50 µg/ml 63 ng 

CD86 B7-2 IT2.2 Mouse 
IgG2b, κ 

30544
3 

0006        

CD8A  RPA-T8 Mouse 
IgG1, κ 

30106
7 

0080 30100
7 

0.63 µl 100 µg/ml 63 ng 

CD95 Fas DX2 Mouse 
IgG1, κ 

30564
9 

0156 30560
7 

0.63 µl 100 µg/ml 63 ng 

ISOTY
PE 
CTRL 

 MOPC-
21 

Mouse 
IgG1, κ 

40019
9 

0090       

ISOTY
PE 
CTRL 

 MPC-
11 

Mouse 
IgG2b, κ 

40037
3 

0092       

ISOTY
PE 
CTRL 

 MOPC-
173 

Mouse 
IgG2a, κ 

40028
5 

0091       

ISOTY
PE 
CTRL 

 RTK45
30 

Rat 
IgG2b, κ 

40067
3 

0095       

ISOTY
PE 
CTRL 

 HTK88
8 

Armenian 
Hamster 
IgG 

40097
3 

0241       

KAPPA  MHK-
49  

Mouse 
IgG1, κ 

31653
1 

0894 31650
7 

1.25 µl 20 µg/ml 25 ng 

KLRG1
/MAFA 

 SA231
A2 

Mouse 
IgG2a, κ 

36772
1 

0153 36771
1 

0.63 µl 100 µg/ml 63 ng 

LAMB
DA 

 MHL-
38  

Mouse 
IgG2a, κ 

31662
7 

0898 31660
7 

1.25 µl 20 µg/ml 25 ng 

TIGIT  A15153
G 

Mouse 
IgG2a, κ 

37272
5 

0089 37270
3 

1.25 µl 25 µg/ml 31 ng 
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Table 3: FACS antibody panel 
Specificity Species Fluorochrome Clone Supplier Catalogue 

anti-IgM human BUV-395 G20-127 BD Biosciences 563903 
anti-CD10 human FITC HI10a BD Biosciences 332775 

anti-IgD human PerCP-Cy5.5 IA6-2 BD Biosciences 561315 
anti-CD23 human APC M-L233 BD Biosciences 558690 
anti-CD38 human APC-R700 HIT2 BD Biosciences 561979 
anti-CD24 human BV421 ML5 BD Biosciences 562789 
anti-CD5 human BV510 UCHT2 BD Biosciences 563381 

anti-CD20 human BV650 2H7 BD Biosciences 563780 
anti-CD21 human PE B-ly4 BD Biosciences 555422 

anti-IgM human PE-CF594 G20-127 BD Biosciences 562539 
anti-CD27 human PE-Cy7 M-T271 BD Biosciences 560609 

anti-CD184 human BV421 12G5 BD Biosciences 566282 
anti-CD83 human PE HB15e BD Biosciences 550634 

anti-Ig κ Light Chain human PE-Cy7 G20-193 BD Biosciences 561328 
anti-Ig λ Light Chain human PE JDC-12 BD Biosciences 555797 

anti-CD3  human PE HIT3a BD Biosciences 555340 
anti-CD19 human APC-Cy7 SJ25C1 BD Biosciences 557791 

anti-CD45R/B220 mouse PE RA3-
6B2 

BD Biosciences 553090 

anti-CD45RB human FITC MEM-55 Biolegend 310206 
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Table 4: CODEX antibody panel 
Target Altern

ative 
Clone Supplier Catalogu

e 
CODEX 
oligo 

Dilu
tion 

Exposure 
[ms] 

Cycl
e 

Blank        1 
BCL6  K112-91 BD 

Biosciences 
561520 79 1:25 500 2 

GATA3  L50-823 Cell Marque custom 2 1:50 500 3 
CD185 CXCR

5 
D6L3C Cell Signaling 

Technology 
custom 69 1:10

0 
500 4 

Tbet  D6N8B Cell Signaling 
Technology 

custom 68 1:10
0 

500 5 

CD62L  B-8 Santa Cruz 
Biotechnology 

custom 38 1:40
0 

250 6 

FoxP3  236A/E7 Invitrogen 14-4777-
82 

61 1:10
0 

500 7 

CD163  EDHu-1 Novus 
Biologicals 

NB110-
40686 

59 1:50 500 8 

Ki67  B56 BD 
Biosciences 

556003 6 1:20
0 

333 9 

CD366 TIM3 polyclonal Novus 
Biologicals 

AF2365 44 1:10
0 

500 10 

PAX5  D7H5X Cell Signaling 
Technology 

custom 66 1:20
0 

200 11 

CD134  Ber-ACT35 Biolegend 350002 75 1:10
0 

500 12 

IL10  polyclonal R&D Systems AF-217-
NA 

67 1:10
0 

500 13 

CD5  vC5/473 + 
CD5/54/F6 

Novus 
Biologicals 

NBP2-
34583 

25 1:50 500 14 

CD206  MM0820-
48L31 

Abcam n/a 55 1:20
0 

500 15 

CD25 IL2RA 4C9 Cell Marque custom 24 1:20
0 

500 16 

CD16  D1N9L Cell Signaling 
Technology 

custom 60 1:50 500 17 

CD152 CTLA
4 

BSB-88 BioSB BSB 
2885 
(ASR) 

30 1:25 500 18 

CD79a  HM47 Biolegend 333502 46 1:20
0 

250 19 

CD57  HNK-1 Biolegend 359602 29 1:50 500 20 
CD34  QBEnd/10 Novus 

Biologicals 
NBP2-
34713 

11 1:50 500 21 

CXCL13  polyclonal Novus AF801 41 1:20
0 

500 22 

CD21  SP186 Abcam ab240987 15 1:10
0 

500 23 

CD7  MRQ56 Cell Marque custom 63 1:10
0 

500 24 

Podoplani
n 

 D2-40 Biolegend 916606 32 1:20
0 

500 25 

CD279 PD1 D4W2J Cell Signaling 
Technology 

custom 23 1:50 500 26 

HLA-DR  EPR3692 Abcam ab209968 65 1:10
0 

333 27 

CD223 LAG3 D2G4O Cell Signaling 
Technology 

custom 42 1:25 500 28 
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CD20  rIGEL/773 Novus 
Biologicals 

NBP2-
54591 

48 1:20
0 

250 29 

CD56  MRQ-42 Cell Marque custom 58 1:10
0 

250 30 

CD45RO  UCH-L1 Santa Cruz 
Biotechnology 

custom 5 1:50 500 31 

CD278 ICOS D1K2T Cell Signaling 
Technology 

custom 74 1:20
0 

500 32 

CD90  EPR3132 Abcam ab181885 57 1:15
0 

500 33 

CD4  EPR6855 Abcam ab181724 20 1:10
0 

500 34 

CD11c  EP1347Y Abcam ab216655 49 1:20
0 

333 35 

CD3  MRQ-39 Cell Marque custom 33 1:50 500 36 
CD68  KP-1 BioLegend 916104 62 1:20

0 
250 37 

CD69  EPR21814 Abcam ab234512 36 1:50
0 

250 38 

CD14  EPR3653 Abcam ab226121 7 1:30
0 

250 39 

CD8  C8/144B Cell Marque custom 8 1:10
0 

250 40 

Kappa 
light chain 

 L1C1 Cell Marque custom 70 1:10
0 

200 41 

CD45RA  HI100 Biolegend 304102 21 1:20
0 

125 42 

CD11b  EPR1344 Abcam ab209970 28 1:20
0 

167 43 

Granzyme 
B 

 EPR20129-
217 

Abcam ab219803 81 1:20
0 

250 44 

CD31  C31.3 + C31.7 
+ C31.10 

Novus 
Biologicals 

NBP2-
47785 

51 1:20
0 

167 45 

CD45  2B11+PD7/26
3 

Novus 
Biologicals 

NBP2-
34528 

56 1:20
0 

167 46 

CD38  EPR4106 Abcam ab176886 3 1:20
0 

333 47 

CD44  IM7 Biolegend 103002 45 1:20
0 

250 48 

CD15  MMA BD 
Biosciences 

559045 14 1:20
0 

25 49 

Lambda 
light chain 

 Lamb14 Cell Marque custom 26 1:20
0 

118 50 

Mast cell 
tryptase 

 AA1 Abcam ab2378 71 1:20
0 

250 51 

DRAQ5  n/a Cell Signaling 
Technology 

4084L n/a 1:10
0 

167 52 

Hoechst 
33342 

 n/a Thermo Fisher 
Scientific 

62249 n/a 1:60
0 

7 all 
cycle
s 
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Table 5: B-cell maturation state markers 
Marker* Maturation 

State(s) 
  Physiological 

Function(s)** 
CITE-

Seq 
Panel 

Reference*** 

IGKC 
(Kappa) 

All Clonality 
indicator 

Antigen and Ig receptor 
binding, immune activation, 
phagocytosis, Ig immune 
response to other organisms 

✅ Seifert M et al, 
Methods Mol 
Biol, 2019 

IGLCx 
(Lambda) 

All Clonality 
indicator 

Antigen and Ig receptor 
binding, immune activation, 
phagocytosis, Ig immune 
response to other organisms 

✅ Seifert M et al, 
Methods Mol 
Biol, 2019 

CXCR3 Plasma 
Memory 

  GPCR for CXCL9, 
CXCL10 and CXCL11 for 
leukocyte traffic and 
chemotactic migration. 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

IGHE Centrocyte 
(LZ) 
Plasma 
Memory 
 

Late (class-
switched) 

Antigen and Ig receptor 
binding, immune activation, 
phagocytosis, Ig immune 
response to other 
organisms, circulating Ig 
complex 

❌ Talay O et al, 
Nature 
immunology, 
2012 

IGHAx Centrocyte 
(LZ) 
Plasma 
Memory 

Late (class-
switched) 

Ig receptor binding, 
antibacterial humoral 
response, glomerular 
filtration, respiratory burst. 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

IGHGx Centrocyte 
(LZ) 
Plasma 
Memory 

Late (class-
switched) 

Antigen and Ig receptor 
binding, immune activation, 
phagocytosis, Ig immune 
response. 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

FAS 
(CD95) 

(Pre)Memory   TNF-receptor, pro-apoptotic 
regulator, activation of NF-
kappaB, MAPK3/ERK1 and 
MAPK8/JNK. 

✅ Laidlaw B et al, 
Nat. 
Immunol., 2020 

CD38 Centrocyte 
Plasma 
Memory 

Late 
(activated) 

Synthesis and hydrolysis of 
cADP for intracellular 
calcium flux. 

✅ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

PRDM1 Plasma(blasts)   Repressor of beta-interferon 
gene expression 

❌ Holmes A et al, J. 
Exp. Med., 2020 

IRF4 Plasma(blasts)   Regulation of interferons 
and interferon-inducible 
genes, negatively regulates 
Toll-like-receptor (TLR) 
signaling. 

❌ Holmes A et al, J. 
Exp. Med., 2020 

TNFRSF17 Plasmablasts   B-cell development, 
autoimmune response, NF-
kappaB and MAPK8/JNK 
activation (via 
TNFSF13B/TALL-
1/BAFF). cell survival and 
proliferation (via TRAF) 

❌ Holmes A et al, J. 
Exp. Med., 2020 

CCR6 (Pre)Memory   Beta chemokine receptor 
family, B-lineage 
maturation and antigen-

❌ Morgan D and 
Tergaonkar V, 
Trends in 
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driven B-cell 
differentiation, migration 
and recruitment of dendritic 
and T cells during 
inflammatory and 
immunological responses. 

Immunology, 
2022. 

BACH2 Centrocytes 
(LZ) 
Memory 

  Enables DNA binding, 
primary adaptive immune 
response 

❌ Sidwell et al, 
Nature, 2016 

          
GPR183 
(EBI2) 

(Pre)Memory Early 
differentiation 

Homing to outer B-cell 
follicle 

❌ Holmes A et al, J. 
Exp. Med., 2020 

RELB Centrocytes 
(LZ) 

Late RNA polymerase and 
protein kinase binding. 
Lymphocyte differentiation 
and suppression of IF-beta 
production 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

REL Centrocytes 
(LZ) 

Late Regulate genes involved in 
apoptosis, inflammation, the 
immune response, and 
oncogenic processes. B-cell 
survival and proliferation 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

ICAM1 Centrocytes 
(LZ) 

Late Binds CD11a and CD11b 
integrins, migration to 
endothelial tissue 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

TRAF1 Centrocytes 
(LZ) 

Late TNF receptor, NFKB 
activation, anti-apoptotic 
signalling 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

NFKB2 Centrocytes 
(LZ) 

Late Transcriptional regulation, 
inflammation, alteration of 
cell growth 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

NFKB1 Centrocytes 
(LZ) 

Late Transcriptional regulation, 
inflammation, alteration of 
cell growth 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

CD40 Centrocytes 
(LZ) 

Late TNF receptor, class-
switching, memory B-cell 
development, germinal 
center formation 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

BLNK Centrocytes 
(LZ) 

  B-cell development ❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

CD74 Centrocytes 
(LZ) 

  Regulation of antigen 
presentation 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

BLK Centrocytes 
(LZ) 

  Cell proliferation, 
differentiation, B-cell 

❌ Morgan D and 
Tergaonkar V, 
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receptor signalling, B-cell 
development 

Trends in 
Immunology, 
2022. 

BTK Centrocytes 
(LZ) 

  B-cell development ❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

EBI3 Centrocytes 
(LZ) 

  Formation of IL-27 
(regulation of T cells) 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

CD83 Centrocytes 
(LZ) 

  Regulation of antigen 
presentation 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

FOXP1 LZ -> DZ Transition Transcription regulation 
(unspecified) 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

CFLAR LZ -> DZ Transition Regulation of apoptosis ❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

FCRL2 LZ -> DZ Transition Ig receptor ❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

SLA LZ -> DZ Transition Cell differentiation; innate 
immune response; and 
transmembrane receptor 
protein tyrosine kinase 
signaling pathway 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

PTPN6 DZ -> LZ Transition Hematopoietic cell growth, 
differentiation, mitotic 
cycle, and oncogenic 
transformation 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

MS4A1 
(CD20) 

DZ -> LZ Transition B-cell differentiation ✅ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

CD72 DZ -> LZ Transition Enable signaling receptor 
binding activity, cell 
adhesion 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

CAMK1 DZ -> LZ Transition Calmodulin-dependent 
protein kinase cascade 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

AICDA Centroblasts 
(DZ) 

  Somatic hypermutation ❌ Morgan D and 
Tergaonkar V, 
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Trends in 
Immunology, 
2022. 

CCNB1 Centroblasts 
(DZ) 

Proliferating Mitosis ❌ Cattoretti G et al, 
Blood, 2006 

BCL6 Centroblasts 
(DZ) 

  Transcription repression, 
blocking IL-4 response 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

MME 
(CD10) 

Germinal 
centre 
(DZ.LZ) 

Mainly 
centroblasts 

Endopeptidase, hormone 
inactivation 

✅ Goteri G et al, 
Diagn. Pathol., 
2017. 

SELL 
(CD62L) 

Naïve   Lymph node homing ✅ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

TCL1A Naïve   Cell survival (activation of 
AKT) 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

IGHM Naïve 
Memory 

  Antigen and Ig receptor 
binding, Ig secretion 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

IGHD Naïve   Antigen and Ig receptor 
binding, IL-1 stimulation 

❌ Morgan D and 
Tergaonkar V, 
Trends in 
Immunology, 
2022. 

 

* Marker names are obtained from the NCBI Gene Database.  Aliases are listed in brackets if 

used elsewhere in this study.    

** Gene functions from the NCBI Gene database are presented in summary form.   

*** Publication linking the marker with its respective maturation state.   
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Abbreviations and glossary 

B-NHL: B-cell non-Hodgkin lymphomas 

ITH: Intratumor heterogeneity 

R-CHOP: Rituximab with cyclophosphamide, hydroxydaunorubicin, oncovin, and 

prednisolone/prednisone chemoimmunotherapy combination therapy 

GC: Germinal center of lymph node B-cell follicles 

DZ: Dark zone germinal center B cells (centroblasts) 

LZ: Light zone germinal center B cells (centrocytes) 

Mem IgM: IgM+/IgD+ memory B cells 

Mem IgG: Class-switched memory B cells, including IgG, IgA or IgE isotypes 

Plasma: Plasma cells or plasmablasts 

rLN: reactive lymph node(s) 

MCL: Mantle cell lymphoma 

FL: Follicular lymphoma 

DLBCL: Diffuse large B-cell lymphoma 

GCB: Germinal center B cell 

ABC: Activated B cell 

MZL: Marginal zone lymphoma 

CNV: Copy number variation/variants 
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